
CJ~ CONT"OL DATA
~ ~ CO~ORttTION

FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CDC® OPERA TING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

60497800 &

033

FTN CONTROL STATEMENT PARAMETERS

A (Default: A=O)
A: abort job if fatal errors

during compilation
A=O: continue processing

B (Default: B=LGO)
B=lfn: binary output on file lfn
B: B=LGO
B=O: no binary output

BL (Default: BL=O)
BL: create output listing in burstable

form
BL=O: create output listing in com

pact form

C (Default: C=O)
C: use COMPASS assembler to

assemble object code
C=O: use FTN internal assembler

D (Default: D=O)
D: interpret C$ debug directives in

source code
D=O: treat C$ directives as comment

lines

DB (Default: DB=O)
DB=ID: generate information

necessary to use CYBER Inter
active Debug facility (overrides
DEBUG control statement)

DB=O: do not generate debug
information (overrides DEBUG (OFF)
control statement)

DB: same as DB=ID

E (Default: E=O)
E: output object code as COMPASS

line images
E=O: output object code as binary

machine code

EL (Default: EL=I)
EL=F: list fatal errors only
EL=W: list fatal and warning (TS)

fatal (OPT)
EL=N: list fatal, warning, note (TS)

list fatal (OPT)
EL=I: list fatal, warning, note (TS)

list fatal, informative (OPT)

EL=A: list all above plus ANSI

ER (Default: ER if TS or OPT=O
ER=O if OPT=1, 2)

ER: include code for object time
reprieve

ER=O: do not include code for
object time reprieve

G (Default: G=O)
G=lfn: load first system text overlay

from file lfn
G=lfn/ovl: load overlay named ovl

from file lfn
G: same as G = SYSTEXT

G=O: no system text loading from
sequential binary file

GO (Default: GO=O)
GO: load and execute binary file at

end of compilation
GO=O: do not load and execute

binary file at end of compilation

I (Default: l=INPUT)
l=lfn: source input on file lfn
I: source input on file COMPILE

L (Default: L=OUTPUT)
L=lfn: list output on file lfn
L: list output on file OUTPUT
L=O: no output listing

LCM (Default: LCM=D)
LCM=D: use 17-bit addresses for

ECS/LCM
LCM=I: use 21-bit addresses for

ECS/LCM
LCM: same as LCM=D

ML (Default: ML)
ML=nnn: nnn is value of MODLEVEL

micro
ML: current date is value of

MODLEVEL micro

OL (Default: OL=O)
OL: list generated object code
OL=O: do not list object code

OPT (Default: OPT=1)
OPT=O: fast compilation
OPT=1: standard optimization
OPT=2: maximum optimization
OPT: same as OPT=2

P (Default: P=O)
P: continuous page numbering
P=O: each program unit starts with

page 1

PD (Default: PD=6)
PD=6: Print density 6 lines per inch
PD=8: Print density 8 lines per inch
PD: Same as PD=8

PL (Default: PL=5000)
PL=n: limit output to n print lines

PMD post mortem dump
(Default: PMD=O)

PMD=O: no post mortem dump

PS (Default: PS=10 x PD)
PS=n: n is the maximum number of

lines per page

PW (Default: PW=72 for connected
file,PW=126 otherwise)

PW=n: page width is n characters
PW: same as PW=72

Q (Default: Q=O)
Q: compilation only, no object code
Q=O: normal compilation

R (Default: R=1)
R=O: no reference map
R= 1 : short map
R=2: longer map
R=3: longest map
R: same as R=2

ROUND (Default: ROUND=O)
ROUND=op: use hardware rounding

for specified operators
ROUND: same as ROUND=+ - */
ROUND=O: no rounding

S (Default: S=SYSTEXT if G=O
S=O if G=FO)

So:ovl: load syst.;m text overlay ovl
from current library set.

S=I ib/ovl: load system text overlay
from library set lib

S=O: Do not load system text file
S: same as S=SYSTEXT

SEQ (Default: SEQ=O)
SEO: source input in sequenced format
SEQ=O: source input not in

sequenced format

SL (Default: SL)
SL: list source input
SL=O: do not list source input

STATIC (Default: STATIC=O)
STATIC: inhibit dynamic memory

management by CRM at
execution time

STATIC=O: do not inhibit dynamic
memory management by CRM

SYSEDIT (Default: SYSEDIT=O)
SYSEDIT: search table for input/

output references
SYSEDIT=O: direct references for

input/output

T (Default: T=O)
T: full error traceback
T=O: no error traceback

TS (Default: OPT=1)
TS: compile in time-sharing mode

UO (Default: UO=O)
UO: perform potentially unsafe

optimizations
UO=O: do not perform potentially

unsafe optimizations

X (Default: X=OLDPL)
X=lfn: external text is on file lfn
X: same as X=OPL

Z (Default: Z=O)
Z: pass zero word for subroutine calls

with no actual arguments
Z=O: do not pass zero word for

subroutine calls with no actual
arguments

60497800 E

~ ~ CONT"OL DATA
\::a~ CO~O~TION

FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CDC® OPERA TING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

60497800

REVISION RECORD
REVISION DESCRIPTION

A Original Release.

(11-1-75)

B This revision documents Version 4.6 of FORTRAN Extended. Features documented include CPI 55,

(03-05-76) Compiler Enhancements, and CP079, Math Library Upgrade.

c Revised to include feature F7540, CYBER 170 Model 176 Support, as well as miscellaneous

(04-15-77) technical ~orrections, at PSR level 446.

D This revision documents version 4.7 of FORTRAN Extended. Features documented include

(3-31-78) CP091 and CP162, CRM products BAM and AAM, 191, Math Library Upgrade, CP184, Fast

Overlay Loading, and 66, CYBER Interactive Debug interface. Also documented is the

implementation of STATIC mode memory management, as well as miscellaneous technical

changes and corrections.

E This revision documents version 4.8 of FORTRAN Extended. The Post Mortem Dump

(07-20-79) facility is documented with this release, as well as numerous _technical changes.

F This revision documents changes to Post Mortem Dump, adds the FORTRAN Interface to Common

(08-22-80) Memory Manager, and adds the STATIC Option to FORTRAN Extended. Numerous technical

changes are included. PSR level 524.

G This revision documents release of Post Mortem Dump and STATIC option under SCOPE 2. Numerous

(01-15-81) technical changes are included. PSR level 533.

Publication No.

60497800

REVISION LETTERS I, 0, Q AND X ARE NOT USED Address comments concerning
this manual to:

© COPYRIGHT CONTROL DATA CORPORATION 1975, 1976, 1977, 1978, 1979, 1980, 1981

All Rights Reserved

Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revis ion Page Revision

Front Cover - 8-11 0 5-23 E
Inside Cover E 8-12 E 5-24 0
Title Page - 8-13 E 5-25 thru 5-28 E
ii G 8-14 F 6-1 A
iii G 8-15 c 6-2 0
iv G 8-16 c 6-3 A
v G 8-17 0 6-4 A
vi G 8-18 c 6-5 E
vii/viii G 8-19 c 6-6 thru 6-8 A
ix thru xii G 8-20 G 6-9 E
1-1 thru 1-4 A 8-21 E 6-10 c
1-5 B 8-22 D 6-11 thru 6-17 A
1-6 thru 1-17 A 8-23 c 6-18 E
2-1 A 8-24 c 6-18.1/6-18.2 E
2-2 A 8-25 F 6-19 thru 6-21 E
2-3 E 8-26 c 6-22 A
2-4 A 8-27 F 6-23 c
2-5 E 8-28 thru 8-30 D 6-24 0
2-6 D 8-31 E 6-25 thru 6-27 A
2-7 thru 2-20 A 8-32 D 6-28 F
3-1 thru 3-9 A 8-32.1 /8-32.2 c 6-29 B
3-10 D 8-33 thru 8-35 A 6-30 A
3-11 A 8-36 E 6-31 F
3-12 c 8-37 A 6-32 A
3-13 F 8-38 A 6-33 A
3-14 F 8-39 F 6-34 F
3-15 c 8-40 F 6-35 thru 6-37 A
3-16 A 8-41 E 7-1 A
3-17 A 8-42 F 7-2 0
3-18 E 8-43 E 7-3 B
3-19 E 8-44 thru 8-52 F 7-4 F
3-20 A 8-53 thru 8-55 G 7-5 thru 7-9 A
3-21 A 8-56 thru 8-61 F 7-10 E
4-1 A 9-1 E 7-11 A
4-2 A 9-2 thru 9-4 c 7-12 c
4-3 E 9-5 A 7 -13 thru 7 -15 A
4-4 F 9-6 A 7-16 c
4-5 thru 4-9 A 9-7 c 7-17 A
4-10 E 9-8 A 7-18 A
4-11 A 9-9 A 7-19 E
4-12 A 9-10 c 7-20 E
4-13 F 9-11 thru 9-29 A 7-21 G
4-14 thru 4-16 A 10-1 G 7-22 D
5-1 B 10-2 G 7-23 D
5-2 c 10-3 D 7-24 thru 7-28 A
5-3 F 10-4 E 8-1 D
5-4 thru 5-6 c 10-5 E 8-2 D
5-7 A 10-6 G 8-3 F
5-8 D 10-7 c 8-4 c
5-9 E 10-8 D 8-5 A
5-10 E 10-9 G 8-6 F
5-10.1 E 10-10 G 8-6.1/8-6.2 F
5-10 .2 E 11-1 c 8-7 G
5-11 thru 5-20 c 11-2 A 8-8 E
5-21 G 11-3 D 8-9 D
5-22 F 11-4 A 8-10 E

60497800 G iii •

Page Revision Page Revis ion

11-5 F B-8 D
11-6 c B-9 F
11-7 B B-10 F
12-1 B B-11 thru B-14 0
12-2 B B-15 F
12-3 A B-16 D
12-4 B B-17 D
12-5 B B-18 F
13-1 A B-19 0
13-2 A B-20 F
13-3 F B-21 D
13-4 F B-22 F
13-5 thru 13-8 A B-23 thru B-26 D
13-9 c B-27 F
13-10 A B-28 F
13-11 E B-29 D
13-12 F B-30 E
13-13 E B-31 thru B-33 D
13-14 A B-34 G
13-15 A B-35 D
13-16 thru 13-20 B B-36 D
13-21 c B-37 F
14-1 A B-38 D
14-2 A B-39 thru B-41 D
14-3 D B-42 E
15-1 thru 15-3 G B-43 G
16-1 0 B-44 thru B-49 D
16-2 G B-50 F
16-3 G B-51 thru 8-64 D
16-4 G B-65 F
16-5 thru 16-7 D 8-66 D
16-8 c B-67 D
16-9 A B-68 G
16-10 A 8-69 thru B-76 D
16-11 D B-77 F
16-12 c 8-78 F
16-13 D B-79 D
17-1 E 8-80 F
17-2 c B-81 E
17-3 A B-82 D
17-4 A B-83 F
17-5 D B-84 F
17-6 D B-85 D
18-1 D B-86 D
18-2 thru 18-6 A B-87 thru B-89 F
18-7 0 B-90 thru B-92 D
18-8 D B-93 E
18-9 thru 18-11 A B-94 D
19-1 D 8-95 F
19-2 A 8-96 E
19-3 0 B-97 E
19-4 thru 19-7 A C-1 thru C-8 A
19-8 F C-9 thru C-11 c
19-9 thru 19-11 A D-1 E
19-12 c D-2 A
19-13 thru 19-18 A D-3 thru D-5 c
19-19 E 0-6 A
19-20 thru 19-27 A 0-7 D
19-28 c D-8 A
19-29 thru 19-32 A E-1 thru E-6 0
19-33 c Index-1 thru -8 F
19-34 A Conment Sheet G
20-1 F Mail er -
A-1 A Back Cover -
A-2 F
A-3 A
B-1 thru B-4 D
B-5 E
B-6 G
B-7 D

• iv 60497800 G

PREFACE

This manual describes the FORTRAN Extended 4.8 language. FORTRAN Extended is designed to comply
with American National Standards Institute FORTRAN language, as described in X3.9-1966. It is assumed
the reader has knowledge of an existing FORTRAN language and is familiar with the computer system on
which the language is used.

The FORTRAN Extended compiler operates in conjuncti.on with the COMP ASS 3 assembly language
processor under control of the following operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000
Series Computer Systems

NOS/BE 1 for the CDC® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series
Computer Systems

SCOPE 2 for the CONTROL DATA CYBER 170 Model 176, CYBER 70 Model 76, and 7600 Computer
Systems

Due to capsule loading, relocatable binaries compiled by versions of FORTRAN Extended prior to version
4.7 cannot be run with CRM BAM 1.5 or AAM 2; they must be recompiled.

Control Data extensions to the FORTRAN language are indicated by shading. Example programs or parts
of programs are shaded in their entirety if they contain lines using extensions to the ANSI standard (unless
the only such extension is the PROGRAM statement). Shading is used only in sections 1 through 8, which
contain the specification of the FORTRAN Extended language; later sections describe the implementation
of these specifications and shading is not used.

Extended memory for the CYBER 170 Model 176 is large central memory (LCM) or large central memory I
extended (LCME). Extended memory for all other NOS or NOS/BE computer systems is extended core
storage (ECS) or extended semiconductor memory (ESM). In this manual, the acronym ECS refers to all
forms of extended memory unless otherwise noted. Programming information for the various forms of
extended memory can be found in the COMPASS reference manual and in the appropriate computer system
hardware reference manual.

Related material is contained in the listed publications. The publications are listed within groupings that I
indicate relative importance to readers of this manual.

The NOS manual abstracts and the NOS/BE manual abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audience of all NOS operating system and NOS product set I
manuals, and NOS/BE operating system and NOS/BE product set manuals, respectively. The abstracts
manuals can be useful in determining which manuals are of greatest interest to a particular user. The
Software Publications Release History serves as a guide in determining which revision level of software
documentation corresponds to the Programming System Report (PSR) level of installed site software.
Other manuals serve as references for information that require greater detail.

The following publications are of primary interest: I

60497800 G

Publication

FORTRAN Common Library Mathematical
Routines Reference Manual

Publication
Number

60498200

v

FORTRAN Extended Version 4 DEBUG
User's Guide 60498000

I FORTRAN Extended Version 4 User's Guide 60499700

NOS Version 1 Reference Manual, Volume 1 of 2 60435400

NOS/BE Version 1 Reference Manual 60493800

SCOPE Version 2 Reference Manual 60342600

I The following publications are of secondary interest:

Publication
Publication Number

I Common Memory Manager Version 1
Reference Manual 60499200

COMPASS Version 3 Reference Manual 60492600

CYBER :interactive Debug Version 1
Reference Manual 60481400

CYBER Interactive Debug Version 1
Guide for Users of FORTRAN Extended
Version 4 60482700

I CYBER Loader Version 1 Reference Manual 60429800

CYBER Record Manager Advanced Access
Methods Version 2 Reference Manual 60499300

CYBER Record Manager Advanced Access
Methods Version 2 User's Guide 60499400

CYBER Record Manager Basic Access
Methods Version 1.5 Reference Manual 60495700

CYBER Record Man~er Basic Access
Methods Version 1.5 ser's Guide 60495800

I
DMS-170
DDL Version 3 Reference Manual
Volume 1: Schema Definition for Use With:

COBOL
FORTRAN
Query Update 60481900

FORTRAN Data Base Facility Version 1
Reference Manual 60482200

INTERCOM Interactive Guide for Users
of FORTRAN Extended 60495000

I INTERCOM Version 5 Reference Manual 60455010

I
Network Products
Interactive Facility Version 1
Reference Manual 60455250

vi 60497800 G

60497800 G

NOS Version 1 Manual Abstracts

NOS/BE Version 1 Manual Abstracts

SIFT Programming System Bulletin

Software Publications Release History

Sort/Merge Versions 4 and 1
Reference Manual

84000420

84000470

60496500

60481000

60497500

CDC manuals can be ordered from Control Data Corporation, Literature
and Distribution Services, 308 North Dale Street, St. Paul, Minnesota
55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or parameters.

vii/viii I

CONTENTS

1. FORTRAN LANGUAGE ELEMENTS 1-1 Implicit Type Statement 3-3
DIMENSION Statement 3-4

Coding FORTRAN Statements 1-1 COMMON Statement 3-4
FORTRAN Character Set 1-1 EQUIVALENCE Statement 3-8
Column Usage 1-1 EQUIV ALEN CE and Common 3-11

Comments 1-3 LEVEL Statement 3-12
Statement Labels 1-3 EXTERN AL Statement 3-13
Continuation 1-3 DATA Statement 3-15
Columns 73-80 1-3 Implied DO in Data List 3-19

Statement Separator 1-3
Blank Lines 1-4
Data 1-4

Ordering of Statements 1-4 4. FLOW CONTROL STATEMENTS 4-1
Constants 1-5

Integer Constant 1-5 GO TO Statement 4-1
Real Constant 1-5 Unconditional GO TO Statement 4-1
Double Pre<?ision Constant 1-6 Computed GO TO Statement 4-1
Complex Constant 1-7 ASSIGN Statement 4-3
Octal Constant 1-9 Assigned GO TO Statement 4-4
Hollerith Constant 1-9 Arithmetic IF Statement 4-5

nHf and##: 1-10 Three-Branch Arithmetic IF Statement 4-5
nRf and nLf 1-11 Two-Branch Arithmetic IF Statement 4-5

Logical Constant 1-11 Logical IF Statement 4-6
Variables 1-11 Standard-Form Logical IF Statement 4-6

Integer Variables 1-12 Two-Branch Logical IF Statement 4-7
Real V ariables 1-12 DO Statement 4-7
Double Pre<?ision Variables 1-13 DO Loops 4-8
Complex Variables 1-13 Nested DO Loops 4-9
Logical Variables 1-13 CONTINUE Statement 4-12

Arrays 1-13 PAUSE Statement 4-13
Subscripts 1-15 STOP Statement 4-14
Array Structure 1-16 END Statetn1~i1t 4-14

RETURN Statement 4-15

2. EXPRESSIONS AND ASSIGNMENT
STATEMENTS 2-1

Expressions 2-1 5. INPUT/OUTPUT STATEMENTS 5-1
.Arithmetic Expressions 2-1

Evaluation of Expressions 2-2 Formatted Input/Output 5-2
Type of Arithmetic Expressions 2-5 Formatted Output Statements 5-3
Exponentiation 2-6 PRIN"T 5-3

Relational Expressions 2-7 PUNCH 5-4
Logical Expressions 2-9 WRITE 5-5
Masking Expressions 2-12 Formatted READ 5-5

Assignment Statements 2-14 Unformatted Input/Output 5-7
Arithmetic Assignment Statements 2-15 Unformatted WRITE 5-7

Conversion to Integer 2-16 Unformatted READ 5-7
Conversion to Double Pre<?ision 2-16 List Directed Input/Output 5-8
Conversion to Complex 2-17 List Directed Input 5-8
Conversion to Real 2-18 List Directed Output 5-10.2

Logical Assignment 2-18 Namelist 5-13
Masking Assignment 2-19 Input 5-14
Multiple Assignment 2-19 Output 5-15

Arrays in Namelist 5-17
Buff er Statements 5-20

3. SPECIFICATION STATEMENTS 3-1 BUFFER IN 5-20
BUFFER OUT 5-22

Type Statements 3-1 ENCODE and DECODE 5-22
Explicit Type De<?larations 3-1 ENCODE 5-22

INTEGER 3-1 DECODE 5-25
REAL 3-2 File Manipulation Statements 5-27
COMPLEX 3-2 REWIND 5-27
DOUBLE PRECISION 3-2 BACKSPACE 5-27
LOGICAL 3-3 END FILE 5-27

60497800 G ix 1

6. INPUT/OUTPUT LISI'S AND FORMAT 8. FORTRAN EXTENDED SUPPLIED
STATEMEN'IB 6-1 PROCEDURES 8-1

Intrinsic Functions 8-1
Input/OUtput Lists 6-1 Basic External Functions 8-1

Implied DO in 1/0 List 6-2 Miscellaneous Utility Subprograms 8-8
Format Statement 6-5 Random Number Generator 8-8

Data Conversion 6-6 Operating System Interface Routines 8-9
Conversion Specification 6-7 Debugging Aids 8-14

Iw and Iw.z Input 6-7 Input/Output Status Checking 8-23
Iw and Iw.z OUtput 6-8 Other Input/Output Subprograms 8-25
Ew.d, Ew.dEe and Ew.dDe OUtput 6-9 ECS/LCM Subprograms 8-26
Ew.D, Ew.dEe and Ew.dDe Input 6-10 Terminal Interface Subprograms 8-27
Fw.d OUtput 6-13 Mass Storage Input/Output 8-29
Fw.d Input 6-13 Random File Access 8-29
Gw.d Input 6-14 Mass Storage Subroutines 8-30
Gw.d Output 6-14 Opening a File 8-30
Dw.d Output 6-16 Writing Records 8-31
Dw.d Input 6-16 Reading Records 8-32
Ow Input 6-17 Closing a File 8-32
Ow Output 6-17 Specifying a Different Index 8-32.1
Zw Input and Output 6-18 Index Key Types 8-33
Aw Input 6-18 Master Index 8-33
Aw Output 6-19 Sub-Index 8-33
Rw Input 6-20 Multi-Level File Indexing 8-33
Rw Output 6-21 Compatibility with Previous Mass
Lw Input 6-21 Storage Routines 8-39
Lw Output 6-21 FORTRAN-CYBER Record Manager Interface 8-39

Scale Factors 6-21 Parameters 8-39
Fw .d Scaling 6-22 Subroutines 8-42
Ew .d and Dw .d Scaling 6-23 Error Checking 8-44
Gw .d Scaling 6-23 Multiple Index Processing 8-45

X Specification 6-24 FORTRAN - Sort/Merge Interface 8-46
nH Output 6-25 FORTRAN-CYBER Interactive Debug Interface 8-51
nH Input 6-26 Control Statement 8-51
End of Record Slash 6-28 User-CID Interaction 9.:..52
Repeated Format Specification 6-29 CID Output 8-52
Printer Control Character 6-31 Batch Debugging 8-52
Tn Specification 6-32 Interface to Common Memory Manager 8-52
V Specification 6-34 Post Mortem Dump 8-53
Equals Sign 6-34
Execution Time Format Specification 6-36

9. DEBUGGING FACILITY 9-1

Debugging Statements 9-3
7. PROGRAM UNITS, PROCEDURES, Continuation Line 9-3

AND 0 VERLA YS 7-1 ARRAYS Statement 9-3
CALLS Statement 9-3

Main Programs 7-2 F.UNCS Statement 9-7
PROGRAM Statement Format 7-2 STORES Statement 9-10
PROGRAM Statement Usage 7-3 Variable Names 9-11

Block Data Subprogram 7-5 Relational Operators 9-12
Procedures 7-6 Checking Operators 9-13

Subroutine Subprogram 7-6 Hollerith Data 9-13
Function Subprogram 7-8 GOTOS Statement 9-14
Basic External Function 7-9 TRACE Statement 9-15
Intrinsic Function 7-10 NOGO Statement 9-17
Statement Function 7-10 Debug Deck Structure 9-17

Procedure Commmication 7-12 DEBUG Statement 9-22
Passing Values to a Procedure 7-12 AREA Statement 9-23

Using Arguments 7-12 OFF Statement 9-26
Using Common 7-14 Printing Debug Output 9-27
Using Arrays 7-14 STRACE Entry Point 9-28

Referencing a Function 7-15
Calling a Subroutine Subprogram 7-16
Using the ENTRY Statement 7-18 10. FTN CONTROL STATEMENT 10-1

Overlays 7-19
Overlay Commtmication 7-21 Parameters 10-1
Creating an Overlay 7-21 A Exit Parameter 10-2
Calling an Overlay 7-23 B Binary Object File 10-2

I x 60497800 G

BL Burstable Listing 10-2 Statement Labels 13-10
C COMPASS Assembly 10-2 DO Loops 13-11

I CC Control Statement Continuation Common Blocks 13-12
Parameter 10-2 Equivalence Classes 13-13

D Debugging Mode Parameters 10-3 Program Statistics 13-14
DB CYBER Interactive Debug Parameter 10-3 Error Messages 13-14
E Editing Parameter 10-3 Debugging (Using the Reference Map) 13-14
EL Error Level 10-4 Time-Sharing Mode 13-15
ER Error Recovery 10-4 R=l Maps 13-16
G Get System Text File 10-4 R=2, R=3 Maps 13-17
GO Automatic Execution (Load and Go} 10-4 Common Blocks 13-18
I Source Input File 10-5 Entry Points 13-18
L List Output File 10-4 External References 13-18
LCM Level 2 and Level 3 Storage Access 10-5 Statement Labels 13-19
ML Modlevel 10-5 Variables 13-20
OL Object List 10-5
OPT Optimization Parameter 10-6
P Pagination 10-6 14. OBJECT CODE 14-1
PD Print Density 10-6
PL Print Limit 10-6 Optimizing Mode 14-1
PMD Post Mortem Dump 10-6 Subroutine and Function Structure 14-1
PS Page Size 10-6 Main Program Structure 14-2
PW Page Width 10-7 Renaming Conventions 14-2
Q Program Verification 10-7 Register Names 14-2
R Symbolic Reference Map 10-7 External Procedure Names 14-2
ROUND Rounded Arithmetic Computations 10-7 Listing Format 14-3
S System Text (Library) File 10-8 Time-Sharing Mode 14-3
SEQ Sequence Input 10-8 Listing Format 14-3
SL Source List 10-8
STATIC Static Loading 10-8
SYSEDIT System Editing 10-8 15. EXECUTION CONTROL STATEMENT 15-1
T Error Traceback 10-9
TS Timesharing Mode 10-9 Alternate File Name Specification 15-1

