BASIC D)
for NOS/VE SONTECN.

DATA

Usage 60486313

BASIC
for NOS/VE

Usage

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60486313

Related Manuals

The following table lists all manuals that are referenced in this
manual or that contain background information:

Publication Online
Manual Title Number Title
BASIC Manuals:
BASIC for NOS/VE Usage 60486313 BASIC
BASIC Summary 60486319
NOS/VE Manuals:
NOS/VE System Usage 60464014
NOS/VE Commands and Functions 60464018 SCL
NOS/VE Source Code Management Usage 60464313
NOS/VE Object Code Management Usage 60464413
Additional References:
Debug for NOS/VE Usage 60488213
Debug for NOS/VE Quick Reference 160488218 DEBUG
NOS/VE Diagnostic Messages 60464613 MESSAGES
FORTRAN Version 1 for NOS/VE Language 60485913

Definition Usage

CYBIL for NOS/VE System Interface Usage 60464115
NOS/VE Accounting Analysis System Usage 60463923

oCopyright 1985, 1986, 1987, 1988 by Control Data Corporation.

All rights reserved.
Printed in the United States of America.

2 BASIC for NOS/VE Usage

Revision E

Mamual History

System Version/ Product
Revision PSR level Version Date
A 1.1.3/644 1.0 October 1985
B 1.1.4/649 1.1 January 1986
C 1.2.1/664 1.2 July 1986
D 1.2.2/678 1.2 April 1987
E 1.3.1/700 1.3 April 1988

This revision:

This manual is revision E printed in April 1988. It documents BASIC
for NOS/VE at release level 1.3.1 and at PSR level 700.

One new feature is documented in this revision:

Unit-measured application accounting using the BCPDAUA
subroutine. For a description, see the section titled
Unit-measured Application Accounting in chapter 9, Subroutines.

Changed features documented in this revision are the following:

You can specify permanent file paths in BASIC programs. For
a description, see the section titled OPEN Statement in
chapter 13, Files, or the section titled Program Execution
in chapter 14, Compilation and Execution.

Loader errors are automatically sent to the standard file
$ERRORS. For a description, see the section titled Program
Execution in chapter 14, Compilation and Execution.

The STOP statement no longer automatically invokes the Debug
utility. You must now invoke the Debug utility before executing
a BASIC program. For a description, see the section titled STOP
Statement in chapter 6, Runtime Error Processing.

In addition, the revision includes several new glossary entries and
miscellaneous technical and editing corrections.

Revision E : BASIC for NOS/VE Usage 3/4

Contents

About This Manual ceeeceesesvecseccoscsscsossoasssnssssssasesnnse 9

Introduction to NOS/VE BASIC seeeeeeeecsscosvscsonsonsosannsas 1-1

Features eeeeeecsscsscsscecscessssssssnssssssssscssscncsssss 11
The NOS/VE BASIC COmpPiler seeessecssessesssesssasasesscsnss 1=2
The NOS/VE Environment eeeeeesessccsssscsscssssssssssescess 1=3

Program StTUCLUTE ssesssessesossssssssssssessssscssccnssssssss 2-1

ROULINES eeveevesssscsocsscosssscnossssssonsssscssscossses 2
Blocks and LineS seeessscocessssnocsscssssosssossscosssssss 2—
Statements and Identifiers eseeeecesescsssscossesssscsscoss 2
Reserved WordS cecscscecsscscccsscosssosnsnsscnsossnsasssce 2
BASIC Character SeL ceeeecesssecccsscsossossssnsasssascnss 2—
Termination StatementsS eeeeeessecsscescsssesasssssnnassssce 2
Summary and Sample seeececsessssocssssccssscsssccscssssssce 2

Language Fundamentals sseeeesscsscscessssasssssscsccnassssssss 3—1

CONSLANES eosveosssossorsosssssossssssssossssnsssosssasssns 3
Data TYPe seevessesscosssosscsssscscscssosanssssonassosscnses 3
VariableS ceceseessccensvessscssnsccsasonssssssonssssscnnes 3=
Double—Precision VesStiZesS secesceesssscssessssssssossssssss 3

Expressions and ASSIignment ..eeeecscsceescesseososssannecnensss 4=l

EXPresSions ceeessscesesecssssesccessassssssosscesssossees 4=2
Arithmetic EXPreSSionsS seeseccecessssscesssssesscscssscscees 4—b
String EXpPresSSionNS seeecesseccsscscessessansccccssnssssses 4=7
Relational EXPreSSiONS eeesscscecscecesscsccsssssssssscess 4—8
Logical EXPresSsSions seeseesscesscessvocssssssssosssnessans 4-1
Assignment StatementsS eeeescescescscsccssscscssoscsscsanes 41

Decision and Branching eeeecececececsscsesssocsssossoscasssscsss DOl

GOTO Statement eeoeeesssssssesesssssssssssscsossssssssnnsss D
GOSUB Statement sessssecseccccssocssssasssssssssssancassssss I
Line IF ConStrucCtionNS eesscscccecccccssocsosossssssnsoscnnse O
Block IF ConStructionS seeeesscsescsssssoscccsosossssscsscncs DO
Looping SEruUCLUTES seeeeeessoscsoccvossvrsvscsosscnscsesse D
System INterface seeesssesscessssesscsssosssssosssssssnees D31

Revision D Contents 5

Contents

Runtime ETrTor ProcesSSing eeeescesesecoscsssccsssssssnssssascoses 6—1

Error Processing OVEIView sececsseoscsscocsscsscssesscoses 0=2
ERL Function seeeecceceoccocscsesssssscascsssasssssssssscces 0~9
ERR FUNCEIiON cessessessscsscscessnesssssccsscosssssosscsse 60—l
Runtime Diagnostic FOrmat eeeeeesseessosssssossassscssasse 06-12
ON ERROR Statement sescesssssssssossssscscssessscssossesscs O-l4
RESUME Statement seessssescsscscsscssssscscecccscsssosnscnce 0—15
ERROR Statement eceeescecesccccocssscscessscscsssssssssssssce 0=17
STOP Statement eeececeosececcsssccsscnsssssssssssssssssssssssss 0O—18

User-Defined FUNCLIONS cseesscossesscnssesssesssosecoccsassnsess /-1

Function OVEIVIew eeeeessscescsscsnssssssesssscsoscssonnss
Expression FunCtionNS ceceecececcsceccscescscsccsctsssccsccce
Block Function StTUCLUTE eseesssecsesssssscscscsssssasscnes
External vs. Internal Functions eecececccosccccssscccscene
COMMON Statement sseeececsssssssscssccscsosessssscssossassncss
Function Name Declaration eccessceccecescscscscenssccsnccns
Block Function Calls secessesescscecsscsscsvsoscsccasscscse
Block Function ParametersS eceesesesssscccsesssccscssccccnsse

\l\l\l\l\ll\l\l\l
N = b b= n WD

Mathematical Library Functions seeeecscecsecescsssssccsssssnnss 8-l

Exponential FUNCLLONS eecoveccsssesscecsssccecssccscsssnsse 8-
Trigonometric FUnctions eeeeecescsccccccccvosascecosscnnns
Number Characteristic FUnctions sececececceccsssssnescscons
Miscellaneous FUNCLIiONS seesscssoossccssessessosscsscsancs
RANDOMIZE Statement eceeesscccesscocscscscssssccssanssccssccce

SUDTOULINES tevessesensesscscecsosansancssosacsassasossnsnnnss I=1

Subroutine OVEIVIEW seesssescsscsscsesosssscscccscsscasscs I
Subroutine StIUCLUTE sessecscscocoscsccscsssssssosscsnnsss I
External vs. Internal Subroutines seeecscesessccsssccasses 9=
COMMON Statement seeeesssccccsssscscccssscssssscnssasscnss I
Subroutine Name Declaration eeseeeescccccseccsscessoscssss I9-11
Subroutine CallS seeesessccscvosscssscossesascaceseosssnsses I—12
Subroutine Parameters secesesecescssessscassssescscscsscses I—14
CALLX Statement eseeeeessscssscessssvseosscccessssesssssecses I—16
Unit-measured Application Accounting eeecececccscesscccess 9-18

Input and OULPUL eseeeecccsscescccasssacsssessnaseascssssassss 10-1

Interactive INDUL eeceessocsssecccssssccsssoscnssnsssasces 10-2
Interior Data SetS eeesscscesssccssssssscsssconsssccssesse 10-10
WIDTH Statement eesesccscscscsssscsesocsssscscscessescssss 10-14
PRINT Statement seeesecssscssscccscccscesosnscsccsssssssssecss 10-15
PRINT USING Statement eeeesesecessssescsssscssssscosssssess 10-25
WRITE Statement eeesecsssecssccsscsssccscasscsssssoscsssssse 10-40
BEEP Statement eeeescecscoscessrsssossscssossessssssssccss 10-42

6 BASIC for NOS/VE Usage Revision E

ATTAYS eeveooscceosevscecsssnsssssoscsssnsssossasssnssssassnascoce

ATTray OVEIVIEW eceeeccevrcosssceevsossososasscvscessscssannsss
Array Element References ceoecececescesssccsccsssssccscsss
Dimension Bound Specification eeseecececessescccsccccccossns
Array INpUt/OULDUL eesesesessascssssssconcsssssvcscsnsne
ERASE Statement ceeeeesecssscsessscsscsososscssscsscssse

String ProcessSing seececceccscccccscscssscocsassscscsoscsnctsne

String Expression Review ceseecoccecccsccvsessrsccoccnscces
Colon—Substring NOtation seeeveccccscsccerssssscscssssncsns
MIDS StAtemMenNt eeeeecessesesssscsssssssscncnsscscssasons
Substring Manipulation FunctionsS eescecsvecoscsccsecsccsce
Conversion FUNCLIONS sucececccccoscccccoccosssccnsssosns
Miscellaneous String FunctionsS eececcecoscsccescscsssces

FileS eeecsescorscocsvsoessssosessnssssssscscsssessonssnsssos

Overview of the NOS/VE File SyStem seecoessessccsscsscocs
Overview of BASIC File USAgE seeesscscccsssesssssssssnss
Channel NUMDEIS ceseecsssocccsssccrsoseosrsoscacsssnsacasnsne
OPEN Statement ecesececcsssccsccescssoosscsscsscssossscs
CLOSE Statement «eessecesccccssesccssscsssnssnsccsscccsssce
LOC FUncCtion eecececssseccossssossasscccssssssescsscncnss
EOF FUNCEION eseeecsscesocecccccsossssoscssassscsscsscssnsce
Sequential I/0 seeescecesscssssssssssscssssssscssssessss

Random I/0 eeesccosecsssosscasecssossoscssosccsscssssssce
Compilation and EXECULI1ON cesesvessoscessosscsssncccssnnssnsns
Compilation OVEIrView esececcsssosscsscsssoscccsscscsccnnce
BASIC Compiler Command seeeceessecssssccsscnssvsccsssssne
Sample Compiler Calls cesceccccscecscccsssscccsscsocsssse
Program EXecution sceecececcssssccccsvsoscscocosscsccoscscns
GlOSSATY eesecesoasocscssscescsccsansaasnscscssanassssssscnse
ASCII Character SEL seeeeccssccosssccsssssocsssssesssssssesns
Compile—time DiagnoSticCS seeseeseecesesssssscscscassocsccane

Library Functions INdeX ceeescecessessccsccssosssesscscsssee

Introduction to Debug ecceeeevcccccessssscscssssssscsscssnsne

Contents

12-1
12-2
12-5
12-8
12-17
12-23

13-1

13-1
13-7
13-9
13-10.1
13-11
13-12
13-13
13-14
13-30

14-1

14-2
14-3
14-6
14-7

INAEX seoeeccscccosnssossessssscsosssscannssssnsasssanns Index-1

Revision E BASIC for NOS/VE Usage 7/8

O About This Manual

[3

AUdIeNCE coveveeenressoovososcssccssocassssssscscsssccssansasness Y

(\\

N 0rganization eesecssscesssessssccsssesssacssccsssessoccssccsccace 9
ConventionsS seeeeeesceecscesscesssssosssssascssssscscansssnnsscss 10
Ordering Manuals ...eeeeecesescoscscacsssscososcsosssasssscascses 1l
Submitting COMMENtS eeeseesvsessocsossscscrssscsssonsnssversonsens L1

In Case Of Trouble seeeesesosevoscsosnsossssossnsascsossoassossass 12

-

About This Manual

This manual describes the the CONTROL DATA® Network Operating
System/Virtual Environment (NOS/VE) BASIC language. NOS/VE BASIC
was designed to permit easy migration from popular microcomputers to
CDC® CYBER 180 computer systems. NOS/VE BASIC conforms to the ANSI
standard for minimal BASIC, ANS X3.60-1978, approved January 17,
1978. NOS/VE BASIC does not conform to the new ANSI standard for
full BASIC, ANS X3.113-1987, approved January 28, 1987.

Audience

This manual describes the features of NOS/VE BASIC. It assumes that
you understand NOS/VE and SCL concepts as presented in the NOS/VE
System Usage manual. We expect the audience to form a varied group
in terms of programming experience and areas of application. For
this reason, the manual is written to accommodate both experienced
programmers and casual users.

Organization

This manual is organized by topic into the following chapters:
Chapter 1 presents a brief introduction to NOS/VE BASIC.

Chapters 2 through 7 and 9 through 13 describe the BASIC language
specifications. Chapter 2 describes the rules for organizing BASIC
statements into executable programs. Chapter 3 describes the
fundamental elements used in writing BASIC statements. Chapters 4
through 7 and 9 through 13 describe all of the BASIC statements.

Chapter 8 describes the CDC-supplied functions that allow you to
take advantage of certain operating system capabilities.

Chapter 14 describes the system commands used to compile and execute
a NOS/VE BASIC program. Descriptions of all parameters and options
are included.

Following chapter 14 is a set of appendixes that provide the
following supplementary information:

Glossary of terms used in this manual.
Description of the ASCII character set.
Listing of compile-time diagnostics.
Index of library functions.

An introduction to the Debug utility.

Revision E About This Manual 9

Conventions

Conventions

Certain notational conventions are used throughout this manual with
consistent meaning. These conventions are as follows:

UPPERCASE In statement syntax, an item appearing in all
uppercase letters indicates a keyword or character
that must be written as shown. Although lowercase
letters are interpreted the same as uppercase
letters when used in BASIC keywords and symbols,
uppercase is used in this manual for consistency.

lowercase In statement syntax, an item that contains
lowercase letters indicates a name, number, or
symbol that you must supply. However, to enhance
readability, these items are shown in uppercase
when occurring in text.

blue . Denotes user examples.

numbers All numbers in this manual are base 10 unless
otherwise noted.

e In statement syntax, a horizontal ellipsis
indicates that a series of similar objects are to
be supplied.

. In program examples, a vertical ellipsis (2 or 3
. periods) indicates that other BASIC statements or
. parts of the program have not been shown because

they are not relevant to the example.

I Vertical bars in the margin indicate changes or
additions to the text from the previous revision.

° A dot next to the page number indicates that a
significant amount of text (or the entire page) has
changed from the previous revision.

spaces Whenever a space appears in a BASIC statement, any
number of spaces can be used. In this manual,
extra spaces are used in format descriptions to
improve readability.

10 BASIC for NOS/VE Usage Revision C

Ordering Manuals

Ordering Manuals

Control Data manuals are available from your local Control Data
sales office., Sites within the U.S. can also order manuals directly
from Control Data Literature and Distribution Services at the
following address:

Control Data Corporation

Literature and Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

When ordering a manual, please specify the complete manual title and
publication number. For example, if you are ordering this manual,
specify BASIC for NOS/VE Usage, 60486313.

Submitting Comments

The last page of this manual is a comment sheet. Please use it to
give us your opinion of the manual”s usability, to suggest specific
improvements, and to report technical or typographical errors. If
the comment sheet has already been used, you can mail your comments
to us at the following address:

Control Data Corporation

Technology and Publications Division
P.0. Box 3492

Sunnyvale, CA 94088-3492

Be sure to include the following information with your comments:

The manual title and publication number (for this manual, BASIC
for NOS/VE Usage, 60486313).

The revision letter from the Manual History page indicating the
current revision of the manual.

Your name, your company” s name and address, your work phone
number, and whether you want a reply.

If you have access to SOLVER, the CDC online facility for reporting
problems, you can use it to submit comments about this manual. When
SOLVER prompts you for the product identifier for your report,

please specify BC8 for the BASIC documentation.

Revision E About This Manual 1lle

In Case of Trouble

In Case of Trouble

I Control Data”s CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help beyond
that provided in the documentation or find that the product does not
perform as described, call us at one of the following numbers and a
support analyst will work with you.

From the USA and Canada: (800) 345~9903
From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address
questions about the physical packaging and/or distribution of
printed manuals to Literature and Distribution Services at the
following address:

Control Data Corporation

Literature and Distribution Services
308 North Dale Street

" St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee,
l call CONTROLNET® 243-2100 or (612) 292-2100.

12 BASIC for NOS/VE Usage Revision E

Introduction to NOS/VE BASIC

[«

This chapter presents a brief introduction to NOS/VE BASIC,

FeatureS eeeevscccsccsscsssccscoscsssessssosccsssnsscsssessscsse 1—l
The NOS/VE BASIC Compiler ceceovecesscesssesccesscsccossscssecnsss 1=2

The NOS/VE Environment sececccescsceccossssssscocsssccccscsscscse 1=3

Introduction to NOS/VE BASIC 1

BASIC is an all-purpose programming language that is well-suited for
scientific, business, and educational applications.

Features

NOS/VE BASIC is designed to permit easy migration, both of programs
and of people, from popular microcomputers to CDC CYBER 180 computer
systems and to provide a language that is easy to use, especially
for casual users.

In addition, NOS/VE BASIC provides an interface to NOS/VE FORTRAN.
This adds power and flexibility to the language by increasing the
number of applications that can be readily accessed.

NOS/VE BASIC offers a wide range of capabilities. These
capabilities include integer and real arithmetic, block control
structures, character string processing, and numerous input/output
capabilities.

Revision B Introduction to NOS/VE BASIC 1-1

The NOS/VE BASIC Compiler

The NOS/VE BASIC Compiler

The NOS/VE BASIC compiler reads a file containing the NOS/VE BASIC
source program, translates that program into an object program
consisting of machine instructions, and (optionally) writes the
object program to a file. The object program can then be loaded
into memory and executed by system commands.

A NOS/VE BASIC source program consists of text lines formatted
according to the rules of NOS/VE BASIC syntax. If the compiler
detects a syntax error in the source program, it issues a
descriptive message describing the nature of the error. The
compile—time diagnostics are always written to the list file. The
compiler detects errors at different levels of severity. If the
errors are severe enough (fatal), the resulting object program
cannot be executed; you must correct the errors and recompile.
Generally, the diagnostic messages provide enough information to
enable you to easily determine the cause of the errors.

In addition to the object program, the NOS/VE BASIC compiler
produces an output listing file. This file is optional and is
selected by parameters on the BASIC command. The output listing
file contains a complete listing of the source program and,
optionally, an object listing and a reference map. The reference
map provides detailed information about symbolic names and other
items used in the NOS/VE BASIC program and is an extremely useful
debugging tool.

The NOS/VE BASIC compiler provides a number of other options in
addition to those described above. The available compiler options,
the formats of the input and output files, and the commands for
compiling and executing a NOS/VE BASIC program, are described in
chapter 14 of this manual.

1-2 BASIC for NOS/VE Usage Revision B

The NOS/VE Environment

The NOS/VE Environment

The NOS/VE operating system provides several software facilities you
can use to make the process of creating and maintaining NOS/VE BASIC
programs easier and more efficient, These facilities include:

Source Code Utility (SCU)

Allows you to create and maintain source programs. SCU is
especially useful for creating and updating large
collections of source programs called source libraries.

Object Code Management utilities (OCM)

Enables you to create and maintain libraries of compiled
object programs (called object libraries). Object libraries
are especially useful for programs that are to be shared by
other programs., OCM also provides a facility for measuring |
and analyzing program performance characteristics.

Debug utility I

Enables you to debug a program during execution. You can
stop the program at selected points or on the occurrence of
an error and request formatted displays of variables and

arrays. The Debug utility is described in appendix E of I
this manual.

NOS/VE BASIC provides an interface to FORTRAN and COBOL using
subprogram calls. These subprogram calls can also be used to access
other subroutines that conform to the FORTRAN calling sequence. The
calls are described in chapter 9 of this manual.

You can also execute NOS/VE System Command Language (SCL) commands

from within a NOS/VE BASIC program. The system interface statements
are described in chapter 5 of this manual.

Revision E Introduction to NOS/VE BASIC 1-3

C\ Program Structure 2

C v]

This chapter describes the fundamental units that are used to form
(f\\ BASIC programs.

N~
ROULINeS cesevececcssoccossonroscocssosssssssescnsscsssascsssnsse 2-1
Blocks and LineS eeeeecsvssccesesacsoscsoscssassosscncsssnsessss 2-4
Statements and Identifiers cceceecesecssscvscossssscesssossocse 2-8
Reserved WOTdS esesesssessocssccssccssocssscscssscoscsssseavssce 2-9
BASIC Character Set seeececscocssescscsssescssssssssssssssessses 2-11
Termination StatementsS ceeseseesocssosesescscoccsssssssscoseses 2-13

Summary and SAmple seeessesccecsseccsccsassccscsocssscrscsssess 214

e

Program Structure 2

A program consists of a main program, and zero or more subprograms.

The main program is the only procedure within a program that can be
executed by itself. Every program must have a main program.

A subprogram is a procedure that accomplishes a set of tasks for the
main program. A subprogram can be compiled by itself, but cannot be
executed by itself. A program need not have any subprograms.

This chapter is an overview of the structure of a NOS/VE BASIC
program. It describes the components from which a program is built.

A NOS/VE BASIC program contains routines, blocks, lines, statements,
and identifiers. These key terms are defined in this chapter and
appear throughout the manual.

Routines

A NOS/VE BASIC program is a collection of one or more external
routines, one of which is a main program.

In this manual, the generic term routine applies to main programs,
block functions (specified by FUNCTION statements), and subroutines
(specified by SUB statements).

Routines are classified as either external or internal.

An external routine 1s either a main program or a subprogram. A
subprogram is either an external block function or an external
subroutine. Note that the term subprogram refers to an external

routine that is not a main program.

An internal routine is either an internal block function or an
internal subroutine.

Revision B Program Structure 2-1

Program Structure

The following tree diagram illustrates the relationships among the
terms just described:

Routines
External Internal
Main Program Subprogram Internal Internal
Block Function Subroutine
External External
Block Function Subroutine

A subprogram begins with a subprogram specification statement
(EXTERNAL FUNCTION or EXTERNAL SUB), and ends with the corresponding
closing statement (END FUNCTION or END SUB). The compiler needs
these statements to determine which external routines are

subprograms.

A main program is not explicitly specified. After determining which
external routines are subprograms, the compiler determines the main
program by default. A main program that is followed by a subprogram
must end with an END PROGRAM statement.

2-2 BASIC for NOS/VE Usage Revision B

Routines

An internal routine begins with a specification statement (FUNCTION
or SUB), and ends with the corresponding closing statement (END

FUNCTION or END SUB). A routine is declared to be internal by
default when the keyword EXTERNAL does not appear in its
specification statement.

If an external routine is followed by a subprogram, the closing
statement (END PROGRAM, END FUNCTION, or END SUB) of the external
routine must be immediately followed by the subprogram specification

statement.
If any lines intervene, even blank lines or comments, the compiler
interprets them as a main program. This might cause the compiler to
interpret your program as if it contains several main programs. If
this happens, a warning is issued. Usually, other errors result
from this interpretation.
An external routine:

o Can be compiled as a separate program unit.

° Cannot be contained within another external routine, but can
contain embedded internal routines.

o Shares data with other external routines through the COMMON
statement or the passing of parameters.

An internal routine:
° Cannot be compiled as a separate program unit.

® Must be contained within a host external routine, but cannot
contain embedded routines.

° Has access to all the data of its host external routine.
A declarative statement provides information about how data is to be
processed.
The BASIC declarative statements are: COMMON, DECLARE FUNCTION,
DECLARE SUB, DEF, DEFDBL, DEFINT, DEFSNG, DEFSTR, EXTERNAL FUNCTION,
EXTERNAL SUB, and OPTION BASE.
The declarative statements in an external routine do not apply to
other external routines. They do apply to all embedded internal

routines.

The declarative statements within an internal routine also apply to
the host external routine.

Revision B Program Structure 2-3

Blocks and Lines

Blocks and Lines

A routine can be thought of as a collection of blocks.

A block is a group of logically or physically related statements or
lines. For example, internal routines and looping structures are
blocks.

Small blocks are placed inside of larger blocks to build more
complex structures. A block IF construction is an example of a
block that contains other blocks.

From a global perspective, external routines are blocks. At the
local level, even single unstructured BASIC statements qualify as
blocks.

A NOS/VE BASIC line can contain at most 255 characters and spaces.
It consists of:

e An optional label, provided by the programmer.

e An optional series of one or more BASIC statements that are
separated by colons.

e An optional tail comment.

Line Format:

-

label statementl : statement2 : ... : statementN comment

A blank line within a routine is permitted since all three line
components are optional. However, do not use blank lines between
external routines. Such lines cause the compiler to interpret what
follows as a main program.

2-4 BASIC for NOS/VE Usage Revision B

Blocks and Lines

You can begin each program line with a positive integer of at most
six digits. This integer is called a label. A label can be used to
reference a line during program execution. Leading zeros in a label
are insignificant.

Each label in an external routine must be greater than the preceding
label within that routine.

A label 1is required for any line that is the destination of a branch
via a GOSUB, GOTO, ON-GOSUB, ON-GOTO, or RESUME statement.

A label is also used in conjunction with the RESTORE statement,
which sets the pointer for an interior data set.

Every statement in a labeled line is associated with the label of
the host line.

A statement in an unlabeled host line is associated with the label

of the nearest labeled line that precedes the host line. If the
host line precedes all the labeled lines of an external routine, the

statement is associated with the default value O.

Examples The following statements associate the host line with
the nearest labeled line.

Statement A : Statement B : Statement C
1 Statement D : Statement E

Statement F : Statement G
2 Statement H : Statement I : Statement J

Statements A, B, and C are associated with the default
value 0.

Statements D, E, F, and G are associated with the label 1.

Statements H, I, and J are associated with the label 2.

Revision B Program Structure 2-3

Blocks and Lines

The time during which a program is being executed is called
runtime. Diagnostic messages that result from runtime errors
specify error location in terms of associated labels or the default
value O.

Note that 0 is not a valid label. If a BASIC statement references a
label, that label must be positive. The default value O is
associated with a statement only in the example described previously.

BASIC labels are not the same as BASIC line numbers.

The programmer supplies BASIC labels as addresses for lines that are
referenced from within a program during program execution.

The compiler assigns each program line a BASIC line number
(sometimes called a compiler sequence number) to denote the physical
position of the line within a program. The program cannot use a
line number to reference a line during program execution.

The time during which a program is compiling is called

compile-time. Diagnostics that result from compile-time errors
specify error location in terms of BASIC line numbers. Line numbers
are also used in conjunction with the Debug utility.

This distinction between labels and line numbers is carefully
adhered to throughout this manual.

2-6 BASIC for NOS/VE Usage Revision E

Blocks and Lines

After the optional label, a line contains an optional series of one
or more BASIC statements. Statements are separated by a colons or
an end of a line.

Note that a single line can contain more than one BASIC statement,
however, BASIC does not allow line continuation. A continuation
line is a source line that contains a continuation of the statement
that appears in the previous source line.

The end of a line delimits the last statement in the line. If a
colon is the last nonblank character in a line, the compiler acts as

if the last statement is an empty statement.

Consecutive colons in a line are also permitted (think of them as
delimiters for an empty statement).

You can explain the purpose of a line by ending it with a tail
comment. This comment is ignored by the compiler.

The apostrophe, whenever it appears outside a quoted string, marks
the end of the significant portion of a line.

Examples e In the following examples the apostrophe separates
the last BASIC statement of a line from a tail
comment, and tells the compiler to ignore what
follows.

“ This entire line is a tail comment.
100 READ MIN,MAX “ set lower/upper bounds

500 LET COUNTZ = 0 : STEP%Z = 1 ° Initialize Counters

IF A$ = "YES" THEN GOSUB 1000 ~ Handle Information

Revision B Program Structure 2-7

Statements and Identifiers

Statements and Identifiers

A statement 1s an optional series of tokens.

A token is a set of characters that the compiler recognizes as
identifying a single entity or word. Constants, identifiers, and
special characters are tokens. Frequently, spaces are used to
designate the beginning and the end of a token.

Any number of spaces can be used between tokens. Spaces inside a
string constant are not treated as token separators because a string
constant is itself a token. The compiler uses punctuation and
context to properly interpret such spaces.

An identifier is a token that names a program component, or
specifies some action or attribute within a program. BASIC
identifiers are used to name variables, functions, and subroutines.

A keyword is an identifier that has a preassigned meaning when it is
used in a specific context. Keywords appear in BASIC statements,
and as names for library functions and supplied string variables.

A NOS/VE BASIC identifier is either a plain name, or a name whose
last character is a symbol that specifies data type. An identifier
can be no more than 31 characters long, including any type
specification symbol.

A plain name consists of a letter followed by a series of letters,
digits, and periods. A period is the only special character allowed
in a plain name.

An identifier cannot contain a space because a space would
effectively split the identifier into two tokens. However, periods
can be used to make a name more readable.

Examples o The following are examples of plain names.
X BUBBLESORT
TEMP1 ROW.TOTAL
Y.1985.NET.PROFIT GAMMA .FUNCTION

Identifiers with type specification symbols are
discussed in chapter 3 of this manual. For now, note
that such names consist of a plain name of at most 30
characters, followed by one of the four type
specification symbols: % , ! , # , $.

2-8 BASIC for NOS/VE Usage Revision B

Reserved Words

A reserved word is a keyword that is reserved exclusively for
program or system use. You are not permitted to use such an

identifier for your own purpose.

