60435400

@ @ CONTROL DATA
CORPORATION

NOS VERSION 1
REFERENCE MANUAL

Volume 1 of 2

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71,72, 73, 74
6000 SERIES

ACCOUNT
ALGOL
ALGOLS
APEX

APL
APPEND
ASCII
ASSIGN

ATTACH
BASIC
BEGIN
BKSP
BLANK
CALL
CATALOG
CATLIST
CHANGE
CHARGE
CKP
CLEAR
COBOL
COBOLS
COMMENT
COMMON
COMPASS
CONVERT
COPY
COPYBF
COPYBR
COPYCF
COPYCR
COPYEI
COPYL
COPYLM
COPYSBF
COPYX
CSET
CTIME
DAYFILE
DEBUG
DEFINE
DISPLAY
DISPOSE

ALPHABETICAL LIST OF CONTROL STATEMENTS'

1-6-2
60496600
60481600
76070000
60454000
1-8-5
1-E-2
1-7-1;
1-10-5
1-8-6
19983900
1-4-12

60496800
60497100
1-6-2
1-7-4
60492600
1-7-4
1-7-6
1-7-10
1-7-11
1-7-12
1-7-14
1-7-15
1-14-7
1-14-7
1-7-16
1-7-17
1-E-2
1-6-3
1-6-3
60481400
1-8-13
1-4-15
1-7-18

DMD
DMDECS
DMP
DMPECS
DOCMENT
EDIT

ELSE
ENDIF
ENDW
ENQUIRE
ENTER
EVICT
EXECUTE
EXIT
FCOPY
FILE

FTN
FTN5

F45

GET
GOTO
GPSS
GTR
HTIME

IF

IFE
ITEMIZE
Job
KRONREF
LABEL
LBC

LDI
LDSET
LENGTH
LIBEDIT
LIBGEN
LIBLOAD
LIBRARY
LIMITS
LISTLB
LISTS80
LOAD
LoC

60429800
1-6-9
1-7-21
60495700
60497800
60481300
60483000
1-8-15
1-H-4
84003900
1-14-10
1-6-9
1-H-6
1-4-18
1-14-12
1-5-4
1-13-2
1-10-10
1-9-5
1-6-9
60429800
1-6-10
1-14-15
1-14-26
60429800
60429800
1-6-10
1-10-16
1-7-23
60429800
1-9-5

LOCK
LOT72
MAP
MFL
MODE
MODIFY

NEW
NOEXIT
NORERUN
NOTE
OFFSW
OLD
ONEXIT
ONSW
OPLEDIT

ouT
PACK
PACKNAM
PARITY
PASSWOR
PBC
PERMIT
PLI
PRIMARY
PROFILE
PROTECT
PURGALL
PURGE
RBR
REDUCE
RENAME
REPLACE
REQUEST

RERUN
RESEQ
RESOURC
RESTART
RETURN
REVERT
REWIND
RFL

1-7-23
1-7-24
60429800
1-6-14
1-6-14
1-13-3
60450100
1-7-27
1-6-15
1-6-16
1-6-16
1-6-16
1-8-16
1-6-17
1-6-17
1-13-7
60450100
1-7-27
1-7-28
1-8-17
1-E-3
1-6-17
1-9-6

~ 1-8-18

60388100
1-7-28
1-13-8
1-6-18
1-8-18
1-8-19
1-9-6
60429800
1-7-29
1-8-20
1-7-30;
1-10-18
1-6-19
1-7-31
1-6-19
1-11-2
1-7-33
1-4-20
1-7-34
1-6-24

ROLLOUT
ROUTE
RTIME
SATISFY
SAVE
SET
SETASL
SETCORE
SETID
SETJSL
SETPR
SETTL
SKIP
SKIPEI
SKIPF
SKIPFB
SKIPR
SLOAD
SORT
SORTMRG
STIME
SUBMIT
SUI
SUMMARY
SWITCH
TCOPY
TDUMP
TRMDEF
UNLOAD
UNLOCK
UPDATE
UPMOD
USECPU
USER
VERIFY
VFYLIB
VSN

WBR
WHILE
WRITEF
WRITER
XEDIT

1-6-25
1-7-34
1-6-25
60429800

1-7-40
60429800
1-7-41
60497500
1-6-28
1-6-28
1-6-33
1-6-33
1-6-33
1-7-42
1-7-45
1-E-3
1-7-47
1-7-47
1-13-11
1-13-13
1-6-34
1-6-34
1-7-48
1-14-28
1-10-20
1-9-7
1-4-27
1-7-51
1-7-51
1-13-14
60455730

TReference to a page number indicates the statement is deseribed in this manual; a manual
publication number means the statement is described in that manual. Manual titles are listed in the
Refer to the NOS System Maintenance Reference Manual for a list of systems-oriented

preface.

control statements.

60435400 L e

r

~

~,

60435400

@ CONTROL DATA
CORPORATION

NOS VERSION 1
REFERENCE MANUAL

Volume 1 of 2

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70

MODELS 71,72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION
A Manual released. This manual reflects NOS 1.0 at PSR level 404.
(06-17-75) o :
B Revised to reflect NOS 1.1 at PSR level 419. New features include support of memory increments to
(03-08-76) 262K on CYBER 170 Series systems, 844-41 Disk Storage Subsystem, multimainframe, additional security
control, the Text Editor utility, and BASIC Version 3. Other additions include descriptionof reserved
file names in section 2, new error messages, and new parameters on the BLANK, CONVERT,DAYFILE,
ENQUIRE, FTN, LDI, L072, and SUMMARY statements. Section 4 has been reorganized to more accurately
describe the system control language. In addition, the deseription of OPLEDIT usage has been removed
from section 14 and is included in the Modify Reference Manual. The entire description of the FAMILY
and SYSEDIT statements has been removed from section 14 and is included in the NOS Installation
Handbook. This edition obsoletes all previous editions.
C Revised to reflect NOS 1.2 at PSR level 439. New features include revised field length control, added
(12-03-76) security for the CHANGE and PASSWOR control statements, queued file management, security count, SRU
limit control, and additional parameters for the LIMITS statement. The parameters for the COBOL 5
statement have been added to the product set descriptions. Four new control statements are
described: MFL, ROUTE, SETASL, and SETJSL. New examples are included for ereating multifiles on tape
and using LIBEDIT. Technical and literary corrections have been made.
D Revised to reflect NOS 1.2 at PSR level 452 and to make typographical and technical corrections. The
(07-15-177) revision includes the TCOPY control statement, extensions to the COPY and VERIFY control statements,
and support of the CYBER 171 computer system. In addition, the error messages in appendix B have been
reformatted.
E Revised to reflect NOS 1.2 at PSR level 460 and to make literary and technical corrections.
(11-21-77)
F Revised to reflect NOS 1.3 at PSR level 472. This revision adds descriptions of the following new
(05-26-78) control statements: BEGIN, DMDECS, DMPECS, ENTER, NOTE, and PROTECT. The V carriage control
character for programmable format is outlined. . The new:CYBER Control Language is presented with
extensive use of examples. Section 11, Product Set Control Statements, is deleted. The product
set control statement formats are given in the NOS Application Programmer's Instant. This edition
obsoletes all previous editions.
G Revised to reflect NOS 1.3 at PSR level 477 and to make literary and technical corrections.
(08-25-78)
H Revised to reflect NOS 1.3 at PSR level 485 and to correct literary and technical errors.
(12-22-78) :
J Revised to reflect NOS 1.4 at PSR level 501. New features in this release include CYBER 170 Model 176
(08-10-79) and 885 disk support; the FCOPY, HTIME, and TRMDEF control statements; and the 12-bit ASCII code set.

This revision contains a new section 14, Library Maintenance, and a new appendix, Line Printer

Carriage Control (I). This edition obsoletes all previous editions.

Publication No.

60435400

REVISION LETTERS 1, 0, @ AND X ARE NOT USED

© 1975, 1976, 1977, 1978, 1979, 1980
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this

manual to:
- Control Data Corporation

Publications and Graphics Division

4201 North Lexington Avenue
St. Paul, Minnesota 55112

this manual.

or use Comment Sheet in the back of

P

REVISION RECORD (CONT'D)

DESCRIPTION

REVISION
K Revised to reflect NOS 1.4 at PSR level 509. This revision contains the permanent file statement
(12-21-79) parameters for the Mass Storage Facility (MSF). This edition obsoletes all previous editions.
L Revised to reflect NOS 1.4 at PSR level 518. This revision contains the COPYL, COPYLM, and ITEMIZE
(05-23-80) control statements; and a new appendix, Obsolete Tape Formats. This edition obsoletes all previous editions.

Publication No,
60435400

ii-a/ii-b

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

>
“ il ICE I I I N IS B B [[I~ s [V. YV YW . (. [, [, [US: J: JS. . (. [, U . . . [. U, . [, [, (. [P, U, . [, . [TS, . U, . TR, PO TS UL IO, IO, L. |
E .
=4 O : O N YN O-0DHO N M I OO S N
B R D B B R AR B B 6 S R A R S Rk R R R h b kA
OO = OO OO IO 096D € 0000 00 CD 00 0D 0D € 09 00 O i i o i e T o o
R ARG A RN RN RN RN SRR R SR RN RS OB R o b e Rl Rl R R Bk Rl B bRk o R b
>
E R IER R I IR IS I I S e [I Y I [, (W I . . (PO, U . V. [, (. [P, U5, P I 10, G .- .- . PG, PP P, . ¥ YT TP T IO, P, TP . T U, U, . TP .|
w
o O HNM LW -0
7T R85 938 nanrrer eSO N e RSN o TR TSR AT T
- - ! -
L L b dhbdbbbdbbdbdddddddbdocoSgc808000222000
R R I R T R A o o e A A AR A SnEnEnRnEAnEEnEnE B A R R A R R B
111

w

G .

LoD O A NN SO DD O D DO CHNMINO-ODNQENNINNO-ONDS HNM I WL 00D

R 010 O R A A B GRGROR OO R OR R AR
R A A A A T T T N R T N A A A e Y M MR R RO
il e e e e e ia e e R e e R e R e R e R R R R R I I I I I I I I R R P T T I I I TP PR P P Pl P PR PR PR PR

> . .

“ [l R I I P P I I S [S S . [(. B . I 0 P, [2 . [, IV, [, [P . (. . [. . [, [P (. R Y P [P, . 9 S . . TP . . P R . P |

w

(0]

L Ot N N I N OO DO AT NN IO~ 0D O I H DO DS i 6D O NMm WO

B I RO W M MO A A A A A MY O Gy T R S 60 0 SR rdn
A0 A0 A 1 1 e A e e T R R AR
Al R e R e a e R R R R e R R R R R R e R R R I R I e R R I I I R R R e e e R e [R gL A

> . .

w I e e e e R R PR B R R R S P L . R . P [, [P, [PO O I S J. R, [, . U, [, S, U, S . . [. 0. . [P . |

[+
=
> [

“ Om bo .ﬂ .
O e S o .

< of L S) O - Nm o~

slggze E 3 R AN O O O SO A N S OO A W T
o.mnwﬂ P TP .= o = G909 0 €0 €N 03 € 6 03 09 €3 61 0 03 € 6D € (9 07 €D O 00 60 60 09 00 N o o o o o
A S IS il IR I TV T L P D DO o T D R O N DO DR DR O DN DR D DO D D DO Y VO O O O VA VO VO Y O v O P P T P R P
o= === - S N R R e i e e e R e T I I -V P PO L P PO PR P PR PR P P P P L P L P L L L

~ TN P

TN

iii

60435400 L

>
w
(4
w
[T
<
o
>
w
o
w
S}
<
o
>
E HAaaaaaaa3333 30
5

w = >
S oMM &)
-4 AR AAMRIORRR 1S
IR EEEE -

VUV IDVOYOWOOEET

YTTUTYTCCEUCGH G

ES5EEEEE5E55E50
ﬂ [= Iy IS IS S G [I [(. Y A (S e L e e e e e T e L R B R R T NI o I e R P - o e R I N N S W B N W W W R [P [. G P G P |
4 . .
&

N
|| o-HaNmMT R OE-® O - N™m o - TRV
R B o 0 S e e Mo b AR s A A OO R AR RO T S ST L 3 R 8

Aoadddadddadd00000ANROddRAdLEREtG0d0000000obomERnmnEERRE LTI I T4l L8889
R R D R Do D o e Do D DO o o Fo e O e e o I T U O U Do U DO O T O Do O o FO T JO I S T PO T A T A e Dt T D e Do T D T D T o T o I D o Do J O VO O — B — B~
o e v e e v v e e v et e e el e v v rd vl v v v v vl v e v ved vl e v et vl v v ved el e e v v e v v v et v v v v vl v v e v] v v e e v v v e e
>
% SR L TR LR RN R -R R FS RS FU RS IS G 6. S S U RU. V6 B [P R [P, [P B . . 6. V. . DU . [P, . [P, [P . U (. [P, . . [P [. [G L K E G, JPL P G (P . . . G . |
o
o™ <t
o N ™M
22 raeeer235 T ror e r T R s e o8000I8855835907885885793799539075308s
TITTTIIIIETiidadeaddddddddtdddddadddddidddttodddiadddasiadhadadanadadd
11111111111111111111 et vt e e e e e v v v e e e v e v e e e v v vt v v e v v e et v v] e v v gl v v] v v e e e e e

N

60435400 L

iv

N

PREFACE

This manual describes the Network Operating System (NOS) Version 1.4. NOS controls the operation of
‘CDC® CYBER 170 Series, CDC CYBER 70, Models 71, 72, 73, and 74, and. CDC 6000 Series Computer
Systems.

s

AUDIENCE

This manual is written for all NOS users. Users can understand the manual contents without knowing the
NOS assembler language, COMPASS. However, they should read the NOS Batch User's Guide and/or the
Network Products Interactive Facility User's Guide or the NOS Time-Sharing User's Guide before reading
this manual.

Users should consult the glossary in appendix C for definitions of terms used in this manual.

ORGANIZATION

The NOS Reference Manual is contained in two volumes to separate mformatmn useful only to the

. assembly language programmer from information useful to all NOS users.

Volume 1 contains information for all NOS users. This includes a general description of the system and
its handling of files and jobs and detailed descriptions of control statement formats and processing.
Appendixes include NOS character sets, messages, and a glossary..

Volume 2 contains information of use primarily to the assembly language programmer; hdwever, several

- sections contain information for users of higher level languages. For reference, the table of contents of

volume 2 follows the table of contents of this volume.

CONVENTIONS

Throughout this manual, cross-reference to the NOS Reference Manual, volume 2, are in the form: refer
to section (or appendix) n, volume 2. If volume 2 is not stipulated, the reference is to volume 1. -

Uppercase letters within statement formats should be entered exactly as given; lowercase letters should
be replaced with appropriate characters as described after the format.

In this manual, ECS (extended core storage) refers to all forms of extended memory on the CYBER 170
Series, unless otherwise noted. Model 176 extended memory [also known as large central memory (LCM)
or large central memory extended (LCME)] is excluded in references to ECS access through the
distributive data path (DDP) and to multimainframe ECS linkage.

Program examples are written in the FORTRAN (Formula Translation) language.

60435400 L v I

RELATED PUBLICATIONS

The following is a list of NOS operating system manuals and NOS product set reference manuals. The
NOS Manual Abstracts is -a pocket-sized manual containing brief descriptions of the contents and
intended audience of all NOS and NOS product manuals. The abstracts can be useful in determining
which manuals are of greatest interest to a particular user.

Control Data also publishes a Software Release History Report of all software manuals and revision

level of software installed at the site.

- packets it has issued. This history lists the revision level of a particular manual that corresponds to the

These manuals are available through Control Data sales offices or Control Data Literature Distribution
Services (308 North Dale, St. Paul, Minnesota 55103). -

Users requiring a list of the product control statements and their parameters should refer to the NOS
Applications Programmer's Instant.

vi

Control Data Publication

. ALGOL Version 4 Reference Manual

ALGOL-60 Version 5 Reference Manual |
APEX III Reference Manual

APL Version 2 Reference Manual

APT IV Version 2 Reference Manual
BASIC Version 3 Reference Manual
COBOL Version 4 Reference Manual

COBOL Version 4 to COBOL Version 5 Conversion Aid
Version 1 Reference Manual

COBOL Version 5 Reference Manual

Common Memory Manager Version 1 Reference Manual
COMPASS Version 3 Reference Manual

Conversion Aids System Version 2 Reference Manual

CYBER Common Utilities Reference Manual

CYBER Database Control System Version 1 Reference Manual
CYBER Database Control System Version 2 Reference Manual
CYBER Interactive Debug Version 1 Reference Manual

CYBER Loader Version 1 Reference Manual

CYBER Record Manager Advanced Access Methods Version 2

Reference Manual

CYBER Record Manager Basic Access Methods Version 1.5
Reference Manual

Publication Number

60496600
60481600
76070>000
60454000

17326900
19983900

60496800

19265021
60497100
60499200
60492600
19265358
60495600
60498700
60481800
60481400

60429800
60499300

60495700

60435400 L

N

Control Data Publication

CYBER 170 Computer Systems Hardware Reference Manual

CYBER 170 Computer Systems Models 720, 730, 750, 760, and
176 (Level B) Hardware Reference Manual

CYBER 70/Model 71 Computer System Hardware Reference Manual
CYBER 70/Model 72 Computer System Hardware Reference Manual
. CYBER 70/Model 73 Computer System Hardware Reference Manual
CYBER 70/Model 74 Computer System Hardware Reference Manual
Data Base Utilities Version 1 Reference Manuat
Data Catalogue 2 Reference Manual
DDL Version 2 Reference Manual, Volume 1
DDL Version 2 Reference Manual, Volume 2
DDL Version 2 Reference Manual, Volume 3
DDL Version 3 Reference Manual, Volume 1
-DDL Version 3 Reference Manual, Volume 2
DDL Version 3 Reference Manual, Volume 3
FORM Version 1 Reference Manual
FORTRAN Common Library Mathematical Routines Reference Manual
FORTRAN Data Base Facility Version 1 Reference Manual
FORTRAN Extended Version 4 Reference Manual

FORTRAN: Extended Version 4 to FORTRAN Version 5 Conversion
Aids Program Version 1 Reference Manual

FORTRAN Version 5 Common Library Mathematical Routines
Reference Manual

FORTRAN Version 5 Reference Manual

General Purpose Simulation System V (GPSS)
General Information Manual

Interactive Graphics System Application Executive
Reference Manual

Message Control System Version 1 Reference Manual
Modify Version 1 Instant Manual

Modify Version 1 Reference Manual

60435400 L

Publication Number

60420000

60456100
60453300
60347000
60347200
60347400
60498800
60483200
60498400
60498500
60498600
60481900
60452000
60482100
60496200
60498200
60482200
60497800

60483000

60483100
60481300

84003900

17322200
60480300
60450200

60450100

vi-a I

l vi-b

Control Data Publication

Network Products Communication Control Program (CCP)
Version 3 Reference Manual

Network Products Interactive Facility Version 1
Reference Manual

Network Products Interactive chility Version 1 User's Guide

Network Products Network Acéess Method Version 1 Network
Definition Language Reference Manual

Network Products Network Access Method Version 1
Reference Manual

Netwofk Produets Network Terminal User's Instant

Network Products Remote Batch Facility Version 1
Reference Manual

Network Products Stimulator Version 1 Reference Manual

Network Products Transaction Facility Version 1 CYBER Record
Manager Data Manager Reference Manual

Network Products Transaction Facility Version 1 Data Manager
Reference Manual

Network Products Transaction Facility Version 1
Reference Manual

Network Produects Transaction Facility Version 1 User's Guide
NOS Version 1 Application Installation Handbook

NOS Version 1 Applications Programmer's Instant
NOS Version 1 Batch User's Guide

NOS Version 1 Diagnostic Index

NOS Version 1 Export/Import Reference Manual

NOS Version 1 Installation Handbook

NOS Version 1 Manual Abstracts

NOS Version 1 Operator's Guide

NOS Version 1 Reference Manual, Volume 2

NOS Version 1 System Maintenance Reference Manual
NOS Version 1 Systems Programmer's Instant

NOS Version 1 Terminal User's Instant Manual

- Publication Number

60471400

60455250
60455260

60480000

60499500

60455270

60499600
60480500

60456710
60455350

60455340
60455360
84000970
60436000
60436300
60455720
60436200
60435700
84000420
60435600
60445300
60455380
60449200

60435800

60435400 L

N

N

Control Data Publication

* NOS Version 1 Time-Sharing User's Guide
NOS Version 1 Time-Sharing User's Reference Manual
On-Line Maintenance Software Reference Manual
PERT/Time Version 2 Reference Manual
PL/I Version 1 Reference Manual
Query Update Version 3 Reference Manual
SIMSCRIPT Version 3 Reference Manual
Software Publications Release History
Sort/Merge Versions 4 and 1 Reference Manual
SYMPL Version 1 Reference Manual

TAF/TS Version 1 CYBER Record Manager Data Manager
Reference Manual

TAF/TS Version 1 Data Manager Reference Manual

TAF/TS Version 1 Reference Manual

TAF/TS Version 1 User's Guide

Text Editor Version 1 Reference Manual

TOTAL-CDC Reference Manual

Update Version 1 Reference Manual

XEDIT Version 3 Reference Manual

6400/6500/6600 Computer Systems Hardware Reference Manual

8-Bit Subroutines Reference Manual

DISCLAIMER

Publication Number

60436400
60435500
60454200
60456030
60388100
60498300
60358500
60481000
60497500
60496400

60456700
60453100
60453000
60436500
60436100
76070300
60449900
60455730
60100000

60495500

This product is intended for use only as described in this document. Control Data cannot be responsible

for the proper functioning of undescribed features or undefined parameters.

