
-r:;J I:\ CONT"OL DATA
~ r:!I CO~ORftTION

COMMON MEMORY MANAGER
VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1
SCOPE 2

60499200

r,J ~ CONT(\.OL DATA
~ r::J COf\PO~TION

COMMON MEMORY MANAGER
VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1
SCOPE 2

60499200

Revision

A (12/06/76)

B {08/29/77)

c (03/31/78)

D (02/15/80)

E (10/24/80)

F (02/26/82)

REVISION RECORD

Description

Original release. PSR level 439.

Revised to correct technical errors and improve clarity of text. This edition obsoletes
the previous edition. PSR level 439. ·

Revised to reflect Version 1.1 including CMM.FAF~ flexible-allocate-fixed, and CMM.LOV,
load overlay via FOL.

Revised to add SCOPE 2 support. This revision supersedes all previous editions.

Revised to add FORTRAN calls to CMM. Calls to CMM from other languages are now
possible. This revision supersedes all previous editions. PSR level 527.

Revised to correct technical errors and add NOS 2 support. This revision supersedes all
previous editions. PSR level 552.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED Address conments concerning this manual to:

<9coPYRIGHT CONTROL DATA CORPORATION
1976, 1977, 1978, 1980, 1982
All Rights Reserved
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Convnent Sheet in the back of this manual

60499200 F

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover
Title Page
ii
iii/iv
v
vi
vii
1-1 thru 1-6
2-1
2-2 thru 2-13
3-1 thru 3-5
A-1
A-2
B-1 thru B-3
C-1
lndex-1
Index-2
Conment Sheet
Mailer
Back Cover

60499200 F

F
F
F
F
F
F
E
f
f
E
E
f
D
F
F
f

iii/iv

I

PREFACE

As described in this publication, Common Memory Manager
Version 1 operates under control of the following operating
systems:

NOS l for the CONTROL DAT A® CYBER 170
Computer Systems; CYBER 70 Models 71, 72, 73, 74;
and 6000 Computer Systems

NOS 2 for the CONTROL DA TA® CYBER 170
Computer Systems; CYBER 70 Models 71, 72, 73, 74;
and 6000 Computer Systems

NOS/BE l for the CDC® CYBER l 70 Computer
Systems; CYBER 70 Models 71, 72, 73, 74; and 6000
Computer Systems

SCOPE 2 for the CDC® Model 176, CYBER 70
Model 76, and 7600 Computer Systems

Common Memory Manager (CMM) provides dynamic
memory management as an integral part of the NOS 1,
NOS 2, NOS/BE 1, and SCOPE 2 operating systems. CMM
is intended as an enhancement to program performance.

CMM can be used with any program that requires memory
management and coexists with any independent product
which also requires memory management. CMM can also
be used in any program that interfaces with product set
members which use CMM. The use of CMM is not
necessary in any product that has its own memory manager
or that does not require memory management.

The user need not be aware that CMM is being used. In
most cases, no statements applicable to CMM need be
included in the job stream.

NOTE

Continued use of Common Memory Manager by
application program jobs should be avoided when
the option to do so exists. Program dependence
on Common Memory Manager use can complicate
migration of a program to a future system.

The product set members that currently use CMM are:

BASIC 3.2 and subsequent versions

COBOL 4 to 5 Conversion Aids

COBOL 5 and subsequent versions

CYBER Database Control System 1.2 and subsequent
versions

CYBER Database Control System 2 and subsequent
versions

CYBER Loader 1.3 and subsequent versions

60499200 F

CYB ER Record Manager Advanced Access
Methods 2.0 and subsequent versions

CYBER Record Manager Basic Access Methods 1.5
and subsequent versions

Data Base Utilities 1.2 and subsequent versions

FORM 1.1

FOR TRAN Extended 4. 7 and 4.8

FORTRAN5

FOR TRAN Common library 4. 7 and 4.8

FOR TRAN Common library 5

PL/I 1.0 an~ subsequent versions

QUERY.UPDATE 3.2 and subsequent versions

Sort/Merge 4.6 and subsequent versions

The reader is assumed to be familiar with the computer
system in use, as well as with the operating system,
machine assembly language, and loader.

All numbers shown throughout this manual are decimal
except where otherwise noted by the use of subscripts.
Positive quantities are frequently shown in bit fields longer
than possible values, meaning that right-justification is
assumed and leading zeros are included. Leading zeros
must be present for all input to CMM and are present in all
output from CMM.

Detailed information can be found in the listed
publications. The publications are listed alphabetically
within groupings that indicate relative importance to
readers of this manual.

The NOS Manual Abstracts and the NOS/BE Manual
Abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audience of all
NOS and NOS product set manuals, and NOS/BE and
NOS/BE product set manuals, respectively. The abstracts
manuals can be useful in determining which manuals are of
greatest interest to a particular user. The Software
Publications Release History serves as a guide in
determining which rev1s1on level of software
documentation corresponds to the Programming Systems
Report (PSR) level of installed site software.

Additional information can be found in the listed
publications.

v

• vi

The following manuals are of primary interest:

Publication

COBOL Version 5 Reference Manual

COMPASS Version 3 Reference Manual

Publication
Number

60497100

60492600

CYBER Loader Version 1 Reference Manual 60429800

CYBER Record Manager 60495700
Basic Access Methods Version 1.5
Reference Manual

FORTRAN Version 5 Reference Manual

SCOPE 2 Loader Reference Manual

60481300

60454780

SCOPE 2 Record Manager Ref ere nee Manual 60454690

SYMPL Version 1 Reference Manual

UPDATE Version 1 Reference Manual

The following manuals are of secondary interest:

Publication

Manual Abstracts for NOS Version 1
Operating System and Product Set

Manual Abstracts for NOS Version 2
Operating System and Product Set

Manual Abstracts for NOS/BE
Operating System and Product Set

Software Publications Release History

60496400

60449900

Publication
Number

84000420

60485500

84000470

60481000

NOS 1 NOS 2 NOS/BE 1

x x x

x x x

x x x

x x x

x x x

x x x

x x x

NOS2 NOS/BE 1

x

x

x x x

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or parameters.

SCOPE 2

x

x

x

x

x

x

SCOPE 2

x

60499200 F

CONTENTS

1. GENERAL DESCRIPTION 1-1 Load Overlay 2-6
Load Overlay via FOL 2-6

Using CMM 1-1 Respecify the Dynamic Area 2-7
CMM Features 1-2 Respecify the Highest High Address 2-7

Static Area 1-2 Deactivate CMM 2-8
Dynamic Area 1-3 Block Group Calls 2-8

Dynamic Area Base Address Pointer 1-4 Activate a Block Group 2-8
Dynamic Area Header and Trailer 1-4 Free a Block Group 2-8

Blocks and Block Groups 1-4 Information Calls 2-9
Fixed Block Header 1-5 Get Block Information 2-9
Block Group Pointers 1-5 Get Maximum Available Fixed Block Size 2-9

Free Space 1-6 Get Statistics for Overflow Recovery 2-10
CMM Internal Storage 1-6 Get Statistics for Job Summary 2-10

Control of CMM 1-6 Efficiency-Increasing Calls 2-12
Optimization Functions 2-12

CMM.OPl Function 2-12
2. CMM OPERATION AND USE 2-1 CMM.OP2 Function 2-12

CMM.OP4 Function 2-12
Fixed-Position Block Calls 2-1 Set-Own-Code Error Processing 2-12

Allocate or Create Fixed-Position Blocks 2-1 Low Memory Communication Words 2-13
Flexible Allocate 2-2 CMM Use 2-13
Free or Destroy Fixed-Position Blocks 2-3 CMM Selection 2-13
Shrink Fixed-Position Blocks 2-3 Legal First Calls 2-13

Shrink at f wa 2-3
Shrink at lwa 2-3

Grow Fixed-Position Blocks 2-4
Change Fixed-Position Block Specifications 2-4 3. CMM INTERFACE TO COMPILERS 3-1
Save Identified Value 2-5
Get Block Address 2-5 FORTRAN Version 5 Interface to CMM 3-1

Overlays, Segments, and the Static/Dynamic SYMPL Interface to CMM 3-2
Area Boundary 2-5 COBOL Version 5 Interface to CMM 3-2

APPENDIXES

A Standard Character Sets A-1 c Glossary C-1
B Diagnostics B-1

INDEX

FIGURES

1-1 Illustrated CMM Terminology 1-2 2-2 Dynamic Area Statistics 2-11
1-2 Dynamic Area - Typical Layout 1-3 2-3 Register Xl Contents 2-12
1-3 CMM Active Format 1-4 3-1 FOR TRAN/CMM Example Referencing the
1-4 Dynamic Area Header Format 1-4 Block as an Array 3-1
1-5 Dynamic Area Trailer Format 1-4 3-2 FORTRAN/CMM Example Referencing With an
1-6 Fixed Block Header 1-5 Offset 3-1
1-7 Block Group Pointer 1-5 3-3 SYMPL/CMM Interface Example 3-2
1-8 Free Space Header 1-6 3-4 COBOL/CMM Interface Example 3-2
2-1 Fixed Block Adjustments 2-1 3-5 Sample COBOL/CMM Program 3-4

TABLES

2-1 CMM.ALF Entry Conditions 2-2 2-5 CMM.LOV Entry Conditions 2-7
2-2 CMM.F AF Entry Conditions 2-3 2-6 CMM.LOV Exit Conditions 2-7
2-3 CMM.SIV Entry Conditions 2-5 2-7 CMM.GBI Exit Conditions 2-9
2-4 CMM.FWA Exit Conditions 2-5

60499200 F vii •

GENERAL DESCRIPTION 1

Common Memory Manager (CMM) is composed of a set of
intercommunicating and relocatable central processor
routines contained in the principal system library. These
routines are loaded into the user field length during the
time external references are being satisfied. CMM
provides centralized dynamic memory management for
application programs as well as for the CYBER 170 and
CYBER 70 product set. Users of data base mamlgement
programs, such as CYBER Record Manager, can utilize the
CMM facilities provided by those programs.

Centralized dynamic memory management opens up many
new possibilities for dealing with memory size problems.
With memory management, the dynamic loading of
infrequently executed code and/or the moving of data
areas to slow memory (either extended core storage (ECS)
or large core memory (LCM)) becomes more efficient.
Also, when CMM is combined with the· operating system
field length assignment algorithm, the product set becomes
significantly easier to use at the job control level because
field length management is automatic, and program
execution time is decreased.

Simple addressing errors generated by running programs
can cause program failure. Such addressing errors,
although repeatable, can be hard to correct because the
failure is detected much later than the actual occurrence
of the error. Also, the detected failure can exhibit
symptoms unrelated to the nature of the actual error.
Therefore, CMM has been implemented in two versions: a
fast version, and an error-checking version. The
error-checking version is intended for program checkout
only; all user-specified parameters are checked. The fast
version does no error checking; it is intended for
subsequent use when no user errors remain. The desired
CMM version can be selected through the use of system
assembly options.

USINGCMM

The CMM routines are a set of CP COMPASS subroutines
which are loaded into the user's field length. By calling
these routines with various parameters, operations such as
allocating space, releasing space, changing the size of
blocks previously allocated, and obtaining various memory
management statistics can be performed.

CMM depends on several pointers in memory to perform its
I operations. The major pointer, memory cell 658, is

off-limits to all products except CMM and the loader.
After loading, the loader sets ra+65 to lwa+l of the load.
At the first call to one of the CMM routines, CMM
complements ra+65 and uses this address as the first word
of the CMM dynamically managed area. This header word
has been given the name daba (dynamic area base address).
By complementing ra+65, CMM can determine if a call is
the first CMM call or if CMM has been called before, and
the various products and users can check this memory cell
to see if CMM is managing memory space.

For a non-overlayed program, daba is a constant value
throughout processing. With overlayed programs, however,
daba changes value as each overlay is loaded. All overlay
load requests must be made via CMM so that any dynamic
blocks that might reside in space that an overlay would

60499200 F

occupy can be protected. To avoid conf lic.t, the loader
routines that load overlays ensure that non-CMM loader
requests are aborted when CMM is active.

