INTERNAL MAINTENANCE SPECIFICATICNS

6000 Series FORTRAN EXTENDED

VERSION 4.0

(©) COPYRIGHT CONTROL DATA CORP. 1971

Contained herein are Software Products
copyrighted by Control Data Corporation,

A reproduction of the copyright notice must
appear on all complete or partial copies.

7655

6000 FORTRAN EXTENDED 4.0

TABLE OF CONTENTS

_ction
1. Introduction 1
2. FTNTEXT 6
3. FTN 18
4. LSTPRO 2
5. OUTPTK | 36
6. PSI1CTL 40
7. STMTP 49
8. ENDPRO | 54
9. SCANNER | 65
10. . CONVERT , 90
1. ~ DATA | | | 94
12. ERPRO and FORMAT | 109
13. LISTIO (PRINT) | 129
14. ARITH 153
15. ASFPRO 190
16. CALL 197
17. GOTO 204
18. DOPROC 214
9. DPCLOSE | - 226
20. ~ DECPRO 202
21. PH1CTL | 257

22.
23.
24,
25.
26.
27.
28.
29,
30.
31.

32,

33,

34,
35.
36,
37.
38.
39.
40.
41.
42.
43,
4y,

45.

€000 FORTRAN EXTENDED 4.0

Code Generation Technique
CLCSE2

FAX (FTNXAS)

REFMAP

POST

APLISTE

PRE

READRL

DOPRE

PROSEQ

JAMMER

SQUEEZE
OPTB
SQZVARD
MACROE
BUILDDT
PASS 15
MACRS
BLDSEQ
GET
CONNECT
SYMFND
SYMDEF

DOOPT

ii

268
273
276
316
321
327
333
340
3u6
379
389
411
417
426
429
433
438
441
uuy
447
449
451
453

455

6000 FORTRAN EXTENDED 4.0

6. FNDLOOP 457
47. FNDINVR 459
48. MOVINVR 467
49, USEDEF 469
50. ADDROW | 474
51. . SETBIT 877
52. TESTRIT 478
53. PUTMS 479
54, GETMS 481
55. UPDOWN ' 483
56. READR 4 84
57. CHECK 487
58. PASS14 (DBGPHCT) 490
59. PUT 502
60. PUTUPDT 510
61. BUGACT : 513
62. GETOUT 515
63. TURNON 517
64 BUGSOUT 523
65. BUGCON 526
66 . TURNOFF 534
67. DEBUGER 537
68. BUGPRO 541
69. PUTIN 546

iii

6000 FORTRAN EXTENDED 4,0

70. SETARP

71. BUGCLO

APPENDICES

R-list Language Description
FORTRAN Extended I/0 Calling Sequences

Subroutine Linkage and Formal Referencing

iv

548
552

556
568
572

6000 FORTRAN EXTENDED 4,0

IMS Introduction

FORTRAN Extended is a two pass compiler; the input is FORTRAN
source card images and the output is an assembly language
program. = Assembly is by FTNXAS, a one pass assembler which
recognizes a subset of the COMPASS language, (this assembler is
embedded in Pass 2 of the compiler.) -

PASS 1 is divided into two phases: the FTN control card, the
header card, and declarative statements are processed in Phase 1,
- executable statements in Phase 2.

During Phase 1, the header card is processed; the COMMON,
DIMENSION and EQUIVALENCE information is held in linked lists in
working storage. These lists are processed at the end of Phase 1
and COMPASS instructions are issued for storage allocation.

Phase 2 converts the executable statements to an intermediate
language, R-list, and when the END card is seen storage is issued
for usage defined variables and program constants.

"Thus Pass 1:

1) Converts all source statements to an intermediate
language, E-list.

2) "Forms the symbol table.

3) Issues COMPASS instructions for program
identification, variable initialization and storage
allocation, program constants, traceback and formal
parameter initialization.

4) Produce the R-list intermediate file for executable
statements.

Pass 1 Task Summaries

FTN is the main controlling routine. It loads the overlays,
cracks the FIN control card, contains the I/0 buffer area and the
general purpose I/0 routines.

SCANNER- transforms all source statements into the intermediate
language, E-1list, and determines statement type. Basic syntax
errors are diagnosed.

60070. FORTRAN EXTENDED 4..

OUTPTK provides ¥OKTRAN formatted I/0 facilities for portions of
the compiler coded in FORTRAN.

LSTPRO locates in or enters into the symbol table a given
symbolic name or label. : ' '

CONVERT converts +he iisplay code representation of a constant +n
~its internal binary form. Illegal constants such as those
containing too many 4digits, non-octal digi+s in an octal constant
or constants out of range are diagnosed here.

ERPRO saves diagnostic information accumulated during Pass 1 for:

processing in Pass 2.

FLY contains a transition diagram state table used in parsing
- format statements.

DATA processes DATA statements and produces appropriate COMPASS
code for data initialization. ' : ‘ '

DOPROC examines DO statements, DO-implied 1lists, statement

numbers, statement number references and integer variable
definitions and references. Determines the characteristics of
DO's and index functions, diagnoses ‘nesting and the use of
statement numbers and generates R-list defining the beginning and
end of each DO loop and DO-implied list.

STMTP is the miscellaneous statement processor. Statements
processed are STOP, PAUSE, NAMELIST, ENTRY.

CALL processes all FORTRAN CALI statements.

ARITH processes replacement statements and translates into R~list
the arithmetic, logical, relational, or masking expressions that
legally appear in any statement.

ENDPRO generates R-list for exit code, issues storage for

variables and arrays, processes EXTERNAL names, and ' sends

CONLIST, the program constants, to the assembly code file.

PSICTL is the primary controlling routine for all pass one,
phase two processing. Each of the statement processors is called
from and returns to PS1CTL.

PRINT processes all I/0 statements.

GOTO processes all GOTO type statements and the ASSIGN statement.

O

6000 FORTRAN EXTENDED 4.0

ASFPRO processes all statement function definitions by saving the
text, and processes all statement function references by
expanding the E-list and inserting the text.

'DPCLOSE collapses the 1linked 1lists of declaratives generated
during Phase 1 into static tables. Diagnostics which can only be
produced when all declaratives are known are issued.

DECPRO processes declarative statements. Declarative information
is held in linked lists until Phase 2. Header statements cause
COMPASS instructions for program initialization to be issued.

PHICTL handles routine header cards and serves as a controlling
routine for all phase one processing. :

Pass 2 may be divided by function into two principal areas,
namely, the pre-processing of R-list and the actual code
generation. The former phase basically entails accumulating R-
list for optimization, usually one sequence, and provides for the
~expansion of all R-list macros. The various optimizing routines
are then called for code generation. Control, in turn, reverts
back to the first area and continues to fluctuate between the two
functions until all R-list on the file has been decoded. The
variable dimension and formal parameter code is sent to the
COMPASS file. If the C option was selected, Pass 1 is loaded and
receives control if more FORTRAN programs are present; otherwise
COMPASS is loaded to assemble the contents of the assembly code
(coMps) file. If the C option was not selected, the generated
code is assembled by FTNXAS and the binary sent to the binary
file.

PRE is the main controlling routine:. It calls other Pass 2
routines and also defines a sequence. It puts out inactive label
names to COMPASS, passes control.to PROSEQ for optimization, and
detects the end of R-list. ’

READRL obtains R-list file input for Pass 2. It also receives as
input macro expansions from MACROE. Wwhen called, it returns
either 'a single entry plus descriptor or an entire macro
reference. ’

DOPRE examines DO begin and DO end macro references, standard
index function macro references and all R-list instructions
generated within the innermost 1loop of a DO nest provided the
loop is well behaved. R-list instructions are generated to count
DO-loops, reference standard index functions and to materialize
the control variable when necessary.

6!+ FORTRAN' EXTEM 0 4,

MACROE expands macro references into normal R-list form.

The folloWing routines combine to perform the code optiﬁization
functions:

PROSEQ calls the optimizing routines and also handles the cu+tihq
down of a sequence should tree complexity or working storage
limitaticns become a problem.

SQUEEZE marks redundant instructions for elimination. 4
PURGE physically eliminates the instructions marked by SQUEEZE.

BUILDDT 'forms a dependency tree from the squeezed.sequence. The
tree reflects precedence relationships within the sequence.

OPT is the code selector. Having considered timing aspects and
register usages, it calls POST with the particular instruction to
be issued. : '

POST transforms the R-1list instruction into a COMPASS card image,

and eventually issues the code for the sequence to the COMPASS
file. : ‘

FTNXAS is the compiler's specialized one pass assembler.
REFMAP produces the cross reference map.
The following routines are involved in closing Pass 2.

SQZVARD eliminates redundant store operations from the VARDIM
initialization sequence and transforms corresponding storage
allocation to the COMPASS file. : o :

APLISTE converts APLIST entries to COMPASS card image then puts
them in the COMPASS file.

CLOSE2 performs the close out processing for Pass 2. Both
ITNXAS and the reference map processor, REFMAP, are called from
CLOSE2. A SUB macro reference is generated for any formal
prarameter not referenced in the program. E

JAMMER restructures the tree in case PROSEQ reduces the sequence
to a single statement and still cannot issue it. If necessary,
JAMMER can subdivide a statement issuing intermediate stores in
order to issue the statement. CoL : -

6000 FORTRAN EXTENDED 4,0

Record Manaqer Usage

FORTRAN Extended Version 4.0 includes the 6000 Record Manager for
input/output during compilation. Usage of the Record Manager
facility will be a user option, selectable at installation time.
Selection is accomplished by setting a single flag, CP=RM,
contained in the common deck OPTIONS {called during FTNTEXT
updating) . When the Record Manager is employed, field 1length
requirements will increase by approximately 5000B words for any
compiler mode.

The general installation approach has been to convert the actual
1/0 interface suboutines, located primarily in FTN and LSTPRO, to
use conventional Record Manager macro calls. In this way, FTN
I/0 macros have been disturbed as little as possible, although
some changes have proven mandatory. Certain buffer allocations
have been revised; new File Information Tables have been added to
conform to Record Manager requirments.

2.0

3.1.2

6000 FORTRAN EXTENDED 4.0
FTNTEXT

General

FINTEXT is a text file used in assembling FTN Version
4.0. It contains macros for rerforming commonly occuring
tasks and symbol definitions used in accessing bits and
fields. ' It is always used as a systems text for
assembling the comiler.

Generating FTNTEXT

The systems text file may be created by assembling the
text of FTNTEXT and EDITLIBing the resulting binary file,
or by using the assembled binary as a local text file.

Macros
I/0 and Overlay Control
LOVER OVLmn

This macro produces a call to the routine in FTN used to
load compiler overlays. The parameter consists of the
characters OVL followed by two digits specifying the
overlay level. The name OVLmn must also be defined as
entry point in FTN and contain the name of the overlay.
Control is transferred directly to the entry point of the
overlay after loading. Thus, to load and enter pass 2 of
the compiler it is sufficient to write

LOVER OVL12
where the entry point OVL12 contains CLOSE2$ in 7L
format. '
SYSRED request

All PP calls should be made using this macro. The
formatted request is the only parameter.

File names and unit numbers

3.1.4

3.1.5

3.1.6

6000 FORTRAN EXTENDED 4.0

Each file used by the compiler has a number associated
with it. For unit n, the file name and FET address are
in location RA+n+1 in the following format:

42771, file, 18/FET address

All units should be addressed symbolically for cross
reference purposes. The symbolic name is derived by
prefixing the file name, with the characters U.. Thus,
the input file should be referenced as U.INPUT.

In addition to the unit numbers, the first word address
of a file FET is an entry point with the name F.file
(except OUTPUT).

~ REWIND file, table

REWIND will reset either a file or a table to beginning
of information. In the case of a file, the Dbuffer is
flushed with an end-of-file write and the file is then
rewound. When the second optional parameter is present,
the file will be rewound if it has spilled to disk.
Otherwise, the status will be set to end of record read
and control will be returned. :

Examples:
Rewind LGO file
REWIND LGO

Rewind COMPS as a table
REWIND ‘COMPS , TABLE

OPEN file, code
OPEN causes an open call to be issued on the file
specified by the first parameter. The second parameter
selects the type of open to perform. Register defaults
are X1 for the file address and X2 for the code.
Example:

OPEN INPUT, 100B
CLOSE file, code

CLOSE performs a close call on the specified file. See
the OPEN call for details.

6000 FORTRAN EXTENDED 4.0

DO.IO file, code, return

DO.I0 is wused to initiate an I/0 operation on a file.
The code should be specified symbolically and may be one
of the following:

READ buffer read

WRITE buffer write

READS -read skip

EOR end of record write
EOF end of file write
BKSP backspace PRU

REW rewind

CLUNL close unload

If the code is preceded by a minus sign, control is not
returned until the operation completes.

If a return is selected, control is transferred to it.
Otherwise, flow resumes at the next statement.

Examples:
| a) Initiate a read on the input file
DO. IO _ INPUT, READ
b) Endfile the LGO file and wait for completion
DO. IO LGO, -EOF

C) Close unload the OPT file and transfer control
to the label STOP

vDO.IO opT, -~CLUNL, STOP
READL file, FWA, wordcount
READ wordcount number of words from the designated file

to the address specified by FWA.
Default registers are:

B6 = unit number
B7 = FWA
B1 = word count

On return, B1 contains word count minus the number of
words read.

O

3.1.10

392
3.2.1

6000 FORTRAN EXTENDED 4.0

LISTL FWA, wordcount

LISTL places a line image on the OUTPUT file. The line
starts at FWA and is wordcount number of words 1long.
Default registers are:

B7 = FWA
B1 = wordcount
WRITE file, FWA, wordcount

WRITE places information in working storage on the
selected file. The second parameter specifies the
starting location of the information in working storage
and the third parameter gives the number of words to
transfer. Default registers are: ‘

B6 = unit number
'B7 = FWA '
B1 = word count

Upon return, if B6 is equal to the unit number, a call to

CI0O was made Dbecause the buffer threshhold size was
exceeded.

Compiler Functions

‘name ENTRY. data

The ENTRY. macro creates an entry point designated by
name which contains the item specified by data.

Examples:

Define the entry word of a subroutine which is to be
entered by external calls.

S5UB ENTRY.

Define an entry point OVL12 containing the name of
the pass 2 overlay.

OVL12 ENTRY. 7LCLOSE2$

'3.2.3

6000 FORTRAN EXTENDED 4.0

MOVE wordcount, FWA, destination

This macro should be used to move a block of data. Word
count number of words are transferred, starting at Fwa,
to the destination. The move routine ensures that the
operation is non overlapping. Therefore, MOVE may be
used to move tables up or down in memory. Default
registers are: ' '

X1 = wordcount

X2 = FWA

X3 = destination
‘Example:

Move a table up ten words from its present location
(specified in X2). The table length is specified in

B4,
MOVE B4,, X1+10
SYMBOL nameloc, return

SYMBOL causes a symbol table search for the name

~specified. Nameloc is the address of a word containing

the symbol in B8R format. If the symbol is not found,
control is returned to the word following the SYMBOL call
and the symbol has been entered in the table. TIf the
search finds the symbol, control is transferred +to the
location two words after the SYMBOL call. If return is
specified, control is transferred to return for not found
and return +1 for found. Defaults assume the name to be
in X1,

Examples:
Enter TEMPAO. into the symbol table
SYMBOL =8RTEMPAO.

Determine if the symbol in X1 is in the table

SYMBOL
EQ NO
EQ YES

-10~

O

3.2.4

3.2‘7

6000 FORTRAN EXTENDED 4.0

LABEL nameloc, return

LABEL performs the same function as SYMBOL except that
the object of search is a label rather than a symbol.
For details, see the description of SYMBOL.

ADEXTS nameloc

ADEXTS places an external symbol into the symbol table.
Nameloc is the address of a word containing the name in
8R format.

ADDREF ordinal, type

ADDREF adds a reference to the refmap file (should only

- be called if RSELECT is non-zero indicating R=1 or 3).

Type reflects the type of the reference. Possible
character string values are

REF ; reference
DEF definition
FREF reference as a file name

If type is omitted, REF is assumed.

ordinal is either a memory location or register
containing the symbol table ordinal to be entered as a
reference.

Examples:

Add a reference to the variable upon return from
SYMBOL (ordinal is in B1)

ADDREFF B1, REF

Enter a definition for the symbol whose ordinal is
in TEMP

ADDREF TEMP, DEF
X BIT Y

This macro produces a set symbol named X with the value
of 2**xY for Y less than 22.

-11-

3.3
3.3.1

3.3.3

3‘3.“

6000 FORTRAN EXTENDED 4.0

RMHDR ‘macnum, iength

'RMHDR creates a header word for an'R—list macro. Macnum

is the macro number and length in the word count for the
rest of the macro excluding the header word.

Example:
Define the header word for a load macro
LOAD RMHDR 1078, 3

OUTUSE name

OUTUSE issues a USE name line to the COMPS file. It is

used in switching from one 1local relocation base to
another. If the name indicated is the current block no
line is issued, '
Example:

Switch to the CODE. block

OUTUSE CODE.
Table Manager Macros
ADDWD tnam, word
Adds a word to end of a managed table. The table is
specified by tnam and the second parameter is the word to
be added. It may be either a register expression or a
memory location.
ALLOC tnam, nwds

x

Allocate nwds to the table specifiéd by tnam. The number
of words may be either positive or negative.

ALLAE tham

Allocate almost all availabie core to table‘tnam.

TABLFS A,B,C,D,E,F,G,H,I,J

Defines externals of O©0.A and L.A for up to 10 table

names. O.A is the external word containing the table
origin and L.A holds the length,

=12~

O

3.4.1

6000 FORTRAN EXTENDED 4,0

DEBUG mode macros
CFO context

CFO is used to compare options selected on the debug
cards with actual wusages. Any conflicts in wuse are
diagnosed. Context is the character string VAR if the
symbol occurred as a variable or array and EXT if it
occurred as a subroutine or function reference.

DBGERR message

Issue an error message in debug processing.

Example:
DBGERR | BAD OPTION ON DEBUG CARD
CALLF name, RESET

CALLF 1links from a COMPASS routine to a FORTRAN routine
with no parameters. If RESET is present, B5 is set to 1
upon return from the FORTRAN routine.
Example:

Call the debug processing routine BUGPRO

CALLF BUGPRO
Test mode macros for compiler checkout

DEBUG

If this macro is called in a COMPASS routine, all
subsequent macros in this section will become defined.

SNAP fwa, lwa,len,11,ul,inc,name,no regs,no head
The SNAP macro can be used to dump a printout of the

registers or core to the output file and continue program
execution without destroying any registers.

-13-~

3.5.5

6000 FORTRAN EXTENDED 4.0

The argquments are

fwa - first word address of the area to
be dumped

lwa - last word address of the area to be
dumped

len - number of words to dump starting from fwa

11 - begin snapping on the 11 time through

‘ this snap

ul - snap until ul times through this snap

inc - snap every inc time through this snap

name - up to ten display code characters

identifying the snap
no regs - non-zero indicates no register snap
desired
suppress identification line

t

no head

If an argument is preceded by a minus sign, it is assumed
to be a word containing the value of the argument.

REGS name

Snap the registers on the first thousand times past this
snap. Identification is given by name.

FCOPY file, prefix, index

FCOPY rewinds and copies a record of the specified file
to the file SYMTAB. The character string given by prefix
and the value of index are appended to the start of the
record.

TABDMP prefix, index, fwa, lwa

TABDMP writes the table bounded by fwa and lwa to the
SYMTAB file. The character string prefix and the value
of index are appended to the beginning of the record.
ELIST name

Snap the E-list during pass 1 identifying the output with
the specified name.

SNAPT tbl, name
Snap the table tbl and identify the snap with name. The

table origin and length must be in lccations named O0.tbl
and L.tbl. '

-14=-

3.6

3.6.1

3.6.3

6000 FORTRAN EXTENDED 4.0

ONSPY FWA, lwa, name, binw

Initiates the PP program SPY to perform P register
sampling. Fwa and lwa give the bounds of the area to
watch. Name can be up to eight characters to be
displayed while spying. Binw specifies the width of the
bins wused in the register sampling. Legal values are
10B, ZOB,QOB, 100B. Default size is 40B. ‘

OFFSPY

This call to SPY turns off P register sampling.

Utility Macros

Integer Multiply and Divide

These two opdefs are provided for coding convenience.
The divide opdef will destroy the contents of B7. Both
opdefs destroy the contents of the operand registers.
Left shift opdef

This redefinition of the constant left shift instruction
ensures that negative shift counts are treated as right
circular shifts. Whenever possible, bit positions should:
have a name assigned to them so that they are included in
the cross reference listing and the bit position can be
relocated easily if necessary.

Examples:

Test the bit named P.BIT for an on condition.
Assume that the word containing the bit is in X2.

LX2 59-p.BIT
NG X2,0N

Shift the bit named P.ONE to the position where the
bit named P.TWO is currently.

Lx2 P.TWO-P.ONE
length MICCNT character string

The MICCNT macro returns a value of the length of the
character string passed as a parameter. The character

-15-

6000 FORTRAN EXTENDED 4.0

string should not contain the equivalence sign (0-6-8
punch) or be longer than one hundred characters.

name DECMIC value, digits

Form a micro called name, which is the decimal
representation of the value parameter. If the parameter
digits are present, then the micro will have at least
that many characters. Otherwise, leading zeros will be
suppressed.

name OCTMIC value, digits

OCTMIC performs the same function as DECMIC except that
an octal representation is generated.

Symbol Definitions

Whenever possible bits and fields should be accessed
symbolically. To facilitate this, FTNTEXT contains
definitions for commonly used fields and their sizes.
The format of the symbols is X.name where X is a one or
two character prefix and name is the name associated with
the symbol. Commonly used prefixes are:

P - the position of the base of a bit field in
a word

0 - table origins

L - the length of the bit field or table

S - table sizes

v - the wvalues of bits where P.name is less
than 17 :

C - CIO codes

T - values the type field in the symbol table
may assume

EL - values of E-list codes

F - file names or first word address symbol

Examples:

Test word B of a symbol table entry to see if it is
a DO generated label. Assume word B is in X2.

LX2 59-P.GEN move the bit to the sign
NG X2,DOGEN if DO generated

-16-

6000 FORTRAN EXTENDED 4.0

Extract the type field from word B of the symbol
table.

MXO0 60-L.TYP
AX2 P.TYP move to bottom of word
BX6 -X0%*X2 extract the field

Test the referenced as statement number and
referenced as format number bits. Word B is in X2.

LX2 59-P.RSN
NG X2,YESRSN if RSN bit is on
LX2 P.RSN-P.RFN

NG X2,YESRFN if RFN bit is on

-17-~

1.0

6000 FORTRAN EXTENDED 4.0

General Infofmation

FTN is the 0,0 overlay of the FORTRAN Extended compiler.
The primary functions of ‘this routine are system
interface and 1/0 processing, control card cracking and
compiler initialization. :

Entry points

FTN

This entry is from the operating system loader. It is
the entry to the code which will crack the control card
and perform compiler initialization.

LOVER

This entry issues a call to the loader to load a compiler
overlay. Control is transferred to the overlay loaded.

LDPH1

Reload the 1,0 overlay. Used upon return from COMPASS.
LDCOM

Load the COMPASS assembler. This is used for intermixed
COMPASS programs as well as when the C option is
selected.

FTNEND

This entry terminates compilation. The output and binary
buffers are flushed, scratch files evicted and CPU time
calculated. If the G option was selected, we call the

loader to execute the binary. Otherwise, END is placed
into RA+1.

-18-

O

2.8

2. 10

2.11

6000 FORTRAN EXTENDED 4.0

cIO1t.

This routine makes a call to CIO. Parameters are
X1 FET address
B6 Return address
X2 I/0 function code

If X2 is less than zero, then the call is made with auto
recall. :

REWIND

This entry will rewind the file whose unit number is in
B6. Before rewinding, an end of file is written to flush

-the buffer.

SETFET

This routine will initialize a compiler FET. Calling
parameters are:

X1 FET address

X2 FWA of buffer

X3 size of buffer
WRWDS

WRWDS performs all file writing done in the compiler on
buffered files. Calling parameters are:

B1 word count
B6 file number
- B7 FWA of area to receive data

On exit, B1 = word count - words read
REWINDT
This routine rewinds a tabled file., If the file has
spilled to disk, REWIND is called. Otherwise, the file
is set to end of record status.

B6 = file number

MVWDS

-19-

2.12

A general purpose move routine.

6000 FORTRAN EXTENDED 4.0

It can be used to move

data from point A to point B when there is no chance of

overlap.

To shuttle tables up or down, the routine

called MOVE in LSTPRO should be used.

Flag entry points

A number of locations in FIN are flag cells used in the

parts of the compiler.

below.

SAVLINE

F. name

FL
BERRORF
MACFLAG

O.GCON
L.GCON

GL.IND
LASTREC
GL.DRL
GL,.DVL

' DFLAG

DIRECT

ZFLAG

QFLAG

CBNFLG

These entry points are detailed

Address of an area that can hold 20 line
images. When I=0 is selected, this is used in
listing only lines in error. This area should
be used only if 1=0 since it occurs in the
middle of the ordinary output buffer.

First word of the FET for each of the compiler
files. Name may be INPUT, LGO, COMPS, RLIST,
RMAP, OPT, and DERUG. '

Available field length.

Batch error flag.

UFLAG or'ed with OLIST.

Origin of the global constant table (DEBUG mode) .

Length of the global constant table.
Length of DEBUG random file index.

Last record cell for DEBUG mode.

Length of the global debug routine list.
Length of the global debug variable list.

Non-zero and holds the name of the debug file
when D is selected.

Direct usage flag for LCM mode.

Non-zero if zero word load desired for external
calls without parameter lists.

Non-zero if quick mode compilation is selected.

Call by name flag is set non-zero if T is

specified.

-20~

O

PLIMIT

OPTLVL

ROPFLAG
NOLSFLG
NASAFLG
R=FLAG
RSELECT
OLIST

SUPIDFL

UFLAG
CAFLAG
F.LFN
COMPMSG
LIBRARY
OVLmn
L. TITLE
O.TITLE
TITLE1
CCOPT
DATE
PAGE
STITLE

LMAX

informative

6000 FORTRAN EXTENDED 4.0

Compiler default print limit value.

The value is zero, one or two depending on

= n.

Non-zero if rounded arithmetic is selected.
Non-zero if a listing is to be produced.
Non-zero if ANSI diagnostics are selected.
Reference‘map level. Values are 0,1,2,3.
Non-zero if R greater than or egqual to 2.
Non-zero if O was specified.

if N was selected

diagnostics).

Non-zero

Non-zero if E was selected.

Non~zero if C was selected.
Word B bits for file names.

Entry for COMPILING XXXXX message.

~ Library name for compiler overlays.

Overlay names for compiler overlay.

Length of primary title line.

Start of ﬁitle line.

Second word of title line.

Start of control card option area of title
Date in title line, DATE+1 contains iime.
Page number.

Subtitle area (for REFMAP).

Lines per page{

-21-

OPT

{suppress

line.

' 6000 FORTRAN EXTENDED 4.0

ICNT -~ .Lines remaininé'oh this page. '

Mességes and Diagnostics

COMPILING XXXXXXX |

Appears on the B display during compilation.
nnn.nn CP SECONDS COMPILATION TIME

Appears in the dayfile at end of compilation 1f ‘the CTIME
option is active.

CANT ILOAD XXXXXXX

Issued if a compiler overlay cannot be loaded.

* POINTS TO FTN CONTROL CARD ERROR

Issued when a control card error is detected. The *
approximately locates the field in error.

FTN NEEDS nnK TO EXECUTE, JOB ABORTED

Insufficient field length for_the compiler.

DEBUG MODE IMPLIES OPT =0

Issued if D and an OPT 1level other than zero are
selected. '

Environment

FTN 4.0 is set up for the standard interface to COMPASS.
This includes the locations of +the INPUT, OUTPUT and
binary FETs. The 0,0 overlay will fit entirely below .
3000B since this is the origin of the first COMPASS
overlay. :

Processing

Control Card Cracking and Processing

Upon entry from the system loader, the FTN control card
is burst in 1R format into a working storage buffer.

-22-

6000 FORTRAN EXTENDED 4.0

Bursting continues until a legal terminator is found, and
may dinvolve processing continuvation control cards.
Blanks are squeezed out of the control card image and not
placed in the working storage buffer, but a blank count
is provided in packed exponent form for each character
indicating the number of blanks preceding that character.
Blanks may be freely embedded in the control card
statement, and are ignored during option processing.

Option recognition is based on the first character of the

option. A first-character jump table leads to the actual

parameter processing. For simple one letter options, the
appropriate compiler flag is set. For more complicated
options, 1like LXRON, option recognition takes place
within the first-character code for that option set.
Checks are performed to ensure correct syntactic form and
option separation. The routine AFN is called to pack up
the filename following the equal sign for options of form
option=1fn. Once an option has been selected and
processed, an error Jjump is placed into the jump table
for that option, thereby causing a control card error to
occur if that option were again specified.

Compiler Initialization
Buffer Allocation

First, we allocate buffer space to each of the files that
will be active. If insufficient core is available, the
compilation is aborted. Scratch file buffer sizes are
allocated as follows:

(MIN.FL = 40K)
201B word buffers for MIN.FIL<fl<MIN.FL+3K
Standard buffers for MIN.FL+3K<fl1<MIN.FL+6K

50 percent of excess core to buffers for MIN.FL+6K<f1<

MIN. FL+14K
75 percent of excess core to buffers for MIN.FL+14K<
MIN.FL+26K

25 percent of excess core to buffers for FL2MIN.FL+26K

This algorithm was chosen because:

1. Space needed to compile is MIN.FL+3*number of
symbols,

2. Since most programs will have 1less vthan 1000B
symbols, they will compile in MIN.FL+6X.

-23-

6000 FORTRAN EXTENDED 4.0

3. For MIN.FL+6K to MIN.FL+26K, we are given most of
the space to the buffers so that 1long subprograms
will not overflow to disk.