I UO Uhsaf e Optimization 10-9 Print Limit Specification 15-2
X External Text Name 10-9 Post Mortem Dump Parameters 15-2
Z Zero Parameter 10-9

FTN Control Statement Examples 10-10

16. INPUT/OUTPUT IMPLEMENTATION 16-1
11. COMPILATION MODES AND

OPTIMIZATION 11-1 Execution-Time Input/Output 16-1
File and Record Definitions 16-1

Optimizing Mode 11-2 Structure of Input/Output Files 16-2
Object Code Optimization 11-2 Sequential Files 16-2

OPT=O 11-2 Mass Storage Input/Output 16-6
OPT=l 11-2 FILE Control Statement 16-6
OPT=2 11-2 Sequential File Operations 16-8
uo 11-3 BACKSPACE/REWIND 16-8

Source Code Optimization 11-4 END FILE 16-10
Time-Sharing Mode 11-6 Input/Output Restrictions 16-11

TS Listings 11-7 Compile-Time Input/Output 16-11
Sequenced Line Format 11-7 Source Input File Structure 16-12

Coded Output File Structure 16-13
Binary Output File Structure 16-13

12. COMPILER LISTINGS 12-1

Optimizing Mode Listings 12-1 17. COMPASS SUBPROGRAM LINKAGE 17-1
Time-Sharing Mode Listings 12-2
Listing Control Directives 12-2 Call by Name and Call by Value 17-1

Call by Name Sequence 17-1
Call by Value Sequence 17-2

13. CRO~ REFERENCE MAP 13-1 Intermixed COMPASS Subprograms 17-2
Entry Point 17-4

Optimizing Compilation Mode 13-1 Restrictions on Using Library Function Names 17-4
Source Program 13-2

R=l Maps 13-3
R=2/R=3 Maps 13-4 18. SAMPLE DECK STRUCTURES 18-1

Entry Points 13-5
Variables 13-6 FORTRAN Source Program with Control
File Names 13-7 Statements 18-1
External References 13-8 Compilation Only 18-2
lnline Functions 13-9 TS Mode Compilation Only 18-2
Name lists 13-10 Compilation and Execution 18-3

60497800 G xi

FORTRAN Compilation with COMPASS Program MASK 19-5
Assembly and Execution 18-4 Program EQUIV 19-7

Compile and Execute with FORTRAN Sub- Program COME 19-9
routine and COMPASS Subprogram 18-5 Program LIBS 19-11

Compile and Produce Binary Cards 18-6 Program PIE 19-13
Load and Execute Binary Program 18-7 Program ADD 19-15
Compile and Execute with Relocatable Binary Program PASCAL 19-18

Deck 18-8 Program X 19-19
Compile Once and Execute with Different Program V ARDIM- 19-21

Data Decks 18-9 Program V ARDIM2 19-23
Preparation of Overlays 18-10 Function PV AL 19-24
Compilation and 2 Executions with Overlays 18-11 Function MULT 19-25

Program cmcLE 19-28
Program OCON 19-30

19. SAMPLE PROGRAMS 19-1 List Directed Input/Output 19-33

Program OUT 19-1
I Program B 19-3 20. STATIC OPTION 20-1

APPENDIXES

A STANDARD CHARACTER SET A-1 D ARITHMETIC D-1
B FORTRAN DIAGNOS'l1CS B-1 E GLOSSARY E-1
c STATEMENT FORMS C-1

INDEX

FIGURES

1-1 Program PASCAL 1-2 9-3 Example of Internal Debugging Deck 9-20
9-1 Example of Interspersed Debugging 9-4 Example of External Deck on Separate

Statements 9-18 File 9-21
9-2 External Debugging Deck 9-19

TABLES

7-1 Differences Between a Function and 8-1 Intrinsic Functions 8-2
Subroutine Subprogram 7-1 8-2 Basic External Functions 8-6

7-2 Procedure and Subprogram Inter- 16-1 Defaults for FIT Fields Under FORTRAN
relationships 7-2 Extended 16-3

xii 60497800 G

FORTRAN LANGUAGE ELEMENTS 1

A FORTRAN program contains executable and non-executable statements. Executable statements specify actions
the program is to take, and non-executable statements describe characteristics of operands, statement functions,
arrangement of data, and format of data.

CODING FORTRAN STATEMENTS

The FORTRAN source progrim is written on the coding form illustrated in figure 1-1. Each line on the coding
form represents an 80-column source line (terminal line or card image). The FORTkAN character set is used to
code statements.

FORTRAN CHARACTER SET

Alphabetic

Numeric

Special

A to Z

0 to 9

=equal
+plus
- minus
*asterisk
I slash
(left parenthesis

) right parenthesis
, comma
. decimal point
$ dollar sign

In addition, any character (Appendix A) may be used in Hollerith constants and in comments. Blanks are not
significant except in Hollerith fields.

COLUMN USAGE

Column 1

Columns 1-2

Columns 1-2

Columns 1-5

Column 6

Columns 7-72

Columns 73-80

60497800 A

Statement label.

Any character other than blank or zero denotes .~~~~.i~u~~i~.~.; .~~~s not

apply to comment lines or list directives. A def?l.l9Cq~~itty~~iqJ:l Uf'\e
ttllijf.cofit81n· C$in cC>1umfi$ t'"-2.

Statement.

Identification field, not
processed by compiler.

pan .•. con~~·q\i~f~rrp~~ior\ .for
debug ~Rf§°' (jir~~ilfe'.

1-1

-I
N

0\
0

~
-.....)
00
0
0

>

COMMENTS

In column 1 a C indicates a comment line. Comments do not affect the program; they can be
written in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more
than one line, each line must begin with C; in column 1. In a comment line a character in column 6
is not recognized as a continuation character.

STATEMENT LABELS

A statement label (any 1- to 5-digit integer) uniquely identifies a statement so it can be referenced by
another statement. Statements that will not be referenced do not need labels. Blanks and leading zeros are
not significant. Labels need not occur in numerical order; however, a given label must not be used more than
once in the same program unit. A label is known only in the program unit containing it; it cannot be refer
enced from a different program unit. Any statement can be labeled, but only FORMAT and executable state
ment labels can be referenced by other statements. A label on a continuation line is ignored.

CONTINUATION

Statements are coded in columns 7-72. If a statement is longer than 66 columns, it can be continued on as
many as 19 continuation lines. A character other than blank or zero in column 6 indicates a continuation line.
Column 1 can contain any charact~r.?ther than C columns 2',>~·~ .. 4, and 5 can contain any character.
Any statement except a comment '.~ri: can be continued,fm~.

COLUMNS 73-80

Any information can appear in columns 73-80 because they are not part of the statement. Entries in these
columns are copied to the source listing. used to order the lines in a deck

60497800 A 1-3

BLANK LINES

Blank lines can be used freely between statements to produce blank lines on the source listing.
a blank line interrupts statement continuation, and the line following the blank line is the be-

ginning of a new statement. This line can have the form of a continuation line.

DATA

No restrictions are imposed on the format of data read by the source program. Data input on cards is limited
to 80 characters per card, but a record can span more than one card.

ORDERING OF STATEMENTS

The foJlowing table shows the general form of a FORTRAN program unit. Statements within a group can
appear in any order, but groups must be ordered as shown. Comment lines can appear anywhere within the
program.

STATEMENTS

2 FUNCTION*
SUBROUTINE*
BLOCK DATA

3

type
COMMON

4 DIMENSION
EOU IV AL ENCE •
EXTERNAL* F

0
R

5
Statement function• M
definitions A

T

6 Executable
statements*

7 END

*Not allowed in BLOCK DATA Subprograms

'.'i:~,~~'··~~···~~~~~.1~.~~~:~~~

1-4 60497800 A

CONSTANTS

A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
Hollerith, and logical.

INTEGER CONSTANT

f n1 "2 · · · "m I
n is a decimal digit (0-9)

I< m. < 18

Examples:

237 -74 +136772 0 -0024

An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign
must be present. An integer constant must not contain a comma. The range of an integer constant is
- (259 -1) to 259 -1 (259 -1 = 576 460 752 303 423 487).

Examples of invalid integer constants:

46. (decimal point not allowed)

23A (letter not allowed)

7 ,200 (comma not allowed)

When an integer constant is used as a subscript, or as an index in a DO statement or implied DO, the maximum
value is 217 -1 (217 -1 = 131 071), and the minimum is 1.

Integers used in multiplication, division, and exponentiation, whether constant or variable, should be in the range
- (248 -1) to 248 -1 (248 -1 = 281 474 976 710 655). The result of such operations also should be in this
range. If an integer constant exceeding this range is used, a fatal diagnostic is issued. Any other cases are not
diagnosed, and the results are unpredictable. For integer addition and subtraction (where both operands are
integers), the full 60-bit word is used.

When values are converted from real to integer or from integer to real (in an expression or assignment state
ment), the valid range is also from - (248 -1) to 248 -1 . For values outside this range, the high order bits
are lost and no diagnostic is provided.

REAL CONSTANT

I n.n . n n . n.nE±s .nE±s n.E±s nE±s I
n Coefficient :E:;; 15 decimal digits

E±s Exponent (base 10)

60497800 B 1-5

A real constant consists of a string of decimal digits written with a decinial point or an exponent, or both.
Commas are· not allowed. If the exponet is positive, the plus sign is optional.

The range of a real constant is 10-293 to 10+322
; if this range is exceeded, a diagnostic is printed. Precision is

approximately 14 decimal digits, ,and the constant is stored interrially in one computer word.

Examples:

7.5 -3.22 +4000. 23798.14 .5 - .72 42.El 70Q.E-2

Examples of invalid real constants:

3,50. (comma not allowed)

2.5A (letter not allowed)

Optionally, a real constant can be followed by a decimal exponent, written as the letter E and an ihteger con
stant indicating the power of ten by which the number is to be multiplied. If the E is present, the integer
constant following the letter E must not be omitted. The sign may be omitted if the exponent is positive, but
it must be present if the exponent is negative.

Examples:

42.El

.000281+5

6.205El2

8.0E+6

700.E-2

7E20

(42. x 101 = 420.)

(.00028 X 105 = 28.)

(6.205 x 1012 = 6205000000000.)

(8. x 106 = 8000000.)

(700. x 10-2 = 7.)

(7. x 1020 = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 exponent not an integer

DOUBLE PRECISION CONSTANT

I n.nD±s .nD±s n.D±s nD±s I
n Coefficient

D±s ·Exponent {base 10)

1-6 60497800 A

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving
extra precision. A double precision constant is accurate to approximately 29 decimal digits. If the exponent
is positive, the plus sign is optional.

Examples:

5.834D2

14.D-5

9.2D03

-7.D2

3120D4

(5.834 x 102 = 583.4)

(14. x 10-5 = .00014)

(9.2 x l03 = 9200.)

(-7. x l02 = -700.)

(3120. x 104 = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing

D5 exponent alone not allowed

2, 1.3D2 comma illegal

3.141592653589793238462643383279

COMPLEX CONSTANT

I (r1, r2q

rl Real part

r2 Imaginary part

D and exponent missing

Complex const~nts are written as a pair of real constants separated by a comma and enclosed in
parentheses.

FORTRAN Coding Complex Number

(1., 7. 54) I. + 7.54i i = ~

(-2.lEl, 3 .• 24) -21. + 3.24i

(4.0, 5.0) 4.0 + 5.0i

(0., -1.) 0.0 - l.Oi

60497800 A 1-7

The first constant represents the real part of the complex number, and the second constant represents the
imaginary part. Th~ parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer
words. · .

Both parts of complex constants must be real; they may not be in-teger.

Examples of invalid complex constants:

(275, 3.24} 275 is an integer

(12 • 7D-4 16. l} comma missing a1nd double precision not allowed

4. 7E+2 ,1. 942 parentheses missing

0 is an integer

Real constants which form the con:iplex constant can range from I 0·293 to I 0•322
• Division of complex

numbers might result ·in underflow or overflow (see Appendix D) even when this range, is not exceeded.

1-8 60497800 A

HOLLERITH CONSTANT

n Unsigned decimal integer representing numbe~ of characters in string including blanks;
must be greater than zero.

f String of characters; must contain at least one character

H Left justified with blank fill

A Hollerith constant has two forms: one is an unsigned decimal integer followed by the letter H, and a
string of characters; ,:,/~i~Jig, ~,

