60496400

@B CORPORATION

SYMPL VERSION 1
REFERENCE MANUAL

CONTROL DATA®

CYBER 170 SERIES

CYBER 70 SERIES

7000 SERIES

6000 SERIES COMPUTER SYSTEMS

REVISION RECORD
REVISION DESCRIPTION
A Original printing.
(11-1-75)

Publication No.

60496400

REVISION LETTERS I, O, Q AND X ARE NOT USED

©1975
Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
ack ¢

1- £ +L2 an A v T
CK Oi Liis mandai

[¢n

PREFACE

The SYMPL Version 1.1 compiler makes efficient use of storage during compilation and generation of machine
language instructions. Implementation of this system provides simultaneous compilation of several programs,
utilizing the operating system’s multiprogramming features. The SYMPL compiler operates under the control of:

NOS 1 operating system for the CONTROL DATA® CYBER 170, CYBER 70 Models 72, 73, 74, and
6000 Series Computer Systems.

NOS/BE 1 operating systems for the Control Data CYBER 70 Models 72, 73, 74, and 6000 Series
Computer Systems. -

SCOPE 2 operating system for the Control Data CYBER 76 and 7600 Computer Systems.

This reference manual presents the semantics and rules for writing programs in the SYMPL language; it also
includes sufficient information to prepare, compile, and execute such programs. Syntax, or the structure of
SYMPL word forms and their mutual relations, appears in the appendix section.

It is assumed that the reader has some knowledge of the NOS 1 and NOS/BE 1 operating systems and

Control Data computer systems

LoV IR L0 Y ava LOIIIPpLiCt 113,

The following manuals contain additional information:

Publication Publication Number
NOS 1.0 Operating System Reference Manual, Volume 1 60435400
NOS/BE 1 Operating System Reference Manual 60493800
INTERCOM 4 Reference Manual 60494600

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or parameters.

60496400 A iiifiv

CONTENTS

1. INTRODUCTION

Operating System Interface
SYMPL Overview

Concise Language

Coding Conventions
Language Elements

2. BASIC NOTATION AND ELEMENTS

Characters

Blank Space and Commentary
Identifiers

Arithmetic Operators
Relational Operators

Boolean Operators

3. DATA

Constants
Boolean Constant
Character Constant
Integer Constant
Status Constant
Real Constant
Item Declarations
Item Presets
Status List Declarations
Status Function
Status Constant
Status Switch
Arrays
Declaration
Array Item Declaration
Array Storage and Addressing
Restrictions
Preset Values
Array Reference Subscripts
Based Arrays and the P Function
P Function

4. EXPRESSIONS

Arithmetic Expressions
Boolean Expressions
Relational Expressions

60496400 A

2-1
2-2
2-3
2-3

3-6

wwww&luwwww
RN = — 00 0032 OO

OO v

‘ﬁ
AN

4-1
4-4
44

Logical Expressions
Operands and Mixed-Mode Operations
Boolean Operands
Operand Types — Arithmetic Operands
Type Conversion Transfer Functions
Conversion of Character Operands
Conversion of Integer Operands
Function Cails and Intrinsic Functions
ABS Function
Bead Function
LOC Function

5. STATEMENTS

Statement Types
Simple Statements
Compound Statements
Statement Categories
Value Assignment Statements
Labels
Switches
Ordinary Switches
Status Switch
Status Switch Declaration
General
GOTO Statement
Conditionality: IF Statement
Looping
FOR Statement
TEST Statement
STOP Statement
RETURN Statement
Procedure Call Statement

6. COMPILER DIRECTIVES

CONTROL Statement

Conditional Compilation

TERM Statement

Debugging Code Facility

DEF Declaration
Unparameterized Format
Parameterized Format
Parameterized DEF Expansion

7. PROGRAM STRUCTURE

4-5
4-7
4-7
4-7
4-9
4-9
4-9
4-10
4-10
4-10
4-12

K
AN

AR
—

]
——

UIU\UI(IJIUIU'I
N NN

1 [
== = D 00N NN 0

U\U\UNLIIUIL.I\UIU\(I\MM

rocedures and Functions
Procedure Declaration
Function Declaration
Procedure and Function Use
Formal Labels and Procedures
Parameters
Formal Parameters
Actual Parameters
Scope of Declaration
External Subprogram
Main Program
Alternate Entrances: Entry Declaration
Interprogram Communication
COMMON Declaration
External Reference Declaration
External Definition Declaration
Calling Sequences

8 COMPILER CALL STATEMENT

A STANDARD CHARACTER SETS
B SYMPL DIAGNOSTICS
C GLOSSARY

D THE METALANGUAGE

1-1 Elements of the SYMPL Language
4-1 AND Boolean Operator

4-2 OR Boolean Operator

4-3 NOT Boolean Operator

4-4 Combinations of Boolean Operators

vi

7-7

7-11

7-13
7-17

8-1

APPENDIXES

A-1

B-1

C-1

D-1

1-2
4-6
4-6
4-6
4-7

Source Input: 1

Binary Output: B

Object Time Library Specification: S

List: LXOR

Terminate Compilation: T

Single Statement Scheduling: W

Presets in COMMON: P

Compile $BEGIN-$END Code: E

Packed Switches: D

Switch Range Checking: C

Suppress Diagnostic: Y

Unreferenced Items in Cross Reference: N

FORTRAN Compatible Calling
Sequence: F

Abort: A

Compile Program List: H

Sample Deck Setups For Batch Mode

E
F

G

INDEX

FIGURES

5-1
E-1
E-2
E-3

OUTPUT FROM COMPILATION
OBJECT TIME OUTPUT

PROGRAMMING SUGGESTIONS

General Loop Flowchart
SYMPL Program Source Listing
Storage Map Listing
Cross-Reference Table

60496400 A

8-3

8-4

8-4
8-4
8-4
84

5-9
E-2
E-3
E4

INTRODUCTION 1

SYMPL (System Programming Language) was designed for use by system programmers in writing compilers and system
software. It omits many facilities typically found in higher-level languages, being unencumbered with those extra
features normally included for scientific and commercial applications programming. It is intended to facilitate com-
pilation, and it places minimum restrictions on allowable optimizations.

OPERATING SYSTEM INTERFACE

The compiler is designed to run under control of standard operating systems. Compilation is requested by a
control statement specifying the name SYMPL. This call results in the loading and execution of the subprogram
SYMPL which controls the compilation process. The compiler obtains the control statement parameters from the
operating system.

SYMPL OVERVIEW

SYMPL, which is a procedure oriented language, is similar to JOVIAL, which was derived from ALGOL-58 (the 1958

[~ acanati g | Py oata T oniaoas o acaeile o Lam " a P e e fomira A~ P A e
version of the International Algorithmic Language, as described in'the December 1958 issue of the Communications

of the ACM).

CONCISE LANGUAGE

SYMPL is a readable and concise programming langiage, utilizing self-explanatory English words and the familiar
notations of algebra and logic. In addition, SYMPL has no format restrictions; therefore, the programmer may intermix
comments among the symbols of a program and define notational additions to the language. Also, a SYMPL program
may serve as its own documentation, allowing easy maintenance and revision.

CODING CONVENTIONS

Coding conventions for SYMPL are less restrictive then most languages. The source program is considered

simply as a stream of characters: card or line boundaries are ignored. Significant columns are 1-72; 73 on
are not interpreted. For purposes of source information, the compiler assumes column 72 is adjacent to
column 1 of the next card or line. Names, constants, operators, or any SYMPL symbol, can be broken across
cards or lines.

LANGUAGE ELEMENTS

The organization of SYMPL language elements is shown in figure 1-1.

60496400 A 1-1

[l

V 00196109

SYMPL

— Programs and -
Subroutines

Declarations

Statements

A

-

Expressions

T

Brackets Declarators Delimiters Descriptors

ldentifiers Modifiers Operators Separators

SYMPL Symbols

Names

Constants

Variables

SYMPL Characters o

Programmer-Supplied
Symbols

Figure 1-1. Elements of the SYMFL Language

BASIC NOTATION AND ELEMENTS 2

CHARACTERS

Characters are the basic elements of the SYMPL language and are commonly available on standard keypunch and
typewriter equipment.

SYMPL Characters:

27 Letters: A-Zand §
10 Numerals: 0-9
18Marks: * [+ - =< > ()[1" " ., ;: blank

The double prime or quote (”) is represented by the hardware mark (=) and the 0/8/6 multipunch (Hollerith 026) or
the 3/8 multipunch (Hollerith 029); the prime (') is represented by the hardware mark (#) and the 4/8 multipunch
(Hollerith 026) or a 8/7 multipunch (Hollerith 029).

For a detailed description of characters, numerals, and marks as a function of Hollerith Code, Display Code, and
External BCD, see Appendix A.

BLANK SPACE AND COMMENTARY

Characters classified as marks serve as delimiting characters. For example, any one of them may be used to delimit
character sequences forming identifiers. Normally, the concatentation of two nondelimiting characters does not have
the same effect as their occurrence separated by delimiters (XY is not the same as X.Y or X Y). Since the blank space
is an element within the set of marks, it is classified as a delimiter and its use is significant. Whenever one blank is
required as a delimiter, any number of blanks will suffice; wherever a nonblank delimiter is required, it may be embed-
ded in a sequence of blanks of arbitrary length.

A comment is an arbitrary string of characters which can be inserted between or within SYMPL statements and de-
clarations; comments are enclosed with a pair of double primes and must not contain a double prime or a semicolon.
For example:

Correct ""THIS IS A COMMENT"” or = THIS IS A COMMENT =

Incorrect """ SUCCESSFUL ABORT"

Incorrect ""INCORRECT COMMENT;"”

The hardware mark (equivalence symbol) = will be used throughout much of this manual, primarily to avoid
confusion with two consecutive single quotes (' ').

60496400 A 2-1

Comments may be of any length and may appear wherever it is legal to write a blank, with the following exceptions:

Within a status constant
Within a comment

After the name in a DEF declaration

IDENTIFIERS

Identifiers are arbitrary names used to label the various elements in a SYMPL program; they express reserved SYMPL
words and name programmer defined entities.

The 52 reserved identifiers which represent SYMPL words must not be used for entity names. A complete list of the
52 reserved words appears in appendix D.

Restrictions imposed on the choice of identifiers:

First character must be a letter
Not more than 12 characters in length

Cannot include marks
Examples of valid identifiers:

XYZ
$A
UR12

Examples of character sequences which are not identifiers:

2X Begins with a digit
'Z Begins with a prime
XY Embedded prime

IDGRTRTHANI12 CHARS Exceeds 12 characters
Examples of reserved identifiers which may not be used as user identifiers:

ITEM
TEST
TERM
IF

22 60496400 A

ARITHMETIC OPERATORS

Arithmetic operators denote basic arithmetic operations and the following Boolean operations:

Symbol
+

+

%k

LAN

LNO

LQV

Meaning Example
Addition AA + BB
Unary plus

Subtraction XX -YY

s mer tamliazra

Multiplication DIAM * 3.14
Division IN/CM
Exponentiation VOL **3
Logical and

Logical not

Logicai or

Logical exclusive or
Logical imply

Logical equivalent

RELATIONAL OPERATORS

Relational operators denote numerical relationship between quantities.

Symbol
EQ

GR

GQ

LQ

LS

NQ

60496400 A

Meaning Example

Is equal to AAEQBB

Is greater than DISTANCE GR 500.0
Is greater than or equal to INCOME GQ 10000
Is less than or equal to LIMIT LQ 50

Is less than LIAB LS ASSETS

Is not equal to VELOCITY NQ 70

23

BOOLEAN OPERATORS

Boolean operators denote the three basic operations of Boolean algebra.

24

Symbol
AND
OR

NOT

Meaning
Conjunction
Union

Negation

Example
DAY AND NIGHT
FRIEND OR FOE

NOT CLEAR

60496400 A

—

DATA 3

CONSTANTS
Each of the five types of constants is a sequence of characters which defines its own value; constants represent specific,
fixed values that do not change during program execution. The constants are: Boolean, character, integer, real, and
status.
BOOLEAN CONSTANT
Boolean constants, TRUE or FALSE, represent the two elements of Boolean algebra; generally a Boolean value is used
to represent TRUE or FALSE, ON or OFF, YES or NO. The value for TRUE is 1; value for FALSE is 0.
CHARACTER CONSTANT
Character constants represent alphanumeric data.
Format:

"character-string’

Any character may be included in the ‘character-string’ except a single prime, which must be represented by two
consecutive primes. The maximum length of a character constant is 240 characters.

Examples:
'THIS IS A CHARACTER CONSTANT’
"THIS ONE' 'S TRICKY’

INTEGER CONSTANT

Integer constants may be expressed as: decimal integer, hexadecimal constant, octal constant, or status function. The
format determines the manner in which the value is represented in the computer memory.

During execution, the maximum allowable value is 2*® -1 when an integer constant is converted to real. If the result
is greater than 2%%-1, bits 48 through 58 will be ignored and errors may result. The maximum value of the operands

and the result of integer multiplication or division must be less than 2%8-1. High order bits will be lost if the value is
larger, but no diagnostic is provided.

Decimal Integer

A decimal integer is a string of decimal digits. Embedded blanks are not allowed in a decimal integer; it may contain
up to 18 decimal digits and must not exceed 2°°-1 in value.

60496400 A 3-1

Hexadecimal Constant

Hexadecimal constants may be used to specify binary bit patterns. When hexadecimal constants appear in integer
formulas, the value must not exceed 257 -1.

Format:

X 'hexadecimal integer’
A hexadecimal integer is a string of hexadecimal digits (0-9 and the letters A-F).

Embedded blanks may be included; however, they are ignored during compilation.

Examples:
Hexadecimal Decimal Bit
Constant Equivalent Pattern
X'F 15 1111
X'4BC’ 1212 010010111100

Octal Constant

Octal constants may be used to specify binary bit patterns. When octal constants appear in integer formulas, the
value must not exceed 25°-1.

Format:
O 'octal integer’
An octal integer is a string of up to 20 octal digits (0-7).

Embedded blanks may be included in octal constants; however, they are ignored during compilation.

Examples:
0’56 0'777776'
o7 0'55232522202211230555'

Status Function

The status function is a special form of integer constant discussed under STATUS DECLARATIONS.

STATUS CONSTANT

Status constants are discussed under STATUS DECLARATIONS.

3-2 60496400 A

]

REAL CONSTANT

A real constant is represented by a string of decimal digits including a decimal point and an optional exponent repre-
senting multiplication by a power of 10. The exponent is written as the letter D or E followed by an optional plus
or minus sign and a decimal integer. No embedded blanks are allowed; D and E are semantically equivalent.

A real constant is represented within the computer as a normalized floating point number. The magnitude of a real
constant may be in the range 1072 "to 10322 with up to 15 digits of accuracy.

Examples:
3.E1 31.41592E-01 S5
6.4D+35 3.141592E+279 0.0

ITEM DECLARATIONS

SYMPL items are named, value representative, entities declared by item declarations; and they gain value by arithmetic
replacement. The item is the basic unit used to describe the structure of data to be manipulated. Programmer defined
items must be declared prior to any reference to them.

Item type may be any of the following: Boolean, character, integer, real, status, or unsigned integer.

The general format of the ITEM declaration is:

L1k 5 1dt 1 L I

ITEM name, type preset, name, type preset...;
Item name is a programmer supplied identifier and item type is one of the six forms shown below.

Preset specifies an optional initial value to be assigned to the item; its format is given below. Each item description
of an item declaration defines one item name of the given type:

Item
Character Type Format

B Boolean B

I Integer I

R Real R

U Unsigned integer U

C Character C (length)

S Status S: status list name

length is an integer constant, not greater than 240, specifying the number of characters in the item, and status list
name is the name of a STATUS list from which the item is to assume values (see STATUS DECLARATION).

If type is omitted, integer type is assumed.

60496400 A 3-3

Examples:
ITEM X R; =DEFINES X AS TYPE REAL=

ITEM Y,Z C(10); =DEFINES Y AS INTEGER ITEM AND
Z AS CHARACTER ITEM OF SIZE 10=

ITEM STAT S:SNAME; =ITEM STAT WILL ASSUME VALUES
ASSOCIATED WITH STATUS LIST NAME=

ITEM PRESETS
An item may be assigned an initial value with a preset.
Format of item preset:

= + constant the sign is optional
The type of the constants used in item presets need not be commensurate with the type of the item; if they are not,
however, the resulting item value may not be meaningful, since the value of the constant is inserted without conver-

sion into a field size determined by the item characteristics. Character constants will be left justified within the item
and either right filled with blanks or right truncated, as necessary.

Examples:
Item Declarations Preset Item Declarations
ITEM BOOVAL B; ITEM BOOVAL B = 1;
ITEM CHAR C(10); ITEM CHAR C(10) = '3.14159';
ITEM GAMMA I; ITEM GAMA 1 = 380;
ITEM ZETA R; ITEM ZETA R = 1414,
ITEM SAILBOAT S:LIST; ITEM SAILBOAT S:LISTA = S'TORO":

STATUS LIST DECLARATIONS

The status list declares a list of identifiers to which the compiler assigns monotonically increasing values,
beginning with zero. Its purpose is to allow mnemonic reference to certain variables of small inieger value.

Format:
STATUS Lname name;, name,,...;
Lname identifies the status list.

name; ,name,, . .. Called status values are assigned monotonically increasing
integer values starting at zero.

3-4 60496400 A

Examples:
STATUS WORDS BEGIN, END, TERM, STATUS, WORDS;
STATUS LIST1 POOR, FAIR, GOOD, EXCELLENT;
STATUS LIST2 OK, NOGOOD;
STATUS SIMLAR2 NOTGOOD,0K; =0OK MAY BE IN TWO LISTS=

STATUS ALPHA A,B,C,D,E,F,G,H,1, J, K,L, M,
N,0,P, Q,R,S, T,U,V,W.X, Y, Z;

STATUS COLOR RED, ORANGE, YELLOW, BLUE, GREEN;

Status value identifiers, unlike other identifiers, need not be unique within a program since the status list with which
they are associated can always be determined from context; status values are used in the following ways:

STATUS FUNCTION
Format:
status-list-name 'status value’
A status function may be used anywhere an integer constant may be. It defines a unique integer constant value.
Examples:
In the previous examples
X=COLOR'ORANGE'; =EQUIVALENT TO X=1=

ITEM JJ 1=LIST1'GOOD' ;

STATUS CONSTANT
Format:
S'status value’

Since a status constant does not define a unique value, it must be used only in conjunction with a status item which
refers to the status list of which it is a member. A status constant may be used in expressions and as presets.

Examples:
Referring to the status list examples:

ITEM VAL S: WORDS =S'END’ ;
ITEM LETTER S: ALPHA ;

60496400 A 3-5

LETTER =SB ;
IF LETTER EQ S'Q' THEN ...
STATUS SWITCH

See section 5 for a discussion of switches.

ARRAYS

Certain classes of problems may require variables to be arranged in terms of one or more dimensions. Such an
arrangement of item-like elements is called an array. An array may be viewed as a rectangular assortment of

entries, each composed of one particular instance of each item comprising the array. The array concept refers
collectively to several array items, without reference to value. The dimensionality of arrays is unrestricted. A
typical array is the two dimensional array or matrix where each element resides in a particular row or column.

Example:
column
0 1 2 3
) 4 Y 7 1-8
row 1 23| -9 11 6
2 7114 -2 | 77

In this array the value 77 resides in row 2, column 3. Because there are 3 rows and 4 columns, this array has the
dimensions 3 by 4.

DECLARATION

An array declaration consists of a header and one or more array item declarations; the header format follows:
Format:

ARRAY name [l;:u;,l;:u; ...] {l;} (entry-size) ;

Name is the array identifier; it may be omitted unless the ARRAY declaration appears in a BASED, XDEF, or
XREF declaration.

[ty 2uy p 1wy . .] specifies dimensions of the array
I; lower bound
integers, modulo 218

uj upper bound

The number of pairs (}j ;) is the dimension of the array and L;==Zy;.

3-6 60496400 A

If I; is omitted it is assumed zero and the colon is also omitted.
If the bounds list is omitted [0:0] is assumed.
The number of entries in the array is:

(ul -11+l) (U2-12+1) ‘e (un—1n+l)

where the number of words reserved for the array is:
(u;-1;41) (up -1, +1) . . . (u,-1,+1) (entry-size)

{P) signifies that either P or S is to be chosen. P specifies parallel allocation;
J[S| S serial allocation; if neither is selected, P is assumed.

entry-size is an unsigned integer specifying the number of words in an array entry; if omitted, 1 is assumed and
the parentheses are also omitted. Each entry may consist of one or more array items as defined below.

An array entry exists corresponding to each unique set of defined subscripts.
In serial allocation, the words of each entry are allocated contiguously. In parallel allocation, the first words

of each entry are allocated contiguously, followed by the second words, and so on. A form of dynamic array
allocation is therefore possible with serial allocation only.

Example:
ARRAY A[0:4] S(3); Occurrences of ARRAY A[0:4] P(3);
ITEM CHAR C(1,0,10)

word 0 Would Be Here entry 0

entry 0 word 1 e entry 1

(| word 2 word 0 of<| entry 2

word 0 | entry 3

entry 1 . entry 4

. entry 0

word 0 entry 1

entry 4 word 1 | word 2 of <] entry 2

{ word 2 entry 3

entry 4

ARRAY ITEM DECLARATION

The array declaration header is followed by one or more array item declarations. If more than one appears, the series
must be contained in a BEGIN, END bracket.

60496400 A 3-7

Format:
ITEM name, type (ep,fbit,size) preset,name, type (ep,fbit,size) preset,...;
name; is the array item identifier.
type is as defined for items — one of B, I, U, C, R, S: status list

- if type is omitted integer is assumed.

ARRAY STORAGE AND ADDRESSING

At compilation time, an array is allocated the following amount of storage:
[(uy -1y +1)*(uz 1 +1)* . . . *(u,-1,+1)] * (entry-size)

(ep-fbit size)

entry position (ep) Word number in which the high-order bit of the item occurs; ep is the word number starting
from 0, expressed as an integer constant.

first bit (fbit) Bit number within the word (expressed as an integer constant) starting at the most significant

Lia ~Labl _ . —at4l. N
bit of the word, with 0.

If fbit is omitted, zero is assumed by default; if fbit and ep are omitted, they are both assumed
to be zero.

size Item length. For B type items, size is in bits and default size is one bit.

For C type items, size, in bytes, consists of 6 contiguous bits with a first bit number of
0,6,12, . ..54. Default size is one byte.

For I, R, S, and U type items, the size unit is one bit and the default length is one word.

If the entire descriptor is omitted, the defaults are chosen as above,

If one argument is used: (ep); if two arguments are used: ep and fbit.
Preset allows initial values to be assigned to each instance of the array item.
RESTRICTIONS

B,ILR,S, and U type items must be contained entirely within one entry word and may not
cross word boundaries.

C type items must be byte aligned and the length must be < 240 bytes.
R type items may be declared to be less than one word. No special handling of the exponent

will be provided by the compiler, however. Results from R type items which are less than
one word will be meaningless.

3-8 60496400 A

The following chart summarizes array item allocation restrictions:

May
fbit Length Cross Length Default
Type Alignment Restriction Words Unit Length
LU bit word no bit word
R word word no bit word
B bit word no bit bit
C byte 240 bytes ves byte byte
S bit word no bit word
Given

ARRAY A{fp:up,%:uy, . .. &y Is)(n);

BEGIN
ITEM AI U (ep);
ITEM AL;

END

the location of the array-item AI[21,%, . .

array-item address

. 2,1 with respect to the location of its array name, is given by:

= array-name-address + ep layout = S
= array-name-address + [ep*(u-11+1)*(up-1p+1)*. . .] layout = P
Where array-name-address is the address of item AI[0,0, . .. 0] (even if the zeroth element does not exist).

For a three-dimension array, the relative location of A[ijk] with respect to A[21,8,23] is given by:

location (A[ijk])

= location (A[2],%,23]) + (x + L *(y + M*(2)))*(entry-size)

where:
X =i —Ql
y=i-%
z=k -43

60496400 A

L=u1-21+1
M=U2—22+1.

For a parallel layout array and entry-size of 0, subscripts are calculated assuming that the entry-size = 1.

Examples of parallel layout arrays:

3-10

ARRAY ARY1[0:10];

at 1
at 2
at 3
a+t d
at 5
at 6
at 7
oat 8
at9

Array length
=11 *1=11

ARRAY ARY2[0:10] P(2);

atl
at 2
at+ 3
at 4
entry 0 a+ 5
at 6
at 7
at8
at+ 9
___ A ot 10
a+ il
/ at+ 12
a+ 13
a+ 14
a+ 15
entry 1 at 16
a+ 17
a+ 18
a+ 19
a+ 20
a+ 21

Array length
=11*2=22

In ARY?2, all ITEMS whose ep=0 will be found above the dotted line; those with ep=1 will be
found below the dotted line. When ep>1, the ITEM will be defined outside the table limits. No

range checks are made on subscripts or ep’s.

60496400 A

Examples of serial layout arrays:

ARRAY ARY3[0:10] S(2);

Array length

=11

Example:

*2=22

at+ 0

o+t
at
o+

1
2
3-

at 4

at
a+

5
6

at 7
a+ 8
a+9

a+
o+
a+
a+
at
a+
ot
ot
at
a+t

3
[4 a1

ot

10
11
12
13
14
15
16
17
18
19

M

“v

21

The core allocation for the table is:

ARRAY NENT [0:8] P(4);

ITEM

60496400 A

Al 1(0,0,15),
Bl U(0,15,15),
C1 U(0,30,30),
D1 C(1,0,20),
El R(3,0,60);

In this array, all ITEMS whose ep=0 will be found at
locations a + x where x is even; those with ep=1 will
be found at locations @ + y where y is odd. If ep is
outside the proper range, the item will be defined at

locations which are not normal. For example:
ITEM AA 1(2,0,60);

is equivalent to
ITEM AB 1(0,0,60);

except that

AA[s] = AB [s + 2)

In this illustration, the darkened areas indicate entries

of ep=0, clear areas are entries of ep=1.

The same table with declaration S(4) instead of P(4) is shown in the following two illustrations:

PARALLEL ARRAY STRUCTURE

NENT —| A1]0] B1[0] C1{0] Entry 0
Entry 1 Alfl] BI[1] Cl[1]
Al 2] B1]2] C1[2]
Al{3] B1{3] C1[3]

D1[0] (1st half)
D1[1] (1st half)
D1[2] (1st half)
D1[3] (Ist half)
D1[0] (2nd half)
D1[1] (2nd half)
D1{2] (2nd half)
Entry 3 D1[3] (2nd half)
E1][0]
E1[1]
El[2]
E1[3]

Entry 2

Za\

SERIAL ARRAY STRUCTURE

NENT—> Al1[0] B1[0] c1[o]
D1[0] (Ist half)
D1[0] (2nd half)
E1[0]

Al[l]> BI[1] 1 ci[1]
DI[1] (Ist half)
D1{1] (2nd half)
E1[1]

a2l | BiQ] | cp
D1[2] (Ist half)
D1[2] (2nd half)
E1[2]

A1[3] | BI[3] | C1[3]
D1[3] (1st half)
D1[3] (2nd half)
E1[3]

Entry O

Entry 1

Entry 2

Entry 3

Nttt vy "t~ v “mm— o—

60496400 A

W
L
[\

——

— —

A serial array can be extended beyond its declared bounds, overlaying any variable allocated immediately after
NENT. If this array is at the end of blank common, the array may extend into available high core. The array
element Al[4], therefore, is in the central memory word beyond E1[3].

Extension of a parallel array beyond its declared bounds causes the elements of different entries to overlap
each other. The array element Al[4] is, in fact, the top 15 bits of element D1[0]. The elements of the entry
with the largest offset, in this case El, may be extended in a manner similar to that for serial arrays. The
array element E1[4] exists in the central memory word beyond E1[3].

This is true for access to elements within the array bounds if the offset word size of an item is greater than
the entry size. For example, if an additional element was declared in the above example as:

F1(4,0,60),
By arranging the proper lower and upper bounds, array-sizes, and ep’s for various ARRAY’s and ITEM’s, many
ITEMS may be forced to OVERLAY (as in JOVIAL) or become EQUIVALENT (as in FORTRAN) to other

ITEMS. Furthermore, by using an array-size of 0, no storage is used but many addresses may be computed
through the relationship of the lower/upper bounds and the ep’s.

These practices should be avoided (or used with care). They can result in data structures that depend upon
allocation by a specific loader, as well as interdependencies between tables not immediately apparent.

Some other examples:

......

ARRAY RAY[0:

—
)

js
TEM

HH W

ARRAY PARALLEL [0];

(0,30,1),
(0,0,6),
(o,0,M),
0,0,60),
0),
(0,50,10),
(0,0);

.
-3
B2
=

2O
HOWAHQOHW

60496400 A 3-13

Resultant structure of above array:

0 5 30 49 59
M Y
———"
AR,L
I,N

ARRAY SIGMA [-10:-1];
ITEM CHI T1(0,0,60);

Resultant structure of above array:

CHI[-10]1 | -10
9
8
-7
-6
-5
-4
-3
-2

CHI[-1] -1

In this negatively subscripted paraliel array, CHI[-10] is the first word of the array.
Array items are allocated in column order; that is, the leftmost subscript varies most rapidly.
For storage allocation consider the following multi-dimensional array:

ARRAY RHOJ0:1,2:4,-5:-4];

-14 60496400 A

W

RHO[0,2,-5]
RHO[1,2,-5]
RHO[0,3,-5]
RHO[1,3,-5]
RHO[0,4,-5]
RHO[1,4,-5]
RHO[0,2,-4]
RHO[1,2,-4]
RHO[0,3,-4]
RHO[1,3,4]
RHO[0,4,-4]
RHO[1 4,4]

Resultant structure of above array is:

OO Y O[N]] W DI =

O

—
(=]

[y
f—

et
[\S]

Given the following two dimensional array:

ARRAY PSI[1:3, 0:3] (2);

60496400 A

BEGIN

END

ITEM X,Y(1);

or

ARRAY PSI[1:3,0:3] (2);

BEGIN

END

ITEM X I(0,0,60);
ITEM Y I(1,0,60);

3-15

The preceding two declarations are identical. The allocation of the elements depends on the specification of Parallel
or Serial (P or S) in the array declaration (see page 3-7). In this example, the allocation is parallel by default. Compare

the following allocation for Parallel and Serial arrays defined as above in other respects.

Parallel
X[1,0]
X[2,0]
X[3,0]
- X[1,1]
X[2,1]
X[3,1]
X[1,2]
X[2,2]
X[3,2]
X[1,3]
X[2,3]
X[3,3]
Y{1,0]
Y[2,0]
Y[3,0]
Y[1,1]
Y[2,1]
Y[3,1]
Y[1,2]
Y|[2,2]
Y[3,2]
Y[1,3]
Y[2,3]
Y[3,3]

PRESET VALUES

Serial

X[1,01
Y[1,0]
X[2,0]
Y[2,0]
X[3,0]
Y[3,0]
X[1,1]
Y[1,1]
X[2,1]
Y[2,1]
X[3,1]
Y[3,1]
X[1,2]
Y[1,2]
X[2,2]
Y[2,2]
X[3,2]
Y[3,2]
X]1,3]
Y[1,3]
X[2,3]
Y[2,3]
X[3,3]
Y{[3,3]

To specify a set of initial values for an array item, an array preset is appended to the array item declaration. Basically,
it is a set of constant values, arranged in a list, with the same order as the allocation order of different instances of the
items in storage. The list is presented in sections enclosed in square brackets, and nested to the depth of the number
of dimensions in the array. An N dimensional array at the first level of nesting, has as many sections as the Nth dimen-
sion of the array. Each of these sections has as many sections as the N-1st dimension, etc. At the deepest level,

each section has as many values as the first dimension of the array. Each section at the first level contains values for
the instances of the array item with the same rightmost subscript; the subscript associated with each section varying
from the lower bound at the left to the upper bound at the right. Each section of the second level contains values for
those instances with the same rightmost two subscripts, etc. The outermost section is appended to the array item de-
claration with an equals sign.

3-16

60496400 A

Example of a preset parallel array:

ARRAY OMEGA [0:1,0:2];
ITEM MU 1(0,00=(C1,2)L3,41(5,61];

is equivalent to:

ARRAY OMEGA {0:1,0:2];

ITEM MU I (0,0);
MU[0,0] = 13
MU[1,0] = 23
MU[0,1] = 33
MG[1,1] = 4;
MU[0,2] = 53
MU[{1,2] = 6;

The constant list need not specify an initial value for every element. The values given are used to set elements starting
with the first instance of the item. Rules for vacuous conditions are:

Null values are indicated by adjacent commas
Trailing null values are omitted
Null brackets are left empty

Thus, the following two array presets are equivalent:

(L2 LG) 34510 1L)

is equivalent to

[2111 [3:4,511 111
Repetition of values may be created by bracketing a list of values with parentheses and a count.
Thus,

3(2,1) is equivalent to 2,1,2,1,2,1
and

2(2(0,2)) is equivalent to 0,2,0,2,0,2,0,2
Repetition of bracketed sections is indicated by placing a count outside the bracket.
Thus,

2[[1,3] [2(2)]] is equivalent to [[1,3] [2,21] [[1,3] [2,2]]

60496400 A 3-17

Further examples of array presets:
ARRAY TENWORD [0:4] S(2);

BEGIN

ITEM A 1(0,0,30) (4,,3,,61;

{,10,,15];

ITEM B 1(0,0,u5)
ITEM C C(1,0,5) = ['AAAAA','EBREE','CCCCC','CCTLL',' EEEEE!];

END

The following allocation emerges from the above coding:

0 15 30 45 59
4
ColA... .. A
10
c.lB.. B
3
clc.. C
15
G|D. D
6
GlE.... ...E

Multi-dimension arrays are preset using nested brackets as illustrated in the following example:

ARRAY XYZ [0:2,3:5,-4:-2];
BEGIN

ITIM P 1(0,00,60)= [3[3[3(4]11;

3-18 60496400 A

b

ARRAY OUTRAY [1:10] S(3);

BEGIN

ITEM

ITEM

ITEM

END

OUTITEM C(0,00,07)= [*POS=', 'MAX="', 'BLK="'];
OUTSIZE I(0,42,18)= [10(4) 1;

OUTLO I(1,00,12)=[1,1,,,,11;

OUTHI I(1,12,48)= [16383,8388607,,,,16777214];

OUTALPHA C({1,00,08)

i 3EIE L e

[rs'RUN',VFVU','AE',,, 'XBNC' };
OUTLEN I(2,00,12)= [6,7,1,1,1,8,9,1,3,10];

OUTBIT I(2,12,12)= [45,21,12,,,44,11];

OUTNUM I(2,28,12)= [15,24,6,,,s0s11;

OUTADD I(2,36,12)= [4,4,4,,,,,.4]:

ARRAY REFERENCE SUBSCRIPTS

To indicate a particular entry of an array, or a particular instance of an array item, a subscript is appended to the array

item name.

