O TR A AT A A A A ATA A A~ ~

™

60499300

@ CONTROL DATA
CORPORATION

CYBER RECORD MANAGER
ADVANCED ACCESS METHODS

VERSION 2
REFERENCE MANUAL

cDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1

REVISION RECORD

REVISION

DESCRIPTION

A

Original release.

(3-31-78)

Publication No.
60499300

REVISION LETTERS |, O, Q AND X ARE NOT USED

© 1978

Control Data Corporation

Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

- aaa -

a

.

L

e e O < S O O S S0 W O VNI O N DY S M 0

CYBER Record Manager Advanced i
. -Manual Title_ Access Methods Version 2 Reference Manual Pub. No. - 60499300 Rev. A .=

A A~

As part of Control Data's continuing quality improvement program, we invite you to complete this questionnaire so
that you may have a more direct influence on the manuals you use.

" non-CDC equipment?
Miscellaneous

,(, Please rate this manual for each general and individual category on a scale of 1 through 5 as follows:
(o 1 - Excellent 2 - Good 3 - Fair 4 - Poor 5 - Unacceptable
4 I. . Writing Quality , D. | am interested primarily in
- .) user guides designed to teach
(Af Technical accuracy the user about a product or
B. Completeness certain capabilities of a product.
< C. Audience defined properly
D. Readability VI. We recognize that we have a wide
(E. Understandability variety of users. Please identify your
F. Organization primary area of interest or activity:
- Il. Examples A. Student
() B. Applications programmer
o A. Quantity C. Systems programmer
ST B. Place.men_t_ D. How many years programming
(C.. App(lncablhty experience do you have?
; D. Quality E.. What languages
: E. Instructiveness 1. Algol
2. Basic
(- Ill, Format 3. Cobol
7 - , 4. Compass
A. Type size —_— 5. Fortran
B. Page density o 6 PL/I
C. Art work)
. /0 _— 7. Other
- DL -Legibility o
.& E Printing/Reproduction F. Have you ever worked on
1. If yes, approximately
A. Index what percent of your
B. Glossary experience is on non-

CDC equipment?
Piease provide a yes or no answer

regarding manuals in general: 2. How do you rate CDC
manuals against other
A. | prefer that a manual on a software similar manuals using
: product be as comprehensive as the 1-5 ratings.
possible; physical size is of little (Exampie: XYZ Corp. 2
importance. means XYZ manuals are good
as compared to CDC manuals.)
B. | prefer that information on a Burroughs
software product be covered in DEC
several small manuals, each Hewlett-Packard
covering a certain aspect of the Honeywell
product. Smaller manuals with IBM
limited subject matter are easier NCR
to work with, Univac
Other N
C. | am interested primarily in

reference manuals designed for
ease of locating specific
information.

General Comments

E

TOFCL

o, gt

D

|
}
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|

FIRST CLASS .
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAII

Gt B @ Ve SR me

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffeit Park Drive
Sunnyvale, California 94086

'

STAPLE

FOLD |

CUT ON THIS LINE

Lo T T N N S T e

Y N N N NP N N

bl

v

[3

L)

LIST OF EFFECTIVE PAGES

Page

Revision

Cover

Title Page

ii thru viii

1-1 thru 1-3
2-1 thru 2-11
3-1 thru 3-10
4-1 thru 4-13
5-1 thru 5-7
6-1 thru 6-8
7-1 thru 7-11
A-1 thru A4
B-1 thru B-16
C-1 thru C-3
D-1 thru D-6
E-1, E2

F-1

G-1

H-1, H-2
Index-1 thru -8
Comment Sheet

Return Env
Suurn onv.

Cover

i b S i i g i g e S

|

60499300 A

Page

Revision

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page

Revision

iii/iv

W W W W VW @ VU U VY W ey W O W

N

(
(
(
(
¢

A AAA A A A

PREFACE

CYBER Record Manager Advanced Access Methods (AAM)
Version 2 operates under control of the following operating
systems:

NOS 1 for the CONTROL DATA® CYBER 170 Models
171, 172, 173, 174, 175; CYBER 70 Models 71, 72, 73,
74; and 6000 Series Computer Systems.

NOS/BE 1 for the CDC® CYBER 170 Series; CYBER 70
Models 71, 72, 73, 74; and 6000 Series Computer
Systems.

AAM is a part of DMS-170, the data management system
that also includes CYBER Database Control System
Versions 1 and 2 and Data Description Language Versions 2
and 3. AAM can be used independently of DMS-170,
Publication
NOS/BE 1 Reference Manual
NOS 1 Reference Manual, Volume 1

NOS 1 Reference Manual, Volume 2

Methods Version 1.5 Reference Manual

CYBER Record Manager Basic Access
CYBER Record Manager Version 1
User's Guide

Common Memory Manager Version 1
Reference Manual

COMPASS Version 3 Reference Manual

CYBER Loader Reference Manual

AAM input and output facilities are available to users of
COMPASS assembly language through macro calls. User
programs, COBOL, FORTRAN Extended, and PL./I use AAM
for input/output operations. The user programs communi-
cate with AAM either through the compiler, using the calls
supplied within the languages, or with AAM macros.

Intended as a primary document for COMPASS program-
mers, this manual presents background information and
operational specifications for AAM. COBOL, FORTRAN
Extended, and Sort/Merge programmers can use this manual
as a source for AAM terminology and concepts; specific
language interfaces are detailed in the appropriate refer-
ence manuals. The user is assumed to be familiar with the
operating system at the installation and with file
organization and manipulation.

Information necessary for a complete understanding of AAM
use is contained in the following publications:

Publication Number

60493800
60435400
60445300

60495700

60495800

60499200
60492600

60429800

CDC manuals can be ordered from Control Data Literature and Distribution Services,
8001 East Bloomington Freeway, Minneapolis, MN 55420

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of

undescribed features or parameters.

60499300 A

v/vi

i 0 A AR i i i o

—

VU YU wmees W Y W W . e W W w W

-

~ A

N~ o~ .

CONTENTS

S

1. AAM FEATURES 1-1 File Updating 4-5
File Positioning 4-5
File Organizations 1-1 Overlap Processing 4-5
AAM Macros 1-1 Extended Indexed Sequential Files 4-5
File Creation Run 4.5
Existing File Processing 4-6
2. FILE STRUCTURES 2-1 Open Processing 4-7
Read Processing 4-7
Logical Structure 2-1 Write Processing 4-7
Physical Structure 2-1 Random Processing 4-7
File Organizations 2-1 Major Key Processing 4-8
Initial Indexed Sequential File Structure 2-1 File Updating 4-8
Data Blocks 2-2 File Positioning 4-8
Index Blocks 2-2 Overlap Processing 4-8
Extended Indexed Sequential File Structure 2-3 Actual Key Files 4-9
Data Blocks 2-3 File Creation Run 4-9
Index Blocks 2-3 Existing File Processing 4-9
Actual Key File Structure 2-4 Open Processing 4-9
Actual Keys 2-4 Read Processing 4-10
Overflow 2-4 Write Processing 4-10
Direct Access File Structure 2-5 File Updating 4-10
File Storage Allocation 2-6 File Positioning 4-10
File Blocking 2-6 Overlap Processing 4-10
Record Types 2-7 Direct Access Files 4-11
Decimal Character Count, D Type Records 2-7 File Creation Run . 4-11
Fixed Length, F Type Records 2-8 Overflow 4-11
Record Mark, R Type Records 2-8 User Hashing Routine 4-11
System Record, S Type Records 2-9 Supplied Hashing Routine 4-12
Trailer Count, T Type Records 2-9 Direct Access File Records 4-12
Undefined; U Type Records 2-9 Existing File Processing 4-12
Contro! Word, W Type Records 2-9 Open Processing 4-12
Zero Byte, Z Type Records 2-9 Read Processing 4-13
Alternate Key Index File Structure 2-10 Read-Only Processing 4-13
Initial MIP 2-10 Write Processing 4-13
Extended MIP 2-10 File Updating 4-13
File Positioning 4-13
Overlap Processing 4-13
3. FILE INFORMATION TABLE 3-1
FILE Macro - 5. FILE PROCESSING MACROS 5-1

3-1

FILE Control Statement 3-8

Run-Time Manipulation 3-8
FETCH Macro 3-8 Processing Macros

3-8

3-1

Macro Execution

STORE Macro CLOSEM Macro

5-1

5-1

5-1

SETFIT Macro -10 DELETE Macro 5-2

FLUSHM Macro 5-2

GET Macro 5-2

4, FILE PROCESSING 4-1 OPENM Macro 5-3

PUT Macro 5-4

General Processing Information 4-1 REPLACE Macro 5-5

File Information Table 4-1 REWINDM Macro 5-6

File Statistics Table 4-1 SEEK Macro 5-6

OPENM Macro 4-1 SKIP Macro 5-6

Input/Output Macros 4-1 START Macro 5-6
CLOSEM Macro 4-1
End-of-Data Routine 4-1

Initial Indexed Sequential Files 4-1 6. MULTIPLE-INDEX FILES 6-1
File Creation Run 4-2

Existing File Processing 4-3 Index File 6-1

Open Processing 4-3 Storage Structure 6-1

Read Processing 4-3 Block Size, Initial MIP 6-1

Read-Only Processing 4-4 Block Size, Extended MIP 6-1

Write Processing 4-4 Alternate Key Specification 6-1

Random Processing 4-4 RMKDEF Macro, Initial MIP 6-1

Major Key Processing 4-4 RMKDEF Macro, Extended MIP 6-2

Duplicate Key Processing 4-4 Applicable FIT Fields 6-3

60499300 A vii

€
Alternate Key Frocessing 6-3 7. UTILITIES 7-1 ‘
Alternate Key Access 6-3
File Updating 5-4 Initiai Indexed Sequentiai Files 7-1
Read-Only Processing 6-4 SISTAT Utility 7-1
Index File Positioning 6-4 ESTMATE Utility 7-1 “
START Macro 6-4 Extended Indexed Sequential Files 7-2 I
Other Positioning Macros 6-5 FLSTAT Utility 7-2
Index File Processing 6-5 FLBLOK Utility 7-2
Macro Processing 6-5 Direct Access Files 7-4 ‘
FIT Fields for Index File Processing 6-6 Key Analysis Utility 7-4 |
Count Retrieval 6-6 CREATE Utility 7-7
Range Count Retrieval 6-6 Multiple-Index Files 7-8
Primary Key List Retrieval 6-7 IXGEN Utility 7-8 eﬂ
Range List Retrieval 6-7 MIPGEN Utility 7-9 1
MIPDIS Utility 7-10
APPENDIXES ‘
A STANDARD CHARACTER SET A-1 E LOADING AAM E-1 |
B ERROR PROCESSING AND F USE OF LIST-OF-FILES F-1 ‘
DIAGNOSTICS B-1 G BUFFER ALLOCATION G-1 .
C GLOSSARY C-1 H DATA COMPRESSION AND
D FILE INFORMATION TABLE STRUCTURE D-1 DATA ENCRYPTION H-1 ‘,1
INDEX
|
FIGURES ‘
1-1 COMPASS Format 1-2 - GET, GETN, and GETNR Macro Formats - "
2-1 Logical Structure of an Indexed - OPENM Macro Format - ‘
Sequential File 2-2 - PUT Macro Format - i
2-2 Physical Structure of an Indexed - REPLACE Macro Format -
Sequential File 2-2 - REWINDM Macro Format -
2-3 Initial Indexed Sequential Block - SEEK Macro Format -
Header Format 2-3 -10 SKIP Macro Format -
2-4 Logical Structure of an Actual Key File 2-4 -11 START Macro Format -
2-5 Actual Key Data Block Format 2-4 - RMKDEF Macro Format, Initial MIP -
2-6 Actual Key Block and Overflow Record - RMKDEF Macro Format, Extended MIP -

SISTAT Control Statement Format
SISTAT Utility Output

ESTMATE Control Statement Format
ESTMATE Directive Format

ESTMATE Utility Sample Deck Structure
ESTMATE Utility Output

FLSTAT Control Statement Format
FLSTAT Utility Regular Output

FLSTAT Utility Expanded Output
FLBLOK Control Statement Format
FLBLOK Directive Format

FLBLOK Utility, Sample Deck Structure
FLBLOK Utility Output

Key Analysis Output

KY AN Directive Format

Key Analysis as External Subroutine
CREATE Directive Format

0 CREATE Czall Through COBOL

0 7-19 IXGEN Control Statement Format

2 7-20 RMKDEF Directive Format, IXGEN Utility

Header Formats
Actual Key Data Record Format
Actual Key Record Header Format
Logical Structure of a Direct Access File
Direct Access Record Header Format
Numbering Conventions
D Type Record Example
F Type Record Example
R Type Record Example
T Type Record Format
Sample Index File, Initial MIP
Index File Logical Structure, Extended MIP
Index File Physical Structure, Extended MIP
FILE Macro Format
FILE Control Statement Format
FETCH Macro Format
STORE Macro Format
STORE Macro Examples
SETFIT Macro Format
User Hashing Routine Example

1
1
U
1

¢

1
UWWD\A‘.@I\M\NU\MNE\)%\JNNNNNNNNNN
PR N = O\ D U0 @O~ G\

-0

1]

1

t

@~ NS WN O
b
U

1
1
1

1
1
]
1

1
t
1

NV WN-OD

-,

‘\l\-l\l\l\l\l\l\l\l\l\l\l\l\ll\:\l\’\la\mmm\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\n
b ot ot ot et et pd = = DD SO AW R N e 0D NN B

1
¥
1

\l\l\l\l\l\l\l\l\l\lﬂ\l\l\l\l\lﬁ\l\l\l\l\l\i&@\l\\ﬂU"\ﬂ\ﬂU‘U"\.ﬂ
R OUWVOONNNOA VMU ONES, WNRNNRERFNRNSNOONO U W

WA U B Gl W W W N N NN NI NN NN
W b 0N B W N b b b b b b bt b b b \D @ ~d

- CLOSEM Macro Format - 7-21 MIPGEN Control Statement Format -10

- DELETE Macro Format - 7-22 RMKDEF Directive Format, MIPGEN Utility -10
- FLUSHM Macro Format - 7-23 MIPDIS Control Statement Format -11 w
TABLES
1-1 AAM Macros 1-2 3-2 FILE Macro Parameters by File Organization 3-2 ﬂ
1-2 Applicability of Macros 1.3 3-3 FILE Control Statement Parameters 3-9 B

2-1 Record Types and Length Descriptions 2-8 3-4 Buffer Calculation Parameters 3-10
3-1 LFN and Ifn Interaction 3-1 5-1 FIT Consistency Checks 5-4 &
viii 60499300 A @

g A S R O O O 00N O OO O O 0 0 G S N O 0 150 00 D0 0000500 00 0 W 0 i (B A e o 5 e

v

1

-~

AAM FEATURES

An interface between user programs and system input/-
output routines is provided by the Advanced Access
Methods (AAM). AAM subsystems exist in the NOS and
NOS/BE operating systems. AAM also provides consistent
error processing and maintenance of different file
organizations.

AAM routines are used by some compilers and are available
for user programs. Use of AAM by compilers and user
programs extends input/output compatibility to both the
system and application program levels.

The primary task of AAM is record input/output for files on
supported devices. The various types of records and file
organizations must be identified for AAM. These and other
file characteristics must be set by the user in the file
information table (FIT). The FIT is divided into fields that
describe certain aspects of the file. Refer to appendix D for
the exact structure of the FIT.

The following terms are relevant to AAM and related
systems:

AAM (Advanced Access Methods)

A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple-Index Processor.

BAM (Basic Access Methods)

A file manager that processes sequential and word
addressable file organizations.

CRM (CYBER Record Manager)

A generic term relating to both BAM and AAM as
they run under the NOS and NOS/BE operating
systems.

MIP (Multiple-Index Processor)

A processor that allows AAM files to be accessed

by alternate keys.

W

AAM supports two types of MIP: initial MIP and ex-

tended MIP.

FILE ORGANIZATIONS

Three file organizations are supported by AAM:

Indexed sequential
Records are in order by primary key and can be
accessed sequentially or randomly.

Direct access

Records are not in any recognized order and are
accessed by key manipulation.

60499300 A

Actual key

Records are accessed by a primary key containing
the block and record number within the file.

AAM supports two types of indexed sequential files: initial
indexed sequential files and extended indexed sequential
files.

AAM MACROS

The file information table is established for the file by the
FILE macro encountered at assembly time. The FILE macro
establishes the FIT in the field length of the user program at
the point at which it is called. This macro can contain only
the file name and file organization or it can have user-
specified parameters describing the particular file. FIT
fields are assumed by AAM through default values when not
specified as macro parameters. AAM macros and functions
are listed in table 1-1. Macros are grouped according to
their associated functions.

The applicability of some AAM macros depends on the file
organization established by the user. Table 1-2 indicates
the applicability of each macro to the various file organiza-
tions and to files processed by MIP.

Macros are discussed according to each file organization in
section 4, File Processing. Consequently, material is
presented redundantly for the benefit of a programmer whe
uses this manual to reference a particular file organization.
The format of each macro and a general description are

presented in section 5, File Processing Macros.

Macro statements are coded in COMPASS format. Each
statement can contain a location field, a macro name in the
operation field, a variable field, and a comment field. Any
field is terminated by one or more blanks. A macro
statement begins in character position 1 of an 80-column
card image and continues through column 72. Columns 73
through 80 are used for sequencing. Suggested coding
conventions are shown in figure 1-1.

The allocation of the columns in COMPASS format is as
follows:

1 Comma (continuation), asterisk (com-
ment line), or other (beginning of new
statement)

2 thru 9 Location field entry, left-justified

10 Blank

11 thru 16 Operation field entry, left-justified

17 Blank

18 thru 29 Variable field entry, left-justified

30 Beginning of comment

1-1

TABLE 1-1. AAM MACROS

Function Macro Action Taken
File creation FILE Creates the file information table (FIT). In addition to this macro,
and maintenance a FILE control statement is available to supply FIT information.
FETCH Retrieves the value of a specified field in the FIT.
STORE Sets the value of a field in the FIT.
SETFIT Sets values in fields in the FIT with values supplied through the
FILE control statement.
File initialization OPENM Prepares a file for processing.
and termination
FLUSHM Flushes buffers to bring mass storage files into a state of
equilibrium.
CLOSEM Terminates file processing.
Data transfer GET Transfers data from a file to the working storage area.
PUT Transfers data from the working storage area to a file.
File updating DELETE Deletes a record from a file.
REPLACE Replaces a record in a file.
File positioning SKIP Repositions a file backward or forward.
REWINDM Rewinds a file to beginning-of-information (BOI).
SEEK Provides an overiap between input/output and processing by posi-
tioning while processing.
START Positions a file to a record that satisfies a specific condition.
Location Operation Variable Comments
Field Field Field Field
T
Blank, asterisk, One or more spaces
comma, or first
character of
location field

1-2

Figure 1-1. COMPASS Format

60499300 A

i,

t

(
q

”~

TABLE 1-2. APPLICABILITY OF MACROS

File Organization

Sequential Sequential Key Access
CLOSEM X X X % X »
DELETE X X X %
FILE X X x x X x
FLUSHM X
GET X X % x N
GETN X X X x «
GETNR % x
OPENM X X X % x «
PUT X X X 5
REPLACE X X X X
REWINDM X X x % x <
SEEK X % X X % x
SETFIT X X X % x x
SKIP X % x ot ot
START X X % <
STORE X X x X % x
skIPFL macro only.

60499300 A

1-3

55010 00 M N5 OO N0 P DT 0000 O 0 0 0 0 1 000 0 o 140 s 0 i i -l

VW W W VW W Y VWV O wuaaw O W VW OV W O W W W w

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
¢
(
(
¢

rd

FILE STRUCTURES 2

A hierarchical data structure is recognized in a progression
from the character level to the largest grouping of data, the
file. The AAM user can describe file structure by file
organization and record type.

LOGICAL STRUCTURE

The logical structure of an AAM file is user-controlled. The
following terms are applicable to the logical file structure
and are used throughout this manual:

Record

A record is a group of related characters. A
character is represented in six bits as internal
display code. A record is the smallest collection of
information passed between AAM and the user.
The user defines the structure and characteristics
of records within a file by declaring a record
format. The beginning and ending points of a
record are implicit within each format.

Block

A block contains one or more records. Block
structure is interwoven with the physical recording
format; unlike other logical file structure declara-
tions, the block structure is transparent in use.
AAM constructs blocks from the recerds supplied
by the user and supplies the user with records as
requested. The wuser is unaware of block
boundaries.

File

A file is a logically connected set of information; it
is the largest collection of information that can be
addressed by a file name. All data in a file is
stored between beginning-of-information (BOI) and
end-of-information (EOI).

PHYSICAL STRUCTURE

The following terms pertain to the physical means used to
record files:
Input/output device
Any storage medium supported by the operating
system.
Rotating mass storage (RMS)
Disk or disk pack.

Mass storage device

Disk, disk pack, or extended core storage (ECS).

PRU device

All mass storage devices. The operating system
superimposes a physical structure over the user-
declared AAM file structure on all files that reside
on PRU devices.

60499300 A

Physical record unit (PRU)

The smallest unit of information that can be
transferred between a peripheral storage device
and central memory. The PRU size is 640
characters.

Short PRU

A PRU containing fewer than the 640 characters
defined for a PRU.

System-logical-record

A group of PRUs terminated by a short or zero-
iength PRU.

AAM controls the physical file position; the user controls
only the logical file position.

FILE ORGANIZATIONS

AAM supports four file organizations: initial indexed
sequential, extended indexed sequential, direct access, and
actual key. The following paragraphs describe the structure
of each file organization.

INITIAL INDEXED SEQUENTIAL FILE STRUCTURE

An initial indexed sequential file consists of a file statistics
table, index blocks, and data blocks. Each block is an
integral number of PRUs less one central memory word and
is treated as a system-logical-record. Both index and data
blocks are fixed-length blocks; index blocks need not be the
same size as data blocks.

Each record in the initial indexed sequential file is identified
by a primary key value. Records are stored in data blocks in
increasing primary key sequence. Index blocks contain
primary key information used tc retrieve any record in the

file.

The file statistics table (FSTT) maintains file integrity by
preventing user actions that would destroy the file. When
the file is created, the user defines the file and key
structure that must remain the same for the life of the file.
This information is stored in the FSTT and is used to guide
processing as long as the file exists. If the user sets a field
in the FIT to a value that does not conform to the FSTT, the
value is rejected and the job is terminated. The FSTT stores
accumulated statistics related to file access; if applicable,
it also stores a user-supplied collating sequence for ranking
symbolic keys.

The logical structure of an initial indexed sequential file is
shown in figure 2-1. The blocks identified as DOl through
D09 are data blocks; those identified as I01 through 103 are
the first level index blocks and 111 is the primary or second
level index block.

The physical structure of an initial indexed sequential file is
shown in figure 2-2, FSTT is the file statistics table, DOl
through D09 are the data blocks, and I01 through 103 are the
index blocks.

2-1

111
! {
101 102 103
! 1y 11 1
D01 | D02 | DO3 | DO4 D05 | DO6 | DO7 | DO8 | DO9

Figure 2-1. Logical Structure of an Indexed Sequential File

Beginning-of-Information

End-of-Information

! !

FSTT | DO1 101 | D02 | DO3

D04 102

111 | DO5 | DO6 | DO7 103 | DO8 | D09

t [+ + b 1

Figure 2-2. Physical Structure of an Indexed Sequential File

When an initial indexed sequential file is created, data block
size, index block size, record size, and key characteristics
must be specified for AAM to construct the data blocks,
index biocks, and key entries for the file. A maximum of 10
active initial indexed sequential files per job step can be
processed.

Data Blocks

A data block in an initial indexed sequential file contains a
header, an optional checksum word, user records, primary
key entries, and padding. The size and characteristics of the
data block are determined by the setting of various fields in
the FIT when the file is created. The specific FIT fields
that are used during file creation are discussed in section 4,
File Processing. The formats of the fields are detailed in
section 3, File Information Table.

The header in a data block contains a pointer that chains the
block in a forward direction to permit sequential reading
without an index. It also contains a relative pointer to the
first word of unused space in the block and the size of the
unused space. The standard block header format is shown in
figure 2-3. An installation can choose to increase the size
of the header when the system is installed.

User records in a data block can be fixed or variable length.
Only whole records can be in a data block; records cannot
span blocks. Primary keys (one for each record in the block)
are stored separately from records to reduce search time.
Records are stored in ascending primary key sequence. The
first record in the first data block has the lowest primary
key value in the file, and the last record in the last data
block has the highest key value.

A primary key entry is stored in the data block for each
record in the block. The key entry is an integral number of
central memory words. It contains the primary key and a
pointer to the corresponding record in the block.

2-2

Padding in a data block is the amount of space that is not to
be used for writing records during file creation. This space
can then be used to insert new records during subsequent
runs that update the file. The amount of padding is
specified as a percentage of the total block size.

Index Blocks

An index block in an initial indexed sequential file contains a
system-supplied header, an optional checksum word, primary
key entries, and padding. The size of an index block need
not be the same as the size specified for a data block.
Other index block characteristics are specified through the
FIT. Refer to section 4, File Processing, for the specific
FIT fields and to section 3, File Information Table, for the
format of the fields.

Index block records are created and maintained by AAM. A
primary key entry consists of a primary key value and a PRU
number. The primary key value is the lowest key value in
the next lower level index block or in a data block; the PRU
number points to the beginning of the block. Key entries
within an index block are in ascending primary key sequence.

Index blocks are organized into as many levels as necessary
to ensure only one index block at the highest or primary
level. The maximum number of levels that can exist for a
file is specified in the FIT; no more than 63 levels can be
specified.

Padding in an index block is the same as in a data block.
Data blocks and index blocks do not have to have the same
percentage of padding. The default index block padding
factor is five percent; a zero value is changed to the default
value of five. Any nonzero padding factor less than 100 is
acceptable unless data block calculation results in a block
that cannot be accommodated in the user field length.

60499300 A

-

1,

Y YN

«

)
C

59 35

17 0

Next Data Block Address

Words of Padding

First Padding Word

59 thru 36 PRU number of the next sequential data block.
35 thru 18 Current size of the padding.
17 thru O First word of the padding.

Figure 2-3. Initial Indexed Sequential Block Header Format

EXTENDED INDEXED SEQUENTIAL FILE STRUCTURE

An extended indexed sequential file consists of a file
statistics table, index blocks, and data blocks. Each block is
an integral number of PRUs less two central memory words
and is treated as a system-logical-record. Both index and
data blocks are fixed-length blocks and must be the same
size.

Each record in the extended indexed sequential file is
identified by a unique primary key value. Records are
stored in data blocks in increasing primary key sequence.
Index blocks contain primary key information used to
retrieve any record in the file.

The file statistics table (FSTT) maintains file integrity by
preventing user actions that would destroy the file. When
the file is created, the user defines the file and key
structure that must remain the same for the life of the file.
This information is stored in the FSTT and is used to guide
processing as long as the file exists. If the user sets a field
in the FIT to a value that does not conform to the FSTT, the
value is rejected and the job is terminated. The FSTT stores
accumulated statistics related to file access; it also stores a
default or user-supplied collating sequence for ranking
symbolic keys.

The logical and physical structures of an extended indexed
sequential file are the same as shown in figure 2-1 and
figure 2-2, respectively, for an initial indexed sequential
file.

When an extended indexed sequential file is created, data
and index block size, record size, and key characteristics
must be specified for AAM to construct the data blocks,
index blocks, and key entries for the file.

Data Blocks

A data block in an extended indexed sequential file contains
a header, user records, record pointers, and padding. The
size and characteristics of the data block are determined by
the setting of various fields in the FIT when the file is
created. The specific FIT fields that are used during file
creation are discussed in section 4, File Processing. The
formats of the fields are detailed in section 3, File Infor-
mation Table.

The two-word header in a data block contains a pointer that
chains the block in a forward direction to permit sequential
reading without an index. It also contains the size of the
unused space, a record count, and other flags and counts.
An optional checksum can also be included in the header.

60499300 A

User records in a data block can be fixed or variable length.
Only whole records can be in a data block; records cannot
span blocks. Records are stored in ascending primary key
sequence. The first record in the first data block has the
lowest primary key value in the file, and the last record in
the last data block has the highest key value.

One or more record peinters are stored in a data block. The
record pointer is a 30-bit field; two record pointers are
stored in a word. The pairs of record pointers are stored at
the end of the data block beginning with the last word. The
record pointer contains the last word address plus 1 of the
record; the address is relative to the beginning of the first
record in the block. It also contains the number of trailing
characters that are not part of the record and processing
flags. If all records in the block are the same length, only
one record pointer is needed.

Padding in a data block is the amount of space that is not to
be used for writing records during file creation. This space
can then be used to insert new records during subsequent
runs that update the file. The amount of padding is
specified as a percentage of the total block size. The
default value of zero percent can be used for files that are
expected to grow mainly by sequential inserts or by adding
records at the end of the file.

Index Blocks

An index block in an extended indexed sequential file is
structured the same as a data block with a system-supplied
header, records, a record pointer, and padding. The size of
an index block is the same as the size specified for a data
block. Other index block characteristics are specified
through the FIT. Refer to section 4, File Processing, for the
specific FIT fields and to section 3, File Information Table,
for the format of the fields.

Index block records are created and maintained by AAM. A
record consists of a primary key value and a PRU number.
The primary key value is the lowest key value in the next
lower level index block or in a data block; the PRU number
points to the beginning of the block. Records within an
index block are in ascending primary key sequence.

Index blocks are organized into as many levels as necessary
to ensure only one index block at the highest or primary
level. The maximum number of levels that can exist for a
file is specified in the FIT; no more than 15 levels can be
specified.

2-3

An index block requires only one record pointer because all
records in the block are the same length. The record
pointer, which is the same as described for dala biocks, is
stored in the last word of the index block.

Padding in an index block is the same as in a data block.
Data blocks and index blocks, however, do not have to have
the same percentage of padding. The default index block
padding factor is zero percent.

ACTUAL KEY FILE STRUCTURE

An actual key file consists of a file statistics table and a
number of data blocks. New data blocks are created at end-
of-information as the file grows. Block size can be specified
by the user or a default size can be determined by the
system. Padding can be defined for data blocks, or block
size can be defined to allow for an increase in record size.

The data block contains a fixed number of slots for data
records that can be fixed or variable length. The block
number and slot number assigned to each record as it is
written become the permanent address (primary key) of the
record. When a record is written on the file, the primary
key can be specified by the user or it can be determined by
AAM. If a primary key value of zero is specified by the
user, AAM determines where to write the record and returns
the block number and slot number to the user.

A maximum of 10 active actual key files per job step can be
processed. The logical structure of an actual key file is
shown in figure 2-4,

Beginning-of-Information
\

iock | Block
FSTT B‘(’f v B,f,‘ﬁk

End-of-Information

Figure 2-4, Logical Structure of an Actual Key File

The first block is the 63-word file statistics table containing
file information and a pointer to end-of-information. The
remaining blocks are fixed-length data blocks. Data block
format is shown in figure 2-5.

When the block contains overflow record headers, the
number of record headers exceeds the number of records in
the block. Data records within the block are ordered by slot
number with the smallest number being the first record.
Record headers are placed at the bottom of the block in
inverse order of the data records. A block checksum, if
specified for the file, is contained in the last word of each
block.

Actual Keys

Records are stored and retrieved by an actual key, which is
the primary key. The actual key specifies a data block
number and a slot number (record position) within the block.
Keys have the following format:

Block Number Field | Slot Number Field

Key length is specified by the user when the file is created.
Length can range from 2 to 47 bits; the key must be right-
justified within a central memory word. The low-order bits

2-4

Block Header

Padding

Record Header B

Record Header A

Checksum

Figure 2-5. Actual Key Data Block Format

are the record position (slot number) and the high-order bits
are the block number. The number of low-order bits used
for slot numbers is determined by the blocking factor, which
is specified before the file is opened. The remaining bits in
the key are used to designate the data block number;
therefore, the key length determines the maximum file size.

if the specified biocking factor is a power of 2, ail integer
key values up to the limit set by the key length are
permissible for an actual key. If the blocking factor is not a
power of 2, some integers are not allowed to be keys.
Larger blocking factors (64 versus 8) provide better storage
density for files with variable-length records; eight records
per block is the default blocking factor. Actual keys need
not be contained within the records.

Overtlow

Overflow occurs in two ways:

The user specifies the actual key for a write operation
and the specified block has insufficient empty space to
contain the new record.

The user attempts to replace a record with a new larger
record and the block containing the old record has
insufficient empty space to contain the new record.

In either case, the record is inserted into a different block
that has enough empty space. An overflow record header,
which contains a pointer to the record, is placed in the block
that would have normally contained the record. This
requires two record slots; one contains the overflow record
header and the second one contains the record.

Logically, the overflow slot that contains the record is still
empty. If a GET macro is issued to retrieve a record from
that overflow slot, an error is issued. If a PUT macro is
issued to write a record in that slat, the overflow record is
moved to a different block and the pointer in its overflow
record header is updated. Overflow records always require
two accesses to retrieve the record.

60499300 A

a o A a

oo,

~

S Y NN

_~

The formats for block headers and overflow record headers
are shown in figure 2-6. Figure 2-7 shows the structure of a
data record. The format of a record header is shown in
figure 2-8.

DIRECT ACCESS FILE STRUCTURE

A direct access file contains a file statistics table, home
blocks, and (under certain conditions) overflow blocks. All
blocks are fixed length. The following terms have specific
meaning in relation to direct access files:

Primary key

A primary key is a contiguous bit string that always
appears in a direct access record. It is hashed to
produce the location of the home data block
containing the record.

Hashing

Hashing denotes the method of using primary keys
to search for relative home block addresses of
direct access records.

Home block

A home block is a block whose relative address is
computed by hashing primary keys. A home block
contains synonym records whose keys hash to that
relative address.

Synonyms

Synonyms are records whose keys hash to the same
home block.

Overflow record

An overflow record is a record whose key has been
hashed to a home block that is already filled.

Overflow block

An overflow block is the second or subsequent
block in a chain that starts at a home block. It
contains overflow records and can contain records
belonging to more than one overflow chain.

Chain

A chain consists of blocks that are logically
connected by forward and/or backward pointers.
Home blocks and overflow blocks are chained both
forward and backward

anG cactkward.

The relative position of records within a direct access file is
not important. A record is stored and retrieved by hashing
its primary key to produce the relative address of a home
block. When a home block is filled, the record can be placed
in another home block or in a system-generated overflow:
block; the placement of the record depends on the overflow
record storage option selected by the user.

Block Header

59 35 17 0
Unused Words in Block Number of Records in Block
Overflow Record Header
59 58 11 0
0
\" Actual Key Address of Overflow Record Slot Number
F
Figure 2-6. Actual Key Block and Overflow Record Header Formats
59 47 14 0
Back Pointer
User Record Header Length

Data

Figure 2-7. Actual Key Data Record Structure

60499300 A

2-5

overfiow record header.

the record is to be returned.

ordered by this field.

59 58 5756 45 41 27 11 0
o} U
Vigts Unused] Record Length Ralative Racnrd Addrece Slot Numhbaer
in Words PR e T T
F C
59 Overflow bit, indicating record header format. Zero implies a normal header; 1 indicates an

58 Overflow record bit. If set, the record described by the record header has overflowed.
Overflow records contain a one-word back-pointer. A back-pointer is the actual key address
of the corresponding overflow record header.

57 User header bit. If set, the record contains the user header. The user can optionally divide
records into user header and data portions. If this is done, user header length in words is
stored in the rightmost 15 bits of the first word of the record. The header indicator bit (HB)
in the FIT is examined on PUTs and REPLACEs to determine if the incoming record is
divided into header and data portions. On accesses, the HB field indicates which portion of

Unused character count; specifies the number of characters (0 through 9} that contain no
information in the last word of the record. Record lengths are supplied in characters by the
Record length field; specifies the number of words necessary to contain the record. This

Relative record address is a pointer to the record described by the record header. The

56 thru 46 Unused.
45 thru 42

user and converted to words and unused characters internally.
41 thru 28

length includes the back-pointer and user header, if present.
27 thru 12

pointer is relative to the first word of the block.
11 thru O

Slot number; indicates the block slot that the record header is using. Record headers are

Figure 2-8. Actual Key Record Header Format

The logical structure of a direct access file is shown in
figure 2-9. FSTT is the file statistics table, H1 through Hé
are the home data blocks, and OVl through OV3 are the
over flow blocks.

End-of-
Information

f i § 1

FSTT | H1 | H2| H3 | H4 | H5| H6 |[OV1 |OV2 |OV3

! 1

Beginning-of-
Information

Figure 2-9. Logical Structure of a Direct Access File

File Storage Allocation

Mass storage space is preallocated when a direct access file
is opened. Record storage and retrieval are by primary key;
the location of a record within a file is determined by
hashing the primary key to a relative block address.

Records are grouped in fixed-size blocks according to the
results of the primary key hashing. When more records hash
to a home block than the block can contain, overflow blocks
are created if that option has been selected by the user.
Overflow blocks are linked bidirectionally to form a chain.

2-6

Extensive analysis of the record key structure, key range,
and key distribution is necessary to implement a randomly
organized file in an optimum manner. An ideal hashing
algorithm distributes records uniformly across all home
blocks. Because no single hashing routine can produce
optimum results for all data, a user-supplied hashing routine
can be used. Hashing routines are discussed in further detail
in section 4, File Processing.

File Blocking

Each direct access block (home or overflow) is an integral
number of PRUs less one central memory word and is
treated as a systém-logical-record. An installation parari-
eter determines the number of words at the beginning of
each block for the block header. This parameter allows the
user to obtain header space. When the system is installed,
the user can choose to increase the size of the header. The
first word of the header contains 30-bit backward and
forward PRU pointers to form an overflow chain.
Optionally, the last word of each block contains a block
checksum. Records are stored in the remaining words as
received, beginning with the word following the last word of
the header.

A direct access primary key is a contiguous bit string
ranging in length from 1 to 255 characters. It must always
appear in the same character position for all records.
Records start on word boundaries. The first word of each
record is a record header with the format shown in
figure 2-10.

i S D

»

n o~ o~

RECORD TYPES

Eight external record types are supported; these record
types are listed in table 2-1. Except for S type records and
W type records, each record type is described in detail in the
following paragraphs. AAM considers S and W type records
to be U type records.

When records are written on an initial indexed sequential,
direct access, or actual key. file, the record type specifica-
tion is used to compute the record length in characters.
This length is recorded in the header word that accompanies
each record in these files. When the record is read, record
type is ignored and the number of characters indicated by
the length field in the header is returned to the program.

The numbering conventions for describing a record or the
position of a control field or key field in a record are
summarized in figure 2-11. All record lengths are specified
by character count. Values are normally unsigned positive
integers, counting in a decimal system. For extended
indexed sequential files, the maximymy record length (MRL)

P i - PPN S e A 1IN | Ny, .
field in the FIT must not exceed 18(2 -5) characters.

DECIMAL CHARACTER COUNT, D TYPE RECORDS

Records in a file with D type records vary in length. The
length of an individual record is specified in a record length

field located within the record. The position of the record
length field is specified by two fields in the FIT. The length
field beginning character position (LP) field indicates the
character position (numbering from 0) in which the record
length field beqgins. The length field length (LL) field
specifies the number of characters in the record length
field, which cannot exceed six characters.

When a D type record is written, the record length field
cannot contain a value greater than the value of the
maximum record length (MRL) field in the FIT. The
max'ﬁ\um length that can be specified in the MRL field is
10(2 -S)Ifharacters for extended indexed sequential files
and -10(2" " -1) characters for all other files. The length
value specified in the record length field is given as right-
justified display code filled with zeros or blanks. If the
COMP-1 (C1) field in the FIT is set to YES, the record
length field is a COMP-1 (binary) field. If the sign
overpunch (SB) field in the FIT is set to YES, the record
length field is a sign-overpunch field.

The minimum record length (MNR) field in the FIT specifies
the minimum number of characters for the D type record.
The default value for the MNR field is the sum of the values
in the LP and LL fields; however, the MNR field can be set
to a greater value.

Figure 2-12 shows an example of a D type record. The
record length field is three characters in length (the LL field
is set to 3) beginning in character position 22 (the LP field is

59 58 52 34 0
Unused Record Backward PRU
d| Bit Count Length Unused Pointer
59 Deletion flag. When this bit is set, the corresponding record is deleted logically.
58 thru 53 Unused bit count. iIndicates the number of unused bits in the last word of the record.
52 thru 35 Record length. Contains the length of the record in words.
34 thru 30 Reserved for CDC.
29 thru O Backward pointer. Points to the preceding block in the chain if the record resides in an
overflow block.
Figure 2-10. Direct Access Record Header Format
Word 0 Word 1 Word n
01 2 34567890123 4 01 2 3 456 7 89

(Relative Character Position in Word)

{Character Number)

0123 456 7 8 910 11121314.

Record Length m + 1 Characters

3

Y

Figure 2-11. Numbering Conventions

60499300 A

2-7

set to 22). The minimum number of characters in a record is
25 (the sum of the values in the LL and LP fields).

FIXED LENGTH, F TYPE RECORDS

In a file with F type records, all records are the same
length. The number of characters in the F type records is
specified by the fixed length (FL) field in the FIT. The
maximum rectin)p length that can be specified for F type
records is 10(2”7-5) (I‘I?aracters for extended indexed sequen-
tial files and 10(2°"-1) characters for all other files;
minimum record length is 10 characters. An example of an
F type record is shown in figure 2-13; each record in the file
contains 200 characters as specified by the FL field.

TABLE 2-1. RECORD TYPES AND
LENGTH DESCRIPTIONS

0 ~——————— Character position =—————————=199

|~¢—————— FL characters (200) —————————»=1

Record Type Length Description

D - Decimal Character A length field within the
Count record gives the length as
character count.

All records are the same
fixed length.

F - Fixed Length

R - Record Mark A record mark character
specified by the user termi-
nates the record.

S - System Record The length is defined by the
user,

T - Trailer Count The fixed-length header
contains a trailer count
field that specifies the
number of fixed-length
trailers for the record.
U - Undefined The length is defined by the
user.

W - Control Word The length is defined by the
user.

Z - Zero Byte The length is determined
using the RL or FL field
and removing all full words
of blanks.

ij

01 22 25 199
200

o]
Length of
length field

e 200 characters -

Figure 2-13. F Type Record Example

Any value in the record length (RL) field in the FIT is
ignored. When a GET or PUT macro is issued, the value of
the fixed length (FL) field in the FIT determines the number
of characters that are transferred. A value must be supplied
for the FL field before the file can be successfully opened.

RECORD MARK, R TYPE RECORDS

A special delimiting character, called a record mark,
terminates R type records. The record mark character,
which can be any character of the character set, is selected
by the user. The delimiting character is specified in the
record mark character (RMK) field in the FIT.

The size of an R type record cannot exceed the number of
characters specified by the value of the maximum record
length (MRL) field in the FIT. Maximumg length that can be
specified for R type records is 10(2 1-75) characters for
extended indexed sequential files and 2”'-1 characters for
all other files.

When a GET macro is issued, all characters up to and
including the record mark character are transferred to the
working storage area. If the record mark character is not
found within the specified maximum record length, the
maximum number of characters is transferred and an excess
data error is given.

Issuing a PUT macro causes all characters up to and
including the record mark character to be written on the
file. If the record mark character is not found within the
specified maximum record length, no data is written on the
file and an excess data error is given.

Figure 2-14 illustrates the use of R type records. The
maximum record length (MRL) field is set to 120 and the
record mark character (RMK) field is set to 625, which is
the default right bracket (]) character. For a ﬁle read or
write operation, the right bracket character terminates the
record.

Record mark character—

]

- MRL characters maximum (120) __.'

Fiqure 2-12. D Type Record Example

2-8

Figure 2-14. R Type Record Example

60499300 A

¢

o e

s

]

~

SYSTEM RECORD, S TYPE RECORDS

When S type records are specified, AAM processes the
records as U type records. Refer to the description of
U type records.

TRAILER COUNT, T TYPE RECORDS

Records in a file with T type records consist of a fixed-
length header and a variable number of fixed-length trailer
items. The fixed-length header contains a count field that
specifies the number of fixed-length trailer items in the
record.

Four fields in the FIT are applicable to T type records and
must be specified.

HL Header length specifies the number of char-
acters in the fixed-length header.

TL Trailer length specifies the number of char-
acters in one fixed-length trailer item.

cpP Starting character position specifies the char-
acter position (numbered from 0) in which the
count field begins.

CL Count field length specifies the number of
characters (one through six) in the count field.

The value in the count field is right-justified display code
with zero or blank fill. The COMP-1 (C1) field or the sign
overpunch (SB) field in the FIT can be set to YES to change
the count field to a COMP-1 or sign-overpunch field.

The count field, which is identified by the CP and CL fields
in the FIT, must be located in the fixed-length header
portion of the record. The value in the header length (HL)
field, therefore, cannot be less than the sum of the values in
the CP and CL fields.

The value in the HL field is the logical minimum record
length. The maximum length for a record is specified by the
maximum record length (MRL) field in the FIT; the value in
the HL field cannot exceed the value in the MRL field.
Max&rgum length that can be specified for T type records is
10(2 -S)lf:haracters for extended indexed sequential files
and 10(2”"-1) characters for all other files. The logical
structure of a T type record is shown in figure 2-15.

UNDEFINED, U TYPE RECORDS

Files with Utype records have records that are not
formatted according to any of the supported record types.
The maximum record length (MRL) field in the FIT indicates
the maximum length for any record in the file. The
maximum recordlgength that can be specified for U type
records is 10(277-5) aracters for extended indexed
sequential files and 10(2™"-1) characters for all other files.

When a GET or PUT macro is executed, the record length
(RL) field in the FIT must be set to indicate the number of
characters to be read or written. The value in the RL field
cannot exceed the specified maximum record length. AAM
maintains record pointers that define the length of the
stored record.

CONTROL WORD, W TYPE RECORDS

When W type records are specified, AAM processes the
records as U type records. Refer to the description of
U type records.

ZERO BYTE, Z TYPE RECORDS

A Z type record is terminated by a 12-bit byte of zeros in
the low-order position of the last word in the record.
Maximum record size is indicated by the full length (FL)
field in the FIT; maxiBum length that can be specified for
Z type records is 10(2 1-7‘:) characters for extended indexed
sequential files and 10(27"-1) characters for all other files.

When a record is written, the value of the record length (RL)
field determines the processing that takes place. If the RL
field is set to a value greater than zero, the end of the
record is determined by searching backward from the
character position specified by the value of the RL field and
removing all full words of blanks.

If the RL field is set to zero when arecord is being written,
the end of the record is determined by a backward search
for the last nonblank character in the working storage area.
The search begins in the character position indicated by the
full length (FL) field in the FIT; all full words of blanks are

removed.

l<——count field —a—

n Trailers of length TL

n

< CL —i

cp

I—n——TL——

e o o N

<——T|_—>|
1

Total length
HL+(n*TL) -

Figure 2-15. T Type Record Format

60499300 A

2-9

ALTERNATE KEY INDEX

ENE STRUI‘TI IDE

§ el R I W TG

An index file is created and maintained by the Multiple-
Index Processor (MIP) whenever a data file has alternate
keys defined. The index file is automatically created when
the data file is created and updated whenever an update to
the data file affects the index file.

AAM supports two types of MIP, Initial MIP is used for
initial indexed sequential, direct access, and actual key
files. Extended MIP is used for extended indexed sequential
files.

INITIAL MIP

The index file created and maintained by initial MIP
contains an index for each alternate key position defined for
the file. Within an index, each alternate key value is
associated with a primary key list of records containing that
value. The index file is created when the data file is
created, or the IXGEN utility can be used to create the
index file for an existing data file.

The size of the index file blocks can be specified by the user
when the index file is created. Index file block size must
always be specified as an integral number of PRUs. A block
size of 2 to 8 PRUs is recommended; results are indeter-
minate if the block size exceeds 8 PRUs.

Each alternate key index is ordered in ascending sequence of
alternate key values. The ordering of primary key values
within the primary key list associated with an alternate key
value can be controlled by the user. The structure of
primary key lists can be indexed sequential or first-in first-
out. Indexed sequential structure is most efficient. The
user can also specify that alternate key values are unique, in
which case each primary key list contains only one value.

Figure 2-16 illustrates an initial MIP index file with indexes
for two alternate key positions: a four-character symbolic
key and a three-digit integer key. For simplicity of
illustration, primary keys are one-character keys with
values A through Z.

Index for Alternate Key
Defined by RKW,RKP KL Second Index

M N\A
Iternate Key Value

1

3
g| ABC
S

QT... FGHJ ACQGMPX...

RKXXX
NNNN
oW

———
Keylist of
Primary Keys

Figure 2-16. Sample Index File, Initial MIP

2-10

EXTENDED MIP

The index file created and maintained by extended MIP
contains an index for each alternate key position defined for
the file. Within an index, each alternate key value is
associated with a primary key list of records containing that
value. The index file is created when the data file is
created, or the MIPGEN utility can be used to create the

index file for an existing data file.

When the index file is created, the user can specify the size
of the index file blocks in a field in the data file FIT. The
block size is increased if necessary to the nearest multiple
of 640 characters minus 20. The default size for index file
biocks is the data block size.

Each alternate key index is ordered in ascending sequence of
alternate key values. The ordering of primary key values
within the primary key list associated with an alternate key
value can be controlled by the user. The structure of
primary key lists can be indexed sequential or first-in first-
out. Indexed sequential structure is most efficient. The
user can also specify that alternate key values are unique, in
which case each primary key list contains only one value.

The index file is structured into three levels: a level 1 main
file, level 2 subfiles, and level 3 subfiles. The level 1 main
file contains descriptions of the alternate keys. A level 2
subfile contains values for an alternate key and a level 3
subfile contains primary key values for a specific alternate
key value. The logical structure of an extended MIP index
file is shown in figure 2-17.

The level 1 main file contains descriptions of all the
alternate keys defined for the data file. The description of
an alternate key includes the position, length, and type of
the key as well as information related to sparse keys.
Normally, all the descriptions can be contained in one block;
however, if more than one block is required, the main file
has an indexed sequential structure.

Each level 2 subfile contains all the values for one of the
alternate keys. The level 2 subfiles have indexed sequential
file organization with index blocks and data blocks. Each
record in a data block contains an alternate key value and
the first primary key value associated with it. Depending on
the amount of available space in the data block and the size
of the primary key list, the data block might contain
additional primary key values.

A level 3 subfile contains primary key values that cannot be
accommodated in the level 2 subfile. If alternate key values
are unique, level 3 subfiles are not needed. The structure of
the level 3 subfile is either indexed sequential or first-in
first-out as specified when the alternate key is defined.
Indexed sequential subfiles have index blocks and data
blocks. First-in first-out level 3 subfiles have data blocks
chained in a forward direction.

The physical structure of an extended MIP index file is
shown in figure 2-18. A block in the figure can be either an
index block or a data block. The block structure is identical
to block structure in an indexed sequential file. All blocks
within a subfile are chained together in a forward direction.

60499300 A

[l

0

'

5

-

.

Alternate
Key
Descriptions

Alternate Alternate Alternate

Key 1 Key 2 Key n

Subfile Subfile Subfile
Value-1 Value-2 Value-n

Primary Key Primary Key Primary Key
Subfile Subfiie Subfile
Figure 2-17. Index File Logical Structure, Extended MIP
Main
FSTT Eile Block Block Block Block Block Block
Figure 2-18. Index File Physical Structure, Extended MIP
60499300 A 2-11

S MO S S N O O N S 2 O O e S N OO UMY S SIS VN UM O O S AT OO AP O A DUy U B i R e

VP O O W O W W W W W W W e W W W e W W

(

P Y N o N N o

.

FILE INFORMATION TABLE 3

A file information table (FIT) is required for all AAM files.
Information in the table defines the file and specifies how it
is accessed. The FILE macro and the FILE control
statement are used to create and update the FIT. The FILE
macro assembles the FIT in the COMPASS program at the
address where the macro is encountered. Pertinent infor-
mation from the FILE control statement is saved until the
file is opened; the saved information is then stored in the
FIT and takes precedence over any corresponding preexisting
information. A blank FIT, except for addressing infor-
mation, file organization, and logical file name, could be set
up in the user program with definition of file characteristics
deferred until the file is opened.

The STORE macro or the FILE control statement can be
used to change the setting of fields in the FIT. The fields
are identified by the keywords of the FILE macro. The
FETCH macro is used to retrieve the contents of a field in
the FIT; a FILE macro keyword identifies the field being
retrieved.

AAM macros that request file operations can result in
amendment of FIT fields. Certain macro operands are
stored in FIT fields before the request is performed and
values can be stored in FIT fields as a result of processing
the request. AAM also maintains certain fields in the FIT to
reflect the current state of the file.

FILE MACRO

The FILE macro constructs the file information table at the
address where the macro is encountered during assembly;
the FIT must be built before the file is opened. The format
of the FILE macro is shown in figure 3-1. The interaction
between Ifn and LFN=axxxxxx is shown in table 3-1.

The FILE macro does not check fields for validity or
consistency. If the option specified for a field exceeds the
maximum specified size, it is truncated and an assembler
warning message is produced.

[ifn] FILE [LFN=axxxxxx] [,keyword=option,] ...

Ifn Symbolic address where the FIT is assembled in
the COMPASS program; if the LFN=axxxxxx is
omitted or is the same name, logical file name
by which the file can be referenced.

LFN FIT field mnemonic for logical file name; if Ifn
is omitted, LFN must be specified with axxxxxx.

axxxxxx Logical file name by which the file can be refer-
enced; if Ifn is omitted, symbolic address where
the FIT is assembled in the COMPASS program.
keyword Symbolic name of the FIT field.

option Selected option of the FIT field.

Misspelled or unrecognized parameters generate null
parameters; the referenced fields are set to zero. Null
parameters are ignored. Warning messages are generated
when overlapping fields are specified.

The FILE macro must specify the file organization (FO)
mnemonic for an AAM file. Any parameter not applicable
to the specified file organization is ignored and an error
type 4 is generated during assembly.

The values specified for the FILE macro parameters are
assembled into the FIT; parameters can be specified in any
order. Table 3-2 shows the FILE macro parameters
applicable to each AAM file organization. A detailed
explanation of each FIT field that can be specified by the
FILE macro parameters follows. The default value is
indicated for each field.

BCK Block checksum

BCK=NO (default)

Checksums are not computed during file
creation. For a file created with checksums,
no checksumming is done during a read opera-
tion; however, checksums are computed for
blocks written.

BCK=YES

A checksum is computed before each block is
written and after it is read. The checksum is
part of the block.

BFS Buffer size

BF $=0 (defauit)

AAM provides the buffer space; the amount of
common buffer space is increased by an
amount determined by AAM.

BF S=aexp

The buffer size is tl’ﬁ number of words
specified; maximum is 27'-1 or 131000 words.
If the FWB field is set to zero, AAM increases
the amount of common buffer space allocated
by BFS.

TABLE 3-1. LFN AND Ifn INTERACTION

Figure 3-1. FILE Macro Format

60499300 A

5 COMPASS Contents of
tatement Location Value | LFN Field in FIT
A FILE

FILE LFN=A

A FILE LFN=A

m » » P

» » » P

A FILE LFN=B

3-1

@]

Collating sequence to display code conversion
table; ignored if the DCT field is zerc (initial
indexed sequential files)

TABLE 3-2. FILE MACRO PARAMETERS BY
FILE ORGANIZATION

Parameter

Extended
Indexed
Sequential

Initial
Indexed
Sequential

Direct
Access

Actual
Key

BCK
BFS
CcDoT

CL

CP

CPA

Cl

DCA
DCT
DFC

DP
DX

EFC
EMK
ERL

EX
FL

FLM

FO

FwB
FWI

HB
HL

HMB
HRL
IBL

P

KA
KL
KP
KT

LFN

LL
LP

MBL
MKL
MNR
MRL
NDX

NL
OF
ON

ORG
OVF

PD

PKA

RB

REL

RKP
RKW
RMK

RT
SB
TL

TRC
WSA
XBS

XN

X XX XX
X XX XX

X XAHXKXAKXXXX XXXXX X XXXXX
X XAHKXAXXAKXAKXAKXXXKXXXXK XX

HKAEXAXAXAXXXXX XXXX
XXX XXXXXXX XX X

X X

XK XAXAKAAXXAXAXAXAKXAKXXXXX
XXX XXXX
XXX XXXX XXX

X X
X X

XXX HKAXAXXAXAHKXXKXK KXAHKAKXXXHEKXKKXXX XX XXX
X
X XXXXXXXXXX XX X

X KX XXXX
X X XXXX

(]

CL

CcP

C1

DCA

CDT=0 (default)

Conversion table is generated from the tabie

specified by the DCT field.

CDT=exp
Conversion table is at the specified address.

Trailer count field length (T type records)

CL=0 (default)
For T type records, this field must be defined
before the file is opened.

Cl=aexp
The length of the trailer count field is the
specified number of characters; maximum is 6.

Trailer count beginning character position (T type
records)
CP=0 (default)
The trailer count field begins in character
position O.
CP=aexp

The specified number is the beginning char-
acter position, nuBbered from 0 on the left;
maximum is 10(2"7-5) f0f7extended indexed
sequential files and 10(2"'-1) for all other
files.

Compression/encryption routine number or address

(extended indexed sequential files)

CPA=0 (default)
Records are not compressed unless a system
routine was specified when the file was previ-
ously opened.

CPA=aexp

The specified number identifies the system
compression routine to be used; must be less
than 100,.
8
CPA=exp
The user-supplied compression routine is at the
specified address; must not be less than 1008.

COMP-1 format for length field (D or T type
records)
C1=NO (defaulit)

The length field is in coded format.

C1l=YES
The length field is in binary (COBOL COMP-1)
format.

Decompression/decryption routine address; re-
quired if the CPA field specifies a user routine
(extended indexed sequential files)

DCA=0 (default)

If the CPA field specifies either no com--

pression or a system compression routine,
AAM sets DCA at open time if needed.

60499300 A

«
¢
|
(
|
€
']
¢

-
-

¢L"
(
(
(
(
(
(
(
(
(
C
(
(
C
(
¢
(
(
¢

p;

DCA=exp

The user-supplied decompression routine is at
the specified address; DCA must be specified
if a user-supplied compression routine is speci-

fied.
DCT Display code to collating sequence conversion table
(indexed sequential files)
DCT=0 (default)
CDC conversion tables are used.
DCT=exp
The user-supplied table is at the specified
address. For initial indexed sequential files
when the CDT field is0 and for extended
indexed sequential files, AAM generates the
collating sequence to display code conversion
table from the user-supplied table.
DFC Dayfiie controi
DFC=0 (default)
Only fatal error messages are written on the
dayfile.
DFC=1
Error messages are written on the dayfile.
DFC=2
Statistics/notes are written on the dayfile.
DFC=3
Error messages and statistics/notes are
written on the dayfile.
DP Data block padding factor (indexed sequential and
actual key files)
DP=0 (default)
The installation default value is used for
indexed sequential files; 0 for actual key files.
DP=aexp
Padding for the dats block is the specified
percentage; maximum is 99.
DX End-of-data exit
DX=0 (default)
No end-of-data exit is specified.
DX=exp
The routine at the specified address is entered
when an end-of-data condition occurs. The
system stores a jump at the first address of
the routine and control passes to the first
executable statement, which is routine+l.
EFC Error file control
EFC=0 (default)
No messages are written on the error file.
EFC=1
Error messages are written on the error file.
60499300 A

EMK

EX

FLM

EFC=2

Statistics/notes are written on the error file.

EFC=3

Error messages and
written on the error file.

statistics/notes are

Embedded key; examined when the file is opened
for creation (extended indexed sequential files)
EMK=NO (default)

The key is not part of the record.

EMK=YES

The key is embedded in the record; the RKW,
RKP, and KL fields define the position and
length of the key.

Trivial error limit

ERL=0 (default)
An indefinite number of trivial errors is
permitted; no limit is specified.

ERL=aexp

The specified number is the maximum number
of trivial errors allowed before a fatal error
occurs; maximum is 511.

Error exit

EX=0 (default)

No routine is entered if an error occurs;
control is returned to the user's in-line code.

EX=exp

The routine at the specified address is entered
when an error occurs. The system stores a
jump at the first address of the routine and
control passes to the first executable state-
ment, which is routine+l.

Fixed length (F type records) or full length (Z type

IXeQ 8NGh yPe enge

records)

FL=0 (default)
The field must be defined before the file is
opened.

FlL=aexp

For F type records, the specified number is the
recoig length in characters; 10 through
10(277-5) for exten?e;d indexed sequential files
and 10 through 10(2~"-1) for all other files.

For Z type records, the specified number
establishes the upper limit of characters or
blank padding moved to the working storage
area.

File limit

FLM=0 (default)
The file limit is not checked.

FO

FwB

FWI

HB

HL

HMB

3-4

FLM=aexp

The file limit cannot exceed the specified
number of records.

File organization (no default value)

FO=AK
The file has actual key file organization.

FO=IS
The file has indexed sequential file organi-
zation.

FO=DA

The file has direct access file organization.
First word address of user-supplied buffer

FWB=0 (default)
AAM provides the buffer space needed.

FWB=exp
The user buffer is at the specified address.

Forced write indicator

FWI=NO (default)

Each buffer is written only when the buffer
space is needed for another input/output
operation.
FWI=YES

Ali buffers are written immediately after each
operation that modifies the buffer content.
This option increases file integrity by keeping
the file current; however, performance is

degraded as more input/output transfers are
required.

Header indicator bit (actual key files)

HB=NO (default)
The user header is not returned with the data
received.

HB=YES
The user header is returned with the data
received.

Header length (T type records)

HL =0 (default)
For T type records, this field must be defined

mne o £31 to o

Lof e €30 a
UTIUIT UiC 11T 19 chEu-

HiL=aexp

The fixed-length portion of the T type records
is the specifi)pd number of characters; maxi-
mum is 10(277-5) foifxtended indexed sequen-
tial files and 10(2~'-1) for all other files;
minimum is the sum of the CP and CL fields.

Number of home blocks (direct access files)

HMB=0 (default)

The field must be defined to open the file.

HRL

IBL

P

KA

KL

HMB=aexp

The file contains the

blocks; maximum is 2°7-1.

ecified number of home

Hashing routine location; cannot be changed after
file creation (direct access files)
HRL=0 (default)

The system-supplied hashing routine is used.

HRL=exp

The user-supplied hashing routine is at the
specified address.

Index block length (initial indexed sequential files)

IBL.=0 (default)

The index block size is calculated using the
values of the NL, RB, IP, FLM, and KL fields.
If either or both of the values of the NL and
FLM fields are zero when the file is opened,
the default index block size is used.

IBL=aexp

The index block size is the specified number of
characters rounded up to an integral multiple
of the PRUlfize minus 10 characters; maxi-
mum is 10(2" " -1).

Index block padding factor (indexed sequential

files)

iP=0 (defauit)
For initial indexed sequential files, the instal-
lation default value is used (release default is
five); for extended indexed sequential files,
the default value zero is used.

P=aexp

The index block padding is the specified
percentage; maximum is 99.

Key address

KA=0 (default)
No address is specified for a key.

KA=exp

The key value for the record to be processed is
at the specified address; for the GETN macro,
the key of reference is returned to the
specified address.

Key length

KL=0 (default)

This field must be defined before the file is
opened.

KL =aexp

For actual key files, the key length is the
specified number of bits; 2 through 47. For
indexed sequential and direct access files, the
key length is the specified number of char-
acters. The positive integer that can be

60499300 A

-

a a

o a a

G

o

]

Ve WY N aanea

KP

KT

LFN

specified for indexed sequential files depends
on the key type defined by the KT field. For
initial indexed sequential files:

KT=S Symbolic key, maximum is the
installation-defined key limit (default
is 255).

KT=I Integer key, either 5 or 10 characters
must be specified; a 5-character
integer key is formed from the lower
half of the word.

Floating point key, the KL field is
ignored without comment; key size is
always 10 characters.

KT=F

For extended indexed sequential files:

KT=S Symbolic key, maximum is the

or installation-defined key limit (default
KT=U is 255).
KT=I Integer key, 10 characters must be

specified for the signed binary key.

Beginning key position (direct address files and
symbolic keys for indexed sequential files)

KP=0 (default)
The key is word-aligned.

KP=aexp

The key begins in the specified character
position within the KA field, numbered from 0
on the left; maximum is 9.

Key type (indexed sequential files)

For initial indexed sequential files:
KT=S (default)

A symbolic key is a string of alphanumeric
characters.

KT=I

An integer key is either 5 or 10 characters in
length in either fixed or unnormalized floating
point format.

KT=F
A floating point key is 10 characters in length.
For extended indexed sequential files:

KT=S (default)

A collated symbolic key is a string of alpha-
numeric characters.

KT=l
An integer is a 10-character signed binary key.
KT=U

An uncollated symbolic key is a string of
alphanumeric characters.

L.ogical file name {(no default value)

LFN=axxxxxx

The data file logical file name is one to seven
characters in length beginning with a letter.

60499300 A

LL

LP

MBL

MKL

MNR

Length field length (D type records)

LL=0 (default)

The field must be defined before the file is
opened.

LL=aexp

The length of the length field is the specified
number of characters; maximum is 6.

Length field beginning character position (D type
records)

LP=0 (default)

The length field begins in character position 0.

LP=aexp
The length field begins in the specified char-

acter position, nulrgbered from 0 on the left;
maximum is 10(277-5) fobextended indexed
sequential files and 10(2”'-1) for all other

files.

Maximum block length; should not be changed after
the file is opened

MBL =0 (default)

The installation default size is used.

MBL=aexp

The data block is the specified number of
characters in length. The specified size is
increased to an integra! multiple of PRU size
minus two words. MBL should not be specified
if a value for the RB field is given for indexed
sequential files. If both are set, the value of
the RB field is ignored. For extended indexed
sequential files, MBL also specifies the length
of the index blocks.

Major key length (indexed sequential files, symbolic
key type)

MKL=0 (default)
Major key length processing is not specified.

MKL=aexp

The major key length is the specified number
of characters; maximum is the KL value. The
file is positioned at the first record with a key
in which the first specified number of char-
acters matches the major key.

Minimum record length

MNR=0 (default)

The minimum record length is zero characters.
Zero length records are not accepted in direct
access and actual key files.

MNR=aexp

The minimum record length is the specified
number of characters; maximum is the MRL
value.

3-5

MRL

NL

OF

ORG

3-6

Maximum record length
MRL=0 {defauit)
T £1.1.1 cmiindt b ~ £
13 1ITIU 111IUdL UT ucil
opened for creation.
MRL=aexp

The maximum record length is the spetiiSied
number of characters; maximum is 10(2°7-5)
for l@(tended indexed sequential files and
10(27"-1) for all other files. This establishes
the upper limit of characters moved to the
working storage area. The field must be
specified for OPENM NEW and is returned for
OPENM OLD.

Index flag (multiple-index files)

NDX=0 (default)
The data file can be accessed by primary or
alternate key.
NDX=1
Only the index file is accessed.
Number of index block levels; required only when
files are created (indexed sequential files)
NL=0 (default)
The installation default value is used.

NL=aexp

The number specified is the expected number
of ieveis for the file; maximum is 63 for iniiiai
indexed sequential files and 15 for extended
indexed sequential files. For initial indexed
sequential files, the specified value is used to
calculate index block size if the value of the
IBL field is zero at creation time, and it is
used in the allocation of buffer space.

Open flag; file positioning at OPENM time (indexed
sequential files)

OF =R (default)
The file is rewound.

OF =N (initial indexed sequential files)

The file is not rewound.

OF =E
The file is positioned at end-of-information for
extend.

Old or new file

ON=0LD (default)
The file is an existing file (FSTT exists).

ON=NEW
The file is being created (FSTT to be estab-
lished).

Old/new file organization (indexed sequential files)

ORG=0LD (defautt)

The file organization is initial indexed sequen-
tial.

OVF

PD

PKA

RB

REL

ORG=NEW

The file organization is extended indexed
sequential.

Overflow flag (direct access files)

OVF =QVB (default)

Overflow records are stored in home and
overflow blocks.

OVF=0VO0

Overflow records are stored in overflow blocks
only.

OVF=0VH

Overflow records are stored in home blocks
only.

Processing direction

PD=INPUT (default)
The file is open for input (read).

PD=OUTPUT
The file is open for output (write).

PD=IO
The file is open for input/output (read and
write)

PD=NEW

B TP 1Y R I Py T Py
" e 15 @I‘Jll Ul a LITalliull 1Utie

Primary key address (extended indexed sequential
files)
PKA=0 (default)

The primary key is not returned on an
alternate key read operation.

PKA=exp

The primary key is returned to the specified
address on an alternate key read operation.

Records per block; used in block size calculation

RB=0 (default)
RB is set to 1; the installation default is used
if MBL is also zero.

RB=aexp

. 12 _ .
Blocking factor limit is 2°7-1. For indexed
sequential files, RB should not be specified if
the MBL field is specified.

Key relation; relation of record key to key value at
location KA.

REL=1
This specifies an equal (EQ) relation.

REL=2 (not applicable to extended indexed sequen-
tial files)

This specifies a less than or equal (LE)
relation.

60499300 A

;- A A a -

- A A

3

a4,

E)

(

L

N

RKP

RKW

RMK

RT

REL=3
This specifies a greater than or equal (GE)
relation.

REL=4 (not applicable)

REL=5 (not applicable to extended indexed sequen-
tial files)

This specifies a less than (L.T) relation.

REL=6
This specifies a greater than (GT) relation.

Relative key position; required if EMK is set to
YES (extended indexed sequential, direct access,
and multiple-index files)

RKP=0 (default)
The key is word-aligned starting at RKW
position,

RKP=aexp

The key begins in the specified position within
RKW, numbered from 0 on the left; maximum
is 9.

Relative key word; required if EMK is set to YES
(extended indexed sequential, direct access, and
multiple-index files)

RKW=0 (default)
The key begins in the first word of the record.
RKW=aexp
The key starts in the specified word {numbered
from 0) within the record.

Record mark character (R type records)

RMK=0 (default)

The record mark character is the right
bracket (1), which is 625.