The fact that various overlays are different lengths, and
that daba changes, leads to two types of possible CMM
blocks. A safe block is one type. It is allocated above
highest high address (hha) where it is beyond reach of the
largest overlay that might be loaded. An unsafe block is
the other type. It must be released before an increase in
daba occurs. Unsafe blocks are especially useful for
storing transient data or routines that can be freed before
another overlay is loaded. The product set uses only safe
blocks to prevent any restrictions on overlay usage by the
general user. CYBER Record Manager (CRM), under NOS
and NOS/BE, is an exception. CRM has implemented a FIT
field known as BBH that can be set to YES (the default is
NO). If this field is set and a dynamic block is allocated
for buffer space, CRM will request CMM to allocate the
block below hha if enough space is available. The user
must make sure the file is closed appropriately so that the
buff er is released before loading a larger overlay into
memory. Use of the BBH field is further described in an
appendix of the CRM Basic Access Methods reference
manual. The BBH field is not available under SCOPE 2
Record Manager.

These unsafe blocks are always assigned as part of a group
of blocks so that CMM can monitor them as a unit when
overlays are being loaded. CMM contains a call that allows
the user to free all the blocks in the group without having
to free them individually. For instance, by specifying
several unsafe blocks as local to an overlay, all of them
can be unloaded without having to release each block
individually.

Independent of the placement of the CMM blocks is the
type of CMM block that can be allocated. The usual (and
simplest) type of block that is requested is a fixed-position,
fixed-size block. The user requests a block of a specific
size, and CMM returns the first word address for that
block. Other attributes associated with the size of the
block can be requested when the block is first obtained.
These attributes include the ability to reduce the starting
address of the block, or reduce or extend the ending
address of the block. The latter block is also known as a
grow-end block, and should be avoided because no blocks
are allowed to reside in memory at a higher address than
the grow-end block. (If CMM were to allow another block
above the grow-end block, then the possibility of extending
the grow-end block into the new block would exist.)

After a CMM block is allocated and passed on to the user,
it can be used like any other piece of memory. The only
cautions are that if the bounds of the memory block are
exceeded, it will destroy CMM's internal pointer chain.
Also, any memory preset in the block is the responsibility
of the user since CMM passes the block to the user with
memory contents undefined.

CMM subroutine calls exist to manipulate the blocks in
limited fashion after they are allocated. There are calls to
shrink the first word address (fwa) and the last word
address (lwa) of blocks that were acquired with this
characteristic. Also, a call exists to grow the end of a
block that was acquired with grow-end characteristics.

1-1

I

I

(Grow-end blocks are not recommended and should be
avoided.) A call is also available to change the
characteristic of a block from shrink-lwa or shrink-fwa or
grow-end to fixed position, fixed size.

After using a CMM block, a call is available to release the
block. Only the first word address of the block is required;
CMM does the rest.

CMM provides several calls to change the pointers it uses
during processing. These calls allow the user to change
daba or hha in the program. For instance, if an application
starts out with a very large primary overlay, and after that
overlay is processed it is not called again for the duration
of the job step, a call to the CMM routine could change hha
from the end of the largest overlay to the end of the next
largest overlay. CMM could then allocate global blocks in
the portion of memory formerly used by the largest overlay.

Other features of CMM include calls that can be made to
obtain information about any particular block, such as its
attributes or size. Calls are also available to find the size
of the largest possible fixed-position block that CMM can
assign. There are two variants to this call: one determines
the biggest block that does not involve a job field length
increase, and the other determines the biggest block that is
possible with a field length increase. Calls also are
available for statistics to aid in determining what kind of
overflow action to take if memory is not available for a
large black. For example, a call for summary statistics
returns the number of field length incr~ases and decreases
and the number of blocks obtained and released.

CMM overhead is quite low. When the 13 modules in CMM
are all in use, they do not require more than 12009
words. Only the routines being used are loaded; these
usually require less than 4008 words.

ra

CMM FEATURES
Terms used in describing the features of CMM are defined
in the paragraphs and figures that follow. Low memory,
move down, and so forth, always refer to the reference
address (ra) or lower end of the field length (fl). High
memory, move up, and so forth, refer to the upper end
(ra+fl) of the field length. In all descriptions of table
entries, word 0 refers to the first word of the table or
entry, word l refers to the second, and so forth.

Initial load or initial loading refers to that loading which is
determined by the nature of the job step and which starts
at the beginning of the job step. Three forms of initial
loading are currently supported:

Basic (relocatable)

Overlay

Segment

User-call loading is not considered to be initial loading
because the address space occupied by the loaded material
is not mapped out prior to the beginning of job step
execution. The action of loading those overlays formed in
a different overlay generation sequence than the initially
loaded (O,O) overlay is considered to be a special case,
called extended overlay loading, as explained in section 2.

STATIC AREA

The static area is shown in figure 1-1. This area originates
at the reference address and extends high enough in
memory to contain all of the addresses mapped out by the
loader when the loader constructed the portion of the

~ _ _ _ _ _ _ _ _ 1- ________ --1 minfl = daba (minimum)

1-2

en dz

fl-1
fl

maxn

Static Area

Dynamic Area

1--- -- --- ---1... - --- - - - - -
CMM Internal Storage

Free Space

Figure 1-1. Illustrated CMM Terminology

daba (current)

hha = daba (maximum)

minfl$daba~hha

60499200 F

initial load now in memory, whether or not that area was
preset. Basic initial loading establishes a static area that
remains fixed in size throughout the job step, as contrasted
with overlay and segment loading, which establish a static
area that can fluctuate in size as the job step proceeds.

The term minfl denotes the current length of the static
area; the actual location to which minfl points is the first
word past the static area. The highest high address (hha)
denotes the largest value of minfl for any portion of the
initial load; that is, hha equals minfl for basic loads, but
hha is increased the length of the longest overlay or the
longest path through the tree for segments. The term daba
refers to the dynamic area base address and is used for a
number that communicates the current value of minfl to

Dynamic area
header

Fixed block
header

59 56

6

6

35

zero

unused 1

CMM. Under normal circumstances, daba equals minfl;
however, the only constraint required by CMM is that minfl
be less than or equal to daba, which in turn is less than or
equal to hha. This relationship is illustrated in figure 1-1.

DYNAMIC AREA

The dynamic area is that portion of the field length
starting at address daba and continuing to the current fl.

The term maxfl denotes the maximum field length value
permitted to the job step as a function of job, operating
system, and installation parameters. A typical layout of
the dynamic area is shown in figure 1-2.

17 0

fl daba

bkd = daba fwd= b a

Fixed block contents

Free space
header

Fixed block ·
header

Fixed block
header

Free space
header

Dynamic area
trailer

60499200 F

0 unused

6 unused

6 unused
I

0 unused

6 unused

bkd = backward pointer
fwd= forward pointer

J bkd =a

Free space

I bkd = b

Fixed block contents

I bkd = c

Fixed block contents

I bkd = d

Free space

J bkd = e

Figura 1-2. Dynamic Area -Typical Layout

fwd= c b

fwd= d c

fwd= e d

fwd= endz e

zero en dz

1-3.

All of CMM's internal storage, except for items local to a
single module, extends from fl·l downward in memory to
endz. The area from fl upward to maxfl is considered to be
available free space as far as the computing utilization
level is concerned, even though this area is not part of the
field length.

Dynamic Area Base Address Pointer

The base address of the dynamic area (daba) changes with
each loading of a job step. The value of daba cannot be
less than minfl nor more than hha. The current value of
daba, in complement form, is indicated in word ra+65a,
which, once CMM is activated by a call to one of its
functions, has the format shown in figure 1-3.

59 17 0

unused by CMM -dab a

Figure 1-3. CMM Active Format

Dynamic Area Header and Trailer

The header and trailer words, which denote the dynamic
area, both have a type code 6 in bits 59 through 57. The
fixed-block header also has a type code 6. (See figure 1-2.)

The format of the dynamic area header is shown in
figure 1-4.

59 56 17 0

zero fl I
Figure 1-4. Dynamic Area Header Format

In figure 1-4, fl is the current field length, which contains
the static area, dynamic area, and CMM internal storage
area.

This header word designates the dynamic area; its location
is known as the dynamic area base address, or daba. A
pointer word in ra+658 contains the complement of
daba. (See Dynamic Area Base Address Pointer.)

The format of the dynamic area trailer is shown in
figure 1-5.

In figure 1-5, bkd is the backward pointer to the last
header in the dynamic area.

59 56 35

r
0

I 61 mused bkd zero

Figure 1-5. Dynamic Area Trailer Format

I 1-4

I

: BLOCKS AND BLOCK GROUPS

A block is a portion of memory within the field length,
identified logically and required to be contiguous for
addressing reasons. CMM is called to obtain blocks whose
position remains fixed. These blocks are of arbitrary size
subject to the maximum field length limitation.

All blocks occupy a position that is determined by CMM.
This position is communicated to the requesting program
via register Xl. There is no provision for any user control
over actual block position. All blocks, once obtained,
remain active until explicitly freed by a CMM call. The
entire contents of a block, involving an integral number of
words and possibly involving block size changes, are
available to the user during the active lifetime of the
block. These contents remain completely unmodified by
CMM. No word of memory in the dynamic area, located
outside of the active block, can be modified by any
program other than CMM when CMM is active.

It is often useful to cluster independently obtained blocks
into logical groups for purposes of being freed. The most
common uses for the freeing capability implemented in
CMM are:

When unloading an overlay or segment, it is usually
necessary to free the dynamic space obtained by the
programs being unloaded.

When recovering after an error in a subsystem such as
CYBER Record Manager, it is useful to be able to
discard {free) all dynamic space obtained by that ·
subsystem.

A particular call to CMM activates a logical block group; a
unique integer identifier for the block group is returned to
the user. This identifier can be used when obtaining a
block, thus specifying to CMM that the obtained block is a
member of the identified group. Another call to CMM
deactivates a logical block group and frees all blocks
belonging to it. A block that belongs to a group can also be
freed on its own. All blocks having the same identifier are
chained together by forward and backward pointers as
illustrated later in this section. A group remains active
even if all blocks belonging to it are individually freed.

The group concept is also used in CMM to solve the
problem which arises from usage of that portion of the
dynamic area below hha. CMM is generally unaware of the
circumstances that cause the static area to change size.
Without information on the lifetime of blocks, CMM cannot
place any fixed-position blocks below hha. Circumstances
exist where this area constitutes the majority of the
available dynamic area, and where the user recognizes the
fact that certain obtained blocks have a lifetime shorter
than the next decrease in the area.

In CMM, the solution to this problem is to establish two
types of groups, called type 0 and type 1. Safe blocks can
only remain safe as members of type 0 groups. (Type 0
groups usually contain only safe blocks.) Any block
allocated as a member of a type 1 group must have a
lifetime shorter than the next increase in the size of the
static area. This is enforced by requiring that no type 1
groups be active when the static area is increased in size.
Type 1 groups contain only unsafe blocks. Blocks allocated
as members of a type 1 group are preferentially (but not
necessarily) allocated below hha. Other fixed-position
blocks are never allocated below hha.

60499200 F

Fixed Block Header Block Group Pointers

Fixed blocks are located in the dynamic area. Although
the size of fixed blocks can change, their location in the
dynamic area remains fixed. Each block has a 1-word or
2-word header of the format shown in figure 1-6.

All fixed blocks that are members of a block group having
a common identifier are chained together by forward and
backward pointers. The chain begins in the group-id entry,
which has the format shown in figure 1-7. Blocks in the I
group are not chained together in any special order. The
fixed-block pointers are in word 1 of the header, which is
present only if the block is a member of a block group.

0

1

60499200 F

59 56 53 47 4443

6 zero SC n unused

25 gid

sc Size code given in three bits:

lxx fwa end can shrink

xlx lwa end can shrink

xxl lwa end can grow

35 17

bkd

gbkd

n Flag bit set to 1 if word 1 is present; the block is then part of a block group.

bkd Backward pointer to the previous region; bkd points to word 0 of the header.

fwd Forward pointer to the next region; fwd points to word O of the header.

gid Value of the group-id.

fwd

gfwd

gbkd Pointer to a previous block having the same group-id; gbkd points to word 1 of the header.

gfwd Pointer to the next block having the same group-id; gfwd points to word 1 of the header.

Figure 1-6. Fixed Block Header

59 58 53 35 17

gid zero gfwd

gt Group type:

0 Unrestricted lifetime

1 Lifetime limited to the next increase in daba

gid Group-id.

gfwd Pointer to the header of the first block in the chain having this group-id.

