@ 5 CONTROL DATA
CORPORATION

60499800

SYMPL VERSION 1
USER’S GUIDE |

CDC® OPERATING SYSTEMS:

NOS 1
NOS/BE 1
SCOPE 2

REVISION RECORD

REVISION

DESCRIPTION

A Original release.

(05-20-77)

Publication No.

60499800

REVISION LETTERS |, O, Q AND X ARE NOT USED

©1977
Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page

Revision

Cover

Title Page

ii

iii/iv

vivi

vii

viii

1-1 thru 1-2
2-1 thru 2-8
3-1 thru 3-6
4-1 thru 4-5
5-1 thru 5-10
6-1 thru 6-6
7-1 thru 7-5
8-1 thru 8-6
9-1 thru 9-4
10-1 thru 10-2
A-1. thru A-4
B-1

Index-1 thru -3
Comment Sheet
Reply Env.
Cover

- g g g i g g e

60499800 A

Page

Revision

Page

Revision

fii/iv

PREFACE

SYMPL version 1.2, which is a systems programming
language, operates under control of the following operating
systems:

SCOPE 2 for the CONTROL DATA® CYBER 170 Model
176, CYBER 70 Model 76 and 7600 Computer Systems

NOS/BE 1 for the CDC® CYBER 170 Series, CYBER 70
Models 71, 72, 73, 74, and 6000 Series Computer

NOS 1 for the CDC CYBER 170 Models 171, 172, 173,
174, 175, CYBER 70 Models 71, 72, 73, 74, and 6000
Series Computer Systems ’

This manual is an introduction to the SYMPL 1.2 language
and its use. It neither replaces the reference manual nor
advances past the reference manual in application of the
language. Rather, it presents the concepts of the language
in an introductory way and emphasizes good programming
practices. Not all aspects of the language are treated
equally. The reader is assumed to be familiar with a
FORTRAN language on a CYBER 170 compatible system.

Another publication of interest:

Publication Number

60496400

for the proper

Systems

Publication

SYMPL Reference Manual

CDC manuals can be ordered from Control Data Literature

and Distribution Services, 8100 East Bloomington Freeway,

Minneapolis, MN 55420.
This product is intended for use only as
described in this document. Control Data
cannot be responsible
functioning of undescribed features or
parameters.

60499800 A

v/vi

CONTENTS

m

1. INTRODUCTION 1-1 5. SYMPL FEATURES 5-1
Characteristics of SYMPL 1-1 :
: DEF Declaration 5-1
SYMPL Compared with FORTRAN 1-1 DEF Without Parameters 5-1
DEF With Parameters 5-2
SWITCH Statement 5-2
2. LANGUAGE ELEMENTS 2-1 STATUS Statement 5-3
Status-Value References 5-3
SYMPL Character Set 2-1 Status Function 5-3
Reserved Words 2-1 Status Constant 5-4
Programmer-Supplied Identifiers 2-1 Status Item 5-4
Expressions 2-1 Status Switeh 5-4
Arithmetic Expressions 2-2 Examples of STATUS Use 5-4
Arithmetic Operators 2-2 Based Array Declaration and P Function 5-5
Masking Operators 2-3 LOC Function 5-6
Boolean Expressions 2-3 Bead Funetions 5-7
Logical Operators 2-3 Character (Byte) Funetion 5-8
Relational Operators 2-4 Examples of Character Function Use 5-8
Statements 2-4 Bit Function 5-9
Declarations 2-5 Examples of Bit Function Use 5-10
Executable Statements 2-6
Statement Labels 2-6
Statement Format 2-7
Comments and Spaces 2-7 6. MULTIWORD AND PART-WORD ARRAYS 6-1

: Complete Array Declaration Syntax 6-1
3. PROGRAM STRUCTURE 3-1 Parallel and Serial Arrays 6-3
Presetting Arrays 6-3
Main Programs 3-1 Part-Word Item Efficiency 6-5
Procedures 3-1 Boolean Data 6-5
Procedure Declaration 3-1 Integer Data 6-5
Procedure Exit 3-3 Accessing Array Items 6-6
Functions 3-3
Intrinsie Functions 3-3
Programmer-Supplied Functions 3-4
Function Declaration 3-4 1. PARAMETER USAGE 7-1
Funection Call 3-4
égﬁ&%g’%ﬁ;‘ (3? []‘)ogg? an; a}i:ir:)tri'g g_g Procedure Declaration and Call 7-1
External Declarations and References 3-5 Scalar and Array ltem Names as Parameters 7-2
Defining Externals 3-6 Expressions as Actual Parameters 7-2
Referencing Externals 3-6 Subseripted Variables as Actual Parameters 7-3
Character Strings as Parameters 7-3
Label Names as Parameters 7-3
Procedure Names as Parameters 7-3
4, DATA DECLARATIONS 4-1 Array Names as Parameters 7-4
Efficiency in Parameter Lists 7-4
Constants 4-1 Call-By-Value Parameters 7-4
Real Constants 4-1 Reusing a Parameter List 7-5
Integer Constants 4-1
Decimal Constants 4-1
Octal Constants 4-1
Hexadecimal Constants 4-2 8. IF AND FOR STATEMENTS 8-1
Status Constants 4-2
Character Constants 4-2 IF Statement 8-1
Boolean Constants 4-2 Nested IF Statements 8-2
Scalar Declaration 4-2 Boolean Expressions in IF Statements 8-2
Item Declaration Format for Scalars 4-2 FOR Statement 8-3
Preset Constant Values 4-3 FOR Syntax 8-4
Contracted Item Declaration Format 4-3 Loop Control 8-4
Examples of Scalar Declarations 4-3 WHILE Clause 8-4
Array Declaration 4-4 Controlled Statement 8-5
Scope of Declarations 4-4 TEST Statement of FOR 8-6

60499800 A vii

9.

COMPILATION CONTROL

Conditional Compilation
Optimization Control

$BEGIN/$END Debugging Compilation
SYMPL Compiler Call

A STANDARD CHARACTER SETS

[eey
1
ot

-
SOSOSK R0
N

ot |
SO U WN R WD

wwwwwwwwﬁowwwwwwwm

R
W =O

[
= OO0 ~IO U IR N MWD O

PEaodPRoaGad
U GO DD et e

viii

FORTRAN Extended Fibonacci Numbers
~ Example

SYMPL Fibonacci Numbers Example

PROC FIBON in Recommended Program
Format)

Unequal Length Character String Example

Label Example

Label Statement Label Example

Statement Format Example

Main Program Structure

Nested Subprograms

Procedure Declarations

Procedure Declaration and Call Example

Program Execution Flow

Procedure Exit by RETURN Statement

Procedure Exit by a Jump

Function Declaration Example

Alternate Entry Example

COMMON Declaration Example

XDEF Declaration Example

XREF Declaration Example

XREF Declaration as a Compound Statement

Preset Constant Value Example

Local and Global Identifiers

Duplicate Name Item Declarations

SWITCH Declaration Compilation

Status Switeh Example

Valid Status Switeh Declarations

Preset Status Values Example

P Function Example

Based Array as a Formal Parameter

Use of a Based Array for Listing

LOC Function Example

Use of C Function in a Hashing Routine

Use of C Funetion to Increase Character
String Size

Use of C Function for Number Conversion

Bit Function Example A

Bit Function Example B

Bit Function Example C

Bit Function Example D

Item Overlapping

Array Item Declarations

Array With Part-Word Items

Duplicate Field Item References

Serial and Parallel Allocation

Serial and Parallel Allocation of Multiword
items

Array Presetting Example A

Invalid Identifiers

Data Alignment

Reserved Words That Begin Declarations
Executable Statements

9-1 10. OUTPUT FACILITIES
9-2
9-2 PRINT Procedures
9-3 LIST and ENDL Procedure Calls
9-3 Examples
APPENDIXES
A-1 B GLOSSARY
INDEX
FIGURES
6-8 Array Presetting Example B
1-1 6-9 Array Presetting Example C
1-2 6-10 Array Presetting Example D
6-11 Array Presetting Example E
1-2 6-12 Array Presetting Example F
2-4 6-13 Packed Boolean Array
2-6 7-1 Procedure Declaration Structure
2-7 7-2 Format and Actual Parameters Example
2-7 7-3 Passing Parameters by Value or Address
3-1 7-4 Expression as Parameter
3-2 7-5 Subscripted Variable as Parameter
3-2 7-6 Character Strings as Parameters
3-2 7-7 Procedure Name as Parameter
3-3 7-8 Array Names as Parameters
3-3 8-1 IF Statement Logic
3-3 8-2 ELSE Statement Logic
3-4 8-3 IF Statement Example A
3-5 8-4 IF Statement Example B
3-5 8-5 Nested IF Statement Example A
3-6 8-6 Nested IF Statement Example B
3-6 8-7 Nested IF Statement Example C
3-6 8-8 Boolean Expression in an IF Statement
4-3 8-9 FOR Statement Example
4-5 8-10 Evaluation of Arithmetie Expression
4-5 in a FOR Statement
5-3 8-11 Slow Loop Logie Example A
5-5 8-12 Slow Loop Logic Example B
5-5 8-13 Fast Loop Logiec Example
5-5 8-14 WHILE Clause Example A
5-6 8-15 WHILE Clause Example B
5-6 8-16 WHILE Clause Example C
5-6 8-17 Controlled Statement Example A
5-7 8-18 Controlled Statement Example B
5-8 8-19 Controlled Statement Example C
8-20 Controlled Statement Example D .
5-9 8-21 TEST Statement Example A
5-9 8-22 TEST Statement Example B
5-9 8-23 TEST Statement Example C
5-10 8-24 Logic of TEST Statement
5-10 9-1 CONTROL Statement Example A
5-10 9-2 CONTROL Statement Example B
6-1 9-3 CONTROL Statement Example C
6-2 9-4 CONTROL Statement Example D
6-2 9-5 Use of $BEGIN and $END
6-3 10-1 Output XREF Declarations
6-3 10-2 Output in FORTRAN and SYMPL
10-3 SYMPL Output Example A
6-4 10-4 SYMPL Output Example B
6-4 10-5 SYMPL Output Example C
TABLES
2-2 7-1 Formal Parameter Assumptions
2-2 7-2 Possible Actual Parameters
2-5 9-1 Control-Words of CONTROL
2-6 9-2

Compiler Call Parameters

-10-1

10-1
10-1
10-1

B-1

@
-

6-4

?T
[0}

U
WLWNNHEHEFHEOD

Pe PPRCEECPRIIINEISNTS
= W COCON DN DN BN = = W

8-5
8-5
8-5
8-5
8-5

PEPTTELTE
LMD IO D

9-
9-
9~
9-3

10-1

10-2

10-2

10-2

10-2

60499800 A

INTRODUCTION 1

The SYMPL language is similar to the JOVIAL language,
which was derived from the ALGOL-58 language. Conse-
quently, it has many similarities with ALGOL and ALGOL-
like programming languages such as PL/I, although it has
features not found in these better known languages. SYMPL
also has similarities with the COMPASS assembly language
and the FORTRAN Extended compiler language. SYMPL
statements provide Boolean and algebraic capabilities; the
declarations provide the data structures of other languages.

Since SYMPL is a systems programming language, it does

not include input/output facilities. When a SYMPL subpro-,
gram is called from a FORTRAN Extended main program,

however, the FORTRAN language PRINT statement capabil-

ities can be used within the subprogram for debugging

purposes.

Of more significance for input and output, however, is the
fact that the calling sequence conventions for FORTRAN
Extended and SYMPL are alike. Both COMPASS and
FORTRAN Extended routines interface easily with SYMPL.

CHARACTERISTICS OF SYMPL

The SYMPL language is characterized by:
Reserved words

Orientation toward manipulation of bits and 6-bit bytes
as well as words

Free-form program format, although good programming
practices and coding conventions advise use of a more
rigid structure

Nonexecutable declaratives that describe data structure
and use

Nonexecutable compiler-directing statements

Executable statements that describe procedures to be
carried out

Block structure in which the reserved words BEGIN and
END delimit compound statements and declarations

Loader capabilities for interprogram communication avail-
able through SYMPL include: the COMMON declaration
that produces named or blank common blocks; the XREF
declaration that produces loader external references; and
the XDEF declaration that produces loader entry points.

SYMPL COMPARED WITH
FORTRAN

This user guide illustrates many SYMPL concepts by
comparing SYMPL with FORTRAN Extended. Figures 1-1
and 1-2 show two jobs that produce the same results through
FORTRAN Extended and SYMPL. Figure 1-1 shows a job
deck containing a FORTRAN Extended program that gener-
ates and prints the first 10 Fibonacei numbers. (A Fibonacci
number is defined as the sum of the two immediately
preceding Fibonacei numbers.)

60499800 A

a. Job deck

job statement
FTN,R=0.
LGO.
7/8/9
PROGRAM FIBON(OUTPUT)
INTEGER L(10)
DATA L(1),L(2) /1,1/
LIMIT=10
PRINT 4,LIMIT
4 FORMAT (*1FIRST *,12,
* FIBONACCI NUMBERS*)
DO 1 N=3,LIMIT
L(N)=L (N-1) + L(N-2)
1 CONTINUE
DO 2 N=1,LIMIT
PRINT 3,L(N)
CONTINUE
FORMAT(1H ,I10)
STOP
END
6/7/8/9

wW b

b. Output from program FIBON
FIRST 10 FIBONACCI NUMBERS

Figure 1-1. FORTRAN Extended.
Fibonacci. Numbers Example

Figure 1-2 illustrates the same task as figure 1-1. Since the
SYMPL subprogram uses FORTRAN output, a FORTRAN
main program is required to control the environment in
which the SYMPL subprogram executes. The XREF state-
ment is necessary to allow access to library procedures
which perform output. The SYMPL subprogram statements
are arranged in the order of the FORTRAN program
statements. Current Control Data coding standards require
the subprogram to be structured as shown in figure 1-3 and
to include comments.

Syntax differences between SYMPL and FORTRAN include
the following SYMPL conventions:

All statements must be terminated by a semicolon.

BEGIN and END delimit a compound statement that can
contain other elementary or compound statements.

1-1

job statement
FTN,R=0.
SYMPL.
LGO.
7/8/9
PROGRAM MAIN(OUTPUT)
CALL FIBON
STOP
END
7/8/9
PROC FIBON;
BEGIN
XREF BEGIN PROC PRINT; PROC LIST;
PROC ENDL; END
DEF LIMIT #10#;
ITEM N [;
ARRAY [1:LIMIT]; ITEM L=[1,1];
PRINT("(*1FIRST *,12,* FIBONACCI
NUMBERS* ,//)");
LIST(LIMIT);
ENDL;
FOR N=3 STEP 1 UNTIL LIMIT DO
L[N]=L[N-1] + L[N-2];
FOR N=1 STEP 1 UNTIL LIMIT DO

BEGIN

PRINT("(1H ,110)");
LIST(L[N]);
ENDL;

END

END
TERM
6/7/8/9

'PROC FIBON;

BEGIN

XREF
BEGIN
PROC PRINT;
PROC LIST;
PROC ENDL;
END

DEF LIMIT #10#;

ITEM N I;

ARRAY [L:LIMIT];
ITEM L =[1,1];

PRINT("(*1FIRST *,12,* FIBONACCI NUMBERS*)");
LIST(LIMIT);
ENDL;

FOR N=3 STEP 1 UNTIL LIMIT DO
L[N]=L[N-1] + L[N-2];

FOR N=1 STEP 1 UNTIL LIMIT DO
BEGIN
PRINT("(1H ,110)");
LIST(L[N]);
ENDL;

1-2

Figure 1-2. SYMPL Fibonacei Numbers Example

Reserved words exist; in figure 1-2, the following
reserved words are used: PROC, BEGIN, XREF, END,
DEF, ITEM, ARRAY, FOR, STEP, UNTIL, DO, and
TERM.

A subprogram is called by the program name itself,
without a preceding CALL.

Spaces are significant and can be replaced by, or
accompanied by, one or more blanks or comments.

Comments are delimited by the mark # when the
ASCII character set is used or = when a CDC
character set is used.

Brackets delimit array subseripts.

Figure 1-3. PROC FIBON in Recommended
. Program Format

Language differences between SYMPL and FORTRAN
include the following SYMPL conventions:

All variables must be declared, even those used only for
loop control.

External subroutines are required for output.

FOR loops can have negative step inerements.

IF statements have the form IF. .. THEN. . . ELSE.
Symbolic constants are allowed.

Array items are referenced by item name, not array
name.

60499800 A

LANGUAGE ELEMENTS . 2

L

The SYMPL language consists = of reserved words,
programmer-supplied words, and expressions. These, in turn,
are composed of characters from the SYMPL character set.
The remainder of this section discusses each of these basic
language elements.

SYMPL CHARACTER SET

~ The SYMPL character set is limited to 55 characters:

Letters A through Z and $ ($ is considered to be a
letter)

Digits 0 through 9
Marks +-*/=[]()<>"#.,:;andblank

Other characters in the computer character set (appendix A)
can appear in a SYMPL program only within a character
constant or a comment.

Input and output of the SYMPL marks is complicated by the
different character sets available on keypunches, terminals,
and printers. Not all 026 keypunches have the same
characters written on the top of keys; not all characters
appear on key caps of either terminals or keypunches., A
character that is keypunched for a constant as ' might
appear on printed output as " or #, depending on the type
of printer. :

The two marks most frequently confused among the SYMPL
character set are those used to delimit comments and some
types of constants. For these functions, SYMPL requires the
display code values of 60 and 64, respectively. Appendix A
of most CYBER 170 software manuals shows the CDC
standard character set that ean be used to determine which
keys must be used to obtain the punch combination for the
required display code.

Display
Delimiter Code ASCII CDC
For Value Graphic Graphic
Comment 60 # =
Character
Constant 64 " #or'

In this manual, an ASCII input device and an ASCII printer
are assumed.

The marks + - * and / have the same meaning in arithmetic
expressions as they do in other languages, with ** repre-
senting exponentiation and = = representing interchange.
The marks , and . have customary meanings. The mark =
reprc)esents replacement, as in FORTRAN Extended (not as in
PL/D).

The marks [] () and < > are explained below:
[] Balanced brackets delimit a subseript of an array.
<> Balanced angle brackets delimit arguments for the

based array P function and the bead functions B
and C.

60499800 A

{) Balanced parentheses delimit arguments of a
funection, procedure, or DEF statement. They also
group expressions and denote a call-by-value
argument. As in other languages, parentheses can
be used to improve readability of expressions or to
force a specific evaluation order within
expressions.

The two marks # and " must be used in pairs.
Paired pound signs delimit:
Comment
Character string of a DEF statement

" Paired quote marks delimit a character or status
constant.

The remaining marks are used as follows:

R Semicolon terminates each declaration and
executable statement, and most compiler-directing
statements.

Colon is used to:
Separate bounds of array dimension
Terminate a label

Define a status constant

RESERVED WORDS

SYMPL is a reserved-word language. A complete list of the
50~-plus reserved words appears in the SYMPL Reference
Manual. In this user guide, reserved words are introduced as
the appropriate language element is deseribed. Reserved
words identify elements of the language. Examples are
PROC and PRGM which signify program headers, ITEM and
ARRAY which describe data items, and IF and ELSE which
form part of executable statement syntax.

Words appearing in capital letters in statement formats
presented in this manual are, for the most part, reserved
words. A few words or letters required in some circum-
stances are not reserved words. Specifically, the following
are not reserved, although good programming practice
restriets use of these words to situations in which meaning
cannot be confused:

Data descriptions: B, I, U, S, R, C.

Control words of the CONTROL compiler-directing
statement, such as EJECT, NOLIST, PRESET, PACK,
and IFEQ.

PROGRAMMER-SUPPLIED
IDENTIFIERS

Identifiers are programmer-supplied names that are anal-
ogous to COMPASS names and FORTRAN variable names.
Identifiers cannot be constructed through miero substitution
or concatenation, however, as they can in COMPASS.

Identifiers must have these characteristics:

First character must be a letter or §

Contain 1 through 12 letters, digits, or $

Must not duplicate a reserved word
Although SYMPL identifiers can have 12 characters, it is
good programming practice to limit identifier length to 10
characters. This restriction allows efficiencies in tables
constructed by the compiler.
Examples of valid identifiers are:

I

X1

$IGN

SEMAPHORE

FIRSTBIT

Examples of invalid identifiers are shown in table 2-1.

TABLE 2-1. INVALID IDENTIFIERS

Identifier Why Invalid
LIM Reserved word
1AJd Does not begin with letter or $
LAB"I" Contains marks
4400017 t4 are not SYMPL characters
FIRST CASE Contains invalid blank
TEST Reserved word
OPEN.RM Contains mark
EXPRESSIONS

Expressions are used within statements. SYMPL expressions
are similar to those of other languages in that they are
~sequences of identifiers, constants, or funetion calls
separated by operators and parentheses. Two types of
expressions are:

Arithmetic expressions that yield numeric values.

Boolean expressions that yield Boolean values of TRUE
or FALSE.

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used in replacement statements
such as the following in which identifier A receives the
value of the evaluated expression:

A=arithmetic expression;

2-2

An operand in an arithmetic expression can be any of the
following:

Constant.

Variable defined as data type I, U, S, R, or C. Variables
can be secalars (full 60-bit word for each item) or fields
in an array (number of bits determined by array
declaration) or parts of a scalar or field indicated by a
bead funetion (a bead function extracts bits or char-
acters from an array item or scalar).

Function call.
Boolean data cannot be used in arithmetic expressions.

All manipulation of variables takes place in full words, with
SYMPL aligning a partial word field in a full word before -
performing the expression evaluation. Alignment is as
shown in table 2-2. When data of different types is used in a
simple expression, the system performs conversions as
necessary. The SYMPL Reference Manual contains full
details of conversion.

TABLE 2-2. DATA ALIGNMENT

Data Type Alignment
_— ——————e |
C Left-justified and adjusted to one
word length. Data less than 10
characters is blank filled; data
.longer than 10 characters is trun-
cated to 10 characters.
I Right-justified with sign extension.
U,S Right-justified.
R Real data always occupies a full
word and need not be realigned.

When character data is used in arithmetic expressions, only
a single word of characters is involved. Any character data
used as an integer is assumed to be an integer; the leftmost
bit is the sign bit, and other bits are the integer value. No
realignment takes place when character data becomes
integer data. When an integer is converted to character
data, however, the rightmost 6 bits of the integer are
assumed to be a single character; and they are left-justified
and blank filled. Any other bits in the integer are ignored.
With this exception, conversions are standard for mixed data
types.

The operators in an arithmetic expression can be arithmetic
or logical. For the most part, character data is used only
with logical operators.

Arithmetic Operators

The arithmetic operators are:

Unary operators + - and the intrinsic function
ABS(exp)

Binary operators + - * / and **

60499800 A

A series of operators are evaluated according to FORTRAN
precedence rules in which evaluation proceeds in the
following order; parentheses can force a different order:

** (exponentiation)
* or / (multiplication or division)

+ or - (addition or subtraction)

When an integer is divided by another integer, the quotient
is truncated without rounding. For example, the followmg
statements produce WORD=2 and BIT=48:

ITEM BIT, WORD, I;
1=18;

WORD=1/10+1;
BIT=6 * (I-1/10 * 10);

Exponentiation is always performed in-line for all powers of
two. Other small integer powers might be performed in-
line, depending on compiler optimization. Integer multipli-
cation and division by a power of two are performed in-line
and are accurate to 60 bits signed.

Masking Operators

The masking: operators of arithmetic expressions perform
bit-by-bit operations that yield numeric values. The
operators, in order of precedence, are:

LNO Complement (set 0 to 1, or set 1 to 0)
LAN | Logical product (set to 1 if both bits 1)

LOR Inclusive OR (set to 1 if either or both bits
is 1)

LXR Exclusive OR (set to 1 if bits are unlike)

LIM Imply (set to 1 if first operand is 0, or if first
and second operands are both 1)

LQV Equivalence (set to 1 if both bits alike)

These operands work with the full word containing a secalar.
More powerful masking operations result when the items are
part-word array items or bead funections as deseribed in
section 5.

An example of logical product use of a 12-bit mask of zeros
that sets the twelve low order bits to zero in ABCDEFGHIJ
is:

ITEM N C(10)="ABCDEFGHIJ";
ITEM MASK2=-O"7777";
N=N LAN MASKZ;

The following example shows exclusive OR use that sets X=0
only if A=B:

ITEM A,B,X;
X=A LXR B;

Character data used with masking operators alWays involves
60 bits. Shorter strings are left-justified and blank-filled;
longer strings are truncated to ten characters.

