
&;j. ~ CONT~OL DATA
~ r::J co~~TION

PASCAL
VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS 2

60497700

CJ c::\ CONT"OL DATA
\!:I r:J CO~ORf\TION

PASCAL
VERSION 1
REFERENCE MANUAL

coc® OPERATING SYSTEM:

NOS 2

60497700

REVISION RECORD

Revision Description

Preliminary release at PSR level 580. 01 (12/01/82)

A (09/30/83) This revision documents Pascal Version 1.1 at PSR level 596. Pascal Version 1.1
supersedes Pascal Version 1.0.

REVISION LETTERS I, O, Q, AND X ARE NOT USED

(£)COPYRIGHT CONTROL DATA CORPORATION 1982, 1983
All Rights Reserved
Printed in the United States of America

ii

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60497700 A

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Front Cover
Title Page

Revision

ii A
iii/iv A
v/vi A
vii A
viii A
ix A
1-1 A
2-1 thru 2-16 A
3-1 thru 3-7 A
4-1 thru 4-15 A
5-1 thru 5-22 A
6-1 thru 6-8 A
7-1 thru 7-11 A
8-1 thru 8-6 A
A-1 thru A-3 A
B-1 thru B-4 A
C-1 thru C-10 A
D-1 thru D-7 A
Index-1 thru -3 A
Co1Bent Sheet/mailer A
Back Cover

60497700 A iii/iv

PREFACE

This manual describes the CONTROL DATA® Pascal Version 1.1 language. It is intended to be used
as a reference, not as a tutorial, for users who are familiar with a version of Pascal.

Pascal Version 1.1 is available under control of the NOS 2 operating system on the enc® CYBER
170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series Computer Systems.

Pascal Version 1.1 supersedes Pascal Version 1.0.

This manual is organized as follows:

Section 1 provides a description of the Pascal Version 1.1 extensions to the International
Standards Organization (ISO) standard Pascal.

Section 2 describes language elements.

Section 3 describes the program heading.

Section 4 describes data declaration and definition.

Section 5 describes routines.

Section 6 describes statements.

Section 7 describes compiling, loading, and executing a Pascal program under the NOS 2
operating system.

Section 8 shows some complete Pascal programs.

Appendix A describes available character sets.

Appendix B describes compilation error messages.

Appendix C lists glossary definitions.

Appendix D describes the differences between Pascal Version 1.0 and Pascal Version 1.1.

Related material is contained in the NOS Version 2 Reference Set Volume 3, System Commands,
publication number 60459680.

60497700 A v/vi

NOTATIONS

1. PASCAL VERSION 1.1 EXTENSIONS TO
STANDARD PASCAL

Data Declaration and Definition
External Directives
Predefined Routines
Segmented File Operations
Statements

2. LANGUAGE ELEMENTS

Pascal Symbols
Reserved Words and Symbols
Identifiers
Numbers

Integer Numbers
Real Numbers

Labels
Literals

Boolean Literals
Character Literals
String Literals

Directives
Expressions

Operators
Separators

Comment
Nonprinting Symbol

Blocks
Scope Rules

3. PROGRAM HEADING

PROGRAM Statement
External File List With Predefined Files

INPUT and OUTPUT
External File List With User-Defined Files
External File List With No Files
External File List With Interactive Files
External File List With Segmented Files

(CDC)

4. DATA DECLARATION AND DEFINITION

LABEL Section
CONST Section
TYPE Section
--Scalar Data Types

Simple Scalar Data Types
User-Defined Scalar Data Types

Structured Data Types
ARRAY Type
FILE Type
RECORD Type
SET Type

Pointer Data Type
Data Type Compatibility

VAR Section
VALUE Section (CDC)

60497700 A

CONTENTS

ix

1-1

1-1
1-1
1-1
1-1
1-1

2-1

2-1
2-1
2-1
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-8
2-9
2-13
2-13
2-13
2-14
2-15

3-1

3-1

3-2
3-3
3-5
3-5

3-6

4-1

4-1
4-1
4-2
4-3
4-3
4-5
4-6
4-6
4-8
4-8
4-10
4-12
4-13
4-13
4-14

5. ROUTINES

Declaring a Routine
Calling a Routine
Parameters

Value Parameters
Variable Parameters
Procedure and Function Parameters

Directives
FORWARD Directive
EXTERN (CDC) and FORTRAN (CDC) Directives

Predefined Procedures
DISPOSE(p[,c •••])
GET(f)
GETSEG(f [,n]) (CDC)
HALT(a) (CDC)
MESSAGE(a) (CDC)
NEW(p[,c •••])
PACK(a,i,z)
PAGE(f)
PUT(f)
PUTSEG(f.[,n]) (CDC)
READ(f, v [, v •••])
READLN(f,v[,v •••])
RESET(f)
REWRITE(f[,n]) (CDC)
UNPACK(z,a,i)
WRITE(f,v[,v •••])
WRITELN(f,v[,v •••])

Predefined Functions
ABS(a)
AR.CTAN(a)
CARD(a) (CDC)
CHR(a)
CLOCK (CDC)
COS(a)
DATE(a) (CDC)
EOF(f)
EOLN(f)
EOS(f) (CDC)
EXP(a)
EXPO(a) (CDC)
LN(a)
ODD(a)
ORD(a)
PRED(a)
ROUND(a)
SIN(a)
SQR(a)
SQRT(a)
SUCC(a)
TIME(a) (CDC)
TRUNC(a[,n]) (CDC)
UNDEFINED(a) (CDC)

6. STATEMENTS

Assignment Statement
CASE Statement
FOR Statement
GOTO Statement
IF Statement
REPEAT Statement
WHILE Statement
WITH Statement

5-1

5-1
5-4
5-5
5-6
5-6
5-7
5-8
5-8
5-8
5-10
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-14
5-14
5-15
5-15
5-15
5-16
5-18
5-18
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-21
5-21
5-21
5-21
5-21
5-21
5-21
5-22
5-22
5-22
5-22
5-22
5-22
5-22

6-1

6-1
6-1
6-3
6-4
6-5
6-7
6-7
6-7

vii

7. COMPILING, LOADING, AND EXECUTING

Organization of a Compiled Program
Compiling a Program

Overview of the Runtime System
Loading and Executing a Program
Understanding Runtime Error Messages

8. SAMPLE PROGRAMS

APPENDIXES

A Character Sets
B Compilation Error Messages
c Glossary
D Differences Between Pascal Versions

and 1.1

INDEX

viii

1.0

7-1

7-1
7-3
7-7
7-10
7-11

8-1

A-1
B-1
C-1

D-1

FIGURES

3-1

3-2

Program INTER With INPUT as a
Noninteractive File

Program INTER With INPUT as an
Interactive File

TABLES

2-1 Predefined Words
2-2 Dyadic Arithmetic Operators
2-3 Monadic Arithmetic Operators
2-4 .Boolean Operators
2-5 Set Operators
2-6 Relational Operators
3-1 External File Association With

Predefined Files
3-2 External File Association With User

Defined Files
5-1 Corresponding FORTRAN and Pascal

Parameter Types
5-2 Predefined Procedures
5-3 Default Field Widths
5-4 Predefined Functions

3-5

3-6

2-2
2-10
2-10
2-11
2-11
2-12

3-3

3-4

5-9
5-10
5-17
5-18

60497700 A

NOTATIONS

Certain notations are used throughout the manual with consistent meaning. These notations are:

--->

()

[]

UPPERCASE

• or •••

(CDC)

Indicates the permissible direction of traversal.

Contains a reserved word or symbol in a syntax diagram. Alphabetic characters
must appear in uppercase in your source program. A list of reserved words and
symbols can be found in section 2.

Contains the general name of a construct that you must further define; refer to
the syntax diagram of the named item for definition rules.

Indicates a reserved word in the text. Alphabetic characters must appear in
uppercase in your source code. A list of reserved words can be found in
section 2.

Indicates statements that are not shown and are not relevant to the example •

Indicates a Control Data extension to ISO standard Pascal.

All program statements in this manual are shown in the internal Pascal character set
representation. You can translate special characters into the character set used at your site by
referring to appendix A, Character Sets.

60497700 A ix

PASCAL VERSION 1.1 EXTENSIONS
TO STANDARD PASCAL

Pascal Version 1.1 conforms to the International Standards Organization (ISO) standard Pascal.
The following paragraphs introduce the Pascal Version 1.1 extensions to standard Pascal.

DATA DECLARATION AND DEFINITION

1

Pascal Version 1.1 has an additional predefined type called ALFA, which is associated with PACKED
ARRAY [1 •• 10] OF CHAR.

Pascal Version 1.1 has an additional data declaration section called the VALUE section. See
section 4 for information about the VALUE section.

EXTERNAL DIRECTIVES
Pascal Version 1.1 allows access to external subroutines through the EXTERN and FORTRAN
directives. See section 5 for information about the EXTERN and FORTRAN directives.

PREDEFINED ROUTINES
Pascal Version 1.1 has the following predefined procedures:

GETSEG(f ,n)
PUTSEG(f ,n)
REWRITE(f ,n)

Pascal Version 1.1 has the following predefined functions:

CARD(a)
CLOCK
DATE(a)

EOS(f)
EXPO(a)
HALT

MESSAGE{a)
TIME(a)
TRUNC(a,n)

See section 5 for information about these predefined routines.

SEGMENTED FILE OPERATIONS
Pascal Version 1.1 allows segmented file operations. See section 3 for information about
segmented files in the program heading, section 4 for information about segmented files in the
data declaration and definition part, and section 5 for information about segmented files in
predefined procedures.

STATEMENTS
Pascal Version 1.1 has an additional clause in the CASE statement called the OTHERWISE clause.
See section 6 for information about the OTHERWISE clause in the CASE statement.

60497700 A 1-1

LANGUAGE ELEMENTS 2

This section describes the language elements of Pascal. The language elements are Pascal
symbols, expressions, and separators. These elements are combined to form statements, which are
the basic constructs of a program. Statements are described in section 6. Statements are
grouped into blocks. This section also discusses blocks and the scope of identifiers within
blocks.

PASCAL SYMBOLS
The basic language elements are Pascal symbols. Pascal symbols are analogous to the alphabet of
the English language. The set of Pascal symbols is divided into six categories: reserved words
and symbols, identifiers, numbers, labels, literals, and directives.

RESERVED WORDS AND SYMBOLS

A reserved word is a name that has an associated value in the Pascal language that cannot be
changed. In this manual, reserved words are shown in underlined uppercase letters. The
following is a list of the reserved words:

AND FILE OF SET
ARRAY FOR OR THEN
BEGIN FUNCTION OTHERWISE (CDC) TC>
CASE GOTO PACKED TYPE
CONST ~ PROCEDURE UNTIL
DIV IN PROGRAM VALUE (CDC)
DO LABEL RECORD VAR
OOWNTO MOD REPEAT WHILE
ELSE NIL SEGMENTED (CDC) WITH
END NOT

A reserved symbol is a symbol that has an associated value in the Pascal language that cannot be
changed. Reserved words and symbols are used to delimit the syntactic units of your program.
The following is a list of the reserved symbols:

+ < [
<- J

* >- (space)
I >
:• { {*

<>) *)

IDENTIFIERS

An identifier is a name that denotes a constant, type, variable, value, procedure, or function.
An identifier must begin with a letter followed by any combination of letters and digits up to
120 significant letters and digits. A letter must be an uppercase letter in the set A through
Z. A digit must be in the set 0 through 9.

Identifier

+-----+-----[letter]<-----+-----+
I I I I
I +-----[digit]<------+ I
I I

----->[letter]----->+-------------------------------->+----->

60497700 A 2-1

The following are examples of valid and invalid identifiers:

Valid

SUITS
DAY
NOl

Invalid

lA
#SPACE
SALES#TAX

(where I is an initial space)
(where H is an embedded space)

The Post Mortem Dump (PMD) routine and the loader acknowledge only the first part of an
identifier as significant. PMD acknowledges only the first ten characters of an identifier as
significant. The loader· acknowledges only the first seven characters of an e~try-point
identifier that is passed through the E compiler option as significant.

You cannot use a reserved word as an identifier. For example, you cannot redefine NIL to TRUE in
your program.

You can use a predefined word as an identifier. A predefined word is an identifier that has an
associated value in the Pascal language that can be changed. For example, you can redefine ALFA
to ARRAY[l •• 10) OF INTEGER in your program. Table 2-1 shows the predefined words and their
associated valueS.

TABLE 2-1. PREDEFINED WORDS

+-----------------------+--+
I I I
I Predefined Word I Associated Value I
I I I
!==!
I I I
I ABS(a) I Returns the absolute value of a. I
+-----------------------+--+
I ALF A (CDC) I PACKED ARRAY [1 •• 10] OF CHAR. I
+-----------------------+---------=====----------==-----------------------------+
I ARCTAN(a) I Returns the arctangent of a. I
+-----------------------+--+
I BOOLEAN I The predefined identifiers TRUE and FALSE. I
+-----------------------+--+
I CARD(a) (CDC) I Returns the cardinality of a. I
+-----------------------+--+
I CHAR I The character set used at your installation. I
+-----------------------+--+
I CHR(a) I Returns the character that has ordinal I
I I number a. I
+-----------------------+--+
I CLOCK (CDC) I Returns the current used CPU-time in I
I I milliseconds. I
+-----------------------+--+
I COS(a) I Returns the cosine of a. I
+-----------------------+--+
I DATE(a) (CDC) I Assigns the current date to a. I
+-----------------------+--+
I DISPOSE(p) I Releases the variable that is referenced by p. I
I I Any pointer that points to the variable I
I I referenced by p becomes undefined and the I
I I pointer itself becomes inaccessible. I
+-----------------------+--+
I EOF(f) I Returns a TRUE value if the end-of-file mark I
I I has been reached while reading file f or a I
I I FALSE value if the end-of-file mark has not I
I I been reached. If a file is not specified, I
I I INPUT is assumed. I
+-----------------------+--------------------------(Continued on next page)--+

2-2 60497700 A

TABLE 2-1. PREDEFINED WORDS

+--(Continued)----------+--+
I I I
I Predefined Word I Associated Value I
I I I
!==!
I I I
I EOLN(f) I Returns a TRUE value if the end-of-line mark I
I I has been reached while reading file f or a I
I I FALSE value if the end-of-line mark has not I
I I been reached. If a file is not specified, I
I I INPUT is assumed. I
+-----------------------+--+
I EOS(f) I Returns a TRUE value if the end-of-segment I
I I mark has been reached while reading file f I
I I or a FALSE value if the end-of-segment mark I
I I has not been reached. If a file is not I
I I specified, INPUT is assumed. I
+-----------------------+--+
I EXP(a) I Returns the value of E(a). I
+-----------------------+--+
I EXPO(a) (CDC) I Returns the value of E(a) in binary I
I I representation. I
+-----------------------+--+
I FALSE I Zero. I
+-----------------------+--+
I GET(f) I Advances the position of the file to the next I
I I component and places the value of the component I
I I into the buffer variable ff. I
+-----------------------+--+
I GETSEG(f[,n]) I Begins reading at the beginning of the nth I
I (CDC) I segment counting from the current position in I
I I file f. GETSEG(f ,l) is equivalent to GETSEG(f). I
+-----------------------+--+
I HALT(a) I Terminates the program, writes the argument I
I (CDC) I in the dayfile of the job, and produces a dump. I
+-----------------------+--+
I INPUT I TEXT. I
+-----------------------+--+
I INTEGER I The range of decimal values I
I I [-2**48 + 1 •• 2**48 - l], which is equivalent I
I I to the range of octal values I
I I [-7777777777777777 •• 7777777777777777]. I
+-----------------------+--+
I LN(a) I Returns the value of the natural logarithm of a. I
+-----------------------+--+
I MAXINT I 2**48 - 1. I
+-----------------------+--+
I MESSAGE(a) I Writes a in the dayfile of the job. I
I (CDC) I I
+-----------------------+--+
I NEW(p) I Allocates a new variable and assigns a I
I I reference to it. I
+-----------------------+--+
I ODD(a) I Returns a TRUE value if a is odd and a FALSE I
I I value if a is even. I
+-----------------------+--+
I ORD(a) I Returns the position of a in the set of values I
I I defined by the type of a. I
+-----------------------+--+
I OUTPUT I TEXT. I
I I I
+--(Continued on next page)--+

60497700 A 2-3

TABLE 2-1. PREDEFINED WORDS

+--(Continued)----------+--+
I I I
I Predefined Word I Associated Value I
I I I
!==!
I I I
I PACK(a,i,z) I Takes the elements of array a beginning at I
I I subscript position i and copies them into I
I I packed array z beginning at the first I
I I subscript position. I
+-----------------------+--+
I PAGE(f) I Positions the line printer at the top of a new I
I I page before printing the next line in file f. I
+-----------------------+--+
I PRED(a) I Returns the predecessor of a; a cannot be REAL I
I I type. If a does not exist an error will occur. I
+-----------------------+--+
I PUT(f) I Appends the value of file buffer variable ff I
I I to file f. I

I +-----------------------+--+
I PUTSEG(f[,n]) I Closes the current segment of file f by I
I (CDC) I putting end-of-segment mark. I
+-----------------------+--+
I READ(f,v[,v •••]) I Positions file f and gets the referenced I
I I variables. If a file is not specified, I
I I INPUT is assumed. I
+-----------------------+--+
I READLN(f,v[,v •••]) I Gets the referenced variables from file f. I
I I When a READLN is completed, any remaining I
I I values on the current input line, including I
I I an end-of-line, are discarded. The first I
I I value on the next line in file f will be I
I I read next. I
+-----------------------+--+
I REAL I The range of values [-10**322 •• -10**-293, 0, I
I I 10**-293 •• 10**322]. I
+-----------------------+--+
I RESET(f) I Positions file f to the l
I I beginning-of-information. RESET(f) must be I
I I done on every input file except INPUT. I
+-----------------------+--+
I REWRITE(f[,n]) I Empties file f and allows it to be written to. I
I (CDC) I REWRITE(£) must be done on every output file I
I I except OUTPUT. I
+-----------------------+--+
I ROUND(a) I Returns a rounded to the nearest integer. I
+-----------------------+--+
I SEGMENTED TEXT I SEGMENTED FILE OF TEXT. I
I (CDC) I I
+-----------------------+--+
I SIN(a) I Returns the sine of a. I
+-----------------------+--+
I SQR(a) I Returns the square of a. I
+-----------------------+--+
I SQRT(a) I Returns the square root of a. I
+-----------------------+------------------~---------------------------------+
I SUCC(a) I Returns the successor of a. l
+-----------------------+--+
I TEXT I FILE OF CHAR. I
I I I
+-----------------------+--------------------------(Continued on next page)--+

2-4 60497700 A

TABLE 2-1. PREDEFINED WORDS

+--(Continued)----------+--+
I I I
I Predefined Word I Associated Value I
I I I
!==!
I I I
I TIME(a) I Assigns the current time to a. I
I (CDC) I I
+-----------------------+---..:.+
I TRUE I One. I
+-----------------------+--+
I TRUNC(a[,n]) I Returns either the largest integer< a if a> 0 I

I (CDC) I or the smallest integer ~ a if a < O. - I
+-----------------------+--+
I UNDEFINED(a) I Returns a TRUE value if a is out of range or I
I {CDC) I indefinite or a FALSE value if a is not out I
I I of range or indefinite. I
+-----------------------+--+
I UNPACK(z,a,i) I Takes the elements beginning at the first I

I I subscript position of packed array z and I
I I copies them into array a beginning at I
I I subscript position i. I
+-----------------------+--+
I WRITE(f,e[,e •••]) I Transforms the expressions into a sequence of I

I I characters and puts the sequence onto file f. I

I I If a file is not specified, OUTPUT is assumed. I

+-----------------------+--+
I WRITELN(f ,e I The procedure that terminates the current I
I [,e •••]) I line in file f by putting an end-of-line mark. I
I I If a file is not specified, OUTPUT is assumed. I
I I I
+-----------------------+--+

See section 5 for more information about the routines that are associated with predefined words.

NUMBERS

A number can be either a signed or unsigned integer or a signed or unsigned real.

Integer Numbers

An integer number is a decimal or octal integer. A decimal integer is a signed integer in the
range [-2**48 + 1 2**48 - 1]. An octal integer is a signed integer in the range
[-7777777777777777 •• 7777777777777777] and must be followed by the character B. The digits in
an octal integer must be in the set O through 7.

Integer

-----+----->[decimal integer]----->+----->
I I
+----->[octal integer]------->+

Decimal Integer

+----->(+)-----+ +----------<----------+
I I I I

----->+--------------->+-----+----->[digit]----->+----->
I I
+----->(-)-----+

60497700 A 2-5

Octal Integer

+----->(+)-----+ +---------------------+
I I I I

----->+--------------->+-----+-----)[digit]----->+----->(B)----->
I I
+----->(-)-----+

The following are examples of integer numbers:

-714 777B

Real Numbers

A real number is either a real ntDnber with an optional scale factor or a decimal integer with a
scale factor. A real number is a decimal integer followed by a decimal point and up to 14
integers. A real number must be in the range [-10**322 •• -10**-293, 0, 10**-293 •• 10**322]. A
decimal integer is a signed integer in the range [-2**48 + 1 •• 2**48 - 1]. The letter E
preceding a scale factor means times ten to the power of.

Real

---->+----->[
I
I
I
+----->[

Real Number

real number]----->+-------------------------------->+----->
I I
+----->[scale factor part]----->+

I
decimal integer]-------->[scale factor part]----->+

+----------<----------+
I I

--->[decimal integer]----->(•)-----+----->[digit]---->+---->

Scale Factor Part

----->(E)----->[scale factor }----->

Scale Factor

----->[decimal integer]---->

The following are examples of real numbers:

-3.14 0.314El 314.0E-2

LABELS

A label is an unsigned integer in the range [0 •• 9999].

Label

+-----[digit]<-----+
I I

---->[digit]---->+------------------->+----->

2-6 60497700 A

LITERALS

A literal is a symbol that holds a value. There are three kinds of literals: Boolean,
character, and string.

Boolean Literals

A Boolean literal is either of the predefined words TRUE or FALSE.

Boolean Literal

----->+----->(TRUE)------>+----->
I I
+----->(FALSE)----->+

Character Literals

A character literal is a single character enclosed in single quote (') symbols.

Character Literal

----->(')----->[character]----->(')----->

The following are examples of character literals:

'C' '+'

Note that inside a character literal a single quote (') symbol is denoted by two single quote
('') symbols.

String Literals

A string literal is a sequence of characters enclosed in single quote(') symbols.

String Literal

+------------<------------+
I I

----->(')----->[character]-----+----->[character]----->+----->(')----->

The following are examples of string literals:

'EQUALS' ' ' 'LOOKLIKE ' ' '

Note that inside a string literal a single quote(') symbol is denoted by two quote ('') symbols.

DIRECTIVES

A directive is an instruction in a procedure or function declaration that tells where the
procedure or.function declaration occurs in relation to the program block. There are three
directives: FORWARD, FORTRAN (CDC), and EXTERN (CDC). See section 5 for information about these
directives.

60497700 A 2-7

EXPRESSIONS
Expressions are combinations of Pascal symbols. Expressions are analogous to clauses in the
English language. An expression defines a rule of computation from which a value can be obtained.

Expression

----->[simple expression]-----+
I

+-------------------------+
I
+----->+--->+----->

I I
+-----)(=)------>+----->[simple expression]----->+
I I
+----->(<>)----->+
I I
+----->(<)------>+
I I
+----->(<=)----->+
I I
+----->(<)------>+
I I
+----->(<=)----->+
I I
+-----)(IN)----->+

Simple Expression

+----->(+)-----+
I I

----->+--------------->+----->+-----)[term]----->+----->
I I I I
+----->(-)-----+ +------(OR)<-------+

I I
+------(-)<--------+
I I
+------(+)<--------+

Term

2-8

----->+------>[factor]----->+----->
I I
+<------< I ><----------+
I I
+<------(DIV)<--------+
I I
+<------(MOD)<--------+
I I
+<------(AND)<--------+
I - I
+<------(*)<----------+

60497700 A

Factor

~--->+------------------>[constant]------------------>+----->
I I
+------------------>[variable]------------------>+
I I
+------------------>[function call]------------->+
I I
+----->(()------->[expression]----->())----->+
I I
+----->(NOT)----->[factor]-------------------->+
I I
+------------------>[set value }~---------------->+
I I
+------------------)(NIL)----------------------->+

Expressions are written in infix notation, which means that a dyadic operator applies to the
operands on either side of it. An expression is evaluated from left to right using the following
precedence rules:

NOT Highest precedence
I

* ' I, DIV, MOD, AND I
I

+, - OR I
.J,

<, >, =, <=, >=, <>, IN Lowest precedence

For example, the following expressions on the left-hand side of the equal sign (=) are equivalent
to the corresponding expressions on the right-hand side:

2 * 3 - 4 * 5 = (2 * 3) - (4 * 5)
15 DIV 4 * 4 = (15 DIV 4) * 4
80 75 I 3 = (80 I 5) I 3
4 + 2 * 3 = 4 + (2 * 3)

Likewise, for any Bl, B2, BJ of type Boolean, the following expression on the left-hand side is
equivalent to the expression on the right-hand side:

Bl OR NOT B2 AND B3 = Bl OR ((NOT B2) AND B3)

All factors in an expression are evaluated and should be defined.

If an expression contains a function whose evaluation causes side effects on other factors in the
expression, the left to right evaluation does not always hold; such side effects should be
avoided.

During evaluation of an expression, intermediate results are kept in a fixed number of
registers. If the number of intermediate results exceeds the capacity of the registers, the
expression cannot be translated and the compiler issues the error message: EXPRESSION TOO
COMPLICATED. To remedy this, you must either rewrite the expression with a less complicated
parenthesis structure or split the expression into two or more expressions.

OPERATORS

There are four kinds of operators: arithmetic, Boolean, relational, and set. Arithmetic
operators are either dyadic or monadic. A dyadic operator operates on two operands, the operands
on either side of the operator. A monadic operator operates on one operand, the operand on the
right of the operator. Boolean, relational, and set operators are dyadic operators. Tables 2-2,
2-3, 2-4, 2-5, and 2-6 describe the operators. Any combination of operator types that is not
listed in the tables will result in a compile-time error message.

