CONTROL DATA

CORPORATION

SUBJECT:

ANALYST:

FORTRAN Extended
J. O. Neuhaus

6400/6500/6600-12

Date: $\quad 12$ May 1967
Expiration Date: 1 January 1968

During the 1966 replanning cycle, certain software systems were determined to be of primary importance for the extension of the product life of the 6000 computer series. One of these was a new FORTRAN compiler which would generate object code to exploit more fully the great computational capabilities of the machine lines. This STM deals primarily with the language of FORTRAN Extended and the criteria used in determining this language. The content of this STM was orally presented to the VIM organization in San Francisco in Apri1, 1967.

Although object code efficiency is the objective of overwhelming importance, additional guidelines and objectives have been followed in determining what the product should be. In order for the compiler to be worthwhile in extending the product life of the 6000 series, it must be made available to the field as soon as possible. In order to be usable by all our customers, it must be conservative of compilation space and compilation time. In order to satisfy the requirements of some of our biggest users, especially those with multi-computer installations, the language must be at least USASI (formerly ASA) FORTRAN. The justification for adding any language extension should be that it leads to greater hardware exploitation or that it helps minimize the conversion problems in transferring programs written in FORTRAN Version 2 and other FORTRAN's to the new compiler.

FORTRAN Extended Language Selection Criteria

In the process of defining the FORTRAN Extended language, each candidate not specifically required by the USASI standard was measured against eight criteria:

1. Relation to standard FORTRAN - Is it well defined and, if so, is it compatible with USASI FORTRAN?
2. Conversion assistance - Does it simplify the process of converting programs written for other FORTRAN compilers, especially FORTRAN 2.0?
3. Execution speed - Is its implementation compatible with the goal of high object code efficiency? Would it enhance execution speeds?
4. Additional capability - Is the facility one which cannot be obtained conveniently using language features already defined?
5. Machine exploitation - Does it provide greater access to hardware and operating system features?
6. Future support - Should it be perpetuated in future Control Data FORTRAN systems rather than be a probable candidate for future compatibility and conversion problems?
7. Compiler performance - Is its implementation compatible with the objectives of small compilation space and fast compilation speed?
8. Schedule - Can it be implemented in time for the scheduled release?

Any feature which was rejected solely because it could not be implemented in time for the scheduled release was noted and will become a candidate for future consideration. Some features of FORTRAN 2.0 have not been included in the FORTRAN Extended Language. A conversion guide giving complete details of the conversion process will be published in July, sufficiently in advance of the release of FORTRAN Extended that any program modification required can be done before the system is received by the field.

Program Modes

One category of the language, that of program modes under FORTRAN 2.0, deserves special mention. Although the default declaration, that is, the standard mode of compilation, is FORTRAN IV, provision is made for compilation of FORTRAN II and so-called FORTRAN VI programs and subprograms. In addition, an option on the compiler control card allows for USASI execution time I/O list/format interaction and conversions. To reduce implementation time and compiler space, these mode declarations were removed and each language feature evaluated against the criteria given above. A special attempt was made to retain as many of the features as possible for compatibility purposes. Some examples might be in order here. Under FORTRAN II, reordering of COMMON storage because of EQUIVALENCE statements is allowed; under FORTRAN IV and USASI FORTRAN it is forbidden. Thus, this feature was not included. The FORTRAN II statements READ, PRINT, and PUNCH, unlike the other input-output statements, do not require that the programmer supply a logical unit number. They have been retained in FORTRAN Extended.

Declarative Statement Positioning
Another area of interest is the rather strict positioning of declarative statements specified by USASI FORTRAN and required by FORTRAN Extended. Under FORTRAN 2.0, a declarative (COMMON, DIMENSION, EQUIVALENCE, "type", EXTERNAL) appearing after the first executable statement or arithmetic statement function will cause a non-fatal diagnostic and will allow, possibly erroneous, attempt at loading. Under FORTRAN Extended, a11 such statements must precede the first executable statement or arithmetic statement function or DATA statement. This allows the compiler to execute in much smaller space and provides better diagnostics.