60499800 A

BOOLEAN EXPRESSIONS

Boolean expressions are rules for determining logical values.
Such expressions always yield Boolean results; that is, the
result is always TRUE or FALSE. Boolean expressions are
used primarily in statements that test a condition, such as:

IF Boolean-expression THEN . ..

FOR I=0 STEP 1 WHILE Boolean-expression DO . . .

A Boolean expression also can be used as the mght-hand side
of a replacement statement if the type of the left-hand 31de
identifier is Boolean, as in:

ITEM ERRORS B, CHARCOUNT;
ERRORS=CHARCOUNT GR 7;

Another use of Boolean expressions is to manipulate absolute
values. In the following example, SIGNE is TRUE if NUMB
is less than 0. After the absolute value is obtained, if SIGNE
is TRUE, NUMB is reset to negative:

ITEM NUMB, SIGNE B;
SIGNE=NUMB LS 0;
NUMB=ABS (NUMB);

IF SIGNE THEN NUMB= -NUMB;

Two types of operators that can be used in Boolean
expressions classify the expressions:

Logical operators AND, OR, and NOT classify the
expression as a logical Boolean expression.

Relational operators EQ, GR, LS, GQ, LQ, and NQ
classify the expression as a relational Boolean
expression.

In the following example of a relational Boolean expression,
OK is TRUE if A is greater than Q:

ITEM A, Q, OK B;
OK=A GR Q;

In the following example, relational Boolean expressions and
logical Boolean expressions are combined. OK is TRUE if A
is greater than Q and A is not 0:

ITEM A, Q, OK B;
OK=(A GR Q) AND NOT (A EQ 0);

Logical Operators

The logical operators for Boolean expressions are identical
to the FORTRAN logical operators, although they are
written without the decimal point delimiters. They are
implemented in SYMPL by tests such as the ZR instruction
of COMPASS. .

In contrast to the masking operators of arithmetic
expressions, the logical operators of Boolean expressions
work with one Boolean value (TRUE or FALSE) versus
another, as in:

IDENT1 OR IDENT2

The Boolean logical operators, in order of highest to lowest
precedence, are: .

NOT Logical negation (TRUE if neither TRUE)

AND Logieal eonjunction (TRUE if both TRUE)

OR Logieal disjunction {TRUE if either TRUE)
During execution, evaluation of a Boolean expression
proceeds only as long as needed to determine the result;

evaluation terminates when partial evaluation satisfies the
expression. For example:

B = (I EQ 1/6%6) OR (NAME EQ "ABC");

If I is a multiple of 6, B is TRUE without further

evaluation.
Relational Operators
The relational operators specify a comparison between two
arithmetic expressions or character operands. The rela-
tional operators for Boolean expressions are equivalent to
FORTRAN relational operators, although the mnemonics of
the operators differ. These operators are used only with
arithmetie expressions, as in:

IDENT3 NQ 17

The relational operators are:

EQ Equals

GR Greater than

LS Less than

GQ Greater than or equal to
LQ Less than or equal to
NQ Not equal

During execution, character values in the arithmetie
expression of a relational Boolean expression are compared
in-line if neither value crosses a word boundary. If either
crosses a word boundary, a call to a SYMPL library routine
is compiled with attendant increase in instruction execution
time.

Character strings of unequal length can be compared;
SYMPL expands the shorter with blank padding to the length
of the longer before comparing. For example, at the end of
the sequence shown in figure 2-1, AB, BC, and AC have the
value TRUE.

ITEM A C(2)="XX",

B C(4)="XX ",

C C(6)="XX ™
ITEM AB B, BC B, AC B;
AB=A EQ B;

AC=A EQC;
BC=B EQ C;

Figure 2-1. Unequal Length
Character String Example

STATEMENTS

Statements in a SYMPL program can be classified by syntax
or use.

2-4

Statement use is described by the terms declaration and

‘executable statement.

A declaration defines data or subprograms and also
directs the compiler.

An executable statement specifies the operations to be
carried out.

Statement syntax is described by the terms elementary and
compound.

An elementary statement consists of a single language
statement terminated by a semicolon.

A compound statement begins with the reserved word
BEGIN; it contains zero, one, or more elementary or
compound statements, and it ends with the reserved
word END. One compound statement is considered to
be a single statement.

Classification of a statement as compound does not affect
its use; that is, a compound statement can be part or all of
either a declaration or an executable statement.

Elementary statements begin with a reserved word or a
programmer-supplied identifier. Examples of elementary
statements are shown below. Reserved words in these
examples are: PROC, GOTO, CONTROL, ITEM, IF, LS,
THEN, DO, and LAN.

PROC FIRSTONE (A, B, C);
GOTO LABELABC;
CONTROL NOLIST;

ITEM SIZEREC 1=350;

IF A LS B THEN C=D;

DO XX [1]=9-1;

P=R LANT;

MYPROCALL;

Compound statements form a single unit. They ean be used
in most places where an elementary statement can be used.
One of the most common occurrences of a compound
statement is in the declaration of a procedure. (Procedures
are similar to FORTRAN subroutines.) The syntax of a
procedure states that a procedure is declared by a procedure
header followed by optional declarations followed by a single
statement. Since the single statement can be a compound
statement, a procedure has virtually unlimited length. For
example:

PROC LONGONE;
BEGIN
ITEM I, J;
XREF ARRAY K;

Procedure header

Single compound
statement

’

END

60499800 A

‘The compound statement structure can be part of a
declaration, as in:

XDEF
BEGIN
ITEM A;
ITEM B;
ITEM C;
END

The same three items could be declared as externals with
three elementary declarations, as in: .

XDEF ITEM A;
XDEF ITEM B;
XDEF ITEM C;

. In many instances a compound statement must be written to
perform several operations as a single logical unit. The
syntax of a FOR statement, for example, states that a single
statement must follow the reserved word DO. To perform
three arithmetic replacement operations with a single FOR
statement, the single statement following DO must be
compound, as in:

FOR I=4 STEP 1 UNTIL 10 DO

BEGIN

A=B; . Single elementary
- Single compound

C:D, statement FOR statement

E=F;

‘END

Another instance of compound statements deals with arrays.
Array declaration syntax states that the one ITEM declara-
tion immediately following the ARRAY declaration is a
named item in that array. When more than one named item
.oceurs within the array, the ITEM declaration can be a
compound statement, as in:

ARRAY A [0:2];
BEGIN
ITEM AA;
ITEM AB;
ITEM AC;
END

The same ARRAY declaration can be written using the
abbreviated format for an ITEM declaration, as in:

ARRAY Al0:2];
ITEM AA, AB, AC;

Notice that individual declarations or executable statements
within a compound statement are terminated by a semi-
colon, ineluding those immediately preceding END. State-
ments within a compound statement are written the same
way as though they were outside the ecompound statement
context. The words BEGIN and END are reserved words and
are not terminated by semicolons.

DECLARATIONS

Declarations are required in a SYMPL program to define the
type and use of data and to define other entities used in the
program. Each declaration begins with a reserved word.
Table 2-3 shows reserved words which begin deeclarations.

60499800 A

TABLE 2-3. RESERVED WORDS THAT
BEGIN DECLARATIONS

Word Use

ITEM Defines an item, its characteristics and,
optionally, its value.

ARRAY Defines an array, its structure, and
optionally, its values for direct refer-
ence.

BASED
ARRAY

For indirect reference, defines an array,
its structure, and optionally the value
of each item in the array.

States that a label name is used locally
as a label in the case of a duplicate
name outside the subprogram when tha
label name has not yet been declared.

LABEL

STATUS Defines names to be associated with

compiler-assigned integer values.
SWITCH Defines a list of label names to be assc-
ciated with compiler-assigned integer
values.

COMMON Defines a storage bloek for reference by
external subprograms.

PROC Begins a procedure subprogram to be
executed when the procedure is called.

FUNC Begins a function subprogram that
results in associating a single value with
the function name when the function is
called during execution.

ENTRY Defines an alternate entry point for a
subprogram.

XDEF States that a subprogram, data or
switch is to be accessible external to
this module.

XREF Identifies declarations defined in an ex-
ternally compiled subprogram.

DEF Defines character strings or variables to
be substituted during compilation.
CONTROL Declares actions the compiler is to take
at the time the statement is executed.

Declarations and executable statements can be intermixed
in a program. However, a specific requirement concerns the
placement of some declarations. For example, an item must
be declared before it is referenced, and a function must be
declared before it is called. A procedure, on the other hand,
can be called before it is declared. These differences and
requirements of each declaration are explained where each
declaration is discussed in depth.

The following examples show the use of various declarations:
Definition of an item with a preset value:

ITEM PI R=3.14159; .

Definition of an array and its structure:

BASED ARRAY A [0:4,3:5] P(2);
BEGIN
ITEM AA C(0,0,7)=["POS=",,,,"MAX="1;
ITEM BB 1(0,42,18)=[5(4)];

END
Assignment of special properties:
STATUS MONTH JAN, FEB, MAR, APR;

Definition of a storage block that can be refer-
enced externally:

COMMON INFO;
Specification of a subprogram:

FUNC ROUND(INNUM);
ITEM INNUM;
ROUND=(INNUM+9)/10;

Identifieation of local labels:
LABEL CASE3,CASE4;

Character string substitution during compilation:
DEF OFF #0#;

Conditional assembly:

CONTROL IFEQ OPSYS,"NOS";

‘EXECUTABLE STATEMENTS

Executable statements specify the operations to be carried
out within the program using the elements defined in
declarations. These statements execute in the order they
appear in the program, allowing for transfer of control as a
result of an executing statement. A complete list of
executable statements is shown in table 2-4.

STATEMENT LABELS

A label is an identifier used to name a statement. Any
executable statement in a SYMPL program can be labeled.
Labels on declarations refer to the following executable
code.

Labels are referenced by GOTO statements, which transfer
control to the named label. SYMPL has neither an assigned
GO TO statement nor a CASE statement such as are
available in other languages. A feature similar to the
computed GO TO statement of FORTRAN is provided in
SYMPL by switches.

The format of a label is:
name:
name Identifier of 1 through 12 letters, digits, or $
that does not duplicate a reserved word or
another identifier in the subprogram. The

colon must immediately follow the last char-
acter.

2-6

TABLE 2-4. EXECUTABLE STATEMENTS

Statement Use

Assignment statements
such as A=B+C;

Replace item to left of =
with value obtained by
evaluating the expression
to the right of =.

Interchange the values of
D and E.

Exchange statements
such as D==E;

Cause execution of proce-
dure named.

Procedure call state-
ments such as
MYPROCCALL;

Transfers control to the
labeled statement specified.

GOTO statement

FOR. . .STEP...DO...
WHILE/UNTIL. . .
statement and its
associated TEST
statement

Cause repetitive execution
during specified conditions.

IF. . .THEN. . .ELSE. ..
statement

Conditional execution de-
pending on circumstances
specified.

RETURN statement Ends a function subprogram
or procedure subprogram.

STOP statement Terminates program.

The example in figure 2-2 illustrates the use of a label
named FINAL.

PROC TESTADD;
BEGIN
ITEM A, B, C, D;
IFAGRB
THEN
GOTO FINAL;
ELSE
C=B-A;
FINAL: D=C;
END

Figure 2-2. Label Example

A LABEL declaration can be used to declare a label. In
some instances, it is required. When the compiler enecoun-
ters a statement that references a label, it links the
reference to the last declared label name whether or not
that label was in the same procedure. If the label name has
not yet been used within the procedure and a duplicate label
name exists outside the procedure, a LABEL declaration is
required to transfer control to the correct labeled statement
within the procedure.

A LABEL declaration has the following format:
LABEL name,name, ... ;

name Label that is to be declared subsequently.

60499800 A

In the example in figure 2-2, if FINAL were a label name
outside this procedure it would be necessary to include a
LABEL declaration within PROC TESTADD:

PROC TESTADD;
BEGIN
LABEL FINAL;

Since any program statement can be labeled, a label
statement can be labeled. This practice is recommended for
program clarity when labels have different purposes. In the
example in figure 2-3, the label LL is an exit from previous
code, and label MM is the beginning ‘of a loop.

.

GOTO LL;

LL:
MM:
IFAGRB
"THEN
BEGIN
A=A-B;
COUNT=COUNT+1;
GOTO MM;
END
ELSE
GOTO OUT;

OUT:

Figure 2-3. Label Statement Label Example

A labeled statement can be simply a labeled END. Although
the following statement is valid for labeling an END for
usage similar to the CONTINUE statement of FORTRAN, it
is not particularly useful since SYMPL offers the TEST and
RETURN statements which bypass the need for such labels:

FIN:END
Comments are valid after a label, as in:

NEXTONE: #CONTROL REACHES HERE TO GET
THE NEXT CHARACTER#

STATEMENT FORMAT

SYMPL statements can be written anywhere within col-
umns 1 through 72 on any number of cards or card images.
Unlike FORTRAN and COMPASS, SYMPL attaches no
significance to any particular column of a card. The
compiler treats the source program simply as a stream of
characters obtained from columns1 through 72. Card
boundaries are ignored.

60499800 A

Because SYMPL statements are format free, both of the
examples in figure 2-4 are acceptable to the compiler. The
first sequence not only allows the program logic to be
followed more easily, it also allows easier modifications
through utilities such as UPDATE or MODIFY. The
conventions of the SYMPL coding form are recommended, in
which labels appear in column 1l and declarations and
executable statements begin in column 7, with only one
statement appearing on a single card.

IF I LS MAX
THEN
BEGIN
Alll=Al1] + 1
I=1+1;
END
ELSE
GOTO FIN;
NEXT:
ENTER(SYMBOL,TABLE [I]);

IF I LS MAX THEN BEGIN A[I]=A[I]+1;I=1+1;
END ELSE GOTO FIN;NEXT:ENTER
(SYI;/IBOL, TABLE
1)

Figure 2-4. Statement Format Example

COMMENTS AND SPACES

A comment is written as a string of characters delimited by
a pound sign, #. Comment character strings can contain any
of the computer set characters except:

Pound sign

Semicolon

A null comment that consists only of two adjacent pound
signs is legal also. Anyplace a space is legal, a comment is
legal, with the exception of a DEF declaration or reference.
In other than DEF:

A comment can substitute for a space.

A comment can be concatenated to any legal space.

The SYMPL metalanguage described in the SYMPL Refer-
ence Manual distinguishes between instances where a space
or comment is required and instances where a space or
comment can, but need not, appear. In general, a space or
comment is required to separate reserved words and
identifiers. .

Instances in which spaces or comments are prohibited are:
Within reserved words: (GOTO not GO TO)
Within status constants: (S"RED" not S"RED ")
Before the colon in a label: (SUBR: not SUBR :)
Between P, B, or C and the left angle bracket of a P

funetion or bead function: (C<2,6>ALPHA not
C <2,6>ALPHA)

Spaces or comments are allowed before and after the
following marks:

2-8

Semicolon that terminates statements
Comma that separates elements of a list
Arithmetic operators or unary operators
Colon in array dimensions

Brackets in array declarations

Parentheses enclosing formal parameters in a subpro-
gram declaration :

All the following statements are valid:

GOTO LAB;

GOTO LAB ;
GOTO##LAB;
GOTO LAB#ORDE#;

GOTO LAB # EXIT WHEN A=B #;

60499800 A

PROGRAM STRUCTURE 3

D

A SYMPL program is a series of declarations and executable
statements. It can be structured as a main program or as a
subprogram. Since SYMPL is. a systems programming
language, most source code is written in the form of a
subprogram rather than a main program. The two types of
subprograms are procedures and functions; they differ in
that:

A function returns a value through the funection name.
It is called when its name is used in an expression.

A procedure can, but need not, return values through
any of its parameters. It is called when its name or one
of its alternative entry points is referenced.

A program module is a separately compiled main program or
subprogram. Compilation of a module is terminated
whenever the compiler encounters a TERM statement.

If a subprogram is compiled in the same program module as
the program or subprogram it is called by, it requires no
special treatment. If a subprogram is compiled as a
separate module, however, it is known as an external
subprogram and any other module referencing it must
acknowledge the external subprogram status.

Separately compiled programs and subprograms can com-
municate by any of the following ways, as described at the
end of this section:

Declaring data in labeled or blank common

Deeclaring entities as external

Passing arguments in a procedure or function call

Passing parameters to a procedure using common instead of

using formal parameters in the procedure call might improve
execution speed. Differences in object program size vary
depending on whether the program sets the common vari-
ables before each call, or with formal parameters, how many
transfer vectors are recognized as duplicates.

General information about procedures and functions is
contained in this section, along with information about
alternative entries to these subprograms. Section 7 contains
the details of parameters in subprogram declarations.

MAIN PROGRAMS

A main SYMPL program consists of a main program header,
a single (usually compound) statement, and the ending
reserved word TERM, as shown in figure 3-1. Notice that in
SYMPL neither BEGIN nor END is followed by a semicolon.

Source statements between PRGM and TERM are compiled
as a single relocatable binary module with a transfer address
to the first executable statement.

A main program can include any number of embedded
subprograms, and those subprograms also can include em-
bedded subprograms. If TERM appears at the end of a
subprogram, it stops compilation of the module in process
and source statements following TERM are compiled as a
separate module.

60499800 A

PRGM name;

BEGIN

.

declarations and statements

END

TERM

Figure 3-1. Main Program Structure

The main program header establishes the program name:
PRGM name;

name Any identifier (1 through 12 letters, $, or
digits not beginning with a digit) that is not a
reserved word. For loader purposes, the name
is truncated to seven characters.

PROCEDURES

A procedure is a subprogram that is called when its name is
referenced. The procedure can, but need not, have an
associated parameter list; also it can have alternative entry
points. SYMPL procedures are similar to FORTRAN
subroutines. They behave as PL/I or ALGOL procedures.
They can be embedded within other procedures; nesting of
embedded procedures is possible to any level.

SYMPL does not support recursive procedures; a procedure
should neither call itself nor be called by any procedure it
has called. Responsibility for avoiding reecursion rests with
the programmer. The SYMPL compiler, which does not have
the stack mechanisms found in ALGOL and PL/I, does not
check for recursion.

Procedures and functions can be nested, as shown in
figure 3-2. In this figure the nested subprogram GEN has
access to all data declared in the outer procedure MYSUB.

PROCEDURE DECLARATION

A declaration establishes a procedure. It can appear
anywhere in a module, even after the procedure has been
referenced. It is good programming practice, however, to
group all procedure declarations together at the beginning of
the program preceding any executable statements.

PROC MYSUB;
BEGIN
ARRAY T[100] ; ITEM TT;

PROC GEN;
BEGIN

) ’ GEN declared

: within MYSUB
TT 1] = 0;
END # GEN #

FUNC MAX(A,B) R;
BEGIN

. MAX declared
. within MYSUB

END # MAX #

.

GEN; | call to procedure GEN

X=MAX(Y, Z)+ MAX(V, W); } use of function MAX

GEN;

END # MYSUB #

Figure 3-2. Nested Subprograms

A procedure declaration can appear in either of the
following formats:

procedure header :
declarations for procedure
elementary or compound executable statement

or

procedure header
~compound statement including declarations and execut-
able statements

The usual form of a procedure includes all declarations and
statements within the procedure header and the END which
corresponds to the first BEGIN of the procedure. The name
of the procedure is not required, but it can be included as a
comment on the END statement. For example:

END#FINDIT#
The format of a procedure header is:
PROC name(param,param, . . .);

name Any valid identifier that does not duplicate a
reserved word.

param Optional formal parameter used within the
procedure for which an actual parameter is to
be substituted at execution time.

A more thorough discussion of procedure declarations and
parameters can be found in section 7.

A procedure declaration for a procedure SETIT is:

PROC SETIT (optional formal parameter list);
BEGIN

END # SETIT #

The two declarations shown in figure 3-3 are legal and
equivalent.

PROC P(A, B);
ITEM A,B;
BEGIN

ITEM LJ;

END

PROC P(A, B);
BEGIN

ITEM A, B, 1, J;
END

Figure 3-3. Procedure Declarations

Figure 3-4 shows a nested procedure REINITIALIZE within
procedure MYSUB. Procedure REINITIALIZE can use any
data of MYSUB without the need to pass that data formally.
Notice that only the procedure name is used in the call; the
four characters CALL do not precede the procedure name.
For readability, however, many programmers use a DEF
deciaration (DEF CALL # #) to allow CALL in source
listings.

PROC MYSUB;
BEGIN
ARRAY [100] ; ITEM A;

PROC REINITIALIZE;

BEGIN

ITEM I;

FOR 1=0 STEP 1 UNTIL SIZE DO procedure
Al1]=0; declaration

FOR I=0 STEP 1 UNTIL LENGTH DO
NAME[I]="";

END # REINITIALIZE #

‘

REINITIALIZE; } call to procedure

REINITIALIZE;} call to procedure

.

END # MYSUB #
TERM

Figure 3-4. Procedure Declaration and Call Example

60499800 A

Notice that procedure REINITIALIZE executes when it is
called, not when its declaration is encountered. When
MYSUB in figure 3-4 executes, the statements of procedure
REINITIALIZE are bypassed as though the program were
written as shown in figure 3-5.

GOTO BYPASS;
PROC REINITIALIZE;

END # REINITIALIZE #
BYPASS:

ITEM 1, J;

PROC P;

BEGIN

1=l + 1;

IF I EQ 1 THEN RETURN;
J=1;

END # PROC P #

Figure 3-5. Program Execution Flow

Procedures should be called only by the procedure name or
alternative entry point name.

PROCEDURE EXIT

When control passes to a procedure, execution begins at the
first executable statement associated with the entry point
by which the procedure was called. Execution continues
within the procedure until one of the following statements
oceurs:

END statement of the single procedure is reached and
control returns to the statement:following the pro-
cedure call.

RETURN statement within procedure is executed to
return control to the calling subprogram.

STOP statement within procedure is executed to return
control to the operating system.

GOTO statement is executed to transfer control to a
label outside the procedure.

Exit from the middle of a procedure through a RETURN
statement is illustrated in figure 3-6. Execution of pro-
cedure P occurs at its first call, after I has been assigned a
value 0. After the first call, J has the value 0 since the
RETURN statement executes. After the second call, which
is entered with I=1, J has the value 1. A jump out of a
procedure is valid, although good programming practices
avoid such a jump.

In the example in figure 3-7, procedure JUMP has formal
parameters N, L1, and L2. (The parentheses of N indicate
call-by-value.) Since declarations for L1 and L2 do not
appear within JUMP, the compiler considers them to be
labels. The SWITCH declaration results in the compiler
associating the identifiers of list MYSW with integer values
0 through 3, respectively. The IF statement sets N to one of
these values; the GOTO statement jumps to the label
associated with the value of N. The call to JUMP specifies
the value of N and the particular label to be associated with
switeh values 0 and 3.

Section 7 describes parameters for procedure calls.

60499800 A

Figure 3-6. Procedure Exit by RETURN Statement

PROC JUMP((N), L1, L2);
BEGIN
SWITCH MYSW L1, LAB1, LAB2, L2;
IF N LQ 0 THEN N=0;
ELSE
IF N GR 3 THEN N=3;
GOTO MYSW[N] ;
END # PROC JUMP #

o

ERRMIN: ...
LABI:...
LAB2:...
ERRMAX: ...
JUMP(I, ERRMIN, ERRMAX); ...

Figure 3-7. Procedure Exit by a Jump

FUNCTIONS

A function is a subprogram used within an expression. It
returns a value through its function name. This value is then
used in evaluation of the expression.

The two types of functions are:

Intrinsic functions that can be referenced at any tifne
within a program without any FUNC declaration.

Programmer-supplied functions that must be declared
within a program before they can be referenced.

INTRINSIC FUNCTIONS

The five intrinsic functions are:

ABS Absolute function that obtains the absolute
value of its argument.

B Bit funetion that refers to bits in the specified
item.

3-3

C Character function that refers to 6-bit char-
acters in the specified item.

LOC Location function that obtains the address of
its argument during execution.

P Pointer function that refers to the pointer to a
based array.

The B, C, LOC, and P functions are deseribed in section 5.

PROGRAMMER-SUPPLIED FUNCTIONS

Functions are similar to procedures in that they can be
embedded within other subprograms, and they can be
declared and referenced in suitably written separate mod-
ules. Parameter lists can be passed to functions. Alter-
native entry to a function can be declared within a funetion
body, as described below. Recursive functions are not valid.

Functions differ from procedures in two respects:
A function must be declared before it is referenced.