A subscript list for an array reference will contain as many arithmetic expressions as there are array dimensions.
Each arithmetic expression is evaluated as an integer value following the rules of type conversion, and the
resultant integer (modulo 218) specifies the entry referenced.

If the natural type of the arithmetic expressions used as subscripts is other than integer, the expressions will be
converted to integer mode.

Examples of array references:

ARRAY REF [0:1,0:2];

ITEM B I(0,0):

B[1,1]

B[X+Y,1]

B(B(1,B[(0,0}],B[1,B[X,1]]]

60496400 A

3-19

BASED ARRAYS AND THE P FUNCTION

A based array is one for which no storage is allocated by the compiler; however, the compiler does create a specific
pointer variable, compiled with an undefined value. Reference to based arrays will be compiled using the pointer vari-
able which is assumed to contain the defined array address. No implicit mechanism is provided to obtain space and
set the pointer variable for based arrays; pointer values must be set explicitly by the programmer.

The based array name is declared in a based declaration, and reference is made to based arrays in the same manner as
for non-based arrays.

Format:
BASED array-dec
or

BASED BEGIN array-dec array-dec ... END

array-dec is an array declaration

P FUNCTION
Reference is made o the poinier variabie using ihe inirinsic poinier or p functioi.
Format:
P<name>
name is the name of a based array.
Examples:
BASED ARRAY AA[0:9];
BEGIN
ITEM XX;
END
P<AA>=NXTAV ;
FOR I=0 STEP 1 UNTIL 9
DO XX[I] =9 -I;
PROC GET (A);
BEGIN BASED ARRAY A[0:999] ;

BEGIN ITEM AA R(0,0,60); END

3-20 60496400 A

XREF PROC READ;
ARRAY A1[0:999];
BEGIN ITEM X R; END
ARRAY A2[0:9997 ;
BEGIN ITEM Y R; END
ITEM GATE B ;
IF NOT GATE THEN B<A> = LOC(A1);
ELSE P<A> = LOC(A2); |
READ (A) ; =PASS THE LOCATION OF A=
RETURN;

END =PROC GET=

Using based arrays, the programmer may impose a structure any place in memory; however, no storage is allo-
cated at compile time. At run-time, the programmer must define explicitly the location of the based array.

Exampie:

BASED ARRAY PRESET [99]

-e

ITEM WORD I(0,0,60);

NOW SET THE ARRAY=

P<PRESET> = LOC (3);
FOR I=0O STEP 1 UNTIL 99
DC WORD[I] = 0;

=10C (A) COULD HAVE BEEN PASSELC TO MAIN
PROGRAM BY ANOTHER PRCCEDURE=

Based arrays should be used when the programmer does not know prior to run-time where the array is to be located.
The array may be in a blank common area or in a labeled common area. For example: Use based arrays, for a symbol
table with variable length entries when it is not known where an entry begins in blank common.

Based arrays allow access to absolute location within the program field length. In the example P<PRESET> =0;
WORD [1] is word one of the program field length.

By setting the pointer of a based array to the location of a label or procedure, the machine code at that location may
be accessed.

60496400 A 3-21

EXPRESSIONS 4

An expression is a rule for computing a value. The values of the operands comprising the expression are combined
according to the rules of the language to form a single value. Constants, simple items, subscripted array items, and
function references are all expressions. Further, if x; and x, are expressions and op, and op, are unary and binary
operators, respectively, then op; x; and x, op, x, are expressions.

Operators with higher precedence are evaluated before those with lower precedence, otherwise, expressions are evalu-
ated from left to right. Parentheses may be used to change the order of evaluation. If x is an expression, (x) and ((x))

are also expressions. In evaluating A+B*C the multiplication is performed first. If the addition is to be performed
first the expression is written as (A+B) *C.

ARITHMETIC EXPRESSIONS

An arithmetic expression containing only numeric operands and arithmetic operators has a numeric value. Numeric
operands include constants, items, subscripted array items, and functions of type integer, real, or status.

The arithmetic operators are listed below in order of precedence (highest to lowest).

Q) Parentheses, beginning with the innermost pair
** Exponentiation

*/ Multiplication and division, from left to right
+- Unary plus, minus

+- Addition and subtraction, from left to right

LNO Logical no (complement)
LAN Logical and

LOR Logical or (inclusive)
LXR Logical or (exclusive)
LIM Logical imply

LQV Logical equivalent

SYMPL has no implicit multiplication features in which algebraic multiplication can be indicated by X(Y) or 3X. Such
multiplication in SYMPL must be explicit: XX * YY and 3 * XX.

60496400 A 4-1

Omission of an operator, as for implied multiplication (X) (Y), for instance, is not valid and results in a compiler diag-
nostic. Also, division by zero is undefined.

All function references and exponentiation operations which are not evaluated in-line are evaluated prior to other
operations.

When writing an integer expression, it is important to remember not only the left-to-right scanning process but also if
dividing an integer quantity by an integer quantity yields a remainder the result will be truncated; thus 11/3 = 3.

An array element name (a subscripted variable) used in an expression requires the evaluation of its subscript. The
type of the expression in which a function reference or subscript appears does not affect, nor is it affected by the

evaluation of the actual arguments or subscripts.

The operators LNO, LAN, LOR, LXR, LIM, and LQV form the bit-by-bit complement, product, etc. of the operands.
The Glossary defines the operation of the individual operators.

The following examples are valid expressions:

A - (C+DELTA*AERO)
3.14159 TEMP+V [M,MAXF[A,B] | *Y**C
B+16.427 (XBAR+(B[I,J+1,K]/3))

A LAN B INO A LOR B
INOC+D B * (LNO D)
In the following examples, I indicates an intermediate result (not a register)
LNO (A+B*(C-D*E~(-F+G)/3))
would be evaluated in a way functionally equivalent to:
D*E —1;
C-I} —»1
-F — I3
I3+G —/= 14
Iy/3 —> s
Ih-Ig —» Ig
B*lg —» Iy
A+l — I3

LNO Ig — Result

4-2 60496400 A

A**BfC+D*E*F-G is evaluated:

A**B —» I

L/C
D*E
I3*F
1,-G

.41
14".)

—_— I evaluation completed

A**B/C(C+D)*(E*F-G) is evaluated:

A**B
C+D
/1
E*F
14-G

I3*I5

The following are examples of expressions with embedded parentheses:

—_— 1
—_ 1
—
— 1y
—_— 5

—_— I evaluation completed

A*(B+((C/D)-E)) is evaluated:

C/D
I1-E
Btly

A*l3

60496400 A

—
———»-12
—_— I3

— 1y evaluation completed

4-3

(A*(SIN(X)*+1.)-Z)/(C*(D-(E+F))) is evaluated:

SIN(X) _— Il
Li+tl. — I
Ay — I3
13_2 —— 14
EtF —> s
D-Is —™ Ig4
C*lg _— 17
L, —™ Ig

evaluation completed

BOOLEAN EXPRESSIONS

The value of a Boolean expression is either TRUE or FALSE. Boolean expressions are used most often in IF state-
ments.

RELATIONAL EXPRESSIONS

Relational expressions are a subset of Boolean expressions. A relational expression is used to compare the value of
two arithmetic expressions or character operands.

Format:

2; 0p az

a; are either arithmetic expressions or character operands.

op is a relational operator belonging to the list below.

Operator

EQ
GR
LS

GQ
LQ
NQ

Description
Equal to
Greater than
Less than
Greater than or equal to
Less than or equal to

Not equal to

Symbol

vV AV

N

60496400 A

A relation is TRUE if a; and a, satisfy the relation specified by the op; otherwise, it is FALSE. Boolean items are
considered FALSE if the bits comprising that item are all zero; otherwise, they are considered TRUE. Boolean con-
stants are integer O for FALSE and integer 1 for TRUE.

Relations are evaluated as illustrated in the relation p EQ q, which is equivalent to the question: Does p-q = 07 If the
answer is yes, the relation is TRUE; otherwise FALSE. Relational expressions are converted internally to arithmetic
expressions according to the rules of mixed-mode arithmetic. These expression are evaluated to produce the truth
value of the corresponding relational expressions.

The order of dominance of the operand types within an expression is the order stated for mixed-mode arithmetic
expressions.

In reiational expressions +0 is considered equai to -0.

Examples:
AGR 16 R(I) GQ R(1-1)
R-Q(I) *Z 1Q 3.14159 I NQ J(X)
B-C NQ D+E I EQ (J(X))

LOGICAL EXPRESSIONS

Logical expressions are formed with Boolean operators and Boolean operands and have the values TRUE or FALSE.

The Boolean operators are listed below in order of precedence:

Boolean Operators Description
NOT Logical negation
AND Logical conjunction
OR Logical disjunction

Boolean operands include Boolean items, Boolean constants, Boolean functions, and relational expressions.
Evaluation of a Boolean expression is terminated as soon as evaluation of any part of the expression has determined
the result. For example, if L, is FALSE in the logical expression L; AND L, AND L;, then L, and L3 are not
evaluated, since the expression must perforce be FALSE as soon as any FALSE value is discovered.
The expression

A OR B AND NOT C
is evaluated:

NOT C — B,

B AND B, — B,

A OR B2 -"—'-'Bg

60496400 A 4-5

B; are Boolean values; if B3 is TRUE, the entire expression is TRUE.

IfL,, L,, are logical expressions, the logical operators are defined as:

NOT L, FALSE only if L; is TRUE

L, AND L, TRUE only if L, L, are both TRUE

L, OR L, FALSE only if L;, L,are both FALSE
Examples:

The algebraic expression B-C <A < B+C may be written:
B-C LQ A AND A LQ B+C

An expression equivalent to the logical relationship (P - Q) may be written:
NOT (P AND (NOT Q))

A graphic representation of the operators is shown below:

ALPHA AND BETA a 4] Formula
T T T
T F F
F T F
F F F

Figure 4-1. AND Boolean Operator

The OR Boolean operator indicates disjunction. A Boolean expression joined by OR is TRUE if either of its parts
are TRUE, as shown in Figure 4-2.

ALPHA OR BETA a | B | Formula

B
T|T
T|F
FIT
FIF

e B B |

The NOT Boolean operator indicates negation. A Boolean expression with a leading NOT is TRUE only if the ex-
pression itself is FALSE. Figure 4-3 shows this graphically.

NOT ALPHA a | Formula
T F
F T

Figure 4-3. NOT Booiean Operator

4-6 60496400 A

(ALPHA OR BETA) a | B Formula
AND NOT T T F
(ALPHA AND BETA) T|F T
F T T
FIF F
ALPHA OR BETA a B 0% Formula
AND GAMMA S I T
T T.|F T
T F T T
T F F T
F T T T
FITI|F F
FlF|T F
FIFIF F
(ALPHA OR BETA) a | B 0% Formula
AND GAMMA SO I T
T T F F
T F T T
TlF|F F
F T T T
F|T]|F F
FlLFr|T F
FIFIF F

Figure 4-4. Combinations of Boolean Operators

OPERANDS AND MIiXED-MODE OPERATIONS

BOOLEAN OPERANDS
Boolean operands and Boolean expressions differ in nature from arithmetic operands and expressions, and may not be

involved with them in arithmetic expressions. No arithmetic operator will apply to any Boolean operand, and vice
versa.

OPERAND TYPES — ARITHMETIC OPERANDS
SYMPL uses the following arithmetic operand types:
Real Unsigned integer

Signed integer Character

60496400 A 4-7

The hierarchy of operand types is the order listed above, with character operands being the lowest of the
hierarchy and real operands being the highest. Character operands are not true arithmetic operands; they may
be used only in relational expressions or with the operators LAN, LNO, LOR, LXR, LIM, and LQV. SYMPL
does not access more than the first word of a character operand.

In general, the various arithmetic operators are applicable to operands of any type. Except as noted below, each in-
dividual operation is performed only on operands of the same type.

The compiler supplies conversion operations as appropriate, such that the common type of two operands affected by
a single binary arithmetic operator is the higher of the two operand types involved. The result of such an operation
is of the common type. Thus, the expression
I+ R (where I is integer and R is real)
is computed in floating point, after converting the value of I to floating point, whereas the expression
C EQ C<0,I>XYZ (where C is a character variable)
is computed in character mode, with no conversion.
Similarly, the expression
(1+2) * R
is computed as follows:
1. Add 2 to I in integer mode

2. Convert the result of (1) to floating-point

3. Multiply the result of (2) by R, in floating-point.

Exceptions to the hierarchial conversion ruie are the foliowing:

ABS The ABS intrinsic function operates only upon integers and real operands. The result of the
operation on an integer is type unsigned integer; the result for any other argument type is the
same type as the input argument.

Character operands When an operand of type character is placed in combination with a noncharacter operand,
typically it is converted to the type of that operational operand, as dictated by the hierarchy.

Exponentiation Under certain circumstances, exponentiation may be performed in integer mode and will yield
an integer result; this is true only for exponent operations with type integer base and type in-
teger exponent. All other exponential operations are forced to the form: (real) ** (integer)
and yields a real result.

Operators The six operators (LNO, LAN, LQR, LXR, LIM, and LQV) operate without conversion upon
operands of any type producing a result of type unsigned integer.

4-8 60496400 A

TYPE CONVERSION TRANSFER FUNCTIONS

The following information defines the techniques for conversion of operand type values for all operand type combi-
nations.

CONVERSION OF CHARACTER OPERANDS

Character operands always exist in storage in an integral number of machine words padded on the right with blank
characters. When combined for all arithmetic operations, character operands are converted to integer. The conversion
to unsigned integer mode is identical to that of integer; and the conversion to real mode is equivalent to integer con-

version followed by a conversion of the integer result to the desired final form.

When used in replacement statements, character operands will be either blank filied on the right or right truncaied,
as necessary.

When used in relations, character operands will be compared according to the display code value of their representa-
tion; and trailing blanks will not be significant.

When combined with logical operators (such as LAN), character operands will be truncated or blank filled, as necessary,

to 10 characters.

CONVERSION OF INTEGER OPERANDS

Integer To Character Conversion

The rightmost byte of the integer is left justified in the receiving character field and the balance of that field (which
may be long or nonexistent) is padded on the right with blanks.

Integer To Real Conversion

The integer is floated; if the integer is small enough to conserve precision, the conversion will result in a real number
of the correct value.

Integer to Unsigned Integer Conversion

The SYMPL compiler does not perform a conversion from integer to unsigned integer.

Real Operand To Integer Conversion
Real operands are converted to integer by truncation, and converted to character if needed by first converting to

integer and then to character. If the value represented by the real operand is larger than integer size, significance
may be lost in this type of conversion.

60496400 A 4-9

Results of integer multiply or divide or the conversion from real to integer has the following limits:

-(2®-1)SN<(2%-1)

FUNCTION CALLS AND INTRINSIC FUNCTIONS

A function reference calls a subprogram, causes parameters to be passed to it, and represents a value whose type is
specified by the declaration of the subprogram function.

The following functions are classified as intrinsic:

Name Description

ABS Absolute function

BorC Bead function

Loc Location function

P Pointer function (see section 3)

ABS FUNCTION
The ABS function returns the absolute value of the argument. If the argument type is real, the returned value is also
real; however, if the argument type is integer or unsigned, the returned value is unsigned integer. An argument of any
other type merely returns an unmodified argument.
Format:

ABS{expr)

Example:

ABS (-17)

BEAD FUNCTION

If an item is viewed as a string of bits or bytes, accessing a segment of this string, essentially, is accessing beads of the
string. The intrinsic bead functions allow reference to individual beads or group of beads.

The bead functions are the bit function (B) and the byte or character function (C).

4-10 60496400 A

Format:

B<e1,e2>sb or B<e1>sb

C<e1 ,e2>sb or C<el>sb

e; and e, are arithmetic expressions specifying the first bead to be extracted and, in addition, the number of
beads respectively. If e, is omitted, it is assumed to be 1.

sb is an item name or a subscripted array item specifying the source of the beads.

Beads are numbered from left to right, beginning with zero, and the size of a byte is six bits; thus, the bits of a word
are numbered from O to 59 and the bytes from 0 to 9.

Both bits (B) and byte (C) functions can cross word boundaries when operations concern character operands. The
bit function is limited to 10 characters, the byte function to 240 characters. No check is made for B or C functions
extending beyond the operand. If the operand is not of type character, bead functions may not cross word boundaries.

Maximum Valﬁes fore; +e,

Data Type C LURS
Function B<e;,e; >sb 60 60
C<e;,e,>sb 240 10

Bit function is considered to be type unsigned integer and the byte function type character independent of
the type of sb. The appropriate type conversion applies to either bit or byte function results if used in an
expression or on the right-hand side of a replacement statement.

Example 1:
ITEM BOAT C(20) 3

Cc<0,3> BOAT = 'CAL' ; =SETS THE FIRST THREE CHARACTERS OF
ITEM BOAT = 'CAL'=

C<0,3> BOAT is of type character while B<0,18> BOAT is of type unsigned integer.

Example 2:
ITEM FLAGS;
FOR I=0 STEP 1 UNTIL 59 DO

IF B<I,1> FLAGS EQ 1

THEN GOTO L2;
= LOOKING FOR MOST SIGNIFICANT 1-BIT=

60496400 A 4-11

XYZ = B<30,30> L{[I+1] ;
ARRAY TIME {0:7];

ITEM CARD C(0,0,10) ;

FOR J=0 STEP 1 UNTIL 7 DO
FOR I=0 STEP 1 UNTIL 9 DO
BEGIN

GOTO SWITCH [C<I, 1> CARD[J]] ;

=SWITCH ON CHARACTERS OF ITEM CARD=

END

LOC FUNCTION

The value of the intrinsic LOC function of a data structure is the address of the data structure during program execu-
tion,

Format of intrinsic LOC function:
LOC(arg)
arg may be one of the following:
item name
subscripted array item
procedure name
function name
switch name
label name
array name (with the optional subscriptor)

This is the only context in which an array name may appear with subscripts; the result is the address of the array
entry with the subscript.

Examples:
P<BASE> = LOC (ARRAY) ;

P<BASE> = LOC (ARRAYIT)

4.12 60496400 A

STATEMENTS S

STATEMENT TYPES

Statements can be either simple or compound.

A single statement, such as a GOTO statement or an assignment statement, is called a simple statement. Thus, regard-
less of the complexity of the formula designating the right term of an assignment statement, it is a simple statement.

COMPOUND STATEMENTS

A series of simple statements may be grouped together and enclosed within the BEGIN . . . END brackets. Such groups
are called compound statements.

A compound statement may encompass other compound statements. Each structure enclosed within matching
BEGIN . . . END brackets is operationally a compound statement regardless of the nature of the inner structures.

UIVDS UL v i

Compound statements are often used as the controlled statements of the FOR and IF statements. A compound
statement is not terminated with a semicolon.

STATEMENT CATEGORIES

Statements are grouped below into two categories, based upon the nature of the function they describe: Value Assign-
ment statements (cause the assignment of value to items and array items) and Flow-of-Control statements (aiter the
normal sequential processing order for statements).

VALUE ASSIGNMENT STATEMENTS

The replacement statement and the exchange statement comprise this category.

Replacement Statement

The replacement statement is used to assign a value to an item.

60496400 A 5-1

Format:

v=exp;

exp is an expression

v is one of the following:
item name
subscripted array item
function name
P-function reference

bead function reference

A function name may be used as the left-hand side of a replacement statement only within the function of the same
name.

The expression on the right is converted to the type of the left-hand side before making the assignment. See section
4 for details of conversion functions.

If the left-hand side is a bead function reference, only the specified beads will be replaced; the remainder of the item
will remain unchanged.

Exampies using the repiacement statement:
ITEMA=TEMP; =GIVE ITEMA THE VALUE OF TEMP=

B=C NQ D AND E; =COMPUTE THE VALUE OF CNQD AND E
THEN GIVE THIS VALUE TO B =

Exchange Statements
Format:

Vi =FVz;

v; are as in replacement statements except that function names are excluded.
Exchange statements cause the exchange of value, with appropriate type conversion, between the two named entities.
The order of expansion is not guaranteed (either v, or v, may be stored first); however, the language does guarantee
that expressions which must be evaluated to compute the address of v, or v, (subscript expressions, bead function
component expressions) will be computed only once. Therefore, such expressions must be evaluated prior to the ex-
change and their values saved; the exchange process must refer to the expression values by referring to temporary
variables. For example, the exchange statement A==B; is expanded to the form:

temp=A ;

A=B;

B=temp ;

52 60496400 A

Also, the exchange statement
BX[K] ==B<LM>Y|[N];
is expanded as follows:

temp #1=I;
temp #2=I;
temp #3=K;
temp #4=L;
temp #5=M;
temp #6=N;
temp #7=B<(temp #1),(temp #2)>X][(temp #3)];
B<(temp #1),(temp #2)>X[(temp #3)] =
B<(temp #4),(temp #5)>Y[(temp #6)];
9. B<(temp #4),(temp #5)>Y[(temp #6)] = (temp #7);

® NS kLN

The temporary variables used for storage of component and subscript expressions are all of type integer; the
temporary variable used for storage of the left side of the exchange statement assumes the type of the right side.

A label is an identifier used to name a statement. It is declared in a label declaration but need not be declared prior to
its use.

Format:
name:

Embedded blanks are not permitted between the name and the delimiter (:).

A label declaration may appear at any point in the program where it is legal for a statement to appear. If a label is
immediately followed by a statement, it forms a name for that statement through which the compiled code generated
by that statement can be accessed. If a label is not immediately followed by a statement, it forms an entry point for
the next code to be generated. Generation of this code may be caused by the occurrence of a statement, or it may be
code generated in response to some implicit program feature.
Examples of implicit code:

Test at the bottom of a FOR loop

Jumps around ELSE part of a conditional statement

Jumps around procedures, functions, and switch declarations

60496400 A 5-3

Format of labeled statement:

name:
or

name: statement

Since a labeled statement is itself a statement, two labels in sequence synonymous.

SWITCHES

A switch is a programmer named and defined entity which is a vector of label names and can be placed at the
disposal of a jump.

ORDINARY SWITCHES

Format:
SWITCH name labell, L)

name is an identifier which names the switch.

labeli are label names.

in the simpier form of a switch, the iabei names which constitute the switch are ordered by their appearance in the
switch list segment of the switch declaration; increasing integer values are associated with the points of the list, be-
ginning with zero.

Examples of simple switch declarations:

SWITCH GONOGO PROCEED, QUIT;

SWITCH $WORD $ITEM, $ARRAY,$FROC,$FUNC;

SWITCH {— LABEL1, LABEL2, LABEL3, TIABREL4, LABELS ;
-=DEFINES A SWITCH=

GOTO AAA[‘Z.[—} ;s {—=TUSES A SWITCH=

.

=0
LABEL1:<—— =GOTO TABEL1=

° I=1
LABEL2 :t— = GOTO LABEL2 =
LABEL3:<—2] =GOTO LABEL3=
LABFLU:e—3] =GOTO IABEL4=

. i=4
LABELS :4——1 =GOTC LABEIS=

5.4 60496400 A

If it is known that the switch will never be accessed with certain values of the index, labels for these values may be
omitted from the switch.

Example:

SWITCH LABLSTL,, ,L;,Ls ;

STATUS SWITCH

Format:
SWITCH name: staius-name iabei,: status-value,, ...;
name is an identifier which names the switch.
status-name is the name of a status list.
label; is a label name.

status-value; is a status value chosen from the status list status-name.

In this form, the labeled names are ordered by the compiler according to their explicit association with status values
from a specified status list.

The status switch is convenient when the argument is a status item; not all status values from the status list need be
associated with labels in the switch declaration.

STATUS SWITCH DECLARATION
Example:
STATUS SIZE TINY,SMALL,MEDIUM,LARGE,ENORMOUS;
SWITCH FUN:SIZE LABEL1: TINY,ILABEIS5:ENOERMOUS,
LABEIL2:SMALL,IAEEL3:MECIUM,
LABELU4 :LARGE;
GOTO FUN[SIZE'MELIUM']; =GOTO IABEL3 =

=ZUSE WHEN ARGUMENT IS A STATUS ITEM=

LABEL3: RETURN;

60496400 A

GENERAL

A switch is an ordered set of label names, each associated with an integer value. A GOTO statement specifying an argu-
ment is used to select the label from the switch associated with the value of the argument. If the value of the argument
does not match any of the values associated with the switch list labels, the result is undefined; if the range checking
option (option C) is selected on the SYMPL control statement, the job is terminated with an error message.

GOTO STATEMENT

The control statement GOTO directs the program to branch out of the normal, serial sequence of execution by trans-
ferring control to a statement designated by a label name or a switch name.

Format:
GOTO label ;
or
GOTO switch[exp] ;
label is a label name
switch is a switch name

exp is an arithmetic expression

The first form, GOTO label, causes unconditional transfer of control to the point in the program associated with the

given label name; the second form causes a label to be selected from the named switch according to the value of the
argument expression:

Examples:
GOTO JAIL;
SWITCH GONOGO PROCEED, QUIT;
GOTO GONOGO [1]

The second GOTO statement is equivalent to:

GOTO QUTIT;

CONDITIONALITY: IF STATEMENT

An IF statement causes a conditional transfer of control, depending on the value of a Boolean expression.

5-6 60496400 A

Format:

IF Bool-exp THEN statement,;

or

IF Bool-exp THEN statement, ELSE statement,

Bool-exp is a Boolean expression

If the value of the Boolean expression is TRUE, statement, is executed. If it is FALSE the next sequential

statement is executed; in the second format, statement, is executed if the value is FALSE.

When IF statements are nested, an ELSE clause always is associated with the inner most nested incomplete IF

statement. (See examples 3 and 4.)
Example 1:
IF A EQ 1 THEN B =
ELSE B = 03
IF A FQ 1 THEN
IF B EQ 1 THEN
GOTO L;
ELSE A = T3
IF BOCL THEN
BEGIN
BOCL =
GOTO L ;
END

Example 2:

2;

IF AGE GQ 18 THEN

GOTO VOTER;

GOTO MINOR ;
VOTER:

MINOR:

60496400 A

=THIS STATEMENT IS EXECUTEL I1¥
AGE IS GREATER THAN OR FQUAL
TC 18=

=OTHERWISE THIS STATEMENT
IS EXECUTED=

Example 3:
IF =1= A THEN
IF =2= B THEN
IF =3= C THEN
«++ELSE =3=,..
«++ELSE =2=,..
...ELSE =1=...

Example 4:

IF RHO LQ 1 THEN PSI = 6 ;
V\/\.——’

ELSE PSI = 9;
/‘E('IF TRUE DC THIS=
£—=IF FALSE DO THIS=
—IF A THEN
—IF B THEN
[15 C THEN D = 1;

ELSE D = 2;

—ELSE D = 3;

~FLLSE D = U;

LOOPING

The GOTO and the IF statements may be used to create program loops. Also, looping can be created through
the FOR statement. In general, a program loop must perform five distinct steps:

Initialize Set a counter and other program variables to initial values.

Test Test whether counter has reached its terminal value.

Branch Return to the execute step if the counter has not reached its terminal value; exit the
loop if terminal value has been reached.

Execute Perform necessary calculations for which the loop was constructed.

Modify Change the counter or other variables by which loop iteration is controlled.

5-8 60496400 A

These steps are summarized in the following general flowchart:

Initialize

Y
Test

<>

| Execute I

\?
Modify

Figure 5-1. General Loop Flowchart

FOR STATEMENT
The FOR statement combines into one statement: the counter initiaiization, modification, testing, and subsequent
branching. It also specifies a variable to be used as a counter. It can set the index to an initial value, declare the
modification increment or decrement and set the terminal value. In addition to controlling the number of iterations
performed, the index can be used also as an integer variable within the loop.
Format:

FOR i=x; DO statement

FOR i=x; STEP x, DO statement

FOR i=x, STEP x, UNTIL x; DO statement

FOR i=x, WHILE b, DO statement

FOR i=x, STEP x, WHILE bx DO statement

Item i, above, is called the induction variable, and it may be of any type except Boolean or character. Also, it will
assume a value given as an initial value, and its subsequent value will control the execution of the repeated statement.

X, and x3 are arithmetic expressions of unrestricted type; however, operations are carried out in the mode of the in-
duction variable, with appropriate conversions.

by is a Boolean expression.

60496400 A 5-9

The intermediate language used to represent FOR statements is a straightforward expansion of code. The above
cases expand to forms with the following SYMPL equivalents:

FOR I=X1 DO A=0; I=X1;
L: A=0;
is equivalent to GOTO I;
FOR I=X1 STEP X2 DO A=0; L g?é 13
is equivalent to this sequence -) I=I<’PX2; GOTO L;
I=X1;
L: IF I 1IQ X3 THEN BEGIN
A
A=0;
FOR I=X1 STEP X2 UNTIL X3 DO A=0; I=I+¢X2; GOTO L; ENT
is equivalent to sequence A, unless X2 has
a minus sign prefix, in which case it is
equivalent to sequence B. I=X1:
8 L: TIF I GQ X3 THEN BEGIN
A=0;
I=T+X2; GOTO L; END
FOR I=X1 WHILE BX DO A=0; I=X1;
L: IF BX THEN BEGIN
is equivalent to this sequence. A=0; GOTO L: END
I=X1;
FOR I=X1 STEP X2 WHILE BX DO A=0; T: IF BX THEN REGIN
is equivalent to this sequence. A=0;
I=I+X2; GCTC 1; END

All tests are performed before execution of the controlled statement, which allows zero repetitions of the controlled
statement.

It is possible to write a compound statement as the iterated statement of a FOR statement. The value of the induction
variable is undefined after the loop is complete. However, if the iterated statement causes a jump out of the FOR
statement, the current value of the induction variable at the time of the jump is preserved. Moreover, if the controlled
statement is entered by a GOTO statement from outside the FOR statement, the value of the induction variable may
be undefined.

5-10 60496400 A

Example:
FOR A=1 STEP 2 UNTIL 99 DO

IF VALUE[{A+1] LS VALUE[A] THEN
BEGIN

LOOP1 : VALUE[A+1] == VALUE[{A] ;

END
If GOTO LOOP1; is executed from outside the BEGIN . . . END bracket, index A has not been initialized and the

results of the exchange statement are undefined.

The statement controlled by a FOR statement may itself be a FOR statement, allowing for nesting:

Example:

!
(@]
o
b
(1]
-

STEP 1 UNTIL 10 DO

TEP 1 DO
IN

'z
(@]
x
"
-
0

gm
@

FOR C=1 STEP 2 UNTIL 60 DO
BEGIN

L J

FOR A=1 STEP 1 UNTIL 15 DO

END
END

The above example, coded in error intentionally, illustrates an invalid use of the FOR clause; A is used as an induction
variable for two loops at the same time.

TEST STATEMENT

In a FOR statement, the compiler automatically supplies the modification, testing, and branching steps of a loop. The
TEST statement provides a means of branching to the implicit modify-test-branch steps as illustrated in the general
flow-chart (figure 5-1).

60496400 A 5-11

Format:
TEST;
or

TEST name;
name is the name of an item used as an induction variable in a loop containing the TEST statement.

A TEST statement is meaningful only within the controlled statement of a FOR statement. When the TEST
name statement is executed, control is transferred to the modify-test-branch for that induction variable; in this
case, other index modify-test-branches could be skipped, and those induction variables would not be incremented
for the next iteration. If name is omitted, control transfers to the modify-test-branch sequence of the innermost

loop.
Examples:

FOR A=0 STEP 1 UNTIL 52 DO

BEGIN

IF DEMANLD{ TODAY] GR DEMAND{[TCMNRW] THEN
TEST;

END
If the conditional statement is TRUE, the TEST statement drops control to the increment step of the FOR loop,
bypassing all coding between the TEST and END statements.

FOR A=0 STEP 1 UNTIL 100 DO
BEGIN

FOR B=99 STEP -1 UNTIL 0 DC

BEGIN
IF INCOME GR 10000 OR CREDIT EQ S'GOOLD' THEN

TEST A;
IF INCOME{B] GR OLDEST AND SEX[B] EQ S'FEMAIE' THEN

TEST B;

5-12 60496400 A

If the conditions in the first IF statement are satisfied, control passes to the modify-test-branch for the outer loop,
index A. If the first test statement had not specified A, control would have passed to the inner-most modify-test-
branch, for B. If both conditions in the first IF statement are FALSE, execution bypasses the first TEST statement;
and if the conditions of the second statement are satisfied, TEST B; statement is executed, passing control to the
modify-test-branch for loop index B. Only when the above conditions are FALSE is the coding executed, that follows
the TEST B; statement.