RMK=ccB

The record mark character is the specified
octal value (cc); maximum is 778.

RMK=1Rx

The record mark character is the specified
character (x); any character is valid.

RMK=cec

The record mark character is the specified
decimal value (cc); maximum is 63.

Record type

RT=W (default)

This specifies a control word record; however,
AAM considers this the same as RT=U.

RT=F
This specifies a fixed length record.

RT=R

This specifies a record mark record.

60499300 A

sSB

TL

WSA

RT=Z
This specifies a zero byte terminated record.

RT=D
This specifies a decimal character count
record.

RT=T
This specifies a trailer count record.

RT=U
This specifies an undefined record.

RT=S

This specifies a system-logical-record; how-
ever, AAM considers this the same as RT=U.

Sign overpunch format for length field (D or T type
records)

SB=NO (default)
The length field is in unsigned display code.

SB=YES

The length field uses a COBOL sign overpunch
scheme.

Length of the trailer portion (T type records)

TL=0 (default)

This field must be defined before the file is
opened.

TL=aexp

The length of the trailer portion is the
s[ﬁcified number of characters; maximum is
27"-1.

Trace transaction count (initial indexed sequential
and direct access files)

TRC=0 (default)
No tracing is to be performed.

TRC=aexp

If 1 through 31 is specified, the last specified
number of transactions are traced prior to
termination; if 32 through 63 is specified, all
file transactions are traced.

Working storage area address

WSA=0 (default)

No working storage area is specified.

WSA=exp

The working storage area is at the specified
address. This field must be set before any file
processing macro uses the working storage
area. It can be set by the GET, PUT, GETN,
GETNR, and REPLACE macros.

3-7

XBS Index file block size (multiple-index files, extended
MIP)

XBS=0 (default)

The index file biocks are the same size as the
data file blocks.

XBS=aexp

The index file blocks are the specified number
of characters.

XN Index file name (multiple-index files)

XN=0 (default)

No accesses or updates by alternate key can be
performed.

XN=lfn

The index file for alternate key access is the
file with the specified logical file name.

FILE CONTROL STATEMENT

The FILE control statement is used to specify file
information to update the FIT either when the SETFIT
macro is issued or the first time the file is opened in the job
step. This run-time control over file specification allows a
single program to process files with different record types.
Corresponding FIT fields have the value specified on the last
control statement encountered.

FILE control statements must be placed before any program
call in which the information in the statements is to be used.
Because processing of the FILE contral statement involves
calling a central processor program, it should not be placed
within a load set sequence. For example, the FILE control
statement should not be placed between the LOAD and
EXECUTE control statements.

If more than one FILE control statement appears for a given
file, the data on the first control statement can be
overwritten by the data on a subsequent control statement
when overlapping fields occur in those statements. The
FILE control statement conforms to operating system coding
conventions.

When an error diagnostic is produced by FILE control
statement processing, the entire statement is ignored. FILE
control statement diagnostics are written on the dayfile as
soon as the error is encountered; diagnostics name the faulty
parameter and are self-explanatory. Control is then passed
to the next EXIT control statement.

The format of the FILE control statement is shown in
figure 3-2. Keywords can be specified in any order.
Keywords have the same meanings as described for the FILE
macro.

FILE(Ifn[=axxxxxx] { keyword=option] ...)
Ifn Name of the FIT; required.

=aXXXXXX Optional new name for the FIT; allows a
file to be requested by a new name with-

out reassembly.

Symbolic name of the FIT field and the
option selected.

keyword=option

Figure 3-2. FILE Control Statement Format

3-8

If only the ifn and FO parameters appear in the FILE control
statement and no subsequent FILE control statement refer-
ences that file, FIT fields for all suecceeding job steps are
those specified in the program. If the FILE control
statement appears without any parameters, FiT fieids for all
files revert back to those specified in the program for all
succeeding job steps until another FILE control statement is
encountered. Except for the USE and OMIT parameters, all
parameters valid in a FILE control statement are valid in a

FILE macro.

The FILE control statement parameters are listed in
table 3-3. The various options for a keyword are separated
by the | symbol. If the keyword is selected, one of the
options must be selected and the others must be omitted.
Parameter values are absolute and generally reference a
number of characters. Value formats are denoted as:

n..n Decimal value
n..nB Octal value

n ... "W Decimal value, specified in words

Descriptions of the FILE control statement parameters are
the same as for the corresponding FILE macro parameters.

RUN-TIME MANIPULATION

The user can communicate with AAM through the FIT
without knowing the exact format of the FIT. This is done
with the FETCH, STORE, and SETFIT macros; FIT field
mnemonics are used in the FETCH and STORE macros.

FETCH MACRO

The FETCH macro retrieves the contents of a specified FIT
field by a reference to its mnemonics. The format of the
FETCH macro is shown in figure 3-3.

If the specified keyword represents a l-bit field, it is
returned in the sign bit of the X register; the contents of the
remainder of the X register are undefined. File names are
returned left-justified with zero fill. All other fields are
returned right-justified with zero fill.

FIT field mnemonics can be any of the keywords used with
the FILE macro or any of the fields listed in figure 3-3. The
macro generates code to extract the requested value from
the FIT. The code expansion destroys values in user
registers Xf, Xm, Af, and Xi (which can be Xf or Xm).

STORE MACRO

The STORE macro places a user-determined value in a
specified FIT field at execution time. The format of the
STORE macro is shown in figure 3-4.

Most FIT fields listed in appendix D can be set symbolically
by the STORE macro. Some fields, such as the file structure
parameters, are protected against being changed by the
STORE macro. Other fields are not protected but should not
be changed after the file has been opened.

A field can be set by using the option with the keyword or by
using a register toc hold the option as shown in figure 3-5.
Examples a and b have the same effect.

T R A S mmmmmmmmmﬁmmmmmmnm~mm

sl

v

-~

N~

A M STV A A A A e,

TABLE 3-3. FILE CONTROL STATEMENT PARAMETERS

Keyword Options Keyword Options Keyword Options
BCK NOIYES HL On...nln...nBln...nW OF RINIE
BFS On...nln...nB P Olnn OMIT | macro name/macro name/. . .
CF RINIUIRETIDET KL On...nln...nBln...nW ON OLDINEW
CL Oln...njn...nBln...nW KP Oln...nln...nB ORG OLDINEW
CP On...nln...nBln...nW KT sliiFlu PD INPUTIOUTPUTIIO
Cl NOIYES LFN Ifn RB Oln...nln...nB
DFC oi11213 LL Oinh...nn...nB RKP Oln...nln...nB
DP Olnn LP On...nln...nBln...nW RKW On...nln...nB
EFC 011213 MBL |On...nln...nBin...nW RT WIFIR|ZIDITIUIS
ERL. On...nn...nB MKL On...nln...nBln...nW SB NOIYES
FL On...nn...nBln...nW MNR {0Ohn...nln...nBIn...nW TL On...nln...nBln...nW
Fivi gin...n MRL Cln...nln...nBln...nW TRC On...nln...n
FO ISIDAIAK NDX NOIYES USE macro name/macro name/. . .
FwI NOIYES NL Oin...nln...nB XN Ifn
FETCH fit,keyword, xi,f m
fit Logical file name address of the FIT, or
any COMPASS expression giving the FIT
address.
keyword Any of the keywords in the FILE macro,
FILE control statement, or any of the . value
following: STORE fit,keyword= { option ‘ fs.m
Ri
BN Block number
ECT Trivial error count fit Address of the FIT or any COMPASS
ES Error status expression giving the address.
FNF Fatal/nonfatal flag keyword Any keyword described in connection with
. L. the FILE macro except OF or RT.
FP File position
LOP Last operation code vaiue integer vaiue associated with the keyword;
when the keyword represents a length, it is
ocC Open/close flag specified in characters.
RC Record count option Option associated with the keyword.
RL Record length
Ri Any register containing the proper value for
WPN Write bit the keyword.
Xi X register to receive the value of the re- f Number of the X register used to fetch the
quested field. FIT word; must be 1 through 5 (default
is 5).
f Number of the X register used to fetch the
FIT word; must be 1 through 5 (default s Number of the X register used to store the
is B). FIT word; must be 6 or 7 (default is 6).
m Number of the X register used as a mask m Number of the X register used as a mask
(default is 7). (default is 7).
Figure 3-3. FETCH Macro Format Figure 3-4. STORE Macro Format
60499300 A 3-9

a. STORE fit,RL=10

b. SX1 10
STORE fit, RL=X1

c. STORE fit, FO=iS

SETFIT fit

fit Address of the FIT or register containing the
address of the FiT.

Figure 3-5. STORE Macro Examples

The STORE macro generates code to store the requested
value in the FIT. This code expansion destroys the values in
user registers Xf, Xs, Xm, Af, As, and Xi (which can be Xf,
Xs, or Xm).

SETFIT MACRO

The SETFIT macro sets fields in the FIT according to
information provided in the FILE control statement. This
normally occurs when the OPENM macro is executed. The
SETFIT macro makes it possible for system routines to
obtain information, such as run-time buffer requirements,
needed by other system routines. The format of the SETFIT
macro is shown in figure 3-6.

Figure 3-6. SETFIT Macro Format

The SETFIT macro is valid only for a closed file. Any
attempt to execute this macro for an open file results in an
error. Once the FILE control statement values are placed in
the FIT, the macro sets the processed flag (PDF) field to
inhibit further FILE control statement processing when the
OPENM macro is executed. The flag is cleared during
subsequent OPENM processing.

If the buffer size (BFS) field is zero for an existing file, the
parameters from the file statistics table are placed in the
FIT; the buffer size returned to the BFS field is based on
these values. After a buffer is calculated, the open/close
(OC) field and first word address of the buffer (FWB) field
are cleared.

For a new file, the SETFIT macro should not be issued unless
sufficient information exists for buffer calculations.
Parameters needed for buffer calculation are shown in
table 3-4.

TABLE 3-4, BUFFER CALCULATION PARAMETERS

File User Can Supply P t
Organization User Must Supply Parameter or Default is Used arameter
Extended Key length KL Maximum block length MBL
indexed
sequential Key type KT Index block padding factor P

Maximum record length MRL Data block padding factor DP
Index block specification NL
Embedded key EMK
Compression routine CPA
Initial Key length KL Maximum block length MBL
indexed
sequential Key type KT Index block length IBL
Maximum record length MRL Index block padding factor P
Data block padding factor DP
Index block specification NL
Direct Home block number -HMmB Blecking factor RB
access
Key length KL
Maximum block length MBL or
Maximum record length MRL and
Minimum record length MNR
Actual Maximum block length MBL or Blocking factor RB
key
Maximum record length MRL and
Minimum record length MNR
3-10 60499300 A

a .-

-~ e o a a

ELY

)

1

A,

;M

LY NP P S

FILE PROCESSING

This section provides general processing information and
explains by file organization the logical operations of
processing AAM files. Macros and FIT fields are discussed
as applicable to the type of processing for each file
organization. The macros and their parameters are
described in general in section 5, File Processing Macros.
Detailed explanations of the FIT fields are in section 3, File
Information Table. Processing of multiple-index files is
discussed in section 6, Multiple-Index Files.

GENERAL PROCESSING INFORMATION

Certain processing procedures are common to all AAM file
organizations. These procedures are explained in the
following paragraphs. Processing unique to each file
organization is discussed by file organization.

FILE INFORMATION TABLE

Before an AAM file can be processed, the file information
table (FIT) must be established. This provides the name by
which the file can be referenced and defines the file
structure and processing limitations. The FIT contains fields
that are referenced whenever AAM processes the file. FIT
fields can be set before file processing by the FILE control
statement, FILE macro, SETFIT macro, or STORE macro.

FILE STATISTICS TABLE

A separate creation run is necessary for AAM files. This
creation run establishes the file statistics table (FSTT),
which becomes a permanent part of the file. The FSTT
contains FIT fields that cannot be changed for the life of the
file. When the file is opened for processing after its
creation run, the FIT fields are automatically established
from information in the FSTT of the file.

OPENM MACRO

All files must be initialized using the OPENM macro.
Applicable default values are inserted into FIT fields for
certain values not supplied before executing the OPENM
macro. AAM also performs certain consistency checks on
FIT fields when the file is opened. Refer to the OPENM

macro description in section 5 for the FIT fields that are
checked.

INPUT/OUTPUT MACROS

The GET, GETN, and GETNR macros read records from a
file. A working storage area must be established to pass
data to the program from a file storage device. The user
defines the working storage area (WSA) by supplying an
address for the WSA field in the FIT. A GET macro
transfers data from the buffer area, which is set up either
by the user or by AAM when the file is opened, to the
working storage area.

The PUT macro is used to write records to the file. A

working storage area must be established to pass data from
the program to a file storage device. The PUT macro

60499300 A

transfers data from the working storage area to the buffer
area, which is set up either by the user or by AAM when the
file is opened. The maximum record length (MRL) field in
the FIT must be set by the user on a file creation run and
becomes a permanent part of the file. The value specified
in the MRL field becomes the upper limit on the number of
characters that can be transferred.

CLOSEM MACRO

At completion of processing, all files must be closed by the
CLOSEM macro. Any remaining records of an output file
are written from the buffer to the file storage device, the
open/close (OC) field in the FIT is set to closed, and control
is returned to the user. Execution of the CLOSEM macro
causes the FSTT to be updated; if requested, file statistics
are written to the error file ZZZZZEG.

END-OF-DATA ROUTINE

The end-of-data exit (DX) field in the FIT specifies the
address of a user routine for processing an end-of-data
condition. End-of-data occurs when beginning-of-
information (BOI) or end-of-information (EOI) is encountered
while attempting a data transfer or positioning operation.

Control is passed to the address (DX)+1; a jump back to the
user in-line return code is stored at the DX address. The
file position (FP) field indicates the specific end condition
(BOI or EOI).

When file position is at EQI, the GETN macro transfers
control to the end-of-data exit. If continued GETN macros
are issued without repositioning the file, the GETN macro
issues an error and transfers control to the error exit (if
specified) instead of to the end-of-data exit. No GETN
macro that passes control to the end-of-data exit causes
data to be transferred to the working storage area. Control
is passed to the end-of-data exit only when end-of-
information is encountered. The FP field is not set until the
file is logically at the end of information.

For indexed sequential and actual key files, control is
transferred to the end-of-data exit whenever a SKIP macro
encounters EOI or BOIL. A trivial error condition is produced
by successive SKIP macros after end-of-data has been
encountered.

INITIAL INDEXED SEQUENTIAL FILES

The initial indexed sequential file organization is well suited
for applications that require reasonably efficient storage
and retrieval of records both randomly and sequentially by
primary or alternate key. A primary key is an identifier
defined by the user for each record within an initial indexed
sequential file. Primary and alternate keys can be in any of
the following forms:

30-bit integer (5 characters)
60-bit integer (10 characters)
60-bit floating point number (10 characters)

Symbolic (1 to 255 contiguous alphanumeric characters)

4-1

The value of the primary key determines the location of the
record in the file. Characters within a symbolic (alpha-
numeric) key are collated according to the standard CDC
collating sequence or according to a user-supplied collating
sequence. Any user collating sequence has meaning for
ranking keys only; it is stored with the user file in the FSTT.
Numeric keys are ordered by value. Keys within an initial
indexed sequential file can be a part of the record.

FILE CREATION RUN

A separate creation run is necessary for an initial indexed
sequential file. This can be done through the FORM utility
or through a source program. The FSTT is created when the
initial indexed sequential file is created.

The efficiency with which an initial indexed sequential file
can be processed is influenced by three fields in the FIT:

BFS Buffer size
IBL Index block length

MBL Maximum block length

On a creation run, the user has the option of specifying
these values directly or accepting system defaults
calculated by AAM. The ESTMATE utility, which is
described in section 7, can be used to calculate suggested
values for the MBL, IBL, and BF S fields.

If the MBL field is not specified directly, the value is
calculated from the values of the following fields in the FIT:

DP Data block padding

KL Key length

MNR Minimum record length
MRL Maximum record length

RB Records per block

If the IBL field is not specified directly, the value is
calculated from the values of the index block padding (IP)
field and the number of index levels (NL) field. If the IP and
NL fields are not specified, a default value of 511 words is
used.

Certain fields in the FIT determine the size and character-
istics of data and index blocks during file creation. Data
blocks and index blocks need not be the same size; padding
percentages can also be different. The following FIT fields
are used in data block creation:

DP Data block padding
KL Key length
KT Key type

MBL Maximum block length
MNR Minimum record length
MRL Maximum record length

RB Records per block

4-2

The FIT fields used to create the index block are as follows:

iBL index biock iength
P Index block padding
KL Key length

MNR Minimum record length
MRL Maximum record length
NL Number of index levels
RB Records per block

Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control statement,
FILE macro, or STORE macro. Any attempt to change these
fields after file creation is ignored without comment. The
FIT fields that must be set are as follows:

FO File organization
KL Key length
KT Key type

LFN L ogical file name
MRL Maximum record length

Other FIT fields that must be defined before the file is
opened on a creation run can be set by the user or can
assume default values. These fields remain the same for the
iife of the file and attempts to change them are ignored.

CDT Collating sequence to display code conversion
table; default depends on the DCT field

DCT Display code to collating sequence conversion
table; default is CDC conversion table

DKI Duplicate key indicator; default is no duplicate
key processing

DpP Data block padding percentage; release default
is 0

IBL Index block length; default is calculated by
AAM

P Index block padding percentage; release
default is 5

MBL Maximum block length; default is calculated
by AAM

MNR Minimum record size; cannot exceed value of
MRL; default is 0

NL Number of index levels; maximum is 63;
release default is 1

RB Records per block; should not be specified if
MBL is specified; release default is 2

Some FIT fields that are specified before the file is opened
for creation are in effect only until another OPENM macro
is executed, Attempted changes are ignored without
comment or error until the file is opened again; the values in

60499300 A

-

|
¢

B

S

Y

L3

«

~

LN O)

the FIT are then used to accomplish the open. Default
values are assumed without comment if the following fields
are not set:

BCK Block checksumj default is no checksums
BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

When records are written to a file on a creation run, the
primary keys must be in ascending sequence. The old/new
file (ON) field in the FIT must be set to NEW before the file
is opened. Only the following macros can be used during a
creation run:

OPENM
REWINDM
PUT
CLOSEM

The REWINDM macro must not be issued while records are
being inserted into the file.

EXISTING FILE PROCESSING

Initial indexed sequential files must reside on mass storage
devices for processing. After file creation, however, the
file can be dumped to tape with a COPYBF statement or a
permanent file dump routine. The file can be returned later
to mass storage for processing.

Open Processing

Before an existing file can be opened, the user must call for
construction of the FIT by specifying the logical file name
and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

DKI Duplicate key indicator

iBL index biock iength
KL Key length
KT Key type

MBL Maximum block length
MRL Maximum record length

NL Number of index levels

A default value is assumed without comment if the following
FIT fields are not set before opening the file:

BCK Block checksumj default is no checksums
BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

60499300 A

Two fields in the FIT have no default value and must be set
before being used by a file processing macro. If the
following fields are not set before required, a fatal error
occurs:

KA Key address
WSA Working storage area
Other fields that can be set before the file is opened but
need not be set until required by a file processing macro are
as follows:

DFC Dayfile control

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

FWI Forced write indicator
KP Beginning key position
MKL Major key length

The MKL field is reset to zero after execution of a GET or
SEEK macro. The other fields remain in effect until
changed.

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through the FILE
macro, FILE control statement, or STORE macro or by
specifying any option except NEW in the processing direc-

~Oc

tion {pd) parameter of the GPENM macro.

An existing file can be positioned at end-of-information
during open processing. This position is established by
specifying the E option in the open flag (of) parameter of
the OPENM macro or by setting the open flag (OF) field in
the FIT to E through the STORE macro, FILE control
statement, or FILE macro before the file is opened.

Read Processing

Records can be read from the file randomly by key value or
sequentially by position. The key of reference for a read
operation can be the primary key or any alternate key
defined for the file. The file can be open for input or for
input/output.

The GET macro is used for a random read operation. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields in the FIT determine whether the read
operation is by the primary key or by one of the alternate
keys. The key value at the address specified by the key
address (KA) field is used to locate the record to be read.
The user must set the KA field to the address of the key
value. A trivial error condition results if the specified key
is not found in the file; however, the file position is altered
to point to where the record should exist. If the key is part
of a duplicate set, the first record of the set is returned.

Sequential reading is accomplished by the GETN macro. The
GETN macro returns the next sequential record to the
working storage area. If the key address (ka) parameter is
specified in the macro, the primary key of the record

retrieved is returned to the specified address. The GETN
macro must be used to access any duplicate key record other

hoe Fho firad o H e cm
than the first one in the set.

Read-Only Processing

Existing files can be read, but not updated, in a smalier fieid
length by substituting the use of a read-only capsule for the
capsule that allows full file processing. Both random and
sequential reading are possible with the read-only capability.

When the read-only mode is selected, the file must be open
for input. If another AAM file is being processed for
input/output in the same job step, the read-only mode must
not be selected; if it is selected, an error occurs. The file to
be read must not be an empty file. Only the following
macros can be issued for the files OPENM, GET, GETN,
SEEK, SKIP, REWINDM, and CLOSEM.

The read-only capability requires the following LDSET
control statement (or LDREQ macro from a COMPASS
program executed through a terminal):

LDSET(SUBST=$RM.IS$-$RM.ISX$)

If static loading is being used, the following additional
LDSET control statement is required (refer to appendix E
for a discussion of static loading):

LDSET(SUBST=$SAAM.IS$-$IS.ROENS)

In COBOL programs, the following additional LDSET control
statement is required:

LDSET(OMIT=IS000V)

Under the NOS operating system, libraries must have been
generated with NX=1 before SUBST is used.

Write Processing

New records are added to an existing indexed sequential file
with the PUT macro. Records are inserted by primary key
value. The user must set the KA field in the FIT to the
address of the key value. Execution is faster if the records
to be inserted are sorted by primary key in ascending order.

If the file has duplicate primary key values, the position
(pos) parameter of the PUT macro determines where the
record is inserted within the duplicate key set. If the pos
parameter is not specified, the key and the record are
placed after the last record in the duplicate key set. The
positioning of a record within a‘ duplicate key set is
determined by the setting of the pos parameter as follows:

If P is specified and the key given equals the key of the
last record referenced, the key and the record are
inseried wnmediateiy preceding the last record
referenced.

If N is specified and the keys are equal, the key and the
record are placed immediately following the last record
referenced.

If P is specified and the keys are not equal, the key and
the record are inserted preceding the first record in the
duplicate key set.

If N is specified and the keys are not equal, the key and

the record are inserted after the last record in the
duplicate key set.

4-4

Random Processing

| ocessing implies index block manipulation as well
as record processing. Maximum efficiency is gained by
allowing buffer space for one index block for each index
level and space for two data blocks. This number of index
blocks allows the primary index block to remain in memory
while processing the other index and data blocks. Two data
blocks provide input/output/compute overlap.

If no input/output is in progress for the file, a write is
initiated for any data block that has been modified as long
as the block is not the object of the current macro. This
permits a high degree of input/output/compute overlap;
however, if the forced write indicator (FWI) field in the FIT
is set, each modified block is written immediately.

Major Key Processing

The major key feature is available with the GET, SEEK, and
START macros. It allows the user to perform a search on
the leading characters of a symbolic key. When the major
key length (mkl) parameter is specified in the GET macro,
the record returned to the working storage area is the first
one encountered with a major key that matches the
specified major key value. Presumably, the user wishes to
examine a subset of records defined by the major key; the
subset is processed using the GETN macro to access the
records belonging to the subset.

The START macro can also include the mkl parameter.
When it is specified, the file is positioned at the first record
containing a major key that matches the specified major key
value. A record ic not returned to the working storage area

by the START macro.

When the major key length (mkl) parameter is specified in
the SEEK macro, AAM initiates transfer into the buffer of
an index block or the data block containing the first
occurrence of the major key. Other program processing can
occur while the transfer is taking place.

The file position (FP) field in the FIT can be checked for the
status of the block transfer. The FP field has the value O if
an index block is being transferred or the value 20, if a data
block is being transferred. If the value of the FP field is O,
another SEEK macro can be issued and a check made of the
FP field. This can be done repeatedly until the data block is
transferred into the buffer. The GET macro can then be
issued to transfer the record containing the first occurrence
of the major key from that data block in the buffer to the
working storage area. The GET macro can be issued when
the FP field contains 0, but then there is no overlap in
processing.

Duplicate Key Processing

The user has the option of allowing the existence of
duplicate primary keys. If the duplicate key position (POS)
field in the FIT is not set, the GET, REPLACE, and DELETE
macros reference the first record in a duplicate key set; the
PUT macro places the record at the end of a duplicate key
set. All records other than the first in the duplicate key set
must be accessed with the GETN macro. Duplicate key
processing can be selected at any time during the life of the
file. Once the option to have duplicate keys is selected,
duplicate keys cannot be prohibited.

60499300

)
O
v
I

“
i

SR 00 N DM 500 Wl W B 70 N 450 IO

e T

_

-

A~

~

N A A A A

File Updating

The DELETE macro physically removes the key and its
associated record from the file. The key address (KA) field
in the FIT must be set to point to the address of the primary
key value for the record to be deleted. If the file has
duplicate keys and the position (pos) parameter is omitted
from the DELETE macro, the first record in the duplicate
key set is deleted. The last record referenced is deleted
when C is specified for the pos parameter. The key at the
address specified by the KA field must equal the key of the
record last referenced; otherwise, a trivial error results and
the request is ignored.

If the deleted record is the only one in the data block, the
block is linked into a chain of deleted data blocks to be used
when new data blocks are required for file expansion. If the
delete operation results in an empty index block, the block is
linked into a chain of deleted index blocks.

The REPLACE macro replaces an existing record with the
record in the working storage area. The primary key vaiue
for the record in the working storage area must be the same
as the primary key value for an existing record. The KA
field must be set to point to the primary key for the working
storage area record.

The first record in a duplicate key set is replaced when the
position (pos) parameter is omitted from the REPLACE
macro. The last record referenced is replaced when the pos
parameter is set to C. The key at the address specified by
the KA field must equal the key of the last record
referenced; otherwise, a trivial error occurs and the request
is ignored.

File Pasitioning

When the OPENM macro is executed, positioning of the file
depends on the open flag (of) parameter in the macro. If
R (rewind) is specified, the file is positioned at the first
record, which is the record with the lowest primary key
value, If E (end-of-information) is specified, the file is
positioned after the last record, which is the record with the
highest primary key value. Omitting the parameter causes
the current value of the OF field in the FIT to be used. File
positioning remains unchanged until one of the following
macros is executed: GET, GETN, REWINDM, PUT,
REPLACE, DELETE, SKIP, or START.

The GET macro, which accesses a record randomly, alters
the file position to the record returned by the macro. The
GETN macro, which accesses a record sequentially,
advances the file position one logical record and returns that
record unless the file is positioned at end-of-information.

The REWINDM macro positions the file to beginning-of-
information; execution of the GETN macro then returns the
first record in the file. The SKIP macro positions the file
forward or backward the specified number of records. After
end-of-information has been reached, subsequent forward
skips without file positioning cause trivial errors. If a skip
count of zero is given, no action is taken.

The START macro positions the file according to a specified
key value and key relation; the file is positioned at the
record with a key value that is equal to (EQ), greater than or
equal to (GE), or greater than (GT) the specified key value.
If the specified key value does not exist in the file, the file
is positioned at the record with the next greater key value.

60499300 A

Overlap Processing

In response to a user program request for a record, AAM
locates the data block by searching the index blocks and
transfers the data block from mass storage to the buffer
area. The record is then transferred to the working storage
area. The execution time to do this can be overlapped with
program processing by using the SEEK macro.

The SEEK macro transfers an index or data block from mass
storage to the buffer, returning control to the user program
at the start of the transfer. The user must check the file
position (FP) field in the FIT to determine if an index block
(FP set to0) or a data block (FP set to 20,) is being
transferred. Multiple SEEK macros can be issued until the
transfer of the data block is initiated. The user can then
issue a macro to process the record originally specified in
the SEEK macro. The SEEK macro does not return a record
to the working storage area.

EXTENDED INDEXED SEQUENTIAL FILES

The extended indexed sequential file organization is well
suited for applications that require reasonably efficient
storage and retrieval of records both randomly and sequen-
tially by primary or alternate key. A primary key is a
unique identifier defined by the user for each record within
an extended indexed sequential file. Primary and alternate
keys can be in any of the following forms:

60-bit signed binary (10 characters)
Symbolic (1 to 255 contiguous alphanumeric characters)

Uncollated symbolic (1 to 255 contiguous alphanumeric
characters)

The value of the primary key determines the iocation of the
record in the file. Characters within a symbolic (alpha-
numeric) key are collated according to the standard CDC
collating sequence or according to a user-supplied collating
sequence. Any user collating sequence has meaning for
ranking keys only; it is stored with the user file in the FSTT.
Numeric keys are ordered by value. Keys within an
extended indexed sequential file can be a part of the record
{embedded) or not a part of the record {(nonembedded).

FILE CREATION RUN

A separate creation run is necessary for an extended indexed
sequential file. This can be done through the FORM utility
or through a source program. The FSTT is created when the
extended indexed sequential file is created.

The efficiency with which an extended indexed sequential
file can be processed is influenced by two fields in the FIT:
maximum block length (MBL) and buffer size (BFS). On a
creation run, the user has the option of specifying these
values directly or accepting system defaults calculated by
AAM. The FLBLOK utility, which is described in section 7,
can be used to calculate suggested values for the MBL and
BFS fields.

If the MBL field is not specified directly, the value is
calculated from the values of the following fields in the FIT:

DP Data block padding
KL Key length

MNR Minimum record length

4-5

MRL Maximum record length

RB Records per block

A number of fields in the FIT determine the size and
characteristics of data and index blocks during file creation.
Datas and index blocks must be the same size; padding
percentages, however, can be different. The following FIT
fields are used in data block creation:

DP Data block padding
KL Key length
KT Key type

MBL Maximum block length
MNR Minimum record length
MRL Maximum record length

RB Records per block
The FIT fields used to create the index block are as follows:
P Index block padding
KL Key length
MBL Maximum block length

MNR Minimum record length

MRL Maximuim record lengih
NL Number of index levels
RB Records per block

Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control statement,
FILE macro, or STORE macro. Any attempt to change these
fields after file creation is ignored without comment. The
FIT fields that must be set are as follows:

FO File organization
KL Key length
KT Key type

LFN Logical file name

MRL Maximum record length

If the primary key is embedded in the record, the following
FIT fields must also be set:

EMK Embedded key, set to YES

RKP Relative key position; character position
within RKW in which the key begins

RKW Relative key word; word in which the key
begins

4-6

Other FIT fields that must be defined before the file is
opened on a creation run can be set by the user or can
assume default values. These fields remain the same for the

life of the file and attempts to change them are ignored.

DCT Display code to collating sequence corversion
table; default is CDC conversion table

DP Data block padding percentage; release default
is0
P Index block padding percentage; release

default is 0

MBL Maximum block length, data and index biocks;
default is calculated by AAM

MNR Minimum record size; cannot exceed value of
MRL; default is 0

NL Number of index levels; maximum is 15;
release default is 1

RB Records per block; should not be specified if
MBL is specified; release default is 2

XBS Index file block size; default is data file block
size (MBL)

Some FIT fields that can be specified before the file is
opened for creation are in effect only until another OPENM
macro is executed. Attempted changes are ignored without
comment or error untii the file is opened again; the vaiues in
the FIT are then used to accomplish the open. Defauit
values are assumed without comment if the following fields
are not set:

BCK Block checksum; default is no checksums

BFS Buffer size; default is buffer size calculated
by AAM

CPA Compression routine address; default is no

compression of records

DCA Decompression routine address; default
depends on the CPA field

FWB First word address of the buffer; default is
buffer address provided by AAM

When records are written to a file on a creation run, the
primary keys should be in ascending sequence for a more
efficient run. The old/new file (ON) field in the FIT must be
set to NEW before the file is opened.

EXISTING FILE PROCESSING

Extended indexed sequential files must reside on mass
storage devices for processing. After file creation,
however, the file can be dumped to tape with a COPYBF
statement or a permanent file dump routine. The file can be
returned later to mass storage for processing.

F O N W W W W W N

i

B LN

Open Processing
Berore an existing file can be opened, the user must call tor
construction of the FIT by specifying the logical file name
and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

KL Key length

KT Key type

MBL Maximum block length

MRL Maximum record length

NL Number of index levels

RKP Relative key position

RKW Relative key word

The RKW and RKP fields are set to 0 and 10, respectively, if
the key is not embedded in the record.

A default value is assumed without comment if the following
FIT fields are not set before opening the file:

BCK Block checksum; default is no checksums
BFS Buffer size; default is buffer size calculated
by AAM

CPA Compression routine address; default is no
compression of records

DCA Decompression routine address; default
depends on the CPA field

FWB First word address of the buffer; default is
buffer address provided by AAM

Two FIT fields have no default value and must be set before
being used by a file processing macro. If the following fields
are not set before required, a fatal error occurs:

KA Key address

WSA Working storage area
Other fieids that can be set before the file is opened but
need not be set until required by a file processing macro are
as follows:

DFC Dayfile control

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

FwWI Forced write indicator

KP Beginning key position

MKL Major key length
The MKL field is reset to zero after execution of a GET,

SEEK, or START macro. The other fields remain in effect
until changed.

60499300 A

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through the FILE
macro, FILE control statement, or STORE macro or by
specifying any option except NEW in the processing direc-
tion (pd) parameter of the OPENM macro.

An existing file can be positioned at end-of-information
during open processing. This position is established by
specifying the E option in the open flag (of) parameter of
the OPENM macro or by setting the open flag (OF) field in
the FIT to E through the STORE macro, FILE control
statement, or FILE macro before the file is opened.

Read Processing

Records can be read from the file randomly by key value or
sequentially by position. The key of reference for a read
operation can be the primary key or any alternate key
defined for the file. The file must be open for input or for
input/output.

The GET macro is used for a random read operation. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields in the FIT determine whether the read
operation is by the primary key or by one of the alternate
keys. For a nonembedded primary key, RKW and RKP must
be set to0 and 10, respectively. The key value at the
address specified by the key address (KA) field is used to
locate the record to be read. The user must set the KA field
to the address of the key value. A trivial error condition
results if the specified key is not found in the file; however,
the file position is altered to point to where the record
should exist. :

Sequential reading is accomplished by the GETN and GETNR

macros. The GETN macro returns the next sequential

record to the working storage area. The GETNR macro
performs this same function; however, control returns
immediately to the user if input/output is required to
complete the request. The macro can be issued repeatedly
until the transfer of the record is complete, or the
input/output status can be monitored for completion before
issuing the GETNR macro again.

Write Processing

New records are added to an existing indexed sequential file
with the PUT macro. Records are inserted by primary key
value. For a nonembedded primary key, the user must set
the KA field in the FIT to the address of the key value.
Execution is faster if the records to be inserted are sorted
by primary key in ascending order.

Random Processing

Random processing implies index block manipulation as well
as record processing. If the user cannot allow AAM to use
the Common Memory Manager (CMM), maximum efficiency
is gained by allowing buffer space for one index block for
each index level and space for two data blocks. This number
of index blocks allows the primary index block to remain in
memory while processing the other index and data blocks.
Two data blocks provide input/output/compute overlap. The
user can direct AAM to allocate this amount of buffer space
by setting the buffer size (BFS) field and by not setting the
first word address of the buffer (FWB) field. Refer to
appendix G for a detailed description of buffer allocation.

If no input/output is in progress for the file, a write is
initiated for any data block that satisfies the following
conditions:

The block was altered by the preceding macro.

The block is not the object of the current macro.

This permits a high degree of input/output/compute overlap;
however, if the forced write indicator (FWI) field in the FIT
is set, each modified block is written immediately.

Major Key Processing

The major key feature is available with the GET, SEEK, and
START macros. It allows the user to perform a search on
the leading characters of a symbolic key. When the major
key length (mkl) parameter is specified in the GET macro,
the record returned to the working storage area is the first
one encountered with a major key that matches the
specified major key value. Presumably, the user wishes to
examine a subset of records defined by the major key; the
subset is processed using the GETN or GETNR macro to
access the records belonging to the subset.

The START macro can also include the mk! parameter.
When it is specified, the file is positioned at the first record
containing a major key that matches the specified major key
value. A record is not returned to the working storage area
by the START macro.

When the mk! parameter is specified in the SEEK macro,
AAM initiates transfer into the buffer of an index block or
the data block containing the first occurrence of the major
xey. Cther program processing can ©

is taking place.

n ccour while the transfer

The file position (FP) field in the FIT can be checked for the
status of the block transfer. The FP field has the value O if
an index block is being transferred or the value 20, if a data
block is being transferred. If the value of the FP Tield is G,
another SEEK macro can be issued and a check made of the
FP field. This can be done repeatedly until the data block is
transferred into the buffer. The GET macro can then be
issued to transfer the record containing the first occurrence
of the major key from that data block in the buffer to the
working storage area. The GET macro can be issued when
the FP field contains 0, but then there is no overlap in
processing.

File Updating

The DELETE macro physically removes the key and its
associated record from the file. The key address (KA) field
in the FIT must be set to point to the address of the primary
key value for the record to be deleted. If the deleted record
is the only one in the data block, the block is linked into a
chain of deleted blocks to be used when new blocks are
required for file expansion. If the delete operation results in
an empty index block, the block is linked into the chain of
deleted blocks.

The REPLACE macro replaces an existing record with the
record in the working storage area. The primary key value
for the record in the working storage area must be the same
as the primary key value for an existing record. For a
nonembedded primary key, the KA field must be set to point
to the primary key for the working storage area record.

File Positioning

When the OPENM macro is executed, pesitioning of the file

epends on the open flag (of) parameter in the macro. If

R {rewind) is specified, the file is positioned at the first
record, which is the record with the lowest primary key
value. If E (end-of-information) is specified, the file is
positioned after the iast record, which is the record with the
highest primary key value. Omitting the parameter causes
the current value of the OF field in the FIT to be used. File
positioning remains unchanged until one of the following
macros is executed: GET, GETN, GETNR, REWINDM, SKIP,
or START.

o

i

The GET macro, which accesses a record randomly, alters
the file position to the record returned by the macro. The
GETN macro, which accesses a record sequentially,
advances the file position one logical record and returns that
record unless the file is positioned at end-of-information.
The GETNR macro also advances the file position one
logical record when it returns a record.

The REWINDM macro positions the file to beginning-of-
information; execution of the GETN or GETNR macro then
returns the first record in the file. The SKIP macro
positions the file forward or backward the specified number
of records; the file is positioned at beginning-of-information
or end-of-information if the skip count is too large.

The START macro positions the file according to a specified
key value and key relation; the file is positioned at the
record with a key value that is equal to (EQ), greather than
or equal to (GE), or greater than (GT) the specified key
value. If the specified key value does not exist in the file,
the file is positioned at the record with the next greater key
value.

Overlap Processing

In response to a user program request for a record, AAM
locates the data block by searching the index blocks and
transfers the data block from mass storage to the buffer
area. The record is then transferred to the working storage
area. The execution time to do this can be overlapped with
program processing by using the SEEK macro or the GETNR
macro.

The SEEK macro transfers an index or data block from mass
storage to the buffer, returning control to the user program
at the start of the transfer. The user must check the file
position (FP) field in the FIT to determine if an index block
(FP set to0) or a data block (FP set to 20,) is being
transferred. Multiple SEEK macros can be issued until the
transfer of the data block is initiated. The user can then
issue a macro to process the record originally specified in
the SEEK macro. The SEEK macro does not return a record
to the working storage area.

The GETNR macro is used to read records sequentially. If
execution of the GETNR macro initiates block transfer to
the buffer, control returns immediately to the user. The file
position (FP) field can be monitored in the same manner as
for the SEEK macro to determine when block transfer is
complete. The busy FET address (BZF) field points to an
input/output status word that can be monitored to determine
when input/output processing is complete. When the FP
field is set to 20,, the record has already been returned as if
the last GETN!@ macro in the series had been a GETN
macro.

- . »~ A A

¢
|
¢
(
|
¢
(
‘

g,

)

A~

L]

(
(
(
C

(

NS A A~

ACTUAL KEY FILES

The actual key file organization provides fast random access
to records in the file. Random access usually requires one
access per record. The primary key for a record is its
storage location (block number and record number within the
block). The user must preserve primary keys if the file is to
be accessed randomly by primary key.

FILE CREATION RUN

A separate creation run is necessary for an actual key file.
This can be done through the FORM utility or a source
program. The FSTT is created when the actual key file is
created.

Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control statement,
FI_E macro, or STORE macro. Any attempt to change these
fields after file creation is ignored without comment. The
FIT fieids that must be set are as follows:

FO File organization

KL Key length

LFN Logical file name

MNR Minimum record length

MRL Maximum record length

RT Record type

Two FIT fields that must be defined for file creation can be
specified by the user or can assume default values.

DP Data block padding percentage; release default
is 0

MBL Maximum block length; default is calculated
by AAM

If the MBL field is not specified directly, the value is
calculated from the values in the following fields:

MNR Minimum record length
MRL Maximum record length
RB Records per block

The value specified for the MBL field must be large enough
to hold at least the value specified in the RB field, the block
header, checksum (if this option is selected), and the number
of average size records specified by the RB field. AAM
increases the block size, if necessary, to use mass storage
efficiently. Resulting blocks are an integral multiple of
physical record unit (PRU) size minus one central memory
word.

The following FIT fields must be selected before the file is
created if the option is to be used during the life of the file:

HB Header bit; header appears with user data
RB Records per block
Some FIT fields that can be specified before the file is

opened for creation are in effect only until another OPENM
macro is executed. Attempted changes are ignored without

60499300 A

comment until the file is opened again; the values in the FIT
are then used to accomplish the open. Default values are
assumed without comment if the following fields are not set:

BCK Block checksum; default is no checksums

BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

The key value at the address specified by the key address
(KA) field in the FIT determines where the record is written.
The user can do either of the following:
The key value at location KA can be set to zero; this
allows AAM to determine the key value associated with
the record.

The key value at location KA can be set to a properly
formatted key; this tells AAM where to store the

o e
record.

Only the following macros can be used during a creation run:
OPENM
REWINDM
PUT

CLOSEM

EXISTING FILE PROCESSING

Actual key files must reside on mass storage for processing.
After file creation, the file can be dumped to tape through
the DUMPF utility and reloaded to mass storage for
processing with the LOADPF utility. The COPYBF utility
can also be used to copy the file to tape and then back to
mass storage for processing.

Open Processing

Before an existing file can be opened, the user must call for
construction of the FIT by specifying the logical file name

and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

KL Key length

MBL Maximum block length
MNR Minimum record length
MRL Maximum record length
RB Records per block

A default value is assumed without comment if the following
FIT fields are not set before the file is opened:

BCK Block checksum; default is no checksums
BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

4-9

Other FIT fields that can be set before the file is opened but
need not be set until required by a file processing macro are
as follows:

DFC Dayfile control

DX End-of-data exit

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

FWwi Forced write indicator

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through a FIT
manipulation macro or by specifying any option except NEW
for the processing direction {pd) parameter in the OPENM
macro.

Read Processing

The GET macro is used to read records randomly by key
value. The key value at the address specified by the key
address (KA) field in the FIT is used to locate the record to
be read. The GETN macro is used to read the next record in
sequence by position. Records can be read by primary key
or by any alternate key defined for the file. The file must
be open for input or for input/output.

When a recaord is read, the number of characters retrisved is
returned to the record length (RL) field in the FIT. If the

requested record is not found, a trivial error results.

The setting of the header indicator bit (HB) field in the FIT
determines whether the whole record, including the header,
is returned to the working storage area when a record is
read. If the HB field is set to YES, the entire record is
returned. If the HB field is set to NO, AAM assumes that
bits 0 through 14 in the first word of the header specify the
number of words the user considers to be the data record
header; only the nonheader portion of the record is returned.

Execution of the GETN macro causes the next sequential
record to be placed in the working storage area. The first
time the GETN macro is issued after the file is opened or
after any rewind request, the first record in the file is
retrieved. The next GETN macro retrieves the next
sequential record. Any empty record position is ignored.
Overflow records are returned as they are encountered. An
overflow record occupies two slots; the first slot is the one
where the record should be and the second slot is the one
that actually contains the record. The record is returned
when the first slot is encountered. If the key address (ka)
parameter is specified in the GETN macro, the primary key
value of the record retrieved is returned to the specified
address.

Write Processing

The PUT macro is used to add a record to an existing actual
key file. The key value at the address specified by the key
address (KA) field in the FIT must be unique or zero;
otherwise, the request is ignored. When a key value is
specified, it must indicate the block number of an existing
block or a block number one higher than the highest
numbered block currently existing. A key value of zero

4-10

causes AAM to determine the location for the record; the
key value is returned to the user at location KA. If a block

cannot accommaodate a record with a user- n?amf.efi qu_;, the

record is placed elsewhere by AAM; the value of the original
key does not change for user program purposes.

An index for actual key files is not maintained by AAM. For
subsequent random reading by primary key vaiue, the user is
responsible for preserving primary keys of records written
on the file. A multiple-index file can be created to maintain
an index for actual key files.

If the header indicator bit (HB) field in the FIT is set to
divide a record into a user header portion and a user data
portion when a record is read, the record must be written
accordingly. The first word in the working storage area
must indicate in bits 0 through 14 the number of words in
the user header.

File Updating

After a file has been created, records in the file can be
deleted or replaced. The DELETE and REPLACE macros
are used to update an actual key file.

A record can be eliminated from an existing file with the
DELETE macro. The record indicated by the key value at
location KA is logically removed from the file and the key is
set to zero. The record is physically removed when the
space is needed and any remaining records in the block can
be relocated. If the requested record cannot be found, the
request is ignored and a trivial error resuits.

The REPLACE macro is used to replace an existing record
with a new record. The existing record is specified by the
key value at location KA. The new record is in the working

storage area. The new record need not be the same size as
the record being replaced.

File Positioning

When the OPENM macro is executed, the file is positioned
at the first record in the file. File positioning remains
unchanged until one of the following macros is executed:
GET, GETN, REWINDM, or SKIP. The GET and GETN
macros, which are used to read records, position the file at
the record retrieved.

The SKIP macro positions the file forward or backward the
specified number of records to the beginning of another
record. Only small skips should be made because each
intervening record is read and counted. The SKIP macro
does not return a record to the working storage area.

Skipping stops if beginning-of-information or end-of-
information is reached. An informative message is issued if
skipping or sequential reading is attempted past the file
boundary, but no error exit is taken. Any end-of-data exit is
executed only if end-of-information is encountered. A skip
count of zero is interpreted as a no-op.

The use of the REWINDM macro is more efficient than
extensive backward skipping of records. This macro
positions the file to beginning-of-information, which is the
start of the user data record with the lowest key.

Overlap Processing

In response to a user program request for a record, AAM
determines the block needed and transfers it from mass
storage to the buffer area. The specified record is then

T

¢

.

Y e S o S

transferred to the working storage area. The execution time
to do this can be overlapped with program processing by
using the SEEK macro.

The SEEK macro transfers the block with the record from
mass storage to the buffer, returning control to the user
program at the start of the transfer. The program can
continue processing. A macro can then be issued to process
the record originally specified in the SEEK macro. The
SEEK macro does not return a record to the working
storage area.

DIRECT ACCESS FILES

The direct access file organization is well suited for
applications that require rapid access by key value. Direct
access files can be accessed either randomly or sequentially
by primary or alternate key; however, records accessed
sequentially by primary key are not logically ordered.

FILE CREATION RUN

A separate creation run is necessary for a direct access file.
This can be done through the FORM utility, the CREATE
utility, or a source program.

Mass storage for a direct access file is preallocated. Before
the file is opened on a creation run, the user must specify
the size and number of home blocks to be preallocated. The
number of home blocks is specified by setting the number of
home blocks (HMB) field in the FIT. The key analysis utility,
which is described in section 7, can be used to test various
home block sizes.

The user has the option of specifying the home block size
directly or accepting a system default. The maximum block
length (MBL) field is set by the user to specify home block
size. If the MBL field is not set by the user, AAM calculates
the value for the MBL field from the values in the following
FIT fields:

MNR Minimum record length

MRL Maximum record length

RB Records per biock; defauit is 2
A number of fields must be set by the FILE control
statement, the FILE macro, or the STORE macro before the
file is opened for a creation run. If these fields are
specified for an existing file, the new values are ignored
without comment. A fatal error occurs if the following
fields are not set on a creation run:

HMB Number of home blocks

KL Key length

LFN Logical file name

MNR Minimum record length

MRL Maximum record length

The position of the primary key in the record is assumed to
begin in the first character position. If the primary key is in
another position, the position must be specified before the

60499300 A

file is opened. The following FIT fields, which cannot be
changed after the file is opened for a creation run, describe
the key position:

RKP Relative key position

RKW Relative key word

Default values are used without comment if certain FIT
fields are not set before the file is opened for a creation
run. These fields are effective only until the file is opened
again; attempted changes are ignored without comment until
another OPENM macro is executed. At that time, the
values in the FIT are used to accomplish the open. These
fields are as follows:

BCK Block checksum; default is no checksums
BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

The minimum size of the buffer is two data blocks and the
FSTT. The maximum size is three data blocks and the FSTT.

Only the following macros can be used on a file creation run:
OPENM
REWINDM
PUT

CLOSEM

Overflow

Overflow records in direct access files are handled in one of
three ways. The setting of the overflow (OVF) field in the
FIT at file creation time determines the method used for
overflow records. The OVF field can be set as follows:

OVF=0VvB Overflow records are stored in over-

(default) flow blocks or in other home blocks.
If conservation of file space is more
critical than access time, this option
should be selected.

Overflow blocks are created to
handle any overflow records occur-
ring. If access time is more critical
than file space, this option should be
selected.

OVF=0VO

OVF=0VH Overflow records are stored in home
blocks only. An attempt to add a
record to a file whose home blocks
are filled is disallowed and a trivial

error message is issued.

User Hashing Routine

At file creation time, the user has the option of selecting a
user hashing routine instead of the supplied hashing routine.
This option is controlled by the hashing routine location
(HRL) field in the FIT.

4-11

If the symbolic entry point name of the user hashing routine
is MYHASH, the user should code HRL==XMYHASH in the
FILE macro. Parameters needed by the user hashing routine
are passed as follows:

SAl ARRAY

RJ =XMYHASH

The array contains the addresses of the following:

ARRAY Key length (KL)

ARRAY+1l Key address (KA)

ARRAY+2 Number of home blocks (HMB)
ARRAY+3 Hashing result

When the hashing routine completes its computation, the
address of the hashing result must be placed in ARRAY+3
and control must be returned to AAM. AAM then converts
the value to a relative physical record unit (PRU) number.
The user hashing routine could be coded as shown in
figure 4-1. Upon return to AAM from any hashing routine,
the remainder of the hashed key divided by the value of the
HMB field is used as the ordinal of a home data block.

MYHASH DATA 0

Computation

BX6 Xi STORE HASH RESULT
SA2 A1+3 GET ADDRESS FOR
HASHED RESULT
SA6 X2 STORE HASH RESULT
EQ MYHASH RETURN TO AAM/DA

Figure 4-1. User Hashing Routine Example

Supplied Hashing Routine

When the HRL field is not set to the address of a user
hashing routine, the system-supplied hashing routine is used.
The supplied hashing routine folds the word-aligned key into
one word using the integer add instruction. If the folded key
is an 18-bit integer or an 18-bit packed integer, no further
hashing is done; otherwise, the folded key is hashed using the
shift and divide instructions to produce a 48-bit result. This
hashed key is the ordinal of a home data block on mass

storage.

A prime number of home blocks is recommended when the
supplied hashing routine is used. This generally produces a
more uniform distribution of records than a nonprime
number.

Direct Access File Records

All record types are allowed for direct access files. When
creating the file through a source language, W type records
are the default. When using the FORM utility or the
CREATE utility through FORM, Z type records are the

default,

4-12

AAM determines the length of each record before it is
written to the file. A data record header is generated by

ANAMNA b . .. = mirmhe in
AAM; this includes the number of characters in the recerd.

The header and record are then written to the file.

EXISTING FILE PROCESSING

Direct access files must reside on mass storage for
processing. After file creation, the file can be dumped to
tape using the FORM utility and then reloaded for proc-
essing. The DUMPF and LOADPF utilities or the COPYBF
utility can also be used.

Open Processing

Before an existing file can be opened, the user must call for
construction of the FIT by specifying the logical file name
and the file organization. When the file is opened, values
from the FSTT are returned to the following FIT fields:

HMB Number of home blocks
KL Key length

MBL Maximum block length
MNR Minimum record length
MRL Maximum record length

If the following fields are not set before the file is opened,
the default value is assumed without comment:

BCK Block checksum; default is no checksums

arg Buffer size: default is buffer cize calculated

ouy SiZ8y delal utt

by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

Two FIT fields that have no default value must be set befare
being used by a file processing macro; otherwise, a fatal
error occurs. These fields are as follows:

KA Key address

WSA Working storage area
A number of FIT fields can be set before the file is opened
but need not be set until required by file processing macros.
These fields are as follows:

DFC Dayfile control

DX End-of-data exit

EFC Error file control

ERL Trivial error limit

EX Error exit

Fwi Forced write indicator
KP Beginning key position

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through a FIT
manipuiation macro or by specifying any option except NEW
in the processing direction (pd) parameter of the OPENM
macro.

¢
i

T

v

LYY U N A o T e

Read Processing

A direct access file can be read randomly by primary or
alternate key using the GET macro. It can also be read
sequentially by the GETN macro. The file must be open for
input or input/output.

For both the GET and GETN macros, the number of
characters read is based on the record length value in the
data record header. The value of the record length (RL)
field in the FIT is ignored. At the completion of a read
operation, the RL field is set to the length of the record
returned.

With the GET macro, records are located using the key value
at the address indicated by the key address (KA) field in the
FIT. If the requested record cannot be found, a trivial error
occurs.

The first GETN macro executed after an OPENM -or
REWINDM macro retrieves the first record in the file. A
subsequent GETN macro retrieves the next sequential
record. Aill home biocks are processed first and then any
overflow blocks. Intervening GET, REPLACE, and DELETE
macros are allowed and do not alter the sequential position
of the file. If a PUT macro or a REPLACE macro with a
larger size record is followed by a GETN macro, a trivial
error results. Any other function has no effect on sequential
reading or file positioning.

Read-Only Processing

Existing files with direct access file organization can be
read, but not updated, in a smaller field length by using a
read-only capsule instead of a full capsule with update
capabilities. Both random and sequential reading are
possible with the read-only capability.

When the read-only mode is selected, the file must be
opened for input. If another AAM file is being processed for
input/output in the same job step, the read-only mode must
not be selected; if it is selected, an error occurs. The file to
be read must not be an empty file. Only the following
macros can be issued for the file: OPENM, GET, GETN,
SEEK, REWINDM, and CLOSEM. Any updating operation
causes a fatal error to be issued.

The direct access file read-only capability requires the

following LIDSET contro! statement {or LOREQ macro from

a COMPASS program executing through a terminal):
LDSET(SUBST=$RM.DA$-$RM.DAX$)

If static loading is being used, the following additional
LDSET control statement is required:

LDSET(SUBST=$SAAM.DA$-$RO$$DAS)

60499300 A

Refer to appendix E for a discussion of static and dynamic
loading. Under the NOS operating system, libraries must
have been generated with NX=1 before SUBST is used.

Write Processing

Records are written to a direct access file with the PUT
macra. The user must set the key of the record to be
unique. The key also must be in the same position within the
record as when the file was established.

File Updating

The DELETE macro logically removes an existing record
from a file. The record associated with the specified key is
flagged as deleted and the space is available to store
another record in the file. If the requested record is not
found, a trivial error results and the request is ignored.

The REPLACE macro can be used to replace a record in the
direct access file with a record in the working storage area.
The record to be replaced is located by hashing the key
specified by the relative key word (RKW), relative key
position (RKP), and key length (KL) fields in the FIT.
Replacement records need not be the same size as the
records replaced unless the file is being processed sequen-
tially., A REPLACE macro that changes the record size
invalidates further sequential processing.

File Positioning

The REWINDM macro is used to position the file to
beginning-of-information. The file must be open when the
macre is cuted. The REWINDM macro resets the

sequential position so that the next GETN macro returns the
first record in the direct access file.

execud

Overlap Processing

In response to a user program request for a record, AAM
locates the desired home block by hashing the key and then
transfers the home block to the buffer area. The specified
record is then transferred to the working storage area. The
execution time to do this can be overiapped with program
processing by using the SEEK macro.

The SEEK macro transfers a home block from mass storage
to the buffer, returning control to the user program at the
start of the transfer. The program can continue processing.
A macro can then be issued to process the record originally
specified in the SEEK macro. The SEEK macro does not
return a record to the working storage area.

4-13

P O WO U W W VU U U WV wummaes W W O W W $ e W W

)

»

~ A A

(

™

FILE PROCESSING MACROS S

The macros described in this section are used for processing
the AAM files established with the FILE macro and FILE
control statement. The macros conform to COMPASS
syntax; the location, operation, and variable fields are
separated by one or more blanks.

In the macro parameter strings, the fit parameter is
required; all others are optional and positional. When an
optional parameter is omitted, the parameter position must
be marked by a comma; however, trailing commas can be
omitted. For example, the format of the OPENM macro is:

OPENM fit,pd,of

If the pd parameter is not specified in the OPENM macro,
the format is:

OPENM fit, ,of

The first parameter of every macra (fit) identifies the file
information table for the referenced file. If the address
specified by the fit parameter is invalid, the results are
indeterminate. The fit parameter can specify any of the
following:

Ifn Location field name of the first word of
the FIT; one through seven alphabetic or
numeric characters.

Rn Any A, B, or X register containing the FIT
address.

exp Any COMPASS expression giving the FIT
address.

Only parameters applicable to the file organization specified
in the FIT should be set. Supplying parameters applicable to
other file organizations could cause erroneous results.

MACRO EXECUTION

The current contents of the FIT are used for macro
execution. If a parameter is omitted, the default value is
valid only if the respective FIT field has not been previously
set to a different value. A field in the FIT can be set by any
of the following:

FILE macro parameter

FILE control statement parameter, which can override
defaults during open processing

SETFIT macro, which can call for FILE control state-
ment praocessing without full open processing

Default, which can be set during open processing
Macro parameter that is moved to the FIT before file
processing occurs (a zero value in a parameter list

moves a zero to the FIT field; a null value does not
affect the FIT field)

60499300 A

Registers are not saved or restored. It should be assumed
that all registers are destroyed during macro execution.

Static loading for AAM uses the STLD.RM macro and new
parameters in the FILE control statement or FILE macro.
Refer to appendix E for details on static loading.

The user macros, with the exception of the FETCH, FILE,
STLD.RM, and STORE macros, generate code as follows:

When syntax error checking is completed, all nonnull
parameters following the FIT address are placed in
registers.

Register B6 is set to the end of the macro expansion as
the return address.

A jump to the proper AAM entry point is generated in
the top of a word; bits indicating which parameters
were specified with the macro are set in the bottom of
the word.

The FIT address is placed in register AQ; if it is already
in AD, no code is generated.

Register Bl is set to 1; if B1=1 pseudo-op is in effect,
no code is generated.

PROCESSING MACROS

Several macros are available for processing AAM files.
These macros are described in this section. The FETCH,
FILE, SETFIT, and STORE macros are described in section 3,
File Information Table.

CLOSEM MACRO

The CLOSEM macro terminates file processing and positions

tho fila ac enonifiad
L€ Vi@ a5 5pelivied.

file. The format of the CLOSEM macro is shown in
figure 5-1.

Tt shniild he tha lagt manrn igsuiad far a
iU SO0U:G O Wi iaSu Madlrg 1SSued ol a

When the CLOSEM macro is executed for a file opened for
output, any information in the file buffer is written on the
file as part of file termination. If unload (U) is specified in
the CLOSEM macro, close processing is as follows:

If it is a permanent file, it is detached from the job and
returned to the permanent file manager.

Mass storage space assigned to the file is released.
When the CLOSEM macro is executed for a file opened for
output, any information in the file buffer is written on the

file as part of file termination.

Close processing for a file varies according to the value
specified for the cf parameter of the CLOSEM macro.

Rewind (R)

The file is rewound.

5-1

CLOSEM fitcf
fit Address of the FIT.
cf File positioning after close processing:

R Rewind ({default}

N No rewind

U Unload; release buffer space and
remove name from the active
file list.

RET Return; release buffer space and
remove name from the active
file list.

DET Detach; release buffer space and
remove name from the active
file list.

Only the fit parameter can be specified as a register.

DELETE fit,ex,kakp,pos

fit Address of the FIT.
ex Address of the error routine.
ka Address of the primary key for the record to
be deleted.
kp Beginning character position of the primary key.
pos Duplicate key position; can be C (current record)

or omitted (first record in the duplicate key
set). Applies only when duplicate key processing
is allowed for initial indexed sequential files.

Parameters can be specified as registers.

Figure 5-1. CLOSEM Macro Format

No rewind (N)

The file is not rewound.

Unload (U)

The file is rewound. The open/close flag (OC) field
in the FIT is cleared. If the file is a permanent
file, it is detached from the job and returned to the
permanent file manager. Any scratch mass storage
space assigned to the file is released.

Return (RET)

The processing is the same as for unload.

Detach (DET)

The file is not rewound. The open/close flag (OC)
field in the FIT is cleared.

A CLOSEM request for a file that has never been opened, or
a file that has been closed but not unloaded or reopened, has
the following effects:

The FIT error status redundant close is set.

File positioning is the same as for an open file.

Control is returned to the error exit.

DELETE MACRO

The DELETE macro removes a record from the file. If the
requested record is not found, a trivial error results and the
request is ignored. The format of the DELETE macro is
shown in figure 5-2.

Applicable parameters by type of file organization for the
DELETE macro are as follows:

Initial indexed sequential fit,ex,ka,kp,pos
Extended indexed sequential fit,ex,ka,kp
Direct access fit,ex,ka,kp

Actual key fit,ex,ka

5-2

Figure 5-2. DELETE Macro Format

When the DELETE macro is executed, the specified record is
either flagged as deleted or physically removed from the
file. If the requested record is not found, a trivial error
results and the request is ignored. For initial indexed
sequential files with duplicate primary keys, a trivial error
results if the pos parameter is set to C and the requested
key does not equal the key of the current record; the request
is ignored.

FLUSHM MACRO

The FLUSHM macro is applicable only to extended indexed
sequential files. This macro processes one or more file
buffers as if a CLOSEM macro had been issued; the files,
however, remain open. Blocks with pending writes and the
updated FSTT are written on the file. The format of the
FLUSHM macro is shown in figure 5-3.

FLUSHM fitlist

fitlist Address of the list of FIT address entries.

Figure 5-3. FLUSHM Macro Format

The list referenced by the fitlist parameter contains a
one-word entry for each file to be flushed. A word of binary
zeros terminates the list. The one-word entry is formatted
as follows:

59 17 0

file name fit

The file name, which is specified in display code, is used as a
consistency check. The address of the FIT is specified in the
lower bits of the word.

GET MACRO

The GET macro retrieves data from a file and delivers it to
the working storage area. The file must be open for input or
for input/output. The GET macro retrieves a record
randomly by key value. The GETN and GETNR macros
retrieve records sequentially by file position; the GETNR
macro is applicable only to extended indexed sequential
files. The formats of the macros are shown in figure 5-4.

60499300 A

|

«

)

1)

:& A—

GET fit,wsa,0,ex,ka,kp,mkl
GETN fit,wsa,ex ka

GETNR fit,wsa,ex ka

fit Address of the FIT.

wsa Address of the working storage area to which
the user record is returned.

ex Address of the error routine.

ka Address of the key for the record to be read.
kp Beginning character position of the key.

mkl Major key length in characters; can be used only

for a symbolic key in an indexed sequential file.

Parameters can be specified as registers; if parameters are
not specified, values in appropriate FIT fields are used.

Figure 5-4. GET, GETN, and GETNR Macro Formats

Applicable parameters by type of file organization for the
GET macro are as follows:

Indexed sequential fit,wsa,0,ex,ka,kp,mkl

Direct access fit,wsa,0,ex,ka,kp

Actual key fit,wsa,0,ex,ka

The GET macro transfers a record from a file to the
specified working storage area. The location referenced by
the ka parameter contains the key value for the record to be
read. If no record in the file has a matching key value, a
nonfatal error occurs. The record length (RL) field in the
FIT is updated to indicate the number of characters in the
record retrieved from the file.

If the record is longer than specified by the maximum record
length (MRL) field in the FIT, an excess data error occurs.
Control is passed to the error exit after transferring to the
working storage area the number of characters specified by
the MRL field. A record greater than the maximum record
length is prevented from overwriting a portion of the calling

. . A >
program or other preserved information. Control is trans-

ferred to the user end-of-data exit (DX field in the FIT) by a
GET request that detects end-of-information.

The GETN macro is used to read records sequentially. The
next record in sequence by position on the file is retrieved
and transferred to the specified working storage area.

Applicable parameters by type of file organization for the
GETN macro are as follows:

Indexed sequential fit,wsa,ex,ka
Direct access fit,wsa,ex
Actual key fit,wsa,ex,ka

The GETNR macro is applicable only to extended indexed
sequential files. This macro causes the next sequential
record to be transferred to the working storage area the
same as the GETN macro. The difference is that the
GETNR macro returns control to the user if the request
initiates block transfer to the buffer. The user can continue
issuing the GETNR macro until transfer is complete. The
file position (FP) field in the FIT is set to 204 (EOR) when

60499300 A

transfer of the record is complete. While intermediate
reads are being performed (index blocks or MIP index file
blocks), the FP field is set to 0.

Unnecessary GETNR requests can be avoided by monitoring
the status of the input/output processing. The busy FET
address (BZF) field in the FIT contains the address of the
input/output status word. When the low order bit of the
status word is set to 1, input/output processing is complete
and a GETNR macro will start a new block read or return a
record to the working storage area. If the low order bit is
set to 0, a GETNR macro immediately returns control to the
user.

OPENM MACRO

Before a file can be read or written, the file must be made
available by the OPENM macro. Macros that affect the FIT
(FILE, STORE, FETCH, and SETFIT) can be executed before
the file is opened. Any file manipulation macro, however, is
valid only after the file has been opened. Error procedures
are initiated if atiempts are made to access an unopened
file. The format of the OPENM macro is shown in
figure 5-5.

Applicable parameters by type of file organization far the
OPENM macro are as follows:

Indexed sequential fit,pd,of
Direct access fit,pd
Actual key fit,pd

The OPENM macro prepares a file for processing by creating
and linking all required system tables for a file and by
translating user-supplied parameters into appropriate values
in the relevant tables. When the OPENM macro is executed,
the following events occur:

FILE control statement processing occurs unless it has
been suppressed by previous execution of the SETFIT

OPENM fit,pd,of

fit Address of the FIT.
nd Type of processing:

INPUT File is opened for read only
(default).

QUTPUT File is opened for write only.

1-O File is opened for read and
write.

NEW A new file is being created; sets
the PD field tc OUTPUT and
the ON field to NEW.

of Open flag; file positioning at open time:
R File is rewound before any other
open procedures are performed
(defauit).
E File is positioned immediately

before the end-of-information.

Only the fit parameter can be specified as a register.

Figure 5-5. OPENM Macro Format

macro. The PDF field in the FIT is set by the SETFIT
macro to inhibit reprocessing of the FILE control
statement. The PDF field is clsared by the GPENM
macro.

The FIT is checked for logical consistency; depending on
the file organization, additional checks are made for
required fields and defaults are supplied where needed.

Buffer parameters are processed.

If no error has been detected, the open/close (OC) flag
in the FIT is set to open and control transfers to the
user.

Complete open processing occurs when the first OPENM
macro in a job step is issued. If a file is closed and then
reopened, FIT verification and FILE control statement
processing are not repeated if the close flag (CF) field in the
FIT is set to R or N.

Any error detected during open processing sets the error
status (ES) field in the FIT. If a user error routine is
specified by the error exit (EX) field in the FIT, control is
transferred to the routine. If the user routine corrects the
condition that caused the error and executes another
OPENM macro, processing of the file can continue;
otherwise, the open/close (OC) field in the FIT indicates the
file is not open (set to0) and further file access is
prohibited.

Conditions investigated during FIT consistency checks are
listed in table 5-1. Buffer fields zre also investigated. The
settings of the first word address of the buffer (FWB) field
and buffer size (BFS) field determine the method of buffer
allocation. If the FWB field is zero, the Common Memory

extended indexed sequential file, the buffer pool limit is
increased by the default amount if the BFS field is also zero;
otherwise, it is increased by the amount specified by the
BF S field.

When the FWB field is not zero, an error occurs if the BF S
field is zero. If the BFS field is also nonzero, the specified
buffer space is partitioned into table areas for AAM, blocks
for the data file, and (if needed) blocks for the MIP index
file. A minimum of two blocks must be allocated for each
file or CMM must be present; otherwise, an error occurs.
The buffer pool amount must be increased to accommodate
two blocks per file.

Data compression can be established for an extended
indexed sequential file at any time it is opened. Once data
compression is selected, it must be specified for the life of

TABLE 5-1. FIT CONSISTENCY CHECKS

Condition Action
RT=D, LL=0 Error
RT=T, and CL, HL, or TL=0 Error
RT=Z, FL=0 Error
RT=F, FL=0 Error
RT=T, HL not greater than CL+CP Error
MRL, MBL=0, BT=K, E Error

the file. The compression routine address (CPA) and
decompression routine address (DCA) fields in the FIT point
to the routines tc be used for data compression. These
fields can originally be specified when the file is created or
at any subsequent time the file is opened. Whenever the file
is opened after that time, the routine addresses must be
supplied in the CPA and DCA fields. Refer to appendix H,
Data Compression, for more detailed information.

The timing of the setting of the parameters for the
processing of each file organization in relation to the
OPENM macro is important. These parameters differ for
each file organization. The requirements for specific
parameters are discussed under open processing for each file
organization; refer to section4, File Processing. The
following shows the possible relationships between the
OPENM macro and the FIT parameters:

For file creation, certain parameters must be set before
executing the OPENM macro; otherwise, a fatal error
occurs. If these parameters are specified for an
existing file, the new values are ignored without
comment.

