
SW-41

r;J c:\ CONTl\.OL DATA
\::I Cl CORPOR<\TION

NOS VERSION 1
INTERNAL
MAINTENANCE
SPECIFICATION

VOLUME 3 OF 3

CDC® COMPUTER SYSTeMS:
CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

60454300

REVISION RECORD

REVISION j DESCRIPTION

A I ~anual rel.=ased.,t ~anual refl.e~ts NOS 1. 3.
(06/2~J.8.~

'.B ~v:r§""'5tG~1' ~ate manual ~to NOS 1.4 and to make
l(08/03/i9)_1 tyi:>o£raor.ical and teChntcal corrections. New

features documented in this manual include: extended
character set/orint train suooort: e:manded ECS
status: on-:!..ine ECS diagnostic support: retrv on
time/SRC limit: IAF enhancements: dead start from mass
stora_g_e; CYB ER 170 Model li6 SUDP'Jrt; extended TIM
function; 885 Disk Stora2e Subsvstem support; task
initiated K.DUHP; TAF intern=.l XJP trace; LIBTASK

I enhancements; TAF CYB ER Record Manager SUP_E..Ort; and
TAF/COBOL interface enhancements. This revision
o~olia'tes all !)revious editions.

r

Publication No.

60454300 Address comments concerning this
manual to.

REVISION LETTERS I. 0, Q AND X ARE NOT USED

c 1978, 1979
Control Data Corporation
Printed in the United States of America

Control Data C0rporat10n
Publications and Graphics Divis:on
4'20 I North Lexington Aven uc
St. Paul, Minnesota 5 5 I l 2

or use Comment Sheet in the had
of this manual

ii

PREFACE
~--~-----~-~~--------~--~--------~----~----~--------------------

The Network Operating System (NOS) was developed by Control Data
Corporation to provide network capabilities for time-sharing and
transaction processing, in addition to local and remote batch
processing, on CONTROL DATA CYBER 170 Series Computer Systems;
CDC CYBER 70 Series, Models 71, 72, 73, and 74 Computer Systems;
and CDC 6000 Series Computer Systems.

AUDIENCE

This internal maintenance specification CIMS) provides the
systems analyst with detailed internal documentation of NOS.
Included are detailed descriptions of system routines and the
system interfaces, tables, and flowcharts of these routines.
Some user interfaces are mentioned, but these are fully described
in other NOS manuals.

CONVENTIONS

Extended memory for the CYBER 170 Models 171, 172, 173, 174, 175,
720, 730, 750, and 760 is extended core storage CECS). Extended
memory for CYBER 170 Model 176 is Large central memory (LCM) or
large central memory extended <LCME). ECS and LCM/LCME are
functionally equivalent, except as follows:

• LCM/LCME cannot link mainframes and does not have a
distributive data path (DDP)ca~ability.

• LCM/LCME transfer errors initiate an error exit, not a
half exit. Refer to the COMPASS Reference Manual for
complete information.

The Model 176 supports direct LCM/LCME transfer COMPASS
instructions (octal codes 014 and 015). Refer to the COMPASS
Reference Manual for complete information.

In this manual the acronym ECS refers to all forms of extended
memory on the CYBER 170 Series. However, in the context of a
multimainfrarne environment or DDP access, the Model 176 is
excluded.

In this manual, the order of importance of headings i s denoted
follows.

LEVEL 1 HEADINGS ARE FULL CAPS AND UNDERLINED

LEVEL 2 HEADINGS ARE FULL CAPS

Level 3 Headin~s are First-Capped and Underlined

Level 4 Headings are First-Capped

Conventions for central memory word formats are as follows:

as

60454300 B i i ; •

• Cross-hatching indicates a field is not used by or is
not applicable to a function processorm However, CDC
reserves the right to assign these fields to system use
in the future.

• Fields reserved for system use are so labeled.

• Fields labeled with mnemonics indicate a specific
parameter must be inserted (generally described after
the word format).

• Fields with numeric identifiers indicate the actual
value that is used or returned for a particular functiona

RELATED PUBLICATIONS

For further information concerning CYBER 170, CYBER 70, and 6000
Series Computer Systems, the NOS time-sharing systems, and the
user interface for NOS, consult the following manuals.

Control Data Publication Publication No.

CYBER 170 Computer Systems Reference Manual

CYBER 170 Computer Systems
Models 720, 730, 750, and 760
Model 176 (Level 8)

CYBER 70/Model 71 Computer System Reference
Manual

CYBER 70/Model 72 Computer System Reference
Manual

CYBER 70/Model 73 Computer System Reference
Manual

CYBER 70/Model 74 Computer System Reference
Manual

Modify Reference Manual

Network Products
Interactive Facility Version 1 Reference Manual

Network Products
Transaction Facility Version 1 Reference Manual

Network Products
Transaction Facility Version 1 User's Guide

Network Products
Transaction Facility Version 1
Data Man~ger Reference Manual

60454300 B

60420000

60456100

60453300

60347000

60347200

60347400

60450100

60455250

60455340

60455360

60455350

iv •

Control Data Publication

Network Products
Transaction Facility Version 1
CYBER Record Manager
Data Manager Reference Manual

Network Products

Publication No.

60456710

Network Access Method Version 1 Reference Manual 60499500

Network Products
Network Access Method Version 1
Internal Maintenance Specification 60490110

Network Products
Remote Batch Facility Version 1 Reference Manual 60499600

NOS Version 1 Installation Handbook 60435700

NOS Version 1 Operator's Guide 60435600

NOS Version 1 Reference Manual Volume 1 60435400

NOS Version 1 Reference Manual Volume 2 60445300

NOS Version 1 System Maintenance Reference Manual 60455380

NOS Ver~ion 1 System Programmer's Instant 60449200

NOS Version 1 Time-Sharing User's Reference Manual 60435500

NOS Version 1 Export/Import Reference Manual 60436200

TAF/TS Version 1 Reference Manual 60453000

TAF/TS Version 1 User~s Guide 60436500

TAF/TS Version 1 Data Manager Reference Manual 60453100

TAF/TS Version 1 CYBER Record Manager 60456700
Data Manager Reference Manual

6400/6500/6600 Computer System Reference 60100000
Manual

DISCLAIMER

This product is intended for use only as described
in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or
undefined parameters.

60454300 8 v •

CONTENTS
-- ... - --------------.. ,,... -----------------------..__._ ---- -.,,-. ... ---- ---- .. -~
SECTION 1

SECTION 2 .

60454300 B

INTRODUCTION
Hardware Overview

Central Processor Unit
Peripheral Processors
Central Memory
Extended Core Storage

Software Overview
Central Memory Organization
Control Points

Control Point Concepts
Subcontrol Points
Special Control Points
Job Rollout
Storage Moves
Job Field Length

Program/System Communication
Program Rec al l
Periodic Recall
Automatic Recall

CENTRAL MEMORY AND TABLES
Central Memory Resident

Central Memory Layout
Pointers and Constants
Control Point Area
PP Communication Area
Dayfi Le Buffer Pointers
Central Memory Tables

Equipment Status Table CEST)
Formats

Mass Storage Devices
Nonmass Storage Device

C3000 Type Equipment)
Equipment Codes
File Name/File Status CFNT/FST)

Entry
File in Input Queue
File in Print Queue
File in Punch Queue
F i l e i n Ro l l o u t Q u e u e
File in Timed/Event Rollout

Queue
Mass Storage Fi Les Not in

Input, Print, Punch, or
Rollout Queue

Magnetic Tape Fi Les
Fast Attach Permanent Files

File Types
Files in Queues
Special Queue Files
Other Files

Job Origin Codes
Mass Storage Allocation Area
Mass Storage Table (MST)
Track Reservation Table CTRT)

Word Format

1-1
1-1
1-1
1-1
1-3
1-3
1-3
1-4
1-4
1-4
1-6
1-6
1-7
1-7
1-8
1-8
1-10
1-10
1-10

2-1
2-2
2-2
2-4
2-11
2-18
2-18
2-19
2-19

2-19
2-19

2-21
2-22

2-22
2-22
2-22
2-22
2-22

2-23

2-23
2-23
2-25
2-25
2-25
2-25
2-25
2-26
2-27
2-30
2-30

vi •

SECTION 3

60454300 B

Track Link Byte (Format 1)
Track Link Byte (Format 2)

Machine Recovery Table CMRT)
Word Format

Job Control Area (JCS)
Libraries/Directories

Resident CPU Library (RCL)
Resident PPU Library CRPL)
PPU Library Di rectory CPLD)
CPU Library Directory <CLD)
User Libr~ry Directory (LSD)

System Sector Format
Standard Format
Direct Access File System Sector

Format
ECS Direct Access Chain

Rollout File
System Sector
File Format

Job Communication Area
Exchange Package Area
Error Flags
Mass Storage Label Format

Device Label Track Format
Device Label Sector Format

Multimainframe Tables
Intermachine Communication Area
MMF Environment Tables
MMF DAT Track Chain (ECS)
MMF ECS Flag Register Format
Device Access Table <DAT) Entry
Fast Attach Table (FAT) Entry -

Global
PFNL Entry Format - Global

PPU Memory Layout
PPO - System Monitor CPPU Portion)
PP1 - System Display Driver (OSD)
Pool Processors

Disk Deadstart Sector Format

MTR/CPUMTR
CPU and PP Monitors
MTR Functions

CCHM (3) - Check Channel
OCHM (4) - Drop Channel
DEQM (5) - Drop Equipment
DFMM (6) - Process Oayfi Le Message
SEQM C10) - Set Equipment Parameters
PRLM (11) - Pause for Storage

Relocation
RCHM (12) - Request Channel
REMM C13) - Request Exit Mode
REQM (14) - Request Equipment
ROCM (15) - Rollout Control Point
RPRM (16) - Request Priority
RJSM (17) - Request Job Sequence

Number

2-30
2-30
2-31
2-31
2-32
2-32
2-32
2-33
2-33
2-33
2-34
2-35
2-35
2-37

2-39
2-40
2-40
2-41
2-42
2-43
2-46
2-47
2-47
2-47
4-48
2-48
2-49
2-50
2-51
2-51

2-52
2-52
2-53
2-53
2-54
2-55
2-56

3-1
3-1
3-9
3-9
3-9
3-9
3-9
3-9
3-10

3-10
3-10
3-10
3-10
3-10
3-10

vi i •

RSTM (21) - Request Storage 3-11
DSRM (2 3) - · D SD Requests 3-11
ECXM (24) - ECS Transfer 3-11
TGPM <25) - !AF/TELEX Get Pot 3-11
TSEM (26) - Process !AF/TELEX Request 3··11
DEPM (27) - Disk Error Processor 3-11
DR CM (30) - Driver Recall CPU 3-11
SCPM (31) - Select CPUs Allowable 3-12

for Job Execution
EATM (3 2) - Enter/Access System 3-12

Event Table
CPUMTR Functions 3-12

ABTM <36) - Abort Control Point 3-12
CCAM (37) - Change Control Point 3-12

Assignment
CEFM (4 0) - Change Error Flag 3-12
DCPM (41) - Drop CPU 3-12
SFIM (4 2) - Set FNT Interlock 3-12
DTKM (4 3) - Drop Tracks 3-13
DPPM (44) - Drop pp 3-13
ECSM (45) - ECS Transfer 3-13
RCLM (4 6) - Recall CPU 3-13
RCPM C47) - Request CPU 3-13
RDCM (s 0) - Request Data Conversion 3-13
IAUM cs 1) - Interlock and Update 3-13
ACTM (52) - Accounting Functions 3-13
RPPM· (53) - Request pp 3-14
RSJM cs 4) - Request Job Scheduler 3-14
RTCM (5 5) - Request Track Chain 3-14
SFBM (56) - Set Fi le Busy 3-14
STBM (5 7) - Set Track Bit 3-14
UADM (60) ·- Update Accounting and 3-14

Drop
SPLM (61) - Search Peripheral Library 3-14
J ACM (62) - Job Advancement Control 3-15
OLKM (63) - De link Tracks 3-15
TDAM (64) - Transfer Data Between 3-15

Message Buffer, Job
TIOM (65) - Tape 1/0 Processor 3-15
RTLM (66) - Request CPU Time Limit 3-15
LCEM (67) - Load Central Program 3-15
CSTM (70) - Clear Storage 3-16
CKSM (71) - Checksum Specified Area 3-16
LOAM <72) - Load Disk Address 3-16
VMSM (73) - Validate Mass Storage 3-16
PIOM (74) - PP IO Via CPU 3-16
MXFM (76) - Maximum Function Number 3-16

MTR Functions to CPUMTR 3-16
(Q) - RA Request 3-16
ARTF (1) - Advance Running Times 3-17
IARF (2) - Initiate Autorecall 3-17
EPRF (3) - Enter Program Mode 3-17

Request
MRAF (4) - Modify RA 3-17
MFLF (5) - Mod·i f y FL 3-18
SCSF (6) - Set (Restore) CPU Status 3-18
SMSF (7) - Set Monitor Step 3-18

60454300 B vi ; i •

SECTION 4

SECTION 5

60454300 B

CMSF (10) - Clear Monitor Step
ROLF (11) - Set Rollout Flag and

Check Job Advance
ACSM (12) - Advance CPU Job Switch
PCXF (13) - Process CPU Exchange

Request
ARMF (14) - Advance Running Time and

MMF Processing
MREF (15) - Modify ECS RA
MFEF <16) - Modify ECS FL

CPUMTR Structure
MTR Structure

Starting MTR at Deadstart Time
CPUMTR/MTR Flowcharts
Real-time Clock

Time Keeping
IDL, IDL1 - CPUO and CPU1 Idle Loops
CPUMTR Segmentation
Exchange Jumps

Central Processor Monitor
Monitor Address Register (MA)
Monitor Flag Bit
Central and Monitor Exchange

Jump Instructions
Programming Notes

Flow of Exchanges
Subcontrol Points CSCP)

Transaction Executive
Transaction Subcontrol Points

PERIPHERAL PROCESSOR RESIDENT (PPR)
PPR/System Interaction
PPR Subroutine Descriptions
NOS PP Naming Conventions
Error Messages
Direct Cells
Routine ~esidence

1DD and 1RP
7SE
7EP

PP Resident Flowcharts
Dayfile Message Options
Mass Storage Driver Resident Area

JOB PROCESSING
General Job Processing
Job Flow

Priority Aging
Queues
Rollout Scheduling
Scheduler
Control Statements
Special Fi le INPUT*
Timed/Event Rollout Processing

EESET Macro
DSD and DIS Commands
Description of Timed/Event

Rollout

3-19
3-19

3-19
3-19

3-20

3-20
3-20
3-21
3-22
3-22
3-22
3-25
3-25
3-47
3-47
3-48
3-48
3-49
3-49
3-49

3-50
3-53
3-71
3-72
3-75

4-1
4-1
4-6
4-7
4-8
4-8
4-8
4-8
4-10
4-10
4-11
4-22
4-22

5-1
5-1
5-11
5-11
5-11
5-12
5-12
5-14
5-19
5-19
5-20
5-21
5-21

; x •

SECTION 6

60454300 B

ROLLOUT Macro
FNT Interlocking and Scheduling

Individual FNT Interlock
Global FNT Interlock
FNT Entry Interlock
Job Advancement
Transition State Scheduling

Special Processing
Subsystems

Sub•ystem Startup
Special Entry Poin~s

ARG= Special Entry Point
DMP= Special Entry Point
RFL= Special Entry Point
MFL= Special Entry Point
SOM= Special Entry Point
SSJ= Special Entry Point
VAL= Special E~try Point
SSM= Special Entry Point

Special RA+1 Requests
Special PP Calls
Intercontrol Point

Communication
SIC ReQuest
RSB ReQuest

JOB FLOW·
Job Scheduler - 1SJ

Set Control Point Status (SCS)
Set Job Control CSJC)
Determine Disk Activity (ODA)
Search for Job CSFJ)
Commit Field Length <CFL)
Commit Control Point <CCP)
Assign Job (ASJ)
Schedule Special S~bsystem <SSS)

Priority Evaluator - 1SP
Adjust Job Priorities (AJP)
Advance Time Increments CATI)
Adjust File Priorities CAFP)
Check Event Table CCET)
Check Mass Storage CCMS)
Check if Checkpoint Needed CCDV)
Process Overflow Flags CPOF)

Advance Job Status - 1AJ
Begin Job C3AA)
Process Error Flag C3AB)

Translate Control Statement (TCS)
Issue Statement to Dayf le (!ST)
Search for Special Format CSSF)
Search for Program Fle CSPF)
Search Central Library CSCL)
Begin Central Program CBCP)
Assemble Keyword (AKW)
Enter Arguments CARG)
Check for Special· Entry Points

(CSE)
Check Valid DMP= Call CCVD)
Proc~ss Error <ERR)

s-21
5-24
5-24.1
5-24.1
5-24.2
5-24.2
5-24.2
5-24.3
5-24.3
5-25
5-28
5-32
5-32
5-33
5-33
5-33
5-43
5-44
5-45
5-45
5-45
5-46

5-46
5-49

&-1
6-1
6-8
6-8
6-8
6-8
6-8
6-8
6-9
6-9
6-15
6-17
6-17
6-17
6-17
6-17
6-18
6-18
6-18
6-35
6-43
6-52
6-58
6-58
6-58
6-58
6-65
6-65
6-65
6-70

6-70
6-70

x •

SECTION 7

60454300 B

Interrogate One Character ClOC)
Initialize Program Load CIPL)
Request Storage CRQS)
Search Library Table CSLT)
Set System Call CSSC)
Skip to Keyword CSTK)
Translate SCOPE Parameter CTSS)
Initialize Direct Cells <INT)
Advance to Exit Statement CATX)
Check Statement Limit CCSL)
Read Control State~ent to Address

(RCA)
Read Next Control Statement CRNC)

Search Peripheral Library - 3AC
Load Central Program - LDR
Search for Overl~y - 3AD
Load Copy Routines - 3AE

Load Central Program (LDC)
Copy MS Resident Program CCMS)
Set Load Parameters CSLP)
Load CM/AD CECS) Resident Programs

CCCM)
Mass Storage Read Error Processor

(MSR)
Set Program Format (SPF)
Check Program Format CCPF)
Check SYSEDIT Activity (CSA)

Special Entry Point Processing - 3AF
Restore Control Point Fields CRCF)
Initialize DMP= Load on RA+1 Call

CIDP)
Process Special Processor Request

(PSR)
Reset Former Job CRFJ)
Start-up DMP= Job (SOP)
Set Priorities (SPR)
Transfer Control Point Area Fields

CTCA)
Termination Processing - 3AG

Send Response to Subsystem CSRS)
Check Subsystem Connection (CSC)
Calculate Subsystem Index Position

(CSP)
End User Jobs CEUJ)

User File Privacy Processing - 3AH
Complete Job - 1CJ
Job Rollout Routine - 1RO

Common Deck COMSJRO.
Rollout File System Sector

Job Rollin - 1RI

SYSTEM I/O (MASS STORAGE)
Table Linkage
Table Content
Mass Storage Allocation
File Linkage
Disk Sector

6-72
6-72
6-72
6-72
6-72
6-72
6-73
6-73
6-73
6-73
6-78

6-78
6-78
6-78
6-79
6-79
6-79
6-79
6-80
6-80

6-80

6-80
6-80
6-80
6-81
6-81
6-81

6-81

6-82
6-82
6-82
6-82

6-82
6-82
6-83
6-83

6-83
6-83
6-83
6-89
6-90
6-91
6-96

7-1
7-1
7-2
7-3
7-5 .
7-7

xi •

SECTION 8

60454300 B

System Sector
Disk 1/0 From PPs

Initialize I/O Operation Via SETMS
Macro

I/O Operation and Error Processing
End Mass Storage Operation
General Programming Considerations

Storage Move
Random I/O
Switching Equipments
SETMS, ENDMS Sequences Allowed

Dual, Shared, and Multiple Access
Seek Overlap - 6DI Driver
MMF Operation of Seek Overlap
Non-MMF Operation of Seek Overlap
Flowcharts from 6DI Driver

6DP DDP/ECS Driver

MASS STORAGE INITIALIZATION AND RECOVERY
Mass Storage Manager
Initialization and Recovery Routines

Recover Mass Storage CRMS)
Preset
Read Device Labels
Check and Recover Devices
Call REC into Execution

Check Mass Storage CCMS)
Preset
Raad Device Labels
Check and Recover Devices
Check for Initialization

Requests
Count Active Families

System Recovery Processor <REC)
Mass Storage Recovery in MMF

Environment
MSM Overlays

Overlay 4DA/RDA
Overlay 4DB
Overlay 4DC
Overlay 4DD
Overlay 4DE
Overlay 4DF
Overlay 4DG
Overlay 4DH

MSM Overlay Load Addresses
Device Checkpoint
On-Line Reconfiguration of RMS

Routine RDM
Function 1 - Search for

Outstanding Requests
Function 2 - Replace Unit
Function 3 - Add Unit
Function 4 - Delete Unit
Function 5 - Clear Request
Function 6 - Ignore Processing

of Device
Device Redefinition Logic Flow

7-10
7-10
7-11

7-13
7-15
7-16
7-16
7-16
7-16
7-16
7-16
7-19
7-19
7-19
7-20
7-31

8-1
8-1
8-1
8-1
8-2
8-2
8-9
8-16
8-20
8-20
8-20
8-24
8-31

8-31
8-34
8-34

8-37
8-38
8-44
8-45
8-45
8-49
8-50
8-50
8-51
8-51
8-53
8-57
8-57
8-57

8-57
8-58
8-58
8-58
8-58

8-62

xi i •

SECTION 9

SECTION 10

SECTION 11

SECTION 12

SECTION 13

60454300 B

COMBINED INPUT/OUTPUT
User/ClO Interface
CIO Memory Allocation
CIO Initialization Routines
CIO Error Messages and Routines

2CA Subroutines
2CB Subroutines

-Position Mass Storage Routine
CIO Termination,Routines

Terminal Input/Output Routine TIO
2CI Subroutines

CONTROL POINT MANAGEMeNT
Function Processing - ·· -
CPM Organization

LOCAL FILES
File Types ,
Local Fi Le Manager
LFM Overlays

3LA - Error Processor
3LB - Local File Fundtions
3LC - Equipment Requests
3LD Common File Functions
3LE File Disposal Fnctions
3LF - Control Statement Fi le

Functions
3LG - GETFNT and Prim~ry Functions

RESOURCE CONTROL
Overcommitment

Deadlock Prevention
Overcommitment Algorithm
Resource Files

Resource Satisfaction
Resource Assignment Counts

Resource Executive
C o n t r o L S t a t _e m en t P r o c e s s i n g

Assignment Statements
Resource Declaration
VSN Association

External Calls
Resource Assignment
Removable Packs
Magnetic Tape
COM Subroutine
Preview Display
Reprieve Processing
Routine ORF
RESEX Organizatidn

MAGNET/1MT
MAGNET/1MT Structure .
MAGNET Control Point I~itialization

MAGNET Initialization
1MT Initialization

MAGNET Run-Time Executive
Routine 1MT

9-1
9-1
9-3
9-7
9-19
9-28
9-32
9-41
9-43
9-47
9-49

10-1
10-5
10-5

11-1
11-2
11-5
11-10
11-1 0
11-1 0
11 -11
11-12
11-1 2
11-1 3

r

11-1 4

12-1
12-1
12-2
12-3
12-1 0
12-17
12-21
12-21
12-22
12-22
12-22
12-22
12-3 2
12-36
12-36
12-39
12-47
12-49
12-55
12-55.1
12-62

13-1
13-1
13-2
13-3
13-19
13-19
13-21

xi ; i •

SECTION 14

SECTION 15

60454300 B

Tape Monitoring
Residency of 1MI

PERMANENT FILE MANAGER
PFM Communication
Permanent Fi Le Types
User Numbers Containing Asterisks
Master Devices

Direct Access File Processing
Indirect Access File Processing
File Creation, Del~tion
Accessing Fi Les
Catalog/Permit Entries

PFM Structure
Routine PFM
3PA - Main Command Processing
3PB - Save/Replace Processing
3PC - Append Processor
3PD - Attach Processor
3PE - Catalog List Routines
3PF - Define Processor
3PG - Permit/Purge Processor
3PH - Error Processing Routines
3PI - Auxiliary Routines
3PJ - Change Processor
3PK - Device-to-Device Transfer
3PL - Append - Original Fi Le

Transfer
3PM - Define Auxiliary Routine

TELEX TIME-SHARING SUBSYSTEM
Introduction
Terminal Operation

Terminal Job Initiation
Terminal Job Interaction-Output
Terminal Job Interaction-Input
TELEX Interactive Job Names
ln~eractive COMPASS Program

Example
TELEX Initialization
TELEX1 - Main Program

Driver Request GueueCs)
Monitor Request QueueCs)

VDPO - Drop Pots CTELEX Routine
DR T)

VASO - Assign Output (TELEX
Routine ASO)

VSCS - Set Charact~r Set Mode
<TELEX Routine SCS)

VPTY - Set Parity (TELEX Routine
PTY)

VSBS - Set Subsystem (TELEX
Routine SSS)

VMSG - Assign Message (TELEX
Routine DSD)

VSDT and VCDT TSEM Requests
TGPM Request

13-21
13-30

14-1
14-1
14-5
14-7
14-7
14-10
14-10
14-11
14-12
14-13
14-17
14-20
14-20
14-24
14-25
14-25
14-26
14-27
14-28
14-29
14-29
14-30
14-30
14-30

14-31

15-1
15-1
15-3
15-4
15-6
15-7
1 5-1 a
15-10

15-11
15-17
15-21
15-23
15-24

15-24

15-24

15-25

15-25

15-25

15-26
15-26

xiv •

SECTION 16

60454300 8

Terminal Table
Transaction word Taole
Pot Link Queue
Internal Queues (TRQT)
Reentry Table
Table of Reentry Routine Parameters

(TRRT)
Queue, Processing
TELEX Routines

TELEX2 - Termination Overlay
Multiplexer Driver

Driver Initialization C1TD)
Reentrant Routine Returns
Proc~ss Subroutines

1TA TELEX Auxiliary Routine
Group Request
Single Request

1TO - TTY Input/Output Routine
Additional Considerations
SALVARE - TELEX Recovery F.ile

TRANSACTION FACILITY (TAF)
TAF Overview
TAF Initialization

Subcontrol Point Table
Communication Blocks
Active Transaction List
Terminal Status Table
TOTAL Data Manager Initialization
TAF CRM Data Manager Initialization
Task Library Director
Files Used by the Transaction
Subsystem

NETWORK File
0810/TDBID/CDBID Files
Procedure Files SYPR, xxPR
xxJ File
EDT/DPMOD Files
TASKLIB/xxTASKL Libraries
Journal Files
ERPF File
Trace Files
xxTLOG File

Special Reserved Files
Transaction Executive
Subcontrol Point Program Requests

SCT - Schedule Task
DBA - Data Base Access
TOT - Enter Request into Total

Data Manager Queue
AAM - Enter Request Into TAF CRM AAM

Queue
CTI - Call Transaction Subsystem

lnterf ace
Send Terminal Output
Task Journal Request
Check for Task Chain in System
Request Code 3 - Terminal Argument

Operation

15-27
15-32
15-34
15-35
15-36
15-36

15-39
15-40
15-41
15-42
15-45
15-51
15-51
15-59
15-60
15-60
15-66
15-74
15-74

16-1
16-1
16-3
16-11
16-13
16-16
16-16
16-18
16-18
16-18

16-19
16-19
16-19
16-19
16-19
16-20
16-20
16-20
16-20
16-20
16-20
16-20
16-21
16-31
16-31
16-32
16-33

16-32.1

16-33

16-34
16-34
16-35
16-35

xv •

60454300 B

Request Code 6 - Return Terminal
Status

CM DUMP
DSOUM?
KPOINT - Terminal K-Display Command
Set K-Display To Run from Task
Submit Job To Batch
ITL - Increase Time Limit
!IO - Increase I/O Limit
Send Terminal Status Function to

Communication Executive
LOADCB - Read Multiple

Communication Block Input
TIM - Request System Time
MSG - Place Message on Line One
RA+1 Request Processing
Task Scheduling
RTL - Requested Task List
CCC - Task Load Request Stack

Transaction Executive Recovery/
Termination

Transaction Subsystem Control Point
TAFTS/Time-Sharing Executive

Interface
Transaction Subaystem/NAM Interface
Transaction Communication Flow

Terminal Connection To Transaction
Subsystem

. Time-Sharing Execu~ive to TAF
Login

NAM to TAF Login
Input Message Sequence for

Time-Sharing Executive to TAFTS
Communications

Input Message Sequence for NAM to
TAF Communications

Task Execution For Input Message
Downline Message Processing

Data Manager Communication
TAF Data Manager
TAF CRM Data Manager

Internal Task XJP Trace
Installation Modification of

Internal Trace
TAF Trouble-Shooting
LIBTASK Utility

PRS - Preset Routine
PCR - Process Create Option

Task Library Dir~ctory
PTT - Process TeU TAF Option
PIT - Purge Inactive Tasks
PNP - Process No Parameters

Product Set Support Monitor Requests
SFP DOO Request
CPM C27B) - Get Job Origin
END - End CPU Program

16-35

16-36
16-37
16-37
16-37
16-38
16-38
16-38
16-·38

16-39

16-39
16-41
16-41
16-41
16-42
16-42
16-43

16-45
16-47

16-48
16-49
16-49

16-49

16-50
16-51

16-54

16-55
16-56
16-62
16-63
16-64
16-64
16-66

16-67
16-70
16-70
16-73
16-73
16-75
16-75
16-76
16-83
16-83
16-83
16-84

xvi •

SECTION 17

60454300 B

ABT - Abort CPU Program
SCT - Buffer WAITINP
CTI - TPSTATUS
CTI - BEGIN

BAT CHIO
Introduction
BATCHIO Control Point
BATCHIO Communication
BATCHIO Overview
BATCHIO Manager - 1IO

CFF - Check for File
CPR - Check Pending Request
CSR - Check for Storage Release
MSG - Process Control Point

Message
REQ - Request Equipment
SFF - Search for File
310 - 110 Preset SATCHIO ,
3IA - 110 Auxiliary Subroutines

ABF - Assign Buffer
ADR - Assign Driver
ANS - Add New Buffer
EBP - Enter Suffer Point

Information
EFP - Enter File Parameters
EFT - Enter FET Information
FFS - Find Free Buffer

318 - Load Image Memory
3IC - Er~or Processor

BATCHIO Combined Driver - 1CD
Psinter Driver Characteristics
Card Punch Driver Characteristics
Card Reader Driver

Characteristics
1CD - SATCHIO Peripheral Driver

DSD Operator Request
SEA - Set Equipment Assignment
POF - Process Operator Flag
LPD - Line Printer Driver
CPD - Card Punch Driver
CRD - Card Reader Driver
ACT - Process Accounting

Information
CIB - Check Input Buffer
COB - Check Output Buffer
CPS - Call PP Service Program
CUL - Check User Limi.t Reached
PMR - Process Message Request
RCB - Read Coded Buffer
TOF - Terminate Output File
TOP - Terminate Operation

GAP - BATCHIO Auxiliary Processor
IIF - Initiate Input File (WTIF,

WRIF, WFIF)
LPR - Load Print Data (GBPF, PFCF)
TPF - Terminate Print Fi Le

16-85
16-85
16-85
16-86

17-1
17-1
17-5
17-5
17-1 0
17-11
17-16
17-16
17-16
17-16

17-16
17-17
17-17
17-18
17-18
17-18
17-18
17-18

17-18
17-18
17-19
17-19
17-19
17-19
17-20
17-23
17-23

17-2 5
17-28
17-29
17-29
17-29
17-30
17-30
17-31

17-31
17-31
17-32
17-32
17-32
17-3 2
17-32
17-32
17-33
17-34

17-34
17-35

xv; ; •

SECTION 18

SECTION 19

60454300 B

PDF - Process Dayfile Messages
(PDMF)

PLE - Process Limit Exceeded
ACT - Accounting (ACTF)
PHO - Generate Lace Card (GLCF)
POR - Process Operator Requests

(PORF)
CEC - Channel Error Cleanup CCECF)
BCAX - Exit

Error Processing

SYSTEM CONTROL POINT FACILITY
Introduction
CALLSS Macro

Parameter Block
Macro Format

SFCALL Macro
Macro Format
Parameter Block
SFCALL Function Codes

CALLSS Processing
Subsystem/UCP Communications Path
Connection State Table
End Processing

End UCP
End Subsystem

Abort Processing
Hostile User
Communication Ends and Aborts
CPUMTR Processing of SSC Calls

SSF Call Processing
SF.ENOT C06)
SF.READ C10), SF.WRIT C14)
SF.XRED (40), SF.XWRT (44)
SF.EXIT (16)
SF.SLTC C30), SF.CLTC (32)

SF.SLTC - Set Long-Term
Connection

SF.CLTC - Clear Long-Term
Connection

SF.STAT C12)
SF.SWPO C24)
SF.REGR C02)
SF.LIST (34), SF.XLST C42)
SF.SWPI C26)

QUEUE PROTECT, GFM UTILITIES
Pr.eserved Files
Queued Files

IQFT Entry
Queued File Ent~ance
Queued File Removal
Queued File Recovery

Dayfi Le Recovery
Recovery Processing
Equipment Section

Queue Fi Le Manager CQFM)
Queue File Supervisor (QFSP)

17-35

17-35
17-35
1"7-35
17-35

17-36
17-36
17-36

18-1
18-1
18-1
18-2
18-3
18-4
18-4
18-5
18-6
18-7
18-7
18-8
18-9
18-10
1~-10
18-11
18-14
18-14
18-15
18-17
18-17
18-18
18-18
18-19
18-20
18-20

18-20

18-20
18-21
18-22
18-22
18-25

19-1
19-1
19-1
19-2
19-2
19-3
19-3
19-4
19-5
19-5
19-6
19-10

xvi i; •

SECTION 20

SECTION 21

60454300 B

QDUMP/OLOAD Utility Control Words
Queue Recove~y (QREC) Utility
QLIST Utility
QMOVE Utility
QLOAD Utility
LOLIST Utility
QDUMP Utility
OFTERM Utility
DFLIST Utility
FNTLIST Utility
QALTER Utility

ACCOUNTING AND VALIDATION
Account dayf ile
SRU Algorithm

AAD Routine
AIO Routine
CPT Routine
SRU Routine

Accounting CPUMTR Functions
ACTM - Accounting Functions

ABBF (1) Function
ABSF C2) Function
ABCF (3) Function
ABEF (4) Function
ABVF (5) Function
ASIF (6) Function

RLMN - Request Limit
. TIOM - Tape I/O Processor

UADM - Update Control Point Area
Validation Files

Tree-Structure Files
COMSSFS

MODVAL and Validation Files
VALINDs File
VALIDUs File
User ~umber Validation Block
Deleted User Numbers

ACCFAM Pr.ogram
Routine GAV

SUN - Search for User Number
UVF - Update Validation File
IVF - Initialize Validation File

Validation Limits
PROFILE and Project Profile Files

Access to PROFILa
PROFILa Fi le
Deleted Charge and Project Numbers
CHARGE Routine
Routine OAU
Data Base Errors from PROFILE

MULTIMAINFRAME
MMF Overview
MMF Environment

System Flow
oeadstart

Shared Mass Storage

19-11
19-1 3
19-1 4
19-1 5
19-15
19-15
19-16
19-16
19-17
19-17
19-17

20-1
20-1
20-2
20-4

. 20-4
20-4
20-5
20-5
20-5
20-5
20-5
20-5
20-6
20-6
20-6
20-6
20-6
20-6
20-7
20-8
20-9
20-10
20-10
20-10
20-14
20-18
20-18
20-19
20-21
20-21
20-21
20-22
20-23
20-23
20-24
20-30
20-30
20-30
20-34

21-1
21-1
21-2
21-2
21-2
21-3

xix •

SECTION 22

60454300 B

Mass Storage Recovery Tables
TRT Interlocking
D e v i c 1! I n i t i a l i z a t i o n
Device Unload
Device Recovery
Device Checkpoint

Fast Attach Files
Permanent File Utilities
I/O Queue Protect
CPUMTR Considerations

Segmentation
ECS Interlocks

TRTI Interlock
PRSI Interlock
BTRI Interlock
MRUI Interlock
CIRI Interlock
DAT! Interlock
FATIIPFNI Interlocks
!FRI Interlock
COMI Interlock

CMR Interlock Tables
PFNL Table
MST Table

Interlock Reject Handling
Inter-Mainframe Function Requests
Parity Error Processing

Reporting of ECS Errors
Operator Interface - DSO
Machine Recovery - MRECl1MR

CYBER 170 RAM
SIC Register Deadstart Display
List Hardware Registers in Deadstart

Dump
Routine EDD
DSOI

SIC R~gister Error Logging
CYaER 170 Fatal Mainframe Errors

Group I Errors
Group II Errors

21-4
21-5
21-5
21-6
21-7
21-11
21-12
21-12
21-13
21-14
21-14
21-14
21-14
21-14
21-15
21-15
21-15
21-15
21-15
21-15
21-15
21-15
21-15
21-16
21-16
21-17
21-20
21-22
21-23
21-23

22-1
22-1

22-5
22-5
22-10
22-12
22-13
22-13
22-14

CYaER 170 Power Failure and
Bits

System Flow

Environmental
22-15
22-16

SCR Bit 37 Only Set
SCR Bit 36 or ILR Bit 0 Set

Unhangable I/O Channel code
Drivers

Routine 1EO
Routine 1TD
Routines DSD, 1DL

Output Channel Parity Error
Detection/Logging

65x Equipment
MTS Equipment

BATCHIO - Unit Record Equipment

22-16
22-16
22-17
22-17
22-18
22-18
22-18

22-18
22-18
22-19
22-19

xx •

SECTION 23

SECTION 24

60454300 B

SECURITY
System Access

Secondary User Statements
Security Count
Other User Number Protections
Special User Numberz

User Access Premissions
Special Console Modes
Special Entry Points

SSJ= Entry Point
SSM= Entry Point
SOM= Entry Point
VAL= Entry Point

~ecure ~ystem Memory
Prohibit Dumping
Clearing Memory

Other Data Protections
File Access
System Fi Le Access

STIMULATORS
lntroductic;>n
Calling STIMULA

STIMULA Control Statement
ASTIM Control Statement
NSTIM Control Statement

Functional Overview
ST I MULA
1TS and 1TE
DEMUX

STIMOUT File Format
EST Entries Used for Stimulations

STIMULA EST Entry
ASTIM Entries
NSTIM Entries

Tables Used for CPU/PP Communication
TSCR - Scratch Table
TTER - Terminal Table
TSTX - Session Text Table
TASK - Task Table
TSPT - Session Pointers
RA Locations (Stimulator Usage)
TCWD - Table of Control Words

STIMULA Routines
PRS - Preset Routine
TSF - Translate Session Fi Le
RSP - Request Session Parameters
RMP - Request Mixed Parameter Input
S~A - Set Session Addresses
STA - Set Task Addresses
IOR - Initialize Output Recovery
BSM - Begin Stimulation
RCO - Recover Output

Description of 1TS/1TE Routines
PRS - Preset Routine
CTS - Check TELEX Status
ICT - Initialize Control Table
SCP - Start Central Program

23-1
23-1
23-2
23-2
23-3
23-3
23-4
23-4
23-4
23-5
23-6
23-6
23-6
23-7
23-7
23-8
23-8
23-9
23-9

24-1
24-1
24-1
24-1
24-3
24-4
24-4
24-4
24-5
24-6
24-6
24-8
24-8
24-9
24-10
24-11
24-11
24-11
24-11
24-13
24-14
24-14
24-16
24-17
24-17
24-17
24-19
24-19
24-20
24-20
24-20
24-20
24-21
24-21
24-24
24-27
24-27
24-27

xxi •

SECTION 25

SECTION 2S

60454300 B

SSL - Stimulation Service Loop
LG! - Process Login
REJ - Reject Character
TTD - Think Time Delay
WTC - Write Terminal Character
EOL - Process End-of-Line
EOS - Process End of Script
SLI - Source Line Input
GNT - Get Next Task
PET - Process End of Task
OTT - Optional Think Time
SAN - Set Account Number
RTC - Read Terminal Character
HNU - Hung Up Phone
INI Initiate Input
REG - Process Regulation

Data Flow
Line Speed <LS K-Display Parameter)
Input Speed <IS K-Display Parameter)
Logout Delay (LOK-Display Directive)
Think Time <TT K~Display Parameter)
Think Time Increment CTI K-Display

Parameter
Activation Count (AC K-Display

Directive)
Activation Delay CAD K-Display

Directive)
Repeat Count CRC K-Oisplay Directive)
Loop On Session File (Lf K-Display

Parameter)
Recover Output CRO K-Oisplay

Directive)

CHECKPOINT/RESTART
Checkpoint Fi le
Checkpoint - CKP
RESTART

DEADSTART
Hardware Deadstart
Software Deadstart

Startup
OSB
DIO
SET
System Loading
SYS EDIT

MS Recovery Operations
PPR Initialization
Recovery
Checkpoint File
Disk Deadstart File

INSTALL
Routine 1IS

Function 1 - Validate Install
Fi Le

Function 2 - Initialize SDF
Function 3 - Complete SDF

24-28
24-28
24-28
24-28
24-29
24-29
24-30
24-30
24-30
24-30
24-31
24-31
24-31
24-31
24-32
24-32
24-32
24-32
24-33
24-33
24-34

24-35

24-35

24-35
24-36

24-36

24-36

25-1
25-1
25-7
25-15

26-1
26-1
26-2
26-2
26-4
26-4
26-4
26-6
26-7
26-8
26-9
26-10
26-11
26-11
26-11
26-12

26-13
26-14

xx i i •

SECTION 27

SECTION 28

SECTION 29

SECTION 30

·SECTION 31

SECTION 32

SECTION 33

60454300 B

Function 3 - Compiete SDF
Inst a~L lat ion

Function 4 - Process Mass Storage
Error

DISPLAY ROUTINES DSD, DIS
Dynamic System Display CDSD)

Structure of DSD
Programming Consideration
Routine 1DS

DIS Display Program
Structure of DIS
Overlay Residency and 10L

CENTRAL PROGRAM~ABLE K DISPLAY
Console Communication
Display Screen
Display Programming
Keyboard Input
K-Display Standards

K-Display Entries
K-Di splay Format

Sample Program

LOCATION-FReE ROUTINES
Common Deck COMPREL
Common Deck COMPRLI
Loading Zero-Level Overla~s

PRODUCT SET INTERFACE
SCOPE Function Processor

SFP Structure
STS Request

Function 01
Function 02
Function 03

MSD Request
PFE Request
ACE Request
PRM Request

Special Request Processing
Error Processor
Monitor Call Errors
DOO Request
FIN Request

NETWORK VALIDATION FACILITY
<Transferred to NAM IMS)

KRONREF, COMMON DECKS, AND SYSLIB
KRONREF
Common Decks
Common Deck Usage
SYS LIB

EXPORT/IMPORT
Introduction
E/I 200 Programs

26-14

26-15

27-1
27-1
27-3
27-6
27-6
27-15
27-18
27-20

28-1
28-1
28-2
28-5
28-6

•:'t~· ~ 2~:;~
28-8
28-9
28-1 0

29-1
29-1
29-2
29-3

30-1
30-1
30-2
30-2
30-2
30-4
30-5
30-6
30-7
30-8
30-8
30-10
30-12
30-13
30-13
30-15

31-1

32-1
32-1
32-2
32-3
32-13

33-1
33-1
33-1

xx iii •

SECTION 34

60454300 B

E/I 200 Overview
Export/Import Communication Areas

Function/Status Table
Message Buffer
Login Information Table
CPU Interlock Table
Drop Job Table
Password Table
Family Name Table
Export/Import FETs

Program E200CP
INP - Input Data Processor
OUT - Output File Processor

1LS - Export/Import Executive Routine
XSP - Service Processor

Validate User Numbjr CVUN)
Make Initial Job File Entry CMJE)

1ED - Multiplexer Driver

FILE ROUTING AND QUEUE MANA,EMENT
Introduction
Queued File Controls

Disposed Output Validation
Deferred Batch Validation
Security Count Validation

Queued File System Sector
Input· File Equivalences
Output File Equivalences

·Common Input/Output File Equivalences
Queued File FNT/FST
Deferred Route
File Routing Concepts

Terminal Addressing
Alternate Routings
Special File ID Codes
Device Specification
Forms Code
Queued Management Equivalences

Creating a Queued File
Queue Management Routines

COMPUSS
USS - Update System Sector
WQS - Write Queued File System

Sector
Callers of COM PUSS

DSP - Dispose Fi Le to I/O Queue
QAC - Queue Access

QAC Preset
Function 0 - ALTER

Send to Central Site
{Output Files>

Ch a ng e Terminal ID CTID)
Change Priority (Output
Files)

Change Forms Code (Output
Files>

Change Repeat Count
Change Spacing Code

33-2
33-9
33-9
33-12
33-12
33-13
33-13
33-14
33-14
33-14
33-16
33-17
33-18
33-21
33-23
33-23
33-24
33-29

34-1
34-1
34-1
34-1
34-2
34-2
34-3
34-4
34-4
34-5
34-6
34-6
34-7
34-7
34-7
34-8
34-8
34-9
34-9
34-11
34-11
34-11
34-12

34-19
34-19
34-19
34-25
34-33
34-33
34-33

34-34
34-34

34-34
34-34
34-34

xx iv •

SECTION 35

SECTION 36

60454300 B

Abort Job
Evict File

Function 1 - GET
Function 2 - PEEK
Function 3 - COUNT

QAC - Key Resident Subroutines
SEJ - Search for Executing· Job
SFF - Search for File
VCI - Validate Central Memory

Information
VMI - Validate Mass Storage

Information

REPRIEVE PROCESSING CRPV)
Reprieve Overview

RA+1 Call
Reprieve Functions
Parameter Block
Control Point Area Use

Setup Function
Resume Function
Reset Function
Interrupt Processing for Extended RPV
Terminal Input Requested
Interrupt Flow

PERMANENT FILE UTILITIES
Introduction
PFS - Permanent File Supervisor

POC - Process Overlay Call
KIP - Keyboard Processor
CDT - Convert Date and Time
ODE - Determine Default Equipment
OCK - Option Check
OCP - Option Combinat·ion Processor
PIE - Process Initial Entry
SVp - Set Valid Options

PFU - PF Utility Processor
PFU Structure
CAU - Clear PFU Active Flag
CCA - Check Central Address
CFA - Compute FET Address
CFS - Complete FET Status
OCH. - Drop Channel if Reserved
FAR - Force Autorecall
FFE - Final FNT Entry
LOB - Load Buffer
PAR - Pause and Reset Addresses
PDA - Process Direct Access File
RCH. - Request Channel if Not

Reserved
RPP - Recall pp
SAP - Set Addresses for Dump and Load
SAU - Set PFU Active Flag
SBA - Set Buffer Arguments
SCT - Set Catalog Track
SFC - Set File Complete
SFF - Store File Name and FET Address

34-34
34-34
34-35
34-35
34-39
34-39
34-39
34-40

34-40

34-41

35-1
35-1
35-1
35-1
35-2
35-5
35-6
35-8
35-9
3~-10
35-11
35-12

36-1
36-1
36-10
36-10
36-10
36-10
36-11
36-11
36-11
36-11
36-11
36-15
36-15
36-15
36-15
36-15
36-16
36-16
36-16
36-17
36-17
36-17

36-17
36-17
36-18
36-18
36-18
36-18
36-18
36-18

xxv •

c

60454300 B

SFT - Set File Type
SOC - Store One Character
STS - Store String
UFP - Update FET Pointers
VCA Validate Central Address
VME - Validate Mass Storage Equipment
WIF - Write Interlock Flag
PFU Common Decks
OPN - Open File
ACF - Advance Catalog File
RRD - Read Data List
LML - Load Main Loop

CATS Position
CATS Write
CATS Read
PETS Position
PETS Write
DATA Position
DATA Write
EMS - Empty Buffer

STU - Set PF Utility Interlock
CLU - Clear PF Utility Interlock
RCF - Rewind Catalog File
CHF Change File Name
SFL - Set Fi le length
SEC - Set Catalog Track Interlock
CLC - Clear Catalog Track Interlock
SES - Set Error Idle Status
LCT - Locate Catalog Track
IAC - Increment PF Activity Count
DAC - Decrement PF Activity Count
TSU - Test PFU Interlock

PF Utility Programs
Interlocks

Permanent File Activity Count
Permanent File Utility
Interlock
Total PF Interlock
Catalog Track Interlock

PFATC Utility
PFCAT Utility
PFCOPY Utility
PFOUMP Utility

Obtaining the File
Device Selection
Fi le Selection
Selecting a Device to Dump
Writing the Archive File

Archive File Control Words
Archive File Label
Catalog Image Record
Writing the Permanent File
Archive File Termination
Purge After Dump

Interlocking
Error Processing

Reading Catalog Entries
Reading Permit Entries

36-18
36-18
36-19
36-19
36-19
36-19
36-19
36-19
36-20
36-21
36-21
36-25
36-28
36-28
36-29
36-29
36-30
36-30
36-31
36-33
36-34
36-35
36-36
36-36
36-37
36-37
36-38
36-38
36-39
36-40
36-40
36-41
36-41
36-42
36-4 2
36-42

36-42
36-43
36-43
36-46
36-48
36-50
36-54
36-54
36-56
36-57
36-58
36-60
36-61
36-63
36-63
36-66
36-67
36-67
36-68
36-68
36-69

xx vi •

Reading PF Data 36-70
Writing the Archive/Verify

Fi le 36-71
PF LOAD UtiL.ity 36-71 c Loading the Fi le 36-76

Fi le Selection 36-76
Permits Processing 36-77
Data Processing 36-78
Catalog 36-79
End-of-Load 36-80
Archive Fi Le Assignment 36-81
Transferring Fi le s to Ma~s

Storage 36-82
Interlocking 36-83
Activating PFU for Loading 36-83
Error Processing 36-84

Reading the Archive 36-84
Fi le

Errors Reading Control
Words 36-84

Writing the Permanent
Fi le 36-84

SECTION 37· INTERACTIVE FACILITY CI AF) 37-1
Introduction 37-1
Terminal Operation 37-3

Terminal Job Initiation 31-4
Terminal Job Interactio~ - Output 37-6
Termina.L Job Interaction - Input 37-7
Interactive Job Names 37-10
Interactive COMPASS Program Example 37-10

IAFEX Initialization 37-11
IAFEX1 - Main Program 37-16

Driver Request Queue Cs) 37-21
Monitor Request Queue Cs) 37-23

VDPO - Drop Pots (IAFEX1
Routine ORT) 37-24

VASO - Assign Output CIAFEX1
Routine ASO) 37-24

vs cs - Set Character Set Mode
CIAFEX1 Routine s cs) 37-24

VSBS - Set Sybsystem CIAFEX1
Routine SBS) 37-25

VMSG - Assign Message (IAFEX1
Routine DSD) 37-25

VSDT and VCDT TSEM Requests 37-26
TGPM Request 37-26

Terminal Table 37-27
Network Tables 37-32
Pot Link Table 37-33
Internal Queues (TRQT) 37-35
Reentry Table (VRAP) 37-36
Table of Reentry Routine Parameters

(TRRT) 37-36
Queue Processing 37-38
IAFEX Routines 37-40

IAFEX2 - Termination Overlay 37-41
IAFEX4 - !AF/NAM Interface 37-42

Connection Establishment 37-45

60454300 8 xx vi i •

60454300 B

Command Line Entry
Source Line Entry
Input to a Running Program
Output Processing
Session Termination

1TA IAFEX Auxiliary Routine
Group Request
Single Request

1TO - Terminal Input/Output Routine
Additional Considerations
SALVA RE - IAFEX Recovery Fi le

37-45
37-46
37-46
37-46
37-47
37-48
37-48
37-49
37-54
37-62
37-62

xx viii •

1 -1
1 -1 • 1
1 -2
1-3

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-1'7
3-18
3-19
3-20
3-21
3-22

3-23
3-24
3-25
3-26
3-27
3-28
3-29

3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

c

60454300 B

FIGURES

System Equipment Configuration
Central Memory Storage Layout Example
RA+1 CIO and Request Calls
Graph of CM Time Slice and CPU Time Slice

System Interaction
System Interaction
Mo~1tors Interaction
CPUMTR Entry Points From Exchange Packages
Main Loop for MTR
Process Time Dependent Scanners
AVC Advance Running Times
JSW - Process CPU Job Switching (CPU Slot

Time)
PPL - Process PP Recalls
DSD PP Function Request
HNG - Hang PP and Display Message
FTN - Process Monitor Function
CCP - Check Central Program
CPR - CPUMTR Request Processor
~CHG - The CPU with CEJ/MEJ Not Available
CPUMTR Return Points
MTR - Exchange Entry From A CPU Program
CHECK - For System CP Request
Process - RA+1 Requests
PMN - Exchange Entry From MTR
PPR - Exchange Entry for Pool PPs
PRG - Exchange Entry for System CP (Program

Mode CPUMTR)
Pool PP Request
PP MTR
Program Request
System CP Program Mode
CPUMTR Running in MM Activates CP12
PP3 Requesting Function from CPUMTR
CPUMTR Processing PP Request Activates
Control Point 14

MTR Switches Control Points
CPUMTR Activates Control Point 10
Control Point 10 Calls CIO
CPUMTR Calls CIO, Activates Control Point 16
CIO Runs to Completion and MXNs to Monitor
PP 4 Issues D T KM vi· a M X N
System Control Point Processing
System Control Point XJ (MA) to CPUMTR
Subcontrol Point Field Length

System Interaction - PPR
1RP - Restore PPR
PP Resident CPPR)
Peripheral Library Loader (PU)
Process Monitor Function CFTN)
Reserve Channel (RCH)
Send Dayfile Message CDFM)
Execute Routine CEXR)
Set Mass Storage CSMS)

1-2
1-5
1-1 2,
1-1 5

3-1
3-2
3-3
3-4
3-23
3-2 4
3-26

3-27
3-28
3-29
3-31
3-32
3-33
3-36
3-38
3-39
3-40
:3-42
3-43
3-44
3-45

3-46
3-57
3-58
3-59
3-60
3-61
3-62

3-63
3-64
3-65
3-66
3-66
3-67
3-68
3-69
3-70
3-74

4-3
4-10
4-11
4-1 2
4-14
4-17
4-18
4-20
4-21

xx ix •

FIGURES (Continued)

5-1 General System Flow 5-2 c
5-2 Read Ca rd Reader 5-3
5-3 1SJ Prepares c1 CP for the Job 5-5
5-4 1AJ Starts the Job 5-6
5-5 Job Creates Local Fi le 5-6
5-6 Job i s Rolled Out 5-8
5-7 Job is Ro l Led In <From Rollout) 5-9
5-8 Job Completes 5-10
5-9 Typical Queue Priority Scheme 5-13
5-10 Control Statement Processing 5-17
5-11 Field Length of Loaded CPU Request Processor 5-31
5-12 DMP= Processing (1 A J Cal ls 1R0) 5-34
5-13 1 AJ Ca L ls LOR to Load DMP= Program 5-35
5-14 1 AJ Ca LL s 1RI to Restore the Job 5-36
5-1 s General Flow 5-37
5-16 Pass 1 CJ ob Flow Has Come to a OMP Cont ro L

Statement) 5-38
5-17 Pass 2 5-39
5-18 Pass 3 5-40
5-19 Pass 4 5-41
s-20 Pass 5 5-42

6-1 1 s J Main Loop SCJ 9-s
6-2 SF J - Search For Job 6-10
6-3 1SP - Main Program 6-16
6-4 1 AJ Interaction 6-21
6-5 1 AJ Major Overlay Memory Layout 6-22
6-6 1 AJ - Advance Job 6-23
6-7 3AA - Begin Job 6.:..36
6-8 3AB - Process Error Flag 6-45
6-9 TCS - Main Routine 6-55
6-10 IS T - Issue Statement 6-59
6-11 SCL - Search Central Library 6-61
6-12 BCP - Begin Central Program 6-66
6-13 ERR - Error Processor 6-71
6-14 INT - Initialize Direct Cells 6-74
6-15 1 CJ - Complete Job 6-85
6-16 1RO - Ro l lout Job 6-92
6-17 1RI - Rollin Job 6-97

7-1 RMS Fi le Structure 7-9
7-2 Ro l Lout File System Sector 7-10
7-3 Dual-, Shared- and Multiple-Access

Configurations 7-17
7-4 MS Driver Core Map 7-22
7-5 PRS - Preset 7-23
7-6 LOA - Load Address 7-24
7-7 osw - Driver Seek Wait 7-25
7-8 EMS - End Mass Storage 7-26
7-9 ROS - Read Sector 7-27
7-10 wos - Write Sector 7-28
7-11 FNC - Issue Function 7-29
7-12 DST - Check Drive Status 7-30
7-13 6DP - DDP/ECS Driver 7-32

60454300 B xxx •

8-1
8-2
8-3
8-4
8-6
8-7
8-8
8-9.
8-1G
8-11
8-12
8-13
8-13.1
8-14
8-15

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14

9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9 ... 24
9-25
9-26
9-27
9-28

c

60454300 B

FIGURES (Continued)

Recover Mass Storage (RMS)
Read Device Labels <RDL)
Check Active Devices
Check Device Status <CDS)
Recover Devices <RCD)
Check Mass Storage
Check Active Devices (CAD)
Clear Inactive Devices <CID)
Check Unavailable Devices <CUD)
Check Initialization Requests (CIR)
Overlay 4DA/RDA
Initialize Dayfiles (IDF)
Initialize Device Status (IDS)
MSM Load Map
Write TRT (WTT)

User/CIC Interface
CIO PP Memory Allocation
CIO - Main Overlay
tI01/IRQ - CIO Initialization
SAF- Search for Assigned File
EFN - Enter File Name
SFS - Set File Status
CFA - Check File Access
CSP - Check Buffer Parameters
PFN - Process Function
ERR - Process Error
ERR - Error Processor C2CK)
ISR - Identify Special Request C2CA)
EVF/EPF - 2CA Subroutines to Evict a Mass
Storage or Permanent File

2CB - Read Mass Storage
LDB Load CM Buff er
WCB Write Central Buffer
EOF - Process EOF
EOR - Process EOR
CPR - Complete Read
PMS and Function Processor Return
UFS - Update File Status
!OF - Set IN = OUT = FIRST
CFN Complete Function
TIO - Terminal Input/Output
PMT Magnetic Tape Operation
MER - Magnetic Tape Executive Request
UDT - Unit Descriptor Table Read/Write

8-3
8-5
8-10
8-13
8-17
8-21
8-25
8-28
8-29
8~32

8-40
8-46
8-51.1
8-52
8-55

9-1
9-5
9-6
9-8
9-9
9-10
9-12
9-13
9-16
9-17
9-21
9-22
9-29

9-30
9-33
9-35
9-37
9-38
9-39
9-40
9-41

. 9-44
9-45
9-46
9-47
9-50
9-52
9-53

xx xi •

1 2-1
c

1 2-2
12-3
1 2-4
12-5
12-6

12-7
12-8
12-9
1 2-1 0
1 2-11

12-12
1 2-1 3
12-1 4
1 2-1 5
1 2-16

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
1 3-11
1 3-1 2
13-13
13-14
13-15
13-16
13-17

1 4-1

1 5-1
15-2
15-3
15-4
1 5-5
1 5-6
15-7
15-8
15-9
15-10
1 5-11
15-12
15-13
15-14
15-15

60454300 B

FIGURES (Continued)

BRE - Build Resource Environm~nt

OCA - Overcommitment Algorithm
Resource Demand File Entry CRSXVid)
VSN Fi le Entry CRSXVid)
DDS - Determine Demand Satisfaction
ASSIGN/LABEL/REQUEST - Assignment Control
Statement

RESOURC Control Stat~ment

VSN Control Statement
LFM External Call Processor
REQ External Call Processor
PFM - PFM External Call Processor and RRP

- Request Removable Pack
RMT - Request Magnetic Tape
Request Block (RQ)
RESEX/MAGNET Call Block
COM
ORF - Update Resource Files

ICAW Word
Unit Descriptor Table Format
Overview of MAGNET After Initialization
Detailed Map of MAGNET Low Core
XREQ Format
Interlock Request Word
Channel Status ~ord

MAGNET-1MT Interlock Words
Field Length Status Word
1MT Function Table Entries
MAB and FNH Function Requests
RESEX-MAGNET Call Block
Preview Display Buffer
Table of Processor Strings
FST Entry for Tapes
EST Entry for Magnetic Tapes
1MT Direct Cell Allocation

PFM Overlay Load Map

TELEX Interactive Subsystem
Terminal Mass Storage Data Flow
Terminal Job Initiation
Terminal Job Interaction (Output)
Terminal Job Interaction <Input)
Pointer Addresses
TELEX1 Control Loop
TELEX1 Processing Modules
TELEX1 Memory Map
Driver Request Queue Stack
Table Relationships
Multiplexer Servicing Concept
1TD/2TD Memory Maps
MAIN and PRESET Overview
Input/Output Buffers

12-4
12-1 2
12-tS
12-16
12-18

12-23
12-28
12-31
12-33
12-35

1.2'.""37
1,2-40
12-44
12-46
12-50
12-56

13-3
13-4
13-10
13-11
13-12
13-12
13-13
13-13
13-13
13-14
13-15
13-16
13-17
13-18
13-22
13-23
13-24

14-19

15-2
15-3
15-5
15-8
15-9
15-12
15-18
15-19
15-20
15-21
15-38
15-44
15-46
15-48
15-49

xx xi i •

15-16
15-17
15-18
15-19
15-20
1 s-21
15-22

1 6-1
16-2
16-3
16-4
1 6-5
1 6··6
16-7
16-8
16-9
16-10

1 6-11
16-12
16-13
16~14
1 6-1 5
16-16
1 6-17
16-18
16-19

17-1
17-2
17-3
17-3.1
17-4

20-1
20·-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
20-10
20-11

22-1
22-2
22-3
22-4
22-5

•

60454300 B

FIGURES (Continued)

2TD Memory Map
MGR Flowchart
Read Mode Processing Subroutines
Write Mode Processing Subrouti'nes
1TA Control Loop
Time-Sharing Job Rollout File
1TO I/O Routine

!~IT - Initialize Transaction Executive
Transaction Subsystem Memo~y Map -TAFTS
Transaction Subsystem Memory Map -TAFNAM
Transaction Mai~ Loop
TSSC Loop - Task Slicing
REC - Recovery/Termination
TAFTS Control Point
TAFNAM Control Point
TAFTS/Time-Sharing Executive Relationship
Transaction Executive Using Network Access

Method
Trace Buffer Layout
LIBTASK Main rlow
PRS - Preset Routine
PCR - Process Create Option
Library Format
PTT - Process Tell TAF Option
Task Library Format
PIT - Purge Inactive Tasks
PNP - Process No Parameters

BATCHIO Overview
BATCHIO Central Memory Layout
110 - BATCHIO Main Loop
1CD Layout
1CD Manager

VALIDUs Level-0 Block
VALIDUs Level-1 Block
VALIDUs Level-2 Data Block
User Number Validation Block
Routine OAV
PROFILa Level-0 Block Format
PROFILa Level-1 Block Format
PROFILa Level-2 Block Format
PROFILa Level-3 Block Format
PROFILa Level-3 Overflow Block Format
Routine OAU

Dump Tape Header Label
Dump Tape Record Format
PP Dump Header Label
PP Dump Format
CM Dump Header Label

15-50
15-55
15-57
15-58
15-62
15-65
15-68

16-8
16-22
16-23
16-26
16-28
16-~4
16-45
16-46
16-47

16-48
16-68
16-71
16-72
16-77
16-78
16-79
16-80
16-81
16-82

17-2
1·7-7
17-13
17-25.1
17-26

20-11
20-12
20-13
20-15
20""."20
20-25
20-26
20-27
20-28
20-29
20-31

22-6
22-7
22-8
22-8
22-9

xxxiii •

22-6
22-7
22-8

24-1
24-2
24-3
24-4
24-5
24-6
24-7
24-8
24-9
24-10
24-11

25-1
25-2
25-3
25-4
25-5
25-6
25-7
25-8

27-1
27-2
27-3
27-4
27-5

28-1
28-2
28-3
28-4
2·8-s

33-1
33-2
33-3
33-4
33-5
33-6
33-7
33-8
33-9
33-10

34-1
34-2
34-3
34-4
34-5

c

60454300 B

FIGURES (Contin~ed)

CPU Hardware Register Contents
ECS Header Label
Dump Formats

Relationship of Stimulator Modules
Hardware Configuration for STIMULA
Hardware Configuration for ASTIM
Hardware Configuration for NSTIM
TTER Table
RA Location Table
STIMULA Flow
SSM Memory Control
RCO - Output Recovery
1TS/1TE Initialization
1TS/1TE Main Loop

CKP Format
Checkpoint File Structure
Checkpoint Overview
CKP - Checkpoint Main Loop
PRS - Checkpoint Preset
RESTART Overview
RESTART - Restart Main Loop
PRS - Restart Preset

DSD Overview
DSD Main Loop
DSD Release/Request Channel Loop
DIS Release/Request Channel Loop
DIS Main Loop

Sample Keyboard Main Loop
B Display
K Display, Left Screen
K Display, Lett and Right Screen
Small Characters, Left and Right Screens

E/I 200 Interaction
E/I 200 Operation
Port Table Layout
Export/Import FETs
E200CP Control Scanner
1LS - Executive Main Control
Function Table Processor
XSP - Main Entry
6671 Port Data Word
1ED Main Loop

COMPUSS - Subroutine·uss
DSP Main Routines
GAC Search
VCI - Validate Control Point Information
VMI - Validate Mass Storage Information

22-9
22-10
22-11

24-2
24-3
24-3
24-4
24-12
24-15
24-18
24-22
24-23
24-25
24-26

25-3
25-5
25-8
25-10
25-11
25-15
25-19
25-20

r

27-2
27-7
27-8
27-9
27-17

28-7
28-11
28-12
28-13
28-15

33-3
33-4
33-8
33-15
33-19
33-25
33-27
33-28
33-30
33-31

34-15
34-20
34-32
34-42
34-45

xx xiv •

3 5-1
35-2
35-3
35-4

36-1
36-2
36-3
36-4
36-5
36-6
:-56-7
36-:-8
36-9

37-1
37-2
37-3
37-4
37-5
37-6
37-7
37"'.'8
37-9
37-10
37-11
37-12
37-13
37-14
37-15
37-16

c

60454300 B

FIGURES (Continued)

Interrupt Processing
1AJ Interrupt Processing
1RO Interrupt Processing
1RI Interrupt Processing

PF Utilities Memory Map
PFS Argument Processing
PF Utility FET
PF ATC
PF CAT
PF COPY
PF DUMP
Tape Label Format
PF LOAD

IAF Interactive Subsystem
Terminal Mass Storage Datq Flow
Terminal Job Initiation
Terminal Job Interaction (Output)
Terminal Job Interaction (Input)
Pointer Addresses
IAFEX1 Control Loop
IAFEX1 Processing Modules
IAFEX1 Memory Map
Driver Request Queue Stack
Table Relationships
IAFEX4 Overlay
IAFEX Control Point
1TA Control Loop
Time-Sharing Job Rollout Fil~
1TO 1/0 Routine

35-13
35-15
35-18
35-20

36-6
36-7
36-14
36--44
36-47
36-.4 9
36-51
36-62
36-73

37-2
37-3
37-5
37-8
37-9
37-12
37-18
37-19
37-20
3i-21
37-39
37-43
37-44
37-50
37-53
37-56

xx xv •

1 -1
1-2

3-1
3-2
3-3

3-4
3-5
3-6
3-7
3-8
3-9

4-1
4-2
4-3

6-1

7-1
7-2

8-1
8-2

8-3

9-1
9-2
9-3
9-4
9-5
9-6

1 0-1

11-1

1 3-1

14-1
14-2
14-3

1 5-1
15-2
15-3
1 5-4
1 5-5
1 S-6
15-7
15-8
15-9

c

60454300 B

TABLES

System Resource Times
Job Origins

Values of MiR Functions
Values of CPUMTR Functions
MTR Functions Processed by CPUMTR in

Monitor Mode
MTR-CPUMTR Program Mode Requests
RA+1 Requests Processed by CPUMTR
Exchange Instruction Difference
Control Point/Exchange Package Correspondence
System Exchange Packages
Monitor, Pool PP, Control Point Relationships

Pool PP Memory Map
Direct Location Assignments
Symbols Used With Mass Storage Drivers

1SJ Tables

TRT Lengths
Sector Header Byte Contents

Recovery of Shared Device Errors
Mass Storage Device Recovery During

Deadstart
MSM Cross Reference

Origin Addresses
TRDO - Table of Read Processors
TWTO - Table of Write Processors
TFCN - Table of Function Processors
Overlay 2CK
TREQ

CPM Functions

LFM Overlays

MAGNET Processing Options

Mode Relationsh.ips
PFM Functions and Processes
Overlays 3Px Caled by 3PA

TELEX Constants
Driver Request Numbers <Issued to TELEX)
TSEM Monitor Request Functions
Terminal Table Entry Summary
Translation Tables Overlays
USE Block Lengths
Addresses and Words
Control Subroutines
Process Functions

1-14
1-14

3-5
3-6

3-7
3-7
3-8
3-51
3-53
3-54
3-56

4-4
4-9
4-25

6-2

7-3
7-8
r

8-35

8-36
8-53

9-4
9-18
9-18
9-19
9-20
9-31

10-2

11-6

13-25

14-14
14-15
14-24

15-15
15-22
15-23
15-32
15-43
15-45
15-51
15-58
15-59

xx xvi •

16-1
16-2
16-3

17-1

18-1
18-2
18-3

21-1
21-2

25-1
25-2
25-3
25-4

27-1
27-2

33-1

34-1

35-1

36-1
36-2

37-1
37-2
37-3
37-4
37-5

60454300 s

TABLES <Continued)

Table and Buffer Pointers
Buffers and Tables
Buffers and Length

Format Control Characters

Conne~tion State Table
UCP/Subsystem Checks
Check User Job Table

Devic~ Access Status
Mass Storage Device Recovery

CHKPT Common Decks
Buffer Assignments
RESTART Common Decks
RESTART Buffer Assignments

Table of Requests
1DS Request

E/I CM 4ayout

Information Bits

RPV Error Codes, Classes, Flags

Parameters and Utilities
PFU Function Usage

IAFEX Constants
Driver Request Numbers (Issued to IAFEX1)
TSEM Monitor Request Functions
Terminal Table Entry Summary
Process Functions

16-5
16-10
16-24

17-21

18-9
18-16
18-17

21-8
21-10

25-1 4
25-14
25-18
25-18

27-11
27-13

33~2

34-36

35-5

36-2
36-13

37-15
37-22
37-23
37-32
37-48

xx xvii 0

STIMULATORS 24

INTRODUCTION

A stimulator enters a hypothetical work Load into the system to
analyze the effects of such a work Load on response time and
system reliability. An internal stimulator allows the work Load
to be entered into the system without the use of any external
communications equipment on the related terminals. An internal
stimulator is part of the stimulated environment Cthat is, it
runs on the ~ame computer that it is stimulating). An external
stimulator allows t·he work Load to be entered into the system
using external communications equipment, but without the use of
the related terminals. An external stimulator may or may not
run within the stimulated environment.

