@ 5 CONTROL DATA
S 2/ CORPORATION

60493800

NOS/BE VERSION 1
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:

CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 723, 74
6000 SERIES

ABS
ACCOUNT
ADDSET
ALTER
ATTACH
AUDIT

BEGIN
BKSP

CATALOG
CKP
COMBINE
COMMENT
COMPARE
COPY
COPYBCD
COPYBF
COPYRR
COPYCF
COPYCR
COPYN
COPYSBF
COPYXS

DELSET
DISPLAY
DISPOSE
DMP
DMPECS
DSMOUNT
DUMPF

EDITLIB
ELSE
ENDIF
ENDW
EXECUTE
EXIT
EXTEND

GENLDPF
GETPF

IFE

CONTROL STATEMENT INDEX

45
4-5
4-6
4-7
4-8
49

5-24
411

412
4-14
415
4-15
416
4-17
4-18
4-18
4.21
418
421
422
4-27
427

4-28
5-13
4-29
4-31
4-32
4-33
4-34

4-37
5-10
5-11
5-12
4-50
4-50
451

4-53
4-54

LABEL
LABELMS
LIMIT
LISTMF
LOAD
LOADPF

MAP
MODE
MOUNT

PAUSE
PFLOG
PURGE

RECOVER
REDUCE

RENAME
REQUEST

RESTART
RETURN
REVERT
REWIND
RFL
ROUTE

SAVEPF
SET
SETNAME
SKIP
SKIPB
SKIPF
SUMMARY
SWITCH
SYSBULL

TRANSF
TRANSPF

UNLOAD
VSN

WHILE

4-55
4-58
4-60
4-60
4-61
4-61

4-65
4-65
4-66

4-67
4-67
4-68

4-69
4-70
470
471
479
4-80
5-30
481
4-82
4-82

490
5-14
492
5-10
492
493
493
4-94
494

4-95
4-96

4-99

4-100

5-12

CUT ALUNG LINE

Manuai Title CDC NOS/BE 1 Reference Manual Pub. No. 60493800 Rev. E

As part of Control Data's continuing quality improvement program, we invite you to complete this questionnaire so
that you may have a more direct influence on the manuals you use.

Please rate this manual for each general and individual category on a scale of 1 through 5 as follows:

1 = Excellent 2 - Good 3 - Fair 4 - Poor 5 - Unacceptable

i. Writing Quality D. | am interested primarily in
-) ~ user guides designed to tsach
A. Technical accuracy the user about a product or
B. Completeness. certain capabilities of a product.
C. Audience defined properly -
D. Readability - —_— VI. We recognize that we have a wide
E. Understandability variety of users. Please identify your
F. Organization primary area of interest or activity:
Il. Examples - A. Student -
. B. Applications programmer -
A. Quantity C. Systems programmer
B. Place_men.t. D. How many vears programming
C. App[lcabmty experience do you have?
D Qualsty_ E.. What languages
Instructiveness 1. Algol
2. Basic
iil. Format 3 Cobol
. 4 Com,
A. Type size _ 5 me.‘a“ —__
B. Page density — 6. PULI I
C. Art work —_ 7. Other -
D. Legibility —_ —
E. Printing/Reproduction F. Have you ever worked on

non-CDC equipment?

V. Miscellaneous

1. If yes, approximately

A. Index what percent of your

B. Glossary experience is on non-
CDC equipment?

V. Please provide a yes or no answer
regarding manuals in general: 2. How do you rate CDC
manuals against other

S St ML D RN Gy (S e TGS UGS N SEUND SUGHE) AR GEND AR GSED G CMID G SN Ut W U G CHEED CHENN (GRS SR EEER GEND S S GG SmG " —

musa

A. | prefer that a manual on a software
product be as comprehensive as
possible; physical size is of little
importance. '

B. | prefer that information on a
software product be covered in
several smaii manuais, each
covering a certain aspect of the
product. Smaller manuals with
limited subject matter are easier
to work with,

C. | am interested primarily in
reference manuals designed for
ease of locating specific
information.

General Comments

similar manuals using

the 1-5 ratings.

{(Example: XYZ Corp. __ 2 .
means XYZ manuals are

as compared to CDC manuals.)
Burroughs

DEC
Hewlett-Packard
Honeywell

I1BM

NCR

Univac

Other

v. 7/78
— - —

AAZ419 RE

STAPLE

STAPLE

:

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WiLL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219

4201 North Lexington Avenve
Saint Paul, Minnesota 55112

CUT ALONG LINE

- WD GO W Iy WP WS GO TS U WD G U GF TI) GID GNP WED I EP M GIN G GIP GHN GER GNP WIS WP WS Gk WR WE S5 I I GHE W W W

60493800

G CONTROL DATA
CORPORATION

NOS/BE VERSION 1
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION

A Manual released.
(11-1-75)

B Updated to reflect release of features 145 (844-41/44 Support), 159 and 163 (Job Management
(7-16-76) and System Control Point Enhancement).

c Updated to reflect NOS/BE 1.2 at PSR level 447. New feature's documented include 844 disk drive
(3-15-77) full/half track recording mode, programmable format control (PFC) for 580 line printers, support
- of CYBER 170 Model 176 with 819 disk drive (device type mnemonic 'AH), 679 tape unit with

6250 cpi density capability, and CYBER Control L'mguage (section 5). References to 604 and 607
. tape units are removed. This edition obsoletes all previous editions.

D Updated to support NOS/BE 1.2 at PSR level 454 and to make editorial and technical corrections.
(8-19-77) Support of CDC CYBER 170 Model 171 is included.

E Updated to reflect NOS/BE 1.3 at PSR level 473 and to make editorial and technical corrections.
(6-13-78) 'Support of permanent file utilities PFLOG and GENLDPF, GETACT macro, user capability to

assign universal password and permissions to private sets, user reprieve processing, schedule-by-density

option for tapes, hardware GE write error correction option, 677/679 tape units, and. INTERCOM 5

is also included. This edition obsoletes all previous editions.

Publication No.

60493800
Address comments concerning
this manual to:
Control Data Corporation
REVISION LETTERS !, O, Q AND X ARE NOT USED Publications and Graphics Division

4201 North Lexington Avenue
St. Paul, Minnesota 55112

© 1975, 1976, 1977, 1978
Control Data Corporation or use Comment Sheet in the

Printed in the United States of America back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in
the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

Page Revision Page Revision Page Revision
Front Cover - 2-11 E 3-30 B
Inside Front Cover| - 2-12 E 3-31 E
Title Page - 2-13 E 3-32 E
ii E 2-14 E 333 E
fii E 215 E 3-34 C
iv E 2-16 E 3-35 C
iv-a/iv-b E 2-17 A 3-36 A
v E 2-18 E 3-37 A
vi E 31 A 3-38 A
vii E 32 E 3-39 E
viii E 33 E 340 E
ix E 34 C 3-41 E
X E 35 E 342 E
xi E 3-6 E 343 E
1-1 E 37 E 4-1 E
1-2 E 3-8 A 42 E
1-3 A 39 E 43 E
1-4 A 3-10 E 4-4 E
1-5 D 311 E 45 E
1-6 E 3-12 E 4-6 E
1-7 A 313 A 47 E
1-8 A 314 E 48 E
19 E 315 E 49 E
1-10 E 3-16 E 4-10 E
1-11 C 3-17 E 411 E
1-12 A 3-18 E 4-12 E
1-13 C 3-19 E 413 E
2-1 A 3-20 E 4-14 E
22 E 321 E 4-15 E
2-3 E 3-22 E 416 E
2-4 E 3-23 E 4-17 E
2-5 E 3-24 E 4-18 E
2:6 E 3-25 E 4-19 E
27 C 3-26 E 4-20 E
2-8 A 3-27 E 421 E
29 A 3-28 E 422 E
2-10 E 3-29 E 4-23 E

60493800 E jii

Page

Revision

4-24
4-25
4-26
427
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39

441
442
443

4-45

447
448
449
450
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
463
4-64
4-65
4-66
4-67
4-68
4-69
4-70
4-71

(RN NN RN Re NN NN NeNe-Ne-Be- N Ne-Ne-Ne Mo Mol e Me B NesMesNe NN Ne Mol el Ne MeNeoRezNer Nl MeoNeoMeolicaNes

Page

Revision

iv

472
4-73
4-74
475
476
4717
478
479
4-80
4-81
4-82
4-83
4-84
4-85
4-86
4-87
4-88
4-89
49
491
492
493
494
495
496
497
498
499
4-100
4-101
5-1
5-2
5-3
54
5-5
5-6
57
5-8
59
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18

BN NN NN RNl RoleNe-N-RoRoRoloNe RN RoloRoleNoReReReNeNe RNl NolololeNoNoNol o lo NN B Rl

Page

Revision

5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
6-1

6-2

6-3

6-5

6-6

6-7

6-8

69

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
7-1

7-2

AOmmmmmmEaEmHEBOOm OGN omonEnmmMoOnOmuomoomomommommemmmm o

60493800 E

Page Revision Page Revision Page Revision

7-3 E 7-51 E B-5 E
7-4 C 7-52 E B-6 E
7-5 E 7-52 E B-7 E
7-6 E 7-54 E B-8 E
7-7 E 7-55 E B9 E
7-8 E 7-56 E c-1 E
7-9 E 7-57 E c-2 E
7-10 E 7-58 E C-3 E
7-11 E 7-59 E C4 E
7-12 E 7-60 E C-5 E
7-13 E 7-61 E C-6 E
7-14 E 7-62 E C-7 E
7-15 E 7-63 E D-1 E
7-16 E 7-64 E D-2 E
7-17 E 7-65 E Index-1 E
7-18 E 7-66 E Index-2 E
7-19 E 7-67 E Index-3 E
7-20 E 7-68 E Index-4 E
7-21 E 7-69 E Index-5 E
7-22 E 7-70 E Index-6 E
7-23 E 7-71 E Index-7 E
7-24 E 7-72 E Index-8 E
7-25 E 7-73 E Index-9 E
7-26 E 7-74 E Index-10 E
7-27 E 7-75 E Index-11 E
7-28 E 7-76 E Cmt Sheet E
7-29 E 7-77 E Inside Back Cover -
7-30 E 7-78 E Back Cover

7-31 E 7-79 E

7-32 E 7-80 E

7-33 E 7-81 E

7-34 E 7-82 E

7-35 E 7-83 E

7-36 E 7-84 E

7-37 E 7-85 E

7-38 E 7-86 E

7-39 E 7-87 E

7-40 E 7-88 E

7-41 E 7-89 E

7-42 E A-l A

7-43 E A2 A

7-44 E A-3 A

7-45 E A4 A

7-46 E A-5 A

7-47 E B-1 (o4

7-48 E B-2 E

7-49 E B3 E

7-50 E B-4 E

60493800 E iv-afiv-b

PREFACE

This manual describes the Network Operating System/Batch Environment (NOS/BE) Version 1.3 Operating

R~
Sysiem for the CONTROL DATA=CYBER 170 Series; CONTROL DATA®™CYBER 70 Models 71, 72, 73,

74; and CONTROL DATA®6000 Series Computers. It contains general information about files, job flow and
execution, and control statements. It is wrltten for pllcatlons programmers who write higher level
languages for NOS/BE, and includes inform 3 who write in COMPAS

assembly language.

asanifia Lnan il
speciiic interest to those wi

Extended memory for CDC CYBER 170 Models 171, 172, 173, 174, and 175 is called extended core storage
(ECS). Extended memory for CDC CYBER 170 Model 176 is analogous to the CDC CYBER 70 Model 76
large central memory (LCM) or large central memory extended (LCME). When ECS and LCM/LCME are
functionally equivalent in this manual, the acronym ECS refers to ECS and LCM/LCME (see appendix D

for differences between ECS and LCM/LCME).

The following manuals contain information about NOS/BE.

Control Data Publication Publication Number
NOS/BE Version 1 Operator’s Guide 60493900
NOS/BE Version 1 Diagnostic Handbook 60494400
NOS/BE Version 1 Installation Handbook 60494300
NOS/BE Version 1 System Programmer’s 60494100
Reference Manual
On-Line Maintenance Software Reference Manual 60453900
Update Reference Manual 60449900
CYBER Loader Reference Manual 60429800
INTERCOM Version 4 Reference Manual 60494600
INTERCOM Version 4 Multi-User Job Capability 60494700
Reference Manual
INTERCOM Version 5 Reference Manual 60455010
INTERCOM Version 5 Multi-User Job Capability 60456070
Reference Manual
CYBER Common Utilities Reference Manual 60495600
CYBER Record Manager Basic Access Methods 60495700
Version 1.5
CYBER Record Manager Advanced Access Methods 60499300
Version 2
SCOPE Version 2 Operator’s Guide 60455090

60493800 E , v

The NOS/BE Version 1 Operator’s Guide and the SCOPE Version 2 Operator’s Guide replace the NOS/BE
Version 1 Station Operator’s Guide/Reference Manual (publication number 60494200). The NOS/BE to
NOS/BE link is described in the NOS/BE Version 1 Operator’s Guide. The NOS/BE to SCOPE 2 link is
described in the SCOPE 2 Operator’s Guide.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or parameters.

vi 60493800 E

CONTENTS

1. INTRODUCTION 11 3. FILE CONCEPTS AND STRUCTURE 31
Hardware Function and Use 1-1 General File Usage 31
Mainframe and Console i-2 Naming Files 3-1
Central Memory 1-2 Reserved Logical File Names 31
Central Processor Unit 1-5 Special-Named Files 3-1
Peripheral Processor Units 1-6 Assigning Files to a Job 33
_ Status and Control Register 1-7 Disposing of Files and Equipment 34
Operator Console 1-7 File Structure 34
Rotating Mass Storage 1.7 System-Logical-Records and Physical
Unit Record Equipment 1-8 Record Units 35
Magnetic Tape Units 1-8 File Divisions 36
Extended Core Storage 19 Device Sets 37
Remote Terminals 1-10 Public Device Set Usage 38
Individual Products 1-10 Private Device Set Usage 39
INTERCOM 1-10 Private Device Set Example 3-10
CDC CYBER Record Manager 1-11 Operating System Random Files 311
FORM 1-12 Name/Number Index Files 312
UPDATE 1-12 User-Defined Index Files 3-13
Common Utilities 1-13 Permanent Files 3-13
CDC CYBER Loader 1-13 Concepts 3-14
File Identification 3-14
Permissions and Passwords 3-15
2. JOB PROCESSING AND DECK Multiple Access 315
STRUCTURE 2-1 Queued and Archived Files 3-16
Incomplete Cycles 3-16
Deck Structure 22 Usage 3-18
Separator Cards 2-3 Batch Job Usage 3-18
Control Statement Section 24 INTERCOM Usage 3-18
Library Use 24 Accounting 3-20
Load Sequence 2-5 Examples 3-21
LGO and Program Execution Calls 2-6 CATALOG Examples 3-22
Compiler and Assembler Calls 27 ATTACH Examples 322
Efficient Control Statement RENAME Examples 324
Ordering 2-8 PURGE Examples 3-24
Directive Section 29 ALTER/EXTEND Example 3-25
Detailed Job Flow Through System 29 Extended Core Storage Files 3-26
Example Job 29 ECS Buffered Files 3-26
Examples of Job Deck Arrangements 2-12 ECS Resident Files 3-26
Job Termination Details 2-14 Magnetic Tape Files 3-27
Abnormal Termination 2-14 Tape Marks 327
Operator Command Termination 2-15 3-28
Job Dayfile 2-15

60493800 E vii

Data Format 3-28 DMP (Dump Central Memory) 4-31

SI Tapes 3-29 Exchange Package Dump 4-31
S and L Tapes 3-30 Control Point Area Dump 4-32
7-Track vs. 9-Track Tapes 3-31 Relative Dump 4-32
7-Track Tape 3-31 DMPECS (Dump Extended Core Storage) 4-32
9-Track Tape 3-31 DSMOUNT (Disassociate Device) 4-33
Tape Labels 3-32 DUMPF (Dump Permanent File to Tape) 4-34
Standard Labeled Tape Structure 3-36 DUMPF Examples 4-36
Labeled Multi-File Sets 3-37 EDITLIB (Construct User Library) 4-37
Usage Summary 3-38 EDITLIB Control Statement Format 4-38
Print Files 340 EDITLIB Directive Format 4-39
Manipulation of Library Files 441
ADD (Add Program During
4. JOB CONTROL STATEMENTS 4-1 Library Creation) 442
CONTENT (List File) 4-43
Control Statement Syntax 4-1 DELETE (Delete Program From
Job Statement 4.2 Library) 443
ABS (Absolute Central Memory Dump) 4-5 ENDRUN (Stop Execution) 444
ACCOUNT (Accounting Information) 4-5 FINISH (Stop File Manipulation) 4-44
ADDSET (Create Master Device or Add LIBRARY (Identify Library) 4-44
Device to Private Device Set) 4-6 LISTLIB (List Library File) 445
ALTER (Change Permanent File Length) 4.7 RANTOSEQ (Convert Random File
ATTACH (Attach Permanent File to Job) 4-8 to Sequential File) 4-45
AUDIT (Permanent File Summary) 49 REPLACE (Delete and Replace
BUSP (Backspace System-Logical-Record) 4-11 Program) 445
CATALOG (Create Permanent File) 4-12 REWIND (Rewind File) 446
CKP (Checkpoint Request) 4-14 SEQTORAN (Convert Sequential
COMBINE (Record Consolidation) 4-15 File to Random File) 446
COMMENT (Add Comment to Dayfile) 4-15 SETAL (Change Access Level) 446
COMPARE (Compare Files) 4-16 SETFL (Change Field Length) 4-47
COPY (Copy to End-of-Information) 4-17 SETFLO (Set Field Length Override
COPYBCD (Copy Line Image File) 418 Bit) 4-47
COPYBF and COPYCF (Copy Binary and SKIPB (Skip Backward) 447
Coded Files) 4-18 SKIPF (Skip Forward) 448
COPYBR and COPYCR (Copy Binary and User EDITLIB Examples 4-49
Coded Records) 4-21 EXECUTE (Initiate Execution) 4-50
COPYN (Consolidate File) 4-22 EXIT (Process After Fatal Error) 4-50
COPYN Directive Statements 4-23 EXTEND (Permanent File Extension) 4-51
REWIND (Rewind File) 423 GENLDPF (Reload Permanent File Catalog) 4-53
SKIPF (Skip File) 4-24 GENLDPF Examples 4-54
SKIPR (Skip Record) 424 GETPF (Attach Permanent File From Linked
WEOF (Write File Mark) 4-24 Mainframe) 4-54
Record Identification Statement 4-24 LABEL (Tape Label Specification) 4-55
File Positioning for COPYN 4-26 LABEIMS (Device Set Labeling) 4-58
COPYSBF (Copy Shifted Binary File) 4-.27 LIMIT (Limit Mass Storage) 4-60
COPYXS (Copy X Tape to SI Tape) 427 LISTMF (List Labeled Tape) 4-60
DELSET (Delete Member) 4-28 LOAD (Load Program) 4-61
DISPOSE (Release File) 4-29 LOADPF (Load Permanent File to Tape) 4-61
DISPOSE Examples 4-30 LOADPF Examples 4-64

@ viii 60493800 E

MAP (Produce Load Map)
MODE (Suspend Error Exit)
MOUNT (Associate Device Set)
PAUSE (Operator Interface)
PFLOG (Dump Permanent File Catalog to
Tape)
PFLOG Examples

ME Dasanira Davaeneanm | = AN
PURUL \I\CIUUV’C PCHll'dllUllt ruc)

RECOVER (Device Set Maintenance)
REDUCE (Reduce Field Length)

RENAME (Change Permanent File Tabl

nge Permanent File Table
REQUEST (Assign File to Device)
Tape File Request
Unit Record Device Request
ECS File Request
Mass Storage File Request
RESTART (Restart Job From Checkpoint
Tape)
RETURN (Evict File)
REWIND (Rewind File)
RFL (Request Field Length)
ROUTE (File Disposition)
ROUTE Examples
SAVEPF (Catalog Permanent File on Linked
Mainframe)
SETNAME (FEstablish Implicit Setname)
SKIPB (Skip Backward System-Logical-
Records)
SKIPF (Skip Forward System-Logical-
Records)
SUMMARY (Account Summary)
SWITCH (Set Software Switch)
SYSBULL (Access System Bulletin)
TRANSF (Decrement Dependency Count)
TRANSPF (Transfer Permanent File)
Single Device Set TRANSPF
Transferring From a Member
Transferring From a Master
Dual Device Set TRANSPF
UNLOAD (Evict File)

Nugr’

VSN (Tape Volume Identification)
VSN Examples
5. CYBER CONTROL LANGUAGE (CCL)
Introduction
Expressions
Operators
Arithmetic
Relational
Logical

Order of Evaluation

60493800 E

4-65
4-65
466
4-67

4-67
4-68

A rq
“400

469
470

AN
i

471
4-72
4-77
477
4-78

479
4-80
4-81
4-82
4-82
4-87

490
492

492

493
493
494
494
495
4-96
497
497
498
499
4-99
4-100
4101

5-1
52
5-2
5-3

5-3
5-3

Operands
Expressions
Integer Constants
Symbolic Names
CCL Functions
Conditional Statements
IFE
ELSE
ENDIF
terative Statements
Additional CCL Statements
DISPLAY
SET
Functions
FILE
File Type
File Location
File Accessibility

ey

DT
NUM
Procedures
Procedure Residence
Procedure Structure
Procedure Header Statement
Procedure Body
Procedure Call and Return
Procedure Call
Procedure Return
Procedure Commands
.DATA
.EOR
.EOF
*

Sample Jobs

6. COMMUNICATION AREAS

File Environment Table
FET Creation Macros
FET Field Description
Circular Buffer Use
Establishing Owncode Routines
Tape Label Processing
Standard Label Processing
Label Macro for FET Fields
Extended Label Processing

5-4

5-5

5-5

5-8

59

59

5-10
5-10
5-11
5-13
5-13
5-14
5-16
5-16
5-17
5-17
5-17
5-18
5-19
5-19
5-20
5-21
5-21
5-22
522
5-24
5-30
5-32
5-32
5-34
5-34
5-34
5-35

6-1

6-1
6-1
6-5
6-21
6-23
6-23
6-23
6-24
6-25

7. COMPASS INTERFACE WITH
OPERATING SYSTEM

User/System Communication
Basic Communication: RA+1 Requests
Recall Concept
Using CPC
Calling Sequence to CPC
CPC Execution
Locations RA Through RA+100
CDC CYBER Record Manager Macros
System Communication Macros
SYSCOM Macro
SYSTEM Macro
Common Uses of System Macro
Register Save/Restore Function
Integer Divide opdefs
System Action Macros
Ending Programs
ABORT Macro
ENDRUN Macro
GETMC Macro
Field Length Request
Dayfile Messages
RECALL Macro
Status Information
Time and Date Macros
STATUS Macro
FILESTAT Macro
GETACT Macro
FILEINFO Macro
GETICI Macro
SETJCI Macro
Dependent Job Count
Reading Control Cards
Program Recovery
RECOVR Macro
Calling RPV Directly
CHECKPT Macro
File Action Macros
REQUEST Macro
Open and Close Functions
OPEN Macro
- POSMF Macro
CLOSE Macro
CLOSER Macro
Read Functions
READ Macro
READNS Macro

7-1

7-1

7-1

7-2

7-3

7-3

7-4

7-6

7-9

7-11
7-11
7-12
7-12
7-13
7-14
7-14
7-14
7-14
7-15
7-16
7-17
7-18
7-19
7-19
7-19
7-21
7-23
7-23
7-24
7-26
7-27
7-29
7-29
7-30
7-30
7-32
7-40
7-42
7-42
7-47
7-47
7-48
7-49
7-51
7-53
7-54
7-55

READSKP Macro
RPHR Macro
READN Macro
READIN Macro

Write and Rewrite Functions
WRITE Macro
WRITER Macro
WRITEF Macro
WPHR Macro
WRITEN Macro
WRITEOUT Macro
REWRITE Macros
WRITIN Macro

Positioning Functions
SKIPF Macro
SKIPB Macro
BKSP Macro
BKSPRU Macro
REWIND Macro
UNLOAD Macro

File Disposition
EVICT Macro
DISPOSE Macro
ROUTE Macro

Permaneni Fiie Functions
FDB Macro
Function Macros
PERM Macro

System Texts
Common Decks
Text Overlays

7-56
7-57
7-57
7-58
7-60
7-61
7-62
7-63
7-63
7-64
7-65
7-67
7-69
7-70
7-71
7-71
7-72
7-713
7-73
7-74
7-74
7-74
7-75
7-76
7-81
7-81
7-84
7-85
7-85
7-86
7-87

60493800 E

APPENDIXES

A. STANDARD CTHARACTER SET A-l C. PUNCH CARD AND TAPE FORMAT C-1
B. GLOSSARY B1 D. CDC CYBER 170 MODEL 176
DIFFERENCES D-1
INDEX
FIGURES
1-1 Central Memory Allocation 1-3 51 Calling a Procedure from a Job 5-23
2-1 Sample Deck Structure 22 5-2 Calling a Procedure from Another
2-2 Sample COMPASS Job 2-10 Procedure 5-23
23 Job Flow at Central Site 2-12 6-1 File Environment Table 6-2
2-4 Sample Dayfile 2-16 7-1 Communication Area RA through
2-5 Sample Accounting Messages 2-17 RA+100 7-8
TABLES
31 Permanent File Parameters 3-19 42 COPYxx Format Conversion 4-20
32 ANSI Standard Tape Label Formats 3-34 43 Exit Processing 4-52
3-3 Carriage Control Characters 341 5-1 Symbolic Names with Arithmetic
4-1 Items Listed by Audit 411 Values 5-6

60493800 E xi

INTRODUCTION 1

NOS/RE is the operating system for the CDC CYRER 170; CYBRER 70 Models 71, 72, 73, 74; and
6000 Series Computer Systems. It is the basic system software that coordinates all other system software,
user programs, and hardware action.

The operating system offers a standard set of functions that can be utilized by system programs written in
the COMPASS assembly language and by user jobs. It also supports software packages known as the

NOS/BE 1 product set. The product set includes compilers common to more than one Control Data operating
system and products that are unique to the NOS/BE operating system. All products run under the control of
the operating system.

NOS/BE is a multi-programming, multi-processing operating system. Many jobs can be in the system in
various states of processing. It is not necessary for one job to complete before another job begins execution.
Among the tasks the operating system performs for a job are: reading the job into the system, assigning it
system resources such as central memory and mass storage files, scheduling execution in the central processor,
and performing end-of-job procedures that dispose of files used or produced by the job. The operating system
also controls the environment of the software and hardware used by a job, such that the resources available
to all jobs are used efficiently.

The remainder of this section presents background material about the hardware of the CDC CYBER 170;

CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Systems. Product set members that are
intimately involved with the operating system but fully described in other manuals are also summarized.

HARDWARE FUNCTION AND USE

The CDC CYBER 170; CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Systems have the
following hardware components.

Mainframe of the computer formed by one or two central processors, central memory, and peripheral
Processors

Operator console through which the operator oversees software and hardware operation

Peripheral devices including (at minimum) rotating mass storage devices, line printer, card punch, card
reader, and magnetic tape units

Additional hardware that can be part of the system includes:
Extended core storage (ECS)
Graphics terminals and plotters

Different types of line printers and magnetic tape units

60493800 E 1-1

All of the previously mentioned hardware usually resides at a central site. However, the CDC CYBER hard-
ware and NOS/BE operating system also can have remote sites connected to the central site through several
kinds of communication lines.

More than one central site can be linked together. In particular, a site with 6000 Series Computer Systems
can be linked to another 6000 site or to a 7600 site so that users in one location can receive the benefits
available through more than one system.

The following discussion introduces the main components of the CDC CYBER 170; CYBER 70 Models 71,
72, 73, 74; and 6000 Series Computer System and shows how they are used during system operation.

MAINFRAME AND CONSOLE

The mainframe consists of central memory, central processor, and peripheral processors operated through a
display console.

CENTRAL MEMORY

Central memory consists of 60-bit words. Memory holds instructions to be executed by the central processor,
data to be manipulated by the central processor, and data buffered to and from peripheral processors. Any
given system can have memory with 65K, 98K, or 131K words. Memory sizes of 198K or 262K are avail-
able with the CDC CYBER 170 series.

A CDC CYBER 170 has a central memory control that controls the flow of data between central memory
and the requesting system components.

Two portions of central memory known as low core and high core are reserved for system use. Low core,
the beginning address of central memory, contains central memory resident (CMR) and a small library of
system routines frequently used by peripheral processors or the central processor during operating system
functions. These library programs exist in memory because they can be loaded from CMR much faster than
from the rotating mass storage device on which the rest of the system routines reside, and thereby reduce
system overhead. CMR also contains system tables and pointer words, the communication area that links
peripheral processors and central memory, and control point areas. High core, the highest numbered addresses
in memory, contains information relating to allocation of space on rotating mass storage devices. The amount
of memory assigned to low core and high core varies during operation, with space not currently required
being released, so that a maximum amount of memory is available for user jobs.

NOS/BE is a multi-programming system. This means that more than one job can be in central memory at the
same time. Although only one of the jobs can be using the central processor in a single-processor system at

a given time, all other jobs in memory can have peripheral processors executing tasks for them during that
time.

Figure 1-1 shows centrai memory allocation to the system and user jobs. As shown, the first address is at the
extreme low end of central memory and the last address is at the extreme upper end.

1-2 60493800 E

CONTROL POINT DEFINITION

Last
Address

First
Address

Wik Cara
g Wi

Unused Storage

Job at Control Point 17

Job at Control Point 16

Job at Control Point 15

AN

Unused Storage

Job at Control Point 4

Unused Storage

Job at Control Point 3

Job at Control Point 2

Unused Storage

Job at Contro! Point 1

Low Core

Figure 1-1. Central Memory Allocation

)

{Used for mass storage
file reference infor-
mation)

{Used for CMR portion
of operating system,
including control point
areas)

Each job in central memory is assigned a control point number. Control points are the concept by which
memory, the central processor and system resources are assigned to a job in memory. Any job in memory
has a control point number to identify it and has a 200-word control point area in CMR in which the

system stores information about the job. The exchange package for the control point is also stored in the

control point area.

The physical portion of central memory allocated to a job is related to the control point number to which
the job is assigned. This assignment is made and maintained in numerical order. Thus, the job at control
point 2 follows the job at control point 1, and the job at control point 3 follows the job at control point 2,
as shown in figure 1-1.

60493800 A

Through a dynamic relocation process, jobs are moved up and down in memory to make room for new jobs
assigned to control points. The relocation process occurs continuously as memory requirements change. For
example, jobs might be running at all control points except control point 2 when a new job is assigned to
control point 2. If sufficient contiguous memory is not available for the new job, other jobs are relocated as
necessary to provide sufficient contiguous memory. Each job is moved as a block. It might be necessary to
relocate the jobs at both control points 1 and 3, or to relocate only one of them, since unassigned memory
can exist between control points.

When a job is moved in storage, the monitor routine (MTR) suspends all user program activity at the control
point, waits for all peripheral processor units (PPUs) assigned to the control point to clear their field access
flags, and then starts the system routine that moves the job. When the move is complete, the reference
address of the job is modified, and job activity resumes. The job is not affected by this change in location.
Since all program locations are relative to the beginning of the job field length, only the reference address
(RA) in system tables needs to be changed when the job is moved.

Up to 15 control points, numbered 1 through 17 octal, are available for user jobs. An installation can choose
fewer than 15. Control point O is used to identify all hardware and software resources not presently allocated
to user jobs, or to identify resources known only to the operating system.

At a typical installation, one of the 15 control points is assigned to JANUS, the operating system routine that
controls the line printer, card punch, and card reader. JANUS uses central memory buffers, but the actual
driving of equipment is performed by peripheral processor, not central processor, programs.

An installation with remote terminals uses INTERCOM to communicate with those terminals. INTERCOM
does not use any central processor code to control this communication but executes entirely within the
peripheral processors. The central memory required for buffers and control tables is obtained by extending
the CMR area. A control point is used only when a task requested from a terminal requires the use of the
central processor.

A control point and a job are associated only when the job is in memory or when it has been rolled out.
When a job is swapped out, it loses its control point identification.

FIELD LENGTH DEFINITION

Every job in central memory occupies a contiguous block of words. The block is not of fixed size, but rather
varies with the needs of the job. The length of the block is the field length (FL) of the job. FL-1 is the
relative address of the last word in the block. The first word in the block is known as the reference address
(RA); all addresses within each block are relative to RA.

A job can reference locations within its field length, but not outside its field length. Any attempt to read or
write outside a job field length is prevented by the hardware, so that all other jobs and system programs in
central memory are protected from being accidentally overwritten. For this reason, each job can consider that
it is running alone in a computer with a central memory the size of its field length.

The operating system dynamically manages the field length assigned to a job, so that memory is not needlessly
tied to a control point when it is not required. Field length increases or decreases as the job progresses. A
job step such as a file copy operation, for example, requires much less memory than a step such as a program
compilation. The operating system adjusts the field length to the job step needs.

1-4 60493800 A

A job normally does not stay in central memory until completion but moves into and out of memory in
relation to its needs for system resources, such as tapes or the central processor and to the needs of other
jobs in the system. The scheduler routine of the operating system is responsible for moving jobs into

memory to maximize system throughput.

JOB SWAPPING AND ROLLING

When a job with a high priority enters the system, existing jobs of lower priority might be swapped out or
rolled out of central memory. The user can specify initial job priority within certain ranges, but the operating
system adjusts this priority according to factors such as the system resources requested or allocated and the
time consumed in waiting for resources. Some functions requested through remote terminals and those that
affect overall systef efficiency are assigned high priority. Actions by the central site operator also can affect
the priority of any given job. '

When a job is swapped out, all information reflecting the current status of the job is written to a mass storage

file. The field length and control point associated with the job are made available to the scheduler. As control
points and central memory become available, swapped out jobs are swapped back in to continue processing. A

job can be swapped into any free control point; thus, a job might run at several different control points before
it reaches termination.

When a job is rolled out, its job field length is written to a rollout file before the field length is freed for
another job. The control point is not released when rollout occurs. If extended core storage (ECS) or
magnetic tape is being used by a job, that job can be rolled out, but not swapped out.

If a job is waiting for a permanent file to become available or for a mass storage device to be mounted, the
job can be swapped out automatically. When the permanent file or device becomes available, the job becomes
eligible to be swapped in.

Swapping or rolling might increase the total time that a job spends in the computer, but it has no effect on the
amount of central processor time used by a given job; and it should help overall processing. Job swapping

and job rollout are controlled by the scheduler. The most important system effect is to maintain high central
processor utilization. Frequent short central processor access is balanced with longer, less urgent, access.

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) is an extremely high-speed arithmetic processor that executes the instructions
of system or user programs. It performs computational tasks, but must use central memory for all its input and
output including communication with the operating system.

Depending on the specific hardware model, a system might have one of two types of central processors or
might have both types of processors in a single system. The differences in the processors has to do with the
number of functional units available for concurrent operations, and hence the relative speed at which a given
set of instructions can execute.

The CDC CYBER 170 Models 171, 172, and 173; CYBER 70 Models 71-1x, 72-1x, and 73-1x; and the 6200
and 6400 Computer Systems each have a single processor that has a unified arithmetic unit in which
instructions must be executed serially.

60493800 D 15

Storage space on rotating mass storage devices is assigned to a file as it is required by the file. When a job
creates a file, it does not request a particular size of file, and no preallocation occurs. Files on mass storage
grow as they are written and can overflow to another physical device.

All rotating mass storage devices belong to a logical grouping known as a device set. The installation configures
these sets to its own needs.

Public device sets hold system files and user files from any job.
Private device sets hold only files that a job specifically indicates should be on a private device set.

The user job selects the device set on which files are to reside by specifying a specific setname or by default.

UNIT RECORD EQUIPMENT
Unit record equipment is of two categories:

Standard unit record equipment is the line printer, card punch, and card reader necessary for the
operation of all systems.

Other unit record equipment can include graphics consoles, plotters, and paper tape readers and
punches. These are not a part of the basic system. The operating system defines codes pertaining
to files on these devices. but does not include the programs needed to operate the equipment. Non-
standard unit record equipment runs under control of software provided by an installation.

Standard unit record equipment runs under control of the part of the operating system known as JANUS. All
files to be processed by JANUS must be in a special format in which each card or line is terminated by a
word with 12 bits of zero in bit positions 0-11.

The card readers can accept, and the card punches produce, files punched with either of two different sets of
Hollerith punched codes. Binary punched cards can also be processed in two formats.

Various line printers are available. Models with removable print trains offer character sets with uppercase and
lowercase English, fonts with other languages, etc. Fewer unique characters on the train generally increase
print speeds. Depending on the code sent to the controller and the controller translation of that code, a
character that is produced on one printer can appear as a different character on another printer. For
example, a quotation mark output on one printer might well appear as a # on another. This often occurs
when the character desired is not present on the printer to be used for output.

When an installation has different types of unit record equipment, the job is responsible for providing informa-
tion in the format required for processing on a particular device.

MAGNETIC TAPE UNITS

The operating system supports both 7-track and 9-track magnetic tape units. When an installation has both

types of units available, the job is responsible for specifying the type of hardware unit required to process
a given tape. The system default is a 7-track tape. Both binary and coded information can be written.

1-8 60493800 A

For a binary tape, bit patterns are written to the tape as they appear in memory.

For coded tape, 6-bit characters in memory are translated to a different 6-bit pattern, known as external
BCD,before they are written to the tape.

Density for a 7-track tape can be 200, 556, or 800 bits per inch (bpi).

A 9-track tape corresponds to tapes in industry-standard format. Both binary and coded information can be
written, but the information is not the same as 7-track binary or coded information.

For a 9-track binary tape, bits are packed, with three 8-bit characters on tape corresponding to four
6-bit characters in memory.

For 9-track coded tape, bits are either packed or are in 8-bit character codes; the two possible codes
are the 64-character ASCII and the 128-character EBCDIC characters.

Density for a 9-track tape can be 800 characters per inch (cpi), 1600 cpi phase-encoded, or 6250 cpi group-encoded.

Another type of control over recording of tape information deals with the number of characters that appear
between the physical blocks on the tape and how files and records are recorded. On both 7-track and
9-track tapes, one of three formats must be selected: SI, S, or L. Each offers advantages depending on the
use made of the tape.

EXTENDED CORE STORAGE

ECS is a second, supplementary form of memory that has two main uses. It can be used as a mass storage
device or as an auxiliary direct access memory. Its large amount of storage and very fast transfer rates make

it suitable for many tasks.

CDC CYBER 170 Model 176 systems have a form of extended memory different than other CDC CYBER 170
models but functionally similar. The CDC CYBER 170 Model 176 extended memory cannot be shared with
other systems and does not have a distributive data path (DDP) capability. Other minor differences are in
appendix D of this manual. References to ECS in the remainder of this document apply to extended memory
of all CDC CYBER 170 Models except as limited by the CDC CYBER 170 Model 176 differences described

in appendix D.

The use of ECS at any particular site depends on the options selected when the system is installed. Frequently
used operating system routines can be placed on the ECS library file, rather than in the central memory low
core library area, to reduce the size of low core used by the system without using rotating mass storage. In

a multi-mainframe environment, ECS might be used to link the two computer systems.

ECS can be used for buffering sequential files on public devices or for storing sequential or random files (ECS
resident files). Each job specifies whether or not a given file will be buffered through ECS or reside on ECS.
In this respect, ECS is the same as other mass storage devices except that ECS resident files cannot overflow

to other mass storage devices.

ECS can be accessed directly from a running program. In this case, a block of ECS is assigned to the usei’s
control point. The block is delimited by RE (reference address for ECS) and FE (field length for ECS) fields
in the exchange package. These fields are analogous to the RA and FL fields for central memory. In this
mode, ECS is accessed by the ECS direct read/write hardware instructions which perform very high-speed block
transfers of user specified length between the ECS and central memory field length addresses specified by the
user. The main use of ECS in the direct access capacity is to hold large arrays and tables that do not fit in
central memory and would otherwise require partitioning and partial residence on disk, or to otherwise reduce
central memory requirements by moving the arrays and tables to ECS as their main residence.

60493800 E 1-9

REMOTE TERMINALS

Remote terminals are physically linked to the central site by communication lines. Logically, they are under
control of the portion of the operating system known as INTERCOM. INTERCOM allows a user at a remote
site to access the central site facilities. INTERCOM is controlled by the central site operator and might not

be available to remote terminals all the time the. central site is in operation,

Remote terminals are of many different types and complexities. General categories of remote terminals are:
Teletype terminals, which might be a physical Teletype or a display terminal.
Display terminals, which include a keyboard and a display screen, and possibly a character printer.

Remote batch terminals, which have a card reader, line printer, and possibly a card punch attached.
Some remote batch terminals have a display screen.

All of the remote terminals provide interactive access to the operating system control statements. That is,
control statements can be entered and executed one at a time without being submitted as a complete job.
The remote batch terminals allow complete jobs to be entered through the card reader and printed output

to be received. Users at remote terminals without a card reader can submit jobs constructed with INTERCOM
features or permanent files stored at the central site.

Different terminals operate in different character set modes. Some terminals can be reinitialized to accom-
modate either ASCII or BCD data; others run only in one mode at all times. Frequently, the line printers
of a remote terminal operate in a different mode than those at the central site.

A job can be submitted at one site and specify that its output is to be returned to another site. All job
output can be sent to any remote terminal, although it is usually not practical to send lengthy print files

to terminals without line printers. Files can be routed between remote sites and the central site in either
direction. Each terminal has an identifier assigned when communications are established between the terminal
and the central site. This identifier is used to specify the location to receive files.

INDIVIDUAL PRODUCTS
In addition to the capabilities described later in this manual, the operating system includes several features

which in turn provide many user options. Several of these features and product set members that are referred
to by name in this manual are introduced in the following paragraphs.

INTERCOM

INTERCOM interfaces remote terminals with the central site computer. The central site operator must initiate
INTERCOM as a program before remote access is possible.

60493800 E

—
]

-

(]

Commands entered at the terminal keyboard call for a variety of INTERCOM capabilities. The first command
at many terminals is LOGIN, which establishes the user’s authority to use INTERCOM; some terminals do not
caquire LOGIN.

LG\.!U»D\-/ AT A.

INTERCOM has three distinct capabilities. All three are available from remote batch terminals; only the first
two are available from terminals without batch capabilities.

The interactive capabilities of INTERCOM encompass two types of commands. INTERCOM commands allow the
terminal user to receive status about files associated with that terminal, display contents of files, and send messages.
Any keyboard entry thatis not an INTERCOM command is assumed to be an operating system control statement.
Consequently, control statements that can be submitted as part of a job, except for magnetic type requests, can be
executed one ai a time through INTERCOM with a few minor exceptions.

The file creating and editing capabilities of INTERCOM are the primary features of EDITOR. When the terminal user
calls EDITOR through a terminal keyboard command, subsequent keyboard entries can become part of a file being
created or updated. Interactive commands can also be submitted through EDITOR. When the created or updated file

isa source program, EDITOR allows the program to be compiled and executed through a single keyboard entry.
EDITOR displays the results on the display screen. When the file is a series of card images corresponding to a job

deck, another command causes the file to be entered into the input queue of jobs awaiting execution as though the job
had been entered as a card deck through a card reader.

The remote batch capabilities of INTERCOM give the remote terminal user commands for line printer and card reader
control. Jobs that originate through the remote batch terminals can be controlled to some extent through the terminal;
jobs that originate through interactive commands are beyond terminal user control until the job completes.

CDC CYBER RECORD MANAGER

CDC CYBER Record Manager is the software package that performs execution time inpuif/output for many
members of the NOS/BE 1 product set. It is a common product described in full in the CDC CYBER Record
Manager manuals.

The operating system recognizes CDC CYBER Record Manager only as a central processor routine. The
operating system does not use CDC CYBER Record Manager for any function. Rather, all CDC CYBER
Record Manager capabilities are implemented through the standard operating system functions described in the
later sections of this manual.

CDC CYBER Record Manager defines five file organizations, eight record types, and four blocking types for
sequential files. None of these are known to the operating system in the same terminology or implementation,
although operating system actions and CDC CYBER Record Manager functions often result in an identical
sequential file.

COBOL programmers access CDC CYBER Record Manager through language statements. FORTRAN Extended
programmers can access its capabilities through language statements or calls to CDC CYBER Record Manager
routines. COMPASS programmers can use CDC CYBER Record Manager macros instead of the macros
described later in this manual. Sort/Merge and FORM users can use CDC CYBER Record Manager through
the language in which these utilities are called or through a FILE control statement available to all programs
using CDC CYBER Record Manager for execution input/output.

60493800 C 1-11

FORM

FORM is a file transformation utility. It is a common product described in full in the FORM Reference
Manual.

FORM can reformat files or records. As a file reformatting utility it has two capabilities:

Reformat files defined to CDC CYBER Record Manager as sequential, indexed sequential, direct, or
actual key organization. Files can be transformed into another of these organizations or into the same
organization with a different physical structure.

Reformat binary tape files in System/360 format for use under NOS/BE.

As a record reformatting utility, FORM has the capability to add or delete characters from each record, blank
or zero fill records, convert bit patterns to representations of characters or numbers, and in general change
the contents of a specific record. FORM can select all records or only particular records for processing.

FORM is called by a control statement or a COMPASS, COBOL, or FORTRAN Extended statement that
specifies the general operations to be performed. Detailed instructions for FORM are submitted as directives
that are part of the job deck or are on a separate file for a control statement call. Programs pass directives
to FORM through common blocks.

UPDATE

Update is a utility program used for modifying files of coded data. It allows a Hollerith punched card or
card image to be stored on rotating mass storage, while retaining the ability to modify file contents without
recreating the entire card file. Update is a common product described in full in the Update Reference
Manual.

Systems programmers make frequent use of Update when they make local modifications to the operating
system or its products. Update is not merely a systems capability, however. Any file of character data can
be processed by the utility, whether that file contains a single program being converted from one language
version to another, a group of subroutines, or a series of independent statements that a COPY sentence
incorporates into a COBOL source program.

A specially formatted file called a program library is created when Update first manipulates a file. This
program library should not be confused with a library defined for Loader purposes. Update files, commonly
named OLDPL and NEWPL, are Hollerith card images with history information provided by Update. Files
identified as user or system libraries must contain assembled binary programs in a format suitable for loading.
Update program libraries must be manipulated only by Update.

Update is called by a control statement that specifies the general operations to be performed. Detailed
instructions for Update are submitted as directives that are part of the job deck or on a separate file.

More than 40 directives can be specified, giving the user a wide latitude in modifying the original program
library and otherwise manipulating files produced by Update. Among Update capabilities are:

Inserting or deleting cards

Dividing the file into decks for manipulation as a group

i-i2 60493800 A

Declaring decks common so that a single copy can be used repeatedly without duplication

Producing a new program library incorporating present corrections

Producing a compile file of active cards returned to a format acceptable to assembler or compiler input

COMMON UTILITIES

The common utilities, COPYL and ITEMIZE, are file listing and updating utilities. (See the CDC CYBER
Common Utilities Reference Manual.)

ITEMIZE is a utility program used for listing information about the content of each record of a binary file.
It processes files with system-logical-records and produces printed output. Output specifies the type of
record, as determined from the prefix table or other information at the beginning of the file. Depending on
the type of record, other information such as entry point names in libraries, overlay level, library table fields,
or full text of records can be obtained. ITEMIZE is useful in determining the contents of user libraries, load
tapes, and deadstart tapes.

COPYL and its variation COPYLM replace binary records while copying one file to another. COPYL and
COPYLM differ only in their handling of multiple occurrences of a record on the file being copied. They
operate with binary or text records. These utilities are commonly used to maintain files of procedures or
subroutines.

CDC CYBER LOADER

CDC CYBER Loader is the software package that places programs into memory so that they are ready for
execution. Loader input is obtained from local files and libraries. Upon completion of loading, execution of
the program is initiated if requested.

Loading also involves performance of services such as generation of a load map, presetting of unused core storage to a
specified value, and generation of overlays or segments.

60493800 C

JOB PROCESSING AND DECK STRUCTURE 2

A job is a sequence of control statements followed by optional source programs, object programs, data, or
directives. A job begins with the job statement and ends with an end-of-information indicator. Jobs exist as
physical card decks or images of card decks.

Jobs can enter the system in several ways:

Batch jobs on cards are read in through card readers at the central site. Batch jobs of card images are read
from a load tape under the direction of the central site operator.

Remote batch jobs on cards are read in through card readers at remote sites. Remote batch jobs of card
images are transmitted from a file created at a remote terminal. All remote batch jobs interface with the
central site facilities through INTERCOM.

Interactive jobs are control statements submitted one at a time from a remote terminal keyboard under
INTERCOM control. These jobs execute as a series of batch jobs created by INTERCOM in response to
individual keyboard entries.

All batch jobs have the same characteristics no matter what their origin. Remote batch jobs differ from central
site batch jobs only in that output returns to the terminal and that remote jobs are subject to the limitations of
the physical equipment at the remote site. Although all remote sites might not have the capability to produce
line printer output, the file that normally would be printed is available on mass storage for display on the termi-
nal. The following information about job decks appiies to both decks and deck images.

See the INTERCOM Reference Manual for specific details of output file handling and specific interface to the
operating system, as well as for interactive procedures.

All jobs in the system waiting to begin execution are collectively known as the input queue. Each job enters
the system with the name specified by the first five characters on the first card in the job deck. The operat-
ing system adds two unique characters to this name to distinguish it from all others in the system.

Once a job enters central memory and begins execution, the image of the job deck is known as a file by the name
of INPUT. During job execution, a file with the name QUTPUT is generated by the operating system. When

the job completes execution, the file OUTPUT becomes part of the output queue. The output queue is the
collective name for output files remaining in the system when the jobs that generated them have completed execu-
tion. All print and punch files,and special disposition files such as plot, are part of the output queue. As printers,
punches, or remote devices become ready, the operating system causes files from the output queue to be physi-
cally output. Files normally return to the user with the name of the job that created them.

Jobs do not read cards directly from the card reader; neither do they directly punch cards or print lines. All

job input and job output is stored on mass storage files and on job process images of card or printer files. Physi-
cal card reader, card punch, and line printer operations proceed under operating system, not user job, control.

60493800 A 2-1

DECK STRUCTURE

The first card of any deck (figure 2-1) is the job statement; the last card has a 6/7/8/9 multiple-punch in
column 1. Cards with a 7/8/9 multiple-punch in column 1 divide the deck into sections.

/ 6 End-of-Information Card
7 .
8 [,’
9
oo d
i / 7 - 7/8/9 Card
1 8 pu
! .
Program, data, or 9 y
directives in the /
order that control i ﬁ 7/8/9 Card
statements execute 1 (g
L {
/ Control
Statements
]
\ |
\ L'.(MYJOB T:jlob Statement

Figure 2-1. Sample Deck Structure

Control statements are instructions to the operating system or its loader. They are grouped together at the
beginning of a deck. Collectively, the control statements form a job stream. Individually, the control state-

ments are job steps.

Control statements execute in the order in which they appear in the job stream. Consequently, the order of
the control statements governs the order of other sections in the deck.

The user is responsible for structuring the job deck such that there is a one-to-one correspondence between
each control statement that reads from the file INPUT and the sections of the job deck. The operating
system handles each section of the job deck only once, unless the job specifies contrary handling. For example,

l TWhen a job deck is being created as card images through the INTERCOM EDITOR, the *EOR and *EOF
entries result in the physical equivalent of 7/8/9 and 6/7/8/9, respectively.

2-2 60493800 E

consider two source programs to be compiled and executed with two different sets of data. When one pro-
gram is compiled and executed before the other is compiled and executed, the control statements and deck
structure must be:

M~

COBOL. Compile first source program and write binary fiie LGO.
LGO. Execute binary file.
REWIND,LGO.
COBOL. Compile second source program and write binary
LGO. Execute binary file.
7/8/9
first source program
7/8/9
data for first source program execution
7/8/9
second source program

—

(1)

G.

t—'l

ile

7/8/9
' data for second source program execution
6/7/8/9

If both programs were compiled before either was executed, the corresponding deck structure would be:

DECKB.
COBOL. Compile first source program and write binary file LGO.
COBOL,B=ABC. Compile second source program and write binary file ABC.
LGO. Execute binary file LGO.
ABC. Execute binary file ABC.
7/8/9
first source program
7/8/9
second source program
7/8/9
data for first source program execution
7/8/9
data for second source program execution

6/7/8/9

The preceding two decks illustrate the principles of all deck structuring.

SEPARATOR CARDS

One job is separated from another job by a card with a 6/7/8/9 multiple-punch in column 1. This card is known
as an end-of-information (EOI) card.

Within a single job deck, each section is separated by a card with a 7/8/9 multiple-punch in column i. Once

on mass storage, these cards are represented by system-logical-record terminators of level 0, as discussed with
rotating mass storage files in section 3. A compiler or assembler encountering a 7/8/9 card image during
processing treats the card as an end-of-partition (EOP) or an end-of-file (EOF). l

60493800 E 2-3

An octal level number 0 through 17 can be punched in columns 2 and 3 of a separator card. A level number of
only one digit can be punched in column 2. When columns 2 and 3 are blank, a level number of 0 is assumed.
Level numbers are not normally used on separator cards.

