
(

(

(

(''

. (

(

(

(

('

(

(
(

&Jc:\ CONT"OL DATA
~ r::J CORfOR(\TION

60499300

CYBER RECORD MANAGER
ADVANCED ACCESS METHODS
VERSION 2
REFERENCE MANUAL

coc® OPERATING SYSTEMS:
NOS 1
NOS/BE 1

REVISION

A Original release.

(3-31-78)

I Publication No· I
60499300

REVISION LETTERS I, 0, Q AND X ARE NOT USED

© 1978

Control Data Corporation

REVISION RECORD
DESCRIPTION

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVI
SUNNYVALE, CALIFORNIA 94086

Printed in the United States of America
or use Comment Sheet in the
back of this manual

ii

,, ..
I
II

I
c~ I

I
I

'
ii

I
I

f
c··

'

••
t:
t'

c:
C'!

i

I I
• I
c
c

C,

(

«;

'
I
I
I
I

c i

I -:
~
m:

(

(~

<
(

'!'

(
"'
(

(

(

(

(

(

(

(

(_
...

I

CYBER Record Manager Advanced
Manual Title Access Methods Version 2 Reference Manual Pub. No. 60499300

---~~----~~----~------~
Rev. A c

As part of Control Data's continuing quality improvement program, we invite you to complete this questionnaire so
that you may have a more direct influence on the manuals you use.

Please rate this manual for each general and individual category on a scale of through 5 as follows:

- Excellent 2 - Good

I. Writing Quality

A. Technical accuracy
B. Completeness
C. Audience defined properly
D. Readability
E. Understandability
F Organization

II. Examples

A. Quantity
B. Placement
C.. Applicability
D. Quality
E. Instructiveness

Ill. Format

A. Type size
B. Page density
C. Art work
r. I ~~:i..:t:+ ..
U'. L...Cl:flUllllY

E. Printing/Reproduction

·.IV. Miscellaneous

A. Index
B. Glossary

V. Please provide a yes or no answer
regarding manuals in general:

A. I prefer that a manual on a software
product be as comprehensive as
possible; physical size is of little
importance.

B. I prefer that information on a
software product be covered in
several small manuals. each
covering a certain aspect of the
product. Smaller manuals with
limited subject matter are easier
to work with.

c. I am interested primarily in
reference manuals designed for
ease of locating specific
information.

3 - Fair 4 - Poor 5 - Unacceptable

D. I am interested primarily In
user guides designed to teach
the user about a product or
certain capabilities of a product.

VI. We recognize that we have a wide
variety of users. Please identify your
- ... :.._,, ,.., -i :-+,,. "'+ - .. --+: ... :~ .••
1-'lllllQI y a1ca UI llllCIC:>l UI 01..llVllY·

A.
B.
C.
D.

E ..

F.

Student
Applications programmer
Systems programmer
How many years programming
experience do you have?
What languages
1. Algol
2. Basic
3. Cobol
4. Compass
5. Fortran
6. PL/I
7. Other

Have you ever worked on
non-CDC equipment?

1. If yes, approximately
what percent of your
experience is· on non
CDC equipment?

2. How do you rate CDC
manuals against other
similar manuals using
the 1-5 ratings.
(Example: XYZ Corp. 2

---·,,,j'8

means XYZ manuals are good
as compared to CDC manuals.)
Burroughs
DEC
Hewlett-Packard
Honeywell
IBM
NCR
Univac
Other --------

~IAl-'l..I::

l , -
I

I
I
I
I
I

~--~------------------------------~~

BUSINESS REPLY MA!L
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE Wfll BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, Califomia 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I
L
I~
I~
la

I
I

--:-:--·------·-------·-----· ________ -_____ --__ J
Ff'!;') FOLD I

STAPLE STAPLE

I

I
I
I
I
I
i

•- i
I

(I
I --(')

(
.. ;.

(

(

(

('

(

(

(
(

(

(

(

(

(

(

(

I t I
• I • I
~ j

,,,
,,,

(

(

(

[
(

(

(

(

(

(

(

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina
tion rather than content has changed.

Page I Revision I

60499300 A iii/iv

,,
t:
t:
t!

t:
4~

c
f:

t
c

I

c

(

(

(

(

(

(

(

(
(
,
'
(

c:

(

(

r

PREFACE

CYBER Record Manager Advanced Access Methods (AAM)
Version 2 operates under control of the following operating
systems:

NOS l for the CONTROL DAT A® CYBER 170 Models
171, 172, 173, 174, 175; CYBER 70 Models 71, 72, 73,
74; and 6000 Series Computer Systems.

NOS/BE 1 for the CDC® CYBER 170 Series; CYBER 70
Models 71, 72, 73, 74; and 6000 Series Computer
Systems.

AAM is a part of DMS-170, the data management system
that also includes CYBER Database Control System
Versions 1 and 2 and Data Description Language Versions 2
and 3. AAM can be used independently of DMS-170.

Publication

NOS/BE 1 Reference Manual

NOS 1 Reference Manual, Volume 1

NOS l Reference Manual, Volume 2

CYBER Reco!"d Manager Basic Access
Methods Version 1.5 Reference Manual

CYBER Record Manager Version 1
User's Guide

Common Memory Manager Version 1
Reference Manual

COMPASS Version 3 Reference Manual

CYBER Loader Reference Manual

AAM input and output facilities are available to users of
COMPASS assembly language through macro calls. User
programs, COBOL, FOR TRAN Extended, and PL/I use AAM
for input/output operations. The user programs communi
cate with AAM either through the compiler, using the calls
supplied within the languages, or with AAM macros.

Intended as a primary document for COMPASS program
mers, this manual presents background information and
operational specifications for AAM. COBOL, FOR TRAN
Extended, and Sort/Merge programmers can use this manual
as a source for AAM terminology and concepts; specific
language interfaces are detailed in the appropriate refer
ence manuals. The user is assumed to be familiar with the
operating system at the installation and with file
organization and manipulation.

Information necessary for a complete understanding of AAM
use is contained in the following publications:

Publication Number

60493800

60435400

60445300

60495700

60495800

60499200

60492600

60429800

CDC manuals can be ordered from Control Data Literature and Distribution Services,
8001 East Bloomington Freeway, Minneapolis, MN 55420

60499300 A

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or parameters.

v/vi

._ I

c I
I

• I
C'

--.:
t'

t!

t'.

• I

I
t;

c
c
ti
(

t"
4;i

c I
I

, I
g"
• J
''Ii

(

(_

(1

(

[
c:
(

(

(

L'

l. AAM FEATURES

File Organizations
AAM Macros

2. FILE STRUCTURES

Logical Structure
Physical Structure
File Organizations

Initial Indexed Sequential File Structure
Data Blocks
Index Blocks

Extended Indexed Sequential File Structure
Data Blocks
Index Blocks

Actual Key File Structure
Actual Keys
Overflow

Direct Access File Structure
File Storage Allocation
File Blocking

Record Types
Decimal Character Count, D Type Records
Fixed Length, F Type Records
Record Mark, R Type Records
System Record, S Type Records
Trailer Count, T Type Records
Undefined, U Type Records
Control Word, W Type Records
Zero Byte, Z Type Records

Alternate Key Index File Structure
Initial MIP
Extended MIP

3. FILE INFORMATION TABLE

FILE Macro
FILE Control Statement
Run-Time Manipulation

FETCH Macro
STORE Macro
SETFIT Macro

4. FILE PROCESSING

General Processing Information
File Information Table
File Statistics Table
OPENM Macro
Input/Output Macros
CLOSEM Macro
End-of-Data Routine

Initial Indexed Sequential Files
File Creation Run
Existing File Processing

60499300 A

Open Processing
Read Processing
Read-Only Processing
Write Processing
Random Processing
Major Key Processing
Duplicate Key Processing

CONTENTS

1-1

1-1
1-1

2-1

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-10
2-10
2-10

3-1

3-1
3-8
3-8
3-8
3-8
3-10

4-1

4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-4

File Updating
File Positioning
Overlap Processing

Extended Indexed Sequential Files
File Creation Run
Existing File Processing

Open Processing
Read Processing
Write Processing
Random Processing
Major Key Processing
File Updating
File Positioning
Overlap Processing

Actual Key Files
File Creation Run
Existing File Processing

Open Processing
Read Processing
Write Processing
File Updating
File Positioning
Overlap Processing

Direct Access Files
File Creation Run

Overflow
User Hashing Routine
Supplied Hashing Routine
Direct Access File Records

Existing File Processing
Open Processing
Read Processing
Read-Only Processing
Write Processing
File Updating
File Positioning
Overlap Processing

5. FILE PROCESSING MACROS

Macro Execution
Processing Macros

CLOSEM Macro
DELETE Macro
FLUSHM Macro
GET Macro
OPENM Macro
PUT Macro
REPLACE Macro
REWINDM Macro
SEEK Macro
SKIP Macro
START Macro

6. MUL TIPLE-INOEX FILES

Index File
Storage Structure

Block Size, Initial MIP
Block Size, Extended MIP

Alternate Key Specification
RMKDEF Macro, Initial MIP
RMKDEF Macro, Extended MIP

Applicable FIT Fields

4-5
4-5
4-5
4-5
4-5
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-10
4-10
4-10
4-10
4-10
4-11
4-11
4-11
4-11
4-12
4-12
4-12
4-12
4-13
4-13
4-13
4-13
4-13
4-13

5-1

5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-4
5-5
5-6
5-6
5-6
5-6

6-1

6-1
6-1
6-1
6-1
6-1
6-1
6-2
6-3

vii

• .,,
I
Ill!

I
I

Alternate Key Frocessing 6-3 7. UTILITIES 7-1 ti' I 1!

Alternate Key Access 6-3 . I
File Updating 6-4 Initial indexed Sequential Fiies 7-1 I Read-Only Processing 6-4 SISTAT Utility 7-1
Index File Positioning 6-4 ESTMATE Utility 7-1 t'! •

START Macro 6-4 Extended Indexed Sequential Files 7-2 I Other Positioning Macros 6-5 FLSTAT Utility 7-2 I
Index File Processing 6-5 FLBLOK Utility 7-2

Macro Processing 6-5 Direct Access Files 7-4 f"! FIT Fields for Index File Processing 6-6 Key Analysis Utility 7-4
Count Retrieval 6-6 CREATE Utility 7-7
Range Count Retrieval 6-6 Multiple-Index Files 7-8
Primary Key List Retrieval 6-7 IXGEN Utility 7-8 t:!
Range List Retrieval 6-7 MIPGEN Utility 7-9

MIPDIS Utility 7-10

f' I
APPENDIXES

A STANDARD CHARACTER SET A-1 E LOADING AAM E-1

t'.' B ERROR PROCESSING AND F USE OF LIST-OF -FILES F-1
DIAGNOSTICS B-1 G BUFFER ALLOCATION G-1

c GLOSSARY C-1 H DAT A COMPRESSION AND
D FILE INFORMATION TABLE STRUCTURE D-1 DAT A ENCRYPTION H-1

t''
INDEX

FIGURES t:
1-1 COMPASS Format 1-2 5-4 GET, GETN, and GETNR Macro For mats 5-3

t:' 2-1 Logical Structure of an Indexed 5-5 OPENM Macro Format 5-3
Sequential File 2-2 5-6 PUT Macro For mat 5-5

2-2 Physical Structure of an Indexed 5-7 REPLACE Macro Format 5-5
Sequential File 2-2 5-8 REWINDM Macro Format 5-6

I
2-3 Initial Indexed Sequential Block 5-9 SEEK Macro Format 5-6

Header For mat 2-3 5-10 SKIP Macro For mat 5-6
I

2-4 Logical Structure of an Actual Key File 2-4 5-11 START Macro Format 5-7
2-5 Actual Key Data Block For mat 2-4 6-1 RMKDEF Macro Format, Initial MIP 6-2
2-6 Actual Key Block and Overflow Record 6-2 RMKDEF Macro Format, Extended MIP 6-2

Header Formats 2-5 7-1 SISTA T Control Statement For mat 7-1
2-7 Actual Key Data Record Format 2-6 7-2 SISTA T Utility Output 7-1
2-8 Actual Key Record Header Format 2-6 7-3 ESTMATE Control Statement Format 7-2

t, •
2-9 Logical Structure of a Direct Access File 2-6 7-4 ESTMATE Directive Format 7-2

I 2-10 Direct Access Record Header For mat 2-7 7-5 ESTMATE Utility Sample Deck Structure 7-2
2-11 Numbering Conventions 2-7 7-6 ESTMATE Utility Output 7-3
2-12 D Type Record Example 2-8 7-7 FLSTAT Control Statement Format 7-4

t 2-13 F Type Record Example 2-8 7-8 FLST AT Utility Regular Output 7-4

I 2-14 R Type Record Example 2-8 7-9 FLST AT Utility Expanded Output 7-5
2-15 T Type Record Format 2-9 7-10 FLBLOK Control Statement Format 7-5
2-16 Sample Index File, Initial MIP 2-10 7-11 FLBLOK Directive Format 7-5

t 2-17 Index File Logical Structure, Extended MIP 2-11 7-12 FLBLOK Utility, Sample Deck Structure 7-5 I 2-18 Index File Physical Structure, Extended MIP 2-11 7-13 FLBLOK Utility Output 7-6
3-1 FILE Macro For mat 3-1 7-14 Key Analysis Output 7-7

I 3-2 FILE Control Statement Format 3-8 7-15 KYAN Directive Format 7-7
3-3 FETCH Macro Format 3-9 7-16 Key Analysis as External Subroutine 7-7 t 3-4 STORE Macro Format 3-9 7-17 CREATE Directive Format 7-8
3-5 STORE Macro Examples 3-10 7-18 CHE.A. TE Call Through COBOL 7-8
3-6 SETFIT Macro Format 3-10 7-19 IXGEN Control Statement Format 7-9
4-1 User Hashing Routine Example 4-12 7-20 RMKDEF Directive Format, IXGEN Utility 7-9 t: 5-1 CLOSEM Macro Format 5-2 7-21 MIPGEN Control Statement Format 7-10
5-2 DELETE Macro Format 5-2 7-22 RMKDEF Directive Format, MIPGEN Utility 7-10
5-3 FLUSHM Macro Format 5-2 7-23 MIPDIS Control Statement Format 7-11

TABLES
t:

,.

I 1-1 AAM Macros 1-2 3-2 FILE Macro Parameters by File Organization 3-2 C:
1-2 Applicability of Macros 1-3 3-3 FILE Control Statement Parameters 3-9 I 2-1 Record Types and Length Descriptions 2-8 3-4 Buffer Calculation Parameters 3-10
3-1 LFN and lfn Interaction 3-1 5-1 FIT Consistency Checks 5-4

ti I
I
I

(i
viii 60499300 A iii

I
!
i

(

(

('

(

(

(

(

(

c
(

(

(

c
(

,

AAM FEATURES 1

An interface between user programs and system input/
output routines is provided by the Advanced Access
Methods (AAM). AAM subsystems exist in the NOS and
NOS/BE operating systems. AAM also provides consistent
error processing and maintenance of different file
organizations.

AAM routines are used by some compilers and are available
for user programs. Use of AAM by compilers and user
programs extends input/output compatibility to both the
system and application program levels.

The primary task of AAM is record input/output for files on
supported devices. The various types of records and file
organizations must be identified for· AAM. These and other
file characteristics must be set by the user in the file
information table (FIT). The FIT is divided into fields that
describe certain aspects of the file. Refer to appendix D for
the exact structure of the FIT.

The following terms are relevant to AAM and related
systems:

AAM (Advanced Access Methods)

A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple-Index Processor.

BAM (Basic Acces.s Methods)

A file manager that processes sequential and word
addressable file organizations.

CRM (CYBER Record Manager)

A generic term relating to both BAM and AAM as
they run under the NOS and NOS/BE operating
systems.

MIP (Multiple-Index Processor)

/1... processor that allov1s AAf\11 files to be accessed
by alternate keys.

AAM supports two types of MIP: initial MIP and ex
tended MIP.

FILE ORGANIZATIONS

Three file organizations are supported by AAM:

Indexed sequential

Records are in order by primary key and can be
accessed sequentially or randomly.

Direct access

Records are not in any recognized order and are
accessed by key manipulation.

60499300 A

Actual key

Records are accessed by a primary key containing
the block and record number within the file.

AAM supports two types of indexed sequential files: initial
indexed sequential files and extended indexed sequential
files.

AAM MACROS
The file information table is established for the file by the
FILE macro encountered at assembly time. The FILE macro
establishes the FIT in the field lenqth of the user oroaram at
the point at which it is called. This macro can c~nt;in only
the file name and file organization or it can have user
specified parameters describing the particular file. FIT
fields are assumed by AAM through default values when not
specified as macro parameters. AAM macros and functions
are listed in table 1-1. Macros are grouped according to
their associated functions.

The applicability of some AAM macros depends on the file
organization established by the user. Table 1-2 indicates
the applicability of each macro to the various file organiza
tions and to files processed by MIP.

Macros are discussed according to each file organization in
section 4, File Processing. Consequently, material is
presented redundantly for the benefit of a programmer \.&Jho
uses this manual to reference a particular file organization.
The format of each macro and a general description are
presented in section 5, File Processing Macros.

Macro statements are coded in COMP ASS format. Each
statement can contain a location field, a macro name in the
operation field, a variable field, and a comment field. Any
field is terminated by one or more blanks. A macro
statement begins in character position l of an BO-column
card image and continues through column 72. Columns 73
through 80 are used for sequencing. Suggested coding
conventions are shown in figure 1-1. - ·· -

The allocation of the columns in COMPASS for;-nat is as
follows:

l

2 thru 9

10

11thru16

17

18 thru 29

30

Comma (continuation), asterisk (com
ment line), or other (beginning of new
statement)

Location field entry, left-justified

Blank

Operation field entry, left-justified

Blank

Variable field entry, left-justified

Beginning of comment

1-1

.1:

TABLE 1-1. AAM MACROS f:
Function Action Taken Macro

L _J
_J

I File creation FILE Creates the file information table (FIT). In addition to this macro, l and maintenance a FILE control statement is available to supply FIT information.

Ci

FETCH Retrieves the value of a specified field in the FIT. Ci
STORE Sets the value of a field in the FIT.

SET FIT Sets values in fields in the FIT with values supplied through the
FILE control statement. f

File initialization OPE NM Prepares a file for processing.
and termination

FLUSHM Flushes buffers to bring mass storage files into a state of
f'.

equilibrium.

CLOS EM Terminates file processing. ti
Data transfer GET Transfers data from a file to the working storage area.

PUT Transfers data from the working storage area to a file. t
File updating DELETE Deletes a record from a file.

REPLACE Replaces a record in a file.
ti

'

File positioning SKIP Repositions a file backward or forward.

REWINDM Rewinds a file to beginning-of-information (BOI).
c

SEEK Provides an overiap between inputioutput and processing by pos1- I
tioning while processing.

START Positions a file to a record that satisfies a specific condition. I'
c:

c
Location Operation Variable Comments

Field Field Field Field

Blank,1sterisk, '-One or m~re spaces~
tl :

comma, or first
character of
location field c:

Figure 1-1. COMPASS Format ('

t

C,

Ci
I
i
i
I

1-2 60499300 A f:, i
' !

...
~

(' TABLE 1-2. APPLICABILITY OF MACROS

("

I.

(

File Organization

Macro Initial Extended Initial Extended

Indexed Indexed Actual Direct MIP MIP

Sequential Sequential Key Access

CLOS EM x x x x x x

(
DELETE x x x x
FILE x x x x x x
FLUSHM x

(GET x x x x x x
GETN x x x x x x
GETNR x x

/

OPENM x x x x x x
(PUT x x x x

REPLACE x x x x

REWINDM x x x x x x
SEEK x x x x x x

(SETFIT x x x x x x

SKIP x x x xt xt

START x x x x
STORE x x x x x x

tsKIPFL macro only.

(

(

(

(

(

(

60499300 A 1-3

• i
1111

I

• I
• I

• I
c I

c I ., I
f I

c
t

t

• I
I I
• I
C I

• I
I

c I
c I

I

• . I
- I

• I !
~- I
• I

('·: !!i

I
i

« ;

(~

(

(
(

(

(

(

(

'

FILE STRUCTURES 2

A hierarchical data structure is recognized in a progression
from the character level to the largest grouping of data, the
file. The AAM user can describe file structure by file
organization and record type.

LOGICAL STRUCTURE

The logical structure of an AAM file is user-controlled. The
following terms are applicable to the logical file structure
and are used throughout this manual:

Record

A record is a group of related characters. A
character is represented in six bits as internal
display code. A record is the smallest collection of
information passed between AAM and the user.
The user defines the structure and characteristics
of records within a file by declaring a record
format. The beginning and ending points of a
record are implicit within each format.

Block

File

A block contains one or more records. Block
structure is interwoven with the physical recording
format; unlike other logical file structure declara
tions, the block structure is transparent in use.
AAM constructs blocks from the reccr-ds supplied
by the user and supplies the user with records as
requested. The user is unaware of block
boundaries.

A file is a logically connected set of information; it
is the largest collection of information that can be
addressed by a file name. All data in a file is
stored between beginning-of-information (BOI) and
end-of-information (EOI).

PHYSICAL STRUCTURE

The following terms pertain to the physical means used to
record files:

Input/output device

Any storage medium supported by the operating
system.

Rotating mass storage (RMS)

Disk or disk pack.

Mass storage device

Disk, disk pack, or extended core storage (ECS).

PRU device

All mass storage devices. The operating system
superimposes a physical structure over the user
declared AAM file structure on all files that reside
on PRU devices.

60499300 A

Physical record unit (PRU)

The smallest unit of information that can be
transferred between a peripheral storage device
and central memory. The PRU size is 640
characters.

Short PRU

A PRU containing fewer than the 640 characters
defined for a PRU.

System-logical-record

A group of PRUs terminated by a short or zero
iength PRU.

AAM controls the physical file position; the user controls
only the logical file position.

FILE ORGANIZATIONS
AAM supports four file organizations: initial indexed
sequential, extended indexed sequential, direct access, and
actual key. The following paragraphs describe the structure
of each file organization.

INITIAL INDEXED SEQUENTIAL FILE STRUCTURE

An initial indexed sequential file consists of a file statistics
table, index blocks, and data blocks. Each block is an
integral number of PRUs less one central memory word and
is treated as a system-logical-record. Both index and data
blocks are fixed-length blocks; index blocks need not be the
same size as data blocks.

Each record in the initial indexed sequential file is identified
by a primary key value. Records are stored in data blocks in
increasing primary key sequence. Index blocks contain
primary key information used to retrieve any record in the
file.

The file statistics table (FSTT) maintains file integrity by
preventing user actions that would destroy the file. When
the file is created, the user defines the file and key
structure that must remain the same for the life of the file.
This information is stored in the FSTT and is used to guide
processing as long as the file exists. If the user sets a field
in the FIT to a value that does not conform to the FSTT, the
value is rejected and the job is terminated. The FSTT stores
accumulated statistics related to file access; if applicable,
it also stores a user-supplied collating sequence for ranking
symbolic keys.

The logical structure of an initial indexed sequential file is
shown in figure 2-1. The blocks identified as 001 through
009 are data blocks; those identified as 101 through 103 are
the first level index blocks and Ill is the primary or second
level index block.

The physical structure of an initial indexed sequential file is
shown in figure 2-2. FSTT is the file statistics table, 001
through 009 are the data blocks, and 101 through 103 are the
index blocks.

2-1

111

101 102 I03

001 002 003 004 005 006 007 008 009

Figure 2-1. Logical Structure of an Indexed Sequential File

Beginn ing-of-1 nformation End-of-Information

FSTT 001 002 003 004 111 005 006 007 008 009

Figure 2-2. Physical Structure of an Indexed Sequential File

When an initial indexed sequential file is created, data block
size, index block size, record size, and key characteristics
must be specified for AAM to construct the data blocks,
index biocks, and key entries for the tiie. A maximum of lU
active initial indexed sequential files per job step can be
processed.

Data Blocks

A data block in an initial indexed sequential file contains a
header, an optional checksum word, user records, primary
key entries, and padding. The size and characteristics of the
data block are determined by the setting of various fields in
the FIT when the file is created. The specific FIT fields
that are used during file creation are discussed in section 4,
File Processing. The formats of the fields are detailed in
section 3, File Information Table.

The header in a data block contains a pointer that chains the
block in a forward direction to permit sequential reading
without an index. It also contains a relative pointer to the
first word of unused space in the block and the size of the
unused space. The standard block header format is shown in
figure 2-3. An installation can choose to increase the size
of the header when the system is installed.

User records in a data block can be fixed or variable length.
Only whole records can be in a data block; records cannot
span blocks. Primary keys (one for each record in the block)
are stored separately from records to reduce search time.
Records are stored in ascending primary key sequence. The
first record in the first data block has the lowest primary
key value in the file, and the last record in the last data
block has the highest key value.

A primary key entry is stored in the data block for each
record in the block. The key entry is an integral number of
central memory words. It contains the primary key and a
pointer to the corresponding record in the block.

2-2

Padding in a data block is the amount of space that is not to
be used for writing records during file creation. This space
can then be used to insert new records during subsequent
runs that update the file. The amount of padding is
specified as a percentage of the total block size.

Index Blocks

An index block in an initial indexed sequential file contains a
system-supplied header, an optional checksum word, primary
key entries, and padding. The size of an index block need
not be the same as the size specified for a data block.
Other index block characteristics are specified through the
FIT. Refer to section 4, File Processing, for the specific
FIT fields and to section 3, File Information Table, for the
format of the fields.

Index block records are created and maintained by AAM. A
primary key entry consists of a primary key value and a PRU
number. The primary key value is the lowest key value in
the next lower level index block or in a data block; the PRU
number points to the beginning of the block. Key entries
within an index block are in ascending primary key sequence.

Index blocks are organized into as many levels as necessary
to ensure only one index block at the highest or primary
level. The maximum number of levels that can exist for a
file is specified in the FIT; no more than 63 levels can be
specified.

Padding in an index block is the same as in a data block.
Data blocks and index blocks do not have to have the same
percentage of padding. The default index block padding
factor is five percent; a zero value is changed to the default
value of five. Any nonzero padding factor less than 100 is
acceptable unless data block calculation results in a block
that cannot be accommodated in the user field length.

60499300 A

•
f
tf

t
t
f

'

f

t
t
t

I
t:
ti

t
t
t,

«i
t,

I

c. I
I
I
Ill

I

'
I
I
I
I
"' iii

'
!iii

1£, :

(

(I

C"

«:
"'

('

(!

(

<:
(

(
(

(

<:

(

(

59 35 17 0

Next Data Block Address Words of Padding First Padding Word

59 thru 36 PRU number of the next sequential data block.

35 thru 18 Current size of the padding.

17 thru 0 First word of the padding.

Figure 2-3. Initial Indexed Sequential Block Header Format

EXTENDED INDEXED SEQUENTIAL FILE STRUCTURE

An extended indexed seauential file consists of a file
statistics table, index blocks, and data blocks. Each block is
an integral number of PRUs less two central memory words
and is treated as a system-logical-record. Both index and
data blocks are fixed-length blocks and must be the same
size.

Each record in the extended indexed sequential file is
identified by a unique primary key value. Records are
stored in data blocks in increasing primary key sequence.
Index blocks contain primary key information used to
retrieve any record in the file.

The file statistics table (FSTT) maintains file integrity by
preventing user actions that would destroy the file. When
the file is created, the user defines the file and key
structure that must remain the same fO!' the life of the file.
This information is stored in the FSTT and is used to guide
processing as long as the file exists. If the user sets a field
in the FIT to a value that does not conform to the FSTT, the
value is rejected and the job is terminated. The FSTT stores
accumulated statistics related to file access; it also stores a
default or user-supplied collating sequence for ranking
symbolic keys.

The logical and physical structures of an extended indexed
sequential file are the same as shown in figure 2-1 and
figure 2-2, respectively, for an initial indexed sequential
file.

When an extended indexed sequential file is created, data
and index block size, record size, and key characteristics
must be specified for AAM to construct the data blocks,
index blocks, and key entries for the file.

Data Blocks

A data block in an extended indexed sequential file contains
a header, user records, record pointers, and padding. The
size and characteristics of the data block are determined by
the setting of various fields in the FIT when the file is
created. The specific FIT fields that are used during file
creation are discussed in section 4, File Processing. The
formats of the fields are detailed in section 3, File Infor
mation Table.

The two-word header in a data block contains a pointer that
chains the block in a forward direction to permit sequential
reading without an index. It also contains the size of the
unused space, a record count, and other flags and counts.
An optional checksum can also be included in the header.

60499300 A

User records in a data block can be fixed or variable length.
Only whole records can be in a data block; records cannot
span blocks. Records are stored in ascending primary key
sequence. The first record in the first data block has the
lowest primary key value in the file, and the last record in
the last data block has the highest key value.

One or more record pointers are stored in a data block. The
record pointer is a 30-bit field; two record pointers are
stored in a word. The pairs of record pointers are stored at
the end of the data block beginning with the last word. The
record pointer contains the last word address plus l of the
record; the address is relative to the beginning of the first
record in the block. It also contains the number of trailing
characters that are not part of the record and processing
flags. If all records in the block are the same length, only
one record pointer is needed.

Padding in a data block is the amount of space that is not to
be used for writing records during file creation. This space
can then be used to insert new records during subsequent
runs that update the file. The amount of padding is
specified as a percentage of the total block size. The
default value of zero percent can be used for files that are
expected to grow mainly by sequential inserts or by adding
records at the end of the file.

Index Blocks

An index block in an extended indexed sequential file is
structured the same as a data block with a system-supplied
header, records, a record pointer, and padding. The size of
an index block is the same as the size specified for a data
block. Other index block characteristics are specified
through the FIT. Refer to section 4, File Processing, for the
specific FIT fields and to section 3, File Information Table,
for the format of the fields.

Index block records are created and maintained by AAM. A
record consists of a primary key value and a PRU number.
The primary key value is the lowest key value in the next
lower level index block or in a data block; the PRU number
points to the beginning of the block. Records within an
index block are in ascending primary key sequence.

Index blocks are organized into as many levels as necessary
to ensure only one index block at the highest or primary
level. The maximum number of levels that can exist for a
file is specified in the FIT; no more than 15 levels can be
specified.

2-3

An index block requires only one record pointer because all
records in the block are the same length. The record
pointer, which is the same as described for liala block::;, 1::;

stored in the last word of the index block.

Padding in an index block is the same as in a data block.
Data blocks and index blocks, however, do not have to have
the same percentage of padding. The default index block
padding factor is zero percent.

ACTUAL KEY FILE STRUCTURE

An actual key file consists of a file statistics table and a
number of data blocks. New data blocks are created at end
of-information as the file grows. Block size can be specified
by the user or a default size can be determined by the
system. Padding can be defined for data blocks, or block
size can be defined to allow for an increase in record size.

The data block contains a fixed number of slots for data
records that can be fixed or variable length. The block
number and slot number assigned to each record as it is
written become the permanent address (primary key) of the
record. When a record is written on the file, the primary
key can be specified by the user or it can be determined by
AAM. If a primary key value of zero is specified by the
user, AAM determines where to write the record and returns
the block number and slot number to the user.

A maximum of 10 active actual key files per job step can be
processed. The logical structure of an actual key file is
shown in figure 2-4.

Beg inn ing-of-1 nformation

Block Block
0 1 FSTT

Block
N-1

End-of-Information

Figure 2-4. Logical Structure of an Actual Key File

The first block is the 63-word file statistics table containing
file information and a pointer to end-of-information. The
remaining blocks are fixed-length data blocks. Data block
format is shown in figure 2-5.

When the block contains overflow record headers, the
number of record headers exceeds the number of records in
the block. Data records within the block are ordered by slot
number with the smallest number being the first record.
Record headers are placed at the bottom of the block in
inverse order of the data records. A block checksum, if
specified for the file, is contained in the last word of each
block.

Actual Keys

Records are stored and retrieved by an actual key, which is
the primary key. The actual key specifies a data block
number and a slot number (record position) within the block.
Keys have the following format:

Block Number Field Slot Number Field

Key length is specified by the user when the file is created.
Length can range from 2 to 47 bits; the key must be right
justified within a central memory word. The low-order bits

2-4

Block Header

I nf;(;Ofu ,....

Record B

~

Padding

Record Header B

Record Header A

Checksum

Figure 2-5. Actual Key Data Block Format

are the record position (slot number) and the high-order bits
are the block number. The number of low-order bits used
for slot numbers is determined by the blocking factor, which
is specified before the file is opened. The remaining bits in
the key are used to designate the data block number;
therefore, the key length determines the maximum file size.

if the specified biocking factor is a power of 2, aii integer
key values up to the limit set by the key length are
permissible for an actual key. If the blocking factor is not a
power of 2, some integers are not allowed to be keys.
Larger blocking factors (64 versus 8) provide better storage
density for files with variable-length records; eight records
per block is the default blocking factor. Actual keys need
not be contained within the records.

Overflow

Overflow occurs in two ways:

The user specifies the actual key for a write operation
and the specified block has insufficient empty space to
contain the new record.

The user attempts to replace a record with a new larger
record and the block containing the old record has
insufficient empty space to contain the new record.

In either case, the record is inserted into a different block
that has enough empty space. An overflow record header,
which contains a pointer to the record, is placed in the block
that would have normally contained the record. This
requires two record slots; one contains the overflow record
header and the second one contains the record.

Logically, the overflow slot that contains the record is still
empty. If a GET macro is issued to retrieve a record from
that overflow slot, an error is issued. If a PUT macro is
issued to write a record in that slot, the overflow record is
moved to a different block and the pointer in its overflow
record header is updated. Overflow records always require
two accesses to retrieve the record.

60499300 A

(

C'.

c

I
c

c

c

(

(

(

(

('

(

(

(
(

(

(

(

(

(

(

(

The formats for block headers and overflow record headers
are shown in figure 2-6. Figure 2-7 shows the structure of a
data record. The format of a record header is shown in
figure 2-8.

DIRECT ACCESS FILE STRUCTURE

A direct access file contains a file statistics table, home
blocks, and (under certain conditions) overflow blocks. All
blocks are fixed length. The following terms have specific
meaning in relation to direct access files:

Primary key

A primary key is a contiguous bit string that always
appears in a direct access record. It is hashed to
produce the location of the home data block
containing the record.

Hashing

Hashing denotes the method of using primary keys
to search for relative home block addresses of
direct access records.

Home block

A home block is a block whose relative address is
computed by hashing primary keys. A home block
contains synonym records whose keys hash to that
relative address.

Block Header

59 35

Synonyms

Synonyms are records whose keys hash to the same
home block.

Overflow record

An overflow record is a record whose key has been
hashed to a home block that is already filled.

Overflow block

An overflow block is the second or subsequent
block in a chain that starts at a home block. It
contains overflow records and can contain records
belonging to more than one overflow chain.

Chain

A chain consists of blocks that are logically
connected by forward and/or backward pointers.
Home blocks and overflow blocks are chained both
forv1ard and backv.Jard.

The relative position of records within a direct access file is
not important. A record is stored and retrieved by hashing
its primary key to produce the relative address of a home
block. When a home block is filled, the record can be placed
in another home block or in a system-generated overflow
block; the placement of the record depends on the overflow
record storage option selected by the user.

17 0

Unused Words in Block Number of Records in Block

60499300 A

Overflow Record Header

59 58

0
v
F

59

11

Actual Key Address of Overflow Record

Figure 2-6. Actual Key Block and Overflow Record Header Formats

47 14

Back Pointer

User Record Header

Data

Figure 2-7. Actual Key Data Record Structure

0

Slot Number

j

0

Length

2-5

59585756

Unused

59

58

57

56 thru 46

45 thru 42

41 thru 28

27 thru 12

11 thru 0

45

u
c
c

41

Record Length
in Words

27 11 0

S!ot !\lumber

Overflow bit, indicating record header format. Zero implies a normal header; 1 indicates an
overflow record header.

Overflow record bit. If set, the record described by the record header has overflowed.
Overflow records contain a one-word back-pointer. A back-pointer is the actual key address
of the corresponding overflow record header.

User header bit. If set, the record contains the user header. The user can optionally divide
records into user header and data portions. If this is done, user header length in words is
stored in the rightmost 15 bits of the first word of the record. The header indicator bit (HB)
in the FIT is examined on PUTs and REPLACEs to determine if the incoming record is
divided into header and data portions. On accesses, the HB field indicates which portion of
the record is to be returned.

Unused.

Unused character count; specifies the number of characters (0 through 9) that contain no
information in the last word of the record. Record lengths are supplied in characters by the
user and converted to words and unused characters internally.

Record length field; specifies the number of words necessary to contain the record. This
length includes the back-pointer and user header, if present.

Relative record address is a pointer to the record described by the record header. The
pointer is relative to the first word of the block.

Slot number; indicates the block slot that the record header is using. Record headers are
ordered by this field.

Figure 2-8. Actual Key Record Header Format

The logical structure of a direct access file is shown in
figure 2-9. FSTT is the file statistics table, Hl through H6
are the home data blocks, and OVl through OV3 are the
overflow blocks.

Extensive analysis of the record key structure, key range,
and key distribution is necessary to implement a randomly
organized file in an optimum manner. An ideal hashing
algorithm distributes records uniformly across all home
blocks. Because no single hashing routine can produce
optimum results for all data, a user-supplied hashing routine
can be used. Hashing routines are discussed in further detail
in section 4, File Processing.

Beginning-of·
Information

\
End-of-

Figure 2-9. Logical Structure of a Direct Access File

File Storage Allocation

Mass storage space is preallocated when a direct access file
is opened. Record storage and retrieval are by primary key;
the location of a record within a file is determined by
hashing the primary key to a relative block address.

Records are grouped in fixed-size blocks according to the
results of the primary key hashing. When more records hash
to a home block than the block can contain, overflow blocks
are created if that option has been selected by the user.
Overflow blocks are linked bidirectionally to form a chain.

2-6

File Blocking

Each direct access block (home or overflow) is an integral
number of PRUs less one central memory word and is
treated as a system-logical-record. An installation param
eter determines the number of words at the beginning of
each block for the block header. This parameter allows the
user to obtain header space. When the system is installed,
the user can choose to increase the size of the header. The
first word of the header contains 30-bit backward and
forward PRU pointers to form an overflow chain.
Optionally, the last word of each block contains a block
checksum. Records are stored in the remaining words as
received, beginning with the word following the last word of
the header.

A direct access primary key is a contiguous bit string
ranging in length from 1 to 255 characters. It must always
appear in the same character position for all records.
Records start on word boundaries. The first word of each
record is a record header with the format shown in
figure 2-10.

60499300 A

(

(

(

(

(

(

(

(

[
(

(,

(

(

(,

RECORD TYPES
Eight external record types are supported; these record
types are listed in table 2-1. Except for S type records and
W type records, each record type is described in detail in the
following paragraphs. AAM considers S and W type records
to be U type records.

When records are written on an initial indexed sequential,
direct access, or actual key file, the record type specifica
tion is used to compute the record length in characters.
This length is recorded in the header word that accompanies
each record in these files. When the record is read, record
type is ignored and the number of characters indicated by
the length field in the header is returned to the program.

The numbering conventions for describing a record or the
position of a control field or key field in a record are
summarized in figure 2-11. All record lengths are specified
by character count. Values are normally unsigned positive
integers, counting in a decimal system. For extended
indexed sequential files, the maxim~ record length (MRL)
field in the FIT must not exceed 10(2 -5) characters.

DECIMAL CHARACTER COUNT, D TYPE RECORDS

Records in a file with D type records vary in length. The
length of an individual record is specified in a record length

59 58 52 34

Unused Record
d Bit Count Length Unused

29

field located within the record. The position of the record
length field is specified by two fields in the FIT. The length
field beginning character position (LP) field indicates the
character position (numbering from 0) in which the record
length field begins. The length field length (LL) field
specifies the number of characters in the record length
field, which cannot exceed six characters.

When a D type record is written, the record length field
cannot contain a value greater than the value of the
maximum record length (MRL) field in the FIT. The
max~~um length that can be specified in the MRL field is
10(2 -51_ fharacters for extended indexed sequential files
and 10(2 -1) characters for all other files. The length
value specified in the record length field is given as right
justified display code filled with zeros or blanks. If the
COMP-1 (Cl) field in the FIT is set to YES, the record
length field is a COMP-1 (binary) field. If the sign
overpunch (SB) field in the FIT is set to YES, the record
length field is a sign-overpunch field.

The minimum record length (MNR) field in the FIT specifies
the minimum number of characters for the D type record.
The default value for the MNR field is the sum of the values
in the LP and LL fields; however, the MNR field can be set
to a greater value.

Figure 2-12 shows an example of a D type record. The
record length field is three characters in length (the LL field
is set to 3) beginning in character position 22 (the LP field is

0

Backward PRU
Pointer

59 Deletion flag. When this bit is set, the corresponding record is deleted logically.

58 thru 53 Unused bit count. Indicates the number of unused bits in the last word of the record.

52 thru 35 Record length. Contains the length of the record in words.

34 thru 30 Reserved for CDC.

29 thru 0 Backward pointer. Points to the preceding block in the chain if the record resides in an
overflow block.

Figure 2-10. Direct Access Record Header Format

1111 iTI 111111 iT 111 \ \ 1111 iTI 1111
0 234567890 2 3 4 0123456789

(Relative Character Position in Word)

0 2 3 4 5 6 7 8 9 10 11 12 13 14 . m

(Character Number)

Record Length m + 1 Characters

Figure 2-11. Numbering Conventions

60499300 A 2-7

set to 22). The minimum number of characters in a record is
25 (the sum of the values in the LL and LP fields).

FIXED LENGTH, F TYPE RECORDS

In a file with F type records, ali records are the same
length. The number of characters in the F type records is
specified by the fixed length (FL) field in the FIT. The
maximum rec!J.!f length that can be specified for F type
records is 10(2 -5) 19aracters for extended indexed sequen
tial files and 10(2 -1) characters for all other files;
minimum record length is 10 characters. An example of an
F type record is shown in figure 2-13; each record in the file
contains 200 characters as specified by the FL field.

D-

TABLE 2-1. RECORD TYPES AND
LENGTH DESCRIPTIONS

Record Type Length Description

Decimal Character A length field within the
Count record gives the length as

character count.

F - Fixed Length All records are the same
fixed length.

R- Record Mark A record mark character
specified by the user termi-
nates the record.

s - Syste;-n Record The length is defined by the
user,

T - Trailer Count The fixed-length header
contains a trailer count
field that specifies the
number of fixed-length
trailers for the record.

U- Undefined The length is defined by the
user.

W - Control Word The length is defined by the
user.

z - Zero Byte The length is determined
using the RL or FL field
and removing all full words
of blanks.

0 1 199

200

~L-1
Length of

length field

-- 200 characters --~

Fiaure 2-12. D Tvoe Record Example

2-8

I

I '1 o------- Character position -----~199

I I

11.. Flcharacters(2001-~•l I
Figure 2-13. F Type Record Example

Any value in the record length (RL) field in the FIT is
ignored. When a GET or PUT macro is issued, the value of
the fixed length (FL) field in the FIT determines the number
of characters that are transferred. A value must be supplied
for the FL field before the file can be successfully opened.

RECORD MARK, R TYPE RECORDS

A special delimiting character, called a record mark,
terminates R type records. The record mark character,
which can be any character of the character set, is selected
by the user. The delimiting character is specified in the
record mark character (RMK) field in the FIT.

The size of an R type record cannot exceed the number of
characters specified by the value of the maximum record
length (MRL) field in the FIT. Maxim~ length that can be
specified for R type records is 10(2 ff) characters for
extended indexed sequential files and 2 -1 characters for
all other files.

When a GET macro is issued, all characters up to and
including the record mark character are transferred to the
working storage area. If the record mark character is not
found within the specified maximum record length, the
maximum number of characters is transferred and an excess
data error is given.

Issuing a PUT macro causes all characters up to and
including the record mark character to be written on the
file. If the record mark character is not found within the
specified maximum record l~ngth, no data is written on the
file and an excess data error is given.

Figure 2-14 illustrates the use of R type records. The
maximum record length (MRL) field is set to 120 and the
record mark character (RMK) field is set to 62 , which is
the default right bracket (]) character. For a Pi1e read or
write operation, the right bracket character terminates the
record.

Record mark character==i

Ji
f---MRL characters maximum (120)-----l

Fiqure 2-14. R Type Record Example

60499300 A

•;
tr
ti

(

t!

•
t
t
t
t

I
t

t
t
t

I

« I . I
~.

c
~!
~!

'

(

(

(

(

(

(

(

(_

(

(

[
(

(

(,

(

(

(

(

(

SYSTEM RECORD, S TYPE RECORDS

When S type records are specified, AAM processes the
records as U type records. Refer to the description of
U type records.

TRAILER COUNT, T TYPE RECORDS

Records in a file with T type records consist of a fixed
length header and a variable number of fixed-length trailer
items. The fixed-length header contains a count field that
specifies the number of fixed-length trailer items in the
record.

Four fields in the FIT are applicable to T type records and
must be specified.

HL

TL

CP

Header length specifies the number of char
acters in the fixed-length header.

Trailer length specifies the number of char
acters in one fixed-length trailer item.

Starting character position specifies the char
acter position (numbered from 0) in which the
count field begins.

CL Count field length specifies the number of
characters (one through six) in the count field.

The value in the count field is right-justified display code
with zero or blank fill. The COMP-1 (Cl) field or the sign
overpunch (SB) field in the FIT can be set to YES to change
the count field to a COMP-1 or sign-overpunch field.

The count field, which is identified by the CP and CL fields
in the FIT, must be located in the fixed-length header
portion of the record. The value in the header length (HL)
field, therefore, cannot be less than the sum of the values in
the CP and CL fields.

The value in the HL field is the logical minimum record
length. The maximum length for a record is specified by the
maximum record length (~v1RL) field in the FIT; the value in
the HL field cannot exceed the value in the MRL field.
Max~131um length that can be specified for T type records is
10(2 -51_ fharacters for extended indexed sequential files
and 10(2 -1) characters for all other files. The logical
structure of a T type record is shown in figure 2-15.

~aunt field ---1

UNDEFINED, U TYPE RECORDS

Files with U type records have records that are not
formatted according to any of the supported record types.
The maximum record length (MRL) field in the FIT indicates
the maximum length for any record in the file. The
maximum record

1
_!ength that can be specified for U type

records is 10(2 -5) ffaracters for extended indexed
sequential files and 10(2 -1) characters for all other files.

When a GET or PUT macro is executed, the record length
(RL) field in the FIT must be set to indicate the number of
characters to be read or written. The value in the RL field
cannot exceed the specified maximum record length. AAM
maintains record pointers that define the length of the
stored record.

CONTROL WORD, W TYPE RECORDS

When W type records are specified, AAM processes the
records as U type records. Refer to the description of
U type records.

ZERO BYTE, Z TYPE RECORDS

A Z type record is terminated by a 12-bit byte of zeros in
the low-order position of the last word in the record.
Maximum record size is indicated by the full length (FL)
field in the FIT; maxi.£13Um length that can be specified for
Z type records is 10(2 ft) characters for extended indexed
sequential files and 10(2 -1) characters for all other files.

When a record is written, the value of the record length (RL)
field determines the processing that takes place. If the RL
field is set to a value greater than zero, the end of the
record is determined by searching backward from the
character position specified by the value of the RL field and
removing all full words of blanks.

If the RL field is set to zero when a record is being written,
the end of the record is determined by a backward search
for the last nonblank character in the working storage area.
The search begins in the character position indicated by the
full length (FL) field in the FIT; all full words of blanks are
removed.

n Trailers of length TL

- .. :-o
r-TL~ ___ j;:LJ I I

~•rTL; CP

--- HL

--

60499300 A

Total length
HL+(n*TL)

Figure 2-15. T Type Record Format

• • • n

-

2-9

AL TERNA TE KEY INDEX
FILE STRUCTURE

An index file is created and maintained by the Multiple
Index Processor (MIP) whenever a data file has alternate
keys defined. The index fiie is automatically created when
the data file is created and updated whenever an update to
the data file affects the index file.

AAM supports two types of MIP. Initial MIP is used for
initial indexed sequential, direct access, and actual key
files. Extended MIP is used for extended indexed sequential
files.

INITIAL MIP

The index file created and maintained by initial MIP
contains an index for each alternate key position defined for
the file. Within an index, each alternate key value is
associated with a primary key list of records containing that
value. The index file is created when the data file is
created, or the IXGEN utility can be used to create the
index file for an existing data file.

The size of the index file blocks can be specified by the user
when the index file is created. Index file block size must
always be specified as an integral number of PR Us. A block
size of 2 to 8 PRUs is recommended; results are indeter
minate if the block size exceeds 8 PRUs.

Each alternate key index is ordered in ascending sequence of
alternate key values. The ordering of primary key values
within the primary key list associated with an alternate key
value can be controlled by the user. The structure of
primary key lists can be indexed sequential or first-in first
out. Indexed sequential structure is most efficient. The
user can also specify that alternate key values are unique, in
which case each primary key list contains only one value.

Figure 2-16 illustrates an initial MIP index file with indexes
for two alternate key positions: a four-character symbolic
key and a three-digit integer key. For simplicity of
illustration, primary keys are one-character keys with
values A through Z.

Index for Alternate Key

Defined by RKW,RKP,KL Second Index

-------~ Alternate Key Value

l
s x
s x
s ABC x
s x

Keylist of
Primary Keys

OT ...
z 3 4 z
z F G HJ 1 1 ACOGMPX ...
z 0 7

Figure 2-16. Sample Index File, Initial MIP

2-10

EXTENDED MIP

The index file created and maintained by extended MIP
cu11tains an index foi each alternate key position defined for
the file. Within an index, each alternate key value is
associated with a primary key list of records containing that
value. The index file is created when the data file is
created, or the MIPGEN utility can be used to create the
index file for an existing data file.

When the index file is created, the user can specify the size
of the index file blocks in a field in the data file FIT. The
block size is increased if necessary to the nearest multiple
of 640 characters minus 20. The default size for index file
blocks is the data block size.

Each alternate key index is ordered in ascending sequence of
alternate key values. The ordering of primary key values
within the primary key list associated with an alternate key
value can be controlled by the user. The structure of
primary key lists can be indexed sequential or first-in first
out. Indexed sequential structure is most efficient. The
user can also specify that alternate key values are unique, in
which case each primary key list contains only one value.

The index file is structured into three levels: a level l main
file, level 2 subfiles, and level 3 subfiles. The level l main
file contains descriptions of the alternate keys. A level 2
subfile contains values for an alternate key and a level 3
subfile contains primary key values for a specific alternate
key value. The logical structure of an extended MIP index
file is shown in figure 2-17.

The level 1 main file contains descriptions of all the
alternate keys defined for the data file. The description of
an alternate key includes the position, length, and type of
the key as well as information related to sparse keys.
Normally, all the descriptions can be contained in one block;
however, if more than one block is required, the main file
has an indexed sequential structure.

Each level 2 subfile contains all the values for one of the
alternate keys. The level 2 subfiles have indexed sequential
file organization with index blocks and data blocks. Each
record in a data block contains an alternate key value and
the first primary key value associated with it. Depending on
the amount of available space in the data block and the size
of the primary key list, the data block might contain
additional primary key values.

A level 3 subfile contains primary key values that cannot be
accommodated in the level 2 subfile. If alternate key values
are unique, level 3 subfiles are not needed. The structure of
the level 3 subfile is either indexed sequential or first-in
first-out as specified when the alternate key is defined.
Indexed sequential subfiles have index blocks and data
blocks. First-in first-out level 3 subfiles have data blocks
chained in a forward direction.

The physical structure of an extended MIP index file is
shown in figure 2-18. A block in the figure can be either an
index block or a data block. The block structure is identical
to block structure in an indexed sequential file. All blocks
within a subfile are chained together in a forward direction.

60499300 A

W'' ~:

tr
C'

I

f

f
t'
fl

t
f'

ii

«: I

(
I
I

I
!!
s
I .

t:
i

I
c

I ti:
I

t I
t

t

t
i

t
II

I

I
t i '

I
Ill
l!i ;

' ' ;ii

~

(

('

(

(

(

(

(

(

(
FSTT

(

(

(

(,,

(,

(

(60499300 A

Alternate
Key

Descriptions

--------------+------ - -

Alternate
Key 1

Subfile

Value-1
Primary Key

Subfile

Alternate
Key 2

Subfile

Value-2
Primary Key

Subfile

Alternate
Key n

Subfile

Value-n
Primary Key

Subfile

Figure 2-17. Index File Logical Structure, Extended MIP

Main
Block Block Block Block Block

File

Figure 2-18. Index File Physical Structure, Extended MIP

Block

2-11

• ii I
11 I

I

I

t' I
I

t: I
t!'

t
•'.'. ~-

., I

I I

(

(

(

(

(

(

(

(

(

c
(

(

(

(,

(

(,

FILE INFORMATION TABLE 3

A file information table (FIT) is required for all AAM files.
Information in the table defines the file and specifies how it
is accessed. The FILE macro and the FILE control
statement are used to create and update the FIT. The FILE
macro assembles the FIT in the COMPASS program at the
address where the macro is encountered. Pertinent infor
mation from the FILE control statement is saved until the
file is opened; the saved information is then stored in the
FIT and takes precedence over any corresponding preexisting
information. A blank FIT, except for addressing infor
mation, file organization, and logical file name, could be set
up in the user program with definition of file characteristics
deferred until the file is opened.

The STORE macro or the FILE control statement can be
used to change the setting of fields in the FIT. The fields
are identified by the keywords of the FILE macro. The
FETCH macro is used to retrieve the contents of a field in
the FIT; a FILE macro keyword identifies the field being
retrieved.

AAM macros that request file operations can result in
amendment of FIT fields. Certain macro operands are
stored in FIT fields before the request is performed and
values can be stored in FIT fields as a result of processing
the request. AAM also maintains certain fields in the FIT to
reflect the current state of the file.

FILE MACRO

The FILE macro constructs the file information table at the
address where the macro is encountered during assembly;
the FIT must be built before the file is opened. The format
of the FILE macro is shown in figure 3-1. The interaction
between lfn and LFN=axxxxxx is shown in table 3-1.

The FILE macro does not check fields for validity or
consistency= If the option specified for a field exceeds the
maximum specified size, it is truncated and an assembler
warning message is produced.

[lfn] FI LE [LFN=axxxxxx] [,keyword=option,] ...

lfn Symbolic address where the FIT is assembled in
the COMPASS program; if the LFN=axxxxxx is
omitted or is the same name, logical file name
by which the file can be referenced.

LFN FIT field mnemonic for logical file name; if lfn
is omitted, LFN must be specified with axxxxxx.

axxxxxx Logical file name by which the file can be refer
enced; if lfn is omitted, symbolic address where
the FIT is assembled in the COMPASS program.

keyword Symbolic name of the FIT field.

option Selected option of the FIT field.

Figure 3-1. FILE Macro Format

60499300 A

Misspelled or unrecognized parameters generate null
parameters; the referenced fields are set to zero. Null
parameters are ignored. Warning messages are generated
when overlapping fields are specified.

The FILE macro must specify the file organization (FO)
mnemonic for an AAM file. Any parameter not applicable
to the specified file organization is ignored and an error
type 4 is generated during assembly.

The values specified for the FILE macro parameters are
assembled into the FIT; parameters can be specified in any
order. Table 3-2 shows the FILE macro parameters
applicable to each AAM file organization. A detailed
explanation of each FIT field that can be specified by the
FILE macro parameters follows. The default value is
indicated for each field.

BCK Block checksum

BFS

BCK=NO (default)

Checksums are not computed during file
creation. For a file created with checksums,
no checksumming is done during a read opera
tion; however, checksums are computed for
blocks written.

BCK=YES

A checksum is computed before each block is
written and after it is read. The checksum is
part of the block.

Buffer size

BFS=O (default)

AAM provides the buffer space; the amount of
common buffer space is increased by an
amount determined by AAM.

BFS=aexp

The buffer size is t~~ number of words
specified; maximum is 2 -1 or 131000 words.
If the FWB field is set to zero, AAM increases
the amount of common buffer space allocated
by BFS.

TABLE 3-1. LFN AND lfn INTERACTION

Statement
COMPASS Contents of

Location Value LFN Field in FIT

A FILE A A

FILE LFN=A A A

A FILE LFN=A A A

A FILE LFN=B A B

3-1

CDT Collating sequence to display code conversion
table; ignored if the OCT field is zero (initial
indexed sequential files)

TABLE 3-2. FILE MACRO PARAMETERS BY
FILE ORGANIZATION

Initial Extended
Actual Direct Parameter Indexed Indexed

Key Access Sequential Sequential

BCK x x x x
BFS x x x x
CDT x
CL x x x x
CP x x x x
CPA x
Cl x x x x
DCA x
DCT x x
DFC x x x x
DP x x x
DX x x x x
EFC x x x x
EMK x
ERL x x x x
EX x x x x
FL x x x x
FLM x x x x
FO x x x x
FWB I x x x x
FWI I x x x x
HB I x
HL I x x x x
HMB x

I HRL x
IBL x
IP x x
KA x x x x
KL x x x x
KP x x x
KT x x
LFN x x x x
LL

I
x x x x

I
LP x x x x
MBL x x x x

I MKL I x x
MNR x x x x
MRL x x x x
NDX x x x x
NL x x
OF x x
ON x x x x
ORG x x
OVF x
PD x x x x
PKA x
RB x x x x
REL x x x x
RKP x x
RKW x x
RMK x x x x
RT x x x x
SB x x x x
TL x x x x
TRC x x
WSA x x x x
XBS x
XN x x x x

3-2

CL

CDT =0 (default)

Conversion table is generated from the table
specified by the DCT field,

CDT=exp

Conversion table is at the specified address.

Trailer count field length (T type records)

CL=O (default)

For T type records, this field must be defined
before the file is opened.

CL=aexp

The length of the trailer count field is the
specified number of characters; maximum is 6.

CP Trailer count beginning character position (T type
records)

CP=O (default)

The trailer count field begins in character
position O.

CP=aexp

The specified number is the beginning char
acter position, n~ered from 0 on the left;
maxi mum is l 0(2 -5) f?f

7
extended indexed

sequential files and 10(2 -1) for all other
files.

CPA Compression/encryption routine number or address
(extended indexed sequential files)

CPA=O (default)

Records are not compressed unless a system
routine was specified when the file was previ
ously opened.

CPA=aexp

The specified number identifies the system
compression routine to be used; must be less
than 1008•

CPA=exp

The user-supplied compression routine is at the
specified address; must not be less than 1008•

Cl COMP-1 format for length field (D or T type
records)

Cl=NO (default)

The length field is in coded format.

Cl=YES

The length field is in binary (COBOL COMP-1)
format.

DCA Decompression/decryption routine address; re
quired if the CPA field specifies a user routine
(extended indexed sequential files)

DCA=O (default)

If the CPA field specifies either no com-·
pression or a system compression routine,
AAM sets DCA at open time if needed.

60499300 A

..
t

t
f'

c
f

t

t
411

I

Ci I

I
I
I

I
I
i

c I
I

t I

I t

f
c
«
--
f1

'

('

c

c

(

(

c:

{
1· ,,
(

(

(_

(

OCT

DFC

DP

DX

EFC

DCA=exp

The user-supplied decompression routine is at
the specified address; DCA must _be specified
if a user-supplied compression routine is speci
fied.

Display code to collating sequence conversion table
(indexed sequential files)

OCT =0 (default)

CDC conversion tables are used.

DCT=exp

The user-supplied table is at the specified
address. For initial indexed sequential files
when the CDT field is 0 and for extended
indexed sequential files, AAM generates the
collating sequence to display code conversion
table from the user-supplied table.

Dayfiie controi

DFC=O (default)

Only fatal error messages are written on the
dayfile.

DFC=l

Error messages are written on the dayfile.

DFC=2

Statistics/notes are written on the dayfile.

DFC=3

Error messages and statistics/notes are
written on the dayfile.

Data block padding factor (indexed sequential and
actual key files)

DP=O (default)

The installation default value is used for
indexed sequential files; 0 for actual key files.

DP=aexp

Padding for the data block &.:> the specified
percentage; maximum is 99.

End-of-data exit

DX=O (default)

No end-of-data exit is specified.

DX=exp

The routine at the specified address is entered
when an end-of-data condition occurs. The
system stores a jump at the first address of
the routine and control passes to the first
executable statement, which is routine+!.

Error file control

EFC=O (default)

No messages are written on the error file.

EFC=l

Error messages are written on the error file.

60499300 A

EMK

ERL

EFC=2

Statistics/notes are written on the error file.

EFC=3

Error messages and statistics/notes are
written on the error file.

Embedded key; examined when the file is opened
for creation (extended indexed sequential files)

EMK=NO (default)

The key is not part of the record.

EMK=YES

The key is embedded in the record; the RKW,
RKP, and KL fields define the position and
length of the key.

Trivial error limit

ERL=O (default)

An indefinite number of trivial errors is
permitted; no limit is specified.

ERL=aexp

The specified number is the maximum number
of trivial errors allowed before a fatal error
occurs; maximum is Sll.

EX Error exit

FL

FLM

EX=O (default)

No routine is entered if an error occurs;
control is returned to the user's in-line code.

EX=exp

The routine at the specified address is entered
when an error occurs. The system stores a
jump at the first address of the routine and
control passes to the first executable state
ment, which is routine+!.

Fixed length (F type records) or full length (Z type
records)

FL=O (default)

The field must be defined before the file is
opened.

FL=aexp

For F type records, the specified number is the
recor~ length in characters; 10 through
10(2 -5) for exten~7d indexed sequential files
and 10 through 10(2 -1) for all other files.

For Z type records, the specified number
establishes the upper limit of characters or
blank padding moved to the working storage
area.

File limit

FLM=O (default)

The file limit is not checked.

3-3

FO

FWB

FWI

HB

HL

HMB

3-4

FLM=aexp

ThP filP limit cannot exceed the specified
number of records.

File organization (no default value)

FO=AK

The file has actual key file organization.

FO=IS

The file has indexed sequential file organi
zation.

FO=DA

The file has direct access file organization.

First word address of user-supplied buffer

FWB=O (default)

AAM provides the buffer space needed.

FWB=exp

The user buffer is at the specified address.

Farced write indicator

FWl=NO (default)

Each buffer is written only when the buffer
space is needed for another input/output
operation.

FWl=YES

Aii buffers are written immediateiy after each
operation that modifies the buffer content.
This option increases file integrity by keeping
the file current; however, performance is
degraded as more input/output transfers are
required.

Header indicator bit (actual key files)

HB=NO (default)

The user header is not returned with the data
received.

HB=YES

The user header is returned with the data
received.

Header length (T type records)

HL=O (default)

For T type records, this field must be defined
bef oie the file is opened.

HL=aexp

The fixed-length portion of the T type records
is the speci[~d number of characters; maxi
mum is 10(2 -5) fol 7xtended indexed seq~en
tial files and 10(2 -1) for all other files;
minimum is the sum of the CP and CL fields.

Number of home blocks (direct access files)

HMB=O (default)

The field must be defined to open the file.

HRL

IBL

IP

KA

KL

HMB=aexp

The file contains the zaecified number of home
blocks; maximum is 2 -1.

Hashing routine location; cannot be changed after
file creation (direct access files)

HRL=O (default)

The system-supplied hashing routine is used.

HRL=exp

The user-supplied hashing routine is at the
specified address.

Index block length (initial indexed sequential files)

IBL=O (default)

The index block size is calculated using the
values of the NL, RB, IP, FLM, and KL fields.
If either or both of the values of the NL and
FLM fields are zero when the file is opened,
the default index block size is used.

IBL=aexp

The index block size is the specified number of
characters rounded up to an integral multiple
of the PR~ 7ize minus 10 characters; maxi
mum is 10(2 -1).

Index block padding factor (indexed sequential
files)

iP=O (defauit)

For initial indexed sequential files, the instal
lation default value is used (release default is
five); for extended indexed sequential files,
the default value zero is used.

lP=aexp

The index block padding is the specified
percentage; maximum is 99.

Key address

KA=O (default)

No address is specified for a key.

KA=exp

The key value for the record to be processed is
at the specified address; for the GETN macro,
the key of reference is returned to the
specified address.

Key length

KL=O (default)

This field must be defined before the file is
opened.

KL=aexp

For actual key files, the key length is the
specified number of bits; 2 through 47. For
indexed sequential and direct access files, the
key length is the specified number of char
acters. The positive integer that can be

60499300 A

• I •
I f'! ;
I
i c! i

I
I
I

er
cl
f·

f' ! I
!

c
t''
cl

1:

I I I
t:
ti

c
4

' I .

I c
c I
- I '

' I
I c I

i
• :il

.Ji'
,ii; i~ 'tTJ

(

(

(

(
(

(

(

(

c
(.

(

(

I

KP

KT

LFN

specified for indexed sequential files depends
on the key type defined by the KT field. For
initial indexed sequential files:

KT =S Symbolic key, maximum is the
installation-defined key limit (default
is 255).

KT=I

KT=F

Integer key, either 5 or 10 characters
must be specified; a 5-character
integer key is formed from the lower
half of the word.

Floating point key, the KL field is
ignored without comment; key size is
always 10 characters.

For extended indexed sequential files:

KT =S Symbolic key, maximum is the
or installation-defined key limit (default

KT =U is 255).

KT =I Integer key; 10 characters must be
specified for the signed binary key.

Beginning key position (direct address files and
symbolic keys for indexed sequential files)

KP=O (default)

The key is word-aligned.

KP=aexp

The key begins in the specified character
position within the KA field, numbered from 0
on the left; maximum is 9.

Key type (indexed sequential files)

For initial indexed sequential files:

KT =S (default)

A symbolic key is a string of alphanumeric
characters.

KT=I

An integer key is either 5 or 10 characters in
length in either fixed or unnormalized floating
point format.

KT=F

A floating point key is 10 characters in length.

For extended indexed sequential files:

KT =S (default)

A collated symbolic key is a string of alpha
numeric characters.

KT=I

An integer is a 10-character signed binary key.

KT=U

An uncollated symbolic key is a string of
alphanumeric characters.

Logical file name (no default value)

LFN=axxxxxx

The data file logical file name is one to seven
characters in length beginning with a letter.

60499300 A

LL

LP

MBL

MKL

MNR

Length field length (D type records)

LL=O (default)

The field must be defined before the file is
opened.

LL=aexp

The length of the length field is the specified
number of characters; maximum is 6.

Length field beginning character position (D type
records)

LP=O (default)

The length field begins in character position 0.

LP=aexp

The length field begins in the specified char
acter position, n:J3bered from 0 on the left;
maximum is 10(2 -5) f?f 7 extended indexed
sequential files and 10(2 -1) for all other
files.

Maximum block length; should not be changed after
the file is opened

MBL=O (default)

The installation default size is used.

MBL=aexp

The data block is the specified number of
characters in length. The specified size is
increased to an integral multiple of PRU size
minus two words. MBL should not be specified
if a value for the RB field is given for indexed
sequential files. If both are set, the value of
the RB field is ignored. For extended indexed
sequential files, MBL also specifies the length
of the index blocks.

Major key length (indexed sequential files, symbolic
key type)

MKL=O (default)

Major key length processing is not specified.

MKL=aexp

The major key length is the specified number
of characters; maximum is the KL value. The
file is positioned at the first record with a key
in which the first specified number of char
acters matches the major key.

Minimum record length

MNR=O (default)

The minimum record length is zero characters.
Zero length records are not accepted in direct
access and actual key files.

MNR=aexp

The minimum record length is the specified
number of characters; maximum is the MRL
value.

3-5

MRL

NDX

NL

OF

ON

ORG

3-6

Maximum record length

MRL=O (default)
TL:- &:-1.-1 -. ~
11uu 1u:au 111u.o&.. be defined
opened for creation.

MRL=aexp

bef ure
..... _
l..llC file is

The maximum record length is the speJ.i!ied
number of characters; maximum is 10(2 -5)
for 1e,xtended indexed sequential files and
10(2 -1) for all other files. This establishes
the upper limit of characters moved to the
working storage area. The field must be
specified for OPENM NEW and is returned for
OPENM OLD.

Index flag (multiple-index files)

NDX=O (default)

The data file can be accessed by primary or
alternate key.

NDX=l

Only the index file is accessed.

Number of index block levels; required only when
files are created (indexed sequential files)

NL=O (default)

The installation default value is used.

NL=aexp

The number specified is the expected number
of levels for the file; maximum is 63 for initial
indexed sequential files and 15 for extended
indexed sequential files. For initial indexed
sequential files, the specified value is used to
calculate index block size if the value of the
IBL field is zero at creation time, and it is
used in the allocation of buffer space.

Open flag; file positioning at OPENM time (indexed
sequential files)

OF =R (default)

The file is rewound.

OF =N (initial indexed sequential files)

The file is not rewound.

OF=E

The file is positioned at end-of-information for
extend.

Old er new file

ON=OLD (default)

The file is an existing file (FSTT exists).

ON=NEW

The file is being created (FSTT to be estab
lished).

Old/new file organization (indexed sequential files)

ORG=OLD (default)

The file organization is initiai indexed sequen
t. i;:il.

OVF

PD

PKA

RB

REL

ORG=NEW

The file organization is extended indexed
sequential.

Overflow flag (direct access files)

OVF =DVB (default)

Overflow records are stored in home and
overflow blocks.

OVF=OVO

Overflow records are stored in overflow blocks
only.

OVF=OVH

Overflow records are stored in home blocks
only.

Processing direction

PD=INPUT (default)

The file is open for input (read).

PD= OUTPUT

The file is open for output (write).

PD=IO

The file is open for input/output (read and
write)

PD=NEW

The file is opeii for a creatioii nm.

Primary key address (extended indexed sequential
files)

PKA=O (default)

The primary key is not returned on an
alternate key read operation.

PKA=exp

The primary key is returned to the specified
address on an alternate key read operation.

Records per block; used in block size calculation

RB=O (default)

RB is set to l; the installation default is used
if MBL is also zero.

RB=aexp
1?

Blocking factor limit is z~--1. For indexed
sequential files, RB should not be specified if
the MBL field is specified.

Key relation; relation of record key to key value at
location KA.

REL=l

This specifies an equal (EQ) relation.

REL=2 (not applicable to extended indexed sequen
tial files)

This specifies a iess than or equal (LE)
relation.

60499300 A

f

I

(
..

(

(

(

(''

(
c:

(

(

(

RKP

RKW

RMK

RT

REL=3

This specifies a greater than or equal (GE)
relation.

REL=4 (not applicable)

REL=S (not applicable to extended indexed sequen
tial files)

This specifies a less than (LT) relation.

REL=6

This specifies a greater than (GT) relation.

Relative key position; required if EM< is set to
YES (extended indexed sequential, direct access,
and multiple-index files)

RKP=O (default)

The key is word-aligned starting at RKW
position.

RKP=aexp

The key begins in the specified position within
RKW, numbered from 0 on the left; maximum
is 9.

Relative key word; required if EMK is set to YES
(extended indexed sequential, direct access, and
multiple-index files)

RKW=O (default)

The key begins in the first word of the record.

RKW=aexp

The key starts in the specified word (numbered
from 0) within the record.

Record mark character (R type records)

RMK=O (default)

The record mark character is the right
bracket (]), which is 628•

RMK=ccB

The record mark character is the specified
octal value (cc); maximum is 77 8•

RMK=lRx

The record mark character is the specified
character (x); any character is valid.

RMK=cc

The record mark character is the specified
decimal value (cc); maximum is 63.

Record type

RT =W (default)

This specifies a control word record; however,
AAM considers this the same as RT =U.

RT=F

This specifies a fixed length record.

RT=R

This specifies a record mark record.

60499300 A

SB

TL

TRC

WSA

RT=Z

This specifies a zero byte terminated record.

RT=D

This specifies a decimal character count
record.

RT=T

This specifies a trailer count record.

RT=U

This specifies an undefined record •

RT=S

This specifies a system-logical-record; how
ever, AAM considers this the same as RT =U.

Sign overpunch format for length field (0 or T type
records)

SB=NO (default)

The length field is in oosigned display code.

SB= YES

The length field uses a COBOL sign overpunch
scheme.

Length of the trailer portion (T type records)

TL=O (default)

This field must be defined before the file is
opened.

TL=aexp

The length of the trailer portion is the
s~;cified number of characters; maximum is
2 -1.

Trace transaction count (initial indexed sequential
and direct access files)

TRC=O (default)

No tracing is to be performed.

TRC=aexp

If l through 31 is specified, the last specified
number of transactions are traced prior to
termination; if 32 through 63 is specified, all
file transactions are traced.

Working storage area address

WSA=O (default)

No working storage area is specified.

WSA=exp

The working storage area is at the specified
address. This field must be set before any file
processing macro uses the working storage
area. It can be set by the GET, PUT, GETN,
GETNR, and REPLACE macros.

3-7

XBS

XN

Index file block size (multiple-index files, extended
MIP)

XBS=O (default)

The index file blocks are the same size as the
data file blocks.

XBS=aexp

The index file blocks are the specified number
of characters.

Index file name (multiple-index files)

XN=O (default)

No accesses or updates by alternate key can be
performed.

XN=lfn

The index file for alternate key access is the
file with the specified logical file name.

FILE CONTROL ST A TEMENT

The FILE control statement is used to specify file
information to update the FIT either when the SETFIT
macro is issued or the first time the file is opened in the job
step. This run-time control over file specification allows a
single program to process files with different record types.
Corresponding FIT fields have the value specified on the last
control statement encountered.

FILE control statements must be placed before any program
call in which the information in the statements is to be used.
Because processing of the FILE control statement involves
calling a central processor program, it should not be placed
within a load set sequence. For example, the FILE control
statement should not be placed between the LOAD and
EXECUTE control statements.

If more than one FILE control statement appears for a given
file, the data on the first control statement can be
overwritten by the data on a subsequent control statement
when overlapping fields occur in those statements. The
FILE control statement conforms to operating system coding
conventions.

When an error diagnostic is produced by FILE control
statement processing, the entire statement is ignored. FILE
control statement diagnostics are written on the dayfile as
soon as the error is encountered; diagnostics name the faulty
parameter and are self-explanatory. Control is then passed
to the next EXIT control statement.

The format of the FILE control statement is shown in
figure 3-2. Keywords can be specified in any order.
Keywords have the same meanings as described for the FILE
macro.

Fl LE(lfn[=axxxxxx] [.keyword=option] ...)

lfn Name of the FIT; required.

=axxxxxx Optional new name for the FIT; allows a
file to be requested by a new name with
out reassembly.

keyword=option Symbolic name of the FIT field and the
option set ected.

Figure 3-2. FILE Control Statement Format

3-8

If only the ifn and FO parameters appear in the FILE control
statement and no subsequent FILE control statement refer
ences that file, FIT fields for a!! 8UCCeeding job steps are
those specified in the program. If the FILE control
statement appears without any parameters, FiT fieids for ail
files revert back to those specified in the program for all
succeeding job steps until another FILE control statement is
encountered. Except for the USE and OMIT parameters, all
parameters valid in a FILE control statement are valid in a
FILE macro.

The FILE control statement parameters are listed in
table 3-3. The various options for a keyword are separated
by the I symbol. If the keyword is selected, one of the
options must be selected and the others must be omitted.
Parameter values are absolute and generally reference a
number of characters. Value formats are denoted as:

n ••• n Decimal value

n ••• nB Octal value

n ••• nW Decimal value, specified in words

Descriptions of the FILE control statement parameters are
the same as for the corresponding FILE macro parameters.

RUN-TIME MANIPULATION

The user can communicate with AAM through the FIT
without knowing the exact format of the FIT. This is done
with the FETCH, STORE, and SETFIT macros; FIT field
mnemonics are used in the FETCH and STORE macros.

FETCH MACRO

The FETCH macro retrieves the contents of a specified FIT
field by a reference to its mnemonics. The format of the
FETCH macro is shown in figure 3-3.

If the specified keyword represents a 1-bit field, it is
returned in the sign bit of the X register; the contents of the
remainder of the X register are undefined. File names are
returned left-justified with zero fill. All other fields are
returned right-justified with zero fill.