A function declaration must contain an assignment
statement that assigns a value to the function name.

Function Declaration

A function declaration must appear before the function is
referenced in a module. It begins with a header followed by
an optional series of declarations and a function body. The
function body is a single elementary or a compound
statement which can include the declarations as well as
other elementary or compound statements. A statement
assigning a value to the function name must be ineluded in
the function body.

The format of the function header is:
FUNC name (param,param, . . .) type;

name Any valid identifier that does not duplicate a
reserved word.

param Optional formal parameter used within the
funetion body for which an actual parameter is
to be substituted at execution time.

type Type of result as desecribed in section 4.
B Boolean
I Integer’

U Unsigned integer
S:stlist Status

R Real

C(lgth) Character

If type is omitted, I is assumed.

Within the function body, the function name can be used
only as the left-hand side of a replacement statement. In
the example of a function declaration in figure 3-8, notice
that the statement MAX=M sets the return value, thus
fulfilling the requirement that a value be assigned to the
function name. A real function MAX searches for the
maximum value in array T[0:N]. Within the body, a
statement such as IF TAB[IJ] GR MAX THEN... or
MAX=MAX + 1 is invalid. since SYMPL does not allow
recursion.

3-4

FUNC MAX (T, (N)) R;
BEGIN
ARRAY T; ITEM TAB R;
ITEMNLLMI;
M=TAB[0];
FOR I=1 STEP 1 UNTIL N DO
IF TAB{I] GR M
THEN M=TAB(I];
MAX=M;
END # FUNCTION MAX #

Figure 3-8. Function Declaration Example

A RETURN statement can appear in the function body to
return control to the calling program, as long as the function
name is assigned a value before RETURN executes.
RETURN is not required to end a funetion.

Formal parameters within the function body are subject to
the same scope of declaration rules as procedures.

Function Call

A function is called when its name appears in an expression.
Each of the following statements is valid, assuming a prior
declaration of function MAX having two formal parameters
as shown in figure 3-8:

I=I + MAX (VECT, 17) ;
TIMAX (VECT, 17)]=K;

P(MAX (VECT, 17), X) ;

Actual parameters in the call must correspond to formal
parameters in the function declaration. Parameters can be
passed by value or address, as deseribed in section 7 for
procedure parameters.

Function calls compile as return jump instructions, with the
result normally in register X6. When the result is data
type C with a string of more than 10 characters, however,
register X6 contains the address of the first word of a
temporary storage area containing the string.

Real and integer functions are compatible with FORTRAN
Extended 4; character value functions are compatible also,
if the funection is declared to be 10 characters or less. The
function value is returned left-justified in a word, and the
unused bits are not guaranteed to contain any specific value
such as zeros or blanks.

ALTERNATIVE SUBPROGRAM
ENTRY

Alternative entry points can be defined for both procedures
and functions. The format of the declarations are, respec-
tively:

ENTRY PROC name(optional formal parameter list);

ENTRY FUNC name(optional formal parameter
list) type;

Entry names can be passed as parameters and declared as
externals.

60499800 A

An example of alternative entry is shown in figure 3-9.
Procedure INIT 1is declared with alternative entry
INCREASE. When the procedure is called with INIT, array
item TAB[I] is set to 0, but when called with INCREASE,
array item TAB[I] is increased by 1.

As shown with procedure INIT in figure 3-9, the parameter
list in an ENTRY declaration need not match the list in the
subprogram declaration. If the same parameter name does
appear in two entry points, it must be the same type of
variable in each. A given parameter cannot be passed by
value in one list and passed by address in another list. (See
section 7 for parameter details.) PROC P1(A, (B)) and
ENTRY PROC P2(A, B) are illegal, since B is not referenced
identieally in all entries to the procedure.

.

ARRAY TAB[0:100]; ITEM T;
INIT(TAB, 100);
INCREASE(TAB); . . .
INCREASE(TAB); . . .
INIT(TAB, 100);

PROC INIT (A, (N)) ;
BEGIN
ARRAY A; ITEM AA;
ITEM N, M, I, X;
X=-1;
ENTRY PROC INCREASE (A) ;
X=X+1;
FOR 1=0 STEP 1 UNTIL N DO
AA[I]=X; :
END # INIT AND INCREASE #

' Figure 3-9. Alternate Entry Example

COMMON BLOCK DECLARATIONS

Blank common and 509 labeled common blocks can be used
to pass data to separately compiled programs and subpro-
grams. The declaration for data in a given block must be
the same in all program modules. The ITEM names can
differ but the specifications must be the same.

To declare common storage, the format is:
COMMON name; data-declaration

name Label for common block. Can be
: expressed as any legal identifier, but
only the first seven characters

become the block name.

If omitted, storage is allocated in
blank common.

data-declaration Scalar or array declaration. Can be
expressed as a compound statement.
If an array declaration is BASED
ARRAY, only the pointer to the array
is in common.

60499800 A

Data is never initialized in blank ecommon. Data is
initialized in labeled common only when one of the following
conditions exists:

The program or subprogram is compiled with the P
parameter on the SYMPL compiler call.

A CONTROL PRESET compiler-directing statement
appears at the beginning of the program module.

Labeled common blocks are listed as part of the ecompiler
output when either the X or R parameter is selected on the
compiler call. The cross-reference map also lists labeled
common names.

Good programming practices require use of meaningful
names to improve readability when common is used.
UPDATE common decks are particularly suitable for
handling common. For example, assume the description of
common block PARAMS is in an UPDATE common deck, as
shown in figure 3-10. Decks that include P and Q should call
the deck with PARAMS. The call to Q below has no actual
parameters. Without the use of common, the declaration of
Q would be Q(I1, 12, R3) and the call would take a form
similar to Q(A[1],10,17.4). The use of XREF PROC Q within
P is required because P and Q are separately compiled.

PROC P;

BEGIN

XREF PROC Q;

COMMON PARAMS BEGIN
ITEM 11, I2;
ITEM R3 R;
END

11=A[1];
12=10;
R3=17.4;
Q;

END # PROC P #
TERM

PROC Q;

BEGIN

COMMON PARAMS BEGIN
ITEM I1, I2;
ITEM R3 R;
END

FOR I=0 STEP I1 UNTILI2 DO...
END # PROC Q #
TERM

Figure 3-10. COMMON Declaration Example

EXTERNAL DECLARATIONS
AND REFERENCES

Any of the following SYMPL entities can be declared and
referenced in separately compiled subprograms:

Scalar

Array

3-5

Based array
Label
Switeh
Function

Procedure

The two SYMPL reserved words used for externals are:

XDEF Used in the declaring program to define the
entity. This declaration generates an entry
point that can be used by the loader.

XREF Used in the referencing program. This decla-
ration generates an external reference to the
- entity. Use of XREF implies that the entity

has been defined in another program.

XDEF and XREF are analogous to the COMPASS pseudo-
instructions ENTRY and EXT, respectively. They are not
analogous to FORTRAN Extended EXTERNAL statements.

DEFINING EXTERNALS

Storage is allocated for all entities declared with XDEF, just
as if they did not have the XDEF designation. The
declaration. for an external definition of a scalar array,
based array, or switeh is simply the normal declaration
preceded by the reserved word XDEF, as shown by the two
examples in figure 3-11.

XDEF ITEM NAME C(7), MSGNUM [;

XDEF BEGIN
ITEM NAME C(7), MSGNUM I;
ARRAY [SIZE]; ITEM AA;
SWITCH AUTOMAT DIGIT, LETTER, POINT,
TEN, MARKS;
END

Figure 3-11. XDEF Declaration Example

When a funection, procedure, or label is declared to be
external, however, the XDEF indicator is separate from the
normal declaration. These three entities must be identified
in two declarations:

The declaration appears in its normal format.
The XDEF indicator formats are:

XDEF PROC procname;

XDEF FUNC funcname;

XDEF LABEL labelname;

When more than one name is declared they must be
contained in a compound statement. For example:

XDEF
BEGIN
PROC PRGMA;
PROC PRGMB;
END

The external declaration can appear anywhere within the
scope of the corresponding name. XDEF is implieit in the
outermost subprogram of a module and all its alternate
entry points. Outermost entities should not be specifically
declared external.

REFERENCING EXTERNALS

When a program references an entity that is defined and
allocated storage in a separately compiled program, the
referencing program must contain a declaration that states
allocation exists elsewhere. No storage is allocated for an

- entity declared by XREF. The form of the declaration is

affected by the kind of entity, but all such declarations
begin with the reserved word XREF.

The declaration for a scalar, array, or label is simply the full
declaration preceded by the word XREF, as shown by the
two examples in figure 3-12. The declaration for a switch is
XREF followed by SWITCH and the switch name, without
the list of labels. For example:

XREF SWITCH ACTION;

XREF ITEM NAME C(7), MSGNUM I;

XREF BASED ARRAY SIZE;
BEGIN
ITEM LFN C(0,0,7);
ITEM CS(0,41,18);

END

Figure 3-12. XREF Declaration Example

The declaration for a procedure is XREF followed by PROC
and the procedure name. No parameters accompany the
procedure name. For example:

XREF PROC Q;

The declaration for a function is XREF followed by FUNC
and the function name and type. The function declaration
must appear before the function is referenced. For
example:

XREF FUNC SEARCH B;
IF SEARCH(FET) THEN GOTQ ACTION[I]

The XREF declaration ean take the form of a compound
statement, as shown in figure 3-13. XDEF declarations can
appear anywhere within the corresponding program. Except
for procedures and labels, however, they must appear before
they are referenced. All entities declared with XREF must
have a corresponding entry point generated by an appro-
priate XDEF declaration or by being the outermost subpro-
gram name in a module.

XREF BEGIN
ITEM DATE C(8), TIME R;
ARRAY FET;
-FUNC SUCC B;
END

Figure 3-13. XREF Declaration as a
Compound Statement

60499800 A

DATA DECLARATIONS 4

Data in a SYMPL program can be classified in terms of
structure, type, or use.

Data structure is described by the terms sealar and array:

A scalar is a single element that occupies at least one
full word of storage. A scalar is defined by an ITEM
declaration.

An array is an arrangement of elements. An array is
defined by an ARRAY declaration followed by either an
ITEM declaration or a eompound statement containing
ITEM declarations. These ITEM declarations define
elements within the array.

Data type is deseribed by the terms integer, unsigned
integer, real, status, character, and Boolean:

Integer, " unsigned integer, and real data represent
numbers in a form suitable for arithmetie. Such data is
defined by a constant in an appropriate format or by an
ITEM declaration with data type I, U, and R.

Status data is a variation of integer data in which the
compiler substitutes integer values with names in a list.
A STATUS declaration is required when data type S is
specified in a declaration for a scalar or array item.

Character data is display code representation. Such
data is defined by a constant in an appropriate format
- or by an ITEM declaration with data type C.

Boolean data can take on only the values TRUE and
FALSE. Such data is defined by the constants TRUE
and FALSE or by an ITEM declaration with data type B.

Data use is deseribed by the terms arithmetic and Boolean:

Arithmetic data used in arithmetic expressions can be
any type except Boolean.

Boolean data is used only in Boolean expressions.
Boolean type is considered nonarithmetic.

CONSTANTS

SYMPL has five types of constants. Real, integer, status,
and character data can be used in arithmetic expressions;
Boolean constants can be used only in Boolean expressions.
All types of constants can be used to preset a scalar or array
item.

REAL CONSTANTS

Real constants are rarely used in system programming.
They renresent a numeric value containing a decimal point
and are written in standard scientific notation with a string
of decimal digits 0 through 9, a required decimal point, and
optional sign. Optionally, a real constant can be written in

60499800 A

exponential form with the characteristic and mantissa
separated by the letter E. No embedded blanks are allowed.
Examples of real constants are:

45. 0.0
98.9 6.4E+4
4 31.415E-01

INTEGER CONSTANTS

Integer constants represent either a numeric value or a bit
pattern. They can take the form of a decimal constant, an
octal constant, or a hexadecimal constant.

The size of any integer constant is limited by the amount of
storage allocated for it. Constants to be preset in an item
are limited to item size. Only character type data ean cross
word boundaries. Constants used in expressions can be one
word in size.

Decimal Constants
Decimal constants represent numeric values without a

decimal point; a preceding sign is optional. They are
expressed as:

decimal-integer

Decimal-integer must be a string of decimal digits 0
through 9, with no embedded blanks.

Examples of decimal integers are:

6 -24 4096

Octal Constants

Octal constants represent bit patterns, with each digit in the
constant establishing 3 bits. They are expressed as:

O"octal-integer"

Octal-integer must be a string of octal digits 0 through
7; embedded blanks are ignored.

Exarhples of octal constants:

Octal Constant Resulting Bit Pattern

o 111111111

ona2" 010010

Hexadecimal Constants
Hexadecimal constants represent bit patterns, with each

digit in the constant establishing 4 bits. They are expressed
as:

X"hex-integer"
Hex-integer must be a string of 1 through 15 hexa-

decimal digits 0 through 9 and A through F; embedded
blanks are ignored. '

Examples of hexadecimal constants are:

Hexadecimal Constant Resulting Bit Pattern

X"EF" 1111

X"4BC" 010010111100

STATUS CONSTANTS

A status constant is a mnemonic for an integer that is set at
compilation time by a STATUS declaration. @A status
constant has meaning only in conjunction with the STATUS
declaration which contains the status name and status-
values. A status constant is represented internally in the
same way as a U data type item. Status constants are
expressed as:

S"status-value”
Status-value is the name established by a STATUS
declaration. Blanks are not permitted between S and

the status-value; they cannot be embedded within a
status-value.

Examples of status constants, assuming a STATUS COLOR
RED,ORANGE,YELLOW declaration, are:

Status Constant Value Cbmpiled
S"RED" 0

S"YELLOW" 2

CHARACTER CONSTANTS

Character constants represent alphanumeric data with each
character in the string representing 6-bit display code. They
are expressed as:

"character-string"
Character-string must be a string of any characters
from the computer character set. Maximum number of
characters is 240. Any character " in the string must be
expressed as " ".

Examples of character constants are:

"THIS IS A CHARACTER CONSTANT WITH
NON-SYMPL CHARACTERS %% "

"THIS ONE" "S TRICKY"

BOOLEAN CONSTANTS

Boolean constants represent the values TRUE and FALSE.
They can be used only with Boolean expressions or items
declared data type B. They are expressed as:

TRUE

FALSE

SCALAR DECLARATION

The ITEM declaration defines a scalar.. SYMPL scalars are
similar to FORTRAN variables, but they differ in several
respects. In SYMPL:)

Every scalar must be explicitly declared, including
those used as DO loop variables.

The scalar declaration must appear before the first
reference to the scalar. .

No implicit characteristics are attached to scalar
names.

Values can be preset in the scalar definition.
ITEM DECLARATION FORMAT
FOR SCALARS

The format of a scalar declaration is:

ITEM name type = constant;

name Any identifier of 1 through 12 letters, $,
or digits beginning with a letter or $.

type Data type; if omitted, I is assumed.
I Integer in which the leftmost bit

is. used for the sign and the
remaining 59 bits represent the
binary value. The compiler
allocates a full word for an
integer scalar.)

U Unsigned integer in which all bits
are used to represent the value.
The compiler allocates a full
word for an unsigned integer
scalar.

R Real in which data appears in the
single - precision floating-point
format standard for CYBER 170
systems.

C(igth) Character in which data appears
in standard 6-bit display code
format with 10 characters to a
word. The compiler allocates as
many words as necessary for the
character string; characters in
the string are left-justified in
the words. The character string .
length must be specified. It is a
decimal integer constant of 1
through 240.

60499800 A

B Boolean in which data appears as
zeros or ones. The compiler
allocates a full word for each
Boolean scalar.

S:stlist Status in which data appears as a
small integer value assigned by
the compiler from the positions
of identifiers in list declared by
a STATUS declaration. The
compiler allocates a full word
for each status scalar.

constant Initial value of scalar to be preset at load
time. Format of constant should be
appropriate for the data type.

PRESET CONSTANT VALUES

A preset value can be assigned to a scalar at load time. The
format of the constants are:

ITor U Integer constant in decimal, octal, or hexa-

decimal form.
Real constant with a decimal point.
Character constant in the form "string".

Boolean constant TRUE or FALSE.

w w QO =

Status constant in the form S"status-value".

Preset constant values are stored as presented by the
constant form in the ITEM declaration, whether or not the
constant agrees with the type specified. SYMPL neither
converts nor checks for agreement between the type
parameter and the preset value.

Constants preset by ITEM declarations are similar to those
set by DATA statements in FORTRAN in that they are
initial values only. During execution the value of a preset
item can be changed, and once changed, it does not revert to
its preset value even if the procedure that set it is called
several times. TFor example, if the procedure shown in
figure 4-1 is called three times, the output values of I are 1,
2, and 3, assuming OUTPUT is declared externally.

PROC P;

BEGIN
ITEM I=0;
I=1+1;
OUTPUT (I);

END#P #

~ Figure 4-1. Preset Constant Value Example

CONTRACTED ITEM DECLARATION
FORMAT

A second ITEM declaration format allows more than one
scalar to be declared.

ITEM name type=constant, name type=constant, .. .;

Each name and type pair is independent of any other pair.
Syntax is the same as described above.

60499800 A

EXAMPLES OF SCALAR DECLARATIONS

1.

These examples show sealars without preset values:
ITEM I;

Integer scalar assumed for identifierI in the
absence of a specified type parameter.

ITEM OPERAND B;
Boolean scalar.
ITEM NAME C(7);

Character scalar with string of 7 characters.

Scalars can be written in contracted form:
ITEM I, OPERAND B, NAME C(7);
Equivalent to example 1.
ITEM A, B, CR;
Equivalent to ITEM A I; ITEM B I; ITEM C R; Itis
not equivalent to ITEM A R; ITEM B R; ITEM C R;
Examples of scalars with preset values appropriate fdr
the data type:
ITEM NUM U=0;

Unsigned integer scalar with 60 bits used as value.

"ITEM TOTAL=0;

Integer scalar with rightmost 59 bits used as value
and leftmost bit as + sign.

ITEM FIRST B=TRUE;
Boolean scalar with the value 1 in a 60-bit word.
ITEM MESSAGE C(15)= "COMPILER ABORTS";

Character scalar with COMPILER A in first word
and BORTS with trailing blank fjll in seecond word.

ITEM MASK12 U=0"0101";
Unsigned integer scalar creating bits 000001000001

at the rightmost end of the word.

Examples of scalars with preset values that do not
correspond to the data type. Presets use the constant
specified, even if it does not agree with the type
declared:) -

ITEM ONE R=1;

Stored as 0. . .
format.

. .01, not normalized floating point

ITEM SILLY I=FALSE;

Stored as all 0 bits.

ARRAY DECLARATION

An array is an ordered set of entries defined by two
consecutive declarations:

An array header that establishes the size and structure
of the array.

A single ITEM,_ declaration that deseribes the fields of
the array. If more than one array item is declared, the
declarations can appear between BEGIN and END.

Allocation of storage for én array depends on the array
header:

An ARRAY declaration results in allocation-of storage.

A BASED ARRAY declaration does not result in storage
allocation for the array. Rather, it defines a structure
that is to be superimposed over storage allocated
elsewhere in the program and allocates one word to
contain the pointer. Based arrays are described in
section 5.

SYMPL arrays differ from FORTRAN arrays in several
respects. In FORTRAN, an array has a name by which all
elements in the array are known. Individual elements, which
must be one word in length, are referenced by a subseript
written in enclosing parentheses. FORTRAN numbers each
dimension of the array starting with 1 and limits the number
of dimensions to three.

In contrast to FORTRAN, an array in SYMPL need not have
a name. Elements, which need not be all the same length
and can contain more than one word, are referenced by their
array item name, not the array name itself. Subscripts to an
array item name are written in enclosing brackets. The
number of dimensions in an array is limited to seven; each
dimension can have a programmer-supplied upper bound and
lower bound.

SYMPL offers many capabilities for array declaration that
are not available in FORTRAN. These include:

Specifying bounds of a dimension with negative values,
as in:

ARRAY [-10:-3];

Specifying array elements less than one word in size, as
in:

ARRAY[4]; ITEM A C(5), B U(0,30,3);

Specifying array elements more than one word in size,
as in:

ARRAY[4]; ITEM D C(46);
Presetting values in the array elements, as in:
ARRAY[4]; ITEM NUMS=(1,2,3,4,5];

Specifying storage structure for multiword elements, as
in:

ARRAYI(4] S(2);

Although arrays can have up to seven dimensions, system
programming generally does not require multidimension
structures. (The multiword element capabilities of SYMPL
and its serial-versus-parallel storage structures allow results
that might require more than one dimension in other
languages.) Consequently, the following material deals

4-4

mostly with single dimension arrays. See the SYMPL
Reference Manual for a description of multidimensional
arrays. - 4

The complete format for an array declaration is shown here
for reference only. Section 6 presents arrays in a tutorial
manner.

ARRAY name [low:up,low:up,. . .] structure (size);

name Identifier naming the array.

low Lower bound of a dimension of the
array.

up Upper bound of a dimension beginning
at low.

structure Structure of the array, P (parallel) or
S (serial).

size Number of words required to hold one

entry of the array.

SCOPE OF DECLARATIONS

An item declared within a subprogram is valid only within
that subprogram and subprograms nested within it. State-
ments outside the declaring subprogram cannot reference
that item by name. An item declared within a nested
subprogram is valid only within that subprogram and any
subprogram nested within it.

An item referenced only within the subprogram in which it is
declared is called a local identifier. The compiler always
allocates space for a local identifier. An item declared in
one subprogram and referenced in a nested subprogram is
called a global identifier.

Figure 4-2 illustrates local and global identifiers. In the
procedure SUBPROG:

Identifiers for items D and E are local to procedure P.
They are global identifiers for procedure R which is
nested within procedure P. They are unknown outside
procedure P.

Identifiers for items F, G, H, and I are local to
procedure Q. They are unknown outside procedure Q.

Identifiers for items A, B, and C are local to procedure
SUBPROG. They are valid anywhere in the body of
SUBPROG. Therefore; A, B, and C are global identi-
fiers for procedure P, procedure R, and procedure Q.

The statement D=A+B is valid within the body of
procedure R. Within procedure Q, however, the same
statement is invalid since D is unknown outside pro-
cedure P.

Procedure R cannot be called at anyk point marked
#NO#.

If an item declared in a nested subprogram has the same
name as a global identifier, the compiler allocates space for
both identified sealars or arrays. The innermost declaration
is valid only in the procedure in which it is declared. In case
of conflict, the innermost declaration always has prece-
dence. Consequently, two declarations can specify different
types of data for the same identifier.

60499800 A

PROC SUBPROG;
BEGIN
ITEM A, B, C; ...

PROC P; h
BEGIN
ITEMD, E; ...

PROC R;
BEGIN } Proce-

D=A + B; Proce- -dure P

dure R

END #R#
END #P# . /
#NO#
PROC Q;
BEGIN
ITEM F, G;
ITEM H, ; Proce-

#NO# * dure Q

END #Q#
#NO#
END # SUBPROG #

legal. The integer identifier VAR is valid anywhere in
SUBPR except within procedure P. Since the two items,
VAR, are in no way connected, good programming practice
would be to give them unique names. In light of the systems
nature of most SYMPL programs, it is also good program-
ming practice to limit the use of global identifiers.

The subprogram in which an identifier is declared establishes
the scope of declaration; the mere presence of a
BEGIN ... END sequence does not. BEGIN and END in
compound statements such as FOR and IF do not affeet the
scope of an identifier.

Figure 4-2. Local and Global Identifiers

In the example shown in figure 4-3, VAR is declared twice in
procedure SUBPR. Since the innermost declaration has
precedence, VAR in the body of procedure P is a local
identifier of type Boolean and the statement VAR=TRUE is

60499800 A

PROC SUBPR;
BEGIN
ITEM VAR I;

PROC P;
BEGIN
ITEM VAR B;

.

-

VAR=TRUE;
END #P#

.

VAR=1;

END #SUBPR#

Figure 4-3. Duplicate Name Item Declarations

SYMPL FEATURES 5

This section presents some of the declarations and state-
ments that give SYMPL its power. These include:

DEF Declaration

References character strings by name for char-
acter string substitution during compilation.

SWITCH Declaration
Declares labels for a computed GOTO capability.
STATUS Deeclaration

Declares identifiers with implicit integer values for
symbolie reference.

BASED ARRAY Declaration

Declares an array structure to be superimposed
over data allocated elsewhere in program.