Certain parameters must be selected before the file is
created if the option is to be used during the life of the
file.

Certain parameters are optional at file creation. If
these parameters are not specified, default values are
used. Values specified after file creation are ignored.

Certain parameters must be set prior to open time;
otherwise, default values are assumed without
comment. These parameters are effective only until
another OPENM macro is executed.

Certain parameters need not be set until they are
required by file processing commands. Once set, these
parameters remain in effect until changed.

Certain parameters have no default and must be set
prior to use by a file processing command; otherwise, a
fatal error occurs.

PUT MACRO

The PUT macro transfers data from the working storage
area to a file. The file must be open for output or
input/output. The format of the PUT macro is shown in
figure 5-6.

Applicable parameters by type of file organization for the
PUT macro are as follows:

Initial indexed sequential fit,wsa,rl,ex,ka,kp,pos

Extended indexed sequential fit,wsa,rl,ex,ka,kp

Direct access fit,wsa,rl,ex

Actual key fit,wsa,rl,ex,ka

Any errors detected during PUT macro execution cause
transfer to the error routine if one is specified. If the error
is excess or insufficient data, no data has been transferred;
for other errors, the data is unreliable.

60499300 A

-\ 1

‘
|
¢

x

Y o Y anae SV N N N S o e T

>

i

~

b S o W o

PUT fit,wsa,rl,ex,ka,kp,pos
fit Address of the FIT.

wsa Address of the working storage area from which
the user record is transferred.

rl Number of characters to be written.

ex Address of the error routine.

ka Aqdress of the primary key for the record to be
written.

kp Beginning character position of the primary key.

pos Relative position of a record for duplicate key

processing; applicable only to initial indexed
sequential files.

P Before last record referenced

N Following last record referenced

Parameters can be specified as registers; if parameters are
not specified, values in appropriate FIT fields are used.

Figure 5-6. PUT Macro Format

The length of a record being written is determined by the
record length (RL) field in the FIT. For U, S, and W type
records, the RL field can be set by the rl parameter in the
PUT macro. For F, Z, R, T, and D type records, AAM uses
certain FIT fields and the content of the record in the
working storage area to determine record length for the RL
field; the value of the RL field is determined as follows:

F type records

Record length is taken from the FL field in the
FIT.

Z type records

Record length is taken from the RL field in the FIT
or from the FL field if the RL field is set to zero.
The end of the record is determined by searching
backward from the character position specified by
the value of the RL or FL field and removing full
words of blanks.

R type records

Record length is determined by scanning the record
in the working storage area for the terminating
record mark character, which is specified by the
record mark (RMK) field in the FIT. An error
occurs if the record mark is not found within the
maximum record length.

T type records

Decimal count is extracted from the record and
used to calculate the record length. Length and
location of the count field in the record (CL and
CP fields), length of the header (HL field), and
length of the trailers (TL field) are obtained from
the FIT.

60499300 A

D type records

Decimal character record length is extracted from
the record. Length and location of the character
count field in the record (LL and LP fields) are
obtained from the FIT.

In all preceding cases, the length of the record transferred is
stored in the RL field in the FIT at the end of the PUT
macro operation.

REPLACE MACRO

An existing record in a file is replaced by a record from the
working storage area when the REPLACE macro is
executed. The new record can be smaller or larger than the
original record; however, record length cannot exceed the
size specified by the maximum record length (MRL) field in
the FIT. The format of the REPLACE macro is shown in
figure 5-7.

Applicable parameters by type of file organization for the
REPLACE macro are as follows:

Initial indexed sequential fit,wsa,rl,ex,ka,kp,pos

Extended indexed sequential fit,wsa,rl,ex,ka,kp

Direct access fit,wsa,rl,ex

Actual key fit,wsa,rl,ex,ka

Replacement records need not be the same size as the
record being replaced except for a direct access file being
processed sequentially. A larger replacement record in a
direct access file can cause overflow of records, which
leaves the sequential position undefined. If the requested
record is not found, a trivial error results and the request is
ignored. For initial indexed sequential files with duplicate
primary keys, a trivial error occurs if the pos parameter is
set to C and the key does not equal the key of the current
record; the request is ignored.

REPLACE fit,wsa,rl,ex ka,kp,pos

fit Address of the FIT.

wsa Address of the working storage area with the
new record.

rl Length (in characters) of the new record.

ex Address of the error routine.

ka Address of the primary key for the record to
be replaced.

kp Beginning character position of the primary key.

pos Duplicate key position; can be C (current

record) or omitted (first record in the duplicate
key set). Applies only when duplicate key proc-
essing is allowed for initial indexed sequential
files.

Parameters can be specified as registers.

Figure 5-7. REPLACE Macro Format

5-5

REWINDM MACRO

The REWINDM macro positions a file to beginning-of-
information, which is the beginning of the first data receord
in the file. The file must be open when the macro is issued.
A GETN macro issued immediately after the REWINDM
macro returns the first record. The format of the

REWINDM macro is shown in figure 5-8.

REWINDM fit
fit Address of the FIT or register containing the
address.

Figure 5-8. REWINDM Macro Format

SEEK MACRO

Program execution time can be shortened through the use of
the SEEK macro, which allows overlapping of central
memory processing and input/output activity. The SEEK
macro initiates block transfer to the buffer; it does not
return a record to the user. The user can then continue
processing while the transfer occurs. The format of the
SEEK macro is shown in figure 5-9.

SEEK fit,ex,ka,kp,mk!

fit Address of the FIT.

ex Address of the error routine.

ka Address of the key for the desired record.
kp Beginning character position of the key.
mkl Major key length in characters.

Parameters can be specified as registers. If the ex, ka, kp,
and mkl parameters are not specified, values in appropriate
FIT fields are used.

For an extended indexed sequential file, the user can also
monitor the input/output request to avoid issuing SEEK
macros with the same key, which would return immediately
because the file was busy. The busy FET address (BZF) field
in the FIT is set by AAM and points to an input/output status
word. When the low order bit of the status word is set, the
current SEEK macro input/output is complete and another
operation can be profitably issued for the file.

Normally, the SEEK macro is followed by a macro such as
GET or DELETE accessing the record referenced by the
SEEK macro. An operation on some other record not
already in the buffer can negate the action of the SEEK
macro by writing over the data transferred by it. The
record is not moved into the working storage area until a
GET macro is executed. If a call is made before the seek
operation is complete, processing continues reading blocks
from the point where the SEEK calls were discontinued.

SKIP MACRO

The SKIP macro repositions an indexed sequential or actual
key file in a forward or backward direction a specified
number of logical records. It does not return a record to the
working storage area. Only small skips are recommended
because each record must be read and counted for proper
positioning. The format of the SKIP macro is shown in
figure 5-10.

SKIPdL fit,count

d Direction of skip:
F Forward
B Backward
fit Address of the FIT.

count Number of logical records to be skipped. A null
parameter results in a zero count.

The fit and count parameters can be specified as registers.

Figure 5-9. SEEK Macro Format

Applicable parameters by type of file organization for the
SEEK macro are as follows:

Indexed sequential fit,ex,ka,kp,mkl

Direct access fit,ex,ka,kp

Actual key fit,ex,ka

When the SEEK macro is executed, control returns to the
user program once a read is initiated. The user program
must monitor the file position (FP) field in the FIT to
determine when the requested data block is in the buffer and
ready to be accessed. The FP field is set to zero if the
transfer of an index block has been initiated; it is set to 20B
(EOR) if a data or home block is being transferred.

5-6

Figure 5-10. SKIP Macro Format

When the SKIP macro is executed, user parameters are
checked, records in the file are read, the file is positioned
according to the number of records to be skipped, and
control returns to the user. A negative skip count is not
allowed; the request is ignored and an error is issued. If the
skip operation encounters end-of-information or beginning-
of-information before the skip count is exhausted, control is
transferred to the end-of-data routine with the appropriate
file position set.

START MACRO

The START macro positions an indexed sequential file or an
alternate key index file to a record that meets a specific
condition; the record is not transferred to the working
storage area. The file is positioned in the same manner as
for a GET macro. The format of the START macro is shown
in figure 5-11.

60499300 A

- o -

P N S

CHRHRE R RN SRS IR NSRS N 10 N 0 UMD YL SO I L A N PR 0 0 NS O M 2 A S M A S

)

"N

The file is positioned according to the key relation (REL)
field in the FIT and the current value at the key address
(KA) location. The REL field specifies the desired relation
between the value at location KA and the key of the record
at which the file is to be positioned. Relations that can be
specified are EQ (equal to), GT (greater than), and GE
(greather than or equal to). The file is positioned at the
beginning of the record that satisfies the relation. If the
mkl parameter is specified, the file is positioned relative to
the major key specified for an indexed sequential
symboalic key.

60499300 A

START fit,ex,kakp,mkl

fit Address of the FIT.

ex Address of the error routine.

ka Address of the key for positioning the file.
kp Beginning character position of the key.
mkl + Major key length in characters.

Parameters can be specified as registers. If the ex, ka,
kp., and mkl parameters are not specified, values in
appropriate FIT fields are used.

Figure 5-11. START Macro Format

5-7

V W W W VWV W VU VY W W W O W W W

¥

]

.

~

,

N O~ o~

MULTIPLE-INDEX FILES 6

All AAM files have a primary key associated with each
record to provide random access to the file. In addition,
alternate keys can be defined for records in an AAM file.
Alternate keys provide the means to access records by more
than one field in a record.

Primary key values must be unique within the file.
Alternate keys, which can overlap each other and the
primary key, need not have values unique to the record or to
the file. Alternate keys must be contained within the
minimum record size.

The original data file structure is not affected by alternate
key processing. The Multiple-Index Processor (MIP) creates
an index file on the creation run for a multiple-index file.
On subsequent runs, the index file is updated as necessary
when the data file is updated. The index file must be made
available to the updating program.

Two Multiple-Index Processors are supported by AAM.
Initial MIP processes initial indexed sequential, actual key,
and direct access files; extended MIP processes extended
indexed sequential files.

For existing AAM files, two utilities are available to assist
in creating the index file for alternate key processng: the
IXGEN utility for initial MIP and the MIPGEN utility for
extended MIP. Refer to section 7, Utilities, for descriptions
of the IXGEN and MIPGEN utilities.

INDEX FILE

The index file is created and updated automatically by MIP.
It is identified by the index file name (XN) field in the FIT.
The index file, which is defined when the file is created,
must be made available whenever the data file is updated or
is accessed by alternate key. Alternate keys are defined by
the user on the creation run.

STORAGE STRUCTURE

The index file contains an index for each alternate key
defined for the data file. Within an index, each alternate
key value is associated with a keylist of the primary keys for
records containing that value.

Each alternate key index is ordered by alternate key value.
The ordering of the primary key list for a given index is
controlled by the user through a parameter that can be
specified when the alternate key is defined by the RMKDEF
macro or directive. The ordering of the list is as follows:

If the parameter is omitted or U is specified, each value
of the alternate key must be unique. The primary key
list for each alternate key value consists of only one
primary key value.

If F is specified for the parameter, the ordering of
primary key values is first-in first-out. The primary
keys are stored in the order in which their corre-
sponding records are created.

60499300 A

If I is specified for the parameter, the primary keys are
stored in ascending sequence of primary key values.
Numeric keys are in numeric order; symbolic keys are in
collating sequence order.

Block Size, Initial MIP

The size of the index file blocks can also be specified by a
parameter in the RMKDEF macro or IXGEN directive when
the data file is created. The parameter is specified in the
macro or directive that defines the primary key. The index
file block size must always be specified as an integral
number of PRUs. A block size of 2 to 8 PRUs is
recommended; results are indeterminate if the block size
exceeds 8 PRUs.

Block Size, Extended MIP

The size of the index file blocks is determined when the data
file is created. The index block size (XBS) field in the data
file FIT specifies the number of characters in a block. A
value specified for the XBS field is rounded upward if
necessary to the nearest multiple of 640 characters
minus 20. The default index file block size is the data file
block size.

ALTERNATE KEY SPECIFICATION

Alternate keys are defined when the data file is created. A
record can then be accessed by the primary key or by any
alternate key defined for the file. For existing files, the
IXGEN or MIPGEN utility can be used to define alternate
keys and create the index file. (Refer to section7,
Utilities.)

RMKDEF Macro, Initial MIP

On a file creation run, the RMKDEF macro is used to
describe the primary key or an alternate key field. The
macro must be used once for the primary key and once for
each alternate key field in the record; the primary key must
be specified first. The RMKDEF macros must be executed
after the OPENM macro and before the first PUT macro.
The format of the RMKDEF macro for initial MIP is shown
in figure 6-1.

Used together, the kg and kc parameters refer to an
alternate key that is a repeating group. For example, a
repeating group is described in COBOL by an
OCCURS n TIMES clause. When the kg parameter is used
alone, it refers to the index file block size. The kg
parameter should be used alone only when the primary key is
being defined. Alternate key fields can overlap in a record;
for example, first name, last name, and whole name can all
be defined as alternate keys.

6-1

RMKDEF Macro, Extended MIP

The RMKDEF macro is used to describe an alternate key
field on a file creation run. The macro must be used once
for each alternate key field in the record. The RMKDEF
macros must be executed after the OPENM macro and
before the first PUT macro. An RMKDEF macro that
defines the primary key is ignored without comment. The
format of the RMKDEF macro is shown in figure 6-2.

The kg and kc parameters refer to an alternate key that is a
repeating group. For example, a repeating group is
described in COBOL by an OCCURS n TIMES clause. If the
same alternate key value occurs more than once in a data
record, the primary key is entered in the index only once for
that value; therefore, a primary key associated with an
alternate key value indicates that the value occurs at least
once in the record. Alternate key fields can overlap in a
record; for example, first name, last name, and whole name
can all be defined as alternate keys.

The nl, ie, and ch parameters are used to define sparse keys.
These are alternate keys for which only certain values are of
interest to the user. A sparse key is defined by specifying
null suppression or sparse control characters.

Null suppression is specified by the nl parameter. The
primary key for a record that has a null alternate key value
is not included in the alternate key index. A null value is all
spaces for a symbolic key or all zeros for a signed binary
key.

The ie and ch parameters are used when indexing of
alternate key values is to be controlled by a sparse control
character. The one-character field containing the sparse
control character must be in the fixed-length portion of the
record. The ie parameter specifies whether to include or
exclude the alternate key values for records that contain a

RMKDEF fit,kw,kp,k!,ki,kf ks,kg,ke

fit Address of the FiT for the data fiie.
kw Word of the record where the key starts,
counting from zero; default is zero.

kp Beginning character position of the key (0 to 9).
ki Key length, in characters (1 to 255); default is
zero.
ki O (reserved).
kf Key type:
0 Symbolic

1 Signed binary
2 Unsigned binary
ks Substructure for each primary key list in the
index:
U Unique (default)
| Indexed sequential
F First-in first-out
kg For a repeating group, number of characters in
the group where the key resides. For the

primary key definition, the size in PRUs of an
index file block.

ke For a repeating group, number of occurrences;
zero if the group is defined in an OCCURS ...
DEPENDING ON clause.

RMKDEF fit,kw,kp,k! ki kf ks,kg,ke,nl ie,ch
fit Address of the FIT for the data file.

kw Word of the record where the key starts, count-
ing from zero; default is zero.

kp Beginning character position of the key:
0 to 9 for symbolic key
0 for signed binary key

ki Key length, in characters:
1 to 255 for symbolic key
10 for signed binary key

ki 0 (reserved).
kf Key type:
0 Symbolic

1 Signed binary
2 Uncollated symbolic
ks Substiuciuie for each pri
index:
U Unique (default)
| Indexed sequential

F First-in first-out

kg For a repeating group, number of characters in
the group where the key resides.

ke For a repeating group, number of occurrences;
zero if the group is defined in an OCCURS ...
DEPENDING ON clause.

nl Null suppression:
0 Null values are recorded {defauit)
N Null values are not recorded

A null value is all spaces (symbolic key) or all
zeros (signed binary key).

ie Include/exclude sparse controi character:

E Exclude alternate key value if the
record contains a sparse control
character (default)

| Include alternate key value if the
record contains a sparse control
character

ch Characters that qualify as sparse contro! charac-
ters; up to 36 letters and digits can be specified
as a character string.

Figure A-1, RMKDEF Manro Format, Initial MIP

6-2

Figure 6-2. RMKDEF Marcrn Farmat, Fxtended MIP

60499300 A

A,

- -

A ! A ‘I‘«; - ‘ ,M

(
(
(
¢
(

LY Y Y N N

sparse control character. The ch parameter specifies the
sparse control characters applicable to the alternate key
being defined.

The sparse control character field is identified by an
RMKDEF macro that must appear before the macro defining
the alternate key and its sparse control characters. This
macro is specified in the following format:

RMKDEF fit,kw,kp,0

The kw and kp parameters specify the position of the sparse
control character. The zero kil parameter indicates that the
field is a sparse control character field.

APPLICABLE FIT FIELDS

Several FIT fields are applicable to multiple-index file
processing. These fields and their respective uses are as
follows:

FrP File position; when the index file is being
accessed, 10, indicates the end of primary
keys associated with a given alternate key
value. For extended MIP, 1008 indicates the
end of the alternate key list.

FPB File position bit; when the index file is being
accessed, 1 indicates the end of an index
associated with a given alternate key position
(initial MIP only).

KL Key length; number of characters in a primary
or alternate key.

KNE Key not equal; 1 indicates the key in process is
not the same key specified by the KA field.
For extended MIP, KNE is set only after an
operation for which a GE relation was
specified.

KR Key value repeat count; when the index file is
being accessed, KR indicates the number of
occurrences in the record of the key value at
location KA (initial MIP only).

MRL Maximum record length; when the primary key
lists are being retrieved, MRL indicates the
length of the working storage area.

NDX Index flag; 1 indicates an index only operation;
0 indicates a data record operation.

PKA Primary key address; when accessing records
by alternate key, the primary key for a record
is returned to the specified address (extended
MIP only).

RC Record count; number of records containing
the value of the key at location KA.

REL Key relation; relation of the key value at
location KA to the key at which the file is
positioned; can be EQ, GT, or GE; for initial
MIP, LT and LE can also be used.

RL Current record length (initial MIP only).
RKP Relative key position; character position of a

primary or alternate key within the word
specified by the RKW field.

60499300 A

RKW Relative key word; word in which a primary or
alternate key begins.

XBS Index file block size; number of characters in
an index file block (extended MIP only).

XN Index file name; logical file name of the index
file.

ALTERNATE KEY PROCESSING

Defining alternate keys for a file allows the user to access
records by fields other than the primary key. Two files are
involved with alternate key processing. The data file
contains records that have unique primary keys. The index
file contains alternate key values and their associated
primary keys. Both files must be made available to the
program. Reading by alternate key can be random or
sequential.

Al TED WVEV Arrec
MLl E“NATE NE1 ﬂ\-\-ﬁ;g

To access a data record by an alternate key, the alternate
key position must first be established in the FIT. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields must be set for the desired alternate
key. These three fields are set for the primary key by open
processing; thereafter, the user is responsible for setting
them when changing access from primary to alternate key or
from one alternate key to another. The index flag (NDX)
field in the FIT must be set to zero to access a data record.

The alternate key defined by the RMKDEF macro refers to a
position within a record. The GET macro is used to retrieve
a record with a specific value in the alternate key position.
When the GET macro is executed, the RKW, RKP, and KL
fieids in the FIT define the aiternate key position in the
record. The ka, kp, and mkl macro parameters establish the
alternate key location that contains the value for the record
to be retrieved. The first primary key associated with the
alternate key value determines the record returned to the
working storage area. The format of the GET macro is:

GET fit,wsa,0,ex,ka,kp,mkl

When the GET macro is executed, a record is returned to the
location specified by the wsa parameter, the index file is

positioned; and the following FIT fields are set:

KR Key value repeat count; number of occur-
rences of the key value in the record (initial
MIP only).

PKA Primary key address; address of location that
contains the primary key of the record
retrieved (extended MIP only).

RC Record count; number of records that contain
the alternate key value.

RL Record length; number of characters in the
record returned to the working storage area.

The setting of the key relation (REL) field in the FIT
determines which record is retrieved as follows:

If the field is set to EQ, the index file is positioned at
the alternate key value equal to the value at loca-
tion KA. The record with the first primary key
associated with the alternate key value is returned. If

6-3

an equal value is not found, the index file is positioned
at the next greater value, the error status (ES) field is
set to 5068, and any specified error exit is takes
If the field is set to GT, the index file is positioned at
the first alternate key value greater than the value at
location KA, The record with the first primary key
associated with the alternate key value is returned.

If the field is set to GE, the index file is positioned at
the first alternate key value greater than or equal to
the value at location KA. The record with the first
primary key associated with the alternate key value is
returned.

Once a GET macro has been executed to establish an index
file position, the record for the next primary key in the
index can be accessed by the GETN macro. When the index
file is positioned past the last primary key in the index, no
record is returned to the working storage area, the file
position (FP) field is set to EOI, and any specified end-of-
data exit is taken. An informative error message is written
on the error file ZZZZZEG.

When execution of the GETN macro encounters a new
alternate key value, that value is moved to program location
KA. Retrieval of the record for the last primary key
associated with an alternate key value causes the file
position (FP) field in the FIT to be set to 10, to indicate the
end of a keylist (EOK). The format of the GETN macro is:

GETN fit,wsa,ex,ka

Execution of the GETN macro returns a record to the
working storage area. For extended MIP, the primary key
for the record is moved to the program location indicated by
the primary key address (PKA) field in the FIT.

FILE UPDATING

Updating a multiple-index file is basically the same as
updating any other AAM file. The only difference is that
the logical file name of the alternate key index file must be
specified in the FILE control statement by the XN param-
eter. The index file is automatically updated when a data
file update affects the index file.

The PUT and REPLACE macros are used to write and
rewrite records. For initial MIP and for extended MIP when
the primary key is embedded, it is not necessary to set FIT
fields for the primary key; that is, the RKW, RKP, KL, KA,
and KP fields do not have to be set. The KA and KP fields
must be set for nonembedded keys. The position of the
primary key in the record is constant for the file and the
address in the working storage area (WSA) field is the
address of the record to be written or rewritten.

The DELETE macro is used to delete a record from the file.
The RKW, RKP, and KL fields in the FIT do not have to be
set; however, the key address (KA) and key position (KP)
fields must be set for the primary key because the WSA field
is not required for the DELETE macro.

The index file position and the RKW, RKP, and KL fields are
not changed by execution of the PUT, REPLACE, or
DELETE macro. A series of GETN macro requests can be
interrupted by update requests without losing alternate key
sequence.

READ-ONLY PROCESSING

Read-only proeessing is applicable to initial MIP only.
Existing multiple-index files can be read, but not updated, in
a smaiier fieid iengih by not loading tne routines used for
writing multiple-index files. Both random and sequential
processing are possible with the read-only capability.

When the read-only mode is selected, the file must be
opened for input. If another AAM file is being processed for
input/output in the same job step, the read-only mode must
not be selected; if it is selected, an error occurs. The file to
be read must not be an empty file. Only the following
macros can be issued for the file: OPENM, GET, GETN,
SEEK, SKIiP, SKIPFL, REWINDM, and CLOSEM. All AAM
file updating operations are trapped and trivial error 513
(REQUIRED ROUTINES NOT LOADED -~ RM$MEXB/-
RMS$MFSQ) is issued.

The read-only capability requires the following LDSET
control statement (or LDREQ macro from a COMPASS
program executing through a terminal):

LDSET(OMIT=RMSMEXBS$/$RMS$MF SQ)

If static loading is being used, the following additional
LDSET control statement is required:

LDSET(SUBST=$RM$$MIPS-SRM$$SMIP2$)

Refer to appendix E for a discussion of static and dynamic
loading. Under the NOS operating system, libraries must
have been generated with NX=1 before SUBST is used.

INDEX FILE POSITIONING

The alternate key index file is positioned when a GET macro
accesses a record by alternate key. The index file can also
be positioned without returning a record. The START, SKIP,
and REWINDM macros change the position of the index file.

START Macro

The START macro positions the index file to the first
primary key for a given alternate key value. The value is at
the location specified by the key address (KA) field in the
FIT. The format of the START macro is:

START fit,ex,ka,kp,mkl

The key relation (REL) field in the FIT determines the
positioning -of the index file in relation to the value at
location KA. The REL field has three possible values:

EQ The index file is positioned at the alternate
key value equal to the value at location KA.
The default for the RCL field is EQ. If an
equal key value is not in the index, trivial
error 506 results.

GT The index file is positioned at the first
alternate key value greater than the value at
location KA.

GE The index file is positioned at the first
alternate key value greater than or equal to
the value at location KA. If an equal key
value is not in the index, the key not equal
(KNE) field in the FIT is set to 1.

v

-

(
(

’

~ ~

e T 0)

After the START macro is executed, the record count (RC)
field in the FIT is set to the number of primary keys for the
alternate key at which the index file is positioned.

Other Positioning Macros

In addition to the START and GET macros, the index file
position is changed by the SKIP and REWINDM macros.
When a change is made from one alternate key index to
another, the index position is established as follows:

Initial MIP

Index position is reset automatically to the begin-
ning of the index.

Extended MIP

Index position must be established by a REWINDM,
GET, or START macro.

The SKIP macro is used to skip forward a number of primary
keys from the current position. The format of the SKIP
macro is:

SKIP fit,n

The index file is positioned at the first primary key in the
alternate key index by the REWINDM macro. The format of
the REWINDM macro is:

REWINDM fit

for initial MIP, execution of the REWINDM macro sets the
record count (RC) field in the FIT to the number of primary
keys belonging to the first alternate key value.

INDEX FiLE PROCESSING

The alternate key index file can be accessed to retrieve
information related to the alternate keys. Primary key lists
or counts of primary keys for either a single alternate key
value or a range of values can be retrieved. Obtaining this

information from the index file has no effect on the data
file.

In order to access the index file, the index flag (NDX) field
in the data file FIT must be set to YES. If the OPENM
macro is executed with NDX set to YES, only the index fiie
is opened for processing. The index file must be an existing
file at open time. If the NDX field is set to YES when the
file is opened, it cannot be reset to NO until after the file
has been closed.

MACRO PROCESSING

The index file is accessed through execution of various
macros. Only those macros described in the following
paragraphs can be used with the index file.

The OPENM macro and the CLOSEM macro open and close
the index file. Execution of these macros does not affect
the data file.

The REWINDM macro positions the index file at the
beginning of the alternate key index from which information
is to be retrieved. The alternate key is determined by the
relative key word (RKW), relative key position (RKP), and
key length (KL) fields in the data file FIT. The file is
positioned at the first value for the designated alternate
key.

60499300 A

The index tile can be positioned at a specific value of an
alternate key through execution of the START macro. The
RKW, RKP, and KL fields in the FIT specify the alternate
key for file positioning. The alternate key value at the
location indicated by the key address (KA) field in the FIT
and the condition designated by the key relation (REL) field
determine the positioning at a specific value within the
alternate key index. When the relational condition is EQ,
the file is positioned at the alternate key value equal to the
value at location KA; if an equal value cannot be found in
the index, the file is positioned at the next higher value.
For the GT relational condition, the file is positioned at the
next higher value than the value at location KA. The GE
relational condition causes the file to be positioned at a
value equal to or greater than the value at location KA.

The GET macro is used to retrieve the primary keys for an
alternate key value. The alternate key to be accessed is
determined by the RKW, RKP, and KL fields in the FIT. The
alternate key value at location KA and the condition
specified in the REL field determine the positioning of the
index file. Execution of the GET macro positions the index
file at the desired alternate key value and returns as many
of its associated primary key values as the working storage
area can contain.

The GETN macro can be executed after the GET macro to
retrieve additional primary key values associated with the
alternate key value. It can also be executed after a
REWINDM, START, or SKIPFL macro to begin returning
primary key values from the position established by the
previous macro. Primary keys are returned to the working
storage area until one of the following conditions occurs:

The working storage area is full.

The end of the list of alternate kecy values is reached
(end-of-information).

The index file is positioned at the beginning of a
primary key list for an alternate key that is greater
than the key at location KA when the value of the REL
field in the FIT is GT or GE, or the index file is
positioned at the beginning of a primary key list for an
alternate key that is equal to the key at location KA
when the value of the REL field is GE or EQ.

The key address (KA) field in the FIT must be set for the
GETN macro when the index file is being accessed. If
primary key list retrieval is to be terminated according to a
key value, the KA field must point to the location containing
the key value. If the KA field is set to O, primary key list
retrieval terminates only if the working storage area is
filled or if end-of-information is reached. This is the same
as if the key value at location KA is greater than any
possible value for the alternate key.

The SKIPFL macro is used to count the number of primary
key values for one or more alternate key values; the primary
key values are not returned to the working storage area.
The counting can be terminated by a key value in the same
manner as the GETN macro. Counting can also be specified
for a number of alternate key values or to end-of-
information.

6-5

FIT FIELDS FOR INDEX FILE
PROCESSING

Index file processing involves user setting of several fields in
the FIT. In addition, AAM sets certain FIT fields during
macro execution. The following FIT fields can be set by the
user:

KA Key address; location of the user-supplied key
value for START and GET macros and for
GETN and SKIPFL. macros that use a key.

KL Key length; number of characters in the
alternate key being accessed.

KP Key position; position of user-supplied key
value at location KA.

MKL Major key length; number of characters, which
is less than the full length of the alternate
key, in the user-supplied key value; can be
used with indexed sequential symbolic
keys only.

MRL Maximum record length; length of the working
storage area in characters; should be a
multiple of 10 characters because each
primary key value returned begins on a new
word boundary.

NDX Index flag; must be set to 1 for index file
access.

REL Key relation; indicates the relation to be
satisfied between the user-supplied key value
and the index file key value; possible relations
are £Q, GE, and GT; for initiai MIFP, LE and LT
can also be used.

RKP Relative key position; beginning character

position of the alternate key within the word
specified by the RKW field.

RKW Relative key word; word in which the alternate
key being accessed begins.

WSsA Working storage area; location into which
primary key lists are returned.

The following FIT fields are set by AAM during execution of
the START, GET, GETN, and SKIPFL macros:

FP File position; set to indicate the position of
the index file when control returns to the user:

0 Middle of primary key list
108 End of primary key list
10N Crmd ~f infonmmatioe

.u.u.u8 CRG-Gr-invormacion

KNE Key not equal; for an operation involving a
key, indicates whether or not the current
alternate key value matches the user-supplied
key value:

0 Equal key values

1 Higher user-supplied key value or
end-of-information

MKL Major key length; reset to O after a user-
supplied value has been noted.

6-6

PTL Primary key total; number of primary key
values transferred to the working storage area
during execution of the GET or GETN macro.

RC Record count; for a START or GET macro, the
number of primary keys associated with the
desired alternate key value; if the KNE field is
set to 1, the number of primary keys associ-
ated with the first alternate key value greater
than the given one.

RL Record length; set by the GET, START,
SKIPFL, and GETN macros as follows:
GET Set to the value in the PTL
field.
START Set to zero
SKIPFL Set to the number of

primary key values that
have been skipped.

GETN Increased by the number of
primary key values trans-
ferred to the working
storage area; cleared on
entry only if the file posi-
tion from the last operation
was end-of-keylist (EOK).

COUNT RETRIEVAL

The primary key values associated with a given alternate
key value are counted by executing the START macro. The
RKP, RKW, and KL fields in the FIT must be set to identify
the alternate key. Because a specific alternate key value is
involved, the major key length (MKL) field is sct to O for full
length key comparison and the key relation (REL) field is set
to equal (EQ). The format of the START macro is as
follows:
START fit,ex,ka,kp
The fit parameter specifies the address of the data file FIT
with which the index file is associated. The file is
positioned at the alternate key value that is equal to the
value at the location specified by the ka parameter; the
record count (RC) field in the FIT contains the number of
primary keys associated with the alternate key value. The
key not equal (KNE) field is set to zero to indicate that the
desired value has been found.

If an equal alternate key value cannot be found, the file is
positioned at the next higher key value and the RC field
contains the number of primary keys associated with that
alternate key value. The KNE field is set to 1 to indicate
that the desired key value does not exist in the file.

The file position (FP) field in the FIT is set during execution
of the START macro. It is set to 10, if the index file is
positioned at an alternate key value. I?, however, the user-
supplied key value is greater than all existing values for the
alternate key, the FP field is set to lDUB.

RANGE COUNT RETRIEVAL

The number of primary keys associated with a range of
consecutive alternate key values can be determined by
executing a REWINDM or START macro and then a SKIPFL
macro. The beginning and end of the range can be specified
in various ways.

R

- - -

]
E
g
B

é
|
|
§1

v

'

The beginning of the range indicates the first alternate key
value for which primary keys are to be counted. The key
value is specified as one of the following:

The first alternate key value in the file; execution of
the REWINDM macro positions the index file to this
point.

The first alternate key value that is not less than a
specified value; the REL field in the FIT is set to GE
and the START macro is executed to reach this position
in the index file.

The first alternate key value that is greater than a
specified value; the REL field in the FIT is set to GT
and the START macro is executed to reach this position
in the index file.

If a major key is specified for the START macro, only the
number of characters in the major key are used for
comparison. If the REL field is set to EQ or GE, the file is
positioned at the first alternate key value with leading
characters that match the major key. If no such key exists,
the file is positioned at the next logical alternate key value.
If the REL field is set to GT, the file is positioned at the
first alternate key value with leading characters greater
than the major key value.

The end of the range, which is the last alternate key value
to be included in the range count, is specified by setting
various FIT fields before executing the SKIPFL macro. The
last key value is determined as follows:

If the key address (KA) field is set to 0, the last
alternate key value in the index is the end of the range.

If the KA field points to a location that contains an
alternate key value and the key relation (REL) field is
set to GT, all key values not exceeding the value at
location KA are included in the count.

If the KA field points to a location that contains an
alternate key value and the REL field is set to GE, all
key values less than the value at location KA are
included in the count.

After the SKIPFL macro is executed, the RL field in the FIT
contains the number of primary key values for all the
alternate key values within the specified range. Unless the
file is positioned at end-of-information, it is positioned the
same as after execution of the START macro; however, the
record count (RC) field in the FIT is undefined.

PRIMARY KEY LIST RETRIEVAL

The list of primary keys for a specific alternate key value
can be retrieved by executing the GET macro. The major
key length (MKL) field in the FIT should be set to O for a
full-length alternate key comparison and the key relation
(REL) field should be set to EQ for an equal comparison.
When the GET macro is executed, the key not equal (KNE)
field is set to O if the alternate key value is found in the
index file or to 1 if it is not found. The format of the GET
macro is:

GET fit,wsa,0,ex,ka,kp,mkl
Execution of the GET macro causes the primary key values
associated with the alternate key value to be transferred to

the working storage area. Transfer of primary key values
terminates when the last primary key value has been

60499300 A

transferred or when the working storage area has been
filled. The following FIT fields indicate the status of the
primary key list retrieval:

FP File position; set to 10, when all primary keys
have been transferred; otherwise, set to 0.

PTL Primary key total; number of primary keys
transferred to the working storage area.

RC Record count; total number of primary keys
associated with the alternate key value.

RL Record length; same as the PTL field for the
GET macro.

If the FP field is set to 10,, the entire primary key list has
been retrieved. In this case, the PTL, RC, and RL fields
contain the same value. The index file is positioned at the
beginning of the primary key list for the next alternate
key value.

The FP field set to 0 indicates that additional primary keys
are associated with the alternate key value. The RC field
contains a value greater than the PTL and RL fields, which
contain equal values. The remaining primary keys can be
retrieved by executing the GETN macro after making the
working storage area available for use again and after
setting the REL field to GT. Primary keys are transferred
until the end of the list is reached or the working storage
area is filled. Additional GETN macros can be executed to
complete transfer of the primary key list. The FP field in
the FIT indicates that the entire list has been transferred
when it is set to 10,; the index file is then positioned at the
first primary key for the next sequential alternate
key value.

The normal purpose of primary key list retrieval is to
determine the primary key values for a specific alternate
key value. If the major key length (MKL) field in the FIT is
set to a value other than 0, more than one alternate key
value could satisfy the condition of the REL field. The
GETN macro execution would then continue until the index
file is positioned at an alternate key value that does not
satisfy the condition specified by the REL field.

Whenever a GETN macro is executed, the RL field is
incremented by the number of primary keys transferred to
the working storage area; the PTL field indicates the
number of primary keys transferred during execution of the
macro most recently executed (GET or GETN). The final
value in the RL field (when the FP field contains 10,) should
equal the value in the RC field after execution of 8the GET
macro, which should also equal the total of the values in the
PTL field after execution of the GET macro and all
subsequent GETN macros.

RANGE LIST RETRIEVAL

The primary key lists for a range of consecutive alternate
key values can be retrieved through execution of a START
macro followed by execution of one or more GETN macros.
The beginning of the range of alternate key values is
established in the same manner as for the range count
retrieval; that is, the REWINDM macro can be used to
position the index file to the first alternate key value, or the
START macro can be used to position the file to a specific
alternate key value.

6-7

Once the beginning of the range has been established, the
GETN macro is executed to transfer pnmary keys to the
working storage area. To determine when the primary key
lists for the range of alternate key valus have all been
transferred, the file position (FP) field in the FIT must be
checked for a value of 10, (end-of-keylists) or 100, (end-of-

information) after execution of the GETN macro.

The end of the range of alternate key values is determined
by the setting of certain fields in the FIT:

If the key address (KA) field is set to 0, the end of the
range is end-of-information.

If the KA and key position (KP) fields are set to
indicate an alternate key value and the key relation

6-8

(REL) field is set to GT, the end of the range is the
alternate key value that is not greater than the one
indicated by the KA and KP fields.

If the KA and KP fields are set to indicate an alternate
key value and the REL field is set to GE, the end of the
range is the last alternate key value that is less than
the one indicated by the KA and KP fields.

Whenever the GETN macro is executed, the FP field in the
FIT should be checked. If it is equal to 10 or 100,, all the
desired primary key lists have been retrleved. If Flg is equal
to 0, however, the working storage area should be made
available for retrieval of more primary keys and another
GETN macro should be issued.

60499300 A

- a4

o,

-~ . e a a

L]

UTILITIES 7

(Several utility routines are provided for use with AAM files. the SISTAT control statement after the control statement
) Utilities are available for: that causes program execution. The format of the SISTAT
control statement is shown in figure 7-1. An example of the

Printing statistics) statistical information output by the SISTAT utility is shown

in figure 7-2.

Estimating the optimal block and buffer sizes for
. indexed sequential files

ESTMATE UTILITY

The ESTMATE utility is an aid to the user in creating an
initial indexed sequential file. Suggested values for the size
of the buffer, data blocks, and index blocks are output by
this utility. Use of the suggested values adds to the
efficiency with which an initial indexed sequential file is

nraocessed
Pr

oCceseel.

Performing key analysis for direct access files

-~

Creating direct access files

Creating an index file for alternate key access to an
existing file

~

The utilities are called by operating system control
statements. File dumping and reloading functions are
handled by FORM and permanent file utilities.

A variety of file description parameters are input to the
utility by the user. The utility returns to the file OUTPUT
suggested index block size, data block size, and the
minimum and suggested buffer space requirements. The

(
(

>

f t of the ESTMATE trol stat t is sh i
INITIAL INDEXED SEQUENTIAL FILES oot o e control statement is shown in
Two utilities are provided for use with initial indexed
sequential files only. These utilities print statistics and SISTAT(ifn,sfn)
suggest block and buffer sizes.
Ifn Logical file name of an initial indexed sequential
' file.
SISTAT UTILITY sfn Logical file name of the statistical information
The SISTAT utility shows statistical information concerning file; default is OUTPUT.
an initial indexed sequential file since creation time. The
information is written to the file OUTPUT or to a user-
defined file. Current file statistics are obtained by placing Figure 7-1. SISTAT Control Statement Format
. STATISTIC OUTPUT
(FILE GENFILE
FILE FORMAT (IN WORDS)
. INDEX BLOCK SIZE = 63
4: DATA BLOCK SIZE 3 127
KEY TYPE = 1 ORF
KEY SIZE = 2
‘: TOTAL TRANSACTIONS
NUMBER OF ¢
INSERTS = 400
! DELETES = S
(REPLACES= 1
| STORAGE ALLOCATION
] NUMBER OF$
c INDEX LEVELS = 1
; INDEX BLOCKS = 1
EMPTY INDEX RLOCKS = 0
DATA RECORDS = 395
" DATA BLOCKS = 26
EMPTY DATA BLOCKS = 0
NUMBER OF UNUSED ENTRIES IN THE PRIMARY INDEY = 5
TOTAL MASS STORAGE USEN BY SIS FILES = 3456

Figure 7-2. SISTAT Utility Output

60499300 A 7-1

\

ESTMATE(NR=n,KS=n,MR=n,MI=n)

NR File size (approximate number of records).

KS Key length in characters; must be 10 for floating
point and 5 or 10 for integer.

MR Maximum record size in characters.

Mt Minimum record size in characters.

Figure 7-3. ESTMATE Control Statement Format

The ESTMATE utility expects directives as the next
unexecuted record on the file INPUT. The directive format
is shown in figure 7-4. Default values are used for any
omitted parameters. If fewer than four parameters are
given, the last parameter must be followed by a period.

A number of directive statements can be used for the same
file to provide alternative buffer and block lengths. When
only one directive statement is input to the ESTMATE
utility, the parameters can be included in the ESTMATE
control statement, thus making a separate directive state-
ment unnecessary. The parameters that would be added to
the control statement are as follows:

NL Number of index levels; 1 through 63.

BF Blocking factor (number of records per block).
PI Index block padding percentage; 0 through 99.
PD Data block padding percentage; 0 through 99.

Defauit values are used for any omitted parameters.

The deck structure shown in figure 7-5 generates the two
estimates shown in figure 7-6. - The ESTMATE control
statement indicates a file of 100,000 records that range in
size from 500 to 1000 characters; the key size is 20
characters. The first directive statement specifies one
index level, five records per block, and no index block
padding. The second directive statement specifies two index
levels, five records per block, and ten percent index block
padding.

*nl,bf,pi,pd

ni Number of index levels; 1 through 63.

bt Blocking factor (number of records per block).
pi Index block padding percentage; 0 through 99.
pd Data block padding percentage; 0 through 99.

Figure 7-4. ESTMATE Directive Format

job statement
ESTMATE(NR=100000,KS=20,MR=1000,M1=500)
7/8/9

*1,5.

*2,5,10.

6/7/8/9

—. — m s v S TNL b @k
rigure /-2, COoiiviAi L wtiily, Jddipie Solk guiuluunre

7-2

EXTENDED INDEXED SEQUENTIAL
FILES

Two utilities are provided for use with extended indexed
sequential files only. These utilities print statistics and
suggest block and buffer sizes.

FLSTAT UTILITY

The FLLSTAT utility shows statistical information concerning
an extended indexed sequential file since file creation time.
The information is written to the file OUTPUT or to a user-
defined file. The format of the FLSTAT control statement
is shown in figure 7-7.

The amount of information output by the FLSTAT utility
depends on whether or not an installation option is selected.
(Refer to the Installation Handbook for details.) Figure 7-8
shows the output generated for a data file and an index file
when the installation option is not selected. Figure 7-9
shows the output generated for the same two files when the
option is selected.

FLBLOK UTILITY

The FLBLOK utility is an aid to the user in creating an
extended indexed sequential file. Appropriate values are
suggested for the size of the buffer and the data and index
blocks. Use of the suggested values adds to the efficiency
with which an extended indexed sequential file can be
processed.

A variety of file description parameters are input to the
FLBLOK utility by the user. The utility returns suggested
block size and minimum and suggested buffer size to the file
OUTPUT. The format of the FLBLOK control statement is
shown in figure 7-10.

The FLBLOK utility expects directives as the next
unexecuted record on the file INPUT. The format of the
directive is shown in figure 7-11. Default values are used
for any omitted parameters. If fewer than four parameters
are specified, the last parameter must be followed by a
period.

Multiple directive statements can be used for the same file
to provide alternative buffer and block lengths. When only
one directive statement is given to the FLBLOK utility, the
parameters can be specified in the FLBLOK control state-
ment; a separate directive statement is then unnecessary.
The parameters that would be added to the FLBLOK control
statement are as follows:

NL Number of index levels; 1 through 15.

BF Blocking factor (number of records per block).
PI Index block padding percentage; 0 through 99.
PD Data block padding percentage; 0 through 99.

The deck structure shown in figure 7-12 generates the two
estimates shown in figure 7-13. The FLBLOK control
statement indicates a file of 100,000 records that range in
size from 500 to 1000 characters; the key size is 20
characters. The first directive specifies one index level,
five records per block, and no index bleck padding. The
second directive specifies two index levels, five records per

LVl mmd b mmmanmt indaw Rlanl, Anddina
DaGCK, aind BN PETTCNL INGCK S:80K PalCing.

60499300 A

-~

€

T

ESTMATE(NR=100000+KS=20sMR=1000M1=500)

THE PERCENTAGE OF PADDING IN THE DATA BLOCK wAS NOT SPECIFIED
THE- SIS DEFAULT VALUE OF 0 1S ASSUMED

THE PERCENTAGE OF PADDING IN THE INDEX BLOCK WAS NOT SPECIFIED

THE SIS DEFAULT VALUE OF 5 IS ASSyUMED
%145,
INDEXED SEQUENTIAL FILE ESTMATE
NUMBER OF RECORDS= 100000 KEY SIZE= 20 CHARACTERS
MINIMUM RECORD SIZE= 50 WORDS MAXIMUM RECORD SIZE= 100 wORDS
INDEXED SEQUENTIAL FILE ESTMATE
NUMBER OF RECORDS= 100000 KEY Size= 20 CHARACTERS
MINIMUM RECORD SIZE= 50 WORDS MAXIMUM RECORD SIZE= 100 wORDS
NUMBER INDEX DATA MINIMUM SUGGESTED
OF INDEX ACCESS BLOCK BLoOCK BUFFER BUFFER
LEVELS MQOE SIZE S$1z2E size S1Z2€
(WORDS) (WORDS) (WORDS) {WORDS)
1 RANDOM 63167 467 63831 64283
1 SEQUENTIAL 447 539 988

ESTMATE (NR=100000,KS2209MR=10009H1=500)

THE PERCENTAGE OF PADDING IN THE DATA BLOCK wAS NOT SPECIFIED

THE SIS DEFAULT VALUE OF 0 IS ASSUMED
*2.5.10.
INDEXED SEQUENTIAL FILE ESTMATE

NUMBER OF RECORDS= 100000 KEy SIZE= 20 CHARACTERS
MINIMUM RECORD SIZE= 50 WORDS MAXIMUM RECORD SIZE= 100 WORDS
NUMBER INDEX DATS HINIMUM SUGGESTED
OF INOEX ACCESS BLOCK BLOCK BUFFER BYFFER
LEVELS MOOE SIZE SIZE S1ZE SIZE
(WORDS} (WORDS) (WORDS) (WORDS}

2 RANDOM 511 47 1179 2146

2 SEQUENTIAL “a? 539 988

60499300 A

Figure 7-6. ESTMATE Utility Output

7-3

FLSTAT({ifn,sfn}

ifn Logical file name of an extended index sequential
fiie.
sfn Logical file name of the statistical information

file; default is OUTPUT.

Figure 7-7. FLSTAT Control Statement Format

DIRECT ACCESS FILES

Two utilities are provided for use with direct access files.
These utilities analyze the effectiveness of a hashing routine
and create a direct access file. Both utilities require the
Common Memory Manager (CMM) to be present.

KEY ANALYSIS UTILITY

The key analysis utility tests hashing routines for
effectiveness in producing uniform distribution of record
keys in a file. A uniform distribution optimizes processing
time. The key analysis utility can be called in either of two
ways:

The user can read the input file and call the key
analysis utility to process the file on a record-by-record
basis.

The key analysis utility can be used as an owncode exit
from the FORM utility to process the user file on a
record-by-record basis.

The same hashing routine can be used for up to five tests
varying the number of home blocks for each test. It is also
possible to test up to five h b with the same
number of home blocks. The umber o synonym records
produced by each hashing routine is counted and the
resulting information written to a file named KEYLIST. The
file KEYLIST must be rewound and copied to the file
OUTPUT for the results to be printed. Otuput can show
synonym records only, standard deviations only, or both.
The format of the output from the key analysis utility is
shown in figure 7-14.

The key analysis utility is called through a source program
or through the FORM utility. The utility expects a KYAN
directive as the next unexecuted record on the file INPUT.
The format of the KYAN directive is shown in figure 7-15.
The directive begins in column 1. All parameters must be
declared; no default values are provided.

If a continuation statement is to be used for the first KYAN
or subsequent statement, all 80 columns must be filled. A
slash (/) in column 80 indicates continuation to a subsequent
statement. A maximum of seven statements can be used.
Parentheses must enclose the entire parameter list; no
embedded blanks are allowed.

Possible error messages that are printed on the user's dayfile
are as follows:

NOT ENOUGH FIELD LENGTH. USE nnnnnn.

The run is terminated because the field length
cannot accornmodate the internal tables.

STATISTICS ForR FILE SIPF

ORGANIZATION===e=-= IS

CREATION DATE====== 08/23/77
DATE OF LAST CLOSE~ 08/23/77
TIME OF LAST CLOSE- 15,21,14,

FILE IS NOT MIPPED
COLLATION IS STANDARD

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE -~ COLLATED_ SYMBOLIC
LENGTH IN CHARACTERS ======-=§

MAXIMUM RECORD SIZE 160
MINIMUM RECORD SIZE 160

TOTAL TRANSACTIONS
NUMBER OF PUTS =—=====
NUMBER OF GETS =wwww-
NUMBER OF DELETES =~-~
NUMBER OF REPLACES =--
NUMBER OF GETNEXTS =-

O OO C

NUMBER OF BLOCKS=====--
NUMBER OF EMPTY BLOCKS=-
BLOCK SI7E IN PRUS=w==e
NUMBER OF DATA RECORDS-

- O b

FILE LENGTH IN PRUS 3
NUMBER OF INDEX LEVELS IN USE 0

STATISTICS FNAR FILE INDEXF

ORGANIZATION===em- - MIP

CREATION DATE====- - 08/23/77
DATE OF LAST CLOSE- 08/23/77
TIME OF LAST CLOSE= 15.44.48,

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE == COLLATED SYMBOLIC
LENGTH IN CHARACTERS ===e==e= §

ALTERNATE KEY INFORMATION
CHARACTERS IN LARGEST KEY=~ 20

PRIMARY KEY SUBSTRUCTURES
NUMBER OF UNIQUE =-- ¢4
NUMBER OF ~IS~- -2
NUMBER OF FIFO -- 1

NUMBER OF BLOCKS=====w=
NUMBER OF EMPTY BLOCKS-
BLOCK SIZE IN PRUS=we--
NUMBER OF DATA RECORDS-

FILE LENGTH IN PRUS 34
MAX NUMBER OF LEVEL 2 INDEX LFVELS &
MAX NUMBER OF LEVEL 3 INDEX LEVELS 4

~N oD

Figvl,, 7-8. FI. STATI lhhl’v annlar nufnnr

7-4

60499300 A

A

P Y S NP P P N

-~ -~ ,o—=.

" O~

STATISTICS FOR FILE SIPF

ORGANTZAT]ONe=w=ewe= 1S

CREATION DATE=-=w==- 09/13/77
DATE OF LAST CLOSE- 06/13/77
TIME OF LAST CLOSE- 13.58.44.

FILE IS MIPPED
COLLATION IS STANDARD

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE -- COLLATED SYMBOLIC

MAXIMUM RECORD SIZE 160
MINIMUM RECORD SIZE 160

TOTAL TRANSACTIONS
NUMBER OF PUTS ====== 30
NUMBER OF GETS ===---
NUMBER OF DELETES ===
NUMBER OF REPLACES =--
NUMBER OF GETNEXTS ==
NUMBER OF SEEKS =e==-
NUMBER OF GETNRS ===-
NUMBER OF CIO CALLS =~

Voooooo

NUMBER QOF BLOCKS ===w== 1]
NUMBER OF EMPTY BLOCKS-
BLOCK SIZE IN PRUS=====-
NUMBER OF DATA RECORDS=-

(SN)

FILE LENGTH IN PRUS 13
NUMBER OF INDEX LEVELS IN USE

LENGTH IN CHARACTERS ====e=e-

STATISTICS FOR FILE INDEXF

ORGANIZATION======= MIP

CREATION DATE====== 09/13/77
DATE OF LAST CLOSE~- 09/13/77
TIME OF LAST CLOSE~ 14.35.21.

PRIMARY KEY INFORMATION
KEY IS NOT EMBEODED
TYPE =~ COLLATED SYMBOLIC
LENGTH IN CHARACTERS ===w===e= 5

ALTERNATE KEY INFORMATION
CHARACTERS IN LARGEST KEY=~- 20

PRIMARY KEY SUBSTRUCTURES
NUMBER OF UNIQUE == 4
NUMBER OF =IS= == 2
NUMBER OF FIFO =-- 1

NUMBER OF CIO CALLS 23

NUMBER OF BLOCKS=======
NUMBER OF EMPTY BLOCKS-
BLOCK SIZE IN PRUS====-
NUMBER OF DATA RECORDS-

~N SO

FILE LENGTH IN PRUS 34
MAX NUMBER OF LEVEL 2 INDEX LEVELS
MAX NUMBER OF LEVEL 3 INDEX LEVELS

Figure 7-9. FLSTAT Utility Expanded Output

ILLEGAL PARAMETER IN INPUT CARD

FLBLOK(NR=n,KS=n,MR=n,MI=n)

NR File size (approximate number of records).

KS ‘K_ey length in characters; must be 10 for signed
binary.

MR Maximum record size in characters.

Mi Minimum record size in characters.

Figure 7-10. FLBILOK Control Statement Format

*ni,bf,pi,pd

nl

Number of index levels; 1 through 15.

The run is terminated because the KY AN directive

contained a bad parameter.

ENTRYi - SYNONYM LIMIT EXCEEDED

More than 4095 records have been hashed to the
same home block. Processing terminates on the
specific entry but continues on the other entries.

ENTRYi - BAD KEY ENCOUNTERED

A specific key hashes outside the home block area.

This key is ignored and processing continues.

MORE THAN 25 BAD KEYS ENCOUNTERED

The run is terminated.

nnnnnD WORDS OF CENTRAL MEMORY USED

job statement

FLBLOK(NR=100000,KS=20,MR=1000,MI=500)

bf Blocking factor {number of records per block). 7/8/9
. . *1,5.
pi Index block padding percentage; 0 through 99. 9510,
pd Data block padding percentage; 0 through 99. 6/7/8/9
Figure 7-11. FLBLOK Directive Format Figure 7-12. FLBLOK Utility, Sample Deck Structure
60499300 A 7-5

b BUPHSINIBIVENIISI ISV ISILIBIIVF SISV NSINIPIIS RSB IBIINFLIIII AN ¥

&

FLBLOK NR=100020,KS=20,MR=1000,MI=500.

THE PERCENTAGE OF PADDING IN THE DATA BLOCK WAS NOT SPECIFIED

L

8 S EBE AN ECEETENCEOER

*
L4
»

THE SIS DEFAULT VALUE OF 0 IS ASSUMED

HE PERCENTAGE OF PADDING IN THE INDEX BLOCK WAS NOT SPECIFIED

THE SIS DEFAULT VALUE OF 5 IS ASSUMED

*1s5.

INDEXED SEQUENTIAL FILE ESTMATE

NUMBER OF RECORDS= 100000 KEY SIZE= 20 CHARACTERS
MINIMUM RECCRD SIZE= S0 WORDS MAXIMUM RECORD SIZE= 100 WORJDS
NUMBER INDEX DATA HINIHUNM SUGSESTED
OF INDEX ACCESS B8LOCK 8LOoCK BUFFER BUFFER
LEVELS MODE SIZE SI1ZE SIZE SIZE
(HORDS) (HORDS) (HORDS) (HORDS)
1 RANDOM 4362 4862 9879 14755
1 SEQUENTIAL 4862 9879 1475

SRS GBBFETFUISLBIB IR IS ISR IFIFB PR SLPRSIBIRITINBBLJIVLILBBEIBII8980000 0080500

USSRV ISP I ISP NS IS IIIIII IV IS I IPI LTINS ISV SIS INIIRSSSABENIS I IR IINIGE

FLOLOK¢NR=1GOC00+KS=20,MR=180C,MI=500.

THE PERCENTAGE OF PADDING IN THE DATA BLOCK MAS NOT SPECIFIED

LK B IR SR B BE R BN SR BE BN BE BE BE B BE AL BE BX R BN K BX B NN J

THE SIS DEFAULT VALUE OF S5 IS ASSUMED
245510
INDEXED SEQUENTIAL FILE ESTMATE

NUMBER OF RECORDS= 100000 KEY SIZE= 23 CHARACTERS
MINIMUM RECORD SIZE= 50 WORDS MAXINUM RECORD SIZE= 105 WORDS
NUMBER INDEX DATA MINIMUM SUGGESTZD
OF INDEX ACCESS 8LocK BLOCK BUFFER BUFFZR
LEVELS NODE SIZE SIZE SIZE SIZE
{WORDS) (MORDS) (NORDS) (HORDS)
2 RANDOM 446 446 1048 1948
2 SEQUENTIAL h46 1048 1438

I XSS Ry TR SR RS R I LSS R RS Y R RIS I R R R 2 S 2 S 2 R R RS RSS2 X1 01

END OF INPUT FILE ENCOUNTERED

£

L

L d

LR B Y AR B AR BN 2R SR B B IR B BE B BE BK 2R BU IR AR 2R B IR |

LK X)

LB B AR BE BE BE IR B Y BE K BN BE B BE BE NEEE B BN B BE BN A I

Figure 7-13 FLBLOK |Itility Nuinut

60499300 A

|
|
¢
¢
|
¢

n A A a a Aa a A A -

i

- AW

»#

,

HOME BLOCK entryl . . . entryb
0 XXX ... XXX
1 XXX ... XXX
n XXX ... XXX
STANDARD DEVIATION
entryl . . . entryb
XX XX XX XX

Figure 7-14. Key Analysis Output

KWV A
TR

H1

2

[=4 Ny evrororosoren ¥ | [e —1. DW/ARI_}
L NTaXAXXKXK, Vi |_—|,|\|_—],RKP—|\,n w=i,

1
1
entry1,hmb1,0option1, ... Ho=entry5,hmb5,optionb)

AXXXXXX Logical file name of the file containing the

user hashing routines; if the default hashing
routine is used, LFN is set to zero.

i Maximum record length in characters.
i Key length in characters.

k Relative key position within relative key
word (RKW), counting from 0.

i Relative key word in which the key begins,
counting form O.

entryl ... 5 Entry point names of hashing routines to

be tested; SDAHASH must be specified to
test the system-supplied hashing routine.

hmb1 ... 5 Number of home blocks.

option1 ... 5 Output options:
S Synonyms only
D Standard deviations only

B Synonyms and standard deviations

For a COBOL program, the linkage is as follows:

ENTER SDAKEYH data-name.
ENTER SDAENDH.
The data name contains the record key and must be an

elementary item in the Working-Storage or Common-Storage
Section of the COBOL program.

For a FORTRAN Extended program, the linkage is as
follows:

CALL SDAKEYH (KA)

CALL SDAENDH

KA is the address of the record key.

An example of a deck structure using the key analysis utility
as an external subroutine is shown in figure 7-16. Hashing
routines to be tested are assumed to be in relocatable binary
format on a permanent file named MYHASH.

JOBX, ...
ATTACH{MYHASH)
COMPASS. FTN. COBOL.
LGO.
DISPOSE(KEYLIST,PR)
7/8/9
User program source deck
7/8/9
KYAN(LFN=MYHASH, . .)
6/7/8/9

Figure 7-15. KY AN Directive Format

The key analysis utility can be entered through a source
program written in COMPASS, COBOL, or FORTRAN
Extended. The field length requirement is the sum of the
space needed by the source program, the hashing routines to
be tested, AAM, SDAKY AN, and internal tables. The space
needed by AAM varies as a function of the input file
organization. The number of central memory words required
for internal tables is the largest home block value specified.

The key analysis utility has two entry points: SDAKEYH and
SDAENDH. The COMPASS user must open the input file and
read the records one by one. As each record is read, the
user program sets register Al to point to the location of the
key address and issues a return jump to SDAKEYH. A return
jump to SDAENDH must be used to terminate use of the
KY AN directive.

60499300 A

Figure 7-16. Key Analysis as External Subroutine

CREATE UTILITY

The CREATE utility is available only when Sort/Merge has
been installed. This utility can be used to create direct
access files through FORM or from a call through a user
program. A direct access file is produced more rapidly when
the CREATE utility is used than when such a file is produced
by reading input and calling AAM to write each record. The
CREATE utility should be used for files containing 1000 or
more records.

In general, the CREATE utility hashes the key from an input
record and prefixes the key to the record. Sort/Merge is
then used to sort the hashed keys. After the sort operation,
the prefixed keys are removed and the CREATE utility uses
AAM to produce the direct access file.

A job using the CREATE utility involves the following:

FILE control statement to describe input and output
files

Loader control statement to load the COBOL library for
Sort/Merge

CREATE directive on the file INPUT

The format of the CREATE directive is shown in
figure 7-17. The second and third parameters are omitted
when the default hashing routine is selected. Any operating
system separator, as well as embedded blanks, can be used
between parameters.

CREATE(Ifn hash,hfl)

1 P Aminal £iln s
i LGGilar Thie nany

specified in a FILE contro! sta
direct access file).

-
o

3

@

3

-
—

o

=

j

hash User hashing routine entry point.

hfl Name of the file containing the hashing routine
in relocatable binary form.

Figure 7-17. CREATE Directive Format

All input and direct access file characteristics (other than
defaults) must be specified with FILE control statements.
For both source program calls and use of the CREATE
utility through FORM, the COBOL library and AAM modules
must be loaded. If a user hashing routine is used, the routine
must also be loaded.

The FILE control statement used to define the direct access
file structure must specify the following parameters:

Ifn Logical file name

FO FO=DA file organization

HMB Number of home blocks

MNR Minimum number of characters in any record
MRL Maximum number of characters in any record
KL Number of 6-bit characters in the key

BFS Number of words in the buffer. Default buffer
size is 260 words; the buffer must be able to
hold at least one home block.

Additional file structure parameters can be included in the
FILE control statement.

When the CREATE utility is called by a source program, the
user must cause the input file to be read. After each record
is read, the user must place the key in the record and give
control to the utility at entry point SDACRTU. The key
address, the working storage address, and the total record
length must be passed to the CREATE utility. At the end of
file processing, the user calls CREATE at entry point
SDAENDC.

The source program must not reference the direct access
file being created. A FILE control statement must be used
to describe file structure. If key position is not left-
justified at location KA, the relative key position (RKP)
must be set in the FILE control statement. The two entry
points used in calling the CREATE utility from a source
program are SDACRTU and SDAENDC.

The appropriate data name, variable name, or list
parameters for key address (KA), working storage area
(WSA), and record length (RL) are provided in calls with
SDACRTU as follows:

CoBOL

ENTER SDACRTU USING data-name-1,
data-name-2, data-name-3.

FORTRAN Extended

CALL SDACRTU(variable-name-1,
variabie-name-Z,variabie-name-3)

7-8

COMPASS

pointer toc 3 comparsbls three-paramater list ie

stored in register Al; the call to SDACRTU uses a
return jump.

A
~

The RL field must be specified as an integer in a COMPASS
or FORTRAN Extended program. In a COBOL program, the
RL field must be specified by a COMP-1 item.

An example of a COBOL source code call to the CREATE
utility is shown in figure 7-18; the Identification, Environ-
ment, and Data Divisions are assumed. This procedure
illustrates that portion of a job in which the user reads each
record, enters SDACRTU for hashing, and enters SDAENDC
after all records are read to complete direct access file
creation.

PROCEDURE DIVISION.
START.
OPEN INPUT ifn.
PERFORM A n TIMES.
A READ Ifn INTO SDA-WSA AT END GO TO B.
MOVE xx TO RL.

ENTER SDACRTU USING data-name-1, data-name-2,
data-name-3.
B ENTER SDAENDC.
CLOSE ifn.
STOP RUN.

Figure 7-18. CREATE Call Through COBOL

MULTIPLE-INDEX FILES

Three utilities are provided for use with files processed by
the Multiple-Index Processor (MIP). The IXGEN utility
creates an index file for processing by initial MIP. The
MIPGEN and MIPDIS utilities are used with files processed
by extended MIP.

IXGEN UTILITY

The IXGEN utility is used to create an index file for
alternate key access to an existing initial indexed sequen-
tial, direct access, or actual key file. In addition, this
utility can be used to define additional alternate keys for a
file or to remove alternate keys from a file. The existing
data file must not be an empty file and must have all
primary and alternate keys within the records; an initial
indexed sequential file cannot have duplicate primary keys.
Key specifications can define overlapping fields.

An existing direct access file must use the system-supplied
hashing routine because there is no way to specify a user
hashing routine for IXGEN. An attempt to use a direct
access file with a user hashing routine produces AAM
error 171.

A job using the IXGEN utility involves the following:
A FILE control statement to identify the existing data

file, its organization, and the logical file name of the

oA £301
MHINTA §1iT

60499300 A

‘fﬁg

i i Wil

-

V0 T o S o W o W N

»

An RFL control statement to specify a field length of
65000, plus the size of the buffer to process the file (a
larger field length improves efficiency; adding 15000 is
suggested)

An IXGEN control statement to identify the existing
data file, the source of additional control information
(RMKDEF directives), and the file to receive the
listable output

A set of RMKDEF directives on the file INPUT or other
file of card images

When the index file is created, the first RMKDEF directive
must define the primary key for the existing data file. Each
alternate key must also be specified in an RMKDEF
directive.

Alternate key definitions can be added to or purged from an
existing index file only through the IXGEN utility. Each
alternate key to be added to or purged from the index file
must be specified in an RMKDEF directive. The primary
key must not be specified in an RMKDEF directive for an
update run.

The format of the IXGEN control statement is shown in
figure 7-19. The format of the RMKDEF directives
expected by the IXGEN utility is shown in figure 7-20. The
kg and kc parameters used together refer to a key that is
part of a repeating group, such as that which results from
the COBOL clause OCCURS n TIMES. In the RMKDEF
directive for the primary key, the kg parameter can be used
to specify the length in PRUs of a block in the index file.
The ke parameter has no meaning in this directive.

IXGEN (prifile,directs,outf)

prifile Logical file name of the existing initial indexed
sequential, direct access, or actual key file.

directs Name of the file containing the RMKDEF di-
rectives; optional; default is INPUT.

outf Name of the file containing listable output from
IXGEN; optional; default is OUTPUT.

Figure 7-19. IXGEN Control Statement Format

The structure of primary key lists is specified by the ks
parameter. For efficiency in processing, indexed sequential
structure is recommended. First-in first-out structure can
also be specified; however, the ordering of primary keys
generated by the IXGEN utility should not be assumed to be
the same order in which the data file records were created.

MIPGEN UTILITY

The MIPGEN utility is used to create an index file for
alternate key access to an existing extended indexed
sequential file. This utility can also be used to define
additional alternate keys for a file or to remove alternate
keys from a file. The existing data file must not be an
empty file. Key specifications can define overlapping fields.

A job using the MIPGEN utility involves the following:
A FILE control statement to identify the existing
extended indexed sequential file, to specify the logical

file name of the index file, and to specify the index file
block size

60499300 A

RMKDEF (prifile,rkw,rkp,ki,0,kf ks, kg,kc)

prifile Logical file name of the existing initial indexed
sequential, direct access, or actual key file;
required.

rkw Relative word in the record in which the alter-
nate key begins, counting the first word in the
record as 0; required.

rkp Relative character position within the relative
key word (rkw) in which the alternate key
begins, counting the first character position in
the word as O; required.

ki Number of characters in the key, 1 to 255;
required.

0 Required to mark position for the reserved field.

kf Key format; required:

0 Character string, similar to symbolic
key type (KT=S) for initial indexed
sequential files

1 Signed binary, similar to floating point
(KT=F) and integer (KT=l) key types
for initial indexed sequential files

2 Unsigned binary, described in COBOL
as PICTURE 9; no existing file pri-
mary key has this designation

3 Purge alternate key definition from
the index

ks Substructure for each primary key list in the
index; optional:

U Unique (default)

| Indexed sequential; recommended for
efficiency in processing

F First-in first out

kg Length in characters of the repeating group in
which the key resides when used with kc.

[, pmalome af i 1PN

KC Number of occuirences of the repeating group;
zero if the group is defined by an OCCU S.
DEPENDING ON clause.

Figure 7-20. RMKDEF Directive Format, IXGEN Utility

An RFL control statement to specify a field length of
65000, plus the size of the buffer to process the file (a
larger field length improves efficiency; adding 150008 is
suggested)

A MIPGEN control statement to identify the existing
data file, the source of additional control information
(RMKDEF directives), and a list file for output from the
utility

A set of RMKDEF directives on the file INPUT or other
file of card images

When the index file is created, each alternate key must be
defined by an RMKDEF directive.

7-9

Alternate key definitions can be added to or purged from an
existing index file only through the MIPGEN utility. Each
alternate key to be added to or purged from the index file

must be specified in an RMKDET directive.

The format of the MIPGEN control statement is shown in
figure 7-21. The format of the RMKDEF directives
expected by the MIPGEN utility is shown in figure 7-22.
The kg and kc parameters are used together and refer to a
key that is a repeating group, such as that which results
from the COBOL clause OCCURS n TIMES.

MIPGEN(prifile directs,file)

prifile Logical file name of the existing extended
indexed sequential file.

directs Name of the file containing the RMKDEF direc-
tives; optional; default is INPUT.

Hile Name of the file that contains the output listing
from MIPGEN; optional; default is OUTPUT.

Figure 7-21. MIPGEN Control Statement Format

The structure of primary key lists is specified by the ks
parameter. For efficiency in processing, indexed sequential
structure is recommended. First-in first-out structure can
also be specified; however, the ordering of primary keys
generated by the MIPGEN utility should not be assumed to
be the same order in which the data file records were
created.