60435400 L

vi-¢/vi-d

CONTENTS

1. SYSTEM DESCRIPTION

System Hardware
Central Processor Unit
Central Memory
Control Points
Central Memory Resident
Extended Memory
Peripheral Processors
Peripheral Equipment °
System Software
User Programs
Operating System
CYBER Loader
CYBER Record Manager

2. FILES

File Names
File Structure
CYBER Record Manager File
Structure
NOS File Structure
Physical File Structure
Card Files
Mass Storage Files
Magnetic Tape Files
File Types
Files Assigned to User Jobs
Input Files
Print Files
Punch Files
Local Files
Primary Files
Direct Access Files
Library Files
Rollout Files
Timed/Event Rollout Files
Permanent Files
Indirect Access Permanent
Files
Direct Access Permanent
Files
Mass Storage File Residence
Family Devices
Auxiliary Devices ‘
Mass Storage Facility (MSF)
Libraries
User Number LIBRARY

60435400 L

VOLUME 1
1-1-1 Program Libraries
User Libraries
1-1-1
1-1-2
1-1-2
1-1-2 3. JOB FLOW AND EXECUTION
1-1-3
1-1-3 Job Initiation
1-1-4 Job Origin Types
1-1-4 Job Names
1-1-5 System Job Name Format
1-1-5 Local Batch and RBF Job Name
1-1-5 Format
1-1-6 Time-Sharing, IAF, and Export/
1-1-6 Import Job Name Format
Deferred Bateh Job Name Format
Validation
Accounting
1-2-1 Job Scheduling
Job Control
1-2-1 Field Length Control
1-2-2 Input File Control
Time Limit Control
1-2-2 SRU Limit Control
1-2-2 Control Statement Limit Control
1-2-3 Rollout Control
1-2-4 Error Control
1-2-4 Security Control
1-2-5 Job Completion
1-2-8
1-2-9
1-2-9 ,
1-2-9 4, CDC CYBER CONTROL LANGUAGE
1-2-10 :
1-2-10 Statement Syntax
1-2-11 Operators
1-2-11 Arithmetic Operators
1-2-11 Relational Operators
1-2-11 Logical Operators
1-2-12 Order of Evaluation
1-2-12 Operands
Constants
1-2-12 Symbolic Names
Functions
1-2-13 FILE Function
1-2-13 " DT Funection
1-2-13 NUM Funection
1-2-14 : SS Function
1-2-14 CCL Statements
1-2-15 BEGIN Statement
1-2-15 DISPLAY Statement

ELSE Statement
ENDIF Statement

—
[}

HHHHHHHHHTHHH}-‘HHP—‘F—‘H
—

| | A O]
[S R T | [[RUSUSL]
! ! ! DD b=t b

|
= R e e 0D md ~T W 0O GO 0O B DD

1]
i

s,

ENDW Statement
IFE Statement
REVERT Statement
SET Statement
SKIP Statement
WHILE Statement
Procedures
Procedure Structure
Procedure Header Statement
Procedure Body
Procedure Commands
.DATA Command
.EOR Command
.EOF Command
.* Command
Keyword Substitution
Positional Mode Parameter
Matching
Equivalence Mode Parameter
Matching
Examples of Parameter
Matching '

5. CONTROL STATEMENT PROCESSING

Control Statement Format

Job Statement (Job Card)

Control Statement Processing Flow
Exit Processing '

6. JOB CONTROL CONTROL STATE-
MENTS

ACCOUNT Statement
CHARGE Statement
COMMENT Statement
CTIME Statement
DAYFILE Statement
ENQUIRE Statement
ENTER Statement
EXIT Statement
HTIME Statement
LDI Statement
LENGTH Statement
LIMITS Statement
MFL Statement
MODE Statement
NOEXIT Statement
NORERUN Statement
NOTE Statement
OFFSW Statement
ONEXIT Statement
ONSW Statement

viii

[rl—-‘»—t

iy

—
1 1 [
[U UL

il
|

QA NWWO WRO-TITINO®®

il
%h%ﬂ&&u&b‘?&hhr&h%h
OO WO GO DO DI DD DI DD DN DD et

e gt
1 1 1
]
[4v]
(3]

1-4-35
1-4-35
1-4-38

1-4-41

1-5-1

[
1 [
11

]
O’)O)O"CPO‘:C’G)

|
| [}
WO WWN NN

s

]
c:mmmmosclncncnmmmm
el el = I =]

[L 11
[| [U N)

N3O RO O

PASSWOR Statement
PROTECT Statement
RERUN Statement
RESOURC Statement
Deadlock Prevention
Single Resource Use
Tape Units
Resource Overcommitment
Altering Resource Requirements
Unit Assignment
RFL Statement
ROLLOUT Statement
RTIME Statement
SETASL Statement
SETCORE Statement
SETJSL Statement
SETPR Statement
SETTL Statement
STIME Statement
SUBMIT Statement
SUI Statement
SUMMARY Statement
SWITCH Statement
USECPU Statement
USER Statement

7. FILE MANAGEMENT CONTROL
STATEMENTS

ASSIGN Statement
BKSP Statement
CLEAR Statement
COMMON Statement
CONVERT Statement
COPY Statement
Copy Termination
Block Sizes :
Processing Options
COPYBF Statement
COPYBR Statement
COPYCF Statement
COPYCR Statement
COPYEI Statement
COPYSBF Statement
COPYX Statement
DISPOSE Statement
DOCMENT Statement
EVICT Statement
FCOPY Statement
LIST80 Statement
LOCK Statement
LO72 Statement
NEW Statement
OUT Statement
PACK Statement

kel
c|n<n

el

il ol

il

HHHHHTHHHHH

60435400 L

PRIMARY Statement
RENAME Statement
REQUEST Statement.
RESEQ Statement
RETURN Statement
REWIND Statement
ROUTE Statement
SETID Statement
SKIPEI Statement
SKIPF Statement
SKIPFB Statement
SKIPR Statement
SORT Statement
TCOPY Statement

- TDUMP Statement
UNLOAD Statement
UNLOCK Statement
VERIFY Statement
WRITEF Statement
WRITER Statement

8. PERMANENT FILE CONTROL
STATEMENTS

Common Control Statement Parameters
APPEND Statement
ATTACH Statement
CATLIST Statement
CHANGE Statement
DEFINE Statement
GET Statement

OLD Statement
PACKNAM Statement
PERMIT Statement
PURGALL Statement
PURGE Statement
REPLACE Statement
SAVE Statement

9. LOAD/DUMP CENTRAL MEMORY
UTILITY CONTROL STATEMENTS

DMD Statement
DMDECS Statement
DMP Statement
DMPECS Statement
LBC Statement
LOC Statement
PBC Statement
RBR Statement
WBR Statement

60435400 L

1-7-28
1-7-29
1-7-30
1-7-31
1-7-33
1-7-34
1-7-34
1-7-39
1-7-39
1-7-40
1-7-40
1-7-40
1-7-41
1-7-42
1-7-45
1-7-47
1-7-47
1-7-48
1-7-51
1-7-51

1-8-1

1-8-1

1-8-5

1-8-6

1-8-8

1-8-12
1-8-13
1-8-15
1-8-16
1-8-17
1-8-18
1-8-18
1-8-19
1-8-20
1-8-21

1-9-1

R e
(DlD‘D(.O(IDth(DQD
DO U U O DD

10. TAPE MANAGEMENT

Tape Assignment
Control Statement Rules
Processing Options
ASSIGN Statement
BLANK Statement
LABEL Statement
LISTLB Statement
REQUEST Statement
VSN Statement

11. CHECKPOINT/RESTART

CKP Statement
RESTART Statement

12. DEBUGGING AIDS

Exchange Package Dumps
Using Dumps

13. SYSTEM UTILITY CONTROL
STATEMENTS

EDIT Statement
KRONREF Statement
MODIFY Statement
OPLEDIT Statement
PROFILE Statement
UPDATE Statement
UPMOD Statement
XEDIT Statement

14. LIBRARY MAINTENANCE

File Access Methods
Library Record Types
CATALOG Statement
COPYL and COPYLM Statements
GTR Statement
ITEMIZE Statement
LIBEDIT Statement
Control Statement Format
LIBEDIT Directives
Directive Syntax
ADD
BEFORE
BUILD

1-10-1

1-10-1
1-10-2
1-10-3
1-10-5
1-10-7
1-10-10
1-10-16
1-10-18
1-10-20

1-11-1

1-11-1
1-11-2

1-12-1

1-12-1
1-12-4

1-13-1

1-13-1
1-13-2
1-13-3
1-13-7
1-13-8
1-13-11
1-13-13
1-13-14

.

MOQ®p

1-4-3 Data File Written from a
Procedure to a Named File

1-4-4 Keyword Substitution in Two -
Procedures

1-5-1 Control Statement Processing
Flow

1-6-1 Resource Commitment
Processing (Simplified)

1-12-1 Exchange Package Dump

1-2-1 Physieal File Structure on
Storage Devices

1-2-2 Logical Structure of
Supported Mass Storage

. Devices

1-4-1 Alterations of Parameters
in a Procedure Body by
Use of =and[™

1-4-2 Positional Mode Parameter
Matching

1-4-3 Keyword Substitution in
Positional Mode

COMMENT

COPY

DATE

DELETE

FILE

IGNORE

INSERT or AFTER
NOREP

CHARACTER SETS
MESSAGES

GLOSSARY

SAMPLE JOB OUTPUT
TIME-SHARING INTERFACE

1 Central Memory Allocation

1 Sample Card File Structure

2 Use of ANSI Labels

1 FORTRAN Compile and
Execute Deck

1 Calling a Procedure

2 Procedure Access to a Data
Record

1-14-22 RENAME
1-14-22 REPLACE
- 1-14-22 REWIND
©1-14-22 TYPE or NAME
1-14-23 LIBEDIT Output
1-14-23 LIBGEN Statement
1-14-23 VFYLIB Statement
1-14-24 Library Processing Examples
APPENDIXES
1-A-1 F. CARD FILE DATA CONVERSION
1-B-1 G. ANSITAPE LABEL FORMATS
1-C-1 H. CONTROL LANGUAGE (KCL)
1-D-1 L. LINE PRINTER CARRIAGE
1-E-1 - CONTROL
J. OBSOLETE TAPE FORMATS
INDEX
FIGURES
1-1-3
1-2-4 1-12-2 Exchange Package Dump for -
1-2-6 CYBER 170 Model 176
1-12-3 Example 1: Program Listing
1-3-2 and Symbolic Reference
1-4-12 Map
. 1-12-4 Example 1: Partial Load
1-4-31 : Map
1-12-5 Example 1: Dayfile from
1-4-34 Job Run
1-12-6 Example 1: Exchange Pack-
1-4-43 age Dump
1-12-7 Example 2: Central Memory
1-5-7. Dump
1-14-1 Random Access File Structure
1-6-20 1-14-2 LIBEDIT Input and Output
1-12-2 1-14-3 User Library Structure
TABLES
1-2-3 1-4-4 Equivalence Mode Parameter
Matching
1-4-5 Keyword Substitution in
1-2-5 Equivalence Mode
1-7-1 Range of Permissible For-
: mats for the COPY
1-4-32 Statement
1-7-2 Compatible File Structures
1-4-37 for the VERIFY Statement
1-8-1 Access Mode Granted When
1-4-38 Attaching a Currently

Attached Direct Access
File

1-14-24

1-14-24
1-14-25
1-14-25
1-14-26
1-14-26
1-14-28
1-14-30

1-4-39

. 1-4-40

1-7-6

1-7-50

1-8-8

60435400 L

VOLUME 2

1. PROGRAM/SYSTEM COMMUNICA-~ 7. QUEUE FILE MANAGER 2-7-1
TION 2-1-1 o

8. FILE ROUTING 2-8-1
2. FILE ENVIRONMENT TABLE (FET) 2-2-1 :

9. SYSTEM FILE MANAGER 2-9-1
3. INPUT/OUTPUT 2-3-1
_ 10. JOB CONTROL 2-10-1
4. LOCAL FILE MANAGER T 2-4-1
11. SYSTEM/LOADER REQUESTS 2-11-1 ~
5. PERMANENT FILE MANAGER 2-5-1
12. PROGRAM WRITING TECHNIQUES 2-12-1
6. CONTROL POINT MANAGER 2-6-1
APPENDIXES
A. CPU COMMON DECKS 2-A-1 F. SPECIAL ENTRY POINTS 2-F-1
B. MESSAGES 2-B-1 G. BINARY FORMATS 2-G-1
C. GLOSSARY 2-C-1 H. EXAMPLES OF RANDOM I/0O 2-H-1
D. INTERPRETIVE MODE READING . ©~ PROGRAMMING STANDARDS 2-1-1
AND WRITING OF ECS , 2-D-1 d. MAGNETIC TAPE FORMATS 2-J-1
E. SPECIAL USER INFORMATION 2-E-1

60435400 K ’ «i

SYSTEM DESCRIPTION ' 1

NOS is capable of several concurrent processing modes. The following are the processing modes
available.

o Local batch.

e Remote batch.

e Transaction.

o Time-sharing.
The network processing modes (remote bateh, transaction, and time-sharing) operate through the
Network Access Method (NAM) communications software. These processing modes are implemented,
respectively, by the following NAM applications: Remote Batech Facility (RBF), Transaction Facility
(TAF), and Interactive Facility (IAF). :

NOS can also perform time-sharing and transaction processing through the time-sharing executive and
remote batch processing through Export/Import.

The primary emphasis of this manual is on local batch processing. Users of the other processing modes
should consult the appropriate manual listed in the preface.

NOS, like all operating systems, is the interface between user software and the capabilities of system
hardware components. The remainder of this section describes the hardware and software that make up
a NOS-controlled computer system. In most cases, the user of this manual need not understand the

operation of system hardware or the internal operation of system software. This manual deseribes these
topies only as general background for understanding NOS control statements.

SYSTEM HARDWARE

NOS can operate within the CYBER 170 Series, CYBER 706, Models 71, 72, 73, and 74, and 6000 Series
Computer Systems. The primary hardware components of each system are the following.

e Central processor unit(s).

e Central memory.

o Extended memory (optional).
e Peripheral processors.

. Pebipheral equipment.

60435400 L 1-1-1

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) executes instructions and manipulates and stores data retrieved from
central memory. The number and type of CPUs within a mainframe vary with the machine model. As a
result, some models can execute additional COMPASS assembler instructions (refer to the COMPASS
Reference Manual). These model differences do not affect applications written in higher level languages.

CYBER 170 and CYBER 70 Series Computer Systems have the central exchange jump/monitor exchange
jump (CEJ/MEJ) feature. This feature enables the system to switch CPU control between the system
monitor and other programs. The information transferred from the CPU to central memory by an
exchange jump operation is called an exchange package. Section 12 describes the format and use of an
exchange package dump.

CENTRAL MEMORY
The primary functions of central memory (CM) are:
e To buffer data to and from the peripheral processors.

e To transfer instructions and data to and from the CPU.

Control Points

Several jobs can reside in CM simultaneously. To separate and control each job while it is resident in
‘CM, the system assigns it to a control point. The control point is assigned a starting CM address (its
reference address or RA) and allocated an initial field length (the CM words in which the job is
executed). The field length is adjusted during job execution as described in section 3. Figure 1-1-1 shows
a job field length within CM.

A reference to an address outside the control point address range causes a hardware error condition and
job termination.

NOS supports up to 23 simultaneous control points. The maximum field length depends on the CM size
and installation parameters used to control memory usage. The system assigns the CPU to control points
requiring CPU activity. Rapid switching of CPU control between control points enables jobs to execute
concurrently. The exact amount of time allowed for each control point depends on system activity and
system parameter settings. Thus, the time required to complete a job may vary, although the actual
CPU execution time is the same.

When a job completes, aborts, or rolls out (that is, its executlon is suspended), the control pomt is
released and made available to another job.

1-1-2 60435400 J

TN

CENTRAL

MEMORY
CENTRAL
MEMORY
RESIDENT
ABSOLUTE REFERENCE I —_——
ADDRESS ADDRESS (p)
RA 0 T s 1) FELD
RA + p 0<p<FL > USER LENGTH
Jo8B (FL)
RA + FL FL o - — — 4

=™

Figure 1-1-1. Central Memory Allocation

Central Memory Resident
The portion of CM reserved for system use is called central memory resident (CMR). It contains system
tables, directories, and the CM portion of the system monitor (CPUMTR). Because its RA is always

address 0 and its field length (FL) is the size of central memory, CMR can access any CM address and
therefore specify addresses for CPU exchange jumps that switech CPU control between control points.

EXTENDED MEMORY

Extended memory (EM) is available as large central memory (LCM) or large central memory extended

(LCME) on the CYBER 170 Model 176 or .as extended core storage (ECS) on other NOS systems.

References to ECS in this manual refer to ECS, LCM, and LCME unless otherwise noted.

Slower than CM, but faster than mass storage, EM can be used for the following purposes.

e As a directly accessible memory device via FORTRAN or COMPASS statements for ECS data

storage and retrieval (refer to the FORTRAN Extended 4 Reference Manual, FORTRAN 5
Reference Manual, or appendix D of volume 2).

e As storage for frequently accessed data (refer to ASSIGN Statement in section 7 and Permanent
File Control Statements in section 8).

e As an alternate system device for storing copies of frequently used routines.
e Asalink between mainframes in a multimainframe configuration.T

Only validated users can use EM (refer to LIMITS Statement in section 6).

TCYBER 170 Model 176 extended memory cannot link mainframes.

60435400 K ’ 1-1-3

PERIPHERAL PROCESSORS
The peripheral processors (PPs) process com'munications between CM and individual peripheral devices.
They also perform those system control funetions that are better handled by a PP than by the central
processor. A peripheral processor can:

e Read and write CM.

e Read and write ECS indirectly via CM or directly via the distributive data path (ppp).t

e Transfer data to and from peripheral devices through the data channels.
NOS supports the 7, 8, 9, 10, and 20 PP configurations for 6000 Series computers and 10, 14, 17, and 20
PP configurations for CYBER 70, Models 71, 72, 73, and 74. NOS also supports 10, 14, 17, and 20 PP
configurations for all CYBER 170 models except Model 176. CYBER 170 Model 176 has two types of
peripheral processors, PPs and PPUs. The configurations supported by NOS can have from 10 to 20 PPs.

For more information on PPs, refer to the appropriate system hardware reference manual listed in the
preface.

PERIPHERAL EQUIPMENT

Peripheral equipment varies among installations but usually includes card readers and punches, line
printers, mass storage devices, and magnetic tape units. NOS supports the following equipment models.

405 Card Reader

415 Card Punch

580-12, 580-16, and 580-20 Line Printers
844-21 Disk Storage Subsystem

844-41 and 844-44 Disk Storage Subsystems
885 Disk Storage Subsystem

Mass Storage Facility (MSF)

667, 669, 677, and 679 Magnetic Tape Units

6671 Multiplexers for communication with 200 User 'I‘ermmals and 731-12, 732-12, and 734 Remote
Batch Terminals

6671 or 6676 Multiplexers for communication with interactive terminals

255x Network Processing Units

T This funetion does not apply to CYBER 170 Model 176 peripheral'processors.

1-1-4 60435400 L

N

SYSTEM SOFTWARE

Software executed within a computer system can be divided between software that is built into the
system during system initialization and software that executes as jobs within the running system.
Software present when the system begins running includes the -operating system and products such as
compilers, CYBER Loader, and CYBER Record Manager. Jobs run within the system are categorized
according to their origin as described in section 3. User jobs usually consist of user programs and the
system instructions required for program execution.