Hollerith constants can be used in DAT A statements, as arguments in subroutine calls i;
~~~~~?t~'.·~Q., l'i;·~<f:m·a·.·•D.A.Ti\;'S 

·' If a Hollerith constant is used as an operand of an arithmetic operation, 
~ ififormative diagnostic i~ gl~en. If a Hollerith constant is used as an argument in a subprogram call, it is 
followed by a zero word. 

60497800 A 1-9 



The Hollerith specification in a FORMAT statement (see section 6) is not the same as a Hollerith constant. 

nHf 

These two forms produce left-justified display code constants with 10 characters per word. If the string length 
is not a multiple of 10, the final word is blank filled. 

nHf Examples: 

18HTHIS IS A CONSTANT 

7HTHE END 

19HRESULT NUMBER THREE 

1-10 60497800 E 



LOGICAL CONSTANT 

A logical constant takes the forms: 

.TRUE. representing the value true 

.FALSE. representing the value false 

The decimal points are part of the constant and must appear. 

Examples: 

LOGICAL Xl, X2 

X1 .TRUE. 
X2 .FALSE. 

VARIABLES 

A variable represents a quantity whose value can be varied; this value can be changed repeatedly during 
program execution. Variables are identified by a symbolic name of one to letters or digits, beginning 
with a letter. A variable is associated with a storage location; whenever a variable is used, it references the 
value currently in that location. 

A variable can have its type specified in a type statement (see section 3) as integer, real, double precision, 
complex, or logical. In the absence of an explicit declaration, the type is implied by the first character of 

the nam~: .. <I•r.J, ~~ •. b~'..~lld N i~P!.~ ~Kg~ int~.~~r}~~ ~~y .. ~~.~r.letter implies type real, umel. 
~:(s•~ f;:qt\ 3)pp .>c~J1;~i~•· '.'.J1~W~itJJplicii,!f~· ·· 

60497800 A 1-11 



Default typing of variables: 

A-H,0-Z Real 

1-N Integer 

INTEGER VARIABLES 

An integer variable is a variable that is typed explicitly or implicitly as described under Variables. 

The value range is - (259 -1) to 259 -1. When an integer variable is used as a subscript, the maximum value is 
217 -1. The resulting absolute value of conversion from integer to real, or real to integer must be less than 
248

• The operands, as well as the result, of an integer multiplication or division must be less than 248 in 
absolute value. If any of these restrictions are violated, the results are unpredictable. For integer addition 
and subtraction, the full 60-bit word is used; the resulting absolute value must be less than 259

• 

See section 4 for restrictions or integers used in DO statements. 

An integer variable occupies one word of mem<;>ry. 

Examples: 

ITEM1 NSUM JSUM N72 J K2S04 

REAL VARIABLES 

A real variable is a variable that is typed explicitly or implicitly as described under Variables. 

The value range is 10-293 to 10+322 with approximately 14 significant digits of precision. A real variable 
occupies one word of storage. 

Examples: 

AVAR SUM3 RESULT TOTAL2 BETA xx xx 

1-12 60497800 A 



.DOUBLE PRECISION VARIABLES 

Double precision variables must be typed by a type declaration. The value of a double precision variable can 
range from 10-293 to 10+322 with approximately 29 significant digits of precision. 

Double precision variables occupy two consecutive words of memory. The first word contains the more 
significant part of the number and the second contains the less significant part. 

COMPLEX VARIABLES 

Complex variables must be typed by a type declaration. A complex variable occupies two words of memory; 
each word contains a real number. The first word represents the real part of the number and the second 
represents the imaginary part. 

Example: 

COMPLEX ZERA,MU,LAMBDA 

LOGICAL VARIABLES 

Logical variables must be typed by a type declaration. A logical variable has the value true or false and 
occupies one word of memory. 

Example: 

LOGICAL L33,PRAVDA,VALUE 

ARRAYS 

A FORTRAN array is a set of elements identified by a single name composed of one to letters and 
digits beginning with a letter. Each array element is referenced by the array name and a subscript. The type 
of the array elements is determined by the array name in the same manner as the type of a variable is deter
mined by the variable name (see Variables in this section). The array name and its dimensions must be de
clared in a DIMENSION or COMMON statement or a type declaration. Arrays can have one, two, or three 
dimensions. 

The number of dimensions in the array is indicated by the number of subscripts in the declaration. 

DIMENSION STOR(6) declares a one-dimensional array of six elements 

60497800 A 1-13 



REAL STOR(3,7) declares a two-dimensional array of three rows and seven columns 

LOGICAL STOR(6,6,3) declares a three-dimensional array of six rows, six ·columns and three planes 

Example 1: 

The array N consists of six values in the order: 10, 55, 11, 72, 91, 7 

N( 1) value 10 
N(2) value 55 
N(3) value 11 
N(4) value 72 
N(5) value 91 
N(6) value 7 

Example 2: 

The two-dimensional array TABLE (4,3) has four rows and three columns. 

Column Column 2 Column 3 

Row 1 44 10 105 
Row 2 72 20 200 
Row 3 3 11 30 
Row 4 91 76 714 

To refer to the number in row two, column three write T ABLE(2,3). 

TABLE(3,3) = 30 TABLE(l,l) = 44 TABLE(4,1) = 91 

TABLE(4,4) would be outside the bounds of the array and results are unpredictable. 

1-14 60497800 A 



SUBSCRIPTS 

A subscript indicates the position of a particular element in an array. A subscript consists of a pair of 
parentheses enclosing from one to three subscri t expressions which are se 
follows the arra name. 

The value of a subscript must never be zero or negative. It should be less than or equal to the product 
of the declared dimensions, or the reference will be outside the array. If the reference is outside the bounds 
of the array, results are unpredictable. 

The amount of storage allocated to arrays is discussed under DIMENSION declarations in section 3. 

Valid subscript forms: 

A(l,K) 

B(l+2,J-3,6*K +2) 

LAST(6) 

ARAY0(1,3,2) 

Invalid subscript forms: 

ATLAS(O) 

0(1 .GE. K) 

A(,I) or A(l,,K) 

60497800 A 

zero subscript causes a reference outside of the array 
relational or logical expression illegal 
commas can only be used to separate adjacent subscript expressions 

1-15 



ARRAY STRUCTURE 

Arrays are stored in ascending locations: the value of the first subscript increases most rapidly, and the value of 
the last increases least rapidly. 

Example: 

In an array declared as A(3,3,3), the elements of the array are stored by columns in ascending locations. 

Row 1 

Row2 

Row3 

Plane 1 

Col 1 Col 2 Col 3 

A 111 JA121JA131 I I I 
A211 A221 A231 

I I I 
A311 A321 A331 

Plane 2 

Col 1 Col 2 Col 3 
'-----~-~~~'--~---~----

Row 1 

Row2 

Row3 

A112 JA122JA132 I I I 
A212 A222 A232 

I I I 
A312 A322 A332 

Plane 3 

Col 1 Col2 Col3 _________ , ________ _ 
Row 1 

Row2 

Row3 

The array is stored in linear sequence as follows: 

Location Relative 
Element to first Element Element 

A(l, 1, 1) 0 A(3,2,2) 
A(2, 1, 1) 1 A( 1,3,2) 
A(3,l,l) 2 A(2,3,2) 
A(l,2, 1) 3 A(3,3,2) 
A(2,2, 1) 4 A( 1,1,3) 
A(3,2, 1) 5 A(2,l,3) 
A(l,3,1) 6 A(3,l,3) 
A(2,3, 1) 7 A( 1,2,3) 
A(3,3,l) 8 A(2,2,3) 
A(l, 1,2) 9 A(3,2,3) 
A(2,l,2) 10 A(l,3,3) 
A(3,l,2) 11 A(2,3,3) 
A(l,2,2) 12 A(3,3,3) 
A(2,2,2) 13 

1-16 

A113JA123JA133 I I I 
A213 A223 A233 

l I I 
A313 A323 A333 

Location Relative 
to first Element 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

60497800A 



To find the location of an element in the linear sequence of storage locations the following method can be 
used: 

Number of Array Location of Element 
Dimensions Dimension Subscript Relative to Starting Location 

1 ALPHA(K) ALPHA(k) (k-1)XE 

2 ALPHA(K,M) ALPHA(k,m) (k-1+KX(m-1) )XE 

3 ALPHA(K,M,N) ALPHA(k,m,n) (k-1+KX (m-1+MX (n-1) ))XE 

K, M, and N are dimensions of the array. 

k,m, and n are the subscript expression values of the array. 

I is subtracted from each subscript value because the subscript starts with 1, not 0. 

E is length of the element. For real, logical, and integer arrays, E = l. For complex and double 
precision arrays, E = 2. 

Examples: 

Location of Element 
Subscript Relative to Starting Location 

INTEGER ALPHA (3) ALPHA(2) (2-1)X1=1 

REAL ALPHA (3,3) ALPHA(3,1) ( 3-1+ 3X ( 1-1 ) ) X 1 = 2 

COMPLEX ALPHA (3,3,3) ALPHA(3,2, 1) (3-1+3X(2-1+3X(1-1 )))X2 = 10 

60497800 A 1-17 





EXPRESSIONS AND ASSIGNMENT STATEMENTS 2 

EXPRESSIONS 

FORTRAN expressions are arithmetic, logical and relational. Arithmetic expressions 
yield numeric values, and logical and re ational expressions yield truth values. 

ARITHMETIC EXPRESSIONS 

An arithmetic expression is a sequence of unsigned constants, variables, array elements, and function references 
separated by operators and parentheses. For example, 

(A-B)*F + C/D**E 

is a valid arithmetic expression. 

The FORTRAN arithmetic operators are: 

+ addition 

subtraction 

• multiplication 

I division 

•• exponentiation 

An arithmetic expression may consist of a single constant, variable, array element, or function reference. If X 
is an expression, then (X) is an expression. If X and Y are expressions, then the following are expressions: 

X+Y 

X*Y 

-X 

+X 

X-Y 

X/Y 

x••v 

60497800 A 2-1 



All operations must be specified explicitly. For example, to multiply two variables A and B, the expression 
A *B must be used. AB, (A)(B), or A.B will not result in multiplication. 

Expression Value 

3.78542 Real constant 3. 78542 

A(2*J) Array element A (2 • J) 

BILL Variable BILL 

SQRT(5.0) {T" 

A+B Sum of the values A and 8 

C*D/E Product of C times D divided by E 

J**I Value of J raised to the power of I 

(200 - 50) *2 300 

EVALUATION OF EXPRESSIONS 

The sequence in which an expression is evaluated is governed by the following rules, listed in descending precedence: 

2-2 

I. References to external functions are evaluated. 

2. Arithmetic statement functions and intrinsic functions are expanded. 

3. Subexpressions delimited by parentheses are evaluated, beginning with the innermost subexpressions. 

4. Subexpressions defined by arithmetic, relational, and logical operators are evaluated according to the 
following precedence hierarchy: 

•• 

I • 
+ 

.GT. .GE. .LT. .LE. .EQ. .NE. 

.NOT. 

.AND. 

.OR. 

(exponentiation) 

(division or multiplication) 

(addition or subtraction) 

(relationals) 

(logical) 

(logical) 

(logical) 

60497800 A 



5. Subexpressions containing operators of equal precedence are evaluated from left to right. However, 
individual operations that are mathematically associative and/or commutative may be reordered by the 
compiler to perform optimizations such as removal of repeated subexpressions or improvement of 
functional unit usage. The evaluation of the expression A/B*C is guaranteed to algebraically equal 
AC ..;.- B, not A ..;.- BC, but the specific order of evaluation here is indeterminate. Subexpressions 
containing integer divisions are not reordered within the * I precedence level because the truncation 
resulting from an integer division renders these operations non-associative. 

Unary addition and subtraction are treated as follows: 

+n the same as n 
-n negate n 

An array element (a subscripted variable) used in an expression requires the evaluation of its subscript. The 
type of the expression in which a function reference or subscript appears does not affect, nor is it affected 
by, the evaluation of the arguments or subscripts. 

The evaluation of an expression having any of the following conditions is undefined: 

Negative-value quantity raised to a real, double precision, or complex exponent 

Zero-value quantity raised to a zero-value exponent 

Infinite or indefinite operand (Appendix D) 

Element for which a value is not mathematically defined, such as division by zero 

If the error traceback option {T) is selected on the FTN control statement (section 10), the first three 
conditions produce informative diagnostics during execution. If the traceback option is not selected, a mode 
error message is printed (Appendix D). 

In the case of invalid exponentiation, a diagnostic might be issued by one of the library routines ALOG, EXP, or 
DEXP when the exponent is real, complex, or double precision, and the base is integer, real or double precision. 

Two operators must not be used together. A*-B and Z/ + X are not allowed. However, a unary + or - can 
be separated from another operator in an expression by using parentheses. For example, 

A * { - B ) and z I { + x ) 
B * -A and x I -Y * z 

Valid expressions 
Invalid expressions 

Each left parenthesis must have a corresponding right parenthesis. 

Example: 

{ F + { x * Y) Incorrect, right parenthesis missing 
( F + ( x * Y ) ) Correct 

Examples: 

In the expression 

A-B*C 

Bis multiplied by C, and the product is subtracted from A. 

60497800 E 2-3 



The expression A/B-C*D .. E is evaluated as follows: 

D is raised to the power of E. 

A is divided by 8. 

C is multiplied by the result of D**E. 

The product of C*D**E is subtracted from the quotient of A divided by B. 

The expression -A**C is evaluated as 0-A**C; A is first raised to the power of C and the result is 
then subtracted from zero. 

The expression A*B*C may be evaluated as ((A*B)*C), ((A*C)*B) or (A*(B*C)), since the operator * is 
associative. 

The expression A **B**C is evaluated as ((A **B)**C), since the operator ** is not associative. 

Dividing an integer by another integer yields a truncated result; 11 /3 produces the result 3. Therefore, 
when an integer expression is evaluated from left to right, J/K*I may give a different result than l*J/K. 

Example: 

I• 4 J - 3 K•2 

J/K*I I*J/K 

3/2*4 ... 4 4*3/2 ... 6 

An integer divided by an integer of larger magnitude yields the result 0. 

Example: 

N ... 24 M = 27 K=2 

N/M*K 

24/27*2 = 0 

Examples of valid expressions: 

A 

3.14159 

B + 16.427 

( XBAR + ( B ( I , J +I , K ) I 3 • 0 )) 

-( C +DELTA * AERO) 

2-4 60497800 A 



{-B - SQRT(B* •2 -( 4*A •c))) I {2.0*A) 

GROSS - ( TAX*0.04) 

TEMP+ V(M,AMAXl(A,B)) •y• *Cl (H-FACT(K+3)) 

TYPE OF ARITHMETIC EXPRESSIONS 

An arithmetic expression may be of type integer, real, double precision, or complex. The order of 
dominance from highest to lowest is as follows: 

Complex 

Double Precision 

Real 

Integer 

Table 2-1. Mixed Type Arithmetic Expressions with + - * I Operators 

Integer 

Real 

Double 
Precision 

Complex 

Integer Real 

Real 

Double 
Precision 

Complex 

Double 
Precision 

Double 
Precision 

Double 
Precision 

Complex 

When an expression contains operands of different types, type conversion takes place during evaluation. Before each 
operation is performed, operands are converted to the type of the dominant operand. Thus the type of the value of 
the expression is determined by the dominant operand. For example, in the expression A *B-1/J, A is multiplied by 
B, I is divided by J as integer, converted to real, and subtracted from the result of A multiplied by B. 

Octal and Hollerith constants, as well as references to shifting or masking functions, are typeless operands. When 
these operands are used, type is not converted. When these operands are the only operands in an expression, they 
are treated as if they were type integer, and the result is type integer. 

Variables into which Hollerith constants are stored should be of type INTEGER to ensure proper results when used 
in subsequent arithmetic or logical expressions. For example, if the variables are REAL, expressions involving these 
variables are evaluated using floating point arithmetic. 

60497800 E 2-5 



EXPONENTIATION 

In exponentiation, the following types of base and exponent are permitted: 

Base 

Integer 

Real 

Double Precision 

Complex 

Exponent 

Integer, 

Integer, Real, Double Precision, 

In an expression of the form A **B the type of the result is determined as follows: 

Type of A 

Integer 

Real 

Double 

Complex 

Type of B 

Integer 

Integer 
Real 
Double 

Integer 
Real 
Double 

Type of Result 
of A**B 

Integer 

Real 
Real 
Double 

Double 
Double 
Double 

The expression -2**2 is equivalent to 0-2**2. An exponent may be an expression. The following examples are all 
acceptable. 

B**2. 

B**N 

B**(2*N-1) 

(A+B)**(-J) 

2-6 

A negetive exponent must be enclosed in parentheses: 

A**(-B) 

NSUM**(-J) 

60497800 D 



When the exponent is of a type other than integer, exponentiation is performed by means of a call to FORTRAN 
Common Library routines. The value of the result in these cases is determined according to the formula: 

xY = eY(ln(x)) 

where In is the natural logarithm function. 

Examples: 

Expression Type 

Real* *Integer 

n••s Real**Real 

c••1 Complex**lnteger 

BASE(M.K)**2.l Double Precision 
**Real 

K**5 Integer**lnteger 

314D-02**3.14D-02 Double Precision 
**Double Precision 

RELATIONAL EXPRESSIONS 

Arithmetic expression 

op Relational operator 

A relational expression is constructed from arithmetic 
Arithmetic expressions may be type integer, real, double prec1s1on, 

.GT. Greater than 

.GE. Greater than or equal to 

.LT. Less than 

.LE. Less than or equal to 

.EQ. Equal to 

.NE. Not equal to 

Result 

Real 

Real 

Complex 

Double Precision 

Integer 

Double Precision 

expressions and relational operators. 
;:,:The relational operators are: 

The enclosing decimal points are part of the operator and must be present. 

60497800A 2-7 



Two expressions separated by a relational operator constitute a basic logical element. The value of this 
element is either true or false. If the expressions satisfy the relation specified by the operator, the value is 
true; if not, it is false. For example: 

X+Y .GT. 5.3 

If X + Y is greater. than 5 .3 the value of the expression is true. If X + Y is less than or equal to 
5.3 the value of the expression is false. · 

A relational expression can have only two operands combined by one operator. a, op a2 op a3 is not valid. 

Relational operands may be of type integer, real, double precision, 

Examples: 

J.LT.ITEM 
580.2 .GT. VAR 

E.EQ •• 5 
( I ) • EQ • ( J ( K )) 
C.LT. 1.5D4 most significant part of double precision number is used in 

evaluation 

Relational expressions are evaluated according to the rules governing arithmetic expressions. Each 
expression is evaluated and compared with zero to determine the truth value. For example, the expression 
p.EQ.q is equivalent to the question, does p - q = O? q is subtracted from p and the result is tested for zero. 
If the difference is zero or minus zero the relation is true. Otherwise, the relation is false. 

If pis 0 and q is -0 the relation is true. 

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for 
example, the following relational expressions are equivalent: 

A.GT.B 

A.GT.(B) 

(A).GT.B 

(A).GT.(B) 

2-8 60497800A 



Examples: 

REAL A 
A.GT.'120 

INTEGER I.J 
I.EQ.J(K) 

(I) .EQ. (N*J) 

B.LE.:S.'154 

Z.LT.:S5.3D+5 

Examples of invalid expressions: 

DOUBLE PRECISION BILL, PAY 
BILL .LT. PAY 

A+B.GE.Z**2 

300.+B.EQ.A-Z 

• 5+2. • GT. • 8+AMNT 

A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression 

B .LE. 3.754 .EQ. C 

LOGICAL EXPRESSIONS 

logical operand or relational expression 

op logical operator 

A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational 
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression 
has the value true or false. 

Logical operators: 

.NOT. logical negation 

.AND. logical multiplication 

.OR. inclusive OR 

The enclosing decimal points are part of the operator and must be present. 

60497800 A 2-9 



The logical operators are defined as follows (p and q represent LOGICAL expressions): 

.NOT.p 

p.AND.q 

p.OR.q 

p 

T 

T 

F 

F 

q 

If p is true, .NOT.p has the value false. If p is false, .NOT.p has the 
value true. 

If p and q are both true. p.AND.q has the value true. Otherwise, false. 

If either p or q. or both. are true then p.OR.q has the value true. If both 
p and q are false. then p.OR.q has the value false. 

Truth Table 

p .AND. q p .OR. q .NOT. p 

T T T F 

F F T F 

T F T T 

F F F T 

If precedence is not establi·.'1ed explicitly by parentheses. operations are executed in the following order: 

. NOT. .AND . .OR. 

Example: 

P~OGRA~ LOGIC~OUT~UltTAPE6=0UTPUT) 

c 
C THIS PHOGWAM PRINTS O~T A TRUTH TAbLE fO~ LOGICAL 
C OPERATIONS wllH P ANU Q 

c 
LOGICAL PtVtL06Nt6tLOGMLltLOGSUMtTAbLl(4t2) 
DATA TAbL~/.TRUf••·TRUE.,.fALS~.,.fALSE.,.1RU~ ••• FALSE.,.TRUE•t 

I.FALSE./ 
wRIJE(otlO> 

10 FORMAl(blH! p u .Nor. Q p .A~U u p .o 
lR. Q /lOA• 51(1H-)) 

DO 20 I = lt'+ 
L0GNE6 = .NOT. TAbLE(l,2> 
LOGMLT = lAbL~(ltl) •AN0• TAbLE<lt2> 
LOGSUM = TAtLE(ltl) .o~. lAbLE<I.c> 

lO ~RITE<6•30) (TAblt<ltJ),J=l•~), LOGNE0t L0G¥LTt LOGSUM 
JO FORMAT(lHQ, 5(Ll1)) 

STOtJ 

n ... o 

2-·10 60497800 A 



Output: 

p .NOT. Q P .ANU ti "' .ow. Q 

--------------------------~---~--~--~--~-----------
T T f T T 

T F T F T 

f T f f T 

F r F f 

The operator .NOT. which indicates logical negation appears in the form: 

.NOT.p 

.NOT. can appear in combination with .AND. or .OR. only as follows (p and q are logical expressions): 

p .AND.NOT. q 

p .OR .. NOT. q 

p .AND.(.NOT. q ) 

p .OR.(.NOT. q ) 

.NOT. can appear adjacent to itself only when the second operator is enclosed in parentheses, as in .NOT. (.NOT.p). 

Two logical operators can appear in sequence only in the forms .OR .. NOT. and .AND .. NOT. 

Valid logical expressions, where M, L, and Z are logical variables, are: 

.NOT.L 

.NOT.(X .GT. Y) 

X .GT. Y .AND .. NOT.Z 

(L) .AND. M 

Invalid logical expressions, where P and R are logical variables, are: 

.AND. P .AND. must be preceded by a logical expression 

K .EQ. 1 .OR. 2 .OR. must be followed by a logical expression 

P .AND .. OR.R .AND. always must be separated from .OR. by a logical expression 

60497800 A 2-11 



Examples: 

A, X, B, C, J, L, and K are type logical. 

Expression 

A .AND •• NOT. X 

.NOT.B 

A.AND.C 

J.OR.L.OR.K 

Examples: 

B-C SA SB+C iswrittenasB-C .LE. A .AND. A .LE. B+C 

FICA > 176. andPAYNB = 5889. is written FICA .GT. 176 •• AND. PAYNB .EQ. 5889. 

2-12 60497800A 



60497800 A 2-13 



ASSIGNMENT STATEMENTS 

An assignment statement evaluates an expression and assigns this value to a variable or array element. The 
statement is written as follows: 

v = expression 

vis a variable or an array element 

2-14 60497800A 



The meaning of the equals sign differs from the conventional mathematical notation. It means replace the 
value of the variable on the left with the value of the expression on the right. For example, the assignment 
statement A=B+C replaces the current value of the variable A with the value of B+C. 

ARITHMETIC ASSIGNMENT STATEMENTS 

7 

( l 11 v = arithmetic expression 

Replace the current value of v with the value of the arithmetic expression. The variable or array element 
can be any type other than logical. 

Examples: 

A=A+l replace the value of A with the value of A+ I 

N=J-100*20 replace N with the value of J-100*20 

WAGE=PAY-TAX replace WAGE with the value of PAY less TAX 

VAR=VALUE+(7/4)*32 replace the value of VAR with the value ofVALUE+(7/4)*32 

B(4)=B(l)+B(2) replace the value of 8( 4) with the value of B( 1) + 8(2) 

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type 
conversion takes place. The expression is evaluated. converted to the type of the variable on the left. and 
then replaces the current value of the variable. The type of an evaluated arithmetic expression is 
determined by the type of the dominant operand. Below. the types are ranked in order of dominance from 
highest to lowest: 

Complex 

Double Precision 

Real 

Integer 

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given. 

60497800 A 2-15 



CONVERSION TO INTEGER 

Value Assigned 

Integer = Integer Value of integer 
expression re-
placesv. 

Integer = Real Value of real 
expression, trun-
cated to 48-bit 
integer, replaces 
v. 

Integer = Double Precision Value of double 
precision expres-
sion, truncated to 
48-bit integer, 
replaces v. 

CONVERSION TO DOUBLE PRECISION 

Double Precision= Integer 

Double Precision = Real 

2-16 

Value Assigned 

Value of integer 
expression, trun
cated to 48 bits, 
is converted to 
real and replaces 
most significant 
part. Least sig
nificant part set 
too. 

Value of real 
expression re
places most 
significant part; 
least significant 
part is set to 0. 

Example 

IFORM = 10/2 

IFORM = 3141.59303 

Example 

SUM= 7*5 

Value of I FORM 
After Evaluation 

5 

8 

3141593 

Value of SUM 
After Evaluation 

35.00 

15.00 

60497800 A 



CONVERSION TO DOUBLE PRECISION (CONTINUED) 

Double Precision 
= Double Precision 

CONVERSION TO COMPLEX 

Complex = Complex 

60497800 A 

Value Assigned 

Value of double 
precision expres
sion replaces v. 

Value Assigned 

Value of complex 
expression replaces 
variable. 

Example 

SUM = 7 .32202 - 32.D -1 

Example 

AFORM = (3.4, 1.1) + (7 .3,4.6) 

Value of SUM 
After Evaluation 

7.29D2 

Value of AFORM 
After Evaluation 

(10.7,5.7) 

2-17 



CONVERSION TO REAL 

Value of AFORM 
Value Assigned Example After Evaluation 

Real = Integer Value of integer AFO RM = 200 + 300 500.0 
expression, trtin-
cated to 48 bits, 
is converted to 
real and replaces 
v. 

Real= Real Value of real AFORM = 2.5 + 7 .2 9.7 
expression re-
placesv. 

Real = Double Precision Value of most AFORM = 3421.D - 04 .3421 
significant part 
of expression re-
placesv. 

LOGICAL ASSIGNMENT. 

7 

Logical variable or array element = Logical or relational expression 

Replace the current value of the logical variable or array element with the value of the expression. 

Examples: 

2-18 

LOGICAL LOG2 
I • 1 
LOG2 = I .EQ.O 

LOG2 is assigned the value .FALSE. because 1¢0 

LOGICAL NSUM,VAR 
BIG = 200. 
VAR = .TRUE. 
NSUM = BIG .GT. 200 •• AND. VAR 

60497800 A 



NSUM is assigned the value .FALSE. 

LOGICAL A,B,C,D,E,LGA,LGB,LGC 
REAL F,G,H 
A - B.AHD.C.AND.D 
A - F.GT.G.OR.F.GT.H 
A - .HOT.(A.AND •• NOT.B).AHD.(C.OR.D) 
LGA - .HOT.LGB 
LGC = E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AHD.B) 

60497800A 2-19 



2-20 60497800A 



SPECIFICATION STATEMENTS 

Specification statements are non~xecutable; they define the type of a variable or array, specify the amount 
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods 
of sharing storage, and assign initial values to variables and arrays. The specification statements are: 

3 

Type 

DIMENSION 

COMMON 

EQUIVALENCE 

EXTERNAL 

If any of these statements appears after the first executable statement or 
statement function definition, the specification statement is ignored and a 
fatal diagnostic is printed. 

The DATA statement, which is not a specification statement, is also described in this section. The DATA state
ment must follow all other specification statements except statement function definitions and FORMAT statements; 
it can occur after the first executable statement. 

TYPE STATEMENTS 

A type statement defines a variable, array, or function to be integer, real, com lex, double 
An ex licit type statement can be used to supply dimension information. 

In the absence of an explicit type statement, the type of a symbolic name is implied by the first character 
of the name: I, J, K, L, M, or N im l t inte er and an other letter implies type real, 

Basic external and intrinsic functions are implicitly typed, and need not appear in a type statement in the 
user's program. The type of each library function is listed in section 8. 

EXPLICIT TYPE DECLARATIONS 

There are five explicit type st~tements: INTEGER, REAL, COMPLEX, DOUBLE PRECISION, and LOGICAL. 

INTEGER 

7 

INTEGER name1, name2 , .•• , name
0 

60497800 A 3-l 



The symbolic names listed are declared as type integer. 

Example: 

INTEGER SUM, RESULT, ALI ST 

The variables SUM, RESULT and AUST are all declared as type integer. 

REAL 
7 

11 REAL name1, na""':z •...• name. I 
The symbolic names listed are declared as type real. 

Example: 

REAL NEXTt7). ITEM 

NEXT is declued as an array with 7 real elements, and I'IEM is declared as a real variable. 

COMPLEX 

7 

COMPLEX name1 • name2 , •••• name" 

The symbolic names listed are declared as type complex. 

Example: 

COMPLEX ALPHA, NAM, MASTER, BETA 

The variables ALPHA, NAM, MASTER, BETA are declared as type complex. 

DOUBLE PRECISION 

7 

DOUBLE PRECISION name1, name2 , •.. ,name" 

The symbolic names listed are declared as type double precision. 

3-2 60497800A 



Example: 

DOUBLE PRECISION ALIST, JUNR, BOX4 

The variables AUST, JUNR, BOX4 are declared as type double precision. 

LOGICAL 
7 

LOGICAL name1, name2 , .•• , name" 

The symbolic names listed are declared as type logical. 

Example: 

LOG I CAL P , Q , NUMBR4 

The variables P, Q and NUMBR4 are declared as type logical. 

60497800A 3-3 



DIMENSION 

( 
d-

1 

STATEMENT. 

7 

11 DIMENSION name1 (d1), ••• , name" (dn) 

Array declarator, 1-3 integer constants separated by commas. If name is a dummy param
eter, d can be 1-3 integer constants or integer dummy parameters inte~xed. 

Symbolic name of an array. 

The DIMENSION statement is a nonexecutable statement which defines symbolic names as array names and 
specifies the bounds of the array. More than one array can be declared in a single DIMENSION statement. 
Dummy parameter arrays specified within a procedure subprogram can have adjustable dimension specifications. 
(A further explanation of adjustable dimension specifications appears under Procedure Communication in section 
7). Within the same program unit, only one definition of an array is permitted. 

The number of computer words reserved for an array is determined by the type of the array and the product 
of the subscripts. For real, integer and logical arrays, the number of words in an array equals the number of 
elements in the array. For complex and double precision arrays, the number of words reserved is twice the 
product of the subscripts. No array can exceed 131,071 words. 

Example: 

COMPLEX BETA 
DIMENSION BETA (2,3) 

BETA is an array containing six elements; however, BETA has been defined as COMPLEX and two words 
are used to contain each complex element; therefore, 12 computer words are reserved. 

3-4 60497800A 



Example: 

REAL NIL 
DIMENSION NIL (6,2,2) 

These statements could be combined into one statement with 24 words reserved for array NIL: 

REAL NIL (6,2,2) 

Example: 

DIMENSION ASUM(l0,2) 

DIMENSION ASUM (3), VECTOR (7,7) 

The second specification of ASUM is ignored, and an informative message is printed. The specification for 
VECTOR is valid and is processed. 

COMMON STATEMENT 

( 

60497800A 

7 

( ! I I COMMON/ /v1 ••••• v0 

7 

7 

I I COMMON v1 , .•• ,v0 

Block name A block name is a symbolic name of 1 
or digits beginning with a letter. 

e same b ock na can appear more 
than once in a COMMON statement or a program unit; the loader links all 
variables in blocks having the same name into a single, labeled 
common block. 

Variable or array name which can be followed by constant subscripts 
that declare the dimepsions. The variable or array names are assigned to 
blkname. The COMMON statement can contain one or more block 
specifications. 

3-S 



II Denotes a blank common block. If blank common is the first block in the 
statement, slashes can be omitted. 

Variables ~r arrays in a main program or subprogram can share the same storage locations with variables or 
arrays in other subprograms by means of the COMMON statement. Variables and array names are stored in the 
order in which they appear in the block specification. 

COMMON is a non-executable statement. See section 1 for proper location of COMMON statements relative 
to other statements in the program unit. The COMMON specification provides up to 125 storage blocks that 
can be referenced by more than one subprogram. A block of common storage can be labeled by a name 
'llifiillf~~ A COMMON statement without a name refers to a blank common block. Variables and 
array elements can appear in both COMMON and EQUIVALENCE statements. A common block of storage can 
be extended by an EQUIVALENCE statement; however, no common block can exceed 131,071 words. 

Block names can be used elsewhere in the program as variable or array n 

The length of a common block, other than blank common, must not be increased by a subprogram using 
the block 

Example: 

COMMON/BLACK/A(3) 
DATA A/1.,2.,3./ 

Data may not be entered into blank common blocks by the DATA declaration. 

The COMMON statement may contain one or more block specifications: 

COMMON/X/RAG,TAG/APPA/Y,Z,B(5) 

RAG and TAG are placed in block X. The array Band Y,Z are placed in block APPA. 

Any number of blank common specifications can appear in a program. Blank, named 
common blocks are cumulative throughout a program, as illustrated by the following example: 

COMMON A,B,C/X/Y,Z,D//W,R 

COMMON M,N/CAT/ALPHA,BINGO//ADD 

3-6 60497800 A 



These statements have the same effect as the single statement: 

COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO 

Within subprograms, dummy arguments are not allowed in the COMMON statement. 

If dimension information for an array is not given in the COMMON statement, it must be declared in a 
type or DIMENSION statement in that program unit. 

Examples: 

COMMON/DEE/Z(l0,4) 

Specifies the dimensions of the array Z and enters Z into labeled common block DEE. 

COMMON/BLOKE/ANARAY,B,D 
DIMENSION ANARAY(l0,2) 

COMMON/Z/X,Y,A 
REAL X(7) 

COMMON/HAT/M,N,J(3,4) 
DIMENSION J(2,7) 

In the last example, J is defined as an array (3,4) in the COMMON statement. (2, 7) in the 
DIMENSION statement is ignored and an error message is printed. 

The length of a common block, in computer words, is determined by the number and type of the variables 
and array elements in that block. In the following statements, the length of common block A is 12 computer 
words. The origin of the common block is Q( 1 ). 

REAL Q,R 
COMPLEX S 
COMMON/A/Q(4),R(4),S(2) 

origin 

Block A 

Q(I) 
Q(2) 
Q(3) 
Q(4) 
R(I) 
R(2) 
R(3) 
R(4) 
S(l) 
S(l) 
S(2) 
S(2) 

real part 
imaginary part 
real part 
imaginary part 

If a program unit does not use all locations reserved in a common block, unused variables can be inserted 
in the COMMON declaration to ensure proper correspondence of common areas. 

60497800 A 3-7 



Example: 

COMMOR/SUM/A,B.C,D main program 

COMM01' I SUM IE ( 3 ) 'D subprogram 

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area 
Teserved by A,B, and C. 

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list. 

COMMOR/SUM/D,A,B,C main program 

COMM01'/SUM/D subprogram 

If program units share the same common block, they may assign different names and types to the members 
of the block; but the block name must remain the same. 

Example: 

COMPLEX C 
COMM01'/TEST/C(20) 

The block named TEST consists of 40 computer words. 

The subprogram may use different names for variables and arrays as in: 

SUBROUTINE ONE 
COMPLEX A 
COMMON/TEST/A(lO),G(lO),K(lO) 

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A are 
complex elements. Array G is the next l 0 words, and array K is the last I 0 words. Within the 
subprogram, elements of G are treated as floating point; elements of K are treated as integer. 

EQUIVALENCE STATEMENT 

7 

EQUIVALENCE (glist1 ), ... ,(glistn) 

Each glisti consists of two or more variables, array elements, separated by commas. 

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a pro
gram unit. If it appears after the first executable statement, a fatal diagnostic is printed. 

3-8 60497800 A 



EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as 
opposed to COMMON which assigns two variables in different program units to the same location). Variables 
or array elements not mentioned in an EQUIVALENCE statement are assigned unique locations. 

Example: 

DIMENSION JAN(6),BILL(10) 
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C) 

The variables IRON, MAT and ZERO share the same location, the fifth element in array JAN and the 
second element in array BILL share the same location, and the variables A,B and C share the same location. 

When an element of an array is referred to in an EQUIV ALEN CE statement, the relative locations of the 
other array elements are, thereby, defined also. 

Example: 

DIMENSION Y(4), B(3,2) 
EQUIVALENCE (Y(l),B(l,2)), (X,Y(4)) 

This EQUIVALENCE statement causes storage to be shared by the first element in Y and the fourth 
element in Band, similarly, the variable X and the fourth element in Y. Storage will be as follows: 

8(1, I) 
8(2, I) 
8(3, I) 
8( 1,2) 
8(2,2) 
8(3,2) 

Y(I) 
Y(2) 
Y(3) 
Y(4) x 

The elements of a glist constitute an equivalence group. When an equivalence group contains an element that 
appears in another equivalence group, these groups are merged and their elements constitute an equivalence 
clam. 

Example: 

DIMENSION A(100) 

EQUIVALENCE (A,B). (C.A(50)), (0,E), (F,C) 

These statements establish the following equivalence groups: 

and the following equivalence classes: 

The statement EQUIVALENCE (A,B),(B,C) has the same effect as EQUIVALENCE (A,B,C). 

60497800 A 3-9 



A logical, integer, or real entity equivalenced to a double precision or complex entity shares the same location 
as the real or most significant part of the complex or double precision entity. 

An array with multiple dimensions may be referenced with a single subscript. The location of the element 
in the array may be determined by the following method: 

DIMENSION A(K,M,N) 

The position of element A(k,m,n) is given by: 

A(k+X*(m-l+M*(n-l)))*E) 

Eis I if A is real, integer or logical; Eis 2 if A is complex or double precision. 

Example: 

DIMENSION AVERAG(2,3,4),TERM(7) 
EQUIVALENCE (AVERAG(8),TERM(2)) 

Elements AVERAG (2,1,2) and TERM(2) share the same locations. 

Two or more arrays can share the same storage locations. 

Example: 

3-10 

DIMEftSIOR ITIR(l0,10),Til(lOO) 
EQUIVALDCE( ITIR(-1 ), Til ( l)) 

500 READ ( 5,40) ITI1' ( 1) 

600 READ (5,70) TAX(l) 

60497800 D 



The EQUIVALENCE declaration assigns the first elements of arrays ITIN and TAX to the same 
location. READ statement 500 stores the array ITIN in consecutive locations. Before READ 
statement 600 is executed, all operations involving ITIN should be completed; as the values of array 
TAX are read into the storage locations previously occupied by ITIN. 

Lengths of arrays need not be equal. 

Examples: 

DIMENSION ZER01(10,5),ZER02(3,3) 
EQUIVALENCE (ZER01,ZER02) 

EQUIVALENCE (ITEM,TEMP) 

is a legal EQUIVALENCE statement 

The integer variable ITEM and the real variable TEMP share the same location; therefore, the same 
location may be referred to as either integer or real. However, the integer and real internal formats 
differ; therefore the values will not be the same. 

EQUIVALENCE AND COMMON 

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. A 
common block of storage may be extended by an EQUIVALENCE statement. 

Example: 

COMMON/HAT/A(4),C 
DIMENSION B(5) 
EQUIVALENCE (A{2),B(l)) 

Common block HAT will extend from A( I) to 8(5 ): 

/HAT/ Origin A(l) 
A(2) B(l) 
A(3) 8(2) 
A(4) 8(3) 
c 8(4) 

8(5) 

EQUIVALENCE statements which extend the origin of a common block are not allowed, however. 

Example: 

COMMON/DESK/E,P,G 
DIMENSION H(4) 
EQUIVALENCE (E,8(3)) 

60497800A 3-11 



The above EQUIVALENCE statement is illegal because H(l) and H(2) extend the start of the common 
block DESK: 

/DESK/ 

Origin E 
F 
G 

8(1) 
H(2) 
8(3) 
8(4) 

An element or array is brought into COMMON if it is equivalenced to an element in COMMON. Two elements 
in COMMON must not be equivalenced to each other. 

Examples: 

COMMON A,B,C 

EQUIVALENCE (A' B) illegal 

COMMON /HAT/ A(4),C IX/ Y,Z 

EQUIVALENCE ( c 'y) illegal 

As stated in section 1, the result of indexing outside of array bounds is unpredictable. Since the compiler attempts 
to minimize the size of equivalence classes in common blocks to the smallest subset of the block that includes all 
members named in associated EQUIVALENCE statements, all members of a common block will not necessarily be 
considered as one array. The programming practice of intentionally referencing locations outside a known array 
can produce unintentional results as shown in the following example. 

COMMON/ /A(4), 8, D, E 

DIMENSION AA(4) 

EQUIVALENCE (AA, A(2)) 

0=2. 
E=2. 

DO 10 1=1,6 

10 AA(l)=D* E 

PRINT •, E 

When these statements are compiled under OPT=O, E will have a value of 8. on exit. Under OPT=l or 2, 
the evaluation of D*E will be moved out of the loop since AA and D (or E) are not recognized as being 
in the same equivalence class. If the program is to produce the same results under all OPT levels, AA 
must be dimensioned to include the entire common block in the equivalence class. 

3-12 60497800 c 



60497800 F 3-13 



EXTERNAL STATEMENT 

7 

( 11 EXTERNAL 
name1 , ... , name" 

name1 , ••• ,name0 Subprogram names 

Before a subprogram name is used as an argument to another subprogram, it must be declared in an 
EXTERNAL statement in the calling program. 

Any name used as an actual argument in a call is assumed to be a variable or array unless it appears in an 
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a basic 
external Junction, such as SQRT. 

Example: 

Calling Program 

EXTERNAL SIN, SQRT 
CALL SUBRT(2.0,SIN,RESULT) 
WRITE (6,100) RESULT 

100 FORMAT (F7.3) 

3-14 

CALL SUBRT(2.0,SQRT,RESULT) 
WRITE (6,lOO)RESULT 
STOP 
END 

Subprogram 

SUBROUTINE SUBRT (A,B,C) 
X=A+3.14159/2. 
C=B(X) 
RETURN 
END 

60497800 F 



First the sine, then the square root are computed; and in each case, the value is returned in RESULT. 

The EXTERNAL statement must precede the first executable statement, and always appears in the calling 
program. (It cannot be used with statement functions.) 

A function call that provides values for an actual argument does not need an EXTERNAL statement. 

Example: 

Calling Program Subprogram 

CALL SUBRT(SIN(X).RESULT} SUBROUTINE SUBRT(A. B) 

B=A 

END 

An EXTERNAL statement is not required because the function SIN is not the argument of the 
subprogram; the evaluated result of SIN(X) becomes the argument. 

DATA STATEMENT 

vlist 

60497800 c 

List of 
commas. 
subscripts. 

7 

array elem en ts, variable names, separated by 
array elements must have integer constant 

3-15 



dlist One or more of the following forms separated by commas: 

constant 

constant list 

rf 

List of constants separat~d by commas. 

Positive integer constant. The constant or 
constant list is repeated the number of times 
indicated by rf. 

The data statement is non-executable and must follow all specification statements except statement function 
definitions, NAMELIST statements, and FORMAT statements. It can occur after the first executable statement. 
It assigns initial values to variables or array elements. Only variables assigned values by the DATA statement have 
specified values when program execution begins. The DATA statement cannot be used to assign values in blank 
common or to dummy arguments. 

The number of items in the data list should agree with the number of variables in the variable list. 

The type of the constant in the data list should agree with the type associated with the corresponding name 
in the variable list. 

3-16 60497800A 



60497800A 3-17 



3-18 60497800 E 



60497800 E 3-19 



3-20 60497800 A 



60497800A 3-21 





FLOW CONTROL STATEMENTS 4 

FORTRAN flow control statements provide a means of altering, interrupting, terminating, or otherwise modifying 
the normal sequential flow of execution: 

ASSIGN 

GO TO 

IF 

DO 

CONTINUE 

PAUSE 

STOP 

END 

RETURN 

Control can be transferred only to an executable statement. 

A statement can be identified by an integer, 1-99999, with leading zeros and embedded blanks ignored. Each 
statement label must be unique in the program unit (main program or subprogram) in which it appears. 

GO TO STATEMENT 

The three types of GO TO statements are unconditional, computed, and assigned. The ASSIGN statement is 
used in conjunction with the assigned GO TO and is therefore described in the GO TO statement group. 

