
FORTRAN for NOS/VE
LIB99

Usage

(52)
CONT"OL

DATA

60485915

FORTRAN for NOS/VE
LIB99

Usage

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60485915

Revision

A
B
c

This revision:

System Version/
PSR Level

1.2.1/670
1.2.2/678
1.2.3/688

Product Level

1. 0
1.0
1.0

Date

December 1986
May 1987
September 1987

This manual is revision C and reflects LIB99 for NOS/VE at release 1.2.3, PSR level 688. This
revision reflects technical and editorial changes as well as the following new feature
descriptions: subprograms F64TR4, F64TSR, F64TSRN, F64TVF, I64TSI, I64TI2, I64TWI, I64TI4, MOVB,
R4TF64, SIT164, I2T164, SRTF64, SRNTF64, VFTF64, WITI64, arrl I4T164.

©1986, 1987 by Control Data Corporation. All rights reserved.
Printed in the United States of .America.

e 2 FORTRAN LIB99 Usage Revision C

About This Manual 5

Introduction •• 1-1

LIB99 Subroutines and Functions ••• 2-1

Related Manuals ... A-1

Ind ex ••• Index-!

Revision B Contents 3/4

About This Manual

Audience for This Manual • 5

Conventions •• • 5

Submitting CoDlDl.ents • 5

About This Manual

Audience for This Manual •• 5

Conventions •• • • • • • • • ••••••• • • • • • • • 5

Submitting CoDlDl.ents ••••••••••••••• ~... 5

CONTROL DATA®LIB99 is a library of FORTRAN callable subroutines written for use with NOS/VE on
the CYBER 180.

Aundiitennce ifo1l' Tllni0 MaumunaD

You should be familar with FORTRAN Version 1 for NOS/VE. In addition, you should know how to
create and run jobs under NOS/VE.

Connv<ennltioims

The following conventions are used in this manual:

UPPERCASE Subroutine and function names and parameters appear in uppercase.

numbers All numbers are base 10 unless otherwise noted.

§unlb>mmiill:ll:inng Commemnts

Please use the comment sheet in the back of this manual for submitting comments regarding this
manual.

Revision B About This Manual 5

Introduction

LIB99 Term.inology •••
Scalars •••
Vectors and Strides ...
Matrices ••
Array Subscript Conventions •••

1

1-1
1-1
1-1
1-2
1-3

Executing Your Program With the LIB99 Library ••• 1-4

Externals • 1-4

Dynamic Space • 1-5

BLA.S Conventions •• • • •••• • •.. 1-5

Il nn ll:rr ® crll un c ll:ii <II> nn

LIB99 is a library of subroutines and functions that can be called from both FORTRAN Version 1
and FORTRAN Version 2 on any CYBER 180 model. On the ~del 990 of the CYBER 180 the subroutines
and functions provide access to the vector capabilities of this machine. On other models, the
subroutines and functions are executed in scalar mode. The LIB99 library of routines are I
available automatically; no special mention of the library is needed on the compilation or
execution commands. The LIB99 routines can (among other things):

Perform basic vector arithmetic

Perform basic matrix algebra

Solve linear systems of equations using both direct and iterative methods I
Compute Fast Fourier Transforms (FFTs)

Sort lists

Compute eigenvalues and eigenvectors

LIB99 al.so contains some routines from the Basic Linear Algebra Subroutines (BLAS) package, coded
especially for the CYBER 180 Series machines. I

H...Il1R99 T en-milillollogy

The LIB99 subroutine and function descriptions include terms that may be unfamiliar to a FORTRAN
Version 1 user (for example, scalar, vector, stride, and matrix). These terms, as well as array
subscript conventions used in this manual, are described below.

Scalars

A mathematician uses the term scalar to describe a set of numbers or variables in which the
number of elements is exactly one. A FORTRAN programmer uses the term scalar to describe any
single value. For instance, a scalar can be a constant, such as 2.5, or it can be a
non-dimensioned variable, such as the real variable ALFA, which is often referred to as a scalar
variable. A scalar can also be an array element, such as Y(2,3) or V(J).

Vectors and Strides

To a mathematician, a vector of length N is a set of N numbers uniquely defining a distance and a
direction in an N-dimensional space. A FORTRAN programmer generally uses the term vector of
length N to mean any one-dimensional set of N numbers. In this manual, both types of references
to vectors occur. The former is used in the formulation of algorithms, usually under the heading
Method, and as a way of identifying subsets of arrays. In the latter case, a vector of length N
means N equidistant locations in memory. The vector is completely defined by its length N in
conjunction with a starting address and a stride. The starting address is represented by a
specific array element, while the stride is a signed integer specifying the distance and
direction in memory between consecutive vector elements. Some examples of vectors that are
subsets of a one-dimensional array A:

Starting address:
Stride:
Vector length:
Vector elements:

Revision C

A(O)
1
N
A(O), A(l), A(2), ••• , A(N-2), A(N-1)

Introduction 1-1

LIB99 Terminology

Starting address:
Stride:
Vector length:
Vector elements

Starting address:
Stride:
Vector length:
Vector elements:

A(4)
2
3
A(4), A(6), A(8)

A(l)
-1
K+2
A(l), A(O), A(-1), ••• , A(l-K), A(-K)

A vector may be identified as a subset of a multi-dimensional array. For instance, the elements
stored in a row of a two-dimensional array may be described as a vector. The value of the stride
would then be the size of the first dimension, or column length, of that array. This is because
FORTRAN uses columnwise storage for two-dimensional arrays, and therefore the distance in memory
between consecutive elements in a row is exactly the number of words required to store one
column. An example of a vector that is a subset of the two-dimensional array B:

DIMENSION statement:
Starting address:
Stride:
Vector length:
Vector elements:

Matrices

DIMENSION B(0:99, 0:49)
B(J,O)
100
50
B(J,0), B(J,l), B(J,2), ••• , B(J,48), B(J,49)

A matrix is a two-dimensional mathematical entity consisting of elements arranged in columns and
rows. Its shape and size are defined by its dimensions; that is, by two integers specifying the
number of elements in each column and row, respectively. In this manual, square brackets are
used to enclose corresponding dimension values when defining matrices:

[number of rows, number of columns]

or equivalently,

[column length, row length]

As an example, the following arrangement of six elements can be referred to as a matrix of
dimension [2,3] or simply as a [2,3] matrix:

aoo ao1 ao2
a10 au a12

Note that the specification of where in the matrix a given element belongs is incorporated as a
two-part subscript in the element name; ao1 belongs in row 0 and column 1, a uniquely defined
location. The enumeration of rows and columns may vary, but in this manual we will almost always
choose to start with zero, defining the subscript for the element in the upper left-hand corner
as 00. Note that the subscript comprises a pair of numbers, the first being the row number and
the second being the column number.

A matrix whose elements are numbers (rather than rabbits or something else) can be mapped onto a
two-dimensional FORTRAN array, provided that the array is large enough to contain the matrix. It
is not necessary that the array has dimension sizes matching the matrix dimensions, nor is it
necessary that the DIMENSION statement (or type statement) defining the array use the same row
and column enumeration as is done for the matrix. The [2,3] matrix described above can, for
instance, be mapped in any one of the three ways below:

1-2 FORTRAN LIB99 Usage Revision B

DIMENSION X(O:l, 0:2)

aoo ao1 ao2
a10 .all a12

The element aoo is
mapped onto X(O,O)
of array X.

DIMENSION Y(3,4)

aoo ao1 ao2 ***
a10 au a12 ***
*** *** *** ***

The element aoo is
mapped onto Y(l,l)
of array Y.

LIB99 Terminology

DIMENSION Z(0:4, 0:4)

*** *** *** *** ***
*** aoo ao1 ao2 ***
*** a10 au a12 ***
*** *** *** *** ***
*** *** *** *** ***

The element aoo is
mapped onto Z(l, 1)
of array z.

Assume that you have computed the elements of the [2,3] matrix above, and that you want to copy
the result from array X, where it is currently stored, into the location in array Y indicated
above. The LIB99 subroutine needed for this purpose is MXMOVF, and the two dimension numbers to
use as the first two parameters are 2 and 3, respectively. The source array is X, and the
associated size of the first dimension, or column length, is 2. The target array is Y and the
associated size of the first dimension is 3. Therefore, the call:

CALL MXMOVF(2, 3, X, 2, Y, 3)

implies that the upper left-hand corner of the matrix is stored as the first element of array X
in location X(O,O). Similarly, the execution of the CALL statement will copy the matrix in such
a way as to map the element aoo onto the first element of array Y; that is, onto location
Y(l,l). If you want to copy the matrix into the indicated location of array Z, you must include
the subscripts indentifying the target location for the upper left-hand corner of the matrix.
This is because that location does not coincide with the location of the first element of array
Z, which is Z(O,O), but rather with that of the seventh, which is Z(l,l). Therefore, in this
case, the proper call is:

CALL MXMOVF(2, 3, X, 2, Z(l,l), 5)

Array Subscript Conventions

A general description of arrays can be found in the FORTRAN Language Definition manual
(publication number 60485913). This includes a description of how arrays are stored in the
computer memory, as well as how subscripts are used to identify array locations.

In this documentation we have adopted the convention that all arrays are defined with the lower
bound equal to zero for all subscripts, and that all subscripts between the lower and upper bound
correspond to actual array element locations. Thus, a one-dimensional array X of length 100 is
assumed to be defined somewhere as X(0:99). Similarly, a two-dimensional array A with column
length N will be referenced as if it had appeared in a DIMENSION or type statement as
A(O:N-1,0:M), where N and Mare either dummy arguments or symbolic constants.

A special array notation has been developed to describe a vector and accompanying stride in a
compact way. The array subscript of the last vector element, representing the ending address,
must first be computed. A vector that is a subset of the one-dimensional array A is described as:

A(first subscript : last subscript : stride)

For example, this compact notation is used to describe the three vectors defined above under
Vectors and Strides:

Starting Address Stride Length Compact Array Notation

A(O) 1 N A(O:N-1:1)

A(4) 2 3 A(4:8:2)

A(l) -1 K+2 A(l :-K:-1)

Revision B Introduction 1-3

Executing Program With the LIB99 Library

To use the compact array notation to describe vectors that are subsets of multi-dimensional
arrays, we must replace the term stride with subscript increment, a value specifying by how much
a particular array subscript needs to be incremented in order to find the next vector element.
For a one-dimensional array there is no difference between the two terms. Thus, the more general
notation is:

A(first subscript : last subscript : subscript increment).

An omitted subscript increment defaults to 1, so that A(O:N-1:1) and A(O:N-1) describe the same
vector.

This array notation lends itself well to describing regularly shaped subsets of two-dimensional
arrays. For example, the areas occupied by the [2,3] matrix in the three cases above can be
described as:

Matrix in Array X, Y, and z Array Notation

The element aoo is mapped onto X(O,O) of array x. X(O: 1,0:2)

The element aoo is mapped onto Y(l, 1) of array Y. Y(1:2,1:3)

The element aoo is mapped onto Z(l, 1) of array z. Z(1: 2, 1: 3)

The work done by the subroutine MXMOVF in the two examples above can now be expressed as moving
elements from one part of an array to a part of another array:

CALL MXMOVF(2, 3, X, 2, Y, 3)

The elements in the array section X(O:l,0:2) are moved to Y(l:2,1:3).

CALL MXMOVF(2, 3, X, 2, Z(l,1), S)

Similarly, the elements in the array section X(O:l,0:2) are moved to Z(l:2,1:3).

I lE:r!e(:unti.nug Y ounrr IPrrogrrann Wntllu tilue ILillm99 II...nbrrarry

Although you compile your program containing references to LIB99 subroutines and function as you
would any FORTRAN program, you must obtain the LIB99 1 ibrary when executing your program. To do
this, specify LIBRARY=$SYSTEM.COMMON.LIB99 on the EXECUfE TASK command. For example, to execute
a program containing calls to the LIB99 library whose binary file is BFILEl, use the following
command:

EXECUfE TASK F=BFILE 1 L=$SYSTEM. COMMON. LIB99

You can also add the library each time you logon by including the following command in your user
prolog:

SET PROGRAM ATTRIBUfE ADD_LIBRARY=$SYSTEM.COMMON.LIB99

IE:n:terrnuals

The LIB99 subroutines and functions themselves may reference other routines. The routines they
call, if any, are listed for each LIB99 subroutine or function under the heading Externals. The
external routines may be other routines in LIB99 or they may be routines from the standard
FORTRAN runtime library. Mathematical routines are described in the Math Library for NOS/VE
manual.

1-4 FORTRAN LIB99 Usage Revision C

Dynamic Space

Il))ynnamk §pace

Calls to some of the functions and subroutines in LIB99 require an allocation of memory for
temporary "scratch" vectors. This memory area is called dynamic space and the number of words
needed, if any, is indicated for each routine under the heading Dynamic Space. A word is equal
to eight bytes of memory. The dynamic space is freed upon return from the routine.

When a LIB99 routine calls another routine, as indicated under the heading Externals in the
corresponding documentation, the amount of dynamic space reported refers to that which is used by
the documented routine itself, and does not include any that may be allocated by the called
(external) routines.

NOTE

Since a certain amount of overhead is associated with calling a subroutine or function, it is
recommended that vectors of length at least SO be used in calls to the basic vector arithmetic
routines and that matrices for which the size of the first dimension (column length) is at least
10 be used in calls to the matrix algebra routines.

IIU .. A§ Connvem11tionns

The following LIB99 routines are direct translations from the public domain BLAS (Basic Linear
Algebra Subroutines) package:

SAS UM
SAXPY
SCOPY
SDOT
SNRM2
SS CAL
SSWAP

The BLAS routines generally perform simple vector operations, where each vector is defined in
terms of an array address and accompanying stride. If the value of the stride associated with an
array A is zero, then A will be interpreted as a scalar constant or variable, or array element.
It will be broadcast in the vector operation as a vector with all elements identical to each
other.

Positive strides are interpreted in the same manner as they are in the other LIB99 routines, as
described in the Introduction. However, negative strides have a special meaning in the BLAS
routines, as illustrated by the following call to SAXPY:

CALL SAXPY(N, A, X, LX, Y, LY)

In this call, LX and LY are the strides associated with the arrays X and Y, respectively. Assume
that LX is positive and LY negative. The N elements of X would then be referenced in order of
increasing subscript values:

X(J*LX), J=O, 1, ••• , N-2, N-1

or

X(O), X(LX), ••• , X((N-2*LX), X((N-l)*LX)

Revision B Introduction 1-5

BLAS Conventions

In contrast, the N elements of Y would be referenced in reverse order, starting from the end;
that is, in order of decreasing subscript values:

Y(-J*LY), J=N-1, N-2, ••• , 1, 0

or

Y(-(N-l)*LY), Y(-(N-2)*LY), ••• , Y(-LY), Y(O)

To further illustrate how strides are interpreted by the BLAS routines, the equivalent scalar
FORTRAN code for the SAXPY subroutine is given below:

SUBROUTINE SAXPY(N, A, X, LX, Y, LY)
REAL X(O:*), Y(O:*)
IF (N .LE. O) RETURN
JX = 0
IF (LX .LT. O) JX=-(N-l)*LX
JY=O
IF (LY .LT. 0) JY=-(N-l)*LY
DO 10 J= 1, N
Y(JY) = A*X(JX) + Y(JY)
JX = JX + LX
JY = JY + LY

10 CONTINUE
RETURN
END

1-6 FORTRAN LIB99 Usage Revision B

LIB99 Subroutines and Functions 2

Subroutine CONV • . • . • • • . • • • • • • • • • • • • • • • • 2-4

Subroutine EVBAK

Subroutine EVIQL ..
Subroutine EVRED

Subroutine EVRS ••••••••••••••••••.••

Subroutine EVRSG

Subroutine FFTlD •' .. .
Subroutine F64TR4

Subroutine F64TSR

Subroutine F64TVF ..
Subroutine GENSPD •••

ITPACKV 2C - Iterate Solvers

Subroutine I64TSI

Subroutine I64TWI

Subroutine LVCOMP ...
Su br out i ne MOVB •••

Subroutine MXADDF ...
Subroutine MXCMP

Function MXENRM ...
Fune t ion l1XEQ •••

Subroutine MXGEFS

Subroutine MXINVU

...

2-6

2-8

2-10

2-13

2-15

2-18

2-24

2-24.2

2-24.4

2-25

2-26

2-34

2-35

2-36

2-36.2

2-36.3

2-37

2-39

2-40

2-41

2-46

Subroutine MX?1A.B • 2-48

Subroutine MXMOVF

Subroutine MXMOVU

Subroutine MXMlITU

Subroutine MXMUUT

Subroutine MXSCAF

Subroutine MXSUBF

Subroutine MXSYUL

Subroutine MXTRAF

Subroutine MXTRAU

...

...

...

...

...

...

...

2-50.

2-51

2-52

2-54

2-56

2-57

2-58

2-60

2-61

Function MXlNRM ..
Function MX8NRM ...
Subroutine QSORT ••

Subroutine R4TF64 ...
Function SAS UM ••

Subroutine SAXPY ..
Subroutine SCOPY ..
Function SDOT ••••••••••••••••••••••••••••••• .; •••

Subroutine SITI64 ...
Function SNRM2 ••

Subroutine SRTF64

Subroutine SS CAL ..
Subroutine SSWAP ..
Subroutine TRED2

Subroutine VABS • e • • • • • e •••• e • e •• e e • e e e e e e e • e e • I e e • e e e e • e I I e • I e e • I e e e I e e e e e e e e e e e e e I e e e e e e e

Subroutine VADD

Subroutine VAND ...
Subroutine VAXPY

Subroutine VDIV •••

Subroutine VFILL ••

Subroutine VFLOAT

Subroutine VFTF64

Subroutine VGATHER

Subroutine VIFIX

...

..

Subroutine VIOR ••••••••••••••••••••••• , •••••••••••••••••••••••••••• , ••••••••••••••••••••••

Subroutine VM.ASK •••••••••••••• , •• , •••••••••••• , •••

Subroutine VMASUM ...
Subroutine VMUL •• • • • • • • • • • • •

Subroutine VRANF ••

Subroutine VSCATTER

Subroutine VSHFC

Subroutine VSUB

Function VSUM ••• • • • • • • • • • • • •

Subroutine VXOR •••••••••••••••••••••.••••••••••••••••••••••••••.••••••••••••••••••••••••••••

Subroutine. WITI64 •••

2-62

2-63

2-64

2-65

2-66

2-67

2-68

2-69

2-70

2-70.1

2-70.2

2-71

2-72

2-73

2-75

2-76

2-78

2-79

2-80

2-82

2-83

2-84

2-84 .1

2-85

2-86

2-87

2-89

2-90

2-92

2-93

2-94

2-96

2-98

2-99

2-100

The following table lists the LIB99 subroutines and functions, modules or entry points, and brief
descriptions of the subroutine or function. The detailed descriptions of the subroutines and
functions are listed in alphabetical order by their title name following this table.

Title Modules or Entry Points

CONV CONV, CORR, FILTGS, SOP

EVBAK EVBAK

EVIQL EVIQL

EV RED EV RED

EVRS EVRS

EVRSG EVRSG

FFTlD FFTlD

F64TR4 F64TR4

F64TSR F64TSR, F64TSRN

F64TVF F64TVF

GENS PD GENS PD

ITPACKV JCG, JSI, SOR, SSORCG, SSORSI,
RSCG, RSSI

I64TSI I64TI2, I64TSI

I64TWI I64TI4, I64TWI

LVCOMP LIVEQ, LIVGE, LIVLT, LIVNE

LVCOMP LRVEQ, LRVGE, LRVLT, LRVNE

MOVB MOVB

MXADDF MXADDF

MXCMP MXCMP

MXENRM MXENRM

MXEQ MXEQ

MXGEFS MXGEFS

MXINVU MXINVU

MXMAB MXMAB

Revision C

Description

Convolution and correlation

Backtransf orm eigenvectors

Solve standard symmetric tridiagonal eigenvalue
problem

Reduce general eigenvalue problem to standard

Solve standard symmetric eigenvalue problem

Solve general symmetric eigenvalue problem

Base 2/4 Fourier Transform

CYBER real to IBM REAL*4

CYBER real to IEEE short real

CYBER real to VAX 32-bit real

Generate symmetric positive definitive matrix

Iterative linear equation solvers for sparse
matrices

CYBER integer to IEEE short integer

CYBER integer to IEEE word integer

Integer vector compare

Real vector compare

Move byte string

Full real matrix add

Full real matrix compare

Compute the Euclidean norm of a matrix

Full matrix bit-by-bit compare

Direct linear equation solver (Gaussian
elimination)

Upper triangular matrix inverse

Full real matrix multiply

(Continued)

LIB99 Subroutines and Functions 2-1

I
I

I
I

Subroutines and Functions

Title Modules or Entry Points Description

MXMOVF MXMOVF Full matrix move

MXMOVU MXMOVU Upper triangular matrix move

MXMUTU MXMUTU U(transp)*U, U upper triangular matrix

MXMUUT MXMUUT U*U(transp), U upper triangular matrix

MXSCAF MXSCAF Full real matrix scaling

MXSUBF MXSUBF Full real matrix add

MXSYUL MXSYUL Symmetric matrix UL-decomposition

MXTRAF MXTRAF Full matrix transpose

MXTRAU MXTRAU Vpper triangular matrix transpose

MXlNRM MXlNRM Compute the 1-norm of a matrix

MX8NRM MX8NRM Compute the infinity-norm of a matrix

I QSORT IQSORT, QSORT Vector quicksort (scalar algorithm)

R4TF64 R4TF64 IBM REAL*4 to CYBER real

SAS UM SAS UM Real vector absolute sum (BLAS)

SAXPY SAX PY Real vector a*X+Y (BLAS)

SCOPY SCOPY Real or integer vector move (BLAS)

SDOT SDOT Real vector dot product (BLAS)

I SITI64 I2TI64, SITI64 I IEEE short integer to CYBER integer

SNRM2 SNRM2 Real Euclidean vector length (BLAS)

I SRTF64 SRNTF64, SRTF64 IEEE short real to CYBER real

SSCAL SS CAL Real vector scaling (BLAS)

SSWAP SSWAP Real or integer vector swap (BLAS)

TRED2 TRED2 Tridiagonalize symmetric matrix

VABS IVABS, RVABS Vector absolute value

VADD IVADD, ISADDV, IVADDS, IVADDV Integer vector add

VADD RVADD, RSADDV, RVADDS, RVADDV Real vector add

VAND VAND, SANDV, VANDS, VANDV Logical vector AND

VAXPY RV AXMY, RV AXPY Linked triad: a*X-Y, a*X+Y

VDIV IVDIV, ISDIVV, IVDIVS, IVDIVV Integer vector divide

VDIV RVDIV, RSDIVV, RVDIVS, RVDIVV Real vector divide

(Continued)

2-2 FORTRAN LIB99 Usage Revision C

Title

VF ILL

VFLOAT

VFTF64

VGATHER

VIFIX

VIOR

VMASK

VMASUM

VMUL

VMUL

VRANF

VSCATTER

VSHFC

VSUB

VSUB

VSUM

VXOR

WITI64

Revision C

Modules or Entry Points

VFILL

VFLOAT

VFTF64

VGATHP, VGATHR, VGATHRl

VI FIX

VIOR, SIORV, VIORS, VIORV

VMASKO, VMASKl, VMASK2

VMASUM

IVMUL, ISMULV, IVMULS, IVMULV

RVMUL, RSMULV, RVMULS, RVMULV

VRANF

VSCATP, VSCATR, VSCATRl

VSHFC, SSHFCV, VSHFCS, VSHFCV

IVSUB, ISSUBV, IVSUBS, IVSUBV

RVSUB, RSSUBV, RVSUBS, RVSUBV

RVASUM, RVSUM

VXOR, SXORV, VXORS, VXORV

I4TI64, WITI64

Subroutines and Functions

Description

Vector fill

Vector convert integer to real

VAX 32-bit real to CYBER real

Vector periodic and random gather

Vector convert real to integer

Logical vector inclusive OR

Merge two vectors

Moving window vector absolute sum

Integer vector multiply

Real vector multiply

Vector random number generator

Vector periodic and random scatter

Circular vector shift

Integer vector subtract

Real vector subtract

Real vector (absolute) sum

Logical vector exlusive OR

IEEE word integer to CYBER integer

LIB99 Subroutines and Functions 2-3

I

I

Subroutine CONV

Purpose

Format

Parameters

Externals

To compute the convolution of two vectors. Depending on the relative length
of the vectors, the process is often referred to as either (auto)correlation
or sum-of-products.