STOP STATEMENT

A STOP statement halts the program execution and returns control to the operating system. A STOP is generated
automatically at the end of a main program.

Format:

STOP;

RETURN STATEMENT

The RETURN statement is meaningful only within a procedure or function. When a RETURN statement is executed
in a procedure, control is returned to the calling routine.

Format:

RETURN;,

PROCEDURE CALL STATEMENT

The procedure call statement is used to transfer control to a procedure, or closed subroutine, possibly passing data,
and to set up return linkage to the calling routine.

Format:
name;
or
name(pl LR):
name is a procedure name.
p; are actual parameters

See section 7 for a more complete discussion of procedures.

60496400 A 5-13

COMPILER DIRECTIVES 6

CONTROL STATEMENT

The CONTROL statement directs the compiler to take immediate action. It may concern the compiler output
by specifying a page eject or suppressing a source listing, or it may concern the generated code by causing a
particular compiler option to be selected automatically. Additionally, the type of CONTROL statement known

as a conditional-comnilation directive, can cause the pnm})ﬂer to sunnress the source code that immediatelv

ads a LULLLULLG-LULINPLRGuUn QAULDLULVE, Lall Lakse wae LU U OSUPPITSS Wit SUILS LUGS RAAL LNULICGIGINLY

follows the directive.

The CONTROL statement is not executable at object time, although it may affect the contents of the object
program. Also CONTROL statements may be introduced between an IF statement and its controlled statement.

The CONTROL statement may be written anywhere a statement can be written as well as in the following
contexts:

Within a list of array item declarations enclosed by BEGIN. . . END brackets

Within a list of based arrays, enclosed by BEGIN . . . END brackets

Inside an external declarations list, enclosed by BEGIN . . . END brackets

Within a common declaration list, enclosed by BEGIN . . . END brackets
CONTROL statement format: (excluding conditional-compilation directive)

CONTROL control-word ;

The effect of the CONTROL statement is to perform the compiler action specified by the control-word as
follows:

Control Word Function

EJECT Compiler skips to new page of listing output,

LIST Compiler resumes normal listing of source.

NOLIST Compiler suspends normal source listings.

OBJLST Object code listing for this program is to be printed.
PACK Turns on D option for this program.

PRESET Tums on P option for this program.

FI

ENDIF } (See page 6-2)

60496400 A 6-1

The OBJLST, PACK, and PRESET options apply to the entire program and the appropriate CONTROL. state-
ment shouid be placed at the beginning of the program.

CONDITIONAL COMPILATION
The format of a CONTROL statement specifying conditional compilation is as follows:

CONTROL condition-word constant,, constant,;

condition-word is defined below,
constant; and constant, are compile time constants.

This CONTROL statement causes optional compilation or suppression of source code, called conditional code.
The code suppressed depends on the condition word as follows: '

Condition-Word Compiles Conditional Code If

IFEQ constant; = constant,
IFLS constant, < constant,
IFLQ constant; < constant,
IFGR constant; > constant,
IFGQ constant, = constant,
IFNQ constant; # constant,

Usually, one or both constants are specified by a DEF name or DEF parameter, thus parameterizing the con-
ditional compilation. If constant, and its preceding comma are omitted, it is assumed to be integer zero. The
constants may be integer, real, Boolean, or character, but both must be of the same type. No conversion of
‘types takes place before comparison. Character constants may be compared only by the condition words IFEQ
and IFNQ, and leading and trailing blank characters are considered significant.

Conditional code is bracketed between a conditional compilation directive and a CONTROL FI statement. The
brackets may be nested, and source code is suppressed to a CONTROL FI that matches the conditional com-
pilation directive. In any other situation CONTROL FI is ignored. CONTROL ENDIF is synonymous with
CONTROL Fl.

If conditional code is suppressed, syntax and semantic checks are not performed and DEF names are not
expanded. Comment sequences and strings are not examined for the presence of start or end-of-conditional
compilation directives. For this purpose, a semicolon (;) does not terminate a comment sequence.

62 60496400 A

Examples:

DEF VERSION =3.4=;
DEF DBUG =1=;

CONTROL IFNQ DBUG,1; J=0; K=0; CONTROL FI;
CONTROL IFGR DBUG,?2; IF J NQ 0 THEN K=K+1; ELSE K=K-1; CONTROL FI;
CONTROL IFEQ VERSION, 2.0; RETURN; CONTROL FI;

CONTROL IFEQ VERSION, 34;
CONTROL IFNQ DBUG; PRINT(CHECK);
CONTROL FI;

CONTROL FI;

CONTROL IFNE VERSION, 3.3; FOR J=1 STEP 2 UNTIL N DO
BEGIN . ..

CONTROL FI;

CONTROL IFNE VERSION, 3.4; ITEM X C(7); CONTROL FI;

CONTROL IFEQ VERSION, 3.4; ITEM X C(8); CONTROL FI;

TERM STATEMENT

A TERM declaration signals the end of a compilation and must be the last statement of a program or subprogram.

nd ~ALTEODAM 4. da - -
iinat of 1ERM statemernit:

TERM

DEBUGGING CODE FACILITY

A programmer may want to include various source statements in his program which may be deleted easily from the
compilation. The delimiters SBEGIN and $END allow the programmer to enter source statements which only will be
compiled while the program is in the debug mode. They are syntactically identical to BEGIN and END; however, in
certain circumstances, they can cause code to be deleted from the program.

Compound statements are of the form:
BEGIN statements END
statements is composed of a sequence of zero or more statements (simple or compound); such a compound statement

acts like a simple statement in every respect. Along with delimiting a compound statement, the special delimiters
$BEGIN and $END bracket code which is to be optionally compiled.

60496400 A 6-3

When the compiler debug option is selected (E option on the compiler call statement), the delimiters $BEGIN and
$END are identical in function to the standard delimiters BEGIN and END; the compiler option is selected
when the compiled program should include the code enclosed within the special $BEGIN ... $SEND brackets.
If the debug option is not selected, the coding between $BEGIN and $END is omitted from the compilation.

In normal mode, syntax is not checked for code appearing between $BEGIN and $END; code is not generated; de-
clarations will have no effect on the code outside of $BEGIN and $END brackets.

The following restrictions must be observed:

The TERM statement must not appear in a SBEGIN . . . $END sequence and the $SEND must not result from a
DEF expansion.

DEF DECLARATION

The unparameterized DEF declaration provides a source substitution capability by permitting an identifier to
be defined as equivalent to a character string. When the identifier is used subsequently, it is replaced by the
character string.

The parameterized DEF declaration provides a macro capability by allowing substitutable parameters to be
associated with the definition of an identifier in a DEF declaration. The content of the replacing character
string can be modified formally by varving the values of the substitutable parameters whenever the identifier
is to be replaced by the character string.

UNPARAMETERIZED FORMAT

Format of unparameterized DEF declaration:
DEF name =character string= ;
name is an identifier called the DEF name.
The following restrictions apply to the DEF declaration:

No comment can be embedded between the name and the first quote mark of the character string (the
quote being shown as the equivalence symbol =).

A quote within a DEF declaration is represented by two consecutive quotes.

Examples:
Legal Illegal
DEF ON =1=; DEF FOX =FOXY=|ONE=;
DEF OFF =0=; DEF 1 A =DARK=;
DEF BIT = =; DEF U =UNSIGNED=;

DEF BOOL! =A GR B AND B NQ 0=
DEF DEFINE =DEF=;

DEF REPL =A=B; ==SET A=B===;

64 ' 60496400 A

Whenever the DEF name is used at subsequent points in the program it will be replaced by the character string between
the quote marks with the following exceptions:

Names that occut in defining contexts will not be replaced.

Descriptors and other single letter abbreviations (type descriptors B,C,I,R,S, and U; array layout specifiers P
and S; the intrinsic functions B, C, and P; the constant prefixes 0,S, and X; and the real number specifier E)
will not be replaced.

Within a set of quotes = ... =
Within a set of primes '

The DEF declaration may appear anywhere in the program that a normal SYMPL data declaration or imperative state-
ment may appear and it is subject to the normal rules for declarations; the declaration must appear before the defined
name is referenced and it has no effect outside the procedure within which it occurs.

A name defined by a DEF declaration is defined from that point for the remainder of the procedure. It may be re-
defined by the use of another DEF declaration for the same name at a subsequent point in the procedure, but it
cannot be undefined. Thus, once a name has been given a definition for a particular program, there is no language
structure whereby it may be returned to the usage it had before its first DEF declaration.

A defined name may be included in the character string defining another name. When defined names depend on one
another for definition, the effect is the same regardless of the order in which the declarations are written; however,
the position within the program is still important. A name can be defined only by the DEF declarations that precede
its use in the program. Circular definitions are illegal.

Examples of nested DEFs:

Tllegal nesting — circular definition: Legal nesting:
DEF TWO =BEGIN ONE END=; DEF BOOL =A AND B=
DEF ONE =TWO=; DEF A =C EQ 3=

IF BOOL THEN X=1;
The above legal nesting example is equivalent to:

IF C EQ 3 AND B THEN X=1;

PARAMETERIZED FORMAT
Format of parameterized DEF declaration:
DEF name(parm,, parm, . . . parml-) “character string”;

name is an identifier called the DEF name, and parm; are identifiers called DEF parameters.

60496400 A 6-5

The following restrictions apply to the parameterized DEF declaration:
No comment can be embedded between the DEF name and the left parenthesis of the parameter list.

No comment can be embedded between the right parenthesis of the parameter list and the first quote of
the character string.

Within the character string, a quote is represented by two consecutive quotes; for example, the character

string =A= =B= represents A=B.
Examples:
Legal: DEF M (X) =I=Bt+X=;

DEF BIT(,J) =B<D-A[J]=;
DEF POPUP (STACK,TOP) =STACK[TOP]; TOP=TOP-1=;

Illegal: DEF M(X+Y) SI=B+X+Y=;
DEF BIT(17,K) =B<I7>A[K]=; ‘
DEF MIN =MACRO=(X,Y,Z)= IF X LS Y THEN Z=X; ELSE Z=Y=;

Parameterization of the DEF declaration occurs when the DEF parameter identifiers appear within a character
string. They are assigned new values at each subsequent use of the DEF name. These values are character strings
associated with the DEF parameters by an actual parameter list provided at every use of the DEF name. The
DEF character siring is modified by substituting the actual parameter values for the DEF parameter identifiers
within the string.

A reference to a substitutable DEF parameter is recognized wherever a DEF parameter identifier occurs in the
original DEF character string, unless it is enclosed in quotes or primes within the string. Apart from this
restriction, a parameter identifier is substitutable whenever it appears, regardless of context. Care must be
exercised, therefore, if a DEF parameter identifier is identical to any of the context dependent descriptors,
functions, prefixes, or specifiers (B,C,E,J,O,P,R,S,UX). Although each is an acceptable parameter identifier,
its use will cause the corresponding context dependent significance to be unavailable within the DEF character
string unless the final substituted value is itself acceptable in that context.
Examples: (substitutable parameters are underlined)

DEF BYTE(B,LK) =B<I>A[K]=; =B may be substituted by C or B=

DEF POINT(P,A) =Q=X[P] ; P<A>=Q=; Slikely to fails

PARAMETERIZED DEF EXPANSION

The replacement of the DEF name with the character string containing substitutable parameters is called the
expansion. Expansion will not take place under the following circumstances:

If the DEF name occurs in a declarative context.

If the DEF name is also the name of a descriptor, function, prefix, or specifier and occurs in the
correct context (B,C.E,1,O,P,R,S,U.X).

6-6 60496400 A

Additionally, the DEF name must be followed by a legitimate actual parameter list of the following form:
name (p;, P2 - - -)
name is a parameterized DEF name
pj are actual parameters corresponding to the parameters in the DEF name declarations

No comment can be embedded between the DEF name and the left parenthesis of the actual parameter

list
The actual parameters p;, Pz, - . - are delimited initially by the left parenthesis and then by commas, or the
terminating right parenthesis. Each actual parameter consists of the string formed by all characters between

successive parameter delimiters. The resulting character strings, called parameter strings, will replace the cor-
responding DEF parameter identifiers wherever they are recognized in the DEF character string. If a parameter
string contains incorrectly nested brackets or a semicolon, it may be bounded by quotes. The quotes are
removed prior to substitution of the parameter. In such a parameter string, the quote is denoted by two quote
symbols. A parameter starting with a quote is delimited by the matching ” (quote).

Parameters that occur in a defining context will not be replaced. This situation is not detected until expansion
time.

Commas and right parentheses (although they are parameter delimiters) may occur in parameter strings in
non-delimiting circumstances. To be recognized as a parameter delimiter,a comma or a right parenthesis must
be encountered at the outermost bracket level, otherwise it is considered to be part of the current parameter
string. Within a parameter list,but not within quotes any of the characters [< (cause progression to an
inner bracket level; and, conversely, any of the characters] >) cause a return to the previous bracket
level. A parameter delimiter is not recognized between pairs of quotes or pairs of primes. Nor will characters
between quotes or primes contribute to the bracket level. A semicolon may occur only between quotes or
primes. There must be no net change in bracket level within an unquoted parameter string. Apart from these
restrictions, the actual parameter list may contain any combination of characters. When a right parenthesis is
encountered at the original bracket level (matching the left parenthesis in the above format), it delimits the

renmainn ~f tha YD talraa wmla
current parametier string, and expansion of the DEF takes puace.

The rules for forming parameter strings cause a parameterized DEF expansion to be syntactically similar to a
procedure call or a function reference. Thus, all procedure or function actual parameter forms are acceptable

DEF parameter strings. The converse is not true, however, since parameter strings are not constrained to be
items or expressions, the sole restriction being that any bracketing characters used must be correctly paired.

If an actual parameter list contains more parameter strings than the number of DEF parameters specified in
the DEF name declaration, a fatal diagnostic is issued and expansion does not occur. If fewer parameter strings
are specified, expansion takes place with unspecified substitutable parameters replaced by the null parameter
string, allowing the expansion of DEF names with a variable number of actual parameters.

Nested expansion of parameterized DEF names is permitted. However, recursive or circular expansion is
prohibited.

60496400 A 6-7

Examples: Parameterized DEF name reference

M(D)
M(A+C[1,1]=IGNORE=)
BIT (B<3,2>,A[5])
BYTE(C,5,2**J)

CHECK(CALL(3,.B)=ERROR=37,GO TO FAIL=);

Examples: Parameterized DEF expansion

The above reference to BYTE where:
DEF BYTE(B,J K) =B<J>A[K]=;
would expand as:

C<5>A[2%4]]

The above reference to CHECK where:

DEF CHECK(X,ERROR) =IF BYTE(B,1,X) EQ 1 THEN GOTO OK; ERROR=;
would expand as:

IF B<1>A[CALL(3,B)]EQ 1

THEN GOTO OK; ERROR=37; GOTO FAIL

However, the following definition of CHECK:

DEF CHECK(X,ERROR) =IF BYTE(B,1,= =X= =) EQ 1
THEN GOTO OK; ERRORS;

Causes the above reference to expand as:

6-8

IF B<I>A[X] EQ 1

THEN GOTO OK; ERROR=37; GOTO FAIL;

60496400 A

PROGRAM STRUCTURE 7

PROCEDURES AND FUNCTIONS

SYMPL statements which perform a specific task may be combined for access as a single unit with procedure and
function declarations; in addition, the declaration provides a means for transferring data to and from an accessed
procedure or function. Procedure and function declarations may appear wherever any other declaration may appear.

PROCEDURE DECLARATION

A procedure declaration consists of a header followed by an optional series of declarations and a single statement,
which may be compound. A procedure declaration is referred to as a procedure.

Format of procedure declaration header:
PROC name (parm,,parm,,...);
or
PROC name ;
parm; is an identifier called a formal parameter.
Examples:
PROC CLEAR (X,N) 3

BEGIN
ARRAY X[{997 ;

ITEM XX R (0,0)
ITEM N, I

“-e we

FOR I=0 STEP 1 UNTIL N
DO XX[I] = 0.0 ;
END

60496400 A 7-1

PROC REMQUO (NUM,DEN,REM,QUO) ;
BEGIN
ITEM NUM,DEN,REM,QUO ;

QUO = NUM/DEN ;

REM NUM-QUO*DEN ;

END

FUNCTION DECLARATION

A function declaration is similar to a procedure declaration and is referred to as a function; however, the function
name, in addition to identifying the code, is associated with a specific value. A function declaration consists of a
header followed by an optional series of declarations and a single statement, which may be compound.
Format of function declaration header:

FUNC name (parm,,parm,,...) type;

or

FUNC name type ;

type is as defined for items and applies to function name value; if omitted, integer is assumed.
Examples:

FUNC SIN(X) R ;

BEGIN

END

72 60496400 A

FUNC MOD(A,B) U ;
BEGIN
ITEM A I, B I ;
MOD = A-B* (A/B) ;

END

PROCEDURE AND FUNCTION USE

Procedure or function declaration statements are not executed at the point where they appear in the program. They
must be explicitly called by a procedure call (see section 5) or function reference.

A function is automatically called when its name appears in an expression and the value computed by the function
will be used when evaluating the expression. The value is associated with the function name by an assignment state-
ment in which the function name is the left hand side and which appears within the function declaration.

The function name must not appear in any expression within the function declaration.

Procedure and function calls cannot be recursive; a procedure cannot call itself nor be called by any procedure which
it calls.

Control is returned from a procedure or function to the calling routine when a RETURN statement (see section 5) is
encountered or when the procedure declaration statement has been executed. Return from a procedure or function
is normally to a point immediately following the call. It is possible to return to another point by a GOTO statement

(see section 5) referencing a label in an outer procedure or function or formal label parameter.

Example:

BEGIN
ARRAY X [9:9]

ITEM XX R
ITEM Y

.o v

GOTO Z; =TAKE ALTERNATE EXIT TO FORMAL LABEL Z=

END

60496400 A 7-3

FORMAL LABELS AND PROCEDURES

A use of a name will be associated with a prior declaration for the name if one exists, even if the declaration is at a
more exterior level; this is true even for labels and procedures, for which forward definition is meaningful. Thus, a
procedure declaration which uses labels or procedure names before declaring them is sensitive to declarations for
other entities of the same name at outer levels. This situation may be avoided by designating such names prior to
their usage in formal procedure or label declarations.

Example: Formal Label Declaration
PROC NAME ;
BEGIN

L1:=
PROC NAME1 ;

BEGIN

LABEL L1,L6 ; =DECLARE FORMAL LABELS=

GOTO L1 ; =AND YOU GO HERE, NOT HERE =—
L1: ... §-=]
RETURN ;
END
END
TERM
PARAMETERS

When a subprogram is called, a list of actual parameters is submitted by the call. In executing, a program operates on
the actual parameters submitted by call. When a subprogram is declared, parameter handling is specified within the
procedure body by reference to a set of dummy names, called formal parameters, listed with the subprogram declar-
ation heading.

FORMAL PARAMETERS

The body of the subprogram uses formal parameters in much the same way that it uses other names; it must declare
them before making use of them (except for labels and procedures) just as it must declare its own internal names. A
declaration for a formal parameter, called a formal declaration, may occur anywhere before the name is used within

the body of the subprogram.

SYMPL recognizes the following types of formal parameters: arrays, based arrays, functions, items, labels, and pro-
cedures. Each, with the exception of labels, requires formal declaration.

74 60496400 A

Formats for formal label, procedure, and function declarations:

LABEL name, ,name,, ..

FPRC name ;

FUNC name type ;

The format of a formal declaration for items, arrays, and based arrays is identical to the standard declarations, except
preset information may not be included. A formal parameter that is an item may be referenced by address or by value.

To specify a call by value, the formal parameter name is enclosed in parentheses within the formal parameter list. A

LI PP N s PR o - U IR P WG N Iy A Tassd cammer sand weia P
cail by value gives more efficient access to the parameter but may not yield a res

may be called by value.

+ 4~ itq antiinl mavnsmandas Nales 34
L0 118 aCiual parametes. viily iteiis

Example: Formal item declarations
PROC NAME (A,B, (C),(D));
= A boolean, B character, C integer value, D real value=
BEGIN ITEM A B;

ITEM B C(5), C;

ITEM D R;
. . . ;
RETURN;
END

An item or array declaration within a subprogram is recognized as a formal declaration for a formal parameter only if
its name coincides with the name of a formal parameter for the subprogram body where the declaration occurs. For
example:

PROC X(A) ;

BEGIN
PROC Y (B) ;
BEGIN
ITEM A ;
END
END

60496400 A 7-5

The declaration for A is not recognized as a formal declaration for parameter A of procedure X, rather it is treated as
an item local to procedure Y.

A formal parameter may be declared to represent a based array; in this special case, the address of the pointer variable
must be passed as a parameter; not the array location.

ACTUAL PARAMETERS

Actual parameters which are the arguments to a procedure or function when it is called are of the following types:

arithmetic expression item name
array name label name
Boolean expression p function
function name procedure name

In the parameter list position, item names and expressions should correspond to a formal parameter of type item; p
function parameters should correspond to a formal based array; and the remaining parameter types should correspond
to formal parameters of the same type.

Expressions are evaluated before subprogram execution and the address of a temporary location possessing the
resulting value is passed as the parameter; other parameters are passed as addresses directly. A function name, with-
out a parameter list, is not evaluated but is passed as an address to the called procedure or function. Note that a
single array reference is considered an expression and evaluated.

Subprogram names and item names, without parameters, are normally passed as addresses. However, the logic differs
somewhat if the names are parenthesized; they will be evaluated before the call and passed as temporary variables.
The following example shows two calls on pro¢c FUNNY, with the change in results caused by the use of parentheses.

Example: Formal and Actual Parameters

ITEM J ;
PROC FUNNY (FACE)
BEGIN
ITEM FACE
ITEM A, B
A=FACE ;
J=3 ;
B=FACE ;
EAR: IF A EQ B THEN GOTO EAR ;
END

~a W

J=4 ;
FUNNY (J) ;

Here a normal return is made to the calling program, whereas:

FUNNY ((J));

causes the subprogram to loop endlessly at EAR.

7-6 60496400 A

Example: Formal and Actual Parameters

A=1 ;
B=2 ;
NAME2 (A,B) ; =ACTUAL PARAMETERS=
PROC NAMEZ (X,Y) ; =FORMAL PARAMETERS=
BEGIN
ITEM X, Y ;
. =FORMAL ITEM DECLARATION=
. =LOCAL TO NAMEZ=
. =0R SCOPE NAME2=
END
END

SCOPE OF DECLARATION

Since the statement of a subprogram body may be compound, it may have embedded declarations, including subpro-

nas Aanlownts N 3 ithi 1
gram declarations. Such declarations are nested within the main subprogram.

Names declared within the subprogram body are recognized only within that subprogram (and thus within other sub-
programs nested within it).

Thus, when nested subprograms contain declarations for the same name, the innermost declaration has precedence.

The scope of a declaration is the name of the subprogram within which it occurs.

EXTERNAL SUBPROGRAM

A procedure or function which is not nested within another subprogram is referred to as an external subprogram. An
external subprogram must be terminated by the TERM directive and is compiled separately from other external sub-
programs. Also, the name of an external subprogram is automatically made available for reference by other subprograms
through the XREF declaration.

MAIN PROGRAM

A main program consists of a program header followed by a series of declarations and statements. It must also be ter-
minated by the TERM directive.

Format of main program header:

PRGM name ;

60496400 A 7-7

A main program is not called as is a subprogram since it provides the starting point for execution.

Only a TERM directive may precede a main program or external subprogram header and only a main program or ex-
ternal subprogram header may follow a TERM directive. There must be no intervening text.

ALTERNATE ENTRANCES: ENTRY DECLARATION
The ENTRY declaration within a subprogram body establishes an alternate entrance for the subprogram. It need not
duplicate parameters associated with the subprogram name; however, the code associated with a given ENTRY should
use only the parameters associated with that ENTRY, and values for parameters associated with other entries are un-
defined.
Format of ENTRY declaration:

ENTRY PROC name (parm,,parm,,...);

or

ENTRY FUNC name (parm, ,parm,,...) type;

parameter list and type are optional.

Example of an alternate entrance subprogram:

FUNC F(X) R ;
BEGIN

ITEM X R
F = X¥kxkX

“e we

GOTO G1 ;

ENTRY FUNC G(X) I ;

G=X**X ;
G1: X =X+ 1.0 ;

7-8 60496400 A

BEGIN
ITEM GENOPT ;
DEF BUFMAX =100=
DEF BUFIX =0= H

ARRAY CRBUF BUFMAX] ;
ITEM CRLIN (0, 42, 18) ;

STATUS TYPLST DEF, SET, USE, SCP ;

ITEM XLINK, XCARD, BUFIX, R, S ; =DEFAULT TYPE IS
INTEGER=

ITEM XTYPE S:TYPLST ;
ROPTN ; =FIRST EXECUTABLE INSTRUCTION =
XTYPE = S'DEF' ;

GOTO GO ;

ENTRY PROC XRSET (XLINK, XCARD) ; =ENTRY DEC=
ROPTN;
XTYPE = S'SET' ;

GOTO GO ;
ENTRY PROC... 3
ENTRY PROC... :
CRLIN[BUFIX] = XCARD ;
RETURN ;

PROC ROPIN ; =R-OPTION CHECKER=
BEGIN
IF B<27,1>GENOPT EQ O THEN GOTO OUT ;
RETURN;

g 8
i

INTERPROGRAM COMMUNICATION

Three SYMPL declarations allow communication between external subprograms: COMMON, XREF, and XDEF
declarations.

These declarations may occur only at the outermost level of a compilation; names used in interprogram
communication must be unique in the first seven characters and must not begin with the character $.

COMMON DECLARATION

SYMPL programs may declare variables to be assigned storage at load time using the COMMON declaration.

The COMMON declaration provides up to 61 blocks of storage that can be referenced by more than one subprogram,
and the starting addresses for these blocks are indicated on the core map listing.

60496400 A 79

Format:
COMMON name ; data-declaration
or

COMMON name ; BEGIN data-declaration data-declaration...END

name is optional; if omitted, storage locations in blank common will be automatically assigned.
data declaration is either an item, array, or based array declaration.

Examples:

COMMON A ; 1ITEM X ;
COMMON B ; ARRAY TAB [50] ; ITEM J ;
PRGM DEFCOMM ;

COMMON AREA ;

BEGIN
BASED ARRAY AA; ITEM XX;
ITEM A = 2955 ;
ITEM B S:TEST = S'COND' ;
ITEM C C(10) ;
ITEM DI H
ITEM E R H
ARRAY [9] :
BEGIN
ITEM Q1STPNUM I (0,0,15)
ITEM Q2NDPNUM I (0,15,15) ;
ITEM BSTATNUM I (0,30,30) ;3
END
ITEM F ;
ITEM G ;
ITEM H ;
ITEM I ;
ITEM J ;

END

Presets may be included for named common blocks but not for blank common; however, the presets will be
ignored unless the routine is compiled with the P option specified on the SYMPL compiler call statement or
the CONTROL PRESET statement is used at the beginning of the routines.

7-10 60496400 A

Common declarations need not be identical in all routines referencing the common block; however, the routine with
the longest block must be loaded first and relative locations for all items must be the same in all referencing routines.
The following example shows how different declarations for the same items may be used to initialize a common block.

Example:
PROC ONE ;
BEGIN
ITEM I ;
COMMON BLOCK ;
ARRAY ZERO {10]
ITEM ZRO ;
FOR I=0 STEP 1 UNTIL 10 DO
ZRO[{I]=0 ;
END
PRGM MAIN ;
COMMON BLOCK ;
BEGIN
ITEM A1, A2, A3 :
ARRAY BB [6] ;
ITEM BLTM ;
END
ONE 3

EXTERNAL REFERENCE DECLARATION

The external reference declaration (XREF) is used to define items, arrays, based arrays, procedures, functions,
labels, and switches which are actually part of another program. It is assumed that storage will be allocated
elsewhere for names defined by XREF declarations.

External references which name the declared external entities are output with the object program, depending on the
system’s loader for the resolution. In this way, one compilation may define a set of procedures, for example, which
may be referenced in other compilations by declaring them as XREF procedures.

60496400 A 7-11

Format of XREF declaration:
XREF xdec
or
XREF BEGIN xdec xdec . . . END

each xdec may be an item declaration without presets, array declaration without presets, based array declaration,
or one of the following:

PROC name ;
FUNC name type ;
LABEL name,; ,name,, ... ;
SWITCH name, ,name,, ...,

type is optional.

Examples:
XREF ITEM XRAY R ;
XREF LABEL FAIL,SUCCESS ;

XREF ARRAY AUNUR [99] P(1) ;
ITEM INTGR (0,0,60) ;

XREF BASED ARRAY AA ; ITEM XX ;
XREF PROC REMQUO ;

XREF BEGIN
SWITCH JUMPVEC ;
FUNC LINEUP R ;
ITEM I, J, K, L ;
ARRAY [0:9,0:9] S(5) ;
BEGIN
ITEM AA C(0,0,40)
ITEM BB R(4,0,60)
END

~e e

END

7-12 60496400 A

EXTERNAL DEFINITION DECLARATION
External definition (XDEF) declarations are defined and allocated storage in the current compilation and made avail-
able for reference, through the XREF declaration, in other compilations. The XDEF declaration is a complement of
the XREF declaration for items and arrays. The compiler generates external definitions from XDEF declarations,
allowing the system loader to tie together XDEF and XREF names.
Items, arrays, based arrays, procedures, functions, labels, and switches may be externally defined.
Format of XDEF declaration:
XDEF xdec
or
XDEF BEGIN xdec xdec...END
xdec may be an item, a switch, an array or based array declaration, or one of the following:
PROC name ;
FUNC name type ;
LABEL name, ,name,, ... ;
If Program A is compiled with:
XREF ITEM COUNT I ;
and Program B is compiled with:

XDEF ITEM COUNT I ;

references to the item COUNT within Program A actually will refer to the storage reserved for the item in Program B,
assuming both programs A and B are available at load time.

XDEF declarations for procedure and function names may occur either before or after the declarations of the procedure
or function.

Example:
XDEF ITEM X ;

XDEF BEGIN
ITEM Y, Z ;
ARRAY Q [99] ;
FUNC ABS R ;
PROC ZERO ;
SWITCH JUMPVEC J1, J2, J3, J4 ;
END = XDEF DECLARATIONS=

60496400 A 7-13

XDEF ARRAY LIBRARY [0:9,-60:-50,1:1] ;
BEGIN
ITEM TITLE C(0,0,10)
ITEM DEWDEC I ;
END

.
r

Examples: MAIN PROGRAM AND SUBPROGRAM DECLARATIONS

PRGM NAME ; =MAIN PROGRAM HEAD=
BEGIN

PROC NAME1 ; =SUBPROGRAM DECLARATION=
BEGIN

ITEM X ; =X HAS NAME1 SCOPE=

PROC NAME2 ; =NESTELC SUBPROGRAMS=

BEGIN
X=4 ; =SAME X AS IN NAME1=
RETURN ;
END
RETURN ;
END
PROC NAME3 ;
BEGIN
RETURN ;
END
STOP ;
END
TERM

7-14

60496400 A

PRGM SORT100 ;

BASED ARRAY AA [99] ;
ITEM X ;

XDEF PROC SORTER ;

ARRAY TOBESORTED [99] ;
ITEM T ;

P<AA> = LOC(TOBESORTED) ;
SORTER (P<AA>) ;

PRCC SORTER (SORT)
BEGIN
ARRAY SORT [99] ;
ITEM VALUE ;
ITEM FLAG I=0 ;

L1: FOR I=0 STEP 1 UNTIL 98 DO
IF VALUE[I+1] GR VALUE[I] THEN

BEGIN

VALUE[I+1] == VALUE[I] ;
FIAG = 1 ;

END
IF FLAG EQ 0 THEN
RETURN ;
FLAG=0 ;
GOTO L1 ;
END

TERM

60496400 A

Example: EXTERNAL SUBPROGRAM (PROCEDURE)

PROC NAME ; =NAME PASSED TO THE LOADER=

BEGIN

FUNC NAME1(A) I ; =FUNCTION SUBPROGRAM DECLARATION
AND TYPE OF THE RESULT=

BEGIN
ITEM A ;
NAME1=16*A**3 -4 ;
RETURN ;
END
ITEM K ;
B=14*NAME1 (K) ; =CALL THE FUNCTION NAME1=

7-16 60496400 A

PROC SUBROUT ; = DEFINE SUBROUTINE=

BEGIN

‘SWITCH HIT BALL1, BALL2, BALL3, BALLY4 ;

XREF
BEGIN
PROC TEAM1 ;
PROC TEAMZ2 ;
PROC TEAM3 ;
END
DEF CALL = # # =

IF XXX[I] EQ 0 THEN
GOTO HIT[RUN] ;

GOTO LEFTOUT ;

BALL1: CALL TEAM1 ;
RETURN :

BALL2: CALL TEAM2Z ;
RETURN :

BALL3: BALL4: CALL TEAM3 ;
RETURN H

END

TERM

CALLING SEQUENCES

SYMPL uses standard calling sequences; a parameter list contains one word per parameter. The address of the
parameter list is passed in register Al. Linkage is performed by executing an RJ instruction to the entry
point. To provide compact object code, traceback information is not generated. The parameter list is not
followed by a word of zeros, except when explicitly requested via the compiler call statement F option.