USER PROGRAMS

A user program is a group of CPU instructions defined by a user to perform a certain task or calculate a
result. A user program can be written in a language at any of three levels.

Compiler languages provide the user with a language suited to his particular needs. The
program statements are translated by the appropriate compiler [FORTRAN, COBOL (Common
Business-Oriented Language), ALGOL (Algorithmic Language), and so on], which generates
assembler language or machine language instructions. Programs written in compiler languages
are usually machine~independent.

Assembler languages provide a one-to-one relationship between instructions and machine
operation. Mnemonies are provided for each instruction. These languages, normally used by
advanced programmers, are machine-dependent. Most of the NOS system is written in
COMPASS, the assembler language of the CYBER 170, CYBER 70, and 6000 Series computers.

Hardware instructions are interpreted directly by the computer, and therefore, require no

- interpretation by a compiler or assembler. Each hardware instruction is a binary number. The

programmer is rarely concerned with instructions written at this level. The exception is when
program debugging requires that the user interpret memory dumps.

OPERATING SYSTEM

NOS is a group of CPU and PP programs that supervise and coordinate the operation of system hardware
and the execution of products and user programs. The following lists some of the functions of NOS.

. @ Job validation and accounting.
e Control statement translation.
e File retrieval, manipulation, routing, and storage.
e Job input and output.
e Normal and abnormal job termination.
e Memory dumps.
60435400 J 1-1-5

CYBER Loader

CYBER Loader prepares programs for execution. Following user directions, it allocates memory for a
program, loads-the program modules into ‘their appropriate locations, generates a load map, and initiates
program execution. It can load subdivided programs for more efflclent use of memory. Refer to the
CYBER Loader Reference Manual for more information. 4

CYBER Record Manager

CYBER Record Manager (CRM) is the interface between user input/output (I/O) funetions and NOS
physical I/0 functions. Some of the products that use CRM are COBOL 4, COBOL 5, FORTRAN
Extended 4, FORTRAN 5, Sort/Merge 4, ALGOL 4, ALGOL 5, PL/ (Programmmg Language), and
DMS-170.

The functions of CRM are divided between two processors, Basic Access Methods (BAM) and Advanced
Access Methods (AAM). BAM handles sequential and word-addressable file organizations; AAM handles

indexed sequential, direct access, and actual key file organizations. Refer to the appropriate CYBER
Record Manager manual listed in the preface.

1-1-6 : 60435400 J

N

A file is the largest collection of information addressable by name. All NOS data processing involves
operations performed on files. Files can be differentiated by their name, structure, or file type or by
whether they are assigned to a job (NOS jobs are described in section 3).

FILE NAMES

Each file has a unique one- to seven-alphanumerie-character name.t
Examples:

A 123 TAPE 1A2B COMPILE

If all the following conditions are true, the
seventh character of a file name does not make
the name unique, and NOS assumes that the tape
file is the file referenced. The conditions are:

e A tape file with a six- or
seven-character name is assigned to the
job. .

e The job references a six- or
seven-character name of a file that does
not exist.

e The first six characters of the file names
match. :

Several file names are reserved for system use or have special significance to the system. The following
file names are reserved for use by system routines.

SCR SCR1 SCR2 SCR3 SCR4
Improper use of these file names produces the following dayfile message.

RESERVED FILE NAME.

tSome products such as FORTRAN Extended 4, FORTRAN 5, and COBOL 5 do not support file names
that begin with a digit. Also, some products support only six-character file names. Refer to the '
product reference manual listed in the preface for details.

60435400 L 1-2-1

Many NOS products such as COMPASS, FORTRAN Extended 4, and Update use internal scratch files.
‘Meany of these scratch files have names beginning with ZZ. The user should avoid using the name of a
product secratch file for one of his own files.

The following file names are significant because they are associated with system input, print, or punch
queues or with time-sharing terminals.

. INPUT OUTPUT PUNCH PUNCHB P8

Refer to the description of input, print, and punch file types for more information.

FILE STRUCTURE

File structure within a computer system has several meanings. The NOS user can think of a file as
having three representations; two logical representations (CYBER Record Manager file structure and
NOS file structure) and a physical representation. Logical file structure is how the user orders the data.
The user can define this logical file structure using higher level language statements within a source
program. CYBER Record Manager (CRM) translates the higher level language statements into the file
structure that it superimposes on the data. NOS file and record marks structure a file while it is being
processed within the system. NOS converts the NOS file and record marks to their physiecal tape, disk, or
card equivalents when the file is stored.

CYBER RECORD MANAGER FILE STRUCTURE

CYBER Record Manager handles 1/O for several products (refer to section 1) including FORTRAN
Extended 4, FORTRAN 5, and COBOL 5. CRM superimposes its file structure on the NOS file structure.
Through CRM, the user can specify a file organization, a blocking type, and a record type for his data.
The file organization determines how records are accessed, the blocking type determines how CRM
records are grouped on their storage media, and the record type defines the smallest unit of data CRM
can retrieve. This manual does not deseribe CRM. A description of CRM including the FILE control
statement is included in the CRM manuals listed in the preface.

NOS FILE STRUCTURE
A NOS file can contain more than one logical file; if it doeé, it is called a multifile file. A multifile file
begins at beginning-of-information (BOI) and ends at end-of-information (EOI). A file within a multifile
file begins either at BOI or after the end-of-file (EOF) of the preceding file. It ends at its EOF.
Each file consists of zero or more records of information. A record is zero or more 60-bit CM words. A
record begins at the BOI, after an EOF, or after the end-of-record (EOR) of the preceding record. It
ends at its EOR. The following is the structure of a single-record file.

(BOI) data (EOR) (EOF) (EQI)
The following is the structure of a multi‘record, multifile file.

(BOI) data (EOR) data (EOR) (EOF) data (EOR) data (EOR) (EOF) (EOI)

The last EOF in a file may or may not be present depending upon the program used to create the file.

1-2-2 60435400 L

PHYSICAL FILE STRUCTURE

When NOS stores a file, it converts it to a structure that econforms to the physical characteristics of the

storage medium. Its file and record marks are converted to physical BOI, EOR, EOF, and EOI indicators.

The basis of all physical file structures is the physical record unit (PRU), the amount of data that can be

read or written in a single device access. Table 1-2-1 lists the PRU size, and record and file mark

indicators for each supported storage device.

TABLE 1-2-1. PHYSICAL FILE STRUCTURE ON STORAGE DEVICES

Record and File Mark Indicators

Storage Device PRU Size BOI EOR EOF EOI
Magnetic disk 64 CM words. Disk address for PRU of less Zero-length Zero-length
or extended the file in the than 64 words PRU (no data) PRU with no
memory NOS file name with a link to with special forward link.
table (FNT/FST). the next PRU. link to next
PRU.
Card deckst One card. First card in Card with a Card with Card with
the deck. 7/8/9 punch 6/7/9 punch 6/7/8/9 punch
in column 1. in column 1.F¥ in column 1.
Remote Batch RBF/HASP can
Facility also use /*EOI.
(RBF)/HASP can
also use /*EOR.
Integral num- If labeled, tape A PRU of less Zero-length Tape mark fol-
ber of CM words mark following than 512 words PRU whose lowed by an
1 (0 to 512); HDR1 label. If with level terminator EOF1 label.
(Internal) each PRU in- unlabeled, load number of 0. contains a
cludes a 48-bit point. level number
terminator. of 17g.
Integral num- If labeled, tape A PRU of less Zero-length Tape mark fol-
ber of CM words mark following than 512 words PRU whose lowed by an
SI (0 to 512); HDRI1 label. If with level terminator EOF1 label.
(System each PRU of unlabeled, load number between contains a
internal) less than 512 point. 0 and 164. level number
words has a ' of 17g.
48-bit
terminator.
Magnetic Maximum of 512 If labeled, tape End of each Tape mark. If labeled, a
tapetit words (refer mark following PRU. tape mark fol-
to BS parameter HDR1 label. If lowed by an
S on COPY state- unlabeled, EOF1 label. If
(Stranger) ment in section load point. unlabeled, there
7 and to ap- is no EOI in-
pendix J in dicator.
volume 2).
No maximum If labeled, tape End of each Tape mark. If labeled, a
defined (refer mark following PRU. tape mark fol-
L to BS param- HDRI1 label. lowed by an
(Long block eter on COPY If unlabeled, EOF1 label. If
stranger) statement in load point. unlabeled, there
section 7 and is no EOI in-
to appendix J dicator.
in volume 2).
Determined by Load point. None. Tape mark. None.
C or FC param-
F eter on
(Foreign) ASSIGN,
LABEL, or
REQUEST state-
ment.

TFor more information, refer to appendix F.
f1The 6/7/9 card is not recognized in a remote batch job. In an RBF job the end-of-file marker is a card with a 7/8/9 punch in eolumn
1 and a level number of 17g in columns 2 and 3. RBF/HASP can also use a card with /*EOR in columns 1 through 5 and a level
number of 17g in columns 6 and 7.
t1tFor more information, refer to section 10 and appendix G.

60435400 L

1-2-3

Card Files

The physical file and record marks of a card file are shown in figure 1-2-1 and listed in table 1-2-1.
Although card decks do not have a defined PRU size, a card is the minimum data unit. NOS can read and
punch cards in coded (Hollerith), binary, and absolute binary formats as described in appendix F. Coded
cards are punched in 026 or 029 keypunch mode. The system uses the installation default keypunch
mode (chosen by the installation) unless a 26 or 29 is punched in columns 79 and 80 of a job, EOR, or EOF
card indicating that the subsequent cards are punched in that mode.t NOS can punch up to 80 characters
on a coded card and up to 150 characters (15 CM words) on a binary card.

Figure 1-2-1. Sample Card File Structure

Mass Storage Files
Mass storage files are stored on disk or ECS.

The physical structure of mass storage does not concern most users; they interact with the logical
structure, with logical devices, and logical tracks. A logical device is-one or more physical disk units
known to the system as a single device. A logical track is a file allocation unit determined by the device
type (refer to table 1-2-2).

T Keypunech mode selection is not supported for jobs entered through a 200 User Terminal or similar
remote batch terminal except for HASP.

1-2-4 ‘ : 60435400 L

TABLE 1-2-2. 'LOGICAL STRUCTURE OF SUPPORTED MASS STORAGE DEVICES

Number of Physical PRUs in a
Devices in a Logical Logical
Mass Storage Device Device (n) Track
844-21 disk (half-track)t 1 through 8 n * 107
844-21 disk (full-track)t 1 through 8 n*112
. 844-41/44 disk (half- or full-track) 1 through 8 n * 227
885 disk (half- or full-track) 1 through 3 n * 640
ECS Undefined 16

T Half-track is a recording mode that accesses alternate PRUs during a disk
revolution; full-track recording mode accesses consecutive PRUs. Half-track
mode needs two revolutions to access all PRUs on a physical track; full-track
mode needs only one revolution.

Each permanent file on mass storage is accessed via a catalog track containing the permanent file
catalog of its owner. Indirect access files (refer to Permanent Files) must reside on the same device as
their catalog; direct access files may reside on another device. Space is allocated for mass storage files
in units called reservation blocks. An indirect access file reservation block is always 64 words (one
PRU). A direct access file reservation block is a logical track. The maximum size of a user's mass
storage file is determined by his validation limits (refer to LIMITS Statement in section 6).

Magnetic Tape Files

NOS supports tape units that read and write seven-track and nine-track, 1/2-inch magnetic tape in binary
and coded recording modes. In binary mode, NOS reads and writes 6-bit display code. In coded mode,
NOS converts display code to and from coded characters. The user can select 8-bit ASCII or EBCDIC for
coded nine-track tapes. Coded seven-track tapes use 6-bit external BCD code.

The user can select 200-, 556-, or 800-bit per inch (bpi) density for seven-track tapes or 800-, 1600-, or
6250-character per inch (epi) density for nine-track tapes, provided these densities are available with the
site hardware. NOS automatically processes tape parity errors and end-of-tape conditions unless the user
selects other processing options (refer to Processing Options in section 10).

60435400 K 1-2-5

Tape Labels

Tape labels identify and delimit tape volumes and tape files. Tape marks begin and end most tape
labels. A tape mark is a special bit sequence written and recognized by a tape unit.

NOS processes ANSI standard and nonstandard labeled tapes. Nonstandard labeled tapes are those whose
format or content do not conform to the ANSI standard described in appendix G. NOS skips to the first
tape mark when reading a nonstandard labeled tape if the tape assignment statement specifies the LB=NS
parameter (refer to section 10). All information after the first tape mark is then handled as data.

ANSI standard labels are those that conform to the American National Standard Magnetic Tape Labels
for Information Interchange X3.27-1969 standard. NOS can create or verify ANSI labels if the LABEL
statement assigns the tape file. Label verification ensures that the correct volume has been mounted.
ANSI labels separate multifile set files and indicate if a file continues on another volume.

The ANSI label EOF indicates end-of-information for a file within a file set. The use of ANSI labels to
delimit files within file sets is illustrated in figure 1-2-2,

File set configurations (* means tape mark):

Single file on single volume

(A) ' : (A)
vOL1|HDR1]* File A data , gé *| EOF1 [*]*
Single file on more than one volume
(A)
Velume |yoL1|HpR|* File A data j{ | EOV1 [*]*
(A) (A)
V°';"“’ voL1|HDR1|* File A data : §£ *| EOF1|*}*
More than one file on a single volume
(A) (A) (B) (B)
voL1{ HDR1[* File A data 32 *| eoF1|*| HORA]* File B data EOF1|*|*
More than one file on more than one volume
(A) (A) (B)
V°';"“e vOL1| HDR1{* File A data ?{ *| EOF1|*|HDR1 [* File B data *| eov|*|*
(B)
V°';m° VOL1|HDR1|* File B data {2 *| EOV1 [*]*
(B) (B) (c) (C)
V°':;"“e VOL1|HDR1[* File B datazz *| EOF1{*| HDR1|* File C data *| EOF1|*}*

Figure 1-2-2. Use of ANSI Labels

1-2-6 60435400 L

N~

An ANSI-labeled tape must have the following labels. Other optional labels are described in appendix G.

Label Location

VOL1 Beginning of volume.

HDR1 Beginning of information. If the file continues on to another volume, the HDR1 label
is repeated. It must follow the VOL1 label and precede the continuation of the file
information.

EOF1 End of information.

EOV1 End of volume (required only if the file continues on another volume).

Appendix G gives the tape label formats.

Tape Data Formats

NOS can read and write data on magnetic tape in any of the following formats.

Format Mnemonic
Internal (NOS default) I
System internal® SI
Stranger S
Long block stranger L
Foreign F

These data formats differ in their PRU (block) size and in their record and file mark. indicators (refer to
table 1-2-1). Other format differences are:

Tape
Format Labels Recording Mode Noise SizefT
I Labeled or unlabeled Binary only Seven-track: < eight
frames
Nine~track: <six
frames
SI Labeled or unlabeled Binary onlyﬁ”r Seven-track: <eight
frames
Nine-track: <six
- frames
S Labeled or unlabeled Binary or coded User-selected;
default is <18 frames

TNOS/BE system default tape format (binary mode only).
tTTape blocks read that are smaller than the noise size are discarded. An attempt to write a block
smaller than the noise size produces an error message.
+11Specification of coded mode aborts the job step; refer to TCOPY Statement in section 7.

60435400 L . 1-2-7

Tape

Format Labels Recording Mode Noise Size
L Labeled or unlabeled Binary or coded User-selected;
default is <18 frames
F Unlabeled (labels read Seven-track: User-selected;
as data) binary or default is <18 frames
coded;

Nine-track:
binary onlyt

NOS terminates blocks on I and SI format tapes with a 48-bit block (PRU) terminator. The terminator
contains the total number of bytes in the block (including the terminator itself), the number of blocks
since the last HDR1 label, and the level number of the block. This terminator enables read operations on
I format tapes to check if the number of bytes read and the block number expected match the byte count
and block number in the terminator. If either does not match, the system attempts to recover the
missing data. This feature prevents dropped or fragmented blocks and provides a higher degree of
reliability than other data formats. '

Tapes should be read with the same format specified as when they were written. Data is then recovered
in its original form. For some formats, NOS writes extra bits which are discarded when the tape is read.
I format nine-track tapes are always written with an even multiple of bytes per block. SI format
nine-track tapes may have an extra 4 bits written per block to preserve the lower 4 bits of a CM word.
(A 60-bit CM word would be written in eight frames, 8 bits per frame.) :

All nine-track tapes are written with odd parity. Binary seven-track tapes have odd parity; coded
seven-track tapes have even parity. If a parity error is detected on an F format seven-track tape, the
recording mode (binary or coded) is automatically switched.

Appendix J of volume 2 describes tape formats in greater detail.

FILE TYPES

The following defines types of files assigned to user jobs and types of permanent files on mass storage. A
file assigned to a job is known to the system by its entry in the file name table/file status table
(FNT/FST). A FNT/FST entry contains the file name, the device on which the file resides, the file type,
and its current position and status.

A permanent mass storage file is known to the system by its entry in a permanent file catalbg associated
with a user number. The catalog entry contains the file's name, location, length, permission modes, and
access history. :

t No code conversion is performed even if coded data is read.

1-2-8 60435400 K

FILES ASSIGNED TO USER JOBS

NOS uses the following mnemonies for file classification.

INFT Input file PMFT Direct access file
PRFT Print file LIFT Library file

PHFT Punch file ROFT Rollout file

LOFT Local file TEFT Timed/event rollout file
PTFT Primary terminal file

Input files, print files, punch files, rollout files, and timed/event rollout files are queued files. A queued
file waits on mass storage until the system resource or peripheral equipment it requires becomes
available and its priority is the highest of the files in the queue.

Input Files

An input file is also called a job file because it contains user-supplied control statements and data for a
job (refer to section 3). Initially, input files exist on mass storage in the input queue. A file enters the
input queue directly when a local or remote batech job enters the system or indirectly when a user job
submits another job via a SUBMIT, LDI, or ROUTE control statement. The input file of a time-sharing
job consists of all terminal input directed to the system during a time-sharing session. Because the
system processes the control statement immediately after it is read from the terminal, a time-sharing
input file is always empty except when processing a procedure file. A user job refers to its input file by
the file name INPUT (refer to Input File Control in section 3).

Print Files

A print file contains data to be printed. It is created and placed in the print queue as a result of the
following:

e At job termination when the system changes the local file OUTPUT, if present, into a print
file.¥

e At execution of an OUT, ROUTE, or DISPOSE control statement naming a local file to be
printed.

The local or remote batch subsystem processes the files in the print queue. By default, jobs originating
at a central site card reader are routed to a line printer with the same ID as the card reader. Similarly,
remote batch output returns to the remote bateh terminal where the job originated. Each remote batch
terminal is given a unique terminal identification code (TID) when it logs in. Remote batch jobs and the
print files they generate are given the TID of their originating terminal.

Users can override the default routing of print files with the ROUTE statement (refer to section 7). The
ROUTE statement can specify a printer or printer type.

T Not applicable to time-sharing jobs.

60435400 L 1-2-9

As a print file waits in the print queue, its pri'ority increases. The file is printed when a printer becomes
available and when its priority is higher than all other files destined for that printer.

Print files must be formatted for line printing. The user should add appropriate printer control

characters (refer to appendix I, Line Printer Carriage Control). Appendix D contains the printer output
from the compilation and execution of a sample program.

Punch Files
A punch file contains data to be punched on cards. A punch file is routed from the mass storage punch

queue according to the name the user assigns it or according to parameters specified on a ROUTE or
DISPOSE statement. The following are special punch file names.

PUNCH Contains Hollerith (coded) punch output.
PUNCHB Contains binary punch output.
P8 Contains 80-column absolute binary punch output.
Punch files enter the punch queue at job completion or upon execution of an OUT, ROUTE, or DISPOSE

control statement. The routing and schedulmg procedures for punch files are the same as for print files.
Punched card formats are described in appendix F.

Local Files

Local files are temporary files. The local file type includes all scrateh copies of files except the primary
file.

The user can create a local file by:

o Naming the file for the first time in a COPY control statement or in a read or write statement
within a program. A local file created in this manner always resides on mass storage.

e Naming the file for the first time in an ASSIGN or REQUEST control statement assigning the
local file to mass storage or to a time-sharing terminal or in an ASSIGN, LABEL, or REQUEST
control statement assigning the local file to magnetic tape.

e Naming the file in a GET control statement generating a local mass storage file.
To save the contents of a local mass storage file, the user issues a SAVE or REPLACE control statement
to copy the local file to a permanent indireet access file or an APPEND control statement to copy the

local file onto the end of an existing permanent indirect access file. Data written on a local file assigned
to magnetic tape is written on the tape for later access. Local files are released upon job completion.