The NOS stimulator software consists of the following programs:

STIMULA

1TS

1TE

DEMUX

Description

A CPU program that processes input from a
session file and K display.

A PP program called by STIMULA to enter
the.work Load into the system.

A PP program called by STIMULA to enter a
work Load into the system using e~ternal
communications equipment.

A CPU program that processes the stimulator
output •

. Figure 24-1 illustrates the relationship of the various
stimulator modules.

CALLING STIMULA

The type of stimulation to be run is determined by the control
statement used in the STMxxxx procedure file. The control
statements STIMULA, ASTIM, and NSTIM all initiate the CPU
program STIMULA.

STIMULA CONTROL STATEMENT

The STIMULA control statement initiates an internal stimulation
that enters a work Load into the system through TELEX or IAF.
When used with IAF~ the work Load is entered directly to IAF
without going through NAM (refer to figure 24-2). STIMULA can
be run as the only front end in the system or in conjunction
with live terminals~ Only interactive terminals can be
stimulated. The format on the control statement is as follows:

60454300 B 24-1 •

output
file

Session
File

K·Display
Input

Change
File

STIMULA

STIMOUT
file

DEMUX

user·
supplied

post­
processor

Control
Statement

1TS/1TE

Figure 24-1. Relationship of Stimulator Modules

60454300 B 24-2 •

stimulated. The format on the control statement is as follows:

STIMUL.ACI=Lfn)

Lfn Local file to be used as the session file.
If not specified, the initial K display
requests the session file name.

stimulator TELEX
software or

channel IAF

Figure 24-2. Hardware Configuration for STIMULA

ASTIM CONTROL STATEMENT

The ASTIM control statement initiates an external stimulation
that enters a work Load into the system through TELEX. The
stimulation software communicates with a TS type 6676 or
2550-100 multiplexer while TELEX communicates with a.TT type
multiplexer. The ports of the TS and TT type equipment are
hardwired together <refer to figure 24-3). ASTIM can be run as
the only front end in the •ystem or in conjunction with live
terminals. Only interactive terminals can be stimulated. The
format of the control statement is as follows:

ASTIMCI=lfn)

Lfn

stimulator
software channel

Local file to be used as the session file.
If not specified, the initial K display
requests the session file name.

6676
or

communication
lines

• •
2550-100 •

[TS]

6676 TELEX
channel

[TT]

Figure 24-3. Hardware Configuration for ASTIM.

60454300 B 24-3 •

NSTIM CONTROL STATEMENT

The NSTIM control statement initiates an external stimulation
that enters a work Load into the system through Network Access
Method CNAM> and its applications Cin particular, IAF>. The
stimulator software communicates with a TS type 6676 or
2550-100 multiplexer while the NAM software communi~ates with an
NP type communications processor C255x Host Communications
Processor). The ports of the TS and NP type equipments are
hardwired together (refer to figure 24-4). NSTIM can be run as
the only front end or in conjunction with live terminals. Only
interactive terminals can be stimulated. The format of the
NSTIM control statement is as follows:

NSTIMCI=Lfn)

lfn

stimulator
software channel

Local file to be used as the session file.
If, not specified, the initial K display
requests the session file name.

6676 • network or • 255x software 2550-100 • channel

[TS] [NP]

Figure 24-4. Hardware Configuration for NSTIM.

FUNCTIONAL OVERVIEW

The following paragraphs describe what functions STIMULA,
1TS/1TE, and DEMUX have with regards to the NOS stimulation
software.

STIMULA

STIMULA is a CPU program that is initiated by the STIMULA,
ASTIM, or NSTIM control statements. The major functions of
STIMULA include the following.

• Access session file arid convert session text into a
format suitable for the stimulation.

• Process K-display input and directive file input that
describes the terminal characteristics <such as Line
speed, think time, Logout delay, and so on).

60454300 B 24-4 •

• Build tables that will be needed by the stimulator
drivers 1TS or 1TE.

• Monitor stimulation driver status during the stimulation
run. The output buffers will be flushed when required,
the next best task computed, and the end of stimulation
detected.

• Once stimulation is complete, the STIMOUT file is
written.

1TS. AND 1TE

Routines 1TS and 1TE are PP programs that are called b~ STIMULA
to drive the stimulation. Routine 1TS is called if the STIMULA
control statement is used. Routine 1TE is called ~f- the ASTIM
or NSTIM control statement is used. The ~ajor difference
between 1TS and 1TE is that 1TS communicates diredtly with 1TD
via a channel. Routine 1TE interfaces with a 6676 or 2550-100
multiplexer. Routine 1TE does not know if it is driving TELEX or
Network Access Method applications.

The major functions of 1TS and 1TE include:

1. Initialize. control table in STIMULA with maximum number
of terminals that can be stimulated.

2. Activate termin~ls at a rate specified by the AC and AD
K-display directives.

3. Transmit data to the host at a rate specified by the IS
K-display parameter.

4. Receive data from the host at ~ rat~ ~peeified by the LS
K-display parameter.

5. Process think time delays as speeified by the TT and TI
K-display directives and optional think times as set in
the session text.

6. Process logout delay as spec~fied by LO ~-display
directive.

7. Process repeat count processing as specified by the RC
and LF K-display directives.

8. Process task requests as set in session text.

9. Process dynamic login requests as set in the session
text.

10. Return all data sent or received from the host to the
output buffer as specified by the RO R~display
directive.

60454300 B 24-5 •

In addition to the above functions, 1TE has the following
additional functions.

1. Returns trace data to the output buffer as specified by
the TE and TL K-display directives.

2. Processes source line input as specified in the session
text.

3. Processes Line regulation when encountered.

DEMUX

DEMUX is a CPU post processor pragram. It is run after the
stimulation is complete. Its main functions include the
following.

1. Sort terminal data by terminal number.

2. Sort trace data by terminal number.

3. Convert terminal data from A&CII to display code.

4. Convert trace data to readable output.

5. Process time stamps found in STIMOUT.

Output from DEMUX can be input into a user supplied program to
analyze the stimulation.

STIMOUT FILE FORMAT

When output is to be recovered CRO=ON K-display parameter>, a
file called STIMOUT is created by STIMULA. Two typ~s of
informtion are found on this file; upline and downline data
information and trace information.

The upline and downline information includes all data sent and
received by the stimulator with time stamps for when a carriage
return was sent by the terminal and a time stamp for when the
first character of output was received. The format for this
type of information is in the following format.

59 47 35 23 II 0

I tn I char I char I char
I

char I
tn Terminal nu~ber for which data corresponds to.

char Data information in the following format.

60454300 8 24-6 •

II 10 9 0

H1 data I
t

m

data

Time stamp flag.

Millisecond flag.

ASCII character in bits 9 through
0 if t and m are zero. Second
time stamp if t is 1 and m is o.
Millisecond time stamp if t and m
a re 1.

Trace information is written to the STIMOUT file if the TE and
TL K-display parameters have been used. The trace information
is contained in a two-word packet as follows.

59 47 35 23 II 0

1 tn status sec msec

1 tn ja In out reserved

tn Terminal number

status Byte 0 and 1 from the first word of TE

sec Value of second clock

msec Value of millisecond clock

j a Value of TOCA entry for terminal

in Input character

out Output character

Trac~ information is helpf~l when debugging 1TE or verifying
hardware.

60454300 B 24-7 •

DEMUX sorts information on the STIMOUT file by terminal number
and by data or trace information. Data is also converted into
readable display code.

EST ENTRIES USED FOR STIMULATIONS

Depending on the stimulator that is being initiated, certain EST
entries must be present in the EST table. This section
describes the format of these EST entries and when they are
required.

Two types of EST entries are used for external stimulation while
only one EST entry is needed for internal stimulation. The TT
EST entry is always required by TELEX or IAF. The stimulator
software does not get information directly from this type of
EST entry. The stimulation software requires an EST entry CTS
type EST) for external stimulation only. One TS EST entry is
required for each 6676 or 2550-100 multiplexer to be driven by
the stimulator. Up to eight 6676 or 2550-100 multiplexers, or 12
interactive Lines can be driven by ASTIM and NSTIM. If NHP is
being stimulated, the TT EST entries are replaced by NP EST
entries.

STIMULA EST ENTRY

The following CMR deck entry should be present when the STIMULA
control statement is to be used.

EQnn=TT,st,ct,1,ch,O,Lines.

nn EST ordinal

st Equipment status
ON - equipment available for system use
OFF - equipment unavailable

ct Controller number

ch Channel number

Lines Number of Lines to be stimulated

The general format for this EST entry is as follows.

59 53 47 41 35 23 II 8 5 0

I o cp o ch I I in es H TT

60454300 B 24-8 •

cp Control p~int number

ch Channel to be used for stimulation,

lines Maximum number of lines that can be stimulated

s Equipment status:
0 =device available CON)
1 =device unavailable (Off)

ct Controller number

.type MUX type:
O = real
1 = stimulator

The ch·annel should not have an equipment connected to it. If it
does, 1TD/1TN and 1TS may hang. This EST entry must be turned
on before TELEX or IAf are initiated.

The stimulator software does no~ use this EST entry directly.
Routine 1TD/1TN fi~ds the stimulator EST entry and assigns it to
the timesharing subsystem control point. The maximum number of
lines to be stimulated and the channel to be used for 1TD/1TN
and 1TS communications are se~ into bytes 3 and 4 of the first
word in the 1TD/1TN message buffer. Routine 1TS searches for
the 1TD/1TN message buffer to get this informtion. For this
reason, TELEX or IAF must be initiated before the stimulator.

ASTIM ENTRIES

Two types of CMRDECK entries are required to be present when the
ASTIM control statement is initiated.

The stimulator software requires the following EST entry.

EQnn=TS,st,ct,O,ch,O,lines.

while the TELEX/IAF software requires the following entry.

EQnn=TT,st,ct,10,ch,O,lines.·

nn
st
ct
ch
lines

EST ordinal
ON/OFF status
Controller number
Channel
Maximum number of lines to be stimulated

Two EST entries ar• required since the stimulator may be
running in a different,machine than is being stimulated. Also,
there are two multiplexers being used; 'the stimulator is driving
one and TELEX/IAF is driving one <refer to figures 24-3 and
24-4).

The central memory format for the TS and TT EST entries is as
follows.

60454300 B 24-9

.t

•

59 53 47 41 35 23 11 8 5 0

0 cp 0 I ch I I ines 1~1 TS H0 I 0 I
59 53 47 41 35 23 11 8 5 0

I 0 I cp I 0 I ch I lines 1~1 TT H0I 10 I

NSTIM ENTRIES

Two types of CMR deck entries are required to be present when
the NSTIM control statement is initiated.

The stimultor software requires the entry.

EQnn=TS,st,ct,O,ch,O,Lines.

while the NHP software requires the following.

EQnn=NP,st,eq,in,ch,O,node.

nn
st
ct
eq
i n
ch
node
lines

EST ordinal
ON/OFF status
Controller number
Equipment number
Index number
Channel
Node number
Maximum number of Lines

The central memory format for the TS and NP EST entries is as
follows.

59 53 47 41 35 23 11 8 0

0 I cp I 0 I ch I Ii nes 1~1 TS H 0

59 53 47 41 35 23 II 8 5 0

0 I cp 0 ch I node
1:1

NP }H in

60454300 B 24-10 •

TABLES USED FOR CPU/PP COMMUNICATION

This section describes the tables that are used for
communication between STIMULA and 1TS/1TE. All tables are
built by STIMULA and they reside in STIMULA's field lengthm

TSCR - SCRATCH TABLE

This table is used to contain code, FETs, and buffers that are
used once the stimulation has been initiated. The code is
responsible for recovering output and selecting the next best
task to process. If output is not to be recovered, this table
remains empty.

TTER - TERMINAL TABLE

TTER <refer to figure 24-5) is generated for 1TS and 1TE, to be
used for control of the stimulation run.

TSTX - SESSION TEXT TABLE

A session consists of 5 bytes of session text per word.
session is linked to the next session by a control word.
are n words per session. The byte format is as follows.

II 7 0

~
cc Output control code (binary):

100 o Normal output
010 o End of output line
001 o End of session

char ASCII character

The format of the session link is as follows.

59

0

60454300 B

17

index of next
session

0

Each
There

24-11 •

59 56 53 47 35 21 23 11 0

ooddr ct ck

•
;..i:- • ""' •

f b ooddr re ttd ct ck

nt Is is Id t ts ott

•
~ • ~

•

Is is Id tts ott

r b oaddr acct taddr r

•
:.:~ • :.:~

•

r b oaddr acct taddr r

used by 1TS for output recovery

•
~ • ::~

•

used by 1 TS for output recovery

ntM4 f laddr in ~ c nt

"·~ • ,.L-! A., •

"'*5-1f~f I l~ladd~r ~:~" ~~c~m f
Figure 24-5. TTER Table

60454300 B 24-1 2 •

nt Number of terminals <number of entries in table)
f Flags

b
oaddr
re
ttd
ct
ck
Ls
is
Ld
tts
Ott
r
acct
taddr
Lb
laddr
in
cnt

!i!. Description

59 Off Line
58 Disabled
57 Character encountered

Current byte of output data word
Address of current output data word
Rep e a t c o u n t
Think time delay in seconds
Character time in milliseconds
Timing clock
Line ~peed (character time in milliseconds)
Input speed <character time in milliseconds)
Logout delay in seconds
Think time in seconds
Optional think time in seconds
Reserved field
Special account number f Lag
Address for current task table entry
Byte of output word for lst output line
Address of output data ~ord for last output
Chara~te~ counter
Number of times terminal encountered Line

·regulation

Figure 24-5. TTER Table <Continued)

This table is built by STIMULA from the data contained on the
s~ssion file. It is used by 1TS/1TE duririg the stimulation to
get the next character to trans•it to TELEX/IAF. The b and
oaddr fields of the first word of the. terminal table entry are
used to get the next character for output.

TASK - TASK TABLE

This table is used for selection of the next best task. It is
built by STIMULA and is used by STIMULA during the stimulation
to determine the next best task to b~ executed.

59 23 17 II 0

task name task address

0 ccals teals
-"-

desired percentage (floatino point)

actual percentage (floatino point)

60454300 B 24-13 •

ccals
teals

Completed task call
Total ask call

TSPT - SESSION POINTERS

This table is used only during STIMULA initialization.
not present when the stimulation is in progress.

59

tt

is

tt
Ls
tty
re
index
i s
Ld

47

Is

Id

35 23

tty re

Think time
Line speed
Terminals assigned
Repeat count

17

0

Index in TSTX of session

Index

Input spe~d in characters/second
Logout delay in seconds

RA LOCATIONS (STIMULATOR USAGE)

0

It is

The RA Locations table is shown in figure 24-6. These entries
cont a i n i n f o rm at i on that c an be used by a L. L a ct i v e st i mu La t i on
drivers.

60454300 B 24-14 •

RASC

RA+1

RANT

RATK

RACW

RATK

RAMO

RAPP

59 53

f

ac

eq

al

f

Lwa
f wa
dtask

47 35 29 23

lwa 0 fwa

system communications

address of next best task

FWA of task table

nt tm ad

ln1 ln2

0

number of entries In TCWD

O, Loop on session file
1, Loop on session record
LWA+1 of session file

II

0

First word address of session file
Number of default task calls

ac Activation count

dtask

f I

nt Total number of stimulated terminals
tm Think time mask
ad Activation delay
f L Field Length needed for stimulation
eq Equipment ordinal for multiplexer

0

-Ln1 Minimum line number to recover trace information
ln2 Maximum line number to recover trace information
ai Activation indicator contains control table.ordinal

of stimulation driver currently activating
terminals

Figure 24-6. RA Location Table

60454300 B 24-15 •

TCWD - TABLE OF CONTROL WORDS

The table of control words includ~s one entry for each
stimulation driver called as follows.

59 47 35 17 0

TCWD~ ~.l ___ t_b _____ __ e_q_nt~~l.__ _____ 1_et------~l------'-'_a_dd _______ I

c Completion bit <set by 1TS/1TE)
0 = stimulation driver active
1 = stimulation driver complete

tb Terminal number bias (set by STIMULA)

eqnt For 1TS <set by 1TS), 12-bit nt
For 1TE <set by 1TE), 6-bit eq and 6-bit nt

eq = Equipment EST ordinal
nt = Number of terminals for equipment

f et

ttadd

60454300 B

The total number of Line regulations for the
stimulator driver is returned in this byte at the
completion of the stimulation.

Output file fet CO if no output to be recovered)
Cset by STIMULA)

Terminal table entry address <set by STIMULA)

24-16 •

STIMULA ROUTINES

Figure 24-7 shows the main flow for STIMULA.

The three entry points STIMULA, ASTIM, and NSTIM control the
setting of the NPS <network product stimulation) flag, the mode
<internal/external stimulation) flag, and whether 1TS and 1TE
are called. The NPS flag is set only when the NSTIM con~rol
statement is evoked. This flag is used by TSF <translate
session file> to determine if an end of line is to be
terminated by a carriage return (this would be the case for
STIMULA and ASTIM) or by a DC3. The mode flag is used by PRS
(preset>, ICT (initialize control table) and SAC <set
activation count>. The mode flag is used to determine what
format is used for the control table entries. The NSTIM and
ASTIM entry points will also change the 1TS RA+1 requests to
1TE RA+1 r~q~ests.

PRS - PRESET ROUTINE

The routine PRS <~reset) performs the following functions.

1. Crack the control statement arguments.

2. Call 1TE or 1TS to initialize TCWD <control word table)
with the number of terminals and equipment number.

3. Set the maximum number of terminals that can be
stimulated into NT, MNT, and DSNT.

4. Set the default activation rate.

5. Modify character translation table if 64 character set
is enabled.

6. Rewind the session file if it was specified on t'he
control statement.

TSF - TRANSLATE SESSION FILE

The routine TSF (translate session fil~> performs the following
functions.

1. If the session file was not specified on the control
statement 1 the routine RSF <request session file) is
called to attach the session file. The routin~ RSF
will request K-display input from the ope.rator
reg~rding the Location and name of the session file.

2. Once the session file has been attached, TSF begins
reading the session file and building the TSTx; TSPT
and TASK tables. Each record in the session file is
processe~. If the record is a session record, the
session text is converted to ASCII, set into t~e TSTX
table and an entry is added to the TSPT table. If the

60454300 B 24-17 •

(NPS) = 1

60454300 B

(MODE)= 1
(TS) = NE

set session
addresses.

IOR
initialize
output

recovery

request BSM
session

parameters begin
stimulation

request
mixed param- end

eter input

Figure 24-7. STIMULA Flow

no

24-18 •

record contains a task Cthe first character of the
first word of the record is a $), then the task text
is converted to ASCII, set into the TSTX table and an
entry is added to the TASK table. The TSTX and TASK
tables are completely built by TSF. The TSPT table
will be modified at a Later time.

3. End of Line and en~ of session control characters are
set in the text table as required. These characters
will cause special processing to take place in 1TS/1TE.

The session file is returned to the system by the main routine.

RSP - REQUEST SESSION PARAMETERS

The routine RSP Creq~est session parameters) is responsible for
requesting K~display input from the operator concerning the
session parameter settings. At this time the operator can set
the foll6wing session parameters.

NT Number of terminals to stimulate
LS Line speed
IS Input typing speed
TT Think time
TI Think time increment
AC Activation count
AD Activation delay
RC Repeat count
LD Logout d~Lay
RO Recover output option
LF Loop on session file option
TE Equipment ordinal for trace
TL Line number for trace

Values entered at this time affect all terminals that are to be
stimulat~d. · On exit from RSP, the values to be used for the

_session parameters are sto~ed in working storage.

RMP - REQUEST MIXED PARAMETER INPUT

The routine RMP <request mixed parameter input) allows the
operator to set the session parameters on a script basis. The
operator ~ay enter input to the stimulator with the K display
or a directive change file~

RMP calls the routine MXD to move the session parameters that
were stored in working atorage by RSP to TSPT. The routine OMX
is called to build the K display to be used for mixed moije
input. The routine KBI is called to process K-display input.
The K-display input will be set into the appropriate TSPT
entries immediately. On exit, the TSPT table is completely
built. No more interaction.with· the operator is required by
STIMULA~ .

6045430-0 B 24-19 •

SSA - SET SESSION ADDRESSES

The routine SSA <set session addresses) is responsible for the
following functions.

1. Calculate the relocation address for the tables TSCR,
TSER, TSTX, and TASK.

2. Set the script pointers into RASC.

3. Assign scripts to the terminals. When a script is
assigned to a terminal, information is moved from the
TSTP entry for the script into the TTER entry for the
terminal. The number of terminals field is
decremented in the TSPT entry and the next script is
assigned. Script will be assigned to terminals until
the number of terminals field is zero. Scripts are
assigned in a round robin order. The first script is
assigned to the first terminal, the second script to
the second terminal, the last script to terminal n and
then the first script is assigned to terminal n+1.
When all scripts have been assigned any remaining
terminals are disabled by setting bit 58 of the first
word of the terminal table.

STA - SET TASK ADDRESSES

The routine STA <set task addresses) uses the relocation
addresses calculated by SSA to set with the addresses of the
task table.

IOR - INITIALIZE OUTPUT RECOVERY

If output is to be recovered from the stimulation run (that is,
RO=ON was entered on the session parameter display), then the
routine IOR (initialize output recovery) is called. !OR is
responsible for setting up the FETs and buffers that are used
by the stimulation drivers. The TSCR table is used to hold the
code, FETs, and buffers used for recovering output. If output
is not to be recovered, this table remains empty.

IOR allocates space in TSCR and moves the recovery code, FETs,
and buffers into TSCR. The FET address is set into TCWD (table
of control words).

BSM - BEGIN STIMULATION

The routine BSM (begin stimulation) is responsible for setting
the control word into RACW, moving the table TSCR, TTER, TSTX,
and TASK to low memory and calling the stimulation driver for
the first entry in TCWD. The routine !CT (initialize control
table) is called to set the terminal bias and the appropriate
terminal table address into the control word table.

60454300 B 24-20 •

When BSM is ready to move the tables to low memory, a move Loop
is moved to high memorym When this move Loop is executed, the
tables TSCR, TTER, TSTX, and TASK are moved to Low memory.
Once the tables are moved, the stimulation drivers for the
first entry in TCWD is calledg The first stimulation driver
called is responsible for dropping the CPU and transfer control
to the output recovery routine if needed.

Figure 24-8 shows how BSM reorganizes memory in preparation for
the stimulation.

RCO - RECOVER OUTPUT

If output is to be recovered, the routine RCO is relocated by
BSM. The first stimulation driver is responsible for
transferring control to RCO. RCO performs three tasks while
the stimulation is in progress:

1. Compute the addresses of the next best task when a
task address is needed.

2D Scan all the output FETs being used and call CIO to
flush the buffers to disk when the buffers are more
than half full.

3. Scan the TCWD to determine when the stimulation is
complete.

Once the stimulation is complete, the control point queue
priority and CPU priority are reduced. The routine COF
(complete output files) is called to write the output data
recovered by each stimulation driver to the file STIMOUT.

RCO is flowcharted in figure 24-9.

DESCRIPTION OF 1TS/1TE ROUTINES

Depending on the stimulator control statement evoked, the CPU
program STIMULA will call either 1TS or 1TE. Routine 1TS is the
stimulation driver that interfaces with 1TD/1TN via a channel
while 1TE is a stimulation driver that interfaces with a 6676
or 2550-100 multiplexer.

Both 1TS and 1TE binaries are generated from the 1TS Modify
deck. If a DEFINE ASTIM is entered into the Modify directive
file, the 1TE binary will be generated. If the DEFINE ASTIM is
not present, then the 1TS binary is defined. Differences
between 1TS and 1TE include:

1. 1TS searchs for the 1TD/1TN message buffer to
determine how many terminals to stimulate and what
channel to use. 1TE gets this information from the TS
EST entry.

60454300 8 24-21 •

RA RA
pointers pointers

TCWD TCWD

code
for

TSCR

table TTER
generation
K·display TSTX

processing,
etc. TASK

TSCR

TTER unused
dropped

TSTX by
stimulation

TASK driver

TSTP move loop

RA+FL RA+FL

Before After

Figure 24-8. BSM Memory Control

60454300 B 24-22 •

60454300 B

no

GNT
get
next
task

check
output
buffers

no

Figure 24-9. RCO - Output Recovery

24-23 •

2. 1TE is Limited to driving 64 <1008) terminals. 1TS
can drive up to 512 terminals.

3. Channel interface in 1TS is geared to 1TD/1TN while
1TE interfaces with a 6676 or 2550-100 multiplexer.

4. 1TE provides a trace mechanism to allow the monitoring
of 1TE during run time.

The 1TS/1TE initialization is shown in figure 24-10 and the
main Loop is shown in figure 24-11.

The formats of the 1TS and 1TE calls are as follows.

59

59

addr

41 35 17 O·

1TS

11
cp

I
0 addr I

41 35 17 0

1TS

11
cp I 0 addr

0 if 1TS/1TE is being called to initialize the
control word table TCWD.
Address of entry in control word table TCWD for
this copy of 1TS or 1TEa This call is made to
initiate the stimulation.

The CPU program makes an SPC RA+1 request when calling 1TS/1TE.
This allows the system to check the validity of the call
instead of 1TS and 1TE checking it.

The following discussion describes the more important routines
in 1TS and 1TE.

PRS - PRESET ROUTINE

The preset routine is responsible for the following functions.

1. Set channel instructions to use stimulator channel as
specified in the EST entry. The routine ISC
(initialize stimulator channel) is called to do this.

2. 1TE preset will call the routine IMX to initialize the
6676 or 2550-100 multiplexer.

60454300 8 24-24 •

60454300 B

.... ··

initialization

stimulation

SCP
start

central

initialize
output

recovery

set
addresses

set TOCA
table

entries

Figure 24-10. 1TS/1TE Initialization

24-25 •

60454300 B

SSL
stimulation

service
loop

update
clocks

check for
end of

stimulation

end
stimulation

Figure 24-11. 1TS/1TE Main Loop

24-26 •

3. The control word set in RACW by the CPU program is read
and the values saved for Later use.

4. The routine SCP is called to start the CPU output
recovery program and call remaining copies of 1TE.

5. The routine IOR is called to initialize the driver to
recover output.

6. The addresses of the terminal table entries are set
where requested by the TTADD macro.

7. The TOCA table is initialized. If ·a terminal is
disabled by the CPU program, the TOCA entry for that
terminal is set to OFL2, and the active terminal count
is decremented by one. If the terminal has not been
disabled its TOCA entry is set to LGI.

8. Preset checks the activation indicator in RAMO.
Preset does not allow any Lines to be activated (that
is, initialization is not complete) until the
activation indicator is set to the TCWD index for the
stimulator driver. This is needed to control the
activation of terminals when multiple copies of 1TE
are called.

CTS - CHECK TELEX STATUS

The routine CTS <check TELEX status) is used by 1TS only. CTS
scans the PP communication area for 1TD/1TN. If 1TD/1TN is not
found <TELEX not active), then the control point is aborted. If
1TD/1TN is found, its message buffer is read to get the
stimulator channel and terminal count. If no terminals are
defined, the control point is aborted.

ICT - INITlALIZE CONTROL TABLE

In 1TS, ICT returns the terminal count read by CTS to the
cont~ol word table. Only one entry is returned by ICT.

In 1TE, ICT searches the EST for TS type equipments, assigns
the equipment to the control point, and returns the terminal
count to the TCWD table. The number of.TCWD entries is set
into RAPP. Routine ICT will abort the control point if no TS
equipment is found or no terminals are defined.

SCP - START CENTRAL PROGRAM

The routine SCP is executed only by the 1TS or 1TE that is
assigned to the first entry of TCWD. SCP performs the
following functions.

1. Drop the CPU.

60454300 B 24-27 •

2. Reduce field Length of control point to the minimum
required.

3. Set stimulation initiated bit· in RASC and issue
STIMULATION INITIATED message.

4. If output is to be recovered CRO=ON>, the CPU is
started by setting the P address to STMO into the
control point exchange package and issuing RCPM
function. <Refer to RCO description.>

5. Initiate 1TS or 1TE for remaining entries in TCWD
table.

SSL - STIMULATION SERVICE LOOP

The routine SSL is responsible for processing all input and
output for all active terminals. The routine RTC is called to
process the last character input from the channel. Output
processing is keyed off of the TOCA table. This table contains
the address of the output routine to be used for the terminal.
SSL calls the output routines as specified in TOCA.

LGI - PROCESS LOGIN

The routine LGI is responsible for activating terminals at the
rate_ specified with the AD and ACK-display directives. Once
the Line can be activated, a carriage return is output on that
Line. After all Lines are activated, the activation indicator
in RAMO is incremented by one to allow activation of terminals
by another copy of 1TE. LG! outputs null characters until an
initiate input prompt is received for the terminal.

REJ - REJECT CHARACTER

The routine REJ is used by 1TS to control the rate at which
data is received from the host. If data is being received too
fast, 1TS will stimulate a ·character reject by the mux.
Routine 1TD/1TN will reissue the char-acter until it is accepted
by 1TS.

Routine 1TE does not require this routine since the output data
rate is determined by the hardware being used.

TTD - THINK TIME DELAY

The routine TTD generates and processes a think time delay
before the next data message is sent upline. The think time is
generated by adding a random think time increment <set by TT
K-display directive> to a base think time Cset by TT K-di~play
directive). The random think time increment is generated by
masking the low order bits of the system clock. TTD· will

60454300 B 24-28 •

decrement the terminal clock one every second until the clock
expires. The input typing speed CIS) is then set in the
terminal clock and the TOCA table entry for the terminal is
updated to the routine WTC.

WTC - WRITE TERMINAL CHARACTER

The routine WTC is responsible for sending data upline at the
input typing speed <set by IS K-display directive). The
terminal clock is used in conjunction with the millisecond
clock. The first word of the TT.ER entry for the terminal is
read for the Location of the next character to be processed.
The character is read from the TSTX table and the TTER entry for
the terminal is updated. WTC then checks to see if the
character read requires special processing (that is, end of
Line, end of script, optional think time, dynamic Login,
tasking) and if so, jumps to the appropriate processor. The
special character processors will return to either WTC3 or WTC7.
If output is to be Logged CRO=ON), the routine SOC is called to
Log the upline character processed.

Specjal characters processed by WTC include the following.

Character*

ELCR
ELXO
ESC
ETX
AUTO
BTSK
ETSK
SACN
OPTT
ESCR
ESXO

Routine

EOL
EOL
EOL
EOL
SL!
SNT
PET
SAN
OT~
EOS
EOS

EOL - PROCESS END-OF-LINE

Description

End of Line
End of Line
Escape (End of Line)
End of text (End of Line)
Source line input
Begin task
End of task
Dynamic Login character
Optional think time
End of Script
End of Script

The routine EOL is responsible for cleaning up the terminal
table when an end-of-Line is encountered. This includes
resetting the optional think time, setting the Line speed for
downline data, clearing the user name flag, and clearing source
Line input f Lag. If the Last Line that was sent was source Line
input, the TOCA entry for the terminal is set to the routine
TTD. This allows the stimulator to send the next upline
message without receiving an initiate input prompt. The
routines SOC and ETM are called to Log the Last character sent
and a time stamp indicating when it was sent.

*These characters are defined in COMSSTM.

60454300 8 24-29 •

EOS - PROCESS END OF SCRIPT

The routine EOS is responsibLe for processing the repeat count
(refer to RC K-display directive) and Loop on session file flag
<refer to LF K-display di~ective> wh~n the Last character of a
session has been encountered. If a repeat count is not present
for a given terminal, EOS sets the terminal off Line bit in the
TTER and jumps to EOL to process end-of-Line. If a repeat
count is present, EOS will check the Loop on session file flag
to determine if the same session should be repeated CLF=NO) or
the next session in the TSTX table should be executed CLF=YES).
The first word of the next session is set into the TTER and the
repeat count is decremented. The routine EOL is called to
process the end of Line.

SL! - SOURCE LINE INPUT

The routine SL! is responsible for detecting source Line input
to the beginning of an upline message and setting the source
Line input flag in the terminal table for further processing by
EOL. A Line is considered to be source Line input if the
following conditions are met.

1. The first character of a line is a comma.

2. 1TE is the stimulation driver.

GNT - GET NEXT TASK

The routine GNT is responsible for initiating the next best
task. To do this the following steps are taken:

1. The current session address and terminal status in the
first word of TTER are saved in the third word of TTER.

2. The next best task address is read from RANB. If the
CPU program has not set the next best task in RANB, the
default task is read from RATK and the task indicator
is incremented in RASC.

3. The task address is set in the first word of the
terminal table entry.

4. The task address in RANT is cleared if the default
task was not used.

5. The number of task call field in the task table is
inc~emented.

PET - PROCESS END OF TASK

PET is responsible for incrementing the task completed counter
in the task entry and resetting the session address saved in the
third word of the TTER table.

60454300 8 24-30 •

OTT - OPTIONAL THINK TIME

OTT converts an optional think time that is specified in the
script into a usable format and stores it into the terminal
table. The routine EOL will set the optional think time as the
base think time. The optional think time will be used until the
initial think time is· reset, another optional think time is set,
or end of script is encountered.

SAN - SET ACCOUNT NUMBER

The routine SAN converts the special user name character in the
script into the first, second, or third digit of the terminal
number. The special account number f Lag in TTER table is used
to determine what terminal number digit is to be set. The
account number field is cleared at the end of each Line.

RTC - READ TERMINAL CHARACTER

The routine RTC processes the Last character input from the
channel for a given terminal. If it is a character that
requires special processing (such as initiate input or hang up
phone), the appropriate routine is called. If it is not a
special character the TOCA entry for the termi~al is set to call
REJ (reject character) to control the Line speed. If the
character being processed is the first outpu~ character recei~ed
other than a Line feed or null character since the Last upline
message, then ETM is called to Log a time stamp for when the
character is received. The routine SOC is called to Log the
data character.

In addition to the above, the RTC routine in 1TE interrogates
the first several characters of data received from the host for
the REPEAT •• message. If this message is received by a
terminal, the routine REG is called to process the Line
regulation.

Character

IISI*
IISE*
REPEAT ••

HNU - HUNG UP PHONE

Meaning

Initiate input
Hang up phone

Routine called

Line regulation encountered

INI
HNU
REG

The routine HNU checks the status of the disable flag in TTER
that the routine EOS set. If the terminal has been disabled
(that is, no more sessions are to be processed for this line),
then HNU will decrement the active terminal count and set the
terminal offline by setting its TOCA entry to OFL2. No more
dialog will take place for this terminal. If EOS set a new

*This symbol is defined in COMSSTM.

60454300 B 24-31 •

session address into TTER and Left the Line enabled, then HNU
will restore the initial think time for the terminal and allow
the terminal to be activated again by setting its TOCA entry to
LGI.

INI - INITIATE INPUT

The routine INI is called when the next upline message is to be
sent to the host. IN! determines if the terminal just came
online by checking its TOCA entry. If it has not just come
online, then its TOCA entry is set to jump to the routine TTD
to proess the think time delay. If the terminal has just come
online, the first upline message will be sent immediately by
setting the TOCA entry to WTC.

REG - PROCESS REGULATION

The 1TE routine REG is called when RTC has determined that a
line regulation has been encountered. REG will restore the
Location of the final character of the Last message into TTER.
This address was saved in TTER by the routine WTC when the first
character of the message was sent upline. REG increments the
Line regulation counter for the terminal in TTER and the total
line regulation counter, a flashing a-display ~essage is also
issued to notify the operator.

The CPU proram will issue the total number of line regulations
encountered by all 1TEs if the output recovery code is enabled.

DATA FLOW

This section describes what happens to the K-display input that
is entered on the session parameter display.

LINE SPEED CLS K-DISPLAY PARAMETER)

1. The STIMULA routine SLS <set line speed) is called by
the K-display input processor to convert the Line
speed into binary and place the value in location LS.

2. The STIMULA routine MXD (mixed parameter initial setup)
moves the value in LS to the session pointer table,
TSPT Cbyte 1, word 0).

3. The STIMULA routine MXP (mixed mode processor) may
update the line speed in TSPT depending on the mixed
mode K-display input.

4. The STIMULA routine SSA (set session address) converts
the line speed found in TSPT to line speed in
characters per millisecond. This value is placed into
the terminal table, TTER (byte 0, word 1).

60454300 B 24-32 •

S. The 1TS/1TE routine EOL (process end of line) will set
the data rate (byte 3, word 0 of TTER) and with the
line speed (from byte O, word 1 of TTER) whenever the
terminal is ready to accept data from the host.

6. The 1TS routine REJ (reject character) checks the
terminal clock to ensure data is not being received
faster than the line speed specifies. If the line
speed is exceeded, REJ will reject the character by
sending a 1400 code to the host.

NOTE

The line speed for 1TE is determined by the
hardware. The LS parameter should be set
appropriately.

INPUT SPEED (IS K-DISPLAY PARAMETER)

1. The STIMULA routine SIS <set input speed) is called by
the K-display input processor to set the input speed
into the Location IS.

2. The STIMULA routine MXD (mixed parameter initial setup)
moves the input speed from IS to the session pointer
table, TSPT (byte O, word 1).

3. The STIMULA rotitine MXP (process mixed mode input) may
update the input speed in TSPT depending on the mixed
mode K-display input.

4. The STIMULA routine SSA <set session addresss>
converts the input speed in TSTP to characters per
second. This value is set in the terminal table (byte
1, word 1) of TTER.

5. The 1TS/1TE routin& TTD (think time delay) and !NI
<initiate input) move the input speed into the data
rate Cbyte 3, word 0 of TTER) and the terminal clock
Cbyte 4, word 0 of TTER) when data is to be sent to
that host.

6. The 1TS/1TE routine ~TC (write terminal character)
checks the terminal clock to determine when the next
character can be sent to the host. When the clock
expires, the character is transmitted and the terminal
clock is reset with the data rate valueu

LOGOUT DELAY CLO K-DISPLAY DIRECTIVE)

1. The STIMULA routine SLD <set logout delay) is called
by the K-display input processors. SLD· wi LL set the
Logout delay in the location LO.

60454300 B 24-33 •

2. The STIMULA routine MXD Cmixed parameter initial setup)
moves the logout delay from LO to the session pointer
table TSPT (word 1, byte 1).

3. The STIMULA routine MXP (process mixed mode input) may
update the logout delay in TSPT de~ending on the mixed
mode input.

4. The STIMULA routine SSA <set session address) moves
the logout delay from TSPT to the terminal table Cbyte
2, word 2 of TTER).

5. The 1TS/1TE routine HNU Chung up phone) sets the
logout delay in the terminal clock at the end of a
session if another session is to be processed on that
terminal.

6. The 1TS/1TE routine LGI Clogin terminal) monitors the
terminal clock to determine when the logout delay has
expired. The terminal is then activated.

THINK TIME (TT K-DISPLAY PARAMETER)

1. The STIMULA routine STT Cset think time) is called by
the K-display input processor to set the think time
value into location TT.

2. The STIMULA routine MXD (mixed parameter initial setup)
moves the think time from TT into the session pointer
table Cbyte O, word 0 of TSPT).

3. The STIMULA routine MXP (process mixed mode input) may
update the think time found in TSPT depending on the
mixed mode input.

4. The STIMULA routine SSA (set session address) moves
the think time found in TSPT to the terminal table
(bits 31 through 24, word 0 of TTER>. The think time
is also set in byte 3 of word 1 of TTER as the initial
think time.

5. The 1TS/1TE routine EOL (process end of line) will
update the think time in TTER with the optional think
time that w~s set by OTT (process optional think time)
into TTER (byte 4, word 1). EOL will also reset the
think time with the initial think time when required.

6. The 1TS/1TE routine TTD Cthink time delay) computes the
user's think time from the think time, think time
increm~nt, and the system clock. The user's think
time is set into the terminal clock. TTD will monitor
the terminal clock until it expires, at which time data
may be sent to the host.

60454300 B 24-34 •

THINK TIME INCREMENT (TI K-DISPLAY PARAMETER)

1. The STIMULA routine TTI <set think time increment)
sets the think time increment mask into the Location
TTI.

2. The STIMULA routine BSM <begin stimulation) moves the
think time increment mask from TM to byte 2 of RACW.

3. The routine PRS Cin 1TS and 1TE) reads RACW and sets
the think time increment mask into an LPC instruction
in the routine TTD (process think time delay).

4. The routine TTD reads the system clock on channel 14
and uses the mask to generate a random think time
increment. This value is added to the think time <as
specified by the TT K-display directive) to produce a
user think time.

ACTIVATION COUNT (AC K-DISPLAY DIRECTIVE)

1. The STIMULA routine SAC <set activation count) is
called by the K-display input processor. SAC will set
the activation count into the Location AC.

2. The STIMULA routine BSM (begin stimulation) moves the
activation count from AC to byte 0 of RACW.

3. The 1TS/1TE routine PRS reads RACW and sets the
activation count into the direct cell LC.

4. The 1TS/1TE routine LGI (process Login) checks the
value of LC. If zero, no additional terminals are
allowed to start the Login sequence. If nonzero, CLC)
is decremented by one and one terminal will proceed
with the login sequence. Once the activation delay in
the terminal clock expires, CLC) is incremented by one
to let the next terminal start its login sequences.

The maximum number of terminals that can be in the
Login sequence is equal to the activation count.

ACTIVATION DELAY CAD K-DISPLAY DIRECTIVE)

1. The STIMULA routine SAD <set activation delay) i~
called by the K-display input processor to set the
activation delay into the Location AD.

2. The STIMULA routine SSA <set session address) presets
the terminal clock in the TTER entries with the
activation delay.

3. The STIMULA routine BSM (begin stimulation) moves the
activation delay from AD to byte 3 of RASC.

60454300 B 24-35 •

t: •

4. The 1TS/1TE routine LGI (Login terminal) monitors the
terminal clock. When it expires, the terminal may
proceed with t~e Login sequence.

REPEAT COUNT CRC K-DISPCAY DIRECTIVE)

1. The STIMULA routine SRC <set repeat count) is called
by the K-display input processor to set the repeat
count into location RC.

2. The STIMULA routine MXD <mixed mode initial setup)
moves the repeat count from RC into the session
pointer table, TSPT (bits 23 through 19 of word 1).

3. The STIMULA routine MXP (process mixed made input) may
update the repeat count in TSPT depending on the mixed
mode input.

4. The routine SSA (set session addresses) moves the
repeat count to see if another session is to ~e

processed. If so, EOS will set the script address in
the TTER entry and decrement the repeat count.

LOOP ON SESSION FILE CLF K-DISPLAY PARAMETER)

1. The STIMULA routine SLF (set loop on fi Le) is called
by the K-display input processor to set the loop on
session file status into the location LF.

2. The STIMULA routine SSA <set session address) moves the
loop on session file status from LF to bit 59 of RASC.
The first word address and the last ward address of the
session text table TSTX is also set in RASC.

3. The 1TS/1TE routine PRS reads RASC into the PP buffer
RBUF.

4. The 1TS/1TE routine EOS (process end of script) uses
the information in RBUF to determine the address of the
next session to be executed. If the Loop flag is set,
the next session in TSTX will be assigned to the
terminal. If the loop flag is not set, the same
session is repeated. The script addresses in RBUF
CRASC) are used for table wrap around purposes.

RECOVER OUTPUT (RO K-DISPLAY DIRECTIVE)

1. The STIMULA routine SRO (set recover output) is called
by the K-display input processor to set the recover
output status in the location in RO.

2. The STIMULA routines SSA (set session addresses) and
STA <set task address) checks the recover output

60454300 B 24-36 •

status to compute the location of the session and tasks
during the stimulation when building the TASK and TTER
tables.

3. The STIMULA routine, STI, calls t~e routine !OR
Cintialize output recover) if output is to be
recovered. Routine IOR sets up the routines, FETs and
buffers to be used during the stimulation in the TSCR
table. If output is not to be recovered, TSCR will
remain empty.

4w The first copy of 1TS or 1TE calted determines if
output is to be recovered by checking the output FET
address in its TCWD entry. If an address is present,
the CPU program is started. This is performed by the
routine SCP <start CPU program).

5. The 1TS/1TE routine IOR (initialize output re~overy)

is called to initialize the PP program for output
recovery. The routines affected are soc <store data
character) and ESD (end STIMOUT data).

The following mechanism is used to recover output.

1. The routines WTC <write terminal character) and RTC
(read terminal character) receive the next character
they are to process. The routine SOC Cset data
character) is called by WTC and RTC.

2. If output is not recovered, SOC returns
unconditionally to the calling routine. If output is
to be recovered, word four of the TTER table entry is
read. Byte zero of this word indicates the next byte
to store the data character. If the word is not full,
the data character is stored, byte 0 is incremented,
and the word is written back to the TTER entry. If
the word is full, the routine SOW (set data word) is
called.

3. SOW sets the data character into byte ~ and the
terminal number into byte 0 of the fourth word of the
TTER entry. The word is then written into the output
buffer. If the output buffer is full, the message

LOST STIMOUT DATA

is issued and the word is not written to the buffer.
SOC finally clears the fourth word of the TTER entry.

4. Time stamps are processed by the 1TS/1TE routine ETM
Center time stamp) by calling the routine SDC. ETM is
called by RTC when the first character of a downline
message is received or by WTC when an end of Line is
encountered.

60454300 8 24-37 •

5. The 1TS/1TE routine ESD <end STIMOUT data) is called
at the end of the stimulation to flush the data stored
in the TTER entries to the output buffer.

6. The CPU routine RCO <recover output) that was started
by SCP is constantly monitoring the amount of data in
the output buffers. When a buffer becomes more than
half full, CIO is called to write the data disk. One
file will be written for each copy of 1TS or 1TE that
is running.

7. At the end of the stimulation, the CPU routine COF
<complete output file) is called to copy all the
stimulation output to the file STIMOUT.

8. The CPU program DEMUX is called to process the STIMOUT
file.

60454300 B 24-38 •

CHECKPOINT/RESTART 25

Checkpoint/restart is composed of two CPU routines, CHKPT and
RESTART, which use special entry points described in section 5.
Special entry points allow these routines to access the
privileged file DM*.

The user can checkpoint a program's progress for Later restart by
control statements, macro call, or RA+1 request.

By using the RESTART control statement the user can restart a job
from any point that was previously checkpointed.

ALL calls and the use of these routines are described in the NOS
Reference Manual, volumes 1 and 2.

CHECKPOINT FILE

The checkpoint file consists of a series of checkpoint CCKP)
records. Each checkpoint dump is separated by an EOR, a
checkpoint control word, and another EOR. An EOI terminates the
file. A multicheckpoint file is formatted as follows"

header checkpoint number {CKP)

CKP1 data CKP1

CKP1 control word

•
"!"'"' •

•

header CKPi

CKPi data CKPi

CKPi control word

•
'J..... •

•

header CKPn

CKPn data CKPn

CKPn control word

60454300 A

'"i~

'~

eor

trailer label
eor

eor

eor

eor

eor/eoi

25-1

There may be one or more CKPs on the file. If two files are
used simultaneously, the CKPs alternate on the files. The files
must be requested with the CK or CB option on the REQUEST, LABEL,
or ASSIGN control statement.

There are five parts to each CKP dump Cone large record).

• The header word

• The file table

• A copy of each of the files

• A copy of the OM* file of the requesting job

• A control word (trailer label) embedded between two EORs.

The file is written in control word blocks, using the READW and
WRITEW macros. Buffers are always filled before transferring to
disk, except for the final control word. Buffers are 1000B
words in length which is 10 disk PRUs or 1 tape PRU. Therefore,
there are no short PRUs and no EOR, EOF, or EOis except on the
control word block.

In order to indicate the EOR, EOF, and EOis which occur in the
data, a series of control words are used. These control words
are:

1. 100028; header.

2. 20nnnB; file table.

3. 30nnnB; start of a block which contains no EOR, EOF, or
EOis (file copy section).

4. 31nnnB; an EOR occurs at the end of the next nnn words.

5. 32nnnB; an EOF occurs at the end of the next nnn words.

6. 330008; EOI flag. No data may occur directly before
this flag.

NOTE

The following control words
indicate that an EOR, EOF, or EOI
follows the nnn words of data in
the DM* file.

7. 40nnnB; start of a block which contains no EOR, EOF, or
EOI COM* file).

8. 43nnnB; Last block containing DM* file.

9. SOOOOB; end of CKP dump.

60454300 A 25-2

Each CKP dump is one record followed by a control word record.
Each block on the file is nnn+1 words in Length, where nnn is
the number of data words preceding this indicator. The maximum
physical block size is 10008 words or 7778+1 words. The value
of nnn varies due to EOR, EOF, and EOI occurring in the data.
Figure 25-1 shows the format of one CKP file.

59 53 47 35 17 11 5 0

100028

0 I dote I time
CKP CKP

mode number

job name 0

l heoder

FNT/FST {
entry

'"'"""

id l
file name 1

eq l first track l

20nnn8

• • •

jo

cri

file l copy
type type

stat

~

FNT /FST 1 · file name n jo t~i~~ f~g~ entry ,__ __ _.,. ________ ___,.

id eq first track c ri stat ._,.. __ _.. ___ __,

30nnn8

file 1 data

EOR flag 31nnn8

nnn data words

EOI flag 330008

30nnn8

'"r- f'I 2 d t 1e a a '"'r-

EOF flog 32nnnB

nnn data words

EOI flog 330008

30nnn8

file n data
-.J~ • '"''"-
~ • ~

•
330008

dump file 40nnn8

contents of the DM* file

500008

xi 0 J dote I time I CKP l CKP
mode number

Figure 25-1. CKP Format

file table

copy of files
requested in
order of the
file table;
may be many
blocks of data

end of CKP (eor) file

)
control word similar
to word 1 of header

60454300 A 25-3

date

time

CKP mode

CKP number

jobname

filename

jo

file type

copy type

Date CKP record was written.

Time CKP record was written.

Indicates whether the CKP file is sequential
CCK) or overwrite CCB) type.

Sequential number of this CKP. Equals 1
after first CKP, 2 after second, and so on.

Name of job requesting CKP.

Name of file to be checkpointed.

Job origin or access bits from FNT.

FNT file type CINFT, LOFT, for example).

Type of copy to perform. Unless other.wise
specified by the user, files are copied
according to their position and type of
operation <read or write) prior to the CKP
request. The copy types are:

0 BOI to present position
1 Present position to EOI
2 BOI to EOI
3 Last operation on file determines

·the copy type
4 No copy of file on CKP file, but

information table is present

id* FST id code.

eq* FST equipment number.

first track* FST first track if mass storage;
if tape, MT; if terminal file, TT.

c r i

stat*

nnn

x

Cur rent random index. If tape f i Le, c ri is
the block number. If terminal file, cri is O.

Last status from the FET.

Number of words in this block <not including
this word).

Bit 59 set if this is the last CKP dump on
the file and is followed by an EOI PRU.

Figure 25-1. CKP Format <Continued)

*Standard FST information <except MT and TT for first track).

Block

Figure 25-2 illustrates how the checkpoint file Looks assuming a
job has the following characteristics:

• FL= 26008, control point area= 2008. So DM* file
consists of 200 (CPA) + 2600 (FL) = 30008
words.

• Two files imply 4 words of FNT/FST information.

File 1 consists of: 80I, 15008 words, EOR, 1008
words, EOF, 20018 words, EOR,
1708 words, EOR, EOF, EOI.

File 2 consists of: 80I, 1008 words, EOR, 10008 words,
E 0 R ., EO I.

10002

CKP#1

job name

20004

file 1 FNT
FST

file 2 FNT

FST

30767

data

• Assume this is a nonterminal job.

-start of.
file 1

2

31511

data

32100

data

30164

data

{Al I values are in octal)

3

- indicates 30777
EOR follows ~---......
511th word.

- indicates
EOF follows
100th word.

no EOR or
EOF in
this block.

data

4

31616

data

30160

data

DM* file is identical to standard rollout file. Refer to
section 5 for DM* file format.

Figure 25-2. Checkpoint File Structure

5

31010

data

32000

33000

31100

data

30663

data

60454300 A 25-5

- start of
file 2

\

6

31115

data

33000

40660

data

40255

- start of
\?M* file
{PA)

start of
FL

7

40777

data

8

40777

data

9

43122

data

50000

CKP#1

10002

CKP#2

etc.

- last block containing
\OM* file

end of CKP dump

-end of CKP dump
-EOR

-EOR

Figure 25-2. Checkpoint File Structure <Continued)

60454300 A 25-6

CHECKPOINT - CKP

CHKPT is a CPU routine which must reside either in the RCL or be
disk resident CCLD - system). CHKPT can be initiated either by
an operator command, a control statement call, a macro call, or
by a product set call (refer to figure 25-3).

CHKPT has special entry point status (refer to section 5).
CHKPT uses the following special entry points: DMP=, SSJ=, and
RFL=.

If CHKPT is called by a control statement, 1AJ determines that
it has an SSJ=, and a OMP= special entry point routine. 1AJ
sets up SPCW, SEPW, and the control point area. Routine 1RO is
called to create the DM* file. Since DMP= is equivalenced to
zero in CHKPT, all of the job field Length is saved on OM*.
Routine 1AJ places the arguments from the control statement into
RA+ARGR and sets RA+P&NR accordingly during the load of CHKPT.
Then control is passed to CHKPT.