60496400 A 7-17

COMPILER CALL STATEMENT 8

The compiler call statement, which calls for the compilation of a SYMPL source program, consists of the
characters SYMPL followed by an optional parameter list and terminated by a period or right parenthesis. The
columns following the right parenthesis or period may be used for comments; they are transcribed to the
DAYFILE. The format is:

SYMPL(p; ,p2.P3.P4.Ps, - - -) comments

SYMPL. comments

SYMPL’pl)p2 ,p3 ap4 7p5 3 e e comments

PARAMETERS

The SYMPL compiler operates according to the options specified on the SYMPL compiler call statement; errors
cause the compiler to abort. The following options may be specified:

SOURCE INPUT: |

If the source input parameter is omitted, source input is assumed to be on INPUT. Otherwise, this parameter
must be provided:

I=ifn

1fn is the name of the logical file containing the source input. Source input parameters of the forms

I=INPUT is equivaient to omitting the parameter. Specifying I aione is equivaient to I=COMPILE.
BINARY OUTPUT: B

If the binary output parameter is omitted, a relocatable binary file is written on a file named LGO. For any other out-
put file, this parameter must be provided:

B=lfn

lfn is the logical file name on which the binary output is to be written. Binary output parameters of the form
B=LGO, or B, are equivalent to omitting the parameter. B=0 suppresses generation of binary output.

60496400 A 8-1

OBJECT TIME LIBRARY SPECIFICATION: S
The LDSET table generated on the binary file may be changed with the S option:
S=0 Suppresses the LDSET table
S=AAA/BBB/CCC LDSET table is produced with entries for libraries AAA, BBB, and CCC
Default is:
S=FORTRAN/SYSIO for CYBER 70/72-74 and CYBER 170
S=FORTRAN/SYMIO for CYBER 70/76
Example:

SYMPL (1,A.H.S=FTNLIB)

LIST: LXOR

If this parameter is omitted, a normal listing is provided on OUTPUT, including the source language and diagnostics.
Other list ontions may be selected as follows:

“inher st options may
a=lfn/l; /1,
a may be one or more of the following:
L Normal listing, diagnostics follow source
X Storage map, common block listing
O Listing of generated object code; if not specified parameter 1; and 1, are not permitted
R

Cross-reference table, common block listing

Ifn Logical file name to receive the list output. All list output is suppressed if Ifn=0. The listing appears
on OUTPUT if lfn is omitted.

I, Line of user’s code where object list is to end
If not specified 1; assumes the value O and 1, the value + o, and the preceding / must be omitted.

When the default OUTPUT is used, lfn and the succeeding / may be omitted.

82 60496400 A

Example:
L0O=100/200
is identical to
LO=0UTPUT/100/200

however, LO=/100/200 is in error.

Any combination (with no comma) of the above parameters provides the features indicated. LXOR=lfn specifies
all options are to be listed on the given file and LO selects source and object listing on OUTPUT.

All listing is suppressed if L=0 is specified; L=1 results in a summary of system resources utilized.

TERMINATE COMPILATION: T

If this parameter is present, compilation will terminate following output of all source error messages. Since code
will not be generated, options affecting code generation are ignored.

SINGLE STATEMENT SCHEDULING: W

Generally, this option requires more central processing time than normal multiple statement scheduling; but it

1 pr
preserves a closer correspondence between object code sequence and source code sequence, which is useful for
code oriented debugging.

PRESETS IN COMMON: P

Presets for items declared in common normally are not placed in the object deck; but if they are to be present
the P parameter is required.

COMPILE $BEGIN-$END CODE: E

Normally, object code is not compiled for SYMPL statements contained between the $BEGIN and $END syn-
tactic brackets. If object code for these statements is to be generated, the E parameter is required.

PACKED SWITCHES: D

Normally, SYMPL switches are generated with one switch point per 60-bit word. When the D option is specified,
however, two switch points are packed into a 60-bit word, reducing the code size but increasing overhead and
execution time.

60496400 A 8-3

SWITCH RANGE CHECKING: C

Under normal conditions the SYMPL cornpiler does not provide a means for switch range checking; however, the C
option causes a bounds check to be performed for each switch reference. If an out-of-bounds condition is detected,
the compiler issues a diagnostic message and program execution is terminated.

Results are similar, if a null or unspecified switch point is selected along with the C option.

If the C option is omitted, a null switch point will produce either an endless loop condition or a mode error.

SUPPRESS DIAGNOSTIC: Y

This option suppresses the printing of the diagnostic message (semi ends comment) but not the corrective action
associated with the message.

UNREFERENCED ITEMS IN CROSS REFERENCE: N
FORTRAN COMPATIBLE CALLING SEQUENCE: F

ABORT: A

The A option causes the compiler to abort at the end of the job step if it encounters errors.

COMPILE PROGRAM LIST: H

When this parameter is present, it overrides the CONTROL NOLIST command, causing all code to be listed.

SAMPLE DECK SETUPS FORBATCH MODE
Compile producing listing on default OUTPUT file and binary output on defauit LGO file. Execute.
SAMPL1,T100,CM60000,P3.
SYMPL (1LXOR)
LGO.
77879 (END OF RECORL)
(SYMPL. SOURCE DECK)

6/7/8/9 (END OF FILE)

84 60496400 A

Compile producing listing on default OUTPUT file and binary output of a program and subprogram on default LGO
file. Execute.

SAMPL2,T070,CM60000,P7.

SYMPL (XOR)

LGO.

7/879 (END OF RECCRD)
(SYMPL, SOURCE DECK)
(SYMPL SURPROGRAM)

6/7/8/9 (END OF FILE)

Compile producing listing on default OUTPUT file; no execution, produce a binary card deck.
SAaMP1L3,T100,CM60000,P17.
SYMPL {(LXOR, B=PUNCHB)
77879 {END OF RECORD)
(SYMPL SOURCE DECK)

6777879 (END OF FILE)

60496400 A 8-5

STANDARD CHARACTER SETS A

CONTROL DATA operating systems offer the following variations of a basic character set:
CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set
The set in use at a particular installation was specified when the operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026 or
in 029 mode (regardless of the character set in use). Under NOS/BE 1, the alternate mode can be specified by
a 26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS 1, the alternate mode can be specified by a 26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In addition, 026 mode can be specified by a card with 5/7/9 multi-
punched in column 1, and 029 mode can be specified by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2.

Graphic character representation appearing at a terminal or printer depends on the installation character set and

the terminal type. Characters shown in the CDC Graphic column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals.

60496400 A A-1

V 00¥96109

STANDARD CHARACTER SETS

ASCII Hollerith External { ASCII ASCII Hollerith { External ASCH
cDC Graphic | Display Punch BCD Punch | ASCI| cDC Graphic Display Punch BCD Punch ASCII
Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code

] : 00tt 8-2 00 82 072 6 6 41 6 06 6 066
A A 01 121 61 12-1 101 7 7 42 7 07 7 067
B B 02 12-2 62 12-2 102 8 8 43 8 10 8 070
C C 03 12-3 63 12-3 103 9 9 44 9 1 9 a7
D D 04 12-4 64 12-4 104 + + 45 12 60 12-8-6 053
E E 05 12-5 65 12-5 105 - - 46 11 40 1 055
F F 06 12-6 66 12-6 106 * * 47 11-8-4 54 11-8-4 052
G G 07 12-7 67 12-7 107 / / 50 0-1 21 01 057
H H 10 12-8 70 128 110 ((51 0-8-4 34 12-8-5 050
1 | 1 129 71 129 11)) 52 12-8-4 74 11-8-5 051
J J 12 111 41 111 112 $ $ 53 11-8-3 53 11-8-3 044
K K 13 11-2 42 11-2 113 = = 54 8-3 13 8-6 075
L L 14 11-3 43 11-3 114 blank blank 55 no punch 20 no punch 040
M M 15 11-4 44 11-4 115 , (comma) , (comma) 56 0-8-3 33 0-8-3 054
N N 16 11-5 45 115 116 . (period) . (period) 57 12-8-3 73 12-8-3 056
(o] (6] 17 11-6 46 11-6 117 = # 60 0-8-6 36 8-3 043
P P 20 1-7 47 11-7 120 [[61 8-7 17 12-8-2 133
Q Q 21 118 50 118 21] 1 62 0-8-2 32 11-8-2 135
R R 22 11-9 51 119 122 % % 631t 8-6 16 0-8-4 045
S S 23 0-2 22 0-2 123 * '* (quote) 64 8-4 14 8-7 . 042
T T 24 0-3 23 0-3 124 - _ (undertine) 65 0-8-5 35 0-8-5 137
U V] 25 0-4 24 0-4 125 \ ! 66 11-0or 52 12-8-7 or 041
\Y \Y 26 0-5 25 0-5 126 11-8-2ttt 110ttt
w w 27 0-6 26 0-6 127 A & 67 0-8-7 37 12 046
X X 30 0-7 27 0-7 130 t ! (apostrophe) 70 1185 55 85 047
Y Y 31 0-8 30 0-8 131 { ? M 11-8-6 56 0-8-7 077
4 V4 32 09 31 09 132 < < 72 120 or 72 12-84 or 074
0 0 33 0 12] 060 12-8-2ttt 120ttt

1 1 34 1 01 1 061 > > 73 11-8-7 57 0-8-6 076
2 2 35 2 02 2 062 < @ 74 8-5 15 8-4 100
3 3 36 3 03 3 063 = \ 75 12-8-5 75 0-8-2 134
4 4 37 4 04 4 064 - ~(circumflex) 76 12-8-6 76 1187 136
5 5 40 5 05 5 065 ; (semicolon} ; {semicolon) 77 12-8-7 77 11-8-6 073
tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line

mark is converted to external BCD 1632.
t1In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch).
The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (558).
t11The alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

SYMPL DIAGNOSTICS B

For errors that are detected during execution of the object program, diagnostic comments are printed in the source
program listing produced by the compiler.

The compiler recognizes errors in SYMPL syntax; faulty programming logic is not recognized unless it produces a syn-
tax error.

When the processor detects a source language error, it prints out the applicable diagnostic message number imme-
diately preceding the line on which the error was detected. In addition, after the last source statement has been

compiled, the compiler sums the total number of diagnostic messages encountered during compilation and prints
out this message along with a detailed listing of each message number and the condition causing the error message.

COMPILER ABORT CONDITIONS

The compiler aborts on encountering a compiler call statement error. Also if field length is insufficient, the
compiler aborts and issues the diagnostic SYMBOL TABLE OVERFLOW.

An attempt to compile an incorrect source program may cause an abort. When syntax and semantic errors of

Suiliii 1ipas

the program are corrected, the compiler will execute satisfactorily.

DAYFILE MESSAGES
-SYMPL- xxxxx COMPILED xxxxx is the PRGM/PROC name.

-SYMPL- EMPTY INPUT FILE The file specified by the I parameter on the compiler call
statement is positioned at end of information.

—-SYMPL- COMPILER ABORT
—-SYMPL- BAD LOADER CALL See COMPILER ABORT CONDITIONS above.

—SYMPL- BAD EXP CALL TO FTN

—SYMPL- PARAMETER nIN ERROR Error occurred in nth parameter on the compiler call statement.

DIAGNOSTICS

The compiler diagnostic abbreviations, message numbers, and the condition causing the message are listed below:

60496400 A B-1

DIAGNOSTIC ABBREVIATIONS

Abbreviation Description
ID Identifier
CHAR Character
CHARS Characters
DUP Duplicate
DECL Declaration
ILL llegal
HEX Hexadecimal
CONS Constant
PARENS Parenthesis
STRG String
SEMI Semicolon
STMT Statement
ERR Error
SPECS Specifications
PARAM Parameter
EXPR Expression
PROC Procedure
PROG Program
FUNC Function
UNDECL Undeclared
REF Reference
REFS References
EXPR Expression
BOOL Boolean
REPL Replacement
/ Or
UNDECL Undeclared
XDEF External definition
XREF External reference
1FXX Conditional compilation computation word

B-2 60496400 A

COMPILER ERROR MESSAGES

Message
Number

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
ou1
042
043
ouy

60496400 A

Condition Causing Message

LONG ID--FIRST 12 CHARS USED
DUP DECL--NEW ONE OVERRIDES
UNDECL ID DELETED
ILL OCTAL/HEX CONS
TERM MISSING
BAD STATUS CONS USE
AL NESTING OF PARENS/BRACKETS
CRUD CHAR IN INPUT
CHAR STRG> 240 BYTES--240 USED
ILL ARRAY ITEM IC USE DELETED
ILL SWITCH ID USE DELETED
ITL ARRAY IT USF CELETEC
ILL STATUS LIST ID USFE DEIETED
TIL. CCMMON ILC USE CELETED
SEMI MISSING AFTER ARRAY DECL
CRUL AT START OF STMT DELETED
TLL, KEYWORD USE DELETED
ARRAY ITEM DECL IIST IACKS ENDL
ITEM DECL ID ERR
DECL. DISCARDED--SCAN RESUMES AT SEMI
ITEM DECL TYPE FRR--I ASSUMED
ILL. ITEM LENGTH--1 BYTE USED
SIGNELC PRESET ILL FOR THIS TYPE--IGNOREDL
SCAN RESUMES AT -BEGIN-
MISSING SEMI
ITEM PRESET ERR
SEMI ACCEPTEC AS NULL STMT
BASELC/XDEF/XREF ARRAYS NEED ID
ARRAY ITEM DECL SYNTAX ERR
ARRAY ITEM DECL TYPE ERR
BAD ARRAY BOUND VALUES--ASSUMED [0:0]
ARRAY BOUND SYNTAX ERR
ARRAY ITEM DECL PARTWCRL SPECS ERR--DEFAULT TAKEN
ARRAY ITEM DECL 1ST BIT ALIGNMENT WRCNG--0 USED
ILL ARRAY ITEM BOUNLCARY--CEFAULT TAKEN
TOO MANY ARRAY ENTRIES
TOO MANY PRESFT GROUPS
ARRAY PRESET SYNTAX ERR
COMMCN/ XDEF/ XREF--AT CUTER SCOPE ONLY
EAT COMMON DECL IGNORED
BAD XREF/XDEF IGNORED
BAD BASED DECL IGNORED
XDEF/XREF LIST CRUD DELETED

B-3

045
o046
o047
0u8
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
o6y
065
066
067
068
069
070
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096

SWITCH CECL SYNTAX ERFE

COMMON LIST SCAN RESUMES AT -ARRAY-/-ITEM-

STATUS DECL SYNTAX ERR

-END- ENDS BAD COMMON LIST

DEF DECL SYNTAX ERR

BAD FORMAL PARAM DECL

PROGRAM BEGINS BADLY

PROG DECL LACKS ID

PROG LDECL ERR--CRULD PRECELCES SEMI

XDEF/XREF LIST SCAN RESUGMES AT LEGAI ENTRY

FORMAL IABEL LCECL SYNTAX ERR

-END- ENDS BAD XDEF/XREF LIST
FORMAL FROC LECL SYNTAX ERR

FUNC DECL LACKS ID

FUNC DECL TYPE ERR--I ASSUMED

FUNC DECL LACKS SEMI

SCAN RESUMES AT SEMI

DUP FORMAL PARAM ID IN IIST

DUP FARAM ID--PRIOR DECI THIS SCOPE

PARAM LIST

SYNTAX ERR

PROC DECL IACKS ID

PROC DECL SYNTAX ERR

UNDECL IABEL/PROC IC

FORMAL ID LACKS DECL

PARAM NOT USED IN THIS SCOPE

ILL, DEF ID--NO EXPANSION

TOO MANY PARAM/ARRAY/ARRAY ITEM REFS
TOO MANY SUBSCRIPTS:SWITCH REF

NOT ENOUGH SUBSCRIPTS FCE ARRAY/ARRAY ITEM REFS

BAD SUBSCRIPT LIST
ILL IABY¥L/FROC ID USE DELETED

STATUS SWITCH DECL ILACKS STATUS LIST 1D

BAD IABEL USE IN STATUS SWITCH
STATUS SWITCH--VALUE TOC ILARGE

STATUS SWITCH--LCUP CCKSTANT VALUES
STATUS SWITCH-~-MISSING CONSTANT
BEGIN/END MISMATCH. PROFABLE LISASTER
IF EXPR NOT BOOL

WHILE EXPR NOT EOOL

CRUD AFTER

-DEF- ID EXPANSION NEST TOO DEEP-ITC LCELETED

FINAL END IGNORED

YOUR -DO- HAS BEEN FOUND

THE -THEN-

HAS BEEN FCUXD

MISSING -DO-

MISSING -THEN-

INITTIAL VALUE EXPR ERR
-STEF- EXPR ERR
-UNTIL- EXPR ERR
-WHILE- EXPR ERR

BAD -GOTO-

DELETED

60496400 A

097
098
099
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

1490
142

130
131
132
133
134
135
136
137
138
139
140
141
142
143

60496400 A

BAD REPL STMT DELETED

PARTWORD VALUES AFTER FIRST 3 IGNOREL
ITEM DISCARDED--SCAN RESUMES AT CCMMA
HANGING ~TF- CLAUSE

HANGING -FOR- CLAUSE

HANGING -ELSE-

EXTRA END--OMITTED BEGIN FCOR SUBPROGRAM ASSUMED
ILL UNDECL PARAM USE CFLETELC

FOR STMT: INDUCTION ID ERR

-IF- EXPR ERR

DUP XDEF/XREF DECLS FCR ID

XDEF PRCC/FUNC: NOT FULLY LCECL

BAD FORMAL DECL

REDUNDANT FORMAL CECL

BAD PARAM LIST

BOOL ILL IN ARITH CONTEXT

COMMON LIST LACKS —-END-

BASED LIST LACKS -END-

XDEF/XREF LIST LACKS -END-

COMMCN LIST CRUD DELETET

BASELD LIST CRUD DELETED

BASED LIST SCAN RESUMES WITH -ARRAY~
-END- ENDS BAD BASED LIST

0 LENGTH -DEF- STRING IGNORED

CHAR LENGTH OMITTED--1 ASSUMED

BAD ARRAY ENTRY SIZE

BRACKET NEST TOO DEEP

ILL EXPR TYPE THIS LEFT SIDE

BAD BEAD FUNC

EXPR CP CONCATENATICN ERR

LONG CHAR STRG--240 BYTES USED

BAD -LOC- FUNC

AD -ABS- FUNC

BAD INDUCTION ID TYPEF

NON INDUCTION ID IN -TEST-

-TEST- ILL OUTSIDE LOCP

SCAN RESUMES AT -BEGIN-/-ITEM-/SEMI
READ FUNC NEEDS IC

DUP STATUS ID

SEMI ENDS COMMENT

CONTROL STMT SYNTAX ERR

CHAR NOT D/F IN REAL CR COUBLE CONSTANT
FORMAL. PARAM PRESET ILL

XREF PRESET TILL

BLANK COMMON PRESET ILL

BASED ARRAY ITEM PRESFT ILL

BAD P-FUNC

B-5

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
708

B-6

CHARACTER ITEM >240 BYTES - 240 USED
NO SUBSCRIPT FOR ARRAY ITEM -~ 0 USED

CIRCULAR DEF NAME EXPANSION =« EXPANSION IGNORED

NO MATN PROC FOR ENTRY PROC
ILLEGAL CHAR IN MACRO DEF
ILLEGAL IFXX COMPARE

TOO MANY DEF PARAMS

ILLEGAL, CONDIT DIRECTIVE IGNORED
ILLEGAL VALUE PARAM-LABEL
ILLEGAL VALUE PARAM-ARRAY
ILLEGAL VALUE PARAM-PROC

COMMON BASED ARRAY DECL ERROR
LABEL DECL ERROR

XREF SWITCH ERROR

UNMATCHED IFXX

DEF PARAM ERROR

([OR < NESTING TOO DEEP

([OR < NEST MISMATCH

PARAMETER TOO LONG

PARAMETER COUNT ERROR

RECOVERY AT ;

ZERO-DIVIDE ATTEMPT

60496400 A

-y

_——

GLOSSARY C

The following glossary includes short descriptions of use for each SYMPL word, each special use of single letters,

and each mark.

ABS

E»
g

ARRAY

BASED

BEGIN

COMMON

CONTROL

CONTROL IFxx

60496400 A

Intrinsic function. Returns the absolute value of the argument.

Boglean operator. When used in x and v, vields TRUE o Jy if ¥ a

Vpvialu TYARVIL GOV 1l A Gl y, yavs N

y are both TRUE; otherwise, yields FALSE.

AND © 1
0 010
1 0 1

Declares dimensioned entities.

Two uses:

In item declarations, denotes Boolean type which is represented by a
bit string whose values are interpreted: One = TRUE and zero = FALSE.

Intrinsic function — Accesses bits of a variable

Declares arrays that have an explicit pointer variable but no compiler
assigned storage.

Left bracket for the BEGIN . . . END pair. Delimits a compound state-
ment.
Two uses:

In item declarations, denotes character type which is represented by a
bit string whose values are interpreted: one = TRUE and zero = FALSE.

Intrinsic function — Accesses bytes of a variable.

Delimits declarations for variables assigned storage by the loader, not the
compiler. Common blocks of the same name share the same physical
storage at execution time.

Introduces a compiler directive.

EQ, NQ, . . . Conditional compilation directives.

DEF

ELSE

END

ENTRY

EQ

FALSE
FOR
FPRC

FUNC

GOTO

GQ

GR

IF

ITEM

LABEL

LAN

Declares a macro.

Separates the FOR clause from the simple or compound statement
executed under the control of the induction variable as declared for
the FOR statement.

Marks the statement to be executed on the FALSE evaluation of the
Boolean expression in the IF statement.

Right bracket of BEGIN . . . END pair.
Declares alternate entrances to procedures and functions.

Relational operator. Denotes relationships of equality as in a EQ b,
which is TRUE only if a a is algebraically equal to b.

Boolean constant having the integer value 0.

Delimits start of FOR statements.

Formal procedure declarator.

Declares a function subprogram; a closed routine that returns a value
to the expression of which the function call is part. FUNC as the first
statement of a compilation declares the function to be stand-alone,
which renders the function name available to the system loader. Also
formal function declaration.

Unconditional branch operator. Also used to access switches.

Relational operator. Denotes greater or equal relationships; 2 GQ b
is TRUE if a is algebraically greater than or equal to b.

Relational operator. Denofes greater relationships. Thus, a GR b is
TRUE only if a is algebraically greater than b.

Denotes type integer in item declarations.
Delimits start of conditional statement.

Declares SYMPL variables. Item types include signed integer (I), real (R),
status (S), Boolean (B), character (C), and unsigned integer (U).

Formal label declarator.

Arithmetic operator. Bit-by-bit “and” of integer operands (see AND).

60496400 A

LIM Airthmetic operator. Bit-by-bit “implies” of integer operands.

ALIMB A=0 A=1

B=0 1 0

B=1 1 1
LNO Unary arithmetic operator. Bit-by-bit complement of integer operands.
LOC Intrinsic function. Returns the location of a label, array, array entry,

switch, procedure, function, or variable.
LOR Arithmetic operator. Bit-by-bit “or” of integer operands (see OR).

LQ Relational operator. Denotes relationships of less.or equal. Thus, a
LQ b is TRUE if a is algebraically less than or equal to b.

LQV Arithmetic operator. Bit-by-bit equivalence for integer operands.
Lav 0 1
0 ‘ 1 0
1 | o | 1
LS Relational operator. Denotes relationship of less than. Thus, a LS b is

TRUE only if a is algebraically less than b.

LXR Arithmetic operator. Bit-by-bit exclusive OR of operands.
LXR 0 1
0 0 1
1 1 0
NOT Boolean operator. Unary operator that effects the complement of the

single Boolean operand. Thus, NOT a is TRUE only if a is FALSE;
NOT (a AND b) is TRUE if either a or b is FALSE.

NQ Relational operator. Denotes relationships of not equal. Thus, a NQ b is
TRUE only if a is not algebraically unequal to b.

(o) Octal constant prefix. Provides octal constants.

60496400 A

OR

PRGM

PROC

RETURN

TERM

TEST

Boolean operator. Binary inclusive or relationships. Thus a or b is
evaluated TRUE if either a or b is TRUE; otherwise, it is FALSE.

OR 0 1
0 0 1
1 1 1

Two uses:

In array declarations, denotes parallel array structure, meaning successive
instances of the same item are in contiguous storage. (See serial, S.)

Intrinsic function. Allows reference to the pointer variable.

First word of a main program compilation. It declares the compiled
output to be a program rather than a subprogram.

Declares a procedure subprogram. Parameters may be passed to and from
such subprograms. PROC as the first word in a compilation creates the
procedure as a stand-alone subprogram, and the procedure name is made
available to the system loader.

Used in item declarations to denote type real (floating point).

In a subprogram, causes exit to be made to the routine calling the sub-
program.

Two uses:
Status — In item declarations, denotes status type.

Serial — In array declarations, denotes serial array structure, which means
that different items of the same entry are in contiguous storage.

Delimits a status declaration.

Separates the initial value expression of a FOR clause from the increment
expression.

j » PO o mpmanda
NELUIiS Conu

Declares a vector of switch points with which the compiler associates
indexes.

Compiler termination delimiter.

Used within the range of a FOR statement to effect a jump to the incre-
ment and test of the induction variable.

60496400 A

THEN

TRUE

UNTIL

WHILE

XDEF

XREF

$BEGIN

$END

+

*k

1}
1

60496400 A

Denotes the statement (simple or compound) to be executed on the
TRUE evaluation of the Boolean expression in an IF statement.

Boolean constant having the integer value 1.
Denotes type unsigned integer in item declaration.

In FOR statements, separates the STEP (increment) expression from the
final value of the induction variable.

In FOR statements, delimits a Boolean expression for which TRUE evalu-
ation causes FOR loop iteration, and FALSE evaluation terminates the
loop.

Hexadecimal constant prefix.

Delimits variables whose names and locations are to be made available to
the system loader. Other separately compiled programs and subprograms

may refer to such SDEF variables through XREF declarations.

Delimits variables and subprograms whose locations are to be supplied by
the system loader through XDEF variables in other compilations.

Brackets code to be compiled on option.

Brackets code to be compiled on option.

Arithmetic operator. Add.

Arithmetic operator. Binary subtraction, or unary negation.
Arithmetic operator. Multiply. x*y reads: x multiplied by y.
Arithmetic operator. Divide. x/y reads: x divided by y.

Arithmetic operator. Exponentiation. x**(y+2) reads: x raised to the
y+2 power.

Assignment operator. Denotes replacement. x=y reads: replace x with
the current value of y.

Assignment operator. Denotes exchange. x= = y reads: exchange the
values of x and y.

Separates expressions, list elements, etc.
Decimal point in real constants.

Delimits labels and separates bound pairs in array dimensions. Other
miscellaneous uses.

C-5

(Blank)

O

[]

€

<>

" (or)

Terminates simple statements and declarations.

Used for syntactic readability.

Parentheses (left and right). Used to bracket arguments to functions,
procedures and parameterized DEF. Also used to group expressions and
to denote call by value from parameter. Used elsewhere for syntactic
readability.

Brackets (left and right). Used to bracket subscripts.

Prime (left and right). Brackets character constants. Also encloses octal,
hexadecimal and status constants.

Quote (left and right). Brackets comments and right sides of definitions.
Delimiters (left and right). Used to bracket arguments for some intrinsic
functions (P, B, C).

Quote represented throughout manual by equivalence symbol =. Bracket
comments and right sides of definitions.

60496400 A

METALANGUAGE D

METALANGUAGE DESCRIPTION

The mechanics for defining the syntactic forms of SYMPL are accomplished through
an elementary descriptive language, capable of defining any phrase-structured
language.

SYMPL is described in a metalanguage by a set of statements called productions, each
of which describes one form belonging to SYMPL. The forms of a language are its syn-
tactic entities, such as the sentence or adverbial phrase (from English), or arithmetic
expressions (from FORTRAN, for example).

Every form of SYMPL is described by one metalinguistic production.

Format of a production is as follows:

orm name

form name

form definition

60496400 A

context | form definition | context

Underscored name of the form defined by this production.
In the metalanguage every underscored sequence is a form
namee.

Production symbol, which may be read: has the form.

Structure of the form defined by this production (whose name
is given as the form name of the production). The definition
of a form specifies the set of character sequences (utterances)
that it represents; form definitions specify a sequence of the
following entities:

Characters of the SYMPL character set, which repre-
sent themselves.

Names of SYMPL forms, which represent sequences of
characters of the SYMPL character set, as specified by
the productions which describe the form names.

Sets of entities like the above, from which any one may
be chosen. Such a set is enclosed within braces to in-

dicate alternatives. The use of such alternative sets
may be recursive defined; thus the form definition

» {§H
Q)

is equivalent to a choice of one of the following alterna-
tive sequences:

X

R
S

I
O © H

The null form ¢ represents zero characters of SYMPL.
Typically, ¢ is used as one member of an alternative
set if no member of the set must be chosen.

context] and |[context Optional constraints upon applicability of the production.
If a production contains either or both context sequences,
the specified form name only represents the sequence of
SYMPL characters defined by form definition when it
occurs in the given context. A context sequence is
formed similarly to a form definition sequence.

Thus, the production pair

{x"a)

X = BJ _}S LB

[
i

describes sequences of the character A as the form name Y only when they are de-
limited by occurrences of the character B.
To summarize: seven symbhols are peculiar to the metalanguage:

Underscore line

Production symbol 1=

Null symbol ®

D-2 60496400 A

Braces % and %
Context delimiters J and L

All other printed characters in metalinguistic productions are either form names
(underscored) or self-representative members of the SYMPL character set.

BASIC NOTATION AND ELEMENTS

CHARACTER SET

SYMPL programs are composed of 55 characters, as follows:

1

LETTERS (

letter := <

HNHNE<OHLDONWOZENRE-HQHEO QW »

60496400 A

DIGITS [0 \
1
2
3
- 4
dlgt 1= < 5 >
6
7
8
. 9
MARKS
(* 1
/
+
(
)
[
]
<
mark :=] S \
’
. b)

b represents a blank space. " is represented throughout manual as the
equivalence symbol=,

BLANK SPACES AND COMMENTS

- b

pat® { comment }
A _ space

i A space

W/
]
®

60496400 A

A

v i=

- ¢

comment := " comment string "
y

comment string = comment string ¥
9

Y represents any key punch character except semi-
colon (;) and quote ('), either of which will terminate
a comment,

The forms A and v are used throughout the metalinguistic description to represent one
or more blanks and zero or more blanks, respectively.

IDENTIFIERS
ident := mark | identpart | mark
letter
ident part = dont oart { :ﬁziei r }

RESERVED SYMBOLS
The 52 SYMPL words are represented as follows:

abs ;= mark | ABS L mark
and := mark | AND L mark
array i= mark | ARRAY | mark
based := mark | BASED | mark
begin ~ := mark | BEGIN | mark
common := mark | COMMON | mark
control := mark | CONTROL| mark
def = mark | DEF | mark
do := mark | DO [mark

60496400 A D-5

D-6

else

end

entry
€q
false

for

fpre

func

goto

mark
mark
mark

mark

mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark

mark

mark
mark
mark
mark
mark
mark
mark
mark
mark
mark
mark

mark

mark

| DU FUTU P S—

T N S i A SN

IO T U TS S NN T S SR SRR TR R i e

ELSE
END
ENTRY
EQ
FALSE
FOR
FPRC
FUNC
GOTO

OR
PRGM
PROC
RETURN
STATUS

r.r e ™" ’&™— ;o

- -~ — ~— -

60496400 A

step = mark]| STEP L mark
stop = mark | STOP L mark
switch := mark] SWITCH | mark
term = mark] TERM { mark
test ;= mark | TEST | mark
then := mark J THEN L mark
true := mark] TRUE L mark
untii := mark J UNTIL L mark
while ;= mark | WHILE | mark
xdef ;= mark | XDEF | mark
xref := mark | XREF | mark
spbegin := mark | $BEGIN | mark
spend := mark | $END | mark

The action of $BEGIN and $END depends on the presence of option E on the SYMPL
control statement.

SPECIAL IDENTIFIERS

array item name := ident
array name := ident
based array name := ident
common hame := ident
def name := ident
formal array name := ident
formal based name := ident
formal func name := ident
formal item name := ident
formal proc name := ident
func name := ident
item name := ident
label name := ident

60496400 A

proc name

program name

status list name

switch name

DEF DECLARATIONS
DEF SPECIFICATION

def head
defmac head

def dec

defmac dec

opt_space

non quote string

def params

DEF EXPANSION

defmac expansion

def par list

def par

simple def par

special def par

:= ident
:= ident

:= ident

:= ident

:= defA ident

: = def head opt space (V def params V)

:= def head opt space "non quote string" Ve

: = defmac head opt space '"non quote string"

]
_— N\ —
O ©
[

[}

o

(e

(¢}

o

—

B €

¥ represents any keypunch character other than the
quote ().

defmac name V (def parlist)

) ={ def par }

def par list V., V def par

. =f simple def Qarl

1special def par 5

. {any character sequence with balanced bracketing
" that does not contain delimiting characters ; , or =}

{any character sequence with a single quote represented
by two thereof)

60496400 A

EXPRESSIONS

ARITHMETIC EXPRESSIONS

arith exp

infix stuff

arith thing

unary o

binary op

BOOLEAN EXPRESSIONS

Boolean exp

Boolean thing

60496400 A

it

1]

|
|
%
|

:nar 2 ¥} infix stuff

infix stuff v binary op v arith thing

arith thing }

3dna oA \
LULCLlL iAo

array reference

func call

const

(v arithexp v)

Boolean exp v Boolean op v Boolean thing

{ Boolean thing }

(array reference)
item name

relation

{ Boolean const

not v Boolean thing
func call

{ (v Boolean exp v)J

M

An item must be declared type B for use as a Boolean operand.

and
Boolean op = { or }
relation 1= arith exp v relational op v arith exp
&q
gr
relational op = Is
g9
1q
nq
CONSTANTS
Boolean const
char const
const 1= integer const

real const
status const

INTEGER CONSTANTS

dec integer
octal const

hex const
status func

integer const 1=

The status func is a special form of integer constant defined under status declarations.

dec integer l
((4

dec integer digit

octal const

O ' octal stuff '

{ octal stuff } { octal digit }

octal stuff
—_— 0 A

D-10 60496400 A

octal digit 1=

OO WD =O

HEXADECIMAL CONSTANTS

hex const := X ' hex stuff '
hex stuff iz hex stuff } { hex digit }
4 A
digit
A
B
hex digit = C
D
)
F

BOOLEAN CONSTANTS

Boolean const 1= g true %
false
()
CHARACTER CONSTANTS
char const = ' char string '
char string = { char string ¥ }
o

¥ represents any keypunch character.

