
60496400

&J E:\ CONll\.Ol DATA
\!:I r::J CO~O~T10N

SYMPL VERSION 1
REFERENCE MANUAL

CONTROL DATA®
CYBER 170 SERIES
CYBER 70 SERIES
7000 SERIES
6000 SERIES COMPUTER SYSTEMS

i

REVISION

A Original printing.

(11-1-75)

Publication No.
60496400

REVISION LETTERS r, 0, Q AND X ARE NOT USED

©1975
Control Data Corporation

REVISION RECORD
DESCRIPTION

-

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
PrL.itsd in the United States of .l'\merica back of this manual

ii

r

[

(

[

[

r

(

,
It,

~,

PREFACE

The SYMPL Version 1.1 compiler makes efficient use of storage during compilation and generation of machine
language instructions. Implementation of this system provides simultaneous compilation of several programs,
utilizing the operating system's multiprogramming features. The SYMPL compiler operates under the control of:

NOS 1 operating system for the CONTROL DATA® CYBER 170, CYBER 70 Models 72, 73, 74, and
6000 Series Computer Systems.

NOS/BE 1 operating systems for the Control Data CYBER 70 Models 72, 73, 74, and 6000 Series
Computer Systems.

SCOPE 2 operating system for the ~ontrol Data CYBER 76 and 7600 Computer Systems.

This reference manual presents the semantics and rules for writing programs in the SYMPL language; it also
includes sufficient information to prepare, compile, and execute such programs. Syntax, or the structure of
SYMPL word forms and their mutual relations, appears in the appendix section.

It is assumed that the reader has some knowledge of the NOS 1 and NOS/BE 1 operating systems and
Control Data computer systems.

The following manuals contain additional information:

60496400 A

Publication Publication Number

NOS 1.0 Operating System Reference Manual, Volume 60435400

NOS/BE 1 Operating System Reference Manual 60493800

INTERCOM 4 Reference Manual 60494600

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or parameters.

iii/iv

CONTENTS

1. INTRODUCTION 1-1 Logical Expressions 4-5
Operands and Mixed-Mode Operations 4-7

Operating System Interface 1-1 Boolean Operands 4-7
SYMPL Overview 1-1 Operand Types - Arithmetic Operands 4-7
Concise Language 1-1 Type Conversion Transfer Functions 4-9
Coding Conventions 1-1 Conversion of Character Operands 4-9
Language Elements 1-1 Conversion of Integer Operands 4-9

Funciion Calls and Intrinsic Functions A 11'\
"t-lV

2. BASIC NOTATION AND ELEMENTS 2-1 ABS Function 4-10
Bead Function 4-10

Characters 2-1 LOC Function 4-12
Blank Space and Commentary 2-1
Identifiers 2-2
Arithmetic Operators 2-3 5. STATEMENTS 5-1

Relational Operators 2-3 Statement Types 5-1
Boolean Operators 2-4 Simple Statements 5-1

Compound Statements 5-1
3. DATA 3-1 Statement Categories 5-1

Value Assignment Statements 5-1
Constants '2 1

Labeis 5-3 J-~

Boolean Constant 3-1 Switches 5-4
Character Constant 3-1 Ordinary Switches 5-4
Integer Constant 3-1 Status Switch 5-5
Status Constant 3-2 Status Switch Declaration 5-5
Real Constant 3-3 General 5-6

Item Declarations 3-3 GO TO S ta temen t 5-6
I tern Presets 3-4 Conditionality: IF Statement 5-6

Status List Declarations 3-4 Looping 5-8
Status Function 3-5 FOR Statement 5-9
Status Constant 3-5 TEST Statement 5-11
Status Switch 3-6 STOP Statement 5-13

Arrays 3-6 RETURN Statement 5-13
Declaration 3-6 Procedure Call Statement 5-13
Array Item Declaration 3-7
Array Storage and Addressing 3-8

COMPILER DIRECTIVES 6-1 Restrictions 3-8 6.

Preset Values 3-16 CONTROL Statement 6-1
Array Reference Subscripts 3-19 Conditional Compilation 6-2
Based Arrays and the P Function 3-20 TERM Statement 6-3
P Function 3-20 Debugging Code Facility 6-3

DEF Declaration 6-4
4. EXPRESSIONS 4-1 Unparameterized Format 6-4

Parameterized Format 6-5
Arithmetic Expressions 4-1 Parameterized DEF Expansion 6-6
Boolean Expressions 4-4
Relational Expressions 4-4 7. PROGRAM STRUCTURE 7-1

60496400 A v

Procedures and Functions '7 1 Parameters Q 1 :-1. u-.:.

Procedure Declaration 7-1 Source Input: 8-1
Function Declaration 7-2 Binary Output: B 8-1
Procedure and Function Use 7-3 Object Time Library Specification: S 8-2
Formal Labels and Procedures 7-4 List: LXOR 8-2

Parameters 7-4 Terminate Compilation: T 8-3
Formal Parameters 7-4 Single Statement Scheduling: W 8-3
Actual Parameters 7-6 Presets in COMMON: P 8-3

Scope of Declaration 7-7 Compile $BEGIN-$END Code: E 8-3
External Subprogram 7-7 Packed Switches: D 8-3
Main Program 7-7 Switch Range Checking: C 8-4
Alternate Entrances: Entry Declaration 7-8 Suppress Diagnostic: Y 8-4
Interprogram Communication 7-9 Unreferenced I terns in Cross Reference: N 8-4

COMMON Declaration 7-9 FORTRAN Compatible Calling
External Reference Declaration 7-11 Sequence: F 8-4
External Definition Declaration 7-13 Abort: A 8-4

Calling Sequences 7-17 Compile Program List: H 8-4
Sample Deck Setups For Batch Mode 8-4

8 COMPILER CALL STATEMENT 8-1

APPENDIXES

A STANDARD CHARACTER SETS A-I E OUTPUT FROM COMPILATION E-l

B SYMPL DIAGNOSTICS B-1 F OBJECT TIME OUTPUT F-l

C GLOSSARY C-l G PROGRAMMING SUGGESTIONS G-l

D THE METALANGUAGE D-l

INDEX

FIGURES

1-1 Elements of the SYMPL Language 1-2 5-1 General Loop Flowchart 5-9
4-1 AND Boolean Operator 4-6 E-1 SYMPL Program Source Listing E-2
4-2 OR Boolean Operator 4-6 E-2 Storage Map Listing E-3
4-3 NOT Boolean Operator 4-6 E-3 Cross-Reference Table E-4
4-4 Combinations of Boolean Operators 4-7

vi 60496400 A

INTRODUCTION 1

SYMPL (System Programming Language) was designed for use by system programmers in writing compilers and system
software. It omits many facilities typically found in higher-level languages, being unencumbered with those extra
features normally included for scientific and commercial applications programming. It is intended to facilitate com­
pilation, and it places minimum restrictions on allowable optimizations.

OPERATING SYSTEM INTERFACE

The compiler is designed to run under control of standard operating systems. Compilation is requested by a
control statement specifying the name SYMPL. This call results in the loading and execution of the subprogram
SYMPL which controls the compilation process. The compiler obtains the control statement parameters from the
operating system.

SYMPL OVERVIEW

SYMPL, which is a procedure oriented language, is similar to JOVIAL, which was derived from ALGOL-58 (the 1958
version of the International Algorithmic Language, as described in~the December 1958 iSSUe of the Communications
of the ACM).

CONCISE LANGUAGE

SYMPL is a readable and concise programming language, utilizing self-explanatory English words and the familiar
notations of algebra and logic. In addition, SYMPL has no format restrictions; therefore, the programmer may intermix
comments among the symbols of a program and define notational additions to the language. Also, a SYMPL program
may serve as its own documentation, allowing easy maintenance and revision.

CODING CONVENTIONS

Coding conventions for SYMPL are less restrictive then most languages. The source program is considered
simply as a stream of characters: card or line boundaries are ignored. Significant columns are 1-72; 73 on
are not interpreted. For purposes of source information, the compiler assumes column 72 is adjacent to
column 1 of the next card or line. Names, constants, operators, or any SYMPL symbol, can be broken across
cards or lines.

LANGUAGE ELEMENTS

The organization of SYMPL language elements is shown in figure 1-1.

60496400 A 1-1

N

~
.,J::o.
\0

~ o o
>

-.

Declarations I
JI'

Brclckets

Identifiers

SYMPL
Programs and ~

Subroutines

Expressions

Declarators Delimiters Descriptors

Modifiers Operators Separators

SYMPL Symbols

~

Names

SYMPL Characters ..

Figure 1-1. Elements of the SYMPL Language

I Statements I
~ "

. ..

I Constants I Variables

Programmer-Supplied
Symbols

----.--.---~ . - ------- ~

BASIC NOTATION AND ELEMENTS

CHARACTERS

Characters are the basic elements of the SYMPL language and are commonly available on standard keypunch and
typewriter equipment.

SYMPL Characters:

27 Letters: A-Z and $

10 Numerals: 0-9

18 Marks: * / + - = < > () [] " 00' • , ; : blank

2

The double prime or quote (,,) is represented by the hardware mark (==) and the 0/8/6 multipunch (Hollerith 026) or
the 3/8 multipunch (Hollerith 029); the prime (,) is represented by the hardware mark (*) and the 4/8 multipunch
(Hollerith 026) or a 8/7 multipunch (Hollerith 029).

For a detailed description of characters, numerals, and marks as a function of Hollerith Code, Display Code, and
External BCD, see Appendix A.

BLANK SPACE AND COMMENTARY

Characters classified as marks serve as delimiting characters. For example, anyone of them may be used to delimit
character sequences forming identifiers. Normally, the concatentation of two nondelimiting characters does not have
the same effect as their occurrence separated by delimiters (XY is not the same as X.Y or X V). Since the blank space
is an element within the set of marks, it is chissified as a delimiter and its use is significant. Whenever one blank is
required as a delimiter, any number of blanks will suffice; wherever a nonblank delimiter is required, it may be embed­
ded in a sequence of blanks of arbitrary length.

A comment is an arbitrary string of characters which can be inserted between or within SYMPL statements and de­
clarations; comments are enclosed with a pair of double primes and must not contain a double prime or a semicolon.
For example:

Correct "THIS IS A COMMENT" or == THIS IS A COMMENT ==

Incorrect " " SUCCESSFUL ABORT"

Incorrect "INCORRECT COMMENT;"

The hardware mark (equivalence symbol) == will be used throughout much of this manual, primarily to avoid
confusion with two consecutive single quotes (, ,).

60496400 A 2-1

Comments may be of any length and may appear wherever it is legal to write a blank, with the following exceptions:

Within a status constant

Within a comment

After the name in a DEF declaration

IDENTIFIERS

Identifiers are arbitrary names used to label the various elements in a SYMPL program; they express reserved SYMPL
words and name programmer defined entities.

The 52 reserved identifiers which represent SYMPL words must not be used for entity names. A complete list of the
52 reserved words appears in appendix D.

Restrictions imposed on the choice of identifiers:

First character must be a letter

Not more than 12 characters in length

Cannot include marks

Examples of valid identifiers:

XYZ

$A

UR12

Examples of character sequences which are not identifiers:

2X Begins with a digit

, Z Begins with a prime

X Y Embedded prime

IDGRTRTHAN12 CHARS Exceeds 12 characters

Examples of reserved identifiers which may not be used as user identifiers:

2-2

ITEM

TEST

TERM

IF

60496400 A

ARITHMETIC OPERATORS

Arithmetic operators denote basic arithmetic operations and the following Boolean operations:

Symbol

+

+

*

/

**

LAN

LNO

LOR

LXR

LIM

LQV

Meaning

Addition

Unary plus

Subtraction

Unary minus

Multiplication

Division

Exponentiation

Logical and

Logical not

Logical or

Logical exclusive or

Logical imply

Logical equivalent

RELATIONAL OPERATORS

Relational operators denote numerical relationship between quantities.

Symbol Meaning

EQ Is equal to

GR Is greater than

GQ Is greater than or equal to

LQ Is less than or equal to

LS Is less than

NQ Is not equal to

60496400 A

Example

AA+BB

XX-YY

DIAM * 3.14

IN/CM

VOL**3

Example

AAEQBB

DISTANCE GR 500.0

INCOME GQ 10000

LIMIT LQ 50

LIAB LS ASSETS

VELOCITY NQ 70

2-3

BOOLEAN OPERATORS

Boolean operators denote the three basic operations of Boolean algebra.

24

Symbol

AND

OR

NOT

Meaning

Conjunction

Union

Negation

Example

DAY AND NIGHT

FRIEND OR FOE

NOT CLEAR

60496400 A

"

t,

"

1'''

" L

DATA 3

CONSTANTS

Each of the five types of constants is a sequence of characters which defines its own value; constants represent specific,
fixed values that do not change during program execution. The constants are: Boolean, character, integer, real, and
status.

BOOLEAN CONSTANT

Boolean constants, TRUE or FALSE, represent the two elements of Boolean algebra; generally a Boolean value is used
to represent TRUE or FALSE, ON or OFF, YES or NO. The value for TRUE is 1; value for FALSE is O.

CHARACTE R CONSTANT

Character constants represent alphanumeric data.

Format:

, character-string'

Any character may be included in the' character-string' except a single prime, which must be represented by two
consecutive primes. The maximum length of a character constant is 240 characters.

Examples:

'THIS IS A CHARACTER CONSTANT'
'THIS ONE"S TRICKY'

INTEGER CONSTANT

Integer constants may be expressed as: decimal integer, hexadecimal constant, octal constant, or status function. The
format determines the manner in which the value is represented in the computer memory.

During execution, the maximum allowable value is 248 ~ 1 when an integer constant is converted to real. If the result
is greater than 248 -1, bits 48 through 58 will be ignored and errors may result. The maximum value of the operands
and the result of integer multiplication or division must be less than 248 -1. High order bits will be lost if the value is
larger, but no diagnostic is provided.

Decimal Integer

A decimal integer is a string of decimal digits. Embedded blanks are not allowed in a decimal integer; it may contain
up to 18 decimal digits and must not exceed 259 -1 in value.

60496400 A 3-1

Hexadecimal Constant

Hexadecimal constants may be used to specify binary bit patterns. When hexadecimal constants appear in integer
formulas, the value must not exceed 259 -1.

Format:

X 'hexadecimal integer'
A hexadecimal integer is a string of hexadecimal digits (0-9 and the letters A-F).

Embedded blanks may be included; however, they are ignored during compilation.

Examples:

Hexadecimal Decimal Bit
Constant Equivalent Pattern

X'F' 15 1111

X'4BC' 1212 010010111100

Octal Constant

Octal constants may be used to specify binary bit patterns. When octal constants appear in integer formulas, the
value must not exceed 259 -1.

Format:

o 'octal integer'

An octal integer is a string of up to 20 octal digits (0-7).

Embedded blanks may be included in octal constants; however, they are ignored during compilation.

Examples:

0'56' 0'777776'

0'7' 0'55232522202211230555'

Status Function

The status function is a special form of integer constant discussed under STATUS DECLARATIONS.

STATUS CONSTANT

Status constants are discussed under STATUS DECLARATIONS.

3-2 60496400 A

REAL CONSTANT

A real constant is represented by a string of decimal digits including a decimal point and an optional exponent repre­
senting multiplication by a power of 10. The exponent is written as the letter D or E followed by an optional plus
or minus sign and a decimal integer. No embedded blanks are allowed; D and E are semantically equivalent.

A real constant is represented within the computer as a normalized floating point number. The magnitude of a real
constant may be in the range 10-293 to 10322 , with up to 15 digits of accuracy.

Examples:

3.El 31.41592E-Ol .5

6.40+35 3.141592E+279 0.0

ITEM DECLARATIONS

SYMPL items are named, value representative, entities declared by item declarations; and they gain value by arithmetic
replacement. The item is the basic unit used to describe the structure of data to be manipulated. Programmer defined
items must be declared prior to any reference to them.

Item type may be any of the following: Boolean, character, integer, real, status, or unsigned integer.

The general format of the ITEM declaration is:

ITEM name I ~ preset, name2 ~ preset ... ;

Item name is a programmer supplied identifier and item type is one of the six forms shown below.

Preset specifies an optional initial value to be assigned to the item; its format is given below. Each item description
of an item declaration defines one item name of the given type:

T4> __

1. ... :::111

Character Type Format

B Boolean B
I Integer I
R Real R
U Unsigned integer U
C Character C (length)
S Status S: status list name

length is an integer constant, not greater than 240, specifying the number of characters in the item, and status list
name is the name of a STATUS list from which the item is to assume values (see STATUS DECLARATION).

If type is omitted, integer type is assumed.

60496400 A 3-3

Examples:

ITEM X R;

ITEM Y,Z C(10);

ITEM STAT S:SNAME;

ITEM PRESETS

=DEFINES X AS TYPE REAL =

=DEFINES Y AS INTEGER ITEM AND
Z AS CHARACTER ITEM OF SIZE 10=

=ITEM STAT WILL ASSUME VALUES
ASSOCIATED WITH STATUS LIST NAME=

An item may be assigned an initial value with a preset.

Format of item preset:

= ± constant the sign is optional

The type of the constants used in item presets need not be commensurate with the type of the item; if they are not,
however, the resulting item value may not be meaningful, since the value of the constant is inserted without conver­
sion into a field size determined by the item characteristics. Character constants will be left justified within the item
and either right filled with blanks or right truncated, as necessary.

Examples:

Item Declarations

ITEM BOOVAL B;

ITEM CHAR C(10);

ITEM GAMMA I;

ITEM ZETA R;

ITEM SAILBOAT S:LIST;

STATUS LIST DECLARATIONS

Preset Item Declarations

ITEM BOOVAL B = 1;

ITEM CHAR C(10) = '3.14159';

ITEM GAMA I = 380;

ITEM ZETA R = 1.414;

ITEM SAILBOAT S:LISTA = S'TORO':

The status list declares a list of identifiers to which the compiler assigns monotonically increasing values,
beginning with zero. Its purpose is to ailow mnemonic reference to certain variables of small integer value.

Format:

STATUS Lname namel, narne2, ... ;

Lname identifies the status list.

name I ,name2 , ...

3-4

Called status values are assigned monotonically increasing
integer values starting at zero.

60496400 A

Examples:

STATUS WORDS BEGIN~ END~ TERM~ STATUS~ WORDS;

STATUS LISTI POOR~ FAIR~ GOOD~ EXCELLENT;

STATUS LIST2 OK~ NOGOOD;

STATUS SIMLAR2 NOTGOOD~OK; =OK MAY BE IN TWO LISTS=

STATUS ALPHA A~ B~ C~ D~ E~ F~ G~ H, I, J, K, L~ M,
N,O,P, Q,R,S, T, U,V,W,X,Y,Z;

STATUS COLOR RED, ORANGE, YELLOW, BLUE, GREEN;

Status value identifiers, unlike other identifiers, need not be unique within a program since the status list with which
they are associated can always be determined from context; status values are used in the following ways:

STATUS FUNCTION

Format:

status-list-name 'status value'

A status function may be used anywhere an integer constant may be. It defines a unique integer constant value.

Examples:

In the previous examples

X=COLOR'ORANGE' ; = EQUN ALENT TO X=l =

ITEM JJ 1= LISTl'GOOD' ;

STATUS CONSTANT

Format:

S'status value'

Since a status constant does not define a unique value, it must be used only in conjunction with a status item which
refers to the status list of which it is a member. A status constant may be used in expressions and as presets.

Examples:

Referring to the status list examples:

ITEM VAL S: WORDS = S'END' ;

ITEM LETTER S: ALPHA;

60496400 A 3-5

LEITER = s'B' ;

IF LETTER EQ S' Q' THEN ...

STATUS SWITCH

See section 5 for a discussion of switches.

ARRAYS

Certain classes of problems may require variables to be arranged in terms of one or more dimensions. Such an
arrangement of item-like elements is called an array. An array may be viewed as a rectangular assortment of
entries, each composed of one particular instance of each item comprising the array. The array concept refers
collectively to several array items, without reference to value. The dimensionality of arrays is unrestricted. A
typical array is the two dimensional array or matrix where each element resides in a particular row or column.

Example:

column

0 1 2 3

Q A I nl ""7 0
"+ U I -0

row 1 23 -9 11 6
2 -7 14 -2 77

In this array the value 77 resides in row 2, column 3. Because there are 3 rows and 4 columns, this array has the
dimensions 3 by 4.

DECLARATION

An array declaration consists of a header and one or more array item declarations; the header format follows:

Format:

3-6

ARRAY name [I, :U')2 :U2 ...] {~} (entry-size);

Name is the array identifier; it may be omitted unless the ARRAY declaration appears in a BASED, XDEF, or
XREF declaration.

[11 :Ul ,12 :U2 ..•] specifies dimensions of the array

Ij lower bound }
integers, modulo 218

Uj upper bound

The number of pairs (Ij :Uj) is the dimension of the array and IjLuj.

60496400 A

If Ii is omitted it is assumed zero and the colon is also omitted.

If the bounds list is omitted [0:0] is assumed.

The number of entries in the array is:

where the number of words reserved for the array is:

1 p ~ signifies that either P or S is to be chosen, P specifies parallel allocation;
t 8 J 8 serial allocation; if neither is selected, P is assumed.

entry-size is an unsigned integer specifying the number of words in an array entry; if omitted, 1 is assumed and
the parentheses are also omitted. Each entry may consist of one or more array items as defined below.

An array entry exists corresponding to each unique set of defined subscripts.

In serial allocation, the words of each entry are allocated contiguously. In parallel allocation, the first words
of each entry are allocated contiguously, followed by the second words, and so on. A form of dynamic array
allocation is therefore possible with serial allocation only.

Example:

ARRAY A[O:4) 8(3);

word 0
word 1 ..
word 2
word 0 ..

entry 1

entry 4 {
word 0
word 1
word 2

ARRAY ITEM DECLARATION

Occurrences of
ITEM CHAR C(I,0,10)

Would Be Here

ARRAY A[O:4) P(3);

word 0 Ofl

entry 0
entry 1
entry 2
entry 3
entry 4

.. .

.. .

word 2 of 1
entry 0
entry 1
entry 2
entry 3
entry 4

The array declaration header is followed by one or more array item declarations. If more than one appears, the series
must be contained in a BEGIN, END bracket.

60496400 A 3-7

Format:

ITEM name I type ~fbit,size) preset,name2 type (~fbit,size) preset, ... ;

nam~ is the array item identifier.

~ is as defined for items - one of B, I, U, C, R, S: status list

if type is omitted integer is assumed.

ARRAY STORAGE AND ADDRESSING

At compilation time, an array is allocated the following amount of storage:

entry position~)

frrst bit (fbit)

size

Word number in which the high-order bit of the item occurs; ep is the word number starting
from 0, expressed as an integer constant.

Bit number within the word (expressed as an integer constant) starting at the most significant
bit of the word, with O.

If fbit is omitted, zero is assumed by default; if fbit and ~ are omitted, they are both assumed
to be zero.

Item length. For B type items, size is in bits and default size is one bit.

For C type items, size, in bytes, consists of 6 contiguous bits with a first bit number of
0,6,12, ... 54. Default size is one byte.

For I, R, S, and U type items, the size unit is one bit and the default length is one word.

If the entire descriptor is omitted, the defaults are chosen as above.

If one argument is used: (~; if two arguments are used: ~ and fbit.

Preset allows initial values to be assigned to each instance of the array item.

RESTRICTIONS

3-8

B,I,R,S, and U type items must be contained entirely within one entry word and may not
cross word boundaries.

C type items must be byte aligned and the length must be :5 240 bytes.

R type items may be declared to be less than one word. No special handling of the exponent
will be provided by the compiler, however. Results from R type items wpJch are less than
one word will be meaningless.

60496400 A

The following chart summarizes array item allocation restrictions:

fbit Length

Type Alignment Restriction

I,U bit word

R word word

B bit word

C bvte 240 bytes

s bit word

Given

p
ARRAY A{21 :ub22:u2, ... ,2n:un] Sen);

BEGIN

END

ITEM AI U (ep);
ITEM AL;

May
Cross Length Default
Words Unit Length

no bit word

no bit word

no bit bit

yes byte byte

no bit word

the location of the array-item AI[21,22, ... 2n] with respect to the location of its array name, is given by:

array-item address

= array -name-address + ep layout = S

layout = P

Where array-name-address is the address of item AI[O,O, ... 0] (even if the zeroth element does not exist).

For a three-dimension array, the relative location of A[ij,k] with respect to A[21 ,22 ,23] is given by:

location (A [i,j,k])

= location (A[21 ,22 ,23]) + (x + L *(y + M*(z)))*(entry-size)

where:

x = i - 21

Y = j - 22

z = k - 23

60496400 A 3-9

L = ul - QI + 1

M = u2 - Q2 + 1.

For a parallel layout array and entry-size of 0, subscripts are calculated assuming that the entry-size = 1.

Examples of parallel layout arrays:

3-10

ARRAY ARYl [0:10);

Array length
=11*1=11

a
a + 1
a+2
a+3
a+4
a+5
a + 6
a+7
a+8
a+9

ARRAY ARY2[0:10] P(2);

entry 0

a
a + 1
a + 2
a + 3
a+4
a + 5
a + 6
a + 7
a+8
a+ 9
a + 10

- - - - I-------f-

entry 1

I 1--------1

Array length
= 11 * 2 = 22

a + 11
a + 12
a + 13
a + 14
a + 15
a + 16
a + 17
a + 18
a + 19
a + 20
a + 21

In ARY2, all ITEMS whose ep=O will be found above the dotted line; those with ep=1 will be
found below the dotted line. When ep> 1, the ITEM will be defined outside the table limits. No
range checks are made on subscripts or ep's.

60496400 A

l.

Examples of serial layout arrays:

ARRAY ARY3[0:10] S(2);

Example:

~:~:~:~:::::::::::::::::::{{:~:~:~:~::: a + °
a + 1

::: a+ 2
a+ 3"

:::::::::::::}:::::}~{:~:~::::::::::. a + 8
a: + 9

::}}}:::::::::::::::::::~:::::::{ a + 10
a + 11

::::::::::::::::::;:::;::::::::::::::::::::::. a + 14
a + 15

::::::::::::;:::::::::::::::::::::::::::::::: a + 16

: ~:::::::::::::;:;::::::::;=:::::::::::::;= ;:

Array length
= 11 * 2 = 22

a + 17
a + 18
a + 19
a: + 20
a + 21

The core allocation for the table is:

ARRAY NENT [0:8] P(4);
ITEM

60496400 A

Al 1(0,0,15),
BI U(0,I5,15),
Cl U(0,30,30),
Dl C(1,0,20),
EI R(3,0,60);

Iri this array, all ITEMS whose ep=O will be found at
locations a + x where x is even; those with ep=1 will
be found at locations a + y where y is odd. If ep is
outside the proper range, the item will be defined at
locations which are not normal. For example:

ITEM AA 1(2,0,60);

is equivalent to

ITEM AB 1(0,0,60);

except that

AA[s] = AB [s + 2)

In this illustration, the darkened areas indicate entries
of ep=O, clear areas are entries of ep=1.

3-11

The same table with declaration S(4) instead of P(4) is shown in the following two illustrations:

PARALLEL ARRAY STRUCTURE

Al [0] BI [0] CI [0]

Al [1] BI [1] CI [1]

Al [2] Bl [2] CI [2]

Al [3] BI [3] CI [3]

DI [0] (lst half)

Dl [1] (1st half)

Dl [2] (lst half)

DI [3] (lst half)

D 1 [0] (2nd half)

D 1 [1] (2nd half)

Dl [2] (2nd half) J---+-----~ Entry 2
J-----------------------------~

Entry 3 {-.--4--I D 1 [3] (2nd half)

EI [0]

EI[1]

El [2]

~ El [3]

SERIAL ARRAY STRUCTURE

NENT . Al [0] I BI [0] I CI [0]

DI [0] (1st half)

DI [0] (2nd half)

EI [0] I Entry 0

Al [1]" I BI [1] I CI [1]

DI [I] (1 st half)

D 1 [1] (2nd half)

EI[1] I Entry 1

Al [2] I BI [2] 1 CI [2]

DI [2] (1st half)

D 1 [2] (2nd half)

EI [2] I Entry 2

Al [3] I BI [3] J CI [3]

DI[3] (1 st half)

DI [3] (2nd half)

EI [3]

I Entry 3

3-12 60496400 A

I'

l

l
(

t

A serial array can be extended beyond its declared bounds, overlaying any variable allocated immediately after
NENT. If this array is at the end of blank common, the array may extend into available high core. The array
element Al [4], therefore, is in the central memory word beyond El [3].

Extension of a parallel array beyond its declared bounds causes the elements of different entries to overlap
each other. The array element Al [4] is, in fact, the top 15 bits of element Dl [0]. The elements of the entry
with the largest offset, in this case El, may be extended in a manner similar to that for serial arrays. The
array element El [4] exists in the central memory word beyond El [3].

This is true for access to elements within the array bounds if the offset word size of an item is greater than
the entry size. For example, if an additional element was declared in the above example as:

F 1 (4,0,60),

By arranging the proper lower and upper bounds, array-sizes, and ep's for various ARRAY's and ITEM's, many
ITEMS may be forced to OVERLAY (as in JOVIAL) or become EQUIVALENT (as in FORTRAN) to other
ITEMS. Furthermore, by using an array-size of 0, no storage is used but many addresses may be computed
through the relationship of the lower/upper bounds and the ep's.

These practices should be avoided (or used with care). They can result in data structures that depend upon
allocation by a specific loader, as well as interdependencies between tables not immediately apparent.

Some other examples:

ARRAY RAY(0: 9j S (3; ;
ITEM X

y

Z

ARRAY PARALLEL [0];

ITEM M
A
R
I
L
y
N

60496400 A

R

R

R

B
I
c
I
C
B
R

(0,0) ,

(1,0) ,

(2,0) ;

(0,30,1),
(0,0,6) ,
(0,0,1),
(0,0,60),
CO) ,
CO, 50,10) ,
(0,0) ;

Resultant structure of array:

X[O]
Y(O]
Z[0]
X[1]
Y[1]
Z(1]

+ X[9]
Y[9]
Z(9]

3-13

Resultant structure of above array:

0 5 30

I I I MI
'-v-"
A,R,l

'--- ~
I,N

ARRAY SIGMA [-10:-1];
ITEM CHI 1(0,0,60);

Resultant structure of above array:

CHI[-101 -10
-9
-8
-7
-6
-5
-4
-3
-2

CHI[-1] -1

49

In this negatively subscripted parallel array, CHI [-10] is the first word of the array.

59

y

~

Array items are allocated in column order; that is, the leftmost subscript varies most rapidly.

For storage allocation consider the following multi-dimensional array:

ARRAY RHO[0:1,2:4,-5:-4];

3-14 60496400 A

Resultant structure of above array is:

o

/
/

RHO [0,2,-5]
RHO[I,2,-5]
RHO [0,3,-5]
RHO[I,3,-5]
RHO [0,4,-5]
RHO [1,4,-5]
RHO [0,2,-4]

/

/
/

/

1
2
3
4
5
6
7
,.,

RHO[1,2,-4] §§
RHO [0,3,-4] 9
RHO[I,3,-4] 10
RHO [0,4,-4] 11
RHO [1 ,4,-4] 12

/

/
/

/

Given the following two dimensional array:

ARRAY PSI[1:3, 0:3] (2);
BEGIN

ITEM X, Y (1) ;
END

60496400 A

~ ,
/

/

or

ARRAY PSI[1: 3,0: 3] (2);
BEGIN

END

ITEM X 1(0,0,60);
ITEM Y 1(1,0,60);

3-15

The preceding tw.o declarati.ons are identical. The all.ocati.on .of the elements depends .on the specificati.on .of Parallel
or Serial (P or S) in the array declarati.on (see page 3-7). In this example, the all.ocati.on is parallel by default. C.ompare
the f.oll.owing all.ocati.on f.or Parallel and Serial arrays defined as ab.ove in .other respects.

Parallel
X(1,O]
X [2,0]
X[3,0]
X[I,I]
X[2,I]
X[3,I]
X[I,2]
X[2,2]
X[3,2]
X[I,3]
X[2,3]
X[3,3]
Y[I,O]
Y[2,0]
Y[3,0]
Y[I,I]
Y[2,I]
Y[3,I]
Y[I,2]
Y[2,2]
Y[3,2]
Y(1,3]
Y[2,3]
Y[3,3]

PRESET VALUES

Serial
X[I,O]
Y(1,O]
X[2,0]
Y[2,0]
X [3,0]
Y[3,0]
X(1,I]
Y[I,I]
X[2,I]
Y[2,1]
X[3,I]
Y[3,I]
X(1,2]
Y[I,2]
X[2,2]
Y[2,2]
X[3,2]
Y[3,2]
X[I,3]
Y[I,3]
X[2,3]
Y[2,3]
X[3,3]
Y[3,3]

T.o specify a set .of initial values for an array item, an array preset is. appended t.o the array item declarati.on. Basically,
it is a set .of c.onstant values, arranged in a list, with the same order as the all.ocati.on order .of different instances .of the
items in storage. The list is presented in secti.ons encl.osed in square brackets, and nested t.o the depth .of the number
.of dimensions in the array. An N dimensional array at the first level .of nesting, has as many secti.ons as the Nth dimen­
si.on .of the array. Each.of these secti.ons has as many secti.ons as the N-lst dimensi.on, etc. At the deepest level,
each secti.on has as many values as the first dimensi.on .of the array. Each secti.on at the first level c.ontains values f.or
the instances .of the array item with the same rightm.ost subscript; the subscript ass.ociated with each section varying
from the l.ower b.ound at the left t.o the upper b.ound at the right. Each secti.on .of the sec.ond level c.ontains values f.or
th.ose instances with the same rightm.ost tw.o subscripts, etc. The .outerm.ost secti.on is appended t.o the array item de­
clarati.on with an equals sign.

3-16 60496400 A

Example of a preset parallel array:

ARRAY OMEGA [0:1,0:2];
ITEM MU I (0, 0) =[[1, 2][3, 4][5 ,6]] ;

is equivalent to:

ARRAY OMEGA [0:1,0:2];
IT EM MU I (0, 0) ;
MU[0,0] = 1;
MU[1,0] = 2;
MU[0,1] = 3;
r .. 1U(1, 1] = 4;
MU[0,2] = 5;
MU[1,2] = 6;

The constant list need not specify an initial value for every element. The values given are used to set elements starting
with the first instance of the item. Rules for vacuous conditions are:

Null values are indicated by adjacent commas

Trailing null values are omitted

Null brackets are left empty

Thus, the following two array presets are equivalent:

[[[, ,2] [,1,]] [[,,] [3,4,5]] [[,,] [, ,]])

is equivalent to

[[[, ,2] [,1]] [[] [3,4,5)] [])

Repetition of values may be created by bracketing a list of values with parentheses and a count.