FIT field mnemonics can be any of the keywords used with
the FILE macro or any of the fields listed in figure 3-3. The
macro generates code to extract the requested value from
the FIT. The code expansion destroys values in user
registers Xf, Xm, Af, and Xi (which can be Xf or Xm).

STORE MACRO

The STORE macro places a user-determined value in a
specified FIT field at execution time. The format of the
STORE macro is shown in figure 3-4.

Most FIT fields listed in appendix D can be set symbolically
by the STORE macro. Some fields, such as the file structure
parameters, are protected against being changed by the
STORE macro. Other fields are not protected but should not
be changed after the file has been opened.

A field can be set by using the option with the keyword or by
using a register to hold the option as shown in figure 3-5.
Examples a and b have the same effect.

<:n1ooo~nn I\
UU~//J\.JU r\

I

C.

;
Ii
I
;a
I
I
I
i
!
I

I
i

I

('

(

(
.·
(

(

(

(
(

(

(,.

(

(

(

(

TABLE 3-3. FILE CONTROL STATEMENT PARAMETERS

Keyword Options Keyword Options Keyword Options

BCK NOIYES HL Din ••• nln ••• nBln ••• nW OF RINIE

BFS Din ••• nln ••• nB IP Dinn OMIT macro name/ macro name/ •••

CF RINIUIRETIDET KL Din ••• nln ••• nBln ••• nW ON OLD I NEW

CL Din ••• nln ••• nBln ••• nW KP Din ••• nln ••• nB ORG OLD I NEW

CP Din ••• nln ••• nBln ••• nW KT SIIIFIU PD INPUTIOUTPUTIIO

Cl NO I YES LFN lfn RB Din ••• nln ••• nB

DFC Dl11213 LL Din ••• nln ••• nB RKP Din ••• nln ••• nB

DP Dinn LP Din ••• nln ••• nBln ••• nW RKW Din ••• nln ••• nB

EFC Dl11213 MBL Din ••• nln ••• nBln ••• nW RT WIFIRIZIDITIUIS

ERL Din ••• nln ••• nB MKL Din ••• nln ••• nBln ••• nW SB NO I YES

FL Din ••• nln ••• nBln ••• nW MNR Din ••• nln ••• nBln ••• nW TL Din ••• nln ••• nBln ••• nW

FLM Gin ••• n MRL Oln ••• nln ••• nBln ••• nW TRC nl_ -1- -D
UllJ • • • 11(11 • • • llU

FO ISIDAIAK NDX NO I YES USE macro name/macro name/ •••

FWI NO I YES NL Din ••• nln ••• nB XN lfn

FETCH fit,keyword,xi,f,m

fit

1_,.,.. ,. .. ,_ ... ,..a
~ic;y YVVI U

Xi

m

6D4993DO A

Logical file name address of the FIT, or
any COl\JIPASS expression giving the FIT
address.

Any of the keywords in the F! LE macro,
FI LE control statement, or any of the
following:

BN Block number

ECT Trivial error count

ES Error status

FNF Fatal/nonfatal flag

FP File position

LOP Last operation code

OC Open/close flag

RC Record count

RL Record length

WPN Write bit

X register to receive the value of the re
quested field.

Number of the X register used to fetch the
FIT word; must be 1 through 5 (default
is 5).

Number of the X register used as a mask
(default is 7).

Figure 3-3. FETCH Macro Format

I value }
STORE fit,keyword= ~tion J ,f,s,m

fit

keyword

vaiue

option

Ri

m

Address of the FIT or any COMPASS
expression giving the address.

Any keyword described in connection with
the Fl LE macro except OF or RT.

integer vaiue associated with the keyword;
when the keyword represents a length, it is
specified in characters.

Option associated with the keyword.

Any register containing the proper value for
the keyword.

Number of the X register used to fetch the
FIT word; must be 1 through 5 (default
is 5).

Number of the X register used to store the
FIT word; must be 6 or 7 (default is 6).

Number of the X register used as a mask
(default is 7).

Figure 3-4. STORE Macro Format

3-9

a. STORE

b. SX1

STORE

c. STORE

fit,RL=10

10

fit,RL=X1

fit.FO=IS

Figure 3-5. STORE Macro Examples

The STORE macro generates code to store the requested
value in the FIT. This code expansion destroys the values in
user registers Xf, Xs, Xm, Af, As, and Xi (which can be Xf,
Xs, or Xm).

SETFIT MACRO

The SETFIT macro sets fields in the FIT according to
information provided in the FILE control statement. This
normally occurs when the OPENM macro is executed. The
SET FIT macro makes it possible for system routines to
obtain information, such as run-time buffer requirements,
needed by other system routines. The format of the SETFIT
macro is shown in figure 3-6.

SETFIT fit

fit Address of the FIT or register containing the
address of the FiT.

Figure 3-6. SETFIT Macro Format

The SETFIT macro is valid only for a closed file. Any
attempt to execute this macro for an open file results in an
error. Once the FILE control statement values are placed in
the FIT, the macro sets the processed flag (PDF) field to
inhibit further FILE control statement processing when the
OPENM macro is executed. The flag is cleared during
subsequent OPENM processirig.

If the buffer size (BFS) field is zero for an existing file, the
parameters from the file statistics table are placed in the
FIT; the buffer size returned to the BFS field is based on
these values. After a buffer is calculated, the open/close
(OC) field and first word address of the buffer (FWB) field
are cleared.

For a new file, the SETFIT macro should not be issued unless
sufficient information exists for buffer calculations.
Parameters needed for buffer calculation are shown in
table 3-4.

TABLE 3-4. BUFFER CALCULATION PARAMETERS

File User Must Supply Parameter User Can Supply Parameter
Organization or Default is Used

Extended I Key length KL Maximum block length MBL
indexed
sequential Key type KT Index block padding factor IP

Maximum record length MRL Data block padding factor DP

Index block specification NL

Embedded key EMK

Compression routine CPA

Initial Key length KL Maximum block length MBL
indexed
sequential Key type KT Index block length IBL

Maximum record length MRL Index block padding factor IP

Data block padding factor DP

Index block specification NL

Direct t··iome block: numbei HMB Blocking factor RB
access

Key length KL

Maximum block length MBL or

Maximum record length MRL and

Minimum record length MNR

Actual Maximum block length MBL or Blocking factor RB
key

Maximum record length MRL and

Minimum record length MNR l
3-10 60499300 A

.. I
ti
II

I cl I
II
!

I
t ii

I
I

t
cl
t:I I

f!i

ti
t:

I

t I
I I
t,

-II
I

I t;'

-11

ti

ti

ti

t

' 4i

~

('

(

C_

(

(

(

[
(,

(

(

(

(_

(,

(

(

FILE PROCESSING 4

This section provides general processing information and
explains by file organization the logical operations of
processing AAM files. Macros and FIT fields are discussed
as applicable to the type of processing for each file
organization. The macros and their parameters are
described in general in section 5, File Processing Macros.
Detailed explanations of the FIT fields are in section 3, File
Information Table. Processing of multiple-index files is
discussed in section 6, Multiple-Index Files.

GENERAL PROCESSING INFORMATION

Certain processing procedures are common to all AAM file
organizations. These procedures are explained in the
following paragraphs. Processing unique to each file
organization is discussed by file organization.

FILE INFORMATION TABLE

Before an AAM file can be processed, the file information
table (FIT) must be established. This provides the name by
which the file can be referenced and defines the file
structure and processing limitations. The FIT contains fields
that are referenced whenever AAM processes the file. FIT
fields can be set before file processing by the FILE control
statement, FILE macro, SETFIT macro, or STORE macro.

FILE ST A TIS TICS TABLE

A separate creation run is necessary for AAM files. This
creation run establishes the file statistics table (FSTT),
which becomes a permanent part of the file. The FSTT
contains FIT fields that cannot be changed for the life of the
file. When the file is opened for processing after its
creation run, the FIT fields are automatically established
from information in the FSTT of the file.

OPENM MACRO

All files must be initialized using the OPENM macro.
Applicable default values are inserted into FIT fields for
certain values not supplied before executing the OPENM
macro. AAM also performs certain consistency checks on
FIT fields when the file is opened. Refer to the OPENM
macro description in section 5 for the FIT fields that are
checked.

INPUT /OUTPUT MACROS

The GET, GETN, and GETNR macros read records from a
file. A working storage area must be established to pass
data to the program from a file storage device. The user
defines the working storage area (WSA) by supplying an
address for the WSA field in the FIT. A GET macro
transfers data from the buffer area, which is set up either
by the user or by AAM when the file is opened, to the
working storage area.

The PUT macro is used to write records to the file. A
working storage area must be established to pass data from
the program to a file storage device. The PUT macro

60499300 A

transfers data from the working storage area to the buff er
area, which is set up either by the user or by AAM when the
file is opened. The maximum record length (MRL) field in
the FIT must be set by the user on a file creation run and
becomes a permanent part of the file. The value specified
in the MRL field becomes the upper limit on the number of
characters that can be transferred.

CLOSEM MACRO

At completion of processing, all files must be closed by the
CLOSEM macro. Any remaining records of an output file
are written from the buffer to the file storage device, the
open/close (OC) field in the FIT is set to closed, and control
is returned to the user. Execution of the CLOSEM macro
causes the FSTT to be updated; if requested, file statistics
are written to the error file ZZZZZEG.

END-OF-DAT A ROUTINE

The end-of-data exit (DX) field in the FIT specifies the
address of a user routine for processing an end-of-data
condition. End-of-data occurs when beginning-of
information (BOI) or end-of-information (EOI) is encountered
while attempting a data transfer or positioning operation.

Control is passed to the address (DX)+l; a jump back to the
user in-line return code is stored at the DX address. The
file position (FP) field indicates the specific end condition
(BOI or EOI).

When file position is at EOI, the GETN macro transfers
control to the end-of-data exit. If continued GETN macros
are issued without repositioning the file, the GETN macro
issues an error and transfers control to the error exit (if
specified) instead of to the end-of-data exit. No GETN
macro that passes control to the end-of-data exit causes
data to be transferred to the working storage area. Control
is passed to the end-of-data exit only when end-of
information is encountered. The FP field is not set until the
file is logically at the end of information.

For indexed sequential and actual key files, control is
transferred to the end-of-data exit whenever a SKIP macro
encounters EOI or BOI. A trivial error condition is produced
by successive SKIP macros after end-of-data has been
encountered.

INITIAL INDEXED SEQUENTIAL FILES

The initial indexed sequential file organization is well suited
for applications that require reasonably efficient storage
and retrieval of records both randomly and sequentially by
primary or alternate key. A primary key is an identifier
defined by the user for each record within an initial indexed
sequential file. Primary and alternate keys can be in any of
the following forms:

30-bit integer (5 characters)

60-bit integer (10 characters)

60-bit floating point number (10 characters)

Symbolic (1 to 255 contiguous alphanumeric characters)

4-1

The value of the primary key determines the location of the
record in the file. Characters within a symbolic (alpha
numeric) key are collated according to the standard CDC
r.nllating sequence or according to a user-bupplied collating
sequence. Any user collating sequence has meaning for
ranking keys only; it is stored with the user file in the FSTT.
Numeric keys are ordered by value. Keys within an initial
indexed sequential file can be a part of the record.

FILE CREATION RUN

A separate creation run is necessary for an initial indexed
sequential file. This can be done through the FORM utility
or through a source program. The FSTT is created when the
initial indexed sequential file is created.

The efficiency with which an initial indexed sequential file
can be processed is influenced by three fields in the FIT:

BFS Buffer size

IBL Index block length

MBL Maximum block length

On a creation run, the user has the option of specifying
these values directly or accepting system defaults
calculated by AAM. The ESTMATE utility, which is
described in section 7, can be used to calculate suggested
values for the MBL, IBL, and BFS fields.

If the MBL field is not specified directly, the value is
calculated from the values of the following fields in the FIT:

DP Data block padding

KL Key length

MNR Minimum record length

MRL Maximum record length

RB Records per block

If the IBL field is not specified directly, the value is
calculated from the values of the index block padding (IP)
field and the number of index levels (NL) field. If the IP and
NL fields are not specified, a default value of 511 words is
used.

Certain fields in the FIT determine the size and character
istics of data and index blocks during file creation. Data
blocks and index blocks need not be the same size; padding
percentages can also be different. The following FIT fields
are used in data block creation:

DP Data block padding

KL Key length

KT Key type

MBL Maximum block length

MNR Minimum record length

MRL Maximum record length

RB Records per block

4-2

The FIT fields used to create the index block are as follows:

IBL Index block length

IP Index block padding

KL Key length

MNR Minimum record length

MRL Maximum record length

NL Number of index levels

RB Records per block

Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control statement,
FILE macro, or STORE macro. Any attempt to change these
fields after file creation is ignored without comment. The
FIT fields that must be set are as follows:

FO File organization

KL Key length

KT Key type

LFN Logical file name

MRL Maximum record length

Other FIT fields that must be defined before the file is
opened on a creation run can be set by the user or can
assume default values. These fields remain the same for the
iife of the fiie and attempts to change them are ignored.

CDT Collating sequence to display code conversion
table; default depends on the OCT field

OCT Display code to collating sequence conversion
table; default is CDC conversion table

OKI Duplicate key indicator; default is no duplicate
key processing

DP

IBL

IP

MBL

Data block padding percentage; release default
is 0

Index block length; default is calculated by
AAM

Index block padding percentage; release
default is 5

Maximum block length; default is calculated
by AAM

MNR Minimum record size; cannot exceed value of
MRL; default is 0

NL Number of index levels; maximum is 63;
release default is 1

RB Records per block; should not be specified if
MBL is specified; release default is 2

Some FIT fields that are specified before the file is opened
for creation are in effect only until another OPENM macro
is executed. Attempted changes are ignored without
comment or error until the file is opened again; the values in

60499300 A

•1

t
t
c
f

f

f

f~

f

t

I
t
ti

«
c

I

t I
I

I ~I

~i I !

j

I
f: ;

I i
I

(t
I

At

t

('

('

(

(

(

(

(

<:

c:

' ... ,j

(

(_

(

the FIT are then used to accomplish the open. Default
values are assumed without comment if the following fields
are not set:

BCK

BFS

FWB

Block checksum; default is no checksums

Buffer size; default is buffer size calculated
by AAM

First word address of the buffer; default is
buffer address provided by AAM

When records are written to a file on a creation run, the
primary keys must be in ascending sequence. The old/new
file (ON) field in the FIT must be set to NEW before the file
is opened. Only the following macros can be used during a
creation run:

OPE NM

REWINDM

PUT

CLOS EM

The REWINDM macro must not be issued while records are
being inserted into the file.

EXISTING FILE PROCESSING

Initial indexed sequential files must reside on mass storage
devices for processing. After file creation, however, the
file can be dumped to tape with a COPYBF statement or a
permanent file dump routine. The file can be returned later
to mass storage for processing.

Open Processing

Before an existing file can be opened, the user must call for
construction of the FIT by specifying the logical file name
and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

OKI Duplicate key indicator

iBL index biock iength

KL Key length

KT Key type

MBL Maximum block length

MRL Maximum record length

NL Number of index levels

A default value is assumed without comment if the following
FIT fields are not set before opening the file:

BCK Block checksum; default is no checksums

BFS

FWB

60499300 A

Buffer size; default is buffer size calculated
by AAM

First word address of the buffer; default is
buffer address provided by AAM

Two fields in the FIT have no default value and must be set
before being used by a file processing macro. If the
following fields are not set before required, a fatal error
occurs:

KA Key address

WSA Working storage area

Other fields that can be set before the file is opened but
need not be set until required by a file processing macro are
as follows:

DFC Dayfile control

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

FWI Forced write indicator

KP Beginning key position

MKL Major key length

The MKL field is reset to zero after execution of a GET or
SEEK macro. The other fields remain in effect until
changed.

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through the FILE
macro, FILE control statement, or STORE macro or by
specifying any option except NEW in the processing direc
tion (pd) parameter of the OPENM macro.

An existing file can be positioned at end-of-information
during open processing. This position is established by
specifying the E option in the open flag (of) parameter of
the OPENM macro or by setting the open flag (OF) field in
the FIT to E through the STORE macro, FILE control
statement, or FILE macro before the file is opened.

Read Processing

Records can be read from the file randomly by key value or
sequentially by position. The key of reference for a read
operation can be the primary key or any alternate key
defined for the file. The file can be open for input or for
input/ output.

The GET macro is used for a random read operation. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields in the FIT determine whether the read
operation is by the primary key or by one of the alternate
keys. The key value at the address specified by the key
address (KA) field is used to locate the record to be read.
The user must set the KA field to the address of the key
value. A trivial error condition results if the specified key
is not found in the file; however, the file position is altered
to point to where the record should exist. If the key is part
of a duplicate set, the first record of the set is returned.

Sequential reading is accomplished by the GETN macro. The
GETN macro returns the next sequential record to the
working storage area. If the key address (ka) parameter is
specified in the macro, the primary key of the record

4-3

retrieved is returned to the specified address. The GETN
macro must be used to access any duplicate key record other
than the first one in the set.

Read-Only Processing

Existing files can be read, but not updated, in a smaller fieid
length by substituting the use of a read-only capsule for the
capsule that aJJows fuU file processing. Both random and
sequential reading are possible with the read-only capability.

When the read-only mode is selected, the file must be open
for input. If another AAM file is being processed for
input/output in the same job step, the read-only mode must
not be selected; if it is selected, an error occurs. The file to
be read must not be an empty file. Only the following
macros can be issued for the file: OPENM, GET, GETN,
SEEK, SKIP, REWINDM, and CLOSEM.

The read-only capability requires the following LDSET
control statement (or LDREQ macro from a COMPASS
program executed through a terminal):

LDSET(SUBST =$RM.IS$-$RM.ISX$)

If static loading is being used, the following additional
LDSET control statement is required (refer to appendix E
for a discussion of static loading):

LDSET(SUBST =$SAAM.IS$-$IS.ROEN$)

In COBOL programs, the following additional LDSET control
statement is required:

LDSET(OMIT =ISOOOV)

Under the NOS operating system, libraries must have been
generated with NX=l before SUBST is used.

Write Processing

New records are added to an existing indexed sequential file
with the PUT macro. Records are inserted by primary key
value. The user must set the KA field in the FIT to the
address of the key value. Execution is faster if the records
to be inserted are sorted by primary key in ascending order.

If the file has duplicate primary key values, the position
(pas) parameter of the PUT macro determines where the
record is inserted within the duplicate key set. If the pos
parameter is not specified, the key and the record are
placed after the last record in the duplicate key set. The
positioning of a record within a duplicate key set is
determined by the setting of the pos parameter as follows:

4-4

If P is specified and the key given equals the key of the
last record referenced, the key and the record are
inserled irnrnediateiy preceding the iast record
referenced.

If N is specified and the keys are equal, the key and the
record are placed immediately following the last record
referenced.

If P is specified and the keys are not equal, the key and
the record are inserted preceding the first record in the
duplicate key set.

If N is specified and the keys are not equal, the key and
the record are inserted after the last record in the
duplicate key set.

Random Processing

Random processing implies index block manipulation as \•;ell
as record processing. Maximum efficiency is gained by
allowing buffer space for one index block for each index
level and space for two data blocks. This number of index
blocks allows the primary index block to remain in memory
while processing the other index and data blocks. Two data
blocks provide input/output/compute overlap.

If no input/output is in progress for the file, a write is
initiated for any data block that has been modified as long
as the block is not the object of the current macro. This
permits a high degree of input/output/compute overlap;
however, if the forced write indicator (FWI) field in the FIT
is set, each modified block is v1ritten immediately.

Major Key Processing

The major key feature is available with the GET, SEEK, and
ST ART macros. It allows the user to perform a search on
the leading characters of a symbolic key. When the major
key length (mkl) parameter is specified in the GET macro,
the record returned to the working storage area is the first
one encountered with a major key that matches the
specified major key value. Presumably, the user wishes to
examine a subset of records defined by the major key; the
subset is processed using the GETN macro to access the
records belonging to the subset.

The START macro can also include the mkl parameter.
When it is specified, the file is positioned at the first record
containing a major key that matches the specified major key
value. A record is not returned to the wcrk!ng storage area
by the START macro.

When the major key length (mkl) parameter is specified in
the SEEK macro, AAM initiates transfer into the buffer of
an index block or the data block containing the first
occurrence of the major key. Other program processing can
occur while the transfer is taking place.

The file position (FP) field in the FIT can be checked for the
status of the block transfer. The FP field has the value 0 if
an index block is being transferred or the value 20

8
if a data

block is being transferred. If the value of the FP field is O,
another SEEK macro can be issued and a check made of the
FP field. This can be done repeatedly until the data block is
transferred into the buffer. The GET macro can then be
issued to transfer the record containing the first occurrence
of the major key from that data block in the buffer to the
working storage area. The GET macro can be issued when
the FP field contains O, but then there is no overlap in
processing.

Duplicate Key Processing

The user has the option of allowing the existence of
duplicate primary keys. If the duplicate key position (POS)
field in the FIT is not set, the GET, REPLACE, and DELETE
macros reference the first record in a duplicate key set; the
PUT macro places the record at the end of a duplicate key
set. All records other than the first in the duplicate key set
must be accessed with the GETN macro. Duplicate key
processing can be selected at any time during the Ji fe of the
file. Once the option to have duplicate keys is selected,
duplicate keys cannot be prohibited.

60499300 A

• I
llli

I

f
I
I
I
I ': I
!i

I
I

t
I

I
f

I
I
I c I

I
t:
t:
t:
c

I I I
ll

i
= «: ii

I
- I

I «i

I c
f I
~

t I
4 I

I

I

'
A
I • iii

I
"" iiliL

~
~-

~~

c

(

(

(

(

(

("

(

(

(

(

(

File Updating

The DELETE macro physically removes the key and its
associated record from the file. The key address (KA) field
in the FIT must be set to point to the address of the primary
key value for the record to be deleted. If the file has
duplicate keys and the position (pos) parameter is omitted
from the DELETE macro, the first record in the duplicate
key set is deleted. The last record referenced is deleted
when C is specified for the pos parameter. The key at the
address specified by the KA field must equal the key of the
record last referenced; otherwise, a trivial error results and
the request is ignored.

If the deleted record is the only one in the data block, the
block is linked into a chain of deleted data blocks to be used
when new data blocks are required for file expansion. If the
delete operation results in an empty index block, the block is
linked into a chain of deleted index blocks.

The REPLACE macro replaces an existing record with the
record in the working storage area. The primary key vaiue
for the record in the working storage area must be the same
as the primary key value for an existing record. The KA
field must be set to point to the primary key for the working
storage area record.

The first record in a duplicate key set is replaced when the
position (pos) parameter is omitted from the REPLACE
macro. The last record referenced is replaced when the pos
parameter is set to C. The key at the address specified by
the KA field must equal the key of the last record
referenced; otherwise, a trivial error occurs and the request
is ignored.

File Positioning

When the OPENfvl macro is executed, positioning of the file
depends on the open flag (of) parameter in the macro. If
R (rewind) is specified, the file is positioned at the first
record, which is the record with the lowest primary key
value. If E (end-of-information) is specified, the file is
positioned after the last record, which is the record with the
highest primary key value. Omitting the parameter causes
the current value of the OF field in the FIT to be used. File
positioning remains unchanged until one of the following
macros is executed: GET, GETN, REWINDM, PUT,
REPLACE, DELETE, SKIP, or START.

The GET macro, which accesses a record randomly, alters
the file position to the record returned by the macro. The
GETN macro, which accesses a record sequentially,
advances the file position one logical record and returns that
record l.R1less the file is positioned at end-of-information.

The REWINDM macro positions the file to beginning-of
inforrnation; execution of the GETN macro then returns the
first record in the file. The SKIP macro positions the file
forward or backward the specified number of records. After
end-of-information has been reached, subsequent forward
skips without file positioning cause trivial errors. If a skip
count of zero is given, no action is taken.

The START macro positions the file according to a specified
key value and key relation; the file is positioned at the
record with a key value that is equal to (EQ), greater than or
equal to (GE), or greater than (GT) the specified key value.
If the specified key value does not exist in the file, the file
is positioned at the record with the next greater key value.

60499300 A

Overlap Processing

In response to a user program request for a record, AAM
locates the data block by searching the index blocks and
transfers the data block from mass storage to the buffer
area. The record is then transferred to the working storage
area. The execution time to do this can be overlapped with
program processing by using the SEEK macro.

The SEEK macro transfers an index or data block from mass
storage to the buffer, returning control to the user program
at the start of the transfer. The user must check the file
position (FP) field in the FIT to determine if an index block
(FP set to 0) or a data block (FP set to 208) is being
transferred. Multiple SEEK macros can be issued until the
transfer of the data block is initiated. The user can then
issue a macro to process the record originally specified in
the SEEK macro. The SEEK macro does not return a record
to the working storage area.

EXTENDED INDEXED SEQUENTIAL FILES
The extended indexed sequential file organization is well
suited for applications that require reasonably efficient
storage and retrieval of records both randomly and sequen
tially by primary or alternate key. A primary key is a
unique identifier defined by the user for each record within
an extended indexed sequential file. Primary and alternate
keys can be in any of the following forms:

60-bit signed binary (10 characters)

Symbolic (1 to 255 contiguous alphanumeric characters)

Uncollated symbolic (1 to 255 contiguous alphanumeric
characters)

The value of the primary key determines the iocation of the
record in the file. Characters within a symbolic (alpha
numeric) key are collated according to the standard CDC
collating sequence or according to a user-supplied collating
sequence. Any user collating sequence has meaning for
ranking keys only; it is stored with the user file in the FSTT.
Numeric keys are ordered by value. Keys within an
extended indexed sequential file can be a part of the record
(embedded) or not a part of the record (nonembedded).

F!!.E CREA T!ON RUN

A separate creation run is necessary for an extended indexed
sequential file. This can be done through the FORM utility
or through a source program. The FSTT is created when the
extended indexed sequential file is created.

The efficiency with which an extended indexed sequential
file can be processed is influenced by two fields in the FIT:
maximum block length (MBL) and buffer size (BFS). On a
creation run, the user has the option of specifying these
values directly or accepting system defaults calculated by
AAM. The FLBLOK utility, which is described in section 7,
can be used to calculate suggested values for the MBL and
BFS fields.

If the MBL field is not specified directly, the value is
calculated from the values of the following fields in the FIT:

DP Data block padding

KL Key length

MNR Minimum record length

4-5

MRL Maximum record length

RB Recoids per block

A number of fields in the Fl T determine the size and
characteristics of data and index blocks during file creation.
Data and index blocks must be the same size; padding
percentages, however, can be different. The following FIT
fields are used in data block creation:

DP Data block padding

KL Key length

KT Key type

MBL Maximum block length

MNR Minimum record length

MRL Maximum record length

RB Records per block

The FIT fields used to create the index block are as follows:

IP Index block padding

KL Key length

MBL Maximum block length

MNR Minimum record length

... '"". Maximum record length IVll"\.L

NL Number of index levels

RB Records per block

Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control statement,
FILE macro, or STORE macro. Any attempt to change these
fields after file creation is ignored without comment. The
Fl T fields that must be set are as follows:

FO File organization

KL Key length

KT Key type

LFN Logical file name

MRL Maximum record length

If the primary key is embedded in the record, the following
FIT fields must also be set:

EMK

RKP

RKW

4-6

Embedded key, set to YES

Relative key position; character position
within RKW in which the key begins

Relative key word; word in which the key
begins

Other FIT fields that must be defined before the file is
opened on a creation run can be set by the user or can
assume default values. These fields remain the same for the
life of the file and attempts to change them are ignored.

OCT

DP

IP

MBL

MNR

Display code to collating sequence conversion
table; default is CDC conversion table

Data block padding percentage; release default
is 0

Index block padding percentage; release
default is 0

Maximum biock length, data and index blocks;
default is calculated by AAM

Minimum record size; cannot exceed value of
MRL; default is 0

NL Number of index levels; maximum is 15;
release default is l

RB

XBS

Records per block; should not be specified if
MBL is specified; release default is 2

Index file block size; default is data file block
size (MBL)

Some FIT fields that can be specified before the file is
opened for creation are in effect only until another OPENM
macro is executed. Attempted changes are ignored without
comment or error untii the tiie is opened again; the vaiues in
the FIT are then used to accomplish the open. Default
values are assumed without comment if the following fields
are not set:

BCK Block checksum; default is no checksums

BFS Buffer size; default is buffer size calculated
by AAM

CPA Compression routine address; default is no
compression of records

DCA Decompression routine address; default
depends on the CPA field

FWB First word address of the buff er; default is
buffer address provided by AAM

When records are written to a file on a creation run, the
primary keys should be in ascending sequence for a more
efficient run. The old/new file (ON) field in the FIT must be
set to NEW before the file is opened.

EXISTING FILE PROCESSING

Extended indexed sequential files must reside on mass
storage devices for processing. After file creation,
however, the file can be dumped to tape with a COPYBF
statement or a permanent file dump routine. The file can be
returned later to mass storage for processing.

60499300 ,8.

•

c

I

(

(

(

(

<::

c:

(,

Open Processing

Berore an existing file can be opened, the user must call tor
construction of the FIT by specifying the logical file name
and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

KL Key length

KT Key type

MBL Maximum block length

MRL Maximum record length

NL Number of index levels

RKP Relative key position

RKW Relative key word

The RKW and RKP fields are set to 0 and 10, respectively, if
the key is not embedded in the record.

A default value is assumed without comment if the following
FIT fields are not set before opening the file:

BCK Block checksum; default is no checksums

BFS Buffer size; default is buffer size calculated
by AAM

CPA Compression routine address; default is no
compression of records

DCA Decompression routine address; default
dep~nds on the CPA field

FWB First word address of the buffer; default is
buff er address provided by AAM

Two FIT fields have no default value and must be set before
being used by a file processing macro. If the following fields
are not set before required, a fatal error occurs:

KA Key address

WSA Working storage area

Other fieids r.nat can be set oerore the rue is openea om
need not be set until required by a file processing macro are
as follows:

DFC Dayfile control

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

FWI Forced write indicator

KP Beginning key position

MKL Major key length

The MKL field is reset to zero after execution of a GET,
SEEK, or ST ART macro. The other fields remain in effect
until changed.

60499300 A

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through the FILE
macro, FILE control statement, or STORE macro or by
specifying any option except NEW in the processing direc
tion (pd) parameter of the OPENM macro.

An existing file can be positioned at end-of-information
during open processing. This position is established by
specifying the E option in the open flag (of) parameter of
the OPENM macro or by setting the open flag (OF) field in
the FIT to E through the STORE macro, FILE control
statement, or FILE macro before the file is opened.

Read Processing

Records can be read from the file randomly by key value or
sequentially by position. The key of reference for a read
operation can be the primary key or any alternate key
defined for the file. The file must be open for input or for
input/ outpuL

The GET macro is used for a random read operation. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields in the FIT determine whether the read
operation is by the primary key or by one of the alternate
keys. For a nonembedded primary key, RKW and RKP must
be set to 0 and 10, respectively. The key value at the
address specified by the key address (KA) field is used to
locate the record to be read. The user must set the KA field
to the address of the key value. A trivial error condition
results if the specified key is not found in the file; however,
the file position is altered to point to where the record
should exist.

Sequential reading is accomplished by the GETN and GETNR
macros. The GET~J macro returns the next sequential
record to the working storage area. The GETNR macro
performs this same function; however, control returns
immediately to the user if input/output is required to
complete the request. The macro can be issued repeatedly
until the transfer of the record is complete, or the
input/output status can be monitored for completion before
issuing the GETNR macro again.

Write Processing

New records are added to an existing indexed sequential file
with the PUT macro. Records are inserted by primary key
value. For a nonembedded primary key, the user must set
the KA field in the FIT to the address of the key value.
Execution is faster if the records to be inserted are sorted
by primary key in ascending order.

Random Processing

Random processing implies index block manipulation as well
as record processing. If the user cannot allow AAM to use
the Common Memory Manager (CMM), maximum efficiency
is gained by allowing buffer space for one index block for
each index level and space for two data blocks. This number
of index blocks allows the primary index block to remain in
memory while processing the other index and data blocks.
Two data blocks provide input/output/compute overlap. The
user can direct AAM to allocate this amount of buffer space
by setting the buffer size (BFS) field and by not setting the
first word address of the buffer (FWB) field. Refer to
appendix G for a detailed description of buffer allocation.

4-7

If no input/output is in progress for the file, a write is
initiated for any data block that satisfies the following
conditions:

The block was altered by the preceding macro.

The block is not the object of the current macro.

This permits a high degree of input/output/compute overlap;
however, if the forced write indicator (FWI) field in the FIT
is set, each modified block is written immediately.

Major Key Processing

The major key feature is available with the GET, SEEK, and
ST ART macros. It allows the user to perform a search on
the leading characters of a symbolic key. When the major
key length (mkl) parameter is specified in the GET macro,
the record returned to the working storage area is the first
one encountered with a major key that matches the
specified major key value. Presumably, the user wishes to
examine a subset of records defined by the major key; the
subset is processed using the GETN or GETNR macro to
access the records belonging to the subset.

The START macro can also include the mkl parameter.
When it is specified, the file is positioned at the first record
containing a major key that matches the specified major key
value. A record is not returned to the working storage area
by the START macro.

When the mkl parameter is specified in the SEEK macro,
AAM initiates transfer into the buffer of an index block or
the data block containing the first occurrence of the major
key. Other program processing can occur v:hile the transfer
is taking place.

The file position (FP) field in the FIT can be checked for the
status of the block transfer. The FP field has the value 0 if
an index block is being transferred or the value 208 if a data
block is being transferred. If the value of the FP field is O,
another SEEK macro can be issued and a check made of the
FP field. This can be done repeatedly until the data block is
transferred into the buffer. The GET macro can then be
issued to transfer the record containing the first occurrence
of the major key from that data block in the buffer to the
working storage area. The GET macro can be issued when
the FP field contains O, but then there is no overlap in
processing.

File Updating

The DELETE macro physically removes the key and its
associated record from the file. The key address (KA) field
in the FIT must be set to point to the address of the primary
key value for the record to be deleteci. If the deleted record
is the only one in the data block, the block is linked into a
chain of deleted blocks to be used when new blocks are
required for file expansion. If the delete operation results in
an empty index block, the block is linked into the chain of
deleted blocks.

The REPLACE macro replaces an existing record with the
record in the working storage area. The primary key value
for the record in the working storage area must be the same
as the primary key value for an existing record. For a
nonembedded primary key, the KA field must be set to point
to the primary key for the working storage area record.

4-8

File Positioning

When the OPE!\!M macro is executed, positioning of the file
depends on the open flag (of) parameter in the macro. If
R (rewind) is specified, the fiie is positioned at the first
record, which is the record with the lowest primary key
value. If E (end-of-information) is specified, the file is
positioned after the last record, which is the record with the
highest primary key value. Omitting the parameter causes
the current value of the OF field in the FIT to be used. File
positioning remains unchanged until one of the following
macros is executed: GET, GETN, GETNR, REWINDM, SKIP,
or START.

The GET macro, which accesses a record randomly, alters
the file position to the record returned by the macro. The
GETN macro, which accesses a record sequentially,
advances the file position one logical record and returns that
record unless the file is positioned at end-of-information.
The GETNR macro also advances the file position one
logical record when it returns a record.

The REWINDM macro positions the file to beginning-of
information; execution of the GETN or GETNR macro then
returns the first record in the file. The SKIP macro
positions the file forward or backward the specified number
of records; the file is positioned at beginning-of-information
or end-of-information if the skip count is too large.

The ST ART macro positions the file according to a specified
key value and key relation; the file is positioned at the
record with a key value that is equal to (EQ), greather than
or equal to (GE), or greater than (GT) the specified key
value. If the specified key value does not exist in the file,
the file is positioned at the record with the next greater key
value.

Overlap Processing

In response to a user program request for a record, AAM
locates the data block by searching the index blocks and
transfers the data block from mass storage to the buff er
area. The record is then transferred to the working storage
area. The execution time to do this can be overlapped with
program processing by using the SEEK macro or the GETNR
macro.

The SEEK macro transfers an index or data block from mass
storage to the buffer, returning control to the user program
at the start of the transfer. The user must check the file
position (FP) field in the FIT to determine if an index block
(FP set to 0) or a data block (FP set to 20

8
) is being

transferred. Multiple SEEK macros can be issued until the
transfer of the data block is initiated. The user can then
issue a macro to process the record originally specified in
the SEEK macro. The SEEK macro does not return a record
to the working storage area.

The GETNR macro is used to read records sequentially. If
execution of the GETNR macro initiates block transfer to
the buffer, control returns immediately to the user. The file
position (FP) field can be monitored in the same manner as
for the SEEK macro to determine when block transfer is
complete. The busy FET address (BZF) field points to an
input/output status word that can be monitored to determine
when input/output processing is complete. When the FP
field is set to 20..R, the record has already been returned as if
the last GETNR macro in the series had been a GETN
macro.

/n1.nn7nn I\
OU'+77..7UU M

t

I
c

c

(

('

(

(

(

(

(

(

(

(
(

{'

'
(

(

(

(

(

ACTUAL KEY FILES
The actual key file organization provides fast random access
to records in the file. Random access usually requires one
access per record. The primary key for a record is its
storage location (block number and record number within the
block). The user must preserve primary keys if the file is to
be accessed randomly by primary key.

FILE CREATION RUN

A separate creation run is necessary for an actual key file.
This can be done through the FORM utility or a source
program. The FSTT is created when the actual key file is
created.

Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control statement,
FILE macro, or STORE macro. Any attempt to change these
fields after file creation is ignored without comment. The
FiT fieids that must be set are as foBows:

FO File organization

KL Key length

LFN Logical file name

MNR Minimum record length

MRL Maximum record length

RT Record type

Two FIT fields that must be defined for file creation can be
specified by the user or can assume default values.

DP Data block padding percentage; release default
is 0

MBL Maximum block length; default is calculated
by AAM

If the MBL field is not specified directly, the value is
calculated from the values in the following fields:

MNR Minimum record length

MRL Maximum record length

RB Records per block

The value specified for the MBL field must be large enough
to hold at least the value specified in the RB field, the block
header, checksum (if this option is selected), and the number
of average size records specified by the RB field. AAM
increases the block size, if necessary, to use mass storage
efficiently. Resulting blocks are an integral multiple of
physical record unit (PRU) size minus one central memory
word.

The following FIT fields must be selected before the file is
created if the option is to be used during the life of the file:

HB Header bit; header appears with user data

RB Records per block

Some FIT fields that can be specified before the file is
opened for creation are in ef feet only until another OPE NM
macro is executed. Attempted changes are ignored without

60499300 A

comment until the file is opened again; the values in the FIT
are then used to accomplish the open. Default values are
assumed without comment if the following fields are not set:

BCK Block checksum; default is no checksums

BFS Buffer size; default is buffer size calculated
by AAM

FWB First word address of the buffer; default is
buffer address provided by AAM

The key value at the address specified by the key address
(KA) field in the FIT determines where the record is written.
The user can do either of the following:

The key value at location KA can be set to zero; this
allows AAM to determine the key value associated with
the record.

The key value at location KA can be set to a properly
formatted key; this tells AAM where to store the
record.

Only the following macros can be used during a creation run:

OPE NM

REWINDM

PUT

CLOS EM

EXISTING FILE PROCESSING

Actual key files must reside on mass storage for processing.
After file creation, the file can be dumped to tape through
the DUMPF utility and reloaded to mass storage for
processing with the LOADPF utility. The COPYBF utility
can also be used to copy the file to tape and then back to
mass storage for processing.

Open Processing

Before an existing file can be opened, the user must call for
construction of the FIT by specifying the logical file name
and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

KL Key length

MBL Maximum block length

MNR Minimum record length

MRL Maximum record length

RB Records per block

A default value is assumed without comment if the following
FIT fields are not set before the file is opened:

BCK Block checksum; default is no checksums

BFS

FWB

Buffer size; default is buffer size calculated
by AAM

First word address of the buffer; default is
buffer address provided by AAM

4-9

Other FIT fields that can be set before the file is opened but
need not be set until required by a file processing macro are
as failows:

DFC Dayfile control

DX End-of-data exit

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

FWI Forced write indicator

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through a FIT
manipulation macro or by specifying any option except NEW
for the processing direction (pd) parameter in the OPENM
macro.

Read Processing

The GET macro is used to read records randomly by key
value. The key value at the address specified by the key
address (KA) field in the FIT is used to locate the record to
be read. The GETN macro is used to read the next record in
sequence by position. Records can be read by primary key
or by any alternate key defined for the file. The file must
be open for input or for input/output.

Vv'hen a record is read, the number of characters retrieved is
returned to the record length (RL) field in the FIT. If the
requested record is not found, a trivial error results.

The setting of the header indicator bit (HB) field in the FIT
determines whether the whole record, including the header,
is returned to the working storage area when a record is
read. If the HB field is set to YES, the entire record is
returned. If the HB field is set to NO, AAM assumes that
bits 0 through 14 in the first word of the header specify the
number of words the user considers to be the data record
header; only the nonheader portion of the record is returned.

Execution of the GETN macro causes the next sequential
record to be placed in the working storage area. The first
time the GETN macro is issued after the file is opened or
after any rewind request, the first record in the file is
retrieved. The next GETN macro retrieves the next
sequential record. Any empty record position is ignored.
Overflow records are returned as they are encountered. An
overflow record occupies two slots; the first slot is the one
where the record should be and the second slot is the one
that actually contains the record. The record is returned
when the first slot is encountered. if the key address (ka)
parameter is specified in the GETN macro, the primary key
value of the record retrieved is returned to the specified
address.

Write Processing

The PUT macro is used to add a record to an existing actual
key file. The key value at the address specified by the key
address (KA) field in the FIT must be unique or zero;
otherwise, the request is ignored. When a key value is
specified, it must indicate the block number of an existing
block or a biock number one higher than the highest
numbered block currently existing. A key value of zero

4-10

causes AAM to determine the location for the record; the
key value is returned to the user at location KA. If a block
cannot accommodate a record with a user=8pecified key, the
record is placed elsewhere by AAM; the value of the original
key does not change for user program purposes.

An index for actual key files is not maintained by AAM. For
subsequent random reading by primary key value, the user is
responsible for preserving primary keys of records written
on the file. A multiple-index file can be created to maintain
an index for actual key files.

If the header indicator bit (HB) field in the FIT is set to
divide a record into a user header portion and a user data
portion when a record is read, the record must be written
accordingly. The first word in the working storage area
must indicate in bits 0 through 14 the number of words in
the user header.

File Updating

After a file has been created, records in the file can be
deleted or replaced. The DELETE and REPLACE macros
are used to update an actual key file.

A record can be eliminated from an existing file with the
DELETE macro. The record indicated by the key value at
location KA is logically removed from the file and the key is
set to zero. The record is physically removed when the
space is needed and any remaining records in the block can
be relocated. If the requested record cannot be found, the
request is ignored and a trivial error results.

The REPLACE macro is used to replace an existing record
with a new record. The existing record is specified by the
key value at location K.A:~ The new rec1Jrd is in t.he working
storage area. The new record need not be the same size as
the record being replaced.

File Positioning

When the OPENM macro is executed, the file is positioned
at the first record in the file. File positioning remains
unchanged until one of the following macros is executed:
GET, GETN, REWINDM, or SKIP. The GET and GETN
macros, which are used to read records, position the file at
the record retrieved.

The SKIP macro positions the file forward or backward the
specified number of records to the beginning of another
record. Only small skips should be made because each
intervening record is read and counted. The SKIP macro
does not return a record to the working storage area.

Skipping stops if beginning-of-information or end-of
information is reached. An informative message is issued if
skipping or sequential reading is attempted past the file
boundary, but no error exit is taken. Any end-of-data exit is
executed only if end-of-information is encountered. A skip
count of zero is interpreted as a no-op.

The use of the REWINDM macro is more efficient than
extensive backward skipping of records. This macro
positions the file to beginning-of-information, which is the
start of the user data record with the lowest key.

Overlap Processing

In response to a user program request for a record, AAM
determines the block needed and transfers it from mass
storage to the buffer area. The specified record is then

60499300 A

•; P..l
!.;;
iJ
II

• ti'' • I
I
I

t"' iii

I
I

-~
tlii

c
t'! I

I

tr1

•1!1

'

If. I
~· I

•I::
•1 ..

• .II

t, ' I

(_

(

(

(

(

(

(

(

(

(

(

' (

(

transferred to the working storage area. The execution time
to do this can be overlapped with program processing by
using the SEEK macro.

The SEEK macro transfers the block with the record from
mass storage to the buffer, returning control to the user
program at the start of the transfer. The program can
continue processing. A macro can then be issued to process
the record originally specified in the SEEK macro. The
SEEK macro does not return a record to the working
storage area.

DIRECT ACCESS FILES

The direct access file organization is well suited for
applications that require rapid access by key value. Direct
access files can be accessed either randomly or sequentially
by primary or alternate key; however, records accessed
sequentially by primary key are not logically ordered.

FILE CREATION RUN

A separate creation run is necessary for a direct access file.
This can be done through the FORM utility, the CREATE
utility, or a source program.

Mass storage for a direct access file is preallocated. Before
the file is opened on a creation run, the user must specify
the size and number of home blocks to be preallocated. The
number of home blocks is specified by setting the number of
home blocks (HMS) field in the FIT. The key analysis utility,
which is described in section 7, can be used to test various
home block sizes.

The user has the option of specifying the home block size
directly or accepting a system default. The maximum block
length (MBL) field is set by the user to specify home block
size. If the MBL field is not set by the user, AAM calculates
the value for the MBL field from the values in the following
FIT fields:

MNR Minimum record length

MRL Maximum record length

RB Records per biock; defauit is 2

A number of fields must be set by the FILE control
statement, the FILE macro, or the STORE macro before the
file is opened for a creation run. If these fields are
specified for an existing file, the new values are ignored
without comment. A fatal error occurs if the following
fields are not set on a creation run:

HMS Number of home blocks

KL Key length

LFN Logical file name

MNR Minimum record length

MRL Maximum record length

The position of the primary key in the record is assumed to
begin in the first character position. If the primary key is in
another position, the position must be specified before the

60499300 A

file is opened. The following FIT fields, which cannot be
changed after the file is opened for a creation run, describe
the key position:

RKP Relative key position

RKW Relative key word

Default values are used without comment if certain FIT
fields are not set before the file is opened for a creation
run. These fields are effective only until the file is opened
again; attempted changes are ignored without comment until
another OPENM macro is executed. At that time, the
values in the FIT are used to accomplish the open. These
fields are as follows:

BCK Block checksum; default is no checksums

BFS Buffer size; default is buffer size calculated
by AAM

FWB First word address of the buffer; default is
buff er address provided by AAM

The minimum size of the buffer is two data blocks and the
FSTT. The maximum size is three data blocks and the FSTT.

Only the following macros can be used on a file creation run:

OPE NM

REWINDM

PUT

CLOSEM

Overflow

Overflow records in direct access files are handled in one of
three ways. The setting of the overflow (OVF) field in the
FIT at file creation time determines the method used for
overflow records. The OVF field can be set as follows:

OVF=OVB
(default)

OVF=OVO

OVF=OVH

User Hashing Routine

Overflow records are stored in over
flow blocks or in other home blocks.
If conservation of file space is more
critical than access time, this option
should be selected.

Overflow blocks are created to
handle any overflow records occur
ring. If access time is more critical
than file space, this option should be
selected.

Overflow records are stored in home
blocks only. An attempt to add a
record to a file whose home blocks
are filled is disallowed and a trivial
error message is issued.

At file creation time, the user has the option of selecting a
user hashing routine instead of the supplied hashing routine.
This option is controlled by the hashing routine location
(HRL) field in the FIT.

4-11

If the symbolic entry point name of the user hashing routine
is MYHASH, the user should code HRL==XMYHASH in the
FILE macro. Parameters needed by the user hashing routine
are passed as follows:

SAl ARRAY

RJ =XMYHASH

The array contains the addresses of the following:

ARRAY Key length (KL)

ARRAY+l Key address (KA)

ARRAY +2 Number of home blocks (HMB)

ARRAY +3 Hashing result

When the hashing routine completes its computation, the
address of the hashing result must be placed in ARRAY+ 3
and control must be returned to AAM. AAM then converts
the value to a relative physical record unit (PRU) number.
The user hashing routine could be coded as shown in
figure 4-1. Upon return to AAM from any hashing routine,
the remainder of the hashed key divided by the value of the
HMB field is used as the ordinal of a home data block.

MY HASH DAT A 0

Computation

BX6 Xi

SA2 A1+3

SA6 X2

STORE HASH RESULT

GET ADDRESS FOR
HASHED RESULT

STORE HASH RESULT

EQ MYHASH RETURN TO AAM/DA

Figure 4-1. User Hashing Routine Example

Supplied Hashing Routine

When the HRL field is not set to the address of a user
hashing routine, the system-supplied hashing routine is used.
The supplied hashing routine folds the word-aligned key into
one word using the integer add instruction. If the folded key
is an 18-bit integer or an 18-bit packed integer, no further
hashing is done; otherwise, the folded key is hashed using the
shift and divide instructions to produce a 48-bit result. This
hashed key is the ordinal of a home data block on mass
storage.

A prime number of home blocks is recommended when the
supplied hashing routine is used. This generally produces a
more uniform distribution of records than a nonprime
number.

Direct Access File Records

All record types are allowed for direct access files. When
creating the file through a source language, W type records
are the default. When using the FORM utility or the
CREATE utility through FORM, Z type records are the
default.

4-12

AAM determines the length of each record before it is
written to the file. A data record header is generated by
.l\Atv1; this includes the number of characters in the record.
The header and record are then written to the file.

EXISTING FILE PROCESSING

Direct access files must reside on mass storage for
processing. After file creation, the file can be dumped to
tape using the FORM utility and then reloaded for proc
essing. The DUMPF and LOADPF utilities or the COPYBF
utility can also be used.

Open Processing

Before an existing file can be opened, the user must call for
construction of the FIT by specifying the logical file name
and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

HMB Number of home blocks

KL Key length

MBL Maximum block length

MNR Minimum record length

MRL Maximum record length

If the following fields are not set before the file is opened,
the default value is assumed without comment:

BCK

BFS

FWB

Block checksum; default is no checksums

Suffer size; defau!t is buffer size calculated
by AAM

First word address of the buffer; default is
buffer address provided by AAM

Two FIT fields that have no default value must be set before
being used by a file processing macro; otherwise, a fatal
error occurs. These fields are as follows:

KA Key address

WSA Working storage area

A number of FIT fields can be set before the file is opened
but need not be set until required by file processing macros.
These fields are as follows:

DFC Dayfile control

DX End-of-data exit

EFC Error file control

ERL Trivial error limit

EX Error exit

FWI Forced write indicator

KP Beginning key position

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through a FIT
manipuiation macro or by specifying any option except NEW
in the processing direction (pd) parameter of the OPENM
macro.

60499300 A

.. : I
iii
Ill

9
ti ;

I
I

t'. iii

I
Ill
I

t! I
ti: I
f I

t!i

t:i

tr: II
11

i I
I I

Ii

I
Ill

I iii

I
i

t:: I II

I I

t I 11

t I
fl

ti

Ci
;

t·
li

I
i I

I

'; i
J
I

'

t

(

(

(

('

(

('

('

[

(

(,

(,

(

Read Processing

A direct access file can be read randomly by primary or
alternate key using the GET macro. It can also be read
sequentially by the GETN macro. The file must be open for
input or input/output.

For both the GET and GETN macros, the number of
characters read is based on the record length value in the
data record header. The value of the record length (RL)
field in the FIT is ignored. At the completion of a read
operation, the RL field is set to the length of the record
returned.

With the GET macro, records are located using the key value
at the address indicated by the key address (KA) field in the
FIT. If the requested record cannot be found, a trivial error
occurs.

The first GETN macro executed after an OPE NM ·or
REWINDM macro retrieves the first record in the file. A
subsequent GETN macro retrieves the next sequential
record. Aii home biocks are processed first and then any
overflow blocks. Intervening GET, REPLACE, and DELETE
macros are allowed and do not alter the sequential position
of the file. If a PUT macro or a REPLACE macro with a
larger size record is followed by a GETN macro, a trivial
error results. Any other function has no effect on sequential
reading or file positioning.

Read-Only Processing

Existing files with direct access file organization can be
read, but not updated, in a smaller field length by using a
read-only capsule instead of a full capsule with update
capabilities. Both random and sequential reading are
possible with the read-only capability.

When the read-only mode is selected, the file must be
opened for input. If another AAM file is being processed for
input/output in the same job step, the read-only mode must
not be selected; if it is selected, an error occurs. The file to
be read must not be an empty file. Only the following
macros can be issued for the file: OPENM, GET, GETN,
SEEK, REWINDM, and CLOSEM. Any updating operation
causes a fatal error to be issued.

The direct access file read-only capability requires the
following LDSET control statement (or LDREQ macro from
a COMPASS program executing through a terminal):

LOSE T(SUBS T =$RM.DA$-$RM.DAX $)

If static loading is being used, the following additional
LDSET control statement is required:

LDSET(SUBST =$SAAM.DA$-$RO$$DA$)

60499300 A

Refer to appendix E for a discussion of static and dynamic
loading. Under the NOS operating system, libraries must
have been generated with NX=l before SUBST is used.

Write Processing

Records are written to a direct access file with the PUT
macro. The user must set the key of the record to be
unique. The key also must be in the same position within the
record as when the file was established.

File Updating

The DELETE macro logically removes an existing record
from a file. The record associated with the specified key is
flagged as deleted and the space is available to store
another record in the file. If the requested record is not
found, a trivial error results and the request is ignored.

The REPLACE macro can be used to replace a record in the
direct access file with a record in the working storage area.
The record to be replaced is located by hashing the key
specified by the relative key word (RKW), relative key
position (RKP), and key length (KL) fields in the FIT.
Replacement records need not be the same size as the
records replaced unless the file is being processed sequen
tially. A REPLACE macro that changes the record size
invalidates further sequential processing.

File Positioning

The REWINDM macro is used to position the file to
beginning-of-information. The file must be open when the
macro is executed. The RE\'JH\JD~v1 macro resets the
sequential position so that the next GETN macro returns the
first record in the direct access file.

Overlap Processing

In response to a user program request for a record, AAM
locates the desired home block by hashing the key and then
transfers the home block to the buffer area. The specified
record is then transferred to the working storage area. The
execution time to do this can be overiapped with program
processing by using the SEEK macro.

The SEEK macro transfers a home block from mass storage
to the buffer, returning control to the user program at the
start of the transfer. The program can continue processing.
A macro can then be issued to process the record originally
specified in the SEEK macro. The SEEK macro does not
return a record to the working storage area.

4-13

.,.1, • I •

• I I
t i
(I

- I
t I

. I
f I

c
f

«
t I ' i
I I

i

t I
i

t I
I t I
I

• I I
c I
• I I

~ I
!

t: I
I

.dfi, i

' i!i '

(_

~I

('

('

(

(

(

(
t
(

I'
'
(

(

(_

(

FILE PROCESSING MACROS 5

The macros described in this section are used for processing
the AAM files established with the FILE macro and FILE
control statement. The macros conform to COMPASS
syntax; the location, operation, and variable fields are
separated by one or more blanks.

I11 the macro parameter strings, the fit parameter is
required; all others are optional and positional. When an
optional parameter is omitted, the parameter position must
be marked by a comma; however, trailing commas can be
omitted. For example, the format of the OPENM macro is:

OPE NM fit,pd,of

If the pd parameter is not specified in the OPENM macro,
the format is:

OPENM fit, ,of

The first parameter of every macro (fit) identifies the file
information table for the referenced file. If the address
specified by the fit parameter is invalid, the results are
indeterminate. The fit parameter can specify any of the
following:

lfn

Rn

exp

Location field name of the first word of
the FIT; one through seven alphabetic or
numeric characters.

Any A, B, or X register containing the FIT
address.

Any COMPASS expression giving the FIT
address.

Only parameters applicable to the file organization specified
in the FIT should be set. Supplying parameters applicable to
other file organizations could cause erroneous results.

MACRO EXECUTION

The current contents of the FIT are used for macro
execution. If a parameter is omitted, the default value is
valid only if the respective FIT field has not been previously
set to a different value. A field in the FIT can be set by any
of the following:

FILE macro parameter

FILE control statement parameter, which can override
defaults during open processing

SETFIT macro, which can call for FILE control state
ment processing without full open processing

Default, which can be set during open processing

Macro parameter that is moved to the FIT before file
processing occurs (a zero value in a parameter list
moves a zero to the FIT field; a null value does not
affect the FIT field)

60499300 A

Registers are not saved or restored. It should be assumed
that all registers are destroyed during macro execution.

Static loading for AAM uses the STLD.RM macro and new
parameters in the FILE control statement or FILE macro.
Refer to appendix E for details on static loading.

The user macros, with the exception of the FETCH, FILE,
STLD.RM, and STORE macros, generate code as follows:

When syntax error checking is completed, all nonnull
parameters following the FIT address are placed in
registers.

Register 86 is set to the end of the macro expansion as
the return address.

A jump to the proper AAM entry point is generated in
the top of a word; bi ts indicating which parameters
were specified with the macro are set in the bottom of
the word.

The FIT address is placed in register AO; if it is already
in AO, no code is generated.

Register Bl is set to l; if 81=1 pseudo-op is in effect,
no code is generated.

PROCESSING MACROS

Several macros are available for processing AAM files.
These macros are described in this section. The FETCH,
FILE, SETFIT, and STORE macros are described in section 3,
File Information Table.

CLOSEM MACRO

The CLOSEM macro terminates file processing and positions
the file as specified. It should be the last macro issued for a
file. The format of the CLOSEM macro is shown in
figure 5-1.

When the CLOSEM macro is executed for a file opened for
output, any information in the file buffer is written on the
file as part of file termination. If unload (U) is specified in
the CLOSEM macro, close processing is as follows:

If it is a permanent file, it is detached from the job and
returned to the permanent file manager.

Mass storage space assigned to the file is released.

When the CLOSEM macro is executed for a file opened for
output, any information in the file buffer is written on the
file as part of file termination.

Close processing for a file varies according to the value
specified for the cf parameter of the CLOSEM macro.

Rewind (R)

The file is rewound.

5-1

CLOSEM fit.cf

fit

cf

Address of the FIT.

File positioning after close processing:

R

N

u

RET

DET

Rewind (default)

No rewind

Unload; release buffer space and
remove name from the active
file I ist.

Return; release buffer space and
remove name from the active
file list.

Detach; release buffer space and
remove name from the active
file I ist.

Only the fit parameter can be specified as a register.

Figure 5-1. CLOSEM Macro Format

No rewind (N)

The file is not rewound.

Unload (U)

The file is rewound. The open/close flag (OC) field
in the FIT is cleared. If the file is a permanent
file, it is detached from the job and returned to the
permanent file manager. Any scratch mass storage
space assigned to the file is released.

Return (RET)

The processing is the same as for unload.

Detach (DE T)

The file is not rewound. The open/close flag (OC)
field in the FIT is cleared.

A CLOSEM request for a file that has never been opened, or
a file that has been closed but not unloaded or reopened, has
the following effects:

The FIT error status redundant close is set.

File positioning is the same as for an open file.

Control is returned to the error exit.

DELETE MACRO

The DELETE macro removes a record from the file. If the
requested record is not found, a trivial error results and the
request is ignored. The format of the DELETE macro is
shown in figure 5-2.

Applicable parameters by type of file organization for the
DELETE macro are as follows:

Initial indexed sequential fi t,ex,ka,kp,pos

Extended indexed sequential fi t,ex,ka,kp

Direct access fit,ex,ka,kp

Actual key fit,ex,ka

5-2

DELETE fit,ex.ka,kp,pos

fit

ex

ka

Address of the FIT.

Address of the error routine.

Address of the primary key for the record to
be deleted.

kp Beginning character position of the primary key.

pos Duplicate key position; can be C (current record)
or omitted (first record in the duplicate key
set). Applies only when duplicate key processing
is allowed for initial indexed sequential files.

Parameters can be specified as registers.

Figure 5-2. DELETE Macro Format

When the DELETE macro is executed, the specified record is
either flagged as deleted or physically removed from the
file. If the requested record is not found, a trivial error
results and the request is ignored. For initial indexed
sequential files with duplicate primary keys, a trivial error
results if the pas parameter is set to C and the requested
key does not equal the key of the current record; the request
is ignored.

FLUSHM MACRO

The FLUSHM macro is applicable only to extended indexed
sequential files. This macro processes one or more file
buffers as if a CLOSEM macro had been issued; the files,
however, remain open. Blocks with pending writes and the
updated FSTT are written on the file. The format of the
FLUSHM macro is shown in figure 5-3.

FLUSHM fitlist

fitlist Address of the list of FIT address entries.

Figure 5-3. FLUSHM Macro Format

The list referenced by the fitlist parameter contains a
one-word entry for each file to be flushed. A word of binary
zeros terminates the list. The one-word entry is formatted
as follows:

59 17 0

file name I fit

The file name, which is specified in display code, is used as a
consistency check. The address of the FIT is specified in the
lower bits of the word.

GET MACRO

The GET macro retrieves data from a file and delivers it to
~he working storage area. The file must be open for input or
for input/output. The GET macro retrieves a record
randomly by key value. The GETN and GETNR macros
retrieve records sequentially by file position; the GETNR
macro is applicable only to extended indexed sequential
files. The formats of the macros are shown in figure 5-4.

60499300 A

I

c

(

(

<:

(

c:

(

t' ...

(

(

(

(.

(

(

'

GET

GETN

fit,wsa,0,ex,ka,kp,mkl

fit,wsa,ex,ka

GETN R fit,wsa,ex,ka

fit Address of the FIT.

wsa Address of the working storage area to which
the user record is returned.

ex Address of the error routine.

ka Address of the key for the record to be read.

kp Beginning character position of the key.

mkl Major key length in characters; can be used only
for a symbolic key in an indexed sequential file.

Parameters can be specified as registers; if parameters are
not specified, values in appropriate FIT fields are used.

Figure 5-4. GET, GETN, and GETNR Macro Formats

Applicable parameters by type of file organization for the
GET macro are as follows:

Indexed sequential fit, wsa,O,ex,ka,kp,mkl

Direct access fit, wsa,O,ex,ka,kp

Actual key fit, wsa,O,ex,ka

The GET macro transfers a record from a file to the
specified working storage area. The location referenced by
the ka parameter contains the key value for the record to be
read. If no record in the file has a matching key value, a
nonfatal error occurs. The record length (RL) field in the
FIT is updated to indicate the number of characters in the
record retrieved from the file.

If the record is longer than specified by the maximum record
length (MRL) field in the FIT, an excess data error occurs.
Control is passed to the error exit after transferring to the
working storage area the number of characters specified by
the MRL field. A record greater than the maximum record
length is prevented from overwriting a portion of the calling
program or ether preserved information. Control is trans=
ferred to the user end-of-data exit (DX field in the FIT) by a
GET request that detects end-of-information.

The GETN macro is used to read records sequentially. The
next record in sequence by position on the file is retrieved
and transferred to the specified working storage area.

Applicable parameters by type of file organization for the
GETN macro are as follows:

Indexed sequential fit,wsa,ex,ka

Direct access fit,wsa,ex

Actual key fit,wsa,ex,ka

The GETNR macro is applicable only to extended indexed
sequential files. This macro causes the next sequential
record to be transferred to the working storage area the
same as the GETN macro. The difference is that the
GETNR macro returns control to the user if the request
initiates block transfer to the buffer. The user can continue
issuing the GETNR macro until transfer is complete. The
file position (FP) field in the FIT is set to 20

8
(EOR) when

60499300 A

transfer of the record is complete. While intermediate
reads are being performed (index blocks or MIP index file
blocks), the FP field is set to O.

Unnecessary GETNR requests can be avoided by monitoring
the status of the input/output processing. The busy FET
address (BZF) field in the FIT contains the address of the
input/output status word. When the low order bit of the
status word is set to 1, input/output processing is complete
and a GETNR macro will start a new block read or return a
record to the working storage area. If the low order bit is
set to O, a GETNR macro immediately returns control to the
user.

OPENM MACRO

Before a file can be read or written, the file must be made
available by the OPENM macro. Macros that affect the FIT
(FILE, STORE, FETCH, and SETFIT) can be executed before
the file is opened. Any file manipulation macro, however, is
valid only after the file has been opened. Error procedures
are initiated if attempts are made to access an unopened
file. The format of the OPENM macro is shown in
figure 5-5.

Applicable parameters by type of file organization for the
OPENM macro are as follows:

Indexed sequential fit,pd,of

Direct access fit, pd

Actual key fit,pd

The OPENM macro prepares a file for processing by creating
and linking all required system tables for a file and by
translating user-supplied parameters into appropriate values
in the relevant tables. When the OPENM macro is executed,
the following events occur:

FILE control statement processing occurs unless it has
been suppressed by previous execution of the SETFIT

OPENM fit,pd,of

fit Address of the FIT.

pd Type of processing:

of

INPUT File is opened for read only
(default).

OUTPUT File is opened for write only.

1-0 File is opened for read anrl
write.

NEW A new file is being created; sets
the PD field to OUTPUT and
the ON field to NEW.

Open flag; file positioning at open time:

R File is rewound before any other
open procedures are performed
(default).

E File is positioned immediately
before the end-of-information.

Only the fit parameter can be specified as a register.

Figure 5-5. OPENM Macro Format

5-3

macro. The PDF field in the FIT is set by the SETFIT
macro to inhibit reprocessing of the FILE control
stater-nent. The PDF field is cleared by the OPEr~Jtv1

macro.

The FIT is checked for logical consistency; depending on
the file organization, additional checks are made for
required fields and defaults are supplied where needed.

Buffer parameters are processed.

If no error has been detected, the open/close (OC) flag
in the FIT is set to open and control transfers to the
user.

Complete open processinq occurs when the first OPENM
macro in a job step is issued. If a file is closed and then
reopened, FIT verification and FILE control statement
processing are not repeated if the close flag (CF) field in the
FIT is set to R or N.

Any error detected during open processing sets the error
status (ES) field in the FIT. If a user error routine is
specified by the error exit (EX) field in the FIT, control is
transferred to the routine. If the user routine corrects the
condition that caused the error and executes another
OPENM macro, processing of the file can continue;
otherwise, the open/close (OC) field in the FIT indicates the
file is not open (set to 0) and further file access is
prohibited.

Conditions investigated during FIT consistency checks are
listed in table 5-1. Buffer fields c:.re also investigated. The
settings of the first word address of the buffer (FWB) field
and buffer size (BFS) field determine the method of buffer
allocation. If the FWB field is zero, the Common Memory
~v1anager (Cf\1~1) must be present or an error occurs. For an
extended indexed sequential file, the buffer pool limit is
increased by the default amount if the BFS field is also zero;
otherwise, it is increased by the amount specified by the
BFS field.

When the FWB field is not zero, an error occurs if the BFS
field is zero. If the BFS field is also nonzero, the specified
buffer space is partitioned into table areas for AAM, blocks
for the data file, and (if needed) blocks for the MIP index
file. A minimum of two blocks must be allocated for each
file or CMM must be present; otherwise, an error occurs.
The buffer pool amount must be increased to accommodate
two blocks per file.

Data compression can be established for an extended
indexed sequential file at any time it is opened. Once data
compression is selected, it must be specified for the life of

TABLE 5-1. FIT CONSISTENCY CHECKS

Condition Action

RT=D, Ll=D Error

RT=T, and CL, HL, or TL=D Error

RT=Z, FL=D Error

RT=F, FL=D Error

RT=T, HL not greater than CL+CP Error

MRL, MBL=D, BT =K, E Error

5-4

the file. The compression routine address (CPA) and
decompression routine address (DCA) fields in the FIT point
to the routines to be used for data compression. These
fields can originally be specified when the file is created or
at any subsequent time the file is opened. Whenever the file
is opened after that time, the routine addresses must be
supplied in the CPA and DCA fields. Refer to appendix H,
Data Compression, for more detailed information.

The timing of the setting of the parameters for the
processing of each file organization in relation to the
OPE NM macro is important. These parameters di ff er for
each file organization. The requirements for specific
parameters are discussed under open processing for each file
organization; refer to section 4, File Processing. The
following shows the possible relationships between the
OPENM macro and the FIT parameters:

For file creation, certain parameters must be set before
executing the OPENM macro; otherwise, a fatal error
occurs. If these parameters are specified for an
existing file, the new values are ignored without
comment.

Certain parameters must be selected before the file is
created if the option is to be used during the life of the
file.

Certain parameters are optional at file creation. If
these parameters are not specified, default values are
used. Values specified after file creation are ignored.

Certain parameters must be set prior to open time;
otherwise, default values are assumed without
comment. These parameters are effective only until
another OPENM macro is executed.

Certain parameters need not be set until they are
required by file processing commands. Once set, these
parameters remain in effect until changed.

Certain parameters have no default and must be set
prior to use by a file processing command; otherwise, a
fatal error occurs.

PUT MACRO

The PUT macro transfers data from the working storage
area to a file. The file must be open for output or
input/output. The format of the PUT macro is shown in
figure 5-6.

•

f
•• •'

f

I

.,,· Applicable parameters by type of file organization for the •
PUT macro are as follows:

Initial indexed sequential fit,wsa,rl,ex,ka,kp,pos

Extended indexed sequential fit, wsa,rl,ex,ka,kp

Direct access fit,wsa,rl,ex

Actual key fit, wsa,r l,ex ,ka

Any errors detected during PUT macro execution cause ~j
transfer to the error routine if one is specified. If the error •
is excess or insufficient data, no data has been transferred;
for other errors, the data is unreliable.

60499300 A

(

(

(

c:

(

(

('

('

(

(

l
('

'
(

(,

(

(,

1·

PUT fit,wsa,rl,ex,ka,kp,pos

fit Address of the FIT.

wsa Address of the working storage area from which
the user record is transferred.

rl Number of characters to be written.

ex Address of the error routine.

ka

kp

pas

Address of the primary key for the record to be
written.

Beginning character position of the primary key.

Relative position of a record for duplicate key
processing; applicable only to initial indexed
sequential files.

P Before last record referenced

N Following last record referenced

Parameters can be specified as registers; if parameters are
not specified, values in appropriate FIT fields are used.

Figure 5-6. PUT Macro Format

The length of a record being written is determined by the
record length (RL) field in the FIT. For U, S, and W type
records, the RL field can be set by the rl parameter in the
PUT macro. For F, Z, R, T, and D type records, AAM uses
certain FIT fields and the content of the record in the
working storage area to determine record length for the RL
field; the value of the RL field is determined as follows:

F type records

Record length is taken from the FL field in the
FIT.

Z type records

Record length is taken from the RL field in the FIT
or from the FL field if the RL field is set to zero.
The end of the record is determined by searching
backward from the character position specified by
the value of the RL or FL field and removing full
words of blanks.

R type records

Record length is determined by scanning the record
in the working storage area for the terminating
record mark character, which is specified by the
record mark (RMK) field in the FIT. An error
occurs if the record mark is not found within the
maximum record length.

T type records

Decimal count is extracted from the record and
used to calculate the record length. Length and
location of the count field in the record (CL and
CP fields), length of the header (HL field), and
length of the trailers (TL field) are obtained from
the FIT.

60499300 A

D type records

Decimal character record length is extracted from
the record. Length and location of the character
count field in the record (LL and LP fields) are
obtained from the FIT.

In all preceding cases, the length of the record transferred is
stored in the RL field in the FIT at the end of the PUT
macro operation.

REPLACE MACRO

An existing record in a file is replaced by a record from the
working storage area when the REPLACE macro is
executed. The new record can be smaller or larger than the
original record; however, record length cannot exceed the
size specified by the maximum record length (MRL) field in
the FIT. The format of the REPLACE macro is shown in
figure 5-7.

Applicable parameters by type of file organization for the
REPLACE macro are as follows:

Initial indexed sequential fit, wsa,r l, ex, ka,kp,pos

Extended indexed sequential fit,wsa,rl,ex,ka,kp

Direct access fit,wsa,rl,ex

Actual key fit,wsa,rl,ex,ka

Replacement records need not be the same size as the
record being replaced except for a direct access file being
processed sequentially. A larger replacement record in a
direct access file can cause overflow of records, which
leaves the sequential position undefined. If the requested
record is not found, a trivial error results and the request is
ignored. For initial indexed sequential files with duplicate
primary keys, a trivial error occurs if the pas parameter is
set to C and the key does not equal the key of the current
record; the request is ignored.

REPLACE fit,wsa,rl,ex,ka,kp,pos

fit Address of the FIT.

wsa Address of the working storage area with the
new record.

rl Length (in characters) of the new record.

ex

ka

kp

Address of the error routine.

Address of the primary key for the record to
be replaced.

Beginning character position of the primary key.

pas Duplicate key position; can be C (current
record) or omitted (first record in the duplicate
key set). Applies only when duplicate key proc
essing is allowed for initial indexed sequential
files.

Parameters can be specified as registers.

Figure 5-7. REPLACE Macro Format

5-5

REWINDM MACRO

The REWINDM macro positions a file to beginning-of-
;,..,,+,... m-::itinn u.1hi,..,,h ic- t-h-. h-,...tr-t.-inn nf t-ho flrC!t rl'!'3t~ ro,...nrrl
J.ttr\J• ,,,_ _.,, _,, •v "'''"-' l.J\.J'::fJ.IUIJ.lt';f -· ,_ __ ... _ ·---· -

in the file. The file must be open when the macro is issued.
A GETN macro issued immediately after the REWINDM
macro returns the first record. The format of the
REWINDM macro is shown in figure 5-8.

REWINDM fit

fit Address of the FIT or register containing the
address.

Figure 5-8. REWINDM Macro Format

SEEK MACRO

Program execution time can be shortened through the use of
the SEEK macro, which allows overlapping of central
memory processing and input/output activity. The SEEK
macro initiates block transfer to the buffer; it does not
return a record to the user. The user can then continue
processing while the transfer occurs. The format of the
SEEK macro is shown in figure 5-9.

SEEK fit,ex,ka,kp,mkl

fit Address of the FIT.

ex Address of the error routine.

ka Address of the key for the desired record.

kp Beginning character position of the key.

mkl Major key length in characters.

Parameters can be specified as registers. If the ex, ka, kp,
and mkl parameters are not specified, values in appropriate
FIT fields are used.

Figure 5-9. SEEK Macro For mat

Applicable parameters by type of file organization for the
SEEK macro are as follows:

Indexed sequential fit,ex,ka,kp,mkl

Direct access fit,ex,ka,kp

Actual key fit,ex,ka

When the SEEK macro is executed, control returns to the
user program once a read is initiated. The user program
must monitor the file position (FP) field in the FIT to
determine when the requested data block is in the buffer and
ready to be accessed. The FP field is set to zero if the
transfer of an index block has been initiated; it is set to 208
(EOR) if a data or home block is being transferred.

5-6

For an extended indexed sequential file, the user can also
monitor the input/output request to avoid issuing SEEK
macros with the same key, which would return immediately
because the file was busy. The busy FET address (BZF) field
in the FIT is set by AAM and points to an input/output status
word. When the low order bit of the status word is set, the
current SEEK macro input/output is complete and another
operation can be profitably issued for the file.

Normally, the SEEK macro is followed by a macro such as
GET or DELETE accessing the record referenced by the
SEEK macro. An operation on some other record not
already in the buffer can negate the action of the SEEK
macro by writing over the data transferred by it. The
record is not moved into the working storage area until a
GET macro is executed. If a call is made before the seek
operation is complete, processing continues reading blocks
from the point where the SEEK calls were discontinued.

SKIP MACRO

The SKIP macro repositions an indexed sequential or actual
key file in a forward or backward direction a specified
number of logical records. It does not return a record to the
working storage area. Only small skips are recommended
because each record must be read and counted for proper
positioning. The format of the SKIP macro is shown in
figure 5-10.

SKIPdL fit,count

d

fit

count

Direction of skip:

F Forward

B Backward

Address of the FIT.

Number of logical records to be skipped. A null
parameter results in a zero count.

The fit and count parameters can be specified as registers.