Interpretation of a 7/8/9 level 17g card depends on whether the ST parameter on the job statement indicates
the job might be run on a system under control of the SCOPE 2 operating system. JANUS, the system routine
that controls standard unit record equipment, converts a 7/8/9 level 17g card to the equivalent of a 6/7/8/9
end-of-information card when the job cannot execute under SCOPE 2. No such equivalencing occurs for job
decks that might execute under control of both NOS/BE 1 and SCOPE 2. A 7/8/9 level 17g card should

not be used in place of a 6/7/8/9 card when the job might execute under the SCOPE 2 operating system.

Separator cards can be used to indicate whether the cards following them are punched in 026 or 029
character codes, as discussed in appendix A.

CONTROL STATEMENT SECTION

The first section of a job deck contains only control statements. Each control statement results in the execution
of a program in the central processor or in a peripheral processor. Many control statements call programs that
make entries in system tables; others call programs that perform utility functions such as file copy. Several
broad categories of control statements are:

Operating system functions such as assigning a tape unit to the job or routing a print file to a remote
terminal. These functions are fully described in section 4 of this manual.

Utility functions such as file copy or creation of user libraries. These functions are also described in
section 4 of this manual.

Loader functions such as load, but not execution of a program, and satisfying program references from
different libraries. Only the simplest LOAD and EXECUTE statements are summarized in this manual; the
CDC CYBER Loader Reference Manual has complete details of all loader functions.

Program call functions which are a request to the operating system to load and execute information
existing on a file attached to the job. This function is discussed in the following paragraphs.

Each of the control statements discussed in this manual is available to the job because the control statement name
is the entry point to a program on a system library named NUCLEUS.
LIBRARY USE
A library is a collection of programs in executable form accompanied by library tables that specify the content of
the library. The operating system uses the libraries as the source of programs with entry point names specified on
control statements.
Two types of libraries exist: system libraries and user libraries.

A system library is available automatically to all jobs. It is named in the library name table in central

memory resident {CMR). It is contained on a permanent file that can be read by more than one job at
a time, and parts of it can be contained in CMR.

2-4 60493800 E

A user library is a file formatted as a library, but it is not available to a job until it has been
explicitly brought to the job. The job might create the file before using it as a library, or it might
be a permanent file that a job would attach expiicitly. A permanent file might be such that more
than one job could read it at once, but every job must explicitly attach the file. The EDITLIB

sadflrao. o Lo el b sinde o oeeoam 1len.,
utility can D€ used iO créate a usSer Luiary.

The particular libraries that are used for each job, or for each loading operation within a job, depend on the
library set defined by the job. The total library set consists of the global library set, the local iibrary set, and the
system library NUCLEUS.

NUCLEUS is a system library that cannot be removed from the library set. It contains the items listed
under the heading System Texts in section 7.

The local library set is defined by the loader control statement LDSET(LIB= . . .). Local library sets
are valid only for the current load operation. At the start of each load operation, the local library set

is defined as empty unless the LIB parameter of LDSET is specified (see the CDC CYBER Loader
Reference Manual).

The global library set is defined by the loader control statement LIBRARY. Global library sets are valid
throughout the job or until another LIBRARY control statement changes the global library. At the start of
each job, the global library set is defined as empty.

The loader uses the library set in the following order.
Local libraries
Global libraries
NUCLEUS

Any program name on a control statement is loaded first if a file with that name is attached to the job. Then
the library set is searched and a program loaded for any matching entry point. In a simple job, the local library
set and global library set are hoth empty, so that the NUCLEUS library is the source of control statements exe-
cuted. Given the library set search order, however, any user program with the same name as a system program is
executed when the proper library set is declared in the job.

See the CDC CYBER Loader Reference Manual for further details of library use during loading.

LOAD SEQUENCE

A load sequence is a consecutive series of control statements that begins with a call that causes a program to be
loaded into central memory. A load sequence ends with a call that initiates execution. The following is a load
sequence with three control statements.

LOAD(ABC)
LOAD(DEF)
EXECUTE.

60493800 E 2-5

All control statements in a load sequence must contain only instructions for the loader. Both LOAD and
EXECUTE are loader statements. The other control statements that appear in this manual are not loader state-
ments, unless they are specifically identified as such.

Any control statement that calls for execution terminates a load sequence. Any name call such as LGO, ABC,
REQUESTY(. . .),terminates a load sequence. In most instances, a control statement initiates and terminates a
single statement load sequence.

Other statements that are part of a load sequence or that affect the loading of programs are:

LOAD Loads modules from file specified.

LIBLOAD Loads modules specified by entry point names from the library named.
SLOAD Loads specified modules from the file named.

EXECUTE Completes load and executes.

NOGO Completes load and produces a core image on specified or default file.
SATISFY Specifies name of a library to be searched for unsatisfied externals.

LDSET Specifies a list of independent options that can preset central memory field length, alter
default rewind options, control load map generation, define the libraries in the local library
set, select loading error handling, and force loading or inhibit loading of routines.

SEGLOAD Specifies segmentation, dividing large programs into sections.

See the CDC CYBER Loader Reference Manual for a full description of these control statements.

LGO AND PROGRAM EXECUTION CALLS

All assembler and compiler calls allow the user to specify the name of the file to contain executable code. In the
absence of another name, a file with the logical file name LGO is created. A job does not necessarily have a file
with the name LGO.

When LGO is encountered in the job stream, the operating system searches for a file with that name. In the
default instance, such a file exists and it is loaded and executed. LGO contains the relocatable object code
produced by the compilers in the absence of a source program statement that directs absolute code. (See the
CDC CYBER Loader Reference Manual for absolute code information.)

Similarly, any file name presented among the control statements is assumed to contain a program that can be

loaded and executed. For example:

FTN,B=OLIVER. Writes object code on file OLIVER.
OLIVER. Calls for load and execution of OLIVER.

Parameters can appear on the program call, depending on the object program. For instance, the FORTRAN
Extended compiler produces object code that can process file names. The following program call substitutes
files TAPE2 and TAPE3 for whatever file names are compiled into the object code.

OLIVER,TAPE2,TAPE3.

2-6 60493800 E

The COBOL compiler, on the other hand, does not produce object code that can accept parameters on the pro-
gram call. The reference manuals for the individual products describe any such capability.

Any user program that can access the first 100 octal locations of the job field length can be written to accept
program call parameters. Positioning of the file named on a program call is controlled by installation default.

At most installations, rewind occurs automatically before loading. In a straightforward compile-and-execute job,
the file LGO or its equivalent need not be rewound.

When more than one program is written on LGQ, however, manipulation of LGO might be required. If the first
program is a main program and the second is a subroutine called by the main program, a single call for LGO
rewinds the file, loads both programs, and executes.

If the two programs are independent, however, execution stops at the end of the first object program. A second
call to LGO rewinds the file, such that the first program executes a second time, rather than having the second
program execute. The previous example job DECKA shows a deck structure with one file name that executes
two independent programs with a control statement to rewind this file so that the second program overwrites the
first. An alternative is example DECKB in which the second independent program is written to a separate file and
executed by a call with the name of the file ABC.

COMPILER AND ASSEMBLER CALLS

The following names should be used on the program execution call statement to assemble or compile a user
program.

Source Language ifn Source Language Ifn
FORTRAN Extended FTN. SYMPL SYMPL.
COBOL Version 4 COBOL. Sort/Merge SORTMRG.
COBOL Version 5 COBOLS. PERT/TIME PERT66.
ALGOL ALGOL. APT APT.
ALGOL Editor ALGEDIT. QUERY UPDATE Version 2 Q2.
COMPASS COMPASS. QUERY UPDATE Version 3 Qu.
SIMSCRIPT SIMS. FORM FORM.
BASIC BASIC. Data Definition Language DDL.

Parameters on the controi statements are used for such functions as:

Naming the file containing the program to be assembled or compiled (default name INPUT)

Naming the file to which the program is to be translated in object code (default name LGO)

Producing source language or object code listings of the program (listing options such as S in FORTRAN)
Parameters for many products are the default ISINPUT, B=LGQ, and L=OUTPUT. See the reference manual for
a particular compiler for a full description of parameters that can appear on the control statement. When a com-

piler or assembler call specifies INPUT as the name of the file containing the source program, the next unexecuted
section of the job deck must contain the program.

60493800 C 2-7

EFFICIENT CONTROL STATEMENT ORDERING

Placement of some control statements, particularly these that cause hardware devices to be assigned to a job, can
affect the efficiency with which all jobs execute. Parameters on those statements can also affect job throughput.

A REQUEST control statement for a magnetic tape assigns a tape drive unit to the job as soon as the tape is
made ready and the operating system is aware of the tape location. The tape unit remains assigned to the job
either until the job executes a control statement that releases the unit or the job terminates.

The following examples presume a job compiles a FORTRAN Extended program and executes the progrdm
twice using different sets of data on individual tape volumes.

An inefficient ordering of control statements is:

INEFFICIENT MT2 Job statement indicates two tape units required.
REQUEST,DATAMT. ASSIGN 3456.

REQUEST,DATA2MT. ASSIGN 3457.

FTIN.

LGO.

LGO.

The same operations performed more efficiently are:

EFFICIENT MT1,

FTN.

REQUEST,DATA MT,VSN=3456, NORING.
LGO.

UNLOAD,DATA.
REQUEST,DATA2,MT,VSN=3457 NORING.
LGO.

RETURN,DATA2.

The second job is more efficient in several ways:

Only the number of tapes required at one time is indicated on the job statement, not the total required
in all. Jobs with tape requirements are captured in a tape queue when they enter the system. They are
not released to the input queue, and consequently cannot begin execution, until certain tape availability

requirements are met.

A tape is requested when it is required, not before. Since the compiler does not use the data tape, the
tape is not requested until after compilation is complete.

The VSN parameter on the REQUEST control statement permits the operating system to assign the mounted
tape to the job without operator command. Without VSN information, the operator must inform the oper-

ating system of the location of the tape.

The tape unit is returned to the system when it is no longer needed, instead of having the job hold the unit
until job termination.

In general, control statement placement can affect job execution time whenever a magnetic tape or private device
set is used.

-8 60493800 A

DIRECTIVE SECTION

Directives are control information that does not appear within the control statement section of a job deck.
They are required by several of the utilities, including EDITLIB and COPYN, and by several common prod-
ucts such as UPDATE and FORM.

When directives specify instructions which will not fit on a single control statement, the programmer has
the following options.

Placing directives on a file and making the file available to the job before the directives are needed.
Placing the directives within the job deck.

The name of the file containing the directives must be specified in the call to the utility or product. The
default file name for most calls is INPUT.

When directives are part of a job deck, they must appear in a separate section. The deck must be struc-
tured such that the directives are the next unprocessed section of the deck at the time the utility or
product executes.

DETAILED JOB FLOW THROUGH SYSTEM

The following information describes the system procedures that occur as a job passes through the system.
An understanding of this information is not required for system use.

From the time a job is assigned to a control point and execution is completed, many other jobs are being
executed. Each job is assigned a job descriptor iable (JDT) ordinal when it is first assigned to a control
point. If the scheduler routine swaps out the job (returns it to mass storage in its present state of execu-
tion), the JDT ordinal maintains the identity of the job when the control point association is lost. A job can
be swapped out by the scheduler when a job with higher priority enters the system or when the job is
delayed waiting for a resource such as a disk pack. A job can also be rolled out, freeing central memory but
retaining a control point, while awaiting operator action. The scheduler directs swapping and rolling, taking
into consideration the relative needs of batch jobs and interactive jobs. When jobs are swapped or rolled

into central memory, they resume execution at the point of interruption.

EXAMPLE JOB

The manner in which control statements establish user program handling is illustrated by following a sample
job as it is processed. For example, consider a job to assemble and execute a program written in COMPASS,
with the output to a line printer. The user gives the operator a tape to be used for output. In the sample
job that follows, the tape has a label containing 1972 as the volume serial number. The job would be
-structured as illustrated in figure 2-2.

60493800 A 29

Terminates data

©©oOND
N

and job deck Vs
" A
Data
7
8
Terminates 9 Vs =
source program Y
Vs
/ COMPASS
Program
7
. 8
Terminates 9 / LGO.
control
statements -/ REQUEST,TAPE1,MT,E,RING.
/ COMPASS.
L/ VSN(TAPE1=1972) [
. Control
JOBNAME,MT1. ||/ statements

Figure 2-2. Sample COMPASS Job

When the sample job is input through the card reader, the operating system calls a PP routine to translate the job
statement, check the validity of its entries, and assign a priority to the job. Next the PP copies the job through
a central memory input/output buffer onto mass storage. At this point, the operating system identifies the job
by its file name JOBNAO1 (from the job statement).

When the job is in the input queue of jobs awaiting execution, it comes under control of a scheduling
routine. The following factors are considered in assigning jobs to available control points: the priority
entered with the job, available system resources such as central memory, direct access ECS, tape units, and
the total time the job has been in the system. A job descriptor table ordinal is assigned to the job. This
ordinal is used to identify the job while it is in execution regardless of whether it is in central memory

or not.

The job then waits for the scheduler to assign it to a control point. When a control point becomes available,
the scheduler assigns the job and initializes the control point with pertinent information about the job. The
system saves the assigned job name for later use.

2-10 60493800 E

The job file name is changed to INPUT and the file is positioned at the statement following the first 7/8/9
card (the beginning of the user’s program). The first control statements are read into a buffer within the
related control point area in low core, and are ready for execution. As job output is created, it is written to

a file named OUTPUT.

Accounting processing, if selected by the installation, occurs as the first step of actual job execution. Account-
ing information extracted from the job statement or the statement following it is validated and saved for later
use by the sysiem. The accounting information defined by the sysiem can include such items as name, account

number, project number, etc. If accounting is not selected by the installation, as in this example, accounting
information need not be present.

After accounting processing, the system copies the BATCH system bulletin to the job OUTPUT file. If the
installation has not specified BATCH system bulletin information, no information is written to the OUTPUT
file. The installation can specify other standard procedures to be executed at this time.

Upon completion of all standard procedures, job control is advanced to the second statement, COMPASS,
which directs assembly of the user’s program. The system requests the loader to load the COMPASS assembler
into the field length. Control passes to COMPASS to assemble the next cards on the file INPUT and put the
object program on the file LGO. The assembler stops when it reads a 7/8/9 card. [For assembly or compila-
tion, the user can designate files other than INPUT as an input file and other than LGO as binary output by
entries on the COMPASS control statement. However, unless such alternative files are named on the assembly
or compilation card (the COMPASS statement in this case), INPUT and LGO are used by default.] COMPASS
also writes a source language listing of the program onto a file named OUTPUT. At job termination OUTPUT
is printed unless the user specifies otherwise.

Control is then advanced to the next REQUEST statement. The VSN parameter provides the volume serial
number for the tape label. The system automatically assigns the tape if it is mounted. (If the installation
does not choose the automatic assignment feature, the REQUEST statement appears on the operator console,
and the operator must assign the tape to the job manually.) Control proceeds to the next control statement,
LGO.

The LGO statement directs program execution. The loader loads the LGO file containing the user’s program
in object code into central memory and writes a map of this program onto the file OUTPUT. Library sub-
programs required are loaded also. Control passes to the user’s program for execution, input data is read
from the next element of the INPUT file (user’s data), and output is written on TAPE1 and OUTPUT.

As each control statement is executed, it is copied onto the job and system dayfiles. Control statement pro-
cessing stops when the first 7/8/9 card is encountered. NOS/BE writes job accounting information and job
statistics on the dayfile and copies this file to OUTPUT, which then is detached from the control point. The
name OUTPUT is changed to JOBNAO1 (the assigned job name) and TAPEI] is released so that the tape unit
can be available for another job. INPUT and LGO are cleared and released from NOS/BE control. All equip-
ment associated with the job is released from control point n and assigned to control point 0, where it can
be requested by other jobs. The control point area and field length in central memory are made available for
other jobs. When a printer is available, JOBNAOI, containing the assembly language program listing, load
map, output, and dayfile, is printed. A generalized description of the job flow is shown in figure 2-3.

60493800 E 2-11

CONTROL
POINT
AREA

CONTROL STATEMENT BUFFER

y)T

N Y

CENTRAL MEMORY
1 Job read into card reader 5 Some output to a tape
2 Job read through buffer onto disk 6 Job assigned to output queue
3 Job in mass storage input queue 7 Output to printer through
4 Job assigned control point; goes into exécution buffer to printer

Figure 2-3. Job Flow at Central Site

EXAMPLES OF JOB DECK ARRANGEMENTS

The order in which control statements are arranged depends upon the purpose of the job and the program it
contains. The following examples illustrate typical arrangements. Automatic rewind before a load is assumed.
1. JOBA(MTI)

REQUEST(SALLY MT,VSN=123456)

SALLY.

6/7/8/9

JOBA requests a tape file named SALLY and loads and executes an object program from that file.

J 212 60493800 E

2. JOBB.

FTN.

LGO.

7/8/9

FORTRAN Extended Program

6/7/8/9
JOBB, containing a FORTRAN Extended program on Hollerith cards, compiles, loads and executes that
program.

3. JOBC,T50.
INPUT.
7/819
Program on Binary Cards
6/7/8/9

JOBC, containing a program on binary cards, loads and executes that program.

4. JOBD.
FTN.
LGO.
LGO.
7/8/9
FORTRAN Extended Program
7/8/9.
First Data record
7/8/%
Second Data record
6/7/8/9

JOBD compiles and executes a FORTRAN Extended program and executes this program with one set of
data, and then with another.

5. JOBE.
ATTACH,MYLIB,ID=MINE.
COBOL.

REWIND,LGO.
EDITLIB,USER.

7/8/9

COBOL program

7/8/9
LIBRARY(MYLIB,0LD)
ADD(NEWPROG,LGO,AL=1)
FINISH.

6/7/8/9

JOBE compiles a program and adds it to a user library named MYLIB. Directives required by the EDITLIB
utility during library manipulation are the last section of the deck.

60493800 E 2-13

JOB TERMINATION DETAILS

When a job is processed without error, normal termination activity begins upon reaching the end of the control
statements or some form of EXIT control statement. First, execution time of the job is written onto the job
dayfile and on the system dayfile. Then, the job dayfile is rewound and copied onto the file OUTPUT. Next,
OUTPUT and any other files on mass storage designated for output, such as PUNCH or PUNCHB, are rewound
and placed in the output queue. OUTPUT is designated for the printer, and PUNCH (Hollerith) and PUNCHB
(binary) for the card punch by disposition codes. These files names are then changed to the job name and
assigned to control point 0.

The following files are treated as special cases. Unless the user overrides the default disposition of such
files, they are designated for output at job termination and automatically assigned a specific disposition code.

OUTPUT PUNCH FILMPR HARDPR PLOT
PUNCHB FILMPL HARDPL P80C

Files on magnetic tape are rewound (unloaded if the programmer requested save status) and released from the
system. Permanent files are released from the job and returned to permanent file manager jurisdiction; private
device sets are dismounted. All remaining files in central memory and mass storage associated with the job
including INPUT, LGO, and the job dayfile, are cleared and released. The job is released from the control
point area.

All hardware devices assigned to a job are assigned to control point 0, so they can be reassigned to other jobs.
At this peint, only files in the output queue relating to the job remain. When an output device of the type
requested by the file’s disposition code is free, the file is output through that device.

ABNORMAL TERMINATION

When a fatal error occurs, the operating system sets a flag indicating the error. If the error has been previously
identified in the current job step by a call to RECOVR, control is returned to the user program for processing.
Otherwise error processing continues.

A diagnostic message that reflects the reason for abnormal termination is written to the job dayfile. A standard
abnormal termination dump then occurs. The dump appears on the file OUTPUT with the heading DMPX.

This dump shows the contents of the exchange package for the job, the contents of central processor registers,
and the contents of words before and after the location at which the program stopped. See the DMP control
statement for a description of the dump output.

The operating system then clears the error flag and searches the control statements for an EXIT statement.
Depending on the parameter of EXIT and the type of error that occurred, processing might resume with the
first control statement after the EXIT statement. See the EXIT control statement for a description of the
different error conditions and EXIT parameters. If no EXIT statement exists, the job terminates as previously
described for normal job termination. '

+When a file is designated for output (output, punch, and so forth), the system finishes the write operation
in progress at the time of termination.

I 2-14 60493800 E

OPERATOR COMMAND TERMINATION

When the operator types in a DROP command, the job terminates prematurely. End-of-job procedures are
initiated as described under Abnormal Termination.

When the operator types in a KILL command, the job terminates prematurely. All files associated with the
job, including the QOUTPUT file, are dropped regardless of name or disposition. Permanent files are treated
the same as for normal termination. The programmer does not receive a dayfile listing.

When the operator enters a RERUN command, the job is terminated, and its INPUT file is returned to the
input queue so that it can be run later. The OUTPUT file is dropped, and a new output file is created. The
job dayfile is copied to the new output file called a pre-output file and becomes the OUTPUT file when the
job is run again. The OUTPUT file for the rerun job will contain the dayfile from the previous partial run
of the job and the output and dayfile from the complete run of the job.

Permanent files and mounted private device sets for a rerun job are treated as for normal termination. All
other files, regardless of name or disposition, are dropped.

In some cases, a job might perform a function which would make it impossible to restore conditions to their
initial state before the job was run. For example, if a job writes on an existing permanent file, that informa-
tion cannot be erased. When such a job is rerun, results are unpredictable. To avoid this condition, the sys-
tem will set a no-rerun flag in the control point area to reject a RERUN type-in by the operator. The no-
rerun flag will be set when the job has performed a catalog, purge, alter, rename, or extend of a permanent
file, modified a permanent file, or added or deleted a member of a device set.

Should a job be caught at a control point during a deadstart recovery, it is either dropped or rerun
depending upon the no-rerun flag. If possible, the job is rerun; however, if the flag indicates no rerun, the
job will be dropped and an appropriate message added to its dayfile. Any job swapped out during a dead-
start recovery will be given a message indicating that recovery was performed.

JOB DAYFILE

The last item of the file QUTPUT from any job is the job dayfile. It gives a history of job execution. Any
program or job that terminates abnormally produces dayfile messages identifying a fatal error. Normal jOb com-
pletion is indicated by the absence of fatal error messages. :

Each control statement that is called to execution is listed in the dayfile. System response to a control state-
ment might follow. The dayfile shows, for example, the VSN of a scratch tape assigned. Such information
might be needed as input in another job using that tape. The NOS/BE Diagnostic Handbook gives the meaning
of status and error messages originating in the operating system. Messages that originate from a member of
the product set are explained in the individual product reference manual.

60493800 E 2-15

The programmer can cause information to be sent to the job dayfile by using the COMMENT control statement
or the MESSAGE macro in a COMPASS program. Several other language processors also allow messages to be
sent to the operator or to the dayfile.

Figure 2-4 shows a typical dayfile.

mfi system level mm/dd/yy
16.42.19.BASIC60 FROM
16.,42.20.1IP 00000192 WORDS - FILE INPUT , DC 00
16.42.20.BASIC31,Te0,P2,MT1.
16.42.26 .REQUESTICOMPILE, *Q)
16,42.27 .REQUEST(OLDPL+EoHY o, VSN=L174 4NORING)
16.63.50.(MT30 ASSIGNED)
16,4436, UPDATE(QeD 48, ¥*==)
1644 38, MT30 VOLUME SERIAL NUMBER IS 0804174
16.45.58., UPDATE COMPLETE.
16.45.59.ROUTE(COMPILE » DC=IN)
16.45.59.UNLCAD (OLOPL)
16.46.06.0P 008061920 WORDS - FILE OUTPUT , OC &0
16.,46,07.MS 3584 MWORDS 3584 MAX USED)

16.46.07.CPA 2.171 SEC. 2.171 ADJ.
16.46.07.CPB 1.164 SEC. 1.164 ADJ.
16.46.07.10 14.143 SEC. 14.143 ADJ.
16.46.07.CM 285.807 KNS, 17.444 ADJ.
16.46.07.SS 34.923

16.46.,07.PP 34.835 S€EC. DATE mm/dd/yy

16.686.07.E4J ENC OF JOB, **

Figure 2-4. Sample Dayfile

The system header identifies the system on which the job executed. Installations might change the information
given on this line.

mfi Mainframe identifier.
system Operating system level.

‘mm/dd/yy Date the operating system was built; time and type of deadstart recovery appears if
recovery has occurred.

The first line after the system header gives the name of the job as modified by the operating system to make
the name unique among all jobs and the job origin in the following format.

jobname FROM sssftt
jobname Unique name assigned by the system
$SS Source mainframe ID
tt Terminal ID

2-16 60493800 E

The lines giving statistics about the input and output files have the following format.

IP nnnnnnnn WORDS — FILE lfn, DC dc

or
OP nnnnnnnn

IP

op
annnonnn
Ifn

de

WORDS — FILE Ifn, DC dc

Indicates that this message refers to an input file.

Indicates that this message refers to an output file.

Decimal number of words in the file,

Logical file name.

Disposition code of an output file. DC 40 is for print on any printer. See the DISPOSE
macro for a list of disposition codes.

Accounting messages are added to the dayfile at the end of the job and each time a SUMMARY control state-
ment executes. Figure 2-5 shows sample accounting messages.

aaaaaaaa

bbbbbbbb
cececeee.cee

dddddddd.ddd

eeececee.cee

fEEFFELe.£Ef

60493800 E

MS aaaaaaaa WORDS (bbbbbbbb MAX WORDS USED)

CPAccccccc.ccc SEGC.
CPBccceccceccc SEC.
I0eeeeeeee.ecee SEC.
CMggsgsees 888 KWS.
ECiiiiiiii.iii KWS.
SS

PPmmmmminmm . mmm SEG .«

dddddddd.ddd ADJ.
dddddddd.ddd ADJ.
fEffefEf. £FF ADJ,
hhhhhhhh.hhh ADJ.
kkkkkkkk.kkk ADJ.

DATE mm/dd/yy

Figure 2-5. Sample Accounting Messages
All values are in decimal, with leading zeros omitted:

Mass storage currently used by the job, not including the INPUT file nor any
permanent files the job attaches. Newly created permanent files are included in
the word count. This message is issued only if the job has executed a LIMIT

control statement or if the instaiiation has established a mass storage limit.

The decimal value in words is computed by multiplying the number of record

blocks used by the number of words in a record block.
Maximum mass storage used by the job. Otherwise, the same as aaaaaaaa.

Central processor time; dual processors are reported separately.

Adjusted central processor time for each processor. The time is multiplied by
an installation selected weighting constant.

Input/output time.

Adjusted input/output time. The time is multiplied by an installation selected

weighting constant.

2-17

£8828888-888

11333333-1

kkkkkkkk kkk

mmmmmmmm.mimm

mm/dd/yy

Central memory kilo-word seconds. This value indicates central processor usage,
and is a sum of terms, each term computed as follows:

Central processor time and 10 time are weighted, to compensate for over-
lapped IO processing, and then added together. This sum is multiplied
by central memory field length divided by 1000 octal.

Each time central memory field length changes, a new term is computed.

Thus, the number of terms summed is the same as the number of times
central memory field length changes during job execution.

Adjusted central memory kilo-word seconds. Statistic is the same as control
memory kilo-word seconds with weighting factors selected by the installation.

Extended core storage kilo-word seconds. This value is computed in the same
way central memory kilo-word seconds are computed, except ECS field length
divided by 1000 octal is used.

ECS kilo-word seconds adjusted by installation selected’ weighting factors.

System seconds. The sum of the adjusted values of central processor time, IO
time, central memory kilo-word seconds, and ECS kilo-word seconds.

Peripheral processor time.

Date job was printed.

60493800 E

FILE CONCEPTS AND STRUCTURE 3

A file is defined as a set of information that begins at beginning-of-information, ends at end-of-information,
and has a jogical file name.

This section summarizes job responsibilities for files and the devices on which they reside and introduces the
control statements used to process different types of files. Structure of files within the system is also defined.

GENERAL FiLE USAGE

A job is responsible for:
Specifying the logical file name by which a file is known during the job
Assigning the file to a particular device, if necessary

Disposing of the file if it is to be preserved when the job ends

NAMING FILES

Each file associated with a job is known by its logical file name. The cperating system associates two files with
each job; one with the logical file name INPUT and another with the logical file name OUTPUT. All other logical
file names must be specified by the job. The logical file name is valid only for the duration of the job. The name
is not part of the file itself; it is not written in the label of a file on tape, and it is not a part of the permanent
file table information.

Each logical file name must be unique within a job and must not duplicate the name of a multi-file tape set

associated with the job. Logical file names are one through seven letters or digits and must begin with a
letter.

RESERVED LOGICAL FILE NAMES

Logical file names that begin with ZZZZZ are reserved for use by the system. User jobs are not prevented
from creating or reading files with the name ZZZZZxx, but use of these files might adversely affect the job.

SPECIAL-NAMED FILES

Special-named files are those with an inherent set of characteristics and disposition. The following paragraphs
contain descriptions of some of these files.

60493800 A 31

INPUT

INPUT is the name of the file with the images of the job deck. Each separator card in the deck, or its
logical equivalent, is an end-of-partition when processed by system routines in the operating system or the
standard compilers. The separator cards trigger end-of-file processing. Each card image is a separate record
to compiler and assembler programs.

OUTPUT
Every job has a file of the name OUTPUT associated with it. OUTPUT is created by the operating system
on a queue device. The operating system writes the job dayfile to this file when the job terminates. Other
information that might appear on OUTPUT as a result of processing by system routines is:

Source program listing produced by compiler

Object listings requested by compiler call in the job

Diagnostics or error messages produced during compilation

Results generated during program execution

Exchange package dump generaied by the operating sysiem when a program aboris during execution.
OUTPUT always is printed or otherwise associated with a remote terminal when a job ends. The job can
rewind QUTPUT and overwrite existing data, or it can evict all data with a DISPOSE or ROUTE control
statement. However, it cannot prevent the job dayfile from being printed at batch job termination.
OUTPUT is a print file with a maximum line length of 137 characters. The first character is the carriage
control character which must be supplied by any user program that writes to OUTPUT. System routines
supply the carriage control as needed. The remaining 136 characters of the line can be printed. Some
system routines have the ability to format OUTPUT for Teletype device processing with a line length less
than 136 characters.
Any file copied to OUTPUT is printed at the end of the job. If the file does not have carriage control
characters at the beginning of each line, the COPYSBF utility should be used to shift each line one character
to the right and insert a leading blank for single spacing control..
PUNCH
PUNCH is a file with an associated disposition code. Any data written to the file is assumed to be display
code. The file is punched in Hollerith format at the end of the job.
PUNCHB
PUNCHB is a file of binary information. Any data written to it is assumed to be binary. The file is punched
in standard binary format at the end of the job. Any assembled or compiled program that is written on

PUNCHB is an object program that can be loaded and executed by specifying the name of the file on which
the program resides.

v
88

60493800 E

P8oC

PR0C is a file of binary information. Any data written to it is assumed to be binary. The file is punched in
free-form binary format at the end of the job. They are used only in special circumstances.

OTHER SPECIAL-NAMED FILES

Files with names FILMPR, FILMPL, HARDPR, HARDPL, and PLOT also have an associated disposition. The
operating system defines codes for these files, but does not supply the routines needed to drive the associated
hardcopy or microfilm devices. Only some installations have these devices.

ASSIGNING FILES TO A JOB

Before a file can be read or written, the operating system must be informed of the device on which the file
resides. If a file is not associated with a specific device before it is created, it is written on a public mass
storage device at the time an executing program calls for file open. The job does not need to inform the
system of the residence of files on mass storage unless the file has special characteristics.

Files that exist only for the duration of the job are known as scratch files. They are created as they are
needed and destroyed when the job terminates. The INPUT file for the job, temporary files written by the
compilers during compilation, and some user files are useful only for a short time. Scratch files are created
on mass storage as the file is referenced. They need not be specifically requested.

The devices on which rotating mass storage files are written are divided into two classes, public device sets
and private device sets. The programmer determines the device on which a file resides by the use or absence
of the REQUEST control statement and the SETNAME control statement or parameter. Public and private
device sets are described later in this section.

Situations in which it is necessary to inform the operating system of the device on which a file is to be
created include those when:

A file is to be subsequently declared a permanent file with a CATALOG statement. Such files must be
referenced on a REQUEST control statement with a *PF parameter.

‘A file is to be released to the output queue for print or punch processing. Unless the file name is
OUTPUT, PUNCH, PUNCHB, or P80C, a REQUEST control statement with a *Q parameter is required.

A file is on magnetic tape. All tape files require a REQUEST or LABEL control statement that de-
scribes the characteristics of the tape data format, label, and recording mode.

A file is to reside on a private device set. A MOUNT control statement is required to associate the

private device set with the job. Subsequently, each file that is to reside on the device set must be
referenced in a REQUEST control statement specifying the device set name.

60493800 E 3-3

Existing files that must be specifically associated with the job include the following.
All tape files Tape files require a REQUEST or LABEL control statement.

Permanent files Permanent files are associated with a job through an ATTACH or GETPF
control statement.

Private device set files Permanent files are attached with an ATTACH control statement that
names the device set.

The file INPUT and all other special-named files described are assigned by the operating system to a mass
storage device designated for input and output queue files.

DISPOSING OF FILES AND EQUIPMENT

Temporary or permanent status is controlled by the programmer. All files created on mass storage are
temporary files that disappear when the job terminates, unless the job includes steps to preserve the file. A
file can be preserved on mass storage or on external media by transferring it to printed pages, punched cards,
or magnetic tape.

Files are preserved in printed or punch card form when they are assigned a disposition code that results in
processing by the line printer or card punch. Disposition codes are described in DISPGSE and ROUTE controi
statements and macros, and Special-Named Files.

Files are preserved on mass storage by cataloging them as permanent files. Permanent files are explained later
in this section.

Normally, all files assigned to a job are retained by that job until termination. When the files reside on non-
allocatable devices such as magnetic tapes, both the file and the hardware device are unavailable to other
portions of the system for the duration of the entire job even though the file is in process for only a short
part of the job.

When DISPOSE, ROUTE, UNLOAD, or RETURN is used, files can be released before job termination, making
both the logical file name and the resident device available for other uses. Files named in UNLOAD or
RETURN are unavailable for the remainder of the job. An OPEN macro issued later in the job creates
another file. :

New files to be retained between jobs as permanent files on mass storage must be cataloged as permanent files
before the job ends. Existing permanent files return to permanent file manager jurisdiction when they are
referenced in either an UNLOAD or RETURN control statement or macro. They are no longer available to
the job until referenced in a subsequent ATTACH.

FILE STRUCTURE

All files on rotating mass storage are implemented through software conventions known as system-logical-records
and physical record units. These conventions are also applicable to magnetic tape in SI format and card files,
although the physical representations of these files are not precisely the same as for mass storage files.

34 60493800 C

The following paragraphs describe the structure of files produced by the system. They define terms used
throughout this manual, such as:

System-logical-record (equivalent to SCOPE logical records)
Level terminators
Physical record units

Partitions

SYSTEM-LOGICAL-RECORDS AND PHYSICAL RECORD UNITS

A physical record unit (PRU) is the amount of information that can be accessed in a single read or write
operation for a given device. On rotating mass storage, a PRU is equivalent to the contents of 64 central
memory words.

One write operation from a higher level language program usually does not result in the creation of a single
PRU, however. Routines called by compiler programs block program data in a central memory buffer during
program execution, so that one record generated by the program can become part of a single PRU or a string
of PRUs containing records from write calls issued by a program.

System-logical-records are written as one or more PRUs, the last of which is a short PRU or a zero-length
PRU containing a record terminating marker. The terms short PRU and zero-length PRU refer to the amount
of valid user data within the PRU, not to the physical size of the PRU.

A short PRU contains fewer than 64 words of user data followed by a system-supplied record terminator
at the end of user data.

A zero-length PRU contains a system-supplied record terminator, but does not contain any user data.

When user data does not fill the last PRU needed to write a system-logical-record, the record terminator is
appended to the data and the remaining space in the PRU is ignored. If the record terminator cannot be
accommodated in the last PRU with data, a zero-length PRU is created to hold the record terminator. A
zero-length PRU has only system information.

The record terminator for a system-logical-record contains a level number of O through 17g to indicate the
relation of that record to other records in the file. The lowest level is O; it is associated with a single system-
logical-record. A higher level number defines a set of records that begins immediately after the last record of
that level and continues through all system-logical-records of a lower level number until the end of a record
with that level or a higher level number is encountered.

A level number of 17g establishes a partition boundary for the file. Level 17g always is recorded in a zero-
length PRU. Level 17g records are written in response to a COMPASS macro WRITEF and to compiler pro-
gram requests to close a file or to write an end-of-file. When a file has only one partition, the level 17¢
terminator marks the logical end of the file. However, a file can contain any number of partitions defined
by level 17g before the physical end of the file.

60493800 E 35

The following lists summarize rotating mass storage file structure.

Physical Structure

One or more PRUs terminated by a short or
zero-length PRU of level O through 164

One or more PRUs terminated by a zero-

length PRU of level 17

End of mass storage allocated in system

RBT table

Logical Interpretation

System-logical-record of level indicated; sets
end-of-record bits in system tables

Partition; sets end-of-partition bits in system

tables; end-of-file exits occur

End-of-information; sets end-of-information

bits, if any, in system tables or sets
end-of-partition bits

System-logical-records with particular level numbers can be accessed through SKIPF, SKIPB, COPYBF, and
COPYCF control statements and through the COMPASS macros SKIPF, SKIPB, and READSKP.

A system-logical-record of level 16g has special meaning to the checkpoint/restart feature of the operating
system. Consequently, level 16g should not be specified in user programs that might be checkpointed.

Sequential files are written directly in system-logical-record format. Random files are implemented through a
higher-level structure imposed upon the system-logical-records. Two types of higher level structures are:

Name/number index random files using operating system routines described later in this section

CDC CYBER Record Manager files using the capabilities of the CDC CYBER Record Manager. These
are described in the CDC CYBER Record Manager manuals.

FILE DIVISIONS

The physical representation of beginning-of-information and end-of-information depends on the storage device
as follows:

3-6

Device

Card deck

Labeled magnetic tape file
Unlabeled SI format tape
Unlabeled S or L format tape

Mass storage file

ECS

Beginning-of-Information

Start of first card in deck

Start of data after labels
Start of data
Load point

Start of data in system table

Start of data in system table

End-of-Information

Card with 6/7/8/9 multiple-punched
in column 1

Start of EOF label
Start of EOF label
Undefined

End of data designated in system
table

End of data designated in system
table

60493800 E

The operating system recognizes these divisions within a file:

Partitions are divisions within 2 file. On 2 mass storage file or a tape in SI format, a partition ig
synonymous with a system-logical-record of level 17g. On an S or L tape, a partition is indicated by
a tape mark. All files have at least one partition.

System-logical-records of level O through 16g are defined by the operating system on SI format magnetic
tape and rotating mass storage. These records are divisions of a partition.

Zero-byte terminated records are divisions within a system-logical-record or within a partition of an S or
L tape. These records are the representation of a single print line or single punch card processed by
the JANUS routine of the operating system.

Tapes in S or L format do not have system-logical-records. For some purposes such as copy of a coded
record, the operating system recognizes each physical record recorded on the tape as a single record that
is logically equivalent to a system-logical-record.

The operating system recognizes only the previous divisions. Individual products that are supported by the
operating system have different definitions of the term record. For instance, CDC CYBER Record Manager
defines eight types of records, only one of which (S type) is equivalent to a system-logical-record. CDC
CYBER Record Manager uses a slightly different definition for some record types. From a program stand-
point, a record is usually associated with a single read or write request.

DEVICE SETS

All rotating mass storage devices attached to a system are grouped into device sets. One device in a set is
designated as the master; it holds all tables related to the set. Each device in the system belongs to one and
only one set. Two types of device sets exist:

A public device set is always available to all jobs. It is used by the system to hold system files,
permanent files, and special-named files such as INPUT and OUTPUT.

Unless a job requests that a file be written to another device, files are assigned to a public scratch
device.

A private device set is available to a job only by specific request. Depending on the installation, private
device sets may or may not be physically mounted at all times. Files to be preserved on private device
sets should be made permanent on that set. Private device sets can be used simultaneously by jobs that
have mounted the device set.

Device sets can have a varying number of members within the set. Some device sets might have only a single
device associated with them. The single device in such a set is both the master device for the set and the
only member of the set. The set is identified by the set name. The individual members of the set are
identified by a volume serial number.

A job need not know the volume serial numbers of members of device sets, however. Parameters on the

REQUEST control statement that assigns a file to a device allow a member to be identified explicitly by its
volume serial number or implicitly by its attributes.

60493800 E 37

Attributes are assigned when a device set is created. The attributes of most concern to applications pro-
grammers are:

Attribute Significance
Public permanent file default set Permanent files reside on this public set unless another

set is requested.

Queue set Files with the name INPUT, OUTPUT, or any other
special name reside on this set. Any file to be named in
a ROUTE or DISPOSE control statement must reside on

this set.

Permanent file device A member of a public or private device set can hold
permanent files when the device has the permanent file
attribute.

Queue device A device on which queue files can reside if the device is

a member of the queue set.

Master device The master device of each private device set must be
known before the set can be accessed by a job.

A file on a rotating mass storage device can be of arbitrary length, and it can be segmented over more than
one device. The data is recorded in a logical sequence of record blocks which can be arbitrarily scattered
about the disk surface. The operating system maintains a central memory table for each file, called the
record block table (RBT), in which the sequence of allocated record blocks is defined. The end-of-
information position and end-of-volume position are also defined in the RBT.

PUBLIC DEVICE SET USAGE

Public device sets are the default. Unless a private device set is requested, mass storage files are on public
devices. All public device sets are available to a job at all times. The MOUNT and DSMOUNT control

statements applicable to private device sets are not needed for public device sets and will be ignored if
encountered.

The REQUEST control statement assigns a file to a public device. Normally, a REQUEST is not needed
except for the following files.

Files that subsequently will be cataloged as permanent files

Files that have a disposition code for printing or punching

Files that are to reside on a particular public device set or member
The *PF parameter of REQUEST assigns the file to a permanent file device.

The *Q parameter of REQUEST assigns the file to a queue device. A file cannot be referenced by a ROUTF
control statement or DISPOSE control statement unless it resides on a queue device.

Files named INPUT, OUTPUT, PUNCH, PUNCHB, P80OC or any other special-named files always reside on
public devices by default. A REQUEST with a *Q parameter is not needed for special-named files.

3-8 60493800 *

PRIVATE DEVICE SET USAGE
A private device set is established by the following steps.
1. Each pack to be included in the set is blank-labeled with the LABELMS utility.

2. The master device is established by an ADDSET control statement that defines the name of the set,
the volume serial number of the master device, the maximum number of packs that can exist in the
set, the maximum number of permanent files that can exist in the set, the universal password, the
universal permissions, the public password, and the default file retention period for this set. The
master device need not be a permanent file device, but at least one member device should be
designated as a permanent file device.

3. Members of the device set are added by additional ADDSET control statements that specify the
device set name, the master device volume serial number (VSN), and the volume serial number for
the pack being added. Additional members are not required; the master device can be the only
pack in the device set. All ADDSET control statements can define the permanent file attribute for
the device being added.

Since tables relating to all packs that are subsequently added to the set reside on the master device, the
master device must be available each time a pack is added to or deleted from the device set and must be
available each time any file is accessed from the set. The master device is also required when any of the
permanent file utilities (AUDIT, DUMPF, LOADPF, or TRANSPF) references a private device set.

To access a file existing on the device set or to create a file on the device set, the job must perform the
following steps.

1. The master device must be associated with the job by a MOUNT control statement. Since private
device sets can be used by many jobs at-the same time, the device might already be physically
available. If not, the operator must make the master device available.

2. Any permanent file to be attached must be identified as a file on that particular set. The
SETNAME control statement can establish the set name prior to the attach request, or the
SN=setname parameter can be used on the ATTACH control statement.

3. The REQUEST control statement assigns a file to a private device. In addition, all files to be
created on the device set must be associated with the device set by 2 REQUEST control statement.
An SN=setname parameter explicitly names the set; an SN parameter implicitly names the set
specified in the last SETNAME control statement.

Once the job has processed the files associated with the device, the device set should be disassociated from the
job by execution of a DSMOUNT control statement. Execution of DSMOUNT might free a disk drive for
other packs before the job ends, and thereby increase overall system throughput. If the job omits DSMOUNT,
the system disassociates the device set from the job during end-ofjob processing.

The REQUEST control statement is required to assign a file to a private device set. The SN=setname or SN
parameter establishes the name of the set. The VSN parameter can specify a particular member of the set.
The *PF parameter can be used to ensure that the file resides on a permanent file device.

The SETNAME control statement can be executed before any files are requested. SETNAME can establish
the device set to which all subsequent ATTACH control statements are directed. This eliminates the need for
an SN=setname parameter on each individual ATTACH control statement. It also defines the set to which
REQUEST control statements with SN parameters are directed.

60493800 E 39

PRIVATE DEVICE SET EXAMPLES

1.

3-10

NEW DEVICE.
LABELMS(DT=AY) PLEASE USE PACK 844A
LABELMS. PLEASE USE PACK 844B

ADDSET(VSN=844A MP=844A ,SN=MORE,*PF,UV=MYUNIV,UP=C,PB=MYPUBLIC,FR=360)
ADDSET(MP=844A,VSN=844B,SN=MORE, *PF)
6/7/8/9

This job creates a device set with two members.

SUBSTITUTE.

MOUNT(SN=MORE,VSN=844A)
DELSET(MP=844A,SN=MORE,VSN=844B)
MOUNT(SN=OTHER,VSN=123)
ADDSET(VSN=844B,SN=0THER ,MP=123,*PF)
6/7/8/9

This job deletes a pack from one device set and adds it to another.

FIX UP.

PAUSE. OPERATOR PLEASE ENSURE SN=MORE, VSN=844A IS ON AN RMS DRIVE.
RECOVER(SN=MORE,VSN=844A)

6/7/8/9

This job runs a RECOVER on device set MORE, assuming the master device is
SET.

MOUNT(VSN=844A,SN=MORE) Mounts master device.
REQUEST(TAPES,*PF,SN=MORE)

FTN.

1LGO.

CATALOG(TAPES ,PERMANENT.,ID=FRIEND)

7/8/9

FORTRAN program that creates TAPES

7/8/9

data cards for FORTRAN program

6/7/8/9

This jobs makes a permanent file on the device set MORE.

USE A SET.

MOUNT(VSN=844A,SN=MORE) Mounts the master device.

SETNAME(MORE)

ATTACH(A,PERMANENT,ID=FRIEND) Taken from device set MORE by default.

REQUEST(TAPES6,*PF) Assigned to public device since no SN parameter.

COPY(A,TAPESG)

CATALOG(TAPE6,PERMANENT,ID=FRIEND) Makes file permanent on the permanent file default set.

FTN.

REQUEST(TAPES,*PF,SN) Assigned to device set MORE as SN is specified but not
equivalenced.

LGO. Job uses data and file TAPE6 to create file TAPES.
CATALOG(TAPES,PERMFILE,ID=FRIEND)

7/8/9

FORTRAN program

7/8/9

data

6/7/8/9

60493800 E

Permanent file PERMANENT is copied from device set MORE to the public device and recataloged with
the same permanent file name and owner ID. A new permanent file is created and cataloged on device

set MORE.
6. TWO SETS.

MOUNT(SN=0THER VSN=123) Mounts master device.

MOUNT(VSN=844A ,SN=MORE) Mounts master device.

SETNAME(MORE)

ATTACH(TAPES PERMFILE, ID=FRIEND) File is taken from device set MORE because of pre-
ceding SETNAME.

REQUEST(A,*PF,SN=0THER) File directed to device set OTHER since explicitly
requested.

COPY(TAPES,A)

FTN.

LGO. FORTRAN job creates file TAPE6 on system device as
no REQUEST card used.

COPY(TAPEG,A)

CATALOG(A,PERM,ID=FRIEND)

7/8/9

FORTRAN program that creates TAPE6

7/8/9

data cards

6/7/8/9

Permanent file PERMFILE is attached from device set MORE and copied to device set OTHER. A new
file is created on a system device and copied to the same file on device set OTHER. Then the file on
device set OTHER is made permanent.

OPERATING SYSTEM RANDOM FILES

The term random denotes several different concepts, depending on the context in which the word is used.

From a hardware standpoint, random refers to a device. All rotating mass storage devices and ECS are random
access devices. Any physical address on the disk or ECS is read when the hardware driver receives a request
for information at that address. This is in contrast to a sequential device, such as a card reader or tape, in
which a card or tape block can be read only in the physical order in which it was written. Files written to
random access devices can, but need not, have random structure.

From an applications programmer standpoint, random refers to a file structure and to the means of accessing
records in a file. CDC CYBER Record Manager and compiler products provide several different random access
file structures in which each record has a key that uniquely identifies the record. The program can access any
record by specifying its key, without considering the records that physically exist before or after that record.
To the operating system, CDC CYBER Record Manager files with random organization are sequential files.

From an operating system standpoint, random refers to the means by which the operating system receives
input/output address information. A file on a rotating mass storage device is a random file only when the
random bit is set in the file environment table (FET) which controls all file input/output. When the random

bit is set and a write is issued, the system writes a record to the device, then returns address information to

the FET. The program is responsible for preserving the information returned and for respecifying that infor-
mation when the associated record is to be read. See Record Request/Return Information of the FET in

section 6 for additional details. I

60493800 E 3-11

A COMPASS programmer has the option of providing indexing routines for files in which the random bit is set,
or of using the operating system supplied indexing routines. These routines create an index in which records
are identified by name or by number of the entry within the index.

References to random or indexed files in sections 6 and 7 assume the name/number index structure described
below. No other random, indexed, or random indexed file structures are recognized by the operating system.

For information about the random file structures available through CDC CYBER Record Manager or various
languages, see the reference manuals for those products or languages.

NAME/NUMBER INDEX FILES

Name/number indexed files can be created, read, written, and rewritten using the COMPASS macros OPEN,
CLOSE, READIN, WRITOUT, WRITIN, and WRITER. Management of a single index level is provided
through macros OPEN and CLOSE.

Each file has an associated index. The index contains a relative PRU position for each system-logical-record
in the file. The file beginning is equivalent to the start of the record associated with the first index entry.
The file end is equivalent to the end of the record associated with the last index entry. Any record can be
read by identifying it in the index without the need to skip records from some beginning file position.

If a random file is to be saved, the file index must be written as the last logical record on the file. A user
can write the index or call the COMPASS macro CLOSE or CLOSE/UNLOAD to write the index. CLOSE
automatically writes out an index for a random file if the file contents were changed by a write with the
FET random bit set. A permanent file must also have EXTEND permission before the index can be written.

The first word in the index determines how the records are referenced. The index is generated through the
WRITOUT macro. A positive non-zero value indicates reference must be by number; a negative value indicates
reference can be by name or number. Number index entries are one word; name index entries are two words.
The number of a record is equal to the relative position of the index entry for that record; the first entry in
the index points to record 1, the second to record 2, etc. If a name index is used, the record name can be

1 to 7 letters and digits. The value of index word 1 is determined when the first record is written. The
formats of index entries are shown below.

59 23 1]
0 Relative PRU Position Number
Index
59 23 17 0
Name, Left-Justified with Zero Fill 0 Name
Index
0 Relative PRU Position

3-12 60493800 E

The smallest unit of information that can be indexed is a system-logical-record. Each system-logical-record
must begin in a new PRU. For the most economical index, data record length should be equal to an integral
numka- af PRI minus one word,

ILIUVE UL 4 ANVUO 1

USER-DEFINED INDEX FILES

Single-level name/number indexed files can be created and maintained using system macros READIN, WRITOUT,
OPEN, and CLOSE. Data record management at any level lower than a system-logical-record fails io the user.

READIN/WRITOUT can be used to create and maintain index contents during program execution without
using OPEN/CLOSE to manage the index records. The user must manage his index records. They could be
kept on a separate file, for example.

Multi-level name/number indexed files can be created and maintained using READIN/WRITOUT and system
macros OPEN and CLOSE plus a user generated sub-index management routine. A master index record con-
tains addresses of sub-index records interspersed throughout the file. The master index record is processed
by OPEN/CLOSE as is a single-level index record. The user routine needs to ensure that READIN/WRITOUT
references the correct index or sub-index block.

Other index formats can be defined by supplying a user routine to format and retrieve record names and mass
storage addresses. Mass storage addresses can be computed on files containing fixed length records, provided
the file is not ECS resident, since the addresses are in the form of a relative PRU count and the PRU size is
fixed.

PERMANENT FILES

A permanent file is a rotating mass storage file cataloged by the system, so that its location and identification
are always known to the system. Frequently used programs, subprograms, and data bases are immediately
available to requesting jobs without operator intervention. Permanent files cannot be destroyed accidentally
during normal system operation, including normal deadstart. They are protected by the system from unautho-

rized access according to the privacy controls specified when they are created.