The nl, ie, and ch parameters are used to define sparse keys.
An alternate key is defined as a sparse key when all values
of the key are not desired to be indexed. Sparse keys cause
short indexing operations that save disk space, computer
time for index file maintenance, and search time. A sparse
key is a result of either null suppression or sparse control
characters.

The nl parameter specifies null suppression for an alternate
key. If null suppression is specified, the alternate key index
does not include primary keys for records that have null
values for the alternate key. All spaces for a symbolic key
and all zeros for an integer key are null values.

The ie and ch parameters are used when indexing of
alternate key values is to be controlled by a sparse control
character. The one-character field containing the sparse
control character must be in the fixed-length portion of the
record. The ie parameter specifies whether to include or
exclude the alternate key values for records that contain a
sparse control character. The ch parameter specifies the
sparse control characters applicable to the alternate key
being defined; up to 36 letters and digits can be specified as
a character string.

The sparse control character field is identified by an
RMKDEF directive that must appear before the directive
defining the alternate key and its sparse control characters.
This directive is specified in the following format:

RMKDEF (prifile,rkw,rkp,0)

The rkw and rkp parameters identify the position of the
sparse contro! character. The zero key length parameter
indicates that the field is a sparse control character field.

MIPDIS UTILITY

The MIPDIS utility temporarily or permanently disassociates

imday fila frnam itn nanAnint
an index file from its associnted extended indexed segquential

file. If the primary and alternate key fields are not updated
during the disassociation, the index file can be reassociated
with the data file,

RMKDEF (prifile,rkw,rkp,kli,0,kf ks,kg,kc,nl,ie,ch)

prifile Logical file name of the existing extended index-
ed sequential file; required.

rkw Relative word in the record in which the alter-
nate key begins, counting from O; required.

rkp Relative beginning character position within the
relative key word (rkw), counting from 0;
required.

ki Number of characters in the key, 1 to 255;
required.

0 Required to mark position for the reserved field.

kf Key format, required:

0 or S Character string
1 or | Signed binary
2 or U Uncollated character string

3 or P Purge alternate key definition
from the index

KS Substructure for each primary key list in the
index; optional:
U Unique (default)

| Indexed sequential; recommended
for efficiency in processing

F First-in first-out

kg Length in characters of the repeating group in
which the key resides.

ke Number of occurrences of the repeating group;
zero if the group is defined by an OCCURS ...
DEPENDING ON clause.

nl Null suppression; a null value is all spaces
{symbolic key) or all zeros (integer key):
0 Null values are indexed (default)
N Null values are not indexed
ie Include/exclude sparse control character:

| Include alternate key value if the
record contains a sparse control

character
E Exclude alternate key value if the
record contains a sparse control
character
ch Characters that qualify as sparse control charac-

ters; up to 36 letters and digits can be specified
as a character string.

Figure 7-22. RMKDEF Directive Format, MIPGEN Utility

60499300 A

- s & a s aa

i,

3 S B N - R S O D O I O O AN SN 0 RS 0 M O M 45 i AN

¥

Whenever a data file that has an associated index file is
opened, a safety lock in the file statistics table requires the
index file to be present. The MIPDIS utility removes this
requirement.

Disassociation of an index file from the data file is useful
under various circumstances. One instance occurs when a
data file that has an associated index file is no longer being
accessed by alternate key. In this case, the index file is no
longer needed and can be disassociated from the data file.

Indexed sequential files are sometimes reorganized to
reclaim extraneous padding caused by block splitting and to
redistribute it evenly throughout the file. The reorgani-
zation is accomplished through either the FORM utility or a
user program. The index file can be disassociated from the
data file before the reorganization. After the reorgani-
zation, the index file is still valid for the data file and can
be associated with the data file again by the MIPDIS utility.
This eliminates the need to create a new index file through
the MIPGEN utility or during the creation of the
restructured data file.

60499300 A

While the data file is disassociated, any changes to the
primary or alternate key values are not reflected in the
index file. This can result in errors when updating or
accessing the file by alternate key.

The format of the MIPDIS control statement is shown in
figure 7-23. This control statement can be used to
disassociate or associate an index file with its data file.

MIPDIS(Ifn1,da,ifn2)
1fn1 Logical file name of the data file.

da Disassociate/associate index file:
D Disassociate from data file

A Associate with data file

1fn2 Logical file name of the index file; not required
for disassociation.

Figure 7-23. MIPDIS Control Statement Format

BN O S BT o R R R e

T S T WP Y WA N AP S0 1 S O 0 R - P N W U A PO SN WM PR O 0 15 T P O Wi DTN SO MR I B0 R S L R s 57 g 3

VW W Y U VYV VU V V VV s YV Y W W W W W

:

»

n

STANDARD CHARACTER SET

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

The set in use at a particular installation was specified when
the operating system was installed.

Depending on another installation option, the system

assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use).

60499300 A

e

Under NOS/BE, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of the job statement or
any 7/8/9 card. The specified mode remains in effect
through the end of the job unless it is reset by specification
of the alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of any 6/7/9 card, as
described above for a 7/8/9 card. In addition, 026 mode can
be specified by a card with 5/7/9 multipunched in column 1,
and 029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal or
printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable to
BCD terminals; ASCII graphic characters are applicable to
ASCII-CRT and ASCII-TTY terminals.

A-1

STANDARD CHARACTER SETS

coc ASCI|
Display Hollerith External PR Punch P
Code Graphic Punch BCD e apnee uncn Loade
(octal) Ph 1026) Code Subset (029) (octal)
oo’ : (coton) 1! 8-2 00 : (colon) 11 8-2 072
01 A 1241 61 A 121 101
02 B 12-2 62 B 12-2 102
03 (o 12-3 63 C 12-3 103
04 D 12-4 64 D 124 104
05 E 125 65 E 125 105
06 F 126 66 F 126 106
07 G 127 67 G 127 107
10 H 12-8 70 H 128 110
1 I 129 71 I 129 m
12 J 111 41 J 111 112
13 K 11-2 42 K 11-2 113
14 L 11-3 43 L 11-3 114
15 M 11-4 44 M 114 115
16 N 115 45 N 115 116
17 0 11-6 46 0 11-6 117
20 P 117 47 P 117 120
21 Q 118 50 Q 118 121
22 R 119 51 R 119 122
23 S 0-2 22 S 0-2 123
24 T 03 23 T 03 124
25 U 0-4 24 U 04 125
26 \Y 05 25 \Y 05 126
27 w 0-6 26 w 0-6 127
30 X 07 27 X 0-7 130
31 Y 08 30 Y 08 131
32 z 09 31 b 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 1 9 9 071
45 + 12 60 + 12-8-6 053
46 ; 11 40 ; 11 055
47 11-8-4 54 11-8-4 052
50 / 0-1 21 / 0-1 057
51 (084 34 (1285 050
52) 128-4 74) 1185 051
53 $ 11-8-3 53 $ 1183 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , {comma) 083 33 , (comma) 083 054
57 . {period) 128-3 73 . {period) 12-8-3 056
60 = 0-8-6 36 # 8-3 043
61 [87 17 { 1282 133
62 1 082 32 b 11-8-2 135
63 % Tt 86 16 9% 11 084 045
64 # 84 14 " {quote) 8-7 042
65 g 085 35 (underline) 085 ., 137
66 v 110 or 11-8-2111 52 - i 1287 or 1101 11 041
67 A 087 37 & 12 046
70 t 1185 55 ' (apostrophe) 85 047
71 } 11-8-6 56 ? 087 077
72 < 12:0 or 1282711 72 < 1284 or 120'17 074
73 > 11-8-7 57 > 086 076
74 < 85 15 @ 84 100
75 > 1285 75 AN 0-8-2 134
76 — 12-8-6 76 ~ {circumflex) 11-8-7 136
77 ; {semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than

two colons.

Ttin installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punchj.

yield a blank (55g).

"™ The alternate Hollerith (026) and ASCII (020) punches are accepted for input only.

the % graphic and related card codes do not exist and translations

60499300 A

- a a

E

4 8 el

- _~

NN N NN P P\ PN\ A TN A\ A

CDC CHARACTER SET
COLLATING SEQUENCE
Collating Collating
Sequence cDC Display External Sequence CDC Display | External ’
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
——— —
00 00 blank 55 20 32 40 H 10 70
01 o1 < 74 15 33 41 ! 1 71
02 02 % 63 1 167 34 42 v 66 52
03 03 [61 17 35 43 J 12 41
04 04 — 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 ! 70 55 39 47 N 18 45
08 10 } 7 56 40 50 0 17 46
09 11 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
1 13 — 76 76 43 53 R 22 51
12 14 . 57 73 4 54] 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47 57 U 25 24
16 20 $ 53 53 48 60 v 26 25
17 21 * 47 54 49 61 w 27 26
18 22 - 46 40 50 62 X 30 27
19 23 50 21 51 83 Y 31 30
20 24 , 56 33 52 64 z 32 31
21 25 { 51 34 53 65 : oot nonet
2 2 = 54 13 54 66 0 33 12
23 27 # 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
% 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 a4 11

TIn installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,

External BCD code 16.

60499300 A

A-3

A-4

ASC!l CHARACTER SET
COLLATING SEQUENCE

Collating ASCI‘I Display | ASCII Collating ASCI'I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal { Subset Decimal/Octal | Subset

00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ’ 70 27 39 47 G 07 47
08 10 { 51 28 40 50 H 10 48
09 n) 52 29 41 51 I 1 49
10 12 * 47 2A 42 52 J 12 4A
1 13 + 45 2B 43 53 K 13 4B
12 14 56 2C 44 54 L 14 4c
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 0 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36 54 66 Vv 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 : 00+ 3A 58 72 Z 32 5A
27 33 : 77 38 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 ~ 76 5E
31 37 ? 71 3F 63 77 65 BF

¥In installations using a 63-graphic set, the % graphic does not exist. The : graphic is display code 63.

60499300 A

E Y

a— A A A A S A A A MAA

- a a -

=

RS NGNS N 00 NSO 5 A AN o AN e 8 e

H
%
:

Fd R Al

v ':h <-;

™

ERROR PROCESSING AND DIAGNOSTICS B

AAM checks user requests to ensure proper processing. If
results are not satisfactory, an error condition exists and the
following occurs:

A three-digit octal error code is returned to the error
status (ES) field in the FIT.

For a fatal error, the fatal/nonfatal (FNF) field is set in
the FIT.

The error exit is taken if the user has set the error exit
(EX) field in the FIT.

The dayfile control (DFC) field and the error file control
(EFC) field in the FIT determine the disposition of error
messages and notes/statistics. Depending on the setting of
these two fields, error messages and statistics/notes are
written to the dayfile and/or the error file ZZZZZEG.

ERROR COMMUNICATION

Regarding errors, AAM and the user communicate through
the following FIT fields:

ECT Trivial error count
ERL Trivial error limit
ES Error status

EX Error exit

The ES field is a 9-bit field that is set to an octal value
after AAM has attempted error resolution and is ready to
return control to the user. When an attempt is made to
execute an input/output request after an error, AAM does
not clear the ES field. If the request is not legal, AAM
increments the ECT field and proceeds with execution. If a
subsequent error is detected, the ES field reflects the most
recent error. The user is responsible for clearing the
ES field when an error exit (EX) is not supplied and the ES
field is checked after every macro call.

FIT fields relevant to error processing and their meanings
are as follows:

DFC Dayfile control; set by the user to control the
listing of error messages on the dayfile.

DFC=0 Only fatal error messages to the
dayfile (default).

DFC=1 Error messages to the dayfile.
DFC=2 Statistics/notes to the dayfile.

DFC=3 Error messages and statistics/-
notes to the dayfile.

60499300 A

EFC Error file control; set by the user to control
the listing of error messages on the error file.

EFC=0 No error file entries (default).
EFC=1 Error messages to the error file.
EFC=2 Statistics/notes to the error file.

EFC=3 Error messages and statistics/-
notes to the error file.

ERL Trivial error limit; if not specified, the value
is zero, no error account is accumulated, and
an indefinite number of trivial errors is
permitted; if a value is specified, the job is
terminated when the value of the ECT field
reaches the value specified for the ERL field.

EX Error exit; an 18-bit field that is interpreted
as follows:

EX=0 No user error routine; contro! is
returned as a normal exit; the ES
field is set to an error code. If a
fatal error is encountered, the
message is output to the dayfile.

EX#0 When a fatal or trivial error
occurs, control is transferred to
EX+1; a jump to the user in-line
return address is stored in the
EX field and the ES field is set
to an error code.

FNF Fatal/nonfatal flag; set to 1 for fatal errors.

ERROR FILE PROCESSING

When the error file control (EFC) field is set ta a nonzere
value, error messages and/or statistics/notes are written to
the error file ZZZZZEG. The error file is always flushed at
an abnormal termination. At the completion of a job step,
the error file is flushed if all files are closed. The CRMEP
control statement can be used to process the error file and
control the listing of information from the error file on the
output file. The format of the CRMEP control statement is
shown in figure B-1.

The parameters, options, and defaults for the CRMEP
control statement are listed in table B-1. The first default
listed in the table is set if neither the parameter nor the
option is specified. The second default listed is set if the
parameter is specified without an option. More than one
option can be specified with each parameter; more than one
parameter can be specified in one CRMEP control
statement.

CRMEP(parameter=optionq/option,/ ... /option,, ...}

parameter Mnemonic specifying type of error file proc-
essing and listing.

option Selected setting of the specified parameter.

Figure B-1. CRMEP Control Statement Format

B-1

The capability to dump the contents of the FIT to the error
file for subscquent processing is provided by the FITDMP
macro. When the FITDMP macro is executed, the FIT is
The error file control (EFC) field in the FIT must be set to 2
or 3 to ensure that notes are written to the error file. The
CRMEP control statement can then be used to display the
FIT on the output file. The format of the FITDMP macro is
shown in figure B-2.

The id parameter is an optional parameter that is used to
display an identifier for the FIT dump. The FIT display
identifier at the location specified by the id parameter
consists of 10 characters of displayable information.

ERROR CONDITION PROCESSING

When an error condition is encountered, the error status (ES)
field is set to the appropriate error number. For a trivial

FITDMP fit,id
fit Address of the FIT to be dumped.
id Address of the FIT display identifier.

Figure B-2. FITDMP Macro Format

error, the trivial error limit (ERL) field set to zero allows
unlimited trivial errors. If the ERL field is greeter than

zero, the trivial error count (ECT) field is incremented and
compared with the ERL fieid as foliows:

If the ECT field is less than the ERL field, control is
passed to the error exit if specified or to the user's
in-line code. If control passes to the in-line code, the
user is responsible for checking the error status.

If the ECT field is equal to the ERL field, the ES field
is set to 356 (trivial error limit reached) and the
fatal/nonfatal (FNF) field is set. Control is returned to
the error exit if specified or to the user's in-line code.

When a file is accessed sequentially and end-of-information
is encountered, the file position (FP) field is set to indicate
EOI and an informative message is issued. If the end-of-
data exit (DX) field has been set, the exit is taken. If
another access beyond end-of-information is attempted
without repositioning the file, a fatal error status is given
for an indexed sequential file and a trivial error status is
given for direct access and actual key files. If the error exit
(EX) field is set, that exit is taken. If the FNF field is set
and any AAM function is attempted on the file, a 115 error
is generated and the job is aborted.

TABLE B-1. CRMEP CONTROL STATEMENT PARAMETERS

Defaults

Parameter | Option
First Default | Second Defauit

Initial Value

LO N or * Select notes
-N/ * Omit notes
F or * * Select fatals
-F/ Omit fatals
Dor * * Select data manager messages
-D/ Omit data manager messages
Tor * Select trivial errors
-T/ * Omit trivial errors
SF lfnl/ all all none Select messages associated with the specified
lfnzl Ifns.
Ifn
n
OF lfnl/ none none none Omit messages associated with the specified ifns.
Ifn,/ ‘
lfnn
SN mno, / all hardware and none Select only specified message numbers (octal).
mno,/ parity errors
2
mno,
ON mno, / none 142 and 143 none Omit only specified message numbers (octal).
mnoz/ only
mno
n
L ifn OUTPUT LIST Specifies the post-processor output file.
RU * Return/unload of error file; performed at end of

processing. If RU is not specified, file position of
error file remains at £01 at end of processing.

60499300 A

LN

P N N N N o o - N s

CLASSES OF ERRORS

Syntax errors are diagnosed by AAM; the messages are self-
explanatory. System errors are detected by the operating
system. Execution errors, occurring during execution of
input and output requests, are subdivided into call errors and
invalid input/output requests.

CALL ERRORS

Call errors are undetectable parameter errors. For
example:

GET X1

If register X1 does not contain the valid FIT address, an
unpredictable AAM error, mode error, or D00 error can
result.

INVALID INPUT/OUTPUT REQUESTS

Requests for illegal input/output operations produce the
following general types of errors:

FIT Content of address given as the
FIT address does not pass a test
for plausibility. It does not
contain a legal logical file name
in bits 59 through 18, ar the FIT
has inconsistencies.

Input/output requests or specifi-
cations illegal on the type of file
specified by the file organization
(FO) field in the FIT.

File organization

Input/output requests illegal for
the record type specified by the
record type (RT) field in the FIT.

Record type

OPENM/CLOSEM Input/output requests illegal for
files opened or closed as speci-
fied by the open/close (OC) field
and/or the old/new file (ON)
field in the FIT.

Processing direction Input/output requests that would
violate the processing direction
limitations specified by the proc-
essing direction (PD) field in the
FIT.

Input/output requests illegal for
the file position given by the file
position (FP) field in the FIT.

File position

Input/output requests illegal in
the context of the last operation.

Last operation

Key Attempts to access or write
records whose keys are not
within the range of keys defined
for a file.

60499300 A

Data Errors in data specification, such
as inconsistency between the
amount of data requested and
the amount actually present,
illegal field present in the data,
required field is absent, or parity

error.

Device Input/output requests illegal on
the device upon which the file
resides.

All errars are either fatal or nonfatal. Some nonfatal errors
are trivial in that no user action is required. Fatal errors
usually indicate incorrect parameter specification and
incomplete or contradictory information provided by the
user as program errors. A fatal error message is always
printed on the dayfile.

Trivial errors are usually data errors, such as attempting to
insert a record already in the file or to replace or delete a
ranand ot daan mnb agiak Tf o Fnivial Anman cmcnaama is
1foLuLlu uiacv qua iCL EXist. 41 a Liliviai TiiuUL lnl:aSclgc 15
printed, the key and type of error are part of the error
message. The record associated with the trivial error is

dropped; however, the file position might be altered.

If the error exit (EX) field in the FIT has been set to the
address of an error routine, any error causes a transfer of
control to the address in EX+1 for a recovery routine after
the error has been resolved. Fatal errors inhibit any further
attempts to perform input/output on the file using AAM;
such attempts cause the job to terminate. If the EX field is
not set, an error sets the error status (ES) field and returns
control to the calling program. The ES field is cleared after
an error.

AAM is in the user's field length and is subject to
destruction by the user.

DIAGNOSTICS

Error messages that can be output by AAM are listed in
table B-2. The messages are in order by error code. The
table contains the following information:

Code Octal value corresponding to the
error condition.

Message Diagnostic output; varies depending
on the setting of the DFC and EFC
fields and the parameters specified in
the CRMEP control statement.

Significance Meaning of the message.

Action Suggestion for the user to recover
from the error condition.

Severity Type of error; can be any of the
following:
F Fatal
T Trivial

T/F Trivial under some con-
ditions, fatal under
other conditions

Table B-3 is a list of notes and informative messages that
can be output.

B-3

TABLE B-2. DIAGNOSTICS

Mesggsane
Message

Sianificance

Action

Severity

002

006

030

031

032

033

035

036

037

040

B-4

INVALID FO

FI1T/FILE ORGANIZATION
MISMATCH

FIRST BLOCK IS NOT A

FSTT

INVALID RT

RT=F/Z AND FL=0

RT=T AND HL OR TL=0

RT=D AND LL=0/RT=T
AND CL=0

RT=T/D, MRL EXCLUDES
CONTROL FIELD

RL INCONSISTENT WITH
RECORD DESCRIPTION

RT=D/T AND CL/LL > 6

REDUNDANT OPEN

File organization must be indexed
sequential (IS), direct access (DA),
or actual key (AK).

The file organization specified
does not match any opened files.

The first block in the file must be
the file statistics table (FSTT).
For an indexed sequential file,
the ORG field must be set for the
correct file organization.

Record type must be W, S, Z, F,
R, T, D, or U; it must conform to
other file specifications, such as
FO.

For fixed length F or zero byte
terminated Z type records, a
maximum record length must be
specified for the FL field in the
FIT.

For T type records, the header
length (HL) must be large enough
to hold the trailer count field de-
fined by the CP and CL fields.
The length of the trailer count
field must be given in the TL field
and must be at least one character
long.

For D type records, the LL field
in the FIT must provide the length
of the record field that specifies
record length.

Far T type records, the CL field
in the FIT must provide the length
of the field that specifies the
number of trailer items.

For T and D type records, the
record must contain a field
identifying record length.

For T type records, the fixed
header length (HL) must include a
field CL characters long, begin-
ning at CP, to identify trailer
item count.

For D and T type records, the
length of the count field must be
one to six character positions.

A file must be closed before open
processing, such as buffer alloca-
tion or FILE control statement
processing, takes place. A re-
dundant open call is ignored.

Correct the file organization
field.

Check to see that the correct
file is being processed or that
the FO field is specified cor-
rectly.

If a file is being created, check
that the pd parameter is speci-
fied in the OPENM macro or the
ON field is set to NEW.

Correct the record type field.

Specify the FL field.

Correct the header length or the
trailer length field.

Specify the length of the D type
record length field.

Specify the length of the trailer
count field of the T type record.

Check that for D type records
LP+LL is less than MRL. For T
type records, CP+CL must be
less than MRL. The position
count for LP and CP begins
with 0.

Check that the count field is in-
cluded in HL.. The current rec-
ord is ignored. Position CP is
counted from 0.

Correct the length of the count
field.

Correct the program to close
the file before open processing.

60499300 A

€
{

LY

~~,

»

TABLE B-2. DIAGNOSTICS (Cont'd)

Code

Message

Significance

Action

Severity

—

050

051

052

053

054

055

056

060

070

a7l

074

075

100

60499300 A

NUMBER OF FILES
PERMITTED TO BE OPEN
SIMULTANEOUSLY HAS
BEEN EXCEEDED

SETFIT DISALLOWED ON
OPEN FILE

FILE NOT CLOSED AFTER
LAST UPDATE/CONDI-
TION QUESTIONABLE

NO HOME RECORD

FILE ILLEGALLY
EXTENDED (EOI MOVED)

FILE NONEXISTENT,
CANNOT OPEN-OLD

EMPTY FILE OPENED
FOR READ-ONLY

REDUNDANT CLOSE

OUTPUT REQUEST,
PD=INPUT

INPUT REQUEST,
PD=0OUTPUT

MUST HAVE CMM FOR
MULTIPLE ACCESS

UBS MAY NOT BE USED
FOR MULTIPLE ACCESS

CANNOT SEQUENTIALLY
POSITION BEYOND FILE
BOUNDS

The installation defines the num-
ber of AAM files that can be open
at one time because buffers are
limited by central memory avail-
able. Default release value is 10
files of each organization.

Open processing would have al-
ready processed the FILE control
statement. The SETFIT macro
processes FILE control statements
without full open processing.

The possibility exists that the file
has internal errors. The most
likely cause is a system crash
that prevented closing of the file.

The OLD parameter has been
specified when opening an empty
direct access file.

An existing file has been opened
without extend permission and
information has been written be-
yond the old EOIL.

The logical file name specified
does not match any existing file.

When using the read-only proc-
essors, the file must be an exist-
ing non-empty file because it is
opened for a read-only purpose.

A second call to close the file
was issued. The operations re-
quested by the CF field are per-
formed before the error is issued.

A file opened with PD set to
INPUT cannot be written. The
write statement is ignored.

A file opened with PD set to
OUTPUT cannot be read. The
read statement is ignored.

To have multiple FITs for one
file, CMM must be used. The file
is not opened.

A file that is to be accessed by
more than one FIT cannot have
user-supplied buffer space for
any of the FITs.

A sequential read or SKIPFL is
not possible with the file at EOL
A SKIPBL is not possible with the
file at BOL

Check with a local analyst for
the limit on the number of files
that can be open at one time.

Change the placement of the
SETFIT macro.

Rerun the program that updated
the file.

Check that the correct file
name has been specified, or
change the OLD parameter to
NEW.

Change the program to open
with extend permission.

Check that the logical file name
is correctly specified.

Check that the correct file name
has been specified, or change
the OLD parameter to NEW.

Correct the program to elimi-
nate the redundant close
operation.

If the file is to be written, set
the PD field in the FIT to OUT-
PUT or IO before opening the
file.

If the file is to be read, set the
PD field in the FIT to INPUT or
10 before opening the file.

Correct the program to allow
CMM to be loaded.

Correct the program to elimi-
nate the user-supplied buffer.

The file must be repaositioned if
further access is desired. Re-
peated access attempts with
file at the end cause the fatal
error flag to be set.

T/F

B-5

TABLE B-2. DIAGNOSTICS (Cent'd)

nnnnnnnnnnn

115

117

130

135

136

142

FILE NOT OPEN

OUTSTANDING FATAL
ERROR ON THE FILE

PUT OR RELEASE OF
LARGER RECORD
ILLEGAL AFTER GETN

RT=W, BAD CONTROL
WORD, FILE DEFECTIVE
OR MISPOSITIONED)

RMS READ PARITY
ERROR

RMS WRITE PARITY
ERROR

EXCESS DATA

INSUFFICIENT DATA

A file must be opened before it
can be read or written. Omission
of required FIT field parameters
or inconsistencies in specified
parameters inhibit open.

A fatal error prevents future
access to the file with the error,
but it does not cause job termina-
tion uniess the user attempts
further operations except CLOSEM
on the file.

Sequential read of a direct access
file is possible only if the existing
records are not disturbed. Writing
any new record or increasing
existing record size prevents sub-
sequent sequential access.

Record type was specified as W.
This message indicates the rec-
ords being read are not, in fact,
W type records.

The system returned a parity
error status after a read.

The system returned a parity error
status after a write.

In a write, no information is
written to the file; the user has
supplied RL greater than FL/MRL
or the record mark character for
an R type record was not found
before MRL characters.

On aread, no information is trans-
ferred to the working storage area;
the record length exceeds the FL/-
MRL defined. For GET macro
processing, the following condi-
tions cause an error:

Z No zero byte found be-
fore FL characters

R No record mark found
before MRL

T,D Control field RL. > MRL
U RL> MRL
F Excess data cannot occur

Control information in the record
being read (length calculated by
fields such as CP and CL) speci-
fies a length for each record.

The record existing in the file is
smaller than the specified length.
All characters available are re-
turned. ’

Correct the program tc open the
file before reading or writing, or
correct omissions or inconsis-
tencies in FIT fields.

Correct and rerun.

Correct the program.

Check that the existing file is
correctly described.

Recreate the file on a good
device.

Recreate the file on a good
device.

Correct the inconsistency be-

tween the RL and FL or MRL
fields.

No action is required.

T/F

T/F

60499300 A

Y

,

»”

L]

TABLE B-2. DIAGNOSTICS (Cont'd)

Code

Message

Significance

Action

Severity

146

147

150

165

166

167

170

171

172

174

175

176

N MmN A~ A

60499300 A

USER HEADER LENGTH
ERROR

CHECKSUM ERROR IN
DATA OR INDEX BLOCK

FILE NOT ON RMS

ILLEGAL FILE NAME

FIT INCOMPLETE -
CANNOT CREATE FILE

RECORD LENGTH OUT-
SIDE MIN-MAX RANGE --
REQUEST IGNORED

RECORD SIZE EXCEEDS
BLOCK SIZE OR IS
NEGATIVE

INCORRECT HASHING
ROUTINE

ERRONEQUS KL OR RKP
FIELD SPECIFIED

FIT INCOMPLETE FOR
BFS CALCULATION

REQUESTED DATA OR
INDEX BUFFER TOO
LARGE

MAXRECSZ INFSTT
EXCEEDS MRL INFIT,
WSA MAY BE TOO SHORT

The attempted PUT or REPLACE
macro is rejected because the user
header length is inconsistent with

the record length.

There is a conflict between the
loading checksum and computed

checksum in either the data block

or index block.

Indexed sequential, direct access,
and actual key files must be

created on a disk, drum, or family

pack.

The LFN does not consist of one
to seven letters and digits, the
first being a letter.

A required parameter is missing,

or information for the FIT field is

not specified correctly.

Minimum and maximum record
length, MNR and MRL, establish
the absolute record limit for the
life of the file.

For D or T type records, the con-
trol field specified is outside the
value specified by the RL field,

or it is not within the values spec-
ified by the MNR and MRL fields.

All data blocks or home blocks

must hold at least one record plus

control information.

The hashing routine used to create

a direct access file must be used
for all subsequent access.

The key length (KL) or relative
key position (RKP) field is not
specified properly for the key
type.

Record length range MRL. and
MNR, blocking factor RB, or

other key characteristics required

fer buffer size calculation have
been omitted.

The data block c\f.lindex block size
27°-1

cannot exceed -1.

The MRL field in the FIT is less
than the maximum record size
recorded in the FSTT.

Check the user header length
and the record length for in-
consistencies.

Notify a system analyst.

Correct the control statement
to ensure a valid device assign-
ment.

Correct the LFN or the FIT
address.

Refer to section 4 of this man-
ual for parameters required
during file creation.

Correct the program to write
records within the established
limit, or recreate the file chang-
ing MNR and MRL..

Check to see that the CL/CP
fields or the LL/LP fields are
specified correctly.

Correct the RL or MBL field.

Check that the correct routine
is available to the job or that
the HRL field has not been
changed. The routine name can
be different each time, but the

rasiilis mma . ke AL

1 ~md
1ToULw pruduLcu Cannot qivier.

Correct the KL or RKP field.

Refer to section 3 of this manual
for parameters required for BF S
calculation.

Correct the data or index block
size.

Correct the inconsistency
between the current MRL value
and the MRL value used when
the file was created.

T/F

T/F

B-7

TABLE B-2. DIAGNOSTICS (Cont'd)

Code

Messaage

Significance

Action

Severity

200

201

202

203

204

205

206

207

223

245

250

252

253

300

B-8

BAD FSTT LINKED TO FIT

FILE CONTAINS BAD
BLOCKS

FILE IS RUINED

CANNOT UPDATE WITH-
OUT MIP FILE

KEY POSITION OUT OF
RANGE

MINIMUM RECORD SIZE
OUT OF RANGE

KEY NOT CONTAINED
WITHIN RECORD

MINIMUM RECORD SIZE
EXCEEDS MAXIMUM

CHECKSUM ERROR IN
FSTT

FUNCTION NOT VALID
FOR THIS FO

FILE RMS LIMIT
EXCEEDED (AK)

SYSTEM RMS LIMIT
REACHED

FILE LIMIT REACHED -
RECORD NOT INSERTED

NO READ PERMISSION

The FSTT field in the FIT does
not point to a valid FSTT when
the file is being closed.

Some data blocks in the file have
checksum or parity errors. Up-
dating is not allowed.

The file structure has been
destroyed. The file is no longer
usable.

The file is a multiple-index file
and an update operation has been
attempted without having the
index file present.

The starting character position of
a key is defined by positions 0
through 9, counting from the left
of a word.

Minimum record length (MNR)
must be at least one character
but no more than maximum record
length (MRL) and must contain
the key.

The embedded key must be within
the record.

Required parameter MRL must be
equal to or larger than MNR.

A conflict exists between the
loading checksum and the com-
puted checksum in the FSTT.

The function attempted is not
valid for the file organization

‘ indicated in the FIT.

The user has exceeded the mass
storage limit as specified in the
LIMIT control statement or
installation-defined limit.

No more mass storage was avail-
able for the file.

The number of records currently
in the file cannot exceed the limit
that the user specified with FLM.

To be read, a permanent file must
be attached with read (RD) per-
mission.

Correct the program to avoid
destroying the FSTT field.

The file should be recreated as
soon as possible.

The file must be recreated.

Close the data file. Set the XN
field in the FIT to the index file
name and reopen.

Correct the KP field.

Correct the MNR field.

Check for praper RKW, RKP,
KL, MNR, and MRL. Minimum
and maximum record iengths
(MNR and MRL) are in char-
acters; relative key word (RKW)
is in words, starting from 0; rel-
ative key position (RKP) is in
6-bit fields, 0 through 9, count-
ing from 0 on the left.

Correct the inconsistency be-
tween the MRL and MNR fields.

Notify a system analyst.

Correct the program.

Correct the problem and rerun.

Consult a system analyst; per-
haps the installation parameter
limit was exceeded.

Recreate the file increasing the
value of FLM,

Attach the file with the required
read permission.

T/F

60499300 A

o, AAh,

- a A a

2 M S WA - 0 N OG0 N MO N O SO 0 s A O

T

a

K

"~~~ A

]

e W s TR o WY o W

TABLE B-2. DIAGNOSTICS (Cont'd)

Code

Message

Significance

Action

Severity

301

302

304

324

333

334

335

336

337

345

346

347

352

60499300 A

NO WRITE OR MOGDIFY
PERMISSION

NO EXTEND OR
ALLOCATE PERMISSION

NOT ALLOWED TO
CREATE OVERFLOW
BLOCKS (DA)

PROCESSING DIRECTION
NOT CONSISTENT WITH
REQUEST

ILLEGAL CALL TO
DIAGNOSTIC ROUTINE

TOTAL OF OPEN FILES
NOT EQUAL TO TOTAL
OF FIT ADDRESSES

HIERARCHY TABLE
OVERFLOW

BAD FIT ADDRESS

INTERNAL ERROR IN
IS/DA/AK 1.X

INSUFFICIENT CMM
SPACE AVAILABLE

CMM NOT AVAILABLE
AND THERE IS NO LIST
OF FILES ADDRESS

FDL ERROR CODE. ..
ON CAPSULE ...

FILE TO BE CLOSED IS
NOT KNOWN

A permanent file requires proper
access permissions. Modify (MD)
permission is required for any up-
dating operation.

A permanent file requires extend
(EX) permission before new rec-
ords can be inserted.

The OVF option selected requires
original home blocks to accommo-
date all records. New records are
ignored because all home blocks
are full.

A file opened for INPUT cannat
be written; a file opened for
OUTPUT cannot be read.

An unexpected jump to a diag-
nostic routine has occurred.

The system has destroyed system
tables.

Index level has increased too
rapidly for AAM; update opera-
tion has not been performed.

The user or the system has
destroyed system tables.

An internal error has been
detected.

Not enough CMM space exists to
open the file. To open a file re-
quires enough free CMM space to
load any rare capsules required,
and to allow two of the iargest
blocks to be in memory at the
same time, The file is not opened.

A new block for the list-of-files
cannot be allocated, and the
LOF$RM entry point has been
cleared.

Either CMM is not loaded when
FDL is called to load a capsule or
the AAMLIB file is not valid.

The logical file name specified
does not match any existing file.

Attach the file with the required
modify permission.

Attach the file with the required
extend permission.

Change the OVF option if over-
flow blocks can exist.

Correct the inconsistency be-
tween the PD field and the
input/output operation.

Notify a system analyst.

Reload the program or notify a
system analyst.

For extended indexed sequential
files, close and reopen the file.
For other files, rerun the pro-
gram starting with the update
transaction that caused the
overflow.

Correct the program and reload
it.

Notify a system analyst.

Release some CMM, if any is
being used by the user program,
or increase the amount of mem-
ory available to the job.

Correct the program so that the
pointer is not destroyed. A de-
fault list with 658 entries is
supplied.

Check the load sequence or map
to see if CMM is loaded. Fix the
static load calls to load the
proper routines. If using local
libraries, check for a valid
AAMLIB file.

Check that the logical file name
is correctly specified.

T/F

B-9

TABLE B-2. DIAGNOSTICS (Cont'd)

Message

Significance

Action

Severity

355

356

357

370

372

403

404

415

417

420

421

422

424

425

B-10

BUFFER SPACE SUPPLIED
IS INSUFFICIENT FOR /O

CODE MODULES
REQUIRED FOR 1/0 NOT
LOADED

TRIVIAL ERROR LIMIT
REACHED

UNABLE TO OBTAIN
SPACE FOR BUFFER

FATAL 1/O ERROR

FO=IS INDEX STRUCTURE
FULL 15 LEVELS

SKIPBL DISALLOWED

SKIPFL DISALLOWED
FOR RT=U

ONLY PUT ALLOWED
DURING INITIAL
CREATION

CANNOT REPLACE WITH
LARGER RECORD IN
SEQUENTIAL MODE

CANNOT REWIND
NO-REWIND FILE

WSA NOT SPECIFIED —
REQUEST IGNORED

SEEK NOT ALLOWED IN
SEQUENTIAL MODE

CANNOT GET IN
SEQUENTIAL MODE ~
GETN ASSUMED

CANNOT SKIP BACK-
WARD IN SEQUENTIAL
MODE

A buffer specified by the BFS field
must be large enough to hold at
least the larger of one block spec-
ified by MBL +2 or one physical
record unit for the file's resident
device.

Routines necessary for processing
have not been loaded.

Error count ECT equals the user-
defined error limit ERL, resulting
in a fatal error.

Required space cannot be
allocated. CMM is not available
and the FWB field is zero.

Either a block with an incorrect
length was encountered or the
operating system detected an
error in the file or in the way
the file was being used.

The extended indexed sequential
file has filled 15 levels of index-
ing, which is the maximum
allowed. Further updating is not
permitted.

A backward skip is not possible
for D, R, and T type records.

No forward record skip is possible
for U type records.

During file creation, only PUT
macros are valid between open
and close.

The REPLACE statement is
ignored.

The N parameter of the OPENM
macro is meaningless because the
initial indexed sequential file
position is at the start of user rec-
ords when the file is opened.

For read or write, the location of
the record in the user field length
is required.

The SEEK macro is ignored be-
cause it is not allowed during se-
quential processing.

The GET macro cannot be used in
sequential mode.

The SKIP macro is ignored be-
cause backward skips are not
allowed in sequential mode.

Increase the BF S vaiue.

Refer to appendix E for the cor-
rect loading procedures.

Correct the errors.

Supply a value for the FWB field
or delete the OMIT=CMM param-
eter.

Correct the program.

Reorganize the file to allow

more indexes per block.

Correct the program.

Correct the program.

Correct the program to elimi-
nate all macros except PUT.

Correct the program.

Remove the N parameter from
the OPENM macro.

Specify the WSA field for the
read or write operation.

Close and reopen the file for
random processing if SEEK is
desired.

Use the GETN macro.

Correct the program.

60499300 A

£,

;. A~ - 4

i

'

TABLE B-2. DIAGNOSTICS (Cont'd)

Code

Message

Significance

Action

Severity

426

427

430

431

441

442

443

444

445

446

447

452

501

502

503

60499300 A

GETN NOT ALLOWED
DURING FILE CREATION
- REQUEST IGNORED

GET, SEEK INVALID IN
SEQ MODE

INVALID OP FOR READ
ONLY

SKIP OR GETN WHEN
SEEKING

MAJOR KEY WITH
SYMBOLIC KEYS ONLY

INVALID ACTUAL KEY -
REQUEST IGNORED

COMP-1 KEY HAS
INCONSISTENT BIAS —
REQUEST IGNORED

NEW KEY LESS THAN
PREVIOUS KEY IN
INITIAL CREATION

KEY NOT FOUND -FILE
POSITION ALTERED —
REQUEST IGNORED

DUPLICATE KEY
FOUND - FILE POSITION
ALTERED — REQUEST
IGNORED

KEY ADDRESS NOT
SPECIFIED —~ REQUEST
IGNORED

FILE POSITIONING
ERROR

INDEX FILE NOT COM-
PATIBLE WITH CRM FILE

SPECIFIED KEY NOT
DEFINED

DUPLICATE ALTERNATE
KEY ERROR

On a file creation run, only the
PUT macro is allowed between
open and close.

Opening an indexed sequential file
for INPUT establishes a sequential
mode of operation in which access
by key is prohibited.

Read-only mode has been selected
for an initial indexed sequential
file; updating with PUT, RE-
PLACE, or DELETE is not possible.

A SEEK sequence on an indexed
sequential file must be completed
through EOR return to the FP
field.

Key type (KT) must be S for major
key actions.

The key is not valid; the request
is ignored.

The COMP-1 key has been speci-
fied incorrectly (initial indexed
sequential files).

Records should be sorted by
ascending key before an indexed
sequential file is created. An
out-of-order key is ignored.

The entire file was searched, but
the key does not exist. File posi-
tion is one record ahead of the

position where the search began.

A duplicate key has been found.
The request is ignored (initial
indexed sequential files).

The file cannot be read randomly
if a key is not given.

An attempt was made to position
the file beyond EOL.

Information in the file statistics
table for a multiple-index file
does not agree with index file
information.

The key position specified by the
RKW, RKP, and KL fields for an
alternate key does not correspond
to an alternate key definition in
the index file.

All alternate key values must be
unique if the index structure for
a multiple-index file has been
specified as unique.

Correct the program to elimi-
nate all macros except PUT.

Open the file for input/output
if GET and SEEK are desired.

Change the PD field and read-
only mode.

Correct the program.

Correct the KT field.
Correct the KA field.

Correct the COMP-1 key.

Sort the records into ascending
sequence.

No action is required.

Change the duplicate key indi-
cator if duplicate keys are al-
lowed, or check the key field of
the current record.

Correct the program to specify
the key address (KA) field.

Correct the program to check
the FP field or specify the DX
field.

Check that the proper index file
has been specified.

Correct the RKW, RKP, or KL
field.

Specify indexed sequential
structure if more than one
alternate key is to have the
same value.

B-11

TABLE B-2. DIAGNOSTICS (Cent'd)

MMannamn
i 33age

Significance

505

506

507

510

B-12

SEQUENTIAL OPERATION
BEYOND EOI ATTEMPTED

ERROR IN RMKDEF
PARAMETER

ALTERNATE KEY NOT

FOUND

***AAM MALFUNCTION

n *xx

INTERNAL ERROR IN
MIP 1.X

End-of-information has been en-
countered. No further sequential
operations, such as GETN or a
system search for a key, are pos-
sible until the index file is reposi-
tioned by a user statement.

The parameters used with the
RMKDEF macro have been speci-
fied incorrectly.

A key value specified does not
match any alternate key value in
the index file.

For an extended indexed sequen-
tial file, an impossible condition
has been encountered. This condi-
tion probably occurred when part
of the executable code of AAM
was altered by an agency other
than AAM. The code n specifies
the condition that has occurred:

n=1 FIAAT POSKEY1 bad

n=2 FIAAT POSKEY?3 bad -
FIFO

n=3 Intermediate block
reached with all keys
too low

n=4 Attempt to go up from
primary

n=5> Error in removing one
level of hierarchy

n=6 Compression buffer size
bad

n=7 Running total of CMM
toc high

n=10 Index file not opened

n=11 Attempt to use a busy
FIX cell

n=12 Attempt to chain an al-
ready chained block

n=13 Attempt to read or
write PRU 0

n=14 Attempt to write a
block being read

n=15 UBS free block count
bad

n=16 Attempt to unchain
block not chained

n=17 Empty count less than
zero

An internal error has been encoun-
tered in initial MIP.

Correct the program.

Check that letters and digits
appear properly; also, that the
file name given in RMKDEF
corresponds to the name of the

file.
Action depends on program

processing of keys.

Notify a system analyst.

Notify a system analyst.

N
[}]
i |
3
-
<

60499300 A

‘!
i

5 T

-
-

-

(

TABLE B-2. DIAGNOSTICS (Cont'd)

Code

Message

Significance

Action

Severity

511

512

(
(

513

514
515

520
521

522

523

524

525

(
(
(
(
(
(
(
(
(
(

526

527

530

¢
(
(
(
€
¢

‘1

60499300 A

RMKDEF ONLY AFTER
OPEN-NEW - IGNORED

CRM DATA FILE
MODIFICATIONS ILLEGAL
WITH NDX=YES
REQUIRED ROUTINES

NOT LOADED -
RM$MEXB/RM$MF SQ

FILE CONTAINS
DUPLICATE PRIMARY
KEYS

NO INDEX FILE
SPECIFIED

CHANGED KEY TYPE

CHANGED KEY SIZE

KEY TYPE INCORRECT

NO KEY DEFINED

KEY SIZE ILLEGAL

MAJOR KEY SIZE
ILLEGAL

HASHED KEY OUTSIDE
HOME BLOCK AREA

ATTEMPT TO REDEFINE
SPARSE CONTROL
CHARACTER

PADDING FACTOR QUT
OF RANGE

The RMKDEF macro can be used
only on a creation run.

If NDX is set to YES, the PUT,
DELETE, and REPLACE macros
are not allowed.

Read-only processing of multiple-
index files requires the LDSET
control statement or LDREQ
macro (initial indexed sequential
and direct access files).

Alternate keys are not permitted
when duplicate primary keys are
defined (initial indexed sequential
files).

No name has been specified for
the XN field on an IXGEN or file
creation run for a multiple-index
file.

The key type (KT) specified on
the file creation run cannot be
changed for the life of the file.

The key length (KL) specified on a
file creation run cannot be changed
for the life of a file.

For an initial indexed sequential
file, KT must be 5 {symbolic), I
(integer), or F (floating point num-
ber).

Key type (KT), key length (KL),
and key address (KA) must be de-
fined.

For initial indexed sequential files,
the integer key must be 5 or 10
characters; floating point number
keys must be 10 characters; sym-
bolic keys can be 1 to the instal-
lation-defined length limit.

MKL must be at least 1 and less
than the full key defined by KL.

The user has changed hashing
routines. The hashing routine in
use is limited in the range of keys
that it can successfully process.

An RMKDEF directive attempted
to redefine the sparse control
character (extended indexed se-
quential files).

Padding can be specified as 0 to
99 percent.

Correct the program.

Correct the program.

Supply the LDSET control state-
ment or LDREQ macro.

The file cannot be a multiple-
index file.

Specify an index file for the XN
field.

Change the KT field.

Change the KL field.

Correct the KT field.

Define the key fields.

Correct the KL field.

Correct the MKL. field.

Check the HRL field in the FIT
to verify that the correct hash-
ing routine is in use; otherwise,
the user should limit the selec-
tion of keys to a narrower range.

Correct the RMKDEF directive.

Correct the padding percentage.

B-13

TABLE B-2. DIAGNQOSTICS (Cont'd)

Code

Message

Significance

Actinn

532

534

535

536

540

541

542

543

544

545

546

547

550

B-14

FILE ALREADY EXISTS,
CANNOT OPEN-NEW

MRL EXCEEDS MAX
ALLOWED RECORD
SIZE

NO DECOMPRESSION
ROUTINE SUPPLIED

NO OR WRONG
COMPRESSION ROUTINE
SUPPLIED

FIFO KEY SUB-
STRUCTURE NOT
ALLOWED IN REPEATING
GROUPS

PURGE ILLEGAL —
SPECIFIED ALT KEY NOT
KNOWN

NEW KEYDEF MATCHES
ONE ALREADY KNOWN -
KEYDEF REJECTED

FILE NOT POSITIONED IN
DUPLICATE KEY SET -
CANNOT DELETE
CURRENT

PADDING REQUESTED
TOO LARGE

CANT OPEN NEW FOR
INPUT

PRIMARY KEY NOT
FOUND
BAD STRUCTURE FOUND

IN FILE

CANNOT COMPRESS —
KEY POSITION INVALID

Two files in one program cannot
have the same name.

The value of the MRL field is
greater than 81870 characters.
The file is not opened.

A value for the DCA field was
not supplied on OPENM OLD for
a file that has user compression.
The file is not opened (extended
indexed sequential files).

A value for the CPA field was not
supplied on OPENM OLD for a file
that has user compression. The
file is not opened (extended in-
dexed sequential files).

For alternate keys in repeating
groups, the key must be unique or
stored in an indexed sequential
substructure.

An attempt was made through
MIPGEN to purge an alternate
key that did not exist.

The key was not defined to be
unique.

The file is not positioned at a
duplicate key set, the DELETE
current is not honored (initial
indexed sequential files).

The padding percentage requested
would not allow the data block to
contain one maximum record on
create or would not allow three
index records per index block.
The file is not opened.

The processing direction must be
set to OUTPUT on a file opened
as a new file.

A primary key in the alternate
key index file cannot be found in
the data file. The data file and
index file have been modified in-
cansistently.

The block being looked at con-
tains an impossible counter or
pointer.

To compress records, the primary
key must either be nonembedded
or begin in the first character
position. The file is not opened.

Check the PD field in the FIT
or the pd OPENM parameter.
The ON field must be changed
from NEW for file access after
creation run.

Correct the MRL field in the
FIT.
Correct the DCA field in the
FIT.

Correct the CPA field in the
FIT.

Correct the RMKDEF directive.

Correct the MIPGEN RMKDEF

directive.

Correct the MIPGEN RMKDEF
directive.

Position the file to a duplicate
key set.

Correct the PD or IP field in
the FIT and reopen the file.

Correct the PD or ON field in
the FIT and reopen the file.

Disassociate the data file and
create a new index file using the
MIPGEN utility.

Notify a system analyst.

Change the key position if the
file is to be compressed.

60499300 A

M

~ a a

1,

.

.

LYY W S S .Y

TABLE B-2. DIAGNOSTICS (Cont'd)

Code Message Significance Action Severity

551 REL MUST BE EQ, GT An invalid REL value was Set the REL field to a correct T
OR GE detected. The operation is not value.

performed.

712 NEGATIVE OR OVER- One of the parameters indicated Correct the program. F
SIZED ARGUMENT--WSA, was erroneously specified when a
SKP, OR LA macro was issued.

713 NEGATIVE OR OVER- One of the parameters indicated Correct the program. F
SIZED ARGUMENT--RL, was erroneously specified when a
ST, OR LBL macro was issued.

714 NEGATIVE EX OR DX A negative value was specified Correct the program. F
PARAMETER for the EX or DX field.

715 NEGATIVE OR OVER- Either the WA or KA field was Correct the program. F
SIZED ARGUMENT--WA erroneously specified.
OR KA

716 NEGATIVE OR OVER- Either the PTL or the KP field Correct the program. F
SIZED ARGUMENT--PTL was erroneously specified.
OR KP

717 NEGATIVE OR OVER- One of the parameters indicated Correct the program. F
SIZED ARGUMENT--MKL, was erroneously specified when a
POS, GPS, OR TRM. macro was issued.

720 DEVICE CAPACITY The CIO read driver has encoun- Check the system dayfile for the T
EXCEEDED tered an error. specific head driver error.

721 ERROR DETECTED BY A system hardware error that Check the system dayfile for a T
OPERATING SYSTEM cannot be corrected has been system/hardware error message.

encountered.
60499300 A B-15

TABLE B-3. NOTES OR INFORMATIVE MESSAGES

Code Message Code Message
1000 FITDUMP..... 1025 DATA BLOCK SIZE AND BLOCKING
FACTOR BOTH SET
1001 FILE OPENED
1026 EOI ENCOUNTERED ON SKIP OR GETN
1002 FILE CLOSED
1027 THEKEYIS.....
1003 NUMBER OF INDEX LEVELS.....
1030 ERROR ENCOUNTERED DURING
1004 **xNUMBER OF GETS THIS OPEN.....
1631 One of many general comments output by
1005 ***NUMBER OF PUTS THIS OPEN..... AAM routines
1006 ***NUMBER OF REPLACES THIS 1032 THEKEYIS..... THE KEY IN OCTAL
OPEN..... IS.....
1007 ***NUMBER OF DELETES THIS OPEN..... 1033 *xxNUMBER OF GET NEXTS THIS
OPEN.....
1010 ***TOTAL DISKAREA*** ., . WORDS
1034 ***NUMBER OF ACCESSES THIS
1011 GETN REACHED EOI OPEN.....
1012 SKIP REACHED FILE BOUNDARY BEFORE 1035 *xTOTAL NUMBER OF RECORDS.....
EXHAUSTING SKIP COUNT
1036 ***TOTAL NO, OF OVERFLOW
1013 END OF INFORMATION ENCOUNTERED RECORDS.....
1014 BEGINNING OF INFORMATION 1037 *#¥NO. OF AVAILABLE PRIMARY INDEX
ENCOUNTERED ENTRIES.....
1015 FILE LIMIT REACHED, LINEAR SEARCH 1040 **¥RECORDS/HOME-BLK CREATED THIS
FOR SPACE INITIATED OPEN.....
1016 ILLOGICAL SUCCESSIVE SEEK REQUESTS 1041 *RECORDS/OVF-BLK CREATED THIS
OPEN.....
1017 CANNOT CHECKSUM A FILE CREATED
WITHOUT CHECKSUMS 1042 ***OQVERFLOW BLOCKS CREATED THIS
OPEN.....
1020 ILLOGICAL TO CHANGE THE KEY BEFORE
SEEK FUNCTION COMPLETED 1043 ***TOTAL NUMBER OF HOME
BLOCKS.....
1021 HOME BLOCKS EMPTY--HASHING ROUTINE
NOT VERIFIED 1044 ***TOTAL NUMBER OF HOME BLOCKS
INUSE.....
1022 DELETED LAST RECORD
1137 THE FOLLOWING BLOCK CONTAINS A
1023 EMPTY FILE OPENED PARITY ERROR
1024 IS ERROR RECOVERY
B-16 60499300 A

- A aa

~ -~

Y an'

GLOSSARY C

AAM (ADVANCED ACCESS METHODS) — A file manager
that processes indexed sequential, direct access, and
actual key file organizations and supports the Multiple-
Index Processor.

ACTUAL KEY - The primary key for a record in a file with
actual key organization, which specifies the block
number and record position in that block. These keys
are usually generated by AAM and returned to the user.

ACTUAL KEY (AK) FILE — A mass storage file in which
each record is stored at the location specified by the
block and record slot number in the primary key
associated with that record.

ALTERNATE KEY — A key other than the primary key by
which an indexed sequential, direct access, or actual
key file can be accessed.

BAM (BASIC ACCESS METHODS) — A file manager that
processes sequential and word addressable file
organizations.

BEGINNING-OF-INFORMATION (BOI) — The start of the
first user record in a file.

BLOCK - A logical or physical grouping of records to make
more efficient use of hardware. All files are blocked.
See also Data Block, Home Block, Index Block, and

Overflow Block.

BLOCK CHECKSUM — A number used to check that the
contents of a data block have not been altered
accidentally; a means of ensuring data integrity. Block
checksums can be requested for files through use of the
BCK parameter in the FILE control statement.

CHARACTER — A letter, digit, punctuation mark, or math-
ematical symbol forming part of one or more of the
standard character sets. Also, a unit of measure used
to specify block length, record length, and so forth.

CLOSE — A set of terminating operations performed on a
file when input and output operations are complete. All
files processed by AAM must be closed.

COMPRESSION — The process of condensing a record to
reduce the amount of storage space required. The user
can supply a compression routine or use a system-
supplied routine. See Decompression.

CREATION RUN - All processing of a file, from open to
close, the first time the file is written or made into an
AAM file. Files must be created in a separate creation
run during which only write operations on the file being
created are allowed.

CRM (CYBER RECORD MANAGER) — A generic term
relating to the common products BAM and AAM,

DATA BLOCK - A block in which user records are stored
in an indexed sequential or actual key file. Data block
structure is defined by the user, or AAM defaults are
accepted. Contrast with Index Block for indexed
sequential files.

60499300 A

DECOMPRESSION ~ The process of expanding a com-
pressed record to restore it to its original size. The
user can supply a decompression routine or use a
system-supplied routine. See Compression.

DECRYPTION - The process of condensing and refor-
matting an encrypted record to restore it to its original
size and format. The user supplies a decryption routine.
See Encryption.

DEFAULT - A value assumed in the absence of a user-
specified value declaration for the parameter involved.
Values for many defaults are defined by the installation.

DIRECT ACCESS (DA) FILE — A file containing records
stored randomly in home blocks according to the hashed
value of the primary key in each record. Files must be
mass storage resident. All allocation for home blocks
occurs when the file is opened on its creation run.
Access is random or sequential.

DIRECTIVES — The instructions that supplement processing
defined by a control statement or by a program call for
execution of a utility function or member of a product
set. Directives do not appear in the control statement
record; they are usually in a separate record of the file
INPUT or a file referenced in a control statement call.
Directives are reqguired for execution of FORM;, the

CREATE utility, and EDITLIB among others.

ENCRYPTION — The process of expanding and refor-
matting a record. The user supplies an encryption
routine. See Decryption.

END-OF -INFORMATION (EQI) — The end of the last user
record in a file.

FIELD — A portion of a word or record; a subdivision of
information within a record; also, a generic entry in a
file information table identified by a mnemonic.

FIELD LENGTH - The area in central memory allocated to
a particular job; the only part of central memory that a
job can directly access. Contrasts with mass storage
space allocated for a job and on which user's files
reside.

FILE — A logically related set of information; the largest
collection of information that can be addressed by a file
name. It starts at beginning-of-information and ends at
end-of-information. Every file in use by a job must
have a logical file name.

FILE CONTROL STATEMENT — A control statement that
supplies file information table values after a source
language program is compiled or assembled but befare
the program is executed. In applications such as those
with a control statement call to the FORM utility, a
FILE control statement must be used. Basic file
characteristics such as organization, record type, and
description can be specified in the FILE control
statement.

C-1

FILE INFORMATION TABLE (FIT) — A table through which
a user program communicates with AAM. For direct
processing through AAM, a user must initiate establish-
ment of thie table. All fil= processing executes on the
basis of information in this table. The user can set FIT
fields directly or use parameters in a file access call
that sets the fields indirectly. Some product set

members set the fields automatically for the user.

FILE STATISTICS TABLE (FSTT) — A table generated and
maintained by AAM to collect statistics about each file.
The FSTT is a permanent part of a file and contains
information such as organization type, size of blocks,
number of current accesses, and so forth.

FLUSHING - The method of processing file buffers and
updating the file statistics tables as if close operations
had been requested without actually closing the files.

HASHING — The method of using primary keys to search
for relative home block addresses of records in a file
with direct access storage structure.

HOME BLOCK - A block in a file with direct access
storage structure whose relative address is computed by
hashing keys. A home block contains synonym records
whose keys hash to that relative address. If all the
synonym records cannot be accommodated in the home
block, an overflow block can be created by the system.
A user creating a direct access file must define the
number of home blocks with the HMB parameter in the
FILE control statement.

INDEX BLOCK - For an indexed sequential file, a block
with ordered keys and pointers to the data blocks and
other index blocks, forming a directory of the records
within a file.

INDEXED SEQUENTIAL (IS) FILE - A file organization in
which AAM maintains files in sorted order by use of a
user-defined primary key, which need not be within the
record. Keys can be integer, floating point (initial
indexed sequentia! files only), or symbolic; access is
random or sequential. Files contain index blocks and
data blocks.

INSTALLATION OPTION - One of several alternate means
of processing that is selected when AAM is installed at
a computer installation. Once an option is selected, all
subsequent use of AAM is governed by the selection.
For all options or limits defined as installation options,
the user should consult with a system analyst to
determine the valid limits.

INTEGER KEY - A binary key used with indexed sequential
files; for initial indexed sequential files, either 30 or 60
bits in length; for extended indexed sequential files, a
60-bit signed binary key. See Symbolic Key.

KEY -~ A group of contiguous characters or numbers the
user defines to identify a record in an AAM file.

KEY ANALYSIS UTILITY — A utility program that provides
information about hypothetical record distribution for a
file with direct access organization. The utility reads
the key of each record in the file and determines the
home block where the record would reside.

KEY ENTRY - The format of key information in index and
data blocks in an initial indexed sequential file. The
user need not be concerned with entries, except to
realize that symbolic key length and integer key values
can be specified to minimize entry length for improved
efficiency.

LDSET - The loader control statement. Various param-
eters include:

LIB Make available the named library
USE Load the routines named

STAT Static loading requested

OMIT Inhibit loading of the routines named

LOAD SET - A group of loader control statements begin-
ning with a call that causes information to be loaded
into central memory and ending with a call for
execution of a loaded program. Nonloader statements
must not appear in a load set.

LOGICAL FILE NAME - The name given to a file being
used by a job. The name must be unique for the job and
must consist of one to seven letters or digits, the first
of which must be a letter.

MACRO - A single instruction that when compiled into
machine code generates several machine code
instructions.

MAINTENANCE RUN - A program or job to update an
existing file; technically refers to that part of the job
from file open to file close.

MAJOR KEY - The leading characters of a symbolic key in
an indexed sequential file.

MASS STORAGE — A disk pack that can be accessed
randomly. ECS is not considered mass storage.

MASTER FILE - A file containing information about a set
of entities. All information about a single entity
constitutes a record in the file. A master file is
normally kept up to data by a maintenance run.

MULTIPLE-INDEX FILE - An indexed sequential, direct
access, or actual key file that has alternate keys
defined.

MULTIPLE-INDEX PROCESSOR (MIP) — A processor that
allows AAM files to be accessed by alternate keys.

OPEN — A set of preparatory operations performed on a
file before input and output can take place; required for
all AAM files.

OVERFLOW BLOCK - A block added to the file by AAM
for use when the home blocks in a direct access file
are full.

OWNCODE - A routine written by the user to process
certain conditions. Control passes automatically to
user owncode routines defined in the FIT for:

DX End-of-data condition
EX Error condition

PADDING - The free space reserved in a file at creation
time to accommodate additional records; specified as a
percentage figure.

60499300 A

- a a

v

(

PERMANENT FILE - A file on a mass storage permanent
file device that can be retained for longer than a single
job. It is protected against accidental destruction by
the system and can be protected against unauthorized
access.

PHYSICAL RECORD UNIT (PRU) — The smallest unit of
information that can be transferred between a periph-
eral storage device and central memory. The PRU size
is permanently fixed for all mass storage devices.

PRIMARY KEY —~ A key that must be defined for a file
when the file is first created.

PRU DEVICE - A mass storage device in which information
has a physical structure governed by physical record
units (PRUs).

RANDOM ACCESS -~ Access method by which any record
in a file can be accessed at any time in any order;
applies only to mass storage files. See Sequential
Access.

RECORD - The largest collection of information passed
between AAM and a user program in a single read or
write operation. The user defines the structure and
characteristics of records within a file by declaring a
record format. The beginning and ending points of a
record are implicit in each format.

50499300 A

RECORD SLOT NUMBER — The position of a record within
a block in an actual key file; specified by the low-order
bits of the primary key.

RELEASE SYSTEM — A software system delivered to a
customer. In installing a system, the customer, but not
an individual applications programmer, can use default
values or parameters that differ from the release
system.

REWIND - To position a file at beginning-of-information.

SEQUENTIAL ACCESS — A method in which only the
record located at the current file position can be
accessed. See Random Access.

SPARSE KEY - An alternate key that is used infrequently.
Only those alternate key values of interest are included
in the index file.

SYMBOLIC KEY — An alphanumeric key used with indexed
sequential files; 1 to 255 characters. See Integer Key.

SYNONYM RECORDS -~ Direct access file records whose
primary keys hash to the same home block.

WORKING STORAGE AREA — An area within the user's
field length intended for receipt of data from a file or
transmission of data to a file.

P O W U U ¥V vV VUV U W W W wF e

™

£~

v

™

FILE INFORMATION TABLE STRUCTURE

S

A file information table (FIT) must be associated with every
file that uses AAM. For normal language requirements,
compilers generate the FIT automatically; users writing in
high level languages need not be concerned with the FIT and
its generation. = The COMPASS user is responsible for
supplying the FIT; the FILE macro is provided to create the
FIT. Word and bit designations are illustrated in figure D-1.

The FIT is activated by an OPENM request for the file.
After the file is opened, FIT fields can be updated with the
FILE control statement or the STORE macro, with infor-
mation from the processing macros, or by AAM as a result
of processing the file. Information in the FIT can be
retrieved with the FETCH macro. In figure D-1, the fields
enclosed in parentheses can be accessed by the FETCH
macro but cannot be changed. If a STORE macro is
attempted on these fields, an assembly diagnostic results.

The FIT fields are listed in this appendix by word and bit
position. For the convenience of the user, the COMPASS
symbols are included with the applicable FIT field values.
Generally, any particular file organization or record type
requires only a small portion of the total information
specified here. The first ten words of the FIT are used by
AAM for communicating with the operating system.

Word 0

59-18 LFN Logical file name of the data file.

17-1 Reserved for CDC.

0 CMPLT FET complete bit; cannot be changed by
the user.

Word 1

59-48 DVT FET device type; cannot be changed by
the user.

47 Reserved for CRM.

46 RDR Read release.

45-37 Reserved for CDC.

36 FF OS flush on abnormal termination:

0 Buffer not flushed.
Buffer flushed for output file with
scratch disposition on abnormal
termination.

35-30 Reserved for CDC.

29-24 DC Disposition code; cannot be changed by
the user. Refer to operating system
manual for possible settings.

23-18 Length of FIT minus 5; set to 3010.

17-0 FwB First word address of the user buffer.

60499300 A

Word 2
59-18

17-0

Word 5
59-24

23-22 ASCII
21-0

Word 6
Word 7

Word 8

Word 9

Word 10

59-36 LBL

35 LCR

34

33-27 FP

Zero-filled field.

Reserved for CRM.,

Zero-filled field.

Reserved for CRM.

Reserved tor CUC.

Reserved for CRM.

Reserved for CRM/INTERCOM.

ASCII character set bits for INTERCOM
terminals (BAM only).

Reserved for CRM.

Reserved for CDC.

Reserved for CRM (return address stack).

Reserved for CDC (FET extension).

Reserved for CDC (label fields).

Label area length in characters (BAM
only).

Label check/creation for input/output
tape (BAM only).

Reserved for CRM.

File position (in octal); cannat be changed
by the user:

0] Mid logical record
1 BOI Beginning-of- =BOIl=
information
2 BOF Beginning-of-file =BOF=
10 EOK End-of-keylist =EOK=
20 EOR End-of-record =EOR=
100 EOI End-of-information =EOI=

D-1

59 53 47 41 35 29 23 17 1" 05 00
[LFN Reserved for CDC 4]
ig——I{C
Rl Reserved F| Reserved
1 (DVT) D for coC |F| for coc | PC) | 30D FWB 1
2 0 Reserved for CRM 2
3 0 Reserved for CRM 3
4 Reserved for CDC Reserved for CRM 4
8
5 Reserved for CRM/INTERCOM ¢ Reserved for CRM 5
!
6 Reserved for CDC 6
7 Reserved for CRM (return address stack) 7
8 Reserved for CDC (FET extension) 10
9 Reserved for CDC (label field) 1
L
10 LBL c (FP) JuLPfLT LA 12
IC|
1 RL MIOF|CF [vF| RT | BT | FO LX 13
12 FL Ri for CRM DX 14
MAL eserved for
P
13 EFC ECT ERL £ SES ES EX 15
14 Reserved for installation 16
15 HL EO WSA 17
MNR F - 3
‘e - L PC MUL HRL -
s K [Mk [l or]
(FNF}—]
C|[S CP
8 E
17 od PD 81lg o N BFS 21
18 HMB (LOP} (RC) 22
WPN) PTL L I
19 MBL NO e 23
NL (BN)
Bok——4TT pos | DcT
PM RB PKA 24
% MNB [
ov] 1 KR
XN
27 X83 2%
MEN I PNQ
22 Reserved for CRM %
23 Reserved for CRM 27
INIKIF || E|D
24 N FLM K KA 30
EH i
25 Reserved for CRM (BZF) 31
26 coT Reserved for CRM 32
27-29 Reserved for CRM 33-35
(SOL)nt
30 Reserved for CRM EOIWA 36
31 RKW RKP | KP KL P Reserved for CRM 37
32 1BL ‘ [KT!REL TRC CPA 40
33 Reserved for CRM DCA a1
34 Reserved for CRM 42

Finure D-1. Fila Infarmation Tg

60499300 A

F

-~ oA A -

=
3

t

t

—_—

—~—

APTY—,

o S o

-~ ;A\ .

-~

26-24 ULP
23-22 LT
21-0 LA
Word 11
59-36 RL
35 CM
34-33 OF
32-30 CF
29-28 VF
27-24 RT
23-21 BT
20-18 FO
60499300 A

User label processing (BAM only).

Label type (BAM only).

Label area address (BAM only).

Current record length in characters.

Conversion mode (EC to IC) (BAM only)

Open flag; positioning of the file at

OPENM time:

00

01
10

11

zZ X

m

Rewind
(default)

Rewind

i}
m2Z &
1}

No rewind

L]
i

Extend

Close flag; positioning of the file at

CLOSEM time:

000

001
010
011
100
101
110

R

N

U
RET
DET
DIS

End-of-volume flag (BAM only).

Record type:

0000
0001
0010
0011
0100

0iol
0111
1000

w

O N XU ™M

c -

Rewind ==
(default)

Rewind =R=
No rewind =N=
Unload =Us=
Return =RET=
Detach =DET=
Disconnect =DIs=
(BAM only)

Contro! word =WT=
Fixed length =FT=
Record mark =RT=
Zero byte =7ZT=

Decimal char- =DT=
acter count

Trailer count =TT=
Undefined =UT=
System- =ST=
logical-

record

Block type (BAM only).

File organization:

000

001

011

101
110

5Q

WA

IS

DA
AK

Sequential =5Q=
(BAM only)

Word =WA=
addressable

(BAM only)

Indexed =IS=
sequential

Direct access =DA
Actual key =AK

17-0

Word 12

59-36

35-18

17-0

Word 13
59-58

57-56

55-54

53-45
44-36
35

34

33-31
30-27
26-18

17-0

Word 14

Word 15

59-36

35-33
32-30

29

LX

MRL

FL

DX

EFC

ECT

ERL

PEF

SES

ES
EX

HL

MNR

EO

Label routine exit address (BAM only).

Maximum record length in characters;
when retrieving primary keys from an
alternate key index, working storage area
length in characters.

Fixed length of an F type record, or full
length of a Z type record, in characters.

Reserved for CRM.

End-of-data exit address.