Figure 5-10. SKIP Macro For mat

When the SKIP macro is executed, user parameters are
checked, records in the file are read, the file is positioned
according to the number of records to be skipped, and
control returns to the user. A negative skip count is not
allowed; the request is ignored and an error is issued. If the
skip operation encounters end-of-information or beginning
of-information before the skip count is exhausted, control is
trr:msferred to the end-of-data routine with thP. appropriate
file position set.

START MACRO

The ST ART macro positions an indexed sequential file or an
cilternate key index file to a record that meets a specific
condition; the record is not transferred to the working
storage area. The file is positioned in the same manner as
for a GET macro. The format of the ST ART macro is shown
in figure 5-11.

60499300 A

f

11:.: •:

•.'.''. •''''
C''

I
l!
ill

·1

I
I
I
I

I, I " .

c

I

I
I
I

I
i\t
!
!!

(

(

(

(I

{
(

(

'
(

The file is positioned according to the key relation (REL)
field in the FIT and the current value at the key address
(KA) location. The REL field specifies the desired relation
between the value at location KA and the key of the record
at which the file is to be positioned. Relations that can be
specified are EQ (equal to), GT (greater than), and GE
(greather than or equal to). The file is positioned at the
beginning of the record that satisfies the relation. If the
mkl parameter is specified, the file is positioned relative to
the major key specified for an indexed sequential
symbolic key.

60499300 A

ST ART fit,ex,ka,kp,mkl

fit Address of the FIT.

ex Address of the error routine.

ka Address of the key for positioning the file.

kp Beginning character position of the key.

mkl Major key length in characters.

Parameters can be specified as registers. If the ex, ka,
kp, and mkl parameters are not specified, values in
appropriate FIT fields are used.

Figure 5-11. START Macro Format

5-7

(

(

(

(

(;

(

(

[
(

(

(

(_

(

(

(

I

MULTIPLE-INDEX FILES 6

All AAM files have a primary key associated with each
record to provide random access to the file. In addition,
alternate keys can be defined for records in an AAM file.
Alternate keys provide the means to access records by more
than one field in a record.

Primary key values must be unique within the file.
Alternate keys, which can overlap each other and the
primary key, need not have values unique to the record or to
the file. Alternate keys must be contained within the
minimum record size.

The original data file structure is not affected by alternate
key processing. The Multiple-Index Processor (MIP) creates
an index file on the creation run for a multiple-index file.
On subsequent runs, the index file is updated as necessary
when the data file is updated. The index file must be made
available to the updating program.

Two Multiple-Index Processors are supported by AAM.
Initial MIP processes initial indexed sequential, actual key,
and direct access files; extended MIP processes extended
indexed sequential files.

For existing AAM files, two utilities are available to assist
in creating the index file for alternate key processng: the
IXGEN utility for initial MIP and the MIPGEN utility for
extended MIP. Refer to section 7, Utilities, for descriptions
of the IXGEN and MIPGEN utilities.

INDEX FILE
The index file is created and updated automatically by MIP.
It is identified by the index file name (XN) field in the FIT.
The index file, which is defined when the file is created,
must be made available whenever the data file is updated or
is accessed by alternate key. Alternate keys are defined by
the user on the creation run.

STORAGE STRUCTURE

The index file contains an index for each alternate key
defined for the data file. Within an index, each alternate
key value is associated with a keylist of the primary keys for
records containing that value.

Each alternate key index is ordered by alternate key value.
The ordering of the primary key list for a given index is
controlled by the user through a parameter that can be
specified when the alternate key is defined by the RMKDEF
macro or directive. The ordering of the list is as follows:

If the parameter is omitted or U is specified, each value
of the alternate key must be unique. The primary key
list for each alternate key value consists of only one
primary key value.

If F is specified for the parameter, the ordering of
primary key values is first-in first-out. The primary
keys are stored in the order in which their corre
sponding records are created.

60499300 A

If I is specified for the parameter, the primary keys are
stored in ascending sequence of primary key values.
Numeric keys are in numeric order; symbolic keys are in
collating sequence order.

Block Size, Initial MIP

The size of the index file blocks can also be specified by a
parameter in the RMKDEF macro or IXGEN directive when
the data file is created. The parameter is specified in the
macro or directive that defines the primary key. The index
file block size must always be specified as an integral
number of PRUs. A block size of 2 to 8 PRUs is
recommended; results are indeterminate if the block size
exceeds 8 PRUs.

Block Size, Extended MIP

The size of the index file blocks is determined when the data
file is created. The index block size (XBS) field in the data
file FIT specifies the number of characters in a block. A
value specified for the XBS field is rounded upward if
necessary to the nearest multiple of 640 characters
minus 20. The default index file block size is the data file
block size.

AL TERNA TE KEY SPECIFICATION

Alternate keys are defined when the data file is created. A
record can then be accessed by the primary key or by any
alternate key defined for the file. For existing files, the
IXGEN or MIPGEN utility can be used to define alternate
keys and create the index file. (Refer to section 7,
Utilities.)

RMKDEF Macro, Initial MIP

On a file creation run, the RMKDEF macro is used to
describe the primary key or an alternate key field. The
macro must be used once for the primary key and once for
each alternate key field in the record; the primary key must
be specified first. The RMKDEF macros must be executed
after the OPENM macro and before the first PUT macro.
The format of the RMKDEF macro for initial MIP is shown
in figure 6-1.

Used together, the kg and kc parameters refer to an
alternate key that is a repeating group. For example, a
repeating group is described in COBOL by an
OCCURS n TIMES clause. When the kg parameter is used
Rlone, it refers to the index file block size. The kg
parameter should be used alone only when the primary key is
being defined. Alternate key fields can overlap in a record;
for example, first name, last name, and whole name can all
be defined as alternate keys.

6-1

RMKDEF Macro, Extended MIP

i ne RtviKDEF macro is used to describe an alternate "c y
field on a file creation run. The macro must be used once
for each alternate key field in the record. The RMKDEF
macros must be executed after the OPENM macro and
before the first PUT macro. An RMKDEF macro that
defines the primary key is ignored without comment. The
format of the RMKDEF macro is shown in figure 6-2.

The kg and kc parameters refer to an alternate key that is a
repeating group. For example, a repeating group is
described in COBOL by an OCCURS n TIMES clause. If the
same alternate key value occurs more than once in a data
record, the primary key is entered in the index only once for
that value; therefore, a primary key associated with an
alternate key value indicates that the value occurs at least
once in the record. Alternate key fields can overlap in a
record; for example, first name, last name, and whole name
can all be defined as alternate keys.

The nl, ie, and ch parameters are used to define sparse keys.
These are alternate keys for which only certain values are of
interest to the user. A sparse key is defined by specifying
null suppression or sparse control characters.

Null suppression is specified by the nl parameter. The
primary key for a record that has a null alternate key value
is not included in the alternate key index. A null value is all
spaces for a symbolic key or all zeros for a signed binary
key.

RMKDEF fit,kw,kp,kl,ki,kf,ks,kg,kc

fit

kw

kp

kl

Address of the FiT for the data fiie.

Word of the record where the key starts,
counting from zero; default is zero.

Beginning character position of the key (0 to 9).

Key length, in characters (1 to 255); default is
zero.

ki 0 (reserved).

kf

ks

kg

kc

6-2

Key type:

0 Symbolic

Signed binary

2 Unsigned binary

Substructure for each primary key list in the
index:

U Unique (default)

Indexed sequential

F First-in first-out

For a repeating group, number of characters in
the group where the key resides. For the
primary key definition, the size in PRUs of an
index file block.

For a repeating group, number of occurrences;
zero if the group is defined in an OCCURS ...
DEPENDING ON clause.

The ie and ch parameters are used when indexing of
alternate key values is to be controlled by a sparse control
character. The one-character fieid containing the sparse
control character must be in the fixed-length portion of the
record. The ie parameter specifies whether to include or
exclude the alternate key values for records that contain a

RM KDE F fit,kw:kp,kl ,ki,kf ,ks,kg,kc,nl,ie,ch

fit Address of the FIT for the data file.

kw Word of the record where the key starts, count
ing from zero; default is zero.

kp Beginning character position of the key:

kl

ki

kf

ks

kg

kc

nl

ie

ch

0 to 9 for symbolic key

0 for signed binary key

Key length, in characters:

1 to 255 for symbolic key

10 for signed binary key

0 (reserved).

Key type:

0 Symbolic

Signed binary

2 Uncollated symbolic

Substructure for each primaPf key :ist in the
index:

U Unique (default)

Indexed sequential

F First-in first-out

For a repeating group, number of characters in
the group where the key resides.

For a repeating group, number of occurrences;
zero if the group is defined in an OCCURS ...
DEPENDING ON clause.

Null suppression:

0 Null values are recorded (default}

N Null values are not recorded

A null value is all spaces (symbolic key) or all
zeros (signed binary key).

lncludeiexciude sparse controi character:

E Exclude alternate key value if the
record contains a sparse control
character (default)

Include alternate key value if the
record contains a sparse control
character

Characters that qualify as sparse control charac
ters; up to 36 letters and digits can be specified
as a character string.

60499300 A

(

c:

c:

(_

(

(

(

(
C.

(

(

(

(

(,

(

sparse control character. The ch parameter specifies the
sparse control characters applicable to the alternate key
being defined.

The sparse control character field is identified by an
RMKDEF macro that must appear before the macro defining
the alternate key and its sparse control characters. This
macro is specified in the following format:

RMKDEF fit,kw,kp,O

The kw and kp parameters specify the position of the sparse
control character. The zero kl parameter indicates that the
field is a sparse control character field.

APPLICABLE FIT FIELDS

Several FIT fields are applicable to multiple-index file
processing. These fields and their respective uses are as
follows:

FP File position; when the index file is being
accessed, 10 indicates the end of primary
keys associaPed with a given alternate key
value. For extended MIP, 100

8
indicates the

end of the alternate key list.

FPB File position bit; when the index file is being
accessed, 1 indicates the end of an index
associated with a given alternate key position
(initial MIP only).

KL Key length; number of characters in a primary
or alternate key.

KNE Key not equal; 1 indicates the key in process is
not the same key specified by the KA field.
For extended MIP, KNE is set oniy after an
operation for which a GE relation was
specified.

KR Key value repeat count; when the index file is
being accessed, KR indicates the number of
occurrences in the record of the key value at
location KA (initial MIP only).

MRL

NDX

PKA

RC

REL

Maximum record length; when the primary key
lists are being retrieved, MRL indicates the
length of the \·vorking storage area.

Index flag; 1 indicates an index only operation;
0 indicates a data record operation.

Primary key address; when accessing records
by alternate key, the primary key for a record
is returned to the specified address (extended
MIP only).

Record count; number of records containing
the value of the key at location KA.

Key relation; relation of the key value at
location KA to the key at which the file is
positioned; can be EQ, GT, or GE; for initial
MIP, LT and LE can also be used.

RL Current record length (initial MIP only).

RKP

60499300 A

Relative key position; character position of a
primary or alternate key within the word
specified by the RKW field.

RKW

XBS

XN

Relative key word; word in which a primary or
alternate key begins.

Index file block size; number of characters in
an index file block (extended MIP only).

Index file name; logical file name of the index
file.

AL TERNA TE KEY PROCESSING
Defining alternate keys for a file allows the user to access
records by fields other than the primary key. Two files are
involved with alternate key processing. The data file
contains records that have unique primary keys. The index
file contains alternate key values and their associated
primary keys. Both files must be made available to the
program. Reading by alternate key can be random or
sequential.

AL TERNA TE KEY ACCESS

To access a data record by an alternate key, the alternate
key position must first be established in the FIT. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields must be set for the desired alternate
key. These three fields are set for the primary key by open
processing; thereafter, the user is responsible for setting
them when changing access from primary to alternate key or
from one alternate key to another. The index flag (l\DX)
field in the FIT must be set to zero to access a data record.

The alternate key defined by the RMKDEF macro refers to a
position within a record. The GET macro is used to retrieve
a record with a specific value in the alternate key position.
When the GET macro is executed, the RKW, RKP, and KL
fieids in the FIT define the aiternate key position in the
record. The ka, kp, and mkl macro parameters establish the
alternate key location that contains the value for the record
to be retrieved. The first primary key associated with the
alternate key value determines the record returned to the
working storage area. The format of the GET macro is:

GET fit,wsa,O,ex,ka,kp,mkl

When the GET macro is executed, a record is returned to the
location specified by the wsa parameter, the index file is
positioned, and the fo!!owing FIT fields are set:

KR

PKA

Key value repeat count; number of occur
rences of the key value in the record (initial
MIP only).

Primary key address; address of location that
contains the primary key of the record
retrieved (extended MIP only).

RC Record count; number of records that contain
the alternate key value.

RL Record length; number of characters in the
record returned to the working storage area.

The setting of the key relation (REL) field iri the FIT
determines which record is retrieved as follows:

If the field is set to EQ, the index file is positioned at
the alternate key value equal to the value at loca
tion KA. The record with the first primary key
associated with the alternate key value is returned. If

6-3

an equal value is not found, the index file is positioned
at the next greater value, the error status (ES) field is
set to 5068, and any specified error exit is taken.

If the field is set to GT, the index file is positioned at
the first alternate key value greater than the value at
location K.A.. The record with the first primary key
associated with the alternate key value is returned.

If the field is set to GE, the index file is positioned at
the first alternate key value greater than or equal to
the value at location KA. The record with the first
primary key associated with the alternate key value is
returned.

Once a GET macro has been executed to establish an index
file position, the record for the next primary key in the
index can be accessed by the GETN macro. When the index
file is positioned past the last primary key in the index, no
record is returned to the working storage area, the file
position (FP) field is set to EOI, and any specified end-of
data exit is taken. An informative error message is written
on the error file ZZZZZEG.

When execution of the GETN macro encounters a new
alternate key value, that value is moved to program location
KA. Retrieval of the record for the last primary key
associated with an alternate key value causes the file
position (FP) field in the FIT to be set to lOa. to indicate the
end of a keylist (EOK). The format of the GETN macro is:

GETN fit,wsa,ex,ka

Execution of the GETN macro returns a record to the
working storage area. For extended MIP, the primary key
for the record is moved to the program location indicated by
the primary key address (PKA) field in the FIT.

FILE UPDATING

Updating a multiple-index file is basically the same as
updating any other AAM file. The only difference is that
the logical file name of the alternate key index file must be
specified in the FILE control statement by the XN param
eter. The index file is automatically updated when a data
file update affects the index file.

The PUT and REPLACE macros are used to write and
rewrite records. For initial MIP and for extended MIP when
the primary key is embedded, it is not necessary to set FIT
fields for the primary key; that is, the RKW, RKP, KL, KA,
arid KP fields do not have to be set. The KA and KP fields
must be set for nonembedded keys. The position of the
primary key in the record is constant for the file and the
address in the working storage area (WSA) field is the
address of the record to be written or rewritten.

The DELETE macro is used to delete a record from the file.
The RKW, RKP, and KL fields in the FIT do not have to be
set; however, the key address (KA) and key position (KP)
fields must be set for the primary key because the WSA field
is not required for the DELETE macro.

The index file position and the RKW, RKP, and KL fields are
not changed by execution of the PUT, REPLACE, or
DELETE macro. A series of GETN macro requests can be
interrupted by update requests without losing alternate key
sequence.

6-4

READ-ONLY PROCESSING

Re0d=only precessing is applicable to initiai tvHP only;
Existing multiple-index files can be read, but not updated, in
a smaiier fieid length by nol loading the routine:; u:;eu fur
writing multiple-index files. Both random and sequential
processing are possible with the read-only capability.

When the read-only mode is selected, the file must be
opened for input. If another AAM file is being processed for
input/output in the same job step, the read-only mode must
not be selected; if it is selected, an error occurs. The file to
be read must not be an empty file. Only the following
macros can be issued for the file: OPENM, GET, GETN,
SEEK, SKIP, SKIPFL, REWINDM, and CLOSEM. All AAM
file updating operations are trapped and trivial error 513
(REQUIRED ROUTINES NOT LOADED - RM$MEXB/
RM$MFSQ) is issued.

The read-only capability requires the following LDSET
control statement (or LDREQ macro from a COMPASS
program executing through a terminal):

LDSET(OMIT =$RM$$MEXB$/$RM$$MFSQ)

If static loading is being used, the following additional
LDSET control statement is required:

LDSET(SUBST =$RM$$MIP$-$RM$$MIP2$)

Refer to appendix E for a discussion of static and dynamic
loading. Under the NOS operating system, libraries must
have been generated with NX=l before SUBST is used.

INDEX FILE POSITIONING

The alternate key index file is positioned when a GET macro
accesses a record by alternate key. The index file can also
be positioned without returning a record. The START, SKIP,
and REWINDM macros change the position of the index file.

START Macro

The START macro positions the index file to the first
primary key for a given alternate key value. The value is at
the location specified by the key address (KA) field in the
FIT. The format of the START macro is:

START fi t,ex,ka,kp,mkl

The key relation (REL) field in the FIT determines the
positioning of the index file in relation to the value at
location KA. The REL field has three possible values:

EQ The index file is positioned at the alternate
key value equal to the value at location KA.
The default for the RCL field is EQ. If an
equal key value is not in the index, trivial
error 506 results.

GT

GE

The index file is positioned at the first
alternate key value greater than the value at
location KA.

The index file is positioned at the first
alternate key value greater than or equal to
the value at location KA. If an equal key
value is not in the index, the key not equal
(KNE) field in the FIT is set to l.

.,
tr
tr
f

t
f

f
ti

t,
I

tI I
I

I
I

I
I
j

I
;i;

ti

tl

t
t

t

' j C1

-;
(

i
""!!

(

(

(

(

(

(

(

(

(

[
(

(

(

(,

(

(,

(_

(

I

After the START macro is executed, the record count (RC)
field in the FIT is set to the number of primary keys for the
alternate key at which the index file is positioned.

Other Positioning Macros

In addition to the ST ART and GET macros, the index file
position is changed by the SKIP and REWINDM macros.
When a change is made from one alternate key index to
another, the index position is established as follows:

Initial MIP

Index position is reset automatically to the begin
ning of the index.

Extended MIP

Index position must be established by a REWINDM,
GET, or ST ART macro.

The SKIP macro is used to skip forward a number of primary
keys from the current position. The format of the SKIP
macro is:

SKIP fit,n

The index file is positioned at the first primary key in the
alternate key index by the REWINDM macro. The format of
the REWINDM macro is:

REWINDM fit

For initial MIP, execution of the REWINDM macro sets the
record count (RC) field in the FIT to the number of primary
keys belonging to the first alternate key value.

INDEX FILE PROCESSiNG
The alternate key index file can be accessed to retrieve
information related to the alternate keys. Primary key lists
or counts of primary keys for either a single alternate key
value or a range of values can be retrieved. Obtaining this
information from the index file has no effect on the data
file.

In order to access the index file, the index flag (NDX) field
in the data file FIT must be set to YES. If the OPENM
macro is executed with NDX set to YES, oniy the index fiie
is opened for processing. The index file must be an existing
file at open time. If the NDX field is set to YES when the
file is opened, it cannot be reset to NO until after the file
has been closed.

MACRO PROCESSING

The index file is accessed through execution of various
macros. Only those macros described in the following
paragraphs can be used with the index file.

The OPENM macro and the CLOSEM macro open and close
the index file. Execution of these macros does not affect
the data file.

The REWINDM macro positions the index file at the
beginning of the alternate key index from which information
is to be retrieved. The alternate key is determined by the
relative key word (RKW), relative key position (RKP), and
key length (KL) fields in the data file FIT. The file is
positioned at the first value for the designated alternate
key.

60499300 A

The index rile can be positioned at a specific value of an
alternate key through execution of the ST ART macro. The
RKW, RKP, and KL fields in the FIT specify the alternate
key for file positioning. The alternate key value at the
location indicated by the key address (KA) field in the FIT
and the condition designated by the key relation (REL) field
determine the positioning at a specific value within the
alternate key index. When the relational condition is EQ,
the file is positioned at the alternate key value equal to the
value at location KA; if an equal value cannot be found in
the index, the file is positioned at the next higher value.
For the GT relational condition, the file is positioned at the
next higher value than the value at location KA. The GE
relational condition causes the file to be positioned at a
value equal to or greater than the value at location KA.

The GET macro is used to retrieve the primary keys for an
alternate key value. The alternate key to be accessed is
determined by the RKW, RKP, and KL fields in the FIT. The
alternate key value at location KA and the condition
specified in the REL field determine the positioning of the
index file. Execution of the GET macro positions the index
file at the desired alternate key value and returns as many
of its associated primary key values as the working storage
area can contain.

The GETN macro can be executed after the GET macro to
retrieve additional primary key values associated with the
alternate key value. It can also be executed after a
REWINDM, START, or SKIPFL macro to begin returning
primary key values from the position established by the
previous macro. Primary keys are returned to the working
storage area until one of the following conditions occurs:

The working storage area is full.

The end of the list of alternate kt; 1 values is reached
(end-of-information).

The index file is positioned at the beginning of a
primary key list for an alternate key that is greater
than the key at location KA when the value of the REL
field in the FIT is GT or GE, or the index file is
positioned at the beginning of a primary key list for an
alternate key that is equal to the key at location KA
when the value of the REL field is GE or EQ.

The key address (KA) field in the FIT must be set for the
GETN macro when the index file is being accessed. If
primary key list retrieval is to be terminated according to a
key value, the KA field must point to the location containing
the key value. If the KA field is set to O, primary key list
retrieval terminates only if the working storage area is
filled or if end-of-information is reached. This is the same
as if the key value at location KA is greater than any
possible value for the alternate key.

The SKIPFL macro is used to count the number of primary
key values for one or more alternate key values; the primary
key values are not returned to the working storage area.
The counting can be terminated by a key value in the same
manner as the GETN macro. Counting can also be specified
for a number of alternate key values or to end-of
information.

6-5

FIT FIELDS FOR INDEX FILE
PROCESSING

Index file orocessina involves user settinQ of several fields in
the FIT. ·In additi~n, AAM sets certain FIT fields during
macro execution. The following FIT fields can be set by the
user:

KA Key address; location of the user-supplied key
value for ST ART and GET macros and for
GETN and SKIPFL macros that use a key.

KL

KP

MKL

MRL

NDX

REL

RKP

RKW

WSA

Key length; number of characters in the
alternate key being accessed.

Key position; position of user-supplied key
value at location KA.

Major key length; number of characters, which
is less than the full length of the alternate
key, in the user-supplied key value; can be
used with indexed sequential symbolic
keys only.

Maximum record length; length of the working
storage area in characters; should be a
multiple of 10 characters because each
primary key value returned begins on a new
word boundary.

Index flag; must be set to 1 for index file
access.

Key relation; indicates the relation to be
satisfied between the user-supplied key value
and the index file key value; possible relations
are EQ, GE, and GT; for initiai MiP, LE and LT
can also be used.

Relative key position; beginning character
position of the alternate key within the word
specified by the RKW field.

Relative key word; word in which the alternate
key being accessed begins.

Working storage area; location into which
primary key lists are returned.

The following FIT fields are set by AAM during execution of
the ST ART, GET, GETN, and SKIPFL macros:

6-6

FP File position; set to indicate the position of
the index file when control returns to the user:

Middle of primary key list

End of primary key list

End-of-information

KNE Key not equal; for an operation involving a
key, indicates whether or not the current
alternate key value matches the user-supplied
key value:

0 Equal key values

1 Higher user-supplied key value or
end-of-information

MKL Major key length; reset to 0 after a user
supplied value has been noted.

PTL

RC

RL

Primary key total; number of primary key
values transferred to the working storage area
during execution of the GET or GETi~ rnacro.

Record count; for a ST ART or GET macro, the
number of primary keys associated with the
desired alternate key value; if the KNE field is
set to 1, the number of primary keys associ
ated with the first alternate key value greater
than the given one.

Record length; set by the GET, START,
SKIPFL, and GETN macros as follows:

GET

START

SKIPFL

GETN

Set to the value in the PTL
field.

Set to zero

Set to the number of
primary key values that
have been skipped.

Increased by the number of
primary key values trans
ferred to the working
storage area; cleared on
entry only if the file posi
tion from the last operation
was end-of-keylist (EOK).

COUNT RETRIEVAL

The primary key values associated with a given alternate
key value are counted by executing the ST ART macro. The
RKP, RKW, and KL fields in the FIT must be set to identify
the alternate key. Because a specific alternate key value is
irp;olved, the major key length {~1KL) field is set to 0 for full
length key comparison and the key relation (REL) field is set
to equal (EQ). The format of the ST ART macro is as
follows:

START fit,ex,ka,kp

The fit parameter specifies the address of the data file FIT
with which the index file is associated. The file is
positioned at the alternate key value that is equal to the
value at the location specified by the ka parameter; the
record count (RC) field in the FIT contains the number of
primary keys associated with the alternate key value. The
key not equal (KNE) field is set to zero to indicate that the
desired value has been found.

If an equal alternate key value cannot be found, the file is
positioned at the next higher key value and the RC field
contains the number of primary keys associated with that
alternate key value. The KNE field is set to 1 to indicate
that the desired key value does not exist in the file.

The file position (FP) field in the FIT is set during execution
of the ST ART macro. It is set to 10 if the index fiie is
positioned at an alternate key value. I?, however, the user
supplied key value is greater than all existing values for the
alternate key, the FP field is set to 1008•

RANGE COUNT RETRIEVAL

The number of primary keys associated with a range of
consecutive alternate key values can be determined by
executing a REWINDM or START macro and then a SKIPFL
macro. The beginning and end of the range can be specified
in various ways.

60499300 A

• If
fit . • I

t I
i
I ,. I

('

c
c
t

t
«

• I
I. I
c
I
II
I
I
~

I
I
I
I
I
i
i
i

' I
!
J
'.ltc

(

(

(

(

(

(

(
(

(

(

(

(

(

(

(

The beginning of the range indicates the first alternate key
value for which primary keys are to be counted. The key
value is specified as one of the following:

The first alternate key value in the file; execution of
the REWINDM macro positions the index file to this
point.

The first alternate key value that is not less than a
specified value; the REL field in the FIT is set to GE
and the START macro is executed to reach this position
in the index file.

The first alternate key value that is greater than a
specified value; the REL field in the FIT is set to GT
and the START macro is executed to reach this position
in the index file.

If a major key is specified for the START macro, only the
number of characters in the major key are used for
comparison. If the REL field is set to EQ or GE, the file is
positioned at the first alternate key value with leading
characters that match the major key. If no such key exists,
the file is positioned at the next logical alternate key value.
If the REL field is set to GT, the file is positioned at the
first alternate key value with leading characters greater
than the major key value.

The end of the range, which is the last alternate key value
to be included in the range count, is specified by setting
various FIT fields before executing the SKIPFL macro. The
last key value is determined as follows:

If the key address (KA) field is set to O, the last
alternate key value in the index is the end of the range.

If the KA field points to a location that contains an
alternate key value and the key relation (REL) field is
set to GT, all key values not exceeding the value at
location KA are included in the count.

If the KA field points to a location that contains an
alternate key value and the REL field is set to GE, all
key values less than the value at location KA are
included in the count.

After the SKIPFL macro is executed, the RL field in the FIT
contains the number of primary key values for all the
alternate key values within the specified range. Unless the
fiie is positioned at end-of-information, it is positioned the
same as after execution of the START macro; however, the
record count (RC) field in the FIT is undefined.

PRIMARY KEY LIST RETRIEVAL

The list of primary keys for a specific alternate key value
can be retrieved by executing the GET macro. The major
key length (MKL) field in the FIT should be set to 0 for a
full-length alternate key comparison and the key relation
(REL) field should be set to EQ for an equal comparison.
When the GET macro is executed, the key not equal (KNE)
field is set to 0 if the alternate key value is found in the
index file or to l if it is not found. The format of the GET
macro is:

GET fit,wsa,O,ex,ka,kp,mkl

Execution of the GET macro causes the primary key values
associated with the alternate key value to be transferred to
the working storage area. Transfer of primary key values
terminates when the last primary key value has been

60499300 A

transferred or when the working storage area has been
filled. The following FIT fields indicate the status of the
primary key list retrieval:

FP File position; set to 10
8

when all primary keys
have been transferred; otherwise, set to O.

PTL Primary key total; number of primary keys
transferred to the working storage area.

RC Record count; total number of primary keys
associated with the alternate key value.

RL Record length; same as the PTL field for the
GET macro.

If the FP field is set to 108, the entire primary key list has
been retrieved. In this case, the PTL, RC, and RL fields
contain the same value. The index file is positioned at the
beginning of the primary key list for the next alternate
key value.

The FP field set to 0 indicates that additional primary keys
are associated with the alternate key value. The RC field
contains a value greater than the PTL and RL fields, which
contain equal values. The remaining primary keys can be
retrieved by executing the GETN macro after making the
working storage area available for use again and after
setting the REL field to GT. Primary keys are transferred
until the end of the list is reached or the working storage
area is filled. Additional GETN macros can be executed to
complete transfer of the primary key list. The FP field in
the FIT indicates that the entire list has been transferred
when it is set to 108; the index file is then positioned at the
first primary key for the next sequential alternate
key value.

The normal purpose of primary key list retrieval is to
determine the primary key values for a specific alternate
key value. If the major key length (MKL) field in the FIT is
set to a value other than O, more than one alternate key
value could satisfy the condition of the REL field. The
GETN macro execution would then continue until the index
file is positioned at an alternate key value that does not
satisfy the condition specified by the REL field.

Whenever a GETN macro is executed, the RL field is
incremented by the number of primary keys transferred to
the working storage area; the PTL field indicates the
number of primary keys transferred during execution of the
macro most recently executed (GET or GETN). The final
value in the RL field (when the FP field contains 108) should
equal the value in the RC field after execution of 1he GET
macro, which should also equal the total of the values in the
PTL field after execution of the GET macro and all
subsequent GETN macros.

RANGE LIST RETRIEVAL

The primary key lists for a range of consecutive alternate
key values can be retrieved through execution of a ST ART
macro followed by execution of one or more GETN macros.
The beginning of the range of alternate key values is
established in the same manner as for the range count
retrieval; that is, the REWINDM macro can be used to
position the index file to the first alternate key value, or the
START macro can be used to position the file to a specific
alternate key value.

6-7

Once the beginning of the range has been established, the
GETN macro is executed to transfer primary keys to the
working storage area~ To determine when the primary key
lists for the range of alternate key valus have all been
transferred, the file position (FP) field in the FIT must be
checked for a value of lOB (end-of-keylists) or 100

8
(end-of

information) after execut10n of the GETN macro.

The end of the range of alternate key values is determined
by the setting of certain fields in the FIT:

6-8

If the key address (KA) field is set to O, the end of the
range is end-of-information.

If the KA and key position (KP) fields are set to
indicate an alternate key value and the key relation

(REL) field is set to GT, the end of the range is the
alternate key value that is not greater than the one
indicated by the t<A and t<P fieids.

If the KA and KP fields are set to indicate an alternate
key value and the REL field is set to GE, the end of the
range is the last alternate key value that is less than
the one indicated by the KA and KP fields.

Whenever the GETN macro is executed, the FP field in the
FIT should be checked. If it is equal to 10

8
or 100 , all the

desired primary key lists have been retrieved. If Fi§ is equal
to O, however, the working storage area should be made
available for retrieval of more primary keys and another
GETN macro should be issued.

60499300 A

•
Ci

c
(

c
f

c
f
c
ti

I
41'

11.

t1
t:

'

tl

« '
'

C.

c
t i

I
I

'
ii
!IJ

I
~

i
it· ;!

1llt
"f

(

(

(

(

(

(

(

(.

(

(

(

UTILITIES 7

Several utility routines are provided for use with AAM files.
Utilities are available for:

Printing statistics

Estimating the optimal block and buffer sizes for
indexed sequential files

Performing key analysis for direct access files

Creating direct access files

Creating an index file for alternate key access to an
existing file

The utilities are called by operating system control
statements. File dumping and reloading functions are
handled by FOR.M and permanent file utilities.

INITIAL INDEXED SEQUENTIAL FILES
Two utilities are provided for use with initial indexed
sequential files only. These utilities print statistics and
suggest block and buff er sizes.

SISTA T UTILITY

The SISTA T utility shows statistical information concerning
an initial indexed sequential file since creation time. The
information is written to the file OUTPUT or to a user
defined file. Current file statistics are obtained by placing

the SISTA T control statement after the control statement
that causes program execution. The format of the SISTA T
control statement is shown in figure 7-1. An example of the
statistical information output by the SISTAT utility is shown
in figure 7-2.

ESTMATE UTILITY

The ESTMATE utility is an aid to the user in creating an
initial indexed sequential file. Suggested values for the size
of the buffer, data blocks, and index blocks are output by
this utility. Use of the suggested values adds to the
efficiency with which an initial indexed sequential file is
nrnl"'o~orl
,.....-.---~--·

A variety of file description parameters are input to the
utility by the user. The utility returns to the file OUTPUT
suggested index block size, data block size, and the
minimum and suggested buffer space requirements. The
format of the ESTMA TE control statement is shown in
figure 7-3.

SISTAT(lfn,sfn)

lfn Logical file name of an initial indexed sequential
file.

sfn Logical file name of the statistical information
file; default is OUTPUT.

Figure 7-1. SISTA T Control Statement Format

STATISTIC OUTPUT
FILE GENFILE

60499300 A

FILE FORMAT CIN WORDS>

TOTAL TRANSACTIONS
NUMBER OFI

STORAGE ALLOCATION
NUMBER OFI

INDEX BLOCK SIZE •
DATA BLOCK SIZE :s
KEY TYPE a l OR F
KEY SIZE = 2

INSERTS a
DELETES •
~EPLACESa

INDEX LEVELS :s
INDEX BLOCKS •

400
5
1

EMPTY INDEX RL0CKS •
DATA REC(')ROS •
OATA BLOCKS =
EMPTY DATA BLOCKS •

NU~RER OF UNUSED ENTRIES IN THE pRlMARY tNDEx =
TOTAL MASS STORAGE UsEn BY StS FILES =

Figure 7-2. SISTA T Utility Output

1
1
0

395
26
0

7-1

ESTMATE(NR=n,KS=n,MR=n,Ml=n)

!\JR File size (approximi=ite rnimhF!r nf rF!Cnrrlc::).

KS Key length in characters; must be 10 for floating
point and 5 or 10 for integer.

MR Maximum record size in characters.

Ml Minimum record size in characters.

Figure 7-3. ESTMATE Control Statement Format

The ESTMATE utiiity expects directives as the next
unexecuted record on the file INPUT. The directive format
is shown in figure 7-4. Default values are used for any
omitted parameters. If fewer than four parameters are
given, the last parameter must be followed by a period.

A number of directive statements can be used for the same
file to provide alternative buffer and block lengths. When
only one directive statement is input to the ESTMATE
utility, the parameters can be included in the ESTMATE
control statement, thus making a separate directive state
ment unnecessary. The parameters that would be added to
the control statement are as follows:

NL Number of index levels; l through 63.

BF Blocking factor (number of records per block).

PI Index block padding percentage; 0 through 99.

PD Data block padding percentage; 0 through 99.

Default values are used for any omitted parameters.

The deck structure shown in figure 7-5 generates the two
estimates shown in figure 7-6. The ESTMATE control
statement indicates a file of 100,000 records that range in
size from 500 to 1000 characters; the key size is 20
characters. The first directive statement specifies one
index level, five records per block, and no index block
padding. The second directive statement specifies two index
levels, five records per block, and ten percent index block
padding.

7-2

*nl,bf,pi,pd

nl Number of index levels; 1 through 63.

bf Blocking factor (number of records per block).

pi Index block padding percentage; 0 through 99.

pd Data block padding percentage; 0 through 99.

Figure 7-4. ESTMATE Directive Format.

job statement

ESTMATE(NR=100000,KS=20,MR=1000,M1=500)

7/8/9
*1,5.

*2,5, 10.

6/7/8/9

EXTENDED INDEXED SEQUENTIAL
FILES

Two utilities are provided for use with extended indexed
sequential files only. These utilities print statistics and
suggest block and buffer sizes.

FLST AT UTILITY

The FLSTAT utility shows statistical information concerning
an extended indexed sequential file since file creation time.
The information is written to the file OUTPUT or to a user
defined file. The format of the FLST AT control statement
is shown in figure 7 -7.

The amount of information output by the FLSTAT utility
depends on whether or not an installation option is selected.
(Refer to the Installation Handbook for details.) Figure 7-8
shows the output generated for a data file and an index file
when the installation option is not selected. Figure 7-9
shows the output generated for the same two files when the
option is selected.

FLBLOK UTILITY

The FLBLOK utility is an aid to the user in creating an
extended indexed sequential file. Appropriate values are
suggested for the size of the buffer and the data and index
blocks. Use of the suggested values adds to the efficiency
with which an extended indexed sequential file can be
processed.

A variety of file description parameters are input to the
FLBLOK utility by the user. The utility returns suggested
block size and minimum and suggested buffer size to the file
OUTPUT. The format of the FLBLOK control statement is
shown in figure 7-10.

The FLBLOK utility expects directives as the next
unexecuted record on the file INPUT. The format of the
directive is shown in figure 7-11. Default values are used
for any omitted parameters. If fewer than four parameters
are specified, the last parameter must be followed by a
period.

Multiple directive statements can be used for the same file
to provide alternative buffer and block lengths. When only
one directive statement is given to the FLBLOK utility, the
parameters can be specified in the FLBLOK control state
ment; a separate directive statement is then unnecessary.
The parameters that would be added to the FLBLOK control
statement are as follows:

NL Number of index levels; l through 15.

BF Blocking factor (number of records per block).

PI Index block padding percentage; 0 through 99.

PD Data block padding percentage; 0 through 99.

The deck structure shown in figure 7-12 generates the two
estimates shown in figure 7-13. The FLBLOK control
statement indicates a file of 100,000 records that range in
size from 500 to 1000 characters; the key size is 20
characters. The first directive specifies one index level,
five records per block, and no index block padding. The
second directive specifies two index levels, five records per
~leek, und ten ~er::cnt lndc>~ black ~ndding~

60499300 A

•

c

I
(

i
i
I

i
I
I

I

(

(

(

(

(

(

(

(

(

(

(
(

(..._

(

(

(_

(

(

(

(60499300 A

I

EST MATE INRz:J 000001i<Sz:201HR,.l 0001M I =500 I

THE PERCENTAGE Of" PAODING IN THE DATA BLOCK itAS NOT SPEClf"IED
THE· SIS DEFAULT VALUE Of"

THE PERCENTAGE Of" PAODING IN THE INDEX BLOCK llAS NOT SPEClf"lEO
THE SIS DEfAUL T VALUE Of

NUMBER Of RECORDS=

MINIHIJM RECORD SIZE:=

INDEXED SEQUENTIAL flLt:: ESTHATE

l 00000 KEY SIZE,.

SO WORDS MAXIMUM RECORD SIZE=

INDEXED SEQUt:NTIAL FILE ESTHATE

0 IS ASSUMED

S IS ASSUMED

20 CHARACJt:RS

100 WORDS

NUMBER Of RECORDS= 100000 KEy SIZE= 20 CHARACTERS

MINIMUM RECORD SIZE= so WORDS MAXIMUM RECORD SIZE= 100 wORDS

NUMBER INDEX DATA MINIMUM SUGGESTED

Of INDEX ACCESS BLOCK BLOCK BUffER Buff ER

LEVELS MOOE SIZE SIZE SIZE SIZE

IWORDSl IWOROSI hlORDSI h10ROSI

RAN DOH 63167 447 63831 64283

SEQUENTIAL 447 53'1 988

ES THATE INR,.l 00000 ti<S•20tMR•lOOO tMl•SOO I

l"HE PERCENTAGE: Of PADDING IN THE DATA BLOCK llAS NOT SPEClflED
THE. SIS DEFAULT VALUE Of 0 IS ASSUMED

INDEXED SEQUENTIAL flLE ESTMATE

NUMBER Of RECORDS• 11!0000 KEY SIZE• 20 CHARACTERS

MINIMUM RECORD SIZE• So WOROS MAXIMUM RECORD SIZE• 100 WORDS

NUMBER INDEX DATA MlNlHUH SUGGESTED

Of INDEX ACCESS BLOCK BLOCK BUFFER Buff ER

LEVELS MOOE SIZE SIZE SIZE SIZE

CWORDSI I WORDS I hlORDSI h10ROSI

2 RANDOM 511 447 1179 Zl46

2 SEQUENTIAL 447 539 988

Figure 7-6. ESTMATE Utility Output

7-3

FLSTAT(ifn,sfn)

lfn Logical file name of an extended index sequential
fiie.

sfn Logical file name of the statistical information
file; default is OUTPUT.

Figure 7-7. FLS1AT Control Statement Format

DIRECT ACCESS FILES
Two utilities are provided for use with direct access files.
These utilities analyze the effectiveness of a hashing routine
and create a direct access file. Both utilities require the
Common Memory Manager (CMM) to be present.

KEY ANALYSIS UTILITY

The key analysis utility tests hashing routines for
effectiveness in producing uniform distribution of record
keys in a file. A uniform distribution optimizes processing
time. The key analysis utility can be called in either of two
ways:

7-4

The user can read the input file and call the key
analysis utility to process the file on a record-by-record
basis.

The key analysis utility can be used as an owncode exit
from the FORM utility to process the user file on a
record-by-record basis.

STATISTICS FOP FILE SIPf

ORGANIZATION------- IS
CREATION OATE------ 08/23177
DATE OF LAST CLOSE- 08/23/77
TIME OF LAST CLOSE- lS.21.14.

FILE IS NOT MIPPEO
COLLATION IS STANDARD

PRIMARY ~EY INFORMATION
KEY IS NOT EMBEDDED
TYPE -- COLLATED SYMBOLIC
LENGTH IN CHARACTERS -~------ S

~AXIMUM RECORD SIZE 160
MINH-11JM RECORD SIZE 160

TOTAL TRANSACTIONS
NUMBER OF PUTS ------ 1
~.JUMSER OF GETS ------- 0
NUMBER OF DELETES --- 0
NUMBER OF REPLACES 0
~JUMBER OF GETNEXTS -- 0

NUMBER OF BLOCKS------- 1
NUMBER OF EMPTY BLOCKS- 0
BLOCK SI7.E IN PRUS----- 1
NU~BER OF DATA RECORDS- 1

FILE LENGTH IN PRUS 3
NUMBER Of INDEX LEVELS IN USE 0

The same hashing routine can be used for up to five tests
varying the number of home blocks for each test. It is also
possible to test up to five hashing routines with the same
number of home blocks. The number of synonym records
produced by each hashing routine is counted and the
resulting information written to a file named KEYLIST. The
file KEYLIST must be rewound and copied to the file
OUTPUT for the results to be printed. Otuput can show
synonym records only, standard deviations only, or both.
The format of the output from the key analysis utility is
shown in figure 7-14.

The key analysis utility is called through a source program
or through the FORM utility. The utility expects a KY AN
directive as the next unexecuted record on the file 11\PUT.
The format of the KYAN directive is shown in figure 7-15.
The directive begins in column l. All parameters must be
declared; no default values are provided.

If a continuation statement is to be used for the first KY AN
or subsequent statement, all 80 columns must be filled. A
slash (/) in column 80 indicates continuation to a subsequent
statement. A maximum of seven statements can be used.
Parentheses must enclose the entire parameter list; no
embedded blanks are allowed.

Possible error messages that are printed on the user's dayfile
are as follows:

NOT ENOUGH FIELD LENGTH. USE nnnnnn.

The run is terminated because the field length
cannot accommodate the internal tables.

ST~TISTICS F0R FILE INDEXF

ORGANIZATION------- MIP
CRFATION DATE------ 08/23/77
DATE OF LAST CLOSE- 08/23/77
TI~E Of LAST CLOSE- 15.44.48.

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE -- COLLATED SYMBOLIC
LENGTH IN CHARACTERS -------- 5

ALTERNATE KEY INFORMATION
CHARACTERS IN LARGEST KEY-- 20

PRIMARY KEY SUBSTRUCTURES
NUMBER OF UNIQUE 4
NUM8ER Of -IS- 2
NUM8£R OF FIFO l

NUMBER OF BLOCKS------- 8
NUMBER OF EMPTY BLOCKS- 0
BLOCK SIZE IN PRUS----- 4
NUMBER OF DATA RECORDS- 1

FILE LENGTH IN PRUS 34
MAX NUMBER OF LEVEL 2 INDEX LEVELS 4
MAX NUMBER OF LEVEL 3 INDEX LfVELS 4

60499300 A

••

c

• I
I
t.

(

(

(

(

(

(

(

[
c:
I ,,

(,

(,

STATISTICS FOR FILE SIPF

ORGANIZATION------- 15
CREATION DATE------ 09/13/77
DATE OF LAST CLOSE- 09/13/77
Tl~E OF LAST CLOSE- 13.58.44.

FILE IS MIPPE:"O
COLLATION IS STANDARD

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE -- COLLATED SYMBOLIC
LENGTH IN CHARACTERS -------- 5

'4AXIMUM RECORD SIZE 160
MINIMUM RECORD SIZE 160

TOTAL TRANSACTIONS
NUMRER Of PUTS ------ 30
NUMBER OF GETS ------ 0
NUMBER Of DELETES --- 0
NUMBER OF REPLACES -- 0
NUMBER OF GETNEXTS -- 0
NUMBER OF SEEKS ----- 0
NUMBER OF GETNRS ---- 0
NUMBER Of CIO CALLS - 23

NU~BER Of BLOCKS ------ 11
NUMBER Of EMPTY BLOCKS- 0
BLOCK SIZE IN PRUS----- 1
NUMBER OF DATA RECORDS- 30

FILE LENGTH IN PRUS 13
NUMBER OF INDEX LEVELS IN USE 1

STATISTICS FOR FILE INDEXF

ORGANIZATION------- MIP
CREATION DATE------ 09/13/77
DATE OF LAST CLOSE- 09113/77
TIME OF LAST CLOSE• 14.35.21.

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE -- COLLATED SYMBOLIC
LENGTH IN CHARACTERS -------- 5

ALTERNATE KEY INFORMATION
CHAqACTERS IN LARGEST KEY-- 20

PRIMARY KEY SUBSTRUCTURES
NUMBER OF UNIQUE 4
NUMBER Of -1~- -- 2
NUMBER Of FIFO -- 1

NUMBER OF Clo CALLS 23

NUMBER Of BLOCKS------- 8
NUMBER Of EMPTY BLOCKS- 0
BLOCK SIZE IN PRUS----- 4
NUMBER Of DATA RECORDS- 1

FILE LENGTH IN PRUS 34
MAX NUMBER OF LEVEL 2 INDEX LEVELS 4
MAX NUMBER OF LEVEL 3 INDEX LEVELS 4

Figure 7-9. FLSTAT Utility Expanded Output

FLBLOK(NR=n,KS=n,MR=n,Ml=n)

NR File size (approximate number of records).

KS

MR

Ml

Key length in characters; must be 10 for signed
binary.

Maximum record size in characters.

Minimum record size in characters.

Figure 7-10. FLBLOK Control Statement Format

*nl,bf ,pi,pd

nl Number of index levels; 1 through 15.

bf Blocking factor (number of records per block).

pi Index block padding percentage; O through 99.

pd Data block padding percentage; 0 through 99.

Figure 7-ll. FLBLOK Directive Format

60499300 A

ILLEGAL PARAMETER IN INPUT CARD

The run is terminated because the KY AN directive
contained a bad parameter.

ENTRYi - SYNONYM LIMIT EXCEEDED

tv1ore than 4095 records have been hashed to the
same home block. Processing terminates on the
specific entry but continues on the other entries.

ENTRYi- BAD KEY ENCOUNTERED

A specific key hashes outside the home block area.
This key is ignored and processing continues.

MORE THAN 25 BAD KEYS ENCOUNTERED

The run is terminated.

nnnnnD WORDS OF CENTRAL MEMORY USED

job statement

FLBLOK(NR=100000,KS=20,MR=1000,M1=500)

7/8/9

*1,5.

*2,5,10.

6/7/8/9

Figure 7-12. FLBLOK Utility, Sample Deck Structure

7-5

7-6

. ··•·•··················· .
fl

• •
T~E PERCENTAGE OF PADDING IN THE DATA BLOCK WAS NOT SPECIFIED

THE SIS DEFAULT VALUE OF

THE PERCENTAGE OF PADDING IN THE INDEX BLOC(NAS NOT SPECIFIED
THE SIS DEFAULT VALUE OF

• •l,5.
• • • • • • •
• NUHBER OF RECOQOSz
•

INDEXED SEQUENTIAL FILE ESTHATE

10 OIJDO KEY SIZEz

• HINIMUK RECORD SIZE= 50 WORDS HAXtHUH RECORD SIZE=
•
•
•
•

NUHBER

• OF INDEX
•
• LEVELS
•

ACCESS

HOOE

INDEX

BLOCK

SIZE

DATA

BLOCK

SIZE

HI NI HUH

BUFFER

SIZE

0 IS ASSUHE)

5 IS ASSUMED

20 CrfAiUCTERS

• •

•
•
•
•
•
•
•
•
•

1Dt WORJS •
•

SUG:OESTC:O •

BUFFER •

SIZE •
•

• (WORDS> CWORDSI (WORDS I CWOROSt•
• •
•
•
•
•

1 RAN DOH

1 SEQUENTIAL

•
•

.. a62 9579 11t7+S •

lt862 9979 11t7~S •
•

•···
..........................•...
•

II

• •
THE PERCENTAGE OF PAOOIN; JN THE DATA 8LOC~ WAS NOT SPECIFIED

THE SIS DEFAULT VALUE Of

• •z, '!i,1a.
• • • • • • •
• Nl.JllBER OF RECORDS•
•
• ~INIHUH RECORD SIZE•
•
•
•
•
• OF INDEX
•
• LEVELS
•

ACCESS

HOOE

INDEXED SEQUENTIAL FILE ESTHATE

100CDD KEY SIZE•

50 WORDS HAXIHUH RECORD SIZE=

INDEX

BLOCIC

SIZE

DATA

BLOCIC

SIZE

HI NI HUH

BUFFER

SIZE

G IS ASSUHl::O

23 CrfAUCTERi

•

•
• •

•
• ..
•
• • • •
•

lil~ WORJS •
• ..

SUG:;ESED "'
•

BUFF:'.R •

• CNORDS> (WORDS) (WORDS>

SIZE •
•

CWOR!>S)•
• •
• • • •

RAN DOH 6

S£QUENTIAL

•
•

191t8 •
•
• ..

END OF INP~T FILE ENCOUNTERED

l="in111'0 7-1~ !="I RI nl<' I ltilih1 n11tn11t :;; _, - ~· ,, - ,._. ---· ·-· . - .. , """i "' .• , .. ·- -·

..
t
c
f

f
f·

t
t
t
t I
I

I

I
I

I
~ I
t

I

t
t

•

t

-
I

-
--

I
I
I
I

.di i
60499300 A '

§

I
Ill

'
' ~

l1

c

(

('

('

(

(

(

[
c:

(

(.

(

(

c.

I

HOME BLOCK

0
1

n

STANDARD DEVIATION

entry 1 . . . entry5

xxx xxx
xxx xxx

xxx ... xxx

entry 1 . . . entry5

xx.xx xx.xx

Figure 7-14. Key Analysis Output

KYAN(LFN=axxxxxx,MRL=i,KL=j,RKP=k,RK'v"v'=I,
H 1=entry1,hmb 1,option 1, ... H5=entry5,hmb5,option5)

axxxxxx

k

Logical file name of the file containing the
user hashing routines; if the default hashing
routine is used, LFN is set to zero.

Maximum record length in characters.

Key length in characters.

Relative key position within relative key
word (RKW), counting from 0.

Relative key word in which the key begins,
counting form 0.

entry1 ... 5 Entry point names of hashing routines to
be tested; SDAHASH must be specified to
test the system-supplied hashing routine.

hmbl ... 5 Number of home blocks.

option 1 ... 5 Output options:

S Synonyms only

D Standard deviations only

B Synonyms and standard deviations

Figure 7-15. KYAN Directive Format

The key analysis utility can be entered through a source
program written in COMPASS, COBOL, or FORTRAN
Extended. The field length requirement is the sum of the
space needed by the source program, the hashing routines to
be tested, AAM, SDAKY AN, and internal tables. The space
needed by AAM varies as a function of the input file
organization. The number of central memory words required
for internal tables is the largest home block value specified.

The key analysis utility has two entry points: SDAKEYH and
SDAENDH. The COMPASS user must open the input file and
read the records one by one. As each record is read, the
user program sets register Al to point to the location of the
key address and issues a return jump to SDAKEYH. A return
jump to SDAENDH must be used to terminate use of the
KY AN directive.

60499300 A

For a COBOL program, the linkage is as follows:

ENTER SDAKEYH data-name.

ENTER SDAENDH.

The data name contains the record key and must be an
elementary item in the Working-Storage or Common-Storage
Section of the COBOL program.

For a FOR TRAN Extended program, the linkage is as
follows:

CALL SDAKEYH (KA)

CALL SDAENDH

KA is the address of the record key.

An example of a deck structure using the key analysis utility
as an external subroutine is shown in figure 7-16. Hashing
routines to be tested are assumed to be in relocatable binary
format on a permanent file named MYHASH.

JOBX, ...
ATTACH(MYHASH)

COMPASS. FTN. COBOL.
LGO.
DISPOSE(KEYLIST,PR)
7/8/9
User program source deck
7/8/9
KYAN(LFN=MYHASH,. .)
6/7/8/9

Figure 7-16. Key Analysis as External Subroutine

CREA TE UTILITY

The CREATE utility is available only when Sort/Merge has
been installed. This utility can be used to create direct
access files through FORM or from a call through a user
program. A direct access file is produced more rapidly when
the CREATE utility is used than when such a file is produced
by reading input and calling AAM to write each record. The
CREA TE utility should be used for files containing 1000 or
more records.

In general, the CREATE utility hashes the key from an input
record and prefixes the key to the record. Sort/Merge is
then used to sort the hashed keys. After the sort operation,
the prefixed keys are removed and the CREA TE utility uses
AAM to produce the direct access file.

A job using the CREATE utility involves the following:

FILE control statement to describe input and output
files

Loader control statement to load the COBOL library for
Sort/Merge

CREATE directive on the file INPUT

The format of the CREA TE directive is shown in
figure 7-17. The second and third parameters are omitted
when the default hashing routine is selected. Any operating
system separator, as well as embedded blanks, can be used
between parameters.

7-7

CREATE(lfn,hash,hfl)

lfn Logical file name of the output file (~3me as
specified in a FI LE control statement for a
direct access file).

hash User hashing routine entry point.

hfl Name of the file containing the hashing routine
in relocatable binary form.

Figure 7-17. CREATE Directive Format

All input and direct access file characteristics (other than
defaults) must be specified with FILE control statements.
For both source program calls and use of the CREA TE
utility through FORM, the COBOL library and AAM modules
must be loaded. If a user hashing routine is used, the routine
must also be loaded.

The FILE control statement used to define the direct access
file structure must specify the following parameters:

lfn Logical file name

FO FO=DA file organization

HMB

MNR

MRL

KL

BFS

Number of home blocks

Minimum number of characters in any record

Maximum number of characters in any record

Number of 6-bit characters in the key

Number of words in the buffer. Default buffer
size is 260 words; the buffer must be able to
hold at least one home block.

Additional file structure parameters can be included in the
FILE control statement.

When the CREATE utility is called by a source program, the
user must cause the input file to be read. After each record
is read, the user must place the key in the record and give
control to the utility at entry point SDACR TU. The key
address, the working storage address, and the total record
length must be passed to the CREATE utility. At the end of
file processing, the user calls CREA TE at entry point
SDAENDC.

The source program must not reference the direct access
file being created. A FILE control statement must be used
to describe file structure. If key position is not left
justified at location KA, the relative key position (RKP)
must be set in the FILE control statement. The two entry
points used in calling the CREATE utility from a source
program are SDACR TU and SDAENDC.

The appropriate data name, variable name, or list
parameters for key address (KA), working storage area
(WSA), and record length (RL) are provided in calls with
SDACR TU as follows:

7-8

COBOL

ENTER SDACR TU USING data-name-1,
data-name-2, data-name-3.

FOR TRAN Extended

CALL SDACRTU(variable-name-1,
variabie-name-2, var· iable-name-3)

COMPASS

A pointer tn = comparable three=par3mPtPr list is
stored in register Al; the call to SDACR TU uses a
return jump.

The RL field must be specified as an integer in a COMPASS
or FOR TRAN Extended program. In a COBOL program, the
RL field must be specified by a COMP-1 item.

An example of a COBOL source code call to the CREA TE
utility is shown in figure 7-18; the Identification, Environ
ment, and Data Divisions are assumed. This procedure
illustrates that portion of a job in which the user reads each
record, enters SDACR TU for hashing, and enters SDAENDC
after all records are read to complete direct access file
creation.

PROCEDURE DIVISION.
START.
OPEN INPUT lfn.
PERFORM A n TIMES.

A READ lfn INTO SDA-WSA AT END GO TO B.
MOVE xx TO AL.

ENTER SDACRTU USING data-name-1, data-name-2,
data-name-3.

B ENTER SDAENDC.
CLOSE lfn.
STOP RUN.

Figure 7-18. CREA TE Call Through COBOL

MULTIPLE-INDEX FILES

Three utilities are provided for use with files processed by
the Multiple-Index Processor (MIP). The IXGEN utility
creates an index file for processing by initial MIP. The
MIPGEN and MIPDIS utilities are used with files processed
by extended MIP.

IXGEN UTILITY

The IXGEN utility is used to create an index file for
alternate key access to an existing initial indexed sequen
tial, direct access, or actual key file. In addition, this
utility can be used to define additional alternate keys for a
file or to remove alternate keys from a file. The existing
data file must not be an empty file and must have all
primary and alternate keys within the records; an initial
indexed sequential file cannot have duplicate primary keys.
Key specifications can define overlapping fields.

An existing direct access file must use the system-supplied
hashing routine because there is no way to specify a user
hashing routine for IXGEN. An attempt to use a direct
access file with a user hashing routine produces AAM
error 171.

A job using the IXGEN utility involves the following:

A FILE control statement to identify the existing data
file, its organization, and the logical file name of the
:_C'!l
ijiUt;;)\ IUC

60499300 A

.. ;
m
I .
I
I fl I
I
I
i
I er i

I
I

C'
f:I

f:

C'.'

ti

er

I
I I
I

c

c:

(

(

(

(

(

(

c:

(
(

(

(

(,

An RFL control statement to specify a field length of
650008 plus the size of the buffer to process the file (a
larger field length improves efficiency; adding 15000

8
is

suggested)

An IXGEN control statement to identify the existing
data file, the source of additional control information
(RMKDEF directives), and the file to receive the
listable output

A set of RMKDEF directives on the file INPUT or other
file of card images

When the index file is created, the first RMKDEF directive
must define the primary key for the existing data file. Each
alternate key must also be specified in an RMKDEF
directive.

Alternate key definitions can be added to or purged from an
existing index file only through the IXGEN utility. Each
alternate key to be added to or purged from the index file
must be specified in an RMKDEF directive. The primary
key must not be specified in an RMKDEF directive for an
update run.

The format of the IXGEN control statement is shown in
figure 7-19. The format of the RMKDEF directives
expected by the IXGEN utility is shown in figure 7-20. The
kg and kc parameters used together refer to a key that is
part of a repeating group, such as that which results from
the COBOL clause OCCURS n TIMES. In the RMKDEF
directive for the primary key, the kg parameter can be used
to specify the length in PRUs of a block in the index file.
The kc parameter has no meaning in this directive.

IXGEN(prifile,directs,outf)

prifile Logical file name of the existing initial indexed
sequential, direct access, or actual key file.

directs Name of the file containing the RMKDEF di
rectives; optional; default is INPUT.

outf Name of the file containing listable output from
IXGEN; optional; default is OUTPUT.

Figure 7-19. IXGEN Control Statement Format

The structure of primary key lists is specified by the ks
parameter. For efficiency in processing, indexed sequential
structure is recommended. First-in first-out structure can
also be specified; however, the ordering of primary keys
generated by the IXGEN utility should not be assumed to be
the same order in which the data file records were created.

MIPGEN UTILITY

The MIPGEN utility is used to create an index file for
alternate key access to an existing extended indexed
sequential file. This utility can also be used to define
additional alternate keys for a file or to remove alternate
keys from a file. The existing data file must not be an
empty file. Key specifications can define overlapping fields.

A job using the MIPGEN utility involves the following:

A FILE control statement to identify the existing
extended indexed sequential file, to specify the logical
file name of the index file, and to specify the index file
block size

60499300 A

RM KDE F (prifile,rkw,rkp,kl,O,kf ,ks,kg,kc)

prifile Logical file name of the existing initial indexed
sequential, direct access, or actual key file;
required.

rkw Relative word in the record in which the alter
nate key begins, counting the first word in the
record as O; required.

rkp Relative character position within the relative
key word (rkw) in which the alternate key
begins, counting the first character position in
the word as 0; required.

kl

0

kf

ks

kg

Number of characters in the key, 1 to 255;
required.

Required to mark position for the reserved field.

Key format; required:

0 Character string, similar to symbolic
key type (KT=S) for initial indexed
sequential files

Signed binary, similar to floating point
(KT=F) and integer (KT=I) key types
for initial indexed sequential files

2 Unsigned binary, described in COBOL
as PICTURE 9; no existing file pri
mary key has this designation

3 Purge alternate key definition from
the index

Substructure for each primary key list in the
index; optional:

U Unique (default)

Indexed sequential; recommended for
efficiency in processing

F First-in first out

Length in characters of the repeating group in
which the key resides when used with kc.

kc Number of occuiiences of the repeating grnup;
zero if the group is defined by an OCCURS ...
DEPENDING ON clause.

Figure 7-20. RMKDEF Directive Format, IXGEN Utility

An RFL control statement to specify a field length of
650008 plus the size of the buffer to process the file (a
larger field length improves efficiency; adding 15000

8
is

suggested)

A MIPGEN control statement to identify the existing
data file, the source of additional control information
(RMKDEF directives), and a list file for output from the
utility

A set of RMKDEF directives on the file INPUT or other
file of card images

When the index file is created, each alternate key must be
defined by an RMKDEF directive.

7-9

Alternate key definitions can be added to or purged from an
existina index file only throuqh the MIPGEN utility. Each
alternate key to be added to -or purged from the index file
must be spec;ified ifi afi RMKDEi directive.

The format of the MIPGEN control statement is shown in
figure 7-21. The format of the RMKDEF directives
expected by the MIPGEN utility is shown in figure 7-22.
The kg and kc parameters are used together and refer to a
key that is a repeating group, such as that which results
from the COBOL clause OCCURS n TIMES.

MI PG EN (prifile,directs,lfile)

prifile Logical file name of the existing extended
indexed sequential file.

directs Name of the file containing the RMKDEF direc
tives; optional; default is INPUT.

lfile Name of the file that contains the output listing
from MIPGEN; optional; default is OUTPUT.

Figure 7-21. MIPGEN Control Statement Format

The structure of primary key lists is specified by the ks
parameter. For efficiency in processing, indexed sequential
structure is recommended. First-in first-out structure can
also be specified; however, the ordering of primary keys
generated by the MIPGEN utility should not be assumed to
be the same order in which the data file records were
created.

The nl, ie, and ch parameters are used to define sparse keys.
An alternate key is defined as a sparse key when all values
of the key are not desired to be indexed. Sparse keys cause
short indexing operations that save disk space, computer
time for index file maintenance, and search time. A sparse
key is a result of either null suppression or sparse control
characters.

The nl parameter specifies null suppression for an alternate
key. If null suppression is specified, the alternate key index
does not include primary keys for records that have null
values for the alternate key. All spaces for a symbolic key
and all zeros for an integer key are null values.

The ie and ch parameters are used when indexing of
alternate key values is to be controlled by a sparse control
character. The one-character field containing the sparse
control character must be in the fixed-length portion of the
record. The ie parameter specifies whether to include or
exclude the alternate key values for records that contain a
sparse control character. The ch parameter specifies the
sparse control characters applicable to the alternate key
being defined; up to 36 letters and digits can be specified as
a character string.

The sparse control character field is identified by an
RMKDEF directive that must appear before the directive
defining the alternate key and its sparse control characters.
This directive is specified in the following format:

RMKDEF(prifile,rkw,rkp,O)

The rkw and rkp parameters identify the position of the
sparse control character. The zero key length parameter
indicates that the field is a sparse control character field.

7-10

MIPDIS UTILITY

The MIPDIS utility temporarily or permanently disassociates
an index fik~ from itG n~ccinted extended indexed sequential
file. If the primary and alternate key fields are not updated
during the disassociation, the index file can be reassociated
with the data file.

RMKDEF(prifile,rkw,rkp,kl,0,kf,ks,kg,kc,nl,ie,ch)

prifile

rkw

rkp

kl

Logical file name of the existing extended index
ed sequential file; required.

Relative word in the record in which the alter
nate key begins, counting from O; required.

Relative beginning character position within the
relative key word (rkw), counting from O;
required.

Number of characters in the key, 1 to 255;
required.

0 Required to mark position for the reserved field.

kf

ks

kg

kc

nl

ie

ch

Key format, required:

0 or S Character string

1 or I Signed binary

2 or U Uncollated character string

3 or P Purge alternate key definition
from the index

Substrncturn for each primary key list in the
index; optional:

U Unique (default)

Indexed sequential; recommended
for efficiency in processing

F First-in first-out

Length in characters of the repeating group in
which the key resides.

Number of occurrences of the repeating group;
zero if the group is defined by an OCCURS ...
DEPENDING ON clause.

Null suppression; a null value is all spaces
(symbolic key) or all zeros (integer key):

0 Null values are indexed (default)

N Null values are not indexed

Include/exclude sparse control character:

E

Include alternate key value if the
record contains a sparse control
character

Exclude alternate key value if the
record contains a sparse control
character

Characters that qua! ify as sparse control charac
ters; up to 36 letters and digits can be specified
as a character string.

Figure 7-22. RMKDEF Directive Format, MIPGEN Utility

60499300 A

.! I
Iii

I
I

tr I
I
I

ti
ii

I
!!!

t I •
t! I

I
t I

.

t
t

-I
t:

I

I
I

- I .
!!I!
!Ill

I .
I

t, I
I t I c-

I t

«
-
t

I

t I
I
I
I

4!' I
l I

ii
;

A- Oll

:lit ''l'!

"T

(:
L

C_

(

(

(

(_

(
(

(

(.

(

(..

Whenever a data file that has an associated index file is
opened, a safety lock in the file statistics table requires the
index file to be present. The MIPDIS utility removes this
requirement.

Disassociation of an index file from the data file is useful
under various circumstances. One instance occurs when a
data file that has an associated index file is no longer being
accessed by alternate key. In this case, the index file is no
longer needed and can be disassociated from the data file.

Indexed sequential files are sometimes reorganized to
reclaim extraneous padding caused by block splitting and to
redistribute it evenly throughout the file. The reorgani
zation is accomplished through either the FORM utility or a
user program. The index file can be disassociated from the
data file before the reorganization. After the reorgani
zation, the index file is still valid for the data file and can
be associated with the data file again by the MIPDIS utility.
This eliminates the need to create a new index file through
the MIPGEN utility or during the creation of the
restructured data file.

60499300 A

While the data file is disassociated, any changes to the
primary or alternate key values are not reflected in the
index file. This can result in errors when updating or
accessing the file by alternate key.

The format of the MIPDIS control statement is shown in
figure 7-23. This control statement can be used to
disassociate or associate an index file with its data file.

Ml PDIS(lfn 1,da,lfn2)

lfn 1 Logical file name of the data file.

da Disassociate/associate index file:

D Disassociate from data file

A Associate with data file

lfn2 Logical file name of the index file; not required
for disassociation.

Figure 7-23. MIPDIS Control Statement Format

7-11

•• i
i

c I
c I
f

t
~:

t

f

t

I

• I

I I
• I
: I

~

c I I - I
ti I

' I I
t I , I

I
t I I

iii

~

~ ;

(

(

(

(

(

(

(

(

c
(

(

(

(

c
(

(

(

STANDARD CHARACTER SET A

CONTROL DAT A operating systems offer the following
variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified when
the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use).

60499300 A

Under NOS/BE, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of the job statement or
any 7 /8/9 card. The specified mode remains in effect
through the end of the job unless it is reset by specification
of the alternate mode on a subsequent 7 /8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of any 6/7 /9 card, as
described above for a 7 /8/9 card. In addition, 026 mode can
be specified by a card with 5/7 /9 multipunched in column 1,
and 029 mode can be specified by a card with 5/7 /9
multipunched in column l and a 9 punched in column 2.

Graphic character representation appearing at a terminal or
printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable to
BCD terminals; ASCII graphic characters are applicable to
ASCII-CRT and ASCII- TTY terminals.

A-1

i

r

I

A-2

Display
Code

(octal>

oot
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

Graphic

: (colon)tt
A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p
Q

R
s
T
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9
+ -
*
I
(
)
$
=

blank
, (comma)
• (period)

[

J
% tt
~ ,...
v

" t
' <
>
$;

~
-,

; (semicolon)

STANDARD CHARACTER SETS

CDC

Hollerith
Punch
l07f\)
~ ---.

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
0
1
2
3
4
5
6
7
8
9
12
11

11-8-4
0-1

0-8-4
12-8-4
11-8-3

8-3
no punch

0-8-3
12-8-3
0-8-6
8-7

0-8-2
8-6
8-4

0-8-5
11-0 or 11-8-2i tt

0-8-7
11-8-5
11-8-6

12-0 or 12-8-2ttt
11-8-7

8-5
12-8-5
12-8-6
12-8-7

External
BCD
r..nrlA ___ ...;

00
61
62
63
64
65
66
67
70
71
41
42
43
44
45
46
47
50
51
22
23
24
25
26
27
30
31
12
01
02
03
04
05
06
07
10
11
60
40
54
21
34
74
53
13
20
33
73
36
17
32
16
14
35
52
37
55
56
72
57
15
75
76
77

-

Graphic
Subset

: (colon) tt
A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p
Q

R
s
T
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9
+
-
*
I
(
)
$
=

blank
, (comma)
• (period)

* [

)
% tt

" (quote)
(underline)

!
&

' (apostrophe)
?
<
>
@

\
- (circumflex)
; (semicolon)

ASCII

Pun eh
(029)

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
0
1
2
3
4
5
6
7
8
9

12-8-6
11

11-8-4
0-1

12-8-5
11-8-5
11-8-3

8-6
no punch

0-8-3
12-8-3

8-3
12-8-2
11-8-2
0-8-4
8-7

0-8-5
12-8-7 or 11-ottt

12
8-5

0-8-7 ttt
12-8-4 or 12-0

0-8-6
8-4

0-8-2
11-8-7
11-8-6

Code
(octal)

072
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
060
061
062
063
064
065
066
067
070
071
053
055
052
057
050
051
044
075
040
054
056
043
133
135
045
042
137
041
046
047
077
074
076
100
134
136
073

t Twelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
two colons.

tt In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 1s the colon (8-L puncn). f he % graphic and related card codes do not exist and translations
yield a blank (558).

tttThe alternate Hollerith (026) and ASCII 1029) punches are accepted for input on!y,

60499300 A

('

('

(

(

(

C'.

c:_

(

(

(

(

(

(,

CDC CHARACTER SET
COLLATING SEQUENCE

Collating Collating
Sequence CDC Display External Sequence CDC Display

Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code

00 00 blank 55 20 32 40 H 10
01 01 < 74 - 15 33 41 l 11
02 02 % 63 t 16 t 34 42 v 66
03 03 [61 17 35 43 J 12
04 04 - 65 35 36 44 K 13
05 05 - 60 36 37 45 L 14
06 06 fl 67 37 38 46 M 15
07 07 t 70 55 39 47 N 16
08 10 i 71 56 40 50 0 17
09 11 > 731 57 41 51 p 20
10 12 > 75 75 42 52 Q 21 -
11 13 --, 76 76 43 53 R 22
12 14 57 73 44 54] 62
13 15) 52 74 45 55 s 23
14 16 , 77 77 46 56 T 24
15 17 + 45 60 47 57 u 25
16 20 $ 53 53 48 60 v 26
17 21 * 47 54 49 61 w 27
18 22 - 46 40 50 62 x 30
19 23 I 50 21 51 63 y '>1

I ..JI

20 24 , 56 33 52 64 z 32
21 25 (51 34 53 65 00 t
22 26 = 54 13 54 66 0 33
23 27 * 64 14 55 67 1 34
24 30 < 72 72 56 70 2 35
25 31 A 01 61 57 71 3 36

I 26 32

I
B

I
02 62 58 72 4 37

I 27 33 c 03 63 59 73 5 40

I
28 34 D 04 64 60 74 6 41
29 35 E 05 65 61 75 7 42
30 36 F 06 66 62 76 8 43
31 37 G 07 67 63 77 9 44

tin installations using the 63-graphic set, the% graphic does not exist. The: graphic is display code 63,
External BCD code 16.

60499300 A

External ·
BCD

70
71
52
41
42
43
44
Ai:;:
-rv

46
47
50
51
32
22
23
24
25
26
27
..,n

I vV

31
no net

12
01
02
03
04
05
06
07
10
11

A-3

r
ASCII CHARACTER SET

I COLLATING SEQUENCE

Collating ASCII
Display I ASCII

Collating ASCII
Display ASCII Sequence Graphic I Sequence Graphic

Code
Decimal/Octal Subset

Code I Code Decimal/Octal Subset
Code

l
00 00 I blank I 55 t 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 8 02 42
03 03 # 60 23 35 43 c 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 , 70 27 39 47 G 07 47
08 10 (51 28 40 50 H 10 48
09 11) 52 29 41 51 I 11 49
10 12 * 47 2A 42 52 J 12 4A
11 13 + 45 28 43 53 K 13 48
12 14 I 56 I 2C I 44 54 L I 14 4C

I
I

I I 13 15 - 46 I 2D 45 55 M 15 4D
14 16 57 I 2E 46 56 N 16 4E
15 17 I I I 50 I 2F I 47 57 I 0 17 4F
16 20 I 0 33 I 30 I 48 60 I p I 20 I 50
17 21

I
1 34 31 49 61 a 21 51

18 22 2 35 32 50 62 R 22 52
19 23 I 3 36 33 51 63 s 23 53
20 24

I
4 37 34 52 64 T 24 54

21 25 5 40 35 53 65 u 25 55
22 26 6 41 36 54 66 v 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 x 30 58
25 31 I 9 44 39 57 71 y 31 59
26 32 OOt 3A 58 72 z 32 5A
27 33 , 77 38 59 73 [61 58
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 30 61 75] 62 50
30 36 > 73 3E 62 76 - 76 5E
31 37 ? 71 3F 63 77 65 5F -

t In installations using a 63-graphic set, the% graphic does not exist. The : graphic is display code 63.

A-4 60499300 A

c:

(

(

(

(

(

[
(

(

(

(

(_

(

(

(

ERROR PROCESSING AND DIAGNOSTICS B

AAM checks user requests to ensure proper processing. If
results are not satisfactory, an error condition exists and the
following occurs:

A three-digit octal error code is returned to the error
status (ES) field in the FIT.

For a fatal error, the fatal/nonfatal (FNF) field is set in
the FIT.

The error exit is taken if the user has set the error exit
(EX) field in the FIT.

The dayfile control (DFC) field and the error file control
(EFC) field in the FIT determine the disposition of error
messages and notes/statistics. Depending on the setting of
these two fields, error messages and statistics/notes are
written to the dayfile and/or the error file ZZZZZEG.

ERROR COMMUNICATION

Regarding errors, AAM and the user communicate through
the following FIT fields:

ECT Trivial error count

ERL Trivial error limit

ES Error status

EX Error exit

The ES field is a 9-bit field that is set to an octal value
after AAM has attempted error resolution and is ready to
return control to the user. When an attempt is made to
execute an input/output request after an error, AAM does
not clear the ES field. If the request is not legal, AAM
increments the ECT field and proceeds with execution. If a
subsequent error is detected, the ES field reflects the most
recent error. The user is responsible for clearing the
ES field when an error exit (EX) is not supplied and the ES
field is checked after every macro call.

