60450100

@ CONTROL DATA
CORPORATION

NOS VERSION 1
MODIFY
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170
MODELS 171, 172, 173, 174, 175
CYBER 70
MODELS 71, 72, 73, 74
6000 SERIES

2 -
’ v . v

Name

*BKSP
*BKSP
*CALL
*CALI.ALL
#*COMMENT
“COPY
TCOPYPL
#CRIEATE
*CWEOR
#*DECK
*DEFINI
*DEI.ETE
=D
*DELETE
#D

*EDIT
*ELSE
*ENDIF
*[DENT
HIE
*IFCALL
*IGNORE
®*INSIERT

*1
#*INWIDTH
*MODNAME
*MOVE
*NIFCALL
*NOSEQ
*OPLFILE
*PREFIX
*PREFIXC
*PURDECK
“PURDECK
*RIEAD
*READ
*RISAD
*READPL
*READPL
*RESTORE
*RESTORE
*RETURN
*REWIND
*SEQ
*SKIP
#*SKIP
*SKIPR
*UNYANK
FUNYANK
“UPDATE
*WEOF
*WEOR
#*WIDTH
FYANK

*Y ANK

:::/

ALPHABETIZED DIRECTIVES INDEX

Parameters

file

file, n
deckname
string
comment

file, deckname
file, deckname
file

deckname
name, value
c

c

s o)

Cll C2

Pystgrti=ab

modname

atr, name, value
name, deckname
dname

c

@

n

modname

dname,., dnamej, dname2, dname3,) dnamen

name, deckname

filel, filez. areais filen
X
X
dname ., dnamez. «++,dname
dname’. dnameb g
file
file, deckname
file, *
dname
dname, ¢ 1*S9
c
c1sC
file,; file_, ..., file
file s Bl .5 files
1 2 n
file
file, name
file, rname
modname
modname, *

n

modname
modname, *
comment

Page Number

e IATE L R g B s e L S RS B kel B Yy B e

I.l el it S O O S Y TR T A T L Sl I BT RS R RSl R B S Sl SR K
-
(o7}
)
3]

NIABABRWOOIA RO B RUOAUORBREIITWWOTAR IR R RO R B RBR BRI WWWOIDDOWD
t
HWWWWWNWWNNNWNDNDNDN & b = =Wt NWHRNNRWWWRNRENNNNANNNDN=SNWNNWNDN —~ NN

0

i

60450100

G CONTROL DATA
CORPORATION

NOS VERSION 1
MODIFY
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170
MODELS 171, 172, 173, 174, 175
CYBER 70
MODELS 71, 72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION -
A Manual released.
(3-8-178)
B Revised to update the manual to NOS 1.2 at PSR level 439, and to make typographical and
(12-3-176) technical corrections. New directives IF, ELSE, ENDIF, and NIFCALL are added. The
previous DEFINE directive has a new parameter added that allows a value fo be associated
with a defined name. This edition obsoletesthe previous edition.
C Revised to update the manual to NOS 1. 2 at PSR level 452, to reformat error messages, and to
(7-15-77) make typographical and technical corrections. Support of CDC CYBER 170 Series, Model 171 is
also included.
D Revised to update the manual to NOS 1.3; to add new information regarding common decks; to add
(2-3-78) examples of the IF, ELSE, ENDIF, and NIFCALL directives; to change the type font of the terminal

sessions; and to make typographical and technical corrections. This edition obsoletes all previous

editions.

Publication No.
60450100

REVISION LETTERS |, 0, @ AND X ARE NOT USED

&)

by Control Data Corporation
Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division

1976, 1977, 1978 4201 North Lexington Avenue

St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual,

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV
Front Cover - B-1 C
Inside Front B-2 C

Cover B-3 D
Title Page B-4 D
ii B-5 C
iiifiv Cc-1 A
v /[vi Cc-2 C
vii C-3 D
viii C-4 D
1-1 Index-1 B

- Index-2 C

- Index-3 B

- Comment

- Sheet D

- Inside Back

- Cover -

Back Cover -

[U
BWN OO WN = = WN

]

]
TR WNFR,RWNRHR R WNROORWNR R WNR OO

[
W DN =

= OOEOEOOO-I-J=J=-1ONONAU UTOTU R i b b B DWW WwWWWN e
1

[= N Ry]

b b
oo

10-5
10-6
10-7
10-8
10-9
10-10
10-11
A-1

LSO EErrrEPUONEPE P OQAIU0UNODUEEQUUREUCOPHPQUUEWOUQUORWQEWooo !

60450100 D : iii/iv

PREFACE

INTRODUCTION

This manual describes the program library mainte-
nance utility Modify. Modify is part of the Network
Operating System (NOS) for CONTROL DATA®
CYBER 170 Series, Models 171, 172, 173, 174,
and 175 Computer Systems; CDC®PCYBER 70 Series,
Models 71, 72, 73, and 74 Computer Systems; and
CDC®CYBER 6000 Series Computer Systems.
Modify is used to maintain and update source files
that are on libraries in a compressed and symbolic
format.

The introduction describes features of Modify and”
presents an overview of its operation. The remain-
ing sections describe the directives that the user
supplies to control library creation and editing.
Because the advantages of Modify are best utilized
by a programmer with a large volume of source
program text or symbolic data, the manual is writ-
ten for the experienced NOS applications or systems
programmer., Wherever possible, Modify usage is
illustrated through examples.

Appendix C describes the NOS utility OPLEDIT,

which provides the capability to delete and recon-
struct previous modification sets.

RELATED PUBLICATIONS

For further information concerning Modify and NOS,
consult the following manuals.

60450100 D

Control Data Publication Publication Number

NOS Version 1 Modify Instant 60450200
NOS Version 1 Reference

Manual, Volume 1 60435400
NOS Version 1 Applications

Programmer's Instant 60436000
Network Products Interactive

Facility Version 1 Reference

Manual 60455250
Network Products Network

Terminal User's Instant 60455270
NOS Version 1 Time-Sharing

User's Reference Manual 60435500
NOS Version 1 Terminal

User's Instant 60435800

DISCLAIMER

This product is intended for use only as described
in this document. Control Data cannot be respon-
sible for the proper functioning of undescribed
features or undefined parameters.

v/vi

CONTENTS

o

1. INTRODUCTION 1-1 6. COMPILE FILE DIRECTIVES 6-1
Modify Organization 1-1 CALL — Call Common Deck 6-1
Files Used to Initialize Program IFCALL — Conditionally Call Common

Library 1-1 Decks 6-1

Directives 1-1 NIFCALL ~ Conditionally Call Common
Output Files 1-2 Decks 6-1
Modify Executfon 1-3 CALLALL — Call Related Common Decks 6-2
Initialize Program Library 1-3 IF — Test for Conditional Range 6-2
Read Modification Directives 1-3 ELSE — Reverse Effect of IF 6-2
Incorporate Changes/Write Output ENDIF — Terminate Conditional Range 6-2
Files 1-3 COMMENT — Create COMMENT Line 6-2
Features : 1-3 WIDTH - Set Line Width on Compile File 6-2
Modify Examples 1-3 NOSEQ — No Sequence Information 6-3
ASCII Mode Considerations 1-4 SEQ — Include Sequence Information 6-3
WEOR — Write End of Record 6-3

CWEOR — Conditionally Write End of

2. DIRECTIVE FORMAT 2-1 Record 6-3
WEOF — Write End of File 6-3
Line Identification 2-1 Compile File Directive Examples 6-3
3. INITIALIZATION DIRECTIVES 3-1 7. SPECIAL DIRECTIVES 7-1
Preparing the Source File 3-1 | — List Comment 7-1
CREATE — Create Program Library 3-2 PREFIX — Change Modify Directives
JOPLFILE — Declare Additional OPL Files 3-2 Prefix 7-1
COPYPL — Copy Program Library to PREFIXC — Change Compile File
Scratch - Directives Prefix 7-1
COPY — Copy Program Library to OPL - INWIDTH — Set Width of Input Text 7-1

WIDTH — Set Line Width on Compile File
NOSEQR — No Sequence Information
Initialization Directive Examples

DEFINE — Define Name for Use by IFCALIL,

NIFCALL, IF 7-1
MOVE — Move Decks 7-2
UPDATE — Update Library 7-2
Special Directive Examples 7-2

wWwwww
!
LWWwwNn

4. MODIFICATION DIRECTIVES 4-1 B
IDENT — Identify New Modification Set 4-1 8. MODIFY CONTROL STATEMENT 8-1
DECK — Identify Deck to be Modified 4-2 ’
MODNAME - Identify Modification Set to
be Modified 4-2 9. MODIFY FILE FORMATS 9-1
DELETE — Delete Lines 4-2
RESTORE — Reactivate Lines 4-2 Source Decks and Files 9-1
INSERT — Insert Lines 4-2 Source Decks Prepared by User as
YANK — Remove Effects of Modification Set 4-3 Input to Modify 9-1
UNYANK — Rescind One or More YANK Source Files Generated by Modify 9-1
Directives 4-3 Program Library Files 9-1
PURDECK — Purge Deck 4-3 Deck Records 9-1
IGNORE — Ignore Deck Modifications 4-3 Directory Record 9-3
EDIT — Edit Decks 4-3 Directives File 9-4
Selective Edit Mode 4-4 Compile File 9-4
Full Edit Mode 4-4 Scratch Files 9-4
Update Edit Mode 4-4
Modification Directive Examples 4-4
10. BATCH JOB EXAMPLES 10-1
5. FILE MANIPULATION DIRECTIVES 5-1 Create Program Library 10-1
Modify Program Library 10-2
READ — Read Alternate Directives File 5-1 Move Text 10-3
READPL — Read Program Library 5-1 Read Directives from an Alternate File - 10-4
BKSP — Backspace File 5-2 YANK and UNYANK Modification Sets 10-4
- SKIP — Skip Forward on File 5-2 Purge Decks 10-5
SKIPR — Skip Forward Past Record 5-2 Change the Directives Prefix Character 10-5
REWIND — Rewind Files 5-2 Use of the Z Parameter 10-7
RETURN — Return Files to System 5-2 Sample FORTRAN Program - 10-8
File Manipulation Directive Examples 5-2

60450100 B vii

A
B

el
1
W N =

W ww
U
W N =

viij

STANDARD CHARACTER SET
OUTPUT LISTING AND MESSAGES

Simplified Modify Organization
Modify Execution:from Batch
Modify Execution from Time=Sharing

. Terminal

Modify Source Deck: :
Deck with Several Programs
Initialization Directive Examples

APPENDIXES

OPLEDIT UTILITY

A-1 C
B-1

- INDEX

FIGURES
1-2- 3-4- Batch Job Creating Program Libraries 3-6
1-4 4-1 Modification Directive Examples . 4-4

5-1 File Manipulation Directive Examples 5-3

1-4 6-1 Compile File Directive Examples 6-4
3-1 7-1 - Special Directive Examples 7-2
3-2 9-1 Library File Format 9-1
3-4-

60450100 ¢

INTRODUCTION 1

.“

Modify is used by the programmer to maintain text
(large programs or data files) in a compressed form
allowing him to easily change individual lines within
the text. Modify transforms text into a specially
formatted file whose structure enables Modify to
make requested changes (or rescind previously
made changes) efficiently. Such a file, a program
library file, is in program library or Modify for-
mat. Once this file has been established, the user
need only specify to Modify the changes he is making
to the text. Modify then performs the requested
changes and produces several files of different types
which reflect the changes. One of these files is the
compile file, a text file acceptable to language
processors (for example, FORTRAN, BASIC, or
COMPASS). This file can also be directed to an
output device for listing or punching.

MODIFY ORGANIZATION

Modify can be organized into three main functional
elements:

[Files used to initialize the program library —
these contain the program text from which
Modify establishes the program library, the
body of text upon which modification direc =
tives actto effect user-requested changes
to the text.

° Directives — these are user-specified in-
‘structions to Modify which establish the
program library, produce changes in the
text, perform various utility functions upon
files used by Modify, and/or alter certain
operational characteristics of Modify.

e OQutput files —these are produced by Modify
after it performs the instructions specified
by directives. Three of these files are up-
dated versions (in different formats) of the
original text; the fourth is a report of
actions taken during Modify's execution.

Refer to figure 1-1 during the following discussion
of the elements of Modify organization. :

FILES USED TO INITIALIZE
PROGRAM LIBRARY

These files contain program text in one of two forms:
source format or program library format. Files
used to initialize the program library may contain
several program and/or subroutine decks, kept as
separate logical records on the file. The user can
designate a deck containing frequently used lines
(such as a group of FORTRAN COMMON statements)
as a common deck. The user can then direct Modify

60450100 B

to insert the text of a common deck within the pro-
gram text wherever a CALL directive appears with-
in the program text (refer to section 6 for further
information on the CALL directive).

Source-format files are coded text files, typically
prepared either as a card deck or through the text-
file creation facilities of the NOS time-sharing
subsystem (refer to the NOS Time-Sharing User's
Reference Manual), All program library files begin
as source-format files, which Modify processes to
create program library files.

A file in program library format is defined as fol-
lows.

° It is compressed (Modify has replaced
three or more consecutive blanks within a
line with special codes).

e Each line of text has been assigned, by
Modify, a sequence number and name,
thereby allowing the user to refer to individ-
ual lines when he wishes to change the
text on subsequent Modify runs.

e It contains a directory, built by Modify,
which serves as an index of the decks on
the program library file.

DIRECTIVES

The user can control Modify execution by specifying
directives to Modify. These directives (compile
file directives excepted) form a logical record on a
file which the user specifies on the Modify control
statement. If Modify is being executed from a time-
sharing terminal, Modify prompts the user for di-
rectives, unless he has specified otherwise on the
Modify control statement.

The user may direct Modify to begin reading direc-

tives from an alternate file and position this file

(or other files local to his job) with file manipulation
directives. Certain files (refer to section 5) cannot
be operated on by these directives.

Initialization directives declare which files Modify
is to use to initialize the program library. They
indicate whether the file is in source format (thereby
causing Modify to make a copy of it in program li-
brary format) or is in program library format.

Directives which cause text to be changed fall into
two groups: modification directives and compile
file directives.

Modification directives specify line-by-line altera-
tions (insertion; deletion or deactivation; and reacti-
vation) for Modify to make. They also specify
which decks Modify should copy to its output files
with the specified modifications included.

1-1

Files used to How established Modify control Modify
initialize as part of statement output
program library program library option used files
MODIFY PROCESSOR
/—__ PROGRAM LIBRARY -I
7 deck .
Source text CREATE - 1 directory l
' deck , fileq ——
" t c .
file 5 deckg | Compile
l deck 4 1 l
Previously | P }y | deck s H
arameter on Modify control statement i
generated P . > i gillrectory I
program | €2 C D
library file l : I N p
- New program
file , ' ' library file
! l
~—
I deckg 1 l
. deck 5 |
Previously OPLFILE . C >
Ly > t directory '
generated 1 file
program 1 3 s Source -text
library file ! I format file
file 3 o l H
1 ~—
1
o other i ate initializati i i | directories l
files appropriate mmalllzatlon directives -> other decks : for other
[] | files l
' E L Modification
Program deck -9 1 ' |s_tatiisti cs
library file COPYPL or COPY o deck i directory isting
on tape or T sy M, filey, —
incomplete)
L
L L 3 _] S CEATED SERTER GEENEED R I J

Directives
and insertion birectives file
ex (I parameter on
Modify control
statement)

Figure 1-1,

Compile file directives are part of the text on the
program library; thus, compile file directives were
either on a file used to initialize the program library,
or were inserted by modification directives. An
example of a compile file directive is the CALL.
directive.

Modify includes many other directives providing
extended features. These primarily affect the op-
erating characteristics of Modify whichare described
in section 7.

OUTPUT FILES

Modify produces several files as output, all of which
are optional., The user specifies these files through
options on the Modify control statement.,

Simplified Modify Organization

The compile file is a text file with user-specified
modifications incorporated into it. It may be used as
input to a language processor, directed to an output
device such as a printer or card punch, or used as
data for an applications program,

The new program library file contains the same up-
dated text as the compile file, only in program li-
brary format. Thus, Modify can process this file
directly on subsequent Modify runs.

Modify produces a list of text incorporated into the
program library, details the status of the program
library and the other files output by Modify, and
notes errors and other significant events occurring
during Modify execution,

The source-text output file contains updated text
similar to that of the compile file. However,

60450100 B

compile file directives on the program library have
not been removed or acted upon by Modify.

"MODIFY EXECUTION

Modify begins execution as a result of the operating
system interpreting a Modify control statement.
Modify execution then progresses in three phases:

) Initialize program library
° Read modification directives

] Incorporate changes/write output files

INITIALIZE PROGRAM LIBRARY

During this phase, Modify reads initialization di-
rectives (which must precede modification direc-
tives) from the directives file to prepare the program
library.
brary is the file declared on the Modify control
statement (P parameter); refer to section 8. Other
files declared by initialization directives are logi-
cally merged with this file to form the program
library, If the initialization directive specifies

that a file is in source-text format, Modify converts
it to a file in program library format before merging
it with the program library.

The initialization phase ends when Modify encounters
the first modification directive. File manipulation
directives do not terminate the initialization phase.

READ MODIFICATION DIRECTIVES

During the second phase, Modify reads the remaining
directives on the directives file and stores any new
text for insertion during the final phase. The time-
sharing user is prompted for directives by Modify

at his terminal. In batch usage, the file containing
the directives is specified on the Modify control
statement. This defaults to the job input file. An
alternate directives file may be specified by the ap-
propriate file manipulation directive (refer to
section 5).

INCORPORATE CHANGES/WRITE "
OQUTPUT FILES

During the final phase, Modify performs the re-
quested changes on a deck-by-deck basis, incorpor-
ating them into the output files requested by the
Modify control statement. Each inserted line is
assigned a modification name, specified by a modi-
fication directive (refer to section 4), and a se-
quence number generated by Modify. These are
used in later Modify runs to make further changes
to the text. All lines having the same modification
name comprise a modification set. .

60450100 C

The first file to be included in the program li-

This phase can be initiated either by Modify inter-
preting an EDIT directive (refer to section 4) on
the directive file, or by the presence of a Modify
control statement option specifying that this phase
should be initiated by Modify after it exhausts the
directive file (refer to section 8).

FEATURES

Features of Modify include:

. Formatting of text files to facilitate line-
by-line modification,

[Insertion, deletion, and restoration of
previously deleted lines according to line
sequence numbers.

. Facilities for rescinding one or more
groups of changes (modification sets) pre-
viously applied to text, thereby preserving
original appearance of text,

° Replacement of often-used groups of lines
by one-line calls for their insertion.

® Facilities for limiting range of modifications
to specified decks.

) Generation of a file in text format suitable
for input to processors such as compilers
and assemblers,

) Execution from either batch-origin or time-
sharing jobs.

] Processing of directives from an alternate
file. '

o Comprehensive statistical output noting any
changes effected during the run and pre-
senting the status of the program library.

e Support of both 63~ and 64-character sets.

MODIFY EXAMPLES

Examples in this manual are for illustrative purposes
only. These examples are neither the most efficient
nor necessarily recommended methods of using the
Modify directives.