If CHKPT is called by a macro, an RA+1 request is made to CHKPT.
This request is handled by SFP, an entry point in CHKPT.

If CKP is called via a product set, such as FORTRAN or COBOL,
an RA+1 request is made and the parameter List, if one is
specified, is set up the same·as in the macro call.

The RA+1 request is processed by CPUMTR, which places the call
into the IR of an available PP.

~ 0

n Number of parameters

pba FWA of parameter block

60454300 A 25-7

@ Make CKP request

CHKPT - DMP=

CHKPT--,

RA+1c::==::=:::J-:-~-~~
Program

program makes
call to

....,_ ___ __,. CHKPT
call

CHKPT

rollout
file

CHKPT
file

CHECKPOINT - Snapshot l D
CHECKPOINT - Snapshot --+

CHECK POI NT - Snapshot

@ CHKPT runnin1;1 in users
FL creates record on CKP file

FL

CHKPT

©When CHKPT ends 1AJ calls 1RI
in response to DMP= SEP and user continues

FL

users OM* job
restored

--..

*1 Creates an RA+1 call.

Figure 25-3. Checkpoint Overview

60454300 A 25-8

CHKPT I
file .

Since PP resident does not find CKP in either the RPL or in the
PLD, it calls SFP.

SFP finds CKP as one of its special processors. The SFP overlay
2SG CSRP - spcial request processor> sets up SPCW from the IR.

59 41 17 0

sPcw l~ _____ c_K_P ______ ~l _________ o ___________ l ______ p_b_a ______ I

SFP exits normally and 1AJ finds SPCW set. It Loads CHKPT,
which has the entry point CKP, and sets RA+PGNR=O to indicate a
noncontrol statement call. Since a DMP= special entry point
has been indicated in the CLD, 1AJ calls 1RO.

Routine 1RO finds the pba not equal to zero and gets a 208-word
block from central memory whose fwa is pba. It creates a full
DM* file and then stores the 208 word block in RA+SSPR+1 through
R A + S S P R + 2 0 • R o u t i n e 1 A J s e t s u p s E P w ~n d a n y p r i o ~ i t i e s
indicated by the SSJ= C.in the case of CHKPT, there are no
special priorities>, stores the IR in RA+SSPR, and passes
control to CHKPT at the entry point CKP. If more than a
208-word parameter is passed CCHKPT can be passed up to 200),
CHKPT has to read it from the central memory portion of DM*.

The preset routine in CHKPT is overlayed by the buffers, since
its origin is at IBUF. In addition, RFL= is equated to the Last
word of CHKPT, which is necessary to use the SSJ= entry point.

Tables 25-1 and 25-2 List some of the common decks used and the
buffer assignments.

Figures 25-4 and 25-5 are flowcharts detailing the CHKPT main
Loop and preset routine.

60454300 A 25-9

PAS

preset
program

RECALL 0

HOR

write header
onto CKP

file

WAT

write file
TABLE onto

CKP file

CPF

copy desired
files to

CKP file

*1

set file name
in

FET to DM*

REWIND
DM*

BLO

copy DM* file
to CKP file

place 500008
in buffer

WRITER
CKP file

place
CKP control

word in
buffer

set completion
bit in

parameter table

return
control

statement
file

CHECKPOINT
COMPLETE

*1 Wait for any I/O initiated by PRS to complete.

*4

*5

*6

*2 Use GETFNT macro which calls LFM to return a List of all
FNT/FSTs assigned to this control point.

3 Refer to DMP= in section 5. Format of DM file is control
point area, job field length. Copy complete OM* file.

*4 Copy of header ·word.
*5 Now CKP control word is embedded in EORs.
*6 SPRR+1 also backspaces file so trailer can be read by next

CKP call.

Figure 25-4. CKP - Checkpoint Main Loop

60454300 A 25-10

process *3
parameter

list

set selective
CKP flag

RA+SPFL = n

yes

*1 Is CRA+PGNR) not equal zero?

SKIPEI DM*

read last record

process
rest of

parameter list

*5

*2 Is CRA+SPPR) lower 18 bits (that is, n from IR) not equal 0?
*3 Parameters= file names are placed in block PAR for use by

WRT and CPF to get just selected files onto CKP file.
*4 Is n > 20?
*5 Only 778 parameters are allowed.

Figure 25-5. PRS - Checkpoint Preset

60454300 A 25-11

set selective
CKP flag

RA+SPFL=n

process *2
parameter

list

CKP request

preset all pointers

get control
statement file

•1 Is RA+ACTR not equal zero?
*2 Maximum 638 parameters on a control statement.

Figure 25-5. PRS - Checkpoint Preset (Continued)

60454300 A 25-12

·get list of all
FNTs assigned

to this
control ·point

create default file
ccccccc

set ID = CK

get proper CKP
file set up for write

and position file.
Set FETs up.

yes

CHECKPOINT
ERROR

abort

*1 See if any files local to job have type CK or CBa

Figure 25-5. PRS - Checkpoint Preset (Continued)

60454300 A 25-13

TABLE 25-1. CHKPT COMMON DECKS

Load I
AddresslCommon Deck Description
---------------------------------~-------------~------~-------

724 COMCCDD

736 COMCCIO

752 COMCCPM

756 COMCDXB

776 COMCLFM

1006 COMCMVE
1

1070 I COMCRDO
I

1114 ICOMCRDW
I

1245 ICOMCSFN
I

1255 I COMCSYS
I

1314 I COMCWTO
I

1331 I COMCWTW
I

Load I
Address I Buffer

1454 BUF

2454 IBUF

4455 OBUF

6456 SBUF

7057 TBUF

10060 RFL=

60454300 A

Constant to decimal display cod~
conversion

I/O function proc~ssor

Control point manager processor

Display code to binary conversion

Local file manager processor

Move block of dBta

Read one word

Read words to working buffer

Space fill right justified zeroes

Process system request

Write one word

Write words from working buffer

TABLE 25-2. BUFFER ASSIGNMENTS

Length

Start of buffers

BUF+BUFL

IBUF+IBUFL

OBUF+OBUFL

SBUF+SBUFL

TBUF+TBUFL

25-14

RESTART

RESTART is a CPU routine wich must reside either in the RCL or
be disk resident (CLO). Whereas CHKPT writes the CKP file,
RESTART restores the contents of the files copied to the CKP
file and causes 1RI to restore the control point area and FL
from the DM* file. (Refer to figure 25-6.)

RESTART has the special entry point DMP=. When 1AJ loads
RESTART, it notes that special entry point is active from the CLD
or RCL entry point word with bit 59 set. It calls 1RO which
creates a DM* file. Since DMP= is equated to 450000R in RESTART,
it creates an empty DM* file.

empty

RESTART is a control
statement call

Load RESTART into users FL

Fgiure 25-6. RESTART Overview

FL

60454300 A 25-15

@ RESTART builds
OM·* file from
CHKPT file

FL

RESTART
CHKPT

file OM*

_

© Execution begins at next
instruct ion a ft er the call
to CHKPT.

FL

program

call CHKPT

*1 This is the same area as RESTART of step 2.

0 RESTART ends and
1AJ responds to
OMP=SEP

FL

program

Figure 25-6. RESTART Overview <Continued)

60454300 A 25-16

Routine 1AJ sets up the control point area (SEPW, and so on),
loads RESTART, s~ores the argument list in RA+ARGR, sets RA+ACTR
accordingly, and initiates RESTART. RESTART cannot be called
from an RA+1 request, so the parameter passing ability of DMP=
is not utilized. RESTART Locates the proper CKP file, requests
the FL required, restores the files required (including the OM*
file from the CKP file), and exits.

Routine 1AJ then finds the control point idle and notes that
this was a DMP= run. It calls 1RI, which rolls the job in using
the OM* file created by RESTART. When 1RI is done, it clears
the rollout flag, and the job is restarted from its position
immediately following the checkpoint.

As in CHKPT, the preset routine is used as a buffer so that field
Length is minimized. Tables 25-3 and 25-4 List some of the
common decks used and the buffer assignments.

Figures 25-7 and 25-8 are flowcharts detailing the RESTART main
Loop and preset routine.

60454300 A 25-17

TABLE 25-3. RESTART COMMON DECKS

Load I
Addresslcommon Deck Description

--~-------------------

614

640

653

667

673

713

736

746

756

771

1014

1145

1155

1214

1231

COMCARG

COMCCDD

COMCCIO

COMCCPM

COMCDXB

COMCEDT

COMCLFM

COMCPFM

COMCRDC

COMCRDO

COMCRDW

COMCSFN

COMCSYS

COMCWTO

COMCWTW

Process arguments

Constant to decimal display code
conversion

I/O function processor

Control point ~anager processor

Display code to binary conversion

Edit date or time from packed format

Local file manager processor

Permanant file processor

Read coded Line, -c- format

Read one word

Read words to working buffer

•

Space fill name right justified zeroes

Process system request

Write one word

Write words from working buffer

TABLE 25-4. RESTART BUFFER ASSIGNMENTS

Load I
Address I Buffer Length

1470 IBUF Start of buffers
I

2471 IIBUF BUF+BUFL
l

4472 IOBUF IBUF+IBUFL
I

6473 ISBUF OBUF+OBUFL
I

7074 ITBUF SBUF+SBUFL
I

10103 IRFL= TBUF+TBUFL+4
I

60454300 A 25-18

PRS request *4 central memory
preset

copy rest of *5
PAT CKP file to

DM* file
process

file table

position CKP
file for

get DM* file subsequent
CKP

rewind *2 RESTART *6 DM* file from *jobname
date and
time*

get memory
from CPA

*3

on CKP file

*1 Copy all data files from the CKP file.
2 Prepare to write remainder of CKP file onto the DM file.
*3 Exchange package in first 208 of control point area and word

CPA+2 is FL.
*4 If job card FL request is Less than FL needed to RESTART,

control point would be aborted by CPUMTR.
*5 Stop on EOR.
*6 Message set up by preset.

Figure 25-7. RESTART - Restart Main Loop

60454300 A 25-19

set CKP
file name

into
INPUT FET

set CKNO =
RA+ARGR+1

*4

ERROR
IN

ARGUMENTS

ARG
process argument
common deck

COMCARG

*1 Is (RA+ACTR) not equal zero.

get proper
CKP on file
from CKNO

position
CKP file

get
jobname

place data and
time into mes­
sages issued at

end of run

return

yes

*2 RESTART must have an argument List (checkpoint file name).
*3 Is (RA+ARGR)=O.
*4 (RA+ARGR)=CKP file name.
*5 Is (RA+ARGR+1)=0. Note that CKNO is preset to O at assembly.
*6 Is (RA+ARGR+2)=0.
*7 The error CHECKPOINT FILE ERROR if h~ader word missing or

CHECKPOINT NOT FOUND if asked for a CKP number that is not on
the fi Le.

Figure 25-8. PRS - Restart Preset

60454300 A 25-20

DEADSTART 26

Deadstart is the process by which the system is made operational
and ready to process jobs. Under normal circumstances, a
deadstart is a function performed by the system operator. System
deadstart can be a fully automatic procedure or it can involve
considerable operator intervention.

The deadstart file is either a reel of magnetic tape, written in I
unlabeled I format, or an 844/885 disk device containing the
programs which constitute the NOS operating system and its
product set members. In addition, the deadstart file contains
programs necessary to establish the system and its product set on
the system equipment as well as maintenance routines used to test
the condition of certain system equipments. As the deadstart
file is not dependent upon a specific equipment configuration,
the same file can be used on any supported equipment
configuration.

To load the NOS operating system into a CDC CYBER 170, CYBER 70,
or 6000 series computer, the deadstart medium is mounted, and a
small bootstrap Loader program Cdeadstart program) is set up on
the hardware deadstart panel switches. The deadstart procedures
themselves are explained in the NOS Operator's Guide.

HARDWARE DEADSTART

When the operator presses the deadstart button or toggles the
deadstart switch on the deadstart panel, the following hardware
activities occur:

1. Each channel is connected to its corresponding PP Cthat
is, channel 1 is connected to PP1, channel 2 to PP2, and
so on).

2. A master clear is done on all I/O channels. ALL channels
are set to the active and empty condition, ready to
accept inputs.

3. The contents of the A register of each PP is set to
100008 so that a PP can input its entire field Length
before automatically disconnecting from the channel.
The P register of each PP is cleared.

4. The deadstart panel is sent across channel 0 into PPO
Locations 1 through 20 <Locations 1 through 14 on
non-CYBER 170 equipment).

The deadstart controller outputs one byte of zeros and
the panel settings to PPO. It then issues a DCN
instruction and PPO begins execution at Location
(p)+1 = 0+1 = 1.

60454300 B 26-1

5. Each PP simulates an IAM instruction on its channel as if
the contents of PP Locations 0 through 4 were:

location

0
1
2
3
4

value

0000
2001
0000
71pp
0000

comments

start at Location P+1 = 1
set A register to 100008

IAM pp; pp is PP number (channel)
Location to input data <Location
0)

6. The CPU initiates a hardware idle.

When the IAM begins, (p) +1 is stored in Location zero. As each
12-bit PP word is transmitted across the channel, (A) is
decremented by one. Whenever (A) is 0 or the channel is
disconnected by another PP or a controller, the receiving PP
stores (Q)+1 into P and execution begins at that Location. This
procedure is used to autoload routines. A PP will IAM a set of
words and then input as the final word an execution address minus
one into location zero. The PP then begins executing at the
execution address specified. PPs may communicate with hardware
or another PP via a channel. If a PP communicates with some
hardware, it must set its A register to the number of words it
wishes to input. When this number of words has been input, it
will execute at (0)+1. If two PPs are communicating when the
transmitting PP does a DCN on the channel, the receiving PP
begins execution as if A went to zero.

SOFTWARE DEADSTART

STARTUP

When the hardware is ready, PPO begins executing the program on
the deadstart panel. The following operations are performed:

1. PPO disconnects the deadstart channel, then reconnects
(via function) to the channel, equipment, and unit
specified in the panel settings, and rewinds the
deadstart device. PPO then reads the first record from
the deadstart medium into its memory starting at Location
73018 (also specified on the panel).

60454300 8 26-2

The deadstart file has a fixed order through the routine SYSEDIT.
Included in this ordering are zero Length records which delineate
certain areas of the deadstart file so that the Logic for reading
the file is as simple as possible during the deadstart sequence.

OSB

Routine OSB is the operating system bootstrap which is Loaded by
CTI into PPO as the system file preloader. OSB contains a tape
and disk driver and must be no Longer than one disk sector in
Length including the prefix C7700> table. The only function of
OSB is to Load the next operating system module, DIO, from the
deadstart medium. DIO is transmitted to PP10 along with
deadstart parameters determined by CTI, after which OSB hangs on
an IAM waiting to input SET on channel 10.

DIO

DIO is the centralized means of reading data from the deadstart
medium, either tape or disk. This allows the other
deadstart-related routines to remain unaware of the med·ium being
read. Thus, 108 disk sectors are assembled if deadstart is from
RMS into a facsimile of a tape PRU. Commands are issued to DIO
via an intercommunications channel according to a protocol
resembling· that of a 3000 type tape controller and.6681. DIO in
PP10 functions as the 6681, reading data from an external
equipment and returning the same to the requesting PP. The
intercommunications channel. is defined as channel 13 unless the
deadstart medium is there, in which case channel 12 is useda

DIO initially Loads SET and transmits it to PPO. Next, the
deadstart parameters as found by CTI are transferred to PPO and
SET begins execution. DIO now drops into an idle Loop awaiting
function requests on the intercommunications channel.

DIO remains active until such time as the deadstart file is
normally rewound. In the case of level 1 or 3 deadstarts, where
the running system fileCs> is recovered, this occurs after the
deadstart RPL has been built. On a level 0 or 2 deadstart, DIO
functions until SYSEDIT is loaded. Then DIO may exit to PP
resident to become a pool processor. The deadstart file is
copied to SYSEDIT's buffer either by DIO or CIO, depending on
the deadstart medium.

SET

SET initializes the system configuration by assembling system
parameters such as equipment definitions and installation options
from text decks that are present on the deadstart tape; namely,
the CMRDECK which defines the configuration, and the IPRDECK
which specifies installation options. SET communicates with PP10
as follows:

60454300 B 26-3 •

1. When SET begins execution in PPG, PP1 is waiting for
input on channel 1*. SET transmits via channel 1* an
idler program to PP1 and disconnects channel 1*.

2. PP1 begins executing the idler program. Besides an idle
Loop, the idler program consists of the following
processors:

Value
0
1
2
3
4
5
6
7

1 0

Name
RSP
IFB
ISB
OFB
OSB
ONL
RCL
ANL
ADS

Comments
Reset PP/terminate
Input first buffer from tape
Input second buffer from tape
Output first buffer to SET
Output second buffer to SET
Output next line to SET
Replace current Line
Add next line to PP1 buffer
Advance display

3. SET uses channel 10 to display the CMRDECK/IPRDECK and
CMRINST/IPRINST on the display console. SET also accepts
operator typeins via channel 10.

4. SET uses PP1 as a CMRDECK/IPRDECK buffer while building
the appropriate DECK from operator input, if any.

5. SET communicates with PP1 via channel 1*. PP1 gets the
appropriate CMRDECK/IPRDECK from the deadstart medium via
the intercommunications channel and DIO in PP10.

6. When SET completes CMRDECK and IPRDECK processing, it
issues the RSP function to PP1 via channel 1*.

7. PP1 Loops waiting for input on channel 1*.

*If the deadstart medium is on channel 1, channel 12 is used.

60454300 8 26-4

SET initializes the system in the following sequence:

1. ~ET determines the properties of the hardware upon which
the system is being established from the hardware
descriptor table created by CTI. These properties
include central memory size, number of PPs, presence of
CMU and CEJ/MEJ, type of CPU and hardware, and so forth.
Certain of these hardware features may be overridden by
CMRDECK entries.

2. SET loads overlay CMR (next record on the deadstart
file), which has the code to process CMRDECK entries;
reads up the text deck CMRINST CCMRDECK instructions, the
next record on the file>; and reads the specified
CMRDECK.

3. CMR displays via PP1 the CMRINST or CMRDECK decks and
accepts input from the cons'ole. When the CMRDECK is
changed to the operator's satisfaction, CMR skips all
text records CCMRDECKs) on the file and loads the next
nontext record <which must be ICM) as a secondary
overlay.

4. Initialize central memory CICM), returns control to SET
after building the following central memory resident
tables:

Channel release table
Equipment status table CEST)
File name tabl~ CFNT)
FNT interlock table
Mass storage tables CMST/TRT)
Job control area
Control point areas
Dayfile pointers
PP communication area (initialization)

The first five entries in the FNT are:

SYSTEM
VALIDUs
SALVA RE
RSXDid
RSXVid

5. SET loads the next record, IPR, from the deadstart
medium.

6. SET reads IPRINST CIPRDECK ins~ructi-0ns, the next record
on the deadstart file> and the specified IPRDECK,
displays them, and accepts console input if the Last
CMRDECK typein was the command NEXT. If the last CMRDECK
command was GO, the specified IPRDECK is read and no
input is accepted. IPR sets the appropriate portions of
central memory resident CIPRL, job control area, etc.) as
specified by the options in the IPRDECK or by operator
typein. Control is returned to SET when IPR has
completed.

60454300 B 26-5

I
I
I

I

I

7. SET scans all remaining text records {IPRDECKs) and Loads
PP resident <the first nontext record), into its PP
buffer. SET sets the Location of its PP buffer to PPFW-1.
SET then transmits the buffer starting at PP buffer
minus one into PP2 on channel 2*. This puts PPFW-1 into
location 0 of PP2. SET reads the next deadstart record,
system tape loader (STL), into the same PP buffer. SET
then transmits this buffer to PP2. PP2 inputs STL
starting at location PPFW. SET disconnects channel 2*,
terminating the input of STL by PP2 and causing PP2 to
begin execution at PPFW. SET (PPO) then issues an IAM
to wait for input on channel O*.

SYSTEM LOADING

The system tape loader CSTL), processes the next group of records
on the deadstart file. STL loads MTR and CPUMTR and enough of
the system routines to allow recovery and SYSEDIT to function.
The following sequence is performed.

1. Load a copy of PPR to all PPs except 0 and 1.

2. Load MTR <next record on tape) into PPO.

3. Load and initialize CPUMTR; start CPUMTR into execution
via an EXN instruction.

4. Load DSD into PP1.

5. Disconnect channel O*; this causes MTR in PPG to begin
execution.

6. Load RSL as an overlay to STL to generate the resident
peripheral library <RPL) and peripheral Library
directory <PLO) containing those PP routines used
during deadstart.

7. Activate other PPs by disconnecting their channels,
causing the code transmitted in step 1 to be executed.

8. Load controlware for 7054/7154/7155 controllers. BCL
reads the BCS/BCF/FMD controlware re~ords from the
deadstart medium and outputs the appropriate record on
channels that have 7x5x controllers. The entire
control~are block is sent one channel at a time until
all 7x5x controllers have been properly loaded.

9. Load recover mass storage (RMS) into the next available
PP <usually PP3).

10. Load system Library loader CSLL) into the next available
PP (usually PP4), if the system file is to be loaded
<Level 0 or 2 recovery).

*If deadstart medium is on this channel, channel 12 is used.

60454300 B 26-6 •

11. Load LSL Cload system library) as an overlay to STL
if level 0 or 2 deadstart <not on Level 1 and 3).

12. LSL moves the PP assignment to the deadstart control
point <control point 1) using CCAM. The deadstart
control point exchange package and control point area
are initialized; the FL used is the remainder of the
available machine field length up to 131K.

13. LSL sets up an INPUT file FNT so that the deadstart
control point resembles a control point in the running
system.

14. LSL creates a deadstart file FNT if deadstart is from
disk.

15. LSL Loads SYSEDIT from the deadstart file into the
deadstart control point field Length and requests the
CPU via an RCPM to begin SYSEDIT execution.

16. LSL calls DIO with a Load system request and then
returns to the main program of STL if level 0 or 2
deadstart <not on level 1 and 3). STL moves to the
system control point via a CCAM and drops the PP with a
DPPM.

I

17. SYSEDIT reads the deadstart file (using DlO if tape I
deadstart, or CIO if disk deadstart) and copies the

SYS EDIT

data to each system device defined using SLL. SLL
guarantees that each copy of the system uses the same
tracks.

SYSEDIT begins to build CM and mass storage Library directories
when the end-of-file on the deadstart file is detected. The
following steps are performed.

1. Reading from the first system device, the resident
peripheral Library CRPL) is built by SYSEDIT and copied
to central memory by SLL. The routines are entered in
the RPL withou~ their 77 (prefix) tables.

2. A PPULIB file without prefix tables is built on each
system device of all PP routines. The peripheral library
directory CPLD) is built consisting of the name and
residence location of the routine whether it be central
resident, on an ASR device, or on a SYSTEM device.

60454300 B 26-7

3. The resident central Library CRCL) is built using those
CPU routines selected for central memory residency in the
LiaDECK via the *CM directive.

4. The central Library directory is then built for all CPU
routines and consists of the routine name and residence
Location of the routine whether it be central resident,
on an ASR device, or on a SYSTEM device.

5. SYSEDIT completes its execution via an ENDRUN m~cro. At
this point, the operating system has been fully
established on the system equipment.

SYSEDIT may also be run on-Line during normal production. If a
SYSEDIT is run beyond deadstart, then any new or replaced CP or
PP routines, Libraries, etc., are written starting at the end of
the system file. The RPL, PLO, RCL, and CLO are regenerated
using these new or replacement routines as necessary.

During deadstart SYSEDIT uses the LIBDECK specified by the
CMRDECK directive from the system file to determine the
residency and special properties of system routines. Each
subsequent SYSEDIT operation appends the directives used to the
LIBDECK initially used during deadstart. These LIBDECKs are
Linked together so that SYSEDIT can recreate the directories from
any earlier time if direct~d to do so by a SYSEDITCR=n>
restoration.

MS RECOVERY OPERATIONS

Mass storage recovery takes place in the PPs. The deadstart
portion of mass storage recovery is briefly described here; mass
storage recovery is presented in detail elsewhere in this manual.

Recover mass storage CRMS>, which was called by STL, performs
mass storage recovery in the following sequence:

1. Reads MSTs from device Labels.

2. Recovers TRTs when possible.

3. Validates and recovers system dayfiles.

4. Validates and recovers preserved files.

5. Validates the permanent file configuration.

6. Loads the system recovery processor CREC), into this PP.

60454300 B 26-8

REC performs system recovery in the following sequence:

1. Reads system tables.

2. Recovers FNT, control points, and so forth.

3. Initializes or activates dayfiles.

4. Waits for SYSEDIT/SLL to complete. The SYSTEM file FST
is set not-busy when SYSEDIT completes.

5. Builds IQFT (Level 0 deadstart only) from queue type
files found on the disk and clears all direct access
file interlocks.

6. Issues appropriate dayfile messages.

7. Recovers/allocates user ECS area.

8. Calls 1CK to checkpoint system devices <always on a
Level 0 deadstart).

9. Drops the PP via DPPM.

DSD, which was earlier activated by STL, processes the IPRDECK
initial commands (AUTO. and MAI., for example) spe~ified by the
DSD -directives.

The scheduler <1SJ) finds t·hat control point 1 <th• deadstart
control point) now has a status of 0 and releases the control
point. Since there is no output, no output or dayfile messages
are issued.

The system is now fully operational.

PPR INITIALIZATION

When STL sends a copy of PPR (pp Resident) to each pool PP, the
direct cells IA, OA, and MA are set with the correct addresses
for the PP being loaded. When STL disconnects the channel, each

I

PP begins executing at PRS which is the resident initialization
routine <preset). PRS is at Location MSFW and is overlayed by I
the mass storage driver. PRS performs the following:

1. Reads PPCP, the first word address of the PP
communication area.

2. Reads IA, which is the address of this PP's IR.

3. Computes the exchange package address~s for this PP
from the PP's IR.

60454300 B 26-9

4. Modifies instructions in FTN (function processor) with
the exchange package address.

5. Modifies instructions in FTN depending upon the
existence of CEJ/MEJ.

6. Jumps to PPR (idle Loop) making the PP a pool PP.

RECOVERY

Deadstart recovery is an inhibition of part of the deadstart
process. No special routines or special code is designed for
different Levels of recovery. The philosophy is that deadstart
is always a recovery and the levels of deadstart only denote how
much to recover and how much to reload. The various levels of
deadstart recovery are discussed in detail in the NO~ Operator's
Guide. Mass storage recovery is detailed elsewhere in this
manual.

Basically, there are four recovery Cdeadstart) options:

Level Description

0 All of central memory resident, all of the system, and
all PPs are reloaded. Permanent files and dayfiles are
recovered from the labels of the mass storage devices if
possible. Job queues are restored depending on the
QPROTECT option.

1 A level 1 recovery rebuilds the running system, all jobs,
and all active files from the checkpoint file instead
of the deadstart tape. A deadstart automatically
creates a checkpoint file as part of the deadstart
process. The FNT is recovered from the checkpoint file
with central memory resident rebuilt and all PPs
reloaded. Mass storage is recovered from the MST/TRT
image written on the label track by a device checkpoint
which was done when the system was checkpointed.

2 A level 2 deadstart is the same as a level 1 recovery
except that the operating system is loaded from the
deadstart file rather than from the checkpoint file.

3 A level 3 recovery only reloads the PPs and CPUMTR;
everything else is left intact. Level 3 reloads
directories from the system table file. This voids any
on-line SYSEDITs that were not completed with a system
checkpoint. Jobs currently in central memory may be rerun
with the INPUT file being rewound and placed back into
the INPUT queue.

60454300 B 26-10

CHECKPOINT FILE

The system table file, usually called the checkpoint file, is
used in Level 1, 2 and 3 recoveries. The first track of this
file is kept in byte 3 of the DULL entry in the MST for system
devicese It contains a copy of central memory resident; namely,
the Low core pointers, the EST, the FNT, the dayfile buffers and
their pointers, and from the beginning of the RPL to the end of
central memory resident. Except for the system checkpoint done
during the deadstart process, a system checkpoint should be
followed by a level 1 or Level 2 deadstart. To continue system
operations after a system checkpoint jeopardizes the success of
subsequent Level 1 or 2 recovery.

DISK DEADSTART FILE

In order to deadstart from disk, it is necessary to create a
system deadstart file CSDF) on a disk device. The two routines,
INSTALL and 1IS, which control this function, are discussed
below. CTI must have been previously installed on the disk and
the device must have been initialized following CTI installation.
Also, if the mass storage Library is to be installed, this must
be done before installing the system deadstart file.

INSTALL

This CPU routine works in conjunction with the PP program 1IS to
install a SDF on a RMS deadstart device. The install procedure
can be initiated automatically at deadstart by keying in the
INSTALL directive at CMRDECK time, or else as a control
statement issued by a system origin job. The result is a
preserved LIFT type file, with pointers to it set in the
deadstart sector.

The format of the control statement is as follows.

INSTALL,Lfn,EQxx.

Lfn Name of the install file.

xx Logical equipment number of the device to
receive Lfn as a SDF.

If the Lfn parameter is omitted, default is to file SYSTEM,
which must be attached to the control point. An install file
named SDF is illegal as this is the name reserved for the SDF. A
special form of the control statement, without parameters is
issued by 1.IS if the job was invoked during the deadstart
process. Any error encountered during parameter checking aborts
the job with the following message.

INSTALL - ARGUMENT ERROR.

60454300 B 26-11 •

, After cracking parameters, INSTALL issues a 115 request
(function 1) to validate the install file, and then reads the
directory record and verifies it for proper format. The install
file must reside on mass storage. If a user wishes to install a
tape file, it must first be copied to disk. The directory is
now checked for more than one OPLD entry pointing to a directory
record. If more than one entry is found (as would be the case
when installing the SYSTEM file after SYSEDIT's had been
performed), the relative sector address of the first OPLD is
placed into FET+6, and another read is executed to get the
correct directory. Two is added to the current random address
<returned by CIO), and this value is saved as the Length
<relative sector address of EOI) of the install file. Next the
directory is searched for the bootstrap program OSB, and its
random address also saved. Any error encountered during
directory processing aborts the job with the following message.

DEADSTART FILE FORMAT ERROR.

The preset portion of INSTALL completes by making a service call
to 1IS (function 2) to initialize the SDF. At this point the
install file is ready to be copied to the SDF device.

The disk to disk copy mechanism employed by INSTALL utilizes the
single buffer approach advanced by COPYB. Two FETs point to the
same buffer and are used in conjunction with control word I/O.
The install file is copied to the SDF until an EOF is
encountered. Routine 1IS is called once again (function 3) to
complete operations on the SDF and insert pointer information in
the deadstart sector. The job terminates with the following
message.

SDF INSTALLATION COMPLETE.

In the event that errors are detected while copying the install
file, 1IS is called (function 4) to release the SDF disk space,
clear interlocks, and abort the job.

ROUTINE 1IS

Routine 1IS is a PP routine which serves as a function processor
for the CPU program INSTALL. INSTALL communicates with 1IS via
the SYSTEM SPC macro, passing parameters in the call and in word
5 of the FETs. Recall is on word ARGR CRA+2). There are four
functions associated with 1IS, plus the special case ~ituation
in which an install job was initiated at deadstart.

The format of a 1IS call is as follows.

60454300 B 26-12 •

59 41 35 23 II 0

I 1IS I 0 I f c I p1 p2 I
f c Function code

p1 Relative address of SDF file FET

p2 Relative address of install f i le FET

If an install job is initiated at CMRDECK time, an input file
FNT/FST is created, containing the logical equipment number of
the device to receive the SDF. When the job gets scheduled, at
completion of deadstart sequencing, 1IS is called into a PP.
Because there is no function request in the input register, 1IS
knows that the job was initiated during the deadstart process.
It then creates an LOFT type FNT entry for the SDF with the
specified equipment and a special file ID C77B).

The special file ID is set so that later on when the file is
used (function 2) it can be determined that 1IS created the FNT/
FST with proper equipment number, as opposed to a local file of
the same name (SDF) associated with an install job initiated on
Line. The file type is changed to LIFT at job completion,
before the system sector is written. Lastly, 1IS copies two
control statements to the control statement buffer, sets buffer
pointers, and exits to PP resident. The control statements are:

COMMON,SYSTEM.
INSTALL.

Function 1 - Validate Install Ftle

Routine 1IS searches the FNT for an assigned file named in the
FET, and if not found, aborts with the message INSTALL FILE NOT
FOUND. Likewise, if the install file is not on mass storage,
the job aborts with the following message.

INSTALL FILE NOT MASS STORAGE.

Next, 1IS locates EOI on the install file, stores the EOI
address in the FST, stores the FNT address in the FET, and then
exits (function complete).

60454300 8 26-13 •

Function 2 - Initialize SDF

Routine 1IS searches the FNT for an assigned file n~med SDF. If
a file is found but not with the special file ID, the job is
aborted with the following message.

ASSIGNED FILE CONFLICT - SDF.

If a file is not found, an equipment number for the ~OF device
is extracted from the FET parameter word and v~Lidated, after
which a FNT/FST is created. Next, 1IS attempts to set the
global utility interlock and if successful, advances the active
user count to prevent the device from being unloaded. If the
interlock is unavailable, 1IS goes on recall CRLPW). A flashing
message to this effect is s~nt to the B display. With the global
interlock secured, 1IS checks the MST for presence of an
existing SDF. If one exists, the deadstart sector is read via
OP!, the SDF indicators cleared, the sector rewritten, the SDF
track chain dropped, and the SDF flag· in ACGL cleared. Routine
11S now gets the Length of the install file from its FET, and
using SLM for the SDF device, determines the number of tracks
required for the SDF. Using the RTCM function, 1IS requests all
available disk space on the SDF device and counts the tracks in
the allocated chain via COMPSEI. If the number of tracks
assigned is insufficient to accommodate the install file, the
track chain is released, the global interlock cleared <and user
count decremented), and the job aborted with the following
message.

TRACK LIMIT ON SDF DEVICE.

If more than the required number of tracks is available, 1IS
drops into a loop, using COMPSNT and decrementing the assigned
track count until it matches the required count. When this
occurs, the first track for the SDF has been identified. Next
the DLKM function is used to release the unneeded space from the
beginning of the disk chain. Routine 1IS completes by setting
first sector and first track equal to the current track in the
FST.

Function 3 - Complete SDF Installation

Routine 115 reads the SDF FNT/FST entry, changes file type to
LIFT, and sets preserved file status on the SDF track chain.
Next, the system sector is written and the FNT/FST entry cleared.
The random address of OSB is extracted from the install file FET,
and converted to logical track and sector Con the SDF file) via
COMPCRA. Then the LOAM monitor function is used to calculate
the physical address of OSB. Routine 1IS reads the deadstart
sector via OPI, and sets parameters in the two-word common
pointer table area reserved for the operating system. The
Layout of the parameter block is as follows.

60454300 B 26-14 •

59 47 35 23 II

pc pt ps al ot

ft n1 n2

pc Physical cylinder of OSB

pt Physical track of OSB

ps Physical sector of OSB

ai Algorithm index for device

ot Logical track containing OSB

ft First logical track of SDF

ni Next physical address when crossing Logical track
boundaries

0

After the deadstart sector is rewritten, 1IS sets the SDF flag
in the ACGL word of the MST, sets a checkpoint on the SDF device,
and completes by clearing the global interlock and decrementing
the user count.

Function 4 - Process Mass Storage Error

Routine 1IS releases the SDF track chain, clears the global
interlock, decrements the active user count, and aborts the job
with the following message.

MS ERROR ON DEADSTART FILE.

60454300 B 26-15 •

DISPLAY ROUTINES DSD, DIS 27

DSD (dynamic system display) and DIS are display routines that
require a dedicated PP. DSD is placed in PP1 by STL during
deadstart and remains there while the operating system is
runningu DIS is called to a pool PP by the operator commands
X.DIS, N.DIS or by the control statement DIS. when the system is
in DEBUG mode and the user has system origin privileges.

When DIS is in a PP, it gets a control point and retains both the
PP and the control point until it is ended by a DROP. or N.DROP.
The console operator toggles between DSD and DIS by use of the *
key. More information on the various commands and displays is
included in the NOS Operator's Guide.

DSD and DIS use common decks, COMDSYS, COMDDIS, COMDDSP, and
COMDTFN.

DYNAMIC SYSTEM DISPLAY CDSD)

DSD is Loaded in PP1 at deadstart time and remains there
throughout system operation. DSD provides an overaLJ _st~tus
display for all currently running jobs via the display console.
The keyboard of the display console is monitored by DSD .and is
used for operator communication to the system <refer to figure
27-1).

DSD runs at the system control point; however, when an input
requires operation on a job's control point area (change memory
location or N.DROP., for example>, DSD assumes the attributes of
being assigned to the control point until the operation is
complete.

If an operator typein requires some control statement action, it
calls 1DS to initiate this action. If a typein specifies a
particular display, DSD Loads the appropriate overlay to fill
the screen buffers.

As DSD receives input, it processes them one character at a
time as they are received. Checking is performed on each
character to validate the entry. DSD checks the first character
and Loads the proper syntax table overlay, if necessary. If, as
the typein continues, the entry is determined to be unique, the
remainder of the entry is filled in by the input processor. At
this point, the entry is considered complete, and the keyboard
echo Line is flashed to indicate the complete entry.

60454300 A 27-1

Console
Display Screens

00
Receives keyboard input

NOTE

Drives
via

channel

OSD does not have a PP resident
and therefore, in order to load

Transmits overlays to DSD
over the display channel.

Gets disk resident
overlays via a channel.

overlays it must call (via RPPM) the PP routine 10L, which
will get the overlay from the system device and send it to

DSD via the display channel.

To perform
auxilliary
functions

Figure 27-1. DSD Overview

60454300 A 27-2

The 99. command disables or enables syntax overlay processing
and Logging of DSD commands in the system and error Log dayfile.
When disabled, DSD does not Load overlays to check syntax. This
should only be done when the system is in an abnormal state to
prevent PPs from being requested when they cannot perform the
necessary tasks.

Each display is controlled by a separate overlay. If the same
display is requested on each screen, there would be two copies
of the same display overlay in memory at one time. Refer to
section 28 for a description of the display screens.

Overlays may reside either in central memory CCM resident) or on
the disk Cdisk resident - default). For those overlays that are
disk resident, DSD calls the program 1DL to process the actual
physical Loading of the overlays. Routine 1DL then transmits the
overlay to DSD via the display channel. The follo~ing overlays
are recommended to be made CM resident: 9A1, 9AS, 9A6, 9A7, and
1DL. In addition, efficiency is increased if overlays 9AY, 9AO,
9A2, 9A3, and 9A4 are CM resident.

DSD uses three types of overlays; syntax, display, and command.
Syntax and command overlays have absolute origins. Display
overlays are written as Location fr~e routines since two display
overlays must reside in DSD at one time for the two display
screens.

STRUCTURE OF DSD

DSD is structured as follows:

• Resident command syntax table.

• Main program.

• Master display routine.

• Overlay Loader.

• Display control tables.

• Keyboard input processing.

• Special character processing routines.

• Keyboard return processors.

• Resident display routines CG and D displays) that
display central memory in 5 groups of 4 digits
with display code translation.

60454300 A 27-3

• Resident command processors.

• Resident command processing subroutines.

• Tables and constants for overlay.

• Preset <overlaid after preset by command processors).

• Command Processor and syntax table overlay area.

• Left display overlay ar~a.

• Right display overlay area.

The following are the command overlays.

Overlay Description

9AY N.SYNTAX table - characters A-C, E-N
9AZ N.SYNTAX tab le - characters 0-*
9AO System syntax table, EN
9A1 System syntax table, B, c, o, E
9A2 System syntax ·table, F, I, K, L, M, 0
9A3 System syntax table, P, R, s
9A4 System syntax table, T, u, v, w
9A5 Central memory changes
9A6 ECS memory changes
9A7 Channel commands
9A8 Send dayfile messages
9A9 Control point requests
9BA Subsystem requests
9BB TELEX message requests
9BC BATCHIO requests
9BD System requests
9BE System requests
9BF Job call requests
9BG System control requests
9BH ENABLE syntax table - A-N
9BI ENABLE syntax table - o-z
9BJ DISABLE syntax table - A-N
9BK DISABLE syntax table - o-z
9BL Enable/disable requests
9BM Job control requests
9BN Job control requests
9BO Job control requests
9BP Display change requests
9BQ File control requests
9BR File control requests
9BS Resource control commands
9BT Assign VSN to unit
9BU Maintenance commands
9BV Equipment availability commands
9BW Mass storage validation
9BX Enter time
9BY Enter date

60454300 A 27-4

The following are the display overlays.

60454300 A

Overlay

9AA
9AB
9AC

9AO
9AE
9AF
9AG
9AH
9AI
9AJ
9AK
9AL
9AM
9AN
9AO
9AP
9AQ
9AR
9AS

9AT
9AU
9AV
9AW
9AX

Description

Display A, dayfile messages
Display B, system status
Displays F an~ G, central memory, 4 groups
of S digits with display code ~ra~slation

Display E, equipment status display
Display E, mass storage devices
Display E, mass storage devices
~isplay E, resource mounting previews
Display E, magnetic tapes
Display H, file name table
Display I, BATCHIO status
Display J, control point status
Display K, central program buffer
Display M, ECS memory display
Display N, file display
Display O, transaction terminal status
Display O, sub-control point status
Display O, task library directory
Display P, PP registers
Display Q, input, output and rollout
queues

Display R, remote batch status
Display S, system control information
Display T, time-sharing status
Display Y, monitor functions
Display Z, directory

27-5

~·

PROGRAMMING CONSIDERATION

The DISPLAY macro generates the Linkage constants for display
overlays. In addition, it generates the three-character name of
the overlay via the OVLN macro.

The COMMAND macro generates the linkage constants for comm~nd
processing overlays. Like the DISPLAY macro, it generates the
three-character overlay name.

The ENTRY macro defines the name of the entry point within
either a display or command overlay.

The ENTER macro specifies the format of the keyboard commands.
Refer to a Listing of DSD for use of special characters in the
command syntax.

DSD must refresh
prevent flicker.
efficient. If a
requires special
command. Figure

the screen between 40 and 50 times a second to
Thus, display overlays should be short and

command cannot be executed immediately, or
processing, DSD should call 1DS to process the
27-2 is a f Lowchart of the main Loop of DSD.

The * key is used to toggle between DSD and DIS sharing .the same
channel. Figures 27-3 and 27-4 are flowcharts showing how both
routines get and release the channel. In DSD, when the * key is
pressed, the hold flag CCEQB) in ~ubroutine tEQ is claared.
Subroutine CEQ is entered each time through DSD's main loop.
When DSD has the display channel, the display equipment CDS> is
not assigned to any control point.

For DIS, when the * key is pressed, subroutine HOC is executed.
When DIS is first loaded, it requests the equipment COS). This
causes DSD in subroutine CEQ to release the channel and then DIS
requests the channel. DSD now Loops waiting for the channel.
When the * key is entered under DIS, DIS releases the channel
but not the equipment. DSD senses this, requests the channel
and sets the hold f Lag. DIS at this time is Looping waiting for
the channel. When the * key is pressed in DSD mode, the hold
flag is cleared and DSD releases the channel and DIS gets it
back.

ROUTINE 105

Routine 1DS processes those functions for DSD which are not
possible for DSD to process. It is also called to enter jobs
for 1AJ in certain cases, although not called directly by 1AJ.

60454300 A 27-6

SYS
display
system
status

DON

display
names

DKB

display
keyboard
buffer

DLS
display
left
screen

yes

*2

inactive
channel

*1 DRS
display
right
screen

process
keyboard

check
equipm~nt

css
check

subsystem
status

advance
cycle
count

*1 Ensure channel is free before attempting any action on it.
*2 COMDSYS display system status
*3 Loop. Screen must be referenced 40-50 times a second

Figure 27-2. DSD Main Loop

60454300 A 27-7

input
character

release
channel

delay

check
channel

set/clear
hold flag

input
character

no

yes

yes

yes

clear
hold
flag

exit

Figure 27-3. DSD Release/Request Channel Loop

60454300 A 27-8

release
channel

delay

check
channel

check
rollout flags

and
pause

no
exit

Figure 27-4. DIS Release/Request Channel Loop

60454300 A 27-9

The DSD call to 1DS is formatted as follows.

IR

IR 105

SC

j c

reQ

pa rams

ordinal

IR+1 IR+2 IR+3 IR+4

SC po rams ordinal

System control point number.

Zero if reQuest for system control point,
nonzero specifies control point to perform at.

ReQuest.

Parameters for specific requests.

FNT address of job if jc is nonzero.

Table 27-1 is a List of all current reQuests processed for DSD
and table 27-2 Lists the value of the params and ordinal for
each reQuest.

60454300 A 27-10

TABLE 27-1. TABLE OF REQUESTS

!Request (Octal) Description
!----------------- --! 0 Load display buffer
I
I 1 Send dayfile message
I
I 2 Go
I
I 3 On switch
I
I 4 Off switch

5 Enter central buffer

6 Purge f i le s

7 Rerun job

10 Initiate jobs from table

11 Initiate job call

12 Dayfile dump

13 Account f i le dump

14 Error log dump

1 5 Load input jobs

16 Not used

17 Initiate control card job

20 Issue TELEX message

21 Issue TELEX warning message

22 Send TELEX user a message

23 Enter data to running job

24 Rollout job

25 Enter job CPU priority

60454300 A 27-11

TABLE 27-1. TABLE OF REQUESTS (CONTINUED)

-----------------------~--/

!Request (Octal) Description
1----------------- --
!
I 26 Enter job queue priority
I
I 27 Set job time limit
I
I 30 Assign equipment to job
I
I 31 Call DIS to job
I
I 32 Initiate specified subsystem

33 Initiate all enabled subsystems

34 Not used

35 Enter MAGNET UDT field

36 Toggle PF status

37 Call checkpoint to job

40 Format and send DSD message to
error log and/or dayfile

41 Set/clear bits in MST word ACGL

60454300 A 27-12

TABLE 27-2w 1DS REQUEST

-----~----------·--------------------~-----------------~---------
!Request (Octal) I Params CIR + 3) Ordinal <IR + 4)
1-----------------1--------------------- ----------------------
1 0 !Nonzero backspace
I I file
I I
I 1 IFWA message
I I
I 2 I

I
I 3 Switch number
i

4

5

Switch number

Address of message
buffer

FNT address; if zero,
advance to next
sector

6 File type if PURGEALL FNT address if 1
requested

7

10

11

1 2 •

13

14

15

16

17

20

21

22

23

24

25

Rerun priority

Address of job name

Equipment number

Equipment number

Equipment number

Equipment number

Request number not
used

Address of job name

Address of message

Address of message

Address of message

FWA of message

Rollout time, zero
not timed

Priority

Field Length

ID on FNT

I
!Field Length
I
I
I
I
I
!Terminal number
I
I
I

if I
I
I
I
I

----------------~~~---------~-----~--~--------------------------

60454300 A 27-13

TABLE 27-2. 1DS REQUEST (CONTINUED)

!Request (Octal) Params CIR+ 3) Ordinal CIR+ 4)
!----------------- --------------------- ----------------------
' I 26 Priority
I
I 27 New time Limit
I
I 30 Equipment
I
I 31

32 Desired control point Queue priority

33

34

35

36

37

40

41

60454300 A

Address of entry

Bit to toggle or set Equipment number

FWA message

Bit to clear/set

1-send message to
error Log,

2-send message to
system dayfi Le,

3-send message to
both

Equipment ordinal

27-14

DIS DISPLAY PROGRAM

DIS is a display program that may be brought to an empty control
point <via X.DIS.) to initiate uti(ity programs or to an
occupied control point to monitor the progress of a job. The
main features of DIS are that while it is attached to a control
point, the automatic advance of control statements is stopped
unless set by the operator and that DIS does not drop when the
error flag is set unless it is the operator drop flag. Hence
the programmer is protected from Losing the job if he enters
invalid control statements, or other errors occur.

DIS provides an interpreted display of the exchange area for the
job as well as the status of the job. Keyboard entries are
provided to allow the user to alter central memory in several
formats, and to execute control statements as if they had entered
the ·system with an input file. In addition, breakpoint and 026
can be initiated via DIS, as well as other job related commands.

DIS, unlike DSD, does not have an interpretive command entry
capability. If a command is not recognized as a Legal DIS
command, it is assumed to be a control statement and executed as
such.

Only displays that are not overlays are permittted .on the right
screen since displays are not relocatable as they are in DSD.

Under the DSD section, a short discussion Cwith flowcharts) was
given on the interaction of DSD with DIS if both share the same
channel when using the * key. The following is a short
discussion of what happens when the HOLD. command is issued
under DIS mode. First, the equipment and channel are both
released. When DIS has the channel, DSD is in a Loop waiting
for the channel. As soon as DIS releases it, DSD gets it. DIS
then is in a Loop waiting for the operator to assign the
display equipment. As soon as the operator assigns the
equipment CDS), DIS will request it and get it since it never is
assigned to DSD. DSD will sense that the equipment has been
assigned and release the channel. DIS will now get it back.

60454300 A 27-15

DIS can be called to a control point in one of three ways.

• DIS. control statement. If the running job has system
origin privileges and the system is in DEBUG mode, DIS
is loaded into a PP and assigned to the requesting job.

• N.DIS. This operator command brings DIS to a control·
point that is already occupied by a running job. If
there is no job at the control point, the command is
considered illegal. This method of calling DIS is known
as the direct call.

• X.DIS. or X.DIS,xxxxxx. Where xxxxxx is requested field
length. If either of these operator commands is used,
DIS is brought to an empty control point. If the second
form is used, the requested field Length is assigned
before giving control to the user. If the first form is
used, 60K octal is the default field length requested.

Refer to the NOS Operator's Guide for information on commands and
displays available under DIS.

The main loop of DIS is flowcharted in figure 27-5.

60454300 A 27-16

SYS
display

system status

DON
display

display names

DLS

display
left screen

display
right screen

DPS

display
PP status

DKB

display
keyboard buffer

KBI
get keyboard input
- and execute if

complete

advance
cycle
count

MKB
monitor

break point

Figure 27-5. DIS Main Loop

60454300 A 27-17

STRUCTURE OF DIS

DIS is structured as follows. Resident routines include:

• Main program and subroutines.

• Keyboard input.

• Keyboard input subroutines.

• Interpret keyboard messa~e.

• Resident display routines:

Display Description

8 Control point status.

c Central memory CS groups of 4 digits with
display code translation).

D Same as display C.

N Blank screen.

T Text display. Displays text from central
memory in coded lines. Lines are folded at
60 characters. Display is terminated after
256 words have been displayed.

u Text display. Same as Display T.

• Display subroutines

• Display common decks: COMDDIS, COMDDSP, COMDSYS

• Resident command processor routines:

Routine Description

DIS. Call DIS and drop display

DROP. Drop display

ERR. Set error flag PPET

HOLD. Drop display and wait for reassignment

• Command processor subroutines.

• Table of displays.

• Preset program <overlaid).

60454300 A 27-18

Overlay areas for displays include the following:

Overlay ~~~ Description

9EA A Dayfi le

9EB E Magnetic tapes CE,T display for DSO)

9EC F Central memory (4 groups of 5) •

9ED G Central memory (4 groups of 5) •

9EE H Fi le name table (job).

9EF J System status.

9EG K Equipment status table.

9EH L Fi le name table (system).

9EI M ECS memory display.

9EJ p pp registers.

9EK Q Input/output and rollout queues.

9EL v Central memory buffer.

9EM y Moni'tor functions.

9EN z Directory.

60454300 A 27-19

Overlay areas for commands include the following:

Overlay Description

9EO CPU commands

9EP Statement entry

9EQ Execute statements

9ER Enter registers

9ES Enter X register

9ET Enter memory

9EU Enter instruction

9EV Enter ECS

9EW Enter memory/enter instruction exit

9EX CPU program interface commands

9EY Enter field length

9EZ Enter ECS field length

9EO Call 026 to control point

9E1 Miscellaneous commands

9E2 Miscellaneous commands

9E3 Interpret keyset message

9E4 Check keyboard request

9FA Interpret more messages

9FB Call PP program

OVERLAY RESIDENCY AND 1DL

Unless DIS is used heavily, it is not necessary to make any of
the overlays central memory resident.

In order to load any disk resident overlay, DIS employs the
assistance of 1DL Csame routine that DSD uses> to do the actual
load from disk. After 1DL has the overlay in its memory, then
it is transferred to DIS's memory via the display channel.

60454300 A 27-20

CENTRAL PROGRAMMABLE K DISPLAY 28

CONSOLE COMMUNICATION

The CPU programmer can display information on the K display and
receive operator keyboard input with the CONSOLE macro. This
macro causes the display of a specially formatted, central
memory buffer. The format of the CONSOLE macro is as follows:

LOCATION OPERATION VARIABLE SUBFIELDS

~·--------~___,~--~------1-------------------------------------~
CONSOLE addr

addr Address of parameter word

The parameter word, addr, must be defined by the user as follows:

59 35 17 0

addrl _________ k_b_u_f __________ l ______ r_s_cr _______ l ______ i_s_cr _______ I
kbuf

rscr

Lscr

Address of 8-word area where operator
keyboard input will be written in the
user's program

Address of specially formatted,
right-screen buffer

Address of specially formatted,
Left-screen buffer

The Left- and right-screen data buffers must be preceded by
control words that are formatted as follows:

59 47 0

l+I 0 H

60454300 A 28-1

s

f

c

Character size. If zero, indicates small
characters C64 characters/line).
Characters are eight units apart and Lines
are 10 units apart Cr~fer to Display in
this section>. If s equals one, indicates
medium characters C32 characters/line).
Characters are 16 units apart and Lines
are 20 units apart.

Format. If f = O, specified program
format. After the display is selected,
data is output until a zero is encountered
in byte 0 of a word or until 512 words
have been output. The data must contain
all coordinates (refer to Display). If f =
1, coded format CC format) is specified.
The buffer is assumed to be in C format
Cline is terminated when byte 4 of a word
contains a zero) and is output until a
zero is encountered in byte 0 of the first
word of a Line, or until 512 words have
been displayed. Coordinates do not have
to be specified. The data will be
displayed starting ~ith line 43 through
line 7 C37 lines).

If this is preset to zero, it may
subsequently be checked for nonzero which
indicates data has been displayed at Least
once. In this way, the user can tell when
the K display was actually assigned to his
cont~ol point.

The CONSOLE macro causes the system to put out the message on the
B display requesting the K display for this job.

DISPLAY SCREEN

The display screen is divided into a grid that consists of 51
lines and 64 columns (based on small characters). The spacing
~etween columns is eight coordinate positions or units, and
between lines is 10 coordinate positions or units. The areas of
the display screen Cleft or right) are limited to those Lines
above Line 4 and below line 46. If the user displayed
information outside of these Limits, the display headers could
be destroyed as well as other system information that is
normally displayed on the bottom of each scree~.

60454300 A 28-2

The display grid can be La1d out using X and Y coordinates,
where (60008, 70008) is the Lower-Left point of reference, as
follows.

{60008,77778) {67778, 77778)

(60008,70008) _________ __,{67778,70008)

In terms of Lines and columns, the display screen is formatted
as follows. There are 51 Lines each consisting of 64 characters
(small size)..

{0,50) {63,50)

{0,0) --------- {63,0)

The user should only use Lines above Line 4 and below Line 46.
This means the first Line that should be used at the top is
Line 45 and the Last Line t- b~ used at the bottom is Line 5, as
follows.

60454300 A 28-3

(0,45) (63,45)

The area that is used if the coded format is selected is as
follows.

(0,43) (63,43)

60454300 A 28-4

The X and Y coordinates must be specified for program format and
must be the first two bytes of each Line; otherwise the data is
displayed starting with the last value of the X and Y
coordinates. To simplify the process of calculating the exact x
and Y coordinates for a particular line, the DSL macro can be
used <available on common deck COMCMAC). The format of the DSL
macro is as follows.

LOCATION OPERATION VARIABLE SUBFIELDS

DSL x,y,string

x Column or X-coordinate (character position
0 through 63 for small characters)

y Line or Y-coordinate Cline number 0
through 50 for small characters)

string Character string to be displayed <assumes
64 characters per line>

NOTE

Medium characters are twice
the size of small characters.

Refer to the sample program at the end of this section for the
use of the CONSOLE and DSL macros.

DISPLAY PROGRAMMING

In order to have some parts of the display at a higher intensity,
the user can output the same line two or three times. For
example, if line 45 is to be intensified, use the following.

DSL 0,45,data

DSL 0,45,data

DSL 0,45,data

60454300 A 28-5

Flashing of selected parts of the display can be accomplished
with the following ~rocedure Calso refer to the sample program
for implementation of this feature). Since any word containing
zero in byte 0 acts as an end-of-buffer, replacing the first
word CX,Y coordinates plus first 6 characters of data) of the
Last line(s) to be displayed with a zero word causes the last
Line(s) not to be displayed. Then based on some c~unter, replace
the zero word with the original contents and the line(s) will be
displayed again. Do this alternately and a flashing message is
created. Since the zero word indicates an end-of-buffer, the
Line(s) to be flashed must be the last set of data in the buffer.
Another method is to put the duplicate lines immediately before
the K-display buffer and change the pointer to the first word of
the buffer.

When displaying using the program format, it is not necessary to
display the Lines in numerical order; that is, Line 45 followed
by 44, then 43, etc. The user can display any Line or any part
of a line in any order, since each line must begin with an X,Y
coordinate and, if desired, a part of a Line can begin with an
X,Y coordinate. The X,Y coordinates can appear anywhere in the
user's data buffer -- the 6xxx means an X coordinate, the 7yyy
means a Y coordinate.

In addition to the sample program in this section, the user can
find examples in routines MODVAL, PFS, and QFSP.

KEYBOARD INPUT

When receiving information from the keyboard, the buffer CKBUF
in this case) is filled with characters when the carriage return
CCR) key is pressed. Characters are transmitted to KBUF from
the keyboard buffer in DSD left-justified, 10 characters per
word. The last word is not filled beyond the final keyboard
entry. Therefore, if the user zeros KBUF prior to receiving
data, the first 6 bits of zero will signal the end-of­
information.

60454300 A 28-6

If the user's CPU program needs to wait for keyboard input, a
RECALL should be issued as in figure 28-1.

save
keyboard
input

zero
keyboard

buffer

process
keyboard

information

issue
RCL request

Figure 28-1. Sample Keyboard Main Loop

60454300 A 28-7

K-DISPLAY STANDARDS

If the programmer creates a K-display processor for the operating
system or changes an existing processor, the guidelines
des c r i bed i n the f o l Low i n g pa r a.graphs sh o u L d be f o l Lowed •

A K-display processor is defined as a program that interacts
w i t h t h e op e r a t o r b y m e an s o f a K d i s p l a y • T h e f un·c t i on
associat~d with a parti~ular processor is defined as a process.
For example, MSI is a process and its process is initializing
devices; PROFILE is a processor and its process is updating
charge numbers in the profile file.

Two types of processes exist, dynamic and static. A dynamic
p r o c e s s p r o c es s e s e a c h d i r e c t i v e a s i t i s en t e red ·a t t h e
keyboard. The operator must indicate to the processor when to
complete the process by typing a special command. Updating a
charge number with PROFILE is an example of a dynamic process.
A static process is where a complete set of directives mu~t be
entered before the process may be initiated. The operator must
indicate to the processor when to initiate the process by typing
in a special command. Initializing a device with MSI is an
example of a static process.

K-DISPLAY ENTRIES

Directives and commands are the two types of K-display entries
a processor is concerned with. Directives set the values of the
parameteTs needed by the processor to complete a process.
Directives generally take the form of dd=xxxx. Keywords should
consist of two letters. An equal sign separates the keyword
f r om t h e a s so c i a t e d v a L u e s • S t an d a r d · k e y w o r d s i n c L u de t h e
following.

Keyword Description

UN User number

UI User index

DA Date

FM Family name

OT Device type

ON Device number

EQ Equipment number

OM Device mask

DE Density

DD Destination device number

More than one directive should be allowed on the same Line.

60454300 A 28-8

Commands are instructions to the processor. This type of
K-display entry tells the processor to initiate, terminate, or
proceed with the current process. They do not affect the value
of parameters needed by the processor to complete the process.
Commands usually consist of a single keyword.

The following commands should be available for dynamic
processors.

Command

END

DROP

STOP

Description

Terminate input of directives; complete
the particular process. A new process
begins with the entry of the next
directive.

Terminate input of directive for current
process. Do not complete the process, but
rather ignore it. A new process begins
with the entry of the next directive.

Terminate the program; do not complete
process if one is in progress.

The following commands should be available for static processors.

Command

GO

RERUN

RESET

+

K-DISPLAY FORMAT

Description

Proceed with the process using the
directives that have been entered. The
processor informs the operator of the
completion of the process by asking for a
new set of directives for the next process,
or, if there is no next process, to end the
run.

Reinitialize the processor.

ALL directives are reset to the default
values.

Page K display forward one page.

The Left screen is the primary screen for the K-display
processor. The right screen should be used for related
information an operator would need for efficient use of the
processor. This information should go on the right screen only
if there is not enough room on the left screen.

60454300 A 28-9

The primary screen can be divided into three general areas, as
follows.

Area I contains the directives that are accepted by the
processor and the value currently assigned to that directive.
As each directive is entered by way of the keyboard, the
displayed value is updated to ref Lect any change.

Area II contains a description of each of the directives found
in area I. This description should include what values the
directive may assume. The directive and its value in area I
should be on the same Line as its description in area II.

Area III consists of at Least two Lines. The bottom line should
be used to display the directives that have just been entered.
The top Line should be used to inform the operator of the
status of the processor. The status would include any error
messages, informative messages, or requests from the processor.

SAMPLE PROGRAM

The sample program executes the CONSOLE macro and the system
requests the K display to be brought to the Left screen <refer
to figure 28-2>.

The operator would type K,2. The first part of this program
uses medium characters. The K display is brought to the Left
screen and the user's job displays the information as shown in
figure 28-3. The Left screen display asks the operator to bring
the K display to the right screen also; he types in KK. Figure
28-4 shows what the two screens Look Like at this point.

60454300 A 28-10

B

1.
2. AIMIAOJ REQUEST K-DISPLAY
3.
4.
5.

Figure 28-2. B Display

Th·is is a
f Lashing
message

60454300 A 28-11

K

TOP LINE FOR MEDIUM CHARACTERS

LEFT SCREEN.