UNCONDITIONAL GO TO ·STATEMENT 

7 (! I IGO TO sn 

sn is a label of an executable statement. 

This statement transfers control to the statement labeled sn which must be an executable statement in the 
current program unit. 

Example: 

10 A•B+Z 
100 B•X+Y 

IF(A-B)20,20,30 
20 Z•A 

GO TO 10 ~-----Transfers control to statement 10 
30 Z•B 

STOP 
END 

60497800A 4-1 



COMPUTED GO TO STATEMENT 

7 
GO TO (sn1 ,sn2 , ••• , snm), iv 

Sllj is a label on an executable statement. 

iv is an integer variable. 

The computed GO TO statement transfers control to one of the statements referenced in the parentheses. If 
the variable iv has a value of one, control transfers to the statement labeled sn1; if the value is i, control 
transfers to the statement labeled Silj. 

The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN statement, the 
object code is incorrect, but no compilation error message is issued. 

If the value of the variable or expression is less than one or larger than the number of statement numbers in 
parentheses, the transfer of control is undefined and a fatal error results at execution time. 

Example 1: 

GO TO(l0,20,30,20),L 

4-2 60497800A 



The next statement executed is: 

10 if L = 1 

20 if L = 2 

30 if L = 3 

20 if L = 4 

Example 2: 

K•2 
GO TO(l00.150,300hK Statement 150 is executed next. 

Example 4: 

M-4 
GO TO {100,200,300),M 

Execution of the last example causes a fatal error during execution because fewer than four numbers are 
specified in the list of statement labels. 

ASSIGN STATEMENT 

7 

(l 11 ASSIGN sn TO iv I 
sn is a label of an executable statemertt. 

iv is an integer variable. 

The ASSIGN statement assigns a statement label to a variable used in an assigned GO TO. The integer 
constant assigned to iv represents the label of an executable statement to which control may be transferred 
by an assigned GO TO statement. Once iv is used in an ASSIGN statement, it must not be referenced in 
any statement, other than an assigned GO TO or another ASSIGN, until it has been redefined. 

60497800E 4-3 



The assignment must be made prior to the execution of the assigned GO TO statement and sn (the label of 
an executable statement) must be in the same program unit as both the ASSIGN and· assigned GO TO 
statements. 

Example: 

ASSIGN 10 TO LSWIT 
GO TO LSWI~(5,10,15,20} Control transfers to statement 10 

ASSIGNED GO TO STATEMENT 

iv, (sn1 , ••• ,snm) 

iv is an integer variable. 

is a list of all the statement labels to which control can be passed by this assigned 
GO TO. Upon execution of the assigned GO TO, iv must be assigned to one of the 
labels in the list. 

The assigned GO TO statement transfers control to the statement label last assigned to iv by the execution of 
a prior ASSIGN statement. All the statement labels in the list must be in the same program unit with both 
the ASSIGN and the assigned GO TO statements. Omitting the list of statement labels causes a fatal error. 
If a statement label is omitted from the list or the value of iv is defined by a statement other than an 
ASSIGN statement, the results are unpredictable. (Control is transferred to the absolute memory address 
represented by the low order 18 bits of iv.) 

Example: 

ASSIGN 50 TO JUMP 
10 GO TO JUMP,(20,30,40,50) Statement 50 is executed immediately after statement IO. 

20 CONTINUE 

30 CAT•ZERO+HAT 

40 CAT•l0.1-3. 

50 CAT•25.2+7.3 

60497800 F 



ARITHMETIC IF STATEMENT 

The arithmetic IF statement has a three-branch and a two-branch form. In both cases, zero is defined as a 
word containing all bits set to zero or all bits set to one (+o or -0). If the type of the evaluated expression 
is complex, only the real part is tested. 

THREE-BRANCH ARITHMETIC IF STATEMENT 

7 

( 
earn is an arithmetic expression. 

are labels on executable statements. 

The three-branch IF statement transfers control to the statement labeled sn1 if the value of the expression is 
less than zero, to the statement labeled sn2 if it is equal to zero, or to the statement labeled sn3 if it is 
greater than zero. 

Example: 

PROGRAM IF (INPUT,OUTPUT,TAPE5=INPUT,TAPE6•0UTPUT) 
READ (5,100) I,J,K,N 

100 FORMAT (lOX,414) 
IF(I-N) 3,4,6 

3 ISUM•J+K 
6 CALL ERRORl 

WRITE (6 ,2) !SUM 
2 FORMAT ( IlO) 
4 STOP 

END 

60497800 A 4-5 



LOGICAL IF STATEMENT 

The logical IF statement has a standard form 

STANDARD-FORM LOGICAL IF STATEMENT 

elr is a logical or relational expression. 

stat is any unlabeled executable statement other than DO, END, or another standard-form 
logical IF. 

The standard-form logical IF allows for conditional execution of a statement. If the logical or relational 
expression is true, stat is executed. If the expression is false, stat is skipped. 

Examples: 

4-6 

IF (P.AND.Q) RES=7.2 
50 TEMP=ANS*Z 

If P and Q are both true, the value of the variable RES is replaced by 7.2; otherwise, the value of RES 
is unchanged. In either case, statement 50 is executed. 

IF (A.LE. 2.5) CASH=l50. 
70 B=A+C-TEMP 

If A is less than or equal to 2.5, the value of CASH is replaced by 150. If A is greater than 2.5, CASH 
remains unchanged. 

IF (A.LT.B) CALL SUBl 
20 ZETA=TEMP+RES4 

If A_is less than B, the subroutine SUBI is called. Upon return from this subroutine, statement 20 is 
executed. If A is greater than or equal to B, statement 20 is executed and SUBl is not called. 

60497800A 



DO STATEMENT 

7 

( 11°0 sn 
iv=m1 ,m2 ,m3 

7 

( 11°0 
sn iv=m1,m2 

sn Terminal statement label; an executable statement that must physically follow and reside in 
the same program unit as its associated DO statement. The terminal statement must not be 
any arithmetic or two-branch logical IF, a GO TO, RETURN, END, STOP, PAUSE, or 
another DO statement. 

iv Control variable; an integer variable. 

Initial parameter. } 

Terminal parameter. 

Incrementation parameter. 

60497800A 

Indexing parameters: unsigned integer''{'' constants or 
integer variables with positive non-zero values at execution such 
that neither m1+m3 nor m2+m3 is larger than 217-1. If the 
indexing parameters exceed these constraints, the results are 
unpredictable. If m3 is not specified, its value is assumed to be 1. 

4-7 



The DO statement makes it possible to repeat groups of statements and to change the value of an integer 
variable during the repetition. 

DO LOOPS 

The range of a DO loop consists of all executable statements, from and including the first executable state
ment after the DO statement to and including the terminal statement. Execution of a DO statement causes 
the following sequence of operations: 

1. iv is assigned the value of m1. 

2. The range of the DO loop is executed. 

3. iv is incremented by the value of m3. 

4. iv is compared with m2. If the value of iv is less than or equal to the value of m2, the sequence 
of operations starting at step 2 is repeated. If the value of iv is greater than the value of m2, 
the DO is said to have been satisfied, the control variable becomes undefined, and control passes 
to the statement following sn. If m1 is equal to m2, the range of the DO loop 
is executed once. 

A transfer out of the range of a DO loop is permissible at any time. When such a transfer occurs, the control 
variable remains defined at its most recent value in the loop. If control eventually is returned to the same range, 
the statements executed while control is out of the range are said to define the extended range of the DO. The 
extended range should not contain a DO statement. Subroutines or functions invoked within the range of a DO 
ca~ contain DO statements, however. 

The control variable must not be redefined in the range of a DO; such redefinition causes a fatal-to-execution 
diagnostic to be issued. The control variable should likewise not be redefined in the extended range; such 
redefinition causes the results of execution to be unpredictable. 

The indexing parameters should not be redefined in either the range or the extended range of a DO. In 
either case, the results of execution are unpredictable. Redefinition in the range of the DO causes an 
informative diagnostic to be issued. 

Example 1: 

4-8 

DO 10 I=l,11,3 
IF(ALIST(I)-ALIST(I+l))15,10,10 

15 ITEMP=ALIST(I) 
10 ALIST(I)=ALIST(I+l) 

300 WRITE(6,200)ALIST 

The statements following DO up to and including statement 10 are executed four times. The DO 
loop is executed with I equal to 1, 4, 7, 10. Statement 300 is then executed. 

60497800A 



Example 2: 

DO 10 I•l,5 
CAT•BOX+D 

10 IF (X.GT.B.AND.X.LT.H)Z•EQUATE 
6 A•ZERO+EXTRA 

Statement l 0 is executed five times, whether or not Z = EQUATE is executed. Statement 6 is 
executed only after the DO loop is satisfied. 

Example 3: 

IVAR • 9 

DO 20 I • 1.200 
IF (I-IVAR) 20,10,10 

20 COMTIRUE 
10 IR - I 

An exit from the range of the DO is made to statement l 0 when the value of the control variable I 
is equal to IV AR. The value of the integer variable IN becomes 9. 

NESTED DO LOOPS 

When a DO loop entirely contains another DO loop, the grouping is called a DO nest. DO loops can be 
nested to 50 levels. The range of a DO statement can include other DO statements providing the range of 
each inner DO is entirely within the range of the containing DO statement. 

The last statement of an inner DO loop must be either the same as the last statement of the outer DO loop 
or must occur before it. If more than one DO loop has the same terminal statement, a transfer to that 
statement can be made only from within the range (or extended range) of the innermost DO, and the label 
cannot be referenced in any GO TO or IF statement in the nest except in the range of the innermost DO. 

A DO loop can be entered only through the DO statement. Once the DO statement has been executed, and 
before the loop is satisfied, control can be transferred out of the range and then transferred back into the 
range of the DO. 

60497800A 4-9 



A transfer from the range of an outer DO into the range of an inner DO loop is not allowed; however, a 
transfer out of the range of an inner DO into the range of an outer DO is allowed because such a transfer 
is within the range of the outer DO loop. 

Illegal Legal 

The use of and return from a subprogram within a DO loop are permitted. A transfer back into the range 
of an innermost DO loop is allowed if a transfer has been made from the same loop. 

~ C:: Illegal 

The extended range of an inner DO loop must be outside the outermost DO loop. 

Example 1: 

DIMENSION A(5,4,4), 8(4,4) 
DO 2 I 1,4 
DO 2 J = 1,4 
DO 1 K = 1,5 

1 A(K,J,I) = o.o 
2 B(J,I) = o.o 

This example sets arrays A and B. to zero. 

Example 2: 

01 01 01 

02 

[

03 

n3 

[

02 

n2 

i----02 

n2 

[

04 

n4 
[

03 

n3 

....... -----03 

n1 n1 n1 = n2 = n3 

4-10 60497800 E 



DO loops can be nested completely within an outermost loop or can share a terminal statement. The diagrams 
in example 2 might be represented by the following code: 

---DO l· I=l,10,2 

Example 3: 

DO 2 J=l,5 

[

DO 3 K=2,8 

3 iOllTillUI! 

2 CONTINUE 

[

DO 4 L:cl,3 

4 ~ONTINUE 

l CONTINUE 

DO 10 J•l,50 
DO 10 I•l,50 
DO 10 M•l, 100 

GO TO 10 

10 CONTINUE 

DO 100 L=2,LIMIT 

10 J=l,10 

[DO 

10 iOllTINUI! 

[

DO 20 K=Kl,K2. 

20 iOllTINUI! 

100 CONTINUE 

DO 5 I=l,5 
DO 5 J=I,10 
DO 5 K=J,15 

5 A B*C 

Since statement 10 is the terminal statement for more than one DO loop, it can be referenced in 
a GO TO or IF statement in the range of the innermost 00. If 10 is referenced in one of the outer 
loops, control is transferred out of the range with undefined results. 

60497800A 4-11 



Example 4: 

DO 10 K=l,100 
IF(DATA(K)-10.)20,10,20 

20 DO 30 L=l,20 
IF(DATA(L)-FACT*K-10.)40,30,40 

40 DO 50 J=l,5 

GO TO (101,102,50),INDEX 
101 TEST=TEST+l 

GO TO 104 
103 TEST=TEST-1 

DATA(K)=DATA(K)*2.0 

50 CONTINUE 
30 CONTINUE 
10 CONTINUE 

GO TO 104 
102 DO 109 M=l,3 

109 CONTINUE 
GO TO 103 

104 CONTINUE 

When an IF statement is used to bypass several inner loops, different terminal statements are required for each 
loop. 

CONTINUE STATEMENT 

5 7 

( ! snl !CONTINUE 

sn is a statement label. 

4-12 60497800 A 



The CONTINUE statement performs no operation. It is an executable statement that can be placed anywhere 
in the _executable statement portion of a source program without affecting the sequence of execution. The 
CONTINUE statement is most frequently used as the last statement of a DO loop. It can provide loop termina
tion when a GO TO or IF would normally be the last statement of the loop. If the CONTINUE statement does 
not have a label, an informative diagnostic is provided. 

Example 1: 

DO 10 I = 1,11 
IF (A(I)-A(I-1D20,10,10 

20 ITEMPP = A(I) 
A (I) .... A (I-1) 

10 CONTINUE 

PAUSE STATEMENT 

(! 
( 

7 

n is a string of 1-5 octal digits. 

Example 2: 

DO 20 I=l,20 
1 IF (X(I) - Y(I))2,20,20 
2 X( I )=X( I )+l .O 

Y(I)==Y(I)-2.0 
GO TO l 

20 CONTINUE 

I 

When a PAUSE statement is encountered during execution, the program halts and PAUSE n, 
appears as a dayfile message on the operator console, and at the user terminalt+if the job is executing interactively. 
For batch originated programs, the console operator can continue or terminate the program with an entry from 
the console. 

For programs executing interactively through INTERCOM, the user types GO to continue execution or DROP to 
terminate. For any other type-in, a diagnostic message is issued and INTERCOM waits for a correct type-in. 

For programs executing interactively through the NOS 1 Time-Sharing System, the user types STOP+++ 
to terminate execution. Any other type-in causes execution to continue. 

t Only 40 characters for SCOPE 2. 

++Does not apply to SCOPE 2. 

+++Applies to TELEX only. For IAF, a terminating character must be used: for most terminals the terminating 
character is CTRL/T or the ")" character. 

60497800 F 4-13 



STOP STATEMENT 

7 

( ; I !STOP 

I l~OP n 

n is a string of 1-5 octal digits. 

The STOP statement terminates program execution. When a STOP statement is encouniered during execution, 
STOP n _is displayed in the dayfile, the program terminates, and control returns to the 
operating system. If n is omitted, blanks are implied. A program unit can contain more than one STOP 
statement. 

END STATEMENT 

7 

The END statement indicates the end of the program unit to the com Her. 
physically terminate with an END statement. 

4-14 60497800 A 



RETURN STATEMENT 

7 

RETURN 

The RETURN statement tenninates the execution sequence within a program unit and nonnally returns 
control to the current callin ro ram unit. 

When a RETURN statement is encountered in a function subprogram, control returns to the referencing 
program unit and the evaluation of the expression is completed using the value returned from the function. 

In a subroutine subprogram, a RETURN statement transfers control to the next executable statement 
following the CALL statement in the calling program unit. 

Example l: 

A ... SUBFUN (D,E) 
10 DO 200 I = 1,5 

FUNCTION SUBFUN(X,Y) 
SUBFUN == X/Y 
RETURN 
END 

When the RETURN statement is encountered in the function subprogram, control is returned to ~-
the statement referencing the subprogram, and the value calculated by SUBFUN is stored in A. 

60497800 A 4-15 



4-16 60497800A 



INPUT /OUTPUT STATEMENTS 5 

Processing resulting from input/output statements depends on the type of statement used. For each category, 
there are one or more input statements and corresponding output statements. The categories are: 

Formatted (READ, WRITE, statements with format designator) 

Unformatted (READ and WRITE without format designator) 

Mass storage input/output (Subroutines READMS, WRITMS, OPENMS, CLOSMS, and STINDX; see 
section 8) 

CYBER Record Manager interface routines (see section 8) 

In addition, there are the file motion 
statements REWIND, BACKSPACE, and ENDFILE, all discussed in this section. 

Subprograms used in connection with input/output, besides the mass storage routines and the CYDER Record 
Manager routines, include EOF, IOCHEC, UNIT, LENGTH, and LENGTHX. These subprograms are discussed 
in section 8. Format specifications and input/output lists are discussed in section 6. 

Input and output involve reading records from files and writing ~ecords to files. Every file must have a logical 
file name of one to seven letters and digits, the first a letter. The logical file name is defined only for the 
current job, and is the name by which the file is referred to in control statements. 

For batch jobs Qobs not executed interactively at a terminal), certain file names have a predefined origin or 
destination. These file names are: 

INPUT Data from user's source deck PUNCH Punched in Hollerith format at job termination 

OUTPUT Printed at job termination PUNCHB Punched in binary format at job termination 

The files INPUT, OU'IPUT, and PUNCH should be processed only by formatted, list-directed, or namelist input/ 
output statements. 

The predefined meaning of any file name except INPUT can be overridden by control statements. 

60497800 B 5-1 



Mixing types of operations on the same file can sometimes lead to destruction of ftle integrity. In particular, 
files processed by mass storage or CYDER Record Manager subroutines should be processed only by these 
routines. Files processed by buffer statements should be processed only by these statements in a given pro
gram (REWIND, ENDFILE, and BACKSPACE are permitted for these files). 

A file should not be processed both by unformatted operations on the one hand and by formatted, namelist, 
or list directed operations on the other. However, if a file is rewound, it can then be rewritten in a different 
mode. 

If formatted, list directed, or namelist input/output is performed on a 7-track S or L tape, a FILE control 
statement that specifies CM=NO (see section 16) must be included in the job. 

After every formatted, list directed, namelist, or unformatted READ, end-of-file status should be checked by 
a call to the EOF function (section 8). If end-of-ftle is encountered, and EOF is not called, the contents of 
the input/output list are undefined. 

Record length on card files should not exceed 80 characters. Record length on print files should not exceed 
137 characters; the first character is always used as carriage control and is not printed. (Under the NOS 1 Time
Sharing System, the first character. is pririted.) The second character appears in the first print position. Carriage 
control characters are listed in section 6. 

The following mnemonics are used throughout this manual in descriptions of input/output statements and 
subprograms: 

u Input/output unit designator, used to determine the logical file name of the file to be used 
for input and output. The file name is derived from u depending on its value. The value 
can be one of the following: 

Integer constant of one or two digits (leading zeros are discarded). The compiler associates 
these numbers with file names of the type TAPEu, where u is the file designator (refer to 
PROGRAM statement, section 7). 

Simple integer variable name with a value of: 

0 - 99 or 

fn Format designator; a FORMAT statement number or the name of an array, 
'~iifil~•il~l\i; containing the format specification. The statement number must identify a 
FORMAT statement in the program unit containing the input/output statement. 

iolist Input/output list specifying items to be transmitted (section 6). 

FORMATTED INPUT/OUTPUT 

For formatted input/output, a format designator must be present in the input/output statement. The input/ 
output list is optional. Each formatted input/output statement transfers one or more records. 

5-2 60497800 c 



FORMATTED OUTPUT STATEMENTS 

60497800 F S-3 



60497800 c 



WRITE 

7 

I (l WRITE (u,fn) iolist 

7 

( I IWRITE 
(u,fn) 

The formatted WRITE statement transfers information from the storage locations named in the input/output 
list to .the file specified by u, according to the FORMAT 
specification, fn. At the end of a job, if the user has not specified an alternate assignment, the file OUTPUT 
is sent to the printer. 

ROGRAM RITE (OUTPUT,TAPE6=0UTPUT) 

ITE (6,100) X,Y,M 
10 ORMAT (2F6.2,I4) 

TOP 

The iolist can be omitted. For example. 

WRITE (4,27) 
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES) 

FORMATTED READ 

7 

(u,fn) iolist 

60497800 c 5-5 



( I l~EAD (u,fn) I 

These statements transmit data from unit u, to storage locations 
named in iolist according to FORMAT specification fn. The number of words in the list and the FORMAT 
specifications must conform to the record structure on the input unit. If the list is omitted, one or more 
FORTRAN records will be bypassed. The number of records bypassed is one plus the number of slashes 
interpreted in the FORMAT statement. Except for information read into H specifications in the FORMAT 
statement, the data in the records skipped is ignored. 

The user should test for an end-of-file after each READ statement to avoid input/output errors. If an 
attempt is made to read on unit u and an EOF was encountered on the previous read operation on this 
unit, execution terminates and an error message is printed. (Refer to section 8, EOF Function.) 

Example 1: 

ROGRAM IN (INPUT,OUTPUT,TAPE4=INPUT,TAPE7=0UTPUT) 

EAD (4,200) A,B,C 
20 ORMAT (3F7.3) 

= B*C+A 
ITE (7,50) A 

5 ORMAT (50X,F7.4) 
TOP 

The READ statement transfers data from logical unit 4 (externally, the file INPUT) to the variables A, 
B, and C, according to the specifications in the FORMAT statement labeled 200. 

Example 2: 

5-6 

ROGRAM RLIST (INPUT,OUTPUT) 
EAD 5,X,Y,Z 
ORMAT (3G20.2) 
ESULT = X-Y+Z 
RINT 100, RESULT 

10 ORMAT (lOX,Gl0.2) 
TOP 
ND 

The READ statement transfers data from the flle INPUT to the variables X, Y, and Z, according to 
the specifications in the FORMAT statement labeled 5. 

60497800 c 



UNFORMATTED INPUT/OUTPUT 

Unformatted READ and WRITE statements do not use format specifications and do not convert data in any 
way on input or output. Instead, data is transferred as is between memory and the external device. Each 
unformatted input/output statement transfers exactly one record. If data is written by an unformatted 
WRITE and subsequently read by an unformatted READ, exactly what was written is read; no precision is 
lost. Unformatted input/output cannot take place with coded tapes. 

UNFORMATTED WRITE 

Example: 

7 

( (u) iolist 

7 

I !WRITE (u) 

PROGRAM OUT(OUTPUT,TAPElO) 
DIMENSION A(260),B(4000) 

WRITE (10) A,B 
END 

This statement is used to output binary records. Information is transferred from the list variables, iolist, to 
the specified output unit, u, with no format conversion. One record is created by an unformatted WRITE 
statement. If the list is omitted, the statement writes a null record on the output device. A null record has 
no data but contains all other properties of a legitimate record. 

UNFORMATTED READ 
7 

( I !READ 
(u) iolist 

7 

( 11R~D (u) 

60497800 A 5-7 



One record is transmitted from the specified unit, u, to the storage locations named in iolist. Records are 
not converted; no FORMAT statement is used. The information is transmitted from the designated file in 
the form in which it exists on the file. If the number of words in the list exceeds the number of words in 
the record, an execution diagnostic results. If the number of locations specified in iolist is less than the 
number of words in the record, the excess data is ignored. If iolist is omitted, READ (u) spaces over one 
record. 

S-8 

PROGRAM AREAD (INPUT,OUTPUT,TAPE2) 
READ (2) X,Y,Z 
SUM = X+Y+Z/2. 

END 

60497800 D 



60497800 E 5-9 



5-10 60497800 E 



60497800 E 5-10.1 



5-10.2 60497800 E 



60497800 c 5-11 



5-12 60497800 c 



60497800 c S-13 



5-14 60497800 c 



60497800 c 5-15 



5-16 60497800 c 



60497800 c 5-17 



5-18 60497800 c 



60497800 c 5-19 



5-20 60497800 c 



I 

I 

I 

60497800G S-21 



5-22 60497800 F 



60497800 E 5-23 



5-24 604978000 



60497800 E 5-25 



5-26 60497800 E 



FILE MANIPULATION STATEMENTS 

Three statements can be used to manipulate files: REWIND, BACKSPACE, and ENDFILE. 

REWIND 
7 

( ! I !REWIND u 

The REWIND operation positions a file at beginning of information so that the next input/output operation 
references the first record in the file, even though several ENDFILE statements may have been issued to that 
unit since the last REWIND. If the file is already at beginning of information, the statement acts as a do-nothing 
statement. (Refer to BACKSPACE/REWIND, section 16 for further information.) 

Example: 

REWIND 3 

BACKSPACE 

7 

( ! WACKSPACE u 

Unit u is backspaced one record. When the file is positioned at beginning of information, this statement acts 
as a do-nothing statement. If BACKSPACE is the first operation on a file positioned at beginning-of-information, 
a non-fatal Record Manager error results. A backspace operation should not follow a list directed read on a file. 

Example: 

DO 1 LUN = 1,10,3 
1 BACKSPACE LUN 

Files TAPEl, TAPE4, TAPE7, and TAPE IO are backspaced one record. 

ENDFILE 

7 

( i I IENDFILE u 

An end of partition is written on the designated unit. 

Note: When ENDFILE is used on a file defined with W type records, an end-of-partition is not physically 
written but is marked in the control word. For all other record types a level 17 zero-length PRU is written. 

60497800 E 5-27 



To ensure file integrity, END FILE should not be the first operation on a ftle. 

Meaningful results are not guaranteed if ENDFILE is used on a file processed by mass storage subroutines. 

End of partition is the file boundary recognized by the EOF function (section 8). 

For records written by an unformatted WRITE statement, an end-of-partition boundary is detected as an 
end of section (end-of-record) by the operating system. 

5-28 60497800 E 



INPUT /OUTPUT LISTS AND FORMAT STATEMENTS 6 

This chapter covers input/output lists and FORMAT statements. Input/output statements are covered in 
section 5. 

INPUT /OUTPUT LISTS 

The list portion of an input/output statement specifies the items to be read or written and the order of 
transmission. The input/output list can contain any number of items. List items are read or written sequentially 
from left to right. 

If no list appears on input, a record is skipped. Only Hollerith information from the FORMAT statement can 
be output with a null (empty) output list. 

Multiple lists can appear, separated by commas, each enclosed in parentheses. 

An array name without subscripts in an input/output list specifies the entire array in the order in which it is 
stored. The entire array (not just the first word of the array) is read or written. 

Subscripts in an input/output list may be any valid subscript (section 1). 

Examples: 

READ (2,100)A,B,C.D 

READ (3,200)A,B,C(I) ,D(3,4),E(l ,J,7),H 

READ (4,101 )J,A(J),l,B(l,J) 

READ (2,202)DELTA 

READ (4,102)DELTA(5*J+2,5*1-3,5*K),C,D(l+7) 

READ (3,2)A.(B,C.D),(X,Y) 

An implied DO list is a list followed by a comma and an implied 00 specification, all enclosed in parentheses. 

An implied DO specification takes one of the following forms: 

The elements i, m1, m2, and m3 have the same meaning as in the DO statement. The range of an implied DO 
specification is that of the implied DO list. The values of i, m1, m2, and m3 must not be changed within the 
range of the implied DO list by a READ statement. 

60497800 A 6-1 



On input or output, the list is scanned and each variable in the list is paired with the field specification 
provided by the FORMAT statement. After one item has been input or output, the next format specification 
is taken together with the next element of the list. and so on until the end of the list. 

Example: 

READ (5,20)L,M,N 

20 FORMAT (13,12,17) 

Input record 

f lOtf 4567121 
100 is read into the variable L under the specification 13, 22 is read into M under the specification 
12, and 3456712 is read into N under specification 17. 

IMPLIED DO IN 1/0 LIST 

Input/output of array elements may be accomplished by using an implied DO loop. The list of variables. 
followed by the DO loop index, is enclosed in parentheses to form a single element of the input/output list 

Example: 

READ (5,100) (A(l),1=1,3) 

has the same effect as the statement 

READ (5, 100) A(1 ),A(2),A{3) 

The general form for an implied DO loop is: 

m.j,k are unsigned integer constants or predefined positive integer variables. If m3, j3 or k3 is omitted, 
a one is used for incrementing. 

ii .. .in are integer control variables. A control variable should not be used twice in the same implied DO 
nest, but array names, array elements, and variables may appear more than once. The value of a control 
variable within an implied DO specification is defined only within that specification; it should not be 
referenced outside the specification. 

The first control variable (i 1) defined in the list is incremented first. i 1 is set equal to m 1 and the 
associated list is transmitted; then i1 is incremented by m3, until m2 is exceeded. When the first 
control variable reaches m2, it is reset to m1; the next control variable at the right (i2) is incremented; 
and the process is repeated until the last control variable (in) has been incremented, until k2 is exceeded. 

6-2 60497800 D 



The general form for an array is: 

(((A(l,J,K),l=m1 ,m2
,m

3
),J=n1 ,n2,n

3
),K=k 1 ,k2,k

3
) 

Example: 

READ (2, 100) ((A(JV ,JX),JV=2,20,2),JX=1,30) 

READ (2,200) (BETA(3*JON+7),JON=JONA,JONB,JONC) 

READ (2,300) (((ITMLIST(l,J+1,K-2),1=1,25),J=2,N),K=IVAR,IVMAX,4) 

An implied DO loop can be used to transmit a simple variable more than one time. For example. the list 
item (A(K).B.K = l.5) causes the variable B to he transmitted five times. An input list of the form 
K.(A(l).I = 1.K) is permitted. and the input value of K is used in the implied DO loop. The index variable 
in an implied DO list must be an integer variable. 

Examples of simple implied DO loop list items: 

READ (1,400) (A(l),1=1,10) 

400 FORMAT (E20.10) 

The following DO loop would have the same effect: 

DO 5 1=1,10 

5 READ (1,400) A(I) 

Example: 

CAT.DOG. and RAT will be transmitted I 0 times each with the following iolist 

(CAT, DOG, RAT, 1=1,10) 

Implied DO loops may be nested. 

Example: 

DIMENSION MATRIX(3,4,7) 

READ (3,100) MATRIX 

100 FORMAT (16) 

Equivalent to the following: 

DIMENSION MATRIX(3,4,7) 

READ (3,100) (((MATRIX0,J,K),1=1,3),J=1,4),K=1,7) 

The list is similar to the nest of DO loops: 

DO 5 K=1,7 

DO 5 J=1,4 

DO 5 1=1,3 

5 READ (3,100) MATRIX(l,J,K) 

60497800A 6-3 



Example: 

The following statement transmits nine elements into the array E in the order: E(l ,l ), E(l ,2), E(l ,3), 
E(2,1), E(2,2), E(2,3), E(3,l), E(3,2), E(3,3) 

READ (1.100) ((E(l,J),J=1.3).1=1.3) 

Example: 

READ (2, 100) (((((A(l.J.K).B0.L).C(J.N).1=1.10),J=1.5). 

x· K=1.8).L=1.15).N=2.7) 

Data is transmitted in the following sequence: 

A(l,1,1),. B(l,l), C(l,2), A(2,l,l), B(2,l), C(l,2) ••• 
••• A(l0,1,1), B(lO,l), C(l,2), A(l,2,1), B(l,l), C(2,2) ••• 
••• A(l0,2,1), B(lO,l), C(2,2), ••• A(l0,5,1), B(lO,l), C(5,2) ••• 
.•. A(l0,5,8), B{lO,l), C(5,2), ••• A(l0,5,8), B(l0,15), C(5,2) ••• 

Data can be read into or written from part of an· array by using the implied DO loop. 

Examples: 

READ (5,100) (MATRIX(l),1=1,10) 

100 FORMAT (F7.2) 

Data (consisting of one constant per record) is read into the first JO elements of the array MATRIX. 
The following statements would have the same effect: 

DO 40 I= 1,10 

40 READ (5,100) MATRIX(!) 

100 FORMAT (F7.2) 

In this example, numbers are read from unit 5, one from each record,into the elements MATRIX{l) 
through MATRIX(IO) of the array MATRIX. The READ statement is encountered each time the DO 
loop is executed; and a new record is read for each element of the array. Each execution of a READ 
statement reads at least one record regardless of the FORMAT statement. 

READ (5,100) (MATRIX(l),1=1,10) 

100 FORMAT (F7.2) 

In the above statements, the implied DO loop is part of the READ statement; therefore, the FORMAT 
statement specifies the format of the data input and determines when a new record will be read. 

If statement 100 FORMAT (F7.2) had been 100 FORMAT (4F20.10), only three records would be read. 

To read data into an entire array, it is necessary only to name the array in a list without any subscripts. 

Example: 

6-4 

DIMENSION B (10,15) 

READ (12,13) B 

is equivalent to 

READ (12,13) ((B(l,J),1=1,10),J=1,15) 

The entire array B will be transmitted in both cases. 

60497800A 



FORMAT STATEMENT 

Input and output can be formatted or unformatted. Formatted information consists of strings of display code 
characters. Unformatted information consists of strings of binary word values in the form in which they 
normally appear in storage. A FORMAT statement or variable format specification is required to transmit 
formatted information. 

5 7 

( 
sn Statement label which must appear 

Set of one or more field specifications separated by commas and slashes and 
optionally grouped by parentheses 

Note that the syntax sn FORMAT {, that is, a statement label followed by the word FORMAT followed by 
a left parenthesis, is understood by the FORTRAN compiler to be a FORMAT statement, regardless of 
previous conditions or uses of the word FORMAT in the user program. 

Example: 

READ (5,100) INK,NAME,AREA 

100 FORMAT (10X,14,12,F7.2) 

FORMAT is a non-executable statement which specifies the format of data to be moved between input/output 
device and main memory. It is used in conjunction with formatted input and output statements, and it may 
appear anywhere in the program. 

The FORMAT specification is enclosed in parentheses. Blanks are not significant except in Hollerith field 
specifications. 

Generally, each item in an input/output list is a~ociated with a corresponding field specification in a FORMAT 
statement. The FORMAT statement specifies the external format of the data and the type of conversion to 
be used. Complex variables always correspond to two field specifications. Double variables correspond to one 
floating point field specification (D, E, F, G) or two of any other kind. The D field specification corresponds 
to exactly one list item or half of a complex item. 

The type of conversion should correspond to the type of the variable in the input/output list. The 
FORMAT statement specifies the type of conversion for the input data, with no regard to the type of the 
variable which receives the value when reading is complete. 

For example: 

INTEGER N 

READ (5,100) N 

100 FORMAT (F10.2) 

A floating point number is assigned to the variable N which could cause unpredictable results if N is 
referenced later as an integer. 

60497800 E 6-5 



DATA CONVERSION 

The following types of data conversions are available: 

srEw.d 

srFw.d 

srGw.d 

srDw.d 

rlw 

rLw 

rAw 

Single precision floating point with exponent 

Single precision floating point without exponent 

Single precision floating point with or without exponent 

Double precision floating point with exponent 

Decimal integer conversion 

Logical conversion 

Character conversion 

E, F, G, D, I, L, A, are the codes which indicate the type of conversion. 

w 

d 

r 

s 

Non-zero, unsigned integer constant specifying the field width in number of character pos
itions in the external record. This width includes any leading blanks, + or - ~gns, decimal 
point, and exponent. 

Unsigned integer constant specifying the number of digits to the right of the decimal point 
within the field. On output all numbers are rounded. 

Non-zero, unsigned integer constant less than 217-1 specifying the number of times the con
version code is to be repeated. 

Optional scale factor. 

The field width w must be specified for al1 conversion codes. If d is not specified for w.d, it is 
assumed to be zero. w must be ~ d. 

6-6 60497800 A 



Field separators are used to separate specifications and groups of specifications. The format field separators 
are the slash(/) and the comma. The slash is also used to specify demarcation of formatted records. 

CONVERSION SPECIFICATION 

Leading blanks are not significant in numeric input conversions; other blanks are treated as zeros. Plus 
signs can be omitted. An all-blank field is considered to be minus zero, 

When an all-blank field is read with a Hollerith input specification, 
each blank character is translated into a display code 55 octal. 

For the E, F, G, and D input conversions, a decimal point in the input field overrides the decimal point 
specification of the field descriptor. 

The output field is right-justified for all output conversions. If the number of characters produced by the 
conversion is less than the field width, leading blanks are inserted in the output field. The number of 
characters produced by an output conversion must not be greater than the field width. If the field width is 
exceeded, asterisks are inserted throughout the field. 

Complex data items are converted on input/output as two independent floating point quantities. The 
format specification uses two conversion elements. 

Example: 

COMPLEX A,8,C,D 
WRITE (6, 10)A 

10 FORMAT (F7.2,E8.2) 
READ (5, 11) 8,C,D 

11 FORMAT (2E10.3(F8.3,F4.1)) 

Data of differing types may be read by the same FORMAT statement. For example: 

lw 

10 FORMAT (15,F15.2) 

specifies two numbers, the first of type integer, the second of type real. 

READ (5,15) NO,NONE,INK,A,8,R 
15 FORMAT (315,2F7.2,A4) 

reads three integer values, two real values, and one character string. 

INPUT 

The I conversion is used to input decimal integer constants. 

lw 

w is a decimal integer constant designating the total number of characters in the field including signs and 
blanks. _,RnI\ljjJ).qt. 

60497800A 6-7 



The plus sign may be omitted for positive integers. When a sign appears, it must precede the first digit in 
the field. Blanks are interpreted as zeros. An all blank field is considered to be minus zero. Decimal points 
are not permitted. The value is stored in the specified variable. Any character other than a decimal digit, 
blank, or the leading plus or minus sign in an integer field on input will terminate execution. 

Example: 

READ (2, 10) l,J,K,L,M,N 
10 FORMAT (13,17,12,13,12,14) 

Input Record: 

lw and OUTPUT 

In storage: 

I contains 139 
J contains -1500 
K contains 1 8 

The I specification is used to output decimal integer values. 

lw 

L contains 7 
M contains -0 
N contains 104 

w is a decimal integer constant designating the total number of characters in the field including signs and 
blanks. If the integer is positive the plus sign is suppressed. Numbers in the range of-(259 -1) to 259 -1 
(259 -1=576 460- 752 303 423 487) are output correctly. 

The specification Iw or Iw.z outputs a number in the following format: 

ba ... a 

b Minus sign if the number is negative, or blank if the number is positive 

a ... a May be a maximum of 18 digits 

The output quantity is right justified with blanks on the left. 

6-8 60497800 A 



Ew.d, OUTPUT 

E specifies conversion between an internal real value and an external number written with exponent. 

Ew.d 

w is an unsigned integer designating the total number of characters in the field~ w must be wide enough to 
contain digits, plus or minus signs, decimal point, E, the exponent, and blanks. Generally, w ~ d + 6 

for negative numbers and w ~ d + 5 for positive numbers. Positive 
numbers need not reserve a space for the sign of the number. If the field is not wide enough to contain the 
output value, asterisks are inserted throughout the tield. If the field is longer than the output value, the quan
tity is right justified with blanks on the left. If the value being converted is indefinite, an I is printed in the 
field; if it is out of range, an R is printed. 

d specifies the number of digits to the right of the decimal within the field. 

The Ew.d specification produces output in the following formats: 

b.a ... aE ± ee For values where the magnitude of the exponent is less than one hundred 

b.a ... a ± eee For values where the magnitude of the exponent exceeds one_ hundred 

b is a minus sign if the number is negative, and a blank if the number is positive 

a ... a are the most significant digits of the value correctly rounded 

60497800 E 6-9 



Examples: 

WRffE (2,10)A 

10 FORMAT (E10.3) 

Result: 

WRITE (2,10)A 

10 FORMAT (E13.3) 

Result: 

A contains -67.32 or +67.32 

-.673E+02 or b.673E+02 

bbb-.673E+02 or bbbb.673E+02 

If an integer variable is output under the Ew.d specification, results are unpredictable since the internal format 
of real and integer values differ. An integer value does not have an exponent and will be printed, therefore, as 
a very small value or 0.0. 

Ew.d, INPUT 

E specifies conversion between an external number written with an exponent and an internal real value. 

Ew.d 

w is an unsigned integer designating the total number of characters in the field, including plus or minus 
signs, digits, decimal point, E and exponent. If an external decimal point is not provided, d acts as a 
negative power-of-IO scaling factor. The internal representation of the input quantity is: 

(integer subfield) x JO-d x IO (exponent subfield) 

For example, if the specification is E 10.8, the input quantity 3267E +05 is converted and stored as: 
3267X 10-sX 105 =3.267. 

If an external decimal point is provided, it overrides d. If d does not appear it is assumed to be zero. 

In the input data, leading blanks are not significant; other blanks are interpreted as zeros. 

An input field consisting entirely of blanks is interpreted as minus zero. 

The following diagram illustrates the structure of the input field: 

6-10 60497800 c 



integer 
subfield 

input field 

I· I ~ or D 

fraction exponent 
subfield 

The integer subfield begins with a + or - sign, a digit, or a blank; and it may contain a string of digits. The 
integer field is terminated by a decimal point, E, +, - or the end of the input field. 

The fraction subfield begins with a decimal point and terminates with an E, +, - or the end of the input 
field. It may contain a string of digits. 

The exponent subfield may begin with E, + or-. When it begins with E, the + is optional between E and 
the string of digits in the subfield. 

For example, the following are valid equivalent forms for the exponent 3: 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• 
The range, in absolute value, of permissible values is lff-i93 to 10322 approximately. Smaller numbers are treated 
as zero; larger numbers cause a fatal error message. 

Valid subfield combinations: 

+ 1.632 7E-04 Integer-fraction-exponent 

-32.7216 integer-fraction 

+328+5 integer-exponent 

.629E-l fraction-exponent 

+ 136 integer only 

136 integer only 

.07628431 fraction only 

E-06 (interpreted as zero) exponent only 

If the field length specified by win Ew.d is not the same as the length of the field containing the input 
number, incorrect numbers may be read, converted, and stored. The following example illustrates a 
situation where numbers are read incorrectly, converted and stored; yet there is no immediate indication 
that an error has occurred: 

READ (3,20) A,B,C 

20 FORMAT (E9.3,E7.2,E10.3) 

60497800 A 6-11 



On the input record, quanities are in three adjacent fields, columns 1-24: 

F!2n-olf 2. 3£5. 32:.!!§I 
9 5 10 

9 7 JO 

E;a. 47E-01 I l 
+6.47E-01f2.36+5I 

+6.47E-Ol-2.36+5i321E+02bbl 

First, + 647£-0 I is read, converted and placed in location A. The second specification E7.2 exceeds 
the width of the second field by two characters. The number -2.36 + 5 is read instead of -2.36. The 
specification error (E7.2 instead of E5.2) caused the two extra characters to be read. The number 
read (-2.36 + 5) is a legitimate input number. Since the second specification incorrectly took two 
digits from the third number, the specification for the third number is now incorrect. The number 
.321E+02bb is read. Trailing blanks are treated as zeros; therefore the number .321E+0200 is read 
