
r,:J ~ CONT~OL DATA
\::I ~ CO~OR(\TION

NOS VERSION 1
BATCH USER'S GUIDE

CDC® COMPUTER SYSTEMS:
CYBER 170

MODELS 171, 172, 173, 174, 175
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

60436300

I
REVISION j

l
_A Manual released.

J.9-1-77.l

~

I

Publication No.
60436300

REVISION LETTERS I, 0, Q AND X ARE NOT USED

c 1977
by Control Data Corporation

Printed in the United States of America

ii

REVISION RECORD
DESCRIPTION

:_

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTiVE PAGES

New features, as well as changes, deletions, and additions to infonnation in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates paginatior rather than content has changed.

PAGE REV PAGE REV PAGE PAGE

Front cover - Cmt sheet A
Inside front Back cover -

cover -
Title page -
ii A
iii/iv A
v/vi A
vii A
viii A
1-1 A
2-1 A
2-2 A
2-3 A
3-1 A
3-2 A
3-3 A
3-4 A
3-5 A
3-6 A
3-7 A
4-1 A
4-2 A
4-3 A
4-4 A
4-5 A
5-1 A
5-2 A
5-3 A
5-4 A
5-5 A
5-6 A
5-7 A
6-1 A -
6-2 A
6-3 A
6-4 A
6-5 A
6-6 A
7-1 A
7-2 A
8-1 A
8-2 A
8-3 A
8-4 A
9-1 A
9-2 A
9-3 A
9-4 - A
9-5 ·A
A-1 A
A-2 A
B-1 A
C-1 A
C-2 A
D-1 A
D-2 A
E-1 A
Index-1 A
Index-2 A

60436300 A iii/iv

PREFACE

The Network Operating System (NOS) is used with
CONTROL DATA® CYBER 170 Models 171, 172, 173,
17 4, and 175 Computer Systems; CDC® CYBER 70
Models 71, 72, 73, and 74 Computer Systems; and CDC®
6000 Series Computer Systems.

The NOS Batch User's Guide is an introduction to the use
of NOS. It is intended for the application!i programmer
who is already familiar with a problem-oriented language,
such as FORTRAN or COBOL, and wants to extend his
capabilities by using the job-control statements of a full­
scale operating system. NOS supervises job processing in
response to over 150 control statements. This guide
explains a fundamental subset of about 50 statements.
Only those parameters required for preliminary applica­
tion are included.

The descriptions in this guide are oriented to a data
processing environment in which the user submits a job to
a data center and has the job processed without concern
for the mechanics of processing. Accordingly, system
operation and hardware functions are not mentioned
unless a control statement requires identification of a
software routine or a hardware feature.

DISCLAIMER

This manual describes a subset of the features and
parameters documented in the NOS Reference Manual.
Control Data Corporation cannot be responsible for the
proper functioning of any features or parameters not
documented in the reference manual.

RELATED PUBLICATIONS

This guide does not serve as an introduction to the
programming languages used in the examples nor does it

60436300 A

give the fundamentals of ·time-sharing operation in the
description of batch jobs from a terminal. The languages
and time-sharing operation are covered in the following
manuals.

Control Data Publication

FORTRAN Extended 4
Reference Manual

COBOL 4 Reference Manual

COBOL 5 Reference Manual

BASIC 3 Reference Manual

NOS Time-Sharing User's
Reference Manual

Publication No.

60497800

60496800

60497200

19983900

60435500

To enlarge on the fundamentals learned in this guide, the
user should consult the following manuals.

Control Data Publication

NOS Reference Manual,
Volume 1

NOS Export/Import
Reference Manual

NOS Remote Batch Facility
Reference Manual

Publication No.

60435400

60436200

60499600

The preceding manuals contain references to other rel­
evant manuals.

v/vi

CONiENiS

1. INTRODUCTION 1-1 Direct Access Permanent Files 5-3
How to Create a Direct Access

Motivation for This Guide 1-1 Permanent File 5-3
Organization of This Guide 1-1 How to Access a Direct Access

Permanent File 5-3
How to Modify a Direct Access

2. FILES AND RECORDS 2-1 Permanent File 5-4
Purging Permanent Files 5-4

Delimiters 2-1 Alternate Access of Permanent Files 5-4
End-of-Record (EOR) 2-1 How to Obtain a Listing of Permanent Files 5-6
End-of-File (EOF) 2-2
End-of-Information (EOI) 2-2

Input and Output Files 2-2 6. CONTROL LANGUAGE 6-1
Local Files 2-2
Permanent Files 2-3 Format 6-1

Expressions 6-1
File Funetion 6-1

3. BATCH JOBS 3-1 SET Statement 6-1
DISPLAY Statement 6-2

Local Batch 3-1 GOTO Statement 6-2
Remote Batch 3-1 IF Statement 6-3
Def erred Batch 3-1 CALL Statement 6-3
Conversational Batch 3-1
Batch Job Structure 3-1
Control Statement Format 3-2 7. ERROR CONTROL 7-1
Control Statement Record 3-3

Job Control Statement 3-3
USER Control Statement 3-3 8. TAPE FILES 8-1
CHARGE Control Statement 3-4
Control Statement Record Comments 3-4 Definitions 8-1

Programs 3-5 Tape Tracks 8-1
Recording mode 8-1
Parity 8-1

4. LOCAL FILES 4-1 Blocks 8-2
Volume 8-2

Copy Statements 4-1 Volume Serial Number 8-2
Binary Copy Statements 4-1 Tape Labels 8-2
Coded Copy Statements 4-2 Tape Format 8-2

VERIFY Statement 4-3 How to Create a Labeled Tape 8-2
File Positioning Statements 4-4 How to Access a Labeled Tape 8-3

Background 4-4 How to Copy from One Tape to Another 8-3
Forward Positioning Statements 4-4 Tape Error Messages 8-4
Backward Positioning Statements 4-4

9. BATCH INPUT FROM A TERMINAL 9-1
5. PERMANENT FILES 5-1

Def erred Ba teh 9-1
Indirect Access Permanent Files 5-1 Reformatting Directives 9-1

How to Create an Indirect Access SUBMIT Statement 9-2
Permanent File 5-1 ENQUIRE Statement 9-3

How to Access an Indirect Access DA YFILE Statement 9-3
Permanent File 5-2 Listing Batch Output at a Terminal 9-4

How to Add Information to an Indirect Conversational Batch 9-4
Access Permanent File 5-2

How to Modify an Indirect Access
Permanent File 5-2

60436300 A vii

APPENDIXES

A Glossary A-1 D NOS Standard Character Set D-1
B Dayfile B-1 E Operators E-1
c Resources Available to the User C-1

INDEX

FIGURES

2-1 EOR Punched Card 2-1 5-1 File Update 5-3
2-2 EOF Punched Card 2-2 5-2 CATLIST Parameter LO=F Heading 5-7
2-3 EOI Punched Card 2-2 6-1 GOTO Job Demonstration 6-3
3-1 Batch Job Representation 3-2 6-2 Resulting Dayfile from GOTO 6-3
3-2 Comment Demonstration 3-5 6-3 Control Statement Record Expansion
3-3 Printed Dayfile after Processing 3-5 with Nested Calls 6-5
4-1 File Creation with Copy Statements 4-2 6-4 CALL(METRIC) Dayfile 6-6
4-2 Output from Processing a Verify 6-5 CALL(METRIC,S=2LENG) Dayfile 6-6

Statement 4-4 7-1 EXIT Statement Operation 7-1
4-3 Operation of File Positioning 8-1 Magnetic Tape Data Layout 8-1

Statements on a Multifile File 4-5 9-1 Reformatting a Submit Fila n" -.,-1:1

TABLE

3-1 Common Parameters for Language
Processor Call Statements 3-7

viii 60436300 A

INTRODUCTION 1

An operating system processes user jobs. The processing
includes all activities associated with data processing
(compiling and executing programs, formatting data,
calculating, retrieving stored information, and preserving
new information). A user job is a unit of work organized
by the user to accomplish specific data processing tasks.
Minimally, a job contains validation identification
followed by a sequence of control statements that specify
data manipulations to be performed by the system.
Beyond this minimum, a job can contain programs and
input for programs.

MOTIVATION FOR THIS GUIDE

Many jobs contain only programs and program data.
Although the user need know only a few control state­
ments to get such jobs processed, a repertoire of control

60436300 A

statements is more efficient. Single control s:.atements
can manipulate tape, create permanent files, copy data,
reformat files, or initiate input/output (1/0) actions.
Without control statements, the user must write a
program every time he performs one or more of these
operations.

ORGANIZATION OF THIS GUIDE

This guide is organized for i~struction. It is intended for a
user who writes programs in support of daily tasks but
whose contact with an operating system has been the few
control statements required for job processing. This user,
to extend his knowledge in using system control state­
ments, should become familiar with sections 2, 3, and 4.
He can then either select sections that serve immediate
needs or systematically study the remaining sections.

1-1

The fundamental unit of data organization under NOS is a
file. A user's interaction with the system is in terms of
files.

• The job the user submits for processing is a file.

• Collections of data included with the job are
trans! erred to the system in named packets; each
packet is a fiie.

• Control statements in the job can designate a
name as a file; this is an empty file to which
other statements or programs can add data.

• Control statements in a job can copy all or part
of an existing file; the copy is a file.

• The output from job processing is a file.

A file may be empty or as large as the user's resource
limitations permit.

The user can subdivide ·a file into logical records and he
can link several files together into a multifile file. He
does this subdividing either by means of parameters he
includes in programs or control statements that create the
files, or he can insert delimiters in the data he submits
with a job (refer to Delimiters).

·The user subdivides a file into records when he wants to
access these subdivisions without accessing the entire file
(for example, a master inventory is divided into parts
categories). On the other hand, the user links several files
into a multifile file when they fit into a single category he
wants to access with a single reference (for example,
student rosters from a number of classes are consolidated
into one departmental roster).

All files are identified and accessed by a file name that is
defined by the system or the user. This guide considers
two system files, INPUT and OUTPUT (refer to INPUT
and OUTPUT Files). The user names his file in the
program or control statement that initiates its creation
(refer to sections 3 and 4). A file name must be one to
seven alphanumeric characters.

2

DELIMITERS

The user defines a file by assigning it a name and
specifying the end of each record and the end of tht file
with delimiters. The user inserts delimiters directly or
indirectly when he creates a file. He does this directly in
the job he submits by inserting special punched cards (if
the job ~ a card deck) or typing in special directives (if
the job is entered from a terminal). The special punched
cards have three or four numbers multipunched in column
1. The user creates these by depressing the MULT PCH
key on the keypunch and, while it is down, entering the
numbers. The user inserts delimiters indirectly by
specifications he includes with control statements or
programs. When the control statement is processed, the
system puts the delimiters in the specified locations of
t~ file being creat-ed.

When a program is run, the system will place delimiters in
files created by the program according to specifications in
the program.

The beginning of a file is called the beginning-of­
information (BOI). BOI is internally recorded by the
system when the file is created. No mark is put in the file
by the system or the user; however, the user should be
aware of its meaning since several control statement
descriptions refer to the BOL

The user ean delimit his files through end-of-record
(}:OR), end-Of-file'(EOF), and end-Of-information (EOI).

ENO-OF-RECORD (EOR)

The user inserts an EOR in a sequence of information to
specify that all the information between this EOR and the
previous terminator or BOI is to be accessed as a single
record. For a card deck, an EOR is a card with rows 7, 8,
and 9 punched in column 1 (refer to figure 2-1). For a
batch job submitted from a terminal with the SUBMIT
c6ntrol statement (ref er to section 9), the user inserts an
EO R by typing /EOR.

, , 2 l • , 6 7 I 9 10 II ;z 13 I• 15 Ii 17 :! 19 zo 11 Z2 Zl 14 25 16 27 18 19 30 31 31 ll 34 ~ 36 37 !I 39 40 41 41 43 4(i~""i6 •: 0 0 50 5, 5? 53 54 55 56 57 sa ~UOI

·.!. 61 6! 64 65 "67 o! n 10 11 n n 74 75 n 11 n n IOI

• u D a g G a c a ; 8 a 0 e D ; D a I I I D I I 11 8 I I • I I a D a c I 18 111111 B ••• 11 ea D a Q II D 11 a I u I 8 • ~ I D 8 111 111111
' l l ' ; i ; J II J: " ll II ·~ :1 ,, !I 1111 ll n ll N !I all II l! JI ll Jl l3 3' JI JO 11 11 ll <t" 41 •l U 'I .. u " " II I! 1111 SI ~ OS l' 111111 ll SI ii H I.I ii'' u. II '; ll ll " II " n 111!.

1111111!11

2 z ' 2 z 7 2 2 2 2 2 2 2 2 2 2 2 .2 2 2 2 2 2 2 2 2 2 2 2 2 : 2 2 2 2 2 2 2 2 2 2 2 2 l 2 ~ 2 2 2 2 2 2 2 2 7 2 2 2
'. ! l • ~ ' I I • I.I !! 12 ll 1.t I~ :~ I' II 11 ?I ?I l1il)l2)l&ZJ"11 D ll l2 ll J(J5 1' Jl ll :~;,I 4, 0 u C4 e"' •. 0". ~I 5' ~l ~ 5!o 5' 5.1 51519 lil Gi E '1 •~ '· H il "'H rt 11 n D 1~ :a Kn li 1'.
33 3 3 3 3 3 3 l 3 3 3 3 3 3 3 3 3 3 3 3 3 33 33 3 3 3 l 3 3 3 33 3 3 l 3 l 3 l 3 3 3 3 3 3 3 3 3 3 ;; 3 3 3 33 3 33 3 3 33 3 3 3 3 3 3 3 3 l 3 3 3 3 3 3

c 4 44 4 4 4 4 ' 4 4 4 4 4 u 4 •• 4 4 44 •• 44 4 • 4 4 4 • 4 c 4 44 4 44 4 4 4 4 4 u 44 4 4 4 4 4 4 ~ 4 4 4 4 4 4 • :, u 4 4 • 4 ~ 44 44 • 4 44
I ~) • j £ l I ! :c II ,, i] l.f }~ ,, li 1119 JI~~ 11 l3 ?~ r.. 2S ll n 1' JI Ji l2 ll :Mr.. l' ll JI q 41 u u .. (~ .. ~ •l q .f! 511 ~I "~!Iii$!! 5'. !I:~ S!. 51 '1' ID M ei "" •• JC n n n M "ll n ,, 11 ..

5 5 5 5 5 5 s 5 s 5 5 s 5 5 5 5 5 5 5 s 5 5 s 5 5 5 5 5 5 5 5 s 5 5 5 5 5 5 5 5 5 5 5 5 5 s 5 5 5 5 5 5 s 5 5 5 5 5 5 5 5"5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Ii i i 6 6 S 6 ii 6 & 6 6 i 6 6 6 6 6 6 & & & i & Ii && 6 & 6 6 6 & & 6 6 6 & 6 & 6 6 6 & 6 6 6 6 Ii i G S & 6 6 6 & & & & 6 6 G & U Ii & 6 6 & Ii U & && & & Ii
I : l t ~ ; ' I :j II 11 1~ I] lit ·~ 1l " :1 1! 21 11 12 2~ ii i~ ~ 71 n :!'! ll ~l 17]J 34 b .. J! ll .), " 41 C1 '1" ·~ • .ill u. !ii SI ~ " ~ ~ !15 11 SI SS .. (! Li '3 5i e. • " "a 11 7: 1! .1 M B " Tl II rt.
111111171111111111111111111171111111711111171111111111177717: 1111111 1 11111111111

11111111111 a e & es s a 111111a111saa~11 & 11a1sB31e1111111a11es1111111a1111111111111111
[l ... 5 ; 1 ' ! lt I! 11 13 14 I~ u 1! .. , ll JI 21 l1 7l 2.a 15 1S 11 71 ;'!. ll :! ~~ ll 3" l!o ~ :· 11 !! G .. i ,, '3" .ts., u •• d !ii SI~)3 ~ ~j ».~-!It ~t Cl" M '3" u "il Iii n ti 11 n 13 M ZS. TI "i1.
I! 991g1119 s 999ssss1s91919ss's19ss's~1s9 s 9s''9'1 s s s's s s s's st s s 911s1' s s s u 1sus!1 s

Figure 2-1. EO R Punched Card
60436300 A 2-1

END.OF-FILE (EOF) INPUT AND OUTPUT FILES

The user inserts an EOF in a sequence of information to
specify that all the information between this EOF and the
previous EOF or BOI is to be considered a single file. For
a card deck, an EOF is a card with rows 6, 7, and 9
punched in column 1 (refer to figure 2-2). For a batch job
submitted from a terminal with the SUBMIT control
statement (refer to section 9), the user inserts an EOF by
typing /EO F.

The job input file is the system file containing the entire
job the user submits for processing. Control statements in
the job reference this file with the name INPUT.

The job output file is the system file containing the output
resulting from program execution and all the data copied
to it by control statements. Control statements in the job
reference this file with the name OUTPUT.

END-OF-INFORMATION (EOI)

The job input file is also known as a job file, and the job
output file is also known as a print file or punch file.

LOCAL FILES

A local file has the following characteristics.

The user or the system adds an EOI to a sequence of
information to specify that the entire sequence between
the BOI and this EOI is to be referenced by the name
assigned to this file or multifile. For a job punched on
cards, the last card in the deck must be an EOI, a card
with rows 6, 7, 8, and 9 punched in column 1 (ref er to
figure 2-3). For a batch job from a time-sharing terminal,
the user does not have to designate an EOI.

• It is created by the job being processed.

2-2

• It can be accessed only by that job.