Figure 1-2 details a job submitted to local or remote
batch and figure 1-3 illustrates the same job entered
from a time-sharing terminal. The user need not
be concerned with the meaning of directives or of
parameters on the Modify control statement at this
point. Instead, he should compare the structure of
the two jobs.

Subsequent examples in this manual (with the excep-
tion of section 3 and section 10, Batch Job Examples)
depict only jobs entered from a time-sharing
terminal,

The examples pertaining to a group of directives
immediately follow the discussion of those direc-
tives. Some of the files created and modified in
an example have been retained and used in the
succeeding example.

1-3

JOBMOD.,

USER (USERNUM, PASSWRD, FAMILY)
CHARGE (CHARNUM , PROJNUM)

GET (MAINP)

COPYSBF (MAINP)

MODIFY (P=8§,F,N)

SAVE (NPL=MAINPL)

—~~EOR~~

*CREATE MAINP

Input directives for Modify statement.
*REWIND MAINP}«//’//’

“-BOI=~ -

End-of-information is 6/7/8/9 multiple punch
in column 1,

Figure 1-2. Modify Execution from Batch

batch

$RFL,0.

/0ld,mainp

/1nh,r

DECK1

%% MAIN PROGRAM
PROGRAM MAIN(QUTPUT)
PRINT#* ,"BEGIN MAIN PROGRAM."
CALL SUB1
PRINT* ,"END MAIN PROGRAM."
STOP
END

-=~EOR--

DECK3

¥%% EMPTY DECK

--B0R-—-

/modify,p=0,f,n,1=0

After logging in, user requests batch subsystem.

User specifies 1=0 indicating that he does not wish
to receive Modify output.

input directives are requested and entered
‘immediately following Modify statement. Null

? *create mainp -~
?

MODIFICATION COMPLETE. -
/replace,npl=mainpl

linput line (carriage return only) terminates
input.

Program notifies user that it has completed
modification,

Figure 1-3. Modify Execution from Time-Sharing Terminal

ASCIl MODE CONSIDERATIONS

Several problems may arise when using Modify from
a time-sharing job while the terminal is in full ASCII
character set mode., Refer to appendix A of the NOS
Reference Manual, volume 1, for a description of
ASCII character sets.

Directives entered interactively from the terminal,
or those in an alternate directive input file, must
not contain ASCII characters with escape codes;
that is, directives must be entered in all uppercase
characters. Modify does not recognize lowercase
directives that contain escape codes.

1-4

When creating a program library, several precau-
tions should be taken. While a source file can con-
tain full ASCII characters, all deck names and
compile file directives must be in full uppercase (no
escape codes). Care should also be taken when
entering source lines in full ASCII mode. Since each
character may actually occupy 12 bits (escape code
and character), what appears to be a line width of
75 characters, for example, may actually be 150
characters. Modify does not allow line widths
greater than 100 6-bit characters.

60450100 D

DIRECTIVE FORMAT 2

Directives allow the user to create libraries and
extensively control and direct the correction and
modification process. File initialization directives
identify old program libraries and source decks to
be placed on the new program library. Modification
directives identify the text to be inserted, set pa-
rameters of the modification process, and inform
Modify of insertions, deletions, and other correc-
tions. File manipulation directives allow user
control of the input files. Compile file directives
can be in source decks originally or can be inserted
during a Modify run. These directives are manipu-
lated much like source lines during the creation,
updating, and correction phases but are recognized
when the compile file is written.

A directive has the following format.

*dirname P1sPgseens P,

The prefix character is in
column 1. It is initially de-
fined by Modify as an asterisk,
but may be changed with
PREFIX and PREFIXC direc-
tives. In this manual, the
asterisk is used as the prefix
character,

The directive name starts in

column 2, It is terminated by
one or more blanks or a sepa-
rator (for example, a comma).

dirname

p Optional directive parameters.
Numeric parameters are deci-
mal.,

The directive name and parameters are separated
by any character that has a display code value of
55g or greater; that is (assuming 84-character set),
a character other than:

: A through Z 0 through 9 + - * / () $ =

60450100 C

Some directives require specific separators. No
embedded blanks are permitted within a parameter.
However, any number of blanks can be between the
directive name and the first parameter or between
two parameters, provided the entire directive does
not exceed 72 columns,

LINE IDENTIFICATION

The modification directives DELETE, INSERT, and
RESTORE, and the file manipulation READPL direc-
tive require line identifiers. These identifiers can
be in either the complete or abbreviated form.

The complete format of a line identifier is:

modname., number

modname. 1- to T-character name of a
modification set or deck., A
period terminates the modifi~
cation name.

number Decimal ordinal (1 to 262143)

of the line within the correc-
tion set or deck, Any char-
acter other than 0 through 9
terminates the sequence
number,

The abbreviated form of a line identifier is:

number

When only the number is used for line identification
(modification name is omitted), Modify uses the name
from the MODNAME directive or the most recent
DECK directive.

INITIALIZATION DIRECTIVES 3

]

Modify initialization directives are placed on the
directive file and precede all directives other than
file manipulation directives. They are:

Converts source decks to
program library format for
modification.

CREATE

OPLFILE Declares additional program

library files as input.
COPY Copies one or more records
from named file to old program
library.
COPYPL Copies one or more records
from named file to an internal
scratch file which is logically
merged with program library.
WIDTH Defines the number of columns
preceding the sequencing in-
formation on the compile and
source files; can occur any-
where in directives file.
NOSE® Specifies no sequence infor-
mation on compile file.

CREATE, OPLFILE, COPY, and COPYPL are il-
legal after the first use of modification directives.
WIDTH and NOSEQ can be processed as compile
file directives.

DECK1
COMMON

COMMON/A/A

COMMON/Z/Z
-EOR-

DECK?2

PROGRAM X
*CALL DECK2

.
.

END
-EOI- <

PREPARING THE SOURCE FILE

Before Modify can create a program library, the
user must prepare the source file by assigning a
deck name to each record of the source file and by
identifying those decks that are to be common decks.
The deck name must be the first line of the source
deck. A 1-to 7-character deck name begins in
column 1., Legal characters are:

A through Z 0 through 9 + - %/ () $ =

If a second deck of the same name is introduced
during initialization, the second deck takes prece-
dence. In directory list output, the name of a re-
placed deck is enclosed in parentheses.

The second line of the source deck can identify the
deck as common. To do so, it must contain the

word COMMON in columns 1 through 6. An end-of-
record terminates the deck. A set of decks is ter-
minated by an end-of-file (6/7/9 multiple punch in
column 1 for batch origin jobs) or end-of-information.

Figure 3-1 illustrates a typical Modify source deck.

Usually a deckname (optionally followed by a
COMMON) precedes each program or subprogram.
However, more than one subprogram may be in-
cluded in a deck as is indicated in figure 3-2. A
user might group two programs if modification of
one requires reassembly or recompilation of both
programs.

Because of the order in which decks are edited
(refer to EDIT directive), it is recommended that
common decks be the first decks on the program
library.

Name of deck
Declares deck as common

Source deck

End-of-record terminates deck
Name of deck

Source deck

End-of~information terminates final deck

Figure 3-1, Modify Source Deck

60450100 D

FDATA

COMMON
DATA 0
DATA 0
DATA 0

-EOR-

FIRST
IDENT FIRST
END
IDENT SECOND
END

-EOI-~

Figure 3-2, Deck with

CREATE — CREATE PROGRAM LIBRARY

When Modify encounters this directive, it writes
the contents of the named file from its current
position until it encounters an end-of-file onto a
scratch file in program library format with a di-
rectory. CREATE provides a means of initially
creating a program library for subsequent modifi-
cation, for adding decks to the program library, or
for replacing decks on the program library. f

Format:
*CREATE file

file Name of file containing one or more
source decks., A format error oc-
curs if the name of the file is
omitted from the directive. This
file must be local to the user's job.

OPLFILE — DECLARE ADDITIONAL
OPL FILES

The OPLFILE directive specifies additional files,
already in program library format, that Modify log-
ically merges with any existing program library.
The existing library is made up of the old program
library declared on the Modify control statement

(P parameter) and/or other program library files
established internally by CREATE or COPYPL. t

The total number of files declared by OPLFILE
directives cannot exceed 50 files. Additional files
are ignored with the message:

TOO MANY OPL FILES.

First deck

Program one

Second deck

Program two

Several Programs

Format:
*OPLFILE file_, file,,..., file
1 2 n

filei Names of one or more files in pro-
gram library format to be merged
logically with the existing program
library.

COPYPL — COPY PROGRAM
LIBRARY TO SCRATCH

The COPYPL directive copies records (decks) al-
ready in program library format to an internal
scratch file which Modify logically merges with any
existing program library. ¥ Modify builds a di-
rectory for this file as it is copied, ignoring any
existing directory on the file from which the copy is
made. All or part of the file can be copied. The
file may reside on either mass storage or magnétic
tape. Modify ignores all records on the file which
are not in program library format.

Format:
*COPYPL file, deckname

file Name of file containing decks
in program library format,
with or without directory, and
with or without other records in
nonprogram library format.

deckname Optional; name of last deck
(record) to be copied. If deck-
name is omitted from directive,
or is not found on file, Modify
copies all decks from the file
starting at the current file
position.

T If the resulting program library contains two or more decks having the same name, the last one introduced
to Modify takes precedence; that is, the previous deck is logically replaced.

60450100 D

COPY — COPY PROGRAM
LIBRARY TO OPL

The COPY directive performs the same functions
as the COPYPL directive, with the following differ-
ences:

e The records (decks) are copied to the old
program library file declared on Modify
control statement (P parameter). If P=0
is specified on the Modify control state-
ment, the use of the COPY directive is
not allowed.

e Modify performs an EVICT on the old pro-
gram library file before the copy takes
place. Hence, this file (if it already exists)
should not contain any useful information.
See the NOS Reference Manual, volume 1,
for a description of EVICT.

e COPY can be preceded only by file manip-
ulation directives,

e Only one COPY directive is allowed for
each Modify execution.

COPY is useful when copying all or part of a pro-
gram library residing on magnetic tape to a mass
storage device, since the resulting program library
file may be saved as a permanent file without having
Modify create a new program library. See the NOS
Reference Manual, volume 1, for a description of
permanent file control statements.

Format:
*COPY file, deckname

file Name of file containing decks in
program library format, with
or without directory, and with
or without other records in
nonprogram library format.,

deckname Optional; name of last deck
(record) to be copied, If deck-
name is omitted from directive,
or is not found on file, Modify
copies all decks from the file,
starting at the current file
position.

60450100 B

WIDTH — SET LINE WIDTH ON
COMPILE FILE

The WIDTH directive allows the user to set the
width of lines prior to the modify program library
and write compile phase. The last (or only) WIDTH
directive encountered on the directives file is used
during the compile phase until a compile file WIDTH
is encountered. If text is being inserted, the WIDTH
directive is left in the text stream and is later proc-
essed as a compile file directive. WIDTH can occur
anywhere in the directive file,

Format:
*WIDTH n

n Number of columns preceding se-
quence information on compile file
and source file, Modify allows a
maximum of 100 columns. During
initialization of Modify, width is
preset to 72,

NOSEQ — NO SEQUENCE INFORMATION

‘The NOSEQ directive allows the user to set the no

sequence flag prior to the write compile phase.
When no sequencing is requested, Modify does not
include sequence information on the compile file.

A SEQ directive encountered during the write com-
pile phase clears the no sequence flag, If text is
being inserted, the NOSEQ directive is inserted into
the text stream and processed as a compile file
directive.

FORMAT:
*NOSEQ

INITIALIZATION DIRECTIVES EXAMPLES

Figures 3-3 and 3-4 illusirate the creation of pro-
gram libraries and the use of several initialization
directives. Figure 3-3 is a detailed terminal ses-
sion; figure 3-4 represents the same job formatted
for batch input. The user can submit the batch or-
igin job to obtain and examine output produced by
Modify and FORTRAN

batch
$RFL,0.
/0ld,mainp
/lnh,r
DECK1
#%% MAIN PROGRAM

PROGRAM MAIN(OUTPUT)

PRINT#* ,"BEGIN MAIN PROGRAM."
CALL SUB1

PRINT*,"END MAIN PROGRAM.Y
STOP

END

—-EOR-~

TECK3

**% EMPTY DECK

-=EOR--
/modify,p=0,1=0,f,n=mainpl,c=0

? ¥create mainp

o

-M()DIFICATI()N COMPLETE .

Listing of source file, showing end-of-record
marks, to be used to create program library.

 —
{ Notice required deck names.

Modify statement to create program library
with name MAINPL. MAINPL is the result
of converting the source text file MAINP to
program library format.

\

/catalog,mainpi,r
CATALOG OF MAINPL FIIE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECKY OPL (64) 30 L476 77/10/07.
2 DECK3 OPL (64) 4 1725 T77/10/07.
3 OPL OPLD 5 1310 77/10/07.
4 MEQOF * SUM = 11 The catalog utility is a convenient means of

1
CATALOG COMPLETE.
/replace,mainpl=mainpl

determining the decks and their types that

were written on the program library. Refer
to the NOS Reference Manual, volume 1, for
information on the CATALOG control state-

\

/get,subl +
/copyef,subt ment.
DECK2 i
#%% SUBROUTINE 1
SUBROUTINE SUB1
PRINT#* "ENTER SUBROUTINE 1."
CALL SuUB2
PRINT¥,"EXIT SUBROUTINE 1.7
RETURN Anoth A
ZND «—_ o teF source deck that the user wishes to
END OF INFORMATION ENCOUNTERED. maintain on a separate program library.
/rewind,sub]l
$REWIND, SUB1.
/modify,p=0,1=0,f,n=altplt,c=0
? *create subi
?
MODIFICATION COMPLETE. Modify statement to create program library
/catalog,altpli,r AITPL1,
CATALOG OF ALTPLA1 FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECK2 OPL (64) 30 5013 T77/10/07.
2 OPL OPLD 3 2117 77/10/07.
3 * BOF * SUM = .33
1
CATALOG COMPLETE. User obtains alternate program library that
/get,altple { he had created at an earlier session.
/catalog,altpl2,r
CATALOG OF ALTPL2 FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECK3 OPL (64) 25 10100 77/10/06.
2 OPL OPLD 3 2517 77/10/06.
3 * FOF * SUM = 30
1
CATALOG COMPLETE.
Figure 3-3. Initialization Directive Examples (Sheet 1 of 2)

' 3-4

60450100

/rename ,opl=mainpl Program library MAINPL is renamed OPL.,

= - - In this manner, the P parameter is not needed
$RENAME ,OPL=MAINPL. on the Modify statement.

/modify,f,1=0,n=mainpl
? %*oplfile altpl? \ ModiF i i

y run to merge OPL with program library
3 ¥copypl altpl2,deck3] ALTPL1 and then use ALTPL2 to replace deck

DECK3 on OPL. The compile output of MAINPL,

- MODIFICATION COMPLETE. is written on the default file COMPILE,
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
FEC NAME TYPE LENGTH CKSUM DATE
1 DECKI OPL (64) 30 Y476 77/10/07.
2 IECK3 OPL (64) 5 0100 77/10/06.
3 DECK2 OPL (6L) 30 5013 77/10/07.
5 OPL OPLD 7 5011 77/10/07.
5 % EOF ¥ SUM = 114

1

CATALOG COMPLETE.
/replace,mainpl
/copycf,compile
#X%

MAIN PROGRAM DECK1 1
PROGRAM MAIN(OUTFUT) DECK1 2
PRINT¥*,"BEGIN MAIN PROGRAM." DECK1 3
CALL SUB1 DECK1 b
PRINT*,"END MAIN.PROGRAM." DECK1 5
STOP DECK1 6
END DECK1 7
¥%%¥ SUBROUTINE 2 DECK3 1
SUBROUTINE SUB2 Listj_ng of compj_]_e DECK3 2
PRINT* s "ENTER SUBROUTINE 2." created by Modify DECK3 3
PRINT#*,"EXIT SUBROUTINE 2. Notice sequencing DECK3 i
S?IEURN information. ggglg g
¥%% SUBROUTINE 1 DECK2 1
SUBROUTINE SUB1 DECK2 2
PRINT¥*,"ENTER SUBROUTINE 1.* DECK2 3
CALL SUB2 DECK2 L
PRINT¥*,"EXIT SUBROUTINE 1." DECK2 5
RETURN DECK2 6
END DECK2 7

END OF INFORMATION ENCOUNTERED.
/rewind,compile
$REWIND ,COMPILE .
/ftn,i=compile,1=0

.111 CP ECONDS COMPILATION TIME

Compile file is used as input to FORTRAN
Extended compiler, [

/1go
BEGIN MAIN PROGRAM.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
EXIT SUBROUTINE 2.
EXIT SUBROUTINE 1.
END MAIN PROGRAM.
.005 CP SECONDS EXECUTION TIME 1

A

Execution of FORTRAN program.

Figure 3-3. Initialization Directive Examples (Sheet 2 of 2}

60450100 D

JOBI.

USER(USERNUM, PASSWRD, FAMILY)

CHARGE{(CHARNUM, PROJNUM) —
OLD{(MAINP) '
COPYSBF(MAINP)

MODIFY{P=0, ¥, N=MAINPL, C=0)
CATALOG(MAINPL, R)
SAVE(MAINPL)

GET(SUB1)

COPYSBF(SUBI1)

REWIND(SUB1)

MODIFY (P=0, F, N=FALTPL1, C=0)
CATALOG(ALTPLIL, R)
GET(ALTPLZ2)
CATALOG(ALTPL2,R)
RENAME(OPL=MAINPL)
MODIFY(F, N=MAINPL)
CATALOG(MAINPL, R)
REPLACE(MAINPL)
COPYSBF(COMPILE)
REWIND(COMPILE)
FTN(I=COMPILE)

LGO.

-EOR-

*CREATE MAINP

-EOR-

*CREATE SUBI1

-EOR~

*OPLFILE ALTPL1

*COPYPL ALTPL2, DECK3
-EOI-

Figure 3-4. Batch Job Creatihg Program Libraries

60450100 C

MODIFICATION DIRECTIVES 4

Modification directives and their accompanying
insertion lines are placed on the directives file
after the last initialization directive. The first
occurrence of a modification directive terminates
the initialization phase.

The following modification directives assign a
modification name to the corrections being made,
identify the deck being modified, and give the
modification set name to be used when the short
form of the line identifiers is used.

IDENT Specifies modification name
to be assigned to new modifi-
cation set.

DECK Identifies deck to be altered.

MODNAME Identifies modification set

within deck to be modified
when short form of line iden-
tifier is used and the modifi-
cation name is different from
that used in the last IDENT or
MODNAME directive,

The following modification directives are used for
inserting and deleting lines.

DELETE or D Deactivates lines and optionally
inserts lines in their place.

RESTORE Reactivates lines and optionally
inserts text after them.
INSERT or 1 Inserts lines after specified

line.
These directives indicate to Modify that:

° New lines are to be inserted into the deck
and sequenced according to the correct
modification set identifier.

° Qld lines are to be deleted.

While inserting, Modify interprets file manipulation
directives (for example, READPI, changes the
source of insertion lines but does not terminate in-
sertion). Insertion terminates when Modify next
encounters another modification directive or end-
of-record,

Insertion lines can include compile file directives.
These directives are not interpreted but are in-
serted as if they were text; the prefix character
written on the program library is that specified on
the directive.