4. For greater than MIN.FL+26K, most of the space is
- allocated to the working storage area assuming a
very large program.

5. In general, of the available buffer space, the long
reference map file will get 1/16th (if selected) and
the size of R-list to COMPS will be a three to one
ratio. :

I/0 setup and Final Control Card Processing

Next, we open all the compiler files that will be used.
Call TIME to get the time and date for the header 1line.

- Then scan the flags set during control card cracking to

set up the options selected in the page header 1line. It
is at this point that conflicting control card parameters
are diagnosed (OPT = 1 or 2 and D). Next, we set up all
interface cells used in communicating with COMPASS.
Finally, we issue a read on the input file and proceed to
load the 1,0 overlay. =

-24-

0:

O

1.0

6000 FORTRAN EXTENDED 4.0
LSTPRO

General

LSTPRO contains the routines which fetch from or enter
into the symbol table a giwven symbol or label.

LSTPRO calls one external routine, ERPRO.

As an instrument for storing data, the symbol table is
active during Pass 1 only. The two word symbol table is
saved for the FTNXAS assembler during Pass 2, The
assembler uses only the finding feature of LSTPRO. The
rest of Pass 2 processing accesses the table directly via
the ordinals.

Throughout Pass 1, symbol table entries are two words in
length. Any necessary information which does not fit in
the two word entry will be kept in auxiliary tables
elsewhere in memory. The symbol table will begin below
the buffers for R-list and COMPS and expand (as new
entries are made) into lower addressed consecutive
locations, while the auxiliary tables are built from the
first available location in low core and expanded into
higher addressed 1locations. These auxiliary tables
contain the DIMENSION information as well as the
information required to process COMMON and EQUIVALENCE
statements.

Usage
Entry Point Names: SYMBOL, LABEL

SYMBOL searches for a given 7-character symbol in the
symbol table. If the symbol is already in the table, the
entry is loaded and SYMBOL returns to the caller. If the
SYMBOL is not presently in the table, it is entered in .
the table, loaded, and SYMBOL returns to the caller.

LABEL searches for a given 6-character statement label in

the symbol table in exactly the same manner as SYMBOL -
searches for symbols. ‘

-25=-.

6000 FORTRAN EXTENDED 4.0

Calling Sequeﬁce and Returns

Entry is made to SYMBOL or LABEL via a direct jump (not a
return jump) with the following register requirements:

X1:

B7:

The symbol (or 1label) left justified in bits 0-47
with blank fill. The contents of bits 48-59 are
insignificant.

The address to which control is to be returned if
the symbol was not already in the table.

B7+1:The address to which control is to be returned if

the symbol was already in the table.

Control is returned to the caller with:

B1
B2
BS
X1
X2
A0
A1
A2

In

X6
X7

LI T O T [O

ordinal of word A of the symbol.

double the ordinal of word A of the entry.
1 _
word A of the entry.

word B of the entry.

starting address of the symbol table.
address of word A of the entry.

address of word B of the entry.

addition for the first occurrence of a name

natural type in the type field
0

For DEBUG mode and first usage of a variable of type T.DBG

X6 = Saved natural tYpe

X7 = DEBUG field bits (non-zero)

Diagnostics

One fatal to compilation condition may be detected:

"SYMBOL TABLE OVERFLOW" (a maximum of 8192 words is used
for the symbol table).

' No fatal to execution errors are detected.

No information diagnostics are issued.

NO non-ANSI errors are detected.

-26-

6000 FORTRAN EXTENDED 4.0

Environment

When LSTPRO 1is entered, it is expected to search for a
given symbol or label, enter the symbol or label if it is
not presently in the table, and return the entry to the
caller. Hence, no conditions are expected to be set up
by any other processors (with the exception of the common
cells noted in section 7.0 of this document).

Durlng Pass 2, and certain pbases of 1/0 process1ng, the
storing feature of LSTPRO is disabled.

Structure
SYMBOL
SYMBOL hashes the 7-character symbol (to be searched for)

into a 7-bit pointer. This value is added to the base
address of a table (SLIST) to load a word which contains

- an ordinal of a symbol table entry which is the head of

this particular list. Routine SLCOMM is then entered.
LABEL

LABEL, hashes the 6-character statement 1label (to be
searched for) into a 5-bit pointer. This value is added
to the base address of a table (LLIST) to lcad a word
which contains an ordinal of a symbol table entry which
is the head of this particular list. A jump is then
taken to SLCOMM.

SLCOMM

SLCOMM transfers the symbol (or label) to the specific
register (X0). Then, if this particular list 1is empty,
the symbol is entered in the symbol table, its ordinal is
set as the head of the list and the not-found exit is
taken. If the list is not empty, SLCOMM sets the head of
the list ordinal in B4 and jumps to TOP.

TOP
TOP is the main search loop of SYMBOL. After loading the
symbol located at the head of the 1list, the 1loop is

entered to compare the symbol searched for with each
symbol already in the list. The comparison is an integer

_27-

5.8

6000 FORTRAN EXTENDED 4.0

subtraction. The list is searched until a match is fouwnd
or the end of list is found (Px=0).

ENTER

Control transfers to ENTER when it is determined (at TOP)
that the current symbol is a new symbol and consequently
must be entered in the table. The new symbol is appended
to the end of the symbol chain.

~ RETRN

RETRN 1is the not-found exit. B5 is set to 1, B2 is set
to twice the ordinal of the current symbol (B1+B1), the
first word of the entry is loaded into X1, and a jump is
taken to the address specified in the B7 register.

FOUND

FOUND is the found exit. Its function is exactly the
same as RETRN except that the Jjump is +taken to the
address specified in B7+1.

NTYPE

This routine determines the natural type of a variable
according to the implicit type table. On entry, the name
is in X1. When it has been typed, X0 holds the type
(right adjusted) and X6 contains the type in the type

field.

LDRPH1

A transfer to this entry point will reload pass one of
the compiler after resetting FETS and clearing batch
control cells.. SYMORD (number of symbols) , NAALN (next
available APLIST number), NDOTEMP {(number of DO
temporaries), PASS2R (starting value of pass 2 R number) ,
and P2NOGO (GO/NOGO flag for DEBUG mode) are reset. The
symbol entering facility that was deactivated for FTNXAS
is restored. Finally, we load pass one of the compiler
(1,4 overlay if DEBUG mode, 1,1 overlay normally)

LIST

- LIST places a line on the output file, decreases the line

count, and forces a new page if necessary. On entry, B1
= word count and B7 = ¥FWA of line.

-28~

O

5.11

5.12

5.13

5.16

6000 FORTRAN EXTENDED 4.0

OPENF/CLOSEF

These entries can be used to open and close files. X1
holds the FET address and X2 the open/close code. The
call is made with auto recall, after waiting for file
activity to cease. '

MOVE -

This routine will move the number of words specified by
X1 from a starting address in X2 to a destination given
by X3.

CONDEC

CONDEC converts the binary integer (less than 2 ** 17) in
X1 to display code. On exit, X6 contains (in 10H form)
the integer, right adjusted, and B2 holds six times the
number of digits converted.

OUTUSE

On entry, X6 holds the address of a block name. A USE
name is issued to COMPS and blocks are switched.

RSSW

RSSW is called to sét switches so that SYMBOL and LABEL
do not add an entry to the symbol table if the name is
not found. ; :

KSSwW

KSSW is called to restore the switches set by RSSW to
their original state.

-29-

NAME:

¥P:
DEF:

FUN:

COoM:
DIM:

EQU:

P+:

6000 FORTRAN EXTENDED 4.0

qumats

Symbol Table Formats

VFD W42/NAME,1/FP, 1/DEF, 1/FUN,1/COM, 1/DIM, 1/EQU,12/P+
WORD A

(BITS 59-18) The name of the symbol or label, 7 (6 if a
label) or less display code characters 1left justified

~with blank fill. :

(BIT 17) set if the symbol is a formal parameter.
(BIT 16) Set when the symbol becomes defined.

(BIT 15) sSet if the symbol has been used as a function
{(external, ASF, or inline).

(BIT 14) Set if the symbol is in common.
(BIT 13) Set if the symbol is a dimensioned variable.

(BIT 12) set if the symbol is a non-base member of an
equivalence class.

(BITS 0-11) The ordinal of the symbol table entry, in

this list, which is the next greater entry than this
entry, or if none exists, P+ = 0.

-30~-

6000'EORTRAN EXTENDED 4.0

VFD 4/TYP,1/ASF,1/EXT,1/0,12/DIMP,1/VAR,1/0,2/RL,
18/RA,7/RB, 10/0,2/1VL

WORD B FOR VARIABLES AND ARRAYS

TYP: (BITS 59-56) Contains the type of the symbol.
0 - logical 1 - integer
2 - real ; 3 - double
4 - complex ' 5 - ECs
6 - label 7 - RETURNS parameter
10 - NAMELIST name 11 - unused
12 - entry point 13 - LFN
14 - CGS ‘15 - unused
16 - unused 17 - unused debug variable
ASF: (BIT 55) Set for arithmetic statement functions.
EXT: (BIT 54) External symbol if set.
DIMP: (BITS 52 - 41) The ordinal of the dimension or
equivalence information.
VAR: (BIT 40) Set if a symbol is referenced as a variable.
RL: (BITS 38-37) Holds type of relocation.
0 -~ absolute "1 - local or program
2 - common 3 - external
RA: (BITS 36-19) The relative address of the symbol.
RB: (BITS 18-12) The relocation base that the symbol is in.
LVL: (BITS 1-Q) The 1level number of the symbol when it is a
variable, indicating the SCM/ICM residency of the
variable. '

-31-

6000 FORTRAN EXTENDED 4.0

VFD u/TYP,1/ASF,1/EXT,1/0,12/DIMP,1/VAR,1/0,2/RL,

WORD B FOR DEBUG MODE

AC: Selects array bounds checking or CALL tracing.

SF: Selects stores checking or function tracing.

IF: 0 for arrays and stores; 1 for calls and functions.
~NOT: Indicates if debugging is selected for thié symbol.
DTO: Ordinal into the debug table.

VFD u/TYP,1/ASF,1/EXT,2/0,6/FARG,1/BEF,1/INF,1/O,'
1/NRET, 1/NORF,1/VAR, 170, 2/RL, 18/RA, 7/R8, 12 /0

WORD B FOR FUNCTIONS AND SUBPROGRAMS

FARG: Number of arguments.

BEF: set for basic external functions.
INF: Set for intrinsic functions.

NRET: Set for functions thét-do no£ return.

NORF: Set for functions which do not have side effects.

DLT:

DLN:

TRO: .

6000 FORTRAN EXTENDED 4.0

VFD 4/TYP,1/GEN,1/RZ,1/RSN,1/DSN, 1/DFN,1/RFN, 1/RAS,
1/DLT, 12/DLN, 12/TRO, 12/L,12/0

WORD B FOR PROGRAM IABELS
Type of the label (will always be 6).

Zero for program labels; set for compiler generated
labels.

Set if label is referenced prior to current DO nest.

set if the symbol is referenced as a statement number
(i.e. active label).

Set if the symbol is defined as a statement number.
Set if the symbol is defined as a format number.
Set if the symbol is referenced as a format number.

Set 1if the label is referenced in context as a statement
number.

Set if the label is used as a DO loop terminator.
Line number the label is defined on.
Label table ordinal (Trace option in debug mode).

Ordinal of the loop that the label is referenced in.

-33-

TYP:

GEN:

6000 FORTRAN EXTENDED 4.0

VFD 4/TYP,1/GEN,1/E, /X, 1/1,1/M,1/V,1/3,1/R,
1270, 12/TLLN,12/O 1270

WORD B FOR DO GENERATED LABELS

Type of the label (will always be 6).
Always set for DO generated'labels.
Set if loop may be entered at a p01nt other than the top.

Set if the loop may be exited at a point other than the
terminating statement of the DO.

Set if the loop contains another loop.
Set if loop control variable must be materialized.

Set 1if control variable is equal to incremental variable

(DO 10 K=1,N,K).

Set if the loop contains an external reference.

O

Set if all integer variables are considered to be
redefined within the loop.

The line number associated with the top of the loop.

-34-

8.0

6000 FORTRAN EXTENDED 4.0

When LSTPRO is entered, it is assumed that SYM1 (RA+12B)
and SYMEND have been initialized. Thereafter, LSTPRO
updates SYMEND each time a new symbol or 1abe1 is entered

~in the symbol table.

In order to find a given symbol in the symbol table (or
to determine that the symbol is not yet in the table)
with the least number of comparisons, the symbol table is
actually broken down into a number of short lists. Each
symbol in a 1list is linked to the other symbols in the
list. Each symbol contains a pointer (P+) to the next
symbol in this list.

Although each 1list 1is 1linked only within itself, this
does not mean that the elements of one particular 1list
must be stored consecutively in memory. As each new
symbol is encountered, it is simply stored in +the next
available location, and pointers are set up to reflect
its location in the table.

Each one of the short lists must have a starting point,
or head of the list. Further, we must have a way of
determinlng what 1list a particular symbol belongs to.
This is done by commutatively forming (by +the use of
shifts and the exclusive OR (logical difference
operation) a 7-bit value or a 5-bit value for symbols or
labels respectively. This value is an index into one of
two local tables (SLIST for symbols, LLIST for 1labels)
which contain symbol table ordinals which point to the
head of that list. 1Initially, the SLIST and LLIST tables
of list heads are set to zero. If a given cell is loaded
that is zero, then we know this is the first symbol in
this 1list and therefore no searching must be done. The
symbol is merely entered, set as the head of this 1list,

and a return is made to the caller.

-35-

6000 FORTRAN EXTENDED 4.0

OUTPTK

1.0 General Information
OUTPTK is ‘a combined KODER-OUTPTC facility for use by
portions of the compiler coded in FORTRAN. The format
processing offered is a subset of that available in
KODER. ’

2.0 Entry Points

2.1 ouTcCI.
This entry corresponds to the initial call entry of the
FORTRAN object time coded output routine. X1 holds the
unit number and A1 points to the I70 parameter list.

2,2 oUTPUT
The file number of the output file.

3.0 Messages And Diagnostics
If an illegal format specification is used, OUTPTK will
cause the compiler to mode out by jumping to -1.

4.0 Environment

4.1 External Routines

All output 1lines are written using LIST if the file is
the output file or WRWDS if some other file is specified.

~-36-

6000 FORTRAN EXTENDED 4.0

Processing
General

On entry at OUTCI., the file number and format location
are saved. 1Initial vrpointers to the format are
established and an entry is made in the parenthesis level
stack for the zero level parenthesis.

For subsequent intermediate entries at OUTCR., a certain
amount of initialization is performed to setup the format
word, the output word, format shift and the number of
bits filled in the output word.

At NEXTDESC, we extract the next format character, for a
digit DECIMAL is called to compute the repeat count.
Then if the format descriptor requires a field width
value (Aw, Iw, etc.), we call DECIMAL once more. Then,
we transfer to the appropriate processing section via a
jump vector. After a specification is processed, control
returns to NEXTDESC.

R Format

The R format data item is shifted to an A format data
item and A format processing is used. :

A Format

If the number of characters to be output will fit into
the space remaining in the current output word, then the
space 1is cleared and the data inserted. Otherwise, the
data is split between the current word and the next word.

I Format
The constant is converted to display code and positioned
to the top of the word, then A format processing is used

to insert it. For widths larger than ten, spaces will be
filled.

~37-

6000 FORTRAN EXTENDED 4.0

A Format

For A specification greater than twenty characters wide,
the excess is space filled and the width treated as
twenty characters. For widths greater than ten, the
upper and lower parts of the data word are converted in
parallel and added to the line via RFORM and AFORM.

Widths less than or equal to ten characters are converted
in a separate loop. Leading zero digits will be replaced
by the character replicated ten times in OFORMCON. Thus,
to obtain octal output with 1leading zero suppression,

~this constant should be changed to blanks.

H Format

The Hollerith string is issued via AFORM in groups with a
maximum size of ten characters.

Delimited Hollerith String

The initial delimiter (asterisk or quote) is obtained.
Then characters are accumulated and issued via AFORM (in
groups of ten) until a matching delimiter is found.

Left Parenthesis

The current restart information (beginning group address
and repeat count) is saved in the parenthesis level
stack. Then the new repeat counter is established.

Right Parenthesis

First, we decrement the group repeat count. If it is not
exhausted, we reset to the group start and exit to
NEXTDESC. If +this is the =zero 1level, a new line is
forced and the format is restarted at the last left
parenthesis encountered. For a non-zero level, we remove
a member from the parenthesis level stack and reset to
it. ‘

T Format
For a tab exceeding the present maximum line length, we
space fill to the tab position. In the case of a

backward tab, the pointers are simply reset to the proper
word and bit position.

-38-

5.11

5.12

6000 FORTRAN EXTENDED 4.0

X Format

The proper number of spaces are filled by SPACE.

Slash Processing

The line pointers are reset to the maximum length so far
reached. Then the line is padded out until a =zero byte
line terminator can be appended. Then, the line is
written to the unit specified in the initial call.
Finally, the registers are reset to start a new line.
SPACE

This routine will append a specified number of blanks to
the line under construction.

1.0

6000 FORTRAN EXTENDED 4.0
PS1CTL$

General Information

PS1CTL$ is the interface routine between SCANNER and the
statement processors for all non-specification
statements. The Pass1 table manager routines and the
routine to collect references when R=2 or R=3 is
selected, are located in PSICTLS. ' :

Entry Points
PH2CTL

This is the entry to phase two statement processing.
Control is passed to PH2CTL by DPCLOSE.

IPH2

This routine sets up phase two for executable statement
processing. Space is allocated for the ARLIST buffer
used by ARITH and the base address of the buffer is
substituted into all references to it within ARITH. If
debug mode is selected, we set up the pointer block used
in the FORTRAN part of Pass 1,4 and call BUGPRO. Then
the FORTRAN copies of the pointers are copied back to the
appropriate COMPASS versions and BUGACT is called to turn
on options if packet information is present.

PH2RETN

All statement processors return here upon completion of
processing.

LDPS2

Terminate pass one processing and load pass two of the
compiler. If in debug mode, call BUGSOUT to scan the
AREA list for errors. The R-list file is rewound and the
reference map file dumped if R=2 or 3. If there were
fatal errors, we will load the 1,3 overlay. Otherwise,
the 1,2 (OPT=0 and 1) or the 1,5 (OPT=2) overlay will be
loaded.

-40-

O

6000 FORTRAN EXTENDED 4.0

ADDREF

ADDREF is called by the statement processors, when the R
option is selected, to add a reference for a symbol. The
references are collected into lines and the lines are
dumped to the REFMAP table for processing at the end of
pass two when all symbols have been assigned addresses.
Each line consists of a number of fifteen bit parcels
terminated by one or more zero parcels to fill out the
last word. The first parcel holds the 1line number (in
binary). Succeeding parcels have the form

170, 2/REF, DEF code, 12/SYMTAB ordinal
The low order parcel of the last word contains the number
of parcels in the last word in the format 3/parcel count,
12/70.
ALLOC
Adjust table size for table n.
On entry:

aAQ table number

i

X5 <0 then the length of the table (L.TBIL) and
size of the table (S.TBL) will be made
equal to -X5.

X5 2 0 then the size of the table will be
adjusted such that S.TBL is greater than
or equal to X5+ the length of the table.

On exit:
A0 = table number
X7 = non~-zero if the space was allocated.

-41-

2.11

6000 FORTRAN EXTENDED 4.0

ADDWD

Adds a word to the end of a managed table.

On entry:

A0 = table number

X1 = word to be added

BS -= | 1
On exit:

X6 = - word that was added |

X7 = hew length or zero if no space available
ALLAE

Allocates almost all available core to table n. On
entry, A0 contains the table number.

INITBL

This entry initializes tables for a phase. On entry, X6
holds the address to be used as the low core address of
scratch storage. It is called from PH1CTL, the start of
DPCLOSE and the end of DPCLOSE.

PTUO

This routine is called to pack tables to high core before
loading pass two. On entry, X1 holds (right adjusted) in

Successive 6 bit fields the table number plus one of
tables to be saved in high core.

CFMTN

Set non-zero when it is necessary to check for a deleted
jump to the next label and the next label is a format.

LSFILIG

Set non-zero if the last statement was an unconditional
transfer of control.

- 2-

2.13

2.14

3.0

4.2

6000 FORTRAN EXTENDED 4,0

DOFLAG
DO loop nesting depth value.
CTBLOVL

Issues the diagnostic COMPILER TABLE OVERFLOW.

Diagnostic Messages
CONFLICTING USE OF LABEL Fatal to execution

OUT OF SEQUENCE DECLARATIVE STATEMENT Fatal to execution

NO PATH TO THIS STATEMENT Informative
COMPILER TABLE OVERFLOW Fatal to compilation
NO EXECUTABLES IN BLOCK DATA Fatal to execution

HEADER CARD NOT FIRST STATEMENT Fatal to execution

Environment

LOWCORE CELLS

12B SYM1 FWA of symbol table

13B SYMEND IWA of symbol table

17B DIMI '30/Length, 30/FWA of dim table

21B LTYPE - Type of logical IF

23B CLABEL Label of current statement

24B TYPE Statement type code

32B SELIST FWA of E-LIST

34B LELIST E-LIST pointer for true side of IF
37B DUKE Binary line count

518 ATYPE Arithmetic statement type

52B NGLN Next generated label

56B PROGRAM 12/200n,48/0 where n=0 for program

n=1 for subroutine
v n=2 for function
54B NRLN Next available number for RI
COMMON BLOCKS

7/ Blank common used by debug processing

-43-

6000 FORTRAN EXTENDED 4.0

/DOLVL/ Do nesting depth level

/STSORD/ Number of statement temporaries generated
for a single statement

/MACBUF¥/ Temporary scratch area

/BUMBLEB/ Cells éertinent to debug processing

/BIGBUGS/ Flags for major debug specification types

/NONFTNX/ SCANNER to FORTRAN communication cells

Precessing

PH2CTL

Entry to Pass 1, Phase 2

a. Set next generated statement label to 1.

b. Set next available R number to 2. (0,1 reserved for
B0, A0 respectively)

IPH2

Initialize Phase 2 for Executable Statement Processing

a. If the system programmer package option is selected,
set the length of the instrinsic function table to

include these extra functions.

b. Set FSTEX to DUKE, first executable satement for
DEBUG.

C. If processing block data, executables are‘illegal;‘
issue diagnostic and continue through main loop.

d. If less than 400 words of working storage are
‘ available issue Fatal to Compilation error.

e. ~ Allocate space for ARLIST buffer and set up base so
that it's address can be substituted when referenced)
in Passt.

f. If in non-DEBUG mode, return to caller. If in DEBRUG
mode:

-44-

6000 FORTRAN EXTENDED 4.0

1. Set up FORTRAN correspondents of COMPASS
pointers via POINTRS and set up tables via
BUGPRO.

2. Readjust COMPASS pointers to reflect changes
made by FORTRAN routines. '

3. If there 1is packet information, activate the
options via BUGACT.

4, If variable dimensioned F.P.'s set up dim table
for them.

5. Return to caller.

PH2RETN

Return from statement processors

de

If the statement was labeled, check for termination
of DO loop via DOILAB.

Form RLIST for end of statement and send to RLIST
file.

Terminate line of references for R > 0.

If not in DEBUG mode continue with main loop, 5.4.
If in DEBUG mode:

If executables have begun and there is packet
information, set up FORTRAN pointers via POINTRS and
deactivate options which had been turned on at
5.2.f.3 via BUGACT.

If there were comment cards, activate and deactivate
options via BUGACT which were supposed to be
activated or deactivated at those line numbers. The
process is repeated for the update idents for the
comment cards.

If executable statements have not begun and there is
no packet information, check DTYPE to see if the
next statement is a debug statement.

If it is, call SCANNER to put the statement into E-
list.

-45-

6000 FORTRAN EXTENDED 4.0

i. If there is any packet information, set up the
FORTRAN pointers via POINTRS and activate options
via BUGACT.

j. If SCANNER did not type the statement, call GETTYPE
to do so.

k. If it is a bad or non action (DEBUG or AREA)
statement, repeat loop starting at 5.3.e.

1. For an action statement set up FORTRAN pointers via

' POINTRS, set up area and options list locations and
convert statement to table form via BUGCON.

m, For statements other than OFF call TURNON +to
activate the option, and continue through 1loop
beginning at 5.3.e.

n. If the next statement is not debug (5.3.g) call
SCANNER to get the statement. If the statement is a
bad FORTRAN statement and the next statement is
debug, it will be that debug statement that SCANNER
returns.

O. So check for. a valid debug card, and repeat loop
5.3.e - 5.3.m.

pP. If it is a program card and executables have begun,
or there is no packet 1nformat10n, go to 5.4.b. The
RJ SCANNER can be skipped since there already is a
statement in E-LIST ready to be processed.

qg. If executables have begun and there is packet
information, set up pointers via POINTRS and
activate the options via BUGACT; go to 5.4.b.

 PH2SCAN

Main loop for processing executable statements.

a.

b.

Call SCANNER to put the next statement into E-list.
If the statement is a declarative (type 2-9), issue
"out-of-sequence" diagnostic. For a header carqd,

(type 0-1) issue "header card not 1st) diagnostic.

For FORMAT:

O

g.
h.

LDPS2

Ae

6000 FORTRAN EXTENDED 4.0

1. Check for the following condition and issue
diagnostic if it holds:

IF (expr) N1,N2,N3
N1 FORMAT (...)

where the IF processor deleted the jump to Ni.

2. Call FORMAT to process the FORMAT statement and
return to 5.3.c.

For any other statement: Check for unreachable
statements.

1. If the previous statement was not an
unconditional jump or if the statement has a
label, it is not unreachable, so go to 5.4.e.

2. If the statement does not terminate the block,
issue the "unreachable statement" diagnostic.

If there is a label, process it via DOLARCN.

Reset number of statement temporaries used to 0 and
update STMAX, number of ST.'s needed, to the maximum
of previous STMAX and STSORD.

Reset '"next available R number" to 2 if necessary.

If executables have not begun and the current
statement is executable, initialize the compiler for
Phase 2.

Jump to the appropriate statement processor using
the statement type and the table VTABL. The DATA
and NAMELIST statement processors return to the
return routine at 5.3.c. For END statement and end-
of~-file (END card assumed), return is to LDPS2 (5.5)
to load Pass2. All other statements return to the
start of the common return routine (5.3).

If in debug mode check for errors in the AREA list.

1. If FWA = LWA, there was no AREA list.

-47-

6000 FORTRAN EXTENDED 4.0

2. call BUGSOUT to scan the AREA list for errors
and issue diagnostic if necessary.

Rewind RLIST file.

If reference map level 0, terminate current lint of
references.

1. Terminate the reference list.

2. Add dimension and common table information to
the end of reference map information.

If there were fatal errors, load (1,3) overlay to
print the errors. ‘

If the ¢Q option (quick mode ~ pass 1 compilation
only) is not selected load either (1,2) overlay for
OPT = 0,1 or the (1,5) overlay for OPT = 2.

If 9 is specified and refmap is selected, load (1,2)
overlay to process the reference map.

If Q is selected and input buffer is empty,

terminate compilation. Otherwise reload Phase 1 for
compilation of subsequent program units.

~48-

1.0

6000 FORTRAN EXTENDED 4.0

STMTP

General Information
STMTP is the miscellaneous statement processor.
NAMELIST, ENTRY, STOP, PAUSE are ©processed here. In

addition, there are three entries for forming macros to
place on the COMPS file.

Entry Points
NAMELST

Processes the NAMELIST statement using E-1list produced in

- SCANNER. Line images written to the <COMPS file are

produced.
ENTRY

Processes the ENTRY statement. Appropriate macros are
written to the R-list and COMPS files.

ar

STOPP
Processes the STOP stétement.
PAUSEP
Processes the PAUSE statement.
SVARG

Saves an argument to a COMPs file macro under
construction. On entry:

B7 = number of words in argument buffer (must be
initialized to zero and maintained between
calls) '

B7 = argument number

X6 = 12/72000B+conversion code, 6/0, 42/arg

-49-

6000 FORTRAN EXTENDED 4.0

Successive calls to SVARG must have ascending argument
numbers. Conversion codes are:

0 - arg is a symbol table ordinal

1 - octal conversion (arg is -377777 to 377777)

2 -~ integer conversion (arg is 0-9)
F1AMAC-
Form and output a one argument macro call to the COMPS
file whose argument is a name in the symbol table. On

entry:

X1

macro name

X6

L}

symbol table ordinal
FMAC

Format and output the macro whose arguments have been
saved via SVARG calls. On entry:

X1 = 10H macro name

NARGS = number of arguments

Diagnostics And Messages
NAMELIST STATEMENT SYNTAX ERROR

BAD GROUP NAME

GROUP NAME NOT IN SLASHES

CURRENT OBJECT NOT A VARIABLE

PRESENT USE CONFLICTS WITH PREVIOUS APPEARANCE
VARIABLE DIMENSIONS NOT ALLOWED IN NAMELIST
NAMELIST STATEMENT IS NON-ANSI

ENTRY STATEMENT IN A DO LOOP

ENTRY STATEMENT IS NON-ANSI

-50-

O

6000 FORTRAN EXTENDED 4.0

PREVIOUS USE OF NAME IN ANOTHER CONTEXT
SYNTAX ERROR

ENTRY STATEMENT IN MAIN PROGRAM
LABELED ENTRY STATEMENT

BAD SYNTAX IN STOP OR PAUSE STATEMENT

Environment

The statement processors expect the statements in E-list
starting at the location contained in SELIST. The symbol
table will be at SYMt and the dimension table at DIMI1,
CLABEL holds the current statement label. NRILN the next
available R-1list number.

