60494100

@ CONTROL DATA
CORPORATION

NOS/BE VERSION 1
SYSTEM PROGRAMMER’S
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

PAGE INDEX TO MACROS

Macro Page Macro Page
ACCSF 7-14 READSKP 5-9, 24
ACQUIRE 4-5 RECOVR 7-18
REPRIEVE 7-18
BKSP 5-17 RETURN 2-16
ROUTE 4-3
CALL 2-16
CALLSS 2-22 SEGDEF 2-16
CEVAL 4-1 SEGMFL 2-37
SETLC 7-25
DISPOSE 4-3 SETLOF 7-18
SFCALL 2-26
ENCSF 7-15 SKIPB 5-17, 26
ENDSEG 2-16 SKIPF 5-16, 25
SSCT 2-37
GETLC 7-25 SYSTEM 6-28; 7-3
GETLOF 7-18
GOTO 2-16; 10-3 VERIFYJ 4-16
GOTOTAB 2-16
WRITE 5-11, 25
READ 5-6, 24 WRITEC 5-20, 25
READC 5-18, 25 WRITEF 5-13, 25
READLS 5-19, 25 WRITER 5-12, 25
READNS 5-24

60494100 K

@ 9 CONTROL DATA
CORPORATION

60494100

NOS/BE VERSION 1
SYSTEM PROGRAMMER’S
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION
A Manual released.
(11-01-75)
B Revised to reflect features and PSRs added with the release of NOS/BE Version 1.1. Features included
(07-16-76) are Factory Format Support (83), Stack Processor Enhancements (133), INTERCOM Restart, 844-41 Support (145),
844 Expander Support (169), Job Management and Systems Control Point Enhancements (159, 163), 2X PPU
Support, and FORMAT/FDP Version 2 Enhancements.
C Manual revised to support NOS/BE Version 1.2 at PSR level 447 and to make editorial and technical
(04-22-77) corrections. The following features are documented: CYBER Control Language (CCL), Fast Dynamie Loader
(FDL), Reliability Feature Utilization (System Idle)) CE Validation, Product Set Support, INTERCOM
Enhancements, Advanced Tape Subsystem (ATS), 580 Line Printer Programmable Format Control (PFC), 844 Full
Tracking, and support of the CYBER 170 Model 176 and 819 disk drive. References to 604 and 607 tape units, and
the 501 line printer are removed.
D Updated to support NOS/BE Version 1.2 at PSR level 454 and to make editorial and technical correc-
(08-19-77) tions. Support of CYBER 170 Model 171 is included.
E Manual revised to support NOS/BE Version 1.3 at PSR level 473 and to make editorial and technical
(06-13-78) corrections. New features documented are permanent file utilities PFLOG GENLDPF; user capability to assign
universal password and permissions to private sets; user reprieve processing; support of all 677/679 tape units;
option to schedule tapes by density; support of INTERCOM 5; SF.RERN function; SETMFL, GETLOF, SETLOF,
GETLC, and SETLC macros. This edition obsoletes all previous editions.
F Manual revised to support NOS/BE Version 1.3 at PSR level 481. Information is added in the INTERCOM
(10-20-78) 5 Pointer and Buffer Area table to support the capability to turn communication lines on and off. Miscellaneous
technical corrections and clarifications are made.
G Manual revised to support NOS/BE Version 1.3 at PSR summary level 488. New features documented are
(02-19-79) FNT space threshold; direct access user ECS swapping; sequencer jobs; and VSN parameter on GETPF, SAVEPF,
and PURGE. Miscellaneous technical corrections and clarifications are included.
H Manual revised to support NOS/BE Version 1.3, at PSR summary level 499. New features documented
(07-02-79) are EXPORT High Speed (PP routines and EXPORT Multiplexer Subtable) and Improved Load Leveling (STF
routine). Miscellaneous technical corrections and clarifications are included.
J Manual revised to support NOS/BE Version 1.4, at PSR summary level 508. New features documented
(12-21-79) are Common Test and Initialization (CTI), deadstart dump analyzer, 885 disk drive support, enhancements to the
CEVAL macro, and reorganization of monitor functions. Information duplicated in the NOS/BE Reference Manual
on reprieve processing and permanent file utilities is removed. Miscellaneous technical corrections and
clarifications are included. This edition obsoletes all previous editions.
K Manual revised to support NOS/BE Version 1.4 at PSR summary level 518. New features documented are
(05-19-80) downline load utility, remote batch accounting for INTERCOM 5, and user capability to log error information for

ECS errors. Information duplicated in the NOS/BE Reference Manual on permanent file maecros is removed.

Miscellaneous technical corrections and clarifications are included.

Publication No.

60494100

REVISION LETTERS 1, 0, @ AND X ARE NOT USED

Address comments concerning this
manual to:

Control Data Corporation

Publications and Graphics Division

4201 North Lexington Avenue

©1975, 1976, 1977, 1978, 1979, 1980 St. Paul, Minnesota 55112

by Control Data Corporation

or use Comment Sheet in the back of

All rights reserved this manual.

Printed in the United States of America

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

REVJ

MMeohmooRhhhRRRRhRRXNMeRhRRRRRR R R e kX MM MMM M ey ey XM

w
(L]
<
o o
HANMTENO-ONO A ANMANWE-0O0O HOANMPO O NN FHFDWE-ONrd = I M <H OO
o e e e e H A H NN NNNNNNNMMmMeEamE L LTt b LT _123450w7812
S NN S = - e ke R ke R ke R e R R ko Ko K K B N N - N R A __&_
©0 00 00 00 GO G0 0O GO OO OO G0 00 O VO O WV WV WV WV WV WV N A P D H T rd T e A el e el H H H A A A AN L L <MD
>
F._ PR MMMMMMMMMMMMMMMMeanmRRRRRRRRRhRXERRRRXME R
../m (3]
= <
w N N
(U] 1) v
<< ~ ~
a - -
OO O =N M O N M D Orm ANMIPNOIL-ONO - N0 N (=}
R NGNS GRS SN RO D B O S SN
WO WLV N OOV VWWOLWWWWLWOLWOLWE-t-tebe-b-bbbbe-b-b0bb-beb-b-DeDeb-D> > CO 00 O COCO CO OO O 0O O
V__
u‘.._ PR R XNMMMEERRR XD
R
o
w N
- d
& =
ODO NN WL O O NN OO NROrTANMNMAFNO-0NO - ANNMNMHENOE-ONO N DO
T T T N T e S T R Y T T T T T T T Ty R T Y I R R R P Y YT YT Y
AL A LI F I OODOOLOLOOLOLLOLOOLOLOLOOOLOOLOLOLOLLOOOLOL L LWL VLWV WL LWL WO W WV W

>
m‘. PR PR RXRXXNXE DR R RR
3
8
S &
g -
01234567890123456&789012 O AN NP NWIE-ODNO v AN D WO D=
B 0 G A NN MM M T W T M i A BRSO BB MY
DN DINNNONIINMMNONMMNMMOMMMNMMM MMM P PP PP
>
% XXMM s RN NN R Ry D ey Py ey ey ey by
)
> O
Slge
< ||©&
aile o B
n..l CrmNMIPFNOI-TVNROOO=ANNHINWEONO = MDD ®
RSP TE - VOB, A O 0 A A 0 D N N O A S
: -
REmE2s T 58X R hi i Addddddddddddd i cdhdichchchchchchchechohechchehchcheh

iii

60494100 K

PAGE REVJ PAGE REV PAGE REV PAGE REV PAGE REV
B-2.1/B-2.2 K B-72 K B-140 K c-22 J
B-3 J B-73 J B-141 K Cc-23 J
B-4 J B-74 J B-142 K C-24 J
B-5 K B-75 J B-143 K Cc-25 J
B-6 K B-76 J B-144 J Cc-26 J
B-7 J B-T17 J B-145 J c-27 J
B-8 J B-78 J B-146 J C-28 J
B-9 J B-79 J B-147 J D-1 K
B-10 J B-80 K B-148 J D-2 K
B-11 K B-81 K B-149 J D-3 J
B-12 J B-82 J B-150 J D-4 K
B-13 J B-83 J B-151 J D-5 J
B-14 K B-84 J B-152 J D-6 K
B-15 K B-85 J B-153 J D-7 J
B-16 K B-86 K B-154 K D-8 J
B-17 K B-87 J B-155 dJ D-9 J
B-18 K B-88 J B-156 J D-10 K
B-19 K B-89 J B-157 J D-11 J
B-20 K B-90 J B-158 J D-12 J
B-21 J B-91 J B-159 J D-13 J
B-22 J B-92 K B-160 J D-14 J
B-23 J B-93 K B-161 J D-15 J
B-24 J B-94 J B-162 J D-16 J
B-25 J B-95 K B-163 J D-17 K
B-26 K B-96 J B-164 J D-18 K
B-27 K B-97 K B-165 J D-19 J
B-28 J B-98 K B-166 J D-20 K
B-29 K B-98.1/B-98.2 K B-167 J D-21 J
B-30 J B-99 K B-168 K D-22 J
B-31 K B-100 J B-169 J D-23 J
B-32 J B-101 K B-170 J D-24 J
B-33 J B-102 K B-171 J D-25 J
B-34 K B-103 J B-172 J D-26 J
B-35 K B-104 K B-173 J E-1 J
B-36 K B-105 J B-174 J E-2 J
B-37 J B-106 J B-175 K E-3 K
B-38 K B-107 J B-176 K E-4 K
B-39 K B-108 J B-177 J E-5 J
B-40 K B-109 K B-178 J E-6 J
B-41 K B-110 K B-179 J E-7 J
B-42 K B-111 J B-180 K E-8 K
B-43 K B-112 K B-181 J E-9 K
B-44 J B-113 K B-182 K E-10 K
B-45 K B-114 K B-183 K E-11 K
B-46 K B-114.1 K B-184 J E-12 K
B-47 J B-114.2 K B-184.1/ E-13 K
B-48 K B-115 K B-184.2 K E-14 K
B-49 J B-116 K B-185 K E-15 K
B-50 K B-117 J B-186 K E-16 K
B-51 J B-118 K B-187 J F-1 J
B-52 K B-119 J c-1 J F-2 J
B-52.1/B-52.2 K B-120 K Cc-2 J - | | Index-1 K
B-53 J B-121 J C-3 K Index-2 J
B-54 J B-122 J CcC-4 J Index-3 K
B-55 K B-123 J C-5 J Index-4 K
B-56 J B-124 J C-6 J Index-5 J
B-57 J B-125 K Cc-7 K Index-6 J
B-58 J B-126 K C-8 K | | Index-7 K
B-59 J B-127 K C-9 K Index-8 K
B-60 J B-128 K C-10 K Index-9 K
B-61 J B-129 K C-11 K Index-10 J
B-62 K B-130 K C-12 K Index-11 J
B-63 K B-131 K C-13 J Index-12 J
B-64 K B-132 K C-14 Jd Comment
B-65 J B-133 K C-15 J Sheet K
B-66 J B-134 K C-16 J Back Cover -
B-67 J B-135 K C-17 J
B-68 J B-136 K Cc-18 J
B-69 J B-137 K C-19 J
B-70 J B-138 K C-20 J
B-71 J B-139 K Cc-21 J

iv

60494100 K

PREFACE

This manual describes the NOS/BE Version 1.4 Operating System for the CDC® CYBER 170 Series, CDC
CYBER 70, Models 71, 72, 73, 74, and CDC 6000 Series computers. It is written for systems
programmers who perform system evaluation or program modification.

The manual describes the system interface with the central processor and peripheral processors, files and
file tables, input/output, job processing, permanent file manipulation, and various system utilities.
Appendixes B through E contain system tables and file formats divided into four general areas: central
memory, job control point, disk and files, and extended core storage. In general, the central memory
tables, extended core storage tables, disk tables, and file formats are of interest only to system
programmers. The job control point tables are of interest to all users of the product set. Job control
point tables can be used by central processor programs running at any control point. The tables in the
appendixes serve as reference material for those familiar with the system and its product set. More
detailed information 1is available in the various reference manuals and internal maintenance
specifications.

RELATED PUBLICATIONS

The following manuals contain additional information that may be useful to a systems programmer.
NOS/BE Manual Abstracts is an instant-sized manual that contains a brief description of the contents and
intended audience of every manual documenting NOS/BE and its product set. The abstracts manual may
be useful in determining which manuals would be of greatest interest to a particular user.

Control Data also publishes a Software Release History Report of all software manuals and revision
packets it has issued. This history lists the revision level of a particular manual that corresponds to the
level of software installed at the site.

Control Data Publication Publication Number
NOS/BE Manual Abstracts 84000470
NOS/BE Version 1 Installation Handbook 60494300
NOS/BE Version 1 Reference Manual 60493800
NOS/BE Version 1 Operator's Guide 60493900
NOS/BE Version 1 Diagnostic Handbook 60494400
NOS/BE Version 1 Diagnostic Index 60456490
INTERCOM Version 5 Reference Manual . 60455010
INTERCOM Version 4 Reference Manual 60494600
EXPORT High Speed Reference Manual 60456880
SCOPE Version 2 Operator's Guide 60455090

60494100 K \

Control Data Publication Publication Number

Update Reference Manual 60449900
CYBER Record Manager Basic Access Methods Version 1.5

Reference Manual 60495700
CYBER Record Manager Advanced Access Methods Version 2

Reference Manual 60499300
CYBER Loader Reference Manual 60429800

The NOS/BE to NOS/BE link is described in the NOS/BE Version 1 Operator's Guide. The NOS/BE to
SCOPE 2 link is described in the SCOPE Version 2 Operator's Guide.

The NOS/BE Internal Maintenance Specifications are available on listable magnetie tape.

Extended memory for CYBER 170 Models 171, 172, 173, 174, 175, 720, 730, 750, and 760 is extended core
storage (ECS). Extended memory for CYBER 170 Model 176 is analogous to CYBER 70 Model 76 large
central memory (LCM) or large central memory extended (LCME). ECS and LCM/LCME are functionally
equivalent, except LCM/LCME cannot link mainframes and does not have a distributive data path (DDP)
capability. (An appendix in the NOS/BE Reference Manual describes other minor differences.) In this
manual, the acronym ECS refers to all forms of extended memory on the CYBER 170 Series. However,
in the context of a multimainframe environment or DDP access, model 176 is excluded. The acronym
LCM refers to both LCM and LCME in the discussion of 819 disk I/O processing in section 5, because ECS
cannot be used on a model 176.

Unless otherwise indicated, bit and byte numbers are given in decimal; word addresses, field and table

lengths, and block and page sizes are given in octal. Unless reserved for a specific purpose or group, all
currently unused fields, names, codes, and so on are reserved for future development.

DISCLAIMER

This product is intended for use only as described in this document. Control Data cannot be responsible
for the proper functioning of undeseribed features or parameters.

vi 60494100 J

1. INTRODUCTION

Hardware Characteristics
Central Processor (CPU)
Peripheral Processors (PPs)
Central Memory (CM)
Extended Core Storage (ECS)

Features
ECS Paging

Software Elements
Files
Control Points

System Organization
System Loading
System Tape

2. CENTRAL MEMORY AND THE
CENTRAL PROCESSOR

CM Organization
Control Points
Job Descriptor Number
Storage Moves
CP - System Communication
CP - PP Communication
Program Recall
Central Memory Resident (CMR)
Summary of CMR Areas
Summary of Tables in Upper
Table Area
STF - System Table Find
CMR Segmentation for ECS Systems
Segment Loading
Segment Linkage
Segment Definition
Parameter Word
ECS System Image
ECS Error Recovery
ELM - Error Log Messages
System Control Point
Managing Subsystem Resources
CALLSS Macro
System Control Point Interfaces
Requesting Active Status
Subsystem Request
Acknowledgement
Special Subsystem Requests
to the Operating System
End Processing for UCPs
Normal SCP Termination

60494100 K

CONTENTS

T
0

HTTTTTTHHHHHH
R OO GO OO DI DD DD ke

N
—

NNNNL}?NNNN
b= a3 O DN

)
o

[NV
LR
b
w o

DN DN

2y
=
X Rox3

2-17
2-18
2-20
2-20.1
2-21
2-21
2-22
2-23
2-24

2-25
2-26

2-35
2-36

Abnormal SCP Termination
How to Define a Subsystem
SETMFL Macro
Programming Tips

3. PERIPHERAL PROCESSORS

Peripheral Processor Organization
PP Communications
PP Resident
R.IDLE - PP Resident Idle Group
R.OVLJ - Primary Overlay
(Transient Program) Loader
R.RAFL - Request Control Point
Field Length Access
R.TAFL - Terminate Control
Point Field Access
R.TFL - Test Field Length
R.MTR - Process Monitor Function
R.WAIT - PP Wait Loop
R.RCH - Request Channel
R.DCH - Drop Channel
R. STBMSK
R.STB - Store Byte
R.OVL - Overlay Loader
R.EREQS - Enter Stack Request
R.DFM - Enter Dayfile Message
R.READP - Transmit Data Via
Channel from Stack Processor
R.WRITEP - Transmit Data Via
Channel to Stack Processor
R.RWP - Performs Read/Write
Logic for R.READP/R.WRITEP
Field Access Flag Usage
System Monitor
MTR Structure
CPMTR Organization
Operations
CPU Scheduling
Assignment of the PPs
Channel Reservations
Time Accounting
Storage Requests
Monitor Functions
M.ABORT - Abort Control Point
and Drop PP
M.BUFPTR - Watch Buffer Pointer
Word
M.CCPA - Change Control Point
Assignment

2-36
2-37
2-37
2-38

= = = (O O WO 0 00 0 0O

3-11

3-11
3-12
3-12
3-12
3-13
3-14
3-14
3-15
3-18
3-18
3-18
3-18

3-19
3-20

3-20

vii

M.CLRST - Clear Status

M.CPJ - Capture Peripheral Job

M.CPUST - Change CPU Status

M.DCP - Drop Central Processor
Job

M.DFM - Process Dayfile Message

M.DPP - Drop PP

M.EES - Enter Event Stack

'~ M.EESD - Enter Event Stack and
Drop PP

M.ICE - Initiate Central
Executive

M.ISP - Initiate Stack Processor

M.KILL - Bad Function Request

M.MFLA - Monitor Field Length
Access at Control Point

M.NOTE - Null Function

M.NTIME - Enter New Time Limit

M.PASS - PPMTR Ignores Function
Request

M.PATCH - Insert a Patch in
PPMTR

M.PPLIB - PP Library Search
Funetion

M.RACT - Request Control Point
Activity

M.RBTSTO - Request Bit Storage

M.RCH - Request Channel
Reservation

M.RCLCP - Recall Central
Program

M.RCP - Request Central
Processor

M.RPJ - Request Peripheral Job

M.RPJD - Request Peripheral Job
and Drop PP

M.RSTOR - Request Storage

M.SCB - System Circular Buffer
Surveillance

M.SCH - Initiate Integrated
Scheduler

M.SEF - Set Error Flag

M.SEQ - Assign Job Sequence
Number

M.SETST - Set Status Bits

M.SLICE - Terminate Time Slice
Period

M.SLPER - Initiate Central
Monitor in Other CPU

M.SPM - SPM Call from 1SP

M.SPRCL - Stack Processor Recall

M.TRACE - Enter Monitor Trace
Mode

M.TSR - Terminate Storage
Request

3-20 .
3-20
3-21
3-21
3-21
3-22
3-22
3-23
3-23
3-23
3-23
3-24
3-24
3-24
3-24
3-24
3-25

3-25
3-26

3-26
3-26.1

3-26.1
3-27

3-27
3-27

3-28

3-28
3-28

3-29
3-29

3-30
3-30
3-30
3-31
3-32

3-32

4. ' FILES AND FILE TABLES

Files
System Files
Permanent Files
Local Files
Queue Files
Input Queue
Output Queue
ROUTE Macro - Additional
Capabilities
ACQUIRE Macro
VERIFYJ Macro
I/O Tables
File Tables

File Environment Table (FET)

File Name Table (FNT)
Device Tables

Equipment Status Table (EST)

Dismountable Device Table
(DDT)

Mounted Set Table (MST)

Device Status Table (DST)

Device Activity Table (DAT)

Channel Status Table (CST)
Tapes Staging Table (STG)
Tape Drive Scheduling

Automatic Tape Drive Assignment

Tape Job Prescheduling
Job Scheduling with Tape Drive
Overcommitment
Dynamic Tape Drive Status
Checking
RMS Set Terminology
Device Sets
Public Device Sets
Private Device Set
Shared Device Sets
RMS Tables
Record Block Reservation
Table (RBR)
Record Block Table (RBT)
INTERCOM Tables

5. INPUT/OUTPUT

I/0 Philosophy

CIO
CIO Codes
Circular Buffer

4-1
4-1
4-2
4-2
4-2
4-3
4-3

4-3

4-5

4-16
4-18
4-18
4-19
4-23
4-23
4-23

4-23
4-24
4-24
4-24
4-24

60494100 K

CIO Operation
Allocatable Device I/O
Stack Processor
Dismountable Pack

Processing - I/0 Detail
ECS-Buffered I/O
819 Disk I/O Processing

Logical I/O Processing
General Description
Logical I/O Segments

Physical I/O Processing
General Description
Physical I/O Segments

PPIO Processing

LCM Buffer Management

Tables
Transfer Buffer Table
TBT Address Table
Unit Queue Table
Channel Table

CE Error File

819 Subsystem Flush Function

6. PERMANENT FILES

Permanent Files - System Interface
Permanent File Interlocks
Permanent File Tables
Permanent File Accounting

Permanent File Utility Routines
DUMPF Utility
PFLOG Utility

Private Device Set Processing
LABELMS Control Statement
ADDSET Control Statement
MOUNT Control Statement
RELABEL Control Statement
RECOVER Control Statement
Addressing Public Sets by

Set Attribute

7. JOB PROCESSING

Job Flow
Job Input Queue
Tape Job Scheduling
Loading Jobs from Tape
Sequencer Jobs
JANUS
Integrated Scheduler
Job Scheduling
Rolling
Swapping
Job Control Area
Job Descriptor Table (JDT)

60494100 K

5-18
5-21

5-34
5-39
5-41
5-41
5-41
5-44
5-45
5-45
5-46
5-48
5-50
5-50
5-50
5-50.1
5-51
5-51
5-51
5-54.1

6-1
6-1
6-2
6-4
6-5
6-6
6-8
6-10
6-10
6-10
6-11
6-11
6-12

6-15

T
[y

[A A) UNUE UL
oD O D)

[P RFFIFIFF T

Job Scheduling Queues
Central Memory Queues
Device Queue
Permanent File Queue
Permanent Pack Queue
Operator Action Queue
INTERCOM Queue
Job Advancing
Control Statement Processing
Job Control Statement Source
File
Job Termination
Normal Termination
Permanent Files
Local Files
Input File
Output File
Dayfile
Abnormal Termination
Job Post-Processing Utilities
List-of-Files Address - GETLOF
and SETLOF Macros
Job Control With Logical Identifiers
CEVAL Macro
Access to Loader Word - GETLC
and SETLC Macros

8. EDITLIB

Introduction
Character Set
Syntax and Semantics
System EDITLIB
EDITLIB Files
Special Handling of Local
File Name System
Control Statement
Directives
Optional Directive Parameters
Directive Restrictions
Directive Formats
Library Directory Access
PP Routines
CP Routines
EDITLIB
Library Directory Format
PP Library Pointer Format
Files
System Files
User Files
File and Library Positioning
System Security
MDI (Move System Directory)
Directory/Library/Program Limits
Table Formats
Examples

ix

9. SYSTEM BULLETIN UTILITY

BULLUP Statement
BULLUP Data Statements

Name Statements

Contents Statements
Processing Data Statements
Creating a System Bulletin File
Updating a System Bulletin File
Reducing a System Bulletin File
NOS/BE-INTERCOM Considerations

10. LDCMR

Introduction

LDCMR Control Statement
LDCMR Files

System Security

Reserved Names

LDCMR Interlock

LDC

Examples

11. SYSTEM DUMPS
Deadstart Dump Analyzer

A. STANDARD CHARACTER SETS
B. CENTRAL MEMORY RESIDENT
TABLES

C. JOB CONTROL POINT TABLES

9-1 DSDUMP Control Statement 11-1
Analysis Directives 11-2
9-1 Display Directives 11-2
9-1 Dump Directives 11-2
9-2 Special Dump Directives 11-5
9-2 Default Directives 11-6
9-2 DSDUMP Messages 11-6
9-3 System Dynamie Dump 11-7
9-3 Interface 11-7
9-3 Dump File Format 11-7
9-4 Listing Dump Files 11-7
Error Messages 11-10
10-1
12. DOWNLINE LOAD UTILITY 12-1
10-1
10-1 BCPROC 12-1
10-3 BCLOAD 12-2
10-4 DLEB 12-5
10-4 WPPF 12-5
10-5 ANSWER Buffer 12-6
10-5 DLL 12-6
10-5 Building a Controlware File 12-7
Examples 12-7
11-1
11-1
APPENDIXES
A-1 D. DISK TABLES AND FILE FORMATS D-1
E. EXTENDED CORE STORAGE TABLES E-1
B-1 F. SYMBOL DEFINITION F-1
C-1
INDEX

60494100 K

| U UL
—

A&wamwﬁommwwwmw
WN U WNMFH-IJO U & W

rlkvlbrh
(= 5 IS

>
[]
-~

T
(o]

Allocation of CM

Sample Control Point Storage

Call Formats

Typical CMR Assignments

ECS System Areas

ECS System Image

ECS Segment

Pool PP Layout

PP Input Register

PP Resident Routines

PP Chain

PP Job Queue

System Dayfile Area

System File Entries

Nonallocatable Device File
Processing

RMS Tables

Record Block Table

File Table Interfaces - FNT
Points to RBT Chain

File Table Interfaces - RBT
Points to RBR Via DDT

File Table Interfaces - RB
Byte Points to RB

Example of Storage Moves
SFCALL Return Codes

PP Direct Cell Assignment
ACQUIRE Macro Parameters
Default RB Size

READ Macro Logical Sequence
READN Macro Logical Sequence
READSKP Macro Logical Sequence
RPHR Macro Logical Sequence
WRITE Maecro Logical Sequence
WRITER Macro Logical Sequence
WRITEF Macro Logical Sequence

60494100 K

2-1 5-1
2-2 5-2
2-6 5-3
2-7 5-4
2-15 5-5
2-19
2-20 5-6
3-4 5-7
3-5 5-8
3-7 5-9
3-17 6-1
3-19 6-2
4-21 6-3
4-22 6-4

7-1
4-25 7-2
4-31 7-3
4-33

7-4
4-34

8-1
4-36 8-2
4-37

TABLES

2-3 5-8
2-28 5-9
3-1 5-10
4-10 5-11
4-30
5-6 5-12
5-8 5-13
5-9 5-14
5-10 6-1
5-11 8-1
5-12
5-13

Circular Buffer Interface

FET - Circular Buffer Interface

Device Set I/O Processing

Output Flow to RMS File

CYBER 176 Computer System with
819 Disk

Logical I/O Processing

Physical I/O Processing

PPIO Processing

CE Error File

APF Table Entry

Permanent File Dump Tape Format

File Header

PFLOG Dump Tape Format

JANUS Interfaces

Integrated Scheduler Interfaces

Scheduler Request Stack in
System Exchange Package Area

Control Statement Processing
Flowchart

Basic Usage of System EDITLIB

Library Table Interfaces

WRITEN Macro Logical Sequence

WPHR Macro Logical Sequence

SKIPF Macro Logical Sequence

SKIPB Macro and BKSP Macro
Logical Sequence

BKSPRU Macro Logical Sequence

Stack Processor Orders

Ranges of Cylinders Used

Header Fields

Directive Interpretation and
Execution

QN‘IO’O’O’?U\U‘I@MU\
QD00 =TI G

[}
WO O DN

3
-3

7-12

ot
XY

8-29

xi

INTRODUCTION 1

The Batch Environment Network Operating System (NOS/BE) is an operating system for the CYBER 170
Series, the CYBER 70, Models 71, 72, 73, and 74, and the 6000 Series computers. NOS/BE accepts input
in the form of jobs submitted by users, processes jobs as directed by the accompanying job control
statements, and provides operations control in accordance with command instructions that are input at
the console's keyboard. This section describes the inherent hardware characteristics, the basic software
elements, and how they work together to accomplish efficient processing of users' jobs.

HARDWARE CHARACTERISTICS

The operating system uses peripheral processor units (PPs) for system and input/output (I/O) tasks and a
central processor unit (CPU) to execute user and system jobs. Central memory (CM) contains the user
programs. System software areas are located at the upper and lower ends of CM. An extended core
storage (ECS) unit may contain system libraries and other items (such as file buffers for rotating mass
storage and swap files), which may not be contained in CM or on other mass storage devices.

CENTRAL PROCESSOR (CPU)

The CPU performs tasks of a computational nature. It has no I/O capability. It communicates with other
system components through CM. The CPU is used almost exclusively for program compilations,
assemblies, and executions. The CPU makes system requests through a CPU request word located at the
reference address plus one (RA+1) of the current program in execution. The CPU is discussed in section
2.

PERIPHERAL PROCESSORS (PPs)

The PPs, of which there may be up to 20 (identified as PP0,PPl,...,PPn), are identical. They perform
many tasks for requesting programs in CM. A PP can be assigned to control, I/0, job scheduling, control
statement interpreting, and other tasks as required. Tasks are assigned one at a time to each PP by the
system monitor (MTR). When an assigned task is completed, the PP signals the system. MTR waits for
this signal before assigning another task to the PP.

Each PP is assigned a block of eight words in the system area of CM through which communications with

the system are conducted. Each block contains an input register, an output register, and a message
buffer. PPs are discussed in section 3.

60494100 J 1-1

CENTRAL MEMORY (CM)

CM words are 60 bits long. Each has five 12-bit PP memory words called bytes. Each 12-bit byte in a
CM word is numbered 0 through 4, from left to right as follows:

59 48 47 36 35 24 23 1211 0

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

One or more user programs may be in a state of execution concurrently. These programs are stored in
CM in an assigned user area. A set of system components necessary for the operation of the system is
also stored in CM, forming the central memory resident (CMR) and the record block table (RBT) areas.
Central memory is accessible by all PPs and CPUs; it forms the communications link between all
processor units in the computer system.

Central memory resident (CMR) contains system communications areas, system tables, CPU resident

routines, the library directory, and information about each job currently in execution. The CMR is
discussed in section 2, and the RBT is discussed in section 4.

EXTENDED CORE STORAGE (ECS)

Features

ECS is divided into the system area, the dynamic area, and the direct access area. These areas function
as follows:

Area Function
System Contains system pointers and tables required by ECS software.
Dynamic Paged area; contains buffers, library programs, swap files, and other files

assigned to ECS.

Direct access Assigned to user és result of job statement request; used and managed by
the user; contains the ECS segment library in ECS control point 0 field
length,

Such division of ECS allows the following features to be provided.

e I/0 buffering through ECS (via CM buffers or distributive data path).

e Library residence in ECS.

e Job swapping to/from ECS by the integrated scheduler.

o Compatibility with BNL-ECS.

e Segmentation of system central proéessor code.

I 1-2 60494100 J

ECS Paging

1/0 buffering through ECS is made possible by the paging of ECS. The basic element of ECS paging is a
PRU made up of 100g CM words. A group of eight consecutive PRUs (1000g CM words) forms a page. A
deadstart installation parameter defines the buffer size. The parameter IP.EBUF determines the default
buffer size for deadstart processing and has a default value of 16 decimal pages.

ECS paging provides the following advantages:
e More efficient use of ECS through dynamic allocation/release of space.

e Availability of ECS to more users by allowing the use of an over-commitment algorithm for ECS.

SOFTWARE ELEMENTS

Files and control points are basic to the operating system.

FILES

A file is an organized collection of data known to the system by a given name. Data is organized in one
or more logical records and is terminated by an end-of-file indicator. The jobs processed by the
operating system and all intermediate and final results are contained in files or parts of files. Files are
discussed in section 4.

CONTROL POINTS

The system can control execution of several jobs at one time. When placed into CM before execution,
each job is assigned a value, which is the control point number and the index to a control point. Jobs at
control points are assigned to a processor for execution. Each control point has a control point area in
the CMR, which holds all information necessary to process the assigned job. Control points are discussed
in section 2.

SYSTEM ORGANIZATION

The operating system consists of PP programs, CP programs, macro definitions, and symbol definitions.
The entire system is contained on program library files produced by the library maintenance program
Update. Programs on these library files are in source language form. Installation options are provided to
permit flexible selection of system features during extraction of programs and texts from the libraries.
These software components can be assembled for subsequent creation of a deadstart file on tape by the
system maintenance program EDITLIB. EDITLIB is discussed in section 8.

A system monitor controls the operating system. The system monitor consists of PP overlay MTR

(operates in PP0) and CPMTR. In a disk system, CPMTR is assembled as part of CMR; in an ECS system,
it consists of a number of separate segments.

60494100 J 1-3

SYSTEM LOADING

To load the operating system, the deadstart tape or disk is mounted on the appropriate unit, and a small
bootstrap loader program is set up on the hardware deadstart panel switches. When the deadstart button
on the operator's console or deadstart panel is pressed, the bootstrap program is transferred to and
executed in PP0. The bootstrap loader reads the first record on the deadstart file and executes the
routine contained there. This routine reads in the remainder of the common test and initialization (CTI)
routines. The CTI routines determine the machine attributes and run a confidence test to ensure that the
mainframe is operating properly. When confidence testing is complete, the first operating system
routine (OSB) is read into PP0. It reads the deadstart control program (CED) from the next record into
PP0 and sets it into operation. CED determines the type of deadstart to be performed and loads the
required routines into all PPs involved in the deadstart process. The routines include a display routine in
PP0 and 1/0 routines in PP1, PP2, and PP3. CMR is read from the deadstart file into CM, and a display
shows all deadstart functions and options that may be selected. The functions include the following:

e Library reload option.

o Queue file recovery level,

e User device set processing.

e Equipment configuration changes to the system.

e Initialization level of ECS.

e TFirst mainframe to deadstart.
The operator may select specific options or take the default option for each function.
After deadstart options are processed, control is passed to MTR and the display routine, DSD. If a
deadstart tape was used rather than disk, the tape is rewound to its load point and is not referenced again
during normal system operation. The tape can be removed and the tape unit can be cleared for other
operations. At this point, the system can process jobs (refer to section 7).

Upon completion of system loading, the computer contains the following:

e Initial system libraries stored on one or more mass storage devices. Programs can be loaded
from any system library into PPs or CM as needed.

e CMR loaded into the low end of CM. A set of tables in CMR contains information about the
system. Some tables are used by the system PP programs to communicate with each other. An
RBT is built into the upper end of CM.

e Some system programs stored in CM in an area immediately following CMR. Such programs can
be loaded into PPs or into other CM areas much faster than they can be loaded from the system
storage device. Storage space in CM is costly, and storage space for library programs cannot be
used to run user programs. Therefore, only the most frequently used library programs are
stored. For the same reason, CMR is kept as small as possible.

e The system monitor program (MTR in PP0 and CPMTR in CMR) which controls the system. It
controls allocation of system physical resources (CM, ECS, channels, equipments, PPs, and
CPUs), handles all communications between user programs and the system, and coordinates
activities of the other PPs.

1-4 60494100 J

e PP1 which contains the operator console display driver program DSD. DSD provides a
communication path between the system and the operator. Current system status is displayed
by DSD on the operator console display(s). The operator can control system operation by typing
commands on the console keyboard.

e Remaining PPs which contain pointers to a PP ecommunications area, an area in CMR used for
communications between each PP and MTR, and a PP resident program loaded into each PP.

The resident program is responsible for reading the input register, loading PP overlay programs
into its assigned PP, and providing communications between the overlays and MTR.

SYSTEM TAPE

The released system deadstart tape consists of the following programs.

Name Description
IPL-ZZZ CTI routines.
0SB Operating system bootstrap routine; resides in PPO.
CED-CEF Deadstart PP control programs; reside in PPO0.
DDR Read driver for 844 or 885 disk subsystem; resides in PP1.
MDR Read driver for 66x and 67x tape drives; resides in PP1 and PP3.
CMR Central memory resident (up to 64 copies).
COoM Deadstart option matrix generator; resides in PP2.
IRP Deadstart RMS driver control program; resides in PP2.
5CY Deadstart driver for 844-21, 844-41, and 885 disk subsystems.
LFP Driver for 819 disk subsystem (CYBER 176 only).
0SY 844 buffer controlware for the 7054 controller.
0SZ 844 buffer controlware for the 7154 controller.
0SJ 885 buffer controlware for the 7155 controller.
oMT 66x magnetic tape subsystem controlware.
IRCP Deadstart main CP program.
STL Deadstart PP initiation program (PP resident).
MTR System monitor program.
DSD Display control program.

Library name table.
Directory PP name table.

PP programs; the first must be stack processor's segment.

60494100 J 1-5

Name Description

Entry point table.
External reference list.

System External reference table.

Libraries
Program number table.

Program name table.

CP routines.

An installation may expand the preceding records by placing up to 63 additional CMR records on the
system tape for different equipment configurations.

1-6 60494100 J

CENTRAL MEMORY AND THE CENTRAL PROCESSOR 2

CM ORGANIZATION

Figure 2-1 shows the allocation of CM.

0 Low Core

CMR

CM Library

Assigned to Control Points

RBT v
Machine FL High Core

Figure 2-1. Allocation of CM

Low core is allocated to the central memory resident (CMR) portion of the operating system, executable
system programs, and INTERCOM buffers. The length of the INTERCOM buffers area varies dynamically
when INTERCOM is running. High core is allocated to the record block table (RBT). Its length varies
dynamically with the load of the system. The remaining area can be assigned to control points.

CONTROL POINTS

Blocks of CM storage not allocated for system use are ordered by control point number and assigned to
jobs. Each control point has a corresponding table in CMR called the control point area. A control point
is not a physical entity but rather a concept used to facilitate bookkeeping. The control point number
and the control point area, however, are physical quantities that appear in the system.

Any number of control points up to 15 decimal are possible. In the released system, the default value of
N.CP is 15. In an installation with n control points for user jobs, they are numbered from 1 to n. Only
one job can be assigned to a control point at any time. Once a job is assigned to a control point, system
resources such as CM, ECS, channels, equipments, and processors may be assigned to the control point
for use by the job.