converted and placed in location C. Here again, this is a legitimate input number which is converted 
and stored, even though it is not the number desired. 

Examples of Ew.d input specifications: 

Input Field Specification Converted Value Remarks 

+ 143.26E-03 E11.2 .14326 All subfields present 

327.625 E7.3 327.625 No exponent subfield 

4.376 E5 4.376 No d in specification 

-.0003627+5 E11.7 -36.27 Integer subfield only a minus 
sign and a plus sign appears 
instead of E 

-.0003627E5 E11.7 -36.27 Integer subfield left of decimal 
contains minus sign only 

blanks Ew.d -0. Al I subfields empty 

E+06 E10.6 0. No integer or fraction subfield; 
zero stored regardless of expo-
nent field contents 

1.bEbl E6.3 10. Blanks are interpreted as zeros 

6-12 60497800 A 



Fw.d OUTPUT 

The F specification outputs a real number without a decimal exponent. 

Fw.d 

w is an unsigned integer which designates the total number of characters in the field including the 
sign (if negative) and decimal point. w must be ~ d + 2. 

d specifies the number of places to the right of the decimal point. When d is zero, only the digits to the 
left of the decimal and the decimal point are printed. 

The plus sign is suppressed for positive numbers. 
If the field is longer than required, the number is right justified with blanks on the left. If the value being 
converted is indefinite, an I is printed in the field; if it is out of range, an R is printed. 

The specification Fw.d outputs a number in the following format: 

.. --- decimal polnt 

b ... a+a ... a 

b Minus sign if the number is negative. or blank if the number is positive. 

The specification I H is the carriage control character. 

Fw.d INPUT 

On input F specification is treated identically to the E specification. 

60497800 A 6-13 



Examples of the F format specification: 

Input Field Specification Converted Value Remarks 

367.2593 F8.4. 367.2593 Integer and fraction field 

.62543 F6.5 .62543 No integer subfield 

.62543 F6.2 .62543 Decimal point overrides d of speci-
fication 

+144.15E-03 F11.2 .14415 Exponents are allowed in F input, 
and may have P scaling 

5bbbb F5.2 500.00 No fraction subfield; input number 
converted as 50000x10·2 

bbbbb F5.2 -0.00 Blanks in input field interpreted as 
-0 

Gw.d INPUT 

Input under control of G specification is the same as for the E specification. The rules which apply to the E 
specification apply to th~ G specification. 

Gw.d 

w 

d 

Example: 

Unsigned integer which designates the total number of characters in the field including 
E, digits, sign, and decimal point 

Number of places to the right of the decimal point 

READ (6, 11) A,B,C 

11 FORMAT (G13.6,2(j12.4) 

Gw.d OUTPUT 

Output under control of the G specification is dependent on the size of the floating point number being 
converted. The number is output under the F conversion unless the magnitude of the ~ata exceeds the range 
which permits effective use of the F. In this case, it is output under E conversion with an exponent. 

6-14 60497800A 



Gw.d 

w Unsigned integer which designates the total number of characters in the field including 
digits, signs and decimal point, the exponent E, and any leading blanks. 

d Number of significant digits output. 

If a number is output under the G specification without an exponent, four spaces are inserted to the right of 
the field (these spaces are reserved for the exponent field E ± 00). Therefore, for output under G conversion 
w must be greater than or equal to d + 6. The six extra spaces are required for sign and decimal point plus 
four spaces for the exponent field. 

Example: 

WRITE (7,200) YES 

200 FORMAT (G10.3) 

Output: b77. lbbbb 

YES contains 77.132 

b denotes a blank 

If the decimal point is not within the first d significant digits of the number, the exponential form is used 
(G is treated as if it were E). 

Example: 

WRITE (4,100) EXIT 

100 FORMAT (G10.3) 

Output: .121 E+07 

Example: 

READ (5,50) SAMPLE 

WRITE (6,20) SAMPLE 

20 FORMAT (1X,G17 .8) 

Data read by 
READ statement 

.1415926535bE-10 

.8979323846 

2643383279. 

-693.9937510 

60497800 A 

EXIT contains 1214635. I 

Data Output Format Option 

.14159265E-10 E conversion 

.89793238 F conversion 

.26433833E+10 E conversion 

-693.99375 F conversion 

""' 

6-15 



Dw.d OUTPUT 

Dw.d 

Type D conversion is used to output double precision variables. D conversion corresponds to E conversion 
except that D replaces E at the beginning of the exponent subfield. If the value being converted is 
indefinite, an I is printed in the field; if it is out of range, an R is printed. 

Examples of type D output: 

DOUBLE PRECISION A,B,C 

A= 111111.11111 

B = 222222.22222 

C=A+B 

WRITE (2,10) A,B,C 

10 FORMAT (3023.11) 

.11111111111 D+06 .222222222220+06 .333333333330+06 

The specification Dw.d produces output in the following format: 

~ decimal point 
b.a ... a ±eee 

b.a ... aD±ee 

-308 s eee s 337 

0 sees 99 

b Minus sign if the number is negative, or blank if the number is positive 

a ... a Most significant digits 

ee Digits in the exponent 

Dw.d INPUT 

D conversion corresponds to E conversion except that D replaces E at the beginning of the exponent 
subfield. 

The following diagram illustrates the structure of the input field: 

6-16 

integer 
subfield 

input field 

fraction exponent 
subfield 

60497800 A 



60497800 A 6-17 



6-18 60497800 E 



Aw INPUT 

\ 
The A specification is used to input character data 

Aw 

w is an unsigned integer designating the total number of characters in the field. 

Character information is stored as 6-bit display code characters, 10 characters per 60-bit word. For example, the 
digit 4 when read under A specification is stored as a display code 37. If w is less than 10, the input quantity is 
stored left justified in the word; the remainder of the word is filled with blanks. 

Example: 

READ (5,100) J 

100 FORMAT (A7) 

60497800 E 6-18.1/6-18.2 





Input record: 

(EXAMPLE 

When EXAMPLE is read it is stored left justified in the 10 character word 

1234567890 
lijilAHPIIJE I I I I 

If w is greater than 10, the rightmost 10 characters are stored and remaining characters are ignored. 

Example: 

READ (5,200)K 

200 FORMAT (A13) 

Input record: 

1 13 
(SPECIFICATION 

In storage: 

12345678910 
lg@IijAtl@NI 

READ (5,10) L,M,N 

10 FORMAT (A10,A10,A5) 

Input record: 

THIS IS A EXAMPLE KNOW 
~....__,,_,.--.-

10 

In storage: 

12345678910 

L fiHI@ Mij "*' 
M I M+f1E1iM Iii 
NI ijijWI 11111 

Aw OUTPUT 

10 5 

The A specification is used to output alphanumeric characters. 

Aw 

60497800 E 6-19 



w is an unsigned integer designating the total number of characters in the field. If w is less than 10, 
the leftmost characters in the word are printed. For example, if the contents of location M in the Aw 
input example are output with the following statements: 

WRITE (6,300)M 

300 FORMAT (1X,A4) 

In storage: 

M IEtXIAHE1iM II I 
Characters EXAM are output 

If w is greater than 10, the characters are output right-justified in the field, with blanks on the left. For 
example, if M in the previous example is output with the following statements: 

WRITE (6,400)M 

400 FORMAT (1X,A12) 

Output is as follows: 

bbEXAMPLEbbb 

6-20 

b = blank 

60497800 E 



Lw INPUT 

The L specification is used to input logical variables. 

Lw 

w is an unsigned integer designating the total number of characters in the field. 

If the first non-blank character in the field is T, the logical value .TRUE. is stored in the corresponding list 
. item, which should be of type logical. If the first non-blank character is F, the value .FALSE. is stored. If the 

first non-blank character is not T or F, a diagnostic is printed 

Lw OUTPUT 

Lw 

w is an unsigned integer designating the total number of characters in the field. 

Variables output under the L specification should be of type logical. A value of .TRUE. or .FALSE. in 
storage is output as a right justified T or F with blanks on the left. 

Example: 

LOGICAL l,J,K 
I= .TRUE. 
J. =.FALSE. 
K =.TRUE. 
WRITE (4,5) l,J,K 

5 FORMAT (3L3) 

Output: 

bTbbFbbT 

SCALE FACTORS 

The scale factor P is used to change the position of a decimal point of a real number when it is input or 
output. Scale factors may precede D, E, F and G format specifications. 

60497800 E 6-21 



nPDw.d 

nPEw.d 

nPFw.d 

nPGw.d. 

n is the scale factor which can be any integer constant. w is an unsigned integer constant designating the 
total width of the field. d determines the number of digits to the right of the decimal point. 

A scale factor of zero is established when each FORMAT statement is first referenced; it holds for all F,E,G, 
and D field descriptors until another scale factor is encountered. 

Once a scale factor is specified, it holds for all D. E, F, and G specifications in that FORMAT statement 
until another scale factor is encountered. To nullify this effect for subsequent D. E, F, and G specifications, 
a zero scale factor (OP) must precede a specification. 

Example: 

15 FORMAT(2PE14.3,F10.2,G16.2,0P4F13.2) 

The 2P scale factor applies to the E 14.3 format specification and also to the F 10.2 and G 16.2 format 
specification. The OP scale factor restores normal scaling (I 0° = 1) for the subsequent specification 
4Fl3.2. 

Fw.d SCALING 

INPUT 

The number in the input field is divided by ton and stored. For example, if the input quantity 314.1592 is 
read under the specification 2PF8.4; the internal number is 314.1592 x· 10-2 = 3.141592. However, if an 
exi>onent is read the scale factor is ignored. 

6-22 60497800 A 



Ew.d and Dw.d SCALING 

INPUT 

Ew.d scaling on input is the same as Fw.d scaling on input. 

OUTPUT 

The effect of the scale factor nP is to shift the output coefficient left n places and. reduce the exponent by n. 
In addition, the scale factor controls the decimal normalization between the coefficient and the exponent such 
that: if n ~ 0, there will be exactly -n leading zeros and d + n significant digits after the decimal point; if 
n > 0, there will be exactly n significant digits to the left of the decimal point and d - n + 1 significant digits 
to the right of the decimal point. For example, the number -3.1415926536 is represented on output under the 

· indicated Ew .d scaling as follows: 

•••••••••••••••••••••••••••••• 
<-3PE20. 4> 
<-1PE20. I+) 

< E20. if) 

( 1PE20. 4) 
( 3PE2C. 4) 

-.0003E+il4 
-.0314E+02 
-.l142E+C:l 

-3.1416E+OO 
- 314.16E-t 2 

•••••••••••••••••••••••••••••• 

Gw.d SCALING 

INPUT 

Gw.d scaling on input is the same as Fw.d scaling on input. 

OUTPUT 

The effect of the scale factor is nullified unless the magnitude of the number to be output is outside the range 
that permits effective use of F conversion (namely, unless the number N < 1 o-1 or N ~ 1 ad). In these cases, 
the scale factor has the same effect as described above for Ew.d and Dw.d scaling. For example, the numbers 
-3.1415926536 and -.00031415926536 are represented on output under the indicated Gw .d scaling as follows: 

60497800 c 6-23 



•••••••••••••••••••••••••••••• ················~············· <-3PG20. &> -3.1t+15'.3 <-3PG2C. fd -. 000314£-+fl,j 
<-1PG20. n> -3.1415'3 <-1PG20. 6) -.031416[-02 
( G20. 6) -3.14159 ( G20. o> -. 3141Sgf-O3 
( 1PG20. E» -3.14159 ( 1PG2G .. 6) -.3.1'·'1593£-04. 
( 3PG20. &> -3.1lt159 ( ·JPG2 C. 6) -.Ht+.1593f-06 
( 5PG20,. 6) -3.1415g ( 5PG20. E» -3141C;.<j,3f-08 
( 7PG20. &> -3.1lt159 •••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••• 

X SPECIFICATION 

The X specification is used to skip characters in an input line or output line. On output, any character 
positions not previously filled during this record generation will be set to blank. It is not associated with a 
variable in the input/output list. 

Example: 

WRITE (6,100) A,B,C 

100 FORMAT (F9.4,4X,F7 .5,4X,13) 

Output record: 

-342.743bbbb1 .53190bbbbb22 

on input n columns are skipped. 

Example: 

READ (3, 11) R,S,T 

11 FORMAT (FS.2, 3X, FS.2, 6X, F5.2) 

Input record: 

14.62bb$13.78bCOSTbl5.97 

6-24 

A 

B 
c 

-342.743 
1. 53190 
22 

bis a blank 

60497800 D 



In storage: 

R 14.62 
s 13.78 
T IS.97 

Example: 

INTEGER A 

WRITE (1,10) A,8/; 

10 FORMAT U2,6X,F6.2,6X,E12.5) 

Result: 

nH OUTPUT 

A contains 7 
B contains 13.6 
C contains 1462.37 

7bbbbbbb13.60bbbbbbb.146237E+o4 

The H specification is used to output strings of alphanumeric characters and, like X, H is not associated with 
a variable in the input/output list. 

nH 

n Number of characters in the string including blanks. 

H Denotes a Hollerith field. 

For example, the statement: 

WRITE (6,1) 

1 FORMAT (15HbENDbOFbPROGRAM) 

can be used to output the following on the output listing. 

END OF PROGRAM 

Examples: 

Source program: 

WRITE (3,20) 

20 FORMAT (28HbBLANKSbCOUNTblNbANbHbFIELD.) 

produces output record: 

BLANKSbCOUNTblNbANbHbFIELO. 

Source program: 

WRITE (2,30)A A contains l .5 
30 FORMAT (6HbLMAX=,F5.2) 

60497800 A 6-25 



produces output record: 

LMAX=b1.50 

nH INPUT 

The H specification can be used to read Hollerith characters into an existing H field within the FORMAT 
statement. 

Example: 

Source program: 

READ (2.10) 

10FORMAT(27Hbl:»bllbbtllbbt>bblbbtlbbtlbblCJbbbbt~ 

Input record: 

( bTHIS IS A VARIABLE HEADING 

After a READ statement, the FORMAT statement labeled 10 contains the alphanumeric information read from the 
input record; a subsequent reference to statement 10 in an output statement acts as follows: 

WRITE (6.10) 

produces the output line: 

THIS IS A VARIABLE HEADING 

6-26 60497800A 



60497800 A 6-27 



tJ.Qes not ··<>C(!U~ w:lth,.>Y1ltiftble fQ~at sp~cificatjo~s~ · 

END OF RECORD SLASH 

The slash indicates the end of a record anywhere in the FORMAT specification. When a slash is used to separate 
field specification elements, a comma is allowed but not required. Consecutive slashes can be used and need not 
be separated from other elements by commas. When a slash is the last format specification to be processed, it 
causes a blank record to be written on output or an input record to be skipped. Normally, the slash indicates the 
end of a record during output and specifies that further data comes from the next record during input. 

Example: 

WRITE (2,10) 

10 FORMAT (6X, 7HHEADING / / / 1X, 5HINPUT, 7H OUTPUT) 

Output: 

HEADING ________ line 1 
---(blank) __ line 2 
___ (blank)_ line 3 

INPUT OUTPUT ________ line 4 

Each line corresponds to a formatted record. The second and third records are blank and produce the line 
spacing illustrated. 

Example: 

1=5 

J=6 

K=7 

WRITE (2,1)1,J,K 

FORMAT (315/) 

WRITE (2,2) 

2 FORMAT(* A BLANK LINE SHOULD PRECEDE THIS LINE*) 

Output: 

5 6 7 

A BLANK LINE SHOULD PRECEDE THIS LINE 

The variable list (I, J, K) is. exhausted and processing continues until a variable conversion is encountered. 
Since the slash has been processed, it causes a blank line to be printed. 

6-28 60497800 F 



Example: 

DIMENSION 8(3) 

READ (5,100)IA,B 

100 FORMAT (15/3E7 .2) 

These statements read two records; the first contains an integer number, and the second contains three real 
numbers. 

WRITE (3, 11) A,B.C,O 

11 FORMAT (2E10.2/2F7.3) 

In storage: 

A -11.6 
B .325 
c 46.327 
D -14.261 

Output: 

b-.12E+02bbb.33E+oo 

46.327-14.261 

WRITE (1,11) A,B,C,O 

11 FORMAT (2E10.2 / / 2F7.3) 

Output: 

b-. l 2E+02b b b. 33E+OO ---------line I 
-----------(blank) --line 2 

46.327-14.261------------line 3 

The second slash causes the blank line. 

REPEATED FORMAT SPECIFICATION 

Format specifications can be repeated by prefixing the control characters D, E, F, G, I, A, L, 
with a non-zero, unsigned integer constant specifying the number of repetitions required. 

100 FORMAT (314,2E7.3) 

50 FORMAT (4G12.6) 

is equivalent to: 
is equivalent to: 

100 FORMAT (14,l4,14,E7.3,E7.3) 

50 FORMAT (G12.6,G12.6,G12.6,G12.6) 

A group of specifications can be repeated by enclosing the group in parentheses and prefixing it with the repeti
tion factor. If no integer precedes the left parenthesis, the repetition· factor is assumed to be one. 

1 FORMAT (13,2(E15.3,F6.1,214)) 

60497800 8 6-29 



is equivalent to the following specification if the number of items in the input/output list does not 
exceed the format conversion codes: 

1 FORMAT (13,E15.3,F6.1,14,14,E15.3,FG.1,14,14) 

A maximum of nine levels of parentheses is allowed in addition to the parentheses required by the FORMAT 
statement. 

If the number of items in the input/output list is fewer than the number of format codes in the FORMAT 
statement, excess format codes are ignored. 

If the number of items in the input/output list exceeds the number of format conversion codes when the final 
right parenthesis in the FORMAT statement is reached, the line formed internally is output. The format control 
then scans to the left looking for a right parenthesis within the FORMAT statement. If none is found, the scan 
stops when it reaches the beginning of the format specification. If a right parenthesis is found, however, the 
scan continues to the left until it reaches the field separator which precedes the left parenthesis pairing the 
right parenthesis. Output resumes with the format control moving right until either the output list is exhausted 
or the final right parenthesis of the FORMAT statement is encountered. 

A repetition factor can be used to indicate multiple slashes, n(/), where n is an unsigned integer constant 
indicating the number of slashes required and n-1 is the number of lines skipped on output. 

Example: 

WRITE (3,15)(A(l),1=1,9) 

15 FORMAT (8HbRESUL TS4(/),(3F8.2) ) 

Format statement 15 is equivalent to: 15 FORMAT (8HbRESULTS I 111 (3F8.2) ) 

Output: 

Example: 

RESULTS 

3.62 
-6.33 

6.21 

------------------------------1ine 1 
---------(blank)-- line 2 
--------- (blank) __ line 3 
---------(blank)-- line 4 

-4.03 
7.12 

-6.74 

-9.78 ------------line 5 
3.49 line 6 

-1.18 line 7 

READ (5,300)1,J,E,K,F,L,M,G,N,R 

300 FORMAT (13,2(14,F7 .3),17) 

is equivalent to storing data in I with format 13, J with 14, E with F7.3, K with 14, F with F7.3, and L 
with 17. A new record is then read; data is stored in M with the format 14, G with F7.3, N with 14, 
and R with F7.3. 

6-30 

READ (5,100) NEXT, DAY, KAT, WAY, NAT, RAY, MAT 

100 FORMAT (17,(F12.7,13) ) 

60497800A 



NEXT is input with format I7, DAY is input with Fl2.7, KAT is input with 13. The FORMAT state
ment is exhausted (the right parenthesis has been reached), a new record is read, and the statement is 
rescanned from the group (F12.7 ,13). WAY is input with the format Fl2.7, NAT with 13, and from a third 
record, RAY with F12.7, and MAT with 13. 

PRINTER CONTROL CHARACTER 

The first character of a printer output record is used for carriage control and is not printed. It appears in other 
forms of output as data. Carriage control also applies to records listed at a terminal under INTERCOM; the 
meaning of carriage control characters depends on the type of terminal (see the INTERCOM reference manual). 
Carriage control does not apply to records listed at a terminal under the NOS 1 Time-Sharing System; the 
first character is listed as data. 

The printer control characters are as followst: 

Character 

Blank 

0 

+ 

Action 

Space vertically one line then print 

Space vertically two lines then print 

Eject to· the first line of the next 
page before printing 

No advance before printing; allows 
overprinting 

For output directed to the card punch or any device other than the line printer or terminal, control characters 
are not required. If carriage control characters are transmitted to the card punch, they are punched in column one. 

Carriage control characters are required at the beginning of every record to be printed, including new 
records introduced by means of a slash. Carriage control characters can be generated by any means. 

Examples: 

FORMAT (1HO,F7.3,12,G12.6) 

FORMAT (1X,14,G16.8) 

t This chart applies only to NOS/BE I and SCOPE 2. For corresponding information under NOS l, refer to 
the reference manual for the subsystem under which the program is. executed. 

60497800 F 6-31 



6-32 60497800 A 



60497800 A 6-33 



6-34 60497800 F 



60497800A 6-35 



EXECUTION TIME FORMAT SPECIFICATION 

VariableJC>rrnat s ecifications can be read in as part of the data at execution time and used by READ, WRITE, 
· . statements later in the program. The format is read in as alphanumeric 

text under the A specification and stored in an array, .or it may be included in 
a DATA statement. The format must consist of a list of format specifications enclosed in parentheses, but 
without the word FORMAT or the statement label. 

For example, an input record could consist of the characters: 

( (E7 .2,G20.5,F7 .4,13) 

The name of the array containing the specifications is used in place of the FORMAT statement number in the 
associated input/output statement. The array name specifies the location of the first word of the format 
information. 

For example, assume the following format specifications: 

6-36 

(E12.2,FS.2,17 ,2E20.3,F9.3,14) 

This information on an input record can be read by the statements of the program such as: 

DIMENSION IVAR(3) 

READ (2,1) IVAR 

1 FORMAT (3A 10) 

60497800A 



The elements of the input record are placed in storage as follows: 

IVAR(1) 

IVAR(2) 

IVAR(3) 

(E12.2,F8. 

2,17,2E20. 

3,F9.3,14) 

A subsequent output statement in the same program can refer to these format specifications as: 

WRITE (2,IVAR) A,B,l,C,D,E,J 

Which produces exactly the same result as the statements: 

WRITE (2,10) A,B.l.C,D,E,J 

10 FORMAT (E12.2,F8.2,17,2E20.3,F9.3,14) 

60497800 A 6-37 





PROGRAM UNITS, PROCEDURES, AND OVERLAYS 7 

A program unit consists of FORTRAN statements, with optional comments, terminated by an END statement. 
A main program is a program unit that does not begin with a SUBROUTINE, FUNCTION, or BLOCK DATA 
statement. · ·· }8~! '> · · . . Ck;'. . ...... ··. :!l·. ,~::~' 

A subprogram is a program unit that begiils"with a SUBROUTINE, FUNCTION, or BLOCK DATA s·tatement. 
An executable program contains one main program with or without subprograms. A program unit containing 
no FORTRAN statements other than an END statement is considered a null program; it is diagnosed and 
ignored. 

A subprogram is defined separately and can be compiled independently of a main program. If the subprogram 
begins with a SUBROUTINE or FUNCTION statement, it is a procedure subprogram and can accept and use 
zero, one, or more values through a list of arguments, through common, or both. If the subprogram begins 
with a BLOCK DATA statement, it is a specification subprogram. 

A procedure is a procedure subprogram, statement function, intrinsic function, or basic external function. 
Intrinsic functions and basic external functions are FORTRAN supplied procedures and are available to any 
programmer (see section 8). Statement functions and procedure subprogrdJils are supplied by the programmer. 

The differences between function and subroutine specification and use are summarized in table 7-1. 

TABLE 7-1. DIFFERENCES BETWEEN A FUNCTION AND SUBROUTINE SUBPROGRAM 

Function Subroutine 

How Used The name appearing in an expression is A CALL statement is used as 
used as the reference. the reference. 

Arguments One or more arguments must be included. Arguments need not be present. 

How Typed Name is typed implicitly by first letter No type is associated with the 
or explicitly by the type designation name. 
appearing before the word FUNCTION. 

Functions return a single value through the function name. Function subprograms defined by the programmer 
also can return values through a list of arguments, through common, or both. 

Table 7-2 summarizes the terminology of the overlapping categories of procedures and subprograms. 

60497800 A 7-1 



TABLE 7-2. PROCEDURE AND SUBPROGRAM INTERRELATIONSHIPS 

Statement Intrinsic 
Basic 

Function Subroutine Block Data 
Function Function 

Extemal 
Subprogram Subprogram Subprogram 

Function 

Procedure yes ves yes yes yes no 

External procedure no no yes yes yes N/A 

Subprogram no no no yes yes yes 

Function yes yes yes yes no no 

External function no no yes yes N/A N/A 

Who defines user compiler compiler user user user 

Where defined within compiler library external to external to external to 

program unit calling pro- calling pro- calling pro-
gram unit gram unit gram unit 

N/ A = not applicable 

Programmer written procedures (statement functions, function subprograms, and subroutine subprograms) are 
discussed below as a group. FORTRAN supplied procedures (intrinsic functions and basic external functions) 
are discussed in detail in section 8. The only subprogram that is not a procedure is the block data subpro
gram. Since it is not executable, it is discussed separately. 

MAIN PROGRAMS 

A main program can ..• ~~~~~~.·~f·~~~'!'~ ..... ~!~tements except FUNCTION, SUBROUTINE, . or BLOCK 
DATA; it should have.:lhl:&~l.IMJ;•&lilf:·;iil an END statement; it must have at least one executable state-. 
ment. One main program is required in any executable FORTRAN program. No program can have more than one 

mainprogram~m~tlflf:§:li:~!B1f~~l~i~~~l~ll!lfjiij~IJ~~~~~~~l~lfl~~i!fi~~R;g!~~~~~~'ti!~~ 

7-2 60497800 D 



60497800 B 7-3 



7-4 69497800 F 



BLOCK DATA SUBPROGRAM 

7 

( 11 BLOCK DATA 

The block data subprogram is a nonexecutable specification subprogram that can be used to enter data into 
labeled common but not blank common 

The block data subprogram contains only type, DIMENSION, COMMON, EQUIVALENCE, 
DATA, and END statements. A valid BLOCK DATA subprogram must contain at least one COMMON state
ment and one DATA statement. Any executable statements are ignored and a warning is issued. All DATA 
statements must follow the specification statements. Data can be entered into more than one block of 
common in a block data program. The specifications in a BLOCK DATA subprogram take effect when the 
binary output file (specified by the control statement 8 option) is loaded. 

Example: 

BLOCK DATA ANAME 
COMMON/CAT.'X.Y.Z/DEFIR.S.T 
COMPLEX X.Y 
DATA X,Y/2•((1.0,2.7))1,R/7.6543/ 
END 

Z is in block CAT and S and T are in DEF, although no initial data values are defined for them. 

60497800 A 7-5 



PROCEDURES 

The category of procedure to be used is determined by its particular capabilities and the needs of the program 
being written. If the program requires the evaluation of a standard mathematical function, a FORTRAN 
supplied intrinsic function or a basic external function can be used. If a single computation is needed 
repeatedly, a user-written statement function can be included in the program. If a number of statements are 
required to obtain a single result, a function subprogram is written. If a number of calculations are required 
to obtain several values, a subroutine is written. 

Procedure Communication (later in this section) contains details on how to use procedures and how procedures 
use arguments or common to communicate. 

SUBROUTINE SUBPROGRAM 

7 

7 

SUBROUTINE name 

name Symbolic name of the subroutine. 

Pt, ... , Pn Dummy arguments that must agree in order, number, type, 
ments passed to the subprogram at execution time. 

with the actual argu-

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A sub
routine subprogram must not directly or indirectly call itself. The subroutine subprogram communicates with 
the calling program unit through a list of arguments passed with the CALL statement or through common. 
Calling a Subroutine Subprogram later in this section contains more CALL statement details. 

7-6 60497800 A 



The SUBROUTINE statement contains the s mbolic name that is used as the main ent point of the sub-
program. The subprogram name 
is not used to return results to the calling program, does not determine the type, and must not appear in any 
other statement in the same subprogram. 

Subroutine subprograms can contain any statements except PROGRAM, BLOCK DATA, FUNCTION, or 
another SUBROUTINE statement. They begin with a SUBROUTINE statement should have at least one 
RETURN statement and end with an END statement. ll~'.ll!1Mi111\111R~lllu\!:M~f,~I 

Control is returned to the calling program when a RETURN, 
encountered. 

Dummy arguments which re resent array names must be dimensioned within the sub ro ram b a DIMENSION 
or type statement. 

Adjustable dimensions are permitted in subroutine subprograms {details are 
given later in this section under Using Arrays). 

Example 1: 

Calling Program Subprogram 

SUBROUTINE ERRORl 
WRITE ( 6, 1) 

1 FORMAT (5X,22H NUMBER IS OUT OF RANGE) 

IF (A-B) 10,20,20 
10 CALL ERROR! 
20 RESULT•(A*CAT) +375.2-ZERO 

RETURN 
END 

The subroutine ERRORl is called and executed if A-8 is less than zero. Control returns to 
statement 20. This example also illustrates that arguments need not be used. 

60497800 A 7-7 



FUNCTION SUBPROGRAM 

7 

( 11 FUNCTION 

7 

type FUNCTfON name (p1 , ••• , p
0

) 

name Symbolic name of the subprogram. 

Pt, ... , Pn Dummy arguments that should agree in order, number, type with the actual 

type 

arguments in the calling program. At least one argument is required; a maximum of 
63 is allowed. 

The type may be REAL, INTEGER, 
LOGICAL. 

DOUBLE PRECISION, COMPLEX, or 

A function subprogram performs a set of calculations when its name appears in an expression in a referencing 
program unit. Execution of the function subprogram must result in a value being defined for the function 
name. A function subprogram can modify the value of one or more of its arguments or store data in common. 

7-8 60497800 A 



Dummy arguments which re names must be dimensioned within the sub 
or type statement. 

Adjustable dimensions are permitted in function subprograms (details 
are given in Using Arrays later in this section). 

The FUNCTION statement contains the subprogram symbolic name that is used as the entry point when the 
function is referenced. ';(~'> The func-
tion name must not appear any nonexecutable statements other than the FUNCTION statement in the sub-
program. The type of the function name must be the same in the referencing program and the referenced 
function subprogram. When type is omitted, the type of the function result is determined by the first char
acter of the function name. 

The function subprogram can contain any statements except PROGRAM, BLOCK DATA, SUBROUTINE, 
another FUNCTION statement, or any statement that directly or indirectly references the function being 
defined. The function subprogram begins with a FUNCTION statement,. should have at least one RETURN 
statement, and has an END statement Control is returned to the 
referencin ro ram when either a RETURN 

A function subprogram can have the same name as that of an intrinsic or basic external function supplied by 
FORTRAN. Section 8 defines the conditions under which programmer supplied routines override the 
FORTRAN supplied routines. 

Example: 

Calling Program 

DIMENSION ARY (5,5) 

10 RES=DIAG(ARY,5)**2 

Subprogram 

FUNCTION DIAG (A,N) 
DIMENSION A(N,N·) 
DIAG=A( 1, 1) 

DO 70 1=2,N 
70 DIAG=DIAG*A{I,I) 

RETURN 
END 

The statement labeled 10 contains the reference to function DIAG. The statement labeled 70 sets the 
function name to a value. At the end of the function subprogram execution, RES will have the value of 
DIAG squared. 

BASIC EXTERNAL FUNCTION 

A basic external function is a predefined procedure included with the system. Section 8 contains further 
details. 

60497800 A 7-9 



INTRINSIC FUNCTION 

An intrinsic function is a compiler-defined procedure that is inserted in the referencing program at compile 
time. Section 8 contains further details. 

STATEMENT FUNCTION 

7 

name Type of the function is determined by the type of the function name. 

p1, ... , Pn Dummy arguments must be simple variable names,. At least one argument is required; a 
maximum of 63 is allowed. These arguments should agree in order, number, type, 

with the actual arguments used in the function reference. 

expression Any expression may be used. It may contain references to intrinsic or basic external func
tions, statement functions, or function subprograms. Names in the expression that do not 
represent arguments are normal variables having the same value as they have outside the 
function 

A statement function is a user-defined, single-statement computation and applies only to the program unit containing 
the definition. Since the statement function only defines the function, the value is computed when the function is 
referenced and the actual arguments are substituted for the dummy arguments in the definition. 

During compilation, the statement function definition is retained by the compiler. Whenever the function is referenced, 
instructions are generated in-line to evaluate the function (as opposed to FUNCTION subprograms for which an external 
procedure is used at each reference). The expansion of a statement function is the same as writing the expression in 
place of the reference. Thus the statement function does not reduce execution speed or efficiency. 

Statement function names must not appear in DIMENSION, EQUIVALENCE, COMMON or EXTERNAL statements; 
they can appear in a type declaration but cannot be dimensioned. Statement function names must not appear as actual 
or dummy arguments. If the function name is type logical, the expression must be logical. If the function name is not 
type logical, the expression must not be a relational or logical expression. For other types, if the function names and 
expression differ, conversion is performed as part of the evaluation of the function. For example, in the program 

. segment: 

LSUM(I,J) = OR(I,J) 

A = OR{15,50) 

B = LSUM(15,50) 

OR is typeless and LSUM is a statement function of type INTEGER. In the first function evaluation, no 
conversion takes place; the binary value is assigned to A. In the second function evaluation, the value is 
converted to floating point before being assigned to B. 

A statement function must precede the first executable statement and it must follow all specification state
ments. A statement function must not reference itself either directly or indirectly. 

7-10 60497800 E 



Examples: 

Statement Function Definitions 

ADD(X,Y,C,D)=X+Y+C+D 

AVERGE(O,P,Q,R)=(O+P+Q+R)/4 

LOGICAL A,B,EQV 
EQV(A,B)=(A.AND.B).OR. 

(.NOT.A.AND •• NOT.B) 

COMPLEX Z 
Z(X,Y)=(l.,O.)*EXP(X)*COS(Y) 

+(0.,1.)*EXP{X)*SIN{Y) 

Example 1: 

Statement Function References 

RESl=GROSS-ADD(TAX,FICA,INS,RES3) 

GRADE=AVERGE(TEST1,TEST2,TEST3, 
TEST4)+MID 

TEST=EQV{MAX,MIN).AND.ZED 

RESULT={Z{BETZ,GAMMA{I+K))**2-l.) 
/SQRT{TWOPIE) 

The statement function can be used to substitute a FORTRAN supplied function name in a program con
taining an alternate name for this function. 

SINF{X)=SIN{X) Statement function definition. 

A•SINF(3.0+B)+7. Statement function reference. 

The above sequence generates exactly the same object code as: 

A•SIN{3.0+B)+7. 

Example 2: 

To compute one root of the quadratic equation ax.2+bx+c=O, given values of a, b and c, an arithmetic 
statement function can be defined as follows: 

ROOT {A,B,C)={-B+SQRT{B*B-4.*A*C))/(2.0*A) 

When the function is used in an expression, actual arguments are substituted for the dummy arguments 
A, 8,C .. 

RESA =ROOT (6.5,7.,1.) 

is equivalent to writing: 

RESA = (-7.+SQRT(7.*7.-4.0*6.5*1.0))/(2.0*6.5) 

Wherever the statement function ROOT (A, 8, C) is referenced, the definition of that function - in this 
case (-8+SQRT(8*B-4.*A*C))/(2.*A) - is evaluated using the current values of the arguments A, B, C. 

60497800 A 7-11 



PROCEDURE COMMUNICATION 

The procedures defined by a statement function or a procedure subprogram are executed when they are 
referenced in a program unit. 

PASSING VALUES TO A PROCEDURE 

Values can be passed betw~en a calling program unit and a procedure as actual arguments in an argument 
list or through common. Arrays with adjustable dimensions can be used to pass values of arguments . 

. Arguments passed to a procedure must agree with the procedure definition in order, number, type, length, 

USING ARGUMENTS 

Arguments used for communication between procedures are either actual or dummy (formal). The arguments 
appearing in a subroutine CALL statement or a function reference are the actual arguments. ·Tue corre
sponding dummy arguments appear in the SUBROUTINE or FUNCTION statement. 

The actual arguments allowed for a particular procedure are given in the discussion of the procedure 
reference. 

Dummy arguments are used as variable, array or external procedure subprogram names within the subprogram 
and can be used to return values to the calling program. The dummy arguments are replaced by the actual 
arguments when the procedure is executed. Since all names are local to the program unit containing them, 
the same dummy argument name can be used in more than one program unit. A dummy argument must 
not appear in COMMON, EQUIVALENCE, or DATA statements within a program unit. 

Dummy arguments representing array names must appear within the subprogram in a DIMENSION or type 
statement giving dimension information. If dummy arguments are not dimensioned, they cannot be referenced 
as arrays in a subprogram. 

In a subprogram, the definition of a dummy argument that is associated with a constant actual argument or with 
any expression except a variable or array element is prohibited. 

If a subprogram reference causes a dummy argument to be associated with an entity in common in the refer
enced subprogram, definition of the dummy argument or of the entity in common is prohibited. If a subpro
gram reference causes two dummy arguments to be associated, the definition of either in the referenced subpro
gram is prohibited. 

7-12 60497800 c 



Example 1: 

Calling Program 

W(I,J)=FA+FB-GRATER(C-D,3*AX/BX) 

Subprogram 

FUNCTION GRATER(A,B) 
IF (A.GT.B)l,2 

1 GRATER=A-B 
RETURN 

2 GRATER=A+B 
RETURN 
END 

This example shows the normal use of arguments in a function subprogram. The actual argument C-D is 
used in place of the dummy argument A and 3*AX/BX is substituted for dummy argument B when the 
function subprogram is executed. 

Example 2: 

CALL SUBA(1.5) SUBROUTINE SUBA(R) 

IF (R.NE.0) R = 0 

This example contains a prohibited definition of a dummy argument, R, which is associated with a con
stant actual argument. 

Example 3: 

CALL SUBB (X, X) SUBROUTINE SUBB (A, B) 

A y 

Z B 

This example contains a prohibited definition of a dummy argument, A, which has been previously 
associated with another dummy argument, B, in the referencing program unit. 

Example 4: 

COMMON X 

CALL SUBC (X) 

SUBROUTINE SUBC (8) 

COMMON A 

A y 

Z B 

This example contains a prohibited definition of an entity in common, A, which is associated with a 
dummy argument, B, in the same subprogram. 

60497800 A 7-13 



USING COMMON 

Common can be used to transfer values between a calling program unit and a subprogram. Passing values 
through common is more efficient than passing values through arguments in a CALL statement or function reference. 
If a dummy argument in a subprogram is associated with an entity in a common block in the same subpro
gram, the defmition of either is prohibited. 

USING ARRA VS 

The array dimensions in a subprogram must be the same as those in the calling routine if the subscripts are 
to agree between the called and calling program units. If a dummy argument is not dimensioned, it cannot 
be referenced as an array in the subprogram. 

If any of the entries in a subscript of a type or DIMENSION statement is an integer variable name, the 
array is called an adjustable array. The variable names are called adjustable dimensions. Such an array 
can only appear in a procedure subprogram. The dummy argument list of the subprogram must contain 
the array name and the integer variable names that represent the adjustable dimensions. The values of the 
actual arguments that represent array dimensions in the argument list of the reference must be defined 
prior to calling the subprogram and cannot be redefined during execution of the subprogram. The absolute 

7-14 60497800 A 



size of the actual array may not be exceeded. For every array appearing in an executable program, there 
must be at least one constant array dimension associated through subprogram references. 

In a subprogram, an array name that appears in a COMMON statement must have fixed dimension 
specifications. 

REFERENCING A FUNCTION 

A function is referenced when the name appears in an expression. A function must not directly or indirectly 
reference itself. The reference can appear anywhere in an expression that an operand of the same type can 
be used. 

When a statement function or intrinsic function is referenced, instructions are generated in-line to evaluate the 
function. The value is computed with the actual arguments substituted for the dummy arguments in the 
definition. 

When a function subprogram or a basic external function is referenced, control is transferred to the function 
subprogram and the values of the actual arguments are substituted for the dummy arguments. Control is 
returned to the referencing program unit when a RETURN is encountered. 

Actual arguments in a function subprogram reference may be an expression, constant (including Hollerith), 
variable, array name, array element name, subroutine subprogram name, external function name (not intrinsic 
function or statement function), or function reference (the function reference is a special case of an arith
metic expression). 

60497800 A 7-15 



CALLING A SUBROUTINE SUBPROGRAM 

( 
( 

name Name of subroutine called. 

Actual arguments which must correspond in order, number, type, 
specified in the SUBROUTINE statement. 

I 

with thos: 

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A subroutine 
must not directly or indirectly call itself. The CALL statement transfers control to the subrc,utine and either 
a RETURN or in the subroutine returns control to the calling program unit. If a RETURN is 
encountered, control is transferred to the first executable statement following the CALL statement. 

The CALL statement can contain actual arguments and statement labels. They must correspond in order, 
number, type, to those in the subroutine subprogram definition. 

The subroutine name must not appear in any specification state
ment in the calling program except an EXTERNAL statement. 

Actual arguments in a subroutine subprogram call can be any of the following: expression, constant, variable, 
array name, array element name, subroutine subprogram name, basic external function name (not an intrinsic 

7-16 60497800 c 



or statement function name), function reference (the function reference is a special case of an arithmetic 
expression). 

Example I: 

Calling Program Subprogram 

DO 5 I = 1,20 SUBROUTINE GRATER (A,B) 
IF (A.LE.B) GO TO 2 

1 B = A - B 
5 CALL GRATER {STACK{I),TEMP{I)) RETURN 

2 B = A + B 
RETURN 
END 

The subroutine subprogram GRATER is called 20 times since the CALL statement as the last statement in 
a DO loop causes looping to continue until the DO loop terminal parameter, 20, is satisfied. 

60497800 A 7-17 



7-18 60497800 A 



60497800 E 7-19 



7-20 

Fixed starting 
address for 

primary overlays 

Fixed starting 
address for ( 1,n) 

secondary overlays 

Zero lllllllllllllr~~~~~~~~~:__~ overlay Fixed starting address 
(0,0) 

for primary overlay 

Primary Starting address for 
overlay secondary overlay 

(3,0) (4,2} 

Secondary 
overlay 

(3,1) 

Fixed starting address 
for secondary overlay 

Zero overlay (Q,0) 

Primary overlay ( 1,0) 

Secondary overlay ( 1, 1 ) 

Zero (0,0) 

Primary 
overlay (4,0) 

60497800 E 



60497800 G 7-21 



·' ..... . 

:'.:\;:::~-:}:::/::·::=::<: ;:r::·-~:~:·:='.·:/··::.\::·._:~:;:,:_· .. ::·:.:·: .. '.:·::::::~·:{·;;:::::::='.=~/·::? .. ,< . . ... : . : .. , .. :. . .. . . ·.. . . . . . . ·>== ·:: ,._·= .... :· :, -:. · -~::··:-::·=:·: ·:. \:;·:·::·::'.. '<._:_ =.=>=. ·; \:_:_ ·, .... , (·.-;;.:;. =.'=\ .. , .. ,:·.:·:.':.:::·:: :::-~::.;·:. ::·: ::: .. : .. ::=::\=·._··_:_:,:;(_;·:.·:_ .. ;:.:=.: 