Figure 1-7. Block Group Pointer

0

11-

I

0

I

I

1-5

FREE SPACE

Free space within the dynamic area is identified by a free
space header. This header has the same format as word 0
of the fixed block header; however, it contains zero in bit
positions 57 through 59. The free space header is shown in
figure 1-8.

59 56 35 17 0

bkd fwd

Figure 1-8. Free Space Header

CMM INTERNAL STORAGE

The area in which CMM maintains a variety of pointers,
flags, subroutines, and stacks is located between the
dynamic area and the upper boundary of the field length as
shown in figure 1-1. The storage area extends downward in
memory from fl-1 to endz, a location which follows the end
of the dynamic area. The upper end of the area contains
pointer words to each block in the lower part of the
storage area. The pointer words contain the actual address
of each block and its length in number of words.

Five types of blocks can be maintained in the internal
storage area. The types are:

1 Bootstrap code

2 Reserved for future use

3 Reserved for future use

4 Identified values

5 Group-id entries

1-6

CONTROL OF CMM

It is important that the division of control between the
user and CMM be understood. CMM is just a service
routine that responds to various user requests; however,
certain restrictions are placed on the user regarding the
use of the dynamic area. The interface between CMM and
the user is carefully defined so as to draw a definite and
discrete line between what the user controls and what
CMM controls.

CMM can be called to obtain an arbitrary number of blocks
having various properties and sizes, subject to maxfl
limitations. Each block occupies a position determined by
CMM and communicated to the user via systematic
convention. There is no provision for any user control over
actual block position. All blocks, once obtained, remain
active until explicitly freed by a CMM call.

During the active lifetime of a block (possibly involving
block size variations), its entire contents, including an
integral number of words, are available to the user. These
contents remain completely unmodified by CMM.

When CMM is active, no word of memory that is in the
dynamic area, but outside of an active block, can be
modified by any program except CMM. For example, all
non-CMM loader requests are aborted while CMM is active.

CMM can be called to change the effective size of the
static area by changing the dynamic area base address
(daba). This is done, for example, when overlays or
segments are loaded. However, since daba must always
remain less than or equal to the highest high address (hha),
all addresses from hha up are always part of the dynamic
area.

CMM manages the total size of the dynamic area in a
completely user-transparent fashion by managing the
current space which falls between the limits of hha and
maxfl. Requests to the operating system for field length
change must not be made by any program other than CMM
when CMM is active.

The user, therefore, has explicit control over the number,
size, lifetime, and contents of all active dynamic blocks,
and also has bounded control over the size of the static
area. The user has no control whatsoever over the position
of any dynamic block, the contents of any portion of the
dynamic area outside of the active blocks, or any· direct
control over the size of the dynamic area.

60499200 F

CMM OPERATION AND USE 2

Common Memory Manager (CMM) is composed of several
relocatable routines. Certain of these routines are
resident whenever CMM is in use. These resident routines
are referenced by all of the CMM functions and perform
such actions as changing field length, managing the
internal tables of CMM, computing the utilization level,
and initializing the dynamic area.

CMM routines can be called from COMPASS or from one of
several other languages such as FORTRAN, COBOL, or
SYMPL. The logical form used by COMPASS is described
first in the following descriptions of the CMM functions.
The FORTRAN form of the call is second. The COMPASS
entry point and register conventions are also included. If
the COMPASS call is not used, the calling language must
follow the FORTRAN calling sequence conventions. All
parameters must be 60-bit integer items aligned on word
boundaries. Additional information on calling CMM from
FORTRAN, SYMPL, and COBOL appears in section 3. Use
of languages other than COMPASS or FORTRAN requires
that the user be aware of how the language assigns arrays
because, in many cases, the interface between the calling
language and CMM is laid out in the form of an array.
(Ref er to Set-Own-Code Error Processing later in this
section for an example.)

Under NOS and NOS/BE, all of the language callable
routines reside in the library SYMLIB. Therefore, the
CYBER loader directive LDSET(LIB=SYMLIB) should be
included in the load sequence of all programs referencing
them. Under SCOPE 2, these routines reside in the library
SYMIO; for SCOPE 2, use LDSET(LIB=SYMIO).

FIXED-POSITION BLOCK CALLS
Calls to CMM are used to allocate fixed-position blocks,
free them when no longer needed, change specifications for
the block, and alter the size of the block by deleting or
adding a specific number of words. Fixed blocks can be
made to shrink at either the first word address (fwa) or last
word address (lwa) end of the block, or to grow at the lwa
end of the block, as illustrated in figure 2-1.

p fwa
I

I
I

'
block-size

Figure 2-1. Fixed Block Adjustments

ALLOCATE OR CREATE
FIXED-POSITION BLOCKS

4
I
I

lwa 1

-·-:
t

This call allocates or creates a fixed-position block of a
size specified in the call. The first word address (fwa) of
the block is returned in register Xl. The initial contents
of the block are undefined.

60499200 E

The logical form of the call is:

allocate-fixed(block-size,size-code,group-id)
returning block-fwa

The FOR TRAN form of the call is:

CALL CMMALF(block-size,size-code,group-id,
block-fwa)

block-size

size-code

group-id

block-fwa

Number of words required for the
block

A 3-bit code indicating the permitted
block size variations: 000 indicates
fixed; a 1 in any position indicates
varying as explained below. Each bit
indicates whether a particular end of
the block can move; the leftmost bit
is used for the first word address end
of the block; the second a.nd third
bits are used for the last word
address end of the block.

lxx fwa end can shrink

xlx l wa end can shrink

xxl lwa end can grow

Zero indicates the block does not
belong to a group; a positive integer
identifies the active block group to
which the block is to be allocated.
The integer must be one of the
group-id values returned previously
by the activate-group call (described
later in this section).

First word address of the allocated
space for this block. CMM positions
each block so that access to eight
words after the lwa of the block is
made possible without causing an
address range error exit.

The fixed block contains exactly block-size words starting
at address block-fwa, returned in register Xl. The only
words in the dynamic area that the user can modify are the
words belonging to the active block; the eight addressable
words at the end of the block are not to be considered as
part of the block and cannot be modified by the user. The
contents of the eight words are considered to be undefined.

If a fixed block has a binary size-code of xxl (indicating
the lwa end of the block is permitted to grow), then no
other fixed block can be allocated while this block remains
active and retains the size-code xxl.

The presence of a fixed block with an extendable lwa end
poses a severe restriction on running programs; use of such
a block must be a matter of deliberate planning. A user
call to the loader, for example, causes such a block to be
used; therefore, no other subsystem that coexists with the
user-called loader can use such a block.

2-1

I

The COMPASS calling conventions are:

Entry point name:

CMM.ALF (entry is effected by return jump)

Entry conditions are shown in table 2-1.

Exit conditions:

Register Xl contains block-fwa
Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, X5

TABLE 2-1. CMM.ALF ENTRY CONDITIONS

Register Bits Contents

X2 59-0 block size

X3 59-29 zero

28-12 group-id

11-9 zero

8-6 size-code

5-0 zero

FLEXIBLE ALLOCATE

This call is similar to the CMM.ALF function, except that
the size of the block to be allocated is specified within a
range. Specification of CMM.F AF allows CMM to make
more efficient use of the free space.

The logical form of the call is:

flexible-allocate-fixed(min-block-size,max-block-size,
size-code, group-id)returning block-fwa and block-size

The FOR TRAN form of the call is:

2-2

CALL CMMF AF(min-block-size,max-block-size,
size-code,group-id,block-fwa,block-size)

min-block­
size

max-block­
size

size-code

Minimum number of words required
for the block.

Maximum number of words required
for the block.

A 3-bit code indicating the permitted
block size variations: 000 indicates
fixed; a 1 in any position indicates

group-id

block-fwa

block-size

varying. Each bit indicates whether
a particular end of the block can
move; the leftmost bit is used for the
first word address end of the block;
the second and third bits are used for
the last word address end of the
block.

lxx fwa end can shrink

xlx lwa end can shrink

xxl lwa end can grow

Zero indicates the block does not
belong to a group; a positive integer
identifies the active block group to
which the block is to be allocated.
The integer must be one of. the
group-id values returned previously
by the activate-group call (described
later in this section).

First word address of the allocated
space for this block. CMM positions
each block so that access to eight
words after the lwa of the block is
made possible without causing an
address range error exit.

Number of words actually allocated
for the block (min-block-size~
block-size S max-block-size).

CMM returns the fwa of the first block it finds that is at I
least as large as min-block-size. At this fwa, CMM
allocates a block with a size as large as possible without
exceeding max-block-size. No attempt is made to find a
larger block, even if the largest possible block at this fwa
is smaller than max-block size.

The first block contains exactly block-size words, returned
in register X2, starting at address block-fwa, returned in
register Xl. The only words in the dynamic area that the
user can modify are the words belonging to the active
block; the eight addressable words at the end of the block
are not to be considered as part of the block and cannot be
modified by the user. The contents of the eight words are
considered to be undefined.

If a fixed block has a binary size-code of xxl (indicating
the lwa end of the block is permitted to grow), then no
other fixed block can be allocated while this block remains
active and retains the size-code xxl.

The presence of a fixed block with an extendable lwa end
poses a severe restriction on running programs; use of such
a block must be a matter of deliberate planning. A user
call to the loader, for example, causes such a block to be
used; therefore, no other subsystem that coexists with the
user-called loader can use such a block.

The COMPASS calling conventions are:

Entry point name:

CMM.F AF (entry is effected by return jump)

60499200F

Entry conditions are shown in table 2-2.

Exit conditions:

Register Xl contains block-fwa
Register X2 contains block-size
Register Bl contains 1

Registers preserved:

AO, XO, B2, 83, XS

TABLE 2-2. CMM.FAF ENTRY CONDITIONS

Register Bits Contents

X2 59-48 zero

47-30 max-block-size (if zero,
min-block is used)

29-18 zero

17-0 min-block-size

X3 59-29 zero

28-12 group-id

11-6 size code

5-0 zero

FREE OR DESTROY FIXED-POSITION BLOCKS

This call destroys the fixed-position block whose current
fwa is block-fwa.. When the block is destroyed, the
contents of the block are no longer accessible to the user.

The logical form of the call is:

free-fixed(block-fwa)

The FORTRAN form of the call is:

CALL CMMFRF(block-fwa)

block-fwa The current first word address of the
block to be affected; fwa is obtained
from Xl of the allocate/create call
return.

The COMPASS calling conventions are:

Entry point name:

CMM.FRF (entry is effected by return jump)

Entry conditions:

Register Xl contains block-fwa

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, XS

60499200 F

SHRINK FIXED-POSITION BLOCKS

Fixed-position blocks can be reduced in size at either the
fwa or lwa end.

Shrink at fwa

A speci fie number of words are deleted from the block at
the fwa end, and the contents of the deleted words are
lost. If zero is given for the number to be deleted, no
change to the block is made.

The logical form of the call is:

shrink-at-fwa-fixed(block-fwa,num)

The FOR TRAN form of the call is:

CALL CMMSFF(block-fwa,num)

block-fwa The current first word address of the
block to be affected; must be the fwa
of an active fixed-position block.

num Number of words to be deleted; must
not be negative and must not be
greater than the current block size.

The current binary size-code of this block must be lxx,
permitting the fwa end of the block to shrink. This call
increases the fwa of the block by num.

The COMPASS calling conventions are:

Entry point name:

CMM.SFF (entry is effected by return jump)

Entry conditions:

Register Xl contains block-fwa
Register X2 contains num

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, B2, B3, XS

Shrink at lwa

A speci fie number of words are deleted from the block at
the lwa end, and the contents of the deleted words are
lost. If the number of words to be deleted is zero, no
change to the block is made.

The logical form of the call is:

shrink-at-lwa-fixed(block-fwa,num)

2-3 I

The FORTRAN form of the call is:

CALL CMMSLF(block-fwa,num)

block-fwa

num

Current fwa of the block to be
affected; must be the fwa of an
active fixed-position block.

Number of words to be deleted; must
not be negative and must not be
greater than the current block size.

The current binary size-code of this block must be xlx,
permitting the lwa end of the block to shrink.

The COMPASS calling conventions are:

Entry point name:

CMM.SLF (entry is effected by return jump)

Entry conditions:

Register Xl contains block-fwa
Register X2 contains num

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, B2, B3, X5

GROW FIXED-POSITION BLOCKS

Fixed-position blocks can be extended at the last word
address end. A specified number of words are added to the
block at the lwa end; the contents of the added words
initially are undefined.