Storage assigned to a single control point is contiguous; storage for all control points is not necessarily
contiguous. The storage block assigned to the job at control point 2 is higher than the block for the job
at control point 1, storage for control point 3 is always higher than that for control point 2, and so on.

In figure 2-2, no storage is assigned to control points 3 and 5; unassigned storage appears between
assigned storage.

60494100 K 2-1

0 Low Core
CMR

CM Library

CP1

)

)

) RBT 1
Machine FL High Core

Figure 2-2. Sample Control Point Storage

In addition to the n control points used for running jobs, two pseudo control points (zero and n+1) are used
by the system.

Control point 0 identifies system resources not allocated to a job at a control point. They are
unallocated or allocated to the system. If an equipment is assigned to a control point, that control point
number is entered into the system table entry for that equipment. If not assigned to a job at a control
point, the equipment is assigned to control point 0 and is available to be assigned to a job. All active
system files are attached to control point 0. They include the system file, any job files that have been
read in and are waiting for scheduling, and all output files waiting to be processed by JANUS and remote
batch processors.

Control point n+1 is used by CPMTR for executing system jobs such as the integrated scheduler or
storage move routines. Control point n+1 has an abbreviated control point area that consists primarily of
an exchange package. The field length of control point n+1 is all available memory.

JOB DESCRIPTOR NUMBER

During execution, a job might not remain continuously at the same control point. It is possible for the
job to be swapped out while it is only partially executed. When a job is swapped out, it is not associated
with a control point. When a job is swapped in, it may be associated with a different control point.

While a job is swapped out, the only table in CMR that contains information about the job is the job
descriptor table (JDT). When a job is initialized at a control point, it is also assigned to an entry in the
JDT. The job descriptor number is constant and identifies the job during its entire execution.

To clarify the difference between job descriptor number and control point number, JDT numbers start at
n+l (n is the number of control points).

2-2 60494100 K

STORAGE MOVES

CM storage must be reallocated and jobs must be moved as jobs finish processing and new jobs begin or as
jobs are swapped in and out. If a job at a control point requests additional storage, it may be necessary
to move jobs to obtain the required storage. CPMTR keeps a tally of unassigned CM in CMR word T.UAS.

Storage associated with each control point is allocated or unallocated. Either storage may have a zero
value. Allocated storage is defined by the reference address (RA) and field length (FL) of the control
point. Unallocated storage (UAS) lies between the allocated portions of two consecutive control points.
This area is associated with the lower of the two control points, but it may be transferred to neighboring
control points by moving any intervening allocated storage.

A request for a reduced field length transfers storage to UAS (no storage moved). A request for an
increased field length, when the total already associated with the control point is adequate, results in a
transfer of unallocated storage to allocated storage; no storage move takes place.

If it is necessary to take unallocated storage from other control points to satisfy a request for increased
field length, control points above and below the requesting control point are scanned. This scan locates
the combination of unallocated storage blocks that result in a move of the least amount of storage.

If control point 1 in figure 2-2 needs more storage, it is necessary to move control point 2. If control
point 6 needs storage, sufficient unallocated storage may be available to make a control point move
unnecessary. If, however, control point 7 needs additional storage, control points 4, 6, and 7 are moved
downward to provide the storage. Added storage always extends the field length upward.

Example:
Control point 5 requests an FL of 300 (refer to table 2-1). All values are increments of 100 octal. If
CPMTR takes the UAS from control point 7, the 150 units of CM at control point 6 must be moved.

However, taking UAS from control points 3 and 4 requires moving 120 units of CM at control points 4 and
5 (20 units are moved from 4 to 3; 100 units are moved from 5 and added onto the 20 units moved to 3).

TABLE 2-1. EXAMPLE OF STORAGE MOVES

Before After
Control Point RA FL Unallocated Storage (UAS) RA FL UAS
0 0 142 0 0 142 0
1 142 33 0 142 33 0
2 175 31 0 175 31 0
3 226 0 500 226 0 0
4 726 20 130 226 20 0
5 1076 100 0 246 300 430
6 1176 150 0 1176 150 0
7 1346 0 430 1346 0 430

60494100 J 2-3 |

CP — SYSTEM COMMUNICATION
A running CP program must communicate with the system in the following situations.

e When a CP program is loaded and executed as a result of a control statement call. The system
must place any parameters specified on the control statement in an area where they can be read
by the CP program.

e When a CP program needs to perform input/output. No CP instructions allow a CP program to
perform 1/O. The CP program must send a request to the system to load a PP program to
execute the 1/0.

e When a CP program terminates. The program must advise the system that the system may
process the next control statement.

Since a CP program cannot access memory locations outside its field length, any area reserved for
communication between a CP program and the system must be within the field length of the job. The
first 101g locations of each job's field length are reserved for this purpose. The following 10g words are
reserved for the loader table. The first program loaded into a user field length is always loaded at
location)RA+1118 (for the user, this is location 111g because the reserved words are RA+0 through
RA+110g).

The RA communication area is shown in appendix C.

The first word of a user field length (location RA+0) is reserved for use of hardware and software flags in
event of error. Other locations in the first hundred octal words of a user field length store information
needed for execution of a system program. Monitor regularly seans location RA+1, which is presumed to
contain a request from the central processor for monitor to summon a peripheral program. The form of
the request is as follows:

59 4139 35 0
TTTTTTTIT T ErTrn TTTIrTT i rrerer e e
PP Program Name o Address of Parametgrs
|y and/or Parameters
I‘LNot used
r = Recall bit
Not used

Loader information is placed by the first of several loader routines in words RA+64 through RA+67. This
information is used and modified as additional loader routines complete specific tasks.

When parameters are encountered on a contrel statement, they are placed in locations RA+2 through
RA+63 by IAJ, which stores the total number of parameters in location RA+64. When the routine or file
indicated on the control statement executes, it finds the information needed to direct execution in these
locations.

CP — PP COMMUNICATION

If a user's program places a call for a PP program in RA+1, CPMTR will pick up the RA+1 call, insert the
control point number of the caller into bits 39 through 36 of the word, and clear bit 41. If the central
exchange jump (CEJ) installation option is available, the user's program should use it immediately after
placing a call in RA+1. This causes CPMTR to begin execution immediately. If CPMTR determines that
the RA+1 call should be assigned to a PP, it passes the call on to MTR.

When a PP is available, MTR writes the word into its PP input register in CMR (refer to figure 3-2 for
the format of a PP input register of a transient program called from a CP program). The name, the auto
recall bit, and any parameters in bits 35 through 0 appear in the input register exactly as they did in
RA+1. Parameters are passed from a CP program to a PP program through this parameter field.

2-4 60494100 J

For example, if the PP program CIO is called, CIO finds the relative address of the file environment
table (FET) used in the operation by reading its input register. It can find the RA of the control point
field length by reading the control point number from its input register, computing the address of the
control point area, and reading the value of RA from the control point area. By adding the RA to the
relative FET address, CIO obtains the absolute address of the start of the FET. CIO then reads the
parameters for the I/O operation from the FET. In ECS systems, CPMTR traps all CIO calls and sends
them to CPCIO where the device type is checked. If the device is RMS or ECS, the request is processed;
otherwise, the request is sent to CIO.

MTR continually scans RA+1 in the event that the user's program does not use the central exchange
jump, or the instruction is not available. When an RA+1 call is found, MTR initiates CPMTR. Less CPU
time is used by letting CPMTR process the call than if MTR did it directly.

Bit 59 of RA+66 communicates to the user program if CEJ is available. If the hardware for this
instruction is available, the bit is set.

PROGRAM RECALL

The recall program status enables efficient use of the CP and capitalizes on the multiprogramming
capability of the operating system. Often, a CP program must wait for an I/O operation to be completed
before more computation can be performed. To eliminate the CPU time wasted if the CP program is
placed in a loop to await I/O completion, a CP program can request that the control point be put into
recall status until a later time, and the CPU can be assigned to execute a program at another control
point. The job may be rolled out or swapped out, as necessary.

Recall may be automatie or periodie. Auto recall should be used when a program requests I/O or other
system action and cannot proceed until the request is completed. Control is not returned until the
specific request has been satisfied. Periodic recall can be used when the program is waiting for one of
several requests to be completed. The program is activated periodically so that it can determine which
request has been satisfied and whether or not it can proceed.

To enter periodic recall, a CP program inserts the characters RCL left-justified into RA+1. Upon
encountering the RCL request, CPMTR examines the auto recall bit (bit 40). If set, the request is
considered to be an auto recall request. If it is not set, CPMTR checks bits 10 through 0 (decimal) for a
delay count. The delay count is specified in units of 0.244 millisecond (the same as the real-time clock).
The largest delay time that can be specified is 2047 (decimal) or approximately 0.5 second. If this delay
count is not set, CPMTR specifies a default value for it. The current default, as defined by symbol
RCLPER in the CMR internal configuration parameters, is 25 milliseconds. The delay count of the
control point in periodic recall is examined regularly by the advance control point routine (ACP) of
MTR. When the delay count expires, the control point loses its recall status, and the CPU is again
assigned to execute the program at the control point. At this time, the CP program can check the
completion bit in the FET to see if the I/O is finished. If so, the CP program ecan proceed with
computations. If I/O is not complete, the CP program can go into recall.

To enter auto recall, a CP program makes a request in RA+1 with bit 40 of RA+1 set to one. The control
point is put into auto recall after the request has been initiated. The CPU is assigned to another control
point. The program in recall is restarted by MTR after the completion bit in the FET has been set.
MTR, not the user, checks the completion bit in the FET.

Recall and auto recall are often used while waiting for CIO to process an I/O request. However, any
time a PP program is called from RA+1, with bit 40 of RA+1 set to one, the control point is put into auto
recall, If bit 40 is set, bits 17 through 0 of RA+1 must contain the address of a word in the program's
field length called a reply word. When the PP has completed its function, it sets the completion bit (low
order bit) in the reply word. When the completion bit is set, MTR restarts the program.

60494100 J 2-5

For a call to CIO, the reply word is the first word of a FET. For other programs, the reply word need not
be part of a FET.

Some PP programs (DMP and MSG) set the completion bit only when they are called with auto recall.
Periodic recall cannot be used for these programs.

A CP program can go into auto recall without calling a PP program by putting RCL left-justified into
RA+1 and setting bit 40 of RA+1 to one. Bits 17 through 0 of RA+1 must contain the address of a reply
word. A program which has already initiated one or more I/O operations might go into auto recall in this
way, using the first word of the FET associated with one of the I/O operations as the reply word. The
formats of RA+1 for a normal CIO call, a request for periodic recall, a CIO call with auto reecall bit set,
and an RCL call with auto recall bit set are shown in figure 2-3. For periodic recall, a user must issue a
normal CIO call followed by an RCL request. For auto recall, only one request is required.

Normally, CP programs use auto recall for convenience, but only one request involving auto recall can be
processed at one time. For example, to initiate I/O action on several files at once, a user must employ
the periodic recall technique. All the requests are issued without recall (using a separate FET for each
request). Then the user requests periodic recall. Each time the CP program is restarted by the system,
it can check all the files for completion and go back into periodic recall if any files are incomplete.

CIO CALL
59 42 40 17 0
cio o _ Count for FET Address
Positioning Requests

N — T —
DISPLAY CODE (CIO = 031117g)

CIO CALL WITH AUTO RECALL

59 42 40 17 0

cio 1 _ Count for FET Address
Positioning Requests

REQUEST FOR PERIODIC RECALL

59 42 40 10 0
Delay in Quarter
RCL 0 -Milliseconds
REQUEST FOR AUTO RECALL
59 42 40 17 0
1 Pseudo
Rct FET Address

Figure 2-3. Call Formats

2-6 60494100 K

Periodic recall can also be used when a CP program can initiate an I/O request and perform
computation. In some cases, the I/O would be completed before the computation; in others, the
computation would complete first. The user would go into recall only after computation was completed
and then only if the I/O was still in process.

Periodic recall should also be used, if possible, to continue processing while only part of the data buffer
has been read or written by the I/O driver. Some of the I/O drivers coordinate with MTR so that a
program in periodic recall is restarted after one or two PRUs have been processed.

CENTRAL MEMORY RESIDENT (CMR)

The low end of central memory is reserved for the CMR portion of the operating system and the system
library portions which reside in CM. CMR contains pointers, tables, and programs. Its length depends
upon several factors, including the number of PPs and the number of control points, which determine the
number of tables and the length of certain tables in CMR. Some CMR tables are optional and appear
only by installation parameters. Figure 2-4 illustrates a typical CMR.

Pointers and Small Tables
(Lower Table Area)

200

Control Point Area and System Exchange Packages

PP Communications Area

Large Tables
(Upper Table Area)

ECS Tables

CM Resident Programs
(or Segmented System CM Areas)

Library Directory

Figure 2-4. Typical CMR Assignments

60494100 J 9-7

The CMR contains the following tables.

First Word Address

Table Name

0
100
154

200

T.CST
T.PPS1
T.CPAp
T.XPIDLA
T.PPC1
T.EST |

T.FNT ¥

T.ITABLY
T.DAT T
T.RMSBUF t
T.STGT
T.APF
T.EXPIO
T.CHT
T.UQT
T.RQS t1
T.RST
T.RBR
T.RBRBIT
T.DST
T.DOT
T.SEQ
T.INS
T.MST

T.DDT

T Table must begin before 10000g.
t1 Table must begin before 20000g.

2-8

Description
CMR pointer area.
Channel status table.
PP status words.
Control point areas.
System job exchange package area.
PP communication areas.
Equipment status table.
File name table.
CIO-CPCIO special file name tables.
Permanent file name tables.
T.ELIBD - ECS resident library deseriptor word
INTERCOM table.
Device activity table.
RMS buffer.
Tapes staging table.
Attached permanent file table.
CYBER 176 exchange package and I/O buffers.
Channel table.
Unit queue table.
Request stack.
Request scheduling table.
Record block reservation table (headers).
RBR bit table.
Device status table.
Device overflow table.
Sequencer table.
Installation area.
Mounted set table.

Dismountable device table.

60494100 K

First Word Address

Table Name
T.TRB
T.VRNBUF
T.TAPES
T.URT
T.MAIL
T.IDT
T.DFB
T.PJT
T.MAB
T.SSCT
T.SCHPT
T.SCHJCA
T.SCHJDT
T.ELST
T.PPOVL
T.BRKPT
T.AREA
T.ENTRY
T.BCFAP
T.EPAGE
T.ECSPRM
T.SCBHDR

T.SUBPG

Description
Trace buffer.
VSN buffer.
Tapes table.
Tape unit recovery table.
Scheduler mailbox buffer.
Logical ID table.
Dayfile buffers.
Parameter storage for delayed PP jobs.
Mainframe attribute block.
Subsystem control table.
(Optional) scheduler performance table.
Scheduler job control area.
Scheduler job descriptor table.
Error logging status table.
PP resident overlay save buffer.
Breakpoint table (ECS system).
Area table (ECS system).
Entry table (ECS system).
CEFAP buffer.
Empty page stack.
ECS parameters.
System circular buffer.

Subpage buffer.

CM resident programs (disk system).

Segmented system areas (ECS system).

T.LIB

Library directory.

INTERCOM pointer area.
INTERCOM buffer and user tables.

60494100 K

Job control point user field length.

T.RBT

RBT chains.

2-9

SUMMARY OF CMR AREAS

Area

Lower table

Control point

PP communications

Upper table
ECS table

CMR program

Library directory

Description

Contains pointers to larger tables in the upper table area of
CMR, various flags, constants, and installation options
parameters. It includes accounting information, calendar and
Julian dates, the system display label, and other small tables.
The lower table area occupies the first 200 words of CM.

Contains a 200-word area for each control point in the
system. Each area contains the job name, exchange package,
and other information related to the job running at that
control point. The system exchange package is also contained
in the same area.

Contains eight words for each PP in the system, through which
they communicate with the system monitor and with each
other. Each area contains the PP input and output registers
and a six-word message buffer.

Contains major tables pertinent to system and job operation.

Contains buffers for transferring PP overlays and RMS files.

Contains four resident programs:

CP.MTR Central processor monitor.

CP.SM Central processor storage move.

CP.SPM Central processor stack processor
manager.

CP.SCH Central processor memory manager
(scheduler).

In a segmented system, the CMR program area is overlaid by
the ECS system resident and the CP code overlay segments.

Contains tables related to the system libraries, including
library name table, PP program name table, and CMR library
programs.

SUMMARY OF TABLES IN UPPER TABLE AREA

Table

Equipment status

File name

2-10

Description

Contains one entry for each device in the system
configuration. Nonallocatable devices can be assigned to one
control point at a time; allocatable devices can be assigned to
many control points simultaneously.

Contains an entry for each file in the system; created when
the file is created. Several entries are preset and remain in
the system for duration; these entries are for the system
library (deadstart) file, the system and control point dayfiles,
and the hardware error file.

60494100 J

Table

INTERCOM

Device activity

Rotating mass storage buffer

Tape staging

Attached permanent file

Request stack

Record block reservation

Device status

Sequencer

Installation

Mounted set

Dismountable device set

Tapes

Tape unit recovery

Mailbox

ID

60494100 K

Desecription

Provides multiplexer and port definition information for
INTERCOM program use.

Contains a four-word entry for each RMS device in system.
Each entry provides dynamic information related to current
activity of the RMS device.

Holds a message to be flashed on the bottom line of the B
display. The message reports an error on an RMS device and
asks the operator to idle down the device.

Defines availability, assignment, and demand for tape devices.

Provides information for the permanent file manager and job
use. Control and status information entries are created when
a permanent file is cataloged initially or attached to a
qualified CP program.

Requests for data transfers, device positioning, or logical file
operations. Each allocatable device in system has at least one
three-word entry in this table when a request for its use is
active.

Provides continuous information as to assignment/availability
of record blocks in which file data is recorded on allocatable
devices. Strings of bits in the RBRBIT table denote current
status of record blocks in each device.

Directly related to the request stack; contains a two-word
entry for each allocatable device in the system, plus an
additional pseudo entry for unassigned file processing.

Contains 30-word entry for each preallocated RMS device for
use for CE diagnostic programs.

Reserved for specific needs of installation. Tables are
generated in the area only by installation.

Contains one entry for each mounted device set, including the
public sets.

Contains entries for each RMS device, plus entries for each
queueing device needed by jobs.

Contains one entry (10g words per entry) for each tape unit
defined.

Contains one entry (five words per entry) for each 66x/67x
tape unit.

Used for communications between system and swapped out
jobs.

Contains host ID, logical IDs, and physical (link) IDs. The ID
table can be zero-length.

2-11

Table

Dayfile buffer area

Peripheral job

Mainframe attribute block

Subsystem control

Scheduler performance

Job control area

Job descriptor

Error logging status

Breakpoint

Area

Entry

CM resident programs
(in a disk system)

Library directory

Description

Contains dayfile buffers and file environment table entries of
the system dayfile, the control point dayfiles, and the
hardware error file. The control point 0 buffer is at the end of
this area.

Contains parameters saved for delayed PP jobs.

Contains attributes of a mainframe, such as number of
PPs/PPUs and the presence of ILR/SCR, CMU, CEJ/MEJ, and
CPU-1/CPU-0.

Contains names of defined subsystems.

Optional table used to collect execution data to study the
efficiency of the integrated scheduler. Created by installation
parameter IP.SPT set to 1.

Contains entries pertinent to the scheduling of jobs by class
and queue priorities.

Contains linked entries for each class of job. Entries describe
job requirements, current status, accumulated use time of
system components, and so on (refer to section 7).

Optional table to control status/control register error
reporting on CYBER 170 systems. Created by CMR
configuration parameter L.ELST set to 20g. Table can be zero
length.

Contains the breakpoint code exchange package, the
breakpoint wait loop, flags and data used by DSD, and the
breakpoint entries. It is used by DSD and breakpoint
processing.

Contains an eight-word buffer that receives the ECS area
table from a segmented system. It describes the system ECS
and CM structure.

Contains the date-time stamp for this CMR, the associated
segment library name, and a list of the entry points defined in
the tables with their addresses.

Symbol Name/Function

CP.MTR Central processor monitor.
CP.SM Central memory storage move.
CP.SPM Stack processor manager.
CP.SCH Memory manager scheduler.

Falls at the end of the CMR upper table area following the CM
resident programs and ECS tables. It contains two-word
entries in the program name table section and one-word
entries in the entry point table. The directory length can
expand or contract as programs are added and deleted or as
program residence is changed.

60494100 K

STF — SYSTEM TABLE FIND

The PP routine STF copies a specified portion of central memory to the system user buffer area. This
allows functions to be performed by CP programs without the need for a special PP program. Bits 17
through 0 of the input register point to a table of commands that the user specifies in the following

format.
59 41 35 17 0
c|] o
Order Code A Length of Absolute Memory FV_VA of Buffer to 1
Receive Memory Image
Zero Terminator n
Word Bit Description

0 0 Complete bit. The complete bit must be cleared before STF can be called.
The bit is set on completion of any function.

1 59-42 Order code. The order code is either an absolute CM address, or a
three-character table name or copy directive as described below. If the
order code specifies an absolute CM address of a block of memory to be
copied, the absolute memory flag (bit 41) must be set. If the order code
specifies one of the following table names or copy directives (CPS and
CPx), the absolute memory flag must not be set. The following names must
be specified in display code.

Name Description

APF Attached permanent file table.

AUT Auxiliary user table.

CPS Copy a specific word of the user's control point into the
buffer. The word address (relative to the start of the
control point) is specified in the field length (bits 35
through 18).

CPx Copy control point area x into the buffer. Normally, x
is the binary value of the desired control point.
However, when x is 0 (in either binary or display code),
the user's own control point is copied.

CST Channel status table.

60494100 J

2-13 I

Word Bit Description

Name Desecription
DAT Device activity table.
DDT Dismountable device table.
DST Device status table.
EST Equipment status table.
FDT DDT (fixed section).
FNT File name table.
IDT ID table.
IuT INTERCOM user table.
JCA Job control area.
JDT Job descriptor table.
MST Mounted set table.
. MUX Multiplexer table.

RBR Copy RBRs.
RBT Copy RBTs.
SEQ Sequencer table.
SPT Scheduler performance table.
STG Tapes staging table.
TPS Tapes table.
URT Unit recovery table.
VDT DDT (variable section).

41 Absolute memory flag. This flag must be set if the order code is an

absolute memory address.
40-36 Unused.
35-18 Length of absolute memory if the absolute memory flag is set; unused if

the absolute memory flag is clear.
17-0 FWA of buffer to receive memory image.
n 59-0 Zero terminator word.
When the order code is a table name, the length of the table in memory is used as the length of the user

buffer. The information is read from memory without any system interlocks set; therefore, the data
returned may be inconsistent.

I 2-14 60494100 J

CMR SEGMENTATION FOR ECS SYSTEMS

CMR segmentation is implemented for installations with ECS. A segmented system is intended to have
most of its CP code ECS resident. Sections of code (segments) are loaded as needed into CM overlay
areas. A segmented system is started from an ECS system image by a bootstrap monitor function, which
overlays an existing system (disk or ECS) with a new system. The ECS system image for this new system
must have been created in a previous step using utility program LDCMR (refer to section 10). For an
ECS system, the equivalent of a disk system's system resident programs section in CMR is a number of
specialized areas as shown in figure 2-5.

CMR Upper
Tables, Resident Code Table Area
(Idle Program, ECS Bootstrap, Breakpoint)
Monitor Mode Return Stack
User Mode Return Stack
Monitor Mode Trace Buffer
User Mode Trace Buffer
Segmented
Z ECS System Resident Z System Areas
(Includes Segment Linkage) (ECS System)
% Monitor Mode Overlay Area 2
% User Mode Overlay Area :’/;
Segment Table
Library Directory Library

Figure 2-5. ECS System Areas

These areas are set up by the initialization segment INIT, loaded by the bootstrap in the monitor mode
overlay area. The position of the library directory is adjusted if necessary by LDCMR. The ECS system
resident contains the segment linkage program which loads new segments and passes control to them, the
ECS parity error recovery routine, and some heavily used code (CPMTR start, CPMTR return to user).
The trace buffer and return stacks are used by segment linkage.

60494100 J 2-15 I

The breakpoint table is initially empty. The breakpoint (N) display and commands allow breakpoints
(temporary halts) to be set and released in the operating system during system execution. CM, ECS, and
the operating system exchange package can be observed while the operating system is at a breakpoint.

The area table completely describes an ECS system. It is read in from the ECS image of a segmented
system by the bootstrap monitor function.

The entry table contains the entry points for tables in CMR which are not directly accessible by a text
symbol of the T. type. This table is used by utility LDCMR to load the ECS system and read the
date-time stamp.

The breakpoint table, area table, and entry table are detailed in appendix B.
SEGMENT LOADING

Segment Linkage

Linkage is done through the GOTO (GOTOTAB), CALL, and RETURN macros. These macros can be used
only in a segment defined through the SEGDEF and ENDSEG macros.

The following macro transfers control to the entry point EPTNAME.
GOTO EPTNAME

The following macros transfer control to the entry point referenced in a GOTOTAB macro in the position
indexed by register in TABLE.

GOTO TABLE, Register

TABLE GOTOTAB EPTNAM2
GOTOTAB EPTNAM2

The following macro returns to the last address and segment saved by a CALL macro. The previous
address and segment saved will be used by the next RETURN,

RETURN

Segment Definition
The following maero must be called immediately after the segment IDENT (first group).
SEGDEF SEGMENT, mode,CM
SEGMENT Segment name.
Mode USER indicates user mode segment; otherwise, monitor mode is assumed.
CM Segment must be CM resident.
The following macro must be called immediately before the segment END.

ENDSEG

I 2-16 60494100 J

The name of the segment can also be the name of an entry point in the segment but not a tag. If it is not
an entry point, the ENDSEG macro defines an entry point by that name referencing the second word of
the segment.

The SEGDEF macro generates a segment header word with the tag ... REUSE.

Header format after processing by LDCMR is

59 17 0

Index in

Segment Name
Segment Table

A segment should be serially reusable. If not, the segment must set its header word to zero before
relinquishing control to prevent its reuse.

Parameter Word

Linkage is done through a parameter word generated by the linkage macros and filled in by LDCMR. For
a GOTO or a CALL, A1l is set to the address of the proper parameter word and a jump is made to one of
the linkage processor entry points.

Parameter word format:

59 47 29 17 0

Current Parameter Word Next Entry Point
Segment Index Address Segment Index Address

The addresses are absolute. The indexes are in the segment table. The parameter word is transformed
into a return descriptor on a CALL by shifting it 30 positions and adding 1; it is stored in the proper
return stack. A RETURN loads the last stored descriptor and performs a GOTO on it. If trace buffers
are defined (refer to section 10), all parameter words processed are stored in the trace buffer for the
current mode.

Return stack format:

Underflow Trap Address Ascending Address

Parameter Words

Z Next Free Entry %

Pointer to Next Free Entry

60494100 J 2-17

Trace buffer format:

Parameter Word

Parameter Word Ascending Address

s , B

Parameter Word

Pointer to Next Entry

Segment loading is done by using the segment descriptor in the second word of the segment table entry
for the segment. The address of the segment table entry for a segment is

Segment table base address + 2 * index

The segment table is described in appendix B.

ECS SYSTEM IMAGE

The system is written to the ECS direct access area as an extension of control point 0 ECS field length.
Two systems, named the old system (lower system) and the new system (upper system), can coexist in
ECS. LDCMR creates ECS system images as shown in figure 2-6.

The operating system requires approximately 20K of ECS in the direct access area. For example, if 40K
is to be available for user direct access, 60K must be allocated to the direct access partition. If LDCMR
is to be used after deadstart, the direct access area must be large enough to contain two operating
system CP code versions, approximately 40K, minimum.

| 2-18 60494100 J

Old System Area Table
ECS System Resident
t:‘. Segments :E
Segment Table
New System Area TabIeT
‘ ECS Direct
Access Area
ECS System ResidentT
t: SegmentsT ::::
Segment TableT
el)

T If a terminator replaces the new system area table, the new system sections do not appear.

Figure 2-6. ECS System Image

60494100 J 2-19

ECS ERROR RECOVERY

Segments are protected against ECS errors in transmission or storage. An autocorrective code is applied
to obtain correction vectors. The correction vectors and two checksums are placed at the end of the
segment as shown in figure 2-7.

Segment Code

Binary Checksum Segment

Arithmetic Checksum

Correction Vectors

Figure 2-7. ECS Segment

The code is capable of correcting a single bit error every four words. Vectors correct each four words,
and a 6-bit secondary correction vector makes vector words self-correcting.

59 53 47 39 31 23 15 7 0

SCv Vector Vector Vector Vector Vector Vector

Errors are corrected only if they are detected by the ECS parity error mechanism.T Detected errors are
recorded in an error directory, then displayed in the dayfile (by a call to CEM, function 10). Error
directory entries for a segment are linked to that segment's segment table entry. When an ECS error is
encountered on a segment that has error directory entries, a first correction attempt uses the
information in these entries. If this fails, the error entries are released and the full correetion process is
reapplied. The test of a successful recovery is the comparison of the existing checksums with the
checksums for the recovered segment. The system is killed if a segment cannot be satisfactorily
recovered. A recovered segment is written back to ECS, as it is possible the ECS error is transient.

Error directory entry format:

59 48 4 17 0
Bit ECS Address Link
Position
T Meaning
0 Bit dropped.
1 Bit picked.

T The system ECS read parity error recovery routine executes before the correction vectors are used.
This routine attempts a standard recovery algorithm and records the results in the CERFILE.

2-20 60494100 K

ELM . ERROR LOG MESSAGES

The ELM RA+1 request allows a user program to log error information related to the processing of direct
user access to ECS errors. The format of the ELM RA+1 request is as follows:

RA+1

Addr

Word

59 42 40 17 0
ELM R 0. 0 Addr
The format of the parameter block is:
59 53 47 41 35 23 17 11 10
0...0 L DC Status C
0 .0 RW Word Count
CD RT CM Address ECS Address
Bad Data Word
Good Data Word
Bit Field Description
35-24 L Length minus one of parameter block.
23-12 DC Device code.
EC ECS/Coupler Error.
11-1 Status Status flag.
0 No errors.
1 CERFILE message limit reached.
0 C Complete bit. This bit must be set to zero when the request is
issued.
23-18 RW Read/write flag.
1 Read.
2 Write.
17-0 Word Count Number of CM words transferred.

60494100 K

2-20.1 o

Word Bit Field Description

2 53-48 CD Error packet description code.
Bits 53-49 are unused.
Bit 48 equals 0 if error is recovered.

Bit 48 equals 1 if error is unrecovered.

47-42 RT Retry count. This count is the total number of recovery retry
operations associated with the error being reported in this
request.

41-24 CM Address CM First Word Address of transfer.

23-0 ECS Address ECS First Word Address of transfer.

e 2-20.2 60494100 K

SYSTEM CONTROL POINT

A module or group of modules that performs a specific set of functions is known as a subsystem. A
subsystem has the ability to make privileged requests (reserved by subsystems) in addition to any requests
that a standard control point is allowed. Typical subsystems are a data base management system or
Record Manager. Each subsystem has a unique four-digit ordinal by which it is referenced.

A system control point (SCP) is any control point occupied by one of the subsystems. The term SCP can
describe both the control point and the subsystem at the control point. An SCP provides a centralized
location for a subsystem, allowing it to perform functions for one or more jobs at other control points.
This facility provides overall reduction of CM usage. Instead of several jobs having duplicate copies of
these specially privileged modules in their field lengths, only one set of these modules occupies CM.' This
feature also improves coordination of control and access.

A user control point (UCP) is any job or module at a control point that makes a request to an SCP. A
UCP can be a batch job, INTERCOM job, multiuser job, or another SCP.

MANAGING SUBSYSTEM RESOURCES
A subsystem at a control point may receive requests irregularly, leaving it idle for long periods. Since a
system control point cannot be swapped out, some other action must be taken to reduce its memory
requirement while it is idle.
The idle subsystem should be organized so that it can reduce its field length to 200 or 300 words. It
should specify a 1/2-second periodic recall by using RCL with a 3777g delay period indicated by bits 10
through 0. When it receives a call, the subsystem is started immediately.
When a call is received, the following steps should be taken.

1. Issue a MEM call to acquire the field length necessary to process the requested information.

2. Acknowledge the request by resetting RA.SSC.

3. Load the subsystem overlay(s) required to process the request.

4. Process the request.
Take these steps in the order specified. If steps 1 and 2 are taken out of sequence, a memory deadlock
could occur. If the request is acknowledged before the memory is requested for the SCP, it is possible
for a second UCP to make a request and have it successfully passed to the SCP. Both UCPs would then
have outstanding SSC calls. If the UCPs cannot be swapped out, and the sum of the field lengths of both

UCPs and the required field length of the SCP is greater than what is available, the system is
deadlocked. If this occurs, one of the UCPs must be dropped to resolve the conflict.

60494100 J 2-21 I

CALLSS MACRO

The CALLSS macro is issued by a UCP to request a particular function from a subsystem. A UCP can
call more than one subsystem, either serially or concurrently. Also a UCP can make more than one call
to an individual subsystem. Registers X1, X2, Al, and A6 are destroyed during execution of the macro
and should not be used as parameters. The format of the macro is

label CALLSS ssid,addr,recall
label An optional statement label.
ssid A required subsystem code. This parameter can be a register name.
addr Address of the parameter block for this request. This parameter is required and

must be nonzero. (The parameter can be a register name.) If the address is
outside the UCP field length, the UCP is aborted.

recall If nonblank, the request is made with auto recall, and processing at the UCP is
suspended until completion of the request.

The parameter block pointed to by the addr parameter of the CALLSS macro is used by the UCP to pass
parameter information to the SCP. The parameter block must be at least one word long.

The first word of the parameter block is used for calling and status information. The second and
subsequent words of the parameter block are used for data which is passed to the SCP by the operating
system. The format of the first word is :)

59 35 23 1713 11 0
Reserved f Res el es e
Reserved for System eserve . or wcC for rror C
Installation : coc] T Status)
C This bit indicates whether or not the current request has been completed. The user

program must set this bit to 0 prior to executing the CALLSS maecro. If the request
has been completed, ihe operating system sets the bit to 1; otherwise, it remains set to
0.

ES The operating system sets this field to indicate the presence of an error or unavailable
system condition. This field is not set (all zeros) if the RT field is 0.

Bit 1 0 Subsystem currently running.
g 1 Subsystem not initiated.

Bit 2 0 Subsystem not busy (that is, it has not acknowledged
receipt of the last request).
1 Subsystem busy.

Bit 3 0 Subsystem defined.
1 Subsystem not defined.
Bits 4 and 5 Reserved.

I 2-22 60494100 J

RT

wC

Bits 6 through 11 Error condition other than bits 1, 2, and 3. Bits 6 through

11 can assume the following octal values.

Value Significance

00 No other error.
01-17 Reserved for system errors.

20-67 Reserved for subsystem errors.

70-77 Reserved for installation.

This field is set by the user prior to making a subsystem call.

Bit 12 0 Operating system holds the current request until the subsystem is
able to accept it. The UCP is placed in periodic reecall and is not
assigned the CPU until the request is accepted. The C bit is not set

until processing of this request is complete.

1 Operating system returns control to the user if the subsystem is
present but is unable to accept the user's call. In this event, bit 2 in

the ES field is set to 1.

Bit13 0 ES field is not set (with the possible exception of bit 2), and

subsequent errors cause the UCP to abort.

1 Operating system sets the ES to indicate which error condition
occurred and returns control to the user on nonfatal error conditions

(fatal errors cause a UCP abort).

A message is issued to the UCP dayfile indicating the error

condition.

When either of the RT bits is set and a condition is encountered that causes any of the
bits in the ES field to be set, the operating system sets the C field and considers the

operation complete. Therefore, it is necessary to reissue the CALLSS macro.

Some subsystems require the user to specify the length of the parameter list. WC is
the number of words (excluding the first word) to be passed with the request. The

maximum is determined by the subsystem but may not exceed 77g.

The remaining bits in this word are reserved.

If a call is issued with auto recall, the user's program is not restarted until the C field has been set.

A subsystem can call another subsystem as long as this does not result in a circular chain reaction. An
SCP cannot make a call to itself, unless bit 12 of the RT field is set. An attempt to call itself without
bit 12 set can result in a subsystem hang.

SYSTEM CONTROL POINT INTERFACES

Three types of system communication interfaces are unique to subsystems.

e Subsystem notification to the operating system that it is entering active status.

o Subsystem request acknowledgement.

60494100 J

2-23 I

e Special requests to the operating system allowing the subsystem to have access to the UCP field
length, control and forward accounting data, obtain UCP swap and error status, transmit dayfile
messages and error conditions to the UCP, and exit from active status.

Subsystems should use a symbolic reference for SCP locations and operations (for example, refer to
RA.SSID rather than RA+50 and SF.READ rather than 10).

Requesting Active Status

The operating system does not recognize an SCP until a subsystem is loaded and ready to enter SCP
status. To notify the operating system that it is entering active status, the subsystem puts its name and
code in word RA.SSID (RA+50). RA.SSID is used by the operating system to identify the subsystem and
must be maintained at all times. A CALLSS macro using automatie recall is then executed with the ssid
field equal to SS.SYS.

Prior to assigning SCP status to the requesting control point, the operating system ensures that the
following conditions are true:

e Request is made with recall.
e Program is called by a system origin job.
e Subsystem name in RA.SSID matches that in the corresponding subsystem control table entry.

e The same subsystem is not in SCP status at another contfol point and the maximum number of
SCPs has not been reached.

If any of the preceding conditions are not met, an appropriate diagnostic message is entered in the
dayfile, and the job is aborted. Once the operating system has assigned SCP status to the subsystem, the
C field is set to 1.

If RT bit 13 is set, failure to meet either of the last two tests will not abort the job but will set the
following codes in bits 11 through 6 of the ES field.

04 Another control point has SCP status for this subsystem.
05 Nine eontrol points have SCP status.

The format of SCP word RA.SSID is

59 17 0

SSPN SSCODE

SSPN Subsystem program name.

SSCODE Identification code (SS.XXX).

| 2-24 60494100 J

Subsystem Request Acknowledgement

A word in the SCP field length, RA.SSC (RA+51), is set by the subsystem and used as a pointer to
indicate where incoming requests from the UCP are put. The format of RA.SSC is

AP

LP

VF

XP

LK

35

K 00 XP

n<

LP

AP

Address of the UCP parameter block.

Length of the request parameter block.

Variable move flag.

UCP exchange package address.