60497700 A 2-9

TABLE 2-2. DYADIC ARITHMETIC OPERATORS

+------------+------------------+----------------+------~----------+------------+
I I I I I I
I Operator f Operation f Left Operand I Right Operand I Result I
I I I Type I Type I Type I
I I I I I I
1==•1
I I I
I + Addition INTEGER I INTEGER I INTEGER
I INTEGER I REAL I REAL
I REAL I INTEGER I ·REAL
I I I REAL .~ I REAL I REAL
+------------+------------------+----------------+-----------------+------------+
I I Subtraction I INTEGER I INTEGER I INTEGER I
I I I INTEGER I REAL I REAL I
I I I REAL I INTEGER I REAL I
I I I REAL I REAL I REAL I
+------------+------------------+----------------+-----------------+------------+
I * I Multiplication I INTEGER I INTEGER I INTEGER I
I I I INTEGER I REAL I REAL I
I I I REAL I INTEGER I REAL I
I I I REAL I REAL I REAL I
+------------+------------------+----------------+-----------------+------------+
I / I Division I INTEGER I INTEGER I INTEGER I
I I I INTEGER I REAL I REAL I
I I I REAL I INTEGER I REAL I
I I I REAL I REAL I REAL I
+------------+------------------+----------------+-----------------+------------+
I DIV I Division with I INTEGER I INTEGER I INTEGER I
I I truncation I I I I
+------------+------------------+----------------+-----------------+------------+
I MOD I Modulo I INTEGER I INTEGER I INTEGER I
I I I I I I
+------------+------------------+----------------+-----------------+------------+

TABLE 2-3. MONADIC ARITHMETIC OPERATORS

+------------+------------------+----------------+-----------------+-----------+
I I I I I I
I Operator I Operation I Left Operand I Right Operand I Result I
I I I Type I Type I Type I
I I I I I I
!==!
I I I I I I
I + I Identity I INTEGER I INTEGER I INTEGER I
I I I INTEGER I REAL I REAL I
I I I REAL I INTEGER I REAL I
I I I REAL I REAL I REAL I
+------------+------------------+----------------+-----------------+-----------+
I I Sign inversion I INTEGER I INTEGER I INTEGER I
I I I INTEGER I REAL I REAL I
I I I REAL I INTEGER I REAL I
I I I REAL I REAL I REAL I
I I I I I I
+------------+------------------+----------------+-----------------+-----------+

2-10 60497700 A

TABLE 2-4. BOOLEAN OPERATORS

+------------t---------------+----------------+-----------------+-----------+
I I I I I I
I Operator I Operation I Left Operand I Right Operand I Result I
I I I Type I Type I Type I
I I I I I I
!===!
I I I I I I
I AND I Logical I BOOLEAN I BOOLEAN I BOOLEAN I
I I conjunction I I I ·I
+------------t---------------+----------------+-----------------+-----------+
I OR I Logical I BOOLEAN I BOOLEAN . I BOOLEAN I
I I disjunction I I I I
+------------+---------------+----------------+-----------------+-----------+
I NOT I Logical I BOOLEAN I BOOLEAN I BOOLEAN I
I I negation I I I I
I I I I I I
+------------+---------------+----------------+-----------------+-----------t

TABLE 2-5. SET OPERATORS

+------------+------------------+----------------+-----------------+------------+
I I I I I I
I Operator I Operation I Left Operand I Right Operand I Result I
I I I Type I Type I Type I
I I I I I I
1===1
I I I I I I
I + I Set union I SET OF T I SET OF T I SET OF T t
+------------+------------------+--::::=--==--------+---===--==---------+--::::=--==----+
I I Set difference I SET OF T J SET OF T I SET OF T I
+------------+------------------+--::::=--==--------+---===-==---------+--===--==----t
1 * I Set J SET OF T I SET OF T I SET OF T I
I I intersection 1 -- -- I -- -- I -- -- 1
t I J t 1 t
+------------+------------------+----------------+-----------------+------------+

60497700 A 2-11

TABLE 2-6. RELATIONAL OPERATORS

+------------+-----------------+----------------+-----------------+-----------+
I l I I I

Operator I Operation I Left Operand I Right Operand I Result I
I I Type I Type I Type I
I I I I I

===!
I I I I I
I Logical I Simple type, I Compatible I BOOLEAN I
I comparison I string type, I type I I
I equal to I pointer type I I I
I +----------------+-----------------+-----------+
I I SET OF T I SET OF T I BOOLEAN I
I +--===--==--------+--===--==---------+-----------+
I I INTEGER I REAL I BOOLEAN I
I +----------------+-----------------+-----------+
I I REAL I INTEGER I BOOLEAN I

+------------+-----------------+----------------+-----------------+-----------+
I <> I Logical I Simple type, I Compatible I BOOLEAN I
I I comparison I string type, I type I I
I I not equal to I pointer type I I I
I I +----------------+-----------------+-----------+
I I I §!!. OF T I SET OF T I BOOLEAN I
I I +----------------+-----------------+-----------+
I I I INTEGER I REAL I BOOLEAN I
I I +----------------+-----------------+-----------+
I I I REAL I INTEGER I BOOLEAN I
+------------+-----------------+----------------+-----------------+-----------+
I < I Logical I Simple type, I Compatible I BOOLEAN I
I I comparison I string type I type I I
I I less than +----------------+-----------------+-----------+
I I I INTEGER I REAL I BOOLEAN I
I I +----------------+-----------------+-----------+
I I I REAL I INTEGER I BOOLEAN I
+------------+-----------------+----------------+-----------------+-----------+
I > I Logical I Simple type, I Compatible I BOOLEAN I
I I comparison I string type I type I I
I I greater than +----------------+-----------------+-----------+
I I I INTEGER I REAL I BOOLEAN I
I I +----------------+-----------------+-----------+
I I I REAL I INTEGER I BOOLEAN I
+------------+-----------------+----------------+-----------------+-----------+
I <= I Logical I Simple type, I Compatible I BOOLEAN I
l I comparison I string type, I type I I
I I less than or +----------------+-----------------+-----------+
I I equal to I SET OF T I SET OF T I BOOLEAN I
I I +--::=:_:::: _______ -+-_-::::=_:::: ________ -+-----------+
I I I INTEGER I REAL I BOOLEAN I
I I +----------------+-----------------+-----------+
I I I REAL I INTEGER I BOOLEAN I
+------------+-----------------+----------------+-----------------+-----------+
I >= I Logical I Simple type, I Compatible I BOOLEAN I
I I comparison I string type, I type I I
I I greater than +----------------+-----------------+-----------+
I I or equal to I SET OF T I SET OF T I BOOLEAN I
I I +--==--=--------+-....:=:--=---------+-----------+
I I I INTEGER I REAL I BOOLEAN I
I I +----------------+-----------------+-----------+
I I I REAL I INTEGER I BOOLEAN I
+------------+-----------------+----------------+-----------------+-----------+
I IN I Set membership I Scalar I SET OF T I BOOLEAN I
I I I type T I I I
I I I I I I
+------------+-----------------+----------------+-----------------+-----------+

2-12 60497700 A

SEPARATORS
A separator is a comment or nonprinting symbol. Separators are analogous to commas in the
English language. Zero or more separators can occur either between any two consecutive Pascal
symbols or before the first Pascal symbol in a program block. A separator must appear between
any two consecutive ·reserved words, identifiers, numbers, or labels. A space or a separator must
appear between a numeric constant and a reserved word. For example, SDIV J is invalid. The
valid expression is 5 DIV J. A separator cannot occur within a Pascal symbol.

COMMENT

A comment is a string of explanatory text enclosed in an open comment symbol (* and a close
comment symbol *). You can improve the readability of your program by adding comments, without
affecting the results produced by the program.

Comment

+-----+<-----[character]<-------+-----+
I I I I
I +<-----[end of line]<-----+ I
I I

----->((*)-----+-------------------------------------->+----->(*))----->

Nested comments are not allowed.

If the first character after the open comment symbol is a dollar sign ($), the comment is
interpreted as a list of compiler options. See section 7 for a description of available compiler
options.

NONPRINTING SYMBOL

A nonprinting symbol is either a space or the end-of-line mark.

60497700 A 2-13

BLOCKS
A block is a group of statements that is preceded by a PROGRAM, PROCEDURE, or FUNCTION heading.
One block or many blocks can be nested inside a block. The following diagram shows some boxes
that represent blocks in a program:

+---+
I . PROGRAM STUDENTS I
I I
I +---+ I
I I PROCEDURE GETSTUDENTS I I
I I I I
I I +---------------------------------------+ I I
I I I PROCEDURE GETSCORES I I I
I t J 1 I 1
I I I +-------------------------------+ I I I
I I I I FUNCTION COMPUTEAVERAGE J I J I
I I I I I I I t
I I I +------...------------------------+ t l I
I I I I I I
I · I +---------------------------------------+ I I
I I I I
I +---+ I
I I
I +---+ I
I I PROCEDURE REPORT I I
I I I I
I I +--------------------------------------+ I I
I I I PROCEDURE HEADING I I I
I I I I t I
I I +---------------------------------------+ I I
I I I I
I +---+ I
I I
+---+

The part of a program over which an identifier is valid is called the scope of the identifier.
The identifiers in each block are valid in the box in which they are declared and in any box that
the block contains.

An identifier is valid throughout the entire program if it is declared in the CONST, TYPE, VAR,
or VALUE section that follows the PROGRAM statement. An identifier that is valid throughout the
entire program is called a global variable. For example, the following identifiers are global
variables:

PROGRAM STUDENTS(CLASSFL,OUTPUT);
CONST
--NCLASSES = 3;
TYPE
--CLASS == RECORD

VAR

CLASSNAME : PACKED ARRAY[l •• 14] OF CHAR;
PLACING : ARRAY[l •• 4] OF INTEGER;-
CUTS : ARRAY[l •• 3] OF INTEGER;
SCORE : INTEGER -

CLASSFL : TEXT;
PROCEDURE GETSTUDENTS;

The identifier GETSTUDENTS is also a global variable; however, the variables that are declared in
the declaration and definition section that follows the PROCEDURE heading are valid only within
the procedure. An identifier that appears in the CONST, TYPE, or VAR section that follows the
PROCEDURE heading is called a local variable because it is valid only within the procedure.

2-14 60497700 A

The variables that are declared within a nested procedure or function definition are local to the
procedure or function. For example, the variables M and N are local to procedure HEADING;
however, the variables MAXLINES, PAGE, and LINES are available to procedure HEADING:

PROCEDURE REPORT;
CONST
--MAXI.INES = 60;
VAR

PAGE, LINES : INTEGER;
PROCEDURE HEADING;
VAR

M, N : INTEGER;

Every identifier that is not a reserved word or a predefined word must be declared or defined
before it is used, with one exception. The exception is that a pointer identifier can be
declared before the pointer is defined. For example, in the following sequence, the declaration
POINTER = tTEAMDEFN can occur before the definition of TEAMDEFN as long as both declarations
occur in the same TYPE section:

TYPE
--POINTER = fTEAMDEFN;

TEAMDEFN = RECORD

SCOPE RULES

NUMBER : INTEGER;
TEAMNAME : PACKED ARRAY[l •• 20] OF CHAR;
TEAMMEMBERS : ARRAY[l •• 3] OF MEMBER;
NEXTPNTR : POINTER -

END; (* RECORD *)

A scope is the portion of a program block over which an identifier is valid. A scope is defined
by one of the following:

A field list (excluding inner scopes)

A routine heading

A block (excluding inner scopes)

You can declare an identifier only once in each scope. Therefore, the following sequence is
invalid:

CONST
--BIG = MAXINT;

MAXINT = O;
<----- MAXINT is predefined
<----- MAXINT is redefined

If an identifier is declared both in a scope definition and in an inner scope, then the inner
scope declaration is effective in the inner scope.

An identifier in the innermost scope of a triply nested scope (a scope within a scope within the
scope that defines the identifier) cannot be redefined in the next-to-innermost scope. For
example, in the following sequence there is a conflict between the use of T in scope C and the
use of T in scope B. Therefore, the program sequence is not a valid TYPE definition section.

TYPE 1
--R= RECORD 1 I

s : RECORD 1 I I
x : f T I c I I

END· __ , .J I B I A
T INTEGER I I

END; .J I
T ,.. REAL; J

60497700 A 2-15

Generally, the declaration of an identifier is effective in the rest of the block where it is
declared. However, details for each kind of identifier are given below.

• Constant identifier, type identifier, variable identifier, enumeration constant, label, and
routine identifier:

The declaration of these identifiers is effective in the rest of the block.

• Pointer type identifier:

In the definition of a pointer type, the type identifier on the right-hand side of the
arrow (f) can be defined textually after the pointer type definition.

• Field identifier:

The declaration of a field identifier is effective in the rest of the block, but the
field identifier can be used only in RECORD variables and !!:!'.!! statements.

• Routine parameter name:

The name is effective in the rest of the block.

• Program identifier:

The program identifier has no significance within the program.

• Parameter identifier:

2-16

The identifier extends over the entire parameter list in which it is declared and also
over the block of the procedure or function that corresponds to the parameter list.
However, the scope does not include the procedure or function name or the result-type
identifier in the function. For example, in the following function, the use of G as a
formal parameter in the function heading does not conflict with the use of G as the
function result identifier:

FUNCTION F (G : INTEGER)
BEGIN
--PROC(G);

F : = SOMETHING
END;

G·
'

In the following example, the use of P as a formal parameter does not conflict with the
use of P as the procedure name. However, the use of P as a formal parameter does prevent
the procedure from calling itself because a P inside the procedure block can refer only
to the parameter.

PROCEDUBE P (VAR P
BEGIN -

INTEGER);

--p :• p + 1

~;

60497700 A

PROGRAM HEADING

A Pascal program must contain a program heading, data declarations and definitions, and a
statements block. This section describes the program heading. A program heading consists of a
PROGRAM statement.

PROGRAM STATEMENT
The PROGRAM statement identifies the program to the operating system and contains a list of the
external files that are used in the program.

Program Statement

3

---->(PROGRAM)---->[program identifier]---->+---------------------------+---->(
I I
+---->[external files]----+

)---->

Program Identifier

----->[identifier]----->

External File List

+------------------(')<--------------------------+
I I

----->(()----->+----->[file name]----->+---------------->+----->+----->())----->
I I
+----->< I)----->+
I I
+---->(+)----->+

File Name

----->[identifier]----->

A program identifier cannot be a reserved word. An external file identifier can contain at most
7 characters.

60497700 A 3-1

EXTERNAL FILE LIST WITH PREDEFINED FILES INPUT AND OUTPUT

The predefined files INPUT and OUTPUT are textfiles. A textfile is a file of characters that can
be divided into lines. The mark that indicates the end-of-line is not a character in the
character set; end-of-line is a separator whose value can be tested with the predefined function
EOLN. See section 5 for more information about the predefined function EOLN.

Textfiles INPUT and OUTPUT correspond to NOS files INPUT and OUTPUT, respectively.

You can input data from the default external input file (INPUT) or output data to the default
external output file (OUTPUT) by specifying INPUT or OUTPUT as parameters on the PROGRAM
statement. For example,

PROGRAM STUDENTS(INPUT,OUTPUT);

When you specify INPUT or OUTPUT as parameters on the PROGRAM statement, you do not have to
declare the type of the file or position the file through statements within the program because
INPUT and OUTPUT are implicitly declared and positioned as follows:

VAR
INPUT, OUTPUT TEXT;

BEGIN
--RESET(INPUT);

REWRITE(OUTPUT);

When you use INPUT or OUTPUT on the PROGRAM statement, you can use either of the following
compile and execution command pairs:

PASCAL (!=source-file-name, B=object-file-name [/options])
object-file-name

PASCAL (I-source-file-name [/options])
LGO [(external-file-name [,external-file-name •••])]

where LGO is the default object-file-name and [] encloses optional parts of the commands. The
compile command options are described in section 7.

The operating system associates the external files specified on the execute command with the
external files on the PROGRAM statement by position. Table 3-1 shows examples of how the
operating system associates external files on the execute comm.and with predefined external files
on the PROGRAM statement.

3-2 60497700 A

TABLE 3-1. EXTERNAL FILE ASSOCIATION WITH PREDEFINED FILES

+-----------------------------------+---------------------------------------+
I I I
I Given I Association I
I I I
!===
I I
I LGO (INDATA,OUTDATA) I External files on the execute
I PROGRAM STUDENTS(INPUT,OUTPUT); I comm.and and INPUT and OUTPUT
I I on the PROGRAM statement will cause
I I INDATA to be used as the input
I I file and OUTDATA to be used as
I I the output file. INDATA and
I I OUTDATA must be defined and
I I positioned through statements in
I I your program.
+-----------------------------------+---------------------------------------+
I LGO (INDATA) I Will cause INDATA to be used as the I
I PROGRAM STUDENTS(INPUT,OUTPUT); I input file and OUTPUT to be used I
I I as the output file. I
+-----------------------------------+---------------------------------------+
I LGO (,OUTDATA) I Will cause INPUT to be used as the I
I PROGRAM STUDENTS(INPUT,OUTPUT); I input file and OUTDATA to be used I
I I as the output file. I
+-----------------------------------+---------------------------------------+
I LGO (INDATA,OUTDATA) I External files on the execute I
I PROGRAM STUDENTS; I comm.and and no external files on I
I I the PROGRAM statement will cause an I
I I error when INDATA and OUTDATA are I
I I defined in your program. I
+-----------------------------------+---------------------------------------+
I LGO I No external files on the execute I
I PROGRAM STUDENTS(INPUT,OUTPUT); I comm.and and INPUT and OUTPUT on I
I I the PROGRAM statement will cause I
I I the default external files to be I
I I used. I
+-----------------------------------+---------------------------------------+
I LGO I No external files on the execute I
I PROGRAM STUDENTS; I command and no external files on I
I I the PROGRAM statement will cause I
I I an error if a file operation I
I I is attempted. I
+-----------------------------------+---------------------------------------+

EXTERNAL FILE LIST WITH USER-DEFINED FILES

You can input data from user-defined external input files or output data to user-defined external
output files by specifying them as parameters on the PROGRAM statement. For example,

PROGRAM STUDENTS(INDATA,OUTDATA);

When you specify user-defined files as parameters on the PROGRAM statement, you must declare the
type of the file and position the file through statements within the program. For example,
INDATA and OUTDATA must be declared and positioned as follows:

VAR
INDATA, OUTDATA TEXT;

BEGIN
--RESET(INDATA);

REWRITE(OUTDATA);

You must specify either the default output file OUTPUT or a user-defined output file on the
PROGRAM statement in order to do a Post Mortem Dump.

60497700 A 3-3

When you use user-defined files on the PROGRAM statement, you can use either of the following
compile and execution command pairs:

PASCAL (!=source-file-name, B=object-file-name [/options])
object-file-name [(external-file-name [,external-file-name •••])]

PASCAL (!=source-file-name [/options])
LGO [(external-file-name [,external-file-name •••])]

where LGO is the default object-file-name and [] encloses optional parts of the commands. The
compile command options are described in section 7.

The operating system associates the files specified on the execute command with the external
files specified on the PROGRAM statement by position. Table 3-2 shows examples of how the
operating system associates external files on the execute command with user-defined external
files on the PROGRAM statement.

TABLE 3-2. EXTERNAL FILE ASSOCIATION WITH USER-DEFINED FILES

+-----------------------------------+--+
I I I
I Given I Association I
I I I
!==!
I I I
I LGO (INDATA,OUTDATA) I External files on the execute I
I PROGRAM STUDENTS(INPUT,OUTPUT); I command and INPUT and OUTPUT on I
I I the PROGRAM statement will cause I
I I INDATA to be used as the input I
I I file and OUTDATA to be used as the I
I I output file. INDATA and OUTDATA I
I I must be defined and positioned I
I I through statements in your program. I
+-----------------------------------+--+
I LGO (INDATA) I Will cause INDATA to be used as the I
I PROGRAM STUDENTS(INPUT,OUTPUT); I input file and OUTPUT to be used I
I I as the output file. I
+-----------------------------------+--+
I LGO (,OUTDATA) I Will cause INPUT to be used as the I
I PROGRAM STUDENTS(INPUT,OUTPUT); I input file and OUTDATA to be used I
I I as the output file. I

+-----------------------------------+--+
I LGO (,X) I Will cause X to be used when a file I
I PROGRAM STUDENTS(INPUT,A,B); I operation that involves A is I
I I performed in your program. I
+-----------------------------------+--+
I LGO (INDATA,OUTDATA) I External files on the execute I
I PROGRAM STUDENTS; I command and no external files I
I I on the PROGRAM statement will cause I
I I an error when INDATA and OUTDATA I
I I are defined in your program. I
+-----------------------------------+--+
I LGO I No external files on the execute I
I PROGRAM I command and INDATA and OUTDATA I
I STUDENTS(INDATA,OUTDATA); I on the PROGRAM statement will cause I
I I INDATA and OUTDATA to be used I
I I as they are defined in your program. I
+-----------------------------------+--+
I LGO I No external files on the execute I
I PROGRAM STUDENTS; I command and no external files on I
I I the PROGRAM statement will cause I
I I an error if a file operation is I
I I attempted. I
I I I
+-----------------------------------+--+
3-4 60497700 A

EXTERNAL FILE LIST WITH NO FILES

If the external file list on the PROGRAM statement is empty, then the Pascal compiler does·not
scan the execution command for external file names. This means that the execution command can
contain execution-time parameters. For example, the following execution command

LGO (RPTCNT=7)

directs the Pascal compiler to perform program execution seven times.

If the external file list is empty, then Post Mortem Dump (PMD) cannot be used. You must specify
an output file on the PROGRAM statement in order to use PMD.

You can put execution-time parameters on the execution command even when there are external files
listed on the PROGRAM statement by specifying a comma on the execution command for each external
file listed on the PROGRAM statement. For example, in the following execution command and
PROGRAM statement

LGO (, , RPTCNT= 7)
PROGRAM STUDENTS(INPUT,OUTPUT);

INPUT and OUTPUT are matched by position with the omitted file names, then RPTCNT=7 is accepted
as an execution-time parameter.

EXTERNAL FILE LIST WITH INTERACTIVE FILES

To use an external file as an interactive file, you must specify a slash (/) after the external
file name on the PROGRAM statement. For example,

PROGRAM STUDENTS(INPUT/,OUTPUT);

An interactive file is treated differently in terms of when the buffers are flushed. When a READ
or READLN statement is executed, the output buffer is flushed and then the read operation
occurs. With a noninteractive file, the output buffer is flushed after the read operation
occurs. The difference between interactive and noninteractive files is important when you want
to request input from the terminal. For example, in figure 3-1, a WRITELN statement requests
input and a READ statement prompts input. Execution of the program shows that the output buffer,
which contains "enter a real number for r," is flushed after the input prompt is given.

+--+
1 PROGRAM INTER(INPUT,OUTPUT);
2 CONST
3 PI = 3.14159;
4 VAR
5 R, AREA : REAL;
6 BEGIN
7 WRITELN('ENTER A REAL NUMBER FOR R');
8 READ(R);
9 AREA :=PI * SQR(R);

10 WRITELN('THE AREA OF THE CIRCLE WITH RADIUS ',R:5,' IS',AREA)
11 END.

COMPILER-ESTIMATED 'W' OPTION 003100B.

0.044 CP SECS, 47252B CM USED.
/LGO
? 5.0
ENTER A REAL NUMBER FOR R
THE AREA OF THE CIRCLE WITH RADIUS 5.0E+oOO IS

0.002 CP SECS, 5404B CM USED.
7.85397SOOOOOOOE+o01

I
I
I
I
I

+------------------------~---+

Figure 3-1. Program INTER With INPUT as a Noninteractive File

60497700 A 3-5

To correct the program so that the request for input is written before the input prompt, you must
insert a slash after the external file INPUT in the PROGRAM statement, as shown in figure 3-2.

+--+
1 PROGRAM INTER(INPUT/,OUTPUT);
2 CONST
3 PI = 3.14159;
4 VAR
5 R, AREA : REAL;
6 BEGIN
7 WRITELN('ENTER A REAL NUMBER FOR R');
8 READ(R);
9 AREA :=Pl * SQR(R);

10 WRITELN('THE AREA OF THE CIRCLE WITH RADIUS
11 END.

',R:S,' IS' ,AREA)

COMPILER-ESTIMATED 'W' OPTION = 003100B.

0.044 CP SECS, 47252B CM USED.
/LGO
ENTER A REAL NUMBER FOR R
? 5.0

I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I

THE AREA OF THE CIRCLE WITH RADIUS
0.002 CP SECS, 5404B CM USED.

5.0E+oOO IS 7.8539750000000E+o01 I
I
I

+--+
Figure 3-2. Program INTER With INPUT as an Interactive File

An alternate way to correct the program in figure 3-1 is to insert a READLN statement before the
READ statement. The READLN statement flushes the output buffer so that the prompt for input
appears after the request for input.

A runtime and disk space penalty is extracted when an interactive flag is set on a noninteractive
input file. A heavy runtime and disk space penalty is extracted when an interactive flag is set
on a noninteractive output file.

EXTERNAL FILE LIST WITH SEGMENTED FILES (CDC)

A segmented file is a file that is divided into segments of varying lengths. A Pascal segmented
file is equivalent to a NOS multirecord file. One Pascal segment is equivalent to one NOS record
or one Record Manager section. One advantage of a segmented file is that you can manipulate
logical records within a segment. Another advantage is that you can read multirecord files, such
as CCL procedure files and loader binary files. The Pascal statement GETSEG(f ,n) is equivalent
to the NOS commands SKIPR,f ,n if n > 0 or BKSP,f,n+l if n <= O.

To use the predefined external files INPUT or OUTPUT as segmented files, you must specify a plus
sign (+) after the external file name on the PROGRAM statement. For example,

PROGRAM STUDENTS(INPUT+,OUTPUT);

The plus sign changes the predefined declaration of INPUT to the following declaration:

VAR
INPUT SEGMENTED TEXT;

3-6 60497700 A

The predefined procedures RESET(f) or REWRITE(f[,n]) must be specified for each segmented file,
except INPUT or OUTPUT, before the file is read from or written to. To read from or write to a
segmented file, use the predefined procedures GETSEG(f[,n]) and PUTSEG(f). REWRITE(f[,n]) and
GETSEG(f[,n]) accept two arguments because the second argument denotes the segment to be operated
on. Segmented files are intended for sequential forward processing, which means that
REWRITE(f[,n]) and GETSEG(f[,n]) operations are not as efficient for n <= 0 as they are for
n > O. A Boolean function, EOS(f), is available for end-of-segment testing. See section 5 for
more information about predefined procedures and functions.

60497700 A 3-7

DAT A DECLARATION AND DEFINITION

A Pascal program must contain a program heading, data declarations and definitions, and a
statements block. This section describes data declarations and definitions.

Data declarations and definitions describe the data that will be manipulated in the statements
block. Seven sections can appear in this part, although any of them may be empty. The section
headings are: LABEL, CONST, TYPE, VAR, VALUE (CDC), PROCEDURE, and FUNCTION. The sections must
appear in the listed order. """PROCE"i>URE and FUNCTION declarations are discussed in section S.

LABEL SECTION

4

The LABEL declaration section consists of definitions of numbers that will be used as statement
labels in the statement part of the routine or program block. A label is an integer in the range
[0 •• 9999]. Two labels that denote the same number are considered identical.

label Declaration Section

+-------(')<--------+
I I

----->(LABEL)----->+----->[label]----->+----->(

label

+----------<----------+
1 t

-----+----->[digit]----->+----->

)----->

The following is an example of the LABEL declaration section:

LABEL
--100, 200;

You must declare a label in the label declaration section of the routine or program block where
it is defined. A declared label must be defined in the routine or program block. You define a
label by prefixing an executable statement with the label and a colon (:). For example,

100 : A := SUCC(THURSDAY);

The statement after the label and colon cannot be a labeled statement.

You can define a label only once in the BEGIN/END block of the routine or program unit where it
is declared.

CONST SECTION
The CONST definition section consists of a number of definitions of constant identifiers. Each
definition introduces an identifier as a synonym for the value of a literal or as a synonym for
an enumeration constant from a scalar type.