AND
APPEND
AS
BASE
“BEEP
CALL
CALLX
cHaINT
CLEAR
CLOSE
COMMON
DATA

DATES
DECLARE
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DIM
ELSE
ELSEIF
END
ENDIF

EQV
ERASE
ERROR
EXIT
EXTERNAL
FIELD
FOR
FUNCTION
GET

GO

GOSUB
GOTO

Reserved Words

Not all keywords are reserved. The
following list contains the reserved words for NOS/VE BASIC:

IF

IMP
INPUT
LBOUND
LEN
LET
LINE
LPRINT
LSET
MID$
MOD
NEXT

NOT

ON

OPEN
OPTION
OR
OUTPUT
PRINT
PROGRAM
PUT
RANDOMIZE
READ
REM

THas been reserved for possible future use.

Revision B

RESTORE
RESUME
RETURN
RSET
RUN
SCL
SPC
STEP
STOP
SUB
SWAP
TAB

THEN
TIMES
TO
UBOUND
USING
WEND
WHILE
WIDTH
WRITE
XOR

Program Structure 2-9

Reserved Words

The names of most library routines are not reserved. If you use
these identifiers to name objects within your program, the following

rules apply:

In each external routine:

Examples

If the first use of an identifier is consistent with the
format for referencing a library routine, then the
identifier is always interpreted as a library routine name.

If the first use of an identifier is inconsistent with the
format for referencing a library routine, then the
identifier 1s always interpreted as the name of an object
within your program.

Each use of an identifier must be consistent with the first
use or a compile—time error results.

The first use of the identifier ASC (in the line labeled
10) 1s consistent with a reference to the ASC library
function. Hence, this identifier 1s interpreted as a
library function reference. The second use (in the line
labeled 20) is inconsistent with this interpretation. A
compile—time error results.

10 L = ASC(S$)
20 FUNCTION ASC(S$)
ASC = LEN(S$) + 5
END FUNCTION

This program fragment would be legal if the first line
were made the last line. In this case, the identifier
ASC would refer to the user—defined ASC function.

2-10 BASIC for NOS/VE Usage Revision B

BASIC Character Set

BASIC Character Set

Only a subset of the standard ASCII character set is actually used
to form NOS/VE BASIC statements. The table that follows lists the
NOS/VE BASIC characters along with their primary functions or areas
of usage.

Characters Primary Functlons or Areas of Usage
Uppercase Letters Identifiers, String Constants.

A through Z

Lowercase Letters Identifiers, String Constants.

a through z

Digits O through 9 Identifiers, Labels, Numbers.

“ (apostrophe) Commentary.

: Delimiter, Substring/Dimension Format.
() " space Delimiters.

N H Delimiters, Output Format.

% Data Type, Output Format Overflow.

$! Data Type, Output Format.

Data Type, Output Format, Channels.
_ (underscore) Output Format.

& Number Base, Output Format.

. Identifiers, Numbers, Output Format.
+ - % ~ \ Arithmetic Operators, Output Format.
/ Arithmetic Operator.

= Assignment, Relational Operator.

< > Relational Operators.

Revision B Program Structure 2-11

BASIC Character Set

With one exception, you can use whatever letter case you want. For
example, the following statements have all the same meaning to the
compiler. ’

LET A= 5
Let A =5
let a = 5

The BASIC compiler produces a listing of your program exactly as
typeds However, it internally translates all lowercase letters
outside of quoted strings and DATA statements to uppercase. Thus,
identifiers used in diagnostics are displayed in uppercase no matter
how they appear in your program listing.

Letter case is significant only when writing quoted or unquoted
string constants. Here, the compiler does not make the
lowercase~to-uppercase conversion. The constant is stored exactly
as typed.

Examples The two string constants below are not equivalent.

"BASIC Statements"

"Basic Statements"

They also have different meanings (BASIC, the acronym
for Beginner”s All-purpose Symbolic Instruction Code,
versus Basic, as in Fundamental).

2-12 BASIC for NOS/VE Usage Revision B

Termination Statements

Termination Statements

If a main program is followed by a subprogram, the main program must
end with an END PROGRAM statement. This statement has the format:

END PROGRAM

The END PROGRAM statement must be the last statement in the last
line of the main program. Execution of this statement terminates
the program.

The specification statement of any subsequent subprogram must
immediately follow the END PROGRAM statement. No lines can
intervene, not even blank lines or comments,

The END PROGRAM statement is optional if the main program is the
last or only external routine in a program. If the last statement
of the main program does not transfer control, the program is
terminated.

The END and REM statements are also fundamental to a program.

The END statement terminates program execution. When this statement
is executed, any open files are closed, and control is returned to
system command level. Any number of END statements can appear in an
external routine.

Examples Depending on the value of A, the following program
fragment can terminate at the statement labeled 40 or
the statement labeled 60.

10 IF A = 2 THEN 50
20 LET A=A+ 2

30 PRINT A
40 END
50 PRINT A
60 END

The REM statement, in addition to a tail comment,
provides a way to include comments (remarks) within a
program. If the keyword REM begins a BASIC statement,
the compiler ignores the rest of the line and continues
with the next one.

Revision D Program Structure 2-13

Summary and Sample

Summary and Sample

A NOS/VE BASIC program is a collection of one or more external
routines, one of which is a main program.

Structurally, each external routine is a collection of blocks, some
of which might be internal routines. Each block is a group of
related lines. Each line is a series of BASIC statements. Each
statement is a sequence of tokens,

If an external routine is followed by a subprogram, the closing
statement (END FUNCTION, END PROGRAM, or END SUB) of the external
routine must be immediately followed by the subprogram specification
statement. If any lines intervene, even blank lines or comments,
the compiler interprets them as a main program.

The following illustrates general program structure and the use of
the END PROGRAM statement:

REM MAIN PROGRAM —— The main program frequently

. appears first in a program.

. —— The END PROGRAM statement

. separates the main program
from a subsequent subprogram.

END PROGRAM

EXTERNAL SUB NAME,l ——————— The subsequent subprogram

. [—— immediately follows the

. END PROGRAM statement.
END SUB ~ NAME.] —m———
EXTERNAL FUNCTION NAME,2 ——— No blank lines appear
. —— between consecutive
subprograms.

END FUNCTION ~ NAME,2

2-14 BASIC for NOS/VE Usage Revision B

Summary and Sample

The following illustrates the block structure of an external routine:

EXTERNAL SUB OUTSIDE

SUB INSIDE.1

FOR
NEXT
IF

.

ENDIF

A loop is

a block.

A block IF
l— has block
components.

END SUB “~ INSIDE.l
FUNCTION INSIDE.2

END FUNCTION ~ INSIDE.2

END SUB ~ OUTSIDE

Revision B

An
intermdal
subroutine
| _with
adjacent
blocks
nested
inside.

An
| internal
block

function.

An
external
subroutine
— with two
embedded
internal
routines.

Program Structure 2-15

Summary and Sample

The following program illustrates the END and REM statements:

REM This program computes factorials of integers
REM between ! and 20, inclusive. The number whose
REM factorial is computed is denoted by N.

10 PRINT "ENTER A POSITIVE INTEGER NO LARGER THAN 20,"
INPUT N
REM ———=—=————— CHECK FOR ACCEPTABLE INPUT ---—=——=————-

IF N <> INT(N) THEN PRINT "ENTER AN INTEGER" : GO TO 10
IF N < 1 OR 20 < N THEN PRINT "OUT OF RANGE" : GO TO 10

REM =—=-— N FACTORIAL IS STORED UNDER THE NAME F ---——-
LET F = 1 © INITIALIZATION
FORI =1 TON
LET F = F*I
NEXT I
PRINT N; ' FACTORIAL IS "; F
END

2-16 BASIC for NOS/VE Usage Revision B

O

N

Language Fundamentals

This chapter describes the elements used to write BASIC statements.

CONSLANLS sovsscsvcsccsencscccscssssosssosnsssscssoscccsscsscsnsssss

Iﬂteger CONSLANtS cossccssvcscvscsscssssscsnsescccsoncsosssses
Real ConStantS ceceecsscscceosscssccscsvorscscsnssscsssssane
Quoted String ConStants eecscecescescescsenccssascsssscnansne
Unquoted String ConstantS eesescscscecsssesssssascsscssscas

Data Type 00000 0000000000000 000000000000000000000Is0OIRIOIOIOIOIOIOTS

Data Type Specification SymbolS seeveesccscssccscssccsscnse
Type Declaration Statements ceseeceecsscosssccccscocsscsasnse
Data Type Compatibility seesecccecsscesccscoscscasesscscsccs

Variables 8 060000000000 00000000000000000000000000000000000000¢

Typed Variables sceeccoosccessosscossscsesscscssasscssssnses
Supplied String Variables seeccceesscccsscccsceccsscssosscnse
TIHEs 00 0000000000000 RRRR0000PP00000CI0CED0PCQ0PRCCIRIOCEEOIOONINOIEEOIOIIEOCOIEOTTS
DATES sccocsccssscsscsscscnssocnsscscascsscssscasonsnssases

Subscripted Variables esecccccecocscccssscecscrssoossscsnnes

i
(\ .~ Double=Precision Vestiges eseeececesssssscsccstsososessccssscses

3-1

3-2
3-4
3-6
3-7

3-8

3-9
3-10
3-13

3-14

3-15
3-16
3-16
3-17
3-18

3-19

Language Fundamentals 3

Constants and variables are the elements of a programming language.
They are the data objects that a program processes.

This chapter describes NOS/VE BASIC constants and variables. It
also discusses how data types are associated with identifiers.

Constants

A constant is a value that must remain fixed during program
execution.

In NOS/VE BASIC, there are two kinds of numeric constants, integer

and real, and two kinds of string (or character) constants, quoted
and unquoted. BASIC does not allow named constants.

Revision B Language Fundamentals 3-1

Constants

Integer Constants

An integer constant is a signed whole number written without a
decimal point. Leading zero digits are ignored. The plus sign for
positive integers is optional. You cannot use commas to group the
digits of a numeric constant. "’

Examples] The following are examples of integer constants.

+275210
44
07

-8396

3-2 BASIC for NOS/VE Usage Revision B

Constants

The magnitude of an integer constant must be less than 2763
(approximately 9.2%10°18) or a compile—time error results.

(The circumflex (*) used above denotes the exponentiation operator.)

In addition to the usual decimal form for integers, you can express
integers in hexadecimal (base 16) and octal (base 8) form.

A hexadecimal integer constant is expressed by typing an ampersand,
followed by an H, followed by one or more hexadecimal digits
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

Similarly, an octal integer constant is expressed by typing an
ampersand, optionally followied by O, followed by one or more octal
digits (0,1,2,3,4,5,6,7).

Notice that no spaces are used in either format.

Examples e The following are examples of hexadecimal and octal

integer constants.

&H21D (equivalent to 541 in base 10)

&H2C (equivalent to 44 in base 10)

&054 (equivalent to 44 in base 10)

&273 (equivalent to 187 in base 10)

Revision B Language Fundamentals 3-3

Constants

Real Constants

A NOS/VE BASIC real constant is one of the following:

e A number written in decimal (fixed point) format, optionally
followed by either an exclamation point (!) or a number sign

(#).

e An integer followed by either an exclamation point or a
number sign.

. A number written in exponential (floating point) format.

The magnitude of a real counstant must be less than 274095
(approximately 5.2%10°1232) or a compile-time error results.

Examples . The following are examples of valid NOS/VE BASIC
real constants.

~-9.86! -0.0003 44, 441

-9.86# -.0003 +44,0 44

3-4 BASIC for NOS/VE Usage Revision B

Constants

The real constant (r * 10"s) can be written in exponential format
using one of two forms:

rEs

rDs

r Integer or real number.
e or E Exponent.

d or D Exponent.

s Integer.

The D notation is provided for compatibility with popular
microcomputer versions of BASIC. BASIC treats the E and D notations
identically; double-precision data types are not supported. For
information about double-precision data and BASIC, see the section
titled Double-Precision Vestiges later in this chapter.
Note that no spaces are used in exponential format.
Examples The following are examples of real constants written in
56.0E+4 (equivalent to 560000.0)
7.3218E-2 (equivalent to 0.073218)

-3.79651D3 (equivalent to -3796.51)

8D5 (equivalent to 800000.0)

Revision E Language Fundamentals 3-5

Constants

Quoted String Constants

A quoted string constant is a sequence of characters or spaces that
is enclosed by quotation marks. These outside marks delimit the
string constant but are not part of it. A quotation mark embedded
within a quoted string constant is denoted by two successive
quotation marks.

The length of a quoted string constant is limited only by the number
of characters that can fit on a line.

Examples e This quoted string constant uses several special
characters.

"EMPLOYEE # PART-TIME % SALARY ($/unit)"

o This quoted string uses embedded quotation marks.

PRINT "STAN ""THE MAN"'" MUSIAL"

The output from this PRINT statement appears below.

STAN "THE MAN' MUSIAL

3-6 BASIC for NOS/VE Usage Revision B

Constants

Unquoted String Constants

An unquoted string constant is a sequence of characters or spaces.
that:

o Contains no apostrophes, colons, or commas.
e Does not begin with a quotation mark.

° Does not begin or end with a space.

Unquoted string constants are used only in data statements and INPUT
replies. An unquoted string constant in a DATA statement is limited
by the length of the BASIC source line (255 characters). Response
to an interactive input request is limited to 128 characters.

Examples The following example is an unquoted string.

GROSS WEEKLY EARNINGS (in $)

Revision D Language Fundamentals 3-7

Data Type

Data Type

Some identifiers carry with them an assoclated data type. The data
type of an identifier establishes the kind of values that are stored
under that name. Variable names and function names always have an
associated data type. Subroutine names never have an associlated
data type.

The three NOS/VE BASIC data types are: integer, real, and string.
A numeric identifier 1is either type integer or real. A string
identifier is type string.

Data type is established either by using a data type specification

symbol as the last character of an identifier, or by a type
declaration statement.

3-8 BASIC for NOS/VE Usage Revision B

Data Type

Data Type Specification Symbols

The last character of an identifier can be used to specify data type.

An integer name is an identifier whose last character is a percent
sign (%). An integer name is a type integer identifier.

A real name 1s an identifier whose last character is either an
exclamation point (!) or a number sign (#). A real name is a type
real identifier.

A string name is an identifier whose last character is a dollar sign
($). A string name is a type string identifier.

In general, an identifier is either a plain name, an integer name, a
real name, or a string name. Remember that an identifier can have
at most 31 characters, including the type specification character.

Examples The following are examples of integer names, real names,
and string names.

Integer Names Real Names String Names
N7% X! S$
ROW.TOTALY Y# STATUSS
NO.OF .CARS% CURRENT.GPA! DEPT.NAMES$
EXAM, 1.SCORE% TYPE.747 MPG# MESSAGE.10$

Revision B Language Fundamentals 3-9

Data Type

Type Declaration Statements

Purpose A type declaration statement specifies the data type (if
appropriate) of any plain name whose first letter
appears in a letter list. A type declaration statement
affects plain names only. It has no affect on integer
names, real names, or string names.

Format DEFxxx letlist
XXX Replaced by either INT, SNG, DBL, or STR, as
appropriate.
letlist List of letters and letter ranges that are

separated by commas. A letter range is
written L1-L2, where Ll and L2 are letters,
and L2 does not alphabetically precede Ll.
The letter range L1-L2 is equivalent to
listing all the letters between Ll and L2,
inclusive. Any plain name that begins with
a letter appearing in the letter list has
the specified data type.

3-10 BASIC for NOS/VE Usage Revision B

Remarks

Revision B

Data Type
The four NOS/VE BASIC type declaration statements
are as follows:

= DEFINT, which declares type integer.
- DEFSNG, which declares type real.
- DEFDBL, which is equivalent to DEFSNG.

- DEFSTR, which declares type string.

By default, the data type (if any) of a plain name
is real. This can be confirmed formally with a
DEFDBL or DEFSNG statement, or overridden with a
DEFINT or DEFSTR statement.

Type declaration statements in an external function
also apply to the function name and formal
parameters. In an external subroutine, such
statements apply to the formal parameters. (A
subroutine name has no associated data type.)

Language Fundamentals 3-11

Data Type

Examples e In an external routine, a letter can be specified in
only one type declaration statement.

DEFINT A,B,I-N,Y,Z
DEFSNG D-H,V,W
DEFDBL C-C,X

DEFSTR 0-U

. In general, a type declaration statement must
precede every plain name that the statement
affects. Thus, the following statements are out of

order:
LET A =4 : DEFINT A

The variable A is type real by default, and is
assigned the value 4.0. The subsequent attempt to
alter the type results in a compile—time error.

e There is only one exception to the general rule. A
type declaration statement that affects an external
function name can follow the function specification
statement. Thus, the order of the following
statements is correct:

REM MAIN PROGRAM

DEFSTR G “Type declaration for main program
DECLARE EXTERNAL FUNCTION GREAT

PRINT GREAT

END PROGRAM

EXTERNAL FUNCTION GREAT

DEFSTR G “Type declaraction for this function

LET GREAT = "STRING"
END FUNCTION

3-12 BASIC for NOS/VE Usage Revision B

Data Type

Data Type Compatibility

With one exception, type integer and type real data are compatible.
This means that:

e Integer and real data can be combined through arithmetic
operations.

. An attempt to assign an integer value to a variable or
function of type real is permitted. The value is converted
to type real before being stored.

o An attempt to assign a real value to a variable or function
of type integer is permitted. The value is rounded to the
nearest integer before being stored.

Integer and real data are not compatible with type string data.
The one exception is the passing of data to user—defined routines
through parameters. Here, an integer value cannot be passed to a

real formal parameter. A real value cannot be passed to an integer
formal parameter.

Revision B Language Fundamentals 3-13

Variables

Variables

A variable is a named memory location. Different values can be
stored inside the memory location at different times during program

execution. A reference to the variable name accesses the value that
is currently stored.

A variable name can be any valid identifier. The name carries with
it an assoclated data type (integer, real, or string). The data
type establishes the kind of values that are stored in the variable,
and determines which operations can be performed on these values.

This section describes NOS/VE BASIC variables.

3-14 BASIC for NOS/VE Usage Revision B

Variables

Typed Variables

An integer variable can only store integer values; a real variable
can only store real values; and a string variable can only store
string values.

Each variable is assigned an initial value before the expression
involving that variable is evaluated. All numeric variables are
assigned the value zero and all string variables are assigned the
null string.

A NOS/VE BASIC integer variable can store any integer value n in the
range (- 2763 <= n <= 263 ~ 1), which is approximately the range

(- 9.2%10"18 <= n <= 9.2*10"18). An attempt to store an integer
value outside this range results in a runtime error.

An integer variable is named with either an integer name, or a plain
name typed in a DEFINT statement.

A NOS/VE BASIC real variable can store any real value whose
magnitude is less than 274095, which is approximately 5.2*%10%1232,
An attempt to store a real value whose magnitude is too large
results in a runtime error.

A real variable is named with either a real name, or a plain name.
The default data type is real. A DEFSNG or DEFDBL statement can be
used to confirm the default.

A NOS/VE BASIC string variable can store a string value with at most
65,535 characters.

A string variable is named with either a string name, or a plain
name typed by a DEFSTR statement.

A substring is a string variable consisting of zero or more
consecutive character positions within a given string variable. A
NOS/VE BASIC substring is expressed using colon-substring notation
or a MIDS reference.

Revision D Language Fundamentals 3-15

Variables

Supplied String Variables

NOS/VE BASIC supplies two string variables at runtime: TIME$ and

DATES.

TIME$

Purpose

Format

Remarks

Examples

TIME$ is an 8-character string variable whose default
value is the current time as kept by NOS/VE,

"hh: mm: ss"

hh
mm
ss

Hours in the range 00 through 23.
Minutes in the range 00 through 59.
Seconds in the range 00 through 59.

The value of TIMES can be set within a program. If
user—defined, its current value i1s the last assigned
value plus the time elapsed since the assignment.
TIMES$ cannot be set in an INPUT or READ statement.

If you specify only a single digit for a TIME$
component, a leading zero is provided. If you omit
a component, then the default value 00 is provided.

A runtime error results if an impossible time value,
such as '"24:00:00", is assigned.

The following examples show different values for
TIMES.

TIMES = "12:15:30"

TIMES$ = "4:7" (set to "04:07:00")
TIMES = "11" (set to "11:00:00")
TIMES = "23:59:59" (last second of the day)
TIMES = "0:0:0" (midnight)

TIME$ = "::" (midnight)

TIMES = ":" (midnight)

TIMES = "10::32" (set to "10:00:32")

3~16 BASIC for NOS/VE Usage Revision B

DATES$

Purpose

Format

Remarks

Examples

Revision B

Variables

DATES$ is a lO-character string variable whose default
value is the current date as kept by NOS/VE,

"'mm-dd-yyyy"

mm
dd

yyyy

Month in the range 00 through 12,
Day in the range 00 through 31,
Year in the range 00 through 9999.

The value of DATE$ can be set within a program. If
user—defined, slashes can replace hyphens. However,
the value of DATES$ is always printed using hyphens.
DATES cannot be set in an INPUT or READ statement

The value of DATE$ advances when the value of TIMES$
passes "00:00:00".

If you specify only a single digit for the month or
day component, a leading zero is provided.

If you specify only two digits for the year
component, then digits in the range:

- 00 through 77 are interpreted as 2000 through
2077,

- 78 through 99 are interpreted as 1978 through
1999.

A runtime error results if an impossible date value,
such as '"09-31-1985", is assigned.

The following examples show different values for
DATES.

DATES$ = "09-01-1965"

DATES$ = "7-4-1776" (set to "07-04-1776")
DATES = "4/17/62" (set to "04-17-2062")
DATES = "4/17/80" (set to "04-17-1980")

Language Fundamentals 3-17

Variables

Subscripted Variables

A variable that is not a substring can be either scalar or
subscripted.

A scalar variable assoclates a name with a single memory location.
In contrast, a subscripted variable shares its name with other
members of a larger structure. This structure is called an arraye.

An array 1is a group of variables with the same data type that are
referenced by a single name. This name is called the array name.

A specific variable in the array is accessed using the array name
and a sequence of numbers called subscripts. The subscripts
identify the variable by its position within the array. This
variable is called a subscripted variable, or an array element.

A subscripted variable acts just like a scalar variable, but uses a
more complex reference format. The naming and data type rules
discussed in this chapter apply to both scalar and subscripted
variables (array elements). Limits on the values of subscripted
variables are the same as those on scalar variables of like data
type.

An external routine can contain an array with the same name as a
scalar variable because they have different reference formats.

Remember that the term variable applies to both scalar and
subscripted variables, and that a substring is neither scalar nor
subscripted.

For more information about arrays, see chapter 11 of this manual.

3-18 BASIC for NOS/VE Usage Revision B

Double-Precision Vestiges

Double-Precision Vestiges

NOS/VE BASIC has no double-precision data type because real data in
NOS/VE BASIC is approximately as precise as double-precision data in
many microcomputer versions of BASIC.

However, some traces of the format of double-precision do occur in
NOS/VE BASIC. Features with such traces are provided so that
existing microcomputer BASIC programs can be used on NOS/VE with
minimal changes.

The traces of the format of double-precision are found in:
e Constants that are followed by either an exclamation point

(1) or a number sign (#).

o The exponential format that uses the letter D rather than
the letter E to separate the mantissa from the exponent.

° Identifiers whose last character is either an exclamation
point (!) or a number sign (#).

o Related library functions whose names contain an SNG, S,
DBL, or D designation.

These formats differentiate between single- and double-precision in
many microcomputer versions of BASIC, but are equivalent in NOS/VE
BASIC.

Revision B Language Fundamentals 3-19

C

Expressions and Assignmemnt 4

This chapter describes the ways in which expressions are written and
evaluated.s This chapter also describes assignment statements.
Assignment statements are executable statements that use expressions
to define or redefine the values of variables.
EXpressions ceeeseecscoccccoscescesescsscsesssacossscescnssonee 4=2
Arithmetic EXpPressionsS ecececessscescssccccscscescscsscsccscnses 4=4
String EXpressions ecessecesecesscsssessescesscccssscoscacscese 47
Relational EXpresSSions eceecesscecescecossccscsccssssscccsssssee 4=8
Logical EXpPresSlons sseeecsesssosssscesocossssesssessossccssscss 4—10
Assignment StatementS cesecesesssssssscscsscssssacsssnssssscsss 4—13
LET Statement ececscecsecscessccesscescsssssssssssssscscssccses 4—14

SWAP Statement ssesecscescscescssssssscsscsscsssssssssosscas 416
CLEAR Statement sssecsseesscesscesssvsscsosscossocnsssssssee 4=17

Expressioms and Assigmnmemnt 4

Expressions are built by applying operators to constants, variables,
and function references.

The four kinds of BASIC expressions are: arithmetic, string,
relational, and logical. Each kind has its own set of operators and
evaluation rules.

This chapter discusses how to construct and evaluate expressions.
It also describes how assignment statements are used to store their
values.,

Revision B Expressions and Assignment 4-1

Expressions

Expressions

An expression is one or more constants, variables, or function
references that are linked by operators. Subexpressions occurring
within an expression can be enclosed by parentheses.

A system of precedence determines the order in which the operations
in an expression are performed.

A subexpression enclosed by parentheses is treated as a single
operand. Its value must be computed before an operator can be
applied to it. This means that parentheses always have the highest
precedence. If parentheses are nested, the innermost expression is
evaluated first.

Each kind of expression has its own set of permissible operations.
The operations in each set are assigned precedences. For a given
set, operations with a precedence of 1 are performed first,
operations with a precedence of 2 are performed second, and so forth.

Evaluation of operators with equal precedence is performed
left~to-right, although the evaluation of operands of equal
precedence is not guaranteed. This may present a problem when the
operands are functions that have side effects. Where such
programming is done, the expression should be carefully
parenthesized.

Expressions are classified as either numeric or string. Arithmetic,

logical, and relational expressions are called numeric because they
produce numeric values. String expressions produce string values.

4-2 BASIC for NOS/VE Usage Revision B

Expressions

When a BASIC numeric expression is evaluated, intermediate results
are assigned to temporary storage. These assignments are subject to
the same constraints and liable to the same errors as ordinary

assignments. Possible errors are: numeric overflow, numeric
underflow, and divide fault.

Each of these errors 1is fatal and induces the runtime error
processing explained in chapter 6. An error can sometimes be
avoided by parenthesizing an expression.

Examples e This expression induces a numeric overflow when
evaluated.
(2.072500.0) * (2.07°2500.0)/(2.0°2500.0)
o This expression is the algebraic equivalent and does
not induce a numeric overflow.
(2.072500.0) * ((2.072500.0)/(2.072500.0))
A runtime error results if the value of an expression or
subexpression falls outside the range allowed for variables of the
corresponding data type.

Note that an expression can be a single constant, variable, or
function reference.

Revision B Expressions and Assignment 4-3

Arithmetic Expressions

Arithmetic Expressions

An arithmetic expression is one or more numeric constants, numeric
variables, or numeric function references that are linked by
arithmetic operators. Subexpressions occurring within an arithmetic
expression can be enclosed by parentheses.

A unary operator (+ or —) can be the first token in an arithmetic
expressions Two arlthmetic operators cannot appear consecutively
unless the second is a unary operator. Arbitrarily long sequences
of consecutive unary operators are permitted.

The precedence for NOS/VE BASIC arithmetic operations appears
below. Remember that parentheses always have the highest precedence.

Precedence Operator Operation

1 ~ Exponentiation

2 +, - Identity or negation (unary)

3 * / Multiplication or real division
4 \ Integer division

5 MOD Modulo arithmetic

6 +, - Addition or subtraction

For integer division, denoted by the reverse slant (\) operator,
the operands, are rounded to the nearest integer. The division is
then performed and the quotient is truncated to an integer.

4-4 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Arithmetic Expressions
The operands are rounded, yielding (14/5). Division
produces 2.8. Truncation results in the value 2.

13.8\5.3

Modulo arithmetic is denoted by the MOD operator.
The operands are rounded to the nearest integers,
and division is performed. The result is the
integer remainder of this division.

-13.8 MOD 5.3
The operands are rounded, yielding (-14/5).

Division yields -2 with a remainder of -4. The
result is -4.

Expressions and Assignment 4-=3

Arithmetic Expressions

The circumflex (~) operator, the up—arrow on some keyboards, denotes
exponentiation. A runtime error results if zero or a negative
number is raised to a negative power.

The slant (/) operator denotes division. A runtime error results 1if
division by zero is attempted.

For exponentiation and division, the operands are converted to type
real, and real results are produced.

For all other arithmetic operations:

= If the operands
performed. The

= If the operands
is converted to

are of like type, no operand conversions are
result has the same type as the operands.

are of different types, the integer operand
type real. A real result is produced.

Examples e Exponentiations are performed left-to-right. The

value 2,

8.0, is

0 is raised to the third power. The result,
squared. The result, 64,0, is negated. The

value of the expression is -64.0. In contrast, the
expression (-2.0)"3"2 has the value 64.0,

-2,073"2

e The order in which operations are performed is shown
underneath the following sample expression:

18 - 200 / 20 * 10 - 8 MOD 7 + 37

Order —=> 4 1 2 5 3 6

The result is the value -46.

e The expression X = Y/X"2 + Y*2 is equivalent to (X -
(Y/(X*2))) + (Y"2). If X =2 and Y = 4, the value

of this

expression is 17. Compare the following

expressions to to X- Y/X"2 + Y*2:

(X - Y)/(X"2 + Y°2)

(X = Y)/ X2 + ¥~2

X =Y /(X*2 + Y°2)

Using X = 2 and Y = 4, these expressions have the
values —.1, 15.5, and 1.8, respectively.

4~6 BASIC for NOS/VE Usage Revision B

String Expressions

String Expressions

A string expression is one or more quoted string constants, string
variables, or string function references that are separated by plus
signs. Subexpressions occurring within a string expression can be
enclosed by parentheses.

In this context, the plus sign is called the concatenation
operator. Concatenation, the only string operation, joins two
string operands. The length of the string produced is the sum of
the lengths of the operands.

The string expression (A$ + B$) is read "A is concatenated with B".

Examples e If A$ = "START" and B$ = "UP", the expression:
BS + AS has the value "UPSTART".

AS$ + BS has the value "'STARTUP",

° Consider the following assignment statements:

LET CS$ "WORK: 555-1212"

LET C$

C$(l:4) + ' PHONE" + C$(5:15)

These statements insert the string " PHONE" in an
appropriate place in C$. Thus, C$ is assigned the
new value "WORK PHONE: 555-1212",

For more information about strings, see chapter 12.