LOC Funetion
References addresses of other program entities.
Bead Functions

References part of a string of e¢haracters or bits.

DEF DECLARATION

The DEF declaration is a compiler-directing statement that
allows a character string to be referenced symbolically in a
program. The DEF declaration defines a name and a
character-string to be substituted for subsequent ocecur-
rences of the name. The character-string, or DEF body, can
be as simple as an integer constant for a DEF name used in
array dimension syntax; or it can be a complete executable
statement or part of such a statement.

The DEF declaration has two forms:

A DEF name without a formal parameter list resembles
the COMPASS assembly language MICRO pseudo-
instruction that allows symbolic reference to a char-
acter string (in SYMPL, micro delimiters are not used
with miero references, however).

" A DEF name accompanied by a formal parameter list
resembles the COMPASS macro facility and FORTRAN
statement function facility in which actual parameters
are substituted for formal parameters when the DEF
name is referenced.

During compilation, the character-string is substituted for
occurrences of the DEF name. No computation takes place
as a result of the substitution; a DEF name of ABC and a
body of 3+2 results in the three characters 3+2 in place of
ABC, not the single character 5.

60499800 A

Among the common uses of DEF are:

Improving program readability by allowing illegal words
in the source listing. To allow a source statement such
as IF A=0 THEN CALL ERROROUTINE:

DEF CALL # #;

Improving program execution speed by allowing in-line
function code rather than the return jump execution of
normal funetion calls:

DEF MODULO(X,N) #(X)-(X)/(N)*(N)#;
RANK=MODULO(LENGTH,10);
expands as RANK=(LENGTH)-(LENGTH)/(10)*(10);

Improving program maintainability by defining limit
sizes that can be updated by future DEF changes:

DEF ENTRYLENGTH #3#;
ARRAY TBL[2] P(ENTRYLENGTH);

DEF cannot be used to redefine an identifier defined in an
ITEM, ARRAY, or COMMON declaration:

ITEM ONE; DEF ONE #TWO#; produces ERROR nn

Further, DEF cannot be used to redefine the characters that
serve to identify SYMPL syntax. Character substitution
does not oceur for the following characters used in the
context of a syntax descriptor:

B,C,LR,S,U,E,0,X,P

Substitution does occur when one of these characters is used
as an identifier, nevertheless:

DEF C #NEW#;
ITEM ONE C(6); A=B + C;
expands as ITEM ONE C(6); A=B + NEW;

Similarly, DEF S #Q#; has no effeet on a subsequent
statement such as IF Z EQ S"SIZE". Substitution does not
take place within a comment or within a character-string
constant.

Any DEF declaration is effective only within the procedure
or funetion in which it is declared, and it is effective only
after the declaration appears. If a DEF name is redefined
within a subprogram it does not affect the definition in an -
outer program. When the same DEF name is used again
after leaving the subprogram, the DEF declaration in the
outer program is effective.

DEF WITHOUT PARAMETERS

A DEF declaration without parameters produces straight-
forward expansion. The DEF format is:

~ DEF name #character-string#;

name Any valid identifier by which the
character-string is to be referenced.

5-1

character- DEF body that is to replace the DEF name

string during DEF expansion. From 1 to 240
characters can be used. The character #
must appear as ##.

A space, but not a comment, can appear between the DEF
name and the character-string.

The DEF body can contain another DEF name, as long as the

definitions are not recursive or ecireular. The compiler =~~~

checks for a single level of recursiveness only. Recursive-
ness obtained by nesting produces infinite loops.

DEF WITH PARAMETERS

A DEF declaration with parameters produces parameter
name substitution during the expansion of the DEF body.
The format for DEF with parameters is the same as without
parameters, with the addition of a parameter list:

DEF name (param,param, . . .) #character-string#;

param Formal parameter to be replaced by an actual
parameter during DEF expansion. Must dupli-
cate at least one identifier within the DEF
body. If more than one parameter is used,
they must be separated by commas.

If the number of actual parameters exceeds the number of
formal parameters in the DEF declaration, a fatal error
condition exists and expansion is suppressed. Expansion does
occur, however, when the number of actual parameters is
less than the number of formal parameters. The formal
parameters without corresponding actual parameters are
removed and nothing is inserted in those places. Debugging
can be difficult when the number of formal parameters
differs from the number of actual parameters.

During compilation, the formal parameter names within the
DEF body are replaced by actual. parameter names. For
example, assume the following DEF declaration:

DEF RESET (A,N) #FOR 1=0 STEP 1
UNTIL N DO A[l]=0;#;

A reference RESET(T,64) produces:
FOR 1=0 STEP 1 UNTIL 64 DO T[I1]=0;
A DEF parameter is not recognized within a comment or a
constant string. For example, assume the following DEF
declaration:
DEF RESET (A,N) # ##SET A[2] TO "N" ## A[2]="N" #;
A reference RESET(T,64) produces:
#SET A[2] TO "N" # T[2]="N";
Expansion occurs in all other contexts except as a declara-
tion name or within # or " pairs. For example, assume
the following DEF declaration:
DEF PART (A,B,C,D) #C<A,B> C[D] =" "#;

A reference PART(W, X, Y, Z) produces the meaning-
less syntax:

Y<W,X>Y[Z] =" "

Often, parentheses should be used within the DEF body to
achieve correct results. For example, assume the following
DEF declaration:

DEF MODULO(X,N) #X~X/N*N#;

A reference Y=3*MODULO(13+2, 6+2) produces:

Y=3*%13+2-13-2/6+2*%6+2; and subsequent evaluation
agyeig, o OeEdielll cyataton

Yet DEF MODULO(X,N) #(X-(X)/(N)*(N))#; with the
same reference produces:

Y=3*(13+2-(13+2)/(6+2)*(6+2)); and
evaluation as Y=21.

subsequent

Actual parameters must be separated by commas. The
compiler recognizes parameters by balancing pairs of delim-
iters: (), < >, and []. New parameters are not recognized
within pairs of # delimiters, however. Consequently, any
actual parameter that contains a comma, semicolon, right
parenthesis, or an unbalanced (,), <,>, or [,], should be
delimited by pairs of # marks.

The delimiting # are suppressed during expansion. For
example:

All the following are valid as actual parameters:
F(L,N)
P((A+B)/C)
C<MODULO(N,64),J>T[K,L]
*T{K,L]"

Each of the following, however, must be within # pairs
if they are to be used as actual parameters:

2,BYTPW must be #2,BYTPW#
A=B; C=D; must be #A=B; C=D;#
C< must be #C<#

A comment can be passed as an actual parameter if the
comment is enclosed by double # marks, as in:

DEF THREE(A,B,C) #A; BC; #
THREE(X=Y, ##SET Z TO X##, Z=X);
expands as X=Y; #SET Z TO X# Z=X;

A consecutive set of commas in an actual parameter string
is valid to indicate an empty actual parameter, as in:

DEF THREE(A,B,C) #A; BC; #
THREE(X=Y, , Z=X);
expands as X=Y; Z=X;

SWITCH STATEMENT

A switeh is a SYMPL concept that is similar to the
computed GO TO statement of FORTRAN. The label to
which control branches depends on the value of an expres-
sion at the time the GOTO executes. SYMPL has neither
the assigned GO TO statement of FORTRAN nor the CASE
statement of ALGOL.

60499800 A

The SWITCH declaration defines a named list of labels. The
compiler associates the first label in the list with unsigned
integer value 0, the second label is associated with 1, and so
forth, through the list.

The SWITCH declaration is:
SWITCH swname label, label, ... ;

swname Identifier specifying the name of the
switeh.
label Identifiers of labels to be associated with

the list. Labels in the list need not have
been previously declared. A label identi-
fier can duplicate identifiers in other
lists. - Null positions in the list can be
indicated by consecutive @ commas.
Another switeh name cannot appear in the
list.

The switch name can be used only in a GOTO statement. It
cannot be used in P functions or as a parameter for a
function or procedure.

GOTO format is:
GOTO swname [arithmetie expression];

When GOTO executes, the expression is evaluated; control
then transfers to the label whose value is equal to the value
of the expression:

In the following, control transfers to label LDN when 3
is the value of I:

SWITCH DEVELOP TTO, ARH, SVL, LDN;
GOTO DEVELOP [I];

If evaluation of the expression in the GOTO statement
produces a result that is beyond the values associated with
the switeh, execution results are unpredictable. Switch
limit checking can be activated by the C parameter of the
compiler call. When C is selected, an out-of-bounds
reference results in a diagnostic message and execution
aborts.

Within the SYMPL compiler, switches are implemented as
sequential jumps. Normally, one element appears in each
half of the word. Less space is consumed, but execution
time is increased when switch packing is selected. Both the
D parameter of the compiler call and the CONTROL PACK
compiler-directing statement cause switches to be packed.

In the example in figure 5-1, the jump veector was ecompiled
when neither the D nor the C option was selected for a

declaration of SWITCH EVEN ZERO,,TWO,FOUR. With this

declaration, an evaluation of I with a value of 1 creates an
infinite loop.

EVEN JP ZERO
- JP ZERO
+ JP *

- JP *

+ JpP TWO
- Jp TWO
+ JpP FOUR
- JP FOUR

Figure 5-1. SWITCH Declaration Compilation

60499800 A

STATUS STATEMENT

STATUS is one of the more powerful concepts of SYMPL.
The functions of STATUS can be duplicated by other
programming techniques using integer values, but the simpli-
fication in programming, improvement in documentation,
and advantages for program maintenance cannot be dupli-
cated. STATUS is particularly useful in decision table and
syntax analysis situations. Good programming practices call
for use of STATUS whenever a set of variables is to be
associated with small integer values.

STATUS is a compile-time concept similar to the EQU
pseudo instruction of COMPASS. No memory is assigned to
the_status list mnemonies during execution.

The STATUS declaration defines a named list of mnemonies.
The compiler associates the first mnemonic in the list with
the unsigned integer value 0, the second mnemonie is
associated with 1, and so forth, through the list. All items
in the list always are referenced mnemonically.

‘The STATUS declaration format is:
STATUS stlist status-value, status-value, ... ;

stlist Name by which entire list is known, called a
status list name.

status- Identifiers to be associated with the list. An

value identifier cannot be duplicated within a list.
Unlike other program identifiers, however,
they can duplicate the name of an identifier in
any other status list or in the program, or even
duplicate reserved word.

The following are equivalent:
ITEM A=3;

STATUS NUM ZERO, ONE, TWO, THREE;
ITEM A S:NUM=S"THREE";

STATUS-VALUE REFERENCES

Status-values can be referenced in several forms, depending
on the needs of a program:

A status function is used in all'contexts in which the list
and value must be associated.

A status constant is used in contexts in which the status
list name is not ambiguous.

A status item provides convenienece in referencing a
~ scalar or array item that always takes status constant
- valuds. Ty Lvays taxs X > >

A status switch is a SWITCH statement in which the
switch name is associated with a status list and each
label is associated with a status-value.

Status Function

A status function is actually a constant. It ean be used
anywhere in a program in which an integer constant can be
specified, including array bounds specification and item
presetting. Format is:

stlist "status-value"

During compilation the function is replaced by the appro-
priate value:

In the following statements, code generated during
compilation presets item WHICH to the unsigned
integer value 2 and assigns X=0:

STATUS KIND DOG, CAT, BIRD;
ITEM WHICH I=KIND"BIRD";
X=KIND"DOG";

Status Constant

A status constant is a shortened form for a status function.
The format for a status eonstant, as defined in section 4, is:

S"status-value"

Because status-values are not required to be unique, the
compiler must have some way to relate a status-value to the
appropriate status list. This can be done by presetting the
list name in an ITEM declaration, as in:

STATUS CLR RED, GREEN, GREY;
ITEM SHADE S:CLR;
IF SHADE EQ S"GREEN". ...

where CLR is the list name and GREEN is the status-
value being referenced.

A status constant can be used as loop control in FOR
statements if the induction variable item has a status type.
In expressions, the use of a status function or status
constant is not restricted. If their meanings are not obvious,
however, programming comments should be used
extensively.

Status ltem

If a sealar or array item usually contains a value from a
particular status list, it should be defined as a status item.
When this scalar or array is used in an expression with a
status-value, a status constant can be used instead of a
status function.

A status item is declared by a data type of:
S:stlist

Any place ITEM name U can appear in a declaration, the
following ean appear:

ITEM name S:stlist

Once an item of data type status is declared, status-values
from the named list can be specified as status constants
rather than the status functions that would otherwise be
required. For example:

STATUS BULK ROBIN, OWL, EAGLE;
ITEM INCHES S:BULK;

ITEM WEIGHT U;

INCHES=S"OWL";

Without the status data type declaration for INCHES,
the last statement must appear as:

INCHES=BULK"OWL";

5-4

With only the above declarations, INCHES=S"HAWK"
produces a compilation error since HAWK is not a
status-value from the list BULK.

Further, a statement such as WEIGHT=S"ROBIN"
produces an error since WEIGHT is not a status item
with RQBIN as a status-value.

A status item and status constant can be combined to preset
an integer value. In the following example PAGE is set to 2:

STATUS SP NO, SGL, DBL, TPL;
ITEM PAGE S:SP=S"DBL";

Status items are not limited to status-values. Good
programming practice, however, prohibits usage such as
assigning a status-value to a status item for which it was not
originally defined. '

STATUS SWITCH

A status switeh is a form of the SWITCH statement. Format
is:

SWITCH swname:stlist label:status-value, label:status-
value, ...;

swname Switeh name

stlist Name of status list previously defined in a
STATUS declaration

label Name of label

status- Status-value from status list stlist that is

value to be associated with the preceding label

Figure 5-2 is an example of status switch use. Depending on
whether NAME is alphabetic (has a display code less
than 33), numeric (has a display code less than 45), or
neither, NEXTCHAR is set to a certain status-value. At the
end of their common processing, control transfers to the
switeh AUTO. If NAME is alphabetic, NEXTCHAR is set to
status-value LETTER which is associated with label ALPHA,
and control transfers to processing at label ALPHA. Control
transfers in the same manner to NUMB if NAME is numerie,
or to MARK if it is neither.

Label:status-value pairs can appear in any order. Not all
status-values need be referenced in the switch. The same
status-value can appear with different labels, and the same
label can appear with more than one status-value.
Figure 5-3 shows two examples of valid switch declarations.

EXAMPLES OF STATUS USE

The example in figure 5-4 declares status lists SOP and
CLASS, which are sets of operators, with related status
items initialized, respectively, to the last and first status
values of the related list. The unnamed array has one
element for mnemonie of status list SOP. Each array
element is preset to a value that indicates whether it is an
arithmetic operator, relative operator, or an error.

The following IF statement determines whether or not code
at level EXP should be executed by comparing the value of a
current element of CLASS with the value of a status
constant acceptable for arithmetic operators:

IF CLASS [OP]=S "ARITH" THEN GOTO EXP;

60499800 A

STATUS CHAR LTR, DIGIT, OTHERS;

ITEM NEXTCHAR S:CHAR;

SWITCH AUTO:CHAR ALPHA:LTR,
NUMB:DIGIT,
MARK:OTHERS;

ITEM NAME;

IF NAME LS 33

THEN NEXTCHAR=S"LTR";

ELSE IF NAME LS 45
THEN NEXTCHAR=S"DIGIT";
ELSE NEXTCHAR=S"OTHERS";

GOTO AUTO[NEXTCHAR];

.

ALPHA:
NUMB:

MARK:

Figure 5-2. Status Switch Example

STATUS CHAR LTR, DIGIT, OTHERS;

SWITCH LOOP:CHAR LOOPA DIGIT,
LOOPB LTR,
LOOPB OTHERS;

STATUS CHAR LTR, DIGIT, OTHERS;

SWITCH LOOP:CHAR LOOPA DIGIT,
LOOPBR DIGIT,
LOOPC OTHERS,
LOOPD LTR;

Figure 5-3. Valid Status Switch Declarations

Status constants can be used also as the loop control of a
FOR statement, assuming an array TAB:

FOR OP=0 STEP 1 UNTIL S"SOP" DO
TAB [CLASS [OP]]=TRUE;

Adding a new operator to the status list SOP in the example
in figure 5-4 entails changing the STATUS declaration and
adding a new element to CLASS:

STATUS SOP PLUS, MINUS, EQ, GR, LS, SOP;
S"REL", #GREATER THAN#

The IF and FOR statements in the example are not affected
by the addition of the new operator. The addition was
accomplished even though no empty array element was left
for growth.

BASED ARRAY DECLARATION
AND P FUNCTION

A based array is a structure for which no storage is
allocated by the compiler. All references to items within a
based array are compiled relative to the contents of its
array pointer. The array pointer must be set explicitly
within the program through use of the P function. Usually,
the P function, for which one word is allocated, is assigned a
value as the result of the LOC function reference to an
array for which storage has been allocated.

In concept, a based array is a structure that can be
superimposed over any portion of memory. By changing the
pointer, the structure can be moved. to various parts of
memory. Based arrays in SYMPL (which have no similarities
in COMPASS, FORTRAN, COBOL, or PL/I) provide flexi-
bility for dealing with system programming conecepts.

The declaration for a based array is the same as for a fixed
array, except a name is required and preset values are not
relevant:

BASED ARRAY name structure(size); item description;

name " Required name of array.

structure Indication of parallel or serial (P or S)
structure of multiword entries. Default
is P.

size Number of words in each entry. Default
is 1.

item Description of entry in array, as deseribed

deseription in seetion 4.

Several based arrays can be declared in a format:

STATUS SOP PLUS, MINUS, EQ, LS, SOP;
STATUS CLASS BAD, ARITH, REL, COMP;
ITEM OP S:SOP=S"SOP"; END
ITEM KLASS S:CLASS=S"BAD";
ARRAY [SOP "SOP"};

BASED BEGIN ARRAY name...;
ARRAY name...;

The array- dimensions can, but need not, be part of the

ITEM CLASS S:CLASS = [S"ARITH", # PLUS i# BASED ARRAY declaration. If the subseripts of the based
) S"ARITH", # MINUS 1# array and the array it is to be superimposed on need to be
S"REL", # EQUAL 2# the same, the first element of a based array should

S"R EL" s
S"BAD"];

#LESS THAN 2#
ERROR 0#

correspond to the first element of the fixed array. SYMPL
adjusts each array item reference at the time it is
referenced, not at the time of the pointer setting.
Accessing a based array item is slower than accessing a
normal array item.

Figure 5-4. Preset Status Values Example

60499800 A 5-5

The pointer to the based array must be given a value through
the P function. A P funection is the name of the internal
variable that contains the array pointer. It can be used the
same as any variable.

The format is:
P<based array name> = arithmetic expression;

based array Name declared in BASED ARRAY decla-
name ration.

Arithmetic expression whose evaluation
results in an address. Can be a LOC
function, constant, or other expression.

arithmetie
expression

On a word-addressable CYBER 70 or CYBER 170 system,
any location in the program field length can be accessed as a
subseripted word of a based array by:

BASED ARRAY ANY; ITEM X;
P<ANY>=0;
X[nl=...

The eombined use of the BASED ARRAY declaration and the
P function is illustrated in figure 5-5. The example assumes
a file information table is allocated storage in procedure R.
Procedure Q is to manipulate a file information table, with
the array containing the file information table being passed
as a parameter to Q. A reference to LFN[0]="MYFILE" in
figure 5-5 sets the characters MYFILE in the first word of
array FITNAME.

PROC Q(FITNAME);
BEGIN
XREF ARRAY FITNAME;
BASED ARRAY ALLFITS S(17);
ITEM LFN C(0,0,7),
RL K1,0,24),
MRL 1(6,0,24);

.

P<ALLFITS> = LOC(FITNAME);

.
.

.

END

Figure 5-5. P Function Example

To superimpose the FIT structure on location 1000 octal in
figure 5-5:

P<ALLFITS> = 0"1000";

The P funetion can be used to represent the based array
pointer variable in an expression. For example:

Assume the value of P<FIT> has been set to location
1000 octal. To move the based array structure 1000
octal words in memory:

P<FIT> = P<FIT> + 0"1000";

A reference to LFN[0] in figure 5-5 then accesses
location RA+2000 octal.

A based array can be used as a formal parameter in a
procedure, though it is slow to access. The actual
parameter must be a P function, not a based array name.
This method is useful if the procedure is going to move the
array.

For example, in figure 5-6, assume a based array A is to be
used with the storage to which based array B currently
points. Procedure P manipulates data known as array item.
At the end of the procedure, the pointer to B must be reset
to the pointer of A. Normally, the formal parameter is a
fixed array, and the call passes a based array as an actual
parameter. :

PROC P(B);

BEGIN

BASED ARRAY B; ITEM ...;

BASED ARRAY A; '
BEGIN ITEM . ..

END
P<A> = P;

.P = P<A>;
RETURN;
END

Figure 5-6. Based Array as a Formal Parameter

A based array also is useful when a list is built dynamically
in an area it shares with many kinds of data. For example,
in figure 5-7a, assume a list in which STR points to a
character string and SUC points to the next location in the
string. Procedure ACTION manipulates each element of the
list. The first parameter is the first element of the list; the
second parameter is a procedure name (and consequently
must be identified by FPRC). A call to procedure ACTION
that would result in the printing of all elements of the list is
shown in figure 5-7b. The subseripts can be omitted on STR
and SUC because L has bounds 0:0.

a. PROC ACTION ((FIRST),WHAT);
ITEM FIRST;
FPRC WHAT;
BEGIN ‘
BASED ARRAY L;
ITEM STR C(0,0,7), SUC 1(0,42,18);
ITEM DUMY;
FOR DUMY = DUMY WHILE FIRST NQ 0 DO
BEGIN
P<L> = FIRST;
WHAT (STR);
FIRST=SUC;
END :
END #ACTION#

b. ARRAY HEAP[1:200];...

PROC OUTPUT ((S));
ITEM S C(7);
BEGIN
PRINT("(1H,AT)");
LIST(S);
ENDL;

END #PROC OUTPUT#

ACTION(LOC(HEAPIN]),OUTPUT);

Figure 5-7. Use of a Based Array for Listing

LOC FUNCTION

LOC is an intrinsic function that returns the address of the
actual argument used in the function ecall. The most
common use of LOC is to obtain an address for a based array

60499800 A

pointer, but LOC is not restricted to such use. The value
returned from the function is an address of type I.

The funetion ecall is:
LOC(argument)

argument Can be the name of any of the following:
Scalar

Subscripted array item

Procedure name

Funetion name

Label name

Switch name

Array name with optional subseript

P funetion

When LOC is used with the name of a based array as an
argument, the value returned is the current value of the
pointer, not the address of the pointer. When LOC is used
with a P funection, the address of the pointer word of the
based array is returned. If the argument is an array item,
the value returned is the address of the word where the item
resides within the element.

For example, assume array ILFIT is a file information table
declared in another module. It is aceessed as a based array
FIT with:

XREF ARRAY ILFIT; ITEM LFN C(0,0,10), ... ;
P<FIT>=LOC (ILFIT);

In general, LOC should not be called with the name of a
funetion, procedure, label, or switeh, except perhaps during
debugging. Although an address is returned, that address is
probably not useful since no inferences can be drawn about
the contents of locations surrounding the address returned.
Further, the results from a particular program might not be
reproducible when a different version of the compiler is used
or a different optimization oceurs with the same compiler
version. For instance, with statements L:GOTO M;
GOTO N; in a program, A = LOC(L) returns the address of
label L, but A+l does not reference GOTO N because the
compiler can delete the statement and reorder the physical
locations. Similarly, A = LOC(L+1) has no meaning, although
the compiler does not prohibit such a statement.

One use of LOC is illustrated in figure 5-8. Assume a
COMPASS main program with a 1000 word buffer at tag
BUFFER. The SYMPL subprogram uses the buffer for
writing, accessing the array as an XREF item. The buffer
pointers are on array FET. After the first LOC function,
FIRST points to BUFFER; after the second LOC funection, IN
points to the element BUFFER [CURRENT] ‘which would be
the last word of data written.

PROC WRITE;

BEGIN

XREF ARRAY BUFFER;

ITEM CURRENT;

ARRAY FET; ITEM FIRST IN...,...;

i"‘IRST [0]=LOC (BUFFER);
IN [0]=LOC (BUFFER [CURRENT]);

Figure 5-8. LOC Function Example

'

60499800 A

When file environment tables or other system interfaces are
involved, SYMPL code cannot be used to monitor operating
system activity. Optimization considers such data to be
constant and might remove the tests from loops. See the
SYMPL Reference Manual appendix C for more information.