~~~~h~r{~~,'~~~~~·itiu~i'.~v~'l'~~t~i'~~'·A·;~~'~'o)~., i~~~~· ~e~~~)~p6~i~~,~~ 
~g~~ati~g··•· t?'!····· .. ·.~~~··. gverl~;r~••• ... ar~ .. ···.te> •... lJ.~ ~~tt~n·••i··.?I1•.·.· .. ~~e sa1lle·.•.[~~~r ·. ":1~ C>Y~!l~ys11~~ci ... 110~ r.r~'47~ff the.· .. s~e .• flle;
urµe$8 in .fas(qverlayJ9ading tl10de.· .The·· second overlay (lirect;iye .. niMst be· o.f a primary()yed~ysµch as.··~,.o.

l~,Ul~ gtiglri ~~ttlt i$ omitted, ti\~ oyerl~y ls. Jqid,ed ~ fue;n~pµ~ yf ay;~Jtly af~~th#.Zero ov¢ilay. Tije
ofi~J>~fatneter c~~l he•ill~l~ded ()11.the ~yr9 .•. ·.9verl~)f..direct~ye.•.•~t.~~ ~s(}d .on •.. primary.a114 secort~ary.·oyeday
directives.· .. to atlow t!J.e···. pi-ogrammer to change the size·· of· tHank •. c<:>mmo11 at. overlay· generaJion titne•