Other directives described in this section include:

YANK Deactivate modification set.
UNYANK Reactivate modification set.
PURDECK Remove all lines in g deck.

60450100 A

IGNORE Ignore subsequent modifica-
tions to a named deck.
EDIT Modify and write named deck

to files specified on Modify
control statement.

IDENT — IDENTIFY NEW
MODIFICATION SET

The IDENT directive assigns a name to a modifica-
tion set. Modify does not require any IDENT direc-
tive; however, this practice is discouraged, If the
directives file does not contain an IDENT directive,
the system uses *%*%%%% a5 the modname. This
default name should not be used when a new program
library is made. The user can use one IDENT for
several decks or can use several IDENT directives
for one deck., There is no restriction on the place-
ment of IDENT within the modification directives
input file.

Format:
*IDENT modname

1- to 7-character modification
name to be assigned to this
modification set. This name
causes a new entry in the
modification table for each deck
for which the modification set
contains a DECK directive until
the next IDENT., Each line
inserted by this set, and each
line for which the status is
changed, receive a modification
history byte that indexes this
modname.

modname

Normally, sequencing of new
lines begins with one for each
deck using the modification
name., However, when the
UPDATE directive is used,
sequence numbers continue
from deck to deck.

Omitting modname causes a
format error. If modname
duplicates a name previously
used for modifying a deck,
Modify generates the message

DUPLICATE MODIFIER NAME.

A duplicate modname or en-
countering modifications that
refer to this modification name
prior to this *IDENT modname
cause a fatal error accompanied
by the message MOD(S) TO MOD
BEFORE THIS IDENT CARD.

4-1

DECK — IDENTIFY DECK TO BE MODIFIED

The DECK directive identifies the name of the deck
to which subsequent modifications apply.

Format:
*DECK deckname

Name of deck for which
modifications following this
line apply. The modifications
for this deck terminate with
the next DECK directive. A
DECK directive is required
for each deck being modified.

deckname

If the deckname is not found,
Modify flags the error with
the message

UNKNOWN DECK,

Omitting the deckname causes
a format error.

MODNAME — IDENTIFY MODIFICATION
SET TO BE MODIFIED

By using the MODNAME directive, the user indicates
that subsequent line identifiers for which a modifica-
tion name is omitted apply to modification set
modname previously applied to the deck, Subsequent
directives need only the sequence number for the
modification set. The system assumes that the line
is in set modname of the deck being modified.

A MODNAME directive is effective only to the next
deck or MODNAME directive. The hierarchy for
line identifiers is such that if the MODNAME direc-
tive is used and the user wishes to return to use of
the deckname as the assumed line identifier, he
must restore the deckname by use of another
MODNAME directive or use the long form of the
line identifier, specifying the deck name. A
MODNAME directive does not terminate an inser-
tion if it is encountered in text being inserted.

Format:
*MODNAME modname

Name of modification set pre-
viously applied to the deck.

A line identifier that does not
specify a modname is assumed
to apply to this modification
set. The modname remains
in effect until another
MODNAME or DECK direc~
tive is encountered.

modname

DELETE — DELETE LINES

With the DELETE or D directive, the user deacti-
vates a line or block of lines and optionally replaces
it with insertion lines following the DELETE direc~
tive.

The next modification directive (or EOR) terminates
insertion. File manipulation directives are inter-
preted and may change the source of insertion lines
but do not terminate insertion and are not inserted
into the deck. Insertion lines can include compile
file directives.

A deactivated line remains on the library and retains
its sequencing, but is not included in compile decks
or source decks.

Formats:
*DELETE c or *D ¢
*DELETE cj1, ¢y or *D €ysCy
c Line identifier for single line

to be deleted.

Line identifiers of first and last
lines in sequence of lines to be
deleted. ¢4 must occur before
¢y on the library. Any lines in
the sequence that are already in-
active are not affected by the
DELETE.

€122

RESTORE — REACTIVATE LINES

With the RESTORE directive, a user reactivates a
line or block of lines previously deactivated through
a delete or yank and optionally inserts additional
lines after the restored line or block of lines, The
lines to be inserted immediately follow the RESTORE
directive. The next modification directive (or EOR)
terminates insertion. File manipulation directives
are interpreted (and may change the source of in-
sertion lines) but do not terminate insertion. They
are not inserted into the deck. Insertion lines can
include compile file directives,

Formats:

*RESTORE ¢
*RESTORE €5 Cy

c Line identifier of single line to
be restored,

Line identifiers of first and last
lines in sequence of lines to be
restored, Any lines in the se~
quence that are already active
are not affected by the RESTORE.
cj must occur before c2 on the
library.

€1:%2

INSERT — INSERT LINES

To insert new lines in the program library, use the
INSERT directive. The line to be inserted immedi-
ately follows the INSERT or I directive on the direc-
tives file., The next modification directive (or EOR)
terminates insertion. File manipulation directives
are interpreted (and may change the source for in-
sertion lines) but do not terminate insertion. They
are not inserted into the deck. Insertion lines can
include compile file directives. '

60450100 B

Formats:
*¥INSERT ¢ or *T ¢
c : Identifies line after which

new lines will be inserted.

YANK — REMOVE EFFECTS OF
MODIFICATION SET

The YANK directive is used to deactivate a modifi-
cation set. Modify searches the edited decks for
all lines affected by the named modification set.

If a line was activated by the modification set,
Modify deactivates it, If a line was deactivated by
the modification set, Modify reactivates it. Thus,
Modify generates a new modification history byte
for every line that changed status as a.result of the
YANK and effectively restores the edited decks to
the status they had prior to modification modname
or all modifications subsequent to modname.

For the first format, only the one modification set
is yanked. For the second format, Modify yanks all
modification sets applied after modname, provided
modname appears on the edited decks. YANK or
UNYANK directives contained in the yanked modifi-
cation set are not rescinded.

YANK affects only those decks that are edited
through the EDIT directive or the F or U options
on the Modify control statement. In this way, the
YANK directive can be selective,

Formats:

*YANK modname
*YANK modname, *

Name of modification set pre-
viously applied to decks in the
library. Omitting modname
produces a format error,

If Modify fails to find the
modname in the modification
table for the library, it issues
an error.

modname

UNYANK — RESCIND ONE OR MORE
YANK DIRECTIVES

With the UNYANK directive, the user can rescind
previous YANK directives, For the first format,
only the one modification set is rescinded. For the
second format, Modify rescinds all of the yanked
modification sets, starting with modname, provided
modname appears on the edited decks.

Formats:

*UNYANK modname
*UNYANK modname, *

Name of only modification set
to be rescinded or name of

modname

60450100 A

first of two or more modifi-
cation sets to be rescinded
for the library. Omitting
modname results in a format
error.

PURDECK — PURGE DECK

A PURDECK directive causes the permanent removal
of a deck or group of decks from the program li-
brary. Every line in a deck is purged, regardless
of the modification set it belongs to. A deck name
purged as a result of PURDECK can be reused as
either a deck name or a modification name.

A PURDECK directive can be any place in the direc-
tives input, It terminates any previous correction
set, Therefore, INSERT, DELETE, and RESTORE
cannot follow a PURDECK directive but must come
after an IDENT directive., Purging cannot be re-
scinded,

Format one:

*PURDECK dname dnamez, rees dnamen

1,
Deck names for decks to be
purged.

dname,

Format two:

*PURDECK dnamea. dnameb

The deck named dnameg and all decks up to and in-
cluding dnamey, listed in the deck list are purged,

IGNORE — IGNORE DECK MODIFICATIONS

An IGNORE directive causes any further modification
directives for the designated deck to be ignored.
Modify skips modification directives other than
IDENT, EDIT, and DECK. When one of these direc-
tives is encountered, Modify processes it and re-
sumes processing the input stream. Any modification
directives for the decks that precede the IGNORE
directive are processed normally. The EDIT deck
name(s) encountered after an IGNORE directive are
checked against the current ignore list,” Any EDIT
deck names are deleted. If an ignored deck is en-
countered in the EDIT directive form deckname,.deck-
namep, the directive is flagged and is considered as
having a modification error. The following message
is issued,

FORMAT ERROR IN DIRECTIVE
Format:

*IGNORE dname

EDIT — EDIT DECKS

Editing is a process of modifying a deck, if modifi~
cations are encountered during the modification phase,
and writing the deck on the compile file, new program
library, and source file.

The three possible modes of editing are selective,
full, and update. The modes are selected through
Modify control statement options,

Format:

*EDIT P1sPgseeesP)
A deckname or range of decknames
in one of the following forms:

1

deckname

decknamea. decknameb

The first form requests that Modify
edit a deck on the program library;
the second form requests a range of
decks starting with deckname, and
ending with decknamey,. If deck-
names are in the wrong sequence,
Modify issues the error message:

NAMES SEPARATED BY *,* IN
WRONG ORDER.

If Modify fails to find one of the
decks, it issues the message:

UNKNOWN DECK - deckname,

SELECTIVE EDIT MODE

When selective editing is desired (neither ¥ nor U
selected on the Modify control statement), Modify
edits only the decks specified on EDIT directives.
EDIT directives cause a deck to be written regard-
less of whether it was corrected or not. Decks are
edited in the sequence encountered on EDIT direc-
tives unless an UPDATE directive specifies other-
wise. Modifications encountered during the modifi~
cation phase are not incorporated in a deck if the
deck is not specified on an EDIT directive. In
particular, calling a common deck from within a
deck being edited does not automatically result in
the common deck being edited.

If decks are being replaced or new decks are added,
the new decks are placed at the end of the library.
Thus, a deck formerly included in an EDIT sequence
will no longer lie within the sequence.

If a common deck is to be modified and a deck that
calls the common deck is to be modified, the com-
mon deck must be edited before the calling deck.
Otherwise, the calling deck will receive a copy of
the unmodified common deck.

FULL EDIT MODE

When a full edit is requested (F selected on Modify
control statement), Modify ignores EDIT directives.
It writes all decks in the sequence encountered on the
program library. This option provides for creating
a complete new program library. Because the same
decks that are written on the new program library
are also written on the compile file, a user wishirg
to obtain only a partial set of decks on the compile
file must request separate runs of Modify — one run
for creating the new program library and one run
for creating the compile file,

If a common deck to be modified is called by a deck
that precedes the common deck on the OPL, the
NPL receives a copy of the modified common deck,
but the compile file receives a copy of the unmodi-
fied common deck. The programmer can in two
ways ensure that the compile file receives a copy
of the modified common deck; the common deck can
be moved ahead of the calling deck on the OPL be-~
fore the modifications to the decks are made, or a
second modification run can be made using the NPL
of the first run as the OPL for the second run.

UPDATE EDIT MODE

If the U option is selected on the Modify control
statement, Modify edits only those decks mentioned
on DECK directives and ignores the EDIT directives.
Thus, only decks being updated by the Modify run
are written on the compile file. This mode is not
normally requested when a new program library or
source file is desired.

If a common deck is to be modified and a deck that
calls the common deck is to be modified, the com-
mon deck must be edited before the calling deck.
Otherwise, the calling deck will receive a copy of
the unmodified common deck.

MODIFICATION DIRECTIVE EXAMPLES

Figure 4-1 is a detailed example of some of the
modification directives presented in this section.

60450100 D

batch
$RFL,0.
/get, opl=mainpl
dify,f,1=0,n=mainpl
émgiéezt modl < b This modification set is given name MODI.

? *deck deck3

? ¥delete deck3.1

? ¥%¥%¥ suybroutine 2, deck deck3.

* .

3 *ge?k deck2 { Refer to listing of compile file in figure 3-3

? ¥%% gubroutine 1, deck deck2. to reference line sequence numbers.

? ¥insert 3

2% call subroutine sub2

? ¥ in deck?2.

? %*delete 7

? ¥%% end deck2.

? *deck deck!

? %4 1

? ¥*¥% pgain program, deck deckl.

2

MODIFICATION COMPLETE .

/copycef,compile

¥¥%¥ MAIN PROGRAM, DECK DECK1. MOD1
PROGRAM MAIN(OUTPUT) DECK1
PRINT*,"BEGIN MAIN PROGRAM." DECK1
CALL SUB1 DECK1
PRINT*,"END MAIN PROGRAM." DECK1
STOP DECK1
END DECK1

¥%% SUBROUTINE 2, DECK DECKS. . . MOD1
SUBROUTINE SUB2 Listing of compile DECK3
PRINT* ,"ENTER SUBROUTINE 2." file created by DECK3
PRINT* ,"EXIT SUBROUTINE 2." Modify. DECK3
RETURN DECK3
END DECK3

#%% SUBROUTINE 1, DECK DECK2. MOD1
SUBROUTINE SUBT DECK2
PRINT*,"ENTER SUBROUTINE 1." DECK2

* CALL SUBROUTINE SUB2 MOD1

* IN DECK2. MOD1
CALL SUB2 DECK?
PRINT¥,"EXIT SUBROUTINE 1." DECK2
RETURN DECK?

c Note that user inadvertently deleted END
#4% END DECK2. [statement. 7 MOD1

END OF INFORMATION ENCOUNTERED.
/modify,1=0,p=mainpl,n=mpl1,c=coml

? *1dent mod2

? ¥deck deck?

9 %

b *gezggﬁe; 3 Modification run to restore deleted line, and
? %edit deck? delete line MOD1, 3.

2

MODIFICATION COMPLETE .

/copycef, coml Note that compile

% SUBR()UTINE_ 1, IECK DECK2. file contains only MOD1 1
SUBROUTINE SUB1 edited deck(s). DECK2 2
PRINT* ,"ENTER SUBROUTINE 1.7 DECK2 3

* CALL SUBR()UT% MOD1 2
CALL SUB2 Note deleted line. DECK2 4
PRINT¥* ,"EXIT SUBROUTINE 1." DECK2 5
RETURN
END END statement restored. gggg g

¥%¥ END DECK2. MOD1 4

END OF INFORMATION ENCOUNTERED.

/modify,1=0,p=mpl1,n=mpl2,c=com?

? *ident mod3

? *deck deck?

? *modname mod1

? ¥pestore 3

? *edit deck2 Line deleted in previous Modify run is restored.

2

MODIFICATION COMPLETE .

Figure 4-1. Modification Directive Examples (Sheet 1 of 2)

60450100 D

EOUTEWNWNN = OV EWNN =~NO00U EWN -

/copyef,com2
*%%

SUBROUTINE 1, IECK DECK2.

SUBROUTINE SUB1

PRINT*,"ENTER SUBROUTINE 1."
* CALL SUBROUTINE SUB2

* IN DECK2. <€

CALL SUB2

PRINT* ,"EXIT SUBROUTINE 1."

RETURN
END
¥%¥% END DECK2.

END OF INFORMATION ENCOUNTERED.

/rewind,mainpl ,mpl2
$REWIND ,MAINPL ,MPL2.

/1libedit,i=0,p=mainpl,1=0,b=mpl2,c

EDITING COMPLETE .

€

/catalog,mainpl,r
CATALOG OF MAINPL FILE
REC NAME TYPE LENGTH

1 DECK! OPL (64) 37
MOD1

2 TDECK3 OPL (64) 34
MOD1

3 DECK2 OPL (64) 55
MOD1 MOD2 MOD3

L OPL OPLD 1

5 *®EQF * SUM = 161

1
CATALOG COMPLETE.
/replace,mainpl

? *jident modx
*deck deck?
¥yank mod3
*cdit deck?

=) 830 oD)

MODIFICATION COMPLETE.

/catalog,nplx,r

CATALOG OF NPLX

REC NAME
1 DECK2
MOD1
2 0OPL
3 *EQF %

1

CATALOG COMPLETE.
/copyef,com3
#h%

SUBROUTINE 1,

FILE
TYPE LENGTH
OPL (64) 55
MOD2 (MOD3
OPLD 3
SUM = 60

IECK DECK2.

SUBROUTINE SUB1™
PRINT*,"ENTER SUBROUTINE 1."
* CALL SUBROUTINE SUB2

CALL SUB2

PRINT*,"EXIT SUBROUTINE 1."

RETURN
END
#% END DECK2.

END OF INFORMATION ENCOUNTERED.

Figure 4-1,

The LIBEDIT utility provides a convenient

Restored line.

MOD1
DECK2
DECK2
MOD1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1

=IOV W N W RN =

means of replacing or adding records on a file.
Refer to the NOS Reference Manual, volume 1,
for a description of the LIBEDIT utility.

1
CKSUM
7732
3117

3134

THTT

1

CKSUM

4734

2117

DATE

77/10/07.

77/10/06.

T77/10/07.

77/10/07.

.) Temporary modification run to deactivate
/modify,1=0,p=mainpl ,c=com3,n=nplx €—————— I modification set MOD3 and selectively edit

deck DECK2.

DATE
T77/10/07.

77/10/07.

Note that yanked modification set is enclosed in
parentheses.

Compare with previous
compile file of DECK2.

MOD1
DECK2
DECK2
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1

Modification Directive Examples (Sheet 2 of 2)

3 OVU ENW N —

60450100 D

FILE MANIPULATION DIRECTIVES S

File manipulation directives allow user control over
files during the initialization and modification
phases., Two of these directives, READ and
READPL, may be used to change the source of di-
rectives and insertion text from the directives file
to an alternate file., While an insertion is in prog-
ress, a file change does not terminate insertion.
Insertion continues until Modify reads the next
modification directive. File manipulation directives
are illegal when Modify is reading from an alternate
file and result in the following message:

OPERATION ILLEGAL FROM ALTERNATE FILE
INPUT.

The file manipulation directives include:

READ Read record or group of records
from specified file.

READPL Read deck or portion of deck from
program library.

BKSP Backspace specified number of
records on file.

SKIP Skip forward specified number of
records on file.

SKIPR Skip forward past the specified
record on file.

REWIND Rewind named files.

RETURN Return named files to system.

These operations cannot be performed on the follow-
ing reserved files (or their equivalents).

INPUT Source of directives
OUTPUT Statistics output
COMPILE Compile

SOURCE Source output

OPL Old program library
NPL New program library
SCR1 Scratch file 1

SCR2 Scratch file 2

SCR3 Scratch file 3

These file names are reserved only through their
respective Modify control statement options. For
example, if the S option is not specified, the file
SOURCE is not reserved and the user can use file
manipulation directives specifying a file of that
name, However, file names SCR1, SCR2, and
SCR3 should not be used,

60450100 B

READ — READ ALTERNATE
DIRECTIVES FILE

The READ directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified
record on the named file or current position if
deckname is omitted (or *). Unless * is the
deckname field, Modify reads from the alternate
directives file until it encounters an end-of-record
and then resurnes with the next directive on the
primary directives file.

If Modify is unable to find the named record, it
issues the message

RECORD NOT FOUND.
Formats:

*READ file
*READ file, dname
*READ file, *

file Name of file containing insertion
text and/or directives.

dname Optional; if dname is specified,
text must be in source file
format; that is, the first word
of record is the name of the
record, Modify discards the
name before processing any
text. ’

* Optional; if specified, Modify
processes all records on the
file up to an end-of-file or a
zero-length record. These
records must be in source file
format.