TEST OF "CONSOLE11 MACRO.

PLEASE BRING K-DISPLAY TO

RIGHT SCREEN ALSO.

BOTTOM LINE FOR MEDIUM CHARACTERS.

Figure 28-3. K Display, Left Screen

60454300 A 28-12

LEFT SCREEN ..

TEST OF "CONSOLE" MACRO.

PLEASE TYPE SOMETHING IN.

'ALTERNATES
BETWEEN LEFT
AND RIGHT

SCREENS

K

RIGHT SCREEN.

TEST OF "CONSOLE" MACRO.

PLEASE TYPE SOMETHING IN.

Figure 28-4. K Display, Left and Right Screens

60454300 A 28-13

In the middle of each screen is a flashing message CHI on the
Left screen and THERE on the right screen). Below the flashing
messages is another request for the operator which alternates
between the Left and right screen. The operator types in any
messge terminated with a CR. This causes the program to print
out INFORMATION RECEIVED in the user's dayfile and the content
of the screens is changed. The next part of the program uses
small characters and demonstrates the use of flashin~ parts of
lines instead of entire Lin~s. Figure 28-5 illustrates this
display.

To terminate the program, the user types in any message
terminated with a CR. The following messges are put in the
user's dayfile before ending.

60454300 A

INFORMATION RECEIVED
ENO OF TEST

28-14

K

TOP LINE FOR SMALL CHARACTERS.

THIS IS WHAT SMALL CHARACTERS LOOK

LIKE. NOTE: THE FLASHING MESSAGES

ARE ONLY PART OF A LINE.

PLEASE TYPE IN SOMETHING TO

TERMINATE TEST.

BOTTOM LINE FOR SMALL CHARACTERS.

K

THIS IS WHAT SMALL CHARACTERS LOOK LIKE.

NOTE

Words SMALL and NOTE f Lash on the Left
screen, along with input request.

Figure 28-5. Small Characters, Left and Right Screens

60454300 A 28-15

*
*

*

*
*
*

KDS

KDS1

KDS2

KDS3

KDS4

KDS5

IDENT KDS
ENTRY KDS
SYSCOM 81

THIS PROGRAM USES THE DSL AND CONSOLE MACROS FROM
COMMON DECK COMCMAC TO DISPLAY MESSAGES ON THE
LEFT AND RIGHT SCREENS VIA THE K DISPLAY.

THIS FIRST SET OF DISPLAYS USES MEDIUM CHARACTERS.

SB1 1
CONSOLE DSW1 SYSTEM WILL REQUEST *K* DISPLAY

SA1 MLS
LX1 59-0
NG X 1, KDS2 IF LEFT SCREEN DISPLAYED
RECALL
EQ KDS1 LOOP UNTIL LEFT SCREEN IS DISPLAYED

SA1 BLK
BX6 X1
SA6 MLS1 DISPLAY MESSAGE TO OPERATOR

RECALL
SA1 MRS CHECK RIGHT SCREEN
LX1 59-0
PL X 1, KDS3 IF NOT DISPLAYED YET

THE FOLLOWING CODE PUTS OUT A FLASHING MESSAGE ASKING FOR
AN OPERATOR TYPE-IN. THE MESSAGE IS ALTERNATED BETWEEN THE
LEFT AND RIGHT SCREENS.

MX6 0
SA6 MLS1
SB7 BO
SB5 LTYP

SA1 TYP+B7 MOVE OPERATOR MESSAGE TO DISPLAY AREA
BX6 X1
SA6 MLS2+87
SA6 MRS2+87
SB7 87+81
NE B5,B7,KDS4 IF NOT FINISHED
SA1 BLK
BX6 X1
SA6 MLS1

RECALL
SA1 KBUF
NZ X 1, KDS7 IF SOME KEYBOARD INPUT
SA1 BLK
SA2 FLS
SA3 MLS1
SX6 X2-1 DECREMENT FLASH COUNTER
SA6 FLS

60454300 A 28-16

*
*
*

KDS6

KDS7

KDS8

KDS9

KDS10

KDS 11

NZ
SX7
SA?
ZR
MX6
SA6
BX6
SA6
EQ

MX6
SA6
BX6
SA6
EQ

. X6, KDS5
FLC
FLS
X3,KDS6
0
MLS1
X1
MRS1
KDS5

0
MRS1
X1
MLS1
KDS5

IF NOT TIME TO CHANGE FLASH STATUS
RESET FLASH COUNTER

IF LEFT DISPLAY OFF
LEFT DISPLAY ON
SO TURN IT OF?

TURN ON RIGHT SCREEN FLASH

TURN OFF RIGHT SCREEN FLASH

TURN ON LEFT SCREEN FLASH
LOOP WAITING FOR KEYBOARD INPUT

THE FOLLOWING CODE WILL DISPLAY SMALL CHARACTERS AND
WILL DEMONSTRATE THE CAPABILITY OF FLASHING PARTS OF
LINES INSTEAD OF ENTIRE LINES.

MESSAGE KOSA, ,R
MX6 0
SA6 KBUF
SX6 FLC
SA6 FLS
CONSOLE DSW2

SA1
LX1
NG
RECALL
EQ

RECALL
SA1
NZ
SA1
SA2
SA3
SX6
SA6
NZ
SX7
SA7
ZR
MX6
SA6
EQ

BX6
SA6
EQ

SLS
59-0
X1,KDS9

KDS8

KBUF
X 1 , KDS 11
BLK
FLS
SLS1
X2-1
FLS
X6,KDS9
FLC
FLS
X3,KDS10
0
SLS1
KDS9

X1
SLS1
KDS9

MESSAGE KOSA, ,R

CLEAR KEYBOARD BUFFER

RESET FLASH COUNTER

IF LEFT SCREEN DISPLAYED

LOOP

IF SOME KEYBOARD INPUT

DECREMENT FLASH COUNTER

IF NOT TIME TO CHANGE FLASH STATUS

IF FLASH PARTS OFF
FLASH PARTS ARE ON - TURN OFF

FLASH PARTS ARE OFF - TURN ON

MESSAGE (=C* END OF TEST.*),,R
EN DR UN

60454300 A 28-17

KDSA

BLK
FLC
FLS
DSW1

DSW2

KBUF
MLS

MLS1

MLS2

TYP

LTYP
MRS

MRS1

MRS2

SLS

SLS1

SRS

DATA

DATA
EQU
CON
VFD

VFD

BSSZ
VFD
DSL
DSL
DSL
DSL
DSL
DATA
DSL
DSL
DSL
DSL
DATA
DSL
DSL
DSL
DATA
EQU
VFD
DSL
DSL
DSL
DATA
DSL
DSL
BSSZ

VFD
DSL
DSL
DSL
DSL
DSL
DATA
DSL
DSL
DSL
DSL
DSL
DATA
VFD
DSL
DATA
END

60454300 A

C* INFORMATION RECEIVED.*

10H
100 FLASH COUNTER VALµE
FLC FLASH COUNTER
24/KBUF,18/MRS,18/MLS

24/KBUF,18/SRS,18/SLS

8
10/0, 1/1, 1/0,47/0, 1/0
0,44,(TOP LINE FOR MEDIUM CHARACTERS.)
0,5,(BOTTOM LINE FOR MEDIUM CHARS.)
8,39,(LEFT SCREEN&)
8,39,(LEFT SCREEN.)
0,37,(TEST OF *CONSOLE* MACRO.)
0
16,33,(HI)
16,33,(HI)
0,29,(PLEASE BRING K DISPLAY TO)
0,27,(RIGHT SCREEN ALSO.)
0
0,27,(PLEASE TYPE SOMETHING IN.)
0,27,(PLEASE TYPE SOMETHING IN.)
0,27,(PLEASE· TYPE SOMETHING IN.)
0
*-TYP
10/0, 1/1, 1/0,47/0, 1/0
8,39,(RIGHT SCREEN.)
8,39,(RIGHT SCREEN.)
0,37,(TEST OF *CONSOLE* MACRO.)
0
1fr, 33, (THERE .•.)
16,33,(THERE •..)
LTYP

10/0, 1/0, 1/0,47/0, 1/0
0,45,(TOP LINE FOR SMALL CHARACTERS.)
0,5,(BOTTOM LINE FOR SMALL CHARACTERS.)
3,30,(THIS IS WHAT)
25,30,(CHARACTERS LOOK LIKE.)
6,28,(THE FLASHING MESSAGES ARE ONLY PARTS OF A LINE.)
10H ~

19,30,(SMALL)
19,30,(SMALL)
0,28,(NOTE-)
0,28,(NOTE-)
0,16,(PLEASE TYPE IN SOMETHING TO TERMINATE TEST.)
0
10/0, 1/0, 1/0,47/0, 1/0
3, 30, (THIS IS WHAT SMALL CHARACTERS LOOK LIKE.)
0
KDS

28-18

LOCATION-FREE ROUTINES 29
--
During execution, a PP routine may need some special operations
performed. Depending on the routines, different areas of PP
memory may be available for loading special routines.

In order to Load a PP routine anywhere in PP memory, the concept
of location-free routines is used.

Two macro packages, COMPREL and COMPRLI, provide the capability
for a routine to be self-relocating.

By convention, any PP routine whose name begins with a zero is
considered a Location-free routine. A routine that needs to
Load a location-free routine sets LA <Load address direct cell)
to the location where the subroutine is to reside, sets .. the A
register to the name of the routine, and calls EXR to load and
execute it. The EXECUTE macro from COMPMAC accomplishes this
for the user. There are two common decks that control the use
of location-free routines, COMPREL and COMPRLI.

COMMON DECK COMPREL

If the user inserts common deck COMPREL in his program, all
M-type instructions automatically have LA inserted in the d
field. Hence, the user may not specify a d field in any M-type
instruction. In addition, .CRM, CWM, AJM, IJM, FJM, EJM, IAM,
and OAM cannot be used. If the use~ needs to specify an M-type
instruction without relocation ordinal definition, he must
append a period onto the instruction, as follows

LJM. tag

Any M-type instruction which references a cell defined in
NOSTEXT CPPCOM) is not relocated if REL$ is defined equal to 1;
otherwise, the instruction will be relocated. If the user
wishes to code nonrelocatable code after his relocatable code,
he uses the macro RSTR, which is contained in COMPREL. COMPREL
relocates instructions with reference to LA as they are
encountered in the code. This then causes all relocation to
occur at execution time through the indexed direct-addressing
scheme.

60454300 A 29-1

COMMON DECK COMPRLI

The second method of coding a Location-free routine is to use
COMPRLI, which relocates indirectly. ALL the rules of COMPREL
apply, with the exception that it is Legal to relocate I/O
instructions. In addition, the three C-type instructions, LDC,
ADC, and LMC, are also relocatable.

Where COMPREL relocates instructions as it encounters themp
COMPRLI builds a remote table using the RMT pseudo-op (refer to
the COMPASS Reference Manual> containing the address of the

·instructions that need to be relocated. The first executable
statement must be:

RJM. REL,LA

The routine REL is in COMPRLI. REL searches through the remote
table and relocates all instructions whose addresses are stored
in the table. The user must call COMPRLI.

Listings of COMPREL and COMPRLI are obtained by assembling
CALLPPU.

The following is a List of location-free routines available in
NOS.

Routine Description

OAU Update project profile file

OAV Verify user name

OBF Begin fi Le

OBP Banner page

ODF Drop file

OFA Release fast-attach files

OMF Initialize MMF Link device

ORF Upd~te resource files

ORP Release permanent file

OSE Process system device errors

OVJ Verify job/user statements

OCI Firmware ident processor C6DI driver>

OTI Track f Law processor C6DI driver>

OPI Pack serial processor C6DI driver>

60454300 A 29-2

LOADING ZERO-LEVEL OVERLAYS

In NOS, Location-free routines are called zero-Level overlays.
Since Location-free routines can reside anywhere within PP
memory, it is quite important that the caller of a Location-free
routine guarantee that the Loading of such a routine does not
destroy meaningful data or instructions. Common deck COMSZOL
defines symbols for the Length of the zero-Level overlays.
These values represent the number of words needed by the routine
to perform its task. This value is Less than or equal to the
amount of PP memory used to Load the overlay. The amount of
memory destroyed is rounded to the next highest number of
sectors if the routine is Loaded from RMS Cthat is, if the
routine requires 5018 bytes, 12008 bytes are destroyed by the
Load from RMS). The user should employ the OVERFLOW macro, found
in COMPMAC and COMSZOL, to guarantee that the memory destroyed
by the Loading of a zero-Level overlay is not meaningful.
Listings of COMPMAC and COMSZOL can be obtained by assembling
CALLPPU and CALLSYS.

60454300 A 29-3

PRODUCT SET INTERFACE 30

--~--

NOS supports the CYBER common product set. Since the product set
executes under several operating systems, there are some
operations done by the products which are processed by various PP
routines that may not be present on all operating systems.

From a historical perspective, the predecessor versions of NOS
(KRONOS 2.1) did not have PP routines that were called by the
product sets running on the predecessor to NOS/BE (SCOPE 3.4).
When the common product set was supported under KRONOS, the
processors for RA+1 calls not available under KRONOS were grouped
into a single routine named the SCOPE function processor (SFP).

SCOPE FUNCTION PROCESSOR

SFP is a function processor that is called when the PP program
requested cannot be found in the peripheral library directory
CPLD).

The RA+1 calls processed by SFP consist of the following.

Call Description

STS Status processor

MSD SDA/SIS· message generator

PFE Alter function

ACE Advance control statement

PRM Permission check

CKP Checkpoint request

REQ .NOS/BE equipment request

DMD Dump CM field Length in display code

DMP Dump CM field Length

DOO Error text processor

FIN Translate FIN (NOS/BE) requests

DEP Dump ECS field Length

OED Dump ECS field length in display code

60454300 A 30-1

SFP STRUCTURE

SFP consists of a main program and overlays that are Loaded
depending upon the function being processed.

The main program in SFP determines which overlay needs to be
Loaded by processing the RA+1 call.

STS REQUEST

The STS request is processed by overlay 2SA. The RA+1 format for
the STS call is as follows.

59 41 35 23 17 0

RA+1 [STS I 0 I f unc I 0 I addr I
func Function code

addr Status return address

Function 01

This function returns the status of mass storage devices starting
at Location addr+1. The data returned consists of the following.

59 47 35 23 0

addrl___ _o _.__.I _.u ~I _ir ~I _ 0 ____....H
LL Number of words, excluding addr+O, to be

used for return information; this value
must be set nonzero by the caller

Lr Number of status words returned

c Set to 1 when operation is complete; caller
must set to zero

60454300 A 30-2

The
the

mass storage device status i s returned, 1 word per device,
following

59

addr+n ~

status

status

000
040
1 20
140
620
640
700
740

format.

47 35 23 17 11

status I devt I est ord I chan I eq I pru

Status of mass storage device as follows.

Description

Not available, off, not in use
Unloaded pack
NOS system routines
NOS system routines on pack
Contains permanent files
Pack with permanent files
NOS system and permanent files
NOS system and permanent files on
pack

0

I

in

devt NOS/BE hardware mnemonic in display code (for mass
storage devices).

Mnemonic Description

AA 6603 Disk System
AB 6638 Disk System
AD 865 Drum System
AF 814 Disk System
AL 821 Disk System
AM 841 Disk System
AP 854 Disk System
AY 844-2X Disk System
AZ 844-4X Disk System
DE ECS System
DP DDP System

est ord EST ordinal of the mass storage equipment.

chan Primary I/O channel for the equipment.

eq Equipment number.

PRU Number of PRUs/100B of space remaining on the
device. A value of 7777B indicates at least
262,100 PRUs available.

60454300 A 30-3

Function 02

Returns to the calling program the FNT/EST entries of files
requested whose names are set in every third location starting
with addr+1. If the file exists, the file name is replaced by
the FNT/FST of NOS mapped into the NOS/BE FNT/FST. If the file
does not exist, the file name is zero.

The data returned consists of the header word in addr+O in the
same format as for function 01. The mapped FNT/FST for the named
file is returned 3 words per entry as follows.

59 53

devt 0

file name
cp
devt

47

0

1st track
cur. track
cur. sector
disp. code

pem

cs

35 23 17

file name la cp

1st track cur. track 0

disp. code
p

0 e
m

Name of the file
Control point assignment
NOS/BE device type
First track
Current track
Current. sector
Disposition code

40 Print
10 Punch

11

Permanent file permissions
1111 No controls
0000 Execute only
0001 Read
1101 Extend
1011 Modify

0

0

cur. sector

cs

Code and status <same as byte 4 of the NOS
FST entry)

The device type Cdevt) file, may contain those mass storage
values Listed for function 01 as well as the following items.

Device Type

CR
CP
LP
LQ
LR
TA

60454300 A

Description

Card reader
Card punch
Line printer
Line print~r C512)
Line printer (580)
Time-sharing terminal

30-4

For magnetic tapes, the device types are as follows.

Device Type

MT
NT
40nn
41nn

nn

xxxx10
xxOOxx
xx01xx
10xxxx
10xxxx
11xxxx

Function 03

Description

Seven-track I, F formats
Nine-track I, F formats
Seven-track SI, S, L formats
Nine-track SI, S, L formats

Meaning

Density <always 800)
Unlabeled
Standard labels
SI format
S format
L format

Returns to the calling program the number of PRUs of the files
requested whose names are set in every second word starting at
addr+1. If the file exists, the PRU count is returned in bits 23
through 0 of the second word. If the file does not exist, the
second word is zero.

The data returned consists of the header word as described for
function 01 and data words of the following format.

59 23 17 0

addr + 1 file name 0

+2 0 PRU count

60454300 A 30-5

MSD REQUEST

The MSD request is processed by overlay 258. The RA+1 call for
MSD has the following format.

59 41 29 17 0

RA+1 l _______ M_s_o __ ~ ________ o ____ _.lm __ es_s_a_g_e_c_od_e __ l ______ a_d_d_r _______]

message code
addr

Ordinal of message to be returned
Address to receive mess~ge

The format of addr is as follows.

59 47 35 23 0

addr ~l ___ m_c_;d_s! ____ ~l ____ ~_:_:_:_1 ____ 1 ___ m_s_fz_s; ____ ~l __________ o __________ _...l...,cl

mess code
mess size
c

Message code
Length of mesaage in CM words
Completion bit; set to 1 when
function is completed

The message text is returned beginning at location addr+1.

60454300 A 30-6

PFE REQUEST

The PFE request is processed by overlay 2SD. The PFE request
alters the requested file with an EOI recorded at the current
position of the mass storage file.

The format of the RA+1 PFE call is as follows.

59 41 35 17 0

RA+1 ~I _____ P_F_E ____ l __ o ___ I ______ o ______ ~l~----a-dd_r _______ I

addr Address of a parameter word

The parameter word has the following format.

59 17 8 5 1 0

addr l ______________ f_i1_e_n_a_m_e ______________ l ___ re_t ___ 1_~_1_f_c_f_l_cl

file name
ret

opt
f c
c

60454300 A

Name of the file
If bit 6 is set in opt, a return code is
available to the caller. The return codes are:

000 Function successful
003 Unknown file
025 File unavailable

Options (bit 6 is return code to user in ret)
Function code for alter, bits
5-2=0111 Completion bit (set to 1 when
function is completed)

30-7

ACE REQUEST

The ACE request is processed in overlay 2SE. ACE
reads/backspaces the next/previous cQntrol statement into RA+70B
through RA+77B with the option to place the control statement in
t he day f i le and Io r to c rack and store the cont r o l s. tat em en t
parameters in product set or operating system format into RA+2
through RA+53B. If a read function is issued and the pointer is
at the end of the control statement record, an EOR status Cbit 4
set in the function code is set and RA+70B through RA+77B are
cleared. If a backspace function is issued and the pointer is at
the beginning of the control statement record, the pointer is not
changed and an EOR status is returned. When the function is
complete, the completion bit Cbit 0) is set and returned to the
user. The format of the ACE call is as follows.

59

RA+1 I
f

f unc

41 26 23 17 0

ACE 0 I f I 0 I f unc I
Format:

x01 Crack parameter in operating system format
x10 Crack parameter in product set format
1xx Issue control statement to dayfile

CM w o r d c o n t a .i n i n g f u n c t i o n C b i t s 1 1 ! t h r o u g h 0) t o
be performed.

The following functions are valid.

Function

0010

0040

Description

Read next control statement and
advance control statement pointer

Backspace to previous control
statement

ACE calls PP routine TCS after mapping the calling parameters for
ACE into those recognizable by TCS.

PRM REQUEST

The PRM request is processed by overlay 2SF. PRM scans for an FNT
entry whose name is contained in the call and, if found, maps the
NOS file permi"ssion bits into the NOS/BE permission bits and
returns them to the caller as a status. If the call address is
out of range or the requested file does not exist, no diagnostic
is issued and no status is ~eturned to the caller.

60454300 A 30-8

The format of the PRM RA+1 call is as follows.

59 41 17 0

RA+1['---P-RM _ __.l ___ o ____ I -p-ar_m a_ddr_____,J

parm addr CM address which contains the file name to
search for

The format of parm addr is as follows.

59 13 8 0

parmaddrl ~ ~~~~~~~~~lf_"~~~~~~~~~l_co_d_e_l~-o~_I_~
lfn logical file name

code A 5-bit code returned by PRM in bits 13 through 9.
The rightmost four bits are the permission bits. The
octal values for these bits are:

01 Read
02 Extend
04 Modify
10 Control

Bit 13 is zero if the file found is a permanent file.
If equal to 1, the file, though found, is not a
permanent file.

For a perwanent file whose write lockout and/or execute bit(s)
are set in the FNT, read only permission status will be returned
to the caller. This is due to differences in permanent file
structures between NOS and NOS/BE.

60454300 A 30-9

SPECIAL REQUEST PROCESSING

The CKP, REQ, DMP, DMD, DEP, and OED requests are processed in
overlay 2SG, special request processing CSRP).

SRP consists of routines which set. up a special processing word
in the calling control point area CSPCW) for follow-up processing
by 1AJ and a CPU program associated with the call. The format of
SPCW is as follows.

59 41 35 17

SPCW I entry point po ram poddr

entry point Name of entry point in CPU program

codes Control codes for use by 1AJ

Bit Description

41 Request active C1AJ use only)
40 Clear RA+1 before reload if not set
39 Remainder of word is parameter list Cnot

address of parameter list)
38 Do not restart CPU C1AJ use only)

0

param Input parameter Cbits 35-18) or status on output Cbits
35-24)

paddr Parameter address passed in call

60454300 A 30-10

The SPCW word, with the exception of the codes field, is the same
format as the RA+1 call.

The CKP RA+1 request is discussed in section 25. The REQ RA+1
request is for compatibility purposes only. Equipment
assignments under NOS should be made using the proper LFM
functions.

The DMD and DMP RA+1 requests have the following formats.

59 41 35 17 0

RA+1 I DMD ~ f wa I lwa I
59 41 35 17 0

RA+1 I DMP ~ f wa I lwa I
fwa First word address of CM dump
lwa Last word address plus 1 to be dumped

The DED and DEP RA+1 requests have the following formats.

59 41 17 0

RA+1 I OED ~ addr I
59 41 17 0

RA+1 I DEP ~ addr I

addr Address of parameter word

60454300 A 30-11

Location addr is formatted as follows.

59 47 23 0

addr [_____ o ____ ~l __________ fw_a _________ l _________ iw_a __________ I

fwa First word address of ECS dump
Lwa Last word address plus 1 to be dumped

ERROR PROCESSOR

Error conditions detected by SFP and its overlays are processed
in overlay 2SH, error processor CERP).

Routine 2SH is called with an error code in direct cell EI which
indicates one of the following error conditions.

Error Code

SCE
PCE
I FR
IOC
PAE

IAF
SRE

NET
NMS

BET
IMN
IOS

Description

SFP call error
xxx not in PPLIB
Illegal function
Illegal origin code
Parameter error

Illegal function code
Special request processing
error
Error text not found
Error text not on mass
Storage
Bad error text
Invalid message number
I/O sequence error

Issuing
Routine

SFP
SFP
2SA,2SE

SFP,2SA,
2SC,2SI
2SD

2SG
2SI

2SI
2SI
2SI
2SD

When issued to the dayfile the name of the monitor call being
processed is prefixed to the message such that the message that
appears is of the form

SFP/STS UNKNOWN DEVICE NAME/TYPE.

ALL errors except NET, NMS, BET, and IMN are considered fatal and
abort the control point through the ABTM monitor function after
issuing the message. The nonfatal errors drop the PP after
issuing the message.

60454300 A 30-12

MONITOR CALL ERRORS

Since SFP is called after a PLO search has failed to yield a
match on the desired PP program request, SFP contains the logic
to process monitor call errors. If SFP does not find the desired
routine in its function table, 2SH is called with error code PCE~

In the processing of PCE errors, a distinction is made for RA+1
requests and PP input register requests. If the request is an
RA+1 monitor request from a user program, then the error flag is
changed to PCET (program call error), SFP's input register is
written to RA+1 and the PP is dropped. Routine 1AJ is called to
process the error and upon detecting the PCET error type issues
the diagnostic.

MONITOR CALL ERROR.

If no RA is present, the request was made through a PP input
register. The diagnostic

xxx, NOT IN PP LIB.
CALLED BY yyy ..

is issued and the PP is dropped.
diagnostic

xxx NOT IN PP LIB.

In all other cases the

is issued and the control point is aborted.

DOO REQUEST

The 000 request is processed by overlay 2SI, extract error text.
DOO extracts messages from specially-created system text decks to
aid in analyzing error conditions re~ulting from product set
execution. By using an error number and the proper system text
deck, an error diagnostic is transmitted to a specific CM buffer
and/or issued to the dayfile. All system decks to be used with
000 must reside on mass storage.

The RA+1 call for DOO has the following format.

59 41 17 0

RA+1 l _______ o_o_o _________________ o __ ~------a...-~---a-d_d_r ____ __.I

addr Address of 2-word table

60454300 A 30-13

The format of location addr is as followsM

59 47 35 23 17

addr+O a msg bufsize buf oddr

+1 text deck name insert

a destination

40008
20008
10008

If insertions to messages
If dayfile message transfer
If CM buffer message transfer

msg
bufsize
bufaddr
deck
insert

Number of the message to be transmitted
Size of CM buffer to receive message
Address of CM buffer to receive message
Name of text deck containing message
Data to inserted into m~ssage

5 0

0

The response to the DOO request is received at the address
specified in the call in the following format.

59 23 11 0

oddr ~l _______________ o ________________ l ___ s_ta_t_us ____ ~_· __________ cl

status

c

60454300 A

Response status:

0
7777
other

If transmitted to dayfile only
If error
Number of CM words written if CM buffer
transmittal

Completion bit; set to 1 when function is completed

30-14

FIN REQUEST

The FIN request is processed by overlay 2SI. Processing
consists of translating the request into the appropriate CPM or
LFM function request and reissuing it. The RA+1 format for the
FIN request is as follows.

59 41 35 29 23 17 0

RA+1I _______ Fr_N ______ ~l __ 2o ___ l __ o ___ l_f_c __ l __ o ___ l ______ a_dd_r ______ I
f c Function code:

01 FILINFO

02 A CC SF

03 .ENC SF

04 GETJCI

05 SETJCI

addr Address for corresponding function

Any other value of f c results in the following message.

SFP - ILLEGAL FUNCTION CODE.

60454300 A 30-15

60454300 B

NETWORK VALIDATION FACILITY (NVF)

NOTE

This section has been
transferred to the NAM
IMS (publication number
in preface).

31

31-1 •

KRONREF, COMMON DECKS, AND SYSLIB 32

This section describes KRONREF and common decks defined on the
system old program library COPL).

KRONREF

KRONREF is used by the programmer to locate a particular use of
a symbol, type, error flag, common deck, or PP package.

KRONREF generates a cross-referenced listing of system symbols
used by decks on a Modify program library. The names of
programs on the OPL are Listed for those decks that referenced
the following.

• PP direct cell locations

• PP resident entry points

• Monitor functions

• Central memory pointers (in low core)

• Central memory Locations (in low core)

• Control point area words

• Dayfile message options

• File types and mass storage constants

• Job origin types, queue types, and priorities

• Error flags referenced

• Miscellaneous NOSTEXT symbols

• Common deck calls

• PP packages called *

• Special entry points

• System macro request references

* Macro EXECUTE_nme, = does not generate code to RJM to EXR,
but is used exclusively to make a reference for KRONREF to use.

60454300 A 32-1

The KRONREF control statement format is as follows:

COMMON DECKS

KRONREFCP=lfn1,L=lfn2,S=lfn3,G=lfn4)

P=Lfn1 OPL input from file lfn1. If the P
option is omitted or P alone is specified,
file OPL is assumed.

L=lfn2 List output on Line lfn2. If the L option
is omitted or Lalone is specified, file
OUTPUT is assumed.

S=Lfn3 System text from overlay Lfn3. If the S
option is ·omitted or S alone is specified,
file NOSTEXT is assumed.

G=Lfn4 System text from Local file Lfn4. If the
G option is omitted, the system text is
acquired as specified or defaulted by the
S option. If G alone is specified, the
local file TEXT is used. Use of the G
option overrides any S specification.

A system common deck is a COMPASS subroutine or group of macro
or symbol definitions that have been tested, optimized, and
designed to interface with the operating system. Common decks
are used to increase efficiency in writing code, to ensure
uniformity of code, and to decrease debugging time.

The NOS common decks are organized in the following classes.

• CPU common decks

• pp common decks

• Equivalences

• Table management

• Display routines

• TAF common decks

• Mass storage common decks

60454300 8 32-2

I

Each common deck is tdentified by the name COMxnnn, where x is
the Letter signifying the type of common deck as follows:

x

c

I

p

s

T

M

D

B

K

Significance

CPU common deck

Product installation configuration decks

PP common deck

Equivalences <subsystem symbols, constants,
etc.)

Table definitions

Mass-storage common decks

Display routines

TAF data manager

Transaction subsystem

The 3-character designator nnn usually indicates the entry point
used in the common deck.

COMMON DECK USAGE

Common decks of particular interest are COMCCMD, COMCMAC, and
COMPMAC. These common decks contain macros generally used by
the system programmer in system-origin jobs and PP routines.
The most frequently used macros are defined in SYSTEXT through
CPCOM. The macros defined on COMCMAC and COMCCMD are also defined
in systems text PSSTEXT. Thus the majority of programs can be
written without the need for calling a special common deck of macro
definitions. In either case, whether the macros used are defined in
a common deck or in a systems text, the program must call the
common deck or systems text that contains the code to perform the
operation required by the macro.

Most CPU system macros require that the common deck related to a
function processor be available in the program; however, these
common decks need not specifically be called by the user when
writing relocatable routines since all CPU macros specify entries
to common decks as external symbols. When these relocatable
subroutines are Loaded, the routines required (such as CIO= and
LFM=) are satisfied from SYSLIB. The routines in SYSLIB are
Listed in this section.

If a program is not relocatable or if the desired common deck is
not found on SYSLIB, then the common deck must be accessed from
the system OPL. To use such a common deck, the programmer must
insert. the Modify directive *CALL in the text of the program or
use the COMPASS pseudoinstruction XTEXT.

60454300 8 32-3

~·

To obtain detailed documentation on a particular group of
common decks, assemble the deck CALLxxx from the system OPL
where xxx denotes the following.

xxx Descri~tion

CPU CP common decks

PPU pp common decks

SYS Equivalences

DIS Display routines

TAB Table management routines

The following are OPL common decks.

Common Deck Description

COMCMAC CPU system macros

COMCARG* Process arguments

COMCARM Multiple-w-0rd argument processor

COMCCDD* Constant to decimal display code
conversion

COMCCDM CPU debugging macros

COMCCDP CPU debugging package

COMCCFD* Constant to F10.3 conversion

COMCCHD Constant to hexadecimal display code
conversion

COMCCIO* I/O function processor

COMCCMD Central program macro definitions

COMCCOD* Constant to octal display code conversion

COMCCPA* Convert positional arguments

COMCCPM Control point manager processor

COMCCPT* Copy prefix table

COMCCVI User control limit formula

COMCCVL Common validation interface processor

COMCDXB Display code to binary conversion

*This common deck is also available on the COMPASS program library
(PL).

60454300 8 32-4

I

Common Deck Description

COMCECM ECS interpretive mode macro definitions

COMCECS ECS interpretive mode macro processor

COMCEDT Edit date or time from packed format

COMCFCE Format catalog entry for output

COMCFQO ·format queued file output

COMCHXB Hexadecimal display code to binary
conversion

COMCIQP IQFT file processors

COM CL FM Local file manager processor

COM CLOD User call Loader interface

COMCMTM* Managed table macros

COMCMTP* Managed table processors

COMCMVE* Move block of data

COMCOVL Overlay Load processor

COMCPFM Permanent file processor

COMCPFU Permanent file utility function processor

COMCPOP Pick out parameter

COMCQFM Queue file manager processor

COMCRDC* Read coded line, -c- format

COMCRDH* Read coded line, -H- format

COMCRDO* Read one word

COMCRDS* Read coded Line to string buffer

COMCRDW* Read words to working buffer

COMCRSP Remove secure parameter from control
statement

COMCRTN Read terminal network description

COMCSFM System file manager processor

COMCSFN* Space fill right-justified zeros

*This common deck is also available on the COMPASS PL.

60454300 B 32-5

Common Deck

COMCSNM

COMCSRT*

COMCSSN

COMCSST*

COMCSTF*

COM CSYS*

COMCUPC*

COMCUSB

COMCVFE

COMCWOD*

COMCWTC*

COMCWTH*

COMCWTO*

COMCWTS*

COMCWTW*

COMCZAP

COMCZTB*

Description

Set name in message

Set record type

Skip sequence number

Shell sort table

Set terminal file

Process system request

Unpack control statement

Unpack data block to string buffer

Validate FNT/FST entry

Convert word to octal display code

Write coded line, -c- format

Write coded line, -H- format

Write one word

Write coded line from string buffer

Write words from working buffer

Z argument processor

Convert zeros to blanks in a word

The following are PP common decks.

Common ~eek Description

COMPMAC PP system macros

COMPACS Assemble character string

COMPANS Assemble numeric string

COMPCDI Clear local MST utility interlock

COMPCEA Convert FCS address

COMPCFP Clear format pending

COMPCHI Redefine I/O instructions

*This common deck is also available on the COMPASS PL.

60454300 B 32-6

60454300 A

Common Deck Description

COMPCHL Redefine 1/0 instructions

COMPCIB Check input buffer

COMPCKP Set checkpoint bit in EST entry

COMPCLD Search central Library directory

COMPCLX Clear exchange package

COMPCMA Central memory available on recovery

COMPCMX Computer maximum field Length

COMPCOB Check output buffer

COMPCRA Convert random address

COMPCRS Check recall status

COMPCTI Clear track interlock

Check user access

Compare user numbers

COMPCUA

COMPCUN

COMP CUT

COMPCVI

COMPCZD

COMPDMS

COMPDTS

COMPDVS

COMPECX

COMP FAT

COMPGBN

COMPGJN

COMPGTN

COMPIFR

COMP IR.A

COMPMRQ

Clear. permanent file utility interlock

Convert validation indexes

Convert two octal digits to display code

Determine memory size

Determine track interlock status

Divide by five

Compute ECS maximum field length

Search for fast attach file

Generate banner name

Generate job name

Generate terminal number

Set/clear flag register interlock

Initialize random access processors

Monitor request

32-7

60454300 A

Common Deck

COMPMSD

COMPRBB

COMPRCB

COMPRCS

COMPREI

COMPRJC

COMPRLS

COMPRNS

COMPRSI

COMPRSS

COMPSAF

COMPS CA

COMPS CE

COMPS DI

COMPSDN

COMPS EI

COMPS ES

COMPSFB

COMPS FE

COMPS FI

COMPSFN

COMPSNT

COMPS PA

COMPS RA

COMPS SE

COMPS TA

COMPS TI

Description

Mass storage processor for 3553-1

Read binary buffer

Read coded buff er

Read control statement

Request ECS increase

Read job control word

Release storage

Read next sector

Request storage increase

Read system sector

Search for assigned file

Set catalog address

Status/control register error processor

Set local MST utility interlock

Search for device number

Search for end-of-information

Set error status in Local MST CSTLL)

Set file busy

Set family equipment

Set FNT interlock

Space fill name

Set next track

Set pot address

Set random address

System sector error processor

Set terminal table address

Set track interlock

32-8

Common Deck Description

COMPSUT Set permanent file utility interlock

COMPTGB Set/clear global MST flag (ACGL)

COMPTLB Set/clear local MST flag (STLL)

COMPUPP Update pot pointer

COMPUPS Unpack statement

COMPUSS Update system sector for disposable files

COMPVFC Verify forms code

COMPVFN Verify file name

COMPVMS Validate mass storage ordinal

COMPWBB Write binary buffer

COMPWCB Write coded buffer

COMPWEI Write EOI sector

COMPWSS Write system sector

COMPWVE Write and verify with EOI sectors

COMPREL Location free overlay macros

COMPRLI Relocatable overlay macros

COMPCHL Redefine I/O instructions

COMP3XD 3000·equipment driver subroutines

The following are display common decks.

Common Deck Description

COMDDIS Display subroutines

COMDDSP Display program routines

COMDSYS Display system status and associated
routines

COMDTFN Table of monitor functions for display

60454300 A 32-9

The following are mass storage common decks.

Common Deck Description

COMMMSD Universal mass storage driver

COMMMSE Mass storage error processor

The following common decks contain subsystem equivalences,
symbol definitions, and constants.

Common Deck Description

COMSACC User file equivalences

COMSBIO BATCHIO equivalences

COMSCIO CIO/driver equivalences

COMSCPS CPUMTR subfunction codes

COMSDSL Deadstart load parameters

COMSESS Engineering services support definitions

COMSEVT Event descriptor formats

COMSEXP EI/200 tables and constants

COMSIOQ Dayfile/queue pratect equivalences

COMSJCE Job control equivalences

COMSJIO Job input/output equivalences

COMSJRO Job rollout equivalences

COMSLDR CPU program Loading equivalences

COMSLSD Label sector definition

COMSMMF Multimainframe equivalences

COMSMRT Machine recovery equivalences

COMSMSI MST/PP equivalences

COMSMSP Mass storage processing equivalences

COMSMST MST flag/interlock definitions

60454300 A 32-10

60454300 A

Common Deck

COMSMTR

COMSMTX

COMSNCD

COMSNET

COMSPFM

COMSPFS

COMSPFU

COMSPRD

COMSPRO

COMSQFS

COMSREM

COMSRSX

COMSSCP

COMSSCR

COMSSFS

COMSSRU

COMSSSE

COMSSSJ

COMSTCM

COMSTDR

COMSTRX

COMSWEI

COMSZOL.

Description

MTP/CPUMTR equivalences

Magnetic tape executive equivalences

Network communications definitions

Terminal network equivalences

Permanent file equivalences

Permanent file supervisor equivalences

Permanent file utilities equivalences

Priority definitions

Project profi Le file structure

Queued file equivalences

!AF/TELEX system parameters

Resource executive equivalences

System control point equivalences

SIC register equivalences

SFS equivalence and table definitions

Define SRU parameters

System sector equivalences

Special system job parameters

TELEX communications micros

Terminal driver equivalences

Transaction subsystem equivalences

EOI sector definitions

Zero-level overlay lengths

32-11

The following common decks contain tables used by the system.

Common Deck Descri~tion

COMTBCD Display code to BCD

COMTDPC BCD to display code

COMTDP6 Display code to 026 punch

COMTDP9 Display code to binary 029 punch

Common Deck Description

COMTNAP Define application access bits

COMTVXD ASCII/display conversion table

COMT6DP 026 punch to display code

COMT9DP 029 punch to display code

60454300 A 32-12

SYSLIB

The following common decks, unless otherwise noted, are assembled
from the COMPASS PL and are available in relocatable form in
SYSLIB.

Common Deck Description

COMCCIO I/O function processor

COMCCPM* Control point manager processor

COMCECS* ECS interpretive mode macro processor

COMCLFM* Local file manager processor

COMCMVE Move block of data

COMCOVL* Overlay Load processor

COMCPFM* Permanent file

COMCRDC Read coded Line, -c- format

COMCRDH Read coded Line, -H- format

COMCRDO Read one word

COMCRDS Read coded Line to string buffer

COMCRDW Read words to working buffer

COMCSYS Process system request

COMCWTC Write coded Line, -c- format

COMCWTH Write coded Line, -H- format

COMCWTO Write one word

COMCWTS Write coded Line from string buffer

COMCWTW Write words from working buffer

*Assembled from the system OPL.

60454300 B 32-13

I

I

EXPORT/IMPORT 33

-~---

INTRODUCTION

The Export/Import CE/!) subsystem controls communication between
NOS and remote batch terminals operating in the mode 4A 200 User
Terminal protocol. The Export/Import subsystem is also referred
to as E/I 200. E/I 200 supports dial-up or hard-wired terminals
at Line speeds of 2000, 2400, or 4800 bits per second with the
BCD character set.

E/I 200 PROGRAMS

The E/I 200 subsystem consists of the following routines.

• E200CP, a CPU program

• 1LS, a transient pp routine

• 1ED, a dedicated pp routine

• XSP, a transient pp routine

E200CP is the CPU program that handles reformatting of data to
and from the remote terminals. Its field length is also used
for all communication tables and FETs for the subsystem. Common
deck COMSEXP is used to establish the constants, pointers, and
communication table area&. Table 33-1 illustrates the general
layout of these areas.

A local resident peripheral library CRPL) for the 1LS overlays
is contained in the E200CP field length. the FETs and buffers
are kept in the upper portion of the FL so that the FL may
expand and contract as the need arises.

Routine 1LS is a transient PP program ~hat processes terminal
commands, assigns files, performs functions for 1ED, and
functions as the executive routine for the subsystem.

Routine 1ED is a dedicated PP program that controls
communications between the system and the remote batch terminals.
Routine 1ED must service the 6671 multiplexer at a rate fast
enough to ensure that no data loss occurs for the highest speed·
line connected. The program does data conversion of the
input/output data to and from the display code used internal to
the rest of the system~ Routine 1ED must get E200CP out of
autorecall when there are buffers to be filled or emptied.

XSP is a transient PP program called by 1LS to perform certain
time-consuming tasks.

The preceding routines are discussed in detail Later in this
section.

60454300 A 33-1

E/I 200 OVERVIEW

Figure 33-1 details E/I 2GO interaction between E200CP, 1LS, 1ED,
XSP, and the remote batch terminals it services.~ Figure 33-2
illustrates the sequence of operations and data flow for a job
using the subsystem. E/I 2GO can service up to sixteen 2400 bps
terminals. For each terminal E/I 200 Logically maintains the
table shown in figure 33-3.

Location

RA+O
through

RA+22

DRCL

TFS

MSGB

LINF

CPIK

DPJT

JST

FAMT

QAPB

FALOC

TABLE 33-1. E/I CM LAYOUT

Description

Pointer table. The following locations
contain the indicated pointers.

Location

2
3
4
s
6
7

12
13
14

Pointer

FETs and Buffers
TFS
MSGB
LINF
CPIK
DPJT
JST
FAMT
UNJC

E200CP autorecall word set by 1ED when
activity needed.

Function/status table (2 words per port).

Message buffer area (4 words per port).

Login table (2 words per port).

CPU interlock table <1 word per port).

Drop job table <1 word per port).

Job statistics table <1 word per port).

Family name table C1 word per port).

QAC parameter block.

E200CP code.

Beginning of dynamic storage.

Allocated FETs and buffers.

--

60454300 A 33-2

Export
Control
Point

control
tables

E200CP
control point
do ta hand I er

local
overlay
library

allocated
FETs and
buffers

Export
Subsystem

XSP
Export
service

processor

1LS
export

--- executive

1ED
6671
driver

printer

Data channel

6671
MUX

200
user

terminal

Figure 33-1. E/I 200 Interaction

input/
output
queue

r 1 of 16 ports

card reader

60454300 A 33-3

.:·

EI200
Contra I Point

E200CP

OUTPUT FET

buffer

E200CP reads the output file via CIO into the output FET buffer.

Figure 33-2. E/I 200 Operation

60454300 A 33-4

FNT jobnome

FST id eq trk sector

L
EI200

Control Point

E200CP

line buffer

INPUT FET

buffer

E200CP calls CIO to write the data from the input FET buffer to
the disk.

FNT

FST id

jobhame

eq trk

Control Point

OUTPUT FET

buffer

sector

1LS finds an output queue entry and calls OBP to create a banner
page in the output FET buffer and informs E200CP.

Figure 33-2. E/I 200 Operation (Continued)

60454300 A 33-5

EI200
MUX Control Point

RA+DRCL SET 1:- 0

E200CP

line buffer

1ED reads from multiplexer to
line buffer and sets RA+DRCL
words to nonzero. This takes
E200CP out of autorecall.

FNT

FST id eq

EI200
Control Point

RA+W.INT SET"¢ 0

E200CP

line buffer

1LS sets RA+W.INT to nonzero,
which takes E200CP out of auto­
recal l. 1LS calls XSP to
create an FNT/FST input queue
entry for the job in the Line
buffer, using OBF and OVJ to
crack the job card.

EI200
Control Point

E200CP
calls

line buffer

E200CP calls 1LS and goes
into autorecall.

EI200
Control Point

EP200CP

I ine buffer

INPUT FET

buffer

E200CP reformats the Line
buffer data as 1ED passes
it and moves the data to
the input FET buffer.

Figure 33-2. E/I 200 Operation <Continued)

60454300 A 33-6

EI200 EI200
Control Point MUX Control Point

E200CP E200CP

e- OUTPUT FET OUTPUT FET

buffer buffer

line buffer line buffer

E200CP formats the output FET
buffer for the remote printer and
informs 1ED.

1ED sends the Line buffer
data, one Line at a time,
to the remote printer.

MUX
EI200

Control Point

E200CP

E200CP goes into autorecall
and 1ED continues to poll the
multiplexer.

Figure 33-2. E/I 200 Operation (Continued)

60454300 A 33-7

59

function
1ED to 1LS

CP I/O
status

47

terminal
number

I/O
drive

35

mux eq.
number

23

input FET
address

17 11

output FET
address

messages to/from remote terminal

user number 0

hashed job name user index status

hh

in ternol system job name

mm

family name

user number

job cord name

nine-word
parameter block

input FET

output FET

input
active

output
active

reply

Figure 33-3. Port Table Layout

0

TFS

states word

MSGB

LINF

LINF+1

CPIK

DPJT

JST

FAMT

UNJC

QAPB

60454300 A 33-8

EXPORT/IMPORT COMMUNICATION AREAS

The following paragraphs detail the communication areas shown in
figure 33-3a These tables are in the E200CP field Length and
are used as communication areas for all parts of the subsystem.

Area Description

TFS Function/status table

MSGB Message buffer

LINF Login information table

CPIK CPU interlock table

DPJT Drop job table

PWLT Password table

FAMT Family name table

Export/Import FETs

FUNCTION/STATUS TABLE

The function/status table <TFS) is used by 1ED to issue function
requests to 1LS. Its format is as follows.

59

TFS I function

function

60454300 A

47 35 23 0

terminal I eq, no. unused

Functions are set by 1/0 driver 1ED to
communicate with 1LS; defined in the 1LS field
length and in COMSEXP

function Description

00 Null function

02 Message from terminal

04 Print block complete

06 Special end read

10 Write message complete

33-9

terminal

eq no

function De S~C ri pt ; 0 n

1 2 Multiplexer not available

14 Multiplexer not
operational

1 6 Initialization complete

20 Terminal connected

22 Printer not ready

24 Message read error

26 Terminal disconnected

30 Operator interrupt

32 Read E3, no EOF*

34 Read E3, with EOF*

36 Read E2, no EOF*

40 Read E2, with EOF*

Site address of Logged-in terminal

Equipment number of multiplexer assigned; this
field used in entry 0 only

* E1, E2, and E3 are hardware functions set by both the card
reader and printer. They are specified in the appropriate E/I
200 hardware manual.

60454300 A 33-10

The TFS status word has the following format.

59

I/O status

I/O status

47 35 17 0

I/O drive input FET address output FETaddress

CPU I/0 status from 1LS:

status Description

0001 Run CPU (output, coded mode)

0002 Run CPU (input, coded mode)

0004 Print Line Limit exceeded when set

0010 Initialization in progress

0020 XSP initialization required flag
(output)

0040 Return sequence number.

0100 Output file active

0200 Input file active

0400 Not assigned

1000 Output file suspended

2000 Read, wait for operator GO

4000 If O, read E3, if 1, read E2 Con
previous read)*

* E1, E2, and E3 are hardware functions set by both the card
reader and printer. They are specified in the appropriate E/I
200 hardware manual.

60454300 A 33-11

I/O drive

MESSAGE BUFFER

Driver status to 1ED from 1LS:

status Description

0001 Terminal on-line

0002 Terminal logged-in

OG04 Interrupt during print transmission

0010 Interrupt during read transmission

0020 Not assigned

0040 Not assigned

0100 Execute print control program

0200 Execute read control program

0400 Execute write message to terminal
screen

1000 Not assigned

2000 Not assigned

4000 Not assigned

Each message buffer CMSGB) is four CM words in length. The
messages to and from the remote terminals are placed in the
appropriate message buffer with a 0000 termination byte.

LOGIN INFORMATION TABLE

The login information table CLINF) contains two words per
terminal. This table is used by XSP to respond to 1LS. Its
format is as follows.

59 35 17 11 0

LINF user number 1

hashed job name user index status

user index

60454300 A

User index; if zero, indicates illegal user
number

33-12

status Status of terminal:

status Description

0 Login active

1 Login complete

2 Request pp again (system busy)

3 Duplicate user number

CPU INTERLOCK TABLE

The CPU interlock table CCPIK) is used by E200CP to control I/O
activity. E200CP sets the proper byte to nonzero when there is
activity on a file and zeros the proper byte when it detects the
CPU drive bit off for the appropriate channel (INPUT or OUTPUT).
Its format is as follows.

59 23

CPIK unused

DROP JOB TABLE

INPUT
active

11

OUTPUT
active

0

The drop job table CDPJT) contains the password at logi~. At
other times it contains status responses in the following format.

59 17 0

DPJT ~l __________ i_n_te_r_n_a_i_s_ys_t_e_m __ jo_b_n_a_m __ e ________ l ______ s_t_a_tu_s ____ __.I

status Response status:

status Description

0000 Entry available

0001 QAC called and active

0002 QAPB in use

0003 PP not available

60454300 A 33-13

PASSWORD TABLE

The password table CPWLT) uses the same Location as DPJT. At
login time, this table is used for the user password instead of
drop job.

FAMILY NAME TABLE

The family name table CFAMT> at login time is used for the
user's family name.

EXPORT/IMPORT FETs

E/I 200 creates a FET for each t~rminal that is logged in. The
for~ats are shown in figure 33-4.

60454300 A 33-14

INPUT FET

FET+O internal system name code/status

FIRST

2 IN

3 OUT

4 FNT address 0 LIMIT

full/empty job card processing address of line address of line
driver flag in progress following EOR fol lowing EOF 5

job sequence number 0
pointer to next
al located FET ·6

7 job priority job time limit job FL 0 c·ard count

OUTPUT FET

FET+O internal system name code/status

01 FIRST

2 0 IN

3 0 OUT

FNT address dayfile dayfile
0 LIMIT first track first sector

4

full/empty 0
driver flag

5

job sequence number 0 pointer to next
allocated FET

6

7 print line count

Figure 33-4. Export/Import FETs

60454300 A 33-15

PROGRAM E200CP

The central processor portion of E/I 200 is used for the
processing of data to and from the remote site.

nata being received from the remote site card reader is placed
in the line buffer allocated to the active terminal by the I/O
driver program. The I/O driver, 1ED, strips off the protocol
header and trailer. The data is converted to display code and
written, one card image at a time, into the line buffer. When
the I/O driver senses an end of message code, t~e CM line buffer
is marked full so that E200CP processes that data at the next
opportunity. Trailing blank suppression and detection of
~nd-of-record and end-of-file is accomplished by E200CP.

Transmission of data to the system allocatable mass storage
device is also requested by the E200CP.

The buffer space for an output file is allocated by the
executive program 1LS. The banner page data is placed in the
circular buffer by the executive program 1LS. All subsequent
I/O requests are issued by the E200CP program. Data from the
circular buffer is compressed according to the 200 User Terminal
specification and placed into the Line buffer for transmission
to the terminal. As much data as possible is placed in the line
buffer on each cycle. A full Line buffer is not always possible
to generate because the print Line cannot be split between
messages.

The control for the CPU program is a switched circular scan of
the terminal control table. Switching is performed by the
executive via the status word in the function/status table.
Control interlock is through the CPIK table within CM. Every
complete scan attempts to complete an entire operation on every
active terminal. When an entire scan is completed. E200CP goes
into autorecall.

The following common decks are called by E200CP.

Common Deck Descri~tion

COMCCIO I/O function processor

COMCRDC Read coded line, C format

COMCWTH Write coded Line, H format

COMCSYS Process system request

COMCRDW Read words to working buffer

COMCWTW Write words from working buffer

COMCMAC CPU system macros

COMCCPM Control point manager processor

COMSEXP E/I constant definitions

60454300 A 33-16

Figure 33-5 is a flowchart of the main scanner control portion
of E200CP. The following paragraphs discuss Export/Import
processors INP and OUT.

!NP - INPUT DATA PROCESSOR

The following functions are performed by this program.

• Moves data from the line buffer into the file cirular
buffer, removing trailing blanks in the process.

• Writes data to the system mass storage device using
CIO and standard I/O techniques.

• Senses and processes end-of-records. An EOR is
indicated by a block of eight words in the line buffer
containing the character K.EOR. This 12-bit value
(308) is defined in COMSEXP in byte zero of block word
zero.

• Issues a CIO request to write EOR from the buffer. If
the first word of the next block does not contain EOM
(zero, end of message), sets the beginning address of
the next block in FET+S, bits 35 through 18 and
continues processing when the FET becomes free.

• Senses and processes end-of-file. An EOF is indicated
by a block of eight words in the line buffer
containing the character K.EOF (278) in byte zero of
block word zero. ·If the word following this eight
word block does not contain an EOM code (zero, end of
message), records the beginning address of the next
unprocessed data block in FET+S bits 17 through O, sets
byte one nonzero, and does not alter byte zero
(full/empty control). The program waits for FET+S,
byte one to be set back·to zero by 1LS when it has
processed the input file. Processing of data then
continues at the block address stored in FET+S, bits
17 through 0.

• Senses and processes end-of-message. An EOM is
indicated by byte zero of a block <or special Last
word) containing the character K.EOM (Q) in byte zero.
The full/empty status (byte zero) of FET+S is set
empty and normal data processing continues.

These special values are as follows.

Character Value

K.EOR 00308

K.EOF 00278

K.EOM 00008

K.EOI 00558

They are specified in the COMSEXP common deck.

60454300 A 33-17

OUT - OUTPUT FILE PROCESSOR

Data from the circular buffer is placed into the line buffer by
this phase of the E200CP program.

Strings of blanks greater than two characters in length and up
to MAXB characters are replaced by a two-character compression
set. Strings greater than the maximum length are processed as
one or more strin~s of maximum length and a re~aining short
string if necessary. End-of-line codes are placed on every line
sent to the remote printer. Only complete lin~s are placed in
the line buffer and lines of more than 136 characters are
treated as more than one line, but some characters may be lost.

An attempt is always made to fill the line buffer with the
maximum number of characters allowed. A restriction of the
terminal hardware forces a full line to be transmitted before an
end-of-message. This means that not all transmissions are
maximum length.

The 200 User Terminal has three buffers; the screen, card reader,
and printer. The screen buffer is used for transmission to the
multiplexer; consequently card images are transferred from the
card reader buffer to the screen buffer for transmission to the
multiplexer. Similarly, output is transmitted by the multiplexer
to the screen buffer, and is then transferred to the printer
buffer for printing.

60454300 A 33-18

60454300 A

get scan position

clear
input interlock

get scan position

clear
output interlock

increment
scan

position

INP

OUT

Figure 33-5. E200CP Control Scanner

33-19

recall

restore 1 LS
input register,

clear recall bit

clear DRCL
recall bit,

recall on D RCL

recall
on

W.INT

count number
of scans

Figure 33-5. E200CP Control Scanner (Continued)

60454300 A 33-20

1LS - EXPORT/IMPORT EXECUTIVE ROUTINE

E200CP waits in autorecall until 1ED sets RA+DRCL to 1,
indicating some input was received from some remote terminal.
E200CP calls 1LS to a PP and goes into autorecall until 1LS is
ready for E200CP to begin processing the input or output~

Routine 1LS may Load any of the following overlays at anytime,
depending on the action required.

• Initial Load. Routine 1LS (Loaded by system) Loads
executive subroutines at 70008. These two segments
are expected to be resident at all times C1LS and
OVRS in memory.

• Function processing. The function processor segment
is loaded if any outstanding functions from the
driver are found (1LS, OVRS, and OVFP in memory>.

• Job file processing. The enter queue segment is
Loaded if function processing found any outstanding
input activity C1LS, OVRS, OVJF).

• Search for and initiate output. The FNT search
segment is Loaded if the time interval for FNT search
is satisfied C1LS, OVRS, OVFA, and possibly OBP in
memory).

• Storage management. The storage manager is Loaded if
the time interv~L for buffer check is satisfied <1LS,
OVRS, and OVCS in memory).

Any number of the preceding actions could occur during an
executive pass.

The EST entry is expected to be 3000 type equipment (ST). If a
different equipment type code is desired, the definition of
MUXDT in the I/O driver must be changed.

The EST entry is Located by the multiplexer I/O driver program.
The search finds the first entry of the proper type which is not
set off or assigned to another control point. The EST format is
as follows.

59 52 47 41 35 23 11 8 5 0

0 0 I device type 0

ALL of the normally used executive overlays are stored in
central memory within the field Length of the E200CP program
during initialization. This technique increases the Load speed
of the PP executive without using large amounts of CMR space if

60454300 A 33-21

E/I 200 is not loaded. For this reason, the programs and
overlays associated with E/I 200 should be disk resident. The
only part of E/1 200 that must be CM-resident is the short
executive main program, 1LS.

The loc~l RPL map is identical in format with the system RPL.
Starting at the address in pointer word P.RPL, a zero ~ord ends
the library.

The routines in the library are:

• 91A overlay OVFP. Function processor, when 1EO
communicates with 1LS via the TFS table.

• 9IB overlay OVFA. Searches the FNT for files to be
printed at the remote sites. If any such files are
found, a buffer is allocated and the header
information is placed in the buffer for the initial
print operations. Subsequent data handling is
performed by the central processor program associated
with this system. It calls overlay OBP to generate
the banner page.

• 9IC overlay OVJF. Job file processor called by
executive main control to release completed job files
to input queue and/or to initialize new job file.

• 910 overlay OVCS. Central memory manager executes
every few seconds in an attempt to reduce the amount
of storage used by Export/Import central memory.

• 9IE overlay OVIN. The first time 1LS is called by
E200CP, this overlay initializes all of Export/Import.

• 9IF overlay OVAB. ALL error modes, operator STOP,
and error messages are processed by the abort E/I
overlay.

• 9IG overlay OVRO. Initialize resident Library
programs in control point FL area. Programs are
stored in the same format as RPL system programs.
Pointer P.RPG the address where this Library begins.

• 9IH overlay OVRS. Resident subroutines used by the
main segment and Loaded into the upper portion of PP
memory to allow for expansion of the main segment or
any other overlay.

In addition, the system overlay, OBP (generate banner page) is
used. Also, 1LS calls the following system programs.

Program Description

ODF Drop files

1 AJ Job advancer

60454300 A 33-22

Program Description

1DL Display overlay Loader

CIO Combined input/output

XSP E/I service processor

QAC Queue file processor

Figures 33-6 and 33-7 are flowcharts of the 1LS routine.

XSP - SERVICE PROCESSOR

XSP is called by the Export/Import executive to assist in
certain functions that require more time or space than are
available for individual processing tasks within the executive.
The call to XSP is formatted as follows.

59 41 35 23 11 0

IRI~ __ x_sp ___ ~l~+p_no.~l __ o~l-pa-ram_ete-rs~l--fc____.I
f c Function code:

1 Validate user number (VUN)

2 Make job entry <MJE)

XSP calls the following programs.

Program Description

DAV Verify user number

DBF Begin file

OVJ Verify job and user cards

XSP consists of the IVE (process function code) routine which
determines that it was called by E/I 200 and that the function
code is valid. IVE <refer to figure 33-8) then exits to either
VUN or MJE.

VALIDATE USER NUMBER (VUN)

This routine validates the user number for terminal login. If
present, the family name is used to establish the correct
validation file. The validation file is searched <via call to
DAV) for the user number and if it is found and the password
given matches the one required, the user index is placed in the
response word. If the user number is invalid, the user index is
set to 000000.

60454300 A 33-23

The input register parameters for this routine include the table
index of the user number received in bits 23 through 12 and the
function code CV.CUN) in bits 11 through O.

The format of the request words are as follows.

59 17 0

LINF user number 0

PWLT password 0

FAMT family name

The format of the response word <returned in PWLT) is as follows.

59 35 11 0

PWLT [generated user code user index I status I
status Status response:

1 Returned for complete ~esponse

3 Returned if user logged in
before

5 Returned if user not permitted
access to the system <security
count exceeded)

MAKE INITIAL JOB FILE ENTRY CMJE)

This routine calls OVJ to create the job card, assigns the
sequen~e number, creates the FNT/FST entry, writes the system
sector, and exits with the FNT address in FET+4 and the status
in FET+O set to 158.

The input register parameters for this routine include the scan
index in bits 36 through 30 and the FET address in bits 29
through 12. FET+O contains the first four characters of the job
name (hashed user index). FET+S is the job card address.