Communication Between Subprograms

A final realm of incompatibility concerns mixed FORTRAN/assembly language subprogram decks. The new assembly language is COMPASS, not ASCENT; a translator is provided to accept ASCENT source input and provide COMPASS source output. Of greater consequence is the change in parameter association. Under FORTRAN 2.0, parameter addresses are passed in B registers (for the first six) or stored in an area local to the subprogram (for the remainder). To allow greater utilization of B registers and to minimize indirect addressing for faster execution under FORTRAN Extended, a different method of parameter association is being implemented. Only the location of an actual parameter list is transmitted to the called subprogram and addresses are substituted into those instructions for which there is greater payoff in execution speed. A COMPASS macro will be provided to allow an assembly language program currently working under FORTRAN 2.0 to interface with a FORTRAN Extended calling program with minimal change. The effect of the macro will be that parameter addresses will be moved at subprogram initialization time from a FORTRAN Extended parameter list into the B registers and local storage expected from a FORTRAN 2.0 call.

	Reas on for Change	
Removed FORTRAN II Column 1 designators $\mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{~B} \quad(1.1)$	Compiler space and speed, development time, language ambiguities.	Type statements for D, I; EXTERNAL for F; masking operators for B.
Removed leading 0 octal constant form (2.2.1,2.3.2)	Ambiguity in representation, compiler space and speed.	Trailing B form of octal constant.
Changed machine representation of logical value (2.3.7,2.4.5,3.3,6.2,6.2.3) no conversion between logical and other operands (3.1,2.4.2,4.3)	Improved execution speed, ambiguity in expression evaluation.	Diagnostic will be given by compi
Removed ASSIGNed GO TO without branch \qquad 1ist	Object code efficiency - prohibits accurate flow tracing.	Branch list with ASSIGNed GO TO; compiler diagnostic.
Removed diagnostic for object time attempt to branch outside computed GO TO 1ist	Object code efficiency.	Branches to first or last statement number if control value is too small or too large, respectively.
Removed S-suffix type of parameter for statement label (7.4); modified DUMP, PDUMP (7.10)	Compiler development and execution time, usable only in DUMP, PDUMP, or assembly language subprograms.	ASSIGN statements; DUMP and PDUMP modified to accept ASSIGNed variables.
Modified E and D output format (9.3.1, 9.3.7,9.4.2), USASI unlimited group format repeats (9.6.1)	USASI FORTRAN compatibility, currently available under FORTRAN 2.0 switch (9.8). \qquad	If other format required, use $1 P$ scaling. Unlimited repeat is identical if final group is to be repeated.
Removed FORTRAN II READ/WRITE (INPUT/ OUTPUT) TAPE statements (10.1,10.2)	Compiler development time; equivalent, more concise alternative.	USASI READ/WRITE (u(,f)) statements.
Removed I/O status and machine condition checking statements (10.3)	Compiler development time, compiler space, compilation speed.	Library functions, e.g. IF (IOCHK (i)) instead of IF (IOCHECK,i).
Removed DVCHK library routine for testing illegal divide	Operation not in traditional fashion on 6000 hardwa re; customer requests; future support.	LEGVAR to test whether named operand is legitimate
Changed RANF behavior dependency on value of argument	In-line code in Extended; faster execution.	RANF for next, RANGET for last, random number; RANSET for restart.
Removed FORTRAN II library function names, function typing	Reduction of special names list; ambiguity in typing; compiler simplification	Standard names, e.g. SIN for SINF; type statements or standard naming conventions for real or integer functions.
Changed compiler call card	New features, new options.	FTN rather than RUN control card.

SALES TECHNICAL MEMORANDUM

Subject: FORTRAN Extended Version 1.0
Analyst: J. F. Thorlin
6400/6500/6600-15
Date: 28 July 1967
Expiration Date: 1 January 1968

FORTRAN Extended Version 1.0 is now in the final debugging stage and is scheduled for release to the field in September.

The performance of the generated code is expected to exceed our projected speed improvement ratio of 2.5 over the object code generated by the FORTRAN 2.2 compiler.