Reserved for CRM.
Dayfile control for error messages:

0 No dayfile messages except fatal
€errors

1 Error messages to dayfile

2 Statistics/notes to dayfile

3 Errors and statistics/notes to dayfile
Error file control:

No error file messages
Error messages to error file

Statistics/notes to error file

W N = O

Errors and statistics/notes tc error
file

Trivial error count.

Trivial error limit.

Reserved for CRM.

Parity error flag (BAM only).

Reserved for CRM.

System parity error severity (BAM only).
Error status (octal value).

Error exit address.

Reserved for installation.

Header in characters; T type

records.

length

Minimum record length.
Reserved for CRM.
Error option (BAM only)

Reserved for CRM,

D-3

28

27

26

25
24
23

22

21-0

Word 16

59-36

35-30

29-24

23-18

26-18

17-0

16

15-9

Word 17
59

58-57

D-4

BAL

STFT

PDF

SBF

SPR

ORG

WSA

TL

CL

LL

RMK
PC

MUL

MKL

HRL

HB

DP

FNF

oC

Buffer allocated by CRM; cannot be
changed by the user.

Internal SETFIT flag used for CRM
processing.

SETFIT macro FILE statement fiag; can-
not be changed by the user.

Suppressed buffer 1/0 flag (BAM only).
Suppress read ahead (BAM only).
Reserved for CRM.

Old/new file organization:

0 OLD Initial indexed =0LD =
sequential file
organization

1 NEW Extended indexed =NEW=

sequential file
organization

Working storage area address.

Trailer
records.

length in characters; T type

Count field length in characters; T type
records.

Length field length in characters; D type
records.

Record mark character; R type records.
Padding character (BAM only).

Multiple of characters per K or E type
block (BAM only).

Major key length in characters (indexed
sequential files).

Hashing routine address (direct access
files).

User header option (actual key files):

0 Do not return header
1 Return header (defauilt)

Data block padding percent (indexed

sequential and actual key files).

Fatal/nonfatal flag; cannot be changed by
the user:

1] Nonfatal
1 Fatal

Open/close flag:

00 Never opened =ENOP =
01 Opened =0PE =
10 Closed =CLO=

56-54

53-48

47

46

45

44-21

[
[¢=]

18

17-0

Word 18

59-36

35-30

35

29-0

PD

B8F

SB

CP

LP

CNF

BBH

BFS

HMB

PTL

LOP

WPN

RC

Processing direction:

000 Input ==
(default)

Input =INPUT=

Out- =0UTPUT =
put

001 INPUT
010 OUTPUT

01l 10 Input/-

output

Reserved for CRM.
Round PUTs down to *8 bits (BAM only).

COMP-1; format for the CL/LL field; T or
D type records:

=NO=
=YES=

0 NO Display code
1 YES Binary

Sign overpunch; overpunch option for
CL/LL field; T or D type records:

0 NO No overpunch =NO=
1 YES Overpunch =YES=

Trailer count beginning character position
(numbered from 0); T type records.

Length field beginning character position
(numbered from 0); D type records.

Connected file flag (BAM only).

Buffer below highest high address (BAM
only).

Buffer size in words.

Number of home blocks (direct access
files).

Partial transfer length (BAM only);
number of keys moved to working storage
area for a GET or GETN on an alternate
key index.

Last operation code; cannot be changed by
the user (BAM only).

Write bit; the upper bit of LOP is a 1-bit
subfield that can be accessed separately;
cannot be changed by the user:

0 Last operation was not a write
1 Last operation was a write

Record count; count of full records read
or written since the file was opened. The
count is not adjusted for repositioning and
backspacing operations. For a multiple-
index file, the number of records with this
alternate key value. This field cannot be
changed by the user.

60499300 A

- a a ma - s

‘J
(
:
i

il

.

o Y e W o -~ o~

Word 19
59-36 MBL
35-30 VNO
NL
29-0 BN
WA
Word 20
59 BCK
58 PM
57-52 POS
51-30 DCT
59-36 MNB
29-18 RB
17-0 PKA
Word 21
59-18 XN
17-0 XBS
59-24 MFN
23-0 PNO
17-16 OVF
60499300 A

Maximum block length in characters.

Current volume number of the multi-
volume sequential file (BAM only).

Number of levels of index blocks (indexed
sequential files).

Block number of the current block
(sequential files); cannot be changed by
the user (BAM only).

Current position word address, set by GET
and PUT macros (BAM only).

Block checksum:

0 NO No checksum- =NO =
ming of blocks

1 YES Checksumming =YES=
of blocks

Processing mode:

0 Random =RPM=

1 Sequential =SPM =

Duplicate key position (initial indexed
sequential files):

0 First record in a duplicate key set
1 Current record
Address of the display code to collating

sequence conversion table (indexed
sequential files).

Minimum block length in characters.
Number of records per block (actual key
files) or average number of records
(indexed sequential and direct access
files).

Primary key address; address to receive

primary key on an alternate key access
(extended indexed sequential files).

Logical file name of the alternate key
index file associated with the data file.

Index file block size (extended indexed
sequential files).

Multifile set name (BAM only).
Multifile position number (BAM only).

Direct access file overflow flag:

01 OVO Overflow blocks =0V0=
only

10 OVB Either overflow =0VB =
or home blocks

11 OVH Home blocks only =0VH=

11-0

Word 22
59-46

45-40

39-36

35-0

Word 23

Word 24

59

58

57

56

55

54

53-24

23

KR

LAC

LNG

NDX

KNE

FWI

FPB

FLM

EMK

Key value repeat count; number of times
the key value repeats in the current
record (initial multiple-index files).

Reserved for CRM.

Last action performed on the file; used by
compiler languages to communicate with
each other.

last compiler language to have used the
file:

0 Unknown

1 CoBOL

2 FORTRAN
3 PL/

4-7 Reserved

Reserved for CRM.

Reserved for CRM.

Index flag:

0 Data file is accessed

1 Index file is accessed
Key not equal (multiple-index files):

0 Key match found
1 No key match found

Forced write indicator:

0 NO No forced write =NO=
1 YES Forced write =YES=
File position bit (system routine use only);
or EOI reached random operation
(multiple-index files):
0 EOI not reached
1 EOIreached
Old or new file:
0 OLD Old file =0LD
1 NEW Creation run =NEW
Reserved for CRM.
File limit, records per file.
Embedded key flag (extended indexed
sequential files):
0 NO Key is not part =NO=
of the record
1 YES Key is included =YES=
in the record
D-5

22 DK1

21-0 KA

Word 25

59-18

17-0 BZF

Word 26

59-48

47-30 CDT

29-0

Words 27-29

Word 30

59 SOL

58-30
20-0 ECIWA

Word 31

59-48 RKW
47-44 RKP
43-40 KP
39-31 KL
D-6

Duphcate key |ndlcator, indicates dupli-

~ (;.—..n—d ine

~nta Anirmary

(7=
cars pririary ‘\‘:)’ PEerT

dexed sequential files):

0 No duplicate keys
1 Duplicate keys allowed

Key address of the key value for record
processing.

Reserved for CRM.

Busy FET address; cannot be changed by
the user.

Reserved for CRM.

Address of the collating sequence to
display code conversion table (initial
indexed sequential files).

Reserved for CRM.

Reserved for CRM.

S/L tape bit; cannot be changed by the
user (BAM only).

Reserved for CRM.

End-of-information word address (BAM
only).

Relative key word (direct access files and
alternate key access of multiple-index
files).

Relative key position in RKW (direct
access files and alternate key access of
multiple-index files).

Beginning character position of the key
(indexed sequential and direct access
files).

Key length in characters (indexed sequen-
tial and direct access files).

Key length in bits (actual key files).

30-24 1P

23-0

Word 32

59-42 IBL

41-30

29-27 KT

26-24 REL

23-18 TRC
17-0 CPA
Word 33
59-18

17-0 DCA

Word 34

Primary or alternate key length in bits

nrior to open of 3 new multinle-in dex files
prior to ope tiple-index file;

after open, length in characters (actual
key fiies).

Index block padding percent (indexed
sequential files).

Reserved for CRM.

Index block length in characters (initial
indexed sequential files).

Reserved for CRM.

Key type (indexed sequential files):

000 Symbolic (default)

001 S Symbolic =SKT =
(default)

010 1 Integer IKT=

011 F Floating =EFKT=

011 U Uncollated =UKT =
symbolic

File position key relation (indexed sequen-~
tial and multiple-index files):

1 EQ Equal

2 LE Less than
or equal
(initial files
only)
Greater than =CGE=
or equal

Not equal =ENE=
(initial files

only)

Less than =ELT=
(initial files
only)
Greater than

6 GT =GT=

Trace transition count; number of trans-
actions to be traced (initial indexed
sequential and direct access files).

Compression routine address (extended
indexed sequential files).

Reserved for CRM.
Decompression routine address (extended

indexed sequential files).

Reserved for CRM.

60499300 A

LOADING AAM E

AAM has been divided into functional capsules that are
loaded by relocatable controlling routines at execution time.
This method of dynamic loading requires a program to be
compatible with the Common Memory Manager (CMM).
Static loading is available for programs that are not
compatible; however, static loading could involve a field
length penalty of as much as 1400, words. AAM uses
dynamic loading unless static loading 1s specified through a
control statement or a macro.

More information about the Common Memory Manager and
the CYBER Loader can be obtained from their respective
reference manuals.

DYNAMIC LOADING

For dynamic loading, all AAM macros reference entry points
in the controlling routines. The controlling routines, which
process parameters and diagnose certain types of errors, are
loaded at relocatable load time or overlay generation time.
The controlling routines load and transfer control to the
Fast Dynamic Loader (FDL) capsule containing the proper
AAM controller in fixed-position fixed-length blocks. The
controller then loads the FDL capsules needed to process the
macro.

It is important to the dynamic loading scheme that the
controlling routines not be overlayed. Unknown results,
including bad jump addresses to service routines, occur if
these routines are overlayed. To prevent the controlling
routines from being overwritten, they must be part of the
(0,0) overlay. This can be assured by specifying the FILE
macro in the (0,0) overlay.

The OPENM/SETFIT capsule is loaded when the first
OPENM or SETFIT macro is encountered. If the SETFIT
macro occurs first, the FILE control statement parameters
are processed, the dynamic AAM controller capsule is
loaded, and control is transferred to that capsule. The
required AAM processor capsule is then loaded, the buffer
size is calculated, and control is returned to the user.

When the OPENM macro occurs before a SETFIT macro, the
SETFIT functions are performed first. Open processing then
occurs. The file is opened, FIT consistency checks are
performed, and control is returned to the user. The open
processing capsule is unloaded when a macro other than
OPENM, SETFIT, STORE, or FETCH is encountered. For
optimum efficiency in loading, the open processing for all
files should be completed before other processing is
specified. The AAM processor capsule remains loaded.

When the first macro that requires a buffer is encountered,
a buffer is allocated through CMM in a fixed-position fixed-
length block. The capsules required to perform the function
specified by the macro are loaded; control transfers to the
capsules and then back to the user. Generally, the capsules
required to process these functions remain in memory until
all files requiring them have been closed. Some capsules are
loaded while a series of operations are being performed and
are unloaded when additional memory space is needed to
load another capsule.

60499300 A

ey

The CLOSEM capsule is loaded when the CLOSEM macro is
encountered. An additional AAM capsule might be loaded to
close the file and release buffer space. The CLOSEM
capsule unloads any capsules no longer needed for processing
and unloads itself after closing the last file.

The AAM controller capsule, processing capsules, and
dynamic buffers are loaded above the highest high address;
however, they are not destroyed by overlay swapping.
Because of this, it is possible to swap overlays without first
closing the AAM files. When the file is other than an
extended indexed sequential file and the first I/O processing
overlay loaded is read-only, certain precautions are
necessary. If the read-only capsules are loaded, a swap to
another overlay doing an update might result in an error if
the read-only file is not closed before the swap. The
presence of the read-only capsule prevents the full proc-
essing capsule from being loaded.

AAM contains a trace function that is used primarily for
debugging purposes with initial indexed sequential and direct
access files. The processing for the trace function is
contained in a separate capsule that is loaded only if the
trace transaction count (TRC) field in the FIT is set to YES.

STATIC LOADING

Static loading is provided for the cases where the user is
managing memory and the program cannot be compatible
with CMM. It should only be used as a short term conversion
aid. Long term support of static loading is not to be
provided. Two methods are available for designating which
capsules need to be statically loaded. One method is control
statement oriented and the other method is macro oriented.

CONTROL STATEMENTS

Static loading can be specified through the LDSET and FILE
control statements. The STAT option must be specified in
the LDSET controi statement and the USE and OMIT
parameters must be specified in the FILE control statement.
One FILE control statement must be included for each file
to ensure that all necessary routines are loaded. The file
organization (FO), record type (RT), and index file name
(XN) parameters must be specified on the same or a previous
FILE control statement as the USE and OMIT parameters.
These three parameters cannot be specified in a FILE
control statement following the one that specifies the USE
and OMIT parameters.

The USE and OMIT parameters are formatted as follows:
USE:mnl/mnzl. . ./mnn

OMIT=mn, /mn,/. . ./mn_
In both parameter formats, mn is a macro name. The
functions of the USE and OMIT parameters are listed in
table E-1. The USE and OMIT parameters can be used in
more than one FILE control statement; the results are
cumulative. If the STAT option is specified in the LSDET
control statement and the USE parameter is not specified in
the FILE control statement, no processing capsules are
loaded.

E-1

In the example shown in figure E-1, the program to write
the file ISFILE uses static loading and contains the OPENM,
PUT, and CLOSEM macros. The program to read the file

ISFILE also uses static loading. The PUT macro is not
contained in that program; the OMIT parameter specifies
that the capsule for that macro is to be unloaded. The GET
macro is contained in the program and the capsule for that
macro is to be loaded. The USE parameter is still in effect

for the OPENM and CLOSEM macros.

TABLE E-1. USE AND OMIT PARAMETER FUNCTIONS

The LDSET control statements necessary for read-only
processing are discussed for each applicable file organi-
zation in section 4, File Processing. As noted in section 4,
static loading requires an additional LDSET controi state-
ment. An example of read-only processing using static
loading is shown in figure E-2.

STLD.RM MACRO FORMAT

Another method of specifying static loading is through the
STLD.RM macro. The format of the STLD.RM macro is
shown in figure E-3. This macro must be specified once for
each file organization.

Parameter No List List of Macros
of Macros
USE All capsules Capsules performing

are loaded. functions specified by the

macro list are loaded.

OMIT All previously Capsules performing
loaded capsules | functions specified by the
are unloaded. macro list are unloaded.

FILE(ISF,FO=IS,RT=F ,USE=OPENM/CLOSEM/GET

LDSET(STAT=ISF)
LDSET(SUBST=$RM.IS$-$RM.ISX$)
LDSET(SUBST=$SAAM.|S$-$IS.ROENS)
LOAD, ...

LGO.

Figure E-2. Read-Only Static Loading Example,.
Initial Indexed Sequential File

FILE'(ISFI LE,FO=iS,RT=2,USE=OPENM/PUT/CLOSEM)
LDSET(STAT=ISFILE)

Load set to write the file.

FILE(ISFILE,OMIT=PUT,USE=GET)
LDSET(STAT=ISFILE)

Load set to read the file.

{fo) STLD.RM USERT=(rtlist),
USE=(fcnlist),
OMIT={cmm-fdI)

ORG=(new-old)

rtlist Record type list; record types are separated by
commas.

fenlist AAM functions (macro names); functions are
separated by commas.

cmm-fdl CMM or FDL; CMM omits CMM and FDL, FDL
omits FDL only.

new-old New or old AAM; OLD (default) is initial
indexed sequential, direct access, or actual key
file; NEW is extended indexed sequential file.

Figure E-1. Static Loading Example

Figure E-3. STLD.RM Macro Format

60499300 A

-~

- a a

1 s A B O O 0 0 O D U0 OO0 N e O N EOMOMEODY O A) e e

v

»

-~

~

-

Y

-

USE OF LIST-OF-FILES

The NOS and NOS/BE operating systems maintain a pointer
to the list-of-files, which is a table of the name and FET or
FIT address of all active files for each control point. This
pointer is set and accessed by the SETLOF and GETLOF
macros. A complete description of this feature can be found
in the operating system reference manual.

AAM maintains and uses this list-of-files. To alter this list,
a user must follow a procedure that is compatible with
AAM.

AAM maintains an entry point in its relocatable loaded
routines called LOF$RM. The content of this entry point is

60499300 A

the address of the current list-of-files. The purpose of this
pointer is to minimize the number of GETLOF monitor calls
required. The user is encouraged to use this pointer instead
of calling the GETLOF macro.

If a user program that coexists with AAM moves the list-of-
files, it must update the LOF$RM pointer in addition to
calling the SETLOF macro. Also, if a user program adds a
new entry to the end of the list-of-files, it must ensure that
the next word is zero because AAM does not initialize the
list-of-files block to zero.

RS MR T A

WV VvV vV W W e e e

s

5

AN, U A A

;™

BUFFER ALLOCATION

Allocation of buffer space for extended indexed sequential
files can be divided into two classes: user buffer space and
pooled buffer space. User buffer space is assigned by the
user for a particular file during open processing. Pooled
buffer space is allocated by AAM using the Common
Memory Manager (CMM) when buffer space is needed and
can be used by AAM for any file. AAM does not allow
pooled buffer space to exceed a value called TARGET.
TARGET is set by the open and close procedures to reflect
the CMM requirements expected by AAM; a value of zero
indicates that CMM is not to be used for buffer allocation.

USER BUFFER SPACE

When a file is opened, buffer allocation is controlled by the
user through the first word address of the buffer (FWB) field
and the buffer size (BFS) field in the FIT. If both fields are
set to a value other than zero, the fields define the user
buffer space for the file. AAM partitions the specified
buffer space as follows:

Space for the file statistics table (FSTT) (130 words)

If required, space for the alternate key index file FSTT
and the file environment table (139 words)

Space for the FIT extension (up to 168 words)

Space for the data file and index file blocks, beginning
with the data file

Once allocated to a file, these blocks cannot be used by any
other file. If CMM is not allowed, the minimum space that
must be allocated is two blocks (three blocks if the file is
compressed) for each file. If the minimum space is not
allacated, an error message is issued and the file is not
opened. If CMM is allowed, TARGET is increased by the
amount that the user buffer space needs to meet the
minimum requirement.

POOLED BUFFER SPACE

When a file is opened and the FWB and BFS fields are set to
zero, AAM increases TARGET by the amount needed for the
particular file organization:

Three blocks for a one index level indexed sequential
file

Six blocks for a multiple index level indexed sequential
file

Two blocks for an actual key or direct access file

60499300 A

If an alternate key index file is also needed, TARGET is
increased by the amount of space required for seven index
file blocks. For a compressed data file, space for one
additional block is added to TARGET. Space for the FSTTs
and FIT extension is allocated from CMM, but it is not added
to TARGET because the FSTT and FIT extension for a file
are not part of pooled buffer space.

The user controls TARGET directly when the FWB field is
set to zero and the BFS field is set to a value greater than
zero. TARGET is increased by the value of the BFS field.
TARGET is then checked to ensure that enough space exists
to satisfy the minimum requirements for the file (two blocks
for the data file, two blocks for the index file, and one
additional data block if the file is compressed).

If the BFS field is zero and the FWB field is set to a value
greater than zero, an error condition exists. The file is not
opened.

When AAM is being dynamically loaded, TARGET is
increased by the size of the largest seldom-used capsule
needed to process an opened AAM file. This is done because
pooled buffer space is used for seldom-used capsules as well
as for blocks.

BUFFER USE

For both user buffer space and pooled buffer space, all
blocks in use are bidirectionally chained in two chains. One
chain is file oriented and is used to locate all blocks in
memory for a given file. The other chain runs through all
blocks (and seldom-used capsules); this chain is referred to
as the kickout chain. As blocks are used, they are put at the
head of this chain. Blocks gradually migrate to the tail of
the chain due to lack of use. A few exceptions to this rather
simple algorithm exist. One exception is that the primary
index block of a file is always moved to the head of the
chain when the file is being accessed randomly. Another
exception is that when a new data block is read into the
buffer, the previous data biock is moved to the taii of the
chain.

When space is needed for a new block, the kickout chain is
scanned from the tail of the chain forward. For user buffer
space, the first block encountered that is the same size as
the new block and that belongs to the same file is released;
the space is allocated for the new block. If CMM is not
present, one of the current blocks is found and used. For
pooled buffer space, blocks smaller or larger than the
requested block are released until the total space released is
enough to allow a new block to be allocated without
exceeding TARGET. If a block of the same size is
encountered during the scanning, that block is released and
the space is allocated for the new block.

G-1

T EE Y AT T [P Y0 S A S PSP AP 00D 0 000 0 0 0 D 06T 0 00 0 o O 00 st o o S ot ool e 1 6

VP O W W W W W U W W e W WO W W WS W ow w w

.

>

LY

DATA COMPRESSION AND DATA ENCRYPTION

Data compression and data encryption are provided for use
with extended indexed sequential files. The system-supplied
routine or a user-supplied routine can be used for data
compression. Data encryption, which requires a user-
supplied routine, is handled through the compression routine
owncode exits.

Data compression is performed on a record-by-record basis.
It is used to compress strings of zeros or blanks in order to
shorten the record length. If the compression routine cannot
realize a reduction in record length, the record is flagged
and stored in its uncompressed state. When a compressed
record is read, it must be restored to its original state by a
decompression routine. If a record is flagged to indicate it
is not compressed, the decompression routine is not called
when the record is read.

Data encryption is used to expand and reformat a record.
The encrypted record must be no longer than the number of
characters specified for the maximum record length (MRL)
field in the FIT. When an encrypted record is read, it must
be restored to its original size and format by a decryption
routine. Because AAM considers compression/decom-
pression and encryption/decryption to be the same thing, the
following discussion is related to compression; encryption is
mentioned only where differences exist.

Two fields in the FIT are used to designate data compression
and decompression. The compression routine address (CPA)
field and the decompression routine address (DCA) field
specify the number of the system-supplied routine or the
address of a user-supplied routine. For data encryption/-
decryption, user-supplied routine addresses must be spec-
ified in the CPA and DCA fields.

The compression and decompression routines are called by
AAM with register Al pointing to the vector shown in
figure H-1. If the primary key is not embedded, the key
length parameter is zero. Embedded keys are restricted to
keys beginning in the first character position in the first
word of the record (word 0, character position 0).

The product of a compression or decompression routine is
the record produced by the routine. The destination area is
a special area set up by AAM to receive the product of the
routine.

The compression and decompression routines return either
the length of the product (in characters) or a negative
number of characters to indicate that the product is too
large for the destination area. A decompression routine that
produces a record too long for the destination area is the
same as a GET macro that reads a record larger than
expected by the caller; an error is generated and the record
is not transferred.

In contrast to a compression routine, a user-supplied
encryption routine could produce a longer record. The
record can be expanded up to the number of characters
specified for the maximum record length (MRL) field in the
FIT, The lenath of the destination area is always ten

Tiie e L8NGLNn O W€ Geduinalion iWays wen

characters greater than the value of the MRL field.

The compression routine must store an identifier in the first
word of the destination area. This identifier is verified
against the identifier stored in the FSTT for the file when
compression was first specified. The length of the product
of a compression routine includes the identifier length.

The format of the destination area is shown in figure H-2.
Words 2 through n are passed to the decompression routine.

When a file is opened on a creation run, the compression
address (CPA) field in the FIT is checked. If the value of
the field is zero, no data compression is performed during
the creation run; an error occurs if the decompression
routine address (DCA) field is set. A value greater than
zero in the CPA field sets the method of compression for
the life of the file.

If the CPA field contains the address of a user-supplied
compression routine, the address is the entry point of
the routine. The compression routine is called with a
dummy record in order to determine the identifier,
which is stored permanently in the COMPACT field in
the FSTT. The identifier can be anything other than a

(A1)—s| address of cell containing fwa of record
address of cell containing length of record (char)

address of cell containing rel word of start of
key

address of cell containing rel char pos of start of
of key

address of cell containing length of key
address of cell containing fwa of destination
address of cell containing length of destination

address of cell to contain length of product

Figure H-1. Vector Used by
Compression/Decompression Routines

60499300 A

zero word.
word 1 Identifier
word 2-m Key (If embedded) \
word m*-n
\ Record

*word m+1 if the key is a multiple of 10 characters. Word 2
if a non-embedded key.

Figure H-2. Destination Area Format

If the CPA field contains the 6-bit integer identifying a
system-supplied compression routine, the necessary
routines are loaded by the Fast Dynamic Loader (FDL),
the addresses are stored in the CPA and NDCA fields in
the FIT, and the identifier is stored in the COMPACT
field in the FSTT. The integer identifying the com-
pression routine is stored in the SYSCOMP field in the
FSTT.

When a file is opened after the creation run, the value of the
COMPACT field in the FSTT is checked to determine
whether or not compression and decompression are required.
If the field contains zero, no compression takes place. If the
COMPACT field contains a value greater than zero, the
SYSCOMP field is checked to determine the method of
compression.

If the SYSCOMP field contains a zero value, the
addresses in the CPA and DCA fields in the FIT are
used when compression or decompression is required.

If the SYSCOMP field contains a nonzeroc value, the
proper system routines are loaded.

The user is responsible for maintaining the correct entry
point addresses of user-supplied compression and decom-
pression routines for the CPA and DCA fields in the FIT. If
the CPA field is zero, compression is not performed on the
record.

When a system-supplied compression routine is specified, the
user is responsible for maintaining unchanged the entry point

addresses stored in the CPA and DCA fields by the system.
Compression can be turned off by the user by storing zeros
in the CPA fieid.

System-supplied compression routine number 1 compresses
strings of display coded blanks (55,), zeros(33;), and
colons (00,). An escape character, 72, (<), signals the
beginning of a compressed string. The character following
the escape character is divided into two parts: a two-bit
character code and a four-bit repeat count. The two-bit
character code is as follows:

00 724 Escape character (<)
01 338 Zero

10 008 Colon

11 558 Blank

The four-bit repeat count indicates the number of occur-
rences of the compressed character. The value of the
repeat count is three less than the actual number of
occurrences of the blank, zero, or colon; however, the
repeat count for the escape character (<) is one less than
the actual number of occurrences. Up to 18 occurrences of
the compressed character are compressed into two char-
acters. For example, 36 consecutive blanks are compressed
into four characters. Single and double occurrences of the
zero, colon, or blank are not compressed. A single
occurrence of the escape character causes an expansion:
one character for the < character to signal the beginning of
a compressed string and one character for the character
code and the repeat count.

60499300 A

¢
¢
|
¢
¢
¢
(

wiblin,

R R R

£ d

4

~~

(
(
(

AAM
defined 1-1
dynamic loading E-1
Actual key 2-4
Actual key files
block headers 2-5
checksum 2-4, 4-9
creation 4-9
data blocks 2-4
deleting records 4-10
file positioning 4-10
file statistics table 2-4
IXGEN utility 7-8
logical structure 2-4
open processing 4-9
overflow 2-4
overflow record header 2-5
overlap processing 4-10
physical structure 2-4
primary key 2-4, 4-9
read processing 4-10
replacing records 4-10
structure 2-4
write processing 4-10
Alternate key
index 2-10, 6-1
index file 2-10
initial indexed sequential files 4-1
IXGEN utility 7-8
MIPGEN utility 7-9
muitiple-index files 6-1
read processing 6-3
repeating group 6-1, 7-9

BAM 1-1
BCK field
FILE macro parameter 3-1
FIT structure D-5
BF'S field
buffer calculation 3-10
FILE macro parameter 3-1
FIT structure D-4
pooled buffer space G-1
user buffer space G-1
Block
defined 2-1
MBL field 3-5,D-5
size calculation 3-6
Buffer
allocation G-1
BFS field 3-1
calculation 3-10
close processing 5-1
ESTMATE utility 7-1
FLBLOK utility 7-2
FLUSHM macro 5-2
FwWB field 3-4, D-1
FWI field 3-4,D-5
open processing 5-4
pool limit 5-4
pooled buffer space G-1
usage G-1
user buffer space G-1

60499300 A

INDEX

BZF field
FIT structure D-6
GETNR macro 5-3
overlap processing 4-8
SEEK macro 5-6

CDT field
FILE macro parameter 3-2
FIT structure D-6
CF field
close processing 5-1
FIT structure D-3
Character set A-1
Checksum
actual key files 2-4, 4-9
BCK field 3-1, D-5
direct access files 2-6
extended indexed sequential files
data block 2-3
index block 2-3
initial indexed sequential files
data block 2-2
index block 2-2
CL field
FILE macro parameter 3-2
FIT structure D-4
T type records 2-9
CLOSEM macro
dynamic loading E-1
file processing 4-1
format 5-1
index file processing 6-5
Collating sequence
CDT field 3-2, D-6
DCT field 3-3,D-5
extended indexed sequential files 2-3, 4-5
initial indexed sequential files 2-1, 4-2
Common Memory Manager
buffer allocation G-1
dynamic loading E-1
CP field
FILE macro parameter 3-2
FIT structure D-4
T type records 2-9
CPA field
data compression H-1
FILE macro parameter 3-2
FIT structure D-6
open processing 5-4
CREATE utility 7-7
Creation run
actual key files 4-9
direct access files 4-11
extended indexed sequential files 4-5
initial indexed sequential files 4-2
multiple-index files 6-1
PD field 3-6, D-4
CRM 1-1
CRMEP control statement B-1
Cl field
D type records 2-7
FILE macro parameter 3-2
FIT structure D-4
T type records 2-9

Index-1

!‘
D type records home blocks 2-5, 4-11 '
Cl field 3-2, D-4 IXGEN utility 7-8
defined 2-7 key analysis utility 7-4
LL field 3-5,D-4 logieal structure 2-6
LP field 3-5,D-4 open processing 4-12 ‘
SB field 3-7, D-4 overflow 4-11
write processing 5-5 overflow blocks 2-5
Data block overlap processing 4-13
actual key files primary key 2-5, 2-6 "
defined 2-4 read processing 4-13 j
padding 3-3, 4-9 read-only processing 4-13
extended indexed sequential files replacing records 4-13, 5-5
defined 2-3 structure 2-5 ‘
FIT fields 4-6 synonym records 2-5, 7-4 g
FLBLOK utility 7-2 trace function 3-7
header 2-3 write processing 4-13 i
padding 2-3, 3-3 Directives ‘
record pointers 2-3 CREATE 7-7 |
initial indexed sequential files ESTMATE utility 7-2
defined 2-2 FLBLOK utility 7-2
ESTMATE utility 7-1 KYAN 7-4 t
FIT fields 4-2 RMKDEF 7-9, 7-10
header 2-2 DKI field D-6
padding 2-2, 3-3 DP field
MBL field 3-5, D- FILE macro parameter 3-3 m
Data compression FIT structure D-4
buffer allocation G-1 Duplicate key
CPA field 3-2,D-6 deleting records 4-5, 5-2
description H-1 DKI field D-6 : ‘
established by OPENM macro 5-4 POS field 4-4, D-5
system-supplied routine G-2 processing 4-4
Data decompression replacing records 4-5, 5-5
DCA field 3-2,D-6 DX field |
description H-1 end-of-data routine 4-1 g
Data decryption FILE macro parameter 3-3
DCA field 3-2, D-6 FIT structure D-3
description H-1 Dynamic loading E-1
Data encryption
CPA field 3-2,D-6
description H-1 ECT field
Dayfile control error processing B-1, B-2
DFC field 3-3,D-3 FIT structure D-3
error processing B-1 EFC field
DCA field error processing B-1
data decompression G-1 FILE macro parameter 3-3 i
FILE macro parameter 3-2 FIT structure D-3 &1
FIT structure D-6 EMK field
open processing 5-4 FILE macro parameter 3-3
DCT field FIT structure D-5 '
FILE macro parameter 3-3 End-of-data ‘ii
FIT structure D-5 DX field 3-3,D-3
DELETE macro GET macro 5-3
actual key files 4-10 routine 4-1
alternate key processing 6-4 End-of-information ‘;
direct access files 4-13 file positioning 4-3, 4-7
duplicate key processing 4-4 GET macro 5-3
extended indexed sequential files 4-8 ERL field p
format 5-2 error processing B-1, B-2 ‘;
initial indexed sequential files 4-5 FILE macro parameter 3-3
DFC field FIT structure D-3
error processing B-1 Error file 4
FILE macro parameter 3-3 EFC field 3-3,B-1 (
FIT structure D-3 error processing B-1 '
Direct access files Error messages
blocking 2-6 codes and descriptions B-4
chain 2-5 DFC field 3-3,B-1,D-3 (
checksum 2-6 EFC field 3-3,B-1,D-3
CREATE utility 7-7 key analysis utility 7-4
creation 4-11 Error processing B-1
deleting records 4-13 Errors t
file positioning 4-13 classes B-3
file statistics table 2-5 error exit 3-3,B-1
hashing 2-5 excess data 2-8, 5-3 -
hashing routine 4-11, 7-4 trivial error limit 3-3,B-1 (
Index-2 60499300 A &

£

=

(
(
(

ES field
error communication B-1
error condition processing B-2
FIT structure D-3
ESTMATE utility 7-1
EX field
error processing B-1, B-3
FILE macro parameter 3-3
FIT structure D-3
Extended indexed sequential files
checksum 2-3
collating sequence 2-3
creation 2-3, 4-5
data blocks 2-3
deleting records 4-8
file positioning 4-8
file statistics table 2-3
FLBLOK utility 7-2
FLSTAT utility 7-2
index block levels 3-6
index blocks 2-3
logical structure 2-3
major key processing 4-8
MIPDIS utility 7-10
MIPGEN utility 7-9
open processing 4-7
overlap processing 4-8
physical structure 2-3
primary key 2-3, 4-5
random processing 4-7
read processing 4-7
record pointers 2-3
replacing records 4-8
structure 2-3
Extended MIP (see Multiple-Index Processor)

F type records
defined 2-8
FL field 3-3, D-3
write processing 5-5

Fast Dynamic Loader E-1

FETCH macro 3-8

File
defined 2-1
limit 3-3
iogical structure 2-1
physical structure 2-1
specification 3-8

FILE control statement
format 3-8
OPENM macre 5-3
SETFIT macro 3-10
static loading E-1

File information table
consistency checks 5-4
creation 1-1, 3-1
dump to error file B-2
FETCH macro 3-8
FILE control statement 3-8
FILE macro 3-1
file processing 4-1
FITDMP macro B-2
macro parameter 5-1
numbering conventions 2-7
relationship to open processing 5-4
SETFIT macro 3-10
STORE macro 3-8
structure D-1

FILE macro
establish FIT 1-1
format 3-1
null parameters 3-1

60499300 A

File organization
defined 2-1
FO field 3-4,D-3
File statistics table
actual key files 2-4
direct access files 2-5
extended indexed sequential files 2-3
file processing 4-1
initial indexed sequential files 2-1
FIT (see File information table)
FITOMP macro B-2
FL field
F type records 2-8
FILE macro parameter 3-3
FIT structure D-3
Z type records 2-9
FLM field
FILE macro parameter 3-3
FIT structure D-5
Floating point key 4-1
FLSTAT utility 7-2
FLUSHM macro 5-2
FINF fieid
error processing B-1, B-2
FIT structure D-4
FO field
FILE macro parameter 3-4
FIT structure D-3
static loading E-1
FP field
alternate key processing 6-3
end-of-data processing 4-1
error processing B-2
extended indexed sequential files
major key processing 4-8
overlap processing 4-8
FIT structure D-1
GETNR macro 5-3
index file position 6-4
index file processing 6-6
initial indexed sequential files
major key processing 4-4
overlap processing 4-5
primary key list count 6-6
primary key list retrieval 6-7
SEEK macro 5-6
FPB field
alternate key processing 6-3
FIT structure D-5
FWB field
buffer calculation 3-10
FILE macro parameter 3-4
FIT structure D-1
pooled buffer space G-1
user buffer space G-1
FWI field
FILE macro parameter 3-4
FIT structure D-5

GET macro

actual key files
file positioning 4-10
read processing 4-10

alternate key processing 6-3

direct access files 4-13

extended indexed sequential files,
file positioning 4-8
major key processing 4-8
read processing 4-7

file processing 4-1

format 5-2

index file processing 6-5

Index-3

initial indexed sequential files
file positioning 4-5
major key processing 4-4
read processing 4-3

primary key list retrieval 6-7

GETN macro

actual key files
file positioning 4-10
read processing 4-10

alternate key processing 6-4

direct access files 4-13

end-of-data condition 4-1

extended indexed sequential files
file positioning 4-8
major key processing 4-8
read processing 4-7

file processing 4-1

format 5-2

index file processing 6-5

initial indexed sequential files
file positioning 4-5
major key processing 4-4
read processing 4-3

primary key list retrieval 6-7

GETNR macro

file positioning 4-8

file processing 4-1

format 5-2

major key processing 4-8

overlap processing 4-8

read processing 4-7

Hashing
defined 2-5
file storage allocation 2-6
routine
HRL field 3-4, D-4
key analysis utility 7-4
system-supplied 4-12
user-supplied 4-11
HB field
actual key file processing 4-10
FILE macro parameter 3-4
FIT structure D-4
HL field
FILE macro parameter 3-4
FIT structure D-3
T type records 2-9
HMB field
FILE macro parameter 3-4
FIT structure D-4
Home blocks
defined 2-5
direct access files 4-11
HMB field 3-4, D-4
OVF field 3-6, D-5
primary key 2-5
HRL field
direct access files 4-11
FILE macro parameter 3-4
FIT structure D-4

IBL. field
FILE macro parameter 3-4
FIT structure D-6
Index blocks
extended indexed sequential files
FIT fields 4-6
FLBLOK utility 7-2
levels 2-3
MBL field 3-5, D-5

I | DN
PaLling o-=

Index-4

Initial MIP (see Multiple-Index Processor)
Input/output status word 4.8, 5-6
Integer key 4-1

IP field

primary key 2-3

record pointer 2-4
initial indexed sequential files

checksum 2-2

ESTMATE utility 7-1

FIT fields 4-2

IBL field 3-4,D-6

levels 2-2

padding 2-2

primary key entry 2-2
IP field 3-4,D-6

Index file

buffer allocation G-1
extended MIP
block size 2-10, 6-1
file structure 2-10
MIPDIS utility 7-10
MIPGEN utility 7-9
primary key list structure 2-10
XBS field 3-8, D-5
file position 6-4
file processing 6-5
initial MIP
block size 2-10, 6-1
file structure 2-10
IXGEN utility 7-8
primary key list structure 2-10
NDX field 3-6, D-5
storage structure 6-1
XN field 3-8, 6-1, D-5

Initial indexed sequential files

checksum 2-2

collating sequence 2-1
creation 2-2, 4-2

data blocks 2-2, 4-2
deleting records 4-5
duplicate key processing 4-4
ESTMATE utility 7-1
file positioning 4-5

file statistics table 2-1
index block levels 3-6
index blocks 2-2, 4-2
IXGEN utility 7-8
logical structure 2-1
major key processing 4-4
open processing 4-3
overlap processing 4-5
physical structure 2-1
primary key 2-2, 4-1
random processing 4-4
read processing 4-3
read-only processing 4-4
replacing records 4-5
SISTAT utility 7-1
structure 2-1

trace function 3-7

write processing 4-4
3\

FILE macro parameter 3-4
FIT structure D-6

IXGEN utility 7-8

KA field

FILE macro parameter 3-4
FIT structure D-6
index file processing 6-6, 6-7

Key analysis utility 7-4
Key definition

KA field 3-4, D-6
1L fisld I-%, D-§

60499300 A

-, A A, A A

¢

-

=N

R

b d

-3

"

~

~

KP field 3-5,D-6
KT field 3-5, D-6
Key position
RKP field 3-7,D-6
RKW field 3-7, D-6
KL field
alternate key processing 6-3
extended indexed sequential files 4-7
FILE macro parameter 3-4
FIT structure D-6
index file processing 6-6
initial indexed sequential files 4-3
KNE field
alternate key processing 6-3
FIT structure D-5
index file processing 6-6
primary key list count 6-6
primary key list retrieval 6-7
KP field
FILE macro parameter 3-5
FIT structure D-6
index file processing 6-6
KR field
alternate key processing 6-3
FIT structure D-5
KT field
FILE macro parameter 3-5
FIT structure D-6

LDSET control statement
read-only processing
direct access files 4-13
initial indexed sequential files 4-4
multiple-index files 6-4
STAT option E-1
static loading
direct access files 4-13
initial indexed sequential files 4-4
multiple-index files 6-4
LFN field
FILE macro parameter 3-1, 3-5
FIT structure D-1
List-of-files F-1
LL field
D type records 2-7
FILE macro parameter 3-5
FIT structure D-4
field
D type records 2-7
FILE macro parameter 3-5
FIT structure D-4

[ln)
r

Macro
cading conventions 1-1
CLOSEM 5-1
DELETE 5-2
FETCH 3-8
FILE 3-1
FLUSHM 5-2
format 5-1
function 1-2
GET 5-2
GETN 5-2
GETNR 5-2
index file processing 6-5
OPENM 5-3
parameter default value 5-1
PUT 5-4
REPLACE 5-5
REWINDM 5-6

60499300 A

RMKDEF, extended MIP 6-1
RMKDEF, initial MIP 6-2
SEEK 5-6
SETFIT 3-10
SKIP 5-6
START 5-6
STORE 3-8
Major key
extended indexed sequential files 4-8
initial indexed sequential files 4-4
MKL field 3-5, D-4
multiple-index files
primary key list retrieval 6-7
range count retrieval 6-7
MBL field
FILE macro parameter 3-5
FIT structure D-5
home block size 4-11
MIP (see Multiple-Index Processor)
MIPDIS utility 7-10
MIPGEN utility 7-9
MKL field
FILE macro parameter 3-5
FIT structure D-4
index file processing 6-6
MNR field
D type records 2-7
FILE macro parameter 3-5
FIT structure D-3
MRL field
alternate key processing 6-3
D type records 2-7
FILE macro parameter 3-6
FIT structure D-3
index file processing 6-6
output file processing 4-1
R type records 2-8
T type records 2-9
U type records 2-9
Multiple-Index Processor
alternate key access 6-3
defined 1-1
extended MIP
block size 6-1
MIPDIS utility 7-10
MIPGEN utility 7-9
null suppression 6-2, 7-10
RMKDEF macro 6-2
sparse control character 6-2, 7-10
file updating 6-4
index file
count retrieval 6-6
positioning 6-4
primary key list retrieval 6-7
range count retrieval 6-6
range list retrieval 6-7
structure 2-10, 6-1
initial MIP
block size 6-1
IXGEN utility 7-8
read-only processing 6-4
RMKDEF macro 6-1

NDX field
alternate key processing 6-3
FILE macro parameter 3-6
FIT structure D-5
index file processing 6-5, 6-6
NL field
FILE macro parameter 3-6
FIT structure D-5
Null suppression 6-2, 7-10

Index-5

OC field
CLOSEM macro 4-1, 5-2
FIT structure D-4
SETFIT macro 3-10
OF field
FILE macro parameter 3-6
FIT structure D-3
OMIT parameter
FILE control statement 3-8
format E-1
ON field
FILE macro parameter 3-6
FIT structure D-5
OPENM macro
dynamic loading E-1
error processing 5-4
file positioning
actual key files 4-10
extended indexed sequential files 4-8
initial indexed sequential files 4-5
file processing 4-1
format 5-3
index file processing 6-5
ORG field
FILE macro parameter 3-6
FIT structure D-4
Overflow blocks
direct access files 2-5, 4-11
OVF field 3-6
Overflow records
actual key files 2-4, 4-10
direct access files
defined 2-5
file creation 4-11
OVF field 3-6, D-5
OVF field
direct access files 4-11
FILE macro parameter 3-6
FIT structure D-5

Padding
actual key files 3-3, 4-9
DP field 3-3, D-4
extended indexed sequential files
data block 2-3, 3-3
index block 2-4, 3-4
initial indexed sequential files
data block 2-2, 3-3
index block 2-2, 3-4
PD field
FILE macro parameter 3-6
FIT structure D-4
PKA field
alternate key processing 6-3
FILE macro parameter 3-6
FIT structure D-5
PM field D-5

DNC fiald
Mg i

duplicate key processing 4-4
FIT structure D-5
Primary key
actual key files
defined 2-4, 4-9
file updating 4-10
read processing 4-10
write processing 4-10
direct access files
defined 2-5
file updating 4-13
key position 4-11
read processing 4-13

Index-6

extended indexed sequential files
data block entry 2-3
data compression G-1
defined 4-5
embedded key 4-6
EMK field 3-3, D-5
file updating 4-8
index block entry 2-3
PKA field 3-6, D-5
read processing 4-7
write processing 4-7
initial indexed sequential files
data block entry 2-2
defined 4-1
duplicate keys 4-4
file updating 4-5
index block entry 2-2
read processing 4-3
write processing 4-4
Primary key list
count retrieval 6-6
extended MIP structure 2-10
initial MIP structure 2-10
ordering of keys 6-1, 7-9, 7-10
range count retrieval 6-6
retrieval of key values 6-7
PRU
defined 2-1
device 2-1
PTL field
FIT structure D-4
index file processing 6-6
primary key list retrieval 6-7
PUT macro
actual key files 4-10
alternate key processing 6-4
direct access files 4-13
extended indexed sequential files 4-7
file processing 4-1
format 5-4
initial indexed sequential files 4-4

R type records
defined 2-8
RMK field 3-7, D-4
write processing 5-5
RB field
FILE macro parameter 3-6
FIT structure D-5
RC field
alternate key processing 6-3
FIT structure D-4
index file processing 6-6
primary key list count 6-6
primary key list retrieval 6-7
Read-only processing
direct access files 4-13
initial indexed sequential files 4-4
multiple-index files 6-4
Record
data compression H-1
definition 2-1
mark 2-8, 3-7
maximum length field 3-6
minimum length field 3-5
type field 3-7
types 2-7
Register use 3-8, 5-1
REL field
alternate key processing 6-3
FILE macro parameter 3-6

60499300 A

(

-,

£ 3¢ B 0 DR O T N 0D k05t M UMM R MO i IS

.~

file positioning 5-7
FIT structure D-6
index file
count retrieval 6-6
positioning 6-4
primary key list retrieval 6-7
processing 6-5, 6-6
range count retrieval 6-7
REPLACE macro
actual key files 4-10
alternate key processing 6-4
direct access files 4-13
duplicate key processing 4-4
extended indexed sequential files 4-8
format 5-5
initial indexed sequential files 4-5
REWINDM macro
actual key files 4-10
direct access files 4-13
extended indexed sequential files 4-8
format 5-6
initial indexed sequential files 4-5
index file
positioning 6-5
primary key list retrieval 6-7
processing 6-5
range count retrieval 6-7
RKP field
alternate key processing 6-3
direct access file processing 4-11
extended indexed sequential files 4-7
FILE macro parameter 3-7
FIT structure D-6
index file processing 6-6
initial indexed sequential files 4-3
RKW field
alternate key processing 6-3
direct access file processing 4-11
extended indexed sequential files 4-7
FILE macro parameter 3-7
FIT structure D-6
index file processing 6-6
initial indexed sequential files 4-3
RL field
actual key file processing 4-10
alternate key processing 6-3
F type records 2-8
FIT structure D-3
index file processing 6-6, 6-7
U type records Z-9
Z type records 2-9
RMK field
FILE macro parameter 3-7
FIT structure D-4
R type records 2-8
RMKDEF directive
IXGEN utility 7-9
MIPGEN utility 7-10
RMKDEF macro
extended MIP
format 6-2
sparse keys 6-2
initial MIP
format 6-1
index file block size 6-1
RT field
FILE macro parameter 3-7
FIT structure D-3
static loading E-1

S type records 2-9
SB field
D type records 2-7
FILE macro parameter 3-7

60499300 A

FIT structure D-4
T type records 2-9
SEEK macro
actual key files 4-11
direct access files 4-13
extended indexed sequential files
major key processing 4-8
overlap processing 4-8
format 5-6
initial indexed sequential files
major key processing 4-4
overlap processing 4-5
SETFIT macro
dynamic loading E-1
FILE control statement processing 3-8
format 3-10
Signed binary key 4-5
SISTAT utility 7-1
SKIP macro
actual key files 4-10
end-of-data condition 4-1
extended indexed sequential files 4-8
format 5-6
initial indexed sequential files 4-5
index file
positioning 6-5
processing 6-5
range count retrieval 6-7
Sparse keys 6-2, 7-10
START macro
extended indexed sequential files
file positioning 4-8
major key processing 4-8
format 5-6
index file
count retrieval 6-6
positioning 6-4
primary key list retrieval 6-7
processing 6-5
range count retrieval 6-7
initial indexed sequential files
file positioning 4-5
major key processing 4-4
Static loading
FILE control statement E-1
LDSET control statement E-1
read-only processing 4-4, 4-13, 6-4
Statistics/notes
codes and messages B-16
DFC field 3-3, B-1, D-3
EFC field 3-3, B-1, D-3
STLD.RM macro E-2
STORE macro 3-8
Symbolic key
extended indexed sequential files
defined 4-5
major key processing 4-8
initial indexed sequential files
defined 4-1
major key processing 4-4
Synonym records 2-5
System-logical-record 2-1

T type records
CL field 3-2,D-4
CP field 3-2, D-4
Cl field 3-2,D-4
defined 2-9
HL field 3-4, D-3
SB field 3-7, D-4
TL field 3-7, D-4
write processing 5-5
TARGET G-1

Index-7

TL field
FILE macro parameter 3-7
FIT structure D-4
T type records 2-9
Trace function
dynamic loading E-1
TRC field 3-7, D-6
TRC field
FILE macro parameter 3-7
FIT structure D-6

U type records
defined 2-9
write processing 5-5
USE parameter
FILE control statement 3-8
format E-1

W type records 2-9

Working storage area
file processing 4-1
WSA field 3-1, D-4

Index-8

WSA field
FILE macro parameter 3-7
FIT structure D-4
index file processing 6-6

XBS field
alternate key processing 6-3
block size 6-1
FILE macro parameter 3-8
FIT structure D-5

XN field
alternate key processing 6-3
FILE macro parameter 3-8
FIT structure D-5
index file 6-1
static loading E-1

Z type records
defined 2-9
FL field 3-3,D-3
write processing 5-5

60459300 A

- ™ a4

R,

st B R L

e

S

-

A, —_—

(

~\ A

-~

CUT ON THIS LINE

C mes e e—

COMMENT SHEET

@ @ CONTROL DATA
CORPORATION
TITLE: CYBER Record Manager Advanced Access
Methods Version 2 Reference Manual

PUBLICATION NO. 60499300 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY"
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FNI N NN NNOTTFEN I INFQ ANN QTAPI E

STAPLE

FOLD

STAPLE

FOLD

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

CUT ON THIS LINE

a & a a

o~

-~ “!M

m w

4 PPN

-~ ®

~

~ N .

CONTROL DATA CORPORATION

TITLE: CYBER Record Manager Basic Access Methods . Publications and Graphics Division
Version 1.5 Reference Manual 215 MOFFETT PARK DRIVE

SUNNYVALE
PUBLICATION NO. 60495700 - CALIFORNIA 94086

REVISION D
DATE: March 31, 1978

REASON FOR CHANGE:

This revision reflects feature CP 091, CYBER Record Manager Basic Access Methods Version 1.5.

INSTRUCTIONS:

Discard the previous edition of this manual and replace with the attached.

o 4 Al et O N S AN DO O it i L

v W W W O W W VU W WV e €

~ o~~~

~ e~

LN

CYBER Record Manager Basic Access
Manual Title Methods Version 1.5 Reference Manual Pub. No. 60495700 Rev. D

As part of Control Data's continuing quality improvement program, we invite you to complete this questionnaire so
~~that you may have a more direct influence on the manuals you use.

Please rate this manual for each geheral and individual category on a scale of 1 through 5 as .follows:
1 - Excellent 2 - Good 3 - Fair 4 - Poor 5 -~ Unacceptable

1. Writing Quality D. 1 am interested primarily in
v : user guides designed to teach

e e 8ae o non-CDC equipment? -
IV, Miscellaneous

A. ' Technical accuracy the user about a product or
B. Completeness - certain capabilities of a product.
g C. Audience defined properly .
D. Readability ' - VI. We recognize that we have a wide
E. Under§taqdabi||ty variety of users. Please identify your
o F. Organization e primary area of interest or activity:
-, Examples A. Student
_ B. Applications programmer
A. Quantity C. Systems programmer i
B. Placement D. How many years programming
C. Applicability experience do you have?
D. Quality E.. . What languages
E. Instructiveness 1. Algol
2. Basic

I}, Format 3. Cobol

4. C '
A. Type size 5. Fg:\;paa:s .
B. Page density I 6. PLU/I i
C. Art work —_— 7 Other - -
D. Legibility -) EE—
E. Printing/Reproduction o F. Have you ever worked on

1. If yes, approximately
A. Index what percent of your
B. Glossary experience is on non-
CDC equipment?
V. Please provide a yes or no answer —
regarding manuals in general: 2. How do you rate CDC
manuals against other
A. | prefer that a manual on a software similar manuals using
product be as comprehensive as the 1-5 ratings.
Tm——— possible; physical size is of little (Example: XYZ Corp. 2
importance. means XYZ manuals are good
as compared to CDC manuals.)
B. | prefer that information on a Burroughs
software product be covered in DEC
several small manuals, each Hewlett-Packard
covering a certain aspect of the Honeywell
product. Smaller manuals with IBM
limited subject matter are easier NCR =
to work with. Univac
Other
C. | am interested primarily in
reference manuals designed for
JE———— . ease of locating specific B
information. ;

General Comments

ik ’ ' STAPLE %

FoLD |

.. FIRST CLASS
'PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL CEm——
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A. ' — =
S—— ;
POSTAGE WILL BE PAID BY — 8
CONTROL DATA CORPORATION — 3
Publications and Graphics Division f—— EE (.
215 Moffett Park Drive r——— ' L
Sunnyvale, California 94086 T (o
- E——— T { i
MW“-'—*"————--————-————-———--——-———————————-—m——-———-——-——‘—:ELE—— (
¢
¢
¢
¢
STAPLE STAPLE g

@ CONTROL DATA
CORPORATION

60495700

CYBER RECORD MANAGER
BASIC ACCESS METHODS
VERSION 1.5

REFERENCE MANUAL

oI o B tnne T e T T T - O O Y P N

I
~

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1

Y AN S T S

REVISION RECORD

REVISION DESCRIPTION |
A Original release.
(11-1-75)
B This revision reflects 7000 Record Manager as released under SCOPE 2.1.4: new features include FO53
(3/5/76) connected file flag. The revision also reflects CYBER Record Manager Version 1.4: new features
include DM 119 FILE control statement cancel; and DM 135 internal changes which do not affect this
manual. See the list of effective pages.
C This revision reflects CYBER Record Manager 1.4 at PSR level 452. All references to 7000 Record
(7-1-717) Manager have been eliminated.
D This revision reflects feature CP 091, CYBER Record Manager Basic Access Methods Version 1.5.
(3-31-78)

Publication No.

60495700

REVISION LETTERS I, O, Q AND X ARE NOT USED

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

©1975, 1976, 1977, 1978
Control Data Corporation or use Comment Sheet in the

Printed in the United States of America back of this manual

- n a a

(
«

-~ -

~ o~

LIST OF EFFECTIVE PAGES

Page

Revision

Cover

Title Page

ii thru viii

1-1 thru 1-3
2-1 thru 2-10
3-1 thru 39
4-1 thru 4-6
5-1 thru 5-7
6-1 thru 6-8
A-1 thru A4
B-1 thru B-10
C-1, C2

D-1 thru D-7
E-1, E-2

F-1

G-1

Index-1 thru -5
Comment Sheet
Return Env.

Cover

iPlvivivhvivivivlvivlvivlwlwlwlwil

60495700 D

Page

Revision

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page

Revision

iii/ive

VP @ W e W WY W W Y eaasw W e W W W W W W W w

m o~ o e

™ A

PREFACE

L

CYBER Record Manager Basic Access Methods (BAM)
Version 1.5 operates under control of the following operating
systems:

NOS 1 for the CONTROL DATA® CYBER 170 Models
171, 172, 173, 174, 175; CYBER 70 Models 71, 72, 73,
74; and 6000 Series Computer Systems.

NOS/BE 1 for the coc®cyBeER 170 Series; CYBER 70
Modeis 71, 72, 73, 74; and 6000 Series Computer
Systeins.

BAM input and output facilities are available to users of
COMPASS assembly language through macro calls; user
programs, COBOL, FORTRAN Extended, and Sort/Merge use

Publication

NOS/BE 1 Reference Manual

BAM for input/output operations. The user programs
communicate with BAM either through the compiler, using
the calls supplied within the languages, or with BAM macros.

Intended as a primary document for COMPASS program-
mers, this manual presents background information and
operational specifications for BAM. COBOL, FORTRAN
Extended, and Sort/Merge programmers can use this manual
as a source for BAM terminology and concepts; specific
language interfaces are detailed in the appropriate refer-
ence manuals. The user is assumed to be familiar with the
operating system at the installation, and with file
organization and manipulation.

Information necessary for a complete understanding of BAM
use is contained in the following publications:

Publication Number

60493800

60495700 D

NOS 1 Reference Manual, Volume 1
NOS 1 Reference Manual, Volume 2

CYBER Record Manager Advanced Access
Methods Version 2 Reference Manual

CYBER Record Manager Version 1
Guide for Users of COBOL Version 4

CYBER Record Manager Version 1
Guide for Users of FORTRAN Extended Version 4

CYBER Record Manager Version 1
User's Guide

Common Memory Manager Version 1
Reference Manual

COMPASS Version 3 Reference Manual

CYBER L.oader Reference Manual

CDC manuals can be ordered from Control Data Literature and Distribution

60435400

60445300

60499300

60496000

60495900

60495800

60499200
60492600
60429800

Services: 8001 East Bloomington Freeway, Minneapolis, MN 55420

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or

parameters.

v/vie

VW W W W WY W W W wveaw W W W W W W W W W ua

A

P Y

A

~

~

.

1

LYY o T L S S

CONTENTS

1. BAM FEATURES 1-1 Terminal File Processing 4-4
Word Addressable Files 4-5
References 1-1 Open Processing 4-5
File Organizations 1-1 Input/Output Processing 4-5
Macros 1-1 Input Processing 4-6
Output Processing 4-6
Close Processing 4-6
2. FILE STRUCTURES 2-1
Logical Structure 2-1
Physical Structure 2-1 3 MACROS >-1
File Organizations 2-2 Descriptive Conventions 5-1
Sequential Files 2-2 Macro Execution 5-1
Blaock Types for Sequential Files 2-2 g c_1
File Boundaries 2-4 pliiapii s
" CLOSEM 5-2
Word Addressable Files 2-6 ENDFILE 5.2
Record Types 2-6 GET 5.3
Decimal Character Count Type D 2-6 OPENM 5.3
Fixed Length Type F 2-7 PUT 5.4
Record Mark Type R 2-7 REPLACE 5.6
System Record Type S 2-7 REWINDM 5.6
Trailer Count Type T 2-8 SKIPdu 5.6
Undefined Type U 2-8 WEOR 5.6
Control Word Type W 2-8 WTMK 5'7
Zero Byte Type Z 2-10 -
3. FILE INFORMATION TABLE 3-1 6. LABEL PROCESSING 6-1

FILE Macro

FILE Control Statement
Run-Time Manipulation

L_abel Definitions 6-1
Standard Labe! 6-1
Nonstandard Label 6-1

Unlabeled 6-3

6-3
6-4
6-4

‘VJ\N\';J\N\N‘-N
0 00 0O~ O\ =

FETCH
STORE - Label Processing FIT Fields -
SETFIT - Declaring Label Type -
Standard Label Processing -
Input Tape User Processing 6-4
4, FILE PROCESSING 4-1 OPENM of Input Tape 6-4
CLOSEM of Input Tape File 6-4
Sequential Files 4-1 CLOSEM of Input Tape Volume 6-5
Open Processing 4-1 Output Tape User Processing 6-5
Input/Output Processing 4-1 OPENM of Output Tape 6-5
Input Processing 4-2 CLOSEM of QOutput Tape File 6-6
Output Processing 4-2 CLOSEM of Output Tape Volume 6-6
Processing 9-Track Binary S/L Tapes 4-3 Nonstandard Label Processing 6-6
File Positioning 4-3 Input File User Processing 6-6
Backward Skipping 4-3 Output File User Processing 6-6
Forward Skipping 4-3 User Labe! Processing Macros 6-7
Close Processing 4-3 GETL 6-7
End-of-Data Processing 4-4 PUTL 6-7
File Boundary Processing 4-4 CLOSEL 6-8
APPENDIXES
A Standard Character Set A-1 D File Information Table Structure D-1
B Error Processing and E Loading BAM E-1
Diagnostics B-1 F Use of List-of-Files F-1
c Glossary C-1 G File Interchangeability G-1
INDEX
60495700 D vii®

@
5
&
- -

i-i COMPASS Format i-3 3-6 SETFIT Macro Format 3-9
2-1 Logical Structure of a Sequential File 2-2 4-1 SKIPBu Pesitioning 4-3
2-2 Block Control Word Format for 5-1 CHECK and CHECKR Macro Formats 5-2
1 Type Blocks 2-3 5-2 CLOSEM Macro Format 5-2
2-2 C Type Block Structure 2-3 5-3 ENDFILE Macro Format 5-2
2-4 K Type Block Structure 2-4 5-4 GET, GETWR, and GETP Macro Formats 5-3
2-5 E Type Block Structure 2-4 5-5 OPENM Macro Format 5-4 ‘l
2-6 Logical Structure of a Word Addressable File 2-6 5-6 PUT, PUTWR, and PUTP Macro Formats 5-5 |
2-7 Numbering Conventions 2-7 5-7 REPLACE Macro Format 5-6
2-8 D Type Record Example 2-7 5-8 REWINDM Macro Format 5-6
2-9 R Type Record Example 2-7 5-9 SKIP Macro Format 5-6 mi
2-10 T Type Record Format 2-9 5-10 WEOR Macro Format 5-7 i
2-11 W Type Record Control Word Format 2-9 5-11 WTMK Macro Format 5-7
3-1 FILE Macro Format 3-1 6-1 Standard Label Tape Formats 6-1 i
3-2 FILE Control Statement Format 3-7 6-2 Unlabeled Tape Format 6-3 ‘ .
3-3 FETCH Macro Format 3-8 6-3 GETL Macro Format 6-7 ;
3-4 STORE Macro Format 3-8 6-4 PUTL Macro Format 6-7
3-5 STORE Macro Examples 3-8 6-5 CLOSEL Macro Format 6-8)
|
TABLES
1-1 CYBER Record Manager Macros 1-2 - FIT Consistency Checks 5-4 '
1-2 Macros and Related File Organizations 1-2 WEOR Processing 5-7
2-1 Block Type Usage 2-2 ANSI Standard Labels 6-2
2-2 Sequential File Boundary Conditions 2-5 Input File Labels Accessed at OPENM 6-5
2-3 End-of-Partition Boundaries 2-5 Input File Labels Accessed at CLOSEM 6-5 |
2-4 End-of-Section Boundaries 2-5 Input File Labels Accessed at CLOSEM m
2-5 End-of-Volume Boundaries 2-5 VOLUME (EQV) 6-5
2-6 Record Types and Length Descriptions 2-6 Input File Labels Accessed at CLOSEM
2-7 Record Type and Block Type Associations 2-6 VOLUME (BOV) 6-5 i
2-8 Processing for S Type Records 2-8 Output File Labels Written at OPENM 6-5 (
3-1 LFN and Ifn Interaction 3-1 6-7 Output File Labels Written at CLOSEM 6-6
3-2 Parameters for FILE Macro by File 6-8 Output File Labels Written at CLOSEM
Crganizaiion 3-2 VOILUME (EGV) 6-6
3-3 FILE Control Statement Parameters 3-7 6-9 Output File Labels Written at CLOSEM
4.1 System Files Forced Values 4-1 VOLUME (BOV) 6-6
(
(
@ viii 60495700 D i

P
[

©

-

LYY W S e S Y A

~

l I . T T

BAM FEATURES 1

BAM provides an interface between user programs and
system input/output routines. BAM subsystems exist in
NOS/BE and NOS operating systems.

BAM also provides:
Consistent error processing
Accommodation for various labeling conventions
Maintenance of different file organizations

BAM routines are used by some compilers and are available
for user programs. Use of BAM by compilers and user
programs extends input/output compatibility to both the
system and application program levels.

The primary task of BAM is record and block input/output
for files on supported devices. Consequently, the various
types of records, blocks, and file organizations must be
identified for BAM. These and other file characteristics
must be set by the user in a file information table (FIT).
The FIT is divided into fields that describe certain aspects
of the file. Refer to appendix D for the exact structure of
the FIT.

REFERENCES

The following terms are relevant to BAM and related
systems:
AAM (Advanced Access Methods)
A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple-Index Processor.
BAM (Basic Access Methods)
A file manager that processes sequential and word
addressable file organizations.
CRM (CYBER Record Manager)

Refers to CYBER Record Manager, a generic term
relating to both BAM and AAM as they run under
NOS/BE and NOS operating systems.

MIP (Multiple-Index Processor)

A processor that allows AAM files to be accessed
by alternate keys.

FILE ORGANIZATIONS

Two file organizations are supported by BAM:

Sequential (SQ)
Records are stored in the order in which they were
written.

Word addressable (WA)

A group of contiguous words comprise a file.
Records are accessed by a word number within the
file.

60495700 D

MACROS

A FIT is established for each file by a FILE macro
encountered at assembly time. This macro can contain the
file name only, or it can have user-specified parameters
describing a particular file. The FILE macro establishes the
FIT in the using program's field length at the point at which
it is called. FIT fields are assumed through default values
when they are not specified as parameters in macros. The
macros and functions are listed in table 1-1 according to
their associated purposes:

File creation and maintenance
File initialization and termination
Data transfer

File updating

File positioning

Boundary conditions

User label processing

The applicability of some macros depends on the file
organization established by the user. Table 1-2 presents
macros as applicable to sequential and word addressable file
organizations, the two supported by BAM.

This manual discusses macro properties and generalizes
processing whenever possible. However, explanations are
provided in section4 for each macro according to file
organization. Consequently, material is presented redun-
dantly for the benefit of a programmer who uses this manual
to reference particular features only.

Macro statements are coded in COMPASS format. Each
statement can contain a location field;, a macro name in the
operation field, a variable field, and a comment field. Any
field is terminated by one or more blanks. A macro
statement begins at character position 1 of an 80-column
card image and continues through column 72. Columns 73
through 80 are used for sequencing. Suggested coding
conventions are shown in figure 1-1.

The allocation of the columns in COMPASS format is as
follows:

1 Comma (continuation), asterisk (com-
ments line), or other (beginning of new
statements)

2 thru 9 Location field entry, left-justified

10 Blank

11 thru 16 Operation field entry, left-justified

17 Blank

18 thru 29 Variable field entry, left-justified

30 Beginning of comments

1-1@

TABLE 1-1. CYBER RECORD MANAGER MACROS

TABLE 1-2.

MACROS AND RELATED FILE
ORGANIZATIONS

Macro

File Organization

5Q wA

CHECK

CHECKR

CLOSEL

CLOSEM

ENOFILE

FETCH

FILE

GET

GETL

GETP

GETWR

OPENM

PUT

PUTL

PUTP

PUTWR

REPLACE

REWINDM

SETFIT

SKIP

STORE

WEOR

WTMK

X I XXX XIXIX XX XXX XIPXX]|X]XIX]X|X]|X]X]|X

Funciion Macro Actiion Taken
File creation | FILE Creates a file information
and table (FIT). In addition to this
maintenance macro, a FILE control state-
ment is available to supply
FIT information.
FETCH Retrieves the value of speci-
fied fields in the FIT.
STORE Sets values in fields of the
FIT.
SETFIT Sets values in fields of the
FIT with values supplied
through the FILE control
statement.
File OPENM Prepares a file for processing;
initialization initiates label processing.
.';md inati CLOSEM | Terminates file or volume
ermination processing; initiates label
processing.
Data GET Transfers data from a file to
transfer the working storage area.
PUT Transfers data from the
working storage area to a file.
CHECK Determines completion status
of input/output operations.
File REPLACE | Replaces a record in a file.
updating
File SKIP Repositions a file backward
positioning or forward.
REWINDM | Rewinds the current volume
to beginning-of-information
(BOI).
Boundary ENDFILE | Records a partition terminator.
conditions WEOR Records a section terminator.
WTMK Records a tapemark on a tape
file.
User GETL Retrieves the next label of a
isbel label string and delivers it to
processing the label area.
PUTL Writes or checks a label in
the label area.
CLOSEL Terminates label processing.

®].2

60495700 D

-~

N,

Location Operation Variable Comments
Field Field Field Field
Blank, asterisk, One or more spaces

comma, or first
character of
location ficld

Figure 1-1. COMPASS Format

60495700 D

P W W W W WY W W VW eaaw O W W W W W W W W w

3

i

“

.

ST,

_~

A A A A AN

FILE STRUCTURES 2

There is a hierarchical data structure in a progression from
the character level to the largest grouping of data, the file,
which can be contained on one or more volumes. The BAM
user can describe file structure by file organization (FO),
block type (BT), and record type (RT). This section presents
these structures. Additionally, many of the file information
table fields that must be set by the user are identified.
They are explained in detail in section 3.

LOGICAL STRUCTURE

The logical structure of a file is user-controlled. The
foliowing definitions describe terms used throughout this
manual that are applicable to the logical structure of a file:

Record

A record is a group of related characters. A
character is represented in six bits as internal
display code. A record or portion thereof is the
smallest collection of information passed between
BAM and the user. The user defines the structure
and characteristics of records within a file by
declaring a record format. The beginning and
ending points of a record are implicit within each
format. Records are grouped into files.

Section

A section consists of one or more records. Gener-
ally, a section is less than a partition and greater
than a record, but it can be identical to either or
both. A section begins with the first record after
the end of the preceding section; a section ends
when a special record or condition occurs. Only
sequential files are grouped into sections.

