
Math Library
for NOS/VE

Usage

(52)
CONTR_OL

DATA

60486513

Math Library
for NOS/VE

Usage

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60486513

System Version/ Product
Revisions PSR Level Version Date

A 1.0.2/598 1. 0 October 1983
B 1.1.2/630 1. 0 April 1985
c 1.1.4/649 1.0 January 1986
D 1.2.1/664 1.0 October 1986
E 1.2.2/678 1.0 April 1987
F 1.2.3/688 1.0 September 1987
G 1.3.1/700 1. 0 April 1988

This revision:

Revision G documents the Math Library for NOS/VE Usage Version 1 at
release level 1.3.1, PSR level 700. This revision documents
algorithm enhancements to the ALOG, ALOGlO, COS, EXP, SQRT, SIN, and
SINCOS routines. It was published in April 1988.

© 1983, 1985, 1986, 1987, 1988 by Control Data Corporation. All
rights reserved.
Printed in the United States of America.

2 Math Library Revision G

I , __ /

About This Manual •••••••

Introduction ••••••••••••

Number Types ••••••••
General Rules •••••••
Routines and Calls ••
Vector Routines •••••
Routine Error •••••••
Error Handling ••••••

Routine Descriptions ••••

ABS •••••••••••••••••
ACOS ••••••••••••••••
AIMAG •••••••••••••••
AINT ••••••••••••••• •
ALOG ••••••••••••••••
ALOGlO ••••••••••••••
AMOD ••••••••••••••••
ANINT ••••••••• • • • • • •
ASIN ••••••••••••••••
ATAN ••••••••••••••••
ATANH •••••••••••••••
ATAN2 •••••••••••••• •
CABS ••••••••••••••••
ccos ••••••••••••••••
CEXP ••••••••••••••••
CLOG •••••••••••• • • • •
CONJG •••••••••••••••
cos •••••••••••••••••
COSD ••••••••••••••••
GOSH ••••••••••••••••
COTAN •••••••••• • •. • •
CSIN ••••••••••••••••
CSQRT •••••••••••••••
DABS ••••••••••••••••
DACOS •••••••••••••••
DASIN •••••••••••••••
DATAN •••••••••••••••
DATAN2 •••••••••••• • •
DCOS ••••••••••••••••
DCOSH •••••••••••••••
DDIM ••••••••••••••••
DEXP ••••••••••••••••
DIM •••••••••••••••••
DINT ••••••••••••••••
DLOG ••••••••••••••••

Revision E

5

1-1

1-2
1-3
1-4
1-13
1-16
1-17

2-1

2-2
2-3
2-6
2-7
2-8
2-12
2-14
2-16
2-17
2-21
2-23
2-26
2-28
2-30
2-32
2-34
2-36
2-37
2-40
2-42
2-44
2-46
2-48
2-50
2-51
2-54
2-57
2-61
2-65
2-68
2-70
2-72
2-76
2-77
2-78

DLOGlO ••••••••••••••
DMOD •••••••••••• • • • •
DNINT •••••••••••••••
DPROD •••••••••••••••
DSIGN •••••••••••••••
DSIN ••••••••••••••••
DSINH •••••••••••••••
DSQRT •••••••••••••••
DTAN ••••••••••••••••
DTANH •••••••••••••••
DTOD
DTOI
DTOX
DTOZ
ERF •••••••••••••••••
ERFC ••••••••••••••••
EXP •••••••••••••••••
EXTB ••••••••••••••••
!ABS ••••••••••••••••
!DIM ••••••••••••••••
IDNINT ••••••••••••••
INSB ••••••••••••••••
!SIGN •••••••••••••••
!TOD
!TOI
ITOX ••••• , ••••• • • • •••
ITOZ ••••••••••••••••
MOD •••••••••••••••••
NINT ••••••••••••••••
RANF ••••••••••••••••
RANGET ••••••••••••••
RANSET ••••••••••••••
SIGN ••••••••••••••••
SIN •••••••••••••••••
SIND ••••••••••••••••
SINH ••••••••••••••••
SQRT ••••••••••••••••
SUM! S •••••••••••••••
TAN •••••••••••••••••
TAND ••••••••••••••••
TANH
XTOD
XTOI
XTOX
XTOZ
ZTOD
ZTOI
ZTOX
ZTOZ

2-81
2-83
2-84
2-85
2-86
2-87
2-90
2-92
2-94
2-97
2-99
2-102
2-105
2-107
2-109
2-111
2-113
2-117
2-119
2-120
2-121
2-122
2-124
2-125
2-127
2-129
2-131
2-133
2-134
2-135
2-137
2-138
2-139
2-140
2-143
2-145
2-148
2-151
2-152
2-154
2-156
2-158
2-160
2-162
2-165
2-167
2-169
2-171
2-173

Contents 3

Contents

Auxiliary Routines 3-1 Glossary • • • • • • • • • • • • • • • • A-1

ACOSIN 3-1
COSSIN 3-4 Related Manuals ••••••••• B-1
DASNCS 3-7
DEULER 3-9
DSNCOS 3-11 Error Handling •••••••••• C-1
HYPE RB 3-13
SIN COS 3-14
SINCSD 3-16 Index••••••••••••••• Index-I

4 Math Library Revision E

About This Manual

Audience • 5

Organization •••••••••••••••••••••••••••••••••••• • • • •• • • • • •• • • • • • 5

Conventions • 6

Submitting Comments ••••••••••••••••••••••••••• • • • • •. • • • • • • • • • • • • 7

In Case of Trouble ••••••••••••••••••••••••••••••••••• • • • • ••••• • • 7

Alh<IDumt 1filun0 Mamrn.nall

I,
"--- - - The Math Library usage manual describes the mathematical routines

I

"----

available in the Math Library. These routines can be accessed by
Ada, FORTRAN Version 1, FORTRAN Version 2, CYBIL, BASIC, PASCAL, and I
APL programs. The l~th Library is available under the CONTROL
DATA Network Operating System/Virtual Environment (NOS/VE)
operating system.

Audience

You should be familiar with one of the above programming languages
and with the NOS/VE operating system. In addition, you should
understand basic numerical techniques.

OD."ganization

The Hath Library usage manual is organized into the following
chapters:

Chapter 1 - Introduction

Describes the external characteristics of each function.
These include the number types used, the calling procedures,
and the error handling used by these procedures.

Chapter 2 - Routine Descriptions

Presents detailed information about each mathematical
routine.

Chapter 3 - Auxiliary Routines

Presents detailed information on auxiliary routines that are
called only by other math routines.

Additional information is available to you in the following
appendixes:

A - Glossary

Defines commonly-used terms and phrases.

B - Error Handling

Explains the Hath Library error processing procedure.

Revision G About This Manual 5

About This Manual

Certain notations are used throughout the manual with consistent
meaning. The notations are:

In formulas, a horizontal ellipses indicates that the
preceding item can be repeated as necessary.

* In formulas, an asterisk indicates multiplication.

** In formulas, two successive asterisks indicate
exponentiation.

I I In formulas, vertical bars indicate the absolute value of
the quantity.

() In intervals, parentheses indicate an open interval (the
end points are not included).

[] In intervals, brackets indicate a closed interval (the
end points are included).

(] In intervals, closure by a left parenthesis and a right
bracket includes the right end point, but not the left
end point.

[)

I
•

In intervals, closure by a left bracket and a right
parenthesis includes the left end point, but not the
right end point.

Vertical bars in the margin indicate changes or additions
to the text from the previous revision.

A dot next to the page number indicates that a
significant amount of text (or the entire page) has
changed from the previous revision.

All numbers used in this manual are decimal unless otherwise
indicated. Other number systems are indicated by a notation after
the number (for example, FA34 hexadecimal).

All references to logarithm (log) are base e unless otherwise
indicated.

All references to infinite values include positive and negative
infinity unless otherwise indicated.

6 Math Library Revision E

About This Manual

§ubmitting Comnnenfo

The last page of this manual is a comment sheet. Please use it to
give us your opinion of the manual's usability, to suggest specific
improvements, and to report technical or typographical errors. If

~ the comment sheet has already been used, you can mail your comments
to:

Control Data Corporation
Technology and Publications Division
P. O. Box 3492
Sunnyvale, California 94088-3492

Please indicate whether you would like a written response.

Also, if you have access to SOLVER, an online facility for reporting
problems, you can use it to submit comments about the manual. Use
FN8 as the product identifier for problems that are related to
FORTRAN and FV8 as the product identifier for problems related to
FORTRAN Version 2.

Iln Case of Trouble

Control Data's CYBER Software Support maintains a hotline to assist I
you if you have trouble using our products. If you need help beyond
that provided in the documentation or find that the product does not
perform as described, call us at one of the following numbers and a
support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address
questions about the physical packaging and/or distribution of
printed manuals to Literature and Distribution Services at the
following address:

Control Data Corporation
Literature and Distribution Services
308 North Date Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee,
call CONTROLNET® 243-2100 or (612) 292-2100. I

Revision G About This Manual 7

Introduction

This section describes the external characteristics of each
function. These include the number types used, the calling
procedures, and the error handling method used by these procedures.

1

Number Types • 1-2

General Rules • 1-3

Routines and Calls ••• 1-4

Vector Routines ••• • 1-13

Routine Error • 1-16

Error Handling ••• 1-17

___/

Il mrll: rt <ID m1 llll cc11: ii o nu 1

This manual describes the math functions found in the math library.
The math library contains mathematical functions and exponentiation
routines. Table 1-1 gives a summary of the mathematical functions.
Table 1-2 shows the input domain and output range for a subset of
the mathematical functions. Table 1-3 shows a summary of the
exponentiation routines of the math library. Tables 1-4, 1-5, 1-6,
and 1-7 show the parameter lists for the vector mathematical
functions.

The math library routines can be called directly from Ada, FORTRAN I
Version 1, FORTRAN Version 2, CYBIL, BASIC, Pascal, and APL
programs. Some functions cannot be called directly from CYBIL
programs. These functions are:

CABS DATAN2 DSIGN
ccos DCOS DSIN
CEXP DCOSH DSINH
CLOG DDUI DSNCOS
CON JG DEXP DSQRT
CSQRT DINT DTAN
DABS DLOG DTANH
DACOS DLOGlO DTOD
DAS IN DHOD DTOI
DASNCS DNINT DTOX
DATAN DP ROD DTOZ

Revision G Introduction 1-1

Number Types

The math routines perform computations on four number types:
integer, single precision floating point (real), double precision
floating point (long real), and complex floating point.

Integer

An integer is a one-word, right-justified, two's complement 64-bit
representation of all integers from -2**63 to 2**63 - 1. All
integers are considered standard forms.

Single Precision

A single precision floating point number consists of a sign bit, S,
which is the sign of the fraction, a signed biased exponent (15
bits), and a fraction (48 bits) which is also called a coefficient
or a mantissa.

Single precision floating point numbers consist of two types:
standard and nonstandard. Standard numbers are numbers that have
exponents in the range of 3000 hexadecimal ••• 4FFF hexadecimal,
inclusive, and have a nonzero fraction. Standard numbers can be
normalized or unnormalized. A normalized standard number has a one
in bit position 16, (the most significant bit of the fraction) where
bit position zero is the left-most bit.

The range in magnitude, M, covered by standard, normalized single
precision numbers is:

2**-4097 ~M ~ (l-2**-48) * 2**4095

(Approximately 14.4 decimal digits of precision.)

Nonstandard floating point numbers have many representations:

A floating point number with an exponent in the range 5000
hexadecimal ••• 6FFF hexadecimal

A floating point number with an exponent in the range 7000
hexadecimal ••• 7FFF hexadecimal

A floating point number with an exponent in the range 0000
hexadecimal ••• OFFF hexadecimal

A floating point number with an exponent in the range 1000
hexadecimal ••• 2FFF hexadecimal

An unnormalized floating point number with a zero fraction and a
standard exponent

A sign bit followed by 63 zero bits

1-2 Math Library Revision E

I

\..._ ___ ,

General Rules

Double Precision

A double precision floating point number consists of two words, each
a single precision floating point number. The coefficient of the
second word is considered to be an extension of the fraction of the
first word, yielding a 96-bit fraction. The exponent of the second
word following an arithmetic operation is identical to that of the
first word. The number type of the first single number determines
the type of the double number.

The range in magnitude, M, covered by standard, normalized double
precision numbers is:

2**-4097 ~ M ~ (l-2**-96) * 2**4095

(Approximately 28.9 decimal digits of precision.)

Complex

A complex number consists of two words, each a single precision
floating point number. The first word represents the real part of
the complex number, and the second word represents the imaginary
part.

A complex number is considered to be indefinite if either the real
or imaginary part is indefinite. Similarly, a complex number is
considered to be infinite if either the real or imaginary part is
infinite.

Gen er al l!lules

In the following routines, two rules apply to the use of these
number forms in computation:

1. Unless otherwise documented, if a standard form of a number type
is used in a computation, a standard form of the same type will
result.

2. Unless otherwise documented, if a nonstandard number other than
zero is used in a computation, or if the limits to a standard
form of a number type are exceeded, error handling will occur.

Rule 1 does not hold if the answer computed exceeds the range of
values for standard numbers, or if a mathematically invalid
operation is attempted.

Rule 2 does not hold when various nonstandard numbers are within the
domain of the function.

Most of the routines have a default error value of positive
indefinite. The following routines have a default error value of
zero: CCOS, DEXP, ERFC, EXP IDIM, IDNINT, ITOI, MOD, and NINT.

Revision E Introduction 1-3

I

I

Routines and Calls

Routines anu:ll Calls

The math functions are predefined routines that can be called
directly from an Ada, APL, BASIC, CYBIL, FORTRAN Version 1,
FORTRAN Version 2, or Pascal program. (See page 1-1 for a list of
functions that cannot be called from a CYBIL program.) These
functions return a single value to the calling program. There are
two types of calling procedures: call-by-reference and
call-by-value.

A math function can be called from a FORTRAN program by reference or
by value. Use the EE=R parameter in the FORTRAN or VECTOR FORTRAN
command to access the function through the call-by-referenC"e calling
procedure. If you do not use this parameter, the program accesses
the math function through the call-by-value calling procedure. Ada
and CYBIL programs access the math functions through the call-by
refe rence calling procedure only. APL, BASIC, and Pascal programs
access the math functions through the call-by-value calling
procedures only.

In a call-by-reference computation, a parameter list is formed in
memory and the first-word-address of this list is stored in register
A4 before the routine is invoked. The call-by-reference routine is
called through one of two entry points. Argument error processing
is set up in this routine. lf the argument list is valid, the
routine calls or branches to the call-by-value routine, depending on
the function. This routine performs the appropriate computation.
If the argument list is invalid, the call-by-value routine is not
called or branched to.

In a call-by-value computation, the arguments are entered directly
into the X registers before the routine is invoked. The first word
of the first argument is entered into register X2, and the remaining
words of each argument are entered into the registers successively.
For example, the calling procedure for the exponential routine ITOD
uses registers X2, X3, and X4. Register X2 holds the integer base,
and registers X3 and X4 hold the double precision exponent.

The first and second words of a complex argument contain the real
and imaginary parts, respectively. The first and second words of a
double precision argument contain the high-order and low-order bits,
respectively.

If the call-by-value routine is called directly, and if the
arguments are out-of-range, the job will abort during the
computation. When valid computations occur in both
call-by-reference and call-by-value routines, the result is returned
in registers XE and XF. One-word results (type integer and single
precision) are returned in XF. Two-\rnrd results (type double
precision and complex) are returned in registers XE and XF, with the
second word being in XF.

1-4 Math Library Revision G

Mathematical Functions

Table 1-1. Mathematical Functions (Continued)

Function Type of Number of Type of
/

Description Definition Name Argument Arguments Result

Exponential e**x CEXP complex complex
DEXP double double
EXP real real

Hyperbolic cosh(x) COSH real real

cosine DCOSH double double

Sine and cosine cossin(x) COSSIN real real

simultaneously

Sine sin(x), where x is CSIN complex complex

in radians DSIN double double
SIN real real

Square root x**(l/2) CSQRT complex complex
DSQRT double double
SQRT real real

Inverse hyper- arctanh(x) ATANH real real

bolic tangent

Inverse tangent arctan(y /x) ATAN2 real real
DATAN2 double double

Inverse sine or arcsin(x) DASNCS double double

cosine arccos(x)

Positive x - y, if x > y DDIM double double

difference 0, if x .5. y DIM real real
IDIM integer integer

Product x*y DP ROD real double

Transfer -/:/: if y ~ 0 DSIGN double double

of sign if y < 0 !SIGN integer integer
SIGN real real

Hyperbolic sinh(x) DSINH double double

sine SINH real real

Hyperbolic hyperb(x) HYPE RB real real

sine and cosine
simultaneously

Trigonometric sin(x) DSNCOS double double

sine or cosine cos(x) ,,,----

Tangent tan(x), where x is DTAN double double
in radians TAN real real

(Continued)

1-6 Math Library Revision E

Mathematical Functions

"--------

Table 1-1. Mathematical Functions (Continued)

Function Type of Number of Type of
Description Definition Name Argument Arguments Result

"--- Hyperbolic tanh{x) DTANH double double
tangent TANH real real

Error function erf{x) ERF real real

Complementary 1 - erf{x) ERFC real real
error function

Extract bits extb{x, 11, i2); EXTB x: boolean boolean
extracts bits from complex
x starting with double
position 11 with integer
length of i2 logical

real
11: integer
i2: integer

Nearest int{x + 0.5), if x > 0 IDNINT double integer
integer int{x - 0.5), if x < 0 NINT real integer

Insert bits insb{x, 11, i2, y) INSB x,y: boolean boolean
inserts bits from x complex
starting with position double
11 with length of i2 integer
into copy of y logical

I real
\..__,, 11: integer

i2: integer

Random number Random number in RANF none real
generator range {O, l)

Returns random Seed is in range RANG ET real real
number seed (0,1)

Sets seed for ranset{x) RANS ET real real
random number
generator

Sine and cosine sin(x) & cos (x), SINCSD real real
where x is in
degrees

Trigonometric sin(x) SIN COS real real
sine or cosine cos(x)

Sine sin(x), where x is SIND real real
in degrees

(Continued)

Revision E Introduction 1-7

Mathematical Functions

Table 1-1. Mathematical Functions (Continued)

Function Type of
Description Definition Name Argument

Sum of bits sum ls (x) SUMIS boolean
complex
double
integer
real

Tangent tan(x), where x is TAND real
in degrees

1-8 Math Library

Number of
Arguments

'l'ype of
Result

integer

real

Revision E

Revision E Introduction 1-9

Input Domains and Output Ranges

Table 1-2. Input Domains and Output Ranges (Continued)

Function

COSD(x)

COSH(x)
DCOSH(x)

COSSIN(x)

COTAN(x)

DASNCS(x)

DSNCOS(x)

ERF(x)

ERFC(x)

EXP(x)

CEXP(xr,xi)

DEXP(x)

HYPERB

SIN(x)
CSIN(xr,xi)

DSIN(x)

SINCOS(x)

SIND(x)

Input Domain

lxl < 2**47

1:1
< 4095*log(2)
< 4095*log(2)

lxl < 2**47

0 < lxl < 2**47

Ix I .5.. 1

I xi < 2**47

-infinity .5_ x .5_ infinity

-infinity .5_ x .5_ 53.037

x < 4095*log(2) &
x > 4097*log(2)
xr-< 4095*log(2) &
xi > -4097*log(2)
x <-4095*log(2) &
x ~ -4097*log(2)

lxl < 2**47

l
xl < 2**47
xr < 2**47
xii < 4095*log(2)

lxl < 2**47

lxl < 2**47

lxl < 2**47

1-10 Math Library

Output Range

-1 .5_ COSD(x) .5_

COSH(x)) 1
DCOSH(x)-~ 1

-1 .5_ COSSIN(x) (1

0 (DASNCS(x)
-pt/2 .5_ DASNCS(x) .5_ pi/2

-1 .5_ DSNCOS(x) .5_ 1

-1 .5_ ERF(x) .5_ 1

0 .5_ ERFC(x) .5_ 2

0 (EXP(x)

-1 .5_ HYPERB(x) .5_ 1

-1 .5_ SIN(x) .5_ 1

-1 .5_ DSIN(x) .5_ 1

-1 .5_ SINCOS(x) .5_

-1 .5_ SIND(x) .5_ 1

(Continued)

Revision E

\
'

(_/

(_ __

Input Domains and Output Ranges

Table 1-2. Input Domains and Output Ranges (Continued)

Function

SINH(x)
DSINH(x)

SQRT(x)
CSQRT(xr,xi)

DSQRT(x)

TAN(x)
DTAN(x)

TAND(x)

TANH(x)

Revision E

Input Domain

1:1 < 4095*log(2)
< 4095*log(2)

x > 0
(xr**2 + xi**2)**1/2 +
jxrj in machine range

x ~ 0

lxxl < 2**47
< 2**47

lxl < 2**47
x cannot be exact odd
multiple of 90

-infinity .S, x .S, infinity

Output Range

SQRT(x) ~ 0
value in right half of plane
CSQRT(xr) ~ O)

-1 ,S_ TANH(x) ,S_ 1

Introduction 1-11

Exponentiation Routines

Table 1-3. Exponentiation Routines

Name Type of Input Domain Output Range
Argument

DTOD double x > O; if x 0 x**y ~ 0
double then y > 0

DTOI double if x 0
integer then y > 0

DTOX double x > O; if x 0 x**y ~ 0
real then y > 0

DTOZ double if x 0
complex then yr > o, yi = 0

ITOD integer x > O; if x = 0 x**y ~ 0
double then y > 0

ITOI integer if x = 0
integer then y) 0

lx**y I < 2**63

ITOX integer if x 0 x**y ~ 0
real then y > 0

ITOZ integer if x 0 x**y ~ 0
complex then yr > O, yi 0

XTOD real x ~ O; if x = 0 x**y ~ 0
double then y > 0

XTOI real if x 0
integer then y > 0

XTOX real x ~ O; if x 0 x**y ~ 0
real then y > 0

XTOZ real if x 0
complex then yr > o, yi = 0

ZTOD complex if (xr,xi) (O,O)
double then y > 0

ZTOI complex if (xr,xi) (O,O)
/

integer then y > 0

ZTOX complex if (xr, xi) (O,O)
real then y > 0

ZTOZ complex if (xr, xi) (O,O)
complex then yr > O, yi = 0

/'

1-12 Math Library Revision E

Vector Routines

Vector math functions accept vectors as arguments and return vectors
as results using vector processing capabilities.

While the vector math functions are available and referenced on any
Cyber 180 mainframe model, they function correctly only on models
which include vector hardware facilities, currently li@ited to the
Cyber 180/990. If a vector math function is called on a non-vector
machine, an unimplemented instruction trap occurs.

The FORTRAN Version 2 compiler guarantees that the length (L) of the
vector sent to the Math Library will be within the range
O < L < 512. When the vector length is not within this valid range,
an-error message is displayed. See the section in this chapter on
vector error handling. When the length of the vector argument sent
to the CMNL vector routine is zero, a no-operation occurs.
No-operation means that the contents of the vector are returned
without changing any values.

The calling sequence for all vector functions conforms to
call-by-reference with one entry point defined for each routine. In
all cases, register A4 contains the Process Virtual Address [PVA] to
the first entry in the parameter list. Table 1-4 shows the
parameter list for real, double precision, and complex single
argument vector math functions. The double argument vector math
functions are divided into three catagories:

£(scalar, vector) See table 1-5 for parameter list.
£(vector, scalar) See table 1-6 for parameter list.
£(vector, vector) See table 1-7 for parameter list.

where £ is a double argument function name, such as, ATAN2.

Table 1-4. Parameter List for Single Argument Vector Math Functions

Word
(in Decimal) Description of Contents

Word Pointer to the result array.

Word 2 Pointer to the source array.

Word 3 Pointer to the result array descriptor.

~ford 4 Pointer to the source array descriptor.

Revision F Introduction 1-13

Vector Routines

Table 1-5. Parameter List for (Scalar, Vector) Functions
(double argument vector math functions where
argument 1 is scalar and argument 2 is vector)

Word
(in Decimal) Description of Contents

Word Pointer to the result array.

Word 2 Pointer to the source scalar (argument 1).

Word 3 Pointer to the source array (argument 2).

Word 4 Pointer to the result array descriptor.

Word 5 0

Word 6 Pointer to the source array descriptor (argument 2)

Table 1-6. Parameter List for (Vector, Scalar) Functions
(double argument vector math functions where
argument 1 is vector and argument 2 is scalar)

Word
(in Decimal) Description of Contents

Word Pointer to the result array.

Word 2 Pointer to the source array (argument 1).

Word 3 Pointer to the source scalar (argument 2).

Word 4 Pointer to the result array descriptor.

Word 5 Pointer to the source array descriptor (argument 1)

Word 6 0

1-14 Math Library Revision E

Vector Routines

',,___ _ . ..,,'

Table 1-7. Parameter List for (Vector, Vector) Functions
(double argument vector math functions
where arguments 1 and 2 are vector)

I
__ / Word

(in Decimal) Description of Contents

Word Pointer to the result array.

Word 2 Pointer to the source array (argument 1).

Word 3 Pointer to the source array (argument 2).

Word 4 Pointer to the result array descriptor.

Word 5 Pointer to the source array descriptor (argument 1)

Word 6 Pointer to the source array descriptor (argument 2)

(
'- -

Revision E Introduction 1-15

Routine Error

Error is defined as the computed value of a function minus the true
value.

A certain amount of error occurs during the computation of the math
library functions, and is composed of two parts: algorithm error
and machine round-off error. Algorithm error is caused by
inaccuracies inherent in the mathematical process used to compute
the result. It includes error in coefficients used in the algorithm.

Machine round-off error is caused by the finite nature of the
computer. Because a finite number of bits can be represented in
each word of memory, some precision is lost.

A curve representing the algorithm error is usually smooth with
discontinuities at breaks in the range reduction technique. The
error in the coefficients that are involved in range reduction can
also occur. Usually, a good algorithm which uses good coefficients
will not have an error greater than one-half in the last bit of the
result.

Round-off error is difficult to predict or graph. A graph of
round-off error is extremely discontinuous, but maximum and minimum
error over small intervals can be shown.

Relative error is the error divided by the true value.
magnitude of relative error can be analyzed in two ways.
the following formula:

The
By using

relative error = (routine value - exact value)/exact value

or by figuring out how many bits the routine differs from the exact
value. The latter is called bit error.

The first method is used for single precision algorithms accurate to
less than 2E-15, and round-off errors less than lOE-15. Changing
the last bit in a single precision number produces a relative change
of between 3.SE-15 for a large mantissa, and 7.lE-15 for a small but
normalized mantissa. This method is used for the error analysis of
the math library routines.

The second method of analyzing relative error is by examining the
routine's bit error. To determine how many bits off a routine is,
the function is evaluated in double precision and rounded to single
precision. Then assuming the exponents are the same, the mantissas
are subtracted and the integer difference is the bit error.

1-16 Math Library Revision E

Error Handling

Error handling takes place when the argument or result is outside
the range of the function. There are two modes of error processing,
depending on whether the calling sequence was call-by-reference or
call-by-value.

If you are accessing the math library in a language other than
FORTRAN, you might want to establish a condition handler to be used
in conjunction with the error handling mechanism under the
call-by-reference routine. The math library automatically
establishes this condition handler for FORTRAN programs. Refer to
appendix C for a more complete description of the math library error
handling process.

Call-By-Reference Error Handling

When the argument or result is out-of-range in a call-by-reference
routine, an error message is displayed and the corresponding default
error value is placed in the result registers(s) XE and XF.

Call-By-Value Error Handling

If the call-by-value routine is called directly, that is, if the
call-by-reference routine is not called, the job will abort if the
following situations occur:

An out-of-range argument is passed to the call-by-value routine.

The result of the computation in a call-by-value routine is
out-of-range.

The call-by-value routine does not guarantee any other type of error
handling, and the values in registers XE and XF are undefined unless
otherwise specified.

Vector Error Handling

The vector math functions use call-by-reference error handling. For
example, if an argument within a set of arguments is illegal or
produces an out-of-range value, an error message is displayed for
that argument. The first argument in error is supplied in the error
message. The default error value (usually an indefinite value
indicated by +IND) is placed in the result location corresponding to
the argument in error within the set. Processing continues and
correct results are generated for all arguments which are not in
error. However, once an argument is found to be in error, further
arguments which are in error are not detected and results are not
guaranteed.

Revision E Introduction 1-17

Routine Descriptions

This chapter describes each of the math routines in detail.