Revision B Expressions and Assignment 4=7

Relational Expressions

Relational Expressions

Purpose A relational expression compares the values of
expressions with compatible data types.

Format expl relop exp2

expl, exp2 Expressions that are both arithmetic or both

string.
relop Relational operator.
Remarks o The operand expressions are evaluated and then

compareds A value of O results if the comparison is
false. A value of -1 results if the comparison is

true.

Operator Comparison

= Equal To

<> or X Not Equal To

< Less Than

<= or =< Less Than Or Equal To

> Greater Than

>= or => Greater Than Or Equal To

° Relational operators all have the same precedence.
Remember that parentheses take precedence over all
other operations.

® A character-by-character comparison is made when the
operands of a relational expression are string
expressions. Decisions are based on the sequence of
ASCII character codes defined in the ANSI standard
ASCII character set (see appendix B). This sequence
is designed so that letter comparisons are made
based on alphabetical order.

4-8 BASIC for NOS/VE Usage Revision B

Relational Expressions

Examples o The following expression is false because S follows
D in the alphabet. The value 0 results.

"FALETTL, STEVE" <= "FALETTI, DAN"

o This next expression is true because (512.0 >
64.0). The value -1 results.

27(3%2) > (273)"2

NOTE

Since a relational expression produces a numeric value (either O or
-1), a compound expression such as (1 < 7 < 4) is allowed. However,
such an expression does not have the usual mathematical
interpretation.

The expression (1 < 7 < 4) results in the value -1, for true, even
though the inequality is mathematically false. Evaluating the
expression left-to-right, the comparison (1 < 7) yields the value
~-1. The comparison becomes (-1 < 4), This is true, so the value -1
results.

Testing compound mathematical inequalities requires use of the
logical AND operator. Logical expressions are discussed next.

The values of the ASCII character codes for uppercase letters are
less than the values of the codes for all the lowercase letters.
When sorting string data, it is often important first to convert all
the data to the same case. (See the LCASE and UCASE functions)

Revision B Expressions and Assignment 4—9

Logical Expressions

Logical Expressions

Purpose A logical expression is typically used to make compound
relational comparisons.

Format expl logop exp2

expl, exp2 Numeric expressions. Although arithmetic
expressions are permitted, these operand
expressions are usually relational or

logical.
logop Logical operator.
Remarks e After the operand expressions are evaluated, the

logical operations are performed according to
priority. If a 0 value results, the expression is
considered false. If a nonzero value results, the
expression is considered true.

Precedence Operator Operation

1 NOT Logical Negation

2 AND Logical Conjunction

3 OR Logical Inclusive
Disjunction

4 XOR Logical Exclusive
Disjunction

5 EQV Logical Equivalence

6 IMP Logical Implication

e A logical operator is applied bit-by-bit to its
64-bit numeric operands. Each bit of the result is
set to either 0 or 1, based on the definition of the
operator. In general, bit k of the result depends
on the kth bit of each operand.

[If all bits are set to zero, the result is
considered false. In this case, the value O
results. If at least one bit is set to 1, the
result is considered true. In this case, the
decimal equivalent of the binary representation
results.

4-10 BASIC for NOS/VE Usage Revision B

Remarks
(cont)

Revision B

Logical Expressions

If both operands have values that are either 0 or
-1, the logical operation produces a value of either
0 or -1.

The unary NOT operator can be the first token in a
logical expression. Two logical operators cannot
appear consecutively unless the second is the unary
NOT operator. Arbitrarily long sequences of
consecutive unary NOT operators are permitted.

The precedence for NOS/VE BASIC logical operations
appears in the following table.

The corresponding bits of the operands of a logical
operation must be in one of four states. The
following truth table shows the results of applying
each logical operation to each state. This defines
each of the logical operations. The letters p and q
denote corresponding bits.

P q NOT p pPAND q pORgq pPXRq pEQVq pIMPgq
1 1 0 1 1 0 1 1
1 0 0 0 1 1 0 0
0 1 1 0 1 1 0 1
0 0 1 0 0 0 1 1

Expressions and Assignment 4-11

Logical Expressions

Examples

This statement causes a branch to line 100 provided
A falls between 1 and 5, inclusive.

IF 1 <= A AND A <= 5 THEN GOTO 100

This statement assigns the value "EXEMPT" to C$ if
AS has the value "UNEMPLOYED", or B$ has the value
“CHILD", or both A$ and B$ have these respective
values.

IF A$ = "UNEMPLOYED" OR B§ = "CHILD" THEN LET C$ =
"EXEMPT"

This expression is always true regardless of the
values of P and Q.

NOT(P AND Q) EQV (NOT P OR NOT Q)

The number 26 is 11010 binary; 9 is 1001 binary.
Application of the AND operator results in a word
with all bits, except the fourth bit from the right,
set to 0 (result: 000...0001000). The logical
expression 1s considered true. Y% is assigned the
value 8, which is 1000 binary.

LET Y% = 26 AND 9

The number 26 is 11010 binary; 9 is 1001 binary.
Application of the XOR operator results in a word
with all bits, except the first, second, and fifth
bits from the right, set to 0 (result:
000...00010011). The logical expression is
considered true. Z% is assigned the value 19, which
is 10011 binary.

LET 2% = 26 XOR 9

4~12 BASIC for NOS/VE Usage Revision B

Assignment Statements

Assignment Statements

An assignment statement assigns a value to a variable.

In BASIC, the equal sign is used to denote both the assignment
operator and a relational operator. This can cause confusion. When
reading an equal sign that denotes assignment, use the words "is
assigned the value of", '"receives the value of", or "becomes". This
distinguishes the assignment usage from the comparison usage.

This section discusses the NOS/VE BASIC assignment statements: LET

and SWAP, It also describes the CLEAR statement, which clears the
variables in an external routine.

Revision B Expressions and Assignment 4-13

Assignment Statements

LET Statement

Purpose Assigns the value of an expression to a variable.
Format LET var = exp
LET Optional keyword. This statement is the only

var

exp

Remarks .

4-14 BASIC for

one that can be written without a keyword.
Name of the variable being assigned a value.
Expression whose value is compatible with the

data type of VAR.

The value of EXP is assigned to the variable VAR,
destroying any previous value. If VAR is a numeric
variable, the value of EXP is converted to the
appropriate data type. Thus, if VAR is integer, the
value of EXP is rounded to the nearest integer and
then stored. If VAR is real, the value of EXP is
converted to a real number and then stored.

Each identifier for a variable or a function is
given a default initial value.

The default initial value for:

- A type integer identifier is O (integer zero).
- A type real identifier is 0.0 (real zero).

~ A type string identifier is "" (the null string).

NOS/VE Usage Revision B

Examples

Revision B

Assignment Statements

The rounded value -4 1s assigned to the variable AZ.

LET A%Z = -3.5

The value of X is incremented by one. This example
illustrates the importance of distinguishing an
assignment from a comparison. If the above were
used in the context of a relational expression, it
would always be false.

X=X+1

The string variable S$ is assigned the result of the
concatenation of AS with a substring of BS.

LET S$ = AS + B$(2:6)

If Z has the value zero, then this statement assigns
the value (0.0 + 3.0) to the variable Z, where Z is
real by default.

LET Z = Z + 3

Expressions and Assignment 4-15

Assignment Statements

SWAP Statement

Purpose

Format

Remarks

Examples

Exchanges the values of two variables.

SWAP wvarl , var2

varl, var2 Variables having compatible data types.

This single statement is equivalent to the three
statements:

LET TEMP = VARIL
LET VAR1 = VAR2
LET VAR2 = TEMP

TEMP is a variable that has the same data type as VARI.

The fourth line of this program fragment exchanges the
values of A$ and BS.

1 LET A$ = "TO DO"

2 LET B$ = "TIME"

3 PRINT "SO MUCH '";A$;" AND SO LITTLE ";BS$;"I"
4 SWAP AS,BS

5 PRINT "SO MUCH ";A$;" AND SO LITTLE ";BS$;"I"

The output produced appears below.

S0 MUCH TO DO AND SO LITTLE TIME!
SO MUCH TIME AND SO LITTLE TO DO!

4-16 BASIC for NOS/VE Usage Revision B

Assignment Statements

CLEAR Statement

Purpose

Format

Remarks

Examples

Revision B

The CLEAR statement discards the data of the external
routine in which it appears. This includes all the data
of any embedded internal routines.

When a CLEAR statement in an external routine is
executed:

All numeric scalar variables within that
external routine are set to zero. All string
scalar variables are set to the null string.

Both the lower and upper bounds of each
dimension of each array within that external
routine are set to zero or one, depending on the
option base. The value of the single remaining
element is set to either zero or the null
string, as dictated by data type.

A CLEAR statement in an external routine:

Also clears the variables and arrays that the
external routine shares with other external
routines through the COMMON statement.

Does not clear variables and arrays that are
passed to that external routine as actual
parameters.

The ERASE statement, used with arrays, is related to
the CLEAR statement. For more information, see
chapter 1l.

When the CLEAR statement in this program fragment is
executed, B and C%Z are assigned the value zero, and
D$ is assigned the value of the null string.

2.0
44
"BATTERIES"

It

Expressions and Assignment 4-17

C

O

C

Decision and Branching

T ——

Decision and branching provides the means of altering the normal
sequential flow of execution.
GOTO Statement eceecsccocsnsecscsscsvsscssssossstssssssnccccsasssse

Unconditional GOTO Statement ceeesecsscscccoscssscssccsccccs
ON-GOTO Statement cecccesoscsssscsssosccscccncscsssencncsscsas

GOSUB StatementsS ecececsssccssccscesososcossconssssstossssssossse
Branch and Return ProOCESS eeessccvecssccccssscscssscscccsccsns
Unconditional GOSUB Statement esessceoscesscossscssscssssce
ON-GOSUB Statement ceeecsssccocrescssssssrsscssscscsosscsssses

Line IF ConsStructionS ceseccesccersesccceovsscosvsoscsonsssscscne
Line IF ConStrucCtiOnNS ceeevec-scscoscsssscssvscossssssscssse

Block IF ConStructionS eeesecesccsescssssesscssssccccsscssscscsssne
Block IF ConsStructionsS eeesecescecsssssscscsssssssssssscocee

Looping StrucCtuUreS sseccescssscssssssoscscscscssscssssccocsocscce

FOR=NEXT LOOPS essccsseccsccscsesscsscsocsacsvscscscscscssvscacsscss
WHILE-WEND LOOPS sccevccsescccoscsscoscesooccsoscccascnosses

System INterface eeeessscscecccessssscsssossssssssostssssssescss

RUN Statement seceesescecscecsssscccsossssssscssosssscscasssse
SCL Statement scecescecocesscccsscossnssssssssoscsssncsscsace

5-4

5-10
5-14
5-15
5-20

5-21
5-28

5-31

5-31
5-32

Decisiom and Branching 5

Statements are executed one at a time in the order they appear
unless a control statement overrides this sequential execution.

A control statement establishes conditions for altering sequential
execution and passes control to a specified statement when these
conditions are met.

Possible results include a transfer of control under all
circumstances or the execution of an additional block of statements
before sequential execution is resumed.

Control statements that pertain to error processing are discussed in
the Runtime Error Processing chapter. Control statements involving
interaction between routines are discussed in the User-Defined
Functions chapter and the Subroutines chapter.

This chapter discusses NOS/VE BASIC control statements that are used

within a single routine to control the order of execution under
normal (error-free) circumstances.

Revision B Decision and Branching 5-1

GOTO Statements

GOTO Statements

This section discusses the two NOS/VE BASIC GOTO statements. The
unconditional GOTO statement causes a branch under all

circumstances. The ON-GOTO statement causes a branch to one of
several possible locations based on the value of an index expression.

A GOTO statement cannot be used to branch into or out of a routine

(whether external or internal). The keyword GOTO and the two-word
sequence GO TO are interchangeable in NOS/VE BASIC.

5-2 BASIC for NOS/VE Usage Revision B

GOTO Statements

Unconditional GOTO Statement

Purpose Transfers control to the line with the specified label.

Format GOTO label

label Label of the line to which execution control
passes.,

Examples This statement causes an unconditional branch to the
line labeled 100.

GOTO 100

Revision B Decision and Branching 5-3

GOTO Statements

ON-GOTO Statement

Purpose

Format

Remarks

Examples

Transfers control to a line whose label is among a group
of specified labels.

ON test GOTO 1labell , label2 , ... , labeln

test Numeric expression the value of which determines
the position in the list of the labels used.
The label then specifies the line to which
execution control passes.

labeln List of labels giving the destinations of the
branch. .

The value of TEST is rounded to the nearest integer K,
and control passes to the line labeled LABELK. 1In other
words, an unconditional GOTO LABELK is executed. If K
is less than one or greater than N, a runtime error
results.

The following statement ON S% GOTO 200, 600, 500
transfers control to the line labeled:

200 if S% has the value 1.

600 if SZ has the value 2.

500 if S% has the value 3.

If S% has any value greater than or less than the range
of values 1 through 3, a runtime error results.

5-4 BASIC for NOS/VE Usage Revision B

GOSUB Statements

GOSUB Statements

NOS/VE BASIC provides two GOSUB statements. The unconditional GOSUB
statement causes a branch under all circumstances. The ON-GOSUB
statement causes a branch to one of several possible locations based
on the value of an index expression.

These two statements operate like the unconditional GOTO and ON-GOTO
statements, respectively, with one additional feature. They provide
a way of returning to the statement following the one that caused
the branch. This is accomplished by the RETURN statement.

A GOSUB statement cannot be used to branch into or out of a routine
(whether external or internal). The keyword GOSUB and the two-word
sequence GO SUB are interchangeable in NOS/VE BASIC.

This section discusses the unconditional GOSUB, ON-GOSUB, and RETURN

statements. It includes a brief description of the data structure
called a stack, which controls the branch and return process.

Revision B Decision and Branching 5-5

GOSUB Statements

Branch and Return Process

A GOSUB statement and a RETURN statement work together to effect a
branch and return. To understand this process, it might help to
know a few things about the data structure known as a stack.

A stack is a list that allows insertions and deletions at the top
only. Items in a stack are processed on a '"Last In First Out" basis.

Inserting an item on top of a stack is referred to as pushing
because you can visualize this action pushing the other stack items
down one position. Deleting an item from the top of a stack is
referred to as popping because you can visualize this action causing
the other stack items to pop up one position.

A stack of plates in a cafeteria is an excellent model for the
workings of this data structure.

When an unconditional GOSUB or an ON-GOSUB statement is executed,
the address of the statement that follows it is pushed onto a
stack. When a RETURN statement is reached, the address that was
pushed onto the stack previously is now popped off the stack and
control passes to the statement with this address.

The RETURN statement has the format:
RETURN

The RETURN statement can appear any number of times in an external
routine.

Each routine has its own stack. When control is returned to a
calling routine from a called routine, the items in the stack of the
called routine are discarded. Hence, each time a routine is called,
it begins with an empty stack. A runtime error results if a RETURN
statement is executed when the stack is empty.

5-6 BASIC for NOS/VE Usage Revision B

GOSUB Statements

Unconditional GOSUB Statement

Purpose

Format

Remarks

Examples

Revision B

Transfers control to the line with the specified label.
In addition, this statement provides a way of returning
to the statement following the GOSUB statement.

GOSUB 1label

label Label of the line to which execution control
passes.

The RETURN statement is used to return control to the
statement following the unconditional GOSUB statement.

In this program fragment, the GOSUB statement transfers
control to the line labeled 500. When the RETURN
statement is reached, control passes to the PRINT
statement in the line labeled 100, and execution
continues.

GOSUB 500
100 PRINT "BACK FROM DESTINATION BLOCK"

500 REM Destination Block Begins Here

.

RETURN

Decision and Branching 5-7

ON-GOSUB Statements

ON-GOSUB Statement

Purpose

Format

Remarks

Examples

Transfers control to a line whose label is among a group
of specified labels. In addition, this statement
provides a way of returning to the statement following
the ON-GOSUB statement.

ON test GOSUB 1labell , label2 , ... , labeln

test Numeric expression whose value determines the

position in the list of the labels used. The
label then specifies the line to which execution
control passes.

labeln List of labels giving the destinations of the
branch.

. The value of TEST is rounded to the nearest integer
K. Control passes to the line labeled LABELK. 1In
other words, an unconditional GOSUB LABELK is
executed. If K is less than one or greater than N,
a runtime error results.

. The RETURN statement is used to return control to
the statement immediately following the ON-GOSUB
statement.

The statement ON SGN(A) + 2 GOSUB 800, 400, 500
transfers control to the line labeled:

800 if (SGN(A) + 2) is 1.

400 if (SGN(A) + 2) is 2.

500 if (SGN(A) + 2) is 3.

The function reference SGN(A) returns the value -1, O,
or 1 depending on whether A is negative, zero, or
positive, respectively.

If the expression (SGN(A) + 2), when rounded to the

nearest integer, has any value other than 1, 2, or 3, a
runtime error results.

5-8 BASIC for NOS/VE Usage Revision B

Line IF Constructions

Line [F Constructions

A line IF construction is a multi-statement decision and branching
structure that is confined to a single line.

A line IF construction has three components:

- An IF condition, which determines where control is
transferred.

~ A THEN clause, which is executed when the IF condition
is true.

- An optional ELSE clause, which is executed when the IF

condition is false., If no ELSE clause has been
provided, control passes to the next line.

Revision B Decision and Branching 5-9

Line IF Constructions

Line IF Constructions

Purpose

Format

Remarks

Creates a multi-statement decision and branching
structure that is confined to a single line.

IF condition THEN clausel ELSE clause2

IF

condition

clausel

clause2

label

GOTO 1label ELSE 1label

Expression whose value directs the flow of
execution. This expression is usually
relational or logical, but it can be
arithmetic.

Series of BASIC statements that are
separated by colons.

Optional series of BASIC statements that are
separated by colons. If omitted, the
keyword ELSE is also omitted.

Series of BASIC statements that are
separated by colons.

. Remember that the entire line IF construction is
confined to a single line.

] An IF condition is a numeric expression (usually
relational or logical) whose value directs the flow
of execution.

° If the value of the IF condition is:

~ Zero (representing false in a logical context),
the THEN clause is ignored, and control passes
to the first statement of the ELSE clause. If
no ELSE clause has been provided, control passes
to the next line.

- Nonzero (representing true in a logical
context), control passes to the first statement
of the THEN clause.

5-10 BASIC for NOS/VE Usage Revision B

Remarks
(cont)

Revision B

Line IF Constructions

If the end of a clause is reached (a branching
statement might prevent this), control passes to the
line following the IF construction.

Consider the following line IF construction:

IF condition THEN GOTO 1label ELSE clause2

The following two special constructions are
equivalent to the one above:

IF condition THEN 1label ELSE clause2
IF condition GOTO 1label ELSE clause2

The first special form allows you to omit the
keyword GOTO when the THEN clause contains a single
unconditional GOTO statement.

The second special form allows you to omit the
keyword THEN when the THEN clause contains a single
unconditional GOTO statement.

Consider the following line IF construction:

IF condition THEN clausel ELSE GOTO label

The following special construction is equivalent to
the one above:

IF condition THEN clausel ELSE 1label

This special form allows you to omit the keyword
GOTO when the ELSE clause contains a single
unconditional GOTO statement.

The special forms described apply only in

conjunction with the unconditional GOTO statement in
line IF constructions. They cannot be generalized.

Decision and Branching 5-11

Line IF Constructions

Examples

If B$ has the value "YES", then C is incremented by
one. Otherwise, D is incremented by one. Execution
continues with the next line.

IF B$ = "YES" THEN C = C+1 ELSE D = D+l PRINT C, D

These two statements are equivalent. They
illustrate the use of a logical expression in the IF
condition.

IF (Y<1l XOR 5<Y) THEN PRINT "YES" ELSE PRINT "NO"

IF (1<=Y AND Y<=5)THEN PRINT "NO" ELSE PRINT "YES"

If A% has the value 0, then "FALSE" is printed.
Otherwise, "TRUE" is printed. Execution continues
with the next line.

IF A% THEN PRINT "TRUE'" ELSE PRINT "FALSE"
LET AZ = A% + 1

The PRINT and LET statements are executed only if X
is positive. Execution continues with the next line.

IF X > 0 THEN PRINT "X IS POSITIVE" : LET S$ = "ON"
LET X =X + 1

5-12 BASIC for NOS/VE Usage Revision B

Examples
(cont)

Revision B

Line IF Constructions

If A% has the value 1, control passes to the line
labeled 100. A RETURN statement corresponding to
the GOSUB statement transfers control back to the
PRINT statement in this line IF construction.

IF A% = 1 THEN GOSUB 100 : PRINT "BACK"

The following three statements are equivalent:

IF S$ = "YES" THEN GOTO 100

IF S$ = “YES" GOTO 100

Each of these statements causes a branch to the line
labeled 100 if S$ has the value "YES". Otherwise,
execution continues with the next line.

IF S$ = "YES" THEN 100

If C% has the value 0, control passes to the line
labeled 200. Otherwise, control passes to the line

labeled 400.

IF C% = 0 THEN 200 ELSE 400

Decision and Branching 5-13

Block IF Constructions

Block IF Constructions

A block IF construction is a multi-statement decision and branching
structure that is not confined to a single line.

A block IF construction has five components:

An IF condition, which initially directs the flow of
execution.

An initial THEN block, which is executed when the IF
condition is true.

An optional series of one or more ELSEIF constructions,
the first of which is executed when the IF condition is
false.

An ELSEIF construction consists of an ELSEIF condition
followed by a THEN block.

An optional ELSE block, which is executed when the IF
condition and all the ELSEIF conditions are false.

An ENDIF statement, which denotes the physical end of
the block IF construction.

5-14 BASIC for NOS/VE Usage Revision B

Block IF Constructions

Block IF Constructions

Purpose

Format

Revision B

Creates a multi-line decision and branching structure.

IF incond
inblock

THEN

ELSEIF condl THEN——I

blockj

ELSE
elblock ————-—I

ENDIF

incond

inblock

condJ

blockJ

elblock

Expression whose value initially directs the
flow of execution.

THEN block.

Expression of the Jth ELSEIF construction
where (1 <= J <=N).

THEN block of the Jth ELSEIF construction,
where, (1 <=J <= N).

Optional ELSE block. If omitted, the
preceding ELSE is also omitted.

Decision and Branching 5-15

Block IF Constructions

Remarks ° An IF condition is an expression whose value
initially directs the flow of execution. This
expression is usually relational or logical, but it
can be arithmetic. 1If the value of the IF condition
is:

- Zero (denoting false in a logical context), the
initial THEN block is ignored, and control
passes to the first ELSEIF construction. If no
ELSEIF constructions are provided, control
passes to the first statement of the ELSE
block. If no ELSE block is provided, control
passes to the statement following the ENDIF
statement.

- Nonzero (denoting true in a logical context),
control passes to the first statement of the
initial THEN block.

o If the end of a THEN block or an ELSE block is
reached (a branching statement might prevent this),
control passes to the statement following the ENDIF
statement.

5-16 BASIC for NOS/VE Usage Revision B

Remarks
(cont)

Revision B

Block IF Constructions

An ELSEIF construction is an ELSEIF condition
followed by a THEN block. An ELSEIF condition is an
expression whose value further directs the flow of
execution. This expression is usually relational or
logical, but it can be arithmetic. If the value of
an ELSEIF condition is:

- Zero, the corresponding THEN block is ignored,
and control passes to the next ELSEIF
construction. If no ELSEIF construction
follows, control passes to the first statement
of the ELSE block. If no ELSE block is
provided, control passes to the statement
following the ENDIF statement.

- Nonzero, control passes to the first statement

of the corresponding THEN block.

The format presented for block IF constructions is
standard, but not required. 1In particular, line
feeds can be replaced by colons. Thus, the
following line is a legal format for a block IF
construction.

IF condition THEN : blockl : ELSE : block2 : ENDIF
This single line format is impractical, since a line
IF construction would be equally effective with less

typing. However, formats other than the standard
one can be devised using this as a base.

The ELSEIF construction is optional.

Decision and Branching 5-17

Block IF Constructions

Examples

This block IF construction computes total purchase
coste The cost per item is one of two values,
depending on the amount purchased. If the value of
QUANTITYZ% is less than 100, the lines labeled 10 and
20 are executed, and control passes to the line
labeled 50, If the value of QUANTITYZ is 100 or
larger, the lines labeled 30 and 40 are executed,
and control passes to the line labeled 50.

IF QUANTITYZ < 100 THEN
10 PRINT "NORMAL COST PER ITEM IS: $";COST1
20 LET TOTAL.COST = QUANTITYZ * COST1

ELSE
30 PRINT "SPECIAL COST PER ITEM IS: $";COST2
40 LET TOTAL.COST = QUANTITYZ * COST2

ENDIF
50 PRINT

This block IF construction has no ELSE block. If
the value of S$ is "YES", a receipt request is
handled. A RETURN statement corresponding to the
GOSUB statement transfers control to the line
labeled 90. If the the value of S$ is not "YES", no
receipt is issued, since control passes directly to
the line labeled 100.

IF S$ = "YES" THEN
LET SWITCHS = '"ON"
PRINT "YOU HAVE REQUESTED A RECEIPT."
PRINT "IT WILL BE ISSUED IN A MOMENT."
GOSUB 500 - Branch to print receipt.
90 PRINT "YOUR RECEIPT HAS BEEN ISSUED."
ENDIF
100 PRINT

5-18 BASIC for NOS/VE Usage Revision B

Examples
(cont)

Revision B

Block IF Constructions

This block IF construction prints the letter grade
that goes with a 100-point exam score, using a
straight percentage grading scale.

5 PRINT "YOUR LETTER GRADE IS: ";

10 TIF SCORE >= 90 THEN
15 PRINT "A"

20 ELSEIF SCORE >= 80 THEN
25 PRINT "B"

30 ELSEIF SCORE >= 70 THEN
35 PRINT "C"

40 ELSEIF SCORE >= 60 THEN
45 PRINT "D"

50 ELSE

55 PRINT "F"

60 ENDIF

65 PRINT "THANK YOU"

If SCORE is greater than or equal to 90, the grade
is A.

If SCORE is greater than or equal to 80 and less
than 90, the grade is B.

If SCORE is greater than or equal to 70 and less
than 80, the grade is C.

If SCORE 1s greater than or equal to 60 and less
than 70, the grade is D.

If SCORE is less than 60, the grade is F.

NOTE

If a block IF construction has many ELSEIF
conditions, place the cases that are most likely to
be true near the top. This speeds up execution.

Truncation errors occur during real arithmetic
because the computer can use only a limited number
of digits to express a decimal number. Usually such
errors affect only the least significant digits, and
are negligible from a practical standpoint. They
can, however, affect tests for equality involving
real numbers. You might find the use of
inequalities more appropriate than equalities for
real number comparisons.

Decision and Branching 5-19

Looping Structures

Looping Structures

A looping (or iterative) structure provides for repeated execution
of a group of statements. The statements themselves remain the
same, but the data involved is allowed to change.

NOS/VE BASIC provides two looping structures: the FOR-NEXT loop,
and the WHILE-WEND loop.

In general, the FOR-NEXT loop 1s appropriate when the desired number
of repetitions is known upon loop entry. The WHILE-WEND loop is

generally used when the desired number of repetitions is
undetermined on loop entry.

This section discusses these two looping structures.

5-20 BASIC for NOS/VE Usage Revision B

Looping Structures

FOR-NEXT Loops

The FOR-NEXT loop is a multi-line structure that causes a group of
statements to be executed a specified number of times. This
structure is appropriate when the desired number of repetitions is
known before the loop is entered.

The FOR-NEXT loop has three components: the FOR statement, the loop
body, and the NEXT statement.

FOR statement
loop body
NEXT statement

FOR Statement

Purpose Marks the beginning of the loop and controls the number
of times the loop is executed.

Format FOR counter = initial TO limit STEP size

counter Numeric scalar variable whose value controls
the looping process. This variable is
called the control variable or the counter.

initial Numeric expression whose value is the
initial value of the counter.

Llimit Numeric expression whose value is the limit
value for the counter.

size Optional numeric expression whose value
determines the increment value for the
counter. If omitted, the keyword STEP is
also omitted and the default value 1 is
assumed .

Revision B Decision and Branching 5-21

Looping Structures

Remarks

Execution of the FOR statement on entry to the loop:

- Establishes the limit and increment values for
the loop counter.

— Assigns an initial value to the loop counter.

~ Performs the first loop exit test on the loop
counter to determine whether or not the loop
body is to be executed.

The loop body is an optional block that contains the
statements to be executed.

The NEXT statement marks the physical end of the
loop. Its execution increments the value of the
loop counter and passes control back to the loop
exit test in the FOR statement. This test
determines whether or not the loop body is
reexecuted.

FOR counter = initial TO 1limit STEP size

When control first reaches the FOR statement, the
values of INITIAL, LIMIT, and SIZE are computed.
The control variable COUNTER 1s then assigned the
value of INITIAL.

The following statements set the limit value at 15
before assigning the initial value 1 to the control
variable N.

LET N
FOR N

15
1 TON

5-22 BASIC for NOS/VE Usage Revision B

Remar ks
(cont)

Revision B

Looping Structures

The loop exit test, which determines whether the
loop body is executed, uses the following criteria.

The loop body is executed as long as the test
expression is nonnegative.

(LIMIT - COUNTER) * SGN(SIZE)

The SGN function reference returns the value -1, O,
or 1, depending on whether the value of its argument
is negative, zero, or positive, respectively.

When the test expression 1s negative, control passes
to the statement following the NEXT statement.

The expressions for LIMIT and SIZE are evaluated
only'when the FOR statement is executed upon entry
to the loop. Changes made within the loop body to
variables in these expressions do not affect the
number of times the loop is executed. However,
changes made within the loop body to COUNTER do
affect the number of times the loop is executed.

You might want to know in advance the number of
times a loop will be executed. Assuming the loop
body does not modify the value of COUNTER, and does
not cause an early loop exit.

MAX((LIMIT + SIZE - INITIAL) SIZE , 0)

This expression computes the number of times a
FOR-NEXT loop will be executed. The MAX function
reference returns the maximum of the values of its
two arguments.