BEAD FUNCTIONS

ITEM declarations define scalars, full words of arrays, or
partial words of an array. Each time an identifier of an
ITEM declaration is referenced, the entire contents of the
item is accessed. At times, however, only part of an item is

wanted. The bead functions (a bead is one of a string)

provide access to part of an item for the purpose of
extracting the contents of, or storing into, partial words.

In good programming practices, bead functions are used
sparingly, since a program making frequent references to
these functions is hard to maintain. Declaration and use of
an array .with partial-word items is preferable.

The two bead functions are:

C Access specified number of 6-bit bytes as data type
character.

B Access specified number of bits as data type
unsigned integer.

The two functions are not interchangeable; the C function
implies the result is data type C, but the B funetion implies
the result is data type U. The source data type is assumed
to mateh the function, even if it is a different data type
item. For example, the function B<42,18>, not the function
C<7,3>, should be used to access an address in the lower 18
bits of an integer item.

Numbering eonventions, which for the most part are not the
conventions used elsewhere in the operating system, are as
follows:

Characters and bits are numbered from 0, not from 1.

The leftmost bit is numbered 0.

The leftmost character is numbered 0.

Characters are each 6 bits.

If a bead function appears within a larger expression,
SYMPL moves the specified item to a full word, aligning
data as appropriate for its type. Then the result is used in

v the expression or replacement statement.

SYMPL does not check whether the number of beads to be
extracted is within the size of the item. The programmer is
responsible for the use of the function.
Bead functions can be used in the following circumstances:
In place of an item name in an expression, as. in:
IF C<0,5> NAME EQ "INPUT" THEN R=1;
Left side of a replacement statement. Only the beads
specified are affected, with any remaining characters
untouched:

C<9,4> STRING=CS5;

5-7

Right side of a replacement statement. SYMPL
extracts the beads, then converts to the data type of
the left side of the statement:

LFN=C <0,7> FITQ;

Parameters to a function or procedure. The function
has the same properties as a subscmptecL variable in that
it is computed and stored in temporary storage, and
cannot be an output parameter:

CALLABC (J, C<9,1> NAME);

Bead functions can cross word boundaries only when the
bead is extracted from a data type C item. Calls to library
routines are compiled when a bead function ecrosses, or
might cross, a word boundary, thus retarding processing. If
the compiler can determine that only one word is to be
accessed, the function is evaluated in-line. For example,
given a data item LONG, in-line code results from:

C<12,3> LONG;

On the other hand, calls to library routines are compiled
from:

C<L,J> LONG;

CHARACTER (BYTE) FUNCTION

The character function, which is also known as a byte
function, extracts consecutive 6-bit characters from the
specified item. The function is similar to the PL/I function
SUBS. The result of a character function is data type C,
with values assumed to be display code.

The format of the character function is:

C<start,number> identifier

start Arithmetie expression indicating the first
character to be extracted. Character
positions are numbered from 0 at the left
of the item.

number Arithmetice expres=ion indicating the num-

ber of consecutive characters to be

accessed. The value of start+number

should be within the size of the item.

If a length parameter is omitted, a single
character is extracted.

If the data type of the item being
accessed is C, the function can cross word
boundaries and the maximum value for
length is 240. (240 is the maximum
number of characters allowed in a string.)

If the data type of the item is not C,
however, the maximum value for length
is 10.
identifier Name of scalar or array item from which
characters are to be extracted. Can be
any data type, except B or S, but the
result is always data type C. The extrac-
tion is done without any conversion.

5-8

EXAMPLES OF CHARACTER
FUNCTION USE

1.

To compare the hashed value associated with an
identifier, the function shown in figure 5-9 adds the
display code values of all identifier characters. The
modulo 100 octal (decimal 64) is established through
DEF so the subprogram could be easily modified for
another modulo. The C function extracts one character
at a time from the identifier. As with all functions, the
name is set to the return value within the function.

FUNC HASH (IDENT) I;

BEGIN

DEF NCH #64#;

ITEM IDENT C(12);

ITEM I, H;

H=0;

FOR I=0 STEP 1 WHILE C<I,1> NQ " " DO
H=H + C<L,1> IDENT;

HASH=(H)-(H)/(NCH)*(NCH);

END #HASH FUNCTION#

3.

Figure 5-9. Use of C Function in a Hashing Routine

SYMPL limits character strings to 240 characters.
Longer strings can be manipulated within a program as
an array of strings. Procedure ADD, as shown in
figure 5~10, adds up to 10 characters to the right end of
a character string. The procedure has three param-
eters: the name of the array to which characters are to
be added, the number of characters to be added, and the
characters to be added. The first call to ADD moves
three characters expressed as a constant; the second
call uses a bead function to specify the loecation of
characters to be moved.

The example in figure 5-10 moves characters to a
larger array BUFFER. The two DEF statements
establish a byte number of a character within a word,
and the word index of a character in a string buffer
given its index1. I points to the first available
character.

The IF statement handles two conditions: the THEN
clause adds characters when the characters to be added
reside within a single word; the ELSE clause handles the
situation when all characters are not in the same word.

Good programming practice calls for a statement
similar to DEF BYPW #10# with reference to the
number of bytes per word referenced as BYPW. As
stated above, the example is machine dependent.

An integer value between 0 and 9 can be converted to a
decimal digit in display code by adding the character
constant 0 to the integer. This is machine dependent, in
that it depends on contiguous numbers in the character
set.

As shown in figure 5-11, function DECIMAL is a
character function that converts N to a string of digits.
Boolean item NEG is used to determine whether the
leftmost character in working string STR is to be a
minus sign. The absolute value funetion, ABS, is used
with N prior to conversion.

60499800 A

result of a bit function always is data type U, even if the

ARRAY BUFFER [1000]; ITEM BUFWD C(10); bits are extracted from a different type of item.

ITEM IL;

DEF JB(I) #I1-(1)/10*10#;

DEF JW(I) #1/10+1#; A bit function eannot be used to obtain the absolute value of

ITEM LETTERS C(26)= an integer. In the following example where INT contains a
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"; negative value, the result is probably a very large, positive

1=0; number:

ADD(BUFFER,3,"ABC");

ADD(BUFFER,10,C<3,10>LETTERS); B<1,59>INT

PROC ADD(SBUF,(NCHARS),(CHARS));
BEGIN

The format of the bit function is:

B<start,number> identifier

ARRAY SBUF; ITEM SBUFW C(10); . start Arithmetic expression indicating the first
ITEM NCHARS, CHARS C(10); bit to be extracted. Bit positions are
ITEM I, L; numbered from 0 at the left of the item.
XREF PROC ERROR;
IF NCHARS LQ 0 OR NCHARS GR 10
THEN number Arithmetic expression - indicating the
ERROR ("ILLEGAL NCHARS"); number of consecutive bits to be ac-
IF JB(I+NCHARS LQ 10 cessed. The value of (start + number)
THEN should be within the length of the item. If
* C<JB(I),NCHARS>SBFW[JW(I)] = a number parameter is omitted, a.single
-~ C<0,NCHARS>CHARS; bit is extracted. Number can be a
ELSE maximum of 60.
BEGIN
L=BYPW-JB(I);
C<JB(),L> SBFW[JW(I)] = C<0,L.>CHARS; If the data type of the item accessed is C,
C<0,NCHARS-L> SBUFW[JW(I)+1] = the function can cross word boundaries
C<L,NCHARS-L>CHARS; and the maximum value for
END (start + number) is 1440 (240 is the maxi-
I=sI+NCHARS; mum number of characters allowed in a
END #ADD# string). If the data type of the item is not
C, however, the maximum value for
. (start + number) is 60.
Figure 5-10. Use of C Function to Increase
Character String Size
identifier Name of scalar or array item from which

bits are to be extracted. Can be item of

FUNC DECIMAL((N)) C(20); any data type except B or S, but the result

BEGIN is always data type U.

ITEM N;

ITEM K, DIGIT;

ITEM NEG B; Bit functions extract beads from the item specified, not
ITEM STR C(20); from the word in which the item is located. For instance,
STR=" ™, assuming a one-word array as shown in figure 5-12,

IF N EQ 0 THEN BEGIN

C<19 1> STR="0" B<29,2> BB[I] extracts bits 29 and 30 from item BB, which

are bits 39 and 40 of the full word WWI[I]. B<30,10> WW[I]

RETURN; is equivalent to XX[I].
END
NEG=N LS 0;
gfgll?s(N); ARRAY WORD;
=21; ,0,10),
FOR DIGIT = N~-N/10*10 WHILE N NQ 0 DO ITEM gg 23,20,3?)),
EEEII;J ; ‘ cc (0,40,20),
=K-1; XX 0(0,30,10),
C<K,1> STR = DIGIT + "0"; . . - L . . WW Eo 0 60)')
N=N/10; T
END
IF NEG THEN C<K-L,1> STR="-";
DECIMAL=STR; -) 2 10 20 = 2
END AA BB CcC
Figure 5-11. Use of C Function for Number Conversion — WW -
BIT FUNCTION XX

The bit function extracts the specified number of consecu-

tive bits from any specified item of type I, U, R, or C. The Figure 5-12. Bit Function Example A

60499800 A 5-9

EXAMPLES OF BIT FUNCTION USE

The first two examples show machine-dependent code.

1.

2.

An infinite operand if hardware compatible with
CYBER 170 hardware (coefficient of 4000 or 3777
depending on a positive or negative operand) can be
checked by:

DEF INF(X) # B<0,12>X EQ O"4000"
OR B<0,12>X EQ O"3777" #;

An octal number in item N is converted toa strmg to be
displayed as shown in figure 5-13.

STATUS OPTION LIST, MAP, CROSS, TRACE;
ITEM SET;

DEF OFF # EQ 0 #; -

DEFON # EQ 1 #;

B<OPTION"TRACE"> SET=1;

IF B<OPTION"MAP"> SET ON AND = -
B<OPTION"CROSS"> SET OFF THEN ...

FUNC DISPLAY ((N)) C(20);

BEGIN

ITEM N;

ITEM I, DIS C(20);

FOR 1=0 STEP 1 UNTIL 19 DO
C<I> DIS=B<I*3,3> N+"0";

DISPLAY=DIS;

. END

4.

Figure 5-14. Bit Function Example C

Fields within an array item T are accessed by a
subscripted array reference, even though the array is
declared to have full-word items. The bead function
defines three 20-bit fields in each array item. The
example in figure 5-15 sets the pseudo-array item

TT(10) to 0.

3.

Figure 5-13. Bit Function Example B

An integer variable from status list OPTION is used as a
Boolean array as shown in figure 5-14. The item SET
might be flag bits.

5-10

ARRAY [26]; ITEM T;
DEF TT(D) # B<((1) - (I) / 3*3) * 20, 20> '1‘[1/3] #;
ITEM A, B;

A=6;

B=4;

TT (A + B)=0;

Figure 5-15. Bit Function Example D

60499800 A

MULTIWORD AND PART-WORD ARRAYS

An array is declared by an array neader followed by an item
declaration describing the named entity in that array. In
section 4 the declaration was shown with the format:

ARRAY name[dimension bounds];
ITEM name type;

For example, ARRAY[9]; ITEM ENTRY; defines an array of
10 entries, each one word in size. A reference to
ENTRY [2] obtains the third word in the array. The total
number of entries must be less than 65535. SYMPL arrays
are not limited to one-word entries, however.

Assume an entry of 30 characters occupying 3 words.
The array would be declared:

ARRAY [9] P (3);
ITEM THREEWDS €(0,0,30);

A reference to THREEWDS[2] then obtains the third
entry in the array, which is 30 characters long.

Suppose the entry has three words of related, but not
identical, items. Rather than a 30-character string, an
entry might consist of three separate items: a header word,
an identifier name, and a pointer. The first and last words
are data type integer, while the middle word is data type C.
One means of describing this situation is through three
arrays, but such declarations neither show the relationships
between arrays nor offer the convenience of passing a single
parameter to a subprogram. By using multiword array
entries, the relationship ean be maintained. To describe the
three words suggested above:

ARRAY ALLTHREE[9] S(3);
ITEM HEAD 1(0),
‘IDENT C(1,0,10),
PTR I(2);

Subsecripts (0), (1), and (2) determine the word in the
entry in which the named item is to appear.

A reference to IDENT[9] picks out the second word of the
last oceurrence of the entry. Because the array is deseribed
with an S instead of a P, IDENT[9] occupies the next to the
last word of storage allocated for that array. Use of
ALLTHREE as a parameter to a procedure makes all
occurrences of HEAD, IDENT, and PTR available to that
procedure. The called procedure must have a formal
parameter array with fields defined the same.

As an alternative to having more than one word, an entry
can have less than one word. Consider a list of characters A
through 2Z right-justified and zero-filled such as the
FORTRAN compiler establishes for an array described by
DIMENSION ALPHA(26) and DATA/ALPHA/. This array
could be declared:

ARRAY[25] P(1);
ITEM ALPHA C(0,54,1) =
["A", "B", "C", . . . "Z"];

A reference to ALPHA[10] obtains the 6-bit letter K,
not 60 bits.

60499800 A

Further, one physical word of the array can have more than
one item defined within it. Consider the 26 letters left-
justified in the left-hand side of the word, with an address in
the lower 18 bits of the word. The array with such an entry
could be described:

ARRAY WHERE[25] P(1);
ITEM ALPHA C(0,0,1),
ADDR U(0,42,18);

Notice that the two item descriptions define only the
leftmost 6 bits and the rightmost 18 bits of the word.
Array item descriptions need not account for all bits in
a word.

One further capability, overlapping, is possible in SYMPL
arrays. A given bit in a word can be defined as part of more
than one item. Suppose, in array WHERE above, the
program needed to access the entire word, not just a part of
a word. A third item, integer ALLOFIT, can be declared as
shown in figure 6-1a.

Efficient overlapping of Boolean items ecan provide for
testing many conditions with one elementary statement. In
the example shown in figure 6-1b, testing B3 combines the
tests on Bl and B2. B3 is true if either Bl or B2 is true.
Testing is accomplished with one IF statement. The
overlapping feature gives SYMPL ecapabilities achieved in
FORTRAN by ‘the EQUIVALENCE statement and in
COMPASS by EQU.

a. ARRAY WHERE[25] P(1);
ITEM ALPHA C(0,0,1),
ADDR U(0,47,18),
ALLOFIT;

b. ARRAY [10];
ITEM B1 B(0,0,1),
B2 B(0,1,1),
B3 B(0,0,2);
IF B3 THEN GOTO FINAL;

Figure 6-1. Item Overlapping

The only limits in combining multiword and part-word item
descriptions are governed by physical word size:
All character data must be aligned at 6-bit boundaries.

Only items of data type C can cross word boundaries.

Items of data types other than C must be restricted to
word boundaries.

COMPLETE ARRAY
DECLARATION SYNTAX

The array discussion in section 4 and the examples above
made use of abbreviated forms of array declarations. The

full array declaration, which allows multiword, fullword, or
part-word entries to be combined in one of two storage
formats is:

ARRAY name [low:up,low:up, . . .] st (size);

name Identifier specifying the name of the array. It
ean be omitted unless the array is referenced
in an XDEF, XREF, or BASED ARRAY decla-
ration or a LOC function. No type is associ-
ated with the name.

low Lower bound of a dimension of the array.
Must be expressed as an integer constant. Any
value, including a negative value, can be
specified, although a value of 0 offers exe-
cution efficiencies. If omitted, a value of 0 is
assumed and the following colon must also be
omitted.

up Upper bound of a dimension of the array. Must
be expressed as an integer constant. Can be
positive or negative. - Must be equal to or
greater than the preceding low with which it is
paired.

st Structure of the array in storage:

S Serial in which all the words of one
element are allocated contiguously.

P Parallel in which the first words of each
entry are allocated contiguously, followed
by the second word of each entry, and so
forth.

size Number of words required to hold one entry,
expressed as an unsigned integer. If size is
omitted, 1 is assumed. Size must be less than
2048 words.

The ITEM declaration must immediately follow the ARRAY
declaration. The format of the ITEM declaration for an
array is:

ITEM name type(ep,fbit,size)=[preset],‘
name type(ep,fbit,size)=[preset], ... ;

name Name of element in the array.

type Type of element: I, U, R, C(gth), B, or
S:stlist. If omitted, I is assumed.

ep Entry position. Word number within the
element where the high-order bit of the item
oceurs, starting from 0. Must be expressed as
an unsigned integer constant. If omitted, 0 is
assumed.

fbit First bit. Beginning position of item within
the word ep, counting from 0 on the left. Must
be expressed as an unsigned integer constant.
For a character item, character bit position
0,6,...,54. For other type items, bit number 0
through 59. If omitted, 0 is assumed.

size Item length expressed as an unsigned integer
constant. For a character item, length is the
number of characters not to exceed 240. For
other type items, length is in bits not to
exceed 60. R type data must have a size of

60. If size is omitted, 1 is assumed. for
Boolean and character, and 60 for all other
data types. Only C type data can cross word
boundaries.

preset ' Initial value for the item expressed as a series
of values. The values must be arranged in the
same order as the allocation of storage order
and separated by commas. If omitted, no
values are preset at load time. i

If the entire field deseriptor (ep,fbit,size) is omitted,

defaults are as described above. If one parameter appears
‘within the parentheses, it is assumed to be ep; two

parameters are assumed to be ep and fbit.

The type indicator for an array item must specify the
position the item occupies in the entry. For 60-bit items of
typel, U, B, R, or S, position information can be abbrevi-
ated, but the word position is required. The three examples
shown in figure 6-2 are all valid for an array declared as
ARRAY LOOKI[100] (3).

ITEMA (0),
B B(1,0,60),
Cc C(2)
BEGIN
ITEM A 1(0,0);
ITEMB B(1);
ITEMC R(2,0,10);
END

ITEMB B(1),
Cc C(2,0),
A (0,0,60);

- Figure 6-2. Array Item Declarations

Notice that for data type C the format is not the same as
for a secalar. For a 12-character item:

Scalar Cc(12)
Array item Clep, fbit, 12)

An example of part-word items in an array with single-word
entries is shown in figure 6-3. :

ARRAY DESCRIPTOR S (1) ;

ITEM N B(0,0,1),
v B(0,1,1),
A B(0,2,1),

KIND 0(0,27,5),
TYPE U(0,32,5),
SCOPE U(0,37,5),
ADDR 1(0,42,18);

0123 27 32 37 42 59

N|VIA KIND | TYPE | SCOPE ADDR

Figure 6-3. Array With Part-Word Items

60499800 A

When more than one item references the same field in the
same word, the programmer is responsible for the results
when data types are not alike. In the example in figure 6-4,
INT(1] and CHARI[1] refer to the same word, but the types
are different. Because of the differences in data type,
different results are obtained from an assignment
statement:

INT{1]=1 Sets right-justified integer 1.

CHAR[1]=1 Sets left-justified character A.

ARRAY CONST[24] S(3);
BEGIN ITEM IDENT C(9,0,8);
ITEM KIND 1(1);
ITEM INT 1(2);
ITEM CHAR C(2,0,10);
END

Figure 6-4. Duplicate Field Item References

PARALLEL AND SERIAL ARRAYS

The capability to control array storage allocation is one of
the outstanding features of SYMPL. For arrays with one-
word entries, the distinction between P and S is meaningless.
When multiword arrays exist, however, a parallel structure
can decrease execution time.

For serial arrays, all words of the entry appear together.
This is the normal structure for arrays such as the file name
table in central memory resident or a FORTRAN double
precision or complex array where entry size would be 2.

For parallel arrays, only entry words with the same entry
position appear together. The structure can be visualized as
an array of word [0] followed by an array of word [1], and so
forth. .

During execution, subseript calculations are faster for
parallel arrays. Consequently, parallel arrays should be
specified whenever possible. To access ONE[I], for instance,
requires calculation of:

Parallel Address of ONE[0] + I

Serial Address of ONE[0] + 3 * I

Assuming an array SHOWIT with a 3-word entry containing
three integer items, the different storage structures for
serial and parallel allocation are shown in figure 6-5.

When an array item contains character data of more than 10
characters, the serial and parallel allocations still pertain to
each 10-character word of the item within each word of the
entry. Only items of data type C can cross word boundaries.
Figure 6-6 compares serial and parallel allocation when
multiword items are declared. For serial entry S, the two
words of S[1] are contiguous. All entries with subseript [1}]
appear before any entries with subseript [2]. For parallel
entry S, the two words of S[1] are not contiguous. All of
entry S. appears before any of entry T. The parallel
structure is maintained within each entry.

PRESETTING ARRAYS

The first 6000 words of an array can have preset values. An
array item is initialized by a string that contains one value

60499800 A

for each occurrence of the item within the array. Pre-
setting occurs for each item. The array declaration
specifies what an item should be, not what a word should be.
For example:

For a three-word array with one item in which
occurrences are to be initialized to increasing integer
values:

ARRAY LOOK [2];
ITEM ONE=[0,1,2];

ITEM ZERO (0,0,60),
ONE (1,0,60),
TWO (2,0,60);

Serial Parallel

ARRAY [2] S (3); ARRAY [2] P (3);

ZERO [0] ZERO [0]
ONE [0] ZERO [1]
T™WO [0] ZERO [2]
7ERO [1] ONE [0]
ONE (1] ONE [1]
T™WO [1] : | oNE [2]
ZERO [2] TWO [0]
ONE [2] ' TWO [1]
TWO [2] TWO [2]

Figure 6-5. Serial and Parallel Allocation

A three-word array, SHOW, with two items in a single word,
in which the occurrences of the first item are tobe 1, 2, 3
and the second item A, B, C, is shown in figure 6-7. Bits 30
through 53 are undefined in the resulting array.

The string of values can be specified in abbreviated form,
depending on the program needs:

If not all oceurrences are to be initialized, a null value
must be established by consecutive commas.

Trailing commas can be omitted.

If all occurrences are to be preset to the same value, an
abbreviated format can be specified. To set ONE to all
0, for example:

ONE=[3(0)]

An example of array presetting when not all occurrences are
to be initialized is shown in figure 6-8. The elements
without preset values are undefined, not zero. An example
of array presetting with character data when not all
occurrences are to be initialized is shown in figure 6-9.

If a number of occurrences are not to be initialized, an
abbreviated format can be specified. For example, [10(),1]
is equivalent to [,,,,,,ss,,1]. ‘

Serial

ARRAY SER[1:2] S (4);
ITEM S €(0,0,12)=["BBBBBBBEBBBB",
"CCcccececececeeec,
T C(2,0,12)=["EEEEEEEEEEEE",
"ZZ2727ZZZ727"];

BBBBBBBBBB

BB

cccecceccecceccecceccc

ccC

EEEEEEEEEE

EE

Z2Z72727277Z77227Z17

Z7Z

Parallel

ARRAY PAR [1:2] P (4);
ITEM S C(0,0,12)-["BBBBBBBBBBBB",
"CCCCCCCceeccee],
T C (2,0,12)=["EEEEEEEEEEEE",
"Z222Z2772222Z2");

BBBBBBBBBB S [1] word1

cccceccecceccecccce S [2] word1l

s BB S {1] word 2

ccC S [2] word 2
EEEEEEEEEE T [1] word1l

‘ Z22222Z2ZZZ| TI2] wordl
T EE © T[1] word2

Z7Z) T [2] word 2

ARRAY SHOW[2];
ITEM FIRST (0,0,30)=[1,2,3],
SECOND C(0,54)=["A", "B", "C"];

29 30 53 54 59
1 A
2 B
3 C

Figure 6-7. Array Presetting Example A

ARRAY [10];
ITEM T=[,2(1,,2),,,3];

T [0]
1 T [1]
T [2]
2 T [3]
1 T (4]
T [5]
2 T [6]
T [7]
T [8]
3 T [9]
T [10]

Figure 6-8. Array Presetting Example B

Figure 6-6. Serial and Parallel Allocation
of Multiword Items

Presetting occurs without any check of array size. As a
result, overlapping of values can occur. No error oceurs if
array bounds are exceeded. In the example in figure 6-10a,
"item X is initialized here only because of its position in
relation to T. The compiler does not guarantee that array X
immediately follows array T unless these declarations are
within a COMMON bloek.

In the example in figure 6-10b, the preset values for BB, and
then CC, overlap the preset values for AA. DD is initialized
to the preset values of CC. This order is not guaranteed
unless these declarations are in COMMON.