The reference manual and conversion guide will be available in the field prior to release.

Speed Comparison of FORTRAN Version 2.2 and FORTRAN Extended
Attached is the output of FORTRAN Extended from compiling a series of DO loops. These DO loops, with the exception of problem number 1 , were selected because they were taking up the most time in benchmark comparisons where the 6600 was not doing well. One of the DO loops accounted for over 40% of the compute time of the benchmark. The FORTRAN Extended listing attached, from which the timings were generated, are actual output of the compiler in its current state of development. These times will be improved somewhat before the system is released.

The following table summarizes the relative performance of the two systems. For FORTRAN Extended (FTNX), the code selection is for the 6600 with standard optimization. The total code sizes are 84 words for FTNX, 126 words for FORTRAN 2.2.
 taken but that the terminal jump is taken.

	013352	$\begin{aligned} & \text { IDENT BNCHMRK } \\ & \text { PROGRAM LENGTH } \end{aligned}$	
		blocks	
000000	000002	PROGRAM-	COCAL
000002	000124	CODE,	LOCAL
000126	000024	data.	LOCAL
000152	013200	datan.	LOCAL
		ENTRY POINTS	

000000	02160310152213000000
000001	
000001	

 TRACE, VFD 60/7LBNCHMRK
 ENTRY, BSS 0
 ENTRY BNCHMRK
 GNCHMRK RSS 1
 USE CODE.
 USE DATA.
 USE DATA.
 000152
000316
000462
000626
000640
001004
001016
001030
001174
001206
003156
005126
005272
00724 ?
007254
007420
011370
011402
000126
000127
000130
000131
000132
000133
000134
000135
000136
000137
000140
000141
000142
000143
000144
000145
000146

VER 1
RNCHMRK

	5100000151 +	SAO CON.
$\begin{aligned} & 000025 \\ & 000025 \end{aligned}$) AB BSS 0
	5151777776	- SAS B1-18
	5141000011	SA4 B1+118
000026	5131777764	SA3 B_{1}-13 ${ }^{\text {d }}$
	54200	SA2 AO
	30043	F $\times 0 \times 4+\times 3$
000027	5140000135 +	SA4 LSSO
	40625	F $\times 6 \times 2=\times 5$
	56324	SA3 G? +R4
000030	24200	$\mathrm{N} \times 2 \mathrm{Bn} \times \times \mathrm{O}$
	57116	Sa1 bi-86
	31026	F×0 $\times 2 \times \times 6$
	56223	SA2 2 ? + BS
000031	24600	N×6 bo, $\times 0$
	40031	¢ $\times 0 \times 3 * \times 1$
	5131000167	SA3 $\mathrm{BI}_{1}+\mathrm{ZETAMPAPIB}$
000032	44164	F $\times 1 \times 6 / \times 4$
	56420	SA4 4 ?
	31603	F $\times 6 \times 0=\times 3$
	56310	SA3 61
000033	24006	N×0 $00 . \times 6$
	40625	5 $\times 6 \times 2$ ¢ $\times 5$
	56225	Sa2 E? +85
	40443	F×4 $\times 4$ * 3
000034	5130000136 *	Sa3 CRITS
	30110	$\mathrm{f} \times 1 \times 1 * \mathrm{XO}^{0}$
	10033	$8 \times 0 \times 3$
000035	24101	Nx1 60, $\times 1$
	30661	$\times 6 \times 6 * \times 1$
	21073	4×0738
	13103	$0 \times 1 \times 0=3$
000036	24006	N×O B\%, $\times 6$
	31640	1 $\times 6 \times 4=\times 0$
	24706	NX7 $00 . \times 6$
	40072	+ $\times 0 \times 7$ ¢ $\times 2$
000037	30650	+ $\times 6 \times 5+\times 0$
	10477	$6 \times 4 \times 7$
	5170000134 *	SA7 4
000040	21473	A $\times 438$
	13047	Bx0 $\times 4=\times 7$
	24700	N×7 80, $\times 6$
	31610	¢ $\times 6 \times 1=\times 0$
000041	54750	SA7 A5
	0326000044 *	PL X6,GLI.
	46000	NO
000042	5150000137 *	SA5 NN
	710000001	SxO 1R
000043	36750	1×7 $\times 5 \times \times 0$
	54750	S47 A5
$\begin{aligned} & 000044 \\ & 000044 \end{aligned}$		GLi, USS 0
	6122000001	- S82 82+18
	6111000001	SB1 81+18
000045	0672000025 *	GE R/, $82.1 A B$
	5150000126 *	SAS SAVEAO.
000046	53050	SAO $\times 5$
	74700	\$×7 40