CALL CONV (A ' NA F , NF , !OFF , !REV , R ' NR)
CALL CORR (A ' NA , F , NF , !OFF , !REV , R ' NR)
CALL FILTGS (F , NF , A NA , R NR , !REV , !OFF)
CALL SOP (A ' NA F NF ' !OFF , !REV , R , NR)

A

Array serving as one of the input operands in the convolution. Must be of
type real. When A and F are of substantially different lengths, A is
typically the longer of the two. The content of A is preserved by this
routine.

NA

Length of array A. Must be of type integer. No element before A(O) or after
A(NA-1) is used in the computations. NA must be at least as large as
NF-ABS(IOFF).

F

Array serving as one of the input operands in the convolutions. Must be of
type real. This should be the shorter one if A and F have substantially
different lengths. The content of F is preserved by this routine.

NF

Length of array F. Must be of type integer. NF must not exceeed
NA+ABS(IOFF). Elements outside the range F(O) through F(NF-1) are not used.

!OFF

Offset value. Must be of type integer. Only the absolute value of !OFF is
used, and it specifies how many steps to the left of the beginning of A the F
vector should be aligned when the first result, R(O), is computed. The
absolute value of !OFF must be smaller than NF. See Method for more
information on this parameter.

IREV

Flag. Must be of type integer. When IREV=O the F vector is used in a normal
manner. When IREVrO the F vector is reversed prior to usage. The reversal is
either conceptual or uses dynamic space, so that the content of F is not
affected by this procedure.

R

Result vector. Must be of type real.

NR

Length of array R. Must be of type integer. If NR exceeds NA+ABS(IOFF), the
last NR-NA-ABS(IOFF) locations of Rare zeroed.

None

2-4 FORTRAN LIB99 Usage Revision B

Dynamic Space

Method

Example

Revision B

Subroutine CONV

Normally 573 words. If IREV~O and the inner product method is chosen (or
forced through calling CORR), then an extra NF words are used.

If IOFF=O, NF<NA, and NR((NA-NF+l), then the computations are performed either
by means of NR dot product operations of length NF, or NF linked triads of
length NR. The choice of method is mainly dictated by the relative lengths of
R and F. When CONV or FILTGS is called, the routine estimates internally
which method is faster and selects that one. Thereby, a more precise method
involving the exact values of IOFF, NF, NA and NR is used. By calling SOP the
linked triad method is forced, and by calling CORR the dot product method is
forced. Note that although there is no mathematical difference between the
two methods, there is a numerical difference since the arithmetic operations
are performed in different order for the two cases.

The process can be pictorially described by first imagining the A vector
stretched out horizontally, with the F vector lying right on top of it.
Aligned directly over A(O) should be F(JF), where JF=ABS(IOFF). The dot
product to be computed for the first result element, R(O), is then represented
by the F and A elements that overlap in this picture. More precisely,
R(O)=(SUM(A(J)*F(JF+J)),J=O, ••• ,NF-ABS(IOFF)-1).

Subsequent elements of R are computed by moving the F vector to the right one
step at a time, and computing the corresponding dot products. When F does not
extend beyond the limits of A, the dot product consists of exactly NF
elements; otherwise, it is shorter.

PROGRAM MAIN
REAL ARRAY1(0:99), ARRAY2(0:49), RESULT(0:74)
LENGTH1=90
LENGTH2=50
IOFF=O
IFLAG=O
LENGTHR=75

CALL CONV(ARRAYl, LENGTH!, ARRAY2, LENGTH2, IOFF, IFLAG, RESULT, LENGTHR)
END

In this example the CONV subroutine is called to compute the convolution of
the first 90 elements of ARRAY! and all of the elements of ARRAY2. The result
is returned in array RESULT.

LIB99 Subroutines and Functions 2-5

Subroutine EVBAK

§unbrmun11:nnne IEVI3Ail{

Purpose

Format

Parameters

To determine the eigenvectors of a real symmetric generalized eigensystem
A*X = lambda*B*X, where A and B are real symmetric matrices and B is positive
definite, by back transforming the eigenvectors of the real symmetric standard
eigenproblem G*Z lambda * Z formed in EVRED.

CALL EVBAK (N , U , KU , D , NEV , Z , KZ)

N

The order of the matrices U and z. Must be of type integer.

u

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the upper triangular matrix U appearing in the
equation which this routine must solve, namely Z = U(transpose)*X. Must be of
type real. U should be the upper triangular factor of the Cholesky
decomposition of the matrix B appearing in the formulation of the real
symmetric generalized eigenvalue problem A*X = lambda*B*X. The matrix U is
normally produced as the result of a call to EVRED, which in turn calls MXSYUL
to perform the actual decompositition. The contents of U are not altered by
this routine.

KU

Storage mode indicator for U. Must be of type integer. A value of 1
indicates that the columns of the upper triangular part of U are stored
linearly, thus omitting the subdiagonal elements, which are all zeroes:

A value of N indicates full storage mode; that is, KU is the size of the first
dimension (column length) of the two-dimensional array U. In this case the
subdiagonal elements are ignored.

D

Array (element) indicating the address of the input array containing the
reciprocal values of the N diagonal elements of the upper triangular matrix
U. Must be of type real. Normally the contents of D, as well as those of U,
are produced as a result of a call to EVRED. The contents of D are not
altered by this routine.

NEV

The number of eigenvectors to be back transformed.

z

Array (element) indicating the address of the upper left-handcorner of a
two-dimensional input/output matrix. Must be of type real. EVBAK is designed
to be the last step in solving the real symmetric generalized eigenvalue
problem. Thus, on input Z must contain the N eigenvectors of the real
symmetric matrix G, where G was formed in EVRED and Z in EVIQL, and its
contents must therefore adhere to the format explicitly specified in the
documentation of those two LIB99 routines. A more precise definition is given
under Method.

On output, the first NEV columns of Z will contain the NEV back transformed
eigenvectors; that is, the actual eigenvectors of the generalized eigenvalue
problem.

2-6 FORTRAN LIB99 Usage Revision B

Parameters
(Continued)

Externals

Dynamic Space

Method

Revision B

Subroutine EVBAK

KZ

Size of the first dimension (column length) of array z. Must be of type
integer. Must be greater than or equal to N.

SDOT

None

The real symmetric generalized eigenvalue problem is defined by the equation:

A * X = lambda * B * X (1)

where A and B are real symmetric matrices and B is positive definite. X
represents the square matrix whose columns are the eigenvectors of the thus
defined eigensystem, and lambda is the diagonal matrix whose elements are the

.corresponding eigenvalues.

By performing a Cholesky decomposition of the matrix B we obtain B = U*L,
where U is an upper triangular matrix and L is its transpose. By
pre-multiplying equation (1) above with the inverse of U, and inserting the
identity matrix in the form of the matrix product L(inverse)*L, or
L(inverse)*U(transpose), we obtain the equation

U-l * A* L-l * UT* X = lambda * UT* X (2)

Since it can be shown that the matrix G = U(inverse)*A*L(inverse) is similar
to B(inverse)*A, and since the theory of eigensystems tells us that similar
matrices have identical eigenvalues, the original real symmetric generalized
eigenvalue problem can now be restated as follows:

B u * L u * UT (3)

G u -1
* A * L

-1
(4)

G * Z = lambda * z (5)

z UT* X (6)

The routine EVBAK solves the last of these equations for X, thereby
transforming, in place, the eigenvectors of the real symmetric standard
eigenvalue problem (5), contained in Z, into those of the real symmetric
generalized eigenvalue problem (1). The bulk of the work is performed by
means of calls to the LIB99 routine SDOT.

LIB99 Subroutines and Functions 2-7

Subroutine EVIQL

§unbrmllllfrnnne IEVIlQIL

Purpose

Format

Parameters

To find all eigenvalues and, optionally, all eigenvectors of a real symmetric
tridiagonal matrix. The complete eigensystem of a general real symmetric
matrix can also be determined, provided the matrix has first been
tridiagonalized by calling TRED2.

CALL EVIQL (N , Z , KZ , D , S , T , W , IVEC , ITMAX , NEV)

N

The order of the eigensystem. Must be of type integer.

z

Array (element) indicating the address of the upper left-hand corner of a
two-dimensional input/output array. Must be of type real. This parameter is
ignored when IVEC=O (see below). When IVEC=l there are two cases:

1. If Z contains the identity matrix, then the eigenvectors of the
tridiagonal matrix contained in the arrays D and S are determined. The
identity matrix is defined by the requirement that Z(J,K)=l.O when J=K,
but zero otherwise.

2. If Z contains the transformation matrix produced in the reduction of a
real symmetric matrix to the tridiagonal matrix contained in the arrays D
and S, by means of a call to TRED2, then the eigenvectors of the original
real symmetric matrix are determined.

In both of these cases, on return from EVIQL, Z will contain in its first NEV
columns the NEV eigenvectors associated with the NEV successfully computed
eigenvalues.

KZ

Size of the first dimension (column length) of array z. Must be of type
integer. This parameter is ignored when IVEC=O. When IVEC=l, KZ must be
greater than or equal to N.

D

Input/output array of length at least N words. Must be of type real. On
input D should contain the diagonal elements of the symmetric tridiagonal
input matrix. On output D will in its first NEV positions contain the NEV
successfully determined eigenvalues, ordered ascendingly with respect to
algebraic value.

s

Input array of length at least N words. Must be of type real. S should
contain in its first N-1 positions the subdiagonal elements of the tridiagonal
input matrix. On return from EVIQL the contents of S will have been destroyed.

T

Scratch array of length at least 2*N words. May be of any type except
character. This parameter is ignored when IVEC=O.

w

Scratch array of length at least N words. Can be of any type except character.

2-8 FORTRAN LIB99 Usage Revision B

Parameters
(Continued)

Externals

Dynamic Space

Method

Revision B

Subroutine EVIQL

IVEC

Input selection parameter. Must be of type integer. A value of 0 requests
eigenvalues only. A value of 1 requests eigenvalues and eigenvectors.

ITMAX

User-supplied value limiting the number of iterations allowed in the
determination of any given eigenvalue. Must be of type integer. If the value
0 is supplied, a default value is used (currently 30). If for the Jth
eigenvalue ITMAX iterations is not enough to achieve convergence, the
algorithm is discontinued and the output parameter NEV is assigned the value
J-1.

NEV

Output parameter of type integer. See discussion of ITMAX above.

QSORT, RSMULV, RVAXMY, RVAXPY, SQRT, SSWAP

None

The routine implements the implicit QL-algorithm, as described in
Wilkinson-Reinsch: Linear Algebra, Handbook for Automatic Computation, Vol.2,
Springer-Verlag, Berlin, 241-248 (1971). That algorithm is highly recursive,
and does not lend itself easily to vectorization. The process of "forming
vectors" (see reference) is vectorized, but the rest of the computations in
the main part of the algorithm are done in scalar mode. When all eigenvalues
and eigenvectors have been determined, they are ordered ascendingly with
respect to the algebraic value of the eigenvalues. This is taken care of by a
call to QSORT, followed by a rearrangement of the eigenvectors according to
the index list which is produced by QSORT.

LIB99 Subroutines and Functions 2-9

Subroutine EVRED

§unbrrount1:nnue IEVIIilEIIJ>

Purpose

Format

Parameters

To reduce the real synnnetric generalized eigenproblem A*X = lambda*B*X, where
A and B are real synnnetric matrices and B is positive definite, to the real
synnnetric standard eigenproblem G*Z = lambda * z.

CALL EVRED (N , A , KA , B , KB , G , KG , U , KU , D , W , !ERR)

N

The order of the eigensystem. Must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the real symmetric matrix A. Must be of type real.
The contents of A will not be altered by this routine unless A and G are the
same array, which is allowed (see restrictions for KA and KG).

KA

Storage mode indicator for A. Must be of type integer. If A and G are the
same array, then either KA=KG=l or KA.GE.KG.GE.N must hold. If A and G are
distinct, then the case KG.GT.KA.GE.N is also permitted.

A value of 1 indicates that the columns of the upper triangular part of A are
stored linearly, thus omitting the subdiagonal elements:

A value of N indicates full storage mode; that is, KA is the size of the first
dimension (column length) of the two-dimensional array A. In this case the
subdiagonal elements are ignored and will not be altered by this routine.

B

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the real synnnetric positive definite matrix B. Must
be of type real. The contents of B are not altered by EVRED unless Band U
are the same array, which is permitted when KB=KU.

KB

Storage mode indicator for B. Must be of type integer. If B and U are the
same array, then KB=KU must hold. A value of 1 indicates that the columns of
the upper triangular part of B are stored linearly, thus omitting the
subdiagonal elements:

A value of N indicates full storage mode; that is, KB is the size of the first
dimension (column length) of the two-dimensional array B. In this case the
subdiagonal elements are ignored and will not be altered by this routine.

2-10 FORTRAN LIB99 Usage Revision B

Parameters
(Continued)

Revision B

Subroutine EVRED

G

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the real symmetric output matrix G created by EVRED.
Must be of type real. G is formed as the triple matrix product
U(inverse)*A*L(inverse), where U is the upper triangular matrix defined below,
and L is its transpose. G may be the same array as A provided that KG and KA
satisfy certain conditions (see respective descriptions).

KG

Storage mode indicator for G. Must be of type integer. If A and G are the
same array, then either KA=KG=l or KA.GE.KG.GE.N must hold. If A and G are
distinct, then the case KG.GT.KA.GE.N is also permitted.

A value of 1 indicates that the columns of the upper triangular part of G are
stored linearly, thus omitting the subdiagonal elements:

A value of N indicates full storage mode; that is, KG is the size of the first
dimension (column length) of the two-dimensional array G. In this case the
subdiagonal elements are ignored and will not be altered by this routine.

u

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the upper triangular matrix U resulting from the
Cholesky decomposition of B, as performed by MXSYUL when called by EVRED.
Must be of type real. The matrix U is defined by the matrix equation B U*L,
where U is an upper triangular matrix and L is its transpose. U may be the
same array as B, provided that KU=KB.

KU

Storage mode indicator for U. Must be of type integer. If U and B are the
same array, then KU=KB must hold.

A value of 1 indicates that the columns of the upper triangular part of U are
stored linearly, thus omitting the subdiagonal elements, which are all zeroes:

A value of N indicates full storage mode; that is, KU is the size of the first
dimension (column length) of the two-dimensional array U. In this case the
subdiagonal elements are ignored and will not be altered by this routine.

D

Array (element) indicating the address of an output array of length at least N
words. Must be of type real. On return from EVRED, D will contain the
reciprocal values of the N diagonal elements of the upper triangular matrix U.

w

Workspace of length N words. May be of any type except character.

IERR

Error flag set by this routine. Must be of type integer. If B is nonpositive
definite, IERR will contain a nonzero value on return from EVRED. Normal
return is IERR = O.

LIB99 Subroutines and Functions 2-11

Subroutine EVRED

Externals

Dynamic Space

Method

MXSYUL, RSMULV, RVAXPY, SCOPY, VGATHP

None

The call to EVRED requires two input matrices, A and B, and produces two
output matrices, G and U, as well as an auxiliary array, D. The work done by
EVRED is intended to provide the first step in the solving of the real
symmetric generalized eigenvalue problem, which schematically can be depicted
in the following manner:

a) Problem - Solve for both lambda and X: A*X lambda*B*X

b) Perform UL decomposition of B: A*X lambda*U*L*X

(B=UL, where U is an upper triangular matrix and L is its transpose. U is
computed by means of a call to MXSYUL.)

c) Pre-multiply with the inverse of U: -1
U *A*X = lambda*L*X

d) Embed the identity
-1

matrix L L: U-l*A*L-l*L*X = lambda*L*X

e) Substitute G = U -1 * A*L-l and UT= L: G *
T

(U *X) = lambda * (UT*X)

Since it can be shown that the matrix G = U(inverse)*A*L(inverse) is similar
to B(inverse)*A, and since the theory of eigensystems tells us that similar
matrices have identical eigenvalues, the original real symmetric generalized
eigenvalue problem can now be restated as follows:

1. Compute u defined by: B u * L = U * UT

2. Compute G defined by: G u-1 *A* L-l

3. Solve the real symmetric
standard eigenvalue problem: G * z = lambda * Z

4. Backtransf orm the eigenvectors
UT* X found by solving for X in: z =

The work done by EVRED consists of computing the upper triangular part of the
symmetric matrix G, the upper triangular matrix U, and the reciprocal values
of the diagonal elements of U, as returned in array D. This corresponds to
the steps numbered 1 and 2 above. Step 3 can be performed by calling the
LIB99 routines TRED2 and EVIQL, while step 4 can be handled by the subroutine
EVBAK, also in LIB99.

2-12 FORTRAN LIB99 Usage Revision B

Subroutine EVRS

§unUJirountiillle IE\1111§

Purpose

Format

Parameters

Revision B

This subroutine calls two LIB99 subroutines to determine the eigenvalues and
eigenvectors of the real symmetric standard eigenproblem A*X = lambda*X, where
A is a real symmetric matrix. Here X represents the solution matrix whose
columns consists of the eigenvectors of A, while lambda represents the
diagonal matrix whose elements are the eigenvalues of A.

CALL EVRS (N , A , KA , E , IVEC , Z , KZ , W , NEV)

N

The order of the eigenproblem. Must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the real symmetric matrix A. Must be of type real.
A and Z may be the same array provided that KA=KZ. The contents of A are not
altered by EVRS unless Z is the same array as A.

KA

Storage mode indicator for A. Must be of type integer. If A and Z are the
same array, then KA=KZ must hold. This is possible only when KA.GE.N. A
value of 1 indicates that the columns of the upper triangular part of A are
stored linearly, thus omitting the subdiagonal elements:

A value of N indicates full storage mode; that is, KA is the size of the first
dimension (column length) of the two-dimensional array A. In this case the
subdiagonal elements are ignored and will not be altered by this routine,
unless A and Z are the same array which is permitted if KA=KZ.

E

Output array of length at least N words. Must be of type real. On return
from EVRS, the first NEV locations of E will contain the NEV successfully
determined eigenvalues, ordered ascendingly with respect to algebraic value.

IVEC

Input selection parameter. Must be of type integer. A value of 0 requests
eigenvalues only. A value of 1 requests eigenvalues and eigenvectors.

z

Array (element) indicating the address of the upper left-hand corner of a
two-dimensional output array. Must be of type real. Array Z is effectively a
scratch array when IVEC=O.

If IVEC = 1, the first NEV columns of Z will on return from EVRS contain the
NEV eigenvectors associated with the NEV successfully determined eigenvalues.
Z and A may be the same array when KZ = KA.

LIB99 Subroutines and Functions 2-13

Subroutine EVRS

Parameters
(Continued)

Externals

Dynamic Space

Method

KZ

Size of the first dimension (column length) of array z. Must be greater than
or equal to N. Must be of type integer.

w

Scratch array of length at least 4N words. May be of any type except
character.

NEV

Return parameter of type integer. On return from EVRS the value of NEV will
be set to the number of successfully computed eigenvalues. Normal return is
NEV = N.

EVIQL, TRED2

None

EVRS proceeds by making calls to the LIB99 routines TRED2 and EVIQL.
Additional details can be found in the documentation of these routines.

2-14 FORTRAN LIB99 Usage Revision B

Subroutine EVRSG

§unbirounll:inue IEVIIl§G

Purpose

Format

Parameters

Revision B

To solve the real symmetric generalized eigenvalue problem A*X = lambda*B*X,
where A and B are real symmetric matrices and B is positive definite.
Eigenvalues and, optionally, eigenvectors are computed.

CALL EVRSG (N , A , KA , B , KB , E , IVEC , Z , KZ , W , NEV)

N

The order of the eigensystem. Must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the real symmetric matrix A. Must be of type real.
This routine will destroy the contents of array A. Array A may be the same as
Z, provided that KA=KZ.

KA

Storage mode indicator for A. Must be of type integer. If A and Z are the
same array, then KA=KZ must hold. This is possible only when KA.GE.N.

A value of 1 indicates that the columns of the upper triangular part of A are
stored linearly, thus omitting the subdiagonal elements:

A value of N indicates full storage mode; that is, KA is the size of the first
dimension (column length) of the two-dimensional array A. In this case the
subdiagonal elements are ignored and will not be altered by this routine,
unless A and Z are the same array, which is permitted if KA=KZ.

B

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the real symmetric positive definite input matrix B.
Must be of type real. On return the upper triangular part of B will have been
altered to contain the upper triangular part of the upper triangular matrix U,
produced by MXSYUL when called by EVRED to perform a Cholesky decomposition of
B.

KB

Storage mode indicator for B. Must be of type integer. A value of 1
indicates that the columns of the upper triangular part of B are stored
linearly, thus omitting the subdiagonal elements:

A value of N indicates full storage mode; that is, KB is the size of the first
dimension (column length) of the two-dimensional array B. In this case the
subdiagonal elements are ignored and will not be altered by this routine.

E

Output array of length at least N words. Must be of type real. On return
from EVRSG, E will in its first N locations contain the NEV successfully
determined eigenvalues, ordered ascendingly with respect to algebraic value.

LIB99 Subroutines and Functions 2-15

Subroutine EVRSG

Parameters
(Continued)

Externals

Dynamic Space

Method

IVEC

Input selection parameter. Must be of type integer. A value of O requests
eigenvalues only. A value of 1 requests eigenvalues and eigenvectors.

z

Array (element) indicating the address of the upper left-hand corner of a
two-dimensional output array. Must be of type real. When IVEC=O array Z is
effectively a scratch array.

If IVEC = 1, the first NEV columns of Z will on return from EVRSG contain the
NEV eigenvectors associated with the NEV successfully determined eigenvalues.
Zand A may be the same same array, provided that KZ =KA (implying KA.GE.N).

KZ

Size of the first dimension (column length) of array z. Must be greater than
or equal to N. Must be of type integer.

w

Scratch array of length at least 5*N words. May be of any type except
character.

NEV

Return parameter of type integer. If the matrix B, possibly due to rounding
errors, proves not to be positive definite, then NEV will be set to -1 and
computations discontinued. Otherwise NEV will on return from EVRSG contain
the number of successully computed eigenvalues. Normal return is NEV = N.

EVBAK, EVIQL, EVRED, TRED2

None

The method used by EVRSG is to call the four LIB99 routines EVRED, TRED2,
EVIQL, and EVBAK. The different steps are described below.

a) Problem - Solve for both lambda and X: A*X lambda*B*X

b) Perform UL decomposition of B: A*X lambda*U*L*X

(B=UL, where U is an upper triangular matrix and L is its transpose. U is
computed by means of a call to MXSYUL.)

c)

d)

e)

Pre-multiply with the inverse of U:

-1
Embed the identity matrix L L:

Substitute G = U-l * A*L-l and UT= L:

-1
U *A*X = lambda*L*X

2-16 FORTRAN LIB99 Usage Revision B

Method
(Continued)

Revision B

Subroutine EVRSG

Since it can be shown that the matrix G = U(inverse)*A*L(inverse) is similar
to B(inverse)*A, and since the theory of eigensystems tells us that similar
matrices have identical eigenvalues, the original real symmetric generalized
eigenvalue problem can now be restated as follows:

1. Compute u defined by: B u * L = U * UT

2. Compute G defined by: G u -1 * A* L-l

3. Solve the standard real
synnnetric eigenvalue problem: G * z = lambda * Z

4. Backtransform the eigenvectors
UT * X found by solving for X in: z =

First EVRED is called to compute the real symmetric matrix G and the upper
triangular matrix U, corresponding to the steps numbered 1 and 2 above. Step
3 is performed by means of calling TRED2 and EVIQL, while step 4 is handled by
a call to EVBAK. Additional details can be found in the documentation of the
four mentioned routines.

LIB99 Subroutines and Functions 2-17

Subroutine FFrlD

§unb1rountnnue IFIF1r:D.IIJ>

Purpose

Format

Parameters

To compute the one-dimensional Fast Fourier Transform (FFT) of one or several
real or complex vectors whose lengths can be expressed as
N=(2**p)*(3**q)*(5**r), where p, q, and rare nonnegative integers.
(Currently, q=r=O is required.)