ABS •••••••••••••••••••
ACOS ••••••••••••••••••
AIMAG •••••••••••••••••
AINT , •••••••••••••••••
ALOG ••••••••••••••••••
ALOGlO ••••••••••••••••
AMOD ••••••••••••••••••
ANINT •••••••••••••••••
ASIN ••••••••••••••••••
ATAN ••••••••••••••••••
ATANH •••••••••••••••••
ATAN2 •••••••••••••••••
CABS ••••••••••••••••••
ccos
CEXP
CLOG
CONJG •••••••••••••••••
cos •••••••••••••••••••
COSD ••••••••••••••••••
COSH ••••••••••••••••••
COTAN •••••••••••••••••
CSIN ••••••••••••••••••
CSQRT •••••••••••••••••
DABS ••••••••••••••••••
DACOS •••••••••••••••••
DAS IN •••••••••••••••••
DATAN •••••••••••••••••
DATAN2 ••••••••••••••••
DCOS ••••••••••••••••••

DCOSH •••••••••••••••••
DDIM ••••••••••••••••••
DEXP ••••••••••••••••••
DIM •••••••••••••••••••
DINT ••••••••••••••••••
DLOG •••••••••••••• , •••

DLOGlO ••••••••••••••••
DMOD ••••••••••••••••• ,
DNINT •••••••••••••••••
DPROD •••••••••••• , •• , ,
DSIGN •••••••••••••••••
DSIN •••••••••••••• , • , ,
DSINH • , •••••••••••••••

2-2
2-3
2-6
2-7
2-8
2-12
2-14
2-16
2-17
2-21
2-23
2-26
2-28
2-30
2-32
2-34
2-36
2-37
2-40
2-42
2-44
2-46
2-48
2-50
2-51
2-54
2-57
2-61
2-65
2-68
2-70
2-72
2-76
2-77
2-78
2-81
2-83
2-84
2-85
2-86
2-87
2-90

DSQRT •••••••••••••••••
DTAN ••••••••••••••••••
DTANH •••••••••••••••••
DTOD •••••••••••••• , •••
DTOI
DTOX
DTOZ
ERF ••••••••••••• , •••••
ERFC ••••••••••••••••••
EXP •••••••••••••••••• •
EXTB •••••• , •• , ••••••••
IABS •••••••• , •••••••••
IDIM ••••••••• , ••••••••

IDNINT ••••••••••••••••
INSB • , ••• , •••••••• , •••
ISIGN •••••••••••••••••
ITOD • , ••••••••••••••••
lTOI
ITOX
ITOZ ••••••••••••••••••
MOD ••• •••••• ••••••••••
NINT ••••••••••••••••••
RANF ••••••••••••••••••
RANGET ••••••••••••••••
RANSET • , •••••• , ••••• , •
SIGN •••••••••••• , •••••
SIN , ••••• , ••• , , •••••• ,
SINO ••••••••••••••••••
SINH ••••••• , ••••••••• ,
SQRT ••••• , •••• , ••• , •• ,
SUMlS ••••••••• , •••••••
TAN •••••••••••••••••••
TAND
TANH
XTOD
XTOI
XTOX
XTOZ
ZTOD
ZTOI
ZTOX
ZTOZ

2

2-n
2-94
2-97
2-99
2-102
2-105
2-107
2-109
2-111
2-113
2-117
2-119
2-120
2-121
2-122
2-124
2-12'.>
2-Ll7
2-129
2-131
2-133
2-134
2-135
2-137
2-138
2-U9
2-140
2-143
2-145
2-148
2-151
2-152
2-154
2-156
2-158
2-160
2-162
2-165
2-167
2-169
2-171
2-173

'..._ ··"

The description of each routine is discussed on the following
pages. The routines are organized in alphabetical order. Each
description includes:

Entry points for the call-by-reference, call-by-value, and
vector routines

Input domains and output ranges for the arguments in each routine

Conditions that cause an argument to be invalid, which results
in an error

Formulas used to compute the result

Error analysis and the effect of argument error

Entry points to the routines are places in the routines where
execution can begin. Some routines can evaluate more than one
function, and some routines call other routines to compute a portion
of the function.

Revision E Routine Descriptions 2-1

ABS

AB§

ABS is a function that computes the absolute value of an argument.
It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RABS and ABS, and the
call-by-value entry point is MLP$VABS.

The input domain is the collection of all valid real quantities.
The output range is included in the set of nonnegative real
quantities.

Call-By-Reference Routine

No errors are generated by ABS. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The argument is returned with its sign bit forced positive. The
rightmost 63 bits remain the same.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-2 Math Library Revision B

\"-._

I
___.

ACOS

ACO§
ACOS is a function that computes the inverse cosine function. It
accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RACOS and ACOS, the
call-by-value entry point is MLP$VACOS, and the vector entry point
is MLP$ACOSV.

The input domain is the collection of all valid real quantities in
the interval [-1.0,1.0]. The output range is included in the set of
nonnegative real quantities less than or equal to pi.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Formulas used in the computation are:

arcsin(x) -arcsin(-x), x < -.5
arcos(x) pi - arcos(-x), x < -.5
arcsin(x) x + x**3*s*((w + z -j)*w + a+ m/(e - x**2)),

where -.5 < x < .5
arcos(x) pi/2 - arcsin(x), -.5 <= x < .5
arcsin(x) pi/2 - arcos(x), .5 <= x < 1.0
arcos(x) arcos(1-ITER((1 - x), n)) /2**n, .5 <= x < 1.0
arcsin(l) pi/2
arcos(l) 0

where:

(x**2 - c)*z + k
(x**2 + r)x**2 + i

w
z

ITER(y,n) n iterations of y = 4*y - 2*y**2

Revision E Routine Descriptions 2-3

ACOS

The constants used are:

r = 3.173 170 078 537 13
e = 1.160 394 629 739 02
m = 50.319 055 960 798 3
c -2. 369 588 855 612 88
i 8.226 467 970 799 17
j -35.629 481 597 455 5
k 37. 459 230 9 25 758 2
a = 349.319 357 025 144
s = .746 926 199 335 419*10**-3

The approximation of arcsin(-.5,.5) is an economized approximation
obtained by varying r,e,m, ••• ,s.

The algorithm used is:

a. If ACOS entry, go to step g.

b. If lxl >= .5, go to step h.

c. n = 0 (Loop counter).
q x
y x**2
u o, if ASIN entry.
u pi/2, if ACOS entry.

d. z = (y + r)*y + i
w = (y - c)*z + k
p = q + s*q*y*((w + z - j)*w +a+ m/(e - y))
p = u - p
Yl = p/2**n

e. If ASIN entry, go to step k.

f. If xis in (-.5,1.0), return.
XF = 2*u - (Y 1)
Return.

g. If lxl < .5, go to step c.

h. If x = l.o or -1.0, go to step 1.
If x is invalid, go to step m.

n = 0 (Loop counter).
y = 1.0 - lxl, and normalize y.

i. h = 4*y - 2*y**2
n = n + 1.0
If 2*y<= 2 - sqrt(3) = .267949192431, y = h, and go to step i.

j. q 1.0 - h, and normalize q.
y q**2
u pi/2
Go to step d.

2-4 Math Library Revision E

'---
k. Yl = u - (Yl), and normalize Yl.

Affix sign of x to Yl = XF.
Return.

1. XF = pi/2, if x = 1.0.
XF = -pi/2, if x = -1.0.
If ASIN entry, return.
XF = 0, if x = 1.0.
XF = pi, if x = -1.0.
Return.

m. Return.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

See Vector Error Handling in chapter 1 for further information.

ACOS

__ Error Analysis

l,,,~

\.___

\,___,

The maximum absolute value of relative error of the ACOS
approximation over (-.5,.S) is l.996*E-15.

The function ACOS was tested against the Taylor series. Groups of
2,000 arguments were chosen randomly from given intervals.
Statistics on relative error were observed. Table 2-1 shows a
summary of these statistics.

Table 2-1. Relative Error of ACOS

Interval
Root Mean

From To Maximum Square

-.1250E+OO .1250E+OO .4916E-14 .3233E-14
-.lOOOE+Ol -.7500E+OO .5875E-14 .2068E-14

.7500E+OO • lOOOE+Ol .1987E-13 • 77 49E-14

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e' /(1.0 - x**2)**.S.

Revision E Routine Descriptions 2-5

AI MAG

AIMAG is a function that returns the imaginary part of an argument.
It accepts a complex argument and returns a real result.

The call-by-reference entry points are MLP$RAIMAG and AIMAG, and the
call-by-value entry point is MLP$VAIMAG.

The input domain is the collection of all valid complex quantities.
The output range is included in the set of valid real quantities.

Call-By-Reference Routine

No errors are generated by AIMAG. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The imaginary part of the complex argument is returned. The real
part of the argument is not used.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-6 Math Library Revision E

AINT

AllPflr

AINT is a function that returns an integer part of an argument after
truncation. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RAINT and AINT, and the
call-by-value entry point is MLP$VAINT.

The input domain is the collection of all valid real quantities.
The output range is included in the set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

The argument is added to a special floating point zero that forces
truncation. The result is returned.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-7

ALOG

Ail...OG

ALOG is a function that computes the natural logarithm function. It
accepts a real argument and returns a real result. ~

The call-by-ref ~rence entry points are MLP$RALOG and ALOG, the
call-by-value entry point is MLP$VALOG, and the vector entry point
is HLP$ALOGV.

The input domain is the collection of all valid, positive real
quantities. The output range is included in the set of valid real
quantities whose absolute value is less than 4095*log(2).

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

If xis valid, let y be a real number in [l, 2) and nan integer
such that x = y*2**n. Log(x) is evaluated by:

log(x) = log(y) + n*log(2)

To evaluate log(y), the interval [l, 2) is divided into 33
subintervals such that on each the abs(t) < 1/129 where
t = (y - c)/(y + c). To achieve this, the subintervals are offset
by 1/64. The subintervals are:

[1, 65/64)
[65/64, 67 /64)

[125/64, 127, 64)
[127/64, 2)

2-8 Math Library Revision G

\
'--- /

ALOG

Log(y) is then computed using the identity:

log(y) = log(c) + log((l + t)/(l - t))

and the center point c is chosen close to the midpoint of the
subinterval containing y, except for the first and last
subintervals, where the center points are 1 and 2, respectively. By
selecting these center points, it ensures that abs(t) < 1/129.

Log ((1 + t)/(l - t)) is approximated with a 7th degree min-max
polynomial of the form:

2*t + c3*t**3 + c5*t**5 + c7*t**7

The coefficients are:

c3 .6666666666667
c5 .3999999995486
c7 .2857343176917

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-2
shows a summary of these statistics.

Revision G Routine Descriptions 2-9

I

ALOG

Table 2-2. Relative Error of ALOG

Test

ALOG(x)
against
ALOG(l 7x/16) -
ALOG(l 7I16)

ALOG(x*x)
against
2*LOG(x)

ALOG(x)
against
Taylor series
expansion of
ALOG(l + y)

Total Error

Interval

From To Maximum

.7071E+OO .9375E+OO .1782E-13

.1600E+02 .2400E+03 .7082E-14

l-.1526E-04 l+.1526E-04 .1417E-13

Root Mean
Square

.5463E-14

.2035E-14

.5197E-14

The final calculation of log(x) is done by adding the following
terms in the order below to achieve maximum precision:

log(x) = n*(log(2) - factor) +
(((c7*t2 + c5)*t2 + c3)*t2)*t +
t +
t +
(log(c)/2) + (factor/2)*n +
(log(c)/2) + (factor/2)*n

The values of c and log(c)/2 for each subinterval are stored in a
table. Factor is the nearest floating point value with 8 bits of
precision to log(2). Thus, the single precision representation of
log(2) - factor is accurate to 56 bits of precision. The sum
log(c) + factor*n is split into two equal parts to provide extra
precision during the accumulation of the sum of terms.

e 2-10 Hath Library Revision G

__ -

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'/x.

ALOG

Revision G Routine Descriptions 2-11 I

ALOGlO

AILOG:rn

ALOGlO is a function that computes the common logarithm function.
It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RALOG10 and ALOGlO, the
call-by-value entry point is MLP$VALOG10, and the vector entry point
is MLP$ALOG10V.

The input domain is the collection of all valid, positive real
quantities. The output range is included in the set of valid real
quantities whose absolute value is less than 4095*log(2) base 10.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

If x is valid, let y be a real number in [1, 2) and n an integer
such that x = y*2**n. LoglO(x) is evaluated by:

loglO(x) = loglO(y) + n*log10(2)

To evaluate loglO(y), the interval [1, 2) is divided into 33
subintervals such that on each the abs(t) < 1/129 where
t = (y - c)/(y + c). To achieve this, the subintervals are offset
by 1/64. The subintervals are:

[1, 65/64)
[65/64, 67/64)

[125/64' 127' 64)
[127/64, 2)

LoglO(y) is then computed using the identity:

loglO(y) = loglO(c) + loglO((l + t)/(1 - t))

and the center point c is chosen close to the midpoint of the
subinterval containing y, except for the first and last
subintervals, where the center points are l and 2, respectively. By
selecting these center points, it ensures that abs(t) < 1/129.

2-12 Math Library Revision G

ALOGlO

LoglO((l + t)/(l - t)) is approximated with a 7th degree min-max
polynomial of the form:

Cl*t + c3*t**3 + c5 + t**S + c7**t**7

The coefficients are:

cl .8685889638065
c3 .2895296546022
c5 .1737177925653
c7 .1240928374639

Revision G Routine Descripttons 2-12. l/2-12.2 •

ALOGlO

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is less than zero.

See Vector Error Handling in chapter l for further information.

Error Analysis

The function ALOGlO was tested against ALOGlO(llx/10) -
ALOGlO(ll/10). Groups of 2,000 arguments were chosen randomly from
the interval [.3162E+00,.9000E+OO]. Statistics on relative error
were observed: maximum relative error was .3011E-13, root mean
square relative error was .8125E-14.

Total Error

The final calculation of loglO(x) is done by adding the following
terms in the order below to achieve maximum precision:

loglO(x) n*(logl0(2) - factor) +
(((c7*t2 + c5)*t2 + c3)*t2 + (cl - l))*t +
t +
(loglO(c) + factor*n)

The values of c and loglO(c) for each subinterval are stored in a
table. Factor is the nearest floating point value with 8 bits of
precision to logl0(2). Thus, the single precision representation of
logl0(2) - factor is accurate to 56 bits of precision. The leading
coefficient of the approximation is split into 1 and (cl - 1) to
provide extra precision to the min-max polynomial approximation.

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'/x.

Revision G Routi~e Descriptions 2-13

AMOD

AMOD is a function that returns the remainder of the ratio of two
arguments. It accepts two real arguments and returns a real result. /

The call-by-reference entry points are MLP$RAMOD and AMOD, and the
call-by-value entry point is MLP$VAMOD.

The input domain is the collection of all valid real pairs (x,y)
such that x/y is a valid real quantity, and y is not equal to O.
The output range is included in the set of valid real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

y is equal to zero.

x/y is infinite.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is branched
to, and the result of the computation is returned to the calling
program.

Call-By-Value Routine

Given the argument pair (x,y), the formula used for computation is:

x - aint (x/y)*y

The quotient x/y is added to a special floating point zero that
forces truncation, to get n = aint(x/y); then the product of n and y
is formed in double precision and subtracted from x in double
precision. The most significant word of the result is returned. If
the result is nonzero, it has the sign of x.

2-14 Math Library Revision E

AMOD

Error Analysis

Not applicable.

__ - Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-15

AN INT

ANilNil

ANINT is a function that returns the nearest whole number to an
argument. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RANINT and ANINT, and the
call-by-value entry point is MLP$VANINT.

The input domain is the collection of all valid real quantities.
The output range is included in the set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

If the argument is > O, .5 is added to it, and the result is added
to a special floating point zero that forces truncation. If the
argument is < O, -.5 is added to it, and the result is added to a
special floating point zero that forces truncation.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-16 Math Library Revision E

\

'-

A§IlN

ASIN is a function that computes the inverse sine function. It
accepts a real argument and returns a real result.

ASIN

The call-by-reference entry points are MLP$RASIN and ASIN, the
call-by-value entry point is MLP$VASIN, and the vector entry point
is MLP$ASINV.

The input domain is the collection of all valid real quantities in
the interval [-1.0,l.O]. The output range is included in the set of
valid real quantities in the interval [-pi/2,pi/2].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Formulas used in the computation are:

arcsin(x)
arcos(x)
arcsin(x)

where
arcos(x)
arcsin(x)
arcos(x)
arcsin(l)
arcos(l)

where:

-arcsin(-x), x < -.5
pi - arcos(-x), x < -.S
x + x**3*s*((w + z -j)*w +a+ m/(e - x**2)),

-.s < x < .s
pi/2 - arcsin(x), -.S <= x < .S
pi/2 - arcos(x), .s <= x < 1.0
arcos(l-ITER((l - x),n))/2**n, .s <= x < 1.0
pi/2
0

w = (x**2 - c)*z + k
z = (x**2 + r)x**2 + i

ITER(y,n) = n iterations of y

Revision E

4*y - 2*y**2

Routine Descriptions 2-17

ASIN

The constants used are:

r = 3.173 170 078 537 13
e = 1.160 394 629 739 02
m = 50.319 055 960 798 3
c = -2.369 588 855 612 88
i 8. 226 467 970 799 17
j -35.629 481 597 455 5
k 37. 459 230 925 758 2
a = 349.319 357 025 144
s = .746 926 199 335 419*10**-3

The approximation of arcsin(-.5,.5) is an economized approximation
obtained by varying r,e,m, ••• ,s.

The algorithm used is:

a. If ACOS entry, go to step g.

b. If lxl >= .s, go to step

c. n = 0 (Loop counter).
q x
y x**2
u = o, if ASIN entry.
u = pi/2, if ACOS entry.

d. z = (y + r)*y + i
w = (y - c)*z + k

h.

p = q + s*q*y*((w + z - j)*w + a + m/(e - y))
p = u - p
Yl = p/2**n

e. If ASIN entry, go to step k.

f. If xis in (-.5,1.0), return.
XF = 2*u - (Y 1)
Return.

g. If Ix I < • 5, go to step c.

h. If x = 1. o or -1. 0, go to step
If x is invalid, go to step m.

n = 0 (Loop counter).

1.

y = 1.0 - lxl' and normalize

i. h = 4*y - 2*y**2
n = n + 1.0

Y•

If 2*y<= 2 - sqrt(3) = .267949192431, y h, and go to step i.

j. q 1.0 - h, and normalize q.
y q**2
u pi/2
Go to step d.

2-18 Math Library Revision E

(__ _

;,,,,.....

k. Yl = u - (Yl), and normalize Yl.
Affix sign of x to Yl = XF.
Return.

1. XF = pi/2, if x = 1.0.
XF = -pi/2, if x = -1.0.
If ASIN entry, return.
XF = 0, if x = 1.0.
XF = pi, if x = -1.0.
Return.

m. Return.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than 1.0.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The maximum absolute value of relative error of the ASIN
approximation over (-.5,.S) is l.996*E-15.

ASIN

The function ASIN was tested against the Taylor series. Groups of
2,000 arguments were chosen randomly from given intervals.
Statistics on relative error were observed. Table 2-3 shows a
summary of these statistics.

Revision E Routine Descriptions 2-19

ASIN

Table 2-3. Relative Error of ASIN

Interval
Root Mean

From To Maximum Square

-.1250E+OO .1250E+OO .7101E-14 .2763E-14
.7500E+OO .lOOOE+Ol .8378E-14 .3462E-14

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'/(1.0 - x**2)**.5.

2-20 Math Library Revision E

__ __ /

ATAN

A.TAN

ATAN is a function that computes the inverse tangent function. It
accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RATAN and ATAN, the
call-by-value entry point is MLP$VATAN, and the vector entry point
is MLP$ATANV.

The input domain is the collection of all valid real quantities.
The output range is included in the set of valid real quantities in
the interval [-pi/2,pi/2].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The argument x is transformed into an argument y in the interval
[0,1/16] by the range reduction formulas:

arctan(u)
arctan(u)
arctan(u)

-arctan(-u), if u < 0
pi/4 + (pi/4 - arctan(l/u)), if u > 1.0
arctan(k/16) + arctan((u - k/16)/(T.O + u*k/16)),
if 0 ~ u < 1.0, and k is the greatest integer not
exceeding 16*u.

Finally, arctan(y) (for y in [0,1/16]) is computed by the polynomial
approximation:

arctan(y) y + a(l)*y**3 + a(2)*y**5 + a(3)*y**7 + a(4)*y**9

where:

a(l) -.333 333 333 333 128 45
a(2) .199 999 995 801 446 4
a(3) -.142 854 130 508 745 0
a(4) .110 228 161 612 614 9

Revision E Routine Descriptions 2-21

ATAN

The coefficients of this polynomial are those of the minimax
polynomial approximation of degree 3 to the function f over (0,1/4),
where f(u**2 = (arctan(u) - u)/u**3.

(Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski,
Computer Information and Control Science, University of Minnesota,
55455.)

Vector Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-4
shows a summary of these statistics.

Table 2-4. Relative Error of ATAN

Interval
Root Mean

Test From To Maximum Square

ATAN(x) against -.6250E-Ol .6250E-Ol • 7102E-14 .J647E-14
truncated
Taylor series

2*ATAN(x) against .2679E+OO .4142E+OO .1355E-1J .4023E-14
ATAN(2x/(l - x*x)) .4142E+OO .lOOOE+Ol • l 763E-13 • 5931E-14

ATAN(x) against .6250E-Ol .2679E+OO • 7117E-14 .2605E-14
ATAN(l/16) +
ATAN((x - 1/16)/
(1 + x/16))

Effect. of Argument Error

If a small error e occurs in the argument, the error in the result y
is given approximately by e/(l*y**2).

2-22 Math Library Revision E

_

I
"'-- /

AT ANH

ATANH is a function that computes the inverse hyperbolic tangent
function. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RATANH and ATANH, the
call-by-value entry point is MLP$VATANH, and the vector entry point
is MLP$ATANHV.

The input domain is the collection of all valid real quantities
whose absolute value is less than 1.0. The output range is included
in the set of valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 1.0.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The argument range can be reduced to the interval [0,1.0] by the
identity atanh(-x) = -atanh(x). The expression atanh(x) = .5*ln((l.O
+ x)/(1.0 - x)) is formed by using the definition tanh(x) = (e**x -
e**-x)/(e**x + e**-x).

The argument range of the log can be reduced to the interval
[.75,1.5] by using the property ln(a*b) = ln(a) + ln(b), and
extracting the appropriate multiple of ln(2):

atanh(x) .5*n*ln(2) + .5*ln(2**-(n)*(l.O + x)/(1.0 - x))

The argument range is reduced to the interval [-.2,.2] by writing
the argument of log in the form (1.0 + y)/(1.0 - y), and
substituting atanh(y):

atanh(x)

Revision E

2**-n*(l.O + x) - (1.0 - x)
.5*n*ln(2) + atanh[~~~~~~~~~~~~~

2**-n*(l.O + x) + (1.0 - x)

Routine Descriptions 2-23

AT ANH

The value of n such that 2**-n*(l.O + x)/(1.0 - x) is in the
interval [.75,1.5] is the same as the value of n such that
2**-n*(l.O + x)/(.75*(1.0 - x)) is in the interval [1.0,2.0]. If
.75*(1.0 - x) is written as a*2**m, where a is in interval
[l.0,2.0], then 2**(-n - m)*(l.O + x)/a must be in interval
[1.0,2.0]. If (1.0 + x) > a, then -n - m = 0 and n = -m. If (1.0 +
x) < a, then -n - m = 1.0-and n = 1.0 - m.

The function atanh(z) in the interval [-.2,.2] is approximated by z
+ z**3*p/q, where p and q are 4th order even polynomials. For
atanh(z), the coefficients of p and q were derived from the (7th
order odd)/(4th order even) minimax (relative error) rational form
in the interval [-.2,.2].

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 1.0.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

For abs(x) < .2, n equals zero, and the expected bound of the error
is 4.SE-15.

For abs(x) > .5, the term n*(ln(2)/2) dominates. This term is
computed as-n*(ln(2)/2 - .125) - n*.125 - n*.125 because the
rounding error in representing ln(2)/2 is large; the above form
makes the rounding error relatively small. Since n*.125 is exact
and the dominating form, the two additions in (other)n*.125 + n*.125
dominate the error, and the expected relative error is 8.3E-15 in
this region.

For .2 < abs(x) < .5, n equals one, and the term z = (.5*(1.0 + x) -
(1.0 - ~))/(.5*(1.0 + x) + (1.0 - x)) may be relatively large. For
abs(x) < 0.25, the subtraction 1.0 - x = .5 - x + .5 loses two bits
of the original argument. Also, z is negative in this range, and
some cancellation occurs in the final combination of terms, costing
about one ulp. The expected upper bound in the region .2 < abs(x) <
0.25 is 19.4E-15.

A group of 10,000 arguments was chosen randomly from the interval
[-1.0,l.O]. The maximum relative error of these arguments was found
to be .3304E-13.

2-24 Math Library Revision E

I
\.___,

ATANH

Effect of Argument Error

For small errors in the argument x, the amplification of absolute
error is l.Oi(l.d - x**2), and that of relative error is x/((1.0 -
x**2)*atanh(x)). This increases from 1 at 0 and becomes arbitrarily
large near 1.0.

Revision E Routine Descriptions 2-25

ATAN2

A1rAN2

ATANZ is a function that computes the inverse tangent function of
the ratio of two arguments. It accepts two real arguments and
returns a real result.

The call-by-reference entry voints are MLP$RATAN2 and ATAN2, and the
call-by-value entry point is MLP$VATAN2.

The ATAN2 vector math function is divided into three routines having
three separate entry points defined as follows:

ATAN2(scalar,vector)
ATAN2(vector,scalar)
ATAN2(vector,vector)

HLP$ATAN2SV
MLP$ATAN2VS
!1LP$ATAN2VV

The input domain is the collection of all valid real pairs (x,y)
such that both quantities are not equal to zero. The output range
is included in the set of valid real quantities greater than -pi and
less than or equal to pi.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x and y are infinite.

x and y ~re equal to zero.

x/y is equal to plus or minus infinite and y is not equal to
zero.

x is not equal to zero and y is equal to plus or minus infinite.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite and y does not equal zero, it is invalid, and a diagnostic
message is displayed. If the result is valid, it is returned to the
calling program.

Call-By-Value Routine

The function ATAN2(y,x) is defined to be the angle, in the interval
[-pi,pi], subtended at the origin by the point (x,y) and the first
coordinate axis.

2-26 tlath Library Revision F

/"

/
l
'----

ATAN2

The argument (y,x) is reduced to the first quadrant by the range
reductions:

atan:L(y,x)
atan2(y,x)

-atan2(-y,x), y < 0
pi - atan2(y,-x), x < O, y > 0

The argument (y,x) is then reduced to the sector:

(u,v): u ~ O, v < u, and v > 0

by the range reduction:

atan2(y,x) = pi/2 - atan2(x,y), x ~ 0 or y ~ 0

The routine calls ATAN to evaluate atan2(y,x) as arctan(y/x).

(Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski,
Computer Information and Control Science, University of Minnesota,
55455.)

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x and y are infinite.

x and y are equal to zero.

x/y is equal to plus or minus infinite and y is not equal to
zero.

x is not equal to zero and y is equal to plus or minus infinite.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

See the description of routine ATAN.

Effect of Argument Error

(If small errors e(x) and e(y) occur in x and y, respectively, the
'--·· error in the result is given approximately by (y*e(x) -

x*e(y))/(x**L + y**2).

Revision F Routine Descriptions 2-27

CABS

CAI:i§

CABS is a function that computes the absolute value of an argument.
It accepts a complex argument and returns a real result. This
function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RCABS and CABS, and the
call-by-value entry point is MLP$VCABS.

The input domain is the collection of all valid complex quantities
z, where z = x + i*y, and (x**2 + y**2)**.5 is a valid real
quantity. The output range is included in the set of valid,
nonnegative real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the call-by-reference
routine. The result is checked. If the result is positive
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

Let x + i*y be the argument. The algorithm used is:

a. u = max(lxl'lyl).
v = min(x , y).

b. If u is zero, return zero to the calling program.

c. r v/u
w 1.0 + r**2

where t = w**.5 = (1.0 + r**2)**.5 is computed inline using the
same algorithm as used in SQRT.

2-28 Math Library Revision E

\
"--- --

I____

CABS

d. Return u*t to the calling program.

Formulas used are:

Ix+ i*yj = sqrt(x + i*y)
= max(jxj, jyj)*(l + r**2)**.5
= u*t

where r =min(lxl, jy I)/max(lxl, jyj)

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1.0,1.0l,[-1.0,1.0ll. The maximum relative error of these
arguments was found to be .1401E-13.

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x +
i*y, the error in the result u is given by e(u) = (xe(x) + ye(y))/u.

Revision E Routine Descriptions 2-29

ccos

CCOS is a function that computes the complex cosine function. It
accepts a complex argument and returns a complex result. This
function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RCCOS and CCOS, the
call-by-value entry point is MLP$VCCOS, and the vector entry point
is MLP$CCOSV.

The input domain is the collection of all valid complex quantities
z, where z = x + i*y; lxl is less than 2**47 and IYI is less than
4095*log(2). The output range is included in the set of valid
complex quantities.

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to
2**47.

The imaginary part is greater than or equal to 4095*log(2).

The imaginary part is less than or equal to -4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Let x + i*y be the argument. The formula used for computation is:

cos(x + i*y) = cos(x)*cosh(y) - i*sin(x)*sinh(y)

The routine evaluates COSSIN inline to simultaneously compute the
sine and cosine of the real part of the argument. The routine
evaluates HYPERB inline to simultaneously compute the hyperbolic
sine and hyperbolic cosine of the imaginary part of the argument.
See the descriptions of routines COSSIN and HYPERB for detailed
information.

2-30 Math Library Revision E

I "'-,

ccos

Vector Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to
2**47.

The imaginary part is greater than or equal to 4095*log(2).

The imaginary part is less than or equal to -4095*log(2).

See Vector Error Handling in chapter 1 for further information.

Error Analysis

See the descriptions of HYPERB and COSSIN for details. If z = x +
i*y is the argument, then the modulus of the error in the routine
does not exceed: l.276E-13 + l.241E-13*exp(abs(y)).

A group of 10,000 arguments was chosen randomly from the interval
[[-1.0,l.O],[-l.O,l.O]]. The maximum relative error of these
arguments was found to be .7665E-13.

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x +
i*y, the error in the result is given approximately by cos(z)*e(z).

Revision E Routine Descriptions 2-31

CEXP

CEXP is a function that computes the complex exponential function.
It accepts a complex argument and returns a complex result. This
function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RCEXP and CEXP, the
call-by-value entry point is HLP$VCEXP, and the vector entry point
is HLP$CEXPV.