• It is no longer accessible when processing ter­
minates.

l t z ! 4 ~ 6 1 I 9 10 11 IZ ll 14 15 '' 11 •I ii 10 11 1Z !l !• !5 l6 11 11 19 JO ll JZ ll J4 35 1' Ji !I II 40 41 41 41 44 45 ~' 41 41 41 lO 51 lZ ll 54 55 56 51 '>I 11 ~

·.," B 64 ,; u u "n 10 11 n 1114IS11 11 rel! IOI

Ht 0 8 It. Q as 0 It 11u111111111ti11 I I. I I .. ID 111111 .. 5 e .. I .. I It II .. II II I 9 1111I1111111
' : 1 41 ;. i l I 1 ,. 1: 12 I] :t ii ,, 1; 'I ,, =s ~i n ll ,. 15 1111 ,. 21 • 31 YI JJ 3.t lj • J,' ll !! • 47 &: 4~ .. f5"' u .. IS ~\I " u ~ ~ 51 S1 "'". ll u a" .e • "ii. ii 11 i7 1J M ~ l'f '1 YI ,, •

11111t11i11111111111111111111111111111

2 2 2 l 2 1 11 2 2 l .2 z 2 7 l 2 l 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 ' 2 2 2 2 2 2] 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 l 2 i 2
1 : J 4 ! ' ' I 1 II ti 11 n '4 lS 1; ,, 'I '! 1'f 1' 1~ n :'t n 11 1111 .i! !f]I ~ J? 14 !l ji !~ .:1 ,. P. t 1 42 I] u •:- 4; 41 ,, ,, • ~; SI 53 WI • ~ 11 ii H. It! 11 u ... '5 ",, ... NI Jt .·1 ,, M ~ 11 n ,. ,, •
l 3 3 3 3 3 3 J l l l 3 3 3 ~ l l l 3 l ? l] 3 3 3 3 l 3 l]] 3 J l 3 ? i l 3 ~ l l 3 3 3 3 3 3 3 l 3 3 3 3 3 3 3 3 3 3 3 3 3 3 l 3 l 3 3 J 33 3 3 3 l 3 3 3

444444444444l444~4444444444444444444444~4~4<444~44444A4444444H4~444444444444444
1!1111 r11Antt~~q~c~K~•ftc~~~n~~•e~u~~~PD~~nuu~~~n•u~~~~•~•~vvanacu~unua~"nnM~•nnna

5 5 S 5 5 5 5 5 5 5 S 5 S ~ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 S 5 5 5 5 5 5 S-5 5 5 5 5 5 5 ~ ~ 5 5 ~ 5 5 5 5 5 5 S 5 S

Iii & S I i S &S & & 55 U SS I I S 11 I E I 5 S & I & ii & I & I I S I & S Ii 5 C & G & & i S & G n 6 C §I I 6' i & U I 5 i 6i Ii i ii 111 II
t 1 , • ~ I I • ' II '1 1: ll •• '1 ?l :r 11 " JI 21 l' n '14 :-: ~)T ,, " lf JI n 1~ !I » • ,, • n f3 II ·~ 0 .. ~. ,, flt! • i 1 !.!' S! M u • ,, " •• 1111 a .. IS Ii u ti •• ft n n)C l'5 :a n 11 :t Ill

11111111111111111111111111111J111111111111111111J1111111111111111111 1 11111111111

11111111 I II ~ I 111 I 11 I 11111 11111 I I a I I I • II I I I 11 I I ... I 111 I I r 111 111111 I I II I 111111111 I
I ! I ' I ' I I ! It " " ,. " II 'I " 11 " " n n !3 ,. 11 II !I ,. n ll II I! ll l' ll n •I 'I I' ,, " .. •1 .. I; Ii " II ,, 1111 12 ll ii II v 1111 II • II 11 II .. D II II •• n II 1111 It ~ • n II n •
199 9 ! ! 99 9 ! 99 9 919 ! 9 ! 9 99 99 9 9 t' !! 9 9 9 99 99 9' 9 I! 9 '9 ~ ! ! 9 9 !9 9 9 9 9 9 9 99 9 ! 9 99999t!99999t1119 -

Figure 2-2. EOF Punched Card

0 3 4 . '6 Ii Iii II 12 >j 14 IS Ii 11111920 ZI 11z°J:4:51C l'I~ a ll.ll ll ll Hl~ ll llll l~40~•1''41 Utt SO It 12 5l H SSS'i 11141,6•11

~.,Cf U 14 i5 HSI HU 19 ll I? I! 14 IS 71 71 I! 1' •I

i I D 9 DI I a a ; 111 D II II ti 111111 11 I .. I I II 11 ... It 11 II II. 11 a DI a 111 .. II I 111 Ga I a e 0 ~ 1111111
• i] •) I j I ' II ,, ,, 11 ~. I~ " lJ 'I ,, :! 11 n n 1' '5 n: l1 '' 'r, • JI :1 ~)I l) !I JP ll J9 • u •1 •1"' •• 41 ... 49 :iii ~· i2 Sl ~ ~ 5' u y 5S. u u u ii u MF ... II n 11 Jl l• J~ Ii Jj' ii ~· !'I

11111111111111!11111111111111111111111111111i11111111111111111111111111111111111

2 2 ' 22 z 2 2 2 2 11 ' 2 z ~ 22 2 1 2 2 2 22 2 2 1 z 2 2 2 2 11 2 2 2 12 2 n 22 2 2 2 2 1 2 2 2 2 2 1 22 22 22 n 2 2 22 ., 2 2 2 2 2 22 2 2 2 2
1 1 1 • ;. ~ 1 ' ! !I'! •T ·;" ,, ,, .. :s If:!"?' n"" fi JI!:;• n .~ ~ !! i1 u).i :~ ")j lf :::I :J"' ,, ~7 d" 6. 0 ~ 51 1' ~l)f, ~ 9i S1 'Jt ~. ,1 u ~J" ~ .. r" 9 ~I, i; IJ :a ii" J1 ,, I' If

l3333JJ3Jll3lJ3333l233l3333]l333l3333l33l3lJ3J3l33333333333333l333J33ll33333333l

' ' ' 4 4 4 4 4 4 4 4 4 • 4 ~ 4 4 4 ' 4 4 4 4 4 4 ' 4 ' 4 ' 4 4 4 4 4 4 4 4 4 ' 4 ' f 4 4 ' 4 4 4 4 4 4 4 ' 4 ' ~ 4 4 4 4 4 4 4 ' 4 4 4 -~ ' 4 ' 4 4 4 4 4 4 4 '
1 : ; ' ; • r t , ~1 :1 '1 •Ju -~ ., • ~ '' ~ ·: !" ?1 t1 r: ~ u ,., .1'111 ll 11 l1 :~ N JS!' 1: ;1 Jt • •1 a 1j.,. •! • u •I! 5t 51 u u $tu !If 1' w ~"'" 11"wo11 r n tt 1a n n ;Ju !IJ 11 ,, ,. n •
5 :i 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ~ 5 15 5 5 5 5 5 5 5 SS 5 5 S :i 5 5 S 5 5 5 S 5 5 5 5 5 5 5 S 5 5 ~ 5 5 5 ~ ~ :i 5 S 5 5 5 5 5 5 5 t 5 5 5 5 ~ 5 5 5 5 5 5 5

I~~ S 6 & I & 6 i 51i~i6 i 61 G 5 6 6 i Ii 6 S & &i 5 i SEE; & Si i 5 & i 5 6 SH 5 S 6 i U & 5 SS ii & 6 i S ii 6' G & G iii i & I Ii I U
' p l ' ~ ' • I f II" 11 n ,. 1~ ,, ,, ~· ,, 11 ?! i~ ,: ~ 7j :: H ;-, ~ :~ ~· -· ~'j !4 ..: .. !'. :t ~· ~ ·~ •1 tj," •\. 4J ". 5111 "~ M SS Si~,"~" 5: u Sl M • & 11 a IJ It " iJ n M 15 'I n • ".,
I 1 J / J 1)]))]] l) f 11j17111711 i j j i i) 11 j I : ! J? 7 11 1J1J1111111)) 111) 1111111 J I 11111111111

I••' I~ I~ 11!1111!113a111111 $.I 8111 ~I a~' a ii~~ 111aa!8~118 111!11111511Ia11!111111111
I 1 J i : i : I • ~ i q i~ If ,; ,, !' 1 ,, .., 1: ":".""~I ~~ , 71 ~· ~'1! i?:. ll ~: H)\ :: l; 11 ·,,,, 41 u '~" .. ,. 4! ~i !: ~1 !! ~· ~: ~ 1i ~ ~1 II ll Ii n" li "Ii ... Jt lt ll i:I " n .. n "".
I!!!'! l • ! ! ! ~ ! ! 13 s ! ~ 9 9 g' -~ ~ Q 3' l: 9 9 ! ! ! ! g 9 ! '9 9 3 ! 9 '9 9 9 9 ! ! '! 9 9 5 9 9 I! 9 9 ! 9 9 9 9 9 ! ! 9 9 ! ! 9 I 9 9 !

Figure 2-3. EOI ?ur.ched Card

60436300 A

Since local files are available only to the job that creates
them, they are said to be local to that job (refer to
section 3).

PERMANENT FILES

The user can create and access files that remain in the
~st~m until they are specifically purged. They are
?1stmet from local files, because their availability is
independent _of any job. processing duration. Two types of
permanent files serve two types of needs, indirect access
and direct access. Indirect access permanent files
typically contain relatively small collections of data, and
direct access permanent files typically cents.in larger
collections of data.

60436300 A

The user can create an indirect access permanent fiie
from a local file with special permanent file control
statements. This file is accessed by retrieving the
permanent file with special permanent file control state­
ments (refer to section 5) to make a local copy of that
file.

The u~er can create a direct access permanent file by
reserving an area on mass storage with the DEFINE
control statement (refer to section 5) and then writing
information in that area. Thereafter, the user can access
the file directly with the ATTACH control statement
(refer to section 5).

2-3

BATCH JOBS 3

This section describes the types of batch jobs, the
structure of a bateh job, the format of a control
statement, and how programs are added to a job. The
foll.owing control statements are explained in this section.

job

USE..ll

CHARGE

COMMENT

BASIC

FTN

COBOL

COBOLS

A programmer organizes a job with step-by-step instruc­
tions th~t specify everytning to be done in processing the
job. These instructions are the first record of the job. If
he has programs to compile and execute, he may add these
as additional records. If data input is required, he can
supply this as additional records in the job or use
instructions in the control statement record to ref.erence
existing files. Having organized the job, the programmer
submits it for processing as a single unit without further
intervention on his part. The next thing he sees is the

_ output from processing of the job.

A job can be punched on cards or entered at a terminal.
In either case, if the instructions and data are submitted
as a complete unit and without further user intervention,
they are classed as a batch job. If the instructions are
entered one at a time from a terminal with possible
system/user interaction after each instruction, they con­
stitute a time-sharing job (conversational batch).

LOCAL BATCH

A local batch job is punched on cards and submitted for
processing via a card reader at the local computer site.
Output is ordinarily routed to a local printer. Local batch
is the assumed situation in the major portion of this guide.

REMOTE BATCH

A remote batch job is submitted for processing via a card
reader at a remote batch terminal. Remote implies
geographical separation of job submission and job proc­
essing {ref er to section 9).

The system processes local and remote batch jobs
similarly. Output from a remote batch job goes, by
deiault, to -the terminal irom which it was entered.
However, it can be routed to the local site where the
computer is located.

DEFERRED BATCH

If a programmer creates a bateh job at a time-sharing
terminal by entering the statements as they would be

tThis is an optional installation requirement. It is the usual case.

60436300 A

punched on cards and then submits this sequence with a
single command, the job is called a deferred batch job
(refer to section 9). Output can be directed to a printer
or a file; it is not automatically displayed at the terminal.
Submitting one batch job from another batch job is also
called deferred batch (refer to the NOS Reference
Manual, Volume 1).

CONVERSATIONAL B_A TCH

Conversational batch refers to the BATCH subsystem
available under time-sharing job processing (refer to
section 9). Under this subsystem, the terminal user can
enter individual batch c-ontrol statements- ·and ·receive
immediate execution of this statement. This use of batch
control statements is classed as part of a time-sharing job
and not a batch job.

BATCH JOB STRUCTURE

The user organizes his batch job according to the
following requirements.

1. The job must be identified.

2. The user must be identified. t

3. A charge number must be specified. t

4. The entire job must be divided into records.

5. The first record must contain all the control
statements.

6. The end of the job must be identified.

A model batch job punched on cards is shown in figure 3-1.
All the control statements, and only the control state­
ments, appear in the first record. A job may consist
solely of this single record of control statements.

The first statement of the control statement record must
be the job statement. If the installation has user
validation, the second statement must be the USER
statement. If the installation employs user accounting
control, the third statement must be the CHARGE
statement. These statements are explained later in this
section. The remainder of the statements in the control
statement record direct processing of the job.

The records that follow the control statement record are
programs and data. The data can be read by the programs
or by control statements. The program and data records
must appear as they are referenced (refer to figure 3-1).
The particular cont.·ol statements shown are explained
later in this guide.

3-1

THIRD RE'k ----.... &n/819 card
end-of-information

DATA FOR PROGRAM

SEOOND REk------

CHARGE statement

/ ____ -7

Figure 3-1. Batch Job Representation

CONTROL STATEMENT FORMAT

Generally, a control statement can contain up to 80
characters. Ordinarily, it may begin in any column but
must end by column 80.

Most control statements begin with a name that suggests
the nature of the operation to be performed (COPY,
REWIND, SAVE). Exceptions are control statements
beginning with an asterisk or a number. The asterisk
signals a line of comment. Numbered control statements
are explained in section 6.

A control statement usually requires a parameter list to
specify the file names, options, and numerical values
which will be used in the operation the statement
initiates. This list follows the control statement name on
the same line. Separators must be inserted between the
parameters. The principal separators are the following.

These separators can be used interchangeably unless a
format requires a specific separator.

Spaces in a control statement are ordinarily ignored.
Exceptions are the job statement and the USER statement
which must not contain any spacing.

3-2

The following examples are acceptable control state­
ments.

USER(XXX, YYY)
G E T (CON T ROL)

CO PY, CONTROL BETA
REWIND BETA

The parameters included with a control statement are
either order-independent (appear in any order) or order­
dependent (must appear in a specified order).

Parameters are order-independent if they are specified
with a keyword. A keyword is an alphanumeric mnemonic
with a defined meaning for the system. Some keywords
have meanings by themselves; other keywords require the
user to supply values (usually with an=).

Parameters are order-dependent if they are user-supplied
names or values whose application is identified by their
location in the list following the control statement name.
If an order-dependent parameter is omitted, the separator
that would have followed it must be included. This is
necessary so the system can match the remaining param­
eters in the list with their appropriate application. If no
parameters remain, the additional separator is not neces­
sary.

60436300 A

A iew comro1 statements allow order-maependent and
order-dependent parameters in the same list. In this
format, the order-dependent parameters must come first.
Some control statements have both an order-independent
and an order-dependent version. In this guide, order
dependency is specified in the control statement descrip­
tions.

In many instances, the system will supply a def a ult value
for a missing parameter. This will be the value commonly
used for that parameter. Defaults of interest to the user
are identified in the control statement descriptions.

Every control statement must end with a terminator on
the same line. A terminator can be either of the
following.

Examples:

The operation of the following control statements is
explained in later sections; however, the basic action is
outlined to illustrate control .statement format.

The following is an order-dependent control statement.

COPYBR(INPUT ,MYFILE,l)

This copies one record from the INPUT file to a
user-created file, MYFILE. Since INPUT is the
def a ult for the first parameter and 1 is the
default for the third parameter, this statement
could be written as follows:

COPYBR(,MYFILE)

The following is an order-independent control statement.

PURGE{ALPHA,FRED, TEST)

This removes three user-created permanent files
from the system.

The following is an order-independent control statement.

COBOL5(I=TAPE1,B,L=TEMP)

This initiates the compilation of source code
read from a file TAPE!. The binary output from
compilation is written on the system file BIN (B),
and the source listing and diagnostics are written
on the user-specified file TEMP.

CONTROL STATEMENT RECORD

The first record of every job must be composed ex­
clusively of all the control statements for the job. This is
called the control statement record. It is this record
which controls the details of job processing.

60436300 A

The remainder of this section discusses the five principal
control statements of a control statement record.

JOB CONTROL STATEMENT

A job statement or job card must begin every control
statement record. This statement identifies the job with
a user-chosen name and, optionally, specifies a job step
time limit and/or maximum storage requiremert. The
beginning batch user need only be concerned with spec­
ifying the name. The remaining parameters and job step
definitions are explained in the NOS Reference Manual,
Volume 1.

The basic format of the job statement is as follows:

jobname.

jobname A 1- to 7-character user-chosen
alphanumeric job name which must
begin with a letter.

The following examples are valid job statements.

MY JOB.
A.
JON~.
JOB2345.

USER CONTROL STATEMENT

A USER statement must follow the job statement if the
installation requires validation. The USER statement
establishes:

• That the programmer submitting this job is a
legal system user

• What system resouraes the programmer may use
and to what extent he may use them (appendix C)

• The location of his permanent files (section 5)

For all batch jobs, the USER statement must immediately
follow the job statement.

Format of the order-dependent USER statement is as
follows:

USER(usemum,passwor,family)

usernum

passwor

User number given the programmer
by the installation if validation is
required.

Optional password which the user
gives himself or is assigned (ap­
pendix C).

3-3

family Identifies a familv name. It is
included only if the installation is
using family names to group per­
manent file devices. If the instal­
lation is using family names and
this parameter is not specified, the
user is assigned to the def a ult
family.

Example:

USER(EFD2501,APRIL)

The installation has given this user the user numbei:
EFD2501 and has a$igned him the password APRIL.
Family names are either not in use or if they are, this user
will be assigned to the default family.

CHARGE CONTROL STATEMENT

If an installation is charging individual users for system
resources used, it will give them charge number/project
number combinations which must be included with their
jobs. In such a case, a user must add a CHARGE
statement immediatelv after his USER statement to
acce$ the system. - Format of the order-dependent
CHARGE statement is as follows:

CHARGE(chargenum,projectnum)

Example:

chargenum A 1- to IO-Character alphanumeric
charge number the installation
gives the user

projectnum A 1- to 20-Character alphanumeric
project number the installation
may or may not give the user

CHARGE(510,299N9)

The installation has given this user the charge number
510, and the user is charging this job to the project
designated 299N9.

CONTROL STATEMENT RECORD COMMENTS

A programmer can insert descriptive comments in a
control statement record in the following manner. These

comments will aooear in the davfile (aooendix B) at the
end of the printout from job processing. - -

• Place the comment after the terminator of most
control statements

• Place the comment after the terminator of a
COMMENT statement

• Place the comment after a leading •

Formats of a comment on a control statement are as
follows:

name{parameters)comment

name.comment

Format of a comment on a COMMENT statement is as
follows:

COMMENT.comment

name

parameters

comment

Name of the control statement

Parameter list that s:toes with the
control statement -

Character string that can begin in
any column after the terminator
but cannot go beyond column 80

Format of a comment after an • is as follows:

*comment

The * can be in any column, but it must be the first
nonblank character. The comment is a character string
that can begin in any column after the • but cannot go
beyond column 80.