CALL FFTlD (X , L , N , DTYP , S , TA , TB , XNORM , !OPT , MODE)

x

Input/output array of length at least 2*N*L words. Must be of type real or
complex (see Remarks). On input, array X should contain the real or complex
vector(s) stored as determined by the values of DTYP, XNORM, and MODE. On
output, array X contains the transformed vectors. See Remarks for details.

L

The number of one-dimensional transforms to be computed. Must be of type
integer. This corresponds to the column length of array X.

Number of elements in each vector to be transformed. Must be of type
integer. N must be a composite integer of the form N=(2**p)*(3**q)*(5**r),
where p, q, and r all are nonnegative integers. N must always be even; that
is, p must be nonzero whenever DTYP='RD' (see below).

NOTE

Currently q=r=O is required; the base-3 and base-5 algorithms are not
completed.

DTYP

Character string of length 2 that can take either the value 'CD' or 'RD',
meaning complex data or real data, respectively. When DTYP='CD' the input and
output vectors are all complex. When DTYP= 'RD' and XNORM is positive, a
forward transform of real vectors into conjugate symmetric complex vectors is
requested, while DTYP='RD' and XNORM negative requests the inverse transform
of conjugate symmetric complex vectors into real vectors. See Remarks for
details.

s

Scratch array of the same size as array x. Can be of any type except
character.

TA

Array of length at least 2N words when N contains at least one factor of 3 or
5 (that is, when (q+r)>O; see N above) and of length at least N words when
N=2**p holds true. Must be of type real. The array is used to hold
trigonometric tables necessary to perform the transforms and will be filled by
this routine when desired, as specified by the value of !OPT. TA is then
never modified. Thus, once created, TA can be used repeatedly in calls with
the same value of N.

2-18 FORTRAN LIB99 Usage Revision B

Parameters
(Continued)

Revision B

Subroutine FFTlD

TB

Array of length at least N*L/2 words, used to hold an expanded trigonometric
table. Must be of type real. Array TB is used only when MODE is odd (MODE=+l
or -1) and N is a multiple of 4. Furthermore, if the routine determines that
it is not favorable to use the algorithm requiring TB, then TB is ignored.
This evaluation is based on the values of N and L, and TB will not be used if
L is too large. (The cutoff is difficult to specify exactly since it depends
on N as well. When TB is actually used, the computations proceed at a
significantly higher speed, and it is therefore important to allow for its
use, especially when L is small.) See Method for more information.

This table can also be used repeatedly.

XNORM

This parameter must be of type real and has two functions:

1. Its sign determines the type of transform. When XNORM is positive, a
forward transform is requested. A negative value requests an inverse
transform.

2. Its absolute value deals with the normalization of the data. If XNORM
equals +l.O or -1.0, no normalization takes place. Otherwise, the data
will be normalized by multiplication with ABS(XNORM).

Two consecutive calls using XNORM=XNl and XNORM=XN2 recover the original data
if XNl*XN2 = -1.0 /FLOAT(N).

!OPT

This parameter must be of type integer and has two functions:

1. Its sign determines whether this routine should compute any Fourier
transform at all:

IOPT)O creates requested tables and performs the FFT(s).

IOPT=O does the FF~(s) directly since tables exist.

IOPT<O creates requested tables and returns.

If !OPT is negative, the trigonometric tables TA and/or TB will be
created, but nothing else takes place. To actually get an FFT, !OPT must
be zero or positive.

2. Its absolute value determines which, if any, of the trigonometric tables
TA and TB should be created by this routine:

ABS(IOPT)=O indicates TA and (if needed) TB exist.

ABS(IOPT)=l indicates TA should be computed.

ABS(IOPT)=2 indicates TB should be computed if needed.

ABS(IOPT)=3 combines ABS(IOPT)=l and ABS(IOPT)=2.

IOPT=-2,+2,-3, or +3 does not guarantee that TB is created; this happens only
if this routine plans to use it. The decision is based on the values of L, N,
and MODE, as well as on that of IOPT.

Once created, these tables are never modified and can be used in subsequent
calls.

When IOPT is negative, the parameters X, DTYP, S, and XNORM are ignored.

LIB99 Subroutines and Functions 2-19

Subroutine FFTlD

Parameters
(Continued)

Externals

Dynamic Space

Remarks

MODE

This parameter must be of type integer and has two functions:

1. Its sign determines the type of storage used. A positive value indicates
that array X contains the data stored with real and imaginary parts
separated, as described under X above. A negative value indicates that
the normal FORTRAN storage mode is used; that is, that the real and
imaginary parts are interleaved. The scheme with separated parts is
optimal for this routine. If MODE is negative, a certain penalty is
incurred since the routine in this case will begin by separating the real
and imaginary parts and end by interleaving them again.

2. Its absolute value specifies whether the expanded trigonometric table TB
should be used or not. MODE=+l or -1 indicates that the space TB is
available and can be used if deemed advantageous by this routine. MODE=+2
or -2 prohibits the use of TB. Substantial savings can be realized by
allowing for the use of TB (see Method).

SCRRI, SCRRF, FAC2U, FAC4, SIN, COS

1024 words.

The combination of the DTYP and MODE parameter specifications define four
specific cases:

CASE 1. DTYP='CD' and MODE)O.

This is the standard case: complex vectors in and complex vectors out with
real and imaginary parts separated.

INPUT: REAL X(O:L-l,0:2*N-l), an array with column length L. Each of the L
rows should hold one complex vector with N complex elements. Its
real parts should occupy the first N and its imaginary parts the last
N locations of that row. Thus, the real parts of the Jth vector,
(J=O,l, ••• ,L-1), should occupy locations (X(J,K) , K=O,N-1) and the
imaginary parts locations (X(J,N+K) , K=O,N-1).

OUTPUT: Array X contains the result of the forward (XNORli positive) or
inverse (XNORM negative) Fourier transform of the L input vectors,
stored in the same fashion as was the input data.

CASE 2. DTYP='CD' and MODE(O.

This differs from case 1 in that the normal FORTRAN storage method for complex
elements is used. Thus, real and imaginary parts are interleaved. Note that
there is some penalty associated with using this type of storage. This
routine starts by converting the data to the form with separated real and
imaginary parts (case 1) and ends with the reversal of that process.

INPUT: COMPLEX X(O:L-1,0:N-l), an array with column length L, as measured in
units of complex elements. Each of the L rows should hold one
complex vector of length N. Thus, the Kth complex element,
(K=O,l, ••• ,N-1), of the Jth vector, (J=O,l, ••• ,L-1), occupies the
complex element (double word) location X(J,K).

OUTPUT: Array X contains the result of the forward (XNORM positive) or
inverse (XNORM negative) Fourier transform of the L input vectors,
stored in the same fashion as was the input data.

2-20 FORTRAN LIB99 Usage Revision B

Remarks
(Continued)

Revision C

Subroutine FFTlD

CASE 3. DTYP='RD' and MODE)O.

This requests the forward FFT (XNORM positive) of the 21 real vectors of
length N into 21 conjugate symmetric complex vectors of length N, or the
reverse operation (XNORM negative). Note that whenever DTYP='RD', it is
necessary to use only even values for N.

When a Fourier transform is applied to a real vector with N elements the
result is a complex vector with N elements. Thus, N real values are
transformed into 2N real (=N complex) values, implying a redundancy in the
result. Indeed, the transformed vector is conjugate symmetric around its
midpoint, so that N values trivially can be derived from the other N.

Mathematically this can be expressed as follows:

When the real vector (x(j) , j=O, ••• ,n-1) is Fourier transformed, the
resulting complex vector (z(k) , k=O, ••• ,n-1) has the property that
(z(n-k)=conjugate(z(k)) , k=O, ••• ,n-1).

Using zr and zi to denote real and imaginary parts, respectively, and
restricting ourselves to even-valued n's, we may reformulate this as follows:

zi(O)
zi(n/2)
zr(n-k)
zi(n-k)

0
0
zr(k)

-zi(k)
k=l,2, ••• ,n/2-1
k=l,2, ••• ,n/2-1

Thus, the vector z may be completely defined by specifying the n/2+1 real
parts of (z(k) , k=O, ••• ,n/2) and the n/2-1 imaginary parts of
(z(k) , k=l, ••• ,n/2-1). This amounts to a total of n real values. The point
around which z exhibits conjugate symmetry is z(n/2), often referred to as the
Nyquist frequency component, in spite of the fact that far from all Fourier
transforms correspond to a change in variable from time to frequency. z(O) is
often referred to as the DC frequency component.

Real storage mode (input when XNORM>O, output when XNORM<O):

REAL X(O:L-l,0:2*N-l), the same as when DTYP='CD'. However, in this case
we distinguish between 2L real vectors. Each of the L rows holds two real
vectors, each of length N: the Jth row, (J=O,l, ••• ,L-1), contains one
real vector in locations (X(J,K) , K=O, ••• ,N-1) and another one in
(X(J,N+K) , K=O, ••• ,N-1).

Complex storage mode (output when XNORM)O, input when XNORM<O):

N/2+1 real and N/2-1 imaginary parts of 21 conjugate symmetric complex
vectors, each of length N. In the real array X(O:L-l,0:2*N-l), the Jth
row, (J=O,l, ••• ,L-1), contains two complex vectors. The first one has its
first N/2+1 real parts in locations (X(J,K) , K=O, ••• ,N/2) and the
imaginary parts that correspond to elements (1,2, ••• ,N/2-l) in locations
(X(J,N/2+K) , K=l, ••• ,N/2-1). Similarly, the second vector in the Jth row
has its first N/2+1 real parts in locations (X(J,N+K) , K=O, ••• ,N/2) and
its imaginary parts corresponding to elements (1,2, ••• ,N/2-l) in locations
(X(J,3N/2+K) , K=l, ••• ,N/2-1).

CASE 4. DTYP='RD' and MODE<O.

This case differs from the previous case only in that the transformed data,
which consists of complex numbers, is stored in the standard FORTRAN manner;
that is, with the real and imaginary parts interleaved. As was the case in
CASE 2 above, some extra overhead is incurred in order to make this come
about. The Fourier transforms themselves are always performed with separated
real and imaginary parts, so that the interleaving takes place after the
real-to-complex FFT, while the act of separating precedes the complex-to-real
FFT.

LIB99 Subroutines and Functions 2-21

a

Subroutine FFTlD

I Remarks
(Continued)

I

Method

Real storage mode (input when XNORM>O, output when XNORM(O):

REAL X(O:L-1,0:2*N-1), the same as when DTYP='CD'. However, in this case
we distinguish between 2L real vectors. Each of the L rows holds two real
vectors, each of length N: the Jth row, (J=0,1, ••• ,L-1), contains one real
vector in locations (X(J,K) ,K=O, ••• ,N-1) and another one in (X(J,N+K) ,
K=O, ••• , N- 1).

Complex storage mode (output when XNORM)O, input when XNORM(O):

COMPLEX X(O:L-l,O:N-1), where each of the L rows contains N/2+1 real and
N/2-1 imaginary parts of two conjugate symmetric complex vectors, each of
length N. In a given row J, where J=0,1, ••• ,L-1, there are N complex
numbers. The first N/2 of these completely define one conjugate symmetric
complex vector, and the same is true for the latter N/2 of them. The
first element, X(J,O), is a representation of two complex elements for
which we know that the imaginary parts are zero: the DC and the Nyquist
component. Thus, the DC component (the first element) of the transformed
vector is actually CMPLX(REAL(X(J,O)) , 0.0), while the Nyquist
component can be formed as the complex number CMPLX(IMAG(X(J,O)) , 0.0).
Elements with subscripts 1 through N/2-1 are stored in the complex array
locations (X(J,K),K=l, ••• ,N/2-1), while elements with subscripts N/2+1
through N-1 can be derived by taking the complex conjugates of
(X(J,N-K),K=N/2+1, ••• ,N-1). Similarly, the DC and Nyquist components of
the second vector in row J are CMPLX(REAL(X(J,N/2)),0.0) and
CMPLX(IMAG(X(J,N/2)),0.0), respectively. Elements with subscripts 1
through N/2-1 are stored in locations (X(J,N/2+K),K=l, ••• ,N/2-1), while
elements with subscripts N/2+1 through N-1 can be derived by taking the
complex conjugates of (X(J,N/2+N-K),K=N/2+1, ••• ,N-l).

Given a vector (x(k) , k=0,1,2, ••• ,n-l), its Fourier transform (y(j) ,
j=0,1,2, ••• ,n-1) is defined by

n-1
y(j) L x(k)*e-2 1T ij k/n

k=O

where i 2=-l. The inverse transform is obtained by changing -2 1T to +2 1T.

N is assumed to be the product of p factors of 2, q factors of 3, and r
factors of S. The following processing phases can be identified:

NOTE

Currently q=r=O is required.

1. If DTYP='RD' and XNORM is negative, the whole data volume must be slightly
manipulated before the actual inverse Fourier transform can take place.

2. If MODE=+l or -1 the routine processes m factors of 2, (m~), one at a
time, using a variation of Urich's method. m is determined internally so
as to obtain the smallest possible execution time. When L is large, m is
zero, while for small values of L, m may be as large as 6.

Significant savings can be realized by allowing for this method. The
value of L above for which this is not true varies with N, but will mostly
fall between 8 and 16. Thus, for smaller values of L it pays to use
N-values containing many factors of 2.

2-22 FORTRAN LIB99 Usage Revision C

Method
(Continued)

Revision C

Subroutine FFTlD

3. The remaining factors of 5 are now processed by applying a standard base-5
Sande-Tukey algorithm to the data. This is followed by the processing of
the remaining factors of 4, and then those of 3. If after this a single
factor of 2 remains, this is handled as the last factor.

4. If DTYP='RD' and XNORM is positive, the data must now be manipulated
somewhat before return.

CYBER 990 timing information

The tables below show measured execution times for different values of 1 and N
when FFTlD was executed on a dedicated CYBER 990. In all cases IOPT=O. For 1
values below 16, MODE=! was used, while MODE=2 was the choice for 1=16 and
larger.

Microseconds per complex transform time/1 when DTYP='CD'

N=:

1= 1 MODE=!

1= 8 MODE=!

1=16 MODE=2

1=32 MODE=2

1=64 MODE=2

32

210

63

39

26

20

64

300

120

77

55

45

128

480

250

170

130

110

256

820

520

360

270

230

512

1500

1000

790

610

540

1024

3000

2100

1700

1300

1200

Microseconds per real transform (time/21 when DTYP='RD')

N=:

1= 1 MODE=!

1= 8 MODE=!

1=16 MODE=2

1=32 MODE=2

1=64 MODE=2

32

120

36

22

15

12

64

160

67

43

31

26

128

250

140

96

71

59

256

430

280

200

150

130

512

810

550

440

350

300

1024

1600

1100

920

760

660

2048

6000

4900

3700

3400

2900

2048

3100

2600

2000

1900

1500

4096

11700

10600

9700

6600

6100

4096

6100

5600

5300

3800

3100

1IB99 Subroutines and Functions 2-23 I

Subroutine F64TR4

§unbrmunll:inne IF64l-lrill4

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

To convert one or several Control Data 64-bit floating-point numbers to IBM
32-bit floating-point format, also known as REAL*4.

CALL F64TR4 (N , A , B , IXBYTB)

N

Number of Control Data 64-bit floating-point numbers to convert. Must be of
type integer.

A

Input array of type real, holding N contiguously stored Control Data 64-bit
floating-point numbers. The contents of A are not altered by this routine,
provided A and B are not the same array.

B

Ouput array in which the converted numbers are stored contiguously. Can be of
any type. Each 4-byte result is stored in byte natural order. Conversion in
place is allowed; that is, B may represent the same address as A. See Remarks
below for details about what happens when a Control Data number in A is an
indefinite, an infinity, or simply lies outside the range representable in the
IBM 32-bit floating-point format.

IXBYTB

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array B where the first
converted number should be placed. The beginning of B is represented by
IXBYTB=O.

None

None

The IBM 32-bit floating-point format features a sign bit (O=plus, !=minus) to
the far left, followed by a 7-bit exponent expressed in base 16 and biased by
64 (making it positive). The rightmost 24 bits constitute a normalized,
positive coefficient. The normalization is done 4 bits at a time, so that the
most significant 4 bits of the coefficient may form any hexadecimal digit
except O.

Since (for positive numbers) the l's and 2's complement notations are
equivalent, no such distinction is made above.

There are some special cases of the IBM 32-bit floating-point format that may
result from a conversion of a Control Data 64-bit floating-point number:

1. When the Control Data number is an indefinite; that is, when the 4
leftmost bits make up either one of the two hexadecimal digits "7"
(positive indefinite) or "F" (negative indefinite), then this number is
converted to the "reserved" IBM quantity with the hexadecimal
representation Z"7FFFFFFF".

2. When the absolute value of the Control Data number equals infinity; that
is, when the 4 leftmost bits make up either one of the hexadecimal digits
"5", "6", "D", or "E", then this number is also converted to Z"7FFFFFFF".

e 2-24 FORTRAN LIB99 Usage Revision C

Revision C

Subroutine F64TR4

3. When the absolute value of the Control Data number is too large for the
IBM representation; that is, when the computed IBM biased exponent exceeds
255, then this number is also converted to Z"7FFFFFFF".

4. When the absolute value of the Control Data number is too small for the
IBM representation; that is, when the computed IBM biased exponent is
negative, then a zero is generated (32 zero bits).

LIB99 Subroutines and Functions 2-24.1 •

Subroutine F64TSR

§unbn-ountnne 1F641-1r§R

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

To convert one or several Control Data 64-bit floating-point numbers to IEEE
32-bit floating-point format, also known as Short Real. Each resulting 4-byte
number is generated in either natural (F64TSRN) or byte reversed (F64TSR)
order.

CALL F64TSR (N , A
CALL F64TSRN(N , A

N

B , IXBYTB
B , IXBYTB

Number of Control Data 64-bit floating-point numbers to convert. Must be of
type integer.

A

Input array of type real, holding N contiguously stored Control Data 64-bit
floating-point numbers. The contents of A are not altered by this routine,
provided A and B are not the same array.

B

Output array in which the converted numbers are stored contiguously. Can be
of any data type. Each 4-byte result is stored in natural order (0123) when
F64TSRN is called, and in byte reversed order (3210) when F64TSR is called.
Conversion in place is allowed; that is, B may represent the same address as
A. See REMARKS below for details about what happens when a Control Data
number in A is an indefinite, an infinity, or simply lies outside the range
representable in the IEEE Short Real format.

IXBYTB

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array B where the first
converted number should be placed. The beginning of B is represented by
IXBYTB=O.

None

None

The IEEE Short Real, or 32-bit floating-point format is a sign/magnitude
format, featuring a sign bit (O=plus, !=minus), an 8-bit base 2 exponent
biased by decimal 127, and a 24-bit positive coefficient that in general is
normalized. Since the coefficient of a positive normalized number always
starts with a 1, the first bit is redundant. The bit is indeed omitted from
the actual floating-point representation. It is referred to as "the hidden
bit". There is an implied binary point between the two most significant bits
of the coefficient; that is, just after the hidden bit. Since for positive
numbers the l's and 2's complement notations are equivalent, no such
distinction is made above.

e 2-24.2 FORTRAN LIB99 Usage Revision C

Revision C

Subroutine F64TSR

There are some special cases of the IEEE Short Real format that may result
from a conversion of a Control Data 64-bit floating-point number:

1. When the Control Data number is an indefinite; that is, when the 4
leftmost bits make up either one of the two hexadecimal digits "7"
(positive indefinite) or "F" (negative indefinite), then this number is
converted to the IEEE quantity NaN (Not-a-Number), characterized by a
sign, a biased exponent value of 255, and a nonzero coefficient
(fraction). For this purpose this routine arbitrarily chooses the 23-bit
hexadecimal coefficient "700000". Thus, the positive indefinites get
translated into Z"7FFOOOOO", and the negative indefinites into Z"FFFOOOOO".

2. When the absolute value of the Control Data number equals infinity; that
is, when the 4 leftmost bits make up either one of the hexadecimal digits
"5", 11 611

, "D", or "E", then this number is converted into an IEEE signed
infinity, characterized by a sign, a biased exponent value of 255, and a
zero-valued coefficient (fraction). Thus, the two possible outcomes are
Z"7F800000" (positive) and Z"FF800000" (negative).

3. When the absolute value of the Control Data number is too large for the
IEEE representation; that is, when the computed IEEE biased exponent
equals or exceeds 255, then this number is converted into a signed
infinity. See item 2 above.

4. When the absolute value of the Control Data number is too small for the
IEEE representation; that is, when the computed IEEE biased exponent
equals zero or is negative, then a conversion to an unnormalized number is
attempted. If the absolute value is too small for this as well, then a
zero is generated (32 zero bits). An unnormalized IEEE number is
characterized by a sign, a biased exponent value of zero, and a nonzero
coefficient. In this case the bias is assumed to be decimal 126 (rather
than 127), and the hidden bit is assumed to equal 0 (rather than 1).

LIB99 Subroutines and Functions 2-24.3 •

Subroutine F64TVF

§unlb>rrounll:inue IF64TVIF

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

To convert one or several Control Data 64-bit floating-point numbers to VAX
32-bit floating-point format.

CALL F64TVF(N , A , B , IXBYTB

N

Number of Control Data 64-bit floating-point numbers to convert. Must be of
type integer.

A

Input array of type real, holding N contiguously stored Control Data 64-bit
floating-point numbers. The contents of A are not altered by this routine,
provided A and B are not the same array.

B

Output array in which the converted numbers are stored contiguously. Can be
of any data type. Each 4-byte result is stored in pairwise byte reversed
order (1032 instead of 0123). Conversion in place is allowed; that is, B may
represent the same address as A. See Remarks below for details about what
happens when a Control Data number in A is an indefinite, an infinity, or
simply lies outside the range representable in the VAX 32-bit floating-point
format.

IXBYTB

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array B where the first
converted number should be placed. The beginning of B is represented by
IXBYTB=O.

None

None

The VAX 32-bit floating-point format is a sign/magnitude format, featuring a
sign bit (O=plus, !=minus), an 8-bit base 2 exponent biased by decimal 128,
and a 24-bit normalized positive coefficient. Since the coefficient of a
positive normalized number always starts with a 1, the first bit is
redundant. The bit is indeed omitted from the actual floating-point
representation. It is ref erred to as "the hidden bit". There is an implied
binary point to the left of the hidden bit.

Since for positive numbers the l's and 2's complement notations are
equivalent, no such distinction is made above.

e 2-24.4 FORTRAN LIB99 Usage Revision C

Revision C

Subroutine F64TVF

There are some special cases of the VAX 32-bit floating-point format that from
a conversion of a Control Data 64-bit floating-point number:

1. When the Control Data number is an indefinite; that is, when the 4
leftmost bits make up either one of the two hexadecimal digits "7"
(positive indefinite) or "F" (negative indefinite), then this number is
converted to the "reserved" VAX quantity with the hexadecimal
representation Z"BOOOOOOO".

2. When the absolute value of the Control Data number equals infinity; that
is, when the 4 leftmost bits make up either one of the hexadecimal digits
"5", 11 611

, "D", or "E", then this number is also converted to Z"BOOOOOOO".

3. When the absolute value of the Control Data number is too large for the
VAX representation; that is, when the computed VAX biased exponent exceeds
255, then this number is also converted to Z"BOOOOOOO".

4. When the absolute value of the Control Data number is too small for the
VAX representation; that is, when the computed VAX biased exponent equals
zero or is negative, then a zero is generated (32 zero bits).

LIB99 Subroutines and Functions 2-24.5/2-24.6•

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

Subroutine GENSPD

To create the upper triangular part of a synnnetric positive definite matrix
using the system-provided random number generator RANF.

CALL GENSPD (N , S , KS , SCALE)

N

The order of the source matrix S. Must be of type integer.

s

Output array into which the upper triangular part of the synnnetric positive
definite matrix is written. Must be of type real.

KS

Storage mode indicator for S. Must be of type integer. A value of 1
indicates that the ~olumns of the upper triangular part of S are stored
linearly, thus omitting the subdiagonal elements:

A value greater than N indicates full storage mode; that is, KS is the size of
the first dimension (column length) of the two-dimensional array S. In this
case the subdiagonal elements are ignored; only the N(N+l)/2 elements of the
upper triangular part are written.

SCALE

A scale factor of type real which is applied to the elements of S, as outlined
below under Method.