Any file associated with a job, regardless of mode or content, which resides on a permanent file device, can be
made permanent at the option of the user. Unless the user explicitly requests the system to catalog a file, it
is not made permanent.

Files to be made permanent should be created on devices designated for permanent files. Files can be made
permanent on either a public device set or a private device set.

Privacy in permanent files is intended to minimize software interference by thwarting threats to user files
from non-authorized central processor programs. The permanent file system offers a standard set of privacy
controls. If an installation requires a different kind of protection, a privacy procedure can be defined to
replace the standard.

In addition to normal system protection, the individual file owner can prevent unauthorized access to his
permanent file. The owner can stipulate, in cataloging a file, the degree to which the file is to be protected
from read, write, and rewrite access. Once a file is cataloged, it cannot be used by any job unless the
necessary passwords are given when a request is made to attach the file.

60493800 A 3-13

Permanent files are processed by the portion of the operating system known as the permanent file manager.
The permanent file manager routines create and maintain the permanent file directory and catalog. The
permanent file directory contains a record of all permanent files, their cycles, and passwords. The permanent
file catalog contains a record of the physical location and statistics associated with each permanent file. As
long as these tables are intact, permanent files are available.

Permanent files can be processed through control statements and macros. For information pertinent only to
COMPASS programmers, see section 7.

CONCEPTS

The following information describes concepts applicable to all permanent files.

FILE IDENTIFICATION

A permanent file is identified in system tables by the combined information supplied by a pfn, ID, and CY
parameter when the file is made permanent with a CATALOG control statement.

pfn Permanent file name of 1-40 letters or digits.

ID=name Name of user responsible for file, 1-9 letters or digits. The ID specified must be unique
if pfn is duplicated within the system. ID=SYSTEM is reserved for system use.

CY=cy Cycle number 1-999. As many as five physical files can exist for each permanent file
name and ID combination. Each is called a cycle. Each file shares the same ID and
set of passwords. No restrictions are imposed on the content or size of any cycle, since
each is a unique file.

The pfn parameter is required for both the CATALOG request that makes a file permanent and the ATTACH
request that associates an existing permanent file with a job. When the first seven characters of the permanent
file name are the same as the logical file name, the permanent file name can serve as both the pfn and the

Ifn parameters. If the ID is not specified, ID=PUBLIC is assumed. If the file is cataloged with ID=PUBLIC,
the ID parameter can be omitted for the attach. For any other name except PUBLIC, the ID parameter is
required on the attach. An installation-defined. password is needed to catalog a file with ID=PUBLIC.

The CY parameter is optional. Cycle numbers need not be consecutive nor contiguous; they can be created in
any order. At CATALOG time, the system assigns a cycle number oné greater than the largest existing cycle
number if any of the following occur.

CY parameter is omitted.

CY parameter duplicates the number of an existing cycle.

CY parameter is not within range of 1-999.

System assignment of a cycle number is not possible when the cycle 999 exists, and the CATALOG request
for an additicnal cycle is unsuccessful.

3-14 60493800 E

PERMISSIONS AND PASSWORDS

All user files have a 4-bit permission code. Each bit represents an access permission as defined below.

Permission Significance

READ Required to read a file, load a file, or copy a file.

MODIFY Required to rewrite existing data or evict part of a file.

EXTEND Required to evict part of a file or increase the amount of mass storage
allocated to a particular file.

CONTROL Required to purge a file, or catalog a new cycle of an existing pfn/ID file.

The RENAME and CATALOG functions require all four permissions.

Files in use by a job, other than permanent files, have all access permissions except for the file INPUT, which
has only READ and EXTEND permissions. Permanent files have only those permissions granted by ATTACH
parameters. A purged permanent file, when still associated with the job that purged it, has only those per-
missions it had as an attached permanent file.

Permissions are established originally by parameters on the CATALOG control statement or macro, although
they can be changed through RENAME. Passwords are a string of 1-9 letters or digits. They are defined on
a CATALOG control statement by the following parameters.

RD=rd Establishes password required for read permission.

EX=ex Establishes password required for extend permission.

MD=md Establishes password required for modify permission.

CN=cn Establishes password required for control permission.

XR=xr Establishes password required for extend, modify, and control permission. Any EX, MD,
or CN parameter overrides this password.

TK=tk Establishes turnkey password that is required in addition to a password for a particular
permission.

Any job using an existing permanent file must supply correct passwords in order to receive permission for
functions protected by a password. On an ATTACH, RENAME, or PURGE, or on a CATALOG of a new
cycle, passwords are submitted with the PW parameter, not the parameter used to create the password.

=pwl,pw2,pw3,pwd,pwS 1-5 passwords for specific permissions.
The universal password, universal permission, and public password for private device sets are defined on the

ADDSET control statement when the master device is created. For public device sets, they are defined by
the installation (see the NOS/BE Installation Handbook).

60493800 E 3-15

The universal password is a string of 1-9 letters or digits. When specified for a function that references a
permanent file, such as ATTACH, it grants the universal permission defined for that set. Universal permission
is any non-null combination of control, modify, extend, and/or read permissions. The universal password
takes precedence over any password defined by CATALOG or RENAME, as explained in the following
examples.

PURGE(pfn,ID=id,SN=MYSET,UV=MYUNIVPW)

If the universal password is MYUNIVPW and the universal permission is control permission on device set
MYSET, then the universal password can be used to purge any permanent file on MYSET even though
a CN= password has been defined to restrict access to that file.

ATTACH(pfn,ID=id, SN=DSET,UV=U)

If the universal password is U and the universal permission is read permission on device set DSET, then
the universal password can be used to attach and read any permanent file on DSET even though an
RD= password has been defined to restrict access to that file.

The public password is a string of 1-9 letters or digits. On a CATALOG of a file with ID=PUBLIC, the
public password for this device set must be specified using PW=.

More than one job might have a given permanent file attached at the same time depending on the permissions
involved and the use of the RW (single write/rewrite) and MR (multi-read) parameters. Many jobs can read a
file at the same time but only one at a time can have modify, extend, or control permission. Use of param-
eters that allow multi-access is encouraged.

When a file is cataloged initially, it remains associated with the job with all permissions, except when MR=1

or RW=1 is specified on the CATALOG request. In the absence of RW=1 or MR=1 on the CATALOG request,
no other job can attach the file until the creating job returns it to the control of the permanent file manager,
since any job with control permission has exclusive file access. However, an RW=1 or MR=1 parameter makes
the file immediately available, on a read-only basis, to any other attaching job, but cancels all permissions except
read for MR=1 and cancels control permission for RW=1.

An alternate method of allowing multiple attaches with read only permission is to initially catalog the file
with XR= specified. Subsequent attaches without PW= or MR= specified default to multi-read access.

An RW=1 or MR=1 parameter on an ATTACH request restricts permissions that might otherwise be granted.
An MR=1 cancels all permissions except read; an RW=1 parameter cancels control permission but retains
modify, extend, and read permission. RW=1 overrides MR=1.

RW=0 or RW unspecified on an ATTACH statement results in exclusive access if control, modify, or extend
permission is granted.

QUEUED AND ARCHIVED FILES

Job requests to attach a permanent file usually are executed immediately. If a job cannot attach a file
immediately, it attempts to enter that file in a queue. Four conditions can cause a job making a permanent
file request to be placed into the permanent file queue.

3.16 60493800 E

TRANSPF utility is running.

Attached permanent file table, which is necessary for CATALOG or ATTACH, is fuil.
File to be attach
File to be attached is archived.

The job remains in the permanent file queue until the ATTACH request can be honored or until the user
or operator aborts the request.

At some installations, permanent files physically reside on rotating mass storage devices at all times and are
immediately available to a requesting job. At other installations, some permanent files might be dumped to
a tape through the DUMPF utility. Such files are not available to a requesting job until they are reloaded
through the LOADPF utility.

A permanent file physically on tape, but known to the system through permanent file table information, is
defined as an archived file. The archiving process does not affect the file’s status as a permanent file. There-
fore, the file does not need to be re-cataloged. An archived file must be returned to mass storage before the
job can read or write the file. An archived file can be purged, however, when still on tape, since only
system tables are affected by a purge function.

A request for an attach of an archived file might or might not be honored depending on installation proce-
dures. When the system receives a request for an attach of an archived permanent file, the system informs
the operator of the request and indicates the VSN of the tape required. The operator mounts the specified
tape, then authorizes the load by entering a command from the keyboard. The job continues when the file
is available. :

A request for an archived file submitted interactively through a remote terminal produces the following message
at the terminal.

REQUEST FOR ARCHIVED FILE — WAITING FOR CENTRAL OPERATOR DROP OR GO
In response to a GO command from the operator, the job is put into the permanent file queue, the message
WAITING FOR ARCHIVED FILE is sent to the terminal user, and a job is set up at another control point
to retrieve the fite from tape. The INTERCOM user must wait for retrieval to be completed before the file
is attached. In response to DROP, the file is not brought into the system and the attach request is terminated.
Once the WAITING FOR ARCHIVED FILE message appears at the terminal, the terminal user has the option
of waiting for the file to be made available or of continuing with other tasks. An abort command after the

central site operator enters GO affects the attach request itself, but does not affect the reloading of the file
to mass storage. Consequently, the following procedure can save time during interactive processing.

1. Enter command to attach file. Wait until WAITING FOR ARCHIVED FILE message appears.
2. Enter abort command.
3. Continue with other operations.

4. Reissue ATTACH command.

60493800 E 3-17

The second ATTACH command should execute immediately since the file should have been returned to mass
storage while other terminal operations proceeded.

INCOMPLETE CYCLES

Incomplete cycles might exist as the result of abnormal termination of a permanent file manager function.
They might also be created by a normal deadstart taking place during a permanent file function. The file is
automatically purged when the file is returned or during end-of-job processing. To remove an incomplete
cycle from the system, the file must be attached with the cycle number explicitly stated and with control
permission.

Execution of the AUDIT utility with an MO=I parameter reveals the existence of any such incomplete cycles.

USAGE
BATCH JOB USAGE

Permanent files are manipulated by the following control statements at a single mainframe installation. At
linked multi-mainframe sites, these statements are used when the permanent file resides at the site at which
the job is submitted and executed.

CATALOG Make a local rotating mass storage file permanent with a particular name and owner.
Parameters on the CATALOG statement become part of a system table that controls
all further file use.

ATTACH ~ Associate a permanent file with a job. Parameters on the ATTACH statement must
agree with privacy controls of CATALOG to establish the right to access the file.

PURGE Delete a permanent file by deleting system table information. The file remains attached
to the job as a local file.

EXTEND Increase the size of an attached permanent file.

RENAME Change system information established when the file was cataloged.

ALTER Change the size of an attached permanent file.

When the permanent file resides at a linked multi-mainframe site other than that at which the job executes,
the following statements must be used instead of the previous ones.

SAVEPF Create a permanent file on a public device at the system identified by the ST
parameter. Parameters on the SAVEPF statement become part of a system table
that controls all further file use.

GETPF Assign permanent file residing on the system specified by the ST parameter to the

job. Parameters on the GETPF must agree with privacy controls of SAVEPF to
establish the right to access the file.

3-18 60493800 E

For a single file, the CATALOG, SAVEPF, ATTACH, and GETPF control statements can be combined as
required to access the permanent file from a given system. A file cataloged with CATALOG can be attached

with GETPF.

Tabie 3-1 summarizes parameters applicable to permanent file functions. Any parameter not applicable to a given
control statement is ignored. The control statements and their parameters are explained in section 4.

Tan
L

ABLE 3-1. PERMANENT FILE PARAD

Ifn/pfn |AC|CN|CY|EC|EX|FO|ID {LC {MD| MR| PW| RB| RD|RP| RW| TK | XR| SN| ST
CATALOG {hoth orone | * | * | * Bl * | x| % * x| o | % | o=
SAVEPF jbothorone | * | * | * A L L L LI B L O
ATTACH | both or one | * - = + | * * | * * *
GETPF both or one | * * | ® + | * * | * o o | +
PURGE both or one | * * | * ¥ x| % | * * x| x
RENAME | Ifn pfnft [* | * | # * * * * * | * x |
EXTEND | Ifn
ALTER Ifn
+ required * optional t special case O jgnored with message
Tt applicable only when pfn is not attached

The following utility routines exist explicitly for permanent file use.

AUDIT Reports the status of permanent files

DUMPF Dumps files to tape for backup or temporary storage as archived files.

GENLDPF Generates LOADPF jobs according to the permanent file catalog (PFC) entries on
the tape produced by PFLOG.

LOADPF Loads permanent files that have been dumped by DUMPF.

PFLOG Dumps the PFC to tape.

TRANSPF Moves permanent files and permanent file tables between members of a device set

and moves files from one device set to another.

These utilities can be called such that all permanent files are affected or that only files pertaining to a given

ID, device, or

use are affected.

Files to be made permanent must reside on a device that the ADDSET control statement establishes as a
permanent file device. The user job can create a file on a permanent file device in two ways.

60493800 E

3-19

If the file is to be cataloged on a public permanent file device or on a private device whose VSN is not
known, the *PF parameter should be specified on the REQUEST statement that establishes the file.

If the file is to be cataloged on a public or private device with a volume serial number known to be the
number of a permanent file device, the VSN parameter should be specified on the REQUEST.

Cataloging a file results in entries in system permanent file tables. The file remains attached to the job and
can be used as any attached permanent file. At the termination of the job that cataloged the file, the system
detaches the file. The job can, but need not, execute a RETURN or UNLOAD function to detach the file.

INTERCOM USAGE
From the terminal, the INTERCOM user can create, attach, and purge permanent files in any of three ways:
By using standard macros within the user’s own interactively run COMPASS program.

By entering the commands ATTACH, CATALOG, etc., as if they were control statements in a batch
INPUT file.

By using the specia!l INTERCOM commands FETCH, STORE and DISCARD. These commands allow
the user to create and use permanent files with certain restrictions.

Files created by the STORE command cannot have any passwords. The only parameters for STORE are
filename and user id. The permanent file name and the local file name are the same. User id is required
according to installation options. If a required parameter is missing, it is requested from the user.

When a permanent file has been created through the STORE command, the user can access it through the
ATTACH or FETCH commands. FETCH parameter requirements are the same as for STORE.

Similarly, the DISCARD command as well as the PURGE command can be used to purge a permanent file
created by the STORE command. DISCARD has the same parameter requirements as STORE, with the ex-
ception that the user id parameter can be omitted if the file is already attached. Since execution of the
DISCARD control statement involves both a PURGE and a RETURN, the purged file does not remain as a
local file after the DISCARD is executed.

From an INTERCOM terminal, private device sets can be used but not created. The commands MOUNT,
DSMOUNT, etc., can be entered as if they were control statements in a batch input file. LABELMS,
RECOVER, DELSET and ADDSET commands cannot be entered from INTERCOM. A MOUNT of the
master device must be the first reference to a device set. After the master has been mounted, the REQUEST
command and the permanent file commands ATTACH, CATALOG, etc., with SN parameters can be used to
access device sets. A file written on a private device set can be made permanent with the STORE command.
FETCH can be used to attach a device set resident permanent file only after a SETNAME command has been
issued. If a private device set resident permanent file has been attached, it can be purged with DISCARD; if
it has not been attached, it cannot be purged with DISCARD.

If an INTERCOM job enters into the permanent file queue because a permanent file request cannot he
honored immediately, the user is informed by one of the following messages.

3-20 60493800 E

WAITING FOR PF UTILITY
WAITING FOR APF SPACE
WAITING FOR ACCESS TO FILE
WAITING FOR ARCHIVED FILE
WAITING FOR VSN=vsn,SN=setname
INTERCOM PERMANENT FILE USE EXAMPLES
In these examples the information output by the INTERCOM system on the terminal display is underlined to

distinguish it from that entered by the user. This does not actually occur on the output. The symbol @
denotes carriage return.

1. COMMAND-STOREMYFILE €R

ID=RKC

The installation requires a user id parameter. The user file called MYFILE is made permanent.
2. COMMAND-FETCHMYFILE RKC

COMMAND-DISCARD MYFILE g

During a later session, the user attaches the file and then purges it.

ACCOUNTING

If the installation chooses, messages are sent to both the system and user dayfiles whenever the status of a
referenced permanent file changes. The messages are as follows:

CATALOG CT ID=name PFN=pfn
CT CY= cy nnnnnnnn WORDS.
CT SN=setname
EXTEND/ALTER EX ID=name PFN=pfn

EX CY= cy nannnnnn WORDS.

PURGE PR ID=name PFN=pfn
PR CY=cy nnnnnnnn WORDS.

RENAME (old. permanent file) NM ID=name PFN=pfn
NM CY= cy nnnnnnnn WORDS.

RENAME (new permanent file) RN ID=name PFN=pfn
RN CY=cy nnnnnnnn WORDS.

60493800 E 321 e

The first two characters of each line identify the permanent file function that caused a status change. Other
parameters are:

ID=name Name which identifies the file owner or creator.
PFN=pfn Permanent file name which identifies the file.
CY= ¢y Cycle number, 1-999, assigned by creator.

nnnnnnnn WORDS ~ Amount of mass storage space occupied by the file, given in decimal number of
central memory words.

SN=setname Setname of file if it resides on a public set which is not the PF default.

EXAMPLES

The examples below form a continuous set. Many ATTACH, RENAME, and PURGE examples presume files
established by CATALOG examples.

CATALOG EXAMPLES

The first set of examples demonstrate initial catalogs; the permanent file name is unique to the ID specified.

1.

3-22

CATALOG(LFN,LFN,ID=RENOIR)
CATALOG(LFN,ID=RENOIR)

These statements achieve the same effect. Any time the permanent file name is omitted, it is assumed
to be the same as the logical file name. The cycle number is one.

CATALOG(LFN1,PERMANENTFILE,ID=RENOIR,CY=10)
The first cycle cataloged can have a cycle number greater than one.

CATALOG(LFN2,PFILE,ID=RENOIR,CY=0)

The cycle number of the permanent file, PFILE, is one since an illegal cycle number is specified. The
cycle number must be 1 through 999. Otherwise, the parameter is ignored.

CATALOG(WATER,LILIES ID=CMONET,XR=X)
CATALOG(WATER,LILIES, ID=CMONET MD=X,CN=X ,EX=X)

These control statements demonstrate the XR parameter and have the same effect. X is the password
for control, modify, and extend access.

CATALOG(AA,B,ID=SEURAT,XR=Y,CN=Z)

CATALOG(AA,B,ID=SEURAT MD=Y ,EX=Y,CN=Z)

These control statements have the same effect, further demonstrating use of the XR parameter.

60493800 E

MAMATNYO L TN QINNT AN T T -
CALALUUR,C ,llJ—SLUl‘Ab,FO=ls,1 xu—X,EX— Y)

If a data validity check reveals the file is an indexed sequential, direct access, or actual key file, extend
permission becomes insert permission, and modify permission becomes replace permission. If the file
is not an IS, DA, or AK file, the FO parameter is ignored.

CATALOG(LFF PF ID=MATISSE,RP=5,CY=4,RD=X,CN=Y MD=A,TK=C,AC=777 MR=1)

Since the MR parameter is non-zero, LFF has only read permission upon catalog completion. The
following items are ‘defined at catalog time.

Read password X
Control password Y
Modify password A
Turnkey password C

Account parameter 7
Cycle number 4
Retention period ‘ 5 days

Assuming the previous examples to be successful initial catalogs, the following examples demonstrate new-cycle
catalogs. A file already has been cataloged with the permanent file name and ID specified.

8.

10.

11.

12.

CATALOG(Z,LFN,ID<RENOIR)

CATALOG(Z,LFN,ID=RENOIR,CY=2)
These control statements catalog a cycle with a cycle number one higher than the largest (in this case 1).
This new-cycle catalog does not require passwords because a control password was not defined.

CATALOG(LFN22,PERMANENTFILE,ID=RENOIR,CY=10)

Assuming a cycle 10 already exists, this control statement causes cycle 11 to be cataloged. An invalid
cycle number is treated as no cycle number. This new-cycle catalog does not require passwords, because
a control password was not defined at initial catalog time.

CATALOG(LFF,PF,ID=MATISSE,CY=5 PW=Y)

If a control password is defined at initial catalog, it is necessary to submit the control password using the
PW parameter. Control permission is required to add a new cycle.

CATALOG(LFF,PF1,ID=PUBLIC PW=XYZ)

A file can be cataloged with an ID of PUBLIC if the public password is submitted, defined by the
installation as XYZ in this example. This enables an installation to define permanent files that can be
attached by all users without specifying an ID.

CATALOG(PERMANENTFILENAME,ID=-MOREAU)

A catalog function is attempted using the first seven characters of the permanent file name as the logical
file name. If the logical file name is omitted, the first character of the permanent file name must be
alphabetic, or the job is terminated.

60493800 E 323 |

ATTACH EXAMPLES

1. ATTACH(LFN,ID=RENOIR)
ATTACH(LFN,LEN,ID=RENOIR)

Assuming catalog example 8 was successful, these two control statements perform the same function. If

the permanent file name is omitted, it is assumed to be the same as the logical file name. Cycle 2 is
attached since that is the highest cycle number.

2. ATTACH(LFA,PF,ID=MATISSE PW=X,C,EC=K)

Assuming catalog example 7 was successful, cycle 4 of the permanent file, PF is attached with read and
extend permission. During execution the permanent file is referred to by the logical file name, LFA.
A standard size ECS buffer is established for the file.

3. ATTACH(PERMANENTFILENAME ID=RENOIR)

An attempt is made to attach the permanent file, PERMANENTFILENAME, under the logical file name,
PERMANE. The first seven characters must be letters or numbers and begin with a letter if the logical
file name is omitted in the attach call.

4. MOUNT(SN=SCIFI,VSN=999)
SETNAME(SCIFI)
ATTACH(DUNE,ID=HERBERT)
SETNAME.

or
MOUNT(VSN=999,SN=SCIFI)
ATTACH(DUNE,ID=HERBERT,SN=SCIFI)

Both examples have the same effect, the permanent file DUNE is attached to the job. The master device
of the device set SCIFI must be mounted before this function is issued.

5. ATTACH(WATER,LILLIES,ID=CMONET,MR=1)
ATTACH(WATER,LILLIES,ID=CMONET)

Assuming catalog example 4 was successful, these two control statements perform the same function of
attaching logical file WATER with multi-read permission.

RENAME EXAMPLES
1. Assume PFILE was cataloged by owner ABC with read password X, extend password Y, and modify
password Z. Control is granted automatically.

ATTACH(LFILE,PFILE,ID=ABC PW=Y,Z X)
RENAME(LFILE PFILE2,RD=,CN=W)

The permanent file name PFILE is replaced by PFILE2 (if no other permanent file named PFILE2,ID=
ABC exists). The read. password is removed (succeeding users are given read permission automatically)
and a password for control permission is cataloged. The existing passwords for extend and modify
remain unchanged. Since the changes involve the permanent file name and passwords, the changes apply
to all cataloged cycles of the file. This would also have been true if the owner ID had been changed.

1 324 60493800 E

5 ATTACH(LFN,ID=UTRILLO)
RENAME(LFN,,ID=UTRILLO,RD=A,RP=9)

RENAME(LFN,LFN,ID=UTRILLO,RD=A,RP=9)

RENAME defines a READ password for the permanent file LFN, and redefines the retention period.
Omission of the permanent file name in the first RENAME indicates no name change is to occur. The
two RENAME control statements are identical in function. This example also demonstrates that more
than one RENAME function can be issued consecutively.

3. ATTACH(LFN,,ID=SISLEY PW=A)

RENAME(LFN,,ID=SISLEY,RD=)
The definition of A as the READ password is removed from the permanent file, LFN.

PURGE EXAMPLES

1. ATTACH(LEN,ID=RODIN)
PURGE(LEN)
or
ATTACH(LFN,ID=RODIN)
PURGE(LFN,ID=RODIN)

Both sequences perform the same function.

When a purge is performed, permanent file table information for the file is removed, but the file remains
available to the job with permissions existing when it was purged. At least control permission is implied.

2. PURGE(PERMANENTFILENAME,ID=PISSARO)

If the purge is successful, the permanent file, PERMANENTFILENAME, no longer exists. Permanent file
table information for the file is removed. The purge is not successful if the logical file name is omitted
in the call and the first character of the permanent file name is not alphabetic.

3. PURGE(PERMANENTFILE ID=RENOIR,LC=1) -

Assuming catalog examples 2 and 9 were successful, cycle 10 is purged.

4. ATTACH(FAUVE,PF,ID=MATISSE,PW=Y,C)
PURGE(FAUVE)

Assuming catalog examples 7 and 10 were successful, cycle 5 is purged and remains attached to the job
as a non-permanent file FAUVE with only control permission.

5. PURGE(DUNEMESSIAH,ID=HERBERT,SN=SCIFI)

Assuming the master device of the set SCIFI was mounted by this job, the permanent file DUNEMESSIAH
is purged and remains as a local file with Ifn DUNEMES.

60493800 E 3-25

6. ATTACH(RED,LASER,ID=LIGHT,PW=CONTROL)
PURGE(BLUE,LASER,ID=LIGHT)

Because the permanent file cycle specified on the PURGE control statement was already attached (with
a different logical file name), the purge is successful with RED as the resultant local file.

ALTER/EXTEND EXAMPLE

To replace an existing cataloged permanent file by using the ALTER/EXTEND sequence:

ATTACH(LFN,PFN,ID=WHO,PW=MD,EX) passwords for modify and extend are required
REWIND(LFN)

ALTER(LFN) release old permanent file data
COPYBF(NEW,LFN) write new data

EXTEND(LFN) . make new data permanent

EXTENDED CORE STORAGE FILES

Extended core storage (ECS) can be used to buffer files and/or store files (as ECS resident files). Each file so
designated is assigned a single buffer in the ECS paged partition. This paged buffer is assigned pages up to the
limit specified hy REQUEST or ATTACH. User input/output through ECS buffers o1 to an ECS resident file is
performed in the same manner as any other mass storage input/output. ECS buffered files are more flexible than
ECS resident files since ECS resident files are not allowed to overflow to other mass storage devices.

ECS BUFFERED FILES

Sequentially accessed mass storage files on public device sets can be buffered through ECS to avoid the costly
access time of rotating mass storage devices each time a small amount of information is transferred. In order to
optimize the access to such devices, a larger amount of information is transferred between the device and ECS at
the time of each access. For each CIO call, regular smaller transfers between ECS and the user central memory
buffer take place at a high transfer rate without mass storage device access.

The information read ahead (input file) or waiting to be written (output file) is stored temporarily in an ECS
buffer. The underflow and overflow functions for these ECS buffers are performed automatically by the system.
On a write function, system programs transfer data from the file’s circular buffer in central memory to the ECS
buffer. When the ECS buffer is filled to the maximum size defined by REQUEST or ATTACH, it is written to
mass storage. On a read, the ECS buffer is filled in advance from disk, and data is transferred to the circular
buffer in central memory as the circular buffer is emptied.

The ECS buffers are requested on a file-by-file basis through the REQUEST control statement or macro, or
through an ATTACH statement or macro. A different buffer size can be specified for each file if the standard
buffer size is not desired.

The data contained in an ECS buffer is written to a mass storage device only if the file is closed or exceeds the
limit of the ECS buffer.

For optimum performance, the ECS buffer should be many times the size of the user’s CM circular buffer.
‘This ensures that the system overhead associated with ECS buffer management is small compared to the time
saved as a result of performing fewer device accesses. Suggested relative buffer sizes are:

3-26 60493800 E

CM Circular Buffer ECS Buffer

1000 octal words or less 10000 octal words or less
1001 - 2000 octal words 10000 - 20000 octal words
2001 octal words or more 20000 octal words or more

For I/O bound programs using large central memory circular buffers there is little advantage in using I/O
buffering. In general, an I/O buffer can be used to reduce the central memory buffer size while maintaining
the high transfer rates associated with having large central memory circular buffers. Throughput on 1/O
buffered files is primarily a function of the ECS buffer size, rather than the central memory circular buffer
size.

If an unrecovered ECS parity error is encountered with the EP bit set, control is returned to the user program
with the error noted in the code and status field of the FET. If the error occurs with the EP bit off, a GO
or DROP decision is required of the operator.

ECS RESIDENT FILES

This facility is provided as an installation option selected when the system tape is built. Except for some
specific applications where a faster, limited rotating mass storage device is needed, it is generally preferable
to use the I/O buffering scheme instead of ECS resident files. I/O buffering allows an overall optimization
of the system.

Nevertheless, under this option any non-permanent sequential or random file can be ECS resident. ECS
resident files are requested on a file-by-file basis. REQUEST has the same format as the one used for buffer
allocation with the addition of the device type mnemonic of AX. If no EC parameter is present on the
REQUEST, the file is limited to the default 1/O buffer size specified at deadstart time. Otherwise, the EC
parameter specifies the file size limit.

When an overflow occurs, i.e., all ECS pages are allocated or the maximum file size is exceeded, an error code
10 (device capacity exceeded) is stored in bits 9-13 of the code/status field and control is transferred to the
user if the EP bit is set; otherwise, the job is aborted.

NOTE

If ECS is turned off, all requests for ECS buffers are ignored and the
files requested on ECS are allocated on other mass storage devices.

MAGNETIC TAPE FILES

A single reel of magnetic tape is known as a volume. A volume set can consist of:
A single file on one volume
A multifile set on a single volume
A multivolume file extending over more than one volume

A multivolume, multifile set extending over more than one volume

60493800 E 327 |

All information on a magnetic tape begins after a physical reflective spot known as the load point. When this
is sensed by a photoelectric cell, the tape is at its load point. Another physical reflective spot appears near
the end of all tapes, which warns the software to initiate end-of-tape procedures.

The structure of a tape file, such as the number of characters in a block and the definition of end-of-information,
is affected by these characteristics:

Physical recording is 7-track or 9-track
Format is SI format (standard system format), S format, or L format
Standard labels exist or do not exist

See appendix C for a summary of tape characteristics.

The default tape characteristics assumed by the system are an unlabeled 7-track tape recorded at an installation-

defined default density in SI format. Any other tape density, format, or label must be explicitly declared by
a REQUEST or LABEL statement.

TAPE MARKS

A tape mark is a short record used on SI tapes to separate label groups and, files from label information. On
S and L tapes, it can also separate files in addition to separating label groups. Interpretation of multiple tape
marks depends on the tape format. The format of 2 tape mark is defined by the ANSI standard, described
later in this section. These tape mark records are written by operating system routines. On S and L tapes,
tape marks can be written by the COMPASS macro WRITEF.

DATA FORMAT

Three data formats exist:
SI System default format
S Stranger tape format

L Long stranger tape format (supported on 667, 669, 677, and 679 tape drives only)
SI format is assumed unless an F=S or F=L parameter appears in'a LABEL control statement or S or L is

explicitly declared on a REQUEST control statement. Both binary and coded data can be recorded in any of
these formats.

3-28 60493800 E

S TAPES

SI format tape is the system standard. The structure of information on these tapes corresponds to the struc-
ture of files on rotating mass storage. Each block on the tape is a physical record unit, with the end of a

st MTATTY

system-logicai-record defined by the presence of a short or zero-length PRU.
The size of a PRU on tape depends on whether the data is written in coded or binary mode:

For coded tapes, a PRU is the contents of 128 central memory words.

For binary tapes, a PRU is the contents of 512 central memory words.
The short or zero-length PRU that terminates a record is less than full PRU size.
Each system-logical-record is terminated with a 48-bit marker that contains a level number. The marker is
appended to the data in the peripheral processor when the tape is written and stripped from the data when
the tape is read. Only data passes from the tape to a user program in central memory.
A level number of 17g indicates an end-of-partition. Level 17g is always written as a zero-length PRU.
When an output file on an SI tape is closed, the operating system appends up to four items: a level 17g
zero-length PRU,} a single tape mark, trailer label information for both labeled and unlabeled tapes, and a
double tape mark. The file is then positioned to the beginning of the single tape mark. If more information
is written to the tape, only the level 17g marker indicating an end-of-partition remains. If the tape is rewound

or unloaded, the four items exist to define end-of-information.

The SI tape structure that results from a request for an unlabeled tape is as follows:

File End-of-Tape Reflector
EOF1 _@
Partiti * Trailer * | o*
artition 17 Label
§ N, o’
Load Point Level 17g Marker __// Double
Tape Mark Tape Mark

TThe presence of a level 17¢ PRU depends upon the procedures the programmer uses to close the file
{for example, 2 COBOL CLOSE or a FORTRAN ENDFILE statement writes the level 17g PRU).

60493800 E 3-29

The SI tape structure that results from an unlabeled tape in which the file specified on the REQUEST control
statement is opened and closed four times is as follows:

EOF1 BN

Partition {17| Partition {17| Partition |17 Partition |17]* | Trailer |*|*

m Label

b4
Load Point Tape Mark”’ Double Tape Mark

The same structure is obtained when the program opens the file, writes data and issues an instruction to write
an end-of-partition, repeats the data and partition instructions three more times, then closes the file.

Coded information is written on 7-track SI tape in external BCD format shown in appendix A. On a 9-track
SI tape, data is written in packed (binary) mode for both coded and binary data. Records are always an even
multiple of 10 characters.

S AND L TAPES

Data on S and L tapes is written in physical blocks separated by interblock gaps. S tape blocks are longer
than noise size and shorter than or equal to 512 central memory words. L tape blocks are longer than noise
size and shorter than the user buffer for the tape.

Neither S nor L tapes contain system-logical-records of various levels as do SI format tapes. The only records
are the physical blocks; and the file is physically delimited by tape marks. The last file on an unlabeled S or
L tape is terminated by four tape marks, but these are not recognized as end-of-information in the same sense
as a label. The user must use the four tape marks, or marks within the data, to recognize end-of-information
and initiate end-of-information processing.

The S or L tape structure that results from a request for an unlabeled tape when the file is opened and
closed three times, or is opened once and has three partitions written before the file is closed, is as follows:

File
Partition * Partition * Partition 1*y*

N— e —
w Load Point \——Tape Mark \—Tape Mark 4 Tape Marks

Terminating
Information

On a labeled S or L tape, an EOFI label replaces the second terminating tape mark. The system recognizes
the EOF1 label as end-of-information for the tape and initiates end-of-information processing as indicated by
the user.

Noise size, nominally 6 characters for both S and L tapes, can be changed by the installation. Blocks shorter

than or equal to noise size are not delivered to the user on read operations. An attempt to write a block
shorter than or equal to noise size causes an error.

3-30 60493800 B

In COMPASS, the maximum logical record size (MLRS) and unused bit count (UBC) fields in word 7 (lfn+6) I
of the FET should be declared when S or L tapes are processed. MLRS declares the maximum number of

60-bit central memory words in the block. The last word might not be full of data since S and L tape

blocks are measured in characters instead of words. UBC must declare the number of bits not used in the

last transmitted word. On a write operation, the operating system rounds down the UBC so that an integral
number of characters are written. The discussion of the FET fields that appears in section 6 explains these i
concepts in more detail.

If the MLRS and UBC are not declared, the system assigns default values. The default for UBC is zero. The
default for MLRS is 512 words for S tapes and two words less than the user buffer size for L tapes.

7-TRACK VS. 9-TRACK TAPES

Both 7-track and 9-track 0.50-inch magnetic tape can be processed by the operating system. Parameters on
REQUEST and LABEL statements differ for recording densities, data format, and character conversion. Other-
wise, label characteristics and tape usage are the same for both, except that 9-track L tapes are supported only
on 669 and 679 tape drives.

7-TRACK TAPE

Seven-track tapes are processed by 667 and 677 tape drives., Data can be recorded in three densities: I

Lot 200 bpi (low)
HI 556 bpi (high)
HY 800 bpi (hyper)

Installation-defined default densities are used for reading unlabeled tapes and writing both labeled and unlabeled
tapes in the absence of explicit declaration. The density of the label determines data density for reading
labeled input tapes. However, it is always advisable to specify density because of the reading peculiarities of
the tape drives. A tape label can be read at an incorrect density without causing a parity error. Longer data

blocks read at an incorrect density cause parity errors.

On a REQUEST statement, MT explicitly defines this tape as 7-track; LO, HI, or HY provides an implicit
definition. On a LABEL statement, 7-track is assumed unless 9-track is specifically declared.

9-TRACK TAPE

Nine-track tape is processed on CDC 669 and 679 tape units. On a REQUEST control statement, an NT |

parameter explicitly specifies a 9-track tape. On both REQUEST and LABEL control statements, a density
specification of HD, PE, or GE implicitly specifies a 9-track tape.

+Data cannot be written at 200 bpi on 667 or 677 tape drives although both drives can read 200 bpi tapes. i

60493800 E 3-31

Under hardware control, 9-track tapes are always read at the density at which they were written. Writing
density is determined by an installation default or by the density parameter on the REQUEST or LABEL
control statement. Density parameters are:

HD 800 cpi (high density) applies to 669 and 679 tape drives
PE 1600 cpi (phase encoded) applies to 669 and 679 tape drives
GE 6250 cpi (group encoded) applies to 679 tape drives

Data on SI format 9-track tape appears in memory as it exists on tape. Data is not converted while being
transferred between devices.

When S or L format 9-track tapes are written or read, processing depends on whether th€ tape is binary or
coded. Binary tape processing is the same as SI format tape processing, with no conversion. Data on coded S
and L tapes is converted between the tape and memory. Data in the user buffer in central memory is assumed
to consist of a string of 6-bit display code characters. The display code characters are mapped into 8-bit
characters when written to the tape. The 8-bit characters can be a subset of either ASCII or EBCDIC, as
specified by the REQUEST or LABEL control statement. Conversion from 8-bit characters to 6-bit characters
takes place when the tape is read in conversion mode. The parameters on the REQUEST or LABEL control
statement that select conversion mode are as follows:

Us ASCII conversion
EB EBCDIC conversion

TAPE LABELS

Labels on a tape consist of 80-character records that identify the volume of tape and files it contains. They
are the first records after the load point marker. Labels can appear on all tapes. A label record has a
particular format. The first four characters of the label are VOL1. Any tape that begins with characters
other than VOLI is considered to be unlabeled.

Two types of labels are recognized:

Standard system labels conform to labels defined by the American National Standard, Magnetic Tape
Labels for Information Interchange, X3.27-1969. Density of the label is the same as the density at
which the data on the tape is recorded. Standard system labels are requested with a U parameter on
a REQUEST control statement or macro. On a LABEL control statement or macro, the absence of a
Z parameter requests a standard label.

Z labels conform to an earlier ANSI standard in which the density of the label and the density of the
data were not necessarily the same. Z labels are similar to standard labels, except that character 12 of
the VOL1 specifies the density of the data. When a Z-abel tape is being read, the system changes the
read density, if necessary, during label processing. When a Z label is written, the system treats a Z
label as a standard label. Z labels are requested with a Z parameter on a REQUEST or LABEL control
statement or macro.

Labeled tapes provide the following advantages for the user.

When a write ring is left inadvertently in an input tape reel, software checking ensures that no part of
the tape is over-written without the express permission of the operator.

w
(95
(9]

60493800 E

The number of blocks written on a file is recorded in the file trailer label, as well as in the job dayfile.
On subsequent file reading, the count serves as additional verification that data was read propery.

The volume number field of the label ensures processing of all volumes in the proper sequence.

Multi-file volumes with ANSI labels can be positioned by label name, rather than by file count only.

1

The volume serial number of any ANSI

el read or writien is recorded in the dayfile.

Overall job processing time is reduced when the system can use the VSN field to locate and assign a tape
to the requesting job without operator action at the keyboard.

The maximum benefit from the operating system tape scheduling and automatic tape assignment features can be
derived only if all magnetic tapes used at an installation are labeled.

ANSI defines the following types of labels. The first three characters identify the label type; the fourth
character indicates a number within the label type.

Type

VOL
UvL
HDR
HDR

EOF
EOF
EOV
EOV
UTL

No.

1

Label Name

Volume header label
User volume label
File header label
File header label
User header label
End-of-file label
End-of-file label
End-of-volume label
End-of-volume label
User trailer label

Used At

Beginning of volume
Beginning of volume
Beginning of file
Beginning of file
Beginning of file
End of file

End of file

End of volume

End of volume

End of file

Operating System Processing

Required
Optional
Required
Optional
Optional
Required
Optional
Required when appropriate
Optional
Optional

Table 3-2 shows the contents and defaults of label fields. All required labels are checked by the operating
system on input and generated by the operating system on output if the user does not supply them. The user
must supply all optional labels to the operating system. Optional ANSI label types are accepted for reading or
writing when extended label processing capabilities are requested through the XL bit of the file environment
table, as explained in section 6. However, all manipulating of such labels must be done by user code. The
NS parameter of REQUEST or LABEL inhibits operating system processing of labels on S or L tape.

1'Any member of CDC 6-bit subset of ASCII character set.

60493800 E

3-33

TABLE 3-2. ANSI STANDARD TAPE LABEL FORMATS

3-34

Character . ANSI Name Default Checked
Position | ™9 | (NOS/BE 1 Name) | LenOth Contants Written On Input
1-3 1 Label Identifier 3 VOL VoL Yes
4 2 Label Number 1 1 1 Yes
5-10 3 Volume Serial 6 Any a As typed from Yes if file
Number characters console assigned
Volume by VSN
Header]
Label n 4 Accessibility 1 Space Space No
12-31 5 Reserved 20 Spaces Spaces No
32-37 6 Reserved 6 Spaces Spaces No
38-51 7 Owner ID 14 Any a characters - Spaces No
52-79 8 Reserved 28 Spaces Spaces No
80 9 Label Standard 1 No
Level ! !
1-3 1 Label Identifier 3 HDR HDR Yes
4 2 Label Number 1 1 1 Yes
5-21 3 File Identifier 17 Anya Spaces Yes
(File Label characters
Name)
22-27 4 Set Identification 6 Any a Volume Serial No
(Multi-File Set characters Number of
Name) first volume of set
28-31 5 File Section 4 4 n characters 0001 Yes
Number indicating number
(Volume Number) of volume in
First file
File 32-35 6 File Sequence 4 4 n characters 0001 Yes
Header Number indicating num-
Label (Position ber of file in
Number) multi-file set
36-39 7 Generation 4 Not ussd Spaces No
Number
40-41 8 Generation 2 2 n characters 00 Yes
Version Number indicating the
(Edition Number) edition of file
42-47 9 Creation Date 6 Space followed Current date Yes
by 2 n charac- is used
ters for year, 3
n characters for
day
48-53 10 Expiration Date 6 Same as field 9 Same as field 9 Yes
54 1 Accessibility 1 Any a characters Space No
55-60 12 Block Count 6 Zeros Zeros Yes
61-73 13 System Code 13 Any a characters Spaces No
74-80 14 Reserved 7 Spaces Spaces No

60493800 C

TABLE 3-2. ANSI STANDARD TAPE LABEL FORMATS (Contd)

QIafaf:tef Field ANSI Name Length Contents Default Checked
Position (NOS/BE 1 Name) Written On Input
. 1-3 1 Label ldentifier 3 HDR HDR Yes

Additional

Eile Header 4 2 Label Number 1 2-9 2-9 Yes
Labels All other fields are not checked on input; they are written as received from user.

1-3 1 Label Identifier 3 EOF EOF Yes
4 2 Label Number 1 1 1 Yes
5-54 3-11 Same as corres-
ponding HDR1
First label fields
End-of- 55-60 12 Block Count 6 6 n characters; Yes
File Label . number of data
blocks since
last HDR label
group
61-80 13-14 Same as corres-
ponding HDR1
label fields

Additional 1-3 1 Label Identifier 3 EOF EOF Yes

End-of-File 4 2 Label Number 1 2-9 2-9 Yes
Labels " All other fields are not checked on input; they are written as received from user.

First 1-3 1 Label ldentifier 3 EQV EOV Yes
End-of-Volume 4 2 Label Number 1 1 1 Yes
Label All other fields are identical to EOF1 label,

Additional 1-3 1 Label Identifier 3 EOQV EOV Yes
End-of- 4 2 Label Number 1 2-9 2-9 Yes
Volume o . . .

Labels All other fields are not checked on input; they are written as received from user.
USER 1-3 1 | Labelldentifir | 3 | 3lettercode: UVL,UHL,orUTL | Yes
Labels 4-80 Any a characters. Content of these fields is not checked on input;

content is written as received from the user.

a any character
n any digit

60493800 C 335

STANDARD LABELED TAPE STRUCTURE

The four ANSI labels required are used as follows (tape marks separating items are completely system
controlled):

[
VOL1 Must be the first label on a labeled tape volume. This label contains the volume serial
number which uniquely identifies the volume.

HDR1 Required label before each file or continuation of a file on another volume. It is
preceded by a VOLI label or tape mark. Each file must have a HDR1 label which
specifies an actual position number for multi-file sets.

EOF1 Terminating label for file defined by HDR1 label. The EOF1 label marks the end-of-
information for the file. A single tape mark precedes EOF1. A double tape mark
written after the EOF1 label marks the end of a muiti-file set.

EOV1 Required only if physical end-of-tape reflector is encountered before an EOF1 is
written or if a multi-file set is continued on another volume. It is preceded by a

single tape mark and followed by a double tape mark.

The structure of SI tapes that results from these required labels is shown below. The label identifier and num-
ber is used to denote the entire 80-character label in these figures.

Single volume file:

K Load Point End-of-Tape Reflector

/——T?pejh:jrk ——\

é vOL1 | HDR1 | * FILEA *| EOF1 | *|*
%

*\ﬁ/
Double Tape Mark
Multi-reel file:
7
VOL1 HDR1 * FILE A * EOV1 1 *

| P "\

Y,
VOL1 HDR1 * FILE A (Continued) * EOF1 i
m f\’]

3-36 ‘ 60493800 A

Multi-file volume structure that results from a request for a multi-file set is:

N .
e g @;
VOL1| HDR1 | * | FILEA|*| EOF1 | *| HDR1 |* | FILEB| *| EOF1 |* | *
2 " "

Multi-file multi-volume sets are also possible. Tape label configuration that occurs when EOF1 coincides with

end-of-volume is defined in the ANSI standar

LABELED MULTI-FILE SETS

A multi-file set consists of one or more files on one or more volumes of tape. Individual files can be accessed
by name, even though their order is not known.

Labeled multi-file sets require the use of both REQUEST and LABEL statements. (LABEL statements are not
required if the program can generate these fieldsinternally) REQUEST specifies the tape characteristics;
LABEL produces the file header for individual files. LABEL must specify the set name as the M parameter.
This set name is limited to six characters and must be different from any local file name. The utility routine,
LISTMF, is available to list the labels of all files in an existing set. LABEL can be used to position within a
set when a position number is used in the parameter list.

To create a labeled multi-file set, the following parameters should be used (parameters after the first cankappear
in any order). The label type must be U.

REQUEST(mfn,MF,U,RING,...)

LABEL(lfn; , M=mfn,W,...) Program call to create 1fn;
LABEL(lfny,M=mfn,W,...) Program call to create 1fn,

The mfn parameter is the name of the multi-file set, 1-6 letters and digits beginning with a letter. This param-
eter associates the file with a

Tl ULLGIVS LAl L0 a

any I/O request except as the M parameter in LABEL or POSMF requests.

particular get: all files in the set must reference it. Also, mfn cannot be used in

RING/NORING parameters on REQUEST for the multi-file set determines the RING status for all processing
of that set. RING/NORING parameters are ignored on LABEL used to position a multi-file set.

On REQUEST, the MF parameter designates the first parameter to be a multi-file name rather than a logical
file name. The U parameter causes standard labels to be produced. Other parameters should establish tape
density and format for the entire muiti-file set. On LABEL, density and format parameters are ignored.
REQUEST can include a VSN parameter.

LABEL is recommended for each file. In addition to required 1fn and M parameters, optional parameters
describing file header fields can appear. If a position number is not given with the P parameter, it is assumed
to be one larger than that of the previous file; and the new file is written at the end of the current set.
When an L parameter is used in creating a file header, future jobs can access the file by label name.

To access a labeled multi-file set, a REQUEST control statement is needed to attach the set to the job. A

LABEL control statement (either U or Z) need appear only for the file to be accessed. For example, to
access the third file on a volume, use the following statements.

60493800 A 3-37

REQUEST(MANY ,MF,UNORING . . .)

LABEL(FILE3,R, M=MANYP=3, . . .)

When an R is specified on a LABEL statement, the set is positioned according to the P parameter, an OPEN
function is issued to read the label, and the contents are checked against any corresponding parameters on the
LABEL statement. Use of L instead of P causes the tape to be searched for a matching label name. If a
match cannot be found, a message, FILE NAME NOT IN MULTI-FILE SET, is issued and processing stops.
The same message appears also when neither P nor L is given and the end of the device set is encountered.
When R is not specified, the next file in the set is opened when P and L are both omitted.

Writing on a multi-file can be done at the end of the existing set. At some point prior to the end, existing
files can be overwritten. For example, to create a new file LASTONE, use

LABEL(LASTONE,W M=MYSET,L=LAST)

Since P is omitted, the label is written at the end of existing files and given a position one greater than the
last file.

If a position number is given when a label is to be written, the file is positioned as requested. If a label
exists at that point, its expiration date is checked. A new label is not written over the existing one unless it
is expired or the operator authorizes writing over an unexpired label. Since rewrite-in-place is not defined for
tapes, rewriting a file labei destroys access to the associated file and all files following it on the tape.
The assignment of a multi-file can proceed automatically with the use of a VSN under the following conditions:
A VSN statement or parameter equates the multi-file name to the physical volume of tape.
VSN(mfname=1234)
or
REQUEST(mfn, ,VSN=1234)
A REQUEST statement is used to assign the multi-file name to the job.
REQUEST(mfname MF)

A LABEL statement is used to identify the specific file by label name, equate the file to the logical file
name, and identify the file as being a multi-file set member.

LABEL(Ifn, M=mfname,L=ifn,.)
Once the multi-file name has been assigned to the job via the REQUEST statement, any file can be accessed

individually 'via the LABEL statement. The execution of a new LABEL statement automatically prevents the
preceding labeled file from being accessed.

USAGE SUMMARY

Magnetic tape files to be used or created by a job must be explicitly requested. The three control statements
involved are REQUEST., LABEL. and VSN.

The REQUEST statement can be used for all tape files (labeled, unlabeled, single file, or multi-file set).
Parameters, in addition to specifying format and density, can specify processing for the file. Identifying the

3-38 60493800 A

tape as input or output and the type of label is sufficient to initiate label processing and checking when the
file is opened. The installation default options for unloading, label processing, and parity error processing can
be overridden. A volume serial number parameter for the volume (or first volume in multi-volume file) allows
the system to assign the file automatically.

The LABEL statement can be used in place of a REQUEST statement for a labeled, single file volume and to
write or check file header labels on single or multi-file volumes. Parameters establish label type and whether
labels are to be read or writien. Fields in file header (HDR1) labels are written or checked according to the
values specified. If a multi-file volume is to be labeled, a REQUEST statement must first establish the
multi-file name, then a LABEL statement can exist with the name and label field values for each file in the
set. With LABEL, either a volume serial number or a label name can be given for identification for automatic
tape assignment purposes. Automatic assignment by label name applies only when the read (R) parameter is
specified by LABEL. The LABEL statement also can be used to position to a particular member of a multi-
file set.

A LABEL statement can follow a REQUEST statement for the same file. Conflicts in parameters are resolved
in favor of the REQUEST statement. Unresolvable conflicts are referred to the operator.

The VSN statement can be used to equate a file name with a volume serial number so that the system can
assign a mounted tape automatically when it is requested by a REQUEST or LABEL statement or function.
The VSN for multi-file set or for alternate volumes can be stated. Since the system accepts the first VSN
equated to a file name, a VSN preceding a REQUEST or LABEL statement overrides any VSN value or
supplies the omitted parameter. This VSN information is independent of label information. It is not written
or checked against label fields.

Automatic tape assigning capabilities, which are selectable by installation options, speed job throughput when
the programmer supplies information to allow assignment of mounted tapes without operator action. The
system searches first for an eq parameter, then a VSN parameter, then a label name from among the control
statements. If both the VSN and label name parameters are specified, only the VSN is used for automatic
assignment. However, label verification proceeds separately and inconsistencies are brought to the attention of
the operator for action. The operator has the option of assigning a VSN to.a tape when it enters the system
if such identification was not made by the programmer.

Only the VSN statement allows multi-volume file identifiers or alternate tape volumes to be specified. Use of
the VSN statement is recommended when a job’s tape file requirements change frequently.

If more than one VSN parameter is given for a single file, the first encountered is accepted. Therefore,
deliberate duplication provides the programmer with the ability to override, for example, a REQUEST function
specification within a program without changing the program.

The maximum number of tape drives a job uses at any time is specified by the MT (7-track) and NT, HD,
PE, and GE (9-track) tape parameters on the job statement. Specifying more tapes than are needed can delay
execution of a job. The greatest delay results from specifying a number of tapes when the job does not use
any tapes. Specifying fewer tapes than needed causes the job to abort. Depending on installation options
for tape scheduling and default density (see the NOS/BE Installation Handbook), for 9-track tapes, the job
statement density request and the density specified on the LABEL or REQUEST statement must be the same.

60493800 E 3-39

PRINT FILES
Print files contain a disposition code indicating printer output. The file OUTPUT always is a print file.
Print files must have the following characteristics.