The dayfile format is 40 columns wide (appendix B).
Comments which go beyond column 40 in the control
statement record will appear as two lines in the dayfile.
If a comment begins after column 40 on a control
statement, it appears in the dayfile as two lines (a blank
line followed by a line containing all the characters
following column 40).

A job demonstrating comments is shown in figure 3-2.
The dayfile printed when this job is processed is shown in
figure 3-3.

60436300 A

EFD.
USER(E FD25,)
CHARGE(59,N4)
*XXX
COMMENT.THIS COMMENT IS TUO LONG TO BE COMPLETED BY COLUMN 80 AND SO AN ASTERISK
*MUST BE USED TO BEGIN THE NEXT LINE.
LIMITS. THIS COMMENT FOLLOWS THE TERMINATOR OF A CONTROL STATEMENT.
* THIS COM ME NT BEG INS IN COLUMN 4 1
COMMENT. THIS COMMENT IS CONTINUED TO AN ADDITIONAL 2 LINES. THE FINAL LINE
* DOES NOT FOLLOW AN ASTERISK, A COMMENT STATEMENT, OR A CONTROL STATEMENT" AND
THEREFORE IT SHOULD PRODUCE AN ERROR MESSAGE AND JOB TERMINATION.
•xxx
•xxx
6/7/8/9

Figure 3-2. Comment Demonstration

15.38.42.EFD
15.38.42.USER(EFD25,)
15.38.42.CHARGE(59,N4)
15,38.42.•xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
15.38.42.XX
15. 38. 42. COM.HE NT. THIS COMMENT IS TUO LONG· TU BE C
15.38.42.0HPLETED BY COLUMN 80 AND SO AN ASTERISK
15.38.42. 1 HUST BE USED TO BEGIN THE NEXT.LINE.
15.38.43.LIMITS. THIS COMMENT. FOLLOWS THE TERMINA
15 • 38 • 4 3. TUR OF A CONTROL STATE ME NT.
15.38.43.•
15.38.43.THIS COMMENT BEGINS IN COLUMN 41
15.38.43.COMMENT". THIS COMMENT. IS CONTINUED TO
15.38.43. AN ADDITIONAL 2 LINES. THE FINAL LINE
15.38.43.• DOES NOT FOLLOW AN ASTERISK, A COMHEN
15.38.li3.1 STATEMENT·, OR A CONTROL STATEMENT AND
15 • 38. Ji 3. THER! FORE IT. SHOULD PRODUCE AN ERROR MES
15.38.43.SAGE AND JOB TERMINATION.
15.38.43. FORMAT ERROR ON CONTROL CARD.

Figure 3-3. Printed Dayfile After Processing

PROGRAMS

A user can include programs in his job as separate records
after the control statement record. If these programs
require data input, that too can be added as separate
records. The user initiates compilation of these programs
by inserting language processor call statements in the
control statemen~ record. Placement of these language
statements matches the appearance of the program
records in the job. The field length necessary for
compilation is set by the system.

This guide outlines the language statements for BASIC,
FORTRAN, COBOL 4, and COBOL 5. The formats of
these language statements are as follows:

60436300 A

BASlC(parameters)
FTN(parameters)
COBOL(parameters)
COBOL5(parameters)

The common parameters for these formats are outlined in
table 3-1. Parameters with default values (designated as
omitted) are adequate for ordinary use. The full set of
defaults for a particular language statement is in effect
when the name and a terminator are used as follows:

BASIC.
FTN.
COBOL.
COBOL5.

For BASIC, the default is automatic execution after
compilation. For FTN and COBOL, the default is no
program execution after compilation. If the user intends
to execute these programs, he must add a statement
containing the name of the file to which the object code
was written. If the file LGO is used by default, the
for mat is as follows:

LGO.

This rewinds the ~ompiled (binary) file, loads it into
memory, and executes it. A compiled FORTRAN program
will also execute if a GO has been included in the
parameter list of the language statement (refer to table
3-1).

As an alternative, the user can put the compiled program
on a file he names with the following parameter.

B=lf n

3-5

To execute the compiled program lfn, he follows it with
the following statement.

lfn.

A REWIND statement is unnecessary, since binary files
are automatically rewound.

Refer to the NOS Reference Manual, Volume 1 for a
complete list of parameters and defaults for each of these
language statements.

Example 1:

The following job compiles and executes a FORTRAN and
a BASIC program.

3-6

.TOBI.
USER statement
CHARGE statement
FTN.
LOO.
BASIC.
end-of-record

I FORTRAN
program

end-of-record

end-of-record

data for
the BASIC
program

end-of-information

The FTN statement initiates compilation oi the next
record in the job, the FORTRAN program. The LGO
rewinds, loads, and executes the compiled program. The
BASIC statement initiates compilation and execution of
the next record in the job, the BASIC source program.
Execution of the BASIC program calls for data input,
which comes from the next (and last) record in the job.

Example 2:

The following job compiles a COBOL program, puts the
object code on a user file, and then executes that file.

JOB2.
USER statement
CHARGE statement
COBOL(B=TEMP)
TEMP •
end-of-record

I COBOL
program

end-of-record

end-of-information

The COBOL statement initiates compilation of the next
record in the job, a COBOL program. The object code is
put on a user-designated file which he calls TEMP. To
execute this object program, the user enters the file name
as a control statement. The COBOL program requires
data input, which comes from the next and last record in
the job.

60436300 A

TABLE 3-1. COMMON PARAMETERS FOR LANGUAGE PROCESSOR CALL STATEMENTS

Parameter BASIC COBOL COBOL5 FTN

I Input on COMPILEt Input on INPUT Input on COMPILEt Input on COMPILEt

I=lfn Input on lfn

I omitted Input on INPUT

B Object code on BIN Object code on LGO Object code on BIN Object code on LGO

B=lf n Object code on lfn

B omitted Compile-to-memory Object code on LGO
(no object code)

L Output on OUTPUT Output on LIST Output on OUTPUT

L=lf n Output on lfn

L omitted Batch: output on OUTPUT Output on OUTPUT
Time sharing: no output

GO Object code loaded and N/A Object code loaded
executed and executed

GO omitted Compile-to-memory N/A Object code not loaded
and executed

t Not covered in this guide.

60436300 A 3-7

LOCAL FILES 4

This section explains the creation and characteristics of
local files. It also describes the copy and file positioning
control statements which are used with files local to a
job. The following control statements are included in this
section.

COPY BR VERIFY

COPY BF SKIPR

COPY EI SKIPF

COPY SKIP EI

COPY CR BKSP

COPY CF SKIPFB

COPYSBF REWIND

Unless he explicitly requests otherwise, the files ·a user's
job creates are intended for the temporary use of the job.
When job processing terminates, these temporary files are
released. Such files are local files. Local files are
distinguished from permanent files (section 5) which
remain a part of the system when job processing ter­
minates.

A job can create local files in the following ways.

• Using the name of the file for the first time in a
copy statement (refer to Copy Statements)

• Through program execution

• Making a copy of an existing permanent file
(refer to section 5)

In the parameter lists of the control statement descrip­
tions, a local file is identified by lfn (local file name).

The programmer, in his manipulations of files, may use
the copy and file positioning control statements (refer to
Copy Statements and File Positioning Statements).

COPY STATEMENTS

Copy control statements make copies of files and records.
The following parameters apply to all copy statements.

n

60436300 A

Source file of the copy operation; default is
INPUT.

File which will be the copy; def a ult is
OUTPUT.

Number of records or files to copy; default
is 1.

All copy operations begin copying from file lfnl at its
current position and begin copying to the current position
of lfn2 (an exception is the COPYEI statement). If lfn2
does not exist, it is created by the system. If lfnl=lfn2,
no copy takes place, and n records or files are skipped.
After the copy operation, subsequent accesses of either
file may begin where the copying stopped, at the BOI, or
where the user has positioned the file. This depends upon
the parameters included with the copy statement or
intervening file positioning statements (refer to Binary
Coded Statements).

BINARY COPY STATEMENTS

Binary copy statements copy on a bit-by-bit basis and
prodUce a aup1ieate of binary and, m most· cases, cooeo
data.

The following statements are the principal binary copy
statements.

COPYBR(lfn1 ,lfn2,n)

This copies n records from lfn 1 to lfn2· If the
EOI on lfn1 is encountered before n records are
copied, an EOF is added to lfn2, and the
operation terminates.

COPYBF(lfn
1

,lfn2,n)

This copies n files from Ifni to lfn2· If more
than one file is copied, the result is a multifile
file. If the EOI on Ifni is encountered before n
files are copied, an EOF is added to lfn2, and the
operation terminates.

COPYEI(lfn
1
,lfn2,x)

This copies file lfn 1 to file lf n2 until an EOI is
encountered on lfn1. If a third parameter (x) is
present, both files are rewound before the copy
and then, after the copy is completed, both files
are rewound, verified, and rewound. This x
parameter can be any 1- to 7-character alpha­
numeric name. The verification is a bit-by-bit
comparison of the copy with the original. Errors,
if found, are identified in the job output.

The following copy statements in a job create three new
files from two old files (figure 4-1).

COPYBF(ORIGl,NEWl)
COPYBR(ORIG2,NEW2)
COPYBR(ORIG2,NEW3)

4-1

BOI 801 ,-...., r- - --,
I first first I

record record L_. _ _J L._ _ _J

EOR
COPYBF(ORIG1.NEW1)

ORIG1 EOR
NEW1 ,---, ,---,

I = =I L _ _. L._ _ _J

EOR EOR
EOF EOF

801 80I l NE~ r- --, COPYBR(ORIG2.NEW2)
,---,

I fint I "'~I record L._ _ _J L._ _ _J

EOR
ORIG2 EOR

.---,
COPYBR(ORIG2.NEW3)

I = I I Dl'H \
L. I

-....J Lt- - --,
lNEW3

EOft
EOF tint I

record

L- -J
J EOR

Figure 4-1. File Creation with Copy Statements

CODED COPY STATEMENTS

Coded copy statements copy on a character-by-character
~asis. They treat the characters as constituting line
images of up to 150 characters per line. Accordingly, the
coded copy statements only duplicate information that is
in coded lines (program output, text files, and so on).

Primarily, a coded copy is employed to reformat a coded
file. The following statements are coded copy state­
ments.

COPYCR(lfn1 ,lfn2,n,fchar,lchar)

This copies n coded records from Ifni to
lfn2• If fchar and/or lchar are present, they
specify the first and last character of each
line where copying begins and ends. This
vertically truncated version oC the original
is le!t-justified in the copy. If fchar and

lchar are both omitted, no reformatting
takes place. If the EOI or EOF is en­
countered before n records are copied, an
EOF is added to 1fn2 and the copy operation
terminates.

COPYCF(lfn1,lfn2.n,fchar,lchar)

This copies n coded files from lfn1 to lfn2.
If n is greater than 1. these files are
multifiles. If fchar and/or !char are present,
they specify the first and last characters of
each line where copying begins and ends.
This vertically truncated version of the
original is left-justified in the copy. If f char
and !char are both omitted, no reformatting
takes place. If the EOI is encountered
before n files are copied, an EOF is added to
lfn2, and the copy operation terminates.

80438300 A

COPYSBF(Jfn •• 1fnn.n) .a.· &.

This copies n files from If n1 to lfn2. shifting
each line one character to the right and
adding a leading space. (A space is the
printer carriage control character for single
spacing.)

The character 1 is inserted at the beginning
of each record as the files are copied. (A 1
is the printer carriage control character for
starting a new page.)

If an EOI is encountered before n files are
copied, an EOF is added to lfn2, and the
operation terminates.

This copy statement is primarily used to
format the OUTPUT file for printing. It is
possible to copy INPUT directly to OUTPUT.
Using defaults, the control statement would
be as follows:

COPYSBF.

The following list is a segment from an employee file
called EMPLOY3.

1445
1446
1447
1448

JONES, E.T.
KING, L.A.
LANG, R.-B.
LONG, T. M.

J22
K921
L404
Lll

66.25
49.88
43.35
38.97

GS7
GS7
GS7
GSll

This segment gives th~ sequence number, name, employee
number, deductions, and rating for individual employees.
To create a second file EMPLOY 4 with only the name and
employee number, use the following statement.

COPY CF(EMPLOY3,EMPLOY 4,1, 7 ,30)

This statement extracts the characters from columns 1
through 30 and left-justifies them in the new file
EMPLOY 4. This file is as follows:

JONES, E.T. J22
KING, L. A. K921
LANG, R. B. L404
LONG, T. M. Lll

VERIFY STATEMENT

The VERIFY statement makes a bit-by-bit comparison of
two files to detect any variance between the contents of
these files. This is a convenient way to check for errors
in a copy operation. The basic format of this statement is
as follows:

60436300 A

Two files being compared.

Defines the comparison with
the following values.

!J..
N=O

N=x

N

R

Description

Verify terminates on
the first empty file
encountered on either
file.

Verify x files; default
is 1.

Verify terminates
when EOI is encoun­
tered on either file.

Rewind both files be­
fore and after the
verify.

A Abort if error occurs.

(Ref er to the NOS Reference
Manual. Volume 1 for the full
range of pi values.)

As an example, the following job demonstrates the
operation of the VERIFY statement. Two input files with
slight differences are copied into the system. The
VERIFY statement is used to detect these differences.

DEMO.
USER Statement
CHARGE Statement
COPYBR(,FILEl)
COPYBR(,FILE2)
VERIFY(FILE1,FILE2,R)
7/8/9
$608.20
$012.33
$111.49
7/8/9
$608.20
$012.34
$101.49
6/7/8/9

The output from the verification is shown in figure 4-2.
The first word was a match; the next two words were not
and were listed in octal display code with the logical
difference of each pair to pinpoint the location in the
word where the difference was found. The first error is
diagrammed to show how this is read.

4-3

\'ERIFY ERROR LIST. FILE
RECORD ~ORD DATA FROM FILE i

RECORD TYPE TEXT/$608.20

1
2

5333 3435 5736 3655 0000
5334 3434 5737 4455 0000

77/07/28. 15.55.13. PAGE 1
DATA FROM FILE2 LOGICAL DIFFERENCE

TEXT"/$608.20

5333 3435 5736 3755 0000
5334 3334 5737 4455 0000

0000 0000 0000 0100 0000
0000 0100 0000 0000 0000

enc1o1 not

ii li li iT Jh ii li 11 11 j
5333 3435 5736 3656 0000 5333 3436 5738 3756 0000

' 15333 343& 5738 38ei5 0000
I

logial clfftnnce----. 0000 0000 0000 0100 0000

Figure 4-2. Output from Processing a VERIFY Statement

FILE POSITIONING STATEMENTS

File positioning control statements reposition the current
position of a file for selective reading, writing, and
copying. Only the principal parameters are explained; the
full set of parameters for each statement is given in the
NOS Reference Manual, Volume 1.

BACKGROUND

The current position of a file is the location in the file
where the next operation that accesses the file will begin
to read or write data. This location can be at the BOI,
after an EOR, after an EOF, or at the EOL Reading
records from a file can leave the current position at the
end of the last record read, writing a file with a program
can leave the current position at the end of the last
record written, and copying statements can leave the
current position of both the original and the copy after
the last record or file copied.

FORWARD POSITIONING STATEMENTS

The following statements move the current position of a
file for ward toward the EOI.

SKIPR(lfn,n)

This moves the current position of the
named file (lfn) fcrward the designated
number of records (n). EOF marks are
separate records and are included in the
record count. I! the EOI is encountered
before n files are passed, the current
position remains at the EOI.

SKIPF(lfn,n)

This moves the current position of the
named multifile file (lfn) for ward the
designated number of files (n). If the EOI is
encountered before n files are passed, the
current position remains at the EOL

SKIPEI(lfn)

This moves the current ~tion of the
named file or multifile file (lfn) to EOI. On
magnetic tapes, which have no EOI, the
operation stops at the EOF indicator.

BACKWARD POSITIONING STATEMENTS

The following statements move the current position of a
file backwards toward the BOI.

BKSP(lfn,n)

This moves the current position of the
named file (lfn) backwards the designated
number of records (n). EOF indicators are
separate records and are included in the
record count. If BOI is encountered before n
records are passed, the current position
remains at the BOI.

SKIPFB(lfn,n)

This moves the current position of the
named multifile file (lfn) backwards the
designated number of files (n). If BOI is
encountered before n files are passed, the
current position remains at the BOL

60436300 A

REWIND(lfni ,lfn2, •••)

This moves the current positions for files
lfn1,lfn2, ... back to the BOI.

The following job is made up of file positioning statements
and one-line records organized into files. This job
demonstrates the operation of the positioning statements.

job statement
USER statement
CHARGE statement
COPYEI(,DEMO)
REWIND(DEMO)
SKIPR(DEM0,4)
BKSP(DEM0,3)
SKIPF(DEM0,2}
BKSP(DEM0,10)
SKIPEI(DEMO)
SKIPFB(DEM0,3)
REWIND(DEMO)
7/8/9
FILE 1 * RECORD 1
7/8/9
FILE 1 * RECORD 2
7/8/9
FILE 1 * RECORD 3
7/8/9
6/7/9
FILE 2 * RECORD 1
7/8/9
6/7/9
FILE 3 *RECORD 1
7/8/9
FILE 3 * RECORD 2
7/8/9
6/7/9
FILE 4 * RECORD 1
7/8/9
FILE 4 * RECORD 2
7/8/9
6/7/9
6/7/8/9

Figure 4-3 shows the structure of this multifile file in
memory and how the position is moved by the operation of
each control statement. The crossmarks on the broken
lines show the terminators that were counted in the
operation. If this multifile file had had only one EOF
before the EOI, operation 7 would have moved the position
to FILE 2 * RECORD 1.