The input domain is the collection of all valid complex quantities
z, where z = x + i * y; x is less than 4095*log(2) and x is greater
than -4097*log(2), and !YI is less than 2**47. The output range is
included in the set of valid complex quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

'fhe real part is greater than or equal to 4095*log(2) or less
than or equal to -4097*log(2).

The absolute value of the imaginary part is greater than or
equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

Let x + i*y be the argument. The formula used for computation is:

exp(x + i*y) = exp(x)*cos(y) + i*exp(x)*sin(y)

The routine evaluates COSSIN inline to compute cos(y) and sin(y),
and calls EXP to compute exp(x).

2-32 Math Library Revision F

CEXP

Vector Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The real part is greater than or equal to 4095*log(2) or less
than or equal to -4097*log(2).

The absolute value of the imaginary part is greater than or
equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

See the description of EXP and COSSIN for details. If z = x + i*y
is the argument, then the modulus of the error in the routine does
not exceed: l.378E-13 + l.378E-13*exp(abs(x)). If the real part of
the argument is Luge, the error in the routine will be significant.

The function CEXP was tested. A group of 10,000 arguments was
chosen randomly from given intervals. Statistics on maximum
relative error were observed. Table 2-5 shows a summary of these
statistics.

Table 2-5. Relative Error of CEXP

Interval Maximum

[[-l.O,l.0],[-1.0,1.0]]
[[1. 0, • 6 7 OOE+O 3 J , [1. 0, • 11E+15]]

Effect of Argument Error

• 5462E-1J
.9182E-13

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x +
i*y, the error in the result w is given approximately by w*e(z).

Revision F Routine Descriptions 2-33

CLOG

CILOG

CLOG is a function that computes the complex natural logarithm
function. It accepts a complex argument and returns a complex
result. This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RCLOG and CLOG, the
call-by-value entry point is MLP$VCLOG, and the vector entry point
is MLP$CLOGV.

The input domain is the collection of all valid complex quantities
z, where z = x + i*y, and (x**2 + y**2)**.5 is a valid, positive
real quantity. The output range is included in the set of valid
complex quantities z, such that the real part of z is a valid real
quantity, and the imaginary part is greater than -pi and less than
or equal to pi.

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

Both the real part and the imaginary part are zero.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the call-by-reference
routine. The result is checked. If the result is infinite, it is
invalid, and a diagnostic message is displayed. If the result is
valid, it is returned to the calling program.

Call-By-Value Routine

The formula used for computation is:

log(z) = log(izi) + i*arg(z)

where lzl is the modulus of z. The routine calls CABS to evaluate
the absolute value of z and calls ALOG to compute the logarithm.
Then the routine calls ATAN2 to evaluate the function arg(z). When
z is nonzero, and in-range, arg(z) is in the interval [-pi,pi].

2-34 Math Library Revision E

CLOG

Vector Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

Both the real part and the imaginary part are zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1.0,l.O],[-l.O,l.O]]. The maximum relative error of these
arguments was found to be .4346E-12.

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the argument z x +
i*y, the error in the result is given approximately by e(z)/z.

Revision E Routine Descriptions 2-35

CON JG

CON JG

CONJG is a function that returns the conjugate of an argument. It
accepts a complex argument and returns a complex result. This
function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RCONJG and CONJG, and the
call-by-value entry point is MLP$VCONJG.

The input domain is the collection of all valid complex quantities.
The output range is included in the set of valid complex quantities.

Call-By-Reference Routine

No errors are generated by CONJG. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The argument is returned with its imaginary part negated.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-36 Math Library Revision E

,/"' ...

I
'-.__,

cos

CO§

COS is a function that computes the cosine function. It accepts a
real argument and returns a real result.

The call-by-reference entry points are 11LP$RCOS and COS, the
call-by-value entry point is HLP$VCOS, and the vector entry point is
MLP$COSV.

The input domain is the collection of all valid real quantities
whose absolute value is less than 2**47. The output range is
included in the set of valid real quantities in the interval
[-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine i~ called, and the
result of the computation is returned to the calling progra~.

Call-By-Value Routine

If x is valid, then COS(x) or SIN(x) is calculated by using the
periodic properties of the cosine and sine functions to reduce the
task to finding a cosine or sine of an equivalent angle y within
[-pi/4, pi/4] as follows:

If N + K is even
then

Z sin(y)
else

Z cos(y)
If MOD(N + K, 4) is 0 or 1 (that is, the second last bit of
N + K is even)
then

s 0
2lse

s mask(l)

where K is 0, 1, or 2 according to whether the SIN of a positive
angle, the COS of any angle, or the SIN of a negative angle is to be
calculated. N is the nearest integer to 2/pi*x, and y is the
nearest single precision floating point number to x - n*pi/2. The
argument x is the absolute value of the angle. The desired SIN Jr
COS is xor(S, Z),

Revision G Routine Descriptions 2-37

cos

Once the angle has been reduced to the range [-pi/4, pi/4], the
following approximations are used to calculate either the cosine or
the sine of the angle, providing 48 bits of precision.

If the cosine of the angle is required, the approximation used is

cosine(y) = 1 - y*y*P(y*y)

where y is the angle and P(w) is the quintic polynomial:

P(w) = PO + Pl*w + P2*w**2 + P3 + w**3 + P4*w**4 + PS*w**S

such that P(y*y) is a min-max polynomial approximation to the
function (1 - cos(y))/y**2.

The coefficients are:

PS -2.070062305624629462E-9
P4 2.755636997406588778E-7
P3 -2.480158521206426671E-5
P2 l.388888888727866775E-3
Pl -4. 166666666666468116£-2
PO S.OOOOOOOOOOOOOOOOOOE-1

If the sine of the angle is required, the ~pproximation used is

sine(y) = y - y*y*y*Q(y*y)

where y is the angle and Q(w) is the quintic polynomial:

Q(w) = QO + Ql*w + Q2*w**2 + QJ*w**3 + Q4*w**4 + QS*w**S

such that Q(y*y) is a min-max polynomial approximation to the
function (y - sin(y))/y**3.

The coefficients are:

QS -l.591814257033005283E-10
Q4 2.505113204973767698£-8
Q3 -2.755731610365754733E-6
Q2 1.984126983676100911£-4
Ql -8.333333333330950363£-3
QO l.66666666666666646JE-l

e 2-38 :13th Library Revision G

cos

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis
I

The function COS was tested against 4*COS(x/3)**3 - 3*COS(x/3).
Groups of 2,000 arguments were chosen randomly from the interval
[.2199E+02,.2356E+02]. Statistics on relative error were observed:
maximum relative error was .1404E-13, and root mean square relative I
error was .3245E-14.

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'*cos(x) for sin(x) and -e'*sin(x)

\ for cos(x).
'--- -

R.evision G Routine Descriptions 2-39

COSD

COSD is a function that computes the cosine function for an argument
in degrees. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RCOSD and COSD, the
call-by-value entry point is MLP$VCOSD, and the vector entry point
is MLP$COSDV.

The input domain is the collection of all valid real quantities
whose absolute value is less than 2**47. The output range is
included in the set of valid real quantities in the interval
[-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest
integer, n, to x/90, and subtracting n*90 from the argument. The
reduced argument is then multiplied by pi/180. The appropriate sign
is copied to the value of the appropriate function, sine or cosine,
as determined by these identities:

sin(x += 360 degrees)
sin(x += 180 degrees)
sin(x + 90 degrees)
sin(x - 90 degrees)
cos(x += 360 degrees)
cos(x += 180 degrees)
cos(x + 90 degrees)
cos(x - 90 degrees)

2-40 Math Library

sin(x)
-sin(x)

cos(x)
-cos(x)

cos(x)
-cos(x)
-sin(x)

sin(x)

Revision E

(

COSD

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The reduction to (-45,+45) is exact; the constant pi/180 has
relative error 1.37E-15, and multiplication by this constant has a
relative error 5.33E-15, and a total error of 6.7E-15. Since errors
in the argument of SIN and COS contribute only pi/4 of their value
to the result, the error due to the reduction and conversion is, at
most, 5.26E-15 plus the maximum error in SINCOS over (-pi/4,+pi/4),

A group of 10,000 arguments was chosen at random from the interval
[0,360]. The maximum relative error of these arguments was found to
be .7105E-14 for COSD and .1403E-13 for SIND.

Effect of Argument Error

Errors in the argument x are amplified by x/tan(x) for SIND and
x*tan(x) for COSD. These functions have a maximum value of pi/4 in
the interval (-45,+45) but have poles at even (SIND) or odd (COSD)
multiples of 90 degrees, and are large between multiples of 90
degrees if x is large.

Revision E Routine Descriptions 2-41

COSH

CO§IHI

COSH is a function that computes the hyperbolic cosine function. It
accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RCOSH and COSH, the
call-by-value entry point is MLP$VCOSH, and the vector entry point
is MLP$COSHV.

The input domain is the collection of all valid real quantities
whose absolute value is less than 4095*log(2). The output range is
included in the set of valid real quantities greater than or equal
to 1.0.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The formula used to compute cosh(x) is:

cosh(x) = (exp(x) + exp(-x))/2

The routine calls EXP to compute exp(x) and computes 1.0/exp(x) to
obtain exp(-x).

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 1 for further information.

2-42 Math Library Revision E

I
"--- /

,,,,

COSH

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-6
shows a summary of these statistics.

Table 2-6. Relative Error of COSH

Interval
Root Mean

Test From To Maximum Square

COSH(x) against O.OOOOE+OO .SOOOE+OO .1382E-13 .6875E-14
Taylor series
expansion of
COSH(x)

COSH(x) against .3000E+Ol .2838E+04 .2296E-13 .8260E-14
c*(COSH(x + 1) +
COSH(x - 1))

Effect of Argument Error

If a small error e' occurs in the argument x, the resulting error in
cosh(x) is given approximately by sinh(x)*e'.

Revision E Routine Descriptions 2-43

COT AN

COT AN
COTAN is a function that computes the trigonometric circular
cotangent of an argument in radians. It accepts a real argument and
returns a real result.

The call-by-reference entry points are MLP$RCOTAN and COTAN, the
call-by-value entry point is MLP$VCOTAN, and the vector entry point
is MLP$COTANV.

The input domain is the collection of all valid real quantities
whose absolute value is greater than 0 and less than 2**47. The
output range is included in the set of valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is O.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The evaluation is reduced to the interval [-.5,.5] by using the
identities:

1. cotan(x) cotan(x + k * pi/2), if k is even

2. cotan(x) -1.0/cotan(x + pi/2)

in the form:

3. cotan(x)=l/tan(x)=l/tan((pi/2)*(x*2/pi + k)), if k is even

4. cotan(x)=l/tan(x)=tan((pi/2)*(x*2/pi + 1.0))/-1.0

In effect, the original algorithm for TAN(x) is used to find
COTAN(x). The result for COTAN(x) is the reciprocal of TAN(x).

An approximation of tan(pi/2*y) is used. The argument is reduced to
the interval [-.5,.5] by subtracting a multiple of pi/2 from x in
double precision.

2-44 Math Library Revision E

I

\._

/

~- --

\
'-----

COT AN

The rational form is used to compute the tangent of the reduced
value. The function tan((pi/2)*y) is approximated with a rational
form (7th order odd)/(6th order even), which has minimax relative
error in the interval [-.5,.5]. The rational form is normalized to
make the last numerator coefficient 1 + eps, where eps is chosen to
minimize rounding error in the leading coefficients.

Identity 4 is used if the integer subtracted is odd. The result is
negated and inverted by dividing -P/Q instead of Q/P.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is O.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function COTAN was tested against (COTAN(x/2)**2-1)/
(2*COTAN(x/2)). Groups of 2,000 arguments were chosen randomly from
the interval (.1885E+02, .1963E+02). Statistics on relative error
were observed: maximum relative error was .2297E-13, and root mean
square relative error was .7847E-14.

Effect of Argument Error

For small errors in the argument x, the amplication of absolute
error is sec(x)**2, and that of relative error is x/(sin(x)*cos(x)),
which is at least 2x and can be arbitrarily large near a multiple of
pi/2.

Revision E Routine Descriptions 2-45

CSIN

<C5ITN

CSIN is a function that computes the complex sine function. It
accepts a complex argument and returns a complex result.

The call-by-reference entry points are MLP$RCSIN and CSIN, the
call-by-value entry point is MLP$VCSIN, and the vector entry point
is MLP$CSINV.

The input domain is the collection of all valid comflex quantities
z, where z = x + i*y; Ix I is less than 2**47, and y I is less than
4095*log(2). The output range is included in the set of valid
complex quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to
2**47.

The absolute value of the imaginary part is greater than or
equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Let x + i*y be the argument. The formula used for computation is:

sin(x + i*y) = sin(x)*cosh(y) + i*cos(x)*sinh(y)

The routine evaluates COSSIN inline to simultaneously compute sine
and cosine, and evaluates HYPERB inline to simultaneously compute
hyperbolic sine and hyperbolic cosine. See the descriptions of
routines COSSIN and HYPERB for detailed information.

2-46 Math Library Revision E

(.
'- _,

I,,, ..

CSIN

Vector Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

The absolute value of the real part is greater than or equal to
2**47.

The absolute value of the imaginary part is greater than or
equal to 4095*log(2).

See Vector Error Handling in chapter 1 for further information.

Error Analy~is

See the description of HYPERB and COSSIN for details. If z = x +
i*y is the argument, then the modulus of the error in the routine
does not exceed: l.276E-13 + l.297E-13*exp(abs(y)).

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x +
i*y, the error in the result is given approximately by -sin(z)*e(z).

Revision E Routine Descriptions 2-47

CSQRT

CSQRT is a function that computes the complex square root function
that maps to the right half of the complex plane. It accepts a
complex argument and returns a complex result. This function cannot
be called from a CYBIL program.

The call-by-reference entry points are MLP$RCSQRT and CSQRT, the
call-by-value entry point is MLP$VCSQRT, and the vector entry point
is MLP$CSQRTV.

The input domain is the collection of all valid complex quantities
z, where z = x + i*y, and (x**2 + y**2)**.5 + lxl is a valid real
quantity. If the argument is zero, zero is returned. The output
range is included in the set of valid complex quantities z such that
the real part of z is nonnegative and the imaginary part of z is a
valid complex quantity.

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the call-by-reference
routine. The result is checked. If the result is positive
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

For this computation, values returned by the routine will lie in the
right half of the complex plane.

Call-By-Value Routine

Let x + i*y be the argument. The formulas used for computation are:

u = (.S*(lxl + l<x,y)i))**.5
v = .S*(y/u)

If x is nonnegative, then csqrt(x,y)
then csqrt(x,y) = sign(y)*(v + i*u).

u + i*v. If x is negative,

The result of this routine always lies in the first or fourth
quadrant of the complex plane. The routine takes complex quantities
lying on the axis of the negative reals, to the axis of the positive
imaginaries.

2-48 Math Library Revision E

(_

(_,

CSQRT

Vector Routine

The argument is checked upon entry. It is invalid if:

The real or imaginary part is indefinite.

The real or imaginary part is infinite.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function CSQRT was tested. A group of 10,000 arguments was
chosen randomly from given intervals. Statistics on maximum
relative error were observed. Table 2-7 shows a summary of these
statistics.

Table 2-7. Relative Error of CSQRT

Interval Maximum

[[O,O], [100,100]]
[[O,O], [l.OE+lOO, l.OE+lOO]]

Effect of Argument Error

.1600E-13

.1499E-13

If a small error e(z) = e(x) + i*e(y) occurs in the argument z = x +
i*y, the error in the result w = u + i*v is given approximately by
e(z)/(2*w) = (e(x) + i*e(y))/2(u + i*v).

Revision E Routine Descriptions 2-49

DABS

DABS

DABS is a function that computes the absolute value of an argument.
It accepts a double precision argument and returns a double
precision result. This function cannot be called from a CYBIL
program.

The call-by-reference entry points are MLP$RDABS and DABS, and the
call-by-value entry point is MLP$VDABS.

The input domain is the collection of all valid double precision
quantities. The output range is included in the set of valid,
nonnegative double precision quantities.

Call-By-Reference Routine

No errors are generated in DABS. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The argument is returned with the sign bits of both its upper and
lower words forced positive.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-50 Math Library Revision E

DA COS

ID>ACOS
DACOS is a function that computes the inverse cosine function. It
accepts a double precision argument and returns a double precision

'__ result. This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDACOS and DACOS, and the
call-by-value entry point is MLP$VDACOS.

The input domain is the collection of all valid double precision
quantities in the interval [-1.0,l.O]. The output range is included
in the set of valid, nonnegative double precision quantities less
than or equal to pi.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value exceeds 1.0.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The following identities are used to move the interval of
approximation to [O,sqrt(.5)]:

arcsin(-x)
arccos(x)
arcsin(x)
arccos(x)

-arcsin(x)
pi/2-arcsin(x)
arccos(sqrt(l.O - x**2)), if x >= 0
arcsin(sqrt(l.O - x**2)), if x >= 0

The reduced value is called y. If y <= .09375, no further reduction
is performed. If not, the losest entry to y in a table of values
(z, arcsin(z), sqrt(l.O - x**2), z = .14, .39, .52, .64) is found,
and the formula used is:

arcsin(x) = arcsin(z) + arcsin(w)

/' where w = x(sqrt(l.O - z**2) - z*sqrt(l.O - x**2). The value of w
is in (-.0792, .0848).

Revision E Routine Descriptions 2-51

DA COS

The arcsin of the reduced argument is then found using a 15th order
odd polynomial with quotient:

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(ll) + x**2(c(13) +
x**2(c(15) + a/(b - x**2)))))))

where all constants and arithmetic operations before c(ll) are
double precision and the rest are single precision. The addition of
c(ll) hass the form single +single =double. The polynomial is
derived from a minimax rational form (denominator is (b - x**2)) for
which the critical points have been perturbed slightly to make c(ll)
fit in one word.

To this value, arcsin(z) is added from a table if the last reduction
above was done and the sum is conditionally negated. Then O, -pi/2,
+ pi/2, or pi is added to complete the unfolding.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value exceeds 1.0.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The region of worst error is (.9895,.9966). In this region, the
final addition is of quantities of almost equal magnitude and
opposite sign, and cancellation of about one bit occurs.

The function DACOS was tested against the Taylor series. Groups of
2,000 arguments were chosen randomly from given intervals.
Statistics on relative error were observed. Table 2-8 shows a
summary of these statistics.

2-52 Math Library Revision E

I ,, __ _

'\..____,

Table 2-8. Relative Error of DACOS

Interval

From

-.1250D+OO
-. lOOOD+Ol

.7500D+OO

To

.1250D+OO
-.7500D+OO

.lOOOD+Ol

Effect of Argument Error

Maximum

• 27 94D-27
• 33390-27
.75730-28

Root Mean
Square

.2343D-27
• 28530-27
• 2257D-28

DACOS

If a small error eps occurs in the argument x, the resulting error
in DACOS is approximately -eps/(1.0 - x**2)**.S. The amplification
of the relative error is approximately x/(f(x)*(l.O - x**2)**.5),
where f(x) is DACOS. The error is attenuated for x > -.44 but can
become serious near -1.0. If the argument is generated as 1.0 - y
or y - 1.0, then the following identities can be used to get the
full significance of y:

asin(x)
acos(x)

asin(-x)
acos(-x)

Revision E

acos(sqrt(l.O - x**2))
asin(sqrt(l.O - x**2))
-asin(x)
pi + asin(x)

Routine Descriptions 2-53

DA SIN

DASIN is a function that computes the inverse sine function. It
accepts a double precision argument and returns a double precision
result. This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDASIN and DASIN, the
call-by-value entry point is MLP$VDASIN, and the vector entry point
is ~LP$DASINV.

The input domain is the collection of all valid double precision
quantities in the interval [-1.0,l.O]. The output range is included
in the set of valid double precision quantities in the interval
[-pi/2,pi/2].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value exceeds 1.0.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The following identities are used to move the interval of
approximation to [O,sqrt(.5)]:

arcsin(-x)
arccos(x)
arcsi:l(x)
arccos(x)

-arcsin(x)
pi/2-arcsin(x)
arccos(sqrt(l.O - x**2)), if x >= 0
arcsin(sqrt(l.O - x**2)), if x >= 0

The reduced value is called y. If y <= .09375, no further reduction
is performed. If not, the closest entry to y in a table of values
(z, arcsin(z), sqrt(l.O - x**2), z = .14, .39, .52, .64) is found,
and the formula used is:

arcsin(x) = arcsin(z) + arcsin(w)

where w = x(sqrt(l.O - z**2) - z*sqrt(l.O - x**2). The value of w
is in (-.0792, .0848).

2-54 ~ath Library Revision F

____ __

'"----.--

DAS IN

The arcsin of the reduced argument is then found using a 15th order
odd polynomial with quotient:

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(ll) + x**2(c(13) +
x**2(c(15) + a/(b - x**2)))))))

where all constants and arithmetic operations before c(ll) are
double precision and the rest are single precision. The addition of
c(ll) hass the form single + single = double. The polynomial is
derived from a minimax rational form (denominator is (b - x**2)) for
which the critical points have been perturbed slightly to make c(ll)
fit in one word.

To this value, arcsin(z) is added from a table if the last reduction
above was done and the sum is conditionally negated. Then O, -pi/2,
+ pi/2, or pi is added to complete the unfolding.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value exceeds 1.0.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The region of worst error is (.09375,.1446). In this region, the
final addition is of quantities of almost equal magnitude and
opposite sign, and cancellation of about one bit occurs, the worst
case being .1451-.0629. For DASIN, the polynomial range was
extended to cover the region (.0821,.09375), where the worst error
occurs.

The function DASIN was tested against the Taylor series. Groups of
2,000 arguments were chosen randomly from given intervals.
Statistics on relative error were observed. Table 2-9 shows a
summary of these statistics.

Revision E Routine Descriptions 2-55

DAS IN

Table 2-9. Relative Error of DASIN

Interval

From

-.1250D+OO
.7500D+OO

To

.1250D+OO

.lOOOD+Ol

Maximum

.1017D-27
• 4761D-27

Effect of Argument Error

Root Mean
Square

• 2246D-28
• 3575D-27

If a small error eps occurs in the argument x, the resulting errors
in DASIN are approximately eps/(l - x**2)**.5. The amplification of
the relative error is approximately x/(f(x)*(l - x**2)**.5), where
f(x) is DASIN. The error is attenuated for abs(x) < .75 but can
become serious near -1.0 or +l.O. If the argument is generated as
- y or y - 1, then the following identities can be used to get the
full significance of y:

asin(x)
acos(x)

asin(-x)
acos(-x)

acos(sqrt(l.O - x**2))
asin(sqrt(l.O - x**2))
-asin(x)
pi + asin(x)

2-56 Math Library Revision E

I

\._ --

\"-

I
\,__ _ _,

DA TAN

ID>ATAN

DATAN is a function that computes the inverse tangent function. It
accepts a double ~recision argument and returns a double precision
result. This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDATAN and DATAN, the
call-by-value entry point is MLP$VDATAN, and the vector entry point
is MLP$DATANV.

The input domain is the collection of all valid double precision
quantities. The output range is included in the set of valid double
precision quantities in the interval [-pi/2,pi/2].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Register pair (X4,X5) holds the absolute value of the argument.

B4 = (X9) = sign mask for the argument. (B4 holds a mask for the
result's sign.)

If !xi < 1.0, then:

If

B3 (XA) = O.
B7 (XB) = O. (B7 will hold the closest multiple of pi/2 to
the absolute value of the result.)
Branch to DATCOM at label DTN to complete processing.

!xi > 1.0, then:

B3 (XA) = 1 in high order bit.
B7 (XB) = 1.0.
Branch to DAT COM at label DAT COM to complete processing.

At labels DATCOM and DTN:

(X9)
(XA)
(XB)

B4
B3
B7

the result.

Revision E

mask MS = sign of final result.
mask MI.
closest multiple of pi/2 to the absolute value of

Routine Descriptions 2-57

DA TAN

At label DATCOM:

Register pair (X7,X8) =DU.
Register pair (X4,X5) = DV.

At label DTN:

Register pair (X7,X8) =DU.

Label ATNU is the start of an 18-word table containing atan(n/8) (0
< n < 8) in double precision. Label DATCOM corresponds to step a,
;nd label DTN corresponds to step b.

Constants used in the algorithm are:

d3 -.333 333 333 333 333 333 333 333 285 915
d5 .199 999 999 999 999 999 999 673 046 526
d7 -.142 857 142 857 142 856 280 180 055 289
d9 .111 111 111 111 109 972 932 035 508 119
ell -.090 909 090 908 247 503
cl3 .001 351 201 845 778 152
a -.085 666 743 757 593 089
b = -1.133 579 709 202 919 6

where d3, d5, d7, and d9 are double precision constants, and ell,
cl3, a, and b are real constants. Arithmetic operations with d
subscripts are done in double precision, and operations with u
subscripts are done in single precision. For example, d3 +(d) q
indicates that the addition is in double precision. Boolean
operations have B subscripts.

The algorithm used is:

a. DQ = DU/DV computed in double precision.

b. (DQ =DA-DU at DTN) (Note that 0 ~ DQ ~ 1.0.)

c. n = nearest multiple of 1/8 to DQ.

d. If n = O, go to step f.

e. DA= (DQ - n/8)/(1.0 + n/8*DA), computed in double precision.

f. z 0
DC 0
If (DA)(u) = O, go to step i.

g. XX = DA(u)*DA(u)
DC = XX*(d)(d3 +(d) XX*(d)(d5 +(d) XX*(d) (d7 +(d) XX*(d)(d9 +(d)

XX*(d)(dll +(d) XX*(u)(cl3 +(u) a/(b -(u) XX)))))))

2-58 Math Library Revision E

DAT AN

h. w = DA +(d) DC*DA

i. DB = 0
If (XB) f 0 DB = ATN(9)*2*(XB)

j. BBAR (B7*pi/2) - (B)B3 (upper and lower)

k. CBAR BBAR + (D)ATN(n/8). ATN(n/8) is obtained as a double
precision quantity from the look-up table.

1. Result = (CBAR + (D) w) - (B) (B3 - (B)B4).

At the end of processing, register pair (XE,XF) contains the DATAN
result.

Vector Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The maximum absolute value of relative error in the algorithm is
l.622E-29.

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-10
shows a summary of these statistics.

Table 2-10. Relative Error of DATAN

Interval

Test

DATAN(x) against
truncated
Taylor series

2*DATAN(x) against
DATAN(2x/(l - x*x))

~-- DATAN(x) against
DATAN(l/16) +
DATAN((x - 1/16)/
(l+x/16))

Revision E

From

-. 6250D-Ol

.2697D+OO

.4142D+OO

.6250D-01

Root Mean
To Maximum Square

.6250D-01 .2556D-28 .1343D-28

.4142D+OO .4821D-28 .2027D-28

.lOOOD+Ol • 5992D-28 • 2449D-28

.2679D+OO .3388D-28 .1557D-28

Routine Descriptions 2-59

DAT AN

Total Error

Most of the errors can be traced back to errors in double precision
addition.

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result
is given by e/(1.0 + x**2).

2-60 Math Library Revision E

DATAN2

ID>A1fAN2
DATAN2 is a function that computes the inverse tangent function of
the ratio of two arguments. It accepts two double precision
arguments and returns a double precision result. This function
cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDATAN2 and DATAN2, and
the call-by-value entry point is MLP$VDATAN2.

The DATAN2 vector math function is divided into three routines
having three separate entry points defined as follows:

DTAN2(scalar,vector) = MLP$DATAN2SV
DTAN2(vector,scalar) = MLP$DATAN2VS
DTAN2(vector,vector) = MLP$DATAN2VV

The input domain is the collection of all valid double precision
pairs (x,y) such that both quantities are not zero. The output
range is included in the set of double precision quantities greater
than -pi and less than or equal to pi.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x and y are infinite.

x and y are equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the calling program.

Call-By-Value Routine

Register pair (X4,X5) holds the absolute value of the first
argument. Register pair (X7,X8) holds the absolute value of the
second argument.

B4 = (X9) = sign mask of the first word of the first argument.
B3 = (XA) = complement of the sign mask of the first word of the
second argument.
B7 = (XB) = closest multiple of pi/2 to the result value.

If (X4) > (X7), then:

B7 = (XB) 1.0.
Branch to label DATCOM to complete processing.

Revision E Routine Descriptions 2-61

DATAN2

If (X4) ~ (X7), then:

Exchange (X7) and (X4) and (X8) and (XS).
Complement contents of B3.
B7 = (XB) O, if the first word of the second argument is
positive.
B7 = (XB) 2, if the first word of the second argument is
negative.
Branch to label DATCOM to complete processing.

At label DATCOM:

(X9) = B4 = mask MS = sign of the final result.
(XA) = B3 = mask MI.
(XB) = B7 = closest multiple of pi/2 to the absolute value of
the result.
Register pair (X7,X8)
Register pair (X4,XS)

DU
DV

smaller of DU and DB = min(x,y).
larger of DU and DV = max(x,y).

At label DATCOMlO:

Register pair (X7,X8) = DQ = DU/DV, which is< 1.0.

ATNU is the start of an 18-word table containing atan(n/8) (O ~ n ~
8) in double precision. Label DATCOM corresponds to step a.

Constants used in the algorithm are:

d3 -.333 333 333 333 333 333 333 333 285 915
dS .199 999 999 999 999 999 999 673 046 526
d7 -.142 857 142 857 142 856 280 180 055 289
d9 .111 111 111 111 109 972 932 035 508 119
ell -.090 909 090 908 247 503
cl3 .001 351 201 845 778 152
a -.085 666 743 757 593 089
b -1.133 579 709 202 919 6

where d3, dS, d7, and d9 are double precision constants, and ell,
cl3, a, and b are real constants. Arithmetic operations with d
subscripts are done in double precision, and operations with u
subscripts are done in single precision. For example, d3 +(d) q
indicates that the addition is in double precision. Boolean
operations have B subscripts.