Characters must be in 6-bit display code (IC=DIS) or 8-bit ASCII (IC=ASCII). IC is declared with the
ROUTE control statement or macro. Default is DIS. Files to be printed with an extended print train
(more than 64-character character set) must be in ASCII.

The end of a print line must be indicated by a zero byte in the lower 12 bits of the last central
memory word of the line. Any other unused characters in the last word should be filled with binary
zeros. For example, if the line has 137 characters (including the carriage control character), the last
word would be aabbccddeeffgg000000 in octal; the letters represent the last seven characters to be
printed in the line. No line should be longer than 137 characters.

Each line must start at the high order end of a central memory word.

The first character of a line is the carriage control, which specifies spacing as shown in the following
table. It is never printed, and the second character in the line appears in the first position. A maximum
of 137 characters can be specified for a line, but 136 is the number of characters that is printed.

Table 3-3 shows carriage control characters.

When the following characters are used for carriage control, no printing takes place. The remainder of

the line is ignored.
Character Action
Q Clear auto page eject (JANUS default)
R Select auto page eject
S Clear 8 vertical lines per inch
T Select 8 vertical lines per inch
PM Output remainder of line (up to 30 characters) on the B display and the
dayfile and wait for the JANUS entry/OKxx
\% Specifies a new carriage control array to be loaded for a 580 printer

The remaining carriage control characters do not inhibit printing. Only the carriage control character
is not printed. Any pre-print skip operation of 1, 2, or 3 lines that follows a post-print skip operation
is reduced to 0, 1, or 2 lines.

The functions S and T should be given at the top of a page. In other positions S and T can cause

spacing to be different from the stated spacing. Q and R need not be given at the top of a page as
each causes 2 page eject hefore performing its functions.

3-40 60493800 E

TABLE 3-3. CARRIAGE CONTROL CHARACTERS

Character

Action Before Printing

Action After Printing

TN YOOI NP WUNNRER= = TQOTMEOGOO® >

0 (zero)
- (minus)
blank

Space 1

Space 1

Space 1

Space 1

Space 1

Space 1

Space 1

Space 1

Space 1

Space 1

Space 1

Space 1

Skip to top of next pageT
Skip to last line on page
Skip to channel 6
Skip to channel 5
Skip to channel 4
Skip to channel 3
Skip to channel 2
Skip to channel 11
Skip to channel 7
Skip to channel 8
Skip to channel 9
Skip to channel 10
No space

Space 2

Space 3

Space 1

Skip to top of next page'¥~
Skip to last line of page
Skip to channel §
Skip to channel 5
Skip to channel 4
Skip to channel 3
Skip to channel 2
Skip to channel 11
Skip to channel 7
Skip to channel 8
Skip to channel 9
Skip to channel 10
No space

No space

No space

No space

No space

No space

No space

No space

No space

No space

No space

No space

No space

No space

No space

No space

T The top of a page is indicated by a punch in channel 1 of the carriage control tape. The
bottom of page is channel 7.

60493800 E

341

The V function can be used when assigning output to a 580 printer with programmable format control. Such
a printer does not use carriage control format tapes; instead it contains a microprocessor plus memory.
Programmable format arrays are loaded into this memory, performing the same function as the format tape.
System defined arrays are available for use (see the ROUTE control statement in section 4); however, the

V function allows a user-specified array to be used. When V is the first character of the line, 6, 8, or C may
be specified as the second character. Other characters invalidate the function. If the second character is

6, 6-line per inch spacing is indicated. If the second character is 8 or C, 8-line per inch spacing is indicated.
An 8 means that the entire array is contained on one line, and a C means that two lines are used. When
two lines are used, there are no restrictions as to how the array is split, but both lines must begin with the
characters VC. The data starting in column 3 defines the format array to be used in subsequent printing.
The alphabetic characters A through L, the letter O, and blanks are specified to indicate the following.

Character Significance
A Top of forms code; the array must begin with an A.
B Channels 2 through 11, respectively. Other carriage control characters contained
through in table 3-3 are used to skip to these channels. Therefore, each of these letters
K should be specified at least once in the array.
L Bottom of forms code.
0 End of the array; must be specified as the last character in the array. However,
it does not correspond to any line on the form.
blank No channel. Blanks increase the number of lines on the form.

Any other characters are illegal and invalidate the array.

| Regardless of whether the array is contained on one or two lines, a maximum of 132 characters plus the end
of array terminator is allowed in a 6-line per inch array, and a maximum of 176 characters plus the end of
array terminator is allowed in an 8-line per inch array. An array may be less than the maximum length since
the printer loops on what is specified, even if it is not a full page.

NOTE

Specifying a V (with 6, 8, or C) does not imply that 6- or 8-line per inch mode will be
selected. If the user desires to change this mode, the S or T carriage controls must be
used. If an array is indicated in a mode other than that previously specified by the S or T
carriage controls, the array is ignored until the S or T carriage controls are used to change
that mode.

If the V carriage control is specified and the printer is not a printer with programmable format control, the
printer page ejects and does not print the line(s).

342 60493800 E

The following examples illustrate typical carriage control output and its effect.

1.

column 123456789012345678901234
array V6GA B C D EFGHIJK O

This causes the 6-line per inch buffer to be loaded with a 22-character array, implying a 21-line form.

column 12345678901234
array VS8ABCDEFGHI JKO

This causes the 8-line per inch buffer to be loaded with an 11-character array, implying a 10-line form.
column 12345678901234567

array VCABDC
VCEFGHIIJO

This causes the 8-line per inch buffer to be loaded with a 22-character array, implying a 2i-ine form.

column 123456
array V6BCDO

This is invalid because ‘the array does not begin with an A.

column 123456789
array VBA C DEO

This is invaiid because the second character is not a 6, 8, or C.

column 123456
array VSABWC

This is invalid because W is an illegal character and the array does not end with an O.

60493800 E 343

JOB CONTROL STATEMENTS 4

Aocnilena 4l 4ol
describes the control statements

n
are also presented. The first statement described is the job statement that begins the job. Remaining control
statements are in alphabetical order.

applicable to

rogram execution and file manipulation. Utilities

This section

In the formats that follow, uppercase letters indicate constants and lowercase letters indicate values to be
supplied by the user. Equal signs and slashes are required where they are shown within a parameter field.

CONTROL STATEMENT SYNTAX

All control statements, except the job statement that begins a job, have the same general format. They begin
with a verb and are followed by parameters separated by separator characters. A terminator must follow the

last parameter or the verb when no parameters are given. Blanks within the parameter list are ignored, except
possibly on the ACCOUNT statement (depending on the installation).

Verbs 1-7 letters or digits that indicate the operation to be performed. Leading blanks
can appear before the verb. The first character must be a letter. A blank
immediately following the verb serves as a separator.

Separators A separator is any character with a display code value greater than 44B, except
*). $ and blank. (A blank can be used to separate the verb from the first param-
eter.) The comma and left parenthesis are preferred separators. See appendix A
for display code. values.

Parameters Parameter format and order depends on the individual control statemerits, as
described below. Some parameters have more than one field. Fields within
parameters are separated by = / or commas.

If a parameter field includes characters other than letters, digits, or asterisks, it must
be written as a literal. A literal is a character string delimited by dollar signs.
Blanks within the literal are significant. If the literal is to contain the character

$, two consecutive dollar signs must be written. The literal $A B$$41$ is inter-
preted as A B$41.

Terminators Terminators are the characters period and right parenthesis.

Any characters after the terminator are treated as a comment. They appear on the job dayfile when the con-
trol statement is listed.

Certain control statements can be continued on one or more cards or lines. These statements are specifically
noted in the following descriptions. (See the appropriate product reference manual to determine which system
programs allow continued control statements.) In general, the last non-blank character of the card or line to
be continued must be a separator, and the verb and parameter fields cannot be split between cards or lines.
The final card or line must contain a terminator.

60493800 E 4-1

NOTE

In a system using the 64-character set, colons should not be
used in a control statement except within a literal. (A single
colon is permitted in a literal.) Two or more consecutive
colons could give incorrect results because the operating
system uses 12 zero-bits (equivalent to two consecutive colons)
to signify the end of a control statement.

} Control Statement interpretation is described in section 7.

JOB STATEMENT

A job is identified, certain resources are requested, and processing priority levels are established with the job
statement. In addition, the installation might require accounting information on this statement. The first
statement in a job deck or in a file to be submitted for batch execution must be the job statement. Any
other statement in this position is presumed to have job statement parameters and is interpreted accordingly.

Onc parameter, the job name, is required on all job statemenis. Other parameters can be inciuded to specify
resources, priority levels, or processing time limitations. If these parameters are omitted, the operating system
automatically assigns the system default values established when the operating system was installed. Parameters
can be listed in any order following the job name.

All blanks and any unknown parameters that appear on the job statement are ignored. However, when
improper characters are used as variables with valid parameters, the job is terminated. For example, parameters
such as CM7FFF and DATA would cause job termination since CM must be followed by digits only and D
followed by two letters and one or two digits.

A 26 or 29 can be punched in columns 79 and 80 of the job statement to indicate whether the statements
following are punched in 026 or 029 character codes. The default mode depends on an installation option

(see appendix A).

All numbers on job statements (except 26 or 29 in columns 79 and 80) are presumed to be octal values,
unless changed by the system analyst when the operating system is installed at the user’s installation.

The format of the job statement is:
i name, Tt,10t,CMf1,ECf1,Pp,Dym MTk NTk,HDk,PEk ,GEk ,CPp,STmmf.

After the terminator following the last parameter, general comments, or installation defined material
such as accounting information, can appear.

i name Name the user assigns to the job to identify it to the operating system. Any com-

bination of digits or letters can be used. The first character must be a letter. A
name longer than five characters is truncated to five.

42 60493800 E

Tt

10t

CMfl

60493800 E

The operating system modifies the name of every job by assigning letters and digits
that differ for each job as the sixth and seventh characters. This ensures unique
identification if a job is entered with a name duplicating that of another job already
in process. For example, if two jobs are named JOBNAME, one might be processed
as JOBNA23 and the other as JOBNA34. If a job name contains fewer than five
characters, all unused characters through the fifth are filled with zeros before unique

sixth and seventh characters are added.

t is an octal value for the time, in seconds, for which the user estimates his job
requires the central processor. It must include the time required for assembly or
compilation. Tt does not include time during which the job is in the input queue

or in central memory but not using the central processor. If the job access to the
central processor exceeds the value specified by t , the job is terminated abnormally.
(Use of the RECOVR feature in a program allows results of execution to that point
to be recovered before termination.)

t cannot exceed five digits. An infinite time can be specified by 77777 or 0. The
job proceeds until completed even if it exceeds the installation maximum value for
t. An infinite time limit should not be used indiscriminately since certain kinds of
program errors, such as an infinite loop, can result in great waste.

t is an octal value for the time, in seconds, which the user estimates his job requires
for input/output. Although t cannot exceed five digits, an infinite time limit can
be specified by 0. The default limit is infinite but can be changed by the installation.
If the job input/output time exceeds the value specified by t , the job is terminated
prematurely. (Use of the RECOVR feature in a program allows results of execution
to that point to be recovered before termination.)

fl is the maximum field length (octal number of central memory words) that the job
requires.

When the CM parameter is specified, that amount of storage is allocated to the job
throughout execution, unless the job itself requests a smaller amount by a REDUCE
or RFL statement. If the CM parameter is not used, the system establishes field
length requirements for each step of the job, expanding or contracting it as necessary.
Since smaller field lengths are used whenever possible, more jobs can pass through the
system in a given time period.

The system library programs, including the loader, compilers, and utilities, have an
associated field length in the library tables. The field lengths are set by the installation
to a judicious length for typical jobs, which should eliminate the need for the CM
parameter on many job statements.

Any CM parameter on the job statement is rounded upward to a multiple of 100. The
highest permissible value is defined by the installation for a given mainframe. An RFL
control statement requesting a field length greater than the CM value on the job state-
ment causes job termination. The RFL limit is the installation field length maximum
if CM is not on the job statement.

43 |

ECfl

MTk

PEk
GEk

a
¥

fl is the maximum amount (octal) of direct access ECS the job needs in multiples
of 1000-word blocks. The highest value permitted is defined by the installation.
An installation default amount (typically zero) is assigned if the parameter is
omitted and subsequent MEMORY requests from user programs are not allowed to
exceed that amount.

The EC parameter is applicable only to user programs in which ECS is accessed
through hardware block store instructions. It is not applicable to files stored on
ECS or buffered through ECS.

p is the priority level (octal) requested for a job. The lowest executable priority
level is 1. If zero is given for p , the system treats it as level 1. The installation
determines the highest value permitted, but it never can exceed 7777 (octal). A
value greater than the highest permitted value defaults to the installation default.

This parameter is used only in conjunction with a string of interdependent jobs.

y is the dependency identifier (two alphabetic characters) assigned by the user to
the entire string. m is the dependency count (number) of jobs (0-77 octal) upon
which this particular job depends. Examples using the D parameter are presented
in the discussion of the TRANSF statement.

MT specifies 7-track tape. GE, PE, HD, and NT specify 9-track tapes with the
following densities.

GE 6250 cpi [679 group coded recording (GCR) unit only]
PE 1600 cpi

HD 800 cpi

NT Installation-selected default density

k is the maximum number of 7-track or 9-track tape units a job will require at any
one time. k can range from Q to 77 (octal) but cannot exceed the total number

of tape units at the computer site. If more tape units are required at any time during
job execution than are specified by k , the job will be terminated.

Depending on the installation option for tape scheduling, the following rules for
specifying density and k apply. If the installation has selected the schedule-by-
density option, three separate counts according to density are maintained for each
job (for example, the number of GE tape units is counted separately from the
number of HD tape units). If the installation has not selected the schedule-by-
density option, only one count of 9-track tape units is maintained.

A job can use more than a total of k tape units as long as their use is not simultaneous.

For example, if MT3 is specified, 7-track tape units A, B, and C are assigned to the
job, and an UNLOAD but not a RETURN function is issued for the tape unit C, tape
unit D can be requested for the job. This makes a total of four tape units used during
the entire job.

This optional parameter is applicable only to systems having more than one central
processor. Use of the CP parameter restricts the job to executing only on the specified
processor. Omission of the parameter allows the system to select the processor for

job execution; usually, both processors will be used during the execution of any pro-
gram. p can be A or B.

60493800 E

On a CDC CYBER 174; CYBER 71-2x, 72-2x; CYBER 73-2x; or 6500 system, the
parameter restricts job execution to one of the two identical central processors. In
general, such a restriction serves no benefit. However, it is useful for running CPU
diagnostic programs.

On a CDC CYBER 74-2x or 6700 system, the two processors operate at different
speeds. CPA restricts the job to the faster processor, and CPB restricts it to the

1 - ROV W sl wnamandas da ittad +h
slower processor. When the parameter is omitted, the system chooses the faster

processor when it is available.

STmmf This optional parameter specifies a three-character identifier (mmf) of the system on
which the job is to be run. For multi-mainframe environments, ST should be used
to ensure that a string of interdependent jobs is executed in the same mainframe.

Examples of job statements:

JCBA100,T400,CM45000,EC2,P1,DAB3 MT5,CPA. THE JOB NAME IS TRUNCATED TO JOBA1

K2S1. ALL DEFAULT VALUES ARE AUTOMATICALLY ASSIGNED

TLS,T777,10777,CM50000,EC5NT2,P1 MT1.

JOB4,T77777,J00NT1. THIS JOB HAS INFINITE CENTRAL PROCESSOR AND I/O TIME

ABS (ABSOLUTE CENTRAL MEMORY DUMP)

ABS dumps absolute addresses of central memory whether or not the addresses are within the field length
assigned to the job. Installations can prohibit absolute dumps.

The format of ABS is:
ABS,from,thru.

When only one parameter appears, it is presumed to be the thru parameter, and the dump starts at
address 0. When both parameters are present, thru must be greater than from.

from Address at which dump is to begin, 1-6 digits octal.

thru Address at which dump is to end, 1-6 digits octal. If the value exceeds the size of
memory, dumping stops at the end of memory.

The format of the output on file OUTPUT is the same as that produced by the DMP control statement. ABS
can also be called using the SYSTEM macro described in section 7.

ACCOUNT (ACCOUNTING INFORMATION)

ACCOUNT supplies accounting information. The installation determines what accounting information is
required and what can be optionally specified. Depending on the installation, the ACCOUNT control state-
ment might be required immediately after the job statement and it might be allowed or disallowed elsewhere
among the control statements.

60493800 E 4-5

The format of ACCOUNT is:
ACCOUNT.parameter list.

The dayfile message indicating the execution of ACCOUNT might be edited so that sensitive information is
deleted. Illegal accounting information might cause job termination.

Some installations require accounting information on the job statement instead of the ACCOUNT control
statement. Others might not require any such accounting.

ADDSET (CREATE MASTER DEVICE OR ADD DEVICE
TO PRIVATE DEVICE SET)

ADDSET adds members to a device set. It can be used to create a master device when parameters MP and
VSN indicate the same volume serial number. Members being added must have the same device type as the
master device (see LABELMS). ADDSET cannot be entered through INTERCOM.

A member device is added to an existing device set when parameters MP and VSN specify different volume
serial numbers. A MOUNT statement for the master device must be issued before ADDSET can be used to
add a member device.
The format of ADDSET is:

ADDSET,SN=setname MP=mpvsn,VSN=vsn,UV=uv,UP=up,PB=pb ,FR=fff NF=n NM=m,RP=ddd,*PF ,mode.

Parameters SN, MP, and VSN are required. If parameters MP and VSN are equal, parameters UV, UP,
PB and FR are required unless the installation defines defaults. All parameters are order independent.

SN=setname Name of device set created or device set to which a member is added; 1-7 letters or
digits beginning with a letter. Required.

MP=mpvsn Volume serial number of master device; 1-6 letters or digits, leading zeros assumed.
Required.
VSN=vsn Volume serial number of device being added; 1-6 letters or digits, leading zeros

assumed. Required.
UV=uy Universal password; 1-9 letters or digits.

UP=up Universal permission; any non-null combination of the characters C, M, E,and R,
which specify the following permissions.

C Control permission
M Modify permission
E Extend permission
R Read permission

PB=pb Public password; 1-9 letters or digits.

4-6 60493800 E

FR=fff Permanent file default retention period specifying the number of days permanent

files on this private set are to be retained; 0-999. The private set owner determines
the future of each file once the retention period expires. l

NF=n Maximum number of permanent or queue files that can exist on the device set.
Value of n cannot be less than one nor greater than 16000.

NF=n has meaning only for an ADDSET for a master device. Default is 300 (octal).

NM=m Maximum number (decimal) of members allowed in the device set. NM=m is used
by ADDSET to preallocate tables for the member devices on the master device
system. For each member RBR, the system needs one PRU if the RBR is less than
62 words long, or two PRUs otherwise. For system tables ADDSET reserves a
number of PRUs equal to twice NM. If each member device is to have several RBRs,
NM=m should be specified as somewhat larger than the actual number of member

devices. =m has meaning only for an ADDSET of a master device. Default is
50 (decimal).
RP=ddd Retention period for the device set. ddd must be decimal (0 to 999) indicating the

number of days before the device set expires. 999 indicates an infinite retention
period. RP=ddd has meaning only for an ADDSET of a master device. Default is
31 days.

*PF Permanent files can reside on this member of the device set. Although the master
device need not be a permanent file device, at least one device in the device set
must be a permanent file device.

mode Recording mode for an 844 disk pack. Default is specified by the installation.
HT Half track; read/write alternate sectors.
FT Full track; read/write sequential sectors.
NOTE

If FT is specified, 2xPPU speed must be in effect
and there must be full track controller access to
the drive on which the pack resides.

ALTER (CHANGE PERMANENT FILE LENGTH)

ALTER changes the end-of-information for an attached permanent file. End-of-information is set at the end
of the PRU at which the file is currently positioned. ALTER is identical to the EXTEND control statement
when new information has been written to the file and the current file position is at the end of the new
information.

ALTER requires exclusive access to the file; an RW=0 parameter on the ATTACH control statement provides
exclusive access. The permissions required depend on whether the file is being lengthened or shortened.

60493800 E 4-7

Extend permission is required to extend the file length.
Modify and extend permission are required to reduce the file length.
The format of ALTER is:
ALTER lfn.
Ifn Logical file name of attached permanent file, 1-7 letters or digits beginning with a

letter.

ATTACH (ATTACH PERMANENT FILE TO JOB)

ATTACH attaches a permanent file to a job, as long as parameters specified on the ATTACH control statement
establish the right to use the file. Subsequent operations allowed on the file depend on the passwords sub-
mitted. Turnkey, read, modify, extend, or control permission is granted only when the appropriate passwords
are specified. In a multi-mainframe environment, the permanent file must reside on a device directly connected
to the mainframe on which the job is executing.

When the file is attached to the job, its initial position is beginning-of-information.

The format of ATTACH is:
ATTACH,lfn,pfn,ID=name,CY=cy EC=ec,LC=n MR=m ,PW=pw,UV=uv,RW=p,SN=setname.
The first parameter establishes the logical file name. Parameters Ifn and pfn are required in the order
shown; all others are optional and order independent. ATTACH can be continued. If a period or right
parenthesis does not appear at the end of the parameter list, column 1 of the next statement is con-

sidered to be a continuation of column 80.

Ifn Name by which file is to be known as a local file, 1-7 letters and digits beginning
with a letter. If omitted or null, the first seven characters of the pfn establish 1fn.

pfn Permanent file name by which the file is known in the permanent file manager tables,
140 letters or digits. If omitted, Ifn must be the same as the permanent file name.

ID=name ID parameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC.
CY=cy Cycle number to be attached; 1-999. Default is highest existing numbered cycle.
EC=ec Size of buffer for sequential public device set file (octal). EC is ignored when SN is
specified.
ec Buffer Size
K Installation standard number of blocks of ECS.
nnnn Number of 1000 (octal) word blocks to be allocated.
nnnnK Same as EC=nnnn.
nnnnP Number of ECS pages, with a page 1000 (octal) central

memory words.

4-8 60493800 E

LC=n Lowest cycle indicator; n must be any non-zero value. CY overrides LC except when

CY=0

AAMD MNMand mnler soncelnclnm sa~zands nmwr atmala e racs Aials

=11 NCaQ-0Iily PCIIINMIVIL IC{UOdL, dlly MMIIBIC 1Ul~Ze digie.

PW=pw 1-5 passwords, separated by commas, for permissions required in this job. Passwords
are defined by the CN, TK, RD, MD, EX parameters of the CATALOG control
statement.

UV=uv Universal password; 1-9 letters or digits. Grants universal permission. Password and

permission for public sets are defined by the installation; for private sets, they are
defined on the ADDSET statement when creating the master device. If this parameter
is specified, PW parameters are ignored.

RW=p Rewrite request.
p Significance
0 Job has exclusive file access if it has control, modify,
or extend permission.
Non-zero Job retains modify and extend permission; any control
digit permission is cancelled. Other jobs can attach the file
with MR=1 to read the file but cannot receive control
permission.
SN=setname Name of set on which file is cataloged, 1-7 letters or digits beginning with a letter.

The master device of a private device set must be referenced on a MOUNT control
statement before SN is used. If omitted the job’s current permanent file default set
is assumed (see SETNAME statement). l

An ATTACH of an incomplete cycle must specify CY and any control password.

AUDIT (PERMANENT FILE SUMMARY)

AUDIT provides the status of permanent files. The user can restrict the AUDIT to an owner ID, permanent
file name, or device set.

AUDIT can run in either full mode or partial mode. Items contained in the printed reports of each of these
modes are listed in table 4-1.

The format of AUDIT is:
AUDIT,LF=1fn, MO=m,ID=name ,PF=pfn, Al= F} ,SN=setname,VSN=vsn, AC=n.
All parameters are optional and order independent. If a terminator does not appear at the end of the

parameter list, column 1 of the next card or line is considered to be a continuation of the AUDIT
parameter list.

60493800 E 49

LF=lfn

MO=m

ID=name

PF=pfn

Al=F
AlI=P

SN=setname

VSN=vsn

AC=n

4-10

Logical file name to receive the output listing created by AUDIT, 1-7 letters or digits
beginning with a letter. Default is OUTPUT.

AUDIT mode; only one of the following modes can be specified.
m Mode

AUDIT all files (default)
AUDIT expired files

AUDIT inactive cycles

AUDIT incomplete files
AUDIT files with parity errors
AUDIT archived files

N e =~ g X »

Owner identification; audit all files with this identification.

Permanent file name; audit all files with pfn. If PF=pfn is used, the ID=name param-
eter must also be used.

Full 2-ine output for each file audited. Default.
Partial 1-line output for each file audited.

Name of device set to be audited, 1-7 letters or digits beginning with a letter. Master
device for this device must have been previously mounted.

Volume serial number of device to be audited, 1-6 digits or letters with leading zeros
assumed. All files residing on this device are audited. Master device for this device
set must have been previously mounted. SN=setname parameter must also be
specified.

Account number; audit all files with this 1-9 character account number.

60493800 E

TABLE 4-1. ITEMS LISTED BY AUDIT

AL | Acchived | Expired | Fies of | ¢ Gy | Partial | Full Audit
rues rues rues Same ip i)eViC e AuQit { Of ACCOUINL
Account Parameter X X X X X X X
Creation Date (ordinal) X X X X X X X
Cycle Number X X X X X X X
Date of Last Alteration (optional) | X X X X X X X
Date of Last Attach (optional) X X X X X X X
Expiration Date (optional) X X X X X X X
FlagsT X X X X X X
Length Number of PRUs Deter- X
mined by Instaliation Parameter X X X X X X
Length in RBs X X X X X
Number of Attaches X X X X X X
Number of Extends X X X X X X
Number of Rewrites/Alters X X X X X X
Owner ID X X X X X X X
Permanent File Name X X X X X X X
Set Name X X X X X X X
Subdirectory Number X X X X X X
Time of Last Alteration X X X X X X
Time of Last Attach X X X X X X
First VSN X X X X X X X
VSN of Dump Tapes (first/last) X X X X X X

TFlags are:

A Archived file E Parity error in file P Positioned file
C RB conflict file N New version file R Random file
S CDC CYBER Record*Manager IS, DA, or AK file

BKSP (BACKSPACE SYSTEM-LOGICAL-RECORD)

BKSP backspaces one or more system-logical-records on rotating mass storage, ECS, or SI format tape. Back-
spacing terminates when beginning-of-information is encountered.

The format of BKSP is:

BKSP,lfn,n,C.

60493800 E 411

Parameters are positional; only lfn is required.

Ifn Name of file to be backspaced, 1-7 letters or digits beginning with a letter.
n Number of system-logical-records to be backspaced, 1-262143 (decimal). Default is 1.
C File to be backspaced is coded. Default is binary.

CATALOG (CREATE PERMANENT FILE)

CATALOG makes an existing local file a permanent file by creating entries in permanent file manager tables.
A permanent file is known in these tables by a permanent file name unique within an owner ID. As many as
five cycles can exist with the same permanent file name and ID but different cycle numbers.

The local file must have all permissions in order for a new permanent file name and ID to be entered in the
permanent file manager tables. When the first cycle of a permanent file is created, the values for XR, EX,
CN, MD, TK, and RD define the passwords which are to be used in future references to all cycles of this
permanent file. Consequently, these parameters are ignored for a new cycle catalog. Any control password
or turnkey password defined must be specified with the PW parameter to create a new cycle of a permanent
iile.

The local file must reside on a member of a public device set or on a member of a private device set desig-
nated for permanent filess. A *PF parameter on a REQUEST control statement prior to file creation ensures
proper file residence. An SN parameter on the REQUEST determines the device set for the file.

Once the file is cataloged, it remains available to the job as a local file with all permissions, unless the RW
parameter or MR parameter cancels some permissions.

The format of CATALOG is:

CATALOG lfn,pfn,ID=name,AC=act,CY=cy,CN=cn,EX=ex,FO=fo MD=md MR=m,PW=pw,RD=rd,RP=rp,
RW=p,TK=tk, XR=xr.

The first two parameters are required in the order shown. All other parameters are order independent.
CATALOG can be continued. If a period or right parenthesis does not appear at the end of the
parameter list, column 1 of the next statement is considered a continuation of column 80.

Ifn Logical file name by which file is presently known to the job, 1-7 letters or digits
beginning with a letter. If omitted, the first 7 characters of pfn are assumed. This
name does not become part of the permanent file identification.

pfn Permanent file name by which the file is known in permanent file manager tables,
140 letters or digits. If omitted or null, Ifn becomes the permanent file name.

ID=name Owner or creator of file; 1-9 letters or digits. Required unless the installation is
cataloging the file with ID=PUBLIC.

AC=act Account parameter, 1-9 letters or digits. Installation determines the procedure if
act is incorrect or is not specified.

412 60493800 E

CY=cy Cycle number of file with same pfn/ID combination, 1-999. If omitted, illegal, or
not unique, cycle number is one greater than highest existing cycie number. If a
cycle 999 exists, automatic cycle number assignment cannot take place.

CN=cn Password for control permission (purge or catalog new cycle), 1-9 letters or digits.

EX=ex Password extend permission, 1-9 letters or digits,

FO=fo File is CDC CYBER Record Manager IS, DA, or AK organization. Permissions are
defined in terms of Record Manager logic; extend is equated with adding new records,
modify with deleting or replacing records. If the file is not IS, DA, or AK organi-

zation, this parameter is ignored.

MD=md Password for modify permission, 1-9 letters or digits.
MR=m Multi-read indicator.
m Significance
0 No other job can attach file while this job is in
execution. Default.
non-zero Other jobs can attach file immediately for read only.
digit
PW=pw Password list to obtain permissions. Control password is required to catalog a new
cycle of the same pfn/ID. Public password is required to catalog a file with
ID=PUBLIC.
RD=rd Password for read permission, 1-9 letters or digits.
RP=rp Retention period indicating the number of days file is to be retained, 0-999. Infinite

retention is 999, although an installation might change this. Default is installation
defined. Installation procedures determine the future of the file once the retention
period expires.

RW=p Rewrite request.
P Significance
0 Job has exclusive file access if it has control, modify,
or extend permission.
non-zero Job retains modify and extend permission; any control
digit permission is cancelled. Other jobs can attach the file
with MR=1 to read the file, but cannot receive control
permission.
TK=tk Password for turnkey required in addition to RD, MD, EX, or CN, 1-9 letters or
digits.

60493800 E 4-13

XR=xr Password for modify, extend, and control permission, 1-9 letters or digits. Any MD,
EX, or CN parameter overrides XR for the specified parameter only.

When a file is cataloged with a pfn unique to the ID, these parameters are applicable.
AC, CN, CY, EX, FO, MD, MR, PW, RD, RP, RW, TK

When a new cycle is cataloged with the same pfn and ID of an existing permanent file, the new cycle has the
same set of passwords as the original file. Any control permission passwords must be specified on the
CATALOG that establishes a new cycle. These parameters are applicable to a CATALOG for a new cycle:

AC, CY, FO, MR, PW, RP, RW

Any permanent file parameter not applicable to CATALOG is ignored.

CKP (CHECKPOINT REQUEST)

CKP requests a checkpoint dump be taken during job execution. Each time a checkpoint dump is taken during
job execution, a file is written containing information needed to restart the job at that point. The system
numbers each checkpoint dump in ascending order.

The format of CKP is:
CKP.

The checkpoint/restart system facility captures the total environment of a job on magnetic tape so the job can
be restarted from a checkpoint, rather than from the beginning of the job. Total environment includes all files
associated with the job. For mass storage files, the complete file is captured, including data from any ECS
buffers and the relative position within that file. For magnetic tape files, only the relative position on the
tape is captured so the tape can be properly repositioned during restart. (See the RESTART utility.)

Checkpoint/restart cannot handle the following items.

Rolled-out jobs

Random files (except random permanent files)

Muiti-file volumes

ECS resident files
The job should request a dump tape with a REQUEST or LABEL control statement that indicates the tape is to
be used for checkpoints. The tape must have SI data format and default density, but can be either 7-track or
9-track and labeled or unlabeled. Either a 7-track or 9-track tape can be assigned by the operator when an MN
parameter appears in REQUEST. Only one tape can be defined for checkpoint dumps per job. If no tape is

supplied, checkpoint defines an unlabeled tape for its use at the time the checkpoint occurs with the following
request statement.

REQUEST,CCCCCCC,CK,MN,RING.

1 414 60493800 E

Checkpoint/restart defines the following files for its use.

cceeccec Tl CCCCCCM CCCCece
The uger should refrain from using these file names. User system-logical-records should not have a level 168
since checkpoint uses level 68 for internal processing.

COMBINE (RECORD CONSOLIDATION)
COMBINE consolidates one or more consecutive system-logical-records in one file into one level 0 system-
logical-record on a second file. COMBINE is applicable only to files with system-ogical-record structure;
files cannot be S or L tapes. COMBINE terminates at a partition boundary.
The format of COMBINE is:

COMBINE,lfnl,lfnz,n.

Parameters lfnl, and lfn2 are required.

lfn1 File from which one or more system-logical-records is read, 1-7 letters or digits begin-
ning with a letter.

lfn2 File to which one system-logical-record is written, 1-7 letters or digits beginning with
a letter.

n Number (decimal) of system-logical-records in lfn1 to be written onto lfnz. Default
is 1.

The job is responsible for positioning of both files.

COMMENT (ADD COMMENT TO DAYFILE)

COMMENT inserts a formal comment into the job dayfile. Since the comment is displayed at the operator
console as part of the job dayfile and the job continues, the operator might not see the comment. The
PAUSE control statement should be used instead of COMMENT when the comment is to be brought to the
attention of the operator, since PAUSE stops the job until the operator acknowledges the PAUSE.

The format of COMMENT is:

COMMENT.comment

The period is required. The comment can begin in any column after the period; no ending punctuation
is required.

comment String of 72 characters. Any character can be specified, including those otherwise

used as punctuation.
Only the comment appears in the dayfile; the word COMMENT does not. The first 40 characters of the com-

ment, including any leading blanks, appear on the first line. Any additional characters appear on a second line
in the dayfile.

60493800 E 415

COMPARE (COMPARE FILES)
COMPARE compares one or more consecutive system-logical-records in one partition with the same number of
consecutive system-logical-records in a partition on another file. Comparison begins at the current position of
each file and continues until the number of system-logical-records of the specified level or higher level has been
processed from the first file. COMPARE terminates if a partition boundary is encountered.
Files to be compared can reside on rotating mass storage, ECS, or magnetic tape.
COMPARE can be used with an S or L tape when record size does not exceed PRU size for an SI tape. When
a tape file is to be compared with a file not on tape, the tape file must be specified first in the COMPARE
parameter list.
The format of COMPARE is:

COMPARE,lfnl ,1fn2,n,1ev,e,r.

Parameters lfnland lfn2 are required; all others are optional. All parameters are order dependent.

lfni Name of file to be compared, 1-7 letters or digits beginning with a letter.

n Number (decimal) of system-logical-records of level lev or higher in lfnl, to be com-
pared to lfn2. Default is 1.

lev Record level number (octal). Default is 0.

e Number (decimal) of non-matching word pairs to be written to the OUTPUT file for
each non-matching record. Default is 0.

I Number (decimal) of non-matching records to be processed during the comparison.
Included in non-matching record OUTPUT file if the e parameter is given. Default
is 30000.

Both the contents of the record and the system-logical-record terminator must be identical for the utility to
declare both files identical. When all pairs of records are identical, COMPARE writes the message GOOD
COMPARE to the dayfile; otherwise the message is BAD COMPARE. A discrepancy between levels of corre-
sponding records is listed on OUTPUT, and the comparison is abandoned, leaving the files positioned imme-
diately after the unlike record terminators.

A bad compare produces a message on the file QOUTPUT. When the e and r parameters are specified,
information on OUTPUT can identify the non-matching records. The first record on each file is number 1.

COMPARE determines whether a tape file is binary or coded mode in the following way. File names are
those of example 4 below. The first record of the first-named file (GREEN) is first read in binary mode. If
a parity error occurs, the file is backspaced and re-read in coded mode. If another parity error occurs, the
fact is noted in file OUTPUT, the corresponding record of the second-named file (BLACK) is skipped over,
and the process begins again. If the coded read is successful, the corresponding record of BLACK is read in
coded mode. If this record of BLACK produces a parity error, the lacl is noted in file OUTPUT, and nothing
further is done with that record. Each record of file BLACK is read in the same mode as that in which the

4-16 60493800 E

corresponding record of GREEN was successfully read, but if the record GREEN was unsuccessfully read in

both modes, the record of BLACK is read in the same mode as the preceding record of BLACK. Once a

record of GREEN has been read without error, following records of GREEN are read in the same mode until
‘a change is forced by a parity error 1

Examples of COMPARE usage:
1. COMPARE(RED,BLUE)
Compares next system-logical-record on file RED with next record on file BLUE.
2. COMPARE(RED,BLUE,6)

Compares next six system-logical-records. Each record level on file RED must have the same level
as the corresponding record on file BLUE for a good compare.

3. COMPARE(RED,BLUE,3,2)

Compares two files from their current positions to and including the third following end-of-section
mark having a level number of 2 or greater.

4. COMPARE(GREEN,BLACK,3,2,5,1000)

Comparison is the same as the previous example, but the first five discrepancies between correspond-
ing words in the files plus their positions in the record are listed on OUTPUT. Positions are indi-
cated in octal, counting the first word as 0. The limit of pairs of discrepant records to be read is
1000. If two long files are compared, for instance, 20 might be used as the record parameter, so
that a large number of discrepancies are described in detail, but if, through an error, the two files
are completely different, an enormous and useless listing is not produced. Furthermore, the com-
parison is abandoned if this limit is exceeded, and the files are left positioned where they stand.

COPY (COPY TO END-OF-INFORMATION)

COPY copies one file onto a second file until a double end-of-partition (empty partition) or end-of-information
is encountered on the first file. If end-of-information is encountered on the first file, enough end-of-paritions
are written on the second file to ensure that it has a double end-of-partition.

Both files are backspaced past the last end-of-partition written unless a backspace is illegal on the device or
end-of-information was encountered.

The format of COPY is:
COPY,lfn1 Ifn,.
Parameters are order dependent and optional.

Ifn, File to be copied onto lfnz, 1-7 letters or digits beginning with a letter. Default is
INPUT.

60493800 E 4-17

lfn2 File onto which lfn1 is copied, 1-7 letters or digits beginning with a letter. Default

is OUTPUT.

COPY is intended for use with files residing on disk or on binary SI format tapes. COPY gives undefined
results when used with S or L tapes or with labeled or coded tapes.

COPY can be used with any CDC CYBER Record Manager file that resides on a PRU device. lfn1 is copied
through end-of-information or a double end-of-partition. File format is not changed, and FILE control state-
ments are ignored (see the CDC CYBER Record Manager manuals).

COPYBCD (COPY LINE IMAGE FILE)

COPYBCD reformats files of line images. It is used most often to produce a tape file that can be listed off-
line. Each line image of the input file is assumed to be terminated by a 12-bit byte of zeros in the lower
order position of the last word of the line image. COPYBCD writes each line image as a 148-character
record, with the zero-byte line terminator converted to blanks on the output file.

When a partition boundary is encountered on the input file, a printer carriage control character for a skip to
top of next page is written on the output file before an end-of-partition is written. Thus, the final printed

H . 43hinin ot dlig o AL o o mass donzr o coatocs osmseane wd flin doee A f LSl L PR
cutput begins cach partition at the top of a new page. Stray characters appear at ihe iop of this page as a

result of the skip and end-of-partition on the output file.
The format of any output tape is determined by the REQUEST or LABEL control statement in the job.
The format of COPYBCD is:

COPYBCDiifn Ifn,,n.

All parameters are positional and optional.

lfn1 Name of input file to be copied onto lfnz, 1-7 letters or digits beginning with a
letter. Default is INPUT.

lfn2 Name of output file onto which lfnl is to be copied, 1-7 letters or digits beginning
with a letter. Default is OUTPUT.

n Number of partitions (decimal) to be copied, 0< n <218 -1. Defaultis 1.

COPYBF AND COPYCF (COPY BINARY AND CODED FILES)V

COPYBF and COPYCF copy binary files and coded files, respectively, to other files. The minimum field length
for these routines is 5000 (octal). When L tapes are copied, the minimum is 1000 (octal), plus twice the
length of the largest physical record to be copied.

COPYBF and COPYCF copy partitions delimited by level 178 record terminators on PRU devices (SI tapes and
mass storage) and by tape marks on S and L tapes. Copy continues until the specified number of partitions
has been copied or end-of-information is encountered. An EOF label on a tape multi-file set is considered to
be end-of-information. An informative message is entered in the job dayfile when the copy terminates.

418 60493800 E

These utilities produce a file with a specific structure. If an exact duplication of the input file is required,
COPY should be used. Alternatively, some appropriate sequence of COPYBR/COPYCR/COPYBF/COPYCF
with explicit record or file counts, or other file positioning utilities can be used.

The format of COPYBF is:
COPYBF }fn; ,lfnz,n.
All parameters are order dependent and optional.

lfnl - Name of file from which information is to be copied, 1-7 letters and digits beginning
with a letter. Default is INPUT.

lfn2 Name of file to which information is to be copied, 1-7 letters and digits beginning with
a letter. Default is OUTPUT.

n Number of partitions to be copied, 0 < n <218 -1 (decimal).
The format of COPYCF is:

COPYCFlfn, lfn,,n.

Parameters are discussed under COPYBF,

If an end-of-information is encountered on the input file before the number of partitions specified by the n
parameter have been copied, the copy operation ceases (but not aborts) at that point. An end-of-partition is
written on lfn,, and is not backspaced over. A dayfile message indicates the number of partitions copied
before end-of-information was encountered.

When these utility routines detect an end-of-volume for a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

When a file with system-logical-records is copied to an S or L tape, each system-logical-record becomes a
physical tape block. Each level 17 record delimits a partition. Similarly, when an S or L tape is copied to
a PRU device, each physical record becomes a system-logical-record of level 0. A tape mark on an S or L
tape delimits a partition. ‘An informative message on the dayfile notes that levels 1 through 164 lose their
level indicator on an S or L tape.

For the record and block types indicated below, CDC CYBER Record Manager end-of-partition (EOP) is equivalent
to a NOS/BE 1 end-of-partition. The routines COPYBF and COPYCF can be used to copy a specified number
of partitions. All other considerations are the same as for copying system files.

Device Block Type Record Type
SI tapes and mass storage C FDRTUSZ
K F,D,R,T,U,Z
S and L tapes C F.DR,T,U,Z
K F,DRT,UZt
E F,D,R,T,U,Z}

Ta copy from an S/L device to a system device might add extraneous system CDC CYBER Record Manager
defined end-of-section terminators to a file.

60493800 E 4-19

Although not primarily implemented for that purpose, these routines are capable of limited format conversion.
Table 4-2 shows format conversion copies that can be handled successfully.

TABLE 4-2. COPYxx FORMAT CONVERSION

Input Output
SI Tapes and Mass S Tape L Tape
Storage
SI Tapes and
Mass Storage Yes Yes 1> 8 Yes S
S Tape Yes 3 45 55 7 Yes 3 6> 7 Yes 36 7
L Tape Yes 34 S Yes 3 6 Yes > 6

VIf the system-logical-record or L tape physical record is greater than 512 words, the copy terminates
with an error message.

2 If the system-logical-record is greater than the copy buffer size, the copy terminates with an error
message.

31If the S tape physical record is greater than 512 words or the L tape physical record is greater than
the copy buffer size, the system aborts the copy with an error message.

4If the S or L tape record is not a multiple of 10 characters, the last word of the system-logical-
record is filled with zero bits; and an informative message is issued when the copy finishes.

5If a 9-track coded S or L tape is used, character conversion takes place. Four 8-bit characters on
input convert to four 6-bit characters in memory. Four 6-bit characters from memory coavert to
four 8-bit characters on tape. An informative message concerning this conversion is issued when the
copy finishes.

6 If a 9-track coded S or L tape is used, character conversion takes place between files; and an informa-
tive message concerning this conversion process is issued when the copy finishes.

7The largest 9—track tape record that can be copied by COPYBR or COPYBF is 3840 8-bit characters.
A record of 5120 characters can be copied by COPYCR/COPYCF.

| 420 60493800 E

COPYBR AND COPYCR (COPY BINARY AND CODED RECORDS)

COPYBR and COPYCR copy binary logical records and coded logical records, respectively, to output files.
The minimum field length for these routines is 5000 (octal). When L tapes are copied, the minimum is 1000
(octal), plus twice the length of the largest physical record to be copied.

COPYBR and COPYCR copy physical records on S or L tapes and system-ogical-records on PRU devices (SI
tapes and mass storage). Copy continues until the specified number of records has been copied or end-of-

information or end-of-partition is encountered. An EOF label on a tape multi-file set is considered to be
end-of-information. An informative message is entered in the job dayfile when the copy terminates.

These utilities produce a file with a specific structure. The last item on the output file is an end-of-partition
that the utilities write and then backspace over. If an exact duplication of the input file is required, COPY
should be used, as noted with the COPYBF and COPYCF utilities.
The format of COPYBR is:

COPYBR ifn 1 ,lfnz,n.

Parameters are order dependent and optional.

lfn1 Name of file from which information is to be copied, 1-7 letters or digits beginning
with a letter. Default is INPUT.

1fn2 ’ Name of file to which information is to be copied, 1-7 letters or digits beguming
with a letter. Default is OUTPUT. ,

n Number of records to be copied, 0< n< 218 .1 (decimal). Defaltis 1.
The format of COPYCR is:

COPYCR,lfnl,!fnz,n.

Parameters are discussed under COPYBR.
If an end-of-partition is encountered on the input file before the number of records specified by the n
parameter have been copied, the copy operation ceases (but does not abort) at that point. An end-of-partition
is written on the output file, but it is not backspaced over. A dayfile message indicates the number of re-

cords copied before the partition boundary was encountered.

A formatted FORTRAN write to a PRU device can produce more than one line per logical record. When
COPYCR is used to copy the file to an S tape, the line images are not detected as separate records.

When COPYBR or COPYCR is used to copy one S or L tape to another, each tape block copied is counted
as a logical record and is converted to a system-logical-record level zero. Similarly, each system-logical-record
of an input file becomes a physical record of an S or L format output file.

When these utility routines detect an end-of-volume on a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

60493800 E 4-21

If a partial logical record (a record not terminated with a system-logical-record mark) is encountered on the
input file before an end-of-partition or end-of-information is encountered, information in the partial record is
written to the output file as a logical record of level zero (or a physical tape block for an S or L tape).

For the record and block types indicated below, CDC CYBER Record Manager end-of-section (EOS) is equivalent
to a system-logical-record of level 0. The routines COPYBR and COPYCR can be used to copy a specified
number of sections for these file structures.

Device Block Type Record Type
SI tapes and mass storage C F.DRTUSZ
S and L tapes None; EOS and EOR

are not equivalent

For CDC CYBER Record Manager W type records, both end-of-section and end-of-partition are written as a
system-logical-record of level 0. COPYBR or COPYCR can be used to copy a specified number of sections
and partitions. In determining the number of records to be copied, the user should be aware that the
operating system cannot distinguish between EOS and EOP defined for W type records. The copy terminates
when the specified number of records has been copied or when EOI is encountered on lfnl. For W type
records, COPYBR and COPYCR copy to end-of-information.

See table 4-2 with the COPYCF utility for a list of successful format conversions.

COPYN (CONSOLIDATE FILE)

COPYN consolidates or merges files. System-logical-records from up to 10 binary input files can be extracted
and written on one output file. Input can be from tape, card, or mass storage files. Output can be to a
tape, card, or mass storage file.

Directive statements on file INPUT determine the order of the final file. Several tapes can be merged to
create a composite tape. A routine can be selected from a composite tape, temporarily written on a scratch

tape, and transmitted as input to a translator, assembler, or programmer routine, eliminating the need for
tape manipulation by the second program. In its most basic form, COPYN can perform a tape copy.

The format of COPYN is:
COPYN/{,outlfnnlfn,, . . .

Parameters are order dependent and required. Up to 10 inlfn parameters can be specified.

f Format of output record.

0 Copy records verbatim.

non-zero Omit ID from record.
outlfn Logical file name of output file, 1-7 letters or digits beginning with a letter.
inlfn; Logical file name of input file, 1-7 letters or digits beginning with a letter.

b 42 o 60493800 E

System-logical-records to be copied might or might not have an ID prefix table containing the name of the
program or the name associated with the record. A record ID format consists of the first seven characters of
the second word of each record. If records do not contain an ID, record identification directives must specify
the record number (the position of the record from the current position of the file). Records without an ID
are copied verbatim to the output file.

Format of the binarv input files depends on the storage media. A binary tape file consists of the information
between the load point and a double end-of-partition. This file can contain any number of single end-of-partition
marks. A mass storage file ends at end-of-information. A card file must be terminated with a 7/8/9 card.

On the output file, a file mark for an output tape is written by using a WEOF statement in the desired
sequence, or it can be copied in a range of records and counted as a record.

Deck structure for a COPYN job in which all input files are other than INPUT:

Job statement

REQUEST statements as necessary
COPYN call

7/8/9

COPYN directives

6/7/8/9

COPYN DIRECTIVE STATEMENTS

Directive statements for COPYN use are REWIND, SKIPF, SKIPR, WEOF, and record identification statements.
These statements are read from INPUT when COPYN executes. The directive statements are free-field. They
can contain blanks but must include the separators indicated in each statement description. The ordering of

the directive statements establishes the material written on the output file. Directive statements are written

on the file QUTPUT as they are read and processed. When an error occurs, the abort flag is set, and the |
statement in error followed by an error message is printed on OUTPUT. This statement is not processed, but

an attempt is made to process the next directive statement. When the last directive statement is processed,

the abort flag is checked, and if it is set, the job is terminated. Otherwise, control is given to the next con-

trol statement.

REWIND (REWIND FILE)

The REWIND directive rewinds the named file. This file must be one of the input or output file names given |
on the COPYN control statement, not the system INPUT file.

The format of the REWIND directive is:
REWIND(lfn) |

Ifn Name of file to be rewound, 1-7 letters or digits beginning with a letter.

60493800 E 4-23

SKIPF (SKIP FILE)

SKIPF skips forward or backward a designated number of partitions on a tape file. Requests for other types
of files are ignored. No indication is given when SKIPF causes a tape to go beyond the double end-of-partition
or when the tape is at load point. :

The format of the SKIPF directive is:

SKIPF(Ifn,n)
Ifn Name of tape file to be skipped, 1-7 letters or digits beginning with a letter.
n Number (decimal) of file marks to be skipped. +n skips forward n marks, -n skips

backward n marks.

SKIPR (SKIP RECORD)

SKIPR skips forward or backward a designated number of records. With the exception of zero-length records
and tape marks which must be included, requests for other types of files are ignored.

The format of the SKIPR directive is:

SKIPR(1fn,n)

Ifn Name of tape file in which records are skipped, 1-7 letters or digits beginning with a
letter.

n Number (decimal) of records to be skipped. Zero-length records and file marks must

be included in parameter n.

WEOF (WRITE FILE MARK)

WEOF writes a partition boundary on the named file. This file must be an output file named on the COPYN
control statement.

The format of the WEOF directive is:
WEOF(lfn)

Ifn Logical file name of file, 1-7 letters or digits beginning with a letter.
RECORD IDENTIFICATION STATEMENT

The record identification statement contains the parameters which identify a system-ogical-record or set of
records to be copied from a given file.

424 60493800 E

The format of the record identification statement is:

P 1 s?zsp 3

P

)

P3

First record to be copied or the beginning record of a set. Name associated with the
record or a number giving the position in the file can be specified.

Last record to be copied in a set of records:

name System-logical-records Py through p, are copied. P, must be
located between Py and end-of-information.

decimal Number of records to be copied, beginning with Py. Zero-length

integer records and file marks are counted. Copying stops when the file

end is encountered, even if the count has not been reached.

* Py through an end-of-partition are copied.
** Py through a double end-of-partition are copied.
/ Py through a zero-length record are copied.

0 or blank Only py is copied.

Input file to be searched. If P, is a name, and P3 is omitted, all input files declared
on the COPYN statement are searched until the Py record is found. If it is not
located, a message is issued. If p. is a number and p, is omitted, the last input file
referenced is assumed. If this is the first directive statement, the first input file on
the COPYN statement is used.

Examples of record identification statements:

SIN,TAN,INPUTA
SIN,10,INPUTA

SIN,TAN

SIN,,INPUTA
1,TAN,INPUTA

1,10,INPUTA

1,*,INPUTA

60493800 E

Copies all system-logical-records from SIN through TAN from file INPUTA.
Copies 10 system-logical-records from file INPUTA, from SIN through SIN+9.
Searches all input files beginning with current file or first input file. When
SIN is encountered, all system-logical-records are copied from SIN through
TAN or until an end-of-partition is encountered.

Copies system-logical-record SIN from file INPUTA.

Copies the current system-logical-record through TAN from INPUTA.

Copies 10 system-logical-records, beginning with the current system-logical-record
on file INPUTA.

Copies the current system-logical-record through the first file mark encountered
on INPUTA.