Processing
NAMELST

On entry, we switch to the DATA. block. If the first E-
list item is not a slash, then bad syntax is diagnosed.
If the second item is not a name, then a bad group name
is diagnosed. The group name is entered into the symbol
table. If it is already in the table, the message ''prior
usage in another context" will be elicited. The word B
bits for a namelist group name will be combined with the
address in the DATA. block and word B will be updated.
Then, an ADDREF call is made if R=2 or 3.

Next, F1AMAC is called to output the group name macro.
If the group name 1is not followed by a slash, a
diagnostic will be produced.

Next comes a loop to process the items in the list of the
namelist. A name is extracted and PNV 1is called to
process the namelist variable. Upon return, a check is
made for a comma. If one occurs, the previous process is
iterated. Otherwise, the group is terminated.

If the 1last item was a slash, we restart at group name

processing. If it was not, an end of statement a syntax
error is produced. o

-51-

6000 FORTRAN EXTENDED 4.0

PNV ~ Process Namelist Variable

A symbol call is made. For first occurrence, the type
and VAR bits are set. If the symbol is ordinal one and
this 1is not a function subprogram, an error is produced.
An error is produced if the item is type ECS, a function

or an external. Next, the DEF bit is set and the DIMP

field extracted. A SVARG call is made with the variable
name. Next, we prepare the type and SVARG its value. If
the item is equivalenced arguments 3 (BASE) and 4 (BIAS)
are prepared and saved. For a formal parameter, argument
five is saved. An error message is issued at this point
if the item 1is variably dimensioned. Otherwise, D1,
D1*D2 and D1*D2%*D3 are computed and saved as necessary.
Finally, the number of arguments is saved, a reference
collected, and the macro formed via FMAC. Then the
routine exits.

ENTRY

If this is a main program, we issue a fatal error for an
entry statement. If it is labeled, another fatal error
is produced. A basic syntax check for a name followed by
an end of statement marker is made. The name is placed
into the symbol table and the type set to entry. The
ordinal is placed into the entry macro for R-list and in
O.CEP (ordinal of current entry point, used by RTNPROC).

If no executable statements have occurred, we make the
address of this entry the same as the main and issue an
FEQU macro to the COMPsS file. Then references are
gathered, the symtab ordinal placed in the ENTR table and
a non-ANSI error flagged before exiting.

When executable code has occurred, additional processing
is required. A check is made for formal parameters or
RETURNS. If this routine has formal parameters, we must
place FTNNOP. and NOPS. into the symbol table as well as
write proper values for them to the COMPS. file. Having
written the DATA values to COMPS, O.SPEC is cleared to
prevent issuing them again for a subsequent ENTRY
statement. If we are within a DO loop, a diagnostic is
produced. If this is not the case, we join terminal
processing for the no executable case having written the
R-list entry macro.

STOP, PAUSE

52~

-

6000 FORTRAN EXTENDED 4.0

The object routine name is placed in X1 (STOP. or PAUSE.)
and PSP (Process STOP, PAUSE) is called. For STOP
statements, the no return bit is set in word B of the
symbol table entry for STOP.

PSP

Enter the name in the symbol table setting the external
bit if the symbol is first entered. The ordinal is
placed in the R-1list buffer. If an EOS occurs next, we
use blanks for the message string. If the next item is
not a constant, an error is issued. The item after the
constant must be an end of statement. If the constant is
not integer, it is assumed to be a Hollerith constant.
More than five digits or a non-octal digit will also
produce errors. After wvalidating the constant, it is
converted to H form, placed in the constant table, and
the base, bias saved. Finally, the R-1list macro is
formed and written.

SVARG

The argument number and the conversion mode plus argument
are combined and stored in ABUF.

F1AMAC

The number of arguments is set to one, the argument saved
and FMAC called.

FMAC

After initializing registers, we compute the difference
between the last argument and this argument number. That
many commas are added to the string under contruction.
Then the argument is unpacked and control passed to the
proper argument processor for conversion (symbol table
entry, octal constant, integer constant). After
conversion, the characters are appended to the string.
When NARGS arguments have been handled, we append a zero
byte and write the entire line to the COMPs file.

-53-

1.0

2.3

6000 FORTRAN EXTENDED 4.0

' ENDPRO

General Information

ENDPRO is called when the END card is encountered. All
phase two cleanup, diagnostics and terminal processing
occur here. In addition, all RETURN statements are
processed within ENDPRO.

Entry Points

‘END

This entry is called from PS1CTL when the END card is
encountered.

ECGS

This subroutine enters a compiler generated symbol into
the symbol table. Type is set to CGS, RL=1, and RB=CODE.
On entry, X1=8R name,

ENTRY.D

This cell holds the RL, RA and RB of ENTRY. . It is set
in PH1CTL.

oscC

This routine outputs storage for symbols in a table. On
entry: »

X5 = pseudo op word
X6 = FWA of table
X7 = length

Table entries are formatted as follows:
VFD 6/J, 18/word count; 18/symtab ordinal, 18/J

Where J is ignored by OSC.

-54-

2.7

6000 FORTRAN EXTENDED 4.0

BTOCT

Converts a binary numbers to octal. On entry, X1 holds
the number. On exit, , X6 and X7 hold the display coded
octal constant.

BEFTB

Base address of the basic external function table.
L.BEFTB

Zero word at the end of the basic external function
table.

RETURN

Entry in ENDPRO to process the FORTRAN RETURN statement.

Diagnostics and Messages

END STATEMENT ACTING AS RETURN IS NON-ANSI
FUNCTION NOT DEFINED |
RETURN STATEMENT IN MAIN PROGRAM

RETURNS STATEMENT MUST BE IN A SUBROUTINE
ILLEGAL NAME IN RETURNS STATEMENT

RETURNS STATEMENT IS NON-ANSI

6000 FORTRAN EXTENDED 4.0

Environment
Common Blocks

MACBUF - Used by RETURN in constructlng the PR-list
macros for return code.

Externals

The major externals are llsted below with an indication
of their use.

DOEND Located in DOPROC. called when the END card is
found so as to detect unterminated DO nests.

SYMORD Holds the number of entries in the symbol table

ST. Holds the ordinal of ST. in the symbol table

CON. - Holds the ordinal of CON. in the symbol table

DATA. Holds the length of the DATA. block

DATA.. Holds the length of the DATA.. block

0.CBT Origin of the common block table

N.FP Holds the number of formal parameters for this
routine '

DFLAG Debug mode indicator

MACFLAG Indicates E or O options selected

RSELECT Indicates R=2 or 3 selected

ERPRO Routine to issue fatal errors
ERPROI Routine to issue informative errors
ABAER Routine to issue ANSI errors

LWAWORK Holds the last word address of working storage
WB. ECGS Word B for compiler generated symbols

WB. PROG Word B for a program entry

-56~-

WB. FP
WB. FMT

LSFLG

SAVTBL

PTU

N.TLAB

0.SCR
0.DIM
0.SCA

0.FPBL

O0.CON

O.DATA

O.EXT

0.UDV

LABEL.
TEMPRO.
ENTRY.
VALUE.

O.CEP

6000 FORTRAN EXTENDED 4.0

Word B for a formal parameter

Word B for a format

Set non-zero if the last statement before the
END card resulted in a transfer of control
(RETURN, GO TO, etc.,)

Address of 1list of tables to be saved in high
core before loading pass two

'Routine in LSTPRO to pack tables to high core

Number of entries' in the +trace label table
(non-zero only in DEBUG made)

Origin of the scratch table
Origin of the dimension table
Origin of the saved common address table

Origin of the formal parameter block length
table

Origin of the constant table

Origin of the usage defined variable in DATA
statement table

Origin of the external table
Origin of the usage defined variable table

An entry of L.XXX corresponds to each 0.XXX
above and holds the table length.

Symbol table ordinal of the symbol TABEL.
Holds the symbol tabie ordinal of TEMPAO.
Holds the symbol table ordinal of ENTRY.
Holds the symbol table ordinal of VALUE.

Holds the symbol table ordinal of the current
entry point

-57-

6000 FORTRAN EXTENDED 4.0

WRWDS Routine in FTN to write to a file

DO. Holds the ordinal of DO.

OT. Holds the ordinal of OT.

IT. Holds the ordinal of IT.

UCODE. Holds the shifted name of the use block CODE.
OUTUSE Routine to issue a USE name if needed

SYMBOL Find or enter a symbol in the symbol table
ADDREF Routine to collect references when R=2 or 3

CTBLOVL Control passes to this external if compiler
' tables overlapped

F1AMAC Form one argument macros on COMPS

UDATA Holds the shifted name of the use block DATA.
Z.SCR Number of the scratch table

ALLOC Table manager routine to allocate memory
Processing

END

On entry, DOEND is called to clean up and diagnose any DO
loops still unterminated. Then IAC is called +to insert
the addresses of common variables into their symbol table
entry. (This need be done only in debug mode for common
variables with no DIM table entry). Next PSS is called
to process special symbols. 1In particular, this routine
will issue the R-list macro to produce a RETURN or RJ
END. A check is made here to ensure that the function
name has been defined at 1least once in the function
subprogram. Formal parameter block lengths accumulated
during namelist processing are moved to word B of the
formal parameters.

Now an end of R-list code is written to the R-1list file.

DCT is called to dump out the constant table. PST is
called to process the symbol table. Here, the external

~-58-

6000 FORTRAN EXTENDED 4.0

and usage defined variable tables are constructed. All
DIMTAB entries are linked to the SYMTAB entry. Special
characters are appended to selected externals. Addresses
are defined and storage issued for usage defined
variables. Move DIMTAB address definition fields into
word B of the symbol table. Define the address of usage
defined variables which first appeared in DATA
statements. '

DO., IT., and OT. are entered in the symbol table and the
use block switched to CODE. Finally all vital tables for
pass two are packed to high core and an exit is taken.

IAC - Insert Addresses into Common Variables

When the D option is selected, the addresses of common
variables without a DIM entry must be saved in a
temporary table until the end of pass one when the debug
processor is no longer active. If there are no entries
in the saved common address (SCA) table, then IAC exits
immediately. Otherwise, IAC 1loops through the SCA
placing the RA field in each affected symbol table entry.

PSS - Process Special Symbols

a. Exit immediately for a BLOCK DATA program.

b. For a main program:

(1) Place END. in the symbol table.
(2) sSet the external and no return bits.

(3) Define the program name with an RA of zero in
the CODE. block.

(4) 1Issue the RJ END. macro to the R-list file.
{(5) Exit PSS.
C. For a subroutine:

(1) sSet the address of the entry into word B using
ENTRY.D

{(2) If the 1last statement was a RETURN, GO TO,
etc., go to e.

-59-

(3)

(4)

(5)

(6)

{
6000 FORTRAN EXTENDED 4.0

Issue a RETURN macro to R-list which will
restore A0 if needed.

Collect a reference to the current entry point
if R=2 or 3.

Issue an informative diagnostic for no RETURN
statement. '

GO to e.

d. For a function subprogram:

(1)

(2)

(3)

(4)
(3)

Set the address of the entry into word B using
ENTRY.D.

Issue an error if the function name was never

" defined in the roitine.

If the Last statement was a RETURN, GO TO,
etc., go to e.

Output R-1list for a RETURN statement.

Issue an informative diagnostic for no RETURN
statement.

e. Exit if there are no formal parameters.

£. Move the FP block length accumulated during NAMELIST

processing to word B (RA field) of the formal
parameters. ' ‘

g. Set up RL, RB fields in each FP's word B for pass

two.

h. Exit PSS.

DCT - Dump Con Table

a. Place the address relative to DATA. block in word B
for CON. :

b. If there are no constants, go to e.

c. Increment the length of the DATA. block by L.CON.

d. Call ODW to oﬁtput data words in the CON. table.

-60~

6000 FORTRAN EXTENDED 4.0

e. Exit DCT if no Labels are being traced.

f. Allocate spaCe in which to construct the label

g. Increment the length of DATA. by N.TLAB and define
the address for LABEL.

h. Scan the symbol table for statement numbers with
trace ordinals and make entries in the scratch table
of the form VFD 30/NNNNN, 30/line number on which
label is defined.

i. Call ODW to dump this table.
. Exit DCT.
ODW - Output Data Words

Outputs 1line images of the form DATA value for each word
in the table whose FWA is in X1 and whose 1length is in
X2. A3 holds the first word address of a label for the
table the label definition is moved to working storage
and the wuse block switched to DATA. A table entry is
picked up and BTOCT used to convert it to octal. The
octal 1is concatenated with a DATA pseudo up and a B
appended. This continues until the table is exhausted or
working storage £fills up and then we dump the images to
coMPs. If working storage filled, the remainder of the
table is processed after dumping. Then exit ODW.

PST ~ Process Symbol Table:

(a) Check to make sure there is enough core for END
processing. ‘

(b) 1Initialize registers for the symbol table scan from
ST. to the end of the table.

{c) Fetch word A and B, advance to_ next entry.
(d) If this is the end of the table, go to k.
(e) If this entry is a label, go to c.

(£) For an external, place 2* ordinal into the temporary
external table. Go to c.

-61-

(9)
(h)

(1)

(3)

(k)
(D
(m)

(n)

(o)

(p)
(Q)

(r)
(s)

(t)
(a)

(V)

6000 FORTRAN EXTENDED 4.0

For types 6-15 and local functions, go to c.

If the entry is dimensional, place the symtab
address in word two of the DIM entry and go to c.

If the variable is in common, go to c.

Place the word count and 2* ordinal into the
temporary UDV table and go to c.

Define O0.UDV and L.UDV as well as O.EXIT and L.EXT.

va no externals, go to p.

Set RL=3 for all externals by stepping through the
EXT table.

If the external is a basic external function, a
period is appended to the function name.

For the O or E options, issue EXT statements to the
COMPS file for each external.

If no dimensional items, go to r.
Move the address information from the dimension
table to word B of the symbol table entry. An RL of
1 or 2 is set depending on the common block, or
DATA.. is set and the RA is installed in the address
definition field of each symbol with a DIM entry.

If there are no usage defined variables, go to v.
Loop through the temporary UDV table incrementing
the length of the DATA. block and installing the RL,
RA, RB fields.

If O or E options not selected, go to v.

Switch to the DATA. block and call OSC to issue
storage to COMPS for usage defined variables.

If no wusage defined variables occurred in DATA
statements, exit from PST.

-62-

5.7.2

5.7.2.1

6000 FORTRAN EXTENDED 4.0

(w) Scan the table constructed by DATA installing the
RL, RA and RB fields and turning off the common bit
in word A of these entries (NOTE: The common bit
was turned on so these variables would not appear in
the regular UDV table and have storage issued for
them. The storage will have already been issued in
DATA processing.) At this point, their names will be
added to the previous UDV table.

(x) Exit PST.

RETURN

RETURN processes the FORTRAN RETURN statement. For a

main program, an informative diagnostic is produced when

a RETURN occurs. If the statement is a normal RETURN,

processing differs from +that for a RETURNS type

statement.

RETURNS processing

(a) Issue an error if this is not a subroutine.

(b) 1Issue an error if the E-list item is not a name.

(c) call SYMBOL and produce an error if the name is not
found.

(d) 1Issue an error if the type is not RETURNS.
(e} Generate a non-standard return R-list macro.

(f) Collect a reference (if necessary) for the RETURNS
name.

(g) Flag a non-ANSI usage and exit from RETURN.
RETURN processing
For a function subprogram:

(a) Generate a single or double precision function
return macro on the R-list file.

{b) Collect a reference to the current entry point.

{c}) Exit from RETURN.

-63-

6000 FORTRAN EXTENDED 4.0

5.7.2.2 For a subroutine:

(@) Select a return macro to restore A0 or not depending
on the presence of a parameter list (TEMPAO. # 0 if
restore needed) and generate it on the R-1list file.

(b) Collect a reference to the current entry point (if
necessary) . '

(c) Exit from RETURN.

Table Formats
EXT Table
VFD 60/2%ordinal

UDV Table
VFD 670, 18/word count, 18/symbol table ordinal, 18/0

-6~

1.2.1

6000 FORTRAN EXTENDED 4.0

SCANNER

General Information
Task Overview

SCANNER reads each source statement from the input file,
determines the statement type from the initial alphabetic
keyword (if present), transforms the statement into the
E-list intermediate language, lists the statement in the
output file and issues suitable diagnostics if errors are
found during the lexical scan.

Significant Changes from Version 3.0

The following major changes have been made to SCANNER
since the orignal release of FORTRAN Extended Version
3.0:

IMPLICIT and LEVEL statement processing logic has been
added.

SEGMENT, SEGZERO and SECTION statement processing logic
has been deleted. ,

Quote (64B) delimited Hollerith constants have been
added. ’

END statement formats have been relaxed. An END line may
now be continued or may follow a dollar sign (53B)
separator,

Internally, many subroutines have been recoded to reduce

compilation time and shorten field length requirements.
For a typical program "mix", Version 4.0 SCANNER runs
approximately twice as fast as Version 3.0, and requires
about 1000B fewer words of central memory, excluding new
feature additions. Much of the speed improvement was
achieved by squeezing out source statement blanks as each
statement is burst to the string buffer SBUFF.

Entry Points

Executable Code

SCANNER

-65-

2.1.3

2.2
2.2.1

2.2.2

6000 FORTRAN EXTENDED 4.0

This entry point is wused by all callers except’for
certain special DEBUG statement processing tasks.

DBGERR

This entry point is used to print out a DEBUG error
message.

GETTYPE

This entry point is used by DEBUG routines to obtain the
type of a DEBUG statement. ,

Communications Cells (in alphabetical order)
CD

This cell holds the source line number (binary) of the
beglnnlng line of the last FORMAT statement encountered.

COL

This cell holds the number of blanks between the initial
left parenthesis and the first non-blank character after
the left parenthesis in the last FORMAT statement
encountered. '

DUKE1

This cell holds the source line number (binary) of the
line currently in the card input area CP.CARD.

FEFLAG

This cell 4is set non-zero externally when a fatal-to-
execution error is found.

N.EQUAL

This cell holds the number of equals (54B) signs found in
a statement. .

O.LCC

This cell contains +the first word address of loader
control card information.

TYPFLAG

-66-

O

2.2.8

6000 FORTRAN EXTENDED 4.0

This cell 'is set less than zero when a DEBUG statement
cannot be typed; its value is otherwise zero.

WORDY

This cell contains the total number of words of loader
card information.

Diagnostics/Error Messages

Fatal to Compilation Error Messages
TABLES OVERLAP, INCREASE FL

Fatal to Execution Error Messages
UNRECOGNIZED STATEMENT

ILLEGAL ILABEL FIELD IN THIS STATEMENT
STATEMENT TOO LONG

SYMBOLIC NAME HAS TOO MANY CHARACTERS
UNMATCHED PARENTHESES

TABLE OVERFLOW, INCREASE FL

ILLEGAL CHARACTER. THE REMAINDER OF THIS STATEMENT WILL
NOT BE COMPILED. ’

ILLEGAL VARIABLE NAME FIELD IN ASSIGN OR ASSIGNED GOTO
NO TERMINATING RIGHT PARENTHESIS IN LOADER DIRECTIVE

NOT ENOUGH ROOM 1IN WORKING STORAGE TO HOLD ALL OVERLAY
CONTROL CARD INFORMATION

CONSTANT TABLE CONSTORS OVERFLOWED — STATEMENT TRUNCATED.
ENLARGE TABLE OR SIMPLIFY STATEMENT

THE STATEMENT 1IN ‘A LOGICAL IF MAY BE ANY EXECUTABLE
STATEMENT OTHER THAN A DO OR ANOTHER LOGICAL IF

() WAS LAST CHARACTER SFEN AFTER TROUBLE, REMAINDER OF
STATEMENT IGNORED

-67-

6000 FORTRAN EXTENDED 4.0

DEFECTIVE HOLLERITH CONSTANT. CHECk FOR‘CHARACTER COUNT
ERROR, MISSING # DELIMITER OR LOST CONTIN CARD

Informative Diagnostics

NO END CARD, END LINE ASSUMED

UNRECOGNIZED STATEMENT

Non-ANSI Diagnostics

7 CHARACTER SYMBOLIC NAME IS NON-ANSTI

LOGICAL OPERATOR OR CONSTANT USAGE IS NON-ANSI

OCTAL CONSTANT OR R,L FORMS OF HOLLERITH CONSTANT IS
NON-ANST

DOLLAR SIGN STATEMENT SEPARATOR IS NON-ANSI USAGE

THE FORMAT OF THIS END LINE DOES NOT CONFORM TO ANSI
SPECIFICATIONS

Environment

Common Blocks

DBGBLK1, DBGBLK2 and NONFTNX - Each block contains a
series of communications cells for the DEBUG option.

Externals

The major externals are listed below, with an indication
of their use.

ASAER Entry point in ERPRO to file non-ANSI
diagnostic messages.

CAFLAG Control card option flag to specify COMPASS
assembly.

CIO1. Entry point in FTN to issue CIO requests.

CONDEC Entry point to convert a binary value to

display code.

-68-

CP.CARD
CP.LINE

DFLAG

ERPRO
ERPROI
FATALER

FTNEND

FWAWORK
LCNT
LDCOM
LIST
IWAWORK
MOVE
NOLSFLG

PAGE

PUTUPDT

SAVLINE

6000 FORTRAN EXTENDED 4.0

FWA of source line image input working storage
area.

FWA of source line outpou list working storage
area.

DEBUG mode option flag;

Entry point in ERPRO to file fatal-to-execution
diagnostic messages.

Entry point if ERPRO to file informative

diagnostic messages.

Entry point in ERPRO to file fatal-to-

compilation diagnostic messages.
Entry point in FTN to end compilation task.

End of E~list area; E-list grows down from high
to low addresses. '
Number of lines remaining on current page of
output listing.

Entry point in FTN to 1load and execute the
COMPASS assembler.

Entry point in LSTPRO to write a line to the

output file.

Cell containing address of last E-list entry;
decremented after each entry.

Entry point to move a block of words in central
memory. :

Control -card option

flag to suppress output

Current output listing page number.

Entry point to save an UPDATE identifier (from

a source line) for DEBUG.
FWA of block where a complete source statement

(20 lines max) can be saved. Block is used
only when normal output listing is being

-69-

6000 FORTRAN EXTENDED 4.0

suppressed, so that a statement can be listed
if errors are found in it.

SAVLNG Number of initial alphanumeric characters in a
source statement. Used for processing IMPLICIT
statements.

TITLE1 Word in page header line that contains the type

of program unit (PROGRAM, SUBOURTINE, FUNCTION,
BLOCK DATA) .

UFLAG Control card option flag to generate *DECK
card. :
WRWDS Entry point in FTN to write one or more words

to a file.

Processing
Processing Function

SCANNER performs the initial lexical scan of each source
statement to determine the statement type and to condense

‘the statement into an elemantal form, termed E-1list, that

can be rapidly processed by external statement processing
routines. The statement type information will be used by
the calling phase controller (PS1CTL or PH2CTIL) to
determine which statement processor to call. That
processor, in turn, will use the E-list as input data for
R-list generation.

To produce the E~list, SCANNER extracts the meaningful
symbols from each source statement and reformats them

into a series of one-~word 1list entries plus, in some

cases, auxiliary table entries. Blanks, comments and
other irrelevant data are discarded. Fach entry in E-
list represents one syntactically significant element in
the original source statement, such as a variable name, a
constant, an operator or other quantity. The original
source symbols may or may not appear explicitly in the E-
list entry. A variable name, for example, is retained in

the entry. A constant, in contrast, is not, because it

may be too 1long to fit in one word. Accordingly,
constants are stored in an auxiliary table, CONSTOR; the
E-1ist entry for the constant provides its length and
location. Every E-list entry includes a type code number
that identifies the syntactic element type. This code

-70-

@:p

6000 FORTRAN EXTENDED 4.0

number 1is wused by the statement processors to expedite
compilation. See paragrpah 6.1 of this section for
detailed E-list formats.

General Processing Flow

SCANNER processes one comglete source statement in
response to each call (RJ SCANNER). This may include up
to 20 active source 1line images, plus an essentially
unlimited number of embedded comment cards oxr blank cards
trailing. Upon return to the caller (and assuming no
errors were found), the statement will be typed, 1listed,
E-list produced, and the statement number saved. The
first source line of the next statement wil have been
read and partially scanned, basically to determine if it
is a continuation of the current statement, to obtain its
statement number (useful for certain code optimization)
and to see if it is a DEBRUG statement. Upon initial
entry after loading, SCANNER enters a initialization mode
that will continue until the first recognizable FORTRAN
source statement is encountered and typed. In this mode,

- DEBUG external packet lines are processed; abnormal cards

are diagnosed; embedded COMPASS subprograms are either
copied to the COMPS file or assembled directly by
COMPASS, depending on control card options selected;
loader control cards are reformatted and stored at the
end of E-list. When a source line is encountered that
does not fit the above categories, SCANNER types it to
determine if it is a wvalid program unit header line, such
as PROGRAM or SUBROUTINE. If so, the program unit type
and name are extracted and stored in a skeleton title
header line that will appear at the top of each page of
the output listing. SCANNER then abandons the
initialization mode and transfers into the middle of the
normal or main mode of operation. Any remaining
information in the initial source line, such as program

file names, subroutine parameter 1lists, etc., will be

posted to E-list at this time, in the normal fashion. If
the initial line was not a header line, SCANNER bypasses
the header line initialization and continues directly in

‘the normal mode. In this case, default header values

will be stored later by PS1CTL. When all non-blank
characters of the first source statement have been
processed, the first line of the next source statement
will have been read and burst to the string buffer; this

‘'was necessary to determine if it was a continuation of

the initial statement.

-71-

6000 FORTRAN EXTENDED 4.0

At his time, SCANNER has prepared the following
information for the caller: '

Register B7 and TYPE (RA+24B) will hold the primary
statement type. ATYPE (RA+51B) will hold any constant
type associated with the statement. 1If the statement is
a logical IF, the type of the statement following the
logical expression is found in LTYPE (RA+21) and the
starting address in LELIST (RA+34B). The starting
address of E-list for the primary statement is found in
SELIST. The last location used for E-list is found in
ELAST(RA+14B) . CLABEL (RA+23B) holds in display code the
statement label, if any, left justified and blank filled.
NLABEL (RA+60B) holds the label, if any, in thsame form
for the next statement. If no label is present , NLABEL
and CIABEL will be zero. On subsequent calls, SCANNER
processes a complete statement each time entered. Since
the first line of the new current statement has already
been burst to the string buffer, beginning at SBUFF, it
is not necessary to initiate an immediate read. 1Instead,
SCANNER performs a brief internal initialization at
SCANNER1 (and SCN2 if in DEBUG mode), a secondary
initialization at CONT, and obtains the first non-blank
character of the new statement at BOSS, via GET. STATF1
verifies that the statement begins with an alphabetic
character and, for a non-DEBUG card, calls PACK30 to pack
the initial alphanumeric string that begins the
- statement. At this point, the processing activities
become quite variable, depending on the type of
statement. PCK 30 packs the string as GOT025, and senses
that the next non-blank character is not a legal FORTRAN
character (01B-57B), since it is in reality the end-of-
line (EOL) sentinel. PACK30 calls PGCOM who, after
recognizing that it 1is an FOL sentinel, in turn calls
NEXT to obtain a new source 1line. image. NEXT either
saves (list option off) or lists (list option on) the
current source line and calls READCARD for a new line.
READCARD obtains the line via READL and proceeds with a
series of housekeeping tasks. If the new 1line is a
comment line, it is listed and another line fetched. TIf
not a comment line, it is checked to see if it is a DERUG
or continuation line. Suitable flags are set, the
statement label is processed, and the line is burst +to
the string buffer beginning at SBUFF. Then, after
updating the source listina line number, READCARD returns
t0 NEXT. Assume that t'e next line was, in reality, a
new source statement. NEXT exits to NEWS, who will wrap
up the processing of the current statement. NEWS checks

-72-

6000 FORTRAN EXTENDED 4.0

for a series of pack-in-progress events, and finds that
PACK30 was interrupted by the EOL sentinel. NEWS
terminates the interrupted pack and stores the packed
character string in E-list. (NOTE: This particular
packed character string will subsequently be 1logically
erased from E-list, since it contains the statement
keyword GOTO. E-list is merely used as a temporary
convenient storage location; it is not, in this case,
receiving a final entry.) After some additional legality
checks, NEWS determines that the statement is untyped.
NEWS then exits to the type determining routine
associated with the next processing state that would have
gained control if the current statement had not ended.
In this case, the next state would have been STATE2, as
declared by STATE1 before calling PACK30. NEWS then
exits to the STATE2 type determiner, D1. D1, after some
manipulation, calls SEARCH, who types the statement and
exits to ADJ. ADJ separates the keyword GOTO from the
label 25 that follows, enters the label in CONSTOR, and
makes an FE-list entry indicating the label location. ADJ
exits to STATEO, who posts an end-of~statement entry to
E-list and returns to the caller.

This is necessarily a brief description of the processing
for a simple statement. Had the statement been more
complex, additional STATE processors would have come into
play. The STATE processors are, in general, a series of
jump tables that indicate the suitable action to take,
based on the last non-alphanumeric character seen, plus a
series of small action routines to make variocus E-list
entries. Implicit in the structuring of the STATE
processors is the expected statement syntax; when a
source statement contains characters that violate that
syntax, suitable error messages are issued.

Structure

The open and closed subroutines that comprise SCANNER are
listed below in the order of appearance.

ADWORD
Called by the ELPUT macro to enter a word in E-1list.

ADD1

-F3-

5.3.5

5.3.10

5.3.11

6000 FORTRAN EXTENDED 4.0

Called by the STATE processors to fetch an E-list entry,
make the entry, obtain the next non-klank character of
the source line, and exit to a STATE processor.

SCANNER1

Perform common initialization chores for all entries to
SCANNER. :

SCAN2

Performs initialization for DEBUG statements .
SCAN3 thru SCANS6

Performs initialization only for the first entry to
SCANNER.