2-62 Math Library Revision E

/.-·

'-..._/

DATAN2

The algorithm used is:

a. DQ = DU/DV in double precision.

b. If both DU and DV are zero, error exit occurs.

c. n = nearest multiple of 1/8 to DQ.

d. If n = 0, go to step f.

e. DA= (DQ - n/8)/(1 + n/8*DA), computed in double precision.

f. z 0
DC 0
If (DA)(u) = O, go to step i.

g. XX = DA(u)*DA(u)
DC = XX*(d)(d3 +(d) XX*(d)(d5 +(d) XX*(d) (d7 +(d) XX*(d)(d9 +(d)

XX*(d)(dll +(d) XX*(u)(c13 +(u) a/(b -(u) XX)))))))

h. w = DA + (d) DC*DA

i. DB = 0
If (XB) F 0 DB = ATN(9)*2*(XB)

j. BBAR = (B7*pi/2) - (B)B3 (upper and lower)

k. CBAR = BBAR + (D)ATN(n/8). ATN(n/8) is obtained as a double
precision quantity from the look-up table.

1. Result = (CBAR + (D) w) - (B) (B3 - (B)B4).

At the end of processing, register pair (XE,XF) contains DATAN2
result.

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is infinite.

x and y are infinite.

x and y are equal to O.

(,... See Vector Error Handling in chapter 1 for further information.
___,

Revision E Routine Descriptions 2-63

DATAN2

Error Analysis

The maximum absolute value of relative error in the algorithm is
1. 6 22E-29.

Effect of Argument Error

If small errors e' and e'' occur in the arguments x and y,
respectively, the error in the result is given approximately by:

(x * e'' - y * e')/(x**2 + y**2)

2-64 Math Library Revision E

(_.,

DCOS

DCO§

DCOS is a function that computes the cosine function. It accepts a
double precision argument and returns a double precision result.
This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDCOS and DCOS, the
call-by-value entry point is MLP$VDCOS, and the vector entry point
is MLP$DCOSV.

The input domain is the collection of all valid double precision
quantities whose absolute value is less than 2**47. The output
range is included in the set of valid double precision quantities in
the interval [-1.0,l.O].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Upon entry, the argument x is made positive and is multiplied by
2/pi in double precision, and the nearest integer n to x*2/pi is
computed. At this stage, x*2/pi is checked to see that it does not
exceed 2**47. If it does, a diagnostic message is returned.
Otherwise, y = x - n*pi/2 is computed in double precision as the
reduced argument, and y is in the interval [-pi/4,pi/4]. The value
of mod(n,4), the entry point called, and the original sign of x
determine whether a sine polynomial approximation p(x) or a cosine
polynomial approximation q(x) is to be used. A flag is set to
indicate the sign of the final result.

Revision E Routine Descriptions 2-65

DCOS

For x in the interval [-pi/4,pi/4], the sine polynomial
approximation is:

p(x) = a(l)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 +
a(ll)x**ll + a(l3)x**l3** + a(l5)x**l5 + a(l7)x**l7 +
a(l9)x**l9 + a(2l)x**21

and the cosine polynomial approximation is:

q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 +
b(lO)x**lO + b(l2)x**l2 + b(l4)x**l4 + b(l6)x**l6 +
b(l8)x**l8 + b(20)x**20

The coefficients are:

a(l)
a(3)
a(5)
a(7)
a(9)
a(11)
a(l3)
a(l5)
a(l7)
a(l9)
a(21)
b(O)
b(2)
b(4)
b(6)
b(8)
b(lO)
b(l2)
b(l4)
b(l6)
b(l8)
b(20)

.999 999 999 999 999 999 999 999 999 99
= -.166 666 666 666 666 666 666 666 666 52

.833 333 333 333 333 333 333 332 709 57*10**-2
= -.198 412 698 412 698 412 698 291 344 78*10**-3

.275 573 192 239 858 906 394 406 844 01*10**-5
= -.250 521 083 854 417 101 138 076 473 5*10**-7

.160 590 438 368 179 417 271 194 064 61*10**-9
= -.764 716 373 079 886 084 755 348 748 91*10**-12

.281 145 706 930 018*10**-14
= -.822 042 461 317 923*10**-17

.194 362 013 130 224*10**-19

.999 999 999 999 999 999 999 999 999 99
= -.499 999 999 999 999 999 999 999 999 19

.416 666 666 666 666 666 666 666 139 02
= -.138 888 888 888 888 888 888 755 436 28*10**-2

.248 015 873 015 873 015 699 922 737 30*10**-4
= -.275 573 192 239 858 775 558 669 957 11*10**-6

.208 767 569 878 619 214 898 747 461 35*10**-8
= -.114 707 455 958 584 315 495 950 765 75*10**-10

.477 947 696 822 393 115 933 106 267 21*10**-13
= -.156 187 668 345 316*10**-15

.408 023 947 777 860*10**-18

These polynomials are evaluated from right to left in double
precision. The sign flag is used to give the result the correct
sign before return to the calling program.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

2-66 Math Library Revision E

(___,

\
"----

DCOS

Error Analysis

The maximum absolute value of the error of approximation of p(x) to
sin(x) over (-pi/4,pi/4) is .2570E-28, and of q(x) to cos(x) is
• 3786E-28.

The function DCOS was tested against 4*DCOS(x/3)**3 - 3*DCOS(x/3).
Groups of 2,000 arguments were chosen randomly from the interval
[.2199D+02,.2356D+02]. Statistics on relative error were observed:
maximum relative error was .2057D-23; root mean square relative
error was .4606D-25.

Effect of Argument Error

If a small error e' occurs in the argument x, the resulting error in
cos is given approximately by -e'*sin(x). If the error e' becomes
significant, the addition formulas for sin and cos should be used to
compute the error in the result.

Revision E Routine Descriptions 2-67

DCOSH

DCO§IHI

DCOSH is a function that computes the hyperbolic cosine function.
It accepts a double precision argument and returns a double
precision result. This function cannot be called from a CYBIL
program.

The call-by-reference entry points are MLP$RDCOSH and DCOSH, the
call-by-value entry point is MLP$VDCOSH, and the vector entry point
is MLP$DCOSHV.

The input domain is the collection of all valid double precision
quantities whose absolute value is less than 4095*log(2). The
output range is included in the set of valid double precision
quantities greater than or equal to 1.0.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument pair is valid, the call-by-value routine is called, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

The formulas used for computation are:

u = exp(x)*.5
v = exp(-x)*.5
cosh(x) = u + v

The routine calls DEXP to compute exp(x).

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 1 for further information.

2-68 Math Library Revision E

DCOSH

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-11
shows a sununary of these statistics.

Table 2-11. Relative Error of DCOSH

Test

DCOSH(x) against
Taylor series
expansion of
DCOSH(x)

DCOSH(x) against
c*(DCOSH(x + 1) +
DCOSH(x - 1))

Interval

From To

O.OOOOD+OO .SOOOD+OO

.3000D+Ol .2838D+04

(___ Effect of Argument Error

Maximum

.2524D-28

.1023D-27

Root Mean
Square

.1739D-28

.4548D-28

If a small error e' occurs in the argument x, the error in cosh(x)
is approximately sinh(x)*e'.

Revision E Routine Descriptions 2-69

DDIM

DDIM is a function that computes the positive difference between two
arguments. It accepts two double precision arguments and returns a
double precision result. This function cannot be called from a
CYBIL program.

The call-by-reference entry points are MLP$RDDIM and DDIM, and the
call-by-value entry point is MLP$VDDIM.

The input domain is the collection of all valid double precision
pairs (x,y) such that x - y is a valid double precision quantity.
The output range is included in the set of valid, nonnegative double
precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x - y is infinite.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is branched
to, and the result of the computation is returned to the calling
program.

Call-By-Value Routine

Upon entry, the difference between the two arguments is formed, and
the sign bit of the difference is extended across another word to
form a mask. The boolean product of the mask's complement and the
upper and lower word of the difference is formed.

Given arguments (x,y):

result
result

x-yifx)y
0 if x ~ y.

2-70 Math Library Revision E

/""
(
\,,________-

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E

DDIM

Routine Descriptions 2-71

DEXP

DEXP is a function that computes the exponential function. It
accepts a double precision argument and returns a double precision /
result. This function cannot be called from a GYBIL program.

The call-by-reference entry points are MLP$RDEXP and DEXP, the
call-by-value entry point is MLP$VDEXP, and the vector entry point
is MLP$DEXPV.

The input domain is the collection of all valid double precision
quantities whose value is greater than or equal to -4097*log(2) and
less than or equal to 4095*log(2). The output range is included in
the set of valid double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument pair is valid, the call-by-value routine is called, and
the result of the computation is returned to the call-by-reference
routine. The result is checked. If the result is infinite, it is
invalid, and a diagnostic message is displayed. If the result is
valid, it is returned to the calling program.

Call-By-Value Routine

The argument reduction performed is:

x = argument
y x - n*log(2)

where y is in [-1/2 log(2), 1/2 log(2)] and n is an integer.

2-72 Math Library Revision E

DEXP

Constants used in the algorithm are:

l.O/log(2)
log(2) (in double precision)
d3 .166 666 666 666 666 666 666 666 666 709
d5 .833 333 333 333 333 333 333 331 234 953*10**-2
d7 .198 412 698 412 698 412 700 466 386 658*10**-3
d9 .275 573 192 239 858 897 408 325 908 796*10**-5
pc -.474 970 880 178 988*10**-10
pa .566 228 284 957 811*10**-7
pb 272.110 632 903 710
ell .250 521 083 854 439*10**-7

Arithmetic operations with d subscripts are done in double
precision, and operations with u subscripts are done in single
precision. For example, d3 +(d) q indicates that the addition is in
double precision. An operand with a u or 1 subscript denotes the
first or second word, respectively, of the double precision pair of
words containing the operand.

On input, the argument is in register pair X2-X3, and on output, the
result is in register pair XE-XF.

The algorithm used is:

a. x = argument. If x O, set DEXP 1.0. Return.

L b. u x 1 o,

,,,- '

n =nearest integer to x/log(2),
y = x - n*log(2).
Then y is in [-l/2*log(2),l/2*log(2)].

c. q (y)(u)*(u)(y)(u)

d. p q*(d)(d3 +(d) q*(d)(d5 +(d) q*(d)(d7 +(d) q*(d)(d9 +(d)
q*(d)(cll +(d) q*(d)(pa/(pb - q) + pc))))))

e. s = (y)(u) +(d) (y)(u)*(d)p

f. Compute hm = sqrt(l.O + s**2).
hi 3*q + ((s)(u))**2 in real.
hj hi + hi
hk 2*(1.0 + hj)
hl ((y)(u)*(u)(y)(u) - hj)/hk - hi
hm = hj +(u) (hk -(u) hl)*(u)(hl/hk)

(hm now carries cosh - 1.0 in single precision.)

g. DS s + (d)(((y)(l) + (r)(y)(l)*(u)hm) + (r)((s)(l) +
(r)((y)(u)* (l)(p)(u) + (r)(y)(u)*(r)(p)(l))))
(DS now contains sinh(y) in double precision.)

Revision E Routine Descriptions 2-73

DEXP

h. DC hm +(d) (DS*DS - 2*hm - hm*hm)/(2(1.0 + hm)) computed in
double precision.

i. DX = DS + DC

j. Clean up DS, DC, DX with (X7) = n.
Register pair XA-XB = DS sinh(y).
Register pair X8-X9 =DC cosh(y) - 1.0.
Register pair X4-X5 = DX exp(y).

k. Increase the exponents of exp(y) by n.

1. Return.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

See Vector Error Handling in chapter 1 for further information.

2-74 Math Library Revision E

'

I
\.._ __ ,

DEXP

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-12
shows a summary of these statistics.

Table 2-12. Relative Error of DEXP

Interval
Root Mean

Test From To Maximum Square

DEXP(x - 2.8125) -.3466D+Ol -.2772D+04 • 9240D-28 .2956D-28
against DEXP(x)/
DEXP(2. 8125)

DEXP(x - .0625) -.2841D+OO .3466D+OO .6449D-28 .1680D-28
against DEXP(x)/
DEXP(. 0625)

DEXP(x - 2.8125) .6931D+Ol .2838D+04 .9262D-28 .2907D-28
against DEXP(x)/
DEXP(2.8125)

Effect of Argument Error

If a small error e' occurs in the argument the error in the result y
is given approximately by y*e'.

Revision E Routine Descriptions 2-75

DIM

DIM is a function that computes the positive difference between two
arguments. It accepts two real arguments and returns a real result. /

The call-by-reference entry points are MLP$RDIM and DIM, and the
call-by-value entry point is MLP$VDIM.

The input domain is the collection of all valid real quantities
(x,y), such that x - y is a valid real quantity. The output range
is included in the set of valid real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x - y is infinite.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is branched
to, and the result of the computation is returned to the calling
program.

Call-By-Value Routine

Upon entry, the difference between the two arguments is formed, and
the sign bit is extended across another word to form a mask. The
boolean product of the mask's complement and the difference is
formed.

Given arguments (x,y):

result
result

x-yifx)y
0 if x ~ y

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-76 Math Library Revision E

DINT

ID>Ilf\Jlr

DINT is a function that returns the integer part of an argument
after truncation. It accepts a double precision argument and
returns a double precision result. This function cannot be called
from a CYBIL program.

The call-by-reference entry points are MLP$RDINT and DINT, and the
call-by-value entry point is MLP$VDINT.

The input domain for this routine is the collection of all valid
double precision quantities. The output range is included in the
set of valid double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

The argument is added to a special floating point zero with an
exponent value that forces the argument's fraction bits to be
shifted off when it is added to the argument. The result is
returned.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-77

DLOG

lDlJLO<G

DLOG is a function that computes the natural logarithm function. It
accepts a double precision argument and returns a double precision
result. This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDLOG and DLOG, the
call-by-value entry point is MLP$VDLOG, and the vector entry point
is MLP$DLOGV.

The input domain for this routine is the collection of all valid,
positive double precision quantities. The output range is included
in the set of double precision quantities whose absolute value is
less than 4095*log(2).

Call-By-Reference Routine

The argument is checked upon entry. The argument is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Upon entry, the argument x is put into the form x = 2**k*w, where k
is an integer, and 2**-1/2 ~ w ~ 2**1/2. Then log(x) is computed
from:

log(x) k*log(2) + log(w)

and k*log(2) is computed in double precision. A polynomial
approximation u is evaluated in single precision using:

u = c(l)*t + c(3)*t**3 + c(5)*t**5 + c(7)*t**7

where t = (w - 1.0)/(1.0 + w)

2-78 Math Library Revision E

(

__ -

(__ .

DLOG

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

See Vector Error Handling in chapter 1 for further information.

The coefficients c(l), c(3), c(5), and c(7) are:

c(l) 1.999 999 993 734 000
c(3) .666 669 486 638 944
c(5) .399 657 811 051 126
c(7) .301 005 922 238 712

This approximates log with a relative error of absolute value at
most 3.133*10**-8 over (2**-l/2,2**-1/2). Newton's rule for finding
roots is then applied in two stages to the function exp(x) - w to
yield the final approximation to log(w). The two stages are
algebraically combined to yield the final approximation v:

v = u - (1.0 - x*exp(-u)) - (1.0 - x*exp(-u - (1.0 - x*exp(-u))))

z is made to be less than 1.0 by writing z = 1.0 - x*exp(-u), and v
is computed using:

v = u - z(u) - z(l) - (z(u))**2*(.5 + z(u)/3)

where z z(u) + z(l). This formula is obtained by neglecting terms
that are not significant for double precision; exp(-u) is evaluated
in double precision by the polynomial of degree 17. If entry was
made at MLP$VDLOG10, after k*log(2) + log(w) has been evaluated, the
result is multiplied by log(e) base 10 in double precision.

Error Analysis

The maximum absolute value of the error of approximation of the
algorithm to log(x) is l.555E-29 over the interval (2**(-.5),2**.5).

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-13
shows a summary of these statistics.

Revision E Routine Descriptions 2-79

DLOG

Table 2-13. Relative Error of DLOG

Interval
Root Mean

Test From To Maximum Square

DLOG(x*x) against .1600D+02 .2400D+03 .4479D-28 .15 28D-28
2*DLOG(x)

DLOG(x) against • 707 lD+OO .93750+00 .9041D-27 .14780-27
OLOG(l 7x/16) -
OLOG (17 / 16)

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'/x.

2-80 Math Library Revision E

l
\.__

DLOGlO

DLOGlO is a function that computes the common logarithm function.
It accepts a double precision argument and returns a double
precision result. This function cannot be called from a CYBIL
program.

The call-by-reference entry points are MLP$RDLOG10 and DLOGlO, the
call-by-value entry point is MLP$VDLOG10, and the vector entry point
is MLP$DLOG10V.

The input domain for this routine is the collection of all valid,
positive double precision quantities. The output range is included
in the set of double precision quantities whose absolute value is
less than 4095*log(2) base 10.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Upon entry, the argument x is put into the form x = 2**k*w, where k
is an integer, and 2**-1/2 <= w <= 2**1/2. Then log(x) is computed
from:

log(x) k*log(2) + log(w)

and k*log(2) is computed in double precision. A polynomial
approximation u is evaluated in single precision using:

u = c(l)*t + c(3)*t**3 + c(5)*t**5 + c(7)*t**7

where t = (w - 1.0)/(1.0 + w)

The coefficients c(l), c(3), c(5), and c(7) are:

c(l)
c(3)
c(5)
c(7)

Revision E

1.999 999 993 734 000
.666 669 486 638 944
.399 657 811 051 126
.301 005 922 238 712

Routine Descriptions 2-81

DLOGlO

This approximates log with a relative error absolute value at most
3.133*10**-8 over (2**-l/2,2**-1/2). Newton's rule for finding
roots is then applied in two stages to the function exp(x) - w to
yield the final approximation to log(w). The two stages are
algebraically combined to yield the final approximation v:

v = u - (1.0 - x*exp(-u)) - (1.0 - x*exp(-u - (1.0 - x*exp(-u))))

z is made to be less than 1.0 by writing z = 1.0 - x*exp(-u), and v
is computed using:

v = u - z(u) - z(l) - (z(u))**2*(.5 + z(u)/3)

where z z(u) + z(l). This formula is obtained by neglecting terms
that are not significant for double precision; exp(-u) is evaluated
in double precision by the polynomial of degree 17. If entry was
made at MLP$VDLOG10, after k*log(2) + log(w) has been evaluated, the
result is multiplied by log(e) base 10 in double precision.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is equal to zero.

It is negative.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function DLOGlO was tested against DLOGlO(llx/10) -
DLOGlO(ll/10). Groups of 2000 arguments were chosen randomly from
the interval [.3162D+00,.9000D+OO]. Statistics on relative error
were observed: maximum relative error was .5417D-27; root mean
square relative error was .8117D-28.

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'/x.

2-82 Math Library Revision E

/

DMOD

ID>MOID>

DMOD is a function that returns the remainder of the ratio of two
arguments. It accepts two double precision arguments and returns a
double precision result. This function cannot be called from a
CYBIL program.

The call-by-reference entry points are MLP$RDMOD and DMOD, and the
call-by-value entry point is MLP$VDMOD.

The input domain for this routine is the collection of all valid
double precision pairs (x,y), where y is nonzero and x/y is a valid
quantity. The output range is included in the set of valid double
precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

y is equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is branched
to, and result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

The function computed by DMOD(x,y) is:

x - (x/y)*y

where parentheses denote truncation. The result of x/y is found and
then added to a special floating point zero that forces truncation.

(,,- Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-83

DNINT

Il))NilNlr

DNINT is a function that returns the nearest whole number to an
argument. It accepts a double precision argument and returns a
double precision result. This function cannot be called from a
CYBIL program.

The call-by-reference entry points are MLP$RDNINT and DNINT, and the
call-by-value entry point is MLP$VDNINT.

The input domain for this routine is the collection of all valid
double precision quantities. The output range is included in the
set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is branched
to, and the result is returned to the calling program.

Call-By-Value Routine

If the argument is) O, .5 is added to it and the result is added
to a special floating point zero that forces truncation. If the
argument is < 0, -.5 is added to it and the result is treated as
above.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-84 Math Library Revision E

/

DPROD

DPROD is a. function that computes the product of two arguments. It
accepts two real arguments and returns a double precision result.
This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDPROD and DPROD, and the
call-by-value entry point is MLP$VDPROD.

The input domain for this routine is the collection of all valid
real pairs (x,y) such that x*y is a valid double precision
quantity. The output range is included in the set of valid double
precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is branched
to, and the result is returned to the call-by-reference routine.
The result is checked. If the result is infinite, it is invalid,
and a diagnostic message is displayed. If the result is valid, it
is returned to the calling program.

Call-By-Value Routine

Given argument pair (x,y), the result of x*y is found.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-85

DSIGN

IJ)§Il<GN

DSIGN is a function that transfers the sign of the second argument
to the sign of the first. It accepts two double precision arguments
and returns a double precision result. This function cannot be
called from a CYBIL program.

The call-by-reference entry points are MLP$RDSIGN and DSIGN, and the
call-by-value entry point is MLP$VDSIGN.

The input domain for this routine is the collection of all valid
double precision pairs (x,y). The output range is included in the
set of valid double precision quantities.

Call-By-Reference Routine

No errors are generated by DSIGN. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The sign bit of the second argument is isolated in a mask with all
other bits zero. The sign bits of the upper and lower words of the
first argument are cleared by a boolean AND mask and replaced by the
sign of the second argument by a boolean inclusive OR with the
complement of the mask.

Given arguments (x,y):

result = /xi if y is nonnegative
result = - x if y is negative

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-86 Math Library Revision E

\
"-- -

DSIN

DSIN is a function that computes the sine function. It accepts a
double precision argument and returns a double precision result.
This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDSIN and DSIN, the
call-by-value entry point is MLP$VDSIN, and the vector entry point
is MLP$DSINV.

The input domain for this routine is the collection of all valid
double precision quantities whose absolute value is less than
2**47. The output range is included in the set of valid double
precision quantities in the interval (-1.0,l.O].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result is returned to the calling program •

. Call-By-Value Routine

Upon entry, the argument x is made positive and is multiplied by
2/pi in double precision, and the nearest integer n to x*2/pi is
computed. At this stage, x*2/pi is checked to see that it does not
exceed 2**47. If it does, a diagnostic message is returned.
Otherwise, y = x - n*pi/2 is computed in double precision as the
reduced argument, and y is in the interval [-pi/4,pi/4]. The value
of mod(n,4), the entry point called, and the original sign of x
determine whether a sine polynomial approximation p(x) or a cosine
polynomial approximation q(x) is to be used. A flag is set to
indicate the sign of the final result.

Revision E Routine Descriptions 2-87

DSIN

For x in the interval [-pi/4,pi/4], the sine polynomial
approximation is:

p(x) = a(l)x + a(3)x**3 + a(5)x**5 + a(7)x**7 + a(9)x**9 +
a(ll)x**ll + a(l3)x**l3** + a(l5)x**l5 + a(l7)x**l7 +
a(l9)x**l9 + a(2l)x**21

and the cosine polynomial approximation is:

q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 +
b(lO)x**lO + b(l2)x**l2 + b(l4)x**l4 + b(l6)x**l6 +
b(l8)x**l8 + b(20)x**20

The coefficients are:

a(l) = .999 999 999 999 999 999 999 999 999 99
a(3) = -.166 666 666 666 666 666 666 666 666 52
a(5) = .833 333 333 333 333 333 333 332 709 57*10**-2
a(7) = -.198 412 698 412 698 412 698 291 344 78*10**-3
a(9) = .275 573 192 239 858 906 394 406 844 01*10**-5
a(ll) = -.250 521 083 854 417 101 138 076 473 5*10**-7
a(l3) = .160 590 438 368 179 417 271 194 064 61*10**-9
a(l5) = -.764 716 373 079 886 084 755 348 748 91*10**-12
a(l7) = .281 145 706 930 018*10**-14
a(l9) = -.822 042 461 317 923*10**-17
a(21) = .194 362 013 130 224*10**-19
b(O) .999 999 999 999 999 999 999 999 999 99
b(2) = -.499 999 999 999 999 999 999 999 999 19
b(4) .416 666 666 666 666 666 666 666 139 02
b(6) = -.138 888 888 888 888 888 888 755 436 28*10**-2
b(8) .248 015 873 015 873 015 699 922 737 30*10**-4
b(lO) = -.275 573 192 239 858 775 558 669 957 11*10**-6
b(l2) .208 767 569 878 619 214 898 747 461 35*10**-8
b(l4) = -.114 707 455 958 584 315 495 950 765 75*10**-10
b(l6) .477 947 696 822 393 115 933 106 267 21*10**-13
b(l8) = -.156 187 668 345 316*10**-15
b(20) .408 023 947 777 860*10**-18

These polynomials are evaluated from right to left in double
precision. The sign flag is used to give the result the correct
sign before return to the calling program.

2-88 Math Library Revision E

\___,

DSIN

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The maximum absolute value of the error of approximation of p(x) to
sin(x) over (-pi/4,pi/4) is .2570E-28, and of q(x) to cos(x) is
.3786E-28.

The function DSIN was tested against the 3*DSIN(x/3) -
4*DSIN(x/3)**3. Groups of 2,000 arguments were chosen randomly from
given intervals. Statistics on relative error were observed. Table
2-14 shows a summary of these statistics.

Table 2-14. Relative Error of DSIN

Interval

From

O.OOOOD+OO
.1885D+02

To

.157 lD+Ol

.2042D+02

Maximum

.5153D-28
• 2764D-23

Effect of Argument Error

Root Mean
Square

.1254D-28
• 6188D-25

If a small error e' occurs in the argument x, the resulting error in
sin is given approximately by -e'*cos(x). If the error e' becomes
significant, the addition formulas for sin and cos should be used to
compute the error in the result.

Revision E Routine Descriptions 2-89

DSINH

DSINH is a function that computes the hyperbolic sine function. It
accepts a double precision argument and returns a double precision
result. This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDSINH and DSINH, the
call-by-value entry point is MLP$VDSINH, and the vector entry point
is MLP$SINHV.

The input domain for this routine is the collection of all valid
double precision quantities whose absolute value is less than
4095*log(2). The output range is included in the set of valid
double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result is returned to the calling program.

Call-By-Value Routine

Most of the computation is performed in routine DEULER, and the
constants used are listed there. The argument reduction performed
in DEULER is:

x = argument
y reduced argument
y x - n*log(2)

where n is an integer, and y is in the interval
[-l/2*log(2),1/2*log(2)].

The formula used for computation is:

sinh(y + n*log(2)) = (cosh(y) + sinh(y))*Z**(n-1.0) - (cosh(y) -
sinh(y))*2**(-n-1.0)

where

cosh(y) DC, and sinh(y) DS as computed in routine DEULER.

2-90 Math Library Revision E

DSINH

On input, the argument is in register pair (X2,X3), and on output,
the result is in register pair (XE,XF).

See the description of routine DEULER for detailed information.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 1 for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-15
shows a summary of these statistics.

1 Table 2-15. Relative Error of DSINH
\....__,

/,...--

Interval

Test

DSINH(x) against
Taylor series
expansion
of DSINH(x)

DDINH(x) against
c*(DSINH(x + 1) +
DSINH(x - 1))

From

O.OOOODtOO

.3000D+Ol

Effect of Argument Error

To Maximum

.5000D+OO .1184D-27

.2838D+04 .1178D-27

Root Mean
Square

.3084D-28

.4582D-28

If a small error e' occurs in the argument x, the error in sinh(x)
is approximately cosh(x)*e'.

Revision E Routine Descriptions 2-91

DSQRT

DSQRT is a function that computes the square root. It accepts a
double precision argument and returns a double precision result.
This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDSQRT and DSQRT, the
call-by-value entry point is MLP$VDSQRT, and the vector entry point
is MLP$DSQRTV.

The input domain for this routine is the collection of all valid,
nonnegative double precision quantities. The output range is
included in the set of valid double precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

An initial approximation to sqrt(y) is obtained by evaluating
inline, the sqrt of y(u) in single precision.

One Heron's iteration is performed in double precision using y and
the initial approximation of sqrt(y), giving the double precision
result.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

See Vector Error Handling in chapter 1 for further information.

2-92 Math Library Revision E

DSQRT

Error Analysis

The algorithm error is at most 2.0SE-31, and is always positive.

The function DSQRT was tested against DSQRT(x*x) - x. Groups of
2,000 arguments were chosen randomly from given intervals.
Statistics on relative error were observed. Table 2-16 shows a
summary of these statistics.

Table 2-16. Relative Error of DSQRT

Interval

From

.lOOODtOl

.7071D+OO

To

.1414D+Ol

.lOOODtOl

Maximum

.OOOOD+OO

.1785D-28

Effect of Argument Error

Root Mean
Square

.OOOOD+OO
• 9981D-29

For a small error in the argument y, the amplification of absolute
~ error is l/2*sqrt(y)) and that of relative error is .5.
___,,

\

"--,

,.,,

Revision E Routine Descriptions 2-93

DTAN

ID>lf AN

DTAN is a routine that computes the tangent function. It accepts a
double precision argument and returns a double precision result.
This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDTAN and DTAN, the
call-by-value entry point is MLP$VDTAN, and the vector entry point
is MLP$DTANV.