PNCHMRK

BNCHMRK

000072	42765	0×7	X6＊＊5
	5150000131 ＊	SA5	I
	36675	1×6	177＋5
000073	5140000143 ＊	\＄44	kmax
	6245005125 ，	S84	X S＊VRDFR＝18
000074	6235005125 ＊	SR3	$\times 6+R M=1458$
	6274007241 ＋	SE7	$x_{4}+$ RMENGS－18
000075	5100000146 ＊	SAO	PsiJMC
000076		$A D B$	5
000076	56520	＋Sa5	${ }^{2}$
	56410	SA4	81
	30054	F×0	x $5+{ }^{4}$
	24600	NX6	60， 0^{0}
000077	56326	S43	$\mathrm{b}_{2}+86$
	5151002126	SA5	Bi＋PCNGSV－RMCNGS
	56430	SA4	日3
000100	30035	F $\times 1$	$\times 3+\times 5$
	56536	SA5	－3＊ 86
	56340	SA3	64
	24200	N×2	$60 . \times 0$
000101	31046	\％$\times 0$	$\times 4 \times 6$
	54400	SA4	A 0
	6111000001	S81	B1＊18
000107	31652	F $\times 6$	$\times 5-\times 2$
	24500	N×5	上0．00
	6122000012	SR2	$\square 2+128$
000103	24006	N×0	$80 . \times 6$
	30635	Fx6	$\times 3+\times 5$
	6133000012	SR3	$83+128$
000104	40704	＋$\times 7$	$\times n * \times 4$
	56745	S47	$\square 4+85$
	24700	N×7	$80 . \times 6$
	56740	SA7	$\forall 4$
000105	6144000012	S84	$84+128$
	0671000076 ＋	GE P	27．81．1AD
000106	5150000126 ＋	SA5	SAVFAO，
	53050	SAO	$\times 5$
	74700	Sx7	A 0
000107	54750	SA7	A 5
	00001．07＋	114	EQU＊
	5140000144 ＋	SA4	Jp
	27004	PXO	甘f．$\times 4$
000110	5130000132 ＊	S43	\checkmark
	7160000144	5×6	144 B
000111	27706	Px7	$80 . \times 6$
	5140000131 ＋	SA4	1
	42607	0×6	×0＊×7
000112	2700.3	P×0	－nex 3
	5130000143 ＋	SA3	KMAX
	42207	0×2	X 0 ＊$\times 7$
000113	36054	1×0	$x_{6}+x^{4}$
	6273011367＋	SR7	$\times 3+$ TCNGSV－1日
	36724	1×7	$\times 2+{ }^{4}$
000114	6210007253 ＊	SR1	K $\mathrm{n}+\mathrm{T}-145 \mathrm{~B}$
	6237011235 ＋	SR3	$\times 7+R A M-145 B$
000115	6140000001	SR4	18
	6150000147 ＋	SR5	MADCNG

```
EQ 1 RNCHMRK
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{000116} & 6160000001 & SR6 FPSIJ-RADENG \\
\hline & 6120011370 + & SR2 TCNGSV \\
\hline 000117 & & ) \(A E\) ESS 0 \\
\hline \multirow[t]{4}{*}{000117} & 56530 & + S45 b3 \\
\hline & 56456 & SA4 65+96 \\
\hline & 40754 & F×7 \(\times 5\) * \(\times 4\) \\
\hline & 56320 & S43 ©? \\
\hline \multirow[t]{3}{*}{000120} & 56510 & SA5 61 \\
\hline & 6133000012 & S93 \(63+128\) \\
\hline & 30037 & 1 \(\times 0 \times 3+\times 7\) \\
\hline \multirow[t]{4}{*}{000121} & 24600 & \(\mathrm{NX6}\)-n:x0 \\
\hline & 56750 & SA7 ©5 \\
\hline & 30057 & Fx0 \(\times 5+\times 7\) \\
\hline & 24700 & Nx7 6n:x0 \\
\hline \multirow[t]{4}{*}{000222} & 56620 & SA6 6 ? \\
\hline & 64242 & SR2 ¢4 4 ¢ 2 \\
\hline & 56710 & SA7 61 \\
\hline & 46000 & Nก \\
\hline \multirow[t]{2}{*}{000123} & 0672000117 + & LE R\%, B2.l)AE \\
\hline & 710100001? & S×0 61+12e \\
\hline \multirow[t]{3}{*}{000124} & 5150000126 & Sas saveat. \\
\hline & 53050 & SAO X5 \\
\hline & 46000 & NO \\
\hline 000125 & 0400000001 + & EO ENTRY. \\
\hline 01335 ? & & END \\
\hline
\end{tabular}
```