Thus,

3(2,1) is equivalent to 2,1,2,1,2,1

and

2(2(0,2)) is equivalent to 0,2,0,2,0,2,0,2

Repetition of bracketed sections is indicated by placing a count outside the bracket.

Thus,

2 [[1 ,3] [2(2)]] is equivalent to [[1,3] [2,2]] [[1,3] [2,2]]

60496400 A 3-17

Further examples of array presets:

ARRAY TENWORD (0:4] 8(2);

BEGIN

IT EM A I (0, 0, 30) = [4" 3 , , 6];

ITEM B 1(0,0,45) = [,10,,15];

ITEM C C(1,0,5) = ('AAAAA',' EEBEE' " CCCCC' " eLLt!:' " EEEEE'];

END

The following allocation emerges from the above coding:

o 15 30 45 59

10 I

B B

3

C C

15

D D

6

E ... ' ... E

Multi-dimension arrays are preset using nested brackets as illustrated in the following example:

ARRAY XYZ [0:2,3:5,-4:-2];

BEGIN

ITEM P 1(0,00,60)= [3[3[3(4)]]];

END

3-18 60496400 A

.' I
~.

ARRAY OUTRAY [1:10] 8(3);

BEGIN

ITEM OUTITEM C(0,00,07)= [IPOS=','MAX=','BLK='];

ITEM OUTSIZE 1(0,42,18)= [10 (4)];

ITEM OUTLO I (1, 00, 12) = [1, 1, , , , 1];

ITEM OOTH! I(1,12,48)= [16383,8388607",,16777214]:

ITEM OL~ALPHA C(1,OO,08)= ["'RUN','~JU','AE',,,'XBNC'];

END

ITEM OUTLEN 1(2,00,12)= [6,1,1,1,1,8,9,1,3,10];

ITEM OUTBIT I(2,12,12)= [45,21,12"",,11];

ITEM OOTNUM 1(2,24,12)= [15,24,6"",,1];

ITEM OUTADD 1(2,36,12)= [4,4,4"",,4]:

ARRAY REFERENCE SUBSCRIPTS

To indicate a particular entry of an array, or a particular instance of an array item, a subscript is appended to the array
item name.

A subscript list for an array reference will contain as many arithmetic expressions as there are array dimensions.
Each arithmetic expression is evaluated as an integer value following the rules of type conversion, and the
resul tant integer (modulo 218) specifies the entry referenced.

If the riatural type of the arithmetic expressions used as subscripts is other than integer, the expressions will be
converted to integer mode.

Examples of array references:

ARRAY REF [0:1,0:2];

ITEM B I (0 ,0) ;

B[1 ,1]

B[X+Y, 1]

B[B[1, E[0 , 0]] , B[1, B[X, 1]]]

60496400 A 3-19

BASED ARRAYS AND THE P FUNCTION

A based array is one for which no storage is allocated by the compiler; however, the compiler does create a specific
pointer variable, compiled with an undefined value. Reference to based arrays will be compiled using the pointer vari­
able which is assumed to contain the defined array address. No implicit mechanism is provided to obtain space and
set the pointer variable for based arrays; pointer values must be set explicitly by the programmer.

The based array name is declared in a based declaration, and reference is made to based arrays in the same manner as
for non-based arrays.

Format:

BASED array-dec

or

BASED BEGIN array-dec array-dec ... END

array-dec is an array declaration

P FUNCTION

Reference is made to the pointer variabie using the intrinsic pointer or p function.

Format:

P<name>

name is the name of a based array.

Examples:

3-20

BASED ARRAY AA[O:9];

BEGIN
ITEM XX;

END

P<AA>=NXTAV ;

FOR I=O STEP 1 UNTIL 9

DO XX[I] = 9 - I;

PROe GET (A) ;

BEGIN BASED ARRAY A[O:999] ;

BEGIN ITEM AA R(O,O,60); END

60496400 A

XREF PROC REAO;

ARRAY A1[0:999];

BEGIN ITEM X R; END

ARRAY A2[0: 999] ;

BEGIN ITEM Y R; END

ITEM GATE B ;

IF NOT GATE THEN P<A) = LOC{A1);

ELSE P<A) = LOC (Ai j ;

READ(A); =PASS THE LOCATION OF A=

RETURN;

END =PROC GET ==

Using based arrays, the programmer may impose a structure any place in memory; however, no storage is allo­
cated at compile time. At run-time, the programmer must derme explicitly the location of the based array.

Example:

BASED ARRAY PRESET [99] ;

ITEM WORD 1(0,0,60) ;

=NOW SET THE ARRAY=

P<PRESET) = LOC(A);

FOR 1=0 STEP 1 UNTIL 99

DO WORD[I] = 0 ;

=LOC(A)COULD HAVE. BEEN PASSE~ TO MAIN
PROGRAM BY ANOTHER PROCEDURE=

Based arrays should be used when the programmer does not know prior to run-time where the array is to be located.
The array may be in a blank common area or in a labeled common area. For example: Use based arrays, for a symbol
table with variable length entries when it is not known where an entry begins in blank common.

Based arrays allow access to absolute location within the program field length. In the example P<PRESET> = 0;
WORD [1] is word one of the program field length.

By setting the pointer of a based array to the location of a label or procedure, the machine code at that location may
be accessed.

60496400 A 3-21

EXPRESSIONS

An expression is a rule for computing a value. The values of the operands comprising the expression are combined
according to the rules of the language to form a single value. Constants, simple items, subscripted array items, and
function references are all expressions. Further, if Xl and X2 are expressions and OPI and OP2 are unary and binary
operators,-respectively, then OPI Xl and Xl OP2 X2 are expressions.

4

Operators with higher precedence are evaluated before those with lower precedence, otherwise, expressions are evalu­
ated from left to right. Parentheses may be used to change the order of evaluation. If X is an expression, (x) and ((x))
are also expressions. In evaluating A+B*C the multiplication is performed first. If the addition is to be performed
first the expression is written as (A+B) *C.

ARITHMETIC EXPRESSIONS

An arithmetic expression containing only numeric operands and arithmetic operators has a numeric value. Numeric
operands include constants, items, subscripted array items, and functions of type integer, real, or status.

The arithmetic operators are listed below in order of precedence (highest to lowest).

() Parentheses, beginning with the innermost pair

** Exponentiation

*/ Multiplication and division, from left to right

+- lJnaryplus,minus

+- Addition and subtraction, from left to right

LNO Logical no (complement)

LAN Logical and

LOR Logical or (inclusive)

LXR Logical or (exclusive)

LIM Logical imply

LQV Logical equivalent

SYMPL has no implicit multiplication features in which algebraic multiplication can be indicated by X(Y) or 3X. Such
multiplication in SYMPL must be explicit: XX * YY and 3 * XX.

60496400 A 4-1

Omission of an operator, as for implied multiplication (X) (Y), for instance, is not valid and results in a compiler diag­
nostic. Also, division by zero is undefmed.

All function references and exponentiation operations which are not evaluated in-line are evaluated prior to other
operations.

When writing an integer expression, it is important to remember not only the left-to-right scanning process but also if
dividing an integer quantity by an integer quantity yields a remainder the result will be truncated; thus 11/3 = 3.

An array element name (a subscripted variable) used in an expression requires the evaluation of its subscript. The
type of the expression in which a function reference or subscript appears does not affect, nor is it affected by the
evaluation of the actual arguments or subscripts.

The operators LNO, LAN, LOR, LXR, LIM, and LQV form the bit-by-bit complement, product, etc. of the operands.
The Glossary defines the operation of the individual operators.

The following examples are valid expressions:

A - (C+DELTA*AERO)

3.14159 TEMP+V[M,MAXF[A,B]] *Y**C

B+16.427 (XBAR+(B[I,J+I,K]/3))

A LAN B LNO A LOR B

LNO C + D B * (LNO D)

In the following examples, I indicates an intermediate result (not a register)

LNO (A+B*(C-D*E-(-F+G)/3))

would be evaluated in a way functionally equivalent to:

D * E --.. II

13 + G ----- 14
14 I 3 ---.. IS

12 - IS ----- 16

B * 16 ---.. 17

A + 17 ----- 18

LNO 18 ~ Result

4-2 60496400 A

A **B/C+D*E*F-G is evaluated:

A**B .- II

IIIC .. 12

D*E ., 13

I3*F .. 14

12-G • 15

J 1 ...
.L4'.L;:) ~ 16 evaluation completed

A **B/C(C+D)*(E*F-G) is evaluated:

A**B .. II

C+D .. 12

11/12 • 13

E*F .. 14

I4-G ., IS

13*15 • 16 evaluation completed

The following are examples of expressions with embedded parentheses:

A *(B+«C/D)-E)) is evaluated:

C/D .. 11

A*13 evaluation completed

60496400 A 4-3

(A *(SIN(X)+ l.)-Z)/(C*(D-(E+F») is evaluated:

SIN(X) .. I}

1}+1. ... 12

A*12 ... 13

13-Z .. 1.4

E+F .. IS

C*16 ... 17

4/17 ~ 18 evaluation completed

BOOLEAN EXPRESSIONS

The value of a Boolean expression is either TRUE or FALSE. Boolean expressions are used most often in IF state­
ments.

RELATIONAL EXPRESSIONS

Relational expressions are a subset of Boolean expressions. A relational expression is used to compare the value of
two arithmetic expressions or character operands.

Format:

aj are either arithmetic expressions or character operands.

op is a relational operator belonging to the list below.

Operator Description Symbol

):;'('\ Equal to £.J,<

GR Greater than >

LS Less than <

GQ Greater than or equal to

LQ Less than or equal to

NQ Not equal to

4-4 60496400 A

A relation is TRUE if al and a2 satisfy the relation specified by the op; otherwise, it is FALSE. Boolean items are
considered FALSE if the bits comprising that item are all zero; otherwise, they are considered TRUE. Boolean con­
stants are integer 0 for FALSE and integer 1 for TRUE.

Relations are evaluated as illustrated in the relation p EQ q, which is equivalent to the question: Does p-q = 01 If the
answer is yes, the relation is TRUE; otherwise FALSE. Relational expressions are converted internally to arithmetic
expressions according to the rules of mixed-mode arithmetic. These expression are evaluated to produce the truth
value of the corresponding relational expressions.

The order of dominance of the operand types within an expression is the order stated for mixed-mode arithmetic
expressions.

in reiationai expressions +0 is considered equal to -0.

Examples:

AGR 16

R-Q(I) *Z LQ 3.14159

B-C NQ D+E

R(I) GQ R(I-l)

I NQ J(K)

I EQ (J(K))

LOGICAL EXPRESSIONS

Logical expressions are formed with Boolean operators and Boolean operands and have the values TRUE or FALSE.

The Boolean operators are listed below in order of precedence:

Boolean Operators

NOT

AND

OR

Description

Logical negation

Logical conjunction

Logical disjunction

Boolean operands include Boolean items, Boolean constants, Boolean functions, and relational expressions.

Evaluation of a Boolean expression is terminated as soon as evaluation of any part of the expression has determined
the result. For example, if Ll is FALSE in the logical expression Ll AND ~ AND L3, then ~ and L3 are not
evaluated, since the expression. must perforce be FALSE as soon as any FALSE value is discovered.

The expression

A OR B AND NOT C

is evaluated:

NOT C ----- Bl

60496400 A 4-5

Bi are Boolean values; if B3 is TRUE, the entire expression is TRUE.

If L1 , L2, are logical expressions, the logical operators are defined as:

NOT Ll FALSE only if Ll is TRUE

Ll AND L2

Ll OR L2

TRUE only if L 1, L2 are both TRUE

FALSE only if L 1, ~ are both FALSE

Examples:

The algebraic expression B-C ~A ~ B+C may be written:

B-C LQ A AND A LQ B+C

An expression equivalent to the logical relationship (P ~ Q) may be written:

NOT (P AND (NOT Q))

A graphic representation of the operators is shown below:

ALPHA AND BETA

T F
F
F

T
F

Formula

T
F
F
F

Figure 4-1. AND Boolean Operator

The OR Boolean operator indicates disjunction. A Boolean expression joined by OR is TRUE if either of its parts
are TRUE, as shown in Figure 4-2.

ALPHA OR BETA a

T
T
F
F

T
F
T
F

Formula

T
T
T
F

Figme 4-2. OR Boolean Operator

The NOT Boolean operator indicates negation. A Boolean expression with a leading NOT is TRUE only if the ex­
pression itself is FALSE. Figure 4-3 shows this graphically.

NOT ALPHA a Formula

T F
F T

Figure 4-3. NOT Booiean Operator

4-6 60496400 A

(ALPHA OR BETA) a (3 Formula

AND NOT
T T F

(ALPHA AND BETA) T F T
F T T
F F F

ALPHA OR BETA a (3 'Y Formula

AND GAMMA
T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T F
F F F F

(ALPHA OR BETA) a (3 'Y Formula

AND GAMMA
T T T T
T T F F
T F T T
T F F F
c T T T I

F T F F
F F T F
F F F F

Figure 4-4. Combinations of Boolean Operators

OPERANDS AND MiXED-MODE OPERAiiONS

BOOLEAN OPERANDS

Boolean operands and Boolean expressions differ in nature from arithmetic operands and expressions, and may not be
involved with them in arithmetic expressions. No arithmetic operator will apply to any Boolean operand, and vice
versa.

OPERAND TYPES - ARITHMETIC OPERANDS

SYMPL uses the following arithmetic operand types:

Real Unsigned integer

Signed integer Character

60496400 A 4-7

The hierarchy of operand types is the order listed above, with character operands being the lowest of the
hierarchy and real operands being the highest. Character operands are not true arithmetic operands; they may
be used only in relational expressions or with the operators LAN, LNO, LOR, LXR, LIM, and LQV. SYMPL
does not access more than the first word of a character operand.

In general, the various arithmetic operators are applicable to operands of any type. Except as noted below, each in­
dividual operation is performed only on operands of the same type.

The compiler supplies conversion operations as appropriate, such that the common type of two operands affected by
a single binary arithmetic operator is the higher of the two operand types involved. The result of such an operation
is of the common type. Thus, the expression

I + R (where I is integer and R is real)

is computed in floating point, after converting the value of I to floating point, whereas the expression

C EQ C<O,l>XYZ (where C is a character variable)

is computed in character mode, with no conversion.

Similarly, the expression

(I+2) * R

is computed as follows:

1. Add 2 to I in integer mode

2. Convert the result of (l) to floating-point

3. Multiply the result of (2) by R, in floating-point.

Exceptions to the hierarchial conversion rwe are the following:

ABS

Character operands

Exponentiation

Operators

4-8

The ABS intrinsic function operates only upon integers and real operands. The result of the
operation on an integer is type unsigned integer; the result for any other argument type is the
same type as the input argument.

When an operand of type character is placed in combination with a noncharacter operand,
typically it is converted to the type of that operational operand, as dictated by the hJerarchy.

Under certain circumstances, exponentiation may be performed in integer mode and will yield
an integer result; this is true only for exponent operations with type integer base and type in­
teger exponent. All other exponential operations are forced to the form: (real) ** (integer)
and yields a real result.

The six operators (LNO, LAN, LQR, LXR, LIM, and LQV) operate without conversion upon
operands of any type producing a result of type unsigned integer.

60496400 A

TYPE CONVERSION TRANSFER FUNCTIONS

The following information defines the techniques for conversion of operand type values for all operand type combi­
nations.

CONVERSION OF CHARACTER OPERANDS

Character operands always exist in storage in an integral number of machine words padded on the right with blank
characters. When combined for all arithmetic operations, character operands are converted to integer. The conversion
to unsigned integer mode is identical to that of integer; and the conversion to real mode is equivalent to integer con­
version followed by a conversion of the integer result to the desired final form.

When used in replacement statements, character operands will be either blank tIUed on the right or right truncated,
as necessary.

When used in relations, character operands will be compared according to the display code value of their representa­
tion; and trailing blanks will not be significant.

When combined with logical operators (such as LAN), character operands will be truncated or blank filled, as necessary,
to 10 characters.

CONVERSION OF INTEGER OPERANDS

I nteger To Character Conversion

The rightmost byte of the integer is left justified in the receiving character field and the balance of that field (which
may be long or nonexistent) is padded on the right with blanks.

Integer To Real Conversion

The integer is floated; if the integer is small enough to conserve precision, the conversion will result in a real number
of the correct value.

Integer to Unsigned Integer Conversion

The SYMPL compiler does not perform a conversion from integer to unsigned integer.

Real Operand To I nteger Conversion

Real operands are converted to integer by truncation, and converted to character if needed by first converting to
integer and then to character. If the value represented by the real operand is larger than integer size, significance
may be lost in this type of conversion.

60496400 A 4-9

Results of integer multiply or divide or the conversion from real to integer has the following limits:

- (248 -I) ~ N ~ (248 -I)

FUNCTION CALLS AND INTRINSIC FUNCTIONS

A function reference calls a subprogram, causes parameters to be passed to it, and represents a value whose type is
specified by the declaration of the subprogram function.

The following functions are classified as intrinsic:

Name Description

ABS Absolute function

B or C Bead function

LOC Location function

P Pointer function (see section 3)

ABS FUNCTION

The ABS function returns the absolute value of the argument. If the argument type is real, the returned value is also
real; however, if the argument type is integer or unsigned, the returned value is unsigned integer. An argument of any
other type merely returns an unmodified argument.

Format:

ABS(expr)

Example:

ABS(-17)

BEAD FUNCTION

If an item is viewed as a string of bits or bytes, accessing a segment of this string, essentially, is accessing beads of the
string. The intrinsic bead functions allow reference to individual beads or group of beads.

The bead functions are the bit function (B) and the byte or character function (C).

4-10 60496400 A

Format:

B<et ,e2>sb or B<et>sb

C<et ,e2>sb or C<e1>sb

el and ~ are arithmetic expressions specifying the first bead to be extracted and, in addition~ the number of
beads respectively. If e2 is omitted, it is assumed to be 1.

sb is an item name or a subscripted array item specifying the source of the beads.

Beads are numbered from left to right, beginning with zero, and the size of a byte is six bits; thus, the bits of a word
are numbered from 0 to 59 and the bytes from 0 to 9.

Both bits (B) and byte (C) functions can cross word boundaries when operations concern character operands. The
bit function is limited to 10 characters, the byte function to 240 characters. No check is made for B or C functions
extending beyond the operand. If the operand is not of type character, bead functions may not cr0SS word boundaries.

Data Type

Function B < el, e2 > sb

C < el, e2 > sb

Maximum Values for e 1 + e2

C

60

240

I,U,R,S

60

10

Bit function is considered to be type' unsigned integer and the byte function type character independent of
the type of sb. The appropriate type conversion applies to either bit or byte function results if used in an
expression or on the right-hand side of a replacement statement.

Example I:

ITEM BOAT C (20) .
•

C<0,3) BOAT = 'CAL' ; : SETS THE FIRST THREE CEARACTERS OF
ITEM BOAT = 'CAL':

C<0,3> BOAT is of type character while B<0,18> BOAT is of type unsigned integer.

Example 2:

ITEM FLAGS;

FOR 1=0 STEP 1 UNTIL 59 DO

IF B(I,1) FLAGS EQ 1

THEN GOTO L2;

: LOOKING FOR MOST SIGNIFICANT 1-BIT:

60496400 A 4-11

XYZ = E<30,30> L(I+1] ;

ARRAY TIME (0: 7];

ITEM CARD C(O,0,10);

FOR J=O STEP 1 UNTIL 7 DO

FOR 1=0 STEP 1 UNTIL 9 DO

BEGIN

Gorro SWITCH (C< I, 1> CARD(J]] ;

•
== SWITCH ON CHARACTERS OF I'IEM CARD ==
•

END

LOC FUNCTION

The value of the intrinsic LOC function of a data structure is the address of the data structure during program execu­
tion.

Format of intrinsic LOC function:

LQC(arg)

arg may be one of the following:

item name

subscripted array item

procedure name

function name

switch name

label name

array name (with the optional subscriptor)

This is the only context in which an array name may appear with subscripts; the result is the address of the array
entry with the subscript.

Examples:

P<BASE> = LOC (ARRA Y) ;

P<BASE> = LOC CARRA Y [I]) ;

4-12 60496400 A

STATEMENTS 5

STATEMENT TYPES

Statements can be either simple or compound.

SIMPLE STATEMENTS

A single statement, such as a GOTO statement or an assignment statement, is called a simple statement. Thus, regard­
less of the complexity of the formula designating the right term of an assignment statement, it is a simple statement.

COMPOUND STATEMENTS

A series of simple statements may be grouped together and enclosed within the BEGIN ... END brackets. Such groups
are called compound statements.

A compound statement may encompass other compound statements. Each structure enclosed within matching
BEGIN ... END brackets is operationally a compound statement regardless of the nature of the inner structures,

Compound statements are often used as the controlled statements of the FOR and IF statements. A compound
statement is not terminated with a semicolon.

STATEMENT CATEGORIES

Statements are grouped below into two categories, based upon the nature of the function they describe: Value Assign­
ment statements (cause the assignment of value to items and array items) and Flow-of-Control statements (alter the
normal sequential processing order for statements).

VALUE ASSIGNMENT STATEMENTS

The replacement statement and the exchange statement comprise this category.

Replacement Statement

The replacement statement is used to assign a value to an item.

60496400 A 5-1

Format:

v=exp;

exp is an expression

v is one of the following:

item name
subscripted array item
function name
P-function reference
bead function reference

A function name may be used as the left-hand side of a replacement statement only within the function of the same
name.

The expression on the right is converted to the type of the left-hand side before making the assignment. See section
4 for details of conversion functions.

If the left-hand side is a bead function reference, only the specified beads will be replaced; the remainder of the item
will remain unchanged.

Examples using the replacement statement:

ITEMA=TEMP;

B=C NQ D AND E;

Exchange Statements

Format:

=GIVE ITEMA THE VALUE OF TEMP=

= COMPUTE THE VALUE OF C NQ D AND E
THEN GWE THIS V ALUE TO B =

Vi are as in replacement statements except that function names are excluded.

Exchange statements cause the exchange of value, with appropriate type conversion, between the two named entities.
Tne order of expansion is not guaranteed (either VI or V2 may be stored first); however, the language does guarantee
that expressions which must be evaluated to compute the address of VI or V2 (subscript expressions, bead function
component expressions) will be computed only once. Therefore, such expressions must be evaluated prior to the ex­
change and their values saved; the exchange process must refer to the expression values by referring to temporary
variables. For example, the exchange statement A=B; is expanded to the form:

temp=A;

A=B;

B=temp;

5-2 60496400 A

Also, the exchange statement

B<I,J>X[K] ==B<L,M>Y[N];

is expanded as follows:

1. temp #1=1;

2. temp #2=J;

3. temp #3=K;

4. temp #4= L;

5. temp #5=M;

6. temp #6=N;

7. temp #7=B«temp #1),(temp #2»X[(temp #3)];

8. B«temp #1),(temp #2»X[(temp #3)] =

B«temp #4),(temp #5»Y[(temp #6)] ;

9. B«temp #4),(temp #5»Y[(temp #6)] = (temp #7);

The temporary variables used for storage of component and subscript expressions are all of type integer; the
temporary variable used for storage of the left side of the exchange statement assumes the type of the right side.

A label is an identifier used to name a statement. It is declared in a label declaration but need not be declared prior to
its use.

Format:

name:

Embedded blanks are not permitted between the name and the delimiter (:).

A label declaration may appear at any point in the program where it is legal for a statement to appear. If a label is
immediately followed by a statement, it forms a name for that statement through which the compiled code generated
by that statement can be accessed. If a label is not immediately followed by a statement, it forms an entry point for
the next code to be generated. Generation of this code may be caused by the occurrence of a statement, or it may be
code generated in response to some implicit program feature.

Examples of implicit code:

Test at the bottom of a FOR loop

Jumps around ELSE part of a conditional statement

Jumps around procedures, functions, and switch declarations

60496400 A 5-3

Format of labeled statement:

name:

or

name: statement

Since a labeled statement is itself a statement, two labels in sequence synonymous.

SWITCHES

A switch is a programmer named and defined entity which is a vector of label names and can be placed at the
disposal of a jump.

ORDINARY SWITCHES

Format:

SWITCH name labell' ... ;

name is an identifier which names the switch.

labeli are label names.

In the simpier form of a switch, the iabei names which constitute the switch are ordered by their appearance in the
switch list segment of the switch declaration; increasing integer values are associated with the points of the list, be­
ginning with zero.

Examples of simple switch declarations:

5-4

SWITCH GONOGO PROCEED, QUIT;

SWITCH SWORD $ITEM,SARRAY,SPROC.$FUNC;

SwITCH

GOTO

~ . LABELl, LABEL2, LABEL3,

L-=DEFINES A SWITCH =
AAA[I] ; <-= USES A SwITCH = ---

.~ .
1=0

LABELl: = GO'l'O LABELl =

LABEL2 :
1 = 1

=GOTO LABEL2=

LABEL3:
1=2

=GCTO LABEL3=

LABEL4:
1=3

=GOTQ LABEL4=

1=4
LABEL5: .. I = GOTC LAEELS =

LAEEL4, LABELS

60496400 A

If it is known that the switch will never be accessed with certain values of the index, labels for these values may be
omitted from the switch.

Example:

SWITCH LABLST L} , ,L3 ,L4 ;

STATUS SWITCH

Format:

SWITCH name: siaius-name label}: siatus-value}, ... ;

name is an identifier which names the switch.

status-name is the name of a status list.

labe\ is a label name.

status-valuej is a status value chosen from the status list status-name.

In this form, the labeled names are ordered by the compiler according to their explicit association with status values
from a specified status list.

The status switch is convenient when the argument is a status item; not all status values from the status list need be
associated with labels in the switch declaration.

STATUS SWITCH DECLARATION

Example:

STATUS SIZE TINY,SMALL,MEDIUM,LAR~E,ENORMOUS;

SWITCH FUN: SIZE LABEL1: TINY,LABE15:ENOFMOUS,
LABEL2:SMALL,LAEEL3:MECIUM,
LABEL4:LARGE;

GO'IO FUN[SI ZE' MEDIUM']; == GOTO I.AB EL3 ==

==USE WHEN ARGUMENT IS A STATUS ITEM==

LABEL3: RETURN;

60496400 A 5-5

GENERAL

A switch is an ordered set of label names, each associated with an integer value. A GOTO statement specifying an argu­
ment is used to select the label from the switch associated with the value of the argument. If the value of the argument
does not match any of the values associated with the switch list labels, the result is undefIned; if the range checking
option (option C) is selected on the SYMPL control statement, the job is terminated with an error message.

GOTO STATEMENT

The control statement GOTO directs the program to branch out of the normal, serial sequence of execution by trans­
ferring control to a statement designated by a label name or a switch name.

Format:

GOTO label;

or

GOTO switch [exp] ;

label is a label name

switch is a switch name

exp is an arithmetic expression

The first form, GOTO label, causes unconditional transfer of control to the point in the program associated with the
given label name; the second form causes a label to be selected from the named switch according to the value of the
argument expression:

Examples:

GOTO JAIL;

SWITCH GONOGO PROCEED, QUIT;

GOTO GONOGO [1];

The second GOTO statement is equivalent to:

GOTO QUIT;

CONDITIONALITY: IF STATEMENT

An IF statement causes a conditional transfer of control, depending on the value of a Boolean expression.

5-6 60496400 A

Format:

IF Bool-exp THEN statementl
or

IF Bool-exp THEN statement l ELSE statement2

Bool-exp is a Boolean expression

If the value of the Boolean expression is TRUE, statement l is executed. If it is FALSE the next sequential
statement is executed; in the second format, statement2 is executed if the value is FALSE.

When IF statements are nested, an ELSE clause always is associated with the inner most nested incomplete IF
statement. (See examples 3 and 4.)

Example 1:

IF A EQ 1 THEN B = 2;

ELSE E = 0;

IF A EQ 1 THEN

IF B EQ 1 THEN

GOTO L;

ELSE A = 7;

IF BOOL THEN

BEGIN
BOOL :; NOT BeO!.;
GOTO L ;

END

Example 2:

IF AGE GQ 18 THEN

GOID VOTER;

GOTO MINOR;

VOTER:

MINOR:

60496400 A

=THIS S'IATE}t1..ENT I S EXECU'IE~ IF
AGE IS GREATER THAN OR EQU~L
'IO 18=

=OTHERWISE THIS STATEMENT
IS EXECUTED=

5-7

Example 3:

IF ==1 == A THEN

IF =2= B THEN

IF =3= C THEN

••• ELSE =3= •••

•• • ELSE =2= •••

• • • ELSE =1= •••

Example 4:

IF RHO LQ 1 THEN PSI = 6 ; --- ~ -ELSE PSI = 9; ~

- /-~F TRUE DC T~
~=IF FALSE DO THIS=

IF A THEN

IF B 'IHEN

[IF C THEN D = 1-t

ELSE D = 2; l ELSE 0 = 3;

ELSE D = 4;

LOOPING

The GOTO and the IF statements may be used to create program loops. Also, looping can be created through
the FOR statement. In general, a program loop must perform five distinct steps:

5-8

Initialize

Test

Branch

Execute

Modify

Set a counter and other program variables to initial values.

Test whether counter has reached its terminal value.

Return to the execute step if the counter has not reached its terminal value; exit the
loop if terminal value has been reached.

Perform necessary calculations for which the loop was constructed.

Change the counter or other variables by which loop iteration is controlled.

60496400 A

These steps are summarized in the following general flowchart:

Figure 5-1. General Loop Flowchart

FOR STATEMENT

The FOR statement combines into one statement: the counter initiaiization, modification, testing, and subsequent
branching. It also specifies a variable to be used as a counter. It can set the index to an initial value, declare the
modification increment or decrement and set the terminal value. In addition to controlling the number of iterations
performed, the index can be used also as an integer variable within the loop.

Format:

FOR i=Xl 00 statement

FOR i=Xl STEP X2 00 statement

FOR i=Xl STEP X2 UNTIL X3 DO statement

FOR i=Xl WHILE hx DO statement

FOR i=Xl STEP X2 WHILE bx 00 statement

Item i, above, is called the induction variable, and it may be of any type except Boolean or character. Also, it will
assume a value given. as an initial value, and its subsequent value will control the execution of the repeated statement.

X2 and X3 are arithmetic expressions of unrestricted type; however, operations are carried out in the mode of the in­
duction variable, with appropriate conversions.

bx is a Boolean expression.

60496400 A 5-9

The intermediate language used to represent FOR statements is a straightforward expansion of code. The above
cases expand to forms with the following SYMPL equivalents:

FOR I=XI 00 A=O;

is equivalent to

FOR I=XI STEP X2 00 A=O;

is equivalent to this sequence .

FOR I=XI STEP X2 UNTIL X3 00 A=O;

is equivalent to sequence A, unless X2 has
a minus sign prefIX, in which case it is
equivalent to sequence B.

FOR I=XI WHILE BX 00 A=O;

is equivalent to this sequence.

FOR I=XI STEP X2 WHILE BX 00 A=O;

is equivalent to this sequence.

A

i ,

I=X1;
L: A=O;

GOTO 1.;

I=X1;
L: A=O;

I=I+X2; GOTO L;

I=X1;
L: IF I I.Q X3 ~BEN BEGIN

A=O;
I=I+X2; GOTO L; END

I=X1 :
B L: IF I GQ X3 THEN BEGIN

A=O;

L:

L:

I=I+X2; GOTO L; END

I=X1 ;
IF EX THEN BEGIN
A=O; GO'IO L; E·ND

I=X1;
IF BX THEN BEGIN
A=O;
I=I+X2; GCTe 1.; END

All tests are performed before execution of the controlled statement, which allows zero repetitions of the controlled
statement.

It is possible to write a compound statement as the iterated statement of a FOR statement. The value of the induction
variable is undefined after the loop is complete. However, if the iterated statement causes a jump out of the FOR
statement, the current value of the induction variable at the time of the jump is preserved. Moreover, if the controlled
statement is entered by a GOTO statement from outside the FOR statement, the value of the induction variable may
be undefined.

5-10 60496400 A

Example:

FOR A=1 STEP 2 UNTIL 99 DO

LOOP1:

IF VALUE(A+ 1] LS VALUE[A] 'IHEN
BEGIN

VALUE[A+1] -- VALUE[A] ;

END

If GOTO LOOP1; is executed from outside the BEGIN ... END bracket, index A has not been initialized and the
results of the exchange statement are undefined.

The statement controlled by a FOR statement may itself be a FOR statement, allowing for nesting:

Example:

FOR A=l STEP 1 UNTIL 10 DO

FOR B=1 ~I~~ 1 DO
BEGIN

FOR C=l STEP 2 UNTIL 6000
BEGIN

FOR A=1 STEP 1 UNTIL 15 DO

END
END

The above example, coded in error intentionally, illustrates an invalid use of the FOR clause; A is used as an induction
variable for two loops at the same time.

TEST STATEMENT

In a FOR statement, the compiler automatically supplies the modification, testing, and branching steps of a loop. The
TEST statement provides a means of branching to the implicit modify-test-branch steps as illustrated in the general
flow-chart (figure 5-1).

60496400 A 5-11

Format:

TEST;

or

TEST name;

name is the name of an item used as an induction variable in a loop containing the TEST statement.

A TEST statement is meaningful only within the controlled statement of a FOR statement. When the TEST
name statement is executed, control is transferred to the modify-test-branch for that induction variable; in this
case, other index modify-test-branches could be skipped, and those induction variables would not be incremented
for the next iteration. If name is omitted, control transfers to the modify-test-branch sequence of the innermost
loop.

Examples:

FOR A=O STEP 1 UNTIL 52 DO

BEGIN

IF DEMANr{ 'IODA Y] GR DEMAND['!Cf(RW] '!HEN
'rES,!;

•

E,ND

If the conditional statement is TRUE, the TEST statement drops control to the increment step of the FOR loop,
bypassing all coding between the TEST and END statements.

5-12

FOR A=O STEP 1 UNTIL 100 DO

EEGIN
•

FOR B=99 STEP -1 UNTIL 0 DC

BEGIN

IF INCOME GR 10000 OR CREDIT EQ S'GOOD' THEN

TEST A;

IF INCOME{B] GR OLDEST AND SEX[B] EQ S'FE~AIE' THEN

TEST B;
•

END

END

60496400 A

If the conditions in the first IF statement are satisfied, control passes to the modify-test-branch for the outer loop,
index A. If the first test statement had not specified A, control would have passed to the inner-most modify-test­
branch, for B. If both conditions in the first IF statement are FALSE, execution bypasses the first TEST statement;
and if the conditions of the second statement are satisfied, TEST B; statement is executed, passing control to the
modify-test-branch for loop index B. Only when the above conditions are FALSE is the coding executed, that follows
the TEST B; statement.