The input domain for this routine is the collection of all valid
double precision quantities whose absolute value is less than
2**47. The output range is included in the set of valid double
precision quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The argument reduction is performed in two steps:

1. A pi/2 reduction is performed first. If the argument is outside
the interval [-pi/4,pi/4], a signed integer multiple n of pi/2
is computed such that, after adding it to the argument, the
result z falls in the interval [-pi/4,pi/4].

2. A 1/8 reduction is performed next. A signed integer m, which is
a multiple of 1/8, is subtracted from z such that the result is
in the interval [-1/16,1/16]. A small number e(m) is also
subtracted from z. The value of e(m) is constant such that the
tangent of m/8 + e(m) can be represented to double precision
accuracy in a single precision word. The lower word is zero.
Therefore, the original argument y is reduced to x as follows:

x = y - (n*pi/2) - (m/8 + e(m))

2-94 Math Library Revision E

'\.__

DTAN

The following quantities are computed from the reduced argument x
and from the range reduction values. The functions U and L
represent "upper of" and "lower of" functions.

t = tan(m/8 + e(m)) (table look-up)
r = L(U(x)**2)/2U(x) + L(x)
a L(U(x)**2) + 2L(x)U(x)
b U(U(x)**2)

Since:

tan(x) tan(sqrt(x**2))
tan(sqrt(U(U(x)**2 + L(U(x)**2) + 2L(x)U(x)))
tan(sqrt(b + a))
tan(sqrt(b) + a/2b)
tan(sqrt(b) + r)

Then s = sqrt(b) = U(x) - L(U(x)**2)/2U(x)

The value of the original argument y is:

tan(y) tan(x + n*pi/2 + m/8 + e(m))

The effect of the n*pi/2 term on the final result is:

tan(y)
tan(y)

tan(x + m/8 + e(m)), if n is even
1/tan(x + m/8 + e(m)), if n is odd

Applying the tangent addition formula gives:

tan(x + m/8 + e(m)) = tan(s + r + (m/8 + e(m)))

tan(s) + tan(r) + t - tan(s)*tan(r)*t

1.0 - tan(s)*tan(r) - tan(r)*t - t*tan(s)

tan(s) + r + t - tan(s)*r*t

1 - tan(s)*r - r*t - t*tan(s)

Tan(s) is computed by using the general polynomial form:

x + x**3/3 + x**5*2/315

Revision E Routine Descriptions 2-95

DTAN

After Chebyshev is applied to the coefficients, the form is:

tan(s) = s + s*(c(l)s**2 + c(2)s**4 + c(3)s**6 + c(4)s**8 +
(a/(b - s**2))s**l0)

where a= .0218 ••• and b = 2.467

The quotient is inverted if n is odd.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The algorithm error has a negligible effect on the total error. The
worst relative error of the algorithm is 1.032E-29. There is a
negligible error introduced by the pi/2 range reduction except for
points close to nonzero multiples of pi/2. Near pi/2 the pi/2
reduction relative error is bounded by 2**(n-155) where n is the
number of bits of precision to which the argument represents pi/2.
At larger multiples of pi/2, similar problems occur.

The function DTAN was tested against 2*DTAN(x/2)/(1 -
DTAN(x/2)**2). Groups of 2,000 arguments were chosen randomly from
given intervals. Statistics on relative error were observed. Table
2-17 shows a summary of these statistics.

Table 2-17. Relative Error of DTAN

Interval
Root Mean

From To Maximum Square

.OOOOD+OO .7854D+OO .1946D-27 .4491D-28

.1885D+02 .1963D+02 .1729D-27 .4480D-28
• 27 49D+Ol .3534D+Ol .2008D-27 .5363D-28

Effect of Argument Error

If a small error e occurs in the argument x, the error in the result
is e + e*tan**2(x).

2-96 Math Library Revision E

I

'\..._

DTANH

ID>lf ANll-J

DTANH is a function that computes the hyperbolic tangent function.
It accepts a double precision argument and returns a double
precision result. This function cannot be called from a CYBIL
program.

The call-by-reference entry points are MLP$RDTANH and DTANH, the
call-by-value entry point is MLP$VDTANH, and the vector entry point
is MLP$DTANHV.

The input domain for this routine is the collection of all valid
double precision quantities. The output range is included in the
set of valid quantities in the interval [-1.0,l.O].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

Most of the computation is performed in routine DEULER, and the
constants used are listed there. The argument reduction performed
is:

1. For argument in [-47*log(2),47*log(2)] but not in
[-l/2*log(2),l/2*log(2)]:

x = argument
y reduced argument
y 2x - n*log(2)

where n is an integer, and y is in [-l/2*log(2),l/2*log(2)]

tanh(x) u/v where

u = 1.0 - 2**-n - 2**-n*(DC - DS)
v = 1.0 - 2**-n + 2**-n*(DC - DS)

2. For argument in [-l/2*log(2),l/2*log(2)]:

x = argument
y reduced argument
y x

tanh(x) = DS(2*+DC)

Revision E Routine Descriptions 2-97

DTANH

3. For argument outside [-47*log(2),47*log(2)]:

x = argument
y = reduced argument

tanh(x) = 1.0 - 2((1.0 + DC - DS)*2**-n - ((1.0 + DC -
DS)*2**-n)**2)

In steps 1, 2, and 3, DC = cosh(y) - 1.0 and DS
+ DS are computed in DEULER.

sinh(y), where DC

On input, the argument is in register pair (X2-X3), and on output,
the result is in register pair (XE-XF).

Vector Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function DTANH was tested against (DTANH(x - 1/8) +
DTANH(l/8))/(1 + DTANH(x - l/8)*DTANH(l/8)). Groups of 2,000
arguments were chosen randomly from given intervals. Statistics on
relative error were observed. Table 2-18 shows a summary of these
statistics.

Table 2-18. Relative Error of DTANH

Interval

From

.1250D+OO

.67 43D+OO

To

.5493D+OO

.3431D+02

Algorithm Error

Maximum

.9403D-28
• 3282D-27

Root Mean
Square

.2612D-28

.2348D-28

The algorithm error is insignificant. It is predominated by the
error in the sinh expression in DEULER, but by various folding
actions, the error is reduced even further.

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given by e'*sech**2(x).

2-98 Math Library Revision E

DTOD

DTOD
DTOD is an exponentiation routine that accepts compiler-generated
calls. DTOD performs exponentiation for program statements that
raise double precision quantities to double precision exponents. It
accepts two double precision arguments and returns a double
precision result. This function cannot be called from a CYBIL
program.

The call-by-reference entry points are MLP$RDTOD and DTOD, and the
call-by-value entry point is MLP$VDTOD.

The DTOD vector math function is divided into three routines having
three separate entry points defined as follows:

DTOD(scalar,vector)
DTOD(vector,scalar)
DTOD(vector,vector)

MLP$DTODV
MLP$DVTOD
MLP$DVTODV

The input domain for this routine is the collection of all valid
double precision pairs (x,y), where xis positive and x**y is a
valid quantity. If x is equal to zero, then y must be greater than
zero. The output range is included in the set of valid, positive
double precision quantities.

____ _ Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Revision E Routine Descriptions 2-99

DTOD

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x)), where x > O.

Upon entry, the routine calls DLOG to compute log(x), and DEXP to
compute exp(y*log(x)).

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 1 for further information.

2-100 Math Library Revision E

I____

DTOD

Error Analysis

The routine DTOD was tested. Groups of 2,000 arguments were chosen
randomly from given intervals. Statistics on relative error were
observed. Table 2-19 shows a summary of these statistics.

Table 2-19. Relative Error DTOD

Test

x**y against
x**2**(y/2)

x**2**1.5
against
x**2*x

x**l.O

Interval

From

x interval
• lOOOD-01

y interval
-.6167D+03

• lOOOD+Ol

.SOOOD+OO

.SOOOD+OO

To Maximum

.1000D+02 .5172D-25

• 6167D+03

• 8053+411 .1133D-24

.lOOOD+Ol .1143D-27

.lOOOD+Ol • 7133D-28

Root Mean
Square

.9207D-26

.4805D-25

.3978D-28

• 3195D-28
(_,, against x

Effect of Argument Error

If a small error e(b) occurs in the base b and a small error e(p)
occurs in the exponent p, the error in the result r is given
approximately by:

r*(log(b)*e(p) + p*e(b)/b)

Revision E Routine Descriptions 2-101

DTOI

JjJ)lf'(()Il

DTOI is an exponentiation routine that accepts compiler-generated
calls. DTOI performs exponentiation for program statements that
raise double precision quantities to integer exponents. It accepts
a double precision argument and an integer argument, and returns a
double precision result. This function cannot be called from a
CYBIL program.

The call-by-reference entry points are MLP$RDTOI and DTOI, and the
call-by-value entry point is MLP$VDTOI.

The DTOI vector math function is divided into three routines having
three separate entry points defined as follows:

DTOI(scalar,vector)
DTOI(vector,scalar)
DTOI(vector,vector)

MLP$DTOIV
MLP$DVTOI
MLP$DVTOIV

The input domain for this routine is the collection of all valid
pairs (x,y), where xis a double precision quantity and y is an
integer quantity. If x is equal to zero, then y must be greater
than zero. The output range is included in the set of valid double
precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

An x represents the base, and a y represents the exponent. If y is
nonnegative and has the binary representation
OOO ••• Oi(n)i(n-1) ••• i(l)i(O), where each i(j)(O < j < n) is 0 or 1,
ili~: - -

y i(0)*2**0 + i(l)*2**1 + ••• i(n)*2**n

and n = (log(2)y) greatest integer not exceeding log(2)y. Then:

x**y = prod[x**2**j : 0 ~ j < n and i(j) = 1].

2-102 Math Library Revision E

I

__ .

(__

DTOI

The numbers x = x**O, x**2**0, x**2, x**4, ••• , x**2n are generated
by successive squarings, and the coefficients i(O), ••• , i(n) are
obtained as the sign bits of successive circular right shifts of y
within the computer. A running product is formed during the
computation so that smaller powers of x and earlier coefficients
i(j) can be discarded. Thus, the computation becomes an iteration
of the algorithm:

x**y = 1, if y = 0 and x f O.
(x**2)**(y/2), if y > 0 and y is even.
x*(x**2)**((y - 1)/2), if y > 0 and y is odd.

Upon entry, if the exponent y is negative, y is replaced by -y and x
is replaced by l/x; x is double precision. For x = a(u)*a(l), l/x
(l/x)(u)*(l/x)(l) is given in terms of a(u) and a(l) by the
following formulas, where n is the normalization operation. The
subscript 1 on one of the operations indicates that the coefficient
of the result is taken from the lower 48 bits of the 96 bit result
register, and the exponent is 48 less than the real coefficient's
exponent. The formulas are:

(l/x)(u) = n(l/a(u)) + (((n(l - ((l/a(u))*a(u)) +
(1 - (1)(1/a(u)*a(u)) - (l/a(u)*(l)a(u)) -
(l/a(u)*a(l)/a(u))) + (l/a(u) + (l)(((n(l -
(l/a(u))*a*u) + (1 - (1)(1/x(u))*x(u))) -
(l/a(u))*(l)a(u) - (l/a(u))*a(l))/a(u))(l/x)(l)
n(•••) + (1) (•••)

In the routine, double precision quantities a = a(u)*a(l) and b
b(u)*b(l) are multiplied according to:

a*b (a*b)(u)*(a*b)(l)

where:

and

(a*b)(u) = (((a(u)*b(l)) + (a(l)*b(u))) + (a(u)*(l)b(u))) +
(a(u)*b(u))

(a*b)(l) = (((a(u)*b(l)) + (a(l)*b(u))) + (a(u)*(l)b(u))) +
(l)(a(u)*b(u))

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

(See Vector Error Handling in chapter 1 for further information.
"-----

Revision E Routine Descriptions 2-103

DTOI

Error Analysis

Not applicable.

Effect of Argument Error

If a small error e' occurs in the base b, the error in the result
will be given approximately by n*b**(n-l)*e', where n is the
exponent given to the routine.

2-104 Math Library Revision E

(

DTOX

DTOX is an exponentiation routine that accepts compiler-generated
calls. DTOX performs exponentiation for program statements that
raise double precision quantities to real exponents. It accepts a
double precision argument and a real argument and returns a double
precision result. This function cannot be called from a CYBIL
program.

The call-by-reference entry points are MLP$RDTOX and DTOX, and the
call-by-value entry point is MLP$VDTOX.

The DTOX vector math function is divided into three routines having
three separate entry points defined as follows:

DTOX(scalar,vector) = MLP$DTOXV
DTOX(vector,scalar) MLP$DVTOX
DTOX(vector,vector) MLP$DVTOXV

The input domain for this routine is the collection of all valid
pairs (x,y), where x is a nonnegative double precision quantity and
y is a real quantity. If x is equal to zero, then y must be greater
than zero. The output range is included in the set of valid,
positive double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Revision E Routine Descriptions 2-105

DTOX

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x)), where x) 0

Upon entry, the routine calls DLOG to compute log(x), and DEXP to
compute exp(y*log(x)).

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

See the description of routine DTOD.

Effect of Argument Error

If a small error e(b) occurs in the base b and a small error e(p)
occurs in the exponent p, the error in the result r is given
approximately by:

r*(e(p)*log(b) + p*e(b)/b)

2-106 Math Library Revision E

/

"

L

DTOZ

DTOZ is an exponentiation routine that accepts compiler-generated
calls. DTOZ performs exponentiation for program statements that
raise double precision quantities to complex exponents. It accepts
a double precision argument and a complex argument and returns a
complex result. This function cannot be called from a CYBIL program.

The call-by-reference entry points are MLP$RDTOZ and DTOZ, and the
call-by-value entry point is MLP$VDTOZ.

The DTOZ vector math function is divided into three routines having
three separate entry points defined as follows:

DTOZ(scalar,vector)=MLP$DTOZV
DTOZ(vector,scalar)=MLP$DVTOZ
DTOZ(vector,vector)=MLP$DVTOZV

The input domain for this routine is the collection of all valid
pairs (x,y), where x is a double precision quantity and y is a
complex quantity. If x is equal to zero, then the real part of y
must be greater than zero, and the imaginary part must be equal to
zero. The output range is included in the set of valid double
precision quantities.

Call-By-Reference. Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or equal
to zero, or the imaginary part of y is not equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

If the base is real and the exponent is complex, then:

base**exponent = x + i*y

Upon entry, the double precision base, x, is converted to complex,
and the routine calls ZTOZ to compute the result.

Revision E Routine Descriptions 2-107

DTOZ

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

y is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or equal
to zero, or the imaginary part of y is not equal to zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1. 0, 1. 0] , [-1. 0, 1. 0]] and [[-1. 0, 1. 0] , [-1. 0, 1. 0]] • The maximum
relative error of these arguments was found to be l.7431E-ll.

Effect of Argument Error

If a small error e(b) occurs in the base b and a small error e(z)
occurs in the exponent z, the error in the result w is given
approximately by:

w*(e(z)*log(b) + z*e(b)/b)

2-108 Math Library Revision E

(/'

~_,'

ERF

IHRIF

ERF is a function that computes the error function. It accepts a
real argument and returns a real result.

The call-by-reference entry points are MLP$RERF and ERF, the
call-by-value entry point is MLP$VERF, and the vector entry point is
MLP$ERFV.

The input domain for this routine is the collection of all valid
real quantities. The output range is included in the set of real
quantities in the interval [-1.0,1.0].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

The routine calculates the smaller of erf(abs(x)) and erfc(abs(x)).
The final value, which is the sum of a signed function and a
constant, is computed by using the identities:

erf(-x)
erf(x)

-erf(x)
1. 0 - erfc(x)

The forms used are given in table 2-20.

Table 2-20. Forms Used in ERF. (y ABS(x))

Range ERF ERFC

[-INF,-5.625] -1.0 +2.0
(-5. 625 ,-. 477) -l.O+p2(y) +2.0-p2(y)
[-.477,0) -pl (y) +l. O+pl (y)
[O,+. 477] +pl(y) +1.0-pl(y)
[.477,5.625) +l.O-p2(y) p2(y)
[5.625,8.0) +1.0 p2(y)
[8.0,53.0] +l.O p3(y)
(53.0,+INF) +1.0 underflow
+INF +1.0 o.o

Revision E Routine Descriptions 2-109

ERF

The constants .477 and 53.0 are inverse erf(.5) and inverse
erfc(2**-975), which are approximately .47693627620447 and
53.0374219959898.

The function pl is a (5th order odd)/(8th order even) rational
form. The functions p2 and p3 are exp(-x**2)*(rational form), where
p2 is (7th order)/(8th order) and p3 is (4th order)/(Sth order).
Since exp(-x**2) is ill-conditioned for large x, exp(-x**2) is
calculated by exp(u + eps) = exp(u) + eps*exp(u), where u = -x**2
upper and eps = -x**2 lower.

(The coefficients for p2 and p3 are from Hart, Cheney, Lawson, et
al., Computer Approximations, New York, 1968, John Wiley and Sons).

Vector Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function ERF was tested against 1 - e**(-x**2)*p(x)/q(x)'. A
group of 10,000 arguments was chosen randomly from the interval (
0.0,8.0). The maximum relative error of these arguments was found
to be .2050E-13.

Effect of Argument Error

For small errors in the argument x, the amplification of absolute
error is (2/sqrt(pi))*exp(-x**2) and that of relative error is
(2/sqrt(pi))*x*exp(-x**2)/f(x) where f is erf or erfc. The relative
error is attenuated for ERF everywhere and for ERFC when x < .53.
For x > .53, the relative error for ERFC is amplified by
approximately 2x.

2-110 Math Library Revision E

ERFC

IE~IFC

ERFC is a function that computes the complementary error function.
It accepts a real argument and returns a real result.

'\
'- The call-by-reference entry points are MLP$RERFC and ERFC, the

'\...... _,

call-by-value entry point is MLP$VERFC, and the vector entry point
is MLP$ERFCV.

The input domain for this routine is the collection of all valid
real quantities less than 53.037, but not equal to infinity. The
output range is included in the set of valid, nonnegative real
quantities less than or equal to 2.0.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is greater than 53.037, but not equal to infinity.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid,- the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

See the description of routine ERF.

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is greater than 53.037, but not equal to infinity.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function ERFC was tested against e**(-x**2)*p(x)/q(x)'. A group
of 10,000 arguments was chosen randomly from the interval (
0.0,8.0). The maximum relative error of these arguments was found
to be .9531E-ll.

Revision E Routine Descriptions 2-111

ERFC

Effect of Argument Error

For small errors in the argument x, the amplification of absolute
error is (2/sqrt(pi))*exp(-x**2) and that of relative error is ,~
(2/sqrt(pi))*x*exp(-x**2)/f(x) where f is erf or erfc. The relative
error is attenuated for ERF everywhere and for ERFC when x < .53.
For x > .53, the relative error for ERFC is amplified by
approximately 2x.

2-112 Math Library Revision E

(
'

(__ ,'

EXP is a function that computes the exponential function. It
accepts a real argument and returns a real result.

EXP

The call-by-reference entry points are MLP$REXP and EXP, the
call-by-value entry point is MLP$VEXP, and the vector entry point is
MLP$EXPV.

The input domain for this routine is the collection of all valid
real quantities whose value is greater than or equal to -4097*log(2)
and less than or equal to 4095*log(2). The output range is included
in the set of valid positive real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the call-by-reference
routine. The result is checked. If the result is infinite, it is
invalid, and a diagnostic message is displayed. If the result is
valid, it is returned to the calling program.

Revision E Routine Descriptions 2-113

EXP

Call-By-Value Routine

If x is valid, EXP(x) is calculated by reducing it to the simpler
task of approximating e**g*2**(NL/32). This reduction is derived as
follows:

exp(x)

where

e**(g + (32*NH + NL)*(ln(2)/32))
e**(g + NH*ln(2) + (NL/32)*ln(2))
e**g*2**NH*2**(NL/32)
(e**g*2**(NL/32))*2**NH

n is the nearest integer to 32*x/ln(2).
g is a real number such that x = g + n*(ln(2)/32). Thus,
abs(g) is less than or equal to ln(2)/64.
NH is floor(n/32).
NL is greater than or equal to 0, less than or equal to 31,
and is the integer such that n = 32*NH + NL.

The reduction:

e**g*2**(NL/32)

is approximated to 48 bits of precision using the following min-max
approximation:

Z = Q(NL, g) + Qbias(NL)

where for each of the 32 values of NL, Qbias(NL) is a number that is
represented exactly in binary floating point and which is slightly
less than 2**(-l/64)*2**(NL/32), which is the minimum value of
e**g*2**(NL/32).

Q(NL, g) denotes the 32 quintic polynomials in g which approximate
e**g*2**(NL/32) - Qbias(NL) with the lowest maximum relative error
for abs(g) < = ln(2)/64. Z is evaluated with almost no error since
the low bits of Q(NL, g), which may be inaccurate due to truncation
errors, are insignificant with respect to Qbias(NL). Thus, Z*2**NH,
which is evaluated simply by adding NH to the exponent of 7., is an
accurate approximation to EXP(x).

• 2-114 t1ath Library Revision G

~--

EXP

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is greater than 4095*log(2).

It is less than -4097*log(2).

See Vector Error Handling in chapter 1 for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-21
shows a summary of these statistics.

Revtsion G Routine Descriptions 2-ll~

I

I

I

I

EXP

Table 2-21. Relative Error of EXP

Interval
Root Hean

Test From To Maximum Square

EXP(x - 2.8125) -.3466E+Ol -.2805E+04 .7335E-14 .3766E-14
against
EXP(x)/EXP(2.8125)

EXP(x - .0625) -.2841E+OO .3466E+OO .7557E-14 • 39l~5E-14
against
EXP(x)/EXP(.0625)

EXP(x - 2.8125) .6931E+Ol .2838E+04 • 7384E- l 4 .3850E-14
against
EXP(x)/EXP(2.8125)

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result y is given by y*e'.

2-116 Hath Library Revision G

EXTB

lEKfIB

EXTB is a function that extracts bits from the first argument, x, as
specified by the second and third arguments, il and i2. It accepts
any type except character for argument x and accepts integer for
arguments il and i2. The result is boolean. If x is of type double
precision or complex, only the first word is used. The result
returned contains 0 fill in the second word; however, the first 4
bytes of the first word is duplicated in the second word for double
precision.

Argument x must be byte aligned and be at least 64 bits in length.
The argument used is the leftmost 64 bits of x. Argument il
indicates the first bit to be extracted numbering from bit 0 on the
left. Argument i2 indicates the number of bits to be extracted.
The extracted bits occupy the rightmost bits of the result, with 0
bits as fill on the left.

The call-by-reference entry points are MLP$REXTB and EXTB, and the
call-by-value entry point is MLP$VEXTB.

The input domain for this routine is such that il is greater than or
equal to 0 and less than 64; i2 is greater than or equal to O; and
il + i2 is less than or equal to 64. If i2 = O, the result is 0
(all 0 bits). The data type of argument x is not significant to the
processing of this function. The output range is included in the
set of valid boolean quantities.

Call-By-Reference Routine

The arguments il and i2 are checked upon entry. They are invalid if:

il is less than zero.

i2 is less than zero.

il is greater than or equal to 64.

il + i2 is greater than 64.

If the arguments are invalid, a diagnostic message is displayed. If
the arguments are valid, the call-by-value routine is branched to,
and the result of the function is returned to the calling program.

Call-By-Value Routine

The extracted bits from the first argument, x, as specified by the
second and third arguments il and i2 is returned. The leftmost 64
bits of x is used.

Revision E Routine Descriptions 2-117

EXTB

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-118 Math Library Revision E

JABS

IlAJB§

IABS is a function that computes the absolute value of an argument.
It accepts an integer argument and returns an integer result.

The call-by-reference entry points are MLP$RIABS and IABS, and the
call-by-value entry point is MLP$VIABS.

The input domain for this routine is the collection of all valid
integer quantities. The output range is included in the set of
valid, nonnegative integer quantities.

Call-By-Reference Routine

No errors are generated by IABS. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The sign bit of the argument is extended throughout a word to form a
mask. The argument is subtracted from the exclusive OR of the mask
and the argument to form the result.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-119

IDIM

Il[J)IlM

IDIM is a function that computes the positive difference between two
arguments. It accepts two integer arguments and returns an integer
result.

The call-by-reference entry points are MLP$RIDIM and IDIM, and the
call-by-value entry point is MLP$VIDIM.

The input domain for this routine is the collection of all valid
integer pairs (x,y) such that x - y is less than 2**63. The output
range is included in the set of valid, nonnegative integer
quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

x - y is greater than or equal to 2**63.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

Upon entry, the difference between the two arguments is formed, and
the sign bit is extended across another word to form a mask. The
boolean product of the mask's complement and the difference is
formed.

Given arguments (x,y):

result
result

x-yifx)y
0 if x ~ y.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-120 Math Library Revision E

I

IDNINT

IlID> I'-JilPJ1f

IDNINT is a function that returns the nearest integer to an
argument. It accepts a double precision argument and returns an
integer result.

The call-by-reference entry points are MLP$RIDNINT and IDNINT, and
the call-by-value entry point is MLP$VIDNINT.

The input domain for this routine is the collection of all valid
double precision quantities. The output range is included in the
set of valid integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

\.____, Call-By-Value Routine

If the argument is > O, .5 is added to it, and the result is added
to a special floating point zero that forces truncation. If the
argument is < O, -.5 is added to it, and the result is added to a
special floating point zero that forces truncation.

If the value of the argument is not in the range [-2**63 -
2**15,2**63 - 2**15], then the high order bits of the resulting
integer are lost (the result is truncated in its leftmost position).

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-121

INSB

IlN§IIB

INSB is a function that inserts bits from the first argument, x,
into a copy of the fourth argument, y, as specified by the second ./
and third arguments, il and i2. It accepts any type except
character for arguments x and y, and accepts integer for arguments
il and i2. The result is boolean. If x or y is of type double
precision or complex, only the first word is used. The result
returned contains 0 fill in the second word; however, the first 4
bytes of the first word is duplicated in the second word for double
precision.

Arguments x and y must be byte aligned and be at least 64 bits in
length. The argument used is the leftmost 64 bits of each x and y.
Argument il indicates first bit position in y for insertion.
Argument i2 indicates the rightmost number of bits taken from x to

·be inserted into Y•

The call-by-reference entry points are MLP$RINSB and INSB, and the
call-by-value entry point is MLP$VINSB.

The input domain for this routine is such that il is greater than or
equal to 0 and less than 64; i2 is greater than or equal to O; and
il + i2 is less than or equal to 64. If i2 = 0, the result is the
value of y. The data type of arguments x and y is not significant
to the processing of this function. The output range is included in
the set of valid boolean quantities.

Call-By-Reference Routine

The arguments il and i2 are checked upon entry. They are invalid if:

il is less than zero.

i2 is less than zero.

il is greater than or equal to 64.

il + i2 is greater than 64.

If the arguments are invalid, a diagnostic message is displayed. If
the arguments are valid, the call-by-value routine is branched to,
and the result of the function is returned to the calling program.

Call-By-Value Routine

The inserted bits from the first argument, x, into a copy of the
fourth argument, y, as specified by the second and third arguments,
il and i2 is returned. The leftmost 64 bits of x and y are used.

2-122 Math Library Revision E

/---

INSB

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

~--

Revision E Routine Descriptions 2-123

ISIGN

Il§IlGN

!SIGN is a function that transfers the sign of one argument to
another argument. It accepts two integer arguments and returns an
integer result.

The call-by-reference entry points are MLP$RISIGN and !SIGN, and the
call-by-value entry point is MLP$VISIGN.

The input domain for this routine is the collection of all valid
integer quantities. The output range is included in the set of
valid integer quantities.

Call-By-Reference Routine

No errors are generated by !SIGN. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The exclusive OR of the first argument with the second argument is
shifted to extend its sign bit across a word to produce a mask. The
mask is then subtracted from the exclusive OR of the mask and
argument to form the result.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-124 Math Library Revision E

I

I
\.,,

(

\
'---·.

ITOD

ITOD is an exponentiation routine that accepts compiler-generated
calls. ITOD performs exponentiation for statements that raise
integer quantities to double precision exponents. It accepts an
integer argument and a double precision argument and returns a
double precision result.

The call-by-reference entry points are MLP$RITOD and ITOD, and the
call-by-value entry point is MLP$VITOD.

The input domain for this routine is the collection of all valid
pairs (x,y), where x is a nonnegative integer quantity and y is a
double precision quantity. If x is equal to zero, then y must be
greater than zero. The output range is included in the set of valid
double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. The argument pair is
invalid if:

y is indefinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x)), where x > O.

Upon entry, the integer argument is converted to double precision,
and the routine calls DLOG to compute log(x), and DEXP to compute
exp(y*log(x)).

Revision E Routine Descriptions 2-125

ITOD

Error Analysis

See the description of routine DTOD.

Effect of Argument Error

If a small error e' occurs in the exponent, the error in the result
r is given approximately by r*e'*log(b), where b is the base.

2-126 Math Library Revision E

~-

!TOI

IllfOil

ITOI is an exponentiation routine that accepts compiler-generated
calls. ITOI performs exponentiation for program statements that
raise integer quantities to integer exponents. It accepts two
integer arguments and returns an integer result.

The call-by-reference entry points are MLP$RITOI and ITOI, and the
call-by-value entry point is MLP$VITOI.

The input domain for this routine is the collection of all valid
integer pairs (x,y) such that the absolute value of x**y is less
than 2**63. If x is equal to zero, then y must be greater than
zero. The output range is included in the set of valid integer
quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. The argument pair is
invalid if:

x is zero and y is zero or negative.