60436300 A

FILE 1 • RECORD 1 +©·Cf> ~ <f>
-END OF RECORD- + + I
Fl LE 1 • RECORD 2 I

Cf>
I I .,__
I

-END OF RECORD-
I J_ -t- I

T I I I
Fl LE 1 • RECORD 3 I I I I I
-END OF RECORD- j_ + I I I

I J_ I T I -END OF Fl LE- + T t1 T
I I

FILE 2 • RECORD 1 +L I I
I I I -END OF RECORD-· T I I -END OF FILE- -t -'-

~
I

FILE 3 • RECORD 1 .L I +r-

-END OF RECORD- I I
I I

Fl LE 3 • RECORD 2 I I
-END OF RECORD- I I
-END OF Fl LE- I I

I T
Fl LE 4 • RECORD 1 t I
-END OF RECORD- I I

I I
FILE 4 RECORD 2 I I
-END OF RECORD- I I
-END OF Fl LE- I I

I T
-END OF FILE- I +
-END OF INFORMATION- .L Q)

NOTES:

© REWIND(DEMQ) ® BKSP(DEMO, 10)

@ SKIPR(DEM0,4) @ SKI PEI (DEMO)

@ BKSP(DEM0,3) (i) SKI PFB(DEM0,3)

@ SKI PF(DEM0,2) @ REWIND(DEMO)

Figure 4-3. Operation of File Positioning
Statements on a Multifile File

.,_
I
I
I
I
I
I
I
I
I
I
I
I
~

4-5

-PERMANENT FILES 5

This section explains how a user can create files within
the system and preserve them beyond job processing. The
following control statements are described in this section.

SAVE

GET

REPLACE

APPEND

DEFINE

ATTACH

CHANGE

PURGE

PERMIT

CATLIST

Only the principal parameters are.explained; the complete
set of parameters for each control statement is given in
the NOS Reference Manual, Volume 1.

A user can create, access, and modify mass storage files
that remain within the system until he or the installation
specifically removes them. These files are called per­
manent files.

Permanent files are either indirect or direct access
according to the manner in which they are accessed. An
indirect access permanent file is accessed by making a
local copy and having control statements operate on that
copy rather than the original. This copy will be released
after job processing unless the user specifically saves it as
an added permanent file or uses it to replace the original
version. A direct access file is accessed in place; that is,
control statements interact with the permanent file. No
copy is made.

Direct access permanent files off er a variety of multiple
access (simultaneous access of a single file by two or
more users) capabilities not available with indirect access
files (refer to section 8 of the NOS Reference Manual,
Volume 1). Also, direct access files have greater 1/0
efficiency, because no intermediate copy is used. For the
time-sharing user, an advantage of the direct access file
is that all modifications and additions are made directly
on the permanent file and should the terminal become
disconnected or the system go down, all previous work is
not lost. However, care must be taken in altering a direct
access file since all alterations (correct and erroneous)
are made directly to the permanent file, not a copy.

Indirect access files require smaller allocations of mass
storage space than direct access files. Thus, permanent
files that are smaller in size are typically made indirect
access files. The character content of this section on
permanent files is a good measure of the upper limit for
an indirect access permanent me.

60436300 A

INDIRECT ACCESS PERMANENT FILES

HOW TO CREATE AN INDIRECT ACCESS
PERMANENT FILE

The data that is to be made an indirect access permanent
file must first exist as a local file. This local file may be
created in any manner by job processing. The system
copies the local file to the permanent file space on mass
storage when the user includes the following control
statement in a control statement record.

SAVE(lfn)

lfn Name of the local file

The permanent file copy will have the same name. If the
user Wants the permanent file to have a different name.
he uses the following form.

SA VE(lf n=pfn)

pfn Name the user gives the indirect access
permanent file. This name must be
used for future access of this per­
manent file.

The SA VE statement copies the entire file; that is, the
permanent file will contain the entire local file whatever
the current position of lfn when the SA VE statement is
processed. After SA VE is processed, the local file is
rewound.

In the following example, an input record is made a local
file with the name A. This local file is made an indirect
access permanent file with the same name.

COPYBR(,A)
SAVE(A)

A job contains the fallowing control statements.

BASIC(B=ZETA)
SAVE(ZETA)

The BASIC statement compiles a BASIC source program,
which is a record in the same job. The binary object code
is put on a local file with the name ZETA. The SA VE
statement makes this local file an indirect access per­
manent file with the same name.

5-1

HOW TO ACCESS AN INDIRECT ACCESS
PERMANENT FILE

A local copy of an indirect access permanent file can be
obtained by the creator of the permanent file if he
includes the following control statement in the control
statement record of a job he submits.

GET(pfn)

If the user wants the local copy to have a different r.ame,
he enters:

GET(lfn=pfn)

lfn Temporary name the user has chosen
for the local copy to be made from pfn

The local copy is always ·at the BOI after GET is
processed. If a local file named lfn existed before the
GET request, it is lost when GET is processed.

Example 1:

To obtain a local copy of the indirect access permanent
file A created in a previous example, the user enters the
following control statement.

GET(A)

If he wants the local copy to have the name INFILE, he
enters:

GET(INFILE=A)

Example 2:

To execute the BASIC program compiled and saved in a
previous example, the user includes the following control
statements in a job.

GET(ZETA)
ZETA.

HOW TO ADD INFORMATION TO AN INDIRECT
ACCESS PERMANENT FILE

The user can make additions to one of his indirect access
permanent files if the additions are first made local files.
He adds these local files to the permanent file with the
following APPEND control statement.

APPEND(pfn,lfn1 ,lfn2, •••)

pfn Name of the indirect access per­
manent file to receive the ad­
ditions

(lfn1 ,lfn2' •••) Local files that constitute the ad­
ditions

For example, a user keeps a weekly journal of
transactions. This is an indirect access permanent file
called JOURNAL. Approximately every day he adds new
transactions to this file. To add the transactions for
Thursday and Friday, which have been made into two local
files called THUR and FRI, he enters the following control
statement.

APPEND(JOURN AL, THUR,FRI)

HOW TO MODIFY AN INDIRECT ACCESS

PERMANENT FILE

If the user wants to modify one of his indirect access
permanent files, he can do one of the following.

• Get a local copy, alter the local copy with
positioning and copy statements or with a pro­
gram, and then replace the existing permanent
file with this new version

• Produce a new local file and, without getting a
copy of the existing permanent file, replace the
permanent file with the new local copy

In either case, the REPLACE control statement replaces
the existing pfn with the new lfn. If pfn and lfn have the
same name, the for mat of the statement is as follows:

REPLACE(pfn)

If the local copy has a different name, the format is as
follows:

REPLACE(lfn=pfn)

For example, a firm maintains a tile of 18 part listings.
Each listing is a single record in the file. The file is an
inci.lrect access permanent file called PARTLST. At a
particular date, this file will be updated with one deletion
and two additions. The updated file will have 19 part
listin~ records; the job is as follows:

60436300 A

job statement
USER statement
CHARGE statement
GET(LOCALl=PARTLST)
COPYBR(LOCAL1,LOCAL2,5}
COPYBR(,LOCAL2,l)
COPYBR(LOCAL1,LOCAL2, 7)
SKIPR(LOCALl, l)
COPYBR(LOCALl;LOCAL2,3)
COPYBR(,LOCAL2,l)
COPYBR(LOCAL1,LOCAL2,2)
REPLACE(LOCAL2=PARTLST)
-end-of-record-

I First Addition

-en<k>f-reeord-

Second Addition

-end-of-information

Figure 5-1 outlines the job processing that creates the
updated file. A local copy (LOCALl) of the indirect
access permanent file P ARTLST is made. By copying
from this file and the INPUT records, a second local file
(LOCAL2) is created. This file has one deletion and two
additions. Finally, LOCAL2 replaces the existing per­
manent file PARTLST. Future access of PARTLST will
receive a copy of this updated version.

DIRECT ACCESS PERMANENT FILES

HOW TO CREATE A DIRECT ACCESS PERMANENT
FILE

A user can create a direct access permanent file by
defining an area of mass storage for that purpose with the
DEFINE control statement and then copying a local file or
input information to that area. The basic format of the
DEFINE control statement is as follows:

DEFINE(pfn)

pfn Name the direct access file will have

In the following example, the first statement defines an
area on mass storage for a direct access file with the
name FILE24, and the second statement copies an input
file to this area.

DEFINE(FILE24)
COPYBF(,FILE24)

60436300 A

COPY
LOCAL 1 OPERATIONS LOCAL2

RECORDS
1·5

RECORDS

-----·-
~12 -.

RECOR_OS
14-16

RECORDS
17,18

EOI

6
RECORDS

1 RECORD

7
RECORDS

3
RECORDS

1 RECORD

2
RECORDS

EOI

Figure 5-1. File Update

INPUT

ADD1

ADD2

The following example defines a direct access file with
the name NEWFILE and obtains local copies of two
indirect access permanent files (TESTl and TEST2).
TEST! is positioned to the fourth record, and the fourth,
fifth, and sixth records are copied to NEWFILE. TEST2 is
positioned to the third record, and the third and fourth
records are added to NEWFILE with a copy. NEWFILE is
rewound and copied to the printer for verification.

DEFINE(NEWFILE)
GET(TESTl, TEST2)
SKIPR(TF.STl,3)
COPYBR(TESTl,NEWFILE,3)
SKIPR(TF.ST2,2)
COPYBR(TEST2,NEWFILE,2}
REWIND(NEWFILE)
COPYSBF(NEWFILE,)

HOW TO ACCESS A DIRECT ACCESS PERMANENT
FILE

A user can access a direct access permanent file he has
created by including an ATTACH control statement in a
job he submits for processing. The basic format of this
statement is as follows:

5-3

A TT ACH(pfn)

pf n Name or the direct access permanent
file being accessed

After processing this statement, control statements that
follow in the same job can interact directly with the
contents of this file.

If the user wants to access the direct access file with a
different name during job processing, he employs the
following format.

A Tl' ACH(lfn=pfn)

lfn Temporary substitute name

HOW TO MODIFY A DIRECT ACCESS PERMANENT
FILE

The copy and file positioning control statements can be
employed by a program mer to alter his direct access files.
However, if the program mer is periodically updating large
files, he should investigate the capabilities offered by the
system utility control statements (refer to section 14,
NOS Reference Manuai, Volume 1).

Whenever the user initiates alterations of a direct access
permanent file, he makes changes to the permanent file,
not a temporary copy. As a precaution against inadvert­
ent modification of a direct access file, the system
requires the user to specify write mode on an ATTACH
statement before he can alter the file attached. The
format of an ATTAGH statement that grants write
privileges is as follows:

A TT ACH(lfn=pfn/M=W)

M=W Signifies mode equals write

Example 1:

The following job adds a new record to an existing direct
access permanent file called LISTING.

job statement
USER statement
CHARGE statement
A TT ACH(LISTING/M=W)
SKIPEl(LISTING)
COPY(,LISTING)
7/8/9

new

record

6/1/8/9

Example 2:

The following control statements replace the fifth record
of a direct access file.

A Tl' ACH(NEWFILE/M=W)
SKIPR(NEWFILE,4)
COPYEI(NEWFILE, TEMP)
REWIND(NEWFILE, TEMP)
SKIPR(NEWFILE,4)
COPYBR(,N EWFILE)
SKIPR(TEMP)
COPYEl(TEMP ,NEWFILE)

These statements attach the direct access file NEWFILE
in write mode, skip four records, and copy the remainder
of the file to a temporary file called TEMP. A new input
record is copied to NEWFILE as a fifth record. The first
record in TEMP is skipped, an~ the remainder of TEMP is
returned to NEWFILE.

PURGING PERMANENT FILES

The user can purge (remove from the system) one or more
of his indirect and direct access permanent files by
including the PURGE control statement in a job. The
basic format of this statement is as follows:

PURGE(file1 ,file2, •••)

file1,me2, ••• Names of the user's permanent
files to be removed from the
system. The removal is per­
manent, and they can in no
way be accessed in the future.

Al TERNA TE ACCESS OF PERMANENT FILES

A user can grant other users access permission to his
permanent file by selecting an appropriate access cate­
gory when he creates the file. He selects this category
with an added parameter on the SA VE or DEFINE
statement. This parameter is a keyword with the
fallowing form.

CT=ct

ct One of the following access categories
of a permanent file6

p Private file. This limits
access to the originator of
the file tmless he specifies
individual alternate users
with the PERMIT control
statement (explained
later). Private is the de­
fault category for per­
manent ftles.

60436300 A

s

PU

Semiprivate me. This
limits access to the origi­
nator and other users who
include the following pa­
rameters on a GET or
ATTACH control state­
ment.

• Name ot the file

• User number of the
originator

• Password specified by
the originator for this
file (originator's op­
tion)

'lbe system keeps a de­
tailed record of all alter­
nate accesses to this me.
This record is available
with the CATLIST control
statement (explained
later).

Public file. Access re­
quirements are identical
to the semiprivate file;
however, the system
keeps a record only of the
total number of accesses.

In addition to establishing an access category, to deter­
mine who can access the file, the originator can establish
an access mode to determine how an alternate user can
access the file. Mode is specified on the SA VE or DEFINE
control statement with the following keyword parameter.

M=m.

This guide considers only two values of m, R (read) and W
(write). Eight modes are available and are explained in
the·NOS Reference Manual, Volume 1.

If read is specified' with M=R, alternate users can only
read the file after accessing it. If write is specified with
M=W, alternate users can read and write after accessing
the file.

The originator of an indirect access permanent file
automatically has read and write permission when he
accesses that me •. For a direct access me, the default
mode is read, and the user must specify M=W if he intends
to write on it.

'lbe originator of a permanent me can give that file
greater security by associating a password with it. This
password has no relation to the password included on the
USER control statement, which gives access to the
system. The file password is specified on a SA VE or
DEFINE statement with the following keyword parameter.

60436300 A

passwor A 1- to 7-alphanumeric character
password ·

If a user wants to create an indirect access permanent rue
that can be accessed by others, he uses the following
format of the SA VB statement.

SA VB(Jfn=pfn/PW=passwor,CT--ct,M=m)

An alternate user who wants a copy of this me includes
the following format of the GET control statement in his
job.

GET(Jfn=pfn/PW=passwor, UN=usernum)

usemum User number of the rtle's originator

'lbe keywords PW=, CT=, M=, apd UN= appear in any order
after the slash. The slash is a required separator that
must eome after the file names if any keywords are to be
used.

Example 1:

A user with user number AB22 creates an indirect access
permanent file called DAT AS. He gives it the password
ABC, makes it public, and grants read mode to alternate
users. The format of the SA VE statement with which he
does this is as follows:

SAVE(DATAS/PW=ABC,CT=PU ,M=R)

If the origin& tor of this file wants a copy, he uses the
following statement.

GET(DATAS)

If an alternate user wants a copy of this me, he inserts
the following statement in his job.

GET(DATA8/UN=AB22,PW=ABC)

If the originator of a permanent file has made it private
by default or specification, he can grant alternate access
only to users he specifies on a subsequent PERMIT
statement. Format of this statement is as follows:

usernumi

Example 2:

User numbers of those who are
being granted access permission to
the private file with the name pfn

Permission modes R (read) and W
(write)

A user with user number AB22 includes the following
control statements in a job.

SA VE(LIST28)
PERMIT(LIST28,SM182=R)

5-5

SA VE creates an indirect access permanent file LIST28
with private category and no password. Tne permit grants
read access to the alternate user with user number SM182.

To obtain a copy of LIST28, the alternate user includes
the following control statement in his job.

GET(LIST28/UN=AB22)

If the user wants to create a direct access permanent file
that can be accessed by others, he uses the following
format of the DEFINE control statement.

DEFINE(lfn=pfn/PW=passwor,CT=ct,M=m)

An alternate user who wants to access this file includes
the following format of the A'ITACH statement in his job.

A'ITACH(lfn=pfn/PW=passwor,UN=usernum,M=m)

lfn Optional substitute name for the per­
manent file name pfn

UN User number of the originator of the
file

The default mode is M""R. it the alternate user has been
granted write permission for this file and wants to
exercise that permission, he must include M=W; as the
originator must do.

Example 3:

A user with user number AA29A creates a direct access
file called XX7X. He assigns the password ENTER,
establishes the categriry as semiprivate, and specifies
write permission for alternate users with the fallowing
statement.

DEFINE(XX7X/PW=ENTER,CT=S,M=W)

If the originator of this file wants to access it, he uses the
following control statement.

A TT ACH(XX7X)

If the originator wants to write on it, he uses the
following statement.

A TT ACH(XX7X/M=W)

If an alternate user wants to access this file for reading,
he includes the following control statement in his job.

A TT ACH(XX7X/PW=ENTER, UN=AA29A)

If an alternate user wants to access this file for writing,
he includes the following control statement in his job.

A TT ACH(XX7X/PW=ENTER, UN=AA29A,M=W)

If the originator of an indirect or direct access permanent
fiie wants to change the access parameters for that file,
he uses the CHANGE control statement. Format of this
statement is as follows:

CHANGE(nfn=ofn/PW=passwor,CT=ct,M=m)

nf n

Example 4:

Optional new file name that will re­
place the old file name ofn. The
keyword parameters PW=, CT=, and M=
are included only if they are to be
changed. If the password is to be
cancelled, the user sets PW=O (zero).

A direct access permanent file called ZZ3 has the
password PASS2. Read permission has been granted to
alternate users. The origina_tor of this file changes the
password to PASS3 and the access mode from read to
write with the following control statement.

CHANGE(ZZ3/PW=PASS3,M=W)

HOW TO OBTAIN A LISTING OF
PERMANENT FILES

The system maintains a separate catalog of each user's
permanent files. A user's catalog contains the names,
characteristics, and histories of his current permanent
files. Catalogs are continually updated as permanent files
are created, accessed, modified, or purged. A user can
obtain a listing of permanent files (his and others he can
access) by including the CA TLIST control statement in
one of his' jobs. The listing is put in the OUTPUT file for
that job.

A user can obtain a listing of the names of his permanent
files with the following version of the control statement.

CATLIST.

A user can obtain a listing of the names of permanent
files of an alternate user that he can access with the
following version of the control statement.

CATLIST(UN=usernum)

usernum User number of the alternate user

If the user wants the names, characteristics, and histories
of all his permanent files, he uses the fallowing control
statement.

CATLIST(LO=F)

If the user wants the names, characteristics, and histories
of all the permanent files in an alternate user's catalog
that he can access, he uses the following control state­
ment.

60436300 A

Cl~ALOG OF uaernwa 77/ma/dd. bh.mm.as.

FILE NU£ ACCESS FILE-TYPE LENGTH DN CREATION LAST" ACCESS LAST" l«>D
PASSWORD KD/CNT" INDEX PERM SUBSYS DATE/TIME DATE/T!ME DATE/T!ME

Figure 5-2. CA TLIST Parameter LO=F Heading

CATLIST(LO=F ,UN=usemum)

usernum User number of the alternate user

The headings printed out for a full listing (LO=F) are given
in figure 5-2. The terms in these headings have the
following significance.

yy/mm/dd

hh.mm.ss

FILE NAME

PASSWORD

ACCESS
MD/

/CNT

FILE-TYPE

INDEX

PERM.