STOP STATEMENT

A STOP statement halts the program execution and returns control to the operating system. A STOP is generated
automatically at the end of a main program.

Format:

STOP;

RETURN STATEMENT

The RETURN statement is meaningful only within a procedure or function. When a RETURN statement is executed
in a procedure, control is returned to the calling routine.

Format:

RETURN;

PROCEDURE CALL STATEMENT

The procedure call statement is used to transfer control to a procedure, or closed subroutine, possibly passing data,
and to set up return linkage to the calling routine.

Format:

name;

or

name(Pl , ...);

name is a procedure name.

Pi are actual parameters

See section 7 for a more complete discussion of procedures.

60496400 A 5-13

COMPILER DIRECTIVES 6

CONTROL STATEMENT

The CONTROL statement directs the compiler to take immediate action. It may concern the compiler output
by specifying a page eject or suppressing a source listing, or it may concern the generated code by causing a
particular compiler option to be selected automatically. Additionally, the type of CONTROL statement known
as a conditional-compilation directive, can cause the compiler to suppress the source code that LT~T.ediately
follows the directive.

The CONTROL statement is not executable at object time, although it may affect the contents of the object
program. Also CONTROL statements may be introduced between an IF statement and its controlled statement.

The CONTROL statement may be written anywhere a statement can be written as well as in the following
contexts:

Within a list of array item declarations enclosed by BEGIN ... END brackets

Within a list of based arrays, enclosed by BEGIN . . . END brackets

Inside an external declarations list, enclosed by BEGIN ... END brackets

Within a common declaration list, enclosed by BEGIN ... END brackets

CONTROL statement format: (excluding conditional-compilation directive)

CONTROL control-word ;

The effect of the CONTROL statement is to perform the compiler action specified by the control-word as
follows:

Control Word

EJECT

LIST

NOLIST

OBJLST

PACK

PRESET

FI }
ENDIF

60496400 A

Function

Compiler skips to new page of listing output.

Compiler resumes normal listing of source.

Compiler suspends normal source listings.

Object code listing for this program is to be printed.

Turns on D option for this program.

Turns on P option for this program.

(See page 6-2)

6-1

The OBJLST, PACK, and PRESET options apply to the entire program and the appropriate CONTROL state­
ment should be placed at the beginning of the program.

CONDITIONAL COMPILATION

The format of a CONTROL statement specifying conditional compilation is as follows:

CONTROL condition-word constant 1, constant2 ;

condition-word is defined below,

constant l and constanh are compile time constants.

This CONTROL statement causes optional compilation or suppression of source code, called conditional code.
The code suppressed depends on the condition word as follows:

Condition-Word Compiles Conditional Code H

IFEQ constant l = constant,

IFLS constant I < constant,

iFLQ constant. ~ constant,

IFGR constant. > constant,

IFGQ constant. ~ constant,

IFNQ constant. =1= constant,

Usually, one or both constants are specified by a DEF name or DEF parameter, thus parameterizing the con­
ditional compilation. If constanh and its preceding comma are omitted, it is assumed to be integer zero. The
constants may be integer, real, Boolean, or character, but both must be of the same type. No conversion of
types takes place before comparison. Character constants may be compared only by the condition words IFEQ
and IFNQ, and leading and trailing blank characters are considered significant.

Conditional code is bracketed between a conditional compilation directive and a CONTROL FI statement. The
brackets may be nested, and source code is suppressed to a CONTROL FI that matches the conditional com­
pilation directive. In any other situation CONTROL FI is ignored. CONTROL ENDIF is synonymous with
CONTROL FI.

If conditional code is suppressed, syntax and semantic checks are not performed and DEF names are not
expanded. Comment sequences and strings are not examined Jor the presence of start or end-of-conditional
compilation directives. For this purpose, a semicolon (;) does not terminate a comment sequence.

6-2 60496400 A

Examples:

DEF VERSION =3.4=;
DEF DBUG =1=;

CONTROL IFNQ DBUG,I; J=O; K=O; CONTROL FI;
CONTROL IFGR DBUG,2; IF J NQ 0 THEN K=K+l; ELSE K=K-l; CONTROL FI;
CONTROL IFEQ VERSION, 2.0; RETURN; CONTROL FI;

CONTROL IFEQ VERSION, 3.4;
CONTROL IFNQ DBUG; PRINT(CHECK);
CONTROL FI;
CONTROL FI;

CONTROL IFNE VERSION, 3.3; FOR J=1 STEP 2 UNTIL N DO
BEGIN ...

... END
CONTROL FI;
CONTROL IFNE VERSION, 3.4; ITEM X C(7); CONTROL FI;
CONTROL IFEQ VERSION, 3.4; ITEM X C(8); CONTROL FI;

TERM STATEMENT

A TERM declaration signals the end of a compilation and must be the last statement of a program or subprogram.

Format of TERt\1 statement:

TERM

DEBUGGING CODE FACILITY

A programmer may want to include various source statements in his program which may be deleted easily from the
compilation. The delimiters $BEGIN and $END allow the programmer to enter source statements which only will be
compiled while the program is in the debug mode. They are syntactically identical to BEGIN and END; however, in
certain circumstances, they can cause code to be deleted from the program.

Compound statements are of the form:

BEGIN statements END

statements is composed of a sequence of zero or more statements (simple or compound); such a compound statement
acts like a simple statement in every respect. Along with delimiting a compound statement, the special delimiters
$BEGIN and $END bracket code which is to be optionally compiled.

60496400 A 6-3

When the compiler debug option is selected (E option on the compiler call statement), the delimiters $BEGIN and
$END are identical in function to the standard delimiters BEGIN and END; the compiler option is selected
when the compiled program should include the code enclosed within the special $BEGIN . . . $END brackets.
If the debug option is not selected, the coding between $BEGIN and $END is omitted from the compilation.

In normal mode, syntax is not checked for code appearing between $BEGIN and $END; code is not generated; de­
clarations will have no effect on the code outside of $BEGIN and $END brackets.

The following restrictions must be observed:

The TERM statement must not appear in a $BEGIN ... $END sequence and the $END must not result from a
DEF expansion.

DEF DECLARATION

The unparameterized DEF declaration provides a source substitution capability by permitting an identifier to
be defined as equivalent to a character striIig. When the identifier is used subsequently, it is replaced by the
character string.

The parameterized DEF declaration provides a macro capability by allowing substitutable parameters to be
associated with the defmition of an identifier in a DEF declaration. The content of the replacing character
string can be modified formally by varying the values of the substitutable parameters whenever the identifier
is to be replaced by the character string.

UNPARAMETERIZED FORMAT

Format of unparameterized DEF declaration:

DEF name =character strin~ ;

name is an identifier called the DEF name.

The following restrictions apply to the DEF declaration:

No comment can be embedded between the name and the first quote mark of the character string (the
quote being shown as the equivalence symbol =).

A quote within a DEF declaration is represented by two consecutive quotes.

Examples:

64

DEF ON =1=;

DEF OFF =0=;

DEF BIT = =;

Legal

DEF BOOLI =A GR B AND B NQ 0=;

DEF DEFINE =DEF=;

T'-T""IT"'" ~nT -I.._n. - -C1n~ "'_n- --R vcr KDJ:" L =1'\-D, = =':>L 1 1'\-n= = =,

Illegal

DEF FOX =FOXY=]ONE=;

DEF I A =DARK=;

DEF U =UNSIGNED=;

60496400 A

Whenever the DEF name is used at subsequent points in the program it will be replaced by the character string between
the quote marks with the following exceptions:

Names that occui' in defming contexts will not be replaced.

Descriptors and other single letter abbreviations (type descriptors B,C,I,R,S, and U; array layout specifiers P
and S; the intrinsic functions B, C, and P; the constant prefixes O,S, and X; and the real number specifier E)
will not be replaced.

Within a set of quotes == ... ==

Within a set of primes ' ... I

The DEF declaration may appear anywhere in the program that a normal SYMPL data declaration or imperative state­
ment may appear and it is subject to the normal rules for declarations; the declaration must appear before the defined
name is referenced and it has no effect outside the procedure within which it occurs.

A name defined by a DEF declaration is defined from that point for the remainder of the procedure. It may be re­
defined by the use of another DEF declaration for the same name at a subsequent point in the procedure, but it
cannot be undefined. Thus, once a name has been given a definition for a particular program, there is no language
structure whereby it may be returned to the usage it had before its first DEF declaration.

A defined name may be included in the character string defming another name. When defmed names depend on one
another for definition, the effect is the same regardless of the order in which the declarations are written; however,
the position witpjn the program is still Ltnportant, A name can be defined only by the DEF declarations that precede
its use in the program. Circular definitions are illegal.

Examples of nested DEFs:

illegal nesting - circular definition: Legal nesting:

DEF TWO =BEGIN ONE END::; DEF BOOL

DEF ONE DEF A =c EQ 3=

IF BOOL THEN X=l;

The above legal nesting example is equivalent to:

IF C EQ 3 AND B THEN X=l;

PARAMETERIZED FORMAT

Format of parameterized DEF declaration:

DEF name(parml' paim2 ••• parmi) "character string";

name is an identifier called the DEF name, and parmi are identifiers called DEF parameters.

60496400 A 6-5

The following restrictions apply to the parameterized DEF declaration:

No comment can be embedded between the DEF name and the left parenthesis of the parameter list.

No comment can be embedded between the right parenthesis of the parameter list and the fIrst quote of
the character string.

Within the character string, a quote is represented by two consecutive quotes; for example, the character
string =A= =B= represents A=B.

Examples:

Legal: DEF M (X) =I=B+X=;
DEF BIT(I,J) =B<I>A[J]=;
DEF POPUP (STACK,TOP) =STACK[TOP]; TOP=TOP-l=;

Illegal: DEF M(X+Y) =I=B+X+Y=;
DEF BIT(I7,K) =B<17>A[K]=;
DEF MIN =MACRO=(X,Y ~F IF X LS Y THEN Z=X; ELSE Z=Y=;

Parameterization of the DEF declaration occurs when the DEF parameter identifiers appear within a character
string. They are assigned new values at each subsequent use of the DEF name. These values are character strings
associated with the DEF parameters by an actual parameter list provided at every use of the DEF name. The
DEF character string is modified by substituting the actuai parameter values for the DEF parameter identifIers
within the string.

A reference to a substitutable DEF parameter is recognized wherever a DEF parameter identifIer occurs in the
original DEF character string, unless it is enclosed in quotes or primes within the string. Apart from this
restriction, a parameter identifIer is substitutable whenever it appears, regardless of context. Care must be
exercised, therefore, if a DEF parameter identifIer is identical to any of the context dependent descriptors,
functions, prefIxes, or specifIers (B,C,E,I,O,P,R,S,U,x). Although each is an acceptable parameter identifIer,
its use will cause the corresponding context dependent signifIcance to be unavailable within the DEF character
string unless the final substituted value is itself acceptable in that context.

Examples: (substitutable parameters are underlined)

DEF BYTE(B,I,K) =!!<!>A~]=; =!! may be substituted by C or B=

DEF POINT(p,A) =Q=X~; fq>=Q=; =likely to fail:

PARAMETERIZED DEF EXPANSION

The replacement of the DEF name with the character string containing substitutable parameters is called the
expansion. Expansion will not take place under the following circumstances:

6-6

If the DEF name occurs in a declarative context.

If the DEF name is also the name of a descriptor, function, prefIx, or specifier and occurs in the
correct context (B,C,E,I,O,P,R,S,U,x).

Tf the OFF name OCcUl"~ wjthin a ~~t of quotes or a set of primes.

60496400 A

Additionally, the DEF name must be followed by a legitimate actual parameter list of the following form:

name (p h P2, . . .)

name is a parameterized DEF name

Pi are actual parameters corresponding to the parameters in the DEF name declarations

No comment can be embedded between the DEF name and the left parenthesis of the actual parameter
list

The actual parameters PI, P2, ... are delimited initially by the left parenthesis and then by commas, or the
terminating right parenthesis. Each actual parameter consists of the string formed by all characters between
successive parameter delimiters. The resulting character strings, called parameter strings, will replace the cor­
responding DEF parameter identifiers wherever they are recognized in the DEF character string. If a parameter
string contains incorrectly nested brackets or a semicolon, it may be bounded by quotes. The quotes are
removed prior to substitution of the parameter. In such a parameter string, the quote is denoted by two quote
symbols. A parameter starting with a quote is delimited by the matching " (quote).

Parameters. that occur in a defining context will not be replaced. This situation is not detected until expansion
time.

Commas and right parentheses (although they are parameter delimiters) may occur in parameter strings in
non-delimiting circumstances. To be recognized as a parameter delimiter, a comma or a right parenthesis must
be encountered at the outermost bracket level, otherwise it is considered to be part of the current parameter
string. Within a parameter list, but not within quotes any of the characters [< (cause progression to an
inner bracket level; and, conversely, any of the characters] >) cause a return to the previous bracket
level. A parameter delimiter is not recognized between pairs of quotes or pairs of primes. Nor will characters
between quotes or primes contribute to the bracket level. A semicolon may occur only between quotes or
primes. There must be no net change in bracket level within an unquoted parameter string. Apart from these
restrictions, the actual parameter list may contain any combination of characters. When a right parenthesis is
encountered at the original bracket level (matching the left parenthesis in the above format), it delimits the
current paiameter string, and expansion of the DEF takes place.

The rules for forming parameter strings cause a parameterized DEF expansion to be syntactically similar to a
procedure call or a function reference. Thus, all procedure or function actual parameter forms are acceptable
DEF parameter strings. The converse is not true, however, since parameter strings are not constrained to be
items or expressions, the sole restriction being that any bracketing characters used must be correctly paired.

If an actual parameter list contains more parameter strings than the number of DEF parameters specified in
the DEF name declaration, a fatal diagnostic is issued and expansion does not occur. If fewer parameter string~
are specified, expansion takes place with unspecified substitutable parameters replaced by the null parameter
string, allowing the expansion of DEF names with a variable number of actual parameters.

Nested expansion of parameterized DEF names is permitted. However, recursive or circular expansion is
prohibited.

60496400 A 6-7

Examples: Parameterized DEF name reference

M(I)

M(A+C [1,1]=IGNORE=)

BIT (B<3~2>,A[Sl)

BYTE(C,S,2**J)

CHECK(CALL(3 ,B);=ERROR=37;GO TO F AIL=);

Examples: Parameterized DEF expansion

The above reference to BYTE where:

DEF BYTE(B),K) =B<J>A[K]= ;

would expand as:

C<S> A[2**J]

The above reference to CHECK where:

DEF CHECK(X,ERROR) =IF BYTE(B,1,x) EQ 1 THEN GOTO OK; ERROR=;

would expand as:

IF B<1>A[CALL(3,B)]EQ 1

THEN GOTO OK; ERROR=37; GOTO FAIL

However, the following definition of CHECK:

DEF CHECK(X,ERROR) =IF BYTE(B, 1,= = X = =) EQ 1
THEN GOTO OK; ERROR=;

Causes the above reference to expand as:

IF B<1>A[X] EQ 1

THEN GO TO OK; ERROR=37; GOTO FAIL;

6-8 60496400 A

PROGRAM STRUCTURE 7

PROCEDURES AND FUNCTIONS

SYMPL statements which perform a specific task may be combined for access as a single unit with procedure and
function declarations; in addition, the declaration provides a means for transferring data to and from an accessed
procedure or function. Procedure and function declarations may appear wherever any other declaration may appear.

PROCEDURE DECLARATION

A procedure declaration consists of a header followed by an optional series of declarations and a single statement,
which may be compound. A procedure declaration is referred to as a procedure.

Format of procedure declaration header:

or

PROC name;

parmi is an identifier called a formal parameter.

Examples:

PROC CLEAR (X, N) .
t

BEGIN
ARRAY X{ 99] ;

ITEM XX R (0,0)
ITEM N, I . •

FOR 1=0 STEP 1 UNTIL N

DO XX(I] = 0.0 ;

END

60496400 A 7-1

PROC REMQUO (OOM, DEN ,REM, QUO) . ,
BEGIN

ITEM NUM,DEN,REM,QUO;

QUO = NOM/DEN ;

REM = NUM-QUO*DEN ;

END

FUNCTION DECLARATION

A function declaration is similar to a procedure declaration and is referred to as a function; however, the function
name, in addition to identifying the code, is associated with a specific value. A function declaration consists of a
header followed by an optional series of declarations and a single statement, which may be compound.

Format of function declaration header:

FUNe name (parm1 ,parm2 , ...) ~ ;

or

FUNCname~;

~is as defmed for items and applies to function name value; if omitted; integer is assumed.

Examples:

FUNC SIN (X) R . •
BEGIN

ITEM X R . •
•

SIN = ;
•

END

7-2 60496400 A

FUNC MOD (A,B) u

BEGm

ITEM A I, B I;

MOD = A-B* (AlB) . ,
END

PROCEDURE AND FUNCTION USE

Procedure or function declaration statements are not executed at the point where they appear in the program. They
must be explicitly called by a procedure call (see section 5) or function reference.

A function is automatically called when its name appears in an expression and the value computed by the function
will be used when evaluating the expression. The value is associated with the function name by an assignment state­
ment in which the function name is the left hand side and which appears within the function declaration.

The function name must not appear in any expression within the function declaration.

Procedure and function calls cannot be recursive; a procedure cannot call itself nor be called by any procedure which
it calls.

Control is returned from a procedure or function to the calling routine when a RETURN statement (see section 5) is
encountered or when the procedure declaration statement has been executed. Return from a procedure or function
is normally to a point immediately following the call. It is possible to return to another point by a GOTO statement
(see section 5) referencing a label in an outer procedure or function or formal label parameter.

Example:

PROC

60496400 A

XRAY (X,Y;Z) .
i

BEGIN

ARRAY X [9: 9]

END

ITEM XX
ITEM Y

R ; . ,
GOTO Z; ==TAKE ALTERNATE EXIT TO FORMAL LABEL Z ==

7-3

FORMAL LABELS AND PROCEDURES

A use of a name will be associated with a prior declaration for the name if one exists, even if the declaration is at a
more exterior level; this is true even for labels and procedures, for which forward definition is meaningful. Thus, a
procedure declaration which uses labels or procedure names before declaring them is sensitive to declarations for
other entities of the same name at outer levels. This situation may be avoided by designating such names prior to
their usage in formal procedure or label declarations.

Example: Formal Label Declaration

PROC NAME

BEGIN

L1:
PROC NAME1 . •
BEGIN

LABEL Ll,L6 =DECLARE FORMAL LABELS=

GOTO L1 =AND YOU GO HERE, NOT HERE=
I

L1: . . . ; .. I

RETmN • ,

END

END

TERM

PARAMETERS

When a subprogram is called, a list of actual parameters is submitted by the call. In executing, a program operates on
the actual parameters submitted by call. When a subprogram is declared, parameter handling is specified within the
procedure body by reference to a set of dummy names, called formal parameters, listed with the subprogram declar­
ation heading.

FORMAL PARAMETERS

The body of the subprogram uses formal parameters in much the same way that it uses other names; it must declare
them before making use of them (except for labels and procedures) just as it must declare its own internal names. A
declaration for a formal parameter, called a formal declaration, may occur anywhere before the name is used within
the body of the subprogram.

SYMPL recognizes the following types of formal parameters: arrays, based arrays, functions, items, labels, and pro­
cedures. Each, with the exception of labels, requires formal declaration.

7-4 60496400 A

Formats for formal label, procedure, and function declarations:

LABEL name. ,name2 , ... ;

FPRCname;

FUNC name type;

The format of a formal declaration for items, arrays, and based arrays is identical to the standard declarations, except
preset information may not be included. A formal parameter that is an item may be referenced by address or by value.

To spe_cify a call by value, the formal parameter name is enclosed in parentheses within the formal parameter list. A
call by value gives more efficient access to the parameter but may not yield a result to its actual parameter. Ordy items
may be called by value.

Example: Formal item declarations

PROC NAME (A,B I (C) I (D»

== A boolean, B character, C integer value, D real value ==

BEGIN ITEM A B;

END

ITEM B C(5) I C;
ITEH D R; . . ,

RETURN;

An item or array declaration within a subprogram is recognized as a formal declaration for a formal parameter only if
its name coincides with the name of a formal parameter for the subprogram body where the declaration occurs. For
example:

PROC X (A) ;

BEGIN

END

60496400 A

PROC Y (B)
BEGIN

ITEt1 A ;
END

7-5

The declaration for A is not recognized as a formal declaration for parameter A of procedure X, rather it is treated as
an item local to procedure Y.

A formal parameter may be declared to represent a based array; in this special case, the address of the pointer variable
must be passed as a parameter; not the array location.

ACTUAL PARAMETERS

Actual parameters which are the arguments to a procedure or function when it is called are of the following types:

arithmetic expression
array name
Boolean expression
function name

item name
label name
p function
procedure name

In the parameter list position, item names and ~xpressions should correspond to a formal parameter of type item; p
function parameters should correspond to a formal based array; and the remaining parameter types should correspond
to formal parameters of the same type.

Expressions are evaluated before subprogram execution and the address of a temporary location possessing the
resulting value is passed as the parameter; other parameters are passed as addresses directly. A function name, with­
out a parameter list, is not evaluated but is passed as an address to the called procedure or function. Note that a
single array reference is considered an expression and evaluated.

Subprogram names and item names, without parameters, are normally passed as addresses. However, the logic differs
somewhat if the names are parenthesized; they will be evaluated before the call and passed as temporary variables.
The following example shows two calls on proc FUNNY, with the change in results caused by the use of parentheses.

Example: Formal and Actual Parameters

EAR;

ITEM J ;
PROC FUNNY (FACE)
BEGIN

END

ITEM FACE
ITEM A, B
A=FACE
J=3 ;
B=FACE
IF A EQ B THEN GOTO EAR

J=4 ;
FUNNY (J) ;

Here a normal return is made to the calling program, whereas:

FUNNY «J»);

causes the subprogram to loop endlessly at EAR.

7-6 60496400 A

l.

Example: Formal and Actual Parameters

A=1 ;
B=2 ;
NAME2 (A,B)

END

.
t =ACTUAL PARAMETERS=

PROC NAME2 (X,Y)
BEGIN

=FORMAL PARAMETERS=

ITEM X, Y

END

=FORMAL ITEM DECLARATION=
=LOCAL TO NAl-iE2=
=OR SCOPE NAME2=

SCOPE OF DECLARATION

Since the statement of a subprogram body may be compound, it may have embedded declarations, including subpro-
gram declarations. Such declarations are nested \vitl-Jn the main subprogram.

Names declared within the subprogram body are recognized only within that subprogram (and thus within other sub­
programs nested within it).

Thus, when nested subprograms contain declarations for the same name, the innermost declaration has precedence.

The scope of a declaration is the name of the subprogram within which it occurs.

EXTERNAL SUBPROGRAM

A procedure or function which is not nested within another subprogram is referred to as an external subprogram. An
external subprogram must be terminated by the TERM directive and is compiled separately from other external sub­
programs. Also, the name of an external subprogram is automatically made available for reference by other subprograms
through the XREF declaration.

MAIN PROGRAM

A main program consists of a program header followed by a series of declarations and statements. It must also be ter­
minated by the TERM directive.

Format of main program header:

PRGMname;

60496400 A 7-7

A main program is not called as is a subprogram since it provides the starting point for execution.

Only a TERM directive may precede a main program or external subprogram header and only a main program or ex­
ternal subprogram header may follow a TERM directive. There must be no intervening text.

ALTERNATE ENTRANCES: ENTRY DECLARATION

The ENTRY declaration within a subprogram body establishes an alternate entrance for the subprogram. It need not
duplicate parameters associated with the subprogram name; however, the code associated with a given ENTRY should
use only the parameters associated with that ENTRY, and values for parameters associated with other entries are un­
defined.

Format of ENTRY declaration:

ENTRY PROC name (parmi ,parm2 , ...) ;

or

ENTRY FUNC name (parmi ,parm2, ...) type;

parameter list and type are optional.

Example of an alternate entrance subprogram:

7-8

FUNC F(X) R

BEGIN

END

ITEM X R
F = X**X

GOTO G1 ;

ENTRY FUNC G(X) I

G=X**X ;

G1: X ~ X ~ 1.0

60496400 A

BEGIN

END

ITEM GENOPT
DEF BUFMAX
DEF BUFIX

. ,
=100 =
=0=

ARRAY CRBUE{ B UFMl\X] i

. ,

ITEM CRLIN (0, 42, 18) i

STATUS TYPLST DEF, SET, USE, SCP ;
ITEM XLINK, XCARD, BUFIX, R, S i =DEFAULT TYPE IS

INTEGER =
ITEM XTYPE S:TYPLST i
ROPTN i =FIRST EXECUTABLE INSTRUCTION=
XTYFE = S 'DEF' e ,
GOTO GO

ENTRY PROC XRSET (XLINK, XCARD)
ROPTNi
XTYPE = S· SET' ;

GOTO GO

ENTRY PROC ••• i

ENTRY PROC... ;

GO : CRL IN(BUFIX] = XCARD ;

OUT: RE:rURN;

. ,

PROC ROPTN =R-OPTION CHECKER=
BEGIN

=ENTRY DEC=

IF B(27,1>GENOPT EQ 0 THEN GOTO OUT ;
RETURN;

INTERPROGRAM COMMUNICATION

Three SYMPL declarations allow communication between external subprograms: COMMON, XREF, and XDEF
declarations.

These declarations may occur only at the outermost level of a compilation; names used in interprogram
communication must be unique in the first seven characters and must not begin with the character $.

COMMON DECLARATION

SYMPL programs may declare variables to be assigned storage at load time using the COMMON declaration.

The COMMON declaration provides up to 61 blocks of storage that can be referenced by more than one subprogram,
and the starting addresses for these blocks are indicated on the core map listing.

60496400 A 7-9

Format:

COMMON name ; data-declaration

or

COMMON name ; BEGIN data-declaration data-declaration ... END

name is optional; if omitted, storage locations in blank common will be automatically assigned.

data declaration is either an item, array, or based array declaration.

Examples:

COMMON A; ITEM X ;

COMMON B; ARRAY TAB [50]; ITEM J

PRGM DEFCOMM ;

COMMON AREA ;

BEGIN

END

BASED ARRAY AA; ITEM XX;
ITEM A = 2955 ;
ITEM B S:TEST = S'CONDI ;
ITEM C C(10) ;
ITEM D I ;
ITEM E R ;

ARRAY (9]
BEGIN

END

ITEM F · ,
ITEM G · •
ITEM H · ,
ITEM I · ,
ITEM J · ,

.
t

ITEM Q1STPNUM
ITEM Q2NDPNUM
ITEM BSTATNUM

I (0,0,15) ;
I (0,15,15) ;

I (0,30,30) ;

Presets may be included for named common blocks but not for blank common; however, the presets will be
ignored unless the routine is compiled with the P option specified on the SYMPL compiler call statement or
the CONTROL PRESET statement is used at the beginning of the routines.

7-10 60496400 A

Common declarations need not be identical in all routines referencing the common block; however, the routine with
the longest block must be loaded first and relative locations for all items must be the same in all referencing routines.
The following example shows how different declarations for the same items may be used to initialize a common block.

Example:

PROC ONE;

BEGIN

END

ITEM I ;

COMMON BLOCK ;

ARRAY ZERO [10] ;
ITEM ZRO ;

FOR I=O STEP 1 UNTIL 10 DO

ZRO(I] =0 ;

PRGM W\IN ;

ONE;

COMlvDN BLOCK

BEGIN

END

ITEM A1, A2, A3 :

ARRAY BB (6] ;
ITEM BLTM ;

EXTERNAL REFERENCE DECLARATION

The external reference declaration (XREF) is used to defme items, arrays, based arrays, procedures, functions,
labels, and switches which are actually part of another program. It is assumed that storage will be allocated
elsewhere for names defmed by XREF declarations.

External references which name the declared external entities are output with the object program, depending on the
system's loader for the resolution. In this way, one compilation may defme a set of procedures, for example, which
may be referenced in other compilations by declaring them as XREF procedures.

60496400 A 7-11

Format of XREF declaration:

XREF xdec

or

XREF BEGIN xdec xdec ... END

each xdec may be an item declaration without presets, array declaration without presets, based array declaration,
or one of the following:

PROC name;

FUNC name ~;

LABEL name. ,name2 , ... ;

SWITCH name. ,name2 , ... ,

~ is optional.

Examples:

7-12

XREF

XREF LABEL FAIL,SUCCESS

XREF ARRAY AUNUR [99] pel) 7
ITEM INTGR (0,0,60) ;

XREF BASED ARRAY AA ; ITEH XX

XREF PROC REUQUO ;

XREF BEGIN

END

SWITCH JUMPVEC ;
FUNC LINEUP R ;
ITEM I, J, K, L ;
ARRAY [0:9,0:9J S(5)
BEGIN

ITE~l AA C (0,0,40)
ITEM BB R(4,O,60j

END

60496400 A

EXTERNAL DEFINITION DECLARATION

External definition (XDEF) declarations are defined and allocated storage in the current compilation and made avail­
able for reference, through the XREF declaration, in other compilations. The XDEF declaration is a complement of
the XREF declaration for items and arrays. The compiler generates external definitions from XDEF declarations,
allowing the system loader to tie together XDEF and XREF names.

Items, arrays, based arrays, procedures, functions, labels, and switches may be externally defmed.

Format of XDEF declaration:

XDEF xdec

or

XDEF BEGIN xdec xdec ... END

xdec may be an item, a switch, an array or based array declaration, or one of the following:

PROC name;

FUNC name type ;

LABEL namel ,Dame2 , ... ;

If Program A is compiled with:

XREF ITEM COUNT I

and Program B is compiled with:

XDEF ITEM COUNT I ;

references to the item COUNT within Program A actually will refer to the storage reserved for the item in Program B,
assuming both programs A and B are available at load time.

XDEF declarations for procedure and function names may occur either before or after the declarations of the procedure
or function.

Example:

XDEF ITEM X

XDEF BEGIN

60496400 A

ITEf.1 Y, Z ;
ARRAY Q [99]
FUNC ABS R ;
PROC ZERO ;
SWITCH. JU1-WVEC Jl, J2, J3, J4 ;
END = XDEF DECLARATIONS=

7-13

XDEF ARRAY LIBRARY [0:9,-60:-50,1:1]
BEGIN

END

ITEM TITLE C(O,0,10)
ITEr·1 DE~IDEC I i

Examples: MAIN PROGRAM AND SUBPROGRAM DECLARATIONS

7-14

PRGM NAME; = MAIN PROGRAM HEAD =
BEGIN

•

•
•

STOP
END
TERM

PROC NAME 1 ; =SUBPROGRAM DECLARATION=
BEGIN

ITEM X; =X HAS NAME1 SCOPE=

PROC NAME2 =NESTED SUBPROGRAMS=
BEGIN

•

X=4 = SAME X AS IN NAME 1 =
RETURN
END

• .
RETURN

END
PROC NAME3;
BEGIN

RETURN ;
END

60496400 A

PRGM SORT100;

BASED ARRAY AA [99]
ITEM X ;

XDEF PROC SORTER ;

ARRAY TOBESORTED [99]
ITEM T ;

P(AA> = LOC(TOBESORTED)

TERM

60496400 A

SORTER (P<AA» ;

PROC SORTER (SORT)

BEGIN

ARRAY SORT [99] ;
ITEM VALUE;
ITFM FLAG 1=0 ;

Ll: FOR I=O STEP 1 UNTIL 98 DO

END

IF VALUE[I+1] GR VALUE[I] THEN

BEGIN

END

VALUE[I+1] -- VALUE(I] ;
FLAG = 1 ;

IF FLAG EQ 0 THEN

RETURN

FLAG=O ;

GOTO L1 ;

7-15

Example: EXTERNAL SUBPROGRAM (PROCEDURE)

7-16

PROC NAME; =NAME PASSED TO THE LOADER=

BEGIN
•

FUNC NAME 1 (A) I; =FUNCTION SUBPROGRAM DECLARATION
AND TYPE OF THE RESULT=

BEGIN
ITEM A ;
NAME1=16*A**3 -4 ;
RETURN;
END

ITEM K

B= 14*NAMEl (K) =CALL THE FUNCTION NAME1=

END

TERM

60496400 A

PROC SUBROUT; == DEFINE SUBROUTINE ==

BEGIN

SWITCH HIT BALL1, BALL2, BALL3, BALL4 ;

XREF

BEGIN

END

DEF CALL

PROC TEAMi ;
PROC TEAM2 ;
PROC TEAM3 ;

:1= #

IF XXX[I] EQ 0 THEN

GOTO HIT[RUN] ;

GOTO LEFTOUT ;

BALL1: CALL TEAM1
RETURN

BALL2: CALL TEAM2
REI'URN

BALL3: BALL4: CALL TEAM3
RETURN

END

TERM

CALLING SEQUENCES

· ,
· , · ,

SYMPL uses standard calling sequences; a parameter list contains one word per parameter. The address of the
parameter list is passed in register AI. Linkage is performed by executing an RJ instruction to the entry
point. To provide compact object code, traceback information is not generated. The parameter list is not
followed by a word of zeros, except when explicitly requested via the compiler call statement F option.

60496400 A 7-17

COMPILER CALL STATEMENT

The compiler call statement, which calls for the compilation of a SYMPL source program, consists of the
characters SYMPL followed by an optional parameter list and terminated by a period or right parenthesis. The
columns following the right parenthesis or period may be used for comments; they are transcribed to the
DAYFILE. The format is:

comments

SYMPL. comments

SYMPL,Pl ,P2 ,P3 ,P4 ,Ps , comments

PARAMETERS

8

The SYMPL compiler operptes according to the options specified on the SYMPL compiler call statement; errors
cause the compiler to abort. The following options may be specified:

SOU RCE I NPUT: I

If the source input parameter is omitted, source input is assumed to be on INPUT. Otherwise, this parameter
must be provided:

I=lfn

lfn is the name of the logical file containing the source input. Source input parameters of the forms
I=IN'PUT is equivalent to omitting the parameter. Specifying I alone is equivalent to I=COMPILE.

BINARY OUTPUT: B

If the binary output parameter is omitted, a relocatable binary file is written on a file named LGO. For any other out­
put file, this parameter must be provided:

B=lfn

lfn is the logical file name on which the binary output is to be written. Binary output parameters of the form
B=LGO, or B, are equivalent to omitting the parameter. B=O suppresses generation of binary output.