1-2-10 ' 60435400 L

N

Primary Files
The primary file is a temporary mass storage file designated as the primary file by a PRIMARY, NEW, or I
OLD control statement. Only one primary file can exist for a job at a time. Some control statements

use the primary file as the default file when a file name is not specified. NOS rewinds the primary file
before each job step.

Direct Access Files
A user assigns a direct access permanent file to his job by issuing an ATTACH or DEFINE control

statement. When the user defines the file or attaches the file in a mode permitting file modification, he l
can write on the permanent file. Refer to Permanent Files in this section.

Library Files

A library file is a read-only file that several users can access simultaneously. This file type should not be
confused with system library programs or with public permanent files stored under user number
LIBRARY. Refer to Libraries in this section for a description of the uses of the term library in NOS.

A user must be validated to access or create a library file. The validated user can create a library file as
follows:

1. Create a local file with file name 1fn.
2. Enter the following control statements.
LOCK(Ifn)
COMMON(ifn)
The validated user can read a library file after naming it in a COMMON control statement.
A library file cannot be removed from the system once it has been created except by a level 0 deadstart. I

Library files are retained on level 1 or 2 deadstart if a system checkpoint was done after their creation.
They are always retained after a level 3 deadstart.

Rollout Files

If, during job processing, the system or the user determines that a job must be temporarily removed from
central memory, the system writes all information concerning the job on a system-defined rollout file.
The rollout file includes the contents of the CM field length and the ECS field length of the job and the
job-related system information from CMR. The file is read back into CM (and ECS) when the job is again
assigned to a control point (refer to Rollout Control in section 3).

60435400 L 1-2-11

Timed/Event Rollout Files

A timed/event rollout file is similar to a rollout file in that it contains all the information coneerning a
job temporarily removed from central memory. However, a timed/event rollout file is rolled back into
central memory only when a specified event has occurred (such as a file becoming not busy or a tape
being mounted) or a specified time period has elapsed.

A job may be written on a timed/event rollout file as a result of system or user action. The system uses
a timed/event file if a job issues file or device requests that cannot be immediately honored. Users place
their jobs on a timed/event rollout file when they use the ROLLOUT control statement to roll out their
jobs for a specified time period.

PERMANENT FILES

Permanent files are retained on mass storage until their creator purges them. Each permanent file is
included in a permanent file catalog associated with a user number. Each permanent file catalog
describes all permanent files created under that user number and their location on mass storage. Unless
another user number is specified, the system assumes that all permanent file requests are made to the
catalog of the user number named on the last USER statement {or named in the login of a time-sharing
job).

User numbers (refer to Validation in section 3) that contain asterisks represent users with automatic
read-only permission to files in the catalogs of other users. The user number must match the other user
number in all characters not containing asterisks. For example, the user with user number *AB*DE* can
access the catalogs of the following users.

UABCDEF
UABDDEE
MABCDE1

The device residence of permanent files and their backup copies are described under Mass Storage File
Residence in this section.

The two types of permanent files, indirect access permanent files and direct access permanent files, are
described in the following paragraphs.

Indirect Access Permanent Files

Indirect access permanent files are accessed by copying the permanent file to a temporary file (local or
primary file type). The user creates an indirect access permanent file by naming a temporary file in a
SAVE or REPLACE control statement. He can retrieve a temporary copy of an indirect access file by
naming it in an OLD or GET control statement. To alter the indirect access file, he enters a REPLACE
statement naming the temporary copy. The system then writes the temporary copy over the permanent
copy of the indirect access file.

Mass storage for indirect access permanent files is allocated in 640-character blocks (64 CM words).

Because of its small allocation block size and the disk space required to maintain a working copy,
indireect files are usually relatively small files.

1-2-12 60435400 L

The maximum size of an indirect access file is determined either by the value of the FS validation
parameter desecribed in LIMITS Statement in section 6, or if no FS restriction is imposed, by the device
limitations described in Mass Storage Files in this section.

Direct Access Permanent Files

The user accesses a direct access permanent file directly, not through a temporary copy. Data is written
directly on the permanent file.

The user creates a direct access permanent file with a DEFINE control statement, which determines its
name and residence and the default access mode available to other users. He accesses the file with an
ATTACH control statement. A number of users can attach the file concurrently, but only one user at a
time can change the file. To change the file, the user must attach it in modify, append, or write access
mode. If a user attaches the file in write mode, no other user can attach that file concurrently.

Even if a file is currently attached to a job, the user can purge the file from the permanent file catalog
with a PURGE statement. However, the purged direct access file remains attached to the job until it is
released by a RETURN, CLEAR, UNLOAD, OLD, or NEW statement or until the job ends.

Mass storage for direct access permanent files is allocated in large blocks; the block size depends on the
mass storage device type on which the file resides (refer to Mass Storage Files in this section). Because
of their large allocation block size and the write interlock feature, direct access files are often used for
database files.

The maximum size of a direct access file is determined by the DS validation parameter described in
LIMITS Statement in section 6, or if no DS restriction is imposed, by the device limitations deseribed in
Mass Storage Files in this section. :

MASS STORAGE FILE RESIDENCE

For most mass storage file operations, the user need not be concerned about the specific device on which
his file resides. However, under certain circumstances, the user may wish to override the default device
residence for local or permanent files.

With the ASSIGN control statement, any user who has the necessary validation can assign a local file to
either a specific device or to a device category.

Every permanent file the user creates resides either in his family of permanent file devices, on an

auxiliary device, or on the Mass Storage Facility. Unless the user specifies otherwise, all permanent files
are saved in his family.

FAMILY DEVICES
A family consists of a set of mass storage devices. Within a family, each user has a master device that

contains the user's permanent file catalog, indirect access files, and may contain some or all of his direct
access files. v

60435400 L 1-2-13

Normally, a system has only one family (the default family) of permanent file devices. However, because
families are interchangeable between NOS systems, several families may be active on one system, or a
system may be part of a multimainframe system. For example, consider an installation with two
systems, A and B. System B provides backup service to system A. If system A failed, its family of
permanent file devices could be introduced into system B without interrupting current operations on
system B.

The user identifies his family by supplying a one- to seven-character family name. The family name is
included on the USER statement in batch jobs and is entered during login in time-sharing jobs. If the
user's family is the system's default family, the user may, but need not, supply the family name. When
the family name is omitted, the system uses the system default family name. If the user's family has
been introduced into another system, he must supply his family name.

If the user chooses to save files on family devices, he has the option of either using the system default
device type or specifying another type of permanent file device.

AUXILIARY DEVICES

An auxiliary device is a supplement to the mass storage provided by family devices. It is identified by a
one- to seven-character pack name. An auxiliary device is not necessarily a disk pack that can be
physically removed as the pack name implies. Rather, an auxiliary device can be any mass storage
device supported by the system and defined as such by the installation. Each auxiliary device is’ a
self-contained permanent file device; all direct and indirect access files represented by the catalogs on
the device reside on the device. Auxiliary devices may be defined as public or private. Anyone
permitted to use auxiliary devices who supplies the appropriate pack name can create, replace, and
access files on a public device. Only one user, the owner, can create and replace files on a private
auxiliary device, but others may access or replace those files as permitted by the owner.

MASS STORAGE FACILITY (MSF)

Magnetic disk is the usual residence of permanent mass storage files. However, if the installation has an
MSF, some direct access files can be stored there. An MSF is suited for the storage of large, direct
access files that are accessed infrequently. Attaching a file residing on the MSF takes at least 10
seconds, because the file must be retrieved and copied (staged) to disk. Users can specify the preferred
residence of their direct access files with the PR parameter on the DEFINE or CHANGE statements
They can determine the actual residence of their files with the CATLIST, LO=F statement.

Usually, when attaching an MSF file, the system rolls out the job until the file has been staged and

. assigned to the job. (The time-sharing user can determine the status of his MSF file staging request with

the ENQUIRE statement.) However, if the user specifies the RT parameter on the ATTACH statement,
the job continues processing while the MSF file is being staged to disk. The user must then issue a second
ATTACH statement to assign the file to his job after staging. The user can then check that the file has
been attached by using either a FILE function (in a batch job or procedure file) or a LENGTH or
ENQUIRE(F) statement (in a time-sharing job).

1-2-14 : 60435400 L

)

e

N

If a permanent file is lost or destroyed, site personnel can recover the file by loading its backup copy.
Generally, sites perform regular dumps of permanent files to magnetic tape to serve as the permanent
file backup. By specifying the BR parameter on the DEFINE or CHANGE statement, the user can choose
to have a tape backup copy of his direct access file kept even if the file resides on the MSF. He also can
choose to have the MSF file copy serve as backup, or he can require no backup copy of his direct access
file. :

LIBRARIES

As defined in the glossary (appendix C), the term library has several meanings. The applicable meaning
for the term must be determined from its context. The following describes some NOS libraries.

USER NUMBER LIBRARY

Files stored under user number LIBRARY need not be libraries themselves. An installation saves
programs or text as files under user number LIBRARY so that validated users can access them from a
centralized location. Users access those files by specifying the file name and the alternate user number
LIBRARY on their permanent file request or by issuing the LIB time-sharing command (refer to the
Networ)k Produets Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference
Manual). :

PROGRAM LIBRARIES

A program library is a collection of source deck images stored in compressed. Modify or Update format.
The validated user accesses these compressed source decks through MODIFY or UPDATE control
statements (refer to section 13).

USER LIBRARIES

User libraries are the files named in the LIBRARY or LDSET loader control statement or in the program
binaries. These files are searched by CYBER Loader to satisfy external references within the program it
is loading. They contain compiled or assembled routines. The first record of a user library is a ULIB
record; the last record is an OPLD directory record (refer to the LIBGEN statement in section 14).

User libraries are generated by the user, the product, or the system. CYBER Loader first searches the
user-generated libraries specified by a LIBRARY or LDSET control statement (refer to the CYBER
Loader Reference Manual). -CYBER Loader then searches the produect set library (such as the FORTRAN
Extended library) stored on the system library. Finally, CYBER Loader searches the system default user
library SYSLIB, which is also on the system library.

Section 14 describes control statements that catalog and manipulate library records.

60435400 L ‘ 1-2-15

¥
y

~

7

JOB FLOW AND EXECUTION . 3

e NSRS

A job is a file of statement images.t Its first record contains control statements that specify job
processing requirements. Every job begins with a job statement and a USER statement. The end of the
control statement record is marked by an EOR (or an EOI if there is no data in the job).

Records that follow the control statement record contain program, data, or directive input for processing
control statements. As each control statement requiring additional user input is processed, the system
reads the next record in the input file (unless the control statement specifies otherwise). These following
records must be in the same order as the control statements that will use them.

For example, figure 1-3-1 illustrates a basie job deck. In the job deck, the first three control statements
are processed by system routines that require no additional user input. The fourth control statement,
FTN(GO), requests two job steps, the compilation’' of a FORTRAN Extended program and its execution.
Because the I parameter is omitted from the statement, the compiler reads the next record of the input
file, expecting it to be a FORTRAN source program. After successful ecompilation, the system executes
the program. The program then takes input data from the third record of the input file. Normal job
termination occurs when the system reads the control statement record EOR (the first 7/8/9 card).

JOB INITIATION

The user initiates jobs by:
e Reading a card deck in through a local or remote batch reader.
e Logging into a time-sharing ternﬁnal.

e Entering a job via an LDI, ROUTE, or SUBMIT control statement within a job already in the
system.

tA time-sharing job consists of all input entered during a time-sharing session (refer to the Network
Produects Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference Manual).

60435400 L 1-3-1

K b
?
8
q
/ ===
DATA e _—————]
RECORD |
H o
|I| € DATA DECK
|.l|
PROGRAM L «———SOURCE DECK
RECORD hl
=
a
C’
FTN{GO}
\ CHARGEL59+b91IN5Y
USERINAMAPASS+FAMAY
CONTROL FTNJOB. B
STATEMENT
RECORD
-

Figure 1-3-1. FORTRAN Compile and Execute Deck

JOB ORIGIN TYPES

When a job enters the system, the system determines the job origin type according to the means used for
job initiation. Its origin identification remains with the job throughout job processing. The job origin
type determines how the job is handled and how it exits from the system. _

Jobs originating from the system console are assigned system origin type (SYOT). Jobs entered through
the time-sharing executive or the Interactive Facility (IAF) are assigned time-sharing origin type
(TXOT). Jobs entered through a local batch card reader are batch origin type (BCOT) jobs. Jobs entered
through Export/Import or the Remote Bateh Facility (RBF) are remote batch origin (EIOT) jobs.

If validated, a user can initiate jobs using the LDI, ROUTE, or SUBMIT control statements. Jobs

initiated by ROUTE or SUBMIT statements can be either batch origin or remote origin jobs depending on
. the statement parameters. Jobs initiated by LDI statements are batch origin jobs.

1-3-2 60435400 J

NG

JOB NAMES

After entering the system, the job is assigned a unique seven-character job name to prevent job name
duplication within the system. This name is not the job name specified on the job statement. The job
name precedes all messages issued to the system dayfile for that job. These messages include normal
operating messages, error messages, and accounting information issued by the system.

SYSTEM JOB NAME FORMAT

The first four characters of a system job name are obtained from the job name entered or are display
code zero-filled if fewer than four characters are entered. The last three characters are a unique system
job sequence number in the range from AAA to ZZZ. For example, if the job entered is DIS, a possible
job name is DISOAAB.

LOCAL BATCH AND RBF JOB NAME FORMAT

The first four characters of a local batch or RBF job name are generated from the user index associated
with the user number supplied on the USER control statement. These four characters are unique to the
user. The last three characters are the job sequence number.

TIME-SHARING, IAF, AND EXPORT/IMPORT JOB NAME FORMAT

The first four characters of these job names are generated from the user index associated with the user
number supplied by the user when logging into the system. The last three characters represent the
connection number of the terminal on whieh the user is logged in.

DEFERRED BATCH JOB NAME FORMAT

All jobs entered via a ROUTE, SUBMIT, or LDI control statement derive the first four characters of their
job names from the job's current user index. For deferred batch jobs originating from system, local
bateh, Export/Import, and RBF jobs, the last three characters are the system job sequence number. For
deferred batch jobs originating from time-sharing and IAF jobs, the last three characters are the
connection number of the terminal on which the user is logged in.

VALIDATION

The USER statement follows the job statement and is used to validate the user as a legal user (refer to
USER Statement in section 6). If the user is validated, a set of control values is associated with the job;
these values are used by the system to control all system requests from the job. If the user is not
permitted to perform specific functions (such as access nonallocatable devices), the user's job is aborted
and a message such as

ILLEGAL USER ACCESS.

is issued when the illegal function is attempted.

60435400 L 1-3-3 e

To determine the extent of his validation, the user can issue the LIMITS control statement and receive a
listing of his current validation control values. Refer to LIMITS Statement in section 6 for an
explanation of these values. For further information or to change his validation, the user should contact
installation personnel.

Each user number has a unique user index associated with it. The system uses this index to determine the
location of the user's permanent file catalog. (Refer to the NOS System Maintenance Reference Manual
for an explanation of the user index.)

ACCOUNTING

The unit of accounting for the system is the system resource unit (SRU). The SRU is a composite value
of central processor time, I/0 activity, and memory usage. SRU operations are initiated at the beginning
of a job and reinitiated whenever another CHARGE control statement is encountered. SRU information
inecludes:

e Central processor time.

e Mass storage activity.

e Adder activity (fixed charges for some highiy variable system requests).
e Magnetic tape activity.

e Permanent file activity.

e SRU value. |

e Application account charges.t

This information is written to the user's dayfile at the end of the job or whenever a CHARGE statement
is processed. The user may request SRU information to be written to his output file at any time during

the job by issuing the ENQUIRE or SUMMARY control statement. The format of SRU information
written in the dayfile is given under Job Completion in this section.

JOB SCHEDULING

When a job enters the system, it is placed in the input queue on mass storage, where it waits for the
required system resources to become available. The job is assigned an input queue priority depending on
its origin. The system priorities are system-defined and can be altered only by the system operator. The
job queue priority is advanced as the job waits in the queue. The priority ages to a system-defined limit.
The job scheduler periodically scans the queues and active jobs to determine whether action is necessary
to ensure that the highest priority jobs are being serviced. This action may include rolling out low
priority jobs or rolling in higher priority jobs. The job scheduler is also activated to analyze the system
status whenever there are changes (for example, when the field length of a job is released, a job enters a
queue, or a job completes).

Once a job is brought to a control point, normal control statement processing begins. The general flow of
the control statement processing is illustrated in figure 1-5-1.

T Not currently supported by the system but reserved for future use.

1-3-4) 60435400 L

7N

JOB CONTROL

While a job is at the control point, the system exercises the following controls over the job.

FIELD LENGTH CONTROL
The system controls the field length (central memory) assigned to a job, adjusting it according to the
requirements of each job step. A programmer can influence the field length assigned to his job by using
the central memory job statement parameter (refer to section 5) and the MFL and RFL control
statements (refer to section 6).
The maximum field length for a job (MAXFL) is set at the smallest of the following values.

o Central memory job statement parameter value, if specified.

e Maximum field length for which the user is validated.

e Maximum field length available for user jobs (dependent on machine size).

The maximum field length (MFL) for each subsequent job step is initially set equal to MAXFL. It can be
reset, however, by MFL control statements. MFL cannot exceed MAXFL.

The running field length (RFL) is initially set to zero, indicating system control of field length. The RFL
contro! statement resets RFL. RFL cannot exceed the current MFL.

To set the initial field length for a job step, the system uses the first value set by one of the following.

o Predefined initial field length for a system routine (RFL= or MFL= special entry point as
described in appendix F, volume 2).

e Highest high address (HHA) from EACP loader table (54 table) (refer to the CYBER Loader
Reference Manual).

e - RFL value, if nonzero.

e The smaller of the MFL or the installation-defined default value (release value 50000B).

The system automatically assigns a field length
for CM only. To set the initial field length for a
job step in ECS, the user must use the RFL
statement or the MEMORY macro (refer to
volume 2).

CYBER Loader further adjusts the field length during program loading. Memory may be added or
removed as the needs of the program change. Refer to the description of the REDUCE control
statement in the CYBER Loader Reference Manual.

60435400 L 1-3-5

The following example shows a control statement record, the MAXFL, MFL, and RFL settings, and the
actual field length used to process the statement.

Control Statement

JOB(CM60000)
USER(USERABC,123,FAM1)
CHARGE(4922,66X)

GET(ABSPROG,RELPROG)

RFL(40000)

ABSPROG.

MFL(50000)

RELPROG.

INPUT FILE CONTROL

All user jobs, when initiated, have a file named INPUT (INFT type file).
statements and other input records required for job execution.

Field
MAXFL MFL RFL Length
60 000 60 000 0 700
60 000 60 000 0 700
60 000 60 000 2 200
60 000 60 000 0 1 700
60 000 60 000 0 1 500
60 000 60 000 40 000 40 000
.60 000 60 000 40 000 1 500
60 000 50 €00 0 =50 000

Explanation

The .CM parameter sets
the MAXFL and MFL
values. The system
sets the field length

as required for pro-
cessing the control
statements.

GET statement re-
trieves copies of an
absolute program and
a relocatable program.

The user issues an
RFL statement to set
the field length for
execution of the abso-
lute program that
follows.

The absolute program
on file ABSPROG is
executed within a

40 000-word field
length.

The user issues an
MFL statement to set
the maximum field
length for the follow-
ing relocatable load.

If more than a 50 000-
word field length is
required, the job
aborts.

This file contains the control
INPUT is a locked file. As a result, the

user may read from it and reposition it, but the system does not allow him to write on it. If for some
special reason the user needs to write on INPUT, he should first issue a RETURN(INPUT) control
statement (refer to section 7). This statement changes the name of the file from INPUT to INPUT* and
leaves it assigned to the user's job. The user may then write on file INPUT. The change of name on
RETURN applies only if the input file is of type INFT (refer to File Types in section 2).

1-3-6

60435400 L

TIME LIMIT CONTROL

The system sets a time limit for each job step unless the job statement or the SETTL statement specifies
a job step time limit. This time limit is the amount of central processor time that any one job step is
allowed. The user cannot increase the limit beyond that for which he is validated.