7-22 60497800 D

60497800 D 7-23

7-24 60497800 A

60497800 A 7-25

7-26 60497800 A

11'.D

Example:

The following program, for exe:cut:ton
tions and is· to be used repeateary ..
placed on the file in the absolute

60497800 A 7-27

~
00

~
TABLE 8-1. INTRINSIC FUNCTIONS

t-l

Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example

Absolute IAI 1 ABS Real Real Y=ABS(X)
Value IABS Integer Integer J=IABS(I)

DABS Double Double DOUBLE A,B
B=DABS(A)

Truncation Sign of A times 1 AINT Real Real Y=AINT(X)
largest integer <;; I A I INT Real Integer l=INT(X)
for I A I<;; 248-1 IDINT Double lnteaer DOUBLE Z

°' ·~
'° -a
00
0
0

>

00
I
V\

I Intrinsic
Function

Obtain I magi-
nary Part of
Complex
Argument
--

Express Single
Precision Argu-
ment in Double
Precision Form

Express Two
Real Arguments
In Complex.
Form

Obtain Conju-
gate of a Com-
plex Argument

TABLE 8-1.

I I
Number of

Definition Arguments

I I
1

I I 1

Al+A2i 2
(where i2 = -1)

a-bi 1
(where A=a+bi)

INTRINSIC FUNCTIONS (Contd)

I
Symbolic

I
Type of

I
Type of

Name Argument Function I Example

I
AIMAG

I
Complex

I
Real

I
COMPLEX A
D=AIMAG(A)

I DBLE I Real I Double

:aLE,'J£E:i

CMPLX Real Complex COMPLEX C
C=CMPLX(A 1,A2)

CON JG Complex Complex COMPLEX X,Y
Y=CONJG(X)

~

°'

~
.....J
00

8
"11

TABLE 8-2. BASIC EXTERNAL FUNCTIONS

Basic External Number of Symbolic Type of I Type of
Function Definition Arguments Name Argument Function I Example

Exponential I eA 1 I EXP I Real I Real I Z=EXP(Y)
-675.82<A<741.67 1 DEXP Double Double

e(X+iV) I 1 I CEXP I Complex I Complex
-675.82<X<741.67
I Yl<1T x z16

Natural

I
log

8
(A) 1 ALOG I Real I Real

Logarithm A>O 1 DLOG Double Double

log
8

(X+iY) 1 CLOGt I Complex I Complex
x2+y2*<)

Common log10(A) I 1 I ALOG10 I Real I Real
Logarithm A>O DLOG10 Double Double

Trigonometric siti(A) I 1 I SIN I Real I Real
Sine in radians I Al~7r x :z46 1 DSIN Double Double

sin(X+iV) I 1 I CSIN I Complex I Complex
IXI< 7r x 246

IYl<741.67

Trigonometric cos(A) I 1 I cos I Real I Real
Cosine in IAl<1T x ~ 1 DCOS Double Double

radians
cos(X+iV) I 1 I ccos I Complex I Complex
IXl~7r x 246
IYl<741.67

Hyperboiic I tanh(A) I 1 I TANH I Real I Real
Tangent 1 DTANH Double Double

tcLOG returns values with imaginary parts in the range (-1T,1T]. For x <O, therefore, CLOG(x+iO) returns an imaginary part with a value =+7T;
CLOG(x+iO+) returns an imaginary part with a value ~+?r; and CLOG(x-iO+) returns an imaginary part with a value ~1T.

~
~
00

8
"TJ

~
f
t-.>

TABLE 8-2. BASIC EXTERNAL FUNCTIONS (Contd)

Basic External Number of Symbolic Type of
Function Definition Arguments Name Argument

Error 2 A

Function
J,r J e-t2dt 1 ERF Real

0

Complementary 2 00 2 1 ERFC Real
Error Function Jir{e-t dt

A<25.923

Hyperbolic arctanh(A) 1 ATANH Real
Arctangent IAI <1

Trigonometric sin(A) 1 SINO Real
Sine in IAI < 247

Degrees

Trigonometric cos(A) 1 COSD Real
Cosine in IAI < 247

Degrees

Trigonometric tan(A) 1 TANDt Real
Tangent in IAI < 247

Degrees

tThe argument for TAND must not be an odd multiple of 90.

Type of
Function Example

Real Y=ERF(X)

Real Y=ERFC(X)

Real Y=ATANH(X)

Real Y=SIND(X)

Real Y=COSD(X)

Real Y=TAND(X)

0\
0
~
\0
-.....J
00
0
0

0

00
I
-l

TABLE 8-2. BASIC EXTERNAL FUNCTIONS (Contd)

I Basic External- I Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example

Square

'

(A) 112 (non- 1 SORT Real Real Y=SORT(X)
Root A~O negative 1 DSORT Double Double

root)
I CSORTt

A1/2 (. . I I 1 I Complex I Complex
pnnc1pa

value

Arctangent I arctan (A) I 1 I ATANtt Real Real
DATANtt Double Double

arctan (A1/A2)
I

2 I ATAN2ttt Real Real
A1 2+A22=#=0 2 DATAN2ttt Double Double

Remaindering A1 (mod A2) I 2 I DMOD~ Double Double

Modulus Va4b2- I 1 I CABS I Complex I Real
A=a+bi

tCSORT returns values in the right half plane.
ttATAN and DATAN return values in the range(-..!,..!!:).

tttATAN2 and DATAN2 return values in the range ~-l7T]. For x < 0, therefore, ATAN2(0,x) returns a value=+ 1T; ATAN2(0+,x)
returns a value ~ + 1T; and ATAN2(0-,x) returns a value ::::::: - 1T.

~The function DMOD (a,b) is defined.as a-[a/b]b,where[X] is the largest integer that does not exceed the magnitude of X with sign the same as X;
the result is not defined when the second argument is zero.

~~ ACOS and DACOS return valµes in the range [0,7r]. ~~~ ASIN and DASIN return values in the range [- ~' ~].

When a function subprogram is defined with the same name as that of a basic external· function, the user
definition overrides the library definition only if, in the calling program unit, the name of the function appears
either in an EXTERNAL statement or in an explicit type statement that overrides the type associated with
the library function, or if option T, D, or OPT=O is specified on the FTN control statement.

Table 8-2 lists the basic external functions.

Arguments for which a result is not mathematically defined, or those of a type other than that specified,
should not be used. Arguments of the trigonometric functions SIN, COS, and TAN are in radians; those of
SIND, COSD, and T AND are in degrees. The inverse trigonometric functions return principal values in radians.

If the name of the function appears either in an EXTERNAL statement or in an explicit type statement that
overrides the type associated with the library function, or if option T, D, or OPT=O is specified on the FTN
control statement, the arguments of all external functions are checked to ensure that they are neither indefinite
nor infinite and fall within the limits listed in the Definition column of table 8-1. Argument checking is pro
vided unconditionally for all single and double precision math functions except DSIN, DCOS, DLOG, and
DLOGlO. An informative diagnostic is provided when an argument is found to be invalid.

MISCELLANEOUS UTILITY SUBPROGRAMS

The utility subprograms described below are supplied by the system and are always called by name (section
17 defines call by name). A user-supplied subprogram with the same name as a library subprogram overrides
the library subprogram. Other utility routines, such as the mass storage routines, CYBER Record Manager
interface routines, Sort/Merge interface routines and Post Mortem Dump routines are described later in this section.

In the definitions listed under the routines:

i and n are integer variables, constants, or expressions.

j is an integer variable.

a and b are variable or array names of any type.

u is a unit designator (as defined in section 5).

H is a Hollerith specification.

RANDOM NUMBER GENERATOR

RANF (n)t

Random number generator. Returns values uniformly distributed over the range (0,1); the value 0 and 1 are
excluded. n is a dummy argument which is ignored. Result is type real.

tRANF is an intrinsic function.

8-8 60497800 E

CALL RANSET(n)

Initializes seed of RANF. n is a one-word bit pattern. Bit 0 will be set to 1 (forced odd), and bits 59
through 48 will be set to 1717 octal.

CALL RANGET(n)

Obtains current seed of RANF between 0 and 1. n is a symbolic name to receive the seed. It is not neces
sarily normalized. The value returned may be passed to RANSET at a later time to regenerate the same
sequence of random numbers.

OPERATING SYSTEM INTERFACE ROUTINES

DATE(a) or CALL DATE(a)t

The current date is returned as the value of argument a or of the function in the form lOHbmm/dd/yyb (under
NOS/BE l, SCOPE 2) or lOHbyy/mm/dd. (under NOS I), where o denotes a blank, mm is the number of the
month, dd is the number of the day within the month, and yy is the year. The value returned is Hollerith data
and can be output using an A format specification.tt

The default type of the function DATE is real; thus if J and K are integer variables as in:

J = OATE(K)

J will not be useful because the value returned will have been converted from real to integer.

JDATE(a) or CALL JDATE(a)t *
The current date is returned as the value of argument a or of the function in the form SRyyddd, where yy
is the year and ddd is the number of the day within the year. The value returned is Hollerith data and can
be output using an R format specification. The type of the function JDATE is integer.

SECOND(t) or CALL SECOND(t)t

The central processor time is returned from start-of-job in seconds as a real number, usually accurate to two
decimal places. t is a real variable.

Example:

OPTIM =SECOND (CP)

tTh.ese routines can be used as functions or subroutines. The value is returned via the argument and the
normal function return.

* Not available under SCOPE 2.

tt The date format can be changed by the installation.

60497800 D 8-9

TIME(a) or CALL TIME(a)t

CLOCK(a) or CALL CLOCK(a)t

The current reading of the system clock is returned as the value of argument a or of the function in the form
1 OHbhh.mm.ss., where b denotes a blank, and hh, mm, and ss are the number of hours, minutes, and seconds,
respectively. The value returned is Hollerith data and can be output using an A format specification.