Constant Definition Section

+-----------------------------------<----------------------------------+
I I

----->(CONST)-~-+--->[constant identifier]----->(=)----->[constant]----->(;)---+--->

60497700 A 4-1

Constant Identifier

---~>[identifier]----->

Constant

----->+----->[
I
+----->[
I
+----->[
I
+----->[
I
+----->[
I
+----->[
I
+----->[

Boolean literal]---------->+----->
I

character literal]-------->+
I

enumeration constant]----->+
I

identifier]--------------->+
I

integer number]----------->+
I

real number]-------------->+
I

string literal]----------->+

The following is an example of the CONST definition section:

CONST
--UPPERLIMIT = 100;

.HEADING = 'TABLE PROGRAM N = 100';

TYPE SECTION
The TYPE declaration section defines sets of values that can be assumed by variables and
expressions (operands) of that type. The following diagram shows the categories of Pascal data
types:

+----------- Data
I

Types
I

--+

+------
1

I
I
I
I

+--------- Scalar
I
I

Simple
I I
I I

----------+
I

l
BOOLEAN CHAR INTEGER

I
REAL

I
+------------------------+

----------+
I
I

User-defined
I I
I I

I
I

+----- Structured -----+
I l I I
I I I I

ARRAY FILE RECORD SET

Subrange Enumeration
of User-defined

I
I
I
I
I

Pointer

Type Definition Section

+---------------------------------<---------------------------------+
I I

----->(TYPE)-----+----->[type identifier]----->(=)----->[type]----->(;)----->+----->

Type Identifier

----->[identifier]----->

4-2 60497700 A

Type

----->+----->[
I
+----->[

scalar type]--------->+----->
I

structured type]----->+
I
+----->[

I
pointer type]-------->+

The following is an example of the TYPE definition section:

TYPE
SUITS (CLUB,DIAMOND,HEART,SPADE);
DAYS = (MONDAY,TUESDAY,WEDNESDAY,THURSDAY,
FRIDAY,SATURDAY,SUNDAY);
WEEKEND= FRIDAY •• SUNDAY;
MONTHS = (JANUARY,FEBRUARY,MARCH,APRIL,MAY,JUNE,JULY,AUGUST,
SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER);
SEASONS = (WINTER,SPRING,SUMMER,AUTUMN);
COLORS = (BLACK, RED) ;

Given the above TYPE definition section, the following relations are true:

DIAMOND <= HEART
MONDAY < SUNDAY
DECEMBER >= APRIL
WEDNESDAY = SUCC(TUESDAY)
NOVEMBER = PRED(DECEMBER)

The following relations are false:

CWB >= DIAMOND
JANUARY ... FEBRUARY
SUCC(NOVEMBER) = OCTOBER

The following expressions are undefined:

SUCC(SPADE)
PIED(MONDAY)
SUCC(DECEMBER)

SCALAR DATA TYPES

Scalar data types are the fundamental data type. A scalar data type defines or enumerates all
the possible values in an ordered set of data objects. Scalar data types are divided into two
categories: simple and user-defined.

Simple Scalar Oata Types

A simple scalar data type is an ordered set of data objects that is predefined in the Pascal
language. There are four simple scalar data types: BOOLEAN, CHAR, INTEGER, and REAL.

Simple Scalar Type

----->+----->[BOOLEAN type]----->+----->
I I
+-----> [CHAR. type]------>+
I I
+----->[INTEGER type]----->+
I I
+----->[REAL type]-------->+

60497700 A 4-3

BOOLEAN Type

BOOLEAN type is predefined as the ordered set [TRUE, FALSE], where TRUE> FALSE.

CHAR Type

CHAR type is predefined as the ordered set of characters used at your site. Possible character
sets are the CDC Scientific (63 and 64) and the CDC ASCII (63 and 64). Appendix A shows the
translations between the Pascal characters and the CDC Scientific and CDC ASCII characters.

The characters in any character set are numbered. The number that describes the position of the
character within the set is called the ordinal number. The ordinal number can be obtained from
the following Pascal character table by adding the row and column number for the character.

You

l 0 1 2 3 4 5 6 7 8 9
----+--------------------------------------

0 A B C D E F G H I

10 J K L M N 0 p Q R s

20 T u v w x y z 0 1 2

30 3 4 5 6 7 8 9 + *
40 I () $ I

50 " & ? < >
60 @ \ t

can produce the table with the following program:

PROGRAM TABLE(OUTPUT) ;
VAR

CHARACTER CHAR;
BEGIN
-----vRITELN(' 0 1 2 3 4 5 6 7 8 9');

WRITE(O: 3,' ':3);
FOR CHARACTER : = 'A' TO ' • ' DO BEGIN
- IF (ORD(CHARACTER)MOD 10= 0) THEN BEGIN

WRITELN;
WRITE(ORD(CHARACTER):3)

END; (* IF *)
WRITE(CHARACTER:3)

END; (* FOR *)
END.--rw TABLlf'"T)

The character that precedes another character in the character set will always have a greater
ordinal number. For example, this statement will always be true for any two characters Cl and C2:

(Cl < C2) = (ORD(Cl) < ORD(C2))

INTEGER Type

INTEGER type is predefined as the ordered set (-2**48 + 1 •• 2**48 - 1] according to the natural
ordering of integer numbers. Actually, integers in the range [-2**59 + 1 •• 2**59 - l] can be
stored, but the only operations that are executed correctly in the extended part of the range
are: addition, subtraction, taking the absolute value, comparisons, and multiplication and
division by certain constants. These constants must be either a power of two or the sum or
difference of two powers of two.

4-4 60497700 A

REAL Type

REAL type is predefined as the ordered set [-10**322 •• -10**-293, 0, 10**-293 •• 10**322]
according to the natural ordering of real numbers. A value of REAL type is represented in the
CDC floating point format of a 48-bit mantissa and 11-bit sign and exponent; there are at least
14 significant decimal digits.

User-Defined Scalar Data Types

A user-defined scalar data type is an ordered set of data objects that are constructed from a
subset of the simple scalar data types. There are two user-defined scalar data types:
enumeration of a user-defined type and subrange type.

Enumeration of a User-Defined Type

Enumeration of a user-defined type is a set of user-defined constants.

Enumeration of a User-Defined Type

-+---------------(,)<---------------+
I I

----->(()------+----->[enumeration constant]----->+----->())----->

Enumeration Constant

----->[identifier]----->

The following are examples of enumeration of user-defined type definitions:

TYPE
--WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY);

WEEKENDS = (SATURDAY,SUNDAY);
FACECARDS = (JACK,QUEEN,KING);

A constant that appears in one enumeration of a user-defined type definition cannot appear in
another enumeration of a user-defined type definition because an expression that involves the
common member would be ambiguous. For example, the definition DAYSOFF = (SATURDAY,SUNDAY,MONDAY);
cannot appear in the TYPE section above because the expression SUNDAY > THURSDAY would be
ambiguous.

Subrange Type

Subrange type is a subset of either a simple scalar data type (except REAL type) or an
enumeration of a user-defined type. The subset is defined by specifying minimum and maximum
values separated by a double period (••). The minimum bound must not exceed the maximum bound,
and the bounds must be of the same simple scalar data type.

Subrange Type

----->[minimum bound]---->(••)----->[maximum bound]----->

Minimum Bound

--->[constant]---->

60497700 A 4-5

Maximum Bound

----->[constant]----->

The following are examples of subrange type declarations:

TYPE
--DAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY);

WEEKEND = SATURDAY •• SUNDAY;

TYPE
--CARDS = (ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGBT,NINE,TEN,

JACK,QUEEN,KING);
FACECARDS = JACK •• KING;

STRUCTURED . DAT A TYPES

A structured type is composed of scalar types. The definition of a structured type specifies the
structuring method and the component types.

There are four kinds of structured types: ARRAY, FILE, RECORD, and SET.

Structured Type

----->+----->[FILE type 1----------------------------------->+----->
I I
+----->[SET type]------------------------------------>+
I - I
+-------------------->+-----+----->[ARRAY type]------>+
I I I -- I
+----->(PACKED)-----+ +----->[RECORD type 1----->+

ARRAY Type

An array is a set of components that is identified by a single name. ARRAY type describes the
set of components in the array. The number of components is specified by an enumeration type,
which is called the index type.

ARRAY Type

+----------(,)<-----------+
I I

------>(ARRAY)----->([)-----+----->[index type 1----->+----->(])----..,..+
I

+---+
I
+----->(OF)----->[component type 1----->

Index Type

4-6

----->+----->[
I
1----->[
I
1----->[
I
+----->[

BOOLEAN type 1---------->+----->
I

CHAR type 1------------->I
I

INTEGER type 1---------->I
I

user-defined type 1----->+

60497700 A

Component Type

----->[type]----->

The index type is static and cannot be varied dynamically. This implies that the index type must
be known at compilation time.

A shorthand notation for the type

ARRAY[Tl] OF ARRAY[T2] OF T3

is the notation

ARRAY[Tl,T2] OF T3

This is called a multidimensional array. The number of index types is called the dimension of
the array. The array with index type T2 is called the innermost array.

You can use arrays either whole or by component. A whole array is selected by its array
variable. A component of an array is selected by the array variable followed by an index
enclosed in brackets. The total number of index expressions must not exceed the dimension of the
array. Furthermore, the value of each index expression must be an enumeration type that is
compatible with the corresponding index type.

Indexed Variable

----->[array variable]----->([)----->[index]----->(])----->

Array Variable

----->[variable]----->

Index

+----------(')<----------+
I I

-----+----->[expression]----->+----->

The notations NAME[Al][A2] and NAME[Al,A2] can be used interchangeably.

The following are examples of array declarations:

TYPE
--HOURS = 8 •• 16;

MATRIX= ARRAY[l •• N,1 •• N] OF REAL; (* N IS AN INTEGER CONSTANT*)
COUNTER = ARRAY ['A' •• 'Z'] OF INTEGER;
NAMEOFDAY = ARRAY[DAYS] OFALFA;
OCCUPIED = ARRAY[DAYS,HOURS] OF BOOLEAN;

VAR -- -
A,B,C : MATRIX;

The following statements show array denotations:

A := B; (* THE ENTIRE MATRIX B IS COPIED INTO A *)
C[I] := A[I]; (* ONE ROW OF A IS COPIED INTO ONE ROW OF C *)
C[I,J] := A[K,L]; (*ONE COMPONENT OF A IS COPIED TO ONE COMPONENT

OF C *)
OCCUPIED[WEDNESDAY,9] := TRUE;
OCCUPIED[FRIDAY,15] :=FALSE;

60497700 A 4-7

The following statements initialize B to the identity matrix:

FOR I := 1 TO N DO BEGIN
- FOR J :-;-1 TON DO B[I,J] := O;

B[I,I] := 1- -
END; (* FOR *)

The following statements provide an alternative way of initializing B to the identity matrix:

FOR J := 1 TO N DO B[l][J] := O;

FOR I : = 2 TO N DO B [I] : = B [1] ;

FOR I : = 1 TO N DO B [I , I] : = 1 ;

FILE Type

A file is a fixed number of like components that are called records. FILE type describes the
records in the file. The declaration of a file variable introduces a file buffer to the
component type. The file buffer is denoted by the file variable followed by an arrow (f).

FILE Type

----->+-'---------------------->+-----)(FILE OF)-----)[type]----->
I I
+-----)(SEGMENTED)----+

The file buffer is a template that can be positioned over any part of the file. The template
isolates the part of the file that you want to read from or write to. The template is moved by
certain file operations. The file operations cannot alternate between reading and writing; a
file can be either read from or written to.

File Buffer

----->[file variable]----->(t)----->

File Variable

----->[variable]----->

The sequential processing and the existence of a file buff er suggests that files are associated
with secondary storage and peripherals. Exactly how the components are allocated varies.
Usually only a few components are present in primary storage at a time, and only the component
denoted by the file buffer is accessible.

A special mark is placed after the last component of the file. This mark is called the
end-of-file (EOF) mark.

RECORD Type

A record is a fixed number of components called fields. RECORD type describes the fields in a
record. A field list can be empty or can have a fixed part, a fixed part and a variant part, or
a variant part.

RECORD Type

----->(RECORD)----->[field list]-----)(END)----->

4-8 60497700 A

Field List

~--->+--->+--->
I I
+---->[fixed part]---->+----------------------------------->+----+-------------->+
I I I I I
I +---->(;)---->[variant part]---->+ +---->(;)---->+
I I
+---->[variant part]--------------------------------------->+

Fixed Part

+-------------------------------(; ><----------------------------------+
I
I +-------------(,)<-------------+
1 I I

----->+----->+----->[field identifier]----->+----->(

Variant Part

j

I
I

)----->[type]----->+----->

+--------(;)<---------+
I I

---->(CASE)---->[tag field]----->(OF)-----+----->[variant]----->+----->

Tag Field

----->+----->[tag field identifier]----->(:)----->+----->[tag field type]----->
I I
+----------------------->-----------------------+

Tag Field Identifier

~--->[type identifier]----->

Tag Field Type

----->[type identifier]----->

Variant

----->[case label list]----->(:)----->(()----->[field list]----->())----->

The variant part can have a number of variants. Multiple variants must have a tag field
containing a value that indicates which variant is assumed by the field list at a given time.
The tag field type can be an enumeration type, a FILE type, or a type that contains a FILE type.
Every element of the enumeration type must be present in one of the tag fields. A tag field must
be represented by a constant followed by a variant. All constants must be distinct. For
example, RECORD CASE INTEGER OF ••• cannot be used in practice because the tag field would
require that each integer be used as a constant label; one solution to this problem is the
following sequence:

TYPE
--TAGTYPE

RECTYPE

60497700 A

1 •• 3;
RECORD CASE TAG

1 (FIELD!
2 : ();
3 : (FIELDX

END; (* RECORD *)

TAGTYPE OF
INTEGER);

REAL)

4-9

No constant that prefixes a variant can lie outside the range of its tag type. For example,
given the tag type defined above, the following sequence is not valid because the constant 4 lies
outside the range of the tag type TAGTYPE:

RECORD CASE TAGTYPE OF 1, 2, 3 : () ; 4 : () ~;

A tag field cannot be passed as an actual variable parameter. A tag field can be passed as a
value parameter. A tag field can have the same spelling as a type identifier. For example, the
following sequence is valid:

RECORD CASE INTEGER BOOLEAN OF
TRlJE:();
FALSE : ()

END; (* RECORD *)

A record can be used either as a whole or as a component. A component of a record is selected by
the record variable, followed by the field identifier of the component, separated by a period.

The following lines show examples of record types:

TYPE
CARD TYPE
COMPLEX =

(NORMAL,WILD);
RECORD

R,I : REAL
END; (* COMPLEX RECORD *)

DATE RECOml
ORDINAL : 1 •• 31;
DAY : DAYS;
MONTH : . MONTHS;
YEAR : 1900 •• 2000

END; (* DATE RECORD *)
PLAYINGCARD = RECORD

CASE T : CARDTYPE OF
--NORMAL : (SUIT : SUITS; RANK : 2 •• 14);

WILD : (FACE : (BLANK,JOKER))
END; (* PLAYINGCARD RECORD *)

If you assume the following declarations,

VAR
S ,X, Y : COMPLEX;
HAND : ARRAY[l •• 13] OF PLAYINGCARD;

then the following are examples of record denotations:

S.R := X.R + Y.R; (* THE REAL COMPONENT OF S BECOMES THE SUM OF THE
REAL PARTS OF X AND Y *)

HAND[l].T :=NORMAL;
HAND[l].SUIT :=CLUB;
HAND[l].RANK := 8;
HAND[2].T :=WILD;
HAND[2].FACE :=JOKER;

Note that the tag field is used as any other field is used.

SET Type

A set is a group of subsets of some enumeration type. The type SET describes the group of
subsets of some enumeration type.

4-10 60497700 A

SET Type

--->(SET .Q!)---->I base type]---->

Base Type

---->+----->[
I
+----->(
I
+---->[
I
+----->[

BOOLEAN type]---------->+----->
I

CHAR type]------------->!
I

INTEGER type]---------->+
I

user-defined type]----->+

The ordinal ntDDber of the largest element cannot exceed 58, and the ordinal number of the
smallest element cannot be negative. It follows that a SET type can contain at most 59
elements. SET OF CHAR is illegal.

Set Value

----->()----->+----------------------------------->+----->(])----->
I 1
I +--------(,)<---------+ I
I I I I
+----->+----->[element]----->+-----+

Element

----->+---------------------->[expression]----------------------->+----->
I I
+----->[expression 1]----->(••)----->[expression 2]-----+

A set value denotes a set consisting of the expression values. The form [M •• N] denotes the set
of all elements i of the base type such that M <=I<= N. If M > N then [M •• N] denotes the empty
set. The set expressions must all be of compatible enumeration types. The empty set is denoted
[] and is compatible with any SET type.

For an example of a SET type, assume that A and B are of type T and T is a SET type. Then the
following expression-rB true:

(A - B) + (B - A) = A + B - A * B

Set A contains the expressions (A - B) and (A* B). Set B contains the expressions (B - A)
and(A*B).

If you assume the following declarations,

TYPE
--WORKINGDAYS = SET OF DAYS;

CHARACTERS = SET OF' A' •• '+';
VAR --

WORKINGDAY : WORKINGDAYS;
LETTERS, DIGITS, FIRST, FOLLOWING: CHARACTERS;
LAZY : BOOLEAN;

60497700 A 4-11

then the following lines are examples of applications of set and set operators:

WORKINGDAY : = [MONDAY •• FRIDAY] ;
LAZY := NOT(SATURDAY IN WORKINGDAY);
LETTERS -;;;-['A' •• 'Z'];
DIGITS := ['O' •• '9'];
FIRST :=LETTERS;
FOLLOWING := FIRST + DIGITS + ['+'];

The following relations are all true:

FIRST * DIGITS = []
FOLLOWING - (DIGITS+ ['+'])=LETTERS
FOLLOWING * FIRST = LETTERS
ORD([MONDAY, TUESDAY, THURSDAY]) = 1 + 2 + 8

POINTER DAT A TYPE

Pointers are used for constructing dynamic data structures.

Pointer Type

~-->(t)----->[type identifier l----->

The type identifier cannot denote a type containing a file type. The type identifier may be
defined textually after the pointer type.

The value of a pointer variable is either NIL or a reference to a variable of the specified
type. The pointer value NIL belongs to every pointer type; it points to no variable at all. The
variable referenced by a pointer is denoted by the pointer variable followed by an arrow (f).

Referenced Variable

~--->[pointer variable]----->(t)----->

Pointer Variable

----->[variable]----->

For example, a list structure can be declared as follows:

TYPE
--PLIST = t LIST;

LIST = RECORD
INF • ,
NEXT : PLIST

END; (* LIST RECORD *)
VAR

BEAD PLIST;

A list structure with two elements can be created as follows:

4-12

NEW(HEAD);
HEADt.INF :=
NEW(HEADf .NEXT);
HEADt.NEXTt. INF := ;
HEADt.NEXTt.NEXT := NIL;

60497700 A

The declaration of a pointer variable causes the computer to allocate space for the pointer.
Space is not allocated for a referenced variable until the predefined procedure NEW is called.

The type of a reference variable is the type specified in the declaration of the pointer type.

DATA TYPE COMPATIBILITY

Two operands must be compatible in type. In general,

Two types are compatible if they are the same type.

A subrange type is compatible with the type it is a subrange of.

Two subrange types of the same type are compatible.

Two string types are compatible if they have the same length.

Two set types are compatible if their base types are compatible.

The type of the empty set [] is compatible with any set type.

The type of the pointer value NIL is compatible with any pointer type.

The type INTEGER and any subrange type of INTEGER are compatible with the type REAL except in the
following cases:

An operand of type REAL cannot be assigned to a variable or function identifier of type
INTEGER.

An actual parameter of type REAL cannot be passed to a formal parameter of type INTEGER.

VAR SECTION
The VAR declaration section defines the name and type of a variable. Each variable in the
statement part must be declared in the VAR declaration section prior to its use.

Variable Declaration Section

+------------------------------------<----------------------------------+
I I
I +------------(,)<-------------+ I
I I I I

--->(VAR)---+--->+--->[variable identifier]--->+--->()--->[type]--->()--->+--->

Variable Identifier

----->[identifier]----->

You can declare several variables of the same type in a single list of identifiers followed by
the type.

If a variable is of array type or record type, a single component is denoted by the identifier
followed by a selector specifying that component.

The following is an example of both a TYPE and a VAR declaration section:

TYPE
--WEEKEND
VAR

GOODDAY

60497700 A

FRIDAY •• SUNDAY;

WEEKEND;

4-13

If the variable GOODDAY has the value FRIDAY, then the following relations are true:

PRED(GOODDAY) = THURSDAY
SUCC(THURSDAY) = GOODDAY

VALUE SECTION {CDC)
The VALUE declaration section initializes the variables that are declared in the statement part.

Value Declaration Section

-1---+
I I

-->(VALUE)---1--->[variable identifier·]--->(=)--->[value spec]--->(;)--->-t--->

Value Specification

----->+----->[constant]------------->+----->
I l
-1----)(NIL)---------------->+
I I
-1----->[set value]------------>+
I I
-1----->[structured value]---->+

Structured Value

----->+----------------------------->+----->[structured value specification]----->
I I
-1----->[type identifier]-----+

Structured Value Specification

+----------------------------(')<------------------------------+
I I

---->(()----1----------------------------->+---->[value specification]---->+---->())---->
I I
+---->[repetition factor]----+

Repetition Factor

----->[constant]----->(OF)---->

A variable of a simple type can be initialized with a constant of the same type.

A variable of pointer type can only be initialized with NIL.

A variable of set type can be initialized with a set value.

A variable of ARRAY or RECORD type can be initialized with a structured value.

A structured value consists of a number of component values, one for each component of the
structured type. Each component value must be of the same type as the corresponding component
type. If the component type is simple, pointer, or set type, the corresponding component value
must follow the rules just given. If a component type is itself an ARRAY or RECORD type, the
corresponding component value must be a structured value {this rule is used recursively). A
multidimensional array is considered to be an array of arrays.

4-14 60497700 A

A type identifier can be present in a structured value. If it is present, it must denote the
same type as the type of the variable being initialized.

The type identifier can be omitted, in which case the rules just given apply.

The following is an example of CONST, TYPE, VAR, and VALUE declaration sections:

CONST
--N- = 5;

SIZE = 3;
TYPE
--VECTOR = ARRAY[1 •• N] OF INTEGER;

VAR

NAME PACKED" ARRAY [17:" 8] OF CHAR;
NODE = RECORD--

END;

ID : NAME;
NEXT = t NODE

MATRIX= ARRAY[l •• SIZE, ! •• SIZE] OF INTEGER;
DOUBLEVECTOR == ARRAY[l •• 2] OF VECTOR;

X,Y :VECTOR;
P,S : NAME;
Ml ,M2 : MATRIX;
D DOUBLEVECTOR;
I : INTEGER;

VALUE
--X = VECTOR(!, 1,2,2,3);

P = ('PETER ');
S = ('J','O','H','N',4 OF'');
Ml = MATRIX((2,3,5),(7,~13),(17,19,23));
M2 = ((3 OF 0),(3 OF 1),(1,2,3));
D = DOUBLEVECTOR(2-0F VECTOR(N OF O));
I= 7; - -

A repetition factor can be used to initialize many array elements with the same value. The
constant in a repetition factor must be of type INTEGER.

Packed variables can be initialized with a string literal.

A variable of type CHAR can also be initialized with a string literal.

A record with a variant part can be initialized; the tag field value determines which variant is
followed. Even if the tag field has no field identifier, the tag field value must be specified
to select a variant.

60497700 A 4-15

ROUTINES 5

Routine is a general term for a procedure or function. The differences between a procedure and a
function are that while both are subprograms, a function returns a result and a function
identifier can be used in an expression. This section describes all aspects of routines,
including routine declaration, routine parameter lists, directives, and predefined routines.

DECLARING A ROUTINE
A procedure is declared in the procedure section in the data declaration and definition part of
the block in which it is used.

Procedure Declaration Section

----->[procedure heading

Procedure Heading

]----->+----->[
I
+----->[
I
+----->[

internal block]----->+----->
I

forward block]------>+
I

external block]----->+

----->(PROCEDURE)----->[procedure identifier]-----+
I

+--+
I
+----->[formal parameters]----->(;)----->

Procedure Identifier

----->[identifier]----->

Formal Parameters

----->(()----->+----->[
I
+----->[
I
+----->[
I
+----->[

value parameter]--------->+----->())----->
I

variable parameter]------>+
I

procedure parameter]----->+
I

function parameter]------>+

Value Parameter

+----------(')<----------+
I I

-----+----->[identifier]----->+----->()----->[value type]----->

Variable Parameter

+----------(')<----------+
I I

----->(VAR)-----+----->[identifier]----->+----->()----->[variable type]----->

60497700 A 5-1

Procedure Parameter

----->[procedure heading]----->

Function Parameter

----->[function heading]----->

Internal Block

----->[Declarations]----->[Compound Statement]----->

Declarations

----->+-------------------------------->+----->
I I
+----->[LABEL section]--------->+
I ------ I
+----->[CONST section]--------->+
I I
+----->[TYPE section]---------->+
I I
+----->[VAR section]----------->+
I I
+----->[PROCEDURE sectfon]----->+ Notice that a~
I I section is not
+----->[FUNCTION section]------>+ allowed.

Forward Block

-----){ FORWARD)----->()----->

External Block

----->+-----){ EXTERN)------>+----->()----->
I I
+---->(FORTRAN)----->+

Formal parameters are discussed later in this section under the heading Parameters. The FORWARD,
EXTERN (CDC), and FORTRAN (CDC) directives are discussed later in this section under the heading
Directives.

The following is an example of a PROCEDURE section:

PROCEDURE INSERT(ELEMENT COMPONENTYPE);

PROCEDURE UPDATE(VAR ELEMENT COMPONENTYPE);

A function is declared in the FUNCTION section in the data declaration and definition part of the
block in which it is used.

5-2 60497700 A

Function Declaration Section

----->[function heading]----->+----->[
I
+---->[

internal block]----->+----->
I

forward block]------>+
I
+----->[

I
external block]----->+

Function Heading

---->(FUNCTION)----->[function identifier]-----+
I

+---+
I
+----->[formal parameters]----->(:)----->[type]----->(

Function Identifier

----->[identifier]----->

Formal Parameters

----->(()----->+----->[
I
+----->[
I
+----->[
I
+----->[

Value Parameter

value parameter]--------->+----->(
I

variable parameter]------>+
I

procedure parameter]----->+
I

function parameter]------>+

+----------(' ><----------+
I I

)----->

))----->

-----+----->[identifier]----->+----->()----->[value type]----->

Variable Parameter

+----------(')<----------+
I I

----->(VAR)-----+----->[identifier]----->+-----){)----->[variable type]----->

Procedure Parameter

----->[procedure heading]----->

Function Parameter

----->[function heading]----->

Internal Block

----->[Declarations]----->[Compound Statement]----->

60497700 A 5-3

Declarations

----->+-------------------------------->+----->
I I
+----->[LABEL section]--------->+
I ------ I
+----->[CONST section]--------->+
I -- I
+----->[TYPE section]---------->+
I I
+----->[VAR section]----------->+
I - I
+----->[PROCEDURE section]----->+ Notice that a VALUE
I I section is not
+----->[FUNCTION section]------>+ allowed.

Forward Block

----->(FORWARD)----->()----->

External Block

----->+-----){ EXTERN)------>+-----){)----->
I I
+----->(FORTRAN)----->+

The type identifier specifies the type of the function; the type must be a scalar or pointer type.

The block of a function must contain at least one assignment to the function identifier. If more
than one assignment is made, then the last executed assignment is the current value of the
function identifier.

Formal parameters are discussed later in this section under the heading Parameters. The FORWARD,
EXTERN (CDC), and FORTRAN (CDC) directives are discussed later in this section under the heading
Directives.