60454300 A 33-24

EMC

scan function
yes table

Figure 33-6 1LS - Executive Main Control

60454300 A 33-25

update
various
timers

set new start
time for

storage manager
call

update time
interval control

set completion
bit of

input register

PPR

RSI

request storage
increase

Figure 33-6 1LS - Executive Main Control {Continued)

60454300 A 33-26

FTS

set function/
status pointer

ILO

load OVAB
(abort overlay)

drop initialize scanner

read function and
status words

from CM

hang

no

Figure 33-7 Function Table Processor

check function
(control)

LOV

load OFVP
(function
processor)

advance
scan index

60454300 A 33-27

IVE

issue
dayfile message:
ILLEGAL PP
CALL (XSP}

ABTM

monitor

execute PPR
selected
function_

Figure 33-8. XSP - Main Entry

60454300 A 33-28

1ED - MULTIPLEXER DRIVER

The multiplexer driver program is a dedicated PP program
designed to drive one 6671 multiplexer connected with up to
sixteen 200 User Terminals or other devices with similar
interface characteristics. The designed Line rate is 2400 bps.

This program is initially loaded by the E/I 200 subsystem
executive and is controlled by that executive. The driver
periodically checks the system storage move flag and, if
necessary, issues a pause function to the monitor. During
storage move, no references to central memory are allowed.
Activity with the terminals is not disrupted in most cases of
storage move because of internal buffering in the driver. If a
drop of the E/I 200 subsystem is necessary (either because of an
operator stop or subsystem malfunction), the executive must set
the stop bit in status word zero to cause the I/O driver to
release the channel, its reserved equipment, and stop. External
to internal codes and vice versa are done via conversion tables.

The following are the major divisions within the driver program.

• IED (control driver). Times the I/O cycles to the
multiplexer.

• IOS (input/output with multiplexer).
Performs the actual input/output with the multiplexer
when directed by the control driver and resets the
reentry table addresses.

• COS <control switch). Directs the specific activity
for each multiplexer port, initiates new activity as
directed by the executive, and transfers control to
the following reentrant routines.

• CON (poll to connect multiplexer line). Probes each
line with all addresses searching for a response.
When a response is sensed, the executive 1LS is
informed to Login the terminal.

• MSG <write message to display). When directed by 1LS,
this section is activated to send one message from
the message buffer to the remote display screen.

• PRT (print on remote printer). When directed by 1LS,
this section is activated to transmit one buffer
block to the remote printer. Routine 1LS is informed
at the end of each block so that end of output
processing or remote operator directives can be
processed if necessary.

• RDC <read cards from remote card reader). One block
of cards is read from the terminal and the
appropriate function is issued to 1LS to inform it of
more cards, Last block, bad codes, and so on.

60454300 A 33-29

• STA <read operator's message). This, along with
sense terminal condition, is used to process input
messages from the remote device. The messages are
placed in the terminal message buffer for translation
by E200CP. Any action required by an operator
message is initiated from 1LS.

• STA <sense terminal condition). When a connected
terminal is otherwise inactive, it is periodically
checked for messages originating from the remote
terminal or other action required by the remote
terminal when not active.

Figure 33-9 shows the 6671 multiplexer port data words.
33-10 is a flowchart of the 1ED main loop.

6671 Input· Word

11 10 9 8 7 0

8-bit data character

character reject

carrier on

lost data

valid character

6671 Output Word

11 8 7 0

I I/O control I 8-bit data character I

Figure 33-9. 6671 Port Data Word

Figure

60454300 A 33-30

IED

PRESET

11reset program

AVC

advance
millisecond

clock

reset start
time values

IOS

1/0 driver
section

compute
new major
cycle time

update max
cycle time

read entry time

Figure 33-10. 1ED Main Loop

no

60454300 A 33-31

IOS

set re-entry
table addresses
and beginning
part number

output data
to 6671 for

N.PO RT ports
12 bits/port

input data
from 6671 for
N.PORT ports
12 bits/port

Figure 33-10. 1ED Main Loop (Continued)

60454300 A 33-32

reset recall
time and read

read recall word

start CPU

decrement
control read
cycle timer

read control table
and reset

cycle timer

decrement reentry
pointers, load port

flag word ·

Figure 33-10. 1ED Main Loop (Continued)

60454300 A 33-33

set retry count

exit to
CON
routine

exit to
.,__.....,."' active sequence

for port

exit to
next port

exit to
processor
sequence

Figure 33-10. 1ED Main Loop CContinued1

60454300 A 33-34

FILE ROUTING AND QUEUE MANAGEMENT 34

INTRODUCTION

A queued file is any file residing in a queue. Queued files
have file types INFT (input), ROFT Crollout), PRFT (print),
PHFT (punch), TEFT (timed/event rollout), or one of the special
file types CS1FT, S2FT, and S3FT). When the file is in the
queue, it is not at a control point; that is, the control point
number field in the FNT is zero.

File routing is the process by which a file is entered into a
queue or retrieved from a queue. The queue management concepts
presented in this section deal only with input and output (print
and punch files) queues; the file types ROFT and TEFT are dealt
with by job scheduling concepts.

The special file types CS1FT, S2FT, and S3FT) are provided to
ease local modifications that may require special queue
manipulations and are treated as distinct queue types throughout
the system. Due to their similarities, print and punch files
are usually referred to as output files with the peculiarities
of each type being noted on an exception basis.

QUEUED FILE CONTROLS

The following paragraphs describe validation requirements for
the use of queued files.

DISPOSED OUTPUT VALIDATION

Output file validation controls the total number of files that
can be queued to the output queue by a job during its execution.
The intent of this control is to limit the total number of
output queue FNT entries consumed by the job's output files.
Output files include all files queued to the print or punch
queue by DSP, LFM, OUT, and CIO.

The MODVAL parameter OF defines the job output file limit for
each user and is maintained in the system validation file.
During execution of the user's job, the Limit resides in a
six-bit field in the control point area. Whenever a queuing
function is processed, the output file limit is interrogated
prior to entering the file into the output queue. If the file
limit has not been exceeded, the file is entered into the
designated queue. Unless the user is validated for an unlimited
number of job output files, the limit maintained in the control
point area is documented by the UDAM monitor function. In the
event that the output file Limit has been reduced to zero, a
dayfile message is issued indicating that the job's output file
Limit has been exceeded. The job is then aborted.

60454300 A 34-1

A six-bit field is defined in t~e control point area, bits 23
through 18 of word ACLW, to maintain the job's current output
file limit. If the field is initially set to 77B, the user's
job output files are not limited. Otherwise, the value is
decremented as print and punch files are queued until the count
reaches zero for the user's job.

DEFERRED BATCH VALIDATION

Deferred batch validation controls the tGtal number of deferred
batch jobs the user is allowed to have in the system
concurrently. The intent of this control is to prevent a user
from inadvertently or intentionally flooding the system with
deferred batch jobs. Deferred batch jobs are jobs the user has
initiated with the SUBMIT, LOI, or ROUTE control statements, or
with the SUBMIT or ROUTE macros.

The MODVAL parameter OB defines the deferred batch limit for
each user and is maintained in the system validation file.
During execution of the user's job, the limit resides in a
three-bit field in the control point area. This field is read
by QFM and OSP to determine the user's deferred batch limit
bef~re a file is placed into the input queue. If the user has
system origin privile~es (determined by COMPCUA) or is validated
for an unlimited number of deferred batch jobs (determined by
COMPCVI) the file is entered into the input queue.

Otherwise, the control point areas and FNTs are scanned for jobs
belonging to the user. Only batch CBCOT) and remote batch CEIOT)
origin jobs belonging to the user are counted. These jobs
include all jobs initiated by BATCHIO, RBF, or EI200 and by the
user with the SUBMIT, ROUTE, or LOI control statements and any
queued file generated by these jobs. The job doing the
submitting is not counted toward the deferred batch limit. The
system determines if a job belongs to a user by comparing the
user index hash of the job name with the user index hash
generated by the user index found in the control point area. If
the total number of jobs belonging to the user is Less than the
deferred batch limit, the file is entered into the input queue.
If the deferred batch limit is exceeded, a dayfile message is
issued indicating the user has exceeded his deferred batch limit
and the job is aborted.

SECURITY COUNT VALIDATION

Security count validation controls the number of security
violations a user may attempt before the user is denied access
to the system. The intent of this control is to prevent a user
from using the SUBMIT and ROUTE macros to determine valid user
number/password combinations.

60454300 A 34-2

The MODVAL parameter SC sets the security count for each user.
This count is maintained in a six-bit field in the system
validation file. When a breach of security is detected, OAV is
called to decrement the violator's security count in the
validation file. When a user's security count has been
decremented to zero, the user is not allowed access to the
system. The following message is issued to the use's dayfile
and the job is aborted or Logged off.

ILLEGAL USER ACCESS - CONTACT SITE OPR.

The security count must be reset by MODVAL before the user is
permitted access to the system.

Currently, security violations are detected by CPM when an
invalid secondary user statement is entered, or by GFM and DSP
when a job submits a job file with an invalid primary user
statement. In addition to decrementing the user's security
count, the user's job is aborted or Logged off. This allows 1TA,
1LS, and CPM to check the user's security count when he attempts
to regain access to the system.

R8F and EI200 do not decrement the security count of the user
number that is Logged in to the remote terminal when an invalid
primary user statement is encountered in a job file.

A s i x - b i t f i e L d f o r t h e s e c u r i t y c o u n t i s m a i n· t a i n e d i n t h e
system validation file for each user. If this field is set to
778, the user's security count is unlimited. Othe~wise, OAV
decrements the field by one for each security violation
attempted until the count becomes zero.

QUEUED FILE SYSTEM SECTOR

ALL information describing the properties of a queued file is
kept in the file's system sect~r. This allows the descriptive
information to be recovered over any type of deadstart and it
allows the Limited space available in the FNT/FST entry for the
queued file to be used efficiently.

The queued file system sector consists of four general areas.
The first 108 CM words are used for data common to all file
types. In most cases, these fields are entered into the system
sector by common deck COMPWSS <write system sector). The next
three CM words are used for file dependent data. For input
files, this area is set with job statement information. For
output files, this area contains repeat count, Line/card Limit,
and dayfile random address. The third area of the system sector
is common for both input and output files. This area contains
file routing and queue recovery information. The final area in
the queued file system sector is reserved for installation usage.

The definition of the individual fields in the queued file
system sector is found in common deck COMSSSE (System Sector
Equivalences). The system sector is illustrated in section 2.

60454300 8 34-3 I

INPUT FILE EQUIVALENCES

The following input file equivalences are defined for input file
system sectors <location relative to BFMS).

Relative Location Symbol Definition

50 JISS Job i r1put data
50-51 JSSS Job sequence number
53 JTSS Job step time limit
54 JFSS Job flags:

1 /EI job, 10/0, 1/KEYPM
55 JCSS Job card CM field Length
56 JESS Job and ECS field length

(not used)
57-60 CRSS Number of cards read
62-65 TNSS Terminal name

OUTPUT FILE EQUIVALENCES

The f~Llowing output file equivalences are defined for output
file system se~tors.

Relative Location

60454300 B

51

52-53
54
55
62
63-64
65

Symbol

PFSS

RASS
scss
LCSS
RCSS
RTSS
RBSS

Definition

Reserved for previous
system compatibility

Dayfile random address
Spacing code for 580-PFC
Line/card limit index
Repeat count
Random index
Requeue buffer

34-4 I

COMMON INPUT/OUTPUT FILE EQUIVALENCES

The following equivalences are common to input and output file
system sectors.

Relative Location Symbol Definition

60454300 B

67
70
71
72-73
74
75
76
77

100
101-105

106-111
112

113-114
120-124

125-130
1 31

132-136
137-143

144-150
151-155
156-162
163-167

170
315

315

OTSS
PRSS
MISS
FLSS
ICSS
ECSS
FCSS
DVSS
DCSS
DASS

FOSS
ODSS

DISS
FSSS

FMSS
ooss

ACSS
COSS

JNSS
OHSS
DHSS
FR SS

VASS
EISS

UBSS

NOTE

File origin type
File priority
MMF machine ID
File Length in sectors/108
Internal characteristics
External characteristics
Forms code
Device code
NOS/BE device code
User number and index of
destination

Family name of destination
Family ordinal of
destination <not used)

Destination terminal ID
FST entry for queue
protected files

Family name of creator
Family ordinal of creator
<not used)
User number of creator
Recovery flag; queued file
creation date and time

Job card job name
Origination host name
Destination host name
File routing control
includes data in user
block and file placed in
queue flags

User validation block
End of system initialized
data

User data block C10 CM
words)

If the same information is contained in both the
FNT/FST and system sector <for example, job origin
or forms code), it must agree in order for queue
management to work properly. It is the
responsibility of the routine that put the file
into the queue to properly initialize fields in
the system sector.

34-5 I·

QUEUED FILE. FNT I FST

To reduce the amount of overhead required to read the system
sector of output queue files to obtain routing information,
abbreviated forms of the forms code, device code, and external
characteristics are kept in the queued file FNT/FST entry. This·
information is usually sufficient to allow the system to
determine if an output file should be selected for processing
without having to read its system sector. The format is as
follows.

59

i

d
x
f

d

tid

53

x eq.no.

47 35 32 17 11 5

origin PRFT
i file name type or

PHFT

first track f tid priority

System sector information bit:

0 No queue information present
1 Queue information present

Device selection code
External characteristics code
Forms code
Terminal identification

0

0

The values for the d, x, and f fields are specified in common
deck COMSJIO.

DEFERRED ROUTE

Bit S of the FNT is used to indicate that the system sector
contains queued file information. The concept of a deferred
route involves the use of this bit. A deferred routed file is a
queue type file assigned to a control point with bit S set; that
is, the system sector has already been correctly formatted for a
queue type file that has not yet been released to its queue.

A file becomes a deferred file in one of the following manners.

• A ROUTE/DSP call was made to do a deferred route on a file

• A queued file with a formatted system sector was extracted
from its queue and assigned to a control point Cfor example,>
QAC attaches an output file to BATCHIO or RBF for processing

• An input file is created with system sector info·rmation
when reading card decks by GAP, 1LS, or VEJ.

60454300 B 34-6 I

FILE ROUTING CONCEPTS

This section discusses different routing options and how they
are related to each other.

TERMINAL ADDRESSING

Associated with every queued file is a terminal address used by
the system to route files to a particular Line printer, card
punch, or remote batch terminal. The terminal address consists
of three items: destination family name CFDSS); destination
user number <DASS); and terminal ID CDISS). These items are
used dependent upon the origin type of the file. For batch and
system origin CBCOT/SYOT) files, the destination family name and
user number CFDSS/DASS) are zero. The terminal ID (DISS) is set
to the batch ID code associated with the equipment that is to be
used to process the file. For remote batch origin CEIOT) files,
the destination family, user number and TIO are the family name,
user number and user index respectively of a remote batch
terminal to which the file must be routed for disposition.

The default terminal address for any job is determined at the
time the job's input file is created. VEJ, QAP, 1LS, DSP, and
QFM set this default information into the job's input file
system sector. When output is disposed by the job, the
disposing routine through common deck COMPUSS <update system
sector) moves the default terminal information from the input
file system sector to the output file system sector. In this
manner, all output is routed back to the terminal that created
the job's input file.

When processing EIOT queued files, the terminal ID field of the
FNT is insufficient for proper routing since destination
family/user information is also required. Therefore, the system
sector of a remote batch terminal CEIOT) queued file is always
read in terminal address processing.

ALTERNATE ROUTINGS

There are times when a file is to be routed to a terminal other
than the one specified by the default terminal address. This
diversion may be done through ROUTE, DISPOSE, LDI, SETID, or
SUBMIT control statements or their equivalent macros. These
routines all allow the specification of a destination family/user
number/TIO. The information so specified replaces the default
FDSS, DASS, and DISS values in the system sector of the new
queued file.

The terminal address of a queued file may also be changed by the
ALTER function of QAC while the file is in .the queue.

Once the file has been entered into the queue, the terminal
information is used by QAC and 1LS for selection of the queued
file for the specified terminal.

60454300 B 34-7 '

SPECIAL FILE ID CODES

File ID codes 70-77 <octal) are reserved for system usage as
defined in common deck COMSSSJ <special system job equivalences>.
Two special ID codes ZRID C71) and SOID C77) are related to
queue file management. ZRID is used to indicate that an ID code
of zero has been assigned to a file by LFM CSETID statement or
macro) to differentiate it from the absence of an ID Cwhich is
also zero). LFM sets ZRID into the FST ID field Cbits 59
through 54) and COMPUSS converts ZRID to its proper zero value
when queuing the file. SOID indicates that the file should be
dropped rather than queued at job completion. If the input file
~as an SOID, all nondeferred, zero ID output files are dropped at
job completion.

NOTE

The SETIO proce~sing in LFM changes the ID
field in the FST ~nly. COMPUSS moves the
ID into the systems sector when the file
is queued. The DSD console command ENID
performs a similar operation for BCOT and
SYOT output files. The ID so specified is
lost if the queued files are recovered over
a level 0 deadstart.

DEVICE SPECIFICATION

The terminal address defines a set of printers and punches for
output file disposal. Additional routing information may be
specified to further define the type of equipment that should
process the output file. This routing information consists of
device selection code, external characteristics, and forms code.

COMPUSS sets default values for device code CDVSS), external
characteristics CECSS), and forms code CFCSS) into the system
sector and FNT/FST entry. DSP is the only system program that
alters all these values. Once a file has been queued, the ALTER
function of QAC can be used to change the forms code. The device
selection code and external characteristics cannot be changed
once the file has been queued.

This information is u~ed by QAC to select a queued file for
dispoaal. Device selection is used to specify a particular type
of device that is to process the file; f~r ~xample, a 580-12 CLR)
printer. The external characteristics s~ecify what format t~e
data is in. This information is used to specify the print train
for line printers and the punch format for card punches. For
example, for print files, this could be 64 character set BCD
CB6). For punch files, it could be 80 column binary C80 COL>.
The external characteristics is dependent upon the file type. The
device selection codes and external characteristics are defined
in common deck COMSJIO.

60454300 B 34-8 I

FORMS CODE

Forms code consists of two alphanumeric characters that can be
assigned to an output file. An output file with a forms code
can be processed only on a device with a matching forms code. The
forms code is set by DSP but can be altered by QAC. Common deck
COMPVFC <verify forms code) is used to validate the forms code
when it is associated with a file.

In the queued file FNT/FST entry, only 3 bits are available for
the F field (forms code). Only the forms codes AA, AB, AC, AD,
AE, AF, and null can be represented by this restricted field. A
forms code value of EXIN (7) in the FST entry indicates that the
system sector mus~ be read to determine what forms code is
required to properly dispose the queued file.

A special output file is a file that has been routed to a
microfilm printer or plotter, a hard copy printer or plotter, or
a plotter. Such a routing is indicated by the special equipment
code value SPDV <678) in the D, X field of the queued file
FNT/FST. The actual device code is set in the F field. In this
situation; the system sectors must be read to determine the
proper external characteristics and forms code for the file.

QUEUE MANAGEMENT EQUIVALENCES

Common deck COMSJIO defines equivalences for programs doing
queue management. The valu~s defined in COMSJIO are the
following (these codes are used in the FST and indicates that
the information is too detailed for the FST and the system
sector should be used).

Value

7
6

67

Symbol

EXIN
SPEQ
SPDV'

Definition

Extended information flag
Special device
Special equipment

Print file external characteristics (these codes are used in
both the FST and system sector) are as follows.

Value Symbol Definition

a DFEX Default printer
1 RREX Reserved
2 A4EX A4 - ASCII graphic 48 character set

<not supported)
3 B4EX 84 - BCD graphic 48 character set

<not supported)
4 B6EX 86 - CDC graphic 63/64 character set
5 A6EX A6 - ASCII graphic 63/64 character set
6 A9EX A9 - ASCII graphic 95 character set

60454300 B 34-9

Punch queue external characteristics (these codes are used in
both the FST and system sector) are the following.

Value Slmbol Definition

0 DFFR Default punch
1 PBFR SB <system binary)
2 P8FR 80COL C80 column binary)
3 RIFR Reserved
4 PHFR 026
5 P9FR 029
6 ASFR ASCII

Internal characteristics (these codes appear only in the system
sector> include the following.

Value Symbol Definition

0 DCIC Display code
1 ASIC ASCII
2 BNIC Binary
3 RRIC Reserved

NOS device codes <these codes are used only in the queued file
FST) are the following.

Value

0
1
2
3
4
5
a
a
0
a

Symbol

PROV
P1DV
P2DV
LRDV
LSDV
LTDV
SBDV
P8DV
PBDV
PUDV

Definition

LP Cany printer)
Reserved
Reserved
LR (580-12)
LS (580-16)
LT (580-20)
SB (system binary)
P8 CSO column binary)
PB (system binary)
PH (punch coded)

The following device codes are reserved for future enhancements.

Value S~mbol Definition

0 FRDV FR <microfilm printer>
1 FLDV FR (microfilm printer>
2 PTDV PT (plotter>
3 HRDV HR Chard copy printer>
4 HLDV HL Chard copy pl o.t t er)
5 I1DV Reserved for installations
6 I2DV Reserved for installations

60454300 B 34-10 I

NOS/BE compatible device codes (these codes are only used in the
systems sector) include the following.

Value

10
20
22
24
26
30
40
41
42
43
44
45

Symbol

PUDC
FRDC
FLDC
HRDC
HLDC
PTDC
PRDC
P1DC
P2DC
LRDC
LSDC
LTDC

CREATING A QUEUED FILE

Definition

PU (punch)
FR (microfilm printer>
FL <microfilm plotter)
HR Chard copy printer)
HL Chard copy plotter)
PT (plotter)
LP (any printer)
Reserved
Reserved
LR (580-12 printer)
LS <580-16 printer)
LT (580-20 printer)

Queued files are normally created under two conditions. The
first case involves creating a job input file by reading a job
deck of cards from a card reader via BATCHIO, RBF, or El200. In
this case, the terminal address for the input file system sector
is determined by the particular queue file processor based on
properties of the card reader or remote batch term.inal reading
the card deck. The second case is the creation of a q~eued file
by a job, that is, the file is created at a user control point.
In this case, COMPUSS is used to move the default terminal
address from the input file system sector to the system sector
of the file being queued. This situation is encountered as part
of ROUTE, DISPOSE, SUBMIT, OUT, CIO close/unload and
close/return, or job completion C1CJ) operations.

QUEUE MANAGEMENT ROUTINES

Many system routines are involved in file routing and queue
management. Utilities which manipulate active and inactive
queues (QREC, QFSP, QDUMP, QLOAD, and QMOVE) and their helper PP
routine (QFM) are described in the NOS System Maintenance
Reference Manual. The remainder of this section details the key
file routing and queue management functions: COMPUSS, DSP, and
QAC.

COMPUSS

The key routine in creating output queue files is common deck
COMPUSS (update system sector for disposable files). This

60454300 B 34-11 I .

common deck is used by all PP routines that place files into the
output queues. Its purpose is to generate and write the system
sector for a queue file.

COMPUSS consists of two main subroutines: USS (update system
s e c to r) a n d W Q S C w r i t e q u e u e d f i l e s y s t em s e c t o r) •

USS - UPDATE SYSTEM SECTOR

USS is used to update the information in a file's system sector
prior to entering the file in the queue. The preserved file bit
is set if I/O queue protect is active.

COMPUSS requires the presence of common decks COMPRSS, COMPSEI,
COMPWSS, COMPSSE, COMSCPS, COMSJIO, and COMSSSE.

Since mass storage error processing is selected by COMPUSS, the
error processor for COMPRSS should be defined.

If USSS is defined, COMPUSS allows the calling program to modify
the queued file system sector before it is written back to mass
storage. The calling program should make a call to USS to set
up the default system sector in BFMS. The desired fields are
then set and a second call is made ~o WQS to write the system
sector and preserve the file. If U$SS is not defined, the
queued file system sector is built and written to mass storage
and the file is preserved with one call to USS.

The system sector fields Listed below are set by COMPUSS when
one of tWe following files are processed.

• Any Local (LOFT> file

• Print CPRFT> files with system sector information bit
not set

• Punch CPHFT) files with system sector information bit
not set

• Input CINFT> files with system sector information bit
not set

The fields updated are the following.

Field

CJNSS - JNSS+4)

CACSS - ACSS+4)

COHSS - OHSS+4)

CFMSS - FMSS+4)

COOSS)

60454300 A

Description

Job card name from job file

Origination user number from job
f i Le

Origination host name from job file
Cfor future use>

Origination family name from job file

Origination family ordinal from job
file (for futu~e use>

34-12

Field

(DASS - DASS+4)

CDHSS - DHSS+4)

CFDSS - FDSS+4)

CODSS)

CDVSS)

(DISS - DISS+1)

CRCSS)

CRTSS - RTSS+1)

CRBSS - RBSS+1)

CLCSS)

CFCSS)

CICSS)

CECSS)

CSCSS)

CDC SS)

CCDSS - CDSS+4)

(MISS)

Description

Destination user number from job f1Le

Destination host name from job file
Cfor future use)

Destination family name

Destination family ordinal from job
file (for future use)

Destination device identification
from job input file

Destination terminal identification
from job file

O, repeat count <output files only)

O, restart random address Cfor output
files only)

O, restart buffer (output files only)

Lines or cards limit Co~tput files
only)

a, forms code (output file only)

O, internal characteristics (output
fi Les only)

a, external characteristics (output
fi Les only)

O, spacing code (print files only)

NOS/BE device code

Creation date

Machine ID

The following fields are set whenever COMPUSS is called to write
the queued file system sector.

Field

COTSS)

CFLSS)

CFASS)

60454300 A

Description

Origin type

File length in sectors/108

FST address

34-13

If USS$ is defined, the calling program must set:

Field Description

CFNSS - FNSS+4) FNT entry

CFSSS - FSSS+4) FST entry

CPRSS) Priority

The main subroutine of COMPUSS is USS and is f lowcharted in
figure 34-1.

60454300 A 34-14

60454300 A

initial
COMPUSS

read system
sector of file

to queue

read system
sector of
input file

Figure 34-1.

Save:
1 F NT address
1 origin type
1 queue type
1 input file ID

process
deferred .

routed file

clear
system
sector
buffer

COMPUSS - Subroutine USS

Set:

1 FNT/FST

Clear:

1 input file ID
1 control point

assignment

•
34-15

- clear file
dependent
data in

system sector

set destination
routing address

in system
sector

set information in
system sector:

1 creation date

1 machine ID

1 creation family
name

1 creation user
number

clear NOS/BE
device code (DCSS)

and set
disposition code

to IN

no

Figure 34-1.

60454300 A

clear internal
characteristics,
set external

characteristics,
set punch file
limit, set NOS/BE
device code, set
disposition code

set random
address of
dayfile in

RASS - RASS+1

yes

set external charac·
teristics, print file
limit, NOS/BE
device code, disposi·

tion code

COMPUSS - Subroutine USS (Continued)

34-16

yes

set batch ID
in system
sector TIO
DISS .. DISS+1

set FST TIO
field from
DISS · DISS+1

yes

write local
FNT /FST into
FNSS and FSSS

set priority
into PASS

set preserve
flag

was
write queued

file system
section

yes

Figure 34-1. COMPUSS - Subroutine USS (Continued)

60454300 A 34-17

The manner in which USS sets up the system sector buffer depends
on the status of bit 5 in the FNT of the file that is being
queu~d~ If bit 5 is set, the system sector has been formatted
previously. The system sector is read and if the read is
successful, the dayfile random address Cif one exists for print
files) is entered into RASS through RASS+1. The file ID is
entered into the system sector for non-EIOT jobs as the terminal
ID (DISS through DISS+1) and this value <terminal ID) is entered
into the FST for all output files. The system sector is then
written according to the USSS setting <as described below). The
FNT/FST entries in use by the caller are then replaced with
those from the system sector CFNSS/FSSS).

If the system sector had not previously been written Cbit 5 is
not set in the FNT entry) or was unable to be read successfully,
a default system sector is built as follows. If the job is not
a time-sharing origin CTXOT) job, then there may be routing
information in the input file system sector that needs to be
passed on to the output file system sector. An attempt is made
to read the input file system sector and if successful, the
destination routing information (FOSS, DASS, DISS) contained
there is used for the output file. If no d~ta existed in the
input file system sector Cbit 5 of the FNT ~as not set) or the
sector was not able to be read, the ·destination family (FOSS),
destination user number <DASS>, and terminal ID <DISS) are
entered into the system sector dependent upon the origin type of
the file being queued and the caller's origin type.

The terminal ID is either the file ID of the input file or the
user index of the destination family/user number. The creation
date is entered into COSS from PDTL, the machine ID set into
MISS, and the creation family name CFMSS) and user number CACSS)
are entered from either the control point area CUIDW) or SSJ=
call block CUIDS). Defaults are set for the disposition code
CDCSS), spacing code CSCSS), internal and external
characteristics CICSS/ECSS), Line/card Limits CLCSS, as obtained
from the control point area or SSJ= call block), and device code
DVSS). Finally, the random address of the dayfile for print
files <if one exists) is entered into RASS through RASS+1. The
file ID is then set into the system sector for non-EIOT jobs as
the ter~inal ID <DISS through DISS+1) and into the FST. The
system sector may then be written <as described below) and the
FNT/FST entry replaced with that from the system sector in the
calling program.

If symbol USSS is not defined in the calling program, the FNT/FST
entries are reentered into the system sector CFNSS/FSSS), and
into central memory and the priority set into the system sector
CPRSS). At this point all places that contain the FNT/FST entries
(system sector, FNT/FST ·in central memory, and in the caller's
direct cells) will have the same values. The system sector is
then written and the file preserved by a call to subroutine WQS.
To queue the file in this case, the caller only needs to write
the FNT/FST entry returned by the USS call. If USSS is defined,
the newly built (or rebuilt) system sector is Left in the buffer
for use by the caller.

60454300 A 34-18

DSP and 1CJ are examples of the usage of COMPUSS with USSS
defined and not defined respectively. DSP builds the system
sector by a USS call but then adds disposition characteristics
to the sector before writing it using a WQS call. 1CJ, on the
other hand, relies entirely on default information and
subsequently Lets the USS call build and write the system sector.

WQS - WRITE QUEUED FILE SYSTEM SECTOR

WQS completes the system sector as it writes it. If the file is
being requeued and preserved, the file in queue flag is set in
FRSS. CFile has been queued; this flag is used by CIO to
determine whether to queue or drop a file on a close/unload
operation. Close/unload is used by QAP to end a file.)

The recovery flag is set in COSS Cthe recovery flag, when not
set, indicates that the system sector was not created by an NOS
1 .2 system; QFM will reformat the system sector if it recovers a
queued file without this bit set), the file Length (determined
by rounding up to the next multiple of 108 sectors the result of
a SEI call) is set in FLSS through FLSS+1, the origin type is
retrieved from the FNT CFNSS) and entered into OTSS, and the FST
address is set into FASS. The sector is then written by a call
to WSS. WSS enters the common system sector information as it
writes the sector: equipment CEQSS); first track CFTSS); and
packed date/time CDTSS).

Upon return from WSS, if the file is to be preserved, an STBM
monitor function is issued to set the preserved file bit and
request a checkpoint of the device. This request is ignored by
CPUMTR if QPROTECT is not enabled.

Callers of COMPUSS

COMPUSS is used by all routines that enter files into the
input/output queues CCIO, DSP, LFM, OUT, QFM, and 1CJ). Any
routines that are locally introduced must follow COMPUSS
conventions if they wish to queue input/output files in order to
guarantee correct processing of queued files.

DSP - DISPOSE FILE TO I/O QUEUE

DSP places a file into the input or output queue. DSP is called
by QAP, RBF, the queue utilities (QDUMP, QLOAD, and QMOVE), and
through use of the ROUTE macro. The SSJ= caller may provide a
system sector to be used in the disposal; this technique is
typically used by the queue utilities.

The main routine of DSP is f lowcharted in figure 34-2. For a
complete description of the DSP call and parameter block refer
to volume 2 of the NOS Reference Manual.

60454300 A 34-19

set disposition
code

set file type
to LOFT

Figure 34-2. DSP Main Routines

60454300 A 34-20

set file
destination

set
priority

set FNT/FST
into system
sector FNSS
and FSSS

check binary
sequence

error

clear control
point
assignment

*1

no

read FNT/FST
set queue type
set do not
preserve

write queued
file system

sector

write new
FNT/FST

*1 Flag bit 0 not set if immediate route.
*2 Flag bit S set if returning name.

no

*2
no

Figure 34-2. DSP Main Routine (Continued)

set do not
preserve flag

60454300 A 34-21

read first
word of call
block

*1

set function com·
plete; set error
code (if any)
rewrite first
word

update output
file limit

*1 Entry from Error Processor.

no
DPPM

drop
pp

Figure 34-2. DSP Main Routine (Continued)

60454300 A 34-22

DSP preset CPRS) performs the central memory address and
parameter validation. The flag bits and disposition code are
extracted from the parameter block for future use. If an SSJ
system sector block is specified Cas would be done in requeuing
the file by the queue utilities>, the SSJ= validation of the
caller ts done and if successful the system sector block is read
to DSP's system sector area and rewritten with DSP exiting. If
no system sector address is specified, default keypunch mode is
retrieved from IPRL and appropriate modifications made to
default values in the disposition table (TODC). If an origin
code is forced, it is validated to be an acceptable NOS origin
type for a queued file CBCOT, EIOT, or SYOT). The forcing of
the origin type is only valid for system origin callers and is
primarily used for network startup.

Subroutine FFQ (find file for queue) is called to verify that
the file either exists, is not busy and can be queued, or
creates a file to be queued.

Subroutine DOC (determine disposition code) is called to set up
the disposition code. The disposition code is passed in the
parameter block, but is only used if the disposition code bit is
also set in the DSP flags. If the disposition code bit is not
set and file is not a queued file or is a queued file without
the system sector information bit set, then a default disposition
code is established by scanning the list of special file names
for the code associated wi~h the special name (OUTPUT = LP,
PUNCH= PU, PUNCHB =PB, and P8 = P8). The disposition code is
then validated and an index to the properties for it CTODC table)
is saved for future use. A DSP call for a local file not having
a special name will in effect do nothing; the file remains at
the control point.

Subroutine VUL is then called to validate user limits ('deferred
batch and output file limits>.

Subroutine SQS is called to retrieve the system sector into BFMS.
This is accomplished by a call to USS in common deck COMPUSS.
DSP has COMPUSS assembled with USS$ defined, thus not writing
the system sector during the USS call.

The USS either returns the system sector from the queued file or
builds a defaulted system sector.

Subroutine soc is then called to set the disposition code in the
system sector. This involves setting the FST and system sector
words ECSS, ICSS, and DVSS with appropriate default information
for the particular disposition code. The data is obtained from
the table of default routine information CTOOC) which contains
the NOS device mnemonic, queue type, internal/external
characteristics, forms code, device code, external
characteristics for FST, NOS system sector device nmemonic, and
NOS/BE system sector device mnemonic.

60454300 A 34-23

If the routing is to the input queue, subroutine VIF is called.
If there is no data in the system sector, then the routing is
the first attempt to put a file (job} into the input queue. The
first sector must not be empty as this sector should contain the
control statements for the job. These control statements are
validated· as job/user statements by a call to OVJ with
appropriate error processing for job and user control statement
errors.

If the routing is to the output queue, subroutine SOD is called.
A repeat count, if specified, is entered into system sector word
RCSS, internal and external characteristics <ICSS, ECSS) are
entered as specified or defaulted, and forms code <FCSS) and
spacing code <SCSS) are entered. The flag bits are used to
determine if these values are specified.

Subroutine SFD is then called to set the file destination and
special ID in the TIO field of the FST and in DISS through DISS+1
of the system sector.

Subroutine SPR is called to set the file's priority in the FST
and system sector word PRSS from the job control block for t~e
queue and origin type. The priority is set to ERPS if a job
statement error is detected through JCSS. For output files, DSP
rounds the specified priority to fit the allowable priority range
for the particular origin type.

The file's FNT/FST entries, as updated by all these ,subroutine
calls, are then updated in the system sector words FNSS and FSSS.

On input files from BATCHIO (QAP), if an immediate route is being
done (flag bit 0 not set), subroutine BSE is called to ~et the
FST for binary sequence error processing if it had been detected.

Subroutine WQS in COMPUSS is called with file preservation
specified unless input flags were set to not preserve the input
file.

DSP completes its processing by writing the FNT/fST for the file,
returning information to the call block, and drops the PP. It is
at this time when the FNT/FST is rewritten that the file is
either queued (immediate route> or Left assigned to the control
point <deferred route>. If an output file is being disposed, the
number of disposed output files are decremented through a UDAM
monitor function.

Overlay 3DA is called to process error conditions detected by DSP
processing.

The error messages issued by 3DA are Listed in volume 1 of the
NOS Reference Manual. If in the call block, bit 12 of the flags
is set, the error code is returned and no message issued.

60454300 A 34-24

QAC - QUEUE ACCESS

Once a file has been entered into the queues, QAC may be used to
attach the file to a control point, alter destination routing
information, purge the file, or return information about the
file. QAC is used by BATCHIO to attach output files; EI200 to
drop jobs; RBF to attach, alter, and status jobs and files;
fNTLIST to status queues; and GALTER to status and alter queues.

QAC is called by 110 and RBF to identify files for disposal on
unit record equipment or at a remote terminal. The ACQUIRE macro
may also be used to make QAC calls. QAC calls are valid only if
the caller has a priority greater than MXPS.

The format of the QAC call, its parameter block and error codes
are as follows.

59 41 17 0

[QAC ~rl 0 I addr I
r Autorecall bit (optional)
addr FWA of parameter block

60454300 A 34-25

·: .

The parameter block format is as follows.

59 53 47 35 32 29 23 17 11 3 0

addr+O file name or job name err queue fc le

+1 alter forms ec ic dev re f wa

+2 reserved FNT address ot

+3 new tid t id priority

+4 day file flags excnt

+5 len res incnt prcnt phcnt reserved

+6 SC line or card limit ~ link

err Error code returned (complete description follows).

queue Queue type:

Queue

1
2
4
8

16

fc Function code:

Code

0
1
2
3

Description

Input file
Output file
Punch file
Special output
Executing job <at control point
or in rollout queue)

Description

ALTER function
GET function
PEEK function
COUNT function

c Completion bit. Must be 0 on call; set to 1 upon
completion.

60454300 A 34-26

alter

form

ec

i c

dev

60454300 A

ALTER flags:

Bit

56

55

54

53
52

51

so

49

48

Description

FNT flag <check specified FNT ·
only)
Ignore upper six bits of
disposition field
Change spacing code (output

fi Les only)
Abort job or evict file
Change repeat count (output

files only)
Change forms code (output files

only)
Change priority <output files

only)
Change destination TID to new

TIO
Send to central site

Forms code. IF bit 51 of flag field is set, GET,
PEEK, and COUNT use forms code as search criteria.
ALTER changes forms code of output files to the
specified forms code. If bit 51 is not set, all
functions ignore the forms code field.

External characteristics
(For detailed description, refer to DSP
documentation in volume 2 of NOS Reference Manual).

Internal characteristics
(For detailed description, refer to DSP
documentation in volume 2 of NOS Reference Manual).

Device code:

Mnemonic Code Description

PU 10 Punch
FR 20 Microfilm printer

(for future)
FL 22 Microfilm plotter

(for future)
HR 24 Hard copy printer

(for future)
PL 26 Hard copy plotter
PT 30 Plot
PR 40 Any printer
LR 43 Select 580-12

printer
LS 44 Select 580-16

printer
LT 45 Select 580-20

printer
46-67 Reserved for CDC
70-77 Reserved for

installations

34-27

re Repeat count (maximum value is 378).

fwa FWA of reply buffer or FWA of dayfile message.

ot Origin type CO = system, 1 = batch,
2 =remote batch>.

tid Terminal ID. If the upper six bits are equal to 778,
the Lower bits contain the complement of the CM
address of a two-word family name/user number area
Ceach in upper 42 bits of word). If the upper six
bits are not equal to 778, the Lower eighteen bits
contain the TIO.

dayfile Random address of dayfile Left justified.

flags Flag bits:

Bit

1 3
14

1 5-16
17

excnt Executing job count.

Description

Return extended information
Inhibit duplicate file search
Reserved
Dayfile present (output files

on Ly)

Len Parameter block Length.

res Reserved.

incnt Input file count.

prcnt Print file count.

phcnt Punch file count.

sc Spacing code for output files.

link Link address to next QAC call block. If O, no
address is specified.

60454300 B 34-28 I

The following error codes are returned to the GAC call block
when the specified situation occurs.

Error
Code Message

1 INVALID QUEUE TYPE.

2 NO FILE FOUND.

3

4

5

6

7

1 0

1 1

60454300 B

ILLEGAL PRIORITY
SPECIFICATION.

CM ADDRESS OUT OF RANGE
RANGE.

TOO MANY FILE
TYPES SPECIFIED.

Description

QAC was called with no
queue type specified,
function 1 (GET queued
file) was called with
than one queue type
specified or with input
and/or executing queue
flags set.

QAC did not find a file
that met the selection
criteria.

The priority field in the
call block is 77778. This
is illegal for function 0

(ALTER) and function 2
(PEEK).

Reserved.

May occur in one of the
following conditions.

• The address of the
family name/user number
block passed in the TID
field is out of range

• The FWA of the message
buffer for function 0
(ALTER) is out of range

• The PEEK reply buffer
address is out of range

Reserved.

Reserved.

Reserved.

Function 2 <PEEK) must
not be called with more
than one file type
specified in the call
block.

34-29

Error
Code Message

12 DUPLICATE FILE FOUND.

13

14

1 5

16

1 7

20

21

60454300 a

COUNT OF ZERO INVALID.

INVALID FNT
ADDRESS/ORDINAL.

INVALID FORMS CODE.

INVALID TIO.

INVALID ORIGIN TYPE.

Description

Function 1 CGET queued
file) attempted to attach
a file to a control point
which had a file with the
same name already attached.

The number of reply
entries requested from
function 2 (PEEK) must be
greater than zero.

Reserved.

The FNT address/ordinal is
o~t of the range of the
FNT.

Reserved.

Forms code specified is
not two alph~numeric
characters.

May occur in one of the
following situations.

• Family name/user number
specified is invalid

• Specified TID for a
batch or system origin
job is greater than IDLM

• Function 0 (ALTER) is
attempting to change the
destination origin of a
file without specifying
a destination TID

The origin type specified
in the parameter block is
invalid.

34-30

QAC is structured into a main routine, resident subroutines, and
the following function processors.

3QR
3QS
3QT
3QU

Error processor overlay
GET function overlay
ALTER fun.ction overlay
PEEK/COUNT function overlay

All QAC functions use the same search routines located in the
resident subroutine area. QAC attempts to validate as much
information as possible from central memory CFNT/FST and control
point areas) to avoid incurring the overhead of reading queued
file system sectors.

The primary search routines are VCI <validate central memory
information) and VMI Cvalid_ate mas-s storage information). VCI
is used to validate iniorm~tion that must be found in the
FNT/FST or control point area (origin, priority, queue type,
file/job name, etc.). VMI is used to validate information that
is kept in the system sector (forms code, external
characteristics~ destination information, etc.). A simplified
flowchart of the validation and interlocking for QAC is shown in
figure 34-3 •
..

QAC can process a chain of QAC call blocks. This is accomplished
by the Link field in word sf~ of the parameter block. Once QAC
is finished with a parameter block, the field is checked. If
zero, there is no further processing needed and QAC releases the
PP. If the field is nonzero, QAC calls PRS (preset) and begins
processing the new· QAC call block. To reduce system overhead,
all of the QAC function overlays are reentrant. This reduces the
number of overlay loads if the call blocks are arranged in the
proper order.

60454300 A 34-31

CIF

clear SFIM
interlock

no

no

entry

set next
file

Figure 34-3. QAC Search

exit

60454300 A 34-32

It is the validation routines CVCI and VMI) that make use of the
routing fields found in the FNT/FST and system sector of queued
files. Once a file has been found and interlocked, QAC is able
to perform one of its functions upon the file.

QAC Preset

The preset phase of QAC validates the function and identifies the
function processors and properties of the function, such as, FNT
ordinal passed in QAC block, priority of 77778 illegal, priority
is search criteria, and forms code not search criteriaa

Function 0 - ALTER

The ALTER function changes requested fields in a queue file or an
executing job file system sector and FNT/FST for all files and/or
jobs matching the selection criteri~. Required fields in the
call block include the following.

• Function code C=Q) and cleared completion bit

• Queue type (more than one may be specified)

• Alter flags

• Origin type

The beginning of FNT search address, device selection, TIO,
message text, and file/job name may optionally be specified as
search criteria.

The code to alter a queued file is found on overlay 3GT.

The alteration that is requested to be performed is determined by
the alter flags in the call block. The flags include the
following.

• Send to central site

• Change terminal ID CTID)

• Change priority

• Change forms code

• Change repeat count

• Abort job/evict file

• Change spacing code

Send to Central Site (Output Files)

The alteration for send to central site is to allow EIOT output
to be processed at the central site (usually by BATCHIO) rather
than at a remote terminal. Although batch and system origin
output is processed at the central site, it is possible to route
batch/system output to a specified terminal ID if this bit is not
set. The TIO field and origin in the system sector and FST are
changed to the new origin and destination information.

60454300 A 34-33

Change Terminal ID <TIO)

The alteration of the terminal ID is done in both the FST and
system sector (DISS through DISS+1). For system and batch origins
the terminal ID must be Less than IDLM (70).

Change Priority (Output Files)

The alteration of queue file priority is done within the bounds
of the service Limits for the origin type of the file as
determined by QUEUE parameter settings. The new priority is set
in the FST and system sector CPRSS).

Change Forms Code (Output Files)

The new forms code is validated by common deck COMPVFC. A valid
forms code is any combination of two alphanumeric character or
null. If the forms code is a special forms code (greater or
equal to AG), it is set only in the system sector CFCSS).
Otherwise it is set in the FST as well. A special forms code is
any code that is not null, AA, AB, AC, AD, AE, or AF. These
nonspecial values provide the optimum performance since only
they can be represented by the 3 bits available for forms code
in the FST.

Change Repeat Count

The repeat count supplied in the call block is set into the
system sector (RCSS).

Change Spacing Code

The spacing code supplied in the call block i s set into the
system sector (SCSS).

Abort Job

The abort job option reads the optional message, writes it to
the dayfile <system and control point) and sets the operator
drop error flag (ODET) by the CEFM monitor function. GAC will
change control points to issue the message and set the error
flag.

If the job was not at a control point (that is, rolled out), the
control point area is read from the rollout file, the message is
written into MS1W, the operator drop error code <ODET) set into
MS2W, and the control point sector rewritten. The priority of
the rollout file is set to SEPS <special error priority) for
appropriate processing by the scheduler and rollin mechanism.

Evict File

If a queued file is being dropped, an accounting message with
identifier AEPQ is issued to the account dayfile and the file
dropped via a call to OOF.

60454300 A 34-34

Function 1 - GET

The GET function attaches a print or punch file to the requesting
control point. If the priority specified in the parameter block
is less than 77778, the first file found in the FNT search that
meets the selection criteria is attached. If the priority is
77778, the entire FNT is searched for the best file that meets
the selection criteria <highest priority file). Required fields
in the call block for the GET function include the following.

• Function code <=1> and cleared completion bit

• Queue type

• Priority

• Origin type

The file name, forms code, disposition code, starting FNT
ordinal, destination terminal ID, and inhibit duplicate file
search flag may be optionally specified.

The code for attaching the selected queued file is contained in
overlay 3QS.

If a file that meets the selection criteria is found, information
about this file is returned to the caller in the parameter block
and an updated FNT/FST entry built for this file at the caller's
control point. The information returned includes the dayfile
random address (from RASS through RASS+1), file at beginning of
information flag, and file length (from FLSS through FLSS+1).

While the response is being formatted and FNT/FST updated, the
file is individually interlocked by the FNT interlock mechanism
(SFIM) and the FNT interlocked using the FNCT channel.

Function 2 - PEEK

The PEEK function returns a list of responses for files and jobs
matching the selection criteria. The required fields in the
parameter block for a PEEK include the following.

• Function code <=2> and cleared completion bit

• Priority

• First word address CFWA) of reply buffer

• Queue type

• Number of replies

• Origin type

The file/job name, terminal ID, disposition code, forms code,
and starting FNT ordinal may optionally be specified as search
criteria.

60454300 A 34-35

The first two words of the PEEK reply buffer are formatted as
follows.

59 35 17 0

lene lenb

info bits

buffer for reply entries

Lene Length of reply entries returned by QAC/PEEK.

lenb Length of buffer to receive reply entries.

info bits Each bit represents a different word of
information that can be returned. If a bit is
set, the corresponding information is returned as
an additional word to the reply entry. The lower
six bits Cbits 5-0) of each additional word
returned contain an information number that may
be used to identify the type of information in
that word.

Table 34-1 defines the information bits and information number
for each type of information that can be requested.

I
!Bit

TABLE 34-1. INFORMATION BITS

Information Requested
I Information!
I Number I

+-----+---------------------------------+------------+
No information in word I 0

0 Not used I
1 Destination family name I 1
2 o'estination user number I 2
3 Creation family name . I 3
4 Creation user number I 4
5 Job statement name I 5
6 Equipment, queue type, and I 6

line/card limit I
7 Creation date, creation TIO I 7

60454300 A 34-36

The format of the PEEK reply entry when all information is
requested is as follows.

59

ADDR+O

+1

+2

+3

+4

+5

+6

+7

+10

+ 11

ot

eq

qt

47 35

iob/file name

no change

no change

destination family name

destination user number

creation family name

creation user number

job statement name

eq qt line/card limit

creation date

Origin type:
0 System origin
1 Batch origin

creation tid

2 Remote batch origin

17

Equipment number file resides on

Queue type:
1 Input file type
2 Print file type
3 Punch file type

11 5

ot priority

2

3

4

5

6

7

The code for the PEEK function is found in overlay 3QU.

0

60454300 A 34-37

The response returned if an executing job satisfies the search
criteria has the following format.

59 47

stat

29 23

file name

SRU accumulated

17

origin
type

FL/100

11

stat TIO

Job status:

10 Job rolled out

02 Job at control point

0

priority

job ordinal

The response returned if an input file satisfies the search
criteria has the foll~wing format.

59 23

file name

17

origin
type

11

priority

FNT ordinal

destination TIO

0

The response returned if a print/punch file satisfies the search
criteria has the following format.

59

re

i

re

disp

60454300 A

53 47

file name

23 17

origin
type

11

priority

forms code FNT ordinal

0

disp file size destination TIO

File interrupted Cif set = 1)

Repeat count

Disposition code (this field contains internal
and external characteristics and device code)

34-38

If the extended information bit is set in the call block, the
forms code, interrupt flag, repeat count, file size, and
d i s p o s i t i o'n c o de < i n t e r n a l I e x t e r n a l c h a r a c t e r i s t i c s) a r e
returned.

Functidn 3 - COUNT

The COUNT function counts the numbe~ of files and/or jobs of a
specified type satisfying the selection criteria. Multiple
queue types can be set in a single COUNT request with the count
of each type being returned to the caller. The required
parameters for the COUNT call include the following.

• Function code <=3) and cleared completion bit

• Queue type

• Priority

• Origin type

The terminal ID, starting FNT ordinal, disposition code, and
file/job name may be specified as optional search criteria.

The queue type, disposition code, FNT address, priority and
file/job name are also returned for the first file that meets
the selection criteria.

The code for the COUNT function is also found in overlay 3GS.

QAC - KEY RESIDENT SUBROUTINES

The following paragraphs describe key resident QAC subroutines.

SEJ - Search for Executing Job

SEJ scans the FNT for queued. files which represent jobs in an
executing state, namely INFT (at a control point), ROFT <rolled
out), or TEFT (timed/event rolled out>. If one of these types
is found, subroutine VCI is called to compare the selection
criteria with information about the job that is normally found
in the control point area.

If a job has been selected, its FNT entry is interlocked via the
FNT interlock mechanism (SFIM). The queue type is revalidated
and VCI called again to recheck the selection criteria since
information about the job could have changed while waiting for
the FNT entry to be interlocked or it may be a different job. If
the recheck rejects the job, the interlock is cleared and the
next FNT entry is examined.

If the recheck verifies the job as satisfying the selection
criteria, subroutine VMI is called to compare the selection
criteria with information about the job that is normally found
in the system sector or FNT/FST for it. If this comparison is
successful, a job found status is returned to the caller.

60454300 A 34-39

SFF - Search For File

SFF scans the FNT for queued files having the desired selection
criteria. The logic is similar to that found in SEJ except that
the information processed is related to files rather than jobs.
VCI is called to compare selection criteria that is control point
related. If a candidate is found, it is interlocked and VCI
called to recheck the selection. If the recheck rejects the file,
the interlock is cleared. If the recheck is successful, VMI is
called to compare selection criteria that is FNT/FST or system
sector resident. If this comparison is successful, the FNT
address of the file is returned to the caller.

VCI - Validate Central Memory Information

VCI compares selection criteria with information normally found
in the control point area. The processing done by VCI is
dependent upon the type of queue selection Cjob vs file) and
check or recheck.

In the queued file check and recheck case <call is from SFF),
the file must not be assigned to a control point, must match the
desired queue type, must match the desired priority Cif this is
a selection criterion), and must match the job name and origin
type Cif these are selection criteria).

In the executing job case of a job at a control point (file type
is INFT), the input file must be assigned to a control point
(that is, not in the queue>, must be the job's input file,
and must match the job name and origin type Cif these are _
selection criteria). In the recheck case, the control point area
is read into CBUF. and TFSW is checked to be sure that this is
the job's input file. The job name, origin type, and sequence
number are read from JNMW and RFCW for use if QAC must move to
the control point. The job name and ~rigin must match the
selection criteria job name/origin if these are requested. The
read rollout file is not set as control point data has already
been read into CBUF.

In the case of rollout files, whether ROFT or TEFT, the read
rollout file flag is set. The job name and origin must agree
with the selection criteria if so specified.

VCI is flowcharted as figure 34-4.

60454300 A 34-40

VMI - Validate Mass Storage Information

VMI compares the selection criteria with information con~ained
in the file's FNT/FST or system sector.

For input files (INFT) or executing job files CROFT), the file's
system sector is read and destination TIO is compared <DISS
through DISS+1) with the selection criteria. If no match occurs,
the not found status is returned. If matching and not remote
batch origin CEIOT), a found status is returned. If EIOT, family
names are compared (FOSS through FDSS+3). If family names match,
a found status is returned with not found ~eturned otherwise. A
check is then made for queue type and special output.

For all other queued file types, the desired terminal IDs is
compared with the FST and a not found status returned if they do
not agree. The forms code is then compared.

60454300 A 34-41

yes

read job name
(JNMW) input
file FST add·
ress (TFSW)

return
not selected

Figure 34-4. VCI - Validate Control Point Information

60454300 A 34-42

bypass rollout
file read

set job name,
origin job
sequence number
from control
point buffer

no

yes

no

no

no

no

set rollout
file read

rollout
validation

Figure 34-4. VCI - Validate Control Point Information
(Continued)

60454300 A 34-43

If forms code is not a selection criterion, the device code is
checked. If the file is a special queued file Cd/x fields equal
SPDV>, the forms code is compared with the system sector. If the
file is not a special queued file, the forms code from the FST is
compared with the selection criterion. If a match occurs, the
device code is checked. If a mate~ does not occur and the forms
code from the FST is not an extended code, a not found status is
returned. If the forms code is an extended code, the system
sector is read, and the forms code CFCSS) is compared with the
selection criterion. If no match occurs, a not found st~tus is
returned. If matching the device code check is made.

If device code is not a selection criterion, and the file is not
EIOT, a found status is returned. A found status is also
retu~ned for EIOT files ~ith matching family names. If the file
is a special queued file (file ID is SPDV) and extended codes are
available, the device code validation is done using the system
sector. If not a special queued file, and any device can be
used, the external characteristics are checked. If a device code
is specified, the device code from the FST is compared with the
selection criterion. If a match occurs, the external
characteristics are checked. If a match does not occur, not
found status is returned. If the comparison for device code is
to be made from the system sector, the sector is read and the
device code CDVSS) compared with the selection criterion. If no
match occurs, a not found status is returned. If matching, the
external characteristics are checked.

If the file is a special queued file (greater than SPDV), the
external characteristics ~re processed from the system sector. If
the external characteristic are extended values, they are also
processed from the system sector. If external characteristics
are specified in the FST and do not match the selection
criterion, a not found status is returned. If any printer can be
used, and not EIOT, a found status is returned; if EIOT and
matching family names, found is also returned. If the
characteristics must be processed from the system sector, the
system sector is read and the external characteristics CECSS) are
compared to the selection criterion. If no match occurs, a not
found st~tus is returned. If matching, the EIOT/family check
must agree before the found status is returned.

VMI is flowcharted as figure 34-5.

60454300 A 34-44

set system
sector not
read flag

yes

Figure 34-5. VMI - Validate Mass Storage Information

60454300 A 34-45

use no
preset value

Figure 34-5. VMI - Validate Mass Storage Information (Continued)

60454300 A 34-46

yes

yes

no

yes

no

*1 Input conditions for VMI13:
0 = match, 1 = no match or error

Figure 34-5. VMI - Validate Mass Storage Information (Continued)

60454300 A 34-47

Alf

read system
sector

read system
sector

Figure 34-5. VMI - Validate Mass Storage Information (Continued)

60454300 A 34-48

*1

no

no

no

Figure 34-5. VMI - Validate Mass Storage Information <Continued)

60454300 A 34-49

In summary, for output files with matching terminal IDs, compare
forms code, device code, and external characteristics Cif
selection criteria) with FST if not a SPDV file. If SPDV or
forms code, device code, and external characteristics are
extended, compare the selection criteria to their system sector
values. If no match occurs, return not found. If a match
occurs and file is not EIOT, return found. If file is EIOT,
return found if family names compare; not found if otherwise.

60454300 A 34-50

REPRIEVE PROCESSING CRPV) 35
---~------------------~---

REPRIEVE OVERVIEW

Reprieve CRPV) allows a CPU program to perform the following
functions.

• Declare an address to which control is returned after
execution has been stopped by an error, a terminal
interrupt, or normal job termination. These cases are
called interrupts.

• Resume execution of an interrupted program at the point
of interrupt.

• Reset an error flag which resulted in a reprieve so
that job exit processing can occur.

Reprieve processing is controlled by calls to the PP program
RPV~ RPV consists of two functions which previously resided in
SFP and three extended functions: setup, resume and reset.
Extended reprieve combines the features of EREXIT, OISTC, and
standard reprieve, with additional capabilities of resuming
execution after an interrupt and queuing of pending interrupts.
The following discussioh concerns extended reprieve only.

RA+1 -CALL

The format of the call to RPV i s as follows.

59 40 17 0

RA+1 I RPV ~rl 0 l1I addr I
addr First word address of the parameter

block

REPRIEVE FUNCTIONS

RPV supports the following functions.

• Setup
• Resume
• Reset

The setup function is used to initialize the parameters for the
RPV.interface (that is, setting the mask bits that indicate
which errors are to be intercepted). It also initializes all
RPV data in the user's control point area and if the parameter
block indicates pending interrupts or I/O requests, these are
processed at that time.

60454300 A 35-1

The resume function is used to restart the program after an
interrupt has been processed. Any pending interrup~s that
occurred during the processing of the previous interrupt
are detected then and the interrupt handler is res~arted to
p~ocess these interrupts. Optionally, the mask bits may also
be changed during the resume function.

The reset function is used to reset a previous error and allow
"If the operating system error handling to process the error. - That

is, the error is processed by the system as if the appropriate
mask bit had not been set. Pending interrupts are not
processed; however, any pending RA+1 request is reset.

PARAMETER BLOCK

The format of the parameter block is as follows.

59 35 29 23 17 11 9 0

addr+O 0 I length 1°} func le
+1 checksum lwa I transfer address

+2 checksum value

+3 mask 1 error class 1 error code

+4 pending interrupts

+5 pending RA+1 request

+6 interrupted termina I I/O

reserved I error flag •. +7

+10 reserved I reserved inst.

+11
.J -.,,j

+
30
T ... ___________ e_x_c-ha_n_g_e_pa_c_k_a_g_e __________ _..J

Length

f unc

Length of the parameter block in~luding
the exchange package area [minimum of 25
C31B) words].

Function code:

1 Setup
2 Resume
3 Reset

60454300 A 35-2

c

checksum lwa

transfer
address

checksum value

mask

error class

error code

pending
interrupt

pending RA+1
request

interrupted
terminal I/O

60454300 A

Completion bit (set when operation is
complete).

Specified by the user to indicate the end
of the area to be checksummed and
compared or set. If zero, no checksum is
desired <checksum area begins at transfer
address).

Ad d r e s s .t o w h i c h c on t r o l i s t r an s f e r r e d
when an interrupt is processed.

Either set to the checksum of the
indicated area when RPV is called or
compared against the computed checksum
(if checksum lwa is specified) when a
reprievable error is processed.

Mask bits to be set by call (specifies
class of interrupts to be intercepted):

mask

001
002
004
010
020
040
100
200

Description

CPU error exit
PP call error
Resource Limit
Operator termination
PP abort
CPU abort
Normal termination
Terminal interrupt

Set to the value of the mask bit which
intercepts the indicated error (that is,
if error x is intercepted by mask bit n,
then bit n in the error class field is
set). Refer to table 35-1 for a List of
error classes.

Octal code indicating error encountered.
Refer to table 35-1 for a List of error
codes and their meanings.

Used to queue pending interrupts (that is,
the nth error code sets bit n in this
field).

Contents of RA+1 at time of interrupt.
RA+1 reset from this field on a resume or
reset call.

Contains interrupted input request if an
interrupt occurs while a terminal input
request is pending. The format is as
follows.

35-3

59

CIOP

error flag

reserved inst.

exchange
package

35 17 0

0 FET address I
The CIO call is reissued on a resume call.

Value of the operating system error flag
at the time of the interrupt <refer to
section 2 for a List of error flags).

This area is reserv~d for use by the
installation.

A copy of the exchange package at the
time of the interrupt <unchanged from the
executing package at the time of the
error). This is the exchange package
that is used when the interrupt handler
is started. A reset or resume call._ sets
the running control point registers from
this area.

Table 35-1 lists the return information for RPV error codes,
classes, and flags. The operator kill error COKET> is only
reprieved once per job. The first time it is handled as any
other error; however, the second occurrence unconditionally
terminates the job. Additionally, reprieve processing is not
allowed on a system abort error CSYET) or override error CORET)
for security reasons.