SQRT, RANF, VRANF, RVSUB, RVMUL

None

The N(N-1)/2 superdiagonal elements of the matrix S are assigned randomly
generated values in the range [-SCALE,SCALE]. The N diagonal elements are
assigned randomly generated values in the range SCALE* SQRT(N) * [1.0,2.0].
The result is that the upper triangular part (N(N+l)/2 elements) of a
symmetric positive definite matrix is generated.

LIB99 Subroutines and Functions 2-25

ITPACKV 2C - Iterative Solvers

Il1f'IPACil{V 2C - Il11:errcnt1:nve §ollverrs

Purpose

Format

Parameters

To solve a large sparse linear system of equations of the form AX=B, where A
is a symmetric and positive definite (or slightly nonsymmetric) [N,N] matrix,
B is the right-hand side, and Xis the desired solution vector. The routines
can handle more nonsymmetric systems as long as the diagonal elements of the
coefficient matrix are positive, but the convergence characteristics will not
be as good. All routines use some adaptive iterative algorithm, as specified
under Format.

CALL rtn (N , NDIM , MAXNZ , JCOEF , COEF , RHS , X , IWKSP , NW , WKSP ,
IP , RP , IER)

Where rtn is one of the keywords in the following table:

Keyword

JCG
JSI
SOR
SSORCG
SSORSI
RSCG
RSSI

Routine Selected

Jacobi with CG acceleration
Jacobi with SI acceleration
Successive overrelaxation
Symmetric SOR with CG acceleration
Symmetric SOR with SI acceleration
Reduced system with CG acceleration
Reduced system with SI acceleration

Three of the iterative procedures used are available with either one of two
acceleration procedures for rapid convergence: conjugate gradient, CG, and
Chebyshev or semi-iteration, SI.

N

The order of the linear system. Must be of type integer.

NDIM

Size of the first dimension (column length) of each of the two arrays COEF and
JCOEF. Must be of type integer. Must be. at least as large as N.

MAXNZ

The maximum number of nonzero entries in any row of the coefficient matrix A.
Must be of type integer.

JCOEF

Input array of dimension (NDIM,MAXNZ). Must be of type integer. This is an
index array which must contain a user-created map between corresponding
locations in the array JCOEF and the matrix A: the matrix element
A(J,JCOEF(J,K)) should be stored at location COEF(J,K). Expressed
differently: the array element COEF(J,K) actually belongs in row J and column
JCOEF(J,K) of the coefficient matrix A. Unused entries in JCOEF must be set
to zero. The contents of JCOEF will in general not be preserved. See
Examples.

COEF

Input array dimensioned (NDIM,MAXNZ). Must be of type real. This array must
on input contain all nonzero entries of the matrix A, located in positions
determined by the contents of array JCOEF (see description above). Unused
locations must be set to zero. The contents of COEF will in general not be
preserved. See Examples.

2-26 FORTRAN LIB99 Usage Revision B

Parameters
(Continued)

Revision B

ITPACKV 2C - Iterative Solvers

RHS

Input array of length at least N, holding the single right-hand side vector to
be solved for. Must be of type real. RHS will be internally scaled, and then
unscaled before exit. Thus its contents will be slightly altered by the
introduction of rounding errors.

x

Array of length at least N, on input holding the initial guess (use zeroes if
not known), and on output the final approximate solution. Must be of type
real.

IWKSP

Array of length at least 3N words, used as work space. Must be of type
integer. When reindexing for red-black ordering, the first N locations
contain on output the permutation vector for the red-black indexing, and the
next N locations contain the inverse of this vector.

NW

Available length of array WKSP. Must be of type integer. The actual amount
used may on output be found in IP(8). The minimum value of NW is as follows:

WK.SP

Routine

JCG
JSI
SOR
SSORCG
SS ORSI
RSCG
RSSI

Minimum Value

S*N + K*ITMAX
3*N
2*N
l*N + K*ITMAX
6*N
2*N + 3*NBLACK + K*ITMAX
2*N + NBLACK

where K 2 for symmetric problems.
4 for nonsymmetric problems.

ITMAX max number of iterations allowed (=IP(l)).
NBLACK number of black grid points in the red-black ordering

(=IP(9)).

Array of length at least NW, used as work space. Can be of any type except
character.

IP

Input/output array of length at least 12 words. Must be of type integer. The
user must supply values in the first 12 locations, but on output some will
have been changed as detailed below. In the following description each
location is given a name, and a default value is specified as [NAME=VALUE].
The default values for arrays IP and RP may be collectively assigned by means
of a call to the ITPACK subroutine DFAULT: CALL DFAULT(IP,RP). No other
automatic mechanism for assigning default values exists.

LIB99 Subroutines and Functions 2-27

ITPACKV 2C - Iterative Solvers

Parameters
(Continued)

IP(l)

IP(2)

IP(3)

IP(4)

IP(S)

IP(6)

IP(7)

2-28 FORTRAN LIB99 Usage

[ITMAX=lOO] Maximum number of iterations allowed. Will be reset to
the actual number of iterations performed on output.

[LEVEL=O] Output level control switch. Controls the amount of output
written to the file with the unit number given in IP(4). The higher
the value, the more output:

< 0 No output
0 Fatal error messages only
1 Warning messages and minimum output
2 Reasonable summary
3 Parameter values and informative connnents
4 Approximate solution after each iteration
5 The full original system

[IRESET=O] Communication switch.

= 0 Implies values in IP and RP will be overwritten as
indicated in the respective descriptions.

:/: 0 Only IP(l) and IP(8) will be reset.

[NOUT=6] Logical unit number for printed output.

[ISYM=O] Symmetric matrix switch.

0 Matrix is symmetric

1 Matrix is nonsymmetric

[IADAPT=l] Adaptive strategy switch. Determines which, if any, of
the parameters SME, CME, OMEGA, SPECR and BETAB should remain fixed,
and which should be computed automatically in either a fully or
partially adaptive sense. See also the descriptions below of RP(K),
K=2,3,S,6,7.

0 Nonadaptive. Fixed values used for all parameters.

1 Fully adaptive procedures used for all parameters.

2 (SSOR methods only) SPECR determined adaptively. Remaining
parameters are kept fixed.

3 (SSOR methods only) BETAB is kept fixed. Remaining
parameters are determined adaptively.

[ICASE=l] Adaptive procedure case switch--meaningful only for JSI and
SSOR methods. There are two strategies, called Case i and ii, for
doing the adaptive procedure. The selection is based on knowledge
about the eigenvalues of the Jacobi matrix derived from the
coefficient matrix A:

:/: 2 Case i: SME is kept fixed at the initial value, unless it
is zero, in which case it will be changed to minus one. If
the user specifies a value for SME that differs from zero,
care should be taken so that it does not exceed the minimum
eigenvalue of the Jacobi matrix.

2 Case ii: used when it is known that the absolute value of
the minimum eigenvalue does not exceed the value of the
maximum eigenvalue. Here SME is always set to -CME, which
may change adaptively.

Revision B

Parameters
(Continued)

Revision B

IP(8)

IP(9)

ITPACKV 2C - Iterative Solvers

The case switch determines how the estimates SME (=RP(3)) and CME
(=RP(2)) are recomputed adaptively. As far as the adaptive procedure
is concerned, Case i is the most general, and should be specified in
the absence of specific knowledge about the eigenvalues. An example
when Case ii is appropriate occurs when the Jacobi matrix is 2-cyclic;
that is, when it is either diagonal or can be reordered into a
red-black matrix, since then the smallest eigenvalue equals the
negative of the largest. Also, if A is an L-matrix (positive
diagonal, nonpositive off-diagonal elements), the condition for Case
ii is satisfied. Selecting the correct case may increase the rate of
convergence of the algorithm.

[NWKSP=O] Amount of workspace used; that is, required length of array
WKSP. Used for output only.

[NBLACK=-2] Red-black ordering switch. On output, if reindexing is
done, NBLACK is set to the order of the black subsystem. On input,
the meaning is:

= -2 Skip indexing: system already in desired form and is not
red-black.

= -1 Compute red-black indexing and permute the system.

>= 0 Skip indexing: system already in red-black form, with
NBLACK as the order of the black subsystem.

IP(lO) [IREMOVE=O] Switch for removing rows and columns when the diagonal
entry is extremely large compared to the nonzero off-diagonal entries
in that row. See also RP(8).

0 Not done.

:f 0 Test and removal performed.

IP(l l) [ITIME=O] Timing switch.

0 Measure execution time.

:f 0 Do not measure the execution time.

IP(l2) [IDGTS=O] Error analysis switch, determining what type of error
analysis of the last computed solution should be done; that is, how
the accuracy of the solution should be connnunicated back to the caller.

< 0 Skip error analysis and do not print anything.

0 Compute RP(ll)=DIGITl and RP(l2)=DIGIT2.

1 Print DIGIT! and DIGIT2.

2 Print final approximate solution vector.

3 Print final approximate residual vector.

4 Print both solution and residual vectors.

LIB99 Subroutines and Functions 2-29

ITPACKV 2C - Iterative Solvers

Parameters
(Continued)

RP

Input/output array of length at least 12. Must be of type real. The user
must supply values in the first 12 locations, but on output some will have
been changed as detailed below. In the following description each location is
given a name, and a default value is specified as [NAME=VALUE]. The default
values for arrays IP and RP may be collectively assigned by means of a call to
the ITPACK subroutine DFAULT: CALL DFAULT(IP,RP). No other automatic
mechanism for assigning default values exists.

RP(l)

RP(2)

RP(3)

RP(4)

RP(5)

RP(6)

RP(7)

[ZETA=.000005] Stopping criterion, or approximate relative accuracy
requested in the final solution. If the method does not converge in
IP(l)=ITMAX iterations, then RP(l) is reset to an estimate of the
relative accuracy achieved. The stopping criterion is a test of
whether ZETA is greater than the ratio of the Euclidean norm of the
pseudo-residual vector and the norm of the current iteration vector
times a constant involving an eigenvalue estimate. The
pseudo-residual vector is G*X(N) + K - X(N), where the basic iterative
method is of the form X(N+l) = G*X(N) + K.

[CME=O.O] Estimate of the largest eigenvalue of the Jacobi matrix.
Changes to new estimate if adaptive procedure is used.

[SME=O.O] Estimate of the smallest eigenvalue of the Jacobi matrix
for the JSI method. In Case i (see IP(7)) SME is fixed throughout at
a value not exceeding the minimum eigenvalue of the Jacobi matrix. In
Case ii SME is always set to -CME, with CME changing in the adaptive
procedure.

[FF=0.75] Adaptive procedure damping factor. Should be a positive
number not exceeding 1.0. FF=l.O causes the most frequent parameter
changes wh~n the fully adaptive switch IP(6) equals 1.

[OMEGA=l.O] Overrelaxation parameter for SOR and SSOR methods. OMEGA
changes if the method is fully adaptive.

[SPECR=O.O] Estimate of the spectral radius of the SSOR matrix.
SPECR changes if the method is adaptive.

[BETAB=0.25] Estimate of the spectral radius of the LU matrix used in
SSOR methods. BETAB may change depending on the value of the adaptive
switch IP(6). The matrix Lis the strictly lower triangular part of
the Jacobi matrix and U is the strictly upper triangular part. When
the spectral radius of LU is less than or equal to 0.25 the "SSOR
condition" is satisfied for some problems, provided the natural
ordering is used.

RP(8) [TOL=lOO.*SRELPR] Tolerance factor, near the machine relative
precision SRELPR. The value of SRELPR is set internally to HEX(3FD1
8000 0000 0000) or 2**-48 (approximately 3.55 E-15). In each row, if
all nonzero off-diagonal entries are smaller in magnitude than the
diagonal entry, this row and the corresponding column are essentially
removed from the system. This is done by setting the off-diagonal
elements in the row and column to zero, and replacing the diagonal
element with 1.0. An adjustment of the elements on the right-hand
side is also done, so that the new system is equivalent to the old
one. If the diagonal element is the only nonzero element in a row and
is not greater than the reciprocal of TOL, then no elimination is
done. This procedure is useful for linear systems arising from
finite-element ~iscretizations of partial differential equations in
which Dirichlet boundary conditions are handled by making the diagonal
elements extremely large.

2-30 FORTRAN LIB99 Usage Revision B

Parameters
(Continued)

Revision B

ITPACKV 2C - Iterative Solvers

RP(9) [TIMEl=O.O] Total time in seconds from beginning of the iterative
algorithm until convergence.

RP(lO) [TIME2=0.0] Total time in seconds for the entire call.

RP(ll) [DIGITl=O.O] Approximate number of digits of accuracy using the
estimated relative error with the final approximate solution.
Computed as the negative of the base-10 logarithm of the final value
of the stopping test.

RP(l2) [DIGIT2=0.0] Approximate number of digits of accuracy using the
estimated relative residual with the final approximate solution after
the algorithm has converged. Computed as the negative of the base-10
logarithm of the ratio of the 2-norm of the residual vector and the
2-norm of the right-hand side vector. This estimate is related to the
condition number of the original system, and will therefore not be
accurate if the system is ill-conditoned. If DIGIT2 differs
significantly from DIGIT!, then either the stopping test has not
worked successfully or the original system is ill-conditioned.

IER

Error return parameter, set by the called ITPACK routine. Must be of type
integer. A value of 0 indicates normal convergence. Other values are of the
form M+J, where M=l0,20,30,40,50,60,70 indicates which of the main solution
modules was called, and M=400,500,600 points to the routines SCAL, ZBRENT and
EQRT!S, respectively, as the routine where the error was detected (SCAL scales
the system, ZBRENT and EQRTlS are used for eigenvalue estimation in the
symmetric and nonsymmetric cases, respectively).

IER = M + J <= 74:

where: M
M
M
M
M
M
M

J
J

J

J

10
20
30
40
50
60
70

1
2

3

4

JCG module called
JSI module called
SOR module called
SSORCG module called
SSORSI module called
RSCG module called
RSSI module called

Invalid order of the linear system.
Insufficient amount of workspace assigned. Check IP(8)
for the required amount.
Failure to converge after ITMAX iterations. Check
RP(l) for last computed stopping value.
Invalid order of black subsystem with red-black
indexing.

IER 401 Zero diagonal element.
IER 402 Nonexistent diagonal element.
IER 501 Difficulty encountered in eigenvalue estimation.

502
601

IER 602 Matrix is not positive definite.

LIB99 Subroutines and Functions 2-31

ITPACKV 2C - Iterative Solvers

Externals

Dynamic Space

Method

1. Various LIB99 routines, performing basic vector arithmetic: RVAXPY,
RSMULV, RVADD, and others.

2. Routines from the set of 46 internal ITPACK subroutines and functions.

3.

None

Each of the seven user-callable routines mentioned under CALLS performs
its work by means of direct or indirect calls to some of these internal
routines, none of which are directly user-callable and therfore not
documented. Below is a list of these internal entry-points:

CHE BY CHGCON CHGSI CHGSME DE TERM DFAULT EC HALL EIGVNS
EIGVSS EQRTlS ITJCG ITJSI IT SOR ITSRCG ITSRSI IT RS CG
ITRSSI IPSTR I TERM MOVE OMEG OMGCHG OMGSTR PARCON
PARSI PBETA PBSOR PERMAT PERR OR PERVEC PF SOR PFSORl
PJAC PMULT PRBNDX PRSBLK PRSRED PS TOP PVTBV SB ELM
SCAL TAU TSTCHG UNSCAL VOUT ZBRENT

Three common blocks are used to communicate 32 scalar variables: /ITCOMl/,
/ITCOM2/ and /ITCOM3/.

The basic solution methods provided are the Jacobi, SOR, symmetric SOR, and
reduced system methods. All methods except SOR are accelerated by either
conjugate gradient or Chebyshev acceleration. When using the reduced system
methods it is required that the system be reordered into a red-black system;
that is, a system of the form

[DHl K J
D2

Where Dl and D2 are diagonal matrices. See also the description of the
calling parameter IP(9) above.

Each of the solution modules scales the linear system to a unit diagonal
system prior to iterating, and unscales it upon termination. This reduces the
number of arithmetic operations, but it may introduce small changes in the
coefficients (COEF) and the right-hand side vector (RHS) due to rounding
errors.

When requested, a red-black permutation of the linear system will be done
before and after the iterative algorithm is started. If not, the linear
system is used in the order it is provided by the caller. If SOR, SSORCG, OR
SSORSI is called, an attempt will be made to segregate the parts of COEF and
JCOEF corresponding to the upper and lower triangular parts of matrix A into
separate columns. Since this will in general take more storage, it may not be
possible if MAXNZ is too small. In this case the algorithms will operate on
the existing data structure, but performance will be degraded. Segregation of
L and U increases the vectorizability of these algorithms. In the case that
red-black ordering is used with these routines, no attempt to segregate L and
U is made.

The successive overrelaxation (SOR) method has been shown to be more effective
with the red-black ordering than with the natural ordering for some problems.
In the SOR algorithm the first iteration uses OMEGA=l.O, and the stopping
criterion is set to a large value so that at least one Gauss-Seidel iteration
is performed before an approximate value for the optimum relaxation parameters
is computed.

2-32 FORTRAN LIB99 Usage Revision B

Example

Remarks

Revision B

ITPACKV 2C - Iterative Solvers

The sparse coefficient matrix A of dimension (N,N) is expected in a compressed
format in array COEF, dimensioned (NDIM,MAXNZ). A map between A and COEF must
be provided in array JCOEF, which should be dimensioned the same way as COEF.
The structure of this storage is detailed in the parameter description of COEF
and JCOEF above, but we will here illustrate the scheme with an example and
then make some important remarks.

Let the symmetric 5 by 5 matrix A be defined as follows

A
[

all 0.0 0.0 al4
0.0 a22 O.O O.O
0.0 O.O a33 0.0
al4 0.0 0.0 a44
alS 0.0 0.0 a45

al5 l o.o
o.o
a45
a SS

The contents of COEF and JCOEF should then be:

COEF
[

all
a22
a33
a44
aSS

al4 alS l o.o o.o
o.o o.o
al4 a45
alS a45

JCOEF
[

1 4 5 l 2 0 0
3 0 0
4 1 5
5 1 4

1. Unused locations in COEF and JCOEF must be filled with zeroes.

2. The nonzero elements in a given row of COEF may appear in any order.
However, if the diagonal element is not in column 1, then the called
ITPACK module will place it there without returning it to its original
position upon exiting.

3. The diagonal element of each row should be positive. If a diagonal
element is negative, the called ITPACK module will reverse the sign of all
entries corresponding to this equation. This may result in a loss of
symmetry of the system, and the convergence may be adversely affected.

4. All nonzero matrix entries must be present, even those duplicated due to
the symmetry of the system.

The LIB99 version of the iterative package ITPACK is for all practical
purposes identical to ITPACKV 2C, as obtained directly from the University of
Texas. To achieve satisfactory vector performance many DO loops were replaced
by calls to basic vector arithmetic LIB99 routines, such as RVAXPY, RSMULV,
RVADD, and others. However, this does in no way alter the algorithmic
formulation.

The iterative algorithms used in ITPACK are quite complicated, and some
knowledge of iterative methods is necessary in order to completely understand
them. The interested reader can use the comment sheet in the back of this
manual to request additional information.

LIB99 Subroutines and Functions 2-33

Subroutine I64TSI

§unbirounll:nne Il64l 1r§Il
Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

To convert one or several Control Data 64-bit integers to IEEE 16-bit integer
format, also known as Short Integer format (INTEGER*2 in IBM notation). Each
resulting 2-byte number is generated in either natural (I64TI2) or byte
reversed (I64TSI) order.

CALL I64TI2(N
CALL I64TSI(N

N

A
A

B
B

IXBYTB
IXBYTB

Number of Control Data 64-bit integers to convert. Must be of type integer.

A

Input array of type integer, holding N contiguously stored Control Data 64-bit
integers. The contents of A are not altered by this routine, provided A and B
are not the same array.

B

Output array in which the converted numbers are stored contiguously. Can be
of any data type. Each 2-byte result is stored in natural order (01) when
I64TI2 is called, and in byte reversed order (10) when I64TSI is called.
Conversion in place is allowed; that is, B may represent the same address as
A. See Remarks below for details about what happens when the value of a
Control Data number in A lies outside the range representable in the IEEE
Short Integer format.

IXBYTB

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array B where the first
converted number should be placed. The beginning of B is represented by
IXBYTB=O.

None

None

An IEEE Short Integer is a 16-bit 2's complement integer. The range of
numbers representable in this format is [-32768,32767], inclusive. However,
some hardware reserves the most negative number (hexadecimal Z"8000") for some
special purpose, not recognizing it as an integer.

This routine converts integers by simply isolating the lower 16 bits of the
CDC 64-bit integers furnished in array A. Thus, integers outside the range
specified above will be converted, but their value will change. For instance,
the two integers 43981 and -21555 (hexadecimal Z"OOOOOOOOOOOOABCD" and
Z"FFFFFFFFFFFFABCD", respectively) are both converted to the Short Integer
Z"ABCD", with a decimal value of -21555.

e 2-34 FORTRAN LIB99 Usage Revision C

Subroutine I64TWI

Subroutine 164TWI

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

Revision C

To convert one or several Control Data 64-bit integers to IEEE 32-bit integer
format, also known as Word Integer format (INTEGER*4 in IBM notation). Each
resulting 4-byte number is generated in either natural (I64TI4) or byte
reversed (I64TWI) order.

CALL I64TI4(N , A
CALL I64TWI(N A

N

B , IXBYTB)
B , IXBYTB)

Number of Control Data 64-bit integers to convert. Must be of type integer.

A

Input array of type integer, holding N contiguously stored Control Data 64-bit
integers. The contents of A are not altered by this routine, provided A and B
are not the same array.

B

Output array in which the converted numbers are stored contiguously. Can be
of any data type. Each 4-byte result is stored in natural order (0123) when
I64TI4 is called, and in byte reversed order (3210) when I64TWI is called.
Conversion in place is allowed; that is, B may represent the same address as
A. See Remarks below for details about what happens when the value of a
Control Data number in A lies outside the range representable in the IEEE Word
Integer format.

IXBYTB

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array B where the first
converted number should be placed. The beginning of Bis represented by
IXBYTB=O.

None

None

An IEEE Word Integer is a 32-bit 2's complement integer. The range of numbers
representable in this format is [-2147483648,2147483647), inclusive. However,
some hardware reserves the most negative number (hexadecimal Z"80000000") for
some special purpose, not recognizing it as an integer.

This routine converts integers by simply isolating the lower 32 bits of the
Control Data 64-bit integers furnished in array A. Thus, integers outside the
range specified above will be converted, but their value will change. For
instance, the two integers 2882338816 and -1412628480 (hexadecimal
Z"OOOOOOOOABCDOOOO" and Z"FFFFFFFFABCDOOOO", respectively) are both converted
to the Word Integer Z"ABCDOOOO", with a decimal value of -1412628480.

LIB99 Subroutines and Functions 2-35 •

Subroutine LVCOMP

§unlh11rounll:nnue IL VCOMI?

Purpose

Format

Parameters

To perform the vector comparison C =A .OP. B, where C is a logical vector, A
and Bare either scalars or vectors, and .OP. represents one of the four
relational operators .EQ., .GE., .LT. and .NE. The type of A and B can be
either integer or real. The last two letters of the subroutine names indicate
which relational operator is used.

CALL LIVEQ (N A LA , B , LB , C , LC)
CALL LIVGE (N , A , LA , B , LB , C , LC)
CALL LIVLT (N , A LA , B LB , C LC)
CALL LIVNE (N A LA B , LB , C , LC)

CALL LRVEQ (N ' A , LA , B LB , c ' LC)
CALL LRVGE (N ' A ' LA ' B LB , c ' LC)
CALL LRVLT (N ' A , LA , B LB , c ' LC)
CALL LRVNE (N ' A ' LA ' B LB , c LC)

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the left operand in the vector
comparison. Must be of type integer if LIVEQ, LIVGE, LIVLT, or LIVNE is used,
and of type real if LRVEQ, LRVGE, LRVLT, or LRVNE is used.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable.

B

Array (element) indicating the base address of the right operand in the vector
comparison. Must be of type integer if LIVEQ, LIVGE, LIVLT, or LIVNE is used,
and of type real if LRVEQ, LRVGE, LRVLT, or LRVNE is used.