While a job is using the central processor, the CPU time is accumulated and checked against the time
limit for each job step. If the job is not a time-sharing (TXOT) job, the job in execution is aborted when
the time limit is reached. Time-sharing origin jobs are rolled out, after which the user can increment the
time limit and resume execution from the point where the time limit was exceeded. Refer to the
Network Product Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference
Manual for more details. '

SRU LIMIT CONTROL

The system sets a limit on the number of system resource units (SRU) that a job-step or an account block
can accumulate. An SRU includes central processor time, central memory usage, permanent file
activity, and mass storage and tape I/O. An account block is that portion of a job from one CHARGE
statement to the end of the job or to another CHARGE statement. The user may alter these limits
through the SETJSL and SETASL control statements or macros; however, he may not set either limit
beyond that for which he is validated. ‘

While a job is in the system, SRUs are accumulated and checked against the SRU step and account block
limits. If the job is not a time-sharing job (TXOT), the job is aborted when either limit is reached.
Time-sharing jobs are rolled out. After a time-sharing job is rolled out, the user can increment the limit
and resume execution from the point where the limit was reached. Refer to the Network Products
Interactive Facility Reference Manual or the NOS Time-Sharing User's Reference Manual for more
details.

CONTROL STATEMENT LIMIT CONTROL

If a job attempts to execute more control statements than the number for which the user is validated,
the following message is issued.

INITIAL CONTROL STATEMENT LIMIT.
NOS then searches for an EXIT statement. If it does not find one, it terminates the job immediately. If
it does find an EXIT statement, it allows processing of seven additional control statements for job error
processing. After processing the seven additional statements, NOS terminates the job after issuing the
following message.

CONTROL STATEMENT LIMIT.

A user can determine his control statement limit validation by entering a LIMITS statement (section 6).

60435400 L) 1-3-7

ROLLOUT CONTROL

Each executing program is allowed to reside in CM for a certain amount of time before relinquishing its
space to another program. When this CM time slice is exceeded, the program may be rolled out. This
means that the contents of the job field length (both CM and ECS), the job control area, and the control
registers (exchange package) are written to mass storage. The program remains on mass storage until it
is rolled back into memory. Execution resumes from the point where rollout occurred. The amount of
time the job is allowed to occupy CM is called the central memory time slice. The central memory time
slice is a system parameter that can be changed only by the system operator. The time slices vary for
each origin type. Whether a job is rolled out when its time slice expires depends on several factors.

e Whether there are jobs waiting in the input and rollout queues.
e Whether the jobs that are waiting have a lower priority.

e Whether jobs that are waiting require more field length than would be available if all jobs of
lower priority were rolled out.

When a job is rolled out, it is assigned a queue priority. The priority assigned is a system parameter and
can be changed only by the system operator. The queue priorities can vary for each origin type. The
queue priority is aged (incremented) while the job is in the rollout queue. Normally, all other factors
being equal, the job with the highest queue priority is selected to be rolled in.

ERROR CONTROL

When job step activity ceases, the system must determine the next control statement to process. If
activity ceased due to normal termination, the next control statement processed is the next statement in
sequence. If an error caused activity to cease, the system issues the appropriate dayfile message and
exits from the job.

Errors may be detected by system software or hardware. When the system hardware detects an error
condition, NOS issues two or more dayfile messages. The first message gives the address where the error
was detected. The second and following messages give the types of errors that occurred. NOS then
dumps the exchange package for the job to OUTPUT (for batch and remote bateh origin jobs) or to local
mass storage file ZZZDUMP (for time-sharing jobs) (refer to section 12). ZZZDUMP is not rewound
before or after the dump.

After issuing the appropriate dayfile message(s) for the error(s), the system searches for an EXIT control
statement. If an EXIT statement is found, processing continues with the statement following EXIT. If an
EXIT statement is not encountered, the system terminates the job. (Exit processing is further described
in seetion 5.) If the user issues a NOEXIT statement, the system does not search for an EXIT statement
on subsequent errors, and processing continues with the next control statement.

The user can specify the error exit mode on which the system is to abort with the MODE statement so
that address or operand out of range and/or indefinite operand errors are allowed and program execution
continues (refer to section 6). The default error exit mode specifies that all errors terminate the job.

Volume 2 describes the EREXIT, RECOVR, REPRIEVE, and MODE macros that can be used to control

error processing in COMPASS programs. The SETLOF macro, described in volume 2, specifies file
completion procedures when a job step abort occurs.

1-3-8 60435400 L

_,/’

SECURITY CONTROL

A job cannot dump or directly change the contents of the job field length immediately after processing a ||
protected control statement or user program. A COMPASS program can request protection through the
SETSSM macro (refer to section 6, volume 2). These security restrictions do not apply if the job is of
system origin or if the user is validated for system origin privileges and debug mode has been set at the

system console.

A load/dump central memory utility control statement cannot immediately follow a protected control
statement.

Protected Control Statements

ACCOUNT COPY DISPLAY IFE SKIP

ASSIGN COPYBF EDIT LABEL TCOPY
BEGIN COPYBR ELSE LIBEDIT USER
BLANK COPYCF ENDIF REQUEST VERIFY
CALL COPYCR ENDW RESOURC VFYLIB
CATALOG COPYEI ENQUIRE RESTART WHILE
CHARGE COPYSBF GOTO REVERT

CKP COPYX IF SET

Load/Dump Central Memory Control Statements

DMD DMP LBC PBC WBR
DMDECS DMPECS LOC RBR

If the user attempts to change or dump protected memory, NOS issues an informative message to the
dayfile and ignores the control statement.

JOB COMPLETION

When there is no more activity at a control point, no outstanding central processor requests, and no
control statements to process, the job is completed in the following manner.

1. All CM assigned to the job is released. I
2. ECS assigned to the job is released.

3. All equipment assigned to the job is released. - I
4, All library files attached to the job are released; other jobs can then access them. I

5. All seratch (local) file space used by the job is released.
6. Al direct access permanent files attached to the job are released; the status information for |
these files is updated.

put in the beginning of the job dayfile. This information is also issued to the associated account

7. The following summation of the number of cards read through a local or remote batch reader is
- dayfile for site usage. The entries in the account dayfile also include the job name.

60435400 L ‘ 1-3-9

e Job name:
hh.mm.ss.jobname.
e Cards read in kilocards:
hh.mm.ss.UCCR,mies, xxxxxx.xxxKCDS.
mi Machine ID.
es EST ordinal of the output device.
8. The following summations of job activity are added to the end of the job dayfile. This
information is also issued to the associated account dayfile for site usage. The entries in the

account dayfile also include the job name.

e Adder activity in kilounits (incremented by USER statements, CHARGE statements,
and resource assignments).

hh.mm.ss.UEAD, xxxxxx.xxxKUNS.

e Permanent file activity in kilounits:
hh.mm.ss.UEPF, xxxxxx.xxxKUNS.

e Mass storage activity in kilounits:
hh.mm.ss.UEMS, xxxxxx.xxXxKUNS.

e Magnetic tape activity in kilounits:
hh.mm.ss.UEMT, xxxxxx.xxxKUNS.

e Accumulated central processor time in seconds:
hh.mm.ss.UECP, xxxxxx.xxxSECS.

¢ SRU value in units for total job usage including CPU time, I/O activity, and memory
usage:

hh.mm.ss.AESR, xxxxxx.xxxUNTS.
o Lines printed in kilolines:
hh.mm.ss.UCLP, mies, xxxxxx.xxxKLNS.
or
hh.mm.ss.UCLV, mies, xxxxxx.xxxKLNS.
mi Machine ID.
es EST ordinal of the output device.

The UCLV summation is issued if the V carriage control character was used (refer to
appendix I).

T1f the installation defines a CPU multiplier value, the value given is the product of the actual CPU
seconds and the multiplier. The installation may assign a CPU multiplier value to each CPU within a
dual-processor machine (refer to the NOS System Maintenance Reference Manual).

1-3-10 60435400 L

7N

The following information is issued to the account dayfile only.
e Cards punched in kilocards:
hh.mm.ss.jobname. UCPC. mies. xxxxxx.xxxKCDS.

9. Job dayfile is copied to the end of the OUTPUT file. If an OUTPUT file does not exist or if it is
a deferred routed file with EC=A9 specified, the dayfile is copied to another print file.

10. All deferred routed print and punch files are released to the print and punch queues. The files
named OUTPUT, PUNCH, PUNCHB, and P8 are also released to the queues, unless the user
discards job output (for example, using the N parameter in the SUBMIT control statement).

11. ' The control point area is cleared for the next job.

60435400 L 1-3-11 o

CDC CYBER CONTROL LANGUAGE 4

o s e e it Ao —— s O

CYBER Control Languagef (CCL) is the set of control statements that determine the processing
sequence within the control statement record. CCL statements can insert control statements from a
procedure file and conditionally or unconditionally skip control statements. To determine the conditions
for transfer of control, CCL can interrogate the system for error flags, file status, device type, and
current subsystem. The following subsections describe the statement syntax and the operators and
operands which make up a CCL expression. Following that is a discussion of CCL statements, their
formats, and their use of expressions. The last subsection discusses CCL procedures which can contain
CCL statements and expressions. .

STATEMENT SYNTAX

CCL statement syntax is similar to the syntax of all other control statements. The syntax rules are: .
o A comma or left parenthesis separates the statement name and the first parameter.
e Commas separate consecutive parameters.
e A period or a right parenthesis terminates the statement.

e A right parenthesis ending an expression within a statement cannot also serve as the statement
terminator. The user must include an additional right parenthesis or period to complete the

statement.

e Parentheses can nest expressions within expressions (parentheses do not imply multiplication).

e Comments can follow the statement terminator.

Unlike most NOS control statements, a CCL statement can be longer than 80 characters. It can extend
over more than one line if each line to be continued contains no more than 80 characters and ends with a.
separator. .

OPERATORS

Operators separate operands in a CCL expression. There are three types of operators; arithmetie,
relational, and logical. Operators are used in the expressions within the IFE, WHILE, DISPLAY, and SET
statements.

T Another system control language (deseribed in appendix H) is also available.

60435400 L . 1-4-1 o

I ARITHMETIC OPERATORS
N
Integer arithmetic is used in each step of the evaulation of a CCL expression. Division, multiplication,
and exponentiation produce a zero result if the absolute value exceeds 248 _ 1. Computations are
accurate to 10 decimal digits (20 octal digits) and overflow is ignored.

The following are the CCL arithmetic operators.

Operator Operation

+ Addition.

- Subtraction.

* Multiplication.
/ Division.

*¥ Exponentiation.
Leading - Negation.
Leading + - Ignored.

' RELATIONAL OPERATORS

A relational operator produces a value of 1 if the relationship is true and 0 if it is false. The following
are the CCL relational operators (either form may be used).

Operator ‘ Operation

= .EQ. Equal to.
.NE. Not equal to.

< .LT. Less than.

> .GT. Greater than.
.LE. Less than or equal to.
.GE. Greater than or equal to.

I LoGicaL oPerATORS

When a CCL expression contains a logical operator, CCL evaluates the full 60 bits of each operand and
produces a 60-bit result. If the result has any bits set, it is true; if no bit is set, the result is false. The
following are the CCL logical operators.

1-4-2 60435400 L

SN,

Operator Operation

.EQV. Equivalence.
OR. Inclusive OR.
.AND. AND.

.XOR. Execlusive OR.
.NOT. Complement.

ORDER OF EVALUATION
The order in which operators in an expression are evaluated is:
1. Exponentiation.
2. Multiplication, division.
3. Addition, subtraction, negation.
4. Relations.
5. Complement.
6. AND.
7. Inclusive OR.
8. Exclusive OR, equivalence.

Operators of equal order are evaluated from left to right.

OPERANDS

One or more operands separated by operators make up a CCL expression. Expressions are used within the
IFE, WHILE, DISPLAY, and SET statements. An expression within an expression must begin with a left
parenthesis and end with a right parenthesis. There is no limit on the length of an expression, except
that a period or a right parenthesis (not acting as a statement terminator) must appear within the first 50
operands. Expressions can contain operands of one or more types.. There are three types of operands;
constants, symbolic names, and functions.

CONSTANTS .

A constant is a string-of from 1 to 10 characters that CCL processes as an integer. If its first character
is a digit (1 through 9), all characters within the string must be digits, except the final character which
may be a postradix. A B postradix identifies an octal integer; a D postradix identifies a decimal integer.
If no postradix is specified, decimal is assumed.

60435400 L ' 1-4-3

If the first character of the constant is not a digit, it must be entered as a literal. A literal is a string of

from 1 to 10 characters delimited by dollar signs (for example, $ A LITERAL $). CCL interprets the
literal as right-justified display code with binary zero fill and processes it as an integer.

SYMBOLIC NAMES

A symbolic name is a string of characters that is recognized by CCL and has an assigned value. CCL
uses symbolic names to test for conditions. It can also display the value assigned to a symbolic name.

The value assigned to a symbolic name is defined by the installation or set either by the user or by CCL.
All variable symbolic names have an initial value of 0 except OT (job origin type), SYS (host operating
system), VER (operating system version number), and TIME (the current time of day).

The symbolic names used with the FILE and DT functions are listed with the descriptions of the functions
in this section. The following symbolic names can be used in CCL expressions. They are grouped
according to a shared attribute.

e Symbolic names whose values are passed to, but not from, a procedure (refer to the description
of procedures later in this seetion). When a procedure reverts, they are restored to the values
they held when the procedure was called.

Name ' Description

DSC Flag determining whether skipped control statements are ehtered in the
dayfile (refer to SET Statement in this section).

EF Previous error flag.

R1 Control register 1 contents.

R2 Control register 2 contents.

R3 Control register 3 contents.

e Symbolic names whose values the user can set. All except EM are set by the SET control
statement or the SETJCI macro (refer to section 6 of volume 2).

Name Description

DSC Flag determining whether skipped control statements are entered in the
dayfile.v .

EF Previous error flag.

EFG Global error flag.

EM Current exit mode (refer to MODE Statement, section 6).

R1 Control register 1 contents.

R1G Global control register 1 contents.

1-4-4 60435400 L

TN
/

Name Description

R2 Control register 2 contents.
R3 Control register 3 contents.
e Symbolie names whose values the operating system sets.
Elme Desecription
CMN CM RFL setting divided by 100g (refer to RFL Statement, section 6).
DSC Flag indicating that skipped control statements are to be entered in the
dayfile.

ECN ECS RFL setting divided by 100g (refer to RFL Statement, section 6).
EF Previous error flag.

FL Current CM field length.

MFL Maximum CM field length.

MFLL Maximum ECS field length.

OoT Job origin type.

SYS Host operating system.

TIME Current time of day (hhmm).

VER Operating system version number.

e Symbolic name whose value the calling or termination of a procedure sets.

Name Description

PNL Procedure nesting level (0 when processing the original control statement
record, 1 when processing a first level procedure, and so forth). Its
maximum value is 50.

e Symbolic name whose value the termination of a procedure can set (refer to SET Statement in
this section).

Name Description

EFG Global error flag.

e Symbolic names correspond to error code values. In an expression a user typically checks the
error flag (EF) for a nonzero value; a nonzero value indicates an error, and a zero value
indicates no error. For detailed error examination, the user can compare EF with a particular
symbolie name or its error code value. Users are encouraged to use the symbolic name, because
the numeric values can change in future releases of NOS.

60435400 L 1-4-5

Name Value Description

ARE 1 Arithmetic error.
CPE 4 CPU abort.

ECE 15 ECS parity error.
FLE 7 File limit.

FSE 10 ' Forced error.
MNE 5 Monitor call error.
MSE 8 Mass storage error (same as track limit).
ODE 11 Operator drop.
OKE 13 Operator kill.
ORE 18 Operator override.
PEE 16 CPU parity error.
PPE 3 PPU abort.

PSE 2 . Program stop.
RRE 12 Rerun error.

SRE 9 SRU limit.

SSE : 14 Subsystem abort.
SYE 17 System abort.
TKE 8 Traek limit.

TLE 6 Time limit.

e Symbolic names with fixed values that can be compared with the origin type (OT) value within
an expression.

Name Description

BCO Local batch origin.
EIO Remote batch origin.
SYO System origin.

TXO . Time-sharing origin.

e Symbolic name with a fixed value that can be compared with the host operating system (SYS)
value within an expression.

Name Description

NOS Network Operating System.

1-4-6 60435400 L

e Symbolic names with true or false values. True is 1; false is 0.

Name Description

F Fixed value of 0 (false).

FALSE Fixed value of 0 (false).

SWn One of six sense switches (n can be from 1 to 6). Their values are set by the

OFFSW, ONSW, and SWITCH statements (refer to section 6).

Fixed value of 1 (true).

TRUE Fixed value of 1 (true).

FUNCTIONS

Functions are used as expressions or operands within expressions in CCL statements. Functions are not
statements. The CCL functions are FILE, DT, NUM, and SS.

FILE Function

The FILE function determines whether a file has a specified attribute. A left parenthesis must appear
before the file name, a comma must appear between the file name and the expression, and a right
parenthesis must appear after the expression; no deviations are allowed.

The format of the
FILE(lf n,exp)
1fn

exp

60435400 L

FILE funection is:

Name of the file for which attributes are being determined.

An expression, consisting of logical operators and special FILE function symbolic
names. The expression is evaluated as true (1) or false (0) or as a value such as an
equipment number. The expression must be appropriate for the statement in which the
FILE function appears. If the FILE function is part of an IFE statement, the
expression should be one that can be evaluated as true or false. If the FILE function is
part of the DISPLAY statement, the expression could have a numeric value other than
a true or false value.

The expression within a FILE function cannot include the NUM function, the SS
function, or another FILE function; the DT function or the following symbolic names
can be used within the expression. Any other symbolic name within the expression is
treated either as an implicit DT function (refer to DT Funetion which follows) or an an
unidentified variable.

1-4-7

Name Attribute

AS File is assigned or attached to the user's control point.
BOI File is positioned at BOI. This is effective only for a file on mass storage.
EOF Last operation was a forward operation, which encountered an EOF and is

now positioned at that EOF. This is effective only for a file on mass storage.

EOI Last operation was a forward operation, which encountered an EOI and is_
now positioned at that EOIL. This is effective only for a file on mass storage.

EQ EST number of the equipment on which the file resides. If the file is not
assigned to the job, it has an equipment number of zero.
EX File has execute-only permission.
ID File ID value.
IN File type is input.
LB File is on a labeled tape.
LI File type is library.
LO File type is local.
- MD File has modify permission.
MS File is on mass storage.
OP File is opened.
PH File type is punch.
PM File is an attached direct access permanent file.
PR File type is print.
PT File type is primary.
RA File has read append permission.
RD File has read permission.
RM File has read modify permission.
TP File is on magnetic tape.
TT File is assigned to a terminal.
WR File has write permission.

1-4-8 60435400 L

Example:

The following sample segment from a dayfile shows the FILE function being used inside a- DISPLAY
statement to determine if a specified file is at BOL 1 is true; 0 is false.

15.50.09.GET (ACCT)
15.50.09.DISPLAY(FILE(ACCT,BOI))
15.50.09. 1 1B
15.50.09.COPYBR(ACCT, ITEM)
15.50.09. COPY COMPLETE.
15.50.09.DISPLAY(FILE (ACCT,BOI)
15.50.09. 0 0B -

DT Function

The DT function determines the device type on which a file resides. DT can be used only within a FILE
funetion. The value of the DT function is true if the two-character mnemonic included in the function is
equal to the two-character device type. The operating system defines the mnemonics:

The format of the DT function as used in the FILE function is:

FILE(1fn,DT(dt))
Ifn Name of the file for which device residence is being determined.
dat . A two-character mnemonic identifying the device, which ' may be -any one of the
following:
- Type Equipment

CP 415 Card Punch.
CR 405 Card Reader.
DE Extended core storage.
DI 844-21 Disk Storage Subsystem (half-track).
DJ 844-41 or 844-44 Disk Storage Subsystem (half-track).
DK 844-21 Disk Storage Subsystem (full-track).
DL 844-41 or 844-44 Disk Storage Subsystem (full-track).
DM 885 Disk Storage Subsystem (half-track).
DP Distributive data patﬁ to ECS.
DQ 885 Disk Storage Subsystem (full-track).
LP Any line printer.
LR 580-12 Line Printer.
LS 580-16 Line Printer.

60435400 L 1-4-9

Type Equipment

LT - 580-20 Line Printer. .

MT Magnetic tape drive (seven-track).
NE Null equipment. _

NT Magnetic tape drive (nine-track).
TT Time-sharing terminal.

I "NUM Function

The NUM function determines whether a character string is numeric. It evaluates the character string as
true (1) if it is numeric or false (0) if it is not. NUM must be used as an expressmn or as part of an

expression in a CCL statement.
The format of the NUM function is:

NUM(c)

¢ A string of from 1 to 40 characters. If the string contains one or more special characters,
it must be delimited by dollar signs ($***§). If delimited by dollar signs, the string is
always evaluated as not numeric.