60436300 A

Year. month, and day of the listing.

Listing time in hours, minutes, and
seconds.

Name of each file listed after a
sequence number.

File password if one is given. This
term is missing from listings of
alternate catalogs.

This entry will be IND if the file is
indirect access or DIR if the file is
·direct access.

Count of the number of times the
file has been accessed (originator
and alternate users).

Access category (PRIVATE, SEMI­
PRIVATE, or PUBLIC).

Reserved for system use.

Permission mode. In the examples
in this guide, this can be READ or
WRITE.

LENGTH

SUBSYS

DN

CREATION
DATEtI'IME

File length given in decimal num­
ber of characters. The minimum
that will be shown is 640 charac­
ters however small the file.

Files created in a time-sharing
session with a subsystem associated
with them (FTNTS, BASIC,
BATCH, or EXECUTE). If this
field is blank, no subsystem is
associated with the file.

Gives a device number for direct
access files. An asterisk in this
column indicates the file is on the
user's master device. This device
holds the user's catalog and all his
indirect access permanent files.

Two-line entry giving the date and
time of file creation.

LAST ACCESS Two-line entry giving the date and
DATE/TIME time of the last access of this file.

LAST MOD
DATE/TIME

Two-line entry giving the date and
time of the last modification of
this file.

Refer to the NOS Reference Manual, Volume 1 for
additional catalog listings.

5-7

CONTROL LANGUAGE 6

A user inserts control language statements into the
control statement record of a job to give the sequence of
control statements a program-like structure; that is,
normal unconditional processing of control statements in
series is modified so that tests, transfers, and loops are
initiated within these statements as if they were lines in a
program. This section outlines the following control
language statements.

SET

DISPLAY

IF

GOTO

CALL

Only the basic parameters needed by the applications
programmer are included. The full range of parameters is
given in section 4 of the NOS Reference Manual, Volume
1.

FORMAT

A control language statement consists of a descriptive
name followed by symbolic names and/or an expression.
Separators and terminators are unique and must be used as
shown in the individual formats.

EXPRESSIONS

The expressions used with control language statements are
similar to the expressions used with higher-level lan­
guages. These mey contain constants, arithmetic opera­
tors. relational operators, boolean operators, functions,
and symbolic names (refer to appendix E for a listing of
the operators).

FILE FUNCTION

The FILE function is used as a parameter in the SET,
DISPLAY. and IF control language statements to deter­
mine the status of any me assigned to the job. Status
includes file type, location, and accessibility. The format
of the FILE function is as follows:

FILE(lfn,expression)

lfn

expression

60436300 A

Name of the file for which status is
being determined

Legal expression; parentheses must
be used

The special symbolic names used in this expression specify
the status to be determined. Evaluation of the expression
will give a value of 1 if it is true and a value of O if it is
false. The following are symbolic names and their use.

File Type:

LO Local

PR

IN

PH

.PM

Print

Input

Punch

Direct access permanent file

File Location:

AS

MS

File assigned to the user's job

Mass storage

MT 7-track magnetic tape

NT 9-track magnetic tape

The FILE function is explained in subsequent descriptions
and examples.

SET ST A TEMENT

SET control language statement sets a value in one of the
software registers reserved for control language use.
Format of the statement is as follows:

SET(Ri=expression)

expression

Identifies one of three 18-bit soft­
ware registers; can be 1, 2, or 3.

Legal expression; parentheses must
be used.

The boolean values TRUE or T and FALSE or F can be
specified as the expression. These values are stored as 1
and O, re!lpectively.

As an example, the following SET statement included in a
control statement loop will increase Rl by one each time
the loop is processed.

SET(Rl=Rl +1)

Additional uses of the SET statement are given in the
examples for other control language statements.

6-1

DISPLAY STATEMENT

The D!SPLA Y control language statement evaluates an
expression and displays the result in the job's dayfile.
Numerical values are displayed in decimal and octal. If
the evaluation gives a true/false value, a 1 or 0 will be
displayed, respectively. Format of the DISPLAY state­
ment is as follows:

DISPLA Y(expression)

expression Legal expression; parentheses must
be used.

Example 1:

An input copy operation is repeated in a control statement
loop using:

SET(Rl=Rl+l)

A second copy operation is repeated with:

SET(R2=R2+1)

To obtain a printout of the total number of copies made,
the user in~lude..~ the following in the control statement
record.

SET(R3=Rl +R2)
DISPLA Y(R3)

If Rl is 8 and R2 is 3, the entry in the dayfile is as
follows:

DISPLA Y(R3)
11 138

The mer can employ the single statement

DISPLA Y{R3=Rl +R2)

and get the same entry in the dayfile.

Example 2:

The following statements make a local copy of a
permanent me and test to see if it is on mass storage.

GET(ALPHA)
SET(Rl=FILE(ALPHA,MS))
DJSPLA Y(Rl)

if ALPHA is on mass storage, the following entry is made
in the job's dayftle.

DISPLA Y(Rl)
1 lB

If ALPHA is. not on mass storage, the following entry is
made in the job's dayf'lle.

6-2

D~PLAY(Rl)
0 OB

GOTO STATEMENT

The GOTO controi language statement initiates an uncon­
ditional transfer of control statement processing to a
named statement. Format of the statement is as follows.

GOTO,stmt.

stmt Identification of the statement in the
control statement record to which proc­
essing will transfer; the comma and
period are required. The statement
identification may be any of the follow­
ing.

• Name of a ·control statement (GET,
COPYBR, and so forth).

• Name of a control language state­
ment (SET, DISPLAY, and so
forth).

• Alphanumeric identifier placed at
the beginning of the statement to
which control is to be transferred.
The statement identifier must be­
gin with a decimal digit and may
have up to six aiphanumeric char­
acters following this digit. The
identifier is separated from its
statement by a comma.

If two or more statements in the control statement record
have the same name, control will pass to the first
occurrence.

Example 1:

In the following loop from a control statement record, one
GOTO repeats the loop when the exit condition is not met.
The other GOTO causes an exit from the loop when the
exit condition is met.

2LOO P ,DJSPLA Y(Rl)

SET(Rl=Rl +1)
(exit condition)GOTO,COMMENT.
GOT0,2LOOP.
COMMENT. END

Example 2:

Figure 6-1 shows a job demonstrating variow; possibilities
of the GOTO statement; the resulting dayfile is shown in
figure 6-2.

60436300 A

GOTOJOB.

USER Statement

CHARGE Statement

SET(R1-4096)---------- 1
I

GOT0,100. 2

COPYBR(,LFN1 I

GOT0,200.

DISPLA Y(R2)

COPYBR ~ LFN1,LFN2)

GOTO,REWIND.

2XVZ..COPYSBF(LFN2.)

GOTO#COMMENT.

200,REWIND(LFN1)

SET(R:Z-1000008)

GOTO,DISPLA Y.

REWIND(LFN2)

GOT0,2XYZ.

100;0tSPLA V(RU

GOTO,COPYBR.

3
I
4

5
I
6

COMMENT. END OF DEMONSTRATION ---------17

7/8/9

TEST OF THE GOTO CONTROL LANGUAGE STATEMENT

6/7/819

Figure 6-1. GOTO Job Demonstration

17.07.19.EFD.
17.07.19.USER(EFD2501,)
17.07.19.CHARGE(404,ACCT~)
1 7 • 0 7 • 2 0 • SE r·(R 1 = 4 0 9 6)
17.07.20.GOTU,100.
17.07.21.100,DISPLAY(R1)
17.07.21. 4096
17.07.21.GOTU,COPYBR.
17.b7.22.COPYBR(,LFN1)
17. 07. 23. COPY COMPLETE.
17.07.24.GOTU,200.
17.07.24.200,REWIND(LFN1)
17. 07. 24. SET"(R2= 1 OOOOOB)
17.07.24.GOTU,DISPLAY.
17.07.24.DISPLAY(R2)

10000B

17.07.24. 32768 100000B
17.07.25.COPYBR(LFN1,LFN2)
17. 07. 25. COPY ·coMPLETE.
17.07.25.GOTO,REWIND.
17.07.25.REWIND(LFN2)
17. 07 .27 .GOTO, 2XYZ.
17.07.29.2XYZ,COPYSBF(LFN2,)
17.07.29. END OF INFORMATION ENCOUNTERED.
17. 01. 29. GOTU, COMMENT-.
17 .07 .29 .COMMENT". END OF
17.07.30.UEAD;
17.07.30.UEPF,
17.07.30.UEMS,
17.07.20.UECP,
17 .07 .30.AESR,
17. 07. 38' 32'

DEMONSTRATION****
0.002KUNS.
0.015KUNS.
0.0540KUNS.
0.119SECS.
2.205UNTS.

0.320 KLNS.

Figure 6-2. Resulting Dayfile from GOTO

60436300 A

IF STATEMENT
The IF control language statement is analogous to the
conditional branch found in higher-level languages. It
states a condition which, if met, initiates processing of a
statement on the same line; if the condition is not met,
the statement is ignored and control passes to the next
statement. Format of the IF statement is as follows:

IF(ex:pression)stmt.

expression Legal expression

stmt Control statement or control lan­
guage statement

The parentheses and period must be used as shown.

Example 1:

The following example tests the file TERM to see if it is a
loeal file. If it is, control passes to the statement
identified with 200; if it is not, register Rl is set to O.

IF(FlLE(TERUO)) GO TO ,_ 20D ..
SET (Rl =FALSE)

.
200,*TRUE

Example 2:

IF{Rl=R2)DISPLAY(Rl).

If these registers have the same value, that value will be
displayed in the dayf"tle.

CALL STATEMENT

The CALL statement enables the user to insert preestab­
lished procedures (procedure files) in the control stat~
ment record of a job. A procedure file consists of control
statements and control language statements organized
into a routine that is repeatedly used in jobs submitted by
the user. Instead of re-creating this roµtine for succes­
sive jobs, the user inserts a call to the procedure file.
When the CALL statement is processed, the procedure file
is added after the CALL statement in the job's control
statement record and becomes a part of that record. The
basic format of the CALL statement is as follows:

CALL(lfn)

lfn Name of the procedure ftle to be
inserted in a control statement record.
If a local file with the name lfn is not
found, the system does a GET
internally.

The name of the procedure file may appear as the first
statement of the file; however, it is an optional reference
and is not part of the insertion. This name may or may
not have a terminator.

6-3

If the user want:s control to be initially transferred to a
statement in the procedure file other than the fir-st, he
uses the following format.

CALL(lfn,S=ccc)

ccc Statement identifier of any statement
in the procedure file (any one of the
previously explained forms, refer to
Statement Format)

Example 1:

The following procedure file is made into an indirect
access permanent file.

DEMO
COPY BR(, TEMP)
REPLACE(TEMP=CONTROL)
GOTO.COMMENT.
GET(DEFER)
COPYSBF(DEFER,)
GOTO.COMMENT.
400,GET(CONTROL)
COPYSBF(CONTROLJ
COMMENT. E N D

The first statement DEMO is the name of the procedure
file and does not have a terminator.

A job's control statement record contains the following
statement.

CALL(DEMO)

The following relevant portion of the dayfile results.

13.25.44.CALL(DEMO)
13.25.44.COPYBR(,TEMP)
13.25.45. COPY COMPLETE.
13.25.45.REPLACE(TEMP=CONTROL}
13.25.45.GOTO,COMMENT
13.25.45.COMMENT. E N D

A job's control statement record contains the following
statement.

CALL(DEMO,S=GET)

The following is the relevant portion of the dayfile that
results.

09.11.55.CALL(DEMO,S=G ET)
09.11.56.G ET(DEFER)
09.11.56.COPYSBF(DEFERJ
09.11.56. END OF INFORMATION ENCOUNTERED.
09.11.57 .GOTO,COMMENT.
09.11.57 .COMMENT. E N D

A job's control statement record contains the following
statement.

CALL(DEMO ,S=400)

The following is the relevant portion of the dayfUe that
results.

6-4

14.33.21.CALL(DEMO,S=400)
14.33.21.400,GET(CONTROL)
14.33.21.CO PYSBF(CONTROL,)
14.33.22. END OF INFORMATION ENCOUNTER
14.33.22.COMMENT. END

Example 2:

This example demonstrates the nesting of calls to pro­
cedure files. Two FORTRAN programs convert English
units to metric units; the first program converts weights,
and the second program converts lengths. The following
job compiles these programs and saves the object code as
indirect access permanent files.

METRICS.
USER Statement
CHARGE Statement
FTN(B=WEIG)
SAVE(WEIG)
FTN(B=LENG)
SAVE(LENG)
7/8/9

I ~()R TRA!l source . I
program to convert
weights

718/9

FORTRAN source
program to convert
lengths

6/7/8/9

The following procedure file makes a local copy of WEIG
and executes it.

WEIGHT
GET(WEIG)
WEIG.

The following procedure file makes a local copy of LENG
and executes it.

LENGTH
GET(LENG)
LENG.

These files are made indirect acceim permanent files with
the names WEIGHT and LENGTH.

The following procedure file can call either WEIGHT or
LENGTH.

METRIC
CALL(WEIGHT)
GOTO,COMME..'ll{T.
2LENG 1CALL(LENGTH)
COMMENT. **END**

60436300 A

If the control statement record calls this procedure file
with

CALL(METRIC)

the procedure file METRIC will in turn call the procedure
file WEIGHT which will initiate execution of the program
WEIG. An input record of English weights will be
converted to metric.

If the control statement record calls the procedure file
METRIC with

CALL(METRIC,S=2LENG)

the program LENG will be executed, and an input record
of English lengths will be converted to metric.

The expansion of the control statement record by these
calls is diagrammed in figure 6-3. The dayfile resulting
from CALL(METRIC) is shown in figure 6-4, and the
dayfile resulting from CALL(METRIC,S=2LENG) is shown
in figure 6-5.

Control Statement Procedure File Procedure File
Record METRIC WEIGHT

CALL(METRIC) METRIC

I
I CALL(WEIGHT) WEIGHT

I
I

{
GET(WEIG)

I
WEIG.

GOTO,COMMENT.

L.- COMMENT ••eNo••

Control Statement Procedure File Procedure File
Record METRIC LENGTH

CALL(METRIC,S•2LENG) METRIC
I

I
LENGTH I 2LENG.CALL(LENGTH)

I I

I I {
GET(LENG)

LENG.

L- COMMENT ••ENO••

Figure 6-3. Control Statement Record Expansion with Nested Calls

60436300 A 6-5

17.32.34.METRIC1.
17.32.35.USER(JC8501,)
17.32.35.CHARGE(1010,NOS11)
17.32.36.CALL(METRIC)
17. 32. 36. CALL (WEIGHT")
1 7 . 3 2 • 3 7 . GE re WE IG)
17.32.38.WEIG.
17. 32. 40. STUP
17 .32.40. .006 CP SECONDS EXECUTION TIME
17 .32.41.GOTO,COMMENT·.
17.32.41.COMMENT. **END**
17.32.41 .UEAD, 0.002KUNS.
17.32.41.UEPF, 0.025KUNS.
17.32.41.UEMS, 1.313KUNS.
17.32.41.UECP, 0.599SECS.
17.32.41.AESR, 3.107UNTS.
17.32.ij?.ULCP, 32, 0.128 KLNS.

Figure 6-4. CALL(METRIC) Dayfile

08.52.25.METRIC2.
08.52.25.USER(JC8501,)
08.52.25.CHARGE(1010,NOS11)
08.52.25.CALL(METRIC,S:2LENG)
08.52.26.2LENG,CALL(LENGTH)
08.52.27.GET(LENG)
08.52.27 .LENG.
08.52.28. STOP
08.52.28 .006 CP SECONDS EXECUTION TIME
08. 52. 28. COMMENT·. **END**
08.52.29.UEAD, 0.002KUNS.
08.52.29.UEPF, 0.025KUNS.
08.52.29.UEMS, 1.252KUNS.
08.52.29.UECP, 0.563SECS.
08.52.29.AESR, 3.050UNTS.
08.52.35.UCLP, 35, 0.128 KLNS.

Figure 6-5. CALL(METRIC,S=2LENG) Dayfile

80438300 A

ERROR CONTROL 7

The system normally terminates job processing if an error
is generated. However, the user can restrict or suspend
this error exiting by inserting combinations of the
following error control statements in the job's control
statement record.

EXIT

NO EXIT

ON EXIT

The programmer inserts an EXIT statement as a reentry
point in the control statement record, where processing
can resume instead of terminating when an error is
generated. If error processing is in effect and a control
statement produces an error, the system sequentially
searches the remainder of the control sta-t-ement reeord
for an EXIT statement. If it finds an EXIT, it resumes
processing with the statement following the EXIT. If it
fails to find an EXIT, it terminates the job. If no error
occurs, processing terminates when the EXIT statement is
encountered (figure 7-1).

PROCESS NEXT
CONTROL

STATEMENT

TERMNATE

Figure 7-1. EXIT Statement Operation

60436300 A

If the user inserts a NOEXIT statement in the job's control
statement record, error -processing is suspended for the
statements that follow. Error processing will remain
suspended until the end of the job or until the system
encounters an ONEXIT statement. With error processing
suspended, the system will attempt to process each
succeeding control statement no matter how many fatal
errors are encountered.

Example 1:

The following control statements are included in the
control statement record of a job.

COPYBR(INPUT ,INFILE)
-APPEND(BETA,INFILE)
GET(-BETA)
COPYSBF(BETA,OUTPUT)

This adds an input record to an existing indirect access
permanent file. A local copy is made of the extended
permanent file and printed out. The relevant dayfile
entries are as follows:

13.53.40.COPYBR(INPUT ,INFILE)
13.53.40. COPY COMPLETE.
13.53.40.APPEND(BET A,INFILE)
13.53.41.GET(BETA)
13.53.42.COPYSBF(BET A, OUTPUT)
13.53.42. END OF INFORMATION ENCOUNTERED.

Example 2:

If the user has erroneously punched the first copy
statement so that it reads

CO PYB(INPUT ,INFILE)

the dayf"lle would read as follows:

13.59.30.COPYB(INPUT,INFILE)
13.59.30. ILLEGAL CONTROL CARD.

The job terminates at this point.