If the argument pair is invalid, zero is returned, and a diagnostic
message is displayed. If the argument pair is valid, the
call-by-value routine is called, and the result of the computation
is returned to the call-by-reference routine. The r~sult is
checked. If the result is infinite, it is invalid, and a diagnostic
message is displayed. If the result is valid, it is returned to the
calling program.

Call-By-Value Routine

The arguments are checked to determine whether the exponentiation
conforms to a special case. If it does, the proper value is
innnediately returned, or if the special case is an error condition,
a hardware exception condition is forced. The special cases are:

O**O error
O**J error if J < 0
l**J 1

-l**J +l or -1 (J even or odd)
I**O 1
I**J 0 if J < 0

Revision E Routine Descriptions 2-127

ITOI

If the exponentiation does not fit any special case, the algorithm
listed below is used for the computation.

An x represents the base and a y represents the exponent. If x has
binary representation 000 •••• OOOi(n)i(n-1) ••• i(i)i(O), where each
i(j)(O ~j ~n) is 0 or 1, then:

y i(0)*2**0 + i(l)*2**1 + ••• + i(n)*2**n
n = (log(2)y) greatest integer not exceeding log(2)y

Then:

x**y = prod[x**2**j: 0 ~j ~n and i(j) = l]

The numbers x = x**O, x**2**0, x**2, x**4, ••• , x**(2)**n are
generated during the computation by successive squarings, and the
coefficients i(O), •••• , i(n) are obtained as sign bits of
successive right shifts of y within the computer. A running product
is formed during the computation so that smaller powers of x can be
discarded. The computation then becomes an iteration of the
algorithm:

x**y 1, if y = 1, and x f 0
(x*x)**(y/2), if y > 0 and y is even
(x*x)**((y-l)/2)*x, if y) 0 and y is odd

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-128 Math Library Revision E

I

"'--

ITOX

ITOX is an exponentiation routine that accepts compiler-generated
calls. ITOX performs exponentiation for program statements that
raise integer quantities to real exponents. It accepts an integer
argument and a real argument and returns a real result.

The call-by-reference entry points are MLP$RITOX and ITOX, and the
call-by-value entry point is MLP$VITOX.

The input domain for this routine is the collection of all valid
pairs (x,y), where x is a nonnegative integer quantity, y is a real
quantity, and x**y is a valid quantity. If x is equal to zero, then
y must be greater than zero. The output range is included in the
set of valid, nonnegative real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. The argument pair is
invalid if:

y is indefinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x)), where x ~ 1

Upon entry, x is converted to real, and the routine calls to XTOX to
compute the result. Zero is returned if the base is zero and the
exponent is positive.

Revision E Routine Descriptions 2-129

ITOX

Error Analysis

See the description of routine XTOX.

Effect of Argument Error

If a small error e' occurs in the exponent x, the error in the
result r is given approximately by r*e'*log(n), where n is the base.

2-130 Math Library Revision E

\

'----

ITOZ

Il1r02

ITOZ is an exponentiation routine that accepts compiler-generated
calls. ITOZ performs exponentiation for statements that raise
integer quantities to complex exponents. It accepts an integer
argument and a complex argument and returns a complex result.

The call-by-reference entry points are MLP$RITOZ and ITOZ, and the
call-by-value entry point is MLP$VITOZ.

The ITOZ vector math function is divided into three routines having
three separate entry points defined as follows:

ITOZ(scalar,vector) = MLP$ITOZV
ITOZ(vector,scalar) = MLP$IVTOZ
ITOZ(vector,vector) = MLP$IVTOZV

The input domain for this routine is the collection of all valid
pairs (x,y), where xis a nonnegative nonzero integer quantity and y
is a complex quantity. If x is equal to zero, then the real part of
y must be greater than zero, and the imaginary part must be equal to
zero. The output range is included in the set of valid complex
quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

y is indefinite.

y is infinite.

x is equal to zero, and the real part of y is zero or negative,
or the imaginary part of y is not equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

If n is a positive integer, and x and y are real, then:

n**(x + i*y) = exp(x*log(n))*cos(y*log(n)) +
i*exp(x*log(n))*sin(y*log(n))

Upon entry, n is converted to complex, and the routine calls ZTOZ to
compute the result.

Revision E Routine Descriptions 2-131

ITOZ

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

y is indefinite.

y is infinite.

x is equal to zero, and the real part of y is zero or negative,
or the imaginary part of y is not equal to zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1. 0, 1 • 0] , [-1. 0, 1 • 0]] and [[-1 • 0, 1 • 0] , [-1. 0, 1 • 0]] • The maximum
relative error these arguments was found to be l.7431E-ll.

Effect of Argument Error

If a small error e(z) = e(x) + i*e(y) occurs in the exponent z, the
error in the result w is given approximately by w*log(n)*e(z).

2-132 Math Library Revision E

I

~

MOD

MOD is a function that computes the remainder of the ratio of two
arguments It accepts two integer arguments and returns an integer
result.

The call-by-reference entry points are MLP$RMOD and MOD, and the
call-by-value entry point is MLP$VMOD.

The input domain for this routine is the collection of all valid
integer pairs (x,y), where x is an integer quantity and y is a
nonzero integer quantity. The output range is included in the set
of valid integer quantities.

Call-By-Reference Routine

Upon entry, the argument pair (x,y) is checked. It is invalid if:

y is equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is branched
to, and the result is returned.

(Call-By-Value Routine
"-.__,

,r
l
\
'-----'

Upon entry, the arguments x and y are converted to real, the
quotient x/y is formed, and the result is multiplied by y and then
subtracted from x.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-133

NINT

NilNT

NINT is a function that finds the nearest integer to an argument.
It accepts a real argument and returns an integer result.

The call-by-reference entry points are MLP$RNINT and NINT, and the
call-by-value entry point is MLP$VNINT.

The input domain for this routine is the collection of all valid
real quantities. The output range is included in the set of valid
integer quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is branched to, and
the result of the computation is returned to the calling program.

Call-By-Value Routine

If the argument is > O, .5 is added to it, or if the argument is <
O, -.5 is added to it. This sum is converted from floating point to
integer and returned.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-134 Math Library Revision E

(
'-----

RANF

RANF is a function that generates the next random number in a series
of random numbers. It accepts a dummy argument and returns a real
result.

The call-by-reference entry points are MLP$RRANF and RANF, and the
call-by-value entry point is MLP$VRANF.

There is no input domain to this routine. The output range is
included in the set of positive real quantities less than 1.0.

Call-By-Reference Routine

No errors are generated in RANF. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

RANF uses the multiplicative congruential method modulo 2**48. The
formula is:

x(n + 1.0) = a*x(n) (mod 2**48)

The library holds a random seed (mlv$initialcseed) and a multiplier
(mlv$randomcmultiplier). The random seed can be changed to any
valid seed value prior to calling RANF by use of the routine
RANSET. Upon entry at RANF, the random seed is multiplied in double
precision by mlv$randomcmultiplier to generate a 96-bit product,
which is the new seed partially normalized by one bit. This result
is then denormalized. The lower 48 bits are formed with an exponent
that yields a result between 0 and 1.0 to become the new random seed
(mlv$randomcseed). The current seed for the task is updated with
the newly formed unnormalized seed. The seed is used to generate
subsequent random numbers. The default initial value of
mlv$initia1Cseed is 40002BC68CFE166D hexadecimal. The new random
seed is normalized and returned as the random number.

The multiplier (mlv$randomcmultiplier) is constant and has a value
of 40302875A2E7Bl75 hexadecimal. This multiplier passes the
Coveyou-MacPherson test, the auto-correlation test with lag < 100,
the pair triplet test, and other statistical tests for randomness.

(Algorithm and Constants, Copyright 1970 by Krzysztof Frankowski,
Computer Information and Control Science, University of Minnesota,
55455.)

Revision E Routine Descriptions 2-135

RANF

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-136 Math Library Revision E

RANG ET

RANGET is a callable program procedure that returns the current
random number seed of a task. It accepts a real argument.

The call-by-reference entry points are MLP$RANGET and RANGET. There
is no call-by-value routine for RANGET.

The result is returned through parameter n and is a positive real
quantity in the interval (0,1.0).

Call-By-Reference Routine

RANGET returns the current seed, between 0 and 1, of the random
number generator. The value returned might not be normalized. This
seed can be used to restart the random sequence at exactly the same
point. The current seed is mlv$random¢seed.

Call-By-Value Routine

There are no call-by-value entry points for RANGET.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-137

RANS ET

RANSET is a callable program procedure that sets the seed of the
random number generator. It accepts a real argument and returns a
real result.

The call-by-reference entry points are MLP$RANSET and RANSET. There
is no call-by-value routine.

The input domain for this routine is the collection of all possible
full word bit patterns. There is no output.

Call-By-Reference Routine

RANSET uses the value passed to it to form a valid seed for the
random number generator. If the argument is zero, the seed is set
to its initial value (mlv$initial¢seed) at load time. Otherwise,
the value passed has its exponent set to 4000 hexadecimal, and the
coefficient is made odd. This value is then saved and becomes the
new seed (mlv$random¢seed) for the task.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

2-138 Math Library Revision E

SIGN

§IlGN

SIGN is a function that transfers the sign from one argument to
another argument. It accepts two real arguments and returns a real

I result. __

!"'

l __ _

The call-by-reference entry points are MLP$RSIGN and SIGN, and the
call-by-value entry point is MLP$VSIGN.

The input domain for this routine is the collection of all valid
real quantities. The output range is included in the set of valid
real quantities.

Call-By-Reference Routine

No errors are generated by SIGN. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The sign bit of the second argument is inserted into the sign bit of
the first argument.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-139

SIN

§IlN

SIN is a function that computes the sine function. It accepts a
real argument and returns a real result.

The call-by-reference entry points are laP$RSIN and SIN, the
call-by-value entry point is MLP$VSIN, and the vector entry point is
MLP$SINV.

The input domain for this routine is the collection of all valid
real quantities whose absolute value is less than 2**47. The output
range is included in the set of valid real quantities in the
interval [-1.0,l.O].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. lf
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

I See the description of routine COS.

2-140 Hath Library Revision G

SIN

I

__ .··
This page intentionally left blank.

Revision G Routine Descriptions 2-141 I

I

I

SIN

Vector Routine

The argument is checked upon entry. It is invalirl if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function SIN was tested against 3*SIN(x/3) - 4*SIN(x/3)**3.
Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-22
shows a summary of these statistics.

Table 2-22. Relative Error of SIN

Interval

From

O.OOOOE+OO
.1885E+02

To

• 15 71 E+Ol
.2042£+02

!1aximum

.8305E-14

.l355E-13

Effect of Argument Error

Root !1ean
Square

.2874E-14

.3168E-14

If a small error e' occurs in the argument x, the error in the
result is given approximately by e' * cos(x) for sin(x) and -e' *
sin(x) for cos(x).

2-142 Math Library Revision G

SIND

§IlNID

SIND is a function that computes the sine function of an argument in
degrees. It accepts a real argument and returns a real result.

__ .. , The call-by-reference entry points are MLP$RSIND and SIND, the
call-by-value entry point is MLP$VSIND, and the vector entry point
is MLP$SINDV.

(_,

The input domain for this routine is the collection of all valid
real quantities whose absolute value is less than 2**47. The output
range is included in the set of valid real quantities in the
interval [-1.0,l.O].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest
integer, n, to x/90, and subtracting n*90 from the argument. The
reduced argument is then multiplied by pi/180. The appropriate sign
is copied to the value of the appropriate function, sine or cosine,
as determined by these identities:

sin(x += 360 degrees)
sin(x += 180 degrees)
sin(x + 90 degrees)
sin(x - 90 degrees)
cos(x += 360 degrees)
cos(x += 180 degrees)
cos(x + 90 degrees)
cos(x - 90 degrees)

sin(x)
-sin(x)
cos(x)

-cos(x)
cos(x)

-cos(x)
-sin(x)
sin(x)

Routine Descriptions 2-143

SIND

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The reduction to (-45,+45) is exact; the constant pi/180 has
relative error 1.37E-15, and multiplication by this constant has a
relative error 5.33E-15, and a total error of 6.7E-15. Since errors
in the argument of SIN and COS contribute only pi/4 of their value
to the result, the error due to the reduction and conversion is at
most 5.26E-15 plus the maximum error in SINCOS over (-pi/4,+pi/4).
The maximum relative error observed for a group of 10,000 arguments
chosen randomly in the interval [0,360] was, .1403E-13 for SIND, and
.7105E-14 for COSD.

Effect of Argument Error

Errors in the argument x are amplified by x/tan(x) for SIND and
x*tan(x) for COSD. These functions have a maximum value of pi/4 in
the interval (-45,+45) but have poles at even (SIND) or odd (COSD)
multiples of 90 degrees, and are large between multiples of 90
degrees if x is large.

2-144 Math Library Revision E

I

''--..~-

SINH

§IlNIHI

SINH is a function that computes the hyperbolic sine function. It
accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RSINH and SINH, the
call-by-value entry point is MLP$VSINH, and the vector entry point
is MLP$SINHV.

The input domain for this routine is the collection of all valid
real quantities whose absolute value is less than 4095*log(2). The
output range is included in the set of all valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The formulas used to compute sinh(x) are:

x

sinh(x)
sinh(x)
sinh(x)

where:

n*log(2) + a, where JaJ ~ l/2*log(2)
and n is an integer
(cosh(a) + sinh(a))*2**(n-l), when n > 25
sinh(a), when n = O, otherwise,
(c - s)*2**(n-l) + (c + s)*2**(-n-l)

s = sinh(a)
c = cosh(a)

a + s(3)*a**3*(s(5) + TOP/(BOT - a**2))
1.0 + a**2*(.5 + a**2*(c(4) + a**2*(c(6) +
c(lO)*a**2*(c(8) + a**2))))

Revision E Routine Descriptions 2-145

SINH

Constants used in the algorithm are:

s(3) .166 666 666 666 935 58
s(5) -.005 972 995 665 652 368
TOP 1.031 539 921 161
BOT 72.103 7 46 707 22
c(4) .041 666 666 666 488 081
c(6) .001 388 888 895 231 804 5
c(8) 89.754 7 38 97 3 150 22
c(lO) 2.763 250 805 803*10**-7

The algorithm used is:

a. u = lxl
b. n = (u/log(2) + .5) = nearest integer to u/log(2)

w u - n*log(2), where the right-hand expression is evaluated
in double precision

c. s = w + w**3(s(3) + w**2(s(5) + TOP/(BOT - w**2)))
d = w**2(1/2 + w**2(c(4) + w**2(c(6) + w**2(c(8) + w**2)*c(l0))))
a (1.0 + d - s)*2**(-n-l)
b = d + s

d. c
XF

(1/4 + (1/4 + b))*2**(n-l) + (2**(n-3) + (2**(n-3) - a))
c with the sign of x

e. Return

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 4095*log(2).

See Vector Error Handling in chapter 1 for further information.

Error Analysis

Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-23
shows a summary of these statistics.

2-146 Math Library Revision E

/

I

\
'--- -

(

SINH

Table 2-23. Relative Error of SINH

Interval
Root Mean

Test From To Maximum Square

SINH(x) against O.OOOOE+OO .SOOOE+OO .3374E-13 .9969E-14
Taylor series
expansion of
SINH(x)

SINH(x) against .3000E+Ol .2838E+04 .2894E-13 .9979E-14
c*(SINH(x + 1) +
SINH(x - 1))

Effect of Argument Error

If a small error e' occurs in the argument x, the resulting error in
sinh(x) is given approximately by cosh(x)*e'.

Revision E Routine Descriptions 2-147

SQRT

SQRT is a function that computes the square root function. It
accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RSQRT and SQRT, the
call-by-value entry point is MLP$VSQRT, and the vector entry point
is MLP$SQRTV.

The input domain for this routine is the collection of all valid,
nonnegative real quantities. The output range is included in the
set of valid, nonnegative real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

2-148 Math Library Revision E

SQRT

Call-By-Value Routine

If xis valid, let y be a real number in [0.5, 2) and nan integer
such that x y*2**(2*n). Then SQRT(x) is evaluated by:

SQRT(x) SQRT(y)*2*·kn

Then SQRT(y) is approximated to 48 bits of precision by applying one
iteration of Heron's rule to an initial approximation which is
accurate to at least 24 bits of precision. The initial
approximation is computed by dividing the interval [0.5, 2) into the
following 64 subintervals:

[32/64, 33/64)

[63/64, 64/64)
[32/32, 33/32)

[63/32, 64/32)

The coefficients of these 64 min-max approximations are stored in
three tables pO, pl, and p2 such that:

zl = pO[i] + pl[i]*y + p2[i]*y**2

is the quadratic min-max approximation to the square root of y over
the subinterval whose index is i. The required initial
approximation is obtained by calculating the index i of the
subinterval that contains y and then evaluating the above quadratic
polynomial so that zl approximates SQRT(y) to at least 24 bits of
precision.

Using Heron's rule, the computation:

twoz2 = zl + y/zl

approximates SQRT(y) to 48 bits precision followed by the
computation:

SQRT(x) = twoz2*2**(n - 1)

which approximates SQRT(x) to 48 bits of precision.

Revision G Routi~e DescriptLons 2-149 •

I

I

SQRT

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

It is negative.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The function SQRT was tested in the form SQRT(x*x) - x. Groups of
2,000 arguments were chosen randomly from given intervals.
Statistics on relative error were observed. Table 2-24 shows a
summary of these statistics.

Table 2-24. Relative Error of SQRT

Interval

From

.lOOOE+Ol

.7071E+OO

To

.1414E+Ol

.lOOOE+Ol

liaximum

.7099E-14
• 5023E-ll~

Effect of Argument Error

Root !lean
Square

.5677E-14

.4106E-14

For a small error in the argument y, the amplification of absolute
error is l/(2*sqrt(y)) and that of relative error is .5.

2-150 Hath Library Revision G

(

__.

I

"'--·

SUMlS

SUMlS is a function that returns the number of bits in a word. It
accepts any type of argument except character and logical and
returns an integer result. If the argument is of type double
precision or complex, only the first word is used.

The call-by-reference entry points are MLP$RSUM1S and SUMlS, and the
call-by-value entry point is MLP$VSUM1S.

The input domain for this routine is the collection of all valid
boolean, real, complex, integer, or double precision quantities.
Character and logical are not allowed. The output range is included
in the set of valid integer quantities.

Call-By-Reference Routine

No errors are generated by SUMlS. The call-by-reference routine
branches to the call-by-value routine.

Call-By-Value Routine

The number of bits in a word is returned. The argument can be any
type except character and logical.

Error Analysis

Not applicable.

Effect of Argument Error

Not applicable.

Revision E Routine Descriptions 2-151

TAN

TAN

TAN is a function that computes the trigonometric circular tangent
function. It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RTAN and TAN, the
call-by-value entry point is MLP$VTAN, and the vector entry point is
MLP$TANV.

The input domain for this routine is the collection of all valid
real quantities whose absolute value is less than 2**47. The output
range is included in the set of valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The evaluation is reduced to the interval [-.5,.5] by using the
identities:

1. tan(x) tan(x + k*pi/2), if k is even

2. tan(x) -1.0/tan(x + pi/2)

in the form:

3. tan(x) tan((pi/2)*(x*2/pi + k)), if k is even

4. tan(x) -l.O/tan((pi/2)*(x*2/pi + 1.0))

An approximation of tan(pi/2*y) is used. The argument is reduced to
the interval [-.5,.5] by subtracting a multiple of pi/2 from x in
double precision.

The rational form is used to compute the tangent of the reduced
value. The function tan((pi/2)*y) is approximated with a rational
form (7th order odd)/(6th order even), which has minimax relative
error in the interval [-.5,.5]. The rational form is normalized to
make the last numerator coefficient 1 + eps, where eps is chosen to
minimize rounding error in the leading coefficients.

2-152 Math Library Revision E

TAN

Identity 4 is used if the integer subtracted is odd. The result is
negated and inverted by dividing -Q/P instead of P/Q.

l Vector Routine

_ __ _

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The range reduction, the final add in each part of the rational
form, the final multiply in P, and the divide dominate the error.
Each of these operations contributes directly to the final error,
and each is accurate to about 1/2 ulp.

The function TAN was tested against 2*TAN(x/2)/(l - TAN(x/2)**2).
Groups of 2,000 arguments were chosen randomly from given
intervals. Statistics on relative error were observed. Table 2-25
shows a summary of these statistics.

Table 2-25. Relative Error of TAN

Interval

From

O.OOOOE+OO
.1885E+02
• 27 49E+Ol

To

.7854E+OO

.1963E+02

.3534E+Ol

Maximum

.2177E-13

.1993E-13

.2190E-13

Effect of Argument Error

Root Mean
Square

.5613E-14

.5617E-14

.7286E-14

For small errors in the argument x, the amplification of absolute
error is sec(x)**2, and that of relative error is x/(sin(x)*cos(x)),
which is at least 2x and can be arbitrarily large near a multiple of
pi/2.

Revision E Routine Descriptions 2-153

TAND

1r ANilJ)

TAND is a function that computes the trigonometric tangent for an
argument in degrees. It accepts a real argument and returns a real /-
result.

The call-by-reference entry points are MLP$RTAND and TAND, the
call-by-value entry point is MLP$VTAND, and the vector entry point
is MLP$TANDV.

The input domain for this routine is the collection of all valid
real arguments whose absolute value is less than 2**47, excluding
odd multiples of 90. The output range is included in the set of
valid real quantities.

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the call-by-reference
routine. The result is checked. If the result is infinite, it is
invalid, and a diagnostic message is displayed. If the result is
valid, it is returned to the calling program.

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest
integer n to x/90, and subtracting n*90 from the argument. The
reduced argument is then multiplied by pi/180. The routine calls
TAN to compute the tangent, and if the multiple n of 90 is odd, the
result is negated and inverted by using the identities:

tan(x + 180 degrees)
tan(x ±: 90 degrees)

2-154 Math Library

tan(x)
-1/tan(x)

Revision E

(
\.__

TAND

Vector Routine

The argument is checked upon entry. It is invalid if:

It is indefinite.

It is infinite.

Its absolute value is greater than or equal to 2**47.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The reduction to (-45,+45) is exact; the constant pi/180 has a
relative error of l.37E-15, and multiplication by this constant has
a relative error of 5.33E-15, so the total error is 6.7E-15. The
maximum relative error observed for 10,000 arguments chosen randomly
in the interval [0,360], was .2130E-13.

Effect of Argument Error

Errors in the argument x are amplified at most by
x/(sin(x)*cos(x)). This function has a maximum of pi/2 within

(____ (-45,+45) but has poles at all multiples of 90 degrees except zero.

''----

,/" -

I\..__.

Revision E Routine Descriptions 2-155

TANH

11 ANfril
TANH is a function that computes the hyperbolic tangent function.
It accepts a real argument and returns a real result.

The call-by-reference entry points are MLP$RTANH and TANH, the
call-by-value entry point is MLP$VTANH, and the vector entry point
is MLP$TANHV.

The input domain for this routine is the collection of all valid
real quantities. The output range is included in the set of valid
real quantities in the interval [-1.0,l.O].

Call-By-Reference Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

If the argument is invalid, a diagnostic message is displayed. If
the argument is valid, the call-by-value routine is called, and the
result of the computation is returned to the calling program.

Call-By-Value Routine

The argument range is reduced to:

tanh(x) = 1.0 - 2*(q - p)/((q - p) + 2**n*(q + p))

by the identities:

-tanh(x) for x < 0 tanh(-x)
tanh(x)
tanh(x)
exp(2*x)
exp(2*x)

p(x)/q(x) approximately, in the interval [0,.55)
1.0 - 2/(exp(2*x) + 1.0)
(1.0 + tanh(x))/(1.0 - tanh(x))
2**n*exp(2*(x - n*ln(2)/2))

where n is chosen to be nint(x*2/ln(2)) and p and q are evaluated on
x - n*ln(2)/2. This choice of n minimizes abs(x - n*ln(2)/2).

When abs(x) < .55 = atanh(.5), the approximation p(x)/q(x) is used.
When abs(x)) .55, the above range reduction is used. For abs(x) >
17.1, tanh(x) = sign(l.O,x).

The approximation p/q is a minimax (relative error) rational form
(5th order odd)/(6th order even). The range reduction is simplified
by scaling the coefficients so that (x*2/ln(2) - n) can be used
instead of (x - n*ln(2)/2). The coefficients are further scaled by
an amount sufficient to reduce truncation error in the leading
coefficients without otherwise affecting accuracy.

2-156 Math Library Revision E

I

I__,

I

I
.\,.___

Vector Routine

The argument is checked upon entry. It is invalid if it is
indefinite.

TANH

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The algorithm error due to finite approximation and coefficient
truncation is l.7E-15. For abs(x) < .55, the form p(x)/q(x) is
used. The final operations z = x*2/ln(2) and
tanh(z*(pO+small))/(qO+small) dominate the error. For abs(x)) 1.25
the final subtraction, 1.0 - small dominates.

For .55 < abs(x) < 1.25, the final operation is 1-R, where R becomes
smaller as x approaches 1.25. Thus, the worst relative error is
near .55, namely, (contribution from R) + (error in final sum),
where R = 2*(q - p)/((q - p) +
4*(q + p)).

The function TANH was tested against (TANH(x - 1/8) + TANH(l/8))/(1
+ TANH(x - l/8)*TANH(l/8)). Groups of 2,000 arguments were chosen
randomly from given intervals. Statistics on relative error were
observed. Table 2-26 shows a summary of these statistics.

Table 2-26. Relative Error of TANH

Interval

From

.1250E+OO
• 6 7 43E+OO

To

.5493E+OO

.1768E+02

Maximum

.4091E-13
• 2842E-13

Effect of Argument Error

Root Mean
Square

.1085E-13
• 3730E-14

For small errors in the argument x, the amplification of the
absolute error is l/cosh**(x) and of relative error is
x/(sinh(x)*cosh(x)). Both have maximum values of 1.0 at zero and
approach zero as x gets large.

Revision E Routine Descriptions 2-157

XTOD

XTOD is an exponentiation routine that accepts compiler-generated
calls. XTOD performs exponentiation for program statements that
raise real quantities to double precision exponents. It accepts a
real argument and a double precision argument and returns a double
precision result.

The call-by-reference entry points are MLP$RXTOD and XTOD, and the
call-by-value entry point is MLP$VXTOD.

The XTOD vector math function is divided into three routines having
three separate entry points defined as follows:

XTOD(scalar,vector) ; MLP$XTODV
XTOD(vector,scalar) = MLP$XVTOD
XTOD(vector,vector) MLP$XVTODV

The input domain for this routine is the collection of all valid
pairs (x,y), where xis a nonnegative real quantity and y is a
double precision quantity. If x is equal to zero, then y must be
greater than zero. The output range is included in the set of valid
double precision quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result if valid, it is returned to the calling program.

2-158 Math Library Revision E

(__'

XTOD

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x)), where x) 0

Upon entry, the argument x is converted to double precision, and all
operations are carried out in double precision. The routine calls
DLOG to compute log(x), and DEXP to compute exp(y*log(x)).

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

See the description of routine DTOD.

Effect of Argument Error

If a small error e(b) occurs in the base b and a small error e(p)
occurs in the exponent p, the error in the result r is given
approximately by:

r*(e(p)*log(b) + p*e(b)/b).

Revision E Routine Descriptions 2-159

XTOI

XlfOil

XTOI is an exponentiation routine that accepts compiler-generated
calls. XTOI performs exponentiation for program statements that
raise real quantities to integer exponents. It accepts a real
argument and an integer argument, and returns a real result.

The call-by-reference entry points are MLP$RXTOI and XTOI, and the
call-by-value entry point is MLP$VXTOI.

The XTOI vector math function is divided into three routines having
three separate entry points defined as follows:

XTOI(scalar,vector)
XTOI(vector,scalar)
XTOI(vector,vector)

MLP$XTOIV
MLP$XVTOI
MLP$XVTOIV

The input domain for this routine is the collection of all valid
pairs (x,y), where x is a real quantity and y is an integer
quantity. If x is equal to zero, then y must be greater than zero.
The output range is included in the set of valid real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

The arguments are checked to see whether the exponentiation conforms
to a special case. If it does, the proper value is immediately
returned. If the special case is an error condition, an error
message is displayed. The special cases are:

x indefinite
x infinite
O**O
x**i
x**i
x = 0

error
error
error
1.0 if i = 0 and x > 0
1.0/X**-i if i < 0
e·rror if i < 0

2-160 Math Library Revision E

XTOI

If the exponentiation is not a special case, one of two methods is
used to perform the exponentiation. Method 1 is a quick algorithm
and is usually used. Method 2 is used when the number of bits in i
plus the number of bits in x is greater than 8.

Method 1

Starting with the most significant bit, the binary representation of
i is scanned. The result, which was initialized to x, is squared
for each bit. If the next bit is one, the result is also multiplied
by x.

Method 2

Ten bits of i are scanned as described in method 1. This procedure
is repeated until i is used up. The result is returned if the
exponent is not too large.

Error Analysis

Not applicable.

~--- Effect of Argument Error

If a small error e' occurs in the base b, the error in the result
will be given approximately by n*b**(n-l)*e', where n is the
exponent given to the routine.

Revision E Routine Descriptions 2-161

XTOX

XTOX is an exponentiation routine that accepts compiler-generated
calls. XTOX performs exponentiation for program statements that
raise real quantities to real exponents. It accepts two real
arguments and returns a real result.

The call-by-reference entry points are MLP$RXTOX and XTOX, and the
call-by-value entry point is MLP$VXTOX.