LB

Stride for the B vector. Must be of type integer. A value of O indicates
that B is a scalar variable.

c

Array (element) indicating the base address of the target vector into which
the logical results of the vector comparison are written. Must be of type
logical. If A(J*LA).OP.B(J*LB) is true, then C(J*LC) is set to the value
.TRUE., which has the internal representation Z"BOOOOOOOOOOOOOOO"
(hexadecimal). If the condition is false, the corresponding value of C will
be set to .FALSE., which is represented by binary O.

LC

Stride for the C vector. Must be of type integer and nonzero.

I 2-36 FORTRAN LIB99 Usage Revision C

Externals

Dynamic Space

Method

Example

Revision C

Subroutine LVCOMP

None

512 or 1024 words depending on the values of LA and LB.

Use of the vector comparison instructions CMPEQV, CMPGEV, CMPLTV, and CMPNEV.
In LRVGE and LRVLT, a vector floating-point subtraction must precede the
actual vector comparison, since only integer vector compare instructions
exist. A vector subtraction must also be used whenever LB=O in LRVGE, LRVLT,
LIVGE and LIVLT, since the vector compare instructions can handle scalars only
as left, and not as right, operands. This is not a problem in the other
routines since the operators .EQ. and .NE. are commutative.

PROGRAM MAIN
DIMENSION A(0:49)
LOGICAL L(0:39)
INTEGER STRIDEA, STRIDEB, STRIDEL
LENGTH=40
B=O.O
STRIDEA=l
STRIDEB=O
STRIDEL=l

CALL LRVLT(LENGTH, A, STRIDEA, B, STRIDEB, L, STRIDEL)
END

The call to LRVLT causes the first 40 elements in array A to be compared with
the scalar value O.O. Negative values in A will cause the corresponding
element in the logical array L to have the value .TRUE.; positive values or
zeroes in A will cause the corresponding element in L to have the value .FALSE.

LIB99 Subroutines and Functions 2-36.1 I

Subroutine MOVB

§unbrrouull:inne MOVB

Purpose

Format

Parameters

To move consecutive 8-bit bytes from one location to another.

CALL MOVB(N , A , IXBYTA , B , IXBYTB)

N

Number of 8-bit bytes to move. Must be of type integer.

A

Input array holding the N contiguously stored 8-bit bytes. Can be of any data
type.

IXBYTA

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array A of the first byte to
be moved. The beginning of A is represented by IXBYTA=O.

B

Output array into which the N consecutive 8-bit bytes are moved. Can be of
any data type. If B is the same array as A, care must be taken so that the
address defined by B and IXBYTB is smaller than that determined by A and
IXBYTA.

IXBYTB

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array B into which the first
byte is moved. The beginning of B is represented by IXBYTB=O.

Externals None

Dynamic Space None

Method

Remarks

The hardware instruction MOVB is used, moving 256 bytes per pass in a scalar
loop.

The MOVB instruction can be regarded as a pseudo vector instruction by virtue
of the fact that it handles many items. As a result, on a scalar machine (any
CYBER 180 except the CYBER 180-990) it may sometimes be more efficient to call
MOVB than SCOPY when the elements of a real or integer array are to be moved.

e 2-36.2 FORTRAN LIB99 Usage Revision C

Purpose

Format

Parameters

Externals

Dynamic Space

Example

Revision C

To perform the matrix addition C
type real.

Subroutine MXADDF

A + B, where A, B, and C are matrices of

CALL MXADDF (M , N , A , LA , B , LB , C , LC)

M,N

Dimensions of each of the three matrices A, B, and C. Both dimension values
must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of the
left operand in the matrix addition. Must be of type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to M.

B

Array (element) indicating the address of the upper left-hand corner of the
right operand in the matrix addition. Must be of type real.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to M.

c

Array (element) indicating the address of the upper left-hand corner of the
result matrix. Must be of type real. C and A may be the same array, provided
that LA)LC. C and B may be the same array, provided that LB)LC.

LC

Size of the first dimension (column length) of array c. Must be of type
integer and greater than or equal to M.

None

None

PARAMETER (LA=2, LB=S, LR=2)
DIMENSION ARRAYl(O:LA-1,0:2),ARRAY2(0:LB-1,0:4),RESULT(O:LR-l,0:5)
IROWS=2
ICOLMNS=3

CALL MXADDF (IROWS, ICOLMNS, ARRAYl, LA, ARRAY2(2,1), LB, RESULT(0,3), LR)

The call to MXADDF causes the array section RESULT(O:l,3:5) to contain the sum
of ARRAYl (all elements) and ARRAY2 (elements (2,1), (3,1), (2,2), (3,2),
(2,3), (3,3)).

LIB99 Subroutines and Functions 2-36. 3/2-36. 41

Purpose

Format

Parameters

Subroutine MXCMP

To compare two floating-point matrices A and B by computing the maximum
relative error of the columns of B with respect to those of A. Both 2-norms
and infinity-norms are computed.

CALL MXCMP (M , N , A , LA , B , LB , ERR , TOL)

M,N

Dimension of matrices A and B. Both dimension values must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of matrix
A, which is considered as the original matrix to which matrix B is to be
compared. Must be of type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to M.

B

Array (element) indicating the address of the upper left-hand corner of matrix
B, which is compared with matrix A. Must be of type real.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to M.

ERR

Output array of length at least 3 words. Must be of type real. On output,
ERR contains in its first three locations the maximum relative errors for the
N columns as indicated below and described in detail under Method.

ERR(l)

ERR(2)

ERR(3)

TOL

2-norm

Infinity-norm

Maximum value of elements not possible to include in the
calculations of the norms.

Small positive user-supplied tolerance value. Must be of type real. A
possible and reasonable choice is 1.E-10. Only elements whose absolute values
exceed that of TOL are considered in the calculations of the norms.

Externals None

Dynamic Space None

Revision B LIB99 Subroutines and Functions 2-37

Subroutine MXCMP

Method Initially the errors are assigned as ERR(l)=ERR(2)=-l.O, ERR(3)=0.0. The
comparison then proceeds with one column at a time. For column K the
procedure is as follows:

1. Define the subset jt of the values (0,1, ••• ,M-1) in such a way that
MIN(ABS(A(J,K)) , ABS(B(J,K))))TOL whenever J belongs to jt. Further
let jf be defined as the complimentary subset; that is, each value in the
set (0,1, ••• ,M-1) is either in jt or in jf.

2. Compute the relative 2-norm of the columns of A and B as

El = SQRT(SUM((A(J,K)-B(J,K))**2) / SUM(A(J,K)**2))
Jejt Jejt

3. Compute the infinity-norm of the relative error vector as

E2 =MAX(ABS(A(J,K)-B(J,K)) / ABS(A(J,K)))
J~f

4. Determine the maximum absolute value of the elements not included in the
calculations of the norms as

E3 =MAX(TOL , MAX(ABS(A(J,K)) , ABS(B(J,K))))
J~f

S. Update the values in ERR only if larger errors were found:

ERR(l) = MAX(ERR(l) , El)
ERR(2) = MAX(ERR(2) , E2)
ERR(3) = MAX(ERR(3) , E3)

An output value of -1.0 for ERR(l) and ERR(2) thus indicates that there is no
subscript (J,K) for which the condition

MIN(ABS(A(J,K)) , ABS(B(J,K))))TOL

holds true. If, on the other hand, the same condition is satisfied for all
subscripts (J,K), the final value of ERR(3) is zero.

2-38 FORTRAN LIB99 Usage Revision B

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

Function MXENRM

To compute the Euclidean norm of a real square matrix A. This is defined as
the square root of the sum of the squares of the elements of the matrix.

XENRM = MXENRM (N , A , LA)

XENRM

Function result of type real, containing the square root of the sum of the
squared elements of A.

N

The order of the input matrix A. Must be of type integer.

A

Array (element) indicating the base address of the input matrix. Must be of
type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer, and be at least as large as N.

SDOT, SNRM2, SQRT

None

This is not a matrix norm in the usual sense of being subordinate to some
vector norm. In particular, it is not subordinate to the Euclidean or L-2
vector norm. When LA=N the resulting norm is obtained by means of a single
call to the LIB99 function SNRM2. Otherwise the results of N calls to the
LIB99 function SDOT are summed, and the intrinsic function SQRT produces the
result.

The following computation is performed:

XENRM
n-1

SQRT (SUM
i,j=O

A(I,J)**2))

The FORTRAN equivalent of MXENRM is given below.

REAL FUNCTION MXENRM(N , A , LA)
REAL A(O:LA-1,0:N-l)
IF (LA .EQ. N) THEN

MXENRM = SNRM2(N*N , A , 1)
ELSE

MXENRM = 0.0
DO 10 J = 0 , N-1
MXENRM = MXENRM + SDOT(N , A(O,J) , 1 , A(O,J) , 1)

10 CONTINUE
MXENRM = SQRT(MXENRM)

ENDIF
RETURN
END

LIB99 Subroutines and Functions 2-39

Function MXEQ

FunnuCll:nonu M:XIEQ

Purpose

Format

Parameters

To determine whether two matrices are identical, using a bit-by-bit method of
comparison.

ANSWER = MXEQ (M , N , A , LA , B , LB)

ANSWER

The function result is of type logical. The value .TRUE. results if
A(J,K)=B(J,K) for all (J,K) such that J=O,l, ••• ,M-1 and K=O,l, ••• ,N-1. The
value .FALSE. results if for at least one pair of subscripts A(J,K)fB(J,K).

M,N

Dimension of matrices to be compared. Both dimension values must be of type
integer.

A

Array (element) indicating upper left-hand corner of the first matrix. Can be
of any type except character.

LA

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to M.

B

Array (element) indicating upper left-hand corner of the second matrix. Can
be of any type except character.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to M.

Externals None

Dynamic Space None

2-40 FORTRAN LIB99 Usage Revision B

Subroutine MXGEFS

§unlh>rrounll:iinue MJ!GIEIF§

Purpose

Format

Parameters

Revision B

To solve a system of linear equations; that is, the matrix equation AX=B,
where A is a full matrix using a form of Gaussian elimination.

CALL MXGEFS (N , NRHS , A , LA , B , LB , IPIV , DET , EPS , IOPT)

N

Number of equations to be solved, or order of the matrix A. Must be of type
integer.

NRHS

Number of right-hand sides for which to solve. NRHS must be a positive
integer when substitution is requested (see IOPT below) but is ignored
otherwise.

A

Input/output array holding the square matrix A of order N as a submatrix.
Must be of type real.

INPUT: If decomposition is requested (IOPT is odd), the array should contain
the coefficients that define the left-hand side coefficient matrix A
in the matrix equation AX=B.

If decomposition is not requested (IOPT is even), the content of A
should be exactly what was produced by a previous call to this
routine, in which decomposition was indeed requested.

OUTPUT: If decomposition is requested (!OPT is odd), the array contains the
result of that decomposition; that is, information sufficient to
define the L and the U in the LU decomposition of A. This form of A

LA

can be saved by the caller and later used for repeated calls to this
routine with different right-hand sides. Thus, a given matrix A need
not be decomposed more than once.

If decomposition is not requested (IOPT is even), the content of
array A is not altered by this call.

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to N.

B

Input/output array of type real. Meaningful only if substitution is
requested; that is, if AND(IOPT,2)#0. The contents of B are defined as
follows:

INPUT: The NRHS right-hand sides for which to be solved, one per column.

OUTPUT: The corresponding solutions, similarly stored.

LIB99 Subroutines and Functions 2-41

Subroutine MXGEFS

Parameters
(Continued)

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to N.

IPIV

Input/output scratch array of length at least ZN words. Can be of any type
except character. If decomposition is requested (IOPT is odd) the input
content of IPIV is of no consequence. However, in this case this routine
produces information necessary for a subsequent call where decomposition is
not requested, and stores that in IPIV. Thus, if a later call with IOPT even
is planned, IPIV must be saved and supplied as an input array at that time.

DET

Array of length at least 2 words. Must be of type real. Meaningful only if
decomposition is requested; that is, if IOPT is odd, in which case the
determinant of the coefficient matrix A is computed and stored in array DET.

DET(O) can always be interpreted as a singularity flag; DET(O)=O.O indicates
that the matrix A, possibly due to rounding errors, was found to be singular.
A nonzero value for DET(O) indicates that the decomposition proceeded
smoothly. The user should always examine the value of DET(O) after each call
since a singular matrix results in all arrays containing incorrect data upon
return.

Since the determinant computation for very large matrices easily generates
floating-point overflow, more than one word may sometimes be needed to report
the result. Although the routine is designed so that overflow will not occur,
you must use care in dealing with the decomposed value of the determinant, as
stored in array DET.

If the final value of the determinant can be represented as one 64-bit
floating-point value, this is done, and the value is stored in DET(O). This
case is identified by DET(l)=O.O, a condition that can be checked by the
user. If, on the other hand, the absolute value of the determinant is too
large, both words of array DET must be used for its representation: DET(O)
contains a floating-point number whose absolute value lies in the range
(l.0,2.0), while the remainder of the exponent is stored as a 64-bit
floating-point number in DET(l). Thus, in this case
DETERMINANT=(2**IFIX(DET(l)))*DET(O). Note that actually performing the above
calculation generates an overflow as soon as DET(l) is nonzero.

EPS

Small positive user-supplied number, used for singularity tests during the
decomposition phase. Must be of type real. The value of EPS sould be small
compared to the range of values of the entries in the coefficient matrix A,
but large enough to provide a meaningful definition of zero. If the absolute
values of the nonzero matrix entries are all in the range ALFA to 2*ALFA, then
a reasonable value for EPS is probably l.E-lO*ALFA. See the description of
Gaussian elimination under Method.

2-42 FORTRAN LIB99 Usage Revision B

Parameters
(Continued)

Externals

Dynamic Space

Method

Revision B

Subroutine MXGEFS

IOPT

IOPT=I(O)+I(l)+I(2)+I(3), where I(J) can either take the value O or 2**J,
depending on whether a specific option is requested (2**J) or not (O). The
various options and the values for a request are defined below.

I(O)= 1
I(l)= 2

requests matrix decomposition.
requests forward and backward substitution.
requests partial pivoting. 1(2)= 4

I(3)= 8 requests scaling **CURRENTLY NOT IMPLEMENTED**·

The different processes are defined under Method. As ari example, a complete
solution of AX=B, implementing pivoting but not scaling, would be requested by
IOPT=7.

VG AT HR

1102 words.

Gaussian elimination, as described in most standard textbooks on the topic of
solving systems of linear equations. One such reference is: J. H. Wilkinson:
The Algebraic Eigenvalue Problem, Oxford University Press, London (1965),
pages 200-217. For a given call one or several of the steps described below
would be implemented.

1. Scaling **CURRENTLY NOT IMPLEMENTED**

Although it is difficult to make a general statement for all types of
matrices, it is widely believed that a good way of improving the accuracy
of the solutions is to initially scale the left-hand side matrix A in such
a way that the absolute values of all entries are forced into some
arbitrary interval close to 1.0. The interval here is chosen as
ABS(A(J,K))<O.S.

The matrix A is first scanned in order to find the largest exponent in
each row. A scaling vector S with N elements is then prepared as follows:

The coefficient of S(J) will be the same as that of 1.0; the exponent
will be such that multiplication of each element in row J with S(J)
will yield scaled elements with absolute values all strictly less
than O.S. By assembling the scaling vector in such a way we
ascertain that the subsequent process of scaling will not introduce
extra rounding errors - all elements of S are powers of two, so that
multiplication merely amounts to an adjustment of exponents.,

While it is necessary to access each element of the matrix once in order
to determine the elements of the scaling vector, that is not true as far
as the scaling itself is concerned. Rather, a given column of the matrix
is not scaled until just before its subdiagonal elements are eliminated
during the decomposition phase. The right-hand sides are scaled the first
time they are accessed during the forward substitution phase. Thus, for
large values of N, matrix A is paged through exactly one extra time if
scaling is requested, while no extra paging is required for the right-hand
sides. No rounding errors are introduced.

LIB99 Subroutines and Functions 2-43

Subroutine MXGEFS

Method
(Continued)

2. Decomposition

For each column K, K traversing the values 0 through N-2, the following
steps are required in order to decompose the matrix A:

2.1 Pivoting

2.1.1 Search through the elements (A(J,K), J=K, ••• ,N-1) and
determine the subscript I such that A(I,K) is the element with
the largest absolute value.

2.1.2 Perform the pivoting; that is, exchange the elements of row I
with those of row K. This swap has to affect all the columns,
even those to the left of column K.

2.2 Test for singularity. This amounts to executing the statement
IF (ABS(A(K,K)) .LE. EPS) RETURN, where the value of DET(O) has been
preset to zero. The user versed in the topics of numerical stability
and ill-conditioned matrices can use this information to determine
the optimal value for the parameter EPS.

2.3 Create column multipliers. This amounts to performing the vector
multiplication A(K+l:N-1,K)=(l.O/A(K,K))*A(K+l:N-l,K).

2.4 For all J such that J=K+l, ••• ,N-1, adjust column J as follows:
A(K+l:N-1,J)=A(K+l:N-1,J)-A(K,J)*A(K+l:N-1,K). This is the
columnwise analogy of the rowwise oriented process of subtracting an
L-dependent fraction of row K from each of the rows L such that
L=K+l, ••• ,N-1 which is commonly described in textbooks.

3. Forward substitution

The code for this process is embedded in the code for the decomposition;
the paging requirements are therefore minimized.

3.1 Scale and/or pivot as required.

3.2 Adjust the right-hand sides. This is analogous to step 2.4
above. For each K such that K=O, ••• ,N-2, and each J such that
J=O, ••• ,NRHS-1, perform the following operation:
B(K+l:N-l,J)=B(K+l:N-l,J)-B(K,J)*A(K+l:N-1,K).

4. Backward substitution

Consider only the upper triangular part of matrix A, now containing the
elements of the upper triangular matrix U in the LU decomposition of A,
and solve the triangular system of linear equations.

The method here is to work backwards and determine X(K) in order of
decreasing subscripts K: K=N-1, ••• ,0. For a given step K the operations
to perform for each right-hand side J, J=O, ••• ,NRHS-1, are:

4.1 B(K,J)=B(K,J)/A(K,K).
This determines the Kth unknown of the Jth right-hand side.

4.2 B(O:K-l,J)=B(O:K-1,J)-B(K,J)*A(O:K-l,K).
B(K,J) is thus substituted back into A, thereby eliminating that
unknown from the system of equations. Since we need to keep A
unaltered, the effect of this substitution is directly taken into
account by subtracting the result of this vector multiplication from
the right-hand side currently under consideration.

2-44 FORTRAN LIB99 Usage Revision B

Remarks

Revision B

Subroutine MXGEFS

As can be inferred from the above description, all steps except one manipulate
elements of data that are stored contiguously in memory, making the algorithm
very well suited for vectorization. The exception is the pivoting process, in
which rows are interchanged. Fortunately that is a process which can be
efficiently handled by invoking the hardware periodic GATHER and SCATTER
instructions. But even if that had not been the case, we would not have
suffered since the pivoting is a low order process; that is, compared to the
total operation count for the algorithm, the pivoting contributes very little.

LIB99 Subroutines and Functions 2-45

Subroutine MXINVU

§ubtrounll:inne M~IlNVlU

Purpose

Format

Parameters

Externals

Dynamic Space

To compute the upper triangular inverse R of a nonsingular upper triangular
matrix U.

CALL MXINVU (N , U KU , R , KR , D)

N

The order of the input matrix U. Must be of type integer.

u

Input array containing the upper triangular part of the upper triangular
matrix U. Must be of type real. The contents of U are not altered by this
routine unless U and R are the same array, which is permissible.

KU

Storage mode indicator for U. Must be of type integer. A value of 1
indicates that the columns of the upper triangular part of U are stored
linearly, thus omitting the subdiagonal elements, which are all zeroes:

A value greater than or equal to N indicates full storage mode; that is, KU is
the size of the first dimension (column length) of the two-dimensional array
U. In this case the values of the subdiagonal elements are irrelevant; only
the upper triangular part is used.

R

Output array to receive the nontrivial (upper triangular) part of the upper
triangular inverse of matrix U. Must be of type real. Regardless of the
value of KR, only the upper triangular part of R is written, leaving the lower
part untouched. If U and R are the same array, which is permissible, KU=KR
must hold.

KR

Storage mode indicator for R. Must be of type integer. A value of 1
indicates linear storage; a value greater than or equal to N indicates
two-dimensional storage in an array where the size of the first dimension
(column length) is KR. See also the description of KU above.

D

Input array of length at least N words, which must contain the reciprocals of
the diagonal elements of U in its first N locations. Must be of type real.
On output, the contents of D will have been destroyed.

LOCF, RSMULV, RVAXPY

None

2-46 FORTRAN LIB99 Usage Revision B

Method

Revision B

Subroutine MXINVU

Let the upper triangular matrix U be stored in a two-dimensional array, also
denoted by U. Assume that U is nonsingular, and denote its inverse (also
upper triangular) by R. Letting P represent the product RU, we then have

P(i ,j)
j

L (R(i ,k) * U(k,j))
k=i

{
1 if i=j}
0 if i;l:j

To solve for R(i,j) we isolate the k=j term

R(j ,j)

R(i ,j)

1.0 I U(j ,j)
j-1

(-1.0 I U(j,j)) * L (R(i,k) * U(k,j))
k=i

[i(j]

Introducing the auxiliary array H, we start the computation of column j with
the vector multiplication

H(O:j-1) = R(O:j-l,j-1) * U(j-1,j)

accomplished by the call

CALL RSMULV (J , U(J-1,J) , R(O,J-1) , H)

Next we must compute j-1 linked triads, k taking the values j-2,j-3, ••• ,0:

H(O:k) = H(O:k) + R(O:k,k) * U(k,j)

accomplished by the call

CALL RVAXPY (K+l , U(K,J) , R(O,K) , H , H)

Finally we must compute R(j,j) and perform one more vector multiplication,
this time with column j itself as a target:

R(j ,j)
R(O:j-1,j)

1.0 I U(j ,j)
- R(j ,j) * H(O:j-1)

The latter statement is executed by means of the call

CALL RSMULV (J , -R(J,J) , H , R(O,J))

The division can be omitted since the reciprocals of the diagonal elements are
furnished on input in array D.

A careful analysis of the formulas and code above reveals that in order to
make it possible to let U and R mean the same physical arrays, we must proceed
with the computations from left to right; that is, column j must be computed
before column j+l. This also permits us to let Hand D be the same array.

The routine MXINVU, in its basic form, does not differ much from what is
outlined above. Thus, in particular, it is almost completely vectorized, with
an average vector length of N/3.

LIB99 Subroutines and Functions 2-47

Subroutine MXMAB

Purpose

Format

Parameters

Externals

Dynamic Space

To perform the matrix multiplication C=AB, where C, A, and B are rectangular
matrices of matching dimensions.

CALL MXMAB (K , L , M , A , LA , B , LB , C , LC)

K

First dimension of matrices A and C. Must be of type integer.

L

Second dimension of matrix A, and the first dimension of matrix B. Must be of
type integer.

M

Second dimension of matrices B and C. Must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of matrix
A, the left multiplicand. Must be of type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to K.

B

Array (element) indicating the address of the upper left-hand corner of matrix
B, the right multiplicand. Must be of type real.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to L.

c

Array (element) indicating the address of the upper left-hand corner of matrix
C, the product (result) matrix. Must be of type real. Matrix C must not
overlap with either one of the two input matrices A and B.

LC

Size of the first dimension (column length) of array C. Must be of type
integer and greater than or equal to K.

None

512 words.

2-48 FORTRAN LIB99 Usage Revision B

Method

Example

Revision B

Subroutine MXMAB

A completely vectorized outer product method is used.

DIMENSION A(0:9,0:9), B(0:7,0:7), RESULT(0:2,0:4)

CALL MXMAB (3, 5, 5, A, 10, B(2,3), 8, RESULT, 3)

The execution of the call to MXMAB causes the [3,5] matrix in array A to be
multiplied from the right by the [5,5] matrix in array B, and the resulting
[3,5] matrix to be stored in array RESULT. The three matrices occupy the
location described by A(0:2,0:4), B(2:6,3:7), and RESULT(0:2,0:4),
respectively.

LIB99 Subroutines and Functions 2-49

Subroutine MXMOVF

§unblI'ounttinne M}'{MOVIF

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Example

To move a matrix from one location to another.

CALL MXMOVF (M , N , A , LA , B , LB

M,N

Dimensions of the matrix to be moved. Both dimension values must be of type
integer.