A branch into the middle of a loop body without
execution of the FOR statement is permitted but not
recommended. When control is passed to the FOR
statement, the loop exit test uses whatever values
are currently stored in the specified variables. If
the variables did not previously exist, default zero
values are provided. Many problems, such as an
endless loop, can result from such an ill-advised
branch.

Decision and Branching 5-23

Looping Structures

NEXT Statement

Purpose Marks the physical end of the loop. Its execution
increments the value of the loop counter and passes
control back to the loop exit test in the FOR statement.

Format NEXT counter

counter Optional appearance of the name of the

Remarks .

5-24 BASIC for

control variable specified in the FOR
statement. If COUNTER is omitted, the NEXT
statement corresponds to the nearest
preceding FOR statement that does not have a
corresponding NEXT statement.

When the NEXT statement is reached, the value of
COUNTER is incremented by the value of SIZE (which
can be negative). Control passes back to the loop
exit test.

Looping continues until the loop exit test stops it,
or until control is transferred out of the loop by
some other means. If control passes to the FOR
statement directly from within the loop body,
bypassing the NEXT statement, the loop is
reinitialized.

NOS/VE Usage Revision B

Looping Structures

FOR-NEXT Examples

Examples

Revision B

The two program fragments below each compute the sum
of the first N terms of the series:

L+ (1/3) + (1/5) + eee + (1/I) + vee &

“FRAGMENT #1
DEFINT J,N
INPUT N
LET SUM = 0.0
FOR J =1TO N
SUM =SIM+1 /(2 *%J-1)
NEXT J

“FRAGMENT #2

DEFINT J,N

INPUT N

LET SUM = 0.0

FOR J =1TO 2 * N - 1 STEP 2
SUM SUIM +1 /J

NEXT

In fragment #1, a default increment size of 1 is
assumed. In fragment #2, the control variable J is
omitted from the NEXT statement.

Note that the loop exit test for a FOR-NEXT loop
occurs at the top of the loop. Thus, it is possible
that the loop body is never executed.

On entry to a loop that begins with this FOR
statement, the loop exit test immediately passes
control to the statement following the corresponding
NEXT statement. The loop body is never executed.

FOR K% = 1 TO 10 STEP -3

Decision and Branching 5-25

Looping Structures

Examples

The FOR-NEXT loop is first illustrated below and
then is expressed again using a line IF construction.

FOR X = 1.0 TO 10.0 STEP 0.5

NEXT X
90 REM

LET X = 1.0 .
50 IF 10.0 - X < 0 THEN GOTO 90

LET X =X + 0.5
GOTO 50
90 REM

FOR-NEXT loops can be nested inside of other
FOR-NEXT loops. Note that the loop body of the
inside loop must be completely contained within the
loop body of the outside loop.

FOR I = N TO 1 STEP -1
FORJ = 1TO I
PRINT "*";
NEXT J
PRINT
NEXT I

This program fragment prints an inverted right
triangle of asterisks when N is a positive integer.
The output when N has the value 4 appears below.

*kkk
*kk
k%

*

5-26 BASIC for NOS/VE Usage Revision B

Looping Structures

Special Formatted NEXT

Purpose

Format

Remarks

Examples

Revision B

Permits a special format for the NEXT statement to
facilitate the case of nested loopse.

NEXT conlist

conlist Optional ordered list of control variables
that are separated by commas. The control
variables listed must appear in the order of
the nesting, with the control variable for
the innermost loop listed first, and that of
the outermost loop listed last.

This format is a shortcut for a series of consecutive
NEXT statements. The order of the statements
corresponds to the order of the list.

The following program fragments are equivalent.

“FRAGMENT #1 “FRAGMENT #2
FOR I = 3 TO 7 STEP 2 FOR I = 3 TO 7 STEP 2
FOR J = 2 TO 4 FOR J = 2 TO &
PRINT I * J; PRINT I * J;
NEXT J, I NEXT J
NEXT I

Each fragment generates the output below:

6 9 12 10 15 20 14 21 28

Decision and Branching 5-27

Looping Structures

WHILE-WEND Loops

The WHILE-WEND loop is a multi-line structure that causes a group of
statements to be repeatedly executed. This structure is appropriate
when the desired number of repetitions is undetermined on loop entry.

The WHILE-WEND loop has three components: the WHILE statement, the
loop body, and the WEND statement.

WHILE statement

loop body
WEND

WHILE Statement

Purpose Marks the beginning of the loop, and performs a loop
exit test to determine whether or not the loop body is
executed .

Format WHILE condition

condition Numeric expression whose value determines
whether the loop body is executed. This
expression is usually relational or logical,
but it can be arithmetic.

Remarks ° If the value of CONDITION is:

~ Nonzero (representing true in a logical
context), the loop body is executed.

- Zero (representing false in a logical context),
control passes to the statement following the
WEND statement.

. The loop exit test determines whether or not the
loop body is reexecuted.

. The loop exit test for a WHILE-WEND loop occurs at
the top of the loop. Thus, it is possible that the
loop body is never executed.

5-28 BASIC for NOS/VE Usage Revision B

Looping Structures

WEND Statement

Purpose Marks the physical end of the loop. 1Its execution
passes control back to the WHILE statement.

Format WEND
Remarks For information on the loop body see the FOR Statement
section.

Revision B Decision and Branching 5-29

Looping Structures

WHILE-WEND Example

Examples This program fragment computes the number of terms
needed for the product to become less than the value of
LOWER.BOUND. If LOWER.BOUND is given the value 0.13,
the value 3 is printed.

LET N%Z = 1 : LET PRODUCT = 1
INPUT LOWER.BOUND ~ Set lower bound for the product.
“Eliminate unacceptable lower bounds.
IF LOWER.BOUND <= 0 THEN PRINT "INFINITE" : END
WHILE PRODUCT >= LOWER.BOUND
LET PRODUCT = PRODUCT * (0.5)"N%
LET N%Z = N%Z + 1
WEND
90 PRINT "NUMBER OF TERMS: "; N%

5-30 BASIC for NOS/VE Usage Revision B

System Interface

System Interface

You can execute NOS/VE commands from within a BASIC program with the
RUN and SCL statements.

This section discusses these two system interface statements.

RUN Statement

Purpose Executes a NOS/VE command, then terminates the BASIC
program.

Format RUN command
command String expression whose value is the NOS/VE

command to be executed.

Remarks ° When the RUN statement is executed, all BASIC files
are closed, and the value of COMMAND is passed to
NOS/VE for processing as a separate task. After the
command is processed, the BASIC program is
terminated, and control is transferred to the
environment from which the NOS/VE BASIC program was
invoked. Any error status resulting from execution
of the command becomes the status of the NOS/VE
BASIC program.

] The RUN command initiates a new task while the
original task, the BASIC program, still exists.

e The number of concurrent tasks you can run is
limited. The default maximum is twenty concurrent
tasks; be careful not to exceed this limit. Your
site administrator can change the default number of
tasks by changing the TASK LIMIT validation
attribute associated with your user name.

[When you specify the NOS/VE command in the COMMAND
parameter, you should omit the STATUS parameter from
the NOS/VE command. If you include the STATUS
parameter and an error occurs while the NOS/VE
command executes, the BASIC program terminates
normally; you see no indication of the error
condition. By omitting the STATUS parameter, any
abnormal status condition resulting from execution
of the command becomes the status of the BASIC
program.

Revision E Decision and Branching 5-31@

System Interface

Examples This statement deletes the file SCRATCH from the working

catalog and terminates the BASIC program. For more

information about the DELETE FILE (DELF) command, see
the NOS/VE System Usage manual.

RUN "DELF SCRATCH"

5-32 BASIC for NOS/VE Usage Revision E

System Interface

SCL Statement

Purpose

Format

Remarks

Revision E

Transfers control to NOS/VE so that a specified NOS/VE
command can be executed.

command

command String expression whose value is the NOS/VE

command to be executed.

When the SCL statement is executed, all BASIC files
are left open, and the value of COMMAND is passed to
NOS/VE for processing. After the command is
processed, control returns to the program, and
execution continues with the next statement. If an
error occurs during processing of the command, a
BASIC runtime error results.

The number of concurrent tasks you can run is
limited. The default maximum is twenty concurrent
tasks; be careful not to exceed this limit. Your
site administrator can change the default number of
tasks by changing the TASK LIMIT validation
attribute associated with your user name.

You should not use the SCL statement to attach a
file you later open with an OPEN statement, The
OPEN attaches the file internally; if the file is
already attached, the OPEN might fail due to a share
mode conflict. For information about attaching
files, see the NOS/VE System Usage manual.

The SCL command initiates a new task while the
original task, the BASIC program, still exists., Up
to eleven separate tasks can run concurrently; be
careful not to exceed this limit.

When you specify the NOS/VE command in the COMMAND
parameter, you should omit the STATUS parameter from
the NOS/VE command. If you include the STATUS
parameter and an error occurs while the NOS/VE
command executes, the BASIC program continues
running normally; you see no indication of the error
condition., By omitting the STATUS parameter, any
abnormal status condition resulting from execution
of the command becomes the status of the NOS/VE
BASIC program, resulting in a BASIC runtime error.

Decision and Branching 5-33 e

System Interface

Examples The SCL statement deletes the file SCRATCH from the

working catalog and returns control to the BASIC
program. Execution continues with the line labeled

100. For more information about the DELETE FILE (DELF)
command, see the NOS/VE System Usage manual,

SCL "DELF SCRATCH"
100 .

® 5-34 BASIC for NOS/VE Usage Revision E

®

(\‘ Rumtime Error Processing G

~ This chapter describes the statements and library functions used to
<:::‘ process runtime errors.
Error Processing OVerview eccceecececcsssscscocscsoscasessossese 62
Introduction to Error Handling ececeeccccsccesccecscscccssee 6=2
Default Error Handling eceseceosccssceccsscessscncsossesssss 6=3
User Error Handling seecececesccsscosccassosscscsssscssocsee 6=5
User Error Handling Process Model cecececcsesccccsscsscssss 6—7
Error Processing Model ceeeeecececcceecesssccscossscsssosees 6=8
Sample Error Processing eececesscssscesessssssscccscssscece 6-8
ERL FUNCEION seesesooscevsccesssscecsoscsssccossccccnsssssocnsssse 6=9
ERR FUNCLiON seesceccecsosocesscccassscssscssoscsscsascsssscosee 0-11
Runtime Diagnostic FOTmMAt seeecscsccevssosvscnsescsccncssessess 612
ON ERROR Statement eeceecescscscsscscsccscscsscosocsascecnsssses 6—14

RESUME Statement seeesecessessscoscsssssssesssssscsesscoscccsss 0-15

{77\ ERROR SEALement eueevesesscsssssccsssessesssnssssssnnseecssanns 6-17
N\

STOP Statement seeececescscsosssessessccssssssessscssccssssassccs 0—18

Rumntime Error Processing G

Runtime refers to the time during which a program is being executed.

Runtime errors need not cause program termination. Instead, you can
choose to handle and clear these errors from within your program.

Runtime error diagnostics (error messages) for uncleared errors are
written to the NOS/VE standard file $ERRORS. The default connection
for the standard error file is the listing file OUTPUT. For
interactive mode, this means that diagnostics appear at the terminal.

A complete listing of the NOS/VE BASIC runtime error diagnostics
appears in the Diagnostic Messages for NOS/VE manual.

This chapter discusses the NOS/VE BASIC statements and library
functions used to process runtime errors.

Revision E Runtime Error Processing 6-1

Error Processing Overview

Error Processing Overview

When execution control first reaches a routine, default error
handling is in effect. You can override the default and take
control of error handling with the ON ERROR statement. Errors can ~
then be cleared with the RESUME statement.

This section provides an overview and model to help you visualize
the dynamics of error processing.

Introduction to Error Handling

If a runtime error occurs, a diagnostic describing the error is

saved. The occurrence of these events is denoted by the phrase

error/diagnostic results". How an error is processed depends on
whether default or user error handling is in effect.

llan

When an error occurs, it 1s located in one of two enviromments:

° In an internal routine.

. In the portion of an external routine that is outside of all
embedded internal routines.

With this in mind, a program can be thought of as a collection of
environments. Within each enviromment, you can choose whether
default or user error handling is in effect. However, an error can
be cleared only through user handling. If an error is cleared, its
corresponding diagnostic is deleted without being printed. Hence, a
diagnostic that is printed always corresponds to an uncleared error.

6-2 BASIC for NOS/VE Usage Revision B

Error Processing Overview

Default Error Handling

An error in the portion of the main program that is outside of all
embedded internal routines is located at the highest possible
level. This environment is referred to as the top level
environment. Any other environment is referred to as a low level
environment.

If default error handling 1is in effect when a runtime
error/diagnostic occurs in the top level environment:

o The diagnostics that have not been deleted are written to
the NOS/VE standard file $ERRORS.

o The program is terminated.

If default error handling 1is in effect when a runtime
error/diagnostic results in a low level enviromment:

] Control returns to the place where the routine was called

(the call site).

° Another error/diagnostic results at the call site because of
the return from a called routine with an uncleared error.

For simplicity, the return and resulting error/diagnostic are
collectively referred to as an error return. Note that diagnostics
are saved in chronological order.

Revision B Runtime Error Processing 6-3

Error Processing Overview

Error handling now continues in the calling routine. The next
action depends on whether default or user handling is in effect in
the new environment.

If default error handling remains in effect in each new environment,
control 1is transferred upward from call site to call site.

This series of error returns continues until user handling is in
effect in some enviromment, or until the top level enviromment is
reached with default handling still in effect.

All the errors in such a series, including the original error, are
associlated with the final error in the series. If this final error
is cleared through user handling, all the associated errors are also
cleared and the corresponding diagnostics are deleted.

Runtime Error/Diagnostic Results
DEFAULT HANDLING USER HANDLING

If top level If low level
environment: environment:
Saved

diagnostics

printed.

Program

terminated.

Error return

results.
DEFAULT USER
HANDLING HANDLING

6-4 BASIC for NOS/VE Usage Revision B

Error Processing Overview

User Error Handling

The ON ERROR statement is used to activate user error handling
within an enviromnment.

This means that:

. An ON ERROR statement in an internal routine applies only to
that internal routine.

° An ON ERROR statement in the portion of an external routine
that is outside of all embedded internal routines does not
apply to those embedded routines.

The ON ERROR statement specifies where control is to be transferred
if a runtime error occurs in its environment. Ideally, the
statements next executed either eliminate or bypass any problems
resulting from the error that has occurred. Note that these
statements can simply ignore the error, although this could cause
further problems.

Suppose that user error handling is in effect when a runtime
error/diagnostic results.

If a previous error in the current environment has not yet been
cleared:

) Another error/diagnostic results because concurrent errors

in an enviromment cannot be handled.

[The diagnostics that have not been deleted are written to
the NOS/VE standard file $ERRORS.

o The program is terminated.

Otherwise, control passes to the line specified in the governing ON
ERROR statement, and one of three outcomes eventually occurs.,

Revision B Runtime Error Processing 6-5

Error Processing Overview

The following are the possible outcomes:

. A RESUME statement is reached. If a RESUME statement is
executed:

- The error in the current environment, and all of its
associated errors are cleared.

- The corresponding diagnostics are deleted.

- Control is transferred to one of three places,
depending on the specific form of the RESUME
statement.

[The program terminates with an uncleared error. If the
program terminates before an error is cleared, the
diagnostics that have not been deleted are written to the
NOS/VE standard file $ERRORS.

[An error return occurs. If control returns from an
environment (by an EXIT FUNCTION, END FUNCTION, EXIT SUB, or
END SUB statement) without clearing an error, an error
return occurs. Error handling now continues in the calling
routine. The next action depends on whether default or user
error handling is in effect in the new environment.

6-6 BASIC for NOS/VE Usage Revision B

Error Processing Overview

User Error Handling Process Model

Runtime Error/Diagnostic Results

DEFAULT HANDLING USER HANDLING
ON ERROR executed. If concurrent
errors in current
If low level enviromment :
eavironment Error/Diagnostic
exited: results.
Saved diagnostics
printed.
If RESUME executed: Program terminated.
Error return Error and those
results. associated cleared.
Corresponding If main program ends:
DEFAULT USER diagnostics deleted. Saved diagnostics
HANDLING HANDLING Control transferred printed.

as indicated.

Revision B Runtime Error Processing 6-~7

Error Processing Overview

Error Processing Model

Di

If top 1
environm
Saved

diagnost
printed.
Program
terminat.

Runtime Error/Diagnostic Results

EFAULT HANDLING

evel If low level
ent: environment:
ics

ed.

Error return

results.

DEFAULT
HANDLING

USER
HANDLING

USER HANDLING

If concurrent
errors in current
environment:

ON ERROR executed.

If low level

enviroment Error/Diagnostic
exited: results.
Saved diagnostics
printed.

If RESUME executed:
Error and those
associated cleared.
Corresponding
diagnostics deleted.
Control transferred
as indicated.

Program terminated.

If main program ends:
Saved diagnostics
printed.

Sample Error Processing

10
20

REM Main Program
ON ERROR GOTO 40
CALL A

30

SUB A
*%*x** “Error {1
“Error Return

.

END SUB “A

40

50

6-8 BASIC for NOS/VE Usage

“Error Handling

RESUME NEXT

Error/Diagnostic #1 results at the line labeled 30.
Under default handling, an error return (error #2)
occurs as control passes to the line labeled 20.

Under user handling in the new enviroument, which
was activated by the ON ERROR statement
(labeled 10), control is transferred to the line
labeled 40.

When the RESUME statement (labeled 50) is executed,
error #2 and the assoclated error #1 are cleared.
The corresponding diagnostics are deleted.

Control passes to the statement following the one
that caused the final error in the series. That
is, control passes to the line following the line
labeled 20.

Revision B

ERL Function

ERL Function

Purpose Returns the label associated with the statement whose
execution caused the error in the current environment.

Format ERL

ERL has no parameters. The value returned is always an
integer. If no error exists in the current environment,
the default value O is returned.

Remar ks If a program has no labels, every statement is
associated with the default value 0. The ERL function
always returns the value 0, whether an error exists or

note.

Revision B Runtime Error Processing 6-9

ERL Function

Examples

Suppose A receives the value 0.0 through the INPUT

statement. The resulting division by zero in the
line labeled 30 causes an error. The value 30 (the

label associated with the IF-THEN statement) is
returned by the ERL function reference and printed.

ON ERROR GOTO 70
INPUT A
30 IF B/ A > 0 THEN 500

.

70 PRINT ERL

In this example, the error is division by zero. The
line causing the error has no label associated with
it and the ERL function returns the value 0.

ON ERROR GOTO 70
A=0:B=35
IF B / A > 0 THEN 500

70 PRINT ERL

In the example, the error is also division by zero.
The ERL function returns the value 20 which is the
statement label of the line nearest the preceeding
label to the line causing the error.

ON ERROR GOTO 70
A=0

20 B=5
IF B/ A > O THEN 500

70 PRINT ERL

6-10 BASIC for NOS/VE Usage Revision B

ERR Function

ERR Function

The ERR function returns the number that identifies the
uncleared error (if any) in the current environment.

Purpose

Format

Remarks

Examples

Revision C

ERR

ERR has no parameters. The value returned is always an
integer. The value O is returned i1f no error exists in
the current environment.

If an error in the current environment:

- Is a NOS/VE BASIC runtime error, the ERR
function returns the value of the 4-digit status
condition code for the error.

- Was induced with the ERROR statement. The ERR
function returns the value of the error number
specified in the ERROR statement.

After an error in the current environment is cleared
with the RESUME statement, the ERR function returns
the value 0.

Suppose A receives the value 0.0 through the INPUT
statement. The resulting division by zero in the
line labeled 30 causes an error. The ERR function
reference returns the value 5003, the status
condition code for a divide fault. This value is
printed.

ON ERROR GOTO 70
INPUT A
30 IF B/ A > O THEN 500

70 PRINT ERR

The error was induced in this example using the
ERROR statement at label 20. The next ERR function
reference at label 70 returns the value 1 which is
the error number specified in the ERROR statement.

ON ERROR GOTO 70
10 LET A = 10
20 IF A = 10 THEN ERROR 1

70 PRINT ERR

Runtime Error Processing 6-11

Runtime Diagnostic Format

Runtime Diagnostic Format

Purpose A NOS/VE BASIC runtime diagnostic has the format:
Format --77Z-- ERR = ###, ERL = NNN in module ***: error
description)
ZZZ Replaced by FATAL or CATASTROPHIC,

ik

NNN

kkk

error description

depending on the severity of the
error. A catastrophic error cannot
be cleared with user error handling.

Replaced by the status condition
code identifying the error. This
code is a 4-digit integer of the
form xxxx.

Replaced by the NOS/VE BASIC line
label associated with the statement
that caused the error.

Replaced by the name of the external
routine containing the error. The
name $MAIN is specified for the main
program.

Provides a brief description of the
error that occured.

Remarks For a complete listing of the NOS/VE BASIC runtime error
diagnostics, see the NOS/VE Diagnostic Messages manual.

6~12 BASIC for NOS/VE Usage

Revision E

Examples

Revision C

Runtime Diagnostic Format

This short program causes the runtime diagnostic
below to be issued.

10 LET A = -2
20 LET B = A~(0.5)
END PROGRAM

—--FATAL-- ERR = 5251, ERL = 20 in module $MAIN:
Negative number raised to nonintegral power.

In this short program, label 20 is omitted and the
associated label 10 appears in the diagnostic
below. If a program has only a few labels, the
associated label (or default value 0) provided in a
runtime diagnostic does less to pinpoint the
location of the error.

10 LET A = -2
LET B = A~(0.5)
END PROGRAM

——FATAL-- ERR = 5251, ERL = 10 in module $MAIN:
Negative number raised to nonintegral power.

Runtime Error Processing 6-~13

ON ERROR Statement

ON ERROR Statement

Purpose Specifies where control is to be transferred if a
runtime error occurs in the current environment.

Format ON ERROR GOTO O
ON ERROR GOTO 1label

0 Default error handling is activated.

label Label of the line to which control is
transferred if an error occurs in the current
environment.

Remarks ° If 0 is specified, default error handling is
activated, overriding any user error handling that
is in effect because of a previously executed ON
ERROR statement.

. If a label is specified, user error handling is
activated, and an error causes control to pass to
the line with the specified label.

Examples User error handling is activated by the ON ERROR
statement., If DIVISOR receives the value O through the
INPUT statement, the resulting division by zero on the
next statement causes an error. Control passes to the
line labeled 300 for user error handling.

ON ERROR GOTO 300
INPUT DIVISOR
LET RECIPROCAL = 1 / DIVISOR

Ideally, the statements executed after a branch with the
ON ERROR statement either eliminate or bypass any
problems resulting from the error that has occurred.
Note that these statements can simply ignore the error,
although this could cause further problems.

The ERL and ERR library functions are provided as aids

to error handling. These functions help determine the
location and cause of an error.

6-14 BASIC for NOS/VE Usage Revision B

RESUME Statement

RESUME Statement

Purpose Clears the error and then transfers control to the
specified statement.

Format RESUME
RESUME 0
RESUME NEXT
RESUME label

0 Control returns to the statement that caused the
error in the current environment. This
statement is reexecuted.

NEXT Control passes to the statement following the
one that caused the error in the current
environment.

label Label of the line to which control is
transferred.
Remarks ° The RESUME statement:

- Clears the runtime error in the current
enviromment, and all of its associated errors.

- Deletes the corresponding diagnostics without
printing them.

- Transfers control as indicated by the specific

form used.

° A runtime error results if a RESUME statement is
executed when no error exists in the current
environment.

Revision B Runtime Error Processing 6-15

RESUME Statement

Examples Suppose the function reference G(X) in the line labeled
150 causes an error. Control passes to the line labeled
300 and user error handling begins. The RESUME
statement clears the error, deletes the corresponding
diagnostic, and transfers control as specified by #*#*%,
If 0 is specified, control returns to the line labeled
150 An infinite loop could result if the error
handling does not eliminate the problem. If NEXT is
specified, control passes to the line labeled 160. If a
label is specified, control transfers to that label.

ON ERROR GOTO 300
150 IF G(X) > 7.0 THEN END ~ Causes an error.
160 REM Branch to here if RESUME NEXT is executed.

300 REM Begin user error handling.

RESUME #*#*#*

6-16 BASIC for NOS/VE Usage Revision B

ERROR Statement

ERROR Statement

Purpose

Format

Remarks

Examples

Revision D

Simulates the occurrence of a specified error.

ERROR errnum

errnum Numeric expression whose value, when rounded to
the nearest integer, specifies the number of the
error to be simulated.

If the specified error number is a 4-digit status
condition code for a NOS/VE BASIC runtime error, the
corresponding error is induced. Otherwise, an
error/diagnostic results because an unrecognized error
has occurred. In either case, a subsequent ERR function
reference returns the specified error number.

. This simulates the occurrence of an error that is
unknown to NOS/VE BASIC. A subsequent ERR function
reference returns the value 1.

ERROR 1

] This simulates the occurrence of the error resulting
from division by zero. A subsequent ERR function
reference returns the value 5003.

ERROR 5003

. In this program, error 000l is induced in the line
labeled 100. Error/Diagnostic 0001 results. User
error handling calls subroutine HANDLE. Error 0002
is induced in the line labeled 220.

Error/Diagnostic 0002 results. User handling in the
new environment clears error 0002, deletes
diagnostic 0002, and passes control to the EXIT SUB
statement. Control then passes to the END statement
and the program terminates. Since error 000l was
never cleared, diagnostic 0001 is written to the
NOS/VE standard file SERRORS.

100 ON ERROR GOTO 150 : ERROR 0001
150 CALL HANDLE
END
SUB HANDLE
220 ON ERROR GOTO 240 : ERROR 0002
EXIT SUB
240 RESUME NEXT
END SUB “HANDLE

Runtime Error Processing 6-17

STOP Statement

STOP Statement

Purpose Stops program execution and returns control to the
environment or utility from which you executed the BASIC
program.

Format STOP

The STOP statement can occur any number of times in a
program,

Example The following example shows how to use the STOP
statement.

PRINT " Enter C to continue, S to stop."”
INPUT A$
IF (AS = "8") or (AS$ = "s") THEN STOP

® 6-18 BASIC for NOS/VE Usage Revision E

N

)

User-Defined Functions

This chapter describes the two types of user-defined functions:
expression functions and block functions.
Function Overview cececcccccescecssosssssecssscssssoccssscsscee
Expression FUnctions eeesecccesrsccsccssccscsossacsccsccecssossccse
Block Function StTUCLUTE eceescescccccroovssanscssssassssssssosse
Block Function Specification eeescesecccoscssssccsssnssssnee
Block Function BodY eeecesceccsccccrsossssssssosssssssescans
END FUNCTION Statement eecesescesssccvsssscscsscssscccaccsns
EXIT FUNCTION Statement eceecesecscessocscsssvsascsssssscscse
Sample Block Function eececseecesccocesssacoccscscoccscoses
External vs. Internal FunctionS seesecccsosscosccssccscscssecne
COMMON Statement seecocecsocssssssssssssscsssssssscscsssssssssce
Function Name Declaration seessccsssesceosssssssccessossscncccne

Block Function Calls seeeesssccsscsvsesccscsssscsccscscscasocsase

Block Function ParametersS seseesccsessvscccsssccssessccscscvssoassne

7-10
7-11
7-12
7-13
7-14
7-17
7-18
7-19

7-21

User-Defined Functions 7

A user-defined function is a procedure that returns a single value.

This chapter describes the two kinds of NOS/VE BASIC user-defined
functions: expression functions and block functions. Expression
functions are simple single-statement functions. Block functions
are more powerful multi-statement structures.

Function Overview

A function is a procedure that returns a value to the place in an
expression where the procedure was called. The returned value is
usually computed from the values of actual parameters, which are

supplied when the function is called.

Every user—~defined function has two components:
. The function specification.

° The function body.

The function specification stipulates that a function is being
defined and provides a function name. A list of formal parameters
might also be included.

The function body computes the returned value.

A formal parameter is a variable or array that acts as a placeholder
for an actual parameter. A formal parameter is used within the
function body to show how the corresponding actual parameter is
involved in producing the returned value.

Any formal parameters used in the function body are also listed in
the function specification component. The formal and actual
parameter lists must be in one-to-one correspondence. The number of
parameters is limited only by the NOS/VE maximum line length.

Revision B User-Defined Functions 7-1

User-Defined Functions

NOTE

The result of a lack of correspondence between formal and actual
parameter lists depends on the specific case. Possible results
include a compile-time error, a runtime diagnostic that seems
inappropriate because it comes from the loader, or incorrect
computations without notification.

A function is called by referencing its name and providing a list of
actual parameters (if any). Each actual parameter is passed to its
corresponding formal parameter in the function body, where it can be
used in computing the returned value.

The specific manner in which an actual parameter is passed to a
formal parameter is referred to as parameter passing.

For block functions, parameter passing style 1s important because it
determines whether a change to a formal parameter affects the
corresponding actual parameter.

The returned value is substituted for the function reference that

made the call. This value has the same data type as that of the
function name.

7-2 BASIC for NOS/VE Usage Revision B

Expression Functions

Expression Functions

Purpose

Format

Revision B

Specifies the function name, optional parameter list and
function body.

DEF funname

funname

fplist

exp

fplist = exp

Identifier naming the function. The data
type of the function name establishes the
data type of the returned value.

Optional formal parameter list whose format
is discussed below.

Expression whose value is returned by the
function. This expression can contain both
formal parameters and other variables. Its
value must be compatible with the data type
established by the function name.

A formal parameter 1list for an expression function has

the format:

(fpl , £fp2 , «.. , fpN)

fpJ

Variable denoting the Jth formal parameter,
where (1 <= J <= N). The data type of this
formal parameter must be compatible with the
data type of the corresponding actual
parameter. However, an integer value can be
passed to a real formal parameter. A real
value can be passed to an integer formal
parameter.

User-Defined Functions 7-3

Expression Functions

Format An expression function is called by referencing its name
(cont) and providing an actual parameter list (if
appropriate). The returned value is substituted for the

function reference and has the data type of the function
name.

An expression function reference has the format:
funname aplist

funname Name of the function.

aplist Optional actual parameter list used only if

a formal parameter list appears in the
function specification statement.