READPL — READ PROGRAM LIBRARY

The READPL directive causes Modify to temporarily
stop reading the directives file and begin reading
directives and insertion text from the specified
Modify deck. It allows a user to insert text from
one deck on the program library into another program,
or to move text within a program.

Formats:

*READPL dname
*READPL dname, Cys Cy

dname Name of deck on old program
library.
Cys Cy Portion of deck to be read;

must be more than one line.

Modify inserts all the active lines in the deck or
portion of the deck specified by the READPL,, If
C1, ¢c2 are omitted, it reads the entire deck before
returning to the directive file.

o)

During processing of the READPL direc-
tive, Modify does not perform any modi-
fications to the text in the deck it is read-
ing, If the user wishes the new text to be
modified, he must make the corrections
to the deck into which the text is being
inserted; that is, the text is taken from
the deck exactly as it is on the program
library.

BKSP — BACKSPACE FILE

The BKSP directive repositions the named file one
or more logical records in the reverse direction.

It does not backspace beyond the beginning-of-infor-
mation.,

Formats:

*BKSP file
*BKSP file,n

file Name of file to be positioned.

n Number of records to be
skipped in the reverse direc~
tion, If n is omitted, Modify
backspaces one record.

SKIP — SKIP FORWARD ON FILE

The SKIP directive repositions the named file for-
ward one or more logical records, If an end-of-
information is encountered before the requested
number of records has been skipped, the file is
positioned at the end-of-information.

Formats:

*SKIP file
*SKIP file,n

file Name of file to be positioned.

n Number of records to be
skipped in the forward direc-
tion. If n is omitted, Modify
skips one record.

5-2

SKIPIR — SKIP FORWARD PAST RECORD

The SKIPR directive repositions the named file
forward past the specified logical record. It does
not position the file past the end-of-information,

If Modify is unable to locate the record in the for-
ward search, it positions the file at the end-of-infor-
mation and issues the message

RECORD NOT FOUND.

Format:

*SKIPR file, rname
file Name of file to be positioned.

Name of record on file that file
is positioned after.

rname

REWIND — REWIND FILES

The REWIND directive repositions one or more files
to their first records.

Format:
*REWIND filel, filez, caes f11en

filei ~ Names of files to be rewound.

RETURN — RETURN FILES TO SYSTEM

The RETURN directive immediately returns files to
the operating system.

Format:
*RETURN filel, fi1e2, seny filen

filei Names of file to be returned.

FILE MANIPULATION DIRECTIVE EXAMPLES

Figure 5~1 illustrates several of the file manipulation
directives discussed in this section.

60450100 B

batch
$RFL,0.

/old,dirfil <
/1lnh,r

PRINT*,"LINE 1 ADDED BY MODIFICATION SET MODX."

~~EOR==

PRINT*,"LINE 2 ADDED BY MODIFICATION SET MODX."

B ()R
DECKX

PRINT# ,"LINE 3 ADDED BY MODIFICATION SET MODX."

~=EOR--

¥*EDIT DECK1

*EDIT DECK2

¥ DIT DECK3

~=F(OR=—
/0ld,opl=mainpl
/get,dirfil
/todify,1=0,n=newpl,c=comx
? ¥gkip dirfil,2
*ident modx

*deck deck?

¥ 2

¥read dirfil,deckx
¥bksp dirfil,2
*deck deck3

¥read dirfil
¥prewind dirfil
%*deck deckl

*

¥read dirfil
¥skipr dirfil,deckx
¥read dirfil
¥return dirfil

"D) 3 5D 6 6 1) 0D 0D o) oD 4) D o) o) D)

MODIFICATION COMPLETE .

/copyef,comx

®%% MATN PROGRAM, DECK DECKT.
PROGRAM MATN{OUTPUT)
PRINT*,"BEGIN MAIN PROGRAM."
CALL SUB1

File manipulation directives.

PRINT¥ "LINE 1 ADDED BY MODIFICATION SET MODX."

PRINT#*,"END MAIN PROGRAM.M
STOP
EVD

*%% SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUB1

PRINT# ,"LINE 3 ADDED BY MODIFICATION SET MODX."

PRINT* ,"ENTER SUBROUTINE 1."
* CALL SUBROUTINE SUB2
* IN DECK2.
CALL SUR2
PRINT¥ ,"EXTT SUBROUTINE 1."
RETURN
END
®%% END DECK2.)
¥#% SURROUTINE 2, DECK DECK3.
SUBROUTINE SUR2
PRINT*,"ENTER SURROUTINE 2."

Compile file containing
modifications from
alternate directives
file.

PRINT#¥,"LINE 2 ADDED BY MODIFICATION SET MODX."

PRINT* ,"EXIT SUBROUTIME 2."
RETURN
END

END OF INFORMATION ENCOUNTERED.

Alternate directives file.

MOD1
DECK1
DECK1
DECK1
MODX
DECK1
DECK1
DECK1
MOD1
DECK2
MODX
DECK2
MOD1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1
MOD1
DECK3
DECK3
MODX
DECK3
DECK3
DECK3

Figure 5-1. File Manipulation Directive Examples (Sheet 1 of 2)

60450100 D

QOUTE 4 WN R 2~TOU W NW)=~V = N —

/catalog,newpl,r

CATALOG OF NEWPL FIIE
REC NAME TYPE LENGTH
1 DECK1 OPL (64) .
MOD1 MODX
2 DECK2 OPL (64) 65
MOD1 MOoD2 MOD3
3 DECK3 OPL (61) 4y
MOD1 MODX.
4 OPL OPLD 7
5 ®EOF ¥ SUM = 207
1
CATALOG COMPLETE.
/rewind ,comx
$REWIND, COMX.

/ftn,i=comx,1=0

.14 CP SECONDS COMPILATION TIME
/1go
BEGIN MAIN PROGRAM.

LINE 3 ADDED BY MODIFICATION SET MODX.

ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.

LINE 2 ADDED BY MODIFICATION SET MODX.

EXIT SUBROUTINE 2.
EXIT SUBROUTINE 1.

LINE 1 ADDED BY MODIFICATION SET" MODX.

END MAIN PROGRAM.
.007 CP SECONDS EXECUTION TIME

Figure 5-1, File Manipulation Directive Examples‘ (Sheet 2 of 2)

5-4

1
CKSUM

7152
7111
MODX

7430

7403

DATE
77/10/07.

77/10/07. .
77/10/06.

77/10/10.

Execution of modified program.

60450100 D

COMPILE FILE DIRECTIVES 6

The directives described in this section provide
user control during the write compile file phase.
These directives are interpreted at the time the
program library decks are written onto the compile
file. A call for a common deck results in the deck
being written on the compile file. Other directives
allow control of file format.

The user can prepare his original source deck with
compile file directives embedded in it, or he can
insert compile file directives into program library
decks as a part of a modification set. Compile file
directives are not recognized when they are on the
directives file; they do not terminate insertion, but
are simply considered as text lines to be inserted.

Compile file directives include:

CALL Write called deck onto com-
pile file.
\I‘FCALL Write called deck onto com-

pile file if name is defined.

Write called deck onto com-
pile file if name is not de-
fined.

NIFCALL

CALLALL Write all decks onto compile
_file that have deckname be-
ginning with specified char-

acter string.

IF Include lines in compile file
if specified attribute is true
and until a reversal directive
is encountered (ELSE or
ENDIF).

ELSE Reverse an IF directive con-
ditional range.

Terminate an 1F directive
conditional range,

ENDIF

COMMENT Generate COMMENT pseudo

instruction for COMPASS.
WIDTH Define number of columns
preceding sequence informa-
tion on compile file.
NOSEQ Specify no sequence infor-
mation on compile file,

SEQ Specify sequence informa-
tion on compile file.

Write end-of-record on com-
pile file.

WEOR

Write end-of-record on com-
pile file if the buffer is not
empty.

CWEOR

60450100 C

WEOF Write end-of-file on compile
file.

A common deck cannot call another
common deck. That is, if the directives
CALL, IFCALL, NIFCALL, or CALL-
ALL are in a common deck, they are
ignored.

CALL — CALL COMMON DECK

Modify places a copy of the requested deck on the
compile file, It does not copy the request to the
compile file. However, the new program library
and the source file contain the CALL directive,

Format:
*CALlL deckname

Name of common deck to be
writteh on compile file.

deckname

IFCALL — CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has been defined
on a DEFINE directive during the modification
phase. If the name has not been defined, the com-
mon deck is not written on the compile file. Modify
does not copy the IFCALL directive to the compile
file.

Format:

*IFCALL name, deckname

name 1~ to T-character conditional
name.
deckname Name of common deck to be

written on compile file if name
is defined.

NIFCALL — CONDITIONALLY CALL
COMMON DECKS

Modify places a copy of the requested deck on the
compile file if the conditional name has not been
defined (refer to DEFINE directive, section 7)
during the modification phase. If the name has
been defined, the common deck is not written on
the compile file.

Format:

*NIFCALL name, deckname

name 1- to 7-character conditional
name.
deckname Name of common deck to be

written on compile file if
name is not defined.

CALLALL — CALL RELATED
COMMON DECKS

Modify places a copy on the compile file of every
deck name beginning with the specified character
string.

Formadt:

*CALLALL string

IF — TEST FOR CONDITIONAL RANGE

Modify tests the specified condition and, if true,
writes all following lines onto the compile file un-
til encountering a reversal (ELSE) or termination
(ENDIF) directive. If the condition is false, the
lines are skipped until a reversal or termination
directive is encountered. Lines skipped in such
a range are treated as inactive.

Format:

*IF atr, name, value

atr Attribute; must be one of the
following:
DEF name defined
UNDEF name undefined
EQ name equal to value
NE name not equal to
value

ELSE — REVERSE CONDITIONAL RANGE

ELSE is a conditional range reversal directive.
When encountered, the effects of a previous IF
directive are reversed. An ELSE directive en-
countered without an IF range in progress is
diagnosed as an error.

Format:

*ELSE

ENDIF — TERMINATE CONDITIONAL RANGE

ENDIF is a conditional range termination directive.
When encountered, the effects of a previous IF
directive are terminated. An ENDIF directive en-
countered without an IF range in progress is diag-
nosed as an error.

Format:

*ENDIF

COMMENT — CREATE COMMENT LINE

This directive causes Modify to create a COMPASS
language COMMENT pseudo instruction (beginning
in column 3) in the following format. Modify obtains
the dates from the operating system.

LOCATION OPERATION VARIABLE SUBFIELDS
COMMENT | crdate moddate comments
crdate Creation date in the format

Ayy/mm/dd.
moddate Modification date in the format
Ayy/mm/dd,
Format:

*COMMENT comments

comments Character string.

WIDTH — SET LINE WIDTH ON
COMPILE FILE

The WIDTH directive allows the user to change the
width of lines during the compile phase. Modify
uses the new width until it encounters another
WIDTH directive.

Format:
*WIDTH n

n Number of columns preceding
sequence information on com-
pile file and source file.
Modify allows a maximum of
100 columns.

During initialization of Modify, width is
set to 72; additional columns of data are
truncated.

60450100 B

NOSEQ — NO SEQUENCE INFORMATION

The NOSEQ directive allows the user to set the no
sequence flag during the write compile file phase.
When no sequence information is requested, Modify
does not include sequence information on the com-
pile file. A. SEQ directive encountered subsequent
to NOSEQ resumes sequencing.

Format:

*NOSEQ

SEQ — INCLUDE SEQUENCE INFORMATION

The SEQ directive allows the user to clear the no
sequence flag during the write compile file phase and
to begin placing sequence information on the compile
file. A NOSEQ directive encountered subsequent to
a SEQ sets the no sequence flag.

Format:

*SEQ

WEOR — WRITE END OF RECORD

Modify unconditionally writes an end-of-record on
the compile file when encountering the WEOR direc~
tive.

Format:

*WEOR

60450100 B

CWEOR — CONDITIONALLY WRITE END
OF RECORD

Modify writes an end-of-record on the compile file

if information has been placed in the buffer since the-
last end-of-record was written,

Format:

*CWEOR

WEOF — WRITE END OF FILE
Modify writes an end~of-file on the compile file.
Format:

*WEOF

COMPILE FILE DIRECTIVE EXAMPLES

Figure 6-1 illustrates several of the compile file
directives presented in this section.

batch
$RFL,0.

/0ld,opl=mainpl
/get,csub
/copyer ;esub

DECKY
IDENT SUB3
ENTRY SUB3
¥*COMMENT CALL DECK DECKS
bkl CALL COMMON DECK.
*NIFCALL MYTEXT,DECKS
SUB3 DATA O
ORIGIN JOT
EQ SUB3
USE //
JOT BSS 1
__END
COPY COMPLETE.
/copyer,csub
DECK5
COMMON
ORIGIN MACRO A
SA1 66B
MX0 24
BX6 ~-X0*X1
- AX6 24
- :SA6: A
ENDM

Copy of source file to be incorporated into

program library.

COPY COMPLETE. .
/modify,f,p=0,1=0,n=mainpl,,c=com1,s=mainp
5

#deck
*j 2

*#i 3

*deck
¥ 0
*yeor
*deck
* 0
*weor
*deck
*1 0
*yeor

D 430 #1) 03) N0) T 83D mad n) 4N 5n) o) 4x) 61D o)) 8n) 93) an) *

*oplfile opl
*rewind csub
*create csub
*ident mod4

deck1
common jot

call sub3

ENTRY/EXIT {

RETURN

GET JOB ORIGIN

STORE JOB ‘ORIGIN--

Notice call to common deck DECKS5.
defined during the modification run, DECKS is not
written on the compile file.

If MYTEXT is

Modify run to create new program library
consisting of source file and OPL,

if(jot.eq.3)print*,"time-sharing job."
if(jot.ne.3)prirt*,"vatch job."

deckl

deck3

deck?

MODIFICATION COMPLETE.

Addition of compile file directives.

Since no modifications are made to the common

deck (DECKS5), it is acceptable to have the com-
mon deck after the calling deck (DECK4) on the
program library. The next section will show
how to rearrange the decks on the program
library.

/catalog,mainpl,r

CATALOG OF MAINPL FILE 1

REC NAME TYPE LENGTH CKSUM DATE

1 DECK1 OPL (64) 61 3171 77/10/07.
MOD1 MODY

2 DECK3 OPL (64) 37 2333 T7/10/06.
MODY MODU

3 DECK2 OPL (64) 60 3077 77/10/07.
MOD1 MOD2 MOD3 M()D’-l_

L DECKY OPL (614) 47 5063 77/10/10.
MODL

5 DECKS OPLC (64) 27 6354 77/10/10.

6 OPL OPLD 13 3706 T77/10/10.

7 ®EOF ¥ SUM = 311

1
CATALOG COMPLETE.

6-4

Figure 6-1, Compile File Directive Examples (Sheet 1 of 3)

60450100 D

/copyer,com]

xxx MATN PROGRAM, DECK DECK1.
PROGRAM MAIN(OUTPUT)
COMMON JOT
PRINT¥*,"BEGIN MAIN PROGRAM."
CALL SUB3

IF(JOT.EQ,3) PRINT*, "TIME-SHARING JOB."

IF(JOT.NE.3)PRINT*,"BATCH JOB."
CALL SUB1
PRINT*,"END MAIN PROGRAM."
STOP
END

COPY COMPLETE.

/copyer,coml

bl SUBROUTINE 2, DECK DECKSR.
SUBROUTINE SUB2
PRINT¥*,"ENTER SUBROUTINE 2."
PRINT* ,"EXIT SUBROUTINE 2."
RETURN
END

COPY COMPLETE.

/copyer,coml

%% SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUB1
PRINT*,"ENTER SUBROUTINE 1."

¥ CALL SUBROUTINE SUB2

* IN DECK2.
CALL SUB2 -
PRINT*,"EXIT SUBROUTINE 1.,"
RETURN
END

¥¥%¥ END DECK2.

COPY COMPLETE.

/copyer,com?
IDENT SUB3
ENTRY SUB3
COMMENT 77/10/10. 77/10/10. CALL DECK DBECK5
*xsg CALL COMMON DECK.
OPIGIN MACRO A
SA1 66B GET JOB ORIGIN
MX0 24
BX6 -X0¥X1
AX6 24
SA6 A STORE JOB QORIGIN
ENDM
SUB3 DATA O ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE //
JoT BSS 1
END
COPY COMPLETE.
/copyer,com?l
END OF INFORMATION ENCOUNTERED.
/replace,mainpl
/pack,coml
PACK COMPLETE.

/ftn,i=com!,1=0
401 CP SECONDS COMPILATION TIME
/1go
BEGIN MAIN PROGRAM.
TIME-SHARING JOB.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
EXIT SURROUTINE 2.
EYIT SUBROUTINE 1.
“ND MAIN PROGRAM.
.007 CP SECONDS EXECUTION TIME
/primary,mainp
$PRIMARY ,MATNP.

Figure 6-1.

60450100 D

Listing of compile file,
Notice separation into
records.

Notice that Modify has
replaced *COMMENT
directive with COMPASS
COMMENT statement on
compile file,

MYTEXT was not de-
fined during the modifi-
cation run, Thus, the
contents of DECKS have
been written on the com-
pile file.

MOD1
DECX1
MODY4
DECK1
MOD4
MODY
MODY
DECK1
DECK1
DECK1
DECK1

MOD1

DECK3
DECK3
DECK3
DECK3
DECX3

MOD1
DECK2
DECK2
(D1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD1

DECKY4
DECK4
DECKY4
DECKY4
DECK5
DECK5
DECK5
DECK5
DECKS
DECKS
DECK5
DECKU4
DECKY4
DECKY
DECKY4
DECK4
DECK4

Compile File Directive Examples (Sheet 2 of 3)

1OV W N W N - AU £ N - NI = EWNW =N —

L OW OO OU ZWN = N —

— et

/1nh,r
DECK1
¥¥%€ MAIN PROGRAM, DECK DECKT.
PROGRAM MAINCOUTPUT)
COMMON JOT'
PRINT*,"BEGIN MATN PROGRAM."
CALL SUB3 o p
IF(JOT.EQ. 3) PRINT* "TIME~SHARING JOB."
IF(JOT.NE, 3YPRINT*, "BATCH JOB."
CALL SUB1 :
PRINT*,"END MAIN' PROGRAM."
STOP
END
~<BOR=="~
DECK3
*WEOR e
¥%¥% SUBROUTINE 2, DECK DECK3.
SUBROUTINE SUB2: -
PRINT¥,"ENTER SUBROUTINE 2."
PRINT¥,"EXTT SUBROUTINE 2.7
RETURN
END
~=E(R==
DECK?2
¥EOR
*®¥% SUBROUTINE 1, DECK DECK2.
SUBROUTINE SUBRT
PRINT®, "ENTER SUBROUTINE T."
* CALL SUBROUTINE SUB2
* IN DECK2.

CALL SUB2
PRINT*,"EXIT SUBROUTINE 1."
RETURN
END
*¥¥ END DECK2.
~-E(R-~
DECKY
FEOR
TDENT SUB3
; ENTRY SUB3
¥COMMENT CALL DECK DECKS
*x CALL COMMON DECK.
*NIFCALL MYTEXT,DECKS
SUBR DATA O ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE /7
Jor BSS 1
END
-EOR=-—
DECKS
COMMON
ORIGIN MACRO A
SA 66 GET JOB ORIGIN
MXO 2L
BX6 -XO*XT
AX6 2l »
SA6 A STORE JOB ORIGIN
ENDM
~-EQR==

Contents of source file created by Modify... .