A

Array (element) indicating the address of the upper left-hand corner of the
source matrix. Can be of any type except character.

LA

Size of the 'first dimension (column length) of array A. Must be of type
integer and greater than or equal to M.

B

Array (element) indicating the address of the upper left-hand corner of the
target matrix. Must be of the same type as A. B and A may be the same array,
provided that LA>LB.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to M.

None

None

Repeated uses of the vector instruction SHFV.

DIMENSION J(0:9,0:14), K(0:9,0:19)

CALL MXMOVF(5, 5, J(l,3), 10, K(l,1), 10)

The result of the execution of the MXMOVF call statement is that the 25
elements of the [5,5] matrix stored in the array section J(l:S,3:7) are copied
into the array section K(1:5,1:5).

2-50 FORTRAN LIB99 Usage Revision B

Subroutine MXMOVU

§unll»Irountnnne M%:MO VU

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To move the upper triangular matrix U from one location to another, optionally
changing the storage mode from columnwise linear (standard symmetric) to
two-dimensional, or vice versa.

CALL MXMOVU (N , U , KU , R , KR

N

The order of the source matrix U. Must be of type integer.

u

Input array containing the upper triangular part of the upper triangular
matrix U. Can be of type integer or real.

KU

Storage mode indicator for U. Must be of type integer. A value of 1
indicates that the columns of the upper triangular part of U are stored
linearly, thus omitting the subdiagonal elements, which are all zeroes:

A value greater than or equal to N indicates full storage mode; that is, KU is
the size of the first dimension (column length) of the two-dimensional array
U. In this case the subdiagonal elements are ignored; only the upper
triangular part, or N(N+l)/2 elements, are moved.

R

Output array to which the upper triangular part of U is moved. Must be of the
same type as U. Regardless of the value of KR, only the upper triangular part
of U is moved, leaving the lower part of R untouched when KR)N.

KR

Storage mode indicator for R. Must be of type integer. A value of 1
indicates linear storage; a value greater than or equal to N indicates
two-dimensional storage in an array where the size of the first dimension
(column length) is KR. See also the description of KU above.

SCOPY

None

Repeated calls to SCOPY.

LIB99 Subroutines and Functions 2-51

Subroutine MXMUTU

§unbiromnl:nnne M:%MI1U1f'1U

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To perform the matrix multiplication S=LU, where L is the transpose of the
supplied upper triangular matrix U, and S is the symmetric product matrix.

CALL MXMUTU (N , U , KU , S , KS)

N

The order of the input matrix U. Must be of type integer.

u

Input array containing the upper triangular part of the upper triangular
matrix U. Must be of type real. The contents of U are not altered by this
routine unless U and S are the same array, which is permissible.

KU

Storage mode indicator for U. Must be of type integer. A value of 1
indicates that the columns of the upper triangular part of U are stored
linearly, thus omitting the subdiagonal elements, which are all zeroes:

A value greater than or equal to N indicates full storage mode; that is, KU is
the size of the first dimension (column length) of the two-dimensional array
U. In this case the values of the subdiagonal elements are irrelevant; only
the upper triangular part is used.

s

Output array to receive the nontrivial (upper triangular) part of the
symmetric product matrix s. Must be of type real. Regardless of the value of
KS, only the upper triangular part of S is written, leaving the lower part
untouched. If U and S are the same array, which is permissible, KU=KS must
hold.

KS

Storage mode indicator for S. Must be of type integer. A value of 1
indicates linear storage; a value greater than or equal to N indicates
two-dimensional storage in an array where the size of the first dimension
(column length) is KS. See also the description of KU above.

LOCF, SDOT

None

Let the upper triangular matrix U be stored in a two-dimensional array, also
denoted by U. Letting L denote the transpose of U and forming the product
S=LU, we obtain

S(i ,j)
i
~ (L(i ,k) * U(k,j))

k=O

i
L (U(k,i) * U(k,j))

k=O
[i~j]

Clearly S is symmetric, so we only need to consider the upper triangular part
of the product.

2-52 FORTRAN LIB99 Usage Revision B

Method
(Continued)

Revision B

Subroutine MXMUTU

If we require that S and U should be allowed to occupy the same physical
memory space, the order of computation becomes uniquely determined: start
with column n-1 and compute each element there as a vectorized dot product,
work upwards; that is, don't start with element (j,n-1) until element
(j+l,n-1) of S has been computed. Then move to column n-2, etc.

To implement the formula above we would thus create a nested loop where the
only nontrivial operation would be

S(i,j)
i
~ (U(k,i) * U(k,j))

k=O

accomplished by the call

S(I,J) = SDOT(I+l , U(O,I) , 1 , U(O,J) , 1)

The inner loop would be controlled by the loop index i, decreasing from j to
O. The outer loop would be controlled by j, which would decrease from n-1 to
o.

MXMUTU, in its basic form, does not differ much from what is outlined above.
Thus, in particular, almost all work is performed in vector mode, using an
average vector length of N/3.

As is evident, the computation of column j requires the presence in memory of
all the columns k of U such that k=j,j-1, ••• ,o. That implies that we will
have a thrashing situation if all of array U does not fit in available core.

LIB99 Subroutines and Functions 2-53

Subroutine MXMUUT

§unbrrounll:nlllle MJ{Mll.JU.Jlr

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To perform the matrix multiplication S=UL, where L is the transpose of the
supplied upper triangular matrix U, and S is the symmetric product matrix.

CALL MXMUUT (N , U , KU , S , KS)

N

The order of the input matrix U. Must be of type integer.

u

Input array holding the upper triangular part of the upper triangular matrix
U. Must be of type real. The contents of U are not altered by this routine
unless U and S are the same array, which is permissible.

KU

Storage mode indicator for U. Must be of type integer. A value of 1
indicates that the columns of the upper triangular part of U are stored
linearly, thus omitting the subdiagonal elements, which are all zeroes:

A value greater than or equal to N indicates full storage mode; that is, KU is
the size of the first dimension (column length) of the two-dimensional array
U. In this case the values of the subdiagonal elements ae irrelevant; only
the upper triangular part is used.

s

Output array to receive the nontrivial (upper triangular) part of the
symmetric product matrix s. Must be of type real. Regardless of the value of
KS, only the upper triangular part of S is written, leaving the lower part
untouched. If U and S are the same array, which is permissible, KU=KS must
hold.

KS

Storage mode indicator for S. Must be of type integer. A value of 1
indicates linear storage; a value greater than or equal to N indicates
two-dimensional storage in an array where the size of the first dimension
(column length) is KS. See also the description of KU above.

LOCF, RSMULV, RVAXPY

None

Let the upper triangular matrix U be stored in a two-dimensional array, also
denoted by U. Letting L denote the transpose of U and forming the product
S=UL, we innnediately obtain

S(i ,j)
n-1
L (U(i,k) * L(k,j))

k=j

n-1
L (U(i,k) * U(j ,k))

k=j
[i.5_j]

Clearly S is symmetric, so we only need to consider the upper triangular part
of the product.

If we require that S and U should be allowed to occupy the same physical
memory space, the order of compulation becomes uniquely determined: proceed
from left to right, computing column O first, then column 1, and so forth.

2-54 FORTRAN LIB99 Usage Revision B

Method
(Continued)

Revision B

Subroutine MXMUUT

To compute column j we must first multiply the vector (U(i,j),i=O, ••• ,j)
by the scalar element U(j,j):

S(O:j,j) = U(O:j,j) * U(j,j)

accomplished by the call

CALL RSMULV (J+l , U(J,J) , U(O,J) , S(O,J))

To obtain the final value for column j we must compute n-j-1 linked triad
operations, letting k run from j+l to n-1:

S(O:j,j) = S(O:j,j) + U(O:j,k) * U(j,k)

accomplished by the call

CALL RVAXPY(J+l, U(J,K) , U(O,K) , S(O,J) , S(O,J))

MXMUUT, in its basic form, does not differ much from what is outlined above.
Thus, in particular, almost all work is performed in vector mode, using an
average vector length of N/3.

As is evident, the computation of column j requires the presence in memory of
all the columns k of U such that k=j,j+l, ••• ,n-1. That implies that we will
have a thrashing situation if all of array U does not fit in available core.

LIB99 Subroutines and Functions 2-55

Subroutine MXSCAF

§unbrrountinne MX§<CAIF

Purpose

Format

Parameters

Externals

Dynamic Space

Example

To scale the elements of a real matrix; that is, to multiply each element with
a constant real value.

CALL MXSCAF (M , N , X , A , LA , B , LB)

M,N

Dimensions of the matrix to be scaled. Both dimension values must be of type
integer.

x

Real scalar constant or variable, or array element, with which each element in
the matrix A will be multiplied.

A

Array (element) indicating the address of the upper left-hand corner of the
source matrix. Must be of type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to M.

B

Array (element) indicating the address of the upper left-hand corner of the
scaled matrix. Must be of type real. B may be the same array as A, provided
that LA>LB.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to M.

None

None

DIMENSION ARRAY1(0:49,0:99), ARRAY2(0:49,0:99)

CALL MXSCAF(SO, 100, 2.0, ARRAY!, SO, ARRAY2, SO)

After the execution of the call to MXSCAF, all locations of ARRAY2 contain
twice the value of the corresponding locations of ARRAY!.

2-S6 FORTRAN LIB99 Usage Revision B

Purpose

Format

Parameters

Externals

Dynamic Space

Example

Revision B

Subroutine MXSUBF

To perform the matrix subtraction C
type real.

A - B, where A, B, and C are matrices of

CALL MXSUBF (M , N , A , LA , B , LB , C , LC)

M,N

Dimensions of each of the three matrices A, B and C. Both dimension values
must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of the
left operand in the matrix subtraction. Must be of type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to M.

B

Array (element) indicating the address of the upper left-hand corner of the
right operand in the matrix subtraction. Must be of type real.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to M.

c

Array (element) indicating the address of the upper left-hand corner of the
result matrix. Must be of type real. C and A can be the same array, provided
that LA>LC. C and B can be the same array, provided that LB)LC.

LC

Size of the first dimension (column length) of array C. Must be of type
integer and greater than or equal to M.

None

None

DIMENSION X(0:9,0:9), Y(0:9,0:9), Z(0:9,0:9)

CALL MXSUBF(lO, 10, X, 10, Y, 10, Z, 10)

The call to MXSUBF will, for all values of I and J ranging from 0 through 9,
cause the value Y(I,J)-X(I,J) to be written into location Z(I,J).

LIB99 Subroutines and Functions 2-57

Subroutine MXSYUL

§unbrromn1:nnne 00:%§\'UJ[.

Purpose

Format

Parameters

Externals

To perform the Cholesky decomposition A = UL of the positive definite
symmetric matrix A. U denotes a nonsingular upper triangular matrix, and L
represents its lower triangular transpose. Note that the order of the factors
U and L is reversed from that in the conventional LU decomposition. This is
done in order to gain maximum performance on the CYBER 990.

CALL MXSYUL (N , A , KA , U , KU , D , NERR

N

The order of the input matrix A. Must be of type integer.

A

Input array containing the upper triangular part of the positive definite
symmetric matrix A. Must be of type real. The contents of A are not altered
by this routine unless A and U are the same array, which is permissible.

KA

Storage mode indicator for A. Must be of type integer. A value of 1
indicates that the columns of the upper triangular part of A are stored
linearly, thus omitting the subdiagonal elements:

A value greater than or equal to N indicates full storage mode; that is, KA is
the size of the first dimension (column length) of the two-dimensional array
A. In this case the values of the subdiagonal elements are irrelevant; only
the upper triangular part is used.

u

Output array to receive the nontrivial (upper triangular) part of the upper
triangular matrix U. Must be of type real. Regardless of the value of KU,
only the upper triangular part of U is written, leaving the lower part
untouched. If A and U are the same array, which is permissible, KA=KU must
hold.

KU

Storage mode indicator for U. Must be of type integer. A value of 1
indicates linear storage; a value greater than or equal to N indicates
two-dimensional storage in an array where the size of the first dimension
(column length) is KU. See also the description of KA above.

D

Output array of length at least N words, which receives the reciprocals of the
diagonal elements of U in its first N locations. Must be of type real.

NERR

Error flag set by this routine. Must be of type integer. A value of 0
indicates that no errors were incurred. A value of 1 indicates that the
matrix A (possibly due to rounding errors) proved not to be positive definite,
in which case U and D contain incorrect data.

LOCF, RSMULV, RVAXPY

2-58 FORTRAN LIB99 Usage Revision B

Dynamic Space

Method

Revision B

Subroutine MXSYUL

None

Let the positive definite symmetric matrix to be decomposed be denoted by A,
and assume that it is stored in a two-dimensional array, also denoted by A.
By slightly modifying a well-known theorem by Cholesky, it can be shown that A
can be decomposed into the product of an upper triangular matrix U and its
lower triangular transpose L; that is, A=UL. From this we directly obtain

A(i ,j)
n-1
L (U(i,k) * L(k,j))

k=O

n-1
L (U(i ,k) * U(j, k))
k=j

To solve for U(i,j) we isolate the k=j term

U(j ,j)

U(i ,j)

n-1
SQRT(A(j ,j) - L (U(j ,k)**2))

k=j+l

n-1
(l/U(j,j)) * (A(i,j) - L(U(i,k)*U(j,k))

k=j+l

[i_5_j]

[i<j]

The first step in computing column j of U is to compute the following linked
triad:

U(O:j ,j) = A(O:j ,j) - U(O:j ,j+l) * U(j ,j+l)

accomplished by the call

CALL RVAXPY (J+l, -U(J,J+l), U(O,J+l), A(O,J), U(O,J))

Having performed this operation, we no longer need A for the purpose of
computing the elements in column j of U. We proceed with computing an
additional n-j-2 linked triads of the following type, letting k take the
values j+2,j+3, ••• ,n-l:

U(O:j,j) = U(O:j,j) - U(O:j,k) * U(j,k)

accomplished by the call

CALL RV AXPY (J+ 1 , -U (J , K) , U (0 , K) , U (0 , J) , U (0 , J))

To complete the computation of column j we need to perform the following
steps, where array D is used to hold the reciprocals of the diagonal elements:

U(j ,j)
D(j)
U(O:j-1,j)

SQRT(U(j ,j))
1.0 I U(j ,j)
D(j)*U(O :j-1,j)

The last of these three operations can be accomplished by the call

CALL RSMULV (J, D(J), U(O,J), U(O,J))

A careful analysis of the formulas and code above reveals that in order to
make it possible to let A and U mean the same physical arrays, we must proceed
with the computations from right to left; that is, column j must be computed
before column j-1.

The routine MXSYUL, in its basic form, does not differ much from what is
outlined above. Thus, in particular, it is almost completely vectorized, with
an average vector length of N/3.

LIB99 Subroutines and Functions 2-59

Subroutine MXTRAF

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To transpose a rectangular matrix, simultaneously moving it from one location
to another.

CALL MXTRAF (M , N , A , LA , B , LB)

M,N

Dimensions of the matrix to be transposed. Both dimension values must be of
type integer.

A

Array (element) indicating the address of the upper left-hand corner of the
source matrix. Can be of any type except character. The used portions of
arrays A and B must not overlap.

LA

Size of the first dimension (column length) of array A. Must be of type
integer and greater than or equal to M.

B

Array (element) indicating the address of the upper left-hand corner of the
target for the transposed matrix. Must be of the same type as A. The used
portions of arrays A and B must not overlap.

LB

Size of the first dimension (column length) of array B. Must be of type
integer and greater than or equal to N.

None

None

When M<N the periodic gather instruction GTHV is used, while in other cases
the periodic scatter instruction SCTV is employed. The work performed by
MXTRAF is equivalent to that performed when the following FORTRAN DO loop is
executed:

DO 10 K=O,N-1
DO 10 J=O,M-1
B(K,J)=A(J,K)

10 CONTINUE

2-60 FORTRAN LIB99 Usage Revision B

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

Subroutine MXTRAU

To transpose the upper triangular matrix U, thus creating the lower triangular
part of a lower triangular matrix L. If U and L are the same array, this
amounts to expanding a symmetric matrix where only the upper triangular part
is stored into a form where all N*N elements are represented.

CALL MXTRAU (N , U , KU , L , KL)

N

The order of the source matrix U. Must be of type integer.

u

Input array containing the upper triangular part of the upper triangular
matrix U. Can be of any type except character.

KU

Size of the first dimension (column length) of array U. Must be of type
integer and greater than or equal to N.

L

Output array, into which the lower triangular part of the transpose of the
upper triangular matrix U is written. Must be of the same type as U. If U
and Lare the same array, which is permissible, KU=KL must hold. Note that
the superdiagonal elements of L are not altered by this routine.

KL

Size of the first dimension (column length) of array L. Must be of type
integer and greater than or equal to N. KL must equal KU if U and L are the
same array.

VGATHP

None

Currently the work is done by means of repeated calls to VGATHP. The
execution of the following FORTRAN DO loop would accomplish the same result as
a call to MXTRAU:

DO 10 K=O,N-1
DO 10 J=O,K
L(K,J)=U(J,K)

10 CONTINUE

LIB99 Subroutines and Functions 2-61

I

Function MXlNRM

1Funnnd:nol11l M};{INHM

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To compute the 1-norm of a real square matrix A. This is defined as the
largest sum of absolute values of the elements in any one column, and is
sometimes referred to as the maximum column sum.

XlNRM = MXlNRM (N , A , LA)

XlNRM

Function result of type real, containing the 1-norm of A.

N

The order of the input matrix A. Must be of type integer.

A

Array (element) indicating the base address of the input matrix. Must be of
type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer, and be at least as large as N.

RVASUM

None

This is a matrix norm in the usual sense of being subordinate to a vector
norm. In particular, it is subordinate to the L-1 (or sum) vector norm. The
LIB99 function RVASUM is called N times to determine the maximum column sum.

The following computation is performed:

XlNRM
n-1 n-1
MAX SUM (ABS(A(I,J))))
j =O i=O

The FORTRAN equivalent of MXlNRM is given below.

REAL FUNCTION MXlNRM(N , A , LA)
REAL A(O:LA-1,0:N-l)
MXlNRM = 0.0
DO 10 J = 0 , N-1
X = RVASUM (N , A(O,J) , 1
MXlNRM = MAX (MXlNRM , X)

10 CONTINUE
RETURN
END

2-62 FORTRAN LIB99 Usage Revision C

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

Function MX8NRM

To compute the infinity-norm of a real square matrix A. This is defined as
the largest sum of absolute values of the elements in any one row, and is
sometimes referred to as the maximum row sum.

X8NRM = MX8NRM (N , A , LA)

X8NRM

Function result of type real, containing the infinity-norm of A.

N

The order of the input matrix A. Must be of type integer.

A

Array (element) indicating the base address of the input matrix. Must be of
type real.

LA

Size of the first dimension (column length) of array A. Must be of type
integer, and be at least as large as N.

RVASUM

None

This is a matrix norm in the usual sense of being subordinate to a vector
norm. In particular, it is subordinate to the L-infinity (or max) vector
norm. The LIB99 function RVASUM is called N times to determine the maximum
row sum.

The following computation is performed:

X8NRM
n-1
MAX
i=O

n-1
SUM (ABS(A(I,J))))
j=O

The FORTRAN equivalent of MX8NRM is given below.

REAL FUNCTION MX8NRM(N , A , LA)
REAL A(O:LA-1,0:N-l)
MX8NRM = O.O
DO 10 J = 0 , N-1
X = RVASUM (N , A(J,O) , LA
MX8NRM = MAX (MX8NRM , X)

10 CONTINUE
RETURN
END

LIB99 Subroutines and Functions 2-63

Subroutine QSORT

I
Purpose

Format

Parameters

I

Externals

Dynamic Space

Method

Example

To arrange (sort) the elements of a real (QSORT) or integer (IQSORT) vector in
non-decreasing order with respect to algebraic value: A(J)~A(J+l) on return.

CALL IQSORT (N , A, K
CALL QSORT (N , A , K

N

Number of elements to be ordered. Must be of type integer.

A

Array (element) indicating the base address of the list whose elements are to
be ordered. Must be of type real when QSORT is called, and of type integer
when IQSORT is called.

K

Output array of length at least N words. Must be of type integer. Array K
must not follow immediately after array A; that is, A(N) and K(O) must not
represent the same memory location. On return from QSORT, K contains an index
list reflecting the rearrangement of the elements of A. As a specific
example, assume that A originally contained the three elements ao, ai, and
a 2, in that order, and that they after sorting by QSORT ended up in the
order az, ao, al. The first three locations of K would then contain the
integers 2, O, and 1.

If an array B was associated with the original array A in such a way that for
each index J, B(J) was associated with A(J), then this situation could be
restored using a temporary array C as follows:

None

None

CALL VGATHR (N
CALL SCOPY (N

B
c

K
1

c
B , 1)

Vectorized median-of-3 quicksort, as described in all standard textbooks on
sorting. This method is unstable; that is, elements that have the same value
may change order.

DIMENSION ARAY(0:149), INDEX(0:149)

CALL QSORT(lSO, ARAY, INDEX)

After the call to QSORT, the array ARAY contains the sorted values. The index
list is contained in array INDEX.

2-64 FORTRAN LIB99 Usage Revision C

Subroutine R4TF64

§unU,1mw111:nnue ~41r1F64

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

Revision C

To convert one or several IBM 32-bit floating-point numbers, also known as
REAL*4, to Control Data 64-bit floating-point format.

CALL R4TF64 (N , A , IXBYTA, B)

N

Number of IBM 32-bit floating-point numbers to convert. Must be of type
integer.

A

Input array holding the N contiguously stored IBM 32-bit numbers (two per
64-bit word) that are to be converted. Can be of any type except character.
The contents of A are not altered by this routine.

IXBYTA

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be of
type integer. Specifies the location in array A of the leftmost byte of the
first number to be converted. The beginning of A is represented by IXBYTA=O.

B

Output array in which the Control Data 64-bit floating-point numbers are
stored. Must be of type real. Conversion in place is not allowed; that is,
B and A must be distinct. No special IBM numbers, such as indefinites or
infinities, are recognized. Consequently, all numbers generated in array B
are standard floating-point numbers.

None

1024 words.

The IBM 32-bit floating-point format features a sign bit (O=plus, l=minus) to
the far left, followed by a 7-bit exponent expressed in base 16 and biased by
64 (making it positive). The rightmost 24 bits constitute a normalized
positive coefficient. The normalization is done 4 bits at a time, so that the
most significant 4 bits of the coefficient may form any hexadecimal digit
except O.

LIB99 Subroutines and Functions 2-65

I

I

I

Function SASUM

IFunimccll:nonn §A§lLJM
(from the BLAS package)

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To compute the sum of the absolute values of the elements of a vector of type
real. See BLAS conventions in the introduction.

ASUM=SASUM (N , A , LA)

ASUM

Function result of type real, containing the sum of the absolute values of the
elements of A.

N.

Number of elements to be summed. Must be of type integer.

A

Array (element) indicating the base address of the input vector. Must be of
type real.

LA

Stride for the A vector. Must be of type integer. Only the magnitude of LA
is significant. Negative values are negated before use.

None

512 words.

The hardware vector instruction SUMFV is used. The actual summing is preceded
by a conversion to absolute values, handled by the vector instruction ANDV.

NOTE

This routine is very similar to the LIH99 function RVASUM (see VSUM).

2-66 FORTRAN LIB99 Usage Revision B

Subroutine SAXPY

§unlli>Irounll:nne §AJ{JP'h'
(from the BLAS package)

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To compute the linked triad Y=A*X+Y, where A is a scalar and X and Y are
vectors. See BLAS conventions in the introduction.

CALL SAXPY (N , A , X , LX , Y , LY)

N

Number of elements in the vectors X and Y. Must be of type integer.

A

Scalar constant or variable or array element, which is used to initially scale
the elements of the vector X. Must be of type real.

x

Array (element) indicating the base address of the first input vector. Must
be of type real.

LX

Stride for ·the X vector. Must be of type integer and not equal to zero. See
BLAS conventions in the introduction for interpretation of the LX(O case.

y

Array (element) indicating the base address of the second input vector which
is also the result vector. Must be of type real.

LY

Stride for the Y vector. Must be of type integer and not equal to zero. See
BLAS conventions in the introduction for interpretation of the LY<O case.

None

512 or 1024 words, depending on the values of LX and LY.