SCAN7 thru SCAN9

Read and process the first source line image. If the
first line is blank or abnormal, processing continues
until a valid line is found.

AFC1 thru LFC

Diagnoses and lists abnormal first card(s).

IRB

Checks for existence of a COMPASS subprogram; tests for
IDENT line. ‘

CP0 thru CP3
Writes *DECK (program name) line to the COMPsS file.
CPA, CPB

Copies input 1line images to the COMPS file until an EN
line is found.

P
Initializes 1line counts; obtains (via PACK 30) the

keyword string from the first line image; initializes for
loader control card search.

-7y~

5.3.12

5.3.13

5.3.14

5.3.15

5.3.16

5.3.17

5.3.17.1

5.3.17.2

6000 FORTRAN EXTENDED 4.0

PICOVER

Tests keyword string for loader control card; calls
PICHIT if found.

PA thru NOTT

Initiates typing of first FORTRAN source’ line; if a
program unit header card is found, enters the unit type
and name in the skeleton title for output listings.

CONT

Performs secondary initialization tasks for all normal
entries (non-initial) to SCANNER. Updates line numbers;
clears error flags. :

BOSS

Common transfer point among STATE processors; Fetches

next non-blank character of source line v1a GET Exits to
next STATE via register B1.

STATE1

Insures that a new statement begins with an alphabetic

~character. If the statement is a DEBUG statement, calls

ISITDBG to type the statement. For non~DEBUG statements,
calls PACK30 to pack the initial keyword string. and
continues to STATE2. ‘ :

STATEZ

STATE2 is a jump vector which transfers control -to the
proper routine depending on the condition that terminated
the statement identifier packing. The characters + - *)
. cause an unrecognized statement diagnostic.

S. A slash terminates the string. SEARCH is called to
check for DATA N/, COMMON N/, or NAMELIST/. After
successful typlng and adjusting, control is returned to
STATE3.

L1. A left parenthesis terminates the string.' If the
string is FORMAT and the statement was labeled, control
is transferred to FORMAT to process the statement. If
not, a parenthesis count is started and control is
transferred to STATES3.)

-75=-

6000 FORTRAN EXTENDED 4,0

5.3.17.3 D1. The typing routine for an alphanumeric statement.
SEARCH is called to look for any form of: CONTINUE,
SsTOP, ECS, GOTO, PAUSE, CALL, READ, REAIL, ENTRY, PRINT,
PUNCH, RETURN, COMMON, DOUBLE, REWIND, COMPLEX, ENDFILE,
INTEGER, LOGICAL, PROGRAM, TYPEECS, EXTERNAL, TYPEREAL,
BL.OCKDATA, BACKSPACE, SUBROUTINE, TYPEDOUBLE,
TYPECOMPLEX, TYPEINTEGER, TYPELOGICAL, ASSIGN, DOUEBLE
PRECISION, TYPEDOUBLEPRECISION. After successful typing
and adjusting control is transferred to STATEQ.

5.3.17.4 E1. An = sign terminates the string. If the string is
from 8 to 14 characters long, a check is made for a DO
statement. If so, control is passed to ADJDO. If the
string is less than 8, control is passed to STATES.

5.3.17.5 cc1. A comma terminates the string. SEARCH is called
to look for the forms of: ECS, GOTO, CALL, REAL, DATA,
READ, PRINT, PUNCH, COMMON, DOUBLE, COMPLEX, INTEGER,
LOGICAL, TYPEECS, EXTERNAL, TYPEREAL, SUBROUTINE,
TYPEDOUBLE, TYPECOMPLEX, TYPEINTEGER, TYPELOGICAL,
DOUBLEPRECISION, TYPEDOUBLEPRECISION. After typing and
adjusting control is returned to STATES.

5.3.18 STATE 3

STATE 3 transforms symbolic names, constants, operators,
and delimiters into E-list until the parenthesis count is
zero, then control is passed to STATES.

5.3.19 STATE 5

STATES contains a jump vector to pass control to the
processing routine depending on the character that
appears immediately after the parenthesis count goes to
zero. The characters + - *) blank and . will cause an
unrecognized statement diagnostic.

5.11.19.1 P5. Is entered when an alphabetic follows when paren
count goes to 0. If the string length before the first
left paxen is 2, a check is made for a logical IF. 1If
s0, control is passed to STATES. If not, SEARCH is
called to 1look for any of the forms of: GOTO, READ,
WRITE, ENCODE, DECODE. After successful typing and
adjusting, control is passed to STATES.

5.3.19.2 N3. 1Is entered when a digit follows as paren count goes
to 0. Check the string before the first left parenthesis

~76-

i

. 6000 FORTRAN EXTENDED 4.0

for IF and if so, assume an arithmetic IF, then pass
control to STATES. ‘

5.3.19.3 SD. A slash causes SEARCH to be called to look for any
of the forms of DATA and COMMON. After typing and
adjusting, control is passed to STATES.

5.3.19.4 1L3. A left parenthesis causes‘SEARCH to look for any
proper form of READ, WRITE, ENCODE, DECODE, BUFFERIN,
BUFFEROUT and after typing and adjusting, pass control to
STATES.

5.3.19.5 D3. The statement is terminated at parenthesis count =
0. After checking for WRITE and EQUIVALENCE, SEARCH is
called to 1look for any form of: RFAD, DATA, ECS, CALL,
REAL, COMMON, DOUBLE, COMPLEX, INTEGER, LOGICAL, PROGRAM,
TYPEECS, TYPEREAL, FUONCTION, DIMENSION, SUBROUTINE,
TYPEDOUBLE, TYPECOMPLEX, TYPEINTEGER, TYPELOGICAL, REAL
FUNCTION, : DOUBLEFUNCTION, COMPLEXFUNCTION,
INTEGERFUNCTION, LOGICALFUNCTION, DOUBLEPRECISION,
TYPEDOUBLEPRECISION, DOUBLEPRECISIONFUNCTION, and after
typing and adjusting, pass control to STATEO.

5.3.19.6 E3. The = sign here causes the type to be set
replacement and control is passed to STATES after making
the string before the first left paren into a symbolic
name entry.

5.3.19.7 <€C3, The comma causes a check made for EQUIVALENCE and
then SEARCH is called to look for the forms of: DATA,
GOTO, ECS, CALL, REAL, DOUBLE, COMMON, COMPLEX, INTEGER,
LOGICAL, TYPEECS, TYPEREAL, DIMENSION, SUBROUTINE,
TYPEDOUBLE, TYPECOMPLEX, TYPEINTEGER, TYPELOGICAIL,
DOUBLEPRECISION, TYPEDOUBLEPRECISION and after typing and
adjusting, pass control to STATES.

5.3.20 STATES6
STATE6 determines if the statement is a replacement or a
DO. A jump vector passes control depending upon the
first character after the = sign. A / *) = $, cause an
unrecognized statement diagnostic to be issued.

5.3.20.1 P6. An alphabetic causes PACK to be called to pack a
symbolic name then pass control to STATE7.

5.3.20.2 N4. A digit causes DIGIT to be called to make the E-list
entry for a constant and then pass control to STATE10.

-77-

6000 FORTRAN EXTENDED 4.0

5.3.20.3 A + - (or . cause the statement to be typed replacement

5.3.21

5.3.21.1

5.3.22

5.3.23

and control passed to STATE8 after making a symbolic name
entry of the string before the = sign.

STATE?7
STATE 7 has a jump vector and passes control deendlng

upon the character that terminated the symbolic name
after the = sign. A + - * (= or . cause the statement

to be typed replacement and control passed to STATES

after making a symbolic name entry of the string before
the = sign. A) will cause an unrecognized statement
diagnostic to be issued.

CC4. A , will cause a check of the string before the =
sign for a DO. If the first two characters are DO a jump
is made to ADJDO to make a constant and symbollc name
entry and then pass control to STATES.

STATES

The remaining elements of the statement are transformed
into E-list and stored until the statement is terminated
either by an error occurring, or a new statement being
sensed. :

STATE10

STATE10 contains a jump vector and passes control

depending upon the character that terminated the constant
~that appeared after the first = sign.

-78~-

5.3.23.1

5.3.24

5,3.25

6000 FORTRAN EXTENDED 4.0

A+ - %/ (or . will cause the statement to be typed re-
placement and control passed to STATEB.

A,) will cause an unrecognized statement to be issued.

CC5.A , will cause the string on the left of the = sign
to be checked for a DO statement by calling ADIDO.

STATEO

STATE(Q inserts the end-of-statement terminator in E-=list.
If the statement was a logical 1IF, followed by any
statement except a DO or another logical IF, E-list
pointers are rearranged to their correct wvalue. STATEQ
exits to the caller via the entry point SCANNER.

D$PROC

Called when a statement is terminated by a dollar sign.
Transfers NLABEL to CIABEL, and sets NLABEL to zero.

- Posts an informative non~ANSI diagnostic message.

5.3,26

5!3-27 .

DBGERR

Writes an error message to the output listing file,
interspersed with the source line image listing. Called
by the DBGERR macro; used only to report errors in a
DERUG statement.

DBGTLE

Enters DEBUG PACKET in the output listing title line

" skeleton.

5.3.28

5.3.29

5.3.30

D.IDSAVE

Extracts the UPDATE identifier field from a source line
and copies it to the location specified by the caller.
Used for saving line identifiers for the DEBUG option.
D.IDSPEC

Special extension of D.IDSAVE (see above) , required for
comment lines and all-blank lines.

ISITDBG

~79~

5.3.32

5.3.33

5.3.34

6000 FORTRAN EXTENDED 4.0

Packs, wvia PACK7, the initial alphanumeric string that
begins a DEBUG statement and searches a table of DEBUG
keywords, in an attempt to type the statement. Contains
an entry point for external callers to request the same
service.

PACK7

Packs up to 7 consecutive alphanumeric characters from a
source line, adds the E-list type code for a variable
name, Dblank £fills the low-order bits, and posts the
string to E-list. Packing is terminated when a character
outside the range O01B-44B is encountered. If the
terminating character is a legal FORTRAN character, 45B-
57B, return is to the <caller. If the character is
outside this range, PACK7 calls PGCOM to make further
checks.

PACK 30

Packs up to 30 consecutive alphanumeric characters from a
source 1line and posts the results to E-list in
successively lower (descending) 1locations. The packed
string is left-justified to bit 59 of the first word, and

is left with zero fill. No E-list type code is added,

because E-list is merely being used as an interim
repository for the packed string. The string will later
be logically removed (aresponsibility of the caller,
directly or indirectly). Normally used to pack the
keyword string that begins each source statement. String
terminating conditions are the same as those for PACK7,
above, : ’

GET

Fetches the next non-blank character from a source line.
Returns to the caller with the character in B2, oprovided
it is in the range 01B-57B. If outside this range, calls
PGCOM to make further legality tests.

PGCOM

Commen routine, shared by PACK7, PACK30, GET, and ADD1 to

‘handle the special cases when a source line character is

outside the normal range 01B-57B. If the character is
actually an end-of-line sentinel in the string buffer,
PGCOM saves registers via SCNSAVE and calls NEXT to
obtain the next source 1line. If the 1line is a

U

5.3.35

5.3.36

5.3.37

5.3.38

5.3.39

5.3.40

6000 FORTRAN EXTENDED 4.0

continuation 1line, NEXT returns to PGCOM, who in turn
returns to the caller after restoring regis+ers via
RESTO. If the string terminating character is a quote
mark (64B), this marks the beginning of a quote- -delimiteqd
Hollerith constant. PGCOM changes the character to a 55B
to save space in the STATE processing Jjump tables and
returns to the caller. If the string terminating
character is any other value, PGCOM exits to a fatal-to-

"execution error routine.

LCARD

Lists a complete source statement (up to 20 lines) when
an error is discovered in the statement and the output
listing is suppressed. The saved statement is located in
a special area beginning at location SAVLINE.

POINT

When a period (57B) is encountered, POINT is called to
process the following character string as a 1logical,
relational or Boolean operator, If the string can be
successfully verified as such an operator, a sultable E-
list entry is made for the operator. :

PACKC

Assembles a numeric string for CONSTOR entry. One
character is passed to PACKC per call; when - ten
characters have been accumulated, PACKC enters the
accumulated string in CONSTOR.

PACKT

Completes the CONSTOR and E-list entries for a constant.
DIGIT

Determines +the constant type of a numeric string, based
cn the appearance of a decimal point or the letters B, D,
E, H, L, O, or R. Calls PACRC and PACKT to assemble the
constant and make suitable CONSTOR and E-list entries.
Calls HOLLRTH to process Hollerith constants.

ENDP

Called to perform a series of special-case tasks
associated with END line processing. ENDP is entered at

5.3.41

5.3.42

- 5.3.43

6000 FORTRAN EXTENDED 4.0

ENDP if an end-of-section/partition/information status is
encountered on the input file, and is entered at END3 if
the keyword END is followed by other than EOS/P/I. ENDP
verifies that a valid END line has been found. If so,
the statement is typed as a normal END line. If not, an
invented END line is forced to the source input file, so
that subsequent processing tasks can follow a semi-normal
course of action. If ENDP is entered before any valid
FORTRAN source statements have been 1located, and no
illegal source statements have been found, ENDP will
immediately terminate the compilation with a suitable
dayfile message.

HOLLRTH

Assembles either a standard or a delimited Hollerith
constant string, making suitable E-list and CONSTOR
entries. :

FORMAT
Beginning with the first left parenthesis that follows
the characters FORMAT, packs the remainder of the

statement, ten characters per word, and stores it in E-
list. The last word is filled with blanks.

READCARD

After calling READL to read the next source line from the

input file, READCARD checks for comment, DEBUG and
continuyation 1lines. Comment 1lines are listed directly
without bursting, so speed processing. DEBUG and
continuation 1lines are flagged for later processing. If
a statement label exists, it 1is leftjustified in a
packing register, blank filled, and stored in location
NLABEL; the previous contents of NLABEL were moved to
CLABEL. Columns 7 thru 72 of the line are burst to the
string buffer beginning at 1location SBUFF. Only non-
blank characters are actually stored. When blanks are
encountered, their count is simply accumulated until a
non-klank c¢haracter or the end of line is encountered.
Then the accumulated blank count, plus a bias of 1, is
packed into the exponent field of the non-blank
character, and the result is stored in SBUFF. The end-
of-line sentinel has an arbitrary value of -1. After
bursting, the source listing line number for the line is

updated, and READCARD then returns to the caller.

~-82-

5.3.44

5.3.45

5.3.46

5.3.47

6000 FORTRAN. EXTENDED 4.0

LISTCARD

Lists a source line image from the input area beginning
at C.LINE+2 (formerly LINEOUT). Calls external routine
LIST to perform the actual I/0 task.

READL

Reads a source line from the input file.

PICHIT

Reformats a loader control card and enters it at the end
of E-list.

CKCSTOR

called to verify that CONSTOR storage limits have not
been exceeded.

FORMATS

E-list format

Element F-list Format

constant VFD 12/72000B, 3/%t, 6/s, 11/0,
10/n, 18/Pointer ’

symbolic name VFD 12/2001B, u48/Name

) VFD 12/72002B, u48/0

, VFD 12/2003B, 4870

end-of-statement VFD 12/72004B, 48/0

= VFD 12/2005B, 4870

(~ VFD 12/2006B, 48/0
.OR. VFD 12/2007B, 48/2
.AND. VFD 12/2010B, 48/3
.NOT. | VFD 12/2011B, 48/4
.LE. | VFD 12/2012B, 48/5

~83-

6000 FORTRAN EXTENDED 4.0

.LT. | VFD 12/2013B, 48/5
.GE. | ~ VFD 12/2014B, 48/5
+GT. VFD 12/2015B, 48/5
.NE. ' VFD 12/2016B, 48/5
.EQ. ' | VFD 12/2017B, 48/5

- VFD 12/2020B, 48/6

+ VFD 12/2021B, 48/6

x VFD 12/2022B, 48/7
/ | . VFD 12/2023B, 48/8
sk " VFD 12/2024B, 48/10

~For a constant entry, t = 0 for logical, 1 for integer, 2

for real, 3 for double precision, 5 for octal, and 6 for
Hollerith, When T = 6, s = 0 for the H form, s = 1 for
the L form and s = 2 for the R form.

'n is the number of characters in the constant string and

Pointer is the starting address of the string in CONSTOR.

~For logical constants, the Pointer field will hold -1 for

TRUE and 0 for FALSE and the n field is 0 and no CONSTOR
entry is necessary.

Statement Type Codes

Each statement has an associated type code which has the
following significance; it is the ordinal in a Jjump
vector of the statement processing program. The elements
that actually appear in E-list are underlined.

Statement
Code Number ’ Statement and E~-list Entries

0 PROGRAM s
PROGRAM S (...

BLOCK DATA

-8} -

O

~N Sy 0

10

11
12

13

6000 FORTRAN EXTENDED 4.0

BLOCK DATA

in

SUBROUTINE

itn

SUBROUTINE s (a1, a2, «s.p_an)

SUBROUTINE s, RETURNS (b1, b2, ..., bn)

SURROUTINE =, (al, a2, ..., an)
RETURNS (b, D, <e«.pzbm)

+ FPINCTION s (al, a2, .., an)

ILEVEL n (vl, V2, .c.g VD)

TMPLICIT ti1(al), t2(a2y, ..., Etnfan),
where {(an} is of the form (b),

(b1-b2) or any combination

{bi-b2, b3 ...}

COMMON /x1/al1/.../7xn/an

DIMENSTON vl, V2, ase, VN

EXTERNAL vil, V2, «ocsp, VN

EQUIVALENCE (k1) (k2) y ooo, (kn)

INTEGER, TYPE INTEGER, REAL, TYPE REAL,
COMPLEX TYPE COMPLEX, DOUBLE, TYPE
DOUBLE, DOUBLE PRECISION, TYPE DOUBLE
PRECISION, LOGICAL, TYPE LOGICAL, ECS
or TYPE ECS

Ve V25 sos, VD
FORMAT (...}
DATA k1/31/, ..., dn/dn/

or
(x1 = d1) p »se, {xrn = dn)

NAMELIST /y1/ail/.../yn/an

f (al, a2, ...g an) = € Or v=e

END

14

15

16

17

18
19

20

21
22

23

24

25

26

6000 FORTRAN EXTENDED 4.0

ASSIGN k TO i
GO TO k

o e 4, Kk’
LR T'\;’ 2w ig’“ . s oo
i e Lt i

GO TO (k1,k2,a..,k¥l)i or g
- IF (e) ki, k2, k3

IF (e) S

not used

CALL s

CALL s (@1, a2y «sey an}

CALL s, RETURNS (bl, b2, ..., bm)

CALL s (al, a2, ..., an),
‘ RETURNS (b1, b2, «.., bm

RETURN
RETURN i
CONTINUE
STOP
STOP n
PAUSE
PAUSE n

DOn i=ml, m2, m3

READ £,k
READ (u) k
"READ (u,f) k
READ _(u,f)
{u) k

WRITE

-86-

6000 FORTRAN EXTENDED 4.0

WRITE (u, f) k

27 . BUFFER IN (u, k) (A, B)
28 BUFFER OUT !u, k) (A, B)
29 ENCODE (n, £, A) k
30 DECODE (n, f, A) k
31 REWIND u
32 - BACKSPACE 1
33 ENDFILE u
34 PRINT £, k
35 PUNCH £, k

36 ENTRY s
37 ' END card assumed for end-of-record

Statement types 0, 1, 3, and 8 require additional type
code information. This added information will be stored
by SEARCH in ATYPE (RA+51B).

For statement type 0, the additional type code may assume
the following values:

0 BLOCK DATA
1 SUBROUTINE
2 PROGRAM

- For statement types 1, 3, and 8, the additional type code
(termed the arithmetic type) may assume the following
values: o ‘

LOGICAL

0

1 INTEGER

2 REAL o

3 DOUBLE PRECISION
4 COMPLEX '
5

ECS (illegal for the IMPLICIT statement)

-87-

6.3

6000 FORTRAN EXTENDED 4.0

Note that only the first IMPLICIT statement type is coded
in ATYPE. Additional types are stored in E-list, using
the standard entry format for a variable name (DOUELE
PRECISION is truncated to DOUBLE).

SEARCH Table Formats

The SEARCH program utilizes three tables. FEach condition
that requires a search has two distinct tables plus a
third table common to all conditions. The conditions
that use the search are: -

(1) An all alphanumeric statement.
{2) A , after an all alphanumeric identifier.

(3)) An identifier, then statement terminated a zero
parenthesis count. :

() An identifier, parenthesis count equal zero, then a
slash.

(5) An identifier, parenthesis count equals zero, then a
left parenthesis.

(6) An identifier, then a slash.

(7) An identifier,'parenthesis count equal zero, then an
alphabetic character.

(8) An identifier, then parenthesis count equal zero,
then a ,.

(9) The initial statement.

The search keys on the number of alphanumeric characters
that appear in the initial string. Table 1 thus has one
word containing the number of statement possibilities as
determined by the length of the string. In addition to
this Table 1 has a pointer to the Table 2 location that
contains the following information: The location (in
Table 3) of the display code representation of the
statement identifier and the location to jump to upon a

successful match. The format of Table 1 is: ’

VFD 12/200nB, 48/Table 2 location -

n = the number of identifier possibilities

-88-

O

6000 FORTRAN EXTENDED 4.0

The format of Table 2 is:
VFD 30/jump address, 30/Table 3 location
The format of Table 3 is:
VFD - 12/7200mB, #8/statement code
VFD 60/display code picture of identifier
m = the number of characters in picture

Thus for a given condition, the n Table 2 entries (in
sequence) are used to find the pictures to compare to the

string.

2.1.2

2.1.3

6000 FORTRAN EXTENDED 4.0
CONVERT

General Information

CONVERT converts the display code representation of a
constant to its internal binary form. The binary form is
placed in a table and the user now refers to the constant
by the I, H of the table name and the CA of the 1location
of the constant in the table CON..

Usage
CONVERT
Determines which of the three options is desired.

The constant is converted to binary form, placed in
CONLIST, if not already there and the caller informed of
I, H and CA to be used to reference the constant.
Conversion and add to CONLIST.

The constant is converted to binary form and returned to
the caller. Conversion only. :

The constant in the form supplied by the caller is placed
in CONLIST if not already there and the caller informed
of I, H and CA. Add to CONLIST only.

Calling Sequence and Returns.

The calling sequence is RJ CONVERT. Case 2.1.1 expects
register B1 to be +0 and the E-list entry for the
constant to be in register X1. Upon successful return,
register X1 holds H in bits 0=17, I in bits 18-29 and CA
in bits 30-47, all other bits being 0.

Case 2.1.2 expects register B1 to be negative and the E-
list for the constant to be in register X1. Upon return,
the converted form of the constant is held in X1, and X2
if the constant is a two word element.

Case 2.1.3 expects register B1 to hold 1 or 2 the number
of words in the caller supplied constant and X1 and X2 to
hold the one or two word element, X1 the first part of
the constant and X2 the second part.

-90-

6000 FORTRAN EXTENDED 4.0

Processing Flow Description

CONVERT quickly determines the option desired. The first
call for either case 2.1.1 or 2.1.3 will cause the’
symbolic name CON, to be placed in the symbol table. For
Case 2.1.1, the display code of the constant is formed by
DEC. DEC is called to convert the constant, the CONLIST
is searched for the converted form of the constant. If
the constant already appears, the I, H and CA is returned
to the caller. Otherwise, the constant is placed in
CONLIST. For Case 2.1.2, DEC is called to convert the
constant. DISPLAY is the routine called to process all

forms of Hollerith constants. 1In case 2.1.2 the first
word of the constant is returned in X1. For cases 2.1.1

and 2.1.3, the constant is put in the COMPASS file
following a USE HOL.. The constant instruction is a DIS
n, except for the last word which is a HOL nH, nR, Or nL
depending on the constant type (HOL is opsyned to DATA)

" depending upon the form of the Hollerith constant. The

first call to DISPLAY will cause the symbolic name HOL.
to be placed in the symbol table. ‘

Diagnostics Produced

Fatal to Compilation

CONLIST TOO BIG. TOO MANY CONSTANTS. MORE MEMORY
REQUIRED. : ,

Fatal to Execution

CONSTANT CONVERSION ERROR.

Environment

CONVERT expects CON1 (RA+26B), DO1 (RA+30B), DOLAST
(RA+31B) and ELAST (RA+14B) to be set prior to- being
called. CONVERT maintains CON1 and CONLAST, the first
and last locations used by CONLIST. 100 locations are
initially reserved for CONLIST. If more zroom is
required, the DO tables are moved 100 locations, if
possible, and the pointers maintained. When 100 more

 locations are not available ((ELAST) being the highest +1

address that can be used), a fatal to compilation
diagnostic is issued via FATALER.

..91..

6000 FORTRAN EXTENDED 4.0

Structure

CONVERT determines if the option is "store only" and if
so, jumps to PACK. If not, a check is made for the
constant being any form of Hollerith and if so, a jump is
made to DISPLAY. For the “convert only" option, a jump
is made to PRECON to arrange the input to DEC. For the
"convert and store" option, a jump is made to PRECON,
then PUT.

PACK determines the first call for a store and calls

.SYMBOL to put the name CON. in the symbol table and

retain its ordinal for use as the H field in the I, H and
CA information. :

PRECON arranges the display code of the constant as
follows: digits are packed a maximum of seven per word
left ad]usted to bit 59 and zero filled, # -. or B are
stored in bits 0-5 with zero fill, and E or D are stored
in bits 54-59 with zero fill.

PUT places the one or two word converted constant (or
caller supplied constant) into CONLIST if the constant is
not already in CONLIST. Initially 100 locations are
reserved for CONLIST and will be expanded 100 1locations
at a time moving the DO tables if necessary until the
time when 100 locations are not available (CONLIST) or
the DO tables running over ELAST when ~a fatal to
compilation diagnostic is issued.

DEC does the actual conversion.

DISPLAY determines the first call for a storing option
and calls SYMBOL to place the name HOL. in the symbol
table and retain the ordinal to use as H in the I, H and
CA information. For the convert only option, the first
word of the Hollerith constant is returned to the caller
in register X1. For any storing option, the constant is
placed in the COMPASS file and the user returned the I, H
and CA information. Any ten character part of the
constant is issued with a HOL nH or L or R n being the
number of characters. The first Hollerith constant put
in the COMPASS file will be preceded by a HOL. BSS 0B
line. A DATA instruction is put in the COMPASS file to
terminate each constant with a word of zeros. Finally a
USE DATA, is put in the COMPASS file.

-92-

6000 FORTRAN EXTENDED 4.0

Formats
I,vH and CA word returnéd to the caller is:
VFD 12/0,18/CA,12/1,18/H
CONLIST is the name of the table of converted or user

supplied constants. .TRUE. is converted to -1 and
.FALSE. is converted as +0.

~-93-

6000 FORTRAN EXTENDED 4.0
DATA
DATA

General Information

DATA resides in Phase 2 of Pass 1 and processes DATA
statements after SCANNER has transformed the statement
into E-list format. Output from DATA consists of DATA
statements being sent to the COMPS file along with ORG
and REPI macro calls. Examples are given later in the
sections discussing output in more detail.

Data statement syntax is described in first page of the
program listing and in the reference manual.

Overall Structure

Upon entry, RAS is called to do a quick backwards scan of
the statement to locate the beginning of the constant
item 1lists and the variable element lists. The pointers
are saved in a table, and the main loop entered. First,
a constant 1list is scanned, the constants converted to
binary numbers and placed in a temporary table built in
working storage. Next the corresponding variable list is
scanned and as each element or nest of 1loops is
processed, output routines are called to issue ORG macro
calls to set the FWA for data placement and to extract
items from the data table and output DATA and REPI pseudo
ops. Last of all, we check to see if the number of items
in the variable 1list match the number of items in the
constant list and if they don't, we issue an informative
diagnostic to that effect and loop to process the next
pair of lists.

Listing Structure

Each section in the program listing is preceeded by a
sub-title. A breakdown of the sections is as follows.

Data statement syntax definition
Error message ordinals and error exits
Description of non ANSI extensions

Macro definitions

-94-

6000 FORTRAN EXTENDED 4.0

Local variable definitions, grouped by routine that
defines them

Main loop

Data item list processing
Data variable list processing
Output subroutines |

PDV - data variable processing

Subroutines
RAS - Remove Alternate Syntax

Function - To build up a table of pointers to the start
of the variable and data item lists.

Method - A EOS marker is placed at the beginning at the
statement, and the statement is scanned backwards for the
start of the data item and variable lists. The pointers
are saved in working storage in the DIL table. When the
alternate syntax is encountered, the ='s sign and right
parenthesis are replaced by slashes.

ENTRY/EXIT conditions

On exit, the DIL table has Dbeen built starting at

FWAWORK, its length set in the location N.DIL and the FWA
for the data item table, O.DIT set.

The format of the DIL is:
24/0,18/FWA of var list, 18/FWA of con list.
cells set

N.DIL

= number of initialization lists
0.DIT = FWA of data item table (FWAWORK)
NONANSI = initialized to 0. Set if alternate syntax

is encountered.

-95-

6000 FORTRAN EXTENDED 4.0

Error Messages
SYNTAX ERROR IN DATA STATEMENT

RAS is called once per data statement from the main loop.
It calls STD to scan to the start of the constant item
list or variable list.

BIT - Build data item table

BIT scans the constant list for syntactic correctness and
calls the subroutines ADIT and ADDCON to make entries in
the data item table. The format of the DIT is described
in the comments preceeding the routine. It also keeps
track of the number of items in the data list (N.ITEM).

Most of BIT is rather straight forward and we will only
discuss the processing of repetition 1lists and complex
constants.

REP List Processing

Recognition: a REP list is recognized when we encounter
an unsigned integer constant followed by a * or (at
paren level 0. At this point, we set the following flags
CLOSREP = -1 1if the rep 1list is not enclosed in
parentheses, i.e., 5%10, else CLOSREP = 1.