An expression functions actual parameter list has the
format:

(apl , ap2 , «.. , apN)

apJ Expression denoting the Jth actual
parameter, where (1 <= J <= N). The value
of this expression must be compatible with
the data type of the corresponding formal
parameter.

7-4 BASIC for NOS/VE Usage Revision B

Expression Functions

Remarks [The DEF statement defining an expression function
must be executed before the function can be called.

An expression function:

- Cannot be defined recursively.

- Can be used to define other expression
functions, provided each function is defined

before it is first referenced.

- Cannot be passed a whole array as an actual
parameter.

- Is known only to the external routine that
contains it.

Revision B User-Defined Functions 7-5

Expression Functions

Examples

The expression function TRAP.AREA computes the area

of a trapezoid from the height H and the lengths of
the bases Bl and B2. The function reference in the

PRINT statement returns the value 36.0.

DEF TRAP.AREA(H,B1,B2)

= *H*(Bl + B2)
PRINT TRAP.AREA(4.0,10.0,

0.5
8.0)
The expression function CHAPTER$ constructs a
chapter heading from the chapter number N7 and the
chapter title S$. The library function STR$ is used
in the string construction. The function reference

in the PRINT statement returns the value "
8. INVESTMENT STRATEGY".

DEF CHAPTER$(NZ,S$) = STR$(N%Z) + ". " + S$
PRINT CHAPTERS(8,"INVESTMENT STRATEGY')

The expression function FNA has no parameters. The
function output is computed using the current value
of X.

DEF FNA = X"2 + SIN(X)

This program fragment prints the value 5.35.
DEF FNA(X) = 10.0*X"3 + 4.0

LET AC1) = 0.3
PRINT FNA(A(1))

NOTE

It is harmless to have a formal parameter in an
expression function with the same name as another
variable in your program. Changing one will not
change the other. Also, different expression
functions within the same external routine can use
the same formal parameter names.

7-6 BASIC for NOS/VE Usage Revision B

Block Function Structure

Block Function Structure

A block function is a multi-statement user—defined function whose
function body i1s a block. A routine can supply data to a block
function through parameters. In addition, data can be shared
between a routine and a block function through variables that are
accessible to both routines.

Unlike an expression function, a block function can be defined
recursively and can take a whole array as an actual parameter.

This section describes block function structure.

Revision B User-Defined Functions 7~7

Block Function Structure

Block Function Specification

Purpose

Format

Remarks

Specifies that a function is being defined, provides a
function name, and lists the formal parameters (if any).

EXTERNAL FUNCTION funname fplist

EXTERNAL Optional keyword used only to specify an
external function. If omitted, the
function specified is internal.

funname Identifier naming the function. The data
type of the function name establishes the
data type of the returned value.

fplist Optional formal parameter list whose format
is discussed below.

A formal parameter list for a block function has the
format:

(fpl , fp2 , +.. , fpN)

fpJ Variable or formal array (defined below)
denoting the Jth formal parameter, where (1 <=
J <= N). The data type of this formal
parameter must be the same as that of the
corresponding actual parameter. An integer
value cannot be passed to a real formal
parameter. A real value cannot be passed to an
integer formal parameter.

A formal array is an array name followed by parentheses
that contain zero or more commas. The number of
dimensions is one more than the number of -commas
supplied. The formal array dimension bounds are
established by the actual array being passed to it.

7-8 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Block Function Structure

An external block function named LIST$ is
specified. 1Its only formal parameter 1s a
two~dimensional string array. LIST$ returns a

result of type string.

EXTERNAL FUNCTION LIST$(SS$(,))

An internal block function named SAMPLE is
specifieds There are two parameters: integer
variable and one-dimensional real array. SAMPLE
returns a result of type real.

FUNCTION SAMPLE(NZ,B())

An internal block function with no parameters

specified.

FUNCTION NO.PARAMETERS

User-Defined Functions 7-9

Block Function Structure

Block Function Body

Purpose

Format

Remarks

Contains the statements that perform the tasks for the
calling routine and compute the returned value. The
body of a block function follows the function
specification statement. Within the function body, the
value to be returned is assigned to the function name.

LET funname = xxx
funname Name of the function.
XXX Expression whose value must be compatible

with the data type established by the
function name.

If no such assignment is made, the default initial value
(zero or the null string, as appropriate) is returned,
and a warning is issued. As in all assignment
statements, the keyword LET is optional.

7-10 BASIC for NOS/VE Usage Revision B

Block Function Structure

END FUNCTION Statement

Purpose

Format

Remar ks

Revision B

Designates the physical end of the function, and follows
the function body. Every block function must end with
an END FUNCTION statement.

END FUNCTION

The END FUNCTION can appear only once in a block
function.

The END FUNCTION statement for an external function
must be the last statement of the routine”s last
line.

The END FUNCTION statement transfers control to the
function reference which made the function call.
The returned value is then substituted for the
function reference.

A runtime error results if a block function is
exited while it contains an uncleared error.

For more information about clearing runtime errors,
see chapter 6.

User-Defined Functions 7-11

Block Function Structure

EXIT FUNCTION Statement

Purpose Transfers control to the function reference which made
the function call. The returned value 1s then
substituted for the function reference.

Format EXIT FUNCTION
The EXIT FUNCTION can appear any number of times within
a function body.

Remar ks ° A runtime error results if a block function is
exited while it contains an uncleared error.

° For more information about clearing runtime errors,
see chapter 6.

7-12 BASIC for NOS/VE Usage Revision B

Block Function Structure

Examples The following shows an example using the EXIT FUNCTION
statement.

EXTERNAL FUNCTION SAMPLES$(N)
“ This function converts positive integer arguments
to single-letter codes using modulo arithmetic.

-

-

T e The Function Body —————=—=—————===
DEFINT N,X

“~ Return the null string if input is nonpositive.
IF N <= 0 THEN LET SAMPLE$ = '"' : EXIT FUNCTION

Convert input to range O through 25.

LET X = (N + 25) MOD 26

Convert to ASCII range code for uppercase letters.
LET Y = X + 65

Return string containing single-letter.

SAMPLES = CHR$(Y)

B End of Function Body =——==———===———--
END FUNCTION

-

Revision C User—-Defined Functions 7-13

External vs. Internal Functions

External vs. Internal Functions

Block functions are classified as either external or internal. An
external function:

. Is an external routine that performs tasks for a calling

routine and returns a single value.

. Is declared to be external by including the keyword EXTERNAL
in the function specification statement.

] Can be compiled as a separate program unit.

° Cannot be contained within another external routine, but can
contaln embedded internal routines.

° Shares data with other external routines through the COMMON
statement (the next topic) or the passing of parameters.

Declarative statements in an external function apply to all embedded
internal routines.

7-14 BASIC for NOS/VE Usage Revision B

External vs. Internal Functions
An internal function:

[Is an internal routine that performs tasks for a calling
routine and returns a single value.

o Is declared internal, by default, when the keyword EXTERNAL
is omitted from its subroutine specification statement.

. Cannot be compiled as a separate program unit.

° Must be contained within a host external routine, and cannot
contain embedded routines.

° Has access to all the data of its host external routine.
Declarative statements within an internal function apply to the

entire host external routine.

The external and internal classifications apply only to routines.

Revision B User-Defined Functions 7-15

External vs. Internal Functions

Examples

An external function named SAMPLEZ is specified. It
has three formal parameters: integer variable, real
variable, and two-dimensional string array. SAMPLEZ

returns a result of type integer.

EXTERNAL FUNCTION SAMPLE%(N%,X,TS$(,))

An internal function named TEST is specified. It
has two formal parameters: one-dimensional integer
array and integer variable. TEST returns a result

of type real.

FUNCTION TEST(S%(),Y)

7-16 BASIC for NOS/VE Usage Revision B

COMMON Statement

COMPMON Statement

Allows scalar variables and arrays to be shared among
external routines.

Purpose

Format

Remarks

Examples

Revision B

COMMON objlist

objlist Nonempty list of scalar variables and formal

arrays that are separated by commas. The
listed objects are made accessible to all
external routines.

A COMMON statement must precede the first reference
to any variable or array that it specifies as a
common object.

A variable that is made accessible to other external
routines is not necessarily shared. A variable is
shared among a group of external routines only when
it appears in a COMMON statement in each of the
routines.

Common arrays that are dimensioned differently in
separate external routines will acquire the size
specified by the declarations of the first module
seen by the loader to which it is visible and the
shape declared by the last module seen by the loader
to which it is visible. This is an artifact of the
way common areas are handled by the loader. Warning
errors are likely, but not certain, in the loapmap
for such a program.

The scalar variables D and C, and the
two-dimensional array B are made accessible to all
external routines.

COMMON D, C,B(,)

Order is not important in a COMMON statement. Thus,
the following two statements are equivalent.

COMMON X, Y

COMMON Y, X

User-Defined Functions 7-17

Function Name Declaration

Function Name Declaration

Purpose

Format

Remarks

Examples

Declares names to be those of block functions.

DECLARE EXTERNAL FUNCTION fnlist

EXTERNAL Optional keyword EXTERNAL used to declare

names as those of external functions. If
omitted, specified names are declared to be
those of internal functions.

fnlist List of function names that are separated by

commas. Names that appear in this list are
declared to be those of block functionmns.

This statement cannot be used to declare names for
expression functions.

It might be necessary to reference an internal
function before it is defined. The function
declaration statement makes such a reference
possible.

This statement designates the name STATS as that of
an external function.

DECLARE EXTERNAL FUNCTION STATS

This statement designates the names REQUEST and
RECEIPT as those of internal functions.

DECLARE FUNCTION REQUEST,RECEIPT

7-18 BASIC for NOS/VE Usage Revision B

Block Function Calls

Block Function Calls

Purpose

Format

Remarks

Revision B

A block function is called by referencing its name, and
providing an actual parameter list (if appropriate).
The value returned is substituted for the function
reference, and has the data type of the function name.

funname
funname

aplist

aplist
Name of the function.
Optional actual parameter list used only if

a formal parameter list appears in the
function specification statement.

A block function”s actual parameter list has the format:

(apl , ap2 , ... , apN)

apJ

Expression or actual array (defined below)
denoting the Jth actual parameter, where (1 <= J
{= N). The data type of this actual parameter
must be the same as that of the corresponding
formal parameter. An integer value cannot be
passed to a real formal parameter. A real value
cannot be passed to an integer formal parameter.

e An actual array is an array name followed by
parentheses that contains zero or more commas. The
number of dimensions is one more than the number of
commas supplied. The formal array dimension bounds

are
it.

established by the actual array being passed to

. If execution control reaches the FUNCTION statement
of an internal function without using a function
call:

The statements in the internal function are not
executed .

Control passes to the statement following the
function”s END FUNCTION statement. If this END
FUNCTION statement is the last statement of the
main program, the program is terminated.

User-Defined Functions 7-19

Block Function Calls

Examples ° This reference calls the function SURVEY using the
one-dimensional real array FORM as the actual
parameter.

SURVEY (FORM())

° For the internal block function below, the function

reference:
SPLIT.DEF(1.0,2) Returns the value 1.5.
SPLIT.DEF(3.0,2) Returns the value 33.5.

FUNCTION SPLIT.DEF(X,N%)
RESTORE 90 : READ A,B
IF X <= N7% THEN

LET SPLIT.DEF = A*X + B
ELSE

LET SPLIT.DEF = A*X"2 + B
ENDIF

90 DATA 4.0,-2.5
END FUNCTION

7-20 BASIC for NOS/VE Usage Revision B

Block Function Parameters

Block Function Parameters

Scalar variables or whole arrays can be used as actual parameters.
When a change is made to the corresponding formal parameter, the
actual parameter is also changed.

Hence, if a block function modifies:

] a formal array

] a formal scalar variable that was passed the value of an

actual scalar variable

then the corresponding actual parameter is also modified. For
arrays, this includes modifications made with the DIM and ERASE
statements.
Actual parameters can also be constants, single array elements,

substrings, or nontrivial expressions. When a change is made to the
corresponding formal parameter, the actual parameter is not changed.

Revision B User-Defined Functions 7-21

Block Function Parameters

The presence of parentheses does not protect an actual parameter

from modification in the calling routine. The function references
F(X) and F((X)) are equivalent.

However, use of a nontrivial expression, such as the one used in the

function reference F(X+0.0), does protect the actual parameter from
modification in the calling routine.

NOTE

Remember that for block functions, integer values cannot be passed
to real formal parameters. Real values cannot be passed to integer
formal parameters. For expression functions, the mixing of type
integer and type real data is permitted.

If you are using external routines check the load map for errors.

7-22 BASIC for NOS/VE Usage Revision B

Block Function Parameters

The following similar program fragments shows when actual parameters
are modified.

“FRAGMENT #1 “FRAGMENT #2
DEFINT A,X DEFINT A,X
FUNCTION ADD(X) FUNCTION ADD(X)
LET X =X +1 LET X =X + 1
LET ADD = X LET ADD = X
END FUNCTION “ADD END FUNCTION “ADD
LET A = 3 LET A(1) = 3

PRINT A, ADD(A), A PRINT A(l), ADD(A(1)), A(l)

In fragment #1, the scalar A is passed to the scalar X. When X is
incremented in the function, so is A. The values 3, 4, and 4 are
printed.

In fragment #2, the array element A(1l) is passed to the scalar X.
When X is incremented in the function, A(l) is not altered. The
values 3, 4, and 3 are printed.

Revision B User-Defined Functions 7-23

O

O

C Mathematical Library Functions 8

- o e ot Ty

The chapter describes the NOS/VE BASIC supplied functions that
(/“\\ perform various mathematical operations.

Exponential FunctionsS ceeeesececsocscoscesssoscescscocesssssoese 8-2

COSH Function sesececcecsescsssscsccsssvssvsssssscensscsces 3—2
EXP FUNction eeosesscsccceccsssssasooscscscscccssscscscncss 8=3
LOG FUnction ecececevsscoovcssosossesscsssssssssnccnsscccce 8—4
LOG10 Function seseesccesceccsesscscscossossscssoscssvssese 8=5
SINH Functlon ceeeseccecsssccsccocosoecscsssscessccsccscvsee 86
TANH FUNCtiOon eeescecsescccocsscsscsrsscscsccsscsocsscsscnes 87

Trigonometric FunctionS sseceesecscossscescosscscssccsoccssosscees 88

ACOS FUncCtion eeeseeceecsescocessoscsssscososssssscnssssoss 8~8

ASIN Function eeeesecesscecsasccesssesseesscccsssceasscsssssss 8~9

ATN Function sescesccceccsoscccssssscscsnsconnsscsacssescescece 8-10
COS Function secececsscecsvsecccccsssssesscssscscseccsccccsscscne 8—I1
DEG FUNCtion eseeeceosssssccccossssssccsssosssscscssssssssss 8—12
RAD Functlon eesececsscescsceesncecscscccscsssssconcssscssssse 8—13
SIN FUNCLION secevcessvocsocccscossccssscsssccsseancscssssee 8=14
TAN FUunction eecseeccccecsssscscccssssssscsessssssccscossssose 8—15

(/ ,\ Number Characteristic FunctionS eceeeecssssescescsccsocssssssces 8-16

ABS Function eesecececssecocscsscsssccssssssssosssscsssscsses 3-16
CDBL FUNCtiON eoscesessssscvcsossassssssvessssssccscsccssssss 8~17
CEIL Function eeeccescccssssssscscocssssscnsccsssscscsvscoce 8—18
CINT FUNCtion ececesccecssscssccsssssssscsscsosssccsccsssces 8-19
CSNG FUnction eeesecsssssccccccccassssssssssososccccssssscce 8-20
FIX FUNCtion eeeececscccvcsocccocssssccscscscsosscsonsssnsss 8-21
FP FUnCtion ececseeeseccsssscrsscosvsencssessccsssssssoncnssosses 8=22
INT FUNCtiON seceeseescccosscccscscsccssssssssssssscsssssnse 8-23
SGN FunCtion eeseccccescscossscssasescsccssssssscsssssscscs 9=24

Miscellaneous FuncCtiOnNS eceeeccecessccsesccecssssscsossscssssssce 8=25

MAX Function eescecesocsssesccosssssccccssssscsctssssssscocee 8-25
MIN FUNCtion eescececcscossoccccocssssscccsssscscasssssssscs 8—26

RND FUncCtion eesscecoveossoocssssosscsssoscssssscsssscssssse 8—27
SQR FUNCLION eecosceesscscccosssrsccsssssssccsccssccscscccse 8-28

RANDOMIZE Statement ececeececscocccevesessscscorsscscvsscvcssoes 8—29

/N RANDOMIZE Statement eeeeseecssscscssssccccsssassccsncssscses 8=30
v_”;‘

("T

Mathematical Library Functions 8

NOS/VE BASIC provides many library (or built-in) functions.

This chapter describes the mathematical library functions. They
have been divided into groups of related functions. The functions
within each category are described in alphabetical order. The
RANDOMIZE statement is also discussed because it relates to the use
of the RND function.

The string library functions are described in the String Processing
chapter. Each of the other library functions is discussed in a
topic that relates to the specific use of that function.

An alphabetical list of all the NOS/VE BASIC library functions
appears in the Library Functions Index appendix. It includes a
categorical cross-reference to help you visualize each function in
context.

Revision B Mathematical Library Functions 8-

Exponential Functions

Exponential Functions

The Exponential Functions include exponential, logarithmic, and
hyperbolic functions.

COSH Function

Purpose Returns the hyperbolic cosine of the value of an
argument .
Format COSH(number)

number Numeric expression whose value x can be either
integer or real. The magnitude of x must be
less than 4095 * LOG(2).

Remarks The value returned is ((EXP(x) + EXP(-x))/2.0). The
result is always real.

Examples . The following are examples of the COSH function.

COSH(0) Returns the value 1.0.

COSH(L0G(2.0)) Returns the value 1.25.

8-2 BASIC for NOS/VE Usage Revision B

Exponential Functions

EXP Function

Purpose

Format

Remarks

Examples

Revision B

Returns the power of the irrational number (e) specified
by the value of an argument. This function is the
inverse of the LOG function.

EXP(number)
number Numeric expression whose value x can be either
integer or real. The magnitude of x must be

less than 4095 * LOG(2) or a runtime error
results.

The value returned is (e”x). The result is always real.

] The following are examples of the EXP function.

EXP(0) Returns the value 1.0.

EXP(LOG(4.8)) Returns the value 4.8.

Mathematical Library Functions 8-3

Exponential Functions

LOG Function

Purpose Returns the base (e) logarithm of the value of an
argument. This function is the inverse of the EXP
function.

Format LOG(number)

number Numeric expression whose value x can be either
integer or real, and must be positive.

Remarks The value returned is that number y, such that
(e”y = x). The result is always real.

Examples ° The following are examples of the LOG function.

LOG(1) Returns the value 0.0.

LOG(EXP(3.2)) Returns the value 3.2.

8-4 BASIC for NOS/VE Usage Revision B

Exponential Functions

LOG10 Function

Purpose Returns the base ten logarithm of the value of an
argument .
Format 10G10(number)

number Numeric expression whose value x can be either
integer or real, and must be positive.

Remarks The value returned is that number y, such that
(10®y = x). The result is always real.

Examples . The following are examples of the LOG10 function.
L0G10(1000) Returns the value 3.0.
LOG10(1.0E5) Returns the value 5.0.
L0G10(0.01) Returns the value -2.0.

Revision B Mathematical Library Functions 8-5

Exponential Functions

SINH Function

Purpose Returns the hyperbolic sine of the value of an argument.
Format SINH(number)
number Numeric expression whose value x can be either

integer or real. The magnitude of x must be
less than 4095 * LOG(2).

Remarks The value returned is ((EXP(x) - EXP(-x))/2.0). The
result is always real.

Examples e The following are examples of the SINH function.

SINH(O) Returns the value 0.0.

SINH(LOG(4.0)) Returns the value 1.875.

8-6 BASIC for NOS/VE Usage Revision B

Exponential Functions

TANH Function

Purpose Returns the hyperbolic tangent of the value of an
argument.
Format TANH(number)

number Numeric expression whose value x can be either
integer or real. There are no restrictions on x.

Remarks The value returned is
(EXP(x) - EXP(-x))/(EXP(x) + EXP(~x)). The result is
always real.

Examples . The following are examples of the TANH function.

TANH(0) Returns the value 0.0.

TANH(LOG(2.0)) Returns the value 0.6.

Revision B Mathematical Library Functions 8-7

Trigonometric Functions

Trigonometric Functions

The Trigonometric Functions include trigonometric, inverse
trigonometric, and angle conversion functions.

ACOS Function

Purpose

Format

Remar ks

Examples

Returns the inverse cosine of the value of an argument.
This function complements the COS function.

ACOS(number)
number Numeric expression whose value x can be either

integer or real. The magnitude of x must be
less than or equal to one.

The function returns the radian measure of the angle y,
with (0 <= y <= PI), whose cosine is x. The result is
always real.

® The followlng are examples of the ACOS function.

ACOS(1) Returns the value 0.0.

ACOS(COS(1.5)) Returns the value 1.5.

8-8 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

ASIN Function

Purpose

Format

Remarks

Examples

Revision B

Returns the inverse sine of the value of an argument.
This function complements the SIN function.

ASIN(number)
number Numeric expression whose value x can be either

integer or real. The magnitude of x must be
less than or equal to one.

The function returns the radian measure of the angle y,
with (-PI/2 <= y <= PI/2), whose sine is x. The result

is always real.

. The following are examples of the ASIN function.

ASIN(O) Returns the value 0.0.

ASIN(SIN(0.5)) Returns the value 0.5.

Mathematical Library Functions 8-9

Trigonometric Functions

ATN Function

Purpose Returns the inverse tangent of the value of an argument.

Format ATN(number)

number Numeric expression whose value x can be either
integer or real. There are no restrictions on x.

Remarks Returns the radian measure of the angle y, with (-PI/2 <
y < PI/2), whose tangent is x. The result is always
real.

Examples [The following are examples of the ATN function.
ATN(O) Returns the value 0.0.

ATN(TAN(1.0)) Returns the value 1.0.

8-10 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

COS Function

Purpose Returns the cosine of the value of an argument. This
function complements the ACOS function.

Format C0S(radians)

radians Numeric expression whose value x is an angle
measured in radians, and can be either
integer or real. The magnitude of x must be
less than 2747.

Remarks The value returned is always real.
Examples e The following are examples of the COS function.
€0s(0) Returns the value 1.0.

COS(AC0S(0.4)) Returns the value 0.4.

CO0S(RAD(180)) Returns the value -1.0.

Revision E Mathematical Library Functions 8-11

Trigonometric Functions

DEG Function

Purpose Converts the value of an argument from radians to
degrees. This function 1s the inverse of the RAD
function.

Format DEG(radians)
radians Mumeric expression whose value x is an angle

measured in radians, and can be either
integer or real.

Remarks The value returned is the degree measure of x. The
result is always real.

Examples e The following are examples of the DEG function.

DEG(ACOS(-1.0)) Returns the value 180.0.

DEG(RAD(135)) Returns the value 135.0.

8-12 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

RAD Function

Purpose

Format

Remar ks

Examples

Revision B

Converts the value of an argument from degrees to
radians. This function is the inverse of the DEG
function.

RAD(degrees)
degrees Mumeric expression whose value x is an angle

measured in degrees, and can be either
integer or real.

The value returned is the radian measure of x. The
result is always real.

[The following are examples of the RAD function.

SIN(RAD(90.0)) Returns the value 1.0.

RAD(DEG(3.6)) Returns the value 3.6.

Mathematical Library Functions 8-13

Trigonometric Functions

SIN Function

Purpose Returns the sine of the value of an argument. This
function complements the ASIN function.

Format SIN(radians)

radians Numeric expression whose value x is an angle
measured in radians, and can be either
integer or real. The magnitude of x must be
less than 2747,

Remarks The value returned is always real.
Examples . The following are examples of the SIN function.
SIN(0) Returns the value 0.0.

SIN(ASIN(0.9)) Returns the value 0.9.

SIN(RAD(-90)) Returns the value -1.0.

8-14 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

TAN Function

Purpose Returns the tangent of the value of an argument. This
function complements the ATN function.

Format TAN(radians)
radians Numeric expression whose value x 1is an angle
measured is radians and can be either

integer or real. The magnitude of x must be
less than 2747,

Remarks The value returned is always real.

Examples e The following are examples of the TAN function.

TAN(O) Returns the value 0.0.
TAN(ATN(0.3)) Returns the value 0.3.
TAN(RAD(45)) Returns the value 1.0.

Revision B Mathematical Library Functions 8-15

Number Characteristic Functions

Number Characteristic Functions

The Number Characteristic Functions include functions that change
numeric data type, and manipulate the whole, fractional, and sign
components of numbers.

ABS Function

Purpose Returns the absolute value of the value of an argument.
Format ABS(number)
number Mumeric expression whose value x can be

either real or integer.

Remarks The value x is returned if x is nonnegative. The value
(-x) is returned if x is negative. In other words, the
value of the argument is made positive. The data type
of the result is the same as that of the argument.

Examples o The followling are examples of the ABS function.

ABS(4.5) Returns the real value 4.5.
ABS(3) Returns the integer value 3.
ABS(-2) Returns the integer value 2.
ABS(-3.0 Returns the real value 3.0.

8-16 BASIC for NOS/VE Usage Revision B

Number Characteristic Functions

CDBL Function

Purpose Returns a real representation of the value of an
argument. This function is equivalent to the CSNG
function.

Format CDBL(number)
number Numeric expression whose value x can be

either real or integer.

Remarks This function converts x to type real.

Examples ° The following are examples of the CDBL function.

CDBL(-5) Returns the value -5.0.

CDBL(4.7) Returns the value 4.7.

Revision B Mathematical Library Functions 8-17

Number Characteristic Functions

CEIL Function

Purpose Returns the smallest integer that is at least as large
as the value of an argument.

Format CEIL(number)

number Numeric expression whose value x can be either
real or integer.

Remarks The ceiling value returned is the smallest integer whose

location on the real number line is either at, or to the
right of x. The result is always integer.

Examples [The following are examples of the CEIL function.
CEIL(5.9) Returns the value 6.
CEIL(2.0) Returns the value 2.
CEIL(-1) Returns the value -1.
CEIL(-3.2) Returns the value =-3.

8-18 BASIC for NOS/VE Usage Revision B

Number Characteristic Functions

CINT Function

Purpose Returns the value of an argument rounded to the nearest
integer.

Format CINT(number)
number Numeric expression whose value x can be

either real or integer.

Remarks The value returned is always integer.

Examples ° The following are examples of the CINT function.

CINT(5.7) Returns the value 6.
CINT(1.5) Returns the value 2.
CINT(-2.5) Returns the value -3.
CINT(-8.4) Returns the value -8.

Revision B Mathematical Library Functions 8-19

Number Characteristic Functions

CSNG Function

Purpose Returns a real representation of the value of an
argument. This function is equivalent to the CDBL
function.

Format CSNG(number)
number Numeric expression whose value x can be

either real or integer.

Remarks This function converts x to type real.

Examples . The following are examples of the CSNG function.
CSNG(-4) Returns the value -4.0.
CSNG (3.6 Returns the value 3.6.

8-20 BASIC for NOS/VE Usage Revision B

Number Characteristic Functions

FIX Function

Purpose Returns the value of an argument truncated to an integer.
Format FIX(number)
number Numeric expression whose value x can be

either real or integer.

Remarks This function deletes all the digits of x that are to
the right of the decimal point. The result is always
integer.

Examples ° The following are examples of the FIX function.

FIX(8.9) Returns the value 8.
FIX(-1.2) Returns the value -1.
FIX(-3.6) Returns the value -3.
FIX(-5) Returns the value -5.

Revision B Mathematical Library Functions 8-21

Number Characteristic Functions

FP Function

Purpose Returns the fractional part of the value of an argument.
Format FP(number)
number Numeric expression whose value x can be

either real or integer.

Remarks This function returns the digits of x that are to the
right of the decimal point. The result is always real.
If x is an integer, has no digits to the right of a
decimal point, or has a magnitude that is greater than
10718, then a zero value is returned. A zero value is
always returned with no sign. Otherwise, the returned
value has the same sign as x does.

Examples . The following are examples of the FP function.
FP(7.9) Returns the value 0.9.
FP(5.), FP(-4) Return the value 0.0.
FP(-6.2) Returns the value -0.2.

8-22 BASIC for NOS/VE Usage Revision B

INT Function

Number Characteristic Functions

Purpose Returns the greatest integer that is no larger than the
value of an argument.

Format INT(number)

number Numeric
integer

Remarks The floor value
location on the
left of x. The

expression whose value x can be either
or real.

returned is the largest integer whose
real number line is either at, or to the
result is always integer.

Examples e The following are examples of the INT function.

INT(5.6)

INT(-3)

INT(~5.8)

INT(-8.1)

Revision B

Returns the value 5.

Returns the value -3.

Returns the value -6.

Returns the value -9.

Mathematical Library Functions 8-23

Number Characteristic Functions

SGN Function

Purpose Returns an integer that represents the sign of the value
of an argument.

Format SGN(number)

number Numeric expression whose value x can be either
real or integer.

Remarks The value 1 is returned if x is positive. The value 0

is returned if x is zero. The value -1 is returned if x
is negative. The result is always integer.

Examples . The following are examples of the SGN function.
SGN(4) Returns the value 1.
SGN(0.0) Returns the value O.
SGN(~5.6) Returns the value -1.

8-24 BASIC for NOS/VE Usage Revision B

Miscellaneous Functions

Miscellaneous Functions

The Miscellaneous Functions include functions not addressed in the
previous categories.

MAX Function

Purpose Returns the largest of the values of two arguments.

Format MAX(numl , num2)
numl, num?2 Numeric expressions whose values can be

either integer or real.

Remarks If either numl or num2 is real, the value returned is
real., If both numl and num2 are integer, the value
returned is integer.

Examples . The following are examples of the MAX function.

MAX(5.0,3.2) Returns the real value 5.0.
MAX(-4,-5.2) Returns the real value -4.0.
MAX(-8,-2) Returns the integer value -2,

Revision B Mathematical Library Functions 8-25

. Miscellaneous Functions

MIN Function

Purpose Returns the smallest of the values of two arguments.