Interlock bit.

LK is set by the operating system when a request has been placed in the parameter area. It is cleared by
the subsystem to acknowledge that the request has been received. When the bit is cleared, AP points to
a parameter area in which the subsystem is prepared to receive the next request. After clearing LK, the

subsystem should not attempt to rewrite word RA.SSC until the next request has been received.

If it is necessary to force a request, it is possible for a subsystem to call itself if bit 12 of the RT field in
the first word of the parameter block is set. Attempting a call to itself without this bit being set can
result in a subsystem hang.

If LK is set at the time of the request, one of the following actions is performed, depending on bit 12 of

the RT field.

e Return control to the UCP and indicate a busy status in the ES field (RT=1).

e Hold the request and periodically attempt to give it to the SCP (RT=0).

The word at the address AP has the following format:

59

47

23

17

Reserved for
Installation

Reserved for CDC

stat

addr

addr

stat

60494100 J

Same as the address in the CALLSS macro. This is a relative address within the UCP

field length.

Status values.

0 Callis from a user.

1 Normal termination.

2 Error termination of UCP.

2-25 I

AP+1 is the job identifier whose format is

59

17 0

Job Name Job Ordinal

AP+2 through AP+LP-1 (minimum value of LP is 2) contains LP-2 words which are from the UCP
parameter list starting at addr. The UCP parameter list address is taken from the CALLSS macro call.

If the VF bit is set, the length of the move is determined by the WC field in the first word of the UCP
parameter block. If WC+3 is greater than LP, only LP words are moved in. ~

If XP is nonzero, the UCP exchange package is stored in the 16 words starting at XP.

Special Subsystem Requests to the Operating System

A subsystem at the SCP can make special fequests of the operating system. These special requests,
called subsystem functions (SFCALLs), are allowable from an SCP only. If an SFCALL is issued from a
nonsystem control point, the control point is aborted with the error message PP CALL ERROR.

The SFCALL macro call has the following format:

label SFCALL addr,recall

label

addr

recall

An optional statement label.

Address of an SFCALL parameter word pair (refer to following SFCALL format). This
parameter can be a register.

If nonblank, the job is put in automatic recall. Although this option is allowed, its use
by a subsystem is discouraged.

A typical format of the SFCALL parameter word pair is

59 53 41 23 17 5 0
RC FP UCPA SCPA FC
Job Name Job Ordinal
(JDT or CP)

RC Reply code.
FP Function parameter.
UCPA Relative address within the UCP.
SCPA Relative address within the SCP.
FC Function code (an even number, ineremented by one when the function has been

completed).

If a parameter error prevents the processing of the function, RC will be set to a value in the range 40

through 77.

l 2-26

60494100 J

The following list of SFCALL return codes (RC) gives all codes which have been defined. Not all of these
codes apply to this operating system. Codes 40 through 77 indicate that the function was not processed.

Return Code
00
01 through 33
34 through 37
40

41
42

43
44
45
46
47
50 through 56
57
60
61
62
63
64
65
66
67 through 73

74 through 77

Meaning
No error encountered.
Trivial errors (reserved for Control Data).
Trivial errors (reserved for installations).

At least one error encountered in list.

Job identifier invalid (NOS/BE considers all IDs to be valid; returns 45 if ID is

not found).

SCPA not within the subsystem FL (ecode not returned by NOS/BE; the system

aborts the SCP and issues a message to the dayfile).

UCPA not within the UCP FL.

User job swapped out.

User job not in system.

Reserved for Control Data.

Unknown function code.

Reserved for Control Data.
Connection previously established.
Connection rejected.

Connection not previously established.
Word transfer too long. T

UCP not established with subsystem. t
Subsystem not established with receiver. ¥
Attempt to set illegal error flag. U
Illegal dayfile processing flag. f
Reserved for Control Data.

Reserved for installations.

Possible return codes for each SFCALL funetion are shown in table 2-2.

T Not checked under NOS/BE.

60494100 J

2-27 I

TABLE 2-2. SFCALL RETURN CODES

Return Code

Functicn 40 41 42| 43 44 45 57|60 61 62|63 64 65|66
SF.REGR X X X

SF.TIME X T

SF.ENDT XX X X

SF.READ XX X X

SF.STAT X X

SF.WRIT XX X X

SF.EXIT T

SF.SLTC X X XX

SF.CLTC X X X
SF.SWPO X X

SF.SWPI T X

SF.LIST X X X X

SF.RERN X X

t Return code of 45 may be returned if the user ID word is not zero.
T Return code of 44 is returned if job is locked out.

The funetion codes (octal) used with SFCALL are as follows:

Function Code Description

SF.REGR 02 Place message into the UCP dayfile and/or abort the
UCP.

SF.TIME 04 Obtain accounting data for SCP.

SF.ENDT 06 Indicate end of task to UCP.

SF.READ 10 Read from UCP field length.

SF.WRIT 14 Write to UCP field length.

SF.STAT 12 Request status of UCP.

SF.EXIT 16 Exit from SCP status.

SF.SWPO 24 Indicate UCP as candidate for swap-out.

SF.SWPI 26 Request swap-in of UCP.

SF.SLTC 30 Set the long-term connection indicator.

I 2-28 60494100 J

Funetion
SF.CLTC
SF.LIST
SF.RERN

SF.INS1-4

SF.REGR - Regrets

Code

32

34
36

70,72,74,76

Description

Clear the long-term connection indicator.

Process of list of SF.xxxx functions.

Set/clear rerun status of UCP.

Reserved for installations.

The SF.REGR function code places a message of up to 40 characters into the dayfile of the UCP and/or
aborts the UCP. It has the following format:

59 53 41 23 17 5
RC FP UCPA SCPA 02
Job Name Job Ordinal
UCPA =0 Do not abort the UCP.
UCPA#0 Abort the UCP. The F.ERPP error flag is set at the UCP.
SCPA =0 No message.
SCPA #0 Address of a message that is to be sent to the UCP dayfile.
FP Dayfile processing flags. The following is a list of the symbolic values and their
meanings as defined for the FP field.
Value Significance
F.SYCP Send message to system dayfile and control point
dayfile.
F.NMSN Do not send message to control point dayfile.
F.JNMN pq not send message to control point dayfile; job name
is in message.
F.CPON Send message to control point dayfile only.
F.ACFN Accounting message to system dayfile only.
F.AJNN {\ccounting message to system dayfile only; job name is
in message.
F.ERLN Send message to error file only.
F.EJNN Send message to error file only; job name is in message.
60494100 J

2-29 I

SF.TIME - Accounting

The SF.TIME function code allows the SCP to obtain the accumulated accounting totals at its own
control point. The format is

59 23 17 5 0
Unused SCPA 04
Job Name Job Ordinal
SCPA Relative address within the SCP of a word block for accounting data.
Job name Set equal to zero.

Job ordinal Set equal to zero.

The accounting totals are returned to SCPA through SCPA+5.

SCPA+0 CPA time.
SCPA+1 CPB time.
SCPA+2 I/0 time.
SCPA+3 CM field length.
SCPA+4 ECS field length.
SCPA+5 PP time.

The symbol L.SACT must be used by all subsystems to define the work bloek lengths (for example, BSS
L.SACT). It allows an installation to add a specially defined area to the word block by modifying the
symbol and reassembling the subsystems using this symbol. The operating system is not responsible for
setting or clearing the installation area.

When an installation defines one or more words for installation usage, these words must be located by
using the last address of each word block (first + L.SACT-1) and referencing installation words backwards
from this address.

Since the data delivered to this area varies among operating systems, a module must be provided for each
operating system to process this area. Multitask users can use the data in this area to charge a
particular UCP for the SCP resources used in processing the UCP's task. The resource data sent to the
SCP can be the accumulated totals. The subsystem at the SCP has the responsibility for storing the
previous totals of used resources and for calculating the differences.

I 2-30 60494100 J

SF.ENDT - Subsystem Task Complete

The SF.ENDT function informs the operating system and the UCP that the subsystem task has been
completed, and allows the SCP to distribute the accumulated resource costs back to the UCP. Its format
is

59 41 23 17 5 0
Unused UCPA SCPA 06
Job Name Job Ordinal
UCPA Relative address within the UCP of the request status word of the task being
performed.
>0 Set bit 0 of the word at UCPA. (Restart UCP if auto recall
was selected.) Reduce the request count by one.
=0 Do not set complete bit (bit 0). Reduce the request count by
one.
=-1 Do not set complete bit. Reduce activity count to zero, no

matter how many requests are outstanding. (This activity
count is the number of requests from the UCP JOBID to this
subsystem.) Clear the long-term connection bit if it is set.

< - Return error 43.

SCPA Relative address within the SCP of a word block of accounting data. The content
is the same as specified by the SF.TIME function.

If SCPA is not 0, computer resource usage is based upon the data provided at SCPA. The resource
accumulators at the UCP are incremented with this computed resource data. The core seconds that are
computed and added to the UCP are based on the SCP field length at SCPA+3. An SCP that is
multitasking should not charge a single user for the full SCP field length, but use a somewhat smaller
value in this field. Each of these fields can be passed to the SF.ENDT function exactly as returned to the
SCP by the SF.TIME function, or they can be adjusted as required by the SCP. At a later time, the
normal computation of the core seconds at the UCP includes the CP and I/O time of the SCP. The result
is that the effective field length of CP and I/O time used by the SCP is the sum of the UCP and SCP
field length.

60494100 J 2-31 I

“F.READ - Read from the UCP Field Length

SF.WRIT - Write to UCP Field Length

SF.READ moves FP words from the UCPA to the SCPA, whereas SF.WRIT moves FP words from the
SCPA to the UCPA.

The format of SF.READ and SF.WRIT is as follows:

59 53 41 23 17 5 0

RC FP UCPA SCPA 10/14

Job Name Job Ordinal

If RC is 42g, the SCPA or SCPA+FP is outside the SCP field length. The SCP is aborted. If RC is 43g,
the UCPA or UCPA+FP is outside the UCP field length.

Transfers of large blocks of data between the UCP and SCP should be avoided because they may cause
significant system response delays. Block transfers take place when the UCP calls an SCP or when an
SCP makes an SF.READ or SF.WRIT request to read or write data to the UCP field length. Generally, no
block transfer should attempt to transfer more than 64 words in one request or call.

SF.STAT - Status

The SCP uses the SF.STAT function to request the current status of the user job. The RC and FP fields
are used for reply.

If RC is 0, the UCP is not swapped out or being swapped out. The state of the connection indicator is
returned in FP as follows:

|- I— Request count

Long-term connection bit

The UCPA and SCPA fields are not used but should be set to 0 in case optional uses are assigned in the
future.

SF.EXIT - Exit from SCP Status

SF.EXIT removes the SCP from SCP status. The following actions should be taken in the order specified.
1. Make an SF.EXIT call.
2. Clear RA.SSID.

3. Issue ENDRUN or ABORT.

I 2-32 60494100 J

SF.SWPO - Swap Out

SF.SWPI - Swap In

SF.SLTC - Set Long-Term Connection

SF.CLTC - Clear Long-Term Connection

These functions, with the SF.ENDT function deseribed previously, control the setting and clearing of bits
in the inter-job connection table (T.IJCT). The T.IJCT is a part of the subsystem control table (T.SSCT)
used to define and control SCP status.

Each user job has a corresponding word in the T.IJCT that contains nine connection control fields. When
a control point is assigned SCP status, it is assigned one of the nine fields in each T.IJCT word. The
connection control field contains the following connection indicators.

WAIT RESPONSE COUNT (alternately called request count)

This 3-bit field contains the number of unanswered requests submitted to the SCP by the UCP.
The count is incremented each time a CALLSS request is passed to the SCP and decremented by
an SF.ENDT function with UCPA=0.

LONG TERM CONNECTION

This bit is set by SF.SLTC and cleared by SF.CLTC. An SCP sets this bit to be notified when
the UCP is terminating because of either an ENDRUN or any abnormal termination. The
method of notification is deseribed under End Processing for UCPs in this section.

SWAP OUT REQUESTED BIT

This bit is set by the SF.SWPO and cleared by the SF.SWPL If the swap out bit is set in any one
of the connection control fields for a user control point, that job is treated as if its CM time
quantum has expired. This causes it to be swapped out unless it is locked in or there are no
other jobs in the CM queue that could use the memory that would be released by swapping it out.

While a job is swapped out, it is not aged as long as any of its connection control field swap-out
bits remain set. When an SF.SWPI function causes the swap-out bit to be cleared, the UCP is
artificially aged so that it can be swapped in again promptly.

Subsystems should use the SF.SWPO and SF.SWPI carefully, because misuse can cause unnecessary and
inefficient swapping among its user jobs.

Neither the wait response count nor the long term connection is considered when a job is selected to be
swapped out. If, however, any of the connection control fields has a nonzero wait response count and the
swap-out bit is not set, the swapping of that job will be delayed for over 1 second, if necessary, to give
the subsystem a chance to complete the request before the user job is swapped out.

An SF.SWPI funection is not set until the swap-in has been completed. If the swap-out request bit is set

for a different SCP, the UCP remains a good candidate to be swapped out again. The existence of a wait
response can, however, guarantee that it will be held at a control point for at least 1 second.

60494100 J 2-33 I

SF.LIST - Presents a List of SF.xxxx Functions

The multiple request capability is invoked through the use of the function code SF.LIST. The format of
the SFCALI. narameter word pair in this case is

59 53 41 23 5 0

RC FP 0 SCPA 34

Job Identifier

RC Reply code.
FP Number of entries in the list.
SCPA First word address of the contiguous parameter list.

When using the list function, the entries in the list are each one word in length. The entry consists of the
first word as described for each function. Only one UCP may be addressed for each list processed and
this is the UCP indicated in the SF.LIST word pair. An SF.LIST function may not be included as a
member of a list.

When the FC field is set complete by the operating system, the RC and FP fields must be examined to
determine the action to be taken. If FP is 0, the entire list has been processed by the operating system.
If FP is not 0, processing of the list was abandoned, and FP contains the number of entries remaining in
the list. SCPA is set to the address of the first entry in the remaining list. The subsystem reissues the
SF.LIST call by resetting the FC field and executing the SFCALL macro until FP equals 0.

The operating system will set the RC field only if an error is detected. Multiple issues of the same
SF.LIST request (until FC is set complete and FP is 0) accumulate error returns whether or not the entire
list is processed on one SFCALL.

The user of SF.LIST should consider the following notes and special conditions.

o The operating system aborts the SCP during SF.LIST processing if a fatal error occurs in the
SF.LIST or in any member of the list.

e The detailed error conditions must be determined by examining the individual list entries
whenever the SF.LIST RC field equals 40g.

o The individual functions are handled in the same way whether or not the list mode is enabled.

e Error status 42g when SCPA is illegal means none of the list entries has been processed. This
check is made prior to initiating the list process. Illegal SCPA is a fatal error.

e Error status 42g when FP is 0 means that none of the list entries has been processed on this
call. If the subsystem handles the FP equal to 0 condition improperly, the entire list may have
been processed prior to the subsystem abort. Illegal SCPA is a fatal error.

e List entries are processed sequentially by the operating system and entries detected as
erroneous for any reason are considered completed. It is expected that in most cases the entire
list will be processed on one SFCALL. The option of abandoning the list allows the operating
system to take corrective action if it decides that either the length of the list, the complexity
of the processing, or other reasons have possibly caused a long uninterruptable interval.

l 2-34 60494100 J

e If the SCP is aborted due to an error in one of the list entries other than the SF.LIST, RC equals
40g, SCPA and FP are updated, and FC is set complete. The proper return status is also placed
in the offending list entry.

e The functions SF.REGR, SF.RERN, and SF.EXIT are performed by a PP program instead of
CPMTR. When any of these are included in a list, processing is transferred to the PP for that
function. When it is completed, the list is abandoned rather than attempting to transfer
processing back to CPMTR. To process the remainder of the list, it is necessary to reissue the
SF.LIST function.

SF.RERN - Set/Clear Rerun Status

The SF.RERN function code sets or clears the status bit in the UCP area and input file's permanent file
catalog (PFC) entry, which determines whether the job can be rerun. This bit is sometimes referred to as
the no-rerun status bit. SF.RERN has the following format.

59 53 41 17 5 0
RC FP Unused 36
Job Name Job Ordinal
RC Reply code.
FP =10 Sets status such that job can be rerun (clears no-rerun status).
FP=1 Sets status such that job cannot be rerun (sets no-rerun status).

A user may wish to set the no-rerun status bit if he is performing operations that could destroy the
validity of his files if done more than once. An example is the updating of a data base. If an error
occurs and the job is stopped before the data base changes are complete, the user may not want to risk
rerunning the job and making incorrect changes to a data base that is already partially modified.

END PROCESSING FOR UCPS

If a program running at a UCP is terminated while there is a long-term connection or a nonzero wait
response count, the SCP is notified in the form of a two-word call to the SCP. The stat field in the word
at AP+0 identifies the termination notification. If the UCP was terminated by an ENDRUN, the stat
field contains the value 1. In the event of an error condition, the field contains the value 2. All normal
calls from the user contain a 0. If the UCP aborts and reprieves, the SCP is not notified. If the UCP is
aborted by an SF.REGR function, the SCP is notified as for any other error condition.

When a subsystem receives termination notification, it should complete all requests as quickly as
possible, issuing an SF.ENDT for each wait response and an SF.CLTC if the long-term connection is set.
Until this is done, the termination notification is repeated every 2 seconds and the message
CONNECTED TO jobname is flashed at the UCP on the B display (jobname is the SCP job name).

60494100 J 2-35 I

If the subsystem is unable to complete the outstanding requests, it should issue an SF.ENDT to that UCP
with a -1 (777776g) in the UCPA field to unconditionally release the UCP.

If the CONNECTED TO jobname message continues to flash for an extended period of time, it can be

assumed that the SCP is not functioning correctly. The SCP and all of its connected UCPs can be
terminated by an operator drop on the SCP.

NORMAL SCP TERMINATION
The following steps should be taken to terminate execution of a subsystem.

1. Stop accepting any requests.

2. Complete processing any requests already received.

3. Issue an SF.EXIT.

4. Issue an ENDRUN.
To force a subsystem to stop accepting requests, the user can have the subsystem send a dummy request
to itself. The RT bit (bit 12) must be set whenever a CALLSS is issued. If bit 2 of the ES field is set, the
operating system has delivered a request from another UCP, which must be processed along with any

other uncompleted requests before the SF.EXIT is issued. The operating system sets the LK bit in
RA.SSC and does not send any more requests as long as LK is not cleared.

ABNORMAL SCP TERMINATION
A subsystem should make use of the RECOVR ecapability (refer to NOS/BE Reference Manual) so that the
subsystem will be reprieved if an error condition occurs. During reprieve processing, it can attempt to
complete all outstanding requests, so as to cause as little user interruption as possible. The subsystem
retains SCP status during reprieve processing.
If a subsystem has completed reprieve processing, or was not reprieved and attempts to terminate
without issuing the SF.EXIT, the operating system performs the SF.EXIT and issues the message SYS CTL
PT STATUS CANCELLED.
When performing the SF.EXIT function, the operating system determines if the SCP still has any
long-term connection or active wait-response counts with a UCP. If there are any, the following actions
will be performed by the operating system.

1. SCP is aborted with the message EXIT - WITH CONNECTIONS.

2. The wait-response counts and long-term connections are nullified.

3. The message subsystem name ENDED BY SYSTEM is sent to the UCP dayfile.

4. UCP is rerun or if rerun is not allowed, aborted.

5. UCP can perform reprieve processing.

I 2-36 60494100 J

HOW TO DEFINE A SUBSYSTEM

The CMR symbol N.SBSYS determines if T.SSCT is assembled in CMR. The default value is 0, which
causes T.SSCT not to be assembled. N.SBSYS is the maximum number of subsystems that may be
defined. If set to a value not 0, that value must be at least 2. Installations that want to define their own
subsystems should use position ordinals 10g through 17g.

The SSCT macro is provided for defining subsystems. The macro has the following parameters:

SSPN Subsystem program name.
SSCODE Position ordinal for the subsystem.
PUF Permit user files.

SSCODE is the unique code that identifies the subsystem and determines the position within T.SSCT at
which the defining entry is assembled. Its value may not be greater than N.SBSYS. This is the same code
that the subsystem uses in word RA.SSID when it requests system control point status. It is also used as
the ssid for the CALLSS macro to identify which subsystem is to be called.

If the PUF parameter is omitted, the subsystem program must be called by a system origin job or it will
not be granted system control point status. The PUF parameter should only be used during subsystem
development.

System control point macros are contained in SSYTEXT.

SETMFL MACRO

Several programs, such as CDCS, that execute as system origin jobs with SCP status, require a maximum
field length similar to that specified by the CM parameter on a batch origin job statement. The SETMFL
macro sets the maximum field length for system origin jobs. The format of the macro is

label SETMFL maxfl
label An optional statement label.
maxfl Maximum field length; maxfl can be a constant, symbol, or register name.

The SETMFL macro is defined in the system text SSYTEXT. When SETMFL executes, it makes an RA+1
system request with auto recall set.

Under certain conditions, the maximum field length (MFL) established may differ from the field length
requested. If the requested field length is 0, less than 0, or larger than 400000g, the system default field
length (set by IP.SFL) is used. If the requested field length exceeds the system MFL (set by IP.MFL), the
system MFL is used.

The SETMFL maero should be executed only once in a system origin job. Subsequent calls to SETMFL or

any calls to SETMFL from a nonsystem origin job are ignored unless the requested field length exceeds
the current MFL. In that case, the job is aborted.

60494100 J 2-37 I

PROGRAMMING TIPS

A system control point runs at a high CPU priority level. When it receives a request from a user, the
CPU is immediately assigned to process the request. In most cases, the CPU is not reassigned to any of
the lower priority jobs until the SCP releases it by issuing an RCL. If the SCP uses the CPU
inefficiently, monopolizing it for long periods of time, the throughput of the whole system will suffer.
When subsystem action is blocked, waiting for actions from other parts of the system, the CPU must be
relinquished. , :

It is also important that the subsystem be ready to accept and process requests from other users. Before
issuing an RCL, it should be certain that the LK bit is not set, indicating that it is ready to receive a new
request. The auto recall bit should not be used in any RA+1 call from an SCP because an auto recall
status would prevent it from responding to new requests as they come along.

I 2-38 60494100 J

PERIPHERAL PROCESSORS

PERIPHERAL PROCESSOR ORGANIZATION

When the operating system is loaded into the computer at deadstart time, MTR and DSD are loaded into
PP0 and PP1, respectively, where they reside permanently. All PPs in the system contain a group of
permanently assigned storage locations called the PP direct cells. Refer to table 3-1 for PP direct cell
assignment. The contents of the direct cells are not guaranteed from one PP overlay to the next. Each
PP, except PP0 and PP1, contains a copy of the PP resident program, which handles common service
functions for the PP programs that are loaded into the unassigned pool processors.

TABLE 3-1. PP DIRECT CELL ASSIGNMENT

Location .
(Octal) Identifier Function

0 D.Z0 Temporary storage.

1 D.Z1 Temporary storage.

2 D.Z2 Temporary storage.

3 D.Z3 Temporary storage.

4 D.z4 Temporary storage.

5 D.Z5 Temporary storage.

6 D.Z6 Temporary storage.

7 D.Z7 Temporary storage.

10 D.TO Temporary storage.

11 D.T1 Temporary storage.

12 D.T2 ; PP output register buffer Temporary storage.

13 D.T3 Temporary storage.

14 D.T4 Temporary storage.

15 D.T5 Temporary storage.

16 D.T6 Temporary storage.

17 D.T7 Temporary storage.

60494100 J

TABLE 3-1. PP DIRECT CELL ASSIGNMENT (Contd)

Location
(Octal) Identifier Funetion

20 D.FNT/D.TW0 D.FNT through D.FNT+11 (octal) contains
words 2 and 3 of the FNT, referred to as the
file status table (FST).

32 D.EST/D.JPAR, D.TH2 D.EST through D.EST+4 contains the EST
entry in process. D.JPAR contains a job
parameter word.

37 D.DTS/D.JFL, D.TH7 D.DTS contains the device type code in the
left 6 bits and the allocation type code in the
right 6 bits. D.JFL contains the CM field
length requirement returned to the caller by
2TJ.

40 D.BA/D.FRO D.BA through D.BA+4 (buffer address)
contains the first word of the FET.

45 D.JECS/D.FR5 ECS field length returned by 2TJ to caller.

46 D.JPR/D.FR6 Computed job priority returned to caller by
2TJd.

47 D.JTL/D.FR7 Job time limit returned to caller by 2TJ.

50 D.PPIRB/D.FF0 D.PPIRB through D.PPIRB+4 contain PP input
register contents.

55 D.RA/D.FF5 Reference address divided by 100 (octal) for
the control point to which the PP is attached.

56 D.FL/D.FF6 CM field length divided by 100 (octal) for the
job at the control point to which the PP is
attached.

57 D.FA/D.FF7 Address of the second word of the FNT entry
in process.

60 D.FIRST/D.SX0 This and next cell contain 18-bit CM address
of word FIRST in circular 1/0 buffer.

62 D.IN/D.SX2 This and next cell contain 18-bit CM address
of word IN in circular 1/0 buffer.

64 D.OUT/D.SX4 This and next cell contain 18-bit CM address

: of word OUT in circular I/O buffer.

66 D.LIMIT/D.SX6 This and next cell contain 18-bit address of

word LIMIT in circular I/O buffer.

60494100 J

TABLE 3-1. PP DIRECT CELL ASSIGNMENT (Contd)

Location

(Octal) Identifier Function
70 D.PPONE/D.SV0 Can be set to constant value +1.
71 D.HN/D.SV1 Can be set to constant value +100 (octal).
72 D.TH/D.SV2 Can bé set to constant value +1000 (octal).
73 D.TR/D.SV3 Can be set to constant value +3.
74 D.PPIR/D.SV4 PP input register address.
75 D.PPMES1 Address of first word of PP message buffer.
76 D.CPAD Address of control point area in use by PP.
77 D.PPSTAT Pointer to PP status word.
100 R.FAF Field access flag.
101 Reserved.
102 Reserved.

PP programs are loaded into a pool processor by the PP resident and remain in a PP only until they have
completed a specific function. When loaded, the program can load additional overlays to help complete
its function; on completion, the program can be overlaid by another transient program loaded by PP

resident to perform another, often unrelated, function.

A typical layout of a pool PP loaded with a

transient PP program and an overlay is shown in figure 3-1. The PP direct cells occupy locations 0 to 77;

the PP resident is loaded starting at location 103 to approximately 773.

occupied by a PP transient program.

60494100 J

The remainder of the PP is

0
Direct Cells
Pointer to Input Register 74 D.PPIR
Pointer to Message Buffer 75 D.PPMES1
Control Point Address T 76 D.CPAD
Pointer to PP Status Word T 77 D.PPSTAT
Field Access Flag T 100
Reserved ¥ 101
Reserved T 102
103
PP Resident
t: esiden . L
773
< ransient Programs Ly
1773
;:: Secondary Overlays :E
.
T T
7777
T Cells 76-102 constitute the five bytes of the PP status word in central memory.
Figure 3-1. Pool PP Layout
60494100 J

PP COMMUNICATIONS

For each pool PP, CMR has an area used for communication between the PP monitor (PPMTR) and the
PP (refer to figure 2-4). Each PP communications area contains a PP input register and a PP output
register (each one-CM-word long), plus a six-CM-word message buffer.

When a PP is idle, the input register in the communications area contains zero. When PPMTR assigns a
PP to load and run a transient PP program, it loads a request word into the assigned PP input register.
Figure 3-2 shows the format of a PP input register for a transient program called from a CP program.
CPMTR inserts the requesting program's control point number into bits 39 through 36 of the word and
clears bit 41. Bits 35 through 0 appear in the input register exactly as they did in RA+1 of the requesting
CP program.

59 4139 35 0
Program Name in el ce Parameters
Display Code No.
l—-Recall flag -

=0if RA+1call
=1 if internal call

Figure 3-2. PP Input Register

The PP resident in each PP constantly scans its own input register. When it becomes nonzero, the PP
resident issues the M.PPLIB monitor request with the program name and load address. A search is made
for the program in the CMR library directory and the program is prepared for loading. The PP loads the
transient program at location 773, stores the address of the control point area to which the PP is
assigned in direct cell D.CPAD, and transfers control to location 1000 to start execution. If the
transient program needs to load an overlay, it calls a subroutine in the PP resident. PP resident loads the
overlay. Since the input register is not cleared until the PP becomes idle, parameters transmitted by
PPMTR in the input register can be read by the transient program and/or any overlay. When the PP
transient program has completed its function, it sends a request to PPMTR to drop the PP. PPMTR
clears the PP input register and records the fact that the PP is idle and that another program can be
loaded into the PP. The transient program terminates by executing a jump to the idle loop of the PP
resident which scans the input register for the next assigned task.

When PP resident has a monitor request, it places a message into the PP output register in the PP
communication area. The leftmost byte contains a number which identifies the function requested; other
bytes may contain parameters for the request. Additional information or parameters for the request may
be placed in the message buffer in the PP communications area. After making the request, PP resident
waits for the first byte of the output register to be set to zero, signaling that the monitor has processed
the request. If CPMTR or PPMTR need to communicate with the PP about the request being processed,
the PP stores the necessary information in the remaining bytes of the output register.

60494100 J 3-5

PP RESIDENT
The PP resident program performs the following main functions.

e Handles all communication between MTR and the transient and/or overlay program.

e Loads transient programs and overlays and initiates execution of these programs.

e Controls PP access to the assigned control point's field length.
The PP resident consists of a series of routines, each of which performs a specific function (figure 3-3).
These resident routines are used by the transient and overlay programs as required. R.OVLJ and all other
PP resident routines, except R.IDLE, destroy temporary cells 0 through 17. R.IDLE destroys direct cells

20 through 22 and some of the temporary storage cells. The names, locations, calling sequences, and
funections of the routines follow.

R.IDLE — PP RESIDENT IDLE LOOP
Calling sequence: LIM R.IDLE
In the idle loop, PP resident continually secans its input register for an assigned task. When R.IDLE finds

an assigned task, the control point address (D.CPAD) is set, the field access flag (R.FAF) is cleared, and
R.OVLJ is entered to load the overlay.

R.OVLJ — PRIMARY OVERLAY (TRANSIENT PROGRAM] LOADER

Calling sequence: Store name of overlay left-justified in D.T6,D.T7.
LIM R.OVLJ

When this routine is called, PP resident loads a new primary overlay at C.PPFWA minus L.PPHDR and
transfers control to location C.PPFWA.

R.RAFL — REQUEST CONTROL POINT FIELD LENGTH ACCESS
Calling sequence: RIM R.RAFL

The storage move flag for the control point is tested. If set, a call is made to R.TAFL. When clear, the
field access flag in the PP status word is set, the RA in D.RA is reset, and the FL in D.FL is reset.

R.PAUSE is the same as R.RAFL.
R.TAFL — TERMINATE CONTROL POINT FIELD ACCESS

Calling sequence: RIM R.TAFL

This routine is called to clear the field access flags in the PP byte R.FAF and in the PP status word.

3-6 60494100 J

59 0
Field Access Flag R.FAF
PP Resident Ldle Loop R.IDLE
Load Primary PP Overlay R.OVLJ
R A C | Point Field Length R.RAFL
equest Access to Control Point Fie eng R.PAUSE
Terminate Access to Control Point Field Length R.TAFL
Compare Accumulator to Field Length R.TFL
. . R.MTR
Process Monitor Function R.PROCES
Wait for Output Register to Clear R.WAIT
Reserve Channel R.RCH
Drop Channel R.DCH
. e R.STBMSK
Mask a Byte into Specified Words R.STB
Load PP Qverlay R.OVL
Access Request Stack Entry R.EREQS
Transmit Dayfile Message R.DFM
. R.WRITEP
Transmit Data To/From PP R.READP
Read/Write Logic (Disk)
- — —-—_—_-1—_ — — — — ——_ — ——_ — — —— — — — — —{ R.RWP
Read/Write Segments (Non-disk 1/0

Figure 3-3. PP Resident Routines

60494100 J 3-7

R.TFL — TEST FIELD LENGTH

Calling sequence: Load relative address.
RJIM R.TFL

This routine ensures that a relative address is within the field length limits. The 18-bit address is added
to the control point reference address and compared with the field length. If the resultant address is out
of range, R.TFL exits with a zero in the A register; otherwise, R.TFL exits with the resultant absolute
CM address (RA + relative address) in the A register. A call to R.RAFL sets a flag which enables R.TFL
to return a reliable result. R.TAFL clears the flag. Therefore, the transient and its overlays must not
call R.TFL until R.RAFL has been called.

R.MTR — PROCESS MONITOR FUNCTION

Calling sequence: Store function parameters in D.T1 to D.T4.
Load function code.
RIM R.MTR

This routine places the function code in D.T0, writes D.TO through D.T4 to the output register, and waits
for the output register to clear via a call to R.WAIT. '

R.PROCES is the same as R.MTR.

R.WAIT — PP WAIT LOOP
Calling sequence: RJIM R.WAIT

This routine determines if the monitor function is for MTR or CPMTR. If the MXN instruction is not
available, R.WAIT is modified at deadstart causing R.WAIT to assume that all functions are for MTR. If
the function is for CPMTR, the PP input register address is written into T.PPID and T.MXNCTL is read
in and executed. If the function is for MTR, the input register address is written in T.PPIP.

After either action, R.WAIT idles until byte zero of the output register is cleared. If the field access
flag (R.FAF) is set, R.WAIT pauses for relocation via calls to R.RAFL.

R.RCH — REQUEST CHANNEL

Calling sequence: Load channel numbers.
RJIM R.RCH

This routine stores the channel numbers loaded in the A register in D.T1, inserts the monitor function
M.RCH into D.T4, and writes D.T0 through D.T4 to the output register for that PP. Channel numbers in
D.T1 and D.T2 are assigned by monitor on the following priority basis.

D.TO D.T1 D.T2 D.T3 D.T4
@i o] @i e |

The highest priority is given to the channel number in the rightmost 6 bits of D.T1; the second highest to
the channel number in the leftmost 6 bits of D.T1, and so on.

I 3-8 60494100 J

When assigning alternate channels, monitor discontinues its search of D.T1 and D.T2 when it encounters 6
zero bits. If only one alternate channel is required, the programmer must clear D.T2 ‘before calling
R.RCH. As an example, the coding for requesting primary channel 12, alternate channel 13 is:

LDN 0
STD D.T2
LDC 1312B

RJIM R.RCH

Normally, MTR stops looking for alternate channels after four have been investigated. In the preceding
example, only two channels are investigated.

When R.RCH is called, the function is not considered complete until byte 0 of the output register is
cleared, signaling that a channel has been assigned.

DSD and a few other programs need an immediate reply on a channel request, even if the channel is
already reserved by another PP. These programs do not use R.RCH; they issue an M.RCH function
through R.MTR. These requests are made with a zero in D.T4 and, if the channel is available, the
monitor assigns it and sets D.T4 to nonzero in the reply. If the channel is not assigned to the requesting
PP, D.T4 remains zero in the reply.

R.DCH — DROP CHANNEL

Calling sequence: Load channel number.
RIM R.DCH

The specified channel is dropped. Since more than one PP can request the same channel at the same
time, an MTR request must be used to reserve a channel. Only the PP reserving the channel can release

it by making an R.DCH call. The function modifies the CST entry for the channel to indicate that it is
free.)

R.STBMSK

Address in PP resident of a logical mask used by R.STB routine. This mask is initially 7700 octal. The
value should be restored by any routine which substitutes an alternate mask.

R.STB — STORE BYTE

Calling sequence: Load L (list).
RJM R.STB

List has the following form.

L(BYTE)
L(WORD;)
L(WORDo)

L(WORDy,)
ZERO

A logical AND is performed. on the mask at location R.STBMSK for each word in the list before an
exclusive OR is performed with word BYTE. R.STB is used primarily to substitute channel numbers in
driver overlays.

60494100 J 3-9

R.OVL — OVERLAY LOADER

Calling sequence: Store name of overlay left-justified in D.T6,D.T7.
Load A register with load point address.
RJIM R.OVL

An M.PPLIB monitor funection is issued along with the overlay name and load address via an R.MTR call.
CPMTR determines overlay residence (disk, ECS, or CM) and sets up the load accordingly. For disk
resident overlays, a stack request is set up in the PP message buffer and the M.PPLIB funetion is changed
to an M.ICE/EX.SPM function. For ECS resident overlays, a system circular buffer (DDP or non-DDP) is
reserved and the buffer parameters are passed in words 1 and 2 of the PP message buffer. For CM
resident overlays, the CM address and length of the overlay is passed in word 3 of the PP message buffer.

After the M.PPLIB request is acknowledged, R.OVL calls R.READP to load the overlay. If an illegal

program name has been requested, R.READP returns an error status in D.T4+C.RWPPST. R.OVL issues
an M.ABORT function and exits to R.IDLE. Otherwise, R.OVL returns to the caller.

R.EREQS — ENTER STACK REQUEST

Calling sequence: Store L (request) in D.TO.
RIM R.EREQS

This routine adds the control point number to the already formatted request, writes it in words 1 and 2 of
the message buffer, clears word 3, and issues the request via the M.ICE/EX.SPM funection.

R.DFM — ENTER DAYFILE MESSAGE

Calling sequence: Load L (message) + flag bits.
RIM R.DFM

A message is written to the dayfile and/or displayed on the console. The flag bits in the high-order 6 bits
of the A register are used to determine message destinations. In the following flag bit values, one or
more bits may be on; all are optional (refer to M.DFM). When a bit is set, the corresponding action

oceurs.
Bit Set Description
0 Do not send message to B display.
1t Do not send message to control point dayfile.
VARl Do not send message to system dayfile (A display).
3 Flag the message as an accounting message.
st Send the message to the hardware error file.
511 Do not put the job name in the message.

T If bits 1 and 4 are set, the message is not sent to an INTERCOM control point dayfile but is sent to
other control points.

T1If bits 2 and 5 are set, the time is omitted and replaced with blanks in the control point dayfile. This
option identifies messages from a task that was executed on a different mainframe.