An initial entry is made in DIT where the rep count is
saved. REPFLAG = 24/0,18/N.ITEM, 18/pointer to DIT entry
for rep list start, and N.ITEM is cleared.

When the end of a rep list is encountered, which is after
processing the next constant if CLOSREP = -1 or a
parenthesis if CLOSREP =1, CRL is called to close out the

~repetition list.

It performs the following functions:

Updates the DIT entry for the rep list to include the
number of items in the rep list, the index to +he next
list and sets the constant item length flag (Ci1) for the
list if all the data items have the same length (word
count) . This last flag is used by the output routines
when they are trying to output REPI macro calls. It also
updates N.ITEM where N.ITEM = RF * RL+#N.ITEM and clears
CLOSREP and REPFLAG.

-96-

6000 FORTRAN EXTENDED 4.0

CFCD

When a (is encountered, the updated paren level counter
(PL) is compared to CLOSREP to see if this left paren

'started a rep list or it must be the start of a complex

constant.

If it is the start of a rep list, then we jump back to
the main loop to process the next item, else we call CFCD
to 1look ahead and check for a complex constant, and
return false, or convert the constant and return true.
In the case that CFCD returns false, either the left
parenthesis is meaningless and ignored, or an attempt to
nest 2 parentheses groups and flagged as a syntax error.

If CFCD returned true, then the parenthesis level is
decremented by 1 and ADIT is called to add the constant
to the DIT.

Entry
AS = (SELIST)
A4 = points to start of ¢on list, the /.

Exit
DIT built, length in L.DIT and number of items in N.ITEM.
Note for the list /1,3(1,2)/ N.ITEM = 1+¢3%2 = 7

PL = REPFLAG = CLOSREP = 0.

Error me ssages

Syntax error in data item list

Illegal item following + or - sign

2 nested rep lists.

Illegal separator following a constant item.

CALLS - CRL, CFCD, CHKSC,CADIT and ADDCON

-97-

6000 FORTRAN EXTENDED 4.0

CHKSC - Check for sSmall Constant

CHRSC checks to see that the given constant is type
integer or octal, and that the converted value is between
1 and 377777B. It returns the converted value of the
constant in X6.

Error messages

Do 1limit or rep factor in a DATA statement must be an
integer or octal constant between 1 and 131K.

CALLS - CONVERT
ADDCON

ADDCON calls convert to convert the constant to binary,
exclusive ors in the value of the sign (+ or -) and calls
ADIT to add the constant and prefix word to the DIT. 1In
the case of Hollerith constants the number of words in
the constant and the remainder is calculated and a DIT
entry is made for the prefix word and the E-list for the
constant. In the case that a Hollerith constant is
preceeded by a - sign, the CONSTOR's entry is
complemented.

Entry

X4 = E-lisﬁ for the constant

X1 = E-list for the constant with upper 12 bits = 0
X7 = value of the sign (+0 or -0)

Exit

Constant added to ADIT

Registers restored by a call to macro # GETE %, poinf
past the constant. :

CALLS CONVERT, ADIT

-98-

3.6

6000 FORTRAN EXTENDED 4.0

ADIT

ADIT is called to add up to 3 words to the DIT. The
first word is in X6, the second in X1, and third in X2.
B1 = number of words -1 to be added. ADIT updates L.DIT
and checks for memory overflow.

Error messages

DATA TABLE MEMORY OVERFLOW,\INCREASE FL

BVT

BVT scans the variable list for syntactic correctness,
accumulates information about each variable or nest of
loops in the list, and calls the output routine, MDL, to
match up the variable and data item lists.

The processing of implicit DO loops will be discussed
here.

PDV 1is called to process the array name and set cells
containing the dimensions, etc. .

PSS is called to process th subscript list of the array
and set up the subscript table (SST) information
containing the constant multipliers (C1's), constant
addends (C2's) and index variables. Then, we process the
loop variable and limits, matching up the index variable
with the wvariables appearing in array subscript
expression and converting the 1loop 1limits to binary.
Next, we check to see that for each subscript C * 11+C221
and then reduce the loop to normal form.

The set of loops:

(((A(C11%I1+C12,C21%I24C22,C31*I34C32), I=111,ull,int),
J=112,ul2,in2),
K=113,ul3,in3)

where 1I1, 1I2, I3 is some permutation of IJK, can be
reduced to:

{((A* (m1*I1,m2*%I2,m3*I3), I'=1,t1), T'=1,t2), k*=1,t3)

which we will call normal form.

-~Q9Q-

1.

3.

6000 FORTRAN EXTENDED 4,0

The formulas for reduction to normal form are:

- r S s
I.,m1 I+lll in_, J=in J+112 in

1’ 2 2"

— *
Mi_m 1 C 1

A'=A+ Y dmj* {Czj+clj(uj—incj)}

j,Clj;éo
. sdpf
+3 dmg*(czj-l)} *2

j =0
]’Clj

t=(u1i+iniflli)/ini,trip count for the loop if 11i = uli

Where sdpf is the single/double precision flag (0 or 1) and the dmj are
the dimensional multipliers for the array.

o s e g
dml—l, dm 2_d_lm 1’ dim 3-d1m 1 d1m2 .

The difference A'-A is the bias due to subscript calculation and
accumulated in the cell BIAS.
One may derive 2 and 3 from 1 and the definition of LOCF -

sdpf

A(ils 12,i3)=LOCF(A)+ { _E]':’ dmj*('ij-l) *9

-100-

6000 FORTRAN EXTENDED 4.0

The code from BVT9 to BVT14 performs this reduction. The
loop information for the ith loop is combined and saved
in LPINF{(I) whose format is described in the comments
preceeding BVT.
For the loop nest

((A(G.1), i= 1,5, 3= 2,6,2)
which reduces to

(A G,i) . i= 1,5 J

]
b
-
(%
—

we would have:

6/1, 1871, 18/5, 18/dim1

LPINF (1)
LPINF (2) = 6/0, 1872, 18/3, 18/dim2
The'next sequence of code (BVT 15 - BVT 18) collapses the
innermost loops when the subscripts are in standard order
(I3K) . |
As an example:

((a(i,j), i=1, diml), J=1,N) may be collapsed to

(a(i), i = 1 dim1*N) which is easier for the output
routines to process.

Finally, one calculates the sum .
. BIAS*’{?JM‘J'(mjtrtju‘i)'l

checks it to see that it is less than MAX (dimj, EQUIV
extended of the array), then calls MDL to match up the
lists.

Entry
A5 = SELIST
A4 = points to start of var list

N.ITEM = number of items in data list

-101-

6000 FORTRAN EXTENDED 4.0

N.ITEM = 0 lists match
less than 0 if var list longer than con list
greater than 0 if con list longer than var list
CALLS - PDV, PSS MDL, CHKSC
PSS |

PSS processes the subscrlpt list associated with an array
element or appearing in a DO nest up to the closing
paren. PSS consists of three phases. First, the
subscripts are syntax checked and the E-list for the
constant multipliers, addends and subscript variables
saved in the subscript into block, SST. Next, the
constant multipliers and addends are converted to binary.
Finally we search for multiple appearences of a subscript
variable, and if found eliminate them by reducing the
number of variable subscripts and adjusting the constant
multipliers and addends.

Entry

Al points to (following the array name.

Exit

SELIST points past the closing).

B7 = N.VSUB = number of variable subscipts
N.SUBS = number of subscripts
CON1 = constant multipliers
IVAR = elist of subscript variables
CON2 = constant addends

Example A (2%I-1,3) results in
N.VSUB = 1

N.SUBS 2

-102-

&

6000 FORTRAN EXTENDED 4.0

CONT (1) 2, CON1(2) = 0, CON1(3) =0

IVAR(T) = nin, TVAR(2) = 0, IVAR(3) =0
coN2(1) = -1, CON2(2) = 3, CON2(3) = 0

CALLS - CHKSC
PDV

PDV is called from BVT process names occuring in data
statements which are not dummy variables occurring in DO
nests. The functions of PDV are to return to the calling
routine information of interest to it, which include:
symtab ordinal, bias due to equivalence, words of
storage/element, number of dimensions, dimensions, etc.
PDV must also define the address of usage def ined
variables that occur in DATA statements and call ADDREF
to add definitions to the reference map.

The flow structure of PDV is straight forward but
modifiers should be careful not to destroy information

' being saved in the B registers, or X1 and X2 which

contain the symtab entry.

when a usage defined variable occurs in a data statement,
we must define its address immediately, instead of
waiting until ENDPRO time, since we will issue storage
for it. Since there is no space in the symbol table
entry during pass 1 (the RA field is used by the DEBUG
processor) , we save the address we assign it and the
symbol table ordinal in a separate table which is
processed at ENDPRO time, PDV also sets the common bit
in the symbol table entry so further occurrances in DATA
statements do not cause the address to be defined again
and so ENDPRO doesn't attempt to define its address.
After ENDPRO processes the symbol table (PST) and defines
the address's of the usage defined variabels that have
not occurred in DATA statements, if processes the DATA
table and turns off the common bit and inserts the saved
address in word B of the symbol table entries.

Entry

Registers point to variable name (X1, X4, AL, A5).

=103~

4.0

Exit

Registers

6000 FORTRAN EXTENDED 4.0

restored for syntax scanning and point past

variable name.

The following locations are set:

SNAME

SDPF

N.DIMS

DIM

DIM.MUL

DVT

EEL

E-list for the variable name.

(Used for error messages to point to the last
good name processed).

0 if the name is a single precision variable or

array (1 word/element), 1 if double or complex.

0 if a simple variable, else = to the number of
dimensions.

This block holds the dimensions of the array.

This < block holds the dimensional multipliers
for subscript calculations. (1,DIM1,DIM1%*DIM2)

This two word block holds the symtab ordinal,
the bias due to equivalence, the number of
elements in the array, the number of words of
storage allocated to the symbol and some
miscellaneous flags (see description preceedubg
BVT) . o

0 unless the name is an array reference
appearing in a DO nest. 1In this case, EEL =
equivalence class 1length - bias of the array
relative to the equivalence class.

CALLS -~ SYMBOL, ADDWD, CFO, ADDREF

Error Messages

This name may not appear in a data statement.

Name may not be function, external, formal parameter or
in blank common.

Output Routines and Methods

-104-

6000 FORTRAN EXTENDED 4.0

At present, all the data processor output goes to the
coMPs file in the form of display code line images. The
information put out consists of setting the FWA for data
placement followed by the data. To achieve the first
objective, the ORG pseudo was redefined so that it would
act as a NAME BSS 0 statement in the case that the
variable had not yet had storage .issued for it (in
DPCLOSE) and as a ORG in the case that storage had been
previously allocated.

In order to output the data in the most efficient way
(minimize the size of the binary file), one wishes to
make use of the REPI pseudo whenever possible. The
analysis necessary to do this in the one dimensional case
is contained in the subroutine OIC. Code necessary for
the 2 and 3 dimensional cases was not done due to lack of
time, but extra analysis could be included in MDL.

The definitions of +the ORG and REPI macros used by the
compiler can be found in FTNMAC.

Data Productions
1. Single element DATA A(C) / CON /
ORG A,C-1
DATA CON
2. 1 dimensional loop (A(m*l), 1 = 1,t) /7 con lis£ /
a. con list = C1, C2,...,Ct
ORG A + m-1 where redundant "ORGSW
DATA Ci are suppréssed if the
ORG A + 2*m-1 length of the data item = m

DATA C2

»

ORG A, t*m-1
DATA Ct

b. con list = rf *x (C1, C24e.., Crl)

-105-

6000 FORTRAN EXTENDED 4.0

where all the Ci are the same length, CIL, here
there are two cases and we look at the address
difference between consecutive elements

Note that the dmp contribution comes in since
BVT has reduced loops with constant subscripts,
like

(A(2,i), i=1,5) to the form Al (i), i=1,5)

The number of times we can use the data list in
the loop is

n = min (rf, t/rl)
where n > 1 if we are to use the REPI pseudo.

The cases are as follows:

CIL>2c‘16, no'repliCation

RL =

1 or AA = CIL

We output a ORG, followed by a DATA followed by a

REPI

RL>1

For

macro call

ORG A,BIAS ' m'=RL*AA

SET *

DATA C1,C2,...,Crl
REPI S/S.,+m', B/rl.CIL, c/n-1, I/m!
and. AA>CIL

this case, the data will not occupy contiguous

locations in storage. Since the REPI pseudo is not
capable of moving a non-contiguous sequence of data,
we must issue a separate ORG and REPI for each piece
of data.

" The

file

sequence that OIC expands issues to the COMPS
is: '

-106-

6000 FORTRAN EXTENDED 4.0

X SET 0

DUP RL

ORG A(m*(1+X)) m' = AA.RL
S. SET *

DATA Cx+i

REPI S/S.,BsCIL, C/n-1, I/m', D/S.+m'

Output for the case when the data list consists of
single items and replication lists intermixed simply
consists of breaking down the loop into a sequence
of loops and processing each sub loop in sequence.

Processing of an irreducible nest of loops such as
((AA (j,1i) i=1,10), J=1,5)
consists of calling OIC to process the inner loop n

times with the outer loop variables being
incremented after each call to OIC.

Output Subroutines

Here the subroutines fall into three classes:

1.

Ooutput information to the COMPS file

oDV Outputs ORG macro call.
ORP Output REPI macro call.
ODI Output a data item to the COMPS file calls

IDW or OHC to issue the data words to the
CcoMPS file.

IDW Output a single data word to the COMPS
file. ODV and ORP <call the subroutine
FMAC format and translate the information
to display code IDW calls FMAC and BTOCT.

Maintain pointer to the data item table.

-107-

6000 FORTRAN EXTENDED 4.0

GNI performs this function and OIC decrements the
rep count when it decides it can use the REPI pseudo
op to replicate a list.

Controllers

MDIL. - decides what case we are processing and calls
the output routines or OIC. ’

OIC - outputs data initalization code for the
sequence of elements described by the loop.

@ (mxi), i=1,t)

CALLS GNI, ODI, ODV ORP

-108~

®

1.2

- 2.0

2.1

6000 FORTRAN EXTENDED 4.0

ERPRO _and FORMAT

General Information
Task Description - Error Processing

The error processing during compilation is divided into
two routines: ERPRO in PASS 1, and PS2CTL in overlay
1.3. The final output resulting from detecting an error
will be the card sequence number (compiler generated) on
which the error occurred, the severity (fatal to
execution, etc.), an optional symbol, a name or word to
further clarify the message, and the actual diagnostic
(up to 106 characters). ERPRO 1is located in the 1,1
overlay. : :

Task Description - FORMAT Scanner

The FORMAT scanner processes FORMAT statements and checks
for errors at compilation time. The scanner squeezes out
blanks and redundant commas. Before scanning the FORMAT
for wvalidity, the statement 1label is checked for
validity, recorded in the symbol table, and sent to the
COMPS file. , ~

Usage

Entry Point Names - Error Processing

In general the calling sequence is:

SB6 . error number
SB7 return
EQ entry point

Using the above calling sequénce, ERPRO would éxpect an
E-list entry in X4, or if X4 is zero a display code
message in X3 (bits 48~59 zero, bits 0-47 display code).

Using the following calling sequence, no message is

expected in X3 or Xi4.

SB6 -error number
SB7 return
EQ entry point

-109~

2.1.2

2.1.3

2.2.2

6000 FORTRAN EXTENDED 4.0

The parameter in B6 is a symbol or number which is
equated to the ordinal of the error in the error
directory table in overlay 1,3.

ERPRO

This entry is used for all messages whlch resulted from
errors which are fatal to execution.

ASAER

This entry is used for all messages which denote non—ANSI

usage.

If the X option is not selected, this entry point is
changed to a JP B7 instruction by PH1CTL.

FATALER

This entry is used for all messages which resulted from
errors which are fatal to compilation.

A reference to this entry will result in making an entry
in the error table and setting the fatal to compilation
flag (FX). Control does not return to the caller. cCalls
to SCANNER are then made until an END card is

~encountered, then a request to load PASS 2 is made.

ERPROI

This entry point is used for all diagnostics which are
informative 1n nature.

Informative diagnostics up until 12 minus the maximum are
placed in the table and at that time an informative
diagnostic is 1issued statlng that no more. 1nformat1ve
diagnostics will be put in the table.

FORMAT has one entry point.

Upon entry with a legal statement label, FORMAT scanning
takes place. FORMAT is entered by both PHICTL and
PS1CTL, since formats may be among both executable and

nonexecutable statements.

Calling Sequence

-110-

,‘EWK

2- 2.3

3.1

3.2.1

6000 FORTRAN EXTENDED 4,0

FORMAT is entered via a return jump and upon completion
of its tasks, exits through its entry point. .

Flow of Processing
The characters which comprise a FORMAT, beginning with
the left parenthesis, are scanned sequentially until the

matching right parenthesis or an irrecoverable error
condition is encountered. :

Diagnostics

Error ProcesSing

Number 206 Informative DUE TO THE NUMEROUS ERRORS NOTED,
ONLY THOSE WHICH ARE FATAL TO EXECUTION WILL. BE LISTED
BEYOND THIS POINT

Number 110 Fatal to Compilation ERROR TABLE OVERFLOW
FORMAT

Fatal to Execution

PRECEDING CHARACTER ILLEGAL AT THIS POINT IN CHARACTER
STRING. ERROR SCAN FOR THIS FORMAT STOPS HERE..

ILLEGAL CHARACTER FOLLOWS PRECEDING FLOATING POINT
DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HERE.

ILLEGAL CHARACTER FOLLOWS PRECEDING A,I,L,0 OR R

DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HERE.

ILLEGAL CHARACTER FOLLOWS TAB SETTING DESIGNATOR. ERROR
SCAN FOR THIS FORMAT STOPS HERE.

ILLEGAL CHARACTER FOLLOWS PRECEDING SIGN CHARACTER.
ERROR SCANNING FOR THIS FORMAT STOPS HERE.

PRECEDING CHARACTER ILLEGAL, SCALE FACTOR EXPECTED.
ERROR SCANNING FOR THIS FORMAT STOPS HERE.

PRECEDING HOLLERITH COUNT IS EQUAL TO 2ERO. ERROR
SCANNING FOR THIS FORMAT STOPS HERE.

FORMAT STATEMENT ENDS RFEFORE LAST HOLLERITH COUNT IS
COMPLETE. ERROR SCAN FOR THIS FORMAT STOPS AT H.

-111-

3.2.3

6000 FORTRAN EXTENDED 4.0

FORMAT STATEMENT ENDS BEFORE END OF HOLLERITH STRING.
ERROR SCANNING STOPS HERE.

PRECEDING HOLLERITH INDICATOR IS NOT PRECEDED BY A COUNT.
ERROR SCANNING STOPS HERE WITH FORMAT INCOMPLETE.

ZERO LEVEL RIGHT PARENTHESIS MISSING. - SCANNING
CONTINUES.

PRECEDING FIELD WIDTH OUTSIDE LIMITS FOR RECORD SIZE.
SCANNING CONTINUES.

PRECEDING RECORD OUTSIDE OUTER LIMITS FOR RECORD SIZE.
SCANNING CONTINUES.

TAB SETTING IS - OUTSIDE OUTER LIMITS FOR RECORD LENGTH.
SCANNING CONTINUES.

Non—ANSI
PLUS SIGN IS AN ILLEGAL CHARACTER.
PRECEDING FIELD DESCRIPTOR IS NON-ANSI.

FLOATING . POINT DESCRIPTOR EXPECTED FOLLOWING SCALE FACTOR
DESIGNATOR.

e

| TAB SETTING DESIGNATOR IS NON-ANSI.

HOLLERITH STRING DELINEATED BY SYMBOLS IS NON-ANSI.
Informative

SEPARATOR MISSING, SEPARATOR ASSUMED HERE.

X-FIELD PRECEDED BY A BLANK, 1X ASSUMED.

X~FIELD PRECEDED BY A ZERO, NO SPACING OCCURS.
PRECEDING FIELD WIDTH IS ZERO.

PRECEDING FIELD WIDTH SHOULD BE 7 OR MORE.

FLOATING POINT DESCRIPTOR EXPECTS DECIMAL = POINT
SPECIFIED. OUTPUT WILL INCLUDE NO FRACTIONAL PARTS.

FLOATING POINT SPECIFICATION EXPECTS DECIMAL DIGITS TO BE
SPECIFIED. ZERO DECIMAL DIGITS ASSUMED.

1)

-112-

3.2.4

6000 FORTRAN EXTENDED 4.0

REPEAT COUNT FOR PRECEDING FIELD DESCRIPTOR IS ZERO.

FIELD WIDTH IS OUTSIDE INNER LIMITS. CHECK USE OF THIS
FORMAT TO ASSURE DEVICE CAN HANDLE THIS RECORD SIZE.

PRECEDING SCALE . FACTOR IS OUTSIDE LIMITS OF

REPRESENTATION WITHIN THE MACHINE.

SUPERFLUQUS SCALE FACTOR ENCOUNTERED PRECEDING CURRENT
SCALE FACTOR.

RECORD SIZE OUTSIDE INNER LIMITS. CHECK USE OF THIS
FORMAT TO ASSURE DEVICE CAN HANDLE THIS RECORD SIZE.

FIELD WIDTH OF PRECEDING FLOATING POINT DESCRIPTOR SHOULD

‘BE 7 OR MORE THAN DECIMAL DIGITS SPECIFIED.

NUMERIC FIELD FOLLOWING TAB SETTING DESIGNATOR IS EQUAL
TO ZERO, COLUMN ONE IS ASSUMED.

NUMERIC FIELD OMITTED IN PRECEDING SCALE FACTOR. ZERO
SCALE ASSUMED. .

NON-BLANK CHARACTERS FOLLOW ZERO-LEVEL RIGHT PARENTHESIS.
THESE CHARACTERS WILL BE IGNORED.

TAB SETTING MAY EXCEED RECORD SIZE DEPENDING ON USE.
Each error message will be preceded by a 48 bit message
stating the card and c¢olumn number of the error

encountered. Computation and the form of this message is
described in Section 8.

Environment

Error Processing‘

Information provided by other processors

In jlocation 468 and u7B, SCANNER places information
regarding the current card number. Location 46B contains
in display code the 1line number as printed on the
listing, location 47B contains in binary an offset count
which ranges from 1 to 10.

The location of the error table is an entry point name in
FTN called ERTABL. :

-113-

u‘z

6000 FORTRAN EXTENDED 4.0

NASAFLG (issue non-ANSI usage errors) is set by the
control card cracker.

Information generated by ERPRO.

N.FERR contains the number of errors in binary
encountered during a single compilation.

- FORMAT

FORMAT scanner expects characters to be packed ten
characters per word in display code, where the first
character 1is a left parenthesis. FORMAT expects the
first word of information at the location specified by
SELIST, and the last word of information at the location
specified by ELAST. FORMAT allows a maximam of three

"levels of parentheses, an input record length of 150
characters, and an output record length of 137

characters. In general, formats must be in accordance
with ANSI FORTRAN standards, with the addition of the tab
setting and Hollerith string capabilities. Legitimate
format field descriptors are of the following form:

((+# 7-) (n) P) (r) <D/ E/ F / G> w.d
(r)y A /I /7L/70/R w

nHh1h2...hn

(n) X

¥,..% OF #FeooA

Tm

where:

1. In the above description, a slash separates
alternatives; angle brackets denote that one and
only one of the enclosed alternatives must be
chosen; parentheses denote that none or one of the
enclosed alternatives may be chosen. :

2. The letters D, E, ?*, G, A, I, L, O, R, H, and X
indicate the manner of conversion or editing between
the internal and external representations and are
called the conversion codes.

3. w and n are 1nteger constants representing the width
of the field in the external character string.

4, d 1is an integer constant representlng the number of
digits in the fractional rart of the external

-114-

@

13

6000 FORTRAN EXTENDED 4.0

character string. If 4 is omitted, it is assumed to
be zero. :

5. m is an integer constant representing the tab
setting for the external character string,.

6. r is the repeat count (an optional, non-zero integer
constant) indicating the number of times to repeat
the succeeding basic field descriptor. ’ , ,

7. (+ 7 =) (n) P is optional and represents a scale
factor to be applied to the processing of the
succeeding conversion code if a D/ E / F 7/ G.

8. Each hi is one of the characters capable of
representation by the processor.

9. ¥y, oK or #...%# encloses hollerith inforﬁatiOn
(excluding an asterisk), up to one record in length.

10. For all descriptors other than *...%, or #...¥ field
width must be specified; for descriptors of the form
D E / F /G w. must be greater than or equal to
d+7.

Format field separators are the slash and the comma.
Field separators are used to delimit field descriptors.
Field separators are optional in the following cases:

1. after ®...%, #£,..#

2. after nHh1h2...hn

3. after nX

4, after (+ / =) (n) P ,

5. after another field separator

6. before or after a right parenthesis

In all other cases, a field separator is expected, and a
diagnostic is issued if the separator is missing.
Scanning of the format will continue in such a case.
Blanks and commas, where unnecessary, are squeezed out of
the format specification.

Structure

Ma jor subroutine.namésvin ERPRO.

ERPRO

-115-

5.1.2

5p1.3

5.2

5.2.1

6000 FORTRAN EXTENDED 4.0

This subroutine checks if room exists in the. table and
determines type of parameter that accompanies the
message.

OPER

This subroutine decodes the E-list element.

TABOFLO

This subroutine issues diagnostic 110 and makes the calls
to SCANNER.

PK

This subroutine sets up the entries in the error table
and updates the cell (ERLOC) which contains the address
of the next available cell in the error table.

FORMAT
Transition Diagram

Format scanner has been implemented utilizing transition
diagram oriented processing. A transition diagram
describes action to be taken for each syntactic type
encountered in a string. The transition diagram consists
of circles, boxes, unbroken, and broken line segments
where:

(::) H a NODE, or state in the flow which has
been reached at some point in the string.

.
.
|

= a set of intermediate processing on the
string between nodes, or states, which can

be made analogous to FORTRAN subroutine.

: = action in processing the string. Over a
solid line segment, character advancement
takes place; over a broken line segment,
character advancement does not take place.
The character(s), or group of characters
(i.e. digit :: = (0,1,2,3,4,5,6,7,8,9))
which direct the processing to a

-116-

6000 FORTRAN EXTENDED 4.0

particular state are inscribed on the line
segment.

Character advancement can also occur in intermediate
processing.

The transition diagram which traces the flow of
processing for the format scanner follows.

-117-

. INITIALIZATION
FORMAT (———# | "R OCEDURES

0

GoT0 " Tsasi L h . HSTRNGR(1) - @
1

Jeuse
]

L 1ERROR l

SLASH(1) RITEPAR(1)

| ELSE

ONECNT

I RITEPAR(OTI Lsusu(o;] G| NpE . HSTRNGR(0)
[, —° .
@ XBLANK X

NUMBER(0)
Gk

scALe @

FERROR l
l ‘ITCODE j L EXIT

m
b3
5

@ ELSE [FERROR
FLAGW7D

P

DE

FLAGW7D d UERROR

ELSE

|
F ‘

NUMBER(0)

FLAGW?D |l @

|
i
i

IIELSE
|

-118-

6000 FORTRAN EXTENDED 4,0

Micro Definitions for Transition Diagram

Micro definitions for the format transition diagram are
formed in the following manner:

node micro::= branch(branch) otherb otherb
branch::= char test mask test ignore : transfer
designation '

otherb::= /(char) :transfer designation
transfer designation::= node name ,routine name (param)

char test::= = - char expr

[}

expr ::= compass expression designated by more than one
character.

mask test::= (char) {char)

char ::= ABC... 89 +~-%y/ 8%, . ()

node names: := name

routine name::= name

number: := 01234567829
param: := compass expression
For example, at node 7:
= ,NOPACK:NODE7 - a blank is not packed the flow is

~advanced one character and sent back
to node 7.

-119-

5.2.4

5.2,4.1

5.2.4.2

5.2.4.3

6000 FORTRAN EXTENDED 4.0

(0123456789) :NODE1,DECIM - a digit is packed, the
flow is advanced one character, and
sent to NODE1, via a set of
intermediate processing, DECIM.

/ELSE:NODE1,IERROR(7) « - any other character at this
- node inhibits character advancement,
and flow 1is sent to NODE1, via
IERROR, the informative error
processor, with a parameter of 7.

Table Formed from Definitions and Table Processor

The micro definitions generate one word table entries,
which are acted upon by the transition diagram table
processor, TRANSIT, all of which is 1located in FLY.
TRANSIT processes the character string along the path
defined by the micro definitions of the transition
diagram, fetching and storing characters where required.

Intermediate Processing, i.e. Subroutines Used
NUMBER

Converts a string of display code numerical digits into a
binary number which is stored relative to location NUMN,
with a displacement of the input parameter (-1,-0,1); the
input parameter specifies the number to be decimal
digits, a repeat count or skip span, or a field width.
Control is returned to the address specified.

RANGE

Checks for wvalid result of NUMBER routine; range to be
checked is specified via the calling parameter. If
number is out of range, the error processor is called.
Control is returned to the address specified,

FLDCHER

Checks range of field elements; computes total field
length and checks the range; record length is increased
by the length of the total field. Record count is saved
in a pushdown table which saves information for the 3
levels parentheses. If the record count is longer than
one record, an informative error is produced. Control is
returned to the address specified.

-120-

5.2.4.4

5.2.4.5

6000 FORTRAN EXTENDED 4.0

WIDTH

rield descriptor width handler; calls NUMBER(0),
RANGE(1), and FLDCHEK(1). Parameter (0) implies a
floating point descriptor, and if the field width is not
7 ‘or greater, an informative erroxr is produced.
Parameter (1) for other descriptors, and no test is made.
Control is returned to the address specified.