60496400 A 8-1

OBJECT TIME LIBRARY SPECIFICATION: S

The LDSET table generated on the binary fIle may be changed with the S option:

S=O Suppresses the LDSET table

S=AAA/BBB/CCC LDSET table is produced with entries for libraries AAA, BBB, and CCC

Default is:

S=FORTRAN/SYSIO for CYBER 70/72-74 and CYBER 170

S=FORTRAN/SYMIO for CYBER 70/76

Example:

SYMPL (I,A,H,s=FTNLIB)

LIST: LXOR

If this parameter is omitted, a normal listing is provided on OUTPUT, including the source language and diagnostics.
Other list options may be selected as follows:

a=lfn/l t /12

a may be one or more of the following:

L Normal listing, diagnostics follow source

X Storage map, common block listing

o listing of generated object code; if not specified parameter II and h are not permitted

R Cross-reference table, common block listing

Ifn Logical file name to receive the list output. All list output is suppressed if Ifn=O. The listing appears
on OUTPUT if Ifn is omitted.

1 i Line of user's code where object list is to start

12 line of user's code where object list is to end

If not specified 11 assumes the value 0 and h the value + 00, and the preceding / must be omitted.

When the default OUTPUT is used, Ifn and the succeeding / may be omitted.

8 -2 60496400 A

Example:

LO=100/200

is identical to

LO=OUTPUT /100/200

however, LO=/l00/200 is in error.

Any combination (with no comma) of the above parameters provides the features indicated. LXOR=lfn specifies
all options are to be listed on the given fIle and LO selects source and object listing on OUTPUT.

All listing is suppressed if L=O is specified; L=l results in a summary of system resources utilized.

TERMINATE COMPILATION: T

If this parameter is present, compilation will terminate following output of all source error messages. Since code
will not be generated, options affecting code generation are ignored.

SINGLE STATEMENT SCHEDULING: W

Generally, t}1is option requires more central processing time than normal multiple statement scheduling; but it
preserves a closer correspondence between object code sequence and source code sequence, which is useful for
code oriented debugging.

PRESETS IN COMMON: P

Presets for items declared in common normally are not placed in the object deck; but if they are to be present
the P parameter is required.

COMPI LE $BEGIN-$END CODE: E

Normally, object code is not compiled for SYMPL statements contained between the $BEGIN and $END syn­
tactic brackets. If object code for these statements is to be generated, the E parameter is required.

PACKED SWITCHES: D

Normally, SYMPL switches are generated with one switch point per 60-bit word. When the D option is specified,
however, two switch points are packed into a 60-bit word, reducing the code size but increasing overhead and
execution time.

60496400 A 8-3

SWITCH RANGE CHECKING: C

Under normal conditions the SYMPL compiler does not provide a means for switch range checking; however, the C
option causes a bounds check to be performed for each switch reference. If an out-of-bounds condition is detected,
the compiler issues a diagnostic message and program execution is terminated.

Results are similar, if a null or unspecified switch point is selected along with the C option.

If the C option is omitted, a null switch point will produce either an endless loop condition or a mode error.

SUPPRESS DIAGNOSTIC: Y

This option suppresses the printing of the diagnostic message (semi ends comment) but not the corrective action
associated with the message.

UNREFERENCEDITEMS IN CROSS REFERENCE: N

FORTRAN COMPATIBLE CALLING SEQUENCE: F

ABORT: A

The A option causes the compiler to abort at the end of the job step if it encounters errors.

COMPILE PROGRAM LIST: H

When this parameter is present, it overrides the CONTROL NOLIST command, causing all code to be listed.

SAMPLE DECK SETUPS FOR BATCH MODE

Compile producing listing on default OUTPUT me and binary output on default LGO me. Execute.

84

SAMPL1,T100,CM60000,P3.

SYMPL (LXOR)

LGO.

7/8/9

6/7/8/9

(END OF RECORD)

(SYMPL SOURCE DECR)

(END OF FILE)

60496400 A

Compile producing listing on default OUTPUT me and binary output of a program and subprogram on default LGO
me. Execute.

SAMPL2,T010,CM60000,P7.

SYMPL(XOR)

LGO.

7/8/9

6/7/8/9

(END OF RECORD)

(SYMPL SOURCE DECK)

(SYMPL SUBPROGRAM)

(END OF FILE)

Compile producing listing on default OUTPUT me; no execution, produce a binary card deck.

SAMPL3,T100,CM60000,P17.

SYMPL (LXOR, B=PUNCHB)

7/8/9

6/7/8/9

60496400 A

(END OF RECORD)

(SYMPL SOURCE DECK)

(END OF FILE)

8-5

STANDARD CHARACTER SETS A

CONTROL DATA operating systems offer the following variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified when the operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026 or
in 029 mode (regardless of the character set in use). Under NOS/BE 1, the alternate mode can be specified by
a 26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS 1, the alternate mode can be specified by a 26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In addition, 026 mode can be specified by a card with 5/7/9 multi­
punched in column 1, and 029 mode can be specified by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2.

Graphic character representation appearing at a terminal or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals.

60496400 A A-I

>
N

~
~
\0

~ o
>

STANDARD CHARACrER SETS

-
ASCII Hollerith External ASCII ASCII Hollerith External ASCII

CDC Graphic Display Punch BCD Punch ASCII CDC Graphic Display Punch BCD Punch ASCII

Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code

=
: t OOtt 8-2 00 8-2 072 6 6 41 6 06 6 066
A A 01 12-1 61 12-1 101 7 7 42 7 07 7 067
B B 02 12-2 62 12-2 102 8 8 43 8 10 8 070
C C 03 12-3 63 12-3 103 9 9 44 9 11 9 071
D D 04 12-4 64 12-4 104 + + 45 12 60 12-8-6 053
E E 05 12-5 65 12-5 105 - - 46 11 40 11 055
F F 06 12-6 66 12-6 106 * * 47 11-8-4 54 11-8-4 052
G G 07 12-7 67 12-7 107 / / 50 0-1 21 0-1 057
H H 10 12-8 70 12-8 110 ((51 0-8-4 34 12-8-5 050
I I 11 12-9 71 12-9 111)) 52 12-8-4 74 11-8-5 051
J J 12 11-1 41 11-1 112 $ $ 53 11-8-3 53 11-8-3 044
K K 13 11-2 42 11-2 113 = = 54 8-3 13 8-6 075
L L 14 11-3 43 11-3 114 blank blank 55 no punch 20 no punch 040
M M 15 11-4 44 11-4 115 , (comma) , (comma) 56 0-8-3 33 0-8-3 054
N N 16 11-5 45 11-5 116 . (period) . (period) 57 12-8-3 73 12-8-3 056
0 0 17 11-6 46 11-6 117 - # 60 0-8-6 36 8-3 043
P P 20 11-7 47 11-7 120 r [61 8-7 17 12-8-2 133
Q Q 21 11-8 50 11-8 121)] 62 0-8-2 32 11-8-2 135
R R 22 11-9 51 11-9 122 % % 63tt 8-6 16 0-8-4 045
S S 23 0-2 22 0-2 123 :f:- II (quote) 64 8-4 14 8-7 042
T T 24 0-3 23 0-3 124 ~ (underline) 65 0-8-5 35 0-8-5 137 -
U U 25 0-4 24 0-4 125 v ! 66 11-0 or 52 12-8-7 or 041
V V 26 0-5 25 0-5 126 11-8-2ttt 11-0ttt
W W 27 0-6 26 0-6 127 " & 67 0-8-7 37 12 046
X X 30 0-7 27 0-7 130 t I (apostrophe) 70 11-8-5 55 8-5 047
Y Y 31 0-8 30 0-8 131 ~ ? 71 11-8-6 56 0-8-7 077
Z Z 32 0-9 31 0-9 132 < < 72 12-0 or 72 12-8-4 or 074
0 0 33 0 12 0 060 12-8-2ttt 12-0ttt
1 1 34 1 01 1 061 > > 73 11-8-7 57 0-8-6 076
2 2 35 2 02 2 062 ~ @ 74 8-5 15 8-4 100
3 3 36 3 03 3 063 2 \ 75 12-8-5 75 0-8-2 134
4 4 37 4 04 4 064 -, -(circumflex) 76 12-8-6 76 11-8-7 136

I

5 5 40 5 05 5 065 ; (semicolon) ; (semicolon) 77 12-8-7 77 11-8-6 073

1--

tTwelve or more zero bits; at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line
mark is converted to ext,ernal BCD 1632.

ttln installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch). I

The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (558).
tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

-----------_ ... _-

SYMPL DIAGNOSTICS B

For errors that are detected during execution of the object program, diagnostic comments are printed in the source
program listing produced by the compiler.

The compiler recognizes errors in SYMPL syntax; faulty programming logic is not recognized unless it produces a syn­
tax error.

When the processor detects a source language error, it prints out the applicable diagnostic message number imme­
diately preceding the line on which the error was detected. In addition, after the last source statement has been
compiled, the compiler sums the total number of diagnostic messages encountered during compilation and prints
out this message along with a detailed listing of each message number and the condition causing the error message.

COMPILER ABORT CONDITIONS

The compiler aborts on encountering a compiler call statement error. Also if field length is insufficient, the
compiler aborts and issues the diagnostic SYMBOL TABLE OVERFLOW.

A. .. 11 attempt to compile an incorrect source program may cause an abort. When syntax and semantic errors of
the program are corrected, the compiler will execute satisfactorily.

DAYFILE MESSAGES

-SYMPL- xxxxx COMPILED

-SYMPL- EMPTY INPUT FILE

-SYMPL- COMPILER ABORT

-SYMPL- BAD LOADER CALL

-SYMPL- BAD EXP CALL TO FTN

-SYMPL- PARAMETER nlN ERROR

DIAGNOSTICS

!

xxxxx is the PRGM/PROC name.

The ftle specified by the I parameter on the compiler call
statement is positioned at end of information.

See COMPILER ABORT CONDITIONS above.

Error occurred in nth parameter on the compiler call statement.

The compiler diagnostic abbreviations, message numbers, and the condition causing the message are listed below:

60496400 A B-1

DIAGNOSTIC ABBREVIATIONS

B-2

Abbreviation

ID

CHAR

CHARS

DUP

DECL

ILL

HEX

CONS

PARENS

STRG

SEMI

STMT

ERR

SPECS

PARAM

EXPR

PROC

PROG

FUNC

UNDECL

REF

REFS

EXPR

BOOL

REPL

/
UNDECL

XDEF

XREF

IFXX

Description

Identifier

Character

Characters

Duplicate

Declaration

Illegal

Hexadecimal

Constant

Parenthesis

String

Semicolon

Statement

Error

Specifications

Parameter

Expression

Procedure

Program

Function

Undeclared

Reference

References

Expression

Boolean

Replacement

Or

Undeclared

External definition

External reference

Conditional compilation computation word

60496400 A

COMPILER ERROR MESSAGES

Message
Number

001
002
003
004
005
006
I\I\~
VVI

008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044

60496400 A

condition Causing Message

LONG ID--FIRST 12 CHARS USED
DUP DECL--NEW ONE OVERRIDES
UNDECL ID DELETED
ILL OCTAL/HEX CONS
TERM MISSING
BAD STATUS CONS USE
BA~ NESTnlG OF P&~ENS/BR~CRETS
CRUD CHAR IN INPUT
CHAR STRG)240 BY~ES--240 USED
ILL ARRAY ITEM II: USF DELETED
ILL SWITCH ID USE DELETED
ILL ARRAY I'C USE CELE~EL
ILL STATUS LIST ID USE DEIE~ED
ILL COMMON IL USE CEIFTED
SEMI MISSING AFTER ARRAY DECL
CRUD AT START OF STMT DELETED
ILL KEYWORD USE DELETED
ARRAY ITEM DECL LIST LACKS END
CUP DEcL OVERRIDES
ITEM DECr ID ERR
DECL DISCARDED--SCAN RESUMES A~ SEMI
ITEM DECL TYPE ERR--I ASSUMED
ILL ITEM LENGTH--1 BY~E USED
SIGNED PRESET ILL FOR TEIS TYPE--IGNOREC
SCAN RESUMES AT -BEGIN-
MISSING SEMI
ITEM PRESET ERR
SEMI ACCEPTED AS NULL STMT
BASEr/XDEF/XREF ARRAYS NEED 10
ARRAY ITEM DECL SYNTAX ERR
ARRAY 1~EM DECL TYPE ERR
BAD ARRAY BOUND VALUES--ASSUMED [0:0]
ARRAY BOUND SYNTAX ERR
ARRAY ITEM DECL PARTWCRt SPECS ERR--DEFAULT TAKEN
ARRAY ITEM DECL 1S~ BIT ALIGNMENT wRCNG--O USED
ILL ARRAY ITEM BOUNCAFY--LEFAULT TAKEN
TOO MANY ARRAY ENTRIES
TOO MANY PRESET GROUPS
ARRAY PRESET SYNTAX ERR
COMMCN/XDEF/XREF--AT CUTER SCOPE ONLY
BAD COMMON DECL IGNORED
BAD XFEF/XDEF IGNORED
BAD EASED DECL IGNORED
XDEF/XREF LIST CRUD DELETED

B-3

045 SWITCH DECr. SYNTAX ERF
046 COMMON LIST SCAN RESUMES AT -ARRAY-/-ITEM-
041 STATUS DECL SYNTAX ERR
048 -END- ENDS BAD COMMON LIST
049 DEF DECL SYNTAX ERR
050 BAO FORMAL PARAM DECL
051 PROGRAM BEGINS BADLY
052 PROG DECL LACKS 10
053 PROG DECL ERR--CRUD PRECE~ES SEMI
054 XDEF/XREF LIST SCAN RESUMES AT LEGAL ENTRY
055 FORMAL LABEL DECL SYNTAX ERR
056 -END- ENDS BAD XOEF/XREF LIST
051 FORMAL FROC DECL SYNTAX ERR
058 FUNC DECL LACRS ID
059 FUNC DECL TYPE ERR--I ASSUMED
060 FUNC DECL LACKS SEMI
061 SCAN RESUMES AT SEMI
062 DUP FORMAL PARAM 10 IN LIST
063 DUP FARAM ID--PRIOR DECL THIS SCOPE
06Q PARAM LIST SYNTAX ERR
065 PROC DECL LACKS 10
066 PROC OECL SYNTAX ERR
061 UNOECL LABEL/PROC ID
068 FORMAL IO LACKS OECL
069 PARAM NOT USED IN THIS SCOPF
070 ILL DEF ID--NO EXPANSION
013 TOO MANY PARAMVARRAY/ARRAY ITEM REFS
014 TOO MANY SUBSCRIP~S:S~I~CH REF
075 NOT ENOUGH SUBSCRIPl'S FCF ARRAY/ARRAY ITEM REFS
016 BAD SUBSCRIPT LIST
077 ILL LABEL/FROC ID USE DELETED
078 STATUS SWITCH DECL LACKS STATUS LIS'I ID
079 BAD lABEL USE IN STATUS SWITCH
080 STATUS SWITCH--VALUE Toe LARGE
081 STATUS SWITCH--DUP CONSTANT VALUES
082 STATUS SWITCH--MISSING CONS~ANT
083 BEGIN/END MISMATCH. PROEABLE [ISASTER
08Q IF EXPR NOT BOOL
085 WHILE EXPR NOT BOOL
086 CRUD AFTER FINAL END IGNORED
081 -DEF- ID EXPANSION NEST TOO DEEP-Ir rELFTED
088 YOUR -00- HAS BEEN FOUND
089 THE -THEN- HAS BEEN FaJ~D
090 MISSING -00-
091 MISSING -THEN-
092 INITIAL VALUE EXPR ERR
093 -STEF- EXPR ERR
094 -UNTIL- EXPR ERR
095 -wHILE- EXPR ERR
096 BAD -GOTO- DELETED

B-4 60496400 A

091
098
099
100
101
102
103
104
105
106
101
108
109
110
111
112
113
114
115
116
111
118
119
120
121
122
123
124
125
126
121
128

130
131
132
133
134
135
136
131
138
139
140
141
142
143

60496400 A

BAD REPL STMT DELETED
PARTwORD VALUES AFTER FIRST 3 IGNORED
ITEM DISCARDED--SCAN RESUMES AT CCM~A
HANGING -IF- CLAUSE
HANGING -FOR- CLAUSE
HANGING -ELSE-
EXTRA END--OMITTED BEGIN FOR SUBFROGFAM ASSUMED
ILL UNDECL FARAM USE ~ELE~EC
]OR S'IMT: INDUCTION I D ERR
-IF- EXPR ERR
DUP XDEF/XREF DECLS FeR ID
XDEF PROC/FUNe: NOT FULLY tECL
BAD FORMAL DECL
REDUNDANT FORMAL rECL
BAD PARAM LIST
BOOL ILL IN ARITH CONTEXT
COMMON LIST LACRS -END­
BASED LIST LACRS -END­
XDEF/XREF LIST LACRS -END­
COMMON LIST CRUD DELE~Er
BASED LIST CRUD DELETED
BASED LIST SCAN RESUMES WITH -ARRAY­
-END- ENDS BAD BASED LIST
o LENGTH -DEF- STRING IGNORED
CHAR LENGTH OMITTED--1 ASSUMED
BAD ARRAY ENTRY SIZE
BRACRET NEST rroo DEEP
ILL EXPR TYPE THIS LEFT SIDE
BAD BEAD FUNC
EXPR OP CONCATENATION ERR
LONG CHAR STRG--240 BY~ES USED
BAD -LOC- FUNC

BAD INDUCTION ID TYPE
NON INDUCTION ID IN -~EST­
-TEST- ILL OUTSIDE LOCP
SCAN RESUMES AT -BEGIN-/-ITEM-/SEMI
READ FUNC NEEDS ID
DUP STATUS ID
SEMI ENDS COMMENT
CONTROL STMrr SYNTAX ERR
CHAR NOT D/F IN REAL OR COUELE CONSTANT
FORMAL PARAM PRESET ILL
XREF PRESET ILL
BLANK COMMON PRESET ILL
BASED ARRAY ITEM PRESET ILL
BAD P-FUNC

B-5

144 CHARACTER ITEH >240 BYTES - 240 USED
145 NO SUBSCRIPT FOR ARRAY ITEt-1 - 0 USED
146 CIRCULAR DEF NA11.E EXPANSION - EXPANSION IGNORED
147 NO r.1AIN PROC FOR ENTRY PROC
148 ILLEGAL CHAR IN MACRO DEF
149 ILLEGAL IFXX COMPARE
150 TOO MANY DEF PARAMS
151 ILLEGAL CONDIT DIRECTIVE IGNORED
152 ILLEGAL VALUE PARMi-LABEL
153 ILLEGAL VALUE PARAM-ARRAY
154 ILLEGAL VALUE PARMi-PROC
155 CO~1MON BASED ARRAY DECL ERROR
156 LABEL DECL ERROR
157 XREF SWITCH ERROR
158 UNMATCHED IFXX
159 DEF PARMi ERROR
160 ([OR < NESTING TOO DEEP
161 ([OR < NEST MISr.mTCH
162 PARAMETER TOO LONG
163 PARru·1ETER COUNT ERROR
164 RECOVERY AT ;
708 ZERO-DIVIDE ATTEr.1PT

8-6 60496400 A

GLOSSARY c

The following glossary includes short descriptions of use for each SYMPL word, each special use of single letters,
and each mark.

ABS

ARRAY

B

BASED

BEGIN

c

COMMON

CONTROL

CONTROL IFxx

60496400 A

Intrinsic function. Returns the absolute value of the argument.

Boolean operator. When used iIl x and y, }rields TRUE opJy if x a!'~
yare both TRUE; otherwise, yields F ALSK

AND -0 1

-0 0 0

o 1

Declares dimensioned entities.

Two uses:

In item declarations, denotes Boolean type which is represented by a
bit string whose values are interpreted: One = TRUE and zero = FALSE.

Intrinsic function - Accesses bits of a variable

Declares arrays that have an explicit pointer variable but no compiler
assigned storage.

Left bracket for the BEGIN . . . END pair. Delimits a compound state­
ment.

Two uses:

In item declarations, denotes character type which is represented by a
bit string whose values are interpreted: one = TRUE and zero = FALSE.

Intrinsic function - Accesses bytes of a variable.

Delimits declarations for variables assigned storage by the loader, not the
compiler. Common blocks of the same name share the same physical
storage at execution time.

Introduces a compiler directive.

EQ, NQ, . . . Conditional compilation directives.

C-l

DEF

DO

ELSE

END

ENTRY

EQ

FALSE

FOR

FPRe

FUNe

GOTO

GQ

GR

I

IF

ITEM

LABEL

LAN

e-2

Declares a macro.

Separates the FOR clause from the simple or compound statement
executed under the control of the induction variable as declared for
the FOR statement.

Marks the statement to be executed on the FALSE evaluation of the
Boolean expression in the IF statement.

Right bracket of BEGIN ... END pair.

Declares alternate entrances to procedures and functions.

Relational operator. Denotes relationships of equality as in a EQ b,
which is TRUE only if a a is algebraically equal to b.

Boolean constant having the integer value O.

Delimits start of FOR statements.

Formal procedure declarator.

Declares a function subprogram; a closed routine that returns a value
to the expression of which the function call is part. FUNC as the first
statement of a compilation declares the function to be stand-alone,
which renders the function name available to the system loader. Also
formal function declaration.

Unconditional branch operator. Also used to access switches.

Relational operator. Denotes greater or equal relationships; a GQ b
is TRUE if a is algebraically greater than or equal to b.

Relational operator. Denotes greater relationships. Thus, a GR b is
TRUE only if a is algebraically greater than b.

Denotes type integer in item declarations.

Delimits start of conditional statement.

Declares SYMPL variables. Item types include signed integer (I), real (R),
status (S), Boolean (B), character (e), and unsigned integer (U).

Formal label declarator.

Arithmetic operator. Bit-by-bit "and" of integer operands (see AND).

60496400 A

LIM

LNO

LOC

LOR

LQ

LQV

LS

LXR

NOT

NQ

o

60496400 A

Airthmetic operator. Bit-by-bit "implies" of integer operands.

A LIM B A=O A=1

8=0

I I
o

8=1

Unary arithmetic operator. Bit-by-bit complement of integer operands.

Intrinsic function. Returns the location of a label, array, array entry,
switch, procedure, function, or variable.

Arithmetic operator. Bit-by-bit "or" of integer operands (see OR).

Relational operator. Denotes relationships of lessor equal. Thus, a
LQ b is TRUE if a is algebraically less than or equal to b.

Arithmetic operator. Bit-by-bit equivalence for integer operands.

LQV o 1

o o

o

Relational operator. Denotes relationship of less than. Thus, a LS b is
TRUE only if a is algebraically less than b.

Arithmetic operator. Bit-by-bit exclusive OR of operands.

LXR o 1

o

o

Boolean operator. Unary operator that effects the complement of the
single Boolean operand. Thus, NOT a is TRUE only if a is FALSE;
NOT (a AND b) is· TRUE if either a or b is FALSE.

Relational operator. Denotes relationships of not equal. Thus, a NQ b is
TRUE only if a is not algebraically unequal to b.

Octal constant prefIx. Provides octal constants.

C-3

OR

P

PRGM

PROC

R

RETURN

S

STATUS

STEP

STOP

SWITCH

TERM

TEST

C-4

Boolean operator. Binary inclusive or relationships. Thus a or b is
evaluated TRUE if either a or b is TRUE; otherwise, it is FALSE.

OR o 1

o

1 1

Two uses:

In array declarations, denotes parallel array structure, meaning s.uccessive
instances of the same item are in contiguous storage. (See serial, S.)

Intrinsic function. Allows reference to the pointer variable.

First word of a main program compilation. It declares the compiled
output to be a program rather than a subprogram.

Declares a procedure subprogram. Parameters may be passed to and from
such subprograms. PROC as the first word in a compilation creates the
procedure as a stand-alone subprogram, and the procedure name is made
available to the system loader.

Used in item declarations to denote type real (floating point).

In a subprogram, causes exit to be made to the routine calling the sub­
program.

Two uses:

Status - In item declarations, denotes status type.

Serial - In array declarations, denotes serial array structure, which means
that different items of the same entry are in contiguous storage.

Delimits a status declaration.

Separates the initial value expression of a FOR clause from the increment
expression.

Returns control from a SYMPL program to the operating system.

Declares a vector of switch points with which the compiler associates
indexes.

Compiler termination delimiter.

Used within the range of a FOR statement to effect a jump to the incre­
ment and test of the induction variable.

60496400 A

THEN

TRUE

U

UNTIL

WHILE

x

XDEF

XREF

$BEGIN

$END

+

*

/

**

60496400 A

Denotes the statement (simple or compound) to be executed on the
TRUE evaluation of the Boolean expression in an IF statement.

Boolean constant having the integer value 1.

Denotes type unsigned integer in item declaration.

In FOR statements, separates the STEP (increment) expression from the
final value of the induction variable.

In FOR statements, delimits a Boolean expression for which TRUE evalu­
ation causes FOR loop iteration, and FALSE evaluation terminates the
loop.

Hexadecimal constant prefix.

Delimits variables whose names and locations are to be made available to
the system loader. Other separately compiled programs and subprograms
may refer to such SDEF variables through XREF dec1aratiQns.

Delimits variables and subprograms whose locations are to be supplied by
the system loader through XDEF variables in other compilations.

Brackets code to be compiled on option.

Brackets code to be compiled on option.

Arithmetic operator. Add.

Arithmetic operator. Binary subtraction, or unary negation.

Arithmetic operator. Multiply. x*y reads: x multiplied by y.

Arithmetic operator. Divide. x/y reads: x divided by y.

Arithmetic operator. Exponentiation. x**(y+2) reads: x raised to the
y+2 power.

Assignment operator. Denotes replacement. x=y reads: replace x with
the current value of y.

Assignment operator. Denotes exchange. x= = y reads: exchange the
values of x and y.

Separates expressions, list elements, etc.

Decimal point in real constants.

Delimits labels and separates bound pairs in array dimensions. Other
miscellaneous uses.

c-s

(Blank)

()

[]

""

<>

" (or=)

C-6

Terminates simple statements and declarations.

Used for syntactic readability.

Parentheses {left and right). Used to bracket arguments to functions,
procedures and parameterized DEF. Also used to group expressions and
to denote call by value from parameter. Used elsewhere for syntactic
readability.

Brackets {left and right). Used to bracket subscripts.

Prime (left and right). Brackets character constants. Also encloses octal,
hexadecimal and status constants.

Quote {left and right). Brackets comments and right sides of defmitions.

Delimiters {left and right). Used to bracket arguments for some intrinsic
functions (P, B, C).

Quote represented throughout manual by equivalence symbol =. Bracket
comments and right sides of definitions.

60496400 A

f'
~.

(

t

t

I

l

t
(

,

METALANGUAGE D

METALANGUAGE DESCRIPTION

The mechanics for defining the syntactic forms of SYMPL are accomplished through
an elementary descriptive language, capable of defining any phrase-structured
language.

SYMPL is described in a metalanguage by a set of statements called productions, each
of which describes one form belonging to SYMPL. The forms of a language are its syn­
tactic entities, such as the sentence or adverbial phrase (from English), or arithmetic
expressions (from FORTRAN, for example).

Every form of SYMPL is described by one metalinguistic production.

Format of a production is as follows:

form name

form name

. -

form definition

60496400 A

context J form definition Lcontext

Underscored name of the form defined by this production.
In the metalanguage every underscored sequence is a form
name.

Production symbol, which may be read: has the form •

Structure of the form defined by this production (whose name
is given as the form name of the production). The definition
of a form specifies the set of character sequences (utterances)
that it represents; form definitions specify a sequence of the
following entities:

Characters of the SYMPL character set, which repre­
sent themselves.

Names of SYMPL forms, which represent sequences of
characters of the SYMPL character set, as specified by
the productions which describe the form names.

D-l

Sets of entities like the above, from which anyone may
be chosen. Such a set is enclosed within braces to in­
dicate alt ern ati ves. The use of such alternative sets
may be recursive defined; thus the form definition.

x

is equivalent to a choice of one of the following alterna­
tive sequences:

x

X

p

p

X Q

R

S

The null form tfJ represents zero characters of SYMPL.
Typically, tfJ is used as one member of an alternative
set if no member of the set must be chosen.

contextJ and Lcontext Optional constraints upon applicability of the production.

Thus, the production pair

x

Y 0- B J X

If a production contains either or both context sequences,
the specified form name only represents the sequence of
SYMPL characters defined by form definition when it
occurs in the given context. A context sequence is
formed similarly to a form definition sequence.

L B

describes sequences of the character A as the form name Y only when they are de­
limited by occurrences of the character B.

To summarize: seven symbols are peculiar to the metalanguage:

....... n
U-£J

Underscore line

Production symbol

Null symbol

0-
0-

60496400 A

Braces and }
Context delimiters J and L

All other printed characters in metalinguistic productions are either form names
(underscored) or self-representative members of the SYMPL character set.

BASIC NOTATION AND ELEMENTS

CHARACTER SET

SYMPL programs are composed of 55 characters, as foHows:

LETTERS

letter

60496400 A

A
B
C
D
E
F
G
H
T
l.

J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z

$

D-3

DIGITS 0
1
2
3

digit 4 . -
5
6
7
8
9

MARKS

*
/
+

(
)

[
]
<

mark . -. - >
"

D
1> represents a blank space. n is represented throughout manual as the
equivalence symbol iii'.

BLANK SPACES AND COMMENTS

D-4

{
{

'&
comment

space }
6 space

}

60496400 A

r

,
.,

r ,

comment

comment string

. -. -

11 comment string 11

I :omment strmg ~ I
¢ represents any key punch character except semi­
colon (;) and quote C'), either of which will terminate
a comment.

The forms ~ and y.. are used throughout the metalinguistic description to represent one
or more blanks and zero or more blanks, respectively.

IDENTIFIERS

ident 0- mark J ident Eart L mark

I letter I ident Eart 0-
0-

{ letter} ident Eart
digit

RESERVED SYMBOLS

The 52 SYMPL words are represented as follows:

abs .- mark J ABS L mark

and .- mark J AND L mark

array 0- mark J ARRAY L mark

based 0- mark J BASED L mark

begin .- mark J BEGIN L mark

common 0- mark J COMMON L mark

control o - mark J CONTROL L mark o -

def 0- mark J DEF L mark

do . - mark J DO L mark

60496400 A D-5

else .- mark J ELSE L mark

end .- mark J END L mark

entry .- mark J ENTRY L mark

~ .- mark J EQ L mark

false mark I FALSE L mark .- J

for " - mark J FOR L mark

!E!:£ .- mark J FPRC L mark

fune .- mark J FUNC L mark

goto . - mark J GOTO L mark

g,q .- mark J GQ L mark

.s!. ,- mark J GR L mark

if .- mark J IF L mark

item "- mark J ITEM L mark

label "- mark J LABEL L mark

Ian .- mark J LAN L mark

lim .- mark J LIM L mark

loe "- mark J LOC L mark

lor "- mark J LOR L mark

lno "- mark J LNO L mark "-

!9. .- mark J ~ L mark

lqv .- mark J ~V L mark

Is .- mark J I.S L mark

lxr "- mark J LXR L mark "-

not "" 1" I ""TI"'''''' I ,.,.".1" .- LLlGl..Ln J J."V~ L .L.u.Gl..Ln

!!.9. "- mark J NQ L mark .-
or .- mark J OR L mark

~ .- mark J PRGM L mark

proe .- mark J PROC L mark

return "- mark J RETURN L mark

status .- mark J STATUS L mark

D-6 60496400 A

step .- mark J STEP L mark

stop .- mark J STOP L mark

switch .- mark J SWITCH L mark

term .- mark J TERM L mark

test .- mark J TEST L mark

then .- mark J THEN L mark

true . - mark J TRUE L mark

until mark I YTlI.Trt"'YT I mark .- J UJ.'I ..L J..LJ L

while .- mark J WHILE L mark

xdef . - mark J XDEF L mark

xref .- mark J XREF L mark

spbegin : = mark J $ BEGIN L mark

spend : = mark J $END L mark

The action of $BEGIN and $END depends on the presence of option E on the SYMPL
control statement.

SPECIAL IDENTIFIERS
array. item name · - ident · -
array name '- ident

based array name '- ident

common name .- ident

def name .- ident

formal arra~ name '- ident

formal based name .- ident

formal func name .- ident

formal item name '- ident

formal proc name · - ident

func name · - ident

item name .- ident

label name .- ident

60496400 A D-7

Eroc name

Erogram name

status list name

switch name

DEF DECLARATIONS
DEF SPECIFICATION

def head

defmac head

def dec

defmac dec

opt space

non quote string

def params

DEF EXPANSION

defmac expansion

def par list

def par

simple def par

special def par

D-8

.- ident

.- ident

.- ident

.- ident

: = de£.6 ident

· - def head opt space (V def params ~)

: = def head opt space "non quote string" V

: = defmac head opt space "non quote string"

· -{ ¢ } · - opt space b

(I)

· _< lJI >
· - { non quote string t/J J

: ={ ~~~~arams V • ;{ ident}

t/J represents any keypunch character other than the
quote r').

: = defmac name V (def parlist)

: ={ ~:! ~:; list Yc • V def par}

• = f simple def par l · t special def par S
· _ {any character sequence with balanced bracketing
· - that does not contain delimiting characters; , or:: }

{any character sequence with a single quote represented
by two thereof}

60496400 A

EXPRESSIONS

ARITHMETIC EXPRESSIONS

arith exp

infix stuff

arith thing

unary op

binary op

BOOLEAN EXPRESSIONS

Boolean exp

Boolean thing

60496400 A

infix stuff

{
arith thing }
infix stuff y.. binary op y.. arith thing

array reference
fune call
eonst
(y.. ari th exp y..

,** \
*
/
+

Ian
lor
lxr

\

{
Boolean thing }
Boolean exp y Boolean op v Boolean thing

array reference
item name
relation
Boolean const
not Y... Boolean thing
func call
(Y.. Boolean exp y...)

D-9

An item must be declared type B for use as a Boolean operand.