STATUS CONSTANTS

status const := S ' v status const string v '

status const string := ident

60496400 A D-11

REAL CONSTANTS

real const - integer part . fraction part exponent part (
-] ® (]
integer part i= dec integer
fraction part 1= dec integer
+ v
D = X
exponent part := { E } { - Vv } dec integer
?
ITEMS
ITEM DECLARATION
item dec := item A item descrlist v

item descr
item descr list v , Vv item descr

item descr list $= {

item descr = item name { g tpe % v item preset
U
I
type := R
B
C v (v length v)
S v : v status list name
U = unsigned integer type
I = integer type
R = realtype
B = Boolean type
S = status type
C = character type length is a size subfield in characters or bytes
length := integer const

D-12 60496400 A

ITEM PRESETS

Optionally, the item may be assigned an initial value:

item preset =

STATUS DECLARATIONS
iCATIO

status dec

status name list

status value

STATUS FUNCTION

status func i=

ARRAYS
ARRAY DECLARATIONS

array dec

array descr

array bounds list

1l
I<
|
K IL

const

status A status list name A status name list v ;

status value
status name list v , v status value

{ status const string l
®

status list name ' v status const string v '

bound pair

low bound

60496400 A

%[v array bounds list v] % v % la@ut%-xientry size‘
%) 1%} %)

bound pair
array bounds list v , v bound pair

high bound

low bound Vv v
%]

Rp—

+
- v integer const
1%

D-13

tov

high bound = { - v } integer const
&

layout 1= % g %

entry size := (v integer const v)

ARRAY ITEM DECLARATIONS

begin A array item dec list v end

item part i= array item dec
array item dec list := array item dec
Y o array item dec list v array item dec

array item dec

item A array item descr list v ;

(arvray itam dagnr
. ,s o= J CLi Ly Luviir UTUOVL
array item descr list { array item descr list v , v array item descr }
array item descr := array item name v array item specs v array preset
U)
I { , v size v }
v fhit v
R v IbityY) 9
array item (vep v ¢ \)
B vV < \
Specs c = o
S v : v status list name L
o /
ep = integer const
fbit = integer const
size = integer const
ARRAY PRESETS
array preset 1= 4
= v value set

D-14 60496400 A

set sequence

value set

value list

value

!
|
|

¢
set sequence. value set
set sequence integer const value set

[value list

v vl
[v setsequence v] }

value
integer const v (Vv valuelist v)}
?

value list v v value

} const
]

! st
1+
I<I<

ARRAY REFERENCES: SUBSCRIPTS

array reference

subscriptor

subscript list

subscript

array item name v subscriptor

[v subscript list]

| <

subscript
subscript list v , Vv subscript

arith exp

BASED ARRAYS AND THE P-FUNCTION

based dec

array dec list

based A { array dec }

begin A array dec list v end

array dec list v array dec

{ array dec }

pfunc := P < v basedarray name v >

60496400 A

D-15

FUNCTIONS
FUNCTION CALLS

func name {ggy_mfa_ts }

]
bead func

loc func

p_func
abs func

func call

argments

(v actualparlist v)

f actual par
1 actual par list v , Vv actual par

]

actual par list

BEAD FUNCTION

bead func = \5 E l < V arithexp Vv é, v arithexp Vv l> vV data
t~) { ?
item name
data 1= —
—_— array reference

INTRINSIC LOC FUNCTION

item name \

array reference
roc name

func name

switch name

label name

v subscriptor l
¢ f

arrayv name {

INTRINSIC ABS FUNCTION

abs func := abs v (v arithexp v)

D-16 60496400 A

VALUE ASSIGNMENT

sink
replacement statement := — v = v source v ;
func name (— - =

exchange statement := sink

1<
I
I

v sink v ;

sink

p func
bead func

A

arith exp
Boolean exp 5

item name
array reference
source 1= {

FLOW OF CONTROL
LABEL DECLARATION

label dec label name:

label dec { %ﬂaﬁ_ﬁlﬁ?&t }

s 7

labeled statement

SWITCH DECLARATION

switch dec := switch A switch name v switch specs v ;

switch list

—

switch specs t=

v status list name v switch order 5

switch point
switch list }

switch list v , v switch point
switch point s

order pair l

switch order HES

|
{
.
|

60496400 A D-17

order pair := label name v : v status const string

GOTO STATEMENT

goto statement = goto A { label name vV o
- B A) switchname v [v arithexp v J(~ °
IF STATEMENT
s , . v else part
if statement := if clause Vv statement P
if clause := if v Booleanexp v then
else part := else Vv statement
FOR STATEMENT
for statement := for clause Vv statement
for clause := for A itemname v = Vv loop control v do
{ v while part l
v step part < V until part
loop control := initial value . 1 ¢ 5
_ v while part
4
initial value := arith exp
step part := step Vv arith exp
until part := until v arith exp
while part := while v Boolean exp
TEST STATEMENT
A VAR
test statement := test { ° E’M@E}—

PROCEDURES
PROCEDURE CALL STATEMENT

arguments 1 v
(=
/

*

el<

proc call statement := proc name {
.

o
]

=t
e}

60496400 A

RETURN STATEMENT

return statement := return v

STOP STATEMENT

stop statement = stop Vv 3

SUBPROGRAM DECLARATIONS

dec
subprogram dec := proc cec
EIog < { func dec
proc dec := proc dec clause v dec list v statement
func dec := func dec clause v declist v statement
N\
proc dec clause := proc A proc name {% (v formal par list v); v;

f formal par

, Vv formal par }

formal par list := 1 formal par list v
th
func dec clause := func A func name (v (¥ formaipar list v } %
e
declaration
dec list = dec list v declaration
9

LABELS AND PARAMETERS
FORMAL LABEL DECLARATIONS

I

formal label dec label A label namelist v ;

label name list

label name
label name list v , v label name

60496400 A D-19

\-\,~/

FORMAL PARAMETERS

formal based dec := based dec

formal item dec := item dec

formal array dec := array dec

formal proc dec := fprec A formal proc name v ;

formal func dec := func A formal func name { % type] v o
value par := (V formal item name V)

formal based name

formal item name

formal array name
formal par s =

formal proc name

formal func name

label name

‘ value par ’

ACTUAL PARAMETERS

item name

array name
proc name

func name
actual par := label name

arith exp
Boolean exp
p_func

ENTRIES

entry dec := entry A proc dec clause ‘
o - func dec clause ’

D-20 60496400 A

COMMON

A common hame data dec
common dec = common { g V3 V=

begin v data dec list v end

. data dec
data dec list := { data dec list v data deC}
data dec . { item dec }
Zdba et array dec
EXTERNALS

XREF (EXTERNAL REFERENCE) DECLARATIONS

xref dec

xref A xdec part

xdec part

begin A xdec list v end}

Il

xdec list

Il
b
(oW
[
: (]

item dec

array dec
proc heading

func heading
xdec 1=
formal label dec

switch dec
\ formal switch dec }
based dec

formal label dec

label name list .. Jlabel name
a : label name list V, V label name

label A label name list Vv ;

formal switch dec := switch A switch name list V;

60496400 A D-21

switch name list . — J switch name
; a i : switch name list V, V switch name

proc heading = proc A procname V ;
func heading = func A func namez % type 2 Voo
XDEF (EXTERNAL DEFINITION) DECLARATIONS
xdef dec := xdef A xdec part
PROGRAMS
PROGRAM STRUCTURE
rogram = program head v term
program o subprogram dec -
prgm dec
program head := program head v declaration
program head v statement
prgm dec = prgm A program name ;

COMPOUND STATEMENTS

compound head V end
compound head Vv spend

compound statement := {

begin
L spbegin
compound head T compound head V statement
compound head Vv declaration
CONTROL STATEMENT
control A control word V ;
ntrol statement := — -
St {control A conditional phrase v ;}
conditional phrase := condition word A condition params
condition params := constant
constant V , VvV constant

D-22 60496400 A

ifeqg
ifne
condition word = ifls
iflq
ifgg
ifgr
eject
_ nolist
control word = obilst
)pack
preset
| &
ifeg := mark | IFEQ | mark
ifne := mark | IFNE | mark
ifls := mark | IFLS | mark
iflg := mark | IFLQ | mark
ifgqg := mark | IFGQ | mark
ifgr := mark | IFGR | mark
eject := mark | EJECT | mark
list := mark | LIST | mark
objlst := mark | OBJLST |_ mark
pack := mark | PACK | mark
preset := mark | PRESET | mark
f ._ (mark | FI L mark
= {mark | ENDIF L mark}

The above are not reserved words.

60496400 A D-23

D-24

declaration

statement

array dec
based dec

common dec

def dec

entry dec

func dec

item dec

label dec

proc dec

status dec
switch dec

xdef dec

xref dec

formal array dec
formal based dec
formal func dec
formal item dec
formal label dec
formal proc dec

compound statement \
exchange statement
for statement

goto statement

if statement
labeled statement >
proc call statement
replacement statement
return statement

stop statement

test statement /

60496400 A

OUTPUT FROM COMPILATION E

When the optional list parameters L, R, and X are selected on the SYMPL compiler call statement, the
compiler outputs a normal source program listing with diagnostic messages following the listing, a cross-
reference table, and a storage map which are useful debugging aids. With the X or R option, a common
block list is output also.

Below is a source listing of a SYMPL program (intentionally coded with errors) along with its storage map

and cross-reference table.

SOURCE LISTING

The user can request a printed listing of any source program or source procedure compiled by specifying the
optional list parameter L on the SYMPL compiler call statement. Each line in the listing corresponds to one
line in the source deck. The compiler assigns a line number to each source line in a deck beginning at 0001
which appears on the left-hand side of the source listing (column 1).

Column 2 defines the BEGIN ... END nesting levels, a minus sign in this column indicates the line contains

TR GES R R P iuey L5 DAY RPN Gvege | PR e
code suppressed during conditional compilation.

The diagnostic number is displayed in column 3. When a diagnostic number appears in this column, the
numbering sequence in column 1 is interrupted by a sequence of **** a diagnostic flag.

Column 4 displays the ID or declaration causing the message.
Column 5 displays the source program listing.
After the last source line, the compiler displays a summation of all compiler infringements and displays this

number; in addition the compiler lists each infringement along with its message number (in ascending order)
and appropriate definition.

60496400 A E-1

SORT100 PROCEDURE * SOURCE LISTING * SYMPL 1.0 (072771)

0001. PRGM SORT100 3 = ONE-HUNDRED WORD SYMPL SORT POUTINE =
0002. BASED ARRAY AAr99] °?
0003, ITEM X 3
0004, XDEF PROC SCRTER °*
0005. ARRAY TOBESORTED (991 3
0006, @ @ ITEM T 3
0007, P<AA> = LOC(TOBESORTED) 3
TEIERE 77 SORTER
rurEnsy 16
LY EER 28
agee, @ SORTER P<AA> 3
0009. PROC SCRTER(SORTY ¢
0010. B8 1 BEGIN
0011, BASED ARRAY SORT(93] ¢
0012, ITEM VALUE ¢
0013, ITEM FLAG T =0 3
L2 X ET T 3 1
¥NS¥NNN 105
(XTI L ag
rrxrrEe 16
LYY T 88
001t L3 FOR I=0 STEP 1 UNTIL 98 DO
Exnren 3 1
LS 2L L) 3 1
*ururee 106
EEREER) 91
senaney 16
rxyuvay 89
0015, IF VALUE[TI+1) GR VBLUECI) THEN
0016. B 2 REGIN
¥RBBEEN 3 I
RER2RRY 3 1
sensune 97
BERERREE 16
S¥BNyEY 28
0017. VALUELT+1] == VALUETI)
6018, FLAG = 1 3
0019, E 2 END
0020. IF FLAG EQ 0 THEN
go2s. RETURN 3
go22. FLAG = 0 ¢
0023, GCTO L1
0024, E 1 END
0025. TERM
¥% 19 DIAGNOSTIC MESSAGE(S) .
rerRERE 3 UNDECL ID DELETED
rEEREER 16 CRUD AT STARY OF STMY DELETED
FrIuINN 28 SEMI ACCEPTED AS NULL STMT
rrevry 7 ILL LABEL/FROC ID USF DELETZD
rryrvER 88 YOUR -DO- HAS BEEN FOUND
rrxzeve 89 THE ~THEN=- HAS BEEN FOUND
FERraaN 90 MISSING -DC-
hehhhtid s MISSTING -THEN-
TEIEREE 97 BAD REPL STMT DELETED
rERENER 105 FOR STMTt INDUCTION ID ERR
¥EIxENY 106 -IF- EXPR ERR
PROGRAM LENGTH 0001628 WORDS

Figure E-1. SYMPL Program Source Listing

10/718/71

60496400 A

STORAGE MAP AND CROSS-REFERENCE TABLE

The storage map and cross-reference table is a dictionary of all programmer created declarations appearing in the source
program, with the properties of each declaration and references to them listed by source line number (cross-reference
table only). The storage map and cross-reference table begin on a separate page following the source listing of the pro-
gram and error message dictionary.

STORAGE MAP

1 NAME First ten characters only of declarations are printed.
2 TYPE Defines the name as one of the following types:
ARYITM Array item
COMMON Common block
ITEM Item
FUNC Function
PROC Procedure
LABEL Label
B.ARRY Based array
ARRAY Array
PROGRAM Program
3 M Mode of data representation
B Boolean
C Character
I Integer
P Parallel (arrays only)
S Status (serial if type - array)
8) Unsigned integer
X External
4 LoC Octal address relative to start of routine; if followed by C, LOC is relative to start of common

block. If type = ARYITM, LOC refers to first occurrence of item.

5 FBIT First bit, numbered from O to 59, left to right.
6 NUM Number of bits; if MODE = C, number of bytes.
SORT100 PROCEDUPE * STORAGE MAP * SYMPL 1.0 (072771) 10718771
NAME1C(10) TYPE M LOC FBIT NUM NAMESC(L0) TYPE M LOC FBIT NUM NAMESC(10) TYPE M LOC FBRIT NUM
AR 8.ARRY P 00000C FLAG ITEM T 900146 0 60 L1 LABEL 000152
SORT B.ARRY P 00014E SORTER PROC 10150 SORT100 PROGRM 000157
sys= PROC X 000000 T ARYITM T 000001 0 60 TOBESORTED ARRAY P 000001
VALUE ARYITM T 000000 0 60 X ARYITM T 000000 2 0

Figure E-2. Storage Map Listing

60496400 A E-3

CROSS-REFERENCE TABLE

1 NAME First ten characters only of declarations are printed.
2 TYPE Defines the name as one of the following types:
ARYITM Array item
COMMON Common block
ITEM Item
FUNC Function
PROC Procedure
LABEL Label
B.ARRY Based array
STSCON Status constant
DEFINE DEF
STSLST Status list
PROGRAM Program
ARRAY .Array
3 M Mode of data representation
B Boolean
C Character
I Integer
P Parallel (arrays only)
S Status (serial if type =array)
U Unsigned integer
X External
4 DEF Line number in source listing where declaration is defined; if followed by C, declaration is in
common block.
5 SCOPE Name of outermost procedure within which declaration occurs; if type = STSCON, SCOPE is
the name of the status list of which the item is a member.
6 SET/USED Source listing line numbers of references fo NAME, * indicates use as other than left-hand side
of the replacement statement.
SORT100 PROCEDUPE * CROSS REFFRENCE * SYMPL 1,0 (072771) 10/18/71
® ®@ ® ® ® ®
NAMETC (10) TYPE] DEF SCOPE SET/USE) (USED INDICATED RY *)
AA B.ARRY P 2 SORT100 7 |
FLAG ITEM I 13 SORTER 18 22 20%
[§ LABEL 14 SORTER 23+
TOBESORTED ARRAY P 5 SORT100 7*
VALUE ARYITM I 12 SORTER 17 15+
¥rrws 47500 WORDS WERE USED rrxxn
Figure E-3. Cross-Reference Table
60496400 A

E4

OBJECT TIME OUTPUT F

Output for debugging purposes, both initial testing and maintenance, may be performed through the FTN
library routines. Linkage is the SYMPL library routine SYMIO. The FTN library routines must be initialized

by a FTN main program.

The following declarations are required:

XREF BEGIN PROC PRINT;
PROC LIST;
PROC ENDL; END

Should a conflict in nomenclature arise, these routines can be called PRINTS, LIST$, ENDLS.

PRINT PRINTS

END,ENDLS$

PRINTFL

Example 1:

PRINT (character string);

character string must be a FORTRAN format string; it is used to format
arguments of LIST.

ST (argument);

argument may be an item, expression, subscripted array item, etc. Its format
on file QUTPUT is determined by the next format item in the PRINT string.

ENDL;

This call must be made to process right alignments and to ensure transmission
of the last LIST argument.

PRINTFL (character string, 1fn)

Ifn must represent an existing FET, probably an XREF ARRAY. This file
is used instead of OUTPUT when LIST arguments are transmitted.

XREF BEGIN PROC LIST; PROC PRINT; PROC ENDL; END

PRINT ('(1X,*VALUE OF I = *]3,)));

LIST (I);
ENDL;

60496400 A

F-1

This example is equivalent in FORTRAN to:

PRINT 99,1
99 FORMAT (1X,*VALUE OF I = *I3,))

Example 2:

XREF BEGIN PROC PRINT; PROC LIST; PROC ENDL; END

CNTR = LOC(ADDR);
PRINT((1X,06/4030)');
ITEM I; FOR I=0 STEP 4 UNTIL N DO
BEGIN LIST(CNTR);
ITEM K; FOR K=0 STEP 1 UNTIL 3 DO LIST (DITM K+1);
CNTR=CNTR + 4;
END =[=
ENDL;

This example is equivalent in FORTRAN to:

CNTR = LOC(ADDR)

DO 11=1N-14

PRINT 100,CNTR, (DITM(K+I-2) K=13)
1 CNTR = CNTR+4

100 FORMAT (1X,06/4030)

60496400 A

PROGRAMMING SUGGESTIONS G

COMPILER

Space required for compilation is proportional to the number of symbols in the source program. Five words
of core are dedicated to each symbol in the program, in the form of a symbol table entry.
ts of

irad for nnmnﬂafir\n ic nfnnnrf;cnal tn tha ciza of
vu 10T COMipLaniln 1§ Proporudi 10 Ui §iZ8 Oi

e+

ha nhiasrt nroocram in terms of the amou
Syiv) \IUJUV(- tlLUsLa.l.ll, 111 LVI11EIO UL Ul ailvu.

syntax to be scanned. Although data declarations do not generate code, they use significant amounts of com-
piler time, especially data presets.

Compilation time may be further reduced by judicious use of the compiler options such as object code and
cross reference listings.

DEF declarations can increase readability of SYMPL source programs and facilitate changes to them. However,
DEF declarations and expansions increase compilation time accordingly.

OBJECT CODE

SUBSCRIPTS

Code produced by referencing subscripted variables can be affected by the means of expressing the subscript.
For example, an integer constant can be partially evaluated at compile time so that one instruction is required
to access an array item (given the item is a full word); but a scalar integer variable requires four instructions
to access the item. Thus, a reference tc A [3] requires one instruction for a serial array; but A [I] where
I=3, requires four instructions to retrieve the same item.

ARRAYS

Parallel arrays (default case) are accessed more efficiently than serial arrays, when an array entry exceeds one
word. For arrays with one-word entries, no difference in object code speed or space is apparent. Parallel arrays,
rather than serial, should be used when possible. Fixed arrays are accessed more efficiently than based arrays,
which require a level of indirectness to access an entry. Whenever possible, fixed arrays should be used.

DATA TYPES

If an array item is a full 60-bit word, access does not depend upon its type. For items which are not 60-bit
words, however, type and bit position assignment affect the code required to access them, as follows:

Signed integers are accessed more efficiently than unsigned integers if the item is not exactly 18 bits

long. If the item is 18 bits long, the SXi instruction is used to access both signed and unsigned integers,
and the time required is the same. Signed integer items are accessed more efficiently if they are the

60496400 A G-1

leftmost bits of a word. Unsigned integer items are accessed more efficiently if they are the rightmost bits
of a word. Boolean items are most efficiently accessed by allocating the whole word or the minimum
required bits starting with the leftmost bit.

FOR LOOPS

The break-even point in code generation between hand-coded and FOR loop code is 34 iterations. Of the
following sequences, the second generates fewer instructions and runs faster.

FOR 1=0 STEP UNTIL 2 DO

PWORD [[] = 0; = CODE SEQUENCE 1=
PWORD [0] = 0; = CODE SEQUENCE 2 =
PWORD [1] = 0;

PWORD [2] = 0; = END SEQUENCE 2 =

If four or more items were being set by the above sequence, the loop would have required less code and
would execute in less time.

In general, the less source code in the FOR statement, the faster it will run. Of the following code sequences,
the second is faster; since the loop limit is computed and the value stored only once.

FOR I = o STEP i UNTIL B/C DO

PWORD [[] = K**J; = CODE SEQUENCE 1 =
A = BC; = CODE SEQUENCE 2 =
D = K**J;
FOR I = 0 STEP 1 UNTIL A DO

PWORD [I] = D; = END SEQUENCE 2 =

One exception is that FOR loop execution time can be reduced with more source code as in the following
example where the second sequence would be faster even though more code would be generated.

FOR I=0 STEP 1 UNTIL 89 DO

PWORD (1] = 0; = CODE SEQUENCE 1=
FOR I = 0 STEP 3 UNTIL 89 DO = CODE SEQUENCE 2 =
BEGIN
PWORD [I] = 0;

PWORD ({i+i] = 0;
PWORD [I+2] = 0;
END = END SEQUENCE 2 =

DATA CONVERSION

Integer-to-character conversion is byte-oriented while the character-to-integer conversion is word-oriented. When
an integer item is converted to character mode, the least significant 6-bit byte is left justified and blank filled
in the character field; yet, character-to-integer conversion is performed by right justifying the right end of the
last word of the character item and zero filling it on the left. Character field definitions may cross word bound-

R T Y e mar ok
aiies vut Ciwaiaciei UPCLatiViy liidy UL,

G-2 60496400 A

The conversions may be circumvented by the use of bit bead functions. For example, B <0,60> FLTINGPT
= INTEGER; would cause the integer to be stored in the floating point item without conversion. “B <0,60>

CHARACTER = INTEGER;" also would cause the full word to be stored in CHARACTER, not just the low-
order six bits.

PROC SUBPROGRAMS

Formal parameters should be called by value whenever possible. If a procedure must reference its formal call

by address parameter more than once, a local variable should be declared, set to the value of the formal param-
eter, and subsequently referenced instead of the formal parameter. Actual call by name parameters aré referenced
indirectly in the generated code; this level of indirectness can be overcome by evaluating the parameter once
and making it local to the PROC (storing the parameter’s value in a local variable).

FUNC SUBPROGRAMS

The statements under the heading PROC subprograms are true for FUNC subprograms also. In addition, func-
tions can save two instructions in certain situations. For example: a routine is needed to convert from binary
integers to display code, with the result to be stored in one of three arrays, depending upon the section of
code where the call originates. If a function is used, as in "ARRAYWORD[I]=FUNCTION{INT];" rather than
a procedure, as in "PROCED (INT); ARRAYWORD|I]=INTT;", two SAi k instructions are saved per call.
The saving is realized, as functions return their result in register X6 rather than in a core location.

CODING HINTS

Based array references are candidates for scratch variable storage also, if referenced more than once in a
sequence of source code, since based array references are indirect.

When storing into many items of the same data structure (array) clustered together, those that refer to the
same word of storage should be described in the same order in which they occur.

60496400 A G-3

INDEX

ABS function 4-i0
Arithmetic
conversion rules 4-7
operators 2-3
operands 4-7
Array 3-6, D-13
based 3-20
declaration 3-6
item declaration 3-7
reference subscripts 3-19
restrictions 3-8
storage and addressing 3-8
use of value presets in 3-16

Based arrays 3-20
Bead function 4-10
Blank spaces and comments D-4
Boolean
constants 3-1
expressions 4-4, 5-6
operators 24
operators for logical expressions 4-5

Calling sequence

compiler call statement 8-1

SYMPL 7-17
Character

constants 3-1

conversion from integer to character 4-9

conversion of operands 4-9
Character set

metalanguage D-3

standard A-1

SYMPL 2-1
Comments

blank spaces and D-4

insertion 2-1
COMMON declaration 7-9, D-21
Communication, interprogram 7-9
Compound statements 5-1
Conditional compilation 6-2
Constants

boolean 3-1

60496400 A

characier 3-1

hexadecimal 3-2

integer 3-1

octal 3-2

real 3-3

status 3-2
Control

flow of D-17

statement 6-1

SYMPL control statement 8-1

transfer of with program sections 5-3

use of CONTROL statement 6-2
Conversion rules 4-7

Debug 6-3
Decimal integer 3-1
Decks, sample 8-4
Declaration
common 7-9
DEF 64
entry 7-8
external definition 7-12
external reference 7-11
formal 7-5
function 7-2
item 3-3
procedure 7-1
scope of 7-7
status list 34
DEF declaration 6-4, D-8
expansion of parameterized D-8
parameterized 6-5
unparameterized 6-4
Delimiters 2-1
Diagnostics B-1

Elements and basic notation D-3
Entries D-20
ENTRY declaration 7-8
Exchange statement 5-2
Expressions D-9

arithmetic 4-1

boolean 4-4

Index-1

computation 4-1

logical 4-5

relational 4-4
Externals D-21

FOR
statement 5-9
use of with TEST 5-11
Formal declaration 7-5
Function D-16
ABS 4-10
bead 4-10
declaration 7-2
intrinsic 3-20, 4-10
LOC 4-10
P 3-20
status 3-5
use 7-3
Function calls 4-10

GOTO
statement 5-6
use of 5-8

Hexadecimal constant 3-2
Hints, programming G-1

Identifiers
description 2-2, D-5
special D-7

IF
statement 5-6
use as condition words 6-2
use of 5-8

Integer
constants 3-1
conversion from integer to character 4-9
conversion from integer to real 4-9
conversion from integer to unsigned integer 4-9
conversion from real to integer 4-9
operands 4-9

Intrinsic functions 3-20, 4-10

Item 3-3, D-12
array item declaration 3-7

Labels
declaration to name statements 5-3
formal declarations and procedures 7-4
and parameters D-19

Index-2

LOC function 4-12
Logical expressions 4-5
Loops

using FOR 5-9

using GOTO and IF 5-8

Metalanguage D-1

Notation D-4

Object time output F-1
Octal constants 3-2
Operands, arithmetic 4-7

Operators
arithmetic 2-3
boolean 24

numeric and arithmetic 4-1
relational 2-3

QOutput
from compilations E-~1
object time F-1

Parameters
actual 7-6
and labels D-19
formal 7-4
Presets
in array declarations 3-16
to assign a value 3-3
Procedure D-18
call statement $5-3
declaration 7-1
and functions 7-3
Programs D-22
statement 7-8
P function 3-20

Real
constant 3-3
conversion from integer to real 4-9
conversion from real to integer 4-9
Relational
expressions 4-4
operators 2-3
Replacement statement 5-1

Reserved
symbols D-7
words D-5

RETURN statement 5-13

60496400 A

Simple statements 5-1
Statements

compiler call 8-1
compound 5-1
CONTROL 6-1
FOR 5-9

GOTO 5-6
PRGM 7-8

PROC 7-1
procedure call 5-13
RETURN 5-13
simple 5-1

STOP 5-13
TERM 6-3

TEST 5-11

value assignment 5-1

Status

constant 3-5
declaration 3-4, D-13
function 3-5

switch 5-5

STOP statement 5-13
Storage for array 3-8

60496400 A

Subprogram
declarations D-19
definition 7-7

Subscripts, array 3-16
Switches
ordinary 54
programmed 5-4
status 5-5

TERM statement 6-3
TEST statement 5-11

Value assignment 5-1

XDEF declaration 7-13

XREF declaration 7-11

$BEGIN statement 6-3
$END statement 6-3

Index-3

CUT ON THIS LINE

COMMENT SHEET

TITLE: SYMPL Reference Manual Version 1

PUBLICATION NO. 60496400 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

‘Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME: -

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

COAlL N AR NNTTEN | INFQ ANND QTAPI F

FOLD FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

CUT ON THI§ LINE

]
BUSINESS REPLY MAIL ——
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A. IEE——
EE—
E—
POSTAGE WILL BE PAID BY ——
CONTROL DATA CORPORATION aa—
Publications and Graphics Division ——
215 Moffett Park Drive EE—
Sunnyvale, California 94086 ——
S
——
E—
——

- o . Y T T T T T T T T TFowp

STAPLE STAPLE

' SYMPL Version 1 Reference Manual

1 - Excellent 2 - Good

Writing Quality

Mmoo w»

moowp

Technical accuracy
Completeness)
Audience defined properly

" Readability

Understandability
Organization

.- Examples

Quantity
Placement
Applicability
Quality
Instructiveness

Format

moO®»

Type size

Page density

Art work

Legibility
Printing/Reproduction

Miscellaneous

A.
B.

Index
Glossary

Please provide a yes or no answer
regarding manuals in generai:

A.

| prefer that a manual on a software
product be as comprehensive as
possible; physical size is of little
importance.

I prefer that information on a
software product be covered in
several small manuals, each
covering a certain aspect of the
product. Smaller manuals with
limited subject matter are easier
to work with,

| am interested primarily in
reference manuals designed for
ease of locating specific
information.

General Comments

3 - Fair

ERIIRRIARI

s part oif;:Comrol Data's continuing quality improvement program, we invite you to complete this questionnaire so
~that you may have a more direct influence on the manuals you use. ‘

lease rate this manual for each general and individual category on a scale of 1 througlr; 5 as follows:

VL

4 - Poor 5 - Unacceptable

“F," Have you ever worked on v

D. | am interested primarily in
user guides designed to teach
the user about a product or
certain capabilities of a product.

We recognize that we have a wide
variety of users. Please identify your:
primary area of interest or activity:

A. Student

B Applications programmer’

C. Systems programmer

D. How many years programming
E

experience do you have?
" What languages
Algol
Basic
Cobol
Compass
Fortran
PL/I

MNate o
el

NOOAWN -

s

non-CDC equipment?

1. If yes, approximately
what percent of your
experience is on non-
CDC equipment?

2. How do you rate CDC
manuais against other
similar manuals using
the 1-b ratings.
(Example: XYZ Corp. 2
means XYZ manuals are good
as compared to CDC manuals.)
Burroughs
DEC
Hewlett-Packard
Honeywell
IBM
NCR
Univac
Other

111

T ——

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY !F MAILED IN US.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
FPublications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

T

|
|
|
|
l
|
|
|
|
|
|
|
|
|
|

FOLD

STAPLE STAPLE

CUT ON THIS LINE

@ CONTROL DATA
CORPORATION

60496400

SYMPL VERSION 1
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1

NOS/BE 1

SCOPE 2

REVISION RECORD

REVISION DESCRIPTION
A Original printing.
(11-1-75)
B This revision documents SYMPL 1.2, PSR level 439. New features include CONTROL statement
(12-06-76) additions for trace and optimization. See list of effective pages.
C This revision documents SYMPL 1.2, PSR level 446. It reflects SYMPL support of the CYBER 170
(03-01-77) Model 176. See list of effective pages.
D This revision documents SYMPL 1.3. New features include CONTROL statement
(03-31-78) addition for weak externals; and points not tested SYMPL control statement option. Appendix F

contains a glossary.

Publication No.
60496400

REVISION LETTERS |, O, Q AND X ARE NOT USED

©1975, 1976, 1977, 1978
Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

PO rarsy ~—— 1
or use Comment Sheet

back of this manual

heet in the

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-

tion rather than content has changed.

.

Page

Revision

Cover

Title Page

i

iiifiv

v/vi

vii, viii

1-1, 1-2

1-3

14, 1-5

1-6 thru 1-8
19

1-10

2-1

2-2, 2-3

24 thru 2-6
2-7

2-8, 29
2-10 thru 2-12
31, 32

3-3

34 thru 3-7
41

4-2 thru 44
4.5

4-6 thru 4-8
49

5-1, 5-2

5-3

54

5-5

5-6, 5-7
5-8, 59

6-1

6-2, 6-3

64

6-5, 6-6

A-1

POODOQODOmDOWDOWOTWoDRoDTODOWRORDWOWOOUU|

60496400 D

Index-1 thru -3

Page Revision

A2 D
B-1 D
B-2, B3 B
B4 D
C1 B
C-2, C3 D
Cc4 B
D-1 thru D-3 A
D4 B
D-5 thru D-7 A
D-8 B
D-9 thru D-15 A
D-16 B
D-17, D-18 A
D-19, D-20 B
D-21 A
D-22 B
D-23 thru D-25 D
E-1, E2 B
F-1, F-2 D

D

D

Comment Sheet
Mailer
Back Cover

Page

Revision

iiifive

—c—

[

k

-

PREFACE

SYMPL version 1.3, which is a systems programming

language, operates under control of the-following Series Computer Systems

operating systems:

This reference manual presents the semantics and
rules for writing programs in the SYMPL language. It
includes sufficient information to prepare, compile, and

SCOPE 2 for the CONTROL DATA® CYBER
170 Model 176, CYBER 70 Model 76, and

CYBER 70 Models 71, 72, 73, 74, and 6000

7600 Computer Systems execute such programs. An appendix presents the
syntax of the language in metalinguistic form.

NOS/BE 1 for the cpc® CYBER 170 Series,
CYBER 70 Models 71, 72, 73, 74 and 6000

Series Computer Systems under which SYMPL will be used.