FIT fields relevant to error processing and their meanings
are as follows:

DFC Dayfile control; set by the user to control the
listing of error messages on the dayfile.

60499300 A

DFC=O Only fatal error messages to the
dayfile (default).

DFC=l Error messages to the dayfile.

DFC=2 Statistics/notes to the dayfile.

DFC=3 Error messages and statistics/
notes to the dayfile.

EFC

ERL

EX

FNF

Error file control; set by the user to control
the listing of error messages on the error file.

EFC=O No error file entries (default).

EFC=l

EFC=2

EFC=3

Error messages to the error file.

Statistics/notes to the error file.

Error messages and statistics/
notes to the error file.

Trivial error limit; if not specified, the value
is zero, no error account is accumulated, and
an indefinite number of trivial errors is
permitted; if a value is specified, the job is
terminated when the value of the ECr" field
reaches the value specified for the ERL field.

Error exit; an 18-bit field that is interpreted
as follows:

EX=O

EX:IO

No user error routine; control is
returned as a normal exit; the ES
field is set to an error code. If a
fatal error is encountered, the
message is output to the dayfile.

When a fatal or trivial error
occurs, control is transferred to
EX+!; a jump to the user in-line
return address is stored in the
EX field and the ES field is set
to an error code.

Fatal/nonfatal flag; set to 1 for fatal errors.

ERROR FILE PROCESSING

When the error file control (EFC) field is set to a nonzero
value, error messages and/or statistics/notes are written to
the error file ZZZZZEG. The error file is always flushed at
an abnormal termination. At the completion of a job step,
the error file is flushed if all files are closed. The CRMEP
control statement can be used to process the error file and
control the listing of information from the error file on the
output file. The format of the CRMEP control statement is
shown in figure B-1.

The parameters, options, and defaults for the CRMEP
control statement are listed in table B-1. The first default
listed in the table is set if neither the parameter nor the
option is specified. The second default listed is set if the
parameter is specified without an option. More than one
option can be specified with each parameter; more than one
parameter can be specified in one CRMEP control
statement.

CRMEP(parameter=option 1/option 2/ ... /optionn, ...)

parameter Mnemonic specifying type of error file proc
essing and I isting.

option Selected setting of the specified parameter.

Figure B-1. CRMEP Control Statement Format

B-1

The capability to dump the contents of the FIT to the error
file for subse.q-~ processing is provided by the FITDMP
macro. When the FITDMP macro is executed, the FIT is
written to the error fiie ZZZZZEG as note number 1000.
The error file control (EFC) field in the FIT must be set to 2
or 3 to ensure that notes are written to the error file. The
CRMEP control statement can then be used to display the
FIT on the output file. The format of the FITDMP macro is
shown in figure B-2.

The id parameter is an optional parameter that is used to
display an identifier for the FIT dump. The FIT display
identifier at the location specified by the id parameter
consists of 10 characters of displayable information.

ERROR CONDITION PROCESSING

When an error condition is encountered, the error status (ES)
field is set to the appropriate error number. For a trivial

FITDMP fit,id

fit Address of the FIT to be dumped.

id Address of the FIT display identifier.

Figure B-2. FITDMP Macro Format

error, the trivial error limit (ERL) field set to zero allows
unlimited trivia! errors. If the ERL field is greater than
zero, the trivial error count (ECT) field is incremented and
compared with the ERL fieid as foHows:

If the ECT field is less than the ERL field, control is
passed to the error exit if specified or to the user's
in-line code. If control passes to the in-line code, the
user is responsible for checking the error status.

If the ECT field is equal to the ERL field, the ES field
is set to 356 (trivial error limit reached) and the
fatal/nonfatal (FNF) field is set. Control is returned to
the error exit if specified or to the user's in-line code.

When a file is accessed sequentially and end-of-information
is encountered, the file position (FP) field is set to indicate
EDI and an informative message is issued. If the end-of
data exit (DX) field has been set, the exit is taken. If
another access beyond end-of-information is attempted
without repositioning the file, a fatal error status is given
for an indexed sequential file and a trivial error status is
given for direct access and actual key files. If the error exit
(EX) field is set, that exit is taken. If the FNF field is set
and any AAM function is attempted on the file, a 115 error
is generated and the job is aborted.

TABLE B-1. CRMEP CONTROL STATEMENT PARAMETERS

Defaults

I Parameter I Option f"""'\----:-1-: _
Llt;;:::>l,;l lj.JL1Ult

First Default Second Default Initial Value

LO Nor * Select notes
-N/ * * Omit notes
F or * * * Select fatals
-FI Omit fatals
Dor * * * Select data manager messages

I
-D/

J
Omit data manager messages

Tor * Select trivial errors
-T/ * * Omit trivial errors

I SF lfn1/ all 1 all none Select messages associated with the specified

I
lfn2/

I
lfns • . . .

I lfn n

I
OF

I
lfn/ none

I
none

I
none Omit messages associated with the specified lfns.

lfn/

l I ... l I lfn ! n

SN mno 1 / I all i hardware and none Select only specified message numbers (octal). I mno:Z/ I
I parity errors I

J I I ...
mnon I I

J_
ON mno1/ ! none 142 and 143 none Omit only specified message numbers (octal).

I mno2/ i only
...
mno ~

n i _
L lfn

i

I OUTPUT LIST Specifies the post-processor output file.

RU l * Return/unload of error file; performed at end of
I I proces~~ng. If ~U is_n~t ~pecified, file posi~ion of I !

L error f11e remains at t..01 at end of processing.
__ _!_ ____ ---- -- I

B-2 60499300 A

C'

(

(

(

('
•

('

(

<:

(

(
,.
l
(

(

(!.

(

(

' (.

(,

':
I

CLASSES OF ERRORS

Syntax errors are diagnosed by AAM; the messages are self
explanatory. System errors are detected by the operating
system. Execution errors, occurring during execution of
input and output requests, are subdivided into call errors and
invalid input/output requests.

CALL ERRORS

Call errors are undetectable parameter errors. For
example:

GET Xl

If register Xl does not contain the valid FIT address, an
unpredictable AAM error, mode error, or DOD error can
result.

INVALID INPUT/OUTPUT REQUESTS

Requests for illegal input/output operations produce the
following general types of errors:

FIT

File organization

Record type

Content of address given as the
FIT address does not pass a test
for plausibility. It does not
contain a legal logical file name
in bits 59 through 18, or the FIT
has inconsistencies.

Input/output requests or specifi
cations illegal on the type of file
specified by the file organization
(FO) field in the FIT.

Input/output requests illegal for
the record type specified by the
record type (RT) field in the FIT.

OPENM/CLOSEM Input/output requests illegal for
files opened or closed as speci
fied by the open/close (OC) field
and/or the old/new file (ON)
field in the FIT.

Processing direction Input/output requests that would
violate the processing direction
limitations specified by the proc
essing direction (PD) field in the
FIT.

File position Input/output requests illegal for
the file position given by the file
position (FP) field in the FIT.

Last operation

Key

60499300 A

Input/output requests illegal in
the context of the last operation.

Attempts to access or write
records whose keys are not
within the range of keys defined
for a file.

Data

Device

Errors in data specification, such
as inconsistency between the
amount of data requested and
the amount actually present,
illegal field present in the data,
required field is absent, or parity
error.

Input/ output requests illegal on
the device upon which the file
resides.

All errors are either fatal or nonfatal. Some nonfatal errors
are trivial in that no user action is required. Fatal errors
usually indicate incorrect parameter specification and
incomplete or contradictory information provided by the
user as program errors. A fatal error message is always
printed on the dayfile.

Trivial errors are usually data errors, such as attempting to
insert a record already in the file or to replace or delete a
record that does not exist. If a trivial error message is
printed, the key and type of error are part of the error
message. The record associated with the trivial error is
dropped; however, the file position might be altered.

If the error exit (EX) field in the FIT has been set to the
address of an error routine, any error causes a transfer of
control to the address in EX+l for a recovery routine after
the error has been resolved. Fatal errors inhibit any further
attempts to perform input/output on the file using AAM;
such attempts cause the job to terminate. If the EX field is
not set, an error sets the error status (ES) field and returns
control to the calling program. The ES field is cleared after
an error.

AAM is in the user's field length and is subject to
destruction by the user.

DIAGNOSTICS

Error messages that can be output by AAM are listed in
table B-2. The messages are in order by error code. The
table contains the following information:

Code

Message

Significance

Action

Severity

Octal value corresponding to the
error condition.

Diagnostic output; varies depending
on the setting of the DFC and EFC
fields and the parameters specified in
the CRMEP control statement.

Meaning of the message.

Suggestion for the user to recover
from the error condition.

Type of error; can be any of the
following:

F Fatal

T Trivial

T /F Tri vial under some con-
ditions, fatal under
other conditions

Table B-3 is a list of notes and informative messages that
can be output.

B-3

Code

001

002

006

030

031

032

033

035

036

037

040

B-4

Mi><><><>nP . ·-----::1-

INVALID FD

FIT /FILE ORGANIZATION
MISMATCH

FIRST BLOCK IS NOT A
FSTT

INVALID RT

RT =F /Z AND FL=O

RT=T AND HL OR TL=O

RT=D AND LL=O/RT=T
AND CL=O

RT= T /D, MRL EXCLUDES
CONTROL FIELD

RL INCONSISTENT WITH
RECORD DESCRIPTION

RT =D/T AND CL/LL> 6

REDUNDANT OPEN

TABLE B-2. DIAGNOSTICS

Signifir:-~nrP.

File organization must be indexed
sequential (IS), direct access (DA),
or actual key (AK).

The file organization specified
does not match any opened files.

The first block in the file must be
the file statistics table (FSTT).
For an indexed sequential file,
the ORG field must be set for the
correct file organization.

Record type must be W, S, Z, F,
R, T, D, or U; it must conform to
other file specifications, such as
FO.

For fixed length For zero byte
terminated Z type records, a
maximum record length must be
specified for the FL field in the
FIT.

For T type records, the header
length (HL) must be large enough
to hold the trailer count field de
fined by the CP and CL fields.
The length of the trailer count
field must be given in the TL field
and must be at least one character
long.

For D type records, the LL field
in the FIT must provide the length
of the record field that specifies
record length.

For T type records, the CL field
in the FIT must provide the length
of the field that specifies the
number of trailer items.

For T and D type records, the
record must contain a field
identifying record length.

For T tvoe records, the fixed
header i~ngth (HL). must include a
field CL characters long, begin
ning at CP, to identify trailer
item count.

For D and T type records, the
length of the count field must be
one to six character positions.

A file must be closed before open
processing, such as buffer alloca
tion or FILE control statement
processing, takes place. A re
dundant open call is ignored.

Action

Correct the file organization
field.

Check to see that the correct
file is being processed or that
the FO field is specified cor
rectly.

If a file is being created, check
that the pd parameter is speci
fied in the OPENM macro or the
ON field is set to NEW.

Correct the record type field.

Specify the FL field.

Correct the header length or the
trailer length field.

Specify the length of the D type
record length field.

Specify the length of the trailer
count field of the T type record.

Check that for D type records
LP+LL is less than MRL. For T
type records, CP+CL must be
less than MRL. The position
count for LP and CP begins
with 0.

Check that the count field is in
cluded in HL. The current rec
ord is ignored. Position CP is
counted from O.

Correct the length of the count
field.

Correct the program to close
the file before open processing.

Severity

F

F

F

T

T

T

T

T

T

T

T

60499300 A

tr:

t i!

I,
l'I

I

(I -I

c I
i
I
I t,
!

t

(

(' TABLE B-2. DIAGNOSTICS (Cont'd)

Code Message Significance Action Severity

050 NUMBER OF FILES The installation defines the num- Check with a local analyst for F
PERMITTED TO BE OPEN ber of AAM files that can be open the limit on the number of files
SIMULTANEOUSLY HAS at one time because buffers are that can be open at one time.
BEEN EXCEEDED limited by central memory avail-

able. Default release value is 10

('
files of each organization.

051 SETFIT DISALLOWED ON Open processing would have al- Change the placement of the T
OPEN FILE ready processed the FILE control SETFIT macro.

statement. The SETFIT macro
processes FILE control statements
without full open processing.

('
052 FILE NOT CLOSED AFTER The possibility exists that the file Rerun the program that updated T

LAST UPDATE/CONDI- has internal errors. The most the file.
TION QUESTIONABLE likely cause is a system crash

that prevented closing of the file.

(053 NO HOME RECORD The OLD parameter has been Check that the correct file F
specified when opening an empty name has been specified, or
direct access file. change the OLD parameter to

NEW.

(054 FILE ILLEGALLY An existing file has been opened Change the program to open F
EXTENDED(EOIMOVED) without extend permission and with extend permission.

information has been written be-

(yond the old EOI.

055 FILE NONEXISTENT, The logical file name specified Check that the logical file name F
CANNOT OPEN-OLD does not match any existing file. is correctly specified.

[056 EMPTY FILE OPENED When using the read-only proc- Check that the correct file name F
FOR READ-ONLY essors, the file must be an exist- has been specified, or change

ing non-empty file because it is the OLD parameter to NEW.
opened for a read-only purpose.

060 REDUNDANT CLOSE A second call to close the file Correct the program to elimi- T
was issued. The operations re- nate the redundant close
quested by the CF field are per- operation.
formed before the error is issued.

(I
070 OUTPUT REQUEST, A file opened with PD set to If the file is to be written, set T

PD=INPUT INPUT cannot be written. The the PD field in the FIT to OUT-
write statement is ignored. PUT or IO before opening the

file.

(071 INPUT REQUEST, A file opened with PD set to If the file is to be read, set the T
PD=OUTPUT OUTPUT cannot be read. The PD field in the FIT to INPUT or

read statement is ignored. IO before opening the file.

(074 MUST HAVE CMM FOR To have multiple FITs for one Correct the program to allow T
MULTIPLE ACCESS file, CMM must be used. The file CMM to be loaded.

is not opened.

(075 UBS MAY NOT BE USED A file that is to be accessed by Correct the program to elimi- T
FOR MULTIPLE ACCESS more than one FIT cannot have nate the user-supplied buffer.

user-supplied buffer space for
any of the FIT s.

c 100 CANNOT SEQUENTIALLY A sequential read or SKIPFL is The file must be repositioned if T/F
POSITION BEYOND FILE not possible with the file at EOI. further access is desired. Re-
BOUNDS A SKIPBL is not possible with the peated access attempts with

(file at BOI. file at the end cause the fatal
error flag to be set.

(

60499300 A B-5

I Code

~ .. -.
I llO

115

117

130

135

136

142

143

B-6

FILE NOT OPEN

OUT ST ANDING FAT AL
ERROR ON THE FILE

PUT OR RELEASE OF
LARGER RECORD
ILLEGAL AFTER GETN

RT =W, BAD CONTROL
WORD, FILE DEFECTIVE
OR MISPOSITIONED

RMS READ PARITY
ERROR

RMS WRITE PARITY
ERROR

EXCESS DATA

INSUFFICIENT DAT A

TABLE B-2. DIAGNOSTICS (Cont'd)

A file must be opened before it
can be read or written. Omission
of required FIT field parameters
or inconsistencies in specified
parameters inhibit open.

A fatal error pre vents future
access to the file with the error,
but it does not cause job termina-
tion uniess the user attempts I
further operations except CLOSEM
on the file.

Sequential read of a direct access
file is possible only if the existing
records are not disturbed. Writing
any new record or increasing
existing record size prevents sub
sequent sequential access.

Record type was specified as W.
This message indicates the rec
ords being read are not, in fact,
W type records.

The system returned a parity
error status after a read.

The system returned a parity error
status after a write.

In a write, no information is
written to the file; the user has
supplied RL greater than FL/MRL
or the record mark character for
an R type record was not found
before MRL characters.

On a read, no information is trans
ferred to the working storage area;
the record length exceeds the FL/
MRL defined. For GET macro
processing, the following condi
tions cause an error:

Z No zero byte found be
fore FL characters

R No record mark found
before MRL

T ,D Control field RL > MRL

U RL > MRL

F Excess data cannot occur

Control information in the record
being read (length calculated by
fields such as CP and CL) speci
fies a length for each record.
The record existing in the file is
smaller than the specified length.
All characters available are re
turned.

Action

Correct the program to open the
file before reading or writing, or
correct omissions or inconsis
tencies in FIT fields.

Correct and rerun.

Correct the program.

Check that the existing file is
correctly described.

Recreate the file on a good
device.

Recreate the file on a good
device.

Correct the inconsistency be
tween the RL and FL or MRL
fields.

No action is required.

T

F

f
T

T/F

tl
T/F c
F

T I

T

60499300 A '

TABLE B-2. DIAGNOSTICS (Cont'd)

Code Message Significance Action Severity

146 USER HEADER LENGTH The attempted PUT or REPLACE Check the user header length T
ERROR macro is rejected because the user and the record length for in-

header length is inconsistent with consistencies.
the record length.

147 CHECKSUM ERROR IN There is a conflict between the Notify a system analyst. F
DAT A OR INDEX BLOCK loading checksum and computed

checksum in either the data block
or index block.

150 FILE NOT ON RMS Indexed sequential, direct access, Correct the control statement T/F
and actual key files must be to ensure a valid device assign-
created on a disk, drum, or family ment.
pack.

165 ILLEGAL FILE NAME The LFN does not consist of one Correct the LFN or the FIT F
to seven ietters and digits, the address.
first being a letter.

166 FIT INCOMPLETE - A required parameter is missing, Refer to section 4 of this man- F
CANNOT CREATE FILE or information for the FIT field is ual for parameters required

(
not specified correctly. during file creation.

167 RECORD LENGTH OUT- Minimum and maximum record Correct the program to write T
SIDE MIN-MAX RANGE -- length, MNR and MRL, establish records within the established

(
REQUEST IGNORED the absolute record limit for the limit, or recreate the file chang-

life of the file. ing MNR and MRL.

For Dor T type records, the con- Check to see that the CL/CP

(
trol field specified is outside the fields or the LL/LP fields are
value specified by the RL field, specified correctly.
or it is not within the values spec-
ified by the MNR and MRL fields. I

170 RECORD SIZE EXCEEDS All data blocks or home blocks Correct the RL or MBL field. T/F
BLOCK SIZE OR IS must hold at least one record plus
NEGATIVE control information.

(171 INCORRECT HASHING The hashing routine used to create Check that the correct routine F
ROUTINE a direct access file must be used is available to the job or that

(I I
for all subsequent access.

I
the HRL field has not been
changed. The routine name can
be different each time, but the
results produced cannot differ.

172 ERRONEOUS KL OR RKP The key length (KL) or relative Correct the KL or RKP field. F

(FIELD SPECIFIED key position (RKP) field is not
specified properly for the key
type.

(174 FIT INCOMPLETE FOR Record length range MRL and Refer to section 3 of this manual T
BFS CALCULATION MNR, blocking factor RB, or for parameters required for BFS

other key characteristics required calculation.
fer buffer size calculation have

(been omitted.

175 REQUESTED DATA OR The data block ?.f-fndex block size Correct the data or index block F
INDEX BUFFER TOO cannot exceed 2 -1. size.

(LARGE

176 MAXRECSZ IN FSTT The MRL field in the FIT is less Correct the inconsistency T
EXCEEDS MRL IN FIT, than the maximum record size between the current MRL value

(WSA MAY BE TOO SHORT recorded in the FSTT. and the MRL value used when
the file was created.

< I

(60499300 A B-7

,.

•!

TABLE B-2. DIAGNOSTICS (Cont'd) f
Code Message l Significance Action Severity

BAD FSTT LINKED TD FIT I

,,
200 The FSTT fieid in the FIT does Correct the program to avoid T

not point to a valid FSTT when destroying the FSTT field.

tr the file is being closed.

201 FILE CONTAINS BAD Some data blocks in the file have The file should be recreated as T
BLOCKS checksum or parity errors. Up- soon as possible. ,. dating is not allowed.

202 FILE IS RUINED The file structure has been The file must be recreated. T
destroyed. The file is no longer

f · usable.

203 CANNOT UPDATE WITH- The file is a multiple-index file Close the data file. Set the XN T
OUT MIP FILE and an update operation has been field in the FIT to the index file

attempted without having the name and reopen. f: index file present.

204 KEY POSITION OUT OF The starting character position of Correct the KP field. F
RANGE a key is defined by positions 0 fi

through 9, counting from the left
of a word.

205 MINIMUM RECORD SIZE Minimum record length (MNR) Correct the MNR field. F c: OUT OF RANGE must be at least one character
but no more than maximum record
length (MRL) and must contain ii

the key. er I 206 KEY NOT CONTAINED The embedded key must be within Check for proper RKW, RKP, F
WITHIN RECORD the record. KL, MNR, and MRL. Minimum

and maximum record iengths

I
I (MNR and MRL) are in char-

I acters; relative key word (RKW)
is in words, starting from O; rel- I
ative key position (RKP) is in I

I
6-bit fields, 0 through 9, count-

i
ing from 0 on the left. I

207 MINIMUM RECORD SIZE Required parameter MRL must be Correct the inconsistency be- F t I EXCEEDS MAXIMUM equal to or larger than MNR. tween the MRL and MNR fields.
I

223 CHECKSUM ERROR IN A conflict exists between the Notify a system analyst. F I FSTT loading checksum and the com- t puted checksum in the FSTT. I 245 FUNCTION NOT VALID The function attempted is not Correct the program. T
FOR THIS FO valid for the file organization t indicated in the FIT. I

250 FILE RMS LIMIT The user has exceeded the mass Correct the problem and rerun. F

I
EXCEEDED (AK) storage limit as specified in the t LIMIT control statement or

installation-defined limit.

252 SYSTEM RMS LIMIT No more mass storage was avail- Consult a system analyst; per- T/F t REACHED able for the file. haps the installation parameter
limit was exceeded.

253 FILE LIMIT REACHED - The number of records currently Recreate the file increasing the T -RECORD NOT INSERTED in the file cannot exceed the limit value of FLM.
that the user specified with FLM.

300 NO READ PERMISSION To be read, a permanent file must Attach the file with the required F -be attached with read (RD) per- read permission. I mission.

II

t I
I
I
I

"'' I
B-8 60499300 A ' I

I
3'f;

I
>Ii • ;

'
l1

TABLE B-2. DIAGNOSTICS (Cont'd)

Code Message Significance Action Severity

301 NO WRITE OR MODIFY A permanent file requires proper Attach the file with the required F
PERMISSION access permissions. Modify (MD) modify permission.

permission is required for any up-
dating operation.

(
302 NO EXTEND OR A permanent file requires extend Attach the file with the required F

ALLOCATE PERMISSION (EX) permission before new rec- extend permission.
ords can be inserted.

(
304 NOT ALLOWED TO The OVF option selected requires Change the OVF option if over- T

CREA TE OVERFLOW original home blocks to accommo- flow blocks can exist.
BLOCKS (DA) date all records. New records are

ignored because all home blocks

(
are full.

324 PROCESSING DIRECTION A file opened for INPUT cannot Correct the inconsistency be- F
NOT CONSISTENT WITH be written; a file opened for tween the PD field and the

(
REQUEST OUTPUT cannot be read. input/output operation.

333 ILLEGAL CALL TO An unexpected jump to a diag- Notify a system analyst. F
DIAGNOSTIC ROUTINE nostic routine has occurred.

(334 TOT AL OF OPEN FILES The system has destroyed system Reload the program or notify a F
NOT EQUAL TO TOT AL tables. system analyst.
OF FIT ADDRESSES

335 HIERARCHY TABLE Index level has increased too For extended indexed sequential T/F
OVERFLOW rapidly for AAM; update opera- files, close and reopen the file.

tion has not been performed. For other files, rerun the pro-

(
gram starting with the update
transaction that caused the
overflow.

336 BAD FIT ADDRESS The user or the system has Correct the program and reload F
destroyed system tables. it.

(
337 INTERNAL ERROR IN An internal error has been Notify a system analyst. F

IS/DA/ AK l.X detected.

345 INSUFFICIENT CMM Not enough CMM space exists to Release some CMM, if any is T ,. ,,
SPACE AVAILABLE open the file. To open a file re- being used by the user program,

I
quires enough free CMM space to or increase the amount of mem-
load any rare capsules required, ory available to the job.
and to aiiow two of the iargest
blocks to be in memory at the
same time. The file is not opened.

346 CMM NOT AVAILABLE A new block for the list-of-files Correct the program so that the F
AND THERE IS NO LIST cannot be allocated, and the pointer is not destroyed. A de-

(
OF FILES ADDRESS LOF$RM entry point has been fault list with 658 entries is

cleared. supplied.

347 FOL ERROR CODE ••• Either CMM is not loaded when Check the load sequence or map T
ON CAPSULE ••• FOL is called to load a capsule or to see if CMM is loaded. Fix the

the AAMLIB file is not valid. static load calls to load the
proper routines. If using local
libraries, check for a valid
AAMLIB file.

352 FILE TO BE CLOSED IS The logical file name specified Check that the logical file name T
NOT KNOWN does not match any existing file. is correctly specified.

(

(60499300 A B-9

• i
'

f
I

TABLE B-2. DIAGNOSTICS (Cont'd) I
I

Cede Message I Signific::mr.e I Action Severity I I l

'" i BUFFER SPACE SUPPLIED I A buffer specified by the BFS field I 354 Increase the BFS vaiue. T I
IS INSUFFICIENT FOR I/O must be large enough to hold at I

least the larger of one block spec- (' I ified by MBL+2 or one physical
record unit for the file's resident
device. I

355 CODE MODULES Routines necessary for processing Refer to appendix E for the cor- T
c! I REQUIRED FOR 1/0 NOT have not been loaded. rect loading procedures.

LOADED

t I
356 TRIVIAL ERROR LIMIT Error count ECT equals the user- Correct the errors. F

REACHED defined error limit ERL, resulting
in a fatal error.

357 UNABLE TO OBTAIN Required space cannot be Supply a value for the FWB field F
t!

SPACE FOR BUFFER allocated. CMM is not available or delete the OMIT =CMM param-
and the FWB field is zero. eter.

370 FATAL 1/0 ERROR Either a block with an incorrect Correct the program. F t!
length was encountered or the
operating system detected an
error in the file or in the way c: the file was being used.

372 I FO=IS INDEX STRUCTURE The extended indexed sequential Reorganize the file to allow F
FULL 15 LEVELS file has filled 15 levels of index- more indexes per block. t: I ing, which is the maxi mum

allowed. Further updating is not
permitted.

403 SKIPBL DISALLOWED A backward skip is not possible Correct the program. T ("
I

for D, R, and T type records.

404 SKIPFL DISALLOWED No forward record skip is possible Correct the program. T
FOR RT::cU for U type records.

415 ONLY PUT ALLOWED During file creation, only PUT Correct the program to elimi- T I DURING INITIAL macros are valid between open nate all macros except PUT. C, I CREATION and close.

417 CANNOT REPLACE WITH The REPLACE statement is I Correct the program. T
LARGER RECORD IN ignored. t: I
SEQUENTIAL MODE

420 CANNOT REWIND The N parameter of the OPENM Remove the N parameter from T
NO-REWIND FILE macro is meaningless because the the OPENM macro. t, initial indexed sequential file

position is at the start of user rec-
ords when the file is opened.

421 WSA NOT SPECIFIED - For read or write, the location of Specify the WSA field for the T c REQUEST IGNORED the record in the user field lenqth read or write operation.
is required.

422 SEEK NOT ALLOWED IN The SEE.K macro is ignored be- Close and reopen the file for T f'
SEQUENTIAL MODE cause it is not allowed during se- random processing if SEEK is

quential processing. desired.

424 CANNOT GET IN The GET macro cannot be used in Use the GETN macro. T 4 SEQUENTIAL MODE - sequential mode.
GETN ASSUMED

I 425 CANNOT SKIP BACK- The SKIP macro is ignored be- Correct the program. T t WARD IN SEQUENTIAL cause backward skips are not
MODE allowed in sequential mode. I

t i
I

• I
i

B-10 60499300 A • i!
Ill

I
1,1

Ml"
l~j

(

(

(

(

(I

(

(

(
,
'
(

(

(

c
(

(

Code Message

426 GETN NOT ALLOWED
DURING FILE CREATION
- REQUEST IGNORED

427 GET, SEEK INV AUD IN
SEQ MODE

430 INV AUD OP FOR READ
ONLY

431 SKIP OR GETN WHEN
SEEKING

441 MAJOR KEY WITH
SYMBOLIC KEYS ONLY

442 INV AUD ACTUAL KEY -
REQUEST IGNORED

443 COMP-1 KEY HAS
INCONSISTENT BIAS -
REQUEST IGNORED

444 NEW KEY LESS THAN
PREVIOUS KEY IN

I I
INITIAL CREA T!ON

445 KEY NOT FOUND - FILE
POSITION ALTERED -
REQUEST IGNORED

446 DUPLICATE KEY

I I
FOUND - FILE POSITION

I ALTERED - REQUEST
IGNORED

447 KEY ADDRESS NOT
SPECIFIED - REQUEST
IGNORED

452 FILE POSITIONING
ERROR

501 INDEX FILE NOT COM-
PATIBLE WITH CRM FILE

502 SPECIFIED KEY NOT
DEFINED

503 DUPLICATE AL TERNA TE
KEY ERROR

60499300 A

TABLE B-2. DIAGNOSTICS (Cont'd)

Significance Action Severity

On a file creation run, only the Correct the program to elimi- T
PUT macro is allowed between nate all macros except PUT.
open and close.

Opening an indexed sequential file Open the file for input/output T
for INPUT establishes a sequential if GET and SEEK are desired.
mode of operation in which access
by key is prohibited.

Read-only mode has been selected Change the PD field and read- F
for an initial indexed sequential only mode.
file; updating with PUT, RE-
PLACE, or DELETE is not possible.

A SEEK sequence on an indexed Correct the program. T
seauential file must be comoleted
th~ough EOR return to the FP
field.

Key type (KT) must be S for major Correct the KT field. F
key actions.

The key is not valid; the request Correct the KA field. T
is ignored.

The COMP-1 key has been speci- Correct the COMP-1 key. T
fied incorrectly (initial indexed
sequential files).

Records should be sorted by Sort the records into ascending T
ascending key before an indexed sequence.
co<:>n11<:>nti<:il fil<=> ico r-r<:><:it<:>rt An --'"!--· ·-·-· . ··- ·- -· -----·
out-of-order key is ignored.

The entire file was searched, but No action is required. T
the key does not exist. File posi-
tion is one record ahead of the
position where the search began.

A duplicate key has been found. Change the duplicate key indi- T
The request is ignored (initial

I
cator if duplicate keys are al-

I indexed sequential files). lowed, or check the key field of
the current record.

The file cannot be read randomly Correct the program to specify T
if a key is not given. the key address (KA) field.

An attempt was made to position Correct the program to check F
the file beyond EOI. the FP field or specify the DX

field.

Information in the file statistics Check that the proper index file T
table for a multiple-index file has been specified.
does not agree with index file
information.

The key position specified by the Correct the RKW, RKP, or KL T
RKW, RKP, and KL fields for an field.
alternate key does not correspond
to an alternate key definition in
the index file.

All alternate key values must be Specify indexed sequential T
unique if the index structure for structure if more than one
a multiple-index file has been alternate key is to have the
specified as unique. same value.

B-11

..
TABLE B-2. DIAGNOSTICS (Cont'd) t!i

Code r ~A-'""""'-- I C::innifi,...<>n,...., Action I t;PVPl"itv I
I

l•U:tet~O.'.::fl..t i -·:;,·····--··-- i -- . ----, =i t; I I 504 I SEQUENTIAL OPERATION I End-of-information has been en- Correct the program. I T I
BEYOND EOI ATTEMPTED countered. No further sequential

operations, such as GETN or a f
I

system search for a key, are pas-
sible until the index file is reposi-
tioned by a user statement.

I t:' Ii 505 ERROR IN RMKDEF The parameters used with the Check that letters and digits F
PARAMETER I RMKDEF macro have been speci- appear properly; also, that the

fied incorrectly. file name given in RMKDEF
corresponds to the name of the

-~ file.
i

506 AL TERNA TE KEY NOT A key value specified does not Action depends on program T
FOUND match any alternate key value in processing of keys. ti'' the index file. J

507 ***AAM MALFUNCTION For an extended indexed sequen- Notify a system analyst. F
n *** tial file, an impossible condition ti' has been encountered. This condi-

' tion probably occurred when part
of the executable code of AAM
was altered by an agency other t:i than AAM. The code n specifies
the condition that has occurred:

n=l FIAA T POSKEY l bad c n=2 FIAA T POSKEY3 bad -
FIFO

n=3 Intermediate block

I reached with all keys
too low

n=4 Attempt to go up from
primary

n=5 Error in removing one
level of hierarchy

n=6 Compression buffer size ti bad

n=7 Running total of CMM
too high « n=lO Index file not opened

n=ll Attempt to use a busy
FIX cell f n=l2 Attempt to chain an al-
ready chained block

n=l3 Attempt to read or c write PRU 0

n=i4 Attempt to write a
block being read e n=l5 UBS free block count
bad

n=l6 Attempt to unchain
block not chained ~I n=l7 Empty count less than
zero

510 INTERNAL ERROR IN An internal error has been encoun- Notify a system analyst. F ti MIP l.X tered in initial MIP.

t
B-12 60499300 A (

Ai

~

(
TABLE B-2. DIAGNOSTICS (Cont'd)

Code Message Significance Action Severity

(
511 RMKDEF ONLY AFTER The RMKDEF macro can be used Correct the program. T

OPEN-NEW - IGNORED only on a creation run.

('. 512 CRM DAT A FILE If NDX is set to YES, the PUT, Correct the program. T
MODIFICATIONS ILLEGAL DELETE, and REPLACE macros
WITH NDX=YES are not allowed.

c: 513 REQUIRED ROUTINES Read-only processing of multiple- Supply the LDSET control state- T
NOT LOADED- index files requires the LDSET ment or LDREQ macro.
RM$MEXB/RM$MFSQ control statement or LDREQ

(
macro (initial indexed sequential
and direct access files).

514 FILE CONTAINS Alternate keys are not permitted The file cannot be a multiple- F
DUPLICATE PRIMARY when duplicate primary keys are index file.
KEYS defined (initial indexed sequential

files).

(
515 NO INDEX FILE No name has been specified for Specify an index file for the XN F

SPECIFIED the XN field on an IXGEN or file field.
creation run for a multiple-index
file.

(520 CHANGED KEY TYPE The key type (KT) specified on Change the KT field. F
the file creation run cannot be
changed for the life of the file.

(521 CHANGED KEY SIZE The key length (KL) specified on a Change the KL field. F
file creation run cannot be changed
for the life of a file.

[522 KEY TYPE INCORRECT For an initial indexed sequential Correct the KT field. F
file, KT must be S (symbolic), I
(integer), or F (floating point num-
ber).

523 NO KEY DEFINED Key type (KT), key length (KL), Define the key fields. F
and key address (KA) must be de-

(

(

fined.

524 KEY SIZE ILLEGAL For initial indexed sequential files, Correct the KL field. F

I
the integer key must be 5 or 10
characters; floating point number
keys must be 10 characters; sym-
bolic keys can be l to the instal-
lation-defined length limit.

(525 MAJOR KEY SIZE MKL must be at least l and less Correct the MKL field. F
ILLEGAL than the full key defined by KL.

(
526 HASHED KEY OUTSIDE The user has changed hashing Check the HRL field in the FIT F

HOME BLOCK AREA routines. The hashing routine in to verify that the correct hash-
use is limited in the range of keys ing routine is in use; otherwise,
that it can successfully process. the user should limit the selec-

(
tion of keys to a narrower range.

527 ATTEMPT TO REDEFINE An RMKDEF directive attempted Correct the RMKDEF directive. F
SPARSE CONTROL to redefine the sparse control

(
CHARACTER character (extended indexed se-

quential files).

530 PADDING FACTOR OUT Padding can be specified as 0 to Correct the padding percentage. F

(
OF RANGE 99 percent.

(

(60499300 A B-13

~I

Code

532

534

535

536

540

541

542

543

544

545

546

547

550

B-14

Message

FILE ALREADY EXISTS,
CANNOT OPEN-NEW

MRL EXCEEDS MAX
ALLOWED RECORD
SIZE

NO DECOMPRESSION
ROUTINE SUPPLIED

NO OR WRONG
COMPRESSION ROUTINE
SUPPLIED

FIFO KEY SUB
STRUCTURE NOT
ALLOWED IN REPEATING
GROUPS

PURGE ILLEGAL -
SPECIFIED ALT KEY NOT
KNOWN

NEW KEYDEF MATCHES
ONE ALREADY KNOWN -
KEYDEF REJECTED

FILE NOT POSITIONED IN
DUPLICATE KEY SET -
CANNOT DELETE
CURRENT

PADDING REQUESTED
TOO LARGE

CANT OPEN NEW FOR
INPUT

PRIMARY KEY NOT
FOUND

BAD STRUCTURE FOUND
IN FILE

CANNOT COMPRESS -
KEY POSITION INV AUD

TABLE B-2. DIAGNOSTICS (Cont'd)

Significance

Two fiies in one program cannot
have the same name.

The value of the MRL field is
greater than 81870 characters.
The file is not opened.

A value for the DCA field was
not supplied on OPENM OLD for
a file that has user compression.
The file is not opened (extended
indexed sequential files).

A value for the CPA field was not
supplied on OPENM OLD for a file
that has user compression. The
file is not opened (extended in
dexed sequential files).

For alternate keys in repeating
groups, the key must be unique or
stored in an indexed sequential

1 substructure.

An attempt was made through
MIPGEN to purge an alternate
key that did not exist.

The key was not defined to be
unique.

The file is not positioned at a
duplicate key set, the DELETE
current is not honored (initial
indexed sequential files).

The padding percentage requested
would not allow the data block to
contain one maximum record on
create or would not allow three
index records per index block.
The file is not opened.

The processing direction must be
set to OUTPUT on a file opened
as a new file.

A primary key in the alternate
key index file cannot be found in
the data file. The data file and
index file have been modified in
consistently.

The block being looked at con
tains an impossible counter or
pointer.

To compress records, the primary
key must either be nonembedded
or begin in the first character
position. The file is not opened.

Act.inn

Check the PD field in the FIT
or the pd OPENM parameter.
The ON field must be changed
from NEW for file access after
creation run.

Correct the MRL field in the
FIT.

Correct the DCA field in the
FIT.

Correct the CPA field in the
FIT.

Correct the RMKDEF directive.

Correct the MIPGEN RMKDEF
directive.

Correct the MIPGEN RMKDEF
directive.

Position the file to a duplicate
key set.

Correct the PD or IP field in
the FIT and reopen the file.

Correct the PD or ON field in
the FIT and reopen the file.

Disassociate the data file and
create a new index file using the
MIPGEN utility.

Notify a system analyst.

Change the key position if the
file is to be compressed.

•
Severity

4'.
F

T

T

T

F

F c
F I T

T

T ti

F

F

T

60499300 A

(

(TABLE B-2. DIAGNOSTICS (Cont'd)

(
Code Message Significance Action Severity

551 REL MUST BE EQ, GT An invalid REL value was Set the REL field to a correct T

(
OR GE detected. The operation is not value.

performed.

712 NEGATIVE OR OVER- One of the parameters indicated Correct the program. F

C_
SIZED ARGUMENT--WSA, was erroneously specified when a
SKP, OR LA macro was issued.

713 NEGATIVE OR OVER- One of the parameters indicated Correct the program. F

(
SIZED ARGUMENT--RL, was erroneously specified when a
ST, OR LBL macro was issued.

714 NEGATIVE EX OR DX A negative value was specified Correct the program. F

(
PARAMETER for the EX or DX field.

715 NEGATIVE OR OVER- Either the WA or KA field was Correct the program. F
SIZED ARGUMENT--WA erroneously specified.

(_
ORKA

716 NEGATIVE OR OVER- Either the PTL or the KP field Correct the program. F
SIZED ARGUMENT--PTL was erroneously specified.

(717

ORKP

NEGATIVE OR OVER- One of the parameters indicated Correct the program. F
SIZED ARGUMENT--MKL, was erroneously specified when a

(
POS, GPS, OR TRM. macro was issued.

720 DEVICE CAPACITY The CIO read driver has encoun- Check the system dayfile for the T
EXCEEDED tered an error. specific head driver error.

(
721 ERROR DETECTED BY A system hardware error that Check the system dayfile for a T

OPERA TING SYSTEM cannot be corrected has been svstem/hardware error messa e.
encountered.

g

(

(

(

(

(

(,

(

(

(60499300 A B-15

•
TABLE B-3. NOTES OR INFORMATIVE MESSAGES 11

ll rnnP r MP.ss~-me
I - - - - . • _;...;..._::7_ - - -- ..

J

f
1000 FIT DUMP ••••• 1025 DAT A BLOCK SIZE ft.ND BLOCKING

FACTOR BOTH SET
1001 FILE OPENED

1026 EOI ENCOUNTERED ON SKIP OR GETN f
1002 FILE CLOSED

1027 THE KEY IS ••.••
1003 NUMBER OF INDEX LEVELS •••••

1030 ERROR ENCOUNTERED DURING •••••

I 1004 ***NUMBER OF GETS THIS OPEN •••••
1031 One of many general comments output by

1005 ***NUMBER OF PUTS THIS OPEN ••••• AAM routines

ti

f·
1006 ***NUMBER OF REPLACES THIS 1032 THE KEY IS ••••• THE KEY IN OCT AL

OPEN ••••• IS •••••

1007 ***NUMBER OF DELETES THIS OPEN ••••• 1033 ***NUMBER OF GET NEXTS THIS
ti

OPEN •••••
1010 ***TOT AL DISKAREA*** ••••• WORDS

1034 ***NUMBER OF ACCESSES THIS
1011 GETN REACHED EOI OPEN •••••

t!
1012 SKIP REACHED FILE BOUNDARY BEFORE 1035 ***TOTAL NUMBER OF RECORDS •••••

EXHAUSTING SKIP COUNT
1036 ***TOT AL NO. OF OVERFLOW t:

1013 END OF INFORMATION ENCOUNTERED RECORDS •••••

1014 BEGINNING OF INFORMATION 1037 ***NO. OF AVAILABLE PRIMARY INDEX
ENCOUNTERED ENTRIES •••••

I 1015 FILE LIMIT REACHED, LINEAR SEARCH 1040 ***RECORDS/HOME-BLK CREA TED THIS
FOR SPACE INITIATED OPEN •••••

1016 ILLOGICAL SUCCESSIVE SEEK REQUESTS 1041 ***RECORDS/OVF -BLK CREA TED THIS
OPEN •••••

1017 CANNOT CHECKSUM A FILE CREA TED

I
WITHOUT CHECKSUMS 1042 ***OVERFLOW BLOCKS CREA TED THIS

OPEN •••••
1020 ILLOGICAL TO CHANGE THE KEY BEFORE

I
SEEK FUNCTION COMPLETED 1043 ***TOTAL NUMBER OF HOME

BLOCKS .••.•
1021 HOME BLOCKS EMPTY--HASHING ROUTINE

I NOT VERIFIED 1044 ***TOT AL NUMBER OF HOME BLOCKS
IN USE •••••

1022 DELETED LAST RECORD
1137 THE FOLLOWING BLOCK CONTAINS A

1023 EMPTY FILE OPENED PARITY ERROR •••••

1024 IS ERROR RECOVERY

t'.

I
I
I

I
. I

i
t

i
I
I

J

t, i
I

I t; I
I

-I . ~
I

c I
I

ti:
I

I t:, I
I

C,
Ii
I
~

I
B-16 60499300 A (,

4t
~·

(

(

(

(

(

(

(

(

(

(,

(

c
(,

(

(_

(,

t

GLOSSARY c

AAM (ADVANCED ACCESS METHODS) - A file manager
that processes indexed sequential, direct access, and
actual key file organizations and supports the Multiple
Index Processor.

ACTUAL KEY - The primary key for a record in a file with
actual key organization, which specifies the block
number and record position in that block. These keys
are usually generated by AAM and returned to the user.

ACTUAL KEY (AK) FILE - A mass storage file in which
each record is stored at the location specified by the
block and record slot number in the primary key
associated with that record.

AL TERNA TE KEY - A key other than the primary key by
which an indexed sequential, direct access, or actual
key file can be accessed.

BAM (BASIC ACCESS METHODS) - A file manager that
processes sequential and word addressable file
organizations.

BEGINNING-OF-INFORMATION (BOI) - The start of the
first user record in a file.

BLOCK - A logical or physical grouping of records to make
more efficient use of hardware. All files are blocked.
See also Data Block, Home Block, Index Block, and
Overflow Block.

BLOCK CHECKSUM - A number used to check that the
contents of a data block have not been altered
accidentally; a means of ensuring data integrity. Block
checksums can be requested for files through use of the
BCK parameter in the FILE control statement.

CHARACTER - A letter, digit, punctu;;ition mark, or math
ematical symbol forming part of one or more of the
standard character sets. Also, a unit of measure used
to specify block length, record length, and so forth.

CLOSE - A set of terminating operations performed on a
file when input and output operations are complete. All
files processed by AAM must be closed.

COMPRESSION - The process of condensing a record to
reduce the amount of storage space required. The user
can supply a compression routine or use a system
supplied routine. See Decompression.

CREATION RUN - All processing of a file, from open to
close, the first time the file is written or made into an
AAM file. Files must be created in a separate creation
run during which only write operations on the file being
created are allowed.

CRM (CYBER RECORD MANAGER) - A generic term
relating to the common products BAM and AAM.

DAT A BLOCK - A block in which user records are stored
in an indexed sequential or actual key file. Data block
structure is defined by the user, or AAM defaults are
accepted. Contrast with Index Block for indexed
sequential files.

60499300 A

DECOMPRESSION - The process of expanding a com
pressed record to restore it to its original size. The
user can supply a decompression routine or use a
system-supplied routine. See Compression.

DECRYPTION - The process of condensing and refor
matting an encrypted record to restore it to its original
size and format. The user supplies a decryption routine.
See Encryption.

DEFAULT - A value assumed in the absence of a user
speci fied value declaration for the parameter involved.
Values for many defaults are defined by the installation.

DIRECT ACCESS (DA) FILE - A file containing records
stored randomly in home blocks according to the hashed
value of the primary key in each record. Files must be
mass storage resident. All allocation for home blocks
occurs when the file is opened on its creation run.
Access is random or sequential.

DIRECTIVES - The instructions that supplement processing
defined by a control statement or by a program call for
execution of a utility function or member of a product
set. Directives do not appear in the control statement
record; they are usually in a separate record of the file
INPUT or a file referenced in a control statement call.
Directives are required for execution of FORM; the
CREATE utility, and EDITLIB among others.

ENCRYPTION - The process of expanding and refor-
matting a record. The user supplies an encryption
routine. See Decryption.

END-OF -INFORMATION (EOI) - The end of the last user
record in a file.

FIELD - A portion of a word or record; a subdivision of
information within a record; also, a generic entry in a
file information table identified by a mnemonic.

FIELD LENGTH - The area in central memory allocated to
a particular job; the only part of central memory that a
job can directly access. Contrasts with mass storage
space allocated for a job and on which user's files
reside.

FILE - A logically related set of information; the largest
collection of information that can be addressed by a file
name. It starts at beginning-of-information and ends at
end-of-information. Every file in use by a job must
have a logical file name.

FILE CONTROL STATEMENT - A control statement that
supplies file information table values after a source
language program is compiled or assembled but before
the program is executed. In applications such as those
with a control statement call to the FORM utility, a
FILE control statement must be used. Basic file
characteristics such as organization, record type, and
description can be specified in the FILE control
statement.

C-1

FILE INFORMATION TABLE (FIT) - A table through which
a user program communicates with .A.AM. For direct
processing through AAM, a user must initiate establish
ment cf this tab!e.. .L\!! fHe precessing executes an the
basis of information in this table. The user can set FIT
fields directly or use parameters in a file access call
that sets the fields indirectly. Some product set
members set the fields automatically for the user.

FILE ST A TIS TICS TABLE (FSTT) - A table generated and
maintained by AAM to collect statistics about each file.
The FSTT is a permanent part of a file and contains
information such as organization type, size of blocks,
number of current accesses, and so forth.

FLUSHING - The method of processing file buffers and
updating the file statistics tables as if close operations
had been requested without actually closing the files.

HASHING - The method of using primary keys to search
for relative home block addresses of records in a file
with direct access storage structure.

HOME BLOCK - A block in a file with direct access
storage structure whose relative address is computed by
hashing keys. A home block contains synonym records
whose keys hash to that relative address. If all the
synonym records cannot be accommodated in the home
block, an overflow block can be created by the system.
A user creating a direct access file must define the
number of home blocks with the HMB parameter in the
FILE control statement.

If'JDEX -- A series of kcy3 and pointers to records
associated with the keys.

INDEX BLOCK - For an indexed sequential file, a block
with ordered keys and pointers to the data blocks and
other index blocks, forming a directory of the records
within a file.

INDEXED SEQUENTIAL (IS) FILE - A file organization in
which AAM maintains files in sorted order by use of a
user-defined primary key, which need not be within the
record. Keys can be integer, floating point (initial
indexed sequential files only), or symbolic; access is
random or sequential. Files contain index blocks and
data blocks.

INSTALLATION OPTION - One of several alternate means
of processing that is selected when AAM is installed at
a computer installation. Once an option is selected, all
subsequent use of AAM is governed by the selection.
For all options or limits defined as installation options,
the user should consult with a system analyst to
determine the valid limits.

INTEGER KEY - A binary key used with indexed sequential
files; for initial indexed sequential files, either 30 or 60
bits in length; for extended indexed sequential files, a
60-bit signed binary key. See Symbolic Key.

KEY - A group of contiguous characters or numbers the
user defines to identify a record in an AAM file.

KEY ANALYSIS UTILITY - A utility program that provides
information about hypothetical record distribution for a
file with direct access organization. The utility reads
the key of each record in the file and determines the
home block where the record would reside.

C-2

KEY ENTRY - The format of key information in index and
data blocks in an initial indexed sequential file. The
user need not be concerned with entries, except to
rr:>i:ili7P thi:it e>vmhnli,... ltr:>v lr:>nnth i:inrl intf:>nr:>r ltr:>v vi:ilt1P!'l ------- -··-- -1···--- ... -~ ··-; --··;::-·· -----· -----J-- ··-,: ·-----

can be specified to minimize entry length for improved
efficiency.

LDSET - The loader control statement. Various param
eters include:

LIB

USE

STAT

OMIT

Make available the named library

Load the routines named

Static loading requested

Inhibit loading of the routines named

LOAD SET - A group of loader control statements begin
ning with a call that causes information to be loaded
into central memory and ending with a call for
execution of a loaded program. Nonloader statements
must not appear in a load set.

LOGICAL FILE NAME - The name given to a file being
used by a job. The name must be unique for the job and
must consist of one to seven letters or digits, the first
of which must be a letter.

MACRO - A single instruction that when compiled into
machine code generates several machine code
instructions.

MAINTENANCE RUN - A program or job to update an
existing file; technically refers to that part of the job
from file open to file close.

MAJOR KEY - The leading characters of a symbolic key in
an indexed sequential file.

MASS STORAGE - A disk pack that can be accessed
randomly. ECS is not considered mass storage.

MASTER FILE - A file containing information about a set
of entities. All information about a single entity
constitutes a record in the file. A master file is
normally kept up to data by a maintenance run.

MULTIPLE-INDEX FILE - An indexed sequential, direct
access, or actual key file that has alternate keys
defined.

MUL TIPLE-Il\OEX PROCESSOR (MIP) - A processor that
allows AAM files to be accessed by alternate keys.

OPEN - A set of preparatory operations performed on a
file before input and output can take place; required for
all AAM files.

OVERFLOW BLOCK - A block added to the file by AAM
for use when the home blocks in a direct access file
are full.

OWNCODE - A routine written by the user to process
certain conditions. Control passes automatically to
user owncode routines defined in the FIT for:

DX End-of-data condition

EX Error condition

PADDING - The free space reserved in a file at creation
time to accommodate additional records; specified as a
percentage figure.

60499300 A

••
f:

I
f

f

•
t

t
t
t'.

1: I
t.
t
ti

t:
t I
t
t,:

t,, .
I
I
I

'
I

I
!II

I

'
!II
,!}

(

(

(

(

(

(

('

II

(

(

(

PERMANENT FILE - A file on a mass storage permanent
file device that can be retained for longer than a single
job. It is protected against accidental destruction by
the system and can be protected against unauthorized
access.

PHYSICAL RECORD UNIT (PRU) - The smallest unit of
information that can be transferred between a periph
eral storage device and central memory. The PRU size
is permanently fixed for all mass storage devices.

PRIMARY KEY - A key that must be defined for a file
when the file is first created.

PRU DEVICE - A mass storage device in which information
has a physical structure governed by physical record
units (PRUs).

RANDOM ACCESS - Access method by which any record
in a file can be accessed at any time in any order;
applies only to mass storage files. See Sequential
Access.

RECORD - The largest collection of information passed
between AAM and a user program in a single read or
write operation. The user defines the structure and
characteristics of records within a file by declaring a
record format. The beginning and ending points of a
record are implicit in each format.

60499300 A.

RECORD SLOT NUMBER - The position of a record within
a block in an actual key file; specified by the low-order
bits of the primary key.

RELEASE SYSTEM - A software system delivered to a
customer. In installing a system, the customer, but not
an individual applications programmer, can use default
values or parameters that differ from the release
system.

REWIND - To position a file at beginning-of-information.

SEQUENTIAL ACCESS - A method in which only the
record located at the current file position can be
accessed. See Random Access.

SPARSE KEY - An alternate key that is used infrequently.
Only those alternate key values of interest are included
in the index file.

SYMBOLIC KEY - An alphanumeric key used with indexed
sequential files; 1 to 255 characters. See Integer Key.

SYNONYM RECORDS - Direct access file records whose
primary keys hash to the same home block.

WORKING STORAGE AREA - An area within the user's
field length intended for receipt of data from a file or
transmission of data to a file.

C-3

l •: '
!

l

•!,.· I • i

er
t
f

f'.
t!

t:

l

., I

I I
I

• I
t,

t• I
~·

i t I
I

• I
• I
•.. ! ., ;

!
•• l • i

(

(

(

(

(

(

(

(_

[
(_

(,,

(

FILE INFORMATION TABLE STRUCTURE D

A file information table (FIT) must be associated with every
file that uses AAM. For normal language requirements,
compilers generate the FIT automatically; users writing in
high level languages need not be concerned with the FIT and
its generation. The COMPASS user is responsible for
supplying the FIT; the FILE macro is provided to create the
FIT. Word and bit designations are illustrated in figure D-1.

The FIT is activated by an OPENM request for the file.
After the file is opened, FIT fields can be updated with the
FILE control statement or the STORE macro, with infor
mation from the processing macros, or by AAM as a result
of processing the file. Information in the FIT can be
retrieved with the FETCH macro. In figure D-1, the fields
enclosed in parentheses can be accessed by the FETCH
macro but cannot be changed. If a STORE macro is
attempted on these fields, an assembly diagnostic results.

The FIT fields are listed in this appendix by word and bit
position. For the convenience of the user, the COMPASS
symbols are included with the applicable FIT field values.
Generally, any particular file organization or record type
requires only a small portion of the total information
specified here. The first ten words of the FIT are used by
AAM for communicating with the operating system.

Word 0

59-18

17-1

0

Word l

59-48

47

46

45-37

36

35-30

29-24

23-18

17-0

LFt~ Logical file nan1e of the data file.

Reserved for CDC.

CMPL T FET complete bit; cannot be changed by
the user.

DVT

RDR

FF

DC

FWB

FET device type; cannot be changed by
the user.

Reserved for CRM.

Read release.

Reserved for CDC.

OS flush on abnormal termination:

0 Buff er not flushed.

l Buffer flushed for output file with
scratch disposition on abnormal
termination.

Reserved for CDC.

Disposition code; cannot be changed by
the user. Refer to operating system
manual for possible settings.

Length of FIT minus 5; set to 3010•

First word address of the user buffer.

60499300 A

Word 2

59-18

17-0

Word 3

59-18

17-0

Word 4

59-34

33-0

Word 5

59-24

23-22

21-0

Word 6

Word 7

Word 8

Word 9

Word 10

59-36

35

34

33-27

ASCII

LBL

LCR

FP

Zero-filled field.

Reserved for CRM.

Zero-filled field.

Reserved for CRM.

Reserved tor L..i.JC.

Reserved for CRM.

Reserved for CRM/INTERCOM.

ASCII character set bits for INTERCOM
terminals (BAM only).

Reserved for CRM.

Reserved for CDC.

Reserved for CRM (return address stack).

Reserved for CDC (FET extension).

Reserved for CDC (label fields).

Label area length in characters (BAM
only).

Label check/creation for input/output
tape (BAM only).

Reserved for CRM.

File position (in octal); cannot be changed
by the user:

0 Mid logical record

l BOI Beginning-of- ::BOI::
information

2 BOF Beginning-of-file =BOF::

10 EOK End-of-key list ::EOK::

20 EOR End-of-record =EOR::

100 EDI End-of-information ::EQI::

D-1

D-2

IFN

'WP

BC
PM

(SO

59 53

1 (DVT)

2

3

4

5

6

7

8

9

10

11

12

13 ~EF1
14

15

16 I
Fl-

HPDI
17

18
N)

19 I
1(20 ITT POS I

21

22

23

24 BJ
25

26

7-29

u-1 30

31 RKW

32

33

34

47 41 35 29 23 17 11 05 00

LFN
I

d f roe . . eserve .or 11 0

~ Reserved 1~ Reserved
(DC) 300 l for CDC for CDC FWB 1

0 Reserved for CRM 2

0 Reserved for CRM 3

Reserved for CDC Reserved for CRM 4

Reserved for CRM/INTERCOM u Reserved for CRM I 5

Reserved for CDC 6

Reserved for CRM (return address stack) 7

Reserved for CDC (FET extension) 10

Reserved for CDC (label field) 11

LBL ~ 1 (FP) }LP L1
LA 12

RL ~oFJCF v1 RT BT 1 FO LX 13

FL

MRL
Reserved for CRM DX 14

ECT j ERL M j SESJ ES EX I 15

Reserved for installation 16
~

. -- ·- ---···

HL 1 EO lllUi WSA 17
MNR

...

~ PC MUL HRL I
TL LL

I .rn T 20
~ MKL DP

mr CP 11 F 1 ~ LP lF BFS 21

HMB (LOP)
(RC) 22

PTL

VNO WA
MBL

NL i
23

(BN)

DCT I
RB PKA 24

MNB LVL

XN
Lovtl KR

J_ XBS 25
MFN PNO

Reserved for CRM 26

Reserved for CRM 27

FLM E TI KA 30

Reserved for CRM (BZF) 31

1 CDT Reserved for CRM 32

Reserved for CRM 33-3
I

Reserved for CRM EOIWA 36

] RKPl KP I KL l IP Reserved for CRM 37

IBL KTJREL TRC CPA 40

Reserved for CRM DCA 41

Reserved for CRM 42

26-24 ULP

23-22 LT

21-0 LA

Word 11

59-36 RL

(
35 CM

34-33 OF

(

(

(32-30 CF

c:

29-28 VF

27-24 RT

(

<::

('

'I

23-21 BT

20-18 FO

60499300 A

~I'

User label processing (BAM only).

Label type (BAM only).

Label area address (BAM only).

Current record length in characters.

Conversion mode (EC to IC) (BAM only)

Open flag; positioning of the file at
OPENM time:

DO

01

10

li

R

N

E

Rewind
(default)

Rewind

No rewind

Extend

Close flag; positioning of the file at
CLOSEM time:

000

001

010

Oll

100

101

llO

R

N

u
RET

DET

DIS

Rewind
(default)

Rewind

No rewind

Unload

Re tum

Detach

Disconnect
(BAM only)

::R::

::N::

=u=
::RET::

::OET::

=ms=

End-of-volume flag (BAM only).

Record type:

0000

0001

0010

OOll

0100

0101

0111

1000

w
F

R

z
D

T

u
s

Control word =WT=

Fixed length =FT=

Record mark :RT=

Zero byte = ZT =

Decimal char- =DT=
acter count

Trailer count =TT:

Undefined =UT=

System- :ST::
logical-
record

Block type (BAM only).

File organization:

000

001

011

101

llO

SQ

WA

IS

DA

AK

Sequential :SQ::
(BAM only)

Word :WA::
addressable
(BAM only)

Indexed =IS=
sequential

Direct access =DA=

Actual key =AK=

17-0 LX

Word 12

59-36 MRL

FL

35-18

17-0 DX

Word 13

59-58

57-56 DFC

55-54 EFC

53-45 ECT

44-36 ERL

35

34 PEF

33-31

30-27 SES

26-18 ES

17-0 EX

Word 14

Word 15

59-36 HL

MNR

35-33

32-30 EO

29

Label routine exit address (BAM only).

Maximum record length in characters;
when retrieving primary keys from an
alternate key index, working storage area
length in characters.

Fixed length of an F type record, or full
length of a Z type record, in characters.

Reserved for CRM.

End-of-data exit address.

Reserved for CRM.

Dayfile control for error messages:

0 No dayfile messages except fatal
errors

l Error messages to dayfile

2 Statistics/notes to dayfile

3 Errors and statistics/notes to dayfile

Error file control:

0 No error file messages

l Error messages to error file

2 Statistics/notes to error file

3 Errors and statistics/notes to error
file

Trivial error count.

Trivial error limit.

Reserved for CRM.

Parity error flag (BAM only).

Reserved for CRM.

System parity error severity (BAM only).

Error status (octal value).

Error exit address.

Reserved for installation.

Header length in characters; T type
records.

Minimum record length.

Reserved for CRM.

Error option (BAM only)

Reserved for CRM.

D-3

28 BAL

27 STFT

26 PDF

25 SBF

24 SPR

23

22 ORG

21-0 WSA

Word 16

59-36 TL

35-30 CL

LL

RMK

29-24 PC

23-18 MUL

26-18 MKL

17-0 HRL

16 HB

15-9 DP

Word 17

59 FNF

58-.57 OC

D-4

Buffer allocated by CRM; cannot be
changed by the user.

Internal SETF!T flag used for CRM
processing.

SETFIT macro FIL£ statement flag; can
not be changed by the user.

Suppressed buffer I/O flag (BAM only).

Suppress read ahead (BAM only).

Reserved for CRM.

Old/new file organization:

0 OLD

l NEW

Initial indexed
sequential file
organization

Extended indexed
sequential file
organization

Working storage area address.

:OLD::

=NEW:

Trailer length in characters; T type
records.

Count field length in characters; T type
records.

Length field length in characters; D type
records.

Record mark character; R type records.

Padding character (BAM only).

Multiple of characters per K or E type
block (BAM only).

Major key length in characters (indexed
sequential files).

Hashing routine address (direct access
files).

User header option (actual key files):

0 Do not return header

l Return header (default)

Data block padding percent (indexed
sequential and actual key files).

Fatal/nonfatal flag; cannot be changed by
the user:

0 Nonfatal

l Fatal

Open/close flag:

00 Never opened

01 Opened

10 Closed

=NOP::

::OPE=

:CLO:

56-54 PD

53-48

47 B8F

46 Cl

45 SB

44-21 CP

LP

19 CNF

18 BBH

17-0 BFS

Word 18

59-36 HMB

PTL

35-30 LOP

35 WPN

29-0 RC

Processing direction:

000 Input
(default)

001

010

INPUT

OUTPUT

Input ::INPUT::

Out- :: OUTPUT ::
put

011 IO

Reserved for CRM.

Input/
output

=10=

Round PUTs down to *8 bits (BAM only).

COMP-1; format for the CL/LL field; Tor
D type records:

0 NO Display code

l YES Binary

:NO::

:YES=

Sign overpunch; overpunch option for
CL/LL field; T or D type records:

0 NO No overpunch

l YES Overpunch

=NO::

=YES=

Trailer count beginning character position
(numbered from O); T type records.

Length field beginning character position
(numbered from O); D type records.

Reserved fer CR!\'!.

Connected file flag (BAM only).

Buff er below highest high address (BAM
only).

Buffer size in words.

Number of home blocks (direct access
files).

Partial transfer length (BAM only);
number of keys moved to working storage
area for a GET or GETN on an alternate
key index.

Last operation code; cannot be changed by
the user (BAM only).

Write bit; the upper bit of LOP is a 1-bit
subfield that can be accessed separately;
cannot be changed by the user:

0 Last operation was not a write

l Last operation was a write

Record count; count of full records read
or written since the file was opened. The
count is not adjusted for repositioning and
backspacing operations. For a multiple
index file, the number of records with this
alternate key value. This field cannot be
changed by the user.

60499300 A

•

t,

I

c

(

c
(

(

(

(

C_

(
(

I

'
(

c

c
(

(

Word 19

59-36 MBL

35-30 VNO

NL

29-0 BN

WA

Word 20

59 BCK

58 PM

57-52 POS

51-30 OCT

59-36 MNB

29-18 RB

17-0 PKA

Word 21

59-18 XN

17-0 XBS

59-24 MFN

23-0 PNO

17-16 OVF

60499300 A

Maximum block length in characters.

Current volume number of the multi
volume sequential file (BAM only).

Number of levels of index blocks (indexed
sequential files).

Block number of the current block
(sequential files); cannot be changed by
the user (BAM only).

Current position word address, set by GET
and PUT macros (BAM only).

Block checksum:

0 NO

l YES

No checksum
ming of blocks

Checksumming
of blocks

Processing mode:

0 Random

l Sequential

::NO::

::YES:

::RPM:

::SPM::

Duplicate key position (initial indexed
sequential files):

0 First record in a duplicate key set

1 Current record

Address of the display code to collating
sequence conversion table (indexed
sequential files).

Minimum block length in characters.

Number of records per block (actual key
files) or average number of records
(indexed sequential and direct access
files).

Primary key address; address to receive
primary key on an alternate key access
(extended indexed sequential files).

Logical file name of the alternate key
index file associated with the data file.

Index file block size (extended indexed
sequential files).

Multi file set name (BAM only).

Multifile position number (BAM only).

Direct acce5s file overflow flag:

01 OVO Overflow blocks = OVO =:
only

10 OVB Either overflow =OVB =
or home blocks

11 OVH Home blocks only = OVH =

11-0

Word 22

59-46

45-40

39-36

35-0

Word 23

Word 24

59

58

57

56

55

54

53-24

23

KR Key value repeat count; number of times
the key value repeats in the current
record (initial multiple-index files).

Reserved for CRM.

LAC Last action performed on the file; used by
compiler languages to communicate with
each other.

LNG Last compiler language to have used the
file:

NDX

KNE

FWI

FPS

ON

FLM

EMK

0 Unknown

l COBOL

2 FORTRAN

3 PL/I

4-7 Reserved

Reserved for CRM.

Reserved for CRM.

Index flag:

0 Data file is accessed

l Index file is accessed

Key not equal (multiple-index files):

0 Key match found

l No key match found

Farced write indicator:

0

l

NO

YES

No forced write

Farced write

:NO:

:YES=

File position bit (system routine use only);
or EOI reached random operation
(multiple-index files):

0 EOI not reached

l EOI reached

Old or new file:

0 OLD Old file

l NEW Creation run

Reserved for CRM.

File limit, records per file.

:OLD:

=NEW=

Embedded key flag (extended indexed
sequential files):

O NO

l YES

Key is not part
of the record

Key is included
in the record

::NO:

=YES:

D-5

22

21-0

Word 25

59-18

17-0

Word 26

59-48

47-30

29-0

OKI

KA

BZF

CDT

Duplicate key indicator; indicates dupli
cate primary key permission (initial !~ !
dexed sequential files):

0 No duplicate keys

l Dupiicate keys aliowed

Key address of the key value for record
processing.

Reserved for CRM.

Busy FET address; cannot be changed by
the user.

Reserved for CRM.

Address of the collating sequence to
display code conversion table (initial
indexed sequential files).

Reserved for CRM.

Words 27-29 Reserved for CRM.

Word 30

59

58-30

20-0

Word 31

59-48

47-44

43-40

39-31

0-6

SOL S/L tape bit; cannot be changed by the
user (BAM only).

Reserved for CRM.

EOIWA End-of-information word address (BAM
only).

RKW

RKP

KP

KL

Relative key word (direct access files and
alternate key access of multiple-index
files).

Relative key position in RKW (direct
access files and alternate key access of
multiple-index files).

Beginning character position of the key
(indexed sequential and direct access
files).

Key length in characters (indexed sequen
tial and direct access files).

Key length in bits (actual key files).

30-24 IP

23-0

Word 32

59-42 IBL

41-30

29-27 KT

26-24 REL

23-18 TRC

17-0 CPA

Word 33

59-18

17-0 OCA

Word 34

Primary or alternate key length in bits
prinf to open of a new rnultiple=ind€x file;
after open, length in characters (actual
key fiies).

Index block padding percent (indexed
sequential files).

Reserved for CRM.

Index block length in characters (initial
indexed sequential files).

Reserved for CRM.

Key type (indexed sequential files):

000

001

010

Oll

Oll

s

F

u

Symbolic (default)

Symbolic :: SKT::
(default)

Integer

Floating

Uncollated
symbolic

=IKT::

::FKT::

::UKT::

File position key relation (indexed sequen
tial and multiple-index files):

l

2

3

4

5

6

EQ

LE

GE

NE

LT

GT

Equal

Less than
or equal
(initial files
only)

Greater than
or equal

Not equal
(initial files
only)

Less than
(initial files
only)

Greater than

::EQ::

:LE::

:GE:

=LT:

:GT:

Trace transition count; number of trans
actions to be traced (initial indexed
sequential and direct access files).

Compression routine address (extended
indexed sequential files).

Reserved for CRM.

Decompression routine address (extended
indexed sequential files).

Reserved for CRM.

60499300 A

c

I

C'

(

(

(

(

[
(

(

c:

c

(_

LOADING AAM E

AAM has been divided into functional capsules that are
loaded by relocatable controlling routines at execution time.
This method of dynamic loading requires a program to be
compatible with the Common Memory Manager (CMM).
Static loading is available for programs that are not
compatible; however, static loading could involve a field
length penalty of as much as 14008 words. AAM uses
dynamic loading unless static loading is specified through a
control statement or a macro.

More information about the Common Memory Manager and
the CYBER Loader can be obtained from their respective
reference manuals.

DYNAMIC LOADING

For dynamic loading, all AAM macros reference entry points
in the controlling routines. The controlling routines, which
process parameters and diagnose certain types of errors, are
loaded at relocatable load time or overlay generation time.
The controlling routines load and transfer control to the
Fast Dynamic Loader (FOL) capsule containing the proper
AAM controller in fixed-position fixed-length blocks. The
controller then loads the FOL capsules needed to process the
macro.

It is important to the dynamic loading scheme that the
controlling routines not be overlayed. Unknown results,
including bad jump addresses to service routines, occur if
these routines are overlayed. To prevent the controlling
routines from being overwritten, they must be part of the
(O,O) overlay. This can be assured by specifying the FILE
macro in the (O,O) overlay.

The OPENM/SETFI T capsule is loaded when the first
OPENM or SETFIT macro is encountered. If the SETFIT
macro occurs first, the FILE control statement parameters
are processed, the dynamic AAM controller capsule is
loaded, and control is transferred to that capsule. The
required AAM processor capsule is then loaded, the buffer
size is calculated, and control is returned to the user.

When the OPENM macro occurs before a SETFIT macro, the
SETFIT functions are performed first. Open processing then
occurs. The file is opened, FIT consistency checks are
performed, and control is returned to the user. The open
processing capsule is unloaded when a macro other than
OPENM, SETFIT, STORE, or FETCH is encountered. For
optimum efficiency in loading, the open processing for all
files should be completed before other processing is
specified. The AAM processor capsule remains loaded.

When the first macro that requires a buffer is encountered,
a buffer is allocated through CMM in a fixed-position fixed
length block. The capsules required to perform the function
specified by the macro are loaded; control transfers to the
capsules and then back to the user. Generally, the capsules
required to process these functions remain in memory until
all files requiring them have been closed. Some capsules are
loaded while a series of operations are being performed and
are unloaded when additional memory space is needed to
load another capsule.

60499300 A

The CLOSEM capsule is loaded when the CLOSEM macro is
encountered. An additional AAM capsule might be loaded to
close the file and release buffer space. The CLOSEM
capsule unloads any capsules no longer needed for processing
and unloads itself after closing the last file.

The AAM controller capsule, processing capsules, and
dynamic buffers are loaded above the highest high address;
however, they are not destroyed by overlay swapping.
Because of this, it is possible to swap overlays without first
closing the AAM files. When the file is other than an
extended indexed sequential file and the first I/O processing
overlay loaded is read-only, certain precautions are
necessary. If the read-only capsules are loaded, a swap to
another overlay doing an update might result in an error if
the read-only file is not closed before the swap. The
presence of the read-only capsule prevents the full proc
essing capsule from being loaded.

AAM contains a trace function that is used primarily for
debugging purposes with initial indexed sequential and direct
access files. The processing for the trace function is
contained in a separate capsule that is loaded only if the
trace transaction count (TRC) field in the FIT is set to YES.

ST A TIC LOADING

Static loading is provided for the cases where the user is
managing memory and the program cannot be compatible
with CMM. It should only be used as a short term conversion
aid. Long term support of static loading is not to be
provided. Two methods are available for designating which
capsules need to be statically loaded. One method is control
statement oriented and the other method is macro oriented.

CONTROL ST A TEMENTS

Static loading can be specified through the LDSET and FILE
control statements. The ST AT option must be specified in
the LDSET controi statement and the USE and OMIT
parameters must be specified in the FILE control statement.
One FILE control statement must be included for each file
to ensure that all necessary routines are loaded. The file
organization (FO), record type (RT), and index file name
(XN) parameters must be specified on the same or a previous
FILE control statement as the USE and OMIT parameters.
These three parameters cannot be specified in a FILE
control statement following the one that specifies the USE
and OMIT parameters.

The USE and OMIT parameters are formatted as follows:

USE=mn1/mn2/ •• ./mnn

OMIT =mn1/mn2/ ••• /mnn

In both parameter formats, mn is a macro name. The
functions of the USE and OMIT parameters are listed in
table E-1. The USE and OMIT parameters can be used in
more than one FILE control statement; the results are
cumulative. If the STAT option is specified in the LSDET
control statement and the USE parameter is not specified in
the FILE control statement, no processing capsules are
loaded.

E-1

In the example shown in figure E-1, the program to write
the file ISFILE uses static loadinq and contains the OPENM,
PUT, and CLOSEM macros. The program to read the file
TC"Llt C"' ..-..1 - ,,,., __ 1--1-:_ 1---'!- TL_ Mlt"T" ------ :_ --L
!.JI .. _.__ Cl<>U u"c;" <>Lc1L1l,; lUdUll IY· I I It: ru I 11 ldl,;l u ll:> I IUL

contained in that program; the OMIT parameter specifies
that the capsule for that macro is to be unloaded. The GET
macro is contained in the program and the capsule for that
macro is to be loaded. The USE parameter is still in effect
for the OPENM and CLOSEM macros.

TABLE E-1. USE AND OMIT PARAMETER FUNCTIONS

Parameter No List List of Macros
of Macros

E-2

USE All capsules Capsules performing
are loaded. functions specified by the

macro list are loaded.

OMIT All previously Capsules performing
loaded capsules functions specified by the
are unloaded. macro list are unloaded.

FI LE(ISFI LE,FO=IS,RT=Z,USE=OPENM/PUT/CLOSEM)

LDSET(STAT=ISF I LE)

load set to write the file.

Fl LE(ISFI LE,OMIT=PUT,USE=GET)

LDSET(STAT=ISFI LE)

Load set to read the file.

Figure E-1. Static Loading Example

The LDSET control statements necessary for read-only
processinq ::ire disctJssed for each app!icab!e fi!e oraani
zation in -section 4, File Processing. ·As noted in secti~n 4,
-&.-&.:- 1---'=-- _____ ! ___ -- _ _l_f!.L! ___ 1 I ,.-....,_r-"'T"' • t

;JLc1Lll,; lUdUll IY I t:yuu-i::::; di I dUUILlUI li::U LL.J;:u: .. I COrJLI"Ol SLaLe-

ment. An example of read-only processing using static
loading is shown in figure E-2.