The logical form of the call is:

grow-at-lwa-fixed(block-fwa,num)

The FOR TRAN form of the call is:

CALL CMMGLF(block-fwa,num)

block-fwa

num

Current fwa of the block to be
affected; must be the fwa of an
active fixed-position block.

Number of words to be added at the
lwa end of block; if the number is
zero, no change to the block is
made. The value of num must be
positive.

The current binary size-code of the fixed block must be
xxl.

The COMPASS calling conventions are:

Entry point name:

CMM.GLF (entry is effected by return jump)

1 2-4

Entry conditions:

Register Xl contains block-fwa
Register X2 contains num

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, B2, 83, X5

CHANGE FIXED-POSITION
BLOCK SPEOFICATIONS

This call permits the current size-code of a fixed-position
block to be changed. The allowable fixed block size codes
are discussed under the Allocate or Create Fixed-Position
Block call earlier in this section.

The logical form of the call is:

change-specs-fixed(block-fwa,new-size-code)

The FOR TRAN form of the call is:

CALL CMMCSF(block-fwa,new-size-code)

block-fwa

new-size­
code

The current first word address of the
block to be affected; must be the fwa
of an active fixed-position block.

The new binary size-code to be
applied.

Unless the code is already xxl, the
code must be xxO or -1; end growth
at lwa cannot be added to a block by
this call. If the new-size-code is not
specified as -1, the current size-code
of the block is replaced with
new-size-code.

The COMPASS calling conventions are:

Entry point name:

CMM.CSF (entry is effected by return jump)

Entry conditions:

Register Xl contains block-fwa
Register X2 contains new-size-code

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, 82, B3, X5

60499200 F

SAVE IDENTIFIED VALUE

A call to this subroutine causes an arbitrary 30-bit value to
be associated with a unique-id specified by CMM, or a user,
so as to be accessible via the get-block-address function.

The logical form of the call is:

save-identified-value(value,id)optionally
returning unique-id

The FORTRAN form of the call is:

CALL CMMSIV(value,id,unique-id)

value Any 30-bit value.

id Zero indicates that CMM is to supply
a unique-id. A positive even integer
less than 216 is a user-defined
unique identifyin~ code. The even
values from 21 to zl 7 -2 inclu­
sive are reserved for CDC.

unique-id A CMM-defined unique identifying
code for the block that is a positive
odd integer less than zl 7.

The COMPASS calling conventions are:

Entry point name:

CMM.SIV (entry is effected by return jump)

Entry conditions are shown in table 2-3.

Exit conditions:

Register Xl contains odd unique-id if id parameter is
given as zero; otherwise, the content of register Xl is
undefined

Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, XS

TABLE 2-3. CMM.SIV ENTRY CONDITIONS

Register Bits Contents

X2 59-30 Zero

29-0 Value to be saved

X3 59-18 Zero

17-0 Positive, even, nonzero,
unique identifying code; or
zero if CMM is to supply
unique-id

60499200 F

GET BLOCK ADDRESS

This subroutine makes available to the caller the first word
address and current size of a block whose unique identifier
is supplied in the call.

The logical form of the call is:

get-block-fwa (unique-id)returning block-fwa
and block-size

The FOR TRAN form of the call is:

CALL CMMFWA(unique-id,block-fwa,block-size)

unique-id A positive integer less than zl 7
saved as unique-id by CMM.SIV.

block-fwa The 30-bit value saved by CMM.SIV.

block-size The current length, in number of
words, of the identified block.

Provided that the block-fwa has been passed as the 30-bit
value in a CMM.SIV call, it is possible to recover the fwa
of a fixed block across overlay loads through use of this
call.

The COMPASS calling conventions are:

Entry point name:

CMM.FWA (entry is effected by return jump)

Entry conditions:

Register X2 contains unique-id

Exit conditions are shown in table 2-4.

Registers preserved:

AO, XO, 82, 83, XS

TABLE 2-4. CMM.FWA EXIT CONDITIONS

Register Bi ts Contents

Xl 59-30 block size

29-0 block-fwa

Bl 17-0 1

OVERLAYS, SEGMENTS, AND THE
STATIC/DYNAMIC AREA BOUNDARY
In general, CMM controls the size of the dynamic area.
CMM determines the initial extent of the dynamic area
without the need for an initializing call. Initially, the
loader sets daba equal to minfl, obtains maxfl from the
operating system, and, during program execution, manages
the job field length in a manner compatible with good
system throughput. CMM must, however, be informed of
changes in daba and/or hha.

2-5 I

The loading of overlays and segments is the usual cause of
changes in daba. In programs using CMM, overlays must be
loaded with either I) the LOADREQ macro specifying the
CMM-present parameter, or 2) a call to CMM.LOV if the
overlay being loaded is a higher level overlay whose (O,O)
overlay contains an FOL (Fast Overlay Loading) directory.
CMM.LOV and Fast Overlay Loading are not available
under the SCOPE 2 operating system. The LOAOREQ
macro generates a call to the load-overlay entry point
described below. Use of either of these methods keeps
CMM informed of the consequential changes in daba.

In addition to the load-overlay entry point, a more direct
call, set-daba, is provided. This call is used to either
remove some portion of the dynamic area from CMM
control, or to add some now-unused portion of the static
area to the dynamic area. One use might be to unload, in a
sense, an overlay or part of an overlay. The segment
loader resident uses this set-daba call to inform CMM of
segment loads.

The loader computes hha when doing basic loading, overlay
generation, or segment generation. The value hha remains
constant under ordinary circumstances, but can change
when extended overlay loading is done. The changing value
of hha presents a particular problem· for CMM because
fixed-position blocks can only be safely positioned starting
at hha and running upwards.

CMM provides a set-hha entry for the purpose of
accommodating extended overlay loading; however, certain
restrictions apply. First, hha can be lowered anytime, but
it can only be raised when there are no active
fixed-position blocks. Second, hha must al ways. be larger
than the last word address of any overlay loaded via the
load-overlay entry. Thus, hha must be raised, if necessary,
before doing extended overlay loading.

In some circumstances, it is desirable to switch from a
CMM environment to a non-CMM environment. A
deactivate-cmm entry point is provided for this purpose.
CMM preserves its memory of the state of the dynamic
area and its control over this area across any sequence of
overlay or segmentation loads, even across loads of new
(O,O) overlays; therefore, the use of this entry point is the
only way for the user to remove the restrictions implied by
this control.

LOAD OVERLAY

A call to this subroutine initiates the loading of an overlay
according to information contained in a parameter area,
the address of which is given in the call.

The logical form of the call is:

load-overlay(paddr)

paddr The address of the parameter area.
The parameter area is the same as
that used by the LOADREQ macro
when the CMM parameter is absent,
and is described in the CYBER
Loader reference manual and in the
SCOPE 2 Loader reference manual.

The FOR TRAN form of the call is:

I 2-6

CALL CMMLDV(name,11,12,n,u, v ,e,l wa,fwa,ovlname,
eptname,ne, fe,status,eptaddr)

These parameters are described in the CYBER Loader
Reference Manual, section 6, and in the SCOPE 2
Loader Reference Manual, section 4.

CMM assures that the contents of all active blocks are
unaffected by the loading operation. Following overlay
loading, daba is reset just past the loaded overlay, which is
minfl from the loaded overlay plus a delta value. Delta is
zero if there is no parameter area fwa; otherwise, it is the
parameter area fwa value minus the fwa from the overlay.
In addition, if a (O,O) main overlay is loaded, then hha is
reset to the value from the loaded overlay. At the time of
this call, hha must be greater than or equal to lwa+l of the
overlay loaded. If the lwa field in the parameter area is
set to a value greater than hha, CMM sets it equal to hha.
Control returns to the user following the completion of
overlay loading. The setting of the e bit in the second
parameter word is honored; if set, control is transferred to
the loaded overlay rather than to the caller. Also, the
restriction of the lwa parameter is honored in that an error
results if the overlay does not fit in the allotted space.

The entire procedure followed by this subroutine is to set
daba up to hha, load the overlay, then reset daba back to
the new minfl because the new value is not known until
after the overlay is loaded. Only type 54 table overlays
can be loaded by this call. Binary overlays formed before
the implementation of type 54 tables cannot be loaded; if
attempted, an error message is produced. Upon call
completion, information is returned in the parameter area.

The COMPASS calling conventions are:

Entry point name:

CMM.LOV (entry is effected by return jump)

Entry conditions:

Register Xl contains the parameter area address, paddr

Exit conditions:

The parameter area is set with the specified returns

Registers preserved:

AO, XO, X2, X3, X4, X5, X7, Bl through 87

LOAD OVERLAY VIA FOL

A call to this subroutine indicates the loading of a higher
level overlay created to be loaded by the Fast Overlay
Loading feature. For more information on this feature, see
the CYBER Loader reference manual. Fast Overlay
Loading is not available under SCOPE 2.

The logical form of this call is:

load-overlay(ident)returning fwa and epadr

The FORTRAN form of the call is:

CALL CMMLOV(ident,fwa,epadr)

ident The overlay name and/ or level

fwa FWA of 54 table of overlay

epadr Entry point address of overlay

60499200 F

CMM assures that the contents of all active blocks are
unaffected by the loading operation. Daba is reset just
past the loaded overlay. There is no automatic transfer
capability to the overlay when using CMM.LOV. Only
higher-level (non(O,O)) overlays can be loaded using
CMM.LOV.

The COMPASS calling conventions are:

Entry point name:

CMM.LOV(entry is effected by return jump)

Entry conditions are shown in table 2-5.

Exit conditions are shown in table 2-6.

Registers preserved:

AO, XO, 82, B3, X5

TABLE ~-5. CMM.LOV ENTRY CONDITIONS

Register Bits Contents

Xl 59-18 Overlay name

17-12 Zero

11-6 Primary over l ay level

5-0 Secondary overlay level
(the level fields are
used if and only if the
overlay name field is zero;
otherwise, the load is by
over 1 ay name)

TABLE 2-6. CMM.LOV EXIT CONDITIONS

Register Bits Contents

Bl 17-0 1

B6 17-0 fwa(less than zero if an
error occurred; see CYBER
Loader reference manual for
exact values)

B7 17-0 epadr(less than zero if an
error occurred)

RESPECIFY THE DYNAMIC AREA

This function permits an explicit respecification of daba,
which can be either an increase or decrease.

The logical form of the call is:

set-daba(new-daba)

60499200 F

The FOR TRAN form of the call is:

CALL CMMSDA(new-daba)

new-daba The new dynamic area base address,
which must be less than or equal to
the current value of hha. If the
new-daba is greater than the value of
daba at the time of -the call, no
type 1 block group can be active.

The current value of daba is set to new-daba. (Refer to
the low-memory communication words that contain daba
information, discussed later in this section.) CMM assures
that the contents of all active blocks are unaffected.

The COMPASS calling conventions are:

Entry point name:

CMM.SDA (entry is effected by return jump)

Entry conditions:

Register Xl contains new-daba

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, X5

RESPECIFY THE HIGHEST HIGH ADDRESS

A call to this function provides for extended overlay
loading; however, the call can be useful for purposes other
than overlay loading. For example, if a program enters a
phase wherein it is known that the longest overlay will
never be loaded again, hha can be lowered to give CMM
more space for fixed-position blocks.

The logical form of the call is:

set-hha(new-hha)

The FORTRAN form of the call is:

CALL CMMSHA(new-hha)

new-hha The new highest high address; must
be greater than or equal to the
current value of daba. If greater
than the current value of hha, there
can be no active fixed-position blocks.

The COMPASS calling conventions are:

Entry point name:

CMM.SHA (entry is effected by return jump)

Entry conditions:

Register Xl contains new-hha

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, XS

DEACTIVATE CMM

This call forces CMM to become inactive and to cease
exercising any control over the dynamic area. From this
point on, none of the programming restrictions imposed by
CMM apply; the job continues as if CMM were not present.
If CYBER Record Manager (CRM) is being used, a call to
CMM.KIL can cause various aborts. CMM.KIL should be
used with caution. Any legal first calls to CMM (listed at
the end of this section) cause CMM to be reinitialized.

The logical form of the call is:

deacti vate-cmm.

The FORTRAN form of the call is:

CALL CMMKIL

This call does not cause any of the content of the active
blocks to change; thus, the user can continue to reference
any blocks that were active at the time of this call.
However, management of the contents and size of the
dynamic area becomes the user's responsibility.