425

FILE POSITIONING FOR COPYN

Files manipulated during a COPYN operation are left in the position indicated by the previously executed
directive. The file containing p; is positioned at the record following Py Other files remain effectively in
the same position.

When COPYN is searching for a named record and p, has been omitted, each input file is searched in turn
until either the named record is found or the original position of the file is reached. The job INPUT file,
however, is not searched end-around.

In contrast to the end-around search, a copy operation does not rewind files. An end-of-partition terminates
a copy even if the record named in p, has not been encountered. Since the output file is not repositioned
after a search, COPYN can be re-entered. Therefore, the programmer is responsible for any REWIND, SKIP,
or WEOF requests referencing the output file.

COPYN does not check for records duplicating names on other files. If such records exist, the programmer is
responsible for them. COPYN uses the first record encountered that matches the name on a directive
statement.

Examples of file positioning:

1. Record identification statement: REC,INPUTI1

EE
Input file ABLE BAKER . REC SIN TAN ZEE 00
INPUT1 FF

If INPUTA were positioned at TAN, TAN and ZEE would be examined for REC. The double
EOP would cause ABLE to be the next system-logical-record examined, continuing until REC is
read and copied to the output file. INPUT1 would then be positioned at SIN.

2. Record identification statement: RECA

EE
Input file INPUTL, |y | 81 | ... | 21 | 00
positioned at Bl

FF
Input file INPUT2, EE
positioned at A2 RECA D2 0o
load point FEF
Input file INPUTS3, E E
positioned at A3 B3 C3 Z3 00
load point F F

All records from B1 through Al are searched to find RECA; this repositions INPUT1 to Bl. A2 is
searched, and when RECA is found, it is copied to the output file. INPUT?2 remains positioned at
D2. INPUT3 is not searched.

| 426 60493800 E

Record identification statements and binary records oh INPUT file. Directive statements are:

w

REC,,INPUT
JOB1,JOB3,INPUT
ABLE, IN2
7/8/9

REC (binary)
7/819

JOB1 (binary)
7/8/9

JOB2 (binary)
7/8/9

JOB3 (binary)
7/8/9

Because the INPUT file is not searched end-around, REC and JOB1 through JOB3 must directly
follow the requesting record identification statements in the order specified by them. An incorrect
request for an INPUT record terminates the job.
COPYSBF (COPY SHIFTED BINARY FILE)
COPYSBF adds a carriage control character to the beginning of each line durihg a copy to a second file. It is
used with files to be printed when the existing first character is not a carriage control character. COPYSBF
inserts a page eject character at the beginning of the first line. A blank is inserted at the beginning of sub-
sequent lines to cause single spacing. A minimum field length of 10000 (octal) is required for COPYSBF.

A tape input file must be binary. Each line must be terminated by a 12-bit byte of zeros in the low order
position of the last central memory word of the record.

The format of COPYSBF is:
COPYSBF \fn \fn,.
Parameters are order dependent and optional.

lfn1 Name of input file to be copied onto 1fn2, 1-7 letters or digits beginning with a
letter. Default is INPUT.

lfn2 Name of output file onto which lfnl is to be copied, 1-7 letters or digits beginning
with a letter. Default is QUTPUT.

COPYXS (COPY X TAPE TO SI TAPE)

COPYXS converts a binary tape in X format to SI format. X tapes exist as a result of operating systems that
are predecessors to NOS/BE 1. The binary X tape logical structure contains 512-word PRUs with short PRUs
of sizes that are variable multiples of central memory words or 136 character PRUs.

60493800 E 427

The format of COPYXS is:
COPYXS, xlfn,scplfn,n.

Parameters xlfn and scplfn are required.

xlfn Logical file name of input X tape, 1-7 letters or digits beginning with a letter.
scplfn Logical file name of output SI tape, 1-7 letters or digits beginning with a letter.
n Number (decimal) of partitions to be copied. Default is 1.

COPYXS is used in the following manner. Both files must be requested as S format.

REQUEST(x1fn,S)
REQUEST(scplfn,S)
COPYXS(xIfn,scplfn,n)

The output tape is produced in SI format but is flagged in the system tables as S format. To read the output
tape in the same job, the following control statements are needed.

UNLOAD(scplfn)
REQUEST(scplfn,MT)

COPYXS cannot determine when end-of-information occurs on an X tape. Therefore, at least n partitions to
be copied must exist on the X tape. Neither the input nor the output tape is rewound after conversion.
After the requested number of partitions has been copied, the output tape is backspaced and positioned
directly in front of the first tape mark preceding the EOF trailer label. Subsequent files can be copied to
the output tape. However, the block count in the trailer label is then incorrect.

DELSET (DELETE MEMBER)
DELSET deletes a member device from a device set. It cannot be executed while a device set is being shared.
All member devices must be deleted before a DELSET is issued for the master device. The master device
must be mounted before DELSET is issued. Permanent files, queue files, and local files residing on the device
must be removed before DELSET is issued. If any portion of a local file or permanent file resides on the
device to be deleted, the DELSET request is aborted.
The format of DELSET is:

DELSET,SN=setname MP=mpvsn,VSN=vsn.

All parameters are required and are order independent.

SN=setname Name of set from which member is to be deleted, 1-7 letters or digits beginning with
a letter.
MP=mpvsn Volume serial number of master device for the device set, 1-6 letters or digits with

leading zeros assumed.

428 60493800 E

VSN=vsn Volume serial number of member to be deleted from the device set, 1-6 letters or digits
with leading zeros assumed.

PP . P - YT vYS

DISPOSE (RELEASE FiLE)
DISPOSE releases a file for end-of-job processing or specified disposition immediately or at the true end-of-job.
DISPGSE can be used to:

Assign a disposition code for an output file, including a forms code

Send a file to a central site or remote site device

Evict a file

The file referenced with DISPOSE must reside on a public queue device or on ECS and must not be a perma-
nent file.

When a special-name file is to be evicted such that all file data and references are destroyed, the DISPOSE
control statement should be used in preference to an UNLOAD or RETURN control statement. UNLOAD
and RETURN cause the implicit disposition of the file to occur. Only DISPOSE or ROUTE can evict a file
without causing special-name file output.

The format of DISPOSE is:

*dc

*dc=C
dc=Cff
dc=lid

DISPOSE J}\fn,

The only required parameter is Ifn. The asterisk is optional before the dc parameter.

Ifn Name of file to be disposed, 1-7 letters or digits beginning with a letter. If only ifn
is specified, the file is evicted.

* Defer disposition until end-of-job. Must be used if DISPOSE control statement appears
before the file is created. In the absence of *, disposition occurs when the DISPOSE
control statement is encountered in the job stream. The * cannot be used when disposing
a file to an INTERCOM terminal or to a forms code.

dc Disposition code. If dc is not specified, the file is evicted.
PR Print on any available printer P8 Punch free-form binary format
FRT Print on microfilm recorder
LR Print on 580-12 printer PTT Plot on any available plotter
LS Print on 580-16 printer HRT Print on hardcopy device
LT Print on 580-20 printer HL! Plot on hardcopy device
PB Punch standard binary format FLT Plot on microfilm recorder

PU Punch Hollerith format

TSupporting drivers must be supplied by the installation.

60493800 E 429

Cff

Iid

File is to be routed to the central site
Code for special card or paper form ff. Codes are defined by the installation.

File is to be routed to the INTERCOM terminal specified by id.

Identification on the printout or punch output file is the name of the job that executed DISPOSE.

DISPOSE EXAMPLES

1.

430

JOB.

COBOL.

LGO.

DISPOSE,OUTPUT,PR. Prints OUTPUT on any available printer.
REWIND(LGO)

FTN.

LGO.

7/8/9

COBOL program Creates print file on QUTPUT.

7/8/9

data for COBOL program

7/8/9

FORTRAN program Creates unrelated print file on QUTPUT.
7/8/9

data for FORTRAN program

6/7/8/9

This example creates two unrelated print files. The use of DISPOSE allows the files to be printed
separately. The job dayfile is attached to the second OUTPUT file.

JOB.

DISPOSE,HERON,*PR=C. File HERON to be printed at central site at end of job.
COBOL.

LGO.

7/8/9

COBOL program Creates file HERON and file OUTPUT.

7/8/9

data for COBOL program

6/7/8/9

This job creates a file named HERON and prints it at central site. If this job is submitted from
an INTERCOM terminal, the OUTPUT file and the dayfile are returned to that terminal.

60493800 E

DMP (DUMP CENTRAL MEMORY)

DMP prints the contents of selected areas of central memory. Three types of dumps are possible, depending on

the relative values of the parameters on the DMP control statement,

Exchange package dump Parameters omitted or all parameters specified are 0.
Control point area dump Parameters are equal in value and not 0.
Relative dump Parameters specify address within field length. l

DMP output appears on the file OUTPUT. Each output line contains the contents, in octal, of up to four
central memory words, with the address of the first word at the beginning of the line.

When the content of a word is identical to the last word printed, printing of that word is suppressed. Printing
resumes with the next word having a different content. The address of the word at which printing resumes is
printed and marked by a right arrow.
When the content of a word is the address of that word, printing is suppressed. Printing resumes with the next
word that does not have its address as its content. The address of the word at which printing resumes is
printed and marked by a greater-than sign.
EXCHANGE PACKAGE DUMP
The format of DMP that produces an exchange package dump is:
DMP,0,0. or DMP.
Either or both of the parameters can be omitted.
Output from the dump includes:
The contents of the exchange jump package as noted below.
The contents of the communication area of the job field length, addresses RA through RA+100.
The contents of the first 100 octal words before and after the address to which the P register points,
provided the addresses are within the field length. If the P register is 0, the P address in bits 30-47 of
RA+Q determines the locations to be dumped. If the P register or the P address in RA+0Q is less than
200 (octal), the first address dumped is 100. If both the P register and the P address are 0, only the

communications area and the exchange package are dumped.

The 16-word exchange package includes the following information.

P Program register contents
RA Central memory address of beginning of user field length
FL Central memory address of field length limit

60493800 E 431

EM Error mode register divided by 100 (octal)

RE ECS reference address divided by 1000 (octal)

FE ECS field length divided by 1000 (octal)

MA Monitor address applicable only to machines with monitor exchange jump instructions
AQ-A7 Contents of A registers 0-7

B1-B7 Contents of B registers 1-7 (B0 is always zero)

X0-X7 Contents of X registers 0-7

When the exchange jump package is dumped, the following information is also given if addresses are within the
field length. A message **OUT OF RANGE** appears if they are outside the field length.

C(A1)-C(AT) Contents of addresses listed in registers A1-A7

C(B1)-C(B7) Contents of addresses listed in registers B1-B7

CONTROL POINT AREA DUMP

The format of DMP that produces a control point area dump is:
DMP x x.
X Any octal value except O can be specified.

This control statement dumps the entire (200 octal word) control point area.

RELATIVE DUMP

The format of DMP that produces a relative dump of locations with the job field length is:
DMP,from,thru.
When only one parameter appears, it is presumed to be the thru parameter and dump begins at RA.
from Address at which dump is to begin after RA, octal.

thru Address at which dump is to end, octal. If address exceeds FL, FL is substituted.

DMPECS (DUMP EXTENDED CORE STORAGE)

DMPECS prints the contents of selected areas of extended core storage. The file on which information
appears and the format of the dump are both selected by control statement parameters. Only the field
length assigned to the job can be dumped. All addresses are between RE and FE, the reference address and
field length of assigned ECS.

4-32 60493800 E

The format of DMPECS is:
DMPECS, from,thru,format,lfn.

Parameters are positional; from and thru are required.

from Address (octal) at which dump is to begin after RE.
thru Address (octal) at which dump is to end. If address exceeds FE, FE is substituted.
format Format of each output line:
Oorl 4 words in octal and in display code; default
2 2 words in 5 octal digit groups and in display code
3 2 words in 4 octal digit groups and in display code
4 2 words in octal and in display code
ifn Name of file on which printout is to appear, 1-7 letters or digits beginning with a

letter. If omitted or 0, QUTPUT is assumed.

The dump begins at the closest multiple of 10 (octal) less than or equal to the value of the from parameter.
The dump ends at the closest multiple of 10 (octal) greater than the value of the thru parameter minus 1.
DSMOUNT (DISASSOCIATE DEVICE)
DSMOUNT disassociates a private device from the job. DSMOUNT is a logical operation. When DSMOUNT
specifies the master device of a private device set, the entire set is disassociated from the job. A CLOSE/
UNLOAD function is issued for each open file on the set before each mounted member device is dismounted.
Finally, the master device is logically dismounted from the job.
The format of DSMOUNT is:

DSMOUNT,VSN=vsn,SN=setname.

Both parameters are required and order independent.

VSN=vsn Volume serial number of device to be dismounted, 1-6 letters or digits with leading
zeros assumed. Can be a member device or a master device.

SN=setname Name of device set to which this device belongs, 1-7 letters or digits beginning with
a letter.

60493800 E 4-33

DUMPF (DUMP PERMANENT FILE TO TAPE)

DUMPF dumps permanent files to a tape. It can be used to clear permanent files from a mass storage device
or to maintain back-up copies of files selected by parameters on the DUMPF control statement. Parameters
on the DUMPF can identify a single file by name or specify the criteria by which the permanent file system
selects files for dumping.

The dump tape must be S tape format with the logical file name DUMTAPE. A REQUEST statement must
appear in the job before DUMPF is called.

Three dumps are possible:

Mode 1 Back-up dump. The original copy of the file remains on mass storage ready for
immediate access by an executing job.

Mode 2 Archive dump. The file remains a permanent file, but with archive status. The only
copy of the file resides on the dump tape; it can be accessed by an executing job if
the operator makes the archive tape available so that the file can be reloaded to mass
storage.

Mode 3 Destructive dump. The file is no ionger a permaneni file. The only copy of the fiie
resides on the dump tape. It cannot be accessed unless the LOADPF utility is executed
to restore the file to permanent file status.

DUMPF execution causes an implicit attach of a file having the permanent file name DUM. The device set
from which files arc being dumped must contain a copy of DUM cataloged with an ID of PUBLIC and defined
passwords for RD, MD, CN, and EX. If 2 DUM permanent file with TK=DUMPF already exists (earlier systems
required this), it must be purged and replaced as described above. Passwords to access DUM must be submitted
as part of the DUMPF call.

For each cycle dumped, DUMPF makes an output listing entry that contains the permanent file name, owner
ID, cycle number, volume serial number of the dump tape, date of dump, a comment, and the flagging of any
parity errors.

The format of DUMPF is:

DUMPF ,PW=pw ,MO=n_I=If n, ,LF=1fn2,CL,DP=a JD=name ,PF=pfn,CY=cy,SN=setname,VSN=vsn,IN=ddd,
IN=yyddd,LA=mmddyy DA=yyddd,CD=mmddyy,TI=hhmm.

Only PW is required; all other parameters are optional and order independent. Only one CD, DA, JN,

LA, or IN parameter can appear. If a terminator does not appear at the end of the parameter list,

column 1 of the next card or line is considered to be a continuation of the DUMPF parameter list.

PW=pw RD, MD, or CN password for DUM, depending on mode of dump. See CATALOG
control statement for password definitions.

434 60493800 E

MO=n Dump mode:
n Mode

1 Back-up mode. Permanent file tables and all associated mass storage
space are intact. RD password required. Defaulit.

2 Archive dump. Mass storage space is released, but permanent file tables
remain with the files marked as being on an archive tape. MD password
required.

3 Destructive dump. All permanent file tables and mass storage spaces are

released as the files are dumped. CN password required. The central
site operator receives notification when a mode 3 dump is attempted
and must authorize continuance of the dump.

I=lfn1 Logical file name of directive file for MO=1 dump; 1-7 letters or digits beginning with
a letter. All other parameters except MO, SN, CL, and PW are ignored. If lfnl is
not specified, directives for MO=1 are on INPUT.

LF=lfn, Output listing file. Default is OUTPUT.

CL Complete list option selected. All files in the permanent file directory are listed. If
CL is omitted, information is listed only for files which are dumped.

DP=a Dump type:
a Type
A All files meeting criteria of other parameters. Default.
X All files meeting criteria of other parameters only if their expiration
dates are equal or less than current date.
C All files meeting criteria of other parameters only if they have been
modified, renamed, created, or extended since the last DP=C dump.
ID=name Dump files with this owner.
PF=pfn Dump files with this permanent file name. ID should be specified also; if it is not
specified, ID=PUBLIC is assumed.
CY=cy Dump cycle cy of file identified by PF and ID. CY is ignored and the dump continues
if this cycle is not found or if PF and ID have not also been specified.
SN=setname Dump files from device set with this name; 1.7 letters or digits beginning with a letter.
VSN=vsn Dump files from this device of device set specified by SN; 1-6 letters or digits with
leading zeros assumed. VSN is ignored if SN is omitted.
IN=ddd Dump files inactive this number of days; 1-3 digits. Can be qualified by a TI
parameter.

60493800 E 435

JN=yyddd Dump files inactive since this ordinal date; S5-digit ordinal date format. Can be
qualified by TI parameter.

LA=mmddyy Dump files not attached on or after this date; 6-digit month-day-year format. Can
be qualified by TI parameter.

DA=yyddd Dump files created, modified, renamed, or extended after this date; 5-digit year-and-
day-of-year format. Can be qualified by TI parameter.

CD=mmddyy Dump files created, modified, renamed, or extended after this date; 6-digit month-
day-year format. Can be qualified by TI parameter.

TI=hhmm Time qualifier for date parameters; 4-digit 24-hour clock format. If date parameters
are not specified, TI is ignored.

Several copies of DUMPF can execute at the same time on the same set as long as all copies running have
identical parameters. If an attempt is made to run a DUMPF with different parameters than one already
running, all except the first DUMPF aborts.

If a group of files is to be dumped for back-up purposes, they can be identified by name and owner in a
directive record. The I parameter is required to specify the name of the file containing directives. Directive
formats are as follows.

ID=name
ID=name,; PF=pfn
ID=name, PF=pfn, CY=cy

Parameters are order independent and ending punctuation is not required. The PF and CY parameters are
optional. The ID parameter should be specified. However, if the PF parameter is specified without an ID
parameter, ID=PUBLIC is assumed.

DUMPF EXAMPLES

1. DAYDMP, ...
REQUEST(DUMTAPE,NT,PE,S,N)
DUMPF(PW=PERM1,DA=78164)
6/7/8/9

The job DAYDMP dumps all files cataloged, modified, renamed, or extended after the 164th day
in 1978.

2. SELDMP, . ..
REQUEST(DUMPTAPEMT HY,S,N)
DUMPF(PW=PERM1)

7/8/9

ID=DEVCTR
PF=FILE1,ID=LER
PF=FICHE,ID=GFS,CY=1
6/7/8/9

® 436 60493800 E

Job SELDMP dumps the files specified in the input section of the control statement record. All
files with ID DEVCTR are dumped.

3. ARCHIVE,. ..
PAUSE. BRING UP P DISPLAY TO INSURE DUMP T.
REQUEST(DUMTAPEMT HY,S,N)

a2 ™

E HAS A VSN.

Job ARCHIVE illustrates a 10-day archive dump.

EDITLIB (CONSTRUCT USER LIBRARY)

EDITLIB constructs user libraries from a group of central processor routines or overlays. That library is avail-
able to the system loader by specific direction in the loader control statements for a job. It can also create
and maintain system libraries and create deadstart tapes. With EDITLIB a user library can be modified by
the addition, deletion, replacement of routines, and statistics about library contents can be listed.

A user library can only contain assembled central processor routines, CCL procedures, programs, or text records
produced by the COMPASS assembler, one of the system compilers, or loader generated overlays. Library
records can be independent programs, subroutines, overlays, or CCL procedures. Binary output from SEGLOAD
cannot be made part of a library. Unassembled text records in BCD format, peripheral processor programs,

and source language programs cannot be made part of user libraries.

EDITLIB considers each program on a user library to be a single unit occupying a system-logical-record. It
extracts the name, entry points, and external references from tables output with the program assembly and
uses them to construct tables describing the library file. Library tables are used by the loader to locate pro-
grams on the file. EDITLIB changes the tables when the user library is modified. Format of user library
tables is the same as that for system libraries. A user library file created by EDITLIB contains:

Assembled programs
CCL procedures l

Tables referring to:

Entry points
External references
Program numbers
Program names

The program number table is used to link external references, entry points, and program names.

A user library can contain at most 2047 programs, 2047 external references, and 2047 entry points. A partic-
ular program in the library can have at most 124 entry points and 124 external references.

The user library file generated by EDITLIB can be on mass storage or magnetic tape. If the library file name
is assigned to a tape file before EDITLIB is called, the library is in sequential format on that tape, with the
library tables preceding the programs. Otherwise, the library is in random format on mass storage. When the
random library file is to be retained as a permanent file, the library file name should be associated with a
permanent file device before EDITLIB is called.

60493800 E 4-37

If a user library is to be copied from mass storage to tape, the EDITLIB directive RANTOSEQ should be
used rather than a COPY utility. Likewise, SEQTORAN should be used to copy a library from tape to disk.
The COPY utilities cannot copy a library file to or from mass storage correctly.

The user is responsible for cataloging and attaching any permanent files that are used by EDITLIB while per-
forming the task specified on each directive, and for extending permanent files that have been changed.

EDITLIB CONTROL STATEMENT FORMAT

The EDITLIB utility is called by an EDITLIB statement in the control statement section. If encountered

during job processing, EDITLIB accesses the next unprocessed section of the INPUT file, unless the I parameter -
names another source of directives. A parameter on this statement specifies the file that contains EDITLIB
directives. These directives provide details for creating or manipulating the user library.

The format of EDITLIB is:
EDITLIB(USER,I=lfn; ,L=1fn,)
All parameters are optional.
USER Distinguishes user library definition from system library. Default is USER.

lfn1 Logical file name containing directives, 1-7 letters or digits beginning with a letter,
Default is INPUT. 1 is identical to I=INPUT.

lfn2 Logical file name to receive listable output, 1-7 letters or digits beginning with a letter.
Default is OUTPUT. L is identical to L=OUTPUT.

The following deck structure assembles two programs and adds them to an existing library.

job statement
COMPASS.
FTN.
ATTACH(ALIB,ID=SMITH)
EDITLIB(USER)
EXTEND(ALIB)
7/8/9
COMPASS program to be assembled
7/8/9
FORTRAN Extended program to be compiled
7/8/9
Directives instructing EDITLIB to add programs to user library ALIB from LGO file
6/7/8/9

l 4-38 60493800 E

EDITLIB DIRECTIVE FORMAT

The directive section for EDITLIB must contain only valid directives. EDITLIB considers the first 72 columns
of each 80 column card or 90 column card image to contain a separate directive. Blanks can be used freely.
EDITLIB removes them except in a literal or comment field. Required format for directives is similar to
system control statement format.

The format of EDITLIB directives is:
keyword. or keyword(parameter list)

Parentheses are required around parameter lists. Optional parameters have the format parameter=value;

all others are required. Required parameters must appear in the order given; optional parameters can

appear in any order after the required parameters.

Directive format and use is summarized below:

. OLD
LIBRARY(libname, { NEW’) Defines library to be created or modified
FINISH. Terminates library manipulation
ENDRUN. Stops execution of directives

ADD(prog,from,AL=level FL=fl, FLO=0,LIB)

REPLACE(prog,from,AL=level, FL=f1, FLO=0,LIB)

Adds new program to library

Replaces program on library

DELETE(prog) Deletes program in library
SETAL(prog,ievei) Changes access level
SETFL{prog,fl) Changes field length requirements
SETFLO(prog, m) Sets FL override bit for INTERCOM
LISTLIB(prog,lfn) Lists program data from library file
REWIND(ifn) Rewinds file
CONTENT(prog,lfn) Lists program data from file
SKIPF(' ;rog ’,lfn) Skips ahead n records or to prog
SKIPF(n,lfn,F) Skips n files forward
SKIPB({ ;rog ’ J1fn) Skips back n records or to prog start
SKIPB(n,lfn,F) Skip n files backward

60493800 E 439 |

*/ Inserts comments in output

RANTOSEQ(rlfn,slfn) Rewrites random library as sequential library

SEQTORAN(slfn,rlfn) Rewrites sequential library as random library
The prog parameter in these directives can take several forms:

A single program name can be stated. EDITLIB searches the entire file specified to find the named
program.

An asterisk can replace the program name. EDITLIB processes all programs from the current file position
to end-of-file.

A range of programs to be included in directive execution can be specified with a + between the first and
last programs to be processed. In a file with records A,B,C,D,E, the range B+D represents B,C,D.

A single program to be excluded from directive execution can be specified with a dash (—) preceding the
program name or with the program name appearing at both ends of the range of programs to be excluded.

A range of programs i be exciuded from directive execuiion can be specified with a — between the first.
and last programs to be considered. In a file with records A,B,C,D,E, the range B-D represents A and E.

An asterisk can replace either the first or last program named in a range. For the first named program,
it is equated with the current file position; for the last, it is equivalent to end-of-partition.

For the ADD and REPLACE directives only, several individual programs can be stated. In a file with
records A,B,C,D,E, the parameter D/B/E represent D and B and E. EDITLIB searches the entire file
specified to find the named program.

Program names must not exceed 7 characters. Any character supported by the system is legal. If characters
EDITLIB uses for delimiters are in a name, the entire name must be written as a literal between dollar signs.
These characters are:

$ () -+ = .,/ blank

Any dollar sign to be included in the program name must be prefixed by a second dollar sign.

If the prog parameter is a single program name, EDITLIB searches the entire file for that program. If the prog
parameter is a range, EDITLIB searches the entire file for the first program in the range, but does not search
end-around for the second program. Thus, a range goes from the first program through either the second pro-
gram or end-of-partition whichever occurs first. The file INPUT is not searched.

The interpretation of the * depends on file formai. The current position of a library file is always defined to
be the beginning of the file. Current position of other files is simply the beginning of the next record on the
file, which can be controlled by the user with file manipulation directives. An * replacing the last program is
equivalent to stating end-of-partition.

4-40 60493800 E

Examples of names acceptable to EDITLIB:

Parameter Format Resulting Program Name
PROG12 PROG12
SPROG1288S PROG12S
$LOS 10
AA BB AABB
$AA BBS AA BB
3AB 3AB

Library file names should not begin with ZZZZZ since these are reserved for system names.

MANIPULATION OF LIBRARY FILES
A library is created by identifying the library in a LIBRARY directive followed by file manipulation statements
and ending with the FINISH directive. Multiple LIBRARY/FINISH sequences are permitted within an
EDITLIB directive set. An ENDRUN should follow the last FINISH in the EDITLIB directive set. If
ENDRUN is not supplied by the user, EDITLIB inserts it.
Existing user libraries in random file format are modified by the ADD, REPLACE, and DELETE directives
that change programs in the library. The SETAL, SETFL, and SETFLO directives change parameters in the
program name table of entries for existing libraries. These directives must be issued between the LIBRARY
(Ifn,OLD) and FINISH directives.
The format of library files can be changed by the RANTOSEQ function and the SEQTORAN function.
File positioning statements can appear anywhere in the directive record. EDITLIB rewinds all files except
INPUT before executing any directives. After a random library is written, it is rewound. When a new sequen-
tial library is written, it is left-positioned after the end-of-partition.
A list of information about any or all programs on a library file or a file of assembled information is obtained
by the LISTLIB and CONTENT directives. Information listed comes from the program tables output with
every assembled record. It includes:

Program name

Date, time, and compilation or assembly machine

Entry points

External references

AL and FL values

60493800 E 441 |

Length of object deck in central memory words

Type of program:

relocatable or absolute

ADD (ADD PROGRAM DURING LIBRARY CREATION)

ADD directives between LIBRARY(1fn,NEW) and FINISH directives create.a user library. Programs (other than
peripheral processor programs) can be added from any file attached to the job, as long as the program contains
the necessary prefix table material at the beginning of the assembled information. If the directive is in error,
a message is issued, the programs are not added, and processing continues.

The format of the ADD directive is:

ADD(prog,lfn, AL=level, FL=f,FLO= { ‘1)} ,LIB)

Parameters prog and lfn are required; all others are optional.

prog

16,
iifi

Al=level

FL=fl

m{g}

LIB

Name of program or range of programs to be added.
Logical file name where assembled program currenily resides, 1-7 lett

beginning with a letter.

Access level of 14 (octal) digits used to determine whether or not a given INTERCOM
user can attach and use the program named. Also used to mark programs for access
by control statements; level must be an odd number. Program is available only to
internal calls unless AL is odd. Default is 0.

Maximum field length (0 to 377777 (octal)) required for program loading and
execution. If FL=0, the field length specified on the job statement or the last RFL
statement encountered is used. Default is 0.

Field length override bit. If FLO=1, then the field length from the job control state-
ment CM parameter or from the RFL control statement or from the EFL INTERCOM
command overrides FL. If FLO=0, no override is allowed. Default is 0.

Indicates the parameter Ifn is a user library name. Allows programs to be added
from an existing user library. It directs EDITLIB to search the directory of a file
in library format.

If AL, FL, or FLO values are wanted in the new library tables, they must be explicitly stated in the directive,
even if the addition is to be made from an existing library. To change the values of these parameters in an
existing library, use the SETAL, SETFL, and SETFLO directives.

442

60493800 E

Examples of valid ADD formats and their results:
Parameter Format Result

ADD(*,TREES) All programs between current position and the end-of-partition of
TREES are added.

ADD(RAINIER,MTS,FL=14400) All of file MTS is searched for program RAINIER; field length
of 14400 (octal) is required to execute RAINIER.

ADD(REDWOOD—SEQUOIA,TIMBER) All programs on file TIMBER, except REDWOOD, SEQUOIA,
and all those between, are added.

ADD(*+ASPEN,YELLOW) All programs from the current position of YELLOW through
program ASPEN are added.

ADD(BIG/SHARP,LEAF) File LEAF is searched as needed, and programs BIG and
SHARP are added.

ADD(ALP,LIBR,LIB) The program name table of library LIBR is searched for pro-
gram ALP which, when located, is added to the current
library.

CONTENT (LIST FILE)
CONTENT lists any file of assembled programs, whether in library format or not.

The format of the CONTENT directive is:

CONTENT(prog,lfn)
prog Program or range of programs to be listed.
Hn Logical file name containing prog, 1-7 letters or digits beginning with a letter.

DELETE (DELETE PROGRAM FROM LIBRARY)
DELETE logically deletes all references to the named program from library tables.

The format of the DELETE directive is:

DELETE(prog)

prog Name of program or range of programs to be deleted.

60493800 E 443 |

Examples of valid DELETE formats and their results:

Parameter Format Result
DELETE(BIRCH+ASH) Programs BIRCH through ASH on library being modified are
deleted.
DELETE(LAUREL-MADRONE) All programs on existing library except LAUREL, MADRONE,

and those between, are deleted.
Programs named in a DELETE or REPLACE directive are logically deleted from the library file. Records in
the file are not overwritten; but in the case of a REPLACE, the file is extended with the addition of a new

program. To completely eliminate programs from the library, it is necessary to construct a new library using
the old one as the source.

ENDRUN (STOP EXECUTION)

During directive processing, EDITLIB first interprets each directive in the record excluding comment statements.
Execution begins after all directives are interpreted.

When an ENDRUN is encountered during execution phase, execution stops. In most instances, ENDRUN is
the last directive in the record. By placing it earlier in the record, syntax of succeeding directives can be
checked without an error producing premature termination.

The format of the ENDRUN directive is:

ENDRUN.

FINISH (STOP FILE MANIPULATION)
FINISH indicates the end of library construction.
The format of the FINISH directive is:

FINISH.

LIBRARY (IDENTIFY LIBRARY)

LIBRARY identifies the library to be manipulated. This directive must precede all other directives except
comments or file manipulation directives. Every directive set calling for library creation or modification must
have at least one such directive. A FINISH directive is required to mark the end of library construction. File
manipulation statements can appear between LIBRARY and FINISH.

The format of the LIBRARY directive is:
OLD
b

LIBRARY(libname, NEW

444 60493800 E

libname Library name and name of file containing library during this job,
OLD Used when libname is an existing library to be modified.

NEW Used when libname refers to new library or directory to be created.

LISTLIB (LIST LIBRARY FILE)

LISTLIB lists 2 library file. Part or all of the library can be listed depending on the number of programs
indicated by the prog parameter. The LISTLIB directive cannot appear between a LIBRARY and a FINISH.

The format of the LISTLIB directive is:

LISTLIB(prog,ifn)
prog Program or range of programs to be listed.
Ifn Logical file name containing prog, 1-7 letters or digits beginning with a letter.

RANTOSEQ (CONVERT RANDOM FILE TO SEQUENTIAL FILE)

RANTOSEQ takes a disk resident library file in random format and creates a sequential library file containing
the same programs. This directive cannot appear between a LIBRARY and FINISH.

The format of the RANTOSEQ directive is:

RANTOSEQ(r1fn,slfn).
rifn Disk resident random library that is to be converted.
sifn Sequential library created from rlfn.

REPLACE (DELETE AND REPLACE PROGRAM)

REPLACE differs from the ADD directive in that it causes a program with an identical name to be deleted
from the library before the new program is added. If a program with that name does not exist, an informa-
tive message is issued and the new program is added to the library.

The format of the REPLACE directive is:
REPLACE(prog,}fn, AL=level, FL=fl, FLO=0,LIB) |
Parameters have the same meaning as those of the ADD directive. AL, FL, and FLO values must be stated

explicitly if values other than the defaults are wanted. Current values in source library or existing library
tables are not preserved when ADD or REPLACE is used. See ADD for parameter definitions.

60493800 E 4-45

Examples of valid REPLACE formats and their results:
Parameter Format Result
REPLACE(MAPLE,TREES,FLO=0) Existing program MAPLE is deleted, Program MAPLE is added
from file TREES. FLO is set to 1; FL and AL are set to
default values.

REPLACE(OAK,TREES) Existing program OAK is deleted and replaced; FL, FLO, and
AL receive default values.

REPLACE(ACORN,TREE,LIB) Program name table for library TREE is searched for program
ACORN. The named program is deleted from the current
library and the new program ACORN is added from library
TREE.

REWIND (REWIND FILE)
The format of the REWIND directive is:
REWIND(Ifn) or REWIND(Ifn/ifn/ . . . lfn)

Ifn Logical file name of file or files to be rewound.

SEQTORAN (CONVERT SEQUENTIAL FILE TO RANDOM FILE)

SEQTORAN takes a tape resident library file in sequential format and creates a disk resident library file con-
taining the same programs. The directive cannot appear between a LIBRARY and a FINISH.

The format of the SEQTORAN directive is:

SEQTORAN(slfn rlfn)
sifn Tape file in sequential format that is to be converted.
rifn Random library file created from slfn.

SETAL (CHANGE ACCESS LEVEL)
SETAL assigns a new access level to the named program.

The format of the SETAL directive is:

SETAL(prog,level)
prog Name of program or range of programs.
level New access level of 14 (octal) digits.

| 446 60493800 E

SETFL (CHANGE FIELD LENGTH)
SETFL assigns a new field length to the named program.

The' format of the SETFL directive is:

prog Name of program or range of programs.

fl New field length of O to 377777 (octal).

SETFLO (SET FIELD LENGTH OVERRIDE BIT)
SETFLO sets the field length override bit for INTERCOM.

The format of the SETFLO directive is:

SETFLO(prog, { ?’)

prog Name of program or range of programs.

0 Does not allow override; O is the default value.
1 Allows override.

SKIPB (SKIP BACKWARD)

: IS

SKIPB repositions a library. backward one or more records or files. The library is positioned at the beginning
of a record or file. When beginning-of-information or end-of-information is encountered, a skip by count is
terminated. For a skip by name, the entire file is searched, if necessary, in the direction stated. Skip by
program name is applicable to sequential files only.

The format of the SKIPB directive for records is:

n
SKlPB(‘pmg},lfn)
n Number (decimal) of records to be skipped backward; cannot be zero.
prog Program name to which instruction skips.
Ifn Logical file name containing prog, 1-7 letters or digits beginning with a letter.

60493800 E 447

The format of the SKIPB directive for files is:

SKIPB(n,Ifn,F)

n Number (decimal) of files to be skipped backward; cannot be zero.

Ifn Logical file name of multi-file, 1-7 letters or digits beginning with a letter.
F Indicates files, not records, are to be skipped.

SKIPF (SKIP FORWARD)

SKIPF repositions a library forward one or more records or files. The library is positioned at the beginning of
a record or file. When beginning-of-information or end-of-information is encountered, a skip by count is
terminated. For a skip by name, the entire file is searched, if necessary, in the direction stated. Skip by pro-
gram name is applicable to sequential files only.

The format of the SKIPF directive for records is:

sm's({" | 1)

progj™"
n Number (decimal) of records to be skipped forward; cannot be zero.
prog Program name to which instruction skips.
Ifn Logical file name containing prog, 1-7 letters or digits beginning with a letter.

The format of the SKIPF directive for files is:

SKIPF(n,lfn,F)

n Number (decimal) of files to be skipped forward; cannot be zero.

Ifn Logical file name of multi-file, 1-7 letters or digits beginning with a letter.
F Indicates files, not records, are to be skipped.

448 60493800 E

USER EDITLIB EXAMPLES

1. MTCREAT.

REQUEST(MTLIB,LO,VSN=14444) Reqiiesis 7-irack iape to hold new library.

REQUEST(SOURCEFL,MT,VSN=14445) Requests tape with previously assembled source
programs.

EDITLIB(USER)

7/8/9

. FORTRAN Extended program to be compiled, program name HOOD.

7/8/9

LIBRARY(MTLIB,NEW) Initiates construction of new library MTLIB.

REWIND(SORCEFL) Rewinds binary input file.

REWIND(LGO) Rewind binary output from FORTRAN
Extended program.

ADD(*+SHASTA,SORCEFL) Adds programs from beginning of file
through SHASTA.

SKIPF(3,SORCEFL) Skips 3 programs on file.

ADD(HOOD,LGO) Adds program from LGO file.

ADD(*,SORCEFL) Adds all remaining programs on SORCEFL.

FINISH. Terminates library construction.

ENDRUN. Stops execution.

6/7/8/9

Job MTCREAT creates a sequential user library on a tape.

2. MTCHNGE.
REQUEST(MTLIB,LO,VSN=14444)
REQUEST(DIRECT,MT,VSN=12000)
EDITLIB(I=DIRECT)
6/7/8/9

Job MTCHNGE modifies the library created above. Directives for EDITLIB are on tape 12000.

3. BIRDS. Job statement.
REQUEST(BIRDLIB,*PF) Requests permanent file device for library.
ATTACH(GULLS,GULLSPF,ID=PETERSON) Attaches permanent file as Ifn GULLS.
ATTACH(WRENS,WRENSPF,ID=PETERSON) Attaches permanent file as 1fn WRENS.
EDITLIB(USER) Calls EDITLIB.
CATALOG(BIRDLIB,BIRDLIBRARY,ID=PETERSON) Catalogs library as permanent file.
7/819
LIBRARY(BIRDLIB,NEW) Establishes library name.
ADD(*,GULLS) Adds all files from GULLS.
ADD(CACTUS-HOUSE,WRENS) Adds all files from WRENS except CACTUS

through HOUSE.

FINISH. Terminates library.
ENDRUN. Stops execution.
6/7/8/9

60493800 E 449

Job BIRDS creates a random format library file and makes it permanent. Binary input files exist on
permanent filess GULLSPF and WRENSPF.

4. CHECK.
EDITLIB(USER)
7/8/9
ENDRUN. Stops execution here.
LIBRARY(OLDLIB,OLD)
DELETE(SPARROW)
REPLACE(HAWK,INPUT,FLO=0)
SETAL(SHRIKE,777)
SETFLO(ROBIN,1)
SETFL(CREEPER,55000)

FINISH.
6/7/8/9

Job CHECK uses EDITLIB to check syntax of all directives but does not execute.

EXECUTE (INITIATE EXECUTION)

EXECUTE causes execution of a loaded program. It is a loader control statement. See the CDC CYBER
Loader Reference Manual for additional information. EXECUTE terminates a load sequence.

The format of EXECUTE is:
EXECUTE.

EXECUTE normally follows a LOAD control statement.

EXIT (PROCESS AFTER FATAL ERROR)

The EXIT control statement establishes the conditional processing of sequences of control statements when
certain fatal errors occur. If an error causes a job step to terminate (table 4-1), the system aborts the job and
searches the job control statement file for EXIT control statements, skipping other control statements in the
process. If the system finds no EXIT statement, the job is terminated as described in Job Processing and
Deck Structure, section 2.
The formats of the EXIT stateient are:

EXIT.

EXIT,C.

EXIT,U.

EXIT,S.

450 60493800 E

C Conditional processing option.

U Unconditional processing option.
S System processing option.
_____ Alnd o aavye atntan dhan dxran ~AF BDVIT . oy b narfarmad QA var snnditi

1!‘.‘3 !ynr iu EIT0r 1nai OCCurs g;lguuca uie 1ypC Gi nis U'G v PLLiONncG. Some error conditions

bypass EXIT processing and terminate the job immediately. Error conditions are classified as follows:

essin ig o
Job step abort Terminates the current job step and starts the search for any of the four types of
EXIT control statements. Most error conditions in the system are in this classification.

Special abort Terminates the current job step processing and starts the search for an EXIT,S
control statement.

Terminal abort Terminates the current job step and the job immediately. No EXIT processing takes
place.

Table 4-3 describes the type of EXIT processing performed when various errors occur.

EXTEND (PERMANENT FILE EXTENSION)

EXTEND makes information written at the end of an existing permanent file permanent, Information can be
written at the end of any attached permanent file. However, in the absence of an EXTEND or ALTER con-
trol statement, the acied information disappears when the job terminates. EXTEND can be issued with the
file at any position.

EXTEND can be issued by any job that attaches the file with extend permission or by the job that catalogs the

file. The newly added information acquires the privacy controls of the existing permanent file. No boundary
exists between the original information and the new information.

The format of EXTEND is:
EXTEND,lfn.

Ifn Logical file name of permanent file attached with extend permission, 1-7 letters or
digits beginning with a letter.

60493800 E 451 e

sy o

d 008€6¥09

TABLE 4-3.

EXIT PROCESSING

Condition Causing Job
Step Termination

Type of Termination and
Action Taken on Occurrence

Action Taken When EXIT Encountered

EXIT.

EXIT.C.

EXIT,U.

EXITSS.

Successful completion (no
error or only non-fatal errors).

ENDRUN macro.

Normal job step advance: advances
to next control statement and pro-
cesses it. Terminates job if end of
control statement record
encountered.

Terminates job.

Resumes processing
after EXIT,C.

Resumes processing
After EXIT,U.

Terminates job.

Peripheral processor encountered
improper I/O request.

Time limit exceeded (first time
only).

Operator DROP.

User arithmetic error not negated
by a MODE control statement.

ECS parity error.

Job step abort; aborts job step
and skips all control statements
until an EXIT statement is found.
Terminates job if no EXIT found
before end of control statement
record encountered.

Resumes processing
after EXIT.

Terminates job.

Resumes processing
after EXIT,U.

Resumes processing
after EXIT,S.

Loading program with compila-
tion or assembly errors.

ABORT ,NODUMP macro.
ABORT ,,S macro.
ABORT,NODUMP.S macro.
Control statement error.

Special abort; aborts job step and
skips all control statements until

an EXIT,S. Terminates job if no
EXIT,S found before end of con-
trol statement record.

Continues skipping.

Continues skipping.

Continues skipping.

Resumes processing
after EXIT,S.

Job statement error.
ACCOUNT statement error.
Operator KILL.

Operator RERUN,

Time limit exceeded (second
time).

Checksum error during job
input.

Terminal abort; aborts job step and
terminates job.

Not applicable.

Not applicable.

Not applicable.

Not applicable.

GENLDPF (RELOAD PERMANENT FILE CATALOG)

GENLDPF reads a log tape created by the PFLOG utility and generates LOADPF jobs, which will load the
files that had a permanent file catalog (PFC) entry at the time PFLOG was run. This allows the installation
to do a full reload of the permanent file base without reloading files purged since the last full dump.

Before GENLDPF is called, a REQUEST cont

tape whose logical file name is LOGTAPE.

~1 o4
TR

For each entry read from the log tape, GENLDPF makes an output listing entry that contains the permanent
file name, owner id, and cycle number.
The format of GENLDPF is:

GENLDPF ,PW=pw,SN=setname,VSN=vsn,LF=lfn.

PW is required; all other parameters are optional. However, SN is specified if VSN is specified, and
vice versa, All parameters are order independent.

PW=pw EX password required for generated LOADPF jobs.

SN=setname Name of device set onto which permanent files are to be reloaded, 1-7 letters or digits

beginning with a letter. The master device for this set must have been mounted
before GENLDPF can execute. Default is the permanent file default set.

VSN=vsn Volume serial number of the master device of the device set specified by SN=setname.

LF=lfn Name of file on which the listing is to appear, 1-7 letters or digits beginning with a
letter. Default is OUTPUT. If Ifn=0, no listing is generated.

60493800 E 4-53

GENLDPF EXAMPLES

1. JOBX(NTO1)
VSN(LOGTAPE=123456)
REQUEST(LOGTAPE,NT,PE,E,NORING)
GENLDPF(PW=HELLO)
6/7/8/9
This job reloads files onto the permanent file default set and writes the output listing on OUTPUT.
2. JOBY(NTO1)
VSN(LOGTAPE=246801)
MOUNT(SN=SETNAME,VSN=MASTER)
REQUEST(LOGTAPE,NT,PE,E,NORING)
GENLDPF(PW=LOAD,SN=SETNAME,VSN=MASTER,LF=0)
This job reloads files onto set SETNAME whose master pack vsn is MASTER. No output listing is
generated.
GETPF {ATTACH PERMANENT FILE FROM LINKED MAINFRAME]

GETPF attaches a permanent file to a job, as long as parameters specified on the GETPF control statement
establish the right to use the file. GETPF differs from the ATTACH control statement in that:

GETPF creates a local copy of a file; ATTACH manipulates the file itself.

GETPF can obtain a copy of any permanent file residing in a permanent file default set. ATTACH can
access only permanent files which reside on a device directly connected to the mainframe on which the
job is executing.

The format of GETPF is:

4-54

GETPF,lfn,pfn,ID=name,EC=ec,l (I?(Y::';y},MR=m,PW=pw,RW=p,ST=mmf.

The first parameter establishes the logical file name. Parameters 1fn and pfn are required in the order
shown; all other parameters are order independent. ID and ST are required. GETPF can be continued;
if a period or right parenthesis does not appear at the end of the parameter list, column 1 of the next
statement is considered a continuation of column 80.

Ifn Logical file name, 1-7 letters or digits beginning with a letter. If omitted, the first
seven characters of pfn establish 1fn.

pfn Permanent file name by which the file is known in the permanent file catalog, 1-40
letters or digits. Required.

ID=name ID parameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC.

ST=mmf System on which file is cataloged, 3 characters.

60493800 E

See the ATTACH control statement for the remaining parameters.
GETPF always sets MR=1.

The file referenced by a GETPF must reside on the permanent file default set of the mainframe specified. A
copy of the file is transmitted to the mainframe on which the job is executing at the time the file is opened.

Any modifications made to the file during the job are a part of the local file copy, not of the original
permanent file.

LABEL (TAPE LABEL SPECIFICATION)

LABEL writes or checks VOL1 and HDRI1 labels on tapes. In addition to substituting for a REQUEST control
statement for a single file labeled tape, LABEL can be used to position within a multi-file set.

In most instances, LABEL is- the first reference to a file in a‘job, unless it is preceded by a VSN statement
indicating the volume serial number of the resident volume. For a single file volume, a REQUEST is not
needed, although a REQUEST followed by LABEL is valid and does not create an error condition. If a
REQUEST statement follows the LABEL statement, duplicate file names are generated and the job terminates
since the LABEL program issues a REQUEST function to obtain the equipment. For labeled multi-file volumes,
a REQUEST establishing the multi-file set must precede the LABEL statements that write the header labels for
various files in the set.

The label program issues an OPEN function to read or write the file label. Contents of the label are copied to
both the system and job dayfiles. When label fields are not consistent with the information supplied on the
LABEL control statement, the operator is notified. The operator can mount another tape and have its label
checked or can authorize the job to continue with the existing tape.

The format of LABEL is:
NORING/’|IEC

W) (Z] (RING | (EEC
LABEL,lfn,‘R‘,{Y}, H

‘,D=d,F=f,N=n,X=x,L=z,V=v,E=e,T=t,C=c,M=m,P=p,VSN=vsn
The first parameter must be the logical file name. An R or W parameter is required. The remaining
optional parameters are order independent. LABEL can be continued; if a terminator does not appear

on the first statement, the next is assumed to be a continuation of the first.

Default parameters cause a single file header in ANSI format for a 7-track tape in SI format. Any other
label or data format to be written, or a tape to be read, must be declared explicitly.

9-track tape can be selected only by giving either a 9-track density parameter (HD, PE, or GE) or a code
conversion parameter (US or EB).

Read or write:

R Label is to be read and compared with parameters on the LABEL control statement.
When R is issued, the tape can be a candidate for auto-assignment by label name.

w Label is to be written.

60493800 E 4-55

Label type:
Y 3000 series label.

Z Label conforms to standard label of previous operating system. Character 12 of the
VOLI label specifies data density; otherwise Z labels are identical to U labels.

absent Standard label conforming to ANSI.
Write ring:
RING Write-enabled ring required in tape.
NORING Write-enabled ring prohibited in tape.
absent Parameter is set to installation-defined value.

Hardware error correction:

EEC Enable hardware GE write error correction. The system allows certain types of
single-track errors to be written that can be corrected when the tape is read (on-the-
fly correction). This is the recommended mode of operation, because it provides
efficient throughput, error recovery, and tape usage when writing GE tapes on media
that is suitable for use at 3200 fci or 6250 cpi.

IEC Disable all error correction activity in GE write mode. The system invokes standard
error recovery processing when an on-the-fly error occurs while writing a GE tape.
The system erases the defective portion of tape, thereby reducing the amount of
data that can be stored on the tape. Only tape that is suitable for recording at 6250
cpi should be used when this mode of operation is in effect.

NOTE
EEC and IEC apply only to GE (6250 cpi) operations. GE
must also be specified in a REQUEST statement; otherwise,
EEC and IEC are ignored.
EEC and IEC are applicable if the user requests default 9-track
density and the installation 9-track default density is GE
(6250 cpi).

Tape characteristics:

D=d Density. If omitted, density declared or implied by REQUEST prevails. For 7-track
tapes:
Lot 200 bpi
HI 556 bpi
HY 800 bpi

1200 bpi can be read but not written by 667/677 tape drives.

456 60493800 E

For 9-track tapes, the d parameter determines density for writing only; data is
always reading at the recording density. ‘

HD 800 cpi
PE 1600 cpi, phase encoded
GEf 6250 cpi, group encoded

F=f Format of the file data. Defauit is SI format.
S S tape format
Lit L tape format

N=n Code for conversion of 9-track tapes only. Default is installation defined.
Us ASCII code
EB EBCDIC code

X=x Disposition of tape:
IU Inhibit physical unload
sV Unload tape at end of job; notify operator to save
CK Checkpoint dump written on tape
CI Checkpoint dump and inhibit physical unload
CS Checkpoint dump and save

Label fields:
L=z Label name, 1-17 characters for ANSI or Z labels; 1-14 characters for Y labels.

Default value is spaces.

V=vy Label field. Volume number specifying volume sequence in volume set. 1-4 digits
for ANSI or Z labels; 1-2 digits for Y labels. Default is 0001 for ANSI or Z
labels, 01 for Y labels.

E=e Label field. Edition number specifying version of file. 1-2 digits. Default is 00.

T=t Label field. Number of days file is to be retained, 1-3 digits. Default determined
by installation. 999 is permanent retention. A retention period greater than 364
days results in the assignment of T=999.

C=c Label field. Creation date, in format of 2 digits for year, 3 digits for day. Default
is current date.

M=m Label field. The operating system uses this parameter to establish that the current
LABEL function applies to a member of a multi-file set. m is the logical multi-
file set name as it appears on the REQUEST statement for this set, and it must
be present for all LABEL statements referencing members of this multi-file set.
When the label is written on tape, the multi-file field does not contain the logical
set name. It contains the VSN for the first volume of the multi-file set.

6250 cpi density is supported only on 679 GCR tape drives.
TTL format is supported only on 7-track drives and 669/679 9-track tape drives.

60493800 E 457 |

P=p Label field. Position number indicating file within multi-file set, 14 digits. Default
is 0001. Not defined for 3000 series labels.

VSN=vsn Volume serial number of 1-6 characters used to identify the tape for automatic
assignment. Parameter can appear on VSN statement rather than LABEL state-
ment. A VSN of SCRATCH or 0 specifies a scratch tape.

LABELMS (DEVICE SET LABELING)

LABELMS labels a device before it is used in a device set, places the volume serial number in the label, and
establishes the type of access to the device. In addition, LABELMS can be used optionally to inhibit pre-
allocation of space for customer engineering diagnostics, to specify information for subsequent access to the
device, and to record known flaws on a device so that such areas are not accessed.