Example 3:

If, in the previom example, an EXIT has been placed after
the GET

COPYB(INPUT ,INFILE)
APPEND(BETAJNFILE)
GET(BETA)
EXIT.
COPYSBF(BETA,OUTPUT)

the dayfile would read as follows:

14.02.00.CO PYB(INPUT ,INFILE)
14.02.00. ILLEGAL CONTROL CARD.
14.02.00.EXIT.
14.02.00.CO PYSBF(BETA,OUTPUT)
14.02.01. END OF INFORMATION ENCOUNTERED.

7-1

As soon as the system encountered the illegal statement,
it skipped to the EXIT statement and resumed processing.

Example 4:

If instead of the EXIT, in the preceding example, a
NOEXIT had been placed ahead of all of these statements

NO EXIT.
COPYB(INPUT ,INFILE)
APPEND(BETA,INFILE)
GET(BETA)
COPYSBF{BETA,OUTPUT)

the dayfile would read as fallows:

14.05.44.COPYB(INPUT,INFILE)
14.05.44. ILLEGAL CONTROL CARD.
14.05.45.APPEND(BETA ,IN FILE)
14.05.45. INFILE NOT FOUND, AT 000121.
14.05.45.GET(BETA)
14.05.45.CO PYSBF(BETA,OUTPUT)
14.05.45. END OF INFORMATION ENCOUNTERED.

Although the first copy statement is illegal, the system
attempts to process each succeeding control statement.

The address in the job where the system looked for the
ALPHA reference was 000121. This is important to the
batch user when he begins taking dumps (refer to section

7-2

13, NOS Reference Manual, Volume 1), since they give the
machine language representation of his job.

Example 5:

In the fallowing example, two control statements have
errors (COPYB instead of COPYBR and BATA instead of
BETA in the GET). A NOEXIT precedes all the state­
ments, and an ON EXIT follows the APPEND.

NO EXIT.
COPYB(INPUT ,INFILE)
APPEND(BET A,INFILE)
ONEXIT.
GET(BATA)
COPYSBF(BETA,OUTPUT)

The relevant portion of the resultant dayfile is as follows:

14.17 .16.NOEXIT.
14.17 .16.CO PYB(INPUT ,INFILE)
14.17 .16. ILLEGAL CONTROL CARD.
14.17 .16.APPEND(BETA,INFILE)
14.17 .16. INFILE NOT FOUND, AT 000121.
14.17 .16.0NEXIT.
14.17.16.GET(BATA)
14.17.16. BATA NOT FOUND, AT 000121.

After NOEXIT, error processing is suspended, and even
though the COPYB is illegal, the system tries to process
the APPEND statement. After ONEXIT, error processing
is again in effect, and the failure to find a permanent file
called BATA en~ job processing.

60436300 A

TAPE FILES 8

This seation describes the use of labeled, magnetic tape
files. The following control statements are included.

LABEL

RESOURC

Th~ following descriptions and examples introduce mag­
netic tapes. The full range of tape capabilities under NOS
is given in the NOS Reference Manual, Volume 1.

DEFINITIONS
The programmer who wants to use magnetic tapes should
be familiar with the identification and layout of data on
tapes (figul"e 8-t). The following parawalJhs give funda­
mental definitions of these features.

GAP BLOCK GAP --- _._
I I I I i ;.J-PARITV

r
BITS

• I I I : I: •
TAPE • I I I I •

TRACKS ~
I I I •••• : : •••• I •

II '
l': II •
I I • I I I • I • I • ~--.1

lFRAME

Figure 8-1. Magnetic Tape Data Layout

All the parameters which identify and prescribe the layout
of data on magnetic tapes have defaults. Some of these
defa~ts are. standard with NOS; others are specified by
the 1nstallat1on. Defaults are ignored in this section to
familiarize the beginning tape user with the fundamental
parameters.

TAPE TRACKS

Data can be written on magnetic tape in 7 or 9 parallel
data. paths (tracks), extending lengthwise on the tape. A
particular model of a tape drive will read and write either
7-track exclusively or 9-track exclusively; there is no
interahangeability between the two track types on a single
drive.

The user specifies 7-track with the parameter MT and 9-
track with the parameter NT. The examples in this
section use MT.

60436300 A

DENSITY

The density of data written on a magnetic tape is the
number of characters per lengthwise inch. This is
measured in bits per inch (bpi) or characters per h1ch (cpi).
The user specifies density with the parameter D=den. The
values for den are the following.

Cen Value Track Type

LO 200 bpi 7
HI 556 bpi 7
HY 800 bpi 7
HD 800 cpi 9
PE 1600 cpi 9

The examples in this section use the specification D=HY.

RECORDING.MODI;.

Records are written on tape in either binary or coded·
mode. Binary mode is the format used to store data in
central memory. This is the 6-bit display code listed in
appen~x D. Binary mode can be used to record ai:iy data,
and since no code conversion takes place, it is usually
more efficient. Coded mode includes any of the for mats
used to store data on peripheral devices. For 7-track
tapes, this can be 6-character external BCD or the 6-
character subset of ASCil (refer to appendix D). For 9-
track tapes, this can be 8-character ASCil or 8-character
EBCDIC (refer to appendix A of the NOS Reference
Manual, Volume 1). Coded mode writes character data
(program source code, text, card input, information to be
printed, and so forth); it cannot be used for binary data.

The ~er of this guide specifies recording mode by his
selection of copy statements (refer to section 4).

The I format for tapes, described in this section, records
in binary mode. Accordingly, the user can employ this
format for writing and reading any data.

PARITY

Every tape is written with one track composed of check
bits called parity bits. The system adds these bits during
the write operation so that each frame will have an even
number of bits (even parity) or an odd number of bits (odd
P!fl'ity). The remaining tracks (six for a 7-track tape and
eJ.ght for a 9-track tape) will contain user data. When the
tape is read, .each frame is checked for proper parity~ If
any frame f8.lls the test, an error message is issued to the
dayfile, and the system rereads the block in which the
error occurred. This reread is repeated a number of

8-1

times. If the error was transient and the frame passes the
parity test, reading continues; otherwise, reading termi­
nates.

A 7-track tape uses even parity for coded records and odd
parity for binary records. A 9-track tape uses only odd
parity.

Ordinarily, the user has no control over parity but should
understand its significance to interpret tape error mes­
sages.

BLOCKS

A tape drive needs a short length of tape for stop-and-go
operations. Hence, the drive cannot position to individual
characters but must transfer data in parcels to and from
memory where the individual data items can be addressed.
These parcels are called blocks. Blocks are spaced on
tape with the necessary blank gaps between them. Block
length or size is specified in characters/block. The length
of a block may be fixed or variable, depending upon the
format used.

VOLUME

In tape terminology, a volume is the set of all files on one
reel of tape. This may be an empty set, or the set may
occupy all or part of the reel. There can be but one
volume per reel; hence, the term is often used as a
synonym for a reel of tape.

VOLUME SERIAL NUMBER

A volume serial number (VSN) is one to six alphanumeric
characters that identify the set of files on a single reel of
tape. A VSN is handwritten on the outside of a reel
(external label) and, for labeled tapes, entered in the first
internal label of the tape. If an installation is issuing
tapes to users, it will specify VSNs. These installation
tapes will have the VSN on an external label and, if
labeled tapes are being used, they will be blank-labeled.
A tape is blank-labeled when the format of the first
internal label is written on the tape with all entries
except the VSN blank. If the user has his own tapes and is
specifying his own VSNs, he will handwrite his VSNs on the
outside of the reels he submits with his jobs. If the tape is
to be labeled, he will request the operator to blank-label
it with the VSN specified. Customarily, this request is on
a form that accompanies the job. Some installations
permit users to blank-label their tapes with the BLANK
control statement (ref er to the NOS Reference Manual,
Volume 1).

The system uses the VSN on the internal label of a labeled
tape to assign that reel to a user's job via the lfn the user
specifies on a LABEL control statement. During the
remainder of job processing, control statements that
contain this lfn access the reel of tape with the associated
VSN. The lfn is released when the job terminates; the
VSN remains with the reel until specifically changed.

8-2

TAPE LABELS

A NOS-labeled tape uses internal tape labels for identifi­
cation and indexing. Each label consists of 80 characters.
The first label is the volume header label which is written
at the beginning of the tape. It contains the VSN and
owner identification (user number/family name) for the
tape. Following this, every file copied to the tape will
have a file header label before the first block of data and
an EOF label after the last block of data. These file
delimiting labels can contain indexing parameters to
access individual files by name and/or sequence number.
Indexing of multifile tapes is explained in the NOS
Reference Manual, Volume 1.

TAPE FORMAT

The format of a magnetic tape is the physical layout of
data on the tape. This can include block size, mode
(binary/coded), internal tape labels, record and file de­
limiters, and special features of data definition. Eight
formats are presently available under NOS (refer to
section 10 of the NOS Reference Manual, Volume 1). Any
one format is specified on a tape control statement with
the keyword F=f or mat; the examples in this section use I
format. This format is the most reliable since, on read
operations, the system checks the number of bytes read
with the number expected and uses this check to detect
incomplete or missing blocks.

HOW TO CREA TE A LABELED TAPE

The user creates a labeled tape with the following basic
version of the LABEL statement.

LABEL(lfn, VSN =vsn,D=den, tr ,F=format, W)

lfn

vsn

den

tr

format

Local file name temporarily given to
the data on the tape (whether it is
recorded or is about to be written).
This parameter must come first; the
others are order-independent.

Identifies the physical reel of tape. It
is used to assign the reel of tape to the
job.

Tape density (LO, HI, HY, HD, or PE).

Track type (MT or NT).

Tape format in which data will be
written on the tape (I, SI, X, S, L, E, B,
or F).

W Specifies the writing of internal file
identifying labels by the system.

When the LABEL statement is processed, the system
determines which tape drive has a tape mounted with the
specified vsn and automatically assigns that tape to the
job via the lfn in the LABEL statement.

60436300 A

Example:

A user has a reel of tape that has been blank-labeled with
VSN=MAG5. He wants to copy a file from his input deck
to this tape. He includes the following statements in the
deck.

LABEL(TFILE,VSN=MAG5,D=HY,MT,F=I,W)
COPYBR(,TFILE)

When job processing encounters the LABEL statement, the
system automatically assigns the reel of tape identified
with VSN=MAG5 to this job via the name TFILE. Data
written on this tape will be recorded at a density of 800
bpi on a 7-track unit. Since I format is specified, the data
will be written in binary mode. Binary records on 7-track
have odd parity.

The COPYBR statement copies an input record to the
tape. Subsequent control statements in the same job can
access this tape record with the name TFILE. These job
steps are recorded in the job1s dayfile as follows:

LABEL(TFILE, VSN=MAG5 ,D=HY ,MT ,F=I, W)
MT53y ASSIGNED TO TFILE VSN=MAG5
CO PYBR(, TFILE)

COPY COMPLETE.

MT53 specifies that the tape is mounted on the magnetic
tape drive with equipment number 53.

Later in the same job, this file is printed with the
following statements.

REWIND(TFILE)
CO PYSBF(TFILE,)

HOW TO ACCESS A LABELED TAPE

The user can access an existing labeled tape with the
following format of the LABEL statement.

LABEL(lfn,VSN=vsn,D=den,tr,F=format,R)

R Specifies read-label which initiates a
system comparison of the present val­
ues in the internal tape labels with the
parameters on the LABEL statement.
If the comparison fails, the job aborts.

After processing this statement, the tape is attached to
the job via the local file name lfn. Subsequent control
statements in the same job can read or write information
on this tape.

If a W is included in the LABEL statement instead of an
R, this will create a new labeled tape, and all the existing
data will be destroyed.

Before anything can be written on a reel of tape, a write
ring must be inserted. The hardware requires an explicit
action (insertion of the write ring) before it will record
data on a tape to guarantee that existing data will not be
accidentally written over. To ensure that this ring is
inserted, the user may include the optional parameter
PO=W. If the PO=W parameter is included and the tape is
mounted without the write ring, job processing will be
suspended until the operator remounts the tape with a
ring. If W is specified, PO=W is not needed to enforce
ring in.

The user can ensure that the write ring is left out so the
tape is not accidentally written on by including the

60436300 A

parameter- PO=R. If this parameter is L91.cluded and the
tape is mounted with a write ring inserted, job processing
is suspended until the operator removes the ring.

Example:

To access the tape file created in the previous example
and add information from the INPUT file, the following
control statements are included in a subsequent job.

LABEL(DEM02,VSN=MAG5,D=HY ,MT,F=I,PC =W ,R)
SKIPEI{DEM02)
COPYBF(,DEM02)

The tape file is given a new lfn (DEM02), but the vsn for
the reel (MAGS) remains the same. DEM02 refers to U1e
data on this reel, and MAGS refers to the physical reel of
tape.

If the SKIPEI statement had not been included, the input
record would have been copied over the old information.

HOW TO COPY FROM ON& TAPE TO
ANOTHER
The user can copy one tape to another by including two
LABEL statements (one for each tape) in the job.
However, a RESOURC sfatement must come before the
second or both LABEL statements. The RESOURC
statement is required whenever two or more tape drives
will be used concurrently. The format of this statement is
as follows:

RESOURC(rt=u)

rt MT for 7-track or NT for 9-traek

u Number of tape drives to be used by the
job concurrently

Example:

A job uses the fallowing control statements to copy one
tape to another and verify the copy.

RESOURC(MT=2)
LABEL(DEM03,VSN=MAGT1,D=HY,MT,F=l,R,PO=R)
LABEL(DEM04,VSN=MAGT2,D=HY ,MT,F=I, W)
COPYEI(DEM03,DEM04)
VERIFY(DEM03,DEM04,R,N=O)

The RESOURC statement specifies two 7-track tape
drives for the job. The first LABEL statement assigns the
source of the copy to one drive, the R specifies the
checking of labels, and PO=R ensures that DEM03 is used
only for reading and is not written on. The second LABEL
statement assigns the reel of tape to receive the copy,
and W specifies the writing of labels. After the copy is
made, it is verified. The dayfile entries for this sequence
are as follows:

RESOURC(MT=2)
LABEL(DEM03,VSN=MAGT1,D=HY ,MT,F=l,R)
MT53, ASSIGNED TO DEM03 , VSN=MAGTl •
LABEL(DEM04,VSN =MAGT2,D=HY ,MT,F=I. W)
MT54, ASSIGNED TO DEM04 , VSN=MAGT2 •
COPYEl(DEM03,DEM04)

COPY COMPLETE.
VERIFY(DEM03,DEM04,R,N=O)

VERIFY GOOD.

8-3

TAPE ERROR MESSAGES

Tape errors result from physical causes (which may be
transient) or incorrect formats (label missing, improper
block length, and so forth). When NOS encounters a tape­
related error, it issues a 3- or 4-line message to the job's
dayfile. The following message is typical.

MT,C13,03,MT2 ,RD,53,SO,GS4203.
MT,C13,D10000100020000000502000000000120
MT,C13,F07 ,100,BOOOOOO,LOOSO,POOOOOOOO.
MT,C13,E30,H4063,540, STATUS.

The following entries are of interest to the batch lBer.

First line: MT2 Volume serial number of the
reel of tape.

RD

53

Fourth line: STATUS

Read operation; WD indicates
a write operation.

Equipment number of the tape
drive.

Indicates that recovery was
not possible with this attempt.
If in any of these attempts,
recovery is successful, STA­
TUS will be replaced with RE­
COVERED. If recovery fails
after a number of attempts,
STATUS is replaced with the
error description. Typical en­
tries are WRONG PARITY and
BLOCK SEQUENCE ERROR
(refer to the NOS Referenee
Manual. Volume 1).

10436300 A

BATCH INPUT FROM A TERMINAL 9

This section describes deferred batch processing in which
a user types the line images of a batch job at a time­
sharing terminal and submits them for processing as a
batch job. This section also describes conversational
batch processing in which the user enters control state­
ments from a time-sharing terminal to be processed one
at a time in the same manner as time-sharing commands.
The following control statements are included in the
descriptions.

SUBMIT

ENQUIRE

DAYFILE

ROUTE

This section assumes the user is familiar with terminal
operation. Such terms as line number and primary file are
used without definition. The mechanics of terminal usage
are explained in the NOS Time-Sharing User's Guide and
NOS Time-Sharing User's Reference Manual.

In this section, user entries at the terminal
are indicated .with lowercase letters, and
system responses are indicated with upper­
case letters.

.DEFERRED BATCH
The user may create a deferred batch job during a time­
sharing session at a terminal. He types the job statements
with reformatting directives (refer to Reformatting Di­
rectives), as required. If input records are to be used,

· · ·· ·· they are typed after the statements. This sequence of
line images and embedded reformatting directives consti­
tute the submit file. The submit file enters processing
when the user types the SUBMIT statement at the
terminal.

Output from job processing can go to a printer, it can be
made a permanent file which may be displayed at the
terminal after job processing, or it can be dropped.
Output may be dropped when the user is merely checking
the dayfile to see how the job ran. When it runs
satisfactorily, output can be initiated (refer to DAYFILE
Statement).

The terminal user may include line numbers to make
corrections before submitting the job; however, the
submit me can be constructed under text mode (ref er to
the Time-Sharing Reference Manual) or with the Text
Editor (refer to the NOS Text Editor Reference Manual).

80431300A

The structure of the submit file is explained under
Reformatting Directives. Entering the submit file for
processing is explained under SUBMIT Statement. Moni­
toring deferred batch processing is outlined under EN­
QUIRE Statement and DAYFILE Statement.

REFORMATTING DIRECTIVES

The reformatting directives described in this guide are
essential for establishing the limits and divisions of a
batch job, inserting existing files, and deleting or retain­
ing line numbers. Additional directives are described in
the NOS Reference Manual, Volume 1.

All reformatting directives begin with a I to distinguish
them from contr~o1 statements; tMy do not have a
terminator.

The terminal user signals the beginning of a deferred
batch job by typing:

/JOB

He follows this with the job statement, USER statement,
and CHARGE statement (if required). Typically. the first
four statements are as follows:

/JOB
job statement
USER statement
CHARGE statement

Since multipunching is impossible on a terminal keyboard,
special directives are available to signal the EOR and the
EOF. The user specifies an EOR and EOF by typing:

/EOR

/EOF ..

An EOI directive is not needed with a deferred batch job.

The system will remove line numbers by default when it
begins processing a deferred batch job. However, the user
can retain line numbers for specific segments of the file
by inserting the following directive.

/NOSEQ

The lines that follow this directive will retain their line
numbers. If later in the file the user wants to return to
the def a ult, he inserts the following directive.

/SEQ

The system will remove the line numbers from all lines
that follow this directive.