The COMPASS calling conventions are:

Entry point name:

CMM.KIL (entry is effected by return jump)

Entry conditions:

None

Exit conditions:

Register Bl contains l

Registers preserved:

AO, XO, 82, B3, XS

BLOCK GROUP CALLS

Blocks are grouped by chaining them together, beginning
with a 1-word entry in the group-id table. (The format of
this entry is given in section 1.) Fixed block chain pointers
are in word 1 of the block header, which is present only if
the block is a member of a group.

Actions related to block groups enable the user to activate
a new group and to release a block group from the chain.

I 2-s

ACTIVATE A BLOCK GROUP

A new logical block group is activated and a unique group
identification is created by CMM through this entry point.
The group remains active llltil a call is made to free it.
During the period in which a block group is active, blocks
can be allocated as members of the group. Blocks that are
allocated as members of a type 1 group must have a
lifetime shorter than the next increase in tbe size of the
static area, and are preferentially allocated below hha.
Two things cause an increase in the size of the static area:
a set-daba call, which sets a larger daba than currently
exists; and a load-overlay call issued when daba is less than
hha.

The logical form of the call is:

acti vate-group(group-type),returning group-id

The FOR TRAN form of the call is:

CALL CMMAGR(group-type,group-id)

group-type A 1-bit code that defines the type of
the activated group:

0 Unrestricted lifetime

1 Lifetime limited to the next
increase in daba

group-id An integer that uniquely identifies a
group of blocks.

The COMPASS calling conventions are:

Entry point name:

CMM.AGR (entry is effected by return jump)

Entry conditions:

Register XI contains group-type

Exit conditions:

Register X2 contains group-id
Register Bl contains l

Registers preserved:

AO, XO, 82, 83, X5

FREE A BLOCK GROUP

AH blocks allocated as members of an identified group are
freed by this call, and the group is deactivated.

The logical form of the call is:

free-group(group-id)

The FOR TRAN form of the call is:

CALL CMMFGR(group-id)

group-id An integer that uniquely identifies a
group of blocks to CMM. The group
must be active.

60499200 F

The COMPASS calling conventions are:

Entry point name:

CMM.FGR (entry is effected by return jump)

Entry conditions:

Register Xl contains group-id

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, 92, 83, XS

INFORMATION CALLS

There are several calls available for obtaining useful
information from CMM, ranging from the properties of a
particular block to the overall picture of the state of the
dynamic area. ·

CMM uses a number of words of the dynamic area for its
own purposes in managing the dynamic area. These
overhead words, while comprising a reasonably small
percentage of the dynamic area under normal
circumstances, are present in an amount that is a function
of the number and characteristics of the active blocks.
Furthermore, the number of words is in no way an external
specification of CMM, and cannot remain stable between
versions of CMM. These facts must be kept in mind when
interpreting some of the information returned by the calls.

GET BLOCK INFORMATION

A call to this entry point obtains the current size-code,
group-id, group-type, and the current block-size of a
selected block.

The logical form of the call is:

get-block-info(block-fwa)returning size-code,
group-type, group-id, block-size.

The FORTRAN form of the call is:

CALL CMMGBI(block-fwa,si ze-code,group-type,
group-id, block-size)

block-fwa The first word address of the block
for which current information is
desired.

Ref er to the activate-group call for definition of
group-type and group-id, and to the allocate-fixed call for
definition of size-code and block-size.

The COMPASS calling conventions are:

Entry point name:

CMM.G81 (entry is effected by return jump)

60499200 F

Entry conditions:

Register Xl contains block-fwa

Exit conditions are shown in table 2-7.

Registers preserved:

AO, XO, 82, 83, XS

TABLE 2-7. CMM.GBI EXIT CONDITIONS

Register Bits Contents

X2 59-18 zero

17-0 block-size

X3 59-30 zero

29 group-type

28-12 group-id

11-6 size-code

5-0 reserved for future use

X4 59-36 zero

35-0 reserved for future use

Bl 17-0 one

GET MAXIMUM AVAILABLE
FIXED BLOCK SIZE

The dynamic area is examined and the size of the largest
fixed-position block that can be allocated at the moment is
returned. Nothing is actually allocated by this call; the
value returned is valid only until the next call to any CMM
entry point except this one or get-block-address.

Note that if a block is allocated with the same size as is I
returned by this function, the user must take care that free
space is available before trying to allocate additional
blocks. Attempts to allocate additional blocks are made
not only by the user program, but also by overlay loads,
capsule loads, and so forth.

The logical form of the call is:

get-fixed-size(fl ,gt)returni ng size

The FOR TRAN form of the call is:

CALL CMMGFS(fl,gt,size)

fl Field length flag:

0= Size returned assumes that no fl
increase is allowed

l= Size returned would cause fl to
equal maxfl

2-9

gt

size

Group type flag:

0= Size returned is that of a group
type 0 block, which cannot extend
below hha

l= Size returned is that of a group
type 1 block, which can extend below
hha

A value indicating the largest fixed
block that can be allocated under the
conditions specified by the fl and gt
flag parameters in this call.

The COMPASS calling conventions are:

Entry point name:

CMM.GFS (entry is effected by return jump)

Entry conditions:

Register Xl contains fl
Register X2 contains gt

Exit conditions:

Register X6 contains size
Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, X5

GET STATISTICS FOR
OVERFLOW RECOVERY

Throug, use of this call, information is returned to a
designated area.

The logical form of the call is:

get-overflow-statistics, returning return-area

The FORTRAN form of the call is:

CALL CMMGOS(return-area)

return-area Address of fixed-size area into which
the returned information is placed by
CMM.

Statistics concerning the current state of the dynamic area
are collected and placed into the return area. The
statistics returned are placed as shown in figure 2-2. Note
that all values returned are integers except the current
utilization level (word 4) which is a floating-point number;
in FORTRAN word 4 is type REAL, in COBOL word 4 is a
COMP-2 item.

The COMPASS calling conventions are:

Entry point name:

CMM.GOS (entry is effected by return jump)

I 2-10

Entry conditions:

None

Exit conditions:

Register Xl contains the fwa of the return area
Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, X5

GET STATISTICS FOR JOB SUMMARY

A set of statistics concerning the overall history of the
dynamic area is collected and placed into a designated
return area. The statistics provide information appropriate
to printing job step summaries.

The logical form of the call is:

get-summary-statistics,returning return-area

The FOR TRAN form of the call is:

CALL CMMGSS(return-area)

return-area Address of a fixed-size area into
which l"he information is returned by
CMM.

Although the returned information is of use at the end of a
job step, it is also useful for measuring CMM performance.
This entry point can be called anytime such statistical
information is needed.

The COMPASS calling conventions are:

Entry point name:

CMM.GSS (entry is effected by return jump)

Entry conditions:

None

Exit conditions:

Register Xl contains the fwa of an area containing the
following information:

0 Maximum number of allocated words
1 Maximum field length attained
2 Reserved for future use
3 Number of field length increases
4 Number of field length decreases
5 Reserved for future use

Register Bl contains 1

Registers preserved:

AO, XO, 82, 83, X5

60499200 F

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

59 0

Value of daba

Value of hha

Value of field length

Value of maxfl

Current utilization level t

Reserved for CDC usage

Maximum available fixed block size

Reserved for CDC usage

Reserved for CDC usage

Number of fixed-position blocks

Reserved for CDC usage

Number of allocated fixed-position words tt

Reserved for CDC usage

Number of free areas

Number of free words

t The current utilization level is the fraction of the memory between daba and maxfl that is currently in
use for allocated blocks or CMM tables.

ttNumber includes CMM overhead words associated with fixed blocks.

Figure 2-2. Dynamic Area Statistics

60499200 F

fwa of
return
area

2-11

I

I

I

EFFICIENCY-INCREASING CALLS
Calls to the efficiency-increasing entries of CMM do not
affect the actual external behavior of CMM. If properly
used, these calls improve the time-performance of CMM; if
improperly used, they degrade it.

OPTIMIZATION FUNCTIONS

Three separate optimization functions are available. Two
of them are related to the stopping and starting of a
no-readjustment period intended to help CMM save
overhead processing needed for the reduction of the field
length. The third informs CMM of an impending period of
CMM inactivity so that the dynamic area and field length
can be reduced to a minimum value.

The only logical form of the call is a return jump to one of
the three CMM entry points; there are no entry conditions.

The FORTRAN form of the call is:

CALL CMMOPn

The COMPASS calling conventions are:

Entry point name (entry is effected by return jump):

CMM.OPl
CMM.OP2
CMM.OP4

Entry conditions:

None

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, B2, 83, X5

CMM.OPl Function

This function signals the beginning of a no-readjustment
period. The call informs CMM that the user intends to give
several consecutive calls that free-up space; these calls
might be followed immediately by requests for space.
Following notification by this call, CMM ceases most of its
normal activity of readjusting the current field length.

59 47 35

me ue

CMM.OP2 Function

This function signals the end of a no-readjustment period.
It informs CMM that the sequence of freeing requests is
now over and that CMM is to resume its normal activity.

CMM.OP4 Function

This function causes CMM to compact the dynamic area.
CMM is informed that the user intends to begin a long
period of no CMM activity. CMM responds by compacting
the dynamic area, which reduces the field length to
eliminate any free space beyond the end of the highest
fixed block.

SET-OWN-CODE ERROR PROCESSING

A call to this function sets CMM in a mode of operation
that causes control to pass to a user-supplied routine only
at a time when an abort would otherwise occur. The abort
that could otherwise occur for the default utilization level
being exceeded does not occur.

The logical form of the call is:

set-own-code(addr)

The FOR TRAN form of the call is:

CALL CMMOWN(addr)

addr Address of the user error exit.

When an error is encountered, transfer of control to the
specified address takes place with register Bl set to 1 and
register Xl set as shown in figure 2-3. Transfer is
performed through an unconditional jump rather than a
return jump.

Whenever an error exit occurs in this mode, CMM restores
itself to normal error processing mode. A subsequent error
results in an abort unless another call to this function has
been made prior to the subsequent error occurrence.

If the FOR TRAN call is used, addr must be the name of an
error exit routine which will be called on a CMM error.
This routine must have one formal parameter in the form
of an integer array with three elements. The first word
will receive me, the second word ue, and the third
calladr; me, ue, and calladr are defined in figure 2-3.

17 0

zero calladr

me Memory error number if a memory error occurs; otherwise, zero. (See figure B-1.)

ue User error number if a user error caused the abort; otherwise, zero. (See table B-1.)

calladr Address+! from where CMM was called.

Figure 2-3. Register X1 Contents

I 2-12 60499200 F

I

The COMPASS calling conventions are:

Entry point name:

CMM.OWN (entry is effected by return jump)

Entry conditions:

Register Xl contains the address of the u,ser error exit

Exit conditions:

Register Bl contains 1

Registers preserved:

AO, XO, B2, B3, X5

LOW MEMORY
COMMUNICATION WORDS
Two words in low memory are used to communicate
information between CMM and the loader and the job step
advancer.

Bits 0 through 17 of word 659 are initially set to minfl by
the loader or by the job step advancer when performing the
first part of the initial load. When CMM first becomes
active, it takes this value as the initial daba, then
complements it to produce a -daba, which indicates the
active state of CMM. CMM is defined to be active from
the point during a job step at which it is first called, until
either the termination of the job step or a call to the
deactivate-cmm entry point. The value of daba remains
negative as long as CMM is active, during which time these
bits cannot be changed by any other program. If daba is to
be altered, the set-daba function must be used. User
programs utilizing CMM cannot modify these bits once
CMM becomes active, and must also take care with any
modifications that occur before CMM becomes active.

Bits 0 through 17 of word 1049 contain hha which is
initially set upon completion of a relocatable loa'd, or when
the main (O,O) overlay or a root segment is loaded. This
value must not be subsequently changed by any user.

The CMM interface routine CMMACT can be called via
CALL CMMACT(ind) to determine if CMM is active.
CMMACT tests ra+659; if CMM is active, ind is set to 1
on return, if CMM is not active, ind is set to O.

CMM USE
When CMM is assembled for use in a version of an
operating system, it is tailor-made to the requirements of
the installation. To this end, a set of assembly options are
provided, which reside in the Update common deck called
CMMCOM. The options are called by most of the modules
of CMM during assembly.