Note that source file contains call to common
deck. : :

Figure 6-1, Compile File Directive Examples (Sheet 3 of 3).

60450100 D

SPECIAL DIRECTIVES 7

L

The directives described in this section provide
extended features. They can be any place in the
directive file for either creation or correction and
primarily affect the operating features- of Modify.

/ List comment.

PREFIX Changes prefix character for
directives other than compile
file directives.

PREFIXC Changes prefix character for
compile file directives.
INWIDTH Sets width of input line to be
compressed,

DEFINE Defines name under which sub-
sequent IFCALL directive may
cause a common deck to be
written, or NIFCALL may
prevent a common deck from
being written.

MOVE Moves decks on new program
library.

UPDATE Specifies editing sequence
and modification set number-
ing.

/ — LIST COMMENT
Other than being copied onto the Modify statistics
(list) output, a comment line is ignored. It can
occur any place in the directives file,
Format:

*/ comment

Example:

B / sk

<% MODIFIC ATIONS ik

PREFIX — CHANGE MODIFY
DIRECTIVES PREFIX

The PREFIX directive resets the prefix character
for subsequent Modify directives. It does not affect
the prefix of compile file directives. When Modify
is initialized, the character is preset to *. Modify
uses * if a PREFIX directive is not used.

Format:
*PREFIX x
X Character used in first column
of directive (except compile

file directive). A blank char-
acter is illegal.

60450100 B

PREFIXC — CHANGE COMPILE FILE
DIRECTIVES PREFIX

The PREFIXC directive resets the compile direc-
tive character so that only compile file directives
with the x prefix are recognized. If a PREFIXC
directive is not encountered, the default (*) is used.

Format:
*PREFIXC x

X Character used in first column
of compile file directive. A
blank character is illegal,

INWIDTH — SET WIDTH OF INPUT TEXT

The INWIDTH directive allows the user to set the
width of input text from primary and alternate sources
before it is compressed and written in the Modify
library deck. An INWIDTH directive takes prece-
dence over any previously defined width. INWIDTH
can be placed anywhere in the directives file,

Format:
*INWIDTH n

n Number of columns on input
line to be compressed. Modify
allows a maximum of 100
columns. During initialization
of Modify, width is preset to
2. .

DEFINE — DEFINE NAME FOR USE BY
IFCALL, NIFCALL, IF

By defining a name and its associated value, a user
establishes the conditions that must be met for a
conditional call of a common deck. This allows
external control of the calls embedded in source
decks. If the name is not defined, an IFCALIL for
a common deck is ignored. If the name is defined,
a NIFCALL for a common deck is ignored. A
DEFINE directive must be processed in order for
an IF conditional test to be true.

Format:

*DEFINE name, value

name Name used in compile file
IFCALL, NIFCALL, or IF
directive.

value Value assigned to symbol

name (maximum value may be
3777777B). If omitted, name
is defined with value zero.

7-1

MOVE — MOVE DECKS

The MOVE directive enables the user to reorder
decks while producing a new program library. The

each deck using the same IDENT. UPDATE also
causes the order in which decks are edited to be
according to their sequence on the old program
library.

decks, dname, are moved from their positions on

the old library and placed after dnamey on the new Format:
library.

*UPDATE
Format:

SPECIAL DIRECTIVE EXAMPLES

*MOVE dnamer, dnamel, dnamez, dnameh

Figure 7-1 illustrates several special directives.
Note that compile file directives can be ignored
(depending on language processor) by changing the
compile file prefix character.

UPDATE — UPDATE LIBRARY

Use of this directive causes Modify to continue
sequencing rather than restart sequencing with

batch

$RFL,0. .

/old,opl=mainpl
/modify,f,c=coml,n=mainpl,1=0

? */ change prefix character to #
? ¥*prefix # <—

? #ident mod6

? #deck decky

?#i4

? space U4

? #prefixc # €—

? #move deck5,deck1,deck?,deck3,deckd

Change Modify directive prefix character.

Change compile file prefix character so
directives on program library will be inter-

2 preted as comments.
MODIFICATION COMPLETE.
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH - CKSUM DATE

The common deck (DECKS5) now comes

1 DECK5 OPLC (64) 27 6354 77/10/10. <—— : :
2 DECK1 OPL (64) 61 3171 77/10/07. before any deck that might call it.
MOD1 MODY
3 DECK2 OPL (64) 60 3077 77/10/07.
MOD1 MOD2 MOD3 MODY
4 DECK3 OPL (64) 37 2333 77/10/06.
MOD1 MODA '
5 DECKH OPL (6L) 53 3057 77/10/10.
MODY MOD6
6 OPL (OPLD 13 175 77/10/10.
7 *®EBOF ¥ SUM = 315
1
CATALOG COMPLETE.
/replace,mainpl
Figure 7-1. Special Directive Examples (Sheet 1 of 3)

7-2 60450100 D

/copyer,com

¥%% ° MATN PROGRAM, DECK DECK1. MOD1 1
PROGRAM MAIN(OUTPUT) DECK1 2
COMMON JOT MODY 1
PRINT¥*,"BEGIN MAIN PROGRAM." DEX1 3
CALL SUB3 MODL 2
TF(JOT.EQ.3)PRINT*, "TIME-SHARING JOB." MOD4 3
IF(JOT.NE.3)PRINT¥* ,"BATCH JOB." MODY i
CALL SUB1 , DECK 1 Y
PRINT#*,"END MAIN PROGRAM.™ DECK1 5
STOP DECK1 6
END DECK1 T

¥WEOR MODY 1

¥%% SUBROUTINE 1, DECK DECK2. MOD1 1
SUBROUTINE SUBT DEX?2 2
PRINT* ,"ENTER SUBROUTINE 1." DECX2 3

¥ CALL SUBROUTINE SUB2 MOD1 2

* IN DECK2. MOD1 3
CALL SUB2 DECK2 4
PRINT¥* ,"EXIT SUBROUTINE 1." DECK2 5
RETURN DECK2 6
END TECX2 7

*%% END DECK2. MOD1 4

FHEOR SUBROUTINE 2. DECK DECKS Listing of compile file. %gﬁ‘ 1

2, . < .) .

SUBROUTINE SUB2 E;éﬁ;pglez,?}gn‘if:gf“’es DECK3 2
PRINT*,"ENTER SUBROUTINE 2." DECK3 3
PRINT¥,"EXIT SUBROUTINE 2." ' DECK3 L
RETURN DECK3 5

END) DECK3 6
*WEOR MOD4 1
IDENT SUB3 DECKY 1

ENTRY SUB3 . DECKY4 2

¥COMMENT CALL DECK DECKS DECKY4 3
% CALL COMMON DECK. DECKY 4
SPACE L MOD6 1

*CALL DECKS - DECKY 5
SUB3 DATA O ENTRY/EXIT DECKY4 6
ORIGIN JOT DECKY 7

EQ SUB3 RETURN DECK4 8

USE // DECKY 9

JOT BSS 1 DECKY 10
END DECKY 1

COPY COMPLETE.

/copyer,com]

END OF INFORMATION ENCOUNTERED.

/modify,c=com2,1=0,n=mainpl,u EXAMPLE is defined before modset

? *define example \\ .MODY is identified. Thus, when modset

? ¥ident mod7 MODT7 goes into effect during this modifi~

? *deck deck! cation run, EXAMPLE will be defined

? *modname mod4 but not as part of modset MOD7.

? ¥insert 2

? ¥if def,example

? print¥ "example has been defined."

? ¥else

? print¥* "example has not been defined.”

? ¥endif

?

MODIFICATION COMPLETE.
/copyef’,com?2
*E%

MAIN PROGRAM, DECK DECKI. MODA1 1
PROGRAM MAIN(OUTPUT) DECK1 2
COMMON JOT MODY 1
PRINT#*,"BEGIN MAIN PROGRAM." DECK1 3
CALL 3SUB3 MOD4 2
PRINT¥*,"EXAMPLE HAS BEEN DEFINED." «—Inserted line. MOD7 2
IF(JOT .EQ.3)PRINT#* ,"TIME-SHARING JOB." MOD4 3
IF(JOT .NE . 3)PRINT#*,"BATCH JOB." MODY 4
CALL SUB1 DECK1 4
PRINT¥,"END MAIN PROGRAM." DECK1 5
STOP DECK1 6
END DECK1 7

END OF INFORMATION ENCOUNTERED.

Figure 7-1, Special Directive Examples (Sheet 2 of 3)

60450100 D

e 71-4

émggég’g;gﬁ?&ko’ p=mainpl EXAMPLE is not defined during

5 this modification run, The *ELSE

MODIFICATION COMPIETE .
/copyef,com3
#¥% MAIN PROGRAM, DECK DECK1.
PROGRAM MATN(OUTPUT)
COMMON JOT
PRINT* ,"BEGIN MAIN PROGRAM.™ -
CALL SUB3 -
.. PRINT¥* "EXAMPLE HAS NOT BEEN DEFINED." <—Inserted line.
_ IF(JOT .EQ.3)PRINT* ,"TIME~SHARING JOB."
_ IF(JOT.NE.3)PRINT*,"BATCH JOB."
CALL SUB1. -
PRINT# "END MAIN PROGRAM."
STOP
END -
END- OF INFORMATION ENCOUNTERED.

Figure 7~1. Special Directives Examples (Sheet 3 of 3)

path in modset MOD7 will be taken.

MOD1
DECK1

T MODY

DECK1
MODY
MODT
MODY
MODY

DECKY -

DECK

DECKT

DECK1

NI W ENW =N -

60450100 D

MODIFY CONTROL STATEMENT 8

The following control statement causes the Modify
program to be loaded from the operating system
library into central memory and to be executed.
Parameters specify options and files.

MODIFY (pl, Pgssses pn)

The optional parameters, pj, may be in any order
within the parentheses. Generally, a parameter
can be omitted or can be in one of the following
forms.

option

option=value

option=0
where option is one or two characters as defined in
the following text., Unless Q or X is selected,
parameters CB, CG, CL, or CS are meaningless.

Value is a 1~ to 7T-character name of a file or is a
character string.

Option Significance

A - Compressed compile file

omitted Compile file is not in com-
pressed format.

A Compile file is in compressed
format.

C - Compile file output

omitted or C Compile output to be written
on file COMPILE.

Write compile output on
named file, -

C=0 No compile output.

C=filename

CB - COMPASS binary; Q or X option only.

omitted or CB COMPASS binary output
written on the load-and-go
file (B=LGO).

COMPASS binary output
written on the named file
(B=filename),

CB=0 No binary output (B=0).

CB=filename

CG - COMPASS get text option; Q or X option only.
Takes precedence over CS.

CG L.oad systems text from

SYSTEXT (G=SYSTEXT).

Load systems text from

named file (G=filename).

CG=0 SYSTEXT not defined (G=0).

omitted Load systems text from over=-
lay named in CS option.

CG=filename

60450100 C

Option Significance

CL - COMPASS list output including *comment lines.

Q or X option only.

CL List output on OUTPUT file
(L=OUTPUT).

CL=filename List output on named file (L=
filename).

omitted or Short list instead of full list is

CL=0 generated on OUTPUT file
(L=0).

CS - COMPASS systems text; Q or X option only.

omitted or CS Systems text on SYSTEXT over-
lay (S=SYSTEXT)

CS=filename Systems text on named file
(S=filename)
CS=0 No systems text {S=0)

CV - Character set conversion

omitted or No conversion takes place.

Ccv=0

Cv=63 Convert library created using
64-character set to 63-character
set. o

Cv=64 Convert library created using
63-character set to 64~character
set.

When the CV=63 or CV=64 conversion
option is selected, Modify forces C=0
(no compile file generation).

Conversion is recommended if the character set
of the old program library is not the same as the
character set used when the program library is
modified. Use CATALOG to determine the
character set of the program library (refer to
volume 1 of the NOS Reference Manual), Check
with a systems analyst to determine the character
set in use at the site.

D - Debug

omitted A directive or fatal error aborts
the job.

D A directive error does not abort
the job; the D option does not
affect fatal error processing.

F - Full edit

omitted Decks to be edited are determined
by the U parameter or by EDIT
directives.

F All decks on the library are to

be edited and written on new
program library, compile file,
and source file if the respective
options are selected.

Option Significance

1 - Directive input

omitted or I Directives on job INPUT file.

I=filename Directives comprise next
record on named file,

1=0 No directive input.

L - List output

omitted or L List output is writteh on job
OUTPUT file. This file is
automatically printed.

Li=filename List output is written on the
named file. It is the user's
responsibility to assure that
the file is saved at job end
or is printed.

L=0 Modify does not generate a
list output file,

L.O - List options

omitted or ILO List options E, C, T, M, W,
D, and S are selected.

Each character (cj) selects an
option to a maximum of seven
options. The characters musi
not be separated.

LO=c102. ceCy

Option Significance
A List active lines in
deck
C List directives other

than INSERT, DE-
LLETE, RESTORE,
MODNAME, I, or D
List deck status
List errors

List inactive lines
in deck

List modifications
performed

Include statistics on
listing

List text input

List compile file
directives

Example: LLO=ADEMS

— o

g4 ©w =2

N - New program library output

N New program library to be
written on file NPL.
N=filename New program library to be

written on named file. It is
the user's responsibility to
assure that the file is saved

at job end.
omitted or Modify does not generate a
N=0 new program library.

If a new program library is being genera-
ted, an EVICT is performed upon it (NPL
or filename) before it is written on (refer
to the NOS Reference Manual, #olume 1,
for a deseription of EVICT).

Option Significance

NR - No rewind of compile file

omitted Compile file is rewound at be-
ginning and end of Modify run.

NR Compile file is not rewound at
beginning and end of Modify
run.

P - Program library input

omitted or P Program library on file OPL.
P=filename Program library on named file,
P=0 No program library input file.

Q - Execute named program; no rewind of directives
file or list output file.

omitted or Q=0 Assembler or compiler is NOT
automatically called at end of
the Modify run.

Q=program At the beginning of the Modify
run, Modify sets LO=E and sets
the A parameter. At the end of
the run, Modify calls the as-
gembler or compiler specified
by program.

Q At the beginning of the Modify
run, Modify sets LO=E and sets
the A parameter. At the end of
the run, Modify calls the COM-
PASS assembler. When this
option is selected, the CB, CL,
CS, and CG parameters are
meaningful. Compiler input is
assumed to be COMPILE, All
other parameters are set by de-
fault. If CL is not specified
with Q, lines beginning with an
asterisk in column 1 are not
written to the compile file (com~
pile file directives are processed,
however).

S - Source output; illegal when A, Q, or X are selected.

S Source output written on file
SOURCE.
S=filename Source output written on named

file, It is the user's responsi-
bility to assure that the file is
gaved at job end.

omitted or S=0 Modify does not generate a source
output file.

U - Update edit

omitted Decks to be edited are determined
by EDIT directives or by the F
: parameter.
U Only decks for which directives

file contains DECK directives
are edited and written on the
compile file, new program li-
brary, and source file if the
respective options are on. F, if
specified, takes precedence.

X - Execute named program; directives file and list
output file rewound.
Same as Q option, except Modify
directives input (I parameter) and
list output (L parameter) files are
rewound before processing.

60450100 D

Option Significance Option Significahce

Z - Control statement input : separate input file for the di-
omitted The control statement does g'ectu?s when only da dfeWTh
-not contain the input direc- f}rec lves are nfee ec. €
tives. irst ci‘;aracter ollowm'g the
Z The Modify control statement control statement terminator

contains-the input directives is the separator character.

following the terminator; the
input file is not read. This , Example: MODIFY(Z)/*EDIT,
eliminates the need to use a DECK1/*EDIT, DECK2

60450100 A 8-3

MODIFY FILE FORMATS 9

Types of Modify files significant to Modify execu-
tion include:

Source files

Program library files

Directives file

Compile file

SOURCE DECKS AND FILES

A source file is a collection of information either
prepared by the user or generated by Modify.

SOURCE DECKS PREPARED BY USER AS INPUT
TO MODIFY

A user prepares a source deck for input to Modify
by placing a deck name and optionally a COMMON
statement in front of the source language deck
(figure 3-1). At the same time, the user also in-
serts compile file directives, as required, into the
source language deck to control compile file output
from Modify. FEach source deck is terminated by
an end-of-record. A group of decks is terminated
by an end-of-file or end-of-information. The deck-
name and COMMON statements are not placed on
the program library.

Modify source decks should not be confused with a
compiler or assembler program, A Modify source
deck can contain any number of FORTRAN programs,
subroutines or functions; COMPASS assembler
IDENT statements; or set of data. Typically, each
Modify deck contains one program for the assembler
or compiler or one set of data.

SOURCE FILES GENERATED BY MODIFY

The source file generated as output by Modify
contains a copy of all active lines within decks
written on the compile file and new program library.
The source file is optional output from Modify and
is controlled through use of the S option on the
Modify control statement. Once generated, the
source file can be used as source input on a sub-
sequent Modify run., The file is a coded file that
contains 80-column images. Any sequencing infor-
mation beyond the 80th column is truncated. When
F is selected on the Modify control statement, the
source file contains all lines needed to recreate the
latest copy of the program library.

60450100 B

When U is selected, the source file contains only
those decks named on DECK directives; that is, only
the decks updated during the current Modify run.

When neither F nor U is selected, the source file
contains only those decks explicitly requested on
EDIT directives.

PROGRAM LIBRARY FILES

Program library files (figure 9-1) provide the pri-
mary form of input to Modify, When a program
library file is input, it is an old program library
and has a default name of OPL., When it is output,
it is a new program library and has a default name
of NPL.

prefix table

modification tabie

Deck (record)
text

End-of-record,

prefix tablep

modification tablep

Deck (record)p
textp

End-of-recordp

prefix tableg

End-of~recordp-|

prefix tablepq L 4

modification tablep

Deck (record)p

textp

End-of -record,

prefix tablen 4

directory table

directory

End-of -recordp 4|
End-of-information

Figure 9-1. Library File Format

Before writing the new program library, an EVICT

is performed on the file. Refer to the NOS Reference
Manual, volume 1, for a description of the EVICT
operation.

A program library consists of a record for each

deck on the library. The last deck record is followed
by a record containing the library directory, The
contents of the new program library is determined

by EDIT directives and the control statement options.
Only edited decks are written on the new program
library.

DECK RECORDS

Each deck record consists of a prefix table, a
modification table, and text.

Prefix Table Format:

59 47 35 i7 I o
I0 Word 0 7700 | 16 I)
decknome [reserved
creation date

tost modification date

eee W 9 -

zeros

168 | chor set

Word Bits Field Description

iD 59-48 Table Identifies table as pre~
type fix table.

47-36 wc Word count; length of
table is 16g words,

35~00 none Reserved for future
system use.

1 59-18 deckname Name of deck obtained

for source deck identi-
fication line; 1 to 7
characters.

17-00 none Reserved for future
system use.

2 59-00 creation Date that deck was
date created.