The XTOX vector math function is divided into three routines having
three separate entry points defined as follows:

XTOX(scalar,vector) = MLP$XTOXV
XTOX(vector,scalar) MLP$XVTOX
XTOX(vector,vector) MLP$XVTOXV

The input domain for this routine is the collection of all valid
real pairs (x,y), where xis a nonnegative quantity and x**y is a
valid quantity. If x is equal to zero, then y must be greater than
zero. The output range is included in the set of valid, nonnegative
real quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

2-162 Math Library Revision E

(__

(

,,.-·

____,

XTOX

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x)), where x > 0

Upon entry, the routine calls ALOG to compute log(x), and EXP to
compute exp(y*log(x)).

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

The routine XTOX was tested. Groups of 2,000 arguments were chosen
randomly from given intervals. Statistics on relative error were
observed. Table 2-27 shows a summary of these statistics.

Table 2-27. Relative Error XTOX

Interval
Root Mean

Test From To Maximum Square

x interval
x**y against • lOOOE-01 .1000E+02 .3547E-12 .6352E-13
x**2**(y/2)

y interval
-.6167E+03 .6167E+03

x**2**1.5 against .lOOOE+Ol .8053+411 .1360E-13 .5687E-14
x**2*x .5000E+OO .lOOOE+Ol .1360E-13 .5715E-14

x**l.O against x .SOOOE+OO .lOOOE+Ol .6802E-14 .3442E-14

Revision E Routine Descriptions 2-163

XTOX

Effect of Argument Error

If a small error e(b) occurs in the base b, and a small error e(p)
occurs in the exponent p, the error in the result r is given
approximately by:

r*(log(b)*e**p + p*(e(b))/b).

2-164 Math Library Revision E

I

__

XTOZ

XTOZ is•an exponentiation routine that accepts compiler-generated
calls. XTOZ performs exponentiation for program statements that
raise real quantities to complex exponents. It accepts a real
argument and a complex argument and returns a complex result.

The call-by-reference entry points are MLP$RXTOZ and XTOZ, and the
call-by-value entry point is MLP$VXTOZ.

The XTOZ vector math function is divided into three routines having
three separate entry points defined as follows:

XTOZ(scalar,vector)
XTOZ(vector,scalar)
XTOZ(vector,vector)

MLP$XTOZV
MLP$XVTOZ
MLP$XVTOZV

The input domain for this routine is the collection of all valid
pairs (x,y), where xis a real quantity, y is a complex quantity,
and x**y is a valid quantity. If x is zero, the real part of y must
be greater than zero, and the imaginary part must be equal to zero.
The output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or equal
to zero, or the imaginary part of y does not equal zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

Upon entry, the real argument x is converted to complex, and the
routine calls ZTOZ to compute the result.

Revision E Routine Descriptions 2-165

XTOZ

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

x is negative.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1 • 0, 1 • 0) , [-1. 0, 1. 0)) and [[-1. 0, 1. 0) , [-1. 0, 1. 0)) • The maximum
relative error these arguments was found to be l.7431E-ll.

Effect of Argument Error

If a small error e(x) occurs in the base x, and a small error e(z)
(e'(x) + i*e'(y)) occurs in the exponent z, the error in the result
w is given approximately by:

w*(log(x)* e(z) + z*e(x)/x).

2-166 Math Library Revision E

ZTOD

ZTOD is an exponentiation routine that accepts compiler-generated
calls. ZTOD performs exponentiation for program statements that
raise complex quantities to double precision exponents. It accepts
a complex argument and a double precision argument and returns a
complex result.

The call-by-reference entry points are MLP$RZTOD and ZTOD, and the
call-by-value entry point is MLP$VZTOD.

The ZTOD vector math function is divided into three routines having
three separate entry points defined as follows:

ZTOD(scalar,vector) = MLP$ZTODV
ZTOD(vector,scalar) = MLP$ZVTOD
ZTOD(vector,vector) = MLP$ZVTODV

The input domain for this routine is the collection of all valid
pairs (x,y), where xis a complex quantity, y is a double precision
quantity, and x**y is a valid quantity. If the real and imaginary
parts of x are equal to zero, then y must be greater than zero. The
output range is included in the set of valid complex quantities.

Call-By-Reference Routine

\'-._.-- The argument pair (x, y) is checked upon entry. It is invalid if:

I

"'-----

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

Upon entry, the double precision argument y is converted to complex,
and the routine calls ZTOZ to compute the result.

Revision E Routine Descriptions 2-167

ZTOD

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1. 0, 1. 0] , [-1. 0, 1. 0]] and [[-1. 0, 1. 0] , [-1. 0, 1. 0]] • The maximum
relative error these arguments was found to be l.7431E-ll.

Effect of Argument Error

If a small error e(z) occurs in the base z and a small error e(e)
occurs in the exponent e, the error in the result w is given
approximately by:

w*(e(e)*log(z) + e*e(z)/z).

2-168 Math Library Revision E

·"'---·

\ ...___

ZTOI

2Cir0Il

ZTOI is an exponentiation routine that accepts compiler-generated
calls. ZTOI performs exponentiation for program statements that
raise complex quantities to integer exponents. It accepts a complex
argument and an integer argument, and returns a complex result.

The call-by-reference entry points are MLP$RZTOI and ZTOI, and the
call-by-value entry point is MLP$VZTOI.

The ZTOI vector math function is divided into three routines having
three separate entry points defined as follows:

ZTOI(scalar,vector) = MLP$ZTOIV
ZTOI(vector,scalar) = MLP$ZVTOI
ZTOI(vector,vector) MLP$ZVTOIV

The input domain for this routine is the collection of all valid
pairs (x,y), where x is a complex quantity, y is a integer quantity,
and x**y is a valid quantity. If the real and imaginary parts of x
are equal to zero, then y must be greater than zero. The output
range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

Let x represent the base and y represent the exponent. If y has
binary representation 000 •••• OOOi(n)i(n-1) ••• i(l)i(O), where each
i(j)(O ~ j ~ n) is 0 or 1, then:

y i(0)*2**0 + i(l)*2**1 + ••• + i(n)*2**n
n = (log(2)y) greatest integer not exceeding log(2)y

Then:

x**y prod[x**2**j 0 ~ j < n and i (j) l]

Revision E Routine Descriptions 2-169

ZTOI

The numbers x**O, x = x**2**0, x**2, x**4, ••• , x**(2)**n are
generated during the computation by successive squarings, and the
coefficients i(O), •••• , i(n) are obtained as sign bits of
successive circular right shifts of y within the computer. A
running product is formed during the computation so that smaller
powers of x can be discarded. The computation then becomes an
iteration of the algorithm:

x**y = 1, if y = 0 and x is 1 0
(x*x)**(y/2), if y > 0 and y is even
(x*x)**((y-l)/2)*x, if y > 0 and y is odd

Upon entry, if the exponent y is negative, y is replaced by -y and a
sign flag is set. x**y is computed according to this algorithm, and
if the sign flag was set, the result is reciprocated before being
returned to the calling program.

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

x is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

Not applicable.

Effect of Argument Error

If a small error e' occurs in the base b, the error in the result
will be given approximately by n*b**(n-l)*e', where n is the
exponent given to the routine.

2-170 Math Library Revision E

I___

ZTOX

ZTOX is an exponentiation routine that accepts compiler-generated
calls. ZTOX performs exponentiation for program statements that
raise real quantities to complex exponents. It accepts a complex
argument and a real argument, and returns a complex result.

The call-by-reference entry points are MLP$RZTOX and ZTOX, and the
call-by-value entry point is MLP$VZTOX.

The ZTOX vector math function is divided into three routines having
three separate entry points defined as follows:

ZTOX(scalar,vector) = MLP$ZTOXV
ZTOX(vector,scalar) = MLP$ZVTOX
ZTOX(vector,vector) = MLP$ZVTOXV

The input domain for this routine is the collection of all valid
argument pairs (x,y), where xis a complex quantity, y is a real
quantity, and x**y is a valid quantity. If the real and imaginary
parts of x are equal to zero, then y must be greater than zero. The
output range is included in the set of valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Call-By-Value Routine

Upon entry, the real argument is converted to a complex argument,
and the routine calls ZTOZ to compute the result.

Revision E Routine Descriptions 2-171

ZTOX

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1. 0, 1. 0], [-1. 0, 1. 0]] and [[-1. 0, 1. 0] , [-1. 0, 1. 0]]. The maximum
relative error these arguments was found to be 1.7431E-11.

Effect of Argument Error

If a small error e(zl) occurs in the base zl and a small error e(z2)
occurs in the exponent z2, the error in the result w is given
approximately by:

w*(e(z2)*log(zl) + z2*e(zl)/zl.

2-172 Math Library Revision E

ZTOZ

ZTO./l

ZTOZ is an exponentiation routine that accepts compiler-generated
calls. ZTOZ performs exponentiation for program statements that
raise complex quantities to complex exponents. It accepts two

', complex arguments and returns a complex result.

The call-by-reference entry points are MLP$RZTOZ and ZTOZ, and the
call-by-value entry point is MLP$VZTOZ.

The ZTOZ vector math function is divided into three routines having
three separate entry points defined as follows:

ZTOZ(scalar,vector) = MLP$ZTOZV
ZTOZ(vector,scalar) MLP$ZVTOZ
ZTOZ(vector,vector) = MLP$ZVTOZV

The input domain is the collection of all valid complex pairs
(x,y). If the real and imaginary parts of x are equal to zero, then
the real part of y must be greater than zero, and the imaginary part
must be equal to zero. The output range is included in the set of
valid complex quantities.

Call-By-Reference Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero, and the real part of y is less than or equal
to zero, and the imaginary part of y does not equal zero.

If the argument pair is invalid, a diagnostic message is displayed.
If the argument pair is valid, the call-by-value routine is called,
and the result of the computation is returned to the
call-by-reference routine. The result is checked. If the result is
infinite, it is invalid, and a diagnostic message is displayed. If
the result is valid, it is returned to the calling program.

Revision E Routine Descriptions 2-173

ZTOZ

Call-By-Value Routine

The formula used for computation is:

x**y = exp(y*log(x)), where x > O.

Upon entry, argument checking is performed. If the arguments are
valid, the routine calls CLOG to compute log(x), and CEXP to compute
exp(y*log(x)).

Vector Routine

The argument pair (x,y) is checked upon entry. It is invalid if:

x is indefinite.

y is indefinite.

x is infinite.

y is infinite.

x is equal to zero and y is less than or equal to zero.

See Vector Error Handling in chapter 1 for further information.

Error Analysis

A group of 10,000 arguments was chosen randomly from the interval
[[-1 • 0, 1. 0] , [-1 • 0, 1 • 0]] and [[-1 . 0, 1 • 0] , [-1 • 0, 1 • 0]] • The maximum
relative error of these arguments was found to be 1.7431E-11.

Effect of Argument Error

If a small error e(zl) occurs in the base zl and a small error e(z2)
occurs in the exponent z2, the error in the result w is given
approximately by:

w*(e(z2)*log(zl) + z2*e(zl)/zl.

2-174 Math Library Revision E

Auxiliary Routines 3

This chapter describes the auxiliary routines of the math library.
These routines are called only by other math routines.

ACOSIN 3-1

COSSIN 3-4

DA SN CS 3-7

DEULER 3-9

DSNCOS 3-11

HYPERB 3-13

SINCOS 3-14

SINCSD 3-16

3

"-- ACO§IlN

I
"----

ACOSIN is an auxiliary routine that computes the inverse sine or
inverse cosine function. It accepts a real argument and returns a
real result.

There are no call-by-reference entry points for ACOSIN. The
call-by-value entry points are MLP$VACOS and MLP$VASIN.

The input domain is the collection of all valid real quantities in
the interval [-1.0,l.O]. The output range is included in the set of
valid, nonnegative real quantities less than or equal to pi.

Call-By-Value Routine

Formulas used in the computation are:

arcsin(x)
arcos(x)
arcsin(x)

where -.5
arcos(x)
arcsin(x)
arcos(x)
arcsin(l)
arcos(l)

where:

-arcsin(-x), x < -.5
pi - arcos(-x), x < -.5
x + x**3*s*((w + z - j)*w +a+ m/(e - x**2)),
< x < .5
pi/2 - arcsin(x), -.5 < x < .5
pi/2 - arcos(x), .5 < x < 1.0
arcos(l-ITER((l - x),n))/2**n, .5 < x < 1.0
pi/2
0

w = (x**2 - c)*z + k
z (x**2 + r)x**2 + i

ITER(y,n) n iterations of y = 4*y - 2*y**2

The constants used are:

r = 3.173 170 078 537 13
e = 1.160 394 629 739 02
m 50.319 055 960 798 3
c = -2.369 588 855 612 88
i 8.226 467 970 799 17
j -35.629 481 597 455 5
k 37. 459 230 925 758 2
a = 349.319 357 025 144
s = .746 926 199 335 419*10**-3

The approximation of arcsin (-.5,.5) is an economized approximation
obtained by varying r,e,m, ••• ,s.

Revision E Auxiliary Routines 3-1

A CO SIN

The algorithm used is:

a. If ACOS entry, go to step g.

b. If Ix I > .5, go to step h.

c. n = 0 (Loop counter).
q x
y x**2
u O, if ASIN entry.
u pi/2, if ACOS entry.

(y + r)*y + i
(y - c)*z + k

d. z
w
p
p
Yl

q + s*q*y*((w + z - j)*w +a+ m/(e - y))
u - p
p/2**n

e. If ASIN entry, go to step k.

f. If xis in (-.5,1.0), return.
XF = 2*u - (Yl)
Return.

g. If Ix I < .5, go to step c.

h. If x = 1.0 or -1.0, go to step
If x is invalid, go to step m.

n = 0 (Loop counter).

1.

y = 1.0 - lxl' and normalize

i. h = 4*y - 2*y**2
n = n + 1.0

y.

If 2*y ~ 2 - sqrt(3) = .267949192431, y h, and go to step i.

j. q 1.0 - h, and normalize q.
y q**2
u pi/2
Go to step d.

k. Yl = u - (Y 1), and normalize
Affix sign of x to Yl = XF.
Return.

1. XF = pi/2, if x = 1.0.
XF = -pi/2, if x = -1.0.
If ASIN entry, return.
XF = O, if x = 1.0.
XF = pi, if x = -1.0.
Return.

m. Return.

3-2 Math Library

Yl.

Revision C

/

/.

ACOSIN

Error Analysis

See the description of routines ACOS and ASIN.

1

"---· Effect of Argument Error

'"----

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'/(1.0 - x**2)**.S.

Revision E Auxiliary Routines 3-3

COSSIN

CO§§IlRf

COSSIN is an auxiliary routine that accepts calls from other math
routines that require simultaneous computation of the sine and
cosine of the same argument. COSSIN accepts a real argument and
returns two real results.

The entry points and input and output ranges for this routine are
described in routines CSIN and CCOS.

Call-By-Value Routine

The argument is reduced to the interval [-pi/4,pi/4]. Polynomials
p(x) and q(x) of degrees 11 and 12 are used to compute sin(x) and
cos(x) over that interval. Upon entry, the argument x is multiplied
by 2/pi. Then, the nearest integer n to 2/pi*x is computed. The
upper and lower halves of the result are added. The value of y is
in the interval (-pi/4,pi/4). y = x - n*pi/2 is computed in double
precision as the reduced argument for input to p(y) and q(y). Then
sin(x) and cos(x) are computed from these as indicated by the value
k = mod(n,4), where k = O, 1, 2, 3. The formula used to compute
sine(x) is:

sin(x) sin(y + n*p/2) = sin(y + k*pi/2)
sin(y)*cos*(k*pi/2) + cos(y)*sin(k*pi/2)

A similar formula is used for the computation of cosine(x).
Depending upon k, either the sine(k = 0,1) or cosine(k = 2,3) of y
is evaluated and complemented if necessary.

3-4 Math Library Revision C

COSSIN

The polynomials p(x) and q(x) are:

p(x) = s(O)x + s(l) x**3 + s(2)x**5 + s(3)x**7 + s(4)x**9 +
s(5)x**ll

q(x) c(O) + c(l)x**2 + c(2)x**4 + c(3)x**6 + c(4)x**8 +
c(5)x**l0 + c(6)x**12

where the coefficients are:

s(O) .999 999 999 999 972
s(l) -.166 666 666 665 404
s(2) .833 333 331 696 029* 10**-2
s(3) -.198 426 073 537 90*10**-3
s(4) .275 548 564 509 884*10**-5
s(5) -. 247 320 720 952 463* 10**-7
c(O) .999 999 999 999 996
c(l) -.499 999 999 999 991
c(2) .041 666 666 666 470 5
c(3) -.138 888 888 888 159*10**-2
c(4) • 248 015 784 673 257*10**-4
c(5) -.275 552 187 277 097*10**-6
c(6) .206 291 063 476 645*10**-8

The coefficients were obtained as follows. The polynomials of
degrees 15 and 14, obtained by truncating the MacLaurin series for

I sin(x) and cos(x), were telescoped to form the polynomials p(x) and
"-.__. q(x) of degrees 11 and 12. The telescoping is done by removing the

leading term of the polynomial. This is accomplished by subtracting
an appropriate multiple of T(n)(a(x - x(O))) of the same degree n;
2/a is the length of the interval of approximation, and x(O) is its
center.

The Chebyshev polynomial of degree n, T(n)(x), is defined by T(n)(x)
= cos(n*arccos(x)). The absolute value of x is no greater than one
and satisfies the recurrence relation:

T(O)(x)
T(l)(x)

T(n + l)(x)

where n > 1.

x
2xT(n)(x) - T(n - l)(x)

For n > 1.0, T(n)(x) is the unique polynomial 2(n - l.O)*x**n + •••
of deg-;ee n whose maximum absolute value over the interval
[-1.0,l.O] is minimal. This maximum absolute value is one.

Revision C Auxiliary Routines 3-5

COSSIN

The formulas used for the range reduction are:

sin(x) (-l)**n*sin(y)
cos(x) (-l)**n*cos(y)

if x = y + n*pi, n an integer

sin(x) = cos(x - pi/2)
cos(x) = -sin(x - pi/2)

if pi/4 ~ x ~ pi/2

Error Analysis

The maximum absolute error in the approximation of sin(x) by p(x) in
the interval (-pi/4,pi/4) is .1893E-14. The maximum absolute error
in the approximation of cos(x) by q(x) is .3687E-14.

Effect of Argument Error

Not applicable, since this routine is not called directly by the
user's program.

3-6 Math Library Revision C

I
'-.._

/
I

'"-·-'

DASNCS

ID>A§NC§

DASNCS is an auxiliary routine that computes the inverse sine or
inverse cosine function. It accepts a double precision argument and
returns a double precision result. This function cannot be called
from a CYBIL program.

There are no call-by-reference entry points for DASNCS. The
call-by-value entry points are MLP$VDACOS and MLP$VDASIN.

The input domain is the collection of all valid double precision
quantities in the interval [-1.0,l.O]. The output range at entry
point MLP$VDACOS is included in the set of valid, nonnegative double
precision quantities less than or equal to pi. The output range at
entry point MLP$VDASIN is included in the set of valid double
precision quantities in the interval [-pi/2,pi/2].

Call-By-Value Routine

The following identities are used to move the interval of
approximation to [O,sqrt(.5)]:

arcsin(-x)
arccos(x)
arcsin(x)
arccos(x)

-arcsin(x)
pi/2-arcsin(x)
arccos(sqrt(l.O - x**2)), if x > 0
arcsin(sqrt(l.O - x**2)), if x) 0

The reduced value is called y. If y < .09375, no further reduction
is performed. If not, the closest entry to y in a table of values
(z,arcsin(z),sqrt(l.O - z**2),
z = .14, .39, .52, .64) is found, and the formula used is:

arcsin(x) = arcsin(z) + arcsin(w)

where w = x*sqrt(l.O - z**2) - z*sqrt(l.O - x**2). The value of w
is in (-.0792,.0848).

The arcsin of the reduced argument is then found using a 15th order
odd polynomial with quotient:

x + x**3(c(3) + x**2(c(5) + x**2(c(7) + x**2(c(ll) + x**2(c(l3) +
x**2(c(l5) + a/(b-x**2)))))))

where all constants and arithmetic operations before c(ll) are
double precision and the rest are single precision. The addition of
c(ll) has the form single+single=double. The polynomial is derived
from a minimax rational form (denominator is (b - x**2)) for which
the critical points have been perturbed slightly to make c(ll) fit
in one word.

To this value, arcsin(z) is added from a table if the last reduction
above was done and the sum is conditionally negated. Then O, -pi/2,
+pi/2, or pi is added to complete the unfolding.

Revision E Auxiliary Routines 3-7

DASNCS

Error Analysis

See the description of routines DACOS and DASIN.

Effect of Argument Error

See the description of routines DACOS and DASIN.

3-8 Math Library Revision C

(

(___

DEULER

ID> IE llJ ILIEB

DEULER is an auxiliary routine that accepts calls from other math
routines. It performs computations that are common among these
routines.

The input and output ranges are described in routines DEXP and DTANH.

Call-By-Value Routine

Constants used in the algorithm are:

1. O/log(2)
log(2) (in double precision)
d3 .166 666 666 666 666 666 666 666 666 709
d5 .833 333 333 333 333 333 333 331 234 953*10**-2
d7 .198 412 698 412 698 412 700 466 386 658*10**-3
d9 .275 573 192 239 858 897 408 325 908 796*10**-5
pc -.474 970 880 178 988*10**-10
pa .566 228 284 957 811*10**-7
pb 272.110 632 903 710
ell .250 521 083 854 439*10**-7

Arithmetic operations with d subscripts are done in double
precision, and operations with u subscripts are done in single
precision. For example, d3 +(d) q indicates that the addition is in
double precision. An operand with a u or 1 subscript denotes the
first or second word, respectively, of the double precision pair of
words containing the operand.

The algorithm used is:

a. n = nearest integer to x/log(2),
y = x - n*log(2),
Then y is in [-l/2*log(2),l/2*log(2)].

b. q (y)(u)*(u)(y)(u)

c. p q*(d)(d3 +(d) q*(d)(d5 +(d) q*(d)(d7 +(d) q*(d)(d9 +(d)
q*(d)(cll +(d) q*(d)(pa/(pb - q) +pc))))))

d. s = (y)(u) + (d)(y)(u)*(d)p

e. Compute hm sqrt(l.O + s**2).
hi 3*q + ((s)(u))**2 computed in single precision.
hj hi + hi
hk 2*(1.0 + hj)
hl ((y)(u)*(u)(y)(u) - hj)/hk - hi
hm hj + (u)(hk - (u)hl)*(u)(hl/hk)

(hm now carries cosh-1.0 in single precision.)

Revision C Auxiliary Routines 3-9

DEULER

f. DS s + (d)(((y)(l) + (r)(y)(l)*(u)hm) + (r)((s)(l) +
(r)((y)(u)* (l)(p)(u) + (r)(y)(u)*(r)(p)(l))))
(DS now contains sinh(y) in double precision.)

g. DC = hm + (d)(DS*DS - 2*hm - hm*hm)/(2(1.0 + hm)) computed in
double precision.

h. DX = DS + DC

i. Clean up DS, DC, DX with (X7) = n.
Register pair XA-XB = DS = sinh(y).
Register pair X8-X9 = DC = cosh(y) 1. o.
Register pair X4-X5 = DX = exp(y).

j. Return.

Error Analysis

See the descriptions in routines DEXP and DTANH.

Effect of Argument Error

See the descriptions in routines DEXP and DTANH.

3-10 Math Library Revision C

I
__

(

"'-'

DSNCOS

DSNCOS is an auxiliary routine that computes the trigonometric sine
or trigonometric cosine function. It accepts a double precision
argument and returns a double precision result. This function
cannot be called from a CYBIL program.

There are no call-by-reference entry points for DSNCOS. The
call-by-value entry points are MLP$VDCOS and MLP$VDSIN.

The input domain for this routine is the collection of all valid
double precision quantities whose absolute value is less than
2**47. The output range is included in the set of valid double
precision quantities in the interval [-1.0,l.O].

Call-By-Value Routine

Upon entry, the argument x is made positive and is multiplied by
2/pi in double precision, and the nearest integer n to x*2/pi is
computed. At this stage, x*2/pi is checked to see that it does not
exceed 2**47. If it does, a diagnostic message is returned.
Otherwise, y = x - n*pi/2 is computed in double precision as the
reduced argument, and y is in the interval [-pi/4,pi/4]. The value
of mod(n,4), the entry point called, and the original sign of x
determine whether a sine polynomial approximation p(x) or a cosine
polynomial approximation q(x) is to be used. A flag is set to
indicate the sign of the final result.

For x in the interval [-pi/4,pi/4], the sine polynomial
approximation is:

p(x) = a(l)x + a(3)x**3 + a(S)x**S + a(7)x**7 + a(9)x**9 +
a(ll)x**ll + a(l3)x**l3** + a(lS)x**lS + a(l7)x**l7 +
a(l9)x**l9 + a(2l)x**21

and the cosine polynomial approximation is:

q(x) = b(O) + b(2)x**2 + b(4)x**4 + b(6)x**6 + b(8)x**8 +
b(lO)x**lO + b(l2)x**l2 + b(l4)x**l4 + b(l6)x**l6 +
b(l8)x**l8 + b(20)x**20

Revision E Auxiliary Routines 3-11

DSNCOS

The coefficients are:

a(l)
a(3)
a(5)
a(7)
a(9)
a(11)
a(13)
a(l5)
a(l7)
a(l9)
a(21)
b(O)
b(2)
b(4)
b(6)
b(8)
b(lO)
b(l2)
b(l4)
b(l6)
b(18)
b(20)

= .999 999 999 999 999 999 999 999 999 99
= -.166 666 666 666 666 666 666 666 666 52
= .833 333 333 333 333 333 333 332 709 57*10**-2
= -.198 412 698 412 698 412 698 291 344 78*10**-3

.275 573 192 239 858 906 394 406 844 01*10**-5
= -.250 521 083 854 417 101 138 076 473 5*10**-7
= .160 590 438 368 179 417 271 194 064 61*10**-9
= -.764 716 373 079 886 084 755 348 748 91*10**-12
= .281 145 706 930 018*10**-14
= -.822 042 461 317 923*10**-17

.194 362 013 130 224*10**-19

.999 999 999 999 999 999 999 999 999 99
= -.499 999 999 999 999 999 999 999 999 19

.416 666 666 666 666 666 666 666 139 02
= -.138 888 888 888 888 888 888 755 436 28*10**-2

.248 015 873 015 873 015 699 922 737 30*10**-4
= -.275 573 192 239 858 775 558 669 957 11*10**-6

.208 767 569 878 619 214 898 747 461 35*10**-8
= -.114 707 455 958 584 315 495 950 765 75*10**-10

.477 947 696 822 393 115 933 106 267 21*10**-13
-.156 187 668 345 316*10**-15

.408 023 947 777 860*10**-18

These polynomials are evaluated from right to left in double
precision. The sign flag is used to give the result the correct
sign before return to the calling program.

Error Analysis

See the description of routines DCOS and DSIN.

Effect of Argument Error

See the description of routines DCOS and DSIN.

3-12 Math Library Revision C

//'
I
\...____,

HYPE RB

Il-JVI?IEI:1ID

HYPERB is an auxiliary routine that accepts calls from other math
routines that require the simultaneous hyperbolic sine and
hyperbolic cosine of the same argument. HYPERB accepts a real
argument and returns two real results.

The entry points and input and output ranges for this routine are
described in routines CSIN and CCOS.

Call-By-Value Routine

Upon entry, the routine computes e**x = exp(x), where xis the angle
passed to HYPERB. The hyperbolic cosine is computed by:

cosh(x) = O.S*(exp(x) + exp(-x))

If Ix I ~ .22, the hyperbolic sine is computed by:

sinh(x) = O.S*(exp(x) - exp(-x))

For Ix I < 0.22, the MacLaurin series for sinh is truncated after
the term x**9/9! and the resulting polynomial is taken as the
approximation:

sinh(x) = x + x**3/3! + x**S/5! + x**7/7! + x**9/9!

Error Analysis

See the description of routine COSH and SINH.

Effect of Argument Error

See the description of routine COSH and SINH.

Revision C Auxiliary Routines 3-13

SIN COS

§IlNCO§

SINCOS is an auxiliary routine that computes the trigonometric sine
and cosine functions. It accepts a real argument and returns a real ,/
result.

There are no call-by-reference entry points for SINCOS. The
call-by-value entry points are MLP$VCOS and MLP$VSIN.

The input domain for this routine is the collection of all valid
real quantities whose absolute value is less than 2**47. The output
range is included in the set of valid real quantities in the
interval [-1.0,l.O].

Call-By-Value Routine

If x is valid, then COS(x) or SIN(x) is calculated by using the
periodic properties of the cosine and sine functions to reduce the
task to finding a cosine or sine of an equivalent angle y within
[-pi/4, pi/4] as follows:

If N + K is even
then

z sin(y)
else

z cos(y)
If HOD(N + K, 4) is 0 or 1 (that is, the second last bit of
N + K is even)
then

s 0
else

s mask(l)

where K is 0, 1, or 2 according to whether the SIN of a positive
angle, the COS of any angle, or the SIN of a negative angle is to be
calculated. N is the nearest integer to 2/pi*x, and y is the
nearest single precision floating point number to x - n*pi/2. The
argument x is the absolute value of the angle. The desired SI~ or
COS is xor(S, Z).

Once the angle has been reduced to the range [-pi/4, pi/~], the
following approximations are used to calculate either t~e cosine or
the sine of the angle, providing 48 bits of precision.

If the cosine or the angle is required, the approximation used is

cosine(y) = 1 - y*y*P(y*y)

where y is the angle and P(w) is the quintic polynomial:

P(w) = PO + Pl*w + P2*w**2 +P3 + w**3 + P4*w**4 + PS*w**S

such that P(y*y) is a min-max polynomial approximation to the
function (1 - cos(y))/y**2.