The following is an example of a FUNCTION section:

FUNCTION ZERO(LOWER,UPPER : REAL; FUNCTION F(X REAL) REAL) REAL;

.
FUNCTION MYSQRT(X REAL) REAL;

CALLING A ROUTINE
A procedure is called by specifying the procedure name and any actual parameters.

Procedure Call

---->[procedure name]---....;->+------------------------------->+----->
I I
+----->[actual parameters]---->+

5-4 60497700 A

Actual Parameters

---->(()----->+----->[
I
+----->[
I
+----->[
I
+----->[

value parameter]--------->+----->(
I

variable parameter]------>+
I

procedure parameter]----->+
I

function parameter]------>+

))----->

A function is called by specifying the function name and any actual parameters.

Function Call

----->[Function Name]----->+-------------------------------->+----->

Actual Parameters

---->(()----->+----->[
I
+----->[
I
+----->[
I
+----->[

I I
+----->[Actual Parameters]----->+

value parameter]--------->+----->())----->
I

variable parameter]------>+
I

procedure parameter]----->+
I

function parameter]------>+

Calling a routine binds the actual parameters to the formal parameters, allocates local
variables, and executes the block of statements that define the routine. When the block of
statements is completed, local variables are deallocated and execution is resumed with the
statement that follows the routine call.

A routine can be called recursively, which means that a routine can call itself within the block
that defines it. Routines can be nested to ten levels. At runtime, however, dynamic routine
calls can be nested to any level. Variables in a routine are associated with a specific call;
they exist from the time the routine is called until the block of statements is done. If a
routine is called recursively, several versions of the variables exist simultaneously, one for
each uncompleted call.

Actual parameters and binding are discussed in the following paragraphs.

PARAMETERS
A parameter is a variable that is specified on a procedure or function call or on a procedure or
function heading. Multiple parameters in a list must be separated by a comma. The collection of
parameters, called the argument list, must be enclosed within parentheses.

There are two categories of parameters: formal parameters and actual parameters. Formal
parameters appear on a procedure or function call. Actual parameters appear on a procedure or
function heading.

Formal and actual parameter pairs can be value parameters, variable parameters, procedure
parameters, or function parameters.

Formal and actual parameters are bound, or associated, to each other when the procedure or
function is called. How an actual parameters is bound to its formal parameter depends on the
kind of parameter pair.

60497700 A 5-5

VALUE PARAMETERS

To bind two value parameters (call-by-value), the type of the actual parameter must be compatible
with the type of the formal parameter. The actual parameter must be a value. The value of the
actual parameter becomes the initial value of the formal parameter. Changes to the formal
parameter within the block does not affect the value of the actual parameter.

Call-by-value is preferred when the routine does not return a result. However, call-by-value is
not an efficient use of memory when the value parameter is a large structured type.

VARIABLE PARAMETERS

To bind two variable parameters (call-by-reference), the type of the actual and formal parameter
must be the same. The actual parameter must be a variable. The value of the actual parameter
becomes the initial value of the formal parameter. Changes to the formal parameter within the
block can affect the value of the actual parameter.

Each call-by-reference parameter in the function or procedure heading must have the word VAR in
front of· it in the argument list. The following sequence is an example of a call-by-reference:

TYPE
--EXPRESSION = ARRAY[l.. 72] OF CHAR;
VAR -- -

STRINGIN, STRINGOUT : EXPRESSION;
PROCEDURE COUNTBLANK(VAR STRIN, STROUT EXPRESSION);

BEGIN

COUNTBLANK.(STRIN, STROUT);

END· __ ,
A component of a packed structure can be used as a call-by-reference parameter only if it
occupies a whole multiple of 60-bit machine words.

An element or a field of a packed variable cannot be used as a call-by-reference parameter;
however, the whole packed variable can.

5-6 60497700 A

PROCEDURE AND FUNCTION PARAMETERS

To bind two procedure parameters or two function parameters, the actual parameter list must be
congruous with the parameter list of the formal parameter. For example, in the following
sequence, the procedure PROCl parameter list must be congruous with the procedure F parameter
list or else the statement X(PROCl) will not be valid:

PROGRAM MAIN;
PROCEDURE X(PROCEDURE F(A, B

BEGIN

END; (* X *)
PROCEi>URE PROC 1 (R, S

BEGIN

END; (* PROCl *)
BEG:nr-
--X(PROCl)
END. (* MAIN *)

REAL);

REAL));

Two formal parameter lists are congruous if they contain the same number of formal parameter
sections and if the corresponding formal parameter sections match. Two formal parameter sections
match if any of the following is true:

• Both are value parameter specifications, both contain the same number of parameters, and both
type identifiers represent the same type.

• Both are variable parameter specifications, both contain the same number of parameters, and
both type identifiers represent the same type.

• Both are either procedural parameter specifications or functional parameter specifications,
both formal parameter lists are congruous, and both result types (functional parameter
specifications only) are the same.

• Both are either value conformant array specifications or variable conformant array
specifications, both contain the same number of parameters, and both conformant array schemas
are equivalent. Two conformant array schemas are equivalent if all of the following
statements are true:

There is a single index type specification in each conformant array schema.

The ordinal type identifier in each index type specification denotes the same type.

Either the component conformant array schemas are equivalent or the type identifiers of
the conformant array schemas denote the same type.

Both conformant array schemas are either packed or not packed.

The following parameter list pairs are not congruous:

(A, B : INTEGER)
(A : INTEGER; B : INTEGER)

(A, B : ARRAY[LO •• HI : INTEGER] OF REAL)
(A:ARRAY[LOl. .Hll: INTEGER] OF REAL; B:ARRAY[L02 •• HI2: INTEGER] OF REAL)

(X, Y : REAL; P, Q : CHAR)
(X : REAL; Y : REAL; P, Q : CHAR)

60497700 A 5-7

DIRECTIVES
Directives tell the compiler where, in relation to the program unit, the block of the procedure
or function occurs. There are three directives: FORWARD, EXTERN (CDC), and FORTRAN (CDC).

FORWARD DIRECTIVE

The FORWARD directive indicates a block that is declared at one point in your program and is
defined at a later point in your program. You use a FORWARD directive when two routines call
each other; there is a conflict in this situation because the scope rules state that a procedure
or function must be defined before it is called. The FORWARD directive postpones the definition
of the procedure or function body.

Forward Block

~--->+----->[procedure heading]----->+----->(FORWARD)----->(
I I
+----->[function heading]------>+

The following is an example of the FORWARD directive:

FUNCTION·G(X REAL)
FORWARD;
FUNCTION F(X REAL)

BEGIN

G(X);

END; (* F *)

FUNCTION G;
BEGIN

F(X);

END; (* G *)

REAL· '
REAL· '

EXTERN (CDC) AND FORTRAN (CDC) DIRECTIVES

)----->

The EXTERN (CDC) and FORTRAN (CDC) directives indicate an external block. An external block is a
block that is declared in your program and is defined outside your program. The EXTERN and
FORTRAN directives allow you to access a library of general purpose subprograms. You must use
the FORTRAN directive when the subprogram is written in FORTRAN.

5-8 60497700 A

External Block

----->+----->[procedure heading]----->+----->+----->(EXTERN)------>+----->()----->
I I I I
+----->[function heading]------>+ +----->(FORTRAN)----->+

Table 5-1 shows the FORTRAN routine parameter types that correspond to Pascal routine parameter
types.

TABLE 5-1. CORRESPONDING FORTRAN AND PASCAL PARAMETER TYPES

+------------------+------------------+-------------------------------------+
I I I

Parameter Type I Parameter Type I Remarks I

in a FORTRAN I in a Pascal I I
Routine I Routine I I

I I I
===!

I I I
INTEGER I INTEGER I With variable parameters of I

I I INTEGER, REAL, DOUBLE, and I
I I COMPLEX types, a negative zero I
I I can be returned by the FORTRAN I
I I routine. To eliminate this I
I I possibility, you should add a I
I I zero to the value upon returning I
I I to the Pascal routine. I

+------------------+------------------+ I
I REAL I REAL I I

+------------------+------------------+ I
I DOUBLE I RECORD I I
+------------------+ P 1 : REAL; I I
I COMPLEX I P2 : REAL I I
I I END; I I
+------------------+--===--------------+-------------------------------------+
I LOGICAL l INTEGER I Return a negative value for TRUE I

I I I and a positive value for FALSE. I
+------------------+------------------+-------------------------------------+
I DIMENSION I ARRAY I You must either transpose multi- I

I I --- I dimensional array values before I

I I I entering a FORTRAN routine or I

I I I remember that array values are I

I I I stored by row when I

I I I manipulating them in the FORTRAN I
I I I routine. Always set the lower I

I I I array bound to 1. I

+------------------+------------------+-------------------------------------+
I SUBROUTINE I PROCEDURE I I

+------------------+------------------+-------------------------------------+
I FUNCTION I FUNCTION I The result returned to the Pascal I

I I I routine cannot be COMPLEX, I
I I I DOUBLE, or a negative zero. I
I I I To eliminate the possibility of I
I I I a negative zero, you should add I
I I I a zero to the value upon I
I I I returning to the Pascal module. I
I I I I
+------------------+------------------+-------------------------------------+

60497700 A 5-9

PREDEFINED PROCEDURES
Predefined procedures are divided into three categories: file handling procedures, dynamic
allocation procedures, and transfer procedures. Table 5-2 shows the predefined procedures and
gives a brief description of the procedure. See the paragraphs following the table for a more
detailed description of the predefined procedures.

TABLE 5-2. PREDEFINED PROCEDURES

+------------------------+--+
I l I
I Predefined Procedure I Description I
I I I
!===!
I I
I DISPOSE(p[,c •••]) Releases the variable that is referenced I
I by p. Any pointer that points to the I
I variable referenced by p becomes undefined I
I I and the pointer itself becomes inaccessible. I
+------------------------+--+
I GET(f) I Advances the pointer in file f to the I
I I beginning of the next component and places I
I I the value of the component into the buff er I
I I variable ft. I
+------------------------+--+
I GETSEG(f[,n)) I Begins reading at the beginning of the I
I (CDC) I nth segment counting from the current I
I I position in file f. GETSEG(f, 1) is I
I I equivalent to GETSEG(f). I
+------------------------+------------------------------------~-----------+

HALT(a) Terminates the program, writes the argument
(CDC) in the dayfile of the job, and produces a

I I dump. I
+------------------------+--+
I MESSAGE(a) I Writes a in the dayfile of the job. I
I (CDC) I I
+------------------------+--+
I NEW(p[,c •••]) I Allocates a new variable and assigns a I
I I reference to it. I
+------------------------+--+
I PACK(a,i,z) I Takes the elements of array a beginning at I
I I subscript position i and copies them into I
I I packed array z beginning at the first I
I I subscript position. I
+------------------------+--+
I PAGE(f) I Positions the line printer at the top of a I
I I new page before printing the next line in I
I I file f. I
+------------------------+--+
I PUT(f) I Appends the value of file buffer variable I
I I ft to file f. I
+------------------------+--+
I PUTSEG(f[,n]) I Closes the current segment of file f by I
I (CDC) I putting an end-of-segment mark. I
+------------------------+--+
I READ(f,v[,v •••]) I Positions file f and gets the referenced I
I I variables. If a file is not specified, I
I I INPUT is assumed. I
I I I
+------------------------+----------------------(Continued on next page)--+

5-10 60497700 A

TABLE 5-2. PREDEFINED PROCEDURES

+--(Continued)-----------t--+
I I I
I Predefined Procedure I Description I
I I I
!===!
I I I
I READLN(f,v[,v •••]) I Gets the referenced variables from file f. I
I I When a READLN is completed, any remaining I
I I values on the current input line, including I

I I an end-of-line, are discarded. The first I
I I The first value on the next line in file f I
I I will be read next. I
+------------------------+--+
I RESET(f) I Positions file f to the I
I I beginning-of-information. A RESET(f) must be I

I I done on every input file except INPUT. I

+------------------------t--+
I REWRITE(f [,n]) I Empties file f and allows it to be written to. I
I (CDC) I A REWRITE(f) must be done on every output I
I I file except OUTPUT. I

+------------------------+--+
I UNPACK(z,a,i) I Takes the elements beginning at the first I
I I subscript position of packed array z I
I I and copies them into array a I
I I beginning at subscript position i. I
+------------------------+--+
I WRITE(f,v[,v •••]) I Transforms the expressions into a sequence I
I I of characters and puts the sequence onto I
I I file f. If a file is not specified, I
I I OUTPUT is assumed. I
+------------------------+--+
I WRITELN(f ,v[,v •••]) I Terminates the current line in file f by I
I I putting an end-of-line mark. If a file I
I I is not specified, OUTPUT is assumed. I
I 1 I
+------------------------+--+

DISPOSE{p[,c ...])

Releases the variable referenced by p. The case constants cl through en must be listed in
increasing order as they appear within the variant parts.

If the associated type contains variants and NEW(p,cl, ••• , en) is used to allocate the variable,
then n must be equal to the number of case constants in the variant part.

If the associated type contains variants and NEW(p,cl, ••• , en) is used to allocate the variable,
then DISPOSE(p,cl, ••• , en) must be used to release the variable.

GET(f)

Advances the pointer in file f to the beginning of the next component.
textfile, segmented file, or segmented textfile. The value of the file
content of this component. If no next component exists, EOF(f) becomes
is undefined. If EOF(f) is true prior to the execution of GET(f), then
runtime error message: TRIED TO READ PAST EOS/EOF.

60497700 A

F can be a file,
buff er becomes the
true and the value of ft
the call results in the

5-11

GETSEG(f[,n]) . (CDC)

Advances the pointer in file f to the beginning of the next segment. F can be a segmented file
or segmented textfile. The file buffer ft becomes the first component of the next segment. If
no next segment is present, then execution is terminated and the runtime error message: TRIED TO
READ PAST EOS/EOF is given. GETSEG can be applied only to a segmented file that is being read
from.

GETSEG(f ,n) advances the pointer in file f to the beginning of the nth segment counting from the
current position of the file. The file buffer ft becomes the first component of the nth
segment. N > 0 implies counting segments in the forward direction. N = 0 means the current
segment. If no nth segment (n >= 0) is present, then EOF(f) becomes true and ft becomes
undefined. N < 0 implies counting segments in the reverse direction. If the file is positioned
at segment number m, where m < -n, then GETSEG(f ,n) is equivalent to RESET(f).

HALT(a) (CDC)

Closes external files, terminates the program with a CPU abort, places a in the dayfile of the
job, and produces a dump. Argument a must be a string.

MESSAGE(a) (CDC)

Places a in the dayfile of the job. Argument a can be CHAR or string type.

NEW(p[,c ...])

Allocates a new variable of the same type as the argument and assigns a reference to the argument.

In the case where the type associated with p is a record type and the field has variants, the
form NEW(p,cl, ••• , en) can be used. Cl, ••• ,en is a list of constant selectors used to
determine the size of the allocated variable. The size is as if the variable was declared a
record type with the field list formed by the following rule of selection: first, the variant
corresponding to the selector cl is selected, then, the field list of this variant is formed by
using the selectors c2, ••• , en (by a recursive application of this rule), finally, the
so-far-formed field list is prefixed by the tag field (if nonempty) and is substituted for the
variant part.

The above description does not imply any assignment to the tag fields.

The variant of the allocated variable must not be changed, and assignment to the entire variable
is not allowed. However, the value of single components can be altered.

If you assume the following declarations:

CONST
--MAXV AL = 50;
TYPE
--PATOM = tATOM;

VAR

ATOM = RECORD
NAME ALFA;
NUMBER INTEGER;
WEIGHT REAL;
OCCUPIED : SET OF 1 •• MAXVAL;
BINDINGS : ARRAY[!. .MAXVALJ OF PATOM;
CHARGE : (PLUS,MINUS,NEUTRAL);
SATURATED : BOOLEAN

END; (* RECORD *)

A ATOM;

5-12 60497700 A

then the following statements give all the names of the atoms to which A is bound:

WITH A DO
--FOR I : .. 1 TO MAX.VAL DO

- IF I INOCCUPIED THEN
- WRITELN(I ,BINDINDS [I] t .NAME);

If you assume the following declarations:

VAR
P : tPLAYINGCARD;

then NEW(P,WILD) allocates a variable whose size is as if the variable had been of the type Q
defined as

TYPE
--Q =RECORD

PACK(a,i,z)

T : CARDTYPE;
FACE : (BLANK,JOKER)

END; (* RECORD *)

Takes the elements of array a beginning at subscript position i and copies them into packed array
z beginning at the first subscript position. Assume that a and p are variables of the following
types:

A: ARRAY[M •• N] OFT;
P: Pi'CKED ARRAY[U •• V] OFT;

When (ORD(N) - ORD(I)) >= (ORD{V) - ORD(U)) where M <= I and the index types of the arrays A and
P and the type of I are compatible, then PACK(A,I,P) is equivalent to:

K := I;
FOR .J := U TO V DO BEGIN
- P[J] :=A[KJT" --

K :• SUCC(K)
END; (* ~ *)

PAGE(f)

Positions the lineprinter. Argument f must be a textfile. PAGE(f) is equivalent to the
following sequence:

WRITELN (f) ;
WRITE(f,'l');

The 'l' forces the lineprinter to the top of a new page.

PUT(f)

Appends the value of the buffer variable ft to the file f. F can be a file, textfile, segmented
file, or segmented textfile. The value of ft becomes undefined. If the value of EOF(f) or
EOS(f) is false prior to the execution of the PUT(f), then the call results in the runtime error
message: TRIED TO WRITE WHILE NOT EOS/EOF. Otherwise the value of EOF(f) remains true.

PUTSEG(f[,n]) (CDC)

Closes the current segment (an end-of-segment mark is written onto f). F can be a segmented file
or segmented textfile. PUTSEG(f) is only allowed if EOF(f) is true. PUTSEG can be applied only
to a segmented file that is being written to.

60497700 A 5-13

READ(f,v[,v ...])

READ(f ,v) reads a sequence of characters from the file f through the file buffer ft using
GET(f). F can be a textfile or a segmented textfile. If f is omitted, then the predefined file
INPUT is assumed. The first significant character is the character in ft.

READ(f ,v) is equivalent to the following sequence:

v := ft;
GET(f);

READ(f ,vl, ... ' vn) is a shorthand notation for the following sequence:

BEGIN
--READ(f, vl);

READ(f ,v2);

READ(f ,vn)
END;

V must be of a type compatible with the type of the components in the file f.

If v is INTEGER, a sequence of digits is transformed into a (decimal) value and then assigned to
v. Leading blanks and leading end-of-line marks are skipped. The character sequence that
follows must be consistent with the syntax for decimal integers given in section 2. If not,
execution is terminated and a runtime error message is given. Trailing blanks are skipped (if
the file buff er ft is left at the first nonblank character after the number or is left at the
end-of-line mark).

If vis REAL, a sequence of characters' is transformed into a real value and then assigned to v.
Leading blanks and leading end-of-line marks are skipped. The character sequence that follows
must be consistent with the syntax for real numbers given in section 2. If not, execution is
terminated and a runtime error message is given. Trailing blanks are skipped (if the file buffer
is left at the first nonblank character after the real number or is left at the end-of-line mark).

READLN(f,v[,v ...])

Skips to the beginning of the next line of f. F can be a textfile or segmented textfile. If f
is omitted, then the predefined file INPUT is assumed. Subsequently, ft becomes the first
character of the next line, if any. READLN(f ,v) is equivalent to the following statement:

WHILE NOT EOLN(f) DO
--GET(f); ~

READLN(f ,v) is also equivalent to the following sequence:

BEGIN
--READ(f, v);

READLN(f)

READLN(f,vl, ••• , vn) is equivalent to the following sequence:

BEGIN
--READ-(f,vl, ••• , vn);

READLN(f);
END· __ ,

5-14 60497700 A

RESET(f)

Positions file f to the beginning-of-information; the file can now be read. F can be a file,
textfile, segmented file, or segmented textfile. The file buffer ft contains the first component
of the file. If file f is empty, then the value of ft is undefined and EOF(f) is TRUE. RESET(f)
must be specified for all files, except INPUT, before a READ or READLN operation on the file.

REWRITE(f[,n]) (CDC)

REWRITE(£) positions file f to the beginning-of-information; the file can now be written to. F
can be a file, textfile, segmented file, or segmented textfile. If file f is empty, then the
value of ft is undefined and EOF(f) is TRUE. REWRITE(£) must be specified for all files, except
OUTPUT, before a write operation is performed on the file.

REWRITE(f ,n) positions file f to the beginning of the nth segment counting from the current
position. The current segment number is not accessible after execution of the REWRITE(f ,n)
statement. If file f is empty, then the value of ft is undefined and EOS(f) is TRUE.

N > 0 implies counting segments in the forward direction. N = 0 implies the current segment. N
< 0 implies counting segments in the reverse direction.

If file f is positioned to n, where n)= 0 but is not valid for file f, then file f is positioned
to the end of the last segment and EOF(f) is TRUE.

If file f is positioned tom, where m < -n, then REWRITE(f ,m) is equivalent to REWRITE(£).

UNPACK(z,a,i)

Takes the elements from the first subscript position of packed array z and copies them into array
a beginning at subscript position i. Assume that A and P are variables of the following types:

A: ARRAY[M •• N] OF T;
P: PACKED ARRAY[U •• V] OF T;

When (ORD(N) - ORD(I)) >= (ORD(V) - ORD(U)); M <= I; and the index types of the arrays A and P
and the type of I are compatible, then UNPACK(A,I,P) is equivalent to:

K := I;
FOR J := U TO V DO BEGIN
- A[K] :=P[J];--

K := SUCC(K)
END; (* FOR *)

Where J denotes an auxiliary variable that is not used elsewhere in the program.

60497700 A 5-15

WRITE(f ,v[,v ...])

Transforms the expressions into a sequence of characters and puts the sequnce onto file f. F can
be a textfile or a segmented textfile. If f is omitted, then the predefined file OUTPUT is
assumed.

The parameters in the predefined procedures WRITE and WRITELN must have the following form:

Parameter

----->[expression]-----+
I

+--------------------+
I
I +----->(:)----->[field width]--------->+
I I I
+----->+--->+----->

I I
+----->(:)----->[fraction length]----->+

Field Width

----->[expression]----->

Fraction Length

----->[expression]----->

The first expression, which is the value to be written, can be INTEGER, BOOLEAN, CHAR, REAL, or
STRING type. The fraction length can be given only when the expression is REAL type. The field
width indicates the minimum number of characters to be written. If the field width is longer
than needed, the value is written right-justified. The field width must be an integer expression
with a value greater than or equal to O. If the field width is omitted, a default value is
chosen in accordance with table 5-3.

5-16 60497700 A

, TABLE 5-3. DEFAULT FIELD WIDTHS

-1--------------+---------------1---+
I I I I
I I Default I I
I Type I Field Width I Remarks I
I I I I
!===!
I I I I
I INTEGER I 10 I If the field width is too short, the I
I I I necessary number of additional character I
I I I positions are used. I
-1--------------+---------------+----------_,..--------------------------------1-
1 BOOLEAN I 10 I If the field width is 5 or more either I
I I I of the strings ' TRUE' or 'FALSE' is I
I I I written. If the field width is I
I I I O, 1, 2, 3, or 4 either of the I
I I I characters 'T' or 'F' is written. I
-1-------~------+---------------1---+
I CHAR I 1 I If the field width is O, the default I
I I I field width 1 is used. I
+--------------+---------------+--+

REAL 22 If fraction length is not specified the
value will be written with 1 digit
before the decimal point; 13 digits
after the decimal point; and a scaling
exponent written as E+ddd
(floating point notation). If fraction
length is specified, the fraction length
must be at least two less than the field
width. The fraction length specifies
the number of digits to follow the
decimal point. If the fraction length
is specified no exponent is written
(fixed point notation). If the field
width is too short the necessary number
of additional character positions

I is used.
-1--------------+---------------1---+
I string I length of I If a nonzero field width less than the I
I I string I length of the string is specified, the I
I I I right part of the string is truncated. I
I I I If a field width equal to 0 is I
I I I specified the entire string is written. I
I I I I
+--------------+---------------+--+

WRITE(f ,v) is equivalent to the following sequence:

ft := v;
PUT(f);

V must be of a type compatible with the type of the components in the file v.

WRITE(f,vl, ••• , vn) is equivalent to the following sequence:

BEGIN
--WRITE(f ,vl);

WRITE(f, v2);

WRITE(f ,vn)
END· __ ,

60497700 A 5-17

WRITELN (f, v[, v ...])

Terminates the current line of f and writes an end-of-line mark. F can be a textf ile or a
segmented textfile. The WRITELN statement may append soae extra blanks to the line due to
peculiarities in the representation of end-of-line mark in the NOS operating system.

WRITELN(f ,vl, ••• , vn) is equivalent to the following sequence:

BEGIN
--WR.ITE(f, vl, ••• , vn);

WRITELN(f)
END· __ ,

PREDEFINED FUNCTIONS
Predefined functions are divided into four categories: arithmetic functions, transfer functions,
ordinal functions, and Boolean functions. Table 5-4 shows the predefined functions and gives a
brief description of the function. See the paragraphs following the table for a more detailed
description of the predefined functions.

TABLE 5-4. PREDEFINED FUNCTIONS

+--------------+------------+-----------+------------------------------------+
I I I I I
I Predefined I Argument I Result I I
I Fune tion I Type I Type I Description I
I I I I I
!==!

I
ABS(a) INTEGER INTEGER Returns the absolute value of a. I

REAL BEAL I
+--------------+------------+-----------+------------------------------------+
I ARCTAN(a) I INTEGER I REAL I Returns the arctangent of a. I
I I REAL I REAL I I
+--------------+------------+-----------+------------------------------------+
I CARD(a) I SET I INTEGER I Returns the cardinality of a. I
I (CDC) I I I I
+--------------+------------+-----------+------------------------------------+
I CHR.(a) I INTEGER I CHAR I Returns the character that has I
I I I I ordinal number a. I
+--------------+------------+-----------+------------------------------------+
I CLOCK I None I INTEGER I Returns the current used I
I (CDC) I I I CPU-time in milliseconds. I
+--------------+------------+-----------+------------------------------------+
I COS(a) I INTEGER I REAL I Returns the cosine of a. I
I I REAL I REAL I I
+--------------+------------+-----------+------------------------------------+
I DATE(a) I ALFA I ALFA I Assigns the current date to a. I
I (CDC) I I I I
+--------------+------------+-----------+------------------------------------+
I EOF(f) I FILE I BOOLEAN I Returns a TRUE value if an I
I I I I end-of-file mark has been I
I I I I reached on file f and a FALSE I
I I I I value if an end-of-file mark I
I I I I has not been reached. I
+--------------+------------+-----------+------------------------------------+
I EOLN(f) I FILE I BOOLEAN I Returns a TRUE value if an I
I I I I end-of-line mark has been I
I I I I reached on file f and a FALSE I
I I I I value if an end-of-line mark I
I I I I has not been reached. I
I I I I I
+--------------+------------+-----------+----------(Continued on next page)--+

5-18 60497700 A

TABLE 5-4. PREDEFINED FUNCTIONS

+--(Continued)-+------------+-----------+-------------------------------------+
I I I I I
I Predefined I Argument I Result I I

I Function I Type I Type I Description I

I I I I I
!===!
I I I I I
I EOS(f) I FILE I BOOLEAN I Returns a TRUE value if an I

I (CDC) I I I end-of-segment mark has been I

I I I I reached on file f and a FALSE I
I I I I value if an end-of-segmented mark I

I I I I has not been reached. I

+--------------+------------+-----------+-------------------------------------+
I EXP(a) I INTEGER I REAL I Returns the value of E(a). I

I I REAL I REAL I I
+--------------+------------+-----------+-------------------------------------+
I EXPO(a) I INTEGER I REAL I Returns the value of E(a) in I

I (CDC) I REAL I REAL I binaLy representation. I
+--------------+------------+-----------+-------------------------------------+
I LN(a) I INTEGER I REAL I Returns the value of the natural I

I I REAL I REAL I logarithm of a. I

+--------------+------------+-----------+-------------------------------------+
I ODD(a) I INTEGER I BOOLEAN I Returns a TRUE value if a is odd I
I I I I and a FALSE value if a is even. I

+--------------+------------+-----------+-------------------------------------+
I ORD(a) I BOOLEAN I INTEGER I Returns the position of a in the I

I I CHAR I I set of values defined by the I
I I POINTER I I type of a. I

I I SET I I I

+--------------+------------+-----------+-------------------------------------+
PRED(a) Scalar Scalar Returns the predecessor of a.