NOS 1 for the CONTROL DATA CYBER
170 Models 171, 172, 173, 174, 175,

Publication

NOS 1 Operating System Reference Manual, Volume 1
NOS 1 Operating System Reference Manual, Volume 2
NOS/BE 1 Operating System Reference Manual

SCOPE 2 Reference Manual

Other publications of interest:

Publication Number

60435300

60445300

60493800

60342600

CDC manuals can be ordered from Control Data Literature and Distribution Services,

8001 East Bloomington Freeway, Minneapolis, MN 55420

This product is intended for use only as de-
scribed in this document. Control Data cannot
be responsible for the proper functioning of
undescribed features or parameters.

60496400 D

The reader of this manual is assumed to have knowl-
edge of the operating system and computer system

vivie

CONTENTS

1 LANGUAGE ELEMENTS
SYMPL Character Set
Comments
Identifiers
Constants
Boolean Constants
Character Constants
Integer Constants
Decimal Integer Constant
Hexadecimal Constant
Octal Constant
Real Constants
Status Functions and Constants
Operators
Expressions
Arithmetic Expressions
Numeric Arithmetic Expressions
Masking Expressions
Boolean Expressions
Relational Expressions
Logical Expressions

2 DATA DECLARATIONS
ITEM Declaration
STATUS Declaration
SWITCH Declaration

Ordinary Switch

tatus Switch

ARRAY Declaration

Array References

Serial and Parallel Arrays

Presetting Arrays

Array Storage and Addressing
Based Array Declaration

3 EXECUTABLE STATEMENTS
Labels
Replacement Statement
Exchange Statement
FOR Statement
TEST Statement Within a FOR Statement
GOTO Statement
IF Statement
RETURN Statement
STOP Statement
TERM Statement

60496400 D

1-1
1-2
1-2
1-5

1-5
1-5

1-5
1-5
1-6
1-6
1-6
1-6
1-8

1-9
1-9
19
1-10

2-1
2-1

2-3
23
2-3
24
2-6
2-7
2-8
2-10
2-12

3-1
31
32
33

34
3-6

37
37
3-7

4 PROGRAM STRUCTURE
Scope of Variables
Main Program
Procedures
Formal Parameters
Actual Parameters
Functions
Programmer-Supplied Functions
Intrinsic Functions
ABS Function
B Function
C Function
LOC Function
P Function
Alternative Entry Points
Interprogram Communication
COMMON Declaration
XDEF Declaration

XREF Declaration

5 COMPILER DIRECTIVES
$BEGIN/$END Debugging Facility
DEF Facility

DEF Name References

'CONTROL Statement

Listing Control

Conditional Compilation

FOR Loop Conirol

Core Residence Selection

Attributes of Variables Specification
Overlapped Variables
Reactive Arrays

Weak Externals

Traceback Facility

6 COMPILER CALL AND OUTPUT
LISTINGS
Compiler Call
A Abort Job After Errors
B Binary Code File
C Check Switch Range
D Pack Switches
E Compile $BEGIN/SEND Statements
F FORTRAN Calling Sequence
H List All Source Statements
I Source Input File
K Points-Not-Tested

4-1
4-1
42
42

43
44
44
4-5

4-6
4-6

4.7
4-7
4-8
4-8
4-8
49

5-1
5-1
5-1
5-3
54
54
5-4
5-6
5-6
5-7
5-7
5-8
5-8
59

6-1
6-1

6-1
6-1
6-1
6-2

6-2

6-2
6-2

vii

[@N--Ah-4

1-1
1-2
1-3

viii

L Listing File

N Cross Reference Unreferenced Items
P Preset Common

S Execution Library

T Syntax Check

W Single Statement Code Generation

STANDARD CHARACTER SETS
DIAGNOSTICS
PROGRAMMING SUGGESTIONS

Examples of Arithmetic Expressions
Evaluation

Differences in Serial and Parallel
Allocation

Serial Array Allocation

Parallel Array Allocations

Serial and Parallel Arrays with
Multiword Items

Structure of Array RHO

SYMPL Marks

SYMPL Reserved Words and Descriptors
SYMPL Operators

Truth Table for Logical Operators

6-2 X List Storage Map
6-2 Y Suppress Diagnostic 136
6-2 Output Listing
6-3 Storage Map
6-3 Cross-Reference Map
6-3
APPENDIXES
A-1 D METALANGUAGE
B-1 E EXECUTION-TIME OUTPUT
C-1 F GLOSSARY
INDEX
FIGURES
3-1 Generalized Fastloop and Slowloop
19 Flowcharts
3-2 Slowloop and Fastloop Expansion
2-5 Compared
27 4-1 Scope of Declarations
2-7 6-1 Sample Source Program
6-2 Storage Map
29 6-3 Cross Reference Map
2-12
TABLES
1-2 1-5 Truth Table for
1-3 Masking Operators
1-7 2-1 Array Item Descriptor Limits
1-7 B-1 Compiler Error Messages

6-3
6-3
6-3
64
6-5

D-1
E-1
F-1

34

35
4-1
64
6-5
6-6

1-7
2-6
B-1

60496400D

CONSTANTS

SYMPL has five types of constants. Each is a se-
quence of characters which defines its own value.
The constant types are: Boolean, character, integer,
real, and status.

BOOLEAN CONSTANTS

Boolean constants represent the two elements of
Boolean algebra. They are specified by the reserved
words TRUE and FALSE.

Character constants represent alphanumeric data. A
character constant has the format:

“string”

string String of 1 through 240 characters of
the computer character set shown in
appendix A. If the character ” is to
appear in the string, it must be speci-
fied by two consecutive ” marks.

For example:
“TAPEO1” “ERROR %%”

“QUOTES” “A” [T

INTEGER CONSTANTS

Integer constants represent numeric values. The three
types of integer constants are: decimal, octal, and
hexadecimal.

During execution, the maximum allowable value for
an integer constant depends on the use of the con-
stant. The value of an integer to be converted to a
real value and the value of an integer.operand for, -
and the result of, integer multiplication and division
must be able to be expressed in 47 bits. High-order
bits are lost when a larger value exists, but no diag-
nostic informs the programmer of such a condition.

Each of the types of integer constants is specified in
a different way. Also, each appears in storage in a
format appropriate to its type, as described with
ITEM declarations for data types.

60496400 B

Decimal Integer Constant

A decimal constant is a string of decimal digits 0
through 9 with an optional preceding + or - sign.
The string can contain 1 through 18 digits; it cannot
contain blanks. The absolute value for a decimal
integer must be able to be expressed in 59 bits.

For example:

+15 -1 4096

Hexadecimal Constant

A hexadecimal constant represents 4 bits in storage
for each hexadecimal digit in the constant. The
absolute value for a hexadecimal constant must be
able to be expressed in 59 bits. If 60 significant
bits are written, the leftmost bit is used as a sign in
two’s complement; and if the constant is stored in a
signed integer format of n bits, the nth bit from
the right is used as the sign bit.

A hexadecimal constant has the format:
X“string”
string String of 1 through 15 hexadecimal
digits O through 9 and A through F.
Embedded blanks are ignored.

For example:

X“7FFF” X“9”

Octal Constant

An octal constant represents 3 bits in storage for
each octal digit in the constant. If 60 significant bits
are written, the leftmost bit is used as a sign in two’s
complement; and if the constant is stored in a signed
integer format of n bits, the nth bit from the right
is used as the sign bit.

An octal constant has the format:
O%“string”
string String of 1 through 20 octal digits O

through 7. Embedded blanks are
ignored.

For example:

0“777” 0“33”

REAL CONSTANTS

Real constants represent numeric values in standard
single-precision normalized floating point format. A
real constant is a string of decimal digits that includes
a ‘decimal point and can include a leading sign. Op-
tionally, it can include an exponent representing
multiplication by a power of 10. The exponent is
specified as either of the semantically equivalent
letters D or E followed by an optional plus or minus
sign and a decimal integer. A real constant cannot
be represented by a string containing an embedded
blank.

For example:

3.14E2 -24. 37.E-3

The magnitude limits of a real constant are approxi-
mately 10293 15 107322 with up to 15 digits of
accuracy. A diagnostic message is given when a
number falls outside of the hardware limits.

STATUS FUNCTIONS AND
CONSTANTS

Status functions and constants represent small integer
values the compiler has associated with the identifiers
in a status list. They can be used to preset scalar
and array items and can be used in expressions.

Both status constants and status functions require a
preceding STATUS declaration to define a status list
and identifiers associated with the status list, as de-
scribed in section 2.

A status function has the format:
stlist*“‘stvalue”

Use of a status function accesses the integer associated
with stvalue in status list stlist.

A status constant is a shorthand method of writing
a status function. The format of a status constant
is: ‘

S*“stvalue”
Since a status constant does not indicate which status
list it belongs to, it must be used only in a context

where the status constant is directly attributable to a
particular status list. Such contexts are:

Presetting a scalar or array item of type S. -

Joining a status variable by an operator such as:

OPCODE=S“NOP”; IF OPCODE NE S“NOP” . ..

OPERATORS

Operators are used in arithmetic expressions and
Boolean expressions. The operators are of type arith-
metic, relational, and logical.

Arithmetic operators are of two types:

Numeric operators perform arithmetic operations
to yield a numeric result.

Masking operators perform bit-bit-bit operations
to yield a numeric result.

Relational operators work with arithmetic operands
to produce a Boolean result.

Logical operators work with Boolean values and yield
a Boolean result.

Table 1-3 shows the SYMPL symbols (reserved word)
and their meanings for the different types of opera-
tors. Tables 14 and 1-5 show truth tables for the
logical and masking operators.

EXPRESSIONS

An expression is a rule for computing a value. During
evaluation of an expression the values of the operands
in the expression are combined according to the
langnage rules to form a single value.

60496400 D

Each of the following is an expression:

Constant

Scalar

Subscripted array item

Function reference, except the P function

TABLE 1-3. SYMPL OPERATORS

TABLE 14. TRUTH TABLE
FOR LOGICAL OPERATORS

bl False False True True

b2 False True False True
Logical

NOT bl T T F F

bl AND b2 F F F T

bl OR b2 F T T T

TABLE 1-5. TRUTH TABLE
FOR MASKING OPERATORS

. Symbol Meaning
Numeric Operators
+ Addition; unary plus.
- Subtraction; unary minus.
* Multiplication.
/ Division.
*x Exponentiation.
Masking Operators
LNO Logical NOT (bit-by-bit NOT).
" LAN Logical AND (bit-by-bit AND).
LOR Logical.OR (bit-by-bit OR).
LXR Logical exclusive OR.
LIM Logical imply.
LQv Logical equivalent.
Reiational Operators

EQ Is equal to.

GR Is greater than.

GQ Is greater than or equal to.
LQ Is less than or equal to.

LS Is less than.

NQ Is not equal to.

Logical Operators
NOT Negation.
AND Conjunction.
OR Union.
60496400 D

a 0 0 1 1
0 1 0 1
Masking

INO a 1 1 0 0
alLLAN b 0 0 0 1
aLOR Db 0 1 1 1
aLXR b 0 1 1 0
alLIM b 1 1 0 1
alLQV b 1 0 0 1

Further, any of the above entities combined with a
unary operator or binary operator also produces an
expression.)

The two types of expressions are:

Arithmetic expressions that yield numeric values.
Boolean expressions that yield Boolean values of
TRUE or FALSE.

Boolean operands and Boolean expressions differ in
nature from arithmetic operands and expressions; they
cannot be involved with numeric arithmetic expres-
sions. No numeric arithmetic operator applies to any
Boolean operand and vice versa.

Evaluation of an expression begins with evaluation of
operators with higher precedence and continues with
evaluation of operators with lower precedence; other-
wise, evaluation proceeds left to right. A different
order of evaluation can be specified by the programmer
through the use of parentheses: expressions within
parentheses are evaluated before the result is combined
with other operands.

ARITHMETIC EXPR
Arithmetic expressions yield a numeric value. The
two types of arithmetic expressions are:

Numeric arithmetic expressions that involve oper-
ands of any type except Boolean. Operands
are treated as a single value in these expressions.

Logical masking arithmetic expressions that
involve operands of any type except Boolean,

* Operands are treated on a bit-by-bit level in
these expressions.

For both types of expressions operators have implicit
ranking, with evaluation of the expression preceeding
from operators with higher precedence to operators
with lower precedence.

Arithmetic operators are as follows. They are listed
in order of highest to lowest precedence:

) Parentheses, beginning with innermost
pair

b Exponentiation

* / Multiplication and division, from left
to right

+ - Unary plus and minus

+ - Addition and subtraction, from left to
right

LNO Logical NOT (complement)
LAN Logical AND

LOR Logical inclusive OR

LXR Logical exclusive OR

LIM Logical imply

LQV Logical equivalence

SYMPL has no implicit multiplication in which alge-
braic multiplication can be indicated by X(Y) or

(XXY).

Numeric Arithmetic Expressions

A numeric arithmetic expression contains only numeric
operands and numeric arithmetic operators. The
numeric operators are: ** * / + and -. The
numeric operands include constants, scalars, sub-
scripted array items, and function references; the type
of any numeric operand must not be Boolean.

When operands of differeni Lypes are used in a single
expression, the compiler converts the type of one
operand such that the common type of both operands
is the higher type. The four operand types that exist
for conversion purposes are as follows, listed in order
from highest to lowest:

Real
Signed integer
Unsigned integer

Character.

For example, given integer item I and real item R,
the expression (I + R) is evaluated in floating point
arithmetic after the value of I is converted to type
real. Similarly, the expression ((I + 2) * R) is com-
puted by:

Adding I and 2 in integer mode
Converting the result to floating point format

Multiplying the result by R in floating point
format.

Character operands are lowest in the conversion
hierarchy. Conversion of type character to type
integer is affected by the number of characters de-
clared in the character operand. (The length of a
scalar or array item is specified in its declaration;
the length of a character constant is the number of
characters in the string; the length of a C function is
the number of characters indicated in the function.)
If bit 59 of a 10 character operand is set, the con-
verted integer is a negative value. If the operand
has more than 10 characters, only the first 10
characters are used in an expression evaluation. For
operands less than 10 characters, the characters are
shifted right to normal integer position and zero
filled.

Character-to-real conversion occurs by conversion to
integer followed by conversion of the integer to a
floating point format.

Conversion from type integer to type real occurs by

floating the integer, as provided by hardware instruc-
tions. The resulting real value is expressed in single

precision format.

60496400 D

Preset VAL to the unsigned integer value 2:

STATUS WORDS BEGIN, END, TERM;
ITEM VAL S:WORDS=S"TERM";

Set X to 3:

STATUS COLOR RED, OR, YEL, BLUE;
X=COLOR"BLUE";

Test LETTER for the display code value

1
equivalent to Q:

STATUS ALPHA AB, ... X)Y,Z;
IF LETTER EQ S"Q" THEN. . .

SWITCH DECLARATION

A SWITCH declaration defines a list of label names
that the compiler is to associate with small unsigned
integer values. The purpose of the declaration is to
allow mnemonic references to label names in a GOTO
statement.

Two types of switches, and two SWITCH declaration
formats, exist. The first is a straightforward list of
label names; the second combines STATUS capa-
bilities into the SWITCH declaration.

When a switch is referenced in a GOTO statement,
the value of the switch subscript expression must be
within the range of defined switches. If the program
is compiled with the C parameter (range checking) on
the compiler call, an execution-time check is made to
determine whether the value is within the range of
valid values. When range checking is selected, any
value out of range produces a diagnostic and program

abort. If range checking is not selected, any reference
to an out of range switch value produces an undefined

result.

ORDINARY SWITCH

In the simpler form of a switch, the compiler assigns
a value to each label named. The first label in the

60496400 C

list is assigned a value O, the second label is assigned
the value 1, and so forth.

The format of a SWITCH declaration specifying only
label names is:

SWITCH swname label, label, . . . ;

swname Name by which switch is known.
Identifier of 1 through 12 let-
ters, digits, or § that does not
begin with a digit and does not
duplicate a reserved word.

label Label name to be associated with
swname. If the switch is never
accessed by a particular value, a
null parameter (two consecutive
commas) can appear in the list
for that value.

An example of the declaration and use of an ordinary
switch AAA that transfers control to label LAB3 when
the value of I is 2 is:

SWITCH AAA LABI, LAB2, LAB3;
GOTO AAA[I];

STATUS SWITCH

A status switch references a previously declared
STATUS declaration. The SWITCH declaration
associates the switch name with a status list; each
label name in the switch list is then paired with one
of the identifiers from the status list as specified by
the SWITCH declaration parameters.

The format of a SWITCH declaration specifying a
status list is:

SWITCH swname:stlist label:stvalue, label:
stvalue, . . . ;

swname Name by which switch is
known. Identifier of 1 through
12 letters, digits, or $ that does
not begin with a digit and
does not duplicate a reserved
word.

2-3

stlist Name by which status list is The format of an ARRAY declaration header is:
known, as declared by a , ,
previous STATUS declaration. ARRAY name [low:up, low:up, . . .]
alloc (esize),

label Label name to receive the
same value as the status name Identifier specifying the name
value following the colon. of the array. It can be omit-
ted unless the ARRAY decla-
stvalue Status value from list stlist to ration appears in a BASED
be associated with the preced- ARRAY, XDEF, or XREF
ing label name. declaration.
The status values can appear in a switch list in an low Lower bound of a dimension of

order other than that of their status list. Also, all
of the status values need not be ass_oc:lated‘ with a teger with modulo 218' Can
label. The same label can be associated with more be siened positive or nesative
than one status value. A status value, however, can ¢ signed po it ;

only appear once in a switch list. ' If low and its following colon
are omitted, O is assumed.

the array, expressed as an in-

An example of a declaration of a status switch

WHICHONE and its use to transfer control to up Upper bound of a dimension
LABZ when the value of the GOTO statement of the array, expressed as an
argument is 3 is: integer with a modulo 218
Can be signed positive or nega-
STATUS COLOR RED, ORG, YEL, GRN; tive. Must be equal or greater
SWITCH WHICHONE:COLOR LABXYEL, than the preceding low with
LABZ:GRN; which it is paired.
. alloc Allocation of the entries in the
GOTO WHICHONE[COLOR"GRN"]; array in storage.
P Parallel allocation in which
ARRAY DECLARATION the first words of each
entry are allocated con-
An ARRAY declaration defines an arrangement of tiguously, followed by the
item-like elements. An array can be viewed as a second words of each
rectangular assortment of entries, each composed of entry, and so forth.
one particular occurrence of each item comprising
the entry. The number of entries must be less S Serial allocation in which
than 65535. all the words of one entry

are allocated contiguously.
In storage an array entry occupies an integral num-
ber of whole words. Items within the entry can be If alloc is omitted, P is assumed.
as small as one bit or as large as 24 words of char-
acter data; only type character items can cross the
boundary of a word in the array, however.

esize Entry size. Number of words
in an array entry, expressed
as an unsigned integer. Esize
must be less than 2048 words.
If esize and its enclosing
parentheses are omitted, 1 is

An array is declared by an ARRAY declaration
header followed by an ITEM declaration. If no
items exist in the entry, a null declaration (blank

followed by a semicolon) should follow the ARRAY assumed. A

declaration. If more than one item (field) exists in An array can have up to seven dimensions. Each
the entry, the ITEM declaration should be a com- low:up pair in the ARRAY declaration defines a
pound statement. dimension of the array. (Dimensions specify the

coordinates that identify an eiement of the array.)
If the bounds list is omitted, [0:0] is assumed.

[3S]

-4 60496400 D

Differences between serial and parallel allocation are name Identifier specifying the name
in figure 2-1. In this figure, array A has one dimen- ' of the entry item, expressed
sion, a three word entry that occurs five times. as 1 through 12 letters, digits,
CHAR[1] is the reference that accesses the second or $ that does not begin with
occurrence of item CHAR defined to occupy word 1 a digit and does not duplicate
of the entry. A full declaration for this array might the name of a reserved word.
be: : Must be unique within procedure.
type Type of array item:
ARRAY A[0:4] S(3); B Boolean
BEGIN C Character
ITEM HDR 1(0,0,60); I Signed integer;
. ITEM CHAR C(1,0,10); default
ITEM TRFR C(2,0,20); U Unsigned integer
END R Real
S:stlist Status associated
Paralle]l allocation offers execution advantages and with list stlist
should be used when possible. ep Entry position. Word number in
which the high-order bit of the
The format of the ITEM declaration of an array is item occurs, start?ng from 0; ex-
as follows. If more than one array item is being pressed as an unsigned integer
declared, all declarations should appear between constant.
BEGIN and END. The declaration is similar, but not fbit Bit position at which item begins,
identical, to the ITEM declaration for scalars. starting on the left and counting
from O through 59; expressed as
ITEM name type(ep,fbit,size)=[preset], an unsigned integer constant.
name type(ep,fbit,size)=[preset], . . . ; For a character item, fbit must
be divisible by six.
ARRAY A[0:4] S(3); Occurrences of ARRAY A[0:4] P(3);
ITEM CHAR C(1,0,10)
‘ word 0 CHAR[0] Would Be Here (] entry O
entry 1 word 1 jee entry 1
word 2 word 0 of<] entry 2
word 0 CHAR[1] entry 3
entry 1 word 1 CHAR[0] entry 4
CHAR[1] |
CHAR[4]
. f entry O
word 0 entry 1
CHAR[4
entry 4 word 1 | [4] word 2 of <| entry 2
word 2 entry 3
entry 4

Figure 2-1. Differences in Serial and Parallel Allocation

60496400 D

2-5

cizo
S1Z¢

Tinmm 1a o

Item length, expressed as an
unsigned integer constant ap-
propriate to the type, as shown
in table 2-1. Only C type
data can cross word boundaries.

R type data must have a size

of 60.

the entire field descripior {ep,fbitsize} is omiiied,
ep and fbit default to O and size defaulis as shown
in table 2-1. One parameter within the parentheses
is assumed to be ep, with fbit=0 and size as in the
table; two parameters are assumed to be ep and fbit.

ARRAY REFERENCES

A particular instance of an array item is known as an
element. To reference a particular element, a sub-

preset For a single occurrence array script enclosed in brackets is appended to the array
entry item, value to which item name. For instance:
item is to be initialized at
load time, expressed as a ARRAY REF[0:99];
constant. ITEM REFITEM;
For a multiple occurrence To reference the 40th element, which in this
array entry item, a set of example is the 40th word, the reference is:
values arranged in a list in the
same order as the allocation REFITEM[39]
order of different instances
of the items in storage. The subscript for the array item must be an arithmetic
expression. If the type of the arithmetic expression
Any constant specified is set is other than integer, the result of the expression will
in the item, aligned appro- be converted to integer mode of moduio 2°°.
priately in the field, without
regard to other fields in the If the array being referenced has more than one
word. dimension, the subscript must have as many arithmetic
TABLE 2-1. ARRAY ITEM DESCRIPTOR LIMITS
Type fbit Alignment Maximum Length Default Length May Cross Words

I bit 60 bits 60 no

U bit 60 bits 60 no

R bit 0 60 bits 60 no

B bit 60 bits 1 no

C byte 240 bytes 1 yes

S bit 60 bits 60 no

2-6

Table 2-1.

Array Item Descriptor Limits

60496400 D

NENT ——

Entry 1

Entry 3

A. Serial Array Structure

NENT —

A1[0]

B1[0] c1[o]

D1[0] (Ist half)

D1[0] (2nd half)

Entry O

E1[0]

Al[l]~

BI[1] | ci[1]

DI[1} (Ist half)

Entry 1

DI[1] (2nd half)

El[1]

Al[2]

B1[2] [Ccl1[2]

™t M1

D1{2] (st haif)

D1[2] (2nd half)

Entry 2

EI[2]

Al[3]

BI[3] | C1[3]

D1[3] (Ist half)

Entry 3

D1[3] (2nd half)

E1[3]

A1[0]

B1[0] C1[0]

Al[1]

B1[1] C1[1]

Al2]

B1[2] C1[2]

Al1[3]

BI[3] C1[3]

D1[0] (Ist half)

DI[1] (Ist half)

D1[2] (Ist half)

D1[3] (1st half)

D1[0] (2nd half)

DI[1] (2nd half)

D1[2] (2nd half)

D1[3] (2nd half)

EL[0]

El[1]

El[2]

L

El1[3]

Entry O

Entry 2

60496400 B

Figure 2-4. Serial and Parallel Arrays with Multiword Items

[\

ARRAY TENWORD [0:4] S(2);
BEGIN ITEM A 1(0,0,30)=[4, ,3, ,6];
ITEM B 1(0,0,45)=[, 10, , 15];
ITEM C C(1,0,5=["YYYYY","XXXXX",
"VVVW","RRRRR","QQQQQ"] ,
END

Resulting structure and values are:

4 C[o]
YYYYY
X X X X X

3 c[2]
VVVVV

5] cf3]
RRRR KR
6

C[4

QQQQQ [4]

Multidimensional arrays are preset using nested
brackets. Brackets should be nested to the level of
the number of subscripts. The leftmost subscript
varies most rapidly, as it does in FORTRAN
Exiended. -

Basically, the preset list for a declaration is a set of
constant values, with the same order as the allocation
order of the elements. This list is presented in sec-
tions enclosed in square brackets, and nested to a
depth of the number of dimensions in the array. An
N dimensional array at the first level of nesting has
as many sections as the Nth dimension of the array.
Each of these sections has as many sections as the
N-1st dimension, and so forth. At the deepest level,
each section has as many values as the first dimen-
sion of the array. Each section at the first level
contains values for the instances of the array item
with the same rightmost subscript; the subscript
associated with each section varying from the lower
bound at the left to the upper bound at the right.
Each section of the second ievel contains vaiues for
those instances with the same rightmost two sub-
scripts, and so forth. The outermost section is
appended to the array item declaration with an
equals sign.

Repetition of values can be indicated by bracketing a

list of values with a parentheses and a count. For
example:

2-10

3(2,1)is equivalent to 2,1,2,1,2,1
and
2(2(0,2))is equivalent to 0,2,0,2,0,2,0.2

A two-dimensional parallel array, for example, is
initialized by:

ARRAY OMEGA[0:1,0:2};
ITEM MU 1(0,0)=[[1,2] [3.4] [5,6]1;

This presetting is equivalent to:

ARRAY OMEGA[0:1,0:2];
ITEM MU 1(0,0);

MU [0,0]=1;

MU [1,0]=2;

MU [0,1]=3;

MU [1,1]=4;

MU [0,2]=5;

MU [1,2]=6;

As with single-dimension arrays, not all elements of a
multidimensional array need to initialized. Elements
that are not to be initialized can be represented by
null brackets as well as by brackets containing null
values. For instance:

(G210 LIV 134510 WG 1
is equivalent to

(L 21LHTI 1345100 1)

Repetition of bracketed sections is indicated by plac-
ing a count outside the bracket. For instance:

2[[1.3]1 2]

is equivalent to

(1,31 12,211 101,31 [2,2] 1
t

I
Only the first 6000 words of an array can have preset
values.

ARRAY STORAGE AND ADDRESSING
Given the array header:

ARRAY [bl:ul-‘ byiugy, .. .] alloc(esize):

60496400 D

—

the number of entries in the array is:

(upby+1)uybytl) . . (upb +1)

At compilation time, an array is allocated the follow-
ing amount of storage:

(number of entries)(esize)

The allocation of an element with respect to the
location of its array name is affected by whether
storage allocation is serial or parallel.
For serial allocation, the location of element
[Sl S35+ « Sy] is computed. from:

ei’—‘Si'bi

addresstepte (esize)te,(size; tesize)t . . .
N s A

te (sizey™ . . Fsize ;*esize)

where size; is u;b;-1 and esize is entry

size.

For parallel allocation:

addresstep*size(* . . .*size |+e;te,*size;
+.. e Fsizey* L. size 4
where address is the address of element
[by, - - byl

For a three-dimension array, the relative location
of A[ijk] with respect to Afby,bybs] is given
by:

location (Alfijk])=

location (A[by,by,b3]Hx+L(y+M(2)))
(esize)

where x=i-b 1
Fk-b 2
Fk'b 3
M=U2-b 2"(‘1

A three-dimension array can be initialized, for example,
by:

ARRAY XYZ[0:2,3:5,-4:-2];

ITEM PI(0,0,60)=[3[3(4)]];

60496400 D

Each élement of an array resides in a particular row

or column. For example:

column
0 1 2 3
0 4 0 7 -8
row 1 23 -9 1 6
2 -7 14 -2 77

In this array, the value 77 resides in row 2, column 3.
Because there are three rows and four columns, this
array has the dimensions 3 by 4.

Array items are allocated in column order: that is, the

leftmost subscript varies most rapidly.
In a two-dimensional array, memory locations are:

ARRAY PSI[1:3,0:3]alloc(2);

ITEM X,Y(1);

Parallel

X[1,0]
X[2.,0]
X[3.0]
X[1,1]
X[2,1]
X[3.1]
X[1,2]
X[2.2]
X[3,2]
X[1,3]
X[2,3]
X[3.3]
Y[1,0]
Y[2,0]
Y[3,0]
Y[1.1]
Y[2,1]
Y[3.1]
Y[1,2]
Y[2.2]
Y[3.2]
Y[1.3]
Y[2.3]
Y[3.3]

Serial

X[1,0]
Y[1,0]
X[2.0]
Y[2.0]
X[3,0]
Y[3,0]
X[1,1]
Y[1.1]
X{2,1]
Y[2,1]
X[3,1]
Y[3,1]
X[1.2]
Y[1,2]
X[2.2]
Y[2.2]
X[3,2

Y[3.2]
X[1,3]
Y[1,3]
X[2.3]
Y[2,3]
X[3,3]
Y[3,3]

For a three-dimensional array, the concept and
memory locations are:

ARRAY RHO[0:1,2:4,-5:-4] P(1);

Resultant structure of array RHO is shown in figure 2-12.

RHO(0.2.-5]
RHO[1,2,-5]
RHO[0,3,-5]
RHO[1,3,-5]
RHO[0,4,-5]
RHO[1 4,-5]
RHO[0,2,-4]
RHO[1,2,-4]
RHO[0,3,-4]
70 | RHO[1,3,4]
i1 | RHO[04,-4]
12 | RHO[1,4,4]

o) Jl O\ W] B W O] =

O

Figure 2-5. Structure of Array RHO

BASED ARRAY DECLARATION

A based array is an array for which the compiler does
not allocate storage; rather the compiler creates a
specific pointer variable compiled with an undefined
value. All references to a based array are compiled

in relation to the pointer variable. From a logical
standpoint, a based array provides a template that

can be superimposed over any area of memory during
execution.

A program using the based array has the responsibility
to set the pointer variable through the intrinsic func-

tion P. The P function and its use with based arrays
is described in section 4.

The based array name is declared in a BASED ARRAY
declaration. The array items are declared as they are
for normal arrays for which storage is allocated.

The format of the BASED ARRAY header is:
BASED array-dec;
or
BASED‘BEGIN array-dec, array-dec . . . END

array-dec Full array declaration including
the ARRAY declaration for a
header and a simple or compound
ITEM declaration for the entry in
the array.

Based arrays should be used when the programmer
does not know prior to execution time where the
array is to be located. Based arrays are used, for
instance, with a memory manager such as CMM
when the position of an array is not known at
load time.

References are made to based arrays just as if they
were normal arrays, once the pointer variable is set.

60496400 D

EXCHANGE STATEMENT

The exchange statement causes the exchange of values
of the left-hand and right-hand sides of the statement.
Appropriate type conversion occurs during the exchange
if necessary: in A==B, B is converted as if A=B
appeared, with A converted as if B=A appeared.

The format of the exchange statement is:

vi Entities whose values are to be
exchanged. Any of the following

can appear:
Scalar
Subscripted array item
P-function

Bead function

The two characters == must appear consecutively
without an intervening blank.

SYMPL guarantees that subscript or bead function
components of expressions which must be evaluated
to compute the address of vl or v2 are computed
only once. The order of expansion as to which
variable is stored first is not guaranteed, however.
The exchange process refers to the expression values
by referring to temporary variables. For example,
the exchange statement A==B occurs as if it were
written:

temp=A;
A=B;
B=temp;

Temporary variables are used for storage of component
and subscript expressions, so that the old values are
always used. The expansion of I==J[I] is:

temp1=I;
temp2=I;

=1[1];
J[templ]=temp2;

The subscript expression J[I] is the old value
until the statement is complete.

60496400 D

FOR STATEMENT

The FOR statement is a generalized looping control
statement. A simple or compound statement follow-
ing the DO clause of FOR executes repetitively as
long as the condition established by the FOR state-
ment is TRUE.

The format of the FOR statement has several forms:

FOR i=aexpl STEP aexp2 DO statement

FOR i=aexpl STEP aexp2 UNTIL aexp3 DO
statement

FOR i=aexpl WHILE bexp DO statement

FOR i=aexpl STEP aexp2 WHILE bexp DO
statement

FOR i=aexpl DO statement

i Counter for the loop called the
induction variable. Must be a
scalar of any type except B or C.

aexpl Arithmetic expression indicating
the initial value of the induction
variable.

aexp2 Arithmetic expression indicating

a value to be added to the in-
duction variable for each execution
of the loop.

aexp3 Arithmetic expression indicating
the last value for the induction
variable for which loop repetition
is to occur.

statement Simple or compound statement to
be executed repetitively. This
statement is called the controlled
statement.

bexp Boolean expression that must be
TRUE for repetitive loop execution.