Vector multiplication, using the vector instruction MULFV, followed by vector
addition, using the vector instruction ADDFV.

NOTE

This routine is very similar to the LIB99 subroutine RVAXPY (see VAXPY).

LIB99 Subroutines and Functions 2-67

Subroutine SCOPY

§ttnbn-onn11:iinne §<COIP>Y
(from the BLAS package)

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To move the elements of a vector from one location to another. See BLAS
conventions in the introduction.

CALL SCOPY (N , A , LA , B , LB

N

Number of elements to move. Must be of type integer.

A

Array (element) indicating the base address of the source array, from which N
elements are moved. Can be of any type except character.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable. See BLAS conventions in the introduction for
interpretation of the LA<O case.

B

Array (element) indicating the base address for the target array, to which N
elements are moved. Must be of the same type as A.

LB

Stride for the B vector. Must be of type integer and not equal to zero. See
BLAS conventions in the introduction for interpretation of the LB<O case.

None

512 words if both LA and LB differ from 1.

When both LA and LB equal unity, then a vector shift with zero shift count is
used. Other cases are handled with the periodic gather or scatter
instructions, or both.

NOTE

Periodic gather and scatter operations can be performed by this routine, but
also by the three LIB99 routines VGATHP, VSCATP and VFILL.

2-68 FORTRAN LIB99 Usage Revision B

Function SDOT

IFunnnell:n@mi §ID>Olr
(from the BLAS package)

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To compute the dot product (inner product) between two vectors. See BLAS
conventions in the introduction.

DPROD=SDOT (N , A , LA , B , LB

DPROD

Function result of type real, containing the dot product of the two input
vectors.

N

Number of elements in the dot product operation. Must be of type integer.

A

Array (element) indicating the base address of the first input operand. Must
be of type real.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable. See BLAS conventions in the introduction for
interpretation of the LA(O case.

B

Array (element) indicating the base address of the second input operand. Must
be of type real.

LB

Stride for the B vector. Must be of type integer. A value of 0 indicates
that B is a scalar variable. See BLAS conventions in the introduction for
interpretation of the LB<O case.

None

512 or 1024 words, depending on the values of LA and LB.

Vector multiplication using the vector instruction MULFV, followed by vector
sunnnation using the vector instruction SUMFV.

LIB99 Subroutines and Functions 2-69

Subroutine SITI64

§unbrmunttnnne §Il1I"Il64

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

To convert one or several IEEE 16-bit integers, also known as Short Integers
(INTEGER*2 in IBM notation), to Control Data 64-bit integer format. Both byte
reversed (SITI64) and naturally ordered (I2TI64) integers are handled.

CALL I2TI64(N , A
CALL SITI64(N , A

N

IXBYTA
IXBYTA

B
B

Number of IEEE 16-bit integers to convert. Must be of type integer.

A

Input array holding the N contiguously stored IEEE 16-bit integers that are to
be converted. Can be of any data type. The 2 bytes of each IEEE integer are
assumed to be stored in natural order (01) when I2TI64 is called, and in
reversed order (10) when SITI64 is called. The contents of A are not altered
by this routine.

IXBYTA

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array A of the leftmost byte
of the first integer to be converted. The beginning of A is represented by
IXBYTA=O.

B

Output array in which the Control Data 64-bit integers are stored. Must be of
type integer. Conversion in place is not allowed; that is, B and A must be
distinct.

None

None

An IEEE Short Integer is a 16-bit integer represented in 2's complement
otation. A Control Data integer is also represented in 2's complement
notation, but occupies 64 bits of storage.

No special type integers are recognized. In particular, the hexadecimal value
Z"8000" (the most negative number representable using 16 bits) is converted to
the Control Data 64-bit integer Z"FFFFFFFFFFFF8000" (decimal -32768), in spite
of the fact that some hardware may attribute a special meaning to this number.

e 2-70 FORTRAN LIB99 Usage Revision C

Function SNRM2

IF unnnc1liionu §NRM2
(from the BLAS package)

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision C

To compute the Euclidean length, or 2-norm, of a vector of type real; that is,
to compute the square root of the sum of the squares of its elements. See
BLAS conventions in the introduction.

ELEN=SNRM2 (N , A , LA

ELEN

Function result of type real, containing the square root of the sum of the
squared elements of A.

N

Number of elements in the vector. Must be of type integer.

A

Array (element) indicating the base address of the input vector. Must be of
type real.

LA

Stride for the A vector. Must be of type integer. Only the magnitude of LA
is significant. Negative values are negated before use.

None

512 words.

Vector multiplication (MULFV) to generate squares of the elements of A,
followed by vector summation (SUMFV). The last step, to compute the square
root of the computed sum, is handled by means of inline code identical to that
of the system runtime library used by FORTRAN.

LIB99 Subroutines and Functions 2-70.1 I

Subroutine SRTF64

§unbirounll:nnne §~1rlF64

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

To convert one or several IEEE 32-bit floating-point numbers, also known as
Short Real, to Control Data 64-bit floating-point format. Both byte reversed
(SRTF64) and naturally ordered (SRNTF64) IEEE numbers are handled.

CALL SRTF64 (N
CALL SRNTF64(N

N

A
A

IXBYTA , B
IXBYTA , B

Number of IEEE 32-bit floating-point numbers to convert. Must be of type
integer.

A

Input array holding the N contiguously stored IEEE 32-bit numbers that are to
be converted. Can be of any data type. The 4 bytes of each IEEE number are
assumed to be stored in natural order (0123) when SRNTF64 is called, and in
reversed order (3210) when SRTF64 is called. The contents of A are not
altered by this routine.

IXBYTA

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array A of the leftmost byte
of the first number to be converted. The beginning of A is represented by
IXBYTA=O.

B

Output array in which the Control Data 64-bit floating-point numbers are
stored. Must be of type real. Conversion in place is not allowed; that is, B
and A must be distinct. See Remarks below for details about what happens when
the IEEE number is an indefinite, an infinity, or when it is unnormalized.

None

None

For a detailed description of the IEEE Short Real format, see the description
of subroutine F64TSR. Special cases are treated as follows (ignoring the byte
reversal assumed by SRTF64):

1. An IEEE signed indefinite is translated into a Control Data 64-bit signed
indefinite. This routine (arbitrarily) chooses the hexadecimal number
Z"7000000000000000" in the positive and Z"FOOOOOOOOOOOOOOO" in the
negative case.

2. An IEEE signed infinity is translated into a Control Data 64-bit signed
infinity. This routine (arbitrarily) chooses the hexadecimal number
Z"SOOOOOOOOOOOOOOO" in the positive and Z"DOOOOOOOOOOOOOOO" in the
negative case.

3. An unnormalized IEEE number gets converted and normalized.

e 2-70.2 FORTRAN LIB99 Usage Revision C

Subroutine SSCAL

§unllDtrounll:nnne §§CA1I...
(from the BLAS package)

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To scale a real vector in place; that is, to multiply each of its elements by
a real scalar constant. See BLAS conventions in the introduction.

CALL SSCAL (N , S , A , LA)

N

Number of elements of A to be scaled. Must be of type integer.

s

Scalar constant or variable or array element, which is used to scale the
elements in the vector A. Must be of type real.

A

Array (element) indicating the base address of the vector to be scaled. Must
be of type real.

LA

Stride for·the A vector. Must be of type integer. Only the magnitude of LA
is significant. Negative values are negated before use.

None

512 words if LA differs from 1.

The vector instruction MULFV is used.

LIB99 Subroutines and Functions 2-71

Subroutine SSWAP

§unbrroun~iinne §§WAI?
(from the BLAS package)

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To exchange the elements of two vectors. See BLAS conventions in the
introduction.

CALL SSWAP (N , A , LA , B , LB)

N

Number of elements to interchange between A and B. Must be of type integer.

A

Array (element) indicating the base address of the first vector. Can be of
any type except character. This array must be distinct from B.

LA

Stride for the A vector. Must be of type integer and not equal to zero. See
BLAS conventions in the introduction for interpretation of the LA<O case.

B

Array (element) indicating the base address of the second vector. Must be of
the same type as A. This array must be distinct from A.

LB

Stride for the B vector. Must be of type integer and not equal to zero. See
BLAS conventions in the introduction for interpretation of the LB<O case.

None

512 or 1024 words, depending on the values of LA and LB.

Elements from one of the vectors are moved to a temporary space, using either
a vector shift (SHFV) or a periodic gather (GTHV) instruction. This is
followed by an analogous move from the other vector location to the first,
using a temporary space if both LA and LB differ from unity. One more move
completes the process.

2-72 FORTRAN LIB99 Usage Revision B

Subroutine TRED2

§unbll"ounltimue 1f!RIEII}2

Purpose

Format

Parameters

Revision B

To reduce a real symmetric matrix to a real symmetric tridiagonal matrix.
This is generally the first step in obtaining the complete eigensystem of the
matrix.

CALL TRED2 (N , A , KA , Z , KZ , D , S , T)

N

The order of the input matrix A. Must be of type integer.

A

Array (element) indicating the address of the upper left-hand corner of the
upper triangular part of the real symmetric matrix A, which is to be
transformed to tridiagonal form. The contents of A will not be altered by
TRED2 unless A is the same array as z.

KA

Storage mode indicator for A. Must be of type integer. If A and Z are the
same array, then KA=KZ must hold. This is possible only when KA.GE.N.

A value of l indicates that the columns of the upper triangular part of A are
stored linearly, thus omitting the subdiagonal elements:

A value greater than or equal to N indicates full storage mode; that is, KA is
the size of the first dimension (column length) of the two-dimensional array
A. In this case the subdiagonal elements are ignored and will not be altered
by this routine, unless A and Z are the same array which is permitted if KA=KZ.

z

Array (element) indicating the address of
two-dimensional output array in which the
produced by the reduction will be stored.
contents of the matrix A do not need to be
do not require A), Z may be the same array

KZ

the upper left-hand corner of a
orthogonal transformation matrix

Must be of type real. If the
preserved (most eigenvalue solvers
as A, provided that KA = KZ.

Size of the first dimension (column length) of array z. Must be greater than
or equal to N. Must be of type integer. If Z and A are identical, KZ = KA
must hold.

D

Output array of length at least N words. Must be of type real. On return the
diagonal elements of the produced tridiagonal matrix will be stored in D.

s

Output array of length at least N words. Must be of type real. On return S
will contain (in its first N-1 positions) the superdiagonal elements of the
produced symmetric tridiagonal matrix.

T

Scratch array of length at least N words. Can be of any type except character.

LIB99 Subroutines and Functions 2-73

Subroutine TRED2

Parameters
(Continued)

Externals

Dynamic Space

METHOD

This routine performs a Householder transformation, as presented in J. H.
Wilkinson: The Algebraic Eigenvalue Problem, Oxford University Press, London,
233-236, 290-294 (1965). It closely resembles the implementation in the ALGOL
procedure TRED2 in Wilkinson-Reinsch: Linear Algebra, Handbook for Automatic
Computation, Vol.2, Springer-Verlag, Berlin, 212-226 (1971). The algorithm is
very well-suited for vectorization, and the bulk of the work is done in vector
mode--to a large extent utilizing the LIB99 routine SDOT to compute the dot
product between two vectors.

LOCF, MXMOVU, RSMULV, RVAXPY, SCOPY, SDOT, SQRT, VFILL, VGATHP

None

2-74 FORTRAN LIB99 Usage Revision B

Subroutine VABS

§1111biro1111tinc2 V AIB§

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To take the absolute values of the elements of a vector. Both integer and
real types are supported.

CALL IVABS (N , A , LA , B , LB)
CALL RVABS (N A , LA , B , LB)

N

Number of elements in the target vector B. Must be of type integer.

A

Array (element) indicating the base address of the source vector. Must be of
type real if calling RVABS, and of type integer if calling IVABS.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the target vector. Must be of
type real if calling RVABS, and of type integer if calling IVABS.

LB

Stride for the B vector. Must be of type integer and not equal to zero.

None

512 or 1024 words, depending on the values of LA and LB.

In RVABS the vector instruction used is ANDV, where one of the operands is the
broadcast scalar Z"7FFFFFFFFFFFFFFF". In IVABS the elements of A are first
subtracted from zero using the vector instruction SUBXV. This vector is then
selectively merged with the original elements, using the MRGV vector
instruction controlled by the sign bits in the source vector.

LIB99 Subroutines and Functions 2-75

Subroutine VADD

Purpose

Format

Parameters

To perform the vector operation C = A + B, where C is a vector and A and B are
either scalars or vectors. Both integer and real types are supported.

CALL ISADDV N s B , c
CALL IVADD N A LA B , LB , C , LC)
CALL IVADDS N A s c)
CALL IVADDV N A B , c)

CALL RSADDV N , s , B , c
CALL RVADD N A LA B LB , C , LC)
CALL RVADDS N A s c
CALL RVADDV N , A B , c

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the first vector operand. Must
be of type real if RVADD, RVADDS, or RVADDV is called, and of type integer if
IVADD, IVADDS, or IVADDV is called.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the second vector operand.
Must be of type real if RSADDV, RVADD, or RVADDV is called, and of type
integer if ISADDV, IVADD, or IVADDV is called.

LB

Stride for the B vector. Must be of type integer. A value of 0 indicates
that B is a scalar variable or constant.

c

Array (element) indicating the base address of the target vector into which
the result of the vector operation is written. Must be of type real if
RSADDV, RVADD, RVADDS or RVADDV is called, and of type integer if ISADDV,
IVADD, IVADDS, or IVADDV is called.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

s

Scalar constant or variable or array element to be broadcast as either the
first or second input operand in the vector operation. Must be of type real
if RSADDV or RVADDS is called, and of type integer if ISADDV or IVADDS is
called.

2-76 FORTRAN LIB99 Usage Revision B

Externals

Dynamic Space

Method

Remarks

Revision B

Subroutine VADD

None

512 words for each of the parameters LA, LB and LC which equal neither 1 nor O.

Vector addition using either the vector instruction ADDXV (integer operands)
or ADDFV (real operands).

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters all arrays are
assumed to be of this type.

LIB99 Subroutines and Functions 2-77

Subroutine VAND

§unbrrounll:nnuce V ANJI))

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Remarks

To perform the logical 64-bit vector operation C = A .AND. B, where C is a
vector and where A and B are either scalars or vectors.

CALL SANDV (N ' s B ' c
CALL VAND (N ' A ' LA B , LB , C , LC)
CALL VANDS (N A ' s c)
CALL VANDV (N ' A ' B c)

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the first vector operand. Can
be of any type except character.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the second vector operand. Can
be of any type except character.

LB

Stride for the B vector. Must be of type integer. A value of 0 indicates
that B is a scalar variable or constant.

c

Array (element) indicating the base address of the target vector into which
the result of the vector operation is written. Can be of any type except
character.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

s

Scalar constant or variable or array element to be broadcast as either the
first or second input operand in the vector operation. Can be of any type
except character.

None

O, 512, or 1024 words, depending on the values of LA, LB, and LC.

The vector instruction ANDV is utilized.

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters all arrays are
assumed to be of this type.

2-78 FORTRAN LIB99 Usage Revision B

Subroutine VAX.PY

§unbiroml:imte V AXIPY

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To compute a linked triad; that is, one of the two operations Z = A*X - Y
(RVAXMY) and Z = A*X + Y (RVAXPY), where X, Y and Z are vectors and A is a
scalar.

CALL RVAXMY (N , A X , Y , Z
CALL RVAXPY (N , A , X , Y , Z

N

Number of elements in each of the three vectors. Must be of type integer.

A

Scalar constant or variable or array element. Must be of type real.

x

Array (element) indicating the base address of the first source vector. Must
be of type real.

y

Array (element) indicating the base address of the second source vector. Must
be of type real.

z

Array (element) indicating the base address of the target vector into which
the result of the linked triad operation Z=A*X-Y (RVAXMY) or Z=A*X+Y (RVAXPY)
is written. Must be of type real.

None

544 words.

Vector multiplication of the scalar A by each of the elements in the vector X,
using dynamic space as the target, followed by the subtraction (RVAXMY) or
addition (RVAXPY) of the vector Y, putting the result into the vector z.

NOTE

RVAXPY is very similar to the LIB99 subroutine SAXPY.

LIB99 Subroutines and Functions 2-79

Subroutine VDIV

§unll>rrounll:nnue VID>IlV

Purpose

Format

Parameters

To perform the vector operation C = A / B, where C is a vector and A and B are
either scalars or vectors. Both integer and real types are supported.

CALL ISDIVV N s B ' c
CALL I VD IV N A , LA , B

'
LB , C , LC)

CALL IVDIVS N ' A s ' c)
CALL IVDIVV N ' A ' B c)

CALL RSDIVV N ' s B ' c
CALL RVDIV N ' A LA , B

'
LB , C , LC)

CALL RVDIVS N ' A s c)
CALL RVDIVV N A B ' c)

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the first vector operand. Must
be of type real if RVDIV, RVDIVS or RVDIVV is used, and of type integer if
IVDIV, IVDIVS, or IVDIVV is used.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the second vector operand.
Must be of type real if RSDIVV, RVDIV, or RVDIVV is used, and of type integer
if ISDIVV, IVDIV, or IVDIVV is used.

LB

Stride for the B vector. Must be of type integer and not equal to zero. A
value of 0 indicates that B is a scalar variable or constant.

c

Array (element) indicating the base address of the target vector into which
the result of the vector operation is written. Must be of type real if
RSDIVV, RVDIV, RVDIVS or RVDIVV is used, and of type integer if ISDIVV, IVDIV,
IVDIVS, or IVDIVV is used.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

s

Scalar constant or variable or array element to be broadcast as either the
first or second input operand in the vector operation. Must be of type real
if RSDIVV or RVDIVS is called, and of type integer if ISDIVV or IVDIVS is
called.

2-80 FORTRAN LIB99 Usage Revision B

Externals

Dynamic Space

Method

Remarks

Revision B

Subroutine VDIV

None

512 words for each of the parameters LA, LB and LC which equal neither 1 nor o.

The vector instruction DIVFV is used. Integer operands are first converted to
floating-point format, using the vector instruction CNIFV. After DIVFV is
used the reverse conversion is performed on the operands, using the vector
instruction CNFIV.

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters all arrays are
assumed to be of this type.

LIB99 Subroutines and Functions 2-81

Subroutine VFILL

§unbJl'ounll:nillle 'VIFilILil..

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To broadcast a scalar value into the given locations of a vector.

CALL VFILL (N , S , A , LA

N

Number of locations to fill. Must be of type integer.

s

Scalar constant or variable or array element to be broadcast into A. Can be
of any type except character.

A

Array (element) indicating the base address of the target vector to be
filled. Must be of the same type as S.

LA

Stride for the A vector. Must be of type integer and not equal to zero.

None

None

The periodic scatter instruction SCTV is used.

NOTE

The LIB99 subroutine SCOPY can perform the same task as VFILL.

2-82 FORTRAN LIB99 Usage Revision B

Subroutine VFLOAT

§unbtroultiune VIFH...OA 1f

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To convert the elements of a vector of type integer to type real.

CALL VFLOAT (N , A , LA , B , LB)

N

Number of elements to convert. Must be of type integer.

A

Array (element) indicating the base address of the source vector. Must be of
type integer.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the target vector into which
the resulting floating-point values are to be written. Must be of type real.

LB

Stride for the B vector. Must be of type integer and not equal to zero.

None

512 words if LBfl.

The vector instruction CNIFV is used.

LIB99 Subroutines and Functions 2-83

Subroutine VFTF64

§unbn-ounll:nnne VIF1f'IF641-

Purpose

Format

Parameters

Externals

Dynamic Space

Remarks

To convert one or several VAX 32-bit floating-point numbers to Control Data
64-bit floating-point format.

CALL VFTF64(N , A , IXBYTA , B)

N

Number of VAX 32-bit floating-point numbers to convert. Must be of type
integer.

A

Input array holding the N contiguously stored VAX 32-bit numbers that are to
be converted. Can be of any data type. The 4 bytes of each VAX number are
assumed to be stored in pairwise byte reversed order (1032 instead of 0123).
The contents of A are not altered by this routine.

IXBYTA

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array A of the leftmost byte
of the first number to be converted. The beginning of A is represented by
IXBYTA=O,

B

Output array in which the Control Data 64-bit floating-point numbers are
stored. Must be of type real. Conversion in place is not allowed; that is, B
and A must be distinct. See Remarks below for details about what happens when
the VAX number is an indefinite.

None

None

For a detailed description of the VAX floating-point format, see the
description of subroutine F64TVF.

The 32-bit quantity with the hexadecimal representation Z"80000000" is
converted to a Control Data 64-bit positive indefinite, arbitrarily chosen as
the hexadecimal number Z"7000000000000000".

e 2-84 FORTRAN LIB99 Usage Revision C

Subroutine VGATHER

§unUltrounll:nnnce VGA.1rIHIIEIR

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision C

To perform a random (VGATHR or VGATHRl) or periodic (VGATHP) gather operation;
that is, to move elements from noncontiguous source to contiguous target
locations. In the random cases the moves are controlled by an index list,
while the periodic case is characterized by a constant stride off set between
the gathered source elements. See the description of the INDEX parameter
concerning the difference between VGATHR and VGATHRl.

CALL VGATHP
CALL VGATHR
CALL VGATHRl

N

N
N
N

A
A
A

STRIDE
INDEX
INDEX

B)
B)
B)

Number of elements to move from A to B. Must be of type integer.

A

Array (element) indicating the base address of the source array. Can be of
any type except character.

INDEX

Integer index list containing pointers into array A. Must be of type
integer. This index list is used only by VGATHR and VGATHRl. If INDEX(J)=K,
the element A(K) is moved to the location B(J). When VGATHR is called, it is
assumed that the base address A is referenced by the subscript O; that is, A
and A(O) represent the same address. In contrast, when VGATHRl is called, the
first element of A is assumed to be referenced as A(l), using the subscript 1
rather than O.

STRIDE

Constant stride for the A array, used only by VGATHP. Must be of type integer
and not equal to zero. Defines the elements to be moved as
(A(J*STRIDE),J=O, ••• ,N-1).

B

Array (element) indicating the base address of target array. Must be of the
same type as A.

None

None

In both VGATHR and VGATHRl, a scalar loop unrolled to four levels is used.
VGATHP does the work by means of the periodic gather instruction GTHV.

NOTE

The LIB99 subroutine SCOPY can also perform periodic gather operations.

LIB99 Subroutines and Functions 2-84.1/2-84.2 I

Subroutine VIFIX

§mhll"o11111tinue VIlJFilX

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Revision B

To convert the elements of a vector of type real to type integer.

CALL VIFIX (N , A , LA , B , LB)

N

Number of elements to convert. Must be of type integer.

A

Array (element) indicating the base address of the source vector. Must be of
type real.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the target vector into which
the resulting integer values are to be written. Must be of type integer.

LB

Stride for the B vector. Must be of type integer and not equal to zero.

None

512 words if LB#l.

The vector instruction CNFIV is used.

LIB99 Subroutines and Functions 2-85

Subroutine VIOR

§unbrounll:inue VIlOJR

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Remarks

To perform the logical 64-bit vector operation C = A .OR. B, where C is a
vector and A and B are either scalars or vectors.

CALL SIORV (N s
'

B '
c)

CALL VIOR (N A LA , B
'

LB ' c , LC)
CALL VIORS (N A s ' C)
CALL VIORV (N A B '

c)

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the first vector operand. Can
be of any type except character.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the second vector operand. Can
be of any type except character.

LB

Stride for the B vector. Must be of type integer. A value of 0 indicates
that B is a scalar variable.

c

Array (element) indicating the base address of the target vector, into which
the result of the vector operation is written. Can be of any type except
character.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

s

Scalar constant or variable or array element to be broadcast as either the
first or second input operand in the vector operation. Can be of any type.

None

0, 512, or 1024 words, depending on the values of LA, LB, and LC.

The vector instruction IORV is utilized.

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters all arrays are
assumed to be of this type.

2-86 FORTRAN LIB99 Usage Revision B

Subroutine VMASK

§u.birou.tin2 VMA§Il{

Purpose

Format

Parameters

Revision B

To create a vector by means of selecting elements from two source vectors,
letting the choice between the two be determined by whether the corresponding
element in a logical input vector has the value .TRUE. or .FALSE ••

N , AO , LAO , B LB , Al , LAI)
N , Al , LAI , B LB , AO , LAO)

CALL VMASKO
CALL VMASKl
CALL VMASK2 N , Al , LAI , AO , LAO , B C , LC)

To determine which call to use, consult the table in the description of
parameter B.