Format of date is:
yy/mm/dd.

3 59-00 latest Date of most recent
modifica- entry in modification
tion table. Format of the
date date is the same as for

creation date.

16g 11-00 char set Identifies character set

used to create this deck.

00004 63-character
set

00644 64-character
set

9-2

Modification Table Format:

59 47 14 11} 0
ID Word O T00x | reserved ‘ I
] modname \ // y
2 modnomeo %4
3 . R
b= : b=
-1 modname §_; y k [+]
[3 modname ¢ / y [o]

Word Bits Field Description

Table Identifies table as modifi-

type cation table. The least
significant digit indicates
whether the deck is com-
mon or not as follows:

D 59-48

1 Deck is not common
2 Deck is common

47-12 none Reserved for future sys-

tem use.

Number of modification
names in table.

11-00 ¢

1- to 7-character modifi-
cation set name. Each
modification to a deck
causes a new entry in
this table.

YANK flag

0 Modifier not yanked
1 Modifier yanked

word; 59-18 modname;j

Text Format:

Text is an indefinite number of words that contain a
modification history and the compressed image of
each line in the deck. Text for each line is in the
following format.

59 53 35 17 o]
aj wc seq. no. mhb; mhbo
/// 2 mhba mhbg mhbyg
T =
compressed text
Bits Field Description
59 a Activity bit:

0 Line is inactive
1 Line is active

58-54 wc Number of words of com-
pressed text.
53~36 seq. no. Sequence number of line

(octal) according to position
in deck or modification set.

60450100 A

Bits Field

35-~18 mhbi

and

subse-

quent

18-bit

bytes
com-
pressed
text

DIRECTORY RECORD

Description

Modification history byte.
Modify creates a byte for each
modification set that changes
the status of the line. Modifi-
cation history bytes continue
to a zero byte. Since this
zero byte could be the first
byte of a word and the com-
pressed line image begins a
new word, the modification
history portion of the text
could terminate with a zero
word, The format of mhbj

is:

a Activate bit

0 Modification set
deactivated the
line

1 Modification set
activated the line

mod., Index to the entry in
no. the modification table
that contains the
name of the modifi-
cation set that chang-
es the line status.
A modification number
of zero indicates the
deck name,

The compressed image of the
line is display code. One or
two spaces are each repre-
sented by 55g; they are not
compressed, Three or more
embedded spaces are replaced
in the image as follows:

3 spaces replaced by 0002
4 spaces replaced by 0003

64 spaces replaced by 0077g

65 spaces replaced by
007755g

66 spaces replaced by
00770001g

67 spaces replaced by
00770002g, etc.

Trailing spaces are not con-
sidered as embedded and are
not included in the line image,
On a 64-character set program
library or compressed compile
file, a 00 character (colon) is
represented as a 0001 byte. A
12-bit zero byte marks the end
of the line.

The library file directory contains a prefix table
followed by a table containing a two-word entry for
each deck in the library. Directory entries are

in the same sequence as the decks on the library.

60450100 B

Prefix Table Format:

59

47

3% 7]

ID Word O

7700

]

name l reserved

dote

Seeenw p» -

zeros

name

A Modify-generated directory has
the name OPL. However, if the
name of the directory is changed
(by LIBEDIT, for example), that
name is retained on new program
libraries then generated.

Directory Table Format:

59 47 29 \7 2]
ID Word O 7000 | ° t
1 deckname type|
2 T rondom address |
3 deckname l typep
4 | random addressy
T : T
2= deckname g /2 l type g /p
£ r rondom address g /»
Word BRits Field Description
ID 59-48 Table type Identifies table as pro-
gram library directory.
17-00 ¢ Directory length ex-
cluding ID word.
1,3, 59-18 decknamei Name of program library
oo deck; 1 to 7 characters
g -1 left~justified.
17-00 type; Type of record,

6 Old program li-
brary deck (OPL)

7 Old program li-
brary common
deck (OPLC)

10 Old program li-
brary directory
(OPLD)

Other record types are defined but are
ignored by Modify (refer to the NOS
Reference Manual, volume 1, for a com-
plete description of record types).

2,4,
ceesk

29-00

random
addressi

Address of deck rela-
tive to beginning of file,

DIRECTIVES FILE

The directives file contains the Modify directives
record. This record consists of initialization, file
manipulation, and modification directives, and any
source lines (including compile directives) to be
inserted into the program library decks. An option
on the Modify control statement designates the file
from which Modify reads directives. Normally,
the directives file is the job INPUT file. READ and
READPL directives cause Modify to stop reading
directives from the directives file named on the
Modify statement and to begin reading from some
other file confaining directives or insertion lines,

COMPILE FILE

The compile file is the primary form of output for
Modify. It can be suppressed by the user as a
Modify control statement option, when no compila=-
tion or assembly follows the modification.

If a compile file is specified on the Modify control
statement, Modify writes the edited programs on it
in a format acceptable as source input to an assem-
bler, compiler, or other data processor. Through
control statement parameters and directives, a
user can specify whether the text on the file is to
be compressed or expanded, sequenced or unse-
quenced. If the text is expanded, the user can also
gspecify the width of each line of text preceding the
sequence information,

Expanded compile file format for each line consists
of x columns of the expanded line (where x is the
width requested), followed by 14 columns of se-~
quence information, if sequencing information is
requested, and terminated by a zero byte. An
end-of-record terminates the decks written on the
compile file,

9-4

Compressed Compile File (A-Mode) Format:

59 47 35 17 il [
ID Word 0 700 | oole] chor set 1 0
] modnome, [$6q. no.
2
compressed line |
S : L
: ¥
modname 5, seq. no.p
compressed linep
char set Character set of record.
0000g signifies 63-character
set. 00643 signifies 64-char-
acter set,
seq. no. ; Sequence number of the line
relative to the modification
set identified by modname.
compressed A line in compressed form.
line Refer to the compressed text

SCRATCH FILES

description for text formats
of deck records.

Modify uses scratch files in three situations.

Scratch File 1
(SCR1)

Scratch File 2
(SCR2)

Scratch File 3
{SCR3)

Used when common decks are
modified and no new program
library is requested.

Used when insertions overflow
memory.

Used when a CREATE or
COPYPL directive is processed,
This file is in program library
format,

These files are returned by Modify at the end of the

Modify run.

60450100 B

BATCH JOB EXAMPLES 10

CREATE PROGRAM LIBRARY
EXAMPLE 1

This example illustrates how Modify can be used to construct a file in program library format from
source decks. This example contains only one source deck (PROG) consisting of a FORTRAN pro-
gram, The deck is terminated by an end-of-file card. The next record on INPUT contains the
directives. It is the user's responsibility to save the newly created program library (TAPE) for use
in future Modify runs.

Unless C=0 is specified, a compile file is generated. This example shows the compile file (COMPILE)
being used as input to the compiler. The compiler places the compiled program on LGO; the LGO
card calls for loading and execution of the compiled program.

COPYBF(INPUT, SOURCE)
MODIFY(P=0, N=TAPE, F)
FTN(I=COMPILE)

LG;T‘~__N-—_§“-——~__‘*“~——‘____)
7/8/9 File related cards
PROG

(SOURCE DECK)

6/7/9

*REWIND SOURCE
*CREATE SOURCE
6/7/8/9

Directives Input

EXAMPLE 2

This example illustrates creation of a library from source decks on a source file other than INPUT.
After the library has been created, it can be modified, edited, and written on a compile file for use
by an assembler or compiler,

Contents of File SALLY: Job Deck:
TOM (JOB CARD)
COMMON . File related

. cards
. MODIFY(N, F, P=0)
(SOURCE DECK FOR TOM) :

: 7/8/9
*REWIND SALLY
7/8/9 *CREATE SALLY
JACK .
COMMON . Directives Input
*DEFINE REQ
(SOURCE DECK FOR JACK) :
. 7/8/9
7/8/9 ‘
RON

(SOURCE DECK FOR RON)

*CALL TOM
*IFCALL REQ, JACK
6/7/8/9

60450100 D 10-1

MODIFY PROGRAM LIBRARY
EXAMPLE 1

In this example, Modify uses all default parameters. The sequencing information shown for inserted
cards is assigned during modification.

MOD File related cards

7/8/9

*IDENT MODI10

*DECK BOTTLE

[wxxx¢NIODIFICATIONS

*D 10

*D 4

(CARD TO BE INSERTED IS ASSIGNED MOD10. 1)

*D 20,22 Modification
(CARDS TO BE INSERTED ARE ASSIGNED MOD10.2 THROUGH MOD10. 4) set MOD10

I MOD?9, 30

(CARD TO BE INSERTED IS ASSIGNED MOD10. 5)
*EDIT BOTTLE
6/7/8/9

EXAMPLE 2

This job modifies deck EDNA for replacement on the program library. No compile file is produced.

10-2

MOW File related cards

7/8/9
*IDENT A2 Modification set A2
*DECK EDNA

*MODNAME A1l
#[w*kxxxMODIFICATIONS

*D 30 ‘ Delete card Al, 30
TAG RJ > CHECK Insert card A2.1
*MODNAME EDNA
*1 7011
ERR SA1l LIST1
ZR X1, ABORT Insert cards A2, 2 through A2,5
PRINT (0%*** ERROR 131 %k %k3k) after EDNA. 7011
EQ ABORT
PDIT Eoo0 _ Delete cards EDNA. 7644 through

EDNA. 7650
6/7/8/9

60450100 A

MOVE TEXT
EXAMPLE 1

The job illustrated below calls Modify twice.

On the first call, Modify deactivates all but cards 32

through 54 and writes the source for thése cards on source file FRANK. On the second call, Modify
deletes the remainder of the cards and reinserts the saved cards at the beginning of KEN.

MODIFY(S=FRANK, C=0)

MODIFY(N, C=CAL)

7/8/9

*[DENT MOV1
*DECK KEN
*D 1,31
*D 55,63
*EDIT KEN
7/8/9

*IDENT MOV2
*REWIND FRANK
*DECK KEN

*D 32,54

*] 0

*READ FRANK, KEN
*EDIT KEN
6/7/8/9

EXAMPLE 2

This job moves text cards from one deck to another.

/

File related cards

Modification set MOV1

Delete cards before card KEN, 32

Delete cards KEN. 55 through KEN. 63

Transfer remaining cards (KEN, 32 through
KEN. 54) to source file FRANK

Modification set MOV2

Delete remainder of cards in KEN

Insert cards at beginning of KEN

Read insertion text from deck KEN on file
FRANK

On the first call to Modify, cards 32 through

54 of deck KEN on file OPL are saved on source file FRANK. On the second call, the saved cards

are inserted into deck WILL.

.
.

MODIFY(S=FRANK, C=0)

MODIFY(N, C=MEL)

7/8/9

*IDENT F1
*DECK KEN
*D 1,31
*D 55,63
*EDIT KEN
7/8/9

*REWIND FRANK
*IDENT F2
*DECK WILL
*1 25

*READ FRANK, KEN
*EDIT ~ WILL
6/7/8/9

60450100 B

File related cards

Modification set F1

Delete cards KEN. 1 through KEN. 31
Save cards KEN. 32 through KEN. 54 on source
file FRANK

Insert text after card WILL. 25)
Insertion text taken from deck KEN on file FRANK
Deck WILL is written on NPL and compile file MEL

10-3

READ DIRECTIVES FROM AN ALTERNATE FiLE

This job illustrates how the READ directive can be used to change the source of directives and correction

text from the primary input file (in this case INPUT) to some other file.

o< File related cards
MODIFY,
COMPASS(I=COMPILE)
LGO,
7/8/9
¥IDENT JAN
;:RDgég Dlg Read contents of DIR

. *DECK A

) . Corrections for A
7/8/9 *DECK B

. : Corrections for B
6/7/8/9 ‘ 6/7/8/9

Return to INPUT file

YANK AND UNYANK MODIFICATION SETS

This example illustrates a job that logically removes all of the modification sets applied to program
library LIB from the modification set named JULY and on., The change is not incorporated into the
library; it is for the benefit of this run only.

< i File related cards

MODIFY(P=LIB, F)
COMPASS(1=COMPILE)

*IDENT NEGATE
*DECK MASTER
*YANK JULY, *
6/7/8/9

To incorporate the preceding change on a new program library, add the N parameter to the Modify
statement.

The effects of a YANK can be nullified in future runs and, consequently, the effects of the yanked
modification sets can be restored through the UNYANK directive. Such a modification might appear
as follows: '

*IDENT RESTORE
*DECK MASTER
UNYANK JULY,

10-4

60450100 A

PURGE DECKS

Decks BAD, WORSE, and WORST are no longer needed., The following job removes them from the library.
They could also be removed through a selective edit using EDIT directives. In either case, the removal is
permanent.

.

MODIFY(N, C=0, F)

. File related cards

&

7/8/9
*PURDECK BAD,WORSE, WORST
6/7/8/9

CHANGE THE DIRECTIVES PREFIX CHARACTER
EXAMPLE 1

This example illustrates how to maintain directives input on a library. Because * is the prefix used
on the library, a different prefix is required when modifying the library. In this case, / becomes the
prefix character,

ATTACH(OPL)

GET(FIX)

MODIFY(P=FIX, C=Z, N=FIX2)
REWIND(Z)

COPYSBF(Z, OUTPUT)
REWIND(Z)

MODIFY(I=2Z)

COMPASS(I, S, B=LT01)

7/8/9

*PREFIX /[

/[WIDTH 58

/IDENT F1

/DECK CORR

/1 873

*[1007
LDC 11718
STM STMA+1

/D 880

/EDIT CORR

6/7/8/9

The contents of deck CORR on compile file Z are as follows:

*[DENT
*DECK
*I

*D

*1

*D

NIX
GRM1TD
MHD2,19

997, 1000

1007
L.DC TTITB
STM STMA+1

LIM STM
980, 984

CORR
CORR
CORR

CORR

F1
F1

CORR
CORR

W N =

873

2

879
881

Inserted cards

Instruction CORR. 880
has been deleted

After file Z is produced, the deck GRM1TD is modified by the contents of Z, The resulting compile
file (COMPILE) contains COMPASS language PPU code and is assembled using COMPASS,

60450100 A

10-5

The job produces a new program library (FIX2) which replaces FIX so that the changes-to deck

CORR are saved.

The resulting COMPASS listing would appear as follows:

STD SM
L.OoC 7T7TMB
STM STMA+1

Corrections

(Correction IDs)

Contents of
COMPILE
(Deck IDs)

1007
11
12

Since the comments go through the correction identification, the INWIDTH directive must be deleted
if a new program library is generated. However, for maintenance, there is an advantage of seeing

the correction identifiers with the deck identifiers.

EXAMPLE 2

This example’ 111ustrates changing’ the complle file prefix character so that when Modify produces the

comp11e file, ‘it recognizes only directives using the specified prefix.

case, is unaltered.

.
.
-

ATTACH(OPL)
MODIFY.
COMPASS(, S, B)
7/8/9

*IDENT TEST1
*DECK TEST
*PREFIXC ./
*EDIT TEST
6/7/8/9

Deck TEST contains the following:

*CALL PPC
/CALL PPCA

The directives prefix, in thxs

Modify ignores the common deck call to PPC. COMPASS interprets it as a comment card., Modify
acts on the common deck call to PPCA and replaces the /CALL directive with a copy of common

deck PPCA.

10-6

60450100 A

USE OF THE Z PARAMETER

EXAMPLE 1

Suppose you want to create-a compile file -using an alternate OPL. The following deck illustrates
this technique.

MODIFY(Z)/+*OPLFILE, OPLZ/*EDIT, DECK1

6)7/8/9

EXAMPLE 2

Another use of Z might be to request editing of specific-decks:

-
.
-

MODIFY(Z)/*EDIT, DECK1, DECK2

-
-
»

6/7/8/9

60450100 A

10-7

SAMPLE FORTRAN PROGRAM

This set of Modify examples illustrates how Modify can be used for maintaining a FORTRAN Extended program

in program library format. The FORTRAN program calculates the area of a triangle from the base and height
read from the words in the data record.

EXAMPLE 1

The following job places the FORTRAN program and subroutine as a single deck (ONE) on the new
program library (NPL) and on the compile file (COMPILE). Following Modify execution, FORTRAN
is called to compile the program. The LGO card calls for execution of the compiled program. This
program does not execute because of an error in the SUBROUTINE statement. The name of the
subroutine should be MSG, not MSA.

COPYBF(INPUT, S)
MODIFY(P=0, N, F)

FTN(I=COMPILE) File related cards
LGO.

7/8/9 END OF RECORD

ONE = Deck name
PROGRAM ONE (INPUT,OUTPUT, TAPE1) -
PRINT 5

5 FORMAT (1H1)

10 READ 100, BASE, HEIGHT, 1

100 FORMAT(2F10.2, I1)
IF (I.GT.0) GO TO 120
IF (BASE.LE.0) GO TO 105
IF (HEIGHT.LE.O0) GO TO 105
GO TO 106

105 CALL MSG

106 AREA = .5*¥BASE*HEIGHT
PRINT 110, BASE, HEIGHT, AREA

110 FORMAT (///,* BASE=+*F20.5,* HEIGHT=*
IF18.5,/,* AREA=%*F20.5)
WRITE(1) AREA

GO TO 10 Should be
120 STOP SUBROUTINE MSG
END
SUBROUTINE MSA
PRINT 400
400 FORMAT (///,* FOLLOWING INPUT DATA NEGATIVE OR ZERO %)
RETURN
END
6/7/9 END OF FILE « Fnd of source deck
*REWIND S
*CREATE S Directives input
7/8/9 END OF RECORD
200. 24 500. 76
300, 24 600. 76
400, 00 700. 00
326.32 4325, 36
500.00 600. 00 Data record
000. 00 150. 00
700.43 800. 00
100. 00 300. 00
050,00 100. 00
150,00 200. 00

1
6/7/8/9 END OF INFORMATION

10-8 60450100 B

EXAMPLE 2

Examination of:Modify output from the creation job reveals that the erroneous SUBROUTINE state-
ment has card: identifier ONE, 20.. The following job corrects the error and generates a new program
library.

MODIFY(N, F)
FTN(I=COMPILE)

1.GO.

7/8/9 END OF RECORD
*IDENT MOD1

*DECK ONE

*DELETE 20

SUBROUTINE MSG Identified as MOD1.1 on NPL
7/8/9
200. 24 500.76
300. 24 600, 76
400. 00 700. 00
326. 32 425, 36
500. 00 600. 00
000. 00 150. 00 Data record
700, 43 800. 00
100. 00 300. 00
050. 00 100. 00
150. 00 200, 00

1
. 6/7/8/9 END OF INFORMATION

60450100 A

EXAMPLE 3

This job uses the same input as the first job but divides the program into two decks: ONE and MSG.
Deck MSG is a common deck. A CALL MSG directive is inserted into deck ONE to ensure that MSG

is written on the compile file whenever deck ONE is edited.

COPYBF(INPUT, S)
MODIFY(P=0, N, F)
FTN(I=COMPILE)
LGO.