Example:

The following procedure uses the NUM function: to ensure that the passed parameter, NUMBER, is

numeric. If a non-numeric value is passed, the procedure terminates with an appropriate message.
. 1

.PROC, PROC1,NUMBER.
IFE, NUM(NUMBER),QUIT.
WHILE,R1.LE.NUMBER, LOOP.
SET, R1zR1+1.

.

ENDW,LOOP.

REVERT. -PROCESSING COMPLETED
ENDIF,QUIT.

REVERT, ABORT. NON-NUMERIC PASSED

I SS Function

The SS funection determines or sets the current subsystem bemg used by a job., SS can be used as an .

expression or as part of an expression in a CCL statement

The statement containing the SS function must end with a valid terminator. The SS function cannot be
used in the FILE function. If it is, an error message (CCL152) is issued and the job step aborts.

1-4-10 60435400 L

N

e

The format of the SS function is:
Ss
or
SS=name
name One of the following subsystem identifiers:
ACCESS BATCH FORTRAN NULL
BASIC EXECUTE FTNTS TRANACT'
The SS function is intended for use at a time-sharing terminal to determine and set subsystems by means
of procedure calls. For example, a time-sharing user in the batch subsystem could call a procedure

containing the statement SET,SS=FTNTS. Upon termination of the procedure, the user remains in the
FTNTS subsystem. ,

CCL STATEMENTS
The following are the CCL control statements grouped according to their common functions.

The following CCL statements are used to conditionally or unconditionally skip a sequence of statements.

Statement Description -
SKIP Skips until a matehing ENDIF statement is found.
IFE Evaluates conditional expression. If its expression is true,- the next statement is

processed; if its expression is false, statements are skipped until a matching ELSE
or ENDIF statement is found.

ELSE Terminates skipping initiated by a false expression within an IFE statement, or
initiates skipping to a matching ENDIF statement.

ENDIF . Terminates skipping initiated by a matching IFE, SKIP, or ELSE statement.

The following CCL statements identify-a sequence of control statements as a loop that can be repeatedly
processed.

Statement Description

WHILE Establishes the beginning of the loop. If the associated expression is true, the loop
is processed; if it is false, the loop is not processed.

ENDW Establishes the end of the loop.

t Not applicable to IAF.

60435400 K 1-4-11

The following CCL statements assign and display values associated with symbolic names.

Statement Description
SET Allows the user to assign values to special CCL registers.
DISPLAY Evaluates an expression and displays the result in the dayfile of the job.

The following CCL statements initiate and end processing of a procedure.

Statement Description
BEGIN Initiates processing of a procedure.
REVERT Returns processing from a procedure to the control statement record or procedure

that called it.

Individual descriptions of the control statements follow in alphabetic order.

BEGIN STATEMENT

The BEGIN statement inserts a procedure into the control statement record or into another procedure
(refer to Procedures in this section). Use of a BEGIN statement is illustrated in figure 1-4-1.

Job File
AJOB.
USER(USRNAME,PASSWRD)
CHARGE(CHRGNUM,PROJNUM) Procedure
L J
° .PROC,APROC.
L] []
BEGIN,APROC. U
L . L]
. REVERT.
L]
Job File
BJOB. Procedure
USER(USRNAME,PASSWRD)
CHARGE(CHRGNUM,PROJNUM) .PROC,BPROC. Procedure
[] L]
. . .PROC,CPROC.
o L]]
BEGIN,BPROC. — BEGIN,CPROC. oo .
L[] [] .
. . REVERT.
L) L]
REVERT.

Figure 1-4-1. Calling a Procedure

1-4-12 : ‘ 60435400 K

The formats of the BEGIN statement are:
BEGIN,pname,pfile,p1,pg,..+,bn.
and
pname;pP1,p9y...,Pp-
pname Procedure name from the procedure header.

In the first format, pname is the name of a procedures on pfile.
If pname is omitted from the first format, two consecutive commas must be
specified. The default procedure is the record at the current position of pfile. If
pfile is at its end-of-information, CCL rewinds pfile and uses its first record. If
pfile is INPUT, the file is not rewound.
In the second format, pname is the name of the local file containing the procedure

pname or the name of a procedure on the system library. pname must be speclfxed
in the second format.

pfile Name of the file containing the procedure. pfile must be the second parameter in
: the first format. Its omission is indicated by two consecutive commas following
pname.

If pfile is omitted from the first format, the installation-defined default file name
is used (PROCFIL is the default).

When the BEGIN statement is processed, CCL looks for a file named pfile assigned
to the job. If none exists, it looks for an indirect access file named pfile and
retrieves a local copy. If pfile is a direct access permanent file, the user must
attach the file before the BEGIN statement is processed.

pi Optional parameter specifying the substitution to be made for a keyword used in
the procedure. Refer to Keyword Substitution in this section for a full deseription
of keyword use in procedures.

The following parameter formats are available,

keyword The parameter is identical to a keyword on the procedure
header, so the second default for the keyword is used (as
specified on the procedure header).

keyword= References to the keyword in the procedure are removed
(null substitution).

value CCL assigns this 1- to 40-character symbolic name or
value to the keyword whose position in the procedure
header parameter list matches the position of this
parameter in the BEGIN statement parameter list. A
value containing special characters, other than / or -,
must be $-delimited.

60435400 L 1-4-13 |

keyword=value The symbolic name or value is substituted for the keyword

wherever it appears in the procedure. If value is followed
by a + value must be a symbolic name. (Refer to
Symbolic Names earlier in this seetion.)

The following formats can be used.

Format Description
keyword=value . Substitutes the value or sym-
or bolie name itself instead of

keyword=symbol a numeric value.

keyword=symbol+ Substitutes the decimal value
associated with the symbolic
name.

keyword=symbol+D Substitutes the decimal value
associated with the symbolie
name.

keyword=symbol+B Substitutes the octal value
associated with the symbolic
name or interprets the sym-
bolic name as an octal value.

When calling a procedure, a keyword can be named more than once if the
keyword=value parameter format is used each time. CCL issues a message
informing the user that a keyword is named more than once on the statement. It
uses the value specified with the last occurrence of the keyword.

Example:

The following procedure is accessed by a sequence of calling statements in the control statement record
of the job.

.PROC,TEST1,FK.
COMMENT. FK

The resulting dayfile shows each calling statement and the evaluations made. The relevant segment of
the dayfile is as follows:

1-4-14 ‘ 60435400 L

7N

10.15.26.BEGIN,TEST1,FKTEST,20.
10.15.27.COMMENT . 20

10.15.27 .REVERT.CCL
10.15.27.SET(R2=100)
10.15.27.BEGIN,TEST1,FKTEST , FK=R2+.
10.15.28.COMMENT. 100
10.15.28.REVERT.CCL
10.15.28.BEGIN,TEST1,FKTEST ,FK=R2+D.
10.15.29.COMMENT . 100
10.15.29.REVERT.CCL
10.15.29.BEGIN,TEST!,FKTEST, FK=R2+B .
10.15.30.COMMENT . 144
10.15.30.REVERT.CCL
10.15.30.BEGIN,TEST1,FKTEST.
10.15.31.COMMENT . FK
10.15.31.REVERT.CCL
10.15.31.BEGIN,TEST1,FKTEST,FK=.
10.15.32.COMMENT.

10.15.32.REVERT.CCL
10.15.32.BEGIN,TEST1,FKTEST,VALUE.
10.15.33.COMMENT . VALUE
10.15.33.REVERT.CCL
10.15.33.BEGIN,TEST!,FKTEST ,VALUE=-2.
10.15.33. CCL212- SEPARATOR INVALID VALUE-
10.15.33. CPU ABORT.

10.15.33. JOB REPRIEVED.

10.15.33. CCL263- EXTERNAL ABORT DURING BEGIN
10.15.33.EXIT.

10.15.34.BEGIN, TEST1,FKTEST,$VALUE-2S§.
10.15.34.COMMENT. VALUE-2

10.15.34 .REVERT .CCL

DISPLAY STATEMENT
The DISPLAY statement evaluates an expression and sends the result to the job dayfile in both decimal l
and octal integer form. The largest decimal value which can be displayed is 10 digits. If the value is
larger than 10 digits, GT followed by 9999999999 is displayed. If the value is negative and larger than 10
digits, LT followed by a minus and 9999999999 is displayed. In octal code, numbers as large as 20 digits
can be displayed. For an expression larger than 248-1, zeros are displayed.
The format of the DISPLAY statement is:

DISPLAY (exp)

exp A CCL expression.

60435400 L 1-4-15

Example:

The following sample dayfile shows several display operations.

15.
15,
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.

14.59 .DISPLAY(TIME)

14.59. 1514 27528

15.07.SET(R1=99)

15.21.SET(R2=901)

15.28.DISPLAY(R1)

15.28. 99 143B

15.38.DISPLAY(R1+R2)

15.38. 1000 17508
15.47.DISPLAY(3/2)

15.47. 1 1B

16.04.DISPLAY(2¥%¥47)

16.04. GT 9999999999 40000000000000008B
16.15.DISPLAY (-2%%47)

16.15. LT -9999999999 -40000000000000008B
16.27.DISPLAY(2%¥48)

16.28. 0 0B
16.41.DISPLAY(99999999999)

16.41., CCL156- STRING TOO LONG - 99999999999

The first DISPLAY statement displays the value of the TIME symbolic name. The current time given is
in the form hhmm. The next six lines demonstrate the use of the R1 and R2 symbolic names. The other
DISPLAY statements specify numeric expressions. The integer constant in the final DISPLAY statement
has more than 10 digits, resulting in an error message.

ELSE STATEMENT

The ELSE statement performs one of the following funetions.

It terminates skipping initiated by a false IFE statement whose label string matches that of the
ELSE statement. If the label string does not match, the ELSE statement is skipped.

It initiates skipping from the ELSE statement to the ENDIF statement whose label string
matches that of the ELSE statement. This happens for a true IFE statement.

Neither a SKIP nor an ELSE statement terminates skipping initiated by another SKIP or ELSE statement.

The format of the ELSE statement is:

ELSE(ls)

Is Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.

Example:

The following control statements use the FILE function to determine if a file named TEST1 is local to
the job. If the file is local, it is copied to the OUTPUT file; if it is not, it is assumed to be an indirect
access permanent file, and a local copy is obtained and copied to OUTPUT.

1-4-16

60435400 L

77N

\//

If the file is local, each succeeding statement, up to the ELSE statement, is processed, and the ELSE "
statement initiates a skip to the ENDIF statement. If the file is not local, control skips to the ELSE
statement, and each statement succeeding the ELSE statement is processed.

IFE,FILE(TEST1,L0O),LABELT.

COPYSBF(TEST1,0UTPUT)

FLSE(LABEL1)

GET(TEST1)

COPYSRBF(TEST1,0UTPUT)

ENDIF(LABEL1)

The following dayfile segment results when the preceding control statements are processed and TEST1 is
not initially a loecal file.

11.33.00.IFE,FILE(TEST1,L0) ,LABEL1.
11.33.00.FLSE(LAREL1)

11.33.00.GET (TEST1)
11.33.00.COPYSRF(TEST1,0UTPUT)

11.33.01. END CF IMFORMATION ENCOUNTERED.
11.33.01.FENDIF(LABEL1)

The following dayfile segment results when the preceding control statements are processed and TEST1 is
initially a local file.

15.40.19.IFE,FILE(TEST1,L0),LABEL1.
15.40.19.COPYSBF(TEST1,0UTPUT)

15.40.21. END OF INFORMATION ENCOUNTERED.
15.40.21.ELSE(LABEL 1)
15.40.21.ENDIF(LABEL1)

ENDIF STATEMENT
The ENDIF statement terminates skipping initiated by a SKIP, IFE, or ELSE statement. In all cases, the
label string on the ENDIF statement must match the label string on the statement that initiates the

skipping. If CCL encounters an ENDIF statement with a nonmatching label string, it ignores. that
statement.

The formaf of the ENDIF statement is:
ENDIF(1s)
Is Label string; 1 to 10 alphanumerie charaeters beginning with an alphabetic character.
Example:

When the SKIP statement in the following sequence of control statements is processed, control skips to
ENDIF, LABEL1, and none of the control statements between these two statements are processed.
SKIP(LABEL1)

any sequence of
control statements

ENDIF(LABEL1)

60435400 L 1-4-17 ||

ENDW STATEMENT

The ENDW statement identifies the end of the WHILE control statement loop. A control statement loop
is a sequence of statements that may be repeatedly processed. The number of times the loop is
processed depends on the evaluation of the expression specified in the WHILE statement that begins the
loop.

The ENDW statement must have a label string that matches the label string specified in the WHILE
statement that begins the loop.

The format of the ENDW statement is:
ENDW(ls)

Is Label string; 1 to 10 characters beginning with an alphabetic character. The string
cannot contain special characters.

Refer to WHILE Statement in this section for an example of ENDW statement use.

IFE STATEMENT

The IFE statement conditionally initiates the skipping of succeeding statements. If the expression in the
IFE statement is true, the next statement is processed. If the expression is false, CCL skips statements
until it encounters a matching ELSE or ENDIF statement. The statements match when their label strings
are identical.

An TFE statement must have a matching ELSE or ENDIF statement. If the IFE statement initiates
skipping without a matching terminating statement, CCL aborts the job step. If the IFE statement is in a
procedure, the terminating statement must also be in that procedure.

The format of the IFE statement is:

IFE,exp,ls.
exp A CCL expression. The separator following exp must be a comma.
1Is Label string; 1 to 10 alphanumeric characters beginning with an alphabetic character.
Example 1:

The following control statements initiate the compilation and execution of a FORTRAN program and
then test for any errors during execution. If an error was made, the error code is displayed.

FTN,I=IFTEST.

SET(EF=0) INITIALIZE ERROR FLAG
NOEXIT.

LGO.

ONEXIT.

IFE,EF.NE.O,LABL1.

DISPLAY(EF)

ENDIF,LABL1.

1-4-18 60435400 L

If the job step executes without error, the error flag (EF) is 0. In this case, control passes to the
ENDIF,LABEL1 statement. If an error occurs, the error flag is not 0, the statement is true, and control .
passes to the next statement; CCL then displays the error code in the error flag register. (The NOEXIT
and ONEXIT statements are described in section 6.) ,

In the following sample dayfile segment resulting from processing of the preceding statements, the
FORTRAN program attempts to call a subroutine BETA which does not exist (outside the field length of
the job).

11.23.41.FTN,I=IFTEST.

11.23.44. .017 CP SECONDS COMPILATION TIME
11.23.44.SET(EF=0) INITIALIZE ERROR FLAG
11.23.44 .NOEXIT. :
11.23.44.LGO.

11.23.45. NON-FATAL LOADER ERRORS -
11.23.45. UNSATISFIED EXTERNAL REF -- BETA
11.23.46. CPU ERROR EXIT AT 404253.
11.23.46. CM OUT OF RANGE.

11.23.48.0NEXIT.
11.23.48.IFE,EF.NE.O,LABLI.
11.23.48.DISPLAY (EF)

11.23.48. 1 1B

11.23.48.ENDIF,LABLI.

Example 2:

The following procedure file is an indirect access file called COLORPR. It uses the IFE statement to
. determine if the color the BEGIN statement substituted for COLOR is red or blue. Different processing

is done for the colors red and blue. Any other color is ignored. The # character in the comment line

inhibits substitution for the word (CGLOR) it precedes (refer to Procedure Body later in this section).

.PROC,A,COLOR.
IFE, $COLORS.EQ. SREDS,L1.

COMMENT. PROCESSING DONE FOR #COLOR OF COLOR
REVERT.

ENDIF,L1.

IFE, $COLORS.EQ. $BLUES,L2.

COMMENT. PROCESSING DONE FOR #COLOR OF COLOR
REVERT .

ENDIF,L2.

COMMENT. NO PROCESSING FOR #COLOR OF COLOR

60435400 L 1-4-19 ©

The following control statements call procedure A.

BEGIN,A,COLORPR,BLUE.
BEGIN,A,COLORPR,RED.
BEGIN,A,COLORPR,PINK.

The following dayfile segment results when the preceding control statements are processed It shows the
effect of the # character.

08.34.30.BEGIN,A,COLORPR,BLUE.
08.34.32.IFE,$BLUES.EQ.SREDS,L1.

08.34.32.ENDIF,LI1.

08.34.32.1FE,$BLUES.EQ.$BLUES,L2.

08.34.32.COMMENT. PROCESSING DONE FOR COLOR OF BLUE
08.34.32.REVERT.

08.34.33.BEGIN,A,COLORPR,RED.
08.34.34.1IFE,$REDS$.EQ.SREDS,L1.

08.34.34.COMMENT. PROCESSING DONE FOR COLOR OF RED
08.34.34.REVERT.

08.34.34.BEGIN,A,COLORPR,PINK.
08.34.35.1FE,$PINK$.EQ.$SREDS,L1.

08.34.35.ENDIF,LI.

08.34.35.IFE,SPINKS$.EQ.$BLUES,L2.

08.34.35.ENDIF,L2.

08.34.36.COMMENT. NO PROCESSING FOR COLOR OF PINK
08.34.36.REVERT.CCL

REVERT STATEMENT
The REVERT statement terminates procedure processing. The formats are:
REVERT.comment
and
REVERT,ABORT.comment

comment Optional character string appended after the statement terminator. This
comment is especially useful to the time-sharing user because, when the REVERT
statement is displayed at the terminal following procedure processing, the
comment can inform the user as to how the procedure reverted. The REVERT
statement is displayed at the terminal only if the time-sharing user is in the
BATCH subsystem. The REVERT,ABORT statement is always displayed at the
terminal. .

The REVERT statement returns control to the statement following the BEGIN statement that called the
procedure. The REVERT,ABORT statement sets the error flag EF=CPE (CPU abort). Unless a NOEXIT
statement has been processed, control.goes to the next EXIT statement in the control statement record
(refer to Exit Processing in section 5).
CCL always appends the following control statements to a procedure record.

REVERT.CCL

EXIT.CCL

REVERT ,ABORT.CCL

These statements terminate CCL processing if no user REVERT statements are processed.

1-4-20 60435400 L

-

Example:

The following procedure (REVTST) is on a file called PROCFL. It reverts to the job calling it if the
named file has no read permission and gives control to the job EXIT statement if the named file has no

read modify permission.

.PROC,REVTST,LFN1,LFN2.
IFE,FILE(LFNI!,RD),LABEL1.
TDUMP (I=LFN1)
ELSE(LABEL1)

REVERT.NO READ PERMISSION
ENDIF,LABEL1.
IFE,FILE(LFN1,RM) ,LABEL2.
COPY (LFN2,LFN1)
ELSE(LABEL2)
REVERT,ABORT. NO READ/MODIFY PERMISSION
ENDIF,LABEL2.

The following two jobs (REVJOB1 and REVJOB2) call the REVTST procedure. REVJOBI attaches an
execute-only file; REVJOB2 attaches a read and/or execute file.

REVJOB1.

USER (USERNUM, PASWD , FAMNAME)

CHARGE (CHARGNUM, PROJNUM)
ATTACH(FILE!/UN=ALTUSER,PW=PW1,M=E)
BEGIN,REVTST,PROCFL,FILE} ,XFIL.
COMMENT. RETURNS HERE

EXIT.

COMMENT. EXIT ON ERROR

REVJOB2.
USER (USERNUM, PASWD , FAMNAME)

CHARGE (CHARGNUM, PROJNUM)

ATTACH (FILE2 /UN=ALTUSER , PW=PW2 ,M=R)
BEGIN,REVTST,PROCFL,FILE2,XFIL.
COMMENT. RETURNS HERE

EXIT.

COMMENT. EXIT ON ERROR

The following are the -dayfile segments produced by REVJOB1 and REVJOB2. REVJOBI processes the |
REVERT statement and terminates normally. REVJOB2 processes the REVERT,ABORT statement and

terminates via error processing.

10.09.51.REVJOB1.

10.09.51.USER (USERNUM, , FAMNAME)
10.09.51.CHARGE (CHARGNUM, PROJNUM)
10.09.51.ATTACH(FILE1/UN=ALTUSER, PW=,M=E)
10.09.52.BEGIN, REVTST,PROCFL ,FILE1,XFIL.
10.09.53.IFE,FILE(FILE1,RD),LABEL1.
10.09.53.ELSE(LABEL1)

10.09.53.REVERT.NO READ PERMISSION
10.09.53.COMMENT. RETURNS HERE
10.09.54.EXIT.