N

Number of elements in each vector. Must be of type integer.

Al

Array (element) indicating the base address of the vector whose elements are
to be chosen whenever the corresponding element in B has the value .TRUE.;
that is, when its leftmost bit is set (=!). Can be of any type except
character.

LAI

Stride for the Al vector. Must be of type integer. Must not be zero if
VMASKO is used. A value of 0 indicates that Al is a scalar variable or
constant.

AO

Array (element) indicating the base address of the vector whose elements are
to be chosen whenever the corresponding element in B has the value .FALSE.;
that is, when its leftmost bit is cleared (=O). Must be of the same type as
Al.

LAO

Stride for the AO vector. Must be of type integer. Must not be zero if
VMASKl is used. A value of 0 indicates that AO is a scalar variable or
constant.

B

Array (element) indicating the base address of the control vector. The type
of array B should in principle be logical. However, the vector instruction
actually used for the selective moves really only cares about how the leftmost
bit looks in a given element of B. For example, a negative integer or
floating-point value is interpreted as .TRUE. because the sign bit is set
(leftmost bit=!).

The contents of B control the selection of elements from Al and AO in the
following manner:

B(K)=.TRUE.

B(K)=.FALSE.

VMASKO

no action

Al(K)=AO(K)

VMASKl

AO(K)=Al(K)

no action

VMASK2

C(K)=Al(K)

C(K)=AO(K)

LIB99 Subroutines and Functions 2-87

Subroutine VMASK

Parameters
(Continued)

Externals

Dynamic Space

Method

LB

Stride for the B vector. Used only in calls to VMASKO and VMASKl. Must be of
type integer and not equal to zero.

c

Array (element) indicating the base address of the target vector in VMASK2.
Must be of the same type as Al and AO.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

None

0 - 1536 words, depending on the values of LAO, LAl, LB and LC.

Vector moves, using a mixture of the vector instructions SHFV, SCTV, GTHV,
XORV and MRGV.

2-88 FORTRAN LIB99 Usage Revision B

Subroutine VMASUM

§unbtroUJ111:inue 'VMA§lJM

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Remarks

Revision B

To compute the moving absolute sum of the elements of a vector. A window of
length NW is moved along the input vector, one step at a time. For each
position, the output element whose location corresponds to the center of the
window is computed as the sum of the absolute values of the elements enclosed
by the window.

CALL VMASUM (N , NW , A , B)

N

Length of the input vector A and the output vector B. Must be of type integer.

NW

Length of the summing window. Must be of type integer. The value of NW
should be odd and not exceed N. When even it will be treated as if it had the
value NW+l.

A

Array (element) indicating the base address of the input vector. Must be of
type real.

B

Array (element) indicating the base address of the target vector. Must be of
type real. The arrays A and B must be distinct. B is filled with the moving
absolute sums computed from the vector A. More precisely, the element B(K),
where K=0,1, ••• ,N-1, is computed as the sum of the absolute values of the
elements A(K-NW/2) through A(K+NW/2), where A(J) is considered to be equal to
zero whenever J<O or J)N-1.

None

(N + NW/2) words.

A completely vectorized method is used.

Whenever the window is positioned so that a part of it extends outside vector
A, the corresponding element of B is computed as the sum of fewer than NW
absolute values. Thus, in effect, the window size increases uniformly from
l+NW/2 to NW in the beginning, and decreases the same way in the end.

LIB99 Subroutines and Functions 2-89

Subroutine VMUL

§unbrromnl:nnne VMUIL

Purpose

Format

Parameters

To perform the vector operation C = A * B, where C is a vector, and where A
and B are either scalars or vectors. Both integer and real types are
supported.

CALL ISMULV N , s , B , c
CALL IVMUL N , A , LA , B , LB , C , LC)
CALL IVMULS N , A s , c)
CALL IVMULV N , A , B , c)

CALL RSMULV N , s B , c
CALL RVMUL N , A , LA , B , LB , C , LC)
CALL RVMULS N , A s , c
CALL RVMULV N , A , B c

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the first vector operand. Must
be of type real if RVMUL, RVMULS, or RVMULV is used, and of type integer if
IVMUL, IVMtlLS, or IVMULV is used.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the second vector operand.
Must be of type real if RSMULV, RVMUL, or RVMULV is used or of type integer if
ISMULV, IVMUL, or IVMULV is used.

LB

Stride for the B vector. Must be of type integer. A value of 0 indicates
that B is a scalar variable.

c

Array (element) indicating the base address of the target vector into which
the result of the vector operation is written. Must be of type real if
RSMULV, RVMUL, RVMULS, or RVMULV is used, and of type integer if ISMULV,
IVMUL, IVMULS, or IVMULV is used.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

s

Scalar constant or variable or array element to be broadcast as either the
first or second input operand in the vector operation. Must be of type real
if RSMULV or RVMULS is called and of type integer if ISMULV or IVMULS is
called.

2-90 FORTRAN LIB99 Usage Revision B

Externals

Dynamic Space

Method

Remarks

Revision B

Subroutine VMUL

None

512 words for each of the parameters LA, LB and LC which equal neither 1 nor O.

The vector instruction MULFV is used. Integer operands are first converted to
floating-point format, using the vector instruction CNIFV. After MULFV is
used, the reverse conversion is performed on the operands using the vector
instruction CNFIV.

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters, all arrays are
assumed to be of this type.

LIB99 Subroutines and Functions 2-91

Subroutine VRANF

§unbrrounll:nime 'VII~ANIF

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To fill all locations in a vector with random numbers.

CALL VRANF (N , A , LA)

N

Number of random numbers to insert into A. Must be of type integer.

A

Array (element) indicating the base address of the target vector into which
the random numbers are written. Must be of type real.

LA

Stride for the A vector. Must be of type integer and not equal to zero.

None

None

A scalar loop with repeated references to the system provided function RANF.

2-92 FORTRAN LIB99 Usage Revision B

Subroutine VSCATTER

§unlb>Ir@un11:iinne 'V§CA 1f'1f'IEIIR

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Remark

Revision B

To perform a random (VSCATR or VSCATRl) or periodic (VSCATP) scatter
operation; that is, to move elements from contiguous source to noncontiguous
target locations. In the random cases the moves are controlled by an index
list, while the periodic case is characterized by a constant stride offset
between the target locations scattered into. See the description of the index
parameter concerning the difference between VSCATR and VSCATRl.

CALL VSCATP (N , A , STRIDE
CALL VSCATR (N , A , INDEX
CALL VSCATRl (N , A , INDEX

N

B)
B)
B)

Number of elements to move from A to B. Must be of type integer.

A

Array (element) indicating the base address of the source vector. Can be of
any type except character.

INDEX

Integer index list containing pointers into array B. Must be of type
integer. This index list is used only by VSCATR and VSCATRl. If INDEX(J)=K
this is interpreted as a request to move the element A(J) to the location
B(K). When VSCATR is called, it is assumed that the base address Bis
referenced by the subscript O; that is, B and B(O) represent the same
address. In contrast, when VSCATRl is called, the first element of B is
assumed to be referenced as B(l), using the subscript 1 rather than O.

STRIDE

Constant stride for the B vector, used only by VSCATP. Must be of type
integer and not equal to zero. Defines the target locations as
(B(J*STRIDE),J=O, ••• ,N-1).

B

Array (element) indicating the base address of the target array. Must be of
the same type as A.

None

None

In both VSCATR and VSCATRl a scalar loop unrolled to four levels is used.
VSCATP does the work by means of the periodic scatter instruction SCTV.

The best way to scatter a scalar is by a call to the LIB99 subroutine VFILL.

NOTE

The LIB99 subroutines SCOPY and VFILL can also perform periodic scatter
operations.

LIB99 Subroutines and Functions 2-93

Subroutine VSHFC

§unbrrountnnue V§IHIIFC

Purpose

Format

Parameters

To perform the circular vector shift operation C =SHIFT(A , K), where C is
a vector and A and K are either scalars or vectors. Note that the integer
shift count vector K may contain either positive or negative integers, but
that the corresponding left and right shifts, respectively, are both circular.

CALL SSHFCV N , s K , c
CALL VSHFC N ' A , LA , K , LK , C , LC)
CALL VSHFCS N , A J , c)
CALL VSHFCV N ' A K , c)

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the source vector whose
elements are to be shifted, as determined by the contents of K (or J). Can be
of any type except character.

LA

Stride for' the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

K

Array (element) indicating the base address of the second vector operand,
containing the positive or negative integer shift counts. Must be of type
integer.

LK

Stride for the K vector. Must be of type integer. A value of 0 indicates
that K is a scalar variable or constant.

c

Array (element) indicating the base address of the target vector into which
the shifted elements of A are written. Can be of any type except character.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

J

Scalar shift count to be used for all elements of A when VSHFC is called.
Must be of type integer.

s

Scalar constant or variable or array element to be broadcast as the first
input operand when SSHFCV is called. Can be of any type except character.

2-94 FORTRAN LIB99 Usage Revision B

Externals

Dynamic Space

Method

Remarks

Revision B

Subroutine VSHFC

None

0, 512, or 1024 words, depending on the values of LA, LB, and LC.

The vector instruction SHFV is used.

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters all arrays are
assumed to be of this type.

LIB99 Subroutines and Functions 2-95

Subroutine VSUB

§unbrmunll:ine V§ll.JS

Purpose

Format

Parameters

To perform the vector operation C = A - B, where C is a vector and A and B are
either scalars or vectors. Both integer and real types are supported.

CALL ISSUBV (N s B ' c
CALL IV SUB (N A LA , B , LB , C , LC)
CALL IV SUBS (N ' A s ' c)
call IVSUBV (N ' A B ' c)

CALL RSSUBV (N ' s B ' c
CALL RVSUB (N ' A LA , B ' LB , C , LC)
CALL RVSUBS (N ' A s ' c)
CALL RVSUBV (N A B ' c)

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the first vector operand. Must
be of type real if RVSUB, RVSUBS, or RVSUBV is called, and of type integer if
IVSUB, IVSUBS, or IVSUBV is called.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the second vector operand.
Must be of type real if RSSUBV, RVSUB, or RVSUBV is called, and of type
integer if ISSUBV, IVSUB, or IVSUBV is called.

LB

Stride for the B vector. Must be of type integer. A value of 0 indicates
that B is a scalar variable or constant.

c

Array (element) indicating the base address of the target vector into which
the result of the vector operation is written. Must be of type real if
RSSUBV, RVSUB, RVSUBS, or RVSUBV is called, and of type integer if ISSUBV,
IVSUB, IVSUBS, or IVSUBV is called.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

s

Scalar constant or variable or array element to be broadcast as either the
first or second input operand in the vector operation. Must be of type real
if RSSUBV or RVSUBS is called, and of type integer if ISSUBV or IVSUBS is
called.

2-96 FORTRAN LIB99 Usage Revision B

Externals

Dynamic Space

Method

Remarks

Revision B

Subroutine VSUB

None

512 words for each of the parameters LA, LB and LC which equal neither 1 nor O.

Vector subtraction using either the vector instruction SUBXV (integer
operands) or SUBFV (real operands).

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters, all arrays are
assumed to be of this type.

LIB99 Subroutines and Functions 2-97

Function VSUM

IFunnnctnon V§lLJM

Purpose

Format

Parameters

Externals

Dynamic Space

Method

To compute the sum of either the algebraic (RVSUM) or absolute (RVASUM) values
of the elements of a real vector.

SUM=RVASUM (N , A , LA
SUM=RVSUM (N , A LA

SUM

Function result of type real. If RVASUM is called, the result represents the
sum of the absolute values of the elements of A. If RVSUM is called, the
result represents the sum of the algebraic (unaltered) values of the elements
of A.

N

Number of elements to be summed. Must be of type integer.

A

Array (element) indicating the base address of the input vector. Must be of
type real.

LA

Stride for the A vector. Must be of type integer and not equal to zero.

None

512 words.

The vector instruction SUMFV is used to compute the element sum. In RVASUM
the vector instruction ANDV is used prior to the summing in order to obtain
the absolute values of the elements in A.

NOTE

RVASUM is very similar to the LIB99 function SASUM.

2-98 FORTRAN LIB99 Usage Revision B

Purpose

Format

Parameters

Externals

Dynamic Space

Method

Remarks

Revision B

Subroutine VXOR

To perform the logical 64-bit vector operation C = A .XOR. B, where C is a
vector and A and B are either scalars or vectors.

CALL SXORV (N , s B , c
CALL VXOR (N , A , LA B , LB , C , LC)
CALL VXORS (N , A s c)
CALL VXORV (N , A , B , c)

N

Number of elements in each vector. Must be of type integer.

A

Array (element) indicating the base address of the first vector operand. Can
be of any type except character.

LA

Stride for the A vector. Must be of type integer. A value of 0 indicates
that A is a scalar variable or constant.

B

Array (element) indicating the base address of the second vector operand. Can
be of any type except character.

LB

Stride for the B vector. Must be of type integer. A value of 0 indicates
that B is a scalar variable or constant.

c

Array (element) indicating the base address of the target vector into which
the result of the vector operation is written. Can be of any type except
character.

LC

Stride for the C vector. Must be of type integer and not equal to zero.

s

Scalar constant or variable or array element to be broadcast as either the
first or second input operand in the vector operation. Can be of any type
except character.

None

0, 512, or 1024 words, depending on the values of LA, LB, and LC.

The vector instruction XORV is used.

Vectors with contiguously stored elements are characterized by stride values
of 1. In routines which do not accept stride parameters, all arrays are
assumed to be of this type.

LIB99 Subroutines and Functions 2-99

Subroutine WITI64

§unbrrounll:ine WilTil64

Purpose

Format

Parameters

Externals

Dynamic Space

Remar~s

To convert one or several IEEE 32-bit integers, also known as Word Integers
(INTEGER*4 in IBM notation), to Control Data 64-bit integer format. Both byte
reversed (WITI64) and naturally ordered (I4TI64) integers are handled.

CALL I4TI64(N
CALL WITI64(N

N

A
A

IXBYTA , B)
IXBYTA , B)

Number of IEEE 32-bit integers to convert. Must be of type integer.

A

Input array holding the N contiguously stored IEEE 32-bit integers that are to
be converted. Can be of any data type. The 4 bytes of each IEEE integer are
assumed to be stored in natural order (0123) when I4TI64 is called, and in
reversed order (3210) when WITI64 is called. The contents of A are not
altered by this routine.

IXBYTA

FORTRAN-type subscript, or item count, in units of 8-bit bytes. Must be a
nonnegative integer. Specifies the location in array A of the leftmost byte
of the first integer to be converted. The beginning of A is represented by
IXBYTA=O.

B

Output array in which the Control Data 64-bit integers are stored. Must be of
type integer. Conversion in place is not allowed; that is, B and A must be
distinct.

None

None

An IEEE Word Integer is a 32-bit integer represented in 2's complement
notation. A Control Data integer is also represented in 2's complement
notation, but occupies 64 bits of storage.

No special type integers are recognized. In particular, the hexadecimal value
Z"BOOOOOOO" (the most negative number representable using 32 bits) is
converted to the Control Data 64-bit integer Z"FFFFFFFF80000000" (decimal
-134217728), in spite of the fact that some hardware may attribute a special
meaning to this number.

e 2-100 FORTRAN LIB99 Usage Revision C

The manuals that are referenced in this manual and those that contain background information to
this manual are listed in table A-1.

A complete list of NOS/VE manuals is given in the SCL Language Definition manual. If your site
has installed the online manuals, you can find an abstract for each NOS/VE manual in the online
System Information manual. To access this manual, enter:

/EXPLAIN

Table A-1. Related Manuals

Manual Title

FORTRAN for NOS/VE
Language Definition
Usage

FORTRAN for NOS/VE
Quick Reference

FORTRAN Version 2 for NOS/VE
Language Definition
Usage

FORTRAN Version 2 for NOS/VE
Quick Reference

Math Library for NOS/VE
Usage

SCL for NOS/VE
Language Definition
Usage

SCL for NOS/VE
Source Code Management
Usage

SCL for NOS/VE
Object Code Management
Usage

Publication Number Online Manual Title

60485913

FORTRAN

60487113

VFORTRAN

60486413

60464013

60464313

60464413

Control Data manuals are available through Control Data sales offices or through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103
(612) 292-2101

When ordering a manual, please specify the complete title, publication number, and revision level.

Revision B Related Manuals A-1

Accessing Online Manuals

To access an online manual, log in to NOS/VE and supply the online title (listed in table A-1) on
the EXPLAIN command. For example, to see the FORTRAN Quick Reference online manual, enter

EXPLAIN MANUAL=FORTRAN

A-2 FORTRAN LIB99 Usage Revision B

Il nn crll er!

Array subscript conventions 1-3

Basic Linear Algebra Subroutines 1-5
BLAS conventions 1-5

c
CONV Subroutine 2-4
Conventions in this manual 5
CORR Subroutine 2-4
CYBER 990 Timing Information 2-23

Dynamic space 1-5

IE
EVBAK Subroutine
EVIQL Subroutine
EVRED Subroutine
EVRS Subroutine
EVRSG Subroutine

2-6
2-8
2-10

2-13
2-15

Executing your program with the LIB99
library 1-4

Externals 1-4

IF
FFTlD Subroutine
FILTGS Subroutine
Fourier Transform
F64TR4 Subroutine
F64TSR Subroutine
F64TSRN Subroutine
F64TVF Subroutine

2-18
2-4
2-18
2-24
2-24.2

2-24.2
2-24.4

Gaussian Elimination 2-41
GENSPD Subroutine 2-25

Il
ISADDV Subroutine 2-76
ISDIVV Subroutine 2-80
ISMULV Subroutine 2-90
ISSUBV Subroutine 2-96

Revision C

Iterative Solvers 2-26
ITPACKV 2C Routines 2-26
IQSORT Subroutine
IVABS Subroutine
IVADD Subroutine
IVADDS Subroutine
IVADDV Subroutine
IVDIV Subroutine
IVDIVS Subroutine
IVDIVV Subroutine
IVMUL Subroutine
IVMULS Subroutine
IVMULV Subroutine
IVSUB Subroutine
IV SUBS Subroutine
IVSUBV Subroutine
I4TI64 Subroutine
I64TI2 Subroutine
I64TI4 Subroutine
I64TSI Subroutine
I64TWI Subroutine

L
LIB99 terminalogy
LIVEQ Subroutine
LIVGE Subroutine
LIVLT Subroutine
LIVNE Subroutine
LRVEQ Subroutine
LRVGE Subroutine
LRVLT Subroutine
LRVNE Subroutine
LVCOMP Subroutine

M
Manuals

Ordering A-1
Related A-1

Matrices 1-2

2-64
2-75
2-76

2-76
2-76

2-80
2-80
2-80

2-90
2-90
2-90

2-96
2-96
2-96
2-100
2-34
2-34 .1
2-34
2-34.1

1-1
2-34. 2
2-34.2
2-34. 2
2-34.2
2-34. 2
2-34.2
2-34.2
2-34. 2
2-34.2

MOVB Subroutine 2-36
MXADDF Subroutine 2-36.1
MXCMP Subroutine 2-37
MXENRM Function 2-39

2-41
2-46

MXEQ Function 2-40
MXGEFS Subroutine
MXINVU Subroutine
MXMAB Subroutine
MXMOVF Subroutine
MXMOVU Subroutine
MXMUTU Subroutine
MXMUUT Subroutine
MXSCAF Subroutine
MXSUBF Subroutine
MXSYUL Subroutine

2-48
2-50
2-51
2-52
2-54
2-56
2-57
2-58

FORTRAN LIB 99 Usage Index-1 e

Index

MXTRAF Subroutine 2-60
MXTRAU Subroutine 2-61
MXlNRM Function 2-62
MX8NRM Function 2-63

QSORT Subroutine 2-64

RSADDV Subroutine 2-76
RSDIVV Subroutine 2-80
RSMULV Subroutine 2-90
RSSUBV Subroutine 2-96
RVABS Subroutine 2-75
RVADD Subroutine 2-76
RVADDS Subroutine 2-76
RVADDV Subroutine 2-76
RVASUM Function 2-98
RVAXMY Subroutine 2-79
RVAXPY Subroutine 2-79
RVDIV Subroutine 2-80
RVDIVS Subroutine 2-80
RVDIVV Subroutine 2-80
RVMUL Subroutine 2-90
RVMULS Subroutine 2-90
RVMULV Subroutine 2-90
RVSUB Subroutine 2-96
RVSUBS Subroutine 2-96
RVSUBV Subroutine 2-96
RVSUM Function 2-98
R4TF64 Subroutine 2-65

§

SANDV Subroutine 2-78
SASUM Function 2-66
SAXPY Subroutine 2-67
Scalars 1-1
SCOPY Subroutine 2-68
SDOT Function 2-69
SIORV Subroutine 2-86
SITI64 Subroutine 2-70
SNRM2 Function 2-70.1
SOP Subroutine 2-4
SRTF64 Subroutine 2-70.2
SSCAL Subroutine 2-71
SSHFCV Subroutine 2-94
SSWAP Subroutine 2-72
Strides 1-1

e Index-2 FORTRAN LIB99 Usage

SXORV Subroutine 2-Y~

$SYSTEM.COMMON.LIB99 1-4

TRED2 Subroutine 2-73

VABS Subroutine
VADD Subroutine
VAND Subroutine
VANDS Subroutine
VANDV Subroutine
VAXPY Subroutine
VDIV Subroutine
Vectors 1-1

2-75
2-76
2-78

2-78
2-78
2-79

2-80

VFILL Subroutine 2-82
VFLOAT Subroutine 2-83
VFTF64 Subroutine 2-84
VGATHER Subroutine 2-84.1
VGATHP Subroutine 2-84.1
VGATHR Subroutine 2-84.1
VGATHRl Subroutine 2-84.1
VIFIX Subroutine 2-85
VIOR Subroutine 2-86
VIORS Subroutine 2-86
VIORV Subroutine 2-86
VMASK Subroutine 2-87
VMASKO Subroutine 2-87
VMASKl Subroutine 2-87
VMASK2 Subroutine 2-87
VMASUM Subroutine 2-89
VMUL Subroutine 2-90
VRANF Subroutine 2-92
VSCATP Subroutine 2-93
VSCATR Subroutine 2-93
VSCATRl Subroutine 2-93
VSCATTER Subroutine 2-93
VSHFC Subroutine 2-94
VSHFCS Subroutine 2-94
VSHFCV Subroutine 2-94
VSUB Subroutine 2-96
VSUM Function 2-98
VXOR Subroutine 2-99
VXORS Subroutine 2-99
VXORV Subroutine 2-99

w
WITI64 Subroutine 2-100

Revision C

FORTRAN for NOS/VE LIB99 Usage, 60485915 C

We would like your comments on this manual. While writing it, we made some assumptions about who
would use it and how it would be used. Your comments will help us improve this manual. Please
take a few minutes to reply.

Who Are You?

Manager
Systems Analyst or Programmer
Applications Programmer
Operator
Other

~--------------------~

How Do You Use This Manual?

As an Overview
To learn the Product/System
For Comprehensive Reference
For Quick Look-up

What programming languages do you use?

How Do You Like This Manual? Check those that apply.

Yes Somewhat No

Do You Also Have?

FORTRAN for NOS/VE
Language Definition
Usage
FORTRAN for NOS/VE
Tutorial
FORTRAN for NOS/VE
Quick Reference
FORTRAN for NOS/VE
Summary

Is the manual easy to read (print size, page layout, and so on)?
Is it easy to understand?
Is the order of topics logical?
Are there enough examples?
Are the examples helpful? (Too simple Too complex)
Is the technical information accurate?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you what you need to know about the topic?

Comments? If applicable, note page number and paragraph.

Would you like a reply? Yes No Continue on other side

From:

Name
~----~---------------------------------

Address

Please send program listing and output if applicable to your comment.

'APE TAPE

)LO FOLD
--~

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

(5 2) CONTf\.OL DATA
Technology and Publications Division

Mail Stop: SVL 104
P.O. Box 3492
Sunnyvale, California 94088-3492

I II II I NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

·---,
)LD FOLD

w

5
e> z
0
<.
.....
::>
u

·~ ~ CONTRPL DATA