. € File related cards

7/8/9 END OF RECORD

MSG
COMMON ,
SUBROUTINE MSG
PRINT 400 o
400 FORMAT (///,* FOLLOWING INPUT DATA NEGATIVE OR ZERO *)
RETURN -
END
7/8/9 ~ END OF RECORD
ONE
PROGRAM ONE (INPUT, OUTPUT, TAPE1)
PRINT 5
5 FORMAT (1H1)

10 READ 100, BASE, HEIGHT, I

100 FORMAT(2F10.2, I1)
IF (I.GT.0) GO TO 120
IF (BASE.LE.0) GO TO 105
IF (HEIGHT.LE.0) GO TO 105
GO TO 106

105 CALL MSG

106 AREA = .5¥BASE*HEIGHT
PRINT 110, BASE, HEIGHT, AREA

110 FORMAT (///,* BASE=*F20,5,* HEIGHT=#
1F18.5,/,*% AREA=%F20,5)
WRITE (1) AREA

GO TO 10
120 STOP
END
*CALL MSG <— Replaced by common deck MSG
6/7/9 END OF FILE on compile file
*REWIND S
*CREATE S
7/8/9 END OF RECORD
200, 24 500. 76
300. 24 600, 76
400, 00 700, 00
326, 32 425, 36
500. 00 600,00
000, 00 150,00 Data record
700,43 800. 00
100,00 - "300. 00
050, 00 100. 00
150,00 200. 00

1
6/7/8/9 END OF INFORMA TION

® 10-10

60450100 D

EXAMPLE 4

This example adds a deck to the library created in the previous example. With no new program
library generated (N is omitted from Modify card), the addition is temporary.

COPYBF(INPUT,S) - .
MODIFY. .
FTN(I=COMPILE) File related cards
LGo. . v T

7/8/9 END OF RECORD
TWO '
PROGRAM TWO(INPUT, OUTPUT)

END -
*CALL MSG <— . Replaced by common deck MSG on
6/7/9 compile file
*REWIND S ~
*CREATE S
*IDENT MOD2
*DECK MSG
*DELETE MSG. 3
400. FORMAT (///,* FOLLOWING INPUT DATA POSITIVE %)

_*¥EDIT TWO
7/8/9 ‘
(DATA RECORD)
6/7/8/9

60450100 A 10-11

STANDARD CHARACTER SET

ASCII HOLLERITH | EXTERNAL | Ascli ASCIL . HOLLERITH | EXTERNAL AsCII
coe GRAPHIC | DISPLAY | PUNCH BCD PUNCH | ASCII coc GRAPHIC DISPLAY PUNCH BCD PUNCH | AscIL
GRAPHIC | suBseT | cope 026) CODE (029} | CODE GRAPHIC SUBSET CODE (026) CODE (029) CODE
it s oot 8-2 00 8-2 3A 6 [3 41 6 06 6 36
A A ol 12-} 61 12-1 41 7 7 42 7 o7 7 37
B B o2 12-2 62 12-2 42 8 8 43 8 10 8 38
c c 03 12-3 63 12-3 43 9 9 44 9 (N 9 39
D D 04 12-4 64 12-4 44 + + 45 12 60 12-8-6 2B
3 E 05 12-5 65 12-5 45 - - 46 H 40 [} 20
F F 06 12-6 66 12-6 46 » * a7 11-8-4 54 11-8-4 2A
6 G o7 12-7 67 12-7 47 / / 50 o-1 21 0-1i 2F
H H 10 12-8 70 12-8 48 ((51 0-8-4 34 12-8-5 28
I I] 12-9 71 12-9 49) } 52 12-8-4 74 11-8-5 29
J J 12 =1 41 -1 4A $ $ 53 11-8-3 53 11-8-3 24
K K i3 -2 42 1-2 48 = = 54 8-3 13 8-6 3D
L L 14 113 43 -3 ac BLANK BLANK 55 | NO PUNCH 20 NOPUNCH | 20
M M 15 11-4 44 -4 40 ,COMMA) ,(COMMA) 56 0-8-3 33 0-8-3 2¢c
N N 16 1i-5 45 11-5 4€ .(PERIOD) .{PERIOD) 57 12-8-3 73 12-8-3 2E
o] 0 17 1i-6 46 -6 4F = # 60 0-8-6 36 8-3 23
P P 20 11-7 47 -7 50 [r 61 8-7 7 12-8-2 58
Q Q 21 -8 50 -8 51]] 62 0-8-2 32 n-g-2 50
R R 22 1i-9 51 -9 52 %tt % 63 8-6 16 0-8-4 25
S S 23 0-2 22 0-2 53 # " (QUOTE) 64 8-4 14 8-7 22
T ST 24 0-3 23 0-3 54 - _ (UNDERLINE) 65 0-8-5 35 0-8-5 S5F
u u 25 0-4 24 0-4 55 v ! 66 -0 52 12-8-7 21
v v 26 0-5 25 0-5 56
w w 27 0-6 26 0-6 57 A -1 67 0-8-7 37 12 26
b3 X 30 0-7 27 0-7 58 t *(APOSTROPHE) 70 11-8-5 55 8-5 27
Y Y 31 0-8 30 0-8 59 ' ? 71 11-8-6 56 0-8-7 3F
z z 32 . 0-9 31 0-9 5A < < 72 12- 72 12-8-4 3C
[¢] o 33 [¢] 12 [} 30
] 1 34 1 Y}] 3) > > 73 I1-8-7 57 0-8-6 3E
2 2 35 2 02 L2 32 < @ 74 8-5 15 8-4 40
3 3 36 3 03 3 33 2 \ 75 12-8-5 75 0-8-2 5C
4 4 37 4 04 4 34 - —~(CIRCUMFLEX) 76 12-8-6 76 11-8-7 5E
5 [40 5 05 5 35 || (SEMICOLON) | ; (SEMICOLON) 77 12-8-7 77 11-8-6 38

t TWELVE OR MORE ZERO BITS AT THE END OF A 60-BIT WORD ARE
INTERPRETED AS END-OF-LINE MARK RATHER THAN TWO COLONS.

END-QF-LINE MARK IS CONVERTED TO EXTERNAL BCD 1632.

3AEI3A

1+t IN INSTALLATIONS USING THE CDC 63 -GRAPHIC SET, DISPLAY CODE 00 HAS HO ASSOCIATED

‘GRAPHIC OR HOLLERITH CODE; DISPLAY CODE 63 IS THE COLON(8-2 PUNCH), THE

SELECTION OF THE 63- OR 64-CHARACTER SET FOR TAPES IS AN INSTALLATION OPTION.

60450100 A

3AE6A

OUTPUT LISTING AND MESSAGES B

Depending on list optibns selected on the Modify
control statement, list output for Modify contains
the following. . :

Input directives
Status of each deck

Modifiers are listed first, followed by a
list of activated lines, deactivated lines,
active lines, and inactive lines as they are
encountered. To the left of each line are
two flags, a status flag and an activity
flag. The status flag can be I (inactive) or
A (active). The activity flag can be D
(deleted) or A (activated). Following
these lines are the unprocessed modifica-
tions and errors, if any. The last line
contains a count of active lines, inactive
lines, and inserted lines.

60450100 C

Statistics
This includes lists of the following.

Decks on program library

Common decks on program library
Decks added by initialization directives
Decks on new program library

Decks written on compile file

A replaced deck is enclosed by parentheses.
Completing the statistics is a line contain-
ing counts of the number of lines on the
compile file and the amount of storage used
during the Modify run,

Errors

Modify prints the line in error, if any,
above the diagnostic message. Error
messages other than those identified as
fatal can be overridden through selection
of the Modify statement D (debug) option.

¢-d

O 0010S%09

HESSAGE

CARD NOT REACHEC,

CCLUMN OUT CF RANGE.

CGFY FILE EMPTY,

CREATION FILE EMPTY,

Cv OPTION INVALID.

DIRECTIVE ERRCRS.

DUPLICATE MCDIFIER NAME.

ERROR IN ARGUVENTS,

ERROR IN DIRECTCRY,

ERROR IN MOCIFY ARGUMENTS.,

FILE NAME CONFLICT,.

FIRST CARD IS AFTER SECOND CARD.

FCRMAT SRROR IN DIRECTIVE.

SIGNIFICANCE

Seauence number exceeds Jeck Tange.
Requested width exceeds maximum allowed
(1000

No information on program library being

copiads

No source cecks on file being used for
creation,

CV option other than 63 or 64e
A format error has been detected during

processing of directives. Fatal errors

Modifier or IDENT has been used previousty
for the decks

An invalid parsmeter has been encguntered on
the OPLEDIT control statement.

The prograr (ibrary contains an error.
Fztal error.

Ifleaal parameter on Modify control
statement, Fatal error,

The same file cannot be used for both
appliications without conflicts Fatal
errora.

Parameters are erroneous or llnes are out
of order,

A format arror has beer detected in a
directives

ACTION

Use correct seauence
number.

Change width to 100 or
less.

Verify that COPY fife
exists and is nroperiy
positioned at A0I.

Verify that creation
filte contains proper
source decks.

Specify 63 or 64 for
conversion option.

Consult listing for
description of error.

Choose unligue name for
deck.

Correct control statement
and retry.

Use COPY or COPYPL to
create new orograp
tibrary.

Consulf manual for correct
control statement syntaxe.

Use different file name
for one of the
applications.

Verify that correct
line sequence is used.

Consult manual for
corract format.

ROUT INE

MODIFY
MODIFY

MOOIFY

MOOIFY

MODIFY,
OPLEDIT

MODIFY,
OPLEDIT
MODIFY

OPLEDIT

MODIFY,
OPLEDIT

NODIFY '

MOOIFY,
0PLEDIT

MODIFY.

MODIFY,
OPLEDIT

a 00105%09

MESSAGE

ILLEGAL BIRECTIVE.

ILLEGAL NUMERIC FIELD.
INVALID ATTRIBUTE.

-LC0-ERROR, MUST BE ECTMWDSIA-

MEMORY OVERFLOWa

MIXED CHARACTER SET OPLe

MODIFICATION/DIRECTIVE ERRORS.
MODIfICATION ERRORSW

MOD(S) TO MOD BEFORE THIS IDENT CARD.
NAMES SEPARATED BY *.* IN WRONG ORDER.

NO DIRECTIVES.

NO *IF IN PROGRESS.

OPERATION ILLEGAL FROM ALTERNATE INPUT,

SIGNIFICANCE

- -

Jirective is out of seguence. For example,
the CREATE directive is after 3 medificatlion
directive for VMoaify.

Invatld parameter on Modify or OPLEDIT
control statemant,

Attribute specified on IF directive is
other than EQe NEs DEF, or UNDEF,

Il1iegal list option requested. Fatal
error.

Insufflcient field length has been specified
for OPLEDIT to execute.

OPLEDIT detected decks on the program library
that are in different character sets (63 and
6y Tor exampled.

Modification and/or directive errors are
encountered when debug mode is selected.

Modity has detected errors during the
modification phase; fatal if D option is
not selecteds

A modification directive or a different
IDENT directive refer to the curreant
modname.

Requestad decks not in correct sequences

Directives file empty. Fatal error.

An ELSE or ENDIF directive was encountered
Wwithout a previous IF directives.

Fiie maniputation attempted from other than
original directives flile.

ACTION

Use correct seauence.

Verlfy control statement
parameters and retrye.

Use correct attribute.

Speclfy Ey Cy Ty My H,
Dy Sy Iy or A or 3
combination of these
characters for fist
options The characters
must not be saparated.

Increase fieid length
with RFL control
statement and retry.

Use Modify to recreate
erroneous decks under

one character set and

refrya.

Consult tisting and
correct specified
errorse.

Consult listing and
correct specified
errorse

Choose a different
modification name for
the IDENT directives

Determine correct seguence
and retry.

Verify that directives
file exists and is
correctiy positioned
at BOI.

Check for omitted IF
directive or unnecessary
ELSE OR ENDIF directive.

Move fife manipulation
directives to original
directives files

ROUTINE

MODIFY,
OPLEDIY

MODIFY,
OPLEDIT

MODIFY

MODIFY

OPLEDIT

OPLEDIT

MODIFY

MODIFY

MODIFY

MODIFY,
OPLEDIT

MODIFY,
OPLEDIT

MODIFY

MODIFY

a 00105%09

MESSAGE

OPLEDIT COMPLETE.

OPLEDIT ERRORS.

OVERLAPPING MODIFICATION.

PL ERROR IN DECK decknanme.

PROGRAM LIBRARY EMPTY,

RECORD NOT FOUND.

RECURSIVE ®IF,S ILLEGAL.

REDUNDANT CONVERSION IGNORED.

RESERVED FILE NAME,

S OPTION ILLEGAL WITH Ay Xy OR Qe

TOO MANY OPL FILES.

SIGNIFICANCE

Informatlive message indicating that OPLEDIT
has complieted pracessing.

€rrors wWere encountared during OPLEDIT
execution.

Line modified more than once.

An error was detected Iin the program
{ibrary format during processing of deck
named.. Fatal error.

No Information on file specified as
program |lbrarye. Fatal error.

Modify was unable to locate requested
record on file specified,

An IF directive was encountered while a
previous IF range was stitl active (no ELSE
or ENDIF encountered)., Fatal errors.

An attempt was made to convert the program

tibrary flie to 38 llke character set (63 to
83 or 64 to 64)e Conwversion option set to

zaros

Operation attempted on a fite name
reserved by this utiliity.

Source option not legatl when A, Xy or Q
option Is selecteds Fatal error,

More than 50 program |library fliles
declareda

ACTION

None.

Consult output listing
for description of
errorsa.

Ramove redundant line
modifications.,

Replace or recreate
erroneous deck.

Verify that program
lfiorary file is
avallable for Modifty
to manipulate.

Verify that record
exists on specified
files

Check for missing ENDIF
or ELSE directive or
unnecessary IF
directives

Verity conversion mode
desired.

Choose a nonreserved
file name.

Remove S option from
control statement and
specify on separate
modification.

Specity excess program
libraries on subsequent
Modity runse.

ROUTINE

OPLEDIT

OPLEDIT

MODIFY

MODIFY,
OPLEDIT

MODIFY,
OPLEDIT

MODIFY

MODIFY

MODIFY

MODIFY,
EDIT,
OPLEDIT

MODIFY

noorry |

D 00105%09

¢-d

MESSAGE
UNKNOWN OECKe
UNKNOWN MOOIFIER.

VALUE ERROR.

X CR G ILLEGAL WITHOUF COMPILE.

deckname = INVALIO CSy 63 ASSUMED.

deckname - MIXED CHARACTER SET DETECTED.

SIGNIFICANCE

- -

Lnable to locate requested deck on program
'leQPYQ

Modiflier not in rodification table for
decke.

Value specified on IF or DEFINE directive
Ls greater than 37777778. Fatal error.

Selection of X or Q option reduires that a -

compite file name be selecteds

The lower byte of wWword 162 of the prefix
table for the named deck on the program
library does not contain 0000 or 0064,

Upon editing the named deck on the program
library, the character set was different
froam the character set of previously ealted
ceckss

ACTION

Yerify that deck name Is
correct.

Determine correct
modi fler,

Select value less than
or equal to 37777778.

Speclify C option on
Modify control statement
{not C=0).

It 64-character set is
desiredy the deck must

.be recreated.

Recreate the deck under
the desired character
set.

ROUT INE
MODIFY
MODIFY

MODIFY

MODIFY

MODIFY,
OPLEDIY

MODIFY

OPLEDIT UTILITY -C

OPLEDIT is an NOS utility used in conjunction with PULLALL — GENERATE MODIFICATION
Modify-formatted old program libraries (OPLs). SEI

The OPLEDIT routine is used to completely remove
specified modification decks and modification iden-
tifiers from an OPL, It can also be used to extract
the contents of specified modification sets on an

The PULLALL directive allows the user to generate
a modification set that contains the net effect of all
current modification sets or all modification sets

OPL file. ‘ added after and including a specific modification set.
The féllow‘mg are the OPLEDIT directives. Formats:
*EDIT Edit deck *PULLALL 4
*PULLALL Generate modification set *PULLALL modname
*PULLMOD Reconstruct modification set modname First modset to be included; all
*PURGE Remove modification set modsets following modname are

also included, provided modname
: appears in the edited deck.

The format of OPLEDIT directives is essentially
the same for Modify directives (refer to section 2).
The main difference is that OPLEDIT does not
allow the user to change the prefix character.
Therefore, the asterisk (*) must be used.

For the first format, OPLEDIT builds a directive file
suitable for submission to Modify using the ¥*READ
Modify directive. The file (specified by the M param-
eter on the OPLEDIT control statement) contains the
net effect of all modifications currently applied to the
program library,. As such, all Modify IDENT direc-
tives are deleted and replaced by an IDENT ¥sckiokidsk

EDIT — EDIT SPECIFIED DECKS at the beginning of the file.

The EDIT directive requests OPLEDIT to edit a
program library deck and transfer it to the new
program library. The deck names specified nor-
mally are the decks that contain the modification
identifiers.

PULLMOD — RECONSTRUCT
MODIFICATION SET

With the PULLMOD directive,: the user can reconstruct
one or more modification sets applied to edited decks.
The structure of the original modset is maintained;

that is, Modify IDENT directives are not changed or
deleted as in the PULLALL directive.

Format:
*EDIT pl, Poseess pn
A deck name or range of

decknames in one of the
following forms:

Py

Format:
deckname

*PULLMOD modnamel, modname,, ..., modnamen

2
mc»dnamei Modification name’to be generated
The first form edits a deck on onto file specified by M param-
the library; the second form eter on OPLEDIT control state-
requests a range of decks ment.

starting with deckname, and

ending with decknamey,.

deckname,. decknamey,

If the deck names are in the
wrong sequence, OPLEDIT
issues the error message:

PURGE — REMOVE MODIFICATION SET

NAMES SEPARATED BY
*.% IN WRONG ORDER.

If OPLEDIT fails to find one
of the decks, it issues the
message:

UNKNOWN DECK - deckname.

60450100 A

The PURGE directive enables the user to completely
remove the effects of a previous modification set or
group of modsets from decks written on the new pro-
gram library. The modification identifiers are no
longer maintained in the history bytes (refer to Text
Format, section 9) of the new program library.