A cannot be REAL. If a
does not exist an error will
occur.

+--------------+------------+-----------+-------------------------------------+
I ROUND(a) I REAL I INTEGER I Returns a rounded to the nearest I
I I I I integer. I
+--------------+------------+-----------+-------------------------------------+
I SIN(a) I INTEGER I REAL I Returns the sine of a. I

I I REAL I REAL I I
+--------------+------------+-----------+-------------------------------------+
I SQR(a) I INTEGER I INTEGER I Returns the square of a. I

I I REAL I REAL I I
+--------------+------------+-----------+-------------------------------------+
I SQRT(a) I INTEGER I REAL I Returns the square root of a. I

I I REAL I REAL I I
+--------------+------------+-----------+-------------------------------------+
I SUCC(a) I SET I SET I Returns the successor of a. I

+--------------+--===-------+---===------+-------------------------------------+
I TIME(a) I ALFA I ALFA I Assigns the current time to a. I

I (CDC) I I I I
+--------------+------------+-----------+-------------------------------------+
I TRUNC I REAL I INTEGER I Returns either the largest I
I (a[,n]) I I I integer < a if a > 0 or the I

I (CDC) I I I smallest-integer 2 a if a < O. I

+--------------+------------+-----------+-------------------------------------+
I UNDEFINED I REAL I BOOLEAN I Returns a TRUE value if a is out I

I (a) I I I of range or indefinite or a I

I (CDC) I I I FALSE value if a is not out of I

I I I I range or indefinite. I
I I I I I
+--------------+------------+-----------+-------------------------------------+

60497700 A 5-19

ABS(a)

Returns the absolute value of a. Argument a can be either INTEGER or REAL type; the result type
is the same as the argument type.

ARCTAN(a)

Returns the arctangent of a in radians. Argument a can be either INTEGER or REAL type; the
result is always REAL type.

CARD(a) (CDC)

Returns the cardinality of a. Cardinality is the number of elements in the set. Argument a must
be of SET type; the result is always INTEGER type.

CHR(a)

Returns the character that has ordinal position a in the character set used at your
installation. CHR(a) is only defined in the range [0 •• 63]. Argument a must be INTEGER type; the
result is CHAR type.

CLOCK (CDC)

Returns the current used CPU-time in milliseconds. The result is INTEGER type.

COS(a)

Returns the cosine of a. Argument a can be either INTEGER or REAL type; the result is always
REAL type.

DATE(a) (CDC)

Assigns the current date to a in the form: YY./MM/DD (year/month/day). Argument a must be ALFA
type.

EOF(f)

Returns a TRUE value if the end-of-file mark has been reached and a FALSE value if the
end-of-file mark has not been reached. Argument f is FILE type; the result is BOOLEAN type.
EOF(f) always implies EOS(f).

EOLN (f)

Returns a TRUE value if the end-of-line mark has been reached and a FALSE value if the
end-of-line mark has not been reached. Argument f is FILE type; the result is BOOLEAN type.

EOS(f) (CDC)

Returns a TRUE value if an end-of-segment mark has been reached and a FALSE value if an
end-of-segment mark has not been reached. Argument f is FILE type; the result is BOOLEAN type.
EOS(f) can be applied only to a segmented file. ~~

You can use the predefined procedure GET(f) only when EOS(f) is FALSE; you can use the predefined
procedures PUT(f) and PUTSEG(f) only when EOS(f) is TRUE.

5-20 60497700 A

EXP(a)

Returns the value of E(a). Argument a can be either INTEGER or REAL type; the result is always
REAL type.

EXPO(a) (CDC)

Returns the value of E(a) in binary representation. Argument a must be REAL type; the result
is INTEGER type.

LN(a)

Returns the natural logarithm of a. Argument a can be either INTEGER or REAL type; the result is
always REAL type.

ODD(a)

Returns a TRUE value if a is odd and a FALSE value if a is even. Argument a must be INTEGER
type; the result is BOOLEAN type.

ORD(a)

Returns the ordinal, or position, of a in the set of values defined by the type of a.
ORD(pointer value) is the integer representation of the pointer. ORD(Boolean value) is zero if
the value is FALSE and one if the value is TRUE. Ord(Subrange value), given the following
declaration:

VAR
A
B

INTEGER;
MIN •• MAX;

and the statement A= B, is equivalent to ORD(A) = ORD(B).

PRED(a)

Returns the predecessor of a in the set of values defined by the type of a. Argument a can be
any scalar type except REAL type; the result type is the same as the argument type. If the
argument is the first (smallest) value of the type, then the result may be undefined.

ROUND(a)

Returns a rounded (not truncated) to the nearest integer. If a ~ O, then ROUND(a) = TRUNC(a +
0.5). If a < O, then ROUND(a) = TRUNC(a - 0.5). Argument a must be REAL type; the result is
INTEGER type.

The difference between ROUND and TRUNC is illustrated by the following examples:

TRUNC (1. 6) = 1
TRUNC(-1.6) = -1
TRUNC(2.4) = 2

60497700 A

ROUND(!. 6) = 2
ROUND(-1.6) = -2
ROUND(2.4) = 2

5-21

The operators equal to {=) and not equal to (<>) should be used with great care on real arguments
because of round-off errors that often result from the representation of real values, as in the
following examples:

(1.00000 - 0.00001) 0.99999
SQR{SQRT(2)) = 2
(4.0 * 0.25) = 1
(10000 * 0.0003) = 3
(1000000 * 0.000003) 3

SIN(a)

FALSE
FALSE
TRUE
TRUE
FALSE

Returns the sine of a. Argument a can be either INTEGER or REAL type; the result is always REAL
type.

SQR(a)

Returns the square of a. Argument a can be either INTEGER or REAL type; the result type is the
same as the argument type.

SQRT(a)

Returns the square root of a. Argument a can be either INTEGER or REAL type; the result is
always REAL type.

SUCC(a)

Returns the successor of a in the set of values defined by the type of a. Argument a can be any
scalar type except REAL type; the result type is the same as the argument type. If the argument
is the last (greatest) value of the type the result may be undefined.

TIME(a) (CDC)

Assigns the curent time to a in the form: IIll.MM.SS. (hour.minute.seconds.). Argument a must be
ALFA type.

TRUNC(a[,n]) (CDC)

Returns a as an integer with the same sign as argument a. Argument a must be REAL type; the
result is INTEGER type.

TRUNC can also be applied to two arguments; the first argument must be REAL, the second argument
must be INTEGER. TRUNC(a,n) is equal to TRUNC(a * 2**n).

The difference between ROUND and TRUNC is illustrated in the following examples:

TRUNC(l. 6) = 1
TRUNC(-1.6) = -1
TRUNC(2.4) = 2

UNDEFINED(a) (CDC)

ROUND (1. 6) = 2
ROUND(-1.6) = -2
ROUND(2.4) = 2

Returns a TRUE value if a is out of range or indefinite and a FALSE value if a is not out of
range or indefinite. Argument a must be REAL type; the result is BOOLEAN type.

5-22 60497700 A

STATEMENTS

A Pascal program mus~ contain a program heading part, a declaration and definition part, and a
statements block. This section describes Pascal statements.

Statements manipulate the defined and declared data items. A collection of statements can be
grouped into a compound statement by enclosing them within a BEGIN and an END statement.

6

The statement(s) in the statement part are executed sequentially in the same order as they appear.

ASSIGNMENT ST A TEMENT
The assignment statement replaces the current value of a variable or function identifier with the
value of an expression.

Assignment Statement

----->+----->[variable]-----------------+----->(:=)----->[expression]----->
I I
+----->[function identifier]----->+

The following is an example of the assignment statement:

BLANK := , , . ,
The variable or function identifier and expression must be of compatible types. An assignment
can be made to a variable of any type except file type; an assignment cannot be made to the file
buffer of a file.

At least one assignment must be made to a function identifier within its block of statements. An
assignment can be made to a function identifier within a procedure or function that is nested
within the function that is being defined. For example:

FUNCTION OUTER (J : INTEGER) : INTEGER;
PROCEDURE INNER (K : INTEGER) ;
BEGIN
--IF K)= 10 THEN OUTER . - K

ELSE CUTER : = 10
END;(*" INNER *)

BEGIN
--INNER (J)

END; (* OUTER *)

If a function identifier is redefined in an inner scope of the function definition and an
assignment is made to the function identifier, then the assignment requirement is not fulfilled.
A value must be assigned to the function identifier in the scope of the function identifier.

The value returned by a function is the last value that was assigned to it.

CASE ST A TEMENT
The CASE statement describes multiple paths of execution; the selection of a path depends upon
the value of an expression. OTHERWISE is a CDC extension.

60497700 A 6-1

CASE Statement

---->(CASE)---->[expression]----->(OF)-----+
I

+--+
I
I +-------------(;)<--------------+
I I I
+-----+----->[case list element]----->+----->[end part 1----->

End Part

---->+-->+-----(END)----->
I I
I +------(;)<-------------+ I
I I I I
+----->(OTHERWISE)-----+----->[statement 1----->+----->+

Case List Element

----->+----->[case label part 1----->(:)----->[statement]----->+----->
I I
+-->+

Case Label Part

+---------(,)<--------+
I I

-----+----->[constant]----->+----->

The following are examples of the CASE statement:

VAR
MONTH : MONTHS;
SUIT : SUITS;
SEASON : SEASONS;
COLOR : COLORS;

CASE MONTH OF
--DECEMBER, JANUARY, FEBRUARY : SEASON : = WINTER;

MARCH, APRIL, MAY : SEASON : = SPRING;
JUNE, JULY, AUGUST : SEASON := SUMMER;
SEPTEMBER, OCTOBER, NOVEMBER : SEASON := AUTUMN

END; (* CASE MONTH *)
CASE SUIT OF
--CLUB, SPADE : COLOR := BLACK
OTHERWISE

COLOR := RED
END; (* CASE SUIT *)

The expression must be of enumeration type.

A CASE list element is a statement labeled by one or more constants. These constants must all be
the same enumeration type as the expression and must be distinct.

The CASE statement is translated into a jump table that is limited in size. Therefore, all
labe~such as Ll and L2, must be chosen so that ABS(ORD(Ll) - ORD(L2)) > 1000.

6-2 60497700 A

The statement labeled by the current value of the expression is selected for execution. If no
such label is present, the statements following OTHERWISE are selected for execution. If
OTHERWISE is not included in the CASE statement and the T+ compiler option (see section 7) is
specified, then the runtime error"""'iiieSsage INDEX OR CASE EXPR OUT OF RANGE is given and program
execution terminated. If OTHERWISE is not included in the CASE statement and the T- compiler
option is specified, then no statement is selected for execution. When the selected statement
has been executed, then the CASE statement is done.

FOR ST A TEMENT
The FOR statement isolates a group of statements that is to be executed a specified number of
times.

FOR Statement

----->(FOR)----->[control variable]----->(:=)-----+
I

+---+
I
+----->[for list]----->(DO)----->[statement]----->

Control Variable

----->{ identifier]----->

For List

----->[expression 1]----->+----->(TO)--------->+----->[expression 2]----->
I - t
+----->(DOWNTO)----->+

The following is an example of the FOR statement:

FOR CHARACTER := 'A' TO '·' DO -- , -
WRITE (ORD (CHARACTER) : 3);

The control variable must be a local variable of enumeration type; the control variable cannot be
a global variable or a formal parameter. The control variable can either be incremented (in
steps of 1) from expression 1 TO expression 2, or decremented (in steps of 1) from expression 1
DOWNTO expression 2. The value-of the control variable is undefined after the FOR statement is
done. For example, the value of I = J in the following sequence is undefined:

FOR I .- 1 TO N DO BEGIN

END; (* FOR *)
IF I = J THEN

A control variable cannot be assigned a value in a statement that is inside the FOR statement.
For example, the following statement is invalid:

FOR I .- 1 TO 100 DO I :=A+ SQR(A);

A control variable cannot be used as a control variable in a nested FOR statement. For example,
the following sequence is invalid:

FOR I := 1 TO 100 DO
- FOR I • ::-2 TO 100 DO

60497700 A 6-3

A control variable cannot be an actual parameter in a function or procedure call within a FOR
statement. For example, the following sequence is invalid:

FOR I := 1 TO 100 DO GETSTUDENTS (I : INTEGER);

A control variable cannot be a parameter in a READ or READLN statement.

The for list expresses the size of the interval and the order of progression. The FOR list must
contain two expressions that are the same enumeration type; both expression types must be
compatible with the type of the control variable.

The expressions are evaluated only at the time the FOR statement is compiled. If expression 1 is
greater than expression 2 and the increment operation (TO) is specified, then the statement is
not executed. If expression 1 is less than expression Z-and the decrement operation (DOWNTO) is
specified, then the statement is not executed. Either expression can contain a variable.

GOTO ST A TEMENT
A GOTO statement is a means of transferring control to an arbitrary place in a program block.
GOTO statements are not a prefered programming construct; any GOTO statement can be constructed
using WHILE and IF statements and auxiliary Boolean variables.--

GOTO Statement

----->(GOTO)----->[labeled statement]----->

Labeled Statement

----->[label]----->(:)----->[statement]----->

The following is an example of the GOTO statement:

LABEL
---10;

GOTO 10;

10 : GETSCORE ;

A GOTO statement can contain a label if at least one of the following conditions is true:

• The label prefixes a statement that contains the GOTO statement, as in the following sequence:

1 : IF (A < B) THEN GETSTUDENTS
ELSE BEGIN
--GETSCORES;

GOTO 1
END;(*ELSE *)

6-4 60497700 A

• The label prefixes a statement that is one of a sequence of statements and the GOTO statement
is contained in another statement that is one of the same sequence of statements, as in the
following sequence:

REPEAT
1 : GETSTUDENTS;
IF (COUNT < 100)
- GETSCORES;

GOTO 1
END;(*IF *)
REPORT; -

UNTIL DONE;

THEN BEGIN

• The label prefixes an unnested statement in the block of a function or procedure and the GOTO
statement occurs in another function or procedure that is nested within the first function or
procedure, as in the following sequence:

PROCEDURE OUTER;
LABEL
---1;

PROCEDURE INNER;
BEGIN
--IF (COUNT < 100) THEN GOTO 1
END;(* INNER *) ----
BEGIN
--I-NNER;

IF (A < B) THEN BEGIN

<---------------------- The label cannot prefix a statement inside the
IF statement because the statements are nested

END; (* IF *)
T: FINALIZE

END; (* OUTER *)

All labels must be declared in the LABEL section of the program block in which it is used. The
statement after the colon cannot be a labeled statement.

If nested routines use the same label, the innermost label will be effective. The result of a
jump to a statement within an IF, WHILE, REPEAT, WITH, FOR, or CASE construct is undefined.

IF ST A TEMENT
The IF statement defines paths that can be taken during program execution. The path that is
taken depends upon the result of the Boolean expression contained in the statement.

IF Statement

~--->(IF)----->[expression]----->[true part]----->+------------------------->+----->
I I
+----->[false part]----->+

True Part

---->(THEN)----->[statement 1]----->

False Part

---->(ELSE)----->[statement 2]----->

60497700 A 6-5

Statement 1 will be executed if the value of the expression is true. The statement following
statement 1, in this case statement 2, will be executed if the value of the expression is false.

The following are examples of the IF statement:

IF X) Y THEN BEGIN -----MIN := Y;
MAX := X

END; (* IF X)Y *)
ELSE BEGIN
--MIN := X;

MAX := y
END; (* ELSE *)

An IF statement can reduce the number of statements in your program, and thereby clarify the
program. For example, the following CASE statement:

CASE B OF
--TRuE: Sl;

FALSE : S2
END;

is equivalent to the IF statement:

IF B THEN Sl ELSE S2;

However, an IF statement can complicate your program. For example, the following IF statement:

IF A = B THEN FOUND : = TRUE
ELSE FOUND : = FALSE;

is equivalent to the assignment statement:

FOUND := A = B;

Ambiguity can arise from some constructions of the IF statement. Some ambiguous IF statements
can be resolved by inserting a BEGIN and an END statement around the group of statements that you
want to be executed sequentiallY:--Yor example, the following ambiguous IF statement:

IF El THEN IF E2 THEN Sl ELSE S2

can be clarified by rewriting it as follows:

IF El THEN BEGIN
IFE'2THEN S 1
ELSE S-2-

END;°(*"IF *)

A more subtle form of ambiguity can arise from when an expression is evaluated. For example, the
following IF statements yield the same result, but are evaluated differently:

IF (I <= N) AND (TABLE[!] = KEY) THEN S;

IF I <= N THEN IF TABLE[I] = KEY THEN S;

In the case where I) N, the first statement will evaluate TABLE[!] = KEY and probably cause an
index error.

6-6 60497700 A

REPEAT STATEMENT
The REPEAT statement specifies that a sequence of statements is to be executed one or more times.

REPEAT Statement

+---------(;)<----------+
I t

----->(REPEAT)-----+----->[statement]----->+----->(UNTIL)----->[expression]----->

The following is an example of the REPEAT statement:

REPEAT
READ(LINE);
INSERTDELIM;
COUNT : = COUNT + 1

UNTIL COUNT = 100;

The expression must yield a BOOLEAN result. The sequence of statements between the symbols
REPEAT and UNTIL are executed one or more times. Every time the sequence is executed, the
expression is evaluated. When the resulting value becomes true the REPEAT statement is completed.

WHILE STATEMENT
The WHILE statement specifies that a statement is to be executed as long as some condition is
true.

WHILE Statement

----->(WHILE)----->[expression]----->(DO)----->[statement]----->

The following is an example of the WHILE statement:

WHILE COUNT < 80 DO BEGIN
--READ(CHARACTER) ;--

COUNT := COUNT + 1
END; (* WHILE *)

The expression must yield a result of type Boolean. The statement following DO will be executed
zero or more times. The expression is evaluated before each execution.

The WHILE statement continues until the evaluation of the expression yields a false result. If
the evaluation of the expression is false before execution of the WHILE statement, the statement
following DO is not executed.

WITH ST A TEMENT
The WITH statement facilitates manipulation of record components.

\\TITli Statement

+------------(')<-------------+
I I

----->(WITH)-----+----->[record variable]----->+----->(DO)----->[statement]----->

60497700 A 6-7

The following are examples of the WITH statement:

FOR I := 1 TO 100 DO
WITH NAME [I] 00 BEGIN
--IF (SEX =-FEMALE} THEN FCOUNT : = FCOUNT + 1 ;

ELSE MCOUNT := MCo'ifiiT+ 1
END·('*WITB *) __ , --

WITH BAND [l} DO BEGIN
--T :•NORMAL; __ _

SUIT :• CLUB;
RARX :• 8

END; (* WITH *)

WITH statements can be nested as in the following example:

Wim Vl DO Sl
--W1TBV2 DO Sl -- -

WITH Vn ~SI;

A shorter way to write the same nested WITH statement is the following:

WI'l1I Vl, V2,_ V3, ••• , Vn DO SI;

The fields of the record variable(s) within the statement can be denoted by writing their field
identifiers without preceding them with the denotation of the entire record variable.

The record variable selects a record; this selection cannot be changed in the statement. If the
record variable has array indexes or pointers, changes to the array indexes or pointers within
the WITH statement will not affect the selection.

6-8 60497700 A

COMPILING, LOADING, AND EXECUTING 7

A Pascal job usually passes through the following steps:

1. 'lbe source code (program) is compiled. 'lbe compiler generates either relocatable or absolute
binary object code, and, if the L compiler option is selected, a listing of the source code.

2. 'lbe object code is loaded and linked with precompiled routines (for example, routines for
input and output and routines predefined by the user).

3. 'lbe loaded code is executed.

You initiate these steps with the appropriate control statements. The following sequence shows
the basic control statements to compile, load, and execute a program:

Batch Job Sequence

job.
USER, username, pwd.
CHAR.GE, chargenum, project.
PASCAL. <~-------- Step 1
LGO. <-----------~ Steps 2 and 3
EOR
PROGRAM. SAMPLE (INPUT, OUTPUT) ;
BEGIN

END.
EOR

data
EOF

Interactive Job Sequence

file:
PROGRAM S.AMPLE(INPUT,OUTPUT);
BEGIN

END.

PASCAL(I=file) <-------- Step 1

LGO. <---------------- Steps 2 and 3

ORGANIZATION OF A COMPILED PROGRAM
The object code that is generated by the compiler is relocatable binary code separated into named
logical records, or modules. Each module contains the code for a block in the program. The
modules occur in the same order as the BEGIN/END blocks occur in the program. Global variables
are placed in a separate module. The module names depend on the E compiler option. See the
description of the E option under the heading Compiling a Program for an explanation of the
entry-point names in the object code modules.

60497700 A 7-1

Here are two examples of source code and the object code they produce:

7-2

Source code

(*$E+*)
PROGRAM A(OUTPUT);

PROCEDURE B;
BEGIN (* B *)

END;
PROCEDURE C;

PROCEDURE D;
BEGIN (* D *)

END;
PROCEDURE E;

BEGIN (* E *)

END;
BEGIN (*--C-*)

END.
BEGIN (* A *)

END.

Source code

(*$E+*)
PROGRAM K(OUTPUT);

PROCEDURE L;
BEGIN (* L *)

END;
PROCEDURE M;
FORWARD;
PROCEDURE N;

BEGIN (* N *)

END;
PROcEnURE M;

BEGIN (* M *)

END;
BEGIN (* K *)

END.

Object code

Record:
+-------+

l I B I
+-------+

2 I D I
+------+

3 I E I
+-------+

4 I c I
+-------+

5 I A I
+-------+

6 I A·
' I

+-------+

Object code

Record:
+-------+

1 I L I
+-------+

2 I N I
+-------+

3 I M I
+-------+

4 I K I
+-------+

5 I K· ' I
+-------+

60497700 A

COMPILING A PROGRAM

To initiate compilation of your program, use the control statement

PASCAL(l=sfn,L=lfn,B=bfn,GO,PD=pd,PS=ps,PL=pl/options)

where

sf n Input source program file name. I alone defaults to source program name C(l(PILE.
I omitted defaults to source program name INPUT.

lfn

bfn

GO

pd

ps

pl

options

Compiler listing file name. L=O deselects the compiler listing (except errors).
L omitted defaults to compiler listing file name OUTPUT.

Relocatable binary object file name. B omitted defaults to relocatable binary
file name LGO.

Selects automatic load and execute. GO omitted defaults to no execute.

Print density of pd lines per inch; pd can be 6 or 8. PD omitted defaults to 6
lines per inch. If the PS parameter is used, then the PD parameter is ignored.

Compiler listing page size of ps lines.
ps < 20, page size is set to 20 lines.
parameter.

If ps > 1000, paging is turned off; if
PS omitted reflects the value of the PD

Program print limit of pl lines. The PL parameter applies only to the file
variable OUTPUT of the program being compiled. PL or PL=O selects the maximum
line limit of MAXINT lines. PL omitted defaults to 2000 lines.

One or more compiler options.

The parameters sfn, lfn, and bfn are order-independent. The following control statement requests
the compiler to compile source file SS and to produce both a program listing file named OUTPUT,
the default program listing file, and a binary object file named BB.

PASCAL(I=SS,B=BB)

At least 50000 octal words of central memory are needed to run the compiler.

You can control the compilation mode with compiler directives. For example, you can request the
compiler to insert or omit runtime test instructions with compiler directives.

Compiler directives are written as connnents, but with a dollar sign ($) as the first character.
For example, (*$T+*).

Compiler directives can be placed anywhere in your program, which enables you to activate options
over specific parts of the program.

Each option consists of an option letter followed by the new value of the option setting. The
value may be a plus sign (+) or a minus sign (-), which turns some options on and off like
switches. Alternatively, the value may be a decimal or octal (indicated by a radix B) integer
for numeric options, or a literal string for string options (see the E, I, and L options). The
rules for these strings are the same as those for character strings that appear in any Pascal
program. Finally, if the value is an equals sign (=), the option is set to its previous value
(except with the I option). However, only one previous value is remembered.

Option scanning terminates when any entry that is not an appropriate option letter or option
value is entered. For example, if you set a switch option to a numeric value, option scanning
will end and no error messages will be produced (except with the I option). Errors also
terminate option scanning.

60497700 A 7-3

The following options are available:

7-4

B Determines the size of a file buffer. If the value of B <= 64, the value of the B option
acts as a buffer factor, and the actual buffer size (in words) is at least 128 times the
buffer factor. If the value of B > 64, the value of the B option acts as the actual
buffer size.

The compiler adds one to the value of B and then rounds the value to the next multiple of
the file element size. Buffer sizes must be adjusted to fit the requirements of
peripheral hardware devices. Disk files need at least Bl (or B128). Tape files need at
least B4 (or B512).

The buffer size for a file is bound to its type. The type TEXT is predefined at the time
the compiler reads the reserved symbol PROGRAM. Therefore, to change the buffer size for
textfiles (including INPUT and OUTPUT), the value of the B option must be set prior to
the program heading.

Default is B2.

E Allows you to control the entry-point names that are generated by the compiler for the
main program, main variables block, procedures, functions, and labels. Entry points are
required by the operating system loader. The E option is of special interest to you if
you want to create a library of compiled, relocatable procedures and functions. The
following paragraphs describe the effect of the E option:

a) Procedures and functions declared as EXTERN or FORTRAN get an entry-point name equal
to the first seven characters of the procedure or function name. Other routines get
an entry-point name that depends on the value of the E option when the routine name
is analyzed:

E- Creates a unique entry-point name of the form PRCnnnn (where nnnn is an
octal number from 0001 to 7777).

E+ Uses the first seven characters of the routine name as the entry-point name.

An extended form of the E option can be used to create an entry-point that is
unrelated to the name of the routine. 'llle following example illustrates the extended
form for procedures and functions:

FUNCTION (*$E'P.RND'*) ROUND(X: REAL): REAL;

The entry-point for function ROUND is P.RND. The extended form of the E option
allows you to define any entry-point that is accepted by the loader, even ones that
include special characters, such as a period. The extended form of the E option
applies equally to EXTERN, FORTRAN, and local routines. However, the E option must
be specified between the word FUNCTION or PROCEDURE and the routine name.

b) The main program and main variables block get an entry-point name that depends on the
value of the E option in the following way:

E- Uses P.MAIN as the main program and main variables block entry-point name.

E+ Uses the first seven characters of the program name as the main program
entry-point name and the first six characters of the program name followed
by a semicolon as the main variables block entry-point name.