The format of LABELMS is:

LABELMS,DT=dt,mode,I=lfn.
All parameters are optional.

DT=dt Device type. If DT is omitted, the operator can assign any device type. The value
of dt is a device mnemonic; for example, AY for 844-21. (See section 6 for list
of device types.) Member devices subsequently added by the ADDSET statement
must have the same device type as the master device.

mode Recording mode for an 844 disk pack. Default is defined at installation time.
HT Half tracking
FT Full tracking

I=lfn Logical file name for input directives containing allocation and flaw information.

If I is specified but not equivalenced, file INPUT is used; otherwise, no directives
are expected. Consequently, default allocation information is used and the disk is
presumed to be free of flaws. If this parameter is specified, DT must also be
specified.

Input directive formats are as follows:

4-58

All values in the directives are assumed to be octal unless suffixed with a D.

Each directive must begin in column 1 and end with a valid terminator. Valid control separators must
appear between the elements of a directive. Successive allocation directives must refer to successive
portions of a device. Allocation directives can be intermixed with flaw directives. A maximum of
eight allocation directives is permitted.

Allocation directives: Aas,Rpru Nrbs.

Ttn,Ccn,Ssn.

Flaw directives: {Tm’(:cn,sfm—lsn.

60493800 E

as Allocation style with limits of 0 to 77 (octal); defauit is as=0. The user can request
a specific allocation feature, such as directing a file to a specific portion of a device
having a particular record block size and/or recording technique.
pru Number of PRUs per record block (RB size) must be greater than or equal to 1/32
of the PB (physical block) size and less than or equal to 32 times the PB size.

tbs Number of record blocks in the RBR for this device or portion of device. The RBR,
maintained by the operating system in central memory, contains information indicating
its allocation style and the status (available for assignment) of all record blocks
governed by this RBR. The limits of rbs are 1 to 7777 (octal). Default depends on
the device as shown below.

tn Track number *
cn Cylinder number Limits depend on device as shown below
sn Sector number
fsn First sector number Indicates several contiguous flaw sectors
Isn Last sector number

RB Size

PB Size Default
Device (PRUs) (PRUs) rbs Default tn Limits cn Limits sn Limits

84421 160t 70 6240 0to22 Oto 632 0 to 27
84441 160 70t 6240t 0to22 Oto1466 0 to 27

All values listed above are octal.
NOTE
User packs cannot have the number of RBs greater than the installation-
defined maximum number of record blocks to be used for private devices.

All members of a user device set must have identical allocation directives
specified when the devices are labeled.

TThis value changed from 70 to 160 with the introduction of the 844-41 devices. Only devices with the
following RB sizes are compatible on both pre- and post-844-41 supporting systems.

For devices with (RB size)< 70B, RB sizes of 2, 4, 7, 10, 16, 34, 70 are
compatible with both systems.

For devices with (RB size) >70B, RB sizes such that (2n-1)*70+1 < RB size
< 2n470, where n=1,2...20B, are compatible with both systems.

t1To create an 844-41 (double-density) pack with an RB size of 70B, two allocation directives must be input
to LABELMS. The 844-41’s require two RBRs when the RB size is 70B.

60493800 E 4-59

For 844-21 (AY) and 844-41 (AZ), the flaws recorded on the device in the utility flaw map (UFM) are read
by LABELMS (except during deadstart) and added to the flaws supplied in the input file. If the pack does
not contain the flaw map, the following informative message is written to the job dayfile.

ERROR IN READING UFM

During deadstart, LABELMS obtains a complete set of flaws from IRCP through CMR including the flaws
from the utility flaw map read by IRCP.

LIMIT (LIMIT MASS STORAGE)

LIMIT limits the amount of rotating mass storage that is assigned to a job. Normally, a job is assigned as
much mass storage as it needs. However, a user might want to limit the maximum mass storage that should
be assigned, for example, during a debug phase when large amounts of output would indicate program errors.
Any time mass storage in excess of the specified limit is required, the job terminates.

The format of LIMIT is:
LIMIT,n.

n Number (octal) indicating the maximum number of blocks that can be allocated to
the job. Blocks are 4096 60-bit words. The n parameter is required.

The value of the LIMIT parameter should anticipate both the number and size of files that exist at one time.
The information in the mass storage accounting message in the dayfile might be helpful in determining a
limit for the LIMIT control statement. Note that the dayfile message is in decimal words, but the LIMIT
argument is in blouks of 4696 words. The mass storage statistic is issued only if a LIMIT control statement
has been executed by the job or if the installation has set a non-zero default mass storage limit. Generally,
very small limits should be avoided, since the system allocation of one record block, at minimum, for each
file can exceed the limit established even though each file is small.

Record blocks are defined at each installation, usually with different sizes of blocks for different mass storage
devices. For example, a disk might have record blocks of 3200 words. In this instance, a statement specifying
LIMIT(2) would cause job termination when a third file is opened, since 3 times the record block size is more
than the stated limit of 8192 words.

Mass storage occupied by the INPUT file or attached permanent files is not involved in the total mass storage
allocation for LIMIT calculations. Any file evicted from mass storage decreases the count of words allocated.

LISTMF (LIST LABELED TAPE)

LISTMF lists the HDR1 labels of files in a multi-file set. The utility is valid only for tape files with ANSI
standard labels. All volumes in the set are processed with a single utility call. The listing appears on the file
OUTPUT. '

A REQUEST control statement defining the multi-file set is required before LISTMF is called.

4-60 60493800 E

The format of LISTMF is:
LISTMF ,M=mfn,P=p.
M=mfn Multi-file name of the set, as declared on the REQUEST control statement. Required.

P=p Position of file at which listing is to begin; 1-3 digits. The first file in the set is
position 1. Default is 1.

The multi-file set is rewound at the beginning of LISTMF execution, then positioned to the beginning of the

file indicated by the P parameter. Listing of header labels stops when the end of the set (EOF label followed
by multiple tape marks) is reached. No further positioning occurs.

LOAD (LOAD PROGRAM)
LOAD loads a file into memory in anticipation of a call for execution of loaded programs. LOAD can initiate
a load sequence or be part of an existing load sequence but it does not terminate a load sequence. An

EXECUTE control statement, or, in the case of overlay preparation, a NOGO control statement, would normally
terminate the load sequence.

LOAD is defined by the loader, not the operating system. See the CDC CYBER Loader Reference Manual
for further details.

The format of LOAD is:
LOAD,lfnllr,lfnzlr, e

More than one parameter can be specified when all files contain relocatable programs. Only one parameter
can be specified when the file contains an absolute program.

Ifn Logical file name of file containing binary executable code, 1-7 letters or digits
beginning with a letter.
r Rewind indicator:

R Rewind file prior to loading. Rewind of the file INPUT rewinds to the
beginning of the control statements; no skipping of control statements
occurs,

NR Inhibits rewind prior to loading.

Loading from the file terminates when a partition boundary, or end-of-information is encountered, or when two
consecutive 7/8/9 cards are encountered in an image of a job deck.

LOADPF (LOAD PERMANENT FILE FROM TAPE)
LOADPF loads permanent files that have been dumped to tape. All files or a selected portion of files on the

tape can be loaded. An optional directive file specifies individual files to be loaded. Multiple copies of
LOADPF can execute at the same time. A job can access a file as soon as it is entered into the permanent

60493800 E 4-61

file tables. For each cycle loaded, LOADPF makes an output listing entry that contains the permanent file
name, owner ID, cycle number, date of last dump, and a comment.

Before LOADPF is called, a REQUEST or LABEL control statement must define a tape file named DUMTAPE
in S format with an existing label. If the dump tape for a file to be loaded contains more than one file with
the same permanent file name, cycle number, and ID name, a message is sent to the operator and the file is
ignored. New cycles of a permanent file will not be loaded if the passwords of the tape cycle disagree with
the existing cycle.

LOADPF execution causes an implicit attach of a file whose permanent file name is DUM. The device set to
which files are to be loaded must contain a copy of DUM cataloged with an ID of PUBLIC and defined
passwords for RD, MD, CN, and EX. If a DUM permanent file with TK=DUMPF already exists (earlier systems
required this), it must be purged and replaced as described above. The EX password to access DUM must be
submitted as part of the LOADPF call.

NOTE

Files purged between a full DUMPF and several change dumps (DUMPF,DP=C) are
reloaded when both the change and full dumps are reloaded. However, running
PFLOG after each change dump and then running GENLDPF with the last log tape
regtores the PRC without reloading the purged files. For multi-volume LOADPF
jobs, NORING must be specified on a REQUEST or LABEL control statement.

The format of LOADPF is:

LOADPF ,LP=x,LF=1fnl ,CL,SN=setname,VSN=vsn,ID=name,PF=pfn,CY=cy,I=lfn,,PW=pw,IN=ddd JN=yyddd,
LA=mmddyy,DA=yyddd,CD=mmddyy,TI=hhmm.

Only PW is required. All parameters are order independent. Only one LP parameter can be specified. If a
terminator does not appear at the end of the parameter list, column 1 of the next card or line is considered
to be a continuation of the LOADPF parameter list.

LP=x Files to be loaded:

X Significance

A Load all files. Existing files are not replaced unless the file is
incomplete or not disk resident. Default.

R Replace existing files. Both X and R can be specified in the
form LP=XR.

P Load archived files (files with entries in permanent file tables
but file residence on tape).

X Do not load expired files.

0 Permanent file dump tape is in SCOPE 3.2 or 3.3 format. If

LP=0 is not. specified, the tape is assumed to be a SCOPE 3.4
permanent file dump tape. The O option can be used with
other LP parameters in the form LP=R,0,X.

4-62 60493800 E

LF=lfn, Name of file on which listing is to appear, 1-7 letters or digits beginning with a
letter. Default is OUTPUT.

CL Compiete lisi opiion seiecied. All files on the dump tape are listed. If CL is
omitted, only loaded files are listed.

SN=setname Name of device set to which files are loaded, 1-7 letters or digits beginning with 2
letter. Master device of this set must be previously mounted

VSN=vsn Volume serial number of the device onto which permanent files are loaded, 1-6
letters or digits with leading zeros assumed. Parameter SN must also be included,
and the master device of the set must be previously mounted.

ID=name Load files with this owner.

PF=pfn Ioad files with this permanent file name. ID=owner is also required.

CY=cy Load cycle cy of file specified by PF and ID. CY is ignored and the load continued
if this cycle is not found, or if PF and ID are not specified.

I=lfny Logical file name of directive file, 1-7 letters or digits beginning with a letter. If I is
specified but not equivalenced, file INPUT is used.

PW=pw EX password for DUM.

IN=ddd Load files inactive this number of days; 1-3 digits. Can be qualified by a TI parameter.

JN=yyddd Load files inactive since this ordinal date; 5-digit ordinal date format. Can be qualified
by TI parameter.

=mmddyy Load files not attached on or after this date; 6-digit month-day-year format. Can be

qualified by TI parameter.

DA=yyddd Load files created, modified, renamed, or extended after this date; 5-digit year-and-day-
of-year format. Can be qualified by TI parameter.

CD=mmddyy Load files created, modified, renamed, or extended after this date; 6-digit month-day-
year format. Can be qualified by TI parameter.

TI=hhmm Time qualifier for date parameters; 4-digit 24 hour clock format. If date parameters

are not specified, TI is ignored.

A group of files to be loaded can be identified by name and owner in a directive record. When input directives
are selected, only parameters SN and CL are valid on the LOADPF call. Directive formats are as follows:

ID=name

ID=name, PF=pfn
ID=name, PF=pfn, CY=cy

60493800 E 463 ©

Parameters are order independent. The PF and CY parameters are optional. The ID parameter should
be specified. However, if the PF parameter is specified without an ID parameter, then ID=PUBLIC is
assumed.

LOADPF EXAMPLES

1.

JOBL.
REQUEST(DUMTAPE HY,S,E)
LOADPF(PW=EXPW)

6/7/8/9

This job loads all files on the tape unless LOADPF finds the owner ID, permanent file name, and cycle
number combination already in the system; such files are skipped.

JOB2.
REQUEST(DUMTAPE,HY,S,E)
LOADPF(LP=X,PW=EXPW)
6/7/8/9

This job ioads aii non-expired permaneni fiies from iape.

JOB3.

REQUEST(DUMTAPE,HY,S,E)
LOADPF(PF=STARTREK,ID=SPOCK ,PW=EXPW)
6/7/8/9

All cycles of the permanent file STARTREK with owner ID SPOCK are loaded unless one of the
following conditions arises.

The permanent file name/owner ID combination already exists in the system with different
passwords.

A duplicate cycle number is encountered.
The permanent file name/owner ID combination already has five cycles cataloged.

JOB4.

REQUEST(DUMTAPE,...)
LOADPF(I,PW=EXPW)

7/8/9
PF=PASSERIFORMES,CY=21,ID=VEERY
PF=ANATINAE,ID=GADWELL
PF=PROCELLARIIFORMES,ID=FULMAR
6/7/8/9

This job loads the specified permanent files from tape.

60493800 E

MAP (PRODUCE LOAD MAP)

MAP determines the extent of the load map produced for all subsequent programs loaded in central memory.

When MAP is omitted, an installation default determines the type of map.

=

Output from a load map appears on the file OUTPUT. It includes items such as the type of load, location of

nraorame. caommaon hlacke and tables. and entrv noints, Load mang of nrosrams on the svetem librarv. such
programs, common blocks and fables, and entry points, Load maps of programs on the sysiem library, such

as compilers or assemblers, are never produced. See the CDC CYBER Loader Reference Manual for an expla-
nation of all items in the load map.

The MAP option selected remains in effect until another MAP control statement changes the option or the
job ends.

The format of MAP is:

OFF
map] UL,
PART
OFF No map is produced.
FULL Full map is produced.
ON Map has all items except entry point map.
PART Map has all items except entry point map and cross-reference.

The effect of a MAP can be overridden for a particular load sequence by the MAP option of the loader state-
ment LDSET (see the CDC CYBER Loader Reference Manual).

MODE (SUSPEND ERROR EXIT)

MODE specifies the error conditions that abnormally terminate the job. Normally, a job terminates when any
of the following CPU program errors are detected.

Reference to an operand (any number used in a calculation) that has an infinite value.

Reference to an address outside the field length of the job in central memory or ECS; such an address
can be generated during assembly if a non-existent location is referenced or inadequate field length is set.

Reference to an operand for floating point arithmetic which has an indefinite value.
When a selected error condition is detected, the job terminates. When an error condition not selected by

MODE is detected, job processing continues and no error message is issued.t A MODE selection remains in
effect until another MODE control statement is executed or the job ends.

tOn a CDC CYBER 176, address range errors always result in job termination, no matter what option is
specified on the MODE statement.

60493800 E 4-65

The format of MODE is:

MODE,m.
m CPU program error exit conditions 0-7 (octal). If omitted, 7 is assumed.
0 Disable CPU program error exit; all errors allow job to continue.
1 Address is out of range.
2 Operand is infinite.
3 Both 1 and 2 remain in effect.
4 Floating point number of indefinite value.
5 Both 1 and 4 remain in effect.
6 Both 2 and 4 remain in effect.
7 1 and 2 and 4 remain in effect.

For example, a MODE, 5. statement directs the system to continue processing even if an infinite operand is
encountered. If an address is out of range or a floating point number of indefinite value is encountered, the
job terminates. A control statement MODE,7. is equivalent to a job without a MODE control statement.

MOUNT (ASSOCIATE DEVICE SET)

MOUNT associates a device set and its members with a job. MOUNT is a logical operation. If the device is
physically available, no operator intervention is required. If the device is not physically available, the device
name is placed in an operator display, and the job is swapped out until the device is mounted.

When the master device is mounted, the device set tables are read into the system and all files and member
devices become logically accessible to the job. The master device must remain mounted while the associated
device set is in use. When the master is mounted, the system issues a MOUNT for other member devices as
needed. The user also can issue a MOUNT for a member device.
The format of MOUNT is:

MOUNT,VSN=vsn,SN=setname,mode.

Parameters VSN and SN are required; mode is optional. All parameters are order independent.

VSN=vsn Volume serial number of device to be mounted, 1-6 letters or digits with leading
zeros assumed.

SN=setname Name of device set to which this device belongs, 1-7 letters or digits beginning with a
letter.

| 466 60493800 E

mode Recording mode for an 844 disk pack. Default is defined at installation time.
HT Half tracking
FT Full tracking
PAUSE (OPERATOR INTERFACE)
PAUSE inserts a formal comment into the job dayfile and stops the job until the operator acknowledges the
comment. PAUSE should not be used unless communication with the operator is essential. The COMMENT
control statement allows messages to be inserted into the dayfile without the need for operator response.
The format of PAUSE is:
PAUSE. comment

The period is required. The comment can begin in any column after the period; ending punctuation is
not required.

comment String of 74 characters to be displayed for the operator. Any character can be
specified, including those otherwise used as punctuation. Characters with display
code values greater than 57 are displayed as blanks.

All eighty characters (PAUSE plus message) are displayed for the operator. A message longer than 74 charac-
ters can be sent by using a second PAUSE control statement, but each statement requires operator action.

The operator acknowledges the PAUSE message by a GO, DROP, or KILL, command that continues, drops,
or aborts the job, respectively.

PFLOG (DUMP PERMANENT FILE CATALOG TO TAPE)
PFLOG dumps the permanent file catalog (PFC) of a device set to a magnetic tape (log file).

Before PFLOG is called, a REQUEST control statement must define the log file as a new labeled SI tape
whose logical file name is LOGTAPE. '

PFLOG execution causes an implicit attach of a file whose permanent file name is DUM. The device set
whose PFC is to be dumped must contain a copy of DUM cataloged with an ID of PUBLIC and a defined
password for RD. The RD password must be submitted as the PW parameter on the PFLOG call.

For each PFC entry dumped, PFLOG makes an output listing entry that contains the permanent file name,
owner id, and cycle number.

The format of PFLOG is:
PFLOG,PW=rd,SN=setname,LF=Ifn.

Only PW is required. All parameters are order independent.

60493800 E 4-67

PW=rd RD password for DUM.

SN=setname Name of device set whose PFC is to be dumped; 1-7 letters or digits beginning with
a letter. The master device for this set must have been mounted before PFLOG can
execute. Default is the permanent file default set.

LF=Ifn Name of file on which listing is to appear; 1-7 letters or digits beginning with a letter.
Default is QUTPUT. If Ifn=0, no listing is generated.

PFLOG EXAMPLES

1. JOBCARD(NTO!)
VSN(LOGTAPE=123456)
REQUEST(LOGTAPE,NT,PE,N,RING)
PFLOG(PW=READ,LF=0)
6/7/8/9

This job dumps the permanent file default set to LOGTAPE. No output listing is generated.

2. JOBCARD{NTOI)
VSN(LOGTAPE=123456)
MOUNT(SN=SETNAME,VSN=MASTER)
REQUEST(LOGTAPE,NT,PE,N,RING)
PFLOG(SN=SETNAME,PW=READ)
6/7/8/9

This job dumps the PFC of SETNAME to LOGTAPE and prints the output listing on OUTPUT.

PURGE (REMOVE PERMANENT FILE)

PURGE removes the permanent status of a file. The file remains as a local file for the job if the file is being
accessed on the mainframe at which the job is executing, if the file is not archived, and if the RB parameter
is not specified. Control permission is required to purge a file.

PURGE affects only one cycle of a permanent file. If a cycle number is not specified, the cycle with the
highest cycle number is purged. If there is only one cycle, the permanent file name is removed from the
permanent file tables. A subsequent CATALOG with the same permanent file name and ID would be an
initial CATALOG.

The format of the control statement and subsequent file permissions depends on whether the file is already
attached to the job. If the full format is specified when the file is attached, all parameters except Ifn and RB
are ignored.

If the file is attached to the job, the format of PURGE is:

PURGElfn,RB=1.

® 468 60493800 E

If the file is not attached to the job, the format of PURGE is:
PURGE,lfn,pfn,ID=name,{g‘;’gyl,Ec=ec,MR=m,Pw=pw,Uv=uv,RB=1,Rw=p,SN=semame,ST=mmf.

Only lfn is required as long as the file is attached to the job. Parameters other than lfn and pfn are
order independent. PURGE can be continued; if the parameter list is not terminated by a period or
right parenthesis, column 1 of the next statement is considered to be a continuation of column 80.

Ifn Logical file name by which file is attached to the job, 1-7 letters or digits beginning
with a letter.

RB=1 Record block conflict. Applicable only when the record block conflict flag is set in
system tables to indicate that storage allocation for the file is in conflict with mass
storage allocation elsewhere. If this parameter is used when the conflict flag is set,
the local file has all permissions removed except control permission and the mass
storage associated with the file is not released when the file is released to the system.
The AUDIT utility reveals the presence of files with storage conflict.

ST=mmf System on which file is cataloged, 3 characters. If the file is not cataloged on the
mainframe at which the job is executing, a job is generated on the specific mainframe

to purge the file. If this parameter is specified, any SN parameter is ignored.

See the ATTACH control statement for the meaning of remaining parameters.

RECOVER (DEVICE SET MAINTENANCE)
RECOVER validates a device set and reconstructs tables whenever the integrity of a device set is in question.
It scans critical disk tables of a device set to verify and recreate each. Any errors encountered during the
recovery process are noted in the QOUTPUT file. The RECOVER control statement is not executed if this
job or any other job has issued instructions to mount the device set. '
The format of RECOVER is:

RECOVER,SN=setname,VSN=vsn.

Parameters are required and order independent.

SN=setname Name of device set to be validated or reconstructed, 1-7 letters or digits beginning
with a letter.

VSN=vsn Volume serial number of device set master device, 1-6 letters or digits with leading
zeros assumed.

In a multi-mainframe environment permanent files on the device set could be destroyed if RECOVER is

executed when one of the mainframes has the master mounted. Therefore, the system aborts the request
unless called from the console by an operator entry.

60493800 E 4-69

REDUCE (REDUCE FIELD LENGTH)

REDUCE decreases the central memory field length assigned to a job to the amount of memory needed by
the program currently loaded. It also restores dynamic field length management by the operating system that
the job previously inhibited through execution of an RFL control statement or through use of a CM param-
eter on the job statement. REDUCE should be used whenever the job no longer requires special field length
handling.

The format of REDUCE is:

REDUCE.

RENAME (CHANGE PERMANENT FILE TABLE)

RENAME changes values of parameters in the permanent file manager tables. Parameter values originating
from a prior RENAME or original file catalog can be deleted or changed to different values and new param-
eters can be added. RENAME affects only the parameters specified on the control statement; other parameters
remain as they were. -

Prior to issuing RENAME, the job must aitach the file with read, exiend, modify, and coniroi permission.
The format of RENAME is:
RENAME lfn,pfn,ID=name,AC=act,CN=cn,CY=cy EX=ex,MD=md ,RD=rd RP=rp, TK=tk XR=xr.
Only the Ifn parameter is required; it must be the first parameter. All other parameters are optional
and order independent. RENAME can be continued; if the parameter list is not terminated by a period
or right parenthesis, column 1 of the next statement is considered to be a continuation of column 80.

Two commas can follow Ifn when pfn is not changed.

Specifying the parameter name and an equals sign without a following parameter value removes the
existing value for that parameter.

Ifn Logical file name of attached permanent file, 1-7 letters or digits beginning with a
letter. Required.

RP Retention period, 0-999. Applies to date of original CATALOG, not to date of
RENAME.

See the CATALOG control statement for the meaning of remaining parameters.

Any change to the permanent file name, ID, or passwords of any cycle of a file causes the same change to be
made for all cycles of the file. Consequently, RENAME cannot change the permanent file name, ID, or pass-
words if any cycle of the file has been dumped or archived to tape. If the pfn/ID are being changed and a
file already exists with the proposed pfn/ID, the pfn/ID change will not occur, and a nonfatal error message
is issued.

1 470 60493800 E

REQUEST (ASSIGN FILE TO DEVICE)

REQUEST requests assignment of a file to a particular device. Since control statements are processed in order

of appearance, the REQUEST statement for a particular file must precede the control statement that executes
the program referencing that file. Otherwise, the file is sought or written on a public scratch device when it

is referenced.

REQUEST is most commonly used with permanent files, magnetic tapes, and private device sets, but it can be
used to cause file assignment to any public device or unit record equipmeni. Files are assigned to public disk
packs by a REQUEST or by system default. However, to ensure that a file is assigned to a permanent file
device, a REQUEST statement with a *PF parameter should be used.

When a REQUEST control statement is encountered, job processing might halt for operator action or continue
with operating system action, depending on the form of the parameter specifying device type, and for magnetic

tape, the installation tape assigning options.

'lhé general form of REQUEST is:

REQUEST Ifn,dt,parameters.

Parameter Ifn is required and must be the first defined; all other parameters are optional and order

independent.

Ifn Logical file name by which file will be known throughout the job, 1-7 letters or
digits beginning with a letter. 1fn beginning with ZZZZZ is reserved for the system.
Ifn cannot be OUTPUT. With private device sets, Ifn also cannot be PUNCH, l
PUNCHB, P80C, FILMPR, FILMPL, PLOT, HARDPL, or HARDPR.

dt Device type mnemonic plus other dt parameters to. further describe equipment
requested. If the user specifies an optional device type parameter which is unique to
a device type (for example, the GE parameter for a 9-track tape), the device type
mnemonic need not be specified. A preceding asterisk allows assignment of devices
without operator action if possible. An asterisk is implied for mass storage devices.

parameters Optional parameters.

The optional device type descriptors depend on the category of equipment involved. Details of parameters for
REQUEST are discussed separately in relation to files on the following devices.

Magnetic tapes (7- and 9-irack) including multi-file sets

Unit record devices such as card reader and line printer

ECS

Public devices including those used for permanent files
An asterisk preceding the device type mnemonic causes the operating system to attempt to assign the device
without operator action. Automatic assignment is attempted on mass storage devices regardless of whether the
asterisk is specified. The tape assigning options available make the * redundant for magnetic tape requests,

but it can be used. However, * cannot be used if two units are requested with the same control statement
or a multifile set is involved. If * is used for unit record devices, the REQUEST control statement appears

60493800 E 471

on the operator display for manual assignment. The operator must then make the unit physically ready and
logically assign it to the job by entering a command on the console keyboard. See Unit Record Device Request
description which follows in this section.

When sufficient information is given on the REQUEST control statement, the operating system assigns the
device to the job without operator action. For rotating mass storage devices, automatic assignment is attempted
whether or not the asterisk precedes the dt parameter. For other device requests, operator action is required

if an asterisk does not precede the dt parameter. If dt is not declared, the operator can assign any device.

For tape request, a VSN parameter is used to locate and to assign the tape if it is mounted.

The operating system compares the device assigned by the operator with the request and reports any discrepancy
to the operator. An additional operator command must be given if the dt parameter on the control statement
is to be overridden by manual assignment. Conflicts must be resolved by the operator.

TAPE FILE REQUEST

The REQUEST control statement can describe both physical and logical characteristics for magnetic tape files.
When only the logical file name and magnetic tape device type MT are specified, the file, by default, becomes
a 7-track unlabeled tape with SI format written at installation density or read at written density, and installa-
tion declarations for automatic unioading are honored. Any other use, such as for checkpoints or muiti-file
sets, or characteristics of the file must be specifically declared.

The MT or NT device type parameter can be prefixed by an asterisk or a 2. The asterisk is applicable only

when compatibility with previous operating systems is considered. The asterisk prefix results in assignment of

a scratch tape to the file. However, if a non-scratch VSN has been specified also, it overrides the scratch
designation. If REQUEST includes parameter E, a scratch tape is not assigned. Depending upon the selection

of installation options, the operating system attempts to assign the tape to a job automatically using a VSN or
label name parameter. Operator assignment is necessary only when automatic assignment attempts are unsuccessful.

If either a 7- or 9-track tape is acceptable, an MN parameter can be used in place of MT or NT. The resulting
tape has default density. However, to ensure that the job is not aborted because of maximum tape units
exceeded, the job statement should specify both MT and NT. If the request includes at least one device type
descriptor which is unique to magnetic tapes (such as the RING parameter), neither the device type nor the
density need be specified.

A 2 prefix to MT or NT causes two tape units to be requested from the operator, which are used in the order
assigned. Tape requests using the 2 prefix cannot be auto-assigned. When the tape on the first unit reaches
end-of-volume, the system begins processing the tape on the second unit while the tape on the first unit is
rewound and unloaded. When the tape on the second unit reaches end-of-volume, the system returns to the
first unit, which should have been mounted in the interim with a new tape. The tape on the second unit is
rewound and unloaded. This alternating process is repeated as long as the file is referenced. The operator
must ensure the proper tape mounting sequence.

7-TRACK TAPE PARAMETERS:

LO E
CK s} IU | (RING } _
REQUESTan,MTa{HI "’{MF}"L ’{S},(ES}’{SV" NORING ,NR,VSN.VSH.

472 60493800 E

Logical file name:

If the MF parameter is not specified, Ifn is the logical file name of 1-7 letters or digits beginning

with a letter.

If the MF parameter is specified, this parameter is a multi-file set name of 1-6 letters or digits
beginning with a letter. .

The multi-file set name cannot be used in any input/output statement except as the M parameter in
a LABEL statement or POSMF macro.

7-track identification:

A declaration of LO, HI, or HY is sufficient to define the device type as MT. If MT is absent,
LO, HI or HY can be prefixed by a 2 if two units are required.

Density:
Lot 200 bpi density
HI 556 bpi density
HY 800 bpi density
absent Density is set to an installation defined value if initial use is output. If initial use of

a label tape is input, the density of the label is determined automatically. However,
it is recommended that density be specified whenever known and used to read both
the label and the data, except as indicated under Z below. If initial use of an
unlabeled tape is input, the density is set to an installation-declared value.

File disposition:

IU Any physical unload of the tape file in a context other than reel swapping is inhibited.
The IU parameter does not inhibit logical actions associated with UNLOAD or RETURN.
IU is recommended when a scratch tape or input tape is requested that is to remain
mounted and ready.

sv The tape file is unloaded at job termination, and the operator is notified that the tape
is to be saved.

absent Action performed at end-ofjob is option of the installation.
Tape security:
RING Write-enable ring required in tape.

NORING Write-enable ring prohibited in tape.

absent RING/NORING is set to an installation defined value.

TThe 667/677 tape units can read but not write at 200 bpi.

60493800 E 473

Volume serial number identification:

VSN=vsn

absent

Volume serial number of the tape volume, 1-6 letters or digits with leading zeros
assumed. The VSN appears on the previewing display for the operator’s information
before the job is assigned to a control point. Once the tape is mounted and the unit
made ready, the operating system can locate the volume without further operator
action. Once the tape is assigned, the VSN is verified against the standard or Z for-
mat label, if present. VSN also is verified against operator-supplied VSN for an
unlabeled tape.

If a scratch tape is desired, a VSN of SCRATCH or O can be used. The * prefix can
be used for a scratch tape also. :

If 2 VSN parameter is declared for a file on a REQUEST, and a VSN control state-
ment or a VSN parameter on a LABEL control statement also appears, the first
declaration is effective.

Any VSN declaration is used; otherwise, file header label fields are used for assignment
and verification. If neither VSN nor file header label field declaration is made, any
tape volume is accepted, but the assignment must be made manually unless * prefix

is used.

Parity error recovery procedure:

NR

Special tape use:
CK
MF
absent
Data format:
S
L

absent

The NR parameter can be used to inhibit normal parity error recovery procedures.
Data containing the parity error is returned to the user.

Checkpoint dumps are written on the tape.
The tape is a valid U or Z labeled multi-file set.

Neither of the above is assumed.

Data format is S.
Data format is L.

Data format is SI format.

Input or output use (apply only to labeled tapes):

Existing label. Initial use of the tape is input; only the expiration date is checked in
the label.

New label. Initial use of the tape is output; tape label is written.

If file is to be labeled (U, Z or Y is declared), a tape label is written.

60493800 E

Label characteristics:

U Tape label format is ANSI (standard label)
Y Tape label format is Y (3000 series label).
Z Tape iabel format is ANSI, except character 12, of the VOLI label is used to indicate

data density. These labels were standard for SCOPE 3.3.

absent Tape is unlabeled unless either E or N is declared; in which case, ANSI (U) label
format is assumed.

Label processing:

NS The NS parameter can be used to indicate a tape has non-standard labels and is to be
processed as unlabeled even though the tape is labeled. Existing labels appear to the
system as data and are passed to the user as such. The user can then process the
labels or ignore them. Non-standard labels are not supported on SI tapes.

9-TRACK TAPE PARAMETERS:

A declaration of MT or a 9-track density for a tape to be written is required to identify a 9-track tape.
Definitions and conditions for all except the density and data format parameters are the same as those for

7-track tape.

E E
S\ fCK US) IU) JRING EEC
recuistinae k{866 ol HES 10} (108G, 52 v,

Density:

A density specification is effective only when the tape is to be written; density setting is a hardware
function when the tape is read.

PE 1600 cpi

HD 800 cpi

GE 6250 cpi

absent Tape written at installation-declared density
Data format:

S Data format is S.

60493800 E 475

Lt

absent

Data format is L.

Data format is SI format.

Hardware error correction:

EEC

IEC

Enable hardware GE write error correction. The system allows certain types of
single-track errors to be written that can be corrected when the tape is read (on-the-fly
correction). This is the recommended mode of operation, because it provides efficient
throughput, error recovery, and tape usage when writing GE tapes on media that is
suitable for use at 3200 fci or 6250 cpi.

Disable all error correction activity in GE write mode. The system invokes standard
error recovery processing when an on-the-fly error occurs while writing a GE tape.
The system erases the defective portion of tape, thereby reducing the amount of
data that can be stored on the tape. Only tape that is suitable for recording at
6250 cpi should be used when this mode of operation is in effect.

NOTE

EEC and IEC apply only to GE (6250 cpi) operations. GE must also be
specified in a REQUEST statement; otherwise, EEC and IEC are ignored.

EEC and IEC are applicable if the user requests default 9-track density
and the installation 9-track default density is GE (6250 cpi).

Coded data conversion codes for 9-track S or L tapes (see conversion tables in appendix A):

Us

EB

absent

Coded label on data is to be converted from ASCH on input or to ASCII on output.

Coded label on data is to be converted from EBCDIC on input or to EBCDIC on
output.

Coded data conversion is defined by the installation.

Examples of REQUEST statements for tapes:

1. REQUEST(FILEI1,NT,U,E,NORING)

or

REQUEST(FILE1,NT,E,NORING)

The operator must assign an ANSI labeled, 9-track tape. The label is checked when the first
function is issued on the tape. Because density is not specified, it is assumed that both the label
and data are written at the same density.

TCurrently L tapes are supported only on 7-track tape devices and 669/679 9-track tape drives.

476

60493800 E

2. REQUEST(FILE,*MT,RING)

Depending on installation option, the system automatically assigns FILE] to a scratch tape on a
7-track tape unit. The fiie is uniabeied and writien in SI data formai ai an instailation-declared
density.

Depending on installation option, file STANF27 is assigned automatically to a unit containing volume
OHIO17. An ANSI label is written; both label and data are written at 556 bpi. Data format is S.
The volume is saved at job completion.

UNIT RECORD DEVICE REQUEST

When a file is input from a card reader or cutput to a printer or card punch, devices are assigned automatically
and REQUEST is not necessary. There are no standard drivers for the unit record equipment. Request and
assignment of such devices is only valid for on-ine diagnostic packages or for devices for which the installation
has provided drivers. If the installation has provided drivers, the following devices can be requested. Assign-
ment is not automatic; the operator must assign the request device to the job.

REQUEST Ifn dt.
Ifn Logical file name of 1-7 letters or digits beginning with a letter.
dt Device type. The following device types are recognized, but not supported by the

standard system. If an installation provides software drivers for these devices, they
can be specified.

Any available line printer 252-2 graphics console
253-2 hardcopy recorder
254-2 microfilm recorder
Paper tape reader
Paper tape punch
Plotter

LP

LR 580-12 line printer
LS 580-16 line printer
LT 580-20 line printer
CR 405 card reader
CP 415 card punch

cHEEEE

ECS FILE REQUEST

Files that are to reside on ECS are requested by the following control statement. This statement is not to be
used for files that are buffered through ECS.

REQUEST Ifn,AX,EC.

Ifn Logical file name of 1-7 letters or digits beginning with a letter.

AX ECS device type mnemonic. Required.

EC Maximum file size. If omitted, default buffer size is the maximum file size.

60493800 E 4-77

EC ~ Default buffer size maximum.

ECnnnn Maximum size nnnn words multiplied by 1000 (octal).

or

ECnnnnK

ECnnnnP Maximum size nnnn ECS pages, where page size is 1000 (octal)
60-bit words.

If ECS is turned off, the files requested on ECS are allocated on rotating mass storage devices.

MASS STORAGE FILE REQUEST

Mass storage files on either public device sets or private device sets are requested as follows. The EC param-
eter is valid only for files on public device sets.

For private device sets, a MOUNT control statement must assign the master device to the job before REQUEST
assigns a file to the device set.

478

REQUEST ifi,dtaa,CV,EC,*PF, *Q,SN=setname,V SN=vsn.
The first parameter must be lfn. Other parameters are optional and order independent.
Ifn Logical file name of 1-7 letters or digits beginning with a letter.

dtaa Device type mnemonic and allocation style. An asterisk can appear before dt, but its
function is redundant.

dt Device type mnemonic for a mass storage device:
AY 844-21 disk drive
AH 819 disk drive (CDC CYBER 170 Model 176 only)
AZ 84441 disk drive
A* Any mass storage device

aa Octal allocation style defined by the installation for public sets; by
LABELMS for user device sets. Can be null.

ov Overflow to any other mass storage device is allowed when device dtaa or a device
specified by SN and VSN parameters is unavailable or full. Permanent files and queue
files are assigned only to permanent file devices and queue devices, respectively; other-
wise, files might be assigned to any mass storage. If all mass storage of any type
becomes unavailable, a device capacity exceeded status is returned to a COMPASS
program when the EP bit is set in the FET. When OV is specified and requested
device is unavailable or full, all parameters are ignored except *PF, *Q, and SN as
the system selects the device on which to continue.

60493800 E

EC Buffer file through ECS. Valid only for sequentiai files on public devices.t If ECS
is off, this parameter is ignored for this job.

The EC parameter can also be used on a CDC CYBER 170 Model 176 to request a
specific number of LCM buffers for buffering data to the 819 disk. If the uger

specifies AH (819 Disk Drive) without specifying the EC parameter, the default
number of LCM buffers is assigned.

EC Default buffer size.
ECnn Number of 512, 4-word buffers (nn) to be assigned.
ECnnnn Buffer size of nnnn 60-bit words multiplied by 1000 (octal).
or
ECnnnnK
ECnnonP Buffer size of nnnn ECS pages, where page size is 1000 (octal)
60-bit words.
*PF Assign file to a permanent file device. If SN and VSN specify a permanent file
device, *PF is not required. If SN is not specified, the file is assigned to the default
*PF set.
*Q File is to be assigned to a queue device. If SN is a private device set, *Q is not

allowed. If SN is not specified, the file is assigned to the queue set.

SN=setname Assign file to setname, 1-7 letters or digits beginning with a letter. If omitted, file
is assigned to a public device set. If only SN is specified, setname is that specified by
SETNAME control statement; if setname has not been specified previously, file is
assigned to a public device.

VSN=vsn Volume serial number of device within set specified by SN, 1-6 letters or digits with
leading zeros assumed. VSN cannot be used without the SN parameter.

Allocation style aa is an optional appendage to the device type mnemonic. Two digit octal codes representing
allocation style must be defined at each installation and can be used to identify sub-areas of a device. For
example, an installation can divide 844 disk packs into two sub-areas — default and large space allocation. If
the large space allocation area is identified as allocation style aa=55, files residing in the large space allocation
sub-area are assigned more units of disk storage than similar files residing in the default sub-area. At this
example installation, a file is assigned large space allocation sub-area by REQUEST(lfn,AY55).

RESTART (RESTART JOB FROM CHECKPOINT TAPE)

RESTART restarts a job from a checkpoint tape. After locating the proper dump on the checkpoint tape, the
restart program requests all tape files defined at checkpoint time and repositions these files. Then a request is
made for all mass storage files and ECS buffer length where applicable. Files are copied from the checkpoint
tape and repositioned. RESTART also restores the central memory field length of the job and restarts the
user’s program. If a permanent file was attached to the job when a checkpoint was called, it is attached and
positioned as it was at the time of the checkpoint.

TAl file types will be buffered for device type AH (CDC CYBER 170 Model 176 only).

60493800 E 479

A restart job requires only a control statement to request the checkpoint tape (REQUEST or LABEL) and the
RESTART control statement. If a checkpoint tape is not requested, the restart program requests an unlabeled
7-track or 9-track tape (for the file named on the RESTART control statement) as follows:

REQUEST(lfn,CK,MN)
Since RESTART recreates all files used for the checkpointed job, the user should not create any files before
the call to RESTART. If any of those files are recreated by the user before the call to RESTART, a
duplicate file error might occur.

If a device set was mounted when the checkpoint was taken, the job issuing the RESTART must execute a
MOUNT control statement for the device set before calling RESTART. RESTART does not mount device
sets. Files on device sets are attached and positioned by RESTART.
Any ECS direct access user area attached to the job is copied in its entirety to the checkpoint tape. At
restart time, it is recopied to ECS from the checkpoint file. On the job statement for the restart job, the user
must request at least as much ECS as was attached to the original job. If reconfiguration results in insufficient
ECS available to the user, restart is not possible. The RESTART statement should not be used within a CCL
procedure (see section 5).
The formai of RESTART is:

RESTART ,name,n,S=xxx.

All parameters are optional and order independent.

name Name of checkpoint file as defined at checkpoint time. Default is CCCCCCC.

n Number (decimal) of checkpoint to be restarted. If n is greater than the number of
the last checkpoint taken, the restart attempt is terminated. Default is 1.

S=xxx Ignored by RESTART; allowed for compatibility with previous systems.
A checkpoint dump cannot be restarted in the following cases.
A tape file necessary for restarting the program was overwritten after the checkpoint dump was taken.
A machine error propagated bad results but did not cause abnormal termination until after another
checkpoint dump.
RETURN (EVICT FILE)
RETURN performs an operating system CLOSE/RETURN function. It differs from the UNLOAD control state-
ment only in that RETURN reduces the maximum number of tapes that can be held by the job, but UNLOAD

does not. RETURN deletes all references to the files specified, except as noted below, and destroys the file
contents of local files.

4-80 60493800 E

The format of RETURN is:
RETURN,lfnl,lfnz, e

More than one file or multi-file set can be specified; only one is required.

Hih Name of file tc bé returned, 1.7 letters or digits beginning with a letter or name of
multi-file set tape to be returned, 16 letters or digits beginning with a letter. Ifn;

cannot be INPUT.
For magnetic tape output files, RETURN causes trailer labels to be written and the file to be rewound and
then unloaded. With the exception of members of a multi-file set, the tape units on which the file resides is
disassociated from the job and made available to the system for new assignment. The count of the number
of tape units logically required by the job, as set by a tape parameter on the job statement, is then decreased.

For multi-file set names, the tape units assigned to the set are disassociated from the job and made available
to the system for new assignment. The count of the number of tape drives required is then decreased.

For mass storage files, RETURN causes the file to be returned. Special-named files on queue devices are
released to the output queue associated with their dispositions. If any of the special-named files are to be
evicted, the DISPOSE or ROUTE control statement should be used instead of RETURN. Permanent files
return to permanent file manager jurisdiction. Other mass storage files are evicted.

REWIND (REWIND FILE)

REWIND positions a file at the beginning-of-information.

For a Jabeled magnetic tape, this position is the start of the user’s data after label information.

For unlabeled multi-volume tapes, a REWIND causes the current volume to be rewound.

For labeled multi-volume, single-file tapes, a REWIND causes the current volume to be rewound and the volume
number in the system tables to be set to 1. A subsequent forward motion causes the label to be read and

compared with -the system tables, and the operator is-notified if the current volume is not number 1.

For labeled multi-file tapes, a REWIND issued for a file causes positioning to the beginning of that file. If
necessary, the operator is instructed to mount the previous volume.

The format of REWIND is:
REW[ND,lfnl,lfnz, .
More than one file can be specified; only one is required.
Ifn; Name of file to be rewound, 1-7 letters or digits beginning with a letter.

A REWIND that references a multi-file set name is illegal; the job terminates.

60493800 E 4-81

In most cases, when a file is requested for a job, that file is positioned automatically at beginning-of-information.
However, because of variations in installation parameters and procedures, automatic positioning can not always
occur with every file requested. Therefore, it is best to follow the REQUEST statement with a REWIND state-
ment to ensure that the file is positioned at its beginning when first referenced.

RFL (REQUEST FIELD LENGTH)

RFL requests a specific central memory field length and inhibits dynamic field length management by the
operating system. RFL should not be used unless the job has special requirements. A REDUCE control
statement should immediately follow the operation that requires RFL use, so that dynamic field length
management is restored.

For most jobs, the amount of central memory required varies with each job step. For example, a FORTRAN
compilation might require 45000 words and a COPY routine might require 5000 words. System usage can be
improved when memory not currently needed is freed for other jobs. The system automatically increases or
decreases the field length assigned to a job to optimize use of system storage.

If a job step needs more storage than would be assigned normally, RFL can be used to specify the maximum
field length required. RFL can increase or decrease field length.

The format of RFL is:
RFLAfl.
fl New field length (octal). Maximum value is established by the value of the CM

parameter on the job statement, if any, or by an installation-determined value. The
fl parameter must be specified; there is no default,

ROUTE (FILE DISPOSITION)

ROUTE directs a file to an input or output queue. Both file destination and type of further processing can
be specified by control stagtement parameters. ROUTE is concerned with handling a file after it is released
from the job, so it is not applicable to files with a fixed residence such as permanent files, private device set
files, or files residing on other non-allocatable equipment. Unless deferred routing is requested, the file is
released from the job immediately.

The file must be resident on a queue device. This can be assured by specifying *Q on a REQUEST statement.

The characteristics of a file that can be specified by ROUTE are:

Disposition code Print, punch, and so on.

Deferred routing Do not release the file immediately.
External Punch card format or print train.
characteristics

Forms code Particular paper or card forms to use.

] 482 60493800 E

File ID Name identifying the file while it is in the output queue, this name is printed
on the banner page of a printout or punched on the iace card of a punch card

deck.
Internal Data is in display code, ASCII, binary, or transparent (INTERCOM 5) format. |
characteristics .
Priority Priority of file to be output at originating INTERCOM terminal.
Repeat count Number of extra copies for output files.
Spacing code Octal number of the array to be used with the 580 PFC Printer.
Station ID Logical identifier of the computer to process the file.
Terminal ID Central site or identifier of the INTERCOM terminal to receive the file.

Unlike DISPOSE, deferred routing can be used with INTERCOM terminal ID and forms code on a ROUTE
control statement.

Files on public mass storage devices, except those with the special names listed below, receive a disposition
code of scratch when they are created. At end-of-job or when the file is returned, such a file is discarded.

Files with special names receive specific disposition and external and internal characteristic codes when they
are created. These files are sent to the predetermined destination at end-of-job or when returned. If a special-
named file is to be discarded, DISPOSE or ROUTE must be used. The file names with special codes are

listed below:

Special
File Name Destination Default DC Default EC Default IC
OUTPUT Print on any available printer with PR A6 or B6't DIS
standard print train
PUNCH Punch in Hollerith format PU 026 or 02911 DIS
PUNCHB Punch in standard binary format PU SB BIN
P80C Punch in free-form binary format PU 80COL BIN
FILMPRT Print on microfilm recorder FRY - -
FILMFLT Plot on microfilm recorder FLt - - =
HARDPRY Print on hardcopy device HRT —-—— -
HARDFLT Plot on hardcopy device HLT —— -
PLOT' Plot on any available plotter prt —-— = - =

Format of files routed to the input queue can be dictated by operating system convention. If keywords FID,
IC, EC, or FC are used in conjunction with DC=IN, they are ignored and no warning message is issued.

TSupporting software must be supplied by the installation.
Depends on installation parameter.

60493800 E 4-83

The format of ROUTE is:

ROUTE,}fn,DEF, DC=dc, EC=ec, FC=fc, FID=fid, IC=ic, PRI=pri, REP=n, SC=nn, ST=mmf, TID=tid.

Only Ifn is required. All other parameters are optional and order independent.

Ifn

DEF

Logical file name of the file to be routed, 1-7 letters or digits beginning with a
letter. Ifn cannot be INPUT.

Defer file disposition. The system stores the information about the file and disposes
it as requested when the file is released. Files are released by RETURN and UNLOAD
control statements, ROUTE or DISPOSE statements that specify immediate release,

or at end-ofjob. Routing of files to the input queue cannot be deferred. With
deferred routing, the user can redefine the same file with subsequent ROUTE state-
ments or specify characteristics of a file before the file is created.

DEF used with DC=IN causes the ROUTE statement to be ignored. If omitted, file
is released at ROUTE execution. DEF used with DC=SC, or DC not equivalenced,
causes all user generated output to be discarded. The dayfile is not discarded.

File disposition:

SC Evict (scratch) the file (default) FRT Print on microfilm recorder

PR Print on any available printer FLY Plot on microfilm recorder
HRT Print on hardcopy device

LR Print on 580-12 printer HLT Plot on hardcopy device

LS Print on 580-16 printer p1t Plot on any available plotter

LT Print on 580-20 printer IN Place file in the input queue

PU Punch

Use if DC=IN can be restricted by the installation. If dc is not specified, DC=SC is
assumed.

External characteristics of the print or punch file. If EC is not specified, default EC
code is used.

Print Files:

B4 Print format BCD 48 character print train
B6 Print format BCD 64 character print train
A4 Print format ASCII 48 character print train
A6 Print format ASCII 64 character print train
A9 Print format ASCII 95 character print train

TSupporting software must be supplied by the installation.

4-84

60493800 E

Default value for JANUS print files is B6 or A6 depending on installation option.

If EC=A9 is specified, JANUS will not print the file unless IC=ASCII is also specified.
For all other print EC values, JANUS requires IC=DIS. INTERCOM 4 print files i
with a default EC code are printed on any available train other than B4 or A4.

The print trains normally mounted for output from INTERCOM terminals are:

INTERCOM 4 INTERCOM 5

BCD 200UT B6 B6

ASCII 200UT A6 A6

730 series batch terminal A6 A6

711 and 714 terminal A9 A6

Others A6
Punch Files:

026 Punch format 026

029 Punch format 029

ASCII Punch format ASCII (INTERCOM files only) I

SB Punch format binary

80COL Punch format 80 column binary

Default value for JANUS punch files is 026 or 029 depending on installation option.
The only INTERCOM 4 terminal with a punch is the 733; the default is determined
when the terminal is auto-loaded. No standard binary punching is available with
INTERCOM 5.

FC=fc Forms code, where fc can be any two letters or digits. This parameter indicates
special card or paper forms are to be used for output. The operator should be
informed of the meaning of the codes so that the proper forms are mounted. Each
installation, typically, establishes procedures for using forms codes. If FC is not
specified, standard forms are used.

FID=fid File name while the file is in the output queue.

* First five characters of the file name are the same as the first
five characters of the job name. Two unique sequence numbers,
different from the job sequence numbers, are added in the
sixth and seventh positions.

fffff First five characters of the file name are fffff. This name is
printed on the banner page of a printout or punched on the
lace card of a punch card deck. Any combination of one to
five letters or digits can be specified, with the first character
a letter. The two unique job sequence characters added by
the system to the job name are used as the sixth and seventh
characters of the file name. If fffff is less than five characters,
the name is filled with display code zero through the fifth
position.

60493800 E 485

IC=ic

PRI=pri

REP=n

SC=nn

ST=mmf

TID=tid

4-86

*Ifff Equivalent to FID=fffff except two unique sequence numbers,
other than the job sequence numbers, are added in the sixth
and seventh positions.

If fid is not specified, file name while the file is in the output queue is the same as
the job name. Default.

Internal characteristics of the file:

DIS File format is display code; default.
ASCH File format is ASCII.

BIN File format is binary.

TRANS File format is transparent (INTERCOM 5).

IC=DIS is required by JANUS for all print files except where EC=A9, in which case,
IC=ASCII is required. Files can be printed at INTERCOM 4 terminals when IC=DIS
or IC=ASCII is specified with any EC parameter. IC=BIN is Tequired for binary
punch files. At INTERCOM 5 terminals, IC=ASCII and IC=BIN are not allowed, and
IC=TRANS can be specified only at HASP or 2780/3780 terminals. If IC is not

specified, IC=DIS is assumed.

Priority level for a file to be output at originating INTERCOM terminal, 14 (octal)
digits. PRI can be used to enter a priority for a file to be entered into the remote
output queue. In any other instance, the parameter is ignored. If pri is not specified,
file receives standard priority.

Repeat count for output files, n< 37B. If n is not specified, there are zero extra
copies.

Spacing code for output sent to a 580 PFC printer. nn is an octal value, 0 to 77B,
indicating an installation-defined spacing code array. Zero indicates the default array.
All other values of nn are defined at the installation. See a site analyst for valid

nn values. If nn is not specified, SC=0 is assumed.