60499200 F

CMM SELECTION

There are two versions of CMM: a version that does no
error checking, known as the fast version, and a ·version
with error checking, known as the error-checking version.
Both versions have identical external specifications. By
use of an assembly option, one version is designated as the
default version and all calls to CMM functions result in the
use of the default version. To select the other version, a
single LIBLOAD control statement in the load sequence for
the job step is used. This method of selection can be used
on normal relocatable loads only.

If the fast version is the default, but the error-checking
version is desired, use:

LIBLOAD(SYSLIB,CMMSAFE)

If the error-checking version is the default, but the fast
version is desired, use:

LIBLOAD(SYSLIB,CMMF AST)

LEGAL FIRST CALLS

The following functions are legal first calls to CMM. Use
of any other functions produces an error message.

CMM.AGR activate-group

CMM.ALF allocate-fixed

CMM.FAF flexible-allocate-fixed

FMM.FWA get-block-fwa

CMM.GOS get-overflow-statistics

CMM.GSS get-summary-statistics

CMM.KIL deacti vate-CMM

CMM.LDV load-overlay

CMM.LOV load overlay via FOL

CMM.OPl optimization-I

CMM.OP2 optimization-2

CMM.OP4 optimization-4

CMM.OWN set-own-code-error-processing

CMM.SDA set-dab a

CMM.SHA set-hha

CMM.SIV save-identified-value

2-13

CMM INTERFACE TO COMPILERS 3

Common Memory Manager (CMM) routines can be called
from one of several computer languages other than
COMPASS. In using such an interface, the calling language
must use the FOR TRAN calling sequence conventions given
in section 2. All parameters must be 60-bit integer items
aligned on word boundaries. Use of languages other than
COMP ASS or FOR TRAN requires that the user be aware of
how the language assigns arrays.

Under NOS and NOS/BE, all of the language callable
routines reside in the library SYMLIB; therefore, the
CYBER loader directive LDSET(LIB=SYMLIB) should be
included in the load sequence of all programs referring to
these routines. Under SCOPE 2, these routines reside in
SYMIO; the SCOPE 2 loader directive LDSET(LIB=SYMIO)
should be used.

FORTRAN VERSION 5 INTERFACE
TO CMM

In FORTRAN 5 programs, CMM always manages field
length except when the STA TIC option is specified in the
FTN5 control statement. (See the FORTRAN 5 reference
manual for a description of the ST A TIC option.) If the
STA TIC option is not specified, CMM ensures that the field
length is increased or decreased properly to accommodate
assigned blocks.

The FOR TRAN 5 user can use CMM to assign blocks of
memory for arrays. This assignment is completely
dynamic, and the blocks should be freed when the program
is finished with them.

The examples in figures 3-1 and 3-2 illustrate the use of
CMM in FORTRAN programs. In both examples, CMMALF
is called to allocate a fixed-position block with a length of
10 words, the value 1.0 is stored in the fifth word of the
block, and the block is freed by calling CMMFRF.

In figure 3-1, the main program is used for allocating and
freeing the block, and the subroutine is used to manipulate
data within the block. The main program calculates an
offset IOFF by subtracting the location of CMMAR(l) from
IFWA. The first word of the block is given by
CMMAR(IOFF +l), which is passed to the subroutine.
Within the subroutine, the first element of array CMMBLK
is the first word of the block. Words in the block are
referenced as elements of the array, with no complicated
subscript calculations necessary. For programs that
manipulate matrices or other multi-dimensional arrays,
CMMBLK can be defined as a multi-dimensional array.

In figure 3-2, both the CMM calls and the data
manipulations are contained in the main program. This
method is somewhat more prone to errors than the method
shown in figure 3-1, because the offset must be included
each time a word in the block is referenced, and because
use of a one-dimensional array is necessary.

Note that in these examples, the arrays are of type real.
For integer arrays, the same executable statements can be
used. For double-precision arrays, the program must allow
for each array element being two words long. For
character data, the program must allow for the length of

60499200 F

each element and for the fact that the address of the array
must be masked off of the result returned by LOCF.

Refer to section 2 for descriptions of the CMM routines
and their calling sequences.

All CMM interface routines for NOS and NOS/BE are in the
library SYMLIB. For any FORTRAN run using the CMM
interface routines, the statement LDSET(LIB=SYMLIB)
must be included in the loader directives or the statement
CALL SYMLIB must be included in the FORTRAN
program. SCOPE 2 users must specify SYMIO instead of
SYMLIB.

PROGRAM CMM2
DIMENSION CMMARC1)
CALL SYMLIB
!LEN = 10
CALL CMMALFCILEN,0,0,IFWA)
!OFF = IFWA-LOCFCCMMARC1))
CALL TWIDDLE(CMMARCIOFF+1),ILEN)
CALL CMMFRFCIFWA)
END

SUBROUTINE TWIDDLECCMMBLK,ILEN)
DIMENSION CMMBLKCILEN)

CMMBLKCS)

RETURN
END

1. 0

Figure 3-1. FORTRAN/CMM Example Referencing the
Block as an Array

PROGRAM CMM1
DIMENSION CMMARC1)
CALL SYMLIB
!LEN = 10
CALL CMMALF(ILEN,0,0,IFWA)
!OFF = IFWA-LOCFCCMMAR(1))

CMMAR CIOFF+S) 1. 0

CALL CMMFRFCIFWA)
END

Figure 3-2. FORTRAN/CMM Example Referencing
With an Offset

3-1 •

I

I

SYMPL INTERFACE TO CMM
In processing CMM blocks with SYMPL, the basic rule is
that the block should always be a based array. In order to
allocate the block, code similar to that shown in figure 3-3
should be used.

BASED ARRAY ABC (0:30) S(1);
ITEM ABCITEM 1(0,0,60);

XREF PROC CMMALF I;
XREF PROC CMMFRF I;

CMMALF(30, 0, 0, P<ABC>); #ALLOCATE BLOCK #

ABCITEM (3) = 33; #REFERENCE AN ITEM IN BLOCK#

CMMFRF(P<ABC>); # FREE THE BLOCK< #

Figure 3-3. SYMPL/CMM Interface Example

All other calls are self-explanatory. Wherever block-fwa is
used, the P function of the array should be used. Sending

I parameters can be constants, as shown in figure 3-3. The
return-area parameter in CMMGOS and CMMGSS (refer to
section 2) should be the name of an array of integer items
(except the fifth item in CMMGOS, which is real). The
address of the user error exit (addr) for CMMOWN can be
the name of a procedure (PROC) with one formal
parameter that is an array of 3 integer words.

COBOL VERSION 5 INTERFACE
TO CMM

I
COBOL programs execute CMM routines by using the
ENTER statement. The subprogram name and parameters
used in the ENTER statement are the same as those used in
the FORTRAN call. To interface with COBOL, all
parameters used in the ENTER statements should be
described as COMP-1 items. In order to allocate a block,

I the COBOL statements shown in figure 3-4 should be used.

Note that the block size is in words, not characters. All of
the size parameters in the CMM calls are in words. Some
other rules are:

3-2

None of the parameters can be constants.

The routines CMMSDA, CMMSHA, and CMMKIL
should not be called since they can cause interference
with normal COBOL processing.

The return-area parameter in CMMGOS and CMMGSS
(ref er to section 2) should be group items with
subordinate COMP-I items (except for the fifth one in
CMMGOS, which should be COMP-2). There should .be
one item for each expected return.

DATA DIVISION

01 BLOCK-SIZE PIC 99 COMP-1 VALUE 50.
01 ZERO-PARAM PIC 9 COMP-1 VALUE 0.
01 BLOCK-FWA PIC 9(6) COMP-1.
PROCEDURE DIVISION

ENTER "CMMALF" USING BLOCK-SIZE, ZERO­
PARAM, ZERO-PARAM, BLOCK-FWA.

ENTER "CMMFRF" USING BLOCK-FWA.

Figure 3-4. COBOL/CMM Interface Example

CMMOWN cannot be called from COBOL since there
is no way to pass COBOL the address of the program;
if CMMOWN is called from COMPASS, the name
should be that of a COBOL subroutine with one
parameter that is a group item with 3 subordinate
COMP-1 items.

COBOL provides the program C.CMMMV to move data in
and out of CMM blocks. C.CMMMV can perform the
following actions:

Move data from a fixed-position block to the Data
Division.

Move data from the Data Division to a fixed-position
block.

Move data from one fixed-position block to another
fixed-position block.

The following statement enters C.CMMMV:

ENTER "C.CMMMV" USING send-lac, rev-lac, num

send-lac

rev-lac

num

A data name specifying the sending
location from which the data is
moved. If send-lac is a COMP-1
item, it contains the address of the
sending item (usually a fixed-position
block). If send-lac is not a COMP-1
item, it contains the data being sent.

A data name specifying the receiving
location to which the data is moved.
If rcv-loc is a COMP-1 item, it
contains the address of the receiving
item (usually a fixed-position block).
If rcv-loc is not a COMP-1 item, it
receives the data directly.

An optional data name specifying
either the number of characters to be
moved or the beginning of an area
within the fixed-position block. In
both cases, the default for num is 1.

When both send-lac and rcv-loc are
COMP-1 items (that is block-fwa's),
num is the number of characters to

60499200 F

be moved. When either send-lac or
rcv-loc is not COMP-1, num acts as a
subscript into the fixed-position
block. The block is divided into areas
that are the size of the non-COMP-!
item; num identifies which area
within the block from or to which
data is to be moved. The first area is
numbered 1.

Figure 3-5 shows a COBOL program that illustrates the use
of CMM with COBOL In the program, a 50-word
fixed-position block is allocated; the block is filled with 10
words of A's, 10 words of spaces, 10 words of C's, 10 words
of spaces, and 10 words of E's, in that order. Next, a
second, 100-word fixed-position block is allocated and the
contents of the first block are moved to the last half of the
second block. The last half of the second block is then
moved back to the interface area where it is tested to see
if it contains the original data (10 words of A's, 10 words of
spaces, 10 words of C's, 10 words of spaces, and 10 words

60499200 F

of E's). Finally, statistics concerning the dynamic area are
printed, both blocks are freed, and statistics concerning
the dynamic area are printed again.

In the figure, notice the following points about C.CMMMV:

In line 100, when data is moved from
INTERFACE-AREA to the first block, the num
parameter indicates into which 10 words of the block
the data is moved. The size of INTERFACE-AREA
determines how many words are moved.

In line 76, when data is moved from the first block to
the second block, the num parameter indicates how
many characters are moved.

In line 79, when data is moved from the second block
to !NP-AREA, the num parameter has the default
value of l; the first 50 words beginning at the address
given by TEMP are moved. The size of !NP-AREA
determines how many words are moved.

3-3 •

• 3-4

COBOL Program:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

*

*

*
*

*

*

IDENTIFICATION DIVISION.
PROGRAM-ID. CMMIF.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 BLOCK-FWA
01 BLOCK2-FWA
01 BLOCK-SIZE
01 CMM-INDEX
01 GROUP-ID
01 !NP-AREA
01 R-OFFSET
01 TEMP
01 ZERO-PARAM
01 CHECK-AREA.

02 FILLER
02 FILLER
02 FILLER
02 FILLER
02 FILLER

01 GOS-AREA.
02 DABA
02 HHA
02 FL
02 MAXFL
02 UL
02 FILLER
02 MAX-SIZE
02 FILLER
02 FILLER
02 FPBLK
02 FILLER
02 ALLW
02 FILLER
02 FRAR
02 FWDS

01 INTERFACE-AREA.
02 IF-DATA

PROCEDURE DIVISION.
STARTT.

PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(5) COMP-1.
PIC 9(6) COMP-1.
PIC XC500).
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1 VALUE o.

PIC XC100) VALUE ALL "A".
PIC XC100) VALUE SPACES.
PIC XC100) VALUE ALL "C".
PIC XC100) VALUE SPACES.
PIC XC100) VALUE ALL "E".

PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.

COMP-2.
PIC 9(3) COMP-1.
PIC 9(3) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.
PIC 9(6) COMP-1.

PIC XC10) OCCURS 10 TIMES.

DISPLAY "STARTING CMM INTERFACE TEST".
ALLOCATE A CMM BLOCK (50 WORDS)

MOVE 50 TO BLOCK-SIZE.
ENTER "CMMALF" USING BLOCK-SIZE, ZERO-PARAM, ZERO-PARAM,

BLOCK-FWA.
DISPLAY "FIRST BLOCK ALLOCATED".