You can use the extended form of the E option for the main program, but separate
names should be specified for the main program block and the main variables block.
For example,

PROGRAM (*$E'P.MAIN'/'P.VARS' *) MYPROG(OUTPUT);

60497700 A

c) Labels that are used in GOTO statements that exit a block are automatically assigned
an entry-point name of the form PASCL.x (where x is a letter or digit). The
entry-point name of any label can be explicitly assigned with the extended E option.
In this case, the E option must immediately precede the declaration of the label.
For example,

LABEL (*$E'L.l' *) 1,2, (*$E'L.LOOPS' *) 13;

It is your responsibility to ensure that duplicate entry-point names are not created when
you specify the E- option. You must avoid creating duplicate entry-point names and must
ensure that created entry-point names are acceptable to the system loader when you
specify the extended form of the E option. '!be extended form of the E option exists
mainly for the Pascal library.

This option can change the meaning of your program. '!be use of the E option results in a
compiler warning message.

Default is E-.

I Controls the inclusion of external text. 1be I option includes source code from an
external file. This directive has the following two forms:

(*$I'PACKAGE'/'FILE'*)

(*$I'PACICAGE'*)

The first form attempts to find an entry named PACKAGE on the file named FILE. lb.e
second form attempts to find the entry named PACKAGE on the default file, which is
PASCLIB. '!be included text is not restricted to declarations; it can also contain full
procedures and functions. Because the text entry is simply inserted into the text of
your program, the include facility can be used to create full source libraries.

The included text is written on the program listing if L+ was selected, thereby giving
you an accurate record of what was compiled. A complete record is important if you plan
to transport the program to another implementation of Pascal. Compiler options embedded
within included text will change previous option settings unless they are explicitly
restored with an equal sign (=) in the text itself.

This option can change the meaning of your program. The use of the I option results in a
compiler warning message.

L Controls the listing of the program text. The L option turns the listing on and off
during compilation and sets page titles and subtitles. L+ turns the listing on and L
turns it off. L- is equivalent to L=O on the PASCAL control statement. If Lis followed
by a character string, the page title or subtitle is set. The first such specification
sets the main title, while subsequent specifications set the subtitle and cause a page
eject. To set the title on the first printed page, the L option must appear on the first
line.

Default is L+.

0 Controls the effect of the compiler options specified in the source text of a program.
o+ enables all compiler options within the source text and 0- disables all compiler
options within the source text. 'lhis option allows you to import a program and check it
to see if it conforms to the standard by compiling it with S+,o-.

This option can change the meaning of your program. 'lhe use of the 0 option results in a
compiler warning message.

Default is o+.

60497700 A 7-5

7-6

P Directs the compiler to generate a Post Mortem Dump (PMD) listing in the event of a
runtime error. Pascal PMD is not related to FORTRAN PMD. P+ requests PMD to provide a
description of each procedure or function that was active at the time of the error,
including the line number of the statement that was currently being executed and the
names and values of all of the unstructured local variables. Values of pointer variables
are printed as 6-digit octal addresses, and values of ALFA variables are printed as
10-character strings. A value of UNDEF means undefined. P+ adds no execution time
penalty and only a minimal storage penalty. P+ is recommended until you are sure that
your program is correct. P- suppresses most of the PMD information; it includes enough
information to list the name of the procedure in which the error occurred. PO is an
option setting designed especially for the Pascal compiler and library. Procedures
compiled with PO are transparent to PMD. Compiling an entire program with PO deletes the
minimal information (3 words per procedure), which includes the name of the procedure and
the locations of the entry point and constants. PO can be used for production programs
to delete all unnecessary traceback information.

Default is P+.

R Controls reduce mode. R is used in conjunction with the W option to control execution
field length.

Default is R+.

S Directs the compiler to issue nonfatal warning messages when a nonstandard Pascal
extension is detected. S+ enables the listing of nonfatal warning messages, and S
disables the listing of nonfatal warning messages. The S option can be switched on and
off anywhere within a Pascal program.

Default is s+.

T Directs the compiler to generate extra code that can be used to perform runtime tests to
check the following:

a) That the index used for array-indexing operations lies within the specified array
bounds.

b) That the value that is assigned to a variable of a subrange type lies within the
specified range. This check is also performed when reading such variables.

c) That no divide-by-zero operations were performed.

d) That the absolute value of the result of an automatic real-to-integer conversion is
less than MAXINT (2**48 - 1).

e) That there was no overflow or underflow from a real expression.

f) That the evaluated expression in a CASE statement corresponds to a constant in a case
list element (unless OTHERWISE is used).

g) That pis a valid pointer when it is referenced as pt or DISPOSE(p). The T+ option
must be selected when the pointer type is declared and when the pointer is referenced.

h) That SET elements are within the declared range after assignments to set variables
are made.

Also, the control variable in all FOR statements is set to an undefined value upon normal
exit from the statement if T+ is selected. T+ adds a severe execution time penalty. T+
is recommended until you are sure that your program is correct.

Default is T+.

60497700 A

U Restricts the number of characters that are scanned by the compiler in every source
line. U+ restricts the number of characters to 72. The restriction is convenient when
you use the default widths with the UPDATE or MODIFY text maintenance programs. U- sets
the number of relevant characters to 120. U may be set to any specific numeric value
between 10 and 120. The remainder of the line (past the width specified by this option)
is treated as a comment. The U option is best used on the first line of the Pascal
source program.

This option can change the meaning of your program. The use of the U option results in a
compiler warning message.

Default is u-.

W Controls the workspace size. W can be used in conjunction with the R option to control
runtime field length.

Wn sets the number of words to be used for the work space (where n is a string of digits
with an optional post-radix B).

WO requests the Pascal compiler to calculate an appropriate work space size. The
compiler sums the lengths of all nonglobal variables declared in the program, then adds a
safety factor of 2000 octal (1024 decimal) words. '!be value that the compiler estimates
for the W option is printed at the bottom of the compiler listing.

Default is WO.

X Determines the number of X registers used for passing parameter descriptors. If the
value of the X option is in the range (0 < N < 5), the first N parameter descriptors are
passed in the registers XO to X(N-1) (the-first in XO, the second in Xl, and so on).
Extra parameters are passed through a table in memory.

N > 0 reduces the size of the code produced by the compiler and usually decreases the
execution time. However, you must be aware that with the Ith parameter and with N > 0,
the compiler. cannot use registers XO to XJ (where J is the minimum of (N-1) and (I-2))
for its computation. It is possible for the compiler to give the message: EXPRESSION TOO
COMPLICATED where N > O.

Default is X4.

OVERVIEW OF THE RUNTIME SYSTEM
Code and data are separated from each other at runtime. '!be local data from each executed
routine is united in a data segment and is addressed by an offset that is relative to the segment
origin, which is called the base address. At runtime, a stack containing the data segments of
all executed routines is provided. Because the base addresses of the data segments vary during
runtime, variable addressing is nontrivial. However, this way of organizing data guarantees
maximum storage economy. Every data segment exists only during the routine execution; the data
segment is created at routine entry and discarded at routine exit.

Data segment stacking and unstacking requires a dynamic link (DL). The dynamic link chains each
data segment to its immediate predecessor in the stack. Variable addressing requires a static
link (SL). The static link chains those data segments that are currently accessible. DL and SL
are incorporated in the head of every data segment.

60497700 A 7-7

For example, refer to the following source code:

7-8

(*$E+*)
PROGRAM RSTS (OUTPUT) ;
PROCEDURE P;

PROCEDURE Q;
BEGIN (* Q *)

END;
PROCEDURE R;
BEGIN (* R *)

Q;

END· _,
BEGIN (* P *)

R·
'

END;
BEGIN (* RSTS *)

P;

END.

60497700 A

The following diagram shows the stack of data segments that corresponds to program RSTS. The
stack, which grows upward, originates from the calling sequence: RTST -> P -> R -> Q. BASE is
the base address of the most recently created data segment. BASE is the head of the chains.
NEXT defines the base address of the next data segment to be stacked.

User
area

Runtime heap
grows toward
RA

Runtime stack
grows toward
FL

{

~;::;-:~::::~~-:~::~:~-~ FL

I by either NEW or I
I DISPOSE I <---- B4
+------------------------+
I Unused memory I
I I
I I <---- B6 (NEXT)
+------------------------+
I Data segment of the I
I routine actually in I
I execution I <---- BS (BASE)
+------------------------+
I I
I I
I I
+------------------------+
I Data segment of the I
I main program I
I I <---- (MAIN)

+------------------------+
I Source code and global I
I variables I
I I
+------------------------+ 0

If the runtime heap and runtime stack ever meet during execution, then the error message RUNTIME
STACK OVERFLOW is issued and the program is aborted. You must increase the runtime field length
with the RFL command (for example, RFL,70000) and then rerun your program.

60497700 A 7-9

The following diagram shows the static and dynamic links between the data segments:

Dynamic Chains + - - - - - - - - - - --+ Static Chains
I
I
I
I
I

I
I
I
I
I

+------------+
+-------------------------+
I Procedure Q I
+-------------------------+

+---+--- DL I
+-------------------------+

<---- (NEn')

I SL ---+---+ <-- (BASE)
+-------------------------+
+-------------------------+
I Procedure R I
+-------------------------+

+---+---+-- DL I
I I +-------------------------+
I +--> I SL ---+---+
I +-------------------------+
I
I +---------------------+
I I Procedure P l
I +------------------------+
I t- I • DL I
I I +-------------------------+ +---+--> ·1 SL I<--+

I +-------------------------+---+
I I
I +-------------------------+ I
I I Program RSTS I I
l +-------------------------+ I
I I DL I l
I +-------------------------+ I +-->I SL t<--+

+-------------------------+---> NIL <---- (MAIN)

LOADING AND EXECUTING A PROGRAM

To initiate loading and execution of your program, use the control statement:

OC(fl,£2, ••• ,fn)

where

OC The file that contains the object code, or relocatable binary code.

fi The names of files that contain routines that are external to the program, but that are
used during execution.

Routines that are referenced, but not included in file OC, are searched for in the PASCLIB system
library.

Routines that are referenced, but not included either in the file OC or in the PASCLIB system
library, are searched for in the system library and in any global user libraries. See the Loader
Version I Reference Manual for more information about libraries and library searching.

You can load and initiate execution in several other ways.

7-10 60497700 A

After the loading process is complete, a contiguous piece of unused memory remains at the upper
end of the user area. This area, called the work space, is used for the runtime stack and
runtime heap during execution. The runtime stack grows upward from the lower end while the
runtime heap grows downward from the upper end.

+---------------~-------+ FL

I Runtime heap I
I

l
I

I I
I I
I I
I Work space I
I

1
I

User area I I
I I
I I
I Runtime Stack I
+------------------------+
I Source code and global I
I variables I
I I
+------------------------+ 0

The W compiler option controls the calculation of the work space (WS) value.

Wn sets the number of words to be used for the WS (n is a string of digits with an optional
post-radix B).

WO requests the Pascal compiler to calculate an appropriate work space size. Pascal sums the
lengths of all nongobal variables declared in the program, then adds a safety factor of 2000
octal (1024 decimal) words. The value that the compiler estimates for the W option is printed at
the bottom of the compiler listing.

The R compiler option controls what is done with the work space value. R+ requests that the user
program be given the right amount of memory for both the code including global variables (CS) and
the WS, even if this is a reduction. R- requests that the memory be increased only if it is
necessary to satisfy the sum of the CS and WS. In other words, the memory allocation will never
be decreased if R- is set. This option has an effect that is analogous to the REDUCE control
statement.

The default setting is WO,R+. This setting causes the compiler to calculate the WS value and
request memory allocation equal to the WS value, regardless of whether or not an increase or
decrease is required. This setting will always allocate enough memory for programs that do not
use recursion or dynamic allocation, which is the case for most programs. For some programs,
however, the default setting may not be appropriate.

When you set the work space value explicitly, you should note that there is hidden data
(temporary space for anonymous variables) that is used by the Pascal program itself. Therefore,
you should increase your WS estimate to provide a margin of safety. A good rule of thumb is to
add about 10 words per procedure plus an additional several hundred words.

UNDERSTANDING RUNTIME ERROR MESSAGES

When a runtime error occurs, a dayfile message explaining the error is given together with a Post
Mortem Dump.

60497700 A 7-11

SAMPLE PROGRAMS 8

This section poses some problems and provides one or more solutions to the problem.

The first problem deals with placing a class of three steers.

In a judging contest, the official judges the steers on qualities such as height, straightness
along the back, and amount of muscle. The steers are numbered 1, 2, and 3, so it is possible for
the official to determine the correct placing as: 3, 1, 2.

After the official determines the correct placing, students judge the same class to determine
what they feel is the correct placing (the official's placing is unknown to the students).

A student can place the class as one of the following combinations:

3
3
1
2
2
1

1
2
3
1
3
2

2
1
2
3
1
3

A perfect match between the official's and a student's placing is awarded SO points. A student
whose placing does not match the official's is penalized for each incorrect decision that was
made. The penalty is calculated using a number called the degree of difficulty or cut. The cut
between a pair of steers is also determined by the official. An example of a cut assignment is:

Official placing: 3 1 2

Cuts: s 1

If the official assigns a cut of 5 between steers 3 and 1, then there is a clear difference in
quality in the two steers; switching the placing of this pair results in a large penalty. If the
official assigns a cut of 1 between steers 1 and 2, then there is a small difference in quality
in the two steers; switching the placing of this pair results in a lesser penalty. The following
are sample penalty calculations:

Official placing: 3 1 2

Cuts: 5 1

Student placing: 1 3 2

The score would be calculated as 50 - 5 45 because the top pair was switched.

Official placing: 1 2 3

Cuts: 1 3

Student placing: 3 2 1

The score would be calculated as SO - (2*cutl + 2*cut2) 42 because the top and bottom placing
was switched.

The problem is to write a Pascal program that accepts as input the official's placing, cuts, and
student's placing, calculates the score, and outputs the score.

60497700 A 8-1

The first solution uses arrays to hold the data, IF statements to perform the calculations, and
labeled statements to control the flow of execution.

8-2

PROGRAM JUDGE(INPUT/,OUTPUT);
TYPE
--PLACINGS = ARRAY [1 •• 3] OF INTEGER;

CUTS = ARRA.Y[l •• 2] OF INTEGER;
VAR -- -

O,J : PLACINGS;
CUT : CUTS;
!,RESULT : INTEGER;

LABEL
--50,75;
BEGIN
(* INPUT OFFICIAL PLACING. *)

WRITELN('INPUT OFFICIAL PLACING');
FOR I := 1 TO 3 DO READ(O[I]);

(* INPUT CUTS. *) -
WRITELN('INPUT OFFICIAL CUTS');
FOR I := 1 TO 2 DO READ(CUT[I]);

(* INPUT JUDGE'S-PLACING OR ZERO. *)
50 : WRITELN('INPUT JUDGES" PLACING OR FOUR ZEROS');

FOR I := 1 TO 3 DO READ(J[I]);
IF (J [1] = 0) THEN GOTO 7 5;

(* BEGIN CALCULATION OF SCORE. PERFECT SCORE. *)
IF ((O[l]=J[l]) AND {0[2]=J[2]))
- THEN RESULT : = 50;

(* TOP AND BOTTOM PAIR SWITCHES. *)
IF ((O[l]=J[2]) AND (0[2]=J[l]))
- THEN RESULT := 50 - CUT[l];
IF ((0[2)=J[3]) AND (0[3]=J[2]))
- THEN RESULT := 50 - CUT[2];

(* TOP TO BOTTOM. *)
IF ((O[l]=J[3]) AND (0[2]=J[l]))
- THEN RESULT := 50 - (2*CUT[l] + CUT[2]);

(* SIMPLE BUST. *)
IF ((O[l)=J[2]) AND (0[2]=J[3]))
- THEN RESULT := 50 - (CUT[l] + 2*CUT[2]);

(* MAJOR BUST. *)
IF ((O[l]=J[3]) AND (0[2]=J[2]))
- THEN RESULT := 50 - (2*CUT[l] + 2*CUT[2]);

(* OUTPUT SCORE. *)
WRITELN('SCORE IS ',RESULT: 2);
GOTO 50;

75 : WRITELN('END OF PROGRAM')
END.

60497700 A

The second solution decodes the student's placing to match the placing 1 2 3 using WHILE and
REPEAT statements and then calculates the penalty using a CASE statement and a function. The use
of WHILE or REPEAT statements to control execution of a program is preferred over the use of
labeled statements because the result is a more structured program.

PROGRAM JUDGE(INPUT/,OUTPUT);
TYPE
--PLACINGS = ARRAY[l..3] OF INTEGER;

CUTS = AR.RAY[l •• 2] OF INTEGER;
VAR -- -

O,J,R : PLACINGS;
CUT : CUTS;
I,M,N,SCORE : INTEGER;

FUNCTION RESULT(X,Y : INTEGER) INTEGER;
BEGIN

RESULT := 50 - (X*CUT[l] + Y*CUT[2])
END;

BEGIN
(* INPUT OFFICIAL PLACING. *)

WRITELN('INPUT OFFICIAL PLACING');
FOR I := 1 TO 3 DO READ(O[I]);

(* INPUT CUTS. *) -
WRITELN('INPUT OFFICIAL CUTS');
FOR I := 1 TO 2 DO READ(CUT[I]);

(* INPUT JUDGE'S PLACING. *)
WRITELN('INPUT JUDGES'' PLACING');
FOR I := 1 TO 3 DO READ(J[I]);

(* CREATE ARRAYR ASIF OFFICIAL PLACING WERE 1 2 3. *)
FOR N := 1 TO 3 DO BEGIN

M := O;
REPEAT

M := M + 1;
UNTIL J[M] = O[N];
R[M] := N

END; (* FOR *)
(* CALCULATE RESULT. *)

CASE (lOO*R[l] + 10*R[2] + R[3]) OF
--123 SCORE := RESULT(O,O);

132 SCORE := RESULT(O,l);
213 SCORE := RESULT(l,0);
231 SCORE := RESULT(2,l);
312 SCORE := RESULT(l,2);
321 : SCORE := RESULT(2,2)

END; (* CASE *)
(* OUTPUT SCORE. *);

WRITELN('SCORE IS ',SCORE:2);
WRITE LN ('END OF PROGRAM')

END.

The second problem deals with building a linked list. The following program creates a
last-in-first-out (LIFO) linked list of four nodes. The data area in each node is assigned a
character in the alphabet. After the linked list is constructed, it is traversed from the last
entry to the first entry. Traversal is verified by writing the contents of the data area in each
node.

60497700 A 8-3

PROGRAM LNKLIST(INPUT/,OUTPUT);
TYPE
--POINTER = tNODE;

VAR

NODE = RECORD
NEXTPNTR : POINTER;
DATA : CHAR

BASE,PNTR : POINTER;
I : INTEGER;

BEGIN
(* CREATE A POINTER THAT POINTS TO NIL. *)

BASE := NIL;
(* CREATE NODE" AND LINK THEM. *)

FOR I := 1 TO 4 DO BEGIN
(*CREATE A lmW NODE. *)

NEW(PNTR);
(* PUT DATA INTO THE NODE DATA AREA. *)

READLN(PNTR .DATA);
(* PUT THE BASE POINTER VALUE INTO THE NODE POINTER. *)

PNTR t. NEXTPNTR : = BASE ;
(* POINT THE BASE POINTER TO THE NODE. *)

BASE := PNTR
END; (* FOR *)
PNTRt:= BASE;
WHILE PNTR <> NIL DO BEGIN
(* VERIFY ORDER OFNODES. *)

WRITELN(PNTR t.DATA);
(* POINT TO THE NEXT NODE. *)

PNTR := PNTRf .NEXTPNTR
END; (* WHILE *)
WRITELN ('END OF PROGRAM')

END.

If you insert A, B, C, D as data for the nodes, the resulting linked list would appear as follows:

8-4

BASE

+---------+
+->I NIL I
I +---------+
I I A I
I +---------+
+-------+

I
+----+----+

+->I • I
I +---------+
I I B I
I +---------+
+-------+

I
+----+----+

+->I • I
I +---------+
I I C I
I +---------+
+-------+

I
+---------+ +----+----+

• +-------> I • I
+---------+ +---------+

I D I
+---------+

60497700 A

The following program is a variation of the linked list program. A linked list of four nodes is
again created, but the first node is pointed to by a pointer named HEAD and the last node by a
pointer named TAIL. The advantage of creating the list this way is that modifying the list is
much easier.

The list must contain at least one node.

PROGRAM HEADTAIL(INPUT/,OUTPUT);
TYPE
--POINTER = tNODE;

NODE = RECORD

VAR
END;

NEXTPNTR : POINTER;
DATA : CHAR

BEAD,TAIL,PNTR POINTER;
I : INTEGER;

BEGIN
(* CREATE FIRST NODE AND POINT HEAD AND TAIL TO IT. *)

NEW(PNTR);
READLN;
READ(PNTR .DATA);
PNTRt.NEXTPNTR := NIL;
HEAD := PNTR;
TAIL : = PNTR;

(* CREATE OTHER THREE NODES. *)
FOR I := 1 TO 3 DO BEGIN
- NEW(PNTR); - ---

READLN;
READ(PNTRt .DATA);
PNTRt.NEXTPNTR := TAILt.NEXTPNTR;
TAILt.NEXTPNTR := PNTRt.NEXTPNTR;
TAIL := PNTR

END; (* FOR *)
(* VElrIFY ORD!X' OF NODES. *)

END.

PNTR : = BEAD;
REPEAT

WRITELN (PNTR t. DATA) ;
PNTR : = PNTR t. NEXTPNTR

UNTIL PNTRt.NEXTPNTR =NIL;
WRITELN(PNTR t .DATA); -
WRITELN('END OF PROGRAM')

60497700 A 8-5

If you insert A, B, C, D as data for the nodes, the resulting linked list would appear as follows:

8-6

HEAD
+-------+ +---------+
I • +----->l • I
+---------+ +--+---------+

I I A I
I +---------+
+------+

I
+----¥----+

+--1 • I
I +-------+
I I B I
I +---------+
+----+

I
+----¥----+

+--1 • I
+--------+
l C I
+--------+

+-------+
BASE I

+---------+ +----¥----+
I • +-------> I NIL I
+---------+ +----===---+

I D I
+--------+

60497700 A

CHARACTER SETS

Table A-1 shows the character correspondence between the internal Pascal character set and the
CDC Scientific and CDC ASCII character sets.

A

All program statements in this manual are shown in the internal Pascal character representation.
You must translate this representation into the character set used at your site.

Table A-1. Characters Sets

+-----------+-------------------+--------------------+-----------~-------+

I I I I I
I Ordinal I Pascal I CDC Scientific I CDC ASCII I
I Number I Character I Character Set I Character Set I
I I I I I
+==+
I I I I I
I 0 I Undefined I End of Line in 63 I End of Line in 63 I
I I I : (colon) in 64 I : (colon) in 64 I
+-----------+-------------------+--------------------+-------------------+
I 1 I A I A I A I
+-----------+-------------------+--------------------+-------------------+
I 2 I B I B I B I
+-----------+-------------------+--------------------+-------------------+
I 3 I C I C I C I
+-----------+-------------------+--------------------+-------------------+
I 4 I D I D I D I
+-----------+-------------------+--------------------+-------------------+
I 5 I E I E I E I
+-----------+-------------------+--------------------+-------------------+
I 6 I F I F I F I
+-----------+-------------------+--------------------+-------------------+
I 7 I G I G I G I
+-----------+-------------------+--------------------+-------------------+
I 8 I H I H I H I
+-----------+-------------------+--------------------+-------------------+
I 9 I I I I I I I
+-----------+-------------------+--------------------+-------------------+
I 10 I J I J I J I
+-----------+-------------------+--------------------+-------------------+
I 11 I K I K I K I
+-----------+-------------------+--------------------+-------------------+
I 12 I L J L I L I
+-----------+-------------------+--------------------+-------------------+
J 13 I M I M I M I
+-----------+-------------------+--------------------+-------------------+
t 14 I N I N l N I
+-----------+-------------------+--------------------+-------------------+
I 15 J O I O I O I
+-----------+-------------------+--------------------+-------------------+
J 16 I P I P I P t
+-----------+-------------------+--------------------+-------------------+
1 17 I Q J Q J Q 1
+-----------+-------------------+--------------------+-------------------+
I 18 l R J R I R I
+-----------+-------------------J---------------------+-------------------+
I 19 I S I S I S I
I I I I I
+-----------+-------------------+--------------(Continued on next page)--+

60497700 A A-1

Table A-1. Characters Sets
+--(Continued)------------------+--------------------+-------------------+
I I I I I
I Ordinal I Pascal I CDC Scientific I CDC ASCII I
I Number I Character I Character Set I Character Set I
I I I I I
+==+
I I I I I
I 20 I T I T I T I
+-----------+-------------------+--------------------+-------------------+
I 21 I U I U I U I
+-----------+-------------------+--------------------+-------------------+
I 22 I V I V I V I
+-----------+-------------------+--------------------+-------------------+
I 23 I W I W I W I
+-----------+-------------------+--------------------+-------------------+
I 24 I X I X I X I
+-----------+-------------------+--------------------+-------------------+
I 25 I Y I Y I Y I
+-----------+-------------------+---------~----------+-------------------+
I 26 I Z I Z I Z I
+-----------+-------------------+--------------------+-------------------+
I 27 I 0 I 0 I 0 I
+-----------+-------------------+--------------------+-------------------+
I 28 I 1 I 1 I 1 I
+-----------+-------------------+--------------------+-------------------+
I 29 I 2 I 2 I 2 I
+-----------+-------------------+--------------------+-------------------+
I 30 I 3 I 3 I 3 I
+-----------+-------------------+--------------------+-------------------+
I 31 I 4 I 4 I 4 I
+-----------+-------------------+--------------------+-------------------+
I 32 I 5 I 5 I 5 I
+-----------+-------------------+--------------------+-------------------+
I 33 I 6 I 6 I 6 I
+-----------+-------------------+--------------------+-------------------+
I 34 I 7 I 7 I 7 I
+-----------+-------------------+--------------------+-------------------+
I 35 I 8 I 8 I 8 I
+-----------+-------------------+--------------------+-------------------+
I 36 I 9 I 9 I 9 I
+-----------+-------------------+--------------------+-------------------+
I 37 I + I + I + I
+-----------+-------------------+--------------------+-------------------+
I 38 I - I - I - I
+-----------+-------------------+--------------------+-------------------+
I 39 I * I * I * I
+-----------+-------------------+--------------------+-------------------+
I 40 I I I I I I I
+-----------+-------------------+--------------------+-------------------+
I 41 I (I (I (I
+-----------+-------------------+--------------------+-------------------+
I 42 I) I) I) I
+-----------+-------------------+--------------------+-------------------+
I 43 I $ I $ I $ I
+-----------+-------------------+--------------------+-------------------+
I 44 I = I = I = I
+-----------+-------------------+--------------------+-------------------+
I 45 I (space) I (space) I (space) I
+-----------+-------------------+--------------------+-------------------+
I 46 I , (comma) I , (comma) I , (comma) I
I I I I I
+-----------+-------------------+--------------(Continued on next page)--+

A-2 60497700 A

Table A-1. Characters Sets

+--(Continued)------------------+--------------------+-------------------+
I I I I I
I Ordinal I Pascal I CDC Scientific I CDC ASCII I
I Number I Character I Character Set I Character Set I
I I I I I
+==+
I I I I I
I 47 I • (period) I • (period) I • (period) I
+-----------+-------------------+--------------------+-------------------+
I 48 I I (number sign) I = (equivalence) I I (number sign) I
+-----------+-------------------+--------------------+-------------------+
I 49 I [(left bracket) I [(left bracket) I [(left bracket) I
+-----------+-------------------+--------------------+-------------------+
I 50 I] (right bracket) I] (right bracket) I] (right bracket) I

+-----------+-------------------+--------------------+--------~----------+
I 51 I : (colon) I : (colon) in 63 I : (colon) in 63 I
I I I % (percent) in 64 I % (percent) in 64 I
+-----------+-------------------+--~-----------------+-------------------+

52 I " (quote) I <> (not equal) I " (quote)
+-----------+-------------------+--------------------+-------------------+
I 53 I (underline) I (* (open comment) I (underline) I

+-----------+-------------------+--------------------+-------------------+
I 54 . I ! (exclamation) I OR (logical OR) I ! (exclamation) I
+-----------+-------------------+--------------------+-------------------+
I 55 I & (ampersand) I AND (logical AND) I & (ampersand) I
+-----------+-------------------+--------------------+-------------------+
I 56 I ' (apostrophe) I t (up arrow) I ' (apostrophe) I

+-----------+-------------------+--------------------+-------------------+
I 57 I ? (question) I *) (close comment) I ? (question) I
+-----------+-------------------+--------------------+-------------------+
I 58 I < (less than) I < (less than) I < (less than) I
+-----------+-------------------+--------------------+-------------------+
I 59 I > (greater than) I > (greater than) I > (greater than) I

+-----------+-------------------+--------------------+-------------------+
I 60 I @ (commercial at) I <= (less equal) I @ (commercial at) I

+-----------+-------------------+--------------------+-------------------+
I 61 I \ (back slash) I >= (greater equal) I \ (back slash) I

+-----------+-------------------+--------------------+-------------------+
I 62 I t (up arrow) I NOT (logical NOT) I A (circumflex) I
+-----------+-------------~-----+--------------------+-------------------+
I 63 I ; (semicolon) I ; (semicolon) I ; (semicolon) I
I I I I I
+-----------+-------------------+--------------------+-------------------+

Some symbols have alternative representations that can be used interchangeably with the
symbol. The symbols and their alternative representations are:

Symbol

60497700 A

Aternative Symbol

@

(. .)