I 3-10 60494100 J

R.READP — TRANSMIT DATA VIA CHANNEL FROM STACK PROCESSOR
R.WRITEP — TRANSMIT DATA VIA CHANNEL TO STACK PROCESSOR

Calling sequence: Load L (request).
Load 0 if request already issued.
RJIM R.READP
or
RJIM R.WRITEP

These routines control transmission of data to/from the PP via a channel-stack processor interface or a
CM system circular buffer interface. R.READP or R.WRITEP calls R.RWP to perform the read/write
logic after which the following is returned to the caller.

D.T3+C.RWPPLW LWA+1 of data transmitted.
D.T3+C.RWPPST Upper 6 bits of status.
D.T3+C.RWPPWT Number of PP words transmitted.
D.T4+C.RWPPST Lower 12 bits of status.

R.RWP — PERFORMS READ /WRITE LOGIC FOR R.READP/R.WRITEP

Calling sequence: Store L (request) in D.TO.
Load IAM/OAM instruction.
RJIM R.RWP

This routine is called by R.READP/R.WRITEP to perform the read/write logic. If D.T0=0, read/write
logic is entered directly. Otherwise, the PP message buffer address is added to the stack request which
is issued by R.EREQS. :

Read/write logic idles on byte 0, word 3 of the PP message buffer. If the field access flag is set, R.RWP
pauses via R.RAFL while waiting. The following values may be found in byte 0.

Value Significance
1 through 4 Indicates channel-stack processor transfers.
5 Indicates that word 3 contains parameters to load a PP overlay from CM.
6 or greater Indicates a system circular buffer interface.

A system circular buffer interface requires the load of a segment into the area between the end of
R.RWP and C.PPFWA. Unless the information required to load the segment is already loaded, the
information is contained in word 3 of the message buffer.

Segments exist for loading ECS-resident PP overlays either through CM buffers or directly from ECS via
a DDP. Segments also exist for communicating with the 819 disk stack processor, HSP (applicable to
CYBER 176 only). Segments are loaded from T.PPOVL in CMR.

R.RWP returns to R.READP/R.WRITEP after the request is complete.

60494100 J 3-11 I

FIELD ACCESS FLAG USAGE

The control point field access flag (R.FAF) is found at location 100g in PP resident. A copy of the flag is
kept in CM in the PP status table entry (T.PPS1) for each PP. It is used by the PP to prevent storage
moves at a control point while the PP is accessing the control point's field length. R.RAFL and R.TAFL
(refer to descriptions in this section) obtain and release field access.

The field access flag must be set whenever data is read or written within a control point's field length. If
a PP program is looping, waiting for an external event to oceur, the loop must be performed while the
field access flag is not set, or the loop must include a call to R.RAFL. When no field access is required
for a major operation (such as searching a CMR table), it is advisable to call R.TAFL before the process.

Execution of the R.MTR subroutine or any resident routine that calls R.MTR (that is, R.RCH, R.OVL,
R.EREQS, R.DFM, R.READP, R.WRITEP, or R.RWP) may result in a call to R.RAFL. If an absolute CM
address within a control point's field length has been computed and saved, the address will be invalidated
because the control point may have been moved.

SYSTEM MONITOR

The system monitor consists of MTR, which runs continuously in PP0, and CPMTR, which resides in CM
and uses the CP intermittently for short bursts. The monitoring tasks are divided between MTR and
CPMTR on a functional basis to distribute the work load in the most efficient manner.

MTR STRUCTURE

Unlike CPMTR, MTR is not initiated to perform a specific function. It runs continuously and must keep
searching for requests directed to it. The frequeney with which it seans for each type of request can
have major impact on system efficiency. The following major responsibilities are listed in an order which
corresponds approximately to the frequency with which they should be performed.

o Advance system clocks.

The accuracy of the system clocks in T.CLK and T.MSC is directly related to the frequency
with which MTR accesses the real-time clock on channel 14g.

e Check T.PPIP.

This is the word into which PP resident writes its input register address when it has a monitor
- function for MTR. Frequent checking reduces the MTR response time and reduces chances of
conflict between two PPs in the use of this word.

° Check T.MTRRS.

This is the short buffer through which CPMTR passes PP calls taken from RA+1. It is also used
for some PP monitor functions called by CPMTR or scheduler (M.SEF or M.ISP). MTR should
keep this buffer clear so that it will not inhibit the efficient execution of CPMTR.

o Check individual PP output registers.

T.PPIP is used for quick attention from MTR on monitor functions. It is still necessary for MTR
to scan the output registers because if two PPs make requests in near unison, one will be lost
from T.PPIP. Also several monitor functions, such as M.BUFPTR, M.DFM, and M.RCH may not
be completed on their first processing. These functions will be processed more quickly if the
output registers are scanned more frequently.

3-12 60494100 J

e Advance control point.

Examine each control point in turn to see if a PP program should be initiated from the event
stack, if the CPU should be restarted from recall status, or if 1AJ should be called to advance
to the next control statement.

° Check RA+1.

Examine RA+1; if it is nonzero, initiate CPMTR. This function is intended only to initiate
CPMTR for a program that does not use the exchange jump capability.

CPMTR ORGANIZATION

CPMTR is the one central program that has no exchange package area of its own. It runs in monitor
mode and selects the user mode programs to be run next. When CPMTR is not running, its exchange
package is stored in the area reserved for the user mode program selected to be run. The user mode
program makes a system request by placing the system call in the word at RA+1 and performing a central
exchange jump (XJ) instruction. This reinitiates the execution of CPMTR and saves the register contents
of the user mode program in its own exchange package area.

PP programs also can direct system requests to CPMTR. Typically, they use the R.MTR routine of PP
resident for such requests. R.MTR places the monitor function in its output register and then determines
if the function should be directed to CPMTR or to MTR. When calling CPMTR, the PP input register
address is written in T.PPID so CPMTR can identify the calling PP without scanning all the output
registers. Then the PP resident routine executes the monitor exchange jump (either MAN or MXN) to
initiate CPMTR execution. MAN causes an exchange jump to the address in the CPU's MA register; MXN
causes an exchange jump to the address in the PP's A register. When the system is using the MXN
(IP.XJ=1), CPMTR maintains a special control word at T.MXNCTL. This word is read and executed by PP
resident to ensure that the correct exchange jump address is used with the MXN.

When CPMTR begins, it must determine why it was called. It first checks RA+1 of the user mode
program that was running. If RA+1 is nonzero, its content is picked up by CPMTR and RA+1 is cleared.
This call is compared against a list of system calls to be performed immediately by CPMTR. If not one
of these, the call is placed into the small buffer at T.MTRRS where MTR assigns it to a PP. If the RA+1
call does not have the auto recall bit set, CPMTR immediately returns control to the user program.

If the auto recall bit is set, CPMTR sets that control point into auto recall status and reassigns the CPU
to another user program.

The list of system calls performed by CPMTR includes ABT, END, RCL, TIM, XJR, and others.

If RA+1 is empty, T.PPID is checked. If an input register address is in T.PPID, CPMTR eclears it and
checks the corresponding output register for a function to be performed. The CPMTR functions are
described with the other monitor functions.

If RA+1 and T.PPID are both empty, MTR's output register is checked. This extra check is made because
MTR does not use T.PPID when it issues a CPMTR function. Otherwise, a function from MTR is handled
just like any other PP.

If CPMTR cannot determine why it was called, it returns control to the interrupted user program.

60494100 J 3-13 '

OPERATIONS

The monitor performs operations that must be performed by a program that is permanently resident.
Among these operations are

e CPU scheduling.

e Assignment of the PPs.
o Channel reservations.
e Time accounting.

e Storage requests.

o Other operations easily done by a centralized routine.

CPU SCHEDULING

CPMTR assigns the CPU to jobs at control points or to certain system programs that execute in program
mode. The CPU status of jobs is controlled by PPs or by the job. CPMTR accepts requests for a change
of status and records the current status as a set of bits in the control word (W.CPUST) associated with
each exchange package.

The most significant of these bits are
Bit Desecription
w Set by an M.RCP or M.SETST monitor function when a central program is loaded .

for execution. It remains set until the program posts END in RA+1 or is aborted
for any reason. :

Cand D Set when the job is being executed in CPU A or B, respectively.

X The job is in periodic recall status because of an RCL request from the program.

Y The job is in auto recall status and is not restarted until the requested system
function is completed.

Z The job is suspended because it threatened to saturate the system with PP calis.

M, P, and S Job execution has been temporarily suspended by storage move, checkpoint, or the

job swapper, respectively.

An exchange package exists for each control point, in addition to one for storage move and scheduler,
and one for each CPU idle program. An exchange package is ready to use the CPU if W is on and M, P, S,

X, Y, and Z are all off. CPMTR assigns the exchange package to the CPU on a priority basis. The
priority used is the CPU priority.

The CPU priority is a 6-bit field in the CPU status word. Priority levels, in ascending order, are listed
below.

Priority Level Description
PR.IDLE Zero level default CPU job to be used only in the absence of any other.
PR.BATCH ~ Batch jobs initiated by 11B.

3-14 60494100 J

Priority Level Description

PR.INT INTERCOM jobs initiated by 1SI.
PR.SCP System control point jobs initiated by DSD.
PR.SYS Storage move and scheduler.

When more than one job is at the highest active priority level, the CPU is shared on a round-robin basis.
Each uses the CPU for BASESLIC milliseconds before control is passed to the next job.

This combination of priority and round-robin scheduling is overridden during the time that an RMS driver
is transferring data to or from a user's buffer. If the user's program is not in auto recall, it is given a
slice of CPU time so that it can process the data as it is transferred. In this way, a low priority job may
temporarily preempt the CPU away from a high priority job.

When CPMTR assigns the CPU to a job, BASESLIC is added to the current time to produce the projected
end-of-slice time. The end-of-slice time is posted in T.CPSTA (or T.CPSTB). When the time arrives,
MTR issues an M.SLICE funection which causes CPMTR to select the next job for the CPU.

ASSIGNMENT OF THE PPs

PP scheduling is done by MTR. A PP can be requested by a CPU program through a call in RA+1 or by
another PP through an M.RPJ or M.EES monitor funetion.

MTR always reserves at least one PP for the RMS stack processors to ensure that the stack processor is
not locked out while all programs in the PPs are waiting for the stack processor to access RMS. More
than one PP can be reserved for the stack processor (refer to N.SPRPP in CMR). MTR maintains the
following lists of PP ealls that are not currently assigned to a PP.

Call Deseription

PP job queue This is the overflow list where PP calls are placed when no PP is
available. It is a first in/first out, ordered queue except for stack
processors. A PP call that MTR identifies as a stack processor will be
added at the front of the list, pushing down all the members already in
the list.

Delay stack This is a list of PP calls for the M.RPJ function with a nonzero time
v delay. The calls are ordered in sequence of their time delay. When the
delay is expired, the calls are removed from the delay stack and assigned

to a PP or added to the PP job queue if no PP is available.

Event stack This is a list of PP calls for the M.EES function. It is searched
periodically to find any entries whose event has occurred. When one is
found, it is removed from the event stack and assigned to a PP or added
to the PP job queue if no PP is available.

MTR keeps the control values for these lists in PP0. The PP calls are kept in the peripheral job table

(T.PJT) in CM. Each call consists of the input register and three words for the PP message buffer. When
a PJT entry is not in use, the input register word is set to zero.

60494100 J 3-15 l

To control PP assignments, MTR keeps (in PP0) an 8-byte status word for the PP entries wl.lich fprm the
PP status table. Each status word has one of two formats, depending upon whether the PP is assigned or
unassigned and available.

1 2 3 4 5 6 7 8
CPAD EXTRA BUFPTR APLINK JUMPAD | PPFLAG PPSEC PPMSEC
CPAD Base address of control point area to which PP is assigned.
EXTRA Spare byte.
BUFPTR The low order 12 bits of the buffer pointer the last time that MTR

checked it (refer to M.BUFPTR).

APLINK Active PP link. This is a pointer to the next member in a chain of active
PPs. The chain always starts with MTR (PP0) and ends with DSD (PP1).
The next PP is identified by its output register index value.

JUMPAD This is the address saved for re-entry to a partially completed monitor
function that has been exited via an RJIM MAINLOOP.
PPFLAG Flag is set when PP contains a stack processor (PP assigned). When idle,
PPFLAG contains the link to the next idle PP. ,
" PPSEC PP starting time in seconds.
PPMSEC PP starting time in milliseconds.

When the PP is unassigned and available, the PP status word is linked in a chain of unassigned and
available PPs, using byte 6 of the status word (PPFLAG). PP direct cell PPIA contains a pointer to the
status word at the head of the chain. Byte 6 contains a pointer to the status word of the next available
PP. If no more PPs are available, byte 6 contains zero. A chain of three available PPs is illustrated in
figure 3-4.

MTR assigns a PP by writing a peripheral job name and a control point number into the PP input register
to perform one of the following actions.

e Satisfy a PP program call issued as an RA+1 request.
e Answer a PP request for another PP job (M.EES, M.EESD, M.RPJ, or M.RPJD request).

e Initiate a stack processor when an I/O request is issued for a mass storage device to which no
stack processor is currently assigned.

e Call the PP program 1AJ to a control point when all control point activity has ceased.
MTR maintains a PP queue table containing a maximum of 40 entries, each 4 bytes long. Each entry
corresponds to a four-word entry in the peripheral job table (PJT) in CMR. In the queue, the following
chains are kept.

e A queue of PP jobs that cannot be initiated currently because PPs are not available. This PP job
queue is a chain of PP input register images.

e A queue of PP joBs that must be initiated after a given time delay. This queue is a
time-ordered chain of PP register images, called the delay stack.

3-16 60494100 J

PPIA 110 Byte 6

50 ~ PPO
60 130 PP1
70 ~ PP2
100 ~ PP3
—— 110 60 PP4
120 ~ PP5
130 0 PP6
140 ~ PP7
150 ~ PP8
160 ~ PP9 (N.PP-1)

Figure 3-4. PP Chain

e A separate queue of PP jobs for each control point which must be initiated after a specified bit
has been set or cleared in CM. This queue is called the event stack.

e An empty queue of all unused entries in the PP queue.

Three pointers in MTR define the beginning of each chain.

NPPQ PP job queue.
NACT PP delay stack.
EMPTY Empty chain.

60494100 J 3-17 I

The pointers to the event stack are in the MTR control point table EVST. Each control po_int has a
separate EVST. A fourth pointer, LPPQ, defines the end of the PP job queue. When the time delay
expires for an entry in the delay stack, that entry will be transferred to the end of the job queue.

Chaining of the queue entries uses byte 3 of each 4-bvte entry. Bytes 1 and 2 contain the PPFLAG or the
maturation time for entries in the delay stack. The end of a chain of entries is signaled by zeros in byte
3. A PP job queue containing a two-entrv overload queue, a one-entry delay stack, the empty chain, and
two one-entry event stacks is illustrated in figure 3-5.

CHANNEL RESERVATIONS

CPMTR processes channel reservations. The CPU is used for this frequently used function because it is
easily accessed from PP resident. If the requested channel is already busy, MTR periodically reissues the
request to CPMTR.

TIME ACCOUNTING

MTR uses the real-time clock on channel 14g as the source for its time keeping duties. MTR maintains
the two basie system time clocks T.CLK and T.MSC. T.CLK is a 24-hour clock that gives the time of day
in hours, minutes, and seconds.

Bits 35 through 12 of T.MSC contain the total number of seconds since the last deadstart, expressed as a
24-bit binary number. Bits 11 through 0 are the binary fractional parts of a second. Bits 35 through 0
contain a continuous binary number recording the time as seconds times 4096, which is used as the
accounting basis for CPU time, I/O time, and PP time.

CPU time is compiled by CPMTR. Each time the CPU is rescheduled, the current value of T.MSC is
recorded so that the elapsed time can be computed the next time the CPU is rescheduled.

MTR accumulates I/O time and PP time, except that portion for RMS devices. This part is accumulated
by CPMTR from a PRU count that is passed to it in the M.SPRCL function from the stack processor.

STORAGE REQUESTS

CPMTR processes storage requests using control point n+l (the system job control point) to execute
memory management routines. If storage is not available, the memory management program exits to the
integrated scheduler which determines if storage can be made available. Storage allocation and storage
moves are described under Control Points, section 2.

When a control point RA and/or FL is to be changed, CPMTR suspends the control point by setting the M
bit in the CP status byte and setting the storage move flag. PPMTR is then called. It waits for each PP
accessing the control point's field length to clear its field access flag. When all field acecess flags are
clear for the control point, the system job control point is restarted to perform the move. When the
move is complete, CPMTR clears the M status bit and restarts the control point that was moved.

MONITOR FUNCTIONS

The following descriptions of the monitor funetions are in alphabetic order. The tables in appendix B of
this manual list the monitor functions in numerical sequence. Functions with a code number of less than
or equal to M.MTRCPU are assigned to CPMTR.

3-18 ' 60494100 J

Stack Processor

NPPQ——— Flag * * 1
NACT—————> TIME Control Point 2
Number

EMPTY———> * * * * * 3
Control Point O
EVST Pointer = Address N'I:IEQESS 4
LPPQ ————— Stack lflgc;cessor . . 5 <]
Control Point n M.EES
EVST Pointer Address Flags - 6

* * * * * 7 —

M_ABORT — ABORT CONTROL POINT AND DROP PP

The format of the function is

M.ABORT’****’****’****,****

60494100 J

Figure 3-5. PP Job Queue

The job at the requesting PP is terminated. The requesting processor is responsible for the dayfile
messge. Operation of this function is identical with function M.DPP except that the error flag in the
control point area is set to F.ERPP to note the abort function.

3-19 I

M.BUFPTR — WATCH BUFFER POINTER WORD
The format of the function is
M.BUFPTR,**** *¥x* 00AA,AAAA
AAAAAA Buffer pointer address.
I/O drivers use this function to give MTR the absolute address of the buffer pointer that is being

updated. MTR monitors the value of that pointer and when it changes, restarts the control point if it is
in periodic recall.

M.CCPA — CHANGE CONTROL POINT ASSIGNMENT
The format of the funection is
M.CCPA’****’****’****,**NN
The requesting PP is released from its current control point assignment as if it had issued an M.DPP
function, but its input register is not cleared. The PP is assigned to control point NN, and the new

control point number inserted in its input register. It is the responsibility of the requesting PP to alter
D.CPAD. R.TAFL should also be used to clear the field access flag at the old control point.

M.CLRST — CLEAR STATUS.
The format of the function is
M.CLRST,BBBB,***# *k*x 00NN
BBBB | Pattern of bits to be cleared.
NN Control point number (only is in MTR output register).

Called to clear CP status bits in byte C.CPSTAT in control point linkage; causes linkage to or delinkage
from chain of control points actively waiting for a CPU.

M.CPJ — CAPTURE PERIPHERAL JOB
The format of the function is
M.CPJ,00XX, XXX X, ###k *ikok
XXXXXX Buffer address, relative to RA.
This request is issued to find a job for a control point either in the event stack or in the PP delay stack.

The event stack is searched first; if a job is found, its data is written to the buffer whose address is given
in the request. When the end of the delay stack is reached, the function is completed.

I 3-20 ; 60494100 J

M.CPUST — CHANGE CPU STATUS
The format of the function is

M.CPUS'I"OOO X’ ****,****,****

X Description
0 If either CPU is off, it is turned on. If the CPU was locked off at deadstart time,
it remains off. .
1 If both CPUs are on, CPU-A is turned off.
2 If both CPUs are on, CPU-B is turned off.

When the requested function cannot be performed, no action is taken.

M.DCP — DROP CENTRAL PROCESSOR JOB
The format of the function is

M.DCP’****’****,****’****

Execution of the CP job at control point is stopped. The control point status bits W, X, Y, and Z are
cleared. The control point status bits set prior to M.DCP are returned in byte 1 of the output register of
the requesting PP.

M.DFM — PROCESS DAYFILE MESSAGE
The format of the function is
M.DFM,FFFF,MMMM, ¥¥*¥ *%%*

Dayfile flag bits FFFF determine message handling.

FFFF Description
0 Do not send to B display.
1t Do not send to control point dayfile.
o 1 Do not send to system dayfile (no A display).
3 Flag as an accounting message.
4 Send to hardware error file.
511 Do not insert job name in system dayfile.

T If bits 1 and 4 are set, the message is not sent to an INTERCOM control point dayfile but is sent to
other control points.

T1 If bits 2 and 5 are set, the time is omitted and replaced with blanks in the econtrol point dayfile. This
option identifies messages.from a task that was executed on a different mainframe.

60494100 J 3-21 I

When MMMM is larger than the address of PPOR, MMMM is taken to be the LWA+1 of the message in the
PP message buffer. When MMMM is smaller than the address of PPOR, it is taken to be a dump index for
a requested dayfile dump.

Value of dayfile dump index:

Value Description
0 System dayfile dump.
1 through N.CP Control point dayfile dump.
N.CP+1 Hardware error file dump.

M.DPP — DROP PP
The format of the function is
M.DPP,FFFF, **%* skskk kkk

MTR clears the PP control assignment (the PP status word and the PP input are cleared). If the value of
FFFF represents M.DPP, the PP time is not incremented. :

M.EES — ENTER EVENT STACK
The format of the function is

M.EES,00AA,AAAA,**** SYTT

AAAAAA Word address in event stack.

Y Byte address in word AAAAAA.

TT Bit address in byte Y.

S Combined value of F and B.
Value Description
Fis 0 Event stack job assigned when bit is off (F.ESOFF).
Fis 4 Event stack job assigned when bit is on (F.ESON).
Bis 0 AAAAAA is an absolute address (F.ESABS).
Bis1 AAAAAA is relative to RA (F.ESREL).
Bis 2 AAAAAA is a control point area address (F.ESCPA).

This function is used to call a PP program after a specified event has occurred. That event must be
defined as a specific bit being set or off. The bit is defined by the parameters in the output registers.
W.PPMES1 contains the input register image of the program that is to be assigned when the event
occurs. The contents of W.PPMES4, W.PPMES5, and W.PPMES6 are also saved and set in the message
buffer when the program is called. This function will not complete if the peripheral job table is full. If
possible, use M.EESD instead of M.EES.

I 3-22 60494100 J

M_.EESD — ENTER EVENT STACK AND DROP PP
The format of the function is
M.EESD,00AA,AAAA,FFFF,SYTT
Combines the functions of M.EES and M.DPP. This function is completed even if the peripheral job table

is full. If FFFF=M.EESD, the control point is not charged for the PP time. All other parameters are
identical to M.EES.

M.ICE — INITIATE CENTRAL EXECUTIVE
The format of the function is
M.ICE,PPPP,PPPP,PPPP,EX.xxx
EX.xxx is a subfunction to be performed. These subfunctions are listed under Monitor Functions in

appendix B. The PPPP fields can be used as parameters to the subfunction. Refer to the section on
INPUT/OUTPUT for a detailed description of the 819 subsystem flush function (EX.SUB).

M.ISP — INITIATE STACK PROCESSOR
The format of the function is

M.ISP,000X,000Y,****,CCCC

ccccC DST ordinal of stack processor to be initiated.
Xis0 Initiate 1S5 only if PP active flag is zero.

X is not 0 Initiate 1S5 regardless of PP active flag setting.
Yis0 Initial assignment of 1SP to the DST entry.

Yis 1 (or 2) A partner call.

A check is made to see if a PP is assigned to this DST ordinal. If there is none, a check for an available
PP is made. If an available one is found, set the PP active flag and place the DST ordinal and 185 in its
input register. If a PP is found to be assigned to the DST ordinal, the setting of X determines if 1S5 is to
be initiated or not. If not set, the output register is cleared and an exit made; if set, proceed as for an
available PP. If the PP job stack is full, the routine is exited. The 1S5 program is the PP input register
DST ordinal checker and stack processor loader. When Y is 1 or 2 and X is not 0, this is a call from 1SP
for a partner to work together for a dual access device.

M.KILL — BAD FUNCTION REQUEST

The format of the function is

M.KILL’****,****’****,****

MTR flags the function request as bad and automatically enters STEP 0 mode. The requesting PP is hung.

60494100 K 3-23

M.MFLA — MONITOR FIELD LENGTH ACCESS AT CONTROL POINT
The format of the function is
M.MFLA **%% sk skk* CCCC
CCcccC Address of control point being moved.
This function is used by CPMTR to wait for field access flags at a control point being moved to clear.

When all field access flags have been cleared, PPMTR restarts the system job control point (n+1) to
perform the move (refer to Storage Requests in this section).

M.NOTE — NULL FUNCTION
The format of the function is

M.NOTE’****,****,****’****

This is a null function used with STEP mode as a breakpoint. During normal execution, MTR clears the
output register of the requesting PP.

M.NTIME — ENTER NEW TIME LIMIT
The format of the funection is
M.NTIME, TTTT,T*%¥* #¥*x% **x NN
A CP job time limit of TTTTT seconds is entered at the control point. Any previous time limit is

superseded. If the requesting PP is assigned to control point 0, the parameter NN gives the number of
the control point to be considered; in any other case, this parameter is irrelevant.

M.PASS — PPMTR IGNORES FUNCTION REQUEST
The format of the function is

kokkk kokskk skkk k¥
M.PASS, *#¥% *kix sikk sxks

Indicates a no-operation by PPMTR which is cleared by another routine.

M.PATCH — INSERT A PATCH IN PPMTR

The format of the function is
M.PATCH,AAAA,BBBB,CCCC,DDDD

The routine inserts a patch in the monitor program at the address indicated.
AAAA Insertion address for patch BBBB.

CCCcC Insertion address for patch DDDD.

3-24 60494100 J

M.PPLIB — PP LIBRARY SEARCH FUNCTION
The formats of the function are

M.PPLIB,AAAA,AA** LLLL,****
M.PPLIB, 000X, ¥*%¥ k% *kkk

This function is used by PP resident routines only. Its initial use is to locate and set up the loading of a
PP overlay.

AAAAAA Name of overlay.
LLLL PP load address.

Subsequent use of the funetion is to control the loading process.

_)S Description

0 Release system circular buffer and DDP.

1 Continue loading SCB.

2 No DDP code; default to disk copy.

3 No ECS code; default to disk copy.

4 DDP block transfer error; start error recovery process.
5 Report DDP recovery error.

6 Report completion of error recovery process.

7 Load next overlay to continue error processing.

10 Obtain event number for use by 1SP/1SQ in logging DDP errors.
11 Report 1SP/1SQ DDP error.

12 Report STL channel error.

M.RACT — REQUEST CONTROL POINT ACTIVITY
The format of the funection is

M.RACT,**NN,IIII, **** ****x
This request provides the various activity counts of control point NN at a given time (NN cannot be
zero). If IIII is nonzero, the pseudo activity count is incremented or decremented by the constant IIII
(after sign extension). Monitor replies through the PP output register.

Byte 1 Control point status byte.

Byte 2 General activity count.

60494100 K 3-25

Byte 3 Count of outstanding delayed PP requests.

Byte 4 Pseudo activity count.

M.RBTSTO — REQUEST RBT STORAGE
The format of the function is
M.RBTSTO,SSSS, ** % sxkkk sixx

CPMTR sets SSSS*100 as the new RBT starting address. If the request cannot be honored, the old RBT
starting address is returned in SSSS.

M.RCH — REQUEST CHANNEL RESERVATION
The format of the function is

M.RCH,BBAA,DDCC,***G,RRRR

AA First choice channel number.

BB Second choice channel number.

CcC Third choice channel number.

DD Fourth choice channel number.

Gis0 Normal charge for channel time.

Gis 4 Do not charge control point for channel time.

RRRR is 0000 Request immediate reply.

RRRR is not 0000 No reply until a requested channel has been reserved.

When channel zero is requested, it must be field AA. Zero BB, CC, or DD implies no more choices. If
none of the requested channels is available, PPMTR sets byte 0 of the PP output register to 0. When a
channel is granted, its number is returned in the PP output register byte 1 (location of AA) and byte 4 is
set to a value not 0. Thus, programs that request an immediate reply must check that byte 4 is not 0
before using the channel.

On exit, if a channel has been reserved, the output register appears.

0000 XXXX TTTG TTTT YYYY
XXXX Channel number.

TTTG TTTT Information from the channel status word, where G is the charge/no charge
bit for channel time.

YYYY PP input register address.

| 32 60494100 K

M.RCLCP — RECALL CENTRAL PROGRAM
The format of the function is

M.RCLCP,****’****’****,****

This request is effective only if the central program associated with the requesting PP is in recall status,
and no error flag is set at the control point. The status of the control point is set to waiting (W). In any
other case, the status of the control point is not altered.

M.RCP — REQUEST CENTRAL PROCESSOR

The format of the function is

M_RCP’****’****’****,****

60494100 K 3-26.1/3-26.2 ||

This request is ignored under the following conditions.
o Requesting PP is assigned to control point 0.
o Error flag is set for the control point.
e Job is already in the waiting status.

If none of these conditions exist, CPMTR sets the job in waiting status (W).

M.RPJ — REQUEST PERIPHERAL JOB
The format of the funetion is

M.RPJ,SSSS,FFFF, ¥+ #xk*

This function requests that another PP program be initiated after a specified time delay. The first word
of the requesting PP message buffer contains the input register image of the new PP program. .The time
delay is SSSS seconds plus FFFF/10 000g seconds. If the time delay is zero and no PP is available, the
request is entered in the PP job queue. If no space is available in the PP job queue buffer of PPMTR, the
entire request remains pending until a queue entry becomes free. M.RPJD should be used in preference
to M.RPJ whenever possible.

M.RPJD — REQUEST PERIPHERAL JOB AND DROP PP
The format of the function is
M.RPJD,DDDD,DDDD,FFFF ****
Combines the functions of M.RPJ and M.DPP. This function will be completed éven if the peripheral job

table is full. If FFFF=M.RPJ, the control point is not charged for the PP time. The use of the time
delay is the same as for M.RPJ.

M.RSTOR — REQUEST STORAGE
The format of the function is
M.RSTOR,CCCC,XXXX,00TT,****
CCcCC Request CM/100 octal.

XXXX Request ECS/1000 octal.

TT 00 CM request only.
01 ECS request only.
02 CM and ECS request.
04 Request CM - awaits response.
06 Request CM and ECS - awaits response.

07 IP.POSFL requested by swapper.

60494100 J 3-27

This function assigns CCCC central memory and/or XXXX extended core storage to the control point of
the requesting PP. Monitor replies to this request by setting CCCC and/or XXXX to the values actually
assigned to the control point and by setting byte 0 to zero. These values should be compared with the
original values requested to determine whether these requests have been honored or not. A request for
more storage is rejected if not enough storage is available or if a storage move is already in progress. A
request for less storage is always honored. If TT is 02 or 04, CPMTR can honor part of the request
without honoring the remainder.

M.SCB — SYSTEM CIRCULAR BUFFER SURVEILLANCE
The format of the function is
M.SCB,**** 00BB,BBBB,EX.CBM
BBBBBB System circular buffer address.
The system circular buffer is an FET-like table that has a trigger and a direction flag in addition to
FIRST, IN, OUT, and LIMIT. MTR uses IN, OUT, and the trigger and direction (RMS-to-ECS or

ECS-to-RMS) to determine if a threshold has been reached. If not, no action is taken. If so, MTR issues
an M.ICE/EX.CBM function to start CBM for processing of the system circular buffer.

M.SCH — INITIATE INTEGRATED SCHEDULER
The format of the function is

M.SCH,000X,00CC,003J,J33J
When X is 2, the contents of the output register are placed into a buffer at T.SCHRS for the integrated
scheduler. When the integrated scheduler processes this request, it links the JDT at location JJJJJJ to
the job queue for JCA ordinal CC. If CC is zero, the job class is taken from the JDT.

When X is not 2, the contents of the output register are not passed to the scheduler.

In both cases, CPMTR initiates the scheduler immediately.

M.SEF — SET ERROR FLAG
The format of the function is
M.SEF, **NN, EEEE, **%* *%%*

Monitor drops the central program at control point NN by putting the program in zero status, and setting
the error flag to the value EEEE.

The M.SEF function recognizes two special control values in the error flag field that are used to initiate
and terminate the memo mode.

When a control point is in memo mode, error flags are not set in byte C.CPEF(1), but are recorded in bits

5 through 0 of byte C.CPMEMO(0). The high order bits 11 through 6 of C.CPMEMO are set on when the
control point is in memo mode, and are used by MTR to recognize the mode.

3-28 60494100 J

F.ERMEMO (-77g) initiates memo mode. Bits 11 through 6 of C.CPMEMO are set on. Bits 5 through 0 qf
C.CPEF are moved to bits 5 through 2 of C.CPMEMO and C.CPEF is cleared. If the control point is
already in memo mode, the effect of the F.ERMEMO is to clear an error flag memo without terminating
the memo mode.
F.ERTMM (-0) terminates memo mode. Bits 5 through 0 of C.CPMEMO are moved to C.CPEF and
C.CPMEMO is cleared. Error flag zero can also terminate memo mode; it clears both the error memo
and the error flag fields. If an error memo is already recorded when the F.ERTMM is issued, the memo is
made an error flag causing the normal error flag processing to take place.
When a control point is in memo mode, the M.SEF function with error flag values 1 through 77g does not
cause the CPU to be dropped as when in normal error flag mode; however, there are some exceptions.
The following error codes are caused by errors in the central program and render the CPU useless.

2 F.ERAR Arithmetic error.

4 F.ERCP CPU abort (ABT in RA+1).

5 F.ERPCE PP call error (garbage in RA+1).

15 F.ERRCL Auto recall error.

Any of these codes cause the control point to revert to normal error flag mode.
When entering memo mode, it is possible that an error flag had been set just prior to the processing of
the F.ERMEMO. The PP program that initiates memo mode should immediately check the error memo
field after completion of the F.ERMEMO. If an error memo is set, it should be assumed that it occurred
as an error flag prior to the F.ERMEMO. Usually the best action at this point is an F.ERTMM. Since the
program is not yet committed to its critical stage, it is best to allow the error flag processing to
continue.
Memo mode is restricted to use during single control statement executions only. It is the responsibility

of the program that initiates memo mode to terminate it. If 1AJ finds a control point in memo mode, it
is processed as an error flag.

M.SEQ — ASSIGN JOB SEQUENCE NUMBER
The format of the function is

M.SEG, ****’****’****, sk kK

Monitor returns in byte 1 of the PP output register a job sequence number (in display code).

M.SETST — SET STATUS BITS
The format of the funetion is
M.SETST,BBBB, **#* **xx QNN
BBBB Pattern of bits to be set.
NN Control point number (only if in MTR output register).
Called to set CP status bits in byte C.CPSTAT in control point NN area; can cause linkage to or

delinkage from chain of control points actively waiting for a CPU.

60494100 J 3-29 l

M.SLICE — TERMINATE TIME SLICE PERIOD
The format of the function is

M.SLICE’****,****,****,****

Only the PPMTR can issue this function request. It is issued to interrupt an executing user mode
program so that CPMTR can reschedule the use of CPUs.

M.SLPER — INITIATE CENTRAL MONITOR IN OTHER CPU
The format of the function is
M.SLPER,#%%%* kkk kikk skkkC
C CPU in which CPMTR is to execute next instruction.
0 Initiate CPMTR in CPU-A.
1 Initiate CPMTR in CPU-B.
This request is used by CPMTR to cause the next execution to take place in the opposite CPU of a dual
CPU system. If CPMTR is executing in CPU-A and this request is made with C set, the next execution

of CPMTR takes place in CPU-B. A possible use would be to terminate a job executing in CPU-B while
CPMTR is executing in CPU-A.

M.SPM — SPM CALL FROM ISP
The format of the function is
M.SPM,PPPP,PPPP,PPPP,EX.XxXX
The PPPP fields are subfunction parameters. EX.xxx is the subfunction to be performed as follows:
EX.SPRCL Stack processor recall. SPM is called to terminate the actual I/O portion of the
current stack request. SPM will terminate, reissue, or otherwise further process the
stack request and issue a new stack request or special order (O.IDLE, O.DROP,
0O.SEEK) to 1SP and complete the function. Call format is
M.SPM, ¥* ¥k sk kkxk EX SPRCL

EX.STAT Changes status. SPM is called to change 1SP status in the DST and take appropriate
action. DST status is

0 No PP assigned.

1 PP assigned but not ready; PPIR - PP assigned and ready.

' 3-30 60494100 J

EX.NXTPB

When PPMTR assigns 1SP to a PP, it changes the DST status from zero to one.
After initialization, 1SP issues an EX.STAT with PPIR status. This call may be
issued again later to activate SPM if 1SP is idle and the PPMTR stack processor drop
flag is set. A pending EDITLIB or LDCMR will set a wait flag for 1SP. When 1SP is
idle and encounters the flag, 1SP issues a status of one to SPM and reinitializes
itself. When 1SP is idle and detects an outstanding channel request for its channel,
it issues a status to zero to SPM to request a drop. SPM will then issue an O.DROP
to 1SP so that 1SP can give up the PP. Call format is

M.SPM,0000,0000,SSSS,EX.STAT

0 Request drop.
1 Request inactive status (reinitializing).
PPIR Request active status (initialized).

Get next PB/PRU. This is a time-critical call made during the I/O transfer. This
call is entered by 1SP into its PPOR just prior to starting transfer of the current
PB/PRU chunk of data. While the current chunk is being transferred, PPMTR sees
the PPOR call and initiates SPM. If the current transfer is a write, SPM will allocate
more RBs, if needed. In any case, SPM then converts the current RB position in the
RBT chain to a PB position and stores this in PPMES4, bytes 0 through 2 of the 1SP
communication area. When 1SP completes the current PB/PRU transfer, it updates
PPMES6 (current PB/PRU) from PPMES4 (next PB/PRU), issues the next EX.NXTPB
call to the PPOR, and continues the transfer. Call format is

M.SPM,2,SSPP,PPPP,EX.NXTPB

SSPP,PPPP Successor Call Type
PPPP is 0 No successor call (clear PPOR).
PPPP is not 0
Set up M.BUFPTR call.
SSis 0
PPPP is not 0 .
Set up M.SCB call PPPP; successor call parameters.
SS is not 0

M.SPRCL — STACK PROCESSOR RECALL

The format of the function is

M.SPRCL,**** **¥* (00F,CCCC

60494100 J

3-31

cccce Control point area address.

F Modifieation of the count of outstanding stack requests in W.CPSR.
F Description
0 No adjustment.
1 Subtract one.
2 Add one.

M.TRACE — ENTER MONITOR TRACE MODE
The format of the function is
M.TRACE,AAAA,FFFF,NNNN,#***
AAAA Absolute address of buffer within requesting field length of requesting job.
FFFF Length of buffer. |
NNNN Pointer to next available word-pair in buffer.