6-4 -

ARRAY [3] S (2);
ITEM H C(0,0,12) = ["T", ,"EEEEEEEEEEEE"];

Tbbbbbbbbb }
H[0]
oo g
;H[l]
EEEEEEEEEE
H[2]
EE

Figure 6-9. Array Presetting Example C

60499800 A

a. ARRAY [1]; ITEM T=[1,2,3,4,5];
ARRAY [4]; ITEM X;
1 T [0]
2 T [1]
3 X [0]
4 X[1]
5 X [2]
X [3]
X [4]
b. ARRAY A;
ITEM AA=[1,2,3,4,5];
ARRAY B;
ITEM BB=[6,7,8,9,10];
ITEM CC=11;
ARRAY D [1:3];
ITEM DD;
1 AA [0]
6 BB [0]
11 cc
8 DD [1]
9 DD [2]
10 DD [3]

STATUS KIND NUMB, INT, REAL, BOOL, CHAR;
ARRAY STAN [4] S(2);
BEGIN
ITEM IDENT C(0,0,10)=
["SIN",,,"SUBS", " ABS"];
ITEM SKIND S:KIND(1)=
[S"REAL",,,S"CHAR", S'"NUMB"];
END

SIN IDENT {0]

2 SKIND {0]

IDENT (1]

SKIND [1]

IDENT (2]

SKIND [2]

SUBS IDENT [3]
4 SKIND [3]

ABS ’ IDENT [4]

0 SKIND [4]

Figure 6-10. Array Presetting Example D -

Arrays can be initialized through status constants as well as
the more common integer, Boolean, or character constants.
Assume an array with two one-word entries as shown in
figure 6-11. The second entry is associated with a status
value from status list STAN. '

Presetting of items that occupy only part of a word is the
same as for whole word or multiword items. The setting of
arrays TENSER and TENPAR in serial and parallel struc-
tures, respectively, is shown in figure 6-12.

PART-WORD ITEM EFFICIENCY

When an array with part-word items is being designed,
efficiencies in access can be planned. Although SYMPL
allows fields to occupy almost any position in an entry, good
programming practice favors certain construetions for data
of certain types.

When two items in different arrays are frequently
exchanged, execution proceeds more quickly when the items
occupy the same position within a word.

BOOLEAN DATA

The most efficient length for Boolean data is one bit. When
a Boolean item is one bit in length, a shift to bit 0 and a sign

60499800 A

Figure 6-11. Array Presetting Example E

test are the only instructions needed to determine whether
it is TRUE or FALSE. If the item is more than one bit,
however, the field must be masked and tested for a value
other than 0.

An exception exists when one item overlays two others. In
the following, item B1ANDB2 can be used to test for Bl
or B2:

ITEM B1 B(0,18,1),
B2 B(0,19,1),
B1ANDB2 B(0,18,2);

Boolean data is most efficient in bit 0. No shifts or masks
are required to access it.

Efficiencies in decision tables can be achieved when Boolean
values are packed within a single word, as shown in
figure 6-13. The STATUS function assigns integer values 0
through 3 to FO. The dimensions of array CHARACTERS
are assigned through status functions and are [0,3]. To
check whether a delete operation is valid, the following IF
statement can be used:

IF VALIDDELETE [FO] THEN ZAPIT;
ELSE ERROR;

INTEGER DATA

Signed integer data (declared by data type I) ean be accessed
more quickly on CYBER 170 compatible systems when the
field is 60 bits or 18 bits and the field begins in bit 0 or the
field occupies bits 42-59. Signed integers are faster than
unsigned integers. Unsigned integers (declared by data
type U) are accessed more quickly when the field ends with
bit 59.

Serial allocation:
ARRAY TENSERI[4] S (2);
BEGIN
ITEM A 1(0,0,30)=[4,,3,,6];
ITEM B 10,30,15)=[,3,,7];
ITEM C C(1,0,5)=["LLLLL", "BBBBB", "CCCCC",
"TTTTT", "EEEEE"];
END
0 29 30 44 45 59
4 Af0],B[0]
LLLLL c[o0]
3 Af1],BI1]
BBBBB - cn]
3 Al2],B[2]
ccccce cl2]
7 Al3],BI3]
TTTTT Cc 3]
6 ‘ AT4),B[4]
EEEEE| C 4]

Parallel allocation:

ARRAY TENPAR[4] P(2);

BEGIN

ITEM A 1(0,0,30)=[4,,3,,6];

ITEM B 1(0,30,15)=[,3,,7];

ITEM C C(1,0,5)=["LLLLL", "BBBBB", "CCCCC",
"TTTTT", "EEEEE"];

END
0 29 30 44 45 59

4 Af0],BI0]

3 Al1],B[1]

3 A[2],B[2]

7 A[3],B[3]

6 A 4], BI4]
LLLLL C[O]‘
BBB‘BB cli]
ccccce cl2]
TTTTT c 3]
EEEEE cl4]

Figure 6-12. Array Presetting Example F

STATUS FO SQ, WA, IS, AK;
ARRAY CHARACTERS [FO"SQ":FO"AK"];
BEGIN ITEM D1 B(0,0,1) = FALSE,
D2 B(0,1,1) = FALSE,
D3 B(0,2,1) = TRUE,
D4 B(0,3,1) = TRUE,
VALIDDELETE B(0,0,4);
END

Figure 6-13. Packed Boolean Array

ACCESSING ARRAY ITEMS

A particular occurrence of an array item is referenced by:

item-name [subseript]
subseript Arithmetic expression indicating occur-
rence of item. Can be signed integer
constant, an unsigned integer constant, a
scalar, array item, or an expression that
provides such a value.

Both of the following are valid:
TABII + TAB[3] * 2]
X [-3] where ARRAY [-5:5]; ITEM X;

SYMPL does not check array bounds during execution. If the
subseript is omitted from a reference to an array item, 0 is
assumed. A diagnostic is generated unless the array bounds
are 0:0.

When multiword items are referenced, the format is the
same. The compiler generates code needed to extract the
item from its serial or parallel array. Code generated for
parallel arrays is more efficient.

When a part-word item is referenced, the compiler gener-
ates code that:
Masks the item to extraect it from its word.

Shifts it to the position appropriate for its data type.
Character data is left-justified and signed integer data
is right-justified with sign extension, as described in
section 4.

Only the referenced item is affected by access. No other
part of the word in which the item is positioned is disturbed.

60499800 A

PARAMETER USAGE 7

“

The usual form of a procedure declaration is shown in
figure 7-1. The formal list of parameters identifies param-
eters to be passed to the procedure when the procedure is
called by a reference to its name.

PROC name (formal list); } procedure header

BEGIN

procedure body

END

Figure 7-1. Procedure Declaration Structure

The procedure declaration establishes formal parameters
that are used within the procedure body declaration. At the
time the procedure is to execute, the actual parameters
accompanying the procedure reference take the place of the
formal parameters. The programmer is responsible for
correspondence between the formal parameters and actual
parameters. SYMPL checks neither the number nor type of
parameters on a call during compilation or execution.

Formal and actual parameters are illustrated in figure 7-2a.
Assume procedure SUB. The header for nested procedure P
defines three formal parameters: A, BOUND, andS.
Parameters A' and BOUND are used within P to check
whether the array bound is positive and to initialize the
array items to a zero value. Parameter S returns a
character constant to the calling procedure SUB. The
header specifies that parameters A and S are to be passed by
their address, but BOUND is to be passed by value.

When procedure P is called, actual parameters TAB, 64, and
ETAT are substituted, respectively, for formal param-
eters A, BOUND, and S. Procedure P executes as if the
lines containing the comment * were written as shown in
figure 7-2b.

PROCEDURE DECLARATION
AND CALL

The -format: for-a procedure header with-formal parameters
is:

PROC name (paraml, param2, . . .);

name Any SYMPL identifier (1 through 12 letters, $,
or digits beginning with a letter) that is not a
reserved word. Names of intrinsic functions
are not reserved words. If the procedure is to
be called by a program written in a language
other than SYMPL, only the first seven char-
acters are used and the first character cannot
be the dollar sign.

60499800 A

a. PROC SUB;
BEGIN
PROC P(A,(BOUND),S);
BEGIN
ARRAY A; ITEM AA;
ITEM BOUND, S C(10);
ITEM I;
XREF PROC ERROR;
#*# IF BOUND LS 0
#*# THEN ERROR("BOUND NEGATIVE");
#*# FOR I=0 STEP 1 UNTIL BOUND DO
AA[T]=0;
#*# S="INIT";
END # PROC P #
ITEM ETAT C(10);
ARRAY TAB[64]; ITEM T;
P(TAB, 64, ETAT);

END # PROC SUB #

h. BOUND=64;
IF BOUND LS 0
THEN ERROR ("BOUND NEGATIVE");
FOR I=0 STEP 1 UNTIL BOUND DO
T1]=0;
ETAT="INIT";

Figure 7-2. Formal and Actual Parameters Example

param Name of any SYMPL entities listed below.
Later in this section, each type of parameter
is discussed separately.

Array Based array
Function Procedure
Label Item

If the name specifies an item, it can be
enclosed in parentheses to indicate a call-by-
value rather than a call-by-address.

Within the procedure body, all formal parametersvof any
type except label must be declared. Any formal parameter
not declared in the body is assumed to be a label parameter.

SYMPL makes certain assumptions about the formal
parameters, depending on their type, as shown in table 7-1.
Again, depending on the type, table 7-2 lists reasonable
entities to pass as actual parameters. Notice that an array
or based array formal parameter can be passed in several
forms. Switeh elements cannot be passed as parameters. (A
switeh can be used as an external entity, however.)

TABLE 7-1. FORMAL PARAMETER ASSUMPTIONS

Formal Assumed
Parameter Content of
Declaration Parameter Word
ITEM I Address of item I
ARRAY A First word address of array A
BASED Address of pointer to BA
ARRAY BA
LABEL L Address of label L
FPRC FP Address of entry to procedure FP
FUNCF Address of entry to function F

TABLE 7-2. POSSIBLE ACTUAL PARAMETERS

Formal Reasonable
Parameter Actual Parameter
Item for Item name, (item name)
call-by-
address
Item for Item name, arithmetic expres-
call-by- sion, subseripted array item
value .
Array Array name, based array name
Based P function, item name, expres-
array sion whose result is a pointer
Label Label name
Procedure Procedure name
Function Function name

SCALAR AND ARRAY I TEM NAMES
AS PARAMETERS

Any sealar or array item of any type (I, U, R, C, 8, or B) can
be specified as a formal parameter. Within the procedure,
the formal declaration syntax is the same as a declaration
outside the procedure.

The formal parameter list indicates whether a given
parameter is to be passed by value or address. This is
illustrated in figure 7-3. The corresponding actual param-
eter for W or Z is assumed to be a local variable with the
address of W or Z; for X or Y, the assumption is that they
are the actual values to be used for X or Y. Call-by-address
is required for any parameter whose value is to be returned
to the calling subprogram since call-by-value parameters
work with a temporary copy of a variable.

An actual parameter can be a scalar name, constant, array
item name, or expression. (When an actual parameter is the
name of an item enclosed in parentheses, SYMPL considers
it to be an expression.)
receives the address of a temporary location containing the

Consequently, the procedure

PROC P(W, (X), (Y), 2);
BEGIN ITEM WR,

X1,
Y C(14),
Z B;

END #P#

Figure 7-3. Passing Parameters by Value or Address

sealar value instead of the address of the scalar itself. Such
a parameter does not create the instruction savings of a
call-by-value parameter. It does, however, provide the
protection for the secalar value accorded all call-by-value
parameters.

SYMPL performs no conversions when the type of a formal
parameter is not the same as the type of the actual
parameter:

In the following, X=FALSE at the end of the procedure
since 1.0 is type real and has a format that is not the
same as integer type 1:

R(1.0, 1, X);
PROC R((A), (B), C);
ITEM A B,B B,C B;
C = A EQ B;

No BEGIN and END pair is associated with procedure R.
The declarations for a procedure can appear before the
executable statement. Since C=A EQ B constitutes the
entire executable portion of R, a compound statement is not
required. Many of the remaining examples in this section
use such a single elementary statement in the procedure
called.

EXPRESSIONS AS ACTUAL PARAMETERS

Expressions are evaluated and the result is passed to the
procedure as a temporary storage word. The procedure
receives the address of a temporary location containing the
result of the evaluation.

In figure 7-4, when procedure P is called, the statement
changing W in the procedure has no effect. The temporary
storage word for A+B is changed.

ITEM A=1, B=2;
P(A+B, B, 3);

PROC P(W, (X), (Y))

BEGIN ITEM W, X, Y;

ITEM I;

X=X+1;

FOR I=0 STEP 1 UNTIL X DO
W=W+Y;

END # PROC P #

Figure 7-4. Expression as Parameter

60499800 A

SUBSCRIPTED VARIABLES AS
ACTUAL PARAMETERS

Subscripted variables are considered to be expressions. The
procedure receives the address of a temporary location
containing the result. As with parameters called by value,
subscripted variable parameters modified within the pro-
cedure cannot be passed out of the procedure. For example,
assume procedure P is defined by:

PROC P(A);
ITEM A;
A=0;

When procedure P is called from a program containing the
following statements, T[12]=2 when the calling program
resumes execution:

ARRAY TT; ITEM T;
T12]=2;
P(T[12]);

If a procedure must modify a subseripted variable, the array
name and the subseript must be passed as separate param-
eters. In the formal array, the variable to be modified must
be described as the same field as the actual item in the
actual array. For example, assume a procedure Q defined,
as shown in figure 7-5. When procedure Q is called from a
program containing the following statements, T[12]=0 at the
end of thé procedure. Items X and T must have identical
field descriptions:

ARRAY TT[100]; ITEM T;
T{12]=2;
Q(TT,12);

PROC Q(XX,Y);
BEGIN

ARRAY XX; ITEM X;
ITEM Y;

X[Y]=0;

END

Figure 7-5. Subsecripted Variable as Parameter

CHARACTER STRINGS AS PARAMETERS

Character strings are passed to a procedure without any
accompanying information about length. The programmer
writing the procedure is responsible for knowing the length.

The declared length of the string cannot be passed to the
procedure through a variable in the parameter list. ITEM
. STRING C(N) is illegal in a procedure since the syntax of an
ITEM declaration requires a character string length to be
expressed as an integer constant. The compiler generates
code based on the declared length of the formal parameter.
If the actual parameter is not the same length, unexpected
results can oceur.

The actual parameter string should have a length longer than
or equal to the formal parameter string length. If it is
longer, only the number of characters specified by the ITEM
declaration are used or altered. An actual parameter string
shorter than the formal parameter string can produce
unpredictable results, since characters following the actual
parameter are accessed. The.compiler does not guarantee
the contents of those characters.

60499800 A

No padding ocecurs when an actual parameter string is
shorter than a formal parameter string. In the example in
figure 7-6, the call to procedure Q@ sets the first 10
characters of LEFT to the value RIGHT; the last 10
characters are undefined.

ITEM LEFT C(20), RIGHT C(10), JUNK C(10);
Q(LEFT,RIGHT);

.

PROC Q(S,T);
ITEM S C(20), T C(20);
S=T;

Figure 7-6. Character Strings as Parameters

LABEL NAMES AS PARAMETERS

A label name can be used as an actual parameter. A formal
parameter declaration for the label can, but need not,
appear in the procedure declaration. It makes debugging
easier and is generally good programming practice to
declare it, however. The parameter in the transfer vector is
assumed to be the address of a label.

PROCEDURE NAMES AS PARAMETERS

A procedure name can be specified as a formal parameter.
Within the procedure, the formal parameter declaration is
not the same as a procedure declaration elsewhere. The
parameter in the transfer vector is assumed to be the
address of the entry to the procedure. SYMPL calls the
procedure by simulating a return jump.

A formal parameter that is a procedure name must be
declared with:

FPRC name, name, ... ;
name Identifier of a procedure.

The formal declaration of a procedure name does not include
any parameters to that procedure. Such parameters must be
established for use in the procedure. Assuming procedures P
and S as shown in figure 7-7, a call P(17,S) results in a call
to procedure S with 17 as a parameter. The programmer
writing procedure P is responsible for knowing that pro-
cedure S requires an integer parameter X.

PROC P (N, Q);
BEGIN ITEM N;
FPRC Q;
QN);
_END#P#

PROC 8 (X);
BEGIN ITEM X;

END #S #

Figure 7-7. Procedure Name as Parameter

A procedure name in a parameter list should be programmed
carefully. Since the called procedure must supply param-
eters and SYMPL checks neither the number or type of

parameters, any execution-time errors are difficult to
debug. In the example in figure 7-7, calls to procedure P
must supply only the names of the procedures, all of which
require exactly the same type of parameters.

ARRAY NAMES AS PARAMETERS

Any array or based array can be specified as a formal
parameter. Within the procedure, the formal parameter
declaration syntax is the same as array declaration outside
of the procedure, including the descriptions of items in the
array.

When the formal parameter is specified with a BASED
ARRAY declaration, the actual parameter must be a pointer
or LOC funetion, or an expression whose value is a pointer.
Access of a formal based array is inefficient and should be
avoided. Such access is justified only when the intent of the
procedure is to move the based array.

When the formal parameter is specified with an ARRAY
declaration, the actual parameter must be an array or based
array. An array name can be subseripted; this has the effect
of imposing the first element of the formal array onto the
designated element of the actual array.

The first word address of an array is passed to a procedure
without any accompanying information about array bounds,
and SYMPL performs no subscript checking. Consequently,
the array bounds are not required in the formal array
declaration. The programmer writing the procedure is
responsible for bounds and subseript checking.

If the size and structure are not the same for the formal and
actual arrays, the wrong elements are accessed. The
programmer is responsible for defining the correct field
positions in the formal array, and for extracting or storing
the desired fields in the actual array.

For single-dimension single-word arrays, bounds can be

omitted in the formal declaration since parameters passed
to a procedure can control ‘array size. In the example in
figure 7-8a, calls to procedure Q@ set both array A and
array B to zero. For multidimension arrays or multiword
array items, the formal declaration must be correct to
ensure proper results. In figure 7-8b, the first call to
procedure P sets array A to zero. The second call, however,
erroneously sets more than the 37 items of array B.

EFFICIENCY IN PARAMETER
LISTS

The calling sequence for a procedure with parameters is
lengthy. Several techniques can be used on source programs
to reduce the size of the generated code or to reduce the
time required for execution. Three such techniques are: use
of call-by-values for sealars or array items, reuse of a single
parameter list, and the DEF capability.

7-4

a. ARRAY A[0:64]; ITEM AA;
ARRAY B[27:63]; ITEM BB;
Q(A,64);

Q(B,63-27);

PROC Q (X, (N));

BEGIN

ITEM N, I;

ARRAY X; ITEM XX;

FOR I=0 STEP 1 UNTIL N DO
XX[1]1=0;

END# Q #

b. ARRAY A[64]; ITEM AA;
ARRAY B[27:63]; ITEM BB;
P(A, 64);

P(B, 63-27);

.

PROC P (T);

BEGIN

ARRAY T; ITEM TT;

ITEM ;

FOR 1=0 STEP 1 UNTIL 64 DO
TT{1]=0;

END

Figure 7-8. Array Names as Parameters

CALL-BY-VALUE PARAMETERS

SYMPL ecalls subprograms through a return jump instruction.
Actual parameters are passed to the subprogram through a
transfer veetor list.

The address of a parameter list is passed in register Al. If
the F parameter appears on the SYMPL compiler call, the
last word in each list contains all zeros as required by the
FORTRAN Extended calling sequence.

The transfer vector list contains local copies of all param-
eters used. The two types of parameters are:

A scalar or array item parameter enclosed in paren-
theses in the formal parameter list indicates that the
parameter is to be called by value rather than by
address. The transfer vector points to a temporary
storage word containing the value. The corresponding
actual parameter is protected by SYMPL.

All other parameters appear in the transfer veetor lists
as addresses of memory words containing their values.

Call-by-address parameters require two memory references
to access the parameter. This indirect addressing is less
efficient than the direct addressing possible for call-by-
value parameters.

For program efficieney, call-by-value should be specified for
sealars or array items in a formal parameter list as often as
possible. Call-by-address should be used only when the
parameter is modified within the procedure and the new
value of the parameter is to be returned to the ecalling
subprogram.

60499800 A

REUSING A PARAMETER LIST

The SYMPL compiler uses the same transfer vector as many
times as possible. Consequently, the size of generated code
can be reduced by rewriting some calls to reference global
identifiers. Consider the following:

A declaration for procedure P is identical to that for
procedure Q:

PROC Q (R, S, T, U, (V));

60499800 A

If the calls are P(A, B, C, D, F+1) and Q(A, B, C, D, E),
the same transfer vector cannot be used. These two
calls do allow the same transfer vector:
H=1; P(A, B, C, D, H);
H=F+1; Q(A, B, C, D, H);
Use of global identifiers, external identifiers, and common

variables must be considered in relation to other modular
programming needs.

7-5

IF AND FOR STATEMENTS

The IF statement allows alternative statements to execute,
depending on whether a Boolean expression is TRUE or
FALSE. The FOR statement simplifies coding of repetitive
operations.

IF STATEMENT

The IF statement has three clauses: -

The IF clause specifies the Boolean condition to be
tested.

The THEN clause specifies the statement to execute
when the result of the IF clause evaluation is TRUE.

The ELSE clause specifies the statement to execute
when the result of the IF clause evaluation is FALSE.
This clause is optional; if omitted, the statement
following the THEN clause executes when the result is
FALSE.

The IF statement syntax is:
IF Boolean expression THEN statement ELSE statement

Boolean Boolean expression specifying the con-
expression dition to be tested.

statement Any elementary statement or compound
statement. All statements must be ter-

minated with semicolons just as if they
were not associated with IF.

Since the ELSE portion of the IF statement is optional, the
simplest form of the IF statement is:

IF Boolean expression THEN Statement;
Both of these are valid IF statements:
" IF A EQ 0 THEN T(I]=0; ELSE TII}=2;
IF A EQ 0 THEN T{I]=1;

ELSE distinguishes between statements that are ' always
executed and those that execute only when a condition is
false. :

The logic of the IF statement is shown in figure 8-1. The

THEN statement executes only when the Boolean expression -

is TRUE; the ELSE statement executes only when the
Boolean expression is FALSE.

The differences in execution between the following two
statements

IF A EQ B THEN C=D; E=F; G=H;
and
IF A EQ B THEN C=D; ELSE E=F; G=H;
appears in the logic diagrams shown in figure 8-2. The

second diagram illustrates the execution of E=F; only when
A EQ B; is false.

60499800 A

TRUE

THEN
statement

Boolean
expressio

FALSE

ELSE
statement

Figure 8-1. IF Statement Logic

A EQ B?

FALSE

Figure 8-2. ELSE Statement Logic

All the statements in an IF construct are subject to the
same rules, including punctuation, as other statements in
SYMPL.

The statement can be an elementary statement such as:
BIRD="TROCAN";

The statement can be a compound statement, as shown in
figure 8-3a. The statement can be another IF statement,
FOR statement, STOP statement, and so forth, as shown in
figure 8-3b.

a. BEGIN
BIRD="TROCAN";
TREE=24;

END)

b. IF A EQ 0 THEN
IF B EQ 0 THEN
Cc=1;
ELSE
C=2;

Figure 8-3. IF Statement Example A

A common programming practice is to write every state-
ment following THEN and ELSE as a compound statement.
In this instance the BEGIN and END visually delimit nested
statements, as shown in figure 8-4.

IFAEQO
THEN
IFBEQO

THEN

IF A EQ 0 THEN

BEGIN

IF B EQ 0 THEN
BEGIN
C=1;
END

ELSE
BEGIN
C=2;
END

END

Figure 8-5. Nested IF Statement Example A

IF A EQ 0 THEN
BEGIN
IFBEQO

THEN C=1;
ELSE D=1;
END

Figure 8-4. IF Statement Example B

Punctuation within an IF statement follows the rule that
each elementary statement must be terminated by a
semicolon. Each statement in the IF construct has a
following semicolon. No semicolons are associated with
BEGIN and END. '

NESTED iF STATEMENTS

When IF statements are nested, the ELSE portion of an IF
statement is always associated with the innermost nested IF.
A nested IF statement and its corresponding logic flow are
shown in figure 8-5.

It is a better practice, however, to write nested IF
statements as compound statements to avoid confusion on
this point. It makes the code more obvious, and, in terms of
execution time and space, is no more costly. The statement
in figure 8-5 should be written as shown in figure 8-6.

Another example of a nested IF statement, in which C=4
only if neither A nor B is 0, is shown in figure 8-7.