1-1

The user can insert an existing file in the sequence of
lines that make up a submit file with the following
directive.

/READ,lfn

The parameter lfn can be the name of a local file or a
permanent file. If it is a permanent file, the system will
automatically perform a GET or ATTACH.

Figure 9-1 shows the reformatting of a submit file. The
left side of the figure shows the file as it is typed at the
terminal; the right side shows the reformatted file that
enters proce$ing.

The submit file
.. typed in

00010 /JOB

00020 JONES.T10.

00030 USER sta•ment

00040 CHARGE statement

00060 BASIC.

00060 /EOR

The refor~ed
wbmit tilt that
that en'tlln processing

JONES.T10.

USER stai.rnent

CHARGE statement

BASiC.

lllCl-of·rtcord

00070 /NOSEQ 00080 REM PROGRAM TEST
I I I

00080 REM PROGRAM TEST : :
: : : 1 1BASIC 1
I I BASIC I ~ llOUl'Clt I
I I IGU1'Cll .,..__..., ! I I
:1 I :'propm I
I I progranl I I : I
I I I I I I

00290 END--------..1 00290 ENO---------.J

00300 /SEO •Id-of record
00310 /EOR :- - - - - - - - - -1

I input for I

00320 f - - - - - - - - -1 l'1 8ASIC propn :
: inputfor w l _________ J
I BASIC protnllft 1 end-of-file
I I

00690 L - - - - - - - - -.J

00600 /EOF

Figure 9-1. Reformatting a SUbmit File

SUBMIT STATEMENT

The time-sharing user enters the SUBMIT statement to
initiate batch processing of a submit ftle he has created.
'nle basic format of the statement is as follows:

SUBMIT ,lfn,q

No terminator is needed, but the parameters are order=
dependent. The lfn parameter is the name of the submit
file. By def a ult, lfn is the primary file. The q parameter
specifies the disposition of output as follows:

B

N

Output goes to the central site printer.

Output is dropped at job termination, de­
fault from a time-sharing terminal.

E Output goes to a remote batch terminal.

Example:

The following lines constitute a submit file the user
creates and submits from a terminal. User entries are
lowercase, and system responses are uppercase.

new,demo

READY.
auto
00100
00110
00120
00130
00140
00150
00160
001'10
00180

00320
00330
00340
submit

/job
myjob.
t!!e!'(e!d25,ed)
charge(58n2)
cq.ybf(,newlist)
replace(newlist)
/ear
item one
item two

item last
/eof
•DEL•

The abbreviated form of the SUBMIT statement implies
two defaults, the submit file is the primary flle (DEMO)
and output wm be dropped (N). Any one of the following
versions of the statement accomplishes the same thing.

submit,demo,n

submit .. n

submit,demo

submit

As soon as the SUBMIT statement is processed, the system
prints the time and the 7-character job name. A typical
response is as follows:

11.12.01. AKQIFlA
READY.

80436300 A

ENQUIRE STATEMENT

After a user has entered a submit file for processing, he
can track the progress of the job with the following
ENQUIRE statement.

ENQUIRE,JN=job

job Last three characters of the name the
system displays as soon as the SUBMIT
statement is processed; no terminator is
needed

The following system responses are possible.

jobname IN INPUT QUEUE

jobname EXECUTING

jobname IN ROLLOUT QUEUE

jobname IN PRINT QUEUE

jobname NOT FOUND

The last response indicates that processing is complete.
The jobname parameter is the 7-character job designation.

After creating a submit file and entering it for prooessing
with

submit,,b

the system responds as follows:

11.15.19. AKQIBiN
READY.

The user then types:

enquirejn=bin

or

enquirejn=akqibin

The system responds as follows:

AKQIBIN IN PRINT QUEUE.

The user waits a moment and then types:

enquirejn=bin

The system responds as follows:

AKQIBIN NOT FOUND.

The user now knows his job has completed processing and
can pick up his printout.

DAYFILE STATEMENT

The time-sharing user can insert the DA YFILE statement
into a submit rue and obtain a copy of most of the dayftle
resulting from processing. This enables the user to rerun
and troubleshoot a deferred batch job without printouts.
The DA YFILE statement 6 used in conjunction with the
REPLACE statement as follows:

60436300 A

DA YFILEOfn)
REPLACE(iin)

lfn User-supplied local file name for the
dayitle

If these statements are included in a submit file, a copy of
the resulting dayfile from the beginning {job statement) to
the DA YFILE statement will be made a permanent file
with the name lfn. The user can obtain a listing of this
copy with the following statements.

GET,lfn
LNH,F=lfn

or

OLD,iin
LNH

The following submit me obtains a copy of a compiled
COBOL program that indexes the random name list
included with the file.

00100
0-(}110
00120
00130
00140
00150
00160
00170
00180
00190
00200

.

/jrb
ef-d.
user(efd25,d)
charge,8823,693N55.
get{alfa)
alfa.
daytue(day)
replace(day)
/eor
smith,a.j.
green,Le.

00340 jones,r.t.
00350 /eof
SUBMIT

13.53.39.AKQIBGL
READY.

The user verifies that processing is complete and rbtains a
dayfile listing as follows:

get, day
lnh,f=day

13.06.08.EFD.
13.06.08. USER(EFD25,)
13.06.08.CHARGE,8823,693N55.
13.06.09.GET(ALF A)
13.06.09.ALF A.
13.06.14.SOURCE LINE 28
13.06.14.S T A R T C 0 B 0 L S 0 R T
13.06.14.
13.06.14.
13.06.15.93 RECORDS RELEASED
13.06.15.93 RECORDS RETURNED
13.06.15.E N D C 0 B 0 L S 0 R T
13.06.15.DA YFILE(DA Y)

The user can make the saving of the dayfile dependent
upon error processing by adding the following statem'ents
at the end of the control statement reccrd.

DA YFILE(lfn)
REPLACE(lfn)
EXIT.
DA YFILE(lfn)
REPLACEOfn)

9-3

The first two statements provide a dayfile if no error was
detected. In that case. the EXIT causes iob termination.
The last two statementS .will be processed- only if an error
occurs. In that case, any error in the previous statements
will initiate a skip to EXIT and the proc~ing of the
remaining statements.

LISTING BATCH OUTPUT AT A TERMINAL

The output from processing a deferred batch job can be
listed at a terminal rather than printed by including the
following statement in the control statement record of
the submit file.

REPLACE(OUTPUT=pfn)

pfn User-given name of the permanent file
that is a copy of the job's OUTPUT file

The dayfile will not be included. If the user wants the
dayfile, he should include a DA YFILE statement ahead of
the REPLACE statement.

Example:

The following submit file compiles and executes a BASIC
program which obtains its input from the submit file.

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250

/job
smith.
user(s221,sm)
charge(923,92nl)
basic.
replace(output=display)
/eor
/noseq
rem basic program
input bl,b2,b3
print b3,b2,bl
end
/seq
/eot
11111,22222,33333
/eof

After the user verifies that processing is complete, he
types:

get, display
lnh,f =display

He then receives the following listing at the terminal.

1 BASICXX BASIC 3.1
76316 77/01/27. 15.28.50. PAGE 1
0

33333

00190 REM BASIC PROGRAM
00200 INPUT Bl,B2,B3
00210 PRINT B3,B2,Bl
00220 END

22222 11111

CONVERSATIONAL BATCH

Conversational BATCH refers to the batch subsystem, one
of the subsystems available under time-sharing operation.
In the batch subsystem, the user can enter batch control
statements and time-sharing commands. Like a time­
sharing command, each batch statement entered is im­
mediately pro~ed.

The user enters the batch subsystem by typing:

batch

The system responds as follows:

$RFL,O.
I

RFL refers to the running field length for the entries that
follow. Zero indicates that the system will determine the
field length for each entry. In most cases, the user need
not change this (refer to the NOS Reference Manual,
Volume 1).

80436300 A

The user t.lien types a_ batch statement or time-shari.rtg
command after the slash. A terminator is not required
except with control language statements. When the user
presses carriage return, this entry is processed. If the
processing produces a message or listing, this follows the
entry. A new slash will appear, and the user can type
another statement or command. The user ex.its from the
batch subsystem by typing the name of another time­
sharing subsystem (NULL, FTNTS, BASIC, EXECUTE).

In conversational. batch. the time-sharing user is no longer
restricted to time-sharing commands and can use batch
control statements such as the copy statements, me
positioning statements, and the ROUTE statement. The
ROUTE statement has the following format.

ROUTE(lfn,p1 ,p2,-.pn)

lfn Name of a file to be routed to some device.

60436300 A

Specifications of destination, data format,
and print forms (refer to the NOS Reference
Manual, Volume 1). The following options
are frequently used.

~ Disposition Code

DC=xx xx

LP Print on any printer

SB Punch system binary

PU Punch coded

!!.. External Characteristics

EC=xx xx

ASCil Punch ASCil

026 Punch 026 mode

029 Punch 029 mode

Example:

The following entries in a time-sharing session obtain a
local copy of a permanent file called INVTOR Y, make a
copy of the 23rd record, and route that record to any
printer. The user then picks up the printout of the record.

new,tex.t

READY.
batch
$RFL,O.
/get,invtocy
/skipr,22
SKIPR,22.
I copybr ,invtocy ,printl
COPY COMPLETE.

/rew ind,printl
$REWIND ,PRINTl.
/route.print! ,dc=lp
ROUTE COMPLETE.

/dayille
15.16.5 9.$CHARG E,966,N24.
15.17 .24.0LD,INVTORY.
15.18.21.NEW, TEST.
15.18.27 .$RFL,O.
15.18.56.GET ,INVTORY.
15.19.05.SKIPR,22.
15.19.43.CO PYBR,INVTOR Y ,PRINTl.
15.19.44. COPY COMPLETE.
15.19.57 .$REWIND,PRINT1.
15.20.11.ROUTE,PRINTl ,DC=LP.
15.20.14. ROUTE COMPLETE.
15.20.29.$DA YFILE.
USER DAYFILE DUMPED.

SKIPR, COPYBR, and ROUTE batch control statements
are available to the time-sharing user only under conver­
sational batch. The printout initiated with ROUTE does
not have a dayfile. If the time-sharing DA YFILE
command is included, it gives the sequence of command
and control statement processing from the CHARGE to
the DA YFILE statement.

9-5

ADDRESS

BASIC

BATCH JOB

CATALOG

CHARGE
NUMBER

COBOL

COMPILER

CONTROL
LANGUAGE

CONTROL
STATEMENT
RECORD

60436300 A

GLOSSARY A

The location of a word in memory. The
location is designated by number or
symbolic name.

The Beginner's All-purpose Symbolic In­
struction Code, a higher-level language
originally designed and implemented at
the Dartmouth College Computation
Center. Programs written in a higher­
level language have to be translated
{compiled) into object code (machine
language) before they can be executed.

A sequence of control statements and
optional programs and input data that
are submitted as a self-contained unit
and processed without user interven-
tfon~ · -

Each user has a catalog of his perma­
nent files that is maintained by the
system. Whenever he creates, ·modifies,
or purges one of his permanent files,
the system updates his catalog to re­
flect that action.

An alphanumeric identifier the installa­
tion uses to allocate charges to individ­
ual users for system usage.

COmmon Business Oriented Language.
This higher-level language simplifies
the programming of business data appli­
cations. The format of programs writ­
ten in this language is similar to simple
English sentences. These programs
must be translated (compiled) into ma­
chine language before they can be
executed.

A system product that translates source
code programs into object code; that is,
machine language (compilers are avail­
able for FORTRAN, COBOL, and
BASIC).

A set of statements which the tser can
insert into the control statement record
of a job to initiate skips, conditional
transfers, and iterations in the process­
ing of the statements. It also affords
the capability of setting and displaying
software registers, as well as calling
procedure files.

The first record of every batch job.
This record contains all the control
statements that specify the tasks that
the ~stem is to perform.

CONVERSA- The BATCH subsystem available under
TION AL BATCH time-sharing operation. This subsystem

allows the time-sharing user to enter
batch control statements, as well as
time-sharing commands, and obtain an
immediate response to each entry. This
distinguishes it from the other forms of
batch in which statements are sub­
mitted and processed as a group.

DEFAULT A value supplied by the system when
the user omits its specification from a
parameter list on a control statement.

DEFERRED A batch job typed at a time-sharing
BATCH terminal or included within another

batch job and submitted for processing
as a self-contained unit.

DIRECT A permanent file on mass storage that
ACCESS FILE is accessed without an intermediate

local copy being made.

FAMILY NAME A designation that the installation may
give to a group of permanent file
devices.

FILE A contiguom collection of information
that is accessed by name. It is de­
limited by a BOI and an EOI. It may be
further divided into records.

FORTRAN FORmula TRANslation, a higher-level
language consisting of symbols and
statements that can be used to create a
program closely resembling mathemati­
cal notation. This program must be
translated (compiled) into machine
language before it can be executed.

HIGHER-LEVEL A programming language written with a
LANGUAGE defined set of mnemonic words and

translated (compiled) into machine
language for execution (for example,
BASIC, COBOL, and FORTRAN).

INDIRECT- A permanent mass storage file that can
ACCESS FILE be accessed only by making a copy that

is local to a particular job. When the
job terminates, the copy is dropped, but
the original remains.

INPUT FILE The system-defined file which contains
the entire job the user submits for
processing. It is also known as the job
file.

JOB FILE Refer to INPUT FILE.

A-1

JOB STATE­
MENT

LOCAL

LOCAL BATCH

LOCAL FILE

OBJECT CODE

ORDER­
DEPENDENT

ORDER-INDE­
PENDENT

OUTPUT FILE

PARITY

PASSWORD

A-2

The first control statement of a batch
job. It identifies the job and may
specify a time limit and/or a memory
limit.

Refers to data that exists only during
the proce$ing of a single job and that
can only be acce$ed by that job.

A batch job submitted at the central
computer site.

A file copy created during the process­
ing of a single job by a copy statement,
program, or GET. When the job termi­
nates, the copy is dropped.

The machine language version of a
program that has been translated (com­
piled) from source code written in an
original higher-level language.

Parameters in a control statement that
must appear in a specified order.

Parameters in a control statement that
may ap~ar i.11 any . order, because they
are specified with keywords.

The system-defined file which contains
all the output from job processing. It is
also known as the print file.

In writing data, an extra bit is either
set or cleared in each byte so that
every byte has either an odd number of
set bits (odd parity) or an even number
of set bits (even parity). Parity is
checked on a read for error detection
and possible recovery.

A password is either an alphanumeric
value the user may have added to his
user number to increase the security of
the user number or an alphanumeric
value the user may add to one of his
permanent riles with the PW parametet"
to increase the security of that file.

PHYSICAL
RECORD
UNIT (PRU)

PERMANENT
FILE

PRINT FILE

PROJECT
NUMBER

RECORD,
LOGICAL

REMOTE
BATCH JOB

SEPARATOR

SYSTEM
RESOURCE
UNIT (SRU)

TERMINATOR

USER
NUMBER

The physical structure of a file as
deter-mined by the storage medium. For
mass storage, a PRU is 64 central
memory words (640 characters); for
magnetic tape, the size of the PRU
depends upon the tape format.

A file retairaed on ma..c:os storage until it
is specifically purged.

An OUTPUT file containing data to be
printed at a central site line printer.

An alphanumeric identifier the installa­
tion uses to allocate charges for system
usage to individual projects.

A user-defined subdivision of a file.

A job submitted from a remote batch
terminal.

A character used to separate param­
eters in a control statement.

A prograa1a :;v-ritten in a higher-level
language (FORTRAN, BASIC, or
COBOL) which must be translated
(compiled) into object code (machine
language) before it can be processed.

An accounting unit that is a composite
of central processor time, 1/0 activity,
and memory used.

The character that must end every
control statement included in a local
batch, remote batch, or deferred batch
job.

An alphanumeric identifier assigned to
a user which uniquely identifies that
user. The user must specify this
identifier on his USER statement before
he can gain access to the system.

10436300 A

DAYFILE 8

The system appends a history of control statement
processing to the OUTPUT file of every job. This is called
the dayitle. It begins with a heading that gives the 7-
character job name, the date, and the installation identifi­
cation. This heading is followed by a list of all control
statements processed by the job. Comments and diag­
nostics are added where applicable. Every line begins
with the time at which the entry was made. The time is
in the .format hh.mm.ss.. At the end of the dayfile is a
list of the resources used by the job. Possible entries are
as follows:

and write operations, opening and clos­
ing of mes, and tape positioning.

UECP

AESR

UCLP

Central processor time in seconds.

System resource units (SRUs) used by
the job.

The number of lines printed given in
kilolines.

UEAD Application charge activity in kilounits.
This is an overhead charge added to
each job.

The value of a kilounit is determined by the installation.
The SRU is an accounting unit that is a eomposite of
central processor time, 1/0 activity, and memory used.

UEPF Permanent file activity for the job in
kilounits. This activity includes the
permanent file operations initiated by
the statements SAVE, REPLACE, GET,
DEFINE, and so forth.

The .user can save an abbreviated version of the dayfile in
a separate file by including the DA YFILE control state­
ment in his job's control statement record. This version of
the dayfile begins with the job statement and ends with
the DA YFILE statement.

UEMS Mass storage activity for the job in
kilounits. This activity includes read
and write operations, opening and clos­
ing of files, and so forth.

The DA YFILE statement can also be entered under the
BATCH subsystem in a time-sharing operation from a
terminal. This produces a history of time-sharing activity
rather than job processing (refer to section 9}.

UEMT Magne.tic tape activity for the job in
kilounits. This activity includes read

A batch job submitted as a card deck is shown on the left
side of figure B-1. The dayfile resulting from processing
of the job is shown on the right side.

DAYDEMO.
USER{ED25 ,ED)
CHARGE(5822,NOS5)
NOEXIT".
FTN.
LGO.
LIMITS.
CATLIST·.
GET·(FILES)
COPYSBF(FILES,)
7/8/9
r------- -----..,
I :

: FORTRAN ·program :
I I

'------------~
7/8/9
• ------------1
i Fg~~A~0~r~~~am !
L..--~---------.J
617 /8/9

60436300 B

jobname. yy/mm/dd.

08.32.50.DAYDEMO.
08.32.50.USER(ED25,ED)
08.32.50.CHARGE(5822,NOS5)
0 8. 32. 50. NOEXIT·.
08.32.51.FTN.

installation ID.