Since the form FOR i=aexp DO statement produces
an infinite loop, the programmer-supplied statement
must provide for an exit jump.

The expressions used in the STEP and UNTIL clauses
can utilize data of any type. The result of the ex-
pression is converted to the mode of the induction
variable.

3-3

Two types of loops, known as fastloops and dowloops,
can be generated by the compiler, depending on the
appearance of the compiler-directing CONTROL state-
ment. Figure 3-1 compares the two types of loops.

Fastloop Slowloop
Initialize Initialize
Execute Test
Controlled and .
Statement Branc
Execute
Modify Controlled \
Statement
\
Test
and Modify
Branch

L |
Y

Figure 3-1. Generalized Fastloop and
Stowloop Flowcharts

Fastloops always execute at least once (similarly
to American National Standard X3.9-1966,
FORTRAN DO loops) since the test for the
condition is at the end of the loop. To pro-
duce predictable results, the elements of the
FOR statement are restricted as follows:

The induction variable must be integer
type. It can be signed. The absolute

value of the induction variable must be
able to be contained within 17 bits.

3-4

i + Pt et
Neither the step nor the test expression

can be modified within the loop. SYMPL
might evaluate these expressions before
the start of the loop.

Slowloops need not execute at least once since
the test for the condition is at the beginning of
the loop. The restrictions of fastloops do not
hold for slowloops.

Fastloops are preferable since they can be optimized
by the compiler.

The default is slowloop, but it can be overridden for
following FOR statements: a CONTROL FASTLOOP
statement affects all FOR statements begun before a
later CONTROL SLOWLOOP statement. A loop
control statement within a FOR statement can affect
a nested loop, but not the loop in process. See
section 5 for an example of loop control.

For both types of loops, the value of the induction
variable is undefined after the loop is complete. For
slowloops, however, the current value of the induction
variable is preserved if the controlled statement causes
a jump out of the loop. Moreover, if the controlled
statement is entered by a GOTO statement from
outside the FOR statement, the value of the induction
variable might be undefined.

Figure 3-2 shows the different types of FOR state-
ments and the logic of their generated code. For
slowloops, the object code has a direct correspondence
with the SYMPL statements shown; this is not the
case with fastloops.

The step value and final value shown in figure 3-2 in
temporary locations are not guaranteed: if variables
involved in these expressions dare modified within the
loop, results are not predictable.

TEST STATEMENT WITHIN A FOR
STATEMENT

In a FOR statement, the compiler automatically
supplies the modification, test, and branching steps of
a loop. The TEST statement provides a means of
branching to the modify-test-branch step; it is mean-
ingful only within the controlled statement of a FOR
statement.

60456400 B

’}

f——

r

1

b

The format of the XDEF declaration is:

XDEF xdec

or

XDEF BEGIN xdec xdec . . . END

xdec Name of any procedure, function or

label that is to be referenced in an
externally compiled program; or a
full data declaration for a scalar,
array, switch, or based array.

The xdec for a procedure, function
or label is: '

ROC n
FUNC name type;

LABEL name, name, .. . ;

XDEF declarations for procedure and function
names can occur either before or after the decla-
rations of the procedure or function.

An example of

use of the XDEF and XREF

declarations is as follows:

Procedure A is compiled with:

XREF ITEM COUNT I;

Procedure B is compiled with:

XDEF ITEM COUNT I;

wnfaea

Aoner - A
fAdly ivicioinu

3

HE s 2 T TS

A 4o ~ writhi
C W VILL Wil plruves

dure A accesses the storage reserved for the
item within procedure B, assuming both A

and B are

available at load time.

XREF DECLARATION

The XREF declaration generates external references

to the specified

60496400 D

names. It is assumed that storage

for variables is allocated and appropriately declared
with XDEF in a separately compiled program.

The format of the XREF declaration is:

XREF xdec

or

XREF BEGIN xdec xdec . . . END

xdec Any of the following whose storage

is declared with XDEF:

Data declaration for a scalar with-
out preset.

Data declaration for an array with-
out presets.

Data declaration for a based array.
PROC name;

FUNC name type;

LABEL name, name, . . . ;

SWITCH name, name, . .

L

XREF itself is not terminated by a semicolon, but
each declaration within the XREF statement re-
quires a terminating semicolon.

Examples of XREF statements are:

XREF BASED ARRAY AA; ITEM XX;

XREF BEGIN

SWITCH JUMVEC;
FUNC LINEUP R;
ARRAY[0:9,0:9]1S(5);

BEGIN

ITEM ZZ C(0,0,40);
ITEM YY R(40,60);
END

END

Each parameter in the actual parameter list is
delimited by the final parenthesis or a comma. A
parameter consists of all the characters between suc-
cessive parameter delimiters.

Any character can appear as part of the actual param-
eter string, but characters with syntax-defining mean-
ing might require special coding:

Any parameter string that contains a semicolon
must be bounded by #. The bounding # are
removed prior to substitution.

Any parameter string that contains # must
i

radiirca a cinala H enhetity
TOGUCe a singe suosut

Any parameter string that contains incorrectly
unbalanced or nested (), < >, or [] must be
bounded by #. The bounding # are removed
prior to substitution.

Any comma within a parameter string is not

recognized as a parameter delimiter when that
comma is contained within a balanced set of

(),<>orl].

aronatanc PPN

All actual parameters valid for a procedure or function
call are valid as DEF parameter strings. No restriction
limits the DEF name reference parameter strings to
items or expressions, however.

For example:
® Define BYTE and reference it by BYTE(C,5,2%*J):
DEF BYTE(B,J.K) # B<I>A[K] #

Expansion produces:

C<5>A[2**]]

® Define CHECK with two parameters and a body
that uses the BYTE specified above:

DEF CHECK(X,ERROR) # IF BYTE(B,1,X)
EQ | THEN GOTO OK; ERROR#;

Reference:

'CHECK(CALL(3,B),#ERROR=37;
GOTO FAIL#);

Expansion:
IF B<1>A[CALL(3,B)] EQ 1 THEN GOTO
OK; ERROR=37; GOTO FAIL;

60496400 C

® Another definition of CHECK with the same
parameters produces the following expansion,
given the same reference:

DEF CHECK(X,ERROR)#IF BYTE
(B,1,##X##) EQ 1 THEN GOTO OK;
ERROR#;

Expansion:

IF B<1>A[X] EQ 1 THEN GOTO OK;
ERROR=37; GOTO FAIL;

DEF NAME REFERENCES

Once a DEF name has been defined, subsequent
references to that name are replaced by the characters
in DEF body. No substitution occurs in the follow-
ing circumstances, however:

The DEF name appears within a comment.
The DEF name appears within a constant.

The DEF name or the DEF parameter name
appears as the identifier being defined by an
ITEM, ARRAY or COMMON declaration.

The DEF name corresponds to one of the
following and the name appears in a syntax-
defining context:

Type descriptor abbreviations B, C, I,
R, S, U.

Array layout specifiers P, S.
Constant prefixes O, S, X.
Intrinsic function B, C, P.

Real number specifiers D, E.

When the DEF declaration does not include parameters,
compilation simply replaces the DEF name with the
DEF body.

When the DEF declaration includes parameters, each
reference to the DEF name must be followed by an
actual parameter list. The format of the DEF name
reference with parameters is:

name(param,param, . . .)

name Name defined in a prior DEF
declaration within this subprogram.

5-3

param String of characters to replace a
formal parameter.

No comment can appear between the DEF name and
the left parenthesis of the actual parameter list.

A one-to-one correspondence exists between the posi-
tions of parameters in each list. The first actual
parameter replaces all occurrences of the first formal
parameter within the DEF body; the second actual
parameter replaces all occurrences of the second |,
_parameter; and so forth. The number of actual
parameters must not exceed the number of formal
parameters: such a condition is detected as a fatal
error and DEF name substitution is suppressed.

The number of actual parameters can be fewer than
the number of formal parameters, however. Any
formal parameter without a corresponding actual
parameter is replaced by a null character string. This
allows the expansion of a DEF name with a variable
number of actual parameters.

CONTROL STATEMENT

The CONTROL statement directs the compiler to
take immediate action. Several different types of
control words in the statement cause different types
of actions:

Output listing control specifications are EJECT,
LIST, NOLIST, OBJLST.

Conditional compilation control words are IF,
FI, ENDIF.

Compilation option selections are PACK,
PRESET, FTNCALL.

FOR statement loop specifications are
FASTLOOP, SLOWLOOP.

Core residence selections are LEVEL1, LEVEL2,
LEVEL3.

Variable attribute specifications are DISJOINT,
OVERLAP, REACTIVE, INERT. ’

Weak external specification is WEAK.
Traceback selection is TRACEBACK.

Each of the different functions is described separately
below.

54

A CONTROL statement can appear anywhere in a
program that a statement can appear. It can also
appear within BEGIN and END enclosing a list of
array items, based arrays, external declarations, or
common declarations.

The effect of a CONTROL statement can be reflected
in an entire module. The end of a procedure or

function does not cancel the statement; only TERM
cancels a CONTROL statement.

LISTING CONTROL

Four forms of the CONTROL statement affect output
listings. The general format is:

CONTROL control-word;

Control-word One of the following:

EJECT Skip to new page of listing
LIST Resume normal listing of source
statements

NOLIST Suspend rniormal listing of source
statements

OBJLST List object code

EJECT, LIST, and NOLIST cause the compiler to
take action at the time the statement is encountered
among the source statements.

OBIJLST applies to the entire module. Its appearance
anywhere within the module affects the entire module.

The H parameter of the SYMPL compiler call overrides
CONTROL NOLIST.
CONDITIONAL COMPILATION
The CONTROL statement can be used to determine
whether source statements following the CONTROL
statement are to be compiled:

When the relationship defined in the CONTROL

statement tests TRUE, the following source
statements are compiled.

60496400 D

ATTRIBUTES OF VARIABLES
SPECIFICATION =

The SYMPL compiler attempts to produce efficient
executable code. Because the compiler cannot predict
the precise use of a variable in subsequent source
statements, it must forego many efficiencies that would

produce inaccurate code by particular variable references.

The programmer, however, can be aware of data use
and, through the CONTROL statement, can inform
the compiler of usage characteristics. By classifying
variables and array items as separate or potentially
overlapping, the programmer provides the information
that the compiler needs to decide optimizations.

The format of the CONTROL statement for specifying
attributes of variables is:

CONTROL attribute var, var, . . . ;
or
CONTROL attribute;

attribute Attribute of variables in the state-
ment list:

OVERLAP Variables might be
referenced by more
than one name, as
shown in examples
below. OVERLAP is
the opposite of
DISJOINT.

DISJOINT Variables are referenced
by a single name only.
DISJOINT is the oppo-
site of OVERLAP.

REACTIVE A given word in a
single array might con-
tain two items, or parts
of items, being refer-
enced together although
the two items are not
declared to overlay each
other. See examples
below. REACTIVE is
the opposite of INERT.

Items with declarations
that show one field
overlaying another
field are detected by

60496400 C

the compiler, so that
REACTIVE need not
be declared. ‘

INERT A given word in a
single array does not
contain items, or parts
of items, referenced
together. INERT is
the opposite of
REACTIVE.

var Variable with the attribute specified.

If the list of variables is omitted, the
CONTROL statement becomes a
global switch that affects all sub-
sequently declared variables not
otherwise referenced by a contrary
individual specification.

If neither the global switch format nor the individual
specification format of the CONTROL statement
appears, the module is compiled as described in
appendix C, Possible Optimizations. If any CONTROL
statement specifying an attribute appears in the module,
the global switch format CONTROL REACTIVE and
CONTROL OVERLAP is assumed at the beginning of

a module. Use of the CONTROL statement to
classify variables is encouraged because future versions
of the compiler might require such classification.

The definitions of overlap and disjoint refer only to
variables in separate arrays; for overlapping items
within a single array, the distinction between reactive
and inert must instead be drawn.

Overlapped Variables

One program might refer to the same variable by two
names when formal parameters or based arrays are
referenced. For example:

PROC P(A B);

5-7

A call to procedure P in the form P(V,V)
represents two occurrences of the same actual
parameter: during compiler optimization the
store of the value of Y must not use the value
of A from the A=2 statement.

Similarly, with a based array B based on A:

PROC P(A,B);
X=A[2];
B[2]=3;
Y=A[2];

Since A and B refer to the same array, the com-
piler must not store Y such that it refers back
to the first A[I].

Variable names that interfere with each other as
illustrated above are called overlapped variable names.
If such interference does not occur, the variables are
said to be disjoint.

To determine whether variables should be specified as
OVERLAP or DISJOINT, the programmer must
examine the entire module, not simply a given subpro-
gram. The compiler reserves the right to inspeci ail
procedures and functions in a given module for use of
variables and it considers that normal nonexternal
variables are not destroyed by calls to global subpro-
grams whether external or not. But if local procedures
are called which have access to the names of local
variables, the compiler detects all the variables such a
procedure explicitly stores.

Variables known through COMMON, XDEF, and XREF
declarations are considered destroyed by calls to an
external subprogram. Overlapped behavior exists when
an external subprogram destroys nonexternal variables.

Reactive Arrays
Two items in one array can interfere with optimization
when references to items do not match the declarations
of these items. For example: '
ARRAY [0:100] S (1);
ITEM A (0), B (1);

B[1]=A[J] *2:
Q=A[J]:

5-8

Item B is outside the bounds of one array entry
and it interfers with the next entry. If the array
is always indexed by 2, B does not interfere with
A. However, if I is set to J-1, the A(J) is
destroyed by a store to B(I).

Array items that interfere with each other as in this
illustration are said to be reactive items. If such
interference does not occur, the items are said to be
inert. An array is reactive if it has two items A and
B such that for Afi] and B[j] with i not equal to j
at some time during execution, any part of A[i] is in
the same word as any part of B[j]. It is not neces-
sary for the fields to overlap: reactive arrays occur
when both items are in the same word.

To determine whether an array item should be clas-
sified as. REACTIVE or INERT, the programmer must
examine an entire module, including all variables
affected by other procedures it might call.

WEAK EXTERNALS

When a compiled program is loaded before execution,
the ioader searches for a maiching entry point for

all externals and loads the subprogram in which they
occur. Under some circumstances this can result in
the loading of subprograms not required for current
execution. Through using a CONTROL statement to
declare an external weak, the programmer can specify
that the external is not necessarily to be satisfied.

A weak external does not cause a search for the
matching entry point. If the program that con-
tains the entry point is loaded for some other
reason, however, that weak external is linked.

When a weak external is satisfied, it is linked as if
it were a normal external. If it is not satisifed, no

error message is produced.

The format of the CONTROL staiement specifying a
weak external is:

CONTROL WEAK name, name, . . . ;

name Name of array, based array, function,
item, label, procedure, or switch.

Name must have been previously
declared as external by using XREF.

60496400 D

TRACEBACK FACILITY

SYMPL uses standard calling sequences for transferring
control to a procedure or subroutine of another
language. In this sequence, register Al contains the
address of a parameter list and each parameter to be
passed occupies one word of the list. Execution of

an RJ instruction to the entry point links the programs.

For debugging purposes, SYMPL provides an option
for traceback.

The format of the CONTROL statement for tracing
purposes is: ‘

The appearance of this statement anywhere within the
module selects the option for the entire module.
Traceback code is generated automatically when the
K parameter (points-not-tested) of the SYMPL com-
piler call is used.

The traceback code generated for procedures and
functions is compatible with traceback of FORTRAN
Extended. To complete FORTRAN Extended com-
patibility, the F parameter of the SYMPL compiler call
must also be specified. Code generated by a SYMPL
calling program is never compatible with FORTRAN
Extended traceback, however.

Traceback code generated is as follows:

If the procedure of function has a single entry,
the generated constant word is:

60496400 D

VFD 42/0Hname,18/ept

name Subprogram name left-justified and
blank filled or truncated to seven
characters.

ept Address of subprogram entry point.

If the procedure or function has multiple entries,
the generated constant word is:

VFD 42/0Hname,18/temp

name Subprogram primary entry point.

temp Address of a copy of the retum
information taken from the most
recent entry point.

The return jump instruction for the subprogram
call is forced upper. The lower 30 bits of the
instruction contain:

VFD 12/line,18/trace

line Approximate source line number

of call.

trace Address of the constant word
described above for the innermost
subprogram containing the call
statement.

I s ST o

vy

L

COMPILER CALL AND OUTPUT LISTINGS 6

COMPILER CALL

The SYMPL compiler is called with a control state-
ment that conforms to operating system syntax. The
control statement cannot be continued. ‘

More than one program orf subprogram can be com-
piled by a single call to the compiler as long as they
follow each other on the source file without any file
boundaries between them. The compiler recognizes

a TERM statement as the end of a module and ignores
any further statements on the same card or card
image. Compilation resumes with the next card, which
is assumed to be the start of another program or sub-
program. A comment can precede a program or sub-
program header.

If the first card or card image encountered at the
beginning of a loader module contains the character
OVERLAY in columns 1 through 7, the remainder
of the module is treated as if an LCC statement

appeared in a COMPASS program.

The name on the compiler call statement is SYMPL.
If all default parameters are selected, the compiler
call appears as:

SYMPL.

A variety of compilation options can be specified in
a parameter list following the compiler call name. If
the name of the source input file is NEWONE, for
example, the compiler call appears as:

SYMPL,I=NEWONE.
All compilation parameters are optional and can abpear
in any order. Parameters are listed below in alpha-
betical order.
A ABORT JOB AFTER ERRORS
omitted Execute next control statement whether

or not any errors are diagnosed during
compilation.

60496400 C

A Execute control statement after an
EXIT(S) control statement if errors are
found at the end of compilation.

B BINARY CODE FiLE

omitted Write binary output from compilation
to file LGO.

B Write binary output from compilation
to file LGO.

B=0 Suppress generation of binary code.

B=lfn Write binary output from compilation

to file Ifn, where Ifn is one through
seven letters or digits beginning with a
letter.

C CHECK SWITCH RANGE

omitted Do not generate code to check range of
switch references. Any reference to an
undefined switch value produces either
an endless loop, a mode error, or a
wild jump.

C Generate code to check range of switch
references. During execution any refer—
ence to an out-of-range switch or an
unspecified switch value produces a diag-
nostic and a program abort.

D PACK SWITCHES

omitted Generate one word for each switch.

D Generate one word with two switch
points, reducing the size of generated
code but increasing execution time.

Produces the same result as CONTROL
PACK within a program.

6-1

E COMPILE $BEGIN/SEND STATEMENTS

omitted Do not compile source statements
bracketed between $BEGIN and $END.

E Compile source statements bracketed
between $BEGIN and $END.

F FORTRAN CALLING SEQUENCE

omitted Do not compile a word of all zeros at
the end of a parameter list.

F Compile a word of all zeros at the end
of each parameter list as required by
the FORTRAN Extended calling sequence.
Produces the same result as a CONTROL
FTNCALL statement within a program.

H LIST ALL SOURCE STATEMENTS

omitted List source statements according to
CONTROL NOLIST and CONTROL
LIST statements within the program.

H List all source statements, regardless of

CONTROL NOLIST statements within
the program.

I SOURCE INPUT FILE

omitted Compile card images from file INPUT.
1 Compile card images from file COMPILE.
I=lfn Compile card images from file Ifn.

K POINTS-NOT-TESTED

omitted Do not generate points-not-tested inter-
face code.
K Generate an RJ to the points-not-

tested interface routine after every
label and conditional jump. Find all
paths in the executable code and:
determine which of the paths are
exercised by the test base. Also, gen-
erate traceback code.

L LISTING FILE

Any O, R, or X parameter must be concatenated
with any L parameter, as in: LXOR=PRINTIT.

omitted Write source statement listing and diag-
nostics to file OUTPUT.

L Write source statement listing and diag-

nostics to file OUTPUT.

=1 Write summary of resources used to
file OUTPUT. _
=0 Suppress all listing output, including
that selected by O, R, and X list only
diagnostics.
L=lfn Write source statement listing and diag-

nostics to file 1fn, with Ifn being one
through seven letters or digits beginning
with a letter.

N CROSS REFERENCE UNREFERENCED

ITEMS
omitted List only referenced items on the cross
reference map selected by the R param-
eter.
N List referenced and unreferenced data

items on the cross reference map
selected by the R parameter.

O LIST OBRJECT CODE

Any L, R, or X parameter must be concatenated with
any O parameter, as in: OL=LIST/35/45.

omitted Do not list binary object code.

O=st/end List binary object code generated by
range of source statements indicated:

st Number of first source statement
whose object code is to be listed.
Default is O.

end Number of last source statement
whose object code is to be listed.
Default is last statement in program.

If only one number appears after =, it

is presumed to be end. The iine numbers
appear to the left of the source images
on the listing.

O=lfn/st/end List binary object code from specified
source statements on file 1fn, where 1fn
is one through seven letters or digits
beginning with a letter. st and end are
as above.

P PRESET COMMON

omitted Data items in common blocks are not
to be initialized.

60496400 D

P Initialize data items in common blocks
according to the preset values in the
data declarations. Produces the same
result as a CONTROL PRESET state-
ment within a program.

R LIST CROSS-REFERENCE MAP

Any L, O, or X parameter must be concatenated with
any R parameter, as in: RX=SHOW.

omitted Do not list cross reference table and
common blocks.

R List cross reference table and common
blocks on file OUTPUT.

R=lfn List cross reference table and common
blocks on file 1fn, where Ifn is one
through seven letters or digits beginning
with a letter.

S EXECUTION LIBRARY
omitted Compile LDSET tables with references
to these libraries:

SYMLIB/FORTRAN for NOS and
NOS/BE operating systems

SYMIQ/FORTRAN for SCOPE 2
operating system

=0 Suppress LDSET table generation.

S=lib Generate LDSET tables with references
to library lib. Multiple libraries can be
specified with slashes between library
names, as in: SSAAA/MMM/TTT.

T SYNTAX CHECK

omitted Check syntax and generate binary code.
T Check syntax, but do not generate
binary code.

W SINGLE STATEMENT CODE GENERATION

omitted Generate object code with multiple
source statement intermixed.

60496400 D

w Generate object code that maintains a
close correspondence with its source
statement. While the resulting object
code might be less efficient, it is useful
for debugging.

X LIST STORAGE MAP

Any L,R,or O pafameter must be concatenated with
any X parameter, as in: RX=OUTPUT.

omitted Do not list storage map or common
blocks.

X List storage map and common blocks
on file OUTPUT.

X=1fn List storage map and common blocks

on file 1fn, where Ifn is one through
seven letters or digits beginning with a
letter.

.Y SUPPRESS DIAGNOSTIC 136

omitted List diagnostic 136 (Semi ends comment)
as required.

Y Suppress diagnostic 136 listing, but
take normal corrective action.

OUTPUT LISTINGS

Figure 6-1 shows a SYMPL main program SORT100
that can be used to sort 100 items. It calls procedure
SORTER which was compiled separate from SORT100
since TERM appeared at the end of SORT100. SORT-
100 consequently contains an XREF statement that
declared SORTER to be an external program.

A job deck for syntax analysis compilation both the
main program and subprogram would appear as:

jobcard.

any accounting statement.
SYMPL,T.

7/8/9

all SYMPL source statement
6/7/8/9

Output from a compilation normally includes the
source statement listing, and a diagnostic summary.

6-3

POGM SORTLZL

36 TN

JASEN ARCAY AAC99)]
ITEM X 3

ITEM NOREFEPENC®

XREF PROC SORTEP;

ARRAY T03ISCPTFD (99)
ITEM T

P<AA> = LOC(TOSESSORTED)
SORTER (P<AA>) 3

END

TEOM

P2JC SORTER(SORT)Y

375 IN

ARRAY SOFT[99]:

' ITEM VALUES

IT=™ 13

ITEmM FLAG I=§ ¢
L1: FIR I=

STEP 1 UNTTL 98 DV

IF VALUECLI#11 GP ¥ALUSIT) THEN
[EGIN
VALUE(TI#11 == VALU=I[I]?
FLAG = 13
N0
I FLAG FQ 01 THEN
RETURNS
FLAG = C 2
GJITN L1
EN) SSOFTERSZ
T=ow™
Figure 6-1. Sample Source Program

Any storage map, cross-reference map, or object listing
follows on a separate page of the listing. The last in-
formation shown summarizes the number of words of
memory and the time required for compilation. The
parameters of the compiler call used for compilation,
whether selected explicitly or implicitly, are also
shown.

A large map might appear on the output listing in two
parts. Both should be examined.

STORAGE MAP

The storage map is a dictionary of all programmer-
created declarations in the source program. It is
selected by the X parameter of the compiler call.
Figure 6-2 shows the storage map from the
SORTI00 main program of figure 6-1. Informa-
tion appearing on the map includes:

60496400 C

)

—

1 NAME First ten characters only of declarations
are printed.

2 TYPE Defines the name as one of the follow-

CROSS-REFERENCE MAP

The crossreference map lists the properties of
each declaration and shows the source line num-

ing types: ber at which the entity was declared or referenced.
It is selected by the R parameter of the compiler
ARYITM Array item call.
COMMON Common block
ITEM Item Figure 6-3 shows the cross-reference map from
FUNC Function subprogram SORT100 of figure 6-1. Since the
PROC Procedure subprogram was compiled with the N parameter
. LABEL Label of the SYMPL compiler call, items that were
B.ARRY Based array declared, but not referenced, also appear on the
ARRAY Array map. Information appearing on the map includes:
PROGRAM Program
, 1 NAME First ten characters only of decla-
3 M Mode of data representation rations are printed.
B g}‘:deaﬂ 2 TYPE Defines the name as one of the
f In;;iter following types:
P Parallel (arrays onl . .
S Status (éerialy if ty)g: is ARYITM Array item
array or based array) COMMON Common block
U Unsigned integer ITEM Item
X External FUNC Function
Y Weak external PROC Procedure
- LABEL Label
4 LOC Octal address relative to stari of routine; B.ARRY Based array
if followed by C, LOC is relative to STSCON Status constant
start of common block. If type = DEFINE DEF
ARYITM, LOC refers to first occur- STSLST Status list
rence of item. PROGRM Program
ARRAY Array
5 FBIT First bit, numbered from 0 to 59, left
to right.
6 NUM Number of bits; if MODE = C, num-
ber of bytes.
SORT1GO PROGRAM * STORAGE MAP *
© @600 6
NAMEIQ(10) TYPE W LOC FBIT NUM NAMESC(1J) TYPE FBIT NUM NAMEIC(10) TYPE M LOC FBIT NUM
Al 3.48RY P 0 1 ARYITM I 2 0 60 NOREFERENC ITEM I 1 0 62
SORTER pR0C X] SORT106 PROGRN 151 sYs= PROC X G
TOBEZSCRTED ARFAY P 2 X ARYITH I ¢ 8 60
Figure 6-2. Storage Map

60496400 D

6-5

3 M Mode ot data representation

wno—nw

<

Boolean

Character

Integer

Parallel (arrays only)

Status (serial if type =
array)

Unsigned integer

External

Weak external

4 DEF Line number in source listing where
declaration is defined; if followed

5 SCOPE

6 SET/USED

by C, declaration is in common
block.

Name of outermost procedure
within which declaration occurs;
if type = STSCON, SCOPE is
the name of the status list of
which the item is a member.

Source listing line numbers of
references to NAME, * indicates
use as other than left-hand side
of the replacement statement.

SOrRT13"

NAME ¢ C (1M

P2OGRAM * GROSS

TYRS @ DEF SCOPE SET/ZYSEN/ATTRIBUTE-*=USED,A=ATTRIBUTE

Ad 9, 4RkRY 2 2 SORT1QC 9 146
NMOPEFZXENL ITFEM I 5 SORT1(C
SORTER PRPNC X & SORT140 0*
T APYIT™M I 8 SORT13?
TOAESARTEN ARPAY P 7 SORPT1lC g%
X aoyITm T L SORT1CC
Figure 6-3. Cross-Reference Map
6-6 60496400 D

£ — A—

-, Vo Y Y Y VY £, - F T T ~ ~

STANDARD CHARACTER SETS A

CONTROL DATA operating systems offer the following variations of a basic character set:
CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set
The set in use at a particular installation was specified when the operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026 or
in 029 mode (regardless of the character set in use). Under NOS/BE the alternate mode can be specified by

a 26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent

7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In addition, 026 mode can be specified by a card with 5/7/9 multi-
punched in column 1, and 029 mode can be specified by a card with 5/7/9 multipunched in column 1 and a 9
punched in column 2.

Graphic character representation appearing at a terminal or printer depends on the installation character set and

the terminal type. Characters shown in the CDC Graphic column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals.

60496400 A A-1

A-

STANDARD CHARACTER SETS

CcDC ASCII

{octal) (026) Code Subset (029) (octal)
oot : (colon) 7T 82 00 : (colon) TT 82 072
01 A 12-1 61 A 121 101
02 B 12-2 62 B 12-2 102
03 c 12-3 63 c 12-3 103
04 D 124 64 D 124 104
05 E 1256 65 E 125 105
06 F 12-6 66 F 126 106
07 G 12-7 67 G 12-7 107
10 H 128 70 H 128 110
11 I 129 71 | 129 m
12 J 1141 41 J 11-1 112
13 K 112 42 K 112 113
14 L 11-3 43 L 11-3 114
15 M 114 44 M 11-4 115
16 N 116 45 N i15 116
17 0 11-6 46 0 116 117
20 P 117 47 P 117 120
21 Q 118 50 Q 118 121
22 R 119 51 R 19 122
23 S 0-2 22 S 0-2 123
24 T 0-3 23 T 03 124
25 u 04 24 U 04 125
26 \ 05 2% Y 05 126
27 w 06 26 W 06 127
30 X 07 27 X 07 130
31 Y 08 30 Y 08 131
32 z 09 31 Frd 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 o 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
a4 9 9 11 9 9 o7
45 + 12 60 + 1286 053
46 ; 1 40 > 11 055
47 1184 54 11-84 052
50 / 01 21 / 01 057
51 (084 34 { 1285 050
52) 1284 74) 1185 051
53 $ 11-8-3 53 $ 1183 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , (comma) 0-8-3 33 , (comma) 083 054
57 . (period) 12-8-3 73 . {period) 1283 056
60 = 086 36 # 8-3 043
61 [87 17 t 12-8-2 133
62] 0-8-2 32 b] 1182 135
63 %11 86 16 %11 084 045
64 = 84 14 " (quote) 8-7 042
65 r 085 35 _ {undertine) 085 137
66 v 110 or 1182111 52 ! 1287 or 11011 041
67 A 087 37 & i2 046
70 t 1185 55 ' (apostrophe) 85 047
71 } 11-8-6 56 ? 08-7 tit 077
72 < 120 or 1282111 72 < 12-8-4 or 120 074
73 > 1187 57 > 086 076
74 < 8-5 15 @ 84 100
75 > 1285 75 AN 082 134
76 - 1286 76 ~ (circumflex) 11-8-7 136
77 . {semicolon) 128-7 77 ; (semicolon) 1186 073
TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than

two colons.
tTin instatiations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon {82 punch). The % graphic and related card codes do not exist and translations
L4.Yield a blank (65g). _
""" The alternate Hollerith {026} and ASCIl (029) punches are accepted for input only.

60496400 D

DIAGNOSTICS B

The SYMPL compiler recognizes errors in SYMPL Abbreviation Description
syntax. An applicable diagnostic message is printed ERR Error
on OUTPUT immediately preceding the line on which
the error was detected. In addition, the total number EXPR Expression
of diagnostic messages is printed along with a detailed .
listing of each message number and the condition that FUNC Function
caused the error. HEX Hexadecimal
The compiler aborts under several conditions: 1D Identifier
IFXX Conditional compilation computa-
Error in the compiler call. A dayfile message tion word
PARAMETER n IN ERROR is generated. ILL Mllegal
An attempt is made to compile some types of PARAM Parameter
incorrect programs. An internal diagnostic PARENS Parenthesis
message accompanies such an abort.
PROC Procedure
Other dayfile messages that might be produced include: PROG Program
—SYMPL— INSUFFICIENT FL REF Reference
—SYMPL— INSUFFICIENT SCM FL REFS References
—SYMPL— INSUFFICIENT LCM FL
REPL Replacement
—SYMPL—- EMPTY INPUT FILE .
—SYMPL— COMPILER ABORT SEMI Semicolon
~SYMPL— BAD EXP CALL TO FIN SPECS Specifications
—SYMPL- BAD LOADER CALL STMT Statement
—SYMPL~— cccecccecce COMPILED cp secs STRG String

Table B-1 lists the message number and text of the UNDECL Undeclared

compilation diagnostics. Abbreviations used in these XDEF External definition
Tessages are: XREF External reference
Abbreviation Description / Or
BOOL Boolean TABLE B-1. COMPILER ERROR MESSAGES
CHAR Character y
essage » .
CHARS Characters Number Condition Causing Message
CONS Constant 001 LONG ID—FIRST 12 CHARS USED
DECL Declaration 002 DUP DECL-NEW ONE OVERRIDES
003 UNDECL ID DELETED
DUP Duplicate 004 ILL OCTAL/HEX CONS

60496400 D B-1

TABLE B-1. COMPILER ERROR MESSAGES (cont.)