A buffer must be provided by the trace mode requestor into which this PPMTR function will write trace
records. Each record is a two-word entry containing function and PP status information. This function is
reserved for Control Data developmental use.

M. TSR — TERMINATE STORAGE REQUEST

The format of the function is

M.TSR’****,** **,****’****

Request is valid if real-time monitor is installed (IP.RTMTR is nonzero); it terminates wait period
involving an M.RSTOR request.

I 3-32 60494100 J

FILES AND FILE TABLES 4

FILES

A name associated with each file identifies it to the system and to the user. Files are uniquely known by
the file name, source or destination ID, and the terminal ID (if applicable). Files are stored on either
allocatable or nonallocatable devices. Rotating mass storage (RMS) units, such as disks, are allocatable
because files on these devices may be allocated to more than one control point. Other devices, such as
magnetic tapes, card readers, punches, and line printers are nonallocatable because they can process only
one file at a time.

Files associated with a job running at a control point are assigned or attached to a control point. Files
not associated with running jobs are assigned to control point zero.

Files are associated with one of the following groups: system, local, permanent, and queue (input and
output). The following paragraphs describe briefly each of the file groups.

SYSTEM FILES

The following files are always in the system. They are always assigned to control point 0 and they reside
on allocatable devices. These files, except for the job dayfiles, are maintained on system devices as
permanent files. Each job dayfile exists only for the duration of the job.

File Description
System The file has the name of ZZZZZ04 and contains a copy of the
deadstart system tape.

System dayfile The system dayfile contains a complete record of all activity in
the system. Normally, when a message is sent to any job dayfile,
it also is sent to the system dayfile. At intervals, the system
dayfile can be dumped to a line printer, punch, or magnetic tape.

Job dayfile (DFILEn) Each user control point in the system has a job dayfile; n is the
control point number. These files are assigned to control point 0
and a user cannot access them directly. When a user job
terminates, the content of the job dayfile is copied to the end of
the job output file. A job dayfile contains images of all econtrol
statements processed, appropriate system messages concerning
the job run, plus messages sent to the dayfile by the job.

CERFILE If hardware errors are discovered by running programs, a
message is written to this file. Periodically, the file is dumped
for examination by customer engineers so they can take remedial
action.

ZZZZCMR This file contains the absolute segments of CMR in an ECS

system. Depending on the options selected, this file is used by
LDCMR at deadstart or when the system is reloaded.

60494100 J 41 l

File Description

7727706 If the installation parameter IP.ELIB is one, this file is created
to contain the ECS library.

7777723 This file contains a copy of the CM resident library area. It is
created at deadstart and is updated by EDITLIB. It is not
permanently attached to control point 0 and is used only for
deadstart recovery.

PERMANENT FILES

Permanent files are saved across deadstarts and are therefore considered permanent to the system.
Controls over file access and mode of use are provided to define various degrees of privacy. When a
permanent file is created, the privacy defined determines which user can access it and the kind of
processing allowed.

LOCAL FILES

Any files, other than permanent files, attached to a job running at a control point are local files. They
may be on allocatable or nonallocatable devices.

Local files assigned to a control point must have unique names. Two local files named INPUT and
OUTPUT are associated with each job. INPUT contains the job file; the job name is changed to the name
INPUT when the job is assigned to a control point. OUTPUT is assigned to the job when the first
reference to it occurs. It has a disposition code which indicates the job output is to be produced on
peripheral devices in the area from which the user submitted the job.

When a local file is detached from a control point, disposition depends on its control point, disposition
code, and device type on which it resides. For local files on nonallocatable devices, the device and the
related table space will be released. Assigned storage and related table space is released for local files
on allocatable devices, other than private disk packs, having a zero disposition code. Files with the
special names OUTPUT, PUNCH, PUNCHB, P80C, FILMPR, FILMPL, HARDPL, HARDPR, and PLOT are
assigned nonzero disposition codes when created. All other files are assigned a zero disposition code
when created. For local files with other disposition codes the file name is changed to the job name and
the file is assigned to control point 0. A local file with the name PUNCH or PUNCHB is output to a card
punch; the file OUTPUT is printed.

QUEUE FILES

To provide for the recovery of input and output files from disk tables on nonrecovery deadstarts, the
input and output queues are kept as permanent files. All input files that enter the system via JANUS,
INTERCOM, Remote Batch processor, or load tape (n.X TLOAD) are automatically cataloged. They are
not purged until the job has completed execution and all output files of the job have been cataloged.
When the permanent file catalog (PFC) becomes full, a message is issued to the operator and input halts
until there is more space for files to be cataloged.

The file name table entry of queue files contains permanent file information and the file description
parameters. 1TJ is the common routine for entering a file into the input queue called by JANUS,
INTERCOM Import processors, and DSP for ROUTE(filename,DC=IN). 2VJ verifies the job statement
parameters. 1QF is the PP routine which catalogs and purges queue files.

I 4-2 :) 60494100 J

Input Queve

Jobs may enter the system from sources such as card reader, magnetic tape, or remote devices. In every
case, a job file is read by a system package operating at a control point which then writes the job to a
local file on an allocatable device. When the file has been written, its entry in the file name table is
altered to indicate an input disposition code; the file is eataloged and released to control point 0 as an
input file. The input queue consists of all files assigned to control point 0 with an input disposition code.

The system packages that read in batched local jobs ensure that each job file in the system has a unique
seven-character name. The job name from the job statement.is truncated to the first five characters (or
extended with zeros to five characters) and two unique sequence characters are added. All numerals and
letters can be used as sequence characters; therefore, 1296 sequence combinations are possible for a
single five-character job name. Even though unique combinations are exhausted, duplication of names is
not significant unless the earlier job has not been completely processed when the duplicate enters the
system.

Output Queue

Output files originate from local files on allocatable devices; they have nonzero disposition codes. When
a job terminates, such files are cataloged, assigned to control point 0, and given either the job name or
the name in the file ID field of the FNT file routing supplement. These files then form a system output
queue which is, essentially, a list of files waiting to be output to unit record equipment.

In each output queue file name table entry, fields define the destination of the file. The characteristics
that are defined are device type, terminal ID, destination ID, external and internal characteristies codes,
disposition codes, and forms codes.

Local files can be put into the output queue as follows:

o The user gives the file a special name. When a file with a special name is created, it receives a
nonzero disposition code. These files are sent to the corresponding destination when the file is
released for output processing. For example, the file named OUTPUT receives a print
disposition code. A file named PUNCH receives a punch disposition code.

e The user can specify file disposition with a DISPOSE or ROUTE control statement or macro.
The file can have any name. Files must reside on allocatable devices that are members of the
queue set.

Files in the output queue must be on allocatable devices. A file is put into the output queue when the job
terminates or when a CLOSE,UNLOAD, or CLOSE,RETURN is performed Since the name of an output
queue file can be the name of the job which created it, and since a job can create several files which go
into the output queue, names in the output queue often are not unique.

ROUTE Macro — Additional Capabilities

A system job using the ROUTE macro has additional capabilities that a user job does not. A system job
can specify a source ID, a seven-character job name, and a predayfile file name. The other ROUTE
capabilities are the same as for user jobs. The ROUTE control statement and maecro are described for
user jobs in the NOS/BE Reference Manual. The remainder of this discussion describes only the
differences for system jobs.

60494100 J 4-3

The parameter block that must be set up to use the additional capabilities for system jobs has the
following format.

59 53 47 41 35 23 21 17 1 0
. Error
tag File Name Code Unused |A
Forms Code/ Disposition E |
+ Fl
tagtl 0000 ‘Input Flags Code (3 C ags
tagt2 Station ID- Statl_on I.D— Unused TID
Source Destination
. . Un- L
tag+3 File Identifier (FID) B Priority
used
Spacing
Code . . . Repeat|
tag+4 (%L:‘tle‘;t‘l Pre-dayfile File Name (Input File Only) Count Unused

The fields in the parameter block are identical to those described for the ROUTE macro in the NOS/BE
Reference Manual with the following exceptions.

Word Bits Field Description

tagtl 47-36 Forms code/input flags If the file is to be routed to an input queue, a value
of 44 indicates a file identifier (FID) of seven
characters is specified. This value is ignored if the
job is not a system job.

17-0 Flag bits Indicates which parameters are specified (in
addition to the values given in the NOS/BE
Reference Manual).

13 Dayfile is attached for immediate
routing to output.

11 Predayfile file name is specified.

5 System uses FID specified in tag+3, bits
59-18. Only system jobs ecan specify
seven characters; user jobs specify five
characters.

tag+l 59-42 Station ID-source Three display code characters used as the source ID
for a job routed to an input queue. When this field
is binary 0, the routed file has no source ID. When
DC-=IN, the job's source ID is used as the setting of
this field. A job's source ID is found in the control
point area.

tag+4 59-18 Predayfile file name Name of the file which contains the predayfile.
This parameter is meaningful.only for DC=IN.

® 4-4 60494100 J

ACQUIRE Macro

The ACQUIRE macro calls the PP routine QAF to search the input, print, punch, special (nonstandard)
output, and execution queues looking for entries that satisfy given selection criteria. The user specifies
one of four functions specified by a function code in bits 3 through 1 of word 0 in the ACQUIRE
parameter list: ALTER, modify queue entries; GET, attach a file to the caller's control point; PEEK,
return information about the queue entries; or COUNT, count the entries in the specified queue(s). QAF
can be called only by a routine resident in the system library. The format of the ACQUIRE macro is

ACQUIRE addr,recall,N.
addr The address of the first word of the parameter list.
recall Optional parameter specifying auto recall.
N Required parameter to distinguish this new macro from an older version.
QAF requires the parameter list to be at least six words in length. The list can be longer if there are

additional destination IDs. The additional length is specified in the additional destination ID word count
field.

59 53 47 41 35 23 17 156 11 5 3 0

File Name Eé;%; Queue Type|A B O

Alter Flags Forms Code Disposition Code Rézj:tt MZ\SA::;;);‘:Z?(I&:SB(ZT%/ER) 1

Source 1D Destination ID 1 'TJETI' g(:gil::/ Job Class 2

Reserved TIDn Reserved TIDc . Priority 3

fgf?%gi Pre-dayfile File Name CplefFlalH| Sxecing] 4
Only)

A:Ij\foi:::!ogiu?\l[) Ing:Jni“e Output File Count | Punch File Count Sp;?‘izlcoottnim 5

Destination 1D 2 Destination ID 3 Destination ID 4 6

b o0
Destination ID n Zero Terminator n

Function code.

Complete bit.

Predayfile bit.

Class 2 input file inhibit bit.
Class 1 input file inhibit bit.
Inhibit duplicate file name search.
Reserved.

Reserved.

TOH"HEHOQ W

60494100 J 4-5 I

Word

Bits

59-18

17-12

11-4

Description

File name. If the file name of a particular file is specified on any function,
each FNT entry is examined until the specified file name is found. This file
must meet the specified criteria to qualify as the selected file.

Error code (in octal).

Code Significance
01 Invalid queue type.
02 No queue entry found with specified parameters.
03 Function prohibits 7777g priority.
04 No FNT space.

05 Invalid reply entry buffer address.

06 Internal QAF error on FNT address.

07 Nllegal request.

10 Too many extra DID words.

11 PEEK requires single queue type.

12 Duplicate file name on GET.

13 Count of 0 is invalid.

14 LFN needed for file having predayfile.

15 Invalid FNT address/JDT ordinal.

Queue type. The queue type must be supplied on all functions except the
special PEEK function when it must be 0. The binary values are: 00000001
(INPUT), 00000010 (OUTPUT), 00000100 (PUNCH) or 00001000 (special
output), or 00010000 (execution).

INPUT file

OUTPUT file

Has a valid FNT entry, is unlocked at control
point 0, and has a disposition code of 04g
(INPUT job), 05g (INPUT tape job), or 06g
(INPUT tape job on P display).

Has a valid FNT entry, is unlocked at control
point 0, and has a disposition code of 40g (any
512 or 580 line printer), 42g (any 512), 43g (any
580-12), 44g (any 580-16), or 45g (any 580-20).

60494100 J

Word Bits

3-1

1 59-48

47-36
35-24
23

22-18

17-0

60494100 J

PUNCH file

Special output file

Executing job

Function code (in octal).

0 ALTER
1 GET

2 PEEK

3 COUNT

Description

Has a valid FNT entry, is unlocked at control
point 0, and has a disposition code of 10g
(PUNCH 026 set from display code).

Has a valid FNT entry, is unlocked at control
point 0, and has a disposition code of 20g (film
print), 22g (film plot), 24g (hardecopy print),
26g (hardeopy plot), or 30g (plot).

Has a valid JDT entry.

Complete bit. The complete bit must be cleared before any call to QAF. The
bit is set on completion of any function.

ALTER flags.

Bit Set

53
52

51

50

49

48
Forms code.
Disposition code.
Not used.

Repeat count.

Significance
Abort and/or eviet job and/or file.
Change repeat count.

Change forms code; for other functions, means
compare forms codes.

Change priority.
Change terminal ID to TIDn.

Send to central site.

FWA of reply buffer or a message to be issued when aborting a job. Limited

to 30 characters.

I 4-8

Word Bits

2 59-48
41-24

23-12

11-0

3 59-36
35-12

11-0

Description
Source ID (SID).
Destination ID 1 (DID).
FNT address/JDT ordinal. This field in the parameter list is an absolute FNT
address whenever a queue type other than job queue is specified. It is a JDT

ordinal whenever only the job queue is specified. The field is an FNT address
and is required on a special PEEK function and optional on all other functions.

Job class.
Bit Set Significance
5 Graphies job.
4 Express job.
3 Multiuser job.
2 INTERCOM job.
1 Batch job with nonallocatable device requirement.
0 Batch job without nonallocatable device requirement.

TIDn. New TID (used by ALTER only).
TIDe. Current Terminal ID (used for search).

Priority. If 0 priority is specified and the other criteria are satisfied, GET
attaches the first file found; PEEK writes a reply entry for each file; and
COUNT increments the file type count. If the priority is greater than 0 and
less than 7777g and the other criteria are satisfied, GET attaches the first
file having a priority greater than or equal to the specification; PEEK writes
a reply entry for each file that has a priority greater than or equal to the
specification; and COUNT increments the file type count when a file has a
priority greater than or equal to that specified. If the priority is equal to
77778, GET attaches the file having the highest priority among those that
satisfy all requirements; PEEK and COUNT do not allow this priority and
return an error code of 03g. ALTER does not use the priority as a search
criteria. This value replaces whatever the entry had before if bit 50 in word
1 is set.

60494100 J

Word

60494100 J

Bits

59-18

59-54

17

16

15

14

13-12
11-0

59-48

47-36

35-24
23-12

11-0

Description

Predayfile file name. The predayfile file name is required only if the
qualifying INPUT file has a predayfile. If the file has a predayfile, a separate
FNT entry is created to describe the predayfile entry. If the predayfile file
name is not given, the complete bit is set and the error code 14g is returned.
If a predayfile file name is always in the field, the predayfile flag must be
checked after each call to prevent duplicating the file name in the FNT
entries.

Spacing code (output file only). The spacing code associated with the output
file is returned on a GET function. It cannot be specified as a parameter but
will be returned.

Predayfile flag bit.

Class 2 INPUT file inhibit flag. The class 1 and class 2 INPUT file inhibit
flags are used to achieve selectivity in terms of file classes for GET, PEEK,
or COUNT functions. A class 1 file has no nonallocatable files associated
with it. A class 2 INPUT file has at least one nonallocatable file associated
with it. If the job statement specifies MTxx or NTxx, a nonallocatable file is
associated with the INPUT file. If the caller sets the class 2 inhibit flag on a
GET call and also sets the INPUT file type bit, only class 1 INPUT files are
returned.

Class 1 INPUT file inhibit flag.

Inhibit duplicate file name search flag. If the flag is 1, no search is made for
a duplicate file name.

Not used.
Executing job count.

Additional DID word count. The additional word count is used whenever more
than one is needed in the parameter list. Additional DIDs are packed three
per word and terminated by a byte of zeros. A maximum of 64 (decimal) is
allowed. The count is the number of CM words required to hold the additional
DIDs. It is not necessary to allocate an additional CM word simply to hold a
terminating byte of zeros. To hold six additional DIDs, for a total of seven
DIDs in the parameter list, the DID word count is two to three DIDs in the
first word and three in the second.

INPUT file count. Only one of the four file count fields can be specified on a
PEEK function; the other fields are not used. File type determines which file
count field is to be used.

OUTPUT file count,

PUNCH file count.

Special output file count.

Word Bits

6 59-42
41-24
23-6

n 59-42
41-24

23-0

Deseription
Destination ID 2.
Destination ID 3.
Destination ID 4.
Not used.
Destination ID n.
Zero terminator.

Not used.

Summary of Parameter List Usage

The required and optional parameter list field usage for each QAF function and the corresponding
returned parameters are shown in table 4-1.

TABLE 4-1. ACQUIRE MACRO PARAMETERS

Field Usage

ALTER GET PEEK COUNT
Field Name Call Return | Call Return | Call Return | Call Return
File/job name (¢} X (o] X - X - X
Error code - X - X - X - X
Queue type R X R X R X R X
QAF function code R - R - R - R -
Complete bit R X X R X R X
ALTER flags R - - - - - - -
Forms code o - (o] - o - (0] -
DISP code - - (¢} X o X
Repeat count (0] - - - X - -
I 4-10 60494100 J

TABLE 4-1. ACQUIRE MACRO PARAMETERS (Contd)

Field Usage
ALTER GET PEEK COUNT
Field Name Call Return | Call Return | Call Return | Call Return

FWA reply buffer 0) - - - R - - -
Source ID 0 - 6} X O X o X
DID 1 0 - (0] X 0} X
FNT add/JDT ord 0 X o) X o/RTT | X 0 X
Terminal IDn 0] - - - - - - -
Terminal IDe 6] - o) - o - 0) -
Priority 0] - R X R X R X
Spacing code (SC) - - - X - - - -
Predayfile file name - - -/rT - - - - -
Predayfile flag - - - X - X - X
Class 2 inhibit 0] - 6] - ¢} - -
Class 1 inhibit 0} - o) - O - (0] -
Executing job count - - - - R/-TT X - X
Add DID word count 0} - O - O - O -
Input file count - - - - R/-Tt X - X
Output file count - - - - R/-TT X - X
Punch file count - - - - R/-TT X - X
Special out file count - - - - Rr/-tt X - X
DID 2 (0] - o) - o - o -
DID n 6] - 0 - 0] - 0] -

Explanation of symbols:

Optional parameter.
Parameter returned by QAF.
Parameter not used.
Required parameter.

o KO

T Required only if predayfile is present.
Tt Second symbol is for the special PEEK function.

60494100 J

4-11 I

ALTER

ALTER, function code 0, gives the user the ability to change various fields within the queue entries that
match the selection criteria specified in the parameter list. Required parameters are queue type and the
ALTER flag bits which indicate the actions to be performed. Optional parameters are queue entry name,
address of an abort message, source ID, destination ID(s), and terminal ID. The forms code and priority
fields contain the new values and, thus, cannot be used as a search criteria.

The actions that can be performed are:
e Change routing of INPUT and/or OUTPUT queue files to the central site.
e Change routing of INPUT and/or OUTPUT queue files to another terminal.
e Change priority of OUTPUT queue files.

e Change forms code of OUTPUT queue files except for nonstandard output (PLOT, FILM, and so
forth).

o Change repeat count of OUTPUT queue files except for nonstandard output.
e Abort/evict queue entries and issue supplied error message.

The bits that indicate these actions may be set in any combination, but certain combinations are
mutually exclusive. For example, if the first two actions are specified, the result is as if only the first
action had been specified. Similarly, the last action overrides all other actions.

The user may also set the queue type bits in any combination but the combinations used when aborting a
job can make a difference. For example, if all queue types are specified, the job is killed rather than
dropped.

GET

GET, function code 1, selects the file that best meets selection criteria and attaches it to the control
point of the calling routine. Required fields are function code, priority, file type, and a zeroed
completion bit.

Before a file is attached, a search is made to ensure that no file having the same name is already
attached. If a duplicate file is found, an error code of 12g is returned and the completion bit is set. The
search for a duplicate file name can be suppressed by setting the inhibit search flag.

When the selected file is attached, an FNT supplement of type 0101g (if an input file is attached) or
0102g (if the attached file is output) is created and linked to the base FNT. The control point number of
the job is written into the FNT. When the file is returned by the calling job, the FNT supplement is
erased.

After the file is attached, the complete bit is set to one, the file name and FNT address are inserted, and

the source ID and the destination ID are entered. Should no file satisfy all the selection criteria, the
complete bit is set to one, the FNT address is zeroed, and an error code of 02g is returned.

I 4-12 60494100 J

PEEK

PEEK, function code 2, creates a list of three-word reply entries built from the queue entries matching
the selection criteria. Required fields are function code, priority, zeroed completion bit, the first word
address of the rely buffer in the user's field length where the reply entries are returned, the queue type
count of the number of reply entries to be returned, and the queue type. Only one queue may be
specified in the queue type. Optional queue entry selection criteria also include the starting FNT address
or JDT ordinal from an earlier PEEK request for the same queue.

PEEK begins examining the FNT entries at the point specified by the FNT address or at the start of the
FNT if no address is provided. For each file that matches the file selection criteria, a three-word reply
entry is built from the file's FNT. The reply entry is placed in the reply buffer, and the file type count is
incremented by one. PEEK continues searching until the requested number of reply entries is found or
the end of the FNT is encountered. The function works in a similar manner for the execution queue using
an optional starting JDT ordinal.

On return to the calling routine, the reply buffer, beginning at the first word address specified, contains
the three-word reply entries. The count field for the queue type requested contains the number of reply
entries built. The count is either the number requested or the number of entries built upon reaching the
end of the FNT or JDT. For example:

A user calls the QAF PEEK function to obtain 20 input queue reply entries for files having a
destination ID of ABC. The search is to begin at FNT address 4420g, with reply entries stored in the
user field length, beginning at REPBUF. QAF begins searching the FNT at FNT address 4420g looking
for input queue having a destination ID of ABC. Assuming that only 15 entries are found before
reaching the end of the FNT, the file count is set to 15, the FNT address is set to 0, and REPBUF
contains 15 three-word input queue file reply entries built from the FNT of the 15 qualifying files. If
20 entries are found with the last qualified at FNT address 4730g, the FNT address is set to 4733g,
ready to begin the next search, the input queue file count remains 20, and REPBUF contains 20
three-word reply entries.

A special PEEK function is defined with the file type field zero. The caller may check a particular FNT
entry at the address specified to determine whether or not the entry matches the file selection criteria.
Required fields are funetion code, a zeroed completion bit, the queue type field cleared, the first word
address of the reply buffer, and the FNT address of the file. Optional parameters are any of the file
selection criteria.

If the file at the specified address qualifies, the queue type, the complete bit, priority, and so forth are
inserted into the fields and a single three-word reply entry, built from the FNT entry, is placed in the
reply buffer. If the file does not qualify, the complete bit is set, an error code of 02g is inserted, and the
queue type field remains clear.

60494100 J 4-13 I

Format of the three-word reply entry for an input queue file is

59 41 35 29 23 1 0
File Name Priority 0
Sou‘rce ID Destination ID Reserved FNT Ordinal 1
Job Dependency Maximum|Maximum .
Dependency ID Count MT Drives|NT Drives, Reserved Terminal ID 2

Format of the three-word reply entry for an output queue (print, PUNCH, or special output) file is

59

53

41 23

11 0
File Name Priority 0
Source ID Destination ID Forms Code FNT ordinal 1
Repeat . L. Size of File .
Count Disposition Code (Words/10008) Reserved Terminal ID 2
LFile Interrupt Bit
Format of the three-word reply entry for an execution queue entry is
59 41 36 34 29 23 17 11
Not -
Job Name Used Priority 0
Source 1D Time FL/1 00g Job Ordinal 1
Error T Job
Operator Action Codes Yl cp ° Reserved Terminal ID 2
Flags g Status
Word Bits Description
0 59-18 File name/job name.
17-12 Not used.
11-0 Priority.
60494100 J

| 4-14

Word

INPUT

2
OUTPUT

2
EXECUTION

60494100 J

Bits
59-42
41-24

23-12

11-0
59-48
47-36
35-30
29-24
23-12
11-0
59
58-54
53-42
41-24
23-12
11-0
59-42

41-36

35

34-30

Description
Source ID.
Destination ID/time left for execution in seconds.

Forms code for output; not used for input; job field length/100g for
execution.

FNT ordinal/JDT ordinal.

Job dependency ID.

Dependency count.

Maximum number of seven-track drives to be assigned at one time.
Maximum number of nine-track drives to be assigned at one time.
Reserved.

Terminal ID.

One means file interrupted.

Repeat count.

Disposition code.

Size of file (words/1000g).

Reserved.

Terminal ID.

Operator action codes (SCOPE 2 only).

Error flag values (in octal):

10 Kill.
4 Drop.
2 Rerun.

Type of job (0 = 7600 or CYBER 70 Model 76; 1 = all others).

Control point number the job currently occupies.

4-15

Word Bits Description

29-24 Job status (in octal):
70 Waiting for MMF action.
60 Waiting for pack mount.
40 Waiting for operator action.
30 Waiting for tape/device assignment.
20 Waiting for permanent file.
10 Waiting for time/event.
02 Executing.
23-12 Reserved for future TID expansion.
11-0 Terminal ID.

COUNT

COUNT, function code 3, counts the number of queue entries of a specified type satisfying the selection
criteria. Multiple queue type bits can be set on a single call giving the caller the count of each queue
type desired. Required fields are queue type, function code, a zeroed completion bit, and priority.
Optional fields are the rest of the file selection criteria.

The counts of the queue types specified are returned to caller, and the complete bit is set. The file
name, file type, disposition code, source ID, destination ID, FNT address, and priority are returned for
the first file that satisfies the selection criteria.

VERIFYJ Macro

The VERIFYJ macro performs verification of basic job statement information for a new job input file.
The job statement information is obtained from a buffer in the user's field length. This macro verifies
the information, creates a system name for the new job, assigns the file to a queue device, and returns an
FNT address in addition to the job name and verified status. VERIFYJ is available only to routines
loaded from the system library.

The VERIFYJ macro formats a call to the PP routine VEJ (verify job statement) to perform the required
functions. VEJ can be called only by a routine resident in the system library.

VERIFYJ has the following RA+1 interface.

59 42 40 0

VEJ Tag

]
l-— Recall Bit

I 4-16 60494100 J

The user must construct a parameter block in the following format before calling the VERIFYJ macro.

VERIFYJ tag,recall

tag Address of the VERIFYJ parameter block.
recall Optional nonblank character specifying automatic recall.
59 47 23 17 1
\i ErrorT ¥
Tag Job Name Code Zero c
Tag+1 Unused Reserved TID
Tag+2 Unused Buffer LWA
Tag+3 Unused Buffer FWA
Tagt4 | FNT Address’ Unused
Word Bits Field Description
tag 59-18 jobname The name assigned to the new job file which will be an input

aueue file once the file contents are complete.
17-12 Error code Status return.
0 Successful.
1 Job statement error.
2 Buffer out of field length.
3 Reserved.
4 FNT full.
5 VERIFYJ parameter block outside FL.
6 Complete bit already set.

7 Nopermission to call VEJ.

11-1 Zero.
0] Complete bit. Must be 0 when macro used.
0 Oncall

1 On completion of call.
T These fields are returned by the VERIFYJ macro.

60494100 J 4-17 I

Word

tag+1

tag+2

tag+4

Bits
59-24
23-12
11-0

59-18

17-0

59-18

17-0
59-48

47-0

Field Description

Unused.
Reserved.

TID Terminal identification code.
Unused.

Buffer LWA Address of the last word+1 in buffer of the statements to be
verified.

Unused.

Buffer FWA Address of the first word in the buffer of the statements to be
verified.

FNT Address The location of the FNT for this file. The name of the file will
be that one returned as jobname above.

Unused.

Error code and corresponding fields returned are as follows:

Error Code

0

1

1/O TABLES

The input/output file requirements are coordinated with the status of input/output devices. File tables
and device tables are updated continually to provide interface for user jobs and system programs.

FILE TABLES

Fields Returned
All * fields as indicated in the parameter block.

All * fields as above, except if there is a jobname error, then jobname will be
ERROR xy, where xy is the system sequence ID.

Only error code and complete bit.
Only error code and complete bit.
None; job aborted.

Only error code; job aborted.

Only error code and complete bit.

The status and requirements of files are kept in the following tables: file environment table (FET), file
name table (FNT), file information table (FIT), and record block table (RBT). The FET and FIT are
created within the job field length; the other tables are CM resident. The CM resident tables are in the
upper table area of CMR, except the RBT which resides at the highest address of CM. Detailed
descriptions of CM resident tables appear in appendix B. The FET is detailed in appendix C. The FIT is
described in the CYBER Record Manager reference manuals listed in the preface.

4-18

60494100 J

File Environment Table (FET)

Every file for which I/O is to be performed must have a FET. Each FET consists of a basic five-word

entry followed by additional words; the form depends on the type of I/O to be performed.

The basic five-word FET entry is as follows:

Record Levels

59 47 3B 32 23 17 13 8 10
. - ‘ Error Code
FETO File Name in Display Code Flags Status MF’
. R Disposition LFET
FET 1 Device Type Flag Bits Code 5 FIRST
FET 2 0 IN
FET 3 0 ouT
FET 4 | FNT Pointer RB Size " PRU Size LIMIT
LFET -5 Length of FET minus five words for basic entry.
B Busy (free is 1).
M Mode (binary is 1).
Buffer parameters LIMIT £ FL
OUT < LIMIT
IN < LIMIT
OUT 2 FIRST
IN 2 FIRST
59 47 41 35 29 23 17 0
FET5 fwa Working wat1 Working
Storage Storage
UBC MLRS <
FET 6
Record Request/Return Information
FET 7 Record Number Index Length Index fwa

Random/Indexed Files (Mass Storage)

FET 5 is used for input/output blocking/deblocking by CPC.

FET 5 and FET 6 are used for S and L tape file processing.

Sequential Files (tape)

FET 6 and FET 7 are used for indexed file processing by CPC; FET 6 is used to pass RMS
address between CP programs and system PP input/output routines.

60494100 J

UBC

MLRS

Unused bit count.

Maximum logieal record size (S/L tapes only).

4-19 I

When the UP and/or EP flags are set in FET 1, then FET 8 contains

59 47 29 17 0

FET 8 EOI Return Address Error Return Address

When standard file labels are to be written, the following FET words are filled with information from the
LABEL control statement or macro. When a labeled file is read, the fields contain data read from the
label.

59 47 29 23 17 0
FET9 File Label Name (First 10 Characters)
FET 10 File Label Name (Last 7 Characters) Position Number
FET 11 | Edition Number Retention Cycle Creation Date
FET 12 6-Character Multifile Name Reel Number

When LFET-5 flag in FET 1 is set to 1 for extended label processing, FET 9 has the following format:

59 35 17 . 0

Label Error Code Length of Label Buffer FWA of Label Buffer

FET entries for the system dayfile, the hardware error file, and the control point dayfiles are kept in the
upper table area of CMR, adjacent to the control point 0 dayfile buffer. The format of the one-word
dayfile FET entries is

59 47 35 23 11 0

Relative ,
Ind Buffer Si Last R d Block
ndex uffer Size Buffer Address as ecord Bloc

I 4-20 60494100 J

Buffer sizes are set by the operating system assembly configuration parameters internal to CMR. The
origin address of each buffer is calculated by adding the relative buffer address to the T.DFB origin
address of the dayfile buffer area in CMR. The current position within the buffer is determined by
adding the index value to the buffer origin address. The field labeled last (byte 3) contains the value of
the index when the buffer was last flushed to disk. For the system dayfile and hardware error file, the
record block field contains the end-of-information record block when the file was last extended. For
control point dayfiles, the record block field is not used.

The first five words of the control point 0 dayfile buffer are preset as follows (b represents a blank):

bDAYFILE:

bbbNORMALD
(bbbbbbbb)
DEADbBbSTART

The system dayfile area in CMR is diagrammed as shown in figure 4-1.

T.DFB

System FET Entries

.

LE.DFBO (Buffer Size)

Relative LE.DFB1

Buffer LE.DFB2 L.DFB
Addresses

LE.DFB3

LE.DFB4

LE.DFB5

LE.DFB6

LE.DFB7
LE.CERF

Figure 4-1. System Dayfile Area

When the system is assembled, several system file entries are built into the FNT/FST for control point
dayfiles, system (library) file, and hardware error file. Their initial entries are diagrammed in figure 4-2.

60494100 J 4-21 l

T.FNT

Device
Type AX

Link
Address

0 = Unlocked
23\

ol

Control Point Zero

[

59 53 47 35 11 0
4 z 4 4 0 4 O]OIOOOOO 0 }Priority
A TEET | GumentRBT T Curent BT [Sw] current PR
0 017 4 0 0|0 01 }ggaiulsnactive
D Y F I L E ooloooo 0 0
0 0
0 0]l7 4 o o]0 01
D l L E 0 1 |ojojoooo] 0 0
0 0
0 0l7 4 0o o0 |0 01
D I L E 0 2 Joojoooofo 0
0 0
0 ol7 4 o oo 01
D 1 L E 0 3 |ojojoooo] o 0
0 0
0 0|7 4 o oo 01
D I L E 0 4 loojoooo] 0 0
0 0
0 0l7 4 o o |o 01
) G
D I L E 1 5 |olojoooo|o 0
0 0
0 0 7 4 0 0 0 01
c R F] L E olooooo 0 0
0 0
0 0l7 4 o o |o 01
z z z z 0 3 loojoooo| o 0
0 0
0 ol7 4 o o }o 0 0 1
z z z z 0 6 [filooooj100100100100 [{LEFNT-1
2 o | fecpby s
0 ol7 4 4 oo o o0 1
0 7 4 4 4 1 0 0
Figure 4-2. System File Entries
60494100 J

File Name Table (FNT)

To provide linkage between user programs and all I/O processing routines, the FNT is maintained in CMR
upper table area. Each basic entry in the file name table consists of three words; one or two three-word
extensions to entries may occur in some instances, extending the entry to six or nine words in length.
The first word contains the file name, control point number to which it is assigned, as well as other
pertinent information. The second and third words constitute the file status information; the format
differs depending upon the type of file and where it resides. The various forms of the FNT entry are
detailed in appendix B. The second and third words of the FNT entry are often called the file status
table (FST) entry.

DEVICE TABLES

Tables in CMR that provide information on input/output equipment and channels are used by the
operating system to make file assignments. Tables included in this section are the equipment status
table (EST), containing entries for all /O equipment in the configured system; device status table (DST)
and device activity table (DAT), providing information related to mass storage devices and controllers;
record block reservation (RBR) and record block table (RBT) containing information on each record block
in a mass storage device; the dismountable device table (DDT) and mounted set table (MST) containing
information related to the recording surfaces. The channel status table (CST) provides I/O channel
availability information and serves as an interlock for major file tables, which prevents modification of
the same table entry by two or more programs. Also included are the TAPES table and the tape staging
table (STG), the device pool table (DPT), and the INTERCOM table (ITABL). These tables are detailed in
appendix B.

Equipment Status Table (EST)

The EST resides in the upper table area of CMR and is pointed to by P.EST in the CMR pointer area.
Table length depends on installation parameters. Therefore, the CMR pointer word also includes the
LWA+1 address of the EST.

The EST contains a one-word entry for each device configured in the system, including consoles and
remote terminal MUX devices. Each entry describes current status of the device and includes the device
hardware mnemonic name, channels to which it is attached, device unit number, and so on.

Entries in the EST are numbered starting with one; an entry number, called the EST ordinal, is used to
identify the table position of each equipment entry. The EST ordinal of the equipment being assigned is
given as xxx in the operator command n.ASSIGNxxx. Only RMS devices may have EST ordinals greater
than 77g.

The EST is the basic reference for most other I/O tables. EST ordinals are found in the FNT/FST entries
for linking file entries to their assigned equipment. EST ordinals in the TAPES table link tape entries to
related equipment entries in the EST. Likewise, EST ordinals are found in the RBR, linking that table to
the allocatable device it describes.

Dismountable Device Table (DDT)

The DDT is used to maintain the status of rotating mass storage devices that are logically removable
from the system. The fixed section of the DDT is used to relate the status of an RMS drive to the status
of the pack mounted on that drive. The variable section of the DDT is used to store pack requests that
have not been satisfied. The second word of a fixed section entry has a pointer to the EST entry for the
drive. Whenever the physical status of the drive changes, the EST is updated. 1RN compares the status
bits in the EST with the status bits in the DDT and calls 1PK when a difference is detected. 1PK updates
the DDT to reflect the new status of the drive and checks the variable section of the DDT to see if any

60494100 J 4-23 I

pack requests can be satisfied. If a requested pack has been mounted, 1PK updates the fixed section to
include the DAM and MST ordinals, deletes the variable section entry, and recalls the job that had
requested the pack. When a new pack request is made, 1PK checks the DDT to see if the device is
already mounted. If it is mounted, 1PK satisfies the request. If the pack is not mounted, 1PK makes an
entry in the variable section of the DDT and swaps the job out.

Mounted Set Table (MST)

The MST is used to keep pointers for each mounted device set in the system. Each MST entry has a
corresponding set subdirectory table entry in the FNT. Entries are made by MNT when a master device
is mounted and deleted by DSM when a master device is dismounted.

Device Status Table (DST)

The stack processor uses the DST in processing of mass storage files. The DST is located adjacent to the
request stack in CMR upper table area. Each controller has one DST two-word entry which specifies the
overlay to be used by the stack processor for each controller, pointers to a chain of requests entered in
the request stack for that controller, and device availability information.

Each entry is numbered, starting from 1, to identify DST ordinals. The format of a DST entry is shown in
appendix B.

The DST format reflects the new SPM/1SP working relationship and the multiple access approach. The
first word contains multiple access information and the request stack chain pointer. The second word is
the stack processor input register. It contains the DST ordinal used by SPM when 1SP calls, equipment
and channel numbers, and PPIR activity pointer (used only as part of the DST).

The DST is a key table in the processing of allocatable storage files. DST ordinals are found in the DAT,
RBR table header, and EST. A DST ordinal appears in each DST entry; it is placed into the input register
of the PP assigned to process an entry for that device in the request stack.