Partition

A partition consists of one or more sections.
Generally, it is less than a file and greater than a
section, but it can be identical to either or both. A
partition begins with the first record after the end
of the preceding partition; a partition ends when a
special record or condition occurs. Only sequential
files are grouped into partitions.

Block

A block can contain partial records or one or more
records. Block structure is interwoven with the
physical recording format; unlike other logical file
structure declarations, the block structure is trans-
parent in use. Blocks are constructed from the
records supplied by the user and the user is supplied
with records as required. The user is unaware of
block boundaries. Only sequential files are grouped
into blocks.

File

A file is a logically connected set of information; it
is the largest collection of information that can be
addressed by that file name. All data in a file is
stored between the beginning-of-information (BOI)
and the end-of-information (EOI). Label groups
are not considered to be part of file data in the
general case.

60495700 D

PHYSICAL STRUCTURE

The following definitions pertain to the physical means used
to record files:

Input/output device

Any storage medium supported by the operating
system.

Rotating mass storage (RMS)
Disk or disk pack.

Mass storage device

Disk, disk pack, or extended core storage (ECS).

Volume

A volume is a reel of magnetic tape with sequential
files. A file can be contained on more than one
volume and a volume can contain more than one
file,

Level number

A level number can range from 00 to 17, and is
physically recorded on a physical record unﬁ: (PRU)
device in an eight-character appendage to a short
PRU. A short PRU consisting only of the eight-
character level number appendage is called a zero-
length PRU. The appendage is neither created by
nor returned to the user. The level number value is
available in the FIT on some input operations and
can be specified by the user on some output
operations.

Physical record

A physical record is defined only on magnetic tape;
it consists of the data between interrecord gaps. A
physical record need not contain a fixed amount of
data.

S/L tape

S/L tape must be declared by the user. The
physical structure of a file on an S/L tape depends
entirely on the logical structures selected by the
user; no operating system structure is super-
imposed. Physical record size is limited only by
the buffer size on an L tape; physical record size
on an S tape cannot be greater than 5120 char-
acters. On S/L tapes, a block and a physical record
are the same.

PRU device

All mass storage devices and non-S/L tapes are
PRU devices; a physical structure is superimposed
over the user-declared file structure by the oper-
ating system on all files that reside on PRU
devices.

Physical record unit (PRU)

The smallest unit of information that can be
transferred between a peripheral storage device
and central memory. The PRU size is permanently

2-10

fixed for PRU devices; the PRU concept does not
apply to S/L tapes. PRU device sizes are:

Mass storage devices — 640 characters
Binary SI tapes — 5120 characters

Coded SI tapes —~ 1280 characters (supported
under NOS/BE only)

1tapes — 5120 characters (supported under
NOS only)

Short PRU

A short PRU contains less than the number of
characters defined for a PRU on a PRU device. An
eight character level number appendage is always
part of a short PRU.

System-logical-record

A system-logical-record is defined only on PRU
devices. It consists of a group of PRUs terminated
by a short or zero-length PRU. A system-logical-
record can be simulated on an S/L. tape by writing a
series of physical records of the same length as a
PRU, followed by a physical record of a length less
than a PRU and with a level number appendage.
However, because of the installation parameter
that defines noise (IP.NOISE=), no PRU smaller
than the installation definition or operating system
default can be written on an S/L tape. (The default
on NOS/BE is 8 characters; the default on NOS is
14 characters.)

BAM controls the physical file position while the user
controls only the logical file position. Physical and logical
positions are not guaranteed to agree after a given operation
unless S type records are being used.

FILE ORGANIZATIONS

BAM supports two file organizations: sequential and word
addressable. Once the file organization is set for a BAM
file, it must not be changed to an AAM file organization in
the same job step. It is possible that the AAM interface
routines are not loaded and that internal FIT fields have
been initialized based on the BAM file organization. The
following is a description of the structure of each organ-
ization and its applicable record and block types.

SEQUENTIAL FILES

Sequential files are tape-like in structure. Records are
placed in the order of presentation; physically, a record
follows the previous record. Given the location of one
record, the location of the next record is determined in
relation to the given record only. A sequential file can
extend across any number of volumes and can be accessed
sequentially only.

A sequential file can reside either on a magnetic tape or on
mass storage. Tape files, punch card or printer files, and
some mass storage files are classified as sequential. A mass
storage sequential file is not necessarily maintained
internally in sequential order by CIO; however, records are
presented to the user in sequential order. All sequential
files are blocked through the block type parameter speci-
fication, regardless of device type, except for S type
records.

The logical structure of a sequential file is shown in
figure 2-1. The physical structure of a sequential file is

shown under the discussion of the varicus block types.

®2-2

_- Beginning-of-Information
‘/
_ s \
Record 1
Record 2
Record 3
All intervening
> records belong
to the file
Record n)
\ End-of-Information

Figure 2-1. Logical Structure of a Sequential File

Block Types for Sequential Files

Sequential file blocking is, essentially, the concept of
compressing actual records into contiguous record groups,
thereby saving storage that would otherwise be wasted for
interrecord gaps. Blocks can be various types, as explained
in the following discussion. BAM supports four block types
identified as I, C, K, or E. These block types are applicable
to sequential files. A summary of block types and physical
recording formats is represented in table 2-1.

Internal Blocking Type I

1 type blocks begin with a block control word, which contains
block and record identification. Contents of the block
control word include a pointer to the first record beginning
in the block. I type blocks can contair only W type records.
Except for the last block of the section, partition, or file
which can be shorter; Itype blocks are always 5120
characters.

TABLE 2-1. BLOCK TYPE USAGE

Block Physical Recording Format
Type PRU Device S/L Tape
1 I block size is 5120 I block size is 5120
characters; section characters; last block
or partition is a in section, partition, or
single system-logical- | file can be shorter.
record.
C C block size is equal | C block size equals
to 0 (unblocked) or a | 5120 characters for
multiple of PRU size; | S tapes and a maximum
section or partition of the value of the BFS
is a single system- field minus two for L
logical-record. tapes; last block of
section, partition, or
file can be shorter.
K K blocking on PRU Each K block is written
devices is prohibited. | as a physical record.
E E blocking on PRU Each E block is written
devices is prohibited. | as a physical record.

60495700 D

s,

LY

*

L o SR N S Y S o o Y e T . U = .

.

L

A file with I type blocks can be recorded on either a PRU
device or an S/L tape. On a PRU device, a short I block is
recorded as a short PRU, which is the end of a system-
logical-record. On an S/L tape, Itype blocks are not an
allowable ANSI (American National Standards Institute)
interchange format because ANSI does not define W type
records.

The block control word format is shown in figure 2-2.
Blocks and records are numbered consecutively from 1. The
record number includes all records that are physically
present whether they are logically present or not. If no
record begins in the block, word offset and record number
equal zero. The block control word is word zero of the
block.

Character Count Block Type C

Each C type block contains the number of characters
specified by the value of the maximum block length (MBL)
field of the FIT; however, the last block of the section,
partition, or file can be shorter. Except for S type records,
records can span block boundaries as shown in figure 2-3.
C type blocks can contain any record type.

If the MBL field is not specified, the default values are set
as follows:

S tapes MBL.=5120 characters

L tapes MBL=value of the buffer size (BFS)
field minus two

PRU devices MBIL_=0 (unblocked)

If a value is specified for the MBL field, it can be a
maximum of 5120 characters for S tapes and a maximum of
the value of the BFS field minus two for L tapes. The most
efficient value of the MBL field for PRU devices is 0;
however, it can be set to a multiple of PRU size. If the
value specified is not 0 or a multiple of PRU size, the value
is rounded down to a multiple. The MBL field set to PRU
size facilitates parity error recovery for W type records
because a boundary condition would exist.

When record type is S and block type is C, any user value for
MBL is not changed for files on any device. S type records
cannot be biocked. On an S/L tape, one S type record is one

m Characters Block n
_} Logical Record j
m Characters Block n+1 _} Logical Record j+1
L—} Logical Record j+2
m Characters Block n+2

Figure 2-3. C Type Block Structure
tape block. The C type block on an S/L tape is not an

allowable ANSI interchange format because BAM does not
support the ANSI spanned record type.

Record Count Block Type K

For K type blocks, each variable-length block contains the
same number of records. Records cannot span blocks. The
last block of a partition or file can contain fewer than the
value specified in the number of records per block (RB) field
of the FIT. K type blocks are prohibited on PRU devices;
they are valid for S/L tapes only. K type blocks can contain
any type record except S or W type records.

Padding can be inserted when a K type block is written. The
three FIT fields concerned with padding are the padding
character (PC), the multiple of characters per block (MUL),
and the minimum block length (MNB). The value of the MNB
field takes precedence over the value of the MUL field.
Padding is inserted so that each biock, except possibly the
last one on a file or volume, is a multiple of MUL characters
and is at least the number of characters specified by the
value of the MNB field in length. The last block of a
partition can contain fewer than the number of characters
specified by the value of the MNB field; padding is not added
to the last block because the GET macro cannot distinguish
padding from a valid record.

When writing K type blocks, the value of the RB field of the
FIT is used to construct blocks of exactly that number of
records. When reading K type blocks, each block need not
be exactly the number of records specified by the value of
the RB field, because blocks are physically delimited and
boundaries are readily detected. However, if the RB field of
the FIT is set to a value less than the number of records

59 53 41 17 0
Flags Block Ordinal

T T (Mod 212) Record Number Word Offset

59 Parity bit, used to maintain odd parity within the control word.

58, 57 Reserved for CDC.

56 thru 54 Reserved for users.

53 thru 42 Ordinal of the current block (modulus 4096).

41 thru 18 Ordinal of the first record beginning in this block (modulus 224, if necessary).

17 thru O Word number of the control word of the first W type record in the block.

Figure 2-2. Block Control Word Format for I Type Blocks

60495700 D

2-3@

physically present, only the number of records specified by
the value of the RB field are returned to the working
storage area; other records physically present are assumed

to be padding and are not returned tc the working storage

ing ng siorage
area.

K type blocks are recorded as tape physical records. To
ensure that the last block in a file is interpreted correctly,
minimum record size should be greater than noise record
size, because it is possible for the last block to contain only
a single record.

The K type block is an allowable format for ANSI standard
tape interchange. The structure of a K type block is shown
in figure 2-4.

Record 1)
Record 2
Block n is
MNR characters
Record RB
Padding }
Record 1 \
Record 2
Block n+t is
MNR characters
Record RB
Padding)

last block in a file is interpreted correctly, minimum record
length should be greater than noise record size, because it is
possible for the last block to contain only a single record.

When specifying E type blocks with padding, the following
restriction must be observed or E type blocks can be
constructed in which padding cannot be distinguished from
data. The value of the MBL field minus the value of the
MNB field must be greater than the value of the MRL field
minus the value of the minimum record length (MNR) field;
and the value of the MUL field must be less than the value
of the MNR field.

The E type block is an allowable format for ANSI standard
tape interchange. E type block structure is shown in

figure 2-5.
Record 1
Record 2
Block is
<MBL
>MNB
Characters Record n
fti—
__________ Record n+1 will
not fit here, so
it goes into the
Record n+1 ‘ngx_t_block

Figure 2-4. K Type Block Structure

Exact Records Block Type E

Each E type block contains an integral number of records, as
many whole records as can be contained in the block size,
which is the number of characters specified by the value of
the maximum block length (MBL) field of the FIT. E type
blocks are prohibited on PRU devices; they are valid only for
S/L tapes. Any type record, except S or W type records, can
be contained in E type blocks.

The value of the minimum block length (MNB) field of the
FIT must not be greater than the value of the MBL field.
The value of the MBL field must be greater than the value
specified in the maximum record length (MRL) field of the
FIT.

Padding can be inserted when an E type block is written.
The three FIT fields concerned with padding are the padding
character (PC), the multiple of characters per block (MUL),
and the minimum block length (MNB). The value of the MNB
field takes precedence over the value of the MUL field.
Padding is inserted so that each block, except possibly the
last one on a file or volume, is a multiple of MUL characters
and is at least the number of characters specified by the
value of the MNB field in length. The last block of a
partition can contain fewer than the number of characters
specified by the value of the MNB field. To ensure that the

®2-4

Figure 2-5. E Type Block Structure

File Boundaries

The beginning-of-information is that point in a file before
which no data exists. The end-of-information is that point
in a file after which no data exists. Table 2-2 shows the
various file boundary conditions for sequential files.

Partition Boundaries

A partition begins at beginning-of-information or after a
preceding end-of-partition (EOP). A partition ends at end-
of-information (EOI) or on the occurrence of an end-of-
partition boundary. End-of-partition boundaries vary
depending on device, block type, and record type, as shown
in table 2-3.

Section Boundaries

A section begins at beginning-of-information, or after a
preceding end-of-partition, or after a preceding end-of-
section (EQS). A section ends at end-of-information, or end-
of-partition, or at the occurrence of an end-of-section
boundary. End-of-section boundaries vary depending on
device, block type, and record type, as shown in table 2-4.

60495700 D

1?

b

A OO 1 O O N G OO TN 0 A i

g
g

-

.

L

S type records are a special case for section identification.
Although an Stype record is defined to be a record
terminated by a short PRU of level less than 17, an S type
record is never considered to be a section. When S type
records are read, the file position (FP) field of the FIT is set
to end-of-record, never to end-of-section.

TABLE 2-2. SEQUENTIAL FILE BOUNDARY

Volume Boundaries

Volume boundaries are defined only on magnetic tape with a
sequential file. The user of such files can elect to ignore
volume boundaries or to be notified when volume boundaries
occur. A volume boundary has no necessary relationship to
any logical boundary and can occur at any point within a
file. The beginning-of-volume of the first volume is

CONDITIONS synonymous with beginning-of-information. Thereafter,
beginning-of-volume is located before the first data block on
second and subsequent volumes. An end-of-volume condition

Boundary exists when one of the conditions shown in table 2-5 occurs.
Device
Beginning-of-Information I End-of-Information
—
Mass Before the first record After the last TABLE 2-4. END-OF-SECTION BOUNDARIES
storage written. record written.
Labeled [Between the file header | Between the last Device Block | Record End-of-Section Boundary
tape label group and the first | record written and Type | Type
record written. the file trailer
label group. I W One-word deleted record point-
ing back to the last I block
Unlabeled | Between load point and Undefined. boundary; control word with
S/L tape |the first record written. EQS flags; terminate the
system-logical-record with
Unlabeled | Between load point and Between the last PRU level 0.
SI tape the first record written. record written and device
the file trailer Cc w Control word with EOS flags;
label group. terminate the system-logical-
record with level 0.
Unlabeled | Between load point and Undefined.
I tape the first record written. C | All but | Terminate the system-logical-
w record with level less than 17.
I w Zero-length deleted records to
TABLE 2-3. END-CF-PARTITION BOUNDARIES exceed neise record size; one-
word deleted record pointing
back to the I block boundary;
. m control word with EOS flags;
Device ?;:: R.?;s;d End-of-Partition Boundary s/L terminate the block.
tape C w Zero-length deleted records to
I w One-word deleted record point- exceed noise record size;
ing back to the last I block control word with EOS flags;
boundary; control word with terminate the block.
the EOP flag; terminate the
system-logical-record with C,K,E | All but | Terminate the block (undefined
PRU level 0. w on a read).
device
C w Control word with an EOP flag;
terminate the system-logical-
record with level 0.
C All but | Terminate the system-logical-
W | record with level 0; zero-length TABLE 2-5. END-OF-VOLUME BOUNDARIES
PRU with level 17.
I w Zero-length deleted records to Device End-of-Volume Boundary
exceed noise record size; one-
word deleted record pointing
back to the I block boundary; Labeled tape Between the last record on tape and
control word with an EOP flag; the volume trailer label group.
s/L terminate tfe block.
Unlabeled tape Between the last record on tape and
tape c W | Zero-length deleted records to the volume trailer label group (PRU
exceed noise record size; con- device only) or the first tapemark
trol word with an EOP flag; after the reflective spot (S/L tapes).
terminate the block.
Nonstandard Between the last record on tape and
C,K,E | All but | Terminate the block; tapemark. labeled tape the nonstandard end-of-volume label
w which is controlled by the user.
60495700 D 2-50

WORD ADDRESSABLE FILES

Word addressable files are mass storage files containing
continuous data or space for data. Words within the file are
numbered from 1 to n, each word containing 10 characters.
Data is read or written within the file starting at a word
specified by the word number, called the word address.

Reading beyond the current end-of-information limit is not
allowed. For writing, word addressable files are auto-
matically extended if the write results in an address beyond
the end-of-information. Word addressable files can be
accessed either sequentially or randomly by word address.
The user should recognize that a sequential read is valid only
if data is contiguous. The supplied word address for random
access points to a location in the file that is on a word
boundary; therefore, all records begin on a word boundary.

Although word addressable files must reside on mass storage
for processing, the COPYBR or COPYBF utility can be used
to copy a word addressable file to tape. The COPYBR
utility is preferable. Any level 17 information written by
the copy is ignored when the file is restored to mass storage
and a write is occurring. A read of level 17 written by the
copy utility returns an end-of-partition status.

Only W, F, and U type records are possible in word
addressable files. The logical structure of a word
addressable file is shown in figure 2-6.

/ Beginning-of-Information

Word 1

Word 2

Word 3 Word Addresses 1,2, .. .,n

Word n

<

End-of-Information

Figure 2-6. Logical Structure of a Word Addressable File

RECORD TYPES

BAM supports eight record types. The eight record types
and a corresponding explanation of their lengths are listed in
table 2-6.

The numbering conventions for describing a record or the
position of a control field in a recorq are summarized in
figure 2-7. All record lengths are specified by character
count. Values normally are unsigned positive decimal
integers.

The record types allowed for each block type are shown in
table 2-7. S type records are not blocked, but block type
can be set to C for compatibility with SCOPE 2 type files.

92-6

DECIMAL CHARACTER COUNT
TYPED

The record length for D type records is specified in a length
field located within the record. The two fields of the FIT
which specify the position of the length field are the iength
field beginning character position (LP) field, numbering
from 0, and the length field length (LL) field, which is the
number of characters in the length field, one to six
characters. The record length specified must be less than or
equal to the number of characters specified by the value of
the maximum record length (MRL) field of the lng.
Maximum record length that can be specified is 10(27"-1)
characters. The record length specified in the length field is
given as right-justified display code filled with zeros or
blanks. The LL field can be COMPUTATIONAL-1 if the C1
field of the FIT is set to YES, or it can be a sign-overpunch
field if the sign-overpunch (SB) field of the FIT is set to
YES.

TABLE 2-6. RECORD TYPES AND LENGTH
DESCRIPTIONS

Record Type Length Description
_

Decimal Character
Count (D)

Length is given as character count,
by the length field contained within
the record.

Fixed Length (F) Fixed length.

Record Mark (R) Terminated by a record mark char-

acter specified by the user.

System Record (S) | Length of the system-logical-record
depends on the PRU device; on an
S/L tape, one S type record is a

physical record.

Trailer Count (T) Fixed length header followed by a
variable number of fixed length
trailers; the header contains the

trailer count field.

Undefined (U) Length is defined by the user.

Control Word (W) Length is contained in a control

word prefixed to a record by BAM.

Zero Byte (2) Terminated by a 12-bit zero byte in
the low-order byte position of a

60-bit word.

TABLE 2-7. RECORD TYPE AND BLOCK TYPE

ASSOCIATIONS
Record Type
Block Type
FIDJ}R TlUjW]| Z S
=
I
C X | X | X1 X]X X | X
K X X X
E X X
60495700 D

L

a

.

P NP S U G S O P .

(
(
(
¢

LN

Word O

Word 1

Word n

01 2 345678901234

{Relative Character Position in Word)

(Character Number)

'4

01 23 456 7 8 910 111213 14 .

Record Length m + 1 Characters]

01 23 4546 7 89

Figure 2-7. Numbering Conventions

n
[=]
&

the first GETP or PUTP macro issued for a given record,
the minimum number of characters that can be transferred
is the value specified in the minimum record length (MNR)
field of the FIT. If the user does not supply a value for the
MNR field, the sum of the values of the LL field and the LP

field is used.

In the example in figure 2-8, the length field is three
characters beginning with character position 22. The

-minimum number of characters that can be transferred for a

partial read or write is 25.

LP—-‘

01 22 25 199
200

o
Length of
length field

-t 200 characters -

Figure 2-8. D Type Record Example

FIXED LENGTH TYPE F

Fixed length records are defined as records that are the
number of characters in length specified by the value of the
fixed length (FL) field of the FIT. All records in ﬁue file are

of equal size. Maximum record length is 10(2~"-1) char-
acters; minimum length is 10.
f= (FL) -

Any value in the record length (RL) field of the FIT is
ignored, and the number of characters specified by the value
of the FL field of the FIT are moved when a GET or PUT
macro is issued. A value must be supplied for the FL field
for the file to be successfully opened. No padding is
supplied on a read.

60495700 D

RECORD MARK TYPE R

The size of the record, which must be less than or equal to
the number of characters specified by the value of the
maximum record length (MRL) field of the FIT, is specified
indirectly by a special delimiting character that terminates
each record. The user specifies the delimiting character in
the record mark character (RMK) field of the FIT. The
same delimiting character is used for each record in the file.
This character can be any Hﬁaracter of the character set.
Maximum record length is 2~ -1 characters.

For a file read, if the delimiting character is not found in
the first number of characters specified by the value of the
MRL field, that number of characters is moved to the
working storage area and an excess data error is given. For
writing, if the delimiting character is not found in the first
number of characters specified by the value of the MRL
field, no data is written to the file and an excess data error
is given.

In the example in figure 2-9, MRL=120 and RMK=628. The
characters are read up to the record mark character.

Record mark character

|

-

]

|t MRL characters maximum (120) _——l

Figure 2-9. R Type Record Example

SYSTEM RECORD TYPE S

On PRU devices, each record is a system-logical-record
occupying an integral number of central memory words. On
S/L tapes, each record is a tape physical record. The
differences in processing of S type records for S/L tapes and
PRU devices are shown in table 2-8.

S type records are regarded as word-oriented. When
physical blocks are being read from S/L tapes, however, the
record length (RL) field of the FIT represents the actual
number of characters in the block. For all other cases, the
value of the RL field represents the record length rounded
upward to a multiple of 10.

2-7@

An S type record can be created by executing one PUT
macro, a series of PUTP macros with a terminating WEOR
macro, or a PUTP macro with a TERM parameter. When the
WEOR macro is used after a PUTP, level numbers 0 through
16 can be written to terminate the record. Use of levels
other than O is discouraged, however. If a series of PUTP
macros is followed by a PUT, the record written through the
PUTP macro is terminated and a new record to satisfy the

TABLE 2-8. PROCESSING FOR S TYPE RECORDS

Specification PRU Device S/L Tape

Block type Bleck type is ignored. |Block type is ignored.
Every logical record
is one physical record.

Maximum MBL is forced to MBL must be speci-

block length | PRU size of the fied by the user and

device. must be greater than
MRL.
Record RL is rounded up to | RL specifies the
length an integral number Jnumber of char-
of central memory acters read or
words. written.
PUT One system-logical- |One physical record

record of length RL is | of length RL is
written, terminated {written (no level
by a level 0. number).

PUTP PTL characters are PTL characters are
moved into the moved into the
buffer (maximum of |buffer {maximum of
RL if specified). RL if specified).

WEOR Terminate the Terminate the
current record and current physical
system-logical- record.

record and write a
level O through 16.

MRL must be less
than MBL.

Maximum MRL=0 allows any
record lengthj length record; if
MRLA0 and the rec-
ord exceeds MRL,,
an error is given.

GET MRL must be large
enough to contain enough to contain
the entire system- the physical record.
logical-record. If the|lf the record exceeds
record exceeds MRL, | MRL, an excess
excess data error is | data error is given.
given.

MRL must be large

GETP PTL characters, or PTL characters, or
the number of char- | the number of char-
acters remaining in | acters remaining in
the record, are the record, are
moved from the buf- | moved from the buf-

fer to WSA. fer to WSA.
ENDFILE Terminate current Terminate the
system-logical-record| current physical
and write level 0. record. Write a
Write a zero length | tapemark,
PRU with level 17.
028

PUT macro is begun. A user specified value for the RL field
causes the current record to be terminated when the number
of characters specified has been written.

A file with unknown format can be specified as having
S type records to have a value returned to the RL field after
each read; an S tape should be specified on a REQUEST
statement (unless the format is known to be SI or I).

TRAILER COUNT TYPE T

T type records consist of a fixed-length base and a variable
number of fixed-length trailer items. A count field in the
fixed-length base specifies the number of fixed-length
trailer items appended to each record. The value recorded
in the count field can be display code, right-justified, and
zero or blank filled. The fields of the FIT that must be
specified for T type records are:

The length of the fixed-length base in the header length
(HL) field

The length of fixed-length trailer items in the trailer
length (TL) field

The trailer count beginning character position (CP)
field, numbered from 0

The count field length (CL) field, one to six characters

The value of the CL field can be COMPUTATIONAL-1 if the
C1 field is set to YES, or be a sign-overpunch field if the
sign-overpunch (SB) field of the FIT is set to YES. The
value of the CP field plus the value of the CL field must be
less than or equal to the value of the HL field. The value of
the HL field must be less than or equal to the value of the
MRLl.;ield. Maximum record length that can be specified is
10(2~'-1) characters. The logical structure of a T type
record is shown in figure 2-10.

UNDEFINED TYPE U

This format permits processing of any record type not
provided by BAM. The user must supply a value for the
record length (RL) field of the FIT for each GET and PUT.
The value of the RL field must be less than or equal to the
value specified by the maximum record length (MRL) iifld'
Maximum record length that can be specified is 10(27"-1)
characters.

The RL field of the FIT is altered at the completion of a
GET only if an end-of-data_has been detected before the
number of characters specified by the user in the RL field
has been read. The value of the RL field indicates the
number of characters transferred.

To read a file with unknown format, an S tape on a
REQUEST statement should be specified (unless the format
is known to be SI or I tape), and S type records should be
specified to have a value returned to the RL field of the FIT
after each read.

CONTROL WORD TYPE W

A W type record is any length less than or equal to the
number of characters specified by the value of the maximum
record length (MRL) field of the FIT beginning at a word
boundary (bit 59 of the word). A record is represented in the
file as an integral number of central memory words,

60495700 D

LY

o R R R T TG N0 N OSSN ML AN AN A0 O 5 SO

L

(

prefixed with a record control word supplied by BAM in the
format shown in figure 2-11. The control word is written at
all block boundaries.

The RL field of the FIT (or the PTL field if a record is
written in pieces) must be specified for writing; when
reading, the value of the RL field is determined by looking

value of the RL field are returned to the working storage
area on a read. The contents of any unused bits in the last
word returned are undefined.

To insure that a tape file with W type records can always be
closed, the length of a noise record should be less than 10
characters. W type records cannot be used with E or K type

(at the control word. Only the characters specified by the blacks.
. x . n Trailers of length TL
—~=—count field —w=
H
n : e o o
- ;
A
‘r' —t——— CL ——»i -— TL -»i l--— TL —
—
cpP 1 o o o n
0 HL o
(Total length
) HL+(n*TL) -
(Figure 2-10. T Type Record Format
‘ 59 56 53 43 41 23 17 0
pifld]r Reserved |WCR Previous Unused Word
(Flags Size Bits Count
59 Parity bit. Used tc maintain odd parity within the control word.
58 Flag bit, lUsed in combination with the delete bit to signal the end-ofsection or partition.
Word count must be zero. The values are:
4
1 1 End-of-section
1 0 End-of-partition
(0 1 Deleted record
A 0 0 Normal record
57 Delete bit. A record, in whose control word this bit is set, is considered to be logically
r 4 deleted from the file; the record is not passed to the user when the file is read. See the
% flag bit explanation.
56 thru 54 Reserved for users.
(53 thru 44 Reserved for CDC.
43 thru 42 W-continuation record flags. The values are:
C 8 @
0 0 Complete record
0 1 First piece of W-continuation record
“ 1 0 Middle piece of W-continuation record
- 1 1 Last piece of W-continuation record
r 41 thru 24 The size of the previous record in central memory words including the control word for
(‘ the record (needed for backspacing). This field is zero if there are no previous records.
) 23 thru 18 Number of rightmost unused bits in the last word (0<bits<59).
(‘ 17 thru 0 Number of central memory words necessary to contain the record, not including the
‘ control word {word count decimal <217-2}. If the W-continuation record (WCR) flag
is nonzero, the word count refers to only a part of the record.
(“ Figure 2-11. W Type Record Control Word Format
(60495700 D 2-90

»

ZERO BYTE TYPE Z

Each record is terminated by a 12-bit byte of zeros in the

iow-order position of the iast word in the record. The fuii

length (FL) field of the FIT must be specified for Z type

records. 7 The value of the FL field can be between 1
1)

and 10(27"-1).

When a record is read, the zero byte is stripped from the
record and blank padding is added to fill the working storage
area to (FL+9)/10 words. When Z type records are being
read and a zero byte terminator is not found within FL/10+1
words, an excess data error is returned. However, the
examination of subsequent characters continues until the
first terminator is encountered or a file boundary is reached.
If the end-of-information is encountered before the zero
byte is found, it is possible the file did not contain Z type
records. At the conclusion of a read operation, the RL field
of the FIT is set to the number of user characters read, not
including blank padding.

When a record is written and the value of the RL field is not
zero, the end of the record is determined by searching
backwards from the character position specified by the
value of the RL field for the first nonblank character. The

®2-10

zero byte is added in the nearest

Binary zero-fill is done from the last

to the zero byte.

When a record is being written and the value of the RL field
is zero, the end of the record is determined by searching
backwards from the character position specified by the FL
field. When a nonblank character is found, the zero byte is
added in the nearest appropriate position. Binary zero-fill is
done from the last significant character to the zero byte. If
a nonblank character appears in the low-order position of
the last word, the record written to the device is one word
larger than the physical size of the record in the working
storage area, because the nearest appropriate position for
the zero byte is in the low-order 12 bits of the word past the
character position specified by the FL field. The record on
the output device is larger than the value specified in the FL
field, but memory is not altered beyond the number of
characters specified in the FL field.

If the last character of the record being writtenis : or %,
one blank is appended. If, as a result, the last word of the
record contains nine characters, a zero is added to fill out
the word and an additional zero word is appended. Z type
records give indeterminate results and should not be used on
coded 7-track S/L tapes.

60495700 D

¢

i,

EEET

V8 R R RN S

S S SO MR O OO M OO A UL A SR 0 S

AR Y -~ FLY

- e e e

n

FILE INFORMATION TABLE 3

A file information table (FIT) is required for all files.
Information in this table defines the file and how it is
accessed. The FILE macro and FILE control statement are
used to create and update the FIT. The FILE macro
assembles a FIT in the COMPASS program where the macro
is encountered. Pertinent information from the FILE
control statement is saved until OPENM time. When the file
is opened, the saved information is stored into the FIT and
takes precedence over any corresponding preexisting infor-
mation. A blank FIT, except for addressing information and
logical file name, could be set up in the user program with
definition of file characteristics deferred until the file is
opened.

Fields in the FIT can be changed using the STORE macro or
the FILE control statement. The user identifies the fields
by the keywords of the FILE macro. Fields in the FIT can be
retrieved using the FETCH macro and the keywords of the
FILE macro.

Macro requests for file operations can result in amendment
of the FIT fields. Certain macro operands are stored in FIT
fields prior to performance of the request, and values in FIT
fields can be stored as a result of processing the request.
Also, certain fields in the FIT are maintained to reflect the
current state of the file.

FILE MACRO

The FILE macro constructs the file information table at the
address where the macro is encountered during asseinbly;
the FIT must bYe built before the file is opened. The macro
conforms to COMPASS cading conventions. The format of
the FILE macro is shown in figure 3-1. The interaction
between Ifn and LFN=axxxxxx is shown in table 3-1.

The FILE macro does not check fields for validity or
consistency. Fields exceeding the maximum specified sizes
are truncated; assembler warning messages are produced.

[fn] FILE [LFN=axxxxxx] [,keyword=option, . ..]

Ifn Symbolic address where the FIT is assembled
in the COMPASS program, and logical file
name by which the file can be referenced if
the LFN=axxxxxx is absent or the same

name.

LFN FIT field mnemonic for logical file name; it
must be specified with axxxxxx if Ifn is
absent.

AXXXXXX Logical file name by which the file can be

referenced, and symbolic address where the
FIT is assembled in the COMPASS program
if Ifn is absent.

keyword Symbolic name of the FIT field.

option Selected option of the FIT field.

Figure 3-1. FILE Macro Format

60495700 D

Misspelled or unrecognizable parameters generate null
parameters, and the fields they reference are set to zero.
Null parameters are ignored. Warning messages are
generated when overlapping fields are specified.

The FILE macro should specify the file organization
mnemonic. Any parameter not applicable to that file
organization is ignored and an error type 4 message is
generated during assembly.

The values specified for the other FILE macro parameters
are assembled into the FIT; they can be specified in any
order. Table 3-2 shows which FILE macro parameters are
applicable to each file organization. An X indicates
appropriate file organizations. (Note that the numbers
appearing in parentheses are explained at the end of the
table.) A detailed explanation of each FIT field which can
be specified by the FILE macro parameters follows:

ASCII ASCII character set bits for INTERCOM
terminals.

Absent or ASCII =0

64 character display code.

ASCII=1

55 character ASCII subset.

ASCIi=2
128 character ASCIL.

BBH Buffer below highest high address. Refer to
appendix £ for a discussion of the BBH field and
loading BAM.

Absent or BBH=NO
Buffer is not below the highest high address.

BBH=YES
Buffer is below the highest high address.

TABLE 3-1. LFN AND [fn INTERACTION

COMPASS Contents of

Statement Location First Word

Value of FIT (Ifn)
A FILE A A
FILE LFN=A A A
A FILE LFN=A A A
A FILE LFN=B A B

3-10

TABLE 3-2. PARAMETERS FOR FILE MACRO

BY FILE ORGANIZATION

TABLE 3-2. PARAMETERS FOR FILE MACRO
BY FILE ORGANIZATION (Cont'd)

®3-2

FILE File Organization
Macro
Parameters | Sequential (5Q) | Word Addressable (WA)
OF X
PC X
PD X X
RB <)
RMK &
RT X X
B (2X4)
SBF X X
SPR X
T 2
ULP X
VF X X
WSA X X
Notes:

1. Length in words

2. T type records only

3. F and Z type records only
4. D type records only

5. K type blocks only

6. R type records only

FILE File Organization
Macro
Parameters | Sequential (SQ) § Word Addressable (WA)
ASCII X
B8BH X X
B8FS Ny Bey
BT b3
CF X X
CL X(Z)
CM X
CNF X
cp 2
c1 L2X8)
DFC X X
DX X X
EFC X X
EO X X
ERL X X
EX X X
FL 3 L3
FO X X
FwB X X
HL {2
LA X
LBL X
LFN X X
LL &)
LP &)
LT X
LX X
MBL X
MNB X
MNR X
MRL X X
MUL X

BFS

BT

Buffer size in words.

Absent or BFS=0

BAM provides the buffer space if necessary;
the first word address of the buffer (FWB)
field is set to point to the first word address
of the space obtained,

spac

BF S=aexp

Buffer size; maximum 217-1, or 131000
words. User specififg in words. A practical
limit for BFS is (27°/10) - 1, or 26200, be-
cause this is the largest single move that can
be processed.

Block type for sequential files; tapes are always
blocked.

Absent or BT=I
Internal, block recovery control word; I type.

60495700 D

(
¢

-a 5B S S A

BN

P WY Y N N W

e R bR T RE T D00 S R i s R SISO 00

&

~

A~

L e S cmhamae. SN SRV W

N

n

£

CF

CL

C™M

CNF

CP

BT=C

Character count in characters per block; C
type.

BT=K

Record count, m records per block; K type.

BT=E
Exact record count; E type.

Close flag. File positioning at CLOSEM time.

Absent or CF=R
Rewind

CF=N

No rewind
CF=U

Unload
CF=RET

Return; rewind and unload

CF=DET

Detach; no rewind

CF=DIS

Disconnect terminal file
Count field length of a T type record.

Absent or CL=0

No trailer count field defined.

Cl.=aexp

Length in characters of the trailer; maxi-
mum 5.

Converison mode.

Absent or CM=NO
No conversion.
CM=VYES

Conversion between external and internal
code for sequential tape files.

Connect file flag.
Absent or CNF=NO

Norinal file input/output.

CNF=YES

Teriminal file.

Trailer count beginning character position of T
type record.
Absent or CP=0

Beginning character position is zero.

CP=aexp

Beginning character position, nl.ul'nbered from
zero on the left; maximum 10(27 " -1).

60495700 D

Cl

DFC

DX

EFC

EO

COMP-1; format for the length field for D and T
type records.

Absent or C1=NO
Field is display code.

Cl=YES
Field is binary (COBOL COMP-1).

Dayfile control.

Absent or DFC=0

Except for fatal errors, no dayfile messages
are written.

DFC=1

Error messages are written on the dayfile.
DFC=2

Notes are written on the dayfile.
DFC=3

Errors and notes are written on the dayfile.

End-of-data exit routine address. The system
stores a jump at the first address of the routine
and control passes to the first executable state-
ment, which is routine+l.

Absent or DX=0
No routine is specified.
DX=exp

Address of the routine to be entered when an
end-of-data condition occurs.

Error file control.

Absent or EFC=0

No error file messages are written.

EFC=1

Error messages are written on the error file.
EFC=2

Notes are written on the error file.
EFC=3

Errors and notes are written on the error file.
Error option for parity error processing.

Absent or EO=T

Terminate the file.
EC=D

Drop bad data.
EO=A

Accept bad data.

EO=TD

Terminate the file and display the block
containing the parity error on error file
ZZZZZEG.

3-3@

ERL

EX

FL

FO

FwB

HL

®3-4

EQ=1DD
Drop bad datz and display the black con-
taining the parity error on error file
LLLLLEG,

EO0=AD

Accept bad data and display the block con-
taining the parity error on error file
ZZZZZEQG.

Trivial ercor limit.

Absent or ERL=0
No trivial error limit; an indefinite number of
trivial errors is permitted.

ERL=aexp
Maximum number of trivial errors allowed

before a fatal error occurs; maximum 511.

Error exit routine address. The system stores a
jump at the first address of the routine and
control passes to the first executable statement,
which is routine+l1.
Absent or £X=0
No routine is entered if an error occurs,
control is returned to the user's in-line code.
EX=exp
Address of the error exit routine to be
entered when an error occurs.

Fixed length for F type records; full length for Z
type records.
Absent or FL=0

Must e defined for open.

Fl=aexp

Record length in chari(iters for F type
records, 10 through 10(2 -1). For Z type
records, | through 10(2~'-1); establishes the
upper limit of characters or blank padding
moved to the working storage area.

File organization.

Absent or FO=5Q
Sequential file

FO=WA

Word addressable file
First word address of the buffer. If FWB is not
provided by the user, the minimum buffer needed
or the amount specified by the BFS field is
provided.
Absent or FWB=0

No user-supplied buffer.

FWB=exp
Address of the buffer.

Header length; length of the fixed length portion
of a T type record.

LA

LBL

LFN

LL

LP

LT

LX

Absent or HL=0
Must be defined for open.
HL=aexp

Header length in characterf] cannot be less
than CP+CL; maximum 10(27"-1).

Label area address.

Absent or LA=0
No area specified.

LA=exp

First word address of the iabel area.
Label area length.

Absent or LBL=0
No label area length specified.

L.BL=aexp

Length in characters; maximum 900.
Logical file name.

LFN=axxxxxx

axxxxxx is a one- to seven-character name
beginning with a letter.

I_ength field length of a D type record

Absent or LL=0
Must be defined for open.

LL=aexp
Length in characters; maximum 6.

Beginning character position of the length field
for a D type record.

Absent or LP=0

Beginning character position is zero.

LP=aexp

Beginning character position nku}nbered from
zero on the left; maximum 10(27"-LL-1).

Label type.

Absent or LT=UL
Unlabeled

LT=S
ANSI standard

LT=NS
Nonstandard

LT=ANY
Any

Label routine exit.

Absent or LX=0

No user label processing routine supplied.

60495700 D

A,

2t

i R N1 S O 0 55 M O OO MU 8 O 0 MU0 O A0 S5 o 0 WS

@

4

L

(

(
(
(
(
(
(
(
(
(
{
(
(
(

¢
(
(
(

4

LX=exp
Address of the user-supplied label processing
routine.
MBL Maximum block length in characters; should not
be changed after OPENM.
Absent or MBL=0
The default depends on block type:
BT=K error
BT=E error
BT=l MBL forced to 5120
BT=C MBL forced to 5120 characters for S
tapes and BFS minus two for L
tapes; PRU devices considered
unblocked
MBL =aexp
Length of data block in characters. For K
and E type blocks with Z type records, MBL
must not be less than FL +10. For [type
blocks, any MBL. is overridden.
MNB Minimum block length for sequential file K and E
type blocks.
Absent or MNB=0
No minimum block length specified.
MNB=aexp
Minimum block length in characters; maxi-
mum MBL.
MNR Minimum record length of sequential fiie records.
Absent or MNR=0
Minimum length is zero.
MNR =aexp
Minimum record length in characters;
maximum MRL.
MRL Maximum record length of D, R, T, U, and W type
records.
Absent or MRL=0
No maximum record length; any record length
is acceptable for PUT. No data is moved for
GET.
MRL=aexp
Maxir?um length in characters; maximum
10(27°-1). Establishes the upper limit of
characters moved to the working storage
area.
MUL Multiple of characters per block in which sequen-
tial file K and E type blocks are written.
Absent or MUL=0
Characters per block is a multiple of 2.
MUL =aexp
Characters per block is a muiltiple of aexp;
maximum 63.
60495700 O

OF

PC

PD

ol
o]

RMK

RT

Open flag. File positioning at OPENM time.

Absent or OF =R
Rewind.
OF=N
No rewind.
OF=E

Position at end-of-information for extend.

Padding character for sequential file K and E type
blocks. Specified in display code. PC must not be
the same as the record mark character.

Absent
Padding character is 768.

PC=ccB
Padding character is octal value cc; maxi-
mum 778.

Processing direction.

Absent or PD=INPUT
Input (read).

PD=0OUTPUT
Output (write).

PD=IO
Input-output (read and write).
Records per biock in a sequential file K type
block.
Absent or RB=0
RB set to 1.

RB=aexp

12

Blocking factor limit is 27~ 1,

Record mark character in display code. Used as
the delimiting character with R type records.
RMK must not be the same as the padding
character.

Absent or RMK=0
Record mark is 628'

RMK=ccB
Record mark is octal value cc; maximum 778'

RMK=1Rx
Record mark is x; any character.

RMK=cc

Record mark is decimal value cc; maxi-
mum 63.

Record type.

Absent or RT=W
Control word

3-50

S8

SBF

SPR

TL

uLpP

®3-6

RT=R

Record mark
RT=Z

Zero byte type
RT=D

Decimal character count
RT=T

Trailer count
RT=U

Undefined
RT=S

Systein-logical-records

Sign overpunch; COBOL sign overpunch option for
the length field for D and T type records.
Absent or SB=NO

Unsigned display code.

SB=YES

Sign-overpunch scheme used.

Suppress buffer flag. Suppresses allocation of

: ' 5
buffers and circular buffering. The GETWR and

PUTWR functions do not require circular buffers
for sequential files with S type records or files
with K type blocks and the RB field set to 1. If
all the records of a word addressable file are
multiples of PRU size and start on PRU bound-
aries, the circular buffer is not used.
Absent or SBF=NO
Allocates buffers from the inforination given
in the FWB and BF S fields.
SBF =YES

No buffer space is allocated.
Suppress read shead.

Absent or SPR=NO
Read ahead.

SPR=YES
Read oniy one biock at a time.
Trailer length of a T type record.

Absent or TL=0
Must be defined for open.

TL=aexp
Specified in characters; maximum 217- 1.
User labe! processing. (See section 6.) Specifies

conditions that transfer control to the user label
processing routine.

Absent or ULP=NO
None

ULP=V
VOL/EQV

ULP=F
HDR/EOF

ULP=VF
VOL/HDR/EOV/EOF

ULP=U
UVL/UHL/UTL

ULP=VU
VOL/EOV/UVL/UHL/UTL

ULP=FU
HDR /UHL/EOF /UTL

ULP=VFU
All

VF Volume close flag.
CLOSEM time.

Volume positioning at

Absent or VF=U
Unload

VF=R

Rewind

VF=N

No rewind

WSA Working storage area address. Must be set before
any file processing command uses the working
storage area. It can be set by macros GET, PUT,
and REPLACE.

Absent or WSA=0

No working storage area specified.

WSA=exp

Address of the working storage area.

FILE CONTROL STATEMENT

With the FILE control statement, the user specifies file
information to update the FIT when the SETFIT macro is
issued, or the first time the file is opened in the job step.
This run-time control over file specification allows a single
program to process files with different record or block
types. Corresponding FIT fields have the value specified on
the last control statement encountered.

FILE control statements must be placed before any program
call in which the information on them is to be used. Because
processing of the FILE control statement involves calling a
central processor program, it should not be placed within a
load set sequence, for example, between a LOAD and an
EXECUTE. If more than one FILE control statement
appears for a given file, the data on the first control

60495700 D

¢
(
¢
¢
)
|
(

<EE,

v

2

statement can be overwritten by the data on a subsequent
statement when overlapping fields occur on those state-
ments. The FILE control statement conforms to operating
system coding conventions.

If an error diagnostic is produced by FILE control statement
processing, the entire statement is ignored. FILE control
statement diagnostics are written on the dayfile as soon as
the error is encountered; they name the faulty parameter
and are self-explanatory. Control is passed to the next EXIT
if an error occurs in FILE control statement processing.

The FILE control statement format is shown in figure 3-2.
FILE control statement keyword options can be specified in
any order. Keywords have the same meaning as described
for the FILE macro.

If only the lfn parameter appears in the FILE control
statement, the FIT fields for that file revert back to those
specified in the program for all succeeding job steps, unless
another FILE control statement references that file. If the
FILE control statement appears without any parameters, FIT
fields for all files revert back to those specified in the
program for all succeeding job steps until another FILE

control statement is encountered.

The FILE control statement parameters are listed in
table 3-3. The various options for a keyword are separated
by the | symbol. If the keyword is selected, one of the
options must be selected and the others must be omitted.

FILE (Ifn[=axxxxxx] [keyword=option] ...)
Ifn Name of a FIT; required.
Optional new name for the FIT;

aiiows a fiie to be requesied by a
new name without reassembly.

FAXXXXXX

Symbolic name of the FIT field
and the option selected.

keyword=option

Figure 3-2. FILLE Control Statement Format

Parameter values are absolute; generally they refer to
number of characters. Value formats are denoted as:

n...n Value is decimal

n...nB Value is octal

n...nW Value is decimal, specified in words

Parameter values for the FIT fields that can be set by the
FILE control statement are the same as the parameter
values for the FILE macro. The parameter values for the
FIT fields that can be set by the FILE control statement but
not by the FILE macro are as follows:

LCR Label check/creation.
user.

Must be specified by the

LCR=E
Existing label is read and checked.
LCR=N

New label is written.

MFN Multifile set name.

MF N=axxxxxx
axxxxxx is the one- to seven-character name
beginning with a letter.

PNO Multifile position number. Specifies the position

number of the member - file on the multifile set.
PNO=aexp

aexp is the position number in display code.

RUN-TIME MANIPULATION

The user can communicate with BAM through the FIT
without knowing the exact format of the FIT. This is done
with the FETCH, STORE, and SETFIT macros, using the FIT
field mnemonics.

TABLE 3-3. FILE CONTROL STATEMENT PARAMETERS

Keyword Options Keyword Options Keyword Options

ASCII ol1l2 FO SQ|WA OMIT | macro name/macro name/. . .
BBH NOIYES HL Oln...nln...nBln...nW PC Oln...n

BFS On...nln...nB LBL On...nln...nBln...nW PD INPUTIOUTPUTIIO

BT HCIKIE LCR | EIN PNO |Oln...nln...nB

CF RINIUIRETIDETIDIS LFN | 1fn RB Oln...nln...nB

CL Oln...nln...nBIn...aW LL Oln...nln...nB RMK 0innBlnn

™M YESINO LP On...nln...nBIn...nW RT WIFIRIZIDITIUIS

CNF NOIYES LT SINSIUL|ANY SB NOIYES

cP Oln...nln...nBIn...nW MBL |OIn...nln...nBln...nW SBF NOIYES

Cl NOIYES MFN | file name SPR NOIYES

DFC 0l1j213 MNB |OIn...nln...nBln...nW TL Oln...nln...nBln...nW
EFC ol1l2i3 MNR Oln...nln...nBln...nW ULP NOIVIF|VFUIVUIFUIVFU

EO TiolAITDIDDIAD MRL Oln...nln...nBJn...nW USE macro name/macro name/. . .
ERL Oln...nln...nB MUL Oln...nin...nB VF UIR

FL Oin...nln...nBIn...nW OF RINIE

60495700 D 3-7@

FETCH

The FETCH macro retrieves the contents of a specified FIT
field by a reference to its mnemonics. The macro format is
shown in figure 3-3.

FIT field mnemonics can be any of the keywords used with
the FILE macro, or any of the fields listed in figure 3-3.
The macro generates code to extract the requested value
from the FIT. The code expansion destroys values in user
registers Xf, Xm, Af, and Xi (which can be Xf or Xm).

STORE

This macro places a user-determined value in a FIT field at
execution time. The format of the STORE macro is shown
in figure 3-4. The STORE macro generates code to store

the requested value in the FIT. This code expansion destroys

e ynlisaa in iinan poanichbana a a. an H
the values in user :chatcla Xf, Xa, Xm A‘; ,A'—-.e; and Xi

(which can be Xf, Xs, or Xm).

¥

FETCH fit,keyword, Xi,f,m

fit Logical file name address of the FIT,or
any COMPASS expression giving the FIT
address. If fit is Xf or Xm, its contents
are changed upon return.

keyword Any of the keywords in the FILE macro,
FILE control statement, or any of the
following (when the keyword represents
a length, the length is returned as
characters):

BN Block number

ECT Error count

ES Error status (equivalent to
IRS)

FNF Fatal error flag

FP File position field

{RS Error code

LOP Last operation

oC Open/close status

PEF Parity error flag

PTL Partial transfer length

RC Record count

RL Record length

SES System error severity

VNO Volume number

WA Current word address

WPN Write bit

f Number of the X register used to fetch the
FIT word. Must be 1 through 5 (default
is 5).

m Number of the X register used as a mask
(default is 7).

Xi X register to receive the value.of the
requested field. f keyword represents a
1-bit field, it is returned in the sign bit.
Keywords that are file names are returned
left-justified with zero fill; otherwise, the
keyword is returned right-justified with
zero fill.

STORE fit keyword= {;P“" } fs,m
1 J

fit Logical file name address of the FIT, or
any COMPASS expression giving the
address or a tag.

keyword Any keyword described in connection

with the FILE macro, except OF, BT,

or RT.

option Options associated with the keyword.

Xi X register containing the proper code for
the keyword. When the keyword repre-
sents a length, it is specified in charac-
ters.

f Number of the X register used to fetch
the FIT word. Must be 1 through 5
(default is 5).

s Number of the X register used to store
the FIT word. Must be 6 or 7 (default
is 6).

m Number of the X register used as a mask
{default is 7).

Figure 3-3. FETCH Macro Format

®3-8

Figure 3-4. STORE Macro Format

Most FIT fields listed in appendix D can be set symbolically
by STORE. Some fields are protected against a STORE;
others, such as the structure of a sequential file, are not
protected but should not be changed after the file has been
opened.

A parameter can be set by using the option with the
keyword, or using a register to hold the option as shown in
figure 3-5. Examples a and b have an identical effect, just
as c and d have an identical effect.

a. STORE fit,RL=10

b. SX1 10
STORE fit,RL=X1

c. STORE fit,FO=SQ

d SXt O
STORE fit,FO=X1

Figure 3-5. STORE Macro Examples

SETFIT

The SETFIT macro sets fields in the FIT. The macro format
is shown in figure 3-6. The SETFIT macro makes FILE
control statement information available without the need
for complete OPENM processing. This makes it possible for
system routines to obtain information, such as run-time
buffer requirements, needed by other system routines. Also,
SETFIT allows the user to cause FILE control statement
processing when it would not otherwise occur. Values in all
user registers are destroyed.

60495700 D

(
¢
¢
|
)

A}

n

SETFIT is valid only for a closed file. Once FILE control
statement values are placed in the FIT, the macro sets the
FILE control statement processed flag (PDF) field of the FIT
to inhibit further FILE control statement processing during
OPENM. The flag is cleared during subsequent OPENM
processing.

If SETFIT is issued and the user setting for the buffer size
(BFS) field is zero, the BFS field is set to the buffer size
normally allocated, based on other FIT values.

60495700 D

SETFIT fit

fit Address of the FIT, or an X register containing
the address of the FIT.

Figure 3-6. SETFIT Macro Format

3-90@

il A R R R = W O S o < 65 0 i o e MR o A P B b s TR R st 1o R B ol 3 e g

P W W W W W W W W W O umaay W W W W W W W @ W

- -~~~ A -

*

. A

m; -\ ;A

t
C

*

FILE PROCESSING 4

This section explains the logical operations of processing a
sequential or word addressable file, and explains macros as
applicable to each file organization. For a general explana-
tion of all macros and a detailed listing of their parameters,
refer to section 5.

Befaore a file can be processed, the user must establish a file
information table (FIT). Establishing the FIT sets a name by
which the file can be referenced and defines the file
structure and processing limitations. This table contains
fields that are referenced whenever BAM processes the file.
FIT fields can be set prior to file processing by the FILE
control statement, FILE macro, SETFIT macro, and STORE

macrn
macrc.

SEQUENTIAL FILES

In addition to the file manipulation macros, the following
macros can be used to process a sequential file:

CHECK,CHECKR
CLOSEM

ENDFILE
GET,GETP,GETWR
OPENM
PUT,PUTP,PUTWR
REPLACE
REWINDM

SKi1Pdu

WEOR

WTMK

All record types are applicable for sequential files. Except
for S type records, records in a sequential file are physically
grouped into blocks. Once the user has defined the record
and block type, BAM performs all the manipulations required
for block construction. Sequential files can reside on mass
storage devices or magnetic tape; files with K or E type
blocks can reside only on S/L tapes.

OPEN PROCESSING

All files must be initialized using the OPENM macro.
Before opening a file, however, the user must call for
construction of the FIT by specifying the logical file name.
The file organization can also be specified, but the default is
sequential.

The record type (RT) and block type (BT) fields, and any
other fields needed to describe record and block type, must
also be specified before a new file can be opened. For
certain systems files, BAM forces the values of the RT, BT,
and FL fields of the FIT, as shown in table 4-1.

60495700 D

Consistency checks are performed on certain FIT fields
when the file is opened the first time in a job step.
Table 5-1 in section 5 lists the fields that are checked for
consistency. If a file is closed and then reopened and the
close flag (CF) field of the FIT is set to R or N, consistency
checks and complete FILE control statement processing are
not repeated.

The following fields can be specified prior to opening a file,
but need not be set in the FIT until they are required by file
processing commands; they can change at any time during a
subsequent file processing run:

DX End-of-data exit; default is no end-of-data
routine

EX Error exit; default is no error routine

ERL Trivial error limit; default is an indefinite

number of trivial errors permitted

DFC Dayfile control; default is only fatal errors
listed

EFC Error file control; default is no error messages

If label processing is specified, it is initiated during OPENM
processing. A conflict between labels specified on the
REQUEST statement and the label type (LT) field causes an
informative dayfile message and inhibits user label proc-
essing. When a labeled file is opened, label checking and
creation is based on the label check/creation (LCR) field of
the FIT. Refer to section 6 for further information about
label processing.

INPUT/OUTPUT PROCESSING

The GET and PUT macros and variations of these macros
read and write files. A working storage area must be
established to pass data to and frem the program and a file
storage device. The user defines the working storage area
(WSA) by supplying an address for the WSA field of the FIT.
This is normally done when the GET or PUT macro is issued.
A GET macro transfers data from the buffer area to the
working storage area. A PUT macro transfers data from the
working storage area to the buffer area.

If only the GETWR, PUTWR, REWINDM, and SKIP macros
are to be used for files with logical and physical records
equivalent, the suppress buffer flag (SBF) field of the FIT

TABLE 4-1. SYSTEMFILES FORCED VALUES

System File Forced Values
1fn=INPUT RT=Z, BT=C, FL=80
1fn=0OUTPUT RT=Z, BT=C, FL=140
1fn=PUNCH RT=2Z, BT=C, FL=80
1fn=PUNCHB No forced value

4-1@

can be set to YES. The file must have S type records, or K
type blocks with one F or U type record per block. If these
restrictions are observed, field length requirements are

roaditnad Aanmd fantral Aarannaonsn Firma namiinad far onnh
roelulol ano COncrasr proCCasor wifmic required 7or Cacy

input/output operation is reduced. The elapsed time
required to obtain input/output overlap with processing is
dependent on the use of the CHECK or CHECKR macre. If
the restrictions are not observed, processing advantages do
not apply and the use of CHECK or CHECKR is redundant.

Input Processing

The maximum record length (MRL) field of the FIT must be
set by the user for reading a file. When a record is
transferred from the buffer to the working storage area, if
the MRL is zero no data is transferred. If the MRL field is
not zero, that value becomes the upper limit for the number
of characters transferred even if the record exceeds that
length.

Records in a sequential file are read in the order that they
occur in the file. They can be read as whole or partial
records.

The GET macro reads whole records. The record length
(RL), record count (RC), and block number (BN) fields of the
FIT are updated during processing. Data transfer always
starts at the next record available. If a GET macro is issued
when the file is positioned at midrecord because of a prior
GETP macro, a skip is made to the record boundary before
beginning the GET operation. When the GET macro
encounters any end-of-data condition, control is passed to
the end-of-data routine.

-
cr
-
J
1
l
l
er
)
-h
L
)

I the amount of data indicated by the W control word of uy
the contents of a length or record mark character field is
greater than the value specified by the MRL field, the
record is truncated to the number of characters specified by
the MRL field and an excess data error is returned. If the
amount of data is less than the value specified by the fixed
length (FL) field on F type records or less than the indicated
record length on other types, an insufficient data error is
returned.

At the conclusion of a successful read operation, the value
of the RL field is the same as the value specified for the RL
field for the operation requested. At the conclusion of a
read with an insufficient data error, the RL field reflects
the number of characters transferred to the working storage
area.

The GETP macro transfers part of a record to the user
working storage area. The partial transfer length (PTL)
field specifies the number of characters to be transferred.
At the end of the GETP operation, the PTL field indicates
the number of characters actually transferred. The value of
the PTL field at transfer completion is the same as the
transfer requested unless a record boundary or error
condition is encountered.

If the GETP operation initiates record transfer, the EOR
flag in the file position (FP) field of the FIT is cleared.
When the last data of the record is transferred, the EOR
flag is reset. A GETP operation does not cross record
boundaries.

The GETP macro transfers characters from the beginning of
a record or from the next character available in the record.
If the SKIP parameter is specified, however, transfer begins
at the start of the next record if current position is within a
recurd. Tne SKIF paraiineier is igiored if CUrvent pusitioin is

at the beginning of a record. When the first GETP macro
for a record is issued, the RL field is cleared. At the
completion of each GETP operation, the RL field is updated

n,
tn indinatn thna rmbhan Af Ahanonbana neaad an fon
LU v AdLey o llull!l.}bl Ul \,ncu oL o “au ou idls

For U type records, the RL field must be used to specify
total record length prior to issuing the first GETP macro for
the record. If the length of an S type record is unknown, the
user must make a series of GETP requests for PTL
characters, where PTL is the length of the working storage
area. When the first GETP macro is executed, the FP field
of the FIT is set to zero to indicate position in the midst of
a logical record. When a subsequent GETP macro completes
record retrieval, the EOR flag of the FP field is set, and the
length of an S type record becomes known. Consequently,
the user must check the FP field for EOR to determine when
the record boundary has been reached.

For D and T type records, the first GETP macro for a record
must initiate transfer of at least the number of characters
specified by the value of the minimum record length (MNR)
field. For R type records, the GETP macro is not valid.

S type records caftzbe larger than 223-1 characters. In this
case, RL is mod 2

The GETWR macro initiates the transfer of data in units of
words and transfers control to the user. The GETWR macro
is intended for use in conjunction with the suppress buffer
option. Refer to GETWR processing in section5 for a
complete description of the macro.

Output Processing

The PUT, pUTP, and PUTWR macics write data to a
sequential file. An existing file can have records added to it
after the previous EOL

The MRL field need not be set to execute a PUT or variation
of a PUT. When a record is transferred from the working
storage area to the buffer and the MRL field is set to zero,
any number of characters can be written. If the MRL field
is not zero, that value becomes the upper limit on the
number of characters that can be transferred.

The PUT macro writes an entire record. Data transferred
by the PUT macro is written immediately following the last
data written to the file. Each PUT operation creates a new
record. On R type records, the user must place the record
mark character in the record. On D and T type records, the
user must set the control fields. The record count (RC) and
block number (BN) fields are updated when record and block
boundaries are crossed.

The PUTP macro transfers part of a record from the
working storage area. The user must set the PTL field to
specify the number of characters to be written. The
execution of the first PUTP macro begins a new record. The
second PUTP macro writes characters immediately after the
last character written. The RL field can be specified for
the first PUTP macro for S, U, Z, and W type records. If the
RL field is zero for Z type records, the value of the FL field
is used. For all other record types, the value of the RL field
is determined by BAM., When the number of characters
equal to the RL value has been transferred, the record is
terminated. S, U, and W type records can use the TERM
parameter on the last PUTP to terminate the record. An
indefinitely long S type record can be written by using a
series of PUTP macros followed by a WEOR of any level, or
a PUTP macro with the TERM parameter specified. A PUT
macro following a series of PUTP requests that did not

- Voo et
LUipiELE @ iBlUl Lo @il BiilUise

60495700 D

A A

s S ks

.

(

;M

M~

The PUTWR macro initiates the transfer of data in units of
words and transfers control to the user. The PUTWR macro
is intended for use in conjunction with the suppress buffer
option. Refer to GETWR processing under the GET macro
discussion in section 5 for a complete description of the
macro.

A file can be updated using the REPLACE macro. The
REPLACE macro replaces the last record read with a record
from the working storage area. The replacement record has
the same record length as the record being replaced, and it
must be a mass storage file. The record type can be W or F
only; the block type must be C.

Processing 9-Track Binary S/L Tapes

Nine-track tapes must record multiples of eight bits;
however, BAM deals exclusively in six bit characters. If the
data being written is not a multiple of eight bits, the driver
rounds it up to the next multiple of eight bits. If the data
being read from the 9-track device is not a multiple of six
bits, BAM rounds it up to the next multiple of six bits. If
the file is repeatedly copied, a block can contain up to three
extraneous undefined six bit characters before it is a
multiple of six and eight.

To compensate for this, the user of S type records can either
set the maximum record length (MRL) field to three
characters larger than the actual data size or ignore the
excess data errors. For record types other than S, the user
can specify a value of greater than three for the minimum
record length (MNR) field; BAM then ignores three or less
extraneous characters at the end of the block.

To avoid the extraneous characters when the user is
processing eight bit data in S type records, the record length
(RL) field should specify a value rounded up to the next
multiple of six, and the B8F field should be set to YES. This
causes BAM to write the next lower multiple of eight bits to

the device.

FILE POSITIONING

The REWINDM macro repositions a mass storage file to the
BOIL. REWINDM positions labeled tapes to a point after the
labels at the beginning of the first file volume. REWINDM
positions unlabeled tapes to the load point of the volume
currently mounted.

The SKIPdu macro repositions an existing sequential file
forward or backward. The user must specify the direction of
the skip, the type of units to be skipped, and the number of
units to be skipped.

Backward Skipping

A file positioned at unit number m with a skip count of n is
positioned to unit m minus n upon completion of the skip
backward. Positioned at a unit means ready to read
beginning at that unit. The positioning of a file after a
SKIPBu of two units is shown in figure 4-1.

Position after Original position

SKIPB

m-4 | m-3 | m-2 | m-1 m

Figure 4-1. SKIPBu Positioning

60495700 D

If an input file is positioned at midrecord when a SKIPBu
macro is issued, operation is as if the file were positioned at
the end of that unit. If a file is positioned at midrecord
when a SKIPBu macro with a zero count is issued, the file is
positioned to the start of that unit. A SKIPBL macro after
the execution of a PUTP macro that did not terminate a
record is an error.

No automatic volume switching occurs when a SKIPBu
macro is issued for a multivolume tape file. An error results
if the load-point is reached. If a boundary condition is
detected before the skip count is exhausted, control is
transferred to the end-of-data routine with the appropriate
file position set. The file is left positioned immediately
before the delimiter. The boundary conditions are:

SKIPBL Section, partition, beginning-of-volume
SKIPBP Partition

SKIPBu Beginning-of-information, load point on
+ £311
L ue

Y

ape

The restrictions on SKIPBu, with respect to record and block
type, are as follows:

SKIPBL is not supported for T, R, U, and D record
formats, or for K and E type blocks.

If SKIPBL is attempted when a file residing on a PRU
device with C type blocks and F type records is
positioned at £OS, EOP, or EOI, it is not possible to
determine the exact record boundary. If the fixed
length (FL) field is not a multiple of 10, positioning can
be unpredictable (not a record boundary).

Forward Skipping

A file positioned at unit number m with a skip count of n is
positioned to unit m plus n upon completion of the skip
forward. Positioned at a unit means ready to read that unit.
If a file is positioned at midrecord when a SKIPFu macro
with a zero count is issued, the file is positioned forward to
the unit boundary. If a file is positioned in the middle of a
record when a SKIPFu macro with a non-zero count is
issued, the file is positioned forward to the unit boundary,
and then positioned forward the number of units specified.
A SKIPFL macro is not allowed with U type records. An
output file cannot be positioned forward.

If a boundary condition is detected before the skip count is
exhausted, control is transferred to the end-of-data routine
with the appropriate file position set. The file is left
positioned immediately after the terminator. The boundary
conditions are:

SKIPFL Section, partition
SKIPFP Partition

SKIPFu End-of-information

CLOSE PROCESSING

At completion of processing, a file must be closed by the
CLOSEM macro. Any remaining records of an output file
are written from the buffer to the file storage device; the
open/close flag (OC) field of the FIT is set to closed; the
action designated by the close flag (CF) field of the FIT is
performed; and control is returned to the user.

4-3@

It is important that all files be closed. During normal
termination, the error file is flushed when the last file in a
job step is closed. Therefore, error information can be lost

i€ ol Fillen men mnd Alaand
iy di V€8 a'e nou CTiOSEq.

End-of-Data Processing

End-of-data occurs when an input/output data transfer or
positioning operation is attempted and there is no more data
or space on the file, partition, section, or volume because
one of the following end conditions was encountered:

End-of-information
End-of-partition

End-of-section

The end-of-data exit (DX) field specifies the address of a
user routine for processing an end-of-data condition. When
an end-of-data condition exists, control is passed to the
address (DX)+1. A jump back to the user in-line return code
is stored at the DX address. The file position (FP) field
specifies the end condition that caused the transfer of
control to the end-of-data exit.

The only requests permitted for sequential files opened for
input, after file position EOI has been set, are CLOSEM,
REWINDM, and SKIPBu. The only requests permitted for
I-O sequential files, after file position EOI has been set, are
CLOSEM, SKIPBu, REWINDM, ENDFILE, or PUT.

A GET operation that transfers control to the end-of-data
exit does not transfer data to the working storage area.
Transfer of control to a user's data exit is an empty GET in
that no more data remains; therefore, an end-of-data
condition exisis. The FP field is not set until a file is

logically at the position specified.

Caution must be taken with short records, since PRU
devices always contain blocks which are a multiple of 10
characters. EOS, EOP, and EOI are not always correctly
detected on a file on a PRU device with F, R, U, D, or T
type records and C type blocks when the value of the RL
field is less than 10 characters. The padding that has been
added to the final block of the file can be greater than or
equal to the length of the record. The EQOI is not recognized
and the padding is processed as valid data.

File Boundary Processing

The CLOSEM macro must be issued to ensure proper EOI
processing. The buffer is flushed and, except for unlabeled
S/L tapes, an EOI is written to the file. A CLOSEM request
for an OUTPUT or I-O sequential file can cause trailer
records to be written for W type record files. A deleted
zero-length record is written on OUTPUT or 1-O sequential
files.

Label processing is performed, if appropriate. Label
processing performed on I-O sequential files is controlled by
the last operation on the file. If the operation was output,
labels are created. If the operation was input, labels are
checked. On any input labeled file, label checking is
performed only if the end-of-information or end-of-volume
has been reached. Control is transferred to the user-
supplied label routine, if one has been specified.

The CLOSEM VOLUME request forces volume switching to
the next reel of a multivolume file. If a value is not
supplied for the CF field with the CLOSEM macro, the value
in the volume close flag (VF) field of the FIT is used. The
current volume number {VNO) field of the FIT is incre-
mented wihen voiumes are switched.

®4-4

The following actions occur when N is used to specify no
rewind on a multivolume file opened for OUTPUT:

Vimlabhalad €1 Toama
23 ~f 1

~ 1 -
wipavcicu — apcos

Two tapemarks are written.

Volume is rewound or unloaded (N parameter is
overridden).

New volume is requested by the system and
checked.

Data transfer continues on the new volume.

Unlabeled SI, X, B, or I Tapes

Default tapemark and EOV1 label is written.

Volume is rewound or unloaded (N parameter is
overridden).

New volume is requested by the system and
checked.

Data transfer continues on the new volume.

Standard Labeled S/L and Sl, X, B, or I Tapes

If the user has issued a CLOSEM/VOLUME causing the
buffer to be flushed, or if the system has detected an
end-of-tape, the following occurs:

Control is passed to label routine exit (LX) if
defined.

EQV labels are written.

Volume is rewound or unloaded.

Control passes to the LX address if defined.
New volume is requested and checked.

BOV labels are written.

Data transfer continues.