60454300 A 35~4

TABLE 35-1. RPV ERROR CODES, CLASSES, FLAGS

--------------------------~------------~--------------------~--
I error
I code Description

I error I Corresponding
I class I Error Flags
I I

---------~---~-----

0 Normal. termination 100 None
1 Time l. i mi t 004 TLET
2 CPU error exit 001 ARET, PSET
3 pp abort 020 PPET
4 CPU abort 040 CPET
5 PP call error 002 PCET
6 Operator drop 010 ODET
7 Operator k i L L 010 SSET, OKET, ORET,

SYET, FSET

10 Operator rerun 010 RRET
1 1 Control statement error 040 None
1 2 ECS parity error 020 ECET
1 5 Auto recall error 002 None
16 Job hung in autorecall 002 None
17 Mass storage Limit 004 FLET, TKET
20 pp program not in 002 None

Library

21 I/O Limits 004 S RET
40 Terminal interrupt 200 TIET

CONTROL POINT AREA USE

Word EECW of the user's control point area is formatted as
follows for extended reprieve processing.

59 55 47 35

lflg~ mask
terminal

input pointer

17 0

addr

f lg Flags; each bit defined as follows:

60454300 A

Bit

59
58
57

56

Description

Not used by extended RPV
Extended RPV active
Interrupt handler in
progress
One-time error entered

35-5

mask

addr

Mask bits as described in parameter
block

RPV parameter block address

Bit 58 is set on a setup or resume call. When extended
reprieve is active, bits 35 through 23 of TIAW <otherwise the
DISTC address) cGntain the previous error flag value. Bi~ 57
is set whenever the system C1AJ or 1RI) starts the interrupt
handler at the transfer address. If a subsequent interrupt
occurs while this bit is set, the interrupt is set pending in
the parameter block and processing of the first interrupt is
allowed to continue. An exception is if the interrupt ~as an
error initiated by the interrupt handler <such as an arithmetic
error). In this case the interrupt is not set pending and
the job is aborted. Bit 56 is set when a one-time error is
initially reprieved (currently only OKET). The second
occurrence of a one-time error is not reprieved even if selected
by the mask bits. The mask bits and parameter block address
are set in EECW by a setup or resume call.

SETUP FUNCTION

This function is used to initialize the parameters for the RPV
interface. It sets the mask bits which in~icate which errors.
are to be intercepted and initializes all RPV data in the
control point area. If the parameter block indicates pending
interrupts or I/O requests, these are processed at this time.

The setup reprieve function is processed in the following
manner.

1. Abort if one of the following parameter errors.

• Length less than 31B words

• FWA Caddr) plus length greater than FL

• Checksum LWA nonzero and less than transfer
address

• Checksum LWA less than 2 or greater than or
equal to FL

• Transfer address less than 2 or greater than or
equal to FL

• Undefined mask bit specified

• RPV called without autorecall

60454300 A 35-6

2. The following values are set in the control point word
EECW.

• Extended RPV flag

• RPV mask

• FWA of parameter block

• Previous error flag is invalidated

3. If pending interrupts are nonzero, perform the
following.

• Validate pending interrupts (that is, is pending
interrupt of defined error)

• Select highest priority interrupt

• Clear selected interrupt bit in pending
interrupts

• Set return status flags (error number, error
class, and so on)

• Set interrupt handler active

• Set running P register to transfer address

• Reset running registers from the parameter block
(except P)

• Set complete bit

• Return

4. If pending interrupt equals zero, perform the
following.

• Compute checksum if LWA nonzero

• Clear interrupt handler in progress

• Reset RA+1 from parameter block

• Clear parameter block fields used (pending RA+1
request word, interrupted terminal I/O word, and
so on)

• Set complete bit

• Request CPU

• Initiate pending terminal input (call CIO over
RPV)

60454300 A 35-7

RESUME FUNCTION

This function is used to restart the running program after an
interrupt has been processed. Any pen~ing interrupts which
occurred during the processing of the initial interrupt are
detected at this time and the interrupt handler is restarted to
process these interrupts. Optionally, the mask bits can also be
changed at this time. The processing of RESUME is identical to
that of SETUP except that the running registers are set f~om the
parameter block.

The resume reprieve function is processed in the following
manner.

1. Abort ij parameter error.

• Length of parameter block Less than 318

• Parameter block outside of FL

• Checksum LWA nonzero and less than transfer
address

• Checksum LWA less than 2 or greater than or
equal to FL

• Transfer address Less than 2 or greater than or
equal to FL

• Undefined mask bit specified

• RPV called without autorecall

2. Set control point values in E~CW.

• Set new mask bits

e Set FWA of RPV area

• Set extended RPV f Lag

• Invalidate previous error flag

3. If pending interrupts nonzero.

• Validate pending interrupts (that is, pending
inter~upt is a defined error>

• Select highest priority interrupt

• Clear selected interrupt bit in pending
interrupts

• Reset running exchange package <except P)

60454300 A 35-8

•

• Set return status f Lags <error number, error
class, and so on)

• Set interrupt handler active

• Set running P register to transfer address

• Set complete bit

• Return

4~ If pending interrupt zero.

• Compute checksum if LWA nonzero

• Clear interrupt handler in progress

• Reset running exchange package <including P) and
RA+1 from parameter block

• Clear parameter block fields used (pending RA+1
request word, interrupted terminal I/0 word, and
so on)

• Set complete bit

• Initiate pending terminal input <call CIO over
RPV)

RESET FUNCTION

This function is used to reset a previous error and allow the
operating system error handling to process the error. Pending
interrupts are not processed; however, any pending RA+1 is
reset. A reset causes the same action as would have occurred if
the appropriate mask bit had not been set <resumed errors cannot
be reset since there is no way to validate the information
coming from the users FL).

The reset reprieve function is processed in the following
manner.

1. Abort if parameter error.

• RPV extended mode not set

• Length of parameter block Less than 318

• Parameter block outside of FL

• Transfer address less than 2 or greater than or
equal to FL

• Undefined mask bit specified

60454300 A 35-9

• RPV called without autorecall

• Interrupt handler not active

• Previous error flag not set (invalid)

2. Reset error flag to previous error flag (from TIAW).

3. Reset previous job.

• Clear mask bits <turn off further RPV processing)

• Clear interrupt handler in progress

• Reset
RA+1

running exchange package
from parameter block

• Set complete bit

(including P) and

INTERRUPT PROCESSING FOR EXTENDED RPV

The following is the processing taken by the system (1AJ or 1RI)
when an interrupt occurs. Error f Lags and normal termination
are processed by 1AJ. Terminal interrupts are processed by 1RI.

1 c Abort job if mask bit for error not set.

2. If error f Lag has undefined mapping, hang.

3. Abort if parameter error.

60454300 A

• RPV extended mode not set

• Length of parameter block Less than 318

• Parameter block outside of FL

• Checksum LWA nonzero and Less than transfer
address

• Checksum LWA Less than 2 or greater than or
equal to FL

• Transfer address Less than 2 or greater than or
equal to FL

35-10

4 • If

5 • If

interrupt handler not active.

• Abort i f checksum mismatch

• Move error flag to previous error flag

• Copy exchange package to user return package

• Set system dependent and common error codes

• Copy contents of RA+1

• Clear R A+1

• Reconstruct terminal input request (i f present);
i f no request present, store zero

• Set running p register to transfer address

• Clear error flag

• Set interrupt handler in progress

• l~eturn

interrupt handler active.

• Abort if execution initiated interrupt <error
codes O, 2, 3, 4, 5, 11, 15, 16, 20)

• Set pending error in pending interrupt status
word in request block

• Clear error flag

• Return

TERMINAL INPUT REQUESTED

If an interrupt occurs while a request for terminal input is
pending, control is given to the interrupt handler in such a
way that the I/O request can be reissued after interrupt
processing has been completed. The mechanism for accomplishing
this is as follows.

1. Do not set the FET complete.

2. Set no error code in the FET.

3. No data is passed to the buffer (IN/OUT remain
unchanged).

4. Reconstruct the CIO request which initiated the input
request and pass it to the interrupt handler in the
interrupted terminal input request word of the return
package; this word is zero if the program was not
waiting for terminal input

60454300 A 35-11

INTERRUPT FLOW

Figure 35-1 describes the f Low of control during the processing
of an interrupt. The module performing a function is enclosed
in parentheses.

Figure 35-2 is a flowchart illustrating 1AJ interrupt
processing. Figure 35-3 shows the processing by 1RO when a
terminal job is to be returned to time-sharing executive control
following a terminal interrupt. Figure 35-4 f Lowcharts 1RI
processing when a terminal job is given control back following a
terminal interrupt.

60454300 A 35-12

initiate job

issue SETUP
function

TS regains
control

(1TO/VASO)

user break entered

set interrupt
flag in

terminal table

no

no

error detected
(CPUMTR or

CEFM)

user break
entered·

schedule job
for rollout

(1TA)·

rollout job
(1 RO-VASO)

yes

1AJ

process error

return job to
TS (1TA •

null VASO)

Figure 35-1. Interrupt Processing

60454300 A 35-13

abort job

Figure 35-1.

60454300 A

enter job in yes
rollout queue

(1TA)

rollin ,.ob
(1 R)

continue
execution

at interrupt
handler

CID

process 1/0
request

retunr to
original

execution

Interrupt Processing (Continued)

35-14

preset
1AJ

(monitor call)

1AJ error
processor

clear error flag

clear pause bit

store sense
switches

abort job

validate
parameters

set pending
interrupt

*1 SYET, ORET, second OKET, or fatal mainframe error.

Figure 35-2. 1AJ Interrupt Processing

60454300 A 35-15

complete
special
files

process
error
flag

validate
parameters

validate
che'i:ksum

if requested

set previous
error flag

clear mask bits

map error
flag to N OS/8 E

equivalent

store RA+1

store
exchange
package

issue message:
JOB

REPRIEVED

reset P
register

increment
limit

request
CPU

exit

no

Figure 35-2. 1AJ Interrupt Processing (Continued)

60454300 A 35-16

copy
exchange
package

set
error class,
error code,
error flag

copy
RA+t

clear
RA+1

set P
to transfer

address

set interrupt
handler in
progress

Figure 35-2. 1AJ Interrupt Processing <Continued)

60454300 A 35-17

no

preset rollout

enter rollout file
into FNT

yes

check buffer
parameters

set input
request in

terminal table
/REM/VIPR

validate
buffer

parameters

update
FET

pointers

no

request
mass storage

clear
equipments

clear FNT
entries

read
output
data

(first sector)

set output
· available in
terminal table
/REMNOPR

write contro I
point area, day­

file buffer, F NT s,
terminal output,

job field
length

to rollout file

yes check
error

message

Figure 35-3. 1RO Interrupt Processing

60454300 A 35-18

update
terminal

table

clear control
point area

and job advance

change to
time-sharing
control point

and call 1TO *2

terminate roll­
out to queue

•1 Input requested, output available, job termination or
forced rollout.

*~ Refer to figure 15-22.

Figure 35-3. 1RO Interrupt Processing (Continued)

60454300 A 35-19

preset
rollin

read system
sector of
rollout file

clear time-sharing
rollin information
in terminal table

read contra I
point area,

dayfile buffer,
and FNT

skip
terminal
output

read job
field
length

assign
equipment

validate
parameters

copy
exchange
package

set P to
addr + 208

set flag

Figure 35-4. 1RI Interrupt Processing

60454300 A 35-20

copy input
data to
user FL

update
FET

pointers

update
pot

pointers

drop
input
pots

Clear input
and output

pointers

restart job

Figure 35-4.

60454300 A

validate
parameters

copy
exchange
package

set error
class, code,

flag
parameters

set pending
terminal
interrupt

abort

1RI Interrupt Processing (Continued)

35-21

copy
RA+1

clear
RA+1

clear
terminal

input status

set CIO
request in
pending 1/0

clear saved
RA+1

set P to
transfer
address

set interrupt
handler

in progress

Figure 35-4. 1RI Interrupt Processing (Continued)

60454300 A 35-22

PERMANENT FILE UTILITIES 36

INTRODUCTION

The permanent file utilities are used to maintain the permanent
file system. These utilities provide for the dumping and
Loading of permanent files, the cataloging of files in the
system and on an archive tape, and the copying of specific
files to a control point.

The permanent file utilities consist of the following.

• Permanent file supervisor (PFS)

• Permanent file utility processor (PFU)

• Dump permanent files (PFDUMP)

• Load permanent files (PFLOAD)

• Catalog permanent file device <PFCAT)

• Catalog archive tape CPFATC)

• Copy archived files to control point CPFCOPY)

These utilities can be initiated from system origin jobs or by
users with system origin privileges and DEBUG mode on at the
console.

This section assumes that the reader is familiar with NOS
permanent file concepts. If a review of these concepts is
needed, the NOS System Maintenance Reference Manual is
recommended, not only for PF concepts but for the external
properties of the permanent file utilities themselves.

PFS - PERMANENT FILE SUPERVISOR

PFS processes the permanent file utility control statements.
It performs parameter processing for all of the utilities for
both control statement and K-display parameter entries. After
the arguments have been processed, PFS Loads the desired
utility.

Where possible, the available parameters for the utilities are
compatible; that is, a parameter (FM for example) means the
same (family name) in each of the utilities for which it is
applicable.

A List of the parameters and the utilities for which they are
applicable is shown in table 36-1. Refer to the NOS System
Maintenance Reference Manual for a complete description of the
parameters.

60454300 A 36-1

TABLE 36-1. PARAMETERS AND UTILITIES

--------~--~--------------------
IParam.I Description IPFLOADIPFDUMPI PFCAT I PFATC I PFCOPY I
1------1-----------------------1------1------1------- -------1--------1
I I I I I I I
I FM I Fami Ly name I X I X I X I I

I
I

PN

ON

TD

T

LO

I L
I
I OP
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I EO
I
I NT

NR

NU

SF

N

OT

I I I I I I
I Pack name I x I x I x I I
I I I I I I
I Device number I X I X I X (I
I I I I I I
I True device number I X I X I I I
I I I I I I
I Archive file name I X I X I X I X I
I I I I I I
l List option I I I I I
I I I I I I
I T Files processed I X I X I X X I X I
I c catalog files I x I x I x I I
I E Errors I X l X I X X I X I
I s Summary I I I x I I
I I I I I I
l Output file name I X I X I X X I X I

Utility option

C Creation
A Last access
M Last modification
I Indirect
D Direct
B Before date and

time
P Purge after dump
R Replace
Q Catalog and permit

records
N Noninitial
E Extract cir only
0 Omit cir

Error option

Nine track

No rewind

No unload

Number of files to
skip

Number of files to
process

Date

I I I I I
I I I I
I I I I
I x I x x x I x I
Ix Ix x x I x I
Ix Ix x x I x I
Ix Ix x x I x I
Ix Ix x x I x I
I x I x x x I x I

x

x
x
x

x

x

x

x

x

x

I I
I x l
I I
I x I
I I
I I
I I
I I

x

x x

x x

x

x x

x

x x x

x

x

x

x

x

I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I

---------------------------------------~---------------~---------------

60454300 A 36-2

TABLE 36-1. PARAMETERS AND UTILITIES (CONTINUED)
________ _,, ______ _

1;:;::~1-----~::;;~~~~~~-------1;;~~;~1;;~~~;1-;;~~~-1-;;;TC I P~=~~~-

1------l-----------------------1--:---1--:---1---:---1---:---1-- x
l TM T; me I I I I I
I UI User index I X I X X I X I x
I I I I I
I PF Permanent file name X I X X X I x
I I I
I DI Destination user X I
! index I
I I
I VF Verify file name X I
I I
IV Verify file X I
\ generation I
I DD Destination device X I
I number I
I I
I UN User number X X X X I x
I I

x I MF Master file name I
I I -----------------------------~----~----------------------~----~-------~

tered as one of PFS has two modes of entry: entered as PFS or en FDUMP or
the permanent file utilities (PFATC, PFCAT, PFCOPY, P. ts PFS
PFLOAD). When entered at one of the utility entry poln ~as
uses the K display only if one of the entered param~ters the
incorrect. When entered at the PFS entry point, PFS use~
K display for utility and parameter selection.

PFS first formats the K display for utility selection. The
utility to·be run is chosen by the console input of a
two-character parameter that specifies the utility. These
values are as follows.

Parameter I Utility
------------1----------

AT f
c A I
CP I
DU I
LO I

PF ATC
PF CAT
PF COPY
PF DUMP
PFLOAD

Once a utility has been selected, PFS formats the K display for
that utility. The parameter entry display includes information
as to which parameters are applicable for the utility. This
display is also used for parameter errors on control statement
entries for the individual utilities.

After all parameters have been processed, the individual
utility overlay is loaded via an OVERLAY macro request and

60454300 A
36-3

control transferred to it. The utility is Loaded at one of two
addresses: OVLA or OVLB. The difference between these
addresses is that OVLB includes PFS's keyboard entry processor
as resident code while OVLA does not. This allows the PFDUMP
and PFLOAD utilties to further communicate with the operator
during execution. Since PFATC, PFCAT, and PFCOPY req~ire no
subsequent console intervention they are Loaded at OVLA, while
PFDUMP and PFLOAD are loaded at OVLB. A memory map of PFS's
field Length is shown as figure 36-1.

The communication between PFS and the utilities is facilitated
by common deck COMSPFS. This common deck contains Location
symbols for the K display, converted parameter area, keyboard
input processor, and utility Load addresses so that each
utility is able to find the parameters PFS has processed and
continue to communicate with the operator's console as
necessary via the K display.

Parameter processing consists of cracking arguments entered by
a control statement or through console entry, ultimately
storing them in the table of converted parameters CPARC). The
position within PARC for each parameter is defined by the
converted parameter location table in COMSPFS.

The entered parameters are processed by common deck COMCARG and
therefore require an equivalence table for the parameters. The
call to ARG places the entered parameters into the table of
entered parameters (PARE) at a position specified in the
equivalence table that is defined by the option value table
COTBL). The parameters are read from PARE, interrogated,
validated, and then stored in PARC.

The validation of the parameters for a given utility is
accomplished by using a bit position table defined for each
utility. The utility valid option mask table has a one-word
entry for each utility. This entry is generated by using the
OPTION macro, defined in COMSPFS, which sets a bit in the word
based on the value for the parameter ~s specified in the OTBL.
Thus the nth entry of PARE is a valid option for the utility
only if bit ~9-n is set in the utility valid option mask table.

This technique allows for a convenient shift and read mechanism
to validate the variety of options available within the
permanent file utilities.

PFS processes the parameter conversion <moving the parameters
from PARE to PARC) by groups in the following order.

1. The name parameter group consists of those parameters
which have their keyword equated to the name of the
item. Name parameters are FM, PN, T, VF, L, PF, MF,
and UN.

2. The List option parameter group is the string of List
options specified with the LO keyword. These options
are unpacked from the string entry, validated, and
stored in PARC by subroutine OCK <option cracker).

60454300 A 36-4

3~ The utility option parameter group is the string of
utility options specified with the OP keyword. These
options are unpacked from the string entry, validated,
and stored in PARC by subroutine OCK.

4. The octal parameter group consists of those parameters
that are entered as octal values. These values are
converted and stored as binary numbers in PARC. The
keywords in this group are UI, DI, ON, DD, and TD.

5. The decimal parameter group consists of those
parameters that are entered as decimal values. These
values, entered with the N and SF keywords, are
c~nverted and stored as binary numbers in PARC.

6. The single entry group consists of those parameters
that represent a flag setting to indicate whether to
perform a given operation or not. This group contains
keywords NR, NU, V, NT, and EO.

7. The final group consists of date and time. The yymmdd
entry for the DT keyword and the hhmmss entry for the
TM keyword are converted and stored in packed date and
time format in PARC.

The argument processing of PFS is flowcharted as figure 36-2.

60454300 A 36-5

RA

commun1cat1on area

RA+101 OVCA
overlay loading

POC
SSJ= block

DIS

I ef t screen K display

right screen K display

CPL

converted parameters tab le

PAOR

parameter addresses

OVLA KIP *1

keyboard input processor

OVLB *2

Figure 36-1. PF Utilities Memory Map

60454300 A 36-6

ENTF-4

issue message
ENTERED

PARAMETER
IS ILLEGAL

no

no

set argument
and function
processor for

initial selection

set utility
name for
K display

svo
set valid
options

move
control

statement
arguments

set program
name in

PGNR to
Pf$

show
K display

ENTF-1

*1 Entry to KIP is set up to return to this address.

Figure 36-2. PFS Argument Processing

60454300 A 36-7

yes

set up
parameter
processing

clear ENTF
and set as
PFS entry
in ENTP

Figure 36-2.

60454300 A

no

set up to
convert and

validate
arguments

process
name

parameters

process
list

options

process
utility

options

process
octal

parameters

PFS Argument Processing (Continued)

36-8

process
decimal

parameters

process
single
entry

parameters

process
date

process
time

clear
PARE
area

issue message
ENTERED

PARAMETER
IS ILLEGAL

set up to
load utility

overlay

issue message
ILLEGAL

FUNCTION

clear ENTF,
save
utility

in ENTP

clear
K display

Figure 36-2. PFS Argument Processing (Continued)

60454300 A 36-9

The following paragraphs describe the main subroutines in PFS.

POC - PROCESS OVERLAY CALL

POC Loads the individual permanent file utility and transfers
control to it.

KIP - KEYBOARD PROCESSOR

KIP unpacks input parameters that have been entered via the
operator's console under K display control.

KIP is entered with two exit addresses: one for argument
processing and one for function processing. The argument
processing address is used when processing argument parameters
while the function processing address is used only when the GO
parameter has been issued.

CDT - CONVERT DATE AND TIME

CDT converts the date and time from yymmdd and hhmmss to the
system packed date and time format.

ODE - DETERMINE DEFAULT EQUIPMENT

DOE validates the use of the family name CFM) and pack name CPN>
parameters. If both are specified the following diagnostic is
issued, since these two parameters are mutually exclusive.

BOTH FAMILY AND PACK NAME.

The EST and MST are read using the RSB monitor function to
verify t~e equipment is available by the specified name. If an
entry is not found, the following diagnostic is issued.

FAMILY/PACK NOT FOUND.

If a private pack is being processed, the pack's user number
and that supplied via the UN parameter must agree or no match
occurs.

If a user number CUN) has been specified, it is validated. If
it is not valid, the following message is issued.

USER NUMBER INVALID.

DOE also verifies that if the PF parameter is used, the
index CUI) or user number CUN) has also been specified.
the following diagnostic is issued.

PF SPECIFIED BUT NOT UI.

60454300 A

user
If not,

36-10

OCK - OPTION CHECK

OCK processes the string of options that are associated with
the LO and OP parameters. OCK unpacks the strings and
validates the option using the utility valid option mask table.

OCP - OPTION COMBINATION PROCESSOR

OCP validates combinations of utility options COP) to insure
that conf Licting options have not been specified.

PIE - PROCESS INITIAL ENTRY

PIE processes the arguments entered when selecting which
utility will be used via the K display. PIE calls SVO <set
valid options) to format the individual utility K display.

SVO - SET VALID OPTIONS

SVO sets List options, utility options, and parameter values
that are valid for the particular utility on the left screen
K display for the utility. SVO uses the utility valid option
mask table to indicate what options are available for the
utility.

"PFU - PF UTILITY PROCESSOR

PFU performs a variety of utility functions for the permanent
file utilities. Functions are provided for managing the
interlocking of permanent file system activity (PFNL), the
interlocking of individual devices (utility interlock), the
interlocking of individual catalog tracks, and the setting of
device error idle status. Functions are also provided for
managing a scratch file associated with permanent file catalogs
(CATS), permits (PETS), and data (DATA). PFU provides for
creating these special files, positioning them, transferring
data to or from them, determining their Length, and so on. The
FNT/FST entry and the FET for these files contain information
that is relevant to their use within the permanent file
utilities.

Common deck COMSPFU provides for the definition of function
codes. FET equivalences, and a CPU program macro for calling
PFU.

Also in COMSPFU, the format of the archive tape label (this
describes the data, not the tape) and the archive tape control
word are defined. These formats are described under Writing
an Archive File in the PFDUMP subsection.

60454300 A 36-11

The following is a list of PFU function codes.

S~mbol Value Definition

CTOP 000 Open f i le no lockout
CTOL 100 Open f i le with write lockout
CTAC 200 Advance catalog track
CTRL 300 Read data list CPFDUMP)
CTLM 400 Load main loop CPFLOAD)
CTSU 500 Set PF utility interlock
CTCU 600 Clear PF utility interloc.k
CTRC 700 Rewind catalog file

CTCF 1000 Change file name
CTFL 1100 Set file length
CTSC 1200 Set catalog track interlock
CTCC 1300 Clear catalog track interlock
CTEI 1400 Set error idle status
CTCT 1500 Locate catalog track
CTIA 1600 Increment PF activity count
CTDA 1700 Decrement PF activity count

CTTU 2000 Test PF utility interlock

60454300 A 36-12

Table 36-2 illustrates which
does not do

PF utility

functions are used
any PFU activity).
FET.

utility (PFATC
illustrates the

by each PF
Figure 36-3

TABLE 36-2. PFU FUNCTION USAGE

---~-----
I PF Utility I I Function ~P-F_C_A_T--...-P~F-C_O_P_Y _____ P_F_D_U~M~P~~l-P~F-L_O_A_D_I

!------------ ------- -------- --------1--------1
I I
I CTOP I x
1------------ ------- -------- --------1--------
1 CTOL x x I 1------------ ------- -------- ________ , _______ _
I CTAC x x I
1------------ -------
1 CTRL x
1------------ -------
' CTLM x
1------------ -------
1 CTSU x
1------------ -------
1 CTCU x
1--~--------- -------
' CTRC X
------------1-------

CTCF x

CTFL x

CTSC x

CTCC x

CTEI x x

CTCT X X X
------------ ------- --------!-------- --------

CTIA x I x
------------ ------- --------!-------- --------

CTDA x I x
------------ ------- --------!-------- --------

CTTU x I x

60454300 A 36-13

. FET +O logical file name

+1 FIRST

+2 0 IN

+3 0 OUT

+4 FTLM

+5

+6 sector count /recal I word FTRE,FTSC

+7 data word for PFDUMP read list FTDW

+108 data list/catalog address FTDL,FTCA

+ 118 parameter word FTPM

Figure 36-3. PF Utility FET

60454300 A 36-14

PFU STRUCTURE

PFU consists of function processors for each of the PFU
functions plus a group of common subro~tines.

Upon entry to PFU, a preset routine CPRS) is called. PRS
validates the FET address to be within the program's field
Length, checks to see that the- completion bit is not set, and
whether the caller is a system origin job or has system origin
privileges with the system in debug mode. The function code is
then validated and the processor address and overlay name
returned to the main program. The main program transfers
control to the processor via a return jump. When th~ processor
has completed, the main program is reentered. The file and FET
are set complete by calls to subroutines SFC <set file complete)
and CFS (complete FET status). The PP is then dropped via a
DPPM monitor function and control is returned to PPR.

PFU major subroutines include the following.

CAU - CLEAR PFU ACTIVE FLAG

CAU clears the PF utility active flag that is kept in the
utility's field Length. The address of the PFU active flag is
supplied when the flag is set and the address is saved in
Locations PFAF through PFAF+1.

CCA - CHECK CENTRAL ADDRESS

CCA is called as part of the VADDR macro. VADDR validates an
address that is right- or Left-justified within two adjacent PP
memory Locations. CCA gets the address and calls subroutine
VCA <validate central address) to validate the address. CCA
aborts with the following diagnostic if the validation is not
successful.

PFU - PARAMETER ERROR.

CFA - COM~UTE FET ADDRESS

CFA is called as part of the FETA macro. CFA returns the
absolute address of the FET word from a supplied word ·number,
the FET address CIR+3 through IR+4), and RA.

CFS - COMPLETE FET STATUS

CFS sets the completion bit Cbit zero in word zero of the FET)
and clears the FET address from the input register CIR+3
through IR+4).

60454300 A 36-15

OCH. - DROP CHANNEL IF RESERVED

DCH. examines the channel flag CCF) and drops the channel CT4>
if CF is nonzero. CF is cleared before returning to the caller.

FAR - FORCE AUTORECALL

FAR calls CRS CCOMPCRS - check autorecall status> and aborts
with the following diagnostic if PFU is called without
autorecall.

PFU - PARAMETER ERROR.

FFE - FIND FNT ENTRY

FFE is ~alled to find the FNT entry of the file name specified
in the FET. FFE is called with two options: make LIFT check,
and abort if file not found. If the file name in the FET
agrees with the name in the FNT at the address specified in FET
word FTLM, the FNT search is by-passed. If the file names do
not agree, the FNT is searched for a match. If no match occurs
and abort on error is selected, the following diagnostic is
issued and PFU is abort~d. If no abort is selected, the exit
address is advanced by one and control transferred to that
address.

PFU - FILE NOT FOUND.

When an FNT entry with the correct file name is found, the
library type check is done if selected. If the file found is
not a library file, the condition is treated as if a match did
not occur. If the library condition is satisfied, the FNT
address is entered in FET wo~d FTLM, and the file is set busy
via the STBM monitor function. The FST is read and control is
returned to t~e caller if the file is successfully set busy.
If the. file is not set busy, the following diagnostic is issued
and PFU is aborted.

PFU - I/O SEQUENCE ERROR ON filenam AT addr.

60454300 A 36-16

LDB - LOAD BUFFER

LOB transfers a PRU of data from mass storage to a FET buffer
in the utility•s field length. Data is transferred until the
FET buffer is full or unti L the end-of-information for the file
being transferred is reached. Each block of data is pr~ceded
by a control word in the following format.

59 53 47 35 23

ec current track current sector mass storage I inkage

ec Error code:

0 No error
1 File too Long; linkage set to EOI
2 Nonfatal mass storage error

0,.

3 Fatal mass storage error; Linkage set to EOI

PAR - PAUSE AND RESET ADDRESSES

PAR does a PAUSE and then checks to see if absolute addresses
need to be changed due to a change in the utilities RA.

PDA - PROCESS DIRECT ACCESS FILE

PDA determines if the direct access file <DAF) being processed
resides on the master device being processed. If it does not,
the master device channel is released and mass storage
processing is set up for the OAF device. If the DAF device is
not a valid member of the family, the following diagnostic is
issued and PFU is aborted. PDA sets the OAF flag (DA) prior to
returning to its caller.

ALTERNATE DEVICE NOT FOUND.

RCH. - REQUEST CHANNEL IF NOT RESERVED

RCH. checks the channel flag (CF) and if it is not set,
requests the channel specified in T4. The channel flag is set
before returning to the caller.

RPP - RECALL PP

RPP takes the PP call word contained in direct cells IR through
IR+4, converts it to an RA+1 call with autorecall, writes it to
RA+1, drops the PP via a DPPM monitor function, and then
transfers control to PPR.

60454300 A 36-17

SAP - SET ADDRESSES FOR DUMP AND LOAD

SAP presets instructions with absolute FET buffer address for
data transfers between the FET buffer and PFU's buffer.

SAU - SET PFU ACTIVE FLAG

SAU sets a PF utility active flag at a specified address within
the utility's field length. The address of this flag is saved
internally to PFU so that the flag may be cleared by CAU before
PFU is dropped.

SBA - SET BUFFER ARGUMENTS

SBA reads FIRST, IN, OUT, and LIMIT fr-0m the FET into direct
cells FT through FT+1, IN through IN+1, OT through OT+1, and LM
through LM+1.

SCT - SET CATALOG TRACK

SCT reads the permanent file descriptor word and user index
from the utility. The catalog track for the user index is
determined via a call to subroutine SCA (COMPSCA - set catalog
address>. If the catalog track cannot be found, the following
diagnostic is issued and PFU is aborted.

PFU - CATALOG TRACK NOT FOUND.

SFC - SET FILE COMPLETE

SFC sets the file not busy bit in the FST for the file. FA is
cleared on return to the caller.

SFF - STORE FILE NAME AND FET ADDRESS

SFF completes the diagnostic message which is of the form:

filenam AT addr.

by supplying the file name and address.

SFT - SET FILE TYPE

SFT sets the file type and mode in the FNT entry for the
specified file.

SOC - STORE ONE CHARACTER

SOC stores one display code character at the position specified
in the call.

60454300 A 36-18

STS - STORE STRING

STS stores up to three characters at the position specified in
the call.

UFP - UPDATE FET POINTERS

UFP writes the IN pointer from direct cells to the FET and
reads the OUT pointer from the FET to its direct cells.

VCA - VALIDATE CENTRAL ADDRESS

VCA verifies that a central memory address falls within the
control point's field length.

VME - VALIDATE MASS STORAGE EQUIPMENT

VME checks that a specified equipment is a mass storage device.
If not, the following diagnostic is issued and PFU is aborted.

PFU - PARAMETER ERROR.

WIF - WRITE INTERLOCK FLAG

WIF sets/clears an interlock flag in the utility's field Length.

PFU COMMON DECK.S

PFU also uses the following common decks as common subroutines.

Common Deck

COMPCRA
COMPCRS
COMPCII
COMP CUT
COMPRSS
COMPS CA
COMPSDN
COMPS EI
COMPSNT
COMPS RA
COMPS TI
COMPSUT
COMPIRA

60454300 A

Description

Convert random address
Check recall status
Clear track interlock
Clear permanent file utility interlock
Read system sector
Set catalog address
Search for device number
Search for end-of-information
Set next track
Set random address
Set track interlock
Set permanent file utility interlock
Initialize random access processors

36-19

The following subsections describe the PFU functions.

OPN - OPEN FILE

The open file COPN) function includes t~e following options.

Function

00
01

Symbol

CTOP
CTOL

Description

No write lockout
With write Lockout

Upon entry to OPN, FET+O and FET+FTPM must have the following
format.

59 17 0

FET+O file name

+FTPM fst

f st FST for file

Upon exit from OPN, FET+1 and FET+FTLM have the following
format.

59 47 0

FET+1 en unchanged

+FTLM fa unchanged

en Equipment mnemonic
fa FNT address of file

OPN makes an FNT/FST
library type CLIFT),
for the file's FST.
the FNT for the CTOL
address are set into

60454300 A

entry for the specified file, makes it
and uses the FST entry passed in the FET
The write Lockout bit (bit 12> is set in
function. The equipment mnemonic and FNT
the FET before returning to the utility.

36-20 .

ACF - ADVANCE CATALOG FILE

The ACF function, CTAC <02), advances the position of the
catalog file to the next track in the chain and advances the
catalog interlock if set.

Upon entry to ACF, FET+O must have the following format.

59 17 0

FET +O ~---------------f-i-le_n_a_m __ e _________________ ~---....---------... -

ACF advances to the next catalog track by a call to subroutine
SNT (COMPSNT - set next track) which returns the next track in
the catalog chain. If the previous catalog track had been
interlocked (bit 9 of FST is set), then the previous catalog
track interlock is released by a call to subroutine CTI
(COMPCTI - clear track interlock) and the new track is
interlocked by a call to subroutine ST! (COMPSTI - set track
interlock). The file is then set to begin reading the new
catalog track.

RRD - READ DATA LIST

RRD, function CTRL (03), reads a List of files from disk to a
CM buffer.

60454300 A 36-21

Upon entry, the following FET words must be formatted as shown.

59 47 35 23 17 11 0

FET+O dot a file name

+FTRE rf me ad r I

+FTOL di ec

+FTPM 4000+dn f e Im

rf Recall flag:
0 Not recall call <zero word>
7777 RA+1 recall call

me Master equipment number
ad Alternate device numb~r
rl Remaining file length
dl Data list address
ec Element count of data list
dn Device number
fe Family equipment
Lm List modification date and time

RRD is the primary function used in permanent file dumping.
PFDUMP builds a data list buffer in its field length which
indicates the fileCs> to be dumped. The data list buffer
entries have the following format.

59 47 23 11

120008 + ci I If tk

ci Catalog index into catalog buffer
lf Length of file (indirect access only)
tk First track of file
sc First sector for indirect access files;

1/1,1/f,4/0,6/rd for direct access files
f 0 for normal processing;

0

SC

1 for forced dump Cno date checking)
rd Residency device number

RRD works through the data list dumping <copying the file data
to the DATA FET buffer> each file encountered.

60454300 A 36-22

For indirect access files, the FST for the DATA file is built
using the track and sector specified in the data List entry.
For direct access files, the DATA file FST is built, with the
equipment number and track information in the data List entry.
The system sector is validated by a call to CSS (check system
sector) to verify that the file may be dumped.

The data is transferred from mass storage to the FET buffer by
a call to LOB (Load buffer). When control is returned from LDB,
a check is made to determine if the EOI had been processed. If
the EOI had not been processed, a check is made to determine if
PFU should continue transferring data. If no PPs are available
or the file being dumped is a Large direct access file, the
recall word is set into FET word FTRE and the data list control
word is set into FET word FTDL and PFU drops. If PPs were
available <archive tape can be written simultaneously with
buffer filling) or the file being dumped is a Long direct
access file, RRD pauses by a call to PAR, sets the length for
the remaining read, and calls LDB to continue reading.

If an EOI had been processed, dumping proceeds with the next
element in the data List. Before continuing, however, direct
access file pointers are cleared and if a direct access file
was being dumped, master device pointers are restored (if the
file was not on the master device) and fast attach controls
updated (by a call to RRF - return fast attach file) if the
file was a FAFT file.

If there are no more data List items, the data List word is
cleared from the FET <word FTDW), the sector number is cleared
in the DATA file FST and PFU is dropped.

If RRD had been entered with a recall condition CFET word FTRE
set), the working direct cells are restored from FTRE and the
data transfer activity is resumed.

RRD uses a collection of subroutines that are primarily
associated with direct access file dumping.

Subroutine CSS (check system sector) is called to process the
direct access file's system sector. If the system sector
cannot be read, a bad system sector status is returned.

Once the system sector has been read, it is checked to
determine if the file can be dumped. Subroutine CDS (check
dump status) first determines if the file is a fast attach file
and if so calls subroutine FAF (fast attach file) to interlock
it for dumping. FAF searches the FNT for the file, and if
found, attaches it in read allow modify mode and sets the user
count using the PTRM/AFAS options on the IAUM and rues option
on the STBM monitor functions. If the file is successfully
attached, subroutine SFT is called to set the DATA file as a
permanent, read allow modify file and CDS returns to CSS with
the dump file status set to dump the file.

60454300 A 36-23

If the file is not a fast attach file or is ·not found in the FNT
as fast attach, the file's ~ode is checked CFCCA in the system
sector) and if the file is in write mode, that status is
returned to CSS.

If the file is attached in modify or extend mode, the DATA file
is set as a read allow modify Library file by a call to SFT and
COS returns to CSS with the dump status set to dump the file.

If the file is not attached in any mode allowing writing, the
DATA file is set as a read mode library file by a call to SFT.
If the force dump flag is set, the dump file status is set to
dump the file. Otherwise, the modification date is checked by
subr~utine CMO <check modification date) and that result is
returned to CSS by CDS.

Once CSS resumes control, it sets the file Length Cby a call to
subroutine SEI CCOMPSEI - search for end-of-information), sets
the working Length by a call to subroutine SOL <set direct
length), set first track and sector pointers, writes a control
word having the following format into the FET buffer, and
advances the IN pointer. CSS then returns to RRD with the dump
status.

59 47 23 0

st I If lb

st File Status:

0 Dump f i Le
1 File in write mode
2 Zero Length f i Le <no EOI)
4 Bad system sector
10 File does not meet modification date and time

criteria

Lf Length of file <includes EOI)

lb System sector linkage bytes

Subroutine RFF <return fast attach file) is used to return the
fast attack file after dumping. RFF returns the file using a
call to OFA and then resets the DATA file entry to a read mode
Library file by a call to SFT.

Subroutine SDL Cset direct access file Length) is used to
determine the amount of the file to dump <transfer> at one time.
The amount transferred in one LDB call is limited to the field
length of the utility.

60454300 A 36-24

LML - LOAD MAIN LOOP

Function 4, LML, processes CATS, PETS, and DATA files. Upon
entry, FET & FTPM has the following format.

59 53 35 17 0

FET+FTPM l~_d_n __ IL-------da_t_a ______ ~l ______ pe_t_s _______ l ______ p_a_f1 ____ __,I

Master device number
Address of DATA file FET (Q if no DATA FET)

dn
data
pets
paf l

Address of permits file FET <O if no permits FET)
PFU active f Lag address; set to one when the PFU
Load processor is activated and set to zero when the
PFU load processor completes or aborts.

LML is a separate overlay to PFU named 3FA. All the code
required for permanent file Loading by PFU is contained in this
overlay.

LML processes functions on each of the three utility files:
CATS, PETS, and DATA. These functions are passed in byte 4 of
the first word in each FET. The functions are as follows

Function

0
2
4

10

Description

Position file
Write f i Le
Read file (fill CATS buffer)
Completion of Load

The main loop of loading (LML) performs the following functions.

• Checks for functions on CATS and performs the function
desired.

• Checks for functions on PETS and performs the desired
function.

• Checks for functions on DATA and performs the desired
function.

• Checks for termination <termination function on CATS) and if
termination is not desired goes through the loop again.

When the termination function is set, the utility active flag
is cleared and PFU exits.

The operations (functions) performed follow the general pattern
of a call to subroutine PIO (preset I/0); a call to the function
processing subroutine, a call to subroutine CIO <complete I/O),
and then a check of the next FET for an operation to perform.
Unrecognized functions proceed to the next FET.

60454300 A 36-25

The function processors are as follows.

Function

PCF
PCW
PCR
PPF
PPW
PDF
POW

Description

Position catalog file
Process catalog write
Process catalog read
Position permit file
Process permit write
Position data file
Process data write

The load sequence begins with a call to subroutine PLL (preset
load loop). PLL reads the loading control word from FET word
FTPM. PLL sets the PF utility active flag by a call to
subroutine SAU. The device number, CATS FET address (from IR+3
through IR+4), FETS FET address, and DATA FET address are set
into direct cells. The CATS FET is set complete by a call to
CFS. If the PETS and DATA addresses are present, they are
validated by a VADDR request. The DATA address is then moved
to the input register IR+3 through IR+4, the files positioned
by a call to subroutine POF, the DATA FET completed by a call to
subroutine CFS, and control returned to the main Loop.

Subroutine POF (position files) works with the DATA and PETS
files. POF relies on the following informatio~ to be passed to
PFU in the DATA FET

59 4 7 35 23 17 11 0

FET+FTOW f e nf

+FTOL st eq ft tk SC

fe Equipment number of a family device
nf Noninitial load flag (zero to check that indirect

access file chain is empty, nonzero to bypass check>
st Status:

0 If beginning of file
1 If middle of indirect access file
3 If middle of direct access file

eq Master equipment number if middle of direct access
file

ft First track of indirect access file chain if middle
of direct access file

tk Current track of indirect access file chain if
middle of direct access file

sc Current sector of indirect access file chain if
middle of direct access file

After validating the DATA FNT/FST entry, POF finds the EOI for
the DATA file by a call to SEI. If processing an indirect

60454300 A 36-26

access file, the NF value from FTDW is checked to determine the
condition of the indirect chain. If NF is zero, the indi~ect
chain must be empty otherwise the following diagnostic is
issued and PFU is aborted.

DEVICE NOT INITIALIZED.

If PFU is not aborted, POF updates the current track and sector
fields in the data file FST by calling SFC. POF then sets the
last track and sector of the PETS file by performing the SEI/SFC
sequence. The current sector count of the PETS file is returned
to the PETS FET word FTSC in the following format.

59 47 0

FET +FT SC I sector count I unchanged

The PETS file is then set complete and control is returned to
the caller <PLL).

Load processing now continues its main Loop, processing
functions identified in the CATS, PETS, and DATA FETs.

Most functions are performed by subroutine call sequences that
begin with a call to subroutine PIO (preset I/0) and terminate
with a call to CIO (complete I/0).

Subroutine PIO sets up direct cells for reading or writing by
validating the file FNT/FST, initializing random addresses
(subroutine IRA), setting buffer addresses <subroutine SBA and
SAP), and clearing the sector count in subroutine SSC.

Subroutine CIO updates the status, current track, current
sector and equipment fields of the direct cell copy of the FST
and writes it to central memory using a call to SFC. The FET
completion bit (bit Q) is set to 1 to indicate that the
operation has completed.

60454300 A 36-27

CATS Position

Subroutine PCF (position catalog file> performs the positioning
of the catalog file. Word FTCA is read from the CATS FET and
subroutine SCT is called to identify the catalog track for the
specified user number. The current sector position is cleare~
and the current sector count cleared in subroutine SSC. The
FTCA word has the following format.

FET+FTCA
~35

17 0

pf d aui

pfd Addre~s of permanent file d~scriptor word
aui Address of user·index word

CATS Write

Subroutine ~CW <Process Catalog Write> calls subroutine SSC to
get the count of the number.of sectors remaining to be written.
If no sectors remain, the ~ector counter in SSCT f~r the CATS
file is cleared and PCW returns to the caller.

If sectors remain, the control word is read from the FET buffer
by a call to RCW Cread control w~rd>. Su~routine PCA (process
CATS addressing) is called to set the track CT6) and sector CT7>
pointers from the control word.

59 53 47 35 23 0

l __ '_Y__..~ l-o_..l ____ t_k __ __. ____ s_c ____ ~l-------'-1n_ka_9_• ______ ~(·

ty 2 if EOI
1 if EOF
0 if EOR or full sector

r Rewrite:

0 Normal
1 Rewrite in place

tk If nonzero, tk and sc are the random position
for the catalog file; otherwise the current
position is used

60454300 A 36-28

The channel is
buffer to mass
is transferred
error occurs ..
sector counter
caller.

reserved and the data transferred frqm the FET
storage by subroutine EMB (empty buffer). Data
until the EOI has been reached or a mass stor~ge
If an error occurs, the channel is released, the
is cleared (SSCT) and control is returned o the

At end-of-information, subroutine PCE (process catalog EOI) is
called, the sector counter is cleared (SSCT), and control is
returned to the caller.

CATS Read

Subroutine PCR (process catalog read) modifies the LDB
subroutine to bypass field length counting, reserves the
channel, positions, and calls LOB to read the catalog to the
CATS FET buffer. The channel is then released and control is
returned to the caller.

If a normal write is indicated in the sector control word,
subroutine PCE writes an EOI sector if one has not already been
written and then releases the channel and returns to the caller.
If a rewrite is indicated, PCE merely releases the channel and
returns to the caller.

The ty field of the last sector written is used to determine if
an EOI sector has already been written. If an EOI sector must be
written by PCE, WDS is called with the write last sector option
<WLSF). Errors in the write are ignored, to be caught when the
next sector of catalog entries is written.

PETS Position

Subroutine PPF (position permit file) reads the FTPM word from
the PETS FET and stores the random address in direct cells RI
through RI+1. Subroutine CRA (convert random address) is called
to compute the track (T6) and sector (T7) for the random
address. If the random address is not on the file, the
following diagnostic is issued and PFU is aborted. Otherwise,
subroutine CIO is called and PPF returns to the main Loop.

PFU - PARAMETER ERROR.

The format of FTPM is as follows.

59 23 0

FET+FTPMW~ random address

60454300 A 36-29

PETS Write

Subroutine PPW (process permit write) calls subroutine SSC to
determine if there is data available in the FET buffer. If
none is available, PPW returns to the caller. If data is
present, the channel is reserved and the permit data
transferred by a call to subroutine EMS (empty buffer). PPW
l o op· s on ca l l s to EM B · u n t i l t h e bu f f e r i s empt y o r a ma s s ·
storage error occurs.

If an error occurs, the channel is released and subroutine STE
is called to set an EOI in the TRT. PPW returns to the caller
upon return from STE.

When all permit data has been written, PPW checks the beginning
of files table for PETS CBEGF) and determines if an EOI has
already been written. If not, subroutine WEI is called to
write one. PPW then releases the channel, sets the EOI in the
TRT by a call to STE, and returns to the main loop.

DATA Position

Subroutine PDF (position data file) checks the direct access
flag CDA, ~et by POF) and, if set calls subroutine EDF Cend
direct access file) to restore master device c~ntrols in DSLA
and reset the DATA FST to point to the current indirect chain
mass storage position. EDF clears DA before returning.

PDF then sets the beginning of file flag in BEGF and reads the
FTPM work from the DATA FET. This word has the following
format.

59 35 23 11 0

FET+FTPM ~ tf tk

f 0 if track and sector position request:

60454300 A

tf Ignored
tk Track
pm Sector

File is positioned to the sector preceding the tk/pm
location

1 if drop and flaw track request:

tf a if no track to flaw or track to flaw
Cif nonzero>

tk First track to be dropped
pm Equipment Clower 6 bits).

Track chain is dropped and track is optionally flawed.

36-30

If the request is for a track and sector positioning, PDF calls
subroutine TSP (track and sector position) which returns the
track (T6) and sector CT7) of the PRU preceding the track and
sector specified in FTPM. If the address is not on the file,
the diagnostic PFU - PARAMETER ERROR is issued and PFU is
aborted. If not aborted, PDF calls subroutine STE to set an
EOI at the new track and sector. Subroutine SOS <save data
state) is called to save the current state of the data file in
word FTDL of the DATA FET. Since the beginning of file flag is
set (BEGF), FTDL is set to zero and control is returned to PDF.
Subroutine CIO is called and control is returned to the main
Loop.

If the request is for a drop and flaw track request, PDF calls
subroutine OFT <drop and flaw track) which drops the track chain
using the DTKM monitor function. If a track is to be flawed,
OFT issues an STBM function with option STFS to set the track
flaw. The following diagnostic is issued if the track is
successfully flawed.

PFU - TRACK FLAWED, EQxx, Tyyyy.

Subroutine SOS is called by PDF to clear FTDL, subroutine CIO is
called to complete the operation, and control is returned to the
caller.

DATA Write

Subroutine POW (process data write) begins with a call to SSC
(set sector count). If there is no data to be transferred,
control is returned to the caller. Otherwise, the control word
is read from the FET buffer using a call to subroutine RCW.
Subroutine PBF (process beginning of file) is called. If the
file has already been started (BEGF is not set, subroutine PBF
returns to POW. Otherwise subroutine PBF begins the file as
follows.

Subroutine BDF (begin direct access file) is called if the file
is to be a direct access file. Subroutine BDF begins by
reading the file name from the catalog entry at the address
passed through the control word. Master device mass storage
parameters are saved in DSLA as follows.

59

DSLA I md

md
TS
FS+1
T6
T7

60454300 A

47 35

T5 FS+1

Master device number
Master device equipment
First track
Current track
Current sector

23 11 0

T6 T7

36-31

BDF then calls subroutine PDA (process direct access file)
which completed OSLA by setting the master device (MO),
initializes mass storage parameters for the residency device,
and sets the direct access flag CDA>. Subroutine BDF then
calls subroutine RTK (request tracks) to obtain a track chain
for the file.

Subroutine SDF builds the system sector for the direct access
file, sets the preserved file status CSPFS subfunction to STSM)
reserves the channel and writes the system sect~r. SOF then
resets central memory addresses using a call to subroutine SAP,
if necessary, writes the DATA file FST entry, and returns to
subroutine PSF.

Subroutine SIF (begin indirect access file) is called if the
file is an indirect access file. Subroutine SIF increments the
current sector and if not at the track sector limit returns to
sub~outine PSF. If sector limit is reached, subroutine SNT is
called to move to the next track. If there is not a next track,
subroutine RTK is called to reserve more tracks. When the
tracks have been obtained, control returns to PSF.

Having begun the direct or indirect file, subroutine PSF calls
subroutine RSA C~eturn beginning address) which writes the
beginning track and sector information into the·catalog entry
in PFLOAO's field length. Subroutine PSF then clears the begin
file flag CSEGF) and returns to subroutine POW.

Upon return from subroutine PSF, subroutine POW reserves the
channel and calls EMB Cempty buffer) to transfer the data to
mass storage. Control returns from EMS in three cases: buffer
empty, mass storage error, or EOI written and buffer not empty.
In the first two cases, the SEGF flag is checked to determine
if an EOI has been written. If an EOI has not been written, an
EOI is for~ed using a call to WEI, the channel is released, and
the EOI is set in the TRT usin~ a call to STE. If an EOI has
been written, the channel is released, and subroutine PEF
(process end-of-file) is called with IAF processing desired.
Control now returns to the main loop. If an EOI is written and
the buffer is not empty, subroutine POW releases the channel
and reads the next control word from the buffer using a call to
subroutine RCW.

Subroutine PEF (process end of file> is called to. end the
curreril file base depending upon what the next file is. If
both the current file and the next are indirect access,
subroutine PEF returns to the caller. If either file is a
direct, subroutine STE is called to set an EOI in the TRT. If
the current file is a direct, subroutine EDP is called to
restore the DATA file FST to reflect the indirect chain
pointers, clear the direct access flag COA), and reset master
device controls from DSLA.

60454~00 A 36-32

The following decision table shows subroutine PEF operation.

--------------------~--------
I Next I Current File I
I File I IAF I OAF I
!---------------------------!
I I I I
I !AF I Return I STE/EDPI
I I I I
1---------------------------1
I I I I
I OAF I STE I STE/EDPI
I I I I

After subroutine PEF has ended the file, POW proceeds from the
process beginning of file step again.

EMB - Empty Buff er

Subroutine EMB transfers data from the FET buffer in the
utility's field length and writes that data on mass storage.
Since subroutine EMB is used to write all three files (CATS,
PETS and DATA) it must be somewhat dependent upon the file
being written and the control word associated with it.

After the data has been. read from central memory, subroutine
EMB advances T7 (current sector) to the next sector. If the
next sector is the track sector Limit, processing depends upon
the file itself. Catalog tracks are not linked in the same
manner as other mass storage tracks. If the CATS file is being
processed, the control word is checked for the type of
operation (byte 0). If the operation is not an EOI Cope ration
not 2>, subroutine EMB calls subroutine PCE (process catalog
EOI) to write an EOI sector if necessary; subroutine PCL
(process catalog Linkage) to identify (create, if necessary)
the catalog overflow track; requests the channel; and positions
to write on the overflow track.

If the track overflow occurs when an EOI is being written,
subroutine EMB writes the EOI and continues.

If the current write is not on the catalog file (but still at
track Limit), subroutine EMB determines if a next track is ·
available, using a call to SNT, and obtains a track chain if
necessary.

Subroutine EMB now continues, building track Linkage bytes
based on the next track, sector, and the type of operation
specified in the control word.
The sector is then written to mass storage Ca call to WEI is
done if writing an EOI). If the utility program has moved (RA

60454300 A 36-33

changed), subroutine SAP is called to reset absolute buffer
address to reflect the new RA. Subroutine EMB then advances to
the next sector or sets the BEGF flag to 1, depending upon the
linkage bytes for the sector.

Subroutine EMB now decides to continue or exit. If there are
no sectors Left to tran~fer, subroutine SSC is called to
determine if more sectors are present in the buffer. If no
sectors are present, subroutine EMB returns to the caller with
an empty buffer status. If sectors are present, BEGF is
interrogated and if nonzero, subroutine EMB returns to the
caller with that status. This indicates that an EOI was
writt~n but the buffer is not empty. If BEGF is still zero,
subroutine EMB loops to read the next block of data from
central memory.

The final exit condition is for write errors. All write
operations are done with MSEO user error processing CUERP)
selected. This allows subroutine EMB to regain control on
write errors. Subroutine PWE (process write errors) is called
if an error occurs. Subroutine PWE sets the write error code
CFTWE=1> into the first word of t~e FET Cbits 17 through 12)
and rewrites that word. The EOI flag is set in BEGF <that is,
BEGF=1>, the FST entry of the file <with the current track and
sector updated) is written to the FET at word FTPM and the
sector counter CSSCT> for the file is set to reflect the amount
of data in the buffer. Subroutine EMB then returns to the
caller with write error status set.

STU - SET PF UTILITY INTERLOCK

Function 05 CCTSU) sets permanent file utility interlocks.
Upon entry, FET + FTPM has the following format.

59 53 47 17

FET+FTPM ~ EQ ~ intf

eq
intf

Equipment to set utility interlock on
Interlock flag address; set to one when the
PF utility interlock is set; set to two if
PFU has to go on recall to wait for no PF
activity

0

STU attempts to set the permanent file utility interlock for
the equipment specified. STU uses subroutine FAR (force auto
recall) to ensure that PFU is called with autorecall. This is
done so that PFU may reissue the STU request to RA+1 if the
attempt to set the utility interlock fails. If PFU is not called
with autorecall the following diagnostic is issued and PFU is
aborted.

PFU - PARAMETER ERROR.

60454300 A 36-34

The attempt to obtain the utility interlock is made by a call
to subroutine SUT (COMPSUT - set utility interlock). If the
utility interlock is successfully set, subroutine WIF <write
interlock flag) is called to set the interlock flag to one and
then PFU is dropped. If the interlock is not set, the STU
request is rewritten to RA+1 and PFU is dropped. If subroutine
SUT sets the request for PF system interlock as part of its
processing, the interlock flag in CM is set to two before the
STU function is placed on r~call. The interlock flag enables
the calling utility to determine when an interlock is actually
set and to clear it should an abort occur.

Subroutine SUT returns status to the STU function if the
utility interlock could not be set because it was already set
or if PF system activity prohibits setting the interlock. If
system activity prohibits the interlock, subroutine SUT toggles
the request for PF system interlock bit. Toggling this bit
causes alternating periods of time when the bit is set and when
it is clear. Thus new PF activity is alternately disabled and
enabled for ~ne second intervals (pp recall delay) until the
utility interlock can be set. If the request for PF system
interlock bit were set every time the STU function were
recalled, activities such as a PFDUMP could cause STU to lock
out all new permanent file activity for considerable periods of
time.

CLU - CLEAR PF UTILITY INTERLOCK

CLU, function 06 (CTCU), is used to clear the interlock set by
STU. Upon entry, FET + FTPM has the following format.

59 53 47 17 0

FET+FTPM ~ EQ ~ intf

eq
intf

Equipment to clear utility interlock on
Interlock flag address; if this word is equal to
one the utility interlock is cleared, otherwise the
request for PF system interlock will be cleared;
the word is set to zero when one of the interlocks
is cleared

If the interlock word is 1, CLU clears the interlock by a call
to subroutine CUT (clear utility interlock). Otherwise, the
permanent file system interlock request is cleared by a call to
subroutine PIR (process interlock request) with option CIRS
<clear request for interlock). PIR is part of common deck
COMPSUT. In all cases the interlock flag word is cleared by a
call to WIF.

60454300 A 36-35

RCF - REWIND CATALOG FILE

Function 07 (CTRC) rewinds catalog files. Upon entry FET+O is
formatted as follows.

59 17 0

FET+ol ~---------------f-i-le_n_a_m_e _________________ ~ __ _...._, -....

This function is used rather th~n a CIO rewind since the
catalog file CCATS) does not have system sectors (that is,
catalog data begins in sector zero). The current sector is set
to 0 and current track is set to the first track in the FST.

CHF - CHANGE FILE NAME

Function 10 CCTCF) changes the file name. Upon entry, FET+O
and FET+FTDL are formatted as follows.

59 17 0

FET+O old file name

+FTDL new filename

CHF finds the old file name in the FNT, replaces the file name
with the new file name, and replaces the old file name with the
new file name in the FET.

If the file is not found, one is created.

60454300 A 36-36

SFL - SET FILE LENGTH

Function 11 (CTFL) determines the Length of a file. Upon entry,
FET+O and FET+FTPM have the following format.

FET+O

+FTPM

eq
tk

59 53 47 17 11

file name

tk

Equipment file resides on
First track of file; if zero the first track is
taken from the FST for the fi Le

Upon exit, FET+FTPM has the following format.

0

59 2.3 0

FET+FTPM [...._ ______ ~ ___ u_n_c_h_an_g_e_d _____________ l ______ -+-f-il_e_ie_n_g_t_h _______ I

SFL finds the file in the FNT. If TK is not specified, the
first track field of the FST is used. The equipment for the
file is verified to ensure that it is a mass storage device. If
it is not mass storage, the following diagnostic is issued and
PFU is aborted.

PFU - PARAMETER ERROR.

If not aborted, SFL then calls subroutine SEI (COMPSEI - search
for end of information) and returns the Length of the file from
the track specified to the EOI.

SEC - SET CATALOG TRACK INTERLOCK

Function 12 CCTSC) sets the catalog track interlock. Upon
entry, FET+O contains the file name, left-justified.

SEC finds the file in the FNT an~ ensures that the equipment for
the file is mass storage. If it is not mass storage, the
following diagnostic is issued and PFU is aborted.

PFU - PARAMETER ERROR.

60454300 A 36-37

If bit 9 is set in the FST entry, the track is already
interlocked and PFU aborts with the following diagnostic.

PFU - TRACK INTERLOCK ALREADY SET ON filenam AT address.

If the track is not interlocked for the file, SEC calls
subroutine STI CCOMPSTI - set track interlock) to set the track
interlock. If successful, bit 9 is set in the FST. If the
interlock was not set, PFU is aborted with the following
diagnostic.

PFU ABORTED.

CLC - CLEAR CATALOG TRACK INTERLOCK

Function 13 CCTCC) is used to clear the interlock set by SEC.
Upon entry, FET+O contains the file name, left-justified. The
equipment and first track of the file define the track to clear
the interlock on.

CLC finds the file in the FNT and ensures that the equipment for
the file is mass storage. If it is not mass storage, the
following diagnostic is issued and PFU is aborted.

PFU - PARAMETER ERROR.

If bit 9 in th• FST is not set, PFU aborts with the following
diagnostic.

PFU - TRACK INTERLOCK ALREADY CLEAR ON filenam AT addr.

Otherwise the interlock is cleared by a call to common deck
C o M P C T I • T h e i n t e r l o c k b i t i n t h e F $· T (b i t 9) i s a l s o c l e a r e d •

SES - SET ERROR IDLE STATUS

Function 14 CCTBI> sets error idle status. Upon entry, FET+O
has the following format.

eq Equipment to set error idle status on

SES sets the error idle bit in the MST using the SGBS
subfunction of the STBM monitor function.

60454300 A 36-38

LCT - LOCATE CATALOG TRACK

Function 15 CCTCT) locates the catalog track. Upon entry, FET +
FTPM has the following format.

59 35 17 0

FET+FTPM~ pfd aui

pfd Address of permanent file description word
aui Address of user index word

Upon exit, FET+FTPM has the following format.

59 17 11 0

FET+FTPMI ~-----------------0 ________________ __.l __ e_q__..l ____ c_t ____ I

eq Equipment number of master device
ct Catalog track of user

LCT makes a call to subroutine SCT, which returns the equipment
and catalog track for the given user index.