Multiple access uses a DST master entry with DST multiple access memory entries. SPM assigns and

tracks each 1SP independently at each monitor call. Each 1SP works on only one stack request at a
time. All 1SPs operate independently of each other and are unaware of any other 1SP activity.

Device Activity Table (DAT)

The DAT is directly related to the device status table. It has one entry for each DST entry and is
referenced by the mass storage device open overlay (3DO) in determining the best RBR to assign to a
new or overflowing file.

The format for DAT entries are shown in appendix B.

Channel Status Table (CST)

The CST residing in the lower table area of CMR, contains a one-word entry for each hardware channel
and each pseudo channel in the system. For a reserved channel, the PP reserving the channel is
identified in the entry.

The channel number is obtained by a PP program from the EST entry for the type of equipment. The
length of the CST includes entries for a minimum of 12 hardware channels (optionally 24 maximum) and
13 pseudo channel numbers.

I 4-24 60494100 J

Access to the FST/FNT/RBT is controlled by an interlock scheme which prevents two or more programs
from attempting to modify the same table entry at the same time. Not all table accesses require pseudo
channel reservations. Some of the conditions which require pseudo channels are:

e Entryis added to FNT.

e File is assigned to a control point, causing FNT modification.

o FST code/status byte is initialized.

Details of CST are given in appendix B.

Refer to figure 4-3 for tables related to file processing on nonallocatable devices.

FET

FNT Pointer

CST

EST

EST Ordinal

FET Pointer -

FNT/FST

FNT Pointer

TAPES

STG

Figure 4-3. Nonallocatable Device File Processing

Tapes Staging Table (STG)

A satisfied job has all the tapes requested on its job statement. Unfilled demand is the sum of the job
statement reservations of active jobs, less the tapes assigned to them.

The NO TAPE STATUS FLAG makes is possible to issue tape channel functions through DSD without
interference from tape status processing. Status processing is not performed if the byte is nonzero.
Normal system operation resumes when the byte is zeroed.

The three clocks are used to make event triggers for automatic assignment.

The STG appears in appendix B.

60494100 J 4-25

TAPE DRIVE SCHEDULING

Tape drive scheduling improves overall system throughput, particularly as it relates to tape job setup and
execution. Automatic assignment, prescheduling, and overcommitment options are controlled by the
value of IP.TSG.

AUTOMATIC TAPE DRIVE ASSIGNMENT

ANSI tape labels include a volume serial number (VSN) field. The user can have tape drives assigned
automatically to his ANSI-labeled tapes by specifying the VSN on a VSN statement, in the REQUEST
function, or as a parameter on the REQUEST or LABEL control statement. The VSN statement relates
the external sticker or VSN to the file name and also provides information required for the tape job
prescheduling display. When used with the REQUEST or LABEL control statements or the REQUEST
function, it relates a VSN to a file name, which is relevant to equipment assignment. By itself, however,
the VSN serves no purpose. When a VSN control statement provides the first reference to a file, a
dummy FNT entry is set up using equipment code 64. If no subsequent REQUEST or LABEL control
statement or REQUEST function provides additional information about the file, CIO finds the 64
equipment code in the FNT entry, releases that entry, and creates a default disk file. This feature does
not encroach upon automatic assignment by label. The VSN parameter declares the tape label as either
type U (full ANSI-standard label) or type Z (SCOPE 3 nonstandard label). The Z labels are not ANSI
standard because the recording density field (character 12 of the volume header label) is not standard.

For automatic assignment of unlabeled tapes, the VSN must be entered by the operator. The tape is then
assigned automatically to all jobs naming its VSN. Y-labeled tapes do not contain VSN information;
however, to achieve automatic tape assignment, the operator can enter a VSN for a Y tape through the
console. No automatic assignment is provided for 2MT or 2NT parameters.

TAPE JOB PRESCHEDULING

The tape job prescheduling display is an extension of the P display and lists, by VSN, the tape reels
required by each tape job. A tape job is any job which contains one or more of the tape parameters MT,
NT, HD, PE, or GE on its job statement. All incoming tape jobs are entered in a prescheduling queue, a
subset of the input queue. The purpose of a prescheduling queue is to advise the operator of tape reel
requirements and to keep jobs from being processed until the required tapes can be obtained from the
tape library. This arrangement also allows the operator some control over the selection of tape jobs for
execution.

The operator communicates with the prescheduling queue through DSD commands and the P display.
Each time the P display is requested, tape jobs having the highest priority are displayed. A job requiring
tapes is not placed in the normal job input queue until the operator releases it with a command. Once
released, the job is considered for assignment to a control point and execution; it no longer appears in the
prescheduling display.

l 4-26 60494100 J

JOB SCHEDULING WITH TAPE DRIVE OVERCOMMITMENT

Job scheduling based on tape drive overcommitment assumes that a tape job does not always need its
maximum tape requirement for the duration of the job and that most processing uses fewer than the
maximum number of drives requested. Therefore, a job is assigned only the drives it needs to continue
execution at any instant in time; excess drives, at that instant, are made available to run other jobs.
Such a job scheduling algorithm permits the total tape requirements of all active jobs to exceed the total
number of drives in the installation. However, a system deadlock could occur if two or more jobs have
unfilled tape demands, such that every tape drive is assigned but no job has enough tapes to run to
completion. Such a deadlock could be broken only by rerunning or killing one of the competing jobs.
Although the job scheduling algorithm includes some built-in deadlock prevention features, preventing
deadlocks is a funetion of tape assignment, not job scheduling.

As part of REQUEST processing, a deadlock prevention algorithm is provided. A potential deadlock
exists if at least two jobs have unsatisfied tape requirements and the number of free tapes is less than
the maximum required to satisfy any one job. The deadlock prevention algorithm refuses any tape
asignment (manual or automatic) if such assignment would create a potential deadlock. Tape jobs could
be scheduled at random without regard to tape drive availability and the deadlock algorithm would
prevent deadlocks, but the resulting refusal of tape assignments would cause operator confusion and loss
of efficiency.

Depending on the installation option to enable or disable scheduling by density (IP.SCHDE), deadlocks
involving 679 tape units may occur. If the option to schedule by density is disabled (IP.SCHDE = 0), the
system assumes all nine-track tape units have the same recording capabilities. However, models
679-2/3/4 tape drives are capable of 800/1600-cpi density operations while models 679-5/6/7 tape drives
are capable of 1600/6250-cpi density operations. Without careful scheduling, a single job can cause a
deadlock. For example, assume an installation has two 800/1600-cpi 679 tape units and two
1600/6250-cpi 679 tape units. A job requires two tapes recording at 1600 cpi and one tape at 800 cpi. If
the two tapes requiring 1600 cpi are assigned to the 800/1600-cpi units, the tape requiring 800 cpi cannot
be assigned. Procedures to resolve schedule deadlocks involving a mixture of 679 tape units and other
nine-track tape units are described in part I of the NOS/BE Installation Handbook.

If the option to schedule by density is enabled (IP.SCHDE = 1), nine-track tape units are scheduled by the
system according to the density parameters specified on the job statement.

DYNAMIC TAPE DRIVE STATUS CHECKING

Information concerning the physical status of tape drive units is entered into the TAPES table and
updated by periodic checks of unassigned units for a ready/not ready status. This information is
displayed in the top half of the P display. The period for status checking is set by the installation; it
must be short enough to preclude the possibility of an operator dismounting a tape from a tape drive and
mounting another without detection. Such periodic checking of unassigned tape drives makes automatic
assignment more efficient and flexible.

Initially a tape drive is set to not-ready status as noted in the TAPES table. When a drive is made ready,
the TAPES table is updated with information from the tape label. (If the tape is unlabeled, this fact is
noted in the table.) A search is made for a job that needs the tape, and the tape is assigned to it,
providing such an assignment will not cause a deadlock. This action applies to both labeled tapes and
tapes qualifying as scratch.

60494100 J 4-27 I

Whenever a requested tape cannot be located immediately, the requesting job is rolled out until the
operator mounts the tape. When the tape is found, it is automatically assigned to the requesting job and
the job is rolled back into CM to continue processing. While the job is rolled out, the operator can make
a manual tape assignment which causes the job to be rolled in automatically.

Dynamic tape drive status checking permits the automatic assignment of unlabeled tapes by VSN. A VSN
entered by the operator is recorded in the TAPES table; as long as that drive remains in the ready status,
the system knows that the tape is still mounted and that it can be assigned without operator intervention
by any job requesting that VSN.

RMS SET TERMINOLOGY

All disks used in the operating system are divided into sets. The term disk includes fixed disks and
removable packs and is distinet from a drive which can hold different disk packs at different times. A
set is an independent group of disks; a disk belongs to only one set, and files do not overflow to another
set. Any user may own a set of removable disk packs.

Private sets are removable and mountable by job requests and operator action. Each member is mounted
as needed, and members (other than the master) may be dismounted by operator command at any point in
processing; masters may be dismounted when no jobs reference them.

Public sets remain mounted at all times and have either permanent file default, system, queue, or
scratch attributes, or a combination. These can all be combined in one set. Also, the members
individually have SYS, PF, and Q attributes to further delimit file allocation. All these attributes are set
by the operator at deadstart, and the individual devices can be given PF and Q attributes only by
initialization deadstarts.

Members of public sets cannot be dismounted; however, empty members can be deleted by DELSET, and
new members added by ADDSET.

The system set is used for the system file and its related files created by post-deadstart use of EDITLIB
and LDCMR, and the dayfile and CERFILE. There is no parameter on the REQUEST statement to
specify system. The user can request the system set and VSN by name.

The PF default set is assigned when a file requests PF and no setname; only the PF default set is
consulted on an ATTACH when no SN (setname) is supplied.

The Q set is assigned for special name files such as OUTPUT, PUNCH, and so forth; these files cannot be
assigned to another set. Deadstart consults only the Q set to retrieve the queues. If a file is to be
moved via DISPOSE or ROUTE, it must first be assigned to the Q set with a RESULT(filename,Q) request.

Scrateh sets are unlike the other sets as several sets may have the scratch attribute. Files not assigned
by REQUEST and not special-named (OUTPUT, and so on) are assigned to a scratch set.

DEVICE SETS
Every RMS device is a member of a group of devices known as a device set. Such device sets can be

either public sets or private (user) sets. All members of a private set must be the same device type such
as all 844-21 disks or all 844-41 disks; a combination of device types is not allowed.

I 4-28 60494100 J

Public Device Sets
Each public device set is assigned one or more of the following set attributes:

System set This set contains system files such as ZZZZZ04, ZZZ77Z23, the
system dayfile, and the C.E. diagnostic file.

Permanent file default set This set contains permanent files for which an alternate device
set is not explicitly assigned.

Queue set This set contains the INPUT, OUTPUT, and PUNCH queue files.

System default (scrateh) set This set contains nonpermanent files for which a device set
residence is not explicitly assigned.

Device set attributes are assigned at deadstart. All four attributes must be assigned for each
mainframe. Only the system default attribute can be assigned to more than one device set on a
mainframe.

Every device in a public device set can (but need not) be assigned one or more of the device attributes
listed below. Devices within a private set can be assigned master device and permanent file device
attributes. System device and queue device attributes are prohibited within private sets.

System device This device can contain the system files given previously for the
system set attribute. The system device attribute can be
assigned only to public devices that are members of the system
set.

Master device The master device contains system tables relating to its device
: set. These tables include the device label, the PFD, the PFC,
the SMT, the DAM, the PFT, and the LFT. Every device set

must have a master device.

Permanent file device This device can contain files for which the REQUEST control
statement specifies PF.

Queue device This device can contain files with names such as INPUT,
OUTPUT, and PUNCH, file with nonzero disposition codes, and
files for which the REQUEST control statement specifies Q.
This device attribute cannot be assigned to devices within a
private set.

The system device attribute is assigned at deadstart; the master, permanent file, and queue device
attributes are assigned when the device set is created. Attributes assigned to devices (except for the
system device attribute) need not match the attributes assigned to the device sets of which they are
members.

Private Device Set

A private device set is a group of RMS devices that can contain permanent files and be logically and
physically removed from a running system. Permanent files stored on a private device set can therefore
be transferred from one computer to another without moving the entire system. Specific attributes
cannot be assigned to private device sets.

60494100 J 4-29

Shared Device Sets

In a dual-mainframe system, certain device sets can be shared between mainframes. Such sets must
consist entirely of 844-21, 844-41, or 855 devices. They cannot have the system set attribute. When a
device set is shared, all devices within that set are shared. Devices can be shared at either the unit or
the controller level. The system uses the hardware reserve feature to reserve access to critical tables
during an update; consequently, only one mainframe can access a device during an update.

A pool of free space is maintained in the RBR of each mainframe sharing the device. Additional space is
maintained in the DAM on the master device. The pool is replenished when it gets low, and excess is
returned to DAM. If a stack request is outstanding but all local space is used, the request is chained into
the device overflow table (DOT) contained in CMR. Permanent file access between mainframes is
coordinated through the PFC.

To comprehend the funections of the various. tables described in figure 4-4, the terms used in mass storage
space allocation must be understood. Terms are defined below.

Sector The smallest accessible physical space increment on a track of a rotating mass storage
device.

PRU The smallest amount of data a user can access; it is 64 decimal (100 octal) CM words and is
usually equal to 1 sector.

RB The smallest amount of mass storage that can be allocated. An RB, defined in the RBR
header, is several PRUs in length.

RBR A bit-coded table which indicates those RBs on a device which are assigned to file; flawed

(defective), or available for assignment. A zero bit indicates that the specific RB is
available for assignment. The number of PRUs in a default RB is given in table 4-2.

TABLE 4-2. DEFAULT RB SIZE

Device Type
Device RMS Type Mnemonie Code Default PRU/RB (Decimal)
844-21 Disk pack AY 13 57
844-41 Disk pack AZ 14 577
819 Disk pack (fixed) AH 15 160
885 Disk pack (fixed) AJ 17 160t

t Using the default PRU/PB size, the 885 and 844-41 devices require two RBRs to fully
describe the available disk space.

4-30 ‘ 60494100 J

RMS TABLES

The record block reservation table (RBR) and the record block table (RBT) contain information about
each record block in an RMS device. Figure 4-4 shows the interface between the RMS tables and the

file/device tables described earlier in this section.

FET

CST

EST

FNT/FST —

Set FNTs

DAT
’ -
Request
Stack
RBR ::l’
DST
MST
—
jo— DDT
ey
RBT

Disk RBR
{DAM)

Figure 4-4. RMS Tables

60494100 J

4-31 I

Record Block Reservation Table (RBR)

A record block on a mass storage device is allocated to a file before any data can be written to that file.
As data is written and a record block is filled, another record block must be assigned. Before the stack
processor can select a record block to assign to a file, it must determine availability of record blocks. A
record block reservation table maintained in CMR provides this information.

Each mass storage device is represented by at least one entry in the RBR. Several RBRs can be
generated for a single device, each deseribing a unique area on the device. Each entry is made up of a
two-word header and a wvariable length bit table. Each bit represents the availability of the
corresponding record block, If a bit is zero, the RB is available for assignment; if a bit is one, the RB is
not available.

The first word of each RBR header contains a 6-bit allocation style code supplied as a parameter to the
RBR macro when the CMR is assembled at an installation. Unique allocation style codes for each RBR
can be set by the installation; this code can be used to direct a file to the RBR with a specific RB size
and/or recording technique. ‘

Record Block Table (RBT)

The RBT is file oriented. Each mass storage file in the system has an associated RBT chain. The RBT,
located in the high address end of CM, consists of word pairs which are linked to form an RBT chain for
each file that exists on an allocatable device currently recognized by the system (refer to figure 4-5).
The RBT expands and contracts by 100 (octal) word blocks as files are allocated and released. A
maximum of 8192 (decimal) CM words may be assigned to contain all the RBT entries active at any one
time. :

When a mass storage file is established, a two-word RBT entry is created for that file; additional entries
are assigned and linked in a chain as the file expands and entries are needed. Each entry consists of ten
12-bit bytes; some are used as pointers to additional entries in the chain and to other tables. Remaining
bytes in the entry contain the RB numbers of record blocks assigned to the file. RB numbers are placed
in sequential RB bytes in order of their assignment. An RB number serves as the address of a bit in the
RBR and DAM bit tables representing the availability of that record block; it is also the address of the
corresponding physical record block on the mass storage device. RBT entries are addressed by RBT
word-pair ordinals. The word-pair ordinals are numbered sequentially starting from the highest address
in CM. v

The CMR pointer word P.RBT contains the current size of central memory divided by 100 (octal), as well
as the current length of the RBT in 100 (octal) word increments. The same word also contains the RBT
word pair ordinal of the first member of the RBT empty chain. Unused word pairs in the RBT are linked
to form the empty chain. As record blocks are released from an evicted file, the dropped word pairs are
linked into the empty chain. Word pairs are assigned to files from the head of the RBT empty chain, and
the new first-member word pair ordinal is entered into the CMR pointer word. The RBT channel is
requested as an interlock before a word pair is removed from the empty chain. -

l 4-32 , 60494100 J

RBT Empty RBT Size
P.RET Chain Ord. | (n Blocks)
Entry
Ordinal High
Core
1
16 32
24 > 26 (~—oI RBT
26 > 0
3‘2 > 24
n*40g,

_/\/-\/\/\/'\'\/__\’ Low

Core

Figure 4-5. Record Block Table

Word 1 of the first word pair assigned to a file contains ordinals, flags, and so forth. The RB bytes
denote the record blocks assigned to the file. These bytes, initially zero, are set as each record block is
assigned. The values in the RB bytes are RB numbers which indicate the physical address on the device
and a corresponding bit in the bit tables. As a file expands, additional RBs are entered into the RB byte
fields until the word pair is filled; in this case, another word pair is assigned to the file and linked to the
current word pair. If no more record blocks are assignable from the RBR/DAM table, an overflow
condition ocecurs; in this case, a word pair in overflow format is linked into the chain, another word pair
is linked to the overflow word pair, and processing continues with the remaining RB byte fields in the last
link on the overflowed device set to zero.

As a file is evieted or record blocks are dropped, the RB bytes are cleared. When an entire word pair is
emptied, it is linked into the RBT empty chain.

The end of a file's RBT chain is a word pair having zeros in byte 0 of the first word. The last word pair in
the empty chain contains all zeros.

When a file is established for a job, an entry is made in the FNT table. The FST part of the FNT entry
for a mass storage file contains the ordinal of the first RBT word pair (WP) of the RBT chain that
describes the file. The same FST word also contains the current file position.

Figure 4-6 shows the FNT pointing to the RBT chain for the file. The RBT chain is made up of word pairs
that are forward linked (byte 0). That is why the first word pair must be known. In the example, the file
is deseribed by the contents of two word pairs. The first word pair is 27 (octal) and the second is 52
(octal) to represent 27 and 52 word pairs from the end of CM, respectively. The first word pair contains
some additional information besides RBs, such as the EOI PRU. This is the last PRU+1 of the last RB of
the last word pair in the RBT chain that describes the file. The first word pair also contains the MST
ordinal of the set that the file resides on. Each word pair contains the DAM ordinal of that part of the
set that contains the RBs in that word pair.

60494100 J 4-33 l

I 4-34

59 23 1 0
P.RBR RBT SIZE/100
59 a7 35 0
P.ENT FNT. FWA FNT LWA+1
FNT I 59 53 47 35 23 1714 1 0
TABLE >
: {CUR RB BYTE IN WP’)7
FNT— FILE NAME (LEN) /
ENT
05 0027 0052 0003
(MST) {1ST WP) (CUR WP) 1| (cur PRU) ::::5
FST I
FET ADDRESS
~«——(OF CUR RB)
RBT 59 47 38 35 29 23 1 0
TABLE ! .
(END) r————* | ;
> 0000 004 1511 1517 0000
™1 (LAST WP) (pam) | © (RB) (EOI RB) (NO RB) -
A 52
0000 0000 0000 0000 0000 v
47 (1ST RB BYTE OF WP USED) : -~
<— (OF LAST RB
7 IN LAST WP)
> 0052 004 05 0013
(NEXT WP) (DAM) 7 | tmsT) (LAST PRU+1) we*
27
<«— VSN > 1510
S (RB)
Z | %
(END OF CM) *p _ WORD PAIR
Figure 4-6. File Table Interfaces - FNT Points to RBT Chain
60494100 J

The FST in the example points to the first RBT word pair (0027) and the current position, which is
specified as the current RBT word pair (0052), the current RB byte of that word pair (1), and the current
PRU (0003) within the RB specified by that RB byte. The current position of the file in the example is
seven PRUs from EOIL.

Figure 4-7 shows how information in the RBT first word pair is used to find the correct RBR via the
DDT. The DAM ordinal, rather than the RBR ordinal, is used to identify files because it is associated
with the device (pack) in the set, while the RBR ordinal is associated with the drive (unit). When a pack
is moved from one unit to another, its RBR ordinal changes but its DAM ordinal does not. The DAM
ordinal is actually the relative PRU within the set DAM table on the master device. This table contains
the DAMs for all members of the set. A DAM starts on a PRU boundary and may take one or more
PRUs. Only those DAM (PRU) ordinals corresponding to the start of a DAM are valid as DAM ordinals.

The RBT first word pair in the example specifies DAM ordinal 004 and MST ordinal 05. A linear search is
first made of the DDT table for an entry with the corresponding MST ordinal and a DAM ordinal range
that includes the one specified in the RBT first word pair. (If no entry is found, the device is not
mounted.) If only one DAM is associated with this DDT entry, the first and last DAM ordinals designated
there will be the same number. Once the DDT entry is located, the DAM ordinal range (003 to 006 in the
example) and the EST ordinal (10 in the example) found in that entry are saved.

A linear search of the RBR table headers is now made for the first entry with the same EST ordinal that
was found in the DDT (10 in the example). When found, this RBR corresponds to the first DAM ordinal
from the DDT (003 in the example). If this does not match the DAM ordinal from the RBT first word
pair, the DAM ordinal corresponding to the next RBR is determined. This is done by taking the length of
the bit map from the RBR header plus 3 for the DAM header (on disk), adding 77 (octal) and dividing by
100 (octal) to determine the number of PRUs this DAM takes, and adding that to the DAM ordinal this
RBR represents to give the DAM ordinal for the next RBR. The DAM ordinal for this RBR is now
compared to the DAM ordinal from the RBT first word pair and the search continues until the correct
RBR is found. In the example, the search concludes at the second RBR.

The DAM ordinal range from the DDT was 003 to 006 and the DAM ordinal from the RBT first word pair
was 004. The last DAM ordinal of the range 006 means either there are two more RBRs corresponding to
DAM ordinals 005 and 006, or that the DAM with ordinal 004 requires two PRUs and only one RBR
follows corresponding to DAM ordinal 006. As above, the correct situation is determined by examining
the length field in the RBR header corresponding to DAM ordinal 004.

Figure 4-8 shows how the RB bytes in the RBT word pairs point to the RBs in the RBR bit table. Bits in
the RBR bit table (pointed to from the RBR header) are allocated contiguously, 60 bits per word for the
entire allocation space represented by this RBR. When an RB is allocated, the bit in the RBR bit table is
set and its position is converted to an RB ordinal and placed in an RB byte in an RBT word pair. When an
RB is deallocated, the RB ordinal from the RB byte is converted back to a bit position. That bit in the
RBR bit table and the RB byte in the RBT word pair are both cleared.

To convert the current file position of the example to its equivalent RB bit position, check the FST
current position from figure 4-6 to find word pair 0052 and RB byte 1. Figure 4-6 shows that RB (1517 in
the example) pointing to the RBR bit table. The RB ordinal of 847 decimal (1517 octal) is first converted
to an RB number by subtracting 1. Dividing 846 by 60 gives word 14 with a remainder of 6. Since RBR
bit table bits are allocated left to right, this corresponds to bit 53 of word 14 of the RBR bit table. To
find the corresponding physical address on the device, use the RB number and apply the appropriate
formula given under Record Block Table Entry in appendix B.

60494100 J 4-35 l

4-36

59 53 35 0
P.RBR RBR FWA
T
59 47 + 41 35 23 0
NO
P.DDT FIXED DDT FWA
DDTs
RBR _ 59 35 23 0
TABLE 'f] :l
RBR
HEADER
10
BIT TABLE LOCATION (EST)
DDT 59 47 35 - 23 11 0
TABLE 2 . f
Lt B VSN >
003 006 05 10
(FIRST DAM) (LAST DAM) (MST) (EST) FIXED
\ DDT -
ENTRY
A
59 47 38 35 29 23 1 0
RBT
TABLE | - . z
(END) :
0052 004 . 05 0013
(NEXT WP) (DAM) (MST) (LAST PRU+1) WP (FIRST WP
27 OF FILE)
«———— VSN > it
(END OF CM)

Figure 4-7. File Table Interfaces - RBT Points to RBR Via DDT

60494100 J

60494100 J

59 53 35)
P.RBR RBR FWA
l 59 53 35 0
RBR >
TABLE : 2,
l RBR
HEADER
SIZE/2 BIT TABLE FWA
i : &
i?
..... 1001 RBR
— BIT
TABLE
... 1111010100011101011110 . . .
RBT 59 47 38 35 29 23 11 0
TABLE J’ R Z’
— 0000 004 1511 1517 0000
(LAST WP) (DAM) (RB) (EOI RB) (NO RB) WP
\ 52
0000 0000 0000 00 0000
9 (1ST RB BYTE OF WP USED) : L’
<«——(OF LAST RB
] IN LAST WP)
0052 004 7 05 0013
(NEXT WP) (DAM) (MST) (LAST PRU+1) WP
27
- \ o 1510
< VSN > (RB)
[4 ' L7
(END OF CM)

Figure 4-8. File Table Interfaces - RB Byte Points to RB

4-37

INTERCOM TABLES

INTERCOM uses word 16g of the CMR pointer area as the pointer to the INTERCOM multiplexer table
and the INTERCOM pointer area. The multiplexer table and subtable entries contain a complete
description of the communications equipment to be serviced by INTERCOM. The multiplexer table is

central memory resident.

The INTERCOM pointer and buffer area is generated when INTERCOM is initialized and is not resident
when INTERCOM:'is not running in the system. This area contains pointers to the various chains in the
INTERCOM buffer area.

The INTERCOM tables are detailed in appendix B.

‘ I 4-38 60494100 J

INPUT/OUTPUT S

1/0O PHILOSOPHY

Input and output request processing depends upon the source of each request. Active user programs
request I/0 through RA+1 requests, which are cycled through CPMTR. PP programs request I/O by
placing a monitor request into their PP output register. System programs, which run at control point
n+l, cannot make monitor requests through RA+1. Since they run as CM service functions for PP
programs, they make such requests through the output register of the PP servicing the program.

CPMTR assigns the 1/0 request to CP.CIO which, in turn, assigns it to the proper processor, CIO or 1SP.
The circular input/output processor (CIO) processes requests for magnetic tape, teletypewriter, and unit
record I/0; the stack processor processes all requests for mass storage 1/0.

Another I/O processor, JANUS, exists in the operating system, but its funetion is limited to processing
unit record I/O for the system input and output queues. The queues contain job input and output files and
are related to the job processing activities. JANUS is discussed in section 7, Job Processing.

Ccio

CIO consists of the CM program CP.CIO, the PP program OV.CIO, and several PP I/O drivers. A system
programmer can write his own input/output software, or he can have his program generate a call to CIO.
Before calling CIO, the program must set up circular buffer parameters and the CIO operation code in
the file environment table (FET) for the file. The relative address of the FET is placed in the CIO call.

A PP routine places a CIO call in its PP output register. PPMTR passes the call through the CP input
register for the CP.MTR. A CP program places a CIO call in the CP request register (RA+1). When
PPMTR accepts the CIO call, it assigns a PP and clears byte 0 of the PP output register.

When CP.MTR detects a CIO call, it passes it to CP.CIO for validation and selection of the proper
CP.CIO routine to supervise execution of the function. The CIO call is.then reissued via the request
stack and CP.MTR to be processed by the required CIO driver; RA+1 is cleared. When the I/O operation
is completed, CP.CIO adds 1 to the code/status field of FET word 1. As all CIO codes placed in the FET
code/status field are even numbers, an odd number in that field signals completion of the operation (or
that the file is not busy).

ClO CODES

All codes indicated by * are illegal; all reserved codes are illegal. All codes are octal for coded mode
operations; 2 is added for binary mode. For example, 010 is coded READ; 012 is binary READ.

000 RPHR 054 * 130 CLOSE,NR

004 WPHR 060 UNLOAD 134 %

010 READ 064 * 140 OPEN

014 WRITE 070 RETURN 144 OPEN WRITE
020 READSKP 074 % 150 CLOSE

024 WRITER 100 OPEN,NR 154 *

030 * 104 OPEN WRITE,NR 160 OPEN

034 WRITEF 110 POSMF 164 *

040 BKSP 114 EVICT 170 CLOSE,UNLOAD
044 BKSPRU 120 OPEN,NR 174 CLOSE,RETURN
050 REWIND 124 %

60494100 J 5-1 I

The 200 series is for special read or write (reverse, skip, nonstop, rewrite, and so on).

200 READC 230 * 254 %
204 WRITEC 234 REWRITEF 260 READN
210 READLS 240 SKIPF 264 WRITEN
214 REWRITE 244 % 270 *
220 * 250 READNS 274 %

224 REWRITER

The 300 series is for tape OPEN and CLOSE.

300 OPEN,NR 324 * 354 *
304 % 330 CLOSER 360 *
310 * 334 * ' 364 *
314 * 340 OPEN 370 CLOSER,UNLOAD
320 * 350 CLOSER 374 CLOSER,RETURN

The 400 series is reserved for Control Data.
The 500 series is reserved for installations.

The 600 series is as follows:

600 * 630 * 654 *
604 * 634 * 660 *
610 * 640 SKIPB 664 *
614 * 644 * 670 *
620 * 650 * 674 ¥
624 *

The 70‘0 series is reserved for Control Data.

CIRCULAR BUFFER

A cirecular buffer is a temporary storage area in CM through which data passes during I/O operations
(figures 5-1 and 5-2). It is termed circular because I/0 processing routines treat the last word and the
first word of the buffer area as contiguous.

FIRST is the first word address of the circular buffer. Routines that process I/O never change the value
of FIRST.

LIMIT is the last word address+l of the buffer area. No data is stored in this word. When LIMIT is
reached, the next address accessed is FIRST. Routines that process I/O never change the value of LIMIT.

OUT is the next location from which data is removed from the circular buffer. CIO or the calling
program changes OUT depending on whether the operation is read or write.

IN is the next location into which data is written. CIO or the callmg program changes IN depending on
whether the operation is read or write. When IN=OUT-1, the buffer is full. A partly filled buffer extends
from OUT to IN-1.

The circular buffer must be at least one word larger than the length of one PRU. For a write operation,
at least one PRU of data should be in the buffer. For a read operation, the buffer must have room to
receive one PRU of data. Less than one PRU may be transmitted only if an end-of-record is read or
written.

l 5-2 60494100 J

FIRST

7,

Data

Space for Data

Data

ouT

/ LIMIT-1

File Environment Table

FIRST

Space for Data

ouT
L Data
IN
Space for Data
LIMIT-1

Figure 5-1. Circular Buffer

——— = FIRST

File Name

CIO Code

FIRST

Circular Buffer

Data

/ ‘

IN

"

ouT

LIMIT

—\> out

Space for Data

60494100 J

Data

> LIMIT

Figure 5-2. FET - Circular Buffer Interface

CIO OPERATION

When MTR initiates CP.CIO to perform file I/O, CP.CIO locates the FNT for the file. If the FNT pointer
in the FET is not zero, CP.CIO checks the FNT entry indicated by the pointer to determine if the file
name in the FNT entry is the same as the file name in the FET. It also checks that the file is assigned to
the job control point. If the names do not matech or if the FNT pointer is zero, CP.CIO searches the
entire FNT for a file assigned to that job control point with a matching name. If the file is not found,
CP.CIO creates an FNT entry for the file. Such files are always local and assigned to allocatable
devices. Once the FNT entry is found or created, CP.CIO stores the address of the FNT entry in the
FET. The FNT pointer in the FET facilitates the FNT search.

If file status is busy, CP.CIO posts the request for rescheduling and exits. Otherwise, CP.CIO checks the
code field in the FET against the last code/status field in the FNT to ensure the requested operation can
legally follow the preceding operation. If not, CP.CIO replaces the RA+1 call with a request for the PP
program CEM which handles error messages, then reissues the RA+1 call to be processed again by
CP.MTR. If the operation is legal, CP.CIO transfers the code/status field in the FET to the last
code/status field in the FNT. The proper CP.CIO routine is selected to supervise function execution.

When the file is opened, CP.CIO determines if the file is on an allocatable or nonallocatable device or is
ECS resident by checking the device code in the second word of the FNT. If the file is ECS resident, an
ECS extension routine is called to process the request. If the file is on an allocatable device, CP.CIO
calls CP4ES, which calls SPM to enter the request in the I/O request stack in CMR. The stack processor
1SP schedules 1/0 on allocatable devices; it performs the I/O and sets the completion bit. OV.CIO and its
overlays process I/0 requests for files on nonallocatable devices.

When OV.CIO is required, PPMTR assigns an available PP and causes OV.CIO to be loaded and
initialized. Depending upon the operation, OV.CIO calls one or more of the following overlays.

Function routines:
10P File open (nontape files).
3DO Mass storage device file open.

3IC File close for 66x/67x tapes.

3IF Multifile positioning for 66x/67x tapes.
3 66x/67x initialization and setup.

31 System calls to 1IT.

3IL Slave for 310, 3IC, and 31V.

3IM Write error message for 66x/67x tapes.

3IN° VSN message processor for 66x/67x tapes.
310 Tape open for 66x/67x tapes.
31V Reel close; EOR processor for 66x/67x tapes.

4ES Enter stack request (mass storage 1/0).

5-4 60494100 J

Tape drivers:
1IT Main 66x/67x tape driver, calls the nIx overlays.
1LC Load conversion tables into 66x/67x controller.

1TS Tape sampler.

2IA L tape read for 66x/67x tapes.

21B L tape write for 66x/67x tapes.

2IC Coded read (seven-track) for §67/677 tapes.
21D Coded write (seven-track) for 667/677 tapes.
21L Label read/write for 66x/67x tapes.

21P 66x/67x tape positioning.

2IR 66x read driver.

2IT 67x read driver.

2IW 66x write driver.

21X 67x write driver.

Tape error recovery drivers:

3IE Error diagnosis for 66x/67x tapes.
3IR Read recovery for 66x/67x tapes.
3IW Write recovery for 66x/67x tapes.

If the file device code is for a nonallocatable device, CIO loads an I/O driver into its PP to perform the
actual I/0. The overlay selected is determined by the operation requested. For example, if a user issues
a request to read data from a file on a standard format seven-track tape from a 667 tape unit, CIO calls
the overlays 1IT, 2IR, and 3II into its PP. 2IR reserves one of the hardware channels connected to the
equipment. It then issues the function codes to connect the controller and tape drive. 2IR issues
functions to transmit one PRU of data from the tape drive over the data channel.

2IR accumulates the PRU of data in a PP buffer. When the entire PRU is transmitted or an end-of-record
(short PRU) is encountered, 2IR picks up the pointers to the circular buffer in CM from the FET. 2IR
continues to transfer PRUs of data from the tape through the PP buffer to the circular buffer until the
buffer is full or an end-of-record is encountered. 2IR and 1IT update the PRU count in the file FNT,
release the channel, set completion bits in the FNT ard FET, and drop out.

Tables 5-1 through 5-12 list the logical sequence of events during various CIO tape operations.

60494100 J 5-5

TABLE 5-1. READ MACRO LOGICAL SEQUENCE

Standard
Binary

Standard
Coded

S
Binary

Coded

L
Binary

Coded

Sequence of Events

X

X

10.

11.

12.

Exit if not enough room in buffer for
one maximum size physical record.

Exit if not enough room in buffer for
MLRS words.

Read one physical record into PP.
Read one physical record into CM.

If physical record exceeds maximum
allowable size, return error status
DEVICE CAPACITY EXCEEDED
and perform error procedures.

If physical record exceeds maximum
logical record size, return error
status DEVICE CAPACITY
EXCEEDED and perform error
procedures. If a long record is
encountered, excess information is
discarded without notification to
user.

If end-of-file mark is read, perform
end-of-file mark procedures.

If noise records are encountered, go
to 3.

If parity error, perform parity
procedures.

If end-of-tape reflective spot is
encountered and tape is unlabeled,
perform end-of-reel procedures.

If short PRU is read, strip level
number.

If zero length PRU is read, go to 21.

60494100 J

TABLE 5-1. READ MACRO LOGICAL SEQUENCE (Contd)

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events
X X 13. When 6681 is present, convert data
in PP from BCD to display code.

X 14. When 6681 is present, convert data
in CM from external BCD to display
code.

X 15. Convert 1632 line terminator to
0000.
X X X X 16. Transmit data to CM.
X X X X X X 17. Update IN.
X X 18. Fetch OUT from CM.
X X X X 19. Place in word 7 of FET the number
of unused bits in the last data word.
X X 20. If full PRU, go to 1.
X X X X X X 21. If last record was level 17 or tape
mark, set end-of-file status.
X X X X X X 22. Set end-of-record in status field of
FET and exit.
60494100 J

TABLE 5-2. READN MACRO LOGICAL SEQUENCE

S S L L
Binary Coded | Binary Coded Sequence of Events

X X X X 1. Fetch size of MLRS from word 7 of FET.

X X X X 2. Exit if not enough room in circular buffer for one logical
record plus header word. Buffer size must be greater than
record length plus one (header word) to avoid OUT equal to IN
when buffer is full.

X X 3. Read one physical record into PP.

X X 4. Read one physical record into CM.

X X 5. If physical record exceeds maximum allowable size, return
error status DEVICE CAPACITY EXCEEDED and perform
error procedures.

X X 6. If logical record exceeds MLRS, return error status DEVICE
CAPACITY EXCEEDED and perform error procedures.

X X X X 7. If end-of-file (tape mark) is read, perform end-of-file mark
procedures. Go to 18.

X X X X 8. If noise records are encountered, go to 3.

X X X X 9. If parity error is encountered, perform parity procedures.

X X X X 10. If end-of-tape reflective spot is encountered on unlabeled
tape, perform end-of-reel procedures.-

X 11. When 6681 is present, convert data in PP from BCD to display
code.
X 12. When 6681 is present, convert data in CM from BCD to
display code.

X X 13. Transmit data to CM.