RNCHMRK
SYMROLIC REFERENCE TARLE

A	0000316	PROGRAM*	000005.	000017				
8	0000462	PROGRAM*	000007					
BNCHMRK	0000001	PROGRAM*						
C	0000152	PROGRAM*	000010					
CON.	0000151	PROGRAM*	000024					
CRIT3	0000136	PROGRAM*	000034					
DSSU	0000135	PROGRAM*	000027					
ENTRY.	0000001	PROGRAM*	000125					
FPSIJ	0000150	PROGRAM*	000116					
GG	0000526	PROGRAM*	000017.	000020.	000020.	000023.	000024	
GL. 1 .	0000044	PROGRAM*	000041					
HH	0001004	PROGRAM*	000017					
HHP	0001174	PROGRAM*	000020					
1	0000131	PROGRAM*	000004 ,	000051.	000065 ,	000072.	000111	
IPA	0000133	PROGRAM*	000023					
J	0000132	PROGRAM*	000003.	00001%	000047.	000110		
JM	0000145	Program*	000064					
JP	0000144	PROGRAM*	000070	00010%				
k	0000127	PROGRAM*						
KM	0000140	Program*	000047					
KMAX	0000243	PROGRAM*	000073.	000112				
M	0000430	PROGRAM*	000003					
NM	0000137	PROGRAM*	000042					
00	0001016	PROGRAM*	000020					
PA	0000640	ProGram*	nonor2.	000031				
PSIJMC	0000146	PROGRAM*	000075					
R	0000134	PROGRAM*	000037					
RAD	0011402	PROGRAM*	000114					
RADCNG	0000147	PROGRAM*	000115,	000110				
RM	000577 ?	PROGRAM*	000067.	000070.	000074			
RMCNGS	0007242	Program*	000067,	000074.	000077			
SAVEAO.	0000120	PROGRAM*	000002 ,	000015.	000045 .	000062.	000106,	000124
SFU	0000141	PROGRAM*	000055					
SFV	0000142	program*	000054.	000053				
T	0007420	PROGRAM*	000067,	000114				
tCngsv	0011370	Program*	000077.	000113,	000116			
track.	0000000	PKogram*						
UA	0003156	PROGRAM*	000052,	000050.	000055			
va	00012 6	Program*	000052					
VRDFR	0005126	PROGRAM*	000066.	000075				
VRDFT	0007754	PROGRAM*	000066					
zeta	00010.30	PROGRAM*	000031					
) $A A$	0000012	PROGRAM*	000014					
) $A B$	0000025	PROGRAM*	000045					
) $A C$	0000057	PROGRAM*	000062					
) 4 I!	0000076	PROGRAM*	000105					
) $A E$	0000117	PROGRAM*	no012S					
. 1	000000 ?	PROGRAM*						
.14	0000107	Program*						
. 200	0000063	PROGRAM*						
. 517	0000016	PROGRAM*						
. 526	0000046	PROGRAM*						