The format of the Permanent Fjle Descr~p~i~n ~ord is as follows.

59 I'.."'"• 17 11 0

PFD -' ----p-n _____ l _eq--~------~
pn Pack name if upper byte is n-0nzero; otherwise

ignored ~
eq Equipment number of any family member if upper

byte of pack name is zero; otherwise ignored

60454300 A 36-39

IAC - INCREMENT PF ACTIVITY COUNT

Function 16 CCTIA) increment$ the permanent file activity count.
Upon entry, FET+FTPM has the following format.

59 17 0

FEHFTPM~~~ intf

int f Interlock flag address; this word is set to one
when the PF activity count is incremented.

IAC verifies that PFU has been called with autorecall by a call
to subroutine FAR.

IAC requests that the permanent file activity count be
incremented by using the !PAS option to subroutine PIR. If the
interlock is not obtained, PFU goes on recall using a call to
RPP.

If the interlock was obtained, the interlock flag is set using
a call to subroutine WIF.

DAC - DECREMENT PF ACTIVITY COUNT

Function 17 CCTDA) is used to decremeht the activity count set
by !AC. Upon entry, FET+FTPM has the following format.

~ 17 0

FET+FTPM~ intf

intf Interlock flag address; this word is set to zero
when the PF activity count is decremented

DAC requests that the permanent file activity count be
decremented using the DPAS option to subroutine PIR. The
interlock flag is then cleared using a call to subroutine WIF.

60454300 A 36-40

TSU - TEST PFU INTERLOCK

Function 20 CCTTU) tests for a permanent file utility interlock.
Upon entry, FET+FTPM has the following format.

59 53 47 17 0

FET+FTPM ~ eq ~ intf

Equipment to test utility interlock on eq
intf Interlock f Lag address; this word is set to one if

the utility interlock is set and to zero if the
interlock is clear.

TSU obtains the Utility interlock status of the specified
device using. the TGBS subfunction of the STBM monitor function.
The 4-bit utility interlock mask field is extracted from the
STBM return status and written to the interlock f Lag word using
subroutine WIF.

PF UTILITY PROGRAMS

The Permanent File utility programs have entry points PFATC1,
PFCAT1, PFCOPY1, PFDUMP1, and PFLOAD1 and are found in decks
PFATC, PFCAT, PFCOPY, PFDUMP, and PFLOAD, respectively.

The key to the output Listings produced by these utilities is
common deck COMCFCE - format catalog_entry for output. FCE
converts and formats a catalog entry into two 70 character
Lines for output. Default header Lines may be retrieved by the
calling program, if desired, by referencing the Locations CHDR1
and CHDR2. The caller may optionally request that the file
Length be formatted in characters or sectors, the user index be
formatted, or a four decimal digit Line number be attached to
the beginning of the Line.

FCE maps the internal codes for access modes, file types,
permission modes and the creating subsystem type into
appropriate display code equivalences.

60454300 A 36-41

COMCMAC macro EDCAT calls FCE.
format.

This macro has the following

LOCATION OPERATION VARIABLE SUllFlf.lDS

EDCAT 1caddr, waddr, lnum, len, index

Address of catalog entry caddr
waddr Address of working storage area <14 CM words)

to return edited catalog entry to
Lnum Line number to be added to beginning of first

Line
Len
index

INTERLOCKS

Length code <1 ; sectors, 0 = characters)
Nonzero if index field is to be Listed

The permanent file utilities make use of the foLL~wing
interlock and act_ivity controls available in NOS.

Permanent File Activity Count

The permanent file activity count is a count of the number of
routines currently accessing the permanent file system. This
count is maintained in the PFKL word in low core CMR.

Permanent File Utility Interlock

The permanent file utility interlock is a bit that is set in
the MST for a device to indicate that a recovery,
initialization or permanent file Loading activity is being
performed on that device. The setting of the permanent file
utility interlock means that the routine requesting the
interlock requires exclusive usage of the device. When set,
the permanent file utility interlock ensures that no new
permanent file activity will be initiated on a device. In
order to ensure that no activity actually exists on the device,
the PF system interlock is obtained while the utility interlock
is being set.

Total PF Interlock

The total or system permanent file interlock is an interlock set
in PFNL that prohibits permanent file activity. This interlock
can only be obtained when the permanent file activity count is
zero.

60454300 A 36-42

Catalog Track Interlock

The catalog track interlock is ~et on a particular catalog
track to insure that neither the catalog' t.rack nor any of the
files pointed to by the catalog entries in that catalog track
are modified.

PFU functions are used by the utility programs to secure the
interlock or manipulate the activity count.

PFATC UTILITY

PFATC is a permanent file utility pro~ram that catalogs archive
fi Les.

PFATC reads the archive file and lists the catalog entry by an
EDCAT macro call (LO = T option-default) and list the catalog
image record (CIR) (LO= C option). ·

Samples of PFATC output may be found in the NOS System
Maintenance Reference Manual.

The main routine of PFATC is f lowcharted in figure 36-4.

60454300 A 36-43

set error
ex it co ntro I

PIT

process input
tape

SER

skip to
EOR

PCB PCI
procass process
catalog catalog
block image

Figure 36-4. PFATC

no

60454300 A 36-44

no

issue message

CATALOG
COMPLETE

END RUN

PIT
process
input
tape

rewind and
return tape

issue message
NO FILES

PROCESSED

issue message
~--..CHECK DAVFILE

FOR ERRORS

Figure 36-4. PFATC (Continued)

60454300 A 36-45

PFCAT UTILITY

PFCAT is a permanent file utility program which generates
~eports from the permanent file catalog tracks on a master
device. The reports generated are as followso

• Listing of catalog file with files grouped by user index
(LO=T).

• Statistical report of device usage CLO=S>.

In the case of the first report CLO=T>, a status listing of the
mass storage configuration showinQ the usage of each mass
storage device is also printed.

A flowchart of PFCAT is shown in figure 36-5.

60454300 A 36-46

set up LO=T
listing

no

set up
LO=S
listing

WSR
write

statistical
report

issue message
PFCAT

COMPLETE

END RUN

issue message
NO FILES

PROCESSED

issue message
>----..CHECK DAYFILE

FOR ERRORS

Figure 36-5. PFCAT

60454300 A 36-47

PFCOPY UTILITY

PFCOPY is a permanent file utility program that extracts files
from an archive file and copies them to one or more Local files.

PFCOPY copies files from the archive tape to local files at the
control point a If a master fi Le CMF) has been specified, all
files are copied ~o that local file, otherwise files are copied
to local files having the same name. Each file may be preceded
by its catalog and permit entries if the Q option had been
specified.

PFCOPY. uses the CTCF PFU function to change names of various
files at the control point. PFCOPY is the only utility that
uses CTCF and does so only to avoid conflict between data file
names and the archive file name.

A flowchart of PFCOPY is shown in figure 36-6.

60454300 A 36-48

PIT
process

input
tape

PCB
process
catalog
block

process
permit
block

process
data
block

Figure 36-6. PFCOPY

60454300 A 36-49

PFDUMP UTILITY

PFDUMP is a permanent file utility that copies files stored on a
permanent file device to a backup storage <archive) file. The
files archived by PFDUMP may be restored by the PFLOAD utility.

The dumping of permanent files has many options. A full dump
is a dump of the entire family or removable pack in which only
the family or pack name is specified Cno options selected by
the OP keyword. A selective or incremental dump is a dump of a
family, device, or removable pack in which the modification
date option COP=M) has been specified. If any option other
than M is specified, the dump produced is said to be a partial
dump.

Permanent file dumps do not require the system to be idle.
However, as each catalog track is being processed, no user may
access any files defined on that catalog track.

A flowchart of PFOUMP main routine is shown in figure 36-7.

60454300 A 36-50

PAS

preset

SND

set next
device

send
device

messages

form
catalog

track mask

PFU: CTRL

read data
list

locate next
catalog entry

transfer
catalog

to holding area

issue message
no CATALOG

INDEX OUT OF
RANGE

Figure 36-7. PFDUMP

no

60454300 A 36-51

send device
messages

TAF

terminate
archive file

return
dump files

CATS, DATA,
PETS

issue message
>--.,.CHECK DAVFILE

FOR ERRORS

flush output,
return PURGE

file

restore user
PF parameters

initiate ENDRUN
catalog file

read purge files

Figure 36-7. PFDUMP (Continued)

60454300 A 36-52

60454300 A

build Pf DUMP
control word

for catalog1 entry

write
catalog

to archive file

WDB
write data

block
to archive file

yes add entry
to PURGE

file

MCO

move catalog
to output

RPF

copy permits
to archive file

Figure 36-7. PFDUMP (Continued)

36-53

PFOUMP obtains information and data for a permanent file by
using PFU calls and writes this information on an archive file
that is usually a magnetic tape file.

This discussion of PFDUMP concentrates on the following areas.

• Obtaining the file from the permanent file subsystem

• Writing the archive file

• Error processing

• Interlocking

Obtaining the File

Obtaining the file from the permanent file system consists of
device selection and file selection. Device selection is done
during PFDUMP preset based on information read from the EST and
MST contained in CMR. File selection is performed during
dumping and is based on information read from the permanent
file catalogs and direct access file system sectors.

Devi.ce Selection

Device selection consists of subroutines BMT (build mass storage
tables>, SBS Cset boolean selection parameters>, SSP (set
selection parameters>, and SMP (set master device parameters).
These subroutines build or access th~ MSTT (table of MST
information) which is a table of information extracted from the
MST for each device under consideration. This table has the
following format.

59

MSTT+O

+1

data
cats
pets
nctr
eq
dn
UC
s
mn
sm
dm

60454300 A

47 35 29 23 17 15 11 7 5

data cats pets nctr

0 UC s mn 0

First track of indirect data chain
First catalog track
First track of permit chain
Number of catalog tracks
Equipment number of device
Device number
Unit count - 1
On/off status
Equipment mnemonic

sm

Secondary mask Cdirect access files)

eq

0

dn

dm

Device mask (indirect access files and catalogs)

36-54

The MSTT is built by subroutine BMT. BMT reads the EST and
MSTs for mass storage devices using the RSB monitor function.
A device is included in the MSTT if it meets family, pack name
and user number selections <keywords FM, PN, and UN) supplied
in the utility call. The MSTT is terminated by two zero words.

Subroutine SBS correlates the device selections supplied in the
utility call (keywords DN, TD, DI, and DD) to devices entered
in the MSTT. The output from this correlation is a List of
boolean file selection parameters CBFSP). Each item in the
List is a boolean selection property and is represented by a
bit in the word BFSP. For example, the condition device number
was specified CDN=xx> is represented by the bit position
defined by symbol DNSP. If the device number was specified,
bit position DNSP is set to 1 (true). If not, bit position
DNSP is set to 0 (false). ·

The symbols and their conditions are as follows.

Symbol

DAFO
DIDN
DISP
DITD
DNMD
DNSP
ONTO
FNFS
IAFO
TDMD
TDSP

Condition

Direct access files only COP=D)
DI cataloged on DN
DI specifed CDI=xx)
DI cataloged on TD
DN is a master device
DN specified (DN=xx>
DN same as TD
Force no files selected
Indirect access files only COP=!)
TD is a master device
TD specified CTD=xx)

In addition to producing the BFSP list, SBS modifies the
destination device converted parameter CCPDD) to include ~he
address of the MSTT entry of the destination device if one was
specified.

Subroutine SSP interrogates BFSP and sets the single device
status CFSSD), alternate device selection CFSAD), secondary
alternate device selection CFSSA) and sets the first entry in
the MSTT to the first device to be processed. The values set
by SSP are used primarily by subroutine SND Cset next device)
to select the next device to be dumped.

The alternate device selection, when nonzero, requires that a
file be resident on the alternate device. If the alternate
device selection is zero after the first master device has been
processed, the secondary alternate device selection replaces it.
Thus if a secondary alternate device selection is present but
the alternate device selection is not, files residing anywhere
are selected from the first master device, but only files
resident on the secondary alternate device are selected for
subsequent master devices. The secondary alternate device
selection is used for processing the true device option (TD).

SSP calls subroutine EBE (evaluate boolean expression) to
determine if the desired condition has been properly selected;

60454300 A 36-55

that is, appropriate bits are set in BFSP that agree with a
file selection boolean expression. The selection expression is
built through a macro CBOOL) using the boolean file selection
variables described above. Each expression is referenced by a
location where the mask is stored for the bits that must be set
in BFSP for the condition to have been met. The expressions
are as follows.

Symbol Condition Tested

SDFL Single device selected
ADON ON i s alternate device
ADTD TD i s alternate device
SATO TD is secondary alternate device
FMDN ON ; s first master device
FMTD TO is first master device
FMDI DI ; s first master device
NFSL No f i l es selected

Subroutine SMP builds the permanent file description word CPDWD)
for the device being dumped and sets the number of catalog
tracks CNCAT) and device mask <MASK) using the MSTT and single
device selection (FSSD). The PDWD has the following format.

59 17 11 0

pn

pn 0 if a family dump; pack name if an auxiliary
device dump

eq Equipment number of a family member if a family
dump; 0 if an auxiliary device dump

If an auxiliary device is being dumped, the pack name, unit
count, and equipment mnemonic are set in the PURGF FET so that
files may be properly purged if the OP=P option is selected.

File Selection

Subroutine RCE (read catalog entries>, GRL (generate read list)
and SOL <sort data list) are used to prepare a list of files to
be read using the PFU function CTRL. Subroutine RCE reads
catalog entries from the CATS file into a working ·buffer.
These catalog entries are analyzed by GRL to build a list of
files meeting the selection criteria for the dump. Subroutine
SOL then sorts the list in order by track and sector to
minimize mass storage positioning.

Each file is analyzed by subroutine GRL to determine if it
meets the selection parameters specified for the dump. The
direct only COP=D> and indirect only COP=I> selection

60454300 A 36-56

parameters are evaluated by GRL. Subroutine CSP (check
selective parameters) is called to evaluate the user index CUI),
permanent file name CPF), device residency CON and TD), and
date/time COP=B,M,C,A,DT, and TM) selection parameters. For
each file selected, GRL builds a read list entry in the
following format.

59 47 23 11 0

I 2000B+ci I If tk SC

ci Catalog index into catalog buffer
lf Length of file (indirect access only)
tk First track of file
sc First sector for indirect access files; for

direct access files, bit 11 is set, bit 10 is
zero for normal processing or one for a forced
dump <no date checking), bits 9 through 6 are
zero, and bits 5 through zero are the residency
device number

For direct access files, GRL also calls subroutine CDS Ccheck
device status) to verify that the residency device for the file
exists in the system CMSTT>. If not, the following diagnostic
is issued and the file is skipped.

PFDUMP - DEVICE NOT FOUND, FN=nnnnnnn,UI=uuuuuu,DN=dd.

A final selection process is peformed for direct access files
when PFU reads the system sector for the file. For incremental
dumps COP=M) the Last modification date is passed to PFU as a
read function (CTRL) parameter~ PFU compares that date with
the Last modification date in the system sector of each direct
access file encountered in the read list. A system sector
control word is written to the data file buffer to indicate the
status of this comparison and other possible error conditions.
The file is copied to the buffer only if the modification date
is satisfied and no error condition is detected. PFDUMP reads
the system sector control word using subroutine RPR (read PRU)
and analyzes it using subroutine CFS <check file status).
Error conditions indicated in the control word are identified
with one of the following diagnostics.

OAF BUSY.
OAF ZERO LENGTH.
BAD SYSTEM SECTOR.

Selecting a Device to Dump

Subroutine SND <set next device) is called from the main loop of
PFDUMP to select the next device to be dumped.

60454300 A 36-57

On the first call, SND scans the table of MST information CMSTT>
for the first master device. If a master device is found,
information from MSTT is used to set the master device
description CMDOS), catalog description user index CPDUI),
master equipment number CMAEQ), number of catalog tracks CNCAT>,
and the master device number CCPAR+CPON). The files CATS, PETS,
and DATA are set up for the master device using calls to the
PFU function CTOL. The catalog track interlock is set
according to POUi using the CTSC option of the PCINT (process
catalog interlock) macro. Status is th~n return~d to the
caller indicating the device number to.be processed C-1 for an
auxiliary device> or zero if no master device was found. For
alternate device du~ps the device number returned is the
alternate device rather than the master device.

On subsequent calls, SNO clears the catalog track interlock for
the master device being processed. If a single device dump is
not being performed, MSTT is scanned for the next master device.
If another master device is found, the master device parameters
are set up, the CATS, PETS, and DATA files are opened and the
catalog track interlock is set for the new master device. As
in the first call, status is returned, indicating the device
number to be processed C-1 for an ·auxiliary device) or zero if
no more master devices remain to be processed.

Writing the Archive File

The archive file is assigned to the control point using the
LABEL macro. If the archive file has not been pre-assigned
<assigned to the control point prior to the utility call>, the
LABEL macro requests a tape having the specified track type
with the installation density. A tape, mass storage, or null
equipment may be assigned to the archive file by the console
operator in response to the flashing label request. The file
is opened with read/no re~ind and the file IO is set to O.
This same logic is followed for the verifica~ion file if one is
desired <keyword V and VF>. Both files are ~ewound unless the
no rewind CNR) option is selected.

60454300 A 36-58

Writing and positioning of the archive file (and the archive
verify file if necessary) is accomplished using the ARCHIVE
macro. The type of operation to be performed is selected using
the function code option of the macro. The ARCHIVE macro has
the following format.

LOCATION OPERATION VARIABLE SUBFIELDS

ARCHIVE fnc,pl,p2

fnc Function code mnemonic:

WR I TEW

WRITER

WRITEF

SKIP FF

FLUSH

Write words on archive file;
pt = working buffer address,
p2 = word count
Write EOR on archive file <no
parameters)
Write EOF on archive file <no
parameters)
Skip archive file
forward; p1 = file count to skip
Flush archive file buffer <no
parameters)

p1 First parameter

p2 Second parameter

The ARCHIVE macro sets up the appropriate parameters in
registers and cal Ls subrouti.ne PAF (process archive fi Le
operation). PAF processes the WRITEW, WRITER, and WRITEF
options of the ARCHIVE macro using the PFDUMP defined CWWRITE
macro. The CWWRITE macro in turn calls subroutine CWW (control
word write) which interfaces similarly to the system common
deck COMCWTW but performs control word I/O rather than buffer
write 1/0.

The SKIPFF option is processed using the SKIPFF system macro.
The FLUSH option is processed using a call to the subroutine FCW
Cf Lush buffer using control word write) which issues the
WRITECW system macro if there is still data in the buffer.

60454300 A 36-59

Archive File Control Words

Information written to the archive file is divided into blocks.
The first word of each block is a control word which identifies
the number of data words in the block and the type of
information contained in those data words. The format of the
control words is as follows.

59 17 14 11 8

file name {catalog control word only) ~
~ a b

a One of the following:

0 Label
1 Catalog
2 Permit
3 Data
4 Not used
5 CIR (catalog image record)
7 End of dump

b One of the following:

0 Data
1 EOR
2 EOF
7 End of dump

c Number of words until next control word
<excludes control word)

0

c

A symbol is defined for the mDre common combinations of the a
and b fields for control words. These values are as follows.

Symbol

LCWC
ccwc
PMCW
PRCW
DCWC
DRCW
DFCW
crew
CRCW
CFCW
EODC

60454300 A

Value Cab)

01000
11000
20000
21000
30000
31000
32000
50000
51000
52000
77000

Definition

Label control word
Catalog control word
Permit control word
Permit record control word
Data control word
Data record control word
Data file control word
Catalog image control word
Catalog image record control word
Catalog image file control word
End-of dump control word

36-60

Archive File Label

The archive file has a data label that describes the parameters
used in the PFDUMP call. The data label is generated by
subroutine SLP Cset Label parameters) and written to the
archive file by subroutine LBL <write PFDUMP archive file label)
during the preset phase -0f PFDUMP.

Subroutine SLP copies the converted parameters frm CPAR to the
data label starting at the sixth word (figure 36-8). The
specified number of files CSK parameter) are skipped by
subroutine LBL before the data label is written to the archive
f i le.

The data Label is written to the archive file as a record by
itself and is preceded by a control word in the following
format.

59 17 14 11 8 0

PF DUMP

a Label type control word (Q)

b End of Label flag (1)
c Word count for label <100)

60454300 A 36-61

59 35 23 0
LBL PF DUMP l number catalog tracks

reel reel number

mask device map number

date - yy/mm/dd.

time - hh.mm.ss.

L.BL+5 family name

pack name

archive file name

verify file name

output file name

permanent file name

master file name

user number

list options

utility options

user index

destination user index

device number

true device number

destination device

number files to skip

number files to process

rewind flag

unload flog

verify flag

nine-track flag

mass storage error option flag

date and time

Figure 36-8. Tape Label Format

60454300 A 36-62

Catalog Image Record

The catalog image record CCIR) is written during the preset
phase of PFDUMP if an incremental dump is being performed COP=M,
but not with OP=B>. The CIR is written by subroutine CCI
(create catalog image>.

CCI waits for no permanent file utility interlock on a device
using a call to subroutine WUC Cwait PF utility interlock
clear). CCI then calls PFU with the CTCT function to locate
the correct catalog track, with function CTOL to open a catalog
track file, and with function CTSC to interlock the catalog
track.

CCI reads the catalog file generating catalog image entries of
the following form using subroutine BCL (built catalog list).
There is 1 entry for each file on the catalog.

59 41 35 17 0

permanent file name user index

access count dn last access date and time

Catalog image blocks are written using a call to subroutine WIB
(write image block) which writes the image block with control
word on the archive file.

At the end of each catalog track, an appropriate CRCW type
control word is written. The catalog track interlock is
advanced via a CTAC PFU call. When all catalog tracks have
be~n processed, PFU functiorn CTCC is issued to clear the
interlock on the Last catalog track.

Writing the Permanent File

After starting the file dumping with the CTRL PFU function, the
main Loop of PFDUMP now begins individual file dumping to the
archive file. The catalog entry, permit entries and data for
each permanent file are written to the archive file as a
separate Logical record.

60454300 A 36-63

The control word for the catalog entry is built as follows with
control word code CCWC.

59 17 8 0

file name 011

A call to subroutine WOT <write dump tape) writes the control
word and the catalog entry to the archive file.

The catalog entry is then checked for a permit random index and
if one is present, subroutine RPF (read permit file) is called.
RPF randomly reads the permit file and calls subroutine WOT to
write permit sectors to the archive file. Each permit sector
is preceded by a permit control word CPMCW) in the following
format.

59 14 8 0

20 I 100

The Last block of permits <may be the only block of permits for
the file) is preceded by an end of record pe~~it control word
CPRCW) in the following format.

59 14 8 0

21 n

n Number of words in permit sector

The permanent file data is written using a call to subroutine
WDB (write data block).

60454300 A 36-64

WDB calls subroutine RPR <read PRU) to retrieve the cont~ol
word passed with each sector placed in the DATA buffer by the
CTRL PFU function. The control word has the following format.

59 47 35 23 11 0

[ec ct I cs c n I
ec Error code
ct Current track
cs Current sector
c Control <linkage byte 1)
n Number of words of data (Linkage byte 2)

Fields c and n are the sector linkage bytes from the mass
storage device. If c and n both are zero, the control word
represents the end-of-information for the file. If c is zero,
and n is nonzero, the control word represents an end-of-file.
If c is nonzero and n is not a full PRU C=NWPR), the control
word represents an end-of-record. If ec As nonzero, the
control word represents bad data.

The data taken from the DATA file buffer is gathered into
blocks of up to 7778 words. A control word CDCWC) in the
following format is appended to the front of each block before
the block is written to the archive file using subroutine WDT.

59 14 8 0

n Block word count

60454300 A 36-65

When an end-of-record CEOR) is detected in the DATA buffer, an
end-of-record data control word (DRCW) is written. The EOR
flag in the control word indicates the presence of an EOR
following any data that may be associated with the control word.
The format of the EOR control word is shown below.

59 14 8 0

n

n Number of data words in the block (preceding EOR)

End-of-files are represented on the archive file with an end-of­
file data control word (DFCW) in the following format.

59 14 8 0

n

n Number of data words in the block (preceding EOF)

The end-of-information for the permanent file is represented by
an EOR on the archive file itself.

After the EOI has been written, WDB returns to its caller.

Subroutine WOT <write data to tape) manages the writing of
control words and data to the archive file. Subroutine WOT
writes the specified data to the archive file using calls to
subroutine WRT <write control word and data). Extra control
words are added to the data written to the archive file by WOT,
if necessary, to insure that no block has more than the maximum
possible word count <7778).

Subroutine WRT writes the control word and data using ARCHIVE
WRITEW macro calls or writes an EOR using the ARCHIVE WRITER
call.

Archive File Termination

Subroutine TAF <terminate archive file> is called when the dump
has completed from the main Loop or from AEP (about end
processor).

60454300 A 36-66

Subroutine TAF closes the archive file if open <archive file
dump Label has been written) and returns it <and also the
archive verify file if necessary) unless suppressed by the no
unload option.

The archive file is closed by writing an end of dump control
word CEODC), an end-of-record and an end-of-file. The control
word is formatted as follows.

Unless suppressed by the no unload option (NU) an extra end-of­
f i Le is also written to the archive file. The archive file
buffer is flushed using an ARCHIVE FLUSH macro call.

Purge After Dump

The purge after dump option COP=P) cannot be done while dumping
since, if for some reason the dump would abort, the files so
purged would be Lost. Therefore as files are dumped, the first
word of the catalog entry is written on a file called PURGE.
At the end of a successful dump, subroutine PGF (purge files
that were dumped) is called.

For each entry in the PURGE file, subroutine PFG puts the file
name and user index in a FET CPURGF), displays a message
indicating the file name and user index being purged, uses the
SETPFP macro to set the proper user index in the control point
area, and calls PFM with the PURGE macro to purge the file.

Interlocking

PFDUMP conforms to the permanent file interlock mechanisms of
permanent file activity, permanent file utility active and
catalog track interlock.

PFDUMP requests that the permanent file activity count be
incremented during the preset phase by subroutine SAC (set PF
activity count>. Subroutine SAC issues the CTIA PFU function
to increment the permanent file activity count. The address
ACFL is passed to PFU with the CTIA function as a status flag
to identify when the activity count has been incremented. This
flag is used during abort cleanup so that the activity count
may be decremented if necessary. The following informative
message is displayed on the K display and at message Line 2
while PFU is being called to increment the activity count.

SETTING PF ACTIVITY COUNT

60454300 A 36-67

The permanent file activity count is decremented when PFDUMP
completes or is aborted. Subroutine CAC <clear PF activity
count) issues the CTDA PFU function to decrement the activity
count only if the contents of ACFL in~icates that the activity
count has been incremented. The following informative message
is displayed on the K display and at message line 2 while PFU is
being called to decrement the activity count. The flag ACFL is
cleared by PFU when the activity count is actually decremented.

CLEARING PF ACTIVITY COUNT.

PFDUMP interlocks the catalog track by using macro PCINT. Macro
PCINT calls subroutine PCI (process catalog track interlock)
with the PFU function to be used in interlocking the catalog
track. The functions used are: CTSC to set the interlock; CTAC
to advance the interlock to the next catalog track; and CTCC to
clear the interlock. PCI displays the following informative
message on the K display and at message Line 2 while PFU is
performing the specified interlocking operation.

WAITING FOR CATALOG INTERLOCK.

PFDUMP tests the permanent file utility interlock using a call
to subroutine WUC (wait for PF utility interlock clear). This
is done to insure that any PF utility activity CPFLOAD, CMS) has
completed on a device before PFDUMP processes it. Subroutine WUC
issues PFU function CTTU to retrieve the permanent file utility
interlock status. The following informative message is
displayed on the K display and at message line 2 until the
permanent file utility interlock on the device is clear.

WAIT FOR PF UTILITY ON xx.

Error Processing

Error Processing fits into two categories: parameter
processing, which includes missing files, device, or user; and
errors in reading and writing permanent file archive data.
This discussion is Limited to the Latter case.

Reading Catalog Entries

PFDUMP reads catalog entries <subroutine RCE) with CIO error
processing selected CERP1$ assembly option). If an error status
is returned while reading the catalog file, subroutine RCE
resets the bad data in the circular buffer and sets the OUT
pointer to point to the bad data.

Subroutine PCE (process catalog error) is called from the main
Loop and from subroutine CCI <create catalog image) to process
an error dete~ted by PCE. Subroutine PCE calls subroutine GFP
(get file parameters) which retrieves the equipment, track, and
sector in error <using the STATUS macro). Subroutine PCE

60454300 A 36-68

issues an error diagnostic message, showing the equipment,
track, and sector of the error. Additional messages are issued
for each catalog entry in the sector affe~ted by the mass
storage error. These messages identify the file names and user
indexes 6f files affected by the error.

If the error occurs in the Last catalog track sector or the
error reported is wrong sector read, an end of cata(og track
status is returned to the caller. Otherwise, subroutine PCE
reinitiates the read on the catalog file and processing may
continue.

An error idle status is set on the equipment in error using a
call to subroutine SEI (set error idle) which issues a CTEI PFU
function.

Reading Permit Entries

If subroutine RPF (read permit file) detects an error, it calls
subroutine PPE (process permit errors). Subroutine PPE calls
subroutine GFP to obtain the Location (equipment, track, and
sector) of the error. Subroutine PPE issues an appropriate
error diagnostic and calls SEI to set the error idle status on
the device.

A permit read error control word with the following format is
written to the archive file in place of the bad sector.

59 17 14 11 8 0

ERROR**
I 2 I 2 I , I 0

Dumping is continued with the data for the file.

60454300 A 36-69

Reading PF Data

Subrouting WDB (write data block) interrogates the control word
passed with the data by PFU. If a bad sector is detected, it
is written to the archive file as a block by itself. A read
error data control word in the following format is written with
the block so that the data may be identified as being badr.

59 17 14 11 0

ERROR**

ep Error processing status:

1 EO not specified
2 EO specified

ty Block type

0 Full or EOI block
1 EOR block
2 EOF block

WC Block word count

Subroutine IDM (issue d~ta messages) is called to issue an
error diagnostic identifying the file and Location (equipment,
track, and sector) of the error. If the dump can be continued
<not fatal error and not EOI), the EO selection is checked. If
EO has not been specified, the remaining data in the file is
processed. Otherwise subroutine SFD (skip file data) is called
to properly position the data file to the next permanent file.

If direct access file Length errors are detected by WDB, the
appropriate too short or too Long diagnostic is issued, a
Length error control word is written on the archive file, and
the error idle status is set using a call to SEI. Processing
is continued with the next file. The control word (LGCW) is
formatted as follows.

59 17 14 11 8 0

ERROR**

60454300 A 36-70

Writing the Archive/Verify File

Subroutine PAE (process archive file error) is called by
subroutine PAF (process archive file operation) when an
unrecovered error status is returned by the CWWRITE call. PAE
waits for the FET to complete and then clears the error status.
The K display message

UNRECOVERED PARITY ERROR -
ENTER K.GO - CONTINUE.

K.END - ABORT DUMP.

is displayed and PAE calls the keyboard processor KIP (from PFS)
to wait for operator action.

If END. is selected the following message is issued and the
dump is aborted.

WPE UNRECOVERED - ABORT.

If GO is selected, the current reel is closed with the
CLOSER/UNLOAD function. If the close operation is successful
(no unrecovered parity error), the dump is continued on the new
reel. If the close is unsuccessful, however, the following
message is issued and the dump is aborted.

WPE UNRECOVERED·- ABORT.

PFLOAD UTILITY

PFLOAD is a permanent file utility that Loads files from an
archive file onto a permanent file device. The following
paragraphs describe PFLOAD options.

A noninitial Load option (OP=N) verifies that no indirect
access files exist on a device before the Load is allowed. A
replace option (OP=R) causes files from the archive file to
replace those already on the device being Loaded. The normal
load (OP=R not specified) causes files from the archive file to
be ignored if they are already present on the device being
loaded.

An incremental Load is performed by reading the catalog image
record (CIR) from the most recent incremental PFDUMP (OP=M).
Each item in the CIR represents a file active in the permanent
file system at the time of the incremental (OP=M) dump. As the
archive file is processed, if a match is found in the CIR, the
file is a candidate for Loading and the entry in the CIR is
cleared. Files not found in the CIR are skipped since they
have either already been Loaded or they were purged after the
archive file being processed was written.

Direct access files are Loaded onto the device number on which
they resided when dumped unless that device no Longer exists or
the file is not allowed on the device (user· index is Less than
AUIMX and secondary mask bit corresponding to the user index is

60454300 A 36-71

not set). If the file cannot be loaded on the original device,
it is loaded on the destination device (DD keyword) if one is
specified and if the file is allowed to reside on that deviceM
If the file cannot be Loaded on either device, a diagnostic
message is issued and the file is skipped. A direct access
file is considered to have resided on the master device being
Loaded if it originally resided on its own master device.

Tape errors may be encountered when loading a file. These
errors are processed by setting the length of the file to the
amount of the file processed at the time of the error and
continuing with the next file.

A flowchart of PFLOAD main loop is shown in figure 36-9.

60454300 A 36-72

EOL

process end
of load

ENDRUN

Figure 36-9. PFLOAD.

60454300 A 36-73

60454300 A

get permit
random index

permits present
that should

not be

tape error
lfn ui

Figure 36-9. PFLOAD (Continued)

36-74

NO DATA
BLOCK

send error
message

es

no

PERMITS
MISSING

send error
message

finish
catalog

processing

Figure 36-9. PFLOAD (Continued)

60454300 A

no

36-75

This discussion of PFLOAD concentrates on these areas: loading
the file, assigning the archive file, transferring the file to
mass storage, interlocking, activating PFU, and error
processing.

Loading the File

PFLOAD performs the same device selection mechanism as does
PFDUMP. Subroutines BMT <build mass storage tables>, SBS <set
boolean selection>, SSP <set selection parameters), and SMP
<set master device parameters) are virtually the same for both
routines and therefore will not be discussed in detail here.

The boolean file selection variables are identical to those in
PFDUMP, but PFLOAD adds two file selection boolean expressions:

DSTD
DSDI

Display true device
Display device for destination user index

File Selection

Subroutine PCB (process catalog buffer) is called to read the
catalog entry and determine if the file is to be loaded.
Subroutine PCB calls subroutine CSP <check selective parameters)
which determines if the file meets specified date, user index,
permanent file name, and alternate device options.

If the file is to be loaded, the catalog image is checked by
subroutine CCI (check catalog image) to determine if the file
is to be loaded during an incremental load. The catalog image
record file CCIRF) is read to determine if the file exists on
the CIR. If a match is found, the entry is cleared, and the
load file status is returned. The Load file status is also
returned if the load is not an incremental Load. This mechanism
means that if an incremental load is being performed, only
those files which are found in the CIR can be loaded and once a
file is Loaded it is removed from the CIR.

If the file is still a candidate to be load~d, subroutine PD!
(process destination index) is called to process the
destination user index. If a destination index has been
specified, it is written into the catalog entry and the device
number is set to t~e corresponding device.

The accass type of the file (direct/indirect access) is then
checked to determine if the file satisfies any specified access
type selection parameter COP=I or 0). If the access type
selection is satisfied, the file continues to be a candidate
for loading.

If the candidate file is a direct access file, PCB determines
whether the residency device is available and if so, whether the

60454300 A 36-76

device is still a valid residency devite for the user (that is,
correct secondary mask bit set for the user index). If a valid
residency device is not found, validation of the destination
device CDD keyword) is done. If no DD is specified or it is not
valid for the user, the following diagnostic is issued and the
file is no Longer a candidate for Loading.

ALTERNATE DEVICE NOT FOUND.

If the DD device is valid it is put into the catalog and
becomes the new residency device for the file.

PCB now sets up master device parameters using a call to
subroutine SMD (set master device parameters). If the file is
on the same master device and catalog track as the previously
loaded file~ SMD requests the permanent file utility interlock
using a call to subroutine SIN (set PF utility interlock) and
activates PFU using a call to subroutine AUP <activate utility
processor) a

If the file is on the same master device but a different
catalog track, SMD checks to ensure outstanding PFU activity
has ceased. If PFU is not active, it is activated on the new
catalog track using the SIN/AUP sequence described above. If
active, subroutines FCP (finish catalog processing) and PCT
(position on catalog track) are called to complete processing
of the old catalog track and to establish processing on the new
catalog track. If the file is on a different master device,
SMD gets the catalog parameters for that device using a CTCT
PFU call, sets up a CATS, PETS, and DATA FST entry for the
master device and opens these fi Les using CTOP PFU calls~ SMD
then executes the SIN/AUP sequence to set the utility interlock
and activate PfU on the new device.

Subroutine PCB then calls subroutine SFF <search for file) to
determine if the file already exists on the permanent file
device. If it does, the file is no Longer a candidate for
Loading unless the replace option is specified COP=R). If the
replace option is specified, the file is purged using
subroutine PGF (purge file). If the purge is successful, the
file continues to be a candidate for loading.

The candidate file is now ready to be Loaded. Subroutine MCE
<move catalog entry) is called to move the catalog entry to the
CATS buffer. Subroutine PCB exits to the caller with the Load
file flag set.

If the file is not a candidate for Loading, PCB sets the skip
to EOR (SKER) flag and returns with the Load flag clear.

Permits Proce~sing

The next archive file control word is read using a call to RCW
<read control word). The control word and catalog entry permit
random index are verified to ensure that permits are present

60454300 A 36-77

when the catalog so indicates and not present otherwise. The
following diagnostics are used to report permit mismatches
between the catalog entry and archive file.

PERMITS PRESENT THAT SHOULD NOT BE.

PERMITS MISSING.

Subroutine PPB (process permit block) reads permit entries from
the archive file and writes them to the permit file using a
call to subroutine WPR (write PRU to PFU circular buffer).
Subroutine PPB sets the random index of the permit entries in
the catalog entry and sets permit Linkage in the permit entry
before calling WPR. If the archive file permit block is empty,
the permit random index is cleared from the catalog entry and
no writing is done. Subroutine PPB returns to the caller with
the Load file status set unless file Loading is suppressed
because of a tape error.

If the archive file control word indicates that there was an
error while dumping the permit entries, subroutine SCE (set
catalog error code) is called to indicate that the permits were
in error. Processing of the permit entries then continues
normally.

If the permits cannot be Loaded, an appropriate diagnostic is
issued, the skip to EOR flag CSKER) is set, and subroutine PPB
returns to the caller with a file not to be Loaded status.

Data Processing

The next control word is read from the archive file using RCW.
If a nondata type block is present, the following diagnostic is
issued and processing continues with the next file.

NO DATA BLOCK.

Subroutine PDB (process data block) is called to process the
data. PDB sets up a control word in Location LWRD that has the
following format.

59 53

address of
ca ta log entry

35 17

dn 0 for indirect access file;

8 0

dn

4000 for a direct access file on an auxiliary device;
device number for a direct access file on a family
device

60454300 A 36-78

The data is read from the tape according to the archive fi Le
control word. Subroutine PDB updates LWRD with additional
control information as follows.

59 53

c address of
catalog entry

35 17

device
number

8 0

WC

c 0 if normal; 1 if EOF (DLEF); 2 if EOI (DLEI)
we Word count

PDB now calls subroutine WPR to move the data to the DATA FET
buffer. PDB continues until all data has been transferred from
the archive file. Once the EOI has been sent to PFU through
WPR, PDB returns to the caller with a Load file status.

If an archive fi Le control word indicates a fi Le truncation
error, the following diagnostic is issued, the skip to EOR flag
is set, the catalog is updated to reflect the true Length, and
control is returned to the caller with Load file status set.

FILE TRUNCATED filenam userin.

If an archive file control word is a read error control word,
PDB sets the data error status in the catalog entry. If bad
file processing is suppressed <EO selected) or the error
control word is a suppressed file control word (EO specified
when dumping), subroutine DIF (delete i·nco~plete file) is
called to relinquish unneeded mass storage. Subroutine PDB
returns to the caller with file not to be L~aded status and
skip to EOR (SKER) set. If Loading of the fi Le is not
suppressed, additional data for the file is processed as if no
error condition was present in the control word.

When a tape error or abnormal condition is sensed on the
archive tape, an appropriate diagnostic is issued, skip to EOR
(SKER) is set, an EOI sector is written and the catalog is
updated to reflect the true Length of the fi Le. The Load fi Le
status is set and control is returned to the caller.

Catalog

After the data has been processed, subroutine FCP (finish
catalog processing) is called to complete the Loa~ing of the
file. FCP advances the CATS IN pointer and performs CATS
buffer writing as required using calls to FCW (force catalog
write).

60454300 A 36-79

End-Of-Load

Subroutine CEL (check for end of Load) is called to advance to
the next file and determine if the Load has finished.
Subroutine CEL checks the SKER <SKIP to EOR) flag and calls
subroutines DUP (drop utility processor), CIN (clear utility
interlock>, and SER <skip to EOR) if the flag is set.

If an individual file was selected to be loaded CPF keyword) and
that file was loaded, CEL sets the load complete status and
returns to the caller. If this is not the case, the
incremental load flag is checked. If this is an incremental
load and the catalog image record is now all zero Call
incremental files processed), the load complete status is set
and control returns to the caller.

If this is not the case, the next archive file control word is
read. If the control word is a catalog control word, CEL
returns to the caller with the Load not complete status. If
the control word is a Label control word, subroutines DUP and
CIN are called and subroutine PAL is called to process the
archive file Label. CEL proceeds by reading the next control
word and interrogating it as above.

If an EOR is detected on the archive file, CEL reads the next
control word and interrogates it as above.

If an EOF is detected on the archive file, and no more files
are to be processed CN keyword met or not specified), it is
treated as an archive file EOI. If more files are to be
processed, subroutines DUP and CIN are called, archive file
reading is reinitialized and subroutine PAL is called.
Subroutine SCI <skip catalog image) is called to properly
position the archive file. The next control word is read and
interrog~ted.

When the archive file EOI is detected, end of load status is
returned to the caller unless an incremental Load is being
performed and more files remain on the catalog image record.
When more files remain for an incremental Load, subroutine ART
<archive file transition) is called to process operator
intervention. Depending upon operator action, either end of
Load status is returned by subroutine CEL or the first control
word of the next archive tape is analyzed to determine the next
action of subroutine CEL.

The operator may choose to end the Load, list files remaining
on the catalog image record or proceed to the next tape of an
incremental load set. Subroutine LFS (list files on catalog
image record) is called by subroutine ART to list files if the
list option is selected by the operator. Subroutine AAF
<assign archive file) is called to request the next tape for
the incremental load if that option is selected by the operator.

If the control word is an end-of-archive file control word, and
no more files are to be processed CN keyword not specified or
has been met), the end of incremental load test is performed.

60454300 A 36-80

If the archive file is not positioned at an EOF/EOI, it is so
positioned using a SKIPFF macro. If now posi~ioned at an EOI,
the end of incremental Load test is performed; otherwise, the
condition is treated as an EOF control word.

If a valid control word is not recognized or a parity error
status is returned from RCW, a diagnostic is issued,
subroutines DUP and CIN are called, a skip to EOR is performed
<call to SER) and the next control word is interrogated.

The main Loop of PFLOAD either continues with processing of the
next file or calls subroutine EOL (end of Load processing) and
performs an ENDRUN, depending upon the status returned by
subroutine CEL.

Subroutine EOL drops PFU using subroutine DUP, clears the
utility interlock using subroutine CIN, returns the Load
scratch files (CATS, PETS, DATA, and so on), issues appropriate
end-of-Load messages, and restores the user permanent file
parameters to the control point area using subroutine RUP
(restore user permanent file parameters). The archive file is
then positioned to skip any remaining file count CN parameter)
if the NR parameter is specified or is returned if not
specified.

Archive File Assignment

Subroutine AAF (assign archive file) unloads the current
archive file (expected on first call to AAF), does a LABEL
request for the next archive file, positions it as required by
NR and SF keywords, initiates file reading using the READCW
macro, and calls subroutine PAL <process archive file Label) to
check the Label.

If good Label status is returned by subroutine PAL, subroutine
AAF returns to its caller. If not, the following message is
displayed and the LABEL request is repeated.

PFLOAD - LABEL BAD, ASSIGN NEW TAPE.

PAL reads the first control word from the archive file (using
RCW) and if it is a Label control word, reads the remaining
Label data.

The K display is updated from the date, time, and mask fields
in the Label, an output file message containing the date and
time from the Label is generated, the archive file is positioned
to EOR using subroutine SER, and good Label status is returned
to the caller.

If a bad Label is detected (control word is incorrect, Label
identifier is incorrect, or the Label read is incomplete), an
SER (skip to EOR) is performed, and a bad Label status is
returned to the caller~

60454300 A 36-81

Transferring Files to Mass Storage

Once the permanent file utility processor CPFU) has begun
processing the CTLM Cload main loop) function, data transfer
operations may be done through the circular (or FET) buffers
associated with the PETS and DATA files. Subroutine WPR <write
PRU to PFU circular buffer) moves data from a working buffer to
the desired circular buffer. WPR is a general subroutine which
is passed the address and size of the working buffer and the
address of the FET.

WPR examines the sector counter in FET word FTSC. If bit 11 of
the sector counter is set, PFLOAD has reached sector threshold
during an earlier request and the buffer needs to be f lus~ed
<emptied) before proceeding. Subroutine FUB (flush utility
buffer) is called to issue PFU write requests until the buffer
has be~n emptied. The sector counter is reset to zero and
processing is continued.

Once sector threshold has been eliminated, subroutine WPR
checks to see if data is to be transferred. If no data is
present in the working buffer, WPR returns to the caller. If
data is present, subroutine WPR determines if the data t~ be
transferred will fit in the circular buffer. If there is
insufficient room in the circular buffer and the buffer is not
busy, a write request is issued. If the buffer is busy or
after a request is issued, subroutine WPR waits in periodic
recall for buffer space to become available.

Once space is available, the data is moved from the working
buffer to the circular buffer. The sector counter is
incremented and subroutine WPR determines if it is necessary to
issue a write request. If the buffer is at least half full a
write request is issued before returning to the caller.

The permit and data buffers are also flushed under force
catalog write and delete incomplete file situations by
subroutines FDB Cf lush data buffer) and FPB Cf lush permit
buffer). These two routines call FUB with the appropriate DATA
or PETS FET address.

The catalog file <CATS) is written by subroutine FCP (finish
catalog processing) using a call to subroutine FCW (force
catalog write). Subroutine FCW first calls subroutines FDB and
FPB to flush the DATA and PETS buffers. A write function is
then issued on the CATS FET and subroutine FCW waits in RECALL
for the function to be completed by PFU. Subroutine FCW then
rewinds the FET buffer, clears the sector counter CFTSC),
clears words in the se~tor CNWIS) and returns to the caller.

The PETS and DATA buffers are also f Lushed when an incomplete
file is deleted. Subroutine DIF (delete incomplete file) is
called by subroutine MCE to flush a partially Loaded file, thus
ensuring that the previous file has been properly terminated
before processing a new file. DIF is also called during bad
file processing by PDB (that is, EO specified). If the
incomplete file flag CIPFF) is set on entry, subroutine DIF
calls subroutines ODS <delete data space) and DPS (delete permit
space) and clea~s the incomplete file flag.

60454300 A 36-82

Subroutine DDS calls subroutine, FOB to flush the data file
buffer and then checks the files catalog entry. If there is no
user index or the user index is WEUI <write error user index)
or if there is no first track specified, DDS returns to the
caller. Oth~rwise, the first track is cleared from the catalog
entry, the drop track and f Law parameters are set in FTPM of
the DATA FET and the position file request is set in the DATA
FET for processing by PFU.

Subroutine DPS calls subroutine FPB to flush the permit buffer
and then resets the permit random index pointer in RICT to that
found in the catalog entry. A position file operation is
requested in the PETS FET with the new random index set in FTPM.
An EOI control word is set in the working buffer and WPR is
called to terminate the permit chain •

. Interlocking

PFLOAD uses the permanent file utility interlock to prohibit
any other permanent file usage of a device while loading is
being performed on that device.

Subroutine SIN <set PF utility interlock) is used to request
PFU to obtain the PF utility interlock. If the interlock is
not currently set, SIN displays the following message while
issuing a CTSU PFU function to set the interlock.

SETTING UTILITY INTERLOCK.

The address UIFL is passed to PFU with the CTSU function as a
status flag to identify when the utility interlock has been set.
This flag is used during abort cleanup so that the utility
interlock may be cleared if necessary.

Subroutine CIN <clear PF utility interlock) is used to clear
the utility interlock. If UIFL is nonzero, subroutine CIN
displays the following message while issuing a CTCU PFU
function to clear the interlock.

CLEARING UTILITY INTERLOCK.

UIFL is cleared by PFU when the utility interlock is cleared.

Activating PFU for Loading

Subroutine AUP (activate utility processor) is used to request
PFU to initiate communication with PFLOAD for permanent file
loading. All loading operations are performed by the CTLM PFU
function which Loops until PFLOAD directs it to complete and
drop.

If PFU is already active CPAFL is nonzero), subroutine AUP
returns to the caller. If PFU is not active, subroutine AUP
sets the master equipment and noninitial flags in word FTDW of
the DATA FET, sets the device number and FET addresses into
word FTPM of the CATS FET, sets the DATA and PETS FETS busy,
clears the sector count CFTSC) in each FET, and clears the data
state (FTDL) word in the DATA FET.

60454300 A 36-83

Subroutine AUP then issues the CTLM PFU function and goes into
recall on the DATA FET. PFU sets the DATA FET complete when
load initialization is complete. Subroutine AUP then calls
subroutine PCT (position on catalog track) to determine what
files already are present on the catalog track. Finally the
current EOF position of the permits file is set in RICT from
the random index returned by PFU in word FTSC of the PETS FET.

Subroutine DUP (drop utility processor) is used to drop PFU.
If PFU is active CPAFL is nonzero), subroutine DUP forces an
EOI write on the catalog track using a call to FCP (finish
catalog processing). When the DATA FET is complete, subroutine
DUP sets a 108 request in the FET Cdrop PFU) and waits for PFU
to complete the DATA FET and drop from the PFLOAD control
point. Once PFU has dropped, control is returned to the
caller.

Error Pr~cessing

This section discusses error processing for the archive file
and for the mass storage devices being loaded.

Reading the Archive File

The archive file is read in control word mode CREADCW),
typically through the use of the CWREAD macro defined in PFLOAD.
This macro calls subroutine CWR <control word read words) to
transfer data in a manner similar to READW.

Errors Reading Control Words

If after issuing a CWREAD to obtain an archive file control
word, an archive file error status is returned, subroutine RCW
returns a status that indicates a parity error. The caller of
subroutine RCW must then process the error appropriately. The
action typically taken in this error case is to issue an
appropriate diagnostic and attempt to process the next file by
doing~ skip to EOR CSER) request.

Similarly, when reading data from the tape, if a parity error
occurs, an appropriate diagnostic is issued, a skip to EOR i~

done, and the file not loaded.

Writing the Permanent File

Subroutine PCE (process catalog errors) is called to handle both
read and write catalog errors. Subroutine PCE is called by
subroutines FCW (write) and PCT (read).

Subroutine PCE requests PFU to drop if it is active. Once PFU
has dropped, subroutine SE! is called to set the error idle
status for the device. Subroutine SE! <set error idle) issues

60454300 A 36-84

the CTEI PFU function to set the error idle status on the
device being processed. The utility interloack is then cleared
using a call to subroutine CIN. Subroutine PCE then generates
a collection of error diagnostics identifying the failing
device and the catalog entries in the sector in error.

Subroutine PWE (permit write error processor) is called to
handle errors from permit writes. Subroutine PWE requests PFU
to drop if it is active. Once PFU has dropped, subroutines SE!
and CIN are called to set the error idle status and drop the
utility interlock.

Subroutine PWE then issues appropriate diagnostic messages
identifying the error condition and the affected file.

Subroutine DWE (data write error processor) is called to handle
errors that occur when writing the data to mass storage. PFU
returns the Location of the error CFST at time of error) in
word FTPM of the DATA FET. The equipment, track and sector are
extracted from the FST

0

into MPEQ, MPTK, and MPSC for use in
error message formatting. The file name (MPFN), user index
CMPUI), and device number CMPDN) are also set up for error
message formattingm An appropriate diagnostic is then issued
from this information.

Subroutine DWE calls subroutine SEC (skip through EOI control
word) to read the DATA file until the circular buffer is empty
or an EOI is detected.

The sector count returned by subroutine SEC is used to update
the file Length in the .catalog to include the bad sector but
nothing following it. The sector count is also used to adjust
the sector counter for the DATA FET to reflect the amount of
data removed from the circular buffer.

If the file is indirect access, the user index in the catalog
entry is changed to a special write error user index. This
allows the catalog entry to be kept in the permanent fi Le
system as a pointer to the bad file. For a direct access file,
the user index is cleared (creating a direct access hole), the
appropriate parameters are set in word FTPM of the DATA FET and
a PFU file position function is issued to drop the track chain
and f Law the bad track.

Subroutine SCE (set catalog error code) is called by
subroutines PPB and PDB to indicate that an error has occurred
in the permits or data for the fi Le. These error condition.s
are stored in the catalog entry word FCEC. The use of these
error codes allows a file with errors to be Loaded into the
permanent file system without the danger of the file's owner
being unaware of the errors.

60454300 A 36-85

INTERACTIVE FACILITY CIAF) 37

INTRODUCTION

The Interactive Facility CIAF) is a subsystem that provides
support for interactive processing from remote terminals
communicating through the Network Access Method (NAM). The
subsystem consists of the following CPU and PP programs.

Program

IAFEX

IAFEX1

IAFEX2

IAFEX3

IAFEX4

1TA

1TN

1TO

Description

Time-sharing exeGutive initialization routine.
This routine is Loaded at 400008 relative to
control point 1 when the operator types !AF.
It initializes tables and pointers and Loads
IAFEX1 and IAFEX4.

Time-sharing executive processor.
main routine that processes I/O for
terminals. It cracks and processes
makes requests to dump source input
refill output buffers from disk.

This is the
the remote
commands, and
to disk and

Performs an optional dump upon termination and
Loads IAFEX3.

Time-sharing executive termination routine. This
routine is executed after an abnormal condition
is detected or when the operator terminates IAF
with 1.STOP.

Interfaces IAFEX1 with NAM.

Auxiliary function processor. This routine
processes functions for !AF which require PP
action.

Communicates between !AF and the NOS stimulator
(checkout/test).

Terminal input/output. Called by IAF to
perform terminal I/O requiring disk accesses.

The relationship between the various system routines and
subsystem routines is shown in figure 37-1.

60454300 B 37-1

IAF
Control

Point

IAFEX1

IAF Assistant

Mass Storage
Terminal I/O

Figure 37-1. !AF Interactive Subsystem

60454300 A 37-2

TERMINAL OPERATION

The flow of data to or from a terminal and a mass storage device
is shown in figure 37-2. The terminal user enters source
statements. These statements are read from NAM by IAFEX4,
converted to the proper internal representation, and stored in
pots Ca pot is an eight-word buffer) by IAFEX4. Whenever IAFEX4
has filled VIPL pots (defined in common deck COMSREM) it issues a
dump pot request. IAFEX initiates the routine DMP <Local to
IAFEX1) ~hich calls 1TO. In the interim IAFEX4 may have filled
another pot. Routine 1TO dumps the accumulated pots onto one
sector on mass storage. Thus, currently, during this phase 20 or
30 words are written per sector.

Pots

Terminal IAFEX4

Pots

Figure 37-2. Terminal M~ss Storage Data Flow

MS

Primary
File

60454300 A 37-3

This continues until the user enters a command that forces a sort
such as RUN or LIST. If the unsorted file is too large, then the
message FILE TOO LONG TO SORT is issued. In this case, the user
must issue the SORT command.

I f , ho w e v e r , t h e f i l e i s p_o.(t o o l o n g , t h e n t h e t e r m i n a l i s
placed in sort mode. An~TO~ job called MSORT is scheduled and
all users in sort mode are-·sorted at once. These users are
queued up until a specified time interval has expired, then the
MSORT job is run. ALL the files are given to MSORT in file size
order, largest first.

MSORT is an in-memory shell sort. It is started at a control
point with the FL necessary to sort the Largest file. It sorts
the file and rewrites the file in packed format (that is, 1008
words per sector). When MSORT has finished a sort, it releases
FL down to the necessary size for the next file and then sorts
it. This continues until all the files are sorted. Routine 1RO
sets all the terminals whose files were sorted to active mode and
IAF then processes the command that indirectly caused the sort.

TERMINAL JOB INITIATION

Refer to figure 37-3 for this discussion. Assuming that a
user's primary file has been sorted and RUN is entered at the
terminal, the following events occur.

1. !AF builds a control statement ($LDC or compiler control
statement) in a pot and calls 1TA.

2. 1TA builds a rollin queue entry in the system FNT/FST
area. The FNT entry points to the user's rollout file
<refer to figure 37-15).

3. The scheduler, 1SJ, determines that this is the best
job to initiate, so it assigns a control point and calls
1RI to roll in the job.

4. 1RI reads the rollout file to build system FNT entries
as specified, builds an FNT entry for the primary file
(input to the compiler), and completes the
initialization of the control point.

5. 1RI then calls 1AJ to advance the job which detects the
$LDC or compiler control statement and Loads the
compiler with sufficient field L~ngth to compile the
source statements. ($LDC is used only to Load the
BASIC compiler.) After compiling, the program is
executed. As the job executes it may interact with the
terminal by issuing output and receiving input.

60454300 8 37-4

CD
IAFEX1 builds a
control statement -•

Read next
control
statement

Terminal

IAFEX4

IAFEX1

CPA

Control
Point
Area

FL

Control
Point

FNT/FST

Rollin
Queue
Entry

Roi lout
File FNT
Entries

-.Set up user control point

Roi lout
File

Figure 37-3. Terminal Job Initiation

60454300 A 37-5

TERMINAL JOB INTERACTION - OUTPUT

Refer to figure 37-4 for this discussion. When a terminal job
writes information to the OUTPUT file, the following events
occur.

1. CIO is called when the interactive program issues a
write request to the OUTPUT file. CIO senses that this
is a time-sharing job <TXOT) and issues monitor
function ROCM to roll out the control point.

2. 1RO initiates the rollout and copies the entire field
length (including output data) to the rollout file. In
addition, all FNT entries associated ~ith this control
point are removed from the system FNT area and stored
on the rollout file. Prior to calling 1TO, 1RO saves
the first sector of output in 1RO's PP memory where it
can be picked up by 1TO without additional disk
input/output.

3. 1TO is loaded
function TGPM
output data.
available for
TSEM.

into the same PP as 1RO. The monitor
assigns 1TO pots into which it writes the
1TO then informs !AF that output is
the terminal by issuing monitor function

4. IAFEX1 assigns the data pots to IAFEX4 to the terminal.
IAFEX4 continues to ask IAFEX1 for additional output and
IAFEX1 in turn calls 1TO until all output has been
transferred.

5. After all output is transferred, IAFEX1 calls 1TA to
reinitiate the time-sharing job. 1TA builds the
rollin file entry in the system FNT area.

6. Scheduler 1SJ selects this queue entry as the best job,"
assigns a control point, and calls 1RI.

7. 1RI rolls the job into the control point and the
time-sharing job continues to execute.

60454300 A 37-6

TERMINAL JOB INTERACTION - INPUT

Refer to fi9ure 37-5 for this discussion. Assuming that the
time-sharing job is to receive data (input) from the terminal,
the system performs the follo~ing functions.

1. The job issues a read request on the INPUT file ~hi ch
calls CIO. CIO stores the FET address in control point
area word TINW and issues monitor function ROCM to roll
out the job.

2. 1RO is loaded to perform the rollout operation. 1RO
f Lags the request in terminal table ~ord VROT and then
calls 1TO.

3. 1TO issues any available output and issues monitor
function TSEM to inform IAFEX1 of the completion of its
processing.

4. IAFEX1 calls IAFEX4 to send any output and/or issue the
input prompt character (a question mark).

5. IAFEX4 translates the data as required and places it in
pots.

6. When the end-of-Line is sensed, IAFEX1 calls 1TA to
reinitiate the time-sharing job. 1TA builds a rollin
queue entry.

7. 1SJ selects the queue entry as the best job, assigns a
control point, and calls 1RI.

8. 1RI rolls the job into the control point and transfers
the input data from the pots to the job's circular
buffer. The job is then activated (given the CPU) and
continues to execute.

60454300 A 37-7

Mass
Storage

FNT/FST

Rollin File Entry

Ro Iii n
Job

©

When output has
been completed,
IAFEX1 calls lTA
to place this job
in the ROLLIN
queue

Control
Point x

OUTPUT

Circular
Buffer

IAF

Pots

IAFEX4

Terminal

~ Control point x issues a
write request to the output file

TSEM - Assign I/O
to terminal

Roll out
Control Point

Roi lout
file

Mass
Storage

Figure 37-4. Terminal Job Interaction (Output)

60454300 A 37-8

Mass
Storage

FNT/FST

Ro 11 in queue
entry this iob

Control
Point x

_.--- Control point x issues
a read on the input file

INPUT

Circular
Buffer ·

Trans fer input data from
pots to circular buffer

terminal
tables

IAFEX4

Terminal

IAFEX

Figure 37-5. Terminal Job Interaction (Input)

Roi lout
Control Point

Mass
Storage

60454300 A 37-9

INTERACTIVE JOB NAMES

Whenever a job is initiated at a control point, 1TA generates a
job name based on terminal number and user index of the user.
The common deck COMPGJN (generate job name) is used for this
task. Whenever a job is rolled back to IAFEX by 1RO, the job
name must be decoded back to the terminal number. Routine 1RO
uses the common deck COMPGTN (generate terminal number) for this
task. In this way, 1RO knows the terminal table in which to
indicate the rollout ba~k to IAFEX. The terminal number is coded
into the fifth through seventh characters of the job name. The
user index is coded into the first thru fourth characters.

INTERACTIVE COMPASS PROGRAM EXAMPLE

The following program demonstrates how an interactive COMPASS
program could be structured.