DECIM

‘Handles decimal digits portion of floating point

descriptors; calls NUMBER(-1), and if descriptor is D, E,

- or G. a check is made fcr field width greater than or

5.2.4.6

5.2.4.7

5.2.4.8

5.2.4.9

equal to 7 + decimal digits specified. If the descriptor
fails this test, an informative error is produced.
Control is returned to the address specified.

FLAGWTD

Called to +turn on a flag indicating a D, E, or G type
field descriptor. The flag is wutilized by DECIM to
determine whether or not to perform a test comparing
field width with decimal digits specified. Control is
returned to the address specified.

ONECNT

Initializes temporary count storage for repeat count,
field width, and decimal digits, and turns off flag
indicating a D, E, or G specification encountered.
control is returned to the address specified.

DELCOM

The last character stored in the string is fetched. If
the character was a comma, it is squeezed out of the
output string. Control 1is returned to the address
specified.

XBLANK

An X descriptor was preceded by a blank, and an
informative error is issued to that effect. FLDCHEK is
then called to update the record length count. Control
is returned to the address specified. :

5.2.4.10 XZERO

-121-

6000 -FORTRAN EXTENDED 4.0

The skip count is tested for zero; if so, an informative
error is issued. If the count is non-zero, FLDCHEK is
called to update the record length count. Control is
returned to the address specified. R

5.2.4.11 TSASI

DELCOM is called to squeeze out redundant commas. A non-
ANSI error is produced, and control is returned to the
address specified. : ' ,

S.2.4.12 TCODE

NUMBER (0) is called to convert the tab setting pointer to
binary. If the result is zero, an informative error is
produced. Otherwise, RECCHEK (1) 1is called, where the
record count 1is accordingly checked and modified.
Control is returned to the address specified.

5.2.4.13 SCALE

NUMBER (0) is called to convert scale factor to binary;
then RANGE(-1) is called to check for validity of scale
factor. Control is returned to the address specified.

5.2.4. 14 NULLP

An informative error is initiated and zero scaling is
"assumed. The scale flag is turned on; if previously on,
and unused, another informative error is produced.
Control is returned to the address specified.

5.2.4.15 HCOUNTR

The Hollerith count is fetched, each character is checked
against an end-of-statement; if an end of statement is
encountered, an error exit is taken. Otherwise, the
character is stored, the count decremented, and the 1loop
continued until the count is depleted to zero. FLDCHEK
is then called to add to the record count. Control is
returned to the address specified.

5.2.4.16 HSTRNGR
Each character is compared with the end of statement and
the Hollerith string indicator. While no match is made,

character advancement continues. If an end of statement
is encountered, an error exit is taken. When a matching

-122-

O

6000 FORTRAN EXTENDED 4.0

Hollerith indicator is encountered, the character count
is sent to FLDCHEK where it is added to the record count.
Control is returned to the address specified.

5.2.4.17 SLASH

DELCOM is called when the input parameter indicates, and
RECCHEK(0) is called to check for 1legal record size.
Values are checked and modified in a pushdown table which
saves record size information for each parenthesis level.
current record count is reinitialized. Control is
returned to the address specified.

5.2.4.18 RECCHEK

Current record count is checked for legal record size.
If entry was from SLASH, control is then returned to the
address specified. 1If entry was from RITEPAR because of
a first level right parenthesis, control is sent to
FINISH where the format 1is sent +to the COMPS file.
Otherwise, entry was from TCODE, and the current record
count 1is set to the tab setting. The record saving
pushdown table is modified, and control is returned to
the address specified.

5.2.4.19 LEFTPAR

The parenthesis 1level is incremented and checked for
validity. An invalid parenthesis level causes an error
exit to be taken. If the parenthesis level is valid, the
level repeat count is preserved in the pushdown table.
Control is returned to the address specified.

5.2.4.20 RITEPAR

DELCOM is called to delete redundant commas where
appropriate. Parenthesis 1level 1is checked for =zero
level. If so, RECCHEK(-1) is called, and control is sent
to close out procedures. Otherwise, appropriate record
size wupdating is performed on the pushdown table. The
parenthesis level is decremented by one, and control is
returned to the address specified.

5.2.4.21 FINISH

Control 1is received by scan when a zero-level right
parenthesis is encountered. A check is made for
extraneous characters. The last word of the format is

-123-

6000 FORTRAN EXTENDED 4.0

packed. If no fatal errors were encountered in the
process of scanning, the E-LIST string is inverted and 6
word blocks of COMPASS images are sent to the COMPS file.
Entry conditions are restored, and control is returned
via a jump to FORMAT.

5.2.4.22 TERROR, UERROR, FERROR

All are entries to the error processing routine,
depending upon the type of error incurred. The type is

‘preserved, along with the error number. All critical

registers are saved; then the card number and column

number in which the error occurred are computed and

merged into the 48 bit message word. Control is then

released to the appropriate error processor. On return,

the critical registers are restored, and control is

returned to the address specified by the caller.

Table Formats

Error Table Format

Word 1 VFD 3/2,9/Error Number,i8/Message

Word 2 VFD 30/Line Count,30/0ffset

FORMAT

Memory Pointers and Flags

DEGFIAG - Flag ‘turned on when D, E, or G descriptor
is encountered, is used to determine when

field width adequacy tests should be made.

COLCNT - Contains count for current record length;
is checked in RECCHEK.

FLAGPON - Flag turned on when scale factor is
encountered; turned off when utilized.
Checked each ‘time = scale . factor
encountered. '

FE - Flag turned on when a fatal error

condition has been encountered in a
format. This flag inhibits packing the
format for the coMPs file.

-124-

7.0

LEVEL

NUMD

NUMM

NUMW

PUS HDOWN

6000 FORTRAN EXTENDED 4.0

A counter which keeps track of the
parenthesis level, where the first level
is level zero.

Location which saves the decimal field of
floating point descrirptors.

Location which saves tab settings, and
repeat counters. '

Location which saves the width of format
descriptors.

A table which contains four fields of
‘information per word, one word per
parenthesis level. The information is
used to calculate accumulated record
length when an end of record is
encountered. For each parenthesis level,
the following information is saved:

SL indication of presence or absence of
slash 1n level

GR the group repeat count

NL column count following last slash in
level ;

N1 column count preceding first slash in
level

The table will be structured as follows:

VFD 6/SL(0),18/GP(0),187/NL (0) ,18/N1 (0)
VFD 6/SL(1),18/GP(1),18/NL(1),18/N1 (1)

VFD 6/SL(Max) 18/GP(Max),18/NL(Max),
18/N1 (Max)

; Modification Facilities

Error Processing

-125-

7.2

7.2.1

7.2.2

6000 FORTRAN EXTENDED 4.0

ERRMAX is an EQU in OPTIONS, controls the size of the
error table.

FORMAT

EQU's
MAXMAX EQU 150 maximum read record length
MINMAX EQU 137 maximum written record length
PMAX EQU 615 maximum size scale factor
LEVMAX EQU 2 = maximum parenthesis level

HOLLER EQU 1R*¥ hollerith string indicator

These 1limits may be changed by simply modifying the
EQU's.

Allowable Formats

Additions ands/or changes to the forms allowable for
format descriptors may be made by adding to and/or
changing the micro definitions in FLY, and/or adding to
and/or modlfylng the specific subroutine handler (s)
involved. ‘

Character Manipulation
Characters are fetched and stored using two macros:

GETCH and PUTCH, from words packed ten characters per
word to words packed ten characters per word, with a one

-character delay, SAVECHAR, on storage. These macros may

be modified without disturbing the rest of the logic of
the scanner.

Method Used

Format scanner is a left-to-right, character by
character, one pass scan, implemented through TRANSIT,
the main routine in FLY, which sends the format to the
part of code indicated appropriate by the transition
diagram. The approved format is packed, ten characters
per word, and sent six words per line, to the COMPS file.
The scan operates on a character recognition basis.
Recognition causes control to be sent to an appropriate
set of intermediate processing, which expects a
particular combination of characters, previously referxed
to as field descriptors. Permissible descriptors are
itemized in Section 4. At the end of a set of

-126-

O

e

6000 FORTRAN EXTENDED 4.0

intermediate processing,‘ control 1is returned to the
appropriate state in the flow of the scanner. Scanning
terminates when an end of statement is encountered, or an
illegal character or character sequence is encountered.

A running count is kept of the length, in characters, of
the current record described by the format. Calculation
of total record 1length involves utilization of the
information stored in the PUSHDOWN table described in
Section 6. Calculation and checking is done whenever a
slash or a zero-level right parenthesis is encountered.
When an error is encountered in the scanning process, the
error processor is called, where the card and column
number in which the error occurred is calculated. They
are computed using the following formula:

CD = 21 - CONTS)
COL = COLS - 8) where CONTS AND COLS are
computed in SCANNER

FWA format - current address
*10 + (60 - (6 character

pointer)) /6

N

]

CURRENT COLUMN POINTER

WD = (COL4N-1) = RELATIVE WORD POINTER
CDNO = CD+WD = CURRENT CARD POINTER

COLNO = COL+#+N+5- (66 WD) = CURRENT COLUMN OF CURRENT
CARD POINTER

This information is packed in the lower 48 bits of the
error word in one of the follow1ng forms:

NNCDNNNN
NNCDbNNN
NNbCDbNN
NNbbCDbN

where the first field is the column number and the second
field is the card number. This information is then sent
to the standard error processing routine.

Restrictions and Other Remarks

-127-

6000 FORTRAN EXTENDED 4.0

ERPRO

None

FORMAT

Register Usage

Caution must be taken by the modifier of FORMAT scanner
with respect to register usage. The following reglsters

are used by TRANSIT, and must be preserved in FORMAT
scanner:

A0=mask base X0=7T-==——rm-
77008
B1=1 Al=input address X1=input word
B2=shift 1nput ‘ X2=input
character
B3=node address ~ X3=subroutine
: parameter
B4=return address
B7=shift output A7=output address X7=output word
caution must also be taken with respect to TRANSIT
utilization of scratch registers. = The following
registers are used as scratch registers by TRANSIT:
A3 :
Al X4
BS : ' ‘ X5
A6

The return mechanism in ~all cases is via register Bl.
All intermediate processors save and restore B4 when it
is utilized before a return.

-128-

1.0

2‘1‘2

2.1.3

2.1.6

2.1.7

6000 FORTRAN EXTENDED 4.0

LISTIO

General Information

Processes all forms of input/output statements which may
occur in a FORTRAN program. These include READ, WRITE,
PRINT, PUNCH, BACKSPACE, ENDFILE, REWIND, ENCODE, DECODE,
BUFFER IN and BUFFER OUT,.

FTN 4.0 produces an aplist structured type of calling
sequence for all I/O statements. Each aplist is composed
of a sequence of I/0 macros (IOM!'s) which define file,
format, and list item information to the actual 1I/0
object time routines. The structure of the IOM is
explained in section 6.

Entry Points

Code entry points

CNVT

Converts a binary number into a BCD string.

ENDFILE

Processes the ENDFILE statement.

REW

Processes the REWIND statement.

BKSP

Processes the BACKSPACE statement.

PUNCH

Processes the PUNCH statement.

PRINT

Processes the PRINT statement.

READ

-129-

2.1.10

2.1.11

2.1.12

2.1.13

2.191“

2.1.15

2. 202

2.2.3

6000 FORTRAN EXTENDED 4.0

Processes all form of the READ statement.

WRITE

Processes the WRITE statement forms.
BUFIN ‘

Processes the BUFFER IN statement;
BUFOUT |
Processes the BUFFER OUT statement.
DEC

Proceéses DECODE staféments.

ENC

Processes ENCODE statements.

DOITX |

Entry for return from DOPROC after processing the
beginning of an implied loop. : _

DONEX

Entry for return from DOPROC after processing the end of
a loop.

IARC

Processes input aplist restart call.

Non-code ehtry points

APLRST

Entry containing the store to I/0 aplist flag.
BLEXP |

Entry containing the binary list expression flag.

HOLCON

=130~

O

2.2.4

2.2.5

2.2.9

6000 FORTRAN EXTENDED 4.0

Entry containing hollerith constant information for
processing hollerith constants in I/O lists.

Entfy containing the indirect indicator flag.
IOEXPV

Entry coﬁtaining 1/0 expression flag.

IONAME |

Entry containing header address for the I/0 macro to be
issued. :

ITEMCT

Entry containing the item count for an aplist item entry
word.

PARCNT

Entry containing the parameter count for each I/0 1list
processed.

TYPEFG

Entry containing the variable or expression type of the
I70 list item.

Diagnostics And Messages

CONFLICTING USE OF A NAME

BAD UNIT NUMBER

I/70 STMT SYNTAX ERROR

FORMAT NUMBER SYNTAX ER?OR

MISSING I/0 LIST OR SPURIOUS COMMA

NON ANSI I/0 STATEMENT |

CHARACTER COUNT ERROR‘IN ENCODE/DECODE STATEMENT

PARITY NUMBER MUST BE 0 OR 1

-131-

(511

(&g}

6000 FORTRAN EXTENDED 4,0

FORMAT SPECIFICATION IS NON ANSI

UNIT NUMBER NOT BETWEEN 1 AND 99

DO CONTROL VARIABLE MUST BE A SIMPLE INTEGER

DO PARAMETER MUST BE AN INTEGER CONSTANT OR VARIABLE
ARRAY REFERENCE OUTSIDE DIMENSION BOUNDS

VARIABLE FOiLOWED BY (

ARRAY REFERENCED WITH FEWER SUBSCRIPTS THAN DECILARED
TOO MANY SUBSCRIPTS IN ARRAY REFERENCE

NO MATCHING RIGHT PARENTHESIS

Environment

All statement processors expect the statement to have
been converted to E-list starting at the location
contained in SELIST. A number of externals in DOPROC are
referenced. Their functions are:

DOCALL mark an external reference

DOCALL mark an enternal referencé_

DODEF mark é variable as defined

LABCON convert é label to internal form

DOIT process an implied DO loop |

DOGOOF compress the DO table after an I/0 list
error

DONE terminate an implied I/O list

INTVAR check for and enter an integer varxable in

the symbol table

Processing

IOSETUP

_f132-

6000 FORTRAN EXTENDED 4.0

The setup routine is called prior to processing of each
type of 1I/0 statement. The 1I/0 aplist number is
incremented, and the aplist header line issued to the
COMPS file. A USE DATA. is sent to the file ahead of the
aplist header to ensure that the subsequent I/0 aplist
will be relocated in the correct block.

CNVT

‘Converts a binary member in X2 into BCD format, leaving
the result in X7 upon exit. B1 contains an appropriate
shift count when entered.

IXFNL

This is a 1local version of the IXFN routine in ARITH

called to process each 1list item. Upon exit the
"registers are set up as if exited from a SYMBOL call.

CFSIV

Checks for a simple integer variable. 1Issues a
diagnostic if the inputted variable is not type integer.

NAMLIST

Process NAMLIST I/0O. Issues the group name to the COMPS
file. Sends I/O macro for the call to the RLIST file.

PVARNAM

This routine is called to process variables used as file
names, parity indicator names, format names, or character
count names. It issues an appropriate IOM macro to the
COMPS file for the variable processed. On entry, BY§

~contains a 0/1 flag indicator determining the variable

usage, and X1, X2 contain the symbol table entry of the
name.

Processing follows these steps:

a) Check to determine if the name is a formal
parameter. If it is not, go to g).

b) Compute the formal parameter offset, and save it in

the argument list for the IOM macro. If not a file
name or parity indicator name, to to d).

-133-

5’07 ’

6000 FORTRAN EXTENDED 4.0

C) Set the file bit for the IOM macro, and exit the
routlne.

d) Determine if an ICM varlable is belng processed, and
if not, go to f).

e) Set the LCM bit for the IOM macro.

£) Set the variable bit for the IOM macro. Save any
" constant bias associated with the wvariable in the
argument 1l1list for the IOM macro. Exit the routine.

g) Determine 1if the variable is equivalenced or not.
Save the symbol table ordinal and any constant bias
in the argument list for the IOM macro.

h) If a file name or parity indicator name is being
processed, go to i). If the variable is not an ICM
variable, go to j).

i) Set the file or ICM bit for the IOM macro. Exit the
routine for the case of a file name or parity
indicator name.

J) Set the wvariable bit for the IOM macro. Exit the
routine.

FMTNO -~ Process Format Number

If +the format item is a variable, a symbol call is made.
In the not found case, the type and var bits are set in
word B and a non ANSI flag set. Then processing joins
with the found path. If the type is namelist, an exit is
taken with X0 equal to zero. IXFN is called to process
the name. Upon return the APLRST flag is tested to
determine if store to I/O aplist code must be generated
and calls are made to PSTAPL and STIOM if the flag is
set. Otherwise PVARNAM is called to generate an IOM
macro for the format name, and the macro is issued to the
COMPS file before exiting FMTNO. A non-ANSI diagnostic
is produced for non-dimensioned variable formats.

A constant format number is processed in a different
manner. First, checks are made to ensure that:

a. The next item is a constant.

b. It is an integer constant.

-134~

©

6000 FORTRAN EXTENDED 4.0

c. It has no more than five digits.

If +these conditions are met, LABCON is called to format
and enter the 1label in the symbol table. On first
occurrence, the following are done:

a. set the type to label.

b. set the referenced as format number (RFN) bit.

Ce Generate an IOM forfthé format number.

4. Issue the IOM macro to the COMPS file.

e. Save the label ordinal in TEMP.
f. Collec£ references if necessary.

g. Reload B1 from TEMP to satisfy the exit condition.

- h. Exit FMTNO.

For second and subsequent appearances, a check is made
for the defined as statement number (DSN), referenced as
statement number (RAS) and DO loop terminator (DLT) bits.
If any of these are set, an error message is produced.
Otherwise, processing begins with step a for the first
appearance.

UNITN - Process The Unit Number or Parity Indicator

on entry, X7= zero if unit and one if parity. On exit,
%3= zero if variable parity, or X1= binary number. If
the next E-list item is not a name Or constant, an error
is issued. If the item after the name is not a right
parenthesis or a comma, a diagnostic is produced. For a
variable unit or parity indicator, CFSIN is called to
validate the wvariable type. PVARNAM is called to
generate an IOM macro for the name, and the macro is
issued to the coMPs file. Exit is made through the entry
point.

Constant unit or parity indicator must be integer or a
diagnostic will be given. CONVERT is used to produce a
binary integer from the constant value. At this point,
we will exit the routine if we are converting a parity
indicator. For a unit number greater than 99, an error
is produced. Then the number is converted to display

-135~-

5.10

5.11

5.12

6000 FORTRAN EXTENDED 4.0

code, an equivalence sign appended, and PLFN called to
process the name. Upon return, exit is made from UNITN.

PLFN - Process Logical File Name

On entry, X1 contains 8R file name. On exit, , symbol 2
in the macro holds the symbol table ordinal of LFN and R
number 2 -contains an R number for the load. 1Initially,
the logical file name is placed in the symbol table. Oon
the not-found exit, file name bits are set into word B of
the entry. The address of word B is saved, the ordinal
placed into symbol two of the macro, and the next R~list

‘number placed in the macro. If the SYSEDIT= FILES option

was not selected, we simply collect an I/0 reference if
R=2 or 3 and exit. For the Files option in a main
program, we simply exit after reference accumulation
since the FET names will be 1local symbols. However,
extra processing is needed for subrcutines. Remove all
blanks and the special character from the file name and
enter this into the constant table. Generate an IOM
macro to the file name, and issue the macro to the COMPS
file.

IocMm

This routine issues an I/0 call macro to the RLIST file.
On entry X1 contains the name of the execution routine to
be called. The name is added to the symbol table, and
the macro is built in the MACBUF created area, then
written to the RLIST file. '

ENDFILE

Set the object routine name to ENDFIL. and call PERB.
REW

Set the object routine name to REWINM. and call PERB.
BKSP

Set the object routine name to BACKSP. and call PERB.
PERB - Process ENDFILE, REWIND, BACKSPACE

First, the routine name is saved in TEMP and IOFLAG set

one for a positioning reference. The macro op code is
setup and a DOCALL is made to mark an external reference.

-136-

5.17

5.19

6000 FORTRAN EXTENDED 4.0

If something occurs after the unit number, an error 1is
produced. A fake right parenthesis is added to the E-
1ist to keep UNITN from producing a diagnostic UNITN is
called to process the unit number and IOCM to issue the
I/0 macro to the R-1list file.

PUNCH

Sset the standard file name to PUNCH , call PROFL and
exit.

PRINT

Set the standard file name to OUTPUT , call PROFL and
exit,

PROFL

Processes I/0 statements of the form keyword n, list. On
entry, X1 holds 12/IO0FLAG, 48/8R name of associated file.
Initially, the value of IOFLAG is extracted and saved,
MACOP= now sets the macro opcode to that for READ, WRITE,
PRINT, PUNCH initial calls. Then, PLFN is called to
process the logical file name. A non-ANSI usage 1is
flagged and DOCALI, is called to mark an external
reference. Then FMTNO is called to process the format
number. For namelist names, NAMLIST is called and then
PROFL is exited. For standard format items, FMODE is
used to set the file usage mode formatted. TIf the next
F-list item is not a comma or an end of statement, an
error is issued. Should the item after the comma be an
EOS an informative error will result. Next, the name of
the 1Is/0 routine is extracted from IOTAB using the value
in IOFLAG. TIOLIST is called to process the list and then
exit is made from PROFL.

READ

If the first F-list element is not a left parenthesis,
this is a read of the form READ n, 1list and PROFL is
called with a file name of INPUTC . Otherwise, PRORW is
called with an IOFLAG of 1S59. Upon return, processing
is complete and an exit is taken.

WRITE

Set an IOFLAG if zero and call PRORW. Upon return, exit
to the phase controller.

-137-

5.21

5.22

6000 FORTRAN EXTENDED 4.0

PRORW - Process READ and WRITE Statements

Save IOFLAG which is in X6 on entry and set the macro op
to an initial call. Inform DO of an external reference.
Generate an error if the next F-list item is not a left
parenthesis. Clear all mode indications (LFNA) and call
UNITN to process the unit number. If, upon return, the
next item is a 1right parenthesis, set the file mode
binary, adjust the macro opcode and set the mode flag
(X3) to 0 (binary). If the item after the unit number is
not a comma, an error is issued. Otherwise, FMTNO is
called to process the format number. The item after the
format number must be a right parenthesis or an error
will be produced. TIf +the format number field was a
namelist group name, we goO to NAMLIST for further
processing. Otherwise, the mode is set to formatted and
the mode flag (X3) to 2 for coded. Finally, we extract
the name of the appropriate object routine and call
IOLIST. Upon return, exit is made from PRORW.

BUFIN
Set the IOFLAG (X7) to input (1), call PBUF and exit.
BUFOUT

Set the IOFLAG (X7) to output (0), call PBUF and then
exit. '

PBUF - Process Buffer I/0 Statements

Save IOFLAG and call DOCALL to mark an external
reference. Issue an ANSI wviolation error and set the
macro opcode to buffer I/O. Call UNITN to process the
unit number and set the mode to buffer. If the next item
is not a comma, issue an error. Otherwise, call UNITN to
process the parity indicator. In the case of a constant
parity value greater than 1 an error is diagnosed. An
IOM macro is generated for the constant, and issued +to
the COMPS file. A check is made of ths next E-list item.
If not a right parenthesis, an error is issued. Next a
left parenthesis must occur. IXFN is called to process
the FWA name. If a store to I/0 arlist 1is required,
PSTAPL and STIOM are called to issue the appropriate
macros to the RLIST file and an TOM macro to the COMPS
file. Otherwise PVARNAM is called to generate the IOM
macro for the name. For an input operation, the defined
bit 1is set. The next item must be a comma. IXFN is

-138-

5.25.1

5.256

6000 FORTRAN EXTENDED 4.0

called again to get the last word address. Again either
PSTAPL and STIOM or AVARNAM are called to complete
processing of the LWA name. If the ending address is
type double, an adjustment is made to the RLIST macros or
the generated IOM to increment the address by 1. Next a
right parenthesis must occur followed by an end-of-
statement marker. Load the name of the object routine
and call IOCM to produce the macro. Finally, processing
exits from PBUF.

PSTAPL

This routine generates and issues to the RLIST file a

 sequence of macro to perform a store to an I/0 aplist.

On entry, X2 contains word B of hte symbol table entry of
the name being processed, $x is a zero/non-zero flag
indicating whether the name represents a buffer 1I/0 LWA,
and X6 contains the result number returned by the IXFN
call for the variable loaded.

PSTAPL builds in the MACBUF storage area a sequence of
RLIST macros which will generate an I/0 aplist entry word
and store it into the desired area in an I/0 aplist.
These macros are the logical conclusion of the sequence
begun when the IXFN call was made.

STIOM

Output to the COMPS file an IOM -1B to represent a

position in the I/0 aplist which will be the object of a
store.

DEC - Process DECODE Statement

Set the TIOFLAG to input (1) and call PED; exit upon
return. :

ENC ~ Process ENCODE Statement

Sset the IOFLAG to output (0) and call PED; exit upon
return. '

PED - Process ENCODE/DECODE
Call DOCALL to mark an external reference and then issue

a non-ANSI usage error. Set +the macro opcode to
ENCODE/ DECODE. Advancing over the 1left parenthesis

-139-

6000 FORTRAN EXTENDED 4.0

(guaranteed to be there because of SCANNER'S algorlthm),
the character count field is examined. «

For a constant character count:

a.

b.

Verify the constant to be integer.
Use CONVERT to get a binary value.
Issue an error if the character count is zero.

Issue an IOM macro to +the coOMPs file for the
character count. :

Verify that the next item is a comma.
Call FMTNO to process the format number.

Issue an error if +the format item is a NAMELIST
group name.

Verify that the next item is a comma.

~Call IXFN with the complement of IOFLAG in X2.

Call PSTAPL and STIOM, or call PVARNAM to process
the name of the target area.

Set the defined bit if this is an ENCODE statement.
Verify that the next item is a right parenthesis.

Load up the name of the the object time processor
and call TOLIST to process the list.

Exit upon return.

For a variable character count:

a.

b.

Verify the next item to be a comma.
Use IXFN to obtain the address.
Call PVARNAM to process the character count name.’

Issue the generated IOM for the character count to
the CcOMPs file. ;

-140-

5.28

5.28.1

6000 FORTRAN EXTENDED 4.0

e. Verify that the count is a simple integer var iable.
f. Join the processing for constant count at step e.

IOLIST

Processes the I/0 1list and outputs macros to R-list to
call the execution time routines to transfer data to or
from the input/output devices. On entry, A1 = address of
two words containing the names of execution time routines
and SELIST pointing to the first element of the list.
Upon entry, if a binary write statement is being
processed, the word count computation code is branched
to. Otherwise the address of the macro header for a
general external function call is placed in IONAME for
later IGCM calls when issuing the macro to the RLIST
file.

At the beginning of the main loop a check is made for a
name. If a name is found, control branches to the name
item processing. Tf not, the item is checked to be a
left parenthesis, and control transfers to the DO
processing code if it is. When these two tests fail and
the item is not an end of statement marker, it can be
assumed that an expression or constant item is being
processed, and control transfers down the path of the
name item. Otherwise, for an EOS item, an end-of-1/0
macro (EIO) is issued to the COMPS file to terminate the
1/0 aplist, the DATA. block is incremented, and IOCM is
called to issue the I/0O call macro to the RLIST file.

NAME item

If the item following the name is an equal sign, go to
DOEND to close out the loop. Set the value of SERF (it
will be zero if the next element is a left parenthesis) .
Then call IXFN to process the address and save the R
number of the result. For an input operation, the
defined bit is set at this time and DODEF is called to
inform of the redefinition of a variable. Next, we
compute the value of the single/double precision flag (0
if single, 1 1if double). A series of checks are
per formed to determine whether the list item processed by
the IXFN call falls into one of three classes: 1) an
array item requiring a store to I/0 aplist, 2) an
expression, or 3) a hollerith constant. The processors
for each of these classes of list items will be explained
shortly.

-141~

5.28.2

5.28.3

5.28.4

6000 FORTRAN EXTENDED 4.0

If none of these conditions were satisfied, and the next
item was a left parenthesis, the item count flag
(ITEMCT) is set to 1, and LSTITM is called to process the
aplist item. However, if the next item was a left
parenthesis and the name is dimensioned, the DIM table
entry (word two) is examined. special processing for
non-variable dimensions will appear in an upcoming
section.

After issuing the aplist, we go back to the main loop if
the next item is a comma. For an end of statement, we go
to issue a final call. If the item is neither of these,
and it is not an IOLIST right rarenthesis, an error
condition exists.

variable Dimension Array Transfers

First, a determination is made to see if any constant
dimensions are present. Consider the symbol CONF to be 1
if constant dimensions or a double/complex array occurs,
else =zero. Next compute the number of variable
dimensions plus one divided by two + CONF + 1. This

'yields the number of words in the body of the macro. The

macro number is computed from the base number minus one +
number of variable dimensions + 3 times CONF. Combining
these +the macro header word is formed. For all three
dimensions variable, the IH fields are extracted from the
DIM word, and the macro constructed. For a mixture of
constant and variable dimensions, the product of the
constant portions with the word count for the item (1 or
2) is computed. In addition, symbol table words are
constructed for placement in the macro. Next, we provide
an R number for the resister store in the macro and write
the macro to the R-list file. Then setup and issue a
variable word count intermediate call macro instead of

‘the ordinary intermediate call macro.

Store to I/0 Aplist List Item

This code generates in the MACBUF storage area an RLIST
macro to combine the variable type information along with
the variable address obtained by IXFN. PSTAPL is called
then to generate the actual store macro, thereby
completing the code sequence initiated by the IXFN call.
Finally an IOM macro is sent to the COMPS file indicating
that the aplist item will be provided at execution time.

Expression List Item

-142~

5.28.5

5.28.6

6000 FORTRAN EXTENDED 4.0

When IXFN processes a list expression, the final result
is stored into an ST.. This code simply generates an IOM
macro for the ST. entry. An ANSI diagnotic is issued to
flag the occurrence of an expression in an I/O list.