Message

Condition Causing Message

:iiabii Condition Causing Message

005 TERM MISSING

006 BAD STATUS CONS USE

007 * BAD NESTING OF PARENS/
BRACKETS

008 CRUD CHAR IN INPUT

009 CHAR STRG>240 BYTES—240 USED

010 ILL ARRAY ITEM ID USE DELETED

011 ILL SWITCH ID USE DELETED

012 ILL ARRAY ID USE DELETED

013 ILL STATUS LIST ID USE DELETED

014 ILL COMMON ID USE DELETED

015 SEMI MISSING AFTER ARRAY
DECL

016 CRUD AT START OF STMT
DELETED

017 ILL KEYWORD USE DELETED

018 ARRAY ITEM DECL LIST LACKS
END

019 DUP DECL OVERRIDES

020 . ITEM DECL ID ERR

021 DECL DISCARDED—SCAN RESUMES
AT SEMI

022 ITEM DECL TYPE ERR-I
ASSUMED

023 ILL ITEM LENGTH-1 BYTE USED

024 SIGNED PRESET ILL FOR THIS
TYPE—IGNORED

025 SCAN RESUMES AT -BEGIN-

026 MISSING SEMI

027 ITEM PRESET ERR

028 SEMI ACCEPTED AS NULL STMT

029 BASED/XDEF/XREF ARRAYS
NEED ID

030 ARRAY ITEM DECL SYNTAX ERR

031 ARRAY ITEM DECL TYPE ERR

032 BAD ARRAY BOUND VALUES—
ASSUMED [0:0] ,

033 ARRAY BOUND SYNTAX ERR

034 ARRAY ITEM DECL PARTWORD
SPECS ERR-DEFAULT TAKEN

035 ARRAY ITEM DECL 1ST BIT
ALIGNMENT WRONG—0 USED

036 ILL ARRAY ITEM BOUNDARY-
DEFAULT TAKEN

037 TOO MANY ARRAY ENTRIES

038 TOO MANY PRESET GROUPS

039 ARRAY PRESET SYNTAX ERR

040 COMMON/XDEF/XREF—AT OUTER

SCOPE ONLY
041 BAD COMMON DECI. IGNORED
B-2

Number

042 BAD XREF/XDEF IGNORED

043 BAD BASED DECL IGNORED

044 XDEF/XREF LIST CRUD DELETED

045 SWITCH DECL SYNTAX ERR

046 COMMON LIST SCAN RESUMES
AT ~ARRAY-/-ITEM-

047 STATUS DECL SYNTAX ERR

048 -END- ENDS BAD COMMON LIST

049 DEF DECL SYNTAX ERR

050 BAD FORMAL PARAM DECL

051 PROGRAM BEGINS BADLY

052 PROG DECL LACKS ID

053 PROG DECL ERR--CRUD PRECEDES
SEMI

054 XDEF/XREF LIST SCAN RESUMES
AT LEGAL ENTRY

055 FORMAL LABEL DECL SYNTAX
ERR

056 -END- ENDS BAD XDEF/XREF
LIST

057 FORMAL PROC DECL SYNTAX
ERR

058 FUNC DECL LASKS ID

059 FUNC DECL TYPE ERR- I
ASSUMED

060 FUNC DECL LACKS SEMI

061 SCAN RESUMES AT SEMI

062 DUP FORMAL PARAM ID IN LIST

063 DUP PARAM ID-PRIOR DECL
THIS SCOPE

064 PARAM LIST SYNTAX ERR

065 PROC DECL LACKS ID

066 PROC DECL SYNTAX ERR

067 UNDECL LABEL/PROC ID

068 FORMAL ID LACKS DECL

069 PARAM NOT USED IN THIS SCOPE

070 ILL DEF ID-NO EXPANSION

071 ENTRY PROC MAY NOT CALL
ITSELF

073 TOO MANY PARAM/ARRAY/ARRAY
ITEM REFS

074 TOO MANY SUBSCRIPTS:SWITCH
REF

075 NOT ENOUGH SUBSCRIPTS FOR
ARRAY/ARRAY ITEM REFS

076 BAD SUBSCRIPT LIST

077 ILL LABEL/PROC ID USE DELETED

078 STATUS SWITCH DECL LACKS

STATUS LIST ID

BAD TARBEI USE IN STATUS SWITCH

iivni v ¥

60496400 B

TABLE B-1. COMPILER ERROR MESSAGES (cont.)

Ih\Illzxsrstii Condition Causing Message

080 STATUS SWITCH-VALUE TOO
LARGE

081 STATUS SWITCH-DUP CONSTANT
VALUES

082 STATUS SWITCH-MISSING CON-

. STANT

083 BEGIN/END MISMATCH. PROBABLE
DISASTER

084 IF EXPR NOT BOOL

085 WHILE EXPR NOT BOOL

086 CRUD AFTER FINAL END IGNORED

087 -DEF- ID EXPANSION NEST TOO
DEEP-ID DELETED

088 YOUR -DO- HAS BEEN FOUND

089 THE -THEN- HAS BEEN FOUND

090 MISSING -DO-

091 MISSING -THEN-

092 INITIAL VALUE EXPR ERR

093 -STEP- EXPR ERR

094 -UNTIL- EXPR ERR

095 -WHILE- EXPR ERR

096 BAD -GOTO- DELETED

097 BAD REPL STMT DELETED

098 PARTWORD VALUES AFTER
FIRST 3 IGNORED

099 ITEM DISCARDED-SCAN RESUMES
AT COMMA

100 HANGING -IF- CLAUSE

101 HANGING -FOR- CLAUSE

102 HANGING -ELSE-

103 EXTRA END-OMITTED BEGIN
FOR SUBPROGRAM ASSUMED

104 ILL UNDECL PARAM USE DELETED

105 FOR STMT: INDUCTION ID ERR

106 -IF- EXPR ERR

107 DUP XDEF/XREF DECLS FOR ID

108 XDEF PROC/FUNC: NOT FULLY
DECL

109 BAD FORMAL DECL

110
111
112
113
114
115
116
117

60496400 B

REDUNDANT FORMAL DECL
BAD PARAM LIST

BOOL ILL IN ARITH CONTEXT
COMMON LIST LACKS -END-
BASED LIST LACKS -END-
XDEF/XREF LIST LACKS -END-
COMMON LIST CRUD DELETED
BASED LIST CRUD DELETED

xiﬁigei Condition Causing Message

118 BASED LIST SCAN RESUMES
WITH -ARRAY-

119 -END- ENDS BAD BASED LIST

120 0 LENGTH -DEF- STRING IGNORED

121 CHAR LENGTH OMITTED-1
ASSUMED

122 BAD ARRAY ENTRY SIZE

123 BRACKET NEST TOO DEEP

124 ILL EXPR TYPE THIS LEFT SIDE

125 BAD READ FUNC

126 EXPR OP CONCATENATION ERR

127 LONG CHAR STRG-240 BYTES
USED

128 BAD -LOC- FUNC

129 BAD -ABS- FUNC

130 BAD INDUCTION ID TYPE

131 NON INDUCTION ID IN -TEST-

132 -TEST- ILL OUTSIDE LOOP

133 SCAN RESUMES AT -BEGIN-/
-ITEM-/SEMI

134 READ FUNC NEEDS ID

135 DUP STATUS ID

136 SEMI ENDS COMMENT

137 CONTROL STMT SYNTAX ERR

138 CHAR NOT D/F IN REAL OR
COUBLE CONSTANT

139 FORMAL PARAM PRESET ILL

140 XREF PRESET ILL

141 BLANK COMMON PRESET ILL

142 BASED ARRAY ITEM PRESET ILL

143 BAD P-FUNC

144 CHARACTER ITEM>240 BYTES -
240 USED

145 NO SUBSCRIPT FOR ARRAY ITEM -
0 USED

146 CIRCULAR DEF NAME EXPANSION -
EXPANSION IGNORED

147 NO MAIN PROC FOR ENTRY PROC

148 ILLEGAL CHAR IN MACRO DEF

149 ILLEGAL IFXX COMPARE

150 TOO MANY DEF PARAMS

151 ILLEGAL CONDIT DIRECTIVE
IGNORED

152 ILLEGAL VALUE PARAM-LABEL

153 ILLEGAL VALUE PARAM-ARRAY

154 ILLEGAL VALUE PARAM-PROC

155 COMMON BASED ARRAY DECL
ERROR

TABLE B-1. COMPILER ERROR MESSAGES (cont.)

?\Idz:xitii Condition Causing Message

156 LABEL DECL ERROR

157 XREF SWITCH ERROR

158 UNMATCHED IFXX

159 DEF PARAM ERROR

160 ([OR < NESTING TOO DEEP

161 ([OR < NEST MISMATCH

162 PARAMETER TOO LONG

163 PARAMETER COUNT ERROR

164 RECOVERY AT ;

165 BAD DEF ACTUAL PARAMETER

166 BAD UNDCL PROC/LABEL LIST

167 ILL DEF PARAM USAGE

168 SORRY BUT IFXX MUST HAVE
2 PARAMS—FOR THE TIME
BEING

169 ATTRIBUTE SPECIFIED TO UN-
KNOWN VARIABLE

170 SIMPLE ITEMS MAY NOT BE

INERT/REACTIVE

xsﬁ;g; Condition Causing Message

171 ONLY ITEMS AND ARRAYS HAVE
ATTRIBUTES

172 BAD ATTRIBUTE/LEVEL SPECIFI-
CATION LIST

173 FAST FOR LOOP INDUCTION
VARIABLE ERROR

174 BAD GLOBAL ATTRIBUTE SPEC

175 LEVEL ONLY APPLIES TO COM-
MON AND BASED ARRAYS

176 BAD USE OF LEVEL 3 VARIABLE

177 INDUCTION VARIABLES MUST BE
SCM RESIDENT

178 WEAK ONLY APPLIES TO
EXTERNAL SYMBOLS

179 ARRAY ENTRY-SIZE TOO LARGE

180 ARRAY DIMENSION TOO LARGE

181

182

RECURSIVE PROC/FUNC CALL

NOT ALLOWED
ERROR IN REAT CONSTAN

-

B4

60496400 D

PROGRAMMING SUGGESTIONS C

COMPILER

Space required for compilation is proportional to the
number of symbols in the source program. Approxi-
mately five words of core are dedicated to each name
in the program, in the form of a symbol table entry.

Time required for compilation is proportional to the
size of the object program, in terms of the amount
of syntax to be scanned. Although data declarations
do not generate code, they use significant amounts of
compiler time and field length, especially data presets.

Compilation time can be further reduced by judicious
use of the compiler options such as suppression of
object code and cross reference listings.

DEF declarations can increase readability of SYMPL
source programs and facilitate changes to them. How-
ever, DEF declarations and expansions increase com-
pilation time and field length, accordingly.

OBJECT CODE

SUBSCRIPTS

Faran i L A voria Klaq

A L noaing athaarinéa :
a o 1iCing SUOSCIipicy valriaoie

Code produced by refere

can be affected by the means of expressing the sub-
script. For example, an integer constant can be
partially evaluated at compile time so that one in-
struction is required to access an array item (given
the item is a full word); but a scalar integer variable
requires four instructions to access the item. Thus,

a reference to A[3] requires one instruction; but A[I],
where I=3, requires four instructions to retrieve the

same item.

ARRAYS

Parallel arrays are accessed more efficiently than
serial arrays when an array entry exceeds one word.
For arrays with one-word entries, no difference in
object code speed or space is apparent. Parallel

60496400 B

arrays, rather than serial arrays, should be used when
possible. Fixed arrays are accessed more efficiently
than based arrays, which require a level of indirect-
ness to access an entry. Whenever possible, fixed
arrays should be used.

COST OF ACCESSING
DATA TYPES

If an array item is a full 60-bit word, access does
not depend upon its type. For items which are not
60-bit words, however, type and bit position assign-
ment affect the code required to access them, as
follows:

Signed integers are accessed more efficiently than
unsigned integers. If the item is 18 bits long,
the SXi instruction is used to access signed
integers. Signed integer items are accessed more
efficiently if they are the leftmost bits of a
word. Unsigned integer items are accessed more
efficiently if they occupy the rightmost bits of
a word rather than the middle or leftmost bits.
Boolean items are most efficiently accessed by
allocating the whole word or the leftmost bit

of a word rather than one bit elsewhere. Other-

wrica +has; ava nanacoad oo 1r;moimmad lotasarc ara
WIDC, Lucy alc actitddluUu ad UIIDISIICU AllLCSCID aic
accessed.

FOR LOOPS

The break-even point in code generated for in-line
and FOR loop code is 3—4 iterations. Of the fol-
lowing sequences, the second generates fewer instruc-
tions and runs faster.

FOR [=0 STEP 1 UNTIL 2 DO

PWORD([I] = 0;
PWORD[0] = 0;
PWORD[1] = 0;
PWORD[2] = 0;

If four or more items were being set by the above PROC SUBPROGRAMS
sequence, the loop would have required less code but

required more time. Formal parameters should be called by value when-
ever possible. If a procedure must reference its formal
In general, the less source code in the FOR statement, call by address parameter more than once, a local
the faster it will run. Of the following code sequences, variable should be declared, set to the value of the
the second is faster since the loop limit is computed formal parameter, and subsequently referenced instead
and the value stored only once. of the formal parameter. Actual call-by-name param-
eters are referenced indirectly in the generated code;
FOR I = 0 STEP 1 UNTIL B/C DO this level of indirectness can be overcome by evalu-
PWORDIJI] = K**J; ating the parameter once and making it local to the
procedure by storing the parameter’s value in a local
A = B/C; ‘ variable.
D = K**J;
FOR I = 0 STEP 1 UNTIL A DO
PWORDIJI] = D; FUNC SUBPROGRAMS
One execption is that FOR loop execution time can The statements under the heading PROC subprograms
be reduced with more source code as in the following are true for FUNC subprograms also. When the sub-
example where the second sequence would be faster program must return a result, a function should be
even though more code would be generated. ' used rather than a procedure that returns a value.
Use of the function saves two instructions. For
FOR I = 0 STEP 1 UNTIL 89 DO example: a routine is needed to convert from integer
PWORDII] = 0; to display code, with the result to be stored in one
‘ : of three arrays, depending upon the section of code
FOR I = 0 STEP 3 UNTIL 89 DO where the call originates. If a function is used (as in
BEGIN ARRAYWORDJ[1] = FUNCTION[INT] rather than a
PWORD(I} = 0; procedure (as in PROCED (INT); ARRAYWORDJ[I]
PWORD[I+1] = 0; = INTT), two SAi k instructions are saved per call.
PWORD{I+2] = 0; The saving is realized since functions return their
END result in register X6 rather than in a memory location,
DATA CONVERSION CODING HINTS
Integer-to-character conversion is byte-oriented; the Based array references are candidates for scratch vari-
character-to~integer conversion is word-oriented. When able storage if referenced more than once in a sequence
an integer item is converted to character mode, the of source code, since based array references are
rightmost 6-bit byte is left-justified and blank filled indirect.
in the character field; yet, character-to-integer con-
version is performed by right~justifying the right end When storing into many items of the same data struc-
of the last word of the character item and zero filling ture (array) clustered together, those that refer to the
it on the left. Character field definitions can cross same word of storage should be described in the same
word boundaries. Arithmetic operations with char- order in which they occur.

acter data, including masking, makes the code machine
dependent because it reduces the string to one word.

POSSIBLE OPTIMIZATIONS

The conversions can be circumvented by the use of

bit bead functions. For example, B<0,60>FLTINGPT The SYMPL language permits the compiler to move
=INTEGER; would cause the integer to be stored in code to achieve optimization. SYMPL 1.2 and later
the floating point item without conversion. B<0,60> versions, at the present time, do not perform global
CHARACTER=INTEGER also would cause the full flow analysis. They do, however, perform many local
word to be stored in CHARACTER, not just the low- optimizations including: compile-time computation of
order six bhits. constant expressions, conversion of many multiplies to

C-2 60496400 D

shift-and-add, and elimination of many redundant
loads and stores. Therefore, if the program has any
OVERLAP or REACTIVE variables, they should be
declared to assure correct compilation on SYMPL 1.2
and later versions of the compiler.

In SYMPL 1.2 and later versions, if no CONTROL
statements with INERT, REACTIVE, DISJOINT, or
OVERLAP appear, the program is called unbehaved
and is considered to adhere to SYMPL 1.1 rules,
which are:
Formal parameters can destroy global variables
and vice versa. ‘

A based array can destroy all other based and
fixed arrays, but a fixed array does not destroy
- any other arrays.

All arrays are considered reactive.

An external call can destroy all COMMON,
XDEF and XREF variables.

Formal parameters can destroy each other.
There are no other interferences between variables.

These definitions are retained in SYMPL 1.2 and
later versions to accommodate existing programs until
correct behavior statements are inserted.

OPTIMIZATIONS POSSIBLE UNDER
GLOBAL OPTIMIZATION

The compiler is permitted all the optimizations listed
below.

Constant Subsumation: If a constant is assigned to
a variable, replace the variable with the constant up
until a point where its value may be destroyed.

Common-Expression removal: If the same expression
occurs twice and none of the variables are destroyed
in between, save the result of the first computatibn,
eliminate the code for the second computation, and
reference the saved value.

Removal of icentities: Remove statements such as
I=I; and through constant subsumation and the mech-
anisms of common~expression removal, the optimizer
might determine that a statement is in fact an identify
though this is not apparent in the source.

60496400 D

Code removal from loops: Recognize program flow
which is a loop, whether it is a formal FOR-loop or
not, and optimize any loop which is not spoiled by a
branch entering from outside. Code which is invariant
during the loop is moved in front of the loop.

Strength reduction: In a fastloop, certain multiply
operations on the induction variable are converted to
additions to a temporary variable, and certain ex~
ponentiations are similarly converted to multiplications.

This SYMPL language definition permits analysis of
program flow to discover loops (including nested loops)
and to determine which expressions are invalidated by
forward branches. It may also analyze all procedures
and functions within a module to determine which
variables they use and which ones they destroy. This
enables the optimizer to optimize over many function
or procedure calls. Since it is possible for code to be
removed over long distances in the program, the pro-
grammer must inspect the entire module to determine
OVERLAP or REACTIVE behavior.

The compiler never moves code from one procedure

to another. Suppose PROC Q stores B(I) and PROC P
references A(J) and B(I) is based on A(J). If P calls
Q, there is danger of the A(J) reference being moved
past the call to Q; this is overlapped behavior and the
CONTROL OVERLAP statement is required to pre-
vent such optimization. But if the program is re-
structured so that P and Q are parallel (neither one
calls the other), then this is not overlapped behavior.
For example:

PROC MAIN;
BEGIN

A2ANFT AN

ARRAY A[10]; ITEM AA(0);
BASED ARRAY B[10]; ITEM BB(0);

PROC INIT;
BEGIN

AA(1) = 31;
END #INIT#

P = LOC (A);
Ll:

INIT;

X= BB[I];

IF BOOLE THEN GOTO L};
END #MAIN#

C-3

Here the compiler might remove BB[I] from the
loop, causing an error that might be difficult to
locate. The statement

CONTROL OVERLAP A B;

solves this problem. However, if the code
between the INIT call and the IF BOOLE state-
ment is converted to a procedure, the problem
will not arise and no CONTROL statement is
required.

Such a problem occurs frequently in programs
having a separate initialization section: the
program can remain well-behaved if both the
initialization and the body are made into separ-
ate procedures.

Another common problem is the local based array
whose pointer is manipulated by an external proce-
dure. (The Common Memory Manager is a case in
point.) Such based arrays must be declared over-
lapped. For example:

XREF PROC GETSPC;

BASED ARRAY X[100]; iTEM XX (0);
GETSPC(X, 100);

Q=P<X>;

GETSPC(Y, 50);

R=P<X>;

C-4

Suppose the routine GETSPC is external and manages
dynamic storage, and suppose that at the GETSPC(Y,
50) call, it moves block X. Now if the optimizer re-
moves the expression P<X> and sets R to the old
P<X> from the statement Q=P<X>, the result will
be wrong.

The compiler can assume that GETSPC(Y) does not
destroy X because X is a local, and theoretically
GETSPC cannot get at X unless X is a parameter.
This assumption is not of course fully correct; how-
ever, we define the language to consider this to be
overlapped behavior and require the statement:

CONTROL OVERLAP X;

TREATMENT OF EXTERNALS AND
COMMON

All badly-behaved and all external variables (XDEF,
XREF, and COMMON) are considered destroyed by
an external call. Any global flow analysis analyzes
all possible flow of control resulting from an XDEF
label, and considers that all variables are destroyed
by eniry at such a label.

6049640C B

=
!g

"

condition word HES ifls

control word =

level A lev list
inert A var list

attribute reactive A var list
disjoint A var list
overlap A var list
weak A weak list

lev list s = lev descr
lev list Vv, V lev descr
common hame

lev descr : = based array name
var descr

var list =

—_— var list v, V var descr

60496400 D D-23

weak descr
weak list v

———

weak list

Y \
var descr o ibased array name ;

Vv weak descr }

array name
based array name

Jfunction name
= item name
label name
proc name
switeh name

weak descr

ifeg ;= mark | IFEQ | mark
ifne := mark | IFNE L mark
ifis := mark | IFLS L mark
iflg := mark | IFIQ . mark
ifgq := mark | IFGQ | mark
ifgr = mark | IFGR L mark
eject = mark | EJECT | mark
list := mark | LIST | mark
nolist := mark J NoOLIST L mark
objlst = mark | OBJIST | mark
pack := mark | PACK | mark
preset := mark | PRESET | mark
" e { mark | FI L mark }
= mark | ENDIF L mark
traceback := mark _| TRACEBACKL mark
fincall := mark _| FINCALL L mark
fastbop := mark _| FASTLOOP L mark
slowloop := mark _| SLOWLOOP|_ mark
level := mark _| LEVEL{;} L mark
3
inert += mark] INERT | mark

- 60496400 D

reactive
disjoint
overlap

weak

declaration

statement

60496400 D

:=JM
:=__|M
:=_|m_al_‘£
:= _] mark

REACTIVE |_ mark
DISJOINT |_ mark

OVERLAP L_ mark

WEAK L mark

array dec
based dec

common dec

def dec

entry dec

func dec

item dec

label dec

proc dec

status dec
switch dec

xdef dec

xref dec

formal array dec
formz:l based dec
formal func dec
formal item dec
formal label dec
formal proc dec

compound statement
exchange statement
for statement

goto statement

if statement

labeled statement
proc call statement
replacement statement

return statement
stop statement
test statement

D-25

GLOSSARY F

ARITHMETIC EXPRESSION — An expression that
yields a numeric value.

BASED ARRAY - A structure that can be super-
imposed over any area of memory during
program execution. No storage is allocated

for a based array during compilation; rather

the compiler creates a specific pointer

variable compiled with an undefined value.
Based arrays are used when the position of an
array is not known at load time.

BEAD FUNCTION — A function that accesses
consecutive bits or characters of an item.

BOOLEAN EXPRESSION — An expression that
yields a Boolean value of TRUE or FALSE.

DELIMITER — A character that is used to separate
and organize data items or statements.
SYMPL- characters classified as marks serve as
delimiting characters.

ENTRY POINT — A location within a procedure or
function that can be referenced from a calling
program. Each entry point has a name with
which it is associated.

EXCHANGE STATEMENT — A statement that
causes the exchange of values of the left-hand
and right-hand sides of the statement.

EXPRESSION — A sequence of identifiers,
constants, or function calls separated by
operators and parentheses. The evaluation of
an expression yields a value.

EXTERNAL REFERENCE — A reference in one
module to an entry point in another module.
Throughout the loading process, the loader
matches externals to the correct entry points.
External references are specified by the XREF
statement.

EXTERNAL SUBPROGRAM — A subprogram that
is compiled as a separate module.

60496400 D

FASTLOOP — A type of FOR statement where the
test and branch is at the end of the loop.
Fastloops always execute at least once. Con-
trast with slowloop.

FUNCTION — A subprogram used within an expres-
sion. It returns a value through its name.
The text of a function must contain an
assignment statement that assigns a value to the
function name. A function can also return
values through its parameters. Contrast with
procedure and main program.

IDENTIFIER — A string of 1 through 12 letters,
digits, or § beginning with a letter ($ is con-
sidered to be a letter). This manual uses the
term identifier to indicate a programmer-
defined entity. Contrast with reserved words.

INDUCTION VARIABLE — A scalar that is used as
the counter for the loop in a FOR statement.

LOGICAL OPERATOR — An operator that works
with Boolean values and yields a Boolean
result. Contrast with masking operator, num-
eric operator, and relational operator.

MAIN PROGRAM — A module that consists of a

main program header followed by a series of
declarations and one statement (usually com-
pound) and ended by a TERM statement.
Contrast with function, procedure, and sub-

program.

MASKING OPERATOR — An operator that performs
bit-by-bit operations that yield numeric results.
Contrast with logical operator, numeric operator,
and relational operator.

MODULE — A separately compiled main program or
subprogram. Compilation of a module is ter-
minated whenever a TERM statement is
encountered.

NUMERIC OPERATOR — An operator that performs
arithmetic operations to yield numeric results.
Contrast with logical operator, masking operator,
and relational operatar.

F-l@

PARALLEL ALLOCATION — The first words of
each array entry are allocated contiguously,
followed by the second words of each entry,
and so forth. Contrast with serial allocation.

P-FUNCTION — A function that references the
pointer variable for a based array.

POINTER VARIABLE — The variable created by
the compiler for a based array. The pointer
variable is set by the P-function.

PROCEDURE — A subprogram that can, but need
not, return values through any of its para-
meters. It is called when its name or one of
its alternative entry points is referenced.
Contrast with function and main program.

RELATIONAL OPERATOR — An operator that
works with arithmetic or character operands
to produce a Boolean result. Contrast
with logical operator, masking operator,
and numeric operator.

REPLACEMENT STATEMENT — A statement that
assigns a value to a scalar, subscripted array
item, P-function, bead function, or function
name.

RESERVED WORDS — Identifiers that have pre-
defined meaning to the SYMPL compiler.

SCALAR - An item that is not in an array. An
ITEM declaration outside an array defines
a scalar.

SCOPE OR VARIABLE — The set of statements in
which the declaration of the variable is valid.

®F-2

array entry are allocated contiguously. Con-
trast with parallel allocation.

SLOWLOOP — A type of statement where the test
and branch is at the beginning of the loop.
Slowloops need not execute at all. Contrast
with fastloop.

SUBPROGRAM — A function or procedure. Sub-
programs can be compiled as separate modules.
Contrast with main program.

TYPE — The representation of data. Data can be
type integer, unsigned integer, real, character,
Boolean, or status.

WEAK EXTERNAL — An external reference that is
ignored by the loader during library searching
and cannot cause any other program to be
loaded. A weak external is linked, however,
if the corresponding entry point is loaded for
any other reason.

XDEF DECLARATION — A declaration that gen-
erates an entry point that can be used by the
loader. It is used in the declaring program to
define an identifier as external. Storage is
allocated for the identifier. Contrast with
XREF declaration.

XREF DECLARATION — A declaration that gener-
ates an external reference to the specified
identifier. It is used in the referencing pro-
gram. Use of XREF implies that the identifier
has been declared to be external in another
program. No storage is allocated for the
identifier. Contrast with XDEF declaration.

60496400 D

INDEX

ABS function 4-5, D-16
Actual parameters
call-by-value 4-2
.DEF 5-3, 54
function 4-5
procedure 4-3
syntax D-20
Arithmetic
expressions 1-8, D-9
operators 1-7
Array
ARRAY declaration 24, D-13
BASED ARRAY declaration 2-12
bead function 2-8
definition 2-1
ITEM in array 2-5
preset 2-8
reactive 5-8
references 2-6
subscripts 2-6
Attributes
data items 2-1
optimization 5-7

B function 4-6
BASED ARRAY
BASED declaration 2-12, D-15
level 5-6
P function 4-7
Bead function
array item 2-8
bit 4-6, D-16
character 4-6, D-16
exchange statement 3-3
replacement statement 3-2
Blank or space 1-1
Boolean
constant 1-5, D-11
data type 2-1
expressions 1-9, D-9
expression use
FOR statement 3-5
IF statement 3-6
ITEM declaration 2-2
operators 1-7

60496400 D

Brackets
array dimension 24
DEF parameter 5-3
presetting 2-10

C function 4-6

Call
by-value parameter 4-2
compiler 6-1

print routines E-1

procedure 4-2
Character

comparison IFxx 5-5

constant 1-5, D-11

conversion 1-8

data type 2-1

ITEM declaration 2-2
Character set

CDC A-1

SYMPL 1-1, D3
Comment

conditional compilation 5-5

DEF 5-2

delimiter 1-1, 1-2, D-5
Common

COMMON declaration 4-8, D-21

level 5-6

preset 5-5
Compilation

compiler call 6-1

conditional 54

debugging 5-1

SYMPL 6-1
Constant 1-5, D-10
CONTROL statement 54, D-22
Controlled statement 3-3
Conversion

expressions 1-8

FOR statement expressions 3-3

ITEM declaration 2-3

replacement statement 3-2

Debugging
$BEGIN/SEND 5-1, 6-2
conditional compile 5-4
points-not-tested 5-9, 6-2
TRACEBACK 5-9

Index-1

Deck structure 64

Declarations
array 24, 2-12
label 3-1
scalar 2-1
scope of 4-1
STATUS 2-2
SWITCH 2-3

DEF

comment 1-2

conditional compilation 5-5
. declaration 5-2, D-8

references 5-3, D-9
Delimiters 1-2
Diagnostics B-1
Dimension

array 24

preset array 2-10
DISJOINT 5-7

ECS 5-6
Entry
array 2-5
multiword array 2-8
Entry point
alternative 4-7
ENTRY declaration 4-8, D-20
XDEF declaration 4-8
Error messages B-1
Exchange statement 3-3, D-17

Expressions
arithmetic 1-8
Boolean 1-9

External

references XREF 4-9
subprograms 4-1
weak 5-8, D-23

Fastloop
FASTLOOP 35-6
flowchart 34
Floating point (see Real)
FOR statement 3-3, 5-6, D-18
Formal parameters
DEF 5-2
expressions 4-4
procedure 4-3
syntax D-20
FORTRAN Extended
calling sequence 5-5, 6-2
FINCALL 5-5
print routines E-1
TRACEBACK 5-9
EPRC 4-1, 43

Index-2

Function
ABS 4-5
Bead 4-6
FUNC declaration 4-1
LOC 4-7
P 4.7
status 1-6

GOTO statement 3-6, D-18

Identifier 1-2
IF statement 3-6, D-18
IFxx test 5-5
INERT 5-7
Input/output FORTRAN PRINT E-1
Integer
constant 1-5, D-10
data type 2-1
ITEM declaration 2-2
ITEM
array declaration 2-5
ITEM declaration 2-1, D-12
scalar declaration 2-1

Label
GOTO statement 3-6
LABEL declaration 3-1, D-19
name 3-1, D-17
switches 2-3
LCM 5-6
LEVEL 5-6
Listing
control
compiler call 6-2
CONTROL statement 54
maps 64
LOC function 4-7, D-16
Logical expressions 1-10
Loop (see Fastloop, Slowloop)

Macro (see DEF)

Main program 4-2
Maps 64

Marks 1-2

Masking 1-9
Memory residence 5-6
Metalanguage D-1
Module 6-1

Object code list
CONTROL statement 54
O parameter 6-2
Operators 1-6

6049640C D

Optimization 5-7, C-1
OVERLAP 5-7
OVERLAY 6-1

P function 4-7, D-15
Pack switch 5-5, 6-1
Parallel array
declaration 2-4
storage 2-7
Pointer variable
BASED ARRAY 2-12
LEVEL 5-6
P function 4-7, D-15

I Points-not-tested 5-9, 6-2

Preset
array 2-8
common 4-8, 6-2
scalar 2-1
PRINT/PRINTFL E-1
Procedures
call D-18
declaration 4-2
FPRC 4-1
PROC 4-2

REACTIVE 5-7
Real

constant 1-6, D-12

data type 2-1

ITEM declaration 2-2
Relational expression 1-9
Replacement statement 3-2, D-17
Reserved words 1-3
RETURN statement 3-7, D-19

Scalar 2-1

SCM 5-6

Scope of identifiers
declarations 4-1
label 3-1

Serial array
declaration 24
storage 2-7

Slowloop
flowchart 34
SLOWLOOP 5-6

Statement
compiler-directing 5-1

60496400 D

exchange executable 3-1
replacement 3-2
within IF 3-7
Status
constant 1-6, D-11
data type 2-1
function 1-6
ITEM declaration 2-2
STATUS declaration 2-2, D-13
STOP statement 3-7, D-19
Storage format
arrays 24
calculation for arrays 2-11
replacement statement 3-2
scalars 2-1
switch 5-5
overlapped 5-7
reactive 5-7
XDEF 4-8
Subprogram
communication 4-8
compilation 6-1
declaration 4-1, D-19
Switch
GOTO statement 3-6
packing 5-5, 6-1
range check 6-1
status switch 2-3
SWITCH declaration 2-3, D-17

SYMPL call 6-1
Syntax
check 6-3

metalanguage D-1
used in text 1-1

TERM statement 3-7, 6-1
TEST statement 34, D-18
TRACEBACK 5-9, 6-2
Truth tables 1-7

WEAK 5-8, D-23

XDEF declaration 4-9, D-22
XREF declaration 4-8, D-21

SBEGIN/SEND 5-1

Index-3

—

=—m

CUT ON THIS LINE

—— S— eo——

s

COMMENT SHEET
@ CONTROL DATA

CORPORATION
TITLE: SYMPL Version 1 Reference Manual

PUBLICATION NO. 60496400 REVISION D

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manuai do you recommend to better serve your purpose?

Note specific errors discovered (please incilude page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MA

11
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

|
I
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|

.n
O
=
e}

STAPLE

CUT ON THIS LINE