FILL THE BLOCK WITH SPACES
MOVE SPACES TO INTERFACE-AREA.
PERFORM MOVE-TO-BLOCK VARYING CMM-INDEX FROM 1 BY 1

UNTIL CMM-INDEX > 5.
DISPLAY "FIRST BLOCK SPACE FILLED".

SET THE THIRD OCCURRENCE OF THE INTERFACE AREA IN THE CMM
BLOCK TO ALL "C".

MOVE ALL "C" TO INTERFACE-AREA.
MOVE 3 TO CMM-INDEX.
PERFORM MOVE-TO-BLOCK.

SET FIRST AND LAST TO A AND E
MOVE ALL "A" TO INTERFACE-AREA.
MOVE 1 TO CMM-INDEX.
PERFORM MOVE-TO-BLOCK.
MOVE ALL "E" TO INTERFACE-AREA.
MOVE 5 TO CMM-INDEX.
PERFORM MOVE-TO-BLOCK.
DISPLAY "FIRST BLOCK INITIALIZED WITH A, C, AND E".

ALLOCATE A SECOND BLOCK (100 WORDS)
MOVE 100 TO BLOCK-SIZE.
ENTER "CMMALF" USING BLOCK-SIZE, ZERO-PARAM, ZERO-PARAM,

BLOCK2-FWA.

Figure 3-5. Sample COBOL/CMM Program {Sheet 1 of 2)

60499200 F

60499200 F

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

DISPLAY "SECOND BLOCK ALLOCATED".
* MOVE FIRST BLOCK TO LAST PART OF SECOND
* NOTE THAT THE RECEIVING BLOCK IS BEING OFFEST BY ADDING 50
* WORDS CNOT CHARACTERS) TO ITS FWA

ADD 50 BLOCK2-FWA GIVING TEMP.
* LENGTH IS IN CHARACTERS

MOVE 500 TO BLOCK-SIZE.
ENTER "C.CMMMV" USING BLOCK-FWA, TEMP, BLOCK-SIZE.
DISPLAY "FIRST MOVED TO SECOND".

* NOW MOVE LAST PART OF SECOND TO WS AND CHECK IT
ENTER "C.CMMMV" USING TEMP, !NP-AREA.
IF CHECK-AREA = !NP-AREA

ELSE
DISPLAY "DATA TESTS OUT CORRECTLY"

DISPLAY "TEST FAILED - WRONG DATA READ"
DISPLAY 11 SHOULD BE 11

, CHECK-AREA
DISPLAY II IS 11

, !NP-AREA

* GET THE STATS ON USAGE AT THIS TIME
ENTER "CMMGOS" USING GOS-AREA.

* DISPLAY THE STATS IN OCTAL
ENTER "C.DSPDN" USING GOS-AREA.

* RETURN THE BLOCKS
ENTER "CMMFRF" USING BLOCK-FWA.
ENTER "CMMFRF" USING BLOCK2-FWA.
ENTER "CMMGOS" USING GOS-AREA.
ENTER "C.DSPDN" USING GOS-AREA.
DISPLAY "TEST COMPLETED".
STOP RUN.

MOVE-TO-BLOCK.
ENTER "C.CMMMV" USING INTERFACE-AREA, BLOCK-FWA, CMM-INDEX.

Execution of the program:

STARTING CMM INTERFACE TEST
FIRST BLOCK ALLOCATED
-FIRST BLOCK SPACE FILLED
FIRST BLOCK INITIALIZED WITH A, C, AND E
SECOND BLOCK ALLOCATED
FIRST MOVED TO SECOND
DATA TESTS OUT CORRECTLY
$$$L=0090 000000000000000106310000000000000001063100000000000000013200

000000000000003777001110570501741712554717177463146314631463
: : : : : : :AFY:::::: :AFY:::::: :AZ:

: : : : : : : 4 ; : 0 H • E A @ 0 J * 0 0 @ X L X L X L X
$$$ 000000000000003645000000000000000000000100000000000000000000

000000000000000000060000000000000000000000000000000000001246

$$$

: : : : : : : 3+:::::::::: A::::::::::
: : : F: :,: : : : : : : : : : : : : : : : J-
000000000000000000000000000000000000000300000000000000365520

:::::::::::::::::::C:::::::3 P

$$$L=0095 000000000000000106310000000000000001063100000000000000013200
000000000000003777001710451704416445052617177463146314631463

: : : : : : :AFY:::::: :AFY:::::: :AZ:
: : : : : : :4; :OH+OD6 11 +EVOOCilXLXLXLX
$$$ 000000000000003645000000000000000000000100000000000000000000

000000000000000000040000000000000000000000000000000000001016
: : : : : : : 3+:::::::::: A::::::::::

...... : : : D:::::::::::::::::: HN
$$$ 000000000000000000000000000000000000000300000000000000365750

•• :::::::::::::::::C:::::::3./

TEST COMPLETED

Figure 3-5. Sample COBOL/CMM Program (Sheet 2 of 2)

3-5 •

STANDARD CHARACTER SETS A

CONTROL DAT A operating systems offer the following
variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified
when the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use). Under
NOS/BE or SCOPE 2, the alternate mode can be specified
by a 26 or 29 punched in columns 79 and 80 of the job

60499200 E

statement or any 7 /8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by
specification of the alternate mode on a subsequent 7 /8/9
card.

Under NOS, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of any 6/7 /9 card, as
described above for a 7 /8/9 card. In addition, 026 mode
can be specified by a card with 5/7 /9 multipunched in
column 1, and 029 mode can be specified by a card with
5/7 /9 multipunched in column 1 and a 9 punched in
column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table (table A-1) are
applicable to BCD terminals; ASCII graphic characters are
applicable to ASCII-CRT and ASCII-TTY terminals.

A-1

TABLE A-1. STANDARD CHARACTER SETS

CDC ASCII

Display Hollerith External
Graphic Punch Code Code Graphic Punch BCD
Subset (029) (octal)

(octal) (026) Code

oot : (colon) tt 8-2 ()() : (colon) tt 8-2 072
01 A 12-1 61 A 12-1 101
02 B 12-2 62 B 12-2 102
03 c 12-3 63 c 12-3 103
04 D 12-4 64 D 12-4 104
05 E 12-5 65 E 12-5 105
06 F 12-6 66 F 12-6 106
07 G 12-7 67 G 12-7 107
10 H 12-8 70 H 12-8 110
11 I 12-9 71 I 12-9 111
12 J 11-1 41 J 11-1 112
13 K 11-2 42 K 11-2 113
14 L 11-3 43 L 11-3 114
15 M 11-4 44 M 11-4 115
16 N 11-5 45 N 11-5 116
17 0 11-6 46 0 11-6 117
20 p 11-7 47 p 11-7 120
21 a 11-8 50 a 11-8 121
22 R 11-9 51 R 11-9 122
23 s 0-2 22 s 0-2 123
24 T 0-3 23 T 0-3 124
25 u 0-4 24 u 0-4 125
26 v 0-5 25 v 0-5 126
27 w 0-6 26 w 0-6 127
30 x 0-7 27 x 0-7 130
31 y 0-8 30 y 0-8 131
32 z 0-9 31 z 0-9 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45 + 12 60 + 12-8-6 053
46 - 11 40 - 11 055
47 * 11-8-4 54 * 11-8-4 052
50 I 0-1 21 I 0-1 057
51 (0-8-4 34 (12-8-5 050
52) 12-8-4 74) 11-8-5 051
53 $ 11-8-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , (comma) 0-8-3 33 , (comma) 0-8-3 054
57 • (pe~od) 12-8-3 73 • (period) 12-8-3 056
60 0-8-6 36 * 8-3 043
61 [8-7 17 (12-8-2 133
62 1 0-8-2 32 J 11-8-2 135
63 % tt 8-6 16 % tt 0-8-4 045
64 ;;!! 8-4 14 " (quote) 8-7 042
65 ,- 0-8-5 35 (underline) 0-8-5 137 -66 v 11-0 52 ! 12-8-7 041
67 I\ 0-8-7 37 & 12 046
70 f 11-8-5 55 ' (apostrophe) 8-5 047
71 J 11-8-6 56 ? 0-8-7 077
72 < 12-0 72 < 12-8-4 074
73 > 11-8-7 57 > 0-8-6 076
74 :5 8-5 15 @ 8-4 100
75 ~ 12-8-5 75 \ 0-8-2 134
76 -, 12-8-6 76 - (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

tTwelve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than
two colons.

tt In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (558).

A-2 60499200 E

DIAGNOSTICS: B

Two types of errors occur during CMM use: memory errors
and user errors. Memory errors occur when insufficient
memory is available for a CMM call. User errors occur
when a CMM call is made incorrectly.

When the fast version of CMM is used, only memory errors
are detected. When the error-checking version is used,
both memory and user errors are detected.

MEMORY ERRORS
When CMM aborts because of insufficient memory, the
message shown in figure B-1 is sent to the dayfile. This
message indicates that growth or allocation of a block was
requested or that more space was needed for CMM internal
tables, but not enough additional space was available.

When a memory error occurs, either more central memory
space must be provided or the space used must be reduced.
The amount of central memory provided is given by the

value of maxfl. This value is set in the following places:
the CM parameter of the job statement, the MFL control
statement on NOS, or the access limits at login time.

When the error-checking version of CMM is used, an
additional message shown in figure B-2 is sent to the
dayfile. This message appears in the dayfile before the
message shown in figure B-1. The value me in the message
indicates the specific condition that caused the error; me
is also contained in register Xl in the format shown in
section 2.

USER ERRORS
User errors are detected only when the error-checking
version of CMM is used. The messages shown in table B-1
are sent to the dayfile when a user error occurs. The
number identified as ue in the column following the error
message is not sent to the dayfile, though it is associated
with the message; ue indicates the user error number
contained in register Xl in the format shown in section 2.

CMM CENTRAL MEMORY LIMIT INSUFFICIENT- MAXFL IS nnnnnnB.

nnnnnn octal value of maxfl.

Figure B-1. Memory Error Message

CMM ERROR me, MAIN-CMMxxx, OV-CMMyyy

me The specific error condition, designated by a numeric value having the following meaning:

1 The default utilization level, as set by assembly option DEFTRIG, has been reached.

2 The default utilization level has not been reached, but the request, which is probably for a large
amount of space, cannot be fulfilled.

3 The field length available to CMM is not long enough to accommodate internal CMM tables. The
maximum field length permitted for the job should be increased if possible.

4 Same as 2 above, except error occurred in overflow mode; overflow is currently used only by PL/I.

5 The dynamic area is so full that CMM cannot add space to one of its internal blocks (this is not likely
to occur because the internal blocks generally increase by only a few words at a time. For this to
occur, the field length would be at maxfl).

xxx Name of the function currently in execution.

yyy Related to the overflow mode; currently, yyy is expressed as three dashes (- - -) if not in overflow mode.

Figure B-2. Memory Error Message in Error-Checking Version

60499200 F B-1 •

Message

BLOCK FWA ERROR

BLOCK POINTERS MESSED UP -
SEE (B2)

BLOCK SIZE ERROR ON ALLOCATE

FIXED-POS, LWA-END GROWTH
BLOCK PRESENT

FWA OR LWA GT HHA

GROUP-TYPE 1 BLOCKS
ILLEGALLY ACTIVE

ILLEGAL lST CALL TO Ct+1

ILLEGAL GROW-SHRINK AMOUNT

IMPROPERLY SPECIFIED
GROUP-ID

IMPROPERLY SPECIFIED
GROUP-TYPE

IMPROPERLY SPECIFIED
SIZE-CODE

MAXFL LT HHA+lOO,
CMM CANNOT FUNCTION

MAY NOT ADD LWA GROWTH TO
FIXED BLOCK

TABLE B-1. USER ERROR MESSAGES

ue Significance

4 Functions that specify a block-fwa must
specify the fwa of an active block.

35 One of the CMM internal words in the
dynamic area has been destroyed. The
address of the destroyed word is in
register B2.

Action

User error. Correct and
resubmit.

System error. Consult system
analyst.

5 On block allocate functions, the size must Correct blocksize on allocate
be greater than or equal to zero. function.

8 If a fixed-position, lwa-end growth block User error. Correct fixed-
exists, then no other fixed blocks can be block allocation.
allocated while this block remains active.