STLD.RM MACRO FORMAT

Another method of specifying static loading is through the
STLD.RM macro. The format of the STLD.RM macro is
shown in figure E-3. This macro must be specified once for
each file organization.

FILE(ISF,FO=IS,RT=F,USE=OPENM/CLOSEM/GET

LDSET(STAT=ISF)
LDSET(SUBST=$RM.IS$-$RM.ISX$)
LDSET(SUBST=$SAAM.IS$-$1S.ROEN$)
LOAD, ...
LGO.

Figure E-2. Read-Only Static Loading Example,.

Initial Indexed Sequential File

(fo) STLD.RM USERT=(rtlist),
USE=(fcnlist),
OMIT=(cmm-fdl)
ORG=(new-old)

rtlist Record type list; record types are separated by
commas.

fcnlist AAM functions (macro names); functions are
separated by commas.

cmm-fdl CMM or FOL; CMM omits CMM and FOL, FOL
omits FOL only.

new-old New or old AAM; OLD (default) is initial
indexed sequential, direct access, or actual key
file; NEW is extended indexed sequential file.

Figure E-3. STLD.RM Macro For mat

60499300 A

I

I' I
: I

Ci

I

I • I
I

i
i
I • I
~ ;

(

(

(_

(

(

(

(,.

(
.

"-

(

'
'

I

I

USE OF LIST-OF-FILES F

The NOS and NOS/BE operating systems maintain a pointer
to the list-of-files, which is a table of the name and FET or
FIT address of all active files for each control point. This
pointer is set and accessed by the SETLOF and GETLOF
macros. A complete description of this feature can be found
in the operating system reference manual.

AAM maintains and uses this list-of-files. To alter this list,
a user must follow a procedure that is compatible with
AAM.

AAM maintains an entry point in its relocatable loaded
routines called LOF$RM. The content of this entry point is

60499300 A

the address of the current list-of-files. The purpose of this
pointer is to minimize the number of GETLOF monitor calls
required. The user is encouraged to use this pointer instead
of calling the GETLOF macro.

If a user program that coexists with AAM moves the list-of
files, it must update the LOF$RM pointer in addition to
calling the SETLOF macro. Also, if a user program adds a
new entry to the end of the list-of-files, it must ensure that
the next word is zero because AAM does not initialize the
list-of-files block to zero.

F-1

41

t I

f'

4
~

(

(

(

(

('I

(II

(

(

(

(

(

(

(

(_

(

(

BUFFER ALLOCATION G

Allocation of buffer space for extended indexed sequential
files can be divided into two classes: user buffer space and
pooled buffer space. User buffer space is assigned by the
user for a particular file during open processing. Pooled
buffer space is allocated by AAM using the Common
Memory Manager (CMM) when buffer space is needed and
can be used by AAM for any file. AAM does not allow
pooled buffer space to exceed a value called TARGET.
TARGET is set by the open and close procedures to reflect
the CMM requirements expected by AAM; a value of zero
indicates that CMM is not to be used for buffer allocation.

USER BUFFER SPACE

When a file is opened, buffer allocation is controlled by the
user through the first word address of the buffer (FWB) field
and the buffer size (BFS) field in the FIT. If both fields are
set to a value other than zero, the fields define the user
buffer space for the file. AAM partitions the specified
buffer space as follows:

Space for the file statistics table (FSTT) (130 words)

If required, space for the alternate key index file FSTT
and the file environment table (139 words)

Space for the FIT extension (up to 168 words)

Space for the data file and index file blocks, beginning
with the data file

Once allocated to a file, these blocks cannot be used by any
other file. If CMM is not allowed, the minimum space that
must be allocated is two blocks (three blocks if the file is
compressed) for each file. If the minimum space is not
allocated, an error message is issued and the file is not
opened. If CMM is allowed, TARGET is increased by the
amount that the user buffer space needs to meet the
minimum requirement.

POOLED BUFFER SPACE

When a file is opened and the FWB and BFS fields are set to
zero, AAM increases TARGET by the amount needed for the
particular file organization:

Three blocks for a one index level indexed sequential
file

Six blocks for a multiple index level indexed sequential
file

Two blocks for an actual key or direct access file

60499300 A

If an alternate key index file is also needed, TARGET is
increased by the amount of space required for seven index
file blocks. For a compressed data file, space for one
additional block is added to TARGET. Space for the FSTTs
and FIT extension is allocated from CMM, but it is not added
to TARGET because the FSTT and FIT extension for a file
are not part of pooled buffer space.

The user controls TARGET directly when the FWB field is
set to zero and the BFS field is set to a value greater than
zero. TARGET is increased by the value of the BFS field.
TARGET is then checked to ensure that enough space exists
to satisfy the minimum requirements for the file (two blocks
for the data file, two blocks for the index file, and one
additional data block if the file is compressed).

If the BFS field is zero and the FWB field is set to a value
greater than zero, an error condition exists. The file is not
opened.

When AAM is being dynamically loaded, TARGET is
increased by the size of the largest seldom-used capsule
needed to process an opened AAM file. This is done because
pooled buffer space is used for seldom-used capsules as well
as for blocks.

BUFFER USE
For both user buffer space and pooled buffer space. all
blocks in use are bidirectionally ch~ined in two cha'ins •. One
chain is file oriented and is used to locate all blocks in
memory for a given file. The other chain runs through all
blocks (and seldom-used capsules); this chain is referred to
as the kickout chain. As blocks are used, they are put at the
head of this chain. Blocks gradually migrate to the tail of
the chain due to lack of use. A few exceptions to this rather
simple algorithm exist. One exception is that the primary
index block of a file is always moved to the head of the
chain when the file is being accessed randomly. Another
exception is that when a new data block is read into the
buffer, the previous data biock is moved to the taii of the
chain.

When space is needed for a new block, the kickout chain is
scanned from the tail of the chain forward. For user buffer
space, the first block encountered that is the same size as
the new block and that belongs to the same file is released;
the space is allocated for the new block. If CMM is not
present, one of the current blocks is found and used. For
pooled buff er space, blocks smaller or larger than the
requested block are released until the total space released is
enough to allow a new block to be allocated without
exceeding TARGET. If a block of the same size is
encountered during the scanning, that block is released and
the space is allocated for the new block.

G-1

•r
•11

'
('

(

(

C_
41

(~

(

(

(

(

[
(

(

(

(.

(

C:

(

(,

' L

DATA COMPRESSION AND DATA ENCRYPTION H

Data compression and data encryption are provided for use
with extended indexed sequential files. The system-supplied
routine or a user-supplied routine can be used for data
compression. Data encryption, which requires a user
supplied routine, is handled through the compression routine
owncode exits.

Data compression is performed on a record-by-record basis.
It is used to compress strings of zeros or blanks in order to
shorten the record length. If the compression routine cannot
realize a reduction in record length, the record is flagged
and stored in its uncompressed state. When a compressed
record is read, it must be restored to its original state by a
decompression routine. If a record is flagged to indicate it
is not compressed, the decompression routine is not called
when the record is read.

Data encryption is used to expand and reformat a record.
The encrypted record must be no longer than the number of
characters specified for the maximum record length (MRL)
field in the FIT. When an encrypted record is read, it must
be restored to its original size and format by a decryption
routine. Because AAM considers compression/decom
pression and encryption/decryption to be the same thing, the
following discussion is related to compression; encryption is
mentioned only where differences exist.

Two fields in the FIT are used to designate data compression
and decompression. The compression routine address (CPA)
field and the decompression routine address (DCA) field
specify the number of the system-supplied routine or the
address of a user-supplied routine. For data encryption/
decryption, user-supplied routine addresses must be spec
ified in the CPA and DCA fields.

The compression and decompression routines are called by
AAM with register Al pointing to the vector shown in
figure H-1. If the primary key is not embedded, the key
length parameter is zero. Embedded keys are restricted to
keys beginning in the first character position in the first
word of the record (word O, character position 0).

The product of a compression or decompression routine is
the record produced by the routine. The destination area is
a special area set up by AAM to receive the product of the
routine.

(A1)-+

60499300 A

address of cell containing fwa of record

address of eel I containing length of record (char)

address of cell containing rel word of start of
key

address of cell containing rel char pos of start of
of key

address of cell containing length of key

address of cell containing fwa of destination

address of cell containing length of destination

address of cell to contain length of product

Figure H-1. Vector Used by

Compression/Decompression Routines

The compression and decompression routines return either
the length of the product (in characters) or a negative
number of characters to indicate that the product is too
large for the destination area. A decompression routine that
produces a record too long for the destination area is the
same as a GET macro that reads a record larger than
expected by the caller; an error is generated and the record
is not transferred.

In contrast to a compression routine, a user-supplied
encryption routine could produce a longer record. The
record can be expanded up to the number of characters
specified for the maximum record length (MRL) field in the
FIT. The length cf the destination area is ahvays ten
characters greater than the value of the MRL field.

The compression routine must store an identifier in the first
word of the destination area. This identifier is verified
against the identifier stored in the FSTT for the file when
compression was first specified. The length of the product
of a compression routine includes the identifier length.

The format of the destination area is shown in figure H-2.
Words 2 through n are passed to the decompression routine.

When a file is opened on a creation run, the compression
address (CPA) field in the FIT is checked. If the value of
the fieid is zero, no data compression is performed during
the creation run; an error occurs if the decompression
routine address (DCA) field is set. A value greater than
zero in the CPA field sets the method of compression for
the life of the file.

If the CPA field contains the address of a user-supplied
compression routine, the address is the entry point of
the routine. The compression routine is called with a
dummy record in order to determine the identifier,
which is stored permanently in the COMPACT field in
the FSTT. The identifier can be anything other than a
zero word.

word 1 Identifier

word 2-m Key (If embedded)

word m*-n

Record

*word m+1 if the key is a multiple of 10 characters. Word 2
if a non-embedded key.

Figure H-2. Destination Area Format

H-1

If the CPA field contains the 6-bit integer identifying a
system-supplied compression routine, the necessary
routines are ioaded by the Fast Dynamic Loader (FOL),
the i:iddrP.sses i:ire stored in the CPA ::-.nrl nr.A fit=ilds in
the FIT, and the identifier is stored in the COMPACT
field in the FSTT. The integer identifying the com
oression routine is stored in the SYSCOMP fieid in the
FSTT.

When a file is opened after the creation run, the value of the
COMPACT field in the FSTT is checked to determine
whether or not compression and decompression are required.
If the field contains zero, no compression takes place. If the
COMPACT field contains a value greater than zero, the
SYSCOMP field is checked to determine the method of
compression.

If the SYSCOMP field contains a zero value, the
addresses in the CPA and DCA fields in the FIT are
used when compression or decompression is required.

If the SYSCOMP field contains a nonzero value, the
proper system routines are loaded.

The user is responsible for maintaining the correct entry
point addresses of user-supplied compression and decom
pression routines for the CPA and DCA fields in the FIT. If
the CPA field is zero, compression is not performed on the
record.

When a system-supplied compression routine is specified, the
user is responsible for maintaining unchanged the entry point

H-2

addresses stored in the CPA and DCA fields by the system.
Compression can be turned off by the user by storing zeros
in the CPA field.

System-supplied compression routine number l compresses
strings of display coded blanks (558), zeros (338), and
colons (008). An escape character, 72 (<), signals the
beginning of a compressed string. The c~aracter following
the escape character is divided into two parts: a two-bit
character code and a four-bit repeat count. The two-bit
character code is as follows:

00 728 Escape character (<)

01 338 Zero

10 008 Colon

11 558 Blank

The four-bit repeat count indicates the number of occur
rences of the compressed character. The value of the
repeat count is three less than the actual number of
occurrences of the blank, zero, or colon; however, the
repeat count for the escape character (<) is one less than
the actual number of occurrences. Up to 18 occurrences of
the compressed character are compressed into two char
acters. For example, 36 consecutive blanks are compressed
into four characters. Single and double occurrences of the
zero, colon, or blank are not compressed. A single
occurrence of the escape character causes an expansion:
one character for the < character to signal the beginning of
a compressed string and one character for the character
code and the repeat count.

60499300 A

•

f

I

4;

(

(

c
('

(
•

(

(

(

(

(

(
<:

(

(:

(

(,

,,
(,

(

' I

AAM
defined 1-1
dynamic loading E-1

Actual key 2-4
Actual key files

block headers 2-5
checksum 2-4, 4-9
creation 4-9
data blocks 2-4
deleting records 4-10
file positioning 4-10
file statistics table 2-4
IXGEN utility 7-8
logical structure 2-4
open processing 4-9
overflow 2-4
overflow record header 2-5
overlap processing 4-10
physical structure 2-4
primary key 2-4, 4-9
read processing 4-10
replacing records 4-10
structure 2-4
write processing 4-10

Alternate key
index 2-10, 6-1
index file 2-10
initial indexed sequential files 4-1
IXGEN utility 7-8
MIPGEN utility 7-9
muitipie-index fiies 6-1
read processing 6-3
repeating group 6-1, 7-9

BAM 1-1
BCK field

FILE macro parameter 3-1
FIT structure D-5

BFS field
buffer calculation 3-10
FILE macro parameter 3-1
FIT structure D-4
pooled buffer space G-1
user buffer space G-1

Block
defined 2-1
MBL field 3-5, D-5
size calculation 3-6

Buffer
allocation G-1
BFS field 3-1
calculation 3-10
close processing 5-1
ESTMATE utility 7-1
FLBLOK utility 7-2
FLUSHM macro 5-2
FWB field 3-4, D-1
FWI field 3-4, D-5
open processing 5-4
pool limit 5-4
pooled buffer space G-1
usage G-1
user buffer space G-1

60499300 A

INDEX

BZF field
FIT structure D-6
GETNR macro 5-3
overlap processing 4-8
SEEK macro 5-6

CDT field
FILE macro parameter 3-2
FIT structure D-6

CF field
close processing 5-1
FIT structure D-3

Character set A-1
Checksum

actual key files 2-4, 4-9
BCK field 3-1, 0-5
direct access files 2-6
extended indexed sequential files

data block 2-3
index block 2-3

initial indexed sequential files
data block 2-2
index block 2-2

CL field
FILE macro parameter 3-2
FIT structure D-4
T type records 2-9

CLOSEM macro
dynamic loading E-1
file processing 4-1
format 5-1
index file processing 6-5

Collating sequence
CDT field 3-2, D-6
OCT field 3-3, 0-5
extended indexed sequential files 2-3, 4-5
initial indexed sequential files 2-1, 4-2

Common Memory Manager
buffer allocation G-1
dynamic loading E-1

CP field
FILE macro parameter 3-2
FIT structure D-4
T type records 2-9

CPA field
data compression H-1
FILE macro parameter 3-2
FIT structure D-6
open processing 5-4

CREATE utility 7-7
Creation run

actual key files 4-9
direct access files 4-11
extended indexed sequential files 4-5
initial indexed sequential files 4-2
multiple-index files 6-1
PD field 3-6, D-4

CRM 1-1
CRMEP control statement B-1
Cl field

D type records 2-7
FILE macro parameter 3-2
FIT structure D-4
T type records 2-9

lndex-1

D type records
Cl field 3-2, D-4
defined 2-7
LL field 3-5: D-4
LP field 3-5, D-4
SB field 3-7, D-4
write processing 5-5

Data block
actual key files

defined 2-4
padding 3-3, 4-9

extended indexed sequential files
defined 2-3
FIT fields 4-6
FLBLOK utility 7-2
header 2-3
padding 2-3, 3-3
record pointers 2-3

initial indexed sequential files
defined 2-2
ESTMATE utility 7-1
FIT fields 4-2
header 2-2
padding 2-2, 3-3

MBL field 3-5, D-5
Data compression

buffer allocation G-1
CPA field 3-2, D-6
description H-1
established by OPENM macro 5-4
system-supplied routine G-2

Data decompression
DCA field 3-2, D-6
description H-1

Data decryption
DCA field 3-2, D-6
description H-1

Data encryption
CPA field 3-2, D-6
description H-1

Dayfile control
DFC field 3-3, D-3
error processing B-1

DCA field
data decompression G-1
FILE macro parameter 3-2
FIT structure D-6
open processing 5-4

OCT field
FILE macro parameter 3-3
FIT structure D-5

DELETE macro
actual key files 4-10
alternate key processing 6-4
direct access files 4-13
duplicate key processing 4-4
extended indexed sequential files 4-8
format 5-2
initial indexed seauential files 4-5

DFC field .
error processing B-1
FILE macro parameter 3-3
FIT structure D-3

Direct access files
blocking 2-6
chain 2-5
checksum 2-6
CREATE utility 7-7
creation 4-11
deleting records 4-13
file positioning 4-13
file statistics table 2-5
hashing 2-5
hashing routine 4-11, 7-4

Index-2

home blocks 2-5, 4-11
IXGEN utility 7-8
key anaiysis utiiity 7-4
logical structure 2-6
open processing 4-12
overflow 4-11
overflow blocks 2-5
overlap processing 4-13
primary key 2-5, 2-6
read processing 4-13
read-only processing 4-13
replacing records 4-13, 5-5
structure 2-5
synonym records 2-5, 7-4
trace function 3-7
write processing 4-13

Directives
CREATE 7-7
ESTMATE utility 7-2
FLBLOK utility 7-2
KYAN 7-4
RMKDEF 7-9, 7-10

OKI field D-6
DP field

FILE macro parameter 3-3
FIT structure D-4

Duplicate key
deleting records 4-5, 5-2
OKI field D-6
POS field 4-4, D-5
processing 4-4
replacing records 4-5, 5-5

DX field
end-of-data routine 4-1
FILE macro parameter 3-3
FIT structure D-3

Dynamic loading E-1

ECT field
error processing B-1, B-2
FIT structure D-3

EFC field
error processing B-1
FILE macro parameter 3-3
FIT structure D-3

EMK field
FILE macro parameter 3-3
FIT structure D-5

End-of-data
DX field 3-3, D-3
GET macro 5-3
routine 4-1

End-of-information
file positioning 4-3, 4-7
GET macro 5-3

ERL field
error processing B-1, B-2
FILE macro parameter 3-3
FIT structure D-3

Error file
EFC field 3-3, B-1
error processing B-1

Error messages
codes and descriptions B-4
DFC field 3-3, B-1, D-3
EFC field 3-3, B-1, D-3
key analysis utility 7-4

Error processing B-1
Errors

classes B-3
error exit 3-3, 8-1
excess data 2-8, 5-3
trivia! error limit 3-3, B-1

c

c

t:

60499300 A

c

(

(

(

cl
0

(

(

<:

('

<:

(
(
,. ,,
(

c:

C_

c
(

(

C:

~·

ES field
error communication B-1
error condition processing B-2
FIT structure D-3

ESTMATE utility 7-1
EX field

error processing B-1, B-3
FILE macro parameter 3-3
FIT structure D-3

Extended indexed sequential files
checksum 2-3
collating sequence 2-3
creation 2-3, 4-5
data blocks 2-3
deleting records 4-8
file positioning 4-8
file statistics table 2-3
FLBLOK utility 7-2
FLSTAT utility 7-2
index block levels 3-6
index blocks 2-3
logical structure 2-3
major key processing 4-8
MIPDIS utility 7-10
MIPGEN utility 7-9
open processing 4-7
overlap processing 4-8
physical structure 2-3
primary key 2-3, 4-5
random processing 4-7
read processing 4-7
record pointers 2-3
replacing records 4-8
structure 2-3

Extended MIP (see Multiple-Index Processor)

F type records
defined 2-8
FL field 3-3, D-3
write processing 5-5

Fast Dynamic Loader E-1
FETCH macro 3-8
File

defined 2-1
limit 3-3
logical structure 2-1
physical structure 2-1
specification 3-8

FILE control statement
format 3-8
OPENM macro 5-3
SETFIT macro 3-10
static loading E-1

File information table
consistency checks 5-4
creation 1-1, 3-1
dump to error file B-2
FETCH macro 3-8
FILE control statement 3-8
FILE macro 3-1
file processing 4-1
FITDMP macro B-2
macro parameter 5-1
numbering conventions 2-7
relationship to open processing 5-4
SETFIT macro 3-10
STORE macro 3-8
structure D-1

FILE macro
establish FIT 1-1
format 3-1
null parameters 3-1

60499300 A

File organization
defined 2-1
FO field 3-4, D-3

File statistics table
actual key files 2-4
direct access files 2-5
extended indexed sequential files 2-3
file processing 4-1
initial indexed sequential files 2-1

FIT (see File information table)
FITDMP macro B-2
FL field

F type records 2-8
FILE macro parameter 3-3
FIT structure D-3
Z type records 2-9

FLM field
FILE macro parameter 3-3
FIT structure D-5

Floating point key 4-1
FLSTAT utility 7-2
FLUSHM macro 5-2
FNF fieid

error processing B-1, B-2
FIT structure D-4

FO field
FILE macro parameter 3-4
FIT structure D-3
static loading E-1

FP field
alternate key processing 6-3
end-of-data processing 4-1
error processing B-2
extended indexed sequential files

major key processing 4-8
overlap processing 4-8

FIT structure 0-1
GETNR macro 5-3
index file position 6-4
index file processing 6-6
initial indexed sequential files

major key processing 4-4
overlap processing 4-5

primary key list count 6-6
primary key list retrieval 6-7
SEEK macro 5-6

FPB field
alternate key processing 6-3
FIT structure D-5

C-\1/0 ~:-1...1
1 nu 1u:au

buffer calculation 3-10
FILE macro parameter 3-4
FIT structure 0-1
pooled buffer space G-1
user buffer space G-1

FWI field
FILE macro parameter 3-4
FIT structure D-5

GET macro
actual key files

file positioning 4-10
read processing 4-10

alternate key processing 6-3
direct access files 4-13
extended indexed sequential files,

file positioning 4-8 /
major key processing 4-8
read processing 4-7

file processing 4-1
format 5-2
index file processing 6-5

lndex-3

initial indexed sequential files
file positioning 4-5
major key processing 4-4
read prnr.essing 4-3

primary key list retrieval 6-7
GETN macro

actual key files
file positioning 4-10
read processing 4-10

alternate key processing 6-4
direct access files 4-13
end-of-data condition 4-1
extended indexed sequential files

file positioning 4-8
major key processing 4-8
read processing 4-7

file processing 4-1
format 5-2
index file processing 6-5
initial indexed sequential files

file positioning 4-5
major key processing 4-4
read processing 4-3

primary key list retrieval 6-7
GETNR macro

file positioning 4-8
file processing 4-1
format 5-2
major key processing 4-8
overlap processing 4-8
read processing 4-7

Hashing
defined 2-5
file storage allocation 2-6
routine

HB field

HRL field 3-4, D-4
key analysis utility 7-4
system-supplied 4-12
user-supplied 4-11

actual key file processing 4-10
FILE macro parameter 3-4
FIT structure D-4

HL field
FILE macro parameter 3-4
FIT structure D-3
T type records 2-9

HMB field
FILE macro parameter 3-4
FIT structure D-4

Home blocks
defined 2-5
direct access files 4-11
HMB field 3-4, D-4
OVF field 3-6, D-5
primary key 2-5

HRL field
direct access files 4-11
FILE macro parameter 3-4
FIT structure D-4

ISL field
FILE macro parameter 3-4
FIT structure D-6

Index blocks
extended indexed sequential files

FIT fields 4-6
FLBLOK utility 7-2
levels 2-3
MBL field 3-5, D-5
-J..J!-.- ,., '·
t-''•:.h...1U1ii~ '---t

Index-4

primary key 2-3
record pointer 2-4

initial indexed sequential files
checksum 2-2
ESTMATE utility 7-1
FIT fields 4-2
IBL field 3-4, D-6
levels 2-2
padding 2-2
primary key entry 2-2

IP field 3-4, D-6
Index file

buffer allocation G-1
extended MIP

block size 2-10, 6-1
file structure 2-10
MIPDIS utility 7-10
MIPGEN utility 7-9
primary key list structure 2-10
XBS field 3-8, D-5

file position 6-4
file processing 6-5
initial MIP

block size 2-10, 6-1
file structure 2-10
IXGEN utility 7-8
primary key list structure 2-10

NDX field 3-6, D-5
storage structure 6-1
XN field 3-8, 6-1, D-5

Initial indexed sequential files
checksum 2-2
collating sequence 2-1
creation 2-2, 4-2
data blocks 2-2, 4-2
deleting records 4-5
duplicate key processing 4-4
ESTMA TE utility 7-1
file positioning 4-5
file statistics table 2-1
index block levels 3-6
index blocks 2-2, 4-2
IXGEN utility 7-8
logical structure 2-1
major key processing 4-4
open processing 4-3
overlap processing 4-5
physical structure 2-1
primary key 2-2, 4-1
random processing 4-4
read processing 4-3
read-only processing 4-4
replacing records 4-5
SISTATutility 7-1
structure 2-1
trace function 3-7
write processing 4-4

Initial MIP (see Multiple-Index Processor)
InptJt/output status word 4-8; 5-6
Integer key 4-1
IP field

FILE macro parameter 3-4
FIT structure D-6

IXGEN utility 7-8

KA field
FILE macro parameter 3-4
FIT structure D-6
index file processing 6-6, 6-7

Key analysis utility 7-4
Key definition

KA field 3-4, D-6
I /I .£~ _, -1 7 /, """ £.
l ''- I ICJ.U .,..,-...,., L..1-U

•
(

t'

f

f

f

f
c
t'

c:

I
t
t,

- I
I

cl I
I
I
I

~; I
I
I

4, I
I
I
I

t I
I
I

'
I
t
ii

I
I

"" i
60499300 A ' I

' -;

,,;:
lit.
~i:

(

(

(

('

(
I~

(

(

(

('

<:

(
('

~

'
(

' C,
(j

' ' (i

(
~

KP field 3-5, 0-6
KT field 3-5, 0-6

Key position
RKP field 3-7, 0-6
RKW field 3-7, 0-6

KL field
alternate key processing 6-3
extended indexed sequential files 4-7
FILE macro parameter 3-4
FIT structure 0-6
index file processing 6-6
initial indexed sequential files 4-3

KNE field
alternate key processing 6-3
FIT structure 0-5
index file processing 6-6
primary key list count 6-6
primary key list retrieval 6-7

KP field
FILE macro parameter 3-5
FIT structure 0-6
index file processing 6-6

KR field
alternate key proces5ing 6-3
FIT structure 0-5

KT field
FILE macro parameter 3-5
FIT structure 0-6

LDSET control statement
read-only processing

direct access files 4-13
initial indexed sequential files 4-4
multiple-index files 6-4

ST AT option E-1
static loading

direct access files 4-13
initial indexed sequential files 4-4
multiple-index files 6-4

LFN field
FILE macro parameter 3-1, 3-5
FIT structure 0-1

List-of-files F-1
LL field

D type records 2-7
FILE macro parameter 3-5
FIT structure 0-4

LP field
D type records 2-7
FILE macro parameter 3-5
FIT structure 0-4

Macro
coding conventions 1-1
CLOSEM 5-1
DELETE 5-2
FETCH 3-8
FILE 3-1
FLUSHM 5-2
format 5-1
function 1-2
GET 5-2
GETN 5-2
GETNR 5-2
index file processing 6-5
OPENM 5-3
parameter default value 5-1
PUT 5-4
REPLACE 5-5
REWINDM 5-6

60499300 A

RMKDEF, extended MIP 6-1
RMKDEF, initial MIP 6-2
SEEK 5-6
SETFIT 3-10
SKIP 5-6
START 5-6
STORE 3-8

Major key
extended indexed sequential files 4-8
initial indexed sequential files 4-4
MKL field 3-5, 0-4
multiple-index files

primary key list retrieval 6-7
range count retrieval 6-7

MBL field
FILE macro parameter 3-5
FIT structure 0-5
home block size 4-11

MIP (see Multiple-Index Processor)
MIPDIS utility 7-10
MIPGEN utility 7-9
MKL field

FILE macro parameter 3-5
FIT structure 0-4
index file processing 6-6

MNR field
D type records 2-7
FILE macro parameter 3-5
FIT structure 0-3

MRL field
alternate key processing 6-3
D type records 2-7
FILE macro parameter 3-6
FIT structure 0-3
index file processing 6-6
output file processing 4-1
R type records 2-8
T type records 2-9
U type records 2-9

Multiple-Index Processor
alternate key access 6-3
defined 1-1
extended MIP

block size 6-1
MIPDIS utility 7-10
MIPGEN utility 7-9
null suppression 6-2, 7-10
RMKDEF macro 6-2
sparse control character 6-2, 7-10

file updating 6-4
index file

count retrieval 6-6
positioning 6-4
primary key list retrieval 6-7
range count retrieval 6-6
range list retrieval 6-7
structure 2-10, 6-1

initial MIP
block size 6-1
IXGEN utility 7-8
read-only processing 6-4
RMKDEF macro 6-1

NDX field
alternate key processing 6-3
FILE macro parameter 3-6
FIT structure D-5
index file processing 6-5, 6-6

NL field
FILE macro parameter 3-6
FIT structure D-5

Null suppression 6-2, 7-10

Index-5

OC field
CLOSEM macro 4-1, 5-2
FIT structure D-4
rr-Tr-TT __ --- "'Z 1 n
JC:.. 1r11 111d1.,;1 u ..1-.i.u

OF field
FILE macro parameter 3-6
FIT structure D-3

OMIT parameter
FILE control statement 3-8
format E-1

ON field
FILE macro parameter 3-6
FIT structure D-5

OPENM macro
dynamic loading E-1
error processing 5-4
file positioning

actual key files 4-10
extended indexed sequential files 4-8
initial indexed sequential files 4-5

file processing 4-1
format 5-3
index file processing 6-5

ORG field
FILE macro parameter 3-6
FIT structure D-4

Overflow blocks
direct access files 2-5, 4-11
OVF field 3-6

Overflow records
actual key files 2-4, 4-10
direct access files

defined 2-5
file creation 4-11
OVF field 3-6, D-5

OVF field
direct access files 4-11
FILE macro parameter 3-6
FIT structure D-5

Padding
actual key files 3-3, 4-9
DP field 3-3, D-4
extended indexed sequential files

data block 2-3, 3-3
index block 2-4, 3-4

initial indexed sequential files

PD field

data biock 2-2, 3-3
index block 2-2, 3-4

FILE macro parameter 3-6
FIT structure D-4

PKA field
alternate key processing 6-3
FILE macro parameter 3-6
FIT structure D-5

PM field D-5
POS field

duplicate key processing 4-4
FIT structure D-5

Primary key
actual key files

defined 2-4, 4-9
file updating 4-10
read processing 4-10
write processing 4-10

direct access files
defined 2-5

Index-6

file updating 4-13
key position 4-11
read precessing Li-13

extended indexed sequential files
data block entry 2-3
data compression G-1
J,c: __ _. /, c
uci1111ciu <-t-..1

embedded key 4-6
EMK field 3-3, D-5
file updating 4-8
index block entry 2-3
PKA field 3-6, D-5
read processing 4-7
write processing 4-7

initial indexed sequential files
data block entry 2-2
defined 4-1
duplicate keys 4-4
file updating 4-5
index block entry 2-2
read processing 4-3
write processing 4-4

Primary key list

PRU

count retrieval 6-6
extended MIP structure 2-10
initial MIP structure 2-10
ordering of keys 6-1, 7-9, 7-10
range count retrieval 6-6
retrieval of key values 6-7

defined 2-1
device 2-1

PTL field
FIT structure D-4
index file processing 6-6
primary key list retrieval 6-7

PUT macro
actual key files 4-10
alternate kev orocessino 6-4
direct acce~ files 4-lJ
extended indexed sequential files 4-7
file processing 4-1
format 5-4
initial indexed sequential files 4-4

R type records
defined 2-8
RMK field 3-7, D-4
write processing 5-5

RB field
FILE macro parameter 3-6
FIT structure D-5

RC field
alternate key processing 6-3
FIT structure D-4
index file processing 6-6
primary key list count 6-6
primary key list retrieval 6-7

Read-only processing
direct access files 4-13
initial indexed sequential files 4-4
multiple-index files 6-4

Record
data compression H-1
definition 2-1
mark 2-8, 3-7
maximum length field 3-6
minimum length field 3-5
type field 3-7
types 2-7

P,egister use 3-8, 5-1
REL field

alternate key processing 6-3
FILE macro parameter 3.-6

' f
f
f
f
(

c
~!

t:
t:

I
ti

t!

«I
c
«
~·

4,

4
60499300 A -

i

I
ill'
!

(

C'.

(

(

(
"
(

(

(

(

(

(
(

(

(

(

' •':i

(,,

(

(

(
,,

file positioning 5-7
FIT structure D-6
index file

count retrieval 6-6
positioning 6-4
primary key list retrieval 6-7
processing 6-5, 6-6
range count retrieval 6-7

REPLACE macro
actual key files 4-10
alternate key processing 6-4
direct access files 4-13
duplicate key processing 4-4
extended indexed sequential files 4-8
format 5-5
initial indexed sequential files 4-5

REWINDM macro
actual key files 4-10
direct access files 4-13
extended indexed sequential files 4-8
format 5-6
initial indexed sequential files 4-5
index file

positioning 6-5
primary key list retrieval 6-7
processing 6-5
range count retrieval 6-7

RKP field
alternate key processing 6-3
direct access file processing 4-11
extended indexed sequential files 4-7
FILE macro parameter 3-7
FIT structure D-6
index file processing 6-6
initial indexed sequential files 4-3

RKW field
alternate key processing 6-3
direct access file processing 4-11
extended indexed sequential files 4-7
FILE macro parameter 3-7
FIT structure D-6
index file processing 6-6
initial indexed sequential files 4-3

RL field
actual key file processing 4-10
alternate key processing 6-3
F type records 2-8
FIT structure D-3
index file processing 6-6, 6-7
U type records 2-9
Z type records 2-9

RMK field
FILE macro parameter 3-7
FIT structure D-4
R type records 2-8

RMKDEF directive
IXGEN utility 7-9
MIPGEN utility 7-10

RMKDEF macro
extended MIP

format 6-2
sparse keys 6-2

initial MIP
format 6-1
index file block size 6-1

RT field
FILE macro parameter 3-7
FIT structure D-3
static loading E-1

S type records 2-9
SB field

D type records 2-7
FILE macro parameter 3-7

60499300 A

FIT structure D-4
T type records 2-9

SEEK macro
actual key files 4-11
direct access files 4-13
extended indexed sequential files

major key processing 4-8
overlap processing 4-8

format 5-6
initial indexed sequential files

major key processing 4-4
overlap processing 4-5

SETFIT macro
dynamic loading E-1
FILE control statement processing 3-8
format 3-10

Signed binary key 4-5
SISTATutility 7-1
SKIP macro

actual key files 4-10
end-of-data condition 4-1
extended indexed sequential files 4-8
format 5-6
initial indexed sequential files 4-5
index file

positioning 6-5
processing 6-5
range count retrieval 6-7

Sparse keys 6-2, 7-10
START macro

extended indexed sequential files
file positioning 4-8
major key processing 4-8

format 5-6
index file

count retrieval 6-6
positioning 6-4
primary key list retrieval 6-7
processing 6-5
range count retrieval 6-7

initial indexed sequential files
file positioning 4-5
major key processing 4-4

Static loading
FILE control statement E-1
LDSET control statement E-1
read-only processing 4-4, 4-13, 6-4

Statistics/notes
codes and messages B-16
DFC fieid 3-3, 8-1, D-3
EFC field 3-3, B-1, D-3

STLD.RM macro E-2
STORE macro 3-8
Symbolic key

extended indexed sequential files
defined 4-5
major key processing 4-8

initial indexed sequential files
defined 4-1
major key processing 4-4

Synonym records 2-5
System-logical-record 2-1

T type records
CL field 3-2, D-4
CP field 3-2, D-4
Cl field 3-2, D-4
defined 2-9
HL field 3-4, D-3
SB field 3-7, D-4
TL field 3-7, D-4
write processing 5-5

TARGET G-1

Index-7

TL field
FILE macro parameter 3-7
FIT structure D-4
T tvoe records 2-9

Trace f~~ction
dynamic loading E-1
TRC field 3-7, 0-6

TRC field
FILE macro parameter 3-7
FIT structure 0-6

U type records
defined 2-9
write processing 5-5

USE parameter
FILE control statement 3-8
format E-1

W type records 2-9
Working storage area

file processing 4-1
WSA field 3-1, 0-4

Index-8

WSA field
FILE macro parameter 3-7
FiT structure D-4
index file processing 6-6

XBS fieid
alternate key processing 6-3
block size 6-1
FILE macro parameter 3-8
FIT structure 0-5

XN field
alternate key processing 6-3
FILE macro parameter 3-8
FIT structure 0-5
index file 6-1
static loading E-1

Z type records
defined 2-9
FL field 3-3, 0-3
write processing 5-5

•
t

I'
f'

t'

f'
ti

t'

t

t

I !

-
Ci

t

t
ti

~l

-
-· .,

60499300 A '
i

'

(,

(

(

c
c:·

If

(

(

(

(

(
~I

[
...J

~1
:t: I
I-

~1
I-

al
(',

I
~

'
(,

(

(
IJ

c
(,

(

(,
~I

TITLE:

COMMENT SHEET

CYBER Record Manager Advanced Access
Methods Version 2 Reference Manual

PUBLICATION NO. 60499300 REVISION A

~ c:\ CONTf\.OL DATA
\:::. r::J CORfORl\TION

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: ___________ _ POSITION:--------------

COMPANY'
NAME=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

ADDRESS=-------------------------------~

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
i:ru n f\N nnTTt=n I INl=C: ANn C::T~PI i:

STAPLE STAPLE

FOLD FOLD I --------------- -- --------.---------. -1

BUSiNESS REPLY MAi L
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
"'unnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I
I
'W

I~
I~
la

I

I

---· - - - -··--·- --- -- - - - - - - - - - - - - - - - - - _ J
Fc: __ f"> FOLD I

ST.A.PLE STA~LE

I

I
I
I

I

I
I
I

,;

-·
t!

f
Ci'"

•
t'

t I

tli
11

t

II
t:
t:
tli
t,

f

t . I c I
I
I c I
I
I

'
i

I
Iii
I
i!l!

:t.

·'

(

('

(

('

(

{
(

I

'
(

(

TITLE: CYBER Record Manager Basic Access Methods
Version 1.5 Reference Manual

PUBLICATION NO. 60495700

REVISION D

REASON FOR CHANGE:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

DATE: March 31, 1978

This revision reflects feature CP 091, CYBER Record Manager Basic Access Methods Version 1.5.

INSTRUCTIONS:

Discard the previous edition of this manual and replace with the attached.

' ! I

•,, I ., I
I

' i c
~·

c·
t

t

t

• I
l I
c

14;

«i
c.

•

C., !
' I i

~

(

(CYBER Record Manager Basic Access
Manual Title Methods Version 1.5 Reference Manual Pub. No. 60495700 Rev._Q_

As part of Control Data's continuing quality improvement program, we invite you to complete this questionnair~ so
that you may have a more direct influence on the manuals you use.

(Please rate this manual for each general and individual category on a scale of through 5 as .follows:

(I.

(

(
H.

(

(

(
111.

(V.

(

(

(

L

'

- Excellent

Writing Quality

A. Technical accuracy
B. Completeness
C. Audience defined properly
D. Readability
E. Understandability
F. Organization

Examples

A. Quantity
B. Placement
C. Applicability
0. Quality
E. Instructiveness

Format

A. Type size
B. Page density
C. Art work
D. Legibility
E. PrintingiReproduction

Miscellaneous

A. Index
B. Glossary

Please provide a yes or no answer
regarding manuals in general:

2 - Good

A. ! prefer that a manual on a software
product be as comprehensive as
possible; physical size is of little
importance.

B. I prefer that information on a
software product be covered in
several small manuals, each
covering a certain aspect of the
product. Smaller manuals with
limited subject matter are easier
to work with.

c. I am interested primarily in
reference manuals designed for
ease of locating specific
information.

3 - Fair 4 - Poor 5 - Unacceptable

D. I am interested primarily in
user guides designed to teach
the user about a product or
certain capabilities of a product.

VI. We recognize that we have a wide
variety of users. Please identify your
primary area of interest or activity:

A.
B.
C.
D.

E ..

F.

Student
Applications programmer
Systems programmer
How many years programming
experience do you have?

. What languages
1. Algol
2. Basic
3. Cobol
4. Compass
5. Fortran
6. PL/I
7. Other

Have you ever worked on
non-CDC equipment?