‘Hollerith Constant List Item

This routine converts the character count for the
Hollerith constant inot a word count, and issues an IOM
macro to the COMPs file defining the position of the
constant in the HOL. block. :

3tandard Aplist List Item

This is the analog of the AVARNAM routine, but processes
only list items found in the I/0 statement. It generates
an IOM for the 1list item, and issues it to the COMPS
file. The processing is similar to that in PVARNAM, and
therefore will not be described in any detail here.

Implied DO Loop Processing

Code to process implied DO loops will attempt to collapse
statemnts of the form:

(((A (I'J'K) 'I=I1'12'13) 'J=J1'J2'J3) 'K=K1'K2'K3)

If more than three levels of parentheses occur before a
name is found, the loop is non~collapsible and control

passes to code for this type of loop. The number of
‘parentheses is saved in .COLLAPS. The current line number

and the E-list address of the array name are compared
with the contents of NOCAL (indicator of +the last name
address and line number found to be non-collapsible). If
a match is found, processing goes directly to the non-
collapse code.

At the start of collapse processing, a number of cells
are cleared. The cells and functions are:

NAMDEX (3 words)-E-1list for 1,J,K
INDX (12 words) 1,11,13,3,31,32,33,K,K1,K2,K3
ARNAM {1 word) array name (OR format)

If the item after the name is not a left parenthesis,
mark the loop non-collapsible and process accordingly. A

- 143~

6000 FORTRAN EXTENDED 4.U

SYMBOL call is made to enter the name in the symbol table
and an error will be produced if a first appearance
return is taken since this implies the item was never
given a dimension. For the found return, a check is
performed to insure the array is dimensioned. Using the
type field, a singlesdouble precision flag is computed
(SDPF = 0 for single, 1 for double word items). The flag
is saved in the entry point word of REW since this will
be a safe temporary during IOLIST processing. If the
array is double, the bogus CONLIST entry is changed to 2.

The number of dimensions are extracted from the DIM word
and the word saved in DIMWRD and DIMVAL. NODIMS is set
to contain the number of dimensions. Next, the
subscripts of the array are scanned. If the item is a
name, it is placed in NAMDEX. For a constant this is
omitted. If the item is not a name or a constant and it
is not a right parenthesis, the loop is non-collapsible.
The only acceptable thing for the next element is a comma
or a right parenthesis. If the number of dimensions
referenced exceeds three, an error is produced and flow
returns to the phase controller. If the argument count
is still proper, processing goes back to get the next
subscript and repeats the previous steps.

When the right parenthesis is encountered, a check is
made to verify that at least one subscript appeared. The
word count of one or two is installed in the first macro
constant parameter. Should the item after the
parenthesis not be a comma collapse 1is abandoned.
Similarly, after the comma a name must appear. The name
of the induction variable is placed in INDX. Next, an
equal sign must occur for collapse to continue.:

The next portion of the list contains I, I2, I3, and
processing continues:

a. Extract an item.

b. Issue an error if it is not a name or a constant.

C. Save the name Or constant in INDX’area.

d. Loop back to a if the next'item is a comma and there

are three or less indexes so far. If +the index
count reaches four, issue an error.

-144-

6000 FORTRAN EXTENDED 4.0

e. when +the right parenthesis is encountered, reduce
the parentheses level.

f. Go back to processing for the next loop control
variable until the parentheses level is satisfied.

At this point, the formal collarse processing begins.
Processing proceeds as follows:

a. If the subscript name field (I) is a constant, exit
to mark no further collapse.

b. DOVAR is called to ensure that the subscript is a
legal integer variable.

c. set the defined bit in word two of the symbol table.

d. compare the dimension with the index. If they do
not match, terminate collapse processing.

e. If +the increment (I3) is variable or not a constant
one, collapse is terminated.

f. VALTYP is called to validate the do increment value
for a constant and returns the value in X1.

g. If R=2 or 3, two references are collected for the
control variable.

h. Next a check is made to see if I1 is a variable or a
constant.

For a constant:

(1) Use VALTYP to validate it.

(2) save the constant in the macro.

(3) For 1I1=1, full collapse is still possible. If
not, set this as the final collape level
(TENCOL) .

For a variable:

(1) Inhibit collapse for double word arrays.

(2) Mark this the last collapse level.

-145-

6000 FORTRAN EXTENDED 4.0

(3) Change the macro op to variable.
(4) Use DOVAR to validate I1.

(5) Call EQUIVP to place the correct base and bias
into the macro.

Load up dimension information and save the constant
dimension for this time. sShift the contents right
18 bits to set up for the next iteration.

if the dimension is variable, perform special
handling. : :

Check I2 for variable or constant for 12 constant.

(1) VALTYP is used to convert and validate the
type. ‘ ' . '

(2) For 1I1 variable, set macro constant three to

the constant value of I2 plus one and go try to
collapse further levels.

(3) For I1 constant compute (I2-I1) + 1 * previous
MACLK1 and place the result in MACLKI1.

(4) For a zero or negative word count, set the
count to the value of the SDPF + 1.

(5) Clear I1 from macro parameter three.

(6) If the constant value of I2 does not match that
for the dimensionality, inhibit further
collapse and produce an informative message if
it exceeds the declared bound.

For 12 variable:

(1) Suppress collapse on double arrays only if 11
'~ is not one.

(2) Reduce constant three in the macro (I1) by 1 if
MACOPC is still =zero (I1 not variable). If
collapse has not been terminated bump MACOPC by
three to get a c*v macro. :

(3) Now bump MACOPC by one and mark no further
collapse.

=146~

6000 FORTRAN EXTENDED 4.0

(4) Call DOVAR to validate IZ2.
(5) Use EQUIVP to place base-bias in the macro.
(6) Collect a reference to I2 if necessary.

1. Try to,collapse remaining levels (COLAPR8) Place the
current FE-list address and statement number in
NOCAL. : : v

m. Check to see if maximum collapse level has been
reached. If so, go issue macros.

n. If collapse inhibit is marked (TENCOL = -1), process
this as a normal I/0 list loop.

0. Bump the collapse level and restart at a.

This level is not collapsible (COLAPRY9). 1If it is level
one, abandon all collapse. Set the flag for no further
collapse. Reduce the current level by one and go to step
1 above.

Issue macro code for the collapSed list:

a. Compute the macro number using MACOPC + base of
“collapsed I/0 macros. (Put this in MACOP).

be If the macro has a multiplier of one, change it to a
macro to omit the multiply.

Ce. Allocate an R number for the macro.
For LWA +1-FWA type macro the following occurs:
(1) Generate E-list for the subscripted array
reference used to denote the last word address

to be used.

(2) Use 1IXFN to compute the address and save it in
R number two of the macro.

(3) Replace I1 where it belongs.
d. Call ARYCONS to produce an array reference for the

index function that will be short listed because of
the collapse.

-147-

5.28.8

6000 FORTRAN EXTENDED 4.0

e. Produce necessary index function code using IXFN and
save the result register in the macro.

£. Call MACOUT to issue the macro code.

ge. Restore the E-list pointer and return to process the
next E~list item.

Variable dimension collapse handling:
a. Force the macro to a LWA+1-FWA type.
b, For I2 a constant: |
(1) Place the 5ymbo1 name, right justified in TEMP.
(2) Inhibit further collapse.
(3) Go to normal I2 constant handling.
For I2 a variable:

(1) Inhibit collapse if this is a double word
array. ' ‘

(2) If the dimension subscript is different from
I2, no further collapse is possible.

(3) call DOVAR to validate I2.

(4) Use EQUIVP to obtain base-bias in the macro.

(5) Collect a reference if necessary.
C. Proceed to try a collapse of remaining levels.
ARYCONS
This routine modifies the array reference so that
corresponding subscripts for collapsible 1levels reflect
the initial wvalue of the item. For example, A (1)
becomes A (I1) and A(I,J) becomes A(I1,J1) provided both
the I and J levels are ccllapsible.
Non-Collapsible I/0 DO Loops

a. Scan the body of the I/0 loop for an equal sign at
level zero and a right parenthesis at level -1.

-148-

5.31

6000 FORTRAN EXTENDED 4.0

b. If no equal sign was found, this must be something
of the form (var, var, var) and can be processed as
simple elements.

c. For an I/O loop, the final parenthesis is changed to
a special right parenthesis, and we go to DOBEGIN
for initial loop processing.

d. DOIT returns +to DONEX and the E-list pointer is
advanced to the special right parenthesis, SELIST
updated and .control passed to process the next I/0
element. ‘ ” ‘

DOBEGIN

Issues an I/0 call, if necessary, before generation of
the DO-begin code by the DO processor. ARIOCH is called
to issue the restart call, IONAME is adjusted to reflect
a change of routines being called, and finally DOIT is
called for the loop code generation.

DOEND

Issues an I/0 call, if necessary, before generation of
the DO-end code by the DO processor. ARIOCM is called to
issue +the restart call, and DONE is called for the loop
code generation. :

ARIOCM

Issues a soft end of I/0 list macro to the COMPS file,
increments the DATA. block size, calls IOCM to issue the
I/0 call, and calls IOSETUP to generate a new aplist
header label for subsequent processing. ‘

IARC

Tssues a restart call when a list item is used as an
array item subscript later in that same list. Called
from ARITH.

MACOUT - Output I/O Macro To R-list

This routine produces a macro with four symbols, six R
numbers and 3 constants. The parameters are obtained
from the area from MACLS1 through MACLK3 and packed up.
Then the area from MACL52 to MACLK3 is cleared and the

“macro dumped to R-list.

-149-

6.1.5

6.1.6

6000 FORTRAN EXTENDED 4.0

Strﬁctures
Aplist Parameter Element Expansions
Unit name/number pointer
VFD 1/VAR, 1/F¥P,40/0, 18/FITADR
Format pointer
| VFD 1/LCM, 1/FP, 1/VAR, 33/0, 24/FMT
Mode pointer
VFD 42/0,18/MODEWD
Buffer I/0 FWA
| VFD 1/L.CM,1/F¥P,1/VAR,33/0,24/FWA
Buffer I/0 LWA
VFD 1/LCM, 1/FP, 1/VAR, 33/0,24/1WA
String pointer (encodes/decode)

VFD 1/1CM, 1/FP, 1/VAR, 33/0, 24/DATSTR

Count pointer (encode/decode)

VFD 171LCM, 1/FP, 1/VAR,33/0,24 /CNT
List pointer

. VFD 1/LCM, 1/FP, 1/1IND,3/0,6/TYPE, 18/NBREL,6/0,
24/ITEM

Record length
VFD 42/0,18/WDCNT
End of aplist '
| VFD 60/END
whére the above terms are defined aé:

VAR - denoteé the item is a variable

-150-

6

6000 FORTRAN EXTENDED 4.0

¥D - denotes the item is a formal parameter
LCM - denotes the item is large core resident
TYPE - denotes the item type
0 - reserved ‘
1 - logical
2 - integer
3 - real
4 - double
5 - complex
6 - 63 - reserved
IND - denotes indirect item reference

NBREL - denotes the number of contiguous elements in the
list item if IND=0

NBREL - denotes the SCM address of the list element count
if IND=1

FND - denotes the end of an I/0 list if +0

END - denotes an intermediate interruption in an I/0 list
if -0

If the FP bit is set, the address field is interpreted as
18/BIAS,6/FPORD,

where FPORD denotes the ordinal of the formal parameter

in the parameter list for the subprogram, and BIAS is any

offset associated with that particular formal parameter

reference. ‘

IOM Definition

The 1I0, macro defines the element expansions listed
above. The macro call is of the form

IOM BASE,BIAS,TYPE,COUNT,RB59,B57,BASE2,
where
BASE - aplist item base address

BIAS - aplist item bias if BASE is present
- formal parameter ordinal if BASE is nul

-151-

6000 FORTRAN EXTENDED 4.0

aplist item count

TYPE = '
COUNT - aplist item contiguous element count if
B 57 is nul ‘
- element count offset if B57 is present
B59 - LCM/file name bit
B57 - variablesindirect bit

BASE2 - formal parameter offset if B57 nul and a
formal parameter has been determined
- base field for item element count if B57 present

-152-

6000 FORTRAN EXTENDED 4.0

ARITH

1.0 Genefal Informatioh
Task Description

The function of the ARITH statement processor is to
translate E-list for an arithmetic replacement into R-
list and issue appropriate macros to the R-list file. It
also translates any arithmetic, logical, relational, or
masking expressions which may legally appear in any type
of statement. ARITH calls an external routine to process
arithmetic statement functions, and then translates the
expanded statement function.

2.0 Entry Points
IDORDL contains the symbol table ordinal of an ID name

NAMFWA contains the address of word A of a symbol
table entry for a name

DBGAPL debug aplist table used by the debug processors
to format aplist information for debug calling
sequences ‘ : ;

"APLRT code block called to format and issue an aplist

instruction to the ARLIST buffer

GEFCM code block called to format and issue a general
external function macro to the ARLIST buffer

DARLIST code block called to output the ARLIST buffer
to the R-list file

CVDB code block called to issue R-list macros to
compute +the total bound of a variably
dimensioned array

STRIP code block called to remove a trailing dollar
sign from a name v «

FSTRIP FORTRAN entry point for the STRIP routine

-153-

6000 FORTRAN EXTENDED 4.0

IXFN code block called to process an item in an 1/0
list -

ACALL code block called to process the argument list
in a subprogram CALL statement

ARITH primary entry point of the arithmetic statement
processor

INITR code block called to initialize memory cells in
ARITH

IFE code block called to process arithmetic IF
statements

IFL . code block called to process 1logical IF

' statements

OPSTACK operator stack for ARITH contains, information
at DPCLOSE time required for address
substitution of the ARLIST buffer

Diagnostics Produced

Fatal to compilation: none
Fatal to execution

A CONSTANT ARITHMETIC OPERATION WILL GIVE AN INDEFINITE
OR OUT~OF~RANGE RESULT. : ’

EXPRESSION TRANSLATOR TABLE (JAMTB1) OVERFLOWED.
SIMPLIFY THE EXPRESSION.

TYPE ECS NOT AVAILABLE IN THIS VERSION OF FTNX.
ILLEGAL USE OF THE EQUAL SIGN.

VARIABLE FOLLOWED BY LEFT PARENTHESIS.

NO MATCHING RIGHT PARENTHESIS.

NO MATCHING LEFT PARENTHESIS.

THE OPERATOR INDICATED (-, +, *. /, or *%*) MUST BE
FOLLOWED BY A CONSTANT, NAME, OR LEFT PARENTHESIS.

~154-

6000 FORTRAN EXTENDED 4.0

A NAME MAY NOT BE FOLLOWED BY A CONSTANT.
MORE THAN 63 ARGUMENTS IN ARGUMENT LIST.

A CONSTANT MAY NOT BE FOLLOWED BY AN EQUAL SIGN, NAME, OR
ANOTHER CONSTANT. /

EXPRESSION TRANSLATOR TABLE (OPSTAX) OVERFLOWED.
SIMPLIFY THE EXPRESSION.

LOGICAL OPERAND USED WITH NON-LOGICAL OPERATORS.
NO MATCHING RIGHT PARENTHESIS IN SUBSCRIPT.
LOCAL ENTRY POINT REFERRED TO AS EXTERNAL FUNCTION.

INTRINSIC FUNCTION REFERENCED MAY NOT USE A FUNCTION NAME
AS AN ARGUMENT.

ARGUMENT NOT FOLLOWED BY COMMA OR RIGHT PARENTHESIS.
A FUNCTION REFERENCE REQUIRES AN ARGUMENT LIST,
ILLEGAL CALL FORMAT.

EXPRESSION TRANSIATOR TABLE (FRSTB) OVERFLOWED. SIMPLIFY
THE EXPRESSION.

THE OPERATOR INDICATED (.NOT. OR A'RELATIONAL) MUST BE
FOLLOWED BY A CONSTANT, NAME, LEFT PAREN, -, Or +.

BASIC INTRINSIC FUNCTIONS WITH AN INCORRECT ARGUMENT
COUNT.

EXPRESSION TRANSLATOR TABLE (ARLIST) OVERFLOWED, .
SIMPLIFY THE EXPRESSION.

ILLEGAL INPUT/OUTPUT ADDRESS.

RIGHT PARENTHESIS FOLLOWED BY A NAME, CONSTANT, OR LEFT
PARENTHESIS.

MORE THAN ONE RELATIONAL OPERATOR IN A REILATIONAL
EXPRESSION.

. A COMMA, LEFT PAREN, =, .OR., OR ;AND.’MUST BE FOLLOWED
BY A NAME, CONSTANT, LEFT PAREN, -, .NOT., OR +.

-155-

6000 FORTRAN EXTENDED 4.0

AN ARRAY REFERENCE HAS TOO MANY SUBSCRIPTS.

NO MATCHING RIGHT PARENTHESIS IN ARGUMENT LIST.
ILLEGAL FORM INVOLVING THE USE OF A COMMA.

LOGICAL AND NON-LOGICAL OPERANDS MAY NOT BE MIXED.
DIVISION BY CONSTANT ZERO. |

A COMPLEX BASE MAY ONLY BE RAISED TO AN INTEGER POWER.
USE OF THIS SUBROUTINE NAME IN AN EXPRESSION.

SUBROUTINE NAME REFERRED TO BY CALL IS USED ELSEWHERE AS
A NON-SUBROUTINE NAME.

TOO MANY SUBSCRIPTS IN ARRAY RFFERENCE.
LEFT SIDE OF REPLACEMENT STATEMENT IS ILLEGAL.

THE TYPE OF THIS IDENTIFIER IS NOT LEGAL FOR ANY
EXPRESSION. :

A CONSTANT OPERAND OF A REAL OPERATION IS OUT OF RANGE OR
INDEFINITE.

THIS . COMBINATiON OF OPERAND TYPES IS NOT ALLOWED IN THIS
VERSION. '

DOUBLE OR COMPLEX OPERAND IN SUBSCRIPT EXPRESSION NOT
ALIOWED.

DOUBLE OR COMPLEX ARGUMENT NOT LEGAL FOR THIS INTRINSIC
FUNCTION.

.NOT. MAY NOT BE PRECEDED BY NAME, CONSTANT', OR RIGHT
PARENS.

Informative

ARRAY NAME OPERAND NOT SUBSCRIPTED. FIRST ELEMENT WILL
BE USED.

THE NUMBER OF ARGUMENTS IN THE ARGUMENT LIST OF A NON-
BASIC EXTERNAL FUNCTION IS INCONSISTENT.

-156-

6000 FORTRAN EXTENDED 4.0

THE NUMBER OF ARGUMENTS IN A SUBROUTINE ARGUMENT LIST IS
INCONSISTENT.

A HOLLERITH CONSTANT IS AN OPERAND OF AN ARITHMETIC
OPERATOR.

Non-ANSI
MORE THAN ONE EQUAL SIGN.

ARRAY NAME REFERENCED WITH FEWER SUBSCRIPTS THAN THE
DIMENSIONALITY OF THE ARRAY.

HOLLERITH CONSTANT APPEARS OTHER THAN IN AN ARGUMENT LIST
OF A CALL STATEMENT OR IN A DATA STATEMENT.

NON-ANSI SUBSCRIPT.
MASKING EXPRESSIONS ARE NON*ANSI.

THE TYPE COMBINATION OF THE OPERANDS OF AN EXPONENTIAL
OPERATOR IS NOT ANSI.

A REIATIONAL HAS A COMPLEX OPERAND.

THE TYPE COMBINATION OF THE OPERANDS OF A RELATIONAL OR
AN ARITHMETIC OPERATOR (OTHER THAN **) IS NOT ANSI.
Environment

Low core cells

SYM1 (12B) starting address of symbol table

DIM1 (17B) starting address of dimension
information table

TYPE (24B) type code of current statement.
(Different statement types have
different legal syntax at the end of

expressions)
SELIST {(32B) address of next E-list element
CDCNT (37B) line number of first card of current
- statement

-157-

u.z

4.2.1

NGLN

NRLN

6000 FORTRAN EXTENDED 4.0

(52B) next available generated label number
(64B) - next available result number

SELIST and NRLN are also referred to
as EPOINT and NARN.

COmmOn blocks

/NAAIN/
NAALN
/STSORD/

STSORD

/CLNFO/

SUBFWA

SUBH
ARGCNT

NARGSF
SUBNAME
ARLPT

/77
DEBUG
Externals

ADDREF

next available APLIST number

next available statement temporary store number

(Reset to 1 by PH2CTL at the start of each

statement)

(Used only by ARITH and CALL)

address of the first word of the symbol table
entry for the name of the subroutine being
called

symbol table ordinal of the subroutine name

number of arguments in paratmeter list

argument list flag - equals 0 if there is an
argument list

name in E-list format of subroutine being
called

ARLIST buffer pointer - number of words in
buffer for current statement

base address for referencing debug tables

code block in PS1CTL called to note a reference

for a variable, array, or function name

-158-

o

-

ALLARR
ALLFUNC

ASAER
BEFTB
BKSP
BUFIN
BUFOUT
CBNFLG

CFO

CONVERT
CON.
DEC
DFLAG
DOCALL

DODEF

- debug

code

6000 FORTRAN EXTENDED 4.0

cell in DBGPHCT used to indicate whether
subscriot references for all arrays are to be
checked unconditionally

debug cell in DBGPHCT used to indicate whether
function references are:- to be traced
unconditionally '

code block in ERPRO called to issue a non-ANSIT
usage diagnostic '

entry point in ENDPRO ihdicating the beginning
of the basic external function table

code block in PRINT called to procésq a
BACKSPACE statement) \

block in PRINT called to process a
BUFFERIN statement

code Dblock in PRINT called to process a
BUFFEROUT statement

cell in FTN used to indicate whether the trace
option has been selected

code block in DBGPHCT called to éheck‘debug
usage of variable names with actuwal program

‘usage
code block called to placé a constant in the
CON. table

cell in LSTPRO containing the symbol table
ordinal for CON. 4 -

code block in PRINT called to process a DECODE
statement ‘

debug cell in FTN used to indicate whether the
debug option has been selected

code block in DOPROC called to inform it that
an external reference has occurred

code block in DOPROC called when an integer

| variable appears as the object of a replacement

statement

-159-

DOFLAG

DOGOOF

DOLAER
DOSYM
D. SAAST
ENC
ENDFILE
ERPRO
ERPROI
FpP,
FSTEX

GOTO

IGCALL
IPH2
LABEL.

L.BEFTB

6000 FORTRAN EXTENDED 4.0

cell in PSI1CTL contalnlng a DO loop nestlng
1mm1cmmt ‘

code block in DOPROC called after encounterlng

~a fatal error while proce331ng the list of an

implied DO

code block in DOPROC called to 1nform it of a
reference to a statement label

code block in DOPROC called when an integer
variable appears as an operand -

cell in DBGPHCT containing the base address of
the arrays and stores information table

code block in PRINT called to process an ENCODE
statement

code block in PRINT called to process an
ENDFILE statement _

code block called to issue fatal error

diagnostics

code block in ERPRO called to issue 1nformat1ve
dlagnostlcs

cell in LSTPRO containing the symbol table

ordinal‘for FP.

cell in LSTPRO used to 1ndlcate when the flrst
executable statement has been reached

code block called to process a GOTO statement

code block in CALL called to form an issue R-
list for a subroutine call

code block is PS1CTL called to initialize phase
2 process of pass 1

cell in LSTPRO containing the symbol table

ordinal for IABEL.

cell in ENDPRO containing the length of the
basic external function table

-160-

L.CON
N. EQUAL
N.FP
OPTLVL
0.CON
0.GQOON
PAUSEP
PH2RETN
PRINT
PUNCH
READ
RETURN
REW
ROPFLAG

RSELECT

STOPP

6000 FORTRAN EXTENDED 4.0

cell in LSTPRO containing the length of the
constant table '

cell in SCANNER containing the equal sign count
for the current statement being processed

cell in LSTPRO containing the number of formal
parameters in an argqument list
code

cell in FTN containing the level of

optimization selected

cell in LSTPRO containing the startiﬁg address
of the constant table

cell in LSTPRO containing the starting address
of the global constant table used in DEBUG mode

code block

in STMTP called to process a PAUSE
statement

code block in PS1CTL returned to after a fatal
error diagnostic has been issued

code block in PRINT called to process a PRINT

statement
code block in PRINT called to process a PUNCH
statement
code block in PRINT called to process a READ
statement

code block in ENDPRO called to process a RETURN
statement

code block in PRINT called to process a REWIND
statement

cell in FTN used to indicate whether the round
option has been selected

cell
the 1long
selected

in FTN used to indicate whether either of
reference map options has been

code Dblock
statement

in STMTP called to process &a STOP

-161-

5.1.3

5.1.6

6000 FORTRAN EXTENDED 4.0

ST. cell in LSTPRO containing the symbol table
ordinal for ST.

SYMBOL code block in LSTPRO called to make a new entry
into or search for an existing entry in the
symbol table

TRACEL debug cell in DBGPHCT used to hold the level
number for the TRACE debug statement

VALUE. cell in LSTPRO containing the symbol table
ordinal for VALUE.

WRITE code Dblock in PRINT called to process a WRITE
statement ,

WRWDS code block in FTN called to perform the writing

of R-1list macros to the R-1list file

Subroutines used by ARITH

Extérnal Routines

WRWDS

Used to make entries to the R-list file.

SYMBOL

- SYMTAB search and entry routine.

CONVERT

Constant conversion and CONLIST entry routine.

ASFREF

Called as each statement function reference is
encountered to insert the statement function with actual
arguments replacing dummy arguments into the E-1list
block.

DODEF

Called to inform DOPROC of the definition of a variable.

DOCALL

-162~

5.2

5.2.1

6000 FORTRAN EXTENDED 4.0

called to inform = DOPROC of an external function
reference. :

DOSYM
Called to inform DOPROC of a reference to a variable.
Local Routines

FUNCSRT

‘This routine is called when a function reference (other

than a statement function) is encountered. The reference
might occur in an argument 1list, so a block of cells
(FRLW) , used to hold information about argument lists is
entered into the OPSTAK followed by the ARGLP operator
(which will be popped by the right paren which terminates
the list) and an ARGCMA operator (which will be popped by
the comma after the first argument or the right paren if
only one argument). The FRLW block is initialized.
DOCALL is called if it is an external function. If the
result of a previously referenced external function has
not been saved, an instruction is output to R-list to
save the result.

The routine is called by the main line procéssor and by
the exponential operator processor.

CARGPORT

This routine is called by the main line processor and the
exponential operator processor. It is called after each
argument of a non Statement Function argument list has
been scanned (it may be an expression). Intrinsic, basic

‘external, and general external arguments are each

processed differently. Intrinsic arguments cause the R
name of the argument to be added to the R name table
(RNTB) , basic external arguments cause register-store
instructions to be output to ARLIST (which cause
particular X-registers to be associated with the
arguments), and general external arguments cause a store
to APLIST or assembler to APLIST instruction to be sent
to ARLIST.

ARGPIRT

This routine is called by the main line processor and the
exponential operator processor after the argument 1list

-163-

6000 FORTRAN EXTENDED 4.0

has been processed. If the function is general external,
it outputs a call by name macro to ARLIST. It then
enters ARGPS8CR to output loads of functions saved during
the processing of the list, if any, to R-list. Then
register define instructions are output to ARLIST, giving

‘R-names to the result register(s), X6 (and X7). Then all

of the ARLIST for this function reference is output to R-
list. The next available location in the ARLIST buffer
is adjusted. A psuedo-op giving the name of the function
result is then output to ARLIST. Finally, the FRLW block
is restored to the values it contained before this
function reference. If the function was intrinsic, the
contents of RNTB would be used to set up the parameters
of the corresponding macro and the macro would be sent to
ARLIST. Finally, the FRLW block would be restored.

If the function was basic external, a call by value macro
would be sent to ARLIST and ARGPBCR would be entered, as
for general externals.

INGEN

Processes binary operations. The input is the address of
the operands, and the macro code of the operator. If
both operands are real or integer constants and the
operator is +, -, or /, then the operation is made on the
constants, the instructions which loaded the constants
are no-oped and a macro is formed and output to ARLIST to
operate on the operands and the operand entries in ARLIST
are marked as having been used. Finally, the cells

"holding the addresses of the last two avallable operands

(RL1 and RL2) are reset.

UINGEN

Processes binary operations, similar to INGEN.

MACOUT

Routine to make entries to ARLIST. The input is: type
of result (e.g., Double Precision), the macro descriptor
(macro number, number of Rs, 1IHs, CAs), NARN (next
available R name), and the macro parameters in a block
called PARAMS. MACOUT forms the ARLIST information word
and the macro in the next available locations in ARLIST.

MODCH

-164-

6000 FORTRAN EXTENDED 4.0

Used to generate a macro to convert from one data mode to
another. The input is the address of the operand in
ARLIST which is to be converted, and the data type to
which it is to be converted. The type code of the
operand and the new type code are combined to form a

vector. The vector table is entered: the correct

convert-macro code is selected and one of two possible
branches are jumped to. A macro is then output to
ARLIST.

Formats

"ARLIST entries: (ARLIST is the block that ARITH forms R-
~ list subexpressions in).

word 1:

VFD 1/NOP, 11/Type of result,1/C,1/GPTU,1/J,1/XMT,
7/0,1/3,18/% words in this entry,
18/# words in preceding entry

]

B59 1 if this entry is not to be sent to R-list.

If B59 -1, the entire contents of word 1 have
been complemented.

B58~48 indicate the type of operand as follows:

2000B Logical
2001B Integer
2002B Real
2003B Double
2004B Complex
2005B Octal
2006B Hollerith
B47 = 1 if the operand is a constant.
BU6 = 1 if this entry is temporarily unavailable as
an operand.
B45 = 1 if this entry has been used as an operand to
a subsequent operation.
B4Y = 1 if a transmit instruction should follow this
' entry if it is the second operand of an equal-
sign operator. (e.g., see the R-list macro

definition of the intrinsic function REAL).