10.10. 11. REVJOB2,

10.10. 11, USER (USERNUM, , FAMNAME)
10.10.11.CHARGE (CHARGNUM,, PROJNUM)
10.10.11.ATTACH(FILE2/UN=ALTUSER, PW=, M=R)
10.10.12.BEGIN, REVTST, PROCFL ,FILE2, XFIL.
10.10. 14, IFE,FILE(FILE2,RD),LABEL1.
10.10. 14, TDUMP (I=FILE2)

10.10.14. TDUMP COMPLETE.

10.10. 14.FLSE(LABEL1)

10.10. 14, ENDIF,LAREL1.
10.10.15.1FE,FILE(FILE2,RM),LABEL2,
10.10.15.ELSE (LABEL2)

10.10.16.REVERT,ABORT. NO READ/MODIFY PERMISSICN

10.10.16.EXIT.
10.10.16.COMMENT, EXIT ON ERROR

60435400 L

1-4-21

SET STATEMENT

The SET statement assigns a value to a control register, an error flag, or the flag that determines
whether skipped control statements are entered in the dayfile. Using the SS function, it also ean change

the current time-sharing subsystem.

To assign a value to a symbolic name, the following format is used.

SET(sym=exp)

sym One of the following symbolic names (initially these names are set to 0).

Name

R1, R2, or R3

R1G

EF

EFG

Description

Local control registers. When a procedure is called, the
current values of R1, R2, and R3 are passed to the
procedure. The values of these registers may change
within the procedure. However, when processing reverts,
these registers are restored to the values they had when
the procedure was called.

Global control register. When a procedure is called or
reverts, R1G keeps its current value.

Local error flag. When a procedure is called, the current
value of the error flag is passed to the procedure. The
value of the error flag may change within the procedure.
However, when processing reverts, the error flag is
restored to the value it had when the procedure was called.

Global error flag. When a procedure is called or reverts,

EFG keeps its current value.

DSC

Dayfile-skipped-control-statement ’flag. Initially, it is set
to 0, so that control statements that are skipped (not
processed) are not entered in the dayfile.

exp A CCL expression. The value derived through evaluation of the expression is
assigned to the symbolic name. Acceptable values for each symbolic name follow.

sym

R1, R2, R3, or R1G

1-4-22

Suggested Value

Any integer between -131 071 and 131 071. If the
value is outside this range, it is truncated. CCL
does not issue a message as a result of the
truncation. '

60435400 L

sym Suggested Value

EF or EFG Any integer between 0 and 63. If the value is
greater than 63, it is truncated. To assign the value
defined by the system for an error condition, the
user should set the error flag to one of the error
condition symbolic names (refer to Symbolic Names
at the beginning of this section). CCL sets the EF
flag to the appropriate error code when an error
occurs. If EFG is 0 when a REVERT statement is
processed, CCL sets EFG to the value in EF.

DSC 1 or 0. If the value of the expression is nonzero,
DSC is set to 1. While DSC is 1, skipped control
statements are entered in the dayfile preceded by
two periods. Some CCL error processing routines

set DSC to 1 so that skipped control statements are
written in the dayfile. '

To change the current time-sharing subsystem, the following format is used.

SET(SS=subsystem)

subsystem Subsystem name. The subsystem names are ACCESS, BASIC, BATCH, EXECUTE,
FORTRAN, FTNTS, NULL, and TRANACT.t

Examples:

The first three examples use procedures from the following procedure file. It is an indirect access
permanent file with the name SETFILE.

.PROC,P1.
DISPLAY(R1)
DISPLAY(R1G)
SET(R1=9) -
SET(R1G=888)
end-of-record
.PROC, P2.
GET(ABC)
DISPLAY(EF)
DISPLAY(EFG)
end-of-record
.PROC,P3.
GET(BASIC1)
BASIC.
DISPLAY(EF)
DISPLAY(EFG)
end-of-record
end-of-file

T TRANACT is not applicable to IAF.

60435400 L 1-4-23

Example 1 - Control Register Use:

I ‘The following control statements (below on the left side) set and display registers R1 and R1G. A

procedure, P1, is called which displays these registers, resets them, and then reverts to the control
statement record where they are again displayed.

I On the right is the dayfile segment resulting from processing of the control statements.

SET(R1=1) 16.34.42.SET(R1=1)
SET(R1G=10) 16.34,.42,.SET(R1G=10)
DISPLAY(R1) 16.34.43.DISPLAY(R1)
DISPLAY(R1G) 16.34.43, 1 1B
BEGIN,P1,SETFILE, 16.34.43.DISPLAY(R1G)
DISPLAY(R1) 16.34.43, 10 12B
DISPLAY(R1G) 16.34,43.BEGIN,P1,SETFILE.
16.34. 44, DISPLAY(R1)
16.34. 44, 1 1B
16.34.,44,.DISPLAY(R1G)
16.34, 44, 10 12B

16.34. 44, SET(R1=9)
16.34,44, SET(R1G=888)
16.34, 44, REVERT. CCL
16.34.44, DISPLAY(R1)

16.34. 44, 1 1B
16.34,45,DISPLAY(R1G)

16.34. 45, 888 15708

The R1 and R1G registers retain their setting when the procedure is called. However, after new values

are set in the procedure and control reverts to the control statement record, R1 returns to its previous
value and R1G retains the value set in the procedure.

1-4-24 60435400 L

S

\

Example 2 - Error Flag Use (EFG Nonzero):

The following control statements (below on left side) set values in the error flags EF and EFG and then §

call a procedure which attempts to access an indirect access permanent file.
control statement record where EF and EFG are displayed to see if any error code generated is returned
via these flags. On the right side is the dayfile segment resulting from the processing of the control

statements.

NOEXIT.
SET(EF=10)
SET(EFG=20)
DISPLAY (EF)

- DISPLAY(EFG)
BEGIN,P2,SETFILE.
DISPLAY (EF)
DISPLAY (RFG)

The procedure attempts to get a permanent file which does not exist. This changes EF to error code 3.
It does not affect EFG. Control reverts to the control statement record and displays EF and EFG. EF

16.
16.
16.
16.
16.
16.

16

16.

43

b3,
h3.
43.
43.
43.
L3
16 .43,
L3,
43,
L43.
43,
L43.
JN3.
.43,
LH3.
.u3.
43
Lu3.

.35
35.
35.
35.
35.
35.
.35.
35.
36.
36.
36.
36.
36.
36.
36.
37.
37.
.37.
37.

JHOFXIT.

SET(EF=10)

SET(EFG=20)

DISPLAY(EF)
10

12R

PISPLAY (EFG)

20

BEGIM,P2,SFETFILE.

GET(ARC)

ABC NOT FOUND,

DISPLAY(FF)

24P

3 3R
DISPLAY(FFG)

20

REVFRT. CCL

DISPLAY (EF)
10

2UR

12R

DISPLAY (FFG)

20

returns to its initial setting; EFG remains unchanged throughout.

60435400 L

2UR

AT 000121,

Control reverts to the

1-4-25

Example 3 - Error Flag Use (EFG Zero):

To return the error code generated in a procedure to the control statement record, EFG must be 0 before
there is an exit from the procedure. This is demonstrated by the following control statements (below left

side).

The dayfile segment (on the right) resulting from processing of the statements shows how the error code
is returned. : .

NOEXIT. 09.42.52. NOEXIT.
SET(EF=10) 09.42.52.SET(EF=10)
BEGIN,P3,SETFILE. 09.42.52.BEGIN,P3, SETFILE.
DISPLAY (EF) 09.42.53.GET(BASIC1)
DISPLAY (EFG) 09.42.55.BASIC.

09.42.56. INPUT FILE EMPTY OR MISPOSITIONED
09.42.56.DISPLAY(EF)

09.42.56. 4 4B
09.42.57.DISPLAY(EFG)
09.42.57. 0 0B

09.42.57.REVERT. CCL
09.42.58.DISPLAY(EF)

09.42.58. 10 12B
09.42.58.DISPLAY(EFG)
09.42.58. b 4B

The procedure attempts to compile a BASIC program that is not an INPUT record. This generates error
code 4 in EF but does not affeect EFG while control is still within the procedure. When control reverts to
the control statement record, EF returns to its original setting and error code 4 is set in EFG.

1-4-26 , 60435400 L

_//

Example 4 - DSC Flag Use:

The following control statements (below on left side) demonstrate the effect of DSC=0 and DSC=1. On
the right side is the dayfile segment resulting from processing of the preceding control statements.

SET(DSC)=0) 16.49.36.SET(DSC=0)

SKIP(LABL1) 16.49.36.SKIP(LABLI1)

COMMENT. SINCE THE DAYFILE SKIP 16.49.36 .ENDIF(LABLI1)

COMMENT. CONTROL IS SET TO ZERO, 16.49.37.SET(DSC=1)

COMMENT. THESE STATEMENTS WILL NOT 16.49.37.SKIP(LABL2)

COMMENT. APPEAR IN THE DAYFILE. 16.49.37...COMMENT. SINCE THE DAYFILE SKIP
ENDIF(LABL1) 16.49.37...COMMENT. CONTROL IS NOW SET TO ONE,
SET(DSC=1) 16.49.37...COMMENT. THESE STATEMENTS WILL
SKIP(LABLI1) 16.49.37...COMMENT. APPEAR IN THE DAYFILE AND
COMMENT. SINCE THE DAYFILE SKIP 16.49.37...COMMENT. EACH WILL BE FLAGGED
COMMENT. -CONTROL IS NOW SET TO ONE, 16.49.37...COMMENT. WITH TWO INITIAL PERIODS.
COMMENT. THESE STATEMENTS WILL 16.49.37.ENDIF(LABL2)

COMMENT. APPEAR IN THE DAYFILE AND
COMMENT. EACH WILL BE FLAGGED
COMMENT. WITH TWO INITIAL PERIODS.
ENDIF(LABL2)

SKIP STATEMENT

The SKIP statement initiates unconditional skipping of succeeding control statements. Skipping is
terminated by an ENDIF statement that has a label string matching the label string specified on the SKIP
statement. Only an ENDIF statement, and not an ELSE statement, terminates skipping initiated by a
SKIP statement.

The format of a SKIP statement is:

SKIP,ls.

Is Label string; 1 to 10 alphanumeric characters beginning with an alphabetic
character.

An example of the use of the SKIP statement is given after the deseription of the ENDIF statement.

WHILE STATEMENT

The CCL iterative statements WHILE and ENDW bracket a group of control statements into a loop that
can be repeatedly processed. The beginning of the loop is identified by a WHILE statement and the end
by an ENDW statement. The ENDW statement must have ‘a label string that matches the label string
specified on the WHILE statement. The loop is repeated as long as the expression in the WHILE
statement is true. If the expression is initially false, control immediately skips to the ENDW statement;
if no ENDW statement is found, all the remaining statements in the control statement record are skipped.

Label strings of all WHILE statements within the control statement record of a job should be unique.
Duplication of a label string within a control statement record or within a procedure can produce
unpredictable results. The same label string can be used in a called procedure and in the calling control

statement record or procedure.

60435400 L 1-4-27

The format of the WHILE statement is:

WHILE,exp,ls.
exp A CCL expression. The separator following exp must be a comma.
Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic
character.
Example:

The foliowing control statements initiate a loop which is repeated five times.

SET(R1=0)

SET (R2=5)
WHILE,R1.LT.R2,FINISH.
SET(R1=R1+1)

DISPLAY (R1)

ENDW,FINISH.

The user can vary the number of repetitions by setting different values in R2.

PROCEDURES

A procedure is a group of control statements which exist apart from the job control statement record. A
BEGIN statement inserts a procedure into the control statement record of a job or into another
procedure previously called by the job. A procedure is to a control statement record as a subroutine is to
a program. Like a subroutine, a procedure usually contains the control statements required to perform a
single function within a job. A procedure can be changed by parameters passed to the procedure from
the BEGIN statement.

A procedure is stored as a record on a file. Several procedures can exist on one file. The file may be a
local file, an indirect access permanent file, or an attached direct access permanent file. A procedure
file can reside on magnetic tape as well as on mass storage.

PROCEDURE STRUCTURE

A procedure consists of a procedure header statement and a procedure body. The procedure header
statement must be the first line in the procedure. It names the procedure and identifies any keywords
that can be used to transmit values to the procedure from the BEGIN statement.

The procedure body contains all statements between the header statement and the end-of-record or
end-of-file. An informative error message is issued if the body does not contain at least one control
statement. All control statements, including CCL statements, are legal within a procedure. The body
can also include special procedure commands and data (explained later in this section).

1-4-28 60435400 L

A CCL procedure should not include a NEW or
OLD statement without the ND parameter. These
statements return working files required by CCL
when it reverts to the previous level within the
job sequence of control statements.

A CCL statement can extend over more than one line if each line to be continued contains no more than
80 characters and ends with a separator. If a new line is not a legal CCL statement or command, it is
interpreted as a control statement error when executed.

Procedure Header Statement

The procedure header statement is the first line of the procedure. It identifies the procedure and
specifies the keywords for the BEGIN statement. The BEGIN statement substitutes the keywords into
the procedure body. Unless the header statement contains an error, it does not appear in the dayfile.

The syntax rules for header statements are:

The header statement must begin with a period followed by the characters PROC.
The separators between parameters must be commas.
A period terminates the header statement.

The header statement can extend over more than one line if each line to be continued ends with
a separator.

The format of the procedure header statement is:

.PROC,pname,p1,p9,...,Pp.

pname Name of the procedure; one to seven alphanumerie characters. It can begin with a
numerie character.

Di Optional formal parameters whose keywords are used in the body of the
procedure. Depending on the procedure call statement parameters, keywords in
the procedure body can be removed, left as they are, replaced by a value specified
in the BEGIN statement, or replaced by first or second default values as specified
on the procedure header parameter (refer to Keyword Substitution in this section).

60435400 L 1-4-29 ©

Procedure Body

The maximum number of procedure header keywords is defined by the
installation. The default is 50.

The following are the legal formats for p;.

Format Example ,

keyword FILE1

keyword= FILEl=

keyword=defauiti FILE1=LGO .

keyword=defaultl/default2 FILE1=LGO/OLD

keyword=/default2 FILE1=/OLD

keyword==FILE (in ASCII, keyword=#FILE) FILE1==FILE

keyword==DATA (in ASCII, keyword=#DATA) FILE1==DATA

keyword A 1- to 10-character keyword. Although it can be entered
as a character string delimited by $ characters, it cannot
contain special characters.

defaultl A 1- to 40-character first default value. If defaultl
contains special characters, it must be $-delimited. This
default value replaces the keyword if this parameter is
omitted from the BEGIN statement.

default2 A 1- to 40-character second default value. If default2

contains special characters, it must be $-delimited. This
default value replaces the keyword if the BEGIN statement
specifies a parameter value identical to the keyword.

defaultl and default2 could be either of the following special values.

=FILE

=DATA

Special default value used for keyword if an overriding
value is not specified on the BEGIN statement. If this
default value is used, the keyword within the procedure
body references the record that immediately follows the
procedure record on the file (refer to figure 1-4-2),

Special default value used for keyword if an overriding
value is not specified on the BEGIN statement. If this
default value is used, the keyword within the procedure
body references a data file ereated within the procedure by
CCL procedure commands (refer to Procedure Commands
in this section).

The procedure body consists of all statements between the procedure header statement and the
end-of-record. These statements can be control statements, CCL statements (including calls to other
procedures), and CCL procedure commands. The parameters in these statements can be a mixture of
values defined in the procedure body and keywords defined in the procedure header statement. When the
procedure is called, substitutions are made for the keywords, and the procedure body becomes the control
statement record until a REVERT statement is encountered.

1-4-30

60435400 L

Ve

M 00FS€EP09

Program input from record Program input from next record
on separate file, INFILE on file containing procedure
Processing of the second procedure,B1,is initiated with the - Processing of the second procedure,B2,is initiated with the

control statement: control statement:

1¢-9-1

BEGIN,B1,PROFIL1,INFILE. BEGIN,B2,PROFIL2.
PROFIL1 PROFIL2
i .PROC,A1,PFILE.) .PROC,A2 PFILE.
First record) | GET (PFILE) First record ATTACH(PFILE)

of PROFIL1) [cOPYSBF(PFILE,)

end-of-record

.PROC,B1,IFILE.
Second and GET(IFILE)
last record FTN(I=IFILE)}

of PROFIL1

end-of-record
end-of-file

INFILE

Source program
Single record :)o l::eT;:\lomplled
on INFILE Y

of PROFIL2

Second record
of PROFIL2

Third and
last record
of PROFIL2

COPYSBF(PFILE,)

end-of-record

.PROC,B2,P1==FILE.

FTN,I1=P1.
LGO.

end-of-record

Source program
to be compiled
by FTN

end-of-record
end-of-file

Figure 1-4-2. Procedure Access to & Data Record

When specifying keywords in the procedure body, two special characters, CDC graphics = and™(or ASCII

graphies # and), are used to inhibit keyword substitution and to combine parts of a parameter after
keyword substitution.

A single = character placed immediately before a keyword in a procedure statement inhibits substitution -
for that keyword. Two such characters (==) placed immediately before a keyword allow substitution;
one = is retained. If = is placed before a nonkeyword, it has no effect; substitution takes place. If==is
placed before such a parameter, one=is retained. The =does not affect a separator.

The right arrow (™) is used in a procedure statement to make a preliminary separation of two parameters
(keyword or nonkeyword). After possible substitutions are made, the two parameters are merged into
one. = before™retains™and allows substitution. [>before= does not affect the inhibiting action of =.

Examples of use of the =andr™characters in a procedure are shown in table 1-4-1.

TABLE 1-4-1. ALTERATIONS OF PARAMETERS IN A PROCEDURE
BODY BY USE OF=AND[™

Call statement: BEGIN,APROC,APROCFL.
Procedure header: .PROC,APROC,FK1=X,FK2=Y.
Procedure Parameters Procedure Parameters
in Procedure Body " in Procedure Body
before Substitution after Substitution Comment
+ =FK1,FK1 FK1,X =inhibits substitution in a
; I,J I,J keyword that immediately follows.
FK1=FK2 XFK2
1=J 1J
==FK1,FK1 =X,X =Zallows substitution if a
==,J =1,J keyword immediately follows;
=Z=FK1=FK2 =X=Y one=is retained.
FK1=,FK1 X,X =does not affect a separator.
FKI™FK2 XY ™ separates two parameters
™J IJ before substitutions are made;
FK1™J XJ . after all substitutions are
I"FK?2 1Y made, they are joined into one
parameter.
=MFK1,FK1 XX = before™ retains ™ and
=™FK1=FK2 ™~Xx=yY allows substitution.
FKIT=FK1 XFK1 ™ before an = does not affect
the inhibiting action of the=.

1-4-32 60435400 L

\1~ -

PROCEDURE COMMANDS

Procedure commards enable the user to format a data file within a procedure and to insert documentary
comments within a procedure. The commands are in fixed format with a period in eolumn 1 and the
command name beginning in column 2. A terminator must not be used, and nothing else can appear on
the same line except the format specifications.

.DATA Command

A .DATA command in a procedure marks the beginning of a sequence of data lines to be written to a
separate file when the procedure is called. File marks generated by .EOR and .EOF commands can
subdivide the lines written to the data file. The sequence of data lines is terminated by one of the
following:

e Another .DATA command.

e A system end-of-record (not an .EOR command).
e A system end-of-file (not an .EOF command).

e A system end-of-information.

The data file created does not include the .DATA command. Keyword substitution continues within the
data statements.

The format of the .DATA command is:
.DATA,Ifn

1fn Optional name of the file on which the data lines are to be written. If a file
named lfn is already assigned to the job, it is returned, and new local file lfn is
created. After the data file is written, it is automatiecally rewound.

If Iifn is omitted, the default file referenced by special default=DATA is used. At
the first procedure level, the system calls this file ZZCCLAA; at the secondl
procedure level it is called ZZCCLAB; and so forth.

Example:
The following procedure file is an indirect access permanent file called DATAFIL.

.PROC, ALPHA,P1==DATA, X=FTNOUT.
FTN(I=P1,L=X)
LGO.
REPLACE(X=LISTFIL)
.DATA
PROGRAM TEST(OUTPUT)

FORTRAN source
program

END

60435400 L 1-4-33

This procedure file is accessed with the following call statement in a control statement record of the job.

BEGIN,ALPHA,DATAFIL.

A sample of a resulting dayfile is:

09.29.09.BEGIN,ALPHA,DATAFIL.
09.29.10.FTN(I=ZZCCLAA,L=FTNOUT)
.047 CP SECONDS COMPILATION TIME

09.29.11.
09.29.11.LGO.

09.29.14, STOP

.038 CP SECONDS EXECUTION TIME
09.29.18 , REPLACE(FTNOUT=LISTFIL)
09.29.14 . REVERT.CCL

09.29.14.

All input after the .DATA command (the FORTRAN source program) is written onto the defaul

temporary file ZZCCLAA.