1. If yes, approximately
what percent of your
experience is on non
CDC equipment?

2. How do you rate CDC
manuals against other
cimil!::ir m!3n11!3I~ 11~inn
..,t11111y1 llU,.lll~Ul.J U..Jllll~

the 1-5 ratings.
(Example: XYZ Corp. 2
means XYZ manuals are good
as compared to CDC manuals.)
Burroughs
DEC
Hewlett-Packard
Honeywell
IBM
NCR
Univac
Other --------


~~~L---.-----------------------.-------~~ 

BUSiNESS REPLY MAiL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 

~ 15 Moffett Park Drive 
"unnyvale, California 94086 

I. 

FlRST CLASS 
PERMIT NO. 8241 

M,INNEAPOLIS, MINN. 

I' 

I 
I' 
•:w 

Ii 
I~ 
la 

I 
I 

~~-------··---·-.---. -· -------.. --·--. ___ J 
H' .. ., FOLD I 

STAPLE STAPLE 

I 

I 
I 
I 
I 
I 
I 

( 
( 

( 

( 

(. 

" t 
t 
l 

I .. 
'- I 
ii,: I 
II I 

i 



(_ 

( 

(' 

( 

( -. 
( 

( 

( 

( 

( 

[ 
( 

(' .._, 

-( 

( 

(, 

( 

( 

~. 

(. 

' 

l';J I:\ CONT~OL DATA 
~ r:!I CO~O~TION 

CYBER RECORD MANAGER 
BASIC ACCESS METHODS 
VERSION 1=5 

REFERENCE MANUAL 

coc® OPERATING SYSTEMS: 
NOS 1 
NOS/BE 1 

60495700 



REVISION RECORD 
REVISION DESCRIPTION 

A Original release. 

(I 1-1-75) 

B This revision reflects 7000 Record Manager as released under SCOPE 2.1.4: new features include F053 

(3/5/76) connected file flag. The revision also reflects CYBER Record Manager Version 1.4: new features 

include DM 119 FILE control statement cancel; and DM 135 internal changes which do not affect this 

manual. See the list of effective pages. 

c This revision reflects CYBER Record Manager 1.4 at PSR level 452. All references to 7000 Record 

(7-1-77) Manager have been eliminated. 
I D This revision reflects feature CP 091, CYBER Record Manager Basic Access Methods Version 1.5. 

(3-31-78) 

l>nblicBtion No, 

,- - 60495700 

REVISION LETTERS I, 0, 0 AND X ARE NOT USED 

©1975, 1976, 1977, 1978 

Control Data Corporation 
Printed in the United States of America 

ii. 

Address comments concerning 
this manual to: 

CONTROL DATA CORPORATION 
Publications and Graphics Division 

215 MOFFETT PARK DRIVE 
SUNNYVALE, CALIFORNIA 94086 

or use Comment Sheet in the 
back of this manual 

• 
f 

( 
.,, 
.Ii 
c 
c 

t.' . 

" Q 

' 
. 

' 



( 

c· 

( 

{ 
( 

c 

{ 

LIST OF EFFECTIVE PAGES 

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the 
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina
tion rather than content has changed. 

Page I Revision I Page I Revision I Page I Revision I 
Cover 
Title Page 
ii thru viii D 
1-1 thru 1-3 D 
2-1 thru 2-10 D 
3-1 thru 3-9 D 
4-1 thru 4-6 D 
5-1 thru 5-7 D 
6-1 thru 6-8 D 
A-1 thru A-4 D 
B-1 thru B-10 D 
C-1, C-2 D 
D-1 thru D-7 D 
E-1, E-2 D 
F-1 D 
G-1 D 
Index-I thru -5 D 
Comment Sheet D 
Return Env. 
Cover 

60495700 D iii/iv• 



• I • I 

t I 
I 
I 

c I 
i 

C"" 

c 
f I 

c 
t: 
t 
t 

I I 



( 

( 

( 

( 

c 

( 

( 

(' 

l 
( 

( 

( 

(, 

( 

( 

(, 

' 

PREFACE 

CYBER Record Manager Basic Access Methods (BAM) 
Version 1.5 operates under control of the following operating 
systems: 

NOS l for the CONTROL DATA® CYBER 170 Models 
171, 172, 173, 174, 175; CYBER 70 Models 71, 72, 73, 
74; and 6000 Series Computer Systems. 

NOS/BE l for the CDC® CYBER 170 Series; CYBER 70 
Models 71, 72, 73, 74; and 6000 Series Computer 
Systems. 

BAM input and output facilities are available to users of 
COMPASS assembly language through macro calls; user 
programs, COBOL, FOR TRAN Extended, and Sort/Merge use 

Publication 

NOS/BE l Reference Manual 

NOS l Reference Manual, Volume l 

NOS l Reference Manual, Volume 2 

BAM for input/output operations. The user programs 
communicate with BAM either through the compiler, using 
the calls supplied within the languages, or with BAM macros. 

Intended as a primary document for COMPASS program
mers, this manual presents background information and 
operational specifications for BAM. COBOL, FOR TRAN 
Extended, and Sort/Merge programmers can use this manual 
as a source for BAM terminology and concepts; specific 
language interfaces are detailed in the appropriate refer
ence manuals. The user is assumed to be familiar with the 
operating system at the installation, and with file 
organization and manipulation, 

Information necessary for a complete understanding of BAM 
use is contained in the following publications: 

Publication Number 

60493800 

60435400 

60445300 

CYBER Record Manager Advanced Access 
Methods Version 2 Reference Manual 60499300 

60495700 D 

CYBER Record Manager Version l 
Guide for Users of COBOL Version 4 

CYBER Record Manager Version l 
Guide for Users of FOR TRAN Extended Version 4 

CYBER Record Manager Version l 
User's Guide 

Common Memory Manager Version l 
Reference Manual 

COMPASS Version 3 Reference Manual 

CYBER Loader Reference Manual 

60496000 

60495900 

60495800 

60499200 

60492600 

60429800 

CDC manuals can be ordered from Control Data Literature and Distribution 
Services: 8001 East Bloomington Freeway, Minneapolis, MN 55420 

This product is intended for use only as described in 
this document. Control Data cannot be responsible for 
the proper functioning of undescribed features or 
parameters. 

v/vie 



( 



~II .ll 
( 

c 
( 

( 

( 

( 

( 

1. BAM FEATURES 

References 
File Organizations 
Macros 

2. FILE STRUCTURES 

Logical Structure 
Physical Structure 
File Organizations 

Sequential Files 
Block Types for Sequential Files 
File Boundaries 

Word Addressable Files 
Record Types 

Decimal Character Count Type D 
Fixed Length Type F 
Record Mark Type R 
System Record Type S 
Trailer Count Type T 
Undefined Type U 
Control Word Type W 
Zero Byte Type Z 

3. FILE INFORMATION TABLE 

FILE f\.1acrc 
FILE Control Statement 
Run-Time Manipulation 

FETCH 
STORE 
SETFIT 

4. FILE PROCESSING 

Sequential Files 

A 
B 

c 

Open Processing 
Input/Output Processing 

Input Processing 
Output Processing 
Processing 9-Track Binary S/L Tapes 

File Positioning 
Backward Skipping 
For ward Skipping 

Close Processing 
End-of-Data Processing 
File Boundary Processing 

Standard Character Set 
Error Processing and 

Diagnostics 
Glossary 

60495700D 

CONTENTS 

1-1 

1-1 
1-1 
1-1 

2-1 

2-1 
2-1 
2-2 
2-2 
2-2 
2-4 
2-6 
2-6 
2-6 
2-7 
2-7 
2-7 
2-8 
2-8 
2-8 
2-10 

3-1 

}-! 
3-6 
3-7 
3-8 
3-8 
3-8 

4-1 

4-1 
4-1 
4-1 
4-2 
4-2 
4-3 
4-3 
4-3 
4-3 
4-3 
4-4 
4-4 

Terminal File Processing 
Word Addressable Files 

Open Processing 
Input/Output Processing 

Input Processing 
Output Processing 

Close Processing 

5. MACROS 

Descriptive Conventions 
Macro Execution 

CHECK 
CLOSEM 
ENDFILE 
GET 
OPENM 
PUT 
REPLACE 
REWINDM 
SKIPdu 
WEOR 
WTMK 

6. LABEL PROCESSING 

Label Definitions 
Standard Label 
Nonstandard Label 
Unlabeled 

Label Processing FIT Fields 
Declaring Label Type 
Standard Label Processing 

Input Tape User Processing 
OPENM of Input Tape 
CLOSEM of Input Tape File 
CLOSEM of Input Tape Volume 

Output Tape User Processing 
OPENM of Output Tape 
CLOSEM of Output Tape File 
CLOSEM of Output Tape Volume 

Nonstandard Label Processing 
Input File User Processing 
Output File User Processing 

User Label Processing Macros 
GETL 
PUTL 
CLOSEL 

APPENDIXES 

A-1 

B-1 
C-1 

INDEX 

D 
E 
F 
G 

File Information Table Structure 
Loading BAM 
Use of List-of-Files 
File Interchangeability 

4-4 
4-5 
4-5 
4-5 
4-6 
4-6 
4-6 

5-1 

5-1 
5-1 
c , 
.J-J. 

5-2 
5-2 
5-3 
5-3 
5-4 
5-6 
5-6 
5-6 
5-6 
5-7 

6-1 

6-1 
6-1 
6-1 
6-3 
6-3 
6-4 
6-4 
6-4 
6-4 
6-4 
6-5 
6-5 
6-5 
6-6 
6-6 
6-6 
6-6 
6-6 
6-7 
6-7 
6-7 
6-8 

D-1 
E-1 
F-1 
G-1 

vii• 



FIGURES 

1-i COMPASS For mat 1-3 3-6 SETFIT Macro Format 3-9 
2-1 Logical Structure of a Seauential File 2-2 4-1 SKIPBu Positioning 4-3 
2-2 Block Control Word Format for 5-1 CHECK and CHECKR Macro Formats 5-2 

I Type Blocks 2-3 5-2 CLOSEM Macro Format 5-2 c 
2-3 C Type Block Structure 2-3 5-3 Ef'.DFILE Macro Format S-2 
2-4 K Type Block Structure 2-4 5-4 GET, GETWR, and GETP Macro Formats 5-3 
2-5 E Type Block Structure 2-4 5-5 OPENl\.1 Macro Format 5-4 
2-6 Logical Structure of a Word Addressable File 2-6 5-6 PUT, PUTWR, and PUTP Macro Formats 5-5 
2-7 Numbering Conventions 2-7 5-7 REPLACE Macro For mat 5-6 
2-8 D Type Record Example 2-7 5-8 REWil\DM Macro Format 5-6 
2-9 R Type Record Example 2-7 5-9 SKIP Macro Format 5-6 
2-10 T Type Record Format 2-9 5-10 WEOR Macro Format 5-7 
2-11 W Type Record Control Word Format 2-9 5-11 WTMK Macro Format 5-7 
3-1 FILE Macro Format 3-1 6-1 Standard Label Tape Formats 6-1 
3-2 FILE Control Statement Format 3-7 6-2 Unlabeled Tape Format 6-3 
3-3 FETCH Macro For mat 3-8 6-3 GETL Macro Format 6-7 
3-4 STORE Macro For mat 3-8 6-4 PUTL Macro Format 6-7 
3-5 STORE Macro Examples 3-8 6-5 CLOSEL Macro Format 6-8 

TABLES 
c ' 

1-1 CYBER Record Manager Macros 1-2 5-1 FIT Consistency Checks 5-4 
1-2 Macros and Related File Organizations 1-2 5-2 WEOR Processing 5-7 
2-1 Block Type Usage 2-2 6-1 ANSI Standard Labels 6-2 
2-2 Sequential File Boundary Conditions 2-5 6-2 Input File Labels Accessed at OPENM 6-5 
2-3 End-of-Partition Boundaries 2-5 6-3 Input File Labels Accessed at CLOSEM 6-5 
2-4 End-of-Section Boundaries 2-5 6-4 Input File Labels Accessed at CLOSEM 
2-5 End-of-Volume Boundaries 2-5 VOLUME (EOV) 6-5 
2-6 Record Types and Length Descriptions 2-6 6-5 Input File Labels Accessed at CLOSEM 
2-7 Record Type and Block Type Associations 2-6 VOLUME (BOV) 6-5 
2-8 Processing for 5 Type Records 2-8 6-6 Output File Labels Written at OPENM 6-5 
3-1 LFN and lfn Interaction 3-1 6-7 Output File Labels Written at CLOSEM 6-6 

( 
3-2 Parameters for FILE Macro by File 6-8 Output File Labels Written at CLOSEM 

Organization 3-2 VOLUME (EOV) 6-6 
3-3 FILE Controi Statement Parameters 3-7 6-9 Output File Labels Written at CLOSEM 
4-1 System Files Forced Values 4-1 VOLUME (BOV) 6-6 I 

c: 

4i 

•viii 60495700 D ( 



( 

( 

(' 

{ 
C

l' 

I• 

<: 

(, 

( 

(, 

(, 

( 
, 

BAM FEATURES 1 

BAM provides an interface between user programs and 
system input/output routines. BAM subsystems exist in 
NOS/BE and NOS operating systems. 

BAM also provides: 

Consistent error processing 

Accommodation for various labeling conventions 

Maintenance of different file organizations 

BAM routines are used by some compilers and are available 
for user programs. Use of BAM by compilers and user 
programs extends input/output compatibility to both the 
system and application program levels. 

The primary task of BAM is record and block input/output 
for files on supported devices. Consequently, the various 
types of records, blocks, and file organizations must be 
identified for BAM. These and other file characteristics 
must be set by the user in a file information table (FIT). 
The FIT is divided into fields that describe certain aspects 
of the file. Refer to appendix D for the exact structure of 
the FIT. 

REFERENCES 
The following terms are relevant to BAM and related 
systems: 

AAM (Advanced Access Methods) 

A file manager that processes indexed sequential, 
direct access, and actual key file organizations and 
supports the Multiple-Index Processor. 

BAM (Basic Access Methods) 

A file manager that processes sequential and word 
addressable file organizations. 

CRM (CYBER Record Manager) 

Refers to CYBER Record Manager, a generic term 
relating to both BAM and AAM as they run under 
NOS/BE and NOS operating systems. 

MIP (Multiple-Index Processor) 

A processor that allows AAM files to be accessed 
by alternate keys. 

FILE ORGANIZATIONS 
Two file organizations are supported by BAM: 

Sequential (SQ) 

Records are stored in the order in which they were 
written. 

Word addressable (WA) 

A group of contiguous words comprise a file. 
Records are accessed by a word number within the 
file. 

60495700 D 

MACROS 
A FIT is established for each file by a FILE macro 
encountered at assembly time. This macro can contain the 
file name only, or it can have user-specified parameters 
describing a particular file. The FILE macro establishes the 
FIT in the using program's field length at the point at which 
it is called. FIT fields are assumed through default values 
when they are not specified as parameters in macros. The 
macros and functions are listed in table 1-1 according to 
their associated purposes: 

File creation and maintenance 

File initialization and termination 

Data transfer 

File updating 

File positioning 

Boundary conditions 

User label processing 

The applicability of some macros depends on the file 
organization established by the user. Table 1-2 presents 
macros as appiicabie to sequentiai and word addressabie fiie 
organizations, the two supported by BAM. 

This manual discusses macro properties and generalizes 
processing whenever possible. However, explanations are 
provided in section 4 for each macro according to file 
organization. Consequently, material is presented redun
dantly for the benefit of a programmer who uses this manual 
to reference particular features only. 

Macro statements are coded in COMPASS format. Each 
statement can contain a location field; a macro name in the 
operation field, a variable field, and a comment field. Any 
field is terminated by one or more blanks. A macro 
statement begins at character position 1 of an BO-column 
card image and continues through column 72. Columns 73 
through 80 are used for sequencing. Suggested coding 
conventions are shown in figure 1-1. 

The allocation of the columns in COMPASS format is as 
follows: 

1 

2 thru 9 

10 

11thru16 

17 

18 thru 29 

30 

Comma (continuation), asterisk (com
ments line), or other (beginning of new 
statements) 

location field entry, left-justified 

Blank 

Operation field entry, left-justified 

Blank 

Variable field entry, left-justified 

Beginning of comments 

1-1• 



TABLE 1-1. CYBER RECORD MANAGER MACROS 

I ~ .. I r uncuon Macro I I Act&an 1 aKen 

FILE 1 File creation 1 Creates a file information 
and table (FIT). In addition to this 
maintenance macro, a FILE control state-

ment is available to supply 
FIT information. 

FETCH Retrieves the value of speci-
fied fields in the FIT. 

STORE Sets values in fields of the 
FITe 

SETFIT Sets values in fields of the 
FIT with values supplied 
through the FILE control 
statement. 

File OPE NM Prepares a file for processing; 
initialization initiates label processing. 
and CLOSEM Terminates file or volume 
termination processing; initiates label 

processing. 

Data GET Transfers data from a file to 
transfer I the working storage area. 

I PUT Transfers data from the 

I I working storage area to a file. 

I CHECK Determi~es completion status 
I of input/output operations. 

File REPLACE Replaces a record in a file. 
updating 

File SKIP Repositions a file backward 
positioning or forward. 

REWINDM Rewinds the current volume 
to beginning-of-information 
(BOI). 

Boundary ENDFILE Records a partition terminator. 
conditions WEOR Records a section terminator. 

WTMK Records a tapemark on a tape 
file. 

User GETL Retrieves the next label of a 
label , label stiing and delivers it to 
processing the label area. 

PUTL Writes or checks a label in 
the label area. 

CLOS EL Terminates label processing. 

I 
I 

TABLE 1-2. MACROS AND RELATED FILE 
ORGANIZATIONS 

File Organization 
Macro 

SQ WA 

CHECK x x 

CHECKR x x 

CLOSEL x 

CLOSEM x x 

El'OFILE x 

FETCH x x 

FILE x x 

GET x x 

GETL x 

GETP x 

GET WR x 

OPE NM x x 

PUT x x 

PUTL x 

PUTP x 

PUT WR x 

REPLACE x 

REWINDM x x 

SETFIT x x 
SKIP x 

STORE x x 

WEOR x 
WTMK x 

604957000 

• 
f' 

t l 
i 
l 
! 

( I 
I 

t 
I 
I 

. I 
f I 

I 

I 
t I 

t' 

t 
f 

I 
t 
t 
t 

t I 
I 

c I 
I 

I 
4 I 

I 

t I 
I 
i 

4: 
l 
I 
l 

I 
C. 

" 



( 

( 

( 

( 

( 

c 

( 

<: 

C. 

( 

Location 
Field 

T 
Blank, asterisk, 
comma, or first 

character of 
location field 

60495700 D 

Operation Variable Comments 
Field Field Field 

t 
""'-One or more spaces ~ 

Figure 1-1. COMPASS Format 

1-3• 



t' 

c I 

1: I 

• 

~\. I • I 
I ,. I 

,, I 

i 
{ ; 



( 

( 

(_ 

( 

(' 

( 

( 
( 

( 

c: 

c 

c 
( 

FILE STRUCTURES 2 

There is a hierarchical data structure in a progression from 
the character level to the largest grouping of data, the file 
which can be contained on one or more volumes. The BAM 
user can describe file structure by file organization (FO), 
block type (BT), and record type (RT). This section presents 
these structures. Additionally, many of the file information 
table fields that must be set by the user are identified. 
They are explained in detail in section 3. 

LOGICAL STRUCTURE 

The logical structure of a file is user-controlled. The 
foiiowing definitions describe terms used throughout this 
manual that are applicable to the logical structure of a file: 

Record 

A record is a group of related characters. A 
character is represented in six bits as internal 
display code. A record or portion thereof is the 
smallest collection of information passed between 
BAM and the user. The user defines the structure 
and characteristics of records within a file by 
declaring a record format. The beginning and 
ending points of a record are implicit within each 
format. Records are grouped into files. 

Section 

A section consists of one or more records. Gener
ally, a section is less than a partition and greater 
than a rncord, but it can be identical to either or 
both. A section begins with the first record after 
the end of the preceding section; a section ends 
when a special record or condition occurs. Only 
sequential files are grouped into sections. 

Partition 

A partition consists of one or more sections. 
Generally, it is less than a file and greater than a 
section, but it can be identical to either or both. A 
partition begins with the first record after the end 
of the preceding partition; a partition ends when a 
special record or condition occurs. Only sequential 
files are grouped into partitions. 

Block 

File 

A block can contain partial records or one or more 
records. Block structure is interwoven with the 
physical recording format; unlike other logical file 
structure declarations, the block structure is trans
parent in use. Blocks are constructed from the 
records supplied by the user and the user is supplied 
with records as required. The user is unaware of 
block boundaries. Only sequential files are grouped 
into blocks. 

A file is a logically connected set of information; it 
is the largest collection of information that can be 
addressed by that file name. All data in a file is 
stored between the beginning-of-information (801) 
and the end-of-information (EOI). Label groups 
are not considered to be part of file data in the 
general case. 

60495700 D 

PHYSICAL STRUCTURE 

The following definitions pertain to the physical means used 
to record files: 

Input/output device 

Any storage medium supported by the operating 
system. 

Rotating mass storage (RMS) 

Disk or disk pack. 

Mass storage device 

Disk, disk pack, or extended core storage (ECS). 

Volume 

~ volume i~ a reel of magnetic tape with sequential 
files. A file can be contained on more than one 
volume and a volume can contain more than one 
file. 

Level number 

A level number can range from 00 to 17 and is 
physically recorded on a physical record unfl (PRU) 
device in an eight-character appendage to a short 
PRU. A short PRU consisting only of the eiqht
character level number appendage is called a zero
length PRU. The appendage is neither created by 
nor returned to the user. The level number value is 
available in the FIT on some input operations and 
can b~ specified by the user on some output 
operations. 

Physical record 

f!" phys!cal record is defined only on magnetic tape; 
it co_ns1sts of the data between interrecord gaps. A 
physical record need not contain a fixed amount of 
data. 

S/L tape 

S/L tape must be declared by the user. The 
physical structure of a file on an S/L tape depends 
entirely on the logical structures selected by the 
user; no operating system structure is super
imposed. Physical record size is limited only by 
the buffer size on an L tape; physical record size 
on an S tape cannot be greater than 5120 char
acters. On S/L tapes, a block and a physical record 
are the same. 

PRU device 

All mass storage devices and non-S/L tapes are 
PRU devices; a physical structure is superimposed 
over the user-declared file structure by the oper
ating system on all files that reside on PRU 
devices. 

Physical record unit (PRU) 

The smallest unit of information that can be 
transferred between a peripheral storage device 
and central memory. The PRU size is permanently 

2-1• 



fixed for PRU devices; the PRU concept does not 
apply to S/L tapes. PRU device sizes are: 

Mass storage devices - 640 characters 

Binary SI tapes - 5120 characters 

Coded SI tapes - 1280 characters (supported 
under NOS/BE only) 

I tapes - 5120 characters (supported under 
NOS only) 

Short PRU 

A short PRU contains less than the number of 
characters defined for a PRU on a PRU device. An 
eight character level number appendage is always 
part of a short PRU. 

System-logical-record 

A system-logical-record is defined only on PRU 
devices. It consists of a group of PRUs terminated 
by a short or zero-length PRU. A system-logical
record can be simulated on an S/L tape by writing a 
series of physical records of the same length as a 
PRU, followed by a physical record of a length less 
than a PRU and with a level number appendage. 
However, because of the installation parameter 
that defines noise (IP.NOISE=), no PRU smaller 
than the installation definition or operating system 
default can be written on an S/L tape. (The default 
on NOS/BE is 8 characters; the default on NOS is 
14 characters.) 

BAM controls the physical file position while the user 
controls only the logical file position. Physical and logical 
positions are not guaranteed to agree after a given operation 
unless S type records are being used. 

FILE ORGANIZATIONS 

BAM supports two file organizations: sequential and word 
addressable. Once the file organization is set for a BAM 
file, it must not be changed to an AAM file organization in 
the same job step. It is possible that the AAM interface 
routines are not loaded and that internal FIT fields have 
been initialized based on the BAM file organization. The 
following is a description of the structure of each organ
ization and its applicable record and block types. 

SEQUENTIAL FILES 

Sequential files are tape-like in structure. Records are 
placed in the order of presentation; physically, a record 
follows the previous record. Given the location of one 
record, the location of the next record is determined in 
relation to the given record only. A sequential file can 
extend across any number of volumes and can be accessed 
sequentially only. 

A sequential file can reside either on a magnetic tape or on 
mass storage. Tape files, punch card or printer files, and 
some mass storage files are classified as sequential. A mass 
storage sequential file is not necessarily maintained 
internally in sequential order by CIO; however, records are 
presented to the user in sequential order. All sequential 
files are blocked through the block type parameter speci
fication, regardless of device type, except for S type 
records. 

The logical structure of a sequential file is shown in 
figure 2-1. The physical structure of a sequential file is 
s~own ·-~'ld~~ t~e d!~c·J~e~c~ ~f t~e v~!"'i~~~ b!ock types. 

• 2-2 

I 
I 

I 
I 

I 

__ Beginning-of-Information 
¥" ----------.1\ 

Record i 

Record 2 

Record 3 

Record n 

All intervening 
records belong 
to the file 

"-End-of-Information 

Figure 2-1. Logical Structure of a Sequential File 

Block Types for Sequential Files 

Sequential file blocking is, essentially, the concept of 
compressing actual records into contiguous record groups, 
thereby saving storage that would otherwise be wasted for 
interrecord gaps. Blocks can be various types, as explained 
in the following discussion. BAM supports four block types 
identified as I, C, K, or E. These block types are applicable 
to sequential files. A summary of block types and physical 
recording formats is represented in table 2-1. 

Internal Blockino Tvoe I 

I type blocks begin with a block control word, which contains 
block and record identification. Contents of the block 
control word include a pointer to the first record beginning 
in the block. I type blocks can contain only W type records. 
Except for the last block of the section, partition, or file 
which can be shorter; I type blocks are always 5120 
characters. 

TABLE 2-1. BLOCK TYPE USAGE 

Block 
Physical Recording Format 

Type PRU Device S/L Tape 

I I I block size is 5120 I block size is 5120 
I characters; section characters; last block 

or partition is a in section, partition, or 
single system-logical- file can be shorter. 
record. 

c I C block size is equal C block size equals 

I 
to 0 (unblocked) or a 5120 characters for 
multiple of PRU size; S tapes and a maximum 
section or partition of the value of the BFS 
is a single system- field minus two for L 
logical-record. tapes; last block of 

section, partition, or 
file can be shorter. 

K K blocking on PRU Each K block is written 
devices is prohibited. as a physical record. 

I E E blocking on PRU Each E block is written I as a physical record. I I devices is prohibited. 
...i.. 

60495700 D 

'1 

f 

~i 

f 

c 
f 
t: 

t! 
t! 

-:: 

I 
4 

« 
«I 
t! 

• 

c I 
c 
c 

i 

-
I 
I 
I 
I 

.ti I ' ~ 

' 
t 
~ 



c: 

( 

( 

( 

( 

( 

l 
( 

( 

( 

c 

~' 

A file with I type blocks can be recorded on either a PRU 
device or an S/L tape. On a PRU device, a short I block is 
recorded as a short PRU, which is the end of a system
logical-record. On an S/L tape, I type blocks are not an 
allowable ANSI (American National Standards Institute) 
interchange format because ANSI does not define W type 
records. 

The block control word format is shown in figure 2-2. 
Blocks and records are numbered consecutively from l. The 
record number includes all records that are physically 
present whether they are logically present or not. If no 
record begins in the block, word offset and record number 
equal zero. The block control word is word zero of the 
block. 

Character Count Block Type C 

Each C type block contains the number of characters 
specified by the value of the maximum block length (MBL) 
field of the FIT; however, the last block of the section, 
partition, or file can be shorter. Except for S type records, 
records can span block boundaries as shown in figure 2-3. 
C type blocks can contain any record type. 

If the MBL field is not specified, the default values are set 
as follows: 

S tapes 

L tapes 

PRU devices 

MBL=5120 characters 

MBL=value of the buffer size (BFS) 
field minus two 

MBL=O (unblocked) 

If a value is specified for the MBL field, it can be a 
maximum of SlZO characters for S tapes and a maximum of 
the value of the BFS field minus two for L tapes. The most 
efficient value of the MBL field for PRU devices is D; 
however, it can be set to a multiple of PRU size. If the 
value specified is not 0 or a multiple of PRU size, the value 
is rounded down to a multiple. The MBL field set to PRU 
size facilitates parity error recovery for W type records 
because a boundary condition would exist. 

When record type is S and block type is C, any user value for 
MBL is not changed for files on any device. S type records 
cannot be biocked. On an S/L tape, one S type record is one 

59 53 41 

Flags 

t 
m Characters Block n 

4 ---+- Logical Record j 

m Characters Block n+l Logical Record j+l 

---+- :} Logical Record j+2 

m Characters Block n+2 

l 
Figure 2-3. C Type Block Structure 

tape block. The C type block on an S/L tape is not an 
allowable ANSI interchange format because BAM does not 
support the ANSI spanned record type. 

Record Count Block Type K 

For K type blocks, each variable-length block contains the 
same number of records. Records cannot span blocks. The 
last block of a partition or file can contain fewer than the 
value specified in the number of records per block (RB) field 
of the FIT. K type blocks are prohibited on PRU devices; 
they are valid for S/L tapes only. K type blocks can contain 
any type record except Sor W type records. 

Padding can be inserted when a K type block is written. The 
three FIT fields concerned with padding are the padding 
character (PC), the multiple of characters per block (MUL), 
and the minimum block length (MNB). The value of the MNB 
field takes precedence over the value of the MUL field. 
Padding is inserted so that each biock, except possibiy the 
last one on a file or volume, is a multiple of MUL characters 
and is at least the number of characters specified by the 
value of the MNB field in length. The last block of a 
partition can contain fewer than the number of characters 
specified by the value of the MNB field; padding is not added 
to the last block because the GET macro cannot distinguish 
padding from a valid record. 

When writing K type blocks, the value of the RB field of the 
FIT is used to construct blocks of exactly that number of 
records. When reading K type blocks; each block need not 
be exactly the number of records specified by the value of 
the RB field, because blocks are physically delimited and 
boundaries are readily detected. However, if the RB field of 
the FIT is set to a value less than the number of records 

17 0 

Block Ordinal 

pl r l r (Mod 212) 
Record Number Word Offset 

59 Parity bit, used to maintain odd parity within the control word. 

58, 57 Reserved for CDC. 

56 thru 54 Reserved for users. 

53 thru 42 Ordinal of the current block (modulus 4096). 

41 thru 18 Ordinal of the first record beginning in this block (modulus 224, if necessary). 

17 thru 0 Word number of the control word of the first W type record in the block. 

Figure 2-2. Block Control Word Format for I Type Blocks 

604957000 2-J• 



physically present, only the number of records specified by 
the value of the RB field are returned to the working 
storage area; other records physicaJly present are assumed 
to be padding and are not returned tc the v.:crking stcr3ge 
area. 

K type blocks are recorded as tape physical records. To 
ensure that the last block in a file is interpreted correctly, 
minimum record size should be greater than noise record 
size, because it is possible for the last block to contain only 
a single record. 

The K type block is an allowable format for ANSI standard 
tape interchange. The structure of a K type block is shown 
in figure 2-4. 

\ 
Record 1 

I 

Record 2 

> Block n is 
MN R characters 

Record RB 

I 
Padding 

I 

Record 1 

Record 2 
I 

Block n+1 is 
MN R characters 

last block in a file is interpreted correctly, minimum record 
length should be greater than noise record size; because it is 
possible for the last block to contain only a single record. 

When specifying E type blocks with padding, the following 
restriction must be observed or E type blocks can be 
constructed in which padding cannot be distinguished from 
data. The value of the MBL field minus the value of the 
MNB field must be greater than the value of the MRL field 
minus the value of the minimum record length (MNR) field; 
and the value of the MUL field must be less than the value 
of the MNR field. 

The E type block is an allowable format for ANSI standard 
tape interchange. E type block structure is shown in 
figure 2-5. 

T 
Block is 
<MBL 
>MNB 

Characters 

_J_ 

Record 1 

Record 2 

Record n 

I-
d n+1 will 

-----------. not fit here, so 

f
it goes into the 

a.... ________ ....,. 
Recor 

Record n+1 next block 

------------~ 

-

.,____R-ecord-----tRB -' __ I L __ I -
Padding } . . 

l 
Figure 2-4. K Type Block Structure 

Exact Records Block Type E 

Each E type block contains an integral number of records, as 
many whole records as can be contained in the block size, 
which is the number of characters specified by the value of 
the maximum block length (MBL) field of the FIT. E type 
blocks are prohibited on PRU devices; they are valid only for 
S/L tapes. Any type record, except Sor W type records, can 
be contained in E type blocks. 

The value of the minimum block length (MNB) field of the 
FIT must not be greater than the value of the MBL field. 
The value of the MBL field must be greater than the value. 
specified in the maximum record length (MRL) field of the 
FIT. 

Padding can be inserted when an E type block is written. 
The three FIT fields concerned with patlding are the padding 
character (PC), the multiple of characters per block (MUL), 
and the minimum block length (MNB). The value of the MNB 
field takes precedence over the value of the MUL field. 
Padding is inserted so that each block, except possibly the 
last one on a file or volume, is a multiple of MUL characters 
and is at least the number of characters specified by the 
value of the MNB field in length. The last block of a 
partition can contain fewer than the number of characters 
specified by the value of the MNB field. To ensure that the 

•2-4 

Figure 2-5. E Type Block Structure 

File Boundaries 

The beginning-of-information is that point in a file before 
which no data exists. The end-of-information is that point 
in a file after which no data exists. Table 2-2 shows the 
various file boundary conditions for sequential files. 

Partition Boundaries 

A partition begins at beginning-of-information or after a 
preceding end-of-partition (EOP). A partition ends at end
of-information (EOi) or on the occurrence of an end-of
partition boundary. End-of-partition boundaries vary 
depending on device, block type, and record type, as shown 
in table 2-3. 

Section Boundaries 

A section begins at beginning-of-information, or after a 
preceding end-of-partition, or after a preceding end-of
section (EOS). A section ends at end-of-information, or end
of-partition, or at the occurrence of an end-of-section 
boundary. End-of-section boundaries vary depending on 
device, block type, and record type, as shown in table 2-4. 

60495700 D 



( 

(' 

('. 

( 

( 

( 

( 

( 

( 
( 

( 

( 

( 

( 

( 

(, 

S type records are a special case for section identification. 
Although an S type record is defined to be a record 
terminated by a short PRU of level less than 17, an S type 
record is never considered to be a section. When S type 
records are read, the file position (FP) field of the FIT is set 
to end-of-record, never to end-of-section. 

I 

TABLE 2-2. SEQUENTIAL FILE BOUNDARY 
CONDITIONS 

Boundary 
Device 

Beginning-of-Information End-of-Information 

Mass Before the first record After the last 
storage written. record written. 

Labeled Between the file header Between the last 
tape label group and the first record written and 

record written. the file trailer 
label group. 

Unlabeled Between load point and Undefined. 
S/L tape the first record written. 

Unlabeled Between load point and Between the last 
SI tape the first record written. record written and 

the file trailer 
label group. 

Unlabeled Between load point and Undefined. 
I tape the first record written. 

TABLE 2-3. ,--.._ 11"""'- ,-...,-- I""'\ Ar"'\ "T"TTTl"""'\frt. I r-\1"""'\I II\. Ir"- I\ F""\ Tr-t"-
C.l'\ILJ-Ur -t'M.ri. 111 lUl"I DUUl"IUM.ri.lC.;J 

Device Block Record 
End-of-Partition Boundary Type Type 

I w One-word deleted record point-
ing back to the last I block 
boundary; control word with 
the EOP flag; terminate the 
system-logical-record with 

PRU level 0. 
device 

c w Control word with an EOP flag; 
terminate the system-logical-
record with level 0. 

c All but Terminate the system-logical-
w record with level O; zero-length 

PRU with level 17. 

I w Zero-length deleted records to 
exceed noise record size; one-
word deleted record pointing 
back to the I block boundary; 
control word with an EOP flag; 

S/L terminate tr.e block. 

tape c w Zero-length deleted records to 
exceed noise record size; con-
trol word with an EOP flag; 
terminate the block. 

C,K,E All but Terminate the block; tapemark. 
w 

60495700 D 

I I 

Volume Boundaries 

Volume boundaries are defined only on magnetic tape with a 
sequential file. The user of such files can elect to ignore 
volume boundaries or to be notified when volume boundaries 
occur. A volume boundary has no necessary relationship to 
any logical boundary and can occur at any point within a 
file. The beginning-of-volume of the first volume is 
synonymous with beginning-of-information. Thereafter, 
beginning-of-volume is located before the first data block on 
second and subsequent volumes. An end-of-volume condition 
exists when one of the conditions shown in table 2-5 occurs. 

TABLE 2-4. END-OF -SECTION BOUNDARIES 

Device Block Record End-of-Section Boundary Type Type 

I w One-word deleted record point-
ing back to the last I block 
boundary; control word with 
EOS flags; terminate the 
system-logical-record with 

PRU level O. 
device 

c w Control word with EOS flags; 
terminate the system-logical-
record with level 0. 

c All but Terminate the system-logical-
w record with level less than 17. 

I w Zero-length deleted records to 
I exceed noise record size; one-

word deleted record pointing 
back to the I block boundary; 
control word with EOS flags; 

S/L terminate the block. 

tape c w Zero-length deleted records to 
exceed noise record size; 
control word with EOS flags; 
terminate the block. 

C,K,E All but Terminate the block (undefined 
w Jon a read). 

TABLE 2-5. END-OF -VOLUME BOUNDARIES 

Device End-of-Volume Boundary 

Labeled tape Between the last record on tape and 
the volume trailer label group. 

Unlabeled tape Between the last record on tape and 
the volume trailer label group (PRU 
device only) or the first tapemark 
after the reflective spot (S/L tapes). 

Nonstandard Between the last record on tape and 
labeled tape the nonstandard end-of-volume label 

which is controlled by the user. 

2-5• 



WORD ADDRESSABLE FILES 

Word addressable files are mass storage files containing 
continuous data or space for data. Words within the file are 
numbered from 1 to n, each word containing 10 characters. 
Data is read or written within the file starting at a word 
specified by the word number, called the word address. 

Reading beyond the current end-of-information limit is not 
allowed. For writing, word addressable files are auto
matically extended if the write results in an address beyond 
the end-of-information. Word addressable files can be 
accessed either sequentially or randomly by word address. 
The user should recognize that a sequential read is valid only 
if data is contiguous. The supplied word address for random 
access points to a location in the file that is on a word 
boundary; therefore, all records begin on a word boundary. 

Although word addressable files must reside on mass storage 
for processing, the COPYBR or COPYBF utility can be used 
to copy a word addressable file to tape. The COPYBR 
utility is preferable. Any level 17 information written by 
the copy is ignored when the file is restored to mass storage 
and a write is occurring. A read of level 17 written by the 
copy utility returns an end-of-partition status. 

Only W, F, and U type records are possible in word 
addressable files. The logical structure of a word 
addressable file is shown in figure 2-6. 

--~~~~~~~~--., 

/ Beginning-of-Information 

Word 1 

Word 2 

Word 3 Word Addresses 1,2, ... ,n 

Word n 

'-.End-of-Information 

Figure 2-6. Logical Structure of a Word Addressable File 

RECORD TYPES 

BAM supports eight record types. The eight record types 
and a corresponding explanation of their lengths are listed in 
table 2-6. 

The numbering conventions for describing a record _or t~e 
position of a control field in a recor~ are summarized m 
figure 2-7. All record lengths are specified by character 
count. Values normally are unsigned positive decimal 
integers. 

The record types allowed for each block type are shown in 
table 2-7. S type records are not blocked, but block type 
can be set to C for compatibility with SCOPE 2 type files. 

•2-6 

DECIMAL CHARACTER COUNT 
TYPED 

The record length for D type records is specified in a length 
field located within the record. The two fields of the FIT 
which specify the position of the length field are the len~th 
field beginning character position (LP) field, numbering 
from O, and the length field length (LL) field, which is t~e 
number of characters in the length field, one to six 
characters. The record length specified must be less than or 
equal to the number of characters specified by the value of 
the maximum record length (MRL) fi~l? o! the 11pT • 
Maximum record length that can be spec1f1ed is 10(2 -1) 
characters. The record length specified in the length field is 
given as right-justified display code filled with .zeros or 
blanks. The LL field can be COMPUT A TIONAL-1 1f the Cl 
field of the FIT is set to YES, or it can be a sign-overpunch 
field if the sign-overpunch (SB) field of the FIT is set to 
YES. 

TABLE 2-6. RECORD TYPES AND LENGTH 
DESCRIPTIONS 

Record Type Length Description 

Decimal Character Length is given as character count, 
Count (D) by the length field contained within 

the record. 

Fixed Length (F) Fixed length. 

Record Mark (R) Terminated by a record mark char-
acter specified by the user. 

System Record (S) Length of the system-logical-record 
depends on the PRU device; on an 
S/L tape, one S type record is a 
physical record. 

Trailer Count (T) Fixed length header followed by a 
variable number of fixed length 
trailers; the header contains the 
trailer count field. 

Undefined (U) Length is defined by the user. 

Control Word (W) Length is contained in a control 
word prefixed to a record by BAM. 

Zero Byte (Z) Terminated by a 12-bit zero byte in 
the low-order byte position of a 
60-bit word. 

TABLE 2-7. RECORD TYPE AND BLOCK TYPE 
ASSOCIATIONS 

Record Type 
Block Type 

F D R T u w z s 

I x 

c x x x x x x x x 

K x x x x x x 

E x x x x x x 

60495700 D 



( 

(! 

f' 

( 

( 

c 
c 

( 
c 
( 

( 

( 

c 

( 

( 

c 

1111 iTI 111111 i°I 111 ~ \ 1111 ill 1111 
0 234567890 2 3 4 0123456789 

(Relative Character Position in Word) 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 . m 

(Character Number) 

Record Length m + 1 Characters .. 1 

Figure 2-7. Numbering Conventions 

For the first GETP or PUTP macro issued for a given record, 
the minimum number of characters that can be transferred 
is the value specified in the minimum record length (MNR) 
field of the FIT. If the user does not supply a value for the 
MNR field, the sum of the values of the LL field and the LP 
field is used. 

In the example in figure 2-8, the length field is three 
characters beginning with character position 22. The 

·minimum number of characters that can be transferred for a 
partial read or write is 25. 

LPl 

22 25 

200 

~LL~ 
Length of 

length field 

- 200 characters ...... 

Figure 2-8. D Type Record Example 

FIXED LENGTH TYPE F 

Fixed length records are defined as records that are the 
number of characters in length specified by the value of the 
fixed length (FL) field of the FIT. All records in _ffe file are 
of equal size. Maximum record length is 10(2 -1) char
acters; minimum length is 10. 

"""I •-------CFL)------..... •~I 

Any value in the record length (RL) field of the FIT is 
ignored, and the number of characters specified by the value 
of the FL field of the FIT are moved when a GET or PUT 
macro is issued. A value must be supplied for the FL field 
for the file to be successfully opened. No padding is 
supplied on a read. 

60495700 D 

RECORD MARK TYPE R 
The size of the record, which must be less than or equal to 
the number of characters specified by the value of the 
maximum record length (MRL) field of the FIT, is specified 
indirectly by a special delimiting character that terminates 
each record. The user specifies the delimiting character in 
the record mark character (RMK) field of the FIT. The 
same delimiting character is used for each record in the file. 
This character can be any f}1aracter of the character set. 
Maximum record length is 2 -1 characters. 

For a file read, if the delimiting character is not found in 
the first number of characters specified by the value of the 
MRL field, that number of characters is moved to the 
working storage area and an excess data error is given. For 
writing, if the delimiting character is not found in the first 
number of characters specified by the vaiue of the MRL 
field, no data is written to the file and an excess data error 
is given. 

In the example in figure 2-9, MRL=l20 and RMK=62
8

• The 
characters are read up to the record mark character. 

Record mark character==i 

... I 

JI 
I-MRL characters maximum (120) ---j 

Figure 2-9. R Type Record Example 

SYSTEM RECORD TYPE S 

On PRU devices, each record is a system-logical-record 
occupying an integral number of central memory words. On 
S/L tapes, each record is a tape physical record. The 
differences in processing of S type records for S/L tapes and 
PRU devices are shown in table 2-8. 

S type records are regarded as word-oriented. When 
physical blocks are being read from S/L tapes, however, the 
record length (RL) field of the FIT represents the actual 
number of characters in the block. For all other cases, the 
value of the RL field represents the record length rounded 
upward to a multiple of 10. 

2-7• 



An S type record can be created by executing one PUT 
macro, a series of PUTP macros with a terminating WEOR 
macro, or a PUTP macro with a TERM parameter. When the 
WEOR marrn is 1Jsed after a PUTP, !eve! n!..!mbers 0 thro!..!gh 
16 can be written to terminate the record. Use of levels 
other than 0 is discouraged, however. If a series of PUTP 
macros is followed by a PUT, the record written through the 
PUTP macro is terminated and a new record to satisfy the 

TABLE 2-8. PROCESSING FOR S TYPE RECORDS 

Specification PRU Device S/L Tape 

Block type Block type is ignored. Block type is ignored. 
Every logical record 
is one physical record. 

Maximum MBL is forced to MBL must be speci-
block length PRU size of the fied by the user and 

device. must be greater than 
MRL. 

Record RL is rounded up to RL specifies the 
length an integral number number of char-

of central memory acters read or 
words. written. 

PUT One system-logical- One physical record 
record of length RL is of length RL is 

1 written, terminated written (no level 
by a level 0. number). 

I 

I 
I 

PUTP PTL characters are PTL characters are I moved into the moved into the 

I I buffer (maximum of buffer (maximum of 
RL if specified). RL if specified). 

WEOR Terminate the Terminate the 
current record and current physical 
system-logical- record. 
record and write a 
level 0 through 16. 

Maximum MRL=O allows any MRL must be less 
record length length record; if than MBL. 

MRL#J and the rec-
ord exceeds MRL, 
an error is given. 

GET MRL must be large MRL must be large 
enough to contain enough to contain 
the entire system- the physical record. 
logical-record. If the If the record exceeds 
record exceeds MRL, MRL, an excess 
excess data error is data error is given. 
given. 

GETP PTL characters, or PTL characters, or 
the number of char- the number of char-
acters remaining in acters remaining in 
the record, are the record, are 
moved from the buf- moved from the buf-
fer to WSA. fer to WSA. 

ENDFILE Terminate current Terminate the 
system-logical-record current physical 
and write level 0. record. Write a 
Write a zero length tape mark. 
PRU with level 17. 

PUT macro is begun. A user specified value for the RL field 
causes the current record to be terminated when the number 
of characters specified has been written. 

A file with unknown format can be specified as having 
S type records to have a value returned to the RL field after 
each read; an S tape should be specified or. a REQUEST 
statement (unless the format is known to be SI or I). 

TRAILER COUNT TYPE T 

T type records consist of a fixed-length base and a variable 
number of fixed-length trailer items. A count field in the 
fixed-length base specifies the number of fixed-length 
trailer items appended to each record. The value recorded 
in the count field can be display code, right-justified, and 
zero or blank filled. The fields of the FIT that must be 
specified for T type records are: 

The length of the fixed-length base in the header length 
(1-L) field 

The length of fixed-length trailer items in the trailer 
length (TL) field 

The trailer count beginning character position (CP) 
field, numbered from 0 

The count field length (CL) field, one to six characters 

The value of the CL field can be COMPUTATIONAL-1 if the 
Cl field is set to YES, or be a sign-overpunch field if the 
sign-overpunch (SB) field of the FIT is set to YES. The 
value of the CP field plus the value of the CL field must be 
less than or equal to the value of the HL field. The value of 
the HL field must be less than or equal to the value of the 
MR~field. Maximum record length that can be specified is 
10(2 -1) characters. The logical structure of a T type 
record is shown in figure 2-10. 

UNDERNED TYPE U 

This format permits processing of any record type not 
provided by BAM. The user must supply a value for the 
record length (RL) field of the FIT for each GET and PUT. 
The value of the RL field must be less than or equal to the 
value specified by the maximum record length (MRL) l1ld. 
Maximum record length that can be specified is 10(2 -1) 
characters. 

The RL field of the FIT is altered at the completion of a 
GET only if an end-of-data. has been detected before the 
number of characters specified by the user in the RL field 
has been read. The value of the RL field indicates the 
number of characters transferred. 

To read a file with unknown format, an S tape on a 
REQUEST statement should be specified (unless the format 
is known to be SI or I tape), and S type records should be 
specified to have a value returned to the RL field of the FIT 
after each read. 

CONTROL WORD TYPE W 

A W type record is any length less than or equal to the 
number of characters specified by the value of the maximum 
record length (MRL) field of the FIT beginning at a word 
boundary (bit 59 of the word). A record is represented in the 
file as an integral number of central memory words, 

60495700 D 

• 
4 

Ci 

4: 

« 
t~ 

-· 
t 
t 

iii 

c I 
I 
I 

I 

1· 
I 

I 
II 

I 
ti 

I 
41 I 
41 I 
ti I 
t 
4, 

I 

t I 
,1 I 

I 
I 
I .. - i 

' I 
' .. ! 

' t ~ 



(! 

(I 

( 

c: 

c: 

[ 
c 
( 

( 

( 

(, 

' 

prefixed with a record control word supplied by BAM in the 
format shown in figure 2-11. The control word is written at 
all block boundaries. 

value of the RL field are returned to the working storage 
area on a read. The contents of any unused bits in the last 
word returned are undefined. 

The RL field of the FIT (or the PTL field if a record is 
written in pieces) must be specified for writing; when 
reading, the value of the RL field is determined by looking 
at the control word. Only the characters specified by the 

To insure that a tape file with W type records can always be 
closed, the length of a noise record should be less than 10 
characters. W type records cannot be used with E or K type 
blocks. 

j.-.-count field _._I n Trailers of length TL 

'-----+----+-! _-.L.l_I · · · D 

60495700 D 

CP 

59 56 53 43 

HL 
Total length 
HL+(n*TL) 

Figure 2-10. T Type Record Format 

41 23 17 0 

p] f] d] r ] Reserved 1wcR Previous Unused Word 

Flags 

59 

58 

57 

56 thru 54 

53 thru 44 

43 thru 42 

41 thru 24 

23 thru 18 

17 thru 0 

Size Bits Count 

Parity bit. Used to maintain odd parity within the control word. 

Flag bit. Used in combination '.\'ith the delete bit to signal the end-cf-section er partition. 
Word count must be zero. The values are: 

!.. J!. 

1 1 End-of-section 
1 0 End-of-partition 
0 1 Deleted record 
0 0 Normal record 

Delete bit. A record, in whose control word this bit is set, is considered to be logically 
deleted from the file; the record is not passed to the user when the file is read. See the 
flag bit explanation. 

Reserved for users. 

Reserved for CDC. 

W-continuation record flags. The values are: 

43 

0 
0 
1 
1 

42 

0 
1 
0 
1 

Complete record 
First piece of W-continuation record 
Middle piece of W-continuation record 
Last piece of W-continuation record 

The size of the previous record in central memory words including the control word for 
the record (needed for backspacing). This field is zero if there are no previous records. 

Number of rightmost unused bits in the last word (Qos;;bit~59). 

Number of central memory words necessary to contain the record, not including the 
control word (word count decimal ~217-2). If the W-continuation record (WCR) flag 
is nonzero, the word count refers to only a part of the record. 

Figure 2-11. W Type Record Control Word Format 

2-9• 



ZERO BYTE TYPE Z 

Each record is terminated by a 12-bit byte of zeros in the 
iow-order position of the iast word in the record. The fuii 
length (FL) field of the FIT must be specified for Z type 
records. 17 The value of the FL field can be between 1 
and 10(2 -1). 

When a record is read, the zero byte is stripped from the 
record and blank padding is added to fill the working storage 
area to (FL+9)/10 words. When Z type records are being 
read and a zero byte terminator is not found within FL/10+1 
words, an excess data error is returned. However, the 
examination of subsequent characters continues until the 
first terminator is encountered or a file boundary is reached. 
If the end-of-information is encountered before the zero 
byte is found, it is possible the file did not contain Z type 
records. At the conclusion of a read operation, the RL field 
of the FIT is set to the number of user characters read, not 
including blank padding. 

When a record is written and the value of the RL field is not 
zero, the end of the record is determined by searching 
backwards from the character position specified by the 
value of the RL field for the first nonblank character. The 

•2-10 

zero byte is added in the nearest appropriate position. 
Binary zero_,_fi!J is done from the last significant character 
to the zero byte. 

When a record is being written and the value of the RL field 
is zero, the end of the record is determined by searching 
backwards from the character position specified by the FL 
field. When a nonblank character is found, the zero byte is 
added in the nearest appropriate position. Binary zero-fill is 
done from the last significant character to the zero byte. If 
a nonblank character appears in the low-order position of 
the last word, the record written to the device is one word 
larger than the physical size of the record in the working 
storage area, because the nearest appropriate position for 
the zero byte is in the low-order 12 bits of the word past the 
character position specified by the FL field. The record on 
the output device is larger than the value specified in the FL 
field, but memory is not altered beyond the number of 
characters specified in the FL field. 

If the last character of the record being written is : or % , 
one blank is appended. If, as a result, the last word of the 
record contains nine characters, a zero is added to fill out 
the word and an additional zero word is appended. Z type 
records give indeterminate results and should not be used on 
coded 7-track S/L tapes. 

60495700 D 

c 

c 
c 
c 

( 
c 
c 

• ~:j: 

I 
1111< 

I 
i 
I 

i 

I 
. I 

I 

I 
I 
i 
II 

I 
! 
i 
i 



C. 

c 

( 

( 

( 

c 
( 

( 
c 
( 

( 

c 

( 

( 

FILE INFORMATION TABLE 3 

A file inforrnation table (FIT) is required for all files. 
Information in this table defines the file and how it is 
accessed. The FILE macro and FILE control statement are 
used to create and update the FIT. The FILE macro 
assembles a FIT in the COMPASS program where the macro 
is encountered. Pertinent information from the FILE 
control statement is saved until OPENM time. When the file 
is opened, the saved inforrnation is stored into the FIT and 
takes precedence over any corresponding preexisting infor
mation. A blank FIT, except for addressing information and 
logical file name, could be set up in the user program with 
definition of file characteristics deferred until the file is 
opened. 

Fields in the FIT can be changed using the STORE macro or 
the FILE control statement. The user identifies the fields 
by the keywords of the FILE macro. Fields in the FIT can be 
retrieved using the FETCH macro and the keywords of the 
FILE macro. 

Macro requests for file operations can result in amendment 
of the FIT fields. Certain macro operands are stored in FIT 
fields prior to performance of the request, and values in FIT 
fields can be stored as a result of processing the request. 
Also, certain fields in the FIT are maintained to reflect the 
current state of the file. 

FILE MACRO 
The FILE macro constructs the file information table at the 
address where the macro is encountered during asse:nbly; 
the FIT must 'Je built before the file is opened. The macro 
conforms to COMPASS coding conventions. The format of 
the FILE macro is shown in figure 3-1. The interaction 
between lfn and LFN=axxxxxx is shown in table 3-1. 

The FILE macro does not check fields for validity or 
consistency. Fields exceeding the maximum specified sizes 
are truncated; assembler warning messages are produced. 

[lfn] Fl LE [LFN=axxxxxx] [,keyword=option, ... ] 

lfn 

LFN 

axxxxxx 

keyword 

option 

60495700 D 

Symbolic address where the FIT is assembled 
in the COMPASS program, and logical file 
name by which the file can be referenced if 
the LF N=axxxxxx is absent or the same 
name. 

FIT field mnemonic for logical file name; it 
must be specified with axxxxxx if lfn is 
absent. 

Logical file name by which the file can be 
referenced, and symbolic address where the 
FIT is assembled in the COMPASS program 
if lfn is absent. 

Symbolic name of the FIT field. 

Selected option of the FIT field. 

Figure 3-1. FILE Macro Format 

Misspelled or unrecognizable parameters generate null 
parameters, and the fields they reference are set to zero. 
Null parameters are ignored. Warning messages are 
generated when overlapping fields are specified. 

The FILE macro should specify the file organization 
mnemonic. Any parameter not applicable to that file 
organization is ignored and an error type 4 message is 
generated during assembly. 

The values specified for the other FILE macro parameters 
are assembled into the FIT; they can be specified in any 
order. Table 3-2 shows which FILE macro pararneters are 
applicable to each file organization. An X indicates 
appropriate file organizations. (Note that the numbers 
appearing in parentheses are explained at the end of the 
table.) A detailed explanation of each FIT field which can 
be specified by the FILE macro parameters follows: 

ASCII ASCII character set bits for INTERCOM 
terminals. 

BBH 

Absent or ASCII =0 

64 character display code. 

ASCII=! 

95 character ASCII subset. 

ASCII=2 

128 character ASCII. 

Buffer below highest high address. Refer to 
appendix E for a discussion of the BBH field and 
loading BAM. 

Absent or BBH=NO 

Buffer is not below the highest high address. 

BBH=YES 

Buffer is below the highest high address. 

TABLE 3-1. LFN AND lfn INTERACTION 

COMPASS Contents of 
Statement Location First Word 

Value of FIT (lfn) 

A FILE A A 

FILE LFN=A A A 

A FILE LFN=A A A 

A FILE LFN=B A B 



TABLE 3-2. PARAMETERS FOR FILE MACRO 
BY FILE ORGANIZATION 

FILE 
Macro 

Parameters 

ASCII 

BBH 

BFS 

BT 

CF 

CL 

CM 

CNF 

CP 

Cl 

DFC 

DX 

EFC 

EO 

ERL 

EX 

FL 

FO 

FWB 

HL 

LA 

LBL 

LFN 

LL 

LP 

LT 

LX 

MBL 

MNB 

MNR 

MRL 

MUL 

•3-2 

Fiie Organization 

Sequentiai (SQ) I Word Addressabie (WA) 

x 

x x 

/1) 

x 

x x 

x(2) 

x 

x 

x(2) 

/2X4) 

x x 

x x 

x x 

x x 

x x 

x x 

x(3) 

x x 

x x 

x(2) 

x 

x 

x x 

x(4) 

x 
(4) 

x 

x 

x 

x 

x 

x x 

x 

TABLE 3-2. PARAMETERS FOR FILE MACRO 
BY FILE ORGANIZATION (Cont'd) 

FILE File Organization 
Macro 

! 

J 
Parameters Sequentiai (SQ) Word Addressable (WA) l 

j 

OF x I PC x 

PD x x I 
RB x(5) I 

RMK /6) 

RT x x 

SB x(2)(4) 

SBF x x 

SPR x 

TL x 
(2) 

ULP x 

VF x x I 

WSA 
I 

x x I 
J 

Notes: l 
1. Length in words 

2. T type records only 

3. F and Z type records only 

4. D type records only 

5. K type blocks only 

6. R type records only 

BFS Buffer size in words. 

BT 

Absent or BFS=O 

BAM provides the buffer space if necessary; 
the first word address of the buffer (FWB) 
field is set to point to the first word address 
of the space obtained. 

BFS=aexp 

Buffer size; maximum 217 -1, or 131000 
words. User speci fif~ in words. A practical 
limit for BFS is (2 /10) - 1, or 26200, be
cause this is the largest single move that can 
be processed. 

Block type for sequential files; tapes are always 
blocked. 

Absent or BT =I 

Internal, block recovery control word; I type. 

60495700 D 

~ 

4 

t 
( 

c 
f 

---

t 

4 

c 

I I 
- I 

j 
I 

t 
I 
I 

I 
4 i 
4 I 

I 
\ll 

4 
I 

I 
41 I 
41 I !! I 

--
I 
I 
I 
I 

.:11 I 

' I I 
I' 
.:]. 

! 
~ 

" 



( 

( 

( 

( 

( 

c 
( 

[ 
( 

( 

C_ 

ill.' 

CF 

CL 

CM 

CNF 

CP 

BT=C 

Character count in characters per block; C 
type. 

BT=K 

Record count, m records per block; K type. 

BT=E 

Exact record count; E type. 

Close flag. File positioning at CLOSEM time. 

Absent or CF =R 

Rewind 

CF=N 

No rewind 

CF=U 

Unload 

CF=RET 

Return; rewind and unload 

CF=DET 

Detach; no rewind 

CF=DIS 

Disconnect terminal file 

Count field length of a T type record. 

Absent or CL=O 

No trailer count field defined. 

CL=aexp 

Length in characters of the trailer; rnaxi
murn 5. 

Converison mode. 

Absent or CM=NO 

No conversion. 

CM= YES 

Conversion between external and internal 
code for sequential tape files. 

Connect file flag. 

Absent or CNF =NO 

Norrnal file input/output. 

CNF=VES 

Terminal file. 

Trailer count beginning character position of T 
type record. 

Absent or CP=O 

Beginning character position is zero. 

CP=aexp 

Beginning character position, nW'bered from 
zero on the left; maximum 10(2 -1). 

60495700 0 

Cl 

OFC 

ox 

EFC 

EO 

COMP-!; format for the length field for 0 and T 
type records. 

Absent or Cl=NO 

Field is display code. 

Cl=VES 

Field is binary (COBOL COMP-!). 

Oayfile control. 

Absent or OFC=O 

Except for fatal errors, no dayfile messages 
are written. 

DFC=l 

Error messages are written on the dayfile. 

OFC=2 

Notes are written on the dayfile. 

DFC=3 

Errors and notes are written on the dayfile. 

End-of-data exit routine address. The system 
stores a jump at the first address of the routine 
and control passes to the first executable state
ment, which is routine+!. 

Absent or DX=O 

No routine is specified. 

DX=exp 

Address of the routine to be entered when an 
end-of-data condition occurs. 

Error file control. 

Absent or EFC=O 

No error file messages are written. 

EFC=l 

Error messages are written on the error file. 

EFC=2 

Notes are written on the error file. 

EFC=3 

Errors and notes are written on the error file. 

Error option for parity error processing. 

Absent or ED= T 

Terminate the file. 

EO=D 

Drop bad data. 

EO=A 

Accept bad data. 

EO=TD 

Terminate the file and display the block 
containing the parity error on error file 
ZZZZZEG. 

3-3• 



ERL 

EX 

FL 

FO 

FWB 

HL 

•3-4 

EO=IJD 

Drop bad dsL1 und 
taining the parity 
ZZlL'.!:t.G. 

EO=AD 

di3play r.ne 
error on 

block 
error file 

Accept bad data and display the block con
taining the parity error on error file 
ZZZZZEG. 

Trivial error limit. 

Absent or EHL=O 

No trivial error limit; an indefinite number of 
trivial errors is permitted. 

Ef{L=aexp 

Maximum number of trivial errors allowed 
before a fatal error occurs; maximum 511. 

Error exit routine address. The system stores a 
jump at the first address of the routine and 
control passes to the first executable statement, 
which is routine+l. 

Absent or EX=O 

No routine is entered if an error occurs, 
control is returned to the user's in-line code. 

EX=exp 

Address of the error exit routine to be 
entered when an error occurs. 

Fixed length for F type records; full length for Z 
type records. 

Absent or FL =0 

Must le defined for open. 

FL=aexp 

Record length in char19ters for F type 
records, lO through l~H -1). For Z type 
records, l through 10(2 -1); establishes the 
upper limit of characters or blank padding 
moved to the working storage area. 

File organization. 

Absent or FO=SQ 

Sequential file 

FO=WA 

Word addressable file 

First word address of the buffer. If FWB is not 
provided by the user, the minimum buffer needed 
or the amount specified by the BFS field is 
provided. 

Absent or FWB=O 

No user-supplied buffer. 

FWB=exp 

Address of the buffer. 

Header length; length of the fixed length portion 
of a T type record. 

LA 

LBL 

Absent or HL=O 

Must be defined for open. 

HL=aexp 

Header length in characte}8, cannot be less 
than CP+CL; maximum 10(2 -1). 

Label area address. 

Absent or LA=O 

No area specified. 

LA=exp 

First word address of the iabel area. 

Label area length. 

Absent or LBL=O 

No label area length specified. 

LBL=aexp 

Length in characters; maximum 900. 

LFN Logical file name. 

LL 

LP 

LT 

LX 

LFN=axxxxxx 

axxxxxx is a one- to seven-character name 
beginning with a letter. 

Length field length of a D type record 

Absent or LL=O 

Must !::>e defined for open. 

LL=aexp 

Length in characters; maximum 6. 

Beginning character position of the length field 
for a D type record. 

Absent or LP=O 

Beginning character position is zero. 

LP=aexp 

Beginning character position n~rbered from 
zero on the left; maximum 10(2 -LL-1). 

Label type. 

Absent or LT =UL 

Unlabeled 

LT=S 

ANSI standard 

LT=NS 

Nonstandard 

LT=ANY 

Any 

Label routine exit. 

Absent or LX=O 

No user label processing routine supplied. 

60495700 D 

' c 
c 
4[ 

c 
t 
c 
f 

« 
I 

C. I 
( I 

I 
fi I 

I 
c i 

« 
c 

• 

t I 
f 
( 

c I 
I 
""' I 

""" i 

' 
II 
I ... 
I 

,, ~ 
~· 



(_ 

( 

( 
c:_ 

,. 
' 
( 

( 

c 
( 

(_ 

c 

MBL 

MNB 

MNR 

MRL 

MUL 

LX=exp 

Address of the user-supplied label processing 
routine. 

Maximum block length in characters; should not 
be changed after OPENM. 

Absent or MBL=O 

The default depends on block type: 

BT=K 

BT=E 

BT=I 

BT=C 

MBL=aexp 

error 

error 

MBL forced to 5120 

MBL forced to 5120 characters for S 
tapes and BFS minus two for L 
tapes; PRU devices considered 
unblocked 

Length of data block in characters. r or K 

and E type blocks with Z type records, MBL 
must not be less than FL + 10. For I type 
blocks, any MBL is overridden. 

Minimum 'Jlock length for sequential file K an':i E 
type blocks. 

Absent or MNB=O 

No minimum block length speci tied. 

MNB=aexp 

Minimum block length in characters; maxi
mum MBL. 

Minimum record length of sequential fiie records. 

Absent or MNR=O 

Minimum length is zero. 

MNR=aexp 

Minimum record length in characters; 
maximum MRL. 

Maximum record length of D, R, T, U, and W type 
records. 

Absent or MRL=O 

No maximum record length; any record length 
is acceptable for PUT. No data is rnoved for 
GET. 

MRL=aexp 

Max~'71um length in characters; maximum 
10(2 -1). Establishes the upper limit of 
characters moved to the working storage 
area. 

Multiple of characters per block in which sequen
tial file K and E type blocks are written. 

Absent or MUL=O 

Characters per block is a multiple of 2. 

MUL=aexp 

Characters per block is a multiple of aexp; 
maximum 63. 

60495700 0 

OF 

PC 

PD 

RB 

RMK 

RT 

Open flag. File positioning at OPENM time. 

Absent or OF =R 

Rewind. 

OF=N 

No rewind. 

OF=E 

Position at end-of-information for extend. 

Padding character for sequential file K and E type 
blocks. Specified in display code. PC must not be 
the same as the record mark character. 

Absent 

Padding character is 76
8

• 

PC=ccB 

Padding character is octal value cc; maxi
mum 778• 

Processing direction. 

Absent or PD=INPUT 

Input (read). 

PD=OUTPUT 

Output (write). 

PD=IO 

Input-output (read and write). 

Records per biock in a sequential file K type 
block. 

Absent or RB=O 

RB set to 1. 

RB=aexp 

Blocking factor limit is 212- 1. 

Record mark character in display code. Used as 
the delimiting character with R type records. 
RMK must not be the same as the padding 
character. 

Absent or RMK=O 

Record mark is 62
8

• 

RMK=ccB 

Record mark is octal value cc; maximum 77 8• 

RMK=lRx 

Rer.ord mark is x; any character. 

RMK=cc 

Record mark is decimal value cc; maxi
mum 63. 

Record type. 

Absent or RT=W 

Control word 

3-5• 



SB 

SBF 

SPR 

TL 

ULP 

•3-6 

RT=F 

Fixed length 

RT=R 

Record mark 

RT=Z 

Zero byte type 

RT=D 

Decimal character count 

RT=T 

Trailer count 

RT=U 

Undefined 

RT=S 

Syste 1 n-logical-records 

Sign overpunch; COBOL sign overpunch option for 
the length field for D and T type records. 

Absent or SB=NO 

Unsigned display code. 

SB= YES 

Sign-overpunch scheme used. 

Suppress buffer flag. Suppresses allocation of 
buffers and circular buffering. The GET\AJR and 
PUTWR functions do not require circular buffers 
for sequential files with S type records or files 
with K type blocks and the RB field set to l. If 
all the records of a word addressable file are 
multiples of PRU size and start on PRU bound
aries, the circular buffer is not used. 

Absent or SBF =NO 

Allocates buffers from the information given 
in the FWB and BFS fields. 

SBF=YES 

No buffer space is allocated. 

Suppress read ahead. 

Absent or SPR=NO 

Read ahead. 

SPR=YES 

Read oniy one biock at a time. 

Trailer length of a T type record. 

Absent or TL=O 

Must be defined for open. 

TL=aexp 

Specified in characters; maximum 217 - l. 

User label processing. (See section 6.) Specifies 
conditions that transfer control to the user iabel 
processing routine. 

VF 

WSA 

Absent or ULP=NO 

None 

ULP=V 

VOL/EOV 

ULP=F 

HOR/EDF 

ULP=VF 

VOL/HDR/EOV /EOF 

ULP=U 

UVL/UHL/UTL 

ULP=VU 

VOL/EOV /UVL/UHL/UTL 

ULP=FU 

HDR/UHL/EOF /UTL 

ULP=VFU 

All 

Volume close flag. 
CLOSEM time. 

Absent or VF =U 

Unload 

VF=R 

Rewind 

VF=N 

No rewind 

Volume positioning at 

Working storage area address. Must be set before 
any file processing command uses the working 
storage area. It can be set by macros GET, PUT, 
and REPLACE. 

Absent or WSA=O 

No working storage area specified. 

WSA=exp 

Address of the working storage area. 

FILE CONTROL ST A TEMENT 

With the FILE control statement, the user specifies file 
information to update the FIT when the SETFIT macro is 
issued, or the first time the file is opened in the job step. 
This run-time control over file specification allows a single 
program to process files with different record or block 
types. Corresponding FIT fields have the value specified on 
the last control statement encountered. 

FILE control statements must be placed before any program 
call in which the information on them is to be used. Because 
processing of the FILE control statement involves calling a 
central processor program, it should not be placed within a 
load set sequence, for example, between a LOAD and an 
EXECUTE. If more than one FILE control statement 
appears for a given file, the data on the first control 

60495700 D 

' f: 
t 

c 
c 
f 
t• 

t 
c 
c 

I 
t 

« 
4 
c 

-
4 

t 
I 

fl 
'ill 

I 
I 

.,. I 
ti ~ 

I 
@I 

I ,. 
~ • ~ 1:t 



C'. 

(I 

c: 

( 

( 

(, 

(, 

{ 

statement can be overwritten by the data on a subsequent 
statement when overlapping fields occur on those state
ments. The FILE control statement conforms to operating 
system coding conventions. 

If an error diagnostic is produced by FILE control statement 
processing, the entire statement is ignored. FILE control 
statement diagnostics are written on the dayfile as soon as 
the error is encountered; they name the faulty parameter 
and are self-explanatory. Control is passed to the next EXIT 
if an error occurs in FILE control statement processing. 

The FILE control statement format is shown in figure 3-2. 
FILE control statement keyword options can be specified in 
any order. Keywords have the same meaning as described 
for the FILE macro. 

If only the lfn parameter appears in the FILE control 
statement, the FIT fields for that file revert back to those 
specified in the program for all succeeding job steps, unless 
another FILE control statement references that file. If the 
FILE control statement appears without any parameters, FIT 
fields for all files revert back to those specified in the 
program for all succeeding job steps until another FILE 
control statement is encountered. 

The FILE control statement parameters are listed in 
table 3-3. The various options for a keyword are separated 
by the I symbol. If the keyword is selected, one of the 
options must be selected and the others must be omitted. 

FILE (lfn[=axxxxxx] [,keyword=option] ... ) 

lfn 

=axxxxxx 

Name of a FIT; required. 

Optional new name for the FIT; 
aiiows a fiie to be requested by a 
new name without reassembly. 

keyword=option Symbolic name of the FIT field 
and the option selected. 

Figure 3-2. FILE Control Statement Format 

Parameter values are absolute; generally they refer to 
number of characters. Value formats are denoted as: 

n ••• n Value is decimal 

n ••• nB Value is octal 

n ••• nW Value is decimal, specified in words 

Parameter values for the FIT fields that can be set by the 
FILE control statement are the same as the parameter 
values for the FILE macro. The parameter values for the 
FIT fields that can be set by the FILE control statement but 
not by the FILE macro are as follows: 

LCR Label check/creation. Must be specified by the 
user. 

LCR=E 

Existing label is read and checked. 

LCR.=N 

New label is written. 

MFN Multifile set name. 

PNO 

MFN=axxxxxx 

axxxxxx is the one- to seven-character name 
beginning with a letter. 

Multifile position number. Specifies the position 
number of the member file on the multifile set. 

PNO=aexp 

aexp is the position number in display code. 

RUN-TIME MANIPULATION 
The user can communicate with BAM through the FIT 
without knowing the exact format of the FIT. This is done 
with the FETCH, STORE, and SETFIT macros, using the FIT 
field mnemonics. 

TABLE 3-3. FILE CONTROL STATEMENT PARAMETERS 

Keyword Options Keyword Options Keyword Options 

ASCII DI 112 FO SQIWA OMIT macro name/macro name/ ••• 

BBH NOIYES HL Din ••• nln ••• nBln ••• nW PC Din ••• n 

BFS Din ••• nln ••• nB LBL Din ••• nln ••• nBln ••• nW PD INPUTIOUTPUTIIO 

BT IICIKIE LCR EIN PNO Din ••• nln ••• nB 

CF RI NIUIRE Tl DETI DIS LFN lfn RB Din ••• nln ••• nB 

CL Din ••• nln ••• nBln ••• nW LL Din ••• nln ••• nB RMK DlnnBlnn 

CM YES I NO LP Din ••• nln ••• nBln ••• nW RT WIFI RIZIDITIUIS 

CNF NOIYES LT SINSIULIANY SB NO I YES 

CP Din ••. nln ••• nBln ••• nW MBL Din ••• nln ••• nBln ••• nW SBF NO I YES 

Cl NOIYES MFN file name SPR NO I YES 

DFC Dlll213 MNB Din ••• nln ••• nBln ••• nW TL Din ••• nln ••• nBln ••• nW 

EFC DI 11213 MNR Din ••• nln ••• nBln ••• nW ULP NOIVIFIVFI UIVUIFUIVFU 

EO Tl 0 IAI TDI DOI AD MRL Din ••• nln ••• nBln ••• nW USE macro name/macro name/ ••• 

ERL Din ••• nln ••• nB MUL Din ••• nln ••• nB VF UIR 

FL Din ••• nln ••• nBln ••• nW OF RINIE 

604957DD D 3-7• 



FETCH 

The FETCH macro retrieves the contents of a specified FIT 
field by a reference to its mnemonics. The macro format is 

shown in figure 3-3. 

FIT field mnemonics can be any of the keywords used with 
the FILE macro, or any of the fields listed in figure 3-3. 
The macro generates code to extract the requested value 
from the FIT. The code expansion destroys values in user 
registers Xf, Xm, Af, and Xi (which can be Xf or Xm). 

STORE 

This macro places a user-determined value in a FIT field at 
execution time. The format of the STORE macro is shown 
in figure 3-4. The STORE macro generates code to store 

FETCH fit,keyword,Xi,f,m 

fit 

keyword 

m 

Xi 

•3-8 

Logical file name address of the FIT, or 
any COMPASS expression giving the FIT 
address. If fit is Xf or Xm, its contents 
are changed upon return. 

Any of the keywords in the FILE macro, 
FI LE control statement, or any of the 
following (when the keyword represents 
a length, the length is returned as 
characters) : 

BN Block number 

ECT Error count 

ES Error status (equivalent to 
IRS) 

FNF Fatal error flag 

FP File position field 

IRS Error code 

LOP Last operation 

OC Open/close status 

PEF Parity error flag 

PTL Partial transfer length 

RC Record count 

RL Record length 

SES System error severity 

VNO Volume number 

WA Current word address 

WPN Write bit 

Number of the X register used to fetch the 
FIT word, Must be 1 through 5 (default 
is 5). 

Number of the X register used as a mask 
(default is 7). 

X register to receive the value. of the 
requested field. If keyword represents a 
1-bit field, it is returned in the sign bit. 
Keywords that are file names are returned 
left-justified with zero fill; otherwise, the 
keyword is returned right-justified with 
zero fill. 

Figure 3-3. FETCH Macro Format 

the requested value in the FIT. This code expansion destroys 
the values in user registers Xf, Xs, Xm, Af 1 As, and Xi 
(which can be Xf, Xs, or Xm). 

STORE fit keyword= {option } f s m 
I Xi . , , , 

fit 

keyword 

option 

Xi 

f 

s 

m 

Logical file name address of the FIT, or 
any COMPASS expression giving the 
address or a tag. 

Any keyword described in connection 
with the Fl LE macro, except OF, BT, 
or RT. 

Options associated with the keyword. 

X register containing the proper code for 
the keyword. When the keyword repre
sents a length, it is specified in charac
ters. 

Number of the X register used to fetch 
the FIT word. Must be 1 through 5 
(default is 5). 

Number of the X register used to store 
the FIT word. Must be 6 or 7 (default 
is 6). 

Number of the X register used as a mask 
(default is 7). 

Figure 3-4. STORE Macro Format 

Most FIT fields listed in appendix D can be set symbolically 
by STORE. Some fields are protected against a STORE; 
others, such as the structure of a sequential file, are not 
protected but should not be changed after the file has been 
opened. 

A parameter can be set by using the option with the 
keyword, or using a register to hold the option as shown in 
figure 3-5. Examples a and b have an identical effect, just 
as c and d have an identical effect. 

a. STORE fit,RL=10 

b. SX1 10 
STORE fit,RL=X1 

c. STORE fit,FO=SQ 

d. SX1 0 
STORE fit,FO=X1 

Figure 3-5. STORE Macro Examples 

SETFIT 

The SETFIT macro sets fields in the FIT. The macro format 
is shown in figure 3-6. The SETFIT macro makes FILE 
control statement information available without the need 
for complete OPENM processing. This makes it possible for 
system routines to obtain information, such as run-time 
buffer requirements, needed by other system routines. Also, 
SETFIT allows the user to cause FILE control statement 
processing when it would not otherwise occur. Values in all 
user registers are destroyed. 

60495700 D 

c 
( 

c 
c 
c 
( 

[ 
c 

c 
c 

I • 
I 
I 
I 
I 

I 

I 
I 



( 

( 

( 

( 

( 

( 
c 
( 

(' 

C: 

(. 

SETFIT is valid only for a closed file. Once FILE control 
statement values are placed in the FIT, the macro sets the 
FILE control statement processed flag (PDF) field of the FIT 
to inhibit further FILE control statement processing during 
OPENM. The flag is cleared during subsequent OPENM 
processing. 

If SETFIT is issued and the user setting for the buffer size 
(BFS) field is zero, the BFS field is set to the buffer size 
normally allocated, based on other FIT values. 

60495700 D 

SETFIT fit 

fit Address of the FIT, or an X register containing 
the address of the FIT. 

Figure 3-6. SETFIT Macro Format 

3-9• 



' ! I 
I 
I f i 
i 
I 

t i 
I C I 

• I , I 
I 

f I 
I 

c 
4 

c I 
I - ~ i 

l I 
i 

• I ~ I 
i 

• I 
• I 
t i 

• I I 
- I , I 

c I 
f I 

I 
ii t I 
~ 

I : 
"' ~' 
11 "' "If 



c 

c: 

( 

(' 

( 

( 

[ 
c 
I' 

' 
(~ 

( 

( 

( 

( 

( 

~[' 

FILE PROCESSING 4 

This section explains the logical operations of processing a 
sequential or word addressable file, and explains macros as 
applicable to each file organization. For a general explana
tion of all macros and a detailed listing of their parameters, 
refer to section 5. 

Before a file can be processed, the user must establish a file 
information table (FIT). Establishing the FIT sets a name by 
which the file can be referenced and defines the file 
structure and processing limitations. This table contains 
fields that are referenced whenever BAM processes the file. 
FIT fields can be set prior to file processing by the FILE 
control statement, FILE macro, SETFIT macro, and STORE 
macro. 

SEQUENTIAL FILES 

In addition to the file manipulation macros, the following 
macros can be used to process a sequential file: 

CHECK,CHECKR 

CLOSEM 

ENDFILE 

GET,GETP,GETWR 

OPE NM 

PUT,PUTP,PUTWR 

REPLACE 

REWINDM 

SKIPdu 

WEOR 

WTMK 

All record types are applicable for sequential files. Except 
for S type records, records in a sequential file are physically 
grouped into blocks. Once the user has defined the record 
and block type, BAM performs all the manipulations required 
for block construction. Sequential files can reside on mass 
storage devices or magnetic tape; files with K or E type 
blocks can reside only on S/L tapes. 

OPEN PROCESSING 

All files must be initialized using the OPENM macro. 
Before opening a file, however, the user must call for 
construction of the FIT by specifying the logical file name. 
The file organization can also be specified, but the default is 
sequential. 

The record type (RT) and block type (BT) fields, and any 
other fields needed to describe record and block type, must 
also be specified before a new file can be opened. For 
certain systems files, BAM forces the values of the RT, BT, 
and FL fields of the FIT, as shown in table 4-1. 

60495700 D 

Consistency checks are performed on certain FIT fields 
when the file is opened the first time in a job step. 
Table 5-1 in section 5 lists the fields that are checked for 
consistency. If a file is closed and then reopened and the 
close flag (CF) field of the FIT is set to R or N, consistency 
checks and complete FILE control statement processing are 
not repeated. 

The following fields can be specified prior to opening a file, 
but need not be set in the FIT until they are required by file 
processing commands; they can change at any time during a 
subsequent file processing run: 

DX End-of-data exit; default is no end-of-data 
routine 

EX 

ERL 

DFC 

EFC 

Error exit; default is no error routine 

Trivial error limit; default is an indefinite 
number of trivial errors permitted 

Dayfile control; default is only fatal errors 
listed 

Error file control; default is no error messages 

If label processing is specified, it is initiated during OPENM 
processing. A conflict between labels specified on the 
REQUEST statement and the label type (LT) field causes an 
informative dayfile message and inhibits user label proc
essing. When a labeled file is opened, label checking and 
creation is based on the label check/creation (LCR) field of 
the FIT. Refer to section 6 for further information about 
label processing. 

INPUT /OUTPUT PROCESSING 

The GET and PUT macros and variations of these macros 
read and write files. A working storage area must be 
established to pass data to and from the program and a file 
storage device. The user defines the working storage area 
(WSA) by supplying an address for the WSA field of the FIT. 
This is normally done when the GET or PUT macro is issued. 
A GET macro transfers data from the buff er area to the 
working storage area. A PUT macro transfers data from the 
working storage area to the buffer area. 

If only the GETWR, PUTWR, REWINDM, and SKIP macros 
are to be used for files with logical and physical records 
equivalent, the suppress buffer flag (SBF) field of the FIT 

TABLE 4-1. SYSTEM FILES FORCED VALUES 

System File Farced Values 

lfn=INPUT RT =Z, BT =C, FL=BO 

lfn=OUTPUT RT=Z, BT=C, FL=l40 

lfn=PUNCH RT =Z, BT =C, FL=BO 

lfn=PUNCHB No forced value 

4-1• 



can be set to YES. The file must have S type records, or K 
type blocks with one F or U type record per block. If these 
restrictions are observed, field length requirements are 
T"orl11nll':':'.'!lrl rtnrl ,....,t"'\r"\ .. Y....,,1 _y. ___ "'..,.,....., _.,;,........_ ,,.. __ ,.;.,,,...,...,f .f,...T' ,.......,,'""h 
l'-''•--H..t'-'l.....·U t ••• l!!U '-'-'llL..t.0.L tJfU\-.L.UUUl Lllll'I;;" lV'-fUllCU IUJ. 1-LI\.-il 

input/output operation is reduced. The elapsed time 
required to obtain input/output overlap with processing is 
dependent on the use of the CHECK or CHECKR macro. If 
the restrictions are not observed, processing advantages do 
not apply and the use of CHECK or CHECKR is redundant. 

Input Processing 

The maximum record length (MRL) field of the FIT must be 
set by the user for reading a file. When a record is 
transferred from the buffer to the working storage area, if 
the MRL is zero no data is transferred. If the MRL field is 
not zero, that value becomes the upper limit for the number 
of characters transferred even if the record exceeds that 
length. 

Records in a sequential file are read in the order that they 
occur in the file. They can be read as whole or partial 
records. 

The GET macro reads whole records. The record length 
(RL), record count (RC), and block number (BN) fields of the 
FIT are updated during processing. Data transfer always 
starts at the next record available. If a GET macro is issued 
when the file is positioned at midrecord because of a prior 
GETP macro, a skip is made to the record boundary before 
beginning the GET operation. When the GET macro 
encounters any end-of-data condition, control is passed to 
the end-of-data routine. 

If the amount of data indicated by the W control word or by 
the contents of a length or record mark character field is 
greater than the value specified by the MRL field, the 
record is truncated to the number of characters specified by 
the MRL field and an excess data error is returned. If the 
amount of data is less than the value specified by the fixed 
length (FL) field on F type records or less than the indicated 
record length on other types, an insufficient data error is 
returned. 

At the conclusion of a successful read operation, the value 
of the RL field is the same as the value specified for the RL 
field for the operation requested. At the conclusion of a 
read with an insufficient data error, the RL field reflects 