Boolean op

relation

relational op

CONSTANTS

const

INTEGER CONSTANTS

integer const

. -. -

. -

.-

\
~

I

arith exp v relational op v arith exp

Boolean const

J char const
integer const

~ real const
status const

dec integer

1
octal const
hex const
status func

The status func is a special form of integer constant defined under status declarations.

dec integer i dec integer t digit .-
l (/))

octal const 0- 0
,

octal stuff T

octal stuff { octal stuff } { octal digit } 0-

(/) "

D-IO 60496400 A

octal digit

HEXADECIMAL CONSTANTS

hex const ° - X

hex stuff 0-

hex digit . -

BOOLEAN CONSTANTS

Boolean const

CHARACTER CONSTANTS

char const

char string

STATUS CONSTANTS

status const

status const string

60496400 A

{

(

o
1
2
3
4
5
6
7

t hex stuff

hex stuff

q,

digit
A
B
C
D
E) F

t

}

t char string t

{ hex digit } A

{ :har string I/J }

l/J represents any keypunch character.

s v status const string v

ident

D-ll

REAL CONSTANTS

real const { :teger part } • { :raction part} {:xponent Eart }

integer part dec integer

fraction part dec integer

exponent part . - {: ~}

ITEMS
ITEM DECLARATION

item dec . - item ~ item descr list "

dec integer

item descr list
{

item descr }
item descr list !: , v item descr

item descr item name f A ~ ",~ t f/J ~ v item preset

type . -

U
I
R
B

u ==

I =
R ==

B =
S ==

C =

length

C v
S v

unsigned integer type

integer type

reaitype

Boolean type

status type

v length v
v status list name

character type length is a size subfield in characters or bytes

. - integer const

D-12 60496400 A

ITEM PRESETS

Optionally, the item may be assigned an initial value:

item preset eonst ::: v

STATUS DECLARATIONS
SPECiFiCATior~

status dec status A status list name A status name list v

status name list { status value
status value } status name list v , y

status value { status eonst string } q,

STATUS FUNCTION

status fune status list name v status eonst string 'V

ARRAYS
ARRAY DECLARATIONS

array dec i
' A array name~) v array descr v ; v item part . - array - - - -o

array deser

array bounds list 1
bound pair
array bounds list ~ bound Pair! , y

bound pair ~ ~ow bound
v

high bound

low bound integer eonst

60496400 ,A D-13

high bound 0-

layout 0-

entry size 0-

ARRAY ITEM DECLARATIONS

item part

array item dec lis t

array item dec

array item descr list

array item descr

array item
specs

U
I
R

B
C

{~
v } Y.. integer const

~ : ~
6!: integer const y)

begin ~ array item dec list v
array item dec

end l !
{ array item dec }

array item dec list ~ array item dec ,

item 1\ array item descr list v

(0 0'(7 ;+0"1"\'\lao....... t .- l ;~~;~ ~;;;: ~;;~~ list V • Y. array: item descr j

0- array item name v array item specs ~ array pres et

) ~ • v fbit v
<;~y. t ; v

S v : V status list name
f/)

~

fbit

size

0-
0-

0-
0-

integer const

integer const

integer const

ARRAY PRESETS

array preset

D-14

{ = ~ value set }
60496400 A

set sequence {
(/J

} set seguence value set
set seguence integer const value set

{ [v value list v } -
[v set sequence v -

value set

{ value

) } integer const v v value list v - - -
value list v v value

value list

- -

ARRAY REFERENCES: SUBSCRIPTS

array reference .- array item name v subscriptor

8ubscriptor .- v subscript list v - -

subscript list { subscril2t } .- subscript list subscript v v -

subscript .- arith exp

BASED ARRAYS AND THE P-FUNCTION

based dec based 1\
{ array dec } .-

begin ~ array dec list v end -

array dec list { arra,Y dec } .-
arra,Y dec list array dec v -

p func . - p< v based array name v > -

60496400 A D-15

FUNCTIONS
FUNCTION CALLS

func name

bead func
loc func
P func
abs func

{ :rguments }

func call

arguments . - v actual par list

actual par list S actual par .- t actual par list v -

BEAD FUNCTION

bead func i B t ~ arith e~ S
o- n < V \ , , v , =

t \ J

data { item name } 0-

INTRINSIC LOC FUNCTION

arra~ reference

item name
array reference
proc name

loc func loc v v func name
switch name
label name

array name

INTRINSIC ABS FUNCTION

abs func . - abs v v ari th exp v

D-16

v -

} actual par v -

arith exp ~ > ~ data V V

) f/J

v

s v subscriptor ~
t f/J j /

60496400 A

VALUE ASSIGNMENT

replacement statement

exchange statement

sink

source

FLOW OF CONTROL
LABEL DECLARATION

label dec

labeled statement

SWITCH DECLARATION

0-
0- { si~ }

func name

sink v = = v -- -

item name

v =

sink

l arra~ reference (p func
bead func

/

{ arith e~ l
Boolean exp)

label name:

label dec
f v statement
) (/) ,

v source

v

l
/

switch dec 0- switch A switch name v switch specs v

(switch list
switch specs t v status list name v switch order

switch list {
switc h point

}
switch list v , v switch point -

switch point { label name

} (/)

switch order {
order pair }
switch order v v order pair - -

60496400 A

v

)

J

D-17

order pair

GOTO STATEMENT

goto statement

I F STATEMENT

if statement

if clause

else part

FOR STATEMENT

for statement

for clause

loop control

initial value

step part

until part

while part

TEST STATEMENT

test statement

PROCEDURES

.- label name v v status const string - -

goto f label name l} ~ . - " .- f switch name v v arith exp v
\ - - -

.' -. - { ~v else part ~ if clause v statement 'f')

if v Boolean exp v then

. - else v statement

· - for clause v statement

for " item name v = v loop control ~ do

{
v while part

l
-

v step part v until part - -· - initial value f/> v while part -
f/>

· - arith exp

· - step v arith exp -

· - until v arith exp -
· - while v Boolean exp -

{ ~ test 'f'
item name} ~

PROCEDURE CALL STATEMENT

proc call statement proc name arguments l
}

v

} I

D-18 60496400 A

RETURN STATEMENT

return statement . - return v

STOP STATEMENT

stop statement . - stop v

SUBPROGRAM DECLARATIONS

subprogram dec
{

proc dec }
func dec

proc dec proc dec clause v dec. list v statement

fune dec func dec clause v dec list v statement

proc dec clause
) ~ (y formal par list v) l v'

.- proc ~ proc name t 'fJ J -,

formal par list

func dec claus e

dec list

f formal par } 1 formal par list Y... , v formal par

func 1\

~ declaration l l ~ec list y declaration

LABELS AND PARAMETERS
FORMAL LABEL DECLARATIONS

formal label dec : = label 1\ label name list v

label name list {
label name }
label name list Y... , Y... label name

60496400 A D-19

FORMAL PARAMETERS

formal based dec

formal item dec

formal array dec

formal proc dec

formal func dec

value par

formal par

ACTUAL PARAMETERS

actual par

ENTRIES

based dec

item dec

array dec

. - !E.!:£" formal proc name v

I" ~} func " formal func name ~ v

: = (V formal item name ~)

: =

formal based name
formal item name
formal array name
formal proc name
formal func name

\ ~~i:~ ;~~e

item name
array name
proc name
func name
label name
arith exp
Boolean exp
p func.

entry dec .- entry "
{

proc dec clause }
func dec clause

D-20 60496400 A

COMMON

common dec
{

1\ common nam.e} .- common ~ Y... {
data dec }

Y... begin y... data dec list Y... end

data dec list
{

data dec }
:= data dec list v data dec

data dec {
item dec}

:= array dec

EXTERNALS
XREF (EXTERNAL REFERENCE) DECLARATIONS

xref dec xref 1\ xdec Eart

{ begin 1\ xdec list v end } - -
xdec

xdec Eart

~ xdec
v Xdec} t xdec list

xdec list

item dec

I arra;y dec
Eroc heading
func heading
formal label dec (switch dec

\ formal switch dec
J based dec

xdec

formal label dec : = label A label name list V ;

label name list : == {label name }
label name list V , V label name

formal switch dec : = switch A switch name list V;

60496400 A D-21

switch name list : = { switch name }
switch name list v, y.. switch name

proc heading .- proc " proc name v -
func heading func func name ~ " ~ ! .- " ~ -

XDEF (EXTERNAL DEFINITION) DECLARATIONS

xdef dec xdef ~ xdec part

PROGRAMS
PROGRAM STRUCTURE

program

program head

prgm dec

COMPOUND STATEMENTS

compound statement

compound head

CONTROL STATEMENT

control statement

conditional phrase

condition params

D-22

{ :erogram head } v term
subprogram dec

1
prgm dec

I program head v declaration
program head v statement -
~ ~ program name

.- {

: =

compound head
compound head

1
begin
spbegin
compound. head
compound head

statement (
V declaration ~
v

{
control /\ control word V ; }

control /\ conditional phrase V ;

: = condition word /\ condition params

: = {
constant }
constant V ,V constant

v

60496400 A

condition word

control word

ifeg

ifne

ifls

eject

list

objlst

pack

preset

fi

: =

: =

: =

: =

: =

: =

: =

: =

mark

mark

mark

mark

mark

mark

mark

mark

: = mark

: = mark

: = mark

: = {mark
mark --

: =

: =

ifeg
ifne
ifls

.!f!!L
!!a
~

\~ I list
nolist
objlst

J~ \ \ reset J

J IFEQ

J IFNE

J IFIB

J IFLQ

J IFGQ

J IFGR

J EJECT

J LIST

J OBJLST

J PACK

J PRESET

J FI
J ENDIF

The above are not reserved words.

60496400 A

L
L
L
L
L
L

L
L
I
L

L
L
L
L

mark --
mark

mark

mark

mark --
mark

mark

mark

mark

mark

mark

mark}
mark

D-23

dec laration

statement

D-24

array dec
based dec
common dec
def dec
entry dec
func dec
item dec
label dec
proc dec
status dec
switch dec
xdef dec
xref dec
formal array dec
formal based dec
formal func dec
formal item dec
formal label dec
formal proc dec

compound statement
exchange statement
for statement
goto statement
if statement
labeled statement
proc call statement
replacement statement
return statement
stop statement
test statement

60496400 A

OUTPUT FROM COMPILATION

When the optional list parameters L, R, and X are selected on the SYMPL compiler call statement, the
compiler outputs a normal source program listing with diagnostic messages following the listing, a cross­
reference table, and a storage map which are useful debugging aids. With the X or R option, a common
block list is output also.

Below is a source listing of a SYMPL progra..rn (intentionally coded with errors) along with its storage map
and cross-reference table.

SOURCE LISTING

E

The user can request a printed listing of any source program or source procedure compiled by specifying the
optional list parameter L on the SYMPL compiler call statement. Each line in the listing corresponds to one
line in the source deck. The compiler assigns a line number to each source line in a deck beginning at 000 1
which appears on the left-hand side of the source listing (column 1).

Column 2 defines the BEGIN . . . END nesting levels, a minus sign in this column indicates the line contains
code suppressed duriIlg conditional compilation.

The diagnostic number is displayed in column 3. When a diagnostic number appears in this column, the
numbering sequence in column 1 is interrupted by a sequence of ****, a diagnostic flag.

Column 4 displays the ID or declaration causing the message.

Column 5 displays the· source program listing.

After the last source line, the compiler displays a summation of all compiler infringements and displays this
number; in addition the compiler lists each infringement along with its message number (in ascending order)
and appropriate defInition.

60496400 A E-1

0001.
0002.
0003.
0004.
0005.
0006.
0007.

•••••••
•••••••

0008.
0009.
0010.
0011.
0012.
0013.

••••••• ••••••• •••••••
0014.

•••••••
•••••••
••••••• •••••••
•••••••

0015.
0016.

•••••••
•••••••
••••••• •••••••
•••••••

0017.
0018.
0019.
0020.
0021.
0022.
0023.
0024.
0025.

SORT100

®
71
16
28

®
B 1

3
105
90
16
88

3
3

106
91
16
ee;!

B 2
3
3

91
16
28

E 2

E 1

•• 19 DIAGNOSTIC
••••••• 3
••••••• 16
••••••• 28
••••••• 77
••••••• 88 89
••••••• 90
••••••• 91
••••••• 91
••••••• 1(15
••••••• 106
PROGRAM LENGTH

E-2

f)ROCEOURE • SOURCE LISTING • SVMf)l 1. a (0121111 Hl/18171

®
SORTER

I

I
I

I
I

MESSAGE(S)

000162B

®
PRGM SORT100; _
BASED ARRAY AA[(9)

ITEM X ;

ONE-HUMOREO WO~O SVMPL SORT POUTINE

XOEF PROC SORTER
ARRAY TOBESORTEO [991

ITEM T ;
pcAA> = LOC(TOBESORlEOl

SOPTER pcAA> ;
PROC SORTER(SORTl
BEGIN

BASED ARRAY S~T[9Q]
ITEM VALUE
1TEM FLAG I =0 ;

Ltl FOR 1=0 ~TEP 1 UNTIL q8 00

IF VAlUE[l+1J GR VDLUE[I] THEN
P.EGIN

VALUE[I+l) == VALUE[I]
FLAG = 1
END

IF FLAG EQ 0 THEN
RETURN

END
TERM

FLAG = 0
GOlO Ll

UNOECL 10 DELETED
CRUD AT START OF ST"T OELETrD
SEMI ACCEPTED AS NUlL STMT
ILL LABEL/FROC 10 USF DElET~O
YOUR -00- HAS BEEN FOUND
THE -THEN- HAS BEEN FOUNO
MISSING -DC-
H!SSING -THEN-
BAD REPL STMT DELETED
FOR STMTt INDUCTION 10 E~R
-IF- EXPR ERR

WORDS

Figure E-1. SYMPL Program Source Listing

60496400 A

STORAGE MAP AND CROSS-REFERENCE TABLE

The storage map and cross-reference table is a dictionary of all programmer created declarations appearing in the source
program, with the properties of each declaration and references to them listed by source line number (cross-reference
table only). The storage map and cross-reference table begin on a separate page following the source listing of the pro­
gram and error message dictionary.

STORAGE MAP

NAME

2 TYPE

3 M

First ten characters only of declarations are printed.

Defines the name as one of the following types:

ARYITM Array item
COMMON Common block
ITEM Item
FUNC Function
PROC Procedure
LABEL Label
B.ARRY Based array
ARRAY Array
PROGRAM Program

Mode of data representation

B
C
I
P
S
U
X

Boolean
Character
Integer
Parallel (arrays only)
Status (serial if type - array)
Unsigned integer
External

4 LOC Octal address relative to start of routine; if followed by C, LOC is relative to start of common
block. If type = ARYITM, LOC refers to fust occurrence of item.

5 FBIT First bit, numbered from 0 to 59, left to right.

6 NUM Number of bits; if MODE = C, number of bytes.

SORTiO 0 PROCEOUPE • STORAGE HIIP • SYMPl 1.0 (012771) 10/18171

<D ® ® ® ® ®
HAHEtC(1O) TYPE H lOC FBIT NUH NAHEICUOl TYPE HLOC FBIT HUM NIlMEIC UO) TYPE H LOC FflIT HUH

AA B.ARRY P oooooe FLAG ITEH I 'l0!l11t6 0 60 l1 LABEl DO 0152
SORT B.ARRY P ODD11t~ SORTER P~OC ~O flS0 StlPTlOO PROCRM 0001S1
SYS= P~OC X 000000 T ARYITH I 000001 0 60 TOBESORTEO ARRAY P DOI!(!D1
VALUE ARYIT'" I 000000 0 60 X IIRYIT", I 000000 0 60

Figure E-2. Storage Map Listing

60496400 A E-3

CROSS-REFERENCE TABLE

NAME

2 TYPE

3 M

First ten characters only of declarations are printed.

Defines the name as one of the following types:

ARYITM Array item
COMMON Common block
ITEM Item
FUNC Function
PROC Procedure
LABEL Label
B.ARRY Based array
STSCON Status constant
DEFINE DEF
STSLST Status list
PROGRAM Program
ARRAY . Array

Mode of data representation

B
C
I
P
S
U
X

Boolean
Character
Integer
Parallel (arrays only)
Status (serial if type =array)
Unsigned integer
External

4 DEF Line number in source listing where declaration is defined; if followed by C, declaration is in
common block.

5 SCOPE Name of outermost procedure within which declaration occurs; if type = STSCON, SCOPE is
the name of the status list of which the item is a member.

6 SET fUSED Source listing line numbers of references to NAME, * indicates use as other than left-hand side
of the replacement statement.

SORT100 PROCEOUPE • CROSS Rf:~F.RENCE • SYH"L 1.0 (072771) 10/18171

CD ® ® @ ® ®
NAHEIC (10) TYPE H OEF SCOPE SET/USE) US~D INOICATED py •)

AA B.ARRY P 2 SORT100 7 ". FLAG ITEM I 13 SORTER 18 22 20·
l1 LABEL 14 SORTER 23·
TOBESORTED ARRAY P S SORT100 7·
VALUE ARVITH I 12 SORTER 17 is·

••••• 47500 WORDS WERE USED •••••

Figure E-3. Cross-Reference Table

E-4 60496400 A

OBJECT TIME OUTPUT

Output for debugging purposes, both initial testing and maintenance, may be performed through the FTN
library routines. Linkage is the SYMPL library routine SYMIO. The FTN library routines must be initialized
by a FTN main program.

The following declarations are required:

XREF BEGIN PROC PRINT;
PROC LIST;
PROC ENDL; END

Should a conflict in nomenclature arise, these routines can be called PRINT$, LIST$, ENDL$.

PRINT ,PRINT$

UST~LIST$

END,ENDL$

PRINTFL

Example I:

PRINT (character string);

character string must be a FORTRAN format string; it is USed to format
arguments of LIST.

LIST (argument);

argument may be' an item, expression, subscripted array item, etc. Its format
on fIle OUTPUT is determined by the next format item in the PRINT string.

ENDL;

This call must be made to process right alignments and to ensure transmission
of the last LIST argument.

PRINTFL (character string, lfn)

lfn must represent an existing FET, probably an XREF ARRAY. This fIle
is used instead of OUTPUT· when LIST arguments are transmitted.

XREF BEGIN PROC UST; PROC PRINT; PROC ENDL; END

PRINT ('OX,*VALUE OF I = *)3,/),);
UST (I);
ENDL;

F

60496400 A F-I

This example is equivalent in FORTRAN to:

PRINT 99,1
99 FORMAT (lX,*VALUE OF I = *,13J)

Example 2:

XREF BEGIN PROC PRINT; PROC liST; PROC ENDL; END

CNTR = LOC(ADDR);
PRINT(' (1 X,06/4030)');
ITEM I; FOR 1=0 STEP 4 UNTIL N 00

BEGIN LIST(CNTR);
ITEM K; FOR K=O STEP 1 UNTIL 3 DO LIST (DITM K+l);
CNTR=CNTR + 4;

END =1=
ENDL;

This example is equivalent in FORTRAN to:

F-2

CNTR = LOC(ADDR)
00 1 I = 1 ,N-l ,4
PRINT lOO,CNTR, (DITM(K+I-2),I(=1,3)

1 CNTR = CNTR+4

100 FORMAT (lX,06/4030)

60496400 A

PROGRAMMING SUGGESTIONS G

COMPILER

Space required for compilation is proportional to the number of symbols in the source program. Five words
of core are dedicated to each symbol in the program, in the form of a symbol table entry.

TL-rne required for compilation is proportional to the size of the object progrsJ11., in temlS of the amounts of
syntax to be scanned. Although data declarations do not generate code, they use significant amounts of com­
piler time, especially data presets.

Compilation time may be further reduced by judicious use of the compiler options such as object code and
cross reference listings.

DEF declarations can increase readability of SYMPL source programs and facilitate changes to them. However,
DEF declarations and expansions increase compilation time accordingly.

OBJECT CODE

SUBSCRIPTS

Code produced by referencing subscripted variables can be affected by the means of expressing the subscript.
For example, an integer constant can be partially evaluated at compile time so that one instruction is required
to access an array item (given the item is a full word); but a scalar integer variable requires four instructions
to access the item. Thus, a reference to A [3] requires one instruction for a serial array; but A [I] where
1=3, requires four instructions to retrieve the same item.

ARRAYS

Parallel arrays (default case) are accessed more efficiently than serial arrays, when an array entry exceeds one
word. For arrays with one-word entries, no difference in object code speed or space is apparent. Parallel arrays,
rather than serial, should be used when possible. Fixed arrays are accessed more efficiently than based arrays,
which require a level of indirectness to access an entry. Whenever possible, fixed arrays should be used.

DATA TYPES

If an array item is a full 60-bit word, access does not depend upon its type. For items which are not 60-bit
words, however, type and bit position assignment affect the code required to access them, as follows:

Signed integers are accessed more efficiently than unsigned integers if the item is not exactly 18 bits
long. If the item is 18 bits long, the SXi instruction is used to access both signed and unsigned integers,
and the time required is the same. Signed integer items are accessed more efficiently if they are the

60496400 A G-l

leftmost bits of a word. Unsigned integer items are accessed more efficiently if they are the rightmost bits
of a word. Boolean items are most efficiently accessed by allocating the whole word or the minimum
required bits starting with the leftmost bit.

FOR LOOPS

The break-even point in code generation between hand-coded and FOR loop code is 34 iterations. Of the
following sequences, the second generates fewer instructions and runs faster.

FOR 1=0 STEP UNTIL 2 DO
PWORD [I] = 0;

PWORD [0] = 0;
PWORD [1] = 0;
PWORD [2] = 0;

== CODE SEQUENCE 1 ==

== CODE SEQUENCE 2 ==

== END SEQUENCE 2 ==

If four or more items were being set by the above sequence, the loop would have required less code and
would execute in less time.

In general, the less source code in the FOR statement, the faster it will run. Of the following code sequences~
the second is faster; since the loop limit is computed and the value stored only once .

...... ,....., T __ ,.,""~~ 1 TT"-TI"'I""tTT ~I,., ~,....

rUK 1 = U ':)lnr 1 Ul'l IlL Df\" 1J'U

PWORD [I] = K**J;

A = B/C;
D = K**J;
FOR I = 0 STEP 1 UNTIL A DO

PWORD [I] = D;

== CODE SEQUENCE 1 ==

== CODE SEQUENCE 2 ==

== END SEQUENCE 2 ==

One exception is that FOR loop execution time can be reduced with more source code as in the following
example where the second sequence would be faster even though more code would be generated.

FOR 1=0 STEP 1 UNTIL 89 DO
PWORD [I] = 0;

FOR I = 0 STEP 3 UNTIL 89 DO
BEGIN

PWORD [I] = 0;
PWORD [1+1] = 0;
PWORD [1+2] = 0;

END

DATA CONVERSION

== CODE SEQUENCE 1 ~

== CODE SEQUENCE 2 ==

== END SEQUENCE 2 -

Integer-to-character conversion is byte-oriented while the character-to-integer conversion is word-oriented. When
an integer item is converted to character mode, the least significant 6-bit byte is left justified and blank filled
in the character field; yet, character-to-integer conversion is performed by right justifying the right end of the
last word of the character item and zero filling it on the left. Character field definitions may cross word bound­
aries but character operations may not.

G-2 60496400 A

The conversions may be circumvented by the use of bit bead functions. For example, B <0,60> FLTINGPT
= INTEGER; would cause the integer to be stored in the floating point item without conversion. 1I B <0,60->
CHARACTER = INTEGER;" also would cause the full word to be stored in CHARACTER, not just the low­
order six bits.

PROC SUBPROGRAMS

Formal parameters should be called by value whenever possible. If a procedure must reference its formal call
by address parameter more than once, a local variable should be declared, set to the value of the formal param­
eter, and subsequently referenced instead of the formal parameler. Actual call by name parameters are -referenced
indirectly in the generated code; this' level of indirectness cim be overcome by evaluating the parameter once
and making it local to the PROC (storing the parameter's value in a local variable).

FUNC SUBPROGRAMS

The statements under the heading PROC subprograms are true for FUNC subprograms also. In addition, func­
tions can save two instructions in certain situations. For example: a routine is needed to convert from binary
integers to display code, with the result to be stored in one of three arrays, depending upon the section of
code where the call originates. If a function is used, as in II ARRA YWORD [I] =FUNCTION [INT];" rather than
a procedure, as in IlPROCED (INT); ARRA YWORD [I] =INTT;", two SAl k instructions are saved per call.
The saving is realized, as functions return their result in register X6 rather than in a core location.

CODING HINTS

Based array references are candidates for scratch variable storage also, if referenced more than once in a
sequence of source code, since based array references are indirect.

When storing into many items of the same data structure (array) clustered together; those that refer to the
same word of storage should be described in the same order in which they occur.

60496400 A G-3

ABS function 4-i 0
Arithmetic

conversion rules 4-7
operators 2-3
operands 4-7

Array 3-6, 0-13
based 3-20
declaration 3-6
item declaration 3-7
reference subscripts 3-19
restrictions 3-8
storage and addressing 3-8
use of value presets in 3-16

Based arrays 3-20
Bead function 4-10
Blank spaces and comments 0-4
Boolean

constants 3-1
expressions 4-4, 5-6
operators 24
operators for logical expressions 4-5

Calling sequence
compiler call statement 8-1
SYMPL 7-17

Character
constants 3-1
conversion from integer to character 4-9
conversion of operands 4-9

Character set
metalanguage 0-3
standard A-I
SYMPL 2-1"

Comments
blank spaces and D-4
insertion 2-1

COMMON declaration 7-9, 0-21
Communication, interprogram 7-9
Compound statements 5-1
Conditional compilation 6-2
Constants

boolean 3-1

60496400 A

INDEX

character 3-1
hexadecimal 3-2
integer 3-1
octal 3-2
real 3-3
status 3-2

Control
flow of 0-17
statement 6-1
SYMPL control statement 8-1
transfer of with program sections 5-3
use of CONTROL statement 6-2

Conversion rules 4-7

Debug 6-3
Decimal integer 3-1
Decks, sample 84
Declaration

common 7-9
DEF 6-4
entry 7-8
external defmition 7-12
external reference 7-11
formal 7-5
function 7-2
item 3-3
procedure 7-1
scope of 7-7
status list 3-4

DEF declaration 6-4, 0-8
expansion of parameterized D-8
parameterized 6-5
unparameterized 6-4

Delimiters 2-1
Diagnostics B-1

Elements and basic notation 0-3
En tries 0-20
ENTRY declaration 7-8
Exchange statement 5-2
Expressions 0-9

arithmetic 4-1
boolean 4-4

Index-l

computation 4-1
logical 4-5
relational 4-4

Externals 0-21

FOR
statement 5-9
use of with TEST 5-11

Formal declaration 7-5
Function 0-16

ABS 4-10
bead 4-10
declaration 7-2
intrinsic 3-20,4-10
LOC 4-10
P 3-20
status 3-5
use 7-3

Function calls 4-10

GOTO
statement 5-6
use of 5-8

Hexadecimal constant 3-2
Hints, programming G-l

Identifiers

IF

description 2.-2, 0-5
special 0-7

statement 5-6
use as condition words 6-2
use of 5-8

Integer
constants 3-1
conversion from integer to character 4-9
conversion from integer to real 4-9
conversion from integer to unsigned integer 4-9
conversion from real to integer 4-9
operands 4-9

Intrinsic functions 3-20,4-10
Item 3-3, 0-12

array item declaration 3-7

Labels
declaration to name statements 5-3
formal declarations and procedures 7-4

and parameters 0-19

Index-2

LOC function 4-12
Logical expressions 4-5
Loops

using FOR 5-9
using GOTO and IF 5-8

Metalanguage 0-1

Notation D-4

Object time output F-l
Octal constants 3-2
Operands, arithmetic 4-7
Operators

arithmetic 2-3
boolean 2-4
numeric and arithmetic 4-1
relational 2-3

Output
from compilations B-1
object time F-I

Parameters
actual 7-6

and labels 0-19
formal 7-4

Presets
in array declarations 3-16
to assign a value 3-3

Procedure 0-18
call statement 5-3
declaration 7-1

and functions 7-3
Programs 0-22

statement 7-8
P function 3-20

Real
constant 3-3
conversion from integer to real 4-9
conversion from real to integer 4-9

Relational
expressions 4-4
operators 2-3

Replacement statement 5-1
Reserved

symbols 0-7
words 0-5

RETURN statement 5-13

60496400 A

Simple statements 5-1
Statements

compiler call 8-1
compound 5-1
CONTROL 6-1
FOR 5-9
GOTO 5-6
PRGM 7-8
PROC 7-1
procedure call 5-13
RETURN 5-13
simple 5-1
STOP 5-13
TERM 6-3
TEST 5-11
value assignment 5-1

Status
constant 3-5
declaration 3-4,)),,13
function 3-5
switch 5-5

STOP statement 5-13
Storage for array 3-8

60496400 A

Subprogram
declarations)),,19
deftnition 7-7

Subscripts, array 3-16
Switches

ordinary 5-4
programmed 5-4
status 5-5

TERM statement 6-3
TEST statement 5-11

Value assignment 5-1

XDEF declaration 7-13
XREF declaration 7-11

$BEGIN statement 6-3
$END statement 6-3

Index-3

I
I

J

t
I

~1
:i
~I
j!:1

~J
I­
:::>

°1
I
I
I
I
I
1
I
I
I
I
I
I

COMMENT SHEET

TITLE: SYMPL Reference Manual Version 1

PUBLICATION NO. 60496400 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a vi~ to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: ___________ _ POSITION: ______________ ---

COMPANY NAME: __ ~---

ADDRESS: ___ ---

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
en. n nl\l nnTTt:n I INJ:C: ANn ~TAPI f=

FOLD ___________________ F~ ~

BUSINESS REPLY MA I L
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID By'

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MoffeH Park Drive
Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
1

L
l~
I~
1

13

I
1

--------------------------J FOLD FOLD

STAPLE STAPLE

l

l

l

l

,ftlanualTitle . SYMPL Version 1 Reference, Manual Pub. No. 60496400 Rev. D

"A~ part of Control Data IS continuing quality improvement program, we invite you to complete this questionnaire so
,}hat you may have a more direct influence on the manuals you use.

·cPlease rate this manual for each general and individual category on a scale of through 5 as follows:

- Excellent 2 - Good

Writing Quality

A. T echnfcal accuracy
B. Completeness
C. Audience defined properly
D. Readability
E. Understandability
F. Organization

Examples

A. Quantity
B. Placement
C. Applicability
D. Quality
E. Instructiveness

III. Format

A. Type size
B. Page density
C. Art work
D. Legibility
E. Printing/Reproduction

IV. Miscellaneous

A. Index
B. Glossary

V. Please provide a yes or no answer
regarding manuals in general:

A. I prefer that a manual on a software
product be as comprehensive as
possible; physical size is of little
importance.

B. I prefer that information on a
software product be covered in
several small manuals, each
covering a certain aspect of the
product. Smaller manuals with
limited subject matter are easier
to work with.

, "C. I am interested primarily in
reference manuals designed for
ease of locati ng specific
information.

3 - Fair 4 - Poor 5 - Unacceptable

D. I am interested primarily In
user guides designed to teach
the user about a product or
certain capabilities of a product.

VL We recognize that we have a wide
variety of users. Please identify your
primary area of interest or activity:

A.
B.
C.
D.

E., '

F.

Student
Applications programmer'
Systems programmer
How many years programming
experience do you have?
What languages
1. Algol
2. Basic
3. Cobol
4. Compass
5. Fortran
6. PLII
.., 1""'\ '- __
,. VlIlt:I

Have you ever worked on
non-CDC equipment?

1.

2.

If yes, approximately
what percent of your
experience is on non­
CDC equipment?

How do you rate CDC
manuals against other
similar manuals using
the 1-5 ratings.
(Example: XYZ Corp. 2
means XYZ manuals are'"""QOOd
as compared to CDC manuals.)
Burroughs
DEC
Hewlett-Packard
Honeywell
IBM
NCR
Univac
Other --------

General Comments _______________________________________ _

,' ... *

I
i
I
1

I

I
I

. FOLD FOLD I
;)'_~~i:c;~:,,,~,~- ~ ____ - __ -- - -- -- --, - - - ____ -- __ -- - _ ,
~ ,;,. ';c 0

BUSINESS REPLY MAl L
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MoffaH Park Drive
~unnyv.le, California 94086

FtRSTCLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I
Iw

I~
I~ ,a

I
I

. f
,,:""".~--'" ~ -.-'-' ..,. ... -'- - -- -. - -- _. - -- _.- -- -- -- -- -'- -- -- -- -- -- -- -- ---,

'FOt 1') . FOLD I.
I

I

STAPLE STAPLE A
I

r.:J E:\ CONT"OL DATA
\::I r:::J CO~OR<\TION

SYMPL VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:

NOS 1
NOS/BE 1
SCOPE 2

60496400

REVISION RECORD
REVISION DESCRIPTION

A Original printing.

(l1-1-75)

B This revision documents SYMPL 1.2, PSR level 439. New features include CONTROL statement

(l2-06-76) additions for trace and optimization. See list of effective pages.

C This revision documents SYMPL 1.2, PSR level 446. It reflects SYMPL support of the CYBER 170

(03-01-77) Model 176. See list of effective pages.

D This revision documents SYMPL 1.3. New features include CONTROL statement

I (03-31-78) addition for weak externals; and points not tested SYMPL control statement option. Appendix F

contains a glossary.

i
I

I Publication No ·1
60496400

REVISION LETTERS I, 0, Q AND X ARE NOT USED

©1975, 1976,1977,1978
Control Data Corporation
Printed in the United States of America

11

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or uSe Comment Sheet :L."1 the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina­
tion rather than content has changed.

Page I Revision I Page I Revision I Page I Revision I
Cover
Title Page
ii
iii/iv
v/vi
vii, viii
1-1, 1-2
1-3
1-4, 1-5
1-6 thm 1-8
1-9
1-10
2-1
2-2, 2-3
2-4 thm 2-6
2-7
2-8, 2-9
2-10 thm 2-12
3-1, 3-2
3-3
3-4 thm 3-7
4-1
4-2 thm 4-4
4-5
4-6 thm 4-8
4-9
5-1, 5-2
5-3
5-4
5-5
5-6, 5-7
5-8, 5-9
6-1
6-2, 6-3
6-4
6-5, 6-6
A-I

60496400 0

o
o
o
o
B
C
B
o
B
C
B
C
o
C
B
o
B
D
B
B
C
B
C
o
B
C
o
B
C
o
C
o
C
o
A

A-2 0
B-1 0
B-2, B-3 B
B-4 0
C-l B
C-2, C-3 0
C-4 B
0-1 thm 0-3 A
0-4 B
0-5 thm 0-7 A
0-8 B
D-9 thm 0-15 A
0-16 B
0-17, 0-18 A
0-19, 0-20 B
0-21 A
0-22 B
0-23 thm 0-25 0
E-l, E-2 B
F-l, F-2 D
Index-l thm -3 0
Comment Sheet 0
Mailer
Back Cover

iii/ive

[

••

"

SYMPL version 1.3, which is a systems programming
language, operates under control of the-following
operating systems:

PREFACE

CYBER 70 Models 71, 72, 73, 74, and 6000
Series Computer Systems

This reference manual presents the semantics and
SCOPE 2 for the CONTROL DATA® CYBER
170 Model 176, CYBER 70 Model 76, and
7600 Computer Systems

rules for writing programs in the SYMPL language. It
includes sufficient information to prepare, compile, and
execute such programs. An appendix presents the
syntax of the language in metalinguistic form.

NOS/BE 1 for the CDC@ CYBER 170 Series,
CYBER 70 Models 71, 72, 73, 74 and 6000
Series Computer Systems

The reader of this manual is assumed to have knowl­
edge of the operating system and computer system
under which SYMPL will be used.