X X X X 14. Update IN in PP memory.

X X X X 15. Place length of record and number of unused bits in last data
word in buffer header word.

X X X X 16. Update IN.

X X X X 17. Fetch OUT.

X X X X 18. If last record is tape mark, set end-of-file status and exit.

X X X X 19. Go to 2.

60494100 J

TABLE 5-3. READSKP MACRO LOGICAL SEQUENCE

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X X X 1. Read one physical record into PP.

X X X X 2. If physical record exceeds maximum
allowable size (512 CM words, and
so on), return error status DEVICE
CAPACITY EXCEEDED and
perform error procedures.

X X 3. Read one physical record directly
from tape to CM buffer, stopping
without error when available buffer
space is full.

X X X X X X 4. If end-of-file (tape mark) is read,
perform end-of-file mark procedures.

X X X X X X 5. If noise records encountered, go to 1.

X X X X X X 6. If parity error is encountered,
perform parity procedures.

X X X X 7. If end-of-tape reflective spot is
encountered on unlabeled tape,
perform end-of-reel procedures.

X X 8. If short PRU is read, strip level
number.

X X 9. If zero length PRU is read, go to 10.

X X 10. When 6681 is present, convert data
in PP from BCD to display code.
X 11. When 6681 is present, convert data
in CM from BCD to display code.
X 12. Convert 1632 line terminator to
0000.

X X X X 13. Transmit data to CM. If record
exceeds circular buffer, stop
without error at buffer full.

X X X X 14. Place number of unused bits in last
data word in word 7 of FET.

X X X X X X 15. Update IN.

X X 16. Feteh OUT from CM.

X X 17. If any unused space exists in circular
buffer, go to 1.

60494100 J 5-9 I

TABLE 5-3. READSKP MACRO LOGICAL SEQUENCE (Contd)

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events
X X 18. If last record is full PRU, set n to 1
and proceed to SKIPF.
X X X X 19. If L is less than 17, set L to 0.
X X X X 20. If record is end-of-file mark (tape
mark), assume level is 17.
X X X X 21. If level number is less than 1, set n
to 1 and proceed to SKIPF.

X X 22. If level number is less than L, set n
to 1 and skip to first end-of-file
mark (tape mark).

X X X X X X 23. If last record is level 17, set
end-of-file status and exit.

X X X X X X 24. If last record is not level 17, return
end-of-record status and exit.

TABLE 5-4. RPHR MACRO LOGICAL SEQUENCE
Standard Standard
Binary Coded Sequence of Events

X X 1. Set OUT to IN.

X X 2. Read one physical record.

X X 3. If end-of-file mark is read, perform end-of-file procedures.

X X 4. If noise records are encountered, go to 2.

X X 5. If parity error is encountered, perform parity procedures.

X X 6. If zero length PRU is read, go to 10.

X X 7. Transmit data to CM.

X X 8. Update IN.

X X 9. If last record is level 17 or tape mark, set end-of-file status.

X X 10. Exit.

I 5-10

60494100 J

TABLE 5-5. WRITE MACRO LOGICAL SEQUENCE

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X 1. Exit if not full PRU.

X X X X 2. If data from OUT to IN exceeds
maximum logical record size from
FET, return DEVICE CAPACITY
EXCEEDED and perform error
procedures.

X X X X 3. Fetch number of unused bits in last
data word from FET and adjust
record length. If record length
constitutes a noise record, return
DEVICE CAPACITY EXCEEDED
and perform error procedures.

X X 4, Read one PRU of data starting at
OUT from CM to PP.

X X 5. Read data contained between OUT
and IN from CM to PP. Adjust by
unused bit count.

X X 6. When 6681 is present, convert from
display code to BCD in PP memory.
X 7. When 6681 is present, convert from
display code to BCD in CM.
X 8. Convert zero byte line terminator to
1632.

X X X X 9. Write record to tape.

X X 10. Write, from CM to tape, data
contained between OUT and IN,
adjusted by unused bit count.

X 11. When 6681 is present, convert data
in CM buffer back to display code.

X X X X X X 12. If parity error 1is encountered,
perform parity procedures.

X X X X X X 13. If end-of-tape reflective spot is
encountered, perform end-of-reel
procedures.

X X X X X X 14. Update OUT.

X X X X 15. Exit.

X X 16. Fetch IN from CM.

X X 17. Goto 1.

60494100 J

5-11

TABLE 5-6. WRITER MACRO LOGICAL SEQUENCE

l 5-12

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X X X 1. If IN equals OUT, exit.

X X 2. If PRU is not full, insert level
number in PP buffer.

X X X X 3. If data from OUT to IN exceeds
maximum logical record size from
FET, return DEVICE CAPACITY
EXCEEDED and perform error
procedures.

X X X X 4. Fetch number of unused bits in last
data word from FET and adjust
record length. If record length
constitutes a noise record, return
DEVICE CAPACITY EXCEEDED
and perform error procedures.

X X 5. Read one PRU starting at OUT or
between OUT and IN, whichever is
smaller, from CM to PP.

X X 6. Read data between OUT and IN
from CM to PP. Adjust by unused
bit count.

X X 7. When 6681 is present, convert from
display code to BCD in PP memory.
X 8. When 6681 is present, convert from
display code to BCD in CM.
X 9. Convert zero byte line terminator to
1632.

X X 10. If IN equals OUT, write zero length
record. Go to 12.

X X X X 11. Write record to tape.

X X X X 12. Write data between OUT and IN
from CM to tape, adjust by unused
bit count.

60494100 J

TABLE 5-6. WRITER MACRO LOGICAL SEQUENCE (Contd)

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events
X 13. When 6681 is present, convert data
in CM buffer to display code.

X X X X X X 14. If parity error is encountered,
perform parity procedure.

X X X X X X 15. If end-of-tape reflective spot is
encountered, perform end-of-reel
procedures.

X X X X X X 16. Update OUT.

X X X X 17. Exit.
X X 18. If full PRU is not written, exit.
X X 19. Gotol.

TABLE 5-7. WRITEF MACRO LOGICAL SEQUENCE

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X 1. If no data from OUT to IN, go to20.
X X X X 2. If no data from OUT to IN, go to 17.

X X 3. If not full PRU, insert level number
0.

X X X X 4. If data from OUT to IN exceeds
maximum logical record size, return
DEVICE CAPACITY EXCEEDED
and perform error procedures.

X X X X 5. Fetch number of unused bits in last
data word from FET and adjust
record length. If record Ilength
constitutes a noise record, return
DEVICE CAPACITY EXCEEDED
and perform error procedures.

60494100 J 5-13 l

TABLE 5-7. WRITEF MACRO LOGICAL SEQUENCE (Contd)

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X 6. TFetch one PRU of data starting at
OUT or fetch data between OUT and
IN, whichever is smaller, from CM
to PP.

X X 7. Read data contained between OUT
and IN from CM to PP. Adjust by
unused bit count.

X X 8. When 6681 is present, convert from
display code to BCD in PP memory.
X 9. When 6681 is present, convert from
display code to BCD in CM.
X 10. Convert zero byte line terminator to
1632.

X X X X 11. Write record to tape.

X X X X 12. Write data between OUT and IN
from CM to tape, adjust by unused
bit count.

X 13. When 6681 is present, convert data
in CM buffer to display code.

X X X X X X 14. If parity error is encountered,
perform parity procedures.

X X X X X X 15. If end-of-tape reflective spot is
encountered, perform end-of-reel
procedures.

X X X X X X 16. Update OUT.

X X X X 17. Write end-of-file mark and exit.

X X 18. If full PRU is not written, write
zero length level 17 record and exit.

X X 19. Go to 3.

X X 20. If last operation is WRITE, write
zero length PRU.

X X 21. Go to 17.

I 5-14

60494100 J

TABLE 5-8. WRITEN MACRO LOGICAL SEQUENCE

S S L L
Binary Coded | Binary Coded Sequence of Events

X X X X 1. If OUT equals IN, exit.

X X X X 2. Fetch header word from OUT. Set PPOUT to OUT plus 1.
Set PPIN to PPOUT plus the number of CM words in logical
record. If PPIN has passed IN, exit.

X X 3. If data from PPOUT to PPIN exceeds maximum physical
record size, return DEVICE CAPACITY EXCEEDED and
perform error procedures.

X X X X 4. Adjust record length by number of unused bits in last data
word (from header word). If noise record is encountered,
return DEVICE CAPACITY EXCEEDED and perform error
procedures.

X X 5. Fetch data contained between PPOUT and PPIN. Adjust by
unused bit count.

X 6. When 6681 is present, convert from display code to BCD in
PP memory.
X 7. When 6681 is present, convert from display code to BCD in
CM.
X X 8. Write record to tape.
X X 9. Write data between OUT and IN from CM to tape. Adjust by
unused bit.
X 10. When 6681 is present, convert data in CM buffer back to
display code.

X X X X 11. If parity error is encountered, perform parity procedures.

X X X X 12. If end-of-tape reflective spot is encountered, perform
end-of-reel procedures.

X X 13. Update PPOUT.

X X X X 14. Update OUT. Feteh IN. Go to 1.

60494100 J - 5-15 I

TABLE 5-9. WPHR MACRO LOGICAL SEQUENCE

Standard Standard
Binary Coded Sequence of Events

X X 1. If IN equals OUT, exit.

X X 2. Fetch data from OUT to IN.

X X 3. Write record to tape.

X X 4. If parity error is encountered, perform parity procedures.

X X 5. If end-of-tape reflective spot is encountered, perform end-of-reel

procedures.

X X 6. Update OUT and exit.

TABLE 5-10. SKIPF MACRO LOGICAL SEQUENCE

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X X X X X 1. Ifnis0,setntol.

X X X X 2. If L is less than 17, interpret as L
equals 0.

X X X X X X 3. Read a physical record.

X X X X X X 4 If noise record is encountered, go to
3.

X X X X 5. If end-of-tape reflective spot is
encountered on unlabeled tape,
perform end-of-reel procedures.

X X 6. If record is full PRU, go to 3.

X X X X 7. If end-of-file mark is encountered
on unlabeled tape, assume level
number equals 17.

X X X X 8. If record is not end-of-file mark,
assume level number equals 0.

X X X X X X 9. If end-of-file mark encountered on
labeled tape, perform end-of-file
procedures.

X X X X X X 10. If level number is less than L, go to
3.

X X X X X X 11. Subtract 1 from n. If n is not equal
to 0, go to 3.

X X X X X X 12. Return end-of-record to status. If
last level number was 17, return
end-of-file to status. Exit.

5-16 60494100 J

TABLE 5-11. SKIPB MACRO AND BKSP MACRO LOGICAL SEQUENCE

Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X X X X X 1. Ifnis0,setntol.

X X X X 2. If L is less than 17, interpret as L
equals 0.

X X X X X X 3. If reel is at beginning of data (either
physical load point or zero physical
record count), set beginning-of-
information and exit.

X X X X X X 4. Read one physical record backward.

X X X X X X 5. If noise record is encountered, go to
4.

X X 6. If record is full PRU, go to 3.

X X 7. If this is first read backward, go to 3.

X X 8. Position forward over short PRU.

X X X X 9. If end-of-file mark is encountered,
assume level number equals 17.
Otherwise, assume level number
equals 0.

X X X X X X 10. If level number is less than L, go to
3.

X X X X X X 11. Subtract 1 from n. If n is not equal
to zero, go to 3.

X X X X 12. Exit.

TABLE 5-12. BKSPRU MACRO LOGICAL SEQUENCE
Standard Standard S S L L
Binary Coded Binary Coded Binary | Coded Sequence of Events

X X X X X X 1. If at load point or if PRU count
equals 0, set beginning-of-
information in FET and exit.

X X X X X X 2. Backspace one physical record.

X X X X X X 3. Subtract 1 from n. If n is not equal
to 0, go to 1.

X X X X X X 4. Exit.

60494100 J

5-17 I

Allocatable Device I/O

Most files in the system are stored on allocatable devices. The system library ZZZZZ04 is stored on an
allocatable device known as the system device. Each time a PP overlay or a CP program not resident on
CM is to be loaded from the library, I/O must be performed on the system device. The job and system
dayfiles and the CE error files are stored on allocatable devices, as are all input and output queue files
and all files created by CIO.

A request for I/O on a mass storage allocatable device must be placed in a table, called the request
stack. The stack is searched, and the request which requires the minimum amount of overhead to access
the data is chosen. Overhead involves switching head groups on the disk or physically moving heads. By
using a priority-incrementing scheme for scheduling disk I/O, overhead is kept to a minimum.

All mass storage devices are connected to controllers which are connected to hardware channels of the
computer. For some disk devices, the controller and the disk unit form one piece of equipment. In most

cases, however, the controller and the disk are physically separate units. All mass storage devices
connected to a single controller must be of the same type.

READC
The READC function is intended primarily for system use with mass storage files. It applies to all mass
storage devices. Since READC wuses intersector time to the maximum while reading high-speed mass
storage devices, it does not include checks for erroneous programming and control words. READC should
be used by system programmers only. The format is

READC Ifn,recall

READC transmits PRUs continuously to the circular buffer, with a control word preceding each PRU.
Reading continues until one of the following occurs.

e The buffer does not have enough room for the next PRU and its control word.
® An error condition occurs.
e End-of-information is encountered.

Code and status on completion (x depends on file mode):

00020x Normal completion.
O0ee20x Error code ee.
74123x EOI.

On mass storage, the same amount of data is transmitted for every PRU: the control word and one
device standard PRU. The last 12 bits if the control word and the entire standard PRU length are
exactly the physical data recorded on the device, including system control information.

I 5-18 60494100 J

The following diagram shows the format of the PRU.

PRU Size

59 53 47 35 29 23
PRU Size uBC Byte Count
Good Data
Level Invalid Data

PRU size 64 CM words in each PRU on the device.

UBC Unused bit count; always 0.

Byte count Count of the number of 12-bit bytes of data. It must be equal to 5 times the
number of CM words occupied by the data. The value is recorded on disk as 12
bits, but expanded here to 24 bits.

Level System logical record level number. If byte count divided by 5 is a full PRU,

The READC macro generates the following code.

59

level does not exist.

47

40

29

17

SA1

Ifn

RJ

CPC

000003

000200

READLS

The READLS function applies only to mass storage files. READLS reads several random records into the
file circular buffer according to the list of direct access addresses provided by the user. No information

in the buffer reveals boundaries. READLS should be used by system programmers only.

The format is

READLS ifn,recall

60494100 J

5-19 |

Before READLS is called, bits 17 through 0 of FET+6 should be set to the address of the list ‘of addresses
to be read. Reading continues until one of the following occurs.

o The list of addresses is exhausted.
e End-of-information is encountered while reading a record.
o The buffer is full.
e An error condition oceurs.
e The request is disecontinued for device repositioning.
Code and status on completion:
Bits 3 and 4 contain 01, 10, or 11, giving the status at the point where the operation terminated (10
is end-of-record, 11 is end-of-file). The operation terminates with EOI status if the last PRU of the
file is read and no EOR or EOF occurs. The contents of bits 8 through 5 do not pertain to this
description.
The address pointer is updated by the system when READLS terminates so that the function can be
reissued by the user without the user changing the pointer. The updated pointer reflects the next record
to be read. If reading stopped in the middle of a record, the pointer reflects the next position to be read.
The words in the list of addresses to be read can have one of two formats, but the formats of the entire

list must be the same. A word of all zeros must terminate the list. Either of the following formats can
be used.

e Bits 59 through 36 contain a PRU number, the same as used in the system indexes. These are
the numbers the system returns to the record request/return information fields (bits 29 through
0 of word 7) of the FET when records are written on a mass storage device. Bits 35 through 0
are zero. A user list in this format is converted by the system to the next format.

e Bits 35 through 0 contain the internal direct access address (RBTA/RBB/PRU) address RBT.

The READLS macro generates the following code.

59 47 40 29 17 0

SA1 Ifn RJ CPC

000003 0l r 000210

WRITEC (Continuous Write)

The WRITEC function is intended primarily for system use. Since it uses intersector time to the
maximum on high-speed mass storage devices, it does not include checks for erroneous programming and
control words. The format is

WRITEC 1fn,recall

I 5-20 60494100 J

WRITEC transmits PRUs from the circular buffer to a mass storage device. Each PRU in the buffer
must be preceded by a control word. Writing continues until one of the following occurs.

e The buffer is empty.

e An error occurs.
The diagram of the PRU and control word appears with the discussion of READC. PRU size must be
standard 64 CM words for mass storage; if not, serious errors result. The 24 low-order bits of the control
word and the full CM words are written to the device.
Byte count is the count in 12-bit bytes of good data in the PRU and must be a multiple of 5. If byte
count/5 is less than the device PRU size, the next 12-bit byte after the good data is the system level
number in binary. Level must be in the range 0 < level < 17 octal.
The unused bit eount field (UBC) in the header word represents the number of unused bits in the last data
word of a PRU. Since mass storage files are in system logical record format, data resolution is to the
nearest full CM word so that the UBC field is always zero. This field is reserved for future expansion.

If the file has any data at all, it must be terminated by some end-of-logical-record; level 17 octal must
appear as a zero-length logical record.

The WRITEC macro generates the following code.

59 47 40 29 17 0

SA1 Ifn RJ CcpPC

000003 O|r 000204

Stack Processor

A stack processor consists of the CMR manager CP.SPM, the PP program 1SP, and its various overlays.
Basically, the components of a stack processor and their functions are:

CP.SPM The stack processor manager.

0V.185 Examines DST ordinal and loads 3DO if the DST ordinal is 1; otherwise, loads 1SP.
OV.18p The stack processor driver supervisor.

OV.1RN Requests/releases RBT storage; merges released chains to the empty chain.

0OV.3DO Assigns a device and an RBT word pair to a new or overflowing file.

0VvV.4DO Processes stack requests which require no device access, specifically

O.SKPF/O.SKPB with skip eounts of 777777g and O.BPRU.

If SPM finds a request for an 819 disk, it calls HSP, the 819 disk stack processor (refer to 819 Disk I/O
Processing). The remainder of this discussion applies to only 844 and 885 disk drives.

60494100 J 5-21

SPM is called to enter, terminate, and reissue stack requests. SPM performs request scheduling, device
optimization, and all RMS I/O functions except file assignment (performed by 3DO), non-1/O skipping
(performed by 4DO), and physical I/O (performed by 1SP/1S8Q). 1SP and 1SQ are RMS device drivers.
1SP is used with 7054 and 7154 controllers; 1SQ is used with 7155 controllers. Each program handles one
request at a time.

A PP or CP system routine initiates I/0 by placing a stack request (first two words of the format) in the
first two words of its associated communication area (T.PPCn for PPn) and calling the CP monitor
function SPM (M.ICE/EX.SPM). SPM picks up the stack request from the communication area, generates
the third word, puts the three-word stack request into the request stack area, and links it to the proper
DST chain. If the priority bit in the stack request is set, that stack request becomes the first stack
request in the proper DST chain. The priority bit should be used with diseretion; otherwise, priority stack
requests could be pushed down in the DST chain.

To perform RMS I/O, SPM selects a stack request and assigns it to an RMS device driver. The driver
must be assigned to a DST ordinal that represents an access to the specified RMS device. If a stack
request is received and no device driver is operational, the request is entered by SPM and an M.ISP
request (initiate stack processor driver) is sent to MTR. If the MTR communication path is busy, no
request is posted and the device driver is assigned later during the normal MTR DST sean for work
outstanding with no PP assigned. The PP is assigned by MTR by using the second word of the DST as the
PPIR entry to call the proper PP routine.

When a device driver comes up, it initializes itself for the proper device (844 or 885). Channel and
equipment numbers are in the PPIR. Initialization is completed and SPM is called for a stack request. (A
special procedure is used during EDITLIB operations.) The device driver performs the I/O requested,
obtaining field access as necessary, and at I[/O completion, returns the stack request to SPM for
termination processing. If there is another stack request outstanding for this driver, SPM assigns the
request to the driver. Otherwise, it assigns the driver to idle. A subsequent stack request for this device
need only be placed in this device driver's PP communication area to start I/O.

Device dependent code for 844 devices is in overlay 3SY which is contained in common deck RMSY.
Device dependent code for 885 devices is in overlay 3SJ which is contained in common deck RMSJ.
RMSY and RMSJ are in PL1A. :

In addition to the overlay area for device dependent code, the stack processor has an overlay area for the
executive routine that performs the other side of the data transfer or a nondata transfer related
function. There are currently four such executive routines.

e CM input/output.

e PP input/output.

o Positioning.

e ECSI/O via CM buffers or DDP.

As each stack request is processed, the appropriate executive routine is loaded if necessary. No load
oceurs if the proper routine is already present.

MTR ensures that at least one PP contains a stack processor at all times, or that one is reserved for that
purpose. This requirement is necessary so that it is always possible to load a PP overlay that resides on
mass storage. To avoid unnecessary loading and dropping of stack processors, a stack processor remains
in the PP until MTR needs a free PP. At that point, MTR sets a PP request flag for SPM. Idle stack
processors check this flag in their idle loop and call SPM if it is set. SPM then issues a drop order to the
first idle stack processor it finds. If all stack processor PPs are busy, no action is taken until one is
about to become idle. When the monitor drop flag is set, SPM issues a drop order to the PP instead of an
idle order.

® 5-22 60494100 J

Stack Request Formats

There are two kinds of stack request formats, external and internal. The external formats are used by
PP and CP routines in submitting I/O initiation requests to SPM through the communication area of the
caller. The internal format is used for SPM/stack processor communication through the stack processor
communication area. It is different from the external format because the stack processor does not work
with RBs but with PBs. SPM converts RBs to PBs for 1SP and RBs to physical addresses for 1SQ. This is
done so that stack processors do not have to access the RBT chains.

The external stack request format consists of three words. The first two words are supplied by the
caller; the third word is added by SPM. The first word specifies the type of stack request (order code,
interlock flag, direct) and source of RMS file or device information (FST pointer, RBT chain pointer,
equipment pointer). The second word specifies the other side of the request (PP, CM, ECS). The third
word is SPM internal information. External stack request formats are summarized in the Request Stack
Entry illustration in appendix B.

The internal stack request format consists of three words. It is part of the SPM/stack processor
interface at communication area locations PPMES4 through PPMES6. The format varies depending on
whether 1SP or 1SQ is used. The following diagram shows the format of the internal stack request for
the SPM-1SP interface.

59 47 41 35 23 11 0
Next Range SPM —» 1SP
Next Next PB/PRU
PB Starting PRU Last PRU+1
PPMES4 1SP —» SPM
Nun%kr)el: (::iztzgs Flags, FET Code/Status Same as
ans Original Stack Request
PPMES5
Current PB/PRU
EST
PPMES6 Ordinal
PB First Last Current
PRU PRU+1 PRU

The first and third words contain the next PB/PRU and current PB/PRU transfer information. The next
PB/PRU is the next one to be processed by 1SP and, in the case of skipping backward, is the PB/PRU
which logically precedes the current PB/PRU being processed. The NXTPB function of SPM updates the
next PB/PRU in an overlap synchronous manner so that 1SP can continue to do I/O and have the next
PB/PRU information available when needed. 1SP uses the next PB/PRU information to update the
current PB/PRU in word 3 and thus determine the current operation. The process is then repeated.

The second word and rightmost two bytes of the first word are the same as the original stack request.
The first PRU and last PRU fields specify the range of the request within the specified PB; the current
PRU is the one currently being processed. The flagsy field (bits 47 through 42) is described under
SPM-1SQ Interface in this section.

60494100 K 5-23

The following diagram shows the format of the internal stack request for the SPM-1SQ interface.

59 47 41 35 23 11 0
Next Next
N?Xt Next Beginning Sector SPM —» 1SQ
Cylinder Track Sector Count
PPMES4
No. of PRUs
Transmitted Flagsy FET Code/Status 1SQ—+SPM
PPMESS5 Same as Original Stack Request
Current Current
PPMESE Cur-rent Current Beginning Sector ; Current ES'T
Cylinder Track Sector Count PRU Ordinal

The SPM-1SQ interface is the same as the SPM-1SP interface except physical addresses are passed
instead of PBs. The flagso field (bits 47 through 42 of the first word) is described under SPM-1SQ

Interface in this section.

Stack Processor Order Codes

Order codes used in mass storage I/0 request stack entries differ from those used in the CIO code/status
fields of FET and FST entries. The three groups of codes correspond to the formats for the second word
of a request stack entry. Order codes, standard system symbols, and functions are as follows.

CM Read/Write Order

00 O.READ
01 O.RDSK
02 O.RCMPR
03 O.RDNS

5-24

Description

Corresponds to READ macro, CIO codes 010 and 012. Read data from
device to CM until end-of-information is reached, a short PRU is read,
or next PRU does not fit into the buffer. (Refer to table 5-1.)

Corresponds to READSKP macro, CIO codes 020 and 022. Read as for
O.READ until end-of-information is reached, a short PRU is read, or
the CM buffer is completely full. Change to O.SKF with n=1 unless
reading was stopped by a short PRU with record level greater than or
equal to request level. (Refer to table 5-3.)

No corresponding CPC macro or CIO code. Read as for O.READ, but do
not transmit the first n CM words of the PRU. n is the number of CM
words in the PRFX (77) table. Used for loading programs from a system
library in which the first n words represent the PRFX (77) table in each
record and contain information of interest only to EDITLIB and
deadstart.

Corresponds to the READNS macro, CIO codes 250 and 252. Read data
from device into CM buffer until end-of-information is reached, a short
PRU with record level 16 or 17 has been read, or next PRU does not fit
into CM buffer. Used by loader when reading a relocatable binary field,
since it does not stop at an ordinary end of logical record.

60494100 J

CM Read/Write Order Description

04 O.WRT Corresponds to WRITE macro, CIO codes 014 and 016. Write data from
CM to device until CM buffer contains less than a full PRU. (Refer to
table 5-5.)

05 O.WRTR Corresponds to WRITER macro, CIO codes 024 and 026. Write data from

CM until CM buffer is empty, ending with short PRU (zero-length if
necessary) with level number specified in request. If EOF flag bit is
set, this corresponds to the WRITEF system maecro, CIO codes 034 and
036. Same action as for WRITER macro, but short PRU is followed by
zero-length level 17 record (logical end of file mark). (Refer to table
5-6.)

06 O.RMR Corresponds to READLS macro, CIO codes 210 and 212. Read several
records for which disk addresses are given in a table; pointer to table is
in FET+8. Address of table must be in the user's field length. Read
records until EOR is reached, buffer capacity is exceeded, or the
addresses are exhausted.

20 O.RCTNU, O.RCTU Corresponds to READC macro, CIO codes 200 and 202. Provides
nonstop reading from device to CM without releasing/reloading PP
between logical records. Buffer must provide space for at least two
records and their header words.

24 O.WCTNU, O.WCTU Corresponds to WRITEC macro, CIO codes 204 and 206. Provides
nonstop writing from CM to device without releasing/reloading PP
between logical records. User's buffer must contain at least two
records. Writing stops when buffer is empty.

PP Read/Write Order Description

10 O.RDP Same as O.READ except read data from device into requesting PP's
memory.

11 O.RDPNP Same as O.RCMPR except read data from device into requesting PP's
memory. Used for loading mass storage resident PP programs and
overlays.

14 O.WRP Same as O.WRT except write data from requesting PP's memory to
device.

15 O.WRPR Same as O.WRTR except write data from requesting PP's memory to
device.

Positioning Order Description

12 O.SKF Corresponds to SKIPF macro, CIO codes 240 and 242. Skip forward

until n short PRUs, with level greater than or equal to the level
specified in the request, have been read or until end-of-information is
reached. With n=777777, the file is positioned at end-of-information.
(Refer to table 5-10.)

60494100 J 5-25 I

Positioning Order

13 O.SKB
16 O.BPRU
17 O.RCHN

SPM-Stack Processor
Communication Order

35 O.IDLE
36 O.DROP
37 O.SEEK

Description

Corresponds to SKIPB macro, CIO codes 640 and 642. Skip backward
one or more PRUs until n short PRUs, with level greater than or equal
to the level specified in the request, have been read, then move forward
over the last of these. With n=777777, the file is positioned at
beginning of information (rewound). (Refer to table 5-11.)

Corresponds to the BKSPRU macro, CIO codes 044 and 046. Skip
backward n PRUs. This repositioning is by PRUs rather than logical
records. (Refer to table 5-12.)

Release allocatable storage and RBTs (processed by SPM). For
permanent file set RBT chains, the first word pair to be evicted must be
a first word pair or an overflow word pair.

Description

SPM has determined that there is no work for this stack processor and
that MTR is not requesting a PP. The stack processor checks the order
code in its idle loop, waiting for SPM to assign a stack request. When
another order code appears, the stack processor processes it.

SPM has determined that this stack processor is either idle or going to
become idle, and that MTR is requesting a PP. The stack processor
drops out.

SPM has stack requests for this stack processor but none are
on-cylinder. The stack processor issues overlap seeks (up to five),
monitors the units, and reserves the first one to come on-cylinder.
Overlap seeks can also be issued with other stack requests. In this case,
no monitoring is done. The seeks are issued before stack request
execution. Status is taken after stack request execution and returned
to SPM with the stack request.

Table 5-13 is a summary of stack processor orders.

T

5-26

TABLE 5-13. STACK PROCESSOR ORDERS
Octal Code System Symbol Order Function
00 O.READ Read into CM.
01 O.RDSK Read-skip into CM.
02 O.RCMPR Read into CM, drop first three CM words.

Internal format only.

60494100 J

TABLE 5-13. STACK PROCESSOR ORDERS (Contd)

Octal Code System Symbol Order Function

03 O.RDNS Read nonstop.

04 O.WRT Write from CM.

05 O0.WRTR Write EOF/EOR from CM.

06 O.RMR Read multiple records to CM.

10 O.RDP Read into PP memory.

11 O.RDPNP Read into PP, drop first three CM words.

12 O.SKF Skip forward.

13 0.SKB Skip backward.

14 O.WRP Write from PP memory.

15 O.WRPR Write EOF/EOR from PP memory.

16 0O.BPRU Backspace n PRUs.

17 O.RCHN Evict.

20 0.RCTNU, Read nonstop (comparable to tape READN).
O.RCTU

24 O.WCTNU, Write nonstop (comparable to tape WRITEN).
0.WCTU

35 O.IDLE Wait for stack request.

36 O.DROP Drop PP.

37 O.SEEK Issue overlap seek.

Stack Processor-System Interface

MTR functions used by the stack processor are described in this section.

The following system tables are used by the stack processor.

Tables

Control Point Areas

DST

60494100 J

Description

Contain control point error flag, storage move flag, RA, and FL
fields. The stack processor accesses but never changes these
fields.

All fields of the DST entry whose ordinal is placed in the stack
processor input register by MTR are used. SPM makes all DST
changes except one made by MTR during stack processor
assignment to a PP.

5-27

Tables

EST

FET

FST

RMSBUF

RST

DDT

RBR Area

RBT

SCB

R.STBMSK (PP resident)

Desecription

Mass storage flag, unloaded flag, off flag, and DST ordinal are
checked but not altered.

Code and status field in the first word and error processing flag in
the second word are accessed by SPM. IN and OUT pointers in the
third and fourth words are accessed by the stack processor.
Code/status is marked busy (even value) before a request enters
the stack and is marked complete (odd value) when the request is
executed.

RBT/RB/PRU position pointers in first word and code/status field
in the second word are accessed by SPM. The code/status field
has been processed the same as for the FET.

Stack processor (1SP/1SQ) formats and stores RMS hardware error
diagnostics in the RMSBUF three-word area for DSD to display.

Request scheduling table is parallel to the request stack area and
is used by SPM to hold request scheduling parameters.

First and last DAM ordinals, MST ordinal, and EST ordinal are
used by SPM in determining RBR ordinal of a permanent file set
member and whether or not it is mounted.

All the first header word, the EST ordinal, and available RB count
bytes in the second header word are used by SPM. SPM assigns
record blocks for a write request by searching the RBR table for
available bits. When the request is terminated or reissued, SPM
sets the corresponding bits in the RBR for all record blocks
assigned for the write operation. SPM also clears RBR bits when
record blocks are released and updates the available RB count.

All fields are used. The pseudo channel CH.RBT is reserved only
when RBT word pairs are being removed from the RBT empty
chain.

FIRST, IN, OUT, and LIMIT are accessed in the same manner as
FET when transferring data between RMS and ECS.

Contains appropriate mask when calling R.STB; always returned to
7700 octal, its normal value.

The following system routines and programs are used by the stack processor.

5-28

PP Program Deseription
18X Stack processor auxiliary program called by MTR request for tasks that the
stack processor cannot handle or does not have time to do. For example, the
stack processor does not issue dayfile messages, because if the dayfile
buffer is full, 1SP/1SQ and MTR could loop endlessly waiting for each other.
CEM Auxiliary program called by MTR request to handle CERFILE logging and

dayfile messages for DDP errors encountered by 1SP/1SQ.

60494100 K

PP Program

MTR

7ID

PP Resident Routine

R.DCH
R.IDLE

R.MTR

R.TAFL

R.OVL
R.RCH

R.STB

R.TFL

Monitor Funection

M.DPP

M.SPM

M.RCH

M.RPJ

M.KILL

60494100 J

Description
System monitor initially calls the stack processor (via 1S5), when a request
has been made for an inactive DST entry, and performs various functions for
the stack processor while it is processing the request.
Stack processor auxiliary program called by 1SX. 7ID informs the operator

(via a flashing message at the bottom of the B display) that the job
associated with control point x has an outstanding request for an idle device.

Description
Releases a channel reservation.
Entered when a stack processor releases its PP.
Used for all MTR functions other than to reserve or drop a channel.
Terminates access to the control point field length. When
necessary, it interlocks storage moves during execution of a request
and, when a request is terminating (except at control point 0),
switches the stack processor back to control point 0.
Loads driver overlay 3Sx.

Reserves a channel.

Inserts controller equipment number into device function codes and
channel number into I/O instructions.

Computes an absolute CM address, from one that is relative to a

control point's RA, and checks whether or not a relative CM address
is within the control point's FL.

Description
Releases PP assignment.

Used by the stack processor to call SPM. The three executives are:

e EX.SPRCL Stack processor recall; terminate a stack
request.

o EX.STAT Change status; get next stack request.

e EX.NXTPB Get next PB/PRU.

Used (rather than R.RCH) with zero in byte ‘4 to reserve pseudo
channel CH.RBT only if it is immediately available.

Used for calling 1SX to another PP.

Used when a bad monitor request has been made.

5-29

SPM-1SP Interface

The PP communication area through which SPM and 1SP communicate consists of a PP input register
(PPIR), PP output register (PPOR), and a six-word PP message buffer (PPMES1-6). The PPIR, used to
call 1SP, comes directly from the second word of the DST and contains initialization information such as
drive, name, equipment, and channel number. The PPOR is used by 1SP to initiate SPM via the M.SPM
monitor call in addition to other monitor calls. PPMES1-2 are used for up to five byte pairs
(corresponding bytes of PPMES1-2) of overlap seek information and for the 1SX error information
interface. PPMES3 is for SPM internal information although 1SP supplies the device PB/PRU count in
the rightmost byte during initialization. PPMES4-6 is the internal format stack request that SPM gives
to 1SP. The order field in PPMES4 is monitored by 1SP to determine what work is to be done. The

| statusy, flagsy, and flags, fields are described under SPM-15Q Interface in this seetion.

The format of the 1SP communication area is:

59 50 47 41 38 35 29 23 20 17 1 0
Driver DST
PPIR 18 PO Name | Ordinal | E | O CH
PPOR M.xxx or O Dependent on M.xxx Call
U DDT Ordinal; and Status; (Up to Five); O if No Unit Specified

1 ;Js i i

PPMES1T | | | | | | |
1SX Error Information

PB4 PBi (Up to Five); O if No PB

ppmes2t 1 |]
1SX Error Information
RBT Release
PR F PB/PRU
PPMES3 Ordinal EST IByte v lagsy
Next Range
Next Next PB/PRU
Starting PRU | Last PRU + 1
PPMES4
Number of PRUs Same as
Transmitted Flags; FET Code/Status Original Stack Request
PPMES5
Current PB/PRU
EST

PPMES6 Ordinal

PB First Last Current

PRU PRU + 1 PRU

TExample shows three units specified for overlap seek with zero terminator.

5-30 60494100 K

SPM-1SQ Interface

SPM and 1SQ use the PP comunication area similar to SPM and 1SP. The difference is that SPM sends
and receives physical disk addresses to and from 1SQ in ecylinder, track, sector, and number-of-sectors
format rather than PB, first, and last PRU format. This moves the conversion of physical addresses to

the CPU saving time and space in the PP.

The format of the 1SQ communication area is:

59 50 47 41 35 29 23 20 17 11
Driver DST
PPIR 18 ao Name Ordinal 0 CH
PPOR M.xxx or O Dependent on M.xxx Call
DDT Sta- DDT Ordinali and Statusi (Up to Five);
PPMES1 - . .
Ordinal; ltus, 0 if No Unit Specified
1 1 1 L 1 1
PB
PPMES2 Number
RBT Release
PPMES3 . PRU Flags, PB/PRU
Ordinal EST Byte
Next Next
Next Next o ginning Sector SPM —»1SQ
Cylinder Track | Sector Count
PPMES4
No. of PRUs Flags, | FET Code/Status 1SQ—>SPM
Transmitted
PPMESS Same as Original Stack Request
Current Current C t EST
PPMES6 Current Current | inning Sector ey il
Cylinder Track Sector Count R Ordina

The following coded values are contained in the status; field of PPMES1 (bits 50 through 48).

Code Significance
7 Controller/unit reject.
6 Unit busy.
2 On cylinder.

The following flags are contained in the flags; field (PPMES3, bits 23 through 12).

Bits Set Significance
23 End of RB flag; indicates end of RB.
22 Recording mode flag.
21 Gap sector flag; if set, the pack was written with gap sectors.
20 DST flag.
60494100 K 5-31

Bits ‘Set Significance
19-18 Device type.
0 All devices other than 844 or 885 disk drives.
1 844-21 disk drive.
2 885 disk drive.

3 844-41 disk drive.

17 Release flag; if set, 1SP releases the interlock unit.

16 Interlock flag; if set, stack request is from interlock user.

15 Access flag; if set, CM access is set for the CM I/O request.

14 EOF flag; if set, the current cylinder is at EOI (for forward) or BOI (for
backward).

13-12 Type of stack request; set by SPM.