=165~

B36 =

- Word 2:

Word 3:

OPSTAK

This is

6000 FORTRAN -EXTENDED 4.0

1 if this entry is a replacement "fetch".
(Used by JAMS8 only).

Word 2 is unused at this time. It was

“initially planned to use this word to further

optimize evaluation of logical expressions, but
it was found that the optimizations could not
be made because of a basic design peculiarity.

The first word of the R-list macro (or
instruction). If the entry may be used as an
operand, B15-0 of this word holds the R-name of
the operand. (If a double length operand, R+1

is the name of the second word of the operand). -

the operator stack block. Generally, there is

one word per operator. The format of that word is given

below:

VFD 12/0Operator code,l4/statement function type,21/0,
' 1/cGpP,1/5,1/A,1/E,1/GP, 18/0Operator precedence

B59-48

BU47-44

B22 = 1

B21-19

B18 = 1

the operator code. The lowest operator code is
2003B. The codes used to represent source
operators are also used by ARITH although ARITH
generates some of its own operators.

are used with code 2036B to indicate the type
of statement function referred to (0 = logical,
1 = integer, etc.).

if B18 = 1 and this operator has been compared
with one in the stack with equal precedence.

are used with codes 2006B, 20268, and 2036B.
(These are operators which represent different

types of 1left parens). B21-19 are used to

remember whether a subscript, argument, or
normal expression was being translated before
the left paren occured; this is indicated by
B21-19=4, 2 or 1 respectively. The information
is needed to know whether a comma is a
subscript, argument, or complex constant comma.

"if ‘the operator has been compared with one of

higher precedence.

-166-

6000 FORTRAN EXTENDED 4.0

B17 - 0 the precedence of the operator.

-167-

6000 FORTRAN EXTENDED 4.0

(end-of-statement)

(left paren preceding
function argument list

(left paren preceding
non-standard subscript)
(comma following first
subscript expression in
non-standard subscript)
(comma following second
subscript expression in
non-standard subscript)
(comma separating

(reverse-operand minus)
(reverse-operand divide)
(special multiply,
e.g., A/B/C/D B/ (B*C*D)
(left paren preceding
Statement-Function
argument list)
(generated left paren
entered at start of

Operators Code in Octal - Precedence

) 2002 0
’ 2003 0
E.O0.S. 2004 0
= 2005 0

2006 0
.OR. 2007 2
«AND. 2010 3
.NOT. 2011 4
.LE. 2012 5
.LT. 2013 5
.GE. 2014 5
.GT. 2015. 5
-NE. 2016 5
-EQ. 2017 S
- 2020 6
+ 2021 6
* 2022 7
/ 2023 8
%% 2024 1
(A 2025 0

see 2036)
(s 2026 0
+S1 2027 1
¢S2 2030 1
A 2031 1
arguments)
U- 2032 6 (unary minus)
R- 2033 6
R/ 2034 8
* 2035 9
(S.F. 2036 0
(X 2037 0
, IX¥N)

(SUBR 2040 0

-168-

(left parens preceding
CALL argument list)

6.3

6000 FORTRAN EXTENDED 4.0

FRSTB: Function results saved table. Information
about functions which have been saved. One
word per entry. ' :

B58 = 1 if the function was Double or Complex.

B33 - 16 = the number of the statement-temporary-storage
location in which the function result was
saved.

B15 - 0 = the R name of the function result.

XPNMT

Exponent function name table. This table gives the name

of each library function corresponding to the various
combinations of operands possible for the ** operator.
Each entry is one word. The format is:

B59-56 = type of result of the operation (1 = integer,
2= real, etc.)

B-55~-49 (unused) .
B-48 = 1 if the combination if non-ANSI.
B47-0 = the name of the function.

There are 16 entries for the 16 possible combinations.
Entries for illegal combinations are all zero. To make
an illegal combination legal, replace the entry with the
necessary information as described above.

INTFTB

Intrinsic function table. Three words per entry, one
entry per intrinsic function. The format of the first
and second words is +the same as the pass-1 format of
SYMTABR entries with the exception that BO of the second
word = 1 if the function contains an RNM R-list
instruction and therefore may need a transmit Dbefore a
store. The third word holds the macro descriptor word
(see MACOUT), or, if MAX or MIN type functions, special
information about the type of MAX or MIN function.

BEFTB

-169-

6000 FORTRAN EXTENDED 4.0

Basic external function table. Two words per entry, one
entry per function. The format is the same as the first
pass format of SYMTAB entries.-

Modification Facilities

EQUs are wused for diagnostic ordinals, MACROX ordinals,
lower memory cell locations, block sizes, codes, etc.
Diagnostic macros are used. All explicit overations and
intrinsic function references result in R-1list macros
rather than separate R-list instructions.

Method
There are four kinds of expressions in FORTRAN Extended:

1. Arithmetic
2. Relational
3. Logical
4. Masking

The same translator is used to translate all kinds of
expressions. Translation takes place in a 51ngle left to
right scan of the expression.

Translation is from +the E-list form of the source
statement to R-1list language. The R-list language
specifies the machine instructions and registers to
evaluate the expression, but the registers are assigned
as if there were an infinite number available. The
second pass assigns actual registers to the instructions.

Arith is called by:

1. Phase-2 control for processing of replacement

statements
2. Computed GO TO processor
3. IF
4. CALL

These are the only kinds of statements which may contain
expressions. If the replacement statement is actually a
statement function definition, ARITH will call ASFDEF to
save the statement function for later reference as a
macro. Statement functions are expanded in-line at each
point of reference.

-170-

8‘2!1

8.2.3

8.3

6000 FORTRAN EXTENDED 4.0

Computed GO TO: ARITH +translates the expression,
converts to type integer if necessary, outputs the R-
list block, and returns to the GOTO processor with the
number + 1 of the result-R in a common location.

IF: ARITH translates the expression, outputs the R-list
to the R-1list block, and returns to the caller with the
name and type of the result in a common location.

CALL: CALL calls ACALL which is local to ARITH. ACALL
sets up ARITH to process the CALL statement with argument
list in much the same way as an external function
reference is processed. ARITH outputs all the R-1list
needed for the arguments and returns to CALL.

Generalized flow of the translation process.

The basic translation algorithm used is similar to that
used to produce reverse Polish notation.

For example:
A% (B+C)-D
is translated to reverse Polish as follows:

E-list Operator Reverse

Step Item Stack Contents Polish String

1 A . (EOS) .\

2 * oK A

3 (X , A

4 B S AB

5 + <X (¥ - ABC

6 c SE (4 ABC+

7) X : ABC+

8 - .= ABC#+*

9 D - ' ABC+%*D
10 E.O. S, ABC+*D-.

This algorithm has been modified so that R-list, rather
than Polish notation, is produced. The difference 1is
that instead of outputting the name of a variable to a
string, an instruction to load the variable is output,
and instead of outputting an operator, an operation with
operands named is output. For example, taking the
expression used in the last example, the results are:

-171-

6000 FORTRAN EXTENDED 4,0

R-1list Corresponding Polish

R1=A
R2=B
R3=C
RU=R2+R3
R5=R 1%R Y
R6=D
R7+R5-R6

IO #+Q@>

Almost all of the R-list generated by ARITH is in the
form of R-list macro references. R-list macros are
described in detail in the section on the R-1list
language. : :

Since no provision is made for saving intermediate result
registers, all external function calls must be made
before the remainder of the expression is evaluated.
ARITH does this by forming the R-1list for the expression
in a block 1local to ARITH called ARLIST and outputting
each function reference including argument expression
evaluation to the R-list file as each argument list
becomes completed. , '

In general, function results, except for the last
function call, are saved in a block called FRSTB. After
the entire expression has been scanned, ARITH outputs
loads of the saved function results to the R-1list file
and then the remainder of the contents of ARLIST are
output to R-list.

The Exponential Operator, **

For exponential operations which are not done in-line,
the ** operator is really an external function reference.
Since it has only two arguments, it can be called by
value. ©So, the exponential operator is made to look like
a Dbasic external function call and some of the function
processing routines are used. A problem arises in an
expression like :

A+ (B* (C+D)) **E/F
because the call to the exponential function must be

output first preceded by all of the argument evaluating
R-1list to the R-1list file. - :

-172-

8.4.2

8.4.2.1

8.4.2.2

6000 FORTRAN EXTENDED 4.0

The solution for this case is to save a marker with every

left paren entered in the OPSTAK to point to the start of
the ARLIST for what might be the first operand of an
exponential operator.

For exponentials with integer or real base expressions,
and an integer constant power which is greater than one
and 1less than 7, ARITH selects an R-list macro code and
outputs a macro to do the exponentiation in-line.

Subscripts

Standard: ARITH's subscript processor produces two kinds
of array references for standard subscripts: a subscript
psuedo-macro which is processed by DOPRE in the second
pass, and a simple variable load macro with a constant
addend. .

Non-Standard: If the subscript processor finds that the
subscript is not in standard form, it resets the E-list
pointer to address the start of the subscript. It then
adds a non-standard-subscript operator to the operator
stack, and returns control to the general expression
scanner (at NEXTE) .

There are three kinds of commas that ARITH must deal
with: an argument comma, a subscript comma, and a
complex-constant comma. To do this, ARITH keeps a cell
called EMODE which indicates whether it is in argument
mode, normal expression mode or subscript mode.
Initially, EMODE is set to normal expression mode. As
each 1left paren is met, the current mode is saved in the
left paren entry in the OPSTAK and EMODE is set to
normal, or argument, or subscript if the left paren is
normal, or follows a function name, or follows a
subscript name, respectively. As each 1left paren is
popped from the stack, EMODE is reset to what it was
before that left paren was encountered in E-1list.

Argument and subscript commas are psuedo operators and
when popped from the OPSTAK they initiate the action
necessary to complete the processing of the argument or
subscript. As each subscript comma is popped, it causes
some of the index function R-list to be generated. When
the subscript operator itself is popped from the stack,
the final index function R-list is produced followed by a
macro to load the array element name.

-173~

6000 FORTRAN EXTENDED 4.0

Since a non-standard subscript expression can be any
arithmetic expression, it's possible to have subscripted
subscripts to any depth. This means that the non-
standard subscript processing must be able to operate
recursively.

So, when the subscript operator is added to the OPSTAK,
it is preceded by information about the subscript
currently being processed. This is the same way that the
function processor worked.

- Relational, Logical, and Masking Expressions

Processing the four kinds of expressions with the same
translator presents no serious problems to the basic
algorithm. The relative hierarchy of the explicit
operators are:

%%
/X

-'.'.
relationals
" «NOT.

+AND.

.OR.

No distinction is made between the arithmetic operators
(/,*,-,and +) and the relationals. The logical operators

‘become masking operators if their operands are non-

logical. Since logical operands are only legal for the
logical operators, and since .AND. and .OR. must have
both operands 1logical or both non-logical, it is
impossible to have an expression that contains both
masking and logical subexpressions.

Otherwise, expression types are mixed in any way. For
examrle,

A+B.LE.C.AND.L1 (L1 is logical)

is a 1logical expression with relational and arithmetic
subexpressions. It is translated as follows:

R-1list OPSTAK
R1=A B +

R2=B .LE.
R3=R1+R2 .AND.

-174-~

8.5

8.5.1

8.5.3

6000 FORTRAN EXTENDED 4.0

R4=C .
R5=R3.LE. R4

R6=L1

R7=R5. AND .R6

Distinctions made between operand types in arithmetic and
relational expressions.

Wwhen an operator is popped out of the OPSTAK, it enters a
jump or vector table where an R-1list macro code is
assigned to it, and it is sent to the appropriate
processor. For the relational and arithmetic operators
other than *%*, if the operands of the operator are typed
integer, the macro code is increased by one; if they are
double precision, the code is increased by two; if
complex, by three; and if real, the code is used as is.

Before the macro code incrementation is made, the operand
types are compared. If they are not the same, an R-list
macro is output to convert the lower type operand to the
same type as the higher operand.

Optimizations
Compile-time Data-type Change

when an operator is popped from the stack, if its
operands are of different types, and if the operand of
lower type is constant, it will be converted to the
higher type and the R-list instruction which loaded it or
set, it will be replaced by one that loads the converted
constant.

Compile-time Constant Subexpression Evaluation

Before a macro is formed for an operator, if it is an
arithmetic operator and if its operands are integer or
real constants, the R-1list for the operands are no-oped,
the operation is performed on the operands, and a load or
set of the computed value is output to ARLIST. If this
load is subsequently used as an operand with another
constant operand, it will be no-oped just as the loads it
replaced were no-oped.

Division by Real or Complex Constants

-175-

8.5.4.1

8.5.4.2

6000 FORTRAN EXTENDED 4.0

If a real or complex constant is preceded by a divided
operator, R-list is output to load its inverted value and
the divide is changed to a multiply operator.
Expression Transformations
Some expressions or subexpressions can be transformed to
other mathematically equivalent forms which evaluate
faster on the 6600 than they would if translated by the
‘basic algorithm.
The R-1list produced for
A%*B¥C*D
would compute the product as if it had been written
((A*B) *C) *D

and thus not take advantage of the 6600's two multiply
units. If it had been written as

(A*B) * (C*D)
the two products in parentheses would be computed
simultaneously. 1In order to achieve this effect, Arith
keeps a flip-flop for popping multiply operators by
operators of equal hierarchy. The flip-flop is flipped
for every multiply operator encounterd in E-list, so that
for

A*¥B¥C*D+E
the first multiply is popped by the second, as usual, but
the second is not popped by the third. The last two will
be popped by the plus thus resulting in

(A*B) * (C*D) +E
Normally

A%*B*C/D
results in

((A%B) *C) /D

-176-

6000 FORTRAN EXTENDED 4.0

~which gives no parallel execution. But if divide is

8.5.4.3

given a higher priority or hierarchy than multiply, then
A¥*B*C/D |

is evaluated as
{A*B) * (C/D)

and the divide and multiply units are working
simultaneously.

Note: It might be well to note at this time that the
rules for carrying out these transformations
are general rules and are always in effect in
the translation algorithm. The translator
never looks at a source item in E-1list more
than once, except for non-standard subscripts.
(see 8.4.2.2)

-A+B or, to illustrate the preceding note,
- (A-B) +C*D

becomes
C*D~ (A-B)

which reduces the number of operations from four to
three, by the following rule:

If a unary minus is about to be popped from the
stack by a plus, remove the wunary minus from the
stack and replace the plus with a reverse-operand
minus operator. The macros associated with the
reverse-operand minus operator are the same as those
for a normal minus operator except that the first
parameter is subtracted from the second instead of
the second from the first.

8.5.4.4 A/B/C becomes A/B*C, replacing a 29 cycle divide with a

10 cycle multiply (6600), by the following rule:

If the current E-list item is a divide, and the last
operand in ARLIST is not type integer, and the last
operator in the stack is a divide or a multiply-D
operator, then change the current divide to a
multiply-D operator which has higher priority than

-177-

6000 FORTRAN EXTENDED 4,0

the divide and specifies a multiplication.
Introducing the multiply-D operator allows more than
one sequential divide to become a multiply:

A/B/C/D/E becomes

A/ (B*C*D*E) , which happens

to become A/ ((B*D) *(D*E)) because

the flip-flop also applies to multiply-D
operators.

8.5.4.5 The following rules allow a great variety of
transformations which allow for more parallel evaluation
~of expressions. Some examples of the transformations
made are:

A*B/C*D (B/C) * (A%D)
A+B/C+D (B/C) + (A+D)
A+B*C-D (B*C) + (A-D)
A%¥ (B+C)/D (A/D) * (B+C)
A- (B*C+D)-E (A-E) - (B*C+D)

The rules are as follows:

When a right paren is encountered in E-list, set the
GP (greater priority) flag bit in +the operator
following the right paren. Oor, if the current
operator pops an operator with a higher priority out
of the stack, set the GP bit in the current operator
word. ,

If the GP bit of the current operator is set, and it
is about to pop an operator (other than unary minus)
of equal priority, or it is a divide and the last
operator in the stack is a multiply, then don't pop
the operator from the stack, set the CGP (confirmed
GP) bit in the current operator and the GPTU bit in
the information word of the last ARLIST entry. If
the operator left in the OPSTAK is a minus, change
it to a reverse minus. Add the current operator to
the stack. :

The GPTU bit makes an ARLIST entry temporarily
unavailable for wuse as an = operand. After an
operator with its CGP bit set is popped, the last
ARLIST entry with its GPTU bit set has the bit
turned off.

-178-

8.6

8.6.1

8'.‘6. 1.. 1

6000 FORTRAN EXTENDED 4.0

The following example will illustrate the use of
these rules. '

A*¥B/C*D (B/C)* (A*D)
ARLIST OPSTAK

R1=A *

R2=B 7/

R3=C cGp, GP, *
GPTU R4=R2/R3

R5=D

R6=R1*R5

R7=RU4*R6

Arith Table Overflow Diagnostics
There is a fatal to execution diagnostic which says:

WEXPRESSION TRANSLATOR TABLE (table-name) OVERFLOWED.
SIMPLIFY THE EXPRESSION."

There are three different tables which may become
over flowed. ~

OPSTAK table

The size of the stack fluctuates as the expression is
scanned. For example, it increases as 1left parentheses
and operators of higher priority occur, and decreases as
operators of lower priority occur.

Fach operator entered in the stack requires one word of
space, except for left parens which require two: one to
mark the start of a possible exponential base and the

~other the operator itself.

The start of each function reference requires nine words
which includes the recursive function processor
information. If the reference occurs in an intrinsic
function argqument list, then the opstak is also used to
save the R-names of the arguments which have Dbeen
processed so far, which have been processed so far, which
could be up to 62 words if the function is a MAX or MIN
type function.

The start of non-standard subscripts requires four words.

-179-

8.6.1.2

8.6.1.3

6000 FORTRAN EXTENDED 4.0

The OPSTAK block size may be modified by changing the EQU
named MXOSE in the common file called OPTIONS, and
reassembling ARITH.

FRSTB

This 1is the function result-saved table. A one word
entry is made for each function that has its results
saved. For example, in

A=F1(B) +F2 (C) +F3 (Fu (D) +F5 (E)) +F6 (F)

F1 and F2 are saved, and then F4 is saved but is reloaded
to add to F5 so the size of the table goes down by one,
and finally F3 is saved before calling Fé.

The FRSTB block size can be modified by changing the EQU
named MXFRSTB in the Option file and reassembling Arith.

ARLIST

This 1is ARITH's R-1list block. The size increases as the
expression is scanned, but it decreases after each
external function reference is output to the common R-
list file. A variable 1load entry takes 6 words; an
operation takes four words if single length operands, and
8 if double length, a standard subscript psuedo-macro
takes fourteen words.

The size of ARLIST is controlled by the EQU named ARLSZ
in the Options file.

The Register Jam Problem

The second pass was designed under the assumption that
there would always be a sufficient number of X-registers
to be wused in the evaluation of expressions, with the
following type of exception:

A very long expression can be constructed in such a
‘way that the result registers of enough
subexpressions must be saved so that a point is
reached where enough registers to continue do not
exist.

The assumption was correct for integer and real
expressions, but it was found that it was quite easy to

-180-

@

8.7.2

8.7.2.1

6000 FORTRAN EXTENDED 4.0

run out of registers when evaluating Double or Complex
type expressions. ‘ ‘

The problem has been partially solved by modifying the
expression translator to produce a different kind of
output for Double and Complex expressions; partially
solved because it is still possible to run out of
registers for Real or Integer expressions.

These modifications +to ARITH make up over 20% of the
total number of source lines in ARITH, so it's important
that they be described.

 The Solution in General

When the second pass finds that it does not have enough
registers to complete a sequence of statements, it
reduces the number of statements in the sequence and
begins again.

The solution is to break up a double or complex
expression into many statements, one statement per
operation. For example, ‘

D1=D2*D3+Dl

is made to look to the second pass like
- ST1 = D2*D3
D1 = ST1+4D4

where ST1 is statement-temporary one and is treated as a
double variable.

The Solution in Particular
Double Length Operations

When ARITH is ready to output a macro for an operation,
if the operands are double-word-length loads, it no-ops
the load instructions and outputs a macro which will locad
the operand and do the operation. It then outputs a
macro to store the results of the operation in Statement-
Temporary storage followed by an end-of-statement psuedo-
op. This macro is called a DSTR macro. The DSTR macro
is in the same format as a double load macro and will be
used as an operand to subsequent operators.

-181~

6000 FORTRAN EXTENDED 4.0

2

8.7.2.2 Mixed Single and Double

An expression with mixed single length and double length
operands, for example real and complex, presents a new
problem. The expression

A+B*(C1+4C2) , (C1 and C2 complex)
would not result in

R1=A

R2=B

R3, 4=C1 (no-oped)

R5, 6=C2 (no-oped)

R7, 10=C1+C2

ST1=R7, 10

EOS (end-of-statment op)
R11, 12=CMPX (R2)

Etc.

but at the point of the last line, a reference to R2 is
made which is defined in the previous statement which may
end up in another sequence and therefore be undefined in
this sequence. R1 won't be referred to until after the
multiply operation which will occur two statements away,
and so the chances that it will be undefined are even
greater.

This problem has been solved by converting all unused
single length operands to type Double Precision in an
expression that contains a double or complex operand.
The method of doing this is as follows: As each load or
operation is output to ARLIST, the type is compared with
the type of the last operand in ARLIST. If one is type
integer or real and the other is double or complex, then
a flag is set to indicate that mixed single and double
has occurred, and the contents of the ARLIST block are
scanned, inserting macros to convert operands which have
not already been used in operations to double precision.
Thereafter, the type of each entry to ARLIST is checked,
and if not double or complex, a macro is output to
convert it.

Mixed Super-and Sub-expressions
A modification to this method of dealing with the mixed

single and double problem is necessary because of real or
integer argument expressions occurring in a Double or

-182-

8'702d3

6000 FORTRAN EXTENDED 4.0

complex super-expression. Also, index functions in a
double expression should not be forced to be computed in
double precision. This makes it necessary to treat
argqument and subscript sub-expression as an autonomous
expression with regard to whether mixed single and double
has occurred, and with regard to how far back in the
ARLIST to go when the first double operand occurs in a
mixed single and double expression. And since
subscripted subscripts and function references in
argument expressions, etc. exist, it is necessary to keep
track of where in ARLIST each subexpression starts, and
for each subexpression whether mixed single and double
has occurred. This introduces another table which can
overflow. The name of the table is JAMTB1. The size is
controlled by the EQU named JAMTBIMX in the options file.
An entry of two words is made at the start of each
argument and non-standard subscript. The table is
reduced by two at the end of each argument and non-
standard subscript.

Consider the statement
A (I*J)=D1+D2*D1 (D1 and D2 double)

The subscript I*J is non-standard. The R-1list produced
for the statement would normally consist of the
calculation of the index function followed by the
evaluation of the expression followed by a store of the
result into A(I*J). But since ends—-of-statement
operators now follow the double plus and double multiply
operations, the subscript calculation may end wup in
another sequence.

So, ARITH now moves the R-list to compute a non-standard
index function from the front of the ARLIST block to the
end before outputting the store macro.

Because of this and multiple replacement statements, it
is necessary to remember the starting point in ARLIST of
each replacement variable. The limit on the number of
replacements per statement is 75.

Subscripts and Double Length Operands
To make the implementation of this solution to the

register depletion problem more feasible, Double or
Complex operands in subscripts has been made illegal, and

-183-

9.2

6000 FORTRAN EXTENDED 4.0

all Double or Complex array subscripts are considered
non-standard.

Restrictions and Other Remarks
Basic syntax checking is done by looking at the E-list

element following the current E-list element. The
following table indicates the syntax rules:

E-list element may be followed by

CON (constant) Yeses E.O.S., OPS (2.)
ID (name))esrse E.O.S., OPS, = , (
) (1.) ' Yees E.O.S., OPS, =

+» =+ (, -OR., .AND. CON, ID, (, -, +, .NOT.

.NOT., relational ops CON, ID, (,-,+
BT AR AT S CON, ID, (

(1) If) 1is the closing parens of an IF expression it
may be followed by an ID (if Logical IF) or constant
(label). If) is in I/0 list (IXFN call) it may be
followed by (or ID.

(2) OPs = .OR., .AND., relationals, -, *, /, *x
The format of ARITH in COMPASS

Label field starts in column 2, operator in column 11,
and symbols or integer constants in column 21.
Instructions (other than 50-57) which have more than one
result register (e.g., Unpack) are written so that the B
register name starts one character after the end of the
operation field. Operand registers start in column 18.
This format results in all result registers, operand
registers, and symbolic references to be found in column
12-16, 18-20, and 21-72 respectively. Comments start in
column 31.

Every conditional branch instruction has a comment
stating what condition must be met in order to branch.

-184-

10.0
10.1

10.1T.a

10.1.b

6000 FORTRAN EXTENDED 4.0

At NEXTE, B1 is set to the address of the next E-1list
item to process. A large part of ARITH assumes that B1
holds this address. Therefore, B1 should be used very
carefully.

Except for B1, in general it may be assumed that any
register may be destroyed when calling a subroutine
(including B1 for external routines). Any exceptions to
this are noted in the introductory comments of the
exceptional routines.

Ccaution to modifier. ARITH is not laid with booby traps
but may appear to be so because of the complexity of the
task. Transformations, etc., cause unexpected results.

Beware of functions, non-standard subscripts, and
exponential operators.

Debug Subroutines

Function tracing

FNPP - Debug FUNCS Pre-Processor

FNPP is called from ARGPIRT when either the function
tracing bits are set in the symbol table entry or the

trace all functions flag is set.

a) Generate call to BUGFNN macro via IGCALL with

DBGAPL VFD 42/function name, 18/type
VF¥D 60/0
VFD 60/8RBUGFNN

b) Next available aplist number is updated, BUGFNN is
entered in the symbol table with type CGS, and the
function tracing flag is set.

FN - Debug FUNCS Processor

After the call to the function is issued, a call to

BUGFUN is generated to indicate return from and value

returned by the function.

a) Save RLIST pointers.

b) Issue temporary store for function result (2 for
double word results).

-185-

10.2

c)

d)

e)

f)

9)
h)

6000 FORTRAN EXTENDED 4.0

Generate call to BUGFUN macro via IGCALL with
DBGAPL VFD 42/7function name, 18/type-
VFD 30/ST. ordinal for the value
returned 30/IH of ST.-
VFD 60/0 VFD 60/8RBUGFUN
Enter BUGFUN in symbol table with type CGS.

Issue load and transmit of function result and enter
in the saved function results table.

Flush debug code via DARLIST.
Restore RLIST pointers.

Turn off function tracing flag; return.

ARR - Debug ARRAYS Processor

ARR

is called from the subscript processor when either

the arrays tracing bits are set in the symbol table entry
or the trace all arrays flag is set.

a)
b)
<)

d)

e)

f)

9)
h)

Save RLIST pointers.
If the last macro was a load, issue transmit.
Process saved function results via ARGP8CR.

Generate call to BUGARR macro via IGCALL with

DBGAPL VFD 42/array name 1870
VFD 60/array bound
VFD 30/ST. ordinal of dimension
being checked 30/IH of ST.
VF¥D 60/0
VFD 6 0/8RBUGARR

Enter BUGARR in symbol table with type CGS.

Indicate unsaved function result and define result
(array dimension being checked) to be in X6.

Flush debug code via DARLIST.

Restore RLIST pointers.

-186-

6000 FORTRAN EXTENDED 4.0

10.3 STRCK - Debug STORES Processor

STRCK is called from the assignment statement processor
when the stores checking bits are set in the symbol table

h)

i)

entry.

a) Save RLIST pointers.

b) Get and save variable name and type to build aplist.

<) If variable dimensioned, calculate element and issue
temporary store (2 for double word element).

d) From the BAASI table determine the frequency count
for stores without relational operators. If =zero,
go to i) to check for stores with relationals.

e) For stores without relations, set up dummy
relational operator=9 to indicate no relational
expression.

f) Collapse DBGAPL to eliminate word used for test in
the relational expression.

g) Generate call to BUGSTO macro via IGCALL with
DBGAPL VFD 42/variable name, 15/relational

operator, 3/type ‘

VFD 60/value stored into the variable

VFD 30/ordinal in CON. of constant
Used with stores involved in the expression
‘with relationals 30/1IH of CON.
Collapsed out in
step £ for stores -or-
with checking
operators or stores VFD 4270, 18/IH of variable in-
without relationals volved in the expression

VFD 60/0

VFD 60/8RBUGSTO

Enter BUGSTO in symbol table with type CGS.
Check for 1links for stores with relationals due to

interspersed specifications and links due to packet
specifications. Exit to step m) when finished.

-187-

10.4

12

3)

k)
1)

m)

n)

6000 FORTRAN EXTENDED 4.0

Get relational operator out of the options word.
RANGE and INDEF will use the collapsed aplist (step
f)'

If variable after relational operator go to step n).
Determine which table the constant is in. If in the
global table, enter in the CON table. Enter ordinal
in aplist, and go to step g).

Restore RLIST pointers and return.

Get the variable ordinal and form the aplist with

symbol table ordinal instead of a constant table
ordinal, and go to step qg).

Debug TRACE Processing

a.

When the appropriate IF statement routine is
entered, the tracing flag, TRCFLG, is set greater
than or equal to zero if the current DO level is
less than or equal to the desired DO level of
tracing.

For an IF statement of the form

IF (expression) 11, 12, 13, or IF (expression) 11,

IFBRT is called to process each branch.

In IFBRT if +the tracing flag is set, a generated

label is reserved for each branch and is stored in
order in a temporary buffer. For each branch an
aplist is set up containing the label of the branch
(30/BCD for the 1label, 30/binary for the label).
Using RTNM, the debug IF macro, a call to BUGTRU is
generated. Upon return from BUGTRU, a branch is
made to the actual label used in the IF statement.

For a logical IF s