• 3-14 ltath Library Revision G

l __

/,,--·

I
\... __ _

The coefficients are:

PS -2.070062305624629462E-9
P4 2.755636997406588778E-7
P3
P2
Pl
PO

-2.480158521206426671E-5
l.388888888727866775E-3

-4.166666666666468116E-2
5.000000000000000000E-1

SIN COS

If the sine of the angle is required, the approximation used is

sine(y) = y - y*y*y*Q(y*y)

where y is the angle and Q(w) is the quintic polynomial:

Q(w) = QO + Ql*w + Q2*w**2 +Q3*w**3 + Q4*w**4 + QS*w**S

such that Q(y*y) is a min-max polynomial approximation to the
function (y - sin(y))/y**3.

The coefficients are:

QS
Q4
Q3
Q2
Ql
QO

-l.591314257033005283E-10
2.505113204973767698E-8

-2.755731610365754733E-6
l.984126983676100911E-4

-8.333333333330950363E-3
l.666666666666666463E-l

Error Analysis

The function SINCOS was tested against 4*COS(x/3)**3 - 3*COS(x/3).
Groups of 2,000 arguments were chosen randomly from the interval
[.2199E+02,.2356E+02]. Statistics on relative error were observed:
maximum relative error was .1404£-13, and root mean square relative
error was .3245E-14.

Effect of Argument Error

If a small error e' occurs in the argument x, the error in the
result is given approximately by e'*cos(x) for sin(x) and -e'*sin(x)
for cos(x).

Revision G Auxiliary Routines 3-1~ e

SINCSD

SilNC§D

SINCSD is a function that computes the sine and cosine functions for
arguments in degrees. It accepts a real argument and returns a real
result.

There are no call-by-reference entry points for SINCSD. The
call-by-value entry points are MLP$VCOSD and MLP$VSIND.

The input domain for this routine is the collection of all valid
real quantities whose absolute value is less than 2**47. The output
range is included in the set of valid real quantities in the
interval [-1.0,l.O].

Call-By-Value Routine

The result is put in the interval [-45,45] by finding the nearest
integer, n, to x/90, and subtracting n*90 from the argument. The
reduced argument is then multiplied by pi/180. The appropriate sign
is copied to the value of the appropriate function, sine or cosine,
as determined by these identities:

sin(x + 360 degrees)
sin(x + 180 degrees)
sin(x + 90 degrees)
sin(x - 90 degrees)
cos(x + 360 degrees)
cos(x + 180 degrees)
cos(x + 90 degrees)
cos(x - 90 degrees)

Error Analysis

sin(x)
-sin(x)

cos(x)
-cos(x)

cos(x)
-cos(x)
-sin(x)
sin(x)

The reduction to (-45,+45) is exact; the constant pi/180 has
relative error l.37E-15, and multiplication by this constant has a
relative error 5.33E-15, and a total error of 6.7E-15. Since errors
in the argument of SIN and COS contribute only pi/4 of their value
to the result, the error due to the reduction and conversion is, at
most, 5.26E-15 plus the maximum error in SINCOS over (-pi/4,+pi/4).

A group of 10,000 arguments was chosen at random from the interval
[0,360]. The maximum relative error of these arguments was found to
be .7105E-14 for COSD and .1403E-13 for SIND.

Effect of Argument Error

Errors in the argument x are amplified by x/tan(x) for SIND and
x*tan(x) for COSD. These functions have a maximum value of pi/4 in
the interval (-45,+45) but have poles at even (SIND) or odd (COSD)
multiples of 90 degrees, and are large between multiples of 90
degrees if x is large.

3-16 Math Library Revision E

Appendixes

A - Glossary • A-1

B - Related Manuals· • B-1

C - Error Handling • C-1

I

CGil@ooarry

Argument

A variable or constant that is passed to a routine and used by
that routine to compute a function. The actual value of the
variable is passed when a routine is called by value; the
address of the variable is passed when the routine is called by
name.

Argument Set

An ordered list of one or more arguments.

Auxiliary Routine

A math routine which is not directly called from program code,
but assists in the computation of a math library function.

\,____ ~ Call -by-Reference

,,.,,... ..

A method of referencing a subprogram in which the addresses of
the arguments are passed.

Call-by-Value

A method of referencing a subprogram in which the values of the
arguments are passed.

Dummy Argument

A variable or constant that is passed to a routine, but is not
used by the routine to compute a function.

Revision B Glossary A-1

E

Entry Point

A statement within a math routine at which execution can begin.
There may be more than one entry point into a math routine.

Error

The computed value of a function minus the true value.

Exponentiation Routine

A math routine which accepts compiler-generated calls from a
source program to perform exponentiation. These calls are
generated when a program statement involves exponentiation of
certain number types. Exponentiation routines are not called
directly using their function names.

External Routine

A predefined subprogram that accepts calls from program code to
compute certain mathematical functions.

Function Name

Il

A symbolic name that appears in a program and causes a math
routine to be executed.

Indefinite Value

A value that results from a mathematical operation that cannot
be resolved, such as a division where the dividend and divisor
are both zero.

Infinite Value

A value that results from a computation whose result exceeds the
capacity of the computer.

Input Range

A collection of argument sets for which a given math routine
will return a valid result.

A-2 Math Library Revision B

l

(

\...___ ..

N

Number Types

A classification of the numbers processed by the math routines.
The math routines perform computations on four number types:
integer, single precision floating point, double precision
floating point, and complex floating point.

Output Range

The collection of results obtained by using the arguments in the
input domain of each math routine for computation of the
function or routine.

Relative Error

The error of a function divided by the true value. "The maximum
relative error approximates the worst-case behavior of the
function in the given interval.

Root Mean Square Relative Error

The square root of the sum of the squares of the relative errors
of all the arguments, divided by the number of arguments.

Routine

§

A computer subprogram, that computes commonly occurring math
functions, and performs other tasks such as input and output.

Scalar

A constant, variable, array element, or substring of any type.

Vector

One-dimensional array of up to 512 elements.

Revision E Glossary A-3

(

l.

12ella1l:ecll IW~mrnnalls

Table B-1 lists all manuals that are referenced in this manual or
that contain background information. A complete list of NOS/VE
manuals is given in the NOS/VE System Usage manual. If your site
has installed the online manuals, you can find an abstract for each
NOS/VE manual in the online System Information manual. To access
this manual, enter:

explain

You can order Control Data manuals through Control Data sales
offices or through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55101

To access an online manual, log in to NOS/VE and specify the online
manual title (listed in table B-1) on the EXPLAIN command. For
example, to read the FORTRAN online manual, enter:

explain manual=fortran

Revision G R.clated :1anuals B-1

I

Related Manuals

Table B-1. Related Manuals

Manual Title

Ada for NOS/VE Usage

APL for NOS/VE Usage

BASIC for NOS/VE Usage

CYBIL Language Definition Usage

FORTRAN Version 1
Language Definition Usage

FORTRAN Version
Quick Reference

FORTRAN Version 2
Language Definition Usage

FORTRAN Version 2 Quick Reference

NOS/VE Diagnostic Messages

NOS/VE System Usage

Pascal for NOS/VE Usage

• B-2 Math Library

Publication
Number

60498113

60485813

60486313

60464113

60485913

L60485918

60487113

L60487118

60484613

60464014

60485613

Online
Title

BASIC

FORTRAN

VF OR TRAN

lfESSAGES

PASCAL

Revision G

I

cc
..,

,,,.··

\.... Under call-by-reference, the Math Library will generate the special
software condition MATH LIBRARY ERROR. The system product under
which you are executing-ordinarily handles the processing of this
condition. If no condition handler for MATH_LIBRARY_ERROR has been
established, the operating system handles the processing of this
condition.

You can also write your own condition handler. The following
information defines the interface between the Math Library and the
operating system, whether or not a condition handler has been
established. For detailed information on the procedures used in
establishing a user-defined condition handler, see the NOS/VE
Program Interface manual.

When an error occurs in a math library function under a
call-by-reference routine, the following events occur:

1. An appropriate abnormal status is set into global variable
MLV$STATUS (of type OST$STATUS).

2. The appropria~e default error value is placed in the result
register(s) XE and/or XF. Register A4 contains the pointer to
the parameter list passed to the call-by-reference routine.
Register XD contains the number of parameters for the
call-by-reference routine. For example, register XD will
contain a 1 for the call-by-reference routine MLP$RSIN, and a 2
for MLP$RZTOZ. The User Condition Register is cleared of all
arithmetic errors.

3. Ungated routine MLP$ERROR PROCESSOR is called with all registers
saved in the save area so-that they can be accessed by a
condition handler.

4. MLP$ERROR PROCESSOR calls the PMP$CAUSE CONDITION procedure with
user condition MATH LIBRARY ERROR and a-pointer to the previous
save area (the registers saved by the call-by-reference routine)
as the condition descriptor.

S. Upon return from the PMP$CAUSE CONDITION procedure,
MLP$ERROR PROCESSOR is exited if the returned status is normal.
If the return status is not normal, the PMP$ABORT procedure is
called with one of two statuses. If there is no established
condition handler for MATH LIBRARY ERROR, status MLV$STATUS is
used. If there is an established -;;ondition handler for
MATH LIBRARY ERROR, the status returned from the
PMP$CAUSE_CONDITION procedure is used.

6. The call-by-reference routine immediately returns if it is
returned to from MLP$ERROR_PROCESSOR.

Revision E Error Handling C-1

(
\._ _.

I

"--- -

/

l_-

I
\...._ __ -

r·------ ~--==·=--·:::=::=.:=:=::=:::=::::::=:::::::=:::::::=====================================··.:.:i·1

A

About this manual 5
ABS

Call-by-reference routine 2-2
Call-by-value routine 2-2
Description 2-2
Effect of argument error 2-2
Error analysis 2-2

Absolute value function
Complex argument 2-28
Double precision argument 2-50
Integer argument 2-119
Real argument 2-2

ACOS
Call-by-reference routine 2-3
Call-by-value routine 2-3
Description 2-3
Effect of argument error 2-5
Error analysis 2-5
Vector routine 2-5

ACOSIN
Call-by-value routine 3-1
Description 3-1
Effect of argument error 3-3
Error analysis 3-3

AIMAG
Call-by-reference routine 2-6
Call-by-value routine 2-6
Description 2-6
Effect of argument error 2-6
Error analysis 2-6

AINT
Call-by-reference routine 2-7
Call-by-value routine 2-7
Description 2-7
Effect of argument error 2-7
Error analysis 2-7

ALOG
Algorithm error 2-10
Call-by-reference routine 2-8
Call-by-value routine 2-8
Description 2-8
Effect of argument error 2-11
Error analysis 2-9
Total error 2-10
Vector routine 2-9

Revision E Math Library Index-!

Index

ALOGlO
Call-by-reference routine 2-12
Call-by-value routine 2-12
Description 2-12
Effect of argument error 2-13
Error analysis 2-13
Vector routine 2-13

AMOD
Call-by-reference routine 2-14
Call-by-value routine 2-14
Description 2-14
Effect of argument error 2-15
Error analysis 2-15

AN INT
Call-by-reference routine 2-16
Call-by-value routine 2-16
Description 2-16
Effect of argument error 2-16
Error analysis 2-16

Argument

ASIN

ATAN

Argument set A-1
Definition A-1
Dummy A-1

Call-by-reference routine 2-17
Call-by-value routine 2-17
Description 2-17
Effect of argument error 2-20
Error analysis 2-19
Vector routine 2-19

Call-by-reference routine 2-21
Call-by-value routine 2-21
Description 2-21
Effect of argument error 2-22
Error analysis 2-22
Vector routine 2-22

ATANH
Call-by-reference routine 2-23
Call-by-value routine 2-23
Description 2-23
Effect of argument error 2-25
Error analysis 2-24
Vector routine 2-24

ATAN2
Call-by-reference routine 2-26
Call-by-value routine 2-26
Description 2-26
Effect of argument error 2-27
Error analysis 2-27
Vector routine 2-27

Audience for this manual 5
Auxiliary routines 3-1; A-1

Index-2 Math Library Revision E

CABS
Call-by-reference routine 2-28

I Call-by-value routine 2-28
___ Description 2-28

i
'-.___,.

Effect of argument error 2-29
Error analysis 2-29

Calls 1-4
Call-by-reference 1-4; A-1
Call-by-reference error handling 1-17; C-1
Call-by-value 1-17; A-1
Call-by-value error handling 1-17
ccos

CEXP

Call-by-reference routine 2-30
Call-by-value routine 2-30
Description 2-30
Effect of argument error 2-31
Error analysis 2-31
Vector routine 2-31

Call-by-reference routine 2-32
Call-by-value routine 2-32
Description 2-32
Effect of argument error 2-33
Error analysis 2-33
Vector routine 2-33

CLOG
Call-by-reference routine 2-34
Call-by-value routine 2-34
Description 2-34
Effect of argument error 2-35
Error analysis 2-35
Vector routine 2-35

Cody Reduction 2-114; 3-14
Common logrithm function 2-12, 81
Complex numbers 1-3
CON JG

Call-by-reference routine 2-36
Call-by-value routine 2-36
Description 2-36
Effect of argument error 2-36
Error analysis 2-36

Conjugate function 2-36
Conventions 6
cos

Call-by-reference routine 2-37
Call-by-value routine 2-37
Description 2-37
Effect of argument error 2-39
Error analysis 2-39
Vector routine 2-39

Revision E

Index

Math Library Index-3

Index

COSD
Call-by-reference routine 2-40
Call-by-value routine 2-40
Description 2-40
Effect of argument error 2-41
Error analysis 2-41
Vector routine 2-41

COSH
Call-by-reference routine 2-42
Call-by-value routine 2-42
Description 2-42
Effect of argument error 2-43
Error analysis 2-43
Vector routine 2-42

Cosine function
Complex argument 2-30
Degrees 2-40
Double precision argument 2-65
Hyperbolic 2-42, 68
Inverse 2-3, 51
Real argument 2-37

COSSIN
Call-by-value routine 3-4
Description 3-4
Effect of argument error 3-6
Error analysis 3-6

CO TAN

CSIN

Call-by-reference routine 2-44
Call-by-value routine 2-44
Description 2-44
Effect of argument error 2-45
Error analysis 2-45
Vector routine 2-45

Call-by-reference routine 2-46
Call-by-value routine 2-46
Description 2-46
Effect of argument error 2-47
Error analysis 2-47
Vector routine 2-47

CSQRT
Call-by-reference routine 2-48
Call-by-value routine 2-48
Description 2-48
Effect of argument error 2-49
Error analysis 2-49
Vector routine 2-49

Index-4 Math Library Revision E

(
"-----

/---

I
\.._.

DABS
Call-by-reference routine 2-50
Call-by-value routine 2-50
Description 2-50
Effect of argument error 2-50
Error analysis 2-50

DACOS
Call-by-reference routine 2-51
Call-by-value routine 2-51
Description 2-51
Effect of argument error 2-53
Error analysis 2-52
Vector routine 2-52

DAS IN
Call-by-reference routine 2-54
Call-by-value routine 2-54
Description 2-54
Effect of argument error 2-56
Error analysis 2-55
Vector routine 2-55

DASNCS
Call-by-value routine 3-7
Description 3-7
Effect of argument error 3-8
Error analysis 3-8

DATAN
Call-by-reference routine 2-57
Call-by-value routine 2-57
Description 2-57
Effect of argument error 2-60
Error analysis 2-59
Total error 2-60
Vector routine 2-59

DATAN2
Call-by-reference routine 2-61
Call-by-value routine 2-61
Description 2-61
Effect of argument error 2-64
Error analysis 2-64
Vector routine 2-63

DATCOM 2-57, 62
DCOS

Call-by-reference routine 2-65
Call-by-value routine • 2-65
Description 2-65
Effect of argument error 2-67
Error analysis 2-67
Vector routine 2-66

Revision E

Index

Math Library Index-5

Index

DCOSH
Call-by-reference routine 2-68
Call-by-value routine 2-68
Description 2-68
Effect of argument error 2-69
Error analysis 2-69
Vector routine 2-68

DDIM
Call-by-reference routine 2-70
Call-by-value routine 2-70
Description 2-70
Effect of argument error 2-71
Error analysis 2-71

DEULER
Call-by-value routine 3-9
Description 3-9
Effect of argument error 3-10
Error analysis 3-10

DEXP

DIM

Call-by-reference routine 2-72
Call-by-value routine 2-72
Description 2-72
Effect of argument error 2-75
Error analysis 2-75
Vector routine 2-74

Call-by-reference routine 2-76
Call-by-value routine 2-76
Description 2-76
Effect of argument error 2-76
Error analysis 2-76

DINT

DLOG

Call-by-reference routine 2-77
Call-by-value routine 2-77
Description 2-77
Effect of argument error 2-77
Error analysis 2-77

Call-by-reference routine 2-78
Call-by-value routine 2-78
Description 2-78
Effect of argument error 2-80
Error analysis 2-79
Vector routine 2-79

DLOGlO
Call-by-reference routine 2-81
Call-by-value routine 2-81
Description 2-81
Effect of argument error 2-82
Error analysis 2-82
Vector routine 2-82

Index-6 Math Library Revision E

I
"----·

Ir-·

I

DMOD
Call-by-reference routine 2-83
Call-by-value routine 2-83
Description 2-83
Effect of argument error 2-83
Error analysis 2-83

DNINT
Call-by-reference routine 2-84
Call-by-value routine 2-84
Description 2-84
Effect of argument error 2-84
Error analysis 2-84

Double precision numbers 1-3
DP ROD

Call-by-reference routine 2-85
Call-by-value routine 2-85
Description 2-85
Effect of argument error 2-85
Error analysis 2-85

DSIGN

DSIN

Call-by-reference routine 2-86
Call-by-value routine 2-86
Description 2-86
Effect of argument error 2-86
Error analysis 2-86

Call-by-reference routine 2-87
Call-by-value routine 2-87
Description 2-87
Effect of argument error 2-89
Error analysis 2-89
Vector routine 2-89

DSINH
Call-by-reference routine 2-90
Call-by-value routine 2-90
Description 2-90
Effect of argument error 2-91
Error analysis 2-91
Vector routine 2-91

DSNCOS
Call-by-value routine 3-11
Description 3-11
Effect of argument error 3-12
Error analysis 3-12

DSQRT
Call-by-reference routine 2-92
Call-by-value routine 2-92
Description 2-92
Effect of argument error 2-93
Error analysis 2-93
Vector routine 2-92

Revision E

Index

Math Library Index-7

Index

DTAN
Call-by-reference routine 2-94
Call-by-value routine 2-94
Description 2-94
Effect of argument error 2-96
Error analysis 2-96
Vector routine 2-96

DTANH
Algorithm error 2-98
Call-by-reference routine 2-97
Call-by-value routine 2-97
Description 2-97
Effect of argument error 2-98
Error analysis 2-98
Vector routine 2-98

DTN 2-57, 62
DTOD

DTOI

Call-by-reference routine 2-99
Call-by-value routine 2-100
Description 2-99
Effect of argument error 2-101
Error analysis 2-101
Vector routine 2-100

Call-by-reference routine 2-102
Call-by-value routine 2-102
Description 2-102
Effect of argument error 2-104
Error analysis 2-104
Vector routine 2-103

DTOX

DTOZ

Call-by-reference routine 2-105
Call-by-value routine 2-105
Description 2-105
Effect of argument error 2-106
Error analysis 2-106
Vector routine 2-106

Call-by-reference routine 2-107
Call-by-value routine 2-107
Description 2-107
Effect of argument error 2-108
Error analysis 2-108
Vector routine 2-108

Dummy argument A-1

Index-8 Math Library Revision E

/
"---·.

(__

IE
Entry points 2-1; A-2
ERF

Call-by-reference routine 2-109
Call-by-value routine 2-109
Description 2-109
Effect of argument error 2-110
Error analysis 2-110
Vector routine 2-110

ERFC
Call-by-reference routine 2-111
Call-by-value routine 2-111
Description 2-111
Effect of argument error 2-112
Error analysis 2-111
Vector routine 2-111

Error

EXP

Definition A-2
Function 2-109, 111
Handling 1-17; C-1

Call-by-reference routine 2-113
Call-by-value routine 2-114
Description 2-113
Effect of argument error 2-116
Error analysis 2-115
Vector routine 2-115

Exponential function 2-32, 72, 113
Exponentiation routine (see also routine name) 1-1; A-2
EXTB

Call-by-reference routine 2-117
Call-by-value routine 2-117
Description 2-117
Effect of argument error 2-118
Error analysis 2-118

External routine A-2
Extract bits function 2-117

1-=

Floating point numbers 1-2
Function name A-2

G

General Rules 1-3
Glossary A-1

Index

Revision E Math Library Index-9

Index

HYPE RB
Call-by-value routine 3-13
Description 3-13
Effect of argument error 3-13
Error analysis 3-13

Hyperbolic function
Cosine 2-37, 68
Sine 2-90
Tangent 2-97, 156

TI

!ABS
Call-by-reference routine 2-119
Call-by-value routine 2-119
Description 2-119
Effect of argument error 2-119
Error analysis 2-119

!DIM
Call-by-reference routine 2-120
Call-by-value routine 2-120
Description 2-120
Effect of argument error 2-120
Error analysis 2-120

IDNINT
Call-by-reference routine 2-121
Call-by-value routine 2-121
Description 2-121
Effect of argument error 2-121
Error analysis 2-121

Indefinite value A-2
Infinite value A-2
Input range A-2
INSB

Call-by-reference routine 2-122
Call-by-value routine 2-122
Description 2-122
Effect of argument error 2-123
Error analysis 2-123

Insert bits function 2-122
Integer numbers 1-2
Introduction 1-1
Inverse function

Cosine 2-3, 51
Sine function 2-17, 54

!SIGN
Call-by-reference routine 2-124
Call-by-value routine 2-124
Description 2-124
Effect of argument error 2-124
Error analysis 2-124

Index-10 Math Library

/

Revision E

(
"---- --

!TOD
Call-by-reference routine 2-125
Call-by-value routine 2-125
Description 2-125
Effect of argument error 2-126
Error analysis 2-126

!TOI
Call-by-reference routine 2-127
Call-by-value routine 2-127
Description 2-127
Effect of argument error 2-128
Error analysis 2-128

ITOX
Call-by-reference routine 2-129
Call-by-value routine 2-129
Description 2-129
Effect of argument error 2-130
Error analysis 2-130

ITOZ

Il...

Call-by-reference routine 2-131
Call-by-value routine 2-131
Description 2-131
Effect of argument error 2-132
Error analysis 2-132
Vector routine 2-132

Logarithm function
Common 2-12, 81
Natural 2-8, 34, 78

MATH¢LIBRARY¢ERROR C-1
Mathematical intrinsic functions 1-1
MLP$ERROR¢PROCESSOR C-1
MLV$STATUS C-1
MOD

Call-by-reference routine 2-133
Call-by-value routine 2-133
Description 2-133
Effect of argument error 2-133
Error analysis 2-133

Modulus function 2-14, 83, 133

Revision E

Index

Math Library Index-11

Index

Natural logarithm function 2-8, 34, 78
Negative infinite 6
NINT

Call-by-reference routine 2-134
Call-by-value routine 2-134
Description 2-134
Effect of argument error 2-134
Error analysis 2-134

Notations 6
Number forms 1-2
Number types 1-2; A-3

Ordering manuals B-1
Organization 5
Original Reduction 2-114; 3-14
OST$STATUS C-1
Output range A-3

PMP$ABORT C-1
PMP$CAUSE¢CONDITION C-1
Positive infinite 6

Random number generator 2-135
RANF

Call-by-reference routine 2-135
Call-by-value routine 2-135
Description 2-135
Effect of argument error 2-136
Error analysis 2-136

RANG ET
Call-by-reference routine 2-137
Call-by-value routine 2-137
Description 2-137
Effect of argument error 2-137
Error analysis 2-137

RANS ET
Call-by-reference routine 2-138
Description 2-138
Effect of argument error 2-138
Error analysis 2-138

Index-12 Math Library Revision E

Relative error A-3
Root mean square relative error A-3
Routine descriptions 2-1
Routines 1-12, 13; A-3
Routines and calls 1-4

§

SIGN

SIN

Call-by-reference routine 2-139
Call-by-value routine 2-139
Description 2-139
Effect of argument error 2-139
Error analysis 2-139

Call-by-reference routine 2-140
Call-by-value routine 2-140
Description 2-140
Effect of argument error 2-142
Error analysis 2-142
Vector routine 2-142

SINCOS
Call-by-value routine 3-14
Description 3-14
Effect of argument error 3-15

1 Error analysis 3-15
___, SINCSD

I
"'---

SIND

Call-by-value routine 3-16
Description 3-16
Effect of argument error 3-16
Error analysis 3-16

Call-by-reference routine 2-143
Call-by-value routine 2-143
Description 2-143
Effect of argument error 2-144
Error analysis 2-144
Vector routine 2-144

Sine function
Complex 2-46
Degrees 2-143; 3-16
Double precision 2-87
Hyperbolic 2-90, 145
Inverse 2-17, 54; 3-7
Real 2-140
Trigonometric 3-11, 14

Single precision numbers 1-2

Revision E

Index

Math Library Index-13

I

Index

SINH
Call-by-reference routine 2-145
Call-by-value routine 2-145
Description 2-145
Effect of argument error 2-147
Error analysis 2-146
Vector routine 2-146

SQRT
Call-by-reference routine 2-148
Call-by-value routine 2-149
Description 2-148
Effect of argument error 2-150
Error analysis 2-150
Vector routine 2-150

Square root function
Submitting comments
Sum of bits function
SUMlS

2-48, 92, 148
7

2-151

TAN

Call-by-reference routine 2-151
Call-by-value routine 2-151
Description 2-151
Effect of argument error 2-151
Error analysis 2-151

Call-by-reference routine 2-152
Call-by-value routine 2-152
Description 2-152
Effect of argument error 2-153
Error analysis 2-153
Vector routine 2-153

TAND
Call-by-reference routine 2-154
Call-by-value routine 2-154
Description 2-154
Effect of argument error 2-155
Error analysis 2-155
Vector routine 2-155

Tangent function
Double precision 2-94
Hyperbolic 2-97, 156
Inverse 2-21, 26, 57, 61
Inverse hyperbolic 2-23
Trigonometric 2-152, 154

Index-14 Math Library Revision G

,"

TANH

Call-by-reference routine 2-156
Call-by-value routine 2-156
Description 2-156
Effect of argument error 2-157
Error analysis 2-157
Vector routine 2-157

Trigonometric function
Cosine 3-11, 14
Sine 3-11, 14
Tangent 2-94, 152, 154

Vector routines 1-13

XTOD

XTOI

XTOX

XTOZ

Call-by-reference routine 2-158
Call-by-value routine 2-159
Description 2-158
Effect of argument error 2-159
Error analysis 2-159
Vector routine 2-159

Call-by-reference routine 2-160
Call-by-value routine l-160
Description 2-160
Effect of argument error 2-161
Error analysis 2-161

Call-by-reference routine 2-162
Call-by-value routine 2-163
Description l-162
Effect of argument error 2-164
Error analysis 2-163
Vector routine 2-163

Call-by-reference routine 2-165
Call-by-value routine 2-165
Description l-165
Effect of argument error 2-166
Error analysis 2-166
Vector error handling 1-17
Vector routines 1-13

Revision F

Index

Math Library Index-15

Index

Zero-length vectors
ZTOD

ZTOI

Call-by-reference routine 2-167
Call-by-value routine 2-167
Description 2-167
Effect of argument error 2-168
Error analysis 2-168
Vector routine 2-168

Call-by-reference routine 2-169
Call-by-value routine 2-169
Description 2-169
Effect of argument error 2-170
Error analysis 2-170
Vector routine 2-170

ZTOX

ZTOZ

Call-by-reference routine 2-171
Call-by-value routine 2-171
Description 2-171
Effect of argument error 2-172
Error analysis L-172
Vector routine 2-172

Call-by-reference routine 2-173
Call-by-value routine 2-174
Description 2-173
Effect of argument error 2-174
Error analysis 2-174
Vector routine 2-174

Index-lb Nath Library Revision F

i'
I
\
, __ _

I

'

Math Library for NOS/VE Usage 60486513 G

We would like your comments on this manual. While writing it, we made some assumptions about who
would use it and how it would be used, Your comments will help us improve this manual, Please
take a few minutes to reply.

Who Are You?

Manager
Systems Analyst or Programmer = Applications Programmer
Operator
Other

---------~

How Do You Use This Manual?

As an Overview
To learn the Product/System
For Comprehensive Reference
For Quick Look-up

Do You Also Have?

FORTRAN for NOS/VE Usage
CYBIL for NOS/VE Usage

What programming languages do you use?--------------------------

Which are helpful to you? Parameter Summary (inside cover) Related Manuals Page

Character Set
Other -----------------

How Do You Like This Manual? Check those that apply,

Yes Somewhat No

Is the manual easy to read (print size, page layout, and so on)?
Is it easy to understand?
Is the order of topics logical?
Are there enough examples?
Are the examples helpful? Too simple Too complex)
Is the technical informationaccurate?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you what you need to know about the topic?

Comments? If applicable, note page number and paragraph,

Would you like a reply? Yes No Continue on other side

From:

Name ------------------- Company------------------

Address -------------------------- Date -----------

-------------------------- Phone No, ---------

Please send program listing and output if applicable to your comment,

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8241 MINNEAPOLIS. MN

POSTAGE WILL BE PAID BY ADDRESSEE

(52)CONT1'0L DATA
Technology and Publications Division

Mail Stop: SVL104
P.O. Box 3492
Sunnyvale, California 94088-3492

Comments (continued from other side)

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOLD

0

0

0

@I~ CONTJ\.OL DATA