Divisions larger than a record can be specified by issuing a
macro to write an end-of-section, end-of-partition, or end-
of-information. A partition can be terminated with the
ENDFILE macro. Before the EOP is written, the buffer is
flushed. The results of ENDFILE depend on the format of
the file as described under a description of the macro in
section 5.

A section can be terminated by using the WEOR macro.
Before the EOS is written, the buffer is flushed. The results
of WEOR depend on the format of the file, as shown under a
description of the macro in section 5.

The purpose of the WTMK macro is to write tapemarks in

nonstandard label processing. It should not be used
elsewhere.

TERMINAL FILE PROCESSING

BAM uses a specialized capsule for processing files on

terminal devices. It processes Z and S type records. W and
U type records can also be specified, but they are processed
as S type records. D, T, R, and F type records cannot be
specified.

60495700 D

#h,

PN

o~ ~

Ton T o W' T aatanae S SN SNV Y

If the files device type is terminal, BAM sets the connect
file (CNF) field of the FIT to YES during open processing. If
the user sets the CNF field to YES, BAM connects the file.

The user need not reserve buffer space for terminal files.
BAM uses one file to write data to the terminal. If the first
file written is OUTPUT, that becomes the name of the file
used; otherwise, the file used is ZZZZ7Z0OU. The user defined
FIT is used for reading; data is read directly to the working
storage area.

Under the NOS/BE operating system, the type of character
set used can be specified by setting the ASCII field of the
FIT. If this field is nonzero, the record length (RL) field is
still treated as the number of six bit characters to be read
or written, but blank stripping and padding is done using a
12-bit ASCII blank (0040B) instead of a six bit display code
blank (55B). This ensures no extraneous display code blank
(55B) being added or removed from ASCII files. BAM leaves
one blank (either 558 or 0040B) on each record written to
separate question/answer interaction.

Under the NOS/BE operating system, an input file must be
terminated with a %EOF to insure an end-of-data exit. A
%EOR is treated as a blank record.

A terminal file can be closed and disconnected by setting
the cf parameter to DIS with the CLOSEM macro. The file
must be reopened with the CNF field set to NO to be used as
a local disk file.

Programs doing terminal I/O and using static loading must
use the special names TGET and TPUT with the USE
parameter on the FILE control statement to load the special
terminal 1/O capsule. Refer to appendix E for a discussion
of static and dynamic loading.

WORD ADDRESSABLE FILES

In addition to the FIT manipulation macros, only the
following macros can be used to process word addressable
files:

CLOSEM

GET

OPENM

PUT

Word addressable files must reside on mass storage. Only
record types F, U, and W can exist in word addressable files.

OPEN PROCESSING

All files must be initialized using the OPENM macro.
Default values are inserted into FIT fields for certain values
not supplied prior to open processing.

When a file is opened as a new or existing file, the user must
have previously set the record type (RT) field of the FIT, or
the default of W type records is set. For F or Ztype
records, the fixed length (FL) field must also be set.

The following FIT fields can be set before the file is opened
and should not be changed until another open is executed:

PD Pracessing direction; default is INPUT

FwB First word address of the buffer; default
address is supplied

60495700 D

BFS Buffer size; default of minimum space is
provided except when the suppress buffer flag
(SBF) field is set to YES

The following FIT fields need not be set until they are
required by file processing commands and can be changed at
any time:

EX Error exit; default is no error routine
DX End-of-data exit; default is no end-of-data
routine

MRL Maximum record length; default is 0

Certain consistency checks are performed on FIT fields
when the file is opened. Table 5-1 in section 5 lists the
fields that are checked for consistency.

INPUT/OUTPUT PROCESSING

The GET and PUT macros read and write files. A working
storage area must be established to pass data to and from
the program and a file storage device. The user defines the
working storage area (WSA) by supplying an address for the
WSA field of the FIT. This is normally done when the GET
or PUT macro is issued. A GET macro transfers data from
the buffer area to the working storage area. A PUT macro
transfers data from the working storage area to the buffer
area.

If all the records of a word addressable file are multiples of
PRU size and start on PRU boundaries, the circular buffer is
not used to process the records. The suppress buffer flag
{SBF) fieid can be set to YES, and no buffer is aiiocated. If
a record is encountered that is not a multiple of PRU size
and does not start on a PRU boundary, an error is issued.

BAM uses the word address (WA) field of the FIT to
determine where to read or write data. When a file is
opened as a new file, the WA field is set to 1. It is updated
after every read or write. If a sequential read or write is
desired, the WA field need not be reset by the user.

Any mass storage file can be processed as a word
addressable file. Allowances must be made for short PRUs
and level numbers; these can be present as a result of
previous system processing. An attempt to retrieve word
addresses between the end of the short PRU and the start of
the next PRU returns an invalid word address error. A read
that continues past the short PRU returns an insufficient
data error. A read of a level 0 to 16 indicator returns an
end-of-section; a read of a zero-length level 17 returns an
end-of-partition.

Writing a record into any part of a short PRU causes that
PRU to be rewritten as a full PRU without comment. End-
of-section or end-of-partition status no longer exists. These
files cannot have been written as word addressable files but
must have been written as sequential files.

The end-of-data exit (DX) field specifies the address of a
user routine for processing an end-of-data condition. An
end-of-data exit is taken on an end-of-section or end-of-
partition in a W control word. Control is passed to the
address (DX)+1. A jump back to the user in-line return code
is stored at the DX address. The file position (FP) field
specifies the end condition that caused the transfer of
control to the end-of-data exit. A read at the end-of-
information takes an end-of-data exit with the file position
(FP) field of the FIT set to EOL

4-50

Input Processing

The maximum record length (MRL) field of the FIT must be
set by the user for reading a file. When a record is
transferred from the buffer to the working storage area and
the MRL field is zero, no data is transferred. If the MRL
field is not zero, that vaiue becomes the upper limit for the
number of characters transferred even if the record exceeds
that length.

A file is read by the GET macro. The RL field must be set
for U type records only. After the GET macro is executed,
the RL field contains the number of characters read. W
type records are actually one word longer than the RL value
returned to allow for the control word. The user must allow
for this when calculating the value for the WA field for
random access. When a W type record is read, only RL
characters are returned to the working storage area. The
control word is not returned. If the amount of data
indicated by the W type record control word or by the
contents of a length field is greater than the value of the
MRL field, the record is truncated to the number of
characters specified by the value of the MRL field and an
excess data error is returned.

Output Processing

The MRL field need not be set to execute a PUT macro.
Any number of characters can be written when a record is

94-6

transferred from the working storage area to the buffer, if
the MRL field is set to zeron. If the MRL field is not zera,
that value becomes the upper limit on the number of
characters ihal can be iransferred.

A file is written by the PUT macro. The RL field must be
set for U and W type records. The length specified need not
be a multiple of 10; however, writing always begins at the
left on a word boundary. If the previous write was not a full
word, the rightmost character positions are undefined and
the next write begins on a new word.

If the value of the WA field is beyond the EOI of the current
file, the file is automatically extended and all indications of
the previous EOI are gone. Word addressable files are
extended in multiples of PRU's. BAM maintains a pointer to
the physical EOI but not to the user EOL If the contents of
the file do not require a complete multiple of a PRU, the
physical EOI and the user EOI are different.

CLOSE PROCESSING

At completion of processing, a file must be closed by the
user with the CLOSEM macro. Any remaining records of an
output file are written from the buffer to the file storage
device; the open/close flag (OC) field of the FIT is set to
closed; and control is returned to the user.

60495700 D

-\ mmAa-n

(
(

- - -

o T o S S N S S S A U .ot anae. Y S SN

N

L

MACROS S

L

Macros are used for processing the files established with the
FILE macro and control statement. An alphabetical listing
of all macros and their parameters in COMPASS format is
included in this section.

DESCRIPTIVE CONVENTIONS

The macros conform to COMPASS syntax. The location,
operation, and variable fields are separated by one or more
blanks. In the macro parameter strings, the fit parameter is
required. All others are optional and positional. When
optional parameters are omitted, their positions must be

marked bv commas; trailina commas can be omitted
marxed by commas; ralling cemmas can be cmitied.

For example, the format of the OPENM macro is:
OPENM fit,pd,of

If the pd parameter is not used when the OPENM macro is
issued, the format is:

OPENM fit,,of

The first parameter of every macro identifies the file
information table for the referenced file. If the address
specified by the fit parameter is invalid, the results are
indeterminate. It can be specified by any of the following:

ifn Location field name of the first word of the
FIT, one through seven alphabetic or numeric
characters

Rn Any A, B, or X register containing the FIT
address

exp Any COMPASS expression giving the address
of the FIT

When elements are stacked in braces{ }, one must be
chosen; the others must be omitted. Only parameters
applicable to the file organization set in the FIT should be
specified. Supplying parameters applicable to the other file
organization could cause erroneous results.

MACRO EXECUTION

The current contents of the FIT are used for macro
execution. Because the last value set in the FIT is used for
execution, default values identified in the macro parameter
lists are valid only if the FIT fields have not been changed
previously. FIT fields can be set by any of the following:

FILE macro parameters

FILE control statement parameters, which can override
defaults during open

A SETFIT macro, which can call for FILE control
statement processing without full open processing

Individual fields, which can be set by the STORE macro
before or after open

Defaults, which can be set during open

60495700 D

Parameters specified in processing macros that are
moved to the FIT before file processing occurs (a zero
value in a parameter list moves a zero to the FIT; a null
value does not affect the FIT)

The user should presume all registers are destroyed during
macro execution. Registers are not saved or restored.

The user macros, with the exception of FETCH, FILE,
CLOSEL, STLD.RM, and STORE, generate code as follows:

When checking for syntax errors is completed, all

nonnu!l narameters after the FIT address are placed in
nonnull parameters after the FIT address are placed in

registers.

Register B6 is set to the end of the macro expansion as
the return address.

A jump to the proper BAM entry point is generated in
the top of a word; bits indicating which parameters
were specified with the macro are set in the bottom of
the word.

The FIT address is placed in register AQ; if it is already
in AQ, no code is generated.

Register Bl is set to 15 if Bl=1 pseudo-op is in effect no
code is generated.

CHECK

The primary use of the CHECK macro is to check the
completion status of input/output operations initiated by
GETWR or PUTWR. It can also be used to check
input/output completion status after any macro is issued.
This macro is applicable to sequential and word addressable
files. The file is checked for input/output activity. If
active, the job is placed in recall until activity ceases;
control is returned to the user. If the file has no
input/output activity, control is returned to the user. Data
and error exits are suppressed, so the user should examine
the file position (FP) and error status (ES) fields of the FIT
before continuing.

When the CHECK macro is used to ensure completion of a
GETWR request, the RL field contains the record length
when CHECK is complete. If an S or L tape is being read,
the value of the RL field is the actual number of characters
in the record. For S type records on other devices, however,
the value of the RL field is the record length rounded
upward to a multiple of 10.

When the CHECKR macro is used, the status of the
input/output activity is checked and control is returned
immediately to the user. The job is not put in recall. If
input/output activity is complete, control is returned to a
location tag; otherwise, control is returned to the user
following the CHECKR.

The formats of the CHECK and CHECKR macros are shown
in figure 5-1.

5-1@

CHECK fit
CHECKR tagq,fit
fit Address of the FIT.

tag; Designates the location to receive control when
input/output activity is compiete.

Parameters can be specified as registers.

Figure 5-1. CHECK and CHECKR Macro Formats

CLOSEM

The CLOSEM macro terminates file processing and positions
the file as specified. It should be the last macro issued for a
file. The CLOSEM macro is applicable to both file
organizations. Format of the CLOSEM macro is shown in
figure 5-2.

When the CLOSEM macro is executed for a file open for
output, any information in the file buffer is written to the
file device as part of file termination. For sequential files
on tape, appropriate label processing occurs during close.
Refer to section 6, Label Processing, for a complete
description of file and volume label processing.

Close processing for a file varies according to the value
specified for the cf parameter of the CLOSEM macro, as
follows:

Rewind

The file is rewound.

CLOSEM fit,cf,typ

fit Address of the FIT.

cf Positions the file after close processing:
R Rewind (default if a FILE close)
N No rewind
u Unload (default if a VOLUME close);

if a FILE close, release buffer space
and remove name from active file
list

RET Return; rewind and unload tape;
release buffer space and remove name
from active file list

DET Detach; no rewind; release buffer space
and remove name from active file list

DIS Disconnect; disconnect terminal file
and remove name from active file list

typ Type of close to be performed:

FILE Closes the file; file processing is
terminated (default).

VOLUME Processing on the current volume is
terminated, and volumes are switched;
the volume number is incremented,
and file processing can continue on the
new volume without OPENM.

Only the fit parameter can be specified as a register.

No rewind

The fiie is not rewound.

Unload

The file is rewound. The open/close flag (OC) field
of the FIT is cleared. If it is a permanent file, it is
detached from the job and returned to the perma-
nent file manager. Any unit record file (QUTPUT,
PUNCH, or a file that has had DISPOSE performed)
is detached from the job and printed or punched. A
magnetic tape is unloaded, but the device is not
returned to the system. Any scratch mass storage
space assigned to the file is released.

Return

The processing is the same as for unload, except
that for a tape file, the device is returned to the
system.

Detach

The file is not rewound. The open/close flag (OC)
field of the FIT is cleared.

Disconnect

The open/close flag (OC) field of the FIT is
cleared. The file is disconnected from the
terminal.

A CLOSEM request for a file that has never been opened, or
a file that has been closed but not unloaded or reopened, has
the following effects:

The FIT error status redundant close is set.
File positioning is the same as for an open file.
Control is returned to the error exit.

No label processing is performed.

If a file is closed and then reopened, FIT verification and
FILE control statement processing are not repeated if the
CF field is set to R or N. Therefore, FIT fields such as BT,
RT, and FO should not be changed when the file is reopened.
To have FIT verification and FILE control statement
processing repeated, the file must have been closed with the
CF field set to U, RET, DET, or DIS.

ENDFILE

The ENDFILE macro writes an end-of-partition on a file
opened for output or input/output. It is applicable for
sequential file organization only. Format of the ENDFILE
macro is shown in figure 5-3.

ENDFILE
fit Address of the FIT or register containing
the address.

Fig!_gre 5.2, CLOSEM Macra Format

®5-2

Figure 5-3. ENDFILE Macro Format

For W type records, the ENDFILE macro writes a control
word with an end-of-partition flag, and the current PRU or
block is terminated. For S/L devices when record type is
not W, the ENDFILE macro terminates the current block and
writes a tapemark. For PRU devices when record type is
not W, the ENDFILE macro terminates the current system-

logical-record with a short PRU level 0, and writes a zero-
langth PRLI lavel .178;

60495700 D

- M, M,

i N

R SR P R MGE . e B S S M IS A TR s 0

»

LS o S o S S o T . W S oo W)

.

R, 4‘%: A

A=

o T e T

(

Multiple ENDFILE macros execute as encountered.
ENDFILE calls in midrecord are only allowed for files with
S type records; for other record types, the end-of-partition
is not written and a nonfatal error is issued.

GET

The GET macro retrieves data from a file and delivers it to
the working storage area. It is allowed with files opened for
input or input/output only. This macro has several forms,
which are shown in figure 5-4.

. dx
GET ﬁt,wsa,rl,{ }, wa
ex

GETWR fit,wsa,rl
GETP fit,wsa,ptl,dx,, SKIP
fit Address of the FIT.

wsa Address of the working storage area to which the
user record is delivered.

ptl Partial transfer length; number of char:~ters to be
transferred.
rl Record length in characters. Required for U type

records only.
dx Address of the end-of-data routine.
ex Address of the error routine.

SKIP Advances tc the beginning of the next record
before transferring data.

wa Word address on word addressable files where
reading is to start. Word addresses begin with 1.

Parameters (except SKIP) can be specified as registers; if
parameters are not specified, values in appropriate FIT
fields are used (except GETWR where all parameters are
required).

Figure 5-4. GET, GETWR, and GETP Macro Formats

The GET macro transfers a record from a file to the
specified working storage area. Lengths are specified and
returned in characters. It is applicable for both file
organizations.

Applicable parameters by type of file organization for GET
are:

Sequential fit,wsa,rl,dx,

Word addressable fit,wsa,rl,ex,wa

The following FIT fields are updated during GET processing:

RL Actual length of the record read is returned.
Length is specified in characters. For Z type
records, the number of significant characters
is returned.

RC Record count is updated each time GET reads
a record.

60495700 D

For record types other than U, control information in the
record or FIT fields is used to determine record length. If
the GET request encounters a record longer than the length
specified in the maximum record length (MRL) field in the
FIT, an excess data error occurs. The number of characters
specified by the MRL field are transferred, the remaining
characters are skipped, and control passes to the error exit.
A record greater than the value specified by the MRL field
is prevented from overwriting a portion of the calling
program or other preserved information. Control is passed
to the user end-of-data exit by a GET request that detects a
section or partition boundary, or the end of the file.

The GETWR macro initiates the transfer of data in units of
words, and transfers control to the user. GETWR is intended
for use in conjunction with the suppress buffer option. The
suppress buffer flag (SBF) field of the FIT can be set by a
FILE control statement. If the SBF field of the FIT is set to
YES, the data is transferred directly to the working storage
area, not to the buffer. If the SBF field is set to NO, the
data is transferred through the buffer to the working storage
area. To check for completion of the operation, the CHECK
or CHECKR macro must follow.

The GETWR macro is applicable for sequential files only.
The working storage area and the record length must be
specified. When reading or writing small S type records to
or from an S or L tape, it is sometimes advantageous to set
the SBF field to NO, thus gaining nonstop input/output at
the expense of buffer space.

When the SBF field is set to NO, all applicable FIT
parameters must still be supplied for GET or PUT oper-
ations. Also, any data or error exits specified for GET or
PUT operations are taken if the SBF field is set to NO. If
the SBF field is set to YES, no data or error exits are taken.
The GETP macrs transfers partial re in lengtt
specified by the ptl parameter; it can be used to transfer an
arbitrary amount of data from a record. GETP is applicable
for sequential files only.

ecord.
ora

lengths

OPENM

Before a file can be read or written, it must be made
available by an OPENM macro. Macros that affect the FIT
(FILE, STORE, FETCH, and SETFIT) can be used before the
OPENM macro. Any file manipulation macro, however, is
valid only after the file has been opened. Error procedures
are initiated if attempts are made to access an unopened
file.

OPENM is applicable to both file organizations. Format of
the macro is shown in figure 5-5.

OPENM prepares a file for processing by creating and
linking all required system tables for a file, by translating
user-supplied parameters into appropriate values in the
relevant tables, and by interfacing with label processing.
When OPENM is executed, the following events occur:

FILE control statement processing occurs if it has not
been suppressed by SETFIT execution. FILE control
statement processing can be initiated by SETFIT prior
to OPENM. If so, SETFIT sets the PDF field in the FIT
to inhibit reprocessing of the FILE control statement.
OPENM execution clears the PDF field.

The FIT is checked for logical consistency. Conditions
investigated are listed in table 5-1. Depending on the
file organization, additional checks can be made for
required fields and other defaults supplied.

5-3@

Buffer parameters are processed.

A read ahead is performed on sequential files opened
for input.

Label processing is initiated if appropriate for a
sequential file.

OPENM fit,pd,of
fit Address of the FIT.
pd Specifies type of processing:

INPUT File is opened for read only
{default)

OUTPUT File is opened for write only

-0 File is opened for read and
write
of Open flag; specifies file positioning at open time:
R File is rewound before any other
open procedures are performed
(default)
N No file positioning is done before

other open procedures

E For sequential files, the file is posi-
tioned immediately before the EOI
to allow extensions to a mass storage
file; for permanent word addressable
files, the user must issue an EXTEND
function if the file is opened with an
E position.

Only the fit parameter can be specified as a register.

Figure 5-5. OPENM Macro Format

TABLE 5-1. FIT CONSISTENCY CHECKS

Condition Action
RT=D, LL=0 Error
RT=T, and CL, HL, or TL.=0 Error
RT=Z, FL=0 Error
RT=F, FL=0 Error
RT=T, HL not greater than CL+CP Error
OF =E, file is not mass storage Error
FO=LB Error
Invalid BT field Error
BT=I, RT£W Error
BT=K, RB=0 Default, RB=1
BT=K, MBL=0 Error
MRL, MBL=0, BT=K, E Error
BT=K, E, file is not S/L device Error
BT=K, E, RT=W Error

®5-4

If no error has been detected, the open/close flag (OC)
field in the FIT is set to open and control transfers to
the user.

Complete open processing occurs when the first OPENM
macro in a job step is issued. If a file is closed and then
reopened, FIT verification and FILE control statement
processing are not repeated if the close flag (CF) field of
the FIT is set to R or N.

Any error detected during open processing sets the error
status (ES) field of the FIT. If a user error routine has been
specified by the EX field, control passes to that routine. If
the user routine corrects the condition that caused the error
and executes another open, processing can continue; other-
wise, the OC flag reflects G (not open) and further file
access is prohibited.

Buffer fields are investigated when a file is opened. If the
FWB field is zero (no buffer address supplied), an address is
allocated. If the BFS field is zero (no buffer size supplied),
the minimum space required is calculated and the value is
stored in the BFS field. Although BAM sets the buffer
pointers in the FIT during OPENM processing, buffer
allocation does not actually take place until the first macro
requiring a buffer is issued. If the SBF field has been set to
YES to suppress buffering, no buffer is allocated.

The timing in relation to specifying file processing param-
eters and open processing is important. These parameters
differ for each file organization. Section 4 lists the
requirements for the specific parameters by file organ-
ization. The following shows the possible relationships
between the OPENM macro and the parameters:

Certain parameters must be set in the FIT with the
FILE macro, FILE control statement, or the STORE
macro prior to open time; otherwise, a default value is
assumed without comment. These parameters are
effective only until another open is executed;
attempted changes are ignored without comment or
error until another open is executed. At that time, the
current values in the FIT are used to accomplish the
open.

Certain parameters need not be set in the FIT until they
are required by file processing commands. Once set,
they remain in effect until changed.

Certain parameters have no default and must be set in
the FIT to avoid a fatal error prior to use by a file
processing command.

PUT

The PUT macro transfers data from working storage to a
file; it is allowed for files opened for output or input/output
only. This macro has three forms, which are shown in
figure 5-6.

The PUT macro transfers a record from working storage to a
file. It is applicable for both file organizations.

Applicable parameters by type of file organization for PUT
are:

Sequential
Word addressable

fit,wsa,rl,ex

fit,wsa,rl,ex,wa

The rl parameter need not be specified for files with record
types F, Z, T, B, and R. Instead, record length for these
formats is deiermined by BAM using Tields i the FIT and

60495700 D

_- A A

.

;M Uy,

-~

-

PUT fit,wsa,rl,ex,wa

PUTWR fit,wsa,rl

PUTP fit,wsa,ptl,ex,,rl, TERM

fit Address of the FIT.
wsa Address of the working storage area.
rl Number of characters to be written, or for

PUTWR the number of words.

ptl Partial transfer length; number of characters to
be transferred.

ex Address of the error routine.
wa Word address.

TERM Signals a record is to terminate with this PUTP;
used only with W, S, or U type records.

Parameters can be specified as registers; if parameters are
not specified, values in appropriate FIT fields are used
(except PUTWR where all parameters are required).

Figure 5-6. PUT, PUTWR, and PUTP Macro Formats

the content of the record in the working storage area. The
value of the RL field for F, Z, T, D, and R type records is
determined as follows:

F Record length is taken from the FL field of the
FIT.

Z If the rl parameter is nonzero in the PUT macro or
the RL field of the FIT is nonzero, the end of the
record is determined by searching backwards from
the character position specified by the value of the
RL field. If the rl parameter is not supplied and
the RL field is zero, the end of the record is
determined by searching backwards from the char-
acter position specified by the value of the FL
field. A zero byte terminator is appended from
that point. Intervening characters are binary zero
filled.

R Record length is determined by scanning the record
in the working storage area for the terminating
record mark character (RMK) which was specified
in the FIT. An error occurs if the record mark is
not found within the maximum record length.

T Decimal count is extracted from the record and
used to calculate the record length. Count field
length (CL), trailer count beginning character
position (CP), header length (HL), and trailer length
(TL) are obtained from fields in the FIT.

D Decimal character record length is extracted from
the record. Length field length (LL) and length
field beginning character position (LP) are obtained
from fields in the FIT.

In all preceding cases, the transferred record length is
stored in the RL field of the FIT at the end of the PUT
operation.

60495700 D

The RL field must be specified for U, S, and W type records
with PUT requests. Lengths specified by the user for W and
S format records exclude the record control word and level
number appendage. They are supplied by BAM. S type
records on a PRU device are always an integral number of
words (multiple of ten 6-bit characters) in storage. The
value specified by the RL field is rounded upward, if
necessary. A level 0 appendage is recorded for each
completed PUT operation for S type records. For S/L tapes,
the number of characters specified by the RL field are
written as one tape block.

For any word addressable files, the word address (WA) field
in the FIT is updated to reflect the next available word
address; therefore, such files can be written sequentially.

Any errcrs during PUT or PUTP processing cause transfer to
the error routine if one has been specified. In the case of
excess or insufficient data errors, no data has been
transferred. In the case of other errors, data is unreliable.

The PUTP macro is used to create a single record from a
series of write requests. It transfers partial records in
lengths specified by the ptl parameter. It can be used to
transfer an arbitrary amount of data to a record. By
changing the wsa parameter from call to call, portions of
the same record can be transferred from different parts of
central memory. The PUTP macro is applicable for
sequential files only. It is not allowed for R type records.

The PTL field indicates the number of characters to be
transferred from the working storage area to the record
under construction. The PTL field of the FIT is used for any
PUTP operation not containing a ptl parameter value in the
macro.

-~

he PTL field must be set for the PUTP macro that initiates
a new record. If the record length is specified, it becomes
the maximum number of characters possible in the record
and is used to determine an excess data error condition. If a
PUTP request supplies data that would exceed the record
length, or if any other macro requests file action prior to

completion of the record, a fatal error condition occurs.

The termination of a record being construcied by a series of
PUTP operations is recognized by the total record length
(RL) set by the first PUTP macro specified, or by the
presence of the TERM parameter to signify the last partial
write for this record. For S, U, and W type records using the
PUTP macro, the RL field can be set to zero and the TERM

parameter used.

The user can make a WEOR request to signal the end of an S
type record created by a sequence of PUTP requests. The
level number specified by the WEOR macro can be 0 through
16; only level 0 should be written. Levels 1 through 16 exist
to support downward compatability in certain system pro-
grams. The ENDFILE, REWINDM, CLOSEM, SKIPB, WTMK,
and PUT macros also cause termination of a record (block)
by adding a level 0. If Z type records are written by the
PUTP macro, trailing blanks are suppressed only with the
record portion of the last partial transfer.

The PUTWR macro initiates the transfer of data in units of
waords, and then transfers control to the user. Because the
operation might not be complete, the CHECK or CHECKR
macro must follow. The PUTWR macro is valid only for
sequential files and is intended for use in conjunction with
the suppress buffering option. Refer to the GETWR
discussion in this section. The working storage area and the
record length must be specified with the PUTWR macro.

5-50@

REPLACE

The REPLACE macro replaces the last record read with a
record from the werking storage area. It is applicable to
sequential mass storage files with C type blocks and F or W
type records. Format of the REPLACE macro is shown in

figure 5-7.

REPLACE fit,wsa,,ex

fit Address of the FIT.

wsa Address of the working storage area with the
new record.

ex Address of the error routine.

All parameters can be specified as registers.

Figure 5-7. REPLACE Macro Format

Replacement records must be the same size as the record
replaced. If the requested record is not found, a trivial
error results and the request is ignored.

REWINDM

The REWINDM macro positions an unlabeled or nonstandard
labeled tape file to the beginning of the current volume. A
mass storage file or labeled tape is rewound to beginning-of-
information. It is applicable to both file organizations.
Format of the REWINDM macro is shown in figure 5-8.

REWINDM fit
fit Address of the FIT or register containing the
address.

SKIPdu fit,count
d Direction of ckip:
F Forward

B Backward

u Units to be skipped:
L Logical records

P Physical records or system-logical-
records of level 0

F Tapemark or level 17 on PRU devices
fit Address of the FIT.

count Number of units to be skipped. A null param-
eter results in a zero count.

The count and fit parameters can be specified as registers.

Figure 5-8. REWINDM Macro Format

The file need not be open when the REWINDM macro is
issued. If the last operation was a write, buffers are cleared
and end-of-information written before a file is rewound.

SKIPdu

The SKIPdu macro repositions a file in a forward or
backward direction. It is applicable to sequential files only.
Format of the SKIPdu macro is shown in figure 5-9. SKIPBL
is not supported for T, R, U, and D type records or K and
E type blocks; SKIPFL is not supported for U type records.

The SKIPdu macro checks user parameters, reads from the
assigned device, positions according to the specified unit to
be skipped, and returns rontrol to the user. The SKIPduy
macro does not return a record to the working storage area.
If a boundary condition is detected before the skip count is
exhausted, control is transferred to the end-of-data routine
with the appropriate file position set.

A SKIPdu macro call transfers control to the end-of-data
routine under the following conditions:

SKIPFL encounters end-of-information
SKIPFL or SKIPBL encounters end-of-partition

SKIPFP or SKIPBP encounters level 17 or a tapemark

Vo YOO w3 f ot
T UL I e BHICUUINILETD BHius Ui Yol LUl

®5-6

Figure 5-9. SKIP Macro Format

SKIPBL encounters beginning-of-volume
SKIPBu detects the load point on a tape file

SKIPFF or SKIPFP encounters end-of-information

SKIPdP, SKIPdF, and SKIPBL do not detect parity errors.
SKIPFL does detect parity errors. A negative skip count is

not allowed; the request is ignored, and an error is issued.

If a file is positioned at midrecord when a SKIPdu macro is
issued, processing is as follows:

SKIPF u,fit,0 The file is positioned forward to the

unit boundary.

SKIPBu,fit,0 The file is positioned backward to the

unit boundary.

SKIPFu,fit,n The file is positioned forward to the
unit boundary and then forward n

units.

SKIPBu,fit,n The file is positioned forward to the
unit boundary and then backward n

units.

An output file can be positioned backward only. If the
previous operation was a PUT, the file is terminated before
reverse motion is initiated.

WEOR

The WEOR macro is used to terminate a section. The macro
format is shown in figure 5-10. WEOR writes an end-of-
section for sequential files, if applicable, as shown in
table 5-2.

For S type records, a read of EOS returns an EOR value to
the file position (FP) field; the EOS value is never returned.
For K, E, or C type blocks on an S/L. device, an EOS cannot

. A_x . - N - e
e deiecied by the GET racio.

60495700 D

E Y

s O OO O MO OO0 0000 R GO 0 A M s GG OO0 0 A0 SO0 0 000 0 N oA O R RN OO0 2 W

i

+

L]

WEOR fit,Ivl
fit Address of the FIT.

vl Level number to be appended. Default is 00;
Ivi can be any octal value from 00 to 16.

All parameters can be specified as registers.

The WTMK macro does not flush the buffer. It checks user
parameters, terminates the current block, records the
tapemark on S/L tapes and a level 17 for files residing on
PRU devices. Control is then returned to the user. The
block number (BN) field of the FIT is not cleared to zera.

TABLE 5-2. WEOR PROCESSING

Figure 5-10. WEOR Macro Format

For S type records, the WEOR macro can be used to
terminate the system-logical-record being constructed by a
series of PUTP macros. The WEOR macro terminates the
current record and appends a level number.

For W type records, the file must be on a record boundary to
write an end-of-section control word. The record count is
updated. The WEOR macro writes a deleted, zero-length
record with the flag bit set.

WTMK

The WTMK macro is provided to record a tapemark, or
level 17, in nonstandard label processing. It is applicable to
sequential file organizations only. Format of the WTMK
macro is shown in figure 5-11.

WTMK fit
fit Address of the FIT or register containing the
address.

Figure 5-11. WTMK Macro Format

60495700 D

End-of-Section
Device Block | Record Boundary Written
Type | Type

I w One-word record pointing back
to the last I block boundary.
Control word with EOS flags;
terminate the block with level 0

PRU
device C w Control word with EOS flags;
terminate the block with level 0.
C All but { Terminate the block with level
w not greater than 168'

I w Zero-length deleted records to
exceed noise record size; one-
word record pointing back to the
I block boundary; control word
with EOS flags. Terminate the
block.

S/L
tape C w Zero-length deleted records to
exceed noise record size.
Control word with EQS flags.
Terminate the black.
C,K,E | All but | Terminate the block.
w

5-7@

oI 8 M N 1 e A s A ol

R 3 A M 1 o N e S i o1

VO OW W W W W W W W OW O wmaay W OW W W W W W W w

'

M A A~

-~

‘ .

n o~~~

LABEL PROCESSING 6

L

Tape label processing takes place when a sequential file on
magnetic tape is opened or closed. File labeling conventions
facilitate the exchange of magnetic tapes between instal-
lations. Recording a file using any labeling convention has
meaning only for sequential files. The tape formats
supported under the NOS operating system are: SI binary, I,
and S/L. The tape formats supported under the NOS/BE
operating system are: SI coded and binary and S/L.

LABEL DEFINITIONS

The three basic classes of labeling conventions are standard
labeled files, nonstandard labeled files, and uniabelied files.
STANDARD LABEL

A standard labeled file is recorded with label groups
appended to the data. The content of the labels and the

format of the file so recorded conform to the American
National Standards X3.27-1969, Magnetic Tape Labels for
Information Interchange. Standard label processing applies
only to sequential files on magnetic tape.

A label group is composed of a number of 80-character
blocks separated by an interrecord gap. The label group is
separated from the data records in the file by a hardware
tapemark. The three types of label groups are volume/-
header group, end-of-file group, and end-of-volume group.
The position of these groups in relation to file data is shown
in figure 6-1. Table 6-1 shows the contents of each label
defined by ANSI.

NONSTANDARD LABEL

A nonstandard label is a descriptive record appended to data
according to a set of rules other than the ANSI standard
convention. BAM allows nonstandard labels to be written,
for processing by the user, for sequential files on all devices.

Single Volume File

VOL1 |[HDR1}* Data Blocks *|EOF1 | *|*

Multivolume File

vOL1 |HDR1}* First Volume Data ... |[*| EOV1] *|*

VOL1 |HDR1|*| ... Last Volume Data ... |*|EOF1]* *

Multifile Volume

VOL1 [HDR1 | * FileA ... *|EOF1]|*| HDR1|* . FileB ... *| EOF1|**

Multivolume Multifile

VOL1 |HDR1|* . FileA ... *{EOF1| *| HDR1}* FileB ... *EOV1*|*

VOL1 |HDR1| *]... Continuation of File B ... |*| EOV1|*|*

VOL1 |HDR1]* Last of FileB ... *{EOF1 | *|HDR1 | * FileC ... |*| EOF1|*|*
* Tapemarks written by system hardware; user does not control.

Figure 6-1. Standard Label Tape Formats

60495700 D

6-1@

TABLE 6-1. ANSI STANDARD LABELS

Label Character . ANSI Namc Defaylt Checked
ave Position Field (System Name) Length Contents Written On Input
1-3 Label Identifier VoL VOL Yes
4 Label Number 1 1 Yes
5-10 3 Volume Serial Number 6 Any characters As typed from Yes
console if file
assigned
\r"gla”d”;f 11 4 | Accessibility 1 | Space Space No
12-31 5 Reserved 20 Spaces Spaces No
32-37 6 Reserved 6 Spaces Spaces No
38-51 7 Owner ID 14 Any characters Spaces No
52-79 8 Reserved 28 Spaces Spaces No
80 9 Label Standard Level 1 1 1 No
1-3 1 Label Identifier 3 HDR HDR Yes
4 2 Label Number 1 1 Yes
5-21 3 File ldentifier 17 Any characters Spaces Yes
(File Label Name)
22-27 4 Set Identification 6 Any characters Volume serial No
(Multifile Set Name) number of first
reel of the set
28-31 5 File Section Number 4 4 digits indicating 0001 Yes
(Reel Number) number of volume
in the file
First 32-35 6 File Sequence Number 4 4 digits indicating 0001 Yes
file (Position Number) number of file in
header multifile set
36-39 7 | Generation Number 4 (Not used by the Spaces No
operating system)
40-41 8 Generation Version Number 2 2 digits indicating |00 Yes
(Edition Number) the edition of the
file
42-47 9 Creation Date 6 Space followed by | Current date is Yes
2 digits for year, used
3 digits for day
48-53 10 Expiration Date 6 Same as field 9 Same as field 9 Yes
54 11 | Accessibility 1 Any characters Space No
55-60 12 Block Count 6 Zeros Zeros Yes
61-73 13 System Code 13 Any characters Spaces No
74-80 14 Reserved 7 Spaces Spaces No
Additional 1-3 Label Identifier 3 HDR HDR Yes
file 4 2 Label Number 1 2-9 2-9 Yes
header All other fields are not checked on input; they are written as received from the user.
1-3 1 Label Identifier EOF EOF Yes
4 2 Label Number 1 1 Yes
5-54 3-11 | Same as corresponding
HDR1 label fields
endF:(l)I;S-tﬁle 55-60 12 | Block Count 6 6 digits indicating Yes
number of data
blaocks since the last
HDR label group
61-80 13-14 | Same as corresponding
HDR1 label fields
®5-2 60495700 D

el

BB

.

h o~ o~

AN A SUVEREE, w2 o e

TABLE 6-1. ANSI STANDARD LABELS (Cont'd)

Character . ANSI Name Default Checked
Label Position Field (System Name) Length Contents Written On Input
1-3 1 Label Identifier 3 EOF EOF Yes
Additional
end-of-file 4 2 Label Number 1 2-9 2-9 Yes
All other fields are not checked on input; they are written as received from the user.
1-3 1 Label Identifier 3 EOV EQV Yes
First
end-of-volume 4 2 Label Number 1 1 1 Yes
All other fields are identical to EOF1 label
1-3 1 | Label Identifier 3 EOV EQV Yes
Additional
end-of-volume 4 2 Label Number 1 2-9 2-9 Yes
All other fields are not checked on input; they are written as received from the user.
T T T T
1-3 | 1 | Label Identifier 3 | 3-letter code: UVL, UHL, or UTL Yes
USER 4-80 Any characters. Content of these fields is not checked on input; it is written as received
from the user.
UNLABELED

An unlabeled file has no system descriptive records at the
beginning of the file. The first block of the file is treated as
a data block. An unlabeled file on an SI or I tape has a
system-processed trailer label. The presence of this label
allows end-of-information to be defined. Multivolume
processing is done automatically by the operating system for
Slor I tapes.

On an S/L tape, no system trailer label exists and end-of-
information is undefined. On input, a tapemark encountered
after the end-of-tape reflective spot signals end-of-volume
and the operating system switches volumes. The formats of
unlabeled magnetic tape files are shawn in figure 6-2.

LABEL PROCESSING
FIT FIELDS

The following FIT fields are used during label processing:

LT Label type. LT is determined when the file is
opened, based on parameters on the FILE macro or
control statement. If label type is unspecified,
user label processing is not allowed.

LT=S Standard

LT=UL Unlabeled

LT=NS Nonstandard

LT=ANY Unspecified

LCR Label check/creation. LCR is determined when the

file is opened, based on the parameters of the FILE
macro or control statement. It must be specified
by the user.

LCR=E Existing label is read and checked

LCR=N New label is written

60495700 D

Single volume tape with S| or | format

data *1 EOF1 [*(*

Multivolume tape with Sl or | format

data (reel 1) *1 EOV1 |*]|*

data (reel n) *1 EQF1 [*|*

Single volume tape with S or L format

data *

Multivolume tape with S or L format

data *

data *

* Tapemarks written by system hardware; user does
not control.

Figure 6-2. Unlabeled Tape Format

6-3@

LA Label area address. Labels are delivered into the
area as a result of the GETL macro. Labels are
fetched and submitted for processing as a result of
the PUTL maers. If LA is zers, nc user labe!l

processing can be done.
LBL Label area length in characters.

LX Label routine exit address. Control is passed to the
LX routine for user label processing at certain file
positions, depending on the contents of the ULP
field.

ULP User label processing. Types of label processing
that are available for standard labels. Any
specification for ULP except NO is acceptable.
For nonstandard labels when ULP is not set to NO,
the user must process all labels.

ULP=NO No user label processing

ULP=V User volume label processing

ULP=F User file label processing

ULP=U User label processing (UHL, UTL,
uvL)

ULP=VF Combination of V and F

ULP=VU Combination of V and U

ULP=FU Combination of F and U

ULP=VFU Combination of V, F, and U

DECLARING LABEL TYPE

Before a file is opened, the user must set the label type (LT)
and label check/creation (LCR) fields of the FIT with a FILE
macro or control statement. The equivalent information
must be specified on a LABEL or REQUEST control
statement. Refer to the appropriate operating system
reference manual for a complete description of these
control statements. Under the NOS operating system, a file
with nonstandard label type must be declared unlabeled on
the REQUEST or LABEL statement.

A standard labeled multifile set is specified by putting the
MF and MFN parameters on the REQUEST control state-
ment and setting the MFN field of the FIT. The format of a
multifile set is explicitly specified by the ANSI standard.
User label processing of any of the label groups is supported
as described in the User Label Processing Macros subsection.
A multifile set can be created and read only if the user
supplies all the labels.

Tapes with earlier standard labels, Z labels, can be read but
not written. They must be identified by the 7 parameter on
the REQUEST or LABEL control statement for the operating
system to read these files. Under the current ANSI
standard, density of label data is the same as that of
subsequent data. Earlier standards allowed data recording
density to be specified by character 12 of the VOLI1 label.

STANDARD LABEL PROCESSING

The VOL1l, HDR1, EOV1, and EOF1l labels are always
processed to ensure adherence to ANSI standards and LABEL
statement parameters. VOL1, EOF1, and EOV1 are written
by the system with default values. Any user values are
ignored without comment. A tapemark is written to

L P N T N L T
LOLHIGLE iautE JiUups Uil Sidiilal U idBicl JlULpuL Lapto.

06-4

User processing is allowed on ANSI-defined labels when label
type (LT) is declared standard and the user label processing
(ULP) field is set to identify a label group. Working

P P]

lemmradmn s 8 abmom A . - P S T
ROIOWICTUGE O Siainiuaiu imaglitLit Lapt ldutl SLruciures 1S

necessary for the following label processing discussions. The
notations UTL(f) and UTL(v) indicate all the user trailer
(UTL) labels that can follow EOF and ECV labels. UHL(a)
and UVL(a) indicate all the user header (UHL) or user
volume (UVL) labels that can follow the HDR and VOL1
labels.

A file is initialized by the operating system when the LABEL
control statement is encountered. Consequently, user label
processing should not be attempted when a LABEL control
statement is used.

User label processing is controlled by the FIT fields LX, LA,
and ULP. Control passes to a user label processing exit if
the user has specified user label processing (ULP on the
FILE control statement or macro), and the position of the
standard labeled file is such that there are labels to be
processed. User label processing (ULP) can be specified for
some label groups and not others. If LX is zero, the system
supplies the requisite label.

Label processing capabilities are provided by the GETL,
PUTL, and CLOSEL macros. GETL retrieves the next label
of a label string and delivers it to the label area. Labels are
written by PUTL. CLOSEL terminates label processing.
More detail is given under User Label Processing Macros.

INPUT TAPE USER PROCESSING

Existing standard labels can be checked when the processing
direction (PD) field of the FIT is set to INPUT, or I-O with
the LCR field set to E. Labels can be retrieved with GETL;
each GETL returns an 80-character labe! to LA. If the
value of the LBL field is less than 80, LBL characters are
retrieved and an error flag is set. If LBL exceeds 80, an
error flag is set and 80 characters are delivered to LA.

OPENM of Input Tape

If the value of the LX field is zero, the header label group is
processed automatically by the operating system. If the LX
field is nonzero, control is given to the user's routine twice
during OPENM processing. At the first exit, the open/close
flag (OC) field of the FIT is set to not open and the PUTL
macro can be issued to have the system perform a label
check. At the second exit, the OC field is set to open and
the GETL macro can be issued.

The labels that can be retrieved during OPENM processing
are shown in table 6-2 in the order in which successive
GETL macros would retrieve them. Labe!l precessing is not
allowed for an OPENM with no rewind.

CLOSEM of Input Tape File

If the LX field is zero, EOF1 is processed automatically by
the operating system. If LX is nonzero, control is passed to
the user label processing routine twice. At the first exit,
the OC field of the FIT is set to open and the PUTL macro
can be issued to have the system perform a label check. At
the second exit, the OC field is set to closed, and trailer
labels can be retrieved with the GETL macro. The labels
available depend on the contents of the ULP field as shown
i table -3,

60495700 D

(
p
|

+

.

]

TABLE 6-2. INPUT FILE LABELS
ACCESSED AT OPENM

ULP Labels Retrieved by GETL

\ VvOL1

F HDR1-9

U UVL(a), UHL(a)

VF vOoL1, HDR1-9

VU VOL1, UVL(a), UHL(a)

FU HDR1-9, UHL(a), UVL(a)

VFU VOL1, UVL(a), HDR1-9, UHL(a)

TABLE 6-3. INPUT FILE LABELS
ACCESSED AT CLOSEM

TABLE 6-4. INPUT FILE LABELS ACCESSED
AT CLOSEM VOLUME (EOV)

ULP Labels Retrieved by GETL
=]
v EOV1-9
F None
U UTL(v)
VF EOV1-9
vu EQV1-9, UTL(v)
FU UTL(v)
VFU EOV1-9, UTL(v)

TABLE 6-5. INPUT FILE LABELS ACCESSED
AT CLOSEM VOLUME (BOV)

ULP Labels Retrieved by GETL UuLP Labels Retrieved by GETL

\ None A None

F EOF1-9 F HDR1-9

U UTL(F) U UVL(a), UHL(a)

VF EOF1-9 VF HDR1-9

VU UTL(P) VU VOL1, UVL(a), UHL(a)

FU EOF1-9, UTL(f) FU HDR1-9, UHL(a), UVL(a)

VFU EOF1-9, UTL(f) VFU VOL1, UVL(a), HDR1-9, UHL(a)

CLOSEM of Input Tape Volume

If the LX field is zero, EOV1 is processed automatically by
the operating system. Volumes are switched and header
labels are processed automatically. If the LX field is
nonzero, control is passed to the user at address LX when
the file position (FP) is beginning-of-volume (BOV) because
CLOSEM VOLUME could have been issued midreel.

When an EOV occurs because the label group indicating end-
of-tape has been reached by a GET or SKIPFL macro,
control is transferred to the LX address at EOV and BOV.
The user must differentiate between these file positions in
the label routine of the program.

When the file position is EOV, the labels that can be
retrieved by the GETL macro are those listed in table 6-4.
When the file position is BOV, the labels that can be
retrieved by the GETL macro are those listed in table 6-5.

OUTPUT TAPE USER PROCESSING

A new standard label can be written when the processing
direction (PD) field is set to OUTPUT or when the PD field
is set to I-O and the LCR fieid is set to N.

In a user label routine, labels can be written with the PUTL
macro. Each PUTL takes one 80-character label from
address LA and writes it to the file. The 80 characters must
be correctly formatted or an error results. If the length of
the label area or the label address is zero, no user labels are
written, but default VOL1, HDR1, EOF1, or EOV1 label is
supplied and an error is returned.

60495700 D

VOL1, HDR1, EOF1, and EOV1 are ANSI-required labels and
the operating system ensures that these labels are written to
the file. The user can supply the labels in any order and the
operating system reorders them. User label processing is
allowed on output only if the OPENM macro with the rewind
option is used.

OPENM of Output Tape

If the LX field is zero, default VOL1 and HDR1 labels are
supplied automatically. If the LX field is nonzero, control is
passed to the user label processing routine. Labels that can
be written are indicated in table 6-6. Each PUTL macro
writes one label.

TABLE 6-6. OUTPUT FILE LABELS
WRITTEN AT OPENM

ULP Labels Written by PUTL
\ None

F HDR2-9

U UVL(v), UHL(f)

VF HDR2-9

vU UVL(v), UHL(f)

FU HDR 2-9, UHL(f), UVL{v)
VFU UVL(v), HDR2-9, UHL(f)

6-5@

CLOSEM of Output Tape File
If the LX field is zero, a default EOF1l is supplied

is nonzero, control is passed to the user label processing
routine. Labels that can be written are shown in table 6-7.

TABLE 6-7. OUTPUT FILE LABELS
WRITTEN AT CLOSEM

UuLpP Labels Written by PUTL
\ None

F EQF2-9

U UTL(f)

VF EOF2-9

vuU UTL(f)

VFU EOF 2-9, UTL(f)

CLOSEM of Output Tape Volume

If the LX field is zero, default EOV], VOL1, and HDR1
labels are supplied. If the LX field is nonzero, control is
passed to address LX when the file position is EOV and BOV.
In either case volume switching is automatic.

When the file position is EOV, the labels that can be written
with the PUTL macro are those listed in table 6-8. EOV1 is
always supplied by the operating system because its content
must be an image of HDR1. If a user issues a PUTL macro
farn an MV it in tamanad Wik tkg Fila Anaitiae 1o OO/
100 G Cuwvay I 10 IgHioTcls v iicii uni 112 PGIILiTN IS0 Ouwyvy
the labels that can be written with the PUTL macro are
those listed in table 6-9.

TABLE 6-8. OUTPUT FILE LABELS WRITTEN
AT CLOSEM VOLUME (EOV)

ULP Labels Written by PUTL
\Y EQV2-9

F None

U UTL(v)

VF EOV2-9

vu UTL(v), EOV2-9
VFU EOV2-9, UTL(v)

TABLE 6-9. OUTPUT FILE LABELS WRITTEN
AT CLOSEM VOLUME (BOV)

ULP Labels Written by PUTL

\ None

F HDR2-9

U UVL(a), UHL(a)

VF HDR2-9

VU UVL(a), UHL(a)

FU HDR2-9, UHL(a), UVL(a)

VFU UVL(a), HDR2-9, UHL(a), EOV2-9

®6-6

NONSTANDARD LABEL PROCESSING

Nonstandard label processing is entirely the responsibility of

Thic tune of labhal nrareeeinm ie aunilabhla far
se LYPe OV 1308 P ng of

the wuecer
ine ueer, nIe Lype OF 1302: procectl IS aVai:goc:C &

sequential files on all devices.

The nonstandard labels can be header and/or trailer labels.
Header labels appear between the beginning-of-information
and a user-defined point. Trailer labels appear between
some other user-defined point and end-of-volume or end-of-
information. The delimiting and processing of nonstandard
labels is the user's responsiblity.

INPUT FILE USER PROCESSING

Each GETL macro retrieves the number of characters of
data specified by the label area length (LBL) field, or fewer
characters, from a physical record and delivers them to
address LA. If a tapemark or level 17 is reached, the GETL
macro returns with an end-of-labels file position and no data
is transferred.

For an input file, control is passed to the label processing
routine during OPENM processing or CLOSEM processing
when the file is positioned at end-of-partition. The
nonstandard label can then be retrieved with the GETL
macro.

During CLOSEM processing of an input volume, control is
passed to the user at address LX. The CLOSEM macro
should be called when the user has determined that end-of-
volume processing is required. File position should be end-
of-section or end-of-partition, and labels should be sepa-
rated from data. If an end-of-data is encountered during
forward resding, control is passed to the end-of-data exit
(DX) routine if present. End-of-volume labels must be
processed in the end-of-data routine before CLOSEM is
called. The user has the option of issuing a CLOSEM
VOLUME/FILE at this time. If CLOSEM VOLUME is issued,
volumes are switched automatically and control is passed to
the user at address LX at load-point.

If the system closes an input volume, automatic volume
switching takes place only at the first tapemark after the
reflective spot. Control is passed to address LX at BOV for
label processing.

OUTPUT FILE USER PROCESSING

Each PUTL macro delivers the number of characters
specified by the LBL field from the label area (LA) to the
input/output device. The data is formatted as one physical
record. The user can use the WTMK macro for writing
record delimiters. Delimiters are not required; processing is
entirely up to the user. When the system closes the volume
because the reflective spot has been encountered, the output
buffer is not flushed. If the user closes the volume, the
buffer is flushed before any label processing.

For an output file, control is passed to address LX during
OPENM and CLOSEM processing. The user can then write
labels with the PUTL macro.

For an output volume, control is passed to address LX twice
during CLOSEM processing. The first time is for creation of
trailer labels, and the second time is for the creation of
header labels.

Automatic volume swapping occurs after the tape reflective

spot is encountered. In this case, label processing is
availabie uiiy al BOV.

60495700 D

-

s)

SR B

.

-

-~

p

N

o~ o~

USER LABEL
PROCESSING MACROS

Macros provide label processing capabilities. The macros
provided retrieve labels (GETL), submit labels for writing or
checking (PUTL), and terminate user label processing
(CLOSEL). They are applicable only for sequential files.

GETL

The GETL macro retrieves the next label of a label group
and delivers it to the label area. Format of the macro is
shown in figure 6-3.

GETL fit,la,Ib!
fit Address of the FIT.

la Address of the label area; holds the label fetched
by the GETL macro.

Ibl Length (in characters) of the label area.

All parameters can be specified as registers.

Figure 6-3. GETL Macro Format

During OPENM and CLOSEM processing, entry is made into
the label routine and labels appropriate to the current file
position are made available to the user via the GETL macro.
The GETL macro validates the contents of certain FIT fields
and ensures the legality of the call. The file organization
(FO) field must be set to sequential (SQ). The label type
{LT) field must be set to standard (5) or to nonstandard (NS}
with the ULP fieid set to ether than NO. The processing
direction (PD) field must be set to INPUT or to [-O with the
LCR field set to E. A check is made that the LBL field is
nonzero, and that the label area is specified. If the labels
are standard, the file must be a tape file and the user label
processing flags must be set (the ULP field not set to NO).

If labels are standard, the number of characters specified by
the LBL field are moved to the user label area at LA, If the
LA field has not been set either previously or by the GETL
macro, an error exit is taken. If the number of characters
specified by the LBL field is greater than 80, only 80
characters are retrieved. If the LX field is zero, no label
processing routine exists. The ULP field is used in
conjunction with the file position (FP) field to determine
what type of label is to be retrieved.

When the GETL macro is issued for standard labels and no
errors are detected, the user label processing flags are
checked to determine what types of labels are appropriate.
The next appropriate label is moved to the label area at LA.
If none exists, the end-of-labels flag is set and control is
returned to the user label routine. If the value of the LBL
field is other than 80, an error status is set. If the LBL field
is greater than 80, only 80 characters are moved to the label
area at LA. If the LBL field is less than 80, only the number
of characters specified by the LBL field are moved to the
label area. Labels are retrieved in sequential order. For
example, at beginning-of-information with the ULP field set
to F, the labels on a file containing HDR1, HDR2, and HDR3
labels would be available in the order HDR1, HDR2, HDR3.
Each call to GETL would retrieve only one label.

When the GETL macro is issued for nonstandard labels and

no errors are detected, a physical record is read and the
number of characters specified by the LBL field are moved

60495700 D

to the label area at LA. If the physical record is larger than
the LBL field, only the number of characters specified by
the LBL field are moved. If the physical record is smaller
than the LBL field, as many characters as possible are
moved and the number of characters moved are returned in
the LBL field.

PUTL

The PUTL macro writes a label. Format of the macro is

shown in figure 6-4.

PUTL fit,la,lbl
fit Address of the FIT.

la Address of the label area; contains the label to be
written on the file.

Ibl Length (in characters) of the label area.

All parameters can be specified as registers.

Figure 6-4. PUTL Macro Format

During OPENM and CLOSEM processing, entry is made into
the label routine. At this time, labels appropriate to the
current file position are submitted to be written on an
output file. The PUTL macro validates the contents of
certain FIT fields to ensure the legality of the call. The file
organization (FO) field must be set to sequential (SQ). The
label type (LT) field must be set to standard (S) or to
nonstandard (NS) with the ULP field set to other than NO.
The processing direction (PD) field must be set to OUTPUT
or to I-O with the LCR field set to N. Additional checks are
made that the LBL field is nonzero, and that a label area is
specified. If the labels are standard, the file must be a tape
file and the user label processing flags must be set to other
than NO.

The ULP field is used in conjunction with the file position
(FP) field to determine if the label being submitted is legal
at the present file position. The first three characters of
the label at LA are used to determine the type of label:
VOL, HDR, EQV, or EOF. If the LA field has not been set
either previously or by the PUTL macro, an error exit is
taken.

For standard labels, if no errors have been detected, each
call to the PUTL macro examines the label at LA, keying on
the first four characters. The ULP field is checked to see if
the submission of the label at the current file position is
allowed. At beginning-of-information with the ULP flag set
to F, submission of a VOL1 label would not be allowed.

For nonstandard labels, if no errors have been detected, the
number of characters specified by the LBL field are taken
from the label at LA and written to the file as a physical
record.

The PUTL macro can be used on an input type file with
standard labels to have the system perform a label check.
The LT field must be set to S and the PD field set to INPUT
or to I-O with the LCR field set to E. At the first label exit
taken during OPENM and CLOSEM processing, a PUTL
macro can be issued. This causes the labels to be moved
from the label area LA to the label buffer. The system then
compares this label to the input file label. If they are
unlike, the file cannot be opened and a fatal error occurs.

6-7@

CLOSEL

The CLOSEL macro terminates label processing and returns
controi to OPENM or CLOSEM processing. CLOSEL must be
called to terminate user label processing because it is the
only way for the user to return control to BAM. Format of

the CLOSEL macro is shown in figure 6-5.

CLOSEL fit

fit Address of the FIT or register containing the
address.

Figure 6-5. CLOSEL Macro Format

®5-8

The CLOSEL macro is used to exit a label processing routine
and return to the calling routine for continued processing.
Entry into the label processing routine is made at various
times during OPENV and CLOSEM processing. Generaiiy,
on input type files (the PD field is set to INPUT or to I-O
with the LCR field set to E), entry is made when the labels
are made available for checking. On output type files, entry
is made to the label processing routine to allow the user to
submit labels to be written on the file.

On nonstandard end-of-volume and end-of-file labels, label
processing must be performed by the user at the end-of-data
exit (DX) address. This address is taken at the tapemark
before the nonstandard label. In this case, when the
CLOSEL macro is issued, it returns control in-line after the
CLOSEL macro.

60495700 D

£0h

-

STANDARD CHARACTER SET

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII é64-character set
ASCII 63-character set

The set in use at a particular installation was specified when
the operating system was installed.

Depending on another installation option, the system

assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use).

60495700 D

Under NOS/BE, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of the job statement or
any 7/8/9 card. The specified mode remains in effect
through the end of the job unless it is reset by specification
of the alternate mode on a subseqeunt 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of any 6/7/9 card, as
described above for a 7/8/9 card. In addition, 026 mode can
be specified by a card with 5/7/9 multipunched in column 1,
and 029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal or
printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable to
BCD terminals; ASCII graphic characters are applicable to
ASCII-CRT and ASCII-TTY terminals.

A-1@

®A-2

STANDARD CHARACTER SETS

cDC ASCH
Display Hollerith External .
Code Graphic Punch BCD Graghic '::"2;‘ (‘z_‘:':)
{octal) (026) Code
oo? : {colon) Tt 82 00 : {colon) TT 82 072
o1 A 12-1 61 A 121 101
02 B 12:2 62 B 122 102
03 C 12-3 63 c 12-3 103
o4 D 124 64 D 124 104
05 E 125 65 E 125 105
06 F 12-6 66 F 126 106
07 G 127 67 G 127 107
10 H 128 70 H 128 110
1 i 129 71 | 129 m
12 J 111 41 J 1141 112
13 K 112 42 K 12 113
14 L 113 43 L 11-3 114
15 M 114 44 ™M 114 115
16 N 15 45 N 15 116
17 o 116 46 o) 116 117
20 P 17 47 P 117 120
21 Q 18 50 Q 18 121
22 R 119 51 R 119 122
23 s 02 22 s 02 123
24 T 03 23 T 03 124
25 v 04 24 V] 04 125
26 v 05 2% v 05 126
27 w 06 26 w 06 127
30 X 07 27 X 07 130
31 Y 08 30 Y 08 131
32 z 09 31 z 09 132
33 0 0 12 0 0 060
34 1 1 o1 1 1 061
35 2 2 o2 2 2 062
36 3 3 03 3 3 063
37 4 a 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 1 9 9 o071
45 + 12 60 + 1286 053
46 ; " 40 " 1 055
a7 1184 54 1184 052
50 / 01 21 / 01 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 1183 53 $ 1183 044
54 = 83 13 = 86 075
55 blank no punch 20 blank no punch 040
56 , {comma) 08-3 33 , [comma) 083 054
57 . {period) 1283 73 . {period) 1283 056
60 = 086 36 # 83 043
61 [87 17 C 128-2 133
62] 082 32] 1182 135
63 % Tt 86 16 % 11 084 045
64 # 8-4 14 " (quote) 8-7 042
65 r~ 085 35 __ (underline) 085 137
66 v 110 or 1182111 52] 1287 or 110711 041
67 A 087 37 & 12 048
70 t 1185 55 ! (apostrophe) 85 047
7 i 11-8-6 56 ? 087 077
72 < 12.0 or 1282111 72 < 1284 or 12011 074
73 > 1187 57 > 086 076
74 < 85 15 e 84 100
75 > 1285 75 \ 082 134
76 = 1286 76 ~ {circumflex) 1187 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 1186 073

TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than

two colons.

Tin installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punch).

yield a blank ({55,

).
tThe alternate Hoiﬁerith {026} and ASCil {029) punches are accepted for input only.

The % graphic and related card codes do not exist and translations

60495700 D

PO S N N Y Y Y Y Y.

x

AN SR Ve am Am Sn s M e em .-

m Tem o

o~ o~ e

CDC CHARACTER SET

COLLATING SEQUENCE
Collating Collating
Sequence cDC Display External Sequence CDC Display | External

Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD

—
00 00 blank 55 20 32 40 H 10 70
01 o1 < 74 15 3 41 I 1 71
02 02 % 63 T 167 34 42 v 66 52
03 03 [81 17 3 43 J 12 41
04 04 — 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 t 70 55 39 47 N 16 a5
08 10 ! 71. 56 40 50 o} 17 46
09 1 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
1 13 - 76 76 43 53 R 22 51
12 14 . 57 73 44 54] 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
5 i7 + 45 60 47 57 U 25 24
16 20 $ 53 53 48 60 v 26 25
17 21 * 47 54 49 61 w 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 Z 32 31

1 25 { 51 34 53 65 : oot nonef

2 26 = 54 13 54 66 0 33 12
23 27 # 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 c 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 a4 11

t1n installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,

External BCD code 16.

60495700 D

A-3@

®A-4

ASCll CHARACTER SET
COLLATING SEQUENCE

Collating ASCI.I Display | ASCII Collating ASCI-I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal | Subset Decimal/Octal | Subset

00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63} 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ’ 70 27 39 47 G 07 47
08 10 { 51 28 40 50 H 10 48
09 1N) 52 29 a1 51 | 11 49
10 12 * 47 2A 42 52 J 12 4A
1 13 + 45 2B 43 53 K 13 4B
12 14 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 o) 17 aF
16 20 0 33 30 48 60 P 20 50
17 21 1 3 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 §] 25 55
22 26 6 41 36 54 66 \ 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 : 00} 3A 58 72 2 32 BA
27 33 ; 77 38 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 ~ 76 5E
31 37 ? 71 3F 63 77 65 5F

tin installations using a 63-graphic set, the % graphic does not exist. The : graphic is display code 63.

60495700 D

(

-

Fp—

FEC-SE 248 -

ERROR PROCESSING AND DIAGNOSTICS B

All user requests are checked to ensure proper processing. TABLE B-1. TYPES OF PARITY ERRORS
If results are not satisfactory, an error condition exists and
the following occurs:

Value Severity Explanation
A three-digit octal error code is returned in the error

status (ES) field of the FIT.

1 Read parity | Recovery to record boundary is

For a parity error, a severity level is set in the system error level 1 | possible. The number of bad rec-

parity error severity (SES) field. ords and blocks is known. BAM
can recover.

-

For a fatal error, the fatal/nonfatal flag (FNF) field is

set in the FIT. 2 Read parity | Recovery to record boundary is
(‘ error level 2 | possible. The number of bad
‘ Action indicated by the user setting of the error option blocks is known but not the num-
(EO) field takes place, as discussed elsewhere in this ber of lost records, BAM can
section. recover.
(An error exit is taken if the user has set the error exit 3 Read parity | Recovery to record boundary is
(EX) field of the FIT. error level 3 | possible. The number of bad rec-
ords and blocks is unknown. BAM
(' Error messages and notes are written to the dayfile can recover.
and/or the ZZZZZEG error file depending on the values . .
of the dayfile control (DFC) and error file control (EFC) 4 Read parity | Recovery to record boundary is
fields. error level 4 | not possible. Fatal, BAM can-
(' not recover.
’ 5 Write parity | Irrecoverable tape write parity
ERROR COMMUNICATION error level 1 | error. CLOSEM VOLUME recom-
mended.
Regarding errors, the user and the error processor communi- . i) A
cate through FIT fields ES, EX, EO, ERL, ECT, and PEF. 6 Write parity | Irrecoverable tape write parity
The error status (ES) field is a 9-bit field set to an octal error level 2 | error, CLOSEM VOLUME cannot
value after an attempt at error resolution is made and be executed.

control is ready to be returned to the user. When an
attempt is made to execute an input or output request after

‘ an error, the ES field is not cleared. If the request is not EX40 If a fatal or trivial error occurs
(legal, the trivial error count (ECT) is incremented, and control is transferred to EX+l: ;
i execution proceeds. If a subsequent error is detected, the ’

jump to the user in-line return
address is stored in the EX field, and
the ES field is set.

ES field reflects the most recent error. The user is

) responsible for clearing the ES field if an error exit (EX) is

f not supplied, but instead the ES field is checked after every
Y, macro call.

ERL Trivial error limit which can be specified by

(x FIT fields and their meaning relevant to error processing the user.

are:

ERL=0 Limit not specified; no error count is
accumulated. The number of trivial

FNF Fatal/nonfatal flag; set to 1 for fatal errors. errors permitted is indefinite.

PEF Parity error flag; set to 1 for parity errors.
ERL#0 The job is terminated when the value
SES System parity error severity; set to the of the ECT field reaches the value of
severity level of the parity error. The levels the ERL field.

-

have meaning as shown in table B-1.

EO Error option; the EO field is used in con-
junction with parity errors. If the TD, AD, or
DD option is used and the EFC field is set to 3,
the block containing the parity error is dumped
to the error file for display by the error

EX Error exit; an 18-bit field, interpreted as
follows:

EX=0 No user error routine; control is
returned as a normal exit; the ES

‘ field is set with an error code. If the processor. The EO field is interpreted as
(, value of EX is zero and a fatal (F) follaws:
error is encountered, the message is
put on the dayfile. EO=T/TD All parity errors are fatal.
r
‘lfi 60495700 D B-1@

EO=A/AD All parity errors should be disre-
garded (the bad data read as if it

were good), but the ES field is

set to 137 and contro! is paeeafl

ool

to the error exit (EX) routine at
the end of the record. If another
error occurs when trying to read
bad data, error 137 is over-
written by the next error;
however, the parity error flag
(PEF) remains set.
EO=D/DD The block in which the parity
error occurs is dropped and BAM
attempts to find the start of the
next good record. If successful,
the error exit is taken with the
ES field set to 137, the SES field
set to 3, and the FNF field set to
zero. The content of the
working storage area is unde-
fined, and the file is positioned
in front of the next good record.
If unsuccessful, the error exit is
taken with the ES field set to
137, the SES field set to 3, and
the FNF field set to 1 (fatal).

DFC Dayfile control. This field is set by the user to
control the listing of error messages on the

dayfile.

DFC=0 No dayfile messages except fatal
errors (default).

DFC=1 Error messages to the dayfile.

DFC=2 Notes to the dayfile.

DFC=3 Error messages and notes to the

dayfile.

EFC Error file control. This field is set by the user
to control the listing of error messages on the

error file.

EFC=0 No error file entries (default).
EFC=1 Error messages to the error file.
EFC=2 Notes to the error file.

EFC=3 Error messages and notes to the

error file.

The system message disposition (SDS) and extended diag-
nostic (EXD) fields of the FIT, which were part of a previous
version of the error processor, are replaced by the DFC and
EFC fields. If the SDS or EXD fields are used with the FILE
macro, a warning assembly diagnostic is issued and no
comparable values are placed in the DFC and EFC fields. If
they are used with the FETCH or STORE macro, they are
translated into compatible values for the DFC and EFC
fields. The SDS field set to YES is equivalent to the DFC
field set to 2. The EXD field set to YES is equivalent to the
EFC field set to 1.

ERROR PROCESSING

If the EFC field is set to nonzero, the CRMEP control
statement can be used to process the ZZZZZEG error file
and control the listing of error messages on the output file.

Thoo memme LIVt Voo BV e b o b oo bt et
THE CIiUs i 10 giwayds (dushicl Wit auinidiiial Lo idiaun

®B-2

occurs. At the completion of a job step, the error file is
flushed if all files are closed. The format of the CRMEP
control statement is shown in figure B-1. The parameters,

COAED ot PR
opticns, and defaults for the CRMEP control statement are

listed in table B-2. The first default is set if neither the
parameter nor the option is specified. The second default is
set if the parameter is specified without an gption. More
than one option can be specified with each parameter, and
more than one parameter can be specified on one CRMEP
control statement.

CRMEP (parameter=option4/optiony/ ... /eptiong,, ...)

parameter Mnemonic specifying type of error file
processing and listing.
option Selected setting of the specified parameter.

Figure B-1. CRMEP Control Statement Format

The FITDMP macro can be used to capture the contents of
FIT fields for display by the post error processor. When the
FITDMP macro is executed, the FIT, and the FIT display
identifier if the id parameter is specified, are written to the
ZZZZ7EG error file. The CRMEP control statement can
then be used to display the FIT on the output file. The
format of the macro is shown in figure B-2. The FIT display
identifier, which can be up to ten characters, identifies the
particular fit dump. The id parameter specifies the location
of the display identifier.

FITDMP fit,id
fit Addiess of the FiT.
id Address of the FIT display identifier

Figure B-2. FITDMP Macro Format

To ensure that notes are written to the error file, the EFC
field of the FIT must be set to 2 or 3. Note number 1000 is
reserved for user FIT dumps.