A-3

COMPILATION ERROR MESSAGES B

The compiler indicates an error by printing an arrow that points to the place in the text where
the error is detected. This is not always the place where the error is made. The arrow is
followed by a number, which indicates what kind of error was detected. A list of numbers used in
error messages and their corresponding messages is given at the end of the compilation. The list
is also given on the file containing the compiler listing.

At most 10 errors will be indicated on one line.

ERRORS THAT ARE DETECTED
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
40:
41:
42:
43:
44:
45:
50:
51:
52:
53:
54:
55:
57:
58:
59:
60:

101:
102:
103:
104:
105:
106:
107:
108:

60497700 A

ERROR IN SIMPLE TYPE.
IDENTIFIER EXPECTED.
"PROGRAM" EXPECTED.
")" EXPECTED.
":" EXPECTED.
UNEXPECTED SYMBOL.
ERROR IN PARAMETER LIST.
"OF" EXPECTED.
"(" EXPECTED.
ERROR IN TYPE.
"[" EXPECTED.
"]" EXPECTED.
"END" EXPECTED.
";" EXPECTED.
INTEGER CONSTANT EXPECTED.
"=" EXPECTED.
"BEGIN" EXPECTED.
ERROR IN DECLARATION PART.
ERROR IN FIELD-LIST.
"," EXPECTED.
" •• " EXPECTED.
VALUE PART ALLOWED ONLY IN MAIN PROGRAM.
TOO FEW VALUES SPECIFIED.
TOO MANY VALUES SPECIFIED.
VARIABLE INITIALIZED TWICE.
TYPE IS NEITHER ARRAY NOR RECORD.
REPETITION FACTOR MUST BE GREATER THAN ZERO.
ERROR IN CONSTANT.
":=" EXPECTED.
"THEN" EXPECTED.
"UNTIL" EXPECTED.
"DO" EXPECTED.
"TO" OR "DOWNTO" EXPECTED.
"FILE" EXPECTED.
ERROR IN FACTOR.
ERROR IN VARIABLE.
FILE TYPE IDENTIFIER EXPECTED.
IDENTIFIER DECLARED '!WICE.
LOWBOUND EXCEEDS HIGHBOUND.
IDENTIFIER IS NOT OF APPROPRIATE CLASS.
IDENTIFIER NOT DECLARED.
SIGN NOT ALLOWED.
NUMBER EXPECTED.
INCOMPATIBLE SUBRANGE TYPES.
FILE NOT ALLOWED HERE.

B-1

B-2

109:
110:
111:
112:
113:
114:
115:
116:
117:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
172:
173:
174:
175:

TYPE MUST NOT BE REAL.
TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE.
CONSTANT IS INCOMPATIBLE WITH TAG TYPE OR OUT OF RANGE.
INDEX TYPE MUST NOT BE REAL.
INDEX TYPE MUST BE SCALAR OR SUBRANGE.
BASE TYPE MUST NOT BE REAL.
BASE TYPE MUST BE SCALAR OR SUBRANGE.
ERROR IN TYPE OF PREDECLARED PROCEDURE PARAMETER.
UNSATISFIED FORWARD REFERENCE.
FORWARD DECLARED; REPETITION OF PARAMETER LIST NOT ALLOWED.
FUNCTION RESULT TYPE MUST BE SCALAR, SUBRANGE OR POINTER.
FILE VALUE PARAMETER NOT ALLOWED.
FORWARD-DECLARED FUNCTION; REPETITION OF RESULT TYPE NOT ALLOWED.
MISSING RESULT TYPE IN FUNCTION DECLARATION.
FIXED-POINT FORMATTING ALLOWED FOR REALS ONLY.
ERROR IN TYPE OF PREDECLARED FUNCTION PARAMETER.
NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION.
ALL PARAMETERS IN A GROUP MUST HAVE THE SAME TYPE.
PARAMETER PROCEDURE/FUNCTION IS NOT COMPATIBLE WITH DECLARATION.
TYPE CONFLICT OF OPERANDS.
EXPRESSION IS NOT OF SET TYPE.
ONLY EQUALITY TESTS ALLOWED.
"<" AND ">" NOT ALLOWED FOR SET OPERANDS.
FILE COMPARISON NOT ALLOWED.
INCORRECT TYPE OF OPERAND(S).
TYPE OF OPERAND MUST BE BOOLEAN.
SET ELEMENT MUST BE SCALAR OR SUBRANGE.
SET ELEMENT TYPES NOT COMPATIBLE.
TYPE OF VARIABLE IS NOT ARRAY.
INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION.
TYPE OF VARIABLE IS NOT RECORD.
TYPE OF VARIABLE MUST BE FILE OR POINTER.
INCORRECT PARAMETER SUBSTITUTION.
INCORRECT TYPE OF FOR-STATEMENT CONTROL VARIABLE.
INCORRECT TYPE OF EXPRESSION.
TYPE CONFLICT.
ASSIGNMENT OF FILES NOT ALLOWED.
INCORRECT TYPE OF CASE CONSTANT.
SUBRANGE BOUNDS MUST BE SCALAR.
INDEX TYPE MUST NOT BE INTEGER.
ASSIGNMENT TO THIS FUNCTION IS NOT ALLOWED.
ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED.
NO SUCH FIELD IN THIS RECORD.
CONTROL VARIABLE MUST BE LOCAL.
CASE CONSTANT APPEARS TWICE.
RANGE OF CASE CONSTANTS IS TOO LARGE (MAX= 2001).
MISSING CORRESPONDING VARIANT DECLARATION.
REAL OR STRING TAGFIELDS NOT ALLOWED.
PREVIOUS DECLARATION WAS NOT FORWARD.
MULTIPLE FORWARD DECLARATION.
MISSPELLED RESERVED WORD OR UNRECOGNIZED DIRECTIVE.
VALUE OF LABEL IS TOO LARGE ()9999).
PREDECLARED PROCEDURE/FUNCTION SUBSTITUTION NOT ALLOWED.
MULTIDEFINED LABEL.
MULTIDECLARED LABEL.
UNDECLARED LABEL.
UNDEFINED LABEL IN THE PREVIOUS BLOCK.
ERROR IN BASE SET.
VALUE PARAMETER. EXPECTED.
UNDECLARED EXTERNAL FILE.
FORTRAN PROCEDURE OR FUNCTION EXPECTED.
PASCAL PROCEDURE OR FUNCTION EXPECTED.
MISSING FILE "INPUT" IN PROGRAM BEADING.

60497700 A

176: MISSING FILE "OUTPUT" IN PROGRAM HEADING.
177: ASSIGNMENT TO FUNCTION ALLOWED ONLY IN FUNCTION BLOCK.
178: MULTIDEFINED RECORD VARIANT.
179: X-OPTION OF ACTUAL PROCEDURE/FUNCTION DOES NOT MATCH FORMAL DECLARATION.
180: CONTROL VARIABLE MUST NOT BE FORMAL.
183: SUBRANGE OF TYPE REAL IS NOT ALLOWED.
184: INCORRECT USE OF FOR-STATEMENT CONTROL VARIABLE.
185: FUNCTION MUST BE ASSIGNED SOMEWHERE IN ITS BLOCK.
186: ONE OR MORE TAG VALUES ARE NOT SPECIFIED.
187: TAG FIELD IS NOT ALLOWED AS ACTUAL VARIABLE PARAMETER.
188: LABEL IS NOT ACCESSIBLE FROM HERE.
189: LABEL IS NOT ACCESSIBLE TO PREVIOUS GOTO(S) THAT USED IT.
190: IDENTIFIER BEING DEFINED WAS USED ALREADY IN THIS SCOPE.
191: TYPE IDENTIFIER EXPECTED.
192: CONTROL VARIABLE IS THREATENED BY A NESTED PROCEDURE OR FUNCTION.
193: ALREADY A CONTROL VARIABLE FOR AN ENCOMPASSING FOR-STATEMENT.
198: ALTERNATE INPUT NOT FOUND.
199: ONLY ONE ALTERNATE INPUT MAY BE ACTIVE.
201: ERROR IN REAL CONSTANT: DIGIT EXPECTED.
202: STRING CONSTANT MUST BE CONTAINED ON A SINGLE LINE.
203: INTEGER CONSTANT EXCEEDS RANGE.
204: 8 OR 9 IN OCTAL NUMBER.
205: STRINGS OF LENGTH ZERO ARE NOT ALLOWED.
206: INTEGER PART OF REAL CONSTANT EXCEEDS RANGE.
207: REAL CONSTANT EXCEEDS RANGE.
220: ONLY THE LAST DIMENSION MAY BE PACKED.
221: TYPE-IDENTIFIER OR CONFORMANT-ARRAY SCHEMA EXPECTED.
222: BOUND-IDENTIFIER EXPECTED.
223: ORDINAL-TYPE IDENTIFIER EXPECTED.
224: PACK AND UNPACK ARE NOT IMPLEMENTED FOR CONFORMANT ARRAYS.
240: MULTI-WORD VALUE PARAMETERS FOR FORTRAN ROUTINES MUST BE PASSED BY VAR DUE TO IMPL.

RESTRICTION.
250: IDENTIFIER SCOPES TOO DEEPLY NESTED (MAX = 20).
251: TOO MANY NESTED PROCEDURES AND/OR FUNCTIONS (MAX= 10).
252: TOO MANY IDENTIFIER SCOPES (MAX = 131071).
255: TOO MANY ERRORS ON THIS SOURCE LINE (MAX = 9).
256: TOO MANY EXTERNAL REFERENCES (MAX = 4095).
259: EXPRESSION TOO COMPLICATED.
260: TOO MANY EXIT LABELS (MAX = 36).
261: TOO MANY LARGE VARIABLES.
262: NODE TO BE ALLOCATED IS TOO LARGE.
263: TOO MANY PROCEDURE/FUNCTION PARAMETERS (MAX= 77).
264: TOO MANY PROCEDURES AND FUNCTIONS (MAX= 4095).
300: DIVISION BY ZERO.
301: MOD BY NEGATIVE MODULO.
302: INDEX EXPRESSION OUT OF BOUNDS.
303: VALUE TO BE ASSIGNED IS OUT OF BOUNDS.
304: ELEMENT EXPRESSION OUT OF RANGE.
305: FIELD WIDTH MUST BE GR.EATER THAN ZERO.
320: WARNING--THIS PREDECLARED IDENTIFIER IS NON-STANDARD.
321: WARNING--OCTAL REPRESENTATION IS NON-STANDARD.
322: WARNING--INTEGER) MAXINT IS NON-STANDARD.
323: WARNING--SEGMENTED FILE IS NON-STANDARD.
324: WARNING--VALUE DECLARATION PART IS NON-STANDARD.
325: WARNING--EXTERNAL OR FORTRAN PROCEDURE IS NON-STANDARD.
326: WARNING--SECOND PARAMETER IS NON-STANDARD.
327: WARNING--ORD OF REAL OR POINTER IS NON-STANDARD.
328: WARNING--OTHERWISE IS NON-STANDARD.
329: WARNING--"+" OR "/" IN PROGRAM HEADING IS NON-STANDARD.
330: WARNING--MIXED ORDER OF DECLARATIONS IS NON-STANDARD.
331: WARNING--THIS OPTION MAY ALTER THE MEANING OF THE PROGRAM.
332: WARNING--CONFORMANT-ARRAY AS ACTUAL VALUE PARAMETER IS NON-STANDARD.
333: WARNING--TREATING A CONFORMANT-ARRAY PARAMETER AS A STRING IS NON-STANDARD.

60497700 A B-3

350: WARNING~DIAGNOSTIC LANGUAGE SELECTED IS NOT AVAILABLE: ENGLISH WILL BE USED.
351: ARRAY TYPE IDENTIFIER EXPECTED.
352: ARRAY VARIABLE EXPECTED.
353: POSITIVE INTEGER CONSTANT EXPECTED.
394: COMPARISON OF DYNAMIC PARAMETERS NOT ALLOWED.
395: ASSIGNMENT TO/FROM DYNAMIC PARAMETER NOT ALLOWED.
396: MULTI-WORD VALUE PARAMETERS ARE NOT IMPLEMENTED FOR FORTRAN ROUTINES.
397: PACK AND UNPACK ARE NOT IMPLEMENTED FOR DYNAMIC ARRAYS.
398: IMPLEMENTATION RESTRICTION.

ERRORS THAT ARE NOT DETECTED
• Use of an integer factor in an expression that results in overflow. For example, an integer

factor in an expression that results in a value greater than MAXINT.

• Use of uninitialized variables in expressions.

• Use of DISPOSE(p) when pf is a dynamic variable and a reference to pt exists.

• Use of a file variable f when a reference to the associated file buffer variable ft exists.

• Use of an undefined field in a variant record variable pt, which is caused by using the form
of NEW that has explicit tagfield constants. For example, NEW(p,cl, ••• , en).

• Use of an undefined function result in an expressi9n.

• Use of READ when an integer or the integer part of a real number is greater than MAXINT.

• Access of or reference to a nonexistent field in a record variant.

B-4 60497700 A

GLOSSARY

ABS -
An identifier that is associated in the Pascal language with the function that takes the
absolute value of the argument.

Absolute Value -
A number that has been stripped of its sign.

Actual Parameter -

c

A variable that appears within parentheses and follows either the function identifier in a
function call or the procedure identifier in a procedure call. An actual parameter is passed
to either a function or a procedure.

ALFA -
An identifier that is predefined in the Pascal language as PACKED ARRAY[l •• 10] OF CHAR.

ARCTAN -
An identifier that is associated in the Pascal language with the function that takes the
arctangent of the argument.

Argument -
An expression that is bound by parentheses and is operated on by a function or procedure. An
argument can consist of multiple expressions, all of which are bound by a single pair of
parentheses. Also called a parameter.

Array -
A set of elements that is identified by a single name.

ARRAY Type -
A structured data type that describes the number and type of the elements in an array.

Base Type -
Describes the scalar data type in a SET definition.

Binding -
The association of an actual parameter to a formal parameter during compilation.

Block -
A group of statements that is bound by a.!!£!! and an END· statement.

Boolean Literal -
Either of the predefined identifiers TRUE or FALSE.

BOOLEAN Type
A simple data type that consists of the set [TRUE, FALSE), where TRUE is greater than FALSE.

60497700 A C-1

Call By Reference -
A function or procedure call that contains an argument that can be modified by the function
or procedure. Each call-by-reference argument in the function or procedure heading must have
the word VAR in front of it in the argument list. An example of a call by reference is the
following_:_

TYPE
--EXPRESSION = ARRAY[1 •• 72] OF CHAR;
VAR

STRINGIN, STRINGOUT : EXPRESSION;
PROCEDURE COUNTBLANK(VAR STRIN, STROUT

BEGIN

COUNTBLANK(STRIN, STROUT);

END.

EXPRESSION);

Call By Value -
A function or procedure call that contains an argument whose value cannot be modified; only a
value is passed. An example of a call by value is the statement: SIN(A); The value of A
remains unchanged.

CARD -
An identifier that is associated in the Pascal language with the function that returns the
cardinality of the argument.

Cardinality -
Expresses how many values there are in an ordered series. For example, in the series A, B,
C, D, E, the cardinality is 5.

Character Literal -
A single character enclosed in single quote (') symbols.

CHAR Type -
A simple data type that consists of the characters in the character set used at your
installation. See appendix A for the available character sets.

CHR -
An identifier that is associated in the Pascal language with the function that returns the
character that corresponds to the ordinal value that was passed as the argument.

CLOCK -
An identifier that is associated in the Pascal language with the function that returns the
amount of CPU-time (in milliseconds) used.

Comment -
A string of explanatory text enclosed in an open comment symbol (* and a close comment symbol
*). If the first character after the open comment symbol is a dollar sign $, the comment is
interpreted as a list of compiler options.

Compatible -

C-2

Describes a situation in the Pascal language where the values of two identifiers can interact
without conflict. For example, an identifier that describes the type of a set is compatible
with the identifier that describes the type of the subrange of the set.

60497700 A

Conf ormant Array -
An array that conforms to another array. Conformant means that both arrays have one
dimension and are of the same type.

Congruity -
Rules that determine whether a procedure or function can be passed as an actual parameter.

Constant -
Holds a fixed value. The value can be an identifier, enumeration constant, integer number,
real number, character literal, string literal, or Boolean literal.

cos -
An identifier that is associated in the Pascal language with the function that returns the
cosine of the argument.

DATE -
An identifier that is associated in the Pascal language with the function that returns the
current date.

DISPOSE -
An identifier that is associated in the Pascal language with the function that releases the
variable that is referenced by the argument.

Dyadic -
Describes a quantity that has two parts. For example, a dyadic function has two arguments.

Dynamic Link -
The link between data segments that enables stacking and unstacking during program
execution. The word dynamic refers to the fact that the stack is constantly changing during
program execution.

Enumeration Constant -
An identifier that belongs in a simple data type, except REAL type. An enumeration constant
is ordered according to the placement of the identifier within the type definition.

Enumeration Type -
Another word for simple type, except REAL type. Simple data types consist of the following:
BOOLEAN, CHAR, INTEGER, enumeration of a user-defined type, and subrange.

EOF (End-Of-File) -
An identifier that is associated in the Pascal language with the procedure that returns a
Boolean value that depends on the position in the file.

EOLN (End-Of-Line) -
An i'dentifier that is associated in the Pascal language with the procedure that returns a
Boolean value that depends on the position in the line.

EXP -
An identifier that is associated in the Pascal language with the function that returns the
exponent of the argument.

EXPO -
An identifier that is associated in the Pascal language with the function that returns the
exponent of the argument in binary representation.

Expression -
A computing rule that obtains a result from applying operators to operands. An expression is
evaluated from left to right using the following precedence rules:

NOT
-;;;-1 , DIV, MOD, AND
+, -, OR -- --

<>, <, <=, >,)=, IN

60497700 A

Highest precedence

l
Lowest precedence

C-3

External Block -
A block that is declared in a program and defined outside of the program. An example of an
external block is a function identifier that is declared with EXTERN in a program unit and is
defined in the PASCLIB library.

External Reference -
A function or procedure call inside your source code to a function or procedure that resides
outside your source code, for example, in the PASCLIB library. Ari external reference is made
with the EXTERN statement.

Factor -
A part of a term and can be a constant, a variable, a function call, an expression bound by
parentheses, a set value, NIL, or the complement of another factor. For example, the
constant 5 is a factor.

FALSE -
.An identifier that is predefined in the Pascal language as zero.

File -
Consists of a fixed number of like components called records.

File Buff er -
A template that can be positioned over any part of the file. The template isolates the part
of the file that you want to read from or write to.

FILE Type -
A structured data type that describes the data on a file.

Finite -
Describes a variable that can be limited or bound.

Formal Parameter -
A variable that appears within parentheses and follows either the function identifier in a
function heading or the procedure identifier in a procedure heading.

Forward Block -
A block that is declared at one point in a program and defined at a later point in the
program. An example of a forward block is a function identifier that is declared with
FORWARD in a program unit and is defined in a subsequent function definition.

Forward Reference -
A function or procedure call to a function or procedure that is defined later in the
program. A forward reference is made with the FORWARD statement.

Function -
A block of statements that is bound by a BEGIN and an END statement. A function is called by
its function identifier. The differences between a function and a procedure are that a
function returns a result and a function call can be used in an expression.

GET -
An identifier that is associated in the Pascal language with the procedure that advances the
position of the file to the next component.

GETSEG -
An identifier that is associated in the Pascal language with the procedure that positions the
file at the start of the referenced segment counting from the current position in the file.

Global Variable -
.An identifier whose scope is the entire program. A global variable can be referenced at any
point in the program.

HALT -

C-4

An identifier that is associated in the Pascal language with the function that terminates the
program, writes the argument in the dayfile of the job, and produces a dump.

60497700 A

Identifier -
A name that denotes a quantity. An identifier must be declared in the declaration part of
the program unit where it is used. An identifier can be a name that denotes a constant,
type, variable, value, procedure, or function. An identifier must begin with a letter
followed by any combination of letters and digits up to 120 significant letters and digits.

INPUT -
A predefined identifier that is predefined in the Pascal language as TEXT. INPUT is the
default textfile file name in an input textfile operation.

Integer -
An value in the range of decimal values [-2**48 + 1 •• 2**48 - l], which is equivalent to the
range of octal values [-7777777777777777 •• 7777777777777777].

INTEGER Type -
A simple data type that consists of all the integers in the range [-2**48 + 1 •• 2**48 - l],
which is equivalent to the range of octal values [-7777777777777777 •• 7777777777777777].

Internal Block -
A block that is defined and declared at the same point in a program. An example of an
internal block is a function definition in the definition and declaration part of a program.

Literal -
A symbol that holds a value. There are three kinds of literals: Boolean, character, or string

~-
An identifier that is associated in the Pascal language with the function that returns the
result of applying the specified function to the argument.

Local Variable -
An identifier whose scope is the module in which it is declared and the modules that are
nested within the module definition. A local variable can be referenced only within its
scope.

Matrix -
A set of numbers or terms that is arranged in rows and columns.

MAXINT -
An identifier that is associated in the Pascal language with 2**48 - 1.

MESSAGE -
An identifier that is associated in the Pascal language with the function that writes the
argument in the dayfile of the job.

Module -
A block of relocatable binary code that has been produced by the compiler from your source
code. Each module is given a distinct address within memory by the compiler.

Modulo -
Integer division of the left operand by the right operand, the result is multiplied by the
right expression, then the result is subtracted from the left expression. For example,

A MOD B is equivalent to A - ((A DIV B) * B).

Monadic -

NEW

Describes a quantity that has one part. For example, a monadic function has one argument.

An identifier that is associated in the Pascal language with the function that allocates a
new variable of the same type as the argument and assigns a reference to the argument.

Nonprinting Symbol -
Either a space or the end-of-line mark.

60497700 A c-s

Object Code -
The code that the compiler produces from your source code. Also called relocatable binary
code.

ODD -
An identifier that is associated in the Pascal language with the function that returns a
Boolean value that depends on whether the argument is even or odd.

Operand -
An expression that is operated on by an operator. For example, in the following expression:

SIN(A) + SIN(B)

both SIN(A) and SIN(B) are operands and are operated on by the plus sign (+).

ORD -
An identifier that is associated in the Pascal language with the function that returns the
number of the argument in the set of values defined by the type of the argument.

Ordinal -
A positive integer that expresses the position of a value within a series of values. For
example, within the series: A, B, C, D, E, the ordinal of the value C is 3.

OUTPUT -
An identifier that is predefined in the Pascal language as TEXT. OUTPUT is the default
textfile file name in an output textfile operation.

PACK -
An identifier that is associated in the Pascal language with the function that packs array
values.

PAGE -
An identifier that is associated in the Pascal language with the procedure that positions the
lineprinter.

Parameter -
An expression that is bound by parentheses and is operated on by a function or procedure. A
parameter can consist of multiple expressions, all of which are bound by a single pair of
parentheses. Also called an argument.

Peripheral -
A logical unit, such as a printer or tape drive, that is physically separate from the Central
Processing Unit (CPU) but is controlled by the CPU.

Pointer Type -
A data type that describes a dynamic data structure.

PRED -
An identifier that is associated in the Pascal language with the function that returns the
predecessor of the argument. If the argument is the first (smallest) value, the result may
be undefined.

Predefined Word -
A name that has an associated value in the Pascal language. A predefined identifier is not a
reserved word and can be redefined in the declaration part of the program unit where it is
used. See section 2 for a list of predefined words and their values.

Procedure -

C-6

A block of statements that is bound by a BEGIN and an END statement. A procedure is called
by its procedure identifier. The differences between a procedure and a function are that a
procedure does not return a result and a procedure call cannot be used in an expression.

60497700 A

PUT -
An identifier that is associated in the Pascal language with the procedure that appends the
value of the file buffer variable ft to the file f.

PUTSEG -
An identifier that is associated in the Pascal language with the procedure that closes the
current segment.

READ -
An identifier that is associated in the Pascal language with the procedure that positions the
referenced file and gets the referenced record.

READLN -
An identifier that is associated in the Pascal language with the procedure that gets records
from the referenced textfile until an end-of-line occurs and then positions the file to the
beginning of the next line.

Real -
Either a real number with an optional scale factor or a decimal integer with a scale factor.
A real number is a decimal integer followed by a decimal point and up to 11 digits. A real
number must be in the range [-10**322 •• -10**-293, 0, 10**-293 •• 10**322]. A decimal
integer is a signed integer in the range [-2**48 + 1 •• 2**48 - 1]. A scale factor is the
character E followed by a decimal integer that describes a base 10 exponent.

REAL Type -
A simple data type that consists of all the real numbers in the range [-10**322 •• -10**-293,
0, 10**-293 •• 10**322].

Record -
A collection of a fixed number of components that are called fields. A record can be divided
into a fixed part and a variant part; either or both of which may be empty.

RECORD Type -
A structured data type that describes the fields in a record.

Recursive -
Describes a module that is defined in terms of itself. For example, a recursive function is
a function that calls itself within the function definition.

Relocatable Binary Code -
The code that the compiler produces from your source code. Relocatable means that each block
in the source code has been separated into logical records (modules) and each module has been
given a distinct address within memory. Execution of relocatable binary code happens in the
order that the blocks appear in the source code. Also called object code.