An example of a data file written from a procedure to a named file is shown in figui-e 1-4-3.

Data for

DFILE

First data record

end-of-record

second record

Data for
third record

PFILE3
.PROC,A.
.DATA,DFILE
One Data for
record first record
on PFILE3
.EOR
.EOF
end-of-record
Next .PROC,B.
record
on PFILE3

end-of-record

When procedure A is called, 1
the data is written on a local
file named DFILE

v

Second data record

end-of-record
end-of-file

Third data record

end-of-record
end-of-information

Figure 1-4-3. Data File Written from a Procedure to a Named File

1-4-34

60435400 L

t

TN

.EOR Command

The .EOR command is. used to separate records in a data file originating in a procedure. Whenever an
.EOR is placed, an actual end-of-record is recorded when the data file is written on =DATA or Ifn. Since
the data statements are written on an external file, the .EOR command has no effect on the system
end-of-record that terminates the procedure. The .EOR command is valid only after a .DATA command
(refer to figure 1-4-3).

.EOF Command

The .EOF command generates an end-of-file on the data file originating in a procedure. An actual
end-of-file is recorded when the data statements are written on =DATA or Ifn. This command has no
effect on the end-of-record that terminates the procedure. If the end of the data file format is also the
end of the procedure, no .EOF command is needed. In this case, an end-of-record mark is added. If the
user wants an end-of-file mark, he must include an .EOF command. The .EOF command is valid only
after a .DATA command (refer to figure 1-4-3).

.* Command

The .* command enables the user to document a procedure with internal comments. These comments
appear when the file is copied to output or displayed at a terminal; they do not appear in the dayfile
when the procedure is processed. The comment, which follows the *, can contain any combination of
characters.

KEYWORD SUBSTITUTION

The user who creates a procedure uses keywords for values or names that may be changed when the
procedure is called. All keywords in the procedure must be specified on the procedure header statement
so that CCL can substitute the appropriate values when the procedure is called. CCL can remove the
keyword (null substitution), leave it as is, or replace it with a value from the procedure call statement or
a default value from the procedure header.

After substitutions are made in the procedure body, some control statements may be expanded beyond 8¢
characters. For most control statements, this is flagged as an error. Exceptions are CCL statements
and the ASSIGN, BLANK, LABEL, REQUEST, and VSN statements, which can extend over more than one
line if the statement is split at a separator. The user should ensure that the line containing the keyword
is short enough so that possible expansion does not extend the line beyond the 80th character.

When a procedure is called, CCL must match each parameter on the call statement to a parameter on

the header statement. CCL uses two methods of parameter matching, positional (or order dependent)
and equivalence (or order independent).

Positional Mode Parameter Matching

Parameter matching always begins in positional mode. CCL compares, in order, each parameter on the
call statement with the parameter in that position on the header statement.

60435400 K ' 1-4-35

Example - Parameter Matching in Positional Mode:
Assume the following procedure is on file PROCFIL.

.PROC,COMPIL, FILE1, FILE2,FILE3.
FTN,I=FILE1,B=FILE2,L=FILE3.

The user calls the procedure and names the files to be used with the following statement.
BEGIN,COMPIL,PROCFIL,SOURCE,BINARY,OUTPUT.

The parameters are matched positionally because their keywords do not match. The procedure compiles

file SOURCE (I=SOURCE), writes the object program on file BINARY (B=BINARY), and writes all output

on file OUTPUT (L=OUTPUT).

Parameter matching continues in positional mode as long as the parameters are in one of the
combinations in table 1-4-2.

The possible keyword substitutions in positional mode are summarized in table 1-4-3. The table shows
each parameter format on the BEGIN statement and each parameter format on the procedure header
statement and the substitution resulting from each combination.

Assuming that all parameter matches between the BEGIN statement and the procedure header are valid
for positional mode (table 1-4-3), CCL completes parameter matching in positional mode.

In positional mode, CCL ignores excess parameters on the procedure call.

| 1436 | 60435400 L

N

TABLE 1-4-2. POSITIONAL MODE PARAMETER MATCHING

Examples (Using Keyword FILE1)

Comparison Between BEGIN
Parameters in the Resulting Substitution Statement Header
Same Position in the Procedure Body Parameter Parameter File Used
The call statement The references to the FILE1 FILE1 FILE1
parameter is iden- keyword in the pro-
tical to the key- cedure body are left FILE1l FILE1=LGO/OLD'|OLD
word on the header as they are, unless a or
statement. second default value FILE1=/0LDY
' is specified for the

keyword on the header

statement. In that

case, the second de-

fault value is used.
The call statement The call statement TAPE2 FILE1 TAPE2
parameter does not parameter value is
match any keyword . used. An error TAPE2 FILE1=LGO/OLD |Processing
on the header occurs if a second or error
statement. default value is FILE1=/OLD

specified for the

corresponding header

statement parameter.
A call statement The first default (No parameter | FILE1=LGO LGO
parameter does not value, determined by in this posi- or

exist in the posi-
tion (either an
omitted entry is
indicated by con-
secutive commas,
or fewer parameters
are specified on the
call statement than
on the header state-
ment).

the header statement
parameter, is used.

tion)

FILE1=LGO/OLDf

T Switches keyword substitution to equivalence mode for all subsequent parameters.

60435400 L

1-4-37

TABLE 1-4-3. KEYWORD SUBSTITUTION IN POSITIONAL MODE

BEGIN Statement Parameter Format

omitted keyword | $keyword$ | value | $value$

keyword keyword keyword | keyword value vah}e

keyword= null keyword | keyword value value

Procedure | keyword=defaultl defaultl keyword | keyword value value

| gaefadr?;ater keyword=defaultl/default2’ defaultl default2 | default2 error | error
Format $keyword$ $keyword$] keyword | $keyword$ | value $value$
$keyword$= null keyword | $keyword$ | value $value$
$keyword$=defaultl default keyWord $keyword$ | value | $value$

l $keyword$=defaultl/default2t defaultl default2 | default2 error error

I TS\tNitches keyword substitution to equivalence mode for all subsequent param-
eters.

Equivalence Mode Parameter Motching

If comparison of a call statement parameter and a header statement parameter indicates one of the
following, CCL switches to equivalence mode to match the remainder of the parameters.

e A call statement parameter is in the format keyword= or keyword=value.

e A header statement parameter is in the format keyword=defaultl/default2.

Example 1 - Changing Parameter Matching Modes:

The following two pairs of statements illustrate the parameter combinations that result in the switch
from positional mode to equivalence mode.
BEGIN,AA,PFILE,A,B,C,Z=D. The Z parameter is matched in equivalence, rather than
.PROC,AA,W,X,Y,Z. positional, mode.

BEGIN, BB, PFILE,A,X,Y=C,Z=D.
.PROC,BB,W,X=A/B,Y,Z.

The X=A/B parameter on the header statement switches
parameter matching from positional mode to equivalence
mode.

1-4-38 60435400 L

//

N

In equivalence mode, CCL matches each call statement keyword to the identical keyword in the
procedure header, regardless of the parameter order.

Example 2 - Parameter Matching in Equivalence Mode:

Assume the user calls the same procedure he called in the positional mode example, but with the
following statement.

BEGIN,COMPIL,PROCFIL,FILE1=SOURCE,FILE3=OUTPUT,FILE2=BINARY.
Parameters are matched using equivaience mode, but the effect of the BEGIN statement is the same as
in the positional mode example. The procedure compiles file SOURCE (I=SOURCE), writes the object
program on file BINARY (B=BINARY), and writes all output on file OUTPUT (L=OUTPUT).

In equivalence mode, BEGIN statement parameters can be matched to header statement parameters as
shown in table 1-4-4.

TABLE 1-4-4. EQUIVALENCE MODE PARAMETER MATCHING

Examples (Using Keyword FILE1)

Comparison Between BEGIN

Parameters with Resulting Substitution Statement Header
Identical Keywords in the Procedure Body Parameter Parameter File Used
The call statement The default value de- FILE1 FILE1=A A
parameter is iden- termined by the header

tical to the key- statement parameter FILE1 FILE1=A/B B
word on the header is used. (If it is
statement. specified, the second
default value is used.)

A keyword equiva- The keyword is re- FILE1l= FILE1 None
lenced to null on moved from the

the call statement procedure body

is identical to a (null substitution).

keyword on the
header statement.

A keyword equiva- | The specified value is FILE1=C FILE1 C
lenced to a value used.
is identical to a
keyword on the
header statement.

A keyword on the The first default None FILE1=A/B A
header statement is value, determined by

not found on the the header statement

call statement. parameter, is used,

60435400 L 1-4-39 ||

The possible keyword substitutions in equivalence mode are summarized in table 1-4-5. The table shows
each parameter format on the BEGIN statement and each parameter format on the procedure header
statement and the substitution resulting from each combination.

When a keyword is named more than once on a procedure call, the keyword=value parameter format must
be used in each instance. In this case, the final value specified is substituted for the keyword in the

procedure body.

TABLE 1-4-5. KEYWORD SUBSTITUTION IN EQUIVALENCE MODE

BEGIN Statement Parameter Format
, keyword keyword= keyword=value value
or or or or
omitted $keyword$ |$keyword$= | $keyword$=value | $value$’
keyword keyword keyword null value error
keyword= null null null value error
Procedure | keyword=defaultl | defaultl defaultl null value error
Header
Parameter | keyword=defaultl/ | defaultl default2 null value error
Format default2 ’
$keyword$ $keyword$ | $keyword$ null value error
$keyword$= null null null value error
$keyword$= defaultl defaultl null value error
defaultl
$keyword$= defaultl default2 null value error
defaultl/
default2
"t Assumes the parameter is entered under equivalence mode.
l 1-4-40 60435400 L

Examples of Parameter Matching

Example 1 - Parameter Matching in Positional and Equivalence Mode:

The following sequence of BEGIN statements is included in the control statement record of the job.

These reference two files, SUBP and SUBE, that contain procedures.

BEGIN, ,SUBP.
BEGIN, ,SUBP,P1,P2,P3,Pl
BEGIN, ,SUBP,B1,B2,B3.

BEGIN,,SUBP,P1=B1,P2=B2,P3=B3,P4=Bl4.

BEGIN, ,SUBE.
BEGIN,,SUBE,P1,P2,P3,Pl

BEGIN, ,SUBE,P1=,P2=,P3=,Pl=.

BEGIN, ,SUBE,P1=S1,P2=S2,P3=S3,PU4=S4.

The file SUBP is as follows:

.PROC,,P1,P2=,P3=DEF,PU4=DEF1/DEF2.

COMMENT. P1 P2

The file SUBE is as follows:
.PROC, ,P4=DEF1/DEF2,P1,P2=,P3=DEF.

~

The following is a segment of the dayfile that results when the BEGIN statements are processed.

COMMENT. P1 P2

12.58.01.BEGIN, ,SUBP.
12.58.02.COMMENT. P1
12.58.02.REVERT.CCL

P3

P3

Py

PY

12.58.03.BEGIN, ,SUBP,P1,P2,P3,P4.

12.58.04.COMMENT. P1
12.58.04 . REVERT.CCL

12.58.05.BEGIN, ,SUBP,B1,B2,B3.

12.58.06.COMMENT. B1
12.58.06.REVERT.CCL

12.58.07.BEGIN, ,SUBP,P1=B1,P2=B2,P3=B3,P4=Bl,

12.58.09.COMMENT. B1
12.58.09.REVERT.CCL
12.58.10.BEGIN, ,SUBE.
12.58.13.COMMENT. P1
12.58.13.REVERT.CCL

12.58.14 .BEGIN, ,SUBE,P1,P2,P3,P4,

12.58.14,.COMMENT. P1
12.58. 14 . REVERT.CCL

12.58.15.BEGIN, ,SUBE,P1=,P2=,P3=,Pl=.

12.58.16.COMMENT.
12.58.16 .REVERT.CCL

12.58.16.BEGIN, ,SUBE,P1=S1,P2=S2,P3=83,P4=S4,

12.58.17 .COMMENT. St
12.58.19.REVERT.CCL

60435400 L

DEF DEF1
P2 P3 DEF2
B2 B3 DEF1
B2 B3 B4

DEF DEF1

DEF DEF2

S2

33

S4

1-4-41 ||

Ve
\\

Example 2 - Parameter Matching in Nested Procedures:

The substitutions made in a procedure that calls a second procedure is shown in figure 1-4-4. The

resultant dayfile is shown on the right side of the figure.
{‘,
//
/7

I 1-4-42 v . 60435400 L

T 009S€V09

| ev-v-1

GET(PROGRM1)
BEGIN,EXECUTE,PFILE1,PROGRM1,PRINT.

PFILE1

.PROC,EXECUTE,NAME, OUT.
FTN(I=NAME,L=0UT)

LGO.

IFE,EF=0,DROP.
BEGIN,LISTING,PFILE2,0UT.
ENDIF,DROP.

PEILE?2

.PROC,LISTING,0UTFILE=0UT.
REWIND(OUTFILE)
COPYSBF(OUTFILE,OUTPUT)

Figure 1-4-4.

RESULTANT DAYFILE

16.01.
16.01.
16.01.
16.01.
16.01.
16.01.
16.01.
16.01.
16.01.
16.01.
16.01.
16.01
16.01.
16.01.
16.01.

08.GET(PROGRM1)
08.BEGIN,EXECUTE,PFILE1,PROGRM1,PRINT.
09 .FTN(I=PROGRM1,L=PRINT)

10. .043 CP SECONDS COMPILATION TIME
10.LGO.

11. STOP

11. .038 CP SECONDS EXECUTION TIME

12.1IFE,EF=0,DROP,
12.BEGIN,LISTING,PFILE2,PRINT.
12.REWIND(PRINT)
13.COPYSBF(PRINT,0UTPUT)

.13. END OF INFORMATION ENCOUMNTERED.

13.REVERT.CCL
13.ENDIF,DROP.
13.REVERT.CCL

Keyword Substitution in Two Procedures

CONTROL STATEMENT PROCESSING 5

Jobs entering the system consist of one or more logical records. The first logical record contains system
directives (control statements) which deseribe the proeessing that is to oceur in the job file (job deck).
This secetion deseribes control statement processing and how the control statements affect other aspects
of job processing.

The opefating system recognizes three types of control statements.

e Local File Control Statements These statements call files that are assigned to the job
control point. LGO is the system default local file used
for retaining object code generated by one of the
language processors.

o System Control Statements These statements are divided into eight categories.

Job control control statements
File management control statements

Permanent file control statements

Load and dump central memory utility control
statements

Tape management control statements
System utility control statements
Library utility control statements
Loader control statementst
© Product Set Control Statements The product set control statements call the various
products available under NOS. Their formats are given

in the applicable product reference manual and in the
Applications Programmer's Instant.

CONTROL STATEMENT FORMAT

All control statements may consist of one to four fields. The first field is the statement label field. If
present (the field is optional), it begins with a numeric character and terminates with a . separator
character. The field is used only in conjunction with the system control language described in appendix H.

tRefer to the CYBER Loader Reference Manual.

60435400 J 1-5-1

The second field, also optional, is a $ or / prefix character which precedes the program name. If a $ is
present, it indicates that the specified program to be executed must be loaded from the system library.
Therefore, even if a local file of the same name is present, the system program, not the local program, is
executed.

The / option may be used on local file control statement calls. If a / is present, it indicates that the
parameters following the program name are to be processed in the operating system format. If a / is not
present, the parameters are processed in product set format. The default is product set format because
most programs specified in local file calls have been generated by one of the product set members. The /
option is ignored for control statement calls to programs residing on the system library. For those types
of calls, parameters are processed in the operating system format unless the SC directive to SYSEDIT
has been entered. Refer to the SYSEDIT control statement in the NOS System Mamtenance Reference
Manual for a description of the SC directive.

The third field contains the name of the program to be executed. The fourth field (optional) contains
parameters which further define the operation to be performed. The parameter field is set off from the
name field by a separator character. A valid terminator character must follow the fourth field (or the
third field if no parameters are present).

The system allows continuation lines for CCL statements and ASSIGN, BLANK, LABEL, REQUEST, and
VSN control statements (for details, refer to Statement Syntax in section 4 and Control Statement Rules
in section 10).

The following is a comparison of the operating system and product set formats (refer to the NOS
Applications Programmer's Instant for control statements using the produect set format).

Operating System Format Product Set Format
1. Valid separators are 1. Same as for the operating system
format.
-n /) (

and any other character with a display
code value greater than 44g except
*) $. and blank.

2. Valid terminators are , 2. Same as for the operating system
format.
.)

3. - Letters, numbers, and the * are 3. Any parameter field that includes
the only characters allowed in the characters other than letters,
parameter field. The one exception numbers, and the * must be ex-
to this rule is the use of literals pressed as a literal.

(that is, character strings delimited
by dollar signs). Characters other
than letters, numbers, and the * can
be included in literals. No char-
acters within a literal have special
meanings; the system merely checks
the syntax of the literal. The
called program must do its own
processing of the literal.

1-5-2 60435400 L

7.

8.

In general, no parameter can contain more than seven characters. If a parameter contains more than

Operating System Format

All embedded blanks within a control
statement except those appearing in
literals are ignored.

Comments may appear on the control
statement but they must follow

- the terminator. They may contain

any character. Comments are not
printed for some control statements.

Parameters, separators, and termi-
nators are stored in the user's field
length beginning at RA+2. The char-
acters , . and) are stored at zero.

For all parameters and all valid sepa-
rators except the comma, their display
code equivalent is stored. Refer to
section 10 of volume 2 for more in-
formation.

File names are one to seven alpha-
numeric characters.

Not NOS/BE compatible.

Product Set Format

All embedded blanks within a control
statement except those appearing in
literals or after the program name
are ignored.

Same as for the operating system
format.

Parameters are stored in their dis-
play code equivalent beginning at
RA+2. Separators and terminators are
stored as follows:

Character Code (Octal)
, 1
= 2
/ 3
(4
+ 5
- 6
H 10
Yor. 17
Other valid 16
separators

Refer to section 10 of volume 2 for
more information.

File names are one to seven alpha-
numerie characters. File names be-
ginning with a numeric character are
illegal.

NOS/BE compatible.

seven characters, the entire control statement is issued to the dayfile, followed by the message:

FORMAT ERROR ON CONTROL CARD.

60435400 L

There are two exceptions to this rule. If a statement calls a program from the system library that has an
ARG= entry point, parameters in the statement can contain more than seven characters. If a parameter
contains more than seven characters, the ARG= entry point is not present, and the SDM= entry point is
present (refer to appendix F in volume 2), the statement name (such as DEFINE) is issued to the dayfile
but all parameters are suppressed.

Depending on the program, the parameters can appear in either order dependent or order independent
format. Order dependent parameters are required when the parameters must be passed in a specific
order. An example of order dependent parameters is:

RESEQ(MY FILE,B,,20)

In this example, the system expects the resequencing increment to be passed as the fourth parameter;
therefore, a separator must be present for the parameter not specified.

Order independent parameters may be passed in any order. This is made possible by the use of keywords.
A keyword is an identifier which has meaning either by itself or when used in conjunction with an option.
Usually, keywords are passed with an option and a separator. The separator must not be a comma. When
the list of parameters is passed to the called program, all separators except commas are also passed.

Some programs require specific separators (usually =), and others merely require that a separator be
present. Examples of keyword notation are:

1. COBOL(I=SFILE,B=BFILE)
2. COBOL(B=BFILE,I=SFILE)
3. COBOL(L=0,A,F)

4. JOBX,T10,CM45000.

In examples 1 and 2, both parameters and separators are passed to the COBOL compiler. Since these
parameters are order independent, both statements produce the same result.

In example 3, two keywords are passed with no separator character or parameter. In example 4, the
keyword is the first character of the parameter.

The parameters and an image of the control statement being processed are written in the job
communication area (refer to section 10 of volume 2). The job communication area is the first 110g
words of the user's field length, from RA through RA+107g. Section 1 and appendix E in volume 2
describe the first 100g words of this area.

The following control statements produce the same image in CM. Both statements are processed using
operating system format.

123,PERMIT(FILEABC,USERAAA=R,USERBBB=W)

123,$PERMIT(FILEABC,USERAAA=R,USERBBB=W)

JOB STATEMENT (JOB CARD)

The job statement {(also known as the job card) names the job and may specify job processing parameters.
The first statement of a job input file must be a job statement.t

T Not applicable to time-sharing jobs.

1-5-4 60435400 L

SN

e

NS

N

The user can issue the job statement in order independent or order dependent format. In order .
independent format, a separator character does not appear between the keyword and its value. If the
order dependent format is used and parameter values are omitted between separators, the parameter
values are interpreted as zeros. A parameter v