The logical identifier of the system responsible for processing the file. If DC=IN,

mmf is the logical identifier of the system where the job is executed. The ST param-
eter on the ROUTE control statement overrides an ST parameter on the job statement
of the routed file. If the DC parameter specifies an output queue, mmf is the system

where the file is output. If mmf is not specified, process the file on the system where
it originated.

INTERCOM terminal identification. File is to be returned to terminal identified.

If tid=C, file is to be output at central site. If tid is not specified, file is to be
returned to the site or terminal where the job originated.

60493800 E

ROUTE EXAMPLES

1. job statement

ROUTE(LOON,DEF,DC=PR,EC=A9,IC=ASCTI)
EXIT.

ROUTE(LOON,DC=5C)

7/8/9

6/7/8/9

This job creates a long file in ASCII format for a printer with an ASCII 95<haracter print train,

If job aborts, the file is scratched. If job terminates normally, file LOON is printed after operator
mounts 95-character print train. The file is referenced before it is created. The routing information
is saved and used when the file is sent to the output queue.

2. job statement
REQUEST (SWALLOW,*Q)
COPY(INPUT,SWALLOW)
ROUTE(SWALLOW,DC=IN)

7/8/9
SWALLOW,STABC.

7/8/9

6/7/8/9
The job file SWALLOW is executed on system ABC.

3. job statement
COPYBF(INPUT,FALCON)
ROUTE(FALCON,DC=IN,ST=ABC)
7/8/9
HAWK,T100.
COPYBF(INPUT,OWL)
REWIND(OWL)
COPYBF(OWL,EAGLE)
ROUTE(OWL,DC=PR)
ROUTE(EAGLE,DC=PR,ST=DOG)

60493800 E 4-87

| 4ss

7/8/9

6/7/8/9

This job creates a file FALCON, which is all but the control statements of the job. File FALCON
is sent to the input queue of system ABC where it is known as job HAWK. Job HAWK produces
file OWL to be printed on system ABC and file EAGLE to be printed on system DOG.

job statement

COPY(INPUT,SWIFT)
OURTE(SWIF,DC=IN,ST=DOG)

7/8/9
SWIFT,STABC.

7/8)9

6/7/8/9

When the ST parameter is specified on ROUTE and on the job statement of the file being routed,
the ROUTE control statement overrules the job statement. Job SWIFT is executed on system
DOG.

job statement
:ROUTE(PIPIT,DEF,DC=PR)
RETURN(PIPIT)

7/8/9

6/7/8/9

When the control statement RETURN(PIPIT) is executed, the file PIPIT is sent to the output queue
to be printed. PIPIT is not scratched.

60493800 E

6. job statement
i{OUTE(GREBE,DEF ,EC=A6,IC=ASCII)
i{OUTE(GREBE,DEF ,EC=A9)
i{OUTE(GREBE,DC=PR)
7/8/9

6/7/8/9

The file named GREBE is printed on a printer with a 96-character ASCII print train. When the
first ROUTE is executed, an EC of A6 and IC of ASCII are recorded. When the second ROUTE
is executed, the EC is changed to A9. Since the IC parameter does not appear, its value does not
change. When the third ROUTE is executed, the file GREBE is sent to the output queue to be
printed. Subsequent references to an Ifn of GREBE refer to a new file with the same name.

7. MURRE.
ROUTE(ALCID,FID=* DC=PR)
7/8/9

6/7/8/9
Suppose the two unique sequence characters added to the job name by the system are 3F. The

job is then known as MURRE3F. If the next sequence characters were 3Z when ROUTE is
executed, the file ALCID would be given the name MURRE3Z when it is printed.

60493800 E 4-89

8. BIRDS.
ROUTE(TERN,FID=*TERN)
7/8/9

6/7/8/9
Suppose the sequence characters are as in example 7. Then the file TERN is printed as TERNO3Z.

9. BIRDS.
ROUTE(TERN,FID=TERN)
7/8/9

6/7/8/9
Suppose the sequence characters are as in examples 7 and 8. Then the file TERN is printed as
TERNO3F.
SAVEPF (CATALOG PERMANENT FILE ON LINKED MAINFRAME)
SAVEPF makes an existing local file a permanent file on the mainframe specified. SAVEPF differs from the
CATALOG control statement in that SAVEPF can catalog a file at a mainframe other than that where the
job is executing; CATALOG cannot.
The format of SAVEPF is:

SAVEPF lfn,pfn,ID=name,AC=act,CN=cn,CY=cy EX=ex,FO=fo MD=md MR=m,PW=pw RD=rd, RP=rp,
RW=p,ST=mmf, TK=tk, XR=xr.

The 1fn and ID parameters are required in the order shown. All other parameters are order independent.
The ST parameter is required; other parameters might be required, as noted with CATALOG. Any SN
parameter is ignored. If a terminator does not appear at the end of the parameter list, column 1 of

the next card or line is considered to be a continuation of the SAVEPF parameter list.

| 490 60493800 E

lfn Logical file name by which the file is presently known to the job, 1-7 letters or digits
beginning with a letter. This name does not become part of the permanent file
identification.

pfn Permanent file name by which the file is known in permanent file manager tables,
1-40 letters or digits. If pfn is omitted, Ifn is used.

ID=name Owner or creator of file.

ST=mmf System on which file is to be cataloged, 3 characters. The values for mmf are
established at installation time.

When the ST parameter designates a mainframe running SCOPE 2, the file structure must adhere to
SCOPE 2 Record Manager defaults; otherwise a FILE statement must be used. For example, the
SCOPE 2 FORTRAN and COBOL compilers expect the source program to be in W type record format.
A program created under the NOS/BE INTERCOM Editor consists of Z type records and cannot be
compiled directly by SCOPE 2 compilers.

Example:

A user writes a program under the Editor CREATE command and makes the file local to the job
with a SAVE,ZZZ command. The user then enters the following statement to make the file
permanent under SCOPE 2: SAVEPF,ZZZ ID=XX,ST=MFZ., where MFZ is the mainframe running
SCOPE 2. The system responds with WAITING FOR MMF SAVEPF. This message appears even
if the SCOPE 2 mainframe is down or not available. When INTERCOM responds with .., the file
has been transferred and made permanent.

To compile and execute the program made permanent on SCOPE 2, the user creates the following
file under the Editor CREATE command.

SCOPE 2 job statement.
SCOPE 2 account statement.
FILE,ZZZ,RT=Z,BT=C,F1~=80.
ATTACH,ZZZ,ID=XX.
FIN,I=ZZZ.

LGO.

With the SAVE and BATCH commands, the user makes the file local and then submits the job.
The program on file ZZZ is attached, compiled, and executed. The job aborts if the FILE state-
ment is not included, since the FORTRAN compiler would expect W type records.

See the CDC CYBER Record Manager manuals and the SCOPE 2 Operator’s Guide for additional details
on file conversion requirements.

See the CATALOG control statement for the remaining parameters.

60493800 E 491

SETNAME (ESTABLISH IMPLICIT SETNAME)
SETNAME indicates the device set to be referenced implicitly by subsequent ATTACH, PURGE, and REQUEST
control statements. When SETNAME is not used, these control statements implicitly reference a system device
set.
The format of SETNAME is:

SETNAME jsetname.

The parameter can be omitted.

setname Name of device set to be referenced implicitly, 1-7 letters or digits beginning with a
letter. If omitted, public device sets are assumed.

A second SETNAME control statement overrides the first.
SETNAME is explicitly overridden by an SN=setname parameter on a REQUEST, ATTACH, or PURGE control
statement. An SN that does not specify a setname on a REQUEST control statement does not override the

SETNAME control statement. A rotating mass storage REQUEST which does not have an SN parameter will
always reference public device sets.

SKIPB (SKIP BACKWARD SYSTEM-LOGICAL-RECORDS)

SKIPB bypasses one or more system-ogical-records in a reverse direction. Current file position can be any
point within a record when the control statement is executed. The file must have system-logical-record
structure. SKIPB cannot be used with tapes in S or L format and should not be used with CDC CYBER
Record Manager file organizations unless RT=S.
The format of SKIPB is:

SKIPB, Ifn n lev,mode.

Parameters are positional; only Ifn is required.

Ifn Logical file name, 1-7 letters or digits beginning with a letter.

n Number of system-logical-records of level lev or greater to be skipped, 1-262142
(decimal). Default is 1. A value greater than 262142 is treated as a rewind request.

lev Level number, 0-17 (octal). Default is O.

mode File mode applicable to tape files only:

B Binary; default,

C Coded

| 492 60493800 E

Skipping stops when the specified number of terminators containing the specified level have been bypassed or

QYFTRT et

begmmng-ol-mrormanon is encouniered. At the end of ORICD, Lne file is pObluoncu il‘ﬂmcumtmy wuuwulg

the system-logical-record terminator examined last. When the file is positioned immediately following a system-
logical-record terminator, that terminator is not counted in the execution of n skips.

WUBIVAISIVLULU Wi iuiiaivi, = . Ge i L R AL

SKIPF (SKIP FORWARD ¢

N

YSTEM-LOGICAL-RECORDS)
SKIPF bypasses one or more system-logical-records in a forward direction. Current file position can be any
point within a record when the control statement is issued. The file must have system-ogical-record structure.
SKIPF cannot be used with tapes in S or L format and should not be used with CDC CYBER Record Manager
file organizations unless RT=S.
The format of SKIPF is:

SKIPF Ifn,n lev,mode.

Parameters are positional; only Ifn is required.

Ifn Logical file name, 1-7 letters or digits beginning with a letter.
n Number of system-logical-records of level lev or greater to be skippr = -262142
(decimal). Default is 1.
lev Level number, 0-17 (octal). Default is 0.
mode File mode applicable to tape files only:
B Binary; default.
C Coded

Skipping stops when the specified number of terminators containing the specified level have been bypassed or
end-of-information is reached. At the end of SKIPF, the file is positioned immediately following the system-
logical-record last examined.

A value greater than 262142 for the number of records to be skipped causes a rotating mass storage file to be
positioned at end-of-information. For a tape file, a similar parameter causes the file to remain at its current
position.

SUMMARY (ACCOUNT SUMMARY)

SUMMARY obtains an accounting summary up to the point in the job where the statement is encountered.
The accounting summary, which appears in the job dayfile, lists resources used to this point in the job. The
resources used by a job step can be determined by executing a SUMMARY statement before and after the
job step and subtracting the resulting values. The summary output is the same as the accounting summary
generated at end-ofjob.

60493800 E 493

The format of SUMMARY is:
SUMMARY.

The discussion of the dayfile in section 2 gives details of summary output.

SWITCH (SET SOFTWARE SWITCH)

SWITCH sets one of the six software switches available for each job. At the start of job execution, all
switches are zero. Execution of SWITCH changes the current setting to its opposite mode.

In program branching, where two alternate processing routes are provided, the software sense switch is frequently
used to determine the path taken. This switch is a bit in central memory that a user’s program can reference.
A program might contain a request to take one path if the bit is set to one (on) and another if it is zero (off).
The format of SWITCH is:

SWITCH;n.

n Number of switch to be changed, 1-6. The n parameter must be specified; there is
no default.

Switches also can be set by the central site operator, a terminal user, or a program in a language that supports
switch operations.

The following example changes switch 4 to ON, then OFF, then ON again.

SWITCH,4. Set switch to 1.
SWITCH,4. Resets switch to 0.
SWITCH,4. Resets switch to 1.

SYSBULL (ACCESS SYSTEM BULLETIN)
SYSBULL copies request system bulletins to the OUTPUT file.
The format of SYSBULL is:

SYSBULL,p,.p, . . . Py

Parameters are all optional.

p; Bulletin names, ALL, or INDEX:
ALL Lists all bulletins. Any other parameters are ignored.
INDEX Lists index of all bulletins available. Default.

I 494 60493800 E

INTERCOM makes a call to SYSBULL whenever a user logs in. The calls are:

SYSBULL(LOGIN) If SUP is not specified.
SYSBULL(SUP) If SUP is specified.
’SBULL automatically atiempts to find the bulletin named LOGIN or SUP. If found, the bulletin is

immediately displayed. If SYSBULL does not find the system bulletin permanent file or the specific bulletin
LOGIN or SUP, processing continues.

The operating system calls SYSBULL for each batch job entered in the system.
The call is:
SYSBULL(BATCH)

SYSBULL automatically attempts to find the bulletin named BATCH. If found, it is the first item printed on
OUTPUT. If SYSBULL does not find the system bulletin permanent file or the specific bulletin BATCH, pro-
cessing continues.

TRANSF (DECREMENT DEPENDENCY COUNT)

TRANSF decrements the dependency count for jobs in an interdependent job string. The user can submit a
string of interdependent jobs to the computer, specifying the order in which they are to be executed. In
such a string, jobs can be input in any order and from central site or remote card readers. A job is not
executed until all prerequisite jobs in the string have been executed. Whenever possible, the operating system
schedules interdependent jobs for execution in parallel (multi-programming).

As each job is input, dependency identifier and dependency count on the job statement are noted. The
dependency count is decremented by TRANSF control statements in prerequisite jobs. When the count of
a dependent job becomes zero, it executes.

The Dym parameter on the job statement establishes job interdependency. y is the dependency identifier that
names the string to which the job belongs. m is the dependency count (number) of prerequisite jobs on
which the job depends.
TRANSF must appear after the control statements that execute the prerequisite programs. In multi-mainframe
configurations, a string of interdependent jobs must execute on the same mainframe. TRANSF should not
appear in the last job in the string since no jobs can depend on it.
The format of TRANSF is:

TRANSFJobIJobZ, c

Multiple job names or multiple TRANSF control statements can be used.
Name of job whose dependency count is to be decremented. Only the first five

characters of each job name are used, with the dependency string identifier maintaining
proper identification.

jobi

60493800 E 495 |

If a job containing a TRANSF control statement is terminated before that control statement is processed, the
dependency count of other jobs is not decreased. Instead, all succeeding jobs that depend on this job remain
in the input queue. No error message indicates that a job in a dependent string has terminated abnormally.
The operator decides whether the remaining jobs should be evicted or forced into execution. A message
instructing the operator can be placed in a routine after a RECOVR function, or on a PAUSE statement
following an EXIT statement.

An example of an interdependent job string JS follows. Consider jobs with names JOBA through JOBF.

JOBB is dependent on successful execution of JOBA
JOBC on JOBA

JOBD on JOBB and JOBC

JOBE on JOBC

JOBF on JOBB, JOBD, and JOBE

The control statements should appear with:

JOBA,DJS00. JOBB,DJSO1.
execution call execution call
TRANSF(JOBB,JOBC) TRANSF(JOBD,JOBF)
7/8/9 7/8/9
JOBC,DJSO01. JOBD,DJS02.
execution call execution call
TRANSF(JOBD,JOBE) TRANSF(JOBF)
7/8/9 7/8/9
JOBE,DJS01. JOBF,DJS03.
execution call execution call
TRANSF(JOBF) 7/8/9

7/8/9

JOBF, which can execute only if all other jobs in the string are successful, has a dependency count of
3, the number of jobs containing TRANSF references to JOBF.

TRANSPF (TRANSFER PERMANENT FILE)

TRANSPF changes the residence of permanent files and permanent file tables within a device set so that all
permanent file information can be removed from a device. It also copies files from one device set to another.
These operations are known as a single device set transfer and a dual device set transfer, respectively.

Before TRANSPF can be executed, a permanent file with name of DUM and ID of PUBLIC must be cataloged
on the device set specified by the FS parameter. If this is not done, TRANSPF aborts. TRANSPF issues an
internal ATTACII of the permanent file DUM,; the passwords subiitted in this ATTACH are those submitted
via the PW parameter on the TRANSPF request. If a DUM permanent file with TK=DUMPF already exists
(earlier systems required this), it must be purged and replaced as described above. If TRANSPF is unable to
attach the permanent file DUM, the function aborts.

4-96 60493800 E

Evice sei.

Before TRANSPF is called, a MOUNT control statement must be executed for the master devices of the device
d

Y PURLY o i NORSERL U ol x S, B, o) o B P T ANCDDY ... B R P, - |
SELS SpeCuICd DY WiC ro ald 10 paldineiCis. L1RAINDILT LallHlVl UC 1ull ULl a4 Slidicd

TRANSPF,P‘W=pw,FS=setnamel ,TS=setname2,FM=vsn 1 ,TM=VSn2,LF=1fn.

Parameters FS and TS are required; PW is required if passwords have been defined for file DUM.
Remaining parameters are optional. All parameters are order independent. If a terminator does not
appear at the end of the parameter list, column 1 of the next card or line is considered to be a
continuation of the TRANSPF parameter list.

PW=pw Specifies read, control, modify, and extend passwords, separated by commas, if defined
for permanent file DUM. If passwords have been defined for file DUM, all must be
specified with this parameter or the utility aborts. No default exists.

FS=setname1 Name of device set from which permanent file information is to be transferred; 1-7
letters or digits beginning with a letter. Default is the permanent file default set.

'1“S=setname2 Name of device set to which permanent file information is to be transferred; 1-7
letters or digits beginning with a letter. Default is the permanent file default set.

FM=vsn1 Volume serial number of member device from which permanent file information is to
be transferred; 1-6 letters or digits with leading zeros assumed. Required when TS
and FS specify the same setname. When TS and FS specify different setnames, all
devices in the set are assumed and the FM parameter cannot be specified.

TM—ﬂ/snz Volume serial number of member device to which permanent file information is to
be transferred; 1-6 letters or digits with leading zeros assumed. Data that cannot be
contained on this device overflows to another member of device set specified by TS,
except that files do not overflow to the member specified by FM when TS and FS
specify the same setname. Required when TS and FS specify the same setname and
FM specifies a master device. When TS and FS specify different setnames, TM cannot
be specified. Default is all devices in device set specified by the TS parameter.

LF=lfn Name of file on which output listing is written; 1-7 letters or digits beginning with a
letter. Default is OUTPUT.

SINGLE DEVICE SET TRANSPF
A single device set TRANSPF is requested if the device set specified by the FS parameter is the same as the
device set specified by the TS parameter.
TRANSFERRING FROM A MEMBER
If the FM parameter does not specify a master device, permanent files residing on the FM device are moved to
the TM device. A file is moved if any part resides on the FM device. Once the file has been transferred, the

disk space associated with the old copy is released. If the file cannot be completely contained on the TM
device, the file overflows to any other device in the set except the FM device. If the transfer of a file is

60493800 E 497

unsuccessful, that file is skipped, but TRANSPF is not aborted. A file transfer can be unsuccessful because of
uncorrectable parity errors, not enough space in the device set to accommodate two copies of the file simulta-
neously, or permanent file catalog full. When all permanent file information is successfully transferred from
the FM device, that device is no longer a permanent file device.

TRANSFERRING FROM A MASTER

When the FM parameter specifies a master device, the device set tables are moved to the device specified by
TM, and the device labels for both devices are updated to reflect the new organization of the device set. If
the tables cannot be successfully moved, the device set is not changed by the TRANSPF utility. Table trans-
fers can fail because of uncorrectable parity errors, or not enough space on the TM device to completely con-
tain the disk tables. The system must be idle before TRANSPF is executed for table transfer.

After the master device is successfully changed, permanent files residing on the FM device are moved to the
TM device as described above. When all permanent file information is transferred from the FM device, that
device is no longer a permanent file device.

Examples of single device set transfer are:

i. FIRST.
MOUNT(SN=TEST,VSN=999) Mount master.
TRANSPF(FS=TEST,TS=TEST,FM=999,TM=111,PW=A B,C,D)
6/7/8/9

This job transfers all permanent files and permanent file tables from the master device with VSN
of 999 to the member device with VSN of 111. Both devices belong to device set TEST. The
member device with VSN=111 was not explicitly mounted. The system initiates the mount of the
member when actual I/O is requested by TRANSPF. If this job runs successfully, device 111 is
the master device of set TEST.

If the tables do not fit on the device with VSN=111, the set is not changed, and the job ends.
If the tables are successfully transferred but the permanent files do not fit on the device with
VSN=111, the files overflow to any devices in the set TEST except the device with VSN=999.

The permanent file DUM is assumed to have been previously cataloged with passwords A,B,C,D on
device set TEST.

2. SECOND.
MOUNT(SN=TEST1,VSN=555) Mount master.
TRANSPF(FS=TEST1,TS=TEST1,FM=888,TM=222,PW=Q,R,S,T)
6/7/8/9

This job transfers all permanent files from the member device with VSN=888 to the member device
with VSN=222. Both members belong to the device set TEST1. The members with VSNs of

888 and 222 were not explicitly mounted. The system initiates the mount of these members when
actual 1/0 is requested by TRANSPF.

4-98 60493800 E

DUAL DEVICE SET TRANSPF

A dual device set TRANSPF is requested if the device set specified by the FS parameter is different from the
device set specified by the TS parameter. TRANSPF transfers permanent files by simulating the following
sequence of control statements.

REQUEST(lfnz,SN=setname7)
ATTACH(lfn ,pfn,ID=owner,SN=setname D
COPY(Ifn ,lfnz)
CATALOG(Ifn,,pfn,ID=0owner)
RETURN(lfn, }fnz)

All files residing on the device set specified by the FS parameter are transferred to the device set specified by
the TS parameter. The FM and TM parameters cannot be used and no member devices can be specified. After
a successful transfer of a file, two copies of the file exist, one in the FS device set and one in the TS device
set.

A permanent file transfer might be unsuccessful if Ifn has an uncorrectable parity error, CATALOG is unsuccessful
for reasons such as unavailable table space, or if insufficient disk space is available on the TS device set to con-
tain the file.

In a dual device set transfer, the disk tables are not moved as a separate entity. Critical tables are only moved
within a device set and never from one device set to another.

Example of dual device set transfer:

JOB.

MOUNT(SN=BOB,VSN=1944) Mount master.
MOUNT(SN=TOM,VSN=1984) Mount master.
TRANSPF(FS=BOB,TS=TOM,PW=PW1,PW2 PW3 PW4)

&171Q/0

S/ N7 4

This job moves permanent files from the device set BOB to the device set TOM.

UNLOAD (EVICT FILE)
UNLOAD performs an operating system CLOSE/UNLOAD function. It differs from RETURN only in that
RETURN reduces the maximum number of tapes that can be heid by the job, but UNLOAD does not affect
the tape count. UNLOAD deletes all references to the files specified, except as noted below.
The format of UNLOAD is:

UNLOAD lfn Ifn,, .

More than one file or multi-file set can be specified; only one is required.

lfni Name of file to be unloaded, 1-7 letters or digits beginning with a letter. Can be a
member of a tape multi-file set; cannot be INPUT.

Name of multi-file set of tape to be unloaded, 1-6 letters or digits beginning with a
letter.

60493800 E 499

For tape files, tapes are rewound and unloaded after any necessary labels are written. The tape drive is then
made available for new assignment. However, UNLOAD cannot override an IU (inhibit unload) parameter on
the REQUEST control statement for the file. When the IU parameter exists, a subsequent unload rewinds,
but does not unload, the tape.

For mass storage files, UNLOAD causes the file to be returned. Special-named files on queue devices are
released to the output queue associated with their disposition. If any of the special-named files is to be

evicted, the DISPOSE or ROUTE control statement should be used rather than UNLOAD. Permanent files
return to permanent file manager jurisdiction. Other mass storage files are evicted.

VSN (TAPE VOLUME IDENTIFICATION)

VSN has two functions for tape files.
It relates the external sticker (volume serial number) for a tape to the logical file name.

It provides information for the tape prescheduling display at the operator console. Since the operator
is then aware of upcoming tape requests, he can mount the required tapes so the system can access
them without further operator action.

The VSN control statement can be used in place of 2 VSN parameter on a REQUEST or LABEL control
statement. VSN execution does not affect either the checking or writing of tape labels. It can be specified
for labeled or unlabeled tapes.

The format of VSN is:
VSN,lfn1=vsn1,lfn2=vsn2, .
One statement can be used for any number of files. Multiple VSN control statements can be used. VSN

can be continued; if the parameter list does not end with a terminator, column 1 of the next control
statement is considered a continuation of column 80.

ifn; For a single file, the logical file name of 1-7 letters or digits beginning with a letter.
For a multi-file set, the multi-file set name of 1-6 letters or digits beginning with a
letter.

vsn; Volume serial number of 1-6 letters or digits with leading zeros assumed. A vsn of O

or SCRATCH, or omission of =vsn, results in scratch tape assignment.

If any of several alternate volumes suffice, equals signs should separate identifiers, as
in FILE=1234=1235.

If the file is to be assigned to a multi-volume set, VSNs should appear, separated by

slashes, in the order that volumes are to be accessed as in BIGFILE=1ST/2ND/ . . ./
LAST.

1 4100 60493800 E

If conflicting volume serial numbers are given for a single tape file, the first encountered is used. However,
duplicate specifications on the same control statement produce a fatal error,

VSN statements can be piaced anywhere in the conirol staiements as long as ihey precede the REQUEST or
LABEL control statement that associates the file with the job. If a logical file name is to be re-used during
a job, such as OLDPL for two UPDATE operations, the first file should be released by an UNLOAD or

TIONTY o " 5

RETURN control statement before a VSN is given for the second file.

VSN EXAMPLES

1. JOBSMTI.
VSN(TAPE1=1234)
REWIND,TAPE1.

The VSN control statement has no effect, because no REQUEST or LABEL control statement
appears for file TAPE]L. File TAPE] is opened as a disk file.

2. JOB6,MTI. JOB7 MT1.
VSN(TAPE1=1234) REQUEST(TAPE1,VSN=1234 MT E,NORING)
REQUEST(TAPE1 ,MT,E,NORING)

To have a specific magnetic tape assigned to the job, either of the above requests would suffice.

3. JOBS,GElL.
VSN(TAPE1=0)
REQUEST(TAPE1,GEN,IU)

A 679 GCR unit with any tape mounted that meets the installation criteria for a scratch tape is
assigned.

4. JOBY,PEl.
VSN(TAPE1=0)
REQUEST(TAPE1,GEN,IU)

A 669 or 679 unit with any tape mounted that meets the installation criteria for a scratch tape
is assigned.

60493800 E 4-101

CDC CYBER CONTROL LANGUAGE (CCL) 5

INTRODUCTION
The CDC CYBER Control Language (CCL) provides control statement manipulation. Various verbs allow selec-
tion of CCL capabilities. The user can employ CCL to conditionally skip or process control statements and to
process and reprocess a group of control statements. Other CCL verbs control processing of control statements
in a file other than the job file. A CCL verb appears at the beginning of a CCL control statement, preceding
any separators or terminators; a verb is only part of a CCL statement.

The following verbs cause control statements (including CCL control statements) to be skipped or processed
conditionally.

IFE If the IFE expression (for example, A=B) is true, processes following statements; if
it is not true, skips until a terminating statement is encountered.

SKIP Skips until a terminating statement is found.
ELSE Terminates and initiates IFE skipping.
ENDIF Terminates IFE, SKIP, and ELSE skipping.

The following pair of CCL verbs allows the user to process and reprocess a group of control statements
(including CCL statements).

WHILE Brackets a group of control statements and establishes the beginning of the group.

The group is processed as long as the WHILE expression (for example, R1<5) is true.
ENDW Brackets a group of control statements and establishes the end of the group.

The user can manipulate CCL symbolic names with the following verbs. A symbolic name is an alphanumeric |
character string recognized by CCL. CCL associates a constant or variable numeric value with a symbolic name.

SET Allows the user to alter the values of variable symbolic names.

DISPLAY Evaluates an expression (for example, 2+3) and prints the result in the dayfile in both
octal and decimal.

CCL also provides the following functions to be used within an expression.

FILE Determines the attributes of a file.
DT Determines the type of device on which a file resides.
NUM Determines whether a parameter has a numeric value.

60493800 E 5-1

CCL provides verbs and commands to control processing of control statements (including CCL statements) in a
file other than the original job file. A group of these separate control statements is called a procedure. The
following CCL verbs deal with procedures.

BEGIN Initiates processing of a procedure.

REVERT Returns processing from a procedure to the control statement sequence that called it.
A procedure is identified to CCL and to the operating system by the following header statement.

.PROC Identifies the statements that follow as a procedure.

The following commands, similar to directives, control processing of data within a procedure.

.DATA Allows data needed by a procedure to be stored within that procedure.

.EOR Causes an end of record to be written on a data file.

.EOF Causes an end of partition to be written on a data file.

* Allows the user to include comments in a procedure; these comments are not printed

in the dayfile.

CCL statements have a syntax similar to, but not identical to, the operating system’s control statement syntax.
The asterisk (*) and all system separators are valid CCL separators. A CCL statement consists of a CCL verb
followed by parameters and separators. The separator following the verb in a CCL statement must be a comma
or a left parenthesis. The separator between parameters must be a comma. A CCL statement must be termi-
nated by a period or a right parenthesis. Within a statement, an expression or function can end with a right
parenthesis. If this occurs at the end of the statement, the right parenthesis does not serve as the statement
terminator. An additional terminator must be included to complete the statement. (INTERCOM will not add
a second command terminator for CCL statements entered via INTERCOM.) Literals ($-delimited character
strings) are recognized within all CCL statements but might not be evaluated during substitution within a pro-
cedure (covered later in this section). CCL ignores all blanks in CCL statements, except blanks within a literal.
Blanks cannot be used within a verb. Any CCL statement may continue over more than one card or line if
the last character of a continued card or line is a valid CCL separator.

EXPRESSIONS

A CCL expression consists of operators and operands. It may include other expressions that are enclosed in
parentheses [for example, the expression 2*(3+5) contains another expression, 3+5]. Parentheses do not imply
multiplication [for example, 2(3+5) is not a valid expresssion].

OPERATORS

The three types of CCL operators are arithmetic, relational, and logical. Arithmetic operators perform the
various arithmetic operations. The relational operators produce a value of one if the relationship is true and
zero if it is false. Logical operators evaluate the full 60 bits of each operand, producing a 60-bit result. If a
CCL statement or relational operator evaluates this result as true or false, CCL considers a result with any bits
set to be non-zero (true) and a result with no bits set to be zero (false).

52 60493800 E

ARITHMETIC

+ Addition
- Subtraction
* Multiplication
/ Division
*% Exponentiation
RELATIONAL
EQ. or = Equal
LT. or < Less than
.GT. or > Greater than
.NE. Not equal
.LE. Less than or equal
.GE. Greater than or equal
LOGICAL
.EQV. Equivalence (If A.EQV.B is true, all 60 bits are set.)
.OR. Inclusive OR (Any bit set in either A or B is set in the result.)
.AND. AND (If A and B are true, A.AND.B is true.)
.XOR. Exclusive OR (A bit is set in the result if the corresponding bit is set in either A or B

but not both.)

.NOT. Complement (If A is O or no bits are set, NOT A is all 60 bits set.)

60493800 E 53 |

ORDER OF EVALUATION
Exponentiation
Multiplication, division
Addition, subtraction, negation
Relations
Complement
AND
Inclusive OR
Exclusive OR, equivalence

If there is more than one operation of the same order, evaluation is from left to right.

OPERANDS

The four types of CCL operands are expressions, integer constants, symbolic names, and CCL functions. Any
operand can be preceded by a leading plus or minus sign. A leading plus is ignored and a leading minus
indicates negation.

Expression A CCL expression enclosed in parentheses; expression is evaluated and the result is
an operand.

Integer constant A character string of 1 to 10 characters. An integer constant can be either numeric
or a literal.

Symbolic name An alphanumeric character string of 1 to 10 characters that is recognized by CCL.
(A symbolic name has a numeric value, which is either an installation-defined constant

or a user- or CCL-defined variable.)

CCL function A special operand recognized by CCL; determines the attributes of a file or a char-
acter string. (An expression can consist entirely of a CCL function.)

EXPRESSIONS

For all practical purposes, an expression may be as long as the user wishes, provided there is either a) or a .
within the first 50 operands.

CCL assumes any character string beginning with a numeric character is numeric. It cannot contain any non-
numeric characters, except for an optional post radix of B or D. Any alphanumeric string must begin with an
alphabetic character.

54 60493800 E

Expressions may be used with CCL control statements IFE, WHILE, DISPLAY, and SET and the FILE
function. The separator preceding an expression is not part of the expression; using a comma for this
separator, rather than a ieft parenthesis, improves readabiiity. The separator foillowing the expression must be
a comma. Computations are accurate to 10 decimal digits (20 octal digits), and overflow is ignored.

INTEGER CONSTANTS

An integer constant is generally numeric, although it can also be a literal. It must be 10 characters or less,
including the post radix if it exists. Integer constants can be specified with or without a post radix. If the
post radix is omitted, the constant is assumed to be decimal. A post radix of B indicates octal, and a post
radix of D indicates decimal.

A literal (a $-delimited character string) must be 10 characters or less, excluding the $ delimiters. If CCL
encounters a literal, it is evaluated, and its display code value is right-justified and processed as an integer
constant.

SYMBOLIC NAMES

A symbolic name is an alphanumeric character string that points to a location where a numeric value is stored.
These numeric values can be defined at installation or can be variables set by the user or by CCL. All vari-
ables, except EM, OT, and SYS, have an initial value of zero.

The symbolic names in table 5-1 and the symbolic names with the true or false values are valid in any CCL
expression but meaningless within FILE or DT functions. FILE and DT functions have their own symbolic
names.

Each symbolic name in table 5-1 has one or more of the following attributes.

Local An X in this column indicates that the value is saved by a BEGIN statement before
initiating a procedure and restored by a REVERT statement upon termination of a

procedure (procedures are explained later in this section).

Set An entry in this column indicates that the symbol has a variable value. The entry
specifies how the symbol obtains its value. One or more of the following characters
can be listed in this column for each symbolic name.

B Set by BEGIN

0 Set by the operating system

R Set by REVERT

U Set by a user on the SET control statement or the SETJCI macro
Compare An entry in this column is a symbolic name. The symbolic name with a compare

entry is a subset of that entry name and may be compared to it. For example, CPE
has the entry EF in the compare column. To find out if an error was a CPU abort,
the value of EF could be compared to the value of CPE using a CCL statement, such
as IFE (covered later in this section). For example, if IFE, EF=CPE, LS. is true,

the error was a CPU abort.

60493800 E 5-5

TABLE 5-1.

SYMBOLIC NAMES WITH ARITHMETIC VALUES

Name I Local l Set |Compare I

User’s Range of Values

Description

R1

R2

R3

RI1G

DSC

EF

EFG

TLE

ARE

PPE

CPE

MNE

ODE

PSE

ESE

MSE

oT

X

X

c o a ac <

U,0

U,0

EF

EF

EF

EF

EF

EF

EF

EF

EF

0 to 131071D or 377777B

0 to 131071D or 377777B

0 to 131071D or 377777B

0 to 131071D or 377777B

0and 1

0 to 62D or 76B

0 to 62D or 76B

Value in control register 1.

Value in control register 2.

Value in control register 3.

Value in global control register 1.
Dayfile skipped control statement flag
(1 = skipped control statements
printed in dayfile).

Error Flag.

Global error flag.

Time limit error; time limit was exceeded.
Arithmetic error; user had a floating-
point arithmetic error or a read or

write outside of SCM or LCM range.

PPU abort; a peripheral processor
program aborted.

CPU abort; job supervisor detected
an error, or the system processed an
ABORT macro and found no
REPRIEVE macro.

Monitor call error; a user’s RA+1
request contained an error.

Operator drop; a drop aborted the job.
Program stop error; a program stop
(zero instruction word) occurred in
the user’s program.

EXIT,S. processing; an ABORT macro
with S option initiated a search for

an EXIT,S. statement.

Mass storage limit; the limit was
exceeded.

Job origin type.

60493800 E

TABLE 5-1. SYMBOLIC NAMES WITH ARITHMETIC VALUES (Contd)

Name | Local | Set | Compare User’s Range of Values Description

SYO oT System job; the job originated from
the system console.

BCO oT Batch job; the job was submitted at
the central site or from a terminal.
Job output is sent to the central site.

EIO oT Remote batch job; the job was
submitted from a terminal and out-
put is sent to a terminal.

TXO oT Time-sharing job; a statement was
submitted from a terminal through
INTERCOM.

SYS 0 The host operating system.

NOSB SYsS NOS/BE operating system.

SC2 SYS SCOPE 2 operating system.

PNL B,R Procedure nesting level:
0 Job control statements.
1 1st level procedure.
50 50th level procedure.

EM U 0 to 7B Current exit mode; user sets on the
MODE statement.

FL 6] Current SCM field length.

MFL 0 Maximum field length.

MFLL (0] Maximum ECS field length.

TIME 0 Current time of day (hhmm).

VER (6] Version of the operating system.

60493800 E

The following symbolic names have true or false values.

TRUE 1

T TRUE=1

FALSE 0

F FALSE=0

SWn SENSE switch, n=1-6

The symbolic names R1, R2, R3, and R1G specify control registers the user can set equal to an expression.
The expression must consist of symbolic names or integer constants. CCL evaluates the expression as a
numeric value (for example, if R1 had been set equal to 4, R1+1 is a valid expression and is evaluated as 5).

DSC is also a variable, but both the user and CCL control its value. Unless the user specifies the value of
DSC to be one, DSC remains zero and skipped statements are not printed in the dayfile. When DSC is set to
one, any skipped statements that follow are printed in the dayfile. Some CCL error processing changes DSC
to one, forcing skipped statements to be printed. Skipped statements have a .. prefix.

The sysiem and ihe userocan sei ihe vaiues of EF and EFG. As the sysiem encouniers errors, CCL changes

the value of EF to the numeric value of the error type. After processing a procedure (described later in this
section) CCL sets the value of EFG to the value of EF in the procedure, unless the value of EFG is already
non-zero. The range of values for EF and EFG are the numeric values of symbolic names TLE, ARE, PPE,

CPE, MNE, ODE, PSE, ESE, and MSE; their values are system-defined.

CCL controls the values of OT and SYS. The range of values for OT are the installation-defined, numeric
values of SYO, BCO, EIO, and TXO. The range of values for SYS consists of the numeric values of NOSB
and SC2. SC2 and NOSB are defined at installation time.

If the user-defined numeric value of a symbolic name exceeds the given range of values, CCL truncates the
value retaining the sign, if signed, without issuing an error message.

In the CDC CYBER 170 series, EM is a 4-digit octal value, rather than a single-digit octal value. To reduce

the value of EM to the single-digit set by the MODE statement, use the expression EM.AND.7. To ensure
correct evaluation, enclose this expression in parentheses.

CCL FUNCTIONS

A CCL function is not a statement but must be part of a CCL statement. A CCL function can be used as
an expression or as part of an expression.

The FILE and DT functions determine attributes of a file, and the NUM function analyzes character strings.

CCL functions are described in more detail later in this section.

5-8 60493800 E

CONDITIONAL STATEMENTS

The following conditional control statements bracket groups of other control statements to be conditionally
processed or skipped.

IFE
SKIP
ELSE
ENDIF

An IFE, SKIP, or ELSE statement precedes a group of control statements. IFE and ELSE conditionally skip
or process the statements, and SKIP always causes skipping. An ELSE or ENDIF follows the group. ELSE
terminates the skipping that IFE initiated or initiates skipping if IFE processed the group of statements.
ENDIF terminates skipping initiated by an IFE, SKIP, or ELSE statement.

All conditional statements require a label string parameter. The label string consists of 1 to 10 alphanumeric
characters, beginning with an alphabetic character. When an IFE, SKIP, or ELSE statement (with a label
string) initiates skipping, skipping continues until CCL encounters an ELSE or ENDIF statement (ELSE only
in conjunction with IFE) with a matching label string.

If no such terminating statement is found while skipping within the job control statement record, CCL skips
all remaining statements and the job ends. If no such terminating statement is found while skipping within a
called procedure (covered later in this section), CCL skips all remaining statements in the called procedure,
issues an abort, and continues processing with the job or calling procedure.

NOTE

If the job’s time limit is exceeded while CCL is skipping, the job aborts and the
position of the job control statement file is undefined. CCL stops skipping, and the
system begins searching for an EXIT statement. Results can be altered. The user
should increase the time limit and resubmit the job.

By ‘defautt, skipped control statements are not written on the dayfile. The SET statement can change this
default, allowing skipped statements to appear in the dayfile.

iFE

The IFE statement conditionally causes the skipping of a group of succeeding control statements. If the
expression is true, the statements which follow are processed; if false, the statements are skipped until an

ELSE or ENDIF statement with matching label string is reached. The separator following the expression
must be a2 comma.

60493800 E 59

The format of IFE is:
IFE,exp.ls.
Both parameters are positional and required.

exp CCL expression. Character strings must be integer constants, symbolic names, or
CCL functions.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.
Example:
IFE,R1.GT.7,JUMP. If the value in control register 1 (R1) is greater than 7, the comments
COMMENT.1 are processed. If not, CCL skips to the ENDIF JUMP. statement.
COMMENT.2 Whether the value is greater than 7 or not, the system rewinds FILEIL.
ENDIF,JUMP.
REWIND,FILEL.
SKIP

The SKIP control statement causes unconditional skipping of the control statements that follow. Skipping is
terminated by an ENDIF statement with matching label string.

The format of SKIP is:
SKIPJs.
The parameter is required.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.
Example:

SKIP,HALT. SKIP initiates skipping, and all the following statements are
COMMENT.THIS IS SKIPPED. ignored until ENDIF,HALT.

ELSE,HALT.

COMMENT.ELSE DOES NOT TERMINATE A SKIP.

ENDIF,STOP.

COMMENT.WHY IS THIS SKIPPED?

ENDIF,HALT.

COMMENT.ENDIF WITH MATCHING LABEL STRING NEEDED.

ELSE

The ELSE statement can either terminate or initiate skipping. It terminates skipping when used in conjunc-
tion with IFE, provided that the label strings match. If the IFE statement does not initiate skipping (the
expression within the statement is true), ELSE initiates skipping and is terminated by an ENDIF statement
with a matching label string. ELSE does not terminate skipping initiated by a SKIP statement or another
ELSE statement.

510 60493800 E

The format of ELSE is:

ELSE,is

The parameter is required

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.
Examples:

IFE,DSC=0,GO.

COMMENT.THIS IS NOT SKIPPED.
ELSE,GO.

COMMENT.THIS IS SKIPPED.
ENDIF,GO.

IFE,R1.LT.2,GO.

COMMENT.R1 IS LESS THAN 2.
ELSE,GO.

COMMENT.RI IS NOT LESS THAN 2.
ENDIF,GO.

ENDIF

Since the value of the dayfile skipped statement flag (DSC)
is 0 by default, the IFE expression is true; no statements are
skipped. When the ELSE,GO. statement is processed, ELSE
initiates skipping. The ENDIF,GO. statement terminates

the skipping.

ELSE enhances the capabilities of IFE. IFE processes the
first COMMENT if the expression (R1.LT.2) is true and pro-
cesses the second COMMENT if the expression is false. That
is, ELSE initiates skipping if the expression is true and
terminates skipping if the expression is false. ENDIF termi-
nates the skipping initiated by ELSE and is not processed if
ELSE terminated skipping.

The ENDIF statement terminates skipping when used in conjunction with IFE, ELSE, or SKIP statements. If
not terminating a skip, ENDIF is ignored in terms of processing. It is, however, printed in the dayfile. The
label strings of the statement that initiates skipping (IFE, ELSE, or SKIP) and the ENDIF statement must
match. If CCL encounters an ENDIF statement with an unmatched label string, CCL ignores it.

The format of ENDIF is:
ENDIF,s.

The parameter is required.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.
Example:
IFE,R2.LE.6,LS1. If the value in control register 2 (R2) is less than or equal to
SET,R2=R2+1. 6, the SET statement increases R2 by 1. If the value of R2
ENDIF,LS1. is greater than 6, IFE skips the SET statement, and ENDIF
DISPLAY,R2. terminates that skip. The DISPLAY statement prints the
value of R2 in the user dayfile, whether the IFE expression is
true or not. (The SET and DISPLAY statements are covered
later in this section.)
60493800 E 511

ITERATIVE STATEMENTS
CCL provides an iterative capacity. The WHILE and ENDW control statements bracket a group of control
statements and cause it to be processed and reprocessed as long as the WHILE expression is true (can be zero
times if the expression is never true). When the WHILE expression is no longer true, CCL processes the
WHILE statement, evaluates the expression as false, and skips all statements until it finds the ENDW statement.
The WHILE and ENDW statements require a label string parameter. The label string consists of 1 to 10
alphanumeric characters, beginning with an alphabetic character. It identifies the group of statements to be
conditionally reprocessed.
The format of WHILE is:

WHILE expIs.

Both parameters are positional and required. The separator following exp must be a comma.

exp A CCL expression. Character strings must be integer constants, symbolic names, or
CCL functions.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.
The format of ENDW is:

ENDW,ls.

The parameter is required.

Is Label string; must match the label string on a WHILE statement.
The following rules apply to bracketing.

1. An ENDW statement brackets only that WHILE statement which has a matching label string.

2. When an expression is false and an ENDW with a matching label string is not found, a WHILE
statement skips all remaining control statements in the control statement record.

3. The label string of a WHILE statement should be unique among all WHILE statements within the
same procedure (procedures are explained later in this section). Label strings of WHILE state-

ments within the job control statement record should be unique among all WHILE statements in
the job. :

NOTE

Duplication of the label string within a procedure or within the job control statement
section can give unpredictable results.

512 60493800 E

Example:

SET,Ri=l. The vaiue of coniroi register i (Ri) is sef to i. The FTN compiier takes
WHILE,R1<5,FROG. input from file TOAD and executes different FORTRAN jobs as long as the

FTN,I=TQAD. value of R1 is less than 5 (four times). Each pass through the loop increases
LGO. the value of R1 by 1.

REWIND,LGO.

SET,RI1=R1+1.

ENDW,FROG.

ADDITIONAL CCL STATEMENTS

The following CCL statements affect the values of symbolic names. The DISPLAY statement, however, only
prints an evaluated expression in the user dayfile, and that expression need not contain a symbolic name.

DISPLAY

The DISPLAY control statement evaluates an expression and sends the result to the user dayfile (but not the
system dayfile) in both decimal and octal format. The largest decimal value which may be displayed is

10 digits. If the value is larger than 10 digits, GT followed by 9999999999 is displayed. If the value is
negative and larger than 10 digits, LT followed by a minus and 9999999999 is displayed. In octal code,

numbers as large as 20 digits can be displayed.

The DISPLAY control statement can also evaluate an expression as true or false, and sends a 1 for true and
a 0 for false to the user dayfile in both decimal and octal format.

The format of DISPLAY is:
DISPLAY ,exp.
The parameter is positional and required.

exp A CCL expression. Character strings must be integer constants, symbolic names, or
CCL functions.

Examples:
i. DISPLAY,1111111B*10000B.
produces in the dayfile
1227132928 11111110000B

The expression is evaluated and the result is displayed in the dayfile.

60493800 E 5-13

2. DISPLAY,SYS.
produces in the dayfile
4 4B

SYS is a symbolic name which had been set to 4. The expression is evaluated and 4 is displayed
in the dayfile.

3. DISPLAY,2**37,
produces in the dayfile
GT 9999999999 2000000000000B

The value of this expression requires more than 10 digits in decimal form. However, the correct
octal value is displayed.

4. DISPLAY,-2%*37.

produces in the dayfile

o~~~

The value of this expression is negative and requires more than 10 digits in decimal form. How-
ever, the correct octal value is displayed.

5. DISPLAY,R1=R2.
produces in the dayfile

0 0B
or
1 1B

If the value in control register 1 does not equal the value in control register 2, the expression is
evaluated as false, and O is displayed in the dayfile. If the values in the two registers are equal,
the expression is evaluated as true, and 1 is displayed in the dayfile.

SET

The SET statement allows the user to set the value of symbolic names. Only a subset of the symbolic names
known to CCL may be set. This subset consists of the control registers (R1, R2, R3, and R1G), the error
flags (EF and EFG), and the dayfile skipped control statement flag (DSC). The control registers are 18-bit
signed quantities, and the error flags are 6-bit unsigned quantitites. If the value of the expression is too large,
it is truncated (retaining the sign if signed), and no error message is issued. DSC is a single bit, which is set
to one if the expression value is non-zero.

® 5.14 60493800 E

The format of SET is:

sym Symbolic name to be set.

exp A CCL expression. Character strings must be integer constants, symbolic names, or
CCL functions.

Examples:

1. Input Job Dayfile
SET,R3=4. SET,R3=4.
DISPLAY,R3. DISPLAY,R3.
SET,R3=R3+1. 4 4B
DISPLAY,R3. SET,R3=R3+1.

DISPLAY ,R3.
5 5B

The value of control register 3 (R3) is set to 4 and is displayed in the dayfile. The second SET
statement increments the value of R3 by 1, and the new value is displayed in the dayfile.

2. Input Job Dayfile (one of the following)
SET,R1=0. SET,R1=0. SET,R1=0.
IFE,EF=CPE SKIP. IFE,EF=CPE,SKIP. IFE,EF=CPE,SKIP.
SET,R1=1. SET,R1=1 ENDIF,SKIP.
ENDIF,SKIP. ENDIF,SKIP. DISPLAY RI.
DISPLAY,RI. DISPLAY RI. 0 OB

1 1B

The value of control register 1 (r1) is set to 0. IFE compares the value of the error flag (EF) to
the value indicating a CPU abort error (CPE). If they are equal, the value of control register 1 is
set to 1 and is displayed in the dayfile. The ENDIF statement is not processed but is printed in
the dayfile. If the values of EF and CPE are not equal, the second SET statement is skipped.
ENDIF terminates skipping, and the value of Rl is dispiayed as O.

3. Input Job Dayfile
SKIP HERE. SKIP,HERE.
COMMENT.NO.1 ENDIF HERE.
ENDIF,HERE. NO.2
COMMENT.NO.2 SET,DSC=1.
SET,DSC=1. IFE,DSC=0,THERE.
IFE,DSC=0,THERE. ..COMMENT.NO.3
COMMENT.NO.3 ENDIF,THERE.
ENDIF,THERE.

60493800 E 515 ®

COMMENT.NO.1 is skipped, and is not printed in the dayfile. ENDIF terminates skipping;
COMMENT.NO.2 is processed, and DSC is set to 1. The IFE expression is false; therefore,
CCL skips to ENDIF,THERE. but prints COMMENT.NO.3 in the dayfile with a .. prefix. That
skipped statement is printed because DSC was set to 1.

FUNCTIONS

The following CCL functions determine attributes of a file or analyze character strings.

FILE Determines the status of a file.

DT Determines the device type of a file.

NUM Determines whether a parameter has a numeric value.
FILE

The FILE function determines the status of a file. Status includes file type, location, and accessibility. Each
symbolic name listed in the expression is evaluated as true (1) or false (0). FILE then applies the operators
in the expression to these vaiues. For exampie, FILE{(ifn, PH.AND.RD) transiates to FILE(ifn,PH).AND.FILE
(1fn,RD). The result of a FILE function is a number, not necessarily 1 or O if arithmetic operators are used.
The format of the FILE function is:

FILE(Ifn,exp)

The parameters are positional and required.

Ifn Logical name of the file to be analyzed.

exp An expression consisting of operators and one or more FILE symbolic names.

The FILE function is used as an expression or part of an expression in a CCL statement. The expression
within a FILE function cannot include the NUM function or another FILE function.

The FILE function must use exactly the same combination of separators and terminators shown in the format.
If there is any deviation, CCL considers it an error and aborts the job.

Only the DT function or the following symbolic names can be used within the expression of a FILE function.
Any other symbolic name or character string within the expression is unknown or an implicit DT function
(see DT later in this section).

e 516 60493800 E

FILE TYPE

IN INPUT file

LB Labeled file

LO Local file (The file is a temporary (scratch) file; attached permanent files are not
local.)

OP Opened file

PF Attached permanent file

PH Punch file

PR Print file

FILE LOCATION

AS Attached to the user’s job (that is, NOS/BE recognizes the Ifn of the file; the file
exists)
BOI Positioned at the beginning-of-information (only valid for mass storage)
EOF The last operation moved forward and encountered an EOP; the file is now
positioned after that EOP
EOI The last operation moved forward and encountered an EOI; the file is now
positioned at that EOI
MS Mass storage
TP Magnetic tape
TT Connected to a terminal
FILE ACCESSIBILITY
EN Extend permission
MD Modify permission
RD Read permission
WR Write permission (modify permission, exiend permission, or both)
Examples:
1. SET,R1=FILE(WHOFILE,LO.AND.WR).
WHILE,R1.LT.1,GO.
DISPLAY,RI1.
SET,R1=R1+1.
ENDW,GO.
DISPLAY,RI.

If WHOFILE is a temporary file with write permission, R1 is set to 1, the WHILE expression is
false, and control skips to the ENDW statement. The value of R1 (1) is displayed in the dayfile.
If WHOFILE is not temporary or does not have write permission, Rl is set to 0. The WHILE
expression is true, and the DISPLAY and SET statements are processed. The loop ends when Rl
is set to 1 and this value is displayed in the dayfile.

60493800 E 517

2. IFEFILE(MYFILE,BOI),MOVE.
COPY MYFILE,OUTPUT.
ELSE.MOVE.

REWIND MYFILE.
COPY MYFILE,OUTPUT.
ENDIF MOVE.