Upon encountering an error condition, the error status (ES)
field is set to the appropriate error number, the trivial error
count (ECT) field is incremented, and it is compared with
the trivial error limit (ERL) field. If the ERL field is zero,
unlimited errors are allowed and the ECT field is not
incremented in the FIT. If the value of the ERL field is
nonzero and the ECT field is less than the ERL field, control
passes to the error exit (EX) routine if defined, or back to
the user's in-line code if the EX field is zero. In the latter
case, it is the user's responsibility to check the error status.
If the ERL field is nonzero and the value of the ECT field is
equal to the value of the ERL field, the ES field is set to 356
(trivial error limit reached). The fatal/nonfatal (FNF) flag
is set and another message is written. Control is returned as
described above. If the FNF flag is set and any other
function is attempted on the file, a 115 error is generated
and the job is aborted.

CLASSES OF ERRORS

Syntax errors are diagnosed. The messages are self-
explanatory. System errors are detected by the operating
system. Execution errors, occurring during execution of
input and output requests, are subdivided into call errors and
iiivalid input/uuipul iequestis.

60495700 D

- am @A

¢

F N

i

S, A A 0 O 0 000 0 s e e

TABLE B-2. CRMEP CONTROL STATEMENT PARAMETERS

. First Second s
(Parameter Option Default Default Description
F N X Select notes.
(-N X Omit notes.
F X X Select fatal error
messages.
[-F Omit fatal error
(messages.
‘ LO D X X Select data manager
messages.
" -D Omit data manager
(messages.
T X Select trivial error
messages.
; -T X Omit trivial error
(messages.
Select messages
SF lfnl/lfnzl .o /lfnn All All associated with
(specified files.
Omit messages
OF lfnlllfnzl .o /lfnn None None associated with
t‘ specified files.
il
Hardware Select only specified
SN mnol/mnozl v /mnon All and parity message numbers.
ﬁ errors
Error Omit only specified
messages message numbers.
ON mnollmnoz/ cee /mnon None 142 and
143 only
L Ifn OUTPUT LIST Specify output file
name.
blank Return unload of
RU error file performed
(at end of processing.
h 0 X Error file position
at EOI at end of
" processing.
A 1

CALL ERRORS File

organization

Attempts to issue input/output re-
quests or specifications are illegal on
the type of file specified in the FO
field of the FIT.

(

Call errors are undetectable parameter errors, such as:

GET X1
Block type Attempts to issue input/output re-
quests are illegal for the block type

specified in the BT field of the FIT.

”~~

If register X1 does not contain the valid FIT address, an
unpredictable BAM error or mode error can result.

Attempts to issue input/output re-
quests are illegal for the record type
specified in the RT field of the FIT.

Record type

INVALID INPUT/OUTPUT REQUESTS

Requests for illegal input/output operations produce the

‘ following general types of errors: OPENM/ Input/output requests are illegal for
! CLOSEM files opened or closed as specified in
. FIT Content of address given as the FIT the OC and/or ON fields of the FIT.
‘ address does not pass a test for
(plausibility. It does not contain a Processing Input/output requests that would vio-
: legal logical file name in bits 59 direction late the processing direction limita-

\

60495700 D

through 18, or the FIT has incon-
sistencies.

tions specified in the PD field of the
FIT.

B-3@

Input/output requests are illegal for
the file position given by the FP field
of the FIT.

File position

Last operation Input/output requests are illegal in
the context of the last operation; for
example, a read after a write on

tapes.

Key Attempts to access or write records
whose keys are not within the range
of keys defined for a file. This
includes attempts to access sequen-
tial files by keys.

Data Errors in data specification, such as
inconsistency between the amount of
data requested and the amount
actually present, illegal field present
in the data, required field absent, or
parity errors.

Device Attempts to execute an input/output
request are illegal on the device upon
which the file resides.

Label Label information submitted by the
user does not correspond with the
existing label, or the label is incor-
rectly formatted.

All errors are fatal or nonfatal. Some nonfatal errors are
trivial in that no user action is required. Fatal errors
usually indicate incorrect parameter specification and
incomplete or contradictory information which is a user
program error. A fatal diagnostic is always printed on the
dayfiie.

If an EX field has been specified in the FIT, any error causes
a transfer of control to the address in EX+1 for a recovery
routine after the error has been resolved. Fatal errors
inhibit any further attempts at input/output on the file.
Such attempts cause the job to terminate. In the absence of
a value in the EX field, errors set the ES field and return
control to the calling program. The ES field is not cleared
after an error.

BAM is in the user's field length and is subject to destruction
by the user.

DIAGNOSTICS

Table B-3 is a list of notes or informative messages.

TABLE B-3. NOTES OR INFORMATIVE MESSAGES

Code Message

1000 USER FITDUMP

1137 THE FOLLOWING BLOCK CONTAINS A
PARITY ERROR

Table B-4 contains the following:

Code Octal value corresponding to the error
condition.
Message Diagnostic output which varies depending

on the values of the DFC and EFC fields,
and the parameters specified with the
CRMEP control statement.

Significance Meaning of the message.

Action Suggestion for the user to correct the
error condition.

Severity Type of error; can be any of the following:
F Fatal
T Trival

T/F Trival under some conditions, fatal
under others

TABLE B-4. DIAGNOSTICS

AATCAAA Tt R
IviL

020 | INVALID BT

ON BT=E/K E or K type blocks.

025 | BT=I, RT NE W

026 | SQ BTS REQUIRE MBL

blocks.

®B-4

Code Message Significance Action Severity

001 | INVALID FO File organization must be sequential Correct the file organization field. F
(SQ) or word addressable (WA).

002 | FIT/FILE ORGANIZATION | The file organization specified does not | Check to see that the correct file F

[y P U 13 Py
DIVIA | matl—'ll dny UPI:IlEU HIIE S

Block type must be I, C, K, or E.

022 | W RECORDS DISALLOWED | W type records cannot be written for

I type blocks require W type records.

Maximum block length must be
specified for SQ files with K or E type | field.

is being processed, or that the FO
IS UTHIY PHULTIOCU, UL LHidl Lhie v

field is specified correctly.

Correct the block type field. T
Correct the record type or block T
type field.

Correct the block or record type T
field.

Specify the maximum block length T

60495700 D

-\ . A s &a A & & a

L ikER

©

&

-

TABLE B-4. DIAGNOSTICS (Cont'd)

Code Message

Significance

Action

Severity

030 | INVALID RT

031 | RT=F/Z AND FL=0

032 | RT=T AND HL OR TL=0

033 | RT=D AND LL=0/RT=T
AND CL=0

035 | RT=T/D, MRL EXCLUDES
CONTROL FIELD

036 | RL INCONSISTENT WITH
RECORD DESCRIPTION

037 | RT=D/T AND CL/LL>6

040 | REDUNDANT OPEN

047 § OPEN EXTEND ON TAPE
FILE

051 | SETFIT DISALLOWED ON
OPEN FILE

060 | REDUNDANT CLOSE

070 | OUTPUT REQUEST,
PD=INPUT

60495700 D

Record type must be W, S, Z, F, R, T,
D, or U; it must conform to other file
specifications, such as block type

or file organization.

For fixed length F or zero-byte termi-
nated Z type records, a maximum rec-
ord length must be specified in the FL
field of the FIT.

For T type records, the header length
(HL) must be large enough to hold the
CL that defines the length of the
trailer count field. The length of the
trailer count field must be given in TL

and must be at least one character

nusSl 2e at east & 2racie

long.

For D type records, the LL field of
the FIT must provide the length of the
record field that specifies record
length.

For T type records, the CL field of the
FIT must provide the length of the
field that specifies the number of
trailer items.

For T and D type records, the record
must contain a field identifying record
length.

For T type records, the fixed header
length (HL) must include a field CL
characters long, beginning at CP, to
identify trailer item count.

For D and T type records, the length
of the count field must be one to six
character positions.

A file must be closed before open
processing, such as user label proc-
essing for sequential files or buffer
allocation, takes place. A redundant
open call is ignored.

The E option for OPENM is valid only
for a sequential file on mass storage.

Open processing would have already
processed the FILE control statement.
The SETFIT function processes FILE
control statements without full open
processing.

A second call to close the file was
issued. The operations requested by
the CF field are performed before the
error is issued.

A file opened with pd set to INPUT
cannot be written. The write state-
ment is ignored.

Correct the record type field.

Specify the maximum record length
field.

Correct the header length or the
trailer length field.

Specify the length of the D type
record length field.

Specify the length of the trailer
count field of the T type record.

Check that for D type records
LP+LL is less than MRL. For T
type records, CP+CL must be less
than MRL. The position count for

LP and CP begins with 0.

Check that the count field is in-
cluded in HL. The current record
is ignored. Position CP is counted
from O.

Correct the length of the count
field.

Correct the program to close the
file before open processing.

Change the E option for the
OPENM macro.

Change the placement of the
SETFIT macro.

Correct the program to eliminate
the redundant close operation.

If the file is to be written, store
OUTPUT or 10 in the PD field of
the FIT prior to opening the file.

B->@

TABLE B-4. DIAGNOSTICS (Cont'd)

Code

Message

Significance

Action

Severity

G71

104

110

111

113

115

116

120

130

135

136

137

[
£
c3

141

® B-6

INPUT REQUEST,
PD=OUTPUT

UNABLE TO FLUSH
BUFFER

FILE NOT OPEN

NO CHECK ON LAST
REQUEST

GET/PUT CANNOT BE
USED IF SBF=YES

OUTSTANDING FATAL
ERROR ON THE FILE

GET FOLLOWS AN OUT-
PUT OPERATION. FO=5SQ

INVALID KEY/WORD
ADDRESS/RECORD
NUMBER

RT=w BAD CONTROL
WORD, FILE DEFECTIVE
OR MISPOSITIONED
RMS READ PARITY
ERROR

RMS WRITE PARITY
ERROR

SQ READ PARITY ERROR

EXCESS DATA IS FATAL
TO PUTP

A file opened with pd set to OUTPUT
cannot be read. The read statement is
ignored.

A parity or system error might exist
in an output sequential file just prior
to a close request that requires the
buffer to be flushed.

A file must be opened before it can be

read or written. Omission of required

FIT field parameters or inconsistencies
in parameters specified inhibit open.

The CHECK or CHECKR macro must
be issued after each GETWR or
PUTWR macro.

If file organization is sequential, only
the GETWR or PUTWR macros can be
used if the SBF field is set to YES.

A fatal error prevents future access to
the file with the error, but it does not
cause job termination unless the user
attempts further operations on the
file.

A sequential file cannot be read imme-
diately after a write.

Word address for a word addressable
file must be less than EOI for GET
macros.

Record type was specified as W. This
message indicates the records being
read are not, in fact, W type records.

The system returned parity error status
after reading a word addressable file.

The system returned parity error status
after writing a word addressable file.

A parity error occurred while reading
a sequential file.

A parity error occurred while writing
a sequential file.

The value of the RL field is greater
than the value of the MRL field during
a series of PUTP macros. The error is
fatal because part of the bad record is
already in the file.

If the file is to be read, store

INPUT or 10 in the PD field of the

FIT before opening the file.

Rerun the program.

Correct the program to open the
file before reading or writing; or,
correct omissions or inconsistencies

of FIT fields.

Correct the program to issue the

CHECK or CHECKR macro.

Correct the program to use the
GETWR or PUTWR macro or set

the SBF field to NO.

Correct and rerun.

Continue writing, or reposition the
file before a read. The current

read statement is ignored.

Correct the word address field.

Check that the existing file is cor-

rectly described.

Recreate the file on a good device.
If the error persists, report it to a

systems analyst.

Recreate the file on a good device.
If the error persists, report it to a

systems analyst.

Check the SES field of the FIT for
severity and retry. (See the begin-

ning of this appendix.)
Check th

ning of this appendix.)

Correct the program.

o O e) 3 L. T e
€ SES field of the FIT for
severity and retry. (See the begin-

T/F

T/F

T/F

|

60495700 D

F Y N N N N Y S N

E

EE

*

¥

Ay,

TABLE B-4. DIAGNOSTICS (Cont'd)

Code Message

Significance

Action

Severity

142 | EXCESS DATA

143 | INSUFFICIENT DATA

144 | INCOMPLETE PARTIAL
PUT SEQUENCE

150 | FILE NOT ON RMS

152 | LT=S, DT=RMS

154 | BT=K/E ON PRU TYPE
DEVICE

157 | S-TAPE BUT MBL >5120
CHARACTERS

60495700 D

In a write, no information is written to
the file. For aread, MRL characters
are transferred to the working storage
area and remaining record characters
skipped.

On a read, the record length exceeds
FL/MRL defined. For GET processing,
the following conditions cause an error.

Record types:
w RL in control word >MRL

z No zero byte found before FL.
characters

R No record mark found before
MRL

T,D Control field RL>MRL

S MRL reached before level
number encountered

U RL >MRL

F Excess data cannot occur

On PUT processing, the record mark
character for an R type record was not
found before MRL characters, or the
user has supplied RL >MRL/FL.

Control information in the record
being read (record length in a W type
contro! word, or length calculated by
fields such as CP and CL) specifies a
length for each record. The record
existing in the file is smaller than the
specified length. All characters avail-
able are returned.

For I and C type blocks, an end-of-
section was encountered before the
record terminated. For K and E type
blocks, the block end occurred before
the record ended.

The data transferred through PUTPs is
less than FL for an F type record.

The previous record was not complete.

Word addressable files must be created
on a disk, drum, or family pack.

Standard labels, which conform to
ANSI standards, can exist only on tape
files. Label processing statements are
ignored because the file is assigned to
rotating mass storage.

K or E type blocking is possible only
for files on S or L tapes.

Maximum block length for S tapes is
5120 characters.

Correct the inconsistency between
the RL and FL or MRL fields.

No action is required.

Correct the program.

Correct the control statement to
ensure a valid device assignment.

Correct the inconsistency between
label type and device type fields.

Change block type, or add an S or L
parameter to the REQUEST control
statement.

Change MBL to an allowable value
or use an L tape.

T/F

B-7@

TABLE B-4. DIAGNOSTICS (Cont'd)

Code Message Significance Action Severity
162 | INVALID CONVERSION The CM field of the FIT must not be Change the conversion mode field. T
YES for W type records.

165 | ILLEGAL FILE NAME The LFN does not consist of one to Correct the LFN or the FIT address. F
seven letters and digits the first being
a letter.

167 | RECORD LENGTH OUT- For D or T type records, the control Check to see that the CL/CP fields T
SIDE MIN-MAX RANGE -~ | field specified is outside the value or the LL/LP fields are specified
REQUEST IGNORED specified by the RL field, or not within | correctly.

the values specified by the MNR and
MRL fields.

170 | RECORD SIZE EXCEEDS For K and E type blocking, records Correct the RL or MBL field. T/F
BLOCK SIZE OR IS cannot be split between blocks. Indi-

NEGATIVE vidual records must be smaller than
the block defined by MBL or the maxi-
mum block allowed on the device.

173 | INVALID RL/PTL/MBL The record length, partial transfer Correct the RL, PTL, or MBL field. T

length, or block size is specified
incorrectly.

207 | MINIMUM RECORD SIZE Required parameter MRL must be Correct the inconsistency between F
EXCEEDS MAXIMUM equal to or larger than MNR. the MRL and MNR fields.

245 j FUNCTION DISALLOWED | The macro issued is not valid for the Correct the program. T
ON THIS FO file organization specified in the FIT.

254 | PARTIALS NOT The GETP and PUTP macros cannot be | Correct the program tn use the T
SUPPORTED FOR FO=WA | issued for a word addressable file. GET or PUT macro.

255 | RECORD SPECIFICATION | For word addressable files with the Correct the program to specify T
NOT COMPATIBLE WITH SBF field set to YES, the RL field correct values for the RL and WA
SBF=YES must be a multiple of PRU size and fields, or set the SBF field to NO

the WA field must be a multiple of to allow a buffer to be allocated.
PRU size plus one.

300 | NO READ PERMISSION To be read, a permanent file must be Attach the file with the required F

attached with RD permission. read permission.

301 | NO WRITE OR MODIFY A permanent file requires proper Attach the file with the required F
PERMISSION access permissions. MD permission write permission.

is required for any updating operation.

302 | NO EXTEND OR A permanent file requires extend (EX) | Attach the file with the required F
ALLOCATE PERMISSION permission before new records can be | extend permission.

inserted.

312 | INVALID LABEL GROUP Labels that can be accessed are Check that file position is consist- F

affected by the current file position. ent with label action requested.
Header labels, for example, cannot be
accessed at end-of-informaticn.

315 | FILE ORGANIZATION IS Standard labels can be used only with Check that file organization is F
NOT SEQUENTIAL sequential files on tape. consistent with label type.

316 | TOO MANY LABELS The number of labels that can be Correct the program. F

written is limited by ANSI standards.

320 | INVALID LABEL The ULP option controls the type of Remove conflicts between ULP and F
SEQUENCE labels that can be accessed. the type of label.

325 | STANDARD LABELS NOT | LT=S is valid only for tape files. Correct the inconsistency between F
ALLOWED ON MASS label type and device.

STORAGE
®B-8 60495700 D

y ST

F Y

i

‘

»

LY

TABLE B-4. DIAGNOSTICS (Cont'd)

Code Message Significance Action Severity
326 | GETL/PUTL ILLEGAL ON | A tape file must have a label declared |Change the label type field. T
UNLABELED FILE on a REQUEST or LABEL control
statement before user label access is
possible.
327 | GETL ATTEMPTED Tapemarks separating data and labels | Correct the program. F
BEYOND END OF LABELS | stop label processing.
330 | INVALID PARAMETER LA must be zero or an address in a Check GETL or PUTL parameters F
VALUE (LA, LBL, ULP) user program. LBL must indicate the |of FIT fields.
length of the label area, O to 900 char-
acters. ULP options are V, F, U, VU,
VF, FU, VFU, and NO.
332 | FILE REQUEST LABEL When a REQUEST control statement Correct the inconsistency between T
TYPE DISAGREES WITH specifies a labeled tape, the user must |the REQUEST control statement
LT FIELD OF FIT set LT to S. and the label type field.
345 | INSUFFICIENT CMM Not enough CMM space exists to open | Release some CMM, if any is being T
SPACE AVAILABLE the file. To open a file requires enough | used by the user program, or in-
free CMM space to load any rare cap- | crease the amount of memory avail-
sules required, if any, and to allow two | able to the job.
of the largest blocks to be in memory
at the same time. The file is not
opened.
346 | CMM NOT AVAILABLE A new block for the list-of-files can- Correct the program to not destroy F
AND THERE IS NO LIST not be allocated, and the LOF$RM the pointer. A default list with
OF FILES ADDRESS entry point has been cleared. sixty-five entries is supplied.
347 | FDL ERROR Either CMM is not loaded when FDL Check the load sequence or map to T
is called to load a capsuile, or the see if CMM is loaded. Fix the
BAMLIB file is not valid. static load calls to load the proper
routines. If using local libraries,
check for a valid BAMLIB file.
352 | FILE TOBE CLOSED IS The logical file name specified does Check that the logical file name is T
NOT KNOWN not match any existing file. correctly specified.
354 | BUFFER SPACE SUPPLIED | A buffer specified by BFS must be Increase the BF S value. T
IS INSUFFICIENT FOR 1/O | large enough to hold at least the larger
of one block specified by MBL+2 or one
physical record unit for the file's resi-
dent device.
355 | CODE MODULES RE- Routines necessary for processing have | Refer to appendix E for correct T
QUIRED FOR I/O NOT not been loaded. loading procedures.
LOADED
356 | TRIVIAL ERROR LIMIT Error count ECT equals the user- Correct the errors. F
REACHED defined error limit ERL, resulting in a
fatal error.
357 | UNABLE TO OBTAIN Required space has not been allocated. | Supply a value for the FWB field or F
SPACE FOR BUFFER CMM is not available, and the FWB remove the OMIT=CMM parameter.
field is zero.
370 | FATAL I/O ERROR Either a block with an incorrect length | Correct the program. F
was encountered or the operating sys-
tem detected an error in the file or in
the way the file was being used.
403 | SKIPBL DISALLOWED A backward skip is not possible for D, | Correct the program. T
U, R, and T type records or K and E
type blocks.
60495700 D B-9@

TABLE B-4. DIAGNOSTICS (Cont'd) ')
Code Message Significance Action Severity ‘§
404 § SKIPFL DISALLOWED FOR { No forward record skip is possible for Correct the program. T
RT=U U type records. ‘4
|
406 | REPLACE ATTEMPTED For sequential files, the REPLACE Copy the file to disk. T
ON TAPE FILE macro can be used only on disk files.
407 | FO=5Q REPLACE The REPLACE macro must be pre- Correct the program to read a full T '
ATTEMPTED WHEN ceded by a GET macro or a GETP record before the REPLACE macro !
FP# EOR macro of a full record. is issued. .
410 | FO=5Q REPLACE For sequential files, the record to be Correct the program. T t
ATTEMPTED WHEN replaced must be read before the
LOP#GET REPLACE macro is issued.
411 | FO=SQ REPLACE The GET or REPLACE macro did not Notify a system analyst. T m
ENCOUNTERED work properly.
EOQS/EOP/BOI
|
412 | FO=5Q REPLACE For sequential files, the REPLACE Correct the program. T ‘\
ILLEGAL FOR THIS macro can only be used with W or F '
RT — USE RT=F/W type records.
413 | FO=5Q REPLACE For sequential files, the REPLACE Correct the program. T ‘
ILLEGAL FOR THIS macro can only be used with C type '
BT —USE BT=C blocks.
|
452 | FILE POSITIONING An attempt was made to position the Correct the program to check the F 1
ERROR file beyond EOL FP field or specify the DX field. i
712 | NEGATIVE OR OVERSIZED | One of the parameters indicated was Caorrect the program. F
ARGUMENT--WSA, SKP, erroneously specified when a macro
OR LA was issued.
713 | NEGATIVE OR OVERSIZED { One of the parameters indicated was Correct the program. F :
ARGUMENT--RL, ST, OR erroneously specified when a macro 1
LBL was issued.
714 | NEGATIVE EX OR DX A negative value was specified for the | Correct the program. F
PARAMETER DX or EX field. ‘
715 | NEGATIVE OR OVERSIZED | Either the WA or KA field was errone- | Correct the program. F
ARGUMENT--WA OR KA ously specified. ‘1
716 | NEGATIVE OR OVERSIZED | Either the PTL or KP field was errone- | Correct the program. F ‘
ARGUMENT--PTL OR KP] ously specified.
|
717 | NEGATIVE OR OVERSIZED | One of the parameters indicated was Correct the program. F ‘
ARGUMENT--MKL, PQS, erroneously specified when a macro ‘
GPS, OR TRM was issued.
720 | DEVICE CAPACITY The CIO read driver has encountered Check the system dayfile for the T ‘
EXCEEDED an error. specific read driver error. i
721 | ERROR DETECTED BY A system hardware error has been Check the system dayfile for a T
OPERATING SYSTEM encountered that cannot be handled. system/hardware error message. e
¢
®B-10 60495700 D i

i,
e

PN

GLOSSARY C

e

ADVANCED ACCESS METHODS (AAM) — A file manager
that processes indexed sequential, direct access, and
actual key file organizations and supports the Multiple-
Index Processor.

BASIC ACCESS METHODS (BAM) — A file manager that
processes sequential and word addressable file organiza-~
tions.

BEGINNING-OF -INFORMATION (BOI) — The start of the
first user record in a file. System information, for
example tape labels of sequential files, can appear
before the beginning-of-information.

BLOCK - A logical or physical grouping of records to make
more efficient use of hardware. Only sequential files
are blocked. One of the following block types must be
specified by the programmer: C, I, K, or E.

CHARACTER - A letter, digit, punctuation mark, or math-
ematical symbol forming part of one or more of the
standard character sets. Also, a unit of measure used
to specify block length, record length, and so forth.

CLOSE — A set of terminating operations performed on a
file when input and output operations are complete. All
files processed by BAM must be closed.

CYBER RECORD MANAGER (CRM) — A generic term
relating to the common products BAM and AAM.

DEFAULT — A value assumed in the absence of a user-
specified value declaration for the parameter involved.
Values for many defaults are defined by the installation.

END-OF -INFORMATION (EOI) ~ The end of the last user
record in a file. Trailer labels are considered to be past
the end-of-information. End-of-information is unde-

fined for unlabeled S or L tapes.

FIELD — A portion of a word or record; a subdivision of
information within a record; also, a generic entry in a
file information table identified by a mnemonic.

FIELD LENGTH — The area in central memory allocated to
a particular job; the only part of central memory that a
job can directly access. Contrasts with mass storage
space or tapes allocated for a job and on which user's
files reside.

FILE — A logically related set of information; the largest
collection of information that can be addressed by a file
name. It starts at beginning-of-information and ends at
end-of-information. Every file in use by a job must
have a logical file name.

FILE CONTROL STATEMENT — A control statement that
supplies file information table values after a source
language program is compiled or assembled but before
the program is executed. Basic file characteristics such
as organization, record type, and description can be
specified in the FILE control statement.

60495700 D

FILE INFORMATION TABLE (FIT) — A table through which
a user program communicates with BAM. For direct
processing through BAM, a user must initiate establish-
ment of this table. All file processing executes on the
basis of information in this table. The user can set FIT
fields directly or use parameters in a file access call
that sets the fields indirectly. Some product set
members set the fields automatically for the user.

INSTALLATION OPTION — One of several alternate means
of processing that is selected when BAM is installed at
a computer installation. Once an option is selected, all
subsequent use of BAM is governed by the selection.
For all options or limits defined as installation options,
the user should consult with a system analyst to
determine the valid limits.

I TAPE - A magnetic tape with recording format of
physical records containing the contents of 0 to 512
central memory words of binary information. I tapes
are only supported under the NOS operating system.

JANUS — A group of routines in the NOS/BE operating
system that controls the wunit record equipment
including card readers, line printers, and card punches.
Files with names of INPUT, OUTPUT, PUNCH, and
PUNCHB are JANUS files.

KEY - Information used to identify a record.

LDSET — The loader control statement. Various param-
eters include:

LIB Make available the named library
USE Load the routines named
STAT Static loading requested

OMIT Inhibit loading of routines named

LOAD SET — A group of control statements beginning with
a call that causes information to be loaded into central
memory and ending with a call for execution of a loaded
program. Nonloader statements must not appear in a
load set.

LOGICAL FILE NAME — The name given to a file being
used by a job. The name must be unique for the job and
must consist of one to seven letters or digits, the first
of which must be a letter.

L TAPE (LONG STRANGER TAPE) — A 7-track or 9-track,
labeled or unlabeled magnetic tape with blocks con-
taining more than 5120 characters. Normally written
by other than CYBER 170-compatible systems.

MACRO - A single instruction which when compiled into
machine code generates several machine code
instructions.

c-1®

MAINTENANCE RUN - A program or job to update an
existing file; technically refers to that part of the job
e from file open to file close. -~

MASS STORAGE - A disk pack that can be accessed
randomly. ECS is not considered mass storage.

MASTER FILE — A file containing information about a set
of entities; all information about a single entity
constitutes a record in a file. A master file is normally
kept up to date by a maintenance run.

OPEN - A set of preparatory operations performed on a
file before input and output can take place; required for
all BAM files.

OWNCODE - A routine written by the user to process
certain conditions. Control passes automatically to
user owncode routines defined in the FIT for:

DX End-of-data condition
EX Error condition
LX Tape label processing

PARTITION — A group of sections beginning with the first
record after the end of the preceding partition and
ending with a special record or condition, dependent on
the block and record type and storage device. Gen-
erally, a partition is greater than a section and less than
a file, but it can be equal to either or both.

PERMANENT FILE - A file on a mass storage permanent
file device that can be retained for longer than a single
job. It is protected against accidental destruction by
the system and can be protected against unauthorized
access.

PHYSICAL RECORD - On magnetic tape, information
between interrecord gaps. It need not contain a fixed
amount of data.

PHYSICAL RECORD UNIT (PRU) — The smallest unit of
information that can be transferred between a periph-
eral storage device and central memory. The PRU size
is permanently fixed for all mass storage devices and SI,
X, and | tapes; the concept does not apply to S/L tapes.

PRU DEVICE - An SI or I format tape or a mass storage
device in which information has a physical structure
governed by physical record units (PRUs).

RANDOM ACCESS — Access method by which any record
in a file can be accessed at any time. Applies only to
mass storage files with an organization other than
sequential.

RECORD - The largest collection of information passed
between BAM and a user program in & single read or
write operation. The user defines the structure and
characteristics of records within a file by declaring a
record format. The beginning and ending points of a

record are implicit in each format.

‘ec-2

RELEASE SYSTEM - A scoftware system delivered to a
customer is the release system. In installing a system,
the customer, but not ansindividual applications pro-
grainimer, can use default values or parameters that
differ from the released system.

REWIND — To position a file at beginning-of-information.

SCOPE 2 — An operating system on the CONTROL DATA
CYBER 70 Model 76 and 7600 Computer Systems. 7000
Record Manager runs under SCOPE 2.

SECTION - A division internal to a sequential file. Recog-
nition of a section boundary is affected by block type,
record type, and file residence. A section is a group of
records beginning with the first record after the end of
the preceding section and ending with a special record
or condition, dependent on the block and record type
and storage device. Generally, a section is greater than
a record and less than a partition, but it can be equal to
either or both. Sections are not defined on K and
E type blocks.

SEQUENTIAL ACCESS — A method in which only the
record located at the current file position can be
accessed. See Random Access.

SEQUENTIAL (SQ) FILE -~ A file with records in the
physical order in which they were written. No logical
order exists other than the relative physical record
position.

S TAPE (STRANGER TAPE) — A magnetic tape with
recording format of physical records containing the
contents of 512 central memory words of information.

SI TAPE - A magnetic tape with recording format of
physical records containing the contents of 0to 512
central memory words of binary information or 0 to 128
words of coded information. Coded SI tapes are not
supported under the NOS operating system.

VOLUME - A reel of magnetic tape or a disk pack is a
volume. A given file can encompass more than one
volume.

WORD ADDRESS - The relative location of the first word
of a record in a word addressable file. Specified as the
WA field of the file information table on a call for a
read or write operation.

WORD ADDRESSABLE (WA) FILES - Word addressable
files are mass storage files containing continuous data
or space for data. Words within word addressable files
are numbered from 1 to n, each word containing 10
characters. Retrieving or writing of data at any given
word within the file is specified by the word number,
called the word address.

WORKING STORAGE AREA - An area within the user's

field length intended for receipt of data from a file or
transmission of data to a file.

60495700 D

-~ a -

PO N N P PN

i

NS A e e

FILE INFORMATION TABLE STRUCTURE D

A file information table (FIT) must be associated with every
file that uses BAM. For normal language requirements,
compilers generate the FIT automatically; users writing in
higher level languages do not need to be concerned with FITs
and their generation. It is the COMPASS user's responsiblity
to supply the FIT; BAM provides the FILE macro, which
creates the table.

Word and bit designations of the FIT fields are illustrated in
figure D-1. The fields enclosed in brackets can be accessed
by the FETCH macro but cannot be changed. If a STORE
macro is attempted on these fields, an assembly diagnostic
results.

The FIT is activated by an OPENM request for the file.
After a file is opened, the contents of the FIT can be
updated with the FILE control statement or the STORE
macro, with information from the processing macros, or by
BAM as a result of processing the file. Information in the
FIT can be retrieved with the FETCH macro.

The meanings of the FIT fields by word and bit are as
follows. For convenience of the user, the COMPASS
symbols are included with the applicable FIT fields. The
first ten words of the FIT are used by BAM for communi-
cating with the operating system. Generally, for any
particular file organization, record, or block type, only a
small portion of the total information specified here is
required.

Word 0

59-18 LFN Logical file name of the data file.

17-1 Reserved for CDC.

0 CMPLT FET complete bit; cannot be changed by
the user.

Word 1

59-48 DVT FET device type; cannot be changed by
the user.

47 Reserved for CDC.

46 RDR Read release.

45-37 Reserved for CDC.

36 FF OS flush on abnormal termination:

0 Buffer not flushed.

1 Buffer flushed for output file with
scratch disposition on abnormal ter-
mination.

35-30 Reserved for CDC.

29-24 DC Disposition code; cannot be changed by
the user. Refer to operating system
manual for possible settings.

60495700 D

23-18

17-0 FwB

Word 2
59-18

17-0

Word 3
59-18

17-0

Word 4
59-34

33-0

Word 5
59-24

23-2Z ASCH

21-0

Word 6

Word 7

Word 8

Word 9

Word 10
59-36 LBL
35 LCR

34

Length of FIT minus 5; set to 3010.

First word address of the user buffer.

Zero-filled field.

Reserved for CRM.

Zero-filled field.

Reserved for CRM.

Reserved for CDC.

Reserved for CRM.

Reserved for CRM/INTERCOM.

ASCII character set bits for INTERCOM
terminals.

0 64 character display code
1 95 character ASCII subset
2 128 character ASCII

Reserved for CRM.

Reserved for CDC.

Reserved for CRM (return address stack).
Reserved for CDC (FET extension).

Reserved for CDC (label fields).

Label area length in characters.

Label check/creation for input/output
tape:

0 N Create new labels =NLCR=
1 E Check existing labels =ELCR=

Reserved for CRM.

D-1@

59 53 47 41 35 2 23 17 1 05]
’ Q LFN Reserved for CDC 0
F——I(CMPLT}
Rl Reserved F| Reserved
1 (OVT) D o coc || for coc | 1OC) 30D FWB 1
2 0 Reserved for CRM 2
3 1] Reserved for CRM 3
4 Reserved for CDC Reserved for CRM 4
H
5 Reserved for CRM/INTERCOM ¢ Reserved for CRM 5
1
6 Reserved for CDC 6
7 Reserved for CRM (return address stack) 7
8 Reserved for CDC (FET extension} 10
9 Reserved for CDC (tabel field) "
L
10 LBL g (FP) |uLP|LT| LA 12
C
1 RL pMOF|CF [VE| RT | BT | FO LX 13
12 fL Reserved for CRM DX 14
MRL o
p|
13 EFC] ECT ERL |€= SES €S EX 15
14 Reserved for installation 6
(BAL}
15 HL EC WSA 17
MNR F
Ll PC MUL HRL
16 T LL 2
LT [T P |
(FNF)}—n Bl SI o
8
17 od PO Blilef T BFS 21
HMB (LOP)
18 {RC) 2
IWPN) FIL 5
19 MBL Yho WA 23
NL (BN)
Bek——FT "pos | oCT
PM AB PKA
& MNB [Lvi »
o fove] 1 KR
2 XBS P~
MFN i PNQ
22 Reserved for CRM %
<] Reserved for CRM 27
F|
24 A FLM K KA 30
F-3 Reserved for CRM (BZF) 31
26 coT Reserved for CRM 32
27-29 Reserved for CRM 3335
(SOL)
30 Reserved for CRM EOQIWA 36
31 RKW RKP | KP KL » Reserved for CRM 37
32 1BL I I KT lREL TRC CPA 40
a3 Reserved for CRM DCA 41
34 Reserved for CRM 42
Figure O-1. Tile Informaticn Table

®D-2

60495700 D

]
|
]
‘I

i8R,

13

)
¢
(

-~

33-27 FP
26-24 ULP
23-22 LT
21-0 LA
Word 11
59-36 RL
35 CM
34-33 OF
60495700 D

File position (in octal); cannot be changed
by the user:

0 Mid logical record
1 EOL End-of-label group =EOL =
BOI Beginning-of- =BOI=
information
2 BOF Beginning-of-file =BOF=
BOV Beginning-of- =BOvV=
volume
Only set on
SKIPBU in con-
nection with DX.

4 EOV End-of-volume =EQV=
10 EOS End-of-section =EOS=
20 EOR End-of-record =EOR=
40 EOP End-of-partition =EOP=

100 EOIL End-of-information = EOI=

User label processing:

000 None =NOP=

001 Vv VOL/EQV =VP=

010 F HDR/EQF =FP=

011 VF VOL/HDR /- =VFP=
EOF/EOQV

100 U UVL/UHL/- =UP=
uTL

101 VU VOL/UVL/- =VUP=
UHL/EOV/UTL

110 FU UVL/HDR/- =FUP=
UHL/EOF /-
UTL

111 VFU All =VFUP=

Label type:

00 S ANSI standard =S=

01 NS Nonstandard =NS=

10 UL Unlabeled =UL=
(default)

11 ANY Any =ANY=

l_abel area address.

Current record length in characters.

Conversion mode; convert sequential tape
files from external to internal code:

0 NO
1 YES

=NO=
Conversion =YES=

No conversion

Open flags; positioning of the file at
OPENM time:

00 Rewind ==
(default)

0l R Rewind =R=E

10 N No rewind =N=

11 E Extend =E=

32-30

29-28

27-24

23-21

20-18

CF

VF

RT

BT

FO

Close flags; position at file close:

000

001 R
010 N
011 U
100 RET
101 DET
110 DIS

Rewind
(default)

Rewind
No rewind
Unload
Return
Detach

Disconnect

Volume close flag; position of the file at

end-of-volume:

00

01 R
10 N
11 U

Record type:

0000 W
0001 F
0010 R
0011 z
0100 D
0101 T
0111 U
1000 S

Block type:

000

001 I
010 C
011 K
100 E

File organization:

000 5Q
001 WA
011 IS
101 DA
110 AK

Unload
(default)

Rewind
No rewind
Unload

Control word
Fixed length
Record mark
Zero byte

Decimal char-
acter count

Trailer count
Undefined

System-
logical-
record

Internal
(default)

Internal

Character
count

Record count

Exact records

Sequential

Word
addressable

Indexed
sequential
(AAM only)

Direct access
(AAM only)

Actual key
(AAM only)

L_abel routine exit address.

=DT=

=TT=
=UT=
=ST=

D->e

Word 12

i
O
1
\
[«

35-18

17-0

Word 13
59-58
57-56

55-54

33-31
30-27

26-18
17-0

Word 14

Word 15

59-36

®D-4

DX

DFC

EFC

SES

ES
EX

HL

Maximum record iength in characters.

Fixed length of an F type record, or full
length of a Z type record, in characters.

Reserved for CRM.

End-of-data exit address.

Reserved for CRM.
Dayfile control for error messages:

0 No dayfile messages except fatal
errors

1 Error messages to dayfile

2 Notes to dayfile

3 Errors and notes to dayfile
Error file control:

0 No error file messages

1 Error messages to error file
2 Notes to error file

3 Errors and notes to error file

Trivial error count.
Triviai error limit.

Reserved for CRM.

- Parity error flag:

0 Noerror

1 Parity error
Reserved for CRM.
System parity error severity:

Read parity error level 1
Read parity error level 2
Read parity error level 3
Read parity error level 4
Write parity error level 1

[V B - A

Write parity error level 2
Error status (octal value).

Error exit address.

Reserved for installation.

Header length of a T type record in
characters.

Minimum record length.

35-33

32-30

29
28

27

26

25

24

23
22

21-0

Word 16
59-36

35-30

29-24

m
c

BAL

STFT

PDF

SBF

SPR

WSA

CL

LL

RMK
PC

Reserved for CRM.

Error option:

000 T Terminate file =T=

001 D Drop erro- =D=
neous data

010 A Accept =A=

100 D Terminate file =TD=
and display data

101 DD Drop errone- =DD=
ous data and
display data

110 AD Accept erro- =AD=
neous data and
display data

Reserved for CRM.

Buffer allocated by CRM; cannot be

changed by the user.

Internal SETFIT flag used for CRM proc-
essing.

SETFIT macro FILE statement flag:

0 FILE control statement not processed
before OPENM

1 FILE control statement was proc-
essed before OPENM

Suppressed buffer 1/0 flag:

0 NO Buffer 1/O =NO=
1 YES Suppress =YES=
buffer 1/0
Suppress read ahead:
0 NO Read ahead/write =NO=
behind (buffered
sequential 1/0)
1 YES No read ahead/no =YES=
write behind (un-
buffered sequen-
tial 1/0)
Reserved for CRM,

Old/new file organization field (AAM
only).

Working storage area address.

Trailer
record.

length in characters; T type

Count field length in characters; T type
records.

Length field length in characters; D type
records.

Record mark character; R type records.

Padding character for sequential files.

60495700 D

- . & & e a

iy,

T B T TR SN N0 O 1AM OO A A AN O 0 i 0 i By

»

- A

23-18 MUL
26-18 MKL
17-0 HRL
16 HB
15-9 DpP
Word 17
59 FNF
58-57 OC
56-54 PD
53-48
47 B8F
46 C1
45 SB
44-21 CP
LP
20
60495700 D

Multiple of characters per K or E type
block.

Major key length in characters (AAM
only).

Hashing routine address (AAM only).
User header option (AAM only).

Data block padding percent (AAM only).

Fatal/nonfatal flag; cannot be changed by
the user:

0 Nonfatal
1 Fatal

Open/close flag:

00 Never opened =NOP=

01 Opened =0PE=

10 Closed =CLO=

Processing direction:

000 Input ==

001 INPUT Input =INPUT=

010 OuUTPUT Out- =OUTPUT=
put

011 io input/- =[0=
output

Not used.

Round PUTs for S type records down to
*8 bits; used in FORM and 8-bit sub-
routines:

0 NO Round up to 6 bits
1 YES Round down to 8 bits =YES=

COMP-1; format for the CL/LL field for
T or D type records:

0 NO Display code
1 YES Binary

Sign overpunch; overpunch option for
CL/LL field for T or D type records:

0 NO No overpunch
1 YES Overpunch

Trailer count beginning character position
field of a Ttype record (numbered
from 0).

Length field beginning character position
of a D type record (numbered from 0).

Reserved for CRM.

19 CNF
18 BBH
17-0 BFS
Word 18
59-36 HMB
PTL
35-30 LOP
35 WPN
29-0 RC

Connect file flag:

0 NO File not connected =NO=
to terminal

1 YES File connected to =YES=
terminal

Buffer below highest high address (HHA):

0 NO Buffer not below HHA
1 YES Buffer below HHA

Buffer size in words.

Number of home blocks (AAM only).

Parital transfer length, set by the GETP
or PUTP macro.

Last operation code; the high order bit of
LOP is a write bit, indicating whether the
last operation wrote data to the file;
cannot be changed by the user:

01 oP OPENM =0P=
02 CM CLOSEM =CM=
03 GE GET or = GE=
GETP
43 PU UT or =PU=
PUTP
56 RP REPLACE =RP=
04 SE SEEK =SE=
(AAM only)
05 SF SKIPF =SF=
46 DE DELETE =DE=
07 GN GETN =GN=
(AAM only)
47 WE WEOR =WE=
10 RE REWINDM =RE=
11 GL GETL =GL=
PL PUTL =PL=
12 sB SKIPB =SB=
13 CL CLOSEL =CL=
63 WK WTMK =WK=
74 EN ENDFILE =EN=

Write bit. The upper bit of LOP is a 1-bit
subfield that can be accessed separately.
If the last operation was a write, it is set.
This field cannot be changed by the user.

Record count. Count of full records read
or written since the file was opened. The
count is not adjusted for repositioning and
backspacing operations. This field cannot
be changed by the user.

D-5@

29-0

Word 20
59

58
57-52

51-30

59-36

29-18
17-0
Word 21

59-18

17-0
59-24

23-0

17-16

39-36

®oD-6

MBL

VNOC

NL

BN

WA

BCK

PM
POS

MNB

RB

XN

xXBS
MFN

PNO

OVF

KR

LAC

LNG

Maximum biock iength in characters.

Current volume number of the multi-
volume sequential file.

Number of index levels of blocks (AAM
only).

Block number of the current block
(sequential files); cannot be changed by
the user.

Current position word address, set by GET
and PUT macros.

Block checksums (AAM only).
Processing mode (AAM only).
Duplicate key position (AAM only).

Address of the display code to collating
sequence conversion table (AAM only).

Minimum block length in characters.

Number of records per K type block in
sequential files.

Primary key address (AAM only).

Logical file name of the alternate key
index file associated with the data file
(AAM only).

Index file block size (AAM only).

Multifile set name.

Multifile position number; position number
of member file on multifile set.

Direct access file overflow flag (AAM
only).

Key value repeat count (AAM only).

Last action performed on the file; used by
compiler languages to communicate with
each other.

Last compiler language that used the file:

0 Unknown
1 COBOL
2 FORTRAN
3 PL/I
4-7 Reserved

35-0

Word 23

Word 24

59 NDX
58 KNE
57 FWwI
56 FPB
55 ON
54

53-24 FLM
23 EMK
22 DKI
21-0 KA
Word 25
59-18

17-0 BZF
Word 26
59-48

47-30 CDT
29-0

Words 27-29
Word 30

59 SOL
58-30

20-0 EOIWA
Word 31
59-48 RKW
47-44 RKP
43-40 KP

Reserved for CRM.

Reserved for CRM.

Index flag (AAM only).

Key not equal (AAM only).

Forced write indicator (AAM only).

File position bit (system routine use only):

0 EQI not reached
1 EOI reached

Old or new indexed sequential, direct
access, or actual key file (AAM only).

Reserved for CRM.

File limit, records per file (AAM only).
Embedded key flag (AAM only).
Duplicate key indicator (AAM only).
Key address (AAM only).

Reserved for CRM.

Busy FET address; cannot be changed by
the user.

Reserved for CRM,

Address of the collating sequence to
display code conversion table (AAM only).

Reserved for CRM.

Reserved for CRM.

S/L tape bit; cannot be changed by the
user,

Reserved for CRM.

Word address at EOI for word addressable
files.

Relative key word (AAM only).
Relative key position in RKW (AAM only).

Beginning character position of the key
(AAM only).

60495700 D

i

#

(

A

~ ;S

L

39-31 KL
30-24 P
23-0

Word 32
59-42 IBL
41-30
60495700 D

Key length in characters (AAM only).
Key length in bits (AAM only).

Primary or alternate key length (AAM
only).

Index block padding percent (AAM only).

Reserved for CRM.

Index block length in characters (AAM
only).

Reserved for CRM.

29-27 KT
26-24 REL
23-18 TRC
17-0 CPA
Word 33
59-18

17-0 DCA
Word 34

Key type (AAM only).
File position key relation (AAM only).

Trace transaction count; number of trans-
actions to be traced (AAM only).

Compression routine address (AAM only).

Reserved for CRM.

Decompression routine address (AAM
only).

Reserved for CRM.

D-7e@

OO W W W W O O O W ey O W W W W W W @ W

A

~~

A~

-~

- A

»

;M

~~ P

LOADING BAM E

In order to reduce field length, BAM has been divided into
functional capsules which are loaded by relocatable
controlling routines at execution time. This method of
dynamic loading requires a program to be compatible with
Common Memory Manager (CMM). Static loading is
available for programs that are not compatible; however,
static loading could involve a field length penalty of as much
as 14008 words. Unless static loading is specified, BAM uses
dynamic loading.

More information about Common Memory Manager and the
CYBER Loader can be obtained from their respective
reference manuals.

DYNAMIC LOADING

For dynamic loading, all macros reference entry points in
the controlling routines. The controlling routines, which
process parameters and diagnose certain types of errors, are
loaded at relocatable load time or overlay generation time.
The controlling routines load and transfer control to the
Fast Dynamic Loader (FDL) capsule needed to process the
macro in fixed-position fixed-length blocks.

It is important to the dynamic loading scheme that the
controlling routines not be overlayed. Unknown results,
including bad jump addresses to service routines, result if
these routines are overlayed. To prevent the controlling
routines from being overwritten, they must be part of the
(0,0) overlay.

The OPENM/SETFIT capsule is loaded when the first
OPENM or SETFIT macro is encountered. If the SETFIT
macro is encountered first, the FILE control statement
parameters are processed, buffer size is calculated, and
control is returned to the user.

When the OPENM macro is encountered, the SETFIT
functions are performed if there has not been a previous
SETFIT macrc. OPENM processing then occurs. The file is
opened, FIT consistency checks are performed, label proc-
essing occurs, and control is returned to the user. If label
processing is required, the controlling routine loads the
GETL/PUTL capsule when the first GETL or PUTL macro is
encountered. The open and label processing capsules are
unloaded when a macro other than OPENM, SETFIT, GETL,
PUTL, STORE, or FETCH is encountered. Therefore, for
optimum efficiency in loading, the open processing for all
files should be completed before other processing is
specified.

When the first macro is encountered that requires a buffer,
a buffer is allocated through CMM in a fixed-position fixed-
length block. If the buffer below highest high address (BBH)
field of the FIT is set to YES, CMM is requested to allocate
the buffer below the highest high address (HHA). The HHA
is the end of the longest overlay. If the BBH field is set to
YES, the file must be closed with the CF field set to U,
RET, or DET before another overlay is loaded. If the BBH
field is set using the FILE macro, references are issued to
the additional CMM routines necessary to process this
feature. However, if the BBH field is set using the STORE
macro, the FILE control statement, or some other means,

60495700 D

the user must reference the additional CMM routines. This
can be done by using either the LDSET pseudo-op or the
LDSET control statement as follows:

LDSET USE=CMM.AGR
LDSET(USE=$CMM.AGRS . . .)

The capsules required to perform the function specified by
the macro are then loaded; control transfers to the capsules
and back to the user. Except for the SKIP capsules, the
capsules required to process these types of functions remain
in core until all files requiring them have been closed. The
capsules required for SKIP are loaded while a series of skips
is being performed and unloaded when a macro other than
SKIP is encountered.

The CLOSEM capsule is loaded when the CLOSEM macro is
encountered. It closes the file and buffer space is released
if the CF field is set to U, RET, or DET; this must be
specified if the BBH field is set to YES. The CLOSEM
capsule unloads any capsules no longer needed for processing
and unloads itself after it closes the last file.

STATIC LOADING

Static loading is provided in cases where the user is
managing memory. It should only be used as a short term
conversion aid. Long term support of this feature is not to
be provided. There are two methods for designating which
capsules need to be statically loaded; one is control
statement oriented, and one is macro oriented.

STATIC LOADING WITH
CONTROL STATEMENTS

To specify static loading with control statements, the option
STAT must be specified on the LDSET control statement;
the USE and OMIT parameters must be specified on the FILE
control statement. A FILE controi statement musi be used
for each file to insure that all necessary routines are loaded.
The FO, RT, and BT parameters must be specified on a
previous FILE control statement or on the same FILE
control statement as the USE and OMIT parameters. They
cannot be specified on a FILE control statement following
the FILE control statement which specified the USE and
OMIT parameters.

The formats of the USE and OMIT parameters are:

USE:mnl/mnz/ veo /mnn

OMIT:mnl/mnzl ves /mnrl

where mn is a macro name. Terminal users must use TGET
and TPUT to load special terminal 1/O capsules. The
functions of the USE and OMIT parameters are listed in
table E-1. The USE and OMIT parameters can be used on
more than one FILE control statement for one file; the
result is cumulative. If the STAT option is specified on the
LDSET control statement and no USE parameter is specified
on the FILE control statement, no functions are loaded.

E-1@

A M

In the example shown in figure E-1, the program to write
the file ATAPE uses static loading and contains the macros
OPENM, PUT, CLOSEM, and ENDFILE. The program to .
read the file ATAPE also uses static loading. The macros FILE(ATAPE,FO=SQ,RT=Z,BT=C,USE=0OPENM/PUT/
PUT and ENDFILE are not contained in that program; the CLOSEM/ENDFILE)

OMIT parameter specifies that those capsules are not to be _

loaded. The GET slzacro is contained in tEe program, and the LDSET(STAT=ATAPE)

capsule for that macro is to be loaded. The USE parameter Load set to write file.
is still in effect for the macros OPENM and CLOSEM. FlLE(ATAPE,0M|T=PUT/ENDF|LE,USE=GET) ‘
LDSET(STAT=ATAPE)

STATIC LOADING WITH Load set to read file.
THE STLD.RM MACRO .

The STLD.RM macro is another method of specifying static
loading. (The LDST.RM macro, which was valid in CYBER
Record Manager, is treated as a no-op.) The format of the
STLD.RM macro is shown in figure E-2. It must be specified
once for each file organization.

Figure E-1. Static Loading Example

TABLE E-1. USE AND OMIT PARAMETER f STLD.RM USERT=(rt rt rt ‘
FUNCTIONS (fol : (tyrig, - . . orto),
USEBT=(btq,bty, . . . ,bt),
p ‘ L M USE={mnq,mny, ..., mny), ‘
- ist
arameter No List of Macros ist of Macros OMIT=(CMM or FDL)
USE All capsules are | Capsules perfarming fo File organization.
loaded. functions specified £ fil ‘
by the macro list are n Record types of files.
loaded. bt Block types of files. _
OoMIT All previously Capsules performing mn Macros used in program. ‘
loaded capsules functions specified
are removed. by the macro list CMM or FDL CMM omits CMM and FDL.
are removed. FDL omits FDL.

Figure E-2. STLD.RM Macro Format

@ E-2 60495700 D

x

£

-

T o WY oo S

USE OF LIST-OF-FILES F

The NOS and NOS/BE operating systems maintain a pointer
to the list-of-files, which is a table of the names and FIT
addresses of all active files for each contro! point. This
pointer is set and accessed by the SETLOF and GETLOF
macros. A complete description of this feature can be found
in the NOS or NOS/BE reference manual.

BAM maintains and uses this list-of-files. To alter this list,
a user must follow a procedure that is compatible with BAM.

BAM maintains an entry point in its relocatably loaded
routines called LOF$RM. The content of this entry point is
the address of the current list-of-files. The purpose of this
pointer is to minimize the number of GETLOF monitor calls
required. The user is encouraged to use this pointer instead
of calling the GETLOF macro.

60495700 D

If a user program that coexists with BAM moves the list-of-
files, it must update the LOF$RM pointer in addition to
calling the SETLOF macro. Also, if a user program adds a
new entry to the end of the list-of-files, it must insure that
the next word is zero because BAM does not initialize the
list-of-files block to zera.

For interactive jobs, BAM puts the file that it uses for
output to connected files, either OUTPUT or ZZZZ7Z0U, in
the first word of the list-of-files table. This is a
requirement of the NOS operating system. If a file name is
put in the first word of the list, the user cannot depend on
that name remaining in the first word. If a user program
uses BAM through a terminal under the NOS operating
system, it cannot write to a terminal file that is not a BAM
file in the same job step. The user program cannot move or
destroy the ZZZZZ0U entry in the first word of the list-of-
files.

F-10

VW W W W W W W W W eaaw W W W W @ W W W W w

o Y e WY o Y I

FILE INTERCHANGEABILITY G

The following tape formats are interchangeable between
7000 Record Manager and BAM:

X-mode tapes created on early 6000 series SCOPE
systems are supported for read-only purposes under
7000 Record Manager as X type record files.

Binary files having S type records, or Z type records and
C type blocks, are interchangeable, provided the value
of the maximum block length (MBL) field is 5120.

Files having W, F, U, D, T, R, or Z type records and I,
C, K, or E type blocks are interchangeable (except for Z
type records with C type blocks), provided such files are
accessed via BAM on S/L devices.

The file formats that are not interchangeable are as follows:

7000 Record Manager does not read 7-track coded
Z type record tapes.

7000 Record Manager does not read L tapes having a
block length greater than the individual station limits.

60495700 D

7000 Record Manager does not correctly read a file
having W, F, U, D, T, or R type records recorded on
other than S or L tapes.

7000 Record Manager requires macro parameters placed
in registers to be in X registers; BAM macro parameters
can be in any user registers.

BAM does not read a tape file with C or I type blocks if
the value of the MBL field is not equal to 5120.

BAM does not read a tape having embedded tapemarks.
(WTMK under 7000 Record Manager does write a
tapemark rather than a level 17 on a file with S type
records or with Z type records and C type biocks. For
interchangeability, use of WTMK is not recommended;
the ENDFILE macro should be used instead.)

BAM does not read other than an L tape if the value of
the MBL field is other than 5120.

Refer to the table on labeling conventions (section 6) for
additional information on labels.

G-1@

TN | XN I S WS TR IR R 5PN 0% T A% o O s

¢
¢

y W w W W W VW W O O W W W W w W i

_ e em

-~

LY

AAM 1-1
ANSI format
C type blocks 2-3
E type blocks 2-4
I type blocks 2-3
K type blocks 2-4
standard labels 3-4, 6-1
ASCII
FILE macro parameter 3-1
FIT structure D-1

BAM
defined 1-1
dynamic loading E-1
BBH field
FILE macro parameter 3-1
FIT structure D-5
Beginning-of-information 2-4
BF S field
FILE macro parameter 3-2
FIT structure D-5

Block
BT field 3-2, D-3
defined 2-1

MBL field 3-5, D-6
MNB field 3-5, D-6
MUL field 3-5, D-5
record type associations 2-6

types 2-2
BN field D-6
Boundary

conditions 2-4, 4-3
ENDFILE macro 5-2
file processing 4-4
partition 2-4, 4-4
section 2-4, 4-4
tapemark 4-4
volume 2-5

BT field
FILE macro parameter 3-2
FIT structure D-3
static loading E-1

Buffer
BBH field 3-1, D-5
BFS field 3-2, D-5
close processing 5-2
FWB field 3-4,D-1
open processing 5-4
SBF field 3-6, D-4

B8F field D-6

C type blocks

ANSI format 2-3

file structure 2-3
CF field

close processing 5-2

FILE macro parameter 3-3

FIT structure D-3
Character count block type 2-3
Character set

ASCII field 3-1

standard A-1

terminal file 4-5

60495700 D

CHECK macro 5-1
CHECKR macro 5-1
CL field
FILE macro parameter 3-3
FIT structure D-4
T type records 2-8
CLOSEL macro 6-8
CLOSEM macro
close processing 4-3, 4-6
dynamic loading E-1
format 5-2
CM field
FILE macro parameter 3-3
FIT structure D-3
CNF field
FILE macro parameter 3-3
FIT structure D-5
Common Memory Manager E-1
CP field
FILE macro parameter 3-3
FIT structure D-5
T type records 2-8
CRM 1-1
CRMEP control statement B-2
Cl field
D type records 2-6
FILE macro parameter 3-3
FIT structure D-5
T type records 2-8

D type records
Ci field 3-3,D-5
defined 2-6
LL field 3-4,D-4
LP field 3-4,D-5
SB field 3-6, D-5
write processing 5-5
Dayfile control
DFC field 3-3,D-4
error processing B-2
DFC field
error processing B-2
FILE macro parameter 3-3
FIT structure D-4
DX field
end-of-data routine 4-4
FILE macro parameter 3-3
FIT structure D-4
Dynamic loading E-1

E type blocks
ANSI format 2-4
file structure 2-4
ECT field
error condition processing B-2
error processing B-1
FIT structure D-4
EFC field
error processing B-2
FILE macro parameter 3-3
FIT structure D-4
ENDFILE macro
file boundary processing 4-4
format 5-2

Index-1@

End-of-data
DX field 3-3, D-4
GET macra 5-3
sequentiai fiie processing 4-4
word addressable file processing 4-5
End-of-information
defined 2-4
GET macro 5-3
EQO field
error processing B-1
FILE macro parameter 3-3
FIT structure D-4
EOIWA field D-6
ERL field
error condition processing B-2
error processing B-1
FILE macro parameter 3-4
FIT structure D-4
Error file
EFC field 3-3,D-4
EO field 3-3, D-4
error processing B-2
Error messages
codes and descriptions B-4
DFC field 3-3, B-2, D-4
EFC field 3-3,B-2, D-4
notes B-4
Error processing 5-4, B-1
Errors
classes B-2
error exit 3-4, B-1
excess data 2-7, 2-10
parity error processing 3-3
trivial error limit 3-4, B-1
ES field
error communication B-1
error condition processing B-2
FIT structure D-4
EX field
error processing B-1
FILE macro parameter 3-4
FIT structure D-4
Exact records block type 2-4

F type records
defined 2-7
FL field 3-4, D-4
write processing 5-5
Fast Dynamic Loader E-1
FETCH macro 3-8
File
defined 2-1
logical structure 2-1
organizations 2-2
physical structure 2-1
specification 3-6
unlabeled 6-3

P N ey
FILE control statement

format 3-6
OPENM macro 5-3
SETFIT macro 3-8
static loading E-1
terminal file 4-5

File information table
consistency checks 4-1, 5-3
creation 1-1, 3-1
dump to error file B-2
FETCH macro 3-8
FILE control statement 3-6
FILE macro 3-1
file processing 4-1, 4.5
FITDMP macro B-2
iabel processing fields 6-3

® Index-2

macro parameter 5-1

anire mommiraebioama
numi

I LUNVOIILIUND 2’6
relationship to open processing 5-4
SETFIT macro 3-8
STORE macro 3-8

structure D-1

FILE macro
establish FIT 1-1
format 3-1

null parameters 3-1
File organization
defined 2-1
FO field 3-4,D-3
FIT (see File information table)
FITDMP macro B-2
FL field
F type records 2-7
FILE macro parameter 3-4
FIT structure D-4
Z type records 2-10
FNF field
error processing B-1
FIT structure D-5
FO field
FILE macro parameter 3-4
FIT structure D-3
static loading E-1
FP field
end-of-data processing 4-4, 4-5
FIT structure D-3
FwB field
FILE macro parameter 3-4
FIT structure D-1

GET macro
F type records 2-7
format 5-3

sequential files 4-2

word addressable files 4-5
GETL macro 6-7
GETP macro

D type records 2-7

format 5-3

sequential files 4-2
GETWR macro

format 5-3

sequential files 4-2

HL field
FILE macro parameter 3-4
FIT structure D-4
T type records 2-8

I type blocks
ANSI format 2-3
file structure 2-2
Internal block type 2-2

K type blocks
ANSI format 2-4
file structure 2-3
RB field 3-5, D-6

LA field
FILE macro parameter 3-4
FIT structure D-3

LABEL control statement 6-4

60495700 D

¢
(
¢
¢
(

i,

5B RTR S . 000000 O N R LI S M A O

e T

™

Label processing
CLOSEL macro 6-8
definitions 6-1
file boundary processing 4-4
FIT fields 6-3
GETL macro 6-7
LA field 3-4,D-3
label type 6-4
LBL field 3-4,D-1
L.CR field 3-7, D-1
LT field 3-4,D-3
LX field 3-4,D-3
nonstandard labels 6-6
OPENM macro 4-1
PUTL macro 6-7
standard labels 6-4
ULP field 3-6, D-3
LBL field
FILE macro parameter 3-4
FIT structure D-1
LCR field
FILE control statement parameter 3-7
FIT structure D-1
LDSET control statement E-1
{evel number 2-1
LFN field
FILE macro parameter 3-1, 3-4
FIT structure D-1
List-of-files F-1
LL field
D type records 2-6
FILE macro parameter 3-4
FIT structure D-4
LOP field D-5
LP field
D type records 2-6
FILE macro parameter 3-4
FIT structure D5

SLruciu

LT field
FILE macro parameter 3-4
FIT structure D-3
label processing 6-4

LX field
FILE macro parameter 3-4
FIT structure D-3

Macro
coding conventions 1-1
CHECK 5-1
CHECKR 5-1
CLOSEL 6-8
CLOSEM 5-2
ENDFILE 5-2
FETCH 3-8
FILE 3-1
FITOMP B-2
format S5-1
functions 1-1
GET 5-3
GETL 6-7
GETP 5-3
GETWR 5-3
OPENM 5-3
parameter default value 5-1
PUT 5-4
PUTL 6-7
PUTP 5-5
PUTWR 5-5
REPLACE 5-6
REWINDM 5-6
SETFIT 3-8
SKIPdu 5-6
STLD.RM E-2

60495700 D

STORE 3-8
WEOR 5-6
WTMK 5-7
MBL field
FILE macro parameter 3-5
FIT structure D-6
MFN field
FILE control statement parameter 3-7
FIT structure D-6
MIP 1-1
MNB field
FILE macro parameter 3-5
FIT structure D-6
MNR field
D type records 2-7
FILE macro parameter 3-5
FIT structure D-4
MRL field
D type records 2-6
FILE macro parameter 3-5
file processing 4-2, 4-6
FIT structure D-4
R type records 2-7
T type records 2-8
U type records 2-8
W type records 2-8
MUL field
FILE macro parameter 3-5
FIT structure D-5
Multifile set
FILE control statement parameter 3-7
label processing 6-4

Nonstandard labels
defined 6-1
input file processing 6-6
output file processing 6-6

OC field
close processing 5-2
FIT structure D-5
OF field
FILE macro parameter 3-5
FIT structure D-3
OMIT parameter E-1
OPENM macro
dynamic loading E-1
error processing 5-4
format 5-3
sequential file processing 4-1
word addressable file processing 4-5

Padding
E type blocks 2-4
end-of-data processing 4-4
K type blocks 2-3
PC field 3-5,D-4
Parity errors
EO field 3-3,B-1, D-4
PEF field B-1, D-4
SES field B-1, D-4
Partition
boundary 2-5
defined 2-1
ENDFILE macro 5-2
PC field
FILE macro parameter 3-5
FIT structure D-4
PD field
FILE macro parameter 3-5
FIT structure D-5

Index-3®

PEF field
error processing B-1
FIT structure D-4
P fieid D-5
PNO field
FILE control statement parameter
FIT structure D-6
PRU
defined 2-1
device 2-1
PTL field
FIT structure D-5
read processing 4-2
W type records 2-9

PUT macro
F type records 2-7
format 5-4

S type records 2-8
sequential files 4-2
word addressable files 4-6
PUTL macro 6-7
PUTP macro
D type records 2-7
format 5-5
S type records 2-8
sequential files 4-2
PUTWR macro
format 5-5
sequential files 4-3

R type records
defined 2-7
RMK field 3-5, D-4
write processing 5-5
RB field
FILE macro parameter 3-5
FIT structure D-6
RC field D-5
Record
block type associations 2-6
definition 2-1
mark 2-7
maximum length field 3-5
minimum length field 3-5
physical 2-1, 2-4
type field 3-5
types 2-6
Record count block type 2-3
Register use 3-8, 5-1
REPLACE macro
format 5-6
sequential files 4-3
REWINDM macro
format 5-6
sequential files 4-3

RL field
C bma macmonda 2.7
r LypeE record =4

FIT structure D-
S type records 2-7
U type records 2-8
W type records 2-9
Z type records 2-10
RMK field
FILE macro parameter 3-5
FIT structure D-4
R type records 2-7
RT field
FILE macro parameter 3-5
FIT structure D-3
static loading E-1

©® Index-4

S type records
defined 2-7
write processing 5-5
5B fieid
D type records 2-6
FILE macro parameter 3-6
FIT structure D-5
T type records 2-8
SBF field
FILE macro parameter 3-6
FIT structure D-4
GETWR macro 5-3

Section
boundary 2-5
defined 2-1

WEOR macro 5-7
Sequential files

block types 2-2

boundaries 2-4

close processing 4-3

end-of-data processing 4-4

file boundary processing 4-4

file positioning 4-3

file updating 4-3

input processing 4-2

open processing 4-1

output processing 4-2

structure 2-2

tape processing 4-3

terminal file processing 4-4
SES field

error processing B-1

FIT structure D-4
SETFIT macro

dynamic loading E-1

FILE control statement processing 3-6

format 3-8
SKIPdu macro
format 5-6
sequential files 4-3
SPR field
FILE macro parameter 3-6
FIT structure D-4
Standard labels
ANSI format 6-1
defined 6-1
input tape processing 6-4
output tape processing 6-5
Static loading E-1
STLD.RM macro E-2
System-logical-record
defined 2-2
S type records 2-7
S/L tapes
defined 2-1
file boundary processing 4-4
file processing 4-3

T type records
CL field 3-3,D-4
CP field 3-3,D-5
Cl field 3-3, D-5
defined 2-8
HL field 3-4, D-4
SB field 3-6, D-5
TL field 3-6, D-4
write processing 5-5
Terminal file
CF field 3-3,D-3
CNF field 3-4, 4-5, D-5

60495700 D

BN

e o R O N O O 5 005 VAN I M AN N NN SO A SNSRI O 000050 U0 M M

~—~

file processing 4-4
static loading E-1
TL field
FILE macro parameter 3-8
FIT structure D-4
T type records 2-8

U type records
defined 2-8
write processing 5-5
ULP field
FILE macro parameter 3-6
FIT structure D-3
USE parameter E-1

WA field D-6
WEOR macro

file boundary processing 4-4
format 5-6

S type records 2-8
sequential files 4-2

write processing 5-5

Word address 4-5
Word addressable files

close processing 4-6
input processing 4-5
open processing 4-5
output processing 4-6
structure 2-6
Working storage area
sequential file processing 4-1

_~n

word addressable file processing 4-5
WSA field 3-8, D-4
VF field WPN field D-5

e WY o WY o

FILE macro parameter 3-6 WSA field

FIT structure D-3
VNO field D-6
Volume
boundary 2-5
close processing 3-8, 5-2
defined 2-1
file boundary processing 4-4

W type records
defined 2-8
write processing 5-5

60495700 D

FILE macro parameter 3-8
FIT structure D-4

WTMK macro

file boundary processing 4-4
format 5-7

Z labels 6-4
Z type records

defined 2-10
FL field 3-4,D-4
write processing 5-5

Index-5@

VO W W W W W W W O eameewy W W W W W W W w W us

LY oY T o .

CUT ON THIS LINE

e b am—

COMMENT SHEET

@ E CONTROL DATA

CORPORATI
TITLE: CYBER Record Manager Basic Access RP RA ON
* Methods Version 1.5 Reference Manual
PUBLICATION NO. 60495700 REVISION D

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve vour purpose?

Note specific errors discovered (please include page number reference).

General comments:

F2OM NAME: POSITION:

COMPANY
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOI D ON NOTTFN | INFS ANID QTAPI F

A

STAPLE STAPLE

FOLD FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

S

EE—

EE—

POSTAGE WILL BE PAID BY ——
CONTROL DATA CORPORATION S——
Publications and Graphics Division —
215 Moffett Park Drive —
SE——

I

SEEE—

mndem—

EE——

CUT ON THIS LINE

Sunnyvale, California 94086

s
2
I
-
(o]
r
o
Y

ilih.

£,

STAPLE STAPLE