Format MIN(numl, num2)

numl, num2 Numeric expressions whose values can be
either integer or real.

Remarks If either numl or num2 is real, the value returned is

real. If both numl and num2 are integer, the value
returned is integer.

Examples e The following are examples of the MIN function.
MIN(5.0,3.2) Returns the real value 3.2.
MIN(=4,-5.2) Returns the real value -5.2.
MIN(-8,-2) Returns the integer value -8.

8-26 BASIC for NOS/VE Usage Revision B

Miscellaneous Functions

RND Function

Purpose

Format

Remarks

Revision B

Returns a random number between zero and one, exclusive.

RND
RND(seed)
seed Numeric expression whose value x is a seed for

the random number generator. This value can be
either integer or real.

If called without an argument, or if x is positive, the
next value of the pseudo-random sequence is returned.

I1f x is zero, the most recently returned value is
repeated. If x is negative, the random number generator
is reseededs A given negative value always produces the
same pseudo-random sequence.

Mathematical Library Functions 8-27

Miscellaneous Functions

SQR Function

Purpose Returns the principal square root of the value of an
argument.
Format SQR(number)

number Numeric expression whose value x can be either
integer or real, and must be nonnegative.

Remarks The value returned is (x"0.5). The result is always
real.
Examples . The following are examples of the SQR function.
SQR(9) Returns the value 3.0.
SQR(16.0) Returns the value 4.0.
SQR(1.44) Returns the value 1.2.

8-28 BASIC for NOS/VE Usage Revision B

RANDOMIZE Statement

RANDOMIZE Statement

The NOS/VE BASIC random number generator produces a sequence of
numbers that appears to be randomly generated. .

After the initial random number is generated, each subsequent number
is derived from the previous. For this reason, these numbers are
more accurately referred to as pseudo-random numbers. Billions of
such numbers are generated before the sequence repeats.

By default, the same pseudo-random sequence 1is generated each time a
program is run. To create a different sequence, you must specify a
seed. This numeric value generates a different initial random
number, thereby producing a new sequence. However, a given seed
always produces the same pseudo-random sequence.

The random number generator can be reseeded using either the
RANDOMIZE statement or the RND function.

Revision B Mathematical Library Functions 8-29

RANDOMIZE Statement

RANDOMIZE Statement

Purpose

Format

Remarks

Reseeds the random number generator. This statement has
the format:

RANDOMIZE seed

seed Optional numeric expression whose value x is the

seed for the random number generator, and can be
either integer or real.

If SEED is omitted in interactive mode, the system
asks you to input a seed value. The following
prompt is displayed:

Random number seed?

If SEED is omitted in batch mode, the system reads a
line of data from the file $INPUT.

A given sequence can be repeated by reseeding with a
constant numeric expression.

An easy way to produce a seed that changes with each
program run is to use the last two digits of the
system supplied variable TIME$. This variable
accesses the NOS/VE internal clock. The following
RANDOMIZE extracts these two digits, converts them
to a numeric value, and reseeds the random number
generator with this value.

RANDOMIZE VAL(RIGHTS(TIMES,2))
The random number generator can also be reseeded by

calling the RND library function with a negative
argument.

8-30 BASIC for NOS/VE Usage Revision E

O

C
@

(’—\

Subroutines

f -

Subroutine OVerview cscececscssscscesccsscsssssccsssccacosnsnccne
Subroutine StTUCLUTE eseeeocesoossocsssssosssosssssesscssvcocsss
Subroutine Specification seseeecesseccssccesssssssssccnsnns
Subroutine BOdY eeesesssccocscsccsscscsssccsssssccssasocsscs
END SUB Statement ceeosecesessvssesscossnscsccssssosasssonccss
EXIT SUB Statement ecesssscccscscesscssacsscscssscsocsasscscosson
External vs, Internal SubroutinesS ecescveocccecssscssccssscscsnss
COMMON StAtement eoeeececsscssesscsscsssscaccssssseossossnsonsse
Subroutine Name Declaration evesessccscscossssscsssscccccsccsses
Subroutine Calls ceeeescecesscossssssccsscsssessssscssassossscnss
Subroutine ParameterS secesceecscscccssoscssscssssnsccssssssosss

CALLX Statement sseececcccscessscccsssosssscsssnsccsosssssssssne

Unit-measured Application Accounting seeececescsscscocccccscses

Subroutines 9

A subroutine is a procedure that handles specific tasks for another
routine. The results of these tasks might be needed repeatedly by a
single program or commonly needed by many programs.

Code accessed through a GOSUB statement is not considered a
subroutine in NOS/VE BASIC. (It is in some earlier versions of
BASIC.) The GOSUB/RETURN construct does provide a branch and return,
but it does not define a structured program unit nor provide for the
passing of information through parameters.

This chapter discusses NOS/VE BASIC subroutines. It describes how
FORTRAN or COBOL subprograms can be accessed from within a NOS/VE

BASIC program. It also describes how to enable application usage

billing based on application units.

Revision E Subroutines 9-1

Subroutine Overview

Subroutine Overview

A NOS/VE BASIC subroutine is a routine that performs specific tasks
for a calling routine. To perform these tasks, a subroutine usually
requires the values of actual parameters, which are supplied by the
calling routine when the subroutine is called.

A subroutine can return data to the calling routine through the
values of actual parameters. In addition, data can be shared
between a routine and a subroutine through variables that are
accessible to both routines.

Every subroutine has three components:

. The subroutine specification.
. The subroutine body.
° The END SUB statement.

The subroutine specification stipulates that a subroutine is being
defined and provides a subroutine name. A list of formal parameters
might also be included.

The subroutine body performs the tasks for the calling routine. Any
values that are to be returned to the calling routine as actual
parameters are computed in the subroutine body.

The END SUB statement designates the physical end of the subroutine.

A formal parameter is a variable or array that acts as a placeholder
for an actual parameter.

The role of a formal parameter within the subroutine body depends on
the purpose of its corresponding actual parameter. When an actual
parameter is used to:

] Supply data to the subroutine from the calling routine, the
corresponding formal parameter is used to show how this data
is involved in performing the subroutine tasks.

] Return data to the calling routine from the subroutine, the
corresponding formal parameter is used to store the value to
be returned.

It is possible for a single formal parameter to play both of these
roles.

9-2 BASIC for NOS/VE Usage Revision B

Subroutine Overview

Any formal parameters used in the subroutine body are also listed in
the subroutine specification component. The formal and actual
parameter lists must be in one-to-one correspondence. The number of
parameters is limited only by the NOS/VE maximum line length.

NOTE

The result of a lack of correspondence between formal and actual
parameter lists depends on the specific case. Possible results
include a compile-time error, a runtime diagnostic that seems
inappropriate because it comes from the loader, or incorrect
computations without notification. For error checking be sure to
check the loap map.

A subroutine is called by referencing its name in a CALL statement
and providing a list of actual parameters (if any). When the call
is made, each actual parameter is associated with its corresponding
formal parameter in the subroutine body. Values passed to the

subroutine from the calling routine can then be used in performing

the subroutine tasks.

The specific manner in which an actual parameter is passed to a
formal parameter is referred to as parameter passing.

Parameter passing is important because it determines whether a
change to a formal parameter affects the corresponding actual
parameter.

When the subroutine is exited (with an END SUB or EXIT SUB
statement), any values to be returned are passed from formal
parameters in the subroutine to the corresponding actual parameters
in the calling routine.

Revision B . Subroutines 9-3

Subroutine Structure

Subroutine Structure

This section describes subroutine structure.

Subroutine Specification

Purpose

Format

Specifies that a subroutine is being defined, provides a
subroutine name, and lists the formal parameters (if
any). A subroutine begins with a subroutine
specification statement.

EXTERNAL SUB subname fplist

EXTERNAL Optional keyword, used only to specify an
external subroutine. If omitted, the
subroutine specified is internal.

subname Plain name identifying the subroutine. A
subroutine name has no data type associated
with it (even 1f its first letter is
referenced in a type declaration statement).

fplist Optional formal parameter list whose format
is discussed below.

A formal parameter list for a subroutine has the format:
(fpl , fp2 , «e. , £pN)

fpJ Variable or formal array (defined below)
denoting the Jth formal parameter, where (1
= J <= N). The data type of this formal
parameter must be the same as the
corresponding actual parameter. An integer
value cannot be passed to a real formal
parameter. A real value cannot be passed to
an integer formal parameter.

A formal array is an array name followed by parentheses
that contain zero or more commas. The number of
dimensions is one more than the number of commas
supplied. Dimension bounds of the formal array are the
same as those of the actual array that are passed to the
formal array.

9-4 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Subroutine Structure

An external subroutine named QUESTIONS is
specified. 1Its only parameter is a two—dimensional
string formal array.

EXTERNAL SUB QUESTIONS(TS$(,))

An internal subroutine named REARRANGE is
specified. It has two formal paramters. X is a
real variable and R%() is a one-dimensional integer
array.

SUB REARRANGE(X,RZ())

An internal subroutine with no parameters is

specified.

SUB NO.PARAMETERS

Subroutines 9-3

Subroutine Structure

Subroutine Body

The body of a subroutine follows the subroutine specification

statement.

A subroutine body is a block containing the statements

that perform the tasks for the calling routine. Any values that are
to be returned to the calling routine as actual parameters are
computed in the subroutine body and assigned to the appropriate
formal parameters.

END SUB Statement

Purpose

Format

Remarks

Designates the physical end of the subroutine and
follows the subroutine body. Every subroutine must end
with an END SUB statement.

END SUB

The END SUB can appear only once in a subroutine.

The END SUB statement for an external and an
internal subroutine must be the last statement of
the routine”s last line.

The END SUB statement transfers control to the
statement following the CALL statement that made the
subroutine call. This makes available to the
calling routine any returned values.

A runtime error results if a subroutine is exited
while it contains an uncleared error.

For more information about clearing runtime errors,
see chapter 6.

9-6 BASIC for NOS/VE Usage Revision B

Subroutine Structure

EXIT SUB Statement

Purpose Transfers control to the statement following the CALL
statement that made the subroutine call. This makes
available to the calling routine any returned values.

Format EXIT SUB

The EXIT SUB can appear any number of times within a
subroutine body.

Remarks ° A runtime error results if a subroutine 1is exited
while it contains an uncleared error.

° For more information about clearing runtime errors,
see chapter 6.

Examples The following subroutine shows an example using the EXIT
SUB statement.

EXTERNAL SUB TRIANGLE(SIDEl,SIDE2,SIDE3,PERIMETER, AREA)
“ This subroutine computes the area (using Heron’s

“ formula) and perimeter of a triangle from the lengths
“ of the sides.

-

7 e The Subroutine Body =~====—————w———

IF (SIDE1l < 0) OR (SIDE2 < 0) OR (SIDE3 < 0) THEN
LET PERIMETER = 0 : LET AREA = 0 : EXIT SUB

ENDIF
LET PERIMETER = SIDEl + SIDE2 + SIDE3
LET S = 0.5*PERIMETER
LET TEMP = S*(S - SIDE1)*(S - SIDE2)*(S - SIDE3)
LET AREA = SQR(TEMP)

—————————————— End of Subroutine Body —-—r=————=—---

Revision B Subroutines 9-7

External vs. Internal Subroutines

External vs. Internal Subroutines

Subroutines are classified as either external or internal. An
external subroutine:

Is an external routine that performs tasks for a calling
routine.

Is declared to be external by including the keyword EXTERNAL
in the subroutine specification statement.

Can be compiled as a separate program unit,

Cannot be contained within another external routine, but can
contain embedded internal routines.

Shares data with other external routines through the COMMON
statement or the passing of parameters.

Declarative statements in an external subroutine apply to all
embedded internal routines.

An internal subroutine:

Is an internal routine that performs tasks for a calling
routine.

Is declared internal, by default, when the keyword EXTERNAL
is omitted from the subroutine specification statement.

Cannot be compiled as a separate program unit.

Must be contained within a host external routine, and cannot
contain embedded routines.

Has access to all the data of its host external routine.

Declarative statements within an internal subroutine apply to the
entire host external routine.

9-8 BASIC for NOS/VE Usage Revision E

External vs. Internal Subroutines

Examples o An external subroutine named MATH is specified. It
has two parameters. X is a real variable and Y(,)
is a two—-dimensional real formal array.

EXTERNAL SUB MATH(X,Y(,))

] An internal subroutine named PROCESS is specified.
It has three parameters: NZ%, an integer variable,
A, a real variable, and R$(), a one-dimensional
string formal array.

SUB PROCESS(NZ,A,R$())

Revision B Subroutines 9-9

COMMON Statement

COMMON Statement

Purpose

Format

Remarks

Examples

Shares scalar variables and arrays with external
routines through the COMMON statement.

COMMON objlist

objlist Nonempty list of scalar variables and formal

arrays that are separated by commas. The
listed objects are made accessible to all
external routines.

A COMMON statement must precede the first reference
to any variable or array that it specifies as a
common object.

A variable that is made accessible to other external
routines is not necessarily shared. A variable is
shared among a group of external routines only when
it appears in a COMMON statement in each of the
routines.

The scalar variables D and C, and the
two-dimensional array B are made accessible to all
external routines.

COMMON D,C,B(,)

Order is not important in a COMMON statement. Thus,
the following statements are equivalent.

COMMON X, Y

COMMON Y,X

9-10 BASIC for NOS/VE Usage Revision B

COMMON Statement

Subroutine Name Declaration

Purpose Declares names to be those of subroutines.

Format DECLARE EXTERNAL SUB snlist

EXTERNAL Optional keyword EXTERNAL used to declare
names as those of external subroutines. If

omitted, specified names are declared to be
those of internal subroutines.

snlist List of subroutine names that are separated

by commas. Names that appear in this list
are declared to be those of subroutines.

Remar ks A subroutine declaration statement that declares an
external subroutine must precede the first call to that
subroutine.

Examples . This statement designates the name ADDRESS.LIST as
that of an external subroutine.

DECLARE EXTERNAL SUB ADDRESS.LIST

° This statement designates the names CHECK and
SCHEDULE as those of internal subroutines.

DECLARE SUB CHECK, SCHEDULE

Revision B Subroutines 9-11

Subroutine Calls

Subroutine Calls

Purpose

Format

Remarks

Call a NOS/VE subroutine.

CALL subname aplist

subname

aplist

Name of the subroutine.

Optional actual parameter list used only if
a formal parameter list appears in the
subroutine specification statement.

An actual parameter list for a subroutine has the

format:

(apl , ap2 , «.. , apN)

apJ

Expression or actual array (defined below)
denoting the Jth actual parameter, where (1 <= J
{= N). The data type of this actual parameter
must be the same as that of the corresponding
formal parameter. An integer value cannot be
passed to a real formal parameter. A real value
cannot be passed to an integer formal parameter.

An actual array is an array name followed by

parentheses that contain zero or more commas. The
number of dimensions is one more than the number of
commas supplied. The formal array dimension bounds
are established by the actual array being passed to

it.

If execution control reaches the SUB statement of an
internal subroutine without using a CALL statement:

The statements in the internal subroutine are
not executed.

Control passes to the statement following the
subroutine”s END SUB statement. If this END SUB
statement is the last statement of the main
program, the program is terminated.

9-12 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Subroutine Calls

This statement calls the subroutine PAYROLL using
the two—dimensional string array NAMESS$ as the
actual parameter.

CALL PAYROLL(NAMESS$(,))

The following CALL statement CALL TRIANGLE
(3.0,4.0,5.0,P,A) calls the subroutine below to
compute the perimeter and area of a triangle with
sides of lengths 3.0, 4.0, and 5.0. The actual
parameters P and A receive the returned values 12.0
and 6.0, respectively.

EXTERNAL SUB TRIANGLE(SIDE1l,SIDE2,SIDE3, PERIMETER,AREA)

-

-

-

This subroutine computes the area (using Heron”s

formula) and perimeter of a triangle from the lengths

of the sides.

IF (SIDE1l < 0) OR (SIDE2 < 0) OR (SIDE3 < 0) THEN
LET PERIMETER = O : LET AREA = 0 : EXIT SUB

ENDIF

LET PERIMETER = SIDEl + SIDE2 + SIDE3

LET S = 0.5*PERIMETER

LET TEMP = S*(S - SIDE1)*(S - SIDE2)*(S — SIDE3)

LET AREA = SQR(TEMP)

END SUB

Subroutines 9-13

Subroutine Parameters

Subroutine Parameters

Actual parameters that are scalar variables or whole arrays can be
passed. A dynamically dimensioned array can be passed as a
parameter to an external routine compiled with statically

dimensioned arrays. A statically dimensioned array can be passed as
a parameter to an external routine compiled with dynamically
dimensioned arrays. When a change is made to the corresponding

formal parameter, the actual parameter is also changed. A runtime
diagnostic results if an external routine attempts to redimension a
statically dimensioned array parameter.

Actual parameters that are constants, single array elements,
substrings, or nontrivial expressions will not be modified even if
the corresponding formal parameter is modified.

(A nontrivial expression is one that involves at least one operation
or function reference.)

Hence, if a subroutine modifies:

e a formal array

e a formal scalar variable that was passed the value of an
actual scalar variable

then the corresponding actual parameter is also modified. For
arrays, this includes modifications made with the DIM and ERASE
statements. A subroutine compiled with statically dimensioned
arrays cannot redimension an array parameter.

If a subroutine modifies a formal scalar variable that is passed:

L] a constant
e a single array element
® a substring
e a nontrivial expression
then the corresponding actual parameter is not modified.
The presence of parentheses does not protect an actual parameter

from modification in the calling routine. The subroutine calls CALL
SUBROUTINE(X) and CALL SUBROUTINE((X)) are equivalent.

9-14 BASIC for NOS/VE Usage Revision C

Subroutine Parameters

However, use of a nontrivial expression, such as the one used in the
subroutine call CALL SUBROUTINE(X+0.0), does protect an actual

parameter from modification in the calling routiune.

NOTE

Remember that for subroutines, integer values cannot be passed to
real formal parameters. Real values cannot be passed to integer
formal parameters.

The following similar program fragments contrast when actual
parameters are modified.

“FRAGMENT #1 “FRAGMENT #2
DEFINT A,X DEFINT A,X
SUB ADD5(X) SUB ADD5(X)
LET X = X+5 LET X = X+5
END SUB END SUB
LET A = 3 : PRINT A LET A(1) = 3 : PRINT A(1)

CALL ADD5(A) PRINT A CALL ADDS5S(A(1l)) : PRINT A(1l)

In fragment #1, the scalar A is passed to the scalar X. When X is
incremented in the subroutine, so is A. The values 3 and 8 are
printed.

In fragment #2, the array element A(l) is passed to the scalar X.

When X is incremented in the subroutine, A(l) is not altered. The
values 3 and 3 are printed.

Revision C Subroutines 9-15

CALLX Statement

CALLX Statement

Purpose

Format

Remarks

Provides an interface to subroutines written in
languages that conform to the FORTRAN calling sequence.

CALLX fsubname aalist

fsubname Name of the FORTRAN (or other) subroutine
being called. The name must be a plain name
and cannot contain periods.

aalist Optional list of actual arguments.

The actual argument list in a CALLX statement has the
format:

(aal , aa2 , «.. , aaN)

aaJ Expression or actual array (defined below)
denoting the Jth actual argument, where
(1 <= J <= N). The data type of this actual
argument must be the same as that of the
corresponding formal argument in the FORTRAN
subroutine. Actual string arrays cannot be
passed through the CALLX statement.

An actual array is an array name followed by a pair of
parentheses that contains zero or more commas. The
number of dimensions of the actual array is one more
than the number of commas supplied. There is no
mechanism by which a FORTRAN (or other) subroutine can
alter the dimension bounds of an actual array argument.

9-16 BASIC for NOS/VE Usage Revision E

CALLX Statement I

Examples The BASIC program (left half of example below) assigns
values to a one-dimensional array, prints the array
using the internal subroutine, and then calls a FORTRAN
subroutine. The array is passed to the FORTRAN
subroutine as an actual parameter.

The FORTRAN subroutine (right half of example below)
replaces the Jth array element by the sum of the values
of all elements whose subscripts are less than or equal
to J, where (1 <= J <= M).

The BASIC program then reprints the array.

REM BASIC PROGRAM C FORTRAN SUBROUTINE
DEFINT A,I,L,U : DIM A(=5:5) SUBROUTINE RUNSUM(A,M)
LET LB = LBOUND(A) : UB = UBOUND(A) INTEGER A(M)
FOR I = LB TO UB D0 10 J = 2,M

LET A(I) =1 A(J) = A(J) + AQJ - 1)
NEXT I 10 CONT INUE
CALL ARRAY.PRINT("BEFORE:") RETURN
CALLX RUNSUM(A(),UB - LB + 1) END
CALL ARRAY.PRINT("AFTER:")
END

SUB ARRAY.PRINT(S$)
PRINT S$: PRINT
FOR I = LB TO UB

PRINT A(I);
NEXT I
PRINT : PRINT
END SUB
END PROGRAM

Suppose that the binary object programs for the BASIC
program and the FORTRAN subroutine are in the $LOCAL
files LGO and FLGO, respectively. If the working
catalog is $LOCAL, the BASIC program can be executed
with the following SCL command.

EXECUTE_TASK (LGO,FLGO)
The output from this program appears below.
BEFORE:
-5 -4 -3 -2-1 01 2 3 4 5
AFTER:

-5 -9 -12 ~14 -15 -15 -14 -12 -9 -5 0

Revision E Subroutines 9=17

Unit-measured Application Accounting

Unit-measured Application Accounting

The BCPDAUA subroutine enables application usage billing based on
application units.

You, the programmer, define the units to measure. For example, you
might want to measure the number of calls to a particular function.
In that case, the function call is an application unit.

To count application units, you first set up an array of integers.
Each element of the array represents a unit to be counted. You then
call the BCPDAUA subroutine to tell NOS/VE the location of the array
of counters.

As the program executes, you update the array. For example, if the
first counter represents a call to a particular function, every time
that function is called, you increment the first counter.

When your task terminates, NOS/VE accesses the array and emits the
values to the job account log as an application unit statistic.

BCPDAUA Subroutine

Purpose Begins the process of counting application units by
telling NOS/VE the location of the array of integers.

Format CALLX BCPDAUA (array, size, status)

array A single-dimension array of 1 to 63 integers.
All elements in the array must be zero or
positive. Each element represents an event to
be counted while the program is executing, such
as a call to a particular function.

size An integer from 1 to 63 specifying the size of
the array.

status String variable to receive the status resulting
from this CALLX BCPDAUA statement. The string
variable must be 256 characters in length; you
must set all 256 characters to blank before
calling BCPDAUA.

If a status of '"NO ERROR." is returned, there were no
errors. Otherwise, the status contains the complete
error message.

® 9-18 BASIC for NOS/VE Usage Revision E

Remarks

Examples

Revision E

Unit-measured Application Accounting

e The BCPDAUA call must be in the program unit for
which application units are recorded.

e When you call the BCPDAUA subroutine, BCPDAUA in
turn calls the CYBIL procedure
CLP$DEFINE APPLIC UNIT ARRAY. Application usage
billing is based on the CYBIL statistic
AVC$SAPPLICATION UNITS (AV1l). For details on
application accounting and the

" CLPSDEFINE_APPLIC UNIT ARRAY procedure, see the
CYBIL System Interface and the NOS/VE Accounting
Analysis System manuals.

® You can use the Debug utility to execute a program
containing a CALLX BCPDAUA statement.

° The message text of any error is returned as the
status. The ON ERROR statement does not detect
errors generated by the BCPDAUA subroutine.

The following example shows how to call the BCPDAUA
subroutine., The NOS/VE Accounting Analysis System
manual describes how to display the resulting statistics.

option base 1

dim application.array%(3)

let stat$ = space$(256)

callx bcpdaua (application.array%Z(),3,stat$)

if mid$(stat$,1,9) <> "NO ERROR." then
print stat$

endif

application.array%(2) = 2

Subroutines 9-19@

O

(> Input and Qutput 10

(,\\ Interactive INPUt seececscesccsesscossoscscacssacssccssesesse 10-2

1
N’ INPUT Statement eeevescssscscccsesccccsscossnsscnssnssses 10=3
LINE INPUT Statement eeecesesesescossssconsscssssssssesse 10=-7

Interior Data SetS ceeesececsccsssessssessesassssssssssssnsss 10-10

DATA Statement ceseecesesssesssossscrascesscsssssscesssss 10-11
READ Statement ecceecessccsssscscsocscccsssscsssocscocsscossnsse 10-12.1
RESTORE Statement seeesoesscesscossscsssosssccscsssesssss 10-13

WIDTH Statement seecececcssccscsoesssscsscncsssssosesoasssssses LO=14
PRINT Statement secescecssevosssscssoccsosssssssnsosssssssesss 10-15

PRINT Statement FOrmat eeesecsssssssscsccosssssscsesssses 10-16
Print Zones and Comma FOrmat seeescecsscesssvssseesscasscss 10-18
Semicolon FOrmat seeesssescscccscsscsccccnscncesnnnsnnnss 10=20
SPC Format Function eeeeeesesecscscsscssssscosossoscsccssss 10-22
TAB Format Function seeeessccessescccsccssssessssssncesee 10-23

PRINT USING Statement seeeceeeesscessosscsscssssssasssssnssasss 10-25

/’\\ PRINT USING Statement FOrmAt seosessesessescscsccscsanncss 10-25
\ j String Format Characters eceeeessscescecsssssssssssesceses 10-28
Standard Numeric Format Characters ceesessescssceesessess 10-30
Special Numeric Format CharactersS ceseessccessssosseccsss 10-34
Format Characters as Literals eveeseccscessccssoessssssss 10-38
Scanning Format Strings eecececcscoscossccsccsssessssssss 10-39

WRITE Statement ceoeecosescesscscvssssssossssssscscssssesssssss 10—40

BEEP Statement esesessesesssscsacscssesssscsassssssssssssssse 10-42

Imput and OQutput 10

Data that is supplied to a program for processing is called input.
Data that is printed or stored as a result of program execution is
called output.

The input and output processes are collectively referred to as
Input/Output, abbreviated I/0.

This chapter discusses how a NOS/VE BASIC program receives input
from the terminal, accesses input from an interior data set, and
sends output to the terminal.

The discussion is based on the assumption that the default
connections for the standard files $INPUT and $OUTPUT are the NOS/VE
local files INPUT and OUTPUT. For interactive mode, this means that
input is received from the terminal, and output appears at the
terminal.

Specific details concerning I/O operations for arrays and files
appear in the Arrays and Files chapters.

Revision B Input and Qutput 10-1

Interactive Input

Interactive Input

Data that is supplied to a program from the terminal during run time
is called interactive input.

This section discusses the two BASIC statements which provide for
interactive input.

10-2 BASIC for NOS/VE Usage Revision B

Interactive Input

INPUT Statement

Purpose

Format

Revision B

Inputs data into an executing program from the terminal.

INPUT ; prompt varlist

H Optional semicolon, which serves no purpose
in NOS/VE BASIC. This option is provided
for compatibility with popular microcomputer
versions of BASIC.

prompt Optional message that can be used to prompt
the user for input.

varlist List of variables that are separated by
commas. This input variable list contains
the variables that recelve values from the
terminal.

If the PROMPT parameter is omitted, the system supplies
the string "? " when an INPUT statement is executed.
This default prompt indicates that data is expected.
You can specify a more elaborate prompt with the PROMPT
parameter. There are two formats:

prompt ;
prompt ,
prompt Quoted string constant containing the

message you want printed.

Appends the system prompt "? " to the
message you have provided.

we

, Specifies that the system prompt should not
be appended to the message.

Input and Output 10-3

Interactive Input

Remarks

Only the first 31 characters of a user prompt
(message combined with optional system prompt) is
displayed.

You can enter constants when the input prompt
appears at the terminal. Commas are used to
separate values.. All the data for a given INPUT
statement is entered after the prompt.

The number of characters that you can enter on an
input line interactively after the prompt cannot
exceed 128 characters. Commas used to separate data
items and spaces within quoted strings are counted
as part of the 128 characters. An attempt to enter
more than 128 characters results in the message:

Error in INPUT reply. Please respecify.

When you press RETURN, the values in the prompt line
are assigned to their corresponding variables in the
input variable list. There must be a one-to-one
correspondence between values in the input reply and
variables in the input variable list.

A numeric variable can only be assigned a numeric
value. Mixing of integer and real data types is
handled exactly as it is handled in an assignment
statement. Thus, an integer input for a real
variable 1s converted to type real. A real input
for an integer variable 1s rounded to the nearest
integer.

If a data value in a reply to an INPUT statement
begins with a quote, the value is assumed to be a
quoted string constant.

When a string begins with a quote (") it must also
contain a closing quote. The actual string is
between the quotes., If there is no quote at the
beginning, a quote within a string is treated as
part of the string.

Modified unquoted string constants (defined below)
can be entered as interactive input.

10-4 BASIC for NOS/VE Usage Revision D

Remarks
(cont)

Examples

Revision D

Interactive Input

A modified unquoted string constant is an unquoted
string constant that can contain an apostrophe or a
colon. Since the compiler never sees an input
reply, the restriction that these two characters be
used only as delimiters (when outside of a quoted
string) can be relaxed.

A comma in the data supplied in response to an input
prompt is interpreted as a separator. For example,
if the response to the statement INPUT a$,b$ is only
a comma (,), the response is interpreted as two null
strings (a$ and b$) separated by a comma.

You can enter a carriage return as an acceptable
null statement response to an INPUT statement
requiring only one data item. If more than one data
item is expected, as with INPUT a$,b$, then a
carriage return results in the error:

Error in INPUT reply. Please respecify.

If erroneous data is entered (including too few or
too many values), NOS/VE BASIC attempts to recover.
The prompt:

Error in INPUT reply. Please respecify.
is issued, and the system waits for the entire input

reply to be reentered.

In each example below, the second line shows what is
displayed at the terminal when the INPUT statement
in the first line is executed. Trailing spaces of
the prompt will be included.

INPUT A(1),F$(2:5),Z

?

INPUT "HOW MANY TRIALS"; NUMBER.OF.TRIALS
HOW MANY TRIALS?