NOS 1 for the CONTROL DATA CYBER
170 Models 171, 172,173,174,175, Other publications of interest:

Publication Publication Number

NOS 1 Operating System Reference Manual, Volume 60435300

NOS 1 Operating System Reference Manual, Volume 2 60445300

NOS/BE 1 Operating System Reference Manual 60493800

SCOPE 2 Reference Manual 60342600

CDC manuals can be ordered from Control Data Literature and Distribution Services,
8001 East Bloomington Freeway, Minneapolis, MN 55420

60496400 D

This product is intended for use only as de­
scribed in this document. Control Data cannot
be responsible for the proper functioning of
undescribed features or parameters.

v/vi.

CONTENTS

LANGUAGE ELEMENTS 1-1 4 PROGRAM STRUCTURE 4-1
SYMPL Character Set 1-1 Scope of Variables 4-1
Comments 1-2 Main Program 4-2
Id~ntifiers 1-2 Procedures 4-2
Constants 1-5 Formal Parameters 4-3

Boolean Constants 1-5 Actual Parameters 4-3
Character Constants 1-5 Functions 44
Integer Constants 1-5 Programmer-Supplied Functions 4-4

Decimal Integer Constant 1-5 Intrinsic Functions 4-5
Hexadecimal Constant 1-5 ABS Function 4-5
Octal Constant 1-5 B Function 4-6

Real Constants 1-6 C Function 4-6
Status Functions and Constants 1-6 LOC Function 4-7

Operators 1-6 P Function 4-7
Expressions 1-6 Alternative Entry Points 4-7

Arithmetic Expressions 1-8 Interprogram Communication 4-8
Numeric Arithmetic Expressions 1-8 COMMON Declaration 4-8
Masking Expressions 1-9 XDEF Declaration 4-8

Boolean Expressions 1-9 XREF Declaration 4-9
Relational Expressions 1-9
Logical Expressions 1-10 5 COMPILER DIRECTIVES 5-1

$BEGIN/$END Debugging Facility 5-1
2 DATA DECLARATIONS 2-1 DEF Facility 5-1
ITEM Declaration 2-1 DEF Name References 5-3
ST ATUS Declaration 2-2 . CONTROL Statement 5-4
SWITCH Declaration 2-3 Listing Control 5-4

Ordinary Switch 2-3 Conditional Compilation 5-4
Status Switch 2-3 FOR Loop Controi 5-6

ARRA Y Declaration 2-4 Core Residence Selection 5-6
Attributes of Variables Specification 5-7 Array References 2-6

Overlapped Variables 5-7 Serial and Parallel Arrays 2-7
Reactive Arrays 5-8

I Presetting Arrays 2-8
Weak Externals 5-8

Array Storage and Addressing 2-10 Traceback Facility 5-9
Based Array Declaration 2-12

6 COMPILER CALL AND OUTPUT
3 EXECUTABLE STATEMENTS 3-1 LISTINGS 6-1
Labels 3-1 Compiler Call 6-1
Replacement Statement 3-2 A Abort Job After Errors 6-1
Exchange Statement 3-3 B Binary Code File 6-1
FOR Statement 3-3 C Check Switch Range 6-1

TEST Statement Within a FOR Statement 3-4 D Pack Switches 6-1
E Compile $BEGIN/$END Statements 6-2 GOTO Statement 3-6
F FORTRAN Calling Sequence 6-2 IF Statement 3-6
H List All Source Statements 6-2

RETURN Statement 3-7
I Source Input File 6-2

I STOP Statement 3-7 K Points-Not-Tested 6-2
TERM Statement 3-7

60496400 D vii

L Listing File 6-2 X List Storage Map 6-3
N Cross Reference Unreferenced Items 6-2 Y Suppress Diagnostic 136 6-3
P Preset Common 6-2 Output Listing 6-3
S Execution Library 6-3 Storage Map 64
T Syntax Check 6-3 Cross-Reference Map 6-5
W Single Statement Code Generation 6-3

APPENDIXES

A ST ANDARD CHARACTER SETS A-I D METALANGUAGE 0-1
B DIAGNOSTICS B-1 E EXECUTION-TIME OUTPUT E-I
C PROGRAMMING SUGGESTIONS C-l F GLOSSARY F-I I INDEX

FIGURES

1-1 Examples of Arithmetic Expressions 3-1 Generalized Fastloop and Slowloop
Evaluation 1-9 Flowcharts 34

2-1 Differences in Serial and Parallel 3-2 Slowloop and Fastloop Expansion
Allocation 2-5 Compared 3-5

2-2 Serial Array Allocation 2-7 4-1 Scope of Declarations 4-1
2-3 Parallel Array Allocations 2-7 6-1 Sample Source Program 64
2-4 Serial and Parallel Arrays with 6-2 Storage Map 6-5

Multiword Items 2-9 6-3 Cross Reference Map 6-6

I 2-5 Structure of Array RHO 2-12

TABLES

1-1 SYMPL Marks 1-2 1-5 Truth Table for I 1-2 SYMPL Reserved Words and Descriptors 1-3 Masking Operators 1-7
1-3 SYMPL Operators 1-7 2-1 Array Item Descriptor Limits 2-6

I 1-4 Truth Table for Logical Operators 1-7 B-1 Compiler Error Messages B-1

viii 60496400D

CONSTANTS

SYMPL has five types of constants. Each is a se­
quence of characters which defines its own value.
The constant types are: Boolean, character, integer,
real, and status.

BOOLEAN CONSTANTS

Boolean constants represent the two elements of
Boolean algebra. They are specified by the reserved
wOl"ds TRUE and FALSE.

CHARACTER CONSTANTS

Character constants represent alphanumeric data. A
character constant has the format:

"string"

string String of 1 through 240 characters of
the computer character set shown in
appendix A. If the character" is to
appear in the string, it must be speci­
fied by two consecutive " marks.

For example:

"TAPEOl" "ERROR %%"

"QUOTES" "A" " "

INTEGER CONSTANTS

Integer constants represent numeric values. The three
types of integer constants are: decimal, octal, and
hexadecimal.

During execution, the maximum allowable value for
an integer constant depends on the use of the con­
stant. The value of an integer to be converted to a
real value and the value of an integer .. operand for,
and the result of, integer multiplication and division
must be able to be expressed in 47 bits. High-order
bits are lost when a larger value exists, but no diag­
nostic informs the programmer of such a condition.

Each of the types of integer constants is specified in
a different way. Also, each appears in storage in a
format appropriate to its type, as described with
ITEM declarations for data types.

60496400 B

Decimal Integer' Constant

A decimal constant is a string of decimal digits 0
through 9 with an optional preceding + or - sign.
The string can contain 1 through 18 digits; it cannot
contain blanks. The absolute value for a decimal
integer must be able to be expressed in 59 bits.

For example:

+15 -1 4096

Hexadecimal Constant

A hexadecimal constant represents 4 bits in storage
for each hexadecimal digit in the constant. The
absolute value for a hexadecimal constant must be
able to be expressed in 59 bits. If 60 significant
bits are written, the leftmost bit is used as a sign in
two's complement; and if the constant is stored in a
signed integer format of n bits, the nth bit from
the right is used as the sign bit.

A hexadecimal constant has the format:

X"string"

string String of 1 through 15 hexadecimal
digits 0 through 9 and A through F.
Embedded blanks are ignored.

For example:

X"7FFF" X"9"

Octal Constant

An octal constant represents 3 bits in storage for
each octal digit in the constant. If 60 significant bits
are written, the leftmost bit is used as a sign in two's
complement; and if the constant is stored in a signed
integer format of n bits, the nth bit from the right
is used as the sign bit.

An octal constant has the format:

O"string"

string String of 1 through 20 octal digits 0
through 7. Embedded blanks are
ignored.

1-5

For example:

0"777" 0"33"

REAL CONSTANTS

Real constants represent numeric values in standard
single-precision normalized floating point format. A
real constant is a string of decimal digits that includes
a "decimal point and can include a leading sign. Op­
tionally, it can include an exponent representing
multiplication by a power of 10. The exponent is
specified as either of the semantically equivalent
letters D or E followed by an optional plus or minus
sign and a decimal integer. A real constant cannot
be represented by a string containing an embedded
blank.

For example:

3.14E2 -24. 37.E-3

I The magnitude limits of a real constant are approxi-

I mately 10-293 to 10+322 with up to 15 digits of
accuracy. A diagnostic message is given when a
number falls outside of the hardware limits.

STATUS FUNCTIONS AND
CONSTANTS

Status functions and constants represent small integer
values the compiler has associated with the identifiers
in a status list. They can be used to preset scalar
and array items and can be used in expressions.

Both status constants and status functions require a
preceding STATUS declaration to define a status list
and identifiers associated with the status list, as de­
scribed in section 2.

A status function has the format:

stlist "s tval ue"

Use of a status function accesses the integer associated
with stvalue in status list stlist_

1-6

A status constant is a shorthand method of writing
a status function. The format of a status constant
is:

S"stvalue"

Since a status constant does not indicate which status
list it belongs to, it must be used only in a context
where the status constant is directly attributable to a
particular status list. Such contexts are:

Presetting a scalar or array item of type S.

Joining a status variable by an operator such as:

OPCODE=S"NOP"; IF OPCODE NE S"NOP" ...

OPERATORS

Operators are used in arithmetic expressions and
Boolean expressions. The operators are of type arith­
metic, relational, and logical.

Arithmetic operators are of two types:

Numeric operators perform arithmetic operations
to yield a numeric result.

Masking operators perform bit-bit-bit operations
to yield a numeric result.

Relational operators work with arithmetic operands
to produce a Boolean result.

Logical operators work with Boolean values and yield
a Boolean result.

Table 1-3 shows the SYMPL symbols (reserved word)
and their meanings for the different types of opera­
tors. Tables 1-4 and 1-5 show truth tables for the
logical and. masking operators.

EXPRESSIONS

An expression is a rule for computing a value. During
evaluation of an expression the values of the operands
in the expression are combined according to the
l~ngll(tge rules to form a single value"

60496400 D

I

I

Each of the following is an expression:

Constant

Scalar

Subscripted array item

Function reference, except the P function

TABLE 1-3. SYMPL OPERATORS

• Symbol Meaning

Numeric Operators

+ Addition; unary plus.

- Subtraction; unary minus.

* Mul tiplication.

/ Division.

** Exponentiation.

Masking Operators

LNO I Logical NOT (bit-by-bit NOT).

LAN I Logical AND (bit-by-bit AND).

LOR Logical.OR (bit-by-bit OR).

LXR Logical exclusive 0 R.

LIM Logical imply.

LQV Logical equivalent.

Relationai Operators

EQ Is equal to.

GR Is greater than.

GQ Is greater than or equal to.

LQ Is less than or equal to.

LS Is less than.

NQ Is not equal to.

Logical Operators

NOT Negation.

AND Conjunction.

OR Union.

60496400 D

bi

b2

NOT bi

TABLE 1-4. TRUTH TABLE
FOR LOGICAL OPERATORS

False False True

False True False

Logical

T T F

bi AND b2 F F F

bi OR b2 F T T

a

b

LNO a

a LAN b

a LOR b

a LXR b

a LIM b

a LQV b

TABLE 1-5. TRUTH TABLE
FOR MASKING OPERATORS

0 0 1

0 1 0

Masking

1 1 0

0 0 0

0 1 1

0 1 1

1 1 0

1 0 0

True

True

F

T

T

1

1

0

1

1

0

1

1

Further, any of the above entities combined with a
unary operator or binary operator also produces an
expression.

The two types of expressions are:

Boolean expressions that yield Boolean values of
TRUE or FALSE.

Boolean operands and Boolean expressions differ in
nature from arithmetic operands and expressions; they
cannot be involved with numeric arithmetic expres­
sions. No numeric arithmetic operator applies to any
Boolean operand and vice versa.

Evaluation of an expression begins with evaluation of
operators with higher precedence and continues with
evaluation of operators with lower precedence; other­
wise, evaluation proceeds left to right. A different
order of evaluation can be specified by the programmer
through the use of parentheses: expressions within
parentheses are evaluated before the result is combined
with other operands.

1-7

AR!THMET!C EXPRESS!ONS

Arithmetic expressions yield a numeric value. The
two types of arithmetic expressions are:

Numeric arithmetic expressions that involve oper­
ands of any type except Boolean. Operands
are treated as a single value in these expressions.

Logical masking arithmetic expressions that
involve operands of any type except Boolean,
Operands are treated on a bit-by-bit level in
these expressions.

For both types of expressions operators have implicit
ranking, with evaluation of the expression preceeding
from operators with higher precedence to operators
with lower precedence.

Arithmetic operators are as follows. They are listed
in order of highest to lowest precedence:

() Parentheses, beginning with innermost
pair

** Exponentiation

* / Multiplication and division, from left
to right

+ - Unary plus and minus

+ - Addition and subtraction, from left to
right

LNO Logical NOT (complement)

LAN Logical AND

WR Logical inclusive OR

LXR Logical exclusive 0 R

LIM Logical imply

LQV Logical equivalence

SYMPL has no implicit multiplication in which alge­
braic multiplication can be indicated by XCV) or
(X)(Y).

Numeric Arithmetic Expressions

A numeric arithmetic expression contains only numeric
operands and numeric arithmetic operators. The
numeric operators are: **, *, /, +, and -. The
numeric operands include constants, scalars, sub­
scripted array items, and function references; the type
of any numeric operand must not be Boolean.

1-8

WheIl opeuiIld:) of difftat::nL type:) are useu in a single

expression, the compiler converts the type of one
operand such that the common type of both operands
is the higher type. The four operand types that exist
for conversion purposes are as follows, listed in order
from highest to lowest:

Real

Signed integer

Unsigned integer

Character.

For example, given integer item I and real item R,
the expression (I + R) is evaluated in floating point
arithmetic after the value of I is converted to type
real. Similarly, the expression «(I + 2) * R) is com­
puted by:

Adding I and 2 in integer mode

Converting the result to floating point format

Multiplying the result by R in floating point
format.

Character operands are lowest in the conversion
hierarchy. Conversion of type character to type
integer is affected by the number of characters de­
clared in the character operand. (The length of a
scalar or array item is specified in its declaration;
the length of a character constant is the number of
characters in the string; the length of a C function is
the number of characters indicated in the function.)
Ifbit 59 of a 10 character operand is set, the con­
verted integer is a negative value. If the operand
has more than 10 characters, only the first 10
characters are used in an expression evaluation. For
operands less than 10 characters, the characters are
shifted right to normal integer position and zero
fIlled.

Character-to-real conversion occurs by conversion to
integer followed by conversion of the integer to a
floating point format.

Conversion from type integer to type real occurs by
floating the integer, as provided by hardware instruc­
tions. The resulting real value is expressed in single
precision format.

60496400 D

I

~.

,,<

Preset VAL to the unsigned integer value 2:

STATUS WORDS BEGIN, END, TERM;
ITEM VAL S:WORDS=S"TERM";

Set X to 3:

STATUS COLOR RED, OR, YEL, BLUE;
X=COLOR II BLUE II;

Test LETTER for the display code value
equivalent to Q:

STATUS ALPHA A,B, ... X,Y,Z;
IF LETTER EQ S"Q" THEN ...

SWITCH DECLARATION

A SWITCH declaration defines a list of label names
that the compiler is to associate with small unsigned
integer values. The purpose of the declaration is to
allow mnemonic references to label names in a GO TO
statement.

Two types of switches, and two SWITCH declaration
formats, exist. The first is a straightforward list of
label names; the second combines STATUS capa­
bilities into the SWITCH declaration.

When a switch is referenced in a GOTO statement,
the value of the switch subscript expres~ion must be
within the range of defined switches. If the program
is compiled with the C parameter (range checking) on
the compiler call, an execution-time check is made to
determine whether the value is within the range of
valid values. When range checking is selected, any
value out of range produces a diagnostic and program
abort. If range checking is not selected, any reference
to an out of range switch value produces an undefined
result.

ORDINARY SWITCH

In the simpler form of a switch, the compiler assigns
a value to each label named. The first label in the

60496400 C

list is assigned a value 0, the second label is assigned
the value 1, and so forth.

The format of a SWITCH declaration specifying only
label names is:

SWITCH swname label, label, .

swname

label

Name by which switch is known.
Identifier of 1 through 12 let­
ters, digits, or $ that does not
begin with a digit and does not
duplicate a reserved word.

Label name to be associated with
swname. If the switch is never
accessed by a particular value, a
null parameter (two consecutive
commas) can appear in the list
for that value.

An example of the declaration and use of an ordinary
switch AAA that transfers control to label LAB3 when
the value of I is 2 is:

SWITCH AAA LAB!, LAB2, LAB3;
GOTO AAA[I];

STATUS SWITCH

A status switch references a previously declared
STATUS declaration. The SWITCH declaration
associates the switch name with a status list; each
label name in the switch list is then paired with one
of the identifiers from the status list as specified by
the SWITCH declaration parameters.

The format of a SWITCH declaration specifying a
status list is:

SWITCH swname:stlist label:stvalue, label:
stvalue, ... ;

swname Name by which switch is
known. Identifier of 1 through
12 letters, digits, or $ that does
not begin with a digit and
does not duplicate a reserved
word.

2-3

stlist

label

stvalue

Name by which status list is
known, as declared by a
previous STATUS declaration.

Label name to receive the
same value as the status
value following the colon.

Status value from list stlist to
be associated with the preced­
ing label name.

The status values can appear in a switch list in an
order other than that of their status list. Also, all
of the status values need not be associated with a
label. The same label can be associated with more
than one status value. A status value, however, can
only appear once in a switch list.

An example of a declaration of a status switch
WHICHONE and its use to transfer control to
LABZ when the value of the GOTO statement
argument is 3 is:

STATUS COLOR RED, ORG, YEL, GRN;
SWITCH WHICHONE:COLOR LABX:YEL,

LABZ:G&.l\J;

GOTO WHICHONE[COLOR"GRN"];

ARRAY DECLARATION

An ARRAY declaration defines an arrangement of
item-like elements. An array can be viewed as a
rectangular assortment of entries, each composed of
one particular occurrence of each item comprising

the entry. The number of entries must be less
than 65535.

In storage an array entry occupies an integral num­
ber of whole words. Items within the entry can be
as small as one bit vr as large as 24 words of char­
acter data; only type character items can cross the
boundary of a word in the array, however.

An array is declared by an ARRAY declaration
header followed by an ITEM declaration. If no
items exist in the entry, a null declaration (blank
followed by a semicolon) should follow the ARRAY
declaration. If more than one item (field) exists in
the entry, the ITEM declaration should be a com­
pound statement.

2-4

The format of an ARRAY declaration header is:

I

ARRAY name [low:up, low:up, ...]
alloc (esize),

name

low

up

alloc

esize

Identifier specifying the name
of the array. It can be omit­
ted unless the ARRAY decla­
ration appears in a BASED
ARRAY,XDEF,or XREF
declaration.

Lower bound of a dimension of
the array, expressed as an in­
teger with modulo 218. Can
be signed positive or negative.
If low and its following colon
are omitted, 0 is assumed.

Upper bound of a dimension
of the array, expressed as an
integer with a modulo 218

Can be signed positive or nega­
tive. Must be equal or greater
than the preceding low with
which it is paired.

Allocation of the entries in the
array in storage.

P

S

Parallel allocation in which
the first words of each
entry are allocated con­
tiguously, followed by the
second words of each
entry, and so forth.

Serial allocation in which
all the words of one entry
are allocated contiguously.

If alIoc is omitted, P is assumed.

Entry size. Number of words
in an array entry, expressed
as an unsigned integer. Esize
must be less than 2048 words.
If esize and its enclosing
parentheses are omitted, 1 is
assumed.

An array can have up to seven dimensions. Each
low:up pair in the ARRAY declaration defines a
dimension of the array. (Dimensions specify the
I.:uordinates thai ideniify an element of the array.)
If the bounds list is omitted, [0:0] is assumed.

60496400 D

J

l

Differences between serial and parallel allocation are
in figure 2-1. In this figure, array A has one dimen­
sion, a three word entry that occurs five times.
CHAR[1] is the reference that accesses the second
occurrence of item CHAR dermed to occupy word 1
of the entry. A full declaration for this array might
be:

ARRAY A[O:4] S(3);
BEGIN
ITEM HDR 1(0,0,60);
ITEM CHAR C(1 ,0,10);
ITEM TRFR C(2,0,20);
END

Parallel allocation offers execution advantages and
should be used when possible.

The format of the ITEM declaration of an array is
as follows. If more than one array item is being
declared, all declarations should appear between
BEGIN and END. The declaration is similar, but not
identical, to the ITEM declaration for scalars.

ITEM name type(ep,fbit,size)= [preset] ,
name type(ep,fbit,size)= [preset], . . . ;

name

type

ep

fbit

ARRAY A[O:4] 8(3);

entry 0 {
I wor~? I CHAR [0]

Occurrences of

ITEM CHAR C(l ,0,10) I
Would Be Here

wora 1 -

word 2

{ word ° CHAR[l] ,
word 1 entry 1

word ° _ CHAR [4]
word 1
word 2

entry 4 {

Identifier specifying the name
of the entry item, expressed
as 1 through 12 letters, digits,
or $ that does not begin with
a digit and does not duplicate
the name of a reserved word.
Must be unique within procedure.

Type of array item:

B Boolean
C Character
I Signed integer;

default
U Unsigned integer
R Real
S:stlist Status associated

with list stlist

Entry position. Word number in
which the high-order bit of the
item occurs, starting from 0; ex-
pressed as an unsigned integer
constant.

Bit position at which item begins,
starting on the left and counting
from ° through 59; expressed as
an unsigned integer constant.

For a character item, fbit must
be divisible by six.

ARRAY A[O:4] P(3);

(entry °
entry 1

word ° of< entry 2

f
entry 3
entry 4

CHAR [0]

CHAR[I] -
CHAR [4]

word 2 of l entry °
entry 1
entry 2
entry 3
entry 4

Figure 2-1. Differences in Serial and Parallel Allocation

60496400 D 2-5

I

I

I size

preset

Type

I

U

R

B
I I

C

S

2-6

Item length, expressed as an
unsigned integer constant ap~
propriate to the type, as shown
in table 2-1. Only C type
data can cross word boundaries.

R type data must have a size
of 60.

For a single occurrence array
entry item, value to which
item is to be initialized at
load time, expressed as a
constant.

For a multiple occurrence
array entry item, a set of
values arranged in a list in the
same order as the allocation
order of different instances
of the items in storage.

Any constant specified is set
in the item, ali~led appro­
priately in the field, without
regard to other fields in the
word.

If the entire field desl;ripiUf (ep ,foit ,size) is omitted,
ep and fbit default to 0 and size defaults as shown
in table 2-1. One parameter within the parentheses
is assumed to be ep, with fbit=O and size as in the
table; two parameters are assumed to be ep and fbit.

ARRAY REFERENCES

A particular instance of an array item is known as an
element. To reference a particular element, a sub·
script enclosed in brackets is appended to the array
item name. For instance:

ARRAY REF[0:99];
ITEM REFITEM;

To reference the 40th element, which in this
example is the 40th word, the reference is:

REFITEM[39]

The subscript for the array item must be an arithmetic
expression. If the type of the arithmetic expression
is other than integer, the result of the expression will
be converted to integer muue uf modulo 217.

If the array being referenced has more than one
dimension, the subscript must have as many arithmetic

TABLE 2·l. ARRAY ITEM DESCRIPTOR LIMITS

fbit Alignment Maximum Length Default Length May Cross Words

bit 60 bits 60 no

bit 60 bits 60 no

bit 0 60 bits 60 no

bit 60 bits 1 no
I

byte 240 bytes 1 yes

bit 60 bits 60 no

Table 2-1. Array Item Descriptor Limits

60496400 D

A. Serial Array Structure

NENT Al [0] I BI [0] I CI [0] ~

Dl [0] (1 st half)

DI [0] (2nd half)

EI [0]

} wtry 0

Al [1] ~ I BI[1] I Cl [1]

D 1 [1] (1 st half)

D 1 [1] (2nd half)

EI[1]
} Entry 1

A1[2] I BI [2] I CI [2]

D 1[2] (1 st half)

DI[2] (2nd half)

E1[2]

) j Entry 2

A1(3] I BI [3] I Cl [3]

DI [3] (1 st half)

DI [3] (2nd half)

EI [3]

} Entry 3

B. Parallel Array Structure

NENT Al [0] BI [0] CI [0] Entry 0

Entry I Al[I] BI[1] CI[1]

Al [2] BI [2] CI [2]

Al [3] BI [3] CI [3]

Dl[O] (1 st half)

DI [1] (1st half)

DI[2] (1st half)

DI [3] (1st half)

DI [0] (2nd half)

DI [1] (2nd half)

D1[2] (2nd half) Entry 2

Entry 3 D 1 [3] (2nd half)

EI [0]

EI [1]

EI [2]

El [3]

Figure 2-4. Serial and Parallel Arrays with Multiword Items

60496400 B 2-9

ARRAY TENWORD [0:4] S(2);
BEGIN ITEM A 1(0,0,30)=[4, ,3, ,6];

ITEM B 1(0,0,45)= [, 10, , 15];
ITEM C C(1,0,5)=[IYYYYYI,IXXXXX",

"VVVW","RRRRR","QQQQQ"] ;
END

Resulting structure and values are:

4
YYYYY

C[O]

10 I
XXXXX

C[1]

3
VVVVV

C[2]

151
RRRRR

C[3]

6
QQQQQ

C[4]

Multidimensional arrays are preset using nested
brackets. Brackets should be nested to the level of
the number of subscripts. The leftmost subscript
varies most rapidly, as it does in FORTRAN
Exttmded.

Basically, the preset list for a declaration is a set of
constant values, with the same order as the allocation
order of the elements. This list is presented in sec­
tions enclosed in square brackets, and nested to a
depth of the number of dimensions in the array. An
N dimensional array at the first level of nesting has
as many sections as the Nth dimension of the array.
Each of these sections has as many sections as the
N-l st dimension, and so forth. At the deepest level,
each section has as many values as the first dimen­
sion of the array. Each section at the first level
contains values for the instances of the array item
with the same rightmost subscript; the subscript
associated with each section varying from the lower
bound at the left to the upper bound at the right.
Each section of the second level cuntains values for
those instances with the same rightmost two sub­
scripts, and so forth. The outermost section is
appended to the array item declaration with an
equals sign.

Repetition of values can be indicated by bracketing a
list of values with a parentheses and a count. For
example:

2-10

3(2,I)is equivalent to 2,1,2,1,2,1

and

2(2(0,2))is equivalent to 0,2,0,2,0,2,0,1

A two-dimensional parallel array, for example, is
initialized by:

ARRAY OMEGA[0:1,0:2];
ITEM MU 1(0,0)=[[1,2] [3,4] [5,6]];

This presetting is equivalent to:

ARRAY OMEGA [0: 1,0:2] ;
ITEM MU 1(0,0);
MU [0,0] =1;
MU [1,0] =2;
MU [0,1]=3;
MU [1,1]=4;
MU [0,2]=5;
MU [1,2]=6;

As with single-dimension arrays, not all elements of a
multidimensional array need to initialized. Elements
that are not to be initialized can be represented by
null brackets as well as by brackets containing null
values. For instance:

[[[, ,2] [, 1, J][[, ,] [3,4,5]][[, ,] [, ,]]]

is equivalent to

[[[, ,2]['1]][[][3,4,5]][]]

Repetition of bracketed sections is indicated by plac­
ing a count outside the bracket. For instance:

2 [[1 ,3] [2(2)]]

is equivalent to

[[1,3] [2,2]] [[1,3] [2,2)]

Only the first 6000 words of an array can have preset
values.

ARRAY STORAGE AND ADDRESSING

Given the array header:

60496400 D

I

I

I

the number of entries in the array is:

At compilation time, an array is allocated the follow­
ing amount of storage:

(number of entries)(esize)

The allocation of an element with respect to the
location of its array name is affected by whether
storage allocation is serial or parallel.

For serial allocation, the location of element
[sl,s2' ... ,sn] is computed from:

address+ep+e I (esize)+e2(size I +esize)+ . . .
+en(sizel * ... *sizen_1 *esize)

where sizei is urbrl and esize is entry
size.

For parallel allocation:

address+ep*size 1* . . . *sizen_l +e I +e2 *size 1
+ ... en *sizel * ... *sizen_1

where address is the address of element
[b I , ... bnl.

For a three-dimension array, the relative location
of A[ij,k] with respect to A[b 1,b2,b31 is given
by:

location (A[ij,k])=

location (A[b 1 ,b2,b31)+(x+L(y+M(z»)
(esize)

where x=i-b I
y=k-b2
z=k-b3
L=urbl +1
M=u2-b2+1

A three-dimension array can be initialized, for example,
by:

ARRAY XYZ[0:2,3:5,-4:-2];
ITEM PI(0,0,60)=[3[3(4)]];

60496400 0

Each element of an array resides· in a particular row
or column. For example:

o
row 1

2

o

4
23
-7

column

0
-9
14

2 3

7 -8
11 6
-2 77

In this array, the value 77 resides in row 2, column 3.
Because there are three rows and four columns, this
array has the dimensions 3 by 4.

Array items are allocated in column order: that is, the
ieftmost subscript varies most rapidly.

In a two-dimensional array, memory locations are:

ARRAY PSI [1 :3,0:3] alloc(2);
ITEM X,Y(1);

Parallel Serial

X[I,O] X[I,O]
X[2,0] Y[I,O]
X[3,0] X[2,0]
X[1,I] Y[2,O]
X[2,I] X[3,O]
X[3,1] Y[3,O]
X[I,2] X[1,1]
X[2,2] Y[I ,1]
X[3,2] X[2,I]
X[I,3] Y[2,I]
Xf? 11 xn 11 - -L-'- J --L-'-J
X[3,3] Y[3,I]
Y[1,O] X[I,2]
Y[2,O] Y[I,2]
Y[3,0] X[2,21
Y[I,1] Y[2,2]
Y[2,1] X[3,2]
Y[3,1] Y[3,2]
Y[I,2] X[I,3]
Y[2,2] Y[1,3]
Y[3,2] X[2,3]
Y[I,3] Y[2,3]
Y[2,3] X[3,3]
Y[3,3] Y[3,3]

2-11

For a three-dimensional array, the concept and
memory ioeations are:

ARRAY RHO[0:1,2:4,-S:-4]P(l);

Resultant structure of array RHO is shown in figure 2-12.

1

2-12

/'
/'

/
/

/
/

2
3
4
S
6
7
8
9
10
11
12

/
/

/

RHO(0.2.-5]
RHO [1 ,2,-5]
RHO [0,3,-5]
RHO[I,3,-5]
RHO[0,4,-5)
RHO[l,4,-S]
RHO [0,2,-4]
RHO[l,2,-4)
RHO [0,3,-4]
RHO[I,3,-4]
RHO [0,4,-4]
RHO [I ,4,-4]

/
/

/

Figure 2-S. Structure of Array RHO

BASED ARRAY DECLARATION

A based array is an array for which the compiler does
not allocate storage; rather the compiler creates a
specific pointer variable compiled with an undetlned
value. All references to a based array are compiled
in relation to the pointer variable. From a logical
standpoint, a based array provides a template that
can be superimposed over any area of memory during
execution.

A program using the based array has the responsibility
to set the pointer variable through the intrinsic func­
tion P. The P function and its use with based arrays
is described in section 4.

The based array name is declared in a BASED ARRAY
declaration. The array items are declared as they. are
for normal arrays for which storage is allocated.

The format of the BASED ARRAY header is:

BASED array-dec;

or

BASED BEGIN array-dec, array-dec ... END

array-dec Full array declaration including
the ARRAY declaration for a
header and a simple or compound
ITEM declaration for the entry in
the array.

Based arrays should be used when the programmer
does not know prior to execution time where the
array is to be located. Based arrays are used, for
instance, with a memory manager such as CMM
when the position of an array is not known at
load time.

References are made to based arrays just as if they
were normal arrays, once the pointer variabie is set.

60496400 D

EXCHANGE STATEMENT

The exchange statement causes the exchange of values
of the left-hand and right-hand sides of the statement.
Appropriate type conversion occurs during the exchange
if necessary: in A= =B, B is converted as if A=B

I appeared, with A converted as if B= A appeared.

The format of the exchange statement is:

vI = = v2

vi Entities whose values are to be
exchanged. Any of the following
can appear:

Scalar

Subscripted array item

P-function

Bead function

The two characters = = must appear consecutively
without an intervening blank.

SYMPL guarantees that subscript or bead function
components of expressions which m~st be evaluated
to compute the address of vI or v2 are computed
only once. The order of expansion as to which
variable is stored first is not guaranteed, however.
The exchange process refers to the expression values
by referring to temporary variables. For example,
the exchange statement A= =B occurs as if it were
written:

temp=A;
A=B;
B=temp;

Temporary variables are used for storage of component
and subscript expressions, so that the old values are
always used. The expansion of 1= =J[I] is:

tempI=I;
temp2=1;
I=J[I] ;
J[tempI] =temp2;

The subscript expression J [I] is the old value
until the statement is complete.

60496400 D

FOR STAlEMENT

The FOR statement is a generalized looping control
statement. A simple or compound statement follow­
ing the DO clause of FOR executes repetitively as
long as the condition established by the FOR state­
ment is TRUE.

The format of the FOR statement has several forms:

FOR i=aexpl STEP aexp2 DO statement

FOR i=aexpl STEP aexp2 UNTIL aexp3 DO
statement

FOR i=aexpl WHILE bexp DO statement

FOR i=aexpl STEP aexp2 WHILE bexp DO
statement

FOR i=aexpl 00 statement

aexpl

aexp2

aexp3

statement

bexp

Counter for the loop called the
induction variable. Must be a
scalar of any type except B or C.

Arithmetic expression indicating
the initial value of the induction
variable.

Arithmetic expression indicating
a value to be added to the in­
duction variable for each execution
of the loop.

Arithmetic expression indicating
the last value for the induction
variable for which loop repetition
is to occur.

Simple or compound statement to
be executed repetitively. This
statement is called the controlled
statement.

Boolean expression that must be
TRUE for repetitive loop execution.

Since the form FOR i=aexp DO statement produces
an infinite loop, the programmer-supplied statement
must provide for an exit jump.

The expressions used in the STEP and UNTIL clauses
can utilize data of any type. The result of the ex­
pression is converted to the mode of the induction
variable.

3-3

Two types of loops; known as fastloops and sl ow! oops ,
can be generated by the compiler, depending on the
appearance of the compiler~directing CONTROL state­
ment. Figure 3-1 compares the two types of loops.