Figure 8-6. Nested IF Statement Example B

IF A EQ 0 THEN IF B EQ 1 THEN C=1;
ELSE C=2;

ELSE IF B EQ 0 THEN C=3;

ELSE C=4;

Figure 8-7. Nested IF Statement Example C

BOOLEAN EXPRESSIONS IN IF STATEMENTS

Any Boolean expression can be used in an IF statement.
Evaluation of the expression terminates as soon as any part
of the expression determines the results. The example in
figure 8-8a is evaluated as if it were written as shown in
figure 8-8b.

This feature avoids wasteful tests and can result in valuable
protection in a program. For example, in the following the
procedure SQROOT is not called when X is negative:

IF X GQ 0 AND SQROOT(X) EQ Y
THEN ...

60499800 A

a. IFIGR 0 AND T{I] EQ 0
THEN X=0;"
ELSE X=1;

b. IFIGR 0
THEN IF T{i] EQ 0
THEN X=0;
ELSE X=1;
ELSE X=1;

Figure 8-8. Boolean Expression in an IF Statement

Evaluation of two Boolean expressions can be foreed by an
expression of the proper form. For example:

IF AEQBAND AEQC THEN...
can be written in a faster executing form:
IF (A-B LOR A-C)EQ 0 THEN...

However, clarity and maintainability should be considered
when code is written for faster execution time.

FOR STATEMENT

The FOR statement should be used any time a statement is
to execute at least 3 or 4 times, or any time the conditions
for execution might not exist.

The FOR statement has three clauses:

The FOR clause specifies the conditions under which
the DO clause is to be: executed. Those conditions
might result in zero executions.

The WHILE clause or the UNTIL clause specifies the
conditions that terminate the DO clause executions.
The WHILE clause offers execution advantages in
certain cases.

The DO clause specifies the operations to be repeated.
In most instances, the DO clause includes a compound
statement.

An example of a FOR statement that sets each element of
array T to 0 is shown in figure 8-9.

DEF SIZE #1024#;

ARRAY [SIZE]; ITEM T;

ITEM I;

FOR 1=0 STEP 1 UNTIL SIZE DO T[I]=0;

The TEST statement can be included in the loop to
cause remaining computations inside the loop to be
bypassed.

A CONTROL statement can affect the optimization the
compiler performs with the statement.

SYMPL version 1.2 introduces program control over the code
generated for FOR loops. Through a CONTROL FASTLOOP
or CONTROL SLOWLOOP compiler-directing statement, a
SYMPL 1.2 program can specify the implementation of the
loop within each individual FOR statement. Execution
advantages can be gained by specifying FASTLOOP; on the
other hand, this specification puts restrietions on the format
and use of the FOR statement.

SYMPL versions prior to 1.2 always produced slow loops that
could not be optimized since the compiler could not
ascertain the permanence of all statement characteristies.
The default condition for version 1.2 is SLOWLOOP.

When the programmer knows that a loop has certain
characteristics, however, CONTROL FASTLOOP should be
specified to obtain optimization. The following character-
isties are required for optimization:

The induction variable is type integer or type unsigned
integer with an absolute value that can be expressed in
17 bits.

The variables in the arithmeti¢ expression of the STEP
clause must not be modified.

The variables in the arithmetic expression of the UNTIL
clause, if present, must not be modified inside the
controlled statement.

The controlled statement of the loop is executed at
least once.

The variables in .a WHILE clause can be changed in the loop;
however, the current value is always used.

For both fast loops and slow loops, the programmer can
affeect code efficiency by properly planning the loop.

Faster execution for slow loops can be achieved by moving

arithmetic expressions outside the loop. In the example in
figure 8-10a, TAB[J]-1 is evaluated once, but N+2 and
TAB[J] are evaluated every repetition. To avoid evaluation
of arithmetic expressions within the loop, the FOR state-
ment in figure 8-10a could be written as shown in
figure 8-10b. Further, any call to a procedure or function
within a loop inhibits optimization.

Figure 8-9. FOR Statement Example

The FOR statement is an extension of the DO statement of
FORTRAN. It differs from DO 1n several respects, however.
In SYMPL:)

The induction variable (loop counter) must be declared
as a scalar before it can be used.

The step value can be negative.

A loop is not necessarily executed once.

60499800 A

a. FOR I=TAB[J]-1
STEP N+2 UNTIL TAB[J]-1 DO
TAB[I]=0;

b. S=N+2;
L=TAB[J]-1;
FOR I=TAB[J]-1
STEP S UNTIL L DO
“T(1]=0;

Figure 8-10. Evaluation of Arithmetic Expression
in a FOR Statement

8-3

FOR SYNTAX

The general format of the FOR statement is:

FOR induction variable = loop control DO statement;

induction
variable

Identifier of data type I, U, S, or R to be
used as the loop counter. Data type R is
not often used. The type of this induction
variable establishes the mode for evalu-
ation of arithmetic expressions in the
FOR statement. When the loop ter-
minates, the current value of the
induction variable is available only if a
" jump exits from the loop. If the loop
terminates normally, the induction vari-
able is not defined.

loop Condition under which the loop is to be
control executed. It can take several forms as
noted below.

statement Statement to be executed as long as the
loop eontrol condition exists. This state-
ment, whiceh is called the controlled state-
ment, can be any elementary or compound
statement, including an IF statement or a
FOR statement. Good programming
practice is to write the controlled state-
ment as a compound statement at all
times.

LOOP CONTROL

For slow loops, evaluation of the test condition oceurs at the
beginning of each loop before the controlled statement is
executed. Consequently, the controlled statement can be
bypassed. In the following example T{I]=0 is never executed:

L=3;
FOR I=4 STEP 1 UNTIL L DO
T[1]1=0;

Both the test for loop terminating conditions (WHILE
Boolean expression or UNTIL arithmetic expression) and the
inecrement to the induction variable take place within the
loop.

The loop control has these five forms (the fourth and fifth
forms produce an infinite loop; the programmer is respon-
sible for coding an exit jump):

1. Initial WHILE Boolean expression

2. Initial STEP arithmetic expression WHILE Boolean
expression

3. Initial STEP arithmetic expression UNTIL arithmetic
expression

4. Initial STEP arithmetic expression

5. Initial
initial Arithmetic expression giving the initial
value of the induetion variable. The
expression is evaluated once at the start
of the FOR statement.
8-4

Boolean Boolean expression specifying the con-

expression dition under which looping is to continue.
As long as the expression is TRUE, looping
continues; when the expression is FALSE,
looping does not take place.

arithmetic Arithmetic expression indicating:

expression

STEP Increment to the induction
Clause variable to be added each
. loop. This constant or vari-
able can have a positive or

negative value.

UNTIL Value after which looping
Clause terminates.

The expression can have a negative, as
well as a positive, value.

The logic of a statement with a WHILE clause and STEP
clause with a slow loop is shown in figure 8-11. For an
UNTIL clause with a positive step with a slow loop, the logic
is as shown in figure 8-12. Figure 8-13 shows the logic of an
UNTIL eclause with a fast loop, when a STEP expression can
be positive or negative.

induction
variable =
initial

AGAIN

evaluate
Boolean FALSE

expression

TRUE

controiled
statement

induction

variable =
initial +

increment

|

Figure 8-11. Slow Loop Logic Example A

WHI LE Clause

The WHILE clause of the FOR statement combines the
capabilities of an IF statement with the looping capabilities
of FOR. For example, the sequence shown in figure 8-14
assigns SOL the minimum value of I, if any, when T{I]=0.

60499800 A

induction
variable =
initial

AGAIN

variable LQ
limit

controlled
statement

induction variable =
induction variable
+ increment

Figure 8-12. Slow Loop Logic Example B

induction
variable
=0

YES

variable
GQ limit

variable
LQ limit

controlled statement

induction variable =
induction variable
+ increment

SOL=0;
FOR I=0 STEP 1 UNTIL 100 DO
IF TI1EQ O
THEN
GOTO FOUND;

FOUE‘ID: SOL=I;

Figure 8-14. WHILE Clause Example A

Using the WHILE clause, a FOR statement can be written to
accomplish the same function if it is certain that T[I]=0
exists to stop the loop:

SOL=0;
FOR I=0 STEP 1 WHILE T[{I] NQ 0 DO
SOL=I;

Empty compound statements are often useful in FOR
statements with WHILE clauses. For example, the state-
ment shown in figure 8-15 exits from the loop with MIN
having the minimum value such that T[MIN] exceeds 0. This
technique is valid only with a slow loop. With a fast loop the
value of the induction variable is undefined on a normal exit.

FOR MIN=0 STEP 1
WHILE T[MIN] LQ 0 DO
BEGIN
END

Figure 8-15. WHILE Clause Example B

No form of the FOR statement exists in which the reserved
words FOR and the initial value of the induction variable
can be omitted. That is, a WHILE B DO statement is not
valid. The same results can be achieved, nevertheless,
through use of the DEF statement to generate a valid FOR
statement, as shown in figure 8-186.

ITEM DUMMY;
DEF ASLONGAS #FOR DUMMY=DUMMY WHILE#;
#SET NEXT TO FIRST ELEMENT OF LIST#
ASLONGAS NEXT NQ 0 DO

BEGIN

END

Figure 8-13. Fast Loop Logic Example

60499800 A

Figure 8-16. WHILE Clause Example C

Controlled Statement

The controlled statement can be any valid statement.
Examples of common types of controlled statements are
given below; they assume all variables have been defined
previously.

1. The statements necessary to initialize three arrays are
shown in figure 8-17.

2. ‘The IF statement as a controlled statement is illus-
trated in figure 8-18.

3. The FOR statement as a controlled statement which
sets the lower triangle of MATRIX to 0 is shown in
figure 8-19.

4, A compound statement nesting within a econtrolled
statement is shown in figure 8-20.

FOR I=1 STEP 1 UNTIL N DO
BEGIN
T{I]=0;
ul1}=0;
VIII=L;
END

Figure 8-17. Controlled Statement Example A

FOR I=M STEP 1 UNTIL N DO
IF.T{I] EQ 0
THEN
GOTO L;
ELSE
BEGIN
K=K +1;
U[K]=U[K] + 1;
END

Figure 8-18. Controlled Statement Example B

ARRAY [1:10, 1:10]; ITEM MATRIX;
FOR I=1 STEP 1 UNTIL 10 DO
FOR J=1 STEP 1 UNTIL I DO
MATRIX[1,J]1=0;

Figure 8-19. Controlled Statement Example C

FOR I=1 STEP 1 UNTIL N DO

BEGIN

TAM([I]=0;

FOR J=1 STEP 1 UNTIL N DO
BEGIN
MATI1,J]=0;
TAB[1,J]=TAB[1,J] + 10 * I + J;
END

END

Figure 8-20. Controlled Statement Example D

A jump out of the controlled statement is valid. Under such
circumstances, the current value of the induction variable is
preserved and can be used outside the statement.

A jump into a controlled statement from outside the
controlling FOR statement is possible, although such an
action generally has no meaning and produces errors.
Although the induetion variable can be modified within the
controlled statement on slow loops, good programming
practice avoids such code.

TEST STATEMENT OF FOR

The TEST statement has meaning only within - the FOR
controlled statement. TEST, which allows the remaining
part of a loop to be bypassed, is equivalent to a FORTRAN
statement that jumps to a CONTINUE statement in a DO
loop.

The use of TEST, in which the statement V[I]=0 is bypassed
for values of I such that U[I]=VAL, is illustrated in
figure 8-21. Without TEST, the sequence shown in
figure 8-21 appears as shown in figure 8-22.

When loops are nested, the induction variable name can be
added to the TEST statement to specify whieh loop is to be
bypassed, as illustrated in figure 8-23. The logic of the code
in figure 8-23 is as if it were written as shown in
figure 8-24.

FOR 1=0 STEP 1 UNTIL N DO
BEGIN
T{1]=0;
IF U[I] EQ VAL
THEN
TEST;
V[i]=0;
END

Figure 8-21. TEST Statement Example A

1=0;
AGAIN:
IFILQN
THEN
BEGIN
T{1]=0;
IF U[I] EQ VAL
THEN
GOTO NEXT;
VAL[1]=0;
NEXT:
I=l +1;
GOTO AGAIN;
END

Figure 8-22. TEST Statement Example B

FOR I=0 STEP 1 UNTIL N DO

FOR J=0 STEP 1 UNTIL M DO

! BEGIN
Al1,J]=Al1,J] + 1;
IF All1,J] EQ VAL THEN TEST I;
IF Al1,J] EQ LAV THEN TEST J;
B[1,J1=0;
END

Figure 8-23. TEST Statement Example C

AGAINI: IFILQ N THEN
BEGIN
J=0;
AGAINJ: [IFJLQ M THEN
BEGIN
ALJ=ALJ +1;
IF A 1,J EQ VAL THEN GOTO NEXTI;
IF A 1,J EQ LAV THEN GOTO NEXTJ;

B 1,J=0;
NEXTJ: J=J+1; GOTO AGAINJ;
END
NEXTI: I=I+1; GOTO AGAINE;
END

Figure 8-24. Logic of TEST Statement

60499800 A

COMPILATION CONTROL « 9

SYMPL compilation is controlled by:

DEF statements in the program that are similar to
COMPASS macros, as described in section 5.

CONTROL compiler-directing statements in the pro-
gram.

$BEGIN and $END debugging code delimiters.
SYMPL compiler call itself.

The CONTROL statement is a compiler-directing statement
rather than an executable statement in a program. The
words used in the CONTROL statement are not reserved
words: ITEM NOLIST, for example, is legal. Also, these
words can be expanded by DEF.

Several types of actions are influenced by CONTROL,
ineluding:

Source listing control.

Compilation options affecting packed switches, preset
of common, and FORTRAN compatibility.

Characterization of variables and arrays for optimiza-
tion purposes.

Conditional assembly.

Table 9-1 shows all control-words of the CONTROL state-
ment and the range of compiler action in regard to each
statement. i

TABLE 9-1. CONTROL-WORDS OF CONTROL

Control-Word

_

DISJOINT variable
EJECT

ENDIF
FASTLOOP

Fl
FTNCALL
IFxx eondition

INERT ari-ay
LEVEL n block

LIST
NOLIST

OBJLIST
OVERLAP variable

PACK
PRESET

REACTIVE array
SLOWLOOP

TRACEBACK

Function

Extent of Effect

Characterize variable as having single name.
Skip to new page of source listing output.
End conditional assembly begun by IFxx.

Generate FOR loop similar to FORTRAN DO
loop.

Same as ENDIF.
Turn on compiler call F parameter.
Compile code if condition true.

Characterize array as not having overlapping
subsecript references.

Specify memory residence of common block
or based array.

Resume source listing.

Suspend source listing unless H parameter on
compiler call or OBJLIST appears.

List object code, overlapping compiler call
list parameter and LIST or NOLIST.

Characterize variable as having more than
one name.

Pack switch code.
Preset items in common.

Characterize array-as possibly having over-
lapping subscript references.

Generate FOR loop without FORTRAN
similarities.

Generate traceback information.

Entire module
Single compiler action
Immediate compiler action

Until a subsequent FASTLOOP,
SLOWLOOP, or TERM

Same as ENDIF
Entire module
UNTIL balanced ENDIF or FI

Entire module
Entire module

Until subsequent NOLIST or TERM

Until subsequent LIST or TERM
Entire module
Entire module

Entire module

Entire module

Entire module

Until a subsequent FASTLOOP,
SLOWLOOP, or TERM

Entire module

60499800 A

9-1

CONDITIONAL COMPILATION

The IFxx form of the CONTROL statement allows con-
ditional compilation that resembles COMPASS conditional
assembly. SYMPL offers fewer capabilities than COMPASS,
with no statements equivalent to COMPASS pseudo-
instructions ELSE and IF DEF.

For instance, to compile source statements only when
DBUG=0 in COMPASS and SYMPL, the statements shown in
figure 9-1 can be used. In each case, the code that produces
an error message and aborts the program is not assembled
when DBUG=0. The COMPASS code that conditionally
assembles the range identified by name B is in figure 9-1a.
The same function in SYMPL is performed as shown in
figure 9-1b.

a. DBUG EQU 1

B IFNE DBUG,0
SA1 MSGVECT

RJ ERROR
JP ABORT
B ENDIF

b. DEF DBUG #1#;

.

CONTROL IFNQ DBUG,0;
ERROR(MESSAGE);
GOTO ABORT;
CONTROL ENDIF;

Both constants must be the same type since SYMPL
does not convert types in this context. Data type B and
C should be compared only with IFEQ and IFNQ. Blanks
are significant in character strings, whether the blanks
are within the string or at the end of the string.

If only one constant appears, it is assumed to be
constantl, and constant2 is assumed to have a value
of 0.

When the condition is false, assembly continues with the
next statement after the balancing CONTROL ENDIF of
CONTROL FI. The source listing produced shows a minus
sign in the left margin.

An example in which code is generated to call procedure S
when FAST=0 is shown in figure 9-2.

DEF FAST #0#;

ONTROL IFEQ FAST;
S.
CONTROL FI;

Figure 9-2. CONTROL Statement Example B

A capability similar to ELSE of COMPASS can be simulated
by the negation of the direct IF control statement. In the
example in figure 9-3, MODEL is defined through DEF (as in
DEF MODEL #76# or DEF MODEL #74#). Depending on the
model, a one-bit is tested for 0 or 1.

Figure 9-1. CONTROL Statement Example A

In both languages, the conditional source statements are
bracketed between a statement defining the conditions and a

statement ending conditional assembly. In SYMPL, the.

ending statement can be either:
CONTROL ENDIF; ~or CONTROL FI;

However, this statement must not be generated by a DEF.

When the IF condition is false, DEF statements are not

expanded.

The format of a conditional assembly statement is:

CONTROL IFxx constantl, econstant2;

XX Condition that compiler is to test con-
stants for in a constantl xx constant2
situation:

EQ Equal
LS Less than
LQ Less than or equal to
GR Greater than
GQ Greater than or equal to
NQ Not equal
constantl Constants or status functions to be tested.

constant2 Generally, at least one constant is defined

through DEF.

9-2

CONTROL IFEQ MODEL, 76;

IF B<MFLAG> WORD [OPTS] EQ 0
THEN RETURN;

CONTROL ENDIF;

CONTROL IFNQ MODEL, 76;

IF B<MFLAG> WORD [OPTS] EQ 1
THEN RETURN;

CONTROL FI;

Figure 9-3. CONTROL Statement Example C

Similarly, a logical product (AND) of conditions can be
satisfied by nested CONTROL statements. In the example
in figure 9-4, a call to LOAD (TBL, XDEFNAME, FALSE) is
generated when the model is not 76 and the system is
neither ATS nor KRONOS. Notice that DEF is used within
the conditional code to redefine SKIP.

OPTIMIZATION CONTROL

The SYMPL version 1.2 compiler introduces four CONTROL
statement control-words that can be used to influence
optimization performed by the compiler. None of these
statements (OVERLAP, DISJOINT, INERT, REACTIVE) is
required. In their absence, the compiler proceeds with its
normal optimization. Because the consequences of some
optimizations are unpredictable, default optimization is
limited.

When the programmer informs the compiler that variables
and array subseripts have been limited to uses with known
consequences, the additional optimization can oceur. Pro-
grams with such limits are called behaved, as opposed to
unbehaved programs. :

60499800 A

STATUS SYS ATS, INTCOM, KRONOS, S34, S2;
DEF SYSTEM ...;
DEF MODEL .. .;

CONTROL IFNE MODEL, 76;
DEF SKIP #1#;
CONTROL IFEQ SYSTEM, SYS"ATS";
LOAD (TAB, XDEFNAME);
DEF SKIP #0#;
CONTROL ENDIF;
CONTROL IFEQ SYSTEM, SYS"KRONOS";
LOAD (TAB, XDEFNAME, TRUE);
DEF SKIP #0#;
CONTROL ENDIF;
CONTROL IFNE SKIP;
LOAD (TAB, XDEFNAME, FALSE)
CONTROL ENDIF;
CONTROL ENDIF;

Figure 9-4. CONTROL Statement Example D

The SYMPL Reference Manual contains details of the
compiler optimization and the use of the optimization
control-words. Future versions of the compiler might
require these statements.

With or without the optimization CONTROL control-words,
the SYMPL compiler performs optimization that moves code
as it sees fit. A SYMPL programmer should not assume
locations of any executable code.

To allow more, rather than less, optimization, a programmer
should consider:

Initialization of a program in one procedure and the
body of a program in another. (SYMPL does not move
code from one procedure to another.)

Limiting of array subsecripts to the bounds of the array,
so that Aln] and B[m] are not the same word.

$BEGIN/SEND DEBUGGING
COMPILATION

Statements in a source program that are delimited by
$BEGIN and $END are compiled only when the E parameter
is specified on the SYMPL compiler call. Without the E
parameter, such statements are shown in the source listing
with a minus sign in the left margin, but they are not
compiled. The $END statement must not be generated by a
DEF. DEF is not expanded within $BEGIN and $END
without the E parameter.

An example of this feature used to affect error output is
shown in figure 9-5. CURSTAT is not allocated any memory
space unless the E parameter is selected. The check of
BYTETYP NQ S"INT" always compiles; in debug mode it
produces a message, and in normal mode it does nothing.

SYMPL COMPILER CALL

The SYMPL compiler calls follow the conventions of other
language processors, with IsINPUT, L=OUTPUT, and B=LGO
parameter defaults. The compiler call using all defaults is:

SYMPL.

60499800 A

PROC PASSN;
BEGIN
$BEGIN
ITEM CURSTAT;
$END

PROC MISTAKE(CODE, AUX1, AUX2);
BEGIN
ITEM CODE, AUX1, AUX2;
$BEGIN
ERPRINT(CODE, CURSTAT, AUX1, AUX2);
RETURN;
$END
END #PROC MISTAKE#

IF BYTETYP NQ S"INT"
THEN MISTAKE(ERR"NOTINT",IN[0], INX);

INPARMX=INPARMX+1;
$BEGIN
CURSTAT=CURSTAT+1; .
IF INPARMX GR INTYPE"MAX"
THEN ERROR(ERR"INMAX");
I$F DEBUGO THEN TRNACINT(INPARMX);
END

END #PROC PASSN#

Figure 9-5. Use of $BEGIN and $END

Other compiler call parameters are summarized in
table 9-2. The SYMPL Reference Manual describes all
parameters in detail.

Listings are controlled by any combination of LXOR=1fn:

Storage map and common block listing

(o} Object code, 1fn/line/line lists only code for
source lines indicated by number

R Cross reference map and common block listing

The time required to compile a program depends more on
the length of the source code than on the number of
declarations. On a CYBER 70 Model 73 system, about 2000
lines can be compiled per minute when full compilation is
selected.

The total field length required for a given compilation
depends on the length of the symbol table which, in turn, is
dependent on the number of declarations rather than length
of source code or statements. For each entry in the table,
five words are required.

Field length requirements are, at minimum:
51K octal under NOS 1 and NOS/BE 1
41K octal under SCOPE 2

The SYMPL compiler is written, for the most part, in
SYMPL.

Generated code might reference the FORTRAN library and
SYSIO (NOS 1 and NOS/BE 1) or SYMIO (SCOPE 2) library.
The FORTRAN library is expécted to contain routines XTOI
and ITOJ for exponentiation and routines for print input/-
output. The SYSIO or SYMIO library is expected to contain
the SYMPL execution-time routines SYMSM$, SYMSCS$, and
SYMSG$ for the more complex bit and character processing
routine, SYMBSW$ for switch packing, and the SYMPL
interface routines to the print facilities.

TABLE 9-2. COMPILER CALL PARAMETERS

Parameter Significance
A Abort after error
C Check switeh references for range
D Pack switches two per word
E Compile debugging statements within

$BEGIN and $END

F Generate procedure call parameter
lists compatible with FORTRAN
Extended

H List all source statements despite any
CONTROL NOLIST statement

I Designate input file to be other than
INPUT

N List unreferenced items on cross refer-
~ ence map

P Initialize (preset) items in labeled
' common

S=0 Suppress LDSET table generation

S=lib/lib Generate LDSET table with entries for
' named libraries. Default is S=SYSIO/~
FORTRAN for NOS 1 and NOS/BE 1;
S=SYMIO/FORTRAN for SCOPE 2.

T Suppress code generation

Single statement scheduling for closer
correspondence between source state-
ment order and object code order

Y Suppress diagnostic 136, SEMI ENDS
COMMENT

60499800 A

OUTPUT FACILITIES 10

—

35YMPL has no input/output facilities. The SYMPL library
joes, however, contain procedures that are links to the
PRINT routines of FORTRAN Extended.