Formats: L=0 List no output.
M=ling Write output from

*PURGE modname ;, *PULLMOD and *PULLALL
*PURGE modname, * directives on file lfng. If
M is omitted, M=MODSETS
modname Modification set to be removed. is assumed.
Indicates that the modset and all LO=x Set list options x; each bit
subsequent modsets are to be re~ in x, ifset, turns on the
moved, provided modname appears corresponding option.
on the edited decks.
001 Errors
Note that it is not possible to remove modsets implic- 002 Directives
itly; that is, *PULLMOD A,B is illegal. Also, 004 All other input
*PULLMOD A, * does not pull modset A and all statements
modsets that follow (as on the *PURGE directive). ses s
Rather, it pulls modset A and modset *. 010 IMngg;ﬁcatlons
Modification names requested are removed only 020 Directives pro-
from decks edited, Modsets generated by OPLEDIT ’ cessed from the
are in a form suitable for use by Modify as follows: program library
“READ, file, * 040 Deck status
*READ, file, ident 100 Directory lists
200 Inactive statements
That is, each modset is a separate record, with 400 Active statements
ident being the first line., The *PULLALL modset, : . s s .
if used, is the first record on the file. The file If_th1s op tion is omlttedf
Gy 1 x=177 is assumed (that is,
(specified by the M parameter) is returned before, the first seven options
and rewound after use. listed)
F Modify all decks.
D Debug; ignore errors.
OPLEDIT CONTROL STATEMENT DUl 18
U Generate *EDIT directives
The control statement format is: for all decks.
U=0 Generate no *EDIT direc-
OPLEDI.T(pl’ Pgseees pn) tives. If the U option is

omitted, generate *EDIT

p; Any of the following in any order: directives for common
1 Use directive input from decks.
file INPUT. ‘'If the I
option is omitted, file Z The OPLEDIT control
INPUT is assumed. statement contains the in-
. . put directives following
I=lfn, U.'se directive input from the terminator; the input
file lfn,. file is not read. This
1=0 Use no directive input. eliminates the need to use
N a separate input file for
P Use file OPL for the old : : the directives when only a
program library, If the few directives are needed.
P option is omitted, file The first character fol-
OPL is assumed. lowing the control state-
P=1fn2 Use file ifny for the old ment terminator is the
program library. separator character. If
Z is omitted, the control
P=0 Use no old program statement does not contain
library. the input directives,
N Write new program
library on file NPL.
N=lfng Write new program
library on file ling. Do not place an-
N=0 Write no new program other terminator
library. If this option is after the
omitted, N=0 is assumed. directives.
L List output on file

OUTPUT. If the L option OPLEDIT EXAMPLES
is omitted, file OUTPUT
is assumed, Figure C-1 illustrates the four OPLEDIT directives.

L=1fn4 List output on file 1fny.

Cc-2 60450100 C

batch

$RFL,0.
/get,mainpl
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECKS OPLC (6%) 27 6354 T7/10710.
2 DECK1 OPL (64) 61 3171 77/10707.
MOD1 MODY
3 DECK2 OPL (614) 60 3077 77/10707.
MOD1 MoD2 MOD3 MODY
4 DECK3 OPL (64) 37 2333 T7/10706.
MOD1 MODU
5 DECK4 OPL (64) 53 3057 T77/10/10.
MOD MOD6
6 OPL OPLD 13 175 T7/10/10.
7 ¥ EQOF % SUM = 315

1

CATALOG COMPLETRE.

/opledit, p=mainpl,m=mods,lo=1,n=newpl
? ¥purge modl,*

*pullmod mod?2,mod3

*pullall modil

¥edit deckl.deckd

IS EUS UV

(OPLEDIT COMPLETE,
/catalog,newpl,r

CATALOG OF NEWPL FILE 1

REC NAME TYPE LENGTH CKSUM DATE

1 DECK1 OPL (64) 37 7732 T7/10/07.
MOD1 «

2 DRCK2 OPL (6L) 55 3134 77/10/07.
MOD1 MOD2 MOD3

3 DECK3 OPL (64) 34 3117 77/10/06.
MOD1

4 DECKY OPL (64) uy 0216 77/10/10.

5 (OPL OPLD 11 2101

6 *EOF ¥ SUM = 225

1

CATALOG COMPLETE.

Figure C-1. OPLEDIT Examples (Sheet 1 of 2)

60450100-D

/copycr,mods

FEREREX

*TDENT RREXEER

*DECK DECK1

*D,1

*¥%% MAIN PROGRAM, DECK DECK1.
%72

COMMON JOT
*1’3
CALL SUB3
IF(JOT.EQ. 3)PRINT* , "TIME-SHARING JOB."
IF(JOT.NE.3)PRINT*, "BATCH JOB."
#DECK DECK2

*WEOR Results of the PULLALL directive

*%% SUBROUTINE 1, DECK DECK2.

CALL SUBROUTINE SUB2
* IN DECK2.

*1,7)

*%% END DECK2.

*DECK DECK3

**¥% SURROUTINE 2, DECK DECK3.
COPY COMPLETE,

/copyer ,mods

MOD2

*TDENT MOD2

*DECK DECK2

%D, MOD1.3 (4)
*

E(Fﬁ()gﬁg;mm . \ These numbers indicate the location
/copvér',mods of a directive affecting a modset,.
MOD3 They are the next sequence number
*TDENT MOD3 in the deck {from Which the directive
#DE CK DECK2 / was copied (refer 10 figure 4-1).
*¥RESTORE,,MOD1.3 (1)

COPY COMPLETE.
/copyer,mods :
END OF INFORMATTION ENCOUNTERED.

Figure C-1. OPLEDIT Examples (Sheet 2 of 2)

Results of the PULLMOD

directive:' - .

60450100 D

INDEX

A option 8-1 CS option 8-1
Activate bit 9-3 CV option 8-1
Active line 9-2° CWEOR directive 6-3

Activity bit 9-2

Alternate directives file 1-2; 5-1

Alternate OPL file 3-2 D directive 4-2

ASCII-mode considerations 1-4 D option 8-1
Deactivate line 4-2
Dubug option 8-1

Backspace file 5-1 Deck
Batch job examples 10-1 common 1-1; 3-1;6-1
BKSP directive 5-2 edit 4-3

identification 4-2
ignore 4-3

C option 8-1 move T-2
Call common deck 6-1 purge 4-3
CALL directive 6-1 . records 9-2
Call related common decks 6-2 remove 4-3
CALLALL directive 6-2 , replace 3-2
CB option 8-1 DECK directive 4-2
CG option 8-1 Deck name
Change prefix character 7-1; 10-5 duplicate 3-1
Character sets 9-4; A-1 identify 4-2
Character set conversion 8-1 location 3-1
CL option 8-1 purpose 3-1
COMMENT directive 6-2 Deck status B-1
Comment line 6-2; 7-1 Declare OPL files 3-2
Common deck DEFINE directive 7-1
call 6-1 Define IF name 7-1
declaring 3-1 : Define IF value 7-1
identification 9-2 Define IFCALL name 7-~1
purpose 1-1 Define NIFCALL name 7-1
COMMON line 3-1 DELETE directive 4-2
COMPASS binary output 8-1 Delete lines 4-2 .
COMPASS COMMENT pseudo instruction 6-2 Directive
COMPASS get text option 8-1 format 2-1
COMPASS list option - 8-1 input 8-2
COMPASS system text option 8-1 prefix character 2-1; 7-1
COMPILE file 8-1 . separator 2-1
Compile file Directives
compressed format 1-1 . alternate file 5-1
compressed mode " 8-1 compile file 6-1
contents: 9-4 file 9-4
directives 6-1 file manipulation 5-1
end-of-file 86-3 initialization 3-1
end-of-record 6-3 Modify input 8-2
line width 3-3; 6-2 modification 4-1
no rewind 8-2 ' on program library 5-1
output 8-1 special 7-1
sequencing 3-3; 6-3 Directory
write phase 1-3 library 1-2; 9-3
Compressed compile file 8-1 record 9-3
Compressed lines 1~1; 9-3, 4 table 9-3

Conditional call common deck 6-1
Conditional range 6-2

Control statement 8-1 Edit deck

Control statement input 8-3 full edit 4-3

COPY directive " 3-3 OPLEDIT C-1

Copy program library 3-2 selective edit 4-3
COPYPL directive 3-2 UPDATE edit 4-3
CREATE directive 3-2 EDIT directive 4-3

Create comment line 6-2 EDIT (OPLEDIT) directive C-1
Creation date 9-2 ELSE directive 6-2

Creation of program library 3-2; 10-1 End conditional range 6-2

60450100 B Index-1

End-of-file 6-3 Messages, error B-2

End-of-record 6-3 Modification date 9-2
End-of-record, conditional 6-3 Modification directives 4-1
ENDIF directive 6-2 Modification history byte 9-3
Error messages B-2 Modification name 4-1
EVICT of NPL 8-2 Modification table 9-2
Execute COMPASS 8-2 Modification set

Execute program 8-2 deactivate 4-3
Execution of Modify - '1-3 generate C-1

identifier 1-3; 4-1
name 1-3; 4-1

F option 4-4; 8-1 reconstruct C-1
Features of Modify 1-3 remove C-1
File formats 9-1 Modify
File manipulation directives 5-1 batch examples 10-1
File positioning 5-2 batch processing example 1-4
File, return 5-2 comments 7-1
File, rewind 5-2 - control statement 8-1
Files error messages B-2
compile 8-1;9-4 examples, general description 1-3, 4
COMPILE 8-1 execution 1-3
directives 1-1; 8-2 file formats 9-1
list output 8-2 general description 1-1
NPL 8-2 listing B-1
OPL 8-2; 9-1 organization 1-1, 2
program library 1-1; 8-2; 9-1 output files 1-2
reserved 5-1 time-sharing processing example 1-4
scratch 5-1; 9-4 Modify program library example 10-2
source 3-1; 8-2; 9-1 MODNAME directive 4-2
SOURCE 8-2 Move decks 7-2
used to initialize program library 1-1 MOVE directive 7-2
Format of directive 2-1 Move text 10-3

Full edit mode 4-4; 8-1

N option 8-2
Generate modification set C-1 Name
deck 3-1; 4-2
default 3-1; 4-2
History byte 9-3 define 7-1
History of modifications 9-3 modification 4-1
’ : New program library file 8-2
NIFCALL directive 6-1

I directive 4-2 No rewind of compile file 8-2

I option 8-2 No sequence flag 3-3; 6-3

IDENT directive 4-1 ‘No sequence information 3-3; 6-3
Identify modification set 4-1, 2 NOSEQ directive 3-3; 6-3

IF, .define value for 7-1 NPL file 8-2

IF directive 6-2 NR option 8-2

IFCALL directive 6-1

Ignore deck modifications 4-3 . .

IE}NORE directive 4-3 Old program library file 8-2; 9-1
Inactive line 9-2 OPL file 8-2;9-1

3-1 OPLEDIT control statement C-2

Initialize program library phase 1-3 OPLEDIT error messages B-2
Input directives file 1-1; 8-2 OPLEDIT utility C-1
Input on control statement §-3 OPLFILE directive 3-2
Input text width 7-1 Organization 1-1, 2
INSERT directive 4-2 OUTPUT file 8-2
Insert lines 4-2
INWIDTH directive 7-1 - P option 8-2
PREFIX directive 7-1
Prefix character 2-1; 7-1; 10-5

Initialization directives

L option 8-2 Prefix table 9-2, 3

Line deactivation 4-2 PREFIXC directive 7-1

Line identification 2-1; 4-2 Preparing source file 3-1

Line insertion 4-2 Program library 1-1

Line reactivation 4-2 containing directives 5-1

Line width 3-3; 6-2 creation 3-2

List comment 7-1 file 8-2; 9-1

List options 8-2 PULLALL (OPLEDIT) directive C-1
List output file 8-2; B-1 PULLMOD (OPLEDIT) directive C-1
LO options 8-2 Purge decks 4-3; 10-5

Index-2 60450100 C

PURGE (OPLEDIT) directive C-1
PURDECK directive 4-3

Q option 8-2

Random address 9-3 .
Range, conditional 6-2 .
Reactivate lines 4-2

Read alternate directive file -5-1; 10-4

READ directive 5-1
READPL directive 5-1

Read directives from program library 5-1

Read modification directives phase
Reconstruct modification set C-1
‘Record type 9-3 ’

Remove deck 4-3

Remove modification set C-1
Reorder decks 7-2

Replace decks 3-2

Reposition file 5-2

Rescind YANK directive 4-3
Reserved file names 5-1
RESTORE directive 4-2
RETURN directive 5-2

Return file 5-2

Reverse conditional range 6-2
REWIND directive 5-2

Rewind file 5-2

S option 8-2

Sample FORTRAN program 10-8
Scratch files 5-1; 9-4

Selective edit mode 4-4
Separators for directives 2-1
SEQ directive 6-3

Sequence file 6-3; 7-2

Sequence number 9-4

Sequencing
disable 3-3; 6-3
enable 6-3

flag 3-3; 6-3
SEQ directive 6-3
update 7-2
SKIP directive 5-2
Skip forward on file 5-2
Skip records 5-2
SKIPR directive 5-2
SOURCE file 8-2

60450100 B

Source file

compile file directives on

generated by Modify 8-2; 9-1

preparation- 3-1

; 9-1

Special directives 7-1
Standard character set A-1

Statistics B-1
Status of deck B-1

Systems text selection 8-1

Terminate conditional range 6-2
Test for conditional range 6-~2

Text format 9-2

Time-sharing considerations

Type of record 9-3

U option 4-4; 8-2

UNYANK directive 4-3
Unyank modification set 4-3; 10-4
UPDATE directive 7-2

Update edit mode 4-
Update library 7-2

Value, define for IF

WEOF directive 6-3
WEOR directive 6-3

4; 8-2

7-1

WIDTH directive 3-3; 6-2
Width of line 3-3; 6-2
Write end-of-file 6-3

Write end-of~record

Write end-of-record, conditionally 6-3

6-3

Write output files phase 1-3

X option 8-2

YANK directive 4-3

Yank modification set 4-3; 10-4

Z option §8-3; 10-7

/ (insert comment)

7-1

1-2

1-3, 4

Index-3

CUT ALONG LINE

PRINTED IN USA

AA3419 REV, 7/75

COMMENT SHEET

MANUAL TITLe_____CDC NOS Version 1 Modify Reference Manual

PUBLICATION NO. 60450100 REVISION

FROM: NAME:

BUSINESS
ADDRESS:!

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

— e wvm s e vE m emn e wwe wmm . e e wer e e e e amn amie

- e me e e e e e G e s e e MR S WER S e waie wmE e e AR M G e R i e e e e w— m—— i — v — o o w— -

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219

4201 North Lexington Avenue
Saint Paul, Minnesota 55112

e e e e v - —de

-
o]
-
o
-
0
-~
[~/

CUT ALONG LINE

CUT ALONG LINE

PRINTED IN US.A

AA3419 REV, 7/75

Manual Title CDC NOS Modify Reference Manual Pub. No. 60450100 Rev. D

As part of Control Data's continuing quality improvement program, we invite you to complete this questionnaire so
that you may have a more direct influence on the manuals you use.

Please rate this manual for each general and individual category on a scale of 1 through 5 as follows:
1 - Excellent 2 - Good 3 ~ Fair 4 -~ Poor * 5 - Unacceptable

l Writing Quality D. | am interested primarily in
user guides designed to teach

. non-CDC equipment?
IV. *Miscellaneous

A. Technical accuracy the user about a product or
B. ~ Completeness certain capabilities of a product.
C. -Audiéence defined properly - —
D. Readability VI. We recognize that we have a wide
E. Understandability variety of users. Please identify your
F. Orgarization primary area of interest or activity:
Il. Examples A. Student _
B. Applications programmer
A. Quantity C. Systems programmer
B. Placement D. How many years programming
C.. - Applicability experience do you have?)
D. - Quality E.. - What languages e
E. Instructiveness 1. Algol
2. Basic
11, Format 3. Cobol
4, Compass
A. Type size — 5. Fortrpan —
B. - Page density 6. PL/I —
C. - Art work 7. Other -
D. Legibility -
E. . - Printing/Reproduction F. Have you ever worked on

. 1. If yes, approximately

A Index "what percent of your

B. Glossary experience is on non-

CDC equipment?

|

V., Please provide a yes or no answer
regarding manuals in general: . . 2. How do you rate CDC
i) ;o manuals against other
A. | prefer that a manual on a software ’ ‘ ' similar manuals using
‘ product be as comprehensive as - the 1-5 ratings.
possible; physical size is of little . : - . (Example: - XYZ Corp. 2
importance. means XYZ manuals are good
: _ o as compared to CDC manuals.)
B. | prefer that information on a ’ Burroughs
software product be covered in DEC
several small manuals, each Hewlett-Packard
covering a certain aspect of the Honeywell
product. Smaller manuals with IBM
limited subject matter are easier NCR .
to work with. . Univac
Other
C. I am interested primarily in

reference manuals designed for
ease of locating specific
information.

General Comments

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON.DOTTED LINES AND STAPLE

STAPLE STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219

4201 North Lexington Avenve
Saint Paul, Minnesota 55112

.-__.._____--.....-“-—........._........_.L......__.._.._...___.__.‘._‘-__..'_...

CUT ALONG LINE

v

\.

?

MODIFY CONTROL STATEMENT PARAMETERS

MODIFY(PlJ [32: oe sy Pn) E

CB

CcG

CL

CS

cv

LO

NR

Presence of A causes compressed compile file.

- Compile file output; COMPILE if C or omitted. No compile file if C=0. Otherwise, output

on file named (C=lfn).

COMPASS binary output file; used with Q and X options only. Output on LGO if CB. No
binary if CB=0, Otherwise, output on file named (CB=lfn).

COMPASS get text option; used with Q and X options only. Systems text on SYSTEXT if CG.
No systems text if CG=0., Defined by CS option if CG is omitted. Otherwise, systems text on
file named (CG=lfn).

COMPASS list output; used with Q and X options only. Short list if CL=0 or omitted. Output
on file OUTPUT if CL. Otherwise, list output on file named (CL=1fn).

COMPASS systems text; used with Q and X options only. Systems text on SYSTEXT overlay
if omitted or CS. No systems text if CS=0; otherwise, systems text on file named (CS=ifn).

Program library character set conversion. None if CV is omitted; 63 to 64 if CV=64; 64 to
63 if CV=63.

Debug option, Directive error or fatal error causes job abort if D is omitted. No job abort
for directive errors if D is used.

Full edit. If omitted, deck editing determined by U option or by EDIT directives. If F is
specified, all decks are edited and written on compile file, new program library, and source
file. i

Directives in‘put. If omitted, directives and corrections on INPUT, If I=0 there is no input
file. Otherwise, on named file (I=1lfn).

List output, Omitted or L, listings on OUTPUT. L~=1fn, output to named file.

List options. Omitted or LLO, options E, C, T, M, W, D, and S are selected. Otherwise,
LO=C1, €9...Cp to 2 maximum of seven options (AECDIMST or W).

New program library. Omitted or N=0, no new library. N, output on NPL. N=lfn, output
to named file,

No rewind on compile file. Omitted, compile file rewound before and after MODIFY run.

Program library input. Omitted or P, library on OPL. P=lfn, library on named file. P=0,
no program library input file.

Execute assembler or compiler; no rewind of directives file or list output file., Omitted or Q=0,
assembler or compiler not automatically called. Q, Modify sets A parameter and LO=E and calls
COMPASS. This option enables CB, CG, CL, and CS options. If Q=1fn, Modify calls assembler
on lfn.

Source output (illegal if A, Q, or X selected). Omitted or S=0, no source output. S, output
on SOURCE. S=lfn, output on named file,

Update edit. Omitted, editing set by F or by EDIT directives. F takes precedence over U.
If U, only decks changed (named on DECK directives) are edited and written on compile file,
new program library, and source file,

Execute assembler or compiler; same as Q except directives file and list output file are rewound.

Directives on Modify card., Omitted, directives are next record on INPUT or identified by
one option. Z, directives follow parameters on Modify. A separator bar separates two
directives.

CORPORATE HEADQUARTERS, P.0.BOX 0, MINNEAPOLIS, MINNESOTA 55440 LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

TFEENEENEENEEYEY EXEXKXEEXXX