Repetition Factor -
An identifier that is declared in the CONST section of a program unit and holds an integer
constant. For example, the repetition factor N in the following sequence initializes five
elements of VECTOR to character type:

CONST
--N = 5;
TYPE
--VECTOR= ARRAY[l..N] OF CHAR;

Reserved Word -
A word that has a predefined value in the Pascal language that cannot be redefined. In this
manual, reserved words are depicted in underlined uppercase letters. See section 2 for a
list of reserved words.

RESET -
An identifier that is associated in the Pascal language with the procedure that positions a
file to the beginning-of-information.

60497700 A C-7

REWRITE -
An identifier that is associated in the Pascal language with the procedure that rewrites the
referenced file at the referenced segment counting from the current position.

ROUND -
An identifier that is associated in the Pascal language with the function that returns the
argument rounded to the nearest integer.

Round -
To round is to add O.S to the argument and then remove the decimal point and anything that
follows the decimal point from the real number. Rounding yields an integer value.

Routine -
A function or procedure.

Segment -
A subdivision of a file. Segments on a file can be of varying lengths.

Scalar Type -
A data type that includes the simple and user-defined enumeration data types.

Scope -
The portion of a program over which an identifier is valid.

Separator -
A comment or nonprinting symbol. A separator can occur between any pair of consecutive
Pascal symbols. A separator may appear between any pair of consecutive identifiers or
literals. A separator cannot occur within a reserved word or symbol, identifier, or literal.

SET Type -
A structured data type that consists of subsets of a scalar data type.

Simple Type -
A data type that includes the following scalar data types: BOOLEAN, CHAR, INTEGER, and REAL.

SIN -
An identifier that is associated in the Pascal language with the function that returns the
sine of the argument.

Source Code -
The program that you submit to the Pascal compiler.

SQR -
An identifier that is associated in the Pascal language with the function that returns the
square of the argument.

SQRT -
An identifier that is associated in the Pascal language with the function that returns the
square root of the argument.

Static Link -
A link between a variable and a data segment. The word static refers to the fact that the
link does not change during program execution.

String Literal -
A sequence of characters enclosed in single quote (') symbols.

Structured Type -
A data type that includes the following data types: ARRAY, FILE, RECORD, and SET.

C-8 60497700 A

Subrange Type -
A scalar data type that consists of a subrange of another scalar data type. The subrange
must be described by a minimum value, two periods, and a maximum value. The following is an
example of a subrange type declaration:

succ -

TYPE
--DAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) ;

WEEKDAY = (MONDAY •• FRIDAY) ;

An identifier that is associated in the Pascal language with the function that returns the
successor of the argument. If the argument is the last (greatest) value, the result may be
undefined.

Syntax Diagram -
A visual aid that defines a construct. In a syntax diagram, a rectangle contains the general
name of a construct that you must further define, a rectangle with rounded corners contains a
reserved word or symbol, and a line with an arrowhead indicates the direction of traversal
within the diagram.

Term -
A part of a simple expression that can be either a single factor or multiple factors that are
operated on by the following operators: *, /,DIV, MOD, or AND. For example, the constant 5
is a term. Another example, 5 * J DIV K is a term.

TEXT -
An identifier that is predefined in the Pascal language as FILE OF CHAR.

Textfile -
A file of characters. The Pascal language contains a predefined file type called TEXT, which
is the same as declaring a file as FILE OF CHAR. In other words, the declaration

TYPE
~~INFILE = TEXT;

is the same as the declaration

TYPE
INFILE = FILE OF CHAR;

TIME -
An identifier that is associated in the Pascal language with the function that assigns the
current time to the argument.

TRUE -
An identi~ier that is predefined in the Pascal language as one.

TRUNC -
An identifier that is associated in the Pascal language with the function that returns an
integer whose sign is the same as the argument and whose absolute value is the greatest among
the integers less than or equal to the absolute value of the argument.

Truncate -
To truncate is to remove the decimal point and anything that follows the decimal point from a
real number. Truncation yields an integer value.

Type -
Describes the kind of values that a type identifier can assume. Type can be divided into the
following groups: scalar, structured, and pointer.

Unary -
Describes a quantity or a function that involves one part. For example, one unary operation
is the negation of one operand.

604897700 A C-9

UNDEFINED -
An identifier that is associated in the Pascal language with,the function that returns a
Boolean value that depends on whether the value is out of range or indefinite.

UNPACK -
An identifier that is associated in the Pascal language with the function that unpacks array
values.

Value -
A variable that has been both declared in a VAR declaration section and initialized with a
constant, a set value, a structured value, or NIL in the VALUE section of the same
declaration and definition part. -- -~-

Variable -
An identifier that is associated with a value. For example, given the following declarations:

TYPE
--WEEKEND = FRIDAY •• SUNDAY;
VAR
-- WHEW : WEEKEND;

the variable WHEW is associated with the values FRIDAY, SATURDAY, AND SUNDAY. All variables
must be declared.

Variant -
Consists of a case label list, a colon (:), and a field list enclosed in parentheses. A
variant appears in the variant part of a RECORD type declaration.

WRITE -
An identifier that is associated in the Pascal language with the procedure that transforms
the referenced parameter into a sequence of characters-and puts the sequence onto the
referenced textf ile.

WRITELN -

C-10

An identifier that is associated in the Pascal language with the procedure that terminates
the current line in the textfile by putting an end-of-file mark.

604897700 A

DIFFERENCES BETWEEN PASCAL
VERSIONS 1 .0 AND 1 .1

D

This appendix describes the differences between Pascal Version 1.0 and Pascal Version 1.1. The
differences result from conforming to the International Standards Organization (ISO) standard for
the progranming language Pascal. Pascal Version 1.0 is not upward compatible with Pascal Version
1. 1.

SCOPE OF IDENTIFIERS
The following statements are true about the scope of Pascal Version 1.1 identifiers and not true
about the scope of Pascal Version 1.0 identifiers:

• All uses of an identifier must appear after the declaration of the identifier, with one
exception. The exception is that an identifier can appear as the type identifier of a
pointer type before the declaration of the type identifier, as in the following example:

POINTER = tTEAMDEFN;
TEAMDEFN = RECORD

NUMBER : INTEGER;
TEAMNAME : PACKED ARRAY[l. .20] OF CHAR;
TEAMMEMBERS : ARRAY[l •• 3] OF MEMBER;
NEXl'PNTR : POINTER -

END; (* RECORD *)

• An identifier in the innermost scope of a triply nested scope (a scope within a scope within
the scope that defines the identifier) cannot be redefined in the next-to-innermost scope.
For example, in the following sequence, the use of T in the inner record type and the use of
T in the outer record type conflict:

TYPE
--R RECORD

S : RECORD
X : f T <---- This declaration conflicts
END; (* S RECORD *)

T : INTEGER <---- with this declaration
END; (* R RECORD *)

T = REAL;

• The scope of an identifier extends over the entire parameter list in which it is declared and
over the block of the function or procedure that corresponds to the parameter list. However,
the scope does not include the function or procedure name or the result type of the
function. For example, in the following sequence, the use of G as a formal parameter and the
use of Gas a result type do not conflict:

FUNCTION F (G : INTEGER) : G;
BEGIN
--F := 1
END; (* F *)

<----- The two uses of G do not conflict

Another example, in the following sequence, the use of P as a formal parameter and the use of
Pas a procedure name do not conflict. However, the use of P as a formal parameter does
prevent PROCEDURE P from calling itself because P inside the procedure block can only refer
to the form.al parameter P.

PROCEDURE P (VAR P : INTEGER);
BEGIN -
--p- : = P + 1 <----- Refers to the formal parameter P
END; (* P *)

60497700 A D-1

See section 2 under the heading Scope Rules for the description of Pascal Version 1.1 identifier
scope rules.

LABELS
The following statements are true about Pascal Version 1.1 labels and not true about Pascal
version 1.0 labels:

• A label must be an unsigned integer <= 9999.

• A label that is declared must prefix a statement.

See section 2 under the heading Labels for the description of Pascal Version 1.1 labels.

FILE TYPE
The predefined type SEGTEXT has been replaced in Pascal Version 1.1 by the predefined type
SEGMENTED TEXT.

See section 4 under the heading FILE Type for the description of the Pascal Version 1.1 segmented
file type.

RECORD TYPE
The following statements are true about the Pascal Version 1.1 RECORD type and not true about the
Pascal Version 1.0 RECORD type:

• Fields within variants can have a type that either is a file type or contains a file type.

• Variant parts of a record must be completely specified. This means that every value of the
tag type must be represented by a constant prefix and a variant. For example, the type
declaration RECORD CASE INTEGER OF would be impractical to use because then every integer in
your program would be typed as a-Constant label. You can declare a subset of the integers to
be typed as constant labels, as in the following sequence:

TYPE
--TAG TYPE

REC TYPE
1 •• 3;

RECORD CASE TAG
1 (FIELD!
2 : ();
3 : (FIELDN

END; (* RECORD *)

TAGTYPE OF
INTEGER);

REAL)

• Constants that prefix a variant must lie within the tag type range. For example, the
following change to the sequence above makes the record declaration invalid because the
constant label 4 does not lie within the TAGTYPE range:

TYPE
--TAGTYPE

RECTYPE
1 •• 3;

RECORD CASE TAG
1 (FIELD!
2 ();
3 (FIELDN
4 ()

END; (* RECORD *)

TAGTYPE OF
INTEGER);

REAL);

• A tag field cannot be passed as a call-by-reference argument in a routine call; however, a
tag field can be passed as a call-by-value argument.

D-2 60497700 A

• A tag field identifier can have the same spelling as a predefined identifier. For example:

TYPE
--REC TYPE RECORD CASE INTEGER BOOLEAN OF

TRuE!();
FALSE : ()

END; (* RECORD *)

• Two consecutive semicolons cannot appear within a record type declaration.

See section 4 under the heading RECORD Type for the description of Pascal Version 1.1 record type.

ROUTINES
The following statements are true about Pascal Version 1.1 routines and not true about Pascal
Version 1.0 routines:

• The first parameter of DISPOSE can be an expression that yields a non-NIL pointer value. For
example, the first parameter can be a function whose value is a pointer:-

• HEX for integer output to textfiles is not allowed. To write integers in hexadecimal, you
can use the following declarations and statement:

(*$XO PASS NO PARAMETERS IN X REGISTERS *)
PROCEDURE (*$E'P.WRH'*) WRITEHEX (VAR F : TEXT; I,W

EXTERN; ~-

(*$X= RESTORE X-OPTION *)

WRITEHEX(file, integer, fieldwidth);

• HIGH has been eliminated.

INTEGER);

• LINELIMIT has been replaced by the PL compile command parameter.

• LOW has been eliminated.

• The first parameter of NEW can be a component of a packed array.

• ORD(sets) has been eliminated.

• OCT for integer output to textfiles has been eliminated. To write integers in octal, you can
use the following declarations and statement:

(*$XO PASS NO PARAMETERS IN X REGISTERS *)
PROCEDURE (*$E'P.WRO'*) WRITEOCT (VAR F : TEXT; I,W

EXTERN; ~-

(*$X= RESTORE X-OPTION *)

WRITEOCT(file, integer, fieldwidth);

• The following statements are true about PACK and UNPACK:

INTEGER);

The element types of the packed and unpacked arrays must be identical.

The index types of the packed and unpacked arrays can be incompatible.

The routines can be used on arrays that are declared PACKED but are not actually packed
in memory. An array is not packed in memory when individual elements occupy one or more
words of storage.

60497700 A D-3

• The following statements are true about PAGE:

A parameter is not required; the default file parameter is OUTPUT.

A WRITELN(f) is not implicitly performed unless the last operation on file f left a
partial line. For example:

BEGIN
--REWRITE(£);

PAGE(f); <-----A WRITELN(f) is not performed
WRITELN(f,' HELLO');
PAGE(f); <-----A WRITELN(f) is not performed
WRITE(£,' PARTIAL LINE ');
PAGE(f) <----- A WRITELN(f) is performed before the

END. page-eject

• The following statements are true about READ:

The variable arguments (vl, ••• , vn) can be components of a packed array or packed record.

Execution terminates when the end-of-file condition becomes TRUE after skipping spaces
while reading from file f (under Pascal Version 1.0, an undefined value message is issued
when the end-of-file condition becomes TRUE after skipping spaces while reading from file
f).

• RELEASE has been eliminated.

• The following statements are true about WRITE:

A Boolean expression in a WRITE procedure call is equivalent to either of the strings
'TRUE' or 'FALSE' in the WRITE procedure call.

WRITE(pointers) and WRITELN(pointers) is not allowed; use WRITE(ORD(pointer)) or
WRITELN(ORD(pointer)).

Execution terminates when a zero or negative format width is encountered while writing a
variable argument (vl, ••• , vn). For example, the following WRITE procedure calls are
not valid:

WRITE(OUTPUT,NUMBEROFITEMS:O);
WRITE(DATA,VARIANCE:lO:O);
WRITE(CLASSDATA,STUDENTS:-1);

Execution terminates when an undefined variable is encountered while writing to file f
(under Pascal Version 1.0, an undefined value message is issued when an undefined
variable is encountered while writing to file£).

See section 5 under the appropriate routine heading for the description about the Pascal Version
1.1 routine.

PARAMETER LIST CONGRUITY

The parameter list of a procedure or function must be congruous with the parameter list of the
procedure or function call.

See section 5 under the heading Procedure and Function Parameters for the description of Pascal
Version 1.1 parameter list congruity.

D-4 60497700 A

CON FORMANT ARRAY PARAMETERS

Conf ormant array parameters that correspond to formal parameters in the PROCEDURE section can
share a connnon conformant array descriptor. For example:

PROGRAM MAIN;
TYPE
--VECTORl = ARRAY[l..100] OF REAL;

VECTOR2 = ARRAY[l •• 50] OF REAL;
VAR

A, B : VECTORl;
C, D : VECTOR2;

PROCEDURE Pl (X,Y ARRAY[LO •• HI INTEGER] OF REAL);
BEGIN

END; (* Pl *)
PROCEDURE P2 (X : ARRAY[LOl •• Hll : INTEGER] OF REAL;

Y ARRAY[L02 •• HI2 : INTEGER] OF REAL);
BEGIN

END; (* P2 *)
BEGIN (* MAIN *)
--Pl(A,B);

Pl(C,D);
P2(A,C);
P2(B,D);
P2(A,B);
P2(B,C);
P2(D,A);

END. (* MAIN *)

Note that calls to Pl(A,C) and Pl(B,D) would
be invalid because of incongruity.

See section 5 under the heading Parameters for the description of Pascal Version 1.1 formal
parameters.

ASSIGNMENTS TO FUNCTIONS

An assignment to a function variable must occur within the function block. In Pascal Version
1.1, the assignment can occur within a nested procedure or function. For example:

FUNCTION OUTER (J : INTEGER) : INTEGER;
PROCEDURE INNER (K : INTEGER);
BEGIN
--IF K >= 10 THEN OUTER : = K

ELSE OUTER : = 10
END;(*INNER *)
BEGIN
--INNER(J)
END; (* OUTER *)

60497700 A D-5

FOR ST A TEMENT
The following statements are true about Pascal Version 1.1 FOR statement control variables and
not true about Pascal Version 1.0 FOR statement control variables:

• A control variable must be a local variable.

• A control variable cannot be a formal parameter.

• A control variable cannot be assigned a value.

• A control variable cannot be used as the control variable in a nested FOR statement block.

• A control variable cannot be used as an actual parameter in a routine called in the FOR
statement block.

• A control variable cannot be used as a parameter in a READ or READLN procedure.

• A control variable that has been defined with an initial and final value must lie within the
initial and final value. For example, in the following sequence, the FOR statement is
invalid because the initial value of I is not within the range defined for I:

VAR
I 10 •• 20;

BEGIN
---POR I : = 1 TO 20 DO A : = A + 1;

See section 6 under the heading FOR Statement for the description of the Pascal Version 1.1 FOR
statement.

GOTO STATEMENT
The Pascal Version 1.1 GOTO statement can contain a label only if one or more of the following
conditions is true:

• The label prefixes a statement that contains the GOTO statement. For example:

1 : IF A THEN PROCA
ELSE BEGIN
--PROCB;

GOTO 1
END;('*ELSE *)

• The label prefixes a statement in a statement sequence and another statement in the sequence
contains the GOTO statement. For example:

· D-6

REPEAT
PROCA;
IF (A < B) THEN BEGIN

PROCB;
GOTO 1

END;(*IF *)
PRO CC

UNTIL DONE

60497700 A

• The label prefixes an unnested statement in a procedure or function block and the GOTO
statement occurs in another procedure or function block that is nested within the procedure
or function. For example,

PROCEDURE OUTER;
LABEL

1;
PROCEDURE SANCTUM;
BEGIN
--IF (A < B) THEN GOTO 1
END ;-Z* SANCTm{'""Tj --
BEGIN

INITIALIZE;
SANCTUM;
IF (C < D) THEN BEGIN

The label cannot pref ix a statement inside
<------------- the IF statement sequence because it would

not prefix an unnested statement.
END; (* IF *)

1 : FINALIZE-
END; (* OUTER *)

See section 6 under the heading GOTO Statement for the description of the Pascal Version 1.1 GOTO
statement.

COMPILE COMMAND
The parameters on the Pascal Version 1.1 compile command are order-independent; however, all
options must follow the parameters and the slash (/).

Table D-1 shows how the compile command options have changed:

Table D-1. Compile Command Option Changes

+--+
I I
I Pascal Version 1.0 Option Equivalent Pascal Version 1.1 Option I
I t
+==+
I I
+--+
I ~ 00 I
+--+
I L- L- or L=O I
+--+
I Ln Either PD or PS I
+--+
I 0 I
+--+
I PL I
+--+
I S I
+--+

See section 7 under the heading Compiling a Program for the description
of the Pascal Version 1.1 compile command.

60497700 A D-7

ABS(a) 2-2, 5-20, C-1
Absolute value 5-20, C-1
Actual parameters 5-5, C-1
ALFA (CDC) 1-1, 2-2, C-1
ARCTAN(a) 2-2, 5-20, C-1
Argument C-1
Array 4-6, C-1
ARRAY type 4-6, C-1
ASSfgnment statement 6-1

Base type 4-11, C-1
Binding

A procedure or function
A value 5-6
A variable 5-6
Definition C-1

Blocks
Definition 2-14, C-1
External 5-2
Forward 5-2
Internal 5-2

BOOLEAN
Field width 5-17
Literal 2-2, C-1
Type 4-4, C-1

Call-by-reference 5-6, C-2
Call-by-value 5-6, C-2
Calling a function 5-5
Calling a procedure 5-4
CARD(a) (CDC) 2-2, 5-20, C-2
Cardinality 5-20, C-2
CASE statement 6-1
Character

Field width 5-17
Literal 2-2, C-2
Sets A-1
Type 4-4, C-2

CHR(a) 2-2, 5-20
CLOCK (CDC) 2-2, 5-20, C-2
Comment 2-13, C-2
Compatible 4-13, C-2
Compiler

Command 7-3
Error messages B-1
Options 7-4

Compiling a program 7-3
Conformant array C-3, D-5
Congruity 5-7, C-3
CONST section 4-1
Constant 4-2, C-3
COS(a) 2-2, 5-20, C-3

5-7

Data declarations and definitions
CONST section 4-1
Description 4-1
Extensions 1-1
FUNCTION section 5-3
LABEL section 4-1
PROCEDURE section 5-1
TYPE section 4-2
VALUE section (CDC) 4-14
VAR section 4-13

60497700 A

INDEX

DATE(a) (CDC) 2-2, 5-20, C-3
Decimal integer 2-5
Differences D-1
Directives 5-8
DISPOSE(p) 2-2, 5-11, C-3
Dyadic 2-9, C-3
Dynamic link 7-7, C-3

End-of-File (EOF)
End-Of-Line (EOLN)
Enumeration

4-8, C-3
2-13, C-3

Constant C-3
Type C-3

EOF(f) 2-2, 5-20
EOLN(f) 2-3, 5-20
EOS(f) (CDC) 2-3, 5-20
Error messages B-1
Executing a program 7-10
EXP(a) 2-3, 5-20, C-3
EXPO(a) (CDC) 2-3, 5-21,
Expression

Definition
Evaluation

2-8, C-3
2-9

C-3

Extensions to standard Pascal 1-1
EXTERN directive 5-8
External block 5-2, C-4
External Directives 1-1, 5-8
External file list

With interactive files 3-5
With no files 3-5
With predefined files 3-2
With segmented files (CDC) 3-6
With user-defined files 3-2

External reference C-4

Factor
FALSE
File

2-9, C-4
2-3

Buffer 4-8, C-4
Definition 4-8,
Segmented (CDC)
Textfiles 3-2,
Type 4-8, C-4

Finite C-4
FOR statement 6-3

C-4
3-6, 4-8

4-8

Formal parameters 5-5, C-4
FORTRAN and Pascal incompatibilities
FORTRAN directive 5-8
Forward block 5-2, C-4
FORWARD directive 5-8
Forward reference C-4
FUNCTION

Binding 5-7
Call 5-5
Definition C-4
Section 5-3

GET(f) 2-3, 5-11, C-4
GETSEG(f) (CDC) 2-3, 5-12, C-4
Global variable 2-14, C-4
GOTO statement 6-4

HALT(a) (CDC) 2-3, 5-12, C-4

5-9

Index-I

Identifiers 2-1, C-5
IF statement 6-5
Incompatibilities, Pascal and FORTRAN 5-9
Index type 4-6
INPUT 2-3, 3-2, C-5
Integer

Definition C-5
Field width 5-17
Numbers 2-5
Type 2-3, 4-4, C-5

Internal block 5-2, C-5

Jumps (see GOTO statement)

LABEL section 4-1
Labeled statement 4-1, 6-4
Labels 2-6
Language Elements 2-1
Literals

Boolean 2-7
Character 2-7
Definition 2-7, C-5
String 2-7

LN(a) 2-3, 5-21, C-5
Loading a program 7-10
Local variable 2-14, C-5

Matrix 4-7, C-5
MAXINT 2-3, C-5
MESSAGE(a) (CDC) 2-3, 5-12, C-5
Module 7-1, C-5
Modulo 2-10, C-5
Monadic 2-9, C-5

NEW(p) 2-3, 5-12, C-5
Nonprinting symbols 2-13, C-5
Notations ix
Numbers 2-5

Object code 7-1, C-6
Octal integer 2-6
ODD(a) 2-3, 5-21, C-6
Operand 2-9, C-6
Operator

Arithmetic 2-10
Boolean 2-11
Precedence 2-9
Relational 2-12
Set 2-11

Options, compiler 7-4
ORD(a) 2-3, 5-21, C-6
Ordinal 5-21, C-6
Organization of a compiled program 7-1
OUTPUT 2-3, 3-2, C-6
Overview of the runtime system 7-7

PACK(a,i,z) 2-4, 5-13, C-6
PAGE(f) 2-4, 5-13, C-6
Parameter

Actual 5-5
Definition C-6
Formal 5-5
Function 5-7
Procedure 5-7
Value 5-6
Variable 5-6

Index-2

Pascal
Compile command 7-3
Symbols 2-1

Pascal and FORTRAN incompatibilities 5-9
Pascal Versions 1.0 and 1.1 differences D-1
Peripheral 7-4, C-6
Pointer type 4-12, C-6
PRED(a) 2-4, 5-21, C-6
Predefined

Functions 5-18
Procedures 5-10
Symbols 2-1
Words 2-1, C-6

PROCEDURE
Binding 5-7
Call 5-4
Definition C-6
Section 5-1

Program
Compilation 7-3
Declarations and definition part 4-1
Execution 7-10
Heading 3-1
Loading 7-10
Samples 8-1

PROGRAM statement 3-1
PUT(f) 2-4, 5-13, C-7
PUTSEG(f[,n]) (CDC) 2-4, 5-13, C-7

READ(f,v[,v •••]) 2-4, 5-14, C-7
READLN(f,v[,v •••]) 2-4, 5-14, C-7
Real

Definition C-7
Field width 5-17
Numbers 2-6
Type 2-4, 4-5, C-7

Record 4-8, C-7
RECORD type 4-8
Recursive 5-5, C-7
Relocatable binary code 7-1, C-7
REPEAT statement 6-7
Repetition factor 4-14, C-7
Reserved symbols 2-1
Reserved words 2-1, C-7
RESET(f) 2-4, 5-15, C-7
REWRITE(f[,n]) (CDC) 2-4, 5-15, C-8
Round 5-21, C-8
ROUND(a) 2-4, 5-21, C-8
Routines 5-1, C-8
Runtime system overview 7-7

Sample programs 8-1
Scalar type

Simple 4-3
User-defined 4-5

Scale factor 2-6
Scope

Definition C-8
Differences between Pascal Versions 1.0 and

1.1 D-1
Rules 2-15

Segment 3-6, C-8
Segmented file (CDC)

Declaration 4-8
In PROGRAM statement 3-6

SEGMENTED TEXT (CDC) 2-4
Separators

Comment 2-13
Definition C-8
Nonprinting symbols 2-13

6049-7700 A

SET type 4-10, C-8
Simple type

BOOLEAN 4-4
CHAR 4-4
INTEGER 4-4
REAL 4-5

SIN(a) 2-4, 5-22, C-8
Source code 7-1, C-8
SQR(a) 2-4, 5-22, C-8
SQRT(a) 2-4, 5-22, C-8
Statements

Assignment 6-1
· CASE 6-1
Fmr 6-3
GOTO 6-4
U-6-5
Labeled 6-4
REPEAT 6-7
WHILE 6-7
WI'111 6-7

Static link 7-7, C-8
String literal 2-7, C-8
Structured type

ARRAY 4-6
FILE 4-8
RECC»:tD 4-8
SET 4-10

Subrange type 4-5, C-9
SUCC(a) 2-4, 5-22, C-9
Symbols

Pascal 2-1
Reserved 2-1

Syntax diagram C-9

Tag field 4-9
Term 2-8, C-9
TEXT 2-4, C-9
Textfile 3-2, C-9
TIME(a) (CDC) 2-5, 5-22, C-9
TRUE 2-5, C-9
TRUNC(a[,n]) (CDC) 2-5, 5-22, C-9
Truncate 5-22, C-9

60497700 A

Type compatibility 4-13
TYPE section 4-2
Type

Definition C-9
Pointer 4-12
Scalar

Simple
BOOLEAN 4-4
CHAR 4-4
INTEGER 4-4
REAL 4-5

User-defined
Enumeration of user-defined 4-5
Subrange 4-5

Structured
ARRAY 4-6
~4-8
RECORD 4-8
SET 4-10

Unary 2-9, C-9
UNDEFINED(a) (CDC) 2-5, 5-22
Understanding runtime error messages 7-7
UNPACK(z,a,i) 2-5, 5-15

VALUE
--Binding 5-6

Definition C-10
Section (CDC) 4-14

VAR section 4-13
Variable

Binding 5-6
Definition C-10

Variant 4-9, C-10

WHILE statement 6-7
WITH statement 6-7
WRITE(f,v[,v •••]) 2-5, 5-16, C-10
WRITELN(f,v{,v •••]) 2-5, 5-18, C-10

Index-3

n
c
-4
)>

5 z
0 ,...
z
m

t
I

COMMENT SHEET

MANUAL TITLE: Pascal Version 1.1 Reference Manual

PUBLICATION NO.: 60497700

REVISION: A

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

FOLD

Please reply No reply necessary

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

P.O. BOX 3492

Sunnyvale, California 94088-3492

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

FOLD

~--~---------------------FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY:

STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAPE

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@:~
CONTl\.OL DATA CO~OR.f\TION