the number of characters transferred to the working storage 
area. 

The GETP macro transfers part of a record to the user 
working storage area. The partial transfer length (PTL) 
field specifies the number of characters to be transferred. 
At the end of the GETP operation, the PTL field indicates 
the number of characters actually transferred. The value of 
the PTL field at transfer completion is the same as the 
transfer requested unless a record boundary or error 
conditton is encountered. 

If the GETP operation initiates record transfer, the EOR 
flag in the file position (FP) field of the FIT is cleared. 
When the last data of the record is transferred, the EOR 
flag is reset. A GETP operation does not cross record 
boundaries. 

The GETP macro transfers characters from the beginning of 
a record or from the next character available in the record. 
If the SKIP parameter is specified, however, transfer begins 
at the start of the next record if current position is within a 
recurd. The s~~p µdrauieLer it> iyiiureJ if CLliTenL fJUtiiL;Uil ~b 

•4-2 

at the beginning of a record. When the first GETP macro 
for a record is issued, the RL field is cleared. At the 
completion of each GETP operation, the RL field is updated 
to indicntc the number of characters read so far. 

For U type records, the RL field must be used to specify 
total record length prior to issuing the first GETP macro for 
the record. If the length of an S type record is unknown, the 
user must make a series of GETP requests for PTL 
characters, where PTL is the length of the working storage 
area. When the first GETP macro is executed, the FP field 
of the FIT is set to zero to indicate position in the midst of 
a logical record. When a subsequent GETP macro completes 
record retrieval, the EOR flag of the FP field is set, and the 
length of an S type record becomes known. Consequently, 
the user must check the FP field for EOR to determine when 
the record boundary has been reached. 

For D and T type records, the first GETP macro for a record 
must initiate transfer of at least the number of characters 
specified by the value of the minimum record length (MNR) 
field. For R type records, the GETP macro is not valid. 

S type records c::'2':zbe larger than 223 -1 characters. In this 
case, RL is mod 2 • 

The GETWR macro initiates the transfer of data in units of 
words and transfers control to the user. The GETWR macro 
is intended for use in conjunction with the suppress buffer 
option. Refer to GETWR processing in section 5 for a 
complete description of the macro. 

Output Processing 

The PUT, PUTP, and PUT WR macros writs data to a 
sequential file. An existing file can have records added to it 
after the previous EOI. 

The MRL field need not be set to execute a PUT or variation 
of a PUT. When a record is transferred from the working 
storage area to the buffer and the MRL field is set to zero, 
any number of characters can be written. If the MRL field 
is not zero, that value becomes the upper limit on the 
number of characters that can be transferred. 

The PUT macro writes an entire record. Data transferred 
by the PUT macro is written immediately following the last 
data written to the file. Each PUT operation creates a new 
record. On R type records, the user must place the record 
mark character in the record. On D and T type records, the 
user must set the control fields. The record count (RC) and 
block number (BN) fields are updated when record and block 
boundaries are crossed. 

The PUTP macro transfers part of a record from the 
working storage area. The user must set the PTL field to 
specify the number of characters to be written, The 
execution of the first PUTP macro begins a new record. The 
second PUTP macro writes characters immediately after the 
last character written. The RL field can be specified for 
the first PUTP macro for S, U, Z, and W type records. If the 
RL field is zero for Z type records, the value of the FL field 
is used. For all other record types, the value of the RL field 
is determined by BAM. When the number of characters 
equal to the RL value has been transferred, the record is 
terminated. S, U, and W type records can use the TERM 
parameter on the last PUTP to terminate the record. An 
indefinitely long S type record can be written by using a 
series of PUTP macros followed by a WEOR of any level, or 
a PUTP macro with the TERM parameter specified. A PUT 
macro following a series of PUTP requests that did not 

. - ' .. - - . - •• -- ...I •• - ·•· . --· - -
L;U1 i ij..JH:;'-'"t;; ci i t;;\...:Ui U l~ di i tj! i"Ui • 

60495700 D 

' 
f 
t' 

t' 

-
f 

4 

4 
t 

I 
4 I 

I 
I 

I 

( 
I 

I 
I 
I 
$i 

I 
i 

t I 
I 
I 
i 

ti 
I ( I 
I 

c· I 
I • 

f I 
I 

41 
I 
I 

~ I 
I 
! 
:; 

4 
'Ill 

I 
i 
ill 

! 

' 
i 
j 

' ! 
~ 

' 
~ 



( 

C' 

(' 

( 

c: 

( 

( 
c ,. .. 
<: 

( 

( 

The PUTWR macro initiates the transfer of data in units of 
words and transfers control to the user. The PUTWR macro 
is intended for use in conjunction with the suppress buffer 
option. Refer to GETWR processing under the GET macro 
discussion in section 5 for a complete description of the 
macro. 

A file can be updated using the REPLACE macro. The 
REPLACE macro replaces the last record read with a record 
from the working storage area. The replacement record has 
the same record length as the record being replaced, and it 
must be a mass storage file. The record type can be W or F 
only; the block type must be C. 

Processing 9-Track Binary S/L Tapes 

Nine-track tapes must record multiples of eight bits; 
however, BAM deals exclusively in six bit characters. If the 
data being written is not a multiple of eight bits, the driver 
rounds it up to the next multiple of eight bits. If the data 
being read from the 9-track device is not a multiple of six 
bits, BAM rounds it up to the next multiple of six bits. If 
the file is repeatedly copied, a block can contain up to three 
extraneous undefined six bit characters before it is a 
multiple of six and eight. 

To compensate for this, the user of S type records can either 
set the maximum record length (MRL) field to three 
characters larger than the actual data size or ignore the 
excess data errors. For record types other than S, the user 
can specify a value of greater than three for the minimum 
record length (MNR) field; BAM then ignores three or less 
extraneous characters at the end of the block. 

To avoid the extraneous characters when the user is 
processing eight bit data in S type records, the record length 
(RL) field should specify a value rounded up to the next 
multiple of six, and the BBF field should be set to YES. This 
causes BAM to write the next lower multiple of eight bits to 
the device. 

FILE POSITIONING 

The REWINDM macro repositions a mass storage file to the 
BOI. REWINDM positions labeled tapes to a point after the 
labels at the beginning of the first file volume. REWINDM 
positions unlabeled tapes to the load point of the volume 
currently mounted. 

The SKIPdu macro repositions an existing sequential file 
forward or backward. The user must specify the direction of 
the skip, the type of units to be skipped, and the number of 
units to be skipped. 

Backward Skipping 

A file positioned at unit number rn with a skip count of n is 
positioned to unit m minus n upon completion of the skip 
backward. Positioned at a unit means ready to read 
beginning at that unit. The positioning of a file after a 
SKIPBu of two mits is shown in figure 4-1. 

Position after Original position 

m-4 m-3 m 

Figure 4-1. SKIPBu Positioning 

60495700 D 

If an input file is positioned at midrecord when a SKIPBu 
macro is issued, operation is as if the file were positioned at 
the end of that unit. If a file is positioned at midrecord 
when a SKIPBu macro with a zero count is issued, the file is 
positioned to the start of that unit. A SKIPBL macro after 
the execution of a PUTP macro that did not terminate a 
record is an error. 

No automatic volume switching occurs when a SKIPBu 
macro is issued for a multivolume tape file. An error results 
if the load-point is reached. If a boundary condition is 
detected before the skip count is exhausted, control is 
transferred to the end-of-data routine with the appropriate 
file position set. The file is left positioned immediately 
before the delimiter. The boundary conditions are: 

SKIPBL Section, partition, beginning-of-volume 

SKIPBP Partition 

SKIPBu Beginning-of-information, load point on 
- '"--- .c:1_ 
i::I. l.i::l.jJI:: I 111:: 

The restrictions on SKIPBu, with respect to record and block 
type, are as follows: 

SKIPBL is not supported for T, R, U, and D record 
formats, or for K and E type blocks. 

If SKIPBL is attempted when a file residing on a PRU 
device with C type blocks and F type records is 
positioned at EOS, EOP, or EOI, it is not possible to 
determine the exact record boundary. If the fixed 
length (FL) field is not a multiple of 10, positioning can 
be unpredictable (not a record boundary). 

Forward Skipping 

A file positioned at unit number m with a skip count of n is 
positioned to unit m plus n upon completion of the skip 
forward. Positioned at a unit means ready to read that unit. 
If a file is positioned at midrecord when a SKIPFu macro 
with a zero count is issued, the file is positioned forward to 
the unit boundary. If a file is positioned in the middle of a 
record when a SKIPFu macro with a non-zero count is 
issued, the file is positioned forward to the unit boundary, 
and then po.sitioned forward the number of units specified • 
A SKIPFL macro is not allowed with U type records. An 
output file cannot be positioned forward. 

If a boundary condition is detected before the skip count is 
exhausted, control is transferred to the end-of-data routine 
with the appropriate file position set. The file is left 
positioned immediately after the terminator. The boundary 
conditions are: 

SKIPFL Section, partition 

SKIPFP Partition 

SKIPFu End-of-information 

CLOSE PROCESSING 

At completion of processing, a file must be closed by the 
CLOSEM macro. Any remaining records of an output file 
are written from the buffer to the file storage device; the 
open/close flag (OC) field of the FIT is set to closed; the 
action designated by the close flag (CF) field of the FIT is 
performed; and control is returned to the user. 

4-3• 



It is important that all files be closed. During normal 
termination, the error file is flushed when the last file in a 
job step is closed. Therefore, error information can be lost 
:.t ..... 11 .t:•-- --- ..... -~ _, ___ ..J 
l J OJ.J. I .lJ.c;:~ 01 c:; I IV\. l..JU'°'t;;U• 

Endaof a Data Processing 

End-of-data occurs when an input/output data transfer or 
positioning operation is attempted and there is no more data 
or space on the file, partition, section, or volume because 
one of the following end conditions was encountered: 

End-of-information 

End-of-partition 

End-of-section 

The end-of-data exit (DX) field specifies the address of a 
user routine for processing an end-of-data condition. When 
an end-of-data condition exists, control is passed to the 
address (DX)+l. A jump back to the user in-line return code 
is stored at the DX address. The file position (FP) field 
specifies the end condition that caused the transfer of 
control to the end-of-data exit. 

The only requests permitted for sequential files opened for 
input, after file position EOI has been set, are CLOSEM, 
REWINDM, and SKIPBu. The only requests permitted for 
1-0 sequential files, after file position EOI has been set, are 
CLOSEM, SKIPBu, REWINDM, ENDFILE, or PUT. 

A GET operation that transfers control to the end-of-data 
exit does not transfer data to the working storage area. 
Transfer of control to a user's data exit is an empty GET in 
that no more data remains; therefore, an end-of-data 
condition exists. The FP field is not sat until a ma is 
logically at the position specified. 

Caution must be taken with short records, since PRU 
devices always contain blocks which are a multiple of 10 
characters. EOS, EOP, and EOI are not always correctly 
detected on a file on a PRU device with F, R, U, D, or T 
type records and C type blocks when the value of the RL 
field is less than 10 characters. The padding that has been 
added to the final block of the file can be greater than or 
equal to the length of the record. The EOI is not recognized 
and the padding is processed as valid data. 

File Boundary Processing 

The CLOSEM macro must be issued to ensure proper EOI 
processing. The buffer is flushed and, except for unlabeled 
S/L tapes, an EOI is written to the file. A CLOSEM request 
for an OUTPUT or 1-0 sequential file can cause trailer 
records to be written for W type record files. A deleted 
zero-length record is written on OUTPUT or 1-0 sequential 
files. 

Label processing is performed, if appropriate. Label 
processing performed on 1-0 sequential files is controlled by 
the last operation on the file. If the operation was output, 
labels are created. If the operation was input, labels are 
checked. On any input labeled file, label checking is 
performed only if the end-of-information or end-of-volume 
has been reached. Control is transferred to the user
supplied label routine, if one has been specified. 

The CLOSEM VOLUME request forces volume switching to 
the next reel of a multivolume file. If a value is not 
supplied for the CF field with the CLOSEM macro, the value 
in the volume close flag (VF) field of the FIT is used. The 
current volume number (VNO) field of the FIT is incre
mented when volumes are switched. 

•4-4 

The following actions occur when N is used to specify no 
rewind on a multivolume file opened for OUTPUT: 

Two tapemarks are written. 

Volume is rewound or unloaded (N parameter is 
overridden). 

New volume is requested by the system and 
checked. 

Data transfer continues on the new volume. 

Unlabeled SI, X, B, or I Tapes 

Default tapemark and EOVl label is written. 

Volume is rewound or unloaded (N parameter is 
overridden). 

New volume is requested by the system and 
checked. 

Data transfer continues on the new volume. 

Standard Labeled S/L and SI, X, B, or I Tapes 

If the user has issued a CLOSEM/VOLUME causing the 
buffer to be flushed, or if the system has detected an 
end-of-tape, the following occurs: 

Control is passed to label routine exit (LX) if 
defined. 

EOV labels are written. 

Volume is rewound or unloaded. 

Control passes to the LX address if defined. 

New volume is requested and checked. 

BOV labels are written. 

Data transfer continues. 

Divisions larger than a record can be specified by issuing a 
macro to write an end-of-section, end-of-partition, or end
of-information. A partition can be terminated with the 
ENDFILE macro. Before the EOP is written, the buffer is 
flushed. The results of ENDFILE depend on the format of 
the file as described under a description of the macro in 
section 5. 

A section can be terminated by using the WEOR macro. 
Before the EOS is written, the buffer is flushed. The results 
of WEOR depend on the format of the file, as shown under a 
description of the macro in section 5. 

The purpose of the WTMK macro is to write tapemarks in 
nonstandard label processing. It should not be used 
elsewhere. 

TERMINAL FILE PROCESSING 

BAM uses a specialized capsule for processing files on 
terminal devices. It processes Z and S type records. W and 
U type records can also be specified, but they are processed 
as S type records. D, T, R, and F type records cannot be 
specified. 

60495700 D 

~ 

c 
« 
c 
c 
c 
« 
c 
c 
c 

( 
i 
i 

t i 
I 
I 

c I 

I t I 
t I 

I 
I 
I 

t I 
I 

-[ I 

I f 

~i 
" "' I 
I 
~ 

~ 
..I' I 

' I 
I 
jj 

I 



c: 

c 
c 
( 

c 
(_ 

( 
c 
( 

(, 

( 

(. 

( 

If the files device type is terminal, BAM sets the connect 
file (CNF) field of the FIT to YES during open processing. If 
the user sets the CNF field to YES, BAM connects the file. 

The user need not reserve buffer space for terminal files. 
BAM uses one file to write data to the terminal. If the first 
file written is OUTPUT, that becomes the name of the file 
used; otherwise, the file used is ZZZZZOU. The user defined 
FIT is used for reading; data is read directly to the working 
storage area. 

Under the NOS/BE operating system, the type of character 
set used can be specified by setting the ASCII field of the 
FIT. If this field is nonzero, the record length (RL) field is 
still treated as the number of six bit characters to be read 
or written, but blank stripping and padding is done using a 
12-bit ASCII blank (0040B) instead of a six bit display code 
blank (55B). This ensures no extraneous display code blank 
(55B) being added or removed from ASCII files. BAM leaves 
one blank (either 55B or 0040B) on each record written to 
separate question/answer interaction. 

Under the NOS/BE operating system, an input file must be 
terminated with a %EOF to insure an end-of-data exit. A 
%EOR is treated as a blank record. 

A terminal file can be closed and disconnected by setting 
the cf parameter to DIS with the CLOSEM macro. The file 
must be reopened with the CNF field set to NO to be used as 
a local disk file. 

Programs doing terminal 1/0 and using static loading must 
use the special names TGET and TPUT with the USE 
parameter on the FILE control statement to load the special 
terminal I/O capsule. Refer to appendix E for a discussion 
of static and dynamic loading. 

WORD ADDRESSABLE FILES 

In addition to the FIT manipulation macros, only the 
following macros can be used to process word addressable 
files: 

CLOSEM 

GET 

OPENM 

PUT 

Word addressable files must reside on mass storage. Only 
record types F, U, and W can exist in word addressable files. 

OPEN PROCESSING 

All files must be initialized using the OPENM macro. 
Default values are inserted into FIT fields for certain values 
not supplied prior to open processing. 

When a file is opened as a new or existing file, the user must 
have previously set the record type (RT) field of the FIT, or 
the default of W type records is set. For F or Z type 
records, the fixed length (FL) field must also be set. 

The following FIT fields can be set before the file is opened 
and should not be changed until another open is executed: 

PD Processing direction; default is INPUT 

FWB First word address of the buffer; default 
address is supplied 

60495700 D 

BFS Buffer size; . default of minimum space is 
provided except when the suppress buffer flag 
(SBF) field is set to YES 

The following FIT fields need not be set until they are 
required by file processing commands and can be changed at 
any time: 

EX Error exit; default is no error routine 

DX End-of-data exit; default is no end-of-data 
routine 

MRL Maximum record length; default is 0 

Certain consistency checks are performed on FIT fields 
when the file is opened. Table 5-1 in section 5 lists the 
fields that are checked for consistency. 

INPUT/ OUTPUT PROCESSING 

The GET and PUT macros read and write files. A working 
storage area must be established to pass data to and from 
the program and a file storage device. The user defines the 
working storage area (WSA) by supplying an address for the 
WSA field of the FIT. This is normally done when the GET 
or PUT macro is issued. A GET macro transfers data from 
the buffer area to the working storage area. A PUT macro 
transfers data from the working storage area to the buffer 
area. 

If all the records of a word addressable file are multiples of 
PRU size and start on PRU boundaries, the circular buffer is 
not used to process the records. The suppress buffer flag 
(SBF) fie id can be set to YES, and no buffer is aiiocated. if 
a record is encountered that is not a multiple of PRU size 
and does not start on a PRU boundary, an error is issued. 

BAM uses the word address (WA) field of the FIT to 
determine where to read or write data. When a file is 
opened as a new file, the WA field is set to 1. It is updated 
after every read or write. If a sequential read or write is 
desired, the WA field need not be reset by the user. 

Any mass storage file can be processed as a word 
addressable file. Allowances must be made for short PRUs 
and level numbers; these can be present as a result of 
previous system processing. An attempt to retrieve word 
2ddresses between the end of the short PRU and the start of 
the next PRU returns an invalid word address error. A read 
that continues past the short PRU returns an insufficient 
data error. A read of a level 0 to 16 indicator returns an 
end-of-section; a read of a zero-length level 17 returns an 
end-of-part it ion. 

Writing a record into any part of a short PRU causes that 
PRU to be rewritten as a full PRU without comment. End
of-section or end-of-partition status no longer exists. These 
files cannot have been written as word addressable files but 
must have been written as sequential files. 

The end-of-data exit (DX) field specifies the address of a 
user routine for processing an end-of-data condition. An 
end-of-data exit is taken on an end-of-section or end-of
partition in a W control word. Control is passed to the 
address (DX)+l. A jump back to the user in-line return code 
is stored at the DX address. The file position (FP) field 
specifies the end condition that caused the transfer of 
control to the end-of-data exit. A read at the end-of
information takes an end-of-data exit with the file position 
(FP) field of the FIT set to EOI. 

4-5• 



Input Processing 

The maximum record length (MRL) field of the FIT must be 
set by the user for reading a fiie. When a record is 
transferred from the buffer to the working storage area and 
the MRL field is zero, no data is transferred. If the MRL 
field is not zero, that value becomes the upper limit for the 
number of characters transferred even if the record exceeds 
that length. 

A file is read by the GET macro. The RL field must be set 
for U type records only. After the GET macro is executed, 
the RL field contains the number of characters read. W 
type records are actually one word longer than the RL value 
returned to allow for the control word. The user must allow 
for this when calculating the value for the WA field for 
random access. When a W type record is read, only RL 
characters are returned to the working storage area. The 
control word is not returned. If the amount of data 
indicated by the W type record control word or by the 
contents of a length field is greater than the value of the 
MRL field, the record is truncated to the number of 
characters specified by the value of the MRL field and an 
excess data error is returned. 

Output Processing 

The MRL field need not be set to execute a PUT macro. 
Any number of characters can be written when a record is 

•4-6 

transferred from the working storage area to the buffer, if 
the MRL field is set to zero. If the MRL field is not zero, 
that value becomes the upper limit on the number of 
characters that CCIII U~ ttansfer-rt:d. 

A file is written by the PUT macro. The RL field must be 
set for U and W type records. The length specified need not 
be a multiple of 10; however, writing always begins at the 
left on a word boundary. If the previous write was not a full 
word, the rightmost character positions are undefined and 
the next write begins on a new word. 

If the value of the WA field is beyond the EDI of the current 
file, the file is automatically extended and all indications of 
the previous EOI are gone. Word addressabie files are 
extended in multiples of PRU's. BAM maintains a pointer to 
the physical EOI but not to the user EOI. If the contents of 
the file do not require a complete multiple of a PRU, the 
physical EOI and the user EOI are different. 

CLOSE PROCESSING 

At completion of processing, a file must be closed by the 
user with the CLOSEM macro. Any remaining records of an 
output file are written from the buffer to the file storage 
device; the open/close flag (OC) field of the FIT is set to 
closed; and control is returned to the user. 

60495700 D 

• I .... 
I 

I c· I 
I 
I 

C' II 

I 
I 

t I 
-; I 

I 
f I 

t' 

t: 
c 
c 

( 
4 
C, 

t; 

c 
t 
41 

c. 

t:. 

( 

g, • ""fl 



c 

c:: 

c: 

c: 

( 

c 
c 
( 

c 

c 
( 

( 

( 

c 

( 

( 

MACROS 5 

Macros are used for processing the files established with the 
FILE macro and control statement. An alphabetical listing 
of all macros and their parameters in COMPASS format is 
included in this section. 

DESCRIPTIVE CONVENTIONS 
The macros conform to COMPASS syntax. The location, 
operation, and variable fields are separated by one or more 
blanks. In the macro parameter strings, the fit parameter is 
required. All others are optional and positional. When 
optional parameters are omitted, their positions must be 
marked by commas; trailing commas can be emitted. 

For example, the format of the OPENM macro is: 

OPENM fit,pd,of 

If the pd parameter is not used when the OPENM macro is 
issued, the format is: 

OPENM fit,,of 

The first parameter of every macro identifies the file 
information table for the referenced file. If the address 
specified by the fit parameter is invalid, the results are 
indeterminate. It can be specified by any of the following: 

lfn Location field name of the first word of the 
FIT, one through seven alphabetic or numeric 
characters 

Rn Any A, B, or X register containing the FIT 
address 

exp Any COMPASS expression giving the address 
of the FIT 

When elements are stacked in braces { }, one must be 
chosen; the others must be omitted. Only parameters 
applicable to the file organization set in the FIT should be 
specified. Supplying parameters applicable to the other file 
organization could cause erroneous results. 

MACRO EXECUTION 
The current contents of the FIT are used for macro 
execution. Because the last value set in the FIT is used for 
execution, default values identified in the macro parameter 
lists are valid only if the FIT fields have not been changed 
previously. FIT fields can be set by any of the following: 

FILE macro parameters 

FILE control statement parameters, which can override 
defaults during open 

A SETFIT macro, which can call for FILE control 
statement processing without full open processing 

Individual fields, which can be set by the STORE macro 
before or after open 

Defaults, which can be set during open 

60495700 D 

Parameters specified in processing macros that are 
moved to the FIT before file processing occurs (a zero 
value in a parameter list moves a zero to the FIT; a null 
value does not affect the FIT) 

The user should presume all registers are destroyed during 
macro execution. Registers are not saved or restored. 

The user macros, with the exception of FETCH, FILE, 
CLOSEL, STLD.RM, and STORE, generate code as follows: 

When checking for syntax errors is completed, all 
nonnu!l parameters after the FIT address are placed in 
registers. 

Register B6 is set to the end of the macro expansion as 
the return address. 

A jump to the proper BAM entry point is generated in 
the top of a word; bits indicating which parameters 
were specified with the macro are set in the bottom of 
the word. 

The FIT address is placed in register AO; if it is already 
in AO, no code is generated. 

Register 81 is set to l; if 81=1 pseudo-op is in effect no 
code is generated. 

CHECK 

The primary use of the CHECK macro is to check the 
completion status of input/output operations initiated by 
GETWR or PUTWR. It can also be used to check 
input/output completion status after any macro is issued. 
This macro is applicable to sequential and word addressable 
files. The file is checked for input/output activity. If 
active, the job is placed in recall until activity ceases; 
control is returned to the user. If the file has no 
input/output activity, control is returned to the user. Data 
and error exits are suppressed, so the user should examine 
the file position (FP) and error status (ES) fields of the FIT 
before continuing. 

When the CHECK macro is used to ensure completion of a 
GETWR request, the RL field contains the record length 
when CHECK is complete. If an S or L tape is being read, 
the value of the RL field is the actual number of characters 
in the record. For S type records on other devices, however, 
the value of the RL field is the record length rounded 
upward to a multiple of 10. 

When the CHECKR macro is used, the status of the 
input/output activity is checked and control is returned 
immediately to the user. The job is not put in recall. If 
input/output activity is complete, control is returned to a 
location tag; otherwise, control is returned to the user 
following the CHECKR. 

The formats of the CHECK and CHECKR macros are shown 
in figure 5-1. 

5-1• 



CHECK fit 
CHECKR tag1,fit 

Address of the FIT. 

Designates the location to receive control when 
input/output activity is complete. 

Parameters can be specified as registers. 

Figure 5-1. CHECK and CHECKR Macro Formats 

CLOS EM 

The CLOSEM macro terminates file processing and positions 
the file as specified. It should be the last macro issued for a 
file. The CLOSEM macro is applicable to both file 
organizations. Format of the CLOSEM macro is shown in 
figure 5-2. 

When the CLOSEM macro is executed for a file open for 
output, any information in the file buffer is written to the 
file device as part of file termination. For sequential files 
on tape, appropriate label processing occurs during close. 
Refer to section 6, Label Processing, for a complete 
description of file and volume label processing. 

Close processing for a file varies according to the value 
specified for the cf parameter of the CLOSEM macro, as 
follows: 

Rewind 

The file is rewound. 

CLOSEM fit,cf ,typ 

fit Address of the FIT. 

cf Positions the file after close processing: 

R Rewind (default if a FI LE close) 

N No rewind 

U Unload (default if a VOLUME close); 
if a Fl LE close, release buffer space 
and remove name from active file 
list 

RET Return; rewind and unloarl tape; 
release buffer space and remove name 
from active file list 

DET Detach; no rewind; release buffer space 
and remove name from active file list 

DIS Disconnect; disconnect terminal file 
and remove name from active fi!e !lst 

typ Type of close to be performed: 

FI LE Closes the file; file processing is 
terminated (default). 

VOLUME Processing on the current volume is 
terminated, and volumes are switched; 
the volume number is incremented, 
and file processing can continue on the 
new volume without OPENM. 

Only the fit parameter can be specified as a register. 

•5-2 

No rewind 

The file is not rewound. 

Unload 

The file is rewound. The open/close flag (QC) field 
of the FIT is cleared. If it is a permanent file, it is 
detached from the job and returned to the perma
nent file manager. Any unit record file (OUTPUT, 
PUNCH, or a file that has had DISPOSE performed) 
is detached from the job and printed or punched. A 
magnetic tape is unloaded, but the device is not 
returned to the system. Any scratch mass storage 
space assigned to the file is released. 

Return 

The processing is the same as for unload, except 
that for a tape file, the device is returned to the 
system. 

Detach 

The file is not rewound. The open/close flag (OC) 
field of the FIT is cleared. 

Disconnect 

The open/close flag (OC) field of the FIT is 
cleared. The file is disconnected from the 
terminal. 

A CLOSEM request for a file that has never been opened, or 
a file that has been closed but not unloaded or reopened, has 
the following effects: 

The FIT error status redundant close is set. 

File positioning is the same as for an open file. 

Control is returned to the error exit. 

No label processing is performed. 

If a file is closed and then reopened, FIT verification and 
FILE control statement processing are not repeated if the 
CF field is set to R or N. Therefore, FIT fields such as BT, 
RT, and FO should not be changed when the file is reopened. 
To have FIT verification and FILE control statement 
processing repeated, the file must have been closed with the 
CF field set to U, RET, DET, or DIS. 

ENDRLE 

The ENDFILE macro writes an end-of-partition on a file 
opened for output or input/output. It is applicable for 
sequential file organization only. Format of the ENDFILE 
macro is shown in figure 5-3. 

ENDFILE 

fit Address of the FIT or register containing 
the address. 

Figure 5-3. Ef\DFILE Macro Format 

For W type records, the ENDFILE macro writes a control 
word with an end-of-partition flag, and the current PRU or 
block is terminated. For S/L devices when record type is 
not W, the ENDFILE macro terminates the current block and 
writes a tapemark. For PRU devices when record type is 
not W, the ENDFILE macro terminates the current system
logical-record with a short PRU level O, and writes a zero
lonnth PRI I lovPI 17 _ 
-~·· ·::r" · ·~ --·- · -- · ··· tr 

60495700 D 

' c 
c 
c 

f 

c 
c 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

(. 

(, 

( 

Multiple ENDFILE macros execute as encountered. 
ENDFILE calls in midrecord are only allowed for files with 
S type records; for other record types, the end-of-partition 
is not written and a nonfatal error is issued. 

GET 

The GET macro retrieves data from a file and delivers it to 
the working storage area. It is allowed with files opened for 
input or input/output only. This macro has several forms, 
which are shown in figure 5-4. 

GET fit,wsa,rl,{~:}, wa 

GETWR fit,wsa,rl 

GETP 

fit 

wsa 

ptl 

rl 

dx 

ex 

SKIP 

wa 

fit, wsa,ptl ,dx,,S KIP 

Address of the FIT. 

Address of the working storage area to which the 
user record is delivered. 

Partial transfer length; number of cha:--::~ters to be 
transferred. 

Record length in characters. Required for U type 
records only. 

Address of the end-of-data routine. 

Address of the error routine. 

Advances to the beginning of the next record 
before transferring data. 

Word address on word addressable files where 
reading is to start. Word addresses begin with 1. 

Parameters (except SKIP) can be specified as registers; if 
parameters are not specified, values in appropriate FIT 
fields are used (except GETWR where all parameters are 
required). 

Figure 5-4. GET, GETWR, and GETP Macro Formats 

The GET macro transfers a record from a file to the 
specified working storage area. Lengths are specified and 
returned in characters. It is applicable for both file 
organizations. 

Applicable parameters by type of file organization for GET 
are: 

Sequential fit,wsa,rl,dx, 

fit,wsa,rl,ex,wa Word addressable 

The following FIT fields are updated during GET processing: 

RL Actual length of the record read is returned. 
Length is specified in characters. For Z type 
records, the number of significant characters 
is returned. 

RC Record count is updated each time GET reads 
a record. 

60495700 D 

For record types other than U, control information in the 
record or FIT fields is used to determine record length. If 
the GET request encounters a record longer than the length 
specified in the maximum record length (MRL) field in the 
FIT, an excess data error occurs. The number of characters 
specified by the MRL field are transferred, the remaining 
characters are skipped, and control passes to the error exit. 
A record greater than the value specified by the MRL field 
is prevented from overwriting a portion of the calling 
program or other preserved information. Control is passed 
to the user end-of-data exit by a GET request that detects a 
section or partition boundary, or the end of the file. 

The GETWR macro initiates the transfer of data in units of 
words, and transfers control to the user. GETWR is intended 
for use in conjunction with the suppress buffer option. The 
suppress buffer flag (SBF) field of the FIT can be set by a 
FILE control statement. If the SBF field of the FIT is set to 
YES, the data is transferred directly to the working storage 
area, not to the buffer. If the SBF field is set to NO, the 
data is transferred through the buffer to the working storage 
area. To check for completion of the operation~ the CHECK 
or CHECKR macro must follow. 

The GETWR macro is applicable for sequential files only. 
The working storage area and the record length must be 
specified. When reading or writing small S type records to 
or from an S or L tape, it is sometimes advantageous to set 
the SBF field to NO, thus gaining nonstop input/output at 
the expense of buffer space. 

When the SBF field is set to NO, all applicable FIT 
parameters must still be supplied for GET or PUT oper
ations. Also, any data or error exits specified for GET or 
PUT operations are taken if the SBF field is set to NO. If 
the SBF field is set to YES, no data or error exits are taken. 

The GETP macro transfers partial records in lengths 
specified by the ptl parameter; it can be used to transfer an 
arbitrary amount of data from a record. GETP is applicable 
for sequential files only. 

OPE NM 

Before a file can be read or written, it must be made 
available by an OPENM macro. Macros that affect the FIT 
(FILE, STORE, FETCH, and SETFIT) can be used before the 
OPENM macro. Any file manipulation macro, however, is 
valid only after the file has been opened. Error procedures 
are initiated if attempts are made to access an unopened 
file. 

OPENM is applicable to both file organizations. Format of 
the macro is shown in figure 5-5. 

OPENM prepares a file for processing by creating and 
linking all required system tables for a file, by translating 
user-supplied parameters into appropriate values in the 
relevant tables, and by interfacing with label processing. 
When OPENM is executed, the following events occur: 

FILE control statement processing occurs if it has not 
been suppressed by SETFIT execution. FILE control 
statement processing can be initiated by SETFIT prior 
to OPENM. If so, SETFIT sets the PDF field in the FIT 
to inhibit reprocessing of the FILE control statement. 
OPENM execution clears the PDF field. 

The FIT is checked for logical consistency. Conditions 
investigated are listed in table 5-1. Depending on the 
file organization, additional checks can be made for 
required fields and other defaults supplied. 

5-3• 



Buffer parameters are processed. 

~-r~_a_~ -~ahead is performed on sequential files opened 
1u1· 1111-'ULo 

Label processing is initiated if appropriate for a 
sequential file. 

OPENM fit,pd,of 

fit 

pd 

Address of the FIT. 

Specifies type of processing: 

INPUT File is opened for read only 
(default} 

OUTPUT File is opened for write only 

1-0 File is opened for read and 
write 

of Open flag; specifies file positioning at open time: 

R File is rewound before any other 
open procedures are performed 
(default) 

N No file positioning is done before 
other open procedures 

E For sequential files, the file is posi
tioned immediately before the EOI 
to allow extensions to a mass storage 
file; for permanent word addressable 
files, the user must issue an EXTEND 
function if the file is opened with an 
E position. 

Only the fit parameter can be specified as a register. 

• 5-4 

Figure 5-5. OPENM Macro Format 

TABLE 5-1. FIT CONSISTENCY CHECKS 

Condition 

RT=D, LL=O 

RT=T, and CL, HL, or TL=O 

RT=Z, FL=O 

RT=F, FL=O 

RT=T, HL not greater than CL+CP 

OF =E, file is not mass storage 

FO=LB 

Invalid BT field 

BT=I, RT-=/=W 

BT=K, RB=O 

BT=K, MBL=O 

MRL, MBL=O, BT =K, E 

BT =K, E, file is not S/L device 

BT=K,E,RT=W 
I 
l 

Action 

Error 

Error 

Error 

Error 

Error 

Error 

Error 

Error 

Error 

Default, RB=l 

Error 

Error 

Error 

Error 

If no error has been detected, the open/close flag (OC) 
field in the FIT is set to open and control transfers to 
the user. 

Complete open processing occurs when the first OPENM 
macro in a job step is issued. If a file is closed and then 
reopened, FIT verification and FILE control statement 
processing are not repeated if the close flag (CF) field of 
the FIT is set to R or N. 

Any error detected during open processing sets the error 
status (ES) field of the FIT. If a user error routine has been 
specified by the EX field, control passes to that routine. If 
the user routine corrects the condition that caused the error 
and executes another open, processing can continue; other
wise, the OC flag reflects 0 (not open) and further file 
access is prohibited. 

Buffer fields are investigated when a file is opened. If the 
FWB field is zero (no buffer address supplied), an address is 
allocated. If the BFS field is zero (no buffer size supplied), 
the minimum space required is calculated and the value is 
stored in the BFS field. Although BAM sets the buffer 
pointers in the FIT during OPE NM processing, buffer 
allocation does not actually take place until the first macro 
requiring a buffer is issued. If the SBF field has been set to 
YES to suppress buffering, no buffer is allocated. 

The timing in relation to specifying file processing param
eters and open processing is important. These parameters 
differ for each file organization. Section 4 lists the 
requirements for the specific parameters by file organ
ization. The following shows the possible relationships 
between the OPENM macro and the parameters: 

PUT 

Certain parameters must be set in the FIT with the 
FILE macro, FILE control statement, or the STORE 
macro prior to open time; otherwise, a default value is 
assumed without comment. These parameters are 
effective only until another open is executed; 
attempted changes are ignored without comment or 
error until another open is executed. At that time, the 
current values in the FIT are used to accomplish the 
open. 

Certain parameters need not be set in the FIT until they 
are required by file processing commands. Once set, 
they remain in effect until changed. 

Certain parameters have no default and must be set in 
the FIT to avoid a fatal error prior to use by a file 
processing command. 

The PUT macro transfers data from working storage to a 
file; it is allowed for files opened for output or input/output 
only. This macro has three forms, which are shown in 
figure 5-6. 

The PUT macro transfers a record from working storage to a 
file. It is applicable for both file organizations. 

Applicable parameters by type of file organization for PUT 
are: 

Sequential 

Word addressable 

fit,wsa,rl,ex 

fit,wsa,rl,ex,wa 

The rl parameter need not be specified for files with record 
types F, Z, T, D, and R. Instead, record length for these 
forrnaLs is delennined by SAM u::;;11y rieh.b in U1t: FIT anti 

60495700 D 

• ' I 
I 
i 

I 
t ! 

I 

I 
I 

-[ i 
I 
I 
I 
I 

f 
' 
I 
I 

I 
f I 

I 
t I 

4 
c 
c 
c 

1: ;j 

I 
~ 

i c I 
I 
Ii 
i 

c I 

I 4 
I 

f, I 
I • 

c I 

I 
c: I 

I 

c I 
I 
i e i 
i 
I 

' i 
:t 



( 

f _ 

( 

t: 

( 
c 

( 

( 

( 

( 

(,_ 

PUT fit,wsa,rl,ex,wa 

PUTW R fit,wsa,rl 

PUTP 

fit 

wsa 

rl 

ptl 

ex 

wa 

TERM 

fit,wsa,ptl,ex,,rl,TE RM 

Address of the FIT. 

Address of the working storage area. 

Number of characters to be written, or for 
PUTWR the number of words. 

Partial transfer length; number of characters to 
be transferred. 

Address of the error routine. 

Word address. 

Signals a record is to terminate with this PUTP; 
used only with W, S, or U type records. 

Parameters can be specified as registers; if parameters are 
not specified, values in appropriate FIT fields are used 
(except PUTWR where ail parameters are required). 

Figure 5-6. PUT, PUTWR, and PUTP Macro Formats 

the content of the record in the working storage area. The 
value of the RL field for F, Z, T, D, and R type records is 
determined as follows: 

F Record length is taken from the FL field of the 
FIT. 

Z If the rl parameter is nonzero in the PUT macro or 
the RL field of the FIT is nonzero, the end of the 
record is determined by searching backwards from 
the character position specified by the value of the 
RL field. If the rl parameter is not supplied and 
the RL field is zero, the end of the record is 
determined by searching backwards from the char
acter position specified by the value of the FL 
fieid. A zero byte terminator is appended from 
that point. Intervening characters are binary zero 
filled. 

R Record length is determined by scanning the record 
in the working storage area for the terminating 
record mark character (RMK) which was specified 
in the FIT. An error occurs if the record mark is 
not found within the maximum record length. 

T Decimal count is extracted from the record and 
used to calculate the record length. Count field 
length (CL), trailer count beginning character 
position (CP), header length (HL), and trailer length 
(TL) are obtained from fields in the FIT. 

D Decimal character record length is extracted from 
the record. Length field length (LL) and length 
field beginning character position (LP) are obtained 
from fields in the FIT. 

In all preceding cases, the transferred record length is 
stored in the RL field of the FIT at the end of the PUT 
operation. 

60495700 D 

The RL field must be specified for U, S, and W type records 
with PUT requests. Lengths specified by the user for W and 
S format records exclude the record control word and level 
number appendage. They are supplied by BAM. S type 
records on a PRU device are always an integral number of 
words (multiple of ten 6-bit characters) in storage. The 
value specified by the RL field is rounded upward, if 
necessary. A level 0 appendage is recorded for each 
completed PUT operation for S type records. For S/L tapes, 
the number of characters specified by the RL field are 
written as one tape block. 

For any word addressable files, the word address (WA) field 
in the FIT is updated to reflect the next available word 
address; therefore, such files can be written sequentially. 

Any errors during PUT or PUTP processing cause transfer to 
the error routine if one has been specified. In the case of 
excess or insufficient data errors, no data has been 
transferred. In the case of other errors, data is unreliable. 

The PUTP macro is used to create a single record from a 
series of write requests. It transfers partial records in 
lengths specified by the ptl parameter. It can be used to 
transfer an arbitrary amount of data to a record. By 
changing the wsa parameter from call to call, portions of 
the same record can be transferred from different parts of 
central memory. The PUTP macro is applicable for 
sequential files only. It is not allowed for R type records. 

The PTL field indicates the number of characters to be 
transferred from the working storage area to the record 
under construction. The PTL field of the FIT is used for any 
PUTP operation not containing a ptl parameter value in the 
macro. 

The PTL field must be set for the PUTP macro that initiates 
a new record. If the record length is specified, it becomes 
the maximum number of characters possible in the record 
and is used to determine an excess data error condition. If a 
PUTP request supplies data that would exceed the record 
length, or if any other macro requests file action prior to 
completion of the record, a fatal error condition occurs. 

The termination of a record being constructed by a series of 
PUTP operations is recognized by the total record length 
(RL) set by the first PUTP macro specified, or by the 
presence of the TERM parameter to signify the last partial 
write for this record. For S, U, and W type records using the 
PUTP macro, the RL field can be set to zero and the TERM 
parameter used. 

The user can make a WEOR request to signal the end of an S 
type record created by a sequence of PUTP requests. The 
level number specified by the WEOR macro can be 0 through 
16; only level 0 should be written. Levels 1 through 16 exist 
to support downward compatabili t y in certain system pro
grams. The ENDFILE, REWINDM, CLOSEM, SKIPB, WTMK, 
and PUT macros also cause termination of a record (block) 
by adding a level 0. If Z type records are written by the 
PUTP macro, trailing blanks are suppressed only with the 
record portion of the last partial transfer. 

The PUTWR macro initiates the transfer of data in units of 
words, and then transfers control to the user. Because the 
operation might not be complete, the CHECK or CHECKR 
macro must follow. The PUTWR macro is valid only for 
sequential files and is intended for use in conjunction with 
the suppress buffering option. Refer to the GETWR 
discussion in this section. The working storage area and the 
record length must be specified with the PUTWR macro. 

5-5• 



REPLACE 

The REPLACE macro replaces the last record read with a 
record from the V!crking storage oren. It i~ applicable tc 
sequential mass storage files with C type blocks and F or W 
type records. Format of the REPLACE macro is shown in 
figure 5-7. 

REPLACE fit,wsa,,ex 

fit 

wsa 

ex 

Address of the FIT. 

Address of the working storage area with the 
new record. 

Address of the error routine. 

All parameters can be specified as registers. 

Figure 5-7. REPLACE Macro Format 

Replacement records must be the same size as the record 
replaced. If the requested record is not found, a trivial 
error results and the request is ignored. 

REWINDM 

The REWINDM macro positions an unlabeled or nonstandard 
labeled tape file to the beginning of the current volume. A 
mass storage file or labeled tape is rewound to beginning-of
information. It is applicable to both file organizations. 
Format of the REWINDM macro is shown in figure 5-8. 

REWINDM fit 

fit Address of the FIT or register containing the 
address. 

Figure 5-8. REWINDM Macro Format 

The file need not be open when the REWINDM macro is 
issued. If the last operation was a write, buffers are cleared 
and end-of-information written before a file is rewound. 

SKIPdu 

The SKIPdu macro repositions a file in a forward or 
backward direction. It is applicable to sequential files only. 
Format of the SKIPdu macro is shown in figure 5-9. SKIPBL 
is not supported for T, R, U, and D type records or K and 
E type blocks; SKIPFL is not supported for U type records. 

The SKIPdu macro checks user parameters, reads from the 
assigned device, positions according to the specified unit to 
be skipped, and returns control to the tJser. The SKIPdu 
macro does not return a record to the working storage area. 
If a boundary condition is detected before the skip count is 
exhausted, control is transferred to the end-of-data routine 
with the appropriate file position set. 

A SKIPdu macro call transfers control to the end-of-data 
routine under the following conditions: 

SKIPFL encounters end-of-information 

SKIPFL or SKIPBL encounters end-of-partition 

SKIPFP or SKIPBP encounters level 17 or a tapemark 

•5-6 

SKIPdu fit,count 

d Direction of skip: 

F Forward 

B Backward 

u Units to be skipped: 

L Logical records 

P Physical records or system-logical
records of level 0 

F Tapemark or level 17 on PRU devices 

fit Address of the FIT. 

count Number of units to be skipped. A null param
eter results in a zero count. 

The count and fit parameters can be specified as registers. 

Figure 5-9. SKIP Macro Format 

SKIPBL encounters beginning-of-volume 

SKIPBu detects the load point on a tape file 

SKIPFF or SKIPFP encounters end-of-information 

SKIPdP, SKIPdF, and SKIPBL do not detect parity errors. 
SKIPFL does detect paiity eiiOiS. A negative skip count is 
not allowed; the request is ignored, and an error is issued. 

If a file is positioned at midrecord when a SKIPdu macro is 
issued, processing is as follows: 

SKIPF u, fi t,O 

SKIPBu, fit,O 

SKIPF u, fi t,n 

SKIPBu, fit,n 

The file is positioned forward to the 
unit boundary. 

The file is positioned backward to the 
unit boundary. 

The file is positioned forward to the 
unit boundary and then forward n 
units. 

The file is positioned forward to the 
unit boundary and then backward n 
units. 

An output. file can be positioned backward only. If the 
previous operation was a PUT, the file is terminated before 
reverse motion is initiated. 

WEOR 

The WEDR macro is used to terminate a section. The macro 
format is shown in figure 5-10. WEDR writes an end-of
section for sequential files, if applicable, as shown in 
table 5-2. 

For S type records, a read of EDS returns an EDR value to 
the file position (FP) field; the EDS value is never returned. 
For K, E, or C type blocks on an S/L device, an EDS cannot 
be Jetectt:a.: b:y the GET 111al:i·u. 

60495700 D 



( 

( 

( 

( 

( 

( 
( 

(, 

(, 

(, 

WEOR fit,lvl 

fit Address of the FIT. 

lvl Level number to be appended. Default is 00; 
lvl can be any octal value from 00 to 16. 

All parameters can be specified as registers. 

Figure 5-10. WEOR Macro Format 

For S type records, the WEOR macro can be used to 
terminate the system-logical-record being constructed by a 
series of PUTP macros. The WEOR macro terminates the 
current record and appends a level number. 

For W type records, the file must be on a record boundary to 
write an end-of-section control word. The record count is 
updated. The WEOR macro writes a deleted, zero-length 
record with the flag bit set. 

WTMK 

The WTMK macro is provided to record a tapemark, or 
level 17, in nonstandard label processing. It is applicable to 
sequential file organizations only. Format of the WTMK 
macro is shown in figure 5-11. 

WTMK fit 

fit Addiess of the FIT or register containing the 
address. 

Figure 5-11. WTMK Macro Format 

60495700 D 

The WTMK macro does not flush the buffer. It checks user 
parameters, terminates the current block, records the 
tapemark on S/L tapes and a level 17 for files residing on 
PRU devices. Control is then returned to the user. The 
block number (BN) field of the FIT is not cleared to zero. 

TABLE 5-2. WEOR PROCESSING 

End-of-Section 

Device Block Record Boundary Written 

Type Type 

I w One-word record pointing back 
to the last I block boundary. 
Control word with EDS flags; 
terminate the block with level 0 

PRU 
device c w Control word with EDS flags; 

terminate the block with level 0. 

c All but Terminate the block with level 
w not greater than 16

8
• 

I w Zero-length deleted records to 
exceed noise record size; one-
word record pointing back to the 
I block boundary; control word 
with EDS flags. Terminate the 
block. 

S/L 
tape c w Zero-length deleted records to 

exceed noise record size. 
Control word with EDS flags. 
Terminate the block. 

C,K,E All but Terminate the block. 
w 

5-7• 



,. I 
. Iii 

I 

c I 
I 

c i 
f! I·, 

i 
t 1 I 

~ I 
( I 

( 

t'. 
( 

• 

c I 

1: I 
i 
if t: ~ 

'·· «; I 
t I 

• I 
• I . I 
t I 

• I•. 
• I 

1 .. · 
t1i i 

' I t I ti 



t 

( 

( 

( 

( 
( 

( 

( 

( 

( 

( 

( 

(, 

' 

LABEL PROCESSING 6 

Tape label processing takes place when a sequential file on 
magnetic tape is opened or closed. File labeling conventions 
facilitate the exchange of magnetic tapes between instal
lations. Recording a file using any labeling convention has 
meaning only for sequential files. The tape formats 
supported under the NOS operating system are: SI binary, I, 
and S/L. The tape formats supported under the NOS/BE 
operating system are: SI coded and binary and S/L. 

LABEL DEFINITIONS 

The three basic classes of labeling conventions are standard 
iabeied fiies, nonstandard iabeied flies, and uniabeied fiies. 

STANDARD LABEL 

A standard labeled file is recorded with label groups 
appended to the data. The content of the labels and the 

Single Volume File 

Multivolume File 

format of the file so recorded conform to the American 
National Standards X3.27-1969, Magnetic Tape Labels for 
Information Interchange. Standard label processing applies 
only to sequential files on magnetic tape. 

A label group is composed of a number of 80-character 
blocks separated by an interrecord gap. The label group is 
separated from the data records in the file by a hardware 
tapemark. The three types of label groups are volume/
header group, end-of-file group, and end-of-volume group. 
The position of these groups in relation to file data is shown 
in figure 6-1. Table 6-1 shows the contents of each label 
defined by ANSI. 

NONSTANDARD LABEL 

A nonstandard label is a descriptive record appended to data 
according to a set of rules other than the ANSI standard 
convention. BAM allows nonstandard labels to be written, 
for processing by the user, for sequential files on all devices. 

I VOLi JHDR1 J • J ... First Volume Data ... J• I EOv1J ·I* I 

I VOLi JHDR1 I* I ... U!st Volume Data .. • I +o+I ·I 
Multifile Volume 

VOL1 HDRl * ... FileA ... * EOFl * HDRl * ... FileB ... * EOFl * * 

Multivolume Multifile 

VOLl HDRl * ... FileA •.. * EOF1 * HDRl * FileB * EOV1 * * 

VOL1 HDRl * ... Continuation of File B ... * EOV1 * * 

VOLl HDRl * . . . Last of FileB ... * EOF1 * HDRl * ... FileC ... * EOF1 * * 

* Tapemarks written by system hardware; user does not control. 

Figure 6-1. Standard Label Tape Formats 

60495700 D 6-1• 



I 
Label 1 

'-'llC:U.ClL.t..V.l 

Position 

I I 
1-3 

4 

5-10 

Volume 
11 header 

12-31 

32-37 

38-51 

52-79 

80 

1-3 

4 

5-21 

22-27 

I 
I 28-31 

l 
First 

f 
32-35 

I file 
header 

36-39 

I 40-41 
I 
l 
I 42-47 

I 
r 48-53 

54 

55-60 

61-73 

74-80 

Additional 
1-3 

file 4 
header 

1-3 

4 

5-54 

First 
55-60 end-of-file 

61-80 

I_ 
'---="-" -- ·--····-

TABLE 6-1. ANSI STANDARD LABELS 

i Field I 
r-\1 ... <JJ. l ... CllllV 

1Length1 Contents 
i 

'-""-'"-'_ ... ,..... 

(System Name) Written 

I I I I 
l Label Identifier 3 VOL VOL 

2 Label Number l l l 

I 3 Volume Serial Number 6 Any characters As typed from 
console 

4 Accessibility l Space Space 

5 Reserved 20 Spaces Spaces 

6 Reserved 6 Spaces Spaces 

7 Owner ID 14 Any characters Spaces 

8 Reserved 28 Spaces Spaces 

9 Label Standard Level l 1 l 

1 Label Identifier 3 HOR HOR 

2 Label Number l l l 

3 File Identifier 17 Any characters Spaces 
(File Label Name) 

4 Set Identification 6 Any characters Volume serial 
(Multifile Set Name) number of first 

reel of the set 

I 
5 File Section Number 4 4 digits indicating 0001 

(Reel Number) number of volume 
in the file 

6 File Sequence Number 4 4 digits indicating 0001 
(Position Number) I number of file in 

multifile set 

7 Generation Number 4 (Not used by the Spaces 
operating system) 

8 Generation Version Number 2 2 digits indicating 00 
(Edition Number) the edition of the 

file 

9 Creation Date 6 Space followed by Current date is 
2 digits for year, used 
3 digits for day 

10 Expiration Date 6 Same as field 9 Same as field 9 

11 Accessibility 1 Any characters Space 

12 Block Count 6 Zeros Zeros 

13 System Code 13 Any characters Spaces 

14 Reserved 7 Spaces Spaces 

1 Label Identifier 3 HOR HOR 

2 Label Number 1 2-9 2-9 

All other fields are not checked on input; they are written as received from the user. 

l Label Identifier 3 EOF EOF 

2 Label Number 1 l 1 

3-11 Same as corresponding 
HDRl label fields 

12 Block Count 6 6 digits indicating 
number of data 
blocks since the last 
HOR label group 

13-14 Same as corresponding 
HDRl label fields ___ L_ __ -----~--- ____ J 

. ·- -·· --·-·--·-·--------·-·-·------·---·- -- ·····-·----· -·--·· -··- - - .. --

J ~••v~,.v~ I On Input 
j 

I I 
Yes I 
Yes 

Yes l if file 
assigned 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

Yes I 
I 
I 

Yes l I 

No 

Yes 

Yes 

I 
Yes l 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

60495700 D 

c 

c 

.,_, 

.. i 

I 

[ I 
• I •1 I 

I 
c 
41. I 

.. 

I ti 

t I 
I 

t 
I 
I 
I 
I .. ii 

' I 
iii 
Ill -



( 

( 

( 

( 

( 

( 

( 

( 

( 
( 

( 

( 

(, 

( 

( 

(, 

(, 

TABLE 6-1. ANSI STANDARD LABELS (Cont'd) 

Label Character Field ANSI Name Length Contents Default Checked 
Position (System Name) Written On Input 

1-3 l Label Identifier 3 EDF EDF Yes 
Additional 4 2 Label Number l 2-9 2-9 Yes end-of-file 

All other fields are not checked on input; they are written as received from the user. 

1-3 l Label Identifier 3 EOV EOV Yes 
First 4 2 Label Number l l l Yes end-of-volume 

All other fields are identical to EDF l label. 

1-3 l Label Identifier 3 EOV EOV Yes 
Additional 4 2 Label Number l 2-9 2-9 Yes end-of-volume 

All other fields are not checked on input; they are written as received from the user. 

1-3 l Label Identifier 3 3-letter code: UVL, UHL, or UTL Yes 
USER 4-80 Any characters. Content of these fields is not checked on input; it is written as received 

from the user. 

UNLABELED 

An unlabeled file has no system descriptive records at the 
beginning of the file. The first block of the file is treated as 
a data block. An unlabeled file on an SI or I tape has a 
system-processed trailer label. The presence of this label 
allows end-of-information to be defined. Multivolume 
processing is done automatically by the operating system for 
SI or I tapes. 

On an S/L tape, no system trailer label exists and end-of
information is undefined. On input, a tapemark encountered 
after the end-of-tape reflective spot signals end-of-volume 
and the operating system switches volumes. The formats of 
unlabeled magnetic tape files are shown in figure 6-2. 

LABEL PROCESSING 
FIT FIELDS 
The following FIT fields are used during label piocessing: 

LT 

LCR 

Label type. LT is determined when the file is 
opened, based on parameters on the FILE macro or 
control statement. If label type is unspecified, 
user label processing is not allowed. 

LT=S Standard 

LT=UL Unlabeled 

LT=NS Nonstandard 

LT=ANY Unspecified 

Label check/creation. LCR is determined when the 
file is opened, based on the parameters of the FILE 
macro or control statement. It must be specified 
by the user. 

LCR=E Existing label is read and checked 

LCR=N New label is written 

60495700 D 

Single volume tape with SI or I format 

data , . , EOF1 !ti 
Multivolume tape with SI or I format 

data (reel 1) I* I EOV1 H*I 
data (ree! n) H EOF1 1+1 

Single volume tape with S or L format 

data 

Multivolume tape with S or L format 

data I· I 
data I· I 

* Tapemarks written by system hardware; user does 
not control. 

Figure 6-2. Unlabeled Tape Format 

6-3• 



LA 

LBL 

LX 

ULP 

Label area address. Labels are delivered into the 
area as a result of the GETL macro. Labels are 
fetched and submitted for processing as a result of 
tho DI ITI m~~-~ 14' I /\ :~ -~-- ~~ , ·~-- 1-1..-1 
""' ,...., ' -...J ! '- 11 ICl\...1 V• .I. I l-T""\ IQ .C..'Cl u, I IU U.;;Jt;;;;;l 1auic::;:1 

processing can be done. 

Label area length in characters. 

Label routine exit address. Control is passed to the 
LX routine for user label processing at certain file 
positions, depending on the contents of the ULP 
field. 

User label processing. Types of label processing 
that are available for standard labels. Any 
specification for ULP except NO is acceptable. 
For nonstandard labels when ULP is not set to NO, 
the user must process all labels. 

ULP=NO 

ULP=V 

ULP=F 

ULP=U 

ULP=VF 

ULP=VU 

ULP=FU 

ULP=VFU 

No user label processing 

User volume label processing 

User file label processing 

User label processing (UHL, UTL, 
UVL) 

Combination of V and F 

Combination of V and U 

Combination of F and U 

Combination of V, F, and U 

DECLARING LABEL TYPE 
Before a file is opened, the user must set the label type (LT) 
and label check/creation (LCR) fields of the FIT with a FILE 
macro or control statement. The equivalent information 
must be specified on a LABEL or REQUEST control 
statement. Refer to the appropriate operating system 
reference manual for a complete description of these 
control statements. Under the NOS operating system, a file 
with nonstandard label type must be declared unlabeled on 
the REQUEST or LABEL statement. 

A standard labeled multifile set is specified by putting the 
MF and MFN parameters on the REQUEST control state
ment and setting the MFN field of the FIT. The format of a 
multifile set is explicitly specified by the ANSI standard. 
User label processing of any of the label groups is supported 
as described in the User Label Processing Macros subsection. 
A multifile set can be created and read only if the user 
supplies all the labels. 

Tapes with earlier standard labels, Z labels, can be read but 
not written. They m•Jst be ident i fled by the Z parameter on 
the REQUEST or LABEL control statement for the operating 
system to read these files. Under the current ANSI 
standard, density of label data is the same as that of 
subsequent data. Earlier standards allowed data recording 
density to be specified by character 12 of the VOLl label. 

STANDARD LABEL PROCESSING 
The VOLl, HDRl, EOVl, and EOFl labels are always 
processed to ensure adherence to ANSI standards and LABEL 
statement parameters. VOLl, EOFl, and EOVl are written 
by the system with default values. Any user values are 
ignored without comment. A tapemark is written to 
tar;T,i;iatc labcd groups u.-, stC:tndard labeled wutput tapt;s. 

•6-4 

User processing is allowed on ANSI-defined labels when label 
tvoe (LT) is declared standard and the user l::ihel nrnl"'essinn 
(LiLP) field is set to identify a l~b~l- -g~~~P~ .- -W~~kl~g 
11--•AA, _ _. __ -.& -~------..J -----L=- L--- •-L-1 -L----.L----- !-· 
"''uvv1cuyc UI <>1.CUIU<11 u lllC1y11c1.11,.; I.di.JC ldUt:a ::iLl"Ut.:LUn:::::; l::i 

necessary for the following label processing discussions. The 
notations UTL(f) and UTL(v) indicate all the user trailer 
(UTL) labels that can follow EOF and EOV labels. UHL(a) 
and UVL(a) indicate all the user header (UHL) or user 
volume (UVL) labels that can follow the HOR and VOLl 
labels. 

A file is initialized by the operating system when the LABEL 
control statement is encountered. Consequently, user label 
processing should not be attempted when a LABEL control 
statement is used. 

User label processing is controlled by the FIT fields LX, LA, 
and ULP. Control passes to a user label processing exit if 
the user has specified user label processing (ULP on the 
FILE control statement or macro), and the position of the 
standard labeled file is such that there are labels to be 
processed. User label processing (ULP) can be specified for 
some label groups and not others. If LX is zero, the system 
supplies the requisite label. 

Label processing capabilities are provided by the GETL, 
PUTL, and CLOSEL macros. GETL retrieves the next label 
of a label string and delivers it to the label area. Labels are 
written by PUTL. CLOSEL terminates label processing. 
More detail is given under User Label Processing Macros. 

INPUT TAPE USER PROCESSING 

Existing standard labels can be checked when the processing 
direction (PD) field of the FIT is set to INPUT, or 1-0 with 
the LCR field set to E. Labels can be retrieved with GETL; 
each GETL returns an BO-character label to LA. If the 
value of the LBL field is less than 80, LBL characters are 
retrieved and an error flag is set. If LBL exceeds 80, an 
error flag is set and 80 characters are delivered to LA. 

OPENM of Input Tape 

If the value of the LX field is zero, the header label group is 
processed automatically by the operating system. If the LX 
field is nonzero, control is given to the user's routine twice 
during OPENM processing. At the first exit, the open/close 
flag (OC) field of the FIT is set to not open and the PUTL 
macro can be issued to have the system perform a label 
check. At the second exit, the OC field is set to open and 
the GETL macro can be issued. 

The labels that can be retrieved during OPENM processing 
are shown in table 6-2 in the order in which successive 
GETL macros would retrieve them. Label processing is not 
allowed for an OPENM with no rewind. 

CLOSEM of Input Tape File 

If the LX field is zero, EOFl is processed automatically by 
the operating system. If LX is nonzero, control is passed to 
the user label processing routine twice. At the first exit, 
the OC field of the FIT is set to open and the PUTL macro 
can be issued to have the system perform a label check. At 
the second exit, the OC field is set to closed, and trailer 
labels can be retrieved with the GETL macro. The labels 
available depend on the contents of the ULP field as shown 
! t.. -1 I I' '*1 
"i LdUi~ 0-..1. 

60495700 D 

• 

c 
f 

f 

~- I 
-~· I 

( I 

41 

t 

4 

t 
C: 

' • Ill 
!!! 

m 
~ 

"ce: 

~ 



( 

( 

c 
c: 

(' 

(' 

[ 

' ..... 

( 

C. 

c. 

( 

ULP 

v 
F 

u 
VF 

vu 
FU 

VFU 

ULP 

v 
F 

u 
VF 

vu 
FU 

VFU 

TABLE 6-2. INPUT FILE LABELS 
ACCESSED AT OPENM 

Labels Retrieved by GETL 

VOLl 

HDRl-9 

UVL(a), UHL(a) 

VOLl, HDRl-9 

VOLl, UVL(a), UHL(a) 

HDRl-9, UHL(a), UVL(a) 

VOLl, UVL(a), HDRl-9, UHL(a) 

TABLE 6-3. INPUT FILE LABELS 
ACCESSED .A. T CLOSEM 

Labels Retrieved by GETL 

None 

EOFl-9 

UTL(f) 

EOFl-9 

UTL(f) 

EOFl-9, UTL(f) 

EOFl-9, UTL(f) 

CLOSEM of Input Tape Volume 

If the LX field is zero, EOVl is processed automatically by 
the operating system. Volumes are switched and header 
labels are processed automatically. If the LX field is 
nonzero, control is passed to the user at address LX when 
the file position (FP) is beginning-of-volume (BOV) because 
CLOSEM VOLUME could have been issued midreel. 

When an EOV occurs because the label group indicating end
of-tape has been reached by a GET or SKIPFL macro, 
control is transferred to the LX address at EOV and BOV. 
The user must differentiate between these file positions in 
the label routine of the program. 

When the file position is EOV, the labels that can be 
retrieved by the GETL macro are those listed in table 6-4. 
When the file position is BOV, the labels that can be 
retrieved by the GETL macro are those listed in table 6-5. 

OUTPUT TAPE USER PROCESSING 

A new standard label can be written when the processing 
direction (PD) field is set to OUTPUT or when the PD field 
is set to I-0 and the LCR field is set to N. 

In a user label routine, labels can be written with the PUTL 
macro. Each PUTL takes one BO-character label from 
address LA and writes it to the file. The 80 characters must 
be correctly formatted or an error results. If the length of 
the label area or the label address is zero, no user labels are 
written, but default VOLl, HDRl, EOFl, or EOVl label is 
supplied and an error is returned. 

60495700 D 

TABLE 6-4. INPUT FILE LABELS ACCESSED 
AT CLOSEM VOLUME (EOV) 

ULP Labels Retrieved by GETL 

v EOVl-9 

F None 

u UTL(v) 

VF EOVl-9 

vu EOVl-9, UTL(v) 

FU UTL(v) 

VFU EOVl-9, UTL(v) 

TABLE 6-5. INPUT FILE LABELS ACCESSED 
AT CLOSEM VOLUME (BOV) 

ULP Labels Retrieved by GETL 

v None 

F HDRl-9 

u UVL(a), UHL(a) 

VF HDRl-9 

vu VOLl, UVL(a), UHL(a) 

FU HDRl-9, UHL(a), UVL(a) 

VFU VOLl, UVL(a), HDRl-9, UHL(a) 

VOLl, HDRl, EOFl, and EOVl are ANSI-required labels and 
the operating system ensures that these labels are written to 
the file. The user can supply the labels in any order and the 
operating system reorders them. User label processing is 
allowed on output only if the OPENM macro with the rewind 
option is used. 

OPENM of Output Tape 

If the LX field is zero, default VOL! and HDRl labels are 
supplied automatically. If the LX field is nonzero, control is 
passed to the user label processing routine. Labels that can 
be written are indicated in table 6-6. Each PUTL macro 
writes one label. 

ULP 

v 
F 

u 
VF 

vu 
FU 

VFU 

TABLE 6-6. OUTPUT FILE LABELS 
WRITTEN AT OPENM 

Labels Written by PUTL 

None 

HDR2-9 

UVL(v), UHL(f) 

HDRZ-9 

UVL(v), UHL(f) 

HDRZ-9, UHL(f), UVL(v) 

UVL(v), HDRZ-9, UHL(f) 

6-5• 



I 

CLOSEM of Output Tape File 

If the LX field is zero, a default EOFl is supplied 
<:>11tnm<:>ti,...oll" <>nrl """ ,,.,., .. i:-ni:-1 ic innn .. orl lf tho I Y fiolrl ---..-···- .......... -........ ;, ....... _ -··; -'-"-"' --· ............... ~.,- ........ -.......... """ _,., .. _ .... _ 
is nonzero, control is passed to the user label processing 
routine. Labels that can be written are shown in table 6-7. 

ULP 

v 
F 

u 
VF 

vu 
VFU 

TABLE 6-7. OUTPUT FILE LABELS 
WRITTEN AT CLOSEM 

Labels Written by PUTL 

None 

EOF2-9 

UTL(f) 

EOF2-9 

UTL(f) 

EOFZ-9, UTL(f) 

CLOSEM of Output Tape Volume 

If the LX field is zero, default EOVl, VOLl, and HDRl 
labels are supplied. If the LX field is nonzero, control is 
passed to address LX when the file position is EOV and BOV. 
In either case volume switching is automatic. 

When the file position is EOV, the labels that can be written 
with the PUTL macro are those listed in table 6-8. EOVl is 
always supplied by the operating system because its content 
must be an image of HOR 1. If a user issues a PUTL macro 
for an EOVl, it is ignoied. \'/hen the file position is BOV, 
the labels that can be written with the PUTL macro are 
those listed in table 6-9. 

TABLE 6-8. OUTPUT FILE LABELS WRITTEN 
AT CLOSEM VOLUME (EOV) 

ULP Labels Written by PUTL 

v EOV2-9 

F None 

u UTL(v) 

VF EOV2-9 

vu UTL(v), EOV2-9 

VFU EOV2-9, UTL(v) 

TABLE 6-9. OUTPUT FILE LABELS WRITTEN 
AT CLOSEM VOLUME (BOV) 

ULP Labels Written by PUTL 

v 
F 

None 

HDR2-9 

UVL(a), UHL(a) 

HDR2-9 

UVL(a), UHL(a) 

HDR2-9, UHL(a), UVL(a) 

l 

u 
VF 

vu 
FU 

VFU 1 UVL(a), HDR2-9, UHL(a), EOV2-9 

•6-6 

NONSTANDARD LABEL PROCESSING 
Nonstandard label processing is entirely the responsibility of 
tho tlC.-Dl'" Th1~ tuna n-f t~ho1 n .. n,....ot:."'o;..,,,, ;,.. "'""',_"";t'"'hl- f-..,. 
.,., •- _W....,& • 1 I l!oY ... } ......... - ! AU--.a tJ!. '-".._..VV'U'£~ !:f l....S 0 V Ul.1.0.Lll.'-" ! 'l..l'l. 

sequential files on all devices. 

The nonstandard labels can be header and/or trailer labels. 
Header labels appear between the beginning-of-information 
and a user-defined point. Trailer labels appear between 
some other user-defined point and end-of-volume or end-of
information. The delimiting and processing of nonstandard 
labels is the user's responsiblity. 

INPUT FILE USER PROCESSING 

Each GETL macro retrieves the number of characters of 
data specified by the label area length (LBL) field, or fewer 
characters, from a physical record and delivers them to 
address LA. If a tapemark or level 17 is reached, the GETL 
macro returns with an end-of-labels fi~e position and no data 
is transferred. 

For an input file, control is passed to the label processing 
routine during OPENM processing or CLOSEM processing 
when the file is positioned at end-of-partition. The 
nonstandard label can then be retrieved with the GETL 
macro. 

During CLOSEM processing of an input volume, control is 
passed to the user at address LX. The CLOSEM macro 
should be called when the user has determined that end-of
volume processing is required. File position should be end
of-section or end-of-partition, and labels should be sepa
rated from data. If an end-of-data is encountered during 
forv.-ard reading, control is passed to the end-of-data exit 
(DX) routine if present. End-of-volume labels must be 
processed in the end-of-data routine before CLOSEM is 
called. The user has the option of issuing a CLOSEM 
VOLUME/FILE at this time. If CLOSEM VOLUME is issued, 
volumes are switched automatically and control is passed to 
the user at address LX at load-point. 

If the system closes an input volume, automatic volume 
switching takes place only at the first tapemark after the 
reflective spot. Control is passed to address LX at BOV for 
label processing. 

OUTPUT FILE USER PROCESSING 

Each PUTL macro delivers the number of characters 
specified by the LBL field from the label area (LA) to the 
input/output device. The data is formatted as one physical 
record. The user can use the WTMK macro for writing 
record delimiters. Delimiters are not required; processing is 
entirely up to the user. When the system closes the volume 
because the reflective spot has been encountered, the output 
buffer is not flushed. If the user closes the volume, the 
buffer is flushed before any label processing. 

For an output file, control is passed to address LX during 
OPENM and CLOSEM processing. The user can then write 
labels with the PUTL macro. 

For an output volume, control is passed to address LX twice 
during CLOSEM processing. The first time is for creation of 
trailer labels, and the second time is for the creation of 
header labels. 

Automatic volume swapping occurs after the tape reflective 
spa~, . !s. e~~ou~t;,r;::?; In this case, label processing is 
dVi:ii1i::IUil:: UlliY di. DUVo 

60495700 D 

w 

41' 

c· 
t' 
ti 

f 

-: 
t! 

Ci 

c I 

( 
C: I 

t 
t 

4 
41 i 

t 
,, I 

I 
f, '!II 

I 
I 
I .. i ,, Ii 
I 
" !li 

I 
!. 



( 

( 

( 

(I 

( " 

' 

( 

(, 

(,, 

USER LABEL 
PROCESSING MACROS 

Macros provide label processing capabilities. The macros 
provided retrieve labels (GETL), submit labels for writing or 
checking (PUTL), and terminate user label processing 
(CLOSEL). They are applicable only for sequential files. 

GETL 

The GETL macro retrieves the next label of a label group 
and delivers it to the label area. Format of the macro is 
shown in figure 6-3. 

GETL fit,la,lbl 

fit 

la 

lbl 

Address of the FIT. 

Address of the label area; holds the label fetched 
by the GETL macro. 

Length (in characters) of the label area. 

All parameters can be specified as registers. 

Figure 6-3. GETL Macro For mat 

During OPENM and CLOSEM processing, entry is made into 
the label routine and labels appropriate to the current file 
position are made available to the user via the GETL macro. 
The GETL macro validates the contents of certain FIT fields 
and ensures the legality of the call. The file organization 
(FO) field must be set to sequential (SQ). The label type 
(LT) fieid rr1ust be set to standard (S) or to nonstandard (NS) 
with the ULP fieid set to other than NO. The processing 
direction (PD) field must be set to INPUT or to I-0 with the 
LCR field set to E. A check is made that the LBL field is 
nonzero, and that the label area is specified. If the labels 
are standard, the file must be a tape file and the user label 
processing flags must be set (the ULP field not set to NO). 

If labels are standard, the number of characters specified by 
the LBL field are moved to the user label area at LA. If the 
LA field has not been set either previously or by the GETL 
macro; an error exit is taken. If the number of characters 
specified by the LBL field is greater than 80, only 80 
characters are retrieved. If the LX field is zero, no label 
processing routine exists. The ULP field is used in 
conjunction with the file position (FP) field to determine 
what type of label is to be retrieved. 

When the GETL macro is issued for standard labels and no 
errors are detected, the user label processing flags are 
checked to determine what types of labels are appropriate. 
The next appropriate label is moved to the label area at LA. 
If none exists, the end-of-labels flag is set and control is 
returned to the user label routine. If the value of the LBL 
field is other than 80, an error status is set. If the LBL field 
is greater than 80, only 80 characters are moved to the label 
area at LA. If the LBL field is less than 80, only the number 
of characters specified by the LBL field are moved to the 
label area. Labels are retrieved in sequential order. For 
example, at beginning-of-information with the ULP field set 
to F, the labels on a file containing HDRl, HDR2, and HDR3 
labels would be available in the order HDRl, HDR2, HDR3. 
Each call to GETL would retrieve only one label. 

When the GETL macro is issued for nonstandard labels and 
no errors are detected, a physical record is read and the 
number of characters specified by the LBL field are moved 

60495700 D 

to the label area at LA. If the physical record is larger than 
the LBL field, only the number of characters specified by 
the LBL field are moved. If the physical record is smaller 
than the LBL field, as many characters as possible are 
moved and the number of characters moved are returned in 
the LBL field. 

PUTL 

The PUTL macro writes a label. For mat of the macro is 
shown in figure 6-4. 

PUTL fit,la,lbl 

fit Address of the FIT. 

la Address of the label area; contains the label to be 
written on the file. 

lbl Length (in characters) of the label area. 

All parameters can be specified as registers. 

Figure 6-4. PUTL Macro Format 

During OPENM and CLOSEM processing, entry is made into 
the label routine. At this time, labels appropriate to the 
current file position are submitted to be written on an 
output file. The PUTL macro validates the contents of 
certain FIT fields to ensure the legality of the call. The file 
organization (FO) field must be set to sequential (SQ). The 
label type (LT) field must be set to standard (S) or to 
nonstandard (NS) with the ULP field set to other than NO. 
The processing direction (PD) field must be set to OUTPUT 
or to I-0 with the LCR field set to N. Additional checks are 
made that the LBL field is nonzero, and that a label area is 
specified. If the labels are standard, the file must be a tape 
file and the user label processing flags must be set to other 
than NO. 

The ULP field is used in conjunction with the file position 
(FP) field to determine if the label being submitted is legal 
at the present file position. The first three characters of 
the label at LA are used to determine the type of label: 
VOL, HOR, EOV, or EOF. If the LA field has not been set 
either previousiy or by the PUTL macro, an error exit is 
taken. 

For standard labels, if no errors have been detected, each 
call to the PUTL macro examines the label at LA, keying on 
the first four characters. The ULP field is checked to see if 
the submission of the label at the current file position is 
allowed. At beginning-of-information with the ULP flag set 
to F, submission of a VOL! label would not be allowed. 

For nonstandard labels, if no errors have been detected, the 
number of characters specified by the LBL field are taken 
from the label at LA and written to the file as a physical 
record. 

The PUTL macro can be used on an input type file with 
standard labels to have the system perform a label check. 
The LT field must be set to S and the PD field set to INPUT 
or to I-0 with the LCR field set to E. At the first label exit 
taken during OPENM and CLOSEM processing, a PUTL 
macro can be issued. This causes the labels to be moved 
from the label area LA to the label buffer. The system then 
compares this label to the input file label. If they are 
unlike, the file cannot be opened and a fatal error occurs. 

6-7• 



CLOS EL 

The CLOSEL macro terminates label processing and returns 
controi to OPENM or CLOSEM processing. CLOSEL must be 
called to terminate user label processing because it is the 
only way for the user to return control to BAM. Format of 
the CLOSEL macro is shown in figure 6-.5. 

•6-8 

CLOSEL fit 

fit Address of the FIT or register containing the 
address. 

Figure 6-5. CLOSEL Macro Format 

The CLOSEL macro is used to exit a label processing routine 
and return tc the calling routine fer continued processing. 
Entry into the label processing routine is made at various 
times during OPENM and CLOSEM processing. Generaiiy, 
on input type files (the PD field is set to INPUT or to I-0 
with the LCR field set to E), entry is made when the labels 
are made available for checking. On output type files, entry 
is made to the label processing routine to allow the user to 
submit labels to be written on the file. 

On nonstandard end-of-volume and end-of-file labels, label 
processing must be performed by the user at the end-of-data 
exit (DX) address. This address is taken at the tapemark 
before the nonstandard label. In this case, when the 
CLOSEL macro is issued, it returns control in-line after the 
CLOSEL macro. 

60495700 D 

• I '..:f" 
l!I 

I 
I 

f I 
I 
I 
I c i 

I 
I 
I 
I 

f I 
f 

I 
I 
I 

« I 

t 
t 
t 

ill 

ti I 
I 

I 
I 

I 
I 

I 
I 

t. 
I 

I 
t I 

I t I 

I t: 

c I c I 
c I 

I 
I 
Ii 
I 

t,, 
llil 
iii 

I 
I 
!!!! 

I .. :Ill ,, i 
iii! 
II 
~ 

I 



( 

( 

( 

( 

( 
( 

( 

( 

( 

c 
( 

( 

( 

( 

STANDARD CHARACTER SET A 

CONTROL DA TA operating systems offer the following 
variations of a basic character set: 

CDC 64-character set 

CDC 63-character set 

ASCII 64-character set 

ASCII 63-character set 

The set in use at a particular installation was specified when 
the operating system was installed. 

Depending on another installation option, the system 
assumes an input deck has been punched either in 026 or in 
029 mode (regardless of the character set in use). 

60495700 D 

Under NOS/BE, the alternate mode can be specified by a 26 
or 29 punched in columns 79 and 80 of the job statement or 
any 7 /8/9 card. The specified mode remains in effect 
through the end of the job unless it is reset by specification 
of the alternate mode on a subseqeunt 7 /8/9 card. 

Under NOS, the alternate mode can be specified by a 26 or 
29 punched in columns 79 and 80 of any 6/7 /9 card, as 
described above for a 7 /8/9 card. In addition, 026 mode can 
be specified by a card with 5/7 /9 multipunched in column 1, 
and 029 mode can be specified by a card with 5/7/9 
multipunched in column 1 and a 9 punched in column 2. 

Graphic character representation appearing at a terminal or 
printer depends on the installation character set and the 
terminal type. Characters shown in the CDC Graphic 
column of the standard character set table are applicable to 
BCD terminals; ASCII graphic characters are applicable to 
ASCII-CRT and ASCII-TTY terminals. 

A-1• 



t' 
STANDARD CHARACTER SETS 

r CDC ASCII l 
Display Hollerith External 

Graphic Punch Code Code Graphic Punch BCD 
Subset (029) (octal) (octal) (026) Code tl 

oot : (colon) tt 8-2 ()() : (colon) tt 8-2 072 
01 A 12-1 61 A 12-1 101 
02 B 12·2 62 B 12-2 102 
03 c 12·3 63 c 12-3 103 
04 D 12-4 64 D 12-4 104 
05 E 12-5 65 E 12-5 105 
06 F 12-6 66 F 12-6 106 
07 G 12-7 67 G 12-7 107 
10 H 12-8 70 H 12-8 110 
11 I 12-9 71 I 12-9 111 
12 J 11-1 41 J 11-1 112 
13 K 11-2 42 K 11·2 113 
14 L 11-3 43 L 11-3 114 
15 M 11-4 44 M 11-4 115 
16 N 11-5 45 N 11-5 116 
17 0 11-6 46 0 11-6 117 
20 p 11-7 47 p 11-7 120 
21 a 11-8 50 a 11-8 121 
22 R 11-9 51 R 11-9 122 
23 s 0-2 22 s 0-2 123 
24 T 0-3 23 T 0-3 124 
25 u 0-4 24 u 0-4 125 
26 v 0-5 25 v 0-5 126 

c 
I 

27 w 0-6 26 w 0-6 127 I 
30 x 0-7 27 x 0-7 130 I 31 y 0-8 30 y 0-8 131 
32 z 0-9 31 z 0-9 132 

I 
33 0 0 12 0 0 060 I 34 1 1 01 1 1 061 
35 "" 2 02 2 2 062 J;. 

36 3 3 03 3 3 063 
37 4 4 04 4 4 064 
40 5 5 05 5 5 065 
41 6 6 06 6 6 066 
42 7 7 07 7 7 067 
43 8 8 10 8 8 070 
44 9 9 11 9 9 071 

( 
45 + 12 60 + 12-8-6 053 
46 - 11 40 - 11 055 
47 • 11-8-4 54 • 11-8-4 052 
50 I 0-1 21 I 0-1 057 
51 ( 0-8-4 34 ( 12-8-5 050 
52 ) 12-8-4 74 ) 11-8-5 051 
53 $ 11-8-3 53 $ 11-8-3 044 
54 = 8-3 13 = 8-6 075 
55 blank no punch 20 blank no punch 040 
56 , (comma) 0-8-3 33 , (comma) 0-8-3 054 
57 • {period) 12-8-3 73 • (period) 12-8-3 056 
60 0-8-6 36 #I 8-3 043 
61 [ 8-7 17 ( 12-8-2 133 