3-4

Fastloop

Initialize

Execute

Controlled
Statement

Modify

Siowloop

Initialize

Execute
Controlled
Statement

Modify

Figure 3-1. Generalized Fastloop and
Slowloop Flowcharts

Fastloops always execute at least once (similarly
to American National Standard X3.9-1966,
FORTRAN DO loops) since the test for the
condition is at the end of the loop. To pro­
duce predictable results, the elements of the'
FOR statement are restri"cted as follows:

The induction variable must be integer
type. It can be signed. The absolute
value of the induction variable must be
able to be contained within 17 bits.

can be modified within the loop. SYMPL
might evaluate these expressions before
the start of the loop.

Slowloops need not execute at least once since
the test for the condition is at the beginning of
the loop. The restrictions of fastIoops do not
hold for slowloops.

FastIoops are preferable since they can be optimized
by the compiler.

The default is slowl oop, but it can be overridden for
following FOR statements: a CONTROL F ASTLOOP
statement affects all FOR statements begun before a
later CONTROL SLOWLOOP statement. A loop
control statement within a FOR statement can affect
a nested loop, but not the loop in process. See
section 5 for an example of loop control.

For both types of loops, the value of the induction
variable is undefined after the loop is complete. For
sl owl oops , however, the current value of the induction
variable is preserved if the controlled statement causes
a jump out of the loop. Moreover, if the controlled
statement is entered by a GOTO statement from
outside the FOR statement, the value of the induction
variable might be undefined.

Figure 3-2 shows the different types of FOR state­
ments and the logic of their generated code. For
sl owl oops , the object code has a direct correspondence
with the SYMPL statements shown; this is not the
case with fastIoops.

The step value and final value shown in figure 3-2 in
temporary locations are not guaranteed: if variables
involved in these expressions are modified within the
loop, results are not predictable.

TEST STATEMENT WITHIN A FOR
STATEMENT

In a FOR statement, the compiler automatically
supplies the modification, test, and branching steps of
a loop. The TEST statement provides a means of
branching to the modify-test-branch step~ it is mean­
ingful only within the controlled statement of a FOR
statement.

60496400 B

P'

I!

~t

The format of the XDEF declaration is:

XDEF xdec
or
XDEF BEGIN xdec xdec . . . END

xdec Name of any procedure, function or
label that is to be referenced in an
externally compiled program; or a
full data declaration for a scalar,
array, switch, or based array.

The xdec for a procedure, function
or label is:

PROC name;

FUNC name type;

LABEL name, name, ... ;

XDEF declarations for procedure and function
names can occur either before or after the decla­
rations of the procedure or function.

An example of use of the XDEF and XREF
declarations is as follows:

Procedure A is compiled with:

XREF ITEM COUNT I;

Procedure B is compiled with:

XDEF ITEM COUNT I;

A~ •• _~~~_~~~~ 4-~ r"AfT TT ~_~~ ••• :4-t..:~ ~_~~~
n.l1y 11:;11:;11:;U,-,1:; LV '-'VU1., 1. llV1U WlLH111 P1V,-,I;-

dure A accesses the storage reserved for the
item within procedure B, assuming both A
and B are available at load time.

XREF DECLARATION

The XREF declaration generates external references
to the specified names. It is assumed that storage

60496400 D

for variables is allocated and appropriately declared
with XDEF in a separately compiled program.

The format of the XREF declaration is:

XREF xdec
or
XREF BEGIN xdec xdec . . . END

xdec Any of the following whose storage
is declared with XDEF:

Data declaration for a scalar with­
out preset.

Data declaration for an array with­
out presets.

Data declaration for a based array.

PROC name;

FUNC name type;

LABEL name, name,

~WrTrl-l n<lln'" n<lln'" • u.,.,.L..I.. '-'.LoA. .I..I..u. ... J. 1.\001' , .I. L&J..I..I"", • • • ,

XREF itself is not terminated by a semicolon, but
each declaration within the XREF statement re­
quires a terminating semicolon.

Examples of XREF statements are:

XREF BASED ARRAY AA; ITEM XX;

XREF BEGIN
SWITCH JUMVEC;
FUNC LINEUP R;
ARRAY[0:9,0:9] S(5);

BEGIN
ITEM ZZ C(0,0,40);
ITEM YY R(4,0,60);
END

END

4-9

I

Each parameter in the actual parameter list is
delimited by the final parenthesis or a comma. A
parameter consists of all the charaCters between suc­
cessive parameter delimiters.

Any character can appear as part of the. actual param­
eter string, but characters with syntax-defining mean­
ing might require special coding:

Any parameter string that contains a semicolon
must be bounded by #. The bounding # are
removed prior to substitution.

Any parameter string that contains # must
specirj # # to produce a single # substitution.

Any parameter string that contains incorrectly
unbalanced or nested (), < > , or [] must be
bounded by #. The bounding # are removed
prior to substitution.

Any comma within a parameter string is not
recognized as a parameter delimiter when that
comma is contained within a balanced set of
(), < >, or [].

All actual parameters valid for a procedure or function
call are valid as DEF parameter strings. No restriction
limits the DEF name reference parameter strings to
items or expressions, however.

For example:

• Define BYTE and reference it by BYTE(C,S,2**J):

DEF BYTE(B,J,K) # B<J>A[K] #;

Expansion produces:

C< S>A[2**J]

• Define CHECK with two parameters and a body
that uses the BYTE specified above:

DEF CHECK(X,ERROR) # IF BYTE(B,l,X)
EQ 1 THEN GOTO OK; ERROR#;

Reference:

. CHECK(CALL(3,B),#ERROR=37;
GOTO FAIL#);

Expansion:

IF B<1>A[CALL(3,B)] EQ 1 THEN GOTO
OK; ERROR=37; GOTO FAIL;

60496400 C

• Another definition of CHECK with the same
parameters produces the following expansion,
given the same reference:

DEF CHECK(X,ERROR)#IF BYTE
(B,l,##X##) EQ 1 THEN GOTO OK;
ERROR#;

Expansion:

IF B<l>A[X] EQ 1 THEN GOTO OK;
ERROR=37;GOTO FAIL;

DEF NAME REFERENCES

Once a DEF name has been defined, subsequent
references to that name are replaced by the characters
in DEF body. No substitution occurs in the follow­
ing circumstances, however:

The DEF name appears within a comment.

The DEF name appears within a constant.

The DEF name or the DEF parameter name
appears as the identifier being defined by an
ITEM, ARRAY or COMMON declaration.

The DEF name corresponds to one of the
following and the name appears in a syntax­
defining context:

Type descriptor abbreviations B, C, I,
R, S, U.

Array layout specifiers P, S.

Constant prefixes 0, S, X.

Intrinsic function B, C, P.

Real number specifiers D, E.

When the DEF declaration does not include parameters,
compilation simply replaces the DEF name with the
DEF body.

When the DEF declaration includes parameters, each
reference to the DEF name must be followed by an
actual parameter list. The format of the DEF name
reference with parameters is:

name(param,param, . . .)

name Name defined in a prior DEF
declaration within this subprogram.

S-3

I

param String of characters to replace a
formal parameter.

No comment can appear between the DEF name and
the left parenthesis of the actual parameter list.

A one-to-one correspondence exists between the posi­
tions of parameters in each list. The first actual
parameter replaces all occurrences of the first formal
parameter within the DEF body; the second actual
parameter replaces all occurrences of the second .
parameter; and so forth. The number of actual

• parameters must not exceed the number of formal
parameters: such a condition is detected as a fatal
error and DEF name substitution is suppressed.

The number of actual parameters can be fewer than
the number of formal parameters, however. Any
formal parameter without a corresponding actual
parameter is replaced by a null character string. This
allows the expansion of a DEF name with a variable
number of actual parameters.

CONTROL STATEMENT

The CONTROL statement directs the compiler to
take immediate action. Several different types of
control words in the statement cause different types
of actions:

Output listing control specifications are EJECT,
LIST, NOUST, OBJLST.

Conditional compilation control words are IF,
FI, ENDIF.

Compilation option selections are PACK,
PRESET. FTNCALL.

FOR statement loop specifications are
FASTLOOP, SLOWLOOP.

Core residence selections are LEVELl, LEVEL2,
LEVEL3.

Variable attribute specifications are DISJOINT,
OVERLAP, REACTIVE, INERT. .

Weak external specification is WEAK.

Traceback selection is TRACEBACK.

Each of the different functions is described separately
below.

54

A CONTROL statement can appear anywhere in a
program that a statement can appear. It can also
appear within BEGIN and END enclosing a list of
array items, based arrays, external declarations, or
common declarations.

The effect of a CONTROL statement can be reflected
in an entire module. The end of a procedure or
function does not cancel the statement; only TERM
cancels a CONTROL statement.

LISTING CONTROL

Four forms of the CONTROL statement affect output
listings. The general format is:

CONTROL control-word;

Control-word

EJECT

UST

NOLIST

OBJLST

One of the following:

Skip to new page of listing

Resume normal listing of source
statements

Suspend normal listing of source
statements

List object code

EJECT, LIST, and NOLIST cause the compiler to
take action at the time the statement is encountered
among the source statements.

OBJLST applies to the entire module. Its appearance
anywhere within the module affects the entire module.

The H parameter of the SYMPL compiler call overrid~
CONTROL NOLIST.

CONDITIONAL COMPILATION

The CONTROL statement can be used to determine
whether source statements following the CONTROL
statement are to be compiled:

When the relationship defined in the CONTROL
statement tests TRUE, the following source
statements are compiled.

60496400 D

ATTRIBUTES OF VARIABLES
SP EC I F I CAT ION

The SYMPL compiler attempts to produce efficient
executable code. Because the compiler cannot predict
the precise use of a variable in subsequent source
statements, it must forego many efficiencies that would
produce inaccurate code by particular variable references.
The programmer, however, can be aware of data use
and, through the CONTROL statement, can inform
the compiler of usage characteristics. By classifying
variables and array items as separate or potentially
overlapping, the programmer provides the information
that the compiler needs to decide optimizations.

The format of the CONTROL statement for specifying
attributes of variables is:

CONTROL attribute var, var, ..
or
CONTROL attribute;

attribute Attribute of variables in the state­
ment list:

60496400 C

OVERLAP Variables might be
referenced by more
than one name, as
shown in examples
below. OVERLAP is
the opposite of
DISJOINT.

DISJOINT Variables are referenced
by a single name only.
DISJOINT is the oppo­
site of 0 VERLAP.

REACTIVE A given word in a
single array might con­
tain two items, or parts
of items, being refer­
enced together although
the two items are not
declared to overlay each
other. See examples
below. REACTIVE is
the opposite of INERT.

Items with declarations
that show one field
overlaying another
field are detected by

var

INERT

the compiler, so that
REACTIVE need not
be declared.

A given word in a
single array does not
contain items, or parts
of items, referenced
together. INERT is
the opposite of
REACTIVE.

Variable with the attribute specified.

If the list of variables is omitted, the
CONTROL statement becomes a
global switch that affects all sub­
sequently declared variables not
otherwise referenced by a contrary
individual specification.

If neither the global switch format nor the individual
specification format of the CONTROL statement
appears, the module is compiled as described in
appendix C, Possible Optimizations. If any CONTROL
statement specifying an attribute appears in the module,
the global switch format CONTROL REACTIVE and
CONTROL OVERLAP is assumed at the beginning of
a module. Use of the CONTROL statement to
classify variables is encouraged because future versions
of the compiler might require such classification.

The definitions of overlap and disjoint refer only to
variables in separate arrays; for overlapping items
within a single array, the distinction between reactive
and inert must instead be drawn.

Overlapped Variables

One program migllt refer to the same variable by two
names when formal parameters or based arrays are
referenced. For example:

PROC P(A,B);

A=2;
B=4;
Y=A;

5-7

A call to procedure P in the form P(V ,V)
represents two occurrences of the same actual
parameter: during compiler optimization the
store of the value of Y must not use the value
of A from the A=2 statement.

Similarly, with a based array B based on A:

PROC P(A,B);
X=A[2] ;
B[2]=3;
Y=A[2] ;

Since A and B refer to the same array, the com­
piler must not store Y such that it refers back
to the first A [I] .

Variable names that interfere with each other as
illustrated above are called overlapped variable names.
If such interference does not occur, the variables are
said to be disjoint.

To determine whether variables should be specified as
OVERLAP or DISJOINT, the programmer must
examine the entire module, not simply a given subpro­
gram. The compiler reserves the right tu inspeci ail
procedures and functions in a given module for use of
variables and it considers that normal nonextemal
variables are not destroyed by calls to global s,ubpro­
grams whether external or not. But if local procedures
are called which have access to the names of local
variables, the compiler detects all the variables such a
procedure explicitly stores.

Variables known through COMMON, XDEF, and XREF
declarations are considered destroyed by calls to an
external subprogram, Overlapped behavior exists when
an external subprogram destroys nonexternal variables.

Reactive Arrays

Two items in one array Ca.!"1 interfere with optimization
when references to items do not match the declarations
of these items. For example:

5-8

ARRAY [0:100] S (1);
ITEM A (0), B (1);

B [I] = A [J] *2 ;
Q=A[J] ;

Item B is outside the bounds of one array entry
and it interfers with the next entry. If the array
is always indexed by 2, B does not interfere with
A. However, if I is set to J -1, the A(J) is
destroyed by a store to B(I).

Array items that interfere with each other as in this
illustration are said to be reactive items. If such
interference does not occur, the items are said to be
inert. An array is reactive if it has two items A and
B such that for A [i] and B U] with i not equal to j
at some time during execution, any part of A [i] is in
the same word as any part of B 01. It is not neces­
sary for the fields to overlap: reactive arrays occur
when both items are in the same word.

To determine whether an array item should be clas­
sified as_ REACTIVE or INERT, the progrannner must
examine an entire module, including all variables
affected by other procedures it might call.

WEAK EXTERNALS I
When a compiled program is loaded before execution,
the ioader searches for a matching entry point for
all externals and loads the subprogram in which they
occur. Under some circumstances this can result in
the loading of subprograms not required for current
execution. Through using a CONTROL statement to
declare an external weak, the programmer can specify
that the external is not necessarily to be satisfied.

A weak external does not cause a search for the
matching entry point. If the program that con­
tains the entry point is loaded for some other
reason, however, that weak external is linked.

When a weak external is satisfied, it is linked as if
it were a normal external. If it is not satisifed, no
error message is produced.

The format of the CONTROL statement specifying a
weak external is:

CONTROL WEAK name, name, .

name Name of array, based array, function,
item, label, procedure, or switch.

Name must have been previously
declared as external by using XREF.

60496400 D

I,

"-

["

P"

"

I.,

[

t.

TRACEBACK FACI LlTY

SYMPL uses standard calling sequences for transferring
control to a procedure or subroutine of another
language. In this sequence, register Al contains the
address of a parameter list and each parameter to be
passed occupies one word of the list. Execution of
an RJ instruction to the entry point links the programs.
For debugging purposes, SYMPL provides an option
for traceback.

The format of the CONTROL statement for tracing
purposes is:

The appearance of this statement anywhere within the
module selects the option for the entire module.

I Traceback code is generated automatically when the
K parameter (points-not-tested) of the SYMPL com­
piler call is used.

The traceback code generated for procedures and
functions is compatible with traceback of FORTRAN
Extended. To complete FORTRAN Extended com­
patibility, the F parameter of the SYMPL compiler call
must also be specified 0 Code generated by a SYMPL
calling program is never compatible with FORTRAN
Extended traceback, however.

Traceback code generated is as follows:

If the procedure of function has a single entry,
the generated constant word is:

60496400 D

VFD 42/0Hname,I8/ept

name Subprogram name left-justified and
blank filled or truncated to seven
characters.

ept Address of subprogram entry point.

If the procedure or function has multiple entries,
the generated constant word is:

VFD 42/0Hname,I8/temp

name Subprogram primary entry point.

temp Address of a copy of the return
information taken from the most
recent entry point.

The return jump instruction for the subprogram
call is forced upper. The lower 30 bits of the
instruction contain:

VFD I2/line,18/trace

line Approximate source line number
~~ ~~11
Vi v(J.11.

trace Address of the constant word
described above for the innermost
subprogram containing the call
statement.

5-9

(

,11

LI.I

"" ~Il

'" 'I'
r'
L

COMPILER CALL AND OUTPUT LISTINGS 6

COMPILER CALL

The SYMPL compiler is called with a control state­
ment that conforms to operating system syntax. The
control statement cannot be continued.

More than one program or subprogram can be com­
piled by a single call to the compiler as long as they
follow each other on the source file without any file
boundaries between them. The compiler recognizes
a TERM statement as the end of a module and ignores
any further statements on the same card or card
image. Compilation resumes with the next card, which
is assumed to be the start of another program or sub­
program. A comment can precede a program or sub­
program header.

If the first card or card image encountered at the
beginning of a loader module contains the character
OVERLA Y in columns 1 through 7, the remainder
of the module is treated as if an LCC statement
appeared in a COMPASS program.

The name on the compiler call statement is SYMPL.
If all default parameters are selected, the compiler
call appears as:

SYMPL.

A variety of compilation options can be specified in
a parameter list following the compiler call name. If
the name of the source input file is NEWONE, for
example, the compiler call appears as:

SYMPL,I=NEWONE.

All compilation parameters are optional and can appear
in any order. Parameters are listed below in alpha­
betical order.

A ABORT JOB AFTER ERRORS

omitted

60496400 C

Execute next control statement whether
or not any errors are diagnosed during
compilation.

A Execute control statement after an
EXIT(S) control statement if errors are
found at the end of compilation.

B BINARY CODE FILE

omitted

B

B=O

B=lfn

Write binary output from compilation
to file LGO.

Write binary output from compilation
to file LGO.

Suppress generation of binary code.

Write binary output from compilation
to file lfn, where lfn is one through
seven letters or digits beginning with a
letter.

C CHECK SWITCH RANGE

omitted

C

Do not generate code to check range of
switch references. Any reference to an
undefined switch value produces either
an endless loop, a mode error, or a
wild jump.

Genera te code to check range of switch
references. During execution any refer­
ence to an out-of-range switch or an
unspecified switch value produces a diag­
nostic and a program abort.

D PACK SWITCHES

omitted

D

Generate one word for each switch.

Generate one word with two switch
points, reducing the size of generated
code but increasing execution time.
Produces the same result as CONTROL
PACK within a program.

6-1

E COMPILE $BEGIN/$END STATEMENTS

omitted

E

Do not compile source statements
bracketed between $BEGIN and $END.

Compile source statements bracketed
between $BEGIN and $ END.

F FORTRAN CALLING SEQUENCE

omitted Do not compile a word of all zeros at
the end of a parameter list.

F Compile a word of a11 zeros at the end
of each parameter list as required by
the FORTRAN Extended calling sequence.
Produces the same result as a CONTROL
FTNCALL statement within a program.

H LIST ALL SOURCE STATEMENTS

omitted

H

List source statements according to
CONTROL NOLIST and CONTROL
LIST statements within the program.

List all source statements, regardless of
CONTROL NOLIST statements within
the program.

SOURCE INPUT FILE

omitted Compile card images from file INPUT.

Compile card images from file COMPILE.

I=lfn Compile card images from file 1fl1.

K POINTS-NaT-TESTED

omitted

K

Do not generate points-not-tested inter­
face code.

Generate an RJ to the points-not­
tested interfaCe routine after eVery
label and conditional jump. Find all
paths in the executable code and'
determine which of the paths are
exercised by the test base. Also, gen­
erate traceback code.

L LISTING FI LE

Any 0, R, or X parameter must be concatenated
with any L parameter, as in: LXOR=PRINTIT.

omitted Write source statement listing and diag­
nostics to me OUTPUT.

L

L=l

L=O

L=lfn

•

Write ~ource st~tement listing ~nd diag­
nostics to fIle OUTPUT.

Write summary of resources used to
fIle OUTPUT.

Suppress all listing output, including
that selected by 0, R, and X; list only
diagnostics.

Write source statement listing and diag­
nostics to fIle lfn, with lfn being one
through seven letters or digits beginning
with a letter.

N CROSS REFERENCE UNREFERENCED
tTEMS

omitted List only referenced items on the cross
reference map selected by the R param­
eter.

N List referenced and unreferenced data
items on the cross reference map
selected by the R parameter.

o LIST OBJECT CODe

Any L, R, or X parameter must be concatenated with
any 0 parameter, as in: OL=LIST/35/45.

omitted

O=st/end

Do not list binary object code.

List binary object code generated by
range of source statements indicated:

st Number of first source statement
whose object code is to be listed.
Default is O.

end Number of last source statement
whose object code is to be listed.
Default is last statement in program.

If only one number appears after =, it
is presumed to be end. The Hne numbers
appear to the left of the source images
on the listing.

O=lfn/st/end List binary object code from specified
source statements on fIle lfn, where lfn
is one through seven letters or digits
beginning with a letter. st and end are
as above.

P PRESET COMMON

omitted Data items in common blocks are not
to be initialized.

60496400 D

t.

1,1'

f'
II,

,II

~III I
I!"

I ~'I'

I",

~,

~I

P Initialize data items in common blocks
according to the preset values in the
data declarations. Produces the same
result as a CONTROL PRESET state­
ment within a program.

R LIST CROSS-REFERENCE MAP

Any L, 0, or X parameter must be concatenated with
any R parameter, as in: RX=SHOW.

omitted

R

R=lfn

00 not list cross reference table -and
common blocks.

List cross reference table and common
blocks on me OUTPUT.

List cross reference table and common
blocks on file Ifn, where lfn is one
through seven letters or digits beginning
with a letter.

S EXECUTION LIBRARY

omitted Compile LDSET tabies with references
to these libraries:

SYMLIB/FORTRAN for NOS and
NOS/BE operating systems

SYMIO/FORTRAN for SCOPE 2
operating system

S=O Suppress LOSET table generation.

S=lib Generate LOSET tables with references
to library lib. Multiple libraries can be
specified with slashes between library
names, as in: S=AAA/MMM/TTT.

T SYNTAX CHECK

omitted

T

Check syntax and generate binary code.

Check syntax, but do not generate
binary code.

W SINGLE STATEMENT CODE GENERATION

omitted

60496400 D

Generate object code with mUltiple
source statement intermixed.

W

X

Generate object code that maintains a
close correspondence with its source
statement. While the resulting object
code might be less efficient, it is useful
for debugging.

LIST STORAGE MAP

Any L, R, or 0 parameter must be concatenated with
any X parameter, as in: RX=OUTPUT.

omitted 00 not list storage map or common
blocks.

X

X=lfn

List storage map and common blocks
on file OUTPUT.

List storage map and common blocks
on me Ifn, where lfn is one through
seven letters or digits beginning with a
letter.

Y SUPPRESS DIAGNOSTIC 136

omitted List diagnostic 136 (Semi ends comment)
as required.

Y Suppress diagnostic 136 listing, but
take normal corrective action.

OUTPUT LISTINGS

Figure 6-1 shows a SYMPL main program SORTI00
that can be used to sort 100 items. It calls procedure
SORTER which was compiled separate from SORTI00
since TERM appeared at the end of SORTI00. SORT-
100 consequently contains an XREF statement that
declared SORTER to be an external program.

A job deck for syntax analysis compilation both the
main program and subprogram would appear as:

jobcard.
any accounting statement.
SYMPL,T.
7/8/9
all SYMPL source statement
6/7/8/9

Output from a compilation normally includes the
source statement listing, and a diagnostic summary.

6-3

O~G~ SOR T i0 C
QEGT"J
qASf~ ARQ~V AA(99)

r T EM X ;
ITEM NOREFEPENC:

• .,

XRe.:r oRoe SO~Trp;
A~~AV T09~SC~TFG (gq]

ITEM T:
P<AA> = LOC(i09~SO~"ED)
S OR T E ~ (r.- <A A» ;

P .~J C SO R T E R , S 0 ~ T 1 :
a:::~IN

A~~AY SQPT[9Q]:
ITEM VALUE;

I r:: M I =
I TE M F L IH; I :: Q !

• .,

Ll: F1Q I=O ~lEP 1 UNTTl 98 01
IF VAlUE(I+11 GP ~ALU£rT] THE~

~~G I~
VALUEtI.1) -- VALU~(IJ:
CI It r.. - ...
, ':1 - .. .,

r:"NfJ
I~ FLAG cQ 0 T~~~

RfTlJPN;
FLA G = C :
G JT" L 1 ;
E'4J ~SOCTtR=
T:::::> ..-

Figure 6-1. Sample Source Program

Any storage map, cross-reference map, or object listing
follows on a separate page of the listing. The last in­
formation shown summarizes the number of words of
memory and the time required for compilatIon. The
parameters of the compiler call used for compilation,
whether selected explicitly or implicitly, are also
shown.

A large map might appear on the output listing in two
parts. Both should be examined.

6-4

STORAGE MAP

the storage map is a GICtlOnary of an programmer­
created declarations in the source program. It is
selected by the X parameter of the compiler call.
Figure 6-2 shows the storage map from the
SORTIOO main program of figure 6-1. Informa­
tion appearing on the map includes:

60496400 C

1 NAME First ten characters only of declarations
are printed.

2 TYPE

3 M

4 LOC

Defines the name as one of the follow­
ing types:

ARYITM
COMMON
ITEM
FUNC
PROC
LABEL
B.ARRY
ARRAY
PROGRAM

Array item
Common block
Item
Function
Procedure
Label
Based array
Array
Program

Mode of data representation

B
C
I
P
S

U
x.
Y

Boolean
Character
Integer
Parallel (arrays only)
Status (Serial if type is

array or based array)
Unsigned integer
External
Weak external

Octal address relative to start of routine;
if followed by C, LOC is relative to
start of common block. If. type =
ARYITM, LOC refers to first occur­
rence of item.

5 FBIT First bit, numbered from 0 to 59, left
to right.

6 NUM Number of bits; if MODE
ber of bytes.

C, num-

SO~Tl00 P~OG~AM • STORAGE MAP •

®®®

!AA q.A~Rt P
SORTE~ ~~~C ~

ToeESCRTED ARF.AY P

Q
Q

2

®®
FaIT HUH NAHE'C(l~J TYPE H LOC

I
SORTlOG
X

ARYITI1 I
PROGRI1
ARYlT" I

CROS~REFERENCE MAP

The cross-reference map lists the properties of
each declaration and shows the source line num­
ber at which the entity was declared or referenced.
It is selected by the R parameter of the compiler
call.

Figure 6-3 shows the cross-reference map from
subprogram SORT100 of figure 6-1. Since the
subprogram was compiled with the N parameter
of the SYMPL compiler call, items that were
declared, but not referenced, also appear on the
map. Information appearing on the map includes:

1 NAME

2 TYPE

2
151

II

FaIT NUM

o 60

G 6G

First ten characters only of decla­
rations are printed.

Defines the name as one of the
following types:

ARYITM Array item
COMMON Common block
ITEM Item
FUNC Function
PROC Procedure
LABEL T ~bel

B.ARRY Based array
STSCON Status constant
DEFINE DEF
STSLST Status list
PROGRM Program
ARRAY Array

NAHEICJ1Q~ TYPE H LOC FaIT HUH

NOREFEReNC ITEM I
SYS- PROC X

1
{;

a &il

Figure 6-2. Storage Map

60496400 D 6-5

I

3 M Mode of data representation by C, declaration is in common
block.

B
C
I
P
S

U
X
Y

Boolean
Character
Integer
Parallel (arrays only)
Status (serial if type =

array)
Unsigned integer
External
Weak external

5 SCOPE Name of outermost procedure
within which declaration occurs;
if type = STSCON, SCOPE is
the name of the status list of
which the item is a member.

4 DEF line number in source listing where
declaration is defined; if followed

6 SET fUSED Source listing line numbers of
references to NAME, * indicates
use as other than left-hand side
of the replacement statement.

SORT1J" • CROSS RErtR~NrE •
CD o ® ®

NAMC::::S(1~' Qt:"F scOP~ SET/USE[)/ATT~IAUTC:-.=USEO,A=ATTRli3UTE

All q.A~QV :> .3 SORT 1 a G 9 lG
NOo,='Fr:~:Nr IT EM T 5 S O~ T1 C C .J.

~O~T[P pooe x ~ SO~T1JO 10<\f.

T 4Q Y I T M I 8 SORT! O'J
Torn-:5'19TEn AqPA Y ~ 7 SO" T! C C q<\f.

X !\OYIT~ T t. '30~T1CC

Figure 6-3. Cross-Reference Map

6-6 60496400 0

I:

(

{I

(

(

r
t
I

i,

(

(

(

,-,

STANDARD CHARACTER SETS A

CONTROL DATA operating systems offer the following variations of a basic character set:

COC 64-character set

CIX 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified when the operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026 or
in 029 mode (regardless of the character set in use). Under NOS/BE the alternate mode can be specified by
a 26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In addition, 026 mode can be specified by a card with 5/7/9 multi­
punched in column 1, and 029 mode can be specified by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2.

Graphic character representation appearing at a terminal or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals.

60496400 A A-I

i

I

A-2

Display
I"nrlo r.r!1nhi,.. --_ _· t'"' •• P'V

(octal)

oot : (colon) tt
01 A
02 B
03 C
04 D
05 E
06 F
07 G
10 H
11 I
12 J
13 K
14 L
15 M
16 N
17 0
20 P
21 a
22 R
23 S
24 T
25 U
26 V
27 W
30 X
31 y
32 Z
33 0
34 1
35 2
36 3
37 4
40 5
41 6
42 7
43 8
44 9
45 +
46 -
47 *
50 /
51 (
52)
53 $
54 =

55 blank
56 , (comma)
57 • (period)
60
61 [
62 J
63 % tt
64 ~

65 ,-
66 v
67 1\

70 t
71 • 72 <
73 >
74 $
75 ~
76 -,
77 ; (semicolon)

STANDARD CHARACTER SETS

CDC

Hollerith
• _'II'WII'

(026)

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
0
1
2
3
4
5
6
7
8
9
12
11

11-8-4
0-1

0-8-4
12-8-4
11-8-3
8-3

no punch
0-8-3
12-8-3
0-8-6
8-7

0-8-2
8-6
84

0-8-5
11-0 or 11-8-21tt

0-8-7
11-8-5
11-8-6

12-0 or 12-8-2ttt
11-8-7

8-5
12-8-5
12-8-6
12-8-7

External
Arn ---
Code

00
61
62
63
64
65
66
67
70
71
41
42
43
44
45
46
47
50
51
22
23
24
25
26
27
30
31
12
01
02
03
04
05
06
07
10
11
60
40
54
21
34
74
53
13
20
33
73
36
17
32
16
14
35
52
37
55
56
72
57
15
75
76
77

Graphic
Subset

: (colon) tt
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
a
R
S
T
U
V
W
X
y
Z
0
1
2
3
4
5
6
7
8
9
+ -
*
/
(
)
$
=

blank
, (comma)
• (period)

* (

1
% tt

" (quote)
(underline) - !

&
' (apostrophe)

?
<
>
@

\
- (circumflex)
; (semicolon)

ASCII

Punch Code
(029) (octal)

8-2 072
12-1 101
12-2 102
12-3 103
12-4 104
12-5 105
12-6 106
12-7 107
12-8 110
12-9 111
11-1 112
11-2 113
11-3 114
11-4 115
11-5 116
11-6 117
11-7 120
11-8 121
11-9 122
0-2 123
0-3 124
0-4 125
0-5 126
0-6 127
0-7 130
0-8 131
0-9 132
0 060
1 061
2 062
3 063
4 C54
5 065
6 066
7 067
8 070
9 071

12-8-6 053
11 055

11-8-4 052
0-1 057

12-8-5 050
11-8-5 051
11-8-3 044

8-6 075
no punch 040

0-8-3 054
12-8-3 056

8-3 043
12-8-2 133
11-8-2 135
0-8-4 045
8-7 042

0-8-5 137
12-8-7 or 11_0ttt 041

i2 046
8-5 047

0-8-7 ttt 077
12-8-4 or 12-0 074

0-8-6 076
8-4 100

0-8-2 134
11-8-7 136
11-8-6 073

t Twelve zero bits at the end of a 50-bit word in a zero byte record are an end of record mark rather than
two colons.

ttln installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
\ 0 code 63 IS the colon (82 punch/. The Yo graphiC and related card codes do not eXist and translations

+++ yield a blank (558).
I I I The alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

60496400 D

I

I

DIAGNOSTICS B

The SYMPL compiler recognizes errors in SYMPL
syntax. An applicable diagnostic message is printed
on OUTPUT immediately preceding the line on which
the error was detected. In addition, the total number
of diagnostic messages is printed along with a detailed
listing of each message number and the condition that
caused the error.

The compiler aborts under several conditions:

Error in the compiler call. A dayfIle message
PARAMETER n IN ERROR is generated.

An attempt is made to compile some types of
incorrect programs. An internal diagnostic
message accompanies such an abort.

Other dayfIle messages that might be produced include:

-SYMPL- INSUFFICIENT FL

-SYMPL- INSUFFICIENT SCM FL

-SYMPL- INSUFFICIENT LCM FL

-SYMPL- EMPTY INPUT FILE

-SYMPL- COMPILER ABORT

-SYMPL- BAD EXP CALL TO FTN

-SYMPL- BAD LOADER CALL

-SYMPL- cccccccccc COMPILED cp secs

Table B-1 lists the message number and text of the
compilation diagnostics. Abbreviations used in these
messages are:

Abbreviation Description

BOOL Boolean

CHAR Character

CHARS Characters

CONS Constant

DECL Declaration

DUP Duplicate

60496400 0

Abbreviation Description

ERR Error

EXPR Expression

FUNC Function

HEX Hexadecimal

10 Identifier

IFXX Conditional compilation computa­
tion word

ILL

PARAM

PARENS

PROC

PROG

REF

REFS

REPL

SEMI

SPECS

STRG

UNDECL

XDEF

XREF

/

Illegal

Parameter

Parenthesis

Procedure

Program

Reference

References

Replacement

Semicolon

Specifications

C'+n+ __ +
IJtat\;;111\;;Ht

String

Undeclared

External definition

External reference

Or

TABLE B-1. COMPILER ERROR MESSAGES

Message
Number

001
002
003
004

Condition Causing Message

LONG ID-FIRST 12 CHARS USED
DUP DECL-NEW ONE OVERRIDES
UNDECL 10 DELETED
ILL OCTAL/HEX CONS

B-1

I U"''''''' fT'" "&~UV"'b~

Number

005
006
007

008
009
010
011
012
013
014
015

016

017
018

019
020
021

022

023
024

025
026
027
028
029

030
031
032

033
034

035

036

037
038
039
040

041

B-2

TABLE B-1. COMPILER ERROR MESSAGES (cont.)