To use the output features:

A FORTRAN Extended main program must call the
SYMPL subprogram. The PROGRAM statement of the
main program must specify the file OUTPUT.

The SYMPL program must specify the library pro-
cedures in an XREF declaration. Procedures PRINT and
ENDL always are required; LIST is optional..

The SYMPL program must call both procedure PRINT
and procedure ENDL for each output list to be printed.
If variables are to be output, a LIST procedure call is
required for each variable. PRINT, LIST, and ENDL
form a single output sequence and must appear in that
order, although intervening statements can appear.

The library procedures have alternative names PRINTS,
LIST$, and ENDL$ for use when PRINT, LIST, or ENDL
conflicts with a name used elsewhere in a program. The
required externals are specified with an XREF declarative
as shown in figure 10-1.

XREF BEGIN
PROC PRINT;
PROC LIST;
PROC ENDL;
END

Figure 10-1. Output XREF Declarations

The parameters for the SYMPL procedure calls are based on
the FORTRAN statements. A FORTRAN Extended PRINT
statement and its associated FORMAT statement have this
format:

PRINT label, parameterl, parameter2, . . .
label FORMAT (format specification)

The label of the FORMAT statement is not required for
SYMPL output. The format specification specifies the
format in which the parameters are to be output, including
carriage control or Hollerith constant specifications. In
SYMPL, this entire format, including its enclosing paren-
theses, must appear as a character string in a PRINT
procedure call. Each FORTRAN parameter specifies a
variable or array to be printed. In SYMPL, each item or
array to be printed must appear in an individual LIST
procedure call.

Any errors in the format specification and LIST arguments
are detected during execution by the FORTRAN routines.
The FORTRAN Extended Reference Manual explains any
error messages that might result.

PRINT PROCEDURES

PRINT specifies the format in which information is to be
output. Information appears on the file OUTPUT. Another

60499800 A

library procedure, PRINTFL, is available for writing to files
other than OUTPUT, as described in the SYMPL Reference
Manual for PRINTFL discussion. The procedure call is:

PRINT("(specification)");

specification String of characters duplicating the

specification of a FORTRAN Ex-
tended PRINT statement. The speci-
fication can be any legal FORTRAN
specification. Parentheses are re-
quired to be part of the string.

/ Examples of PRINT procedure calls are:

Assume a literal is to be printed. Either of the

following can be specified:
PRINT ("(10H DISASTER)");
PRINT ("(* DISASTER*)");
Assume a character string item defined by:

ITEM SYNTABFORM C(40)= .
#(6H HASH=06, 11X6, GHIDENT=2A10, . . J#;

The string can be specified by simply:
PRINT(SYNTABFORM);

Assume an array item defined by ARRAY [1:9]; ITEM
NDIGITS C(2)=[#1 1#,#12#, . . . ,#19#];

The entire array is specified by:

PRINT (NDIGITS[I]);

LIST AND ENDL
PROCEDURE CALLS

LIST identifies one expression to be output. The procedure
call is:

LIST(expression);

expression Any item, subscripted array item, or
expression to be output.

LIST must follow a PRINT procedure call or another LIST
call. One LIST call must appear for each variable element
of the PRINT specification.

The order of execution of the multiple LIST calls must
correspond to the format of the preceding PRINT statement,
just as the output specifications of a FORTRAN FORMAT
statement must eorrespond to the order of parameters in the
FORTRAN PRINT statement.

ENDL is required to end each output list. If no LIST calls
appear, ENDL is still required. The procedure call is:

ENDL;

10-1

EXAMPLES
PRINT("(LX,AL)");

1. FORTRAN Extended statements and SYMPL statements IF B THEN STR="FATAL";
that produce the same result are shown in figure 10-2a ELSE STR="NON-FATAL",
and figure 10-2b, respectively. LIST(STR);

ENDL;

a. PRINT 10
10 FORMAT (*1 LIST OF IDENTIFIERS *)
PRINT 20, LNAME, RNAME, HASH *
20 FORMAT (1H0,2A10,3X,12)

Figure 10-3. SYMPL Output Example A

3. To repeat the format for each iteration of a loop, the
FORTRAN Extended routines perform the 1mpllclt DO

b. PRINT ("(*1 LIST OF IDENTIFIERS*)"); loop, as shown in figure 10-4,

ENDL;
PRINT ("(1H0,2A10,3X,12)"); : » PRINT ("(11X,110)");
LIST(LNAME); LIST(RNAME); LIST(HASH) FOR I=STKTOP STEP -1 UNTIL 0 DO
ENDL; LIST (STACKI[ID);
: : ENDL;

Figure 10-2. Output in FORTRAN and SYMPL
) Figure 10-4. SYMPL Output Example B

Output written is: LIST OF iDENTIFIERS 1lname rname 4. The SYMPL code to list array FLAG is shown in
hash where LNAME and RNAME are each 10 alpha- figure 10-5.
numerie characters and HASH is a two-digit integer. In

the SYMPL code, each variable is a parameter to a LIST
procedure call. PRINT((LX,10L3)");
FOR I=1 STEP 1 UNTIL 10 DO
LIST(FLAGII]);
ENDL;
2. The SYMPL code to output FATAL or NON-FATAL,

depending on the current value of B, is shown in
figure 10-3. Figure 10-5. SYMPL Output Example C

10-2 60499800 A

STANDARD CHARACTER SETS A

6 —

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

The set in use at a particular installation was specified when
the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use). Under
NOS/BE 1, the alternate mode can be specified by a 26 or 29

60499800 A

in columns 79 and 80 of the job statement or any 7/8/9 eard.
The specified mode remains in effect through the end of the
job unless it is reset by specification of the alternate mode
on a subsequent 7/8/9 eard.

‘Under NOS 1, the alternate mode can be specified by a 26 or

29 in columns 79 and 80 of any 6/7/9 card, as described
above for a 7/8/9 card. In addition, 026 mode can be
specified by a eard with 5/7/9 multipunched in column 1, and
029 mode can be specified by a card with 5/7/9 multi-
punched in column 1 and & 9 punched in column 2.

Graphie character representation appearing at a terminal or
printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphie
column of the standard character set table are applicable to
BCD terminals; ASCII graphic characters are applicable to
ASCII-CRT and ASCII-TTY terminals.

*Ajuo induy 104 pardadoe ate sayaund (6Z0) 11DSV:- Pue (920) Yilia|joH aleuldlje syl it}
.wmmv jueiq B pRlA % D1AD93/11DSV Wouy suoilejsuel pue 1s1Xa J0u Op sapod pJed palejal pue dlydesb 9% ayl
?_o::n Z-8) uoj|od o.t S| £9 9pod Aeydsip {apo9. pJea 10 aiydelb pajeioosse ou sey Q@ apod Aejdsip ‘18s owydesb-gg e Buisn suone|esul ujLl
*Z€91 0§ |euta1xa 0} PalisAuOd Si diew
aull- *ouucm_ *SUOJ0D OM) UBY) JaYleJ HJBW aul|-40-pud se palaidialul aie pIom 1G-09 € JO Pus ayl 1e S1iq 018Z 3I0W 10 dA|PML |

€L0 981l L L-8Z1L LL (uojoniwas) ! | (uojodywes): | G90 S S0 S oy S S
ol 81t 9L 98-zl 9L (x3wndu1d)~ o 90 v $0 v LE v v
veL 280 SL 6-8-Z1L SL \ < €90 € €0 € 9g € €
0ot ¥8 Sl 58 vL ® S 290 Z 20 4 -1 z 4
9.0 9-80 LS L8t €L < < 190 t 10 ! ve 1 i
1440°21 1142-8Z1 090 0 4} 0 €€ 0 0
vL0 0 -g-2l zL 10021 zL > > zel 60 1 60 ze z z
LLO L-80 95 981l ¥4 é t LEL 80 oe 80 1e A A
L¥0 g8 =1 S8t oL (eydosisode) , ! ocl L0 Lz L0 ot X X
90 zL LE L-80 L9 L] v Lzl 90 9 90 x4 M M
144011 Hizstl 14} 50 -74 S0 (74 A A
Lv0 10 £-8Cl ¢S 10011 99 i A SCl ¥0 174 $-0 °T4 n n
LEL 580 SE 580 59 (autpsapuny « vl €0 4 €0 vz 1 i
zvo L8 4 v-8 ¥9 (a1onb) #* €Tl Z0 44 z0 - €z S S
Sv0 80 ol ‘98 119 % % r44) 611l 15 611 ze o d
SEl 8l ze 280 29 ({ (¥4 81t 0s 811 1z [o] 0
€elL 8zl Ll L8 19]] 114} L1 Ly Lt oz d d
£v0 £8 o1 9-8-0 09 # = LIt 91l o oLl L o o
950 €-8CL €L €82l LS (powsad (potsad) * gl Gt Sp Gt 91 N N
¥S0 €80 €g £80 95 (ewwod) ’ (ewwod) Sii an 24 an . Gl] W
0v0 ysund ou (474 yaund ou =1°] jue|q juelq vl el (%74 €1l 14 R 1
SL0 98 €L €8 vS = = gLl FAIN! FA4 AN} €1 | |
¥v0 8Ll €5 €8l €S $ $ 48! it Iy (N} zL r r
150 8Ll vL v-8zt zs { { Lt 621 W2 6Z1 i ! 1
0S0 58zl ve ¥-8-0 1)) oLt 8-Zi oL 8zl ot H H
LSO 1-0 1z -0 0S / / LOL Lzi L9 2L Lo 2 9
250 8Ll vS p-8it w » . 901 9zl 99 9-Zt 90 4 4
550 1 ov L oY - - S0l G-zl 59 5zl S0 3 3
£50 98¢l 09 cL 14 + + vol &A! v9 vzl 0 a a
120 -6 ! 6 144 6 6 €oL €zl €9 ezl €0 2 2
0.0 8 oL 8 {27 8 8 zol zzL 29 zTL 20 g |
£90 L L0 L 47 L L o1 -zt 19 1zt 10 v v
990 9 90 9 3% 9 9 zL0 z8 00 z8 1100 : 1
apo) (620} apo) (920) - apo) 19sgng Jydesny 3pod | (620) 3pod (920) apo) 1esqng | owydeio
HoSY young | @08 young Aejdsig oydesn folale] NOSY | ydound aosg young Aeydsig | 2wdeso 200
HOSY | ! 1eusaix3 | uiusajioH 1108V 11OSV | (eusaix3 | yaudf10H HOSY

S$13S H31IVHVHO QHVANVLS

60499800 A

CDC CHARACTER SET
COLLATING SEQUENCE

Collating Collating
Sequence cbc Display | External Sequence CcDC Display | External
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
00 00 blank’ 55 20 32 40 H. 10 70
01 01 < 74 15 33 41 | " 7
02 02 % 63t 16T 34 42 v 66 52
03 03 [61 17 35 43 J 12 41
04 04 - 65 35 36 - 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 t 70 55 39 47 N 16 45
08 10 | 71 56 40 50 (o} 17 46
09 1" > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
" 13 - 76 76 43 53 R 22 51
12 14 . 57 73 4 54] 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47 57 u 25 24
16 20 $ 53 53 48 60 v 26 25
17 2 * 47 54 49 61 w 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 z 32 31
21 25 (51 34 53 65 : oot nonet
2 26 = 54 13 54 66 0 33 12
23 27 # 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 1

+1n installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
External BCD code 16. .

60499800 A

ASC!l CHARACTER SET
COLLATING SEQUENCE
Collating ASCI.I Display | ASCII Collating ASCI_I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal | Subset Decimal/Octal Subset
00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 4 70 27 39 47 G 07 47
08 10 { 51 28 40 50 H 10 48
09 11) 52 29 41 51 | 1 49
10 12 * 47 2A 42 52 J 12 4A
1 13 + 45 2B 43 53 K 13 48
12 14 , 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 | 2E 46 56 N 16 4E
15 17 / 50 2F 47 67 (0] 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 ¥ 25 55
22 26 6 41 36 54 66 \Y 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 : oot 3A 58 72 Z 32 5A
27 33 : 77 " 3B 59 73 [61 58
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 ~ 76 - BE
31 37 ? 71 3F 63 77 65 5F

+1n installations using a 63-graphic set, the % graphic does not exist. The : graphic is display code 63.

60499800 A

GLOSSARY B

1

Actual parameter — The name of an entity, or a value, that
is passed to a procedure or function when the procedure
or function is referenced.

Based array -~ A structure that can be superimposed over
any area of memory during program execution. No
storage is allocated for a based array during compi-

lation. The compiler creates a pointer variable which is

set with a specific value during program execution.
Bead — One of a string of bits or characters.

Bounds - The upper and lower limits of an array dimension.

Call-by-address — A formal parameter that requires an
actual parameter to be an address rather than a value.
Call-by-address is required for any parameter whose
value is to be returned to the referenced procedure or
function.

Call-by-value — A scalar name parameter which is enclosed
in parentheses in the formal parameter list to indicate
to the compiler that a value rather than an address is to
be passed as an actual parameter.

Comment — A string of characters, except the semicolon,
enclosed within pound signs.

Common - Storage that is referenced by more than one
subprogram.

Compound statement — A statement which begins with the
reserved word BEGIN, and ends with the reserved word
END.

Declaration — Defines the type and use of data and entities
used in a program.

Dimensionality — The number of bounds specifications
associated with an array.

Entities — A generic term which refers to any combination
of items, arrays, based arrays, labels, procedures, and
so forth.

Expression - A sequence of identifiers, constants, or func-

tion calls, separated by operators and parentheses, the
evaluation of which yields a resultant value.

60499800 A

Fast loop — A type of loop within a FOR statement where
test and branch are contained within the loop, so that
the loop must execute at least once.

Formal parameter — The name of an entity, which appears
in the header of a procedure or function declaration, for
which a value or the name of an entity is passed when
the procedure or function is referenced.

Function - A subprogram, headed by a function decla-
ration, used within an expression. The value returned
through the function name is used in evaluation of that
expression.

Identifier — A string of 1 through 12 letters, digits, or $
beginning with a letter, that is used to name an entity
within a program.

Intrinsic function - A function that can be referenced
without any declaration.

Parallel array — An array in which the first words of each
entry are allocated contiguously, followed by the second
words of each entry, and so forth.

Procedure — A subprogram, headed by a procedure decla-
ration, that executes when its name, or one of its
alternative entry points, is called. :

Programmer-supplied funetion — A funetion that must be
declared before it can be referenced.

Scalar -~ A single element of data that occupies at least
one word of storage.

Serial array — An array in which all the words of one
element are allocated contiguously.

Slowloop ~ A type of loop within' a FOR statement where
test and branch occur at the beginning ‘of the loop, so
that the loop need not execute at all.

Statement - Specifies the operations to be performed
during execution of the program.

Switech - A concept similar to the GO TO statement in
FORTRAN. The compiler assigns a value, starting at 0,
to each label named in the SWITCH declaration.

ABS function 3-3
Actual parameters
array names 7-4
call-by-value 7-1, 7-4
character strings 7-3
DEF 5-2
expressions 7-2
funetion 3-4
label names 7-3
procedure 3-2, 7-1, 7-3
reusing a parameter list 7-5
scalar and array item names 7-2
subseripted variables 7-3
Alternative subprogram entry 3-4
AND logical operator 2-4
Arithmetic expressions
arithmetic operators 2-2
masking operators 2-3
Arithmetic operators 2-2
Array
accessing array items 6-6
ARRAY declaration 4-4, 6-1
- BASED ARRAY declaration 5-5
dimensions 6-2
item declarations 6-2
item names as parameters 7-2
item overlapping 6-1
names as parameters 7-4
part-word items 6-5
presetting 6-3
storage allocation 6-3
subscripts 6-6

B funetion 5-7, 5-9
Based array
as a formal parameter 5-6
BASED ARRAY declaration 5-5
P function 5-5, 5-6
pointer 5-5, 5-6
Bead functions
bit function 5-9
character (byte) function 5-8
types 5-7
Binary operators 2-2
Blank or space 2-7
Boolean
constants 4-2
data 6-5
expressions 2-3
expressions in an IF statement 8-2
ITEM declaration 4-3
logical operators 2-4
relational operators 2-4

C function 5-7, 5-8
Call

compiler 9-3

print routines 10-1
Call-by-address parameters 7-4, B-1
Call-by-value parameters 7-4, B-1
Character

INDEX

Characteristics of SYMPL 1-1
Comments and spaces 2-7, 2-8
Common

COMMON declaration 3-5

COMMON declaration example 3-5

preset 6-4
Compilation

conditional 9-2

CONTROL statement 8-3, 9-1

field length requirements 9-3

optimization control 9-2

$BEGIN/$END debugging 9-3
Compiler call parameters 9-4
Compound statements 2-4, 8-2
Constants

Boolean 4-2

character 4-2

decimal 4-1

hexadecimal 4-2

integer 4-1

octal 4-1

real 4-1

status 4-2
Contracted item declaration format 4-3
CONTROL statement

control-words 9-1, 9-2

examples 9-2, 9-3

FASTLOOP/SLOWLOOP 8-3
Controlled statement 8-5

Control-words of CONTROL statement 9-1, 9-2

Data
array declaration 4-4
constants 4-1
scalar declaration 4-2
scope of declarations 4-4
structure 4-1
type 4-1
use 4-1 ;
Data alignment 2-2
Debugging
conditional compilation 9-2
$BEGIN/$END 9-3
Decimal constants 4-1
Declarations 2-5, B-1
DEF
' declaration 5-1
with parameters 5-2
without parameters 5-1
Delimiters 2-1
DO clause 8-3
Duplicate field item references 6-3
Duplicate name item declarations 4-5

Efficiencies in decision tables 6-5
Efficiency in parameter lists
call-by-value parameters 7-4 -
reusing a parameter list 7-5
Elementary statements 2-4, 8-2
ELSE

constants 4-2 clause 8-1

data alignment 2-2 reserved word - 2-1
strings as parameters 7-3 ENDL 10-1

values in arithmetic expressions 2-4 EQ relational operator 2-4

60499800 A Index-1

Examples
actual parameters 7-1
bit function 5-9
bit function use 5-10
C function use 5-8
CONTROL statements 9-2, 9-3
controlled statements 8-6
fast loop logic 8-5
formal parameters 7-1
IF statements 8-2
nested IF statements 8-2
presetting arrays 6-4, 6-5, 6-6
scalar declaration 4-3
slow loop logic 8-4, 8-5
SYMPL output 10-2
TEST statements 8-6
WHILE clause 8-5
Executable statements 2-6
Expressions
arithmetic 2-2
Boolean 2-3
External declarations
defining externals 3-6
referencing externals 3-6
External references 3-5

Fast loops
FASTLOOP 8-3
logic example 8-5
Fibonacei numbers
definition 1-1
FORTRAN Extended example 1-1
SYMPL example 1-2

Field length requirements for compilation 9-3

FOR
controlled statement 8-5
loop control 8-4
statement 8-3
STEP clause 8-4 _
TEST statement 8-6
UNTIL clause 8-4
WHILE clause 8-4
Formal parameters
assumptions 7-2
DEF 5-2
usage 7-1
FORTRAN Extended Fibonaceci numbers 1-1
Functions
ABS 3-3
B 5-9
C 5-8
call 3-4
declaration 3-4
header format 3-4
intrinsic 3-3
LOC 5-6
P 5-6
programmer-supplied 3-4

Global identifiers 4-4, 4-5
GOTO :
format 5-3
label references 2-6
GQ relational operator 2-4
GR relational operator 2-4

Hexadecimal constants 4-2

Index-2

Identifiers
characteristiecs 2-2
global 4-4
local 4-4

IF

Boolean expressions in IF statements 8-2, 8-3

ELSE clause 8-1
examples 8-2
logic 8-1
nested IF statements 8-2
reserved word 2-1
statement 8-1
THEN clause 8-1
Induction variable 8-3
Integer
constants 4-1
data alignment 2-2
data in part-word items 6-5
Intrinsic function 3-3, B-1
Invalid identifiers 2-2
Item
declaration format for array items 6-2
declaration format for scalars 4-2
overlapping 6-1
reserved word 2-5

Label
example 2-6,
LABEL declaration 2-6
names as parameters 7-3
Labeled common blocks 3-5
LAN masking operator 2-3
Language differences between SYMPL and
FORTRAN 1-2

Limits in combining multiword and part-word item

descriptions 6-1

LIST procedure call format 10-1
LNO masking operator 2-3
LOC

call format 5-7

use 5-7
Local identifiers 4-4, 4-5
Logical operators 2-3
Loop

CONTROL 9-1

control 8-4

counter 8-3
LOR masking operator 2-3
LQ relational operator 2-4
LQV masking operator 2-3
LS relational operator 2-4
LXR masking operator 2-3

Main program 3-1
Masking operators 2-3
Multiword arrays 6-1

Nested
CONTROL statements 9-2
IF statements 8-2
loops 8-6
subprograms 3-1, 3-2, 4-4
NOT logical operator 2-4
NQ relational operator 2-4

Numbering conventions for bead funetions 5-7

Octal constants 4-1
Operators
arithmetic 2-2
binary 2-2
logical 2-3
masking 2-3
relational 2-4
unary 2-2
Optimization 9-2, 9-3
OR logical operator 2-4
Output
examples 10-2
faecilities 10-1
in FORTRAN and SYMPL 10-2
specifications of a FORTRAN FORMAT
statement 10-1
Overlapping 6-1

P function format 5-6
Packed Boolean array 6-6
Parallel
allocation 6-3 :
storage 6-3, 6-4, 6-6
Parameter usage 7-1
Part-word items
Boolean values 6-5
combining with multiword items 6-1
integer data 6-5
item efficiency 6-5
Passing parameters by value or address 7-2
Possible actual parameters 7-2
Preset
array item values 6-2 thru 6-6
scalar values 4-3
PRGM reserved word 2-1
PRINT _
procedures and call format 10-1
statement capabilities 1-1
PROC reserved word 2«1
Procedure
array names as parameters 7-4
character strings as parameters 7-3
declaration and call 3-2, 7-1
declaration structure 7-1
exit by a jump 3-3
exit by RETURN statement 3-3
expressions as actual parameters 7-2
header format 3-2, 7-1
label names as parameters 7-3
names as parameters 7-3
scalar and array item names as parameters 7-2
subscripted variables as actual parameters 7-3
Programmer-supplied
functions 3-4, B-1
identifiers 2-1
Prohibiting spaces or comments 2-7

Real constants 4-1
Recursive procedures 3-1
Referencing
array items 6-6
externals 3-6
multiword items 6-6
part-word items 6-6
Relational operators 2-4
Reserved words 2-1, 2-5-
Reusing a parameter list 7-5

60499800 A

Scalar
contracted item declaration format 4-3
examples 4-3
format 4-2
item declaration format 4-2
item names as parameters 7-2
preset constant values 4-3
Scope of declarations 4-4
Serial
allocation 6-3
storage 6-3, 6-4, 6-6
Slow loops
examples 8-3 thru 8-5
SLOWLOOP 8-3
Spaces and comments 2-7, 2-8

Statement
format 2-7
syntax 2-4

compound 2-4, 2-5
elementary 2-4
use 2-4
declarations 2-5
executable 2-6
Status
constants 4-2, 5-4, 5-5
data type 4-2
function 5-3
item 5-4
STATUS declaration format 5-3
switch statement format 5-4
switeh use and examples 5-4, 5-5
STEP clause 8-4
STOP statement 8-2
Subscripted variables as actual parameters 7-3
Switch
GOTO statement 5-3
status switch 5-4
SWITCH declaration 5-3
SYMIO 9-4
SYMPL
character set 2-1
characteristics 1-1
compared with FORTRAN Extended 1-1
compiler call 9-3
features 5-1 thru 5-7
marks - 2-1
reserved words 2-1, 2-5
Syntax differences between SYMPL and
FORTRAN 1-1,1-2
SYSIO 9-4

TEST statement 8-3, 8-6
THEN statement 8-1
Transfer vector list 7-4

Unary operators 2-2
UNTIL clause 8-3, 8-4

WHILE clause 8-3 thru 8-6

XDEF
interprogram communication 1-1
XDEF declaration 3-6

XREF
interprogram communication 1-1
XREF declaration 3-6

$BEGIN/$END debugging compilation 9-3

COMMENT SHEET

G 5 CONTROL DATA
CORPORATION
TITLE: SYMPL Version 1 User’s Guide

PUBLICATION NO. 60499800 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY:
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD : FOLD

_FIRST CLASS
PERMIT NO. 8241

MINNEAPOL.IS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