62 ) 0-8-2 32 ] 11-8-2 135 
63 % tt 8-6 16 % tt 0-8-4 045 
64 .,,, 8-4 14 " (quote) 8-7 042 
65 .- 0-8·5 35 (underline) 0-8-5 137 
66 11-0 or ll-8-21tt 52 - ! 12-8-7 or 11-ottt 041 v 
67 !\ 0-8-7 37 & 12 04S 
70 t 11-8-5 55 ' (apostrophe) 8-5 047 
71 ' 11·8·6 56 ? 0-8-7 077 
72 < 12-0 or 12-8-2ttt 72 < 12-8-4 or 12-0ttt 074 
73 > 11-8-7 57 > 0-8-6 076 
74 :5 8-5 15 @ 8-4 100 
75 ~ 12-8-5 75 \ 0-8-2 134 
76 ..., 

12-8-6 76 - (circumflex) 11-8-7 136 
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073 

t Twelve zero bits at the end of a 60-bit word in a zero byte record are an end of record .mark rather than 
two colons. 

tt1n installations using a 63-graphic set, display code 00 has no associated graphic or card code; display 
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations 

l yield a blank (55~). 
tttThe alternate Hol erith (026) and ASCil (029) punches are accepted for input only. 

•A-2 60495700 D 



( 

( 

( 

c: 

[ 
(, 

I 
~i. 

(, 

(, 

( 

( 

( 

I 

CDC CHARACTER SET 
COLLATING SEQUENCE 

Collating Collating 
Sequence CDC Display External Sequence CDC Display 

Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code 

00 00 blank 55 20 32 40 H 10 
01 01 < 74 - 15 33 41 I 11 
02 02 % 63 t 16 t 34 42 v 66 
03 03 [ 61 17 35 43 J 12 
04 04 -- 65 35 36 44 K 13 
05 05 - 60 36 37 45 L 14 
06 06 f\ 67 37 38 46 M 15 
07 07 t 70 55 39 47 N 16 
08 10 l 71 56 40 50 0 17 
09 11 > 73: 57 41 51 p 20 
10 12 > 75 - 75 42 52 Q 21 
11 13 --, 76 76 43 53 R 22 
12 14 57 73 44 54 1 62 
13 15 ) 52 74 45 55 s 23 
14 16 , 77 77 46 56 T 24 
15 17 + I 45 60 47 57 I u 25 
16 20 $ 53 53 48 60 v 26 
17 21 * 47 54 49 61 w 27 
18 22 - 46 40 50 62 x 30 
19 23 I 50 21 51 63 y 31 
20 24 , 56 33 52 64 z 32 

I 
21 25 ( 

I 
51 34 53 65 

I I 
00 t 

22 26 = 54 13 54 66 0 33 
23 27 * 64 14 55 67 1 34 
24 30 < 72 72 56 70 2 35 
25 31 A 01 61 57 71 3 36 
26 32 B 02 62 58 72 4 37 
27 33 c 03 63 59 73 5 40 
28 34 D 04 64 60 74 6 41 
29 35 E 05 65 61 75 7 42 
30 36 F 06 66 62 76 8 43 
31 37 G 07 67 63 77 9 44 

t In installations using the 63-graphic set, the% graphic does not exist. The : graphic is display code 63, 
External BCD code 16. 

60495700 D 

External 
BCD 

70 
71 
52 
41 
42 
43 
44 
45 
46 
47 
50 
51 
32 
22 
23 
24 
25 
26 
27 
30 
31 

I 
non et 

I 12 
01 
02 
03 
04 
05 
06 
07 
10 
11 

A-3• 



ASCII CHARACTER SET 
COLLATING SEQUENCE 

Collating ASCII 
Display ASCII 

Collating ASCII 
Display ASCII Sequence Graphic 

Code Code 
Sequence Graphic 

Code Code Deci ma I/Octal Subset Decimal/Octal Subset 

00 00 blank 55 20 32 40 @ 74 40 
01 01 ! 66 21 33 41 A 01 41 
02 02 ,, 

64 22 34 42 8 02 42 
03 03 # 60 23 35 43 c 03 43 
04 04 $ 53 24 36 44 D 04 44 
05 05 % 63t 25 37 45 E 05 45 
06 06 & 67 26 38 46 F 06 46 
07 07 I 70 27 39 47 G 07 47 
08 10 I ( I 51 28 40 50 H 10 I 48 
09 11 I ) 52 I 29 41 51 I 11 49 I 10 12 

I 
* 47 

I 
2A 42 52 J 12 4A 

I 11 13 + 45 28 43 53 K 13 48 
12 14 I I 56 2C I 44 54 L 14 4C , 
13 15 - 46 20 45 55 M 15 40 
14 16 57 2E 46 56 N 16 4E 
15 17 I 50 2F 47 57 0 17 4F 
16 20 0 33 30 48 60 p 20 50 
17 21 1 34 31 49 61 Q 21 51 
18 22 2 35 32 50 62 R 22 52 
19 23 3 36 33 51 63 s 23 53 
20 24 4 37 34 52 64 T 24 54 
21 25 5 40 35 53 65 u 25 55 
22 26 6 41 36 54 66 v 26 56 
23 27 7 42 37 55 67 w 27 57 
24 30 8 43 38 56 70 x 30 58 
25 31 9 44 39 57 71 y 31 59 
26 32 : oot 3A 58 72 z 32 5A 
27 33 , 77 38 59 73 [ 61 58 
28 34 < 72 3C 60 74 \ 75 5C 
29 35 = 54 30 6i 75 j 62 50 
30 36 > 73 3E 62 76 - 76 5E 
31 37 ? 71 3F 63 77 65 5F -

t In installations using a 63-graphic set, the% graphic does not exist. The : graphic is display code 63. 

•A-4 60495700 D 

4' .. :. ! 

l. 

. Ci 

I 
I: I 

Ii I 

•: I 
«; 1'_ 

ti 

41 

t 



( 

( 

c 

4'. 

C'. 

(' 

( 

(' 

( 

c: 

Cl 

" 

( 

( 

ERROR PROCESSING AND DIAGNOSTICS B 

AU user requests are checked to ensure proper processing. 
If results are not satisfactory, an error condition exists and 
the following occurs: 

A three-digit octal error code is returned in the error 
status (ES) field of the FIT. 

For a parity error, a severity level is set in the system 
parity error severity (SES) field. 

For a fatal error, the fatal/nonfatal flag (FNF) field is 
set in the FIT. 

Action indicated by the user setting of the error option 
(ED) field takes place, as discussed elsewhere in. this 
section. 

An error exit is taken if the user has set the error exit 
(EX) field of the FIT. 

Error messages and notes are written to the dayfile 
and/or the ZZZZZEG error file depending on the values 
of the dayfile control (DFC) and error file control (EFC) 
fields. 

ERROR COMMUNICATION 

Regarding errors; the user and the error processor communi
cate through FIT fields ES, EX, ED, ERL, ECT, and PEF. 
The error status (ES) field is a 9-bit field set to an octal 
value after an attempt at error resolution is made and 
control is ready to be returned to the user. When an 
attempt is made to execute an input or output request after 
an error, the ES field is not cleared. If the request is not 
legal, the trivial error count (ECT) is incremented, and 
execution proceeds. If a subsequent error is detected, the 
ES field reflects the most recent error. The user is 
responsible for clearing the ES field if an error exit (EX) is 
not supplied, but instead the ES field is checked after every 
macro call. 

FIT fields and their meaning relevant to error processing 
are: 

FNF 

PEF 

SES 

EX 

60495700 D 

Fatal/nonfatal flag; set to l for fatal errors. 

Parity error flag; set to l for parity errors. 

System parity error severity; set to the 
severity level of the parity error. The levels 
have meaning as shown in table B-1. 

Error exit; an 18-bit field, interpreted as 
follows: 

EX=O No user error routine; control is 
returned as a normal exit; the ES 
field is set with an error code. If the 
value of EX is zero and a fatal (F) 
error is encountered, the message is 
put on the dayfile. 

Value 

l 

2 

3 

4 

5 

6 

ERL 

ED 

TABLE B-1. TYPES OF PARITY ERRORS 

Severity 

Read parity 
error level l 

Read parity 
error level 2 

Read parity 
error level 3 

Read parity 
error level 4 

Write parity 
error level l 

Write parity 
error level 2 

EX~O 

Explanation 

Recovery to record boundary is 
possible. The number of bad rec-
ords and blocks is known. BAM 
can recover. 

Recovery to record boundary is 
possible. The number of bad 
blocks is known but not the num-
ber of iost records. BAM can 
recover. 

Recovery to record boundary is 
possible. The number of bad rec-
ords and blocks is unknown. BAM 
can recover. 

Recovery to record boundary is 
not possible. Fatal, BAM can-
not recover. 

Irrecoverable tape write parity 
error. CLOSEM VOLUME recom-
mended. 

Irrecoverable tape write parity 
error. CLOSEM VOLUME cannot 
be executed. 

If a fatal or trivial error occurs, 
control is transferred to EX+l; a 
jump to the user in-line return 
address is stored in the EX field, and 
the ES field is set. 

Trivial error limit which can be specified by 
the user. 

ERL=O Limit not specified; no error count is 
accumulated. The number of trivial 
errors permitted is indefinite. 

ERL:IO The job is terminated when the value 
of the ECT field reaches the value of 
the ERL field. 

Error option; the ED field is used in con
junction with parity errors. If the TD, AD, or 
DD option is used and the EFC field is set to 3, 
the block containing the parity error is dumped 
to the error file for display by the error 
processor. The ED field is interpreted as 
follows: 

EO=T/TD All parity errors are fatal. 

B-1• 



OFC 

EFC 

EO=A/AD 

E0=0/00 

All parity errors should be disre
garded (the bad data read as if it 
were good), but the ES field is 
cu::>t tn l "'3:7 "'nrl r-nnt ... nl ;., .,,.,..,.., .. .-1 
-- - -- -- • ~• •- --• ·~• -• •w t"-~--

tO the error exit (EX) routine at 
the end of the record. If another 
error occurs when trying to read 
bad data, error 137 is over
written by the next error; 
however, the parity error flag 
(PEF) remains set. 

The block in which the parity 
error occurs is dropped and BAM 
attempts to find the start of the 
next good record. If successful, 
the error exit is taken with the 
ES field set to 137, the SES field 
set to 3, and the FNF field set to 
zero. The content of the 
working storage area is unde
fined, and the file is positioned 
in front of the next good record. 
If unsuccessful, the error exit is 
taken with the ES field set to 
137, the SES field set to 3, and 
the FNF field set to l (fatal). 

Oayfile control. This field is set by the user to 
control the listing of error messages on the 
day file. 

OFC=O 

OFC=l 

OFC=2 

OFC=3 

No dayfile messages except fatal 
errors (default). 

Error messages to the dayfile. 

Notes to the dayfile. 

Error messages and notes to the 
day file. 

Error file control. This field is set by the user 
to control the listing of error messages on the 
error file. 

EFC=O 

EFC=l 

EFC=2 

EFC=3 

No error file entries (default). 

Error messages to the error file. 

Notes to the error file. 

Error messages and notes to the 
error file. 

The system message disposition (SOS) and extended diag
nostic (EXO) fields of the FIT, which were part of a previous 
version of the error processor, are replaced by the OFC and 
EFC fields. If the SOS or EXD field$ are used with the FJLE 
macro, a warning assembly diagnostic is issued and no 
comparable values are placed in the OFC and EFC fields. If 
they are used with the FETCH or STORE macro, they are 
translated into compatible values for the OFC and EFC 
fields. The SOS field set to YES is equivalent to the OFC 
field set to 2. The EXO field set to YES is equivalent to the 
EFC field set to 1. 

ERROR PROCESSING 
If the EFC field is set to nonzero, the CRMEP control 
statement can be used to process the ZZZZZEG error file 
and control the listing of error messages on the output file. 
Tht er;-u~ fi!e is alwvay5 :!usheC: ·when atr~,ur,,·!a! Lt:i1i·1l11i:it~u11 

•B-2 

occurs. At the completion of a job step, the error file is 
flushed if all files are closed. The format of the CRMEP 
control statement is shown in figure B-1. The parameters, 
options, and dcfaultG for the CR~v1EP control statement are 
listed in table 8-2. The first default is set if neither the 
parameter nor the option is specified. The second default is 
set if the parameter is specified without an option. More 
than one option can be specified with each parameter, and 
more than one parameter can be specified on one CRMEP 
control statement. 

CRMEP (parameter=option1/option2/ ... /cptionn, ... ) 

parameter Mnemonic specifying type of error file 
processing and listing. 

option Selected setting of the specified parameter. 

Figure B-1. CRMEP Control Statement Format 

The FITOMP macro can be used to capture the contents of 
FIT fields for display by the post error processor. When the 
FITDMP macro is executed, the FIT, and the FIT display 
identifier if the id parameter is specified, are written to the 
ZZZZZEG error file. The CRMEP control statement can 
then be used to display the FIT on the output file. The 
format of the macro is shown in figure B-2. The FIT display 
identifier, which can be up to ten characters, identifies the 
particular fit dump. The id parameter specifies the location 
of the display identifier. 

FITDMP fit,id 

.c: ... 
11 l Addrnss of the FIT . 

id Address of the FIT display identifier. 

Figure B-2. FITOMP Macro Format 

To ensure that notes are written to the error file, the EFC 
field of the FIT must be set to 2 or 3. Note number 1000 is 
reserved for user FIT dumps. 

Upon encountering an error condition, the error status (ES) 
field is set to the appropriate error number, the trivial error 
count (ECT) field is incremented, and it is compared with 
the trivial error limit (ERL) field. If the ERL field is zero, 
unlimited errors are allowed and the ECT field is not 
incremented in the FIT. If the value of the ERL field is 
nonzero and the ECT field is less than the ERL field, control 
passes to the error exit (EX) routine if defined, or back to 
the user's in-line code if the EX field is zero. In the latter 
case, it is the user's responsibility to check the error status. 
If the ERL field is nonzero and the value of the ECT field is 
equal to the value of the ERL field, the ES field is set to 356 
(trivial error limit reached). The fatal/nonfatal (FNF) flag 
is set and another message is written. Control is returned as 
described above. If the FNF flag is set and any other 
function is attempted on the file, a llS error is generated 
and the job is aborted. 

CLASSES OF ERRORS 

Syntax errors are diagnosed. The messages are self
explanatory. System errors are detected by the operating 
system. Execution errors, occurring dllring execution of 
input and output requests, are subdivided into call errors and 
• ' •• I. .• I • • . • 
ill\ldilU liijJUL1UuLµUL tequesi..So 

60495700 0 

' 
41 

«! 

C' 

41 

f 

«: 

c: 

t: 
c: I 
I 

I 

I 
I 41 

t: 

t: 

4! 
• 

C, I 
4i 

.. 
I 

f I 
iii 
! • I 
I 

'If.Ii I 
I 

.di! I 

' I 
ii! 

i 
!$c 



( 

( 

( 

I' ,, 

( 

c 
( 

( 

TABLE B-2. CRMEP CONTROL STATEMENT PARAMETERS 

Parameter Option 

N 
-N 
F 

-F 

LO 
D 

-D 

T 

-T 

SF lfn1/lfn2/ ••• /lfnn 

OF lfn/lfn2/ ••• /lfnn 

SN mno/mnoz! ••• /mnon 

ON mno/mnozl ••• /mnon 

I 

L lfn 

blank 

RU 

0 

CALL ERRORS 

Call errors are undetectable parameter errors, such as: 

GET Xl 

If register Xl does not contain the valid FIT address, an 
unpredictable BAM error or mode error can result. 

INVALID INPUT/OUTPUT REQUESTS 

Requests for illegal input/output operations produce the 
following general types of errors: 

FIT 

60495700 D 

Content of address given as the FIT 
address does not pass a test for 
plausibility. It does not contain a 
legal logical file name in bits 59 
through 18, or the FIT has incon
sistencies. 

First 
Default 

x 
x 

x 

x 

All 

None 

All 

None 

OUTPUT 

x 

Second 
Description Default 

x Select notes. 
Omit notes. 

x Select fatal error 
messages. 
Omit fatal error 
messages. 

x Select data manager 
messages. 
Omit data manager 
messages. 

x Select trivial error 
messages. 
Omit trivial error 
messages. 

Select messages 
All associated with 

specified files. 

Omit messages 
None associated with 

specified files. 

Hardware Select only specified 
and parity message numbers. 

errors 

Error Omit only specified 
messages message numbers. 
142 and 
143 only 

LIST 

File 
organization 

Block type 

Record type 

OPENM/ 
CLOS EM 

Processing 
direction 

Specify output file 
name. 

Return unload of 
error file performed 
at end of processing. 
Error file position 
at EOI at end of 
processing. 

Attempts to issue input/output re
quests or specifications are illegal on 
the type of file specified in the FO 
field of the FIT. 

Attempts to issue input/output re
quests are illegal for the block type 
specified in the BT field of the FIT. 

Attempts to issue input/output re
quests are illegal for the record type 
specified in the RT field of the FIT. 

Input/output requests are illegal for 
files opened or closed as specified in 
the OC and/or ON fields of the FIT. 

Input/output requests that would vio
late the processing direction limita
tions specified in the PD field of the 
FIT. 

B-Je 



File position Input/output requests are illegal for 
the file position given by the FP field 
of the FIT. 

BAM is in the user's field length and is subject to destruction 
by the user. 

Last operation Input/output requests are illegal in 
the context of the last operation; for 
example, a read after a write on 
tapes. 

DIAGNOSTICS 
Table B-3 is a list of notes or informative messages. 

TABLE B-3. NOTES OR INFORMATIVE MESSAGES 
Key 

Data 

Attempts to access or write records 
whose keys are not within the range 
of keys defined for a file. This 
includes attempts to access sequen
tial files by keys. 

Code 

1000 

1137 

Message 

USER FIT DUMP ••••• 

THE FOLLOWING BLOCK CONTAINS A 
PARITY ERROR ••••• 

Errors in data specification, such as 
inconsistency between the amount of 
data requested and the amount 
actually present, illegal field present 
in the data, required field absent, or 
parity errors. Table B-4 contains the following: 

Device Attempts to execute an input/output 
request are illegal on the device upon 
which the file resides. 

Code Octal value corresponding to the error 
condition. 

Label Label information submitted by the 
user does not correspond with the 
existing label, or the label is incor
rectly formatted. 

Message Diagnostic output which varies depending 
on the values of the DFC and EFC fields, 
and the parameters specified with the 
CRMEP control statement. 

All errors are fatal or nonfatal. Some nonfatal errors are 
trivial in that no user action is required. Fatal errors 
usually indicate incorrect parameter specification and 
incomplete or contradictory information which is a user 
program error. A fatal diagnostic is always printed on the 
dayfiie. 

Significance Meaning of the message. 

Action Suggestion for the user to correct the 
error condition. 

If an EX field has been specified in the FIT, any error causes 
a transfer of control to the address in EX+l for a recovery 
routine after the error has been resolved. Fatal errors 
inhibit any further attempts at input/output on the file. 
Such attempts cause the job to terminate. In the absence of 
a value in the EX field, errors set the ES field and return 
control to the calling program. The ES field is not cleared 
after an error. 

Severity Type of error; can be any of the following: 

TABLE B-4. DIAGNOSTICS 

Code Message Significance 

001 INVALID FO File organization must be sequential 
(SQ) or word addressable (WA). 

002 FIT /FILE ORGANIZATION The file organization specified does not 
MISMATCH match any opened files. 

020 INVALID BT Block type must be I, C, K, or E. 

022 W RECORDS DISALLOWED W type records cannot be written for 
ON BT=E/K E or K type blocks. 

025 BT=I, RT NEW I type blocks require W type records. 

026 SQ BTS REQUIRE MBL Maximum block length must be 
specified for SQ files with K or E type I blocks. 

eB-4 

F Fatal 

T Trival 

T /F Tri val under some conditions, fatal 
under others 

Action Severity 

Correct the file organization field. F 

Check to see that the correct file F 
is being processed, or that the ro 
field is specified correctly. 

Correct the block type field. T 

Correct the record type or block T 
type field. 

Correct the block or record type T 
field. 

Specify the maximum block length T 
I field. 

I 

60495700 D 

'Ii 

t 

~: 

f 
4: 

f 
tj 

fl 

t 
Ci 

[ 
t: 
t' 

t i 
I 

ti I 
t: I 

I 

t I 
t, I 
t 

Ill 

I 
I 
1 

t i 
iii 
ii 
I 

I 



( 

( 

(' 

(' 

( 

(' 

c: 

c: 
(' 

' 

( 

( 

( 

( 

Code Message 

030 INV AUD RT 

031 RT =F /Z AND FL=O 

032 RT=T AND HL OR TL=O 

033 RT=D AND LL=O/RT=T 
AND CL=O 

035 RT= T /D, MRL EXCLUDES 
CONTROL FIELD 

036 RL INCONSISTENT WITH 
RECORD DESCRIPTION 

03' I RT =D'T AND CL/LL >6 

040 REDUNDANT OPEN 

047 

051 

060 

070 

OPEN EXTEND ON TAPE 
FILE 

SETFIT DISALLOWED ON 
OPEN FILE 

REDUNDANT CLOSE 

OUTPUT REQUEST, 
PD=INPUT 

60495700 D 

TABLE B-4. DIAGNOSTICS (Cont'd) 

Significance 

Record type must be W, S, Z, F, R, T, 
D, or U; it must conform to other file 
specifications, such as block type 
or file organization. 

For fixed length F or zero-byte termi
nated Z type records, a maximum rec
ord length must be specified in the FL 
field of the FIT. 

For T type records, the header length 
(HL) must be large enough to hold the 
CL that defines the length of the 
trailer count field. The length of the 
trailer count field must be given in TL 
and must be at !east one character 
long. 

For D type records, the LL field of 
the FIT must provide the length of the 
record field that specifies record 
length. 

For T type records, the CL field of the 
FIT must provide the length of the 
field that specifies the number of 
trailer items. 

For T and D type records, the record 
must contain a field identifying record 
length. 

For T type records, the fixed header 
length (HL) must include a field CL 
characters long, beginning at CP, to 
identify trailer item count. 

For D and T type records; the length 
of the count field must be one to six 
character positions. 

A file must be closed before open 
processing, such as user label proc
essing for sequential files or buffer 
allocation, takes place. A redundant 
open call is ignored. 

The E option for OPENM is valid only 
for a sequential file on mass storage. 

Open processing would have already 
processed the FILE control statement. 
The SETFIT function processes FILE 
control statements without full open 
processing. 

A second call to close the file was 
issued. The operations requested by 
the CF field are performed before the 
error is issued. 

A file opened with pd set to INPUT 
cannot be written. The write state
ment is ignored. 

Action Severity 

Correct the record type field. T 

Specify the maximum record length T 
field. 

Correct the header length or the T 
trailer length field. 

Specify the length of the D type 
record length field. 

Specify the length of the trailer 
count field of the T type record. 

Check that for D type records 
LP+LL is less than MRL. For T 
type records, CP+CL must be less 
than MRL. The position count for 
LP and CP begins with 0. 

Check that the count field is in
cluded in HL. The current record 
is ignored. Position CP is counted 
from 0. 

I 
Correct the !ennth of the count 
field. 

Correct the program to close the 
file before open processing. 

Change the E option for the 
OPENM macro. 

Change the placement of the 
SETFIT macro. 

Correct the program to eliminate 
the redundant close operation. 

If the file is to be written, store 
OUTPUT or IO in the PD field of 
the FIT prior to opening the file. 

T 

T 

T 

T 

T 

T 

T 

T 

T 

B-5e 



Code 

071 

104 

llO 

111 

113 

Message 

INPUT REQUEST, 
PD=OUTPUT 

UNABLE TO FLUSH 
BUFFER 

FILE NOT OPEN 

NO CHECK ON LAST 
REQUEST 

GET /PUT CANNOT BE 
USED IF SBF =YES 

115 OUT ST ANDING FAT AL 
ERROR ON THE FILE 

116 GET FOLLOWS AN OUT -
PUT OPERA TJON. FD=SQ 

I 

120 INV AUD KEY /WORD 
ADDRESS/RECORD 
NUMBER 

130 RT=W BAD CONTROL 
WORD, FILE DEFECTIVE 
OR MISPOSITIONED 

135 I RMS READ PARITY 
j ERROR 

136 RMS WRITE PARITY 
ERROR 

137 SQ READ PARITY ERROR 

140 SQ WRITE PARITY ERROR 

141 EXCESS DATA IS FATAL 
TO PUTP 

e B-6 

TABLE B-4. DIAGNOSTICS (Cont'd) 

Significance 

1 A file opened with pd set to OUTPUT 
cannot be read. The read statement is 
ignored. 

A parity or system error might exist 

I 
in an output sequential file just prior 
to a close request that requires the 

1 

buffer to be flushed. 

A file must be opened before it can be 
read or written. Omission of required 
FIT field parameters or inconsistencies 
in parameters specified inhibit open. 

The CHECK or CHECKR macro must 
be issued after each GET WR or 
PUTWR macro. 

If file organization is sequential, only 
the GETWR or PUTWR macros can be 
used if the SBF field is set to YES. 

A fatal error prevents future access to 
the file with the error, but it does not 
cause job termination unless the user 
attempts further operations on the 
file. 

A sequential file cannot be read imme
I di8tely 13fter I'! write. 

Word address for a word addressable 
file must be less than EOI for GET 
macros. 

Record type was specified as W. This 
message indicates the records being 
read are not, in fact, W type records. 

Action 

1 If the file is to be read, store 
INPUT or IO in the PD field of the 
FIT before opening the file. 

I 

Rerun the program. 

Correct the program to open the 
file before reading or writing; or, 
correct omissions or inconsistencies 
of FIT fields. 

Correct the program to issue the 
CHECK or CHECKR macro. 

Correct the program to use the 
GETWR or PUTWR macro or set 
the SBF field to NO. 

Correct and rerun. 

Continue writing, or reposition the 
file before a read. The current 
read statement is ignored. 

Correct the word address field. 

Check that the existing file is cor
rectly described. 

The system returned parity error status Recreate the file on a good device. 
after reading a word addressable file. If the error persists, report it to a 

systems analyst. 

The system returned parity error status Recreate the file on a good device. 
after writing a word addressable file. If the error persists, report it to a 

systems analyst. 

A parity error occurred while reading 
a sequential file. 

A parity error occurred while writing 
a sequential file. 

The value of the RL field is greater 
than the value of the MRL field during 
a series of PUTP macros. The error is 
fatal because part of the bad record is 
already in the file. 

Check the SES field of the FIT for 
severity and retry. (See the begin
ning of this appendix.) 

Check the SES field of the FIT for· 
severity and retry. (See the begin
ning of this appendix.) 

Correct the program. 

• 
I Severitv I -

T 

T 

c 
T 

T --
T 

F 

--
T 

T ( 
T/F 

T/F 

F 

T/F 

F 

F 

60495700 D 



TABLE B-4. DIAGNOSTICS (Cont'd) 

( 
Code Message Significance Action Severity 

142 EXCESS DATA In a write, no information is written to Correct the inconsistency between T 

~: 
the file. For a read, MRL characters the RL and FL or MRL fields. 
are transferred to the working storage 
area and remaining record characters 
skipped. 

c On a read, the record length exceeds 
FL/MRL defined. For GET processing, 
the following conditions cause an error. 

( Record types: 

w RL in control word > MRL 

( z No zero byte found before FL 
characters 

R No record mark found before 

( T,D 

MRL 

Control field RL>MRL 

s MRL reached before level 
number encountered 

( u RL >MRL 

F Excess data cannot occur 

On PUT processing, the record mark 
character for an R type record was not 
found before MRL characters, or the 

( 
user has supplied RL > MRL/FL. 

143 INSUFFICIENT DAT A Control information in the record No action is required. T 
being read (record length in a W type 
control word, or length calculated by 
fields such as CP and CL) specifies a 
length for each record. The record 
existing in the file is smaller than the 

( 
specified length. All characters avail-
able are returned. 

For I and C type blocks, an end-of-
section was encountered before the 

( record terminated. For Kand E type 
blocks, the block end occurred before 
the record ended. 

( The data transferred through PUTPs is 
less than FL for an F type record. 

( 
144 INCOMPLETE PARTIAL The previous record was not complete. Correct the program. F 

PUT SEQUENCE 

150 FILE NOT ON RMS Word addressable files must be created Correct the control statement to T/F 
on a disk, drum, or family pack. ensure a valid device assignment. 

152 LT =S, OT =RMS Standard labels, which conform to Correct the inconsistency between T 
ANSI standards, can exist only on tape label type and device type fields. ,, files. Label processing statements are 
ignored because the file is assigned to 
rotating mass storage. 

( 
154 BT =K/E ON PRU TYPE K or E type blocking is possible only Change block type, or add an S or L T 

DEVICE for files on S or L tapes. parameter to the REQUEST control 
statement. 

157 S-TAPE BUT MBL >5120 Maximum block length for S tapes is Change MBL to an allowable value T 
CHARACTERS 5120 characters. or use an L tape. 

60495700 D B-7 e 



' 
TABLE B-4. DIAGNOSTICS (Cont'd) 4: 

' 

Code I Message Significance I Action I Severity 
I I I 4' I I I 

162 I INV AUD CONVERSION The CM field of the FIT must not be I Change the conversion mode field. I "T 
I 

YES for W type records. «r 
165 ILLEGAL FILE NAME The LFN does not consist of one to Correct the LFN or the FIT address. F 

seven letters and digits the first being I 
I 

a letter. t: I 
I RECORD LENGTH OUT- I For Dor T type records, the control 

I 

167 Check to see that the CL/CP fields T 

I I SIDE MIN-MAX RANGE - I field specified is outside the value or the LL/LP fields are specified 
REQUEST IGNORED specified by the RL field, or not within correctly. 

f! I 
the values specified by the MNR and I MRL fields. 

170 RECORD SIZE EXCEEDS For Kand E type blocking, records Correct the RL or MBL field. T/F 
I 

BLOCK SIZE OR IS cannot be split between blocks. Indi- 41 I NEGATIVE vidual records must be smaller than 
the block defined by MBL or the maxi-
mum block allowed on the device. t: 173 INV AUD RL/PTL/MBL The record length, partial transfer Correct the RL, PTL, or MBL field. T 
length, or block size is specified 
incorrectly. 

t: 207 MINIMUM RECORD SIZE Required parameter MRL must be Correct the inconsistency between F 
EXCEEDS MAXIMUM equal to or larger than MNR. the MRL and MNR fields. 

245 FUNCTION DISALLOWED The macro issued is not valid for the Correct the program. T c ON THIS FO file organization specified in the FIT. 

254 PARTIALS NOT The GETP and PUTP macros cannot be Correct the program tn tlSP. thP. T 
I SUPPORTED FOR FO=W A issued for a word addressable file. GET or PUT macro. 

I 255 RECORD SPECIFICATION For word addressable files with the Correct the program to specify T 
NOT COMPATIBLE WITH SBF field set to YES, the RL field correct values for the RL and WA 
SBF=YES must be a multiple of PRU size and fields, or set the SBF field to NO 

the WA field must be a multiple of to allow a buff er to be allocated. ii 

PRU size plus one. I 
I 

300 NO READ PERMISSION To be read, a permanent file must be Attach the file with the required F 4,, I attached with RD permission. read permission. 

301 NO WRITE OR MODIFY A permanent file requires proper Attach the file with the required F 

c! 
I 

PERMISSION access permissions. MD permission write permission. 
is required for any updating operation. 

302 NO EXTEND OR A permanent file requires extend (EX) Attach the file with the required F 

f; ALLOCATE PERMISSION permission before new records can be extend permission. I inserted. 

312 INV AUD LABEL GROUP Labels that can be accessed are Check that file position is consist- F I affected by the current file position. ent with label action requested. 4:i Header labels, for example, cannot be 
1 accessed at end=of=information. • 

315 FILE ORGANIZATION IS Standard labels can be used only with Check that file organization is F C' I NOT SEQUENTIAL sequential files on tape. consistent with label type. I 

316 TOO MANY LABELS The number of labels that can be Correct the program. F 

4 
I 

written is limited by ANSI standards. 

I 320 INV AUD LABEL The ULP option controls the type of Remove conflicts between ULP and F 
SEQUENCE labels that can be accessed. the type of label. 

4 325 STANDARD LABELS NOT LT =S is valid only for tape files. Correct the inconsistency between F 
ALLOWED ON MASS label type and device. I STOR/l.GE 

t 
I 
I 
I 
I 

.1111 i 
eB-8 60495700 D • I .. 

ii 
~ 



c: 

( 

( 

( 

(
' 

"-

( 

c: 

c: 

c: 

c: 

c 

Code 

326 

327 

330 

332 

345 

346 

347 

352 

I 354 

355 

356 

357 

370 

403 

Message 

GETL/PUTL ILLEGAL ON 
UNLABELED FILE 

GETL ATTEMPTED 
BEYOND END OF LABELS 

INVALID PARAMETER 
VALUE (LA, LBL, ULP) 

FILE REQUEST LABEL 
TYPE DISAGREES \A/ITH 
LT FIELD OF FIT 

INSUFFICIENT CMM 
SPACE AVAILABLE 

CMM NOT AVAILABLE 
AND THERE IS NO LIST 
OF FILES ADDRESS 

FOL ERROR 

FILE TO BE CLOSED IS 
NOT KNOWN 

BUFFER SPACE SUPPLIED 
IS INSUFFICIENT FOR 1/0 

CODE MODULES RE
QUIRED FOR 1/0 NOT 
LOADED 

TRIVIAL ERROR LIMIT 
REACHED 

UNABLE TO OBTAIN 
SPACE FOR BUFFER 

FATAL I/O ERROR 

SKIPBL DISALLOWED 

60495700 D 

TABLE B-4. DIAGNOSTICS (Cont'd) 

Significance Action Severity 

A tape file must have a label declared 
on a REQUEST or LABEL control 
statement before user label access is 
possible. 

T apemarks separating data and labels 
stop label processing. 

LA must be zero or an address in a 
user program. LBL must indicate the 
length of the label area, 0 to 900 char
acters. ULP options are V, F, U, VU, 
VF, FU, VFU, and NO. 

When a REQUEST control statement 
specifies a labeled tape, the user must 
set LT to S. 

Not enough CMM space exists to open 
the file. To open a file requires enough 
free CMM space to load any rare cap
sules required, if any, and to allow two 
of the largest blocks to be in memory 
at the same time. The file is not 
opened. 

A new block for the list-of-files can
not be allocated, and the LOF$RM 
entry point has been cleared. 

Either CMM is not loaded when FOL 
is cailed to load a capsule, or the 
BAMLIB file is not valid. 

The logical file name specified does 
not match any existing file. 

Change the label type field. T 

Correct the program. F 

Check GETL or PUTL parameters F 
of FIT fields. 

Correct the inconsistency between T 
the REQUEST control statement 
and the label type field. 

Release some CMM, if any is being T 
used by the user program, or in-
crease the amount of memory avail-
able to the job. 

Correct the program to not destroy F 
the pointer. A default list with 
sixty-ti ve entries is supplied. 

Check the load sequence or map to T 
see if C~v1~1 is loaded. Fix the 
static load calls to load the proper 
routines. If using local libraries, 
check for a valid BAMLIB file. 

Check that the logical file name is 
correctly specified. 

T 

A buffer specified by BFS must be I Increase the BFS value. 
large enough to hold at least the larger 
of one block specified by MBL+2 or one 
physical record unit for the file's resi-

T 

dent device. 

Routines necessary for processing have 
not been loaded. 

Error count EC T equals the user-
defi ned error limit ERL, resulting in a 
fatal error. 

Required space has not been allocated. 
CMM is not available, and the FWB 
field is zero. 

Either a block with an incorrect length 
was encountered or the operating sys
tem detected an error in the file or in 
the way the file was being used. 

A backward skip is not possible for D, 
U, R, and T type records or K and E 
type blocks. 

Refer to appendix E for correct 
loading procedures. 

Correct the errors. 

Supply a value for the FWB field or 
remove the OMIT =CMM parameter. 

Correct the program. 

Correct the program. 

T 

F 

F 

F 

T 

B-9• 



TABLE B-4. DIAGNOSTICS (Cont'd) 

I Code ( Message Significance 

l J 
~ T 

1, 1 . . . f 404 SKIPFL DISALLOWED FOR No forward record skip is possible or 
RT=U U type records. 

406 REPLACE ATTEMPTED 
ON TAPE FILE 

407 FO=SQ REPLACE 
ATTEMPTED WHEN 
FP/ EOR 

410 FO=SQ REPLACE 
ATTEMPTED WHEN 
LOPtGET 

411 FO=SQ REPLACE 
ENCOUNTERED 
EOS/EOP /BOI 

412 FO=SQ REPLACE 
ILLEGAL FOR THIS 
RT-USE RT=F/W 

413 

452 

FO=SQ REPLACE 
ILLEGAL FOR THIS 
BT-USE BT=C 

FILE POSITIONING 
ERROR 

For sequential files, the REPLACE 
macro can be used only on disk files. 

The REPLACE macro must be pre
ceded by a GET macro or a GETP 
macro of a full record. 

For sequential files, the record to be 
replaced must be read before the 
REPLACE macro is issued. 

The GET or REPLACE macro did not 
work properly. 

For sequential files, the REPLACE 
macro can only be used with W or F 
type records. 

For sequential files, the REPLACE 
macro can only be used with C type 
blocks. 

An attempt was made to position the 
file beyond EOI. 

712 NEGATIVE OR OVEHSIZED One of the oarameters indicated was 
ARGUMENT--WSA, SKP, I erroneously. specified when a macro 
OR LA was issued. 

713 NEGATIVE OR OVERSIZED One of the parameters indicated was 
ARGUMENT--RL, ST, OR erroneously specified when a macro 
LBL was issued. 

I 
l 

Action 

I 

1

1 Correct the program. 

Copy the file to disk. 

Correct the program to read a full 
record before the REPLACE macro 
is issued. 

Correct the program. 

Notify a system analyst. 

Correct the program. 

Correct the program. 

Correct the program to check the 
FP field or specify the DX field. 

CorrP.ct the nronr::im. I , .r -

Correct the program. 

714 NEGATIVE EX OR DX 
PARAMETER 

A negative value was specified for the Correct the program. 
DX or EX field. 

715 NEGATIVE OR OVERSIZED Either the WA or KA field was err one- Correct the program. 
ARGUMENT--WA OR KA ously specified. 

716 NEGATIVE OR OVERSIZED Either the PTL or KP field was errone- Correct the program. 
ARGUMENT--PTL OR KP ously specified. 

717 NEGATIVE OR OVERSIZED One of the parameters indicated was Correct the program. 
ARGUMENT--MKL, POS, erroneously specified when a macro 
GPS, OR TRM was issued. 

720 DEVICE CAPACITY 
EXCEEDED 

I 721 I ~RROR DETECTED BY 
L_J_OPERA TING SYSTEM 

e B-10 

The CIO read driver has encountered 
an error. 

A system hardware error has been 
encountered that cannot be handled. 

Check the system dayfile for the 
specific read driver error. 

Check the system dayfi!e for a 
system/hardware error message. 

r Severity I 
J 

T 
l 

T 

T 

T 

T 

T 

T 

F 

F 

F 

F 

F 

F 

F 

T 

T 

60495700 D 

~-· 

fl 
•r •.I 

4l 

~I I 
( I 

t: 
ti 

t: 

f11 

c 
4: 

~ I 
I 

-
i 
I 

I 
t i 

ill!' 

' !ii 

~ 



( 

( 

c 
( 

( 

( 

( 

( 

( 
( 

( 

( 

( 

(, 

( 

( 

GLOSSARY c 

ADVANCED ACCESS METHODS (AAM) - A file manager 
that processes indexed sequential, direct access, and 
actual key file organizations and supports the Multiple
Index Processor. 

BASIC ACCESS METHODS (BAM) - A file manager that 
processes sequential and word addressable file organiza
tions. 

BEGINNING-OF-INFORMATION (BOI) - The start of the 
first user record in a file. System information, for 
example tape labels of sequential files, can appear 
before the beginning-of-information. 

BLOCK - A logical or physical grouping of records to make 
more efficient use of hardware. Only sequential files 
are blocked. One of the following block types must be 
specified by the programmer: C, I, K, or E. 

CHARACTER - A letter, digit, punctuation mark, or math
ematical symbol forming part of one or more of the 
standard character sets. Also, a unit of measure used 
to specify block length, record length, and so forth. 

CLOSE - A set of terminating operations performed on a 
file when input and output operations are complete. All 
files processed by BAM must be closed. 

CYBER RECORD MANAGER (CRM) - A generic term 
relating to the common products BAM and AAM. 

DEFAULT - A value assumed in the absence of a user
speci fied value declaration for the parameter involved. 
Values for many defaults are defined by the installation. 

END-OF-INFORMATION (EOI) - The end of the last user 
record in a file. Trailer labels are considered to be past 
the end-of-information. End-of-information is unde-
fined for unlabeled S or L tapes. 

FIELD - A portion of a word or record; a subdivision of 
information within a record; also, a generic entry in a 
file information table identified by a mnemonic. 

FIELD LENGTH - The area in central memory allocated to 
a particular job; the only part of central memory that a 
job can directly access. Contrasts with mass storage 
space or tapes allocated for a job and on which user's 
files reside. 

FILE - A logically related set of information; the largest 
collection of information that can be addressed by a file 
name. It starts at beginning-of-information and ends at 
end-of-information. Every file in use by a job must 
have a logical file name. 

FILE CONTROL ST A TEMENT - A control statement that 
supplies file information table values after a source 
language program is compiled or assembled but before 
the program is executed. Basic file characteristics such 
as organization, record type, and description can be 
specified in the FILE control statement. 

60495700 0 

FILE INFORMATION TABLE (FIT) - A table through which 
a user program communicates with BAM. For direct 
processing through BAM, a user must initiate establish
ment of this table. All file processing executes on the 
basis of information in this table. The user can set FIT 
fields directly or use parameters in a file access call 
that sets the fields indirectly. Some product set 
members set the fields automatically for the user. 

INSTALLATION OPTION - One of several alternate means 
of processing that is selected when BAM is installed at 
a computer installation. Once an option is selected, all 
subsequent use of BAM is governed by the selection. 
For all options or limits defined as installation options, 
the user should consult with a system analyst to 
determine the valid limits. 

TAPE - A magnetic tape with recording format of 
physical records containing the contents of 0 to 512 
central memory words of binary information. I tapes 
are only supported under the NOS operating system. 

JANUS - A group of routines in the NOS/BE operating 
system that controls the unit record equipment 
including card readers, line printers, and card punches. 
Files with names of INPUT, OUTPUT, PUNCH. and 
PUNCHB are JANUS files. 

KEY - Information used to identify a record. 

LDSET - The loader control statement. Various param
eters include: 

LIB Make available the named library 

USE Load the routines named 

STAT Static loading requested 

OMIT Inhibit loading of routines named 

LOAD SET - A group of control statements beginning with 
a call that causes information to be loaded into central 
memory and ending with a call for execution of a loaded 
program. Nonloader statements must not appear in a 
load set. 

LOGICAL FILE NAME - The name given to a file being 
used by a job. The name must be unique for the job and 
must consist of one to seven letters or digits, the first 
of which must be a letter. 

L TAPE (LONG STRANGER TAPE) - A 7-track or 9-track, 
labeled or unlabeled magnetic tape with blocks con
taining more than 5120 characters. Normally written 
by other than CYBER 170-compatible systems. 

MACRO - A single instruction which when compiled into 
machine code generates several machine code 
instructions. 



MAINTENANCE RUN - A program or job to update an 
existing file; technically refers to that part of the job 

• from file open to file close. • 

MASS STORAGE - A disk pack that can be accessed 
randomly. ECS is not considered mass storage. 

MASTER FILE - A file containing information about a set 
of entities; all information about a single entity 
constitutes a record in a file. A master file is normally 
kept up to date by a maintenance run. 

OPEN - A set of preparatory operations performed on a 
file before input and output can take place; required for 
all BAM files. 

OWNCODE - A routine written by the user to process 
certain conditions. Control passes automatically to 
user owncode routines defined in the FIT for: 

DX End-of-data condition 

EX Error condition 

LX Tape label processing 

PARTITION A group of sections beginning with the first 
record after the end of the preceding partition and 
ending with a special record or condition, dependent on 
the block and record type and storage device. Gen
erally, a partition is greater than a section and less than 
a file, but it can be equal to either or both. 

PERMANENT FILE - A file on a mass storage permanent 
file device that can be retained for longer than a single 
job. It is protected against accidental destruction by 
the system and can be protected against L.11authorized 
access. 

PHYSICAL RECORD - On magnetic tape, information 
between interrecord gaps. It need not contain a fixed 
amount of data. 

PHYSICAL RECORD UNIT (PRU) - The smallest unit of 
information that can be transferred between a periph
eral storage device and central memory. The PRU size 
is permanently fixed for all mass storage devices and SI, 
X, and I tapes; the concept does not apply to S/L tapes. 

PRU DEVICE - An SI or i format tape or a mass storage 
device in which information has a physical structure 
governed by physical record units (PRUs). 

RANDOM ACCESS - Access method by which any record 
in a file can be accessed at any time. Applies only to 
mass storage files with an organization other than 
sequential. 

RECORD - The largest collection of information passed 
between BA~.1 and a user program in a single read or 
write operation. The user defines the structure and 
characteristics of records within a file by declaring a 
record format. The beginning and ending points of a 
record are implicit in each format. 

•C-2 

RELEASE SYSTEM - A software system delivered to a 
customer is the release system. In installing a system~ 
the customer, but not aneindividual applications pro-
-------- --- ··-- ~-~---•&. ··-'·--- -- _______ .. ___ &.Ii......:.&. 
y1t1111111c1, 1.,;tlll ~c UCICIUU. VtllUt:'l:I u1· µcan::llllt:'Lt:'l"l:I LllCIL 

differ from the released system. 

REWIND To position a file at beginning-of-information. 

SCOPE 2 An operating system on the CONTROL DAT A 
CYBER 70 Model 76 and 7600 Computer Systems. 7000 
Record Manager runs under SCOPE 2. 

SECTION - A division internal to a sequential file. Recog
nition of a section boundary is affected by block type, 
record type, and file residence. A section is a group of 
records beginning with the first record after the end of 
the preceding section and ending with a special record 
or condition, dependent on the block and record type 
and storage device. Generally, a section is greater than 
a record and less than a partition, but it can be equal to 
either or both. Sections are not defined on K and 
E type blocks. 

SEQUENTIAL ACCESS - A method in which only the 
record located at the current file position can be 
accessed. See Random Access. 

SEQUENTIAL (SQ) FILE - A file with records in the 
physical order in which they were written. No logical 
order exists other than the relative physical record 
position. 

S TAPE (STRANGER TAPE) - A magnetic tape with 
recording format of physical records containing the 
contents of 512 central memory words of information. 

SI TAPE - A magnetic tape with recording format of 
physical records containing the contents of 0 to 512 
central memory words of binary information or 0 to 128 
words of coded information. Coded SI tapes are not 
supported under the NOS operating system. 

VOLUME - A reel of magnetic tape or a disk pack is a 
volume. A given file can encompass more than one 
volume. 

WORD ADDRESS - The re la ti ve location of the first word 
of a record in a word addressable file. Specified as the 
WA field of the file information table on a call for a 
read or write operation. 

WORD ADDRESSABLE (WA) FILES - Word addressable 
files are mass storage files containing continuous data 
or space for data. Words within word addressable files 
are numbered from l to n, each word containing 10 
characters. Retrieving or writing of data at any given 
word within the file is specified by the word number, 
called the word address. 

WORKING STORAGE AREA - An area within the user's 
field length intended for receipt of data from a file or 
transmission of data to a file. 

60495700D 

• 

( 

f 

c 

( 
c 
t. 

c 

( 

( 



c: 

(' 

C. 

( 

(, 

(, 

( 

( 

' 

FILE INFORMATION TABLE STRUCTURE D 

A file information table (FIT) must be associated with every 
file that uses BAM. For normal language requirements, 
compilers generate the FIT automatically; users writing in 
higher level languages do not need to be concerned with FITs 
and their generation. It is the COMPASS user's responsiblity 
to supply the FIT; BAM provides the FILE macro, which 
creates the table. 

Word and bit designations of the FIT fields are illustrated in 
figure D-1. The fields enclosed in brackets can be accessed 
by the FETCH macro but cannot be changed. If a STORE 
macro is attempted on these fields, an assembly diagnostic 
results. 

The FIT is activated by an OPENv'I request for the file. 
After a file is opened, the contents of the FIT can be 
updated with the FILE control statement or the STORE 
macro, with information from the processing macros, or by 
BAM as a result of processing the file. Information in the 
FIT can be retrieved with the FETCH macro. 

The meanings of the FIT fields by word and bit are as 
follows. For convenience of the user, the COMPASS 
symbols are included with the applicable FIT fields. The 
first ten words of the FIT are used by BAM for communi
cating with the operating system. Generally, for any 
particular file organization, record, or block type, only a 
small portion of the total information specified here is 
required. 

59-18 LFN Logical file name of the data file. 

17-1 Reserved for CDC. 

0 CMPL T FET complete bit; cannot be changed by 

59-48 DVT 

47 

46 RDR 

45-37 

36 FF 

35-30 

29-24 DC 

60495700 D 

the user. 

FET device type; cannot be changed by 
the user. 

Reserved for CDC. 

Read release. 

Reserved for CDC. 

OS flush on abnormal termination: 

0 Buffer not flushed. 

1 Buffer flushed for output file with 
scratch disposition on abnormal ter
mination. 

Reserved for CDC. 

Disposition code; cannot be changed by 
the user. Refer to operating system 
manual for possible settings. 

23-18 

17-0 FWB 

59-18 

17-0 

Word 3 

Length of FIT minus 5; set to 3010• 

First word address of the user buffer. 

Zero-filled field. 

Reserved for CRM. 

59-18 Zero-filled field. 

17-0 Reserved for CRM. 

Word 4 

59-34 Reserved for CDC. 

33-0 Reserved for CRM. 

Word 5 

59-24 Reserved for CRM/INTERCOM. 

23-22 ASCII ASCII character set bits for INTERCOM 
terminals. 

0 64 character display code 

1 95 character ASCII subset 

2 128 character ASCII 

21-0 Reserved for CRM. 

Word 10 

59-36 LBL 

35 LCR 

34 

Reserved for CDC. 

Reserved for CRM (return address stack). 

Reserved for CDC (FET extension). 

Reserved for CDC (label fields). 

Label area length in characters. 

Label check/creation for input/output 
tape: 

0 

1 

N 

E 

Create new labels ::NLCR= 

Check existing labels = ELCR = 

Reserved for CRM. 

D-1• 



•D-2 

59 53 

0 

1 (DVT) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 m 
14 

15 

16 

(FN F,___ Hp0l 17 

18 
!WP N) 

BC 
PM 

ISO 

19 

K-~l POS l 
~ 

21 I 

22 

23 

24 Bl 
25 

26 

7-29 

L~I 

31 RKW 

32 

33 

34 

47 41 35 29 23 17 11 05 

LFN Reserved for CDC 

ll Reserved J~ Reserved 
(DC) 30D for CDC for CDC FWB 

0 Reserved for CRM 

0 Reserved for CRM 

Reserved for CDC Reserved for CRM 

Reserved for CAM/INTERCOM n Reserved for CRM 

Reserved for CDC 

Reserved for CRM (return address stack) 

Reserved for CDC (FET extension) 

Reserved for CDC (label field) 

LBL ~ l (FP) lULP LTl LA 

RL ~~ICF Fl RT BT JFO LX 

FL 
Reserved for CRM DX 

MRL 

l 
p l SES l ECT ERL ES EX 
F 

Reserved for installation 

HL 
lEo illll WSA 

MNR 

~ PC MUL HRL 
TL LL 

~ I MKL ][ DP l 
1~sL CP 

F 1 e1 LP 11 BFS 

HMS (LOP) 

PTL .I (RC) 

VNO WA 
MBL 

NL (BN) 

OCT 
RB PKA 

MNB LVL 

XN 
Ollft I l{R 

XBS 
MFN _l Pl'ill. 

Reserved for CRM 

Re.rved for CRM 

FLM ll KA 

Rll9MldforCRM (BZF) 

I COT Reserved for CRM 

Reserved for CRM 

Re.rvedforCRM EOIWA 

I RKPl KP I KL I IP Reserved for CRM 

IBL KTlREL TRC CPA 

Reserved for CRM DCA 

Reserved for CRM 

Fiyu:re D-1. r-~•- T-.&'---- .. :-- T-&....1-
i Ut: ii ilUi llidi..iUli i au1c; 

• I 
II 

i 
I ti I 
I 
I c! ii 

I 
I! 

()() 

j_o 
( CMPLT\ 

tr I ti I 

1 

2 

3 

4 

I 
f I 

5 

6 

7 

10 c 
11 

12 ti 
13 

14 tl 
I 

15 

t: I 
I 

I 

I 
I 

I 

16 
( 

17 

20 

21 

I 22 
I 

BAL) 

23 

24 ti 
25 

t 26 

27 

t 
30 

31 

t 
32 

33-35 

f 
36 

37 

40 

41 4 l 
42 

41 

4:: 

60495700 D ( 

4 
! 



33-27 FP 

( 

( 

( 
26-24 ULP 

( 

(' 

( 

( 
23-22 LT 

( 

21-0 LA 

Word 11 

( 59-36 RL 

35 CM 

34-33 OF 

( 

( 

60495700 D 

File position (in octal); cannot be changed 
by the user: 

0 

1 EOL 
BOI 

2 BOF 
BOV 

4 EOV 

10 EOS 

20 EOR 

40 EOP 

100 EOI 

Mid logical record 

End-of-label group = EOL = 
Beginning-of- :=BOI = 
information 

Beginning-of-file = BOF:= 
Beginning-of- =: BOV = 
volume 
Only set on 
SKIPBU in con-
nection with DX. 

End-of-volume 

End-of-section 

End-of-record 

End-of-partition 

:=EOV:: 

:=EOS:: 

::EOR:: 

:=EOP:= 

End-of-information = EOI = 

User label processing: 

000 

001 v 
010 F 

011 VF 

100 u 

101 vu 

110 FU 

111 VFU 

Label type: 

00 

01 

10 

11 

s 
NS 

UL 

ANY 

None 

VOL/EOV 

HDR/EOF 

VOL/HDR/
EOF/EOV 

UVL/UHL/
UTL 

::NOP:: 

=:VP:= 

:=FP:: 

=:VFP:: 

::UP:: 

VOL/UVL/- ::VUP:: 
UHL/EOV /UTL 

UVL/HDR/- ::FUP:: 
UHLiEOFi
UTL 

All ::VFUP:: 

ANSI standard 

Nonstandard 

Unlabeled 
(default) 

Any 

::S:: 
:NS: 

:=UL: 

Label area address. 

Current record length in characters. 

Conversion mode; convert sequential tape 
files from external to internal code: 

0 

1 

NO 

YES 

No conversion =NO= 

Conversion :=YES= 

Open flags; positioning of the file at 
OPENM time: 

00 

01 

10 

11 

R 

N 

E 

Rewind 
(default) 

Rewind 

No rewind 

Extend 

::R:= 

:=N:= 

:=E:: 

32-30 CF 

29-28 VF 

27-24 RT 

23-21 BT 

20-18 FO 

17-0 LX 

Close flags; position at file close: 

000 

001 

010 

Oll 

100 

101 

110 

R 

N 

u 
RET 

DET 

DIS 

Rewind 
(default) 

Rewind 

No rewind 

Unload 

Return 

Detach 

Disconnect 

::R:: 

::N:: 

::U:: 

::RET:: 

=DET:: 

=DIS:: 

Volume close flag; position of the file at 
end-of-volume: 

00 

01 

10 

11 

R 

N 

u 

Record type: 

0000 w 
0001 F 

0010 R 

0011 z 
0100 D 

0101 T 

0111 u 
1000 s 

Block type: 

000 

001 

010 c 

Oll K 

100 E 

File organization: 

000 

001 

Oll 

101 

110 

SQ 

WA 

IS 

DA 

AK 

Unload 
(default) 

Rewind 

No rewind 

Unload 

Control word 

Fixed length 

Record mark 

Zero byte 

Decimal char
acter count 

Trailer count 

Undefined 

System
logical
record 

Internal 
(default) 

Internal 

Character 
count 

Record count 

Exact records 

Sequential 

Word 
addressable 

Indexed 
sequential 
(AAM only) 

::R:: 

::N:: 

=u= 

::WT:: 

::FT:: 

=:RT:: 

::ZT:: 

::OT:: 

::TT:= 

::UT:: 

::ST:: 

=:IT:= 

::CT:= 

:=KT:= 

:=ET:= 

:=SQ:: 

:=WA:: 

Direct access =DA= 
(AAM only) 

Actual key 
(AAM only) 

Label routine exit address. 

D-Je 



Word 12 

59-36 MRL 

FL 

35-18 

17-0 ox 

Word 13 

59-58 

57-56 OFC 

55-54 EFC 

53-45 ECT 

44-J6 ERL 

35 

34 PEF 

33-31 

30-27 SES 

26-18 ES 

17-0 EX 

Word 14 

Word 15 

59-36 HL 

MNR 

•D-4 

Maximum record length in characters. 

Fixed length of an F type record, or full 
length of a Z type record, in characters. 

Reserved for CRM. 

End-of-data exit address. 

Reserved for CRM. 

Oayfile control for error messages: 

0 No dayfile messages except fatal 
errors 

1 Error messages to dayfile 

2 Notes to dayfile 

3 Errors and notes to dayfile 

Error file control: 

0 No error file messages 

1 Error messages to error file 

2 Notes to error file 

3 Errors and notes to error file 

Trivial error count. 

iriviai error iimit. 

Reserved for CRM. 

Parity error flag: 

0 No error 

1 Parity error 

Reserved for CRM. 

System parity error severity: 

1 Read parity error level 1 

2 Read parity error level 2 

3 Read parity error level 3 

4 Read parity error level 4 

5 Write- parity error level 1 

6 Write parity error level 2 

Error status (octal value). 

Error exit address. 

Reserved for installation. 

Header length of a T type record in 
characters. 

Minimum record length. 

35-33 

32-30 EO 

29 

28 

27 

26 

25 

24 

23 

BAL 

STFT 

PDF 

SBF 

SPR 

22 ORG 

21-0 WSA 

Word 16 

59-36 TL 

35-30 CL 

LL 

RMK 

29-24 PC 

Reserved for CRM. 

Error option: 

000 

001 

T 

D 

Terminate file 

Drop erro
neous data 

Accept 010 

100 

A 

TD Terminate file :TO:: 
and display data 

101 DO Drop errone- =DO= 
ous data and 
display data 

110 AD Accept erro- =AO:: 
neous data and 
display data 

Reserved for CRM. 

Buff er allocated by CRM; cannot be 
changed by the user. 

Internal SETFIT flag used for CRM proc
essing. 

SETFIT macro FILE statement flag: 

0 FILE control statement not processed 
before OPENM 

l FILE control statement was proc
essed before OPEl\lvt 

Suppressed buffer I/O flag: 

0 

l 

NO 

YES 

Buffer 1/0 

Suppress 
buffer 1/0 

Suppress read ahead: 

0 NO Read ahead/write 
behind (buffered 
sequential 1/0) 

1 YES No read ahead/no 
write behind (un
buffered sequen
tial 1/0) 

Reserved for CRM. 

:NO: 

:YES: 

:YES: 

Old/new file organization field (AAM 
only). 

Working storage area address. 

Trailer length in characters; T type 
record. 

Count field length in characters; T type 
records. 

Length field length in characters; 0 type 
records. 

Record mark character; R type records. 

Padding character for sequential files. 

604957000 

--

f 

I 

t:, 



23-18 MUL 

26-18 MKL 

c 
17-0 HRL 

( 16 HB 

15-9 DP 

Word 17 

( 59 FNF 

( 
58-57 oc 

( 

56-54 PO 

( 

( 
53-48 

47 B8F 

( 

c: 
46 Cl 

c 
45 SB 

c; 

c 44-21 CP 

( LP 

20 

60495700 0 

Multiple of characters per K or E type 
block. 

Major key length in characters (AAM 
only). 

Hashing routine address (AAM only). 

User header option (AAM only). 

Data block padding percent (AAM only). 

Fatal/nonfatal flag; cannot be changed by 
the user: 

0 

l 

Nonfatal 

Fatal 

Open/close flag: 

00 Never opened 

01 Opened 

10 Closed 

Processing direction: 

Input 

:=NOP:: 

::OPE:: 

::CLO: 

000 

001 

010 

INPUT 

OUTPUT 

Input :: INPUT:: 

Out- :: OUTPUT::: 
put 

Oli iO 

Not used. 

inputi
output 

::iO:: 

Round PUTs for S type records down to 
*8 bits; used in FORM and 8-bit sub
routines: 

0 NO Round up to 6 bits = NO= 

l YES Round down to 8 bits :YES= 

COMP-1; format for the CL/LL field for 
T or 0 type records: 

0 NO Display code 

l YES Binary 

Sign overpunch; overpunch option for 
CL/LL field for T or 0 type records: 

0 NO No overpunch 

l YES Overpunch 

Trailer count beginning character position 
field of a T type record (numbered 
from 0). 

Length field beginning character position 
of a 0 type record (numbered from 0). 

Reserved for CRM. 

19 CNF 

18 BBH 

17-0 BFS 

Word 18 

59-36 HMB 

PTL 

35-30 LOP 

35 WPN 

29-0 RC 

Connect file flag: 

0 NO File not connected 
to terminal 

l YES File connected to 
terminal 

:NO: 

::YES: 

Buffer below highest high address (HHA): 

0 NO Buffer not below HHA 

l YES Buffer below HHA 

Buff er size in words. 

Number of home blocks (AAM only). 

Parital transfer length, set by the GETP 
or PUTP macro. 

Last operation code; the high order bit of 
LOP is a write bit, indicating whether the 
last operation wrote data to the file; 
cannot be changed by the user: 

01 

02 

03 

'·.., '+.I 

56 

04 

05 

46 

07 

47 

10 

11 

12 

13 

63 

74 

OP 

CM 

GE 

n1 I 
ru 

RP 

SE 

SF 

DE 

GN 

WE 

RE 

GL 
PL 

SB 

CL 

WK 

EN 

OPE NM 

CLOS EM 

GET or 
GETP 
01 IT -r\.J1 UI 

PUTP 

REPLACE 

SEEK 
(AAM only) 

SKIPF 

DELETE 

GETN 
(AAM only) 

WEOR 

REWINOM 

GETL 
PUTL 

SKIPS 

CLOS EL 

WTMK 

ENDFILE 

::OP: 

::CM: 

::GE:: 

;PU: 

::RP:: 

:: SE:: 

::SF:: 

:DE:: 

::GN:: 

::WE: 

:RE: 

::GL:: 
::PL:: 

::SB:: 

::CL:: 

::WK:: 

:EN: 

Write bit. The upper bit of LOP is a 1-bit 
subfield that can be accessed separately. 
If the last operation was a write, it is set. 
This field cannot be changed by the user. 

Record count. Count of full records read 
or written since the file was opened. The 
count is not adjusted for repositioning and 
backspacing operations. This field cannot 
be changed by the user. 

0-5• 



Word 19 

59-36 MBL 

35-30 VNO 

NL 

29-0 BN 

WA 

Word 20 

59 BCK 

58 PM 

57-52 POS 

51-30 OCT 

59-36 MNB 

29-18 RB 

17-0 PKA 

Word 21 

59-18 XN 

17-0 XBS 

59-24 MFN 

23-0 PNO 

17-16 OVF 

11-0 KR 

Word 22 

59-46 

45-40 LAC 

39-36 LNG 

•D-6 

Maximum block length in characters. 

Current volume number of the multi
volume sequential file. 

Number of index levels of blocks (AAM 
only). 

Block number of the current block 
(sequential files); cannot be changed by 
the user. 

Current position word address, set by GET 
and PUT macros. 

Block checksums (AAM only). 

Processing mode (AAM only). 

Duplicate key position (AAM only). 

Address of the display code to collating 
sequence conversion table (AAM only). 

Minimum block length in characters. 

Number of records per K type block in 
sequential files. 

Primary key address (AAM only). 

Logical file name of the alternate key 
index file associated with the data file 
(AAM only). 

Index file block size (AAM only). 

Multifile set name. 

Multifile position number; position number 
of member file on multifile set. 

Direct access file overflow flag (AAM 
only). 

Key value repeat count (AAM only). 

Reserved fer CRt-.Jt. 

Last action performed on the file; used by 
compiler languages to communicate with 
each other. 

Last compiler language that used the file: 

0 Unknown 

1 

2 

3 

4-7 

COBOL 

FORTRAN 

PL/I 

Reserved 

35-0 

Word 23 

Word 24 

59 NDX 

58 KNE 

57 FWI 

56 FPB 

55 ON 

54 

53-24 FLM 

23 EMK 

22 OKI 

21-0 KA 

Word 25 

59-18 

17-0 BZF 

Word 26 

59-48 

47-30 CDT 

29-0 

Words 27-29 

Word 30 

59 SOL 

Reserved for CRM. 

Reserved for CRM. 

Index flag (AAM only). 

Key not equal (AAM only). 

Forced write indicator (AAM only). 

File position bit (system routine use only): 

0 

1 

EDI not reached 

EDI reached 

Old or new indexed sequential, direct 
access, or actual key file (AAM only). 

Reserved for CRM. 

File limit, records per file (AAM only). 

Embedded key flag (AAM only). 

Duplicate key indicator (AAM only). 

Key address (AAM only). 

Reserved for CRM. 

Busy FET address; cannot be changed by 
the user. 

Reserved for CRM. 

Address of the collating sequence to 
display code conversion table (AAM only). 

Reserved for CRM. 

Reserved for CRM. 

S/L tape bit; cannot be changed by the 
user. 

58-30 Reserved for CRM. 

20-0 EDIW A Word address at EDI for word addressable 

Word 31 

59-48 RKW 

47-44 RKP 

43-40 KP 

files. 

Relative key word (AAM only). 

Relative key position in RKW (AAM only). 

Beginning character position of the key 
(AAM only). 

60495700 D 

f 

c 

I 

c 

' 'If 

I 
I 

I 
I 
I 
i 
I 
I 
I 
1f 
'iit 
~ 



c: 39-31 KL 

( 

(' 
30-24 

23-0 

IP 

( Word 32 

59-42 IBL 

( 
41-30 

cl 

(: 

( 

<: 

[ 

( 

c: 

' 60495700 D 

Key length in characters (AAM only). 

Key length in bits (AAM only). 

Primary or alternate key length (AAM 
only). 

Index block padding percent (AAM only). 

Reserved for CRM. 

Index block length in characters (AAM 
only). 

Reserved for CRM. 

29-27 KT 

26-24 REL 

23-18 TRC 

17-0 CPA 

Word 33 

59-18 

17-0 DCA 

Word 34 

Key type (AAM only). 

File position key relation (AAM only). 

Trace transaction count; number of trans
actions to be traced (AAM only). 

Compression routine address (AAM only). 

Reserved for CRM. 

Decompression routine address (AAM 
only). 

Reserved for CRM. 

0-7• 



• i 
'1111111 j 

4! 

I 
j 

f i 
I 

f I 
, I 

f I 

t 
41 

[ 
I 

t I 

t 

t 
t, 

• I 
c I 
c I 

e: I 
I 

A1 i 

'i: i 
I 
; 

"" is 

"' ii <I 



( 

(' 

C' 

c: 

( 

(I 

( 
( 

~· •. : 

LOADING BAM E 

In order to reduce field length, BAM has been divided into 
functional capsules which are loaded by relocatable 
controlling routines at execution time. This method of 
dynamic loading requires a program to be compatible with 
Common Memory Manager (CMM). Static loading is 
available for programs that are not compatible; however, 
static loading could involve a field length penalty of as much 
as 14008 words. Unless static loading is specified, BAM uses 
dynamic loading. 

More information about Common Memory Manager and the 
CYBER Loader can be obtained from their respective 
reference manuals. 

DYNAMIC LOADING 

For dynamic loading, all macros reference entry points in 
the controlling routines. The controlling routines, which 
process parameters and diagnose certain types of errors, are 
loaded at relocatable load time or overlay generation time. 
The controlling routines load and transfer control to the 
Fast Dynamic Loader (FDL) capsule needed to process the 
macro in fixed-position fixed-length blocks. 

It is important to the dynamic loading scheme that the 
controlling routines not be overlayed. Unknown results, 
including bad jump addresses to service routines, result if 
these routines are overlayed. To prevent the controlling 
routines from being overwritten, they must be part of the 
(O,O) overlay. 

The OPENM/SETFIT capsule is loaded when the first 
OPENM or SETFIT macro is encountered. If the SETFIT 
macro is encountered first, the FILE control statement 
parameters are processed, buffer size is calculated, and 
control is returned to the user. 

When the OPENM macro is encountered, the SETFIT 
functions are performed if there has not been a previous 
SETFIT macro. OPE!'JM precessing then occurs. The file is 
opened, FIT consistency checks are performed, label proc
essing occurs, and control is returned to the user. If label 
processing is required, the controlling routine loads the 
GETL/PUTL capsule when the first GETL or PUTL macro is 
encountered. The open and label processing capsules are 
unloaded when a macro other than OPENM, SETFIT, GETL, 
PUTL, STORE, or FETCH is encountered. Therefore, for 
optimum efficiency in loading, the open processing for all 
files should be completed before other processing is 
specified. 

When the first macro is encountered that requires a buffer, 
a buffer is allocated through CMM in a fixed-position fixed
length block. If the buffer below highest high address (BBH) 
field of the FIT is set to YES, CMM is requested to allocate 
the buff er below the highest high address (HHA). The HHA 
is the end of the longest overlay. If the BBH field is set to 
YES, the file must be closed with the CF field set to U, 
RET, or DET before another overlay is loaded. If the BBH 
field is set using the FILE macro, references are issued to 
the additional CMM routines necessary to process this 
feature. However, if the BBH field is set using the STORE 
macro, the FILE control statement, or some other means, 

604957000 

the user must reference the additional CMM routines. This 
can be done by using either the LDSET pseudo-op or the 
LDSET control statement as follows: 

LDSET USE=CMM.AGR 

LDSET(USE=$CMM.AGR$ ••• ) 

The capsules required to perform the function specified by 
the macro are then loaded; control transfers to the capsules 
and back to the user. Except for the SKIP capsules, the 
capsules required to process these types of functions remain 
in core until all files requiring them have been closed. The 
capsules required for SKIP are loaded while a series of skips 
is being performed and unloaded when a macro other than 
SKIP is encountered. 

The CLOSEM capsule is loaded when the CLOSEM macro is 
encountered. It closes the file and buffer space is released 
if the CF field is set to U, RET, or DET; this must be 
specified if the BBH field is set to YES. The CLOSEM 
capsule unloads any capsules no longer needed for processing 
and unloads itself after it closes the last file. 

STATIC LOADING 
Static loading is provided in cases where the user is 
managing memory. It should only be used as a short term 
conversion aid. Long term support of this feature is not to 
be provided. There are two methods for designating which 
capsules need to be statically loaded; one is control 
statement oriented, and one is macro oriented. 

STATIC LOADING WITH 
CONTROL STATEMENTS 

To specify static loading with control statements, the option 
ST AT must be specified on the LDSET control statement; 
the USE and OMIT parameters must be specified on the FILE 
controi statement. A FILE controi statement must be used 
for each file to insure that all necessary routines are loaded. 
The FO, RT, and BT parameters must be specified on a 
previous FILE control statement or on the same FILE 
control statement as the USE and OMIT parameters. They 
cannot be specified on a FILE control statement following 
the FILE control statement which specified the USE and 
OMIT parameters. 

The formats of the USE and OMIT parameters are: 

USE=mn1/mn2/ ••• /mnn 

OMIT =mn1/mn2/ ••• /mnn 

where mn is a macro name. Terminal users must use TGET 
and TPUT to load special terminal 1/0 capsules. The 
functions of the USE and OMIT parameters are listed in 
table E-1. The USE and OMIT parameters can be used on 
more than one FILE control statement for one file; the 
result is cumulative. If the ST AT option is specified on the 
LDSET control statement and no USE parameter is specified 
on the FILE control statement, no functions are loaded. 

E-1• 



In the example shown in figure E-1, the program to write 
the file AT APE uses static loading and contains the macros 
OPENM, PUT, CLOSEM, and ENDFILE. The program to 
read the file AT APE also uses static loading. The macros 
PUT and ENDFILE are not contained in that program; the 
OMIT parameter specifies that those capsules are not to be 
loaded. The GET macro is contained in the program, and the 
capsule for that macro is to be loaded. The USE parameter 
is still in effect for the macros OPENM and CLOSEM. 

STATIC LOADING WITH 
THE STLD.RM MACRO 

The STLD.RM macro is another method of specifying static 
loading. (The LOST.RM macro, which was valid in CYBER 
Record Manager, is treated as a no-op.) The format of the 
STLD.RM macro is shown in figure E-2. It must be specified 
once for each file organization. 

TABLE E-1. USE AND OMIT PARAMETER 
FUNCTIONS 

Parameter No List of Macros List of Macros 

USE All capsules are Capsules performing 
loaded. functions specified 

by the macro list are 
loaded. 

OMIT All previously Capsules performing 
loaded capsules functions specified 
are removed. by the macro list 

I are removea. 

e E-2 

FILE(ATAPE,FO=SO,RT=Z,BT=C,USE=OPENM/PUT/ 
CLOSEM/ENOFI LE) 

LDSET(STAT=ATAPE) 

Load set to write file. 

Fl LE(ATAPE,OMIT=PUT/ENOFI LE,USE=GET) 

LOSET(STAT=ATAPE) 

Load set to read file. 

Figure E-1. Static Loading Example 

(fo) STLO.RM USERT={rt1,rt2, ... ,rtn), 

USEBT=(bt1,bt2, ... ,btn), 

USE={mn1,mn2, ... , mnn), 

OMIT=(CMM or FOL) 

fo File organization. 

rt Record types of files. 

bt Block types of files. 

mn Macros used in program. 

CMM or FOL CMM omits CMM and FOL. 
FOL omits FDL. 

Figure E-2. STLD.RM Macro Format 

60495700 D 

' 

I 
t I 

I 
I 
I 
I 

4 I 

~: .. ~i~ 

4
, 
ii 

I 

c 

I 

I 

I 
I 

I 
I 
·~ 



( 

( 

( 

( 

( 

{ 
( 

( 

c 
( 

( 

( 

( 

( 

t 

USE OF LIST-OF-FILES F 

The NOS and NOS/BE operating systems maintain a pointer 
to the list-of-files, which is a table of the names and FIT 
addresses of all active files for each control point. This 
pointer is set and accessed by the SETLOF and GETLOF 
macros. A complete description of this feature can be found 
in the NOS or NOS/BE reference manual. 

BAM maintains and uses this list-of-files. To alter this list, 
a user :nust follow a procedure that is compatible with BAM. 

BAM maintains an entry point in its relocatably loaded 
routines called LOF$RM. The content of this entry point is 
the address of the current list-of-files. The purpose of this 
pointer is to minimize the number of GETLOF monitor calls 
required. The user is encouraged to use this pointer instead 
of calling the GETLOF macro. 

60495700 0 

If a user program that coexists with BAM moves the list-of
files, it must update the LOF$RM pointer in addition to 
calling the SETLOF macro. Also, if a user program adds a 
new entry to the end of the list-of-files, it must insure that 
the next word is zero because BAM does not initialize the 
list-of-files block to zero. 

For interactive jobs, BAM puts the file that it uses for 
output to connected files, either OUTPUT or ZZZZZOU, in 
the first word of the list-of-files table. This is a 
requirement of the NOS operating system. If a file name is 
put in the first word of the list, the user cannot depend on 
that name remaining in the first word. If a user program 
uses BAM through a terminal under the NOS operating 
system, .it cannot write to a terminal file that is not a BAM 
file in the same job step. The user program cannot move or 
destroy the ZZZZZOU entry in the first word of the list-of
files. 



• 
-! 
t l 

I 
l 
l 
I ,., 
I 
I 
I 

t 
I 

I 
t I 

t 

ti 
I
I 

t! 
I
I 

(

;, I 

! 

i 
i 

41 I 

• I 

• I 
t 

• I '· , I 
« I 
41 II 

I
I 

4:: I 

I 
41 ! I 

I 
~ 



c 
(' 

(' 

( 

( 

( 
( 

( 

( 

( 

(, 

' 

FILE INTERCHANGEABILITY G 

The following tape formats are interchangeable between 
7000 Record Manager and BAM: 

X-mode tapes created on early 6000 series SCOPE 
systems are supported for read-only purposes under 
7000 Record Manager as X type record files. 

Binary files having S type records, or Z type records and 
C type blocks, are interchangeable, provided the value 
of the maximum block length (MBL) field is 5120. 

Files having W, F, U, D, T, R, or Z type records and I, 
C, K, or E type blocks are interchangeable (except for Z 
type records with C type blocks), provided such files are 
accessed via BAM on SiL devices. 

The file formats that are not interchangeable are as follows: 

7000 Record Manager does not read 7-track coded 
Z type record tapes. 

7000 Record Manager does not read L tapes having a 
block length greater than the individual station limits. 

60495700 D 

7000 Record Manager does not correctly read a file 
having W, F, U, D, T, or R type records recorded on 
other than S or L tapes. 

7000 Record Manager requires macro parameters placed 
in registers to be in X registers; BAM macro parameters 
can be in any user registers. 

BAM does not read a tape file with C or I type blocks if 
the value of the MBL field is not equal to 5120. 

BAM does not read a tape having embedded tapemarks. 
(WTMK under 7000 Record Manager does write a 
tapemark rather than a level 17 on a file with S type 
records or with Z type records and C type biocks. For 
interchangeability, use of WTMK is not recommended; 
the ENDFILE macro should be used instead.) 

BAM does not read other than an L tape if the value of 
the MBL field is other than 5120. 

Refer to the table on labeling conventions (section 6) for 
additional information on labels. 

G-1• 



" 111: ~ 
I 

I 

c I 

I ,,. I 
I c I 

ti · 1 

f I 

t 

tl 

• I 
I I 

I·. I ,, I 

~I I ., I 

tJ I 

• I 
.,I, I 
•i I 

ti .1 
t I 
t: I 
c i 

~, I 

I 
C I .:: J 

~ ' .. \i,, 



( 

(_ 

( 

( 

( 

( 
( 

( 

c 
c 

( 

AAM 1-1 
ANSI format 

C type blocks 2-3 
E type blocks 2-4 
I type blocks 2-3 
K type blocks 2-4 
standard labels 3-4, 6-1 

ASCII 
FILE macro parameter 3-1 
FIT structure D-1 

BAM 
defined l-1 
dynamic loading E-1 

BBH field 
FILE macro parameter 3-1 
FIT structure D-5 

Beginning-of-information 2-4 
BFS field 

FILE macro parameter 
FIT structure D-5 

Block 
BT field 3-2, D-3 
defined 2-1 
MBL field 3-5, D-6 
MNB field 3-5, D-6 
MUL field 3-5, D-5 
record type associations 
types 2-2 

BN field D-6 
Boundary 

conditions 2-4, 4-3 
ENDFILE macro 5-2 
file processing 4-4 
partition 2-4, 4-4 
section 2-4, 4-4 
tapemark 4-4 
volume 2-5 

BT field 
FILE macro parameter 
FIT structure D-3 
static loading E-1 

Buffer 
BBH field 3-1, D-5 
BFS field 3-2, D-5 
close processing 5-2 
FWB field 3-4, D-1 
open processing 5-4 
SBF field 3-6, D-4 

B8F field D-6 

C type blocks 
ANSI format 2-3 
file structure 2-3 

CF field 
close processing 5-2 

3-2 

2-6 

FILE macro parameter 3-3 
FIT structure D-3 

Character count block type 2-3 
Character set 

ASCII field 3-1 
standard A-1 
terminal file 4-5 

60495700 D 

CHECK macro 5-1 
CHECKR macro 5-1 
CL field 

FILE macro parameter 3-3 
FIT structure D-4 
T type records 2-8 

CLOSEL macro 6-8 
CLOSEM macro 

close processing 4-3, 4-6 
dynamic loading E-1 
format 5-2 

CM field 
FILE macro parameter 3-3 
FIT structure D-3 

CNF field 
FILE macro parameter 3-3 
FIT structure D-5 

Common Memory Manager E-1 
CP field 

FILE macro parameter 3-3 
FIT structure D-5 
T type records 2-8 

CRM 1-1 
CRMEP control statement B-2 
Cl field 

D type records 2-6 
FILE macro parameter 3-3 
FIT structure D-5 
T type records 2-8 

D type records 
Cl field 3-3, D-5 
defined 2-6 
LL field 3-4, D-4 
LP field 3-4, D-5 
SB field 3-6, D-5 
write processing 5-5 

Dayfile control 
DFC field 3-3, D-4 
error processing B-2 

DFC field 
error processing B-2 
FILE macro parameter 3-3 
FIT structure D-4 

DX field 
end-of-data routine 4-4 
FILE macro parameter 3-3 
FIT structure D-4 

Dynamic loading E-1 

E type blocks 
ANSI format 2-4 
file structure 2-4 

ECT field 
error condition processing B-2 
error processing B-1 
FIT structure D-4 

EFC field 
error processing B-2 
FILE macro parameter 3-3 
FIT structure D-4 

EWFILE macro 
file boundary processing 4-4 
format 5-2 

Index-!• 



End-of-data 
DX field 3-3, D-4 
GET macro 5-3 
sequentiai fiie processing LJ-LJ 

word addressable file processing 4-5 
End-of-information 

defined 2-4 
GET macro 5-3 

EO field 
error processing B-1 
FILE macro parameter 3-3 
FIT structure D-4 

EOIW A field D-6 
ERL field 

error condition processing B-2 
error processing B-1 
FILE macro parameter 3-4 
FIT structure D-4 

Error file 
EFC field 3-3, D-4 
EO field 3-3, D-4 
error processing B-2 

Error messages 
codes and descriptions B-4 
DFC field 3-3, B-2, D-4 
EFC field 3-3, B-2, D-4 
notes B-4 

Error processing 5-4, B-1 
Errors 

classes B-2 
error exit 3-4, B-1 
excess data 2-7, 2-10 
parity error processing 3-3 
trivial error limit 3-4, B-1 

ES field 
error communication B-1 
error condition processing B-2 
FIT structure D-4 

EX field 
error processing B-1 
FILE macro parameter 3-4 
FIT structure D-4 

Exact records block type 2-4 

F type records 
defined 2-7 
FL field 3-4, D-4 
write processing 5-5 

Fast Dynamic Loader E-1 
FETCH macro 3-8 
File 

defined 2-1 
logical structure 2-1 
organizations 2-2 
physical structure 2-1 
specification 3-6 
unlabeled 6-3 

FILE control statement 
format 3-6 
OPENM macro 5-3 
SETFIT macro 3-8 
static loading E-1 
terminal file 4-5 

File information table 
consistency checks 4-1, 5-3 
creation 1-1, 3-1 
dump to error file B-2 
FETCH macro 3-8 
FILE control statement 3-6 
FILE macro 3-1 
file processing 4-1, 4~5 
FITDMP macro B-2 
iabe1 processing fields 6-3 

• Index-2 

., 
macro parameter 5-1 f numbering conventions 2-6 
relationship to open processing 5-4 
SETFIT macro J-B t'. 

i 
I 

STORE macro 3-B l 

I structure D-1 I 
FILE macro I 

establish FIT 1-1 t I 
format 3-1 
null parameters 3-1 

File organization 

I defined 2-1 f FO field 3-4, D-3 
FIT (see File information table) I FITDMP macro B-2 ' 
FL field 

t I 
F type records 2-7 
FILE macro parameter 3-4 
FIT structure D-4 
Z type records 2-10 -FNF field 
error processing B-1 
FIT structure D-5 

FO field c FILE macro parameter 3-4 
FIT structure D-3 
static loading E-1 

FP field « end-of-data processing 4-4, 4-5 
FIT structure D-3 

FWB field 
FILE macro parameter 3-4 c FIT structure D-1 

GET macro 

( F type records 2-7 
format 5-3 
sequential files 4-2 
word addressable files 4-5 

GETL macro 6-7 
GETP macro 

D type records 2-7 
format 5-3 c sequential files 4-2 

GETWR macro 
format 5-3 
sequential files 4-2 t1 

HL field c FILE macro parameter 3-4 
FIT structure D-4 
T type records 2-8 

I type blocks 
e 

ANSI format 2-3 
file structure 2-2 f Internal block type 2-2 

K type blocks c ANSI format 2-4 
file structure 2-3 
RB field 3-5, D-6 

-· LA field 

I FILE macro parameter 3-4 

t, FIT structure D-3 
LABEL control statement 6-4 I 

I 

' 
I 

60495700 D I 
I ... 

" i±: 

~ ~ 



( 

( 

( 

( 

( 

( 

( 
( 

c 

( 

c 
(. 

( 

Label processing 
CLOSEL macro 6-8 
definitions 6-1 
file boundary processing 4-4 
FIT fields 6-3 
GETL macro 6-7 
LA field 3-4, D-3 
label type 6-4 
LBL field 3-4, D-1 
LCR field 3-7, D-1 
LT field 3-4, D-3 
LX field 3-4, D-3 
nonstandard labels 6-6 
OPENM macro 4-1 
PUTL macro 6-7 
standard labels 6-4 
ULP field 3-6, D-3 

LBL field 
FILE macro parameter 3-4 
FIT structure D-1 

LCR field 
FILE control statement parameter 3-7 
FIT structure D-1 

LDSET control statement E-1 
Level number 2-1 
LFN field 

FILE macro parameter 3-1, 3-4 
FIT structure D-1 

List-of-files F-1 
LL field 

D type records 2-6 
FILE macro parameter 3-4 
FIT structure D-4 

LOP field D-5 
LP field 

D type records 2-6 
FILE macro parameter 3-4 
FIT structure D-5 

LT field 
FILE macro parameter 3-4 
FIT structure D-3 
label processing 6-4 

LX field 
FILE macro parameter 3-4 
FIT structure D-3 

Macro 
coding conventions 1-1 
CHECK 5-1 
CHECKR 5-1 
CLOSEL 6-8 
CLOSEM 5-2 
ENDFILE 5-2 
FETCH 3-8 
FILE 3-1 
FITDMP B-2 
format 5-1 
functions 1-1 
GET 5-3 
GETL 6-7 
GETP 5-3 
GETWR 5-3 
OPENM 5-3 
parameter default value 5-1 
PUT 5-4 
PUTL 6-7 
PUTP 5-5 
PUTWR 5-5 
REPLACE 5-6 
REWINDM 5-6 
SETFIT 3-8 
SKIPdu 5-6 
STLD.RM E-2 

60495700 D 

STORE 3-8 
WEOR 5-6 
WTMK 5-7 

MBL field 
FILE macro parameter 3-5 
FIT structure D-6 

MFN field 
FILE control statement parameter 3-7 
FIT structure D-6 

MIP 1-1 
MNB field 

FILE macro parameter 3-5 
FIT structure D-6 

MNR field 
D type records 2-7 
FILE macro parameter 3-5 
FIT structure D-4 

MRL field 
D type records 2-6 
FILE macro parameter 3-5 
file processing 4-2, 4-6 
FIT structure D-4 
R type records 2-7 
T type records 2-8 
U type records 2-8 
W type records 2-8 

MUL field 
FILE macro parameter 3-5 
FIT structure D-5 

Multifile set 
FILE control statement parameter 3-7 
label processing 6-4 

Nonstandard labels 
defined 6-1 
input file processing 6-6 
output file processing 6-6 

OC field 
close processing 5-2 
FIT structure D-5 

OF field 
FILE macro parameter 3-5 
FIT structure D-3 

OMIT parameter E-1 
OPENM macro 

dynamic loading E-1 
error processing 5-4 
format 5-3 
sequential file processing 4-1 
word addressable file processing 4-5 

Padding 
E type blocks 2-4 
end-of-data processing 4-4 
K type blocks 2-3 
PC field 3-5, D-4 

Parity errors 
EO field 3-3, B-1, D-4 
PEF field B-1, D-4 
SES field B-1, D-4 

Partition 
boundary 2-5 
defined 2-1 
ENDFILE macro 5-2 

PC field 
FILE macro parameter 3-5 
FIT structure D-4 

PD field 
FILE macro parameter 3-5 
FIT structure D-5 

Index-3• 



PEF field 
error processing 8-1 
FIT structure 0-4 

Pivi fieid D-5 
PNO field 

PRU 

FILE control statement parameter 3-7 
FIT structure D-6 

defined 2-1 
device 2-1 

PTL field 
FIT structure 0-5 
read processing 4-2 
W type records 2-9 

PUT macro 
F type records 2-7 
format 5-4 
S type records 2-8 
sequential files 4-2 
word addressable files 4-6 

PUTL macro 6-7 
PUTP macro 

0 type records 2-7 
format 5-5 
S type records 2-8 
sequential files 4-2 

PUTWR macro 
format 5-5 
sequential files 4-3 

R type records 
defined 2-7 
RMK field 3-5, 0-4 
write processing 5-5 

RB field 
FILE macro parameter 3-5 
FIT structure 0-6 

RC field 0-5 
Record 

block type associations 2-6 
definition 2-1 
mark 2-7 
maximum length field 3-5 
minimum length field 3-5 
physical 2-1, 2-4 
type field 3-5 
types 2-6 

Record count block type 2-3 
Register use 3-8, 5-1 
REPLACE macro 

format 5-6 
sequential files 4-3 

REWINOM macro 
format 5-6 
sequential files 4-3 

RL field 
F type records 2-7 
FIT structure 0-3 
S type records 2-7 
U type records 2-8 
W type records 2-9 
Z type records 2-10 

RMK field 
FILE macro parameter 3-5 
FIT structure 0-4 
R type records 2-7 

RT field 
FILE macro parameter 3-5 
FIT structure D-3 
static loading E~l 

• lndex-4 

S type records 
defined 2-7 
write processing 5-5 

SB fieid 
0 type records 2-6 
FILE macro parameter 3-6 
FIT structure D-5 
T type records 2-8 

SBF field 
FILE macro parameter 3-6 
FIT structure 0-4 
GETWR macro 5-3 

Section 
boundary 2-5 
defined 2-1 
WEOR macro 5-7 

Sequential files 
block types 2-2 
boundaries 2-4 
close processing 4-3 
end-of-data processing 4-4 
file boundary processing 4-4 
file positioning 4-3 
file updating 4-3 
input processing 4-2 
open processing 4-1 
output processing 4-2 
structure 2-2 
tape processing 4-3 
terminal file processing 4-4 

SES field 
error processing B-1 
FIT structure 0-4 

SETFIT macro 
dynamic loading E-1 
FILE control statement processing 
format 3-8 

SKIPdu macro 
format 5-6 
sequential files 4-3 

SPR field 
FILE macro parameter 3-6 
FIT structure 0-4 

Standard labels 
ANSI format 6-1 
defined 6-1 
input tape processing 6-4 
output tape processing 6-5 

Static loading E-1 
STLO.RM macro E-2 
System-logical-record 

defined 2-2 
S type records 2-7 

S/L tapes 
defined 2-1 
file boundary processing 4-4 
file processing 4-3 

T type records 
CL field 3-3, 0-4 
CP field 3-3, 0-5 
Cl field 3-3, 0-5 
defined 2-8 
HL field 3-4, 0-4 
SB field 3-6, 0-5 
TL field 3-6, 0-4 
write processing 5-5 

Terminal file 
CF field 3-3, D-3 
CNF field 3-4, 4-5, 0-5 

~! 

ti 
I 

c i 
I 
I 

t I 
Ii 

I t!i I 
I 

f 
I 

ti 

ti 

t' 
I 
I 

t: I 
I 3_,; 

I I 
I 

t I t, I t: 

I t 
c 
c 
t, 

t I 
I 
I 

' 
i 

60495700 0 I 
ii 

~ 
m 
~' 



( 

C' 

C' 

c: 
( 

c: 
( 

c: 

c: 

'I 

file processing 4-4 
static loading E-1 

TL field 
FILE macro parameter 3-8 
FIT structure D-4 
T type records 2-8 

U type records 
defined 2-8 
write processing 5-5 

ULP field 
FILE macro parameter 3-6 
FIT structure D-3 

USE parameter E-1 

VF field 
FILE macro parameter 3-6 
FIT structure D-3 

VNO field D-6 
Volume 

boundary 2-5 
close processing 3-8, 5-2 
defined 2-1 
file boundary processing 4-4 

W type records 
defined 2-8 
write processing 5-5 

60495700 D 

WA field D-6 
WEOR macro 

file boundary processing 4-4 
format 5-6 
S type records 2-8 
sequential files 4-2 
write processing 5-5 

Word address 4-5 
Word addressable files 

close processing 4-6 
input processing 4-5 
open processing 4-5 
output processing 4-6 
structure 2-6 

Working storage area 
sequential file processing 4-1 
word addressable file processing 4-5 
WSA field 3-8, D-4 

WPN field D-5 
WSA field 

FILE macro parameter 3-8 
FIT structure D-4 

WTMK macro 
file boundary processing 4-4 
format 5-7 

Z labels 6-4 
Z type records 

defined 2-10 
FL field 3-4, D-4 
write processing 5-5 

Index-5• 



.~ ; 
~ 

! 

41 
!i 

I 
I 
I 

c~ 
~ 

i 
t 
I 

f J 
·~ 

~ 
• I 

t 
~ 

I 
I 

f i 

I 

-
t 

41 

f 



t 

~ 

(' 

c· 

-~' 
(" 

f' 
(' 

i 
I 

c·:" I 
( I 

( 
~I _. 
en I 
II 
I-

~1 
I-

( al 

, . 
.. I 

c: 

c~ 

c; 

' ( 

(, 

(. 

I' 

COMMENT SHEET 

TITLE . CYB ER Record Manager Basic Access 
· Methods Version 1.5 Reference Manual 

PUBLICATION NO. 60495700 REVISION D 

r;:J c:\ CONT1'0L DATA 
\::. r:,J CORJ'O~TION 

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this 
manual with a view to improving its usefulness in later editions. 

Applications for which you use this manual. 

Do you find it adequate for your purpose? 

What improvements to this manual do you recommend to better serve your purpose? 

Note specific errors discovered (please include page number reference). 

General comments: 

f::>()'\JI NAME: POSITION:--------------

COMPANY 
NAME:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ADDRESS=~----------------------------~ 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
l=()I n ()N nnTTi=n I INI=~ ANn ~TAPI I= 



STAPLE STAPLE 

_F~-----------------------------~~ 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 

115 Moffett Park Drive 
c;unnyvale, California 94086 

FIRST CLASS 
PERMIT NO. 8241 

MINNEAPOLIS, MINN. 

I 
I 
I 
'w 

Ii 
I~ 
lil 
I 
I 

----- ---·- - ·- - - - - ----- --- - - - - - _J 
FCJ~ FOLD I 

STAPLE STAPLE 

I 

I 
I 
I 

I 
I 
I 
I 