9 For CMM.LDV, both the specified and result- Correct fwa and/or lwa.
ing fwa and lwa must be less than hha. Resubmit.

11 If daba is increased due to a CMM.LDV or
CMM.SDA request, no type l group can be
active. This is always the case for
CMM.LDV unless the highest overlay was in
at the time of the call, meaning daba was
equal to hha.

12 Many of the functions, due to their nature,
must not be the first function called (for
example, CMM.GLF, CMM.FGR, etc.).

13 On a grow request, the value must be posi­
tive or zero. On a shrink request, the
value must be positive or zero, but must
not be greater than the current block size.

15 for CMM.FGR, the group identified by
group-id must be active.

16 For CMM.AGR, group-type must be 0 or l.

17 For fixed blocks, size-code is a 3-bit
value.

21 MAXFL must be larger than HHA (length of
the longest overlay, or, for nonoverlaid
jobs, the length of the program plus the
library routines) plus lOOa words.

User error. Correct and
resubmit.

See list of legal first calls
at the end of section 2.

Correct grow-shrink amount.

Correct group-id to active.

Change group-type on CMM.AGR to
0 or 1.

Change size-code to a 3-bit
value.

Increase MAXFL (maximum field
length). On batch jobs, NOS
or NOS/BE, use CM parameter
on job card. On NOS, increase
Fl for associated user name,
or (if MFL statement is used},
increase number in MFL state­
ment. If NOS or NOS/BE sys­
tem default is too small, re­
duce required FL for this job.

22 For CMM.CSF, lwa-end growth cannot be added User error. Correct and
to a fixed block; i.e., size-code cannot be resubmit.
spec if i ed as xx 1 unless it is al ready xx l.

MAY NOT INCREASE DABA GT HHA 24 For CMM.SOA, new-daba must be less than or
equal to the current value of hha.

Correct daba to less than or
equal to hha.

MAY NOT REDUCE HHA LT OABA

I s-2

25 For CMM.SHA, new-hha must be greater than
or equal to the current value of daba.

Correct hha to be greater than
or equal to daba.

60499200 F

Message

MAY NOT UP HHA IF FIXED
BLOCKS PRESENT

NON-ACTIVE GROUP-ID
SPECIFIED

TABLE B-1. USER ERROR MESSAGES (Contd)

ue Significance Action

26 For C""1.SHA, if new-hha is greater than the User error. Correct and
current value of hha, there can be no resubmit.
active fixed blocks.

28 If group-id is nonzero on allocate or free- Correct group-id to active.
group functions, it must identify an active
group.

NON-EXISTENT UNLOAD-ID 30 For Cllft1.SUA, the unload-id parameter must Correct unload-id to value
previously returned by
CMM.SUA.

be an unload-id value previously returned
by CMM.SUA.

NON-54 TABLE OVERLAY LOADED 31 Only type 54 table overlays can be loaded
vi a Cr-ft1.LDV.

OVERLAY LOAD INCREASED HHA

RA+65B INCORRECT -
ICM CALLED FROM nnnnnn

SIZE-CODE VIOLATION

60499200 F

32 The hha cannot be increased via
CMM.LDV; a CMM.SHA function must be
issued first.

36 Lower 18 bits of ra+658 contain comple­
ment of daba. This adaress or word at
daba is incorrect because the address
must be complemented the first time
CMM is called; or the address is com­
plemented again after CMM.KIL is called
and bit 17 must be zero; or word pointed
to by address (should be daba) does not
contain FL, thus address is incorrect or
daba has been destroyed; or address is
not complemented when CMM is active, in­
dicating address has been destroyed (bit
17 is zero). Value nnnnnn contains
address of CMM routine last called
by user.

34 The respective bit must be set in the
size-code to allow the specified growth
or shrinkage.

Correct using table 54
overlays.

User error. Correct and
resubmit.

Determine cause of ·destruc­
tion of ra+65g and correct
the error.

Correct size-code with
respective bit.

B-3 I

GLOSSARY c

This appendix contains definitions for terms unique to the
Common Memory Manager. Included are terms frequently
used with regard to Control Data computer systems.

Always-resident Routine -
A routine referenced by all of the CMM functions
required to be continually in memory.

CMM Functions -
A CMM routine that performs a specific
user-requested task.

Dynamic Area -
An area in memory which can vary in size according
to predetermined rules.

Dynamic Space -
Areas in central memory and/or storage devices that
are in a state of continuous change or involved in
productive activity.

Field Length -
The area in central memory allocated to a particular
job; the only part of central memory that a job can
directly access.

Group -
A set of data, which can include words, blocks, or
other items. A separator, such as a header, defines
the logical boundary between groups.

Header -
A word or sequence of words that contain information
related to the data in words that follow a header.

Interface Routine -
A routine that links the operating system with two or
more programs that can be members of the product
set. A routine shared by two or more computer
programs.

Job Step -
The processing associated with a single control
statement.

Job Step Approach -
The portion of the operating system that initiates
control statement processing.

Lifetime -
An attribute related to type l block groups in CMM.
Before an increase in the static area can occur, all
block groups of type l must be freed. Therefore, all
type l block groups have a lifetime shorter than the
time between successive increases in the static area
size.

Logical Group -
A collection of groups independent of their physical
environment.

60499200 D

Offset -
A value which, when applied to a base or relative
address, produces an absolute address.

Pointer -
A field or word containing an address, either direct or
indirect, and information related to the item to which
it points. Usually points to the first word address of
an item, but can point to the last word occupied.

Product -
A software program produced and/or supplied by the
computer manufacturer and intended for use in
conjunction with the operating system.

Product Set -
A group of software programs, including the
operating system, which control and supplement the
execution of computer programs.

Stack -
Portions of computer memory or registers used for
temporary storage. To assign a position or order, as
to stack jobs for batch processing.

Static Area -
An area in memory established during initial loading
that remains fixed in size between loads.

Status -
A state or condition.

Subprogram -
A part of a larger program; can be converted into
machine instructions independently.

Task -
A piece of work assigned to a component part of the
operating system and to be completed within a
certain period of time.

Trailer -
A word or sequence of words that contain information
related to the data in words that precede the trailer.
A trailer record follows a group of records and
contains pertinent data related to that group of
records.

Tree -
The relationship of components to one another, such
as files or program segments, the diagram of which is
in the form of a tree and depicts branching from an
original point. Each branch on the tree has a
definable parent node, which is the representation of
a state or an event by means of a point in the
diagram.

Utilization Level -
That percentage of memory not available to CMM for
allocation. Refer to DEFTRIG assembly option in
text.

C-1

Activate a block group 2-8
activate-group subroutine 2-8
allocate-fixed-returning subroutine 2-1
Allocate or create fixed-position blocks 2-1

Backward pointer 1-4
Basic loading 1-2
block-fwa parameter 2-1
block-size parameter 2-1
Blocks and block groups

Activate a block group 2-8

I Block group pointers 1-5
Calls 2-8
Definition 1-4

I Fixed block header 1-5
Freeing blocks 1-4, 2-8
Word format 1-5

I Bootstrap code 1-6

I
I

Change fixed-position blocks 2-4
Change-specs-fixed subroutine 2-4
Change static area size 1-6
CMM

Control 1-6
Deactivate 2-8
Field length required 1-2
Internal storage 1-6
Operation and use 2-1
Selection 2-13
Use 2-12

COBOL interface to CMM 3-2

daba 1-1, 1-3
I Deactivate CMM 2-8

I

I

I
I

Dynamic area
Base address pointer word format
Description 1-3
Header and trailer word formats
Statistics 2-9

Efficiency-increasing calls 2-12
Entry point names

CMM.AGR 2-8
CMM.ALF 2-1
CMM.CSF 2-4
CMM.FAF 2-2
CMM.FGR 2-8
CMM.FRF 2-3
CMM.FWA 2-5
CMM.GBI 2-9
CMM.GFS 2-9
CMM.GLF ·2-4
CMM.GOS 2-10
CMM.GSS 2-10
CMM.KIL 2-8
CMM.LDV 2-6
CMM.LOV 2-6
CMM.OPl 2;..12
CMM.OP2 2-12
CMM.OP4 2-12
CMM.CJl.r\N 2-12
CMM.SDA 2-7

60499200 F

1-3

1-4

INDEX

Entry point names (Contd)
CMM.SFF 2-3
CMM.SHA 2-7
CMM.SIV 2-5
CMM.SLF 2-3

Error-checking version 2-13
Example

COBOL 3-2
FORTRAN 3-1
SYMPL 3-2

Fast version 2-13
Fixed block header 1-5
Fixed-position block calls 2-1
Fixed-position blocks

Adjustments 2-1
Allocate or create blocks 2-1
Free or destroy 2-3

fl parameter 2-9
flexible allocate 2-2
FORTRAN calls

CMMAGR 2-8
CMMALF 2-1
CMMCSF 2-4
CMMFAF 2-2
CMMFGR 2-8
CMMFRF 2-3
CMMFWA 2-5
CMMGBI 2-9
CMMGFS 2-9
CMMGLF 2-4
CMMGOS 2-10
CMMGSS 2-10
CMMKIL 2-8
CMMLDV 2-6
CMMLOV 2-6
CMMOPn 2-12
CMMOvVN 2-12
CMMSDA 2-7
CMMSFF 2-3
CMMSHA 2-7
CMMSIV 2-5
CMMSLF 2-3

FORTRAN interface to CMM 3-1
Free a block group 2-8
free-fixed subroutine 2-3
free-group subroutine 2-8
Free space header 1-6

Get block address 2-5
get-block-fwa subroutine 2-5
get-block-info subroutine 2-9
Get block information 2-9
get-fixed-size subroutine 2-9
Get maximum available fixed block size 2-9
get-overflow-statistics subroutine 2-10
Get statistics for job summary 2-10
Get statistics for overflow recovery 2-10
get-summary-statistics subroutine 2-10
Group-id entry 1-4
group-id parameter 2-1
group-type parameter 2-8
grow-at-lwa-fixed subroutine 2-4
Grow fixed-position blocks 2-4

I

I

I

I

I
I
I

I

I

·Index-!

Highest high address (hha) 1-1

I id parameter 2-5
Illustrated CMM terminology 1-2

I Information calls 2-9
Initial loading 1-2

Language-callable routines 2-1
Legal first calls 2-13
Libraries

SYMIO 2-1
SYMUB 2-1

I load-overlay subroutine 2-6
Load-overlay via FOL 2-6
Low memory communication words 2-12

Maximum field length value (maxfl) 1-3
minfl 1-3

new-daba parameter 2-7
new-hha parameter 2-7
new-size-code parameter 2-4

I num parameter 2-3, 2-4

I Optimization functions 2-12
Overlay loading 1-2
Overlays 2-5

Index-2

paddr parameter 2-6

Register Xl contents 2-12
Respecify the dynamic area 2-7
Respecify the highest high address 2-7
return-area parameter 2-10

Save identified value 2-5
Segment loading 1-2
Segments 2-5
set-daba subroutine 2-7
set-hha subroutine 2-7
Set-own-code error processing 2-12
Shrink at fwa 2-3
Shrink at lwa 2-3
Shrink fixed-position blocks 2-3
size-code parameter 2-1
size parameter 2-10
Static area 1-2
SYMPL interface to CMM 3-1

unique-id parameter 2-5
User/CMM control 1-6

value parameter 2-5

I

I

I

I

I

I

60499200 F

COMMENT SHEET

MANUAL TITLE: COlllTlon Memory Manager Version 1 Reference Manual

PUBLICATION NO.: 60499200 REVISION: F

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page nt111ber references).

Please reply No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES ANO TAPE

TAPE

FOLD ---....,--·-----

111111

BUSINESS REPLY MAIL
FIRST Cl.ASS PllMIT NO. 1241 MINNEAPOLIS, MINN.

POSTAGE Will IE PAID BY

CONTROL DATA CORPORATION
Publications .. d Graphics Diwilion

P.O. BOX 3492
Sunnyvale. California 94088-3492

TAPE

FOLD

-----------------------t
NO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

.... z :::;

~
0

i~
u

---·----- --------------· ----------------, FOLD FOLD

CORPORATE HEADQUARTERS. P.O. BOX 0, MINNEAPOLIS. MINN. 5'5440 UTHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~:?)
CONTf\.OL DATA CO~O~TION