08.32.52. .047 CP SECONDS COMPILATION TIME
08.32.52.LGO.
08.32.52. STOP
08.32.53. .008 CP SECONDS EXECUTION TIME
08.32.54.LIMITS.
08. 32. 54. CATLIST·.
08. 32. 54. CATLIST. COMPLETE.
08. 32. S4 .GET·(FILES)
08.32.54.COPYSBF(FILES,)
08.32.S4. END OF INFORMATION ENCOUNTERED.
08.32.55.UEAD, 0.002KUNS .
08.32.5S.UEPF, 0.019KUNS.
08.32.S5.UEMS, 1.923KUNS.
08.32.55.UECP, 0.618SECS.
08.32.55.AESR, 3.371UNTS. ·
08.3S.03.UCLP~ 34, 0.48 KLNS.

Figure B-1. Batch Job on Cards and the Resulting Dayf"lle

B-1

RESOURCES AVAILABLE TO THE USER c

The user can obtain a listing of the maximum system
resources that the installation has allotted to him by
including the following control statement in a job.

LIMITS.

The output from the job will contain a listing of resource
limits for the user number. If a value of UNLIMITED is
specified for a particular resource, the user has no
restriction on usage of that item. If the value is SYSTEM.
then this is a default specified by the installation.
Numeric values are decimal unless followed by a B to
indicate octal.

Example:

A ~er with user number EFD2511 obtains the following
listing of his resources.

1 LIMITS. yy/mm/dd. hh.mm.ss.

EFD2511 2511 yy/mm/dd. yy/mm/dd.

MT
RP

AB=,
AB=,
AB=,
AB=,
=
=

3,
2,

TL = UNLIMITED,
CM= 2037B,
NF = 40,
DB = 10.
FC = SYSTEM,
cs = 32768,
FS = SYSTEM,
PA =EVEN ' RO = SYSTEM,
PX =HALF
TT =TTY
TC =STANDARD
IS =NULL ' MS = 12800,
DF = 464,
cc = 464,
OF = 4,
CP = 2112,
LP = 31232,
EC = OB,
SL = UNLIMITED,

CN=,
PN= ' DS = 512,

AW = 00000000000000000415

60436300 A

The first line gives the current date and time the listing
was produced. The second line gives the user number,
user index, date when validation for this user was first
established, and the date when validation for this user was
last modified.

The fields are defined as follows:

Field Description

AB Answerback identifier (1 to 10 alpha­
numeric characters). Terminals with
answerback capability automatically
send this identifier to the system when
a user logs in. The system uses the
answerback to determine if the log-in is
from a legal terminal. Each user can
have up to four terminal answerback
identifiers. In this example, all four are
blank implying the installation is not
using the answerback capability.

MT

RP

Maximum number of magnetic tapes the
user can have assigned to his job at one
time. The user in this example can
have three.

Maximum number of auxiliary devices
the user can have assigned to his job at
one time. An auxiliary device is a self­
contained permanent file device that is
not part of a system configuration of
devices {family). This example speci­
fies a limit of two.

TL Maximum amount of central processor
time available for any one of the user's
job steps. In this example, there is no
limit.

CM Maximum number of central memory
words the user may request for any one
job. This is the maximum field length
his job can have. The specification is
given in multiples of 1 OOB words. The
value 2037B implies 203700 octal words
of memory, which is 67520 decimal.

NF Maximum number of files the user can
have with one job at one time. The user
in this example can have 40 (decimal).

DB Maximum number of deferred batch
jobs the user can have in the system at
one time (ref er to section 9). In this
example, the user can have 1 O (deci­
mal).

FC Maximum number of permanent files
the user can have. The example speci­
fies SYSTEM, which means the installa­
tion will determine this value.

C-1

Field

cs

FS

PA

RO

PX

TT

TC

IS

MS

DF

cc

OF

CP

LP

C-2

Description

Maximum number of PRUs available for
indirect-access permanent files. A
PRU is a physical record unit which on
mass storage is 640 6-bit C?haracters.
This example specifies 32768 decimal.

Maximum number of PRUs available for
any indirect-access permanent file. In
this example, this is determined by the
installation.

Refers to ODD or EVEN parity in
connection with terminal usage. In this
example, it is EVEN.

Rubout characters used to delay
carriage return at a terminal.

Specifies full- or half-duplex trans­
mission mode for a terminal.

Specifies type of terminal available to
the user. TTY is ASCil with standard
print. A correspondence code terminal
with standard print is COR; a corre­
spondence code terminal with APL print
is CORAPL.

Character set to be used by a time­
sharing terminal. This is either STAN­
DARD (64-character) or ASCil (128-
character).

Initial subsystem for a time-sharing
terminal. This is the subsystem that
will be in effect when the user does not
specify one. Possible values are NULL,
BASIC, FTN, EXECUTE, or BATCH.

Maximum number of mass storage PRUs
the user may additionally allocate via
his job. The user in this example can
allocate an additional 12800 PRUs.

Maximum number of messages the user
can issue to the dayfile. Refer to
section 11 of the NOS Reference
Manual, Volume 2.

Maximum number of batch control
statements the user can have in his job.
The user in this example can have 464
(decimal) statements in his control
statement record.

Maximum number of files the user can
dispose to output.

Maximum number of cards that can be
punched from the user's punch file.

Maximum number of lines a user's job
may print. The value 31232 in this
example is decimal.

Field

EC

SL

CN

PN

DS

AW

Description

The ma.'l!:imum number of extended core
memory words the user may request if
the installation is using ECS {extended
core storage). .--n;;,..

The maximum number of SRUs (system
resource unit) the user is allowed for
each job. The SR U is an accounting
value which the system determines by
formula.

Charge number to which the user is
assigned.

Project number to which the user is
assigned.

Maximum number of PRUs available to
the user for any direct access
permanent file.

Access word which specifies the user's
access options within the system. This
is a 60-bit word. When a bit 8 set, it
indicates an associated option is
1vailable. At present, 13 options ere
defined. These are read from right to
left. The access word is displayed in
octal. In this example, the octal value
415 gives the following bit representa­
tion.

9 1

\ /
100 001101

This indicates options 1, 3, 4, and 9 are
in effect. The following options are of
interest to the user of this guide.

Option Specification

1 User can change his pass-
word.

3 User is allowed to create
direct access files.

4 User is allowed to create
indirect access files.

7 User may request nonallo-
eatable devices (that is,
magnetic tape units).

8 User is allowed to access
the system without charge
or project numbers.

9 User can define, save, and
replace files on auxiliary
devices.

60436300 A

:'I Y,1;;C:

"'} 8::12 i

. J• ,f;'
'~ ~~~"') 7J

~; ~~ >.tr:
t

60436300 A

NOS STANDARD CHARACTER SET

ASCII HOLLERITH EXTERNAL ASCII
CDC GRAPHIC DISPLAY PUNCH BCD PUNCH

GRAPHIC SUBSET CODE (026) CODE (029)

= t : OOt 8-2 00 8-2
A A 01 12-1 61 12-1
B B 02 12-2 62 12-2
c c 03 12-3 63 12-3
0 D 04 12-4 64 12-4
E E 05 12-5 65 12-5
F F 06 12-6 66 12-6
G G 07 12-7 67 12-7
H H lO 12-8 10 12-8
I I 11 12-9 71 12-9
J J 12 11-1 41 11-1
K K 13 11-2 42 11-2
L L 14 11-3 43 11-3
M M 15 11-4 44 11-4
N N 16 11-5 45 11-5
0 0 17 11-6 46 11-6
p p 20 11-7 47 11•7
Q Q 21 11-8 50 11-8
R R 22 11-9 51 11-9
s s 23 0-2 22 0-2
T T 24 0-3 23 0-3
u u 25 0-4 24 0-4
v v 26 0-5 25 0-5
w w 27 0-6 26 0-6
x x 30 0-7 27 0-7
y y 31 0-8 30 0-8

z z 32 0-9 3 I 0-9
0 0 33 0 12 0
I I 34 I 01 I
2 2 35 2 02 2
3 3 36 3 03 3
4 4 37 4 04 4
5 5 40 5 05 5

1 TWELVE OR MORE ZERO BITS AT THE END OF A 60- BiT WORD ARE
INTERPRETED AS END-OF-LINE MARK RATHER THAN TWO COLONS.

D

ASCII
CODE

3A
41

42
43
44

45
46
47
48
49
4A
48
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58

59
SA
30
31
32
33
34
35

3AEl!A

D-1

I

D-2

I DISPLAY ,. . - PUN.CH.' 1 -" ·aco·r-o- I ~
I ASCII CDC GRAPHIC PUNCH

ASCII IH01 1 F'RIT~ I r:vTr:cit..iA• /l.C!f"T T

GRAPHIC SUBSET CODE (026) CODE (029) CODE

' .,_,
6 6 41 6 06 6 36
7 7 42 7 07 7 37
8 8 43 8 10 8 38
9 9 44 9 I I 9 39
+ +· 45 12 60 12- 8-6 28
- - 46 11 40 I I 2D

• • 47 11-8-4 54 11-8-4 2A
I I 50 0-1 21 0-1 2F
((51 0-8-4 34 12-8-5 28
)) 52 12-8-4 74 11-8-5 29
$ $ 53 11-8-3 53 11-8-3 24
= • 54 8-3 13 8-6 30

BLANK BLANK 55 NO PUNCH 20 NO PUNCH 20
,~OMMA) ,(COMMA) 56 0-8-3 33 0-8-3 2C
.(PERIOD) .(PERIOD) 57 12-8-3 73 12-8-3 2E

= •• 60 0-8-6 36 8-3 23
([6 I 8-7 17 12-8-2 58
]] 62 0-8-2 32 11-8-2 5D
%t % 63 8-6 16 0-8-4 25
~ •(QUOTE) 64 8-4 14 8-7 22 - _(UNDERLINE} 65 0-8-5 35 0-8-5 5F
v ~ 66 11-0 52 12-8-7 21

,,..

/\ a 67 0-8-7 37 12 26

' '(APOSTROPHE) 70 11-8-5 55 8-5 27

' ? 71 11-8-6 56 0-8-7 3F
< < 72 12-0 72 12-8-4 3C

> > 73 11-8-7 57 0-8-6 3E

:s (i 74 8-5 15 8-4 40

2: \ 75 12-8-5 75 0-8-2 5C
...., -(CIRCUMFLEX) 76 12-8-6 76 11-8-7 5E

; (SEMICOLON) ; (SEMI COLON) 77 12-8-7 77 11-8-6 38

3AE6A

t IN INSTALLATIONS USING THE CDC 63-GRAPHIC SET, DISPLAY CODE 00 HAS NO ASSOCIATED
GRAPHIC OR HOLLERITH CODE; DISPLAY CODE 63 IS THE COLON (8-2 PUNCH). THE
SELECTION OF THE 63- OR 64-CHARACTER SET FOR TAPES IS AN INSTALLATION OPTION.

60436300 A

OPERATORS E

ac
The f ollo~ing '. operators form expressions in the major
higher-level languages and the NOS control language
statements.

ARITHMETIC OPERATORS

Character Operation

+ Addition

Subtraction

* MUltiplication

**or f Exponentiation

leading- Neg-ation

leading+ Ignored

These ch~.racters are the same for printer and terminal
except that f on e. printer is ' (apostrophe} on a terminal.

RELATIONAL OPERATORS

Printer Terminal Alphabetic
(CDC Grap!lic)' (ASCII) Symbol Meaning

= = • EQ. Equal to
as

; ~· <: " .NE. Not equal to

< ' ' < .LT. Less than

> > .GT. Greater than

< @ .LE. Less than or
equal

> I .GE. Greater than
or equal

60436300 A
;"'' ...

BOOLEAN OPERA TORS

Printer Terminal Alphabetic
(CDC Graphic) (ASCII) Symbol Meaning

- # .EQV. Equivalence

v .OR. Inclusive OR

A & .AND. AND

? .EOR. Exclusive OR

-, A .NOT. Complement

EVALUATION OF EXPRESSIONS

Expressions are evaluated according to the following
hierarchy.

1. Exponentiation

2. MUltiplication, division

3. Addition, subtraction, negation

4 • Relations

5. Complement

6. AND

7 .. Inclusive OR

8. Exclusive OR, equivalence

E-1

s • .. .L

i 1\.i;
~~~ (';' 

S···· ~·~ 

~I 

; 1 



AESR B-1 
Altemate access of permanent files 5-4 
APPEND control statement 5-2 
Arithmetic operators E-1 
A 'M'ACH control statement 5-4 

Backward positioning statements 4-4 
Batch 

Conversational 3-1 
Def erred 3-1 
Local 3-1 
Remote 3-1 

Batch input from a terminal 9-1 
Batch jobs 3-1 
BKSP control statement 4-4 
Blocks, tape 8-2 
Boolemfoperators E-1 

CALL control statement 6-3 
CA TLIST control statement 6-3 
CHANGE control statement 5-6 
Character set, NOS 0-1 
CHARGE control statement 3-4 
Coded copy statements 4-2 
Comments, control statement record 3-4 
Control language 6-1 . 
Control language statements 

CALL 6-3 
DISPLAY 6-2 
GOTO 6-2 
IF 6-3 
SET 6-1 

Control statement format 3-2 
Control statement record 3-3 
Control statements 

APPEND 5-2 
ATTACH 5-4 
BASIC 3-5,7 
BKSP 4-4 
GATLIST 5-6 
CHANGE 5-6 
CHARGE 3-4 
COBOL 3-5,7 
COBOL5 3-5,7 
COPYBF 4-1 
COPYBR 4-1 
COPYCF 4-2 
COPYCR 4-2 
COPYEI 4-1 
COPYSBF 4-2 
DAYFILE 9-3 
DEFINE 5-3 
EXIT 1-1 
ENQUIRE 9-3 
FTN 3-5,'l 
GET 5-2 
job 3-3 

60436300 A 

INDEX 

LABEL 8-2 
lfn 3-6 
LIMITS C-1 
NOEXIT 7-1 
ONEXIT 7-1 
PURGE 5-4 
REPLACE 5-2 
RESOURC 8-3 
REWIND 4-5 
ROUTE 9-5 
SAVE 5-1 
SKIPEI 4-4 
SKIPF 4-4 
SKIPFB 4-4 
SKIPR 4-4 
SUBMIT 9-2 
USER 3-3 
VEIU.FY 4-3 

Conversational batch 3-1; 9-4 
Copy statements 

Binary 4-1 
Coded 4-2 

COPYBF control statement 4-1 
COPYBR control statement 4-1 
COPYCF control statement 4-2 
COPYCR control statement 4-2 
COPYEI control statement 4-1 
COPYSBF control statement 4-2 

Dayfile B-1 
DA YFILE control statement 9-3 
Deferred batch 3-1; 9-1 
DEFINE statement 5-3 
Deli miters 2-1 
Density, tape 8-1 
Direct ace~ permanent file 5-3 
Directives, reformatting 9-1 
DISPLAY control statement 6-2 

End-of-file (EOF) 2-3 
End-of-information (EOO 2-3 
End-of-record (EOR) 2-1 
ENQUIRE control statement 9-3 
EOF 2-3 
EOI 2-3 
EOR 2-1 
Error control 'l-1 
Error messages, tape 8-4 
EXIT control statement 'l-1 

File 
INPUT 2-3 
Local 2-3 
OUTPUT 2-3 
Permanent 2-3; 5-1 
Tape 8-1 

Index-! 



PILE function 6-1 
Files, general 2-1 
File positioning statements 4-4 
Format, control statement 3-2 

GET control statement 5-2 
GOTO control language statement 6-2 

IF control language statement 6-3 
Indirect access permanent files 5-1 
Input file 2-3 

Job control statement 3-3 
Job structure, batch 3-1 

LABEL control statement 8-2 
Labels, tape 8-2 
LIMITS control statement C-1 
Listing permanent files 5-6 
Local batch 3-1 
Local files 2-3 

NOEXIT <!Ontrol statement 7-1 

ONEXIT control statement 7-1 
Operators E-1 
Output file 2-3 

Parity, tape 8-1 
Permanent files 

Alternate access 5-4 
Direct access 5-3 
Indirect access 5-1 
Listing 5-6 
Purging 5-4 

Positioning statements 
Backward 4-4 
Forward 4-4 

Programs 3-5 
PURGE control statement 5-4 
Purging permanent mes 5-4 

Index-2 

Recording mode, tape 8-1 
Reformatting directives g_.i 
Relational operators E-1 
Remote batch 3-1 
REPLACE control statement 5-2 
RESOURC control statement 8-3 
Resources, user C-1 
REWIND control statement 4-5 
ROUTE control statement 9-5 

SA VE control statement 5-1 
SET control language statement 6-1 · . ". 
SKIPEI control statement 4-4 
SKIPP control statement 4-4 
SKIPi'B control statement 4-4 
SKIPR control statement 4-4 
Statements 

Control (ref er to control statements) 
Control language (refer to control 

language statements) 
SUBMIT control statement 9-2 

Tape error messages 8-4 
Tape files 8-1 
Tape format 8-2 
T:lpe l:lbel: 8-2 
Tape tracks 8-1 
Terminal, batch input 9-1 

UCLP B-1 
UEAD B-1 
UECP B-1 
UEMS B-1 
UEPF B-1 
USER control statement 3-3 

VERIFY control statement 4-3 
Volume, tape 8-2 
Volume serial number (VSN) 8-2 
VSN 8-2 

60436300 A 



.... 
~I 
~I 
~, 

a1 

COMMENT SHEET 

MANUALTITLE ___ c_D_C __ N_o_s __ v_e_rs_io_n __ l ____________________________________ _ 

Batch User's Guide 

PUBLICATION NO • ...::6;.;:.0..:.43;;:;..;6:;..;:3o..;0;.;:.0 _____ _ REVISION--.-A...._ __ _ 

FROM: NAME:---------------------------------------------------
BUSINESS 

ADDRESS:~-----------------~-----------------------

.;, '.' 

f ; :.: 

.,,,,_. 
.;. 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A. 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE STAPLE 

fOlD fOU) 
--~~~--~-----~--~~--~----~------~----------~ 

FOLD 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY If MAILED IN U.S.A. 

POSTAGE W1U IE PAID IY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 
ARH219 
4201 North Lexington Avenue 
Saint Paul, Minnesota 55112 

FllST Cl.ASS 
PUMIT NO. 12~~ 

MINNEAPOUS. MINN. 

FOLD 

Ill z 
::; 
0 
z g 
-c ... 
::> 
u 