INTER
START
OUTBUF,101B,FET=6
1018
INBUF,101B,FET=6
1 01 8
16
42/0LOUTPUT,18/0UTPUT

OUTPUT
OUTBUF
INPUT
INBUF
IN
SETUP
START

I DENT
ENTRY
FILEC
BSS
FILEC
ass
BSS
VFD
SA1 SETUP SET FET POINTER FOR BUFFER

FLUSHING
X1
2
X6-X6 TERMINATE FILE LIST
3

BX6
SA6
BX6
SA6
WRITEC
READ
REA DC
WRITEC
WRITER
ENDRUN
END

OUTPUT,C=C* THIS PROGRAM INTERACTS.*)
INPUT
INPUT,IN
OUTPUT,IN
OUTPUT

START

The following demonstrates how the program is executed.

old,interf
READY.

batch
$RFL,O.
/compass,i=interf,L=O

1.008 CPU SECONDS ASSEMBLY TIME.
/Lgo

THIS PROGRAM INTERACTS.
? please repeat after me •••
PLEASE REPEAT AFTER KE •••
LGO.
I

60454300 B . 37-10

I

IAFEX INITIALIZATION

Basically, IAFEX initializes tables and pointers, then Loads
IAFEX1 and IAFEX4 and starts IAFEX1, the main routine. PP
programs called during initialization include the following.

Program

C!O
CPM
LDR
PFM
1 TA
1TN

Description

Combined input/output
Control point manager
Load overlay
Permanent file manager
Auxiliary function processor
Stimulated terminal driver

When th~ qperator types IAFffff.*, DSD calls 1DS which generates
an input FNT/FST entry of a special type. Routine 1SJ recognizes
this entry during its scheduling process; assigns the entry to
the proper control point, and calls 1SI into a PP. Routine 1SI
calls a procedure file named IAFffff*, an indirect access file
found under the system user index. The recommended contents of
this file are as follows.

*RETURN PROCEDURE FILE IAFEX.
RETURN,IAFEX.
WHILE,TRUE,LOOP.
IAFEX.
I.A FEX2.
SKIP,LOOP.
EXIT.
IAFEX2.
ENDIF,LOOP.
ENDW,LOOP.

Initialization consists of allocating tables, establishing the
pointers shown in figure 37-6 and the constants shown in table
3 7-1.

* The characters ffff are optional; if required, installation
personnel must supply the one to four alphanumeric characters
to be used.

60454300 B 37-11

59 47 41 35 23 17 11 0

RA+3 FWA terminal tables LWA+ 1 terminal tables VTTP

first network terminal number
last network

VNTP +4 terminal number

+5 fwa message status table
lwa+ 1 message

VMST status table

+6 fwo network activity table
lwa + 1 network

VNAT activity table

+7
length pot FWA pot LWA+ 1 pot

VPLP link table link table link table

+10 LWA+1 command table VCTP

+ 11 FWA pot memory VBMP

+12
FWA header

VWMP message message

+13
FWA reentry LWA+1 reentry

VRAP table table

+14 reserved reserved VPTP

+15 reserved reserved UTRN

'f *2
+16 minimum

1 non zero DBUG *1
cycle time driver stops

+17 PFNL word VFNL

*1 Driver debug word.
*2 Useful in debugging 1TD.

Figure 37-6. Pointer Addresses

60454300 A 37-12

59 47 23 0
"'!"" "T'

RA+20 number of times had to wait for PP · VPPL

+21 total users since initialization VTNL

+22 current active user count location VANL

+23 maximum number of possible users VMNL

+24 new available pot count during FL change VCPL

+25 negative indicates no reload real- time clock at last recovery VRLL

+26 abnormal occurrence counter VABL

+27 ~ minimum number spare pots maximum number spare pots VPLL

+30 number of pots al located (available) VPAL

+31 number of pots in use VPUL

'-~ \J

Figure 37-6. Pointer Addresses (Continued)

60454300 A 37-13

59 47 23 11 0

RA+32 monitor TSEM queue VTRP

+33

• •
• •
• •

+41

+42 monitor TGPM queue VTGP

+43 •
•

+44 •

+45 end of monitor queue VTEO

+46

• • •
+51

+52 set if driver circular stack address terminal first terminal VDRL failure count number

Figure 37-6. Pointer Addresses (Continued)

60454300 A 37-14

TABLE 37-1. IAFEX CONSTANTS
-----------~--~---------~~--------~~~-~-~~-~-~~--~~~~--~----~--
!Constant I Value I Description I
---------1----------1--1
MSORFL 14 MSORT base FL I
VBFL IO Default BATCH subsystem FL I
VBPL 12 Maximum ABL for Lo~ speed Lines I
VBPT 3 Additional PLT words per high-speed I

VBTL

VCPC
VCPT
VDSL
VIPL

VMPL

VMTO

VNPL
VNTL

VNTO

VOPL
VRBL
VSBL
VSPL

12B

10
1
100
2

40

Line I
1TO call time delay for high-speed I
Lines <one second)
Number of words per pot
IAF control point number
Length of driver circular queue
Number of allowable source pots before
dump

!Maximum number of spare pots per 64
users

10D Multiplexer terminal SALVARE file time-
! out value (minutes>
14 Minimum number of pots for network
1138 Default 1TO call time delay <two
I seconds)
l20D Network terminal SALVARE file time-out
I value <minutes)
14 Number of pots issued for multiplexer
I-- Reserved
1-- Reserved
l20 Minimum number of spare pots per 64
I users

VTGL IVTEQ-VTGP Length of monitor TGPM queue
VTRL IVTGP-VTRP Length of monitor TSEM queue
VXPL 1208 Maximum number of pots for network
UTIS 110 Default user time limit/10 I
----------~~-~--------------~-------~~-----~~~----~~-~-----~-1

The following are VROT status bits used with 1RO I
- - - - - - - - - - - - - - - - - -·- I

IVJIR
VRIR
VIPR
VOPR
VECS
MAX"rT
MPLT
WCQT

LIAA
CBASE

LISDL
ICOMDL
IEXEDL
ICATDL
ISORDL
IBATDL
IRESDL

60454300 B

1s1
1 S2
1 S3
1 S4
1s10
1024D
1208
100

4
0

2
6
5

I 5
12
14
14

JJob in system
Job to be rolled in again
Input requested
Output available
Job uses ECS
Maximum number of terminals
Number of PLT words per 64 users
Wait completion queue delay time
<msec.>
Login attempts allowed
Default base for command parameter
<octal>
List delay time
Compile delay time
Execute delay time
CATLIST delay time

!Sort delay time
!Batch delay time
!Resequence delay time

37-15

TABLE 37-1. IAFEX CONSTANTS
(Continued)

·- -- --- ____ : ____ _._. __ -- ----- ----- -- .. ----------------------- --- ------
!Constant I Value I Desc~iption I
1---------1----------1----------------------~-----------------I
ISWPDL IO !swap-in delay time I
INULDI 110 !Null input response delay time I
IBASDI 14 ISASIC input response delay time I
IFTND! 14 IFTNTS input response delay time I
I TRAD I. 1-- I Reserved I
IEXEDI 14 !Execute input response delay time I
IBATDI IS !Batch input response delay time I
IACCDI 110 !Access input response delay time I
ISYSDI 13 !System processed commands I
ISALTO 13 ISALVARE file time check (mins.) I
---------~--~----~---~---~--~----------------------------------

60454300 B 37-15.1

The following illustrates the multiplexer table. An entry
exists for each stimulated multiplexer in the EST which is on
plus an entry for the network interface.

59 47 35 23 11 0

MUXP I channel 0 !number of ports I 0 first port I

After initializing the tables, IAFEX modifies addresses in
!AFEX1 and IAFEX4 code which use the increment instruction
operation definitions. Next, each terminal table entry is set to
complete status by setting VROT equal to 3 in each entry. Next,
the warning message address VWMP is set to the normal header.
Next, IAFEX calls 1TA to search for time-sharing jobs in the
system. The jobs searched for are TXOT and MTOT type. The count
of such jobs is returned in a pseudo terminal table for IAFEX. If
the count is nonzero, IAFEX aborts with the message: IAFEX
INITIALIZATION ABORT. Next, each driver queue is initialized by
setting FIRST, IN, OUT, and LIMIT. The driver queues are used
Like circular buffers. Finally, after starting the drivers and
verifying the recovery file CSALVxx, where xx is the machine ID),
IAFEX is complete and control is transferred to IAFEX1.

IAFEX1 - MAIN PROGRAM

IAFEX1 is the main prog~am that controls and coordinates the
time-sharing subsystem. This program is driven by the following
queues.

• Request entering IAFEX:

Queue

Driver request
Monitor request
Monitor pot request

• Internal control:

60454300 B

Queue

Wait completion
Time delay
Job

Sort

Description

Requests from 1TN and IAFEX4
Requests from other PPs
Requests from other PPs for pots

Description

Wait for completion of a process
Wait for time to elapse
Wait to do all job scheduling at
one time
Wait to do all sort scheduling at
one time

37-16

• Requests sent by IAFEX:

Queue

1TA
1TO

Description

Send all 1TA requests at one time
Send all 1TO requests at one time

These queues are scanned by the 1AFEX1 control Loop which is
defined in the f Lowchart of figure 37-7.

60454300 A 37-17

ORI

process driver
queue

URT

update
running time

STA

process system
IAFEX
requests

RPC

refill pot
chain queue

TOQ

process time
delay queue

CSF

check
SALVARE

file

SOR

process sort
queue

SCH

schedule jobs

TSH
check for

request
completions

PPU

process PP
requests

IAFEX4/NDR

execute
network
interface

SPA
check for
FL change

enter PP
requests

STA

process system
IAFEX requests

RPC

refill pot
chain queue

RECALL

IAFEX
in recall

*1 The SALVARE file contains a two-word entry for each user in
recovery state.

Figure 37-7. IAFEX1 Control Loop

60454300 A 37-18

Every 3 minutes the SALVARE file entries are checked and if the
time is over VNTO minutes old, the entry is removed, the rollout
file and all nonpermanent Local files are dropped, and the
terminal Logged off. The users must recover within VNTO minutes.
of system recovery or the SALVARE file entry will be eliminated.
The SALVARE file is discussed further tjnder SALVARE - IAFEX
Recovery File in this section.

The relationship between processing modules of IAFEX1 is shown
in figure 37-8.

Queues

Tables

Figure 37-8.

Control Loop

PCS

Request Processing
Routines

. Subroutines

Queue Processor

Command
Processor

IAFEX1 Processing Modules

In general, all tables in IAFEX are dynamic in Length at
initialization time. The lengths of the various tables and
queues are determined by the maximum number of terminals to be
serviced. Thus, it is necessary for all routines at
initialization time to determine the values of table pointers,
and so on. Once IAFEX 1s initialized, the Lengths of tables do
not change. Thus, pointers such as FIRST and LIMIT could be read
and saved by programs that are time critical. These pointers
could also be saved as abolute address·es because IAFEX will never
~e moved. Thus, no SYSEDITs which change the size of CMR can be
r u n w h i l e I A F E X. i s r u n n i n g • T h e I A F EX 1 m em o r y L a y o u t i s s h o w n i n
figure 37-9.

60454300 A 37-19

RA

RA+778

VTRP

RA+MUXP

TROT

PCOM

TCOM

TRRT

IAFEX1

PBUF,
SBUF

TRANG

VDRL

VTTP

VRAP

VPTP

VPLP

VBMP

RA+FL

Tobie, queue, and buffer
pointers set at in it iolization

Statistics

TSEM and TGPM queues

Network interface and
multiplexer table

Queue table ·

Subsystem table

Driver request queues

Character translation tables

Terminal table

Reentry table

Reserved

Pot link table

Pots
(8-word buffers)

+- EX!BUF = load address
for IAFEX2 (the exit
processor)

~=Coded routines

Figure 37-9. IAFEX1 Memory Map

60454300 A 37-20

DRIVER REQUEST QUEUE(S)

Driver requests are passed to IAFEX1 via the driver request
queue which are circular stacks as shown in figure 37-10.

59 41 17 0

driver name 0 pointer to next stack

FIRST

IN

OUT

LIMIT

FIRST

r) driver request queue entries

LIMIT t (one word each)

Figure 37-10. Driver Request Queue Stack

1008
words

Driver request queue entries are placed in a circular stack by
the driver.* The IN pointer is upqated by the driver when an
entry is placed into the queue. IAFEX1 updates the OUT pointer
as the driver requests are completed. The driver name is stored
in word 1 with a pointer to the next stack. A zero pointer
indicates the last stack. Each stack is 1058 words in length
(1008 words for entries plus five header words). A maximum of
four stacks may exist; one for each driver. The entries are one
word as follows:

59 47 35 23 11 0

I 2000+rq I 0 I p2 I p1 I tn I
rq Request number
p2 Parameter 2
p1 Parameter 1
tn Terminal number

*The driver is either IAFEX4 when no STIMULA-type terminals are
being used or !AFEX4 and/or 1TD if STIMULA is in use.

60454300 A 37-21

The request number is always biased by 20008 so that a jump
table index can be stored in a B register with use of the unpack
instruction. For example, if the above word is in X2, consider
the following instruction.

UX1,B7 X2

The result is that 87 contains the request number and X1
contains the parameters and terminal number (that is, the Lower
48 bits). A List of request numbers (request codes) is
maintained in common deck COMSTDR and are Listed in table 37-2.

TABLE 37-2. DRIVER REQUEST NUMBERS (ISSUED T-0 IAFEX1)

--------------------------------------~--------------------~---
!Request I I I
I Code I Symbol I Description I
!---!
I T I
I 0 I AOD !Increment retry count I
I 1 I CSC !Circuit scan complete I
I 3 I CLI !Command line input, P1=first pot, I
I I IP2= word in pot I
I 4 I DLO I Data Lost, P2=type I
I 5 I DRP !Drop pot I
I 6 I ORT !Drop pot chain, P1=first pot I
I 7 I HUP !User hung up phone I
I 10 I IAM !Issue accounting message, P2=type I
I 11 I LOF !Log off user I
I 12 I LPT !Request additional pot, P1=current I
I I I pot I
I 13 I MAL !Reserved I
I 14 I MTN !Reserved I
I 15 I RES !Request more output, P1=current pot I
I 16 I RIN !Release source Line, P1=first pot I
I 17 I SA! I Set auto input mode I
I 20 I SKY !Interrupt from terminal, P2=interrupt I
I I I Level I
I 21 I SPT !Reserved I
I 22 I SSC !Reserved I
I 23 I TTI !Reserved I
I 24 I EMO !Reserved I

60454300 A 37-22

MONITOR REQUEST QUEUE(S)

PP requests for IAFEX processing are handled via the PP monitor
function TSEM. The message buffer is set up by the requesting
PP according to the following format.

59 47 35 23 11 0

[2000+fn p1 p2 p3 p4

p1 - p4 Parameters depending on the function.

fn· Function code. These function codes are defined
in packed format in common deck COMSREM. They
are Listed in table 37-3.

TABLE 37-3. TSEM MONITOR REQUEST FUNCTIONS

!Value I Name I Description I
!--!
I I
12000 I VDPO I Drop pots I
12001 I VASO I Assign output I
12002 I VMSG I Terminal message I
12003 I VSDT I Set terminal table bit (VSTT only) I
12004 I VCDT I CLe·ar terminal table bit CVSTT only) I
I 2 0 0 5 I V S C S I S e t c h a r a c t e r s e t mo d e I·
I 2006 I V~TY I Reserved I
12007 I VSBS I Set subsystem I

PP monitor picks up the above request and stores it in a free
slot in the IAFEX monitor queue for TSEM functions. This queue
is located at VTRP in IAFEX and is 108 words in Length. If no
slot is free in this queue, monitor (MTR) keeps trying until
IAFEX honors an existing request and clears a slot.

In general, IAFEX drops any unused pots in the chain. If the
Last pot is not completely filled by the routine issuing output,
the rautine must put in a terminator byte (0014) in the output
data except when network ASCII data has been generated, since
this mode has a character count .in the data header.

NOTE

When issuing a 2001, terminal status must have
bit 4 set in VROT.

Pots for output are obtained by issuing the monitor function
TGPM. These requests are handled by IAFEX in a 3-word queue
similar to TSEM requests.

60454300 A 37-23

The parameters for the various functions are defined as follows.

VDPO - Drop Pots (IAFEX1 Routine ORT)

59

I 2000

yyyy
xx xx
nnnn

47 35 23

0 yyyy I xxxx

Last pot to be dropped
First pot to be dropped
Terminal number

VASO - Assign Output <IAFEX1 Routine ASO)

59

I 2001

yyyy
xx xx
nnnn

47 35

0 I yyyy

Last pot of output
First pot of output
Terminal number

23

I xxxx

11

nnnn

11

I nnnn

VSCS - Set Character Set Mode <IAFEX1 Routine SCS)

59

I 2005

yyyy
xx xx
nnnn

60454300 A

47 35 23

0 I YYYY I xxxx

Last pot containing m-0de
First pot containing mode
Terminal number

11

nnnn

0

0

0

37-2 4

VSBS - Set Subsystem CIAFEX1 Routine SSS)

59 L 2007

yyyy
xx xx
nnnn

47' 35 23

0 I yyyy I ... x

Last pot containing subsystem
First pot containing subsystem
Terminal number

VMSG - Assia!: Message (IAFEX1 Routine DSD)

59

I 2002

47 35

0 I yyyy

Last pot of message
First pot of message

23

I

11 0

nnnn

11 0

nnnn

yyyy
xx xx
nnnn Terminal number; if below maximum number of

pseudo terminals, then this is a warning message
sent to all terminals

VMSG is used by DSD to process the DIAL and WARN operator
commands.

60454300 A 37-25

VSDT and VCDT TSEM Requests

When a terminal user initiates a CPU program, he may terminate
that program with termination or user break 2 CUB2) sequence
<refer to the IAF Reference Manual). If the user wishes to
disable/enable this function he can use the DISTC macro described
in section 12 of the NOS Reference Manual, volume 2. This macro
generates an RA+1 call to the PP routine TLX. TLX issues the
appropriate TSEM request (function 2003 or 2004), which sets the
terminal interrupt address in TIAW. The disable function ignores
this field and sets the disable bit in the terminal table VSTT.
The enable function sets this field to the address relative to RA
specified in the call and clear the disable bit in the terminal
table VSTT. Refer to volume 2 of the reference manual for a
complete description of DISTC.

TGPM Request

Pots for output are obtained by issuing the monitor function TGPM
The requests ar·e handled by IAFEX in a 3-word queue similar to
TSEM requests. The call to TGPM is as follows.

59 47 0

OR
I

TGPM

I

0 I
Upon return, the OR i s as follows.

59 47 35 0

OR
I

0
I

p

I

0 I
p P,ot pointer co if no pots available)

If p=O, the pp should reissue the request.

Whenever a PP needs a pot chain it issues the TGPM MTR request.
MTR searches the IAFEX TGPM queue for a nonzero entry. If MTR
finds one, it will be the first pot of a pot chain. The chain
size is an assembly constant and is currently fixed at 4 pots.
This pot chain is assigned to the calling PP and the queue entry
is zeroed. If the queue is empty, MTR issues an RCLM on IAFEX.

During IAFEX's main Loop it checks the TGPM queue and if it
finds any empty entries, it generates a pot chain and places the
first pot number in the qu~ue.

The TGPM is used by 1TO, which requests pots for flushing a TXOT
type job's OUTPUT fil~. Another user is DSD, who must get a pot
chain for the WARN and DIAL messages.

60454300 A 37-26

TERMINAL TABLE

The terminal table contains an eight-word entry for each
possible active user. Each entry contains the current status of
each connection. These eight-word entries are structured in such
a way so as to minimize interlocks between IAFEX1 and the various
PP routines which read and write them.

IAFEX4 and the network terminal processing routines of 1TO use
terminal tables VFST, VDPT, and VCHT to maintain terminal
operations parameters.

Word 0 <VU IT) i s written by IA F EX and 1TA and read by IAFEX and
1 TA .. Its format is as follows.

59 17 0

[user number user index I
Word 1 (VFNT) is written by IAFEX, 1RO, and 1TA and read by 1RI,
1TA, IAFEX, 1RO, and the driver. Its format is as follows.

59

mode

bf l

17 11 0

primary file name bf I

Write Lockout if bit 0 set; execute only if bit
2 set
RFL value for batch subsystem; sector count for
1TA on RUN, I=lfn

Word·2 (VFST) is written by IAFEX, 1RO, 1TA, 1RI, and 1TO and is
read by IAFEX, 1RO, 1TA, 1RI, and 1TO.

VFST is used by 1TO to maintain status information between
output operations involving an output Line that has been split
across pot chains. This word uses the VROT interlock; that is,
when VROT is interlocked, 1TO may write word VFST. Its format is
as follows.

59 53 47 35 23 11 0

le
1st track current

status pe primary file track aa

Le List fi, le equipment number

pe Primary file equipment number

60454300 A 37-27

aa One of the following:

• List or primary file current sector

• Control statement pot pointer during job
scheduling

• Accounting pot pointer during Logout

status Output status bits:

Bit
11-6
5
4
3
2
1
a

Description
Unused
Line continuation
7400 escape character
7600 escape character
Binary
Transparent
Extended

Word 3 (VROT) is written by IAFEX, 1RO, 1TO, 1RI, and 1TA and is
read by IAFEX, 1RO, 1RI, 1TA, 1TO, and the driver for the rollout
file. Its format is as follows:

59 53 47 35 23 11 0

word est 1st track field
cnt.

rol lout
rel lout

a
length

substatus status
file

a Absolute FL flag; if not set, then FL is in units of
1008

substatus:

File list if 0 Clist with EOR and EOF if 1)

60454300 B

Job Status:

Meaning

Level number
SRU limit
Time limit
Terminate special job

with FL
Terminate special job
Interrupt
Input status

EOI
EOF
EOR

Bit

23-20
19
18

17
16
1 5

14
13
1 2

37-28

status:
IAFEX in control
System in control
Job in system
Job to be rolled in
Job awaiting input
Output available
Special system job
List
MuLti-terminal
Suspended
Not used
Error on Last operation

Bit
0-

0
1
2
3
4
5
6
7
9

10
11

Value
--1-

0
0
1
1
1
1
1
1
1

1

Word 4 (VDPT) is used by IAFEX4 and the network processing
routines of 1TO to maintain terminal operations parameters. Its
format is as follows.

59

f w

first pot
of Ii ne

WC

flags

47

last pot
of line

35 32 29

fw we

23 11

flags

First word of first pot
Last pot word count
Each bit defined as follows:

Bit
23-17

1 6
1 5
1 4

1 3-11 2

Description
Unused
Source input initiated
Binary input
Transparent input
Unused

0

Word 5 <VCHT) is also used by IAFEX4 and the network processing
routines of 1TO to maintain terminal operations parametersw Its
format is as follows.

59 47 35 23 11 0

I ad X7 I 83 I ic oc
I

ad Reentry address relative to NOR
X7 12-bit X7 parameter
B3 B3 parameter; assumed to be pot pointer
; c Input character count
oc Output character count

Word 6 (VDCT) is written and read by IAFEX1 and IAFEX4. Its
format is as follows.

60454300 A 37-29

59

[flags

flags

Bit

0
1
2
3
4
5
6
7
8
9
1 0
1 1

term

Bit
11-3

2-0

num

ace

next

47 35 23 11 0

J term I num I ace next I
Flags as follows:

Value Meaning

0001 Tape mode
0002 Auto mode
0004 Text mode
0010 Extended mode

Reserved
Reserved

0100 Read data mode
0200
0400 Input requested
1000 User Logged in
2000 Interrupt complete
4000 Driver request from IAFEX1 byte 4

Terminal control information as follows:

Value Meanin5!
Not Used

0-7 Fi rs t word of output Line in pot

In AUTO mode, the Line number increment

Access control flags Clower 12 bits of access word
defined in VALIDUs fi Le for this user). Refer to
the NOS Installation Handbook for procedures to
establish the access word. Refer to section 20
for a description of the bits currently defined
for the access control word.

First pot of an output message assignment or
driver request function code (byte 0, bit 59
flag). <Refer to BGI - STT Subroutines).

Word 7 (VSTT) is written by IAFEX1 and is read by IAFEX1, IAFEX4,
IAFEX4, 1TO, 1RI, 1RO, and DSD. Its format is as follows.

59 47 35 23 11 0

I flags I first I cmand I sys pot

60454300 A 37-30

flags

Bit

48
49
50
51
52
53
54
55
56
57
58
59

first

cm and

sys

pot

60454300 8

i
Flags as follows:

Value Meaning

0001
0002
0004
0010
0020
0040
0100
0200
0400
1000
2000
4000

Log-out in progress
Unconditional abort flag
Warning issued
Run complete message
Sort flag
Not Used
Job complete f Lag
Input lost or job not started
Not used
Charge number required
Conditional abort flag
Disable terminal control

Fi~st pot of source Line input. This byte, along
with byte 2 (pot count), is used in subroutine DMP
to dump pots to disk as input is received by
calling 1TO.

Pot count or index into command table, TCOM. The
index is set by subroutine SCT. Also may be used
as DSD command pointer.

Bits 23-15 nonzero if files Lost on RECOVER
command. Bits 14-12 are current system in control:

0
1

Null
BASIC

3
4
5

FTNTS 6
Execute
Batch

Access

Pot pointer to a queued output message. That is,
if a message is already in VDCT and not yet
processed, the next message is queued by using
byte 4 of VSTT. If another message must be
assigned, it will be Lost. Refer to subroutine
ASM. Normally, this byte is zero.

37-31

I

Table 37-4 is a summary of the terminal table entry.

TABLE 37-4. TERMINAL TABLE ENTRY SUMMARY

I Name I Word I Written by I Read by I
!---!
IVUIT I 0 I IAFEX, 1TA I IAFEX, 1TA I
IVFNT I 1 I IAFEX, 1RO, 1TA I IAFEX, 1RI, 1RO, 1TA, I
I I I I IA FEX4 I
IVFST I 2 I IAFEX, 1Rl, 1RO,I IAFEX, 1RI, 1RO, 1TO, I
1 I I 1TA, 1TO I 1TA \
IVROT I 3 I IAFEX, 1RI, 1RO,I IAFEX, 1RI, 1RO, 1TO, I
I I I 1TO, 1TA I 1TA, IAFEX4 I
IVDPT I 4 I 1AFEX4 I IAFEX, IAFEX4 I
IVCHT I s I IAFEX4 I IAFEX4 I
IVDCT I 6 I IAFEX, IAFEX4 I IAFEX, IAFEX4 I
IVSTT I 7 I IAFEX I IAFEX, 1RI, 1RO, 1TA, I
I I I I IAFEX4, 1TO, DSD I
I I I I I

In table 37-4, the name IAFEX refers to any of the overlays
comprising IAFEX except IAFEX4. Any routine which writes a word
also is assumed to read that w-0rdo

NETWORK TABLES

IAFEX4 uses two dynamic tables in addition to the nonnetwork
tables. These tables, the message status table (VMST) and the
network activity table (VNAT), are allocated only if network
tables are defined.

The message status table VMST contains network terminal control
information and supervisory message pointers. Its format is as
follows.

59 43 35 32 29 22 17 0

VMST l _____ f_la_g_s _____ l __ d_t ___ l_bc_l_b_l~~-------"P ___ l ______ sp_v_p ______ I
flags

604S4300 B

Each bit defined as follows:

Bit Description

59
S8
57
S6
SS
54
S3
52

Terminal on-Line
Suspend traffic
Break in progress
Shutdown warning sent
End-connection in progress
Data received previous cycle
MSG block sent (input enabled)
Data present on NAM (used only during
break processing)

37-32

I

Device type
Unacknowledged downstream block count
Application block limit

dt
be
bl
np
spvp

Number of pots allocated for output pot string
Pot pointer of pot containing supervisory message

The network activity table VNAT indicates which network terminals
require service from the terminal manager. One bit is used for
each network terminal, 32 bits per CM word. A terminal's
activity is set when the terminal requires service by the network
driver. A terminal's activity bit may be found by the following
algorithm.

w - tn - ft) I 32

w Word Location relative to start of table
tn Terminal number
ft Fi rs t network terminal number

rb = (tn - ft) mod 32

rb Bit location relative to bit 59

POT LINK TABLE

The pot Link table (PLT) controls the use of pots (8-word
buffers). Its Layout is as follows.

byte 0 byte 1 byte 2 byte 3 byte 4

VPLP+O 7777 0 0002 1 0003 2 0004 3 0017

+1 0005 4 0000 5 0007 6 0000 7 0017
;

+2 0000 10 0012 11 0013 12 0014 13 0007

.......

T

60454300 8

~

T

37-3 3

Byte 4 contains reservation flags in the following format.

11 0

000 000 001 111

pot in byte 3 reserved; 0 = free pot
pot in byte 2 reserved; 0 = free pot

pot in byte 1 reserved; 0 =free pot
pot in byte 0 reserved; 0 = free pot

Each byte C0-3) represents a pot, an 8-word CM buffer starting
at VBMP. Bytes 0-3 contain a link to the next pot in the chain.
The last pot 1n the chain is indicated by a zero byte. Pot zero
is always reserved and links to 7777. Each PLT byte has the
following format~

11 21 0

word link

.__ byte link

60454300 A 37-34

In the preceding table, pots 1-5 are reserved and comprise one
chain. Pots 6 and 7 comprise another chain. Pot 10 is free.
Pot 11 is the start of another chain. Reserved chains need not
be contiguous.

INTERNAL QUEUES (TRQT)

All internal queues are built at assembly time in a table of
queues. This table consists of all the queues that may have
requests in the reentry table. The following is a list of
valid queue names in the table of queues.

Name

WCMQ
TIMQ
JOBQ
SORQ
ITAQ
ITOQ

Description

Wait completion queue
Time delay queue
Job queue
Sort queue
1TA queue (PP request queue)
1TO queue (pp request queue)

The PP request queues are one-word entries in the table of
queues, while the other 4 are two-word entries. The format of
the entries is as follows.

59

I PPP

PPP
f c
tn
pp

59

2ccc

CCC

nnnn
yyyy
t t. .. t

60454300 A

41 35 23 11 0

0 I f c I tn pp I
1TA, 1TO
Function code
Terminal. number
Pot pointer

47 35 29 17 11 0

0 nnnn 0 yyyy

0 t t . . ' t

Number of entries (packed format)
First terminal entry (index into reentry table)
Last terminal entry <index into reentry table)
Resource control count

NOTE

Each queue has an associated string of
entries in the reentry table.

37-35

REENTRY TABLE (VRAP)

The IAFEX subroutines use the reentry table to have control
returned or functions performed for them when a set of
conditions are met. The table consists of one word for each
terminal with one of the following formats.

59 0

~-- 0

No reentry conditions

59 47 23 11 0

I 2yyy xxxxxxxx I PPPP

yyy Index to TRRT <table of reentry processors)
xxxxxxxx Anything
pppp Pot pointer for further parameters
nnnn Link to next entry in the queue of this type <see

TSR)

59 17 0

0 nnnnnn

nnnnnn Pot address of stacked entries

Each entry in the reentry table contains an index to the table
of reentry routine parameters <TRRT).

TABLE OF REENTRY ROUTINE PARAMETERS (TRRT)

This table is built at assembly time. It consists of entries
that direct further processing based on entries from the reentry
table and on completion of certain sections. Entries are added
to the table by use of the COMMND macro. Entries are one word,
according to the following format.

59 53 47 35 17 0

TRRT I n I yy zzzz eeeeee nnnnnn

60454300 A 37-36

xx

yy
zzzz
eeeeee
nnnnnn

Index to TRQT (queue table>; if xx=O, no
resources are required except for a peripheral
processor, possibly
Function code for called program
Function processing address relative to TSRPROC
Error return address
Normal return address

The COMMND macro format is as follows.

LOCATION

pro c.

sysr

npro
erra
f unc

OPERATION VARIABLE SUBFIELDS

COMMND proc,sysr,npro,erra,func

Entry point of routine to pro~ess this. command
<zzzz)
The queue that the request is to be placed in:
WCMQ, TIMQ, JOBQ, SORG, ITAQ, or ITOQ <xx)
Normal return address Cnnnnnn)
Error return address (eeeeee)
Function code to be passed to the called program
(yy)

The following example uses the COMMND macro tG generate a queue
entry.

COMMNO INP6,WCMG,INP6,INP6
INP6$ EQU * <This is generated by the COMMND

macro).

INP6$ is the symbol for this word in the table of reentry
routines.

Now to make the WCMQ queue entry:

sxs
EQ

INP6 SSS

INP6$
PCS4

0

SPECIFY COMMAND TABLE ENTRY
MAKE QUEUE ENTRY

NORMAL AND ERROR RETURN ADDRESS

In general, queue entries are made in this manner throughout
IAFEX.

60454300 A 37-37

Figure 37-11 shows the relationship between the table of queues,
the reentry table, and the table of reentry routine parameters.
There is one queue entry per terminal.

QUEUE PROCESSING

Processing of queue entries is done by the PCS subroutine. As
entries are completed, PCS extracts the normal or error return
address and jumps to it. Making queue entries is done by a jump
to PCS4 or PCS6. Before returning to a routine, PCS calls SSP
which sets up the following registers (from the queue entry,
bits as shown>.

Register

AO
82
83

84
X7

Description

FWA of user's terminal table entry
Terminal number (bits 11-0)
Pot pointer <extracted from byte 3 of entry
in reentry table) (bits 47-24)
FWA of pot pointed to by 83 (83*10+VBMP)
Bits 47-24 of reentry table entry

These A and B registers are generally not changed within the
various subroutines of IAFEX.

60454300 A 37-38

word 1 of WCMQ from TRQT

VRAP

terminal 1

terminal 2

•
•
•

terminal n-1

terminal n

TRRT

59 47 35 17

first lost

count of entries

Reen try Table
59 47

'
23 11

TRRT index parameters pot pointer link

TRRT index parameters pot pointer link

• • • •
• • 0 •
• • • •

TRRT index parameters pot pointer link

TRRT index parameters pot pointer

59 53 47 35 17

TRQT func.
index code

function
processing
address

error return
address (code)

normal return
address (code)

Figure 37-11. Table Relationships

60454300 8

0

0

0
set up by
COMM NO
macro

37-39

IAFEX ROUTINES

The following is an outline of the subroutines comprising IAFEX1.

• MUXP - Multiplexer table (RA + 1018)

• TRQT - Table of queues:

WCMQ
TIMQ
JOBQ
SORG

ITAQ
ITOQ
PFMQ

• IAF - Control loop; calls the following:

CSF
ORI
EPP
NOR

PPU
RPC
SCH
SOR

SPR
STR
TDQ

TSR
URT

• STR - Process requests to handle output to terminal by
calling the following subroutines:

• CSF -

• DR! -

• PCM -

ASO
CDT
ORT

Checks SALVA RE

Process driver

DSD
PTY
SBS

f i le

(1 TD)

user

scs
SDT

time

requests
following s u b r o u t i n e s ·:

AOD DLO HUP MAL SA I
csc DR P !AM MTN SKY
CL! ORT LOF RES SPT
DIN EMO LPT RIN SSC

out

by

Process terminal commands <called
calls following subroutines:

ACC DIA LIS REP SUB
ASC EDI MTR PER TAP
ATT FOP NOR ROT TER
AUT GET NOD RUN TXT
BAT HEL NOS SAV UNS
BIN HOP PAC SOF UNU
BYE LAN PAR STA XEQ
CLR LEN PFC STO

• Reentrant command processing routines:

BJB IEX IUA IA F PUR

BJS INJ PBS PFF ROY
EJB IP F PSS PFM
I OT IPL DA F PFP

60454300 A

calling the

TTI

from CLI, AUT);

37-40

•
•
•
•
•
•
•
•

•

IAFEX2

PCS - Process queue entries

PPU - Process pp requests

RPC - Refill. pot chains

SCH - Build job queue entry for scheduling

SOR - Set up for scheduling SORT job

SPR - Call 1TA to adjust field Length

TDQ -
TSR -

Process

Process

OCR
H NG
ICH
!NP

time -
WCMQ;

!TA
ITO
JOB
LIN

delay

reenter

MJ E
MTO
REC
SEN

queue

the

SRE
sso

General· subroutines including:

ABT' CPF GPL MQE
BRQ DAP GQE MVA
C CM DMP GRT 065
CFL DPT GTA PCB
CJT ENP GZP RPL
CLE G·EM ISH RPT
COI GFN LTT SAF
COP GFS MDA SCT

- TERMINATION OVERLAY

following:

SFL
SLF
SRC
SRR
SSP
TPF
UPF
UQS

a job

IAFEX2 perfoms exit processing for the time~sharing subsystem.
It is loaded whenever an abnormal condition is detected or when
the operator types 1.STOP to drop the subsystem.

When an abnormal condition is detected within IAFEX1 a jump to
the abort subroutine (ABT) is executed. ABT issues the message

IAFEX ABNORMAL - xxx.

where xxx is the name of the subroutine calling ABT.

After issuing this message, if sense switch 3 is on, the ABORT
macro is used to abort the control point. Routine 1AJ senses the
EXIT control statement, the next control statement CIAFEX2) is
found, and 1AJ has the termination routine loaded. IAFEX2 is
loaded in a buffer· which Leaves the tables and queues untouched.
Basically, IAFEX2 dumps the FL if requested and loads IAFEX3
which logs out all active users so that there will not be any
time-sharing jobs Left in the system. After issuing system
statistics, 1TD is called to restart the time-sharing subsystem
depending upon sense switch settings. (There are 6 sense switch
options for IAFEX. Refer to the NOS Op~~ator's Guide for more
information.)

60454300 A 37-41

IAFEX4 - !AF/NAM INTERFACE

The IAFEX4 overlay to IAFEX provides the interface between the
Network Access Method (NAM) protocols and message formats and the
internal characteristics of IAF. Figure 37-12 depicts the
general organization of the IAFEX4 overlay; figure 37-13 shows
the organization of the entire field Length. The following
paragraphs describe the internal design of the interface and its
relationship to the time-sharing executive and NAM.

The basic purpose of IAFEX4 is to send and receive data from
terminals which are connected through NAM to IAF. In order to
accomplish this for IAF, IAFEX4 provides the control and
connection management for all connected terminals. The features
provided are as follows.

• Receives, interprets, and sends supervisory messages

• Transforms outgoing data from internal forms to the
appropriate network format

• Transforms incoming data from network f~rmat to internal
format

• Manages data traffic to optimize interactive performance.

A component of NAM called the Application Interface Program CAIP)
resides in the field Length of IAFEX <refer to figure 37-13) and
provides the data interchange between NAM and IAFEX. The
details of the AIP are not described here; the r~ader should
refer to the NAM Reference Manual for the background information
required to fully understand the details and requirements of the
network interface.

The functions of IAFEX4 are described in relation to the terminal
functions available to the user rather than the internal
organization of IAFEX4. This approach should provide a Logical
organization within which to describe the operation of the
network interface overlay. The following functions are
described.

• Connection establishment (Login)

• Command Line entry

• Source Line entry

• Input to a running program

• Output processing

• Session termination

60454300 A 37-42

interface control words
interface statistics

message headers and fixed messages

IAF /network intertace control

terminal manager

supervisory message processor

upline data manager

network intertace control subroutines

general subroutines

data translation subroutines

common decks and code conversion tables

interface buffers

application interface program !AIP)

Figure 37-12. IAFEX4 I

60454300 8 37-4 3

RA
pointers and short queues

RA+TXORG

queue pointers, statistics, and internal messages

IAFEX1

time-sharing executive

IAFEX4

• terminal conversion control

• terminal message control

• NAM interface (AIP)

• terminal tables

• queues

• pots

Figure 37-13. IAFEX Control Point

60454300 A 37-44

CONNECTION .ESTABLISHMENT

Prior to connection to IAF the user completes the Login dialog
wth NVF (NETVAL). NAM then sends a connection request (CON/REQ)
supervisory message to IAF which,is interpreted by the
supervisory message processor (SMP) and transferred through PCS
to the connect function code processor <CON). Since there are a
number of variations to the conne~t function, CON checks the
subfunction code and determines that this is a new connection_
CON then transfers control to NWC to process the new connection.

The CON/REG message includes the family name, user number, user
index; and validation information which NVF has read from the
validation file. This information is moved into a pot and a
pointer to that pot is placed in VDPT for 1TA so Login can be
completed. Terminal table ~ords VCHT and VUIT are initialized
~nd the terminal is set to on-Line status in the message status
table (VMST). Information required to control the terminal
(device type and application block limit) is also stored in the
VMST entry at this time.

The .Last step required to complete this phase of the connection
process is to send a connection accepted supervisory message to
NAM. This is done in NWC by calling ASV to assign the message
after which NWC exits to PCSX which returns to SMP to complete
processing of this message. The terminal is not yet fully logged
in since 1TA has not yet been called to perform the login
process.

The Last step in the connection protocol is to receive and reply
to the connection initialized (FC/INIT) supervisory message.
Until this happens terminal dialog cannot occur. SMP interprets
t he F C I x x x s up e r v i so r y mes s a g e a n d t r a,n s f e r s c on t r o l t h r o u g h P C S
to the proper processor, this time FCN. FCN selects the proper
subfunction processor for the Ft/INIT (CNM) and transfers control
to it to process the message.

CNM first calls ASV to respond to the FC/INIT and then exits to
PCS4 to make an ITA3$ queue entry in order to complete the
internal login process for this terminal. The exit to PCS4
returns to PCSX which returns to SMP to complete the processing
of the supervisory message.

COMMAND LINE ENTRY

When network driver main control CNDR) detects a data message
from a terminal, the read data manager CROM) is called to process
the message. RDM extracts the connection number from the message
and validates the number so it can be related to a terminal table
entry. The connection number CACN) &nd the terminal table entry
number are identical. Assuming that the terminal is in a normal
state and no resource limitations are currently exceeded, ROM
cal ls PIN to 'process the input data.

60454300 A 37-45

PIN determines the correct internal format for this data and
calls one of the translation routines to convert the received
data from NAM to IAF format and character set. PIN calls the
end-of-line processor CEIL), which in this c•se calls ECL to
enter the command line to the executive. Pot pointers in VDPT
are cleared and ERQ is called to enter a CLI request in the
driver circular stack. This request causes the executive to
accept and process the command line. Control now returns to ROM
which indicates that this network input data has been accepted.
ROM then returns to main control (NOR) which directs the next
operation.

SOURCE LINE ENTRY

A source line is data received in t~xt mode or a line of data
which begins with a digit. Input which is source is to be placed
on the primary file and this requires slightly different
processing than command line data in the network interface.

All processing for data of this type is the same as for command
line entry discussed above up to the point where EIL <process end
of input line) is called. EIL detects that the input is source
and calls ESL to enter the source Line. Since source data is
buffe~ed prior to writing it to the primary file, ESL does not
actually release the input data unless it exceeds one pot.
Assuming that such a condition ~xists, ESL calls ERQ to make an
RIN driver stack request, resets the input initiated bit, and
returns control to ROM which completes processing in the same
way as for command line antry.

INPUT TO A RUNNING PROGRAM

This is handled in the network interface in the same way as
command line entry. The read-data bit in terminal table word
VDCT forces this to occur and the command line processor in the
executive directs the data to the program requesting it.

OUTPUT PROCESSING

Processing of output to terminals in the network interface
begins when main control CNOR) calls the terminal manager (MGR).
The terminal manager, after performing a number of tests
necessary fo~ timely processing of supervisory messages and
internal functions, calls PQO to process queued output.

In the simple case where no special control bytes need be
processed and there is output indicated in VDCT or VSTT, PQO
formats the network message header and calls SPC to ~end the pot
chain containing the message to NAM.

SPC checks the size of the output because the exact method of
sending data to NAM depends on whether the data is in a
contiguous block or fragmented in a number of linked pots.

60454300 A 37-46

If the ~ata is in a contiguous space, SPC makes a NETPUT call to
send the data. When the data is fragmented, SPC builds the send
vector table which is sent 'to NAM with a NETPUTF request. NAM,
using the send vector, extracts the data fragments from the pots
and sends the data to the terminal. The pots holding the data
must not be released until NAM indicates it has taken the data.
(This is true for both NETPUT and NETPUTF transmission
techniques.)

SPC now returns to PQO in order to enter a job restart (RES)
request through ERQ. After the restart request has been issued,
PQO returns to the manager (MGR) whih controls processing of the
next terminal.

Dropping of the output pots can be done when the request is
complete. Routine CKP performs this check and drops the data
pots. In the case where output is not immediately accepted,
cells OBSY and NBSY are· set nonzero and OTPP holds the pot
pointer of the still-active data chain. MGR exits upon finding
NBSY nonzero since no further network accesses are possible
until the condition clears. This exit also causes NOR to exit
to the executive •. The next time NDR is called, CKP is executed.
Since NBSY, OBSY, and OTPP are still set from the previous
request, the output operation is post-processed and normal
network activity continues.

SESSION TERMINATION

A session can be terminated in one of the following manners.

• User Legoff command

• Legoff control byte in the output

• Unexpected Line failure

• Network immediate shutdown

The Logoff command is detected by the IAFEX executive's command
processor while the remaining conditions are detected in the
network interface.· A Legoff of any type which generates a
driver request is detected in NDR which calls TFR. Routine TFR
transfer control to the disconnect processor CHUP) through PCS.
HUP clears the pot pointer in VSTT and exits to ENC which ends
the network connection.

A Line failure or a similar condition which causes the connection
with the terminal to be Lost is detected by CON as a connection
broken (CON/CB). CON exits to CNB which calls CUT to clean up
the connection. Subroutine CUT queues an HUP request to the
executive which performs the actions necessary to place the user
on the recovery file. The executive in turn queues an HUP
driver request which is processed in IAFEX4 by HUP which calls
ENC to terminate the connection for this terminal in the same
way as for the first case of Legoff mentioned above.

60454300 A 37-47

The Logoff caused by a Logoff control byte is detected i~ PGO
which calls LOF to enter an executive COF request. When the COF
request is processed by the executive, it returns control to the
network interface just as for the logoff command case above.

1TA IAFEX AUXILIARY ROUTINE

Routine 1TA processes functions for IAFEX which require PP
action. The functions allowed are Listed in table 37-5.

TABLE 37-5. PROCESS FUNCTIONS

----~------~---------------------~-----------------~----------
!Overlay I Function I Routine I I
I Name I Code I Name I Description I
!---------------------------------------~--------~-----------!
I I
I 3TA 1 I TFL !Adjust IAFEX field Length I
I 3TB 2 I RTJ !Return terminal job I
I 3TC 3 I CRF I Create rollout fi Le I
I 3TO 4 I TLP !Terminal Logout processor I
I 3TE 5 I DAM !Display accounting message I
I 3TF 6 I TRP !Terminal recovery processor I
I 3TG 7 I IRL !Increment resource Limit I
I 3TH 10 I RFP I Recovery fi Le processor I
I 3TI 11 I SJS !Sort and job scheduler I
I 3TJ 12 I GST !Gather statistics I
I 3TK 13 I CUS !Clear up SALVARE file I
----------~--------------------~--~-~-------~-----------------

IAFEX calls 1TA in one of two ways.

GROUP REQUEST

A group of requests are stored in pots. The input register format
is as follows.

59

1TA

IR+O

return

cp
pot

60454300 A

47 41 35 29 23 11 0

cp 0 return pot

IR+1 IR+2 IR+3 IR+4

Upper 24 bits of the word specified are set
to zero upon completion of all requests.
Control point number
Pot containing the List of requests

37-48

The requests are one word each with the following format:

59

f c
tn
arg

unused

35

f c

Function code
Terminal number

23 11

tn

Pot pointer or request type

0

arg

The list of requests is terminated with a zero word.

SINGLE REQUEST

A single request is denoted by setting bit 35 in the input
register which is formatted as follows.

59

cp
f c
tn
arg

47

HA

IR+O

41 35 23

cp 40008+fc tn

IR+1 IR+2 · IR+3

Control point number
Function code
Te· rm i na L number

0

arg

IR+4

Pot pointer or parameter <depending on
function)

Routine 1TA uses several bits in VROT of the terminal table.
These bits are:

Bit

0
4

1 0
1 1

Description

Completion status bit
S e t t o i n d i c a t e r e c a L l f u n c t i' on by I A F EX
Purge rollout FNT's
Error return

Figure 37-14 is the flowchart of the initialization, execution,
and termination of the control Loop for 1TA.

60454300 A 37-49

1TA initialization

set completion
address

(I R+2,3) IT AE

store pot
pointer

(IR+4) ITAA

SPA

get pot
address

store pot
address in

ITAB

yes

clear single
request flag
bit 35 of IR

set ITAX to
drop PP after

completing request

error exit

set error and
completion bit
in VROT for
this terminal

Figure 37-14. 1TA Control Loop

60454300 A 37-50

get next request (1 TA)

increment to
next request

in pot

UPP

get next pot

SPA

set pot
address

read pot entry

set return
address word

complete

FTN

drop PPU

process function request

store processor
address and
name ITAO

EXR

load overlay

no

Figure 37-14. 1TA Control Loop (Continued)

set error exit
ERX+1 ITAO

set terminal
table address

read
VFNT-FN
VFST-FS
VROT-CN

process
function

LJM (ITAO)

60454300 A 37-51

set no output flag
in rollout file
FST (CN+4)

write primary
file FST in

VFST

write rollout
file FST in VROT

assign output
function V ASO

to IAFEX

no

59 47

2001 0

35
last
pot

23

Figure 37-14. 1TA Control Loop (Continued)

first
pot

11

terminal
number

6G454300 A 37-52

0

Function 5 is used to create a rollout file for a time-sharing
job. The format of the rollout file is given in figure 37-15.

system sector data
dayfile bu ff er pointers
INPUT file FNT/FST

assigned equipment
terminal table entry l system

sector

control point area

dayf ile buffer

FNT I FST entries

terminal output

job field I ength

Figure 37-15. Time-Sharing Job Rollout File

60454300 A 37-53

1TO - TERMINAL INPUT/OUTPUT ROUTINE

Routine 1TO is called by IAFEX to process a queue of requests
for termin~l input and output which require disk accesses. The
queue resides in pots within the IAFEX field length. The queue
has b~en sorted by IAFEX in order of equipm~nt and disk
addresses so as to minimize disk time. If there are requests
for more than one mass storage' device, the entries are processed
for the first device available.

Routine 1TO is also called by 1RO to handle the first buffer of
data on a rollout file. This data is passed to 1TO in a PP
buffer. Routine 1TO dumps the PP buffer into pots and makes a
VASO request to IAFEX for that terminal.

The input register format when 1TO is called by 1RO as follows.

59 41 35 23 11 0

IR 1 _______ 1T_o _________ cp __ l.._ ___ o _____ ~-----------------t-n ____ I

cp
tn

IAFEX control point number
Terminal number

The input register when called by IAFEX is as follows.

IR

59

cp
pp
return

1TO

41 35 23 17 0

pp return

lAFEX control point
POT pointer to first POT of requests
Location of completion status word

The request in POTs are one word entries with the following
format.

60454300 A 37-54

59 53

re

eq
track

47 35 32 26 23 11

track I x I f p tn

Request code
0 Correction dump
1 Output data

Equipment number
First track of file if re= O;
current track if re = 1

0

w Number of words in Last pot <O means 10);
w is meaningful when re = 0

x
f p
tn

Number of pots to dump; re = 0
First pot of source or output
Terminal number

As a group of requests is completed, the above entries are
updated by setting byte 2 to the Last pot to be dropped or
assigned. These requests are then written back in the same pot
from which they came.

The flowcharts of 1TO (figure 37-16) shows that it is broken
down Logicaly into the following sections.

• Preset or initialization

• Main loop (get next request)

• ICH subroutines <correction handler if re = Q)

• PRO subroutines to process output if re = 1 (that is
data flow is disk to pots to terminal)

60454300 A 37-55

60454300 B

1TO Initialization · PRS

set terminal
number (I R+4)
TN PRCB+4

STA

set terminal
table address

Read
VFST- FS
VROT-CN
VSTT-CM

Figure 37-16.

read one pot
of requests
into EBUF

get next pot
address

sort requests into
groups based on

equipment number

1TO I/O Routine

37-56

get pots
TGPM

LOP
toad pots from

PP buffer
1 RO filled

UTT
update terminal
table: VFST,

VROT

assign output
(VASO) TSEM

drop
PP

yes

Figure 37-16. 1TO I/O Routine (Continued)

60454300 A 37-57

60454300 B

load
overlay

2TO

CUA

select entry
to process

no

Figure 37-16. 1TO I/O Routine (Continued>

37-58 •

no

60454300 B

SETMS

set mass
storage

CKN
check
next
entry

SEI
search

to
EOI

STA

set terminal
table address

IDP

input data
processing

Figure 37-16.

OOP

output data
processing

write
pot
back

set
completion

for
IAFEX/TELEX

FTN

drop PP

yes

1TO I/O Routine (Continued)

I

37-59

set pot
address of
user pot

set up line
number

SDI
search disk

for line
number

drop channel

LNP
load

network
pots

FAP

form ASH
header
in pot

UTT

update
terminal

table

SPA

set pot
address

LMP
load

multiplexer
pots

Figure 37-16. 1TO I/O Routine (Continued)

60454300 A 37-60

FTN

hang pp

read pot
data

SLB
set last

set sector sector

linkage bytes written

DPB FTN

dump buffer
drop track to disk

WEI update
writ~ terminal
EOI table

sector

FTN

return
drop channel

Figure 37-16. 1TO I/O Routine (Continued)

60454300 A 37-61

ADDITIONAL CONSIDERATIONS

The NETWORK o~ SIMFILE file specifies the number of network
terminals IAFEX will initialize its tables to hold.

The SLDC issued by IAFEX is a compiler call statement issued in
response to terminal user typing RUN or some similar call in the
BASIC subsystem.

SALVARE - IAFEX RECOVERY FILE

The SALVARE file is a fast attach permanent file built by ISF
during an initial deadstart or recovered during a recovery
deadstart. The size of the file is determined by ISF and its
length is not altered by IAFEX. ISF assures that the file
length does not exceed one logical track-on the residence device.

During initialization, IAFEX reads the SALVARE file in
subroutine URT to update the recovery times. This is done to
assure that a user has VNTO minutes to recover, no matter
how Long a system recovery has taken.

During operation in IAFEX1, th~ main Loop calls CSF. CSF issues
a 1TA queue call to check the SALVARE file in 1TA routine_ CUS
function 20. CUS ~lears all entries in the SALVARE file and
logs off users over VNTO minutes old. This call is made about
evey 3 minutes.

Routine 1TA is a combination of functions to perform for IAFEX.
The important functions associated with the SALVARE are as
follows.

Function

cus
TLP
TRP

RFP

Description

Clean up fi Le
Terminal log out processor
Terminal recovery processor; this
overlay contains the SALVARE format
documentation
Recovery file processor

Since the SALVARE file is checked about every 3 minutes and
entries more than VNTO minutes old are eliminated, then:

• A user that wishes to be recovered after Losing contact
must attempt recovery within VNTO minutes.

• Entries in the SALVARE file are updated upon system
recovery so that a user is assured of the full time-out
period after system recovery.

60454300 A 37-62

Recovery is accomplished in the recovery file processor routine,
RFP~ The call to overlay RFP is as follows.

59 41 35 23 11 0

!R 1~ _____ 1_T_A ____ _.l __ o_...l ____ '_5e __ __.l ____ t_n ____ l ____ po_t __ __,I

Upon entry, IR+4 contains the parameter pot number. The pot
contains the terminal table. IR+4 is set to the previous
t~rminal nu~ber, which is recovered from parameter pot.

59 41 35 23 11 0

!R l~-----1-TA ______ l~'o __ ~I ___ ,_ss~ __ l __ __,tn_n __ ~l---t-nb__.~I

tnn
tnb

Terminal number now
Terminal number before

To recover a user, the entry on the SALVARE file is found and
the information is returned to the terminal table. The entry in
the SA~VARE file is cleared and the current rollout file is
released. A dayfile message is issued indicating the user
recovered.

A comple~ion Logout is done for all entries that have been there
Longer than VNTO minutes. At that time the files are released
and subsequent dayfile messages issued. The beginning and EOI
sectors fo~ each file are validated to see if the user's files
are all there. The status at the time the user was recovery
processed is return~d in VFST+4. The contents of VROT+4 is
returned as 0003.

The SALVARE file is always at FNT ordinal 1. If 1TA finds the
fil~ active or qestroyed <unrecognizable at recovery time> it
hangs with the MXFN monitor function. The format for the file is
as follows.

60454300 A 37-63

59. 53

f o
eq
ft

fo

ia

47

eq

hrs .. min.sec
i a
to

60454300 A

35 29 23 17 11

ft hrs' min sec · user index

reserved for CDC

Family equipment ordinal
EST ordinal of rollout file
First track of rollout file

to

0

Last entry time in compressed format
Installation reserved area
Terminal table.ordinal

37-64

I
I

Wt
Z1
:::i I
{.;JI

e!
-'I
<1
I- I
::>I
ul

< v;

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

::jl
I

z1
-·I

o' w' I- I
z1 _,
a::,
Q.. I

I
0. I
t-... I
·--..1
~I

. I
>t
WI
a:: I

I

°': r- I
~,

Mt
<1
<1

I
I
I
I

COMMENT SHEET

CDC NOS Version 1 Internal M~intenance
MANUAL TITLE: Specification, Volume 3

PUBLICATION NO.: 60454300 REVISION: B

NAME: ________ .

COMPANY:_,.. _________ ,.._~"----_,..--~~~~~~"'"""'!'!--~~----------.--------------

ST~EeT ADDRESS:.........,_,.,.._...,... ___________________________ _

CITY: ______ __,... _______ STATE:....,... ______ ZIP CODE;--------

This form is not intended to be ,,sed QS an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, svggested odditions or deletions, or general comments below (please
include page number feferences).'

NO POSTAGE STAMP NECESSARY IF MAl~ED IN U.S.A.

FOLD ON DOTTED llNl!S ANI) STAttLE

STAPtE STAPLE

FOLD FOLD
--------~·-------------.. ---- ·--------~------------~ ·-------------------___....,, __ __

----------------FOLD

111111

BUSINESS REPLY MAIL
FtRST CLASS PERMIT NO. 824 l MINNEAPOUS, MINN.

POST AGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

ARH219
4201 North Lexington Avenue

Saint Paul, Minnesota 55112

NO POSTAGE
NICISSAIY

IF MAlllD
IN THI

UNITID ST A TES I
I
I
I
I
I
I
I
I
I
I UJ
ti;
·~ l (.!)

I~
·~ I<
Ii--
1 ::>
IU

I
I
I
I
I
I
I -.-.-...-------------------------- -------~---------.......... ----------------~---------~ FOLD I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	24-15
	24-16
	24-17
	24-18
	24-19
	24-20
	24-21
	24-22
	24-23
	24-24
	24-25
	24-26
	24-27
	24-28
	24-29
	24-30
	24-31
	24-32
	24-33
	24-34
	24-35
	24-36
	24-37
	24-38
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	25-19
	25-20
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	26-14
	26-15
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	27-08
	27-09
	27-10
	27-11
	27-12
	27-13
	27-14
	27-15
	27-16
	27-17
	27-18
	27-19
	27-20
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	28-09
	28-10
	28-11
	28-12
	28-13
	28-14
	28-15
	28-16
	28-17
	28-18
	29-01
	29-02
	29-03
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	30-09
	30-10
	30-11
	30-12
	30-13
	30-14
	30-15
	31-01
	32-01
	32-02
	32-03
	32-04
	32-05
	32-06
	32-07
	32-08
	32-09
	32-10
	32-11
	32-12
	32-13
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	33-07
	33-08
	33-09
	33-10
	33-11
	33-12
	33-13
	33-14
	33-15
	33-16
	33-17
	33-18
	33-19
	33-20
	33-21
	33-22
	33-23
	33-24
	33-25
	33-26
	33-27
	33-28
	33-29
	33-30
	33-31
	33-32
	33-33
	33-34
	34-01
	34-02
	34-03
	34-04
	34-05
	34-06
	34-07
	34-08
	34-09
	34-10
	34-11
	34-12
	34-13
	34-14
	34-15
	34-16
	34-17
	34-18
	34-19
	34-20
	34-21
	34-22
	34-23
	34-24
	34-25
	34-26
	34-27
	34-28
	34-29
	34-30
	34-31
	34-32
	34-33
	34-34
	34-35
	34-36
	34-37
	34-38
	34-39
	34-40
	34-41
	34-42
	34-43
	34-44
	34-45
	34-46
	34-47
	34-48
	34-49
	34-50
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	35-07
	35-08
	35-09
	35-10
	35-11
	35-12
	35-13
	35-14
	35-15
	35-16
	35-17
	35-18
	35-19
	35-20
	35-21
	35-22
	36-01
	36-02
	36-03
	36-04
	36-05
	36-06
	36-07
	36-08
	36-09
	36-10
	36-11
	36-12
	36-13
	36-14
	36-15
	36-16
	36-17
	36-18
	36-19
	36-20
	36-21
	36-22
	36-23
	36-24
	36-25
	36-26
	36-27
	36-28
	36-29
	36-30
	36-31
	36-32
	36-33
	36-34
	36-35
	36-36
	36-37
	36-38
	36-39
	36-40
	36-41
	36-42
	36-43
	36-44
	36-45
	36-46
	36-47
	36-48
	36-49
	36-50
	36-51
	36-52
	36-53
	36-54
	36-55
	36-56
	36-57
	36-58
	36-59
	36-60
	36-61
	36-62
	36-63
	36-64
	36-65
	36-66
	36-67
	36-68
	36-69
	36-70
	36-71
	36-72
	36-73
	36-74
	36-75
	36-76
	36-77
	36-78
	36-79
	36-80
	36-81
	36-82
	36-83
	36-84
	36-85
	37-01
	37-02
	37-03
	37-04
	37-05
	37-06
	37-07
	37-08
	37-09
	37-10
	37-11
	37-12
	37-13
	37-14
	37-15.0
	37-15.1
	37-16
	37-17
	37-18
	37-19
	37-20
	37-21
	37-22
	37-23
	37-24
	37-25
	37-26
	37-27
	37-28
	37-29
	37-30
	37-31
	37-32
	37-33
	37-34
	37-35
	37-36
	37-37
	37-38
	37-39
	37-40
	37-41
	37-42
	37-43
	37-44
	37-45
	37-46
	37-47
	37-48
	37-49
	37-50
	37-51
	37-52
	37-53
	37-54
	37-55
	37-56
	37-57
	37-58
	37-59
	37-60
	37-61
	37-62
	37-63
	37-64
	replyA
	replyB