INPUT "ENTER NAME AND ID NUMBER: ', N$,ID%
ENTER NAME AND ID NUMBER:

INPUT; "ENTER TWO POSITIVE INTEGERS: ", J%,K%
ENTER TWO POSITIVE INTEGERS:

Input and Output 10-5

Interactive Input

Examples e The following example shows the value on the right.
(cont)

INPUT A,B,C

? 100,,200 B=0

INPUT A$,BS

? HELLO, B$ = null string.

INPUT A$,BS AS = A"BC

? A"BC,ABC" BS = ABC"

Consider the following interactive sessions.
e The string "GRADE POINT AVERAGE" is assigned to TS.
The value 3.4] is assigned to X.

INPUT T$,X
? "GRADE POINT AVERAGE", 3.41

e The string "MAMA“S FAMOUS PIZZA: VARIETY #" is
assigned to Q$. The value 4 is assigned to NZ.
INPUT Q$,N%
? MAMA“S FAMOUS PIZZA: VARIETY #,4

e The string '"10. CHAPTER" is assigned to W$.
INPUT W$

? 10. CHAPTER

° Since the commas to separate data items in a string
are included in one input buffer, the number of a”s
and b“s in the example cannot exceed 127,

INPUT A$,BS

7 233338238 « s 4 s s e e s s s e s s e s+ s « o aaaa
aaaa .+ + + « o aaaa,bbbbbbbbb .+ + .+ & ¢ ¢ . oD

10-6 BASIC for NOS/VE Usage Revision D

Interactive Input

LINE INPUT Statement

Assigns an entire line of data to a single string
variable during interactive input.

Purpose

Format

Revision B

LINE INPUT ; prompt strvar

prompt

strvar

Optional semicolon permitted for compatibility
with popular microcomputer versions of BASIC.

Optional message that can be used to prompt the
user for input.

String variable that receives the input line.

If the PROMPT parameter is omitted, the system supplies
the string "? " when a LINE INPUT statement is
executed. This default prompt indicates that data is
expected. You can specify a more elaborate prompt with
the PROMPT parameter. There are two formats:

prompt ;
prompt ,

prompt

Quoted string constant containing the
message you want printed in the prompt.

Appends the system prompt "? " to the
message you have provided.

Specifies that the system prompt should not
be appended to the message.

Input and Output 10-7

Interactive Input

Remarks .

Only the first 31 characters of a user prompt
(message combined with optional system prompt) is
displayed.

You can enter text when the input prompt appears at
the terminal. All the input for a given LINE INPUT
statement must be entered on the prompt line. When
you press RETURN, the entire input reply is assigned
to the variable specified in the LINE INPUT
statement.

An input reply to a LINE INPUT statement has no
delimiters. Everything from the end of the prompt
to the carriage return is assigned to the variable
specified in the LINE INPUT statement.

Leading and trailing spaces can be included by using
the space bar. A quotation mark is treated exactly
like any other character, even if it is the first
character.

10-8 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Interactive Input

In each example below, the second line shows what is
displayed at the terminal when the LINE INPUT
statement in the first line is executed. Note
trailing spaces of the prompt will be included.

LINE INPUT T$(1)
?

LINE INPUT "WOULD YOU LIKE A RECEIPT"; R$
WOULD YOU LIKE A RECEIPT?

LINE INPUT "ENTER MESSAGE HERE: ", M$
ENTER MESSAGE HERE:

LINE INPUT; "ANSWER: ", S$
ANSWER:

Assume that the space bar is pressed one time after
the last L of STARGELL is typed, and then a carriage
return is issued. The following interactive
assigmment is equivalent to the statement below.

LINE INPUT "PLAYER”S NAME: ", P$

PLAYER”S NAME: "POPS" STARGELL
LET P$ = ""'"POPS"" STARGELL "

Note the existence of one trailing space.

Input and Output 10-9

Interior Data Sets

Interior Data Sets

Interactive input requires your active involvement during the
execution of a program. Instead, you might prefer to have data
supplied to a program from a data collection that is stored within
the program itself. Each data statement is composed of one or more

data items that is limited by the BASIC source line length of 255
characters.

This section describes how input can be supplied to a BASIC program
from an interior data set.

10-10 BASIC for NOS/VE Usage Revision D

Interior Data Sets

DATA Statement

Purpose

Format

Remarks

Revision D

Stores an interior data set within an external routine
through one or more DATA statements.

DATA datalist

datalist List of constants that are separated by

commas. Unquoted string constants can be
included.

The DATA statements in an external routine form a
single interior data set. However, these statements
need not be grouped on consecutive lines.

Each value in an interior data set must have a
representation that is compatible with the data type
of the variable that receives the value.

If a value in a DATA statement begins with a
quotation mark, the value is assumed to be a quoted
string constant since an unquoted string constant

cannot begin with a quotation mark.

A value in the interior data set is accessed through
the READ statement.

A DATA statement can provide null values to a READ
statement. (A null value assigns a 0 value to an
integer or real variable or the null string to a
string variable.)

A DATA statement provides a null value when it
specifies no data or a separator (,) without data.
For example, the following DATA statements each
supply one null value:

DATA
DATA ,10

DATA 10, ,20
DATA 10,20,

Input and Qutput 10-11

Interior Data Sets

Examples ° The following are examples of the DATA statemeuc..

DATA -3.2,8,STOP,1.23E5,-32,"START: FINISH"

DATA "I DON-T KNOW",I DO NOT KNOW,"X,Y, OR Z"

DATA JULIUS "DR. J" ERVING,"""MAGIC"" JOHNSON"

° The following example demonstrates the use of null
values from DATA statements. The first DATA
statement provides a null value for variable A and
the second DATA statement provides null values for
B, C, and D.

DATA

DATA, ,
READ A, B, C, D

10-12 BASIC for NOS/VE Usage Revision D

Interior Data Sets

READ Statement

Purpose Assigns a value to a variable from the interior data set
of an external routine through the READ statement.

Format READ wvarlist

varlist List of variables that are separated by
commas. This input variable list contains
the variables to be assigned values from the
interior data set.

Remarks e The values to be assigned to variables in the
variable list appear in DATA statements. Values are
assigned in sequential order, starting with the
first value in the first DATA statement. A pointer
keeps track of the next available value.

. Each time a value is read, the pointer advances one
item in the interior data set. When all the values
in a given DATA statement have been exhausted, the
pointer moves to the next DATA statement in the
external routine.

° A runtime error results if the number of values
remaining in the interior data set is too few to
satisfy an input variable list.

o A numeric variable can only be assigned a numeric
value. Mixing of integer and real data types is
handled exactly as it is handled in an assignment
statement. Thus, an integer input for a real
variable is converted to type real. A real input
for an integer variable is rounded to the nearest
integer.

Examples Assume that the pointer is set to the beginning of the
DATA statement when the READ statement is executed. The
variables A%, B, C$, and D$ are assigned the values 4,
4,0, "4", and "4", respectively.

READ A%,B,C$,D$
DATA 4,4 ,4,"4"

The pointer of an interior data set can be reset by the
RESTORE statement.

Revision D Input and OQutput 10-12.1/10-12.2@

Interior Data Sets

RESTORE Statement

Purpose

Format

Remarks

Examples

Revision B

Moves the pointer for the interior data set of an
external routine to a new DATA statement.

RESTORE label

label Optional line label identifying the DATA
statement to which the pointer is moved.

If a label is specified, the pointer moves to the

beginning of the first DATA statement associated with
the label. 1If the label is omitted, the pointer moves

to the beginning of the first DATA statement in the
external routine.

The following program shows examples of the RESTORE
statement.

DEFINT X - Z

READ XA, XB, XC, XD

RESTORE

READ YA, YB, YC, YD, YE, YF

RESTORE 10

READ ZA, ZB

PRINT XA; XB; XC; XD; YA; YB; YC; YD; YE; YF; ZA; ZB
e The Interior Data Set ———=——=——————-

2
10 DATA 3, 4,
7

The output from the above program appears below.

1 2 3 4 1 2 3 4 5 6 3 4

Input and Output 10-13

WIDTH Statement

WIDTH Statement

Purpose

Format

Remar ks

Examples

Sets the page width for output that is sent to the
terminal.

WIDTH pgwidth

pgwidth Numeric expression whose value, when rounded
to the nearest integer, specifies the page
width to be used for output to the terminal.

e The page width is the maximum number of characters
that can be printed before a carriage return is
generated.

If the page width:

- Exceeds the NOS/VE maximum page width, the
maximum is used.

- Is less than 14 (the length of a print
zone), a runtime error results.

If the length of a value to be printed:

- Exceeds the space available on the current
line, but is less than the page width, the
value is printed at the beginning of the
next line.

- Exceeds the page width, as much of it as can
fit on the current line is printed, and the
value is continued on as many subsequent
lines as needed.

. The page width specified is used until the program
ends, or until the page width is changed by another
WIDTH statement.

This statement sets the page width for output to the
terminal at 65 characters.

WIDTH 65

10~14 BASIC for NOS/VE Usage Revision B

PRINT Statement

PRINT Statement

This section discusses the NOS/VE BASIC statements and format
functions used for sending output to the terminal using the PRINT
statement.

Revision B Input and Output 10-15

PRINT Statement

PRINT Statement Forma_t

Purpose Print output at the terminal.

Format PRINT printlist

printlist Optional list of expressions and format
function references that are separated by
commas or semicolons. One or more spaces
between items is equivalent to a semicolon
specification. The last item can be
followed by a comma or semicolon.

Remarks . A carriage return is issued:
- If the print list is omitted.

- On completion of any PRINT statement whose print
list does not end with a comma, a semicolon, or
a format function reference.

[} The expressions in the print list are evaluated, and
their values are printed in sequence. The spacing
of the output is controlled by the punctuation that
follows each print list item and by the format
functions included in the print list.

. A numeric value printed by the PRINT statement:

- Is preceded by a space if the value is
nonnegative. No space precedes the minus sign
of a negative value.

- Is followed by a space (unless the value ends in

the last print position of a line, in which case
the trailing space is omitted).

10-16 BASIC for NOS/VE Usage Revision B

PRINT Statement

Remarks e The value of a real expression printed by the PRINT
(cont) statement is displayed:

- Without trailing zeros.

- With no zero digit to the left of the decimal
point if its magnitude is less than one.

= Without a decimal point (integer format) if its
fractional part is zero.

- In decimal (fixed point) format if it can be
represented as accurately in decimal format,
using seven or fewer digits, as it can in
exponential format. Otherwise, the exponential
(floating point) format, using one digit to the
left of the decimal point, is displayed.

[If the length of a value to be printed:

- Exceeds the space available on the current line,
but is less than the page width, the value is
printed at the beginning of the next line.

- Exceeds the page width, as much of it as can fit
on the current line is printed, and the value is
continued on as many subsequent lines as needed.

The following table shows several PRINT statements and

Examples
the resulting output:

PRINT Statement Qutput
PRINT 10.5°3 1157.625
PRINT -7.5%4 -3.,1640625E+3
PRINT 10730 1.E+30
PRINT 1.E30 1.E+30
PRINT +123.E20 1.23E+22
PRINT -.3E22 -3.E+21
PRINT .777E+18 7.77E+17
PRINT +.04E+26 4 ,E+24
PRINT +10.,5210E+3 10521
PRINT -7.6E1 =76

Revision E

Input and Output

10-17

PRINT Statement

Print Zones and Comma Format

The leftmost print position of a NOS/VE BASIC print line is
designated position one. The print line is divided into
l4-character print zones.

A comma in the print list of a PRINT statement moves the print
cursor to the beginning of the next zone. If there are no more
print zones in the current line, the cursor moves to the beginning
of the next line. This is the beginning of the next print zone.

A comma at the end of the print list of a PRINT statement works
exactly like a comma elsewhere in the print list. Printing
continues at the current cursor position when a subsequent PRINT,
PRINT USING, or WRITE statement is executed.

Examples The following is an example of a PRINT statement.
PRINT 4.25,-48,"GOOD ANSWER"

The value 4.25 is printed in zone one, print positions
2-5 (a leading space is provided). The value -48 is
printed in zone two, print positions 15~17 (no leading
space). The value "GOOD ANSWER" is printed in zone
three, print positions 29-39. A carriage return is
issued because the print list does not end with a comma,
semicolon, or format function. The output is as follows:

Zones: 1 2 3

Output : 4,25 -48 GOOD ANSWER

10-18 BASIC for NOS/VE Usage Revision B

PRINT Statement

Exanples In the following sample program, each line is labeled
for reference. The result of the execution of each line
is explained beneath the program.

10 WIDTH 56

20 PRINT 1,2,3,4,

30 PRINT "LONGER THAN ONE ZONE",5
40 PRINT 6,

50 PRINT

60 PRINT 7 : END

10: Terminal page width set at 56 characters (four print
zones) .

20: vValues 1, 2, 3, 4 printed in positions 2, 16, 30,
44, respectively. Ending comma causes cursor to
move to first print zone on the next line.

30: Value "LONGER THAN ONE ZONE" printed in positions
1-20. Value 5 printed in position 30. Carriage
return issued (no ending punctuation). Cursor moves
to start of print line three.

40: Value 6 printed in position 2. Cursor moves to
position 15.

50: Carriage return issued. Cursor moves to start of
print line four.

60: Value 7 printed in position 2. Carriage return

issued. Cursor moves to start of print line five.
Program ends.

The output is as follows:

Zones: 1 2 3 4
Output: 1 2 3 4
LONGER THAN ONE ZONE 5
6
7

Revision B Input and Output 10-19

PRINT Statement

Semicolon Format

A semicolon in the print list of a PRINT statement holds the print
cursor at its current position. The next value printed immediately
follows the last one printed.

This format causes printed string values to run together if no
spacing is provided. However, one trailing space is provided after
numeric values. In addition, one leading space is provided for
positive values, but not for negative values.

If a printed value ends in the final print position of a line, a
carriage return 1s not issued until a subsequent value is printed.

A semicolon at the end of the print list of a PRINT statement works
exactly like a semicolon elsewhere in the print list, Printing
continues at the current cursor position when a subsequent PRINT,
PRINT USING, or WRITE statement is executed.

Examples The following PRINT statement holds the print cursor at
its current position, except one trailing space is
provided after numeric values

PRINT "HOME";"WORK'";~1;"OR";2;"OR"; 3;"HOURS"
This statement produces the output below. Note that no
space separates consecutive strings, and no space

separates a string from a subsequent negative value.

HOMEWORK-1 OR 2 OR 3 HOURS

10-20 BASIC for NOS/VE Usage Revision B

PRINT Statement

One or more spaces (with no other punctuation) between items in the
print list of a PRINT statement function exactly as if a semicolon
were provided. However, spaces at the end of a print list have no

meaning.

Examples The lines labeled 10 and 20 (combined) print the value
"GO TOGETHER", holding the cursor on the first print
line.

The line labeled 30 causes a carriage return. The
cursor moves to the start of print line two.

The line labeled 40 prints the value "PLEASE", and
issues another carriage return. The cursor is
positioned at the start of print line three when the
program terminates.

10 PRINT "GO ";"TO";

20 PRINT “GET"; "HER";
30 PRINT

40 PRINT "PLEASE" : END

The output is as follows:

GO TOGETHER
PLEASE

Revision B Input and Output 10-21

PRINT Statement

SPC Format Function

Purpose Inserts spaces into a line of output.

Format SPC(spaces)

spaces Numeric expression whose value, when rounded to
the nearest integer, specifies the number of
spaces to be printed.
Remarks . If the number of spaces specified:
- Exceeds the available space in the current line,
the cursor moves to the beginning of the next
line. No spaces on this new line are provided.

= Is zero, the cursor does not move.

- Is negative, a runtime error results.

. If a print list ends with an SPC function reference,
no carriage return is issued unless the reference
itself causes one.

(] A semicolon or comma following a SPC function works
exactly like a semicolon or comma in a print list.

Examples This statement prints the value "NAME ADDRESS". The
three spaces are provided by the SPC function reference.

PRINT "NAME";SPC(3);'"ADDRESS"

10-22 BASIC for NOS/VE Usage Revision B

PRINT Statement

TAB Format Function

Purpose

Format

Remarks

Revision B

Move the print cursor to a specified print position.

TAB(column)

column Numeric expression whose value, when rounded to

the nearest integer, specifies the print
position to which the print cursor is to be
moved .

. If the specified print position p:

Exceeds the page width w, the integer n = (p MOD
w) is computed. The print cursor moves to print
position n of the next line.

Is less than the current position of the print
cursor, the cursor moves to print position p of
the next line. The cursor never moves backwards
as a result of a TAB function reference.

Is less than 1, a value of 1 is used. A warning
is issued, but no runtime error results.

. If a print list ends with a TAB function reference,
no carriage return is issued unless the reference
itself causes one.

. A semicolon or comma following a TAB function works
exactly like a ; or , in a print list.

Input and Output 10-23

PRINT Statement

Examples

This statement prints the value "DIVISION" in print

positions 1-8, the value "DEPARTMENT" in print
positions 20-29, and the value "UNIT" in print

positions 40-43. The intervening positions are
filled with blanks.

PRINT "DIVISION";TAB(ZO);"DEPARTMENT";TAB(QO);"UNIT"

If N receives the value 10 through the INPUT
statement, this program fragment prints the
following output:

DEFINT I,N
INPUT N
FOR I =1 TO N
PRINT TAB(l + 4*(I - 1));"&";
NEXT I

These ampersands appear in columns 1, 5, 9, 13, 17,
21, 25, 29, 33, and 37. The print cursor remains at
print position 38.

& & & & & & & & & &

10-24 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

PRINT USING Statement

This section discusses the format options for sending program output
to the terminal using the PRINT USING statement.

PRINT USING Statement Format

Purpose

Format

Revision B

Allows you to specify in detail how output should be

displayed.

PRINT USING formstr ; printlist

formstr

printlist

Required string expression whose value (the
format string) specifies the format of the
output.,

Required delimiter separating the format
string from the print list.

Nonempty list of expressions that are
separated by commas or semicolons. One or
more spaces between items is equivalent to a
semicolon specification. The last item can
be optionally followed by a comma or
semicolon.

Input and OQutput 10-25

PRINT USING Statement

Remarks

The print list must contain at least one item. The
expressions in this list are evaluated, and their
values are printed in sequence, using the format
specified in the format string.

If the length of a value to be printed:

- Exceeds the space available on the current line,
but is less than the page width, the value is
printed at the beginning of the next line.

- Exceeds the page width, as much of it as can fit
on the current line is printed, and the value is
continued on as many subsequent lines as needed.

Commas and semicolons are interchangeable when used
to separate items in the print list of a PRINT USING
statement. In this context, they act only as
delimiters, unlike their use in the PRINT

statement. However, these marks have distinct
interpretations when placed at the end of the print
list.

A PRINT USING statement never supplies spaces unless
they are specifically designated in the format
string. For example, the trailing space that a
PRINT statement automatically provides after the
printing of a numeric value is not provided by the
PRINT USING statement.

A carriage return is issued on completion of any
PRINT USING statement whose print list does not end
with either a comma or a semicolon.

A comma or semicolon at the end of the print list of
a PRINT USING statement controls the movement of the
print cursor in exactly the same way as with the
PRINT statement. Thus:

- An ending comma causes the cursor to move to the
beginning of the next print zone.

- An ending semicolon holds the cursor in its
current position.,

Printing continues at the current cursor position
when a subsequent PRINT, PRINT USING, or WRITE
statement is executed.

10-26 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

The format string is analyzed as a sequence of format components
possibly separated by literal components. A format string must have
at least one format component or a runtime error results.

A format component 1s a string of format characters that specify how
the next print list item is to be displayed.

A literal component is a string which is not used to specify
format. When a literal component is reached, its value is printed,
exactly as it appears.

A pointer keeps track of the current format component within a
format string. After a value is printed using the current format
component, the pointer moves forward to the next format component.
This causes any intermediate literal component to be printed.

If the end of a format string is reached, but not all print list
items have been printed, the pointer wraps around to the beginning
of the format string, and printing continues.

If a format component is ill-formed, or is inappropriate for the
data type of a corresponding print list item, a runtime error
results.

There are two sets of format characters, one for string values and
one for numeric values.

Revision B Input and Output 10-27

PRINT USING Statement

String Format Characters

This section discusses three format characters (! & \) used in the
format string of a PRINT USING statement to specify how a string is
to be printed.

Each format character controls the length of the field (the section
of the print line) reserved for the output of a string.

Remember that punctuation between items in a print list only
delimits consecutive items. However, the punctuation at the end of
the print list controls the subsequent movement of the print cursor.

An exclamation point (!) specifies that only the first character of
a string is to be printed. If the string is the null string, a
space is printed. .

Examples In the following program fragment note that the
wrap—around feature is used. A carriage return is
issued on completion of the output because the print
list does not end with a comma or a semicolon.

DEFSTR A, B
LET Al = "RESEARCH" : LET A2 = "DEVELOPMENT"
LET Bl = "PUBLICATIONS" : LET B2 = "GRAPHICS"
PRINT USING "! AND ! : "; Al,A2;B1,B2

The output produced by this program fragment appears
below:

RAND D : P AND G :

An ampersand (&) specifies that a string is to be
printed in a field equal in length to that of the string.

10-28 BASIC for NOS/VE Usage Revision B

Examples

PRINT USING Statement

In the following program fragment note that the
wrap—around feature is used. The print cursor remains
at its current position on completion of the output

because the print list ends with a semicolon.

DEFSTR C,D,X
LET C1 = "ALL" : C2 = "NONE"

LET D1 = "COMPILE" : LET D2 = "EXECUTE"

LET X1 = "OR" : LET X2 = "AND"

PRINT USING "OPTIONS: ! & ! / "; C1,X1,C2;D1,X2,D2;

The output produced by this program fragment appears
below:

OPTIONS: A OR N / OPTIONS: C AND E /

A pair of reverse slants (\) with m spaces between them specifies
that a string is to be printed in a field of length (m + 2), where m
is a nonnegative integer.

The size of m is limited only by the requirement that the entire
PRINT USING statement be contained in one line.

If the string value is too long to fit in the field, the first (m +
2) characters of the string are printed. Otherwise, the string is
left-justified, and trailing spaces fill the field.

Examples

Revision B

In the following example the string value is too long to
fit in the specified field.

DEFSTR C,F,L
LET LN = "LASTNAME" : LET FN = "FIRSTNAME"
LET CN = "CITY"

PRINT USING "CODE NAME: \ \!"; LN,¥N
PRINT USING "RESIDENCE: \ \@"; CN

The output produced by this program fragment appears
below. The value of LN is truncated to fit the
specified 6-position field. The value of CN is
left-justified in a 6-position field.

CODE NAME: LASTNAF
RESIDENCE: CITY @

Input and Output 10-29

PRINT USING Statement

Standard Numeric Format Characters

This section discusses four standard format characters (# . + =)
used in the format string of a PRINT USING statement to specify how
a number is to be printed.

Remember that punctuation between items in a print list serves only
to delimit consecutive items. However, the punctuation at the end
of the print list controls the subsequent movement of the print
cursor.

A number sign (#) in a format string reserves one position in a
field. This position can be filled with a digit, comma, or
arithmetic sign.

A period (.) in a format string reserves one position in a field for
a decimal point and specifies where the decimal point is to appear.

If the field specified for printing an integer reserves:

° More positions than are needed, the integer is
right-justified, and leading spaces are used to fill the
field.

. Fewer positions than are needed, the field is lengthened to
accommodate the value. In addition, a percent sign (%) is
displayed as the first character in the field to flag the
format overflow.

If the field specified for printing a number in decimal format
reserves:

(] Fewer positions to the right of the decimal point than are
needed, the number is rounded to fit within the field.

[Fewer positions to the left of the decimal point than are
needed, the field is lengthened to accommodate the value.
In addition, a percent sign (%) is displayed as the first
character in the field to flag the format overflow.

® Mre positions to the right of the decimal point than are
needed, trailing zeros are used to fill the field.

. More positions to the left of the decimal point than are
needed, leading spaces are used to fill the field. However,
at least one digit is displayed to the left of the decimal

point unless the period is the leftmost character in the
format componente.

10-30 BASIC for NOS/VE Usage Revision B

Examples

Revision B

PRINT USING Statement

The format overflow in the third line occurs because
only two positions are reserved to the left of the
decimal point for a value that has three such digits.

PRINT USING "ANSWER ##: ##.##"; 3,84.568
PRINT USING "ANSWER ##: ##.##"; 7,.951
PRINT USING "ANSWER ##: ##.##"; 10,372.2

The output produced by this program fragment appears
below.
ANSWER 3: 84.57

ANSWER 7: 0.95
ANSWER 10: %372.20

Input and Output 10-31

PRINT USING Statement

A plus symbol (+) or minus symbol (-) in a numeric format component

reserves one position in a field. This symbol specifies how the
sign of a nonzero value is to be displayed. No sign is displayed

for the value zero.
A numeric format component whose:

e Leftmost character is the plus symbol specifies that the
sign of a number, plus or minus, is to be displayed to the
left of the number.

e Rightmost character is the plus symbol specifies that the

sign of a number, plus or minus, is to be displayed to the
right of the number.

] Rightmost character 1s the minus symbol specifies that the
minus sign of a negative number is to be displayed to the
right of the number. The plus sign of a positive number is
not displayed under this format.

If no plus or minus symbol appears in a numeric format component,
the sign of a negative number is printed to the left of the number.
The sign of a positive number is not displayed under this default
format, '

Note that the default format does not automatically reserve a space
in a field for the minus sign of a negative number. Thus, the space
required to print the minus sign can cause overflow even if the
absolute value of that number fits in the specified field.

10-32 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

NOTE

The plus symbol causes an arithmetic sign to be displayed regardless
of what that sign is. In contrast, the minus symbol causes only
minus signs to be displayed. However, both formats reserve one
position in a field for the sign. The default format causes only
minus signs to be displayed, but does not reserve a sign position in
a field.

‘Examples In the third line, format overflow occurs under the
default format because only one position is reserved for
a negative value that needs two positions, one for the
digit and one for the sign.

+i#
+it
#-

#= | H" ;5 5,-9,-5,9
#- | #"; -5,9,5,-9
#]# ; 5,-9,5,-9

PRINT USING "+
PRINT USING "i+
PRINT USING "i#-

The output produced by this program fragment appears

below.

5¢ | ~9 | 5- 9
5- | +9 5| -9
519- 5] %9

Revision B Input and Output 10-33

PRINT USING Statement

Special Numeric Format Characters

This section discusses four special format characters (*~ , * §)
that are used in the format string of a PRINT USING statement to
print numbers in special ways.

Remember that punctuation between items in a print list serves only
to delimit consecutive items. However, the punctuation at the end
of the print list controls the subsequent movement of the print
Cursor.

Recall the exponential format:
r*10%s = rEs.

A circumflex (") placed after the digit position characters in a
numeric format component reserves one position in a field for the
exponent used in exponential format. A minimum of three
circumflexes is required so that the form E+n or E-n, where n is a
single digit, can be displayed.

If the part of the field specified for printing the exponent
reserves:

. Fewer positions than are needed, the field is lengthened to
accommodate the value. In addition, a percent sign (%) is
displayed as the first character in the field to flag the
format overflow.

. More positions than are needed, the exponent is
right-justified, and leading zeros are used to fill this
section of the field.

10-34 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

Examples Consider the format in which commas are used to group
those digits of a number that lie to the left of the
decimal point.

PRINT USING "#.#~~""; 36000

PRINT USING "#.###~~~~+"; 0.00235
PRINT USING "+#i#.###~"~""; -0.00235
PRINT USING ".###~~~~"; 0.00235

The output produced by this‘program fragment appears
below.

3.6E+4
2.350E-03+
-23.500E-04
«235E-02

Examples The following is an example of Digit Grouping Format:

2,576,421.93

A comma in a numeric format component reserves a position in a
field, and specifies that a number is to be printed using the digit
grouping format.

A comma can appear anywhere in the component except as the first or
last character. If a comma is the first or last character in a
numeric format component, it is treated as part of a literal
component instead of as a format character.

A comma used in conjunction with an exponential format reserves an
extra field position, but does not affect the display.

Revision B Input and Output 10-35

PRINT USING Statement

Examples

The print cursor moves to thé next print zone on
completion of the output because the print list ends with
a comma.

PRINT USING "#, ###, ###.#"; 1234567.89,

The output produced by this statement appears below.

1,234,567.9

A pair of asterisks (*) at the beginning of a numeric format
component reserves two positions in a numeric field, and specifies
that any leading spaces in the field are to be filled with asterisks.

The asterisk format can be used in conjunction with the exponential

format.

Examples

In the following example note the format overflow for the
second printed value. The print cursor remains at its
current position on completion of the output because the
print list ends with a semicolon.

PRINT USING "**##., "; 1.74,-1532.1,123.57;

The output produced by this statement appears below.

*kk] L7 7-1532.1 *123.6

A pair of dollar signs ($) at the beginning a numeric format
component reserves two positions in a numeric field, and specifies
that a dollar sign is to precede the leftmost digit of a printed

value.

10-36 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

The dollar format cannot be used in conjunction with the exponential
format. Also, only the trailing minus symbol or default sign format
can be used with the dollar format.

A pair of asterisks followed by a dollar sign at the beginning of a
numeric format component combines the asterisk and dollar formats.
This hybrid format reserves three positions in a numeric field. It
specifies that a dollar sign is to precede the leftmost digit of a
printed value and leading spaces are to be filled with asterisks.

Examples

Revision B

The format overflow in the third line occurs because only
four positions are reserved to the left of the decimal

point for a

PRINT USING
PRINT USING
PRINT USING
PRINT USING

value that has five such digits.

nSSHHE - " 7642.259
"S- My -432.81
"SI 56321.0
wkxS " 1,25

The output produced by this program fragment appears

below.

$7642.26

$432.81-

%$54,321.00
®%%%$1,25

Input and Output 10-37

PRINT USING Statement

Format Characters as Literals

An underscore (_) in a format string causes the character that
follows to be treated as part of a literal component. This literal
character is printed exactly as it appears. The underscore is not
printed.

This notation enables you to override the special significance of a
format character. A preceding underscore suppresses the format
function of this character.

To print an underscore, include two comsecutive underscores. The
first one removes the significance of the second one, allowing the
second one to be printed.

Any character can follow an underscore. However, this format
character is useful only when it is followed by one of the
characters listed below.

LS R S S T B

Examples In the PRINT USING statement, the underscore format
character is used so that the second ampersand and the
first number sign are treated as literal characters
rather than as format characters.