MYFILE is an attached permanent file with all permissions granted. If MYFILE is at the
beginning-of-information, it is copied to output. The ELSE statement initiates skipping that is

terminated by ENDIF. If MYFILE is not at the beginning-of-information, ELSE stops the IFE
SKIPPING; MYFILE is then rewound and copied. The ENDIF statement is ignored.

DT
The DT function determines information about the device type on which a file resides. DT may be used
only within the expression of a FILE function. The value of the DT function is true if the 2-character
mnemonic (dt) matches the 2-character device type mnemonic of the file. The mnemonic must be enclosed in
parentheses.
The format of the DT function is:

FILE(ifn,...DT(dt)...)

expression
The parameters are positional and required.

Ifn Logical name of file to analyzed.

dt A 2-character mnemonic indicating a device type. An entire FILE expression may
consist of dt.

See Device Types, section 6 for the valid device type mnemonics.
CCL assumes that any 2-character symbol within a FILE function that is not a FILE function symbolic name
is an implicit DT function (for example, if MT is found, it is treated as DT(MT) and is false unless the
device type happens to be MT).
Examples:
In the following examples, file FRANK resides on a 7-track magnetic tape.

1. DISPLAY,FILE(FRANK,DT(MT)).

yields

1 1B

It is true that FRANK is on a 7-track tape; therefore, the value 1 is displayed.

5-18 60493800 E

2. IFE,FILE(FRANK,TP.AND.DT(MT)),LSI.
COPY,FRANK,OUTPUT.
ENDIF,LS1.
UNLOAD,FRANK.

FRANK is on a 7-track magnetic tape; therefore, it is copied to output and then unloaded. If the
DT function were false or FRANK were not on magnetic tape, FRANK would be unloaded.

NUM

The NUM function determines whether a character string is numeric or not. It evaluates the character string as
true (1) if it is numeric or false (0) if it is non-numeric. NUM may be used as an expression or as part of

an expression in a CCL statement. The NUM function may be more useful within a procedure. (An

example of the NUM function used within a procedure can be found in the discussion of procedures later in
this section.) CCL considers any deviation from the given format an error and aborts the job.

The format of the NUM function is:
NUM(c)

The parameter is required.

c A character string; 1 to 40 characters. Special characters must be $-delimited.
Example:

IFE,;NUM(FTNFILE)=0,GO. The character string, FTNFILE, is non-numeric; therefore, the

FTN,I=FTNFILE. IFE expression is true. The FORTRAN job is compiled and

LGO. executed, and the comment is processed.

ENDIF,GO.

COMMENT.DO SOMETHING ELSE.

PROCEDURES

A procedure is a group of control statements (including CCL statements) separate from the job control state-
ment record, which can be called by a job. Calling a procedure provides a simplified method of processing
that group of control statements. A procedure can be called by a job repeatedly, by another procedure, or
by itself.
The discussion of procedures is broken into the following four parts.

Procedure residence. Describes the various ways a procedure can be stored.

Procedure structure. Explains the composition of a procedure; it contains the following subsections.

Procedure header statement Explains the CCL statement required of all procedures.

Procedure body Discusses the special capabilities of all statements within a procedure
other than the procedure header statement.

60493800 E 519 |

Procedure call Describes how a procedure is inserted into the job control statement stream; it
and return contains the following subsections.

Procedure call Describes how a procedure can be called by its name or by a BEGIN
statement. These two types of calling statements are referred to as the pro-
cedure call statement. This subsection explains ways the parameters on a
procedure call statement can be processed and how these parameters can be
substituted into the procedure body.

Procedure return Explains how processing returns from a procedure to the calling job or
procedure. This is done automatically by CCL or by the user with a
REVERT statement. This subsection also indicates how the values of various
symbolic names are affected by a return from a procedure.

Procedure Describes the following special CCL commands which may be used within a procedure.
commands

.DATA Permits data to be stored within a procedure.

.EOR Writes an EOR onto the data file.

.EOF Writes an EOP onto the data file.

* Enables the user to include in a procedure comments that will not be printed in

the user dayfile.

PROCEDURE RESIDENCE

A procedure is stored as a record (system-logical-record) on a file or library. When CCL reads the procedure,
it leaves the file positioned at the beginning of the record following the procedure. Hence, data can be
stored after the procedure to be processed with the procedure. A procedure can have the following relation-
ships to the file on which it is stored.

| 520

One procedure can occupy the entire file (one record).

Several procedures may reside on the same file in records stored in a sequential manner. When the
procedure is specified by name, the file is searched for this procedure in a circular fashion. CCL auto-
matically rewinds the file and continues searching if an EOI is reached before the procedure is found.
If the entire file is searched and the procedure is not found, CCL aborts the job.

Processing a procedure does not alter the contents of the file from which it was obtained.

A file containing procedures can be a permanent file.

A procedure can be stored in rotating mass storage if the file containing it is sequential.

A procedure can be stored on a library.

A procedure can reside on the input file of the calling job; however, CCL does not rewind the input
file if an EOI is encountered before the procedure is found.

60493800 E

To save a procedure through INTERCOM program text editor (EDITOR), use the NOSEQ parameter on the
SAVE command. If the NOSEQ parameter is omitted, the EDITOR line numbers are not removed and
interfere with CCL processing.

PROCEDURE STRUCTURE

A procedure consists of a procedure header statement and a procedure body. The procedure must be named
and begin with the header statement. The body contains all statements between the header statement and an
end of record. The body must contain at least one control statement. All control statements are legal

within a procedure, including CCL statements. The body may also include special procedure commands and
data.

PROCEDURE HEADER STATEMENT

A procedure starts with a procedure header statement, PROC, which declares the name of the procedure and
identifies any formal keywords and their default values. Unless it contains an error, the header statement is
not printed in the dayfile. The characters PROC must be preceded by a period and followed by a comma.
The header statement must be terminated by a period. The separator between parameters must be a comma.
A header statement may continue over more than one card or line of input, provided that a separator is the
last character on each card or line. A procedure name can be 1 to 7 alphanumeric characters. It can begin
with or consist entirely of numeric characters, unless it is to be called by a call-by-name statement. In that
case, the procedure name must begin with a letter.

The format of the procedure header statement is:
.PROC,pname,plp2,....,pn.

The pname parameter is positional and required; parameters p; are optional.

pname The name of the procedure (can be 1 to 7 alphanumeric characters). pname cannot
be BEGIN.
p; A user-created parameter in one of the following forms.
fk Formal keyword
fk=defaultl Formal keyword with default
fk=default1/default2 Formal keyword with two defaults
fk= Formal keyword with null default

fk is its own default] value if a default value is not specified. If two defaults are specified, the user can
select only one on the procedure call statements. The form fk= can be used to specify a null default. The
formal keywords must be 1 to 10 alphanumeric characters; formal keywords beginning with or consisting of
numerics are legal. The defaults can be 1 to 40 alphanumeric characters. The values defaultl and default2
can be S-delimited character strings. The number of parameters is limited to an installation-defined value.
The released default value is 50.

Formal keywords appear in the procedure body and can be replaced by their default values during substitu-

tion. Substitution occurs when the procedure is called, replacing formal keywords with default values or
values from the call statement.

60439800 E 5-21

A formal keyword can be $-delimited in any p; form; however, it can contain only alphanumeric characters.
If it contains special characters, substitution does not occur.

There are two special defaults which can be used in the procedure header statement. These defaults are
=FILE and =DATA (# FILE and # DATA in ASCII). CCL supplies the value of these defaults. They can
be overridden just as any other default of a formal parameter can be overridden by specification on a proce-
dure call statement.

When fk= =FILE is specified in the .PROC statement, CCL reads the record after the procedure. If the pro-
cedure resides on a library, CCL changes the =FILE to =LIB during substitution. The dayfile shows the =LIB
substitution. If the file is not on a library, the dayfile shows the file name instead of =FILE.

When fk= =DATA is specified, CCL creates a default temporary file to which a .DATA command writes data
statements. (The .DATA command is explained later in this section.)

Examples:

1. .PROC,ZZZP1==FILE.
FTN,I=P1.

After procedure ZZZ is called, the FTN compiler looks for input from the file containing proce-
dure ZZZ. The record following ZZZ is read.

2. .PROC,SNORE,P2==DATA.
FTN,I=P2.

After procedure SNORE is called, the FTN compiler searches for input from the file generated by
the .DATA command.

PROCEDURE BODY

The procedure body consists of all statements which follow the procedure header statement. The procedure
body can contain any control statement including CCL statements, as well as calls to other procedures.

The procedure body can use any of the formal keywords defined on the procedure header statement. When

a procedure is called, CCL scans the statements of the procedure body before processing. The values specified
by the parameters in the procedure call statement are substituted for the occurrence of the formal keywords
in each statement of the procedure body. If a formal keyword is not indicated on the call statement, defaultl
from the header statement replaces occurrences of the formal keyword. A parameter on the call statement
can indicate default2. (Substitution is explained later in this section.)

PROCEDURE CALL AND RETURN

A procedure is stored outside the job control statement record and CCL logically inserts it into the job
control stream when the job calls it. A call statement in the job calls the procedure. After the final
processed control statement of the procedure, a CCL," or user-issued REVERT statement continues processing
with the job control statement after the call statement (figure 5-1).

+CCL issues a REVERT statement if the user does not supply one within a procedure.

5-22 60493800 E

JOBFILE PROCEDURE

JOBCARD
.
.
.
BEGIN > | o« PROC
* \ .
°
[] \ []
* REVERT
EOR EOR
INPUT
FILE

Figure 5-1. Calling a Procedure from a Job

If called by a cail statement in another procedure, the procedure is logically inserted into that procedure’s
control statement stream. After the final processed control statement of the procedure, a CCL,f or user-
issued REVERT statement continues processing in the calling procedure with the control statement after the
call statement (figure 5-2).

FIRST SECOND
PROCEDURE PROCEDURE

+PROC

.
BEGIN —>»| o+ PROC

-
N

JOBFILE

Y []
REVERT T REVERT

EOR EOR

Figure 5-2. Calling a Procedure from Another Procedure

tCCL issues a REVERT statement if the user does not supply one within a procedure.

60493800 E 523 |

PROCEDURE CALL

Procedures may be called (caused to be processed) by a procedure call statement in a job or procedure. The
call statement is either a BEGIN or call-by-name statement. The term call statement refers to both forms of
the statement. The BEGIN statement can call a procedure on a permanent file, and the call-by-name state-
ment can call a procedure on a library. Both statements can call a procedure on a local file.

The syntax of the call statement is similar to that of other control statements. The call statement must be
terminated by a period or a right parenthesis. The separator following each parameter must be a comma.
The call statement can continue over more than one card or line or input if a separator is the last character
on each card or line.

BEGIN STATEMENT
The format of BEGIN is:
BEGIN,pname,pfile,p;.p, . - - - Py

The pname and pfile parameters are positional. When the user does not specify a parameter, CCL
assumes a default value. Parameters p; are optional.

pname The procedure name as declared on the header statement. Default is the next
procedure on file pfile. If the default is used and pfile is at end of information,
CCL rewinds pfile and calls the first procedure.

pfile The name of the file where procedure pname is located. Default is an installation-
defined file name.

p; A parameter having one of the following forms.

v A value; can be 1 to 40 alphanumeric characters. If any charac-
ters except a slash (/) or a leading minus are nonalphanumeric,
v must be a literal (for example, A/B/C/ is a 5-character specifi-
cation for a formal keyword).

fk A formal keyword; fk is the same keyword used in the procedure
header statement.

fk=v Value v is substituted for the formal keyword fk in the proce-
dure header statement.

fk= A null string is substituted for the formal keyword fk in the
procedure header statement.

To call a procedure pname on a file pfile, CCL searches for a local file pfile. If no local pfile is found, CCL
attempts to attach permanent file pfile with user id PUBLIC. Once pfile is located, CCL searches for proce-
dure pname. If pfile or pname is not found, the job aborts. Parameters correspond to formal keywords
declared on the header statement. If the user needs only default values, the BEGIN statement might not
have any parameters. The separator following the verb BEGIN must he a comma or a left parenthesis.

5-24 60493800 E

CALL-BY-NAME-STATEMENT
The format of call-by-name is:
pname,pl,pz, e .,pn.

The pname parameter must be specified; parameters p; are optional.

pname The procedure name as declared on the header statement. There is no default.
p; A parameter having one of the following forms (see BEGIN statement for further
explanation).
v A value; 1 to 40 characters.
fk A formal keyword.
fk=v Value v is substituted for formal keyword fk.
fk= Null string is substituted for formal keyword fk.

To call a procedure by name, CCL searches for a local file pname. If file pname is found, CCL looks for
procedure pname on it. If no local file pname is found, CCL searches the currently defined library set for
procedure pname. If procedure pname is not found, the job aborts. Parameters correspond to formal key-
words declared on the header statement. If the user needs only default values, the call-by-name statement
might not have any parameters. The separator following pname must be a comma or a left parenthesis.

SUBSTITUTION

When CCL calls a procedure, it searches the procedure body for any formal keywords declared on the header
statement. Substitution occurs when CCL replaces formal keywords in the procedure body with default
values from the header statement or values from the call statement. The parameters on the cail statement
determine which values replace the formal keywords. After substitution, the control statement generated by
CCL can exceed 80 characters. CCL generates a continuation control statement by using the last valid
separator through column 80 as the end of the previous control card and creating a new control card con-
taining the remaining parameters. If a continued statement of the type being processed is not allowed

(for example, COMMENT.), a control statement error is generated when execution is attempted.

The two modes in which CCL processes parameters on the call statement are positional and equivalence. In
positional mode there is a one-to-one correspondence between call statement keywords and keywords on the
header statement. The permissible call statement parameters are a value v or null. The values in the call
statement are substituted for formal keywords from the procedure header statement, replacing first keyword
with first value, second keyword with second value, and so on (that is, wherever the first keyword from the
header statement appears in the procedure body, it is replaced by the first value listed on the call statement
and so forth). A null parameter indicates the first default from the header statement, not a null string. A
null string can be specified only in equivalence mode by fk=. If the user places an fk parameter in
positional mode, CCL treates it as a v parameter.

60493800 E 5-25

Example:

Procedure on File MYFILE Calls and Expansion Explanation
PROC,EXAMPLE,1J K=XY.
REWIND,I,J K. BEGIN,EXAMPLEMYFILE. All defaults from the header statement
yields are used.
REWIND,I,JXY.
BEGIN,EXAMPLEMYFILE,B,,Z. B replaces I, and Z replaces K in the
yields procedure body. The empty param-
REWIND,B.J.Z. eter indicates defaultl for J.

In equivalence mode, the parameter forms are fk, fk=v, and fk=. Their positions on the call statement are
irrelevant. If a formal keyword with two defaults was specified on the procedure header statement, the user
can select the formal keyword’s second default with an fk parameter. fk=v replaces formal keyword fk with
value v. fk= substitutes a null string for formal keyword fk. If a parameter is not specified on the call
statement for a formal keyword with either one of two defaults, the first default is substituted. A null
parameter is ignored in equivalence mode. If the user indicates more than one value for a formal keyword
on the call statement, the last specification is used. A v parameter in equivalence mode is an error. CCL

issues an error message and ahorts the ich,

fk=v always specifies fk to have the value v. If v is null (fk=), appearances of fk in the procedure body are
replaced by a null string. fk=sym+, fk=sym+D, and fk=sym+B cause the numeric value of the symbolic name
sym to be converted to a decimal (fk=sym+,fk=sym+D) or octal (fk=sym+B) display code value. This value
replaces fk in the procedure body. sym can be numeric (for example, J=99+B). These forms are not valid
on the header statement.

Examples:
Procedure on File MYFILE Calls and Expansion Explanation
PROC,EXAMPLE 1 J=A/B.
COPY,LJ. BEGIN,EXAMPLE MYFILE. J is replaced by its first default;
yields I is replaced by its first and only
COPY L A. default.
BEGIN,EXAMPLE MYFILE I=FJ. F replaces I; the J parameter indi-
yields cates second default for J.
COPY,F,B.
BEGIN,EXAMPLE MYFILE J=J=Z. I=substitutes a null string for I;
yields Z replaces J.
COPY,.Z.
.PROC,VALUE,TS. SET,R1=910. The decimal numeric value of the
ATTACH,BLUE,RED,ID=KK, BEGIN,VALUEMYFILE TS=R1+, symbolic name Rl replaces TS.
CY=TS. yields

ATTACH,BLUE,RED,ID=KK,CY=910.

5-26 60493800 E

The processing of parameters on the call statement is initially in positional mode. The switch to equivalence
mode occurs as follows:

Equivalence mode is entered at the first occurrence of an fk=v or fk= parameter within the call

PP

If the procedure header statement contains a formal keyword with a second default, equivalence mode

t haan nranscoad a h
i Gl 48adilry

ia antovrad ..ne. n maramatare hava haa n ia tha miimhar A v v
A0 VillViICWU aiilvi ik ‘ijallly&\tlﬂ 1IGVYLY Uvwil y;uvvoauu. i1 A0 ViV 1iGiRiUVI VI 1viliiad I\U'V ¥

statement up to, but not including, the first formal keyword with a second default.

£ farmal Lavararde in th andar
GS

Once processing switches from positional mode to equivalence mode, it remains in equivalence mode for all
remaining parameters on the call statement. It is impossible to return to positional mode.

Example:
Procedure on File AFILE Call and Expansion Explanation
.PROC,SHOW,LJ=A K=X,L=Y/Z.
RETURN,IJ K,L. ‘
BEGIN,SHOW AFILE R, S,T,L. L=Y/Z is in fourth position, setting
yields n=3. R, S, and T are in positional
RETURN,R,S,T,Z. mode; L is in equivalence mode,

selecting the second default Z.

The right arrow,—(underline character in ASCII), is reserved by CCL for use as a linking character. It can
be used within the procedure body to separate temporarily two character strings when they do not have a
standard separator between them. After processing and substitution, any right arrows are removed, and the
character strings are joined.

An equivalence symbol, = (# in ASCII), inhibits substitution of a character string if it immediately precedes
the string. The character string is not compared to the list of formal keywords, substitution is inhibited, and
the equivalence symbol is removed. If a separator immediately foilows an equivaience symboi, CCL accepts
the separator without examination. Consecutive equivalence symbols yield one equivalence symbol, and
substitution occurs if a formal keyword follows. An equivalence symbol followed by a right arrow produces
one right arrow, and the character string that follows is substituted if it is a formal keyword. When two
character strings are separated by a right arrow followed by an equivalence symbol, CCL joins the character
strings without substitution of the second string.

Examples:
1. .PROC,INHIBIT I=BB.
FTN=I=I.
COMMENT =1 QUIT,QU—~I—-T. QU~=I-T.
Substitution yields:

FTN,I=BB.
COMMENT.I QUIT, QUBBT, QUIT.

Only the single character I is recognized as a formal keyword; therefore, character string QUIT is

not affected by substitution. When I is separated by right arrows, QU, I, and T become separate
character strings.

60493800 E 5-27

2. .PROC,SUB,I=BB.
FTN,I=L.
COMMENT ==l QU=-+]-T, QU=—+IT.

Substitution yields:

FTN,BB=BB.
COMMENT.=BB QU—BBT,QU—IT.

Without the equivalence symbol before I, the FTN parameter is meaningless after substitution.

The rules of substitution in a procedure body are as follows:

Each line of the procedure body is divided into character strings and separators. If a character string is
identical to a formal keyword, substitution occurs unless inhibited by an equivalence symbol.

All nonalphanumeric characters are separators including blanks and dollar signs that bracket literals.

A right arrow is deleted, linking preceding and following strings.

One equivalence symbol is deleted, inhibiting substitution of the character string it precedes.

CCL does not remove blanks.

Normally, a $-delimited (literal) value v in a call statement is evaluated before substitution. Outer dollar signs
are stripped off, and inner double dollar signs are reduced to a single dollar sign. However, if the related
formal keyword in the procedure header statement is also $-delimited, evaluation of the literal value does not
occur. Instead, CCL substitutes the literal with dollar signs intact. That is, substituting a litera] value for a
literal formal keyword produces a value that is delimited by double dollar signs.

PROCEDURE CALLS AND SUBSTITUTION EXAMPLES
Procedure Calls and Expansion
.PROC,EXAMPLE,LJ K=XY.

REWIND,ILA,J K.

BEGIN,EXAMPLE MYFILE R,T,S.
yields
REWIND,R,A,T,S.

BEGIN,EXAMPLE MYFILE K=YY.

yields
REWIND,ILAJ.YY.

BEGIN,EXAMPLEMYFILE.R.
K=F,J=B.

yields
REWIND,R, A B,F.

| 528

Explanation

Procedure EXAMPLE is on file
MYFILE. A is always rewound since
it is not a formal keyword.

Parameter processing remains in

positional mode.

Equivalence mode is entered at once
with K=YY. I and J assume their
defaults.

Equivalence mode is entered with
K=F.

60493800 E

Procedure

.PROC,ITEM,LGO,N=1/
10000,L=OUTPUT/LIST.

ITEMIZE T GO =1 =T =N=N
IRV AV A YR CIV IS Dol DR

——iNT LNe

PROC,TEST,LFN,PAR=D.
COMPASS,I=LFN,PAR.

CALL BY NAME EXAMPLE:

Procedure

PROC,GERTIE,A,B,C M=MODE,

BO=R/S.
COPYL,AB,C. M IS BO

60493800 E

Calls and Expansion

BEGIN,ITEM,,LFN.

vields
b S

ITEMIZE,LFN,L=OUTPUT N=1.

BEGIN,ITEM,,L=B.
yields
ITEMIZE,LGO,L=B,N=1.

BEGIN,ITEM,,L,L.
yields
ITEMIZE,L,L=LIST,N=1.

BEGIN,ITEM,,L,5.
Fatal error

BEGIN,TEST ,NOW. FILE].
yields

ANMDAQQ T.OTT E1
\,ULV{PASO,I“FAL.DI ,D.

BEGIN,TEST ,NOW,FILE2,
$L=LIST,D$
yields

COMPASS I=FILE2,L=LIST,D.

Calls and Expansion

GERTIE(,,,MO)
yields
COPYL,A,B,C. MO IS R

Explanation

Procedure iTEM is on a iocal fiie
with the CCL default file name.

= before L and N in ITEMIZE
inhibits substitution of these two
characters. First defaults apply to L
and N. The order of formal key-
words on the header statement does
not affect the order of substituted
keywords on ITEMIZE.

B is substituted for L in equivalence
mode while LGO and N assume first
defaults.

The first L on the BEGIN statement
is in positional mode. Specifying
the second L in equivalence mode
indicates L’s second default.

The 5 is in equivalence mode and
does not match any formal keyword.

Procedure TEST is on file NOW.

FILE1 is substituted for LFN in
positional mode; PAR assumes its

£3wnt Anfaaals
LSt aciauit.

In positional mode, FILE2 is sub-
stituted for LFN, and L=LIST,D
is substituted for PAR. The PAR
substitution creates an additional
COMPASS parameter.

Explanation

Procedure GERTIE is on the cur-
rently defined library set.

Processing remains in positional mode
with the empty parameters indicating
first defaults and MO replacing M.
Since the call statement does not
specify a value for BO, its first
default (R) is used.

529 |

Procedure Calls and Expansion Explanation

GERTIE,R,C=NEW BO. The first parameter is positional
yields mode, but equivalence mode starts
COPYL,R,BNEW.MODE IS S with C=NEW. Equivalence mode

causes BO to apply to BO, not M.

NUM FUNCTION SAMPLE PROCEDURE:

In the following example, the procedure SHOW is on file SAMPLE. The call statements indicate the proce-
dure name and the file the procedure is on.

Procedure Calls and Expansion Explanation

.PROC,SHOW IN=FTNFILE.

IFE,NUM(IN)=0,LS.

FTN,I=IN.

LGO.

ENDIF,LS.

COMMENT.DO SOMETHING ELSE
BEGIN,SHOW ,.SAMPLE. No parameters were specified

yields on ‘the call statement; therefore,

IFE,NUM(FTNFILE)=0,LS. IN assumes its first default.
FTN,I=FTNFILE. The NUM function evaluates
LGO. the substituted formal keyword
ENDIF,LS. as non-numeric, making the

COMMENT.DO SOMETHING ELSE IFE expression true. The
FORTRAN job is compiled
and executed and the comment

is processed.
BEGIN,SHOW,SAMPLE,S. The value 8 on the call state-
yields ment is in positional mode
IFE,NUM(8)=0,LS. replacing IN. The NUM
FTN,I=8. function evaluates 8 as a
LGO. numeric, making the IFE
ENDIF,LS. expression false. The FTN and

COMMENT.DO SOMETHING ELSE LGO statements are skipped,
and the comment is processed.

PROCEDURE RETURN

A REVERT control statement causes processing to return to the calling job or procedure at the statement
immediately following the procedure call statement.

I s30 60493800 E

The format of REVERT is:
REVERT. Processing returns to the calling job or procedure.
or

REVERT,ABORT. Same as REVERT. » except that after processing returns, CCL issues an abort

uml.cau Ul a norma CMt

A REVERT statement can appear anywhere within a procedure. REVERT is commonly used in conjunction
with a conditional statement to cause premature return to the calling job or procedure. The user can place
REVERT at the end of a procedure, but this is unnecessary because CCL provides an implicit REVERT
sequence. The CCL following each statement identifies it as generated by CCL.

REVERT.CCL This is the REVERT sequence CCL provides after the last
EXIT,S.CCL processed statement of a procedure. If the last statement did
REVERT,ABORT.CCL not produce a fatal error, CCL processes the REVERT. state-

ment. If the last statement did produce a fatal error, the
first statement in this sequence is skipped. CCL provides an
EXIT,S. statement to terminate skipping, and processes the
REVERT,ABORT. statement.

The user may wish to use an EXIT control statement to create a REVERT sequence. The EXIT statement
produces the same results whether it is in a procedure or the job file; it does not cause a return to the
calling job or procedure. EXIT should be used with caution because it can terminate the job.

Example:
LGO. If a fatal error occurs during the processing of the LGO.
REVERT. statement, the system skips to the EXIT,S. statement. CM is
EXIT,S. ' dumped and CCL processes the REVERT,ABORT. statement.
DMP. If no fatal error occurs during the processing of the LGO.
REVERT,ABORT. statement, CCL processes the REVERT. statement.

During a REVERT, CCL might change the value of symbolic names R1, R2, R3, EF, EFG, and DSC. Their
values can be set by the user before BEGIN and REVERT.

The values of control registers R1, R2, and R3, the error flag (EF), and the dayfile skipped control statement
flag (DSC) are saved at the time of a procedure call and restored by a REVERT. If the value of control
register R1G is changed within a procedure, REVERT does not restore it to the value before the procedure
call.
Example:

1. The user sets DSC to one before a procedure is called.

2. Within the procedure, the user sets DSC to zero.

3. When CCL processes a REVERT, DSC is again one.

60493800 E 5-31

When the global error flag (EFG) is zero, it is set to the value of EF during a REVERT. REVERT restores
EF to its value at the time of the procedure call (zero). This means the value of EF in the procedure may
be passed back to EFG in the control statement sequence that calls the procedure. The value of EF is not
transferred to EFG unless the values of EF and EFG are zero before the procedure is called.

The following example shows input from the job file and a procedure and the resulting dayfile output.

Job file

Procedure

PROCEDURE COMMANDS

Input

SET,EF=0.
SET,EFG=0.
BEGIN,TEST.
DISPLAY EF.

DISPLAY ,EFG.

.PROC,TEST.
SET,EF=1.
DISPLAY EF.

DISPLAY ,EFG.

Dayfile

SET,EF=0.
SET,EFG=0.
BEGIN,TEST.
SET,EF=1.
DISPLAY EF.
1B
DISPLAY ,EFG.
0 0B
REVERT.CCL

DISPLAY.EF. ’
0 0B

DISPLAY,EFG.
11B

Comments

EF and EFG are set to O.

EF is changed to 1.

This portion of the dayfile is from the procedure TEST.

The value of EF is restored to 0.

The former value of EF is passed back to the job in EFG.

Procedure commands are similar to directives and can be included in the body of a procedure to control the
processing of data within the procedure. As CCL processes each statement of a procedure body, it makes any
necessary substitutions and determines if the resultant statement is a procedure command. The commands
have a fixed format with a period in column 1 and the command name beginning in column 2: the commands
do not have a terminator. All command requirements must be met exactly; if not met, a statement is

assumed not to be a command.

.DATA

A DATA command separates control statements of the procedure from subsequent data statements. It allows
the same parameter substitution occurring in the control statements to occur within the data statements and
.DATA command. All statements following the .DATA command are written to a file when the procedure is
called. Comments cannot follow the command name or the parameter (if specified); the remainder of the
command must be blank.

The format of the .DATA command is:

.DATA Ifn

The parameter is optional.

Ifn

5-32

Writes data to file Ifn: if not specified, CCL writes data to a default file name.

60493800 E

The .DATA command causes CCL to generate a temporary file and supply a defauit name unless a file name
is specified by the user. Statements within the procedure can reference the default file via the special default
=DATA in the procedure header statement. If the file aiready exisis, CCL returns it and creates a new file.
Hence, the .DATA command cannot be used to add data to an existing file. After the data is written, the
file is rewound. If the user specifies a file name on the .DATA command, the =DATA default will not
reference that file name. A user-specified file name must either be declared on the header statement for
substitution or used directly in the procedure body.

Data associated with a procedure can also be contained in the records following it. The user can reference
this data with the =FILE default in the procedure header statement. The procedure file is always positioned
at the beginning of the record following the called procedure. When procedure data is not contained in the
procedure, substitution of parameters does not occur within the data.

Examples:

In the foliowing examples, both procedures and their data are on file SLEEP.

Procedure After Substitution
1. .PROC,SNORE,P1==DATA, X=Y. BEGIN,SNORE,SLEEP.
FTN.I=PL1. FTN,I=ZZCCLAA.
COMMENT.IF X IS TRUE,IT IS COMMENT.IF Y IS TRUEIT IS
JUNE. JUNE.
.DATA .DATA
PROGRAM X(INPUT,OUTPUT) PROGRAM Y(INPUT,OQUTPUT)

All input after the .DATA command has been written onto the default temporary file, ZZCCLAA. The
=DATA default tells the FTN compiler to search for input from ZZCCLAA. Substitution occurs in the
FORTRAN program, as well as in procedure SNORE.

2. .PROC,ZZZP2==FILE . X=Y. BEGIN,ZZZ SLEEP.
FTN,I=P2. FTN,I=SLEEP.
COMMENT.IF X IS TRUE, IT IS COMMENT.IF Y IS TRUEIT IS
JUNE. JUNE.
7/8/9 7/8(9
PROGRAM X(INPUT,OUTPUT) PROGRAM X(INPUT,OUTPUT)

The =FILE default tells the FTN compiler to search for input from file SLEEP. Since CCL left file
SLEEP positioned after ZZZ, the compiler starts reading immediately after procedure ZZZ. Substitution
occurs in ZZZ but not in the FORTRAN program.

60493800 E 5-33

.EOR

The .EOR command causes an end-of-record to be recorded on the data file specified by a .DATA command.
After a .EOR command, statements are written onto a new record. CCL recognizes .EOR only after it
encounters a .DATA command. Comments cannot follow the command name; the remainder of the command
must be blank.

The format of the .EOR command is:

.EOR

.EOF

The .EOF command causes an end-of-partition to be recorded onto the data file specified by a .DATA
command. After a .EOF command, statements are written onto a new partition. EOF is used instead of
EOQOP for compatibility with other systems. CCL recognizes .EOF only after it encounters a .DATA command.
Comments cannot follow the command name; the remainder of the command must be blank.

The format of the .EOF command is:

EQF

A .* command provides comments within a procedure. These comments do not appear in the dayfile. If the
user wants comments to appear on the dayfile, the COMMENT statement should be used. The remainder of
this command (after the .*) can contain any combination of characters. When CCL calls a procedure, it dis-
cards all .* commands before it begins processing.

The format of the .* command is:

*comment

| 534 60493800 E

SAMPLE JOBS

The following jobs demonstrate the use of a procedure and some of the other capabilities of CCL. Control
statements generated by the processing of a procedure are indicated by a bracket.

1. Job Dayfile
BEGIN,FTNPROC,INPUT. BEGIN, FTNPRCC, INPUT.
7/8/9 FIN, I=Z22CCLAA.
.PROC,FTNPROC K==DATA. COMPILING FTNPROC
FTN,I=K. ‘ LGO.

LGO. STOP
.DATA .004 CP SECONDS EXECUTION TIME
PROGRAM FTNPROC(OUTPUT) REVERT. CCL
A=8.8
B=4.4
C=A/B
PRINT *.C
STOP
END
6/7/8/9

This job demonstrates the use of the .DATA command. The user calls a procedure FTNPROC con-
taining a FORTRAN program in the procedure body. The statements preceding the .DATA command
compile and execute the program.

2. Job Dayfile

ATTACH HERE,ID=MINE. ATTACH,HERE, ID=MINE.
BEGIN,THIS,INPUT. PFN IS
7/8/9 HERE
.PROC,THIS,J=HERE. PF CYCLE NO. * 981
FTN,I=J. BEGIN,THIS, INPUT.
LGO. FIN, I=HERE.
6/7/8/9 COMPILING HERE

LGO.

STOP
.803 Cp SECONDS EXECUTION TIME
REVERT.CCL

The user has & permanent file HERE containing a FORTRAN program he wishes to execute. The user
attaches the file and calls procedure THIS to execute the program.

60493800 E 535 |

| 536

Job

ATTACH,HERE,ID=MINE.
EXIT,U.
IFE,FILE(HERE,PF),GO.
BEGIN, THIS,INPUT.
ELSE,GO.
ATTACH,THERE,ID=MINE.

BEGIN, THIS,INPUT,J=THERE.

ENDIF,GO.

7/8/9
.PROC,THIS,J=HERE.
FTN,I=].

LGO.

6/7/8/9

Dayfile

ATTACH,HERE, IDMINE.
PFN IS
HERE
FILE NOT CATALOGUED, SN=PFQSET
PF ABORT
EXIT,U.
IFE,FILE(HERE, PF) ,GO.
ELSE, GO.
ATTACH, THERE, ID=MINE.
PFN IS
THERE
PF CYCLE NO. = 801
BEGIN,THIS, INPUT,J=THERE.
FTN, I=THERE.
COMPILING THERE
LGO.

STOP

.092 CP SECONDS EXECUTION TIME

REVERT. CCL
ENDIF,GO.

In this example, the user wishes to execute a FORTRAN program on permanent file HERE; however,
the user suspects that file HERE has been purged. The IFE statement checks the attach with the FILE
function. If the attach is successful, procedure THIS executes the program. The ELSE statement skips

control statements up to the ENDIF statement.

If the attach is unsuccessful, CCL skips to the ELSE statement. Another permanent file (THERE) con-
taining a FORTRAN program is attached. Procedure THIS is called to execute this program. The call
statement indicates THERE replaces formal keyword J in the procedure body.

60493800 E

4. Job Dayfile

ATTACH,0THER, ID=MINE. ATTACH,OTHER, ID=MINE.
ATTACH,WHERE,ID=MINE. PFN IS
WHILE,R1.LE.1 CIRCLE. OTHER
SET,EF=0. PF CYCLE NO. = 801
SET,EFG=0. ATTACH,WHERE, ID=MINE.
BEGIN,THAT OTHER, WHERE. PFN IS
DISPLAY EFG. WHERE
IFE,EFG=0,HOP. PF CYCLE NO. = 801
SET,R2=R2+1. WHILE,R1.IE.1,CIRCLE.
ENDIF,HOP. SET,EF=0.
SET,R1=R1+1. SET,EFG=0.
DISPLAY,RI. BEGIN,THAT,OTHER, WHERE.
ENDW,CIRCLE. FTN, I=WHERE.
DISPLAY,R2. COMPILING ONE
6/7/8/9 1GO.
FATAL LOADER ERROR - SEE MAP
Procedure (Contents of File OTHER) EXIT,S.
ENDIF,JUMP,
REWIND,LGO.
.PROC,THAT,KEY. DISPLAY,EF.
FTN,I=KEY. 4 4B
LGO. REVERT. CCL
SKIP,JUMP. DISPLAY,EFG.
EXITS. 4 4B
ENDIF,JUMP. IFE,EFG=0,H0P.
REWIND,LGO. ENDIF ,HOP.
DISPLAY,EF. SET,R1=R1+1.
6/7/8/9 DISPLAY,R1.
1 1B
ENDW ,CERCLE.
WHILE,R1.LE.1,CIRCLE.
SET,EF=0.
SET,EFG=0.
BEGIN, THAT,OTHER, WHERE.
FIN, I=WHERE.
COMPILING WO
LGQO.
STOP
.083 CP SECONDS EXECUTION TIME
SKIP,JUMP.
ENDIF ,JUMP.
REWIND, LQO.
DISPLAY.EF.
) oB
REVERT.CCL

60493800 E 5-37

Dayfile

DISPIAY ,EFG.
¢ 0B

IFE, EFG=0;H0P.

SET,R2=R2+1.

ENDIF ,HOP.

SET,R1*R1+1.

DISPLAY,R1.

2 2B
ENDW, CIRCLE.
WHILE,R1.LE.},CIRCLE.
ENDW, CIRCLE.
DISPIAY,R2.

1 1B

The user has two permanent files. File OTHER contains procedure THAT, which compiles and
attempts to execute a FORTRAN program. File WHERE contains two FORTRAN programs the user
wishes to check for errors.

Once the two files are attached, the WHILE and ENDW statements bracket the control statements that
test the programs on file WHERE, After ensuring both error flags (EF and EFG) have zero vaiues,
procedure THAT is called. THAT attempts to execute the program read from file WHERE. If there
are fatal FORTRAN errors, the job aborts when the program is loaded. Processing resumes when the
EXIT,S statement is encountered. If there are no fatal FORTRAN errors, the SKIP statement skips
over the EXIT,S statement to ENDIF JUMP. and processing resumes. The DISPLAY statement indi-

cates the value of EF.

Loading a FORTRAN program containing a fatal error changes EF to a non-zero value. When process-
ing retumns to the job control statement record, the value of EFG is set to the value that EF last had
in the procedure. If there were no fatal errors, the value of R2 is incremented by one. R2 counts the
number of executable FORTRAN programs. Each pass through the bracket statements increments the
value of R1 by one. RI counts the number of passes through the bracketed statements.

CCL processes the WHILE statement a third time. CCL evaluates the WHILE expression as false, and
all statements are skipped until an ENDW statement with a matching label string is found. At the end
of the job, the value of R2 is displayed so the user can tell at a glance the number of successfully
executed FORTRAN programs.

| s3s 60493800 E

COMMUNICATION AREAS 6

iLE ENVIRONMENT TABLE

The file environment table (FET) is a communication area supplied by the user within his field length. Any
file to be written, read, or otherwise manipulated or positioned, must have its own FET. The FET is interro-
gated and updated by the system and user file. processing.

COMPASS programmers can create an FET in two ways:
Use the FET creating macros FILEB, FILEC, RFILEB, or RFILEC.
Use other COMPASS instructions to build a table in the format expected by the system.

Compiler language programmers need not be concerned with FET construction or manipulation, because the
compilers will perform these tasks in response to compiler language instructions. When CDC CYBER Record
Manager is used for input/output, the user need supply only the file information table (FIT) data. CDC
CYBER Record Manager will construct and manipulate the FET from information in its FIT. The FIT is
fully described in the CDC CYBER Record Manager manuals.

A minimum size FET is five words, which allows for processing of sequential unlabeled files. Random or
labeled files, or files in which the user will process file conditions or errors with OWNCODE routines, require
a longer table. Extensions to the FET, areas identified by pointers within the FET, are required for extended
error and label processing. Some compilers append an area past word 13 of the FET, as explained in the
respective manuals. When S and L tapes are processed, the FET must be at least seven words in length.

The format of the FET is shown in figure 6-1. Some fields are pertinent only to CDC CYBER Record

Manager manipulation. A description exists in the reference manuals for CDC CYBER Record Manager.
Other fields contain different data depending on the file mode or residence.

FET CREATION MACROS

System macros in the COMPASS language facilitate generation of the FET.

All parameters except Ifn, fwa, and f are optional. The fwa and f parameters must be in the order shown;
others can be in any order. The macro parameters WSA, OWN, XPR, and IND are not order dependent, but

order is fixed within these parameters.

The user must specifically allocate the circular buffer location in the field length as well as the buffers for the
WSA, XPR, and XLR parameters, The macro identifies but does not create the buffers.

Four macros are available, depending on whether the file is coded or binary, random or sequential.

60493800 C " 61

59 53 47 4 ¥ 2 2 23 17 13 8 0 _ Address
§ tnen
LOGIk LEVEL| ERROR o
OGICAL FILE NAME o | “Cooe |copessTaTUs
EMIx]e i 1]F DISPOSITION FET
DEVICETYPE IRTIolplalul 1pkclsLilF CODE LENGTH FIRST POINTER 1
0 IN POINTER 2
0 OUT POINTER 3
FNT POINTER RECORD BLOCK SIZE PRU SIZE LIMIT POINTER 4
CRM PSEUDO IN POINTER
FWA LWAH 5
WORKING STORAGE AREA WORKING STORAGE AREA
DETAIL POINTER TO usc MLRS (S/L TAPES ONLY)
ERROR CODE FET EXTENSION =
(XP=1) €T EXTENSIO RECORD REQUEST/RETURN INFORMATION 6
: {RANDOM RMS ONLY)
CRM FET EXTENSION (XP=1)
7
RECORD NUMBER (CPC) l 1 STANDARD INDEX LENGTH I 'FWA OF STANDARD INDEX
10
I CPC EOI ADDRESS l CPC ERROR EXIT ADDRESS
XL=1 LABEL ERROR CODE LENGTH OF LABEL BUFFER FWA OF LABEL BUFFER
1
XL=0 FIRST 10 CHARACTERS OF FILE LABEL NAME
XL=1 (RESERVED)
12
XL=0 LAST 7 CHARACTERS OF FILE LABEL NAME POSITION NUMBER
XL=1 (RESERVED)
13
XL=0] EDITION NUMBER l RETENTION CYCLE L CREATION DATE
XL=1 (RESERVED)
14
XL=0 MULTIFILE SET NAME] REEL NUMBER
RESIDUAL SKIP COUNT PERM LENGTH OF EXTENSION
$ |

+

RESERVED

Figure 6-1. File Environment Table

60493800 E

CODED SEQUENTIAL FILE

Ifn FILEC fwa,f (WSA=addrw,lw),(OWN=eoi,err),LBL,UPR,EPR XPR=xpadr,UBC=ubc MLR=mlrs,
{XLR=xladr xli)

BINARY SEQUENTIAL FILE

Ifn FILEB fwa,f,(WSA=addrw,l w),(OWN=eoi,err),LBL,UPR ,EPR , XPR=xpadr,UBC=ubc MLR=mlrs,
(XLR=xladr xll)

CODED RANDOM FILE

Ifn RFILEC fwa,f,(WSA=addrw lw),(IND=addri li)(OWN=eoi,err), LBL, UPR, ,EPR XPR=xpadr
BINARY RANDOM FILE

Ifn RFILEB fwa,f,(WSA=addrw,lw),(IND=addri,li),(OWN=eoi,err),LBL,UPR ,EPR XPR=xpadr

Further explanation of parameter usage appears with descriptions of the FET fields below.

Ifn Logical file name
fwa Circular buffer address; substituted in FIRST, IN, and OUT
f Length of circular buffer; fwatf is substituted in LIMIT to make buffer address

Iwa+1; f should be at least one word larger than PRU size of the device on which
the file resides

WSA Working storage area keyword; parameters required for READIN and WRITOUT;
relieves user of responsibility for buffer manipulation

addrw First word address of working storage area

lw Length of working storage; when coded files are being processed, the length must be

at feast as long as the longest record, or data will be lost

IND Index buffer parameter keyword; required for name/number index random files only
addri First word address of index buffer
li Length of index buffer; for numbered indexed files, length should allow one word for

each record plus a one word header; for named indexed files, two words are required
for each record in addition to the index header

OWN OWNCODE routine parameters keyword

eoi Address of routine to be executed if end-of-volume, end-of-device, or end-of-information
occurs; UPR must be used

error Address of routine to be executed if file action errors occur; EPR must be used

60493800 C 6-3

UPR User specifies processing at end-of-volume, end-of-pack for user device sets, or end-of-
information; sets bit 45 of word 2 (Ifn+1)

LBL Label information will follow for magnetic tape file; LABEL macro providing label
information must immediately follow the FET creating macro to which it pertains

EPR User specifies handling of file action error conditions; sets bit 44 of word 2 (Iifn+1);
does not set extended error processing flag

UBC Unused bit count keyword; required only for S and L tapes

ubc Specifies number of bits in last word .of record that do not contain valid data

MLR Maximum record size keyword; required only for S and L tapes

mirs Maximum number of 60-bit words in record

XPR Extended error information to be returned by system

xpadr First word address of FET extension for extended error processing

XLR Extended label processing keyword

xladr First word address of extended label processing buffer

xli Length of extended label buffer

Examples:

To create a minimum FET for the standard INPUT file:

LBUFFER EQU 65
INPUT FILEC BUFFER,LBUFFER

To create an FET for a binary random file:
LBUFFER EQU 65
LINDEX EQU 25
FILEABC RFILEB BUFFER,LBUFFER,(IND=INDEX,LINDEX)

To create an FET for a labeled tape file with user processing at end-of-volume condition. OWNCODE routine
is supplied:

LBUFA EQU 65
TAPE] FILEB BUFA,LBUFA,LBL,UPR (OWN=PROCEOR)
TAPE] LABEL SORTINPUTTAPE,32,90

To create an FET for a list file. OWNCODE routines are supplied and the working storage area is used:

LBUFB EQU 65
PRINT FILEC BUFB,LBUFB,(WSA=LINE,14),(OWN=ENDING ,ERRORS),UPR ,EPR

64 60493800 E

FET FIELD DESCRIPTION

Words of the FET are numbered 1-13 in decimal, corresponding to the addresses Ifn through 1fn+14 octal. All I
parameter values are octal unless otherwise noted. Bits are numbered 0-39 right to left in decimal. (]

LOGICAL FILE NAME (ifn) (bits 18-59 at ifn)

The Ifn field. contains one to seven display-coded letters or digits starting with a letter, left justified; if less
than seven are declared, unused characters are zero-filled. This field is used as common reference point by the
central processor program and the peripheral processor input/output routines.

The Ifn parameter declared in an FET creation macro is also used as the location symbol associated with the
first word (Ifn+0) of the FET. A reference to Ifn in the file action requests is a reference to the base address |
of the FET.

CODE AND STATUS (CS) (bits 0-17 at ifn)

The CS field is used for communication of requested functions and resulting status between the central pro-
cessor program and the peripheral processor input/output routines. This field is set to the request code by
CPC when a file action macro request is encountered. When the FET is generated, bits 2-17 should be zero,

The code and status bits have the following significance:

Bits 14-i7 Record level number. On skip and write record requests, this subfield is set by CPC
as part of the function code. On read requests, it is set by CIO as part of the status
when an end-of-record is read. Initially the level subfield is set to zero when the
FET is generated.

Bits 9-13 Status information upon request completion. Zero indicates normal completion.
Non-zero indicates an abnormal condition, not necessarily an error; an OWNCODE
routine, if present, will be executed. Status codes are described with the EOI
OWNCODE and Error Exit Address discussions. Initially, this subfield is set to zero
when the FET is generated.

Bits 0-8 Used primarily to pass function codes to a peripheral processor. Function codes
are even numbers (bit 0 has a zero value). They are listed as CIO codes below.

When the request has been processed, bit O is set to one. When the FET is generated,
bit 0 must be set to one to indicate the file is not busy.

Bit 0 Current status of request (0 = file being processed, 1 = request
complete).
Bit 1 Specifies the mode of the file (0 = coded, 1 = binary). Bit 1 is not

altered by CPC when a request is issued,

Bits 2-8 Pass function codes to a peripheral processor (file action requests).

60493800 E 6-5

Bits 3and 4 These bits will be set to binary 10 if end-of-record is read, or to binary
11 if end-of-partition is read.

CIO function codes listed below can be set in bits 0-8 of the CS field by the user before calling CIO to carry
out the function. They are set by CPC when file action macros are used. All values are octal.

All codes not listed are illegal. All codes are shown for coded mode operations; add 2 for binary mode (for
example, 010 is coded READ, 012 is binary READ). Upon completion of operation, code/status in FET is
changed to an odd number, ususally by adding 1 to the code. In some cases, code is further modified to
indicate manner in which operation concluded [for example, a READ function 010, at completion, becomes
011 (buffer full), 021 (end of system-logical-record), or 031 (end-of-partition)].
General code meanings are:

200 series for special reads or writes (reverse, skip, non-stop, rewrite, etc.)

300 series for open and close

400 series reserved for CDC

500 series reserved for installations

600 series for skip

700 series reserved for CDC

Code Function Code Function Code Function

000 RPHRY 104 OPEN/WRITE/NR 224 REWRITER

004 WPHRT 110 POSMF 234 REWRITEF

010 READ 114 EVICT 240 SKIPF

014 WRITE 120 OPEN/NR 250 READNS

020 READSKP 130 CLOSE/NR 260 READNTTT

024 WRITERTT 140 OPEN 264 WRITENTTT

034 WRITEF 144 OPEN/WRITE 300 OPEN/NR

040 BKSP 150 CLOSE 330 CLOSER

044 BKSPRU 160 OPEN 340 OPEN

050 REWIND 170 CLOSE/UNLOAD 350 CLOSER

060 UNLOAD 174 CLOSE/RETURN 370 CLOSER/UNLOAD

100 OPEN/NR 214 REWRITE 374 CLOSER/RETURN
640 SKIPB

4('Applies to SI tapes only.
TTWhen a WRITER function is issued with level 178 specified, the function is changed to a WRITEF. Thus,
a function issued as a 24 will return as a 34. '
TTApplies to S and L tapes only.

6-6 60493800 E

DEVICE TYPE (dt) (bits 48-59 at lfn + 1)

The device type value will be returned to the FET device type field when a file action request is issued if
FET length exceeds the minimum. The 6-bit device type will occupy bits 54-59; bits 48-53 will hold recording

technique ideniificaiion for magnetic tapes, if applicable.
statement.

Device Type Value

01-05
06
07-12
13
14
15
16-17
20
21-25
26
27
30-37

IIEI§IE§E|II

Magnetic tapes have the following codes.

Device Type Mnemonic Device Type Value (Octal)

MT 40 7-track magnetic tape

NT 41 9-track magnetic tape

60493800 E

Th ic 1 i
The mnemonic is used in the REQUEST control

1> udwvu LI A vVl

Device

Reserved for CDC
Reserved for installations
Reserved for CDC

844-21 disk drive
844-41 disk drive

819 disk drive

Reserved for CDC

ECS resident files
Reserved for CDC

Link medium file
Reserved for CDC
Reserved for installations, mass storage only

Recording Technique
(Right 6 bits of FET dt Field in Binary)

xxxx00 HI density 556 bpi
xxxx01 LO density 200 bpi
xxxxi0 HY density 800 bpi
xxxx11 Reserved for CDC
xx00xx Unlabeled

xx01xx SI standard U and Z labels
xx10xx 3000 series label (Y)
xx11xx Reserved for CDC
00xxxx SI data format
O1xxxx Reserved for CDC
10xxxx S data format
11xxxx L data format

xxxx00 Reserved for CDC
xxxx01 GE density 6250 cpi
xxxx10 HD density 800 cpi
xxxx11 PE density 1600 cpi
xx00xx Unlabeled
xx01xx SI standard U label (ANSI)
xx10xx 3000 series label (Y)
xx11xx Reserved for CDC
00xxxx SI data format
01xxxx Reserved for CDC
10xxxx S data format
11xxxx L data format

6-7

Recording Technique

Device Type Mnemonic Device Type Value (Octal) (Right 6 bits of FET dt Field in Binary)
_t 42 Member multi-file set Same as in MT
7-track tape
_t 43 Member multi-file set Same as in NT
9-track tape
-t 62 7-track multi-file set tape Same as in MT
-t 63 9-track multi-file set tape Same as in NT

Unit record devices have the following codes.

Device Type Mnemonic Device Type Value (Octal) Device
TRt 44 Paper tape reader
TPHf 45 Paper tape punch
- 4647 Reserved for installations
Lptt 50 Any available line printer
- 51 Reserved for CDC
_ 52 Reserved for installations
LRTT 53 580-12 line printer
Lsff 54 580-16 line printer
Lttt 55 580-20 line printer
- 56-57 Reserved for installations
(o: 0 60 405 card reader
KB 61 Remote terminal keyboard
- 6411165 Reserved for CDC
- 66-67 Reserved for installations
cpft 70 415 card punch
DS 71 6612 keyboard/display console
Gett 72 252-2 graphic console
HcTt ' 73 253-2 hardcopy recorder
FMTT 74 254-2 microfilm recorder
pLit 75 Plotter
- 76-77 Reserved for installations

TCode is generated when a tape is declared to have MF characteristics; the multi-file set code 62 or 63 is
used only in system tables; it is n