0 Normal write.
1 Skip backward.
2 Direct 1/0.
3 Others.
The following flags are contained in the flagso field (PPMES4, bits 47 through 42).
Bits Set | Significance
47 If set, 1SQ desires to drop. SPM does not assign a stack request if it

recognizes this flag. Otherwise, SPM automatically assigns a stack request
following an EX.SPRCL request from 1SQ.

46 If set, no PB was assigned at the last NXTPB request.
45 If set, interloek is broken.

44 If set, the unit is idle.

43 If set, a fatal error was detected.

42 If set, EOR/EOF was read.

B 5-32 60494100 K

RMS Device Capacity Limitations

The stack processor does not use all the space physically available on 844 and 885 devices.

innermost cylinders are unconditionally reserved for use by on-line disk diagnosties.

The ranges of cylinders used by the stack processor on each type of disk device are shown in table 5-14.
These limitations must be observed by any installation that wishes to use CDC on-line disk maintenance

software.
TABLE 5-14. RANGES OF CYLINDERS USED
Cylinders Used Reserved for CTI Cylinders Physically Available
Device Octal Decimal Decimal Decimal
844-21 0-623 0-403 407 0-410
844-4x 0-1447 0-807 819 0-822
885 0-1506 0-838 840 0-842

Stack Processor Error Conditions

This section describes the error conditions that can be detected by the stack processor. In some cases,
the action depends on debug mode. If IP.DEBUG is zero, these conditions are treated similarly to other
errors. An error code is placed in the code and status field of the FET and FST entries and the control
point is aborted if the error processing (EP) bit in the FET is zero. If IP.DEBUG is not zero, an invalid
MTR function is issued with the stack processor output register having 77 in byte 0 and an error code in

byte 1.

60494100 K

5-32.1/5-32.2

The

END OF INFORMATION - The error code 01 is inserted in bits 13 through 9 of the code/status field, but
no message is issued and the control point is not aborted (nonfatal condition).

PARITY ERROR - A parity error is reported when any possibly recoverable device error occurs during a
read or write operation. These include actual parity error, lost data, and mispositioning. The PRU is
reread or rewritten up to 10 times (3 times for ECS). Whether success is attained or not, request
execution continues after setting a flag. When request execution is completed, or the request is about to
be reissued to the stack, the flag is examined. If the error was recovered, 1SX is called with code 03
(dayfile message RECOVERED PARITY ERROR), but this condition does not affect code/status or abort
the control point. If all 10 attempts fail, 1SX is called with code 04 (dayfile message UNCORRECTABLE
PARITY ERROR), 04 is put into bits 13 through 9 of code/status, and the control point is aborted if the
EP bit is zero. A request at control point 0 is not aborted.

When an uncorrectable parity error occurs for a READ request and the EP bit is not zero, request
execution terminates with the bad PRU being the last one read. When an uncorrectable parity error
occurs for a WRITE request and the EP bit is not zero, request execution terminates with the FET
pointer positioned after the last good write operation and the file positioned after the bad PRU.

BUFFER PARAMETER ERROR - This error occurs when a request is processed that references an FET
when not all the following conditions are satisfied.

0 < FIRST < LIMIT < field length
FIRST £ IN < LIMIT
FIRST < OUT < LIMIT

18X is called with code 11g (dayfile message BUFFER ARGUMENT ERROR), error code 22g is put in bits
13 through 9 of the code/status field, and the control point aborts if the EP bit is zero.

NOT ASSEMBLED FOR ECS - This error occurs when a request references a DST entry for an ECS
device. The stack processor issues a bad MTR request (code 77g).

UNDEFINED ORDER CODE - A request contains order code 07. 1SX is called with code 22g (dayfile
message INVALID STACK ENTRY), error code 22g is put in bits 13 through 9 of the code/status field,
and the control point aborts if the EP bit is zero.

NO FET FOR O.RMR - A request contains order code 06 (O.RMR), but no FET is specified. 1SX is called
with code 11g (dayfile message BUFFER ARGUMENT ERROR), error code 22g is put in bits 13 through 9
of the code/status field, and the control point aborts if the EP bit is zero.

ADDRESS OUT OF FL FOR O.RMR - The address for a table of disk addresses for O.RMR is out of field
length. 1SX is called with code 22g (dayfile message INVALID STACK ENTRY), error code 22g is put in
bits 13 through 9 of the code/status field, and the control point aborts if the EP bit is zero.

60494100 J 5-33

INTERLOCK BROKEN - A group of interlocked stack requests are interrupted by a malfunction of a
controller and/or unit. The stack processor puts 24g into bits 13 through 9 of code/status field.

RMS HARDWARE ERROR - An RMS hardware error is reported when any of the following errors oceur
on a device.

Unit not ready.

Positioner not ready.

6681 internal/external reject.
Unit busy too long.

Channel stays active after connect or function.
Unable to connect.

No status returned.

Address byte not accepted.

No disconnect on status request.
Abnormal on seek.

Channel not active after ACN.

Irrecoverable write error between 7154 coupler buffer and disk.

These error conditions are reported by the stack processor via a flashing message at the bottom of the B
display. The function on which the error condition occurred is retried until it is recovered or until the
device is idled down by the operator. In either case, the error diagnostic is cleared. If the device is idled,
22g is returned to bits 13 through 9 of code/status and 7ID is called. The operator is notified of the job
name associated with the idled equipment via a flashing message at the bottom of the B display. 1SX is
called when the operator acknowledges the message (the message is also sent to the dayfile), and the
control point is aborted if the EP bit is zero.

Dismountable Pack Processing — 1/0O Detail

Figure 5-3 shows the flow of control of disk 1/0, including the processing of dismountable devices.

5-34

60494100 J

Segment
Dismounted

Pack not
On-line

Cio
Complex

Complete s |
FET/FNT

When an EST
Status Changes

For Each Jo
Stack Processor Waiting

Complex

PP 1/0
(eq. LDV)

Pack Not Swapin
On-line Complete

——— Path of normal read/write calls

= Put program in event stack

Dismounted ~———— Normal RBTs, M.ICE, and overlays

—— —= Generate event which activates program
Implicit and in event stack
Explicit

Figure 5-3. Device Set I/O Processing

60494100 J 5-35

Normal Calls for Read/Write

The user requests I/O by calling CIO in RA+1. If the file is new, CIO calls 3DO to assign it to a specific
pack. If it is an existing assigned disk file, CIO loads 4ES which performs the following actions.

e Performs random positioning.
® Generates the stack request which accomplishes the function.
o Issues the function to SPM via the PP resident routine R.EREQS.

SPM processes all stack requests. Some system routines (JANUS, overlay loads, batech terminals) send
requests directly to SPM rather than use CIO. SPM performs release-chain functions except for those
file segments which are not on line.

SPM first determines if the function is a read or write function and whether the current segment of the
file is on line. If the function is a normal write (not REWRITE), SPM assigns RBs to the file based on the
amount of data in the buffer. If there is no space in the file and no free space in the current RBR, SPM
sends the request to 3DO. When the write completes and too much space has been assigned, SPM is again
called to remove any extra RBs.

SPM next determines which DST this disk belongs to and adds the request to that DST's chain. MTR
ensures that a stack processor or a DST is active by checking the DST chain pointers. If there is no
activity, MTR activates a stack processor.

The stack processor processes I/O to an arbitrary point, for example, to a cylinder boundary, and then
may reissue the request to SPM. The stack processor always returns the request to SPM if the DAM
ordinal in the RBT changes; thus, the ordinal 777 in overflow word pairs always causes a request to return
to SPM and then to 3DO.

SPM-3DO Interface

SPM forwards to 3DO all requests which fail at any point in the preceding description: BKSPRU,
release-chain not mounted, SKIPF or SKIPB with count=777777g, file is new and has no RBTs (has not
been assigned), position is at an overflow word pair (DAM=777g), and so on. 3DO acts as the stack
processor for the first DST, which is reserved; actual disk controllers begin at the second DST. Thus,
SPM forwards 3DO requests via the same mechanism as normal requests by putting them on the first DST
chain.

The only task of 3DO is to select a disk for files requiring space to write, such as new files. Other tasks
are passed on. BKSPRU and SKIPF/SKIPB with count=777777g are sent to 4DO for completion. If the
current segment of the file is not on a mounted pack, the function is not a write (as opposed to
REWRITE), or if the file still has space available to write in, 1PK is called.

If the FNT indicates a new file (no RBTs), 3DO obtains a word pair and changes the format from a new
file to an existing file by moving the flags from the FNT to the RBT. Next, the set for the file is
chosen. If SN was specified, no selection is made. If SN is not specified, PF, Q, or SYS (SYS is available
only by maecro) is selected as specified. If none is specified, a flag is set to indicate that a seratch set is
required.

5-36 . ' 60494100 J

Order of device selection is:
o The device must belong to the required set.
e If PF, Q, or SYS, the device must also have that attribute.

e If a device type, allocation style, or VSN is specified, attempt to match it; if no mateh, but DV
was specified, repeat the attempt ignoring the requirements of VSN, device type, and allocation
style. '

Selection is limited to the allowed devices. Controller and unit activity from the DAT and available
space in the RBR are factors in selection of the optimal device. 3DO creates an overflow word pair for
all but new files, creates an empty word pair for the selected device, and reissues the request to SPM.
3DO considers only mounted devices. If 3DO finds no space available and this is not a public set request,
3DO calls 1PK to consider selection of an unmounted member of the set.

Once the file is written, its device set attribute is fixed.

1PK may be called by CIO, MNT, ADS, or independently via M.RPJ. 3DO cannot load 1PK via R.OVL
because 3DO is considered a stack processor and, therefore, not allowed to use M.DFM or other I/O
because it could lead to a deadlock condition. 1PK issues dayfile messages and can be accessed by 3DO
only via a call to M.RPJ. The calling routine places one of the following function numbers in the PP
input register byte 2 to specify the 1PK function desired.

Funection 6 - Calls from 3DO are always made using function 6, and 1PK is called via M.RPJ. The call
from CIO for CLOSER is also done in this way, so 1PK must determine if CIO is called and if the
function is CLOSER. Space must be assigned if the function is not CLOSER, the function is a write (not
REWRITE), and input register byte 4 is zero indicating a write at EOL. Assuming 3DO checked the
mounted devices, the SMT is read and the file assigned to a pack with available space which is not
mounted, considering first the on-line devices, then those not present. If there is no space and the user
has not set UP, the user is aborted with error 10 (device capacity exceeded). 1PK selects a device and
calls MNT as an overlay. When the mount is successful, MNT reloads 1PK which reissues the stack
request. If the pack is not on line, 1PK function 9 is put on the event stack with the stack request in its
message buffer (refer to functions 5 and 9).

If UP is on and there is no space, the FET is completed with error 10 (device capacity exceeded). If the
current position is not on line on a public set, the job is aborted.

If not CLOSER and not a write, the first step is a mount. First, advance position past any overflow word
pair; check if required disk is mounted. If it is, reinitiate the function by calling CIO, or SPM if CIO is
not in input register. If not CIO, call MNT, which calls 1PK back and the process repeats if MNT found
the pack on line and mounted it. If not, MNT ecalls 1PK function 2 to swap the job out while waiting for
the pack. When the operator puts the pack on and turns on the EST, 1PK function 5 is called by 1RN,
which periodically checks on/off changes. Function 5 causes the removal of all waiting 1PKs from the
event stack and the stack request is reissued. MNT finds the pack on line and I/O proceeds.

CLOSER is processed by CIO calling 1PK function 6. When 1PK detects a CLOSER call, 1PK processing
depends on whether the position is EOL. If EOI, a dummy overflow word pair is attached on the end of
the RBT. The DAM and VSN fields are zero. Both EOI and EOV status are set in the FET.

If the current position is not EOI, the file is positioned to the next EOV word pair or to EOI, if it comes
first. If the current position is an EOV word pair, nothing is done. EOV status is returned to the FET if
the new position is an EOV word pair or EOI is encountered.

If MNT finds the operator dismount flag set in the SMT, it loads 1PK mode 7, which calls 1PK mode 8
with a delay, which reissues the stack request. This continues until the pack goes off line or is
remounted.

60494100 J 5-37 |

Functions 1 and 2 - These functions are called by MNT, when a required pack is not on line, to delay the
job until the pack becomes available. The SN/VSN are put into the variable area of the DDT if not
there. The JDT enters the queue with others that may be waiting on the DDT. 1PK funetion 9 is put in
the event stack on the JDT swap-in, and the job is swapped out by macro C1SO. The initial PP input
register from the caller is sent to the message buffer. Stack requests are added to the message buffer.

Function 5 - Function 5 is called by 1RN when an EST free, busy, or off status changes (becomes
different from the DDT). The fixed DDT for this EST is updated. If a pack has come on line and appears
in the variable DDT area, 1PK function 0 is called for each job queued on the DDT and the job is cleared.

Functions 8 and 9 - Function 8 swaps the job in. Function 9 reinitiates the I/O function. If the input
register was CIO, function 9 reissues it to CIO. If not CIO, the stack request is in the message buffer
and is reissued to SPM.

Removing a Pack - DELSET and DSMOUNT

Both DELSET and DSMOUNT can be used to make a disk unavailable to the system. DELSET removes a
disk from set membership and requires that there be no files on it. DSMOUNT makes a disk unavailable
to a job. The operator dismount command, DMNT, permits the operator to remove a pack from a drive.
DELSET uses PP routine DLM; DSMOUNT and DMNT use PP routine DSM.

DLM and DSM must halt all stack request activity before a disk can be removed from mounted status.
To do this, they set the request idle bit in the EST. 1PK checks the stack request area for requests for
this unit, and if it finds none, sets the EST status to FB=11 to indicate there is no activity. Any
subsequent requests for the pack cause the requesting job to be swapped, and DLM or DSM can put the
pack into unavailable status.

DELSET removes a disk from a set by zeroing its entry in the SMT (which defines set membership).
Before this is done, DLM searches the RBT for local files and the PFC for permanent files resident on
this disk and checks that the SMT usable count matches the total DAM available counts (if the disk is in
dismounted status). If any test fails, DLM aborts the job.

A DSMOUNT call from a job (including the automatic one at the end of job) decrements the set's activity
and resets it to dismounted status if no jobs reference it. The operator command DMNT resets the disk
to dismounted status as soon as all I/O clears and sets the operator dismount flag in the SMT so that no
other mainframe can mount the disk. Only an RMNT command or a RECOVER clears this flag.

If the pack is mounted on this mainframe, an operator dismount proceeds as follows:
1. The EST request idle bit is set, which loeks out all I/0.

2. The routine waits until all activity stops on the disk (signaled by FB being set to 11); then it
clears the request idle bit.

3. If the device is not shared, the RBR is translated into a DAM and written on the disk, the

mounted flag is cleared from this mainframe's bit in the SMT entry, and the DDT is written in
dismounted format (S.DDSN=1).

4, If the device is shared, the RBR is not written to the disk. The PP reads the DAM, clears all

bits in the DAM which are clear in the RBRs, and then writes the DAM back. Other processing
is the same as in step 3.

I 5-38 60494100 J

If the pack is not mounted but is on line on this mainframe, DSM sets the EST to FB=11.

If another mainframe has the pack mounted, DSM terminates with an operator message that the pack
cannot yet be removed. It sets the EST to FB=10 (free). The pack cannot now be mounted unless the
operator enters the RMNT (remount) command. The operator can attempt DMNT again later.

If no other mainframe has the member mounted, DSM sets the EST to off and FB=0 (no pack on line).
The operator can then remove the pack.

ECS-Buffered 1/0O

Reading and writing of large sequential RMS files is greatly enhanced by the use of ECS buffers. Such
operations involve the use of a small CM buffer in the user's field length and a large user's buffer in
ECS. The data is transferred between ECS and the RMS device either through a system circular buffer
(SCB) in CM or through a distributive data path (DDP). ECS buffering is not available on a CYBER 176.
Refer to the section on 819 Disk I/O Processing for a description of 819 buffered input/output. The
following describes a write sequence involving an ECS buffer; a read sequence is essentially the reverse.

The user requests ECS buffering on a file-by-file basis through the REQUEST control statement or
macro. On the control statement, the user includes an EC parameter in addition to the normal
parameters in one of the following forms.

Parameter Use

EC For a default (IP.BUF) size buffer.

ECxxxx For a buffer of xxxx-thousand (octal) words.
ECxxxxK

ECxxxxP For a buffer of xxxx (octal) pages.

In the REQUEST macro, the user must set bit 33 to one in the second word of the parameter list. In the
fourth word of the parameter list, the buffer size must be set in bits 11 through 0, and display code
character K or P must be set in bits 17 through 12.

In a write sequence, the user first puts data into a CM buffer, which need be only about 200 words long,
then issues a CIO call through RA+1. If an XJ instruction follows the request in RA+1, the job is
exchange-jumped out of execution, and CP.MTR begins processing the request.

CP.MTR recognizes the CIO call and passes it to CP.CIO for processing. ECS-buffered file I/O causes
CP.CIO to perform a validity check on the FET and activates the proper ECS driver. The data is then
written directly from the user's CM buffer to the user's buffer in ECS.

The preceding process continues until the user's ECS buffer is full; then a stack request is generated by

CP.CIO, requesting that the ECS buffer be written to an RMS device. In processing the request, the
stack processor loads the appropriate ECS executive routines into an area of stack processor memory.

60494100 K 5-39

When the stack processor requests an SCB, CBM (system circular buffer manager) assigns the first one
available from the list of SCBs. Each SCB has an integral number of PRUs, so that PRUs are not split
across the end of the buffer. When a CM buffer path is selected, the stack processor uses the SCB in the
normal circular I/O mode, with the following modification. In addition to FIRST, IN, OUT, and LIMIT,
the FET-like SCB control table also contains a TRIGGER and a DIRECTION field. Before the transfer,
the stack processor puts an M.SCB in its PPOR. During the transfer, MTR checks to see if the trigger
has been reached. If so, it calls CBM to process the SCB; if not, no action is taken. This circular I/O
continues until the ECS buffer has been emptied and all data has been written out to the RMS file. The
processing is designed to prevent the stack processor from missing disk revolutions during an 1/0 buffer
transfer.

When the DDP is selected, the processing is similar. CP routines do the same bookkeeping as in CM, but
only point to the data in ECS instead of transferring it to CM. As a result, less CM is used for the
transfer, n words instead of 65 * n words for an SCB containing n PRUs.

Figure 5-4 illustrates the general flow of output to an ECS-buffered RMS file. Either data path may be
assigned dynamically, depending on availability.

T
Central System Circular User
Memory Buffer (SCB) Buffer

CBM (Circular Buffer Manager) ECS
Buffer

DDP

Figure 5-4. Output Flow to RMS File

5-40 60494100 J

819 DISK 1/0O PROCESSING

The CYBER 170 Model 176 computer uses a PPS consisting of 10 or 20 peripheral processors (PPs) and up
to six first level peripheral processors (PPUs) to perform I/O tasks (figure 5-5). The PPS communicates
with all standard NOS/BE equipment such as card readers, line printers, magnetic tape units, and so on.
The PPU can communicate only with an 819 disk drive. Because a PP cannot access the 819 disk
directly, a special method of I/O processing is necessary when a request involving the 819 disk is
encountered. This method uses LCM as an intermediate buffer area. Data is transferred between the
819 disk and LCM through the PPU and a hardware buffer in CM and between LCM and the requesting
control point or PP. The remainder of this section describes the logical and physical I/O processing
involved in the data transfers, PPIO processing for the 819 disk, LCM buffer management and tables, and
the CE error files.

LCM
PPS
All
Standard 819
Equipment CPU/CM i
Except 819 / PPU g,-',sv‘;
Disk Drive, \

Figure 5-5. CYBER 176 Computer System with 819 Disk

LOGICAL I/O PROCESSING

General Description

The following discussion describes the flow of 819 disk logical I/O processing (figure 5-6). The segments
labeled HDRYV, IH, and HDC are part of a sequence of routines which handle the physical I/0. Physical
I/0 is discussed in detail in this section.

When a user requests that an 819 disk file be read, written, or repositioned, CPCIO/CP4ES makes a stack
entry and assigns the request to SPM. SPM calls the segment BFM which allocates a buffer area and a
transfer buffer table (TBT) in LCM. (Refer to LCM Buffer Management in this section.) The TBT
contains the current stack request and information about the data in LCM for each 819 disk file. If the
required number of buffers in LCM are not immediately available for allocation, the TBT is put on an
empty TBT chain where it can be processed at a later time. CPMTR recalls BFM periodically to process
the empty chain.

Segment BFM adds the TBT address to the TBT address table (TAT). BFM also initially creates TAT in
the paged area of LCM.

60494100 K 5-41

5-42

CPCIO

SPM

!

BFM
(Buffer
Allocator)

|

HSP
(Executive)

HSW
(Write)

HSR
(Read)

HSK
(Skip)

HSF
(Flush)

HSD
(Terminate)

Figure 5-6. Logical I/O Processing

HDRV
(Queue}

BFE
(Evict)

'

IH
(LCMm
Transfer)

}

HDC
(Terminate)

60494100 J

BFM then calls HSP, the 819 disk executive. Depending on the operation requested, HSP calls one of the
following segments.

Segment Desecription
HSW Write operation.
HSR Read operation.
HSK Skip operation (called through HSR).
HSF Flush operation.

If, for example, the user wants to write a file on an 819 disk, HSP calls the segment HSW. HSW gets the
starting PRU from the stack processor and begins transferring data from CM to the buffer in LCM. HSW
saves short PRU headers, builds the sector header PRU flags, and updates INT and INWT in the TBT.
When the end of the 819 sector is reached, one of the following ocecurs.

e If the limit PRU is equal to the current PRU and the next PBT is zero, SPM is called to allocate
another PB. If another PB is not available, the request is terminated for reissue.

e The next PB is moved to current PB and data transfer continues until the user buffer is empty
and/or the LCM buffer is full.

When the LCM buffer threshold is reached (buffer is half full), HSD calls HDRV with a request to initiate
transfer of data to the 819 disk. HDRV places the request in the unit queue table (UQT). The UQT holds
all 819 disk requests received from HDRV for each unit. When the proper channel is available, HDRV
assigns the channel, formats the request for the PPU driver, and calls the interrupt handler. The
interrupt handler (IH) moves data between LCM and a hardware buffer in CM and sends a request to
transfer data to the PPU. The PPU disk driver (HCD) writes the data from the hardware buffer to the
819 disk. HDC is discussed further under Physical I/O Processing in this section.

If the write request was not completed when the LCM buffer was filled, HSD sets the wait-on-disk flag
before calling HDRV. When the interrupt handler reads or writes a sector from a TBT which has
wait-on-disk status set, it calls HSP which recalls HSW to continue processing the request. HSW
transfers data until the request is satisfied or the CM buffer is empty. This sequence of calls allows the
LCM buffers to be circular buffered. When the request is satisfied or the CM buffer is empty, HSW sets
the stack request completion flag and returns control to HSD. HSD calls SPM which drops the stack
request and sets the FST and FET completion bits.

If the user wants to read a file on an 819 disk, HSP calls the segment HSR and essentially the write
operation is reversed. The request to read the disk is given to HDRV, which places the request in the
UQT. The PPU driver, HCD, reads data from the 819 disk to the hardware buffer and IH transfers the
data to LCM. HSR then moves the data from LCM to CM.

HSR gets the starting PRU number from the stack request and checks the beginning PRU and PB values
in the TBT to determine if data has been read from the disk. It stores the level number to be transferred
to the FET by SPM and transfers the buffer, updates OUT T and OUTW T in the TBT, and processes sector
error flags. When the end of a PB is reached (the next PB in the TBT is zero), HSR gets the next PB from
SPM.

T Refer to the transfer buffer table in appendix E for an explanation of fields.

60494100 J _ 543 |

HSR transfers data to the user's field length in CM until the next PRU will not fit in the area or the
request is satisfied. When the request is satisfied, HSR sets the stack request completion flag and
returns control to HSD. HSD calls SPM which drops the stack request and sets the FST and FET
completion bits.

If the file was found to have a request currently outstanding before the read or write operation, HSR
checks the outstanding operation. If it is a request to read, and the PRU being read is not the requested
PRU, HSR calls HSF, which calls HDRV to terminate the unit queue entry and set the flag to stop the
transfer. .

The HSK segment is called by HSR to skip logical records forward or backward. HSR gets the correct
PRU from the stack request and searches for the end-of-record. If the desired PRU position is found in
the LCM buffers, HSK performs the repositioning forward or backward depending on the stack request
code. If the end-of-record is not found in the buffers, HSK returns control to HSR which repeats the
process until EOI or BOI is found.

HSP calls the HSF segment when it receives a request which indicates a mode change (read to write
operation or write to read operation). HSF is called directly from CPMTR for a monitor flush command
or an evict request. A flush command is made when a file must be returned (such as before swap-out or
roll-out) between job steps, and at the end of the job. When the job is swapped or rolled back in, the first
reference to the file reinitializes the TBT.

For empty buffers and inactive read buffers (last operation performed was a read), HSF calls BFE to
clear the TBT and release the LCM buffers. For buffers currently active and write buffers (last
operation performed was a write), HSF queues the TBT to the physical I/O segments (HDRV, HDC, and so
on), which later recalls HSF. If I/O is complete, HSF flushes the inactive write buffers. The TBT is
cleared.

Logical I/O Segments

The following segments are involved in 819 disk logical I/O processing.

Segment Function
BFM Allocates a TBT and LCM buffer areas for each file.
HSP 819 executive; calls routines to perform allocation, reading and writing data

between LCM and user's field length in CM, repositioning within files, and flushing
of data. HSP performs the following sequence of actions.

1. Checks whether storage access is allowed.
2. Checks FET for valid parameters.

3. Compares new request to last request. If there is a mode change (read to
write or write to read) or eviet request, calls HSF.

4. If read request, calls HSR.
5. If write request, calls HSW.

HSF Flushes and evicts files. Performs the following actions.
1. Drops inactive read buffers and associated TBT.
2. Flushes write buffers.
3. Drops inactive write buffers and associated TBT.

I 5-44 - 60494100 J

Segment Function

HSR Initiates read operation, or if skip request, calls HSK. If read request, performs
following actions.

1. Compares buffer position to requested position.
2. If positions are the same, calls CHR to transfer data from LCM to CM.

3. If positions are incorrect, HSR sets up a disk request to read data from
disk.

HSW Initiates write operation. Performs following actions.
1. Compares buffer position to requested position.
2. If positions are correct, calls CHW to transfer data from CM to LCM.

3. If positions are incorrect, calls HSF to flush the buffer.

HSK Skips logical records forward or backward. HSR fills several LCM buffers and
calls HSK when the requested position is in the buffers. Based on the stack
request code, HSK calls SKF to skip forward or SKB to skip backward. For a skip
backward, the LCM buffer area is subtracted from the file position so that the
maximum amount of data behind the current empty buffer position is read.

HSD Terminates stack request if the request is completed. If the requested operation
has caused a buffer threshold to be reached, HSD puts the request on the unit
queue (in the UQT) to be processed.

PHYSICAL I/O PROCESSING

General Description

The preceding section on logical I/0 described the sequence of segment calls leading to HDRV and IH.
This section describes, in detail, the segments involved in actual physical I/O processing for the 819 disk
(figure 5-7).

HDRYV is called to queue I/O requests for the 819 disk. It ealls HDIN, only once, to initialize the UQT
and channel table (CHT) after a deadstart. HDRV enters the request in the unit queue (UQT) and, if it is
the only request in the queue, calls HDSL. HDSL selects the best request for a unit to perform I/0,
selects the best channel, and calls the interrupt handler (IH). IH puts the request in the hardware I/O
buffer and contacts the PPU through the disk driver HCD. When the PPU acknowledges the request, IH
calls HDRQ. HDRQ checks for a request on another unit and, if it finds one, calls HDSL. HDSL sends
the request to the PPU as described previously.

60494100 J . 5-45 I

HDRV HDIN

HDSL

HDRQ IH HCD

HDC

HACT HLOG

Figure 5-7. Physical I/O Processing

When the PPU finds one of the units on the proper cylinder and sector, it communicates this to the IH,
and data is transferred to or from the disk. At the end of the data transfer, IH calls HDC to terminate
the request.
record disk errors. (Refer to CE Error File in this section.) If there are any other requests on any unit,

HDC returns to HDSL.

HDC may call HDRV to requeue the request, HACT to record activity status, or HLOG to

Physical I/O Segments

The following segments are involved in 819 disk physical I/O processing.

| 5-46

Segment

HDRV

HDIN

HDSL

Function

Queues 819 disk requests. Enters the TBT in the UQT according to ascending
order of cylinder addresses. Within the cylinder, TBTs are positioned in the order
in which they were received. If there are no other TBTs in the queue, I/O is
initiated for that request.

Initializes the UQT and CHT based on the EST and DST. HDIN is called only once
after a deadstart.

Selects best TBT for I/0 transfer and best channel. HDSL bases its selection on
the cylinder address of the forward TBT, backward TBT, and the current position
of the unit. It assigns the unit to the best channel, sets up the request for HDC,
and calls the interrupt handler.

60494100 J

Segment Function

H Transfers data between LCM and the PPU I/O buffers. The following sequence of
events occurs.

1. Master output IH sends disk request to master PPU.

2. Master PPU receives request and initiates master input IH.

3. Slave PPU calls slave input IH to start I/O link-up.

4. Master and slave PPUs call output IH to transfer data from LCM to the
hardware buffer or input IH to transfer data from the hardware buffer to
LCM.

5. Slave PPU calls input IH to terminate all input and output disk requests.

The interrupt handler can perform the following actions.

e Handle 513-word transfer size, picking up first word from the TBT and
remainder from LCM buffer.

e Transfer to LCM buffer based on TBT pointers; update the buffer flags,
IN and OUT fields.

e Recognize a switch to a new PB and send the next head/sector to the
PPU in the middle of a request.

) Decide one sector in advance whether to do continuous transfer based on
the following conditions.

If the next TBT in the UQT is on the same cylinder and is the same type
of request, IH automatically switches to that request. HDC is notified to
terminate the previous request.
If next PB on the current file is on the same cylinder. IH continues on
the current TBT. IH sets last PB equal to current PB and current PB
equal to next PB.
e Calls HSP after a sector transfer if the wait-on-disk flag is set.
HDRQ Searches for requests. HDRQ is called by IH when the PPU acknowledges the
request. HDRQ searches for an unassigned unit with a TBT entry in the queue. If
one is found, HDRQ calls HDSL to initiate I/O on the unit.

HDC Completes request. When a request is completed, HDC performs the following
actions.

1. Processes termination status from the PPU.

2. Sets the channel to idle mode.

3. Releases PPUs by calling IH.

4. Updates the current PB, cylinder, headgroup, and sector.

5. Removes TBT from UQT.

60494100 J . 5-47 I

S'egment Function
6. Sets unassigned status for the unit.
7. Checks conditions for calling HSP.

8. If threshold is reached or flush process was not complete, requeues the
TBT in UQT.

9. Calls HDSL to select the next TBT for 1/0 processing.

HACT Logs activity status for CE file. HACT records the number of sectors transferred
on a unit and sets up a CE message in the CEFAP buffer, which contains the
number of sectors transferred since the last recorded message. It calls CEM
through CALCEM to complete logging of the CE message.

HLOG Logs 819 disk errors. HLOG retrieves recovered and unrecovered errors recorded
in the CM hardware I/O buffer. It reformats the errors to the CE message format
and puts them in the CEFAP buffer. CEM is called through CALCEM to complete
logging of the CE messages.

HDAY Calls CEM to send message to job and system dayfile and conditionally abort the
job.

PPIO PROCESSING

PPIO stack requests control data transfers directly to and from PP memory. Figure 5-8 shows the logical
1/0 segments (as shown in figure 5-6) plus the segments used in PPIO processing. The calling PP program
builds a stack request and passes its location to the PP resident routines R.READP or R.WRITEP. These
routines call the subroutine R.RWP to perform the data transfer. R.RWP returns control to the calling
PP program when the stack request is complete. :

Although the type of mass storage involved in the transfer is transparent to the calling PP program, a
special interface with the 819 stack processor HSP has been defined for PPIO. This interface consists of
reserving a CM system circular buffer (SCB) for the PPIO request and then emulating CM FET I/O.

The following segments are used in PPIO processing.

Segment Function
RWH (PP resident) Interfaces with HSP and performs data transfers to and from the SCB.
BFP Executes during 819 stack request initialization. BFP reserves the

SCB, linking it to a TBT, and sets the W.RWPPCW in the calling PP's
communication area to load and execute the segment RWH.

HPO Initiates data transfer operation when called by RWH via an
M.ICE/EX.PPIO function. HPO determines the type of request and
calls HSP to transfer data between the SCB and the PP. If a read
operation is being terminated or reissued, HPO exits to HPP.

l 5-48 . 60494100 J

60494100 J

CPCIO

PPIO

SPM
CPMTR
(M. ICE/
l EX. PPIO)
BFP BFM l
(PPIO)
HPO
l (PP1O)
]
HSP
HPP
(PPI0) HSW HSR HSK HSF
BFE

HSD

HDRV

HDC

Figure 5-8. PPIO Processing

5-49 I

Segment ‘ Function

HPP Called by the 819 read and write routines HSR and HSW after a data
transfer.

If there is data to be transferred between the SCB and the PP, HPP
sets W.RWPPCW to execute RWH in the calling PP and then returns to
CPMTR.

If the request must be reissued, HPP sets up W.RWPPCW to cause PP
resident to loop in R.RWP waiting for communication to be
reestablished.

If the request is to be terminated, HPP sets complete status in
W.RWPPCW. R.RWP exits to R.READP or R.WRITEP which returns to
the caller.

HPP releases the SCB and calls HSD to terminate or reissue the
request.

LCM BUFFER MANAGEMENT

The LCM partition, part of the dynamic paged area, consists of 512-word buffers, each of which can hold
an 819 disk sector. From 2 to 24 buffers can be allocated for each file. The contents of the TBT fields
FIRST, IN, OUT, and LIMIT are pointers to these buffers.

When a request for a new file is made, BFM must initialize a TBT. If an empty TBT cannot be found,
another system page of 512 words is allocated. If there are not enough LCM buffers to allocate area for
the new file, BFM must call BFE to evict an inactive file. Selection of a file is based on FNT order. The
819 file evict code keeps track of the position in the FNT where the last file was evieted. The search for
the next file to be evicted takes place ahead of this entry in an end-around search of the FNT. When the
file is selected, BFE clears the TBT and releases the LCM buffers. If the buffer is empty or a read
buffer, the new file is assigned to the released area immediately. If the buffer is a write buffer, the new
file request must wait on the recall chain until I/O on the write buffer is complete and the buffer has
been evicted.

TABLES

Transfer Buffer Table

The transfer buffer table (TBT) contains information necessary to move data through the LCM buffers.
One TBT is allocated for each file and remains until the file is evicted. It contains the addresses of the
LCM buffers and the latest stack request for the file. TBTs are allocated until a 1000g-word page is
full. A CM location contains a pointer to the first TBT page. Subsequent TBTs are pointed to by the
first word of the page. That word contains a zero if it is the end of the chain. The format of the TBT is
given in appendix E.

5-50 - - 60494100 J

TBT Address Table

The TBT address table (TAT) contains the addresses of TBTs for all active files. Segment BFM creates
the TAT which resides in the paged area of LCM. The TAT contains a one-word-long entry corresponding
to each entry in the FNT. When initially assigning a TBT to a file, segment BFM adds the address of the
TBT to the appropriate entry in the TAT. Segment BFE clears this address when the TBT is released.

During processing of the monitor flush function, the system saves in the TAT the address of the output

register of the PP, issuing the function or the address of the third word of the FNT entry for the file
being flushed. The format of the TAT is deseribed in appendix E.

60494100 K 5-50.1/5-50.2 e

Unit Queue Table

The unit queue table (UQT) is used by HDRV to queue disk requests for each unit. The UQT contains a
header and a four-word entry for each unit. It points to the first and current TBT in the unit queue and is
also linked to a particular channel table entry (primary/secondary channels). The format of the UQT is
given in appendix B.

Channel Table

The channel table (CHT) describes the activity of each data path. There is one entry for each data path.
The CHT is used primarily by the interrupt handler. It points to the UQT for the current unit. The
format of the CHT is given in appendix B.

CE ERROR FILE

After each disk request, the PPU sends status to the CPU. If the status shows any error, the segment
HLOG logs the status information, along with other information it has gathered, in the CE error file.
Generally, one error file entry describes an attempt to recovery one error, but if other errors occurred
during the recovery procedure, the additional errors are also recorded in the entry. At least 1 bit in the
first or second group of flags in the error file is set to describe the type of error. All statuses in the
entry reflect the status of the first failure for the error. Figure 5-9 shows the format of the CE error
file.

59 53 47 35 29 23 20 11 5 0
. Previous Request
Error EST PPU [Unit
4 .
2 8 Code Ordinal No. No. Cylinder Heaq Sector
Flags . Unit Error Messages . Starting
F
(Group 1) unction No. This Request Cylinder Head I Sector
Flags Subsystem Controller Retry Hea%:ixpec‘(esgctor
(Group 2) Status Status Count |
Error Code Error Code Error Code
Status
3 1 2
Error Code Error Code Error Code Error Code Error Code
3 1 2 3 1
Error Code Error Code Activity
2 3 Count Blocks/512

Figure 5-9. CE Error File

60494100 J 5-51 I

Word Bits Description

0 59-54 24g; type of error.
53-48 Error code (in octal).
Code Deseription
06 Status message.

17 RMS address.

20 RMS checkword error.
71 RMS abnormal error.
47-36 EST ordinal.
35-30 Unused.
29-24 Number of PPUs which encountered the error.
23-0 Previous request on this unit.

23-21 Unit number.
20-12 Cylinder address.

11-6 Head group.

5-0 Starting sector.
1 59-48 Flags (group 1).

Bit Set Significance
59 Request aborted; error unrecovered.
58 Last sector transferred with unrecovered checkword error.
57 Request completed successfully.
56 No resumption on control channel.
55 No resumption to RF sent to disk.
54 Slave aborted the request.
53 Unit never on cylinder.
52 Unit down.
51 Channel down.
50 CPU request error.
49 Hardware error.
48 Partner PP down.

l 5-52 60494100 J

Word Bits Description

47-42 Function code.

Code Description

0 Read.
1 Write.
41 Verify sector header address on write request.
40-36 Physical unit number.
35-24 Number of error m