DEFINT I,N : DEFSTR A,B,F
DATA 3,WILLIAM,MARY,5,LEWIS,CLARK, 8, FRANKLIN, ELEANOR, 2

READ N
FOR I =1 TO N

READ A, B,F

PRINT USING "& & & ON DETAIL ##"; A,B,F
NEXT I - -

The output from this program fragment appears below.
WILLIAM & MARY ON DETAIL #5

LEWIS & CLARK ON DETAIL #8
FRANKLIN & ELEANOR ON DETAIL #2

10-38 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

Scanning Format Strings

Remember that the format string of a PRINT USING statement is
analyzed as a sequence of format components possibly separated by
literal components.

Format components are found by scanning the format string from left
to right. The beginning of a format component is identified by a
format character. The format component that begins with this
character is defined as the longest character sequence that can be
interpreted as a format component, taking into account the
characters encountered along the way.

This means that the appearance of some characters might prohibit
other characters from consideration later on as members of the same
format component. For example, once a circumflex (*) is
encountered, the subsequent appearance of a number sign (#) cannot
be considered part of the same format component. Instead, the
number sign is interpreted as a member of a different format
component.

Examples The second period cannot be part of the first numeric
format component because only one period is allowed in
such a component. Since the second period is followed
by a number sign, this period must belong to a second
numeric format component.

PRINT USING "#,###.#,.#"; 5432.1,0.6

Although a comma is a numeric format character, the
second comma cannot be part of either numeric format
component because a comma cannot begin or end such a
component. Hence, the second comma is interpreted as a
literal character and is printed as is.

Therefore, the format string consists of three
components, The first seven characters define a numeric
format component, the subsequent comma defines a literal
component, and the last two characters define a second
numeric format component.

The output produced by this statement appears below.

5,432.1,.6

Revision B Input and Output 10-39

WRITE Statement

WRITE Statement

Purpose Writes values at the terminal in a form that resembles a
list of BASIC constants, complete with separating commas.

Format WRITE writelist

writelist Optional list of expressions that are
separated by either commas or semicolons.

Remarks e Commas and semicolons are interchangeable when used
to separate items in the write list.

° If the write list is omitted, a carriage return is
issued. Otherwise, the expressions in the write
list are evaluated, and their values are printed in
sequence in the form described below.

° When the WRITE statement writes data:

- Commas are written between values making the
output look like a delimited list.

- Quotation marks are provided to delimit string
constants.

- Each quotation mark embedded in a string is
written as a pair of successive quotation marks.

- No spaces are provided between printed values.
For example, the trailing space that a PRINT
statement automatically provides after the
printing of a numeric value is not provided by
the WRITE statement.

- A carriage return is always issued after the
output is produced.

° If the length of a value to be printed:

- Exceeds the space available on the current line,
but is less than the page width, then the value
is printed at the beginning of the next line.

- Exceeds the page width, as much of it as will
fit on the current line is printed, and the
value is continued on as many subsequent lines
as are needed.

10-40 BASIC for NOS/VE Usage Revision B

WRITE Statement

Examples The following program fragment shows an example using
the WRITE statement.
READ AZ%Z,B%,C$,D$

DATA 472,-561,MR. "T","KIDS"
WRITE A%,B%,C$,D$

The output from this program fragment appears below.

472’_561 ,IIMR. ""Tll'l" ,"KIDS"

The result is a delimited list of BASIC constants.

Revision B Input and Output 10-41

BEEP Statement

BEEP Statement

Purpose Sends BEL, the ASCII bell character, to the terminal.
Format BEEP
Remarks The BEEP is equivalent to the following statement.

PRINT CHR$(7);

Some terminals ignore the BEL character.

10-42 BASIC for NOS/VE Usage Revision B

(\ Arrays 11

Array Overview scecesescecosceessocsscocssovsscssscescssseascscee 11-2

~—~ Array Element References cessecseosccscccasocsssssssosssssansscsee 1l1-4

Dimension Bound Specification secesescecccesesesssscsscssesncssees 11-6
OPTION BASE Statement seeesccosssecccccossssesscossscssocne 11-7
Default Specification eeeeesceoccesscessosssssssvosscsssess 11-8
DIM Statement seceesccececccescssoossassvosassccsscssscssssse 11-9
Array Library Functions eceeeeeccscoccvcevsoscssososscssssss 11-11

Array Input/OULpPUL seesecoescssesccscssvsecscsscscossssnsosscsce 11-13

ERASE Statement cceoeecescosccervscscssccssssssssscsssssscsccscscses 11-16

e’

Arrays 11

An array is a data structure which allows logically related values
with the same data type to be stored under a single name.

This chapter discusses NOS/VE BASIC arrays. It includes
descriptions of related library functions and examples of array
input and output.

Revision B Arrays 11-1

Array Overview

Array Overview

An array is a collection of memory locations that are identified by
a single name. This name is called the array name.

The memory locations in the array act as storage boxes for a group
of related values with the same data type. Each memory location can
store a single value from the group of related values.

A particular memory location in an array is referenced using the
array name and a sequence of numbers called subscripts. The
subscripts identify the memory location by its position within the
array. This named memory location is called an array element or a
subscripted variable.

An array element is similar to a scalar variable, but uses a more
complex reference format. An external routine can contain an array
with the same name as a scalar variable because they have different
reference formats.

The data type associated with an array name establishes the data
type of every element of the array. Limits on the values of array
elements are the same as those on scalar variables of like data
types.

Each array has one or more dimensions.

The dimensioning of arrays in a program can be either static or
dynamic, determined at compile time by the BASIC command. Under
static dimensioning, the size and shape of an array are fixed at
compile time. This can provide more efficient programs for
applications that do not require the flexibility of dynamic
dimensioning. Arrays dynamically dimensioned at compile time can
have their dimensions changed during program execution.

11-2 BASIC for NOS/VE Usage Revision C

Array Overview

A dimension is a set of consecutive integers used to index the
memory locations within an array. A dimension is defined by
specifying its lower and upper bounds. Each integer in a dimension
is called a subscript and can be negative.

The size of a dimension is computed from the lower and upper bounds
by the formula:

Size = Upper Bound - Lower Bound + 1.

The size and bounds of a static array dimension are fixed at
compile-time.

The size and bounds of a dynamic array dimension can change during
program execution.

The number of dimensions of an array determines the number of
subscripts that are necessary to identify an array element.

If n dimensions are used, the array is called an n-dimensional
array. In particular:

o A one-dimensional array is also called a list or vector.

] A two-dimensional array is also called a table or matrix.
The number of dimensions of an array is fixed at compile-time and is
limited only by the NOS/VE BASIC maximum line length.
The value of an array element is accessed by specifying the array
name followed by a list of subscripts, ome from each dimension. The

dimension corresponding to the nth listed subscript is called the
nth dimension.

Revision C Arrays 11-3

Array Element References

Array Element References

Purpose

Format

Remarks

References an element of an N-dimensional array.

arrname(subl , sub2 , ... , subN)
arrname Name of the array containing the element.

subJ Numeric expression whose value specifies the
Jth subscript, where (1 <= J <= N).

The value of SUBJ is rounded to the nearest integer k.
This specifies that the element being referenced has a
subscript of k in the Jth dimension. If k is less than
the lower bound or greater than the upper bound for the
dimension, a runtime error results.

11-4 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Array Element References

In the following list, the value of each element of
a one-dimensional array named DAY appears beneath
the reference that accesses the value. Array DAY
has only one dimension. This dimension has a lower
bound of -1 and an upper bound of 3. This means the
array has a size of 5.

DAY (3)
~34.2

DAY(1) DAY(2)
2.6 18.9

DAY(-1)
15.4

DAY (0)
-3.1

The array element DAY(2) has the value 18.9. The
subscripted variable DAY(0) has the value -3.1.

You might refer to the value 2.6 as the value of the
third array element, and yet this element has a
subscript of l. This illustrates a conceptual
difficulty that arises when a dimension does not
have a lower bound of one.

Consider a two~dimensional array named GAMEZ whose
values appear in the following matrix.

column
1 2 3 4
Row 1 0 -2 4 6
2 -1 3 -5 7
3 6 -4 2 0
4 =7 5 -3 1

Assume that the first dimension identifies a row and
the second dimension identifies a column. Both
dimensions have a lower bound of one and an upper
bound of four.

Array Element Value
GAMEZ(2,3) -5
GAMEZ(3,2) -4
GAMEZ(1,1) 0
GAMEZ (3,4) 0

Dimension Bound Specification

Dimension Bound Specification

This section discusses the ways in which dimension bounds for arrays

are established and changed. It also describes the library
functions which pertain to arrays.

11-6 BASIC for NOS/VE Usage Revision B

Dimension Bound Specification

OPTION BASE Statement

Purpose Sets the default lower bound (or base) for all arrays in
an external routine to either O or l. These two choices
are provided because they are the ones that are most
frequently used in applications.

Format OPTION BASE choice

choice Option base, specifying the default lower bound
for all arrays in an external routine. Possible
values: O or 1.

Remarks ° The OPTION BASE statement in an external routine:

— Defines the default lower bound for every
implicitly dimensioned array in the routine.

- Defines the default lower bound to be used for
every dimension statement in the routine.

- Must precede all the dimension statements in the
routine.

. An external routine can have at most one OPTION BASE
statement. If omitted, the option base is set to 0.

Revision B Arrays 11-7

Dimension Bound Specification

Default Specification

Default array bound specification is provided so that arrays of
limited size can be dimensioned implicitly.

By default:

] The lower bound of each dimension of an array is the option
base (0 or 1).

e The upper bound of the first and second dimensions is 10.
The upper bound of all other dimensions is the option base.

Hence, if b is the option base, an n-dimensional array is dimensioned
(b:10 , b:10 , btb, .. , b:b)
by default. Each n-dimensional array has (11-b)“MIN(n,2) elements.

Arrays that are shared through the COMMON statement have default
dimension bounds as described previously. For example, if the array
is only dimensioned in the calling routine, then the dimensions are
the same for the array in the called routine. However, if the array
is dimensioned differently in the calling and the called routine,
then its actual size can differ.

Examples If this statement 1is the first statement of a program,
it declares by default that A is a one-dimensional real
array whose 11 elements are subscripted O through 10.
The array element A(5) takes the value 8.0. The
remaining elements take the value 0.0.

LET A(5) = 8.0

11-8 BASIC for NOS/VE Usage Revision B

Dimension Bound Specification

DIM Statement

Purpose

Format

Remarks

Revision C

Explicitly establishes or changes the dimensions of each
array listed. This is done by specifying lower and
upper bounds for each dimension of each array.

DIM adlist

adlist List of array declarations that are separated by

commas «

Note that the number of dimensions of an array is
specified at compile-time by the first array
reference and cannot be changed at runtime.

At runtime in a statically dimensioned routine, a
DIM statement in the runtime execution path is

passed over with no effect.

An array declaration for an N-dimensional array has
the format:

arrname(lowerl:upperl , lower2:upper2 , «.. ,
lowerN:upperN)

arrname Identifier, naming the array. The data
type associated with this identifier
establishes the data type of all
elements in the array.

lowerJ Optional numeric expression whose value,
when rounded to the nearest integer,
specifies the lower bound of the Jth
dimension, where (1 <=J <= N). If
omitted, the subsequent colon is also
omitted.

upperJ Numeric expression whose value, when
rounded to the nearest integer,
specifies the upper bound of the Jth
dimension, where (1 <= J <= N).

Arrays 11-9

Dimension Bound Specification

Remarks °
(cont)

The DIM statement sets the dimension bounds for
listed arrays. If an array was previously
dimensioned, the DIM statement in a dynamically
dimensioned routine redimensions the array using new
dimension bounds. If the size of a dimension is
decreased, or the subscript range of a dimension is
shifted, only those array elements whose subscripts
are preserved in the new indexing set remain
accessible. New elements that were not previously
defined are set to zero or the null string, as
dictated by data type.

In a statically dimensioned routine, the DIM

statement is a compile-time declaration rather than
an executable statement; a static array can be
declared only once in an external routine.

If the lower bound for a dimension is not specified:

- The lower bound is the option base (0 or 1) in
effect for the external routine containing the

DIM statement.

- The single expression appearing for that

dimension in the array declaration specifies the
upper bound.

The magnitude of a dimension bound (lower or upper)
cannot exceed (2731 - 1).

If a dynamically dimensioned formal array is
redimensioned by a called routine, the dimension
bounds of the corresponding actual array are
simultaneously changed in the calling routine. If a
dynamically dimensioned called routine attempts to
redimension a statically dimensioned formal array, a
runtime error results,

Any array not explicitly dimensioned in a DIM
statement is implicitly dimensioned using the
default array bounds. That is, the lower bound of
each dimension is the option base. The upper bound
is either 10 or the option base, depending on the
number of the dimension.

The maximum number of elements for an array depends
on the maximum contiguous storage allowed for your
installation and account. See your site
administrator for specific information.,

11-10 BASIC for NOS/VE Usage Revision C

Dimension Bound Specification

Array Library Functions

Purpose

Format

Remarks

Revision B

Returns the lower and upper bounds, respectively, of a
specified dimension of an array.

LBOUND(arrname , dimnum)
UBOUND(arrname , dimnum)

arrname Name of the array being analyzed.

dimnum Optional numeric expression, specifying the
dimension whose lower or upper bound,
respectively, is to be returned. If
omitted, the preceding comma is also
omitted, and the value 1 is assumed.

The value of DIMNUM is rounded to the nearest integer.
If this integer is less than one or greater than the
number of dimensions of ARRNAME, a runtime error results.

Arrays 1ll-11

Dimension Bound Specification

Examples . These statements declare a one—dimensional integer
array named MONTH%. The single dimension has a size

of 12, with a default lower bound of 1, and an upper
bound of 12.

OPTION BASE 1
DIM MONTHZ(12)

(The following examples assume dynamically dimensioned
arrays.)

e These statements declare a two-dimensional real
array named MARK. The first dimension has a size of
8, with a default lower bound of 0, and an upper
bound of 7. The second dimension has a size of 6,
with a lower bound of 4 and an upper bound of 9.

The LBOUND function reference in the third line

returns the lower bound of the second dimension of
MARK. Hence, N% receives the value 4.

OPTION BASE O
DIM MARK(7,4:9)

LET N% = LBOUND(MARK,2)

[} The line labeled 10 declares a one-dimensional
string array named AS. The single dimension has a
size of 7, with a lower bound of 0, the default
option base, and an upper bound of 6. The line
labeled 80 shrinks the size to 5, and shifts the
subscript range. This yields new lower and upper

bounds of 4 and 8, respectively.

10 DIM A$(6)

80 DIM A$(4:8)
90 LET M7% = UBOUND(AS)

As a result, the values of A$(0), AS$(l), AS$(2), and
AS$(3) are lost; the values of AS$(4), AS$(5), and
A$(6) are preserved. The new elements AS$(7) and
A$(8) are set to the null string. The UBOUND
function reference in the line labeled 90 returns

the upper bound of the first dimension of AS.
Hence, M7 receives the value 8.

11-12 BASIC for NOS/VE Usage Revision C

Array Input/Output

Array Input/Qutput

The values of array elements can be assigned and printed using

FOR-NEXT loops.

Examples .

Revision B

This program fragment stores the NxN multiplication

table in the array A.

The size of the table is

specified using the INPUT statement (line labeled

10).

The DIM statement (line labeled 20)

establishes the required dimension bounds.

10
20

OPTION BASE 1
DEFINT A,I,J,N

INPUT N
DIM A(N,N)
FOR I =1 TO N
FOR J =1TO N
LET A(I,J) = I*J
NEXT J
NEXT I

Arrays 11-13

Array Input/Output

Examples
(cont)

This program fragment stores a sequence of integral
powers of 2 in array B. These values are then
printed as a list of numbers that are separated by
commas. The lower and upper bounds on the exponent
are specified with the INPUT statement (line labeled
30).

DEFINT I,M,N
30 INPUT M,N
DIM B(M:N)
FOR I =M TO N
LET B(I) = 2°1I
PRINT B(I);",";
NEXT I

If M and N are assigned the values -2 and 6,
respectively, the following output is generated.

W25, .5, 1,2,4,8, 16, 32, 64 ,

This program fragment illustrates the use of zone
printing for a two—-dimensional string array.
Effective table display using zone printing requires
a limited number of columns (5 or less for a
79-character line). If zone printing is used with
two-dimensional numeric arrays, columns will not be
neatly aligned unless all elements have the same
number of digits.

OPTION BASE 1
DEFINT I,J,M,N
READ M,N
DIM S$(M,N) ~ Small N required for zonme printing.
FOR I =1 TO M
FOR J =1 TO N
READ S$(I1,J)
PRINT S$(I,J), ~ Zone printing for columns.
NEXT J
PRINT ~ Carriage return when row completed.
NEXT I

11-14 BASIC for NOS/VE Usage Revision B

Examples
(cont)

Revision C

Array Input/Output

This program fragment uses the PRINT USING statement to
produce a table of quarterly profits., The first
dimension of QTR.PROFIT represents the year. The second
dimension represents the quarter of the year. The
figures for each year are printed on a separate line
using zone printing. The print field for each quarterly
figure allows for profits or losses of up to
$99,999.99. Commas are used to group digits, and the
sign trails each figure. A blank line separates the
output for consecutive years.,
FORI =1TOM
FOR J =1 TO 4 ~ One column for each quarter of year.
PRINT USING "S§$Si#, #it# i+ s QTR.PROFIT(I,J);
NEXT J
PRINT ~ Carriage return when year (row) completed.
PRINT ~ Blank line between years (rows).
NEXT I

Arrays 11-15

ERASE Statement

ERASE Statememnt

Purpose Frees storage occupied by dynamically dimensioned arrays.

Format ERASE anlist

anlist List of array names that are separated by

Remarks o

commnas. This list specifies the arrays that are
to be erased.

When an ERASE statement is executed, both the lower
and upper bounds of each dimension of a listed array
are set to the option base (0 or 1). The value of
the single remaining element is set to either zero
or the null string, as dictated by data type.

If a listed array is:

- Shared with other external routines through the
COMMON statement, the array is erased in every

external routine.

- A formal array, the corresponding actual array
is also erased in the calling routine.

The second item above points out a major difference
between the ERASE and CLEAR statements. For more
information about the CLEAR statement, see chapter 4.

A compile-time—~error results if an ERASE statement

is used in a routine compiled with statically
dimensioned arrays,

11-16 BASIC for NOS/VE Usage Revision C

(\ String Processing 12

String Expression Review scocecescscccccscccrscccescscsscsccnes 12-1
K\ﬂf Colon—Substring Notation cesevecccosccscesccccccsscoccscossosses 12-2
MIDS Statement eseeecsccessccccssssssscsssssssssscssscssssssssscse 12-5
Substring Manipulation FunctlonS ceeseccccescescccssscssosescee 12-8

LEN FUnction eseeeeesescsscesssssccsesssssssscsscscccssscess 12-8
INSTR Function seesccocscsccessssccscosscsssessssssscsasecs 12-9
LEFTS FUnction cececeecsscocscscecscesscorssssssessscsssssnose 12-12
MIDS FUNCLLON sesosesssescccssscosssssssosssosssnscsccassece 12-13
RIGHTS FUnction seececescescssessescscscesacsccsssasoscscess 12-15
Notational CompariSOonS eeeesecsecesccvsccccscscssssssscaseee 12-16

Conversion FUnCtionS eeceececsssscsevscsscscscnsescsscssassssse 12=17

ASC FUNCLION eeevnvvscsscsccossscsscscsassassscscnsccssssce 12-17
VAL FUNCtiOon eeeoesvsccectctscssccscssssssccsssscssasssssss 12-18
CHRS Function eseseseecccsscscccccscesrsccssssrsscesoscnsessees 12-19
HEXS FUNCLiON eeseeccecossecsccsccscsonosssscscssssssssssssse 12-20
OCT$ FUuncCtion sececesecersscsssenossssvsscasssosssccsssosssesse 12-21
STRS FUNCEION eeevecssccososscsnssconssassccensssssssssscoss 12=22

o

Miscellaneous String FunctionS eeecscecccscosccssscossessccnssces 12-23

LCASES Function eeseceescsccsesscccssssccssscassscsscsasces 12-23
UCASES Function secesccesssessscosssesscsssossscnsssnsssces 12-24
SPACES Function seeecovesscsscscccsvesssscsssssscssssscsece 12-25
STRINGS FUNCLION eceevecccsssscncccccsssccsssssssscsoccsscccs 12-26
PARAMSS FUNCLION cecvecsvosnssccscccsscssscccscssosscsssscce 1227

String Processing 12

This chapter describes the NOS/VE BASIC statements, operations, and
library functions used in string processing. The string library
functions have been categorized according to usage.

Many of the items discussed in this chapter refer to character
positions within a string. The leftmost character position is
labeled position one.

String Expression Review

A string expression is one or more quoted string constants, string
varilables, and string function references that are separated by plus
signs. Subexpressions occurring within a string expression can be
enclosed by parentheses.

In this context, the plus sign is called the concatenation
operator. Concatenation, the only string operation, joins two

string operands. The length of the string produced is the sum of
the lengths of the operands.

Examples The following string expression (A$ + B$) is read "A is
concatenated with B",
If A$ = "LOOK" and B$ = "QUT", then:
(A$ + BS) Has the value "LOOKOUT".

(BS$ + AS) Has the value "OUTLOOK".

Revision B String Processing 12-1

Colon-Substring Notation

Colon-Substring Notation

Purpose Allows you to address a substring by its location within
a host string variable. A colon-substring reference can
be used both to assign values to substrings and to
access values for other processing.

Format svar(posl : pos2)

svar String identifier denoting the host variable
that contains the substring being
referenced. SVAR cannot be a substring
expressed by colon substring notation or a
MIDS reference.

posl, pos2 Numeric expressions whose values specify the
positions within the host string of the
first and last characters, respectively, of
the substring being referenced.

12-2 BASIC for NOS/VE Usage Revision B

Remarks

Revision B

Colon-Substring Notation

To help explain the evaluation rules, suppose S$ is
a string variable of length n. The reference
S$(POS1:P0S2) denotes the substring of S$ made up of
the characters in positions POS1 through P0S2, where
POS1 and POS2 are defined as follows:

If the values of either POS1 or POS2 are:

- Less than one, they are increased to one.

- Greater than n, they are decreased to n.

- Nonintegers, they are rounded to the nearest

integers.

Hence,

POS1 = CINT(MIN(MAX(1,P0S1) , n)),
;3§2 = CINT(MAX(MIN(POS2,n) , 1)).

In addition, if POSl is greater than P0OS2 , then the
substring referenced is a null substring that
precedes the jth character of S$ and follows the
(j-1)st character (if the latter exists).

A substring referenced by colonsubstring notation
is dynamic. This means that the substring and its
host can change length as a result of an assigmment.

During an assigmment, a substring of length n can be
filled with:

- More than n characters. The substring expands
accordingly, increasing its length and the
length of its host.

- Less than n characters. The substring contracts
accordingly, decreasing its length and the
length of its host.

- Exactly n characters. No length adjustment is
needed, and none occurs.

String Processing 12-3

Colon-Substring Notation

Examples e Prints the value "TEST".

PRINT S$(3:6)
1f S$ = "A/TEST CASE", then:

. Passes control to the line labeled 10 because the
second character of S$ is a slant.
IF S$(2:2) = "/" THEN 10

. Inserts the value "STRANGE*" between the second and
third characters of S$, giving S$ the value
"A/STRANGE*TEST CASE".
LET S$(3:1) = "STRANGE*"

e Replaces the substring value "CASE" with the value
"EXAMPLE", giving S$ the value "A/TEST EXAMPLE".

LET S$(8:11) = "EXAMPLE"

12-4 BASIC for NOS/VE Usage Revision B

MID$ Statement

MID$ Statement

Purpose Replaces characters in a substring of a host string
variable with some characters from another string.

Format MID$(svar , pos , length) = string

svar String identifier denoting the host variable
that contains the substring being referenced.

SVAR cannot be a substring expressed by colon
substring notation or a MID$ reference.

pos Numeric expression whose value specifies the
first position in the host string to receive a
replacement character.

length Optional numeric expression whose value
specifies the substring length.

string String expression whose value contains the
characters used in the replacement.

Remarks [The values of POS and LENGTH are rounded to the
nearest integers. Denote these integers by j and k,

respectively.

. The k-character substring of SVAR beginning with
position j is replaced by the first k characters of
the value of STRING. That is, positions j through
(j + k = 1) of SVAR are replaced by the first k
characters of the value of STRING.

. If j is less than one or k is less than zero, a
runtime error results.

[If j is greater than the length of the host string,
or k is equal to zero, then the value of the host
string is nmot altered.

Revision B String Processing 12-5

MID$ Statement

Examples

Replaces the substring value "B/CD" with the value
"X*YZ" giving S$ the value "AX*YZ EF".

If S$ = "AB/CD EF" and T$ = "X*YZ" then:
MIDS (S$,2,4) = T$

Replaces the substring value "D " with the value
"X*" giving S$ the value "AB/CX*EF".

If S$ = "AB/CD EF" and T$ = "X*YZ" then:
MID$(S$,5,2) = T$

The substring referenced in a MID$ statement is
static. This means that the substring and its host
never change length as a result of the execution of
a MID$ statement.

As a result, there are some cases that do not fit
the general description just provided. These
involve instances where the relative lengths of the
strings involved do not mesh.

Suppose the length of the receiving substring
exceeds the length of the string of replacement
characters. The string of replacement characters
replaces the left portion of the substring, leaving
the rest of the substring unaltered.

The MID$ reference attempts to replace the substring
value "CD" with the value "*". The asterisk
replaces the letter C, leaving the letter D as is.
S$ now has the value "AB*D",

LET S$ = "ABCD"
LET MID$(SS,3,2) = "&"

12-6 BASIC for NOS/VE Usage Revision B

Examples
(cont)

Revision B

MID$ Statement

The first three characters of the substring value
"REM" are replaced by the value "OUR". As a result,
T$ has the value "POURED".

LET T$ = "PREMED"
LET MID$(T$,2,4) = "OUR"

If the specified substring extends beyond the end of
the host string, a runtime error does not result.
Instead, the MID$ statement performs the requested
replacement until the end of the host string,
ignoring references to nonexistent positions.

Replaces the substring value "CD" with the first two
characters of the value "/YZ". S$ now has the value
"AB/Y" .

If S$ = "ABCD" , then:
LET MIDS(S$,3,6) = "/YZ"

Treats the substring length as if it were two
instead of six. The first character of the
substring value "CD" is replaced by the value
As a result, S$ has the value "AB D".

If S$ = "ABCD" , then:
LET MID$(SS$,3,6) =" "

Both colon-substring notation and the MID$ statement
can be used to make the same assignment.

Suppose the variables S$ and T$ have lengths m and
n, respectively. Let j and k be integers, with (1
<= j <= m). Let x denote the minimum of (k, m - j +
1, n).

The following two statements are equivalent.

LET MIDS(S$,j,k) = T$

LET S$(j:j + x = 1) = T$(1:x)

A MID$ reference appearing in an expression denotes

a string library function call. This function is
described later in this chapter.

String Processing 12-7

Substring Manipulation Functions

Substring Manipulation Functions

The substring manipulation functions provide a way to reference
substrings that have specified characteristics.

LEN Function

Purpose Returns the length of the value of a string argument.

Format LEN(string)
string String expression. The length of the value of
this expression is returned.

Remarks The value returned is a nonnegative integer.

Examples e The following are examples of the LEN function.
LEN("CASE#1") Returns the value 6.
LEN("™) Returns the value O.
LEN("HOME RUN") Returns the value 8.

LEN(""') Returns the value 1.

12-8 BASIC for NOS/VE Usage Revision B

Substring Manipulation Functions

INSTR Function
Purpose Returns the position within a host string at which the
first occurrence of a specified substring is found.
Format INSTR(pos , string , substring)
pos Optional numeric expression whose value
specifies the position within the host
string at which the search begins.

string String expression whose value is the host
string being searched.

substring String expression whose value is the
substring to be located.

Revision B String Processing 12-9

Substring Manipulation Functions

Remarks °

NOTE

The value returned is always an integer.

If POS is omitted, the search for the value of
SUBSTRING begins by default at the first position of
the value of STRING., Otherwise,; the value of POS is
rounded to the nearest integer j, and the search
begins with position j.

Only an occurrence of the substring that begins at
or after position j is located. The function
returns the position of the first character of this
occurrence. Occurrences that follow the one
located, or begin before position j, are not found.

If j is less than one or greater than the maximum
string length, a runtime error results.

If the host string is the null string, j exceeds the
length of the host string, or the substring is not
found, then a value of zero is returned.

If the substring to be located is the null string,
then the value j is returned. That is, the null
string is found at the first position searched.

Repeated occurrences of a specified substring can be
located by modifying the value of the search position
argument after each success and continuing the search.

12-10 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Substring Manipulation Functions

Since the first argument is omitted, the search
begins with the first position of '""BANANA". The
first occurrence of "ANA" begins at position two, so
the function returns the value 2. The second
occurrence of "ANA" is not located.

INSTR('""BANANA" ,"ANA")

Returns the value 0 because the substring "ZIPCODE"
is not contained within the value of S$.

If S$ = "NAME/ADDRESS/CITY/STATE/ZIP", then:
INSTR(S$," ZIPCODE")

Returns the value 10, which is the position of the
first "E" that occurs at or after position five.

If S$ = "NAME/ADDRESS/CITY/STATE/ZIP", then:
INSTR(5,S$,"E")

Addresses the substring "NAME/" using
colon-substring notation. The INSTR function
reference locates the position of the first slant.
This example is equivalent to the colon—-substring
reference S5$(1:5).

If S$ = "NAME/ADDRESS/CITY/STATE/ZIP", then:
S$$(1: INSTR(SS,"/"))

String Processing 12-11

Substring Manipulation Functions

LEFTS$ Function

Purpose

Format

Remarks

Examples

12-12 BASIC

Returns a left portion of the value of a host string.

LEFTS$(string , length)
string String expression whose value is the host string.

length Numeric expression whose value specifies the

length of the leading substring to be returned.

The value of LENGTH is rounded to the nearest
integer j. The value returned is a string
containing the first j