Condition Causing Message

TERM MISSING
BAD STATUS CONS USE
BAD NESTING OF PARENS/

BRACKETS
CRUD CHAR IN INPUT I
CHAR STRG>240 BYTES-240 USED I
ILL ARRAY ITEM ID USE DELETED I
ILL SWITCH ID USE DELETED
ILL ARRAY ID USE DELETED
ILL STATUS LIST ID USE DELETED
ILL COMMON ID USE DELETED
SEMI MISSING AFTER ARRAY

DECL
CRUD AT START OF STMT

DELETED
ILL KEYWORD USE DELETED
ARRAY ITEM DECL LIST LACKS

END
DUP DECL OVERRIDES
ITEM DECL ID ERR
DECL DISCARDED-SCAN RESUMES

AT SEMI
ITEM DECL TYPE ERR-I

ASSUMED
ILL ITEM LENGTH-1 BYTE USED
SIGNED PRESET ILL FOR THIS

TYPE-IGNORED
SCAN RESUMES AT -BEGIN­
MISSING SEMI
ITEM PRESET ERR
SEMI ACCEPTED AS NULL STMT
BASED/XDEF /XREF ARRAYS

NEED ID
ARRAY ITEM DECL SYNTAX ERR
ARRAY ITEM DECL TYPE ERR
BAD ARRAY BOUND V ALUES-

ASSUMED [0:0]
ARRAY BOUND SYNTAX ERR
ARRAY ITEM DECL PARTWORD

SPECS ERR-DEFAULT TAKEN
ARRAY ITEM DECL 1ST BIT

ALIGNMENT WRONG-O USED
ILL ARRAY ITEM BOUNDARY-

DEF AULT TAKEN
TOO MANY ARRAY ENTRIES
TOO MANY PRESET GROUPS
ARRA Y PRESET SYNTAX ERR
COMMON/XDEF/XREF-AT OUTER
SCOPE ONLY
BAD COMMON DECT" TGNORED

! Message
I Number
I

042
043
044
045
046

047
048
049
050
051
052
053

054

055

056

057

058
059

060
061
062
063

064
065
066
067
068
069
070
071

073

074

075

076
077
078

079

Condition Causing Message

BAD XREF /XDEF IGNORED
BAD BASED DECL IGNORED
XDEF /XREF LIST CRUD DELETED
SWITCH DECL SYNTAX ERR
COMMON LIST SCAN RESUMES

AT ~ARRAY-/-ITEM-
STATUS DECL SYNTAX ERR
-END- ENDS BAD COMMON LIST
DEF DECL SYNTAX ERR
BAD FORMAL PARAM DECL
PROGRAM BEGINS BADLY
PROG DECL LACKS ID
PROG DECL ERR-CRUD PRECEDES

SEMI
XDEF /XREF LIST SCAN RESUMES

AT LEGAL ENTRY
FORMAL LABEL DECL SYNTAX

ERR
-END- ENDS BAD XDEF/XREF

LIST
FORMAL PROC DECL SYNTAX

ERR
FUNC DECL LASKS ID
FUNC DECL TYPE ERR- I

ASSUMED
FUNC DECL LACKS SEMI
SCAN RESUMES AT SEMI
DUP FORMAL PARAM ID IN LIST
DUP PARAM ID-PRIOR DECL

THIS SCOPE
PARAM LIST SYNTAX ERR
PROC DECL LACKS ID
PROC DECL SYNTAX ERR
UNDECL LABEL/PROC ID
FORMAL ID LACKS DECL
PARAM NOT USED IN THIS SCOPE
ILL DEF ID-NO EXPANSION
ENTRY PROC MAY NOT CALL

ITSELF
TOO MANY PARAM/ ARRA Y / ARRA Y

ITEM REFS
TOO MANY SUBSCRIPTS: SWITCH

REF
NOT ENOUGH SUBSCRIPTS FOR

ARRAY / ARRAY ITEM REFS
BAD SUBSCRIPT LIST
ILL LABEL/PROC ID USE DELETED
STATUS SWITCH DECL LACKS I

STATUS LIST ID I
R ~ n T "RPT T TCP T1\.T CT" TT TC' C'UlT'1Y'U
.Ia.J.' .. -.A~ A-...... .LJ.;,....~ V.,J..&...J .i.~' ~4. .. .A. vloJ '-'" 1.1\....-.11 I

60496400 B

TABLE B-l. COMPILER ERROR MESSAGES (cont.)

Message
Condition Causing Message Message

Condition Causing Message Number Number

080 STATUS SWITCH-VALUE TOO 118 BASED LIST SCAN RESUMES
LARGE WITH -ARRAY-

081 STATUS SWITCH-DUP CONSTANT 119 -END- ENDS BAD BASED LIST
VALUES 120 o LENGTH -DEF- STRING IGNORED

082 STATUS SWITCH-MISSING CON- 121 CHAR LENGTH OMITTED-1
STANT ASSUMED

083 BEGIN/END MISMATCH. PROBABLE 122 BAD ARRAY ENTRY SIZE
DISASTER 123 BRACKET NEST TOO DEEP

084 IF EXPR NOT BOOL 124 ILL EXPR TYPE THIS LEFT SIDE
085 WHILE EXPR NOT BOOL 125 BAD READ FUNC
086 CRUD AFTER FINAL END IGNORED 126 EXPR OP CONCATENATION ERR
087 -DEF- ID EXPANSION NEST TOO 127 LONG CHAR STRG-240 BYTES

DEEP-ID DELETED USED
088 YOUR -DO- HAS BEEN FOUND 128 BAD -LOC- FUNC
089 THE -THEN- HAS BEEN FOUND 129 BAD -ABS- FUNC
090 MISSING -DO- 130 BAD INDUCTION ID TYPE
091 MISSING -THEN- 131 NON INDUCTION ID IN -TEST-
092 INITIAL VALUE EXPR ERR 132 -TEST- ILL OUTSIDE LOOP
093 -STEP- EXPR ERR 133 SCAN RESUMES AT -BEGIN-/
094 -UNTIL- EXPR ERR -ITEM-/SEMI
095 -WHILE- EXPR ERR 134 READ FUNC NEEDS ID
096 BAD -GOTO- DELETED 135 DUP STATUS ID
097 BAD REPL STMT DELETED 136 SEMI ENDS COMMENT
098 PARTWORD VALUES AFTER 137 CONTROL STMT SYNTAX ERR

FIRST 3 IGNORED 138 CHAR NOT D/F IN REAL OR
099 ITEM DISCARDED-SCAN RESUMES COUBLE CONSTANT

AT COMMA 139 FORMAL PARAM PRESET ILL
100 HANGING -IF- CLAUSE 140 XREF PRESET ILL
101 HANGING -FOR- CLAUSE 141 BLANK COMMON PRESET ILL
102 HANGING -ELSE- 142 BASED ARR..A. Y ITEM PRESET ILL
103 EXTRA END-OMITTED BEGIN 143 BAD P-FUNC

FOR SUBPROGRAM ASSUMED 144 CHARACTER ITEM>240 BYTES -
104 ILL UNDECL P ARAM USE DELETED 240 USED
105 FOR STMT: INDUCTION ID ERR 145 NO SUBSCRIPT FOR ARRAY ITEM -
106 -IF- EXPR ERR o USED
107 DUP XDEF /XREF DECLS FOR ID 146 CIRCULAR DEF NAME EXPANSION -
108 XDEF PROC/FUNC: NOT FULLY EXPANSION IGNORED

DECL 147 NO MAIN PROC FOR ENTRY PROC
109 BAD FORMAL DECL 148 ILLEGAL CHAR.IN MACRO DEF
110 REDUNDANT FORMAL DECL 149 ILLEGAL IFXX COMPARE
111 BAD PARAM LIST 150 TOO MANY DEF PARAMS
112 BOOL ILL IN ARITH CONTEXT 151 ILLEGAL CONDIT DIRECTIVE
113 COMMON LIST LACKS -END- IGNORED
114 BASED LIST LACKS -END- 152 ILLEGAL VALUE PARAM-LABEL
115 XDEF/XREF LIST LACKS -END- 153 ILLEGAL VALUE PARAM-ARRA Y
116 COMMON LIST CRUD DELETED 154 ILLEGAL VALUE PARAM-PROC
117 BASED LIST CRUD DELETED 155 COMMON BASED ARRAY DECL

ERROR

60496400 B R-3

TABLE B-l. COMPILER ERROR MESSAGES (cont.)

I

Message
Condition Causing Message

Number
Message

Condition Causing Message
Number

156 LABEL DECL ERROR

I 157 XREF SWITCH ERROR
158 I UNMATCHED IFXX I 159 DEF PARAM ERROR

171 ONLY ITEMS AND ARRA YS HA VE I
ATTRIBUTES

172 BAD ATTRIBUTE/LEVEL SPECIFI- I
CATION LIST I

160 ([OR < NESTING TOO DEEP
161 ([OR < NEST MISMATCH
162 PARAMETER TOO LONG

173 FAST FOR LOOP INDUCTION

I VARIABLE ERROR
174 BAD GLOBAL ATTRIBUTE SPEC

163 PARAMETER COUNT ERROR 175 LEVEL ONLY APPLIES TO COM-
164 RECOVERY AT ; MON AND BASED ARRAYS
165 BAD DEF ACTUAL PARAMETER 176 BAD USE OF LEVEL 3 VARIABLE
166 BAD UNDCL PROC/LABEL LIST 177 INDUCTION V ARIABLES MUST BE
167 ILL DEF PARAM USAGE SCM RESIDENT
168 SORRY BUT IFXX MUST HAVE

2 PARAMS-FOR THE TIME
178 WEAK ONLY APPLIES TO I EXTERNAL SYMBOLS

BEING 179 ARRAY ENTRY-SIZE TOO LARGE
169 ATTRIBUTE SPECIFIED TO UN- I

I KNOWN VARIABLE I
I 170 SIMPLE ITEMS MAY NOT BE

I I INERT/REACTIVE
_I

180 ARRAY DIMENSION TOO LARGE
181 RECURSIVE PROC/FUNC CALL

NOT ALLOWED
I 182 ERROR IN REAL CONSTANT •

B-4 60496400 D

PROGRAMMING SUGGESTIONS c

COMPILER

Space required for compilation is proportional to the
number of symbols in the source program. Approxi­
mately five words of core are dedicated to each name
in the program, in the form of a symbol table entry.

Time required for compilation is proportional to the
size of the object program, in terms of the amount
of syntax to be scanned. Although data declarations
do, not generate code, they use significant amounts of
compiler time and field length, especially data presets.

Compilation time can be further reduced by judicious
use of the compiler options such as suppression of
object code and cross reference listings.

DEF declarations can increase readability of SYMPL
source programs and facilitate changes to them. How­
ever, DEF declarations and expansions increase com­
pilation time and field length, accordingly.

OBJECT CODE

SUBSCRIPTS

(",~rI~ ~~~rI .. ~~rI 1-. •• ~~+~~~~~:~~ n .. 1-.n~~:~ .. ~rI .. n~:n1-.1~n
,",VUIV p~VUU~IVU uy ~IV~IV~IVll~1110 ;)UU;)~~lPLIVU Val1aUIIV;)

can be affected by the means of expressing the sub­
script. For example, an Integer constant can be
partially evaluated at compile time so that one in­
struction is required to access an array item (given
the item is a full word); but a scalar integer variable
requires four instructions to access the item. Thus,
a reference to A[3] requires one instruction; but A[I],
where 1=3, requires four instructions to retrieve the
same item.

ARRAYS

Parallel arrays are accessed more efficiently than
serial arrays when an array entry exceeds one word.
For arrays with one-word entries, no difference in
object code speed or space is apparent. Parallel

60496400 B

arrays, rather than serial arrays, should be used when
possible. Fixed arrays are accessed more efficiently
than based arrays, which require a level of indirect­
ness to access an entry. Whenever possible, fixed
arrays should be used.

COST OF ACCESSING
DATA TYPES

If an array item is a full 60-bit word, access does
not depend upon its type. For items which are not
60-bit words, however, type and bit position assign­
men t affect the code required to access them, as
follows:

Signed integers are accessed more efficiently than
unsigned integers. If the item is 18 bits long,
the SXi instruction is used to access signed
integers. Signed integer items are accessed more
efficiently if they are the leftmost bits of a
word. Unsigned integer items are accessed more
efficiently if they occupy the rightmost bits of
a word rather than the middle or leftmost bits.
Boolean items are most efficiently accessed by
allocating the whole word or the leftmost bit
of a word rather than one bit elsewhere. Other-
... :n~ .. 1-.~ .. n_~ n~~~nn~rI nn .. ~n:~~~rI :~+~~~~n n~~
VVl;)v, Ulvy a~v a~~v;);)vU a;) UllMollvU 11llvovl;) a1IV

accessed.

FOR LOOPS

The break-even point in code generated for in-line
and FOR loop code is 3-4 iterations. Of the fol­
lowing sequences, the second generates fewer instruc­
tions and runs faster.

FOR 1=0 STEP 1 UNTIL 2 00
PWORD[I] = 0;

PWORD[O] = 0;
PWORD[1] = 0;
PWORD[2] = 0;

C-1

If four or more items were being set by the above
sequence, the ioop would have required less code but
required more time.

In general, the less source code in the FOR statement,
the faster it will run. Of the following code sequences,
the second is faster since the loop limit is computed
and the value stored only once.

FOR I = 0 STEP 1 UNTIL B/C DO
PWORD[I] = K**J;

A = B/C;
D = K**J;
FOR 1= 0 STEP 1 UNTIL A DO

PWORD[I] = D;

One execption is that FOR loop execution time can
be reduced with more source code as in the following
example where the second sequence would be faster
even though more code would be generated.

.FOR I = 0 STEP 1 UNTIL 89 DO
PWORD [I] = 0;

FOR ! = 0 STEP 3 UNTIL 89 DO
BEGIN

PWORD [I] = 0;
PWORD[l+l] = 0;
PWORD[1+2] = 0;

END

DATA CONVERSION

Integer-to-character conversion is byte-oriented; the
character-ta-integer conversion is word-oriented. When
an integer item is converted to character mode, the
rightmost 6-bit byte is left-justified and blank filled
in the character field; yet, character-to-integer con­
version is performed by right-justifying the right end
of the last word of the character item and zero filling
it on the left. Character field definitions can cross
word boundaries. Arithmetic operations with char­
acter data, including masking, makes the code machine
dependent because it reduces the string to one word.

The conversions can be circumvented by the use of
bit bead functions. For example, B<0,60>FLTINGPT
=INTEGER; would cause the integer to be stored in
the floating point item without conversion. B<0,60>
CHARACTER=INTEGER also would cause the full
word to be stored in CHARACTER, not just the low­
order ~i.x bi.ts.

C-2

PROC SUBPROGRAMS

Formal parameters should be called by value when­
ever possible. If a procedure must reference its formal
call by address parameter more than once, a local
variable should be declared, set to the value of the
formal parameter, and subsequently referenced instead
of the formal parameter. Actual call-by-name param­
eters are referenced indirectly in the generated code;
this level of indirectness can be overcome by evalu­
ating the parameter once and making it local to the
procedure by storing the parameter's value in a local
variable.

FUNC SUBPROGRAMS

The statements under the heading PROC subprograms
are true for FUNC subprograms also. When the sub­
program must return a result, a function should be
used rather than a procedure that returns a value.
Use of the function saves two instructions. For
example: a routine is needed to convert from integer
to display code, with the result to be stored in one
of three arrays, depending upon the section of code
where the call Oiigiilates. If a function is used (as in
ARRA YWORD[I) = FUNCTION[INT] rather than a
procedure (as in PROCED (INT); ARRA YWORD[I]
= INTT), two SAi k instructions are saved per call.
The saving is realized since functions return their
result in register X6 rather than in a memory location.

CODING HINTS

Based array references are candidates for scratch vari­
able storage if referenced more than once in a sequence
of source code, since based array references are
indirect.

When storing into many items of the same data struc­
ture (array) clustered together, those that refer to the
same word of storage should be described in the same
order in which they occur.

POSSIBLE OPTIMIZATIONS

The SYMPL language permits the compiler to move
code to achieve optimization. SYMPL 1.2 and later I
versions, at the present time, do not perform global
flow analysis. They do, however, perform many local
optimizations including: compile-time computation of
ronstant expressiom, conversion of many multiplies to

60496400 D

shift-and-add, and elimination of many redundant
loads and stores. Therefore, if the program has any
OVERLAP or REACTIVE variables, they should be
declared to assure correct compilation on SYMPL 1.2

I and later versions of the compiler.

I In SYMPL 1.2 and later versions, if no CONTROL
statements with INERT, REACTIVE, DISJOINT, or
OVERLAP appear, the program is called unbehaved
and is considered to adhere to SYMPL 1.1 rules,
which are:

Formal parameters can destroy global variables
and vice versa.

A based array can destroy all other based and
fixed arrays, but a fixed array does not destroy
any other arrays.

All arrays are considered reactive.

An external call can destroy all COMMON,
XDEF and XREF variables.

Formal parameters can destroy each ·other.

There are no other interferences between variables.

These definitions are retained in SYMPL 1.2 and
I later versions to accommodate existing programs until

correct behavior statements are inserted.

OPTIMIZATIONS POSSIBLE UNDER
GLOBAL OPTIMIZATION

The compiler is permitted ~11 t.he optLrnizations listed
below.

Constant Subsumation: If a constant is assigned to
a variable, replace the variable with the constant up
until a point where its value may be destroyed.

Common-Expression removal: If the same expression
occurs twice and none of the variables are destroyed
in between, save the result of the first computation,
eliminate the code for the second computation, and
reference the saved value.

Removal of identities: Remove statements such as
1=1; and through constant subsumation and the mech­
anisms of common-expression removal, the optimizer
might determine that a statement is in fact an identify
though this is not apparent in the source.

60496400 D

Code removal from loops: Recognize program flow
which is a loop, whether it is a formal FOR-loop or
not, and optimize any loop which is not spoiled by a
branch entering from outside. Code which is invariant
during the loop is moved in front of the loop.

Strength reduction: In a fastioop, certain multiply
operations on the induction variable are converted to
additions to a temporary variable, and certain ex­
ponentiations are similarly converted to multiplications.

This SYMPL language definition permits analysis of
program flow to discover loops (induding nested loops)
and to determine which expressions are invalidated by
forward branches. It may also analyze all procedures
and functions within a module to determine which
variables they use and which ones they destroy. This
enables the optimizer to optimize over many function
or procedure calls. Since it is possible for code to be
removed over long distances in the program, the pro­
grammer must inspect the entire module to determine
OVERLAP or REACTIVE behavior.

The compiler never moves code from one procedure
to another. Suppose PROC Q stores B(I) and PROC P
references A(J) and B(I) is based on A(J). If P calls
Q, there is danger of the A(J) reference being moved
past the call to Q; this is overlapped behavior and the
CONTROL OVERLAP statement is required to pre­
vent such optimization. But if the program is re­
structured so that P and Q are parallel (neither one
calls the other), then this is not overlapped behavior.
F or example:

PROC MAIN;
BEGIN

Ll:

ARRAY A[10]; ITEM AA(O);
BA~ED ARRAY B[10]; ITEM BB(O);

PROC INIT;
BEGIN
AA(1) = 31;

END #INIT#

P = LOC (A);

INIT;
X =:= BB[I];

IF BOOLE THEN GOTO L 1 ;
END #MAIN#

C-3

Here the compiler might remove BB[I] from the
loop~ causing an error that might be difficult to
locate. The statement

CONTROL OVERLAP A,B;

solves this problem. However, if the code
between the INIT call and the IF BOOLE state­
ment is converted to a procedure, the problem
will not arise and no CONTROL statement is
required.

Such a problem occurs frequently in programs
having a separate initialization section: the
program can remain well-behaved if both the
initialization and the body are made into separ-
ate procedures. '

Another common problem is the local based array
whose pointer is manipulated by an external proce­
dure. (The Common Memory Manager is a case in
point.) Such based arrays must be declared over­
lapped. F or example:

C-4

XREF PROC GETSPC;
BASED ARRAY X[iOO]; ITEM XX (0);

GETSPC(X, 100);
Q=P<X>;
GETSPC(Y, 50);
R=P<X>;

Suppose the routine GETSPC is external and manages
dynamic storage, and sup.pose that at ,the GETSPC(Y,
50) call, it moves block X. Now if the optimizer re­
moves the expression P<X> and sets R to the old
P<X> from the statement Q=P<X>,the result will
be wrong.

The compiler can assume that GETSPC(y) does not
destroy X because X is a local, and theoretically
GETSPC cannot get at X unless X is a parameter.
This assumption is not of course fully correct; how­
ever, we define the language to consider this to be
overlapped behavior and require the statement:

CONTROL OVERLAP X;

TREATMENT OF EXTERNALS AND
COMMON

All badly-behaved and all external variables (XDEF,
XREF, and COMMON) are considered destroyed by
an external call. Any global flow analysis analyzes
all possible flow of control resulting from an XDEF
label, and considers that all variab1es are destroyed
by eniry ai such a label.

60496400 B

condition word

control word : =

attribute : =

lev list : =

lev descr : =

var list : =

60496400 0

ifeg
ifne
ifls

1lliL
~
!!&!

traceback
f1ncall
fastloop

slowloop

I

/ " level 1\ lev list

inert 1\ var list

reacH ve L. var list

disjoint 1\ var list

over lap /\ var 1 ist

weak 1\ weak list

{
lev descr }

lev list V, V lev descr

I common name I
~ased array name

{
var descr }

var list :!.' V var descr

I

D-23

{~rr~y name \

var descr I ~ased array naille 1 : =
ltem name
(/).

weak list
.
{ weak descr

J e_ weak list v ,.::!.. weak de scr e-

arral:: name
based arraI name

weak descr function name
e_ item name

label name
proc name
switch name

ifeg : = mark J IFEQ L mark

ifne : = mark J IFNE L mark --
ifls : = mark J IFLS L mark

iflq : = mark J IFLQ L mark

!fa. : = mark J IFGQ L mark

ifgr : = mark J IFGR L mark --
eject : = mark J EJECT L mark -- --
list : = mark J LIST L mark

nolist : = mark J NOLIST L mark

objlst := mark J OBJLST L mark --
pack : = mark J PACK L mark --
preset : = mark J PRESET L mark --
fi {mark J FI L mark} : =

mark J ENDIF L mark
.-

traceback : = mark ~ TB_A CEBA CK L mark

ftneaU : = mark .J FTNCALL L mark

fastloop : = mark --1 FASTLOOP L mark

slowloop : = mark ~ SLOWLOOpL mark

level : = mark .J LEVEL{i} L mark

inert ; = mark J INERT L mark

0-24 60496400 D

reactive : = J mark

disjoint : =.J mark

overlap : =.J mark

weak : =.J mark ,

dec laration .-

statement

60496400 D

REACTIVE L mark

DISJOINT L mark

OVERLAP L mark

WEAK L mark

arra~ dec \-based dec
common dec
def dec
entry dec
func dec
item dec
label dec
proc dec
status dec
switch dec
xdef dec
xref dec
formal array dec
formr.l based dec
formal func dec
formal item dec
formal label dec
formal Eroc dec

comEound statement
exchange statement
for statement
goto statement
if statement
labeled statement
Eroe call statement
reElaeement statement
return statement
stop statement
test statement

I

D-25

GLOSSARY F

ARITHMETIC EXPRESSION - An expression that
yields a numeric value.

RASED ARRAY - A structure that can be super­
imposed over any area of memory during
program execution. No storage is allocated
for a based array during compilation; rather
the compiler creates a specific pointer
variable compiled with an undefmed value.
Based arrays are used when the position of an
array is not known at load time.

BEAD FUNCTION - A function that accesses
consecutive bits or characters of an item.

BOOLEAN EXPRESSION - An expression that
yields a Boolean value of TRUE or FALSE.

DELIMITER - A character that is used to separate
and organize data items or statements.
SYMPL- characters classified as marks serve as
delimiting characters.

ENTRY POINT - A location within a procedure or
function that can be referenced from a calling
program. Each entry point has a name with
which it is associated.

EXCHANGE STATEMENT - A statement that
causes the exchange of values of the left-hand
and right-hand sides of the statement.

EXPRESSION - A sequence of identifiers,
constants, or function calls separated by
operators and parentheses. The evaluation of
an expression yields a value.

EXTERNAL REFERENCE - A reference in one
module to an entry point in another module.
Throughout the loading process, the loader
matches externals to the correct entry points.
External references are speCified by the XREF
statement.

EXTERNAL SUBPROGRAM - A subprogram that
is compiled as a separate module.

60496400 D

FASTLOOP - A type of FOR statement where the
test and branch is at the end of the loop.
Fastloops always execute at least once. Con­
trast with slowloop.

FUNCTION - A subprogram used within an expres­
sion. I t returns a value through its name.
The text of a function must contain an
assignment statement that assigns a value to the
function name. A function can also return
values through its parameters. Contrast with
procedure and main program.

IDENTIFIER - A string of 1 through 12 letters,
digits, or $ beginning with a letter ($ is con­
sidered to be a letter). This manual uses the
term identifier to indicate a programmer­
defined entity. Contrast with reserved words.

INDUCTION VARIABLE - A scalar that is used as
the counter for the loop in a FOR statement.

LOGICAL OPERATOR - An operator that works
with Boolean values and yields a Boolean
result. Contrast with masking operator, num­
eric operator, and relational operator.

MAIN PROGRAM - A module that consists of a
main program header follOWed by a series of
declarations and one statement (usually com­
pound) and ended by a TERM statement.
Contrast with function, procedure, and sub­
program.

MASKING OPERATOR - An operator that performs
bit-by-bit operations that yield numeric results.
Contrast with logical operator, numeric operator,
and relational operator.

MODULE - A separately compiled main program or
subprogram. Compilation of a module is ter­
minated whenever a TERM statement is
encoun te re d.

NUMERIC OPERATOR An operator that performs
arithmetic operations to yield numeric results.
Contrast with logical operator, masking operator,
and relational operator.

PAKt\LLEL ALLOCATION - The first words of
each array entry are allocated contiguously,
followed by the second words of each entry,
and so forth. Contrast with serial allocation.

P-FUNCTION - A function that references the
pointer variable for a based array.

POINTER VARIABLE - The variable created by
the compiler for a based array. The pointer
variable is set by the P-function.

PROCEDURE - A subprogram that can, but need
not, return values through any of its para­
meters. It is called when its name or one of
its alternative entry points is referenced.
Contrast with function and main program.

RELATIONAL OPERATOR - An operator that
works with arithmetic or character operands
to produce a Boolean result. Contrast
with logical operator, masking operator,
and numeric operator.

REPLACEMENT STATEMENT - A statement that
assigns a value to a scalar, subscripted array
item, P-function, bead function, or function
name.

RESERVED WORDS - Identifiers that have pre­
defined meaning to the SYMPL compiler.

SCALAR -- An item that is not in an array. An
ITEM declaration outside an array defines
a scalar.

SCOPE OR VARIABLE - The set of statements in
which the declaration of the variable is valid.

SER1AL ALLOCATION - .All the words of one
array entry are allocated contiguously. Con­
trast with parallel allocation.

SLOWLOOP - A type of statement where the test
and branch is at the beginning of the loop.
Slowloops need not execute at all. Contrast
with fastloop.

SUBPROGR~\1 - A function or procedure. Sub­
programs can be compiled as separate modules.
Contrast with main program.

TYPE - The representation of data. Data can be
type integer, unsigned integer, real, character,
Boolean, or status.

WEAK EXTERNAL - An external reference that is
ignored by the loader during library searching
and cannot cause any other program to be
loaded. A weak external is linked, however,
if the corresponding entry point is loaded for
any other reason.

XDEF DECLARATION - A declaration that gen­
erates an entry point that can he llsed by the
loader. It is used in the declaring program to
defme an identifier as external. Storage is
allocated for the identifier. Contrast with
XREF declaration.

XREF DECLARATION - A declaration that gener­
ates an external reference to the specified
identifier. It is used in the referencing pro­
gram. Use of XREF implies that the identifier
has been declared to be external in another
program. No storage is allocated for the
identifier. Contrast with XDEF declaration.

60496400 D

ABS function 4-5, 0-16
Actual parameters

call-by-value 4-2
• OEF 5-3, 5-4

function 4-5
procedure 4-3
syntax 0-20

Arithmetic
expressions 1-8, 0-9
operators 1-7

Array
ARRAY declaration 2-4, 0-13
BASED ARRAY declaration 2-12
bead function 2-8
defmition 2-1
ITEM in array 2-5
preset 2-8
reactive 5-8
references 2-6
subscripts 2-6

Attributes
data items 2-1
optimization 5-7

B function 4-6
BASED ARRAY

BASED declaration 2-12, 0-15

P function 4-7
Bead function

array item 2-8
bit 4-6, 0-16
character 4-6, 0-16
exchange statement 3-3
replacement statement 3-2

Blank or space 1-1
Boolean

constant 1-5, 0-11
data type 2-1
expressions 1-9, 0-9
expression use

FOR statement 3-5
IF statement 3-6

ITEM declaration 2-2
operators 1-7

60496400 0

INDEX

Brackets
array dimension 2-4
OEF parameter 5-3
presetting 2-10

C function 4-6
Call

by-value parameter 4-2
compiler 6-1
print routines E-I
procedure 4-2

Character
comparison IFxx 5-5
constant 1-5, 0-11
conversion 1-8
data type 2-1
ITEM declaration 2-2

Character set
CDC A-I
SYMPL I-I, 0-3

Comment
conditional compilation 5-5
OEF 5-2
delimiter I-I, 1-2, 0-5

Common
COMMON declaration 4-8, D-21
level 5-6
preset 5-5

Compilation
compiler call 6-1
conditional 5-4
debugging 5-1
SYMPL 6-1

Constant 1-5, 0-10
CONTROL statement 5-4, 0-22
Controlled statement 3-3
Conversion

expressions 1-8
FOR statement expressions 3-3
ITEM declaration 2-3
replacement statement 3-2

Debugging
$BEGIN/$ENO 5-1, 6-2
conditional compile 5-4
points-not-tested 5-9, 6-2
TRACEBACK 5-9

I

Index-,l

I

I

Deck structure 6-4
Deciarations

array 2-4, 2-12
label 3-1
scalar 2-1
scope of 4-1
STATUS 2-2
SWITCH 2-3

DEF
comment 1-2
conditional compilation 5-5
declaration 5-2, 0-8
references 5-3, 0-9

Delimiters 1-2
Diagnostics B-1
Dimension

array 2-4
preset array 2-10

DISJOINT 5-7

ECS 5-6
Entry

array 2-5
multi word array 2-8

Entry point
alternative 4-7
ENTRY declaration 4-8, 0-20
XDEF declaration 4-8

Error messages B-1
Exchange statement 3-3, 0-17
Expressions

arithmetic 1-8
Boolean 1-9

External
references XREF 4-9
subprograms 4-1
weak 5-8, 0-23

Fastloop
F ASTLOOP 5-6
flowchart 3-4

Floating point (see Real)
FOR statement 3-3, 5-6, 0-18
Formai parameters

DEF 5-2
expressions 4-4
procedure 4-3
syntax 0-20

FORTRAN Extended
calling sequence 5-5, 6-2
FTNCALL 5-5
print routines E-l
TRACEBACK 5-9

EPRC 4-1, 4-3

Index-2

Function
ABS 4-5
Bead 4-6
FUNC declaration 4~1

LOC 4-7
P 4-7
status 1-6

GOTO statement 3-6, 0-18

Identifier 1-2
IF statement 3-6, 0-18
IFxx test 5-5
INERT 5-7
Input/output FORTRAN PRINT E-l
Integer

constant 1-5, 0-10
data type 2-1
ITEM declaration 2-2

ITEM
array declaration 2-5
ITEM declaration 2-1, 0-12
scalar declaration 2-1

Label
GOTO statement 3-6
LABEL declaration 3-1, 0-19
name 3-1, 0-17
switches 2-3

LCM 5-6
LEVEL 5-6
Listing

control
compiler call 6-2
CONTROL statement 54

maps 64
LOC function 4-7, 0-16
Logical expressions 1-10
Loop (see Fastloop, Slowloop)

Macro (see DEF)
Main program 4-2
Maps 64
Marks 1-2
Masking 1-9
Memory residence 5-6
Metalanguage 0-1
Module 6-1

Object code list
CONTROL statement 54
o parameter 6-2

Operators 1-6

60496400 D

Optimization 5-7, C-l
OVERLAP 5-7
OVERLAY 6-1

P function 4-7, D-15
Pack switch 5-5, 6-1
Parallel array

declaration 2-4
storage 2-7

Pointer variable
BASED ARRAY 2-12
LEVEL 5-6
P function 4-7, D-15

I Points-not-tested 5-9, 6-2
Preset

array 2-8
common 4-8, 6-2
scalar 2-1

PRINT /PRINTFL E-l
Procedures

call D-18
declaration 4-2
FPRC 4-1
PROC 4-2

REACTIVE 5-7
Real

constant 1-6, D-12
data type 2-1
ITEM declaration 2-2

Relational expression 1-9
Replacement statement 3-2, D-17
Reserved words 1-3
RETURN statement 3-7, D-19

Scalar 2-1
SCM 5-6
Scope of identifiers

declarations 4-1
label 3-1

Serial array
declaration 24
storage 2-7

Slowloop
flowchart 34
SLOWLOOP 5-6

Statement
compiler-directing 5-1

60496400 D

exchange executable 3-1
replacement 3-2
within IF 3-7

Status
constant 1-6, D-ll
data type 2-1
function 1-6
ITEM declaration 2-2
STATUS declaration 2-2, D-13

STOP statement 3-7, D-19
Storage format

arrays 24
calculation for arrays 2-11
replacement statement 3-2
scalars 2-1
switch 5-5
overlapped 5-7
reactive 5-7
XDEF 4-8

Subprogram
communication 4-8
compilation 6-1
declaration 4-1, D-19

Switch
GOTO statement 3-6
packing 5-5, 6-1
range check 6-1
status switch 2-3
SWITCH declaration 2-3, D-17

SYMPL call 6-1
Syntax

check 6-3
metalanguage D-l
used in text 1-1

TERM statement 3-7,6-1
TEST statement 34, D-18
TRACEBACK 5-9, 6-2
Truth tables 1-7

WEAK 5-8, D-23

XDEF declaration 4-9, D-22
XREF declaration 4-8, D-21

SBEGIN/$END 5-1

Index-3

I" I.

I
I
I
I
I
I
I
I
I

COMMENT SHEET

TIT L E : SYMPL Version 1 Reference Manual

PUBLICATION NO. 60496400 REVISION D

&J 1::\ CONTI\.OL DATA
\!:I r:::J CORP0R<\TION

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manuai do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

•

FROM NAME: ____________ _ POSITION: ___________ ------

COMPANY NAME: __ __

ADDRESS: __________________________________ __

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD

STAPLE

FOLD I -- -- ---- ---- -- -- - --1

BUS!NESS REPLY MA!L
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Dil'ision

215 Moffett Park Drive
Cunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

--- -- -_.- - - - - - - - - - - - - - - - --I
FOLD

STAPLE