The default type of the functions TIME and CLOCK is real; thus if J and Kare integer variables in the following
statement, J is not useful because the value returned will have been converted from real to integer.

Example:

J = TIME(K)

CALL DISPLA (H,k)

A name and a value are placed in the dayfile. His a Hollerith specification of not more than 50 characters; k is
a real or integer variable or expression and is displayed as an integer or real value. Characters with display code
greater than 57 octal are replaced by blanks when displayed at the operator's console. If the first character is $,
the message will flash at the console except under NOS 1, which allows flashing messages only for system origin jobs.

Example:

CALL DISPLA (7H TIME = , STOP-START)

CALL REMARK (H)

Places a message in the dayfile. Under SCOPE 2, the maximum message length is 90 characters displayed on one line.
Under NOS/BE 1, the maximum message length is 80 characters displayed 40 characters per line. Under NOS 1, the
message length is one line of 30 characters. A message exceeding the maximum length is truncated. A message
shorter than the maximum must have all zeros in the lower 12 bits of the last word. These zeros are automatically
supplied when a Hollerith constant is used as the parameter. Characters with display code greater than 57 octal are·
listed in the dayftle, but they are replaced by blanks when displayed at the operator's console. If the first character
is $, the message will flash at the console, except under NOS 1, which allows flashing messages only for system
origin jobs.

Example:

CALL REMARK (9HLAST DECK}

CALL SUTE(i)

Sense light i is turned on. If i = 0, all sense lights are turned off. If
informative diagnostic is printed and sense lights are not changed.

CALL SLITET(i,j)

is other than 0 through 6, an

Sense light i is tested. If sense light i is on, j = 1; if sense light i is off, j = 2. If i is other than 1-6, an infor
mative diagnostic is printed, all sense lights remain unchanged, and j = 2. Execution turns off sense light i if
it is on.

tniese routines can be used as functions or subroutines. The value is returned via the argument and the
normal function return.

8-10 60497800 E

(Note: Logical variables generally provide a more efficient method of testing a condition than do calls to
SLITE or SLITET.)

CALL SSWTCH(i,j)

If sense switch i is on, j is set to 1; if sense switch i is off, j is set to 2. i is 1 to 6. If i is out
of range, an informative diagnostic is printed, and j is set to 2. The sense switches are set or reset by the
computer operator or by the control statements SWITCH (NOS 1 and NOS/BE 1), ONSW (NOS 1 only), and
OFFSW {NOS 1 only).

CALL OVERLAV(fname, primary, secondary, recall,k)

See section 7.

CALL EXIT

Program execution is terminated and control is returned to the operating system. (Note: use of the STOP
statement is preferable to CALL EXIT.)

CALL CHEKPTX(filelist,n)

A checkpoint dump of the files specified is taken. If n is zero, all files are checkpointed. If n is nonzero, the
fdes specified by filelist are checkpointed.

filelist Array in the following format:

59 17 11 0

Word 1 n 0000

Word2 lfn1 f1*

Word 3 lf"2 f2*

~ ~
~ ~

Word n+ 1 lfnn fn *

*noes not apply to SCOPE 2.

604978000 8-11

n

If~

*

Number of files in following list, to a maximum of 42.

Name (in left justified display code) of user mass storage files to be processed.

Number indicating specific manner in which lfn is to be processed.

0

2

3

Mass storage file is copied from beginning of information to its position at
checkpoint time, and only that portion will be available at restart. The
ftle is positioned at the latter point.

Mass storage file is copied from its position at check point time to end of
information, and only that portion will be available at restart. The file is
positioned at the former point.

Mass storage file is copied from beginning of information to end of infor
mation; the entire file will be available at restart time. The file is positioned
at the point at which the checkpoint was taken.

The last operation on the file determines how the mass storage file is copied.

Example:

DIMENSION IFILES(4)

IFILES(1) = 300008

IFILES(2) = 5LTAPE1 .OR. 100008

IFILES(3) =SL TAPE2 .OR. 300008

IFILES(4) = 5LTAPE3

CALL CHEKPTX(IFILES,1)

The names defined in the array passed to CHEKPTX must be the actual file names used at run time.

For more information, refer to the operating system reference manual checkpoint/restart discussions.

CALL RECOVR(name,flags, checksum)*

name Name of subroutine to be executed if flagged conditions occur (must be specified in an
EXTERNAL statement).

flags Octal value for conditions under which recovery code is to be executed, as outlined below.
Conditions can be combined as desired, with octal values up to 177 allowed.

001 Arithmetic mode error.
002 PP call or auto-recall error.

*Not available under SCOPE 2.

8-12 60497800 E

004 Time or storage limit exceeded.
010 Operator drop, kill, or rerun.
020 System abort.
040 CP abort.
100 Normal termination.

checksum Last word address of recovery code to be checksummed; 0 if no checksum is desired.

The RECOVR subroutine allows a user program to gain control at the time that normal or abnormal job ter
mination procedures would otherwise occur. Initialization of RECOVR at the beginning of a program estab
lishes the conditions under which control is to be regained and specifies the address of user recovery code. If
the stated condition occurs during program execution, control returns to the user code. If necessary, the sys
tem increases the CP time limit, input/output time limit, or mass storage limit to provide an installation defined
minimum of time and mass storage for RECOVR processing. No limit is increased more than once in a job.
RECOVR can be called more than once during program initialization to reference different user recovery sub
routines. These calls to RECOVR can use different combinations of conditions for the same or different user
recovery subroutines.

No more than five routines can be specified by RECOVR in one program. If an error occurs and more than one
routine has been established for that error, the routines are called successively, with the routine most recently
specified called first.

The second specification of a subroutine overrides its previous parameters. This override can be used to remove a
subroutine from the RECOVR list by passing a mask of zero.

A checksum of the user recovery code can be requested during initialization. If flagged conditions subsequently
occur, RECOVR again checksums the code before returning control to it. This gives some assurance of user code
integrity before it is executed.

If the checksum parameter is zero, no checksum is done.

If one of the user's selected error conditions occurs, RECOVR gains control, performs internal tasks, and then
transfers control to the user's recovery subroutines. The following three arguments are passed to the user's
recovery subroutine:

1. A 17-word integer array. The first 16 words are an image of the exchange package; the seventeenth word is
the contents of RA+ 1. The first word of the exchange package contains the value of BO; bits 0 through 17
of BO contain the error flag.

2. A flag that, upon return, determines the type of program termination. If the user's recovery sub
routine sets the flag non-zero, the job terminates normally, as if no errors had occurred. If the
flag remains zero, the job continues as if RECOVR had not been called, that is, the original
system error code is restored and processed.

3. An array, starting at RA+l, that allows a FORTRAN subroutine to access all of the user's field
length.

60497800 E 8-13

If the recovery subroutine was called because of normal termination, the subroutine, before returning, should
flush the buffers of all output files. Buffers can be flushed by an ENDFILE or REWIND statement.

In an overlay structured program, calls to RECOVR as well as the user recovery subprograms should be in the
(0,0) overlay.

For further information about RECOVR, refer to the appropriate operating system reference manual.

Example:

PROGRAM MAIN(INPUT,OUTPUT)

EXTERNAL AEPAEV,CHKSUM

CALL AECOVR(REPREV,728,LOCF(CHKSUM))

STOP

END

SUBROUTINE REPAEV(IXCHNG,IFLAG,IFLDLN)

DIMENSION IXCHNG(17), IFLDLN(40000B)

IFLAG = 1

PAINT 10, IXCHNG, .OFLDLN(I), 1=1,64)

10 FORMAT (3(6X, 020))

RETURN

ENTRY CHKSUM ~----------- determines end of code to be checksummed
END

DEBUGGING AIDS

A number of calls and functions useful in debugging are described here. Many users find CYBER Interactive Debug
and/or Post Mortem Dump more useful. They are described near the end of this section.

CALL DUMP (a1,b1,f 1, .•. , an,bn,fn)

CALL PDUMP (a1,b1,f 1, ... , a
0
,b

0
,fn)

Dumps central memozy on the OU1PUT file in the indicated format. PDUMP returns control to the calling
program; DUMP terminates program execution. ai and bi specify the beginning and the end of the storage
area to be dumped. 1 ~ n ~ 20. f is a format indicator, as follows:

f = 0 or 3 octal dump

f = 1 real dump

f = 2 integer dump

For f values 0 through 3, 3i and bi are the first and last words dumped. If 4 is added to any f value, the
values of ai and bi are used as the addresses of the first and last words dumped within the job's field length.
An ASSIGN statement or the LOCF function can be used to get addresses for the 3i and bi parameters.

8-14 60497800 F

Examples:

CALL PDUMP(A(1),A(100), 1) Dumps from A(l) to A(l 00) as real numbers

CALL PDUMP (0, 10008, 4) Dumps from location 0 to lOOOB in octal

CALL STRACE

Provides traceback information from the subroutine calling STRACE back to the main program. Traceback
information is written to the file DEBUG. To obtain traceback information interspersed with the source
program, DEBUG should be equivalenced to OUTPUT in the PROGRAM statement. (Refer to STRACE,
section 9).

LEGVAR(a)

Checks the value of variable a. Returns the result -1 if variable is indefinite, + 1 if out of range, and 0
otherwise. Variable a is type real; result is type integer.

CALL SYSTEM(ermum,mesg)

ermum

mesg

Error number. An integer value from 0 to 9999 decimal. Error numbers used by the
compiler (listed in appendix B) retain the severity associated with them. Error numbers
51 (non-fatal) and 52 (fatal) are reserved for the user. If an error number greater than
the highest number defined in appendix B is specified, 52 is substituted.

Error message: entered as a Hollerith constant with the first character used as a carriage
control character and not printed.

The subroutine SYSTEM enables the user to issue an execution-time error message.

If error number zero is entered, the message is ignored, the output buffers are flushed, and control is returned
to the calling program.

The file OUTPUT should be declared before SYSTEM is called. Otherwise, no errors are printed; and a message
to this effect is entered in the dayfile.

Each line is printed unless the line limit of the OUTPUT buffer is exceeded, in which case the job is terminated.

Example:

CALL SYSTEM (3, =f:. CHECK DATA =I=)

CALL SYSTEMC (errnum,speclist)

errnum Error number for which non-standard recovery is to be implemented.

60497800 c 8-15

speclist Integer array containing error processing specifications is consecutive locations:

word I
word 2
word 3
word 4
word 5
word 6

F/NF (I = fatal, 0 = non-fatal).
Print frequency
Frequency increment
Print limit
User-specified error recovery routine address
Maximum traceback limit applicable to all errors; this limit is
20 unless changed by a call to SYSTEMC

SYSTEMC enables the user to alter the contents of the error table, which contains specifications that regulate
error processing. The error table is ignored for erroneous data input from a connected (terminal) file.

In an overlay program, if SYSTEMC is not called in the (0,0) overlay, the routine might not be available
to higher level overlays.

In the error table, the first entry corresponds to error number I, the second to error number 2, and so on.
Each entry has the following format:

59 51

print frequency
frequency increment

print frequency

frequency increment

print limit

detection total

F/NF

8-16

43 31 20 17 0

detection FIAi user-specified
print limit

total ~~ recovery address

By default, print frequency value is 0. If the value is changed to n by a call
to SYSTEMC, diagnostic and traceback information is listed every nth time until
the print limit is reached.

By default, frequency increment value is I. This specification can be changed
by a call to SYSTEMC if the call specifies print frequency as 0. When fre
quency increment is 0, diagnostic and traceback information is not listed; when
it is I, such information is listed until the print limit is reached; when the
frequency increment is n> I, such information is listed only the first n times
unless the print limit is reached first.

By default, print limit value is 10. It can be changed by a call to
SYSTEMC.

Detection total is a running count of the number of times an error occurs.
The final value is reported in the error summary issued at end of job if
SYSTEMC is called during execution.

This bit specifies the severity of the error: I indicates a fatal error; 0, non
fatal. The severities of system defined errors are given in appendix B. All
errors defined by the user with these numbers in a call to SYSTEM retain the
specified severity. The severity of any error can be changed by a call to
SYSTEMC, however.

60497800 c

A/NA

user-specified
recovery address

The A/NA bit is ignored unless a non-standard recovery address is specified;
it can be set only during assembly of SYSTEMC. When this bit is set, the
address in an auxiliary table is passed in the third word of the secondary
argument list to the recovery routine. Each word in the auxiliary table must
have the error number in its upper I 0 bits, so that the address of the first
error number match is passed to the recovery routine. An entry in the aux
iliary table for an error_ is not limited to any specific number of words.

This address is specified in a call to SYSTEMC.

A negative value for any word in the speclist indicates that the current value of that specification is not to be
changed. A user-specified error recovery routine activated by a call to SYSTEMC can be canceled by a sub
sequent call with word 5 of the speclist set to zero.

If SYSTEMC has been called, an error summary is issued at job termination indicating the number of times
each error occurred since the first call to SYSTEMC.

For an error detected by a routine in the math library, a user-supplied error recovery routine should be a
function subprogram of the same type as the FORTRAN function detecting the error. For any other error,
a user-supplied error recovery should be a subroutine subprogram.

When SYSTEMC is called from an overlay or segment, it must reside in the (0,0) overlay or the root segment.

When an error previously referenced by a SYSTEMC call is detected, the following sequence of operations is
initiated:

1. Diagnostic and traceback information is printed in accordance with the specification in the pertinent
error table entry. The traceback infonnation is terminated for any of the following conditions:

Calling routine is a program

Maximum traceback limit is reached.

No traceback information is supplied.

2. If the SYSTEMC call references a user-specified error recovery routine address, SYSTEMC,
FORSYS=, and the routine detecting the error are delinked from the calling chain, and the
user-supplied error recovery routine is entered.

3. If the error is non-fatal, control returns to the routine that called the routine detecting the error.
An error summary is printed at job termination.

4. If the error is fatal, all output buffers are flushed, an error summary is printed, and the job is
terminated.

60497800 D 8-17

If a non-standard recovery address is specified in the SYSTEMC call, the following information is available to
the user recovery routine:

Register Contents

Al Address of argument list passed to routine detecting the error for errors detected by a
math library routine.

Address of the FIT for error 103.

Undefined for all other errors.

Xl Address of the first argument in the list for errors detected by a math library routine.

Undefined for all other errors.

AO Address of argument list of routine that called the routine detecting the error.

Bl Address of a secondary argument list containing, in successive words:

Error number associated with this error.

Address of message associated with this error.

Address within auxiliary table if A/NA bit set; otherwise 0.

In upper 30 bits, instruction consisting of RJ to SYSERR.j; in lower 30 bits, address of
traceback information for routine detecting the error.

Information in the secondary argument list is not available to user supplied error recovery
routines coded in FORTRAN.

A2 Address of error table entry for this error.

X2 Contents of error table entry for this error.

Example 1:

8-18

PROGRAM EXPECT(OUTPUT)
DIMENSION IRAY(6)
DATA IRAY /6 • (-0)/

C SET PRINT LIMIT TO ZERO
fRAY(4)=0

X = EXP(800.0)
X = EXP(-800.0)

C CALL SYSTEMC TO INHIBIT PRINTING OF ERROR 115
C AND START ERROR SUMMARY ACCUMULATION

CALL SYSTEMC '115,IRAY)
PRINT • I I= I=
PRINT • ,r••**SYSTEMC IS CALLED TO SUPPRESS PRINTING:/=,

*' # OF ERROR 115:#

X • EXP(800.0)
X = EXP(-800.0)

60497800 c

PRINT*,+:/:
PRINT *,:/*****ERROR 115 DETECTED BUT NOT PRINTED+
END

ARGUMENT TOO LARGE, FLOATING OVERFLOW
ERROR NUMBER 30 DETECTED BY EXP

ARGUMENT TOO SMALL
ERROR NUMBER 115 DETECTED BY EXP

*****SYSTEMC IS CALLED TO SUPPRESS PRINTING OF ERROR 115

ARGUMENT TOO LARGE, FLOATING OVERFLOW
ERROR NUMBER 30 DETECTED BY EXP

*****ERROR 115 DETECTED BUT NOT PRINTED

ERROR SUMMARY
ERROR TIMES
0030 0001
0115 0001

Program EXPECT illustrates a standard error recovery in a math library routine and how. to suppress the print
ing of error message 115.

Example 2:

PROGRAM FXAMPLCTAPEl•OUTPUT>
EXTERNAL ITSOK
DIMENSION NARRAY(6)
DATA NARqAY/6*C•l)/
NARRAY (1) • 0
NARRAY(5t • LOCF<ITSOK)
NARRAY(6) • l
CALL SYSTEMCC661NARRAY>
NAMELISTIDATAl/AtB
READ U t OATAl>
REWIND 1
NAMELISTIOATA2/AtB
READ Cl• DATA2)
NAMELISTIDATAOUTIAtB
PRINT DATAOUT
STOP
END
SUBROUTINE ITSOK
PRINT 10

10 FORMAT <•ODATA SET NAMED ABOVE NOT USED•>
RETURN

Input:

END

5DATA2
A = 3.•
B = 4.,
s

60497800 c 8-19

Output:

NAMELJST NAME NOT FOUND • DATAl
ERROR NUMBER 0066 DETECTED BY NAMlN• AT ADDRESS 000435

DATA SET NAMED ABOVE NOT USED

SDATAOUT

• e3E•Olt

B • e4E•Olt

SEND

ERROR SUMMARY
ERROR

0066
TIMES
0001

CALL LIMERR(liR1)

litn Integer value; the program does not terminate when data errors are encountered until the
number of errors occurring after the call exceeds the value of lim.

NUMERR(n) A function that returns the number of errors since the last LIMERR call. Result type is
integer. n is a dummy argument which is ignored.

The subroutine LIMERR and function NUMERR enable the user to input data without the risk of ~ermination
when improper data is encountered.

LIMERR can be used to inhibit job termination when data is being input with a formatted, NAMELIST, or list
directed read, or with DECODE statements. It operates only when data is encountered that would ordinarily
cause job termination under error number 78 ("ILLEGAL DATA IN FIELD") or error number 79 ("DATA
OVERFLOW"). LIMERR has no effect on the processing of errors in data input from a connected (terminal) file.

LIMERR initializes an error count and specifies a maximum limit (lim) on the number of data errors
allowed before termination. LIMERR continues in effect for all subsequent READ statements until the limit
is reached. LIMERR can be reactivated with another call, which will reinitialize the error count location and
reset the limit. A LIMERR call with lim specified as zero nullifies a previous call; improper data will then
result in job termination as usual.

When improper data is encountered in a formatted or NAMELIST read or in a DECODE statement with LIMERR
in effect, the bad data field is bypassed, and processing continues at the next field. When improper data is
encountered in a list directed read, control moves to the statement immediately following the READ statement.

NUMERR returns the number of errors since the last LIMERR call. The previous error count is lost when
LIMERR is called, and the count is reinitialized to zero.

8-20 60497800 G

Example:

The following example illustrates the use of LIMERR and NUMERR to suppress normal fatal termination
when large sets of data are being processed.

CALL LIMERR (200)
READ(1, 125)(ARAY(l),1=1,1500)

125 FORMAT (3F10.5,E10.1)
IF (NUMERR(O).GT.0) GO TO 500

500 CALL LIMERR(200)
READ(1,125)(BRAY(l),1=1, 1500)
IF (NUMERR(O).GT.0) GO TO 600

600 CALL LIMERR(100)
READ(1,230)(LRAY(l),1:1,500)
PRINT 99, NUMERR(O) .
READ(4,127)(MRAY(l),1=1,500)
PRINT 99, NUMERR(O)
READ(4,225)(NRAY(l),1=1,50)

IF (NUMERR(O).GT.O) GO TO 700

700 STOP
END

When LIMERR is called, a limit of 200 errors is established. The number of errors is reset to zero. After
ARAY is read, NUMERR(O) is checked. If errors occur, the following statements are not processed and a
branch is made to statement 500. Had LIMERR not been called, fatal errors would have terminated the pro
gram before the branch to statement 500. At statement 500, LIMERR once more initializes the error count,
and execution continues.

60497800 E 8-21

Example:

PRlGRA M EX AHPL (TAPE1, OUTPUT)
DIMENSION ACAR0(5)
DATA ACARD 1-1.,-2.,-3.,-4.,-5./
CALL LIMERR(2)
READ(1,10) <ACARO<I>,I=1,5)

1J FO~M~T (F4. U
PRINT 20, NUMERRtil)

2J FO~H~T ("1H~t 11, + DATA ERRORS FOUND•//)
PRINT 30, <ACARDll),I=1,5)

3 J F 0 RM AT (1X, F 4. U
STOP
EN[)

Input:

47.1
25./
48.3
24t6
91.2

Output:
2 25./

8-22

•••••••••• 12345~783~1234567890123456789012345&7&~0

• ERROR DATA INPUT + ILLE.GAL DATA IN FIELD •t•
ERROR NUMBER 76 OETE~TEO BY INCOH= AT ADDRESS 000215
;ALLEO FROM ~RAKER= AT ADDRESS 000345
CALLEO FROM INPC: AT ADDRESS G00075
CALLEO FROM EXAHPL Af -INE 5

•• ~ ••••••• 12345~7~90123456789il123456789D1234567&~0

• ERROR DATA INPUT • ILLEGAL DATA IN FIELD 4 • 4

ERROR NUMBER 76 OETE~TEl.l BY INCOH= AT ADDRESS 000215
CALLEO FROM KRAKER= AT ADDRESS GOOJ~S
CALLEO FROM INPC= AT ADDRESS 000075
CALLEO FROH EXAHPL AT LINE 5

2 JATA ERRORS FOUND

ft7.1
-2. Q
ft3. 3
-4.0
91.2

604978000

INPUT/OUTPUT STATUS CHECKING

FORTRAN Extended provides the capability of checking for an end-of-file or a parity error condition following
read operations via the functions UNIT, EOF, and IOCHEC.

Any of the following conditions encountered during a read returns an end-of-file status via the functions UNIT
or EOF:

End of section (in the case of file INPUT only)

End of partition

End of information

Non-deleted W format flag record

Embedded tape mark

Terminating double tape mark

Terminating end-of-file label

Embedded zero length level 17 block

The functions UNIT and IOCHEC return a parity error indication for every record within or spanning a block
containing a parity error; however, such an indication does not necessarily refer to the immediately preceding
operation because of the record blocking/deblocking performed by the Record Manager input/output routines.

§Parity status can be checked on write operations that access mass storage files when the write check option
has been specified on the REQUEST statement for the file (SCOPE 2 Reference Manual). Write parity errors
for other types of devices (such as staged/on-line tape) are detected by the operating system, and a message
to this effect is written in the dayfile.

UNIT(u)

The UNIT function is used to check the status of a BUFFER IN or BUFFER OUT operation for an end-of
file or parity error condition on logical unit u. When UNIT is referenced, the user program does not regain
control until input/output operations on the unit are complete. The function returns the following values:

-1. Unit ready, no end-of-file or parity error encountered on the previous operation

+o. Unit ready, end-of-file encountered on the previous operation

+l. Unit ready, parity error encountered on the previous operation

Example:

IF (UNIT(5)) 12.14, 16

Control transfers to the statement labeled 12, 14 or 16 if the value returned was -1., 0., or +l., respectively.

§Applies only to SCOPE 2.

60497800 c 8-23

If 0. or + 1. is returned, the condition indicator is cleared before control is returned to the program. UNIT
should only be called for a file processed by buffer statements.

EOF(u)

The EOF function is used to test for an end-of-file condition on unit u following a formatted, list-directed,
NAMELIST, or unformatted read. Zero is returned if no end-of-file is encountered, or a non-zero value if end
of-file is encountered.

Example:

IF (EOF(5)) 10,20

returns control to the statement labeled 10 if the previous read encountered an end-of-file; otherwise, control
goes to statement 20.

If an end--of-file is encountered, EOF clears the indicator before returning control.

The EOF function retu~ns a zero value following read or write operations on random access files (files accessed
by REA:PMS/WRITMS), and also following write operations on all types of files, regardless of whether an end
of-file condition has been detected; therefore, the EOF function should not be used in those circumstances.

The user should test for an end-of-file after each READ statement to avoid input errors. If an attempt is
made to read on unit u and an EOF was encountered on the previous read operation on file, execution ter
minates and an error message is printed.

IOCHEC(u)

The IOCHEC function tests for parity error on unit u following a formatted, list-directed, NAMELIST, or
unformatted read. The value zero is returned if no error has been detected.

Example:

J = IOCHEC(6)

IF (J) 15,25

Zero value would be returned to J if no parity error occurred and non-zero if an error had occurred;
control would transfer to the statement labeled 25 or 15 respectively.

If a parity error occurs, IOCHEC clears the parity indicator before returning. Parity errors are handled in
this way regardless of the type of the external device.

8-24 60497800 c

OTHER INPUT/OUTPUT SUBPROGRAMS

LENGTH(u) or CALL LENGTHX(u,nw,ubc)

Returns information regarding the previous BUFFER IN or READMS call of the file designated by u. nw or
the value of LENGTH is set to the number of 60-bit words read. ubc is set to the number of unused bits in
the last word of the transfer. nw, ubc, and value returned are type integer.

After an unformatted BUFFER IN on a 9-track S or L tape, the unused bit count parameter of LENGTHX
is rounded down so as to indicate a whole number of 6-bit characters. For example, a BUFFER IN of a
record of 23 8-bit frames returns a length of four words with an unused bit count of 54, even though the
actual unused bit count is 56.

If an odd number of words is written to a 9-track S or L tape by an unformatted BUFFER OUT, the record
on the tape contains four additional zero bits at the right so as to be a whole number of 8-bit characters. If
such a record is subsequently read by BUFFER IN, the length indication in LENGTH or LENGTHX is one
word greater than the number of words originally written.

For a file accessed by buffer statements, LENGTH or LENGTHX should be called only after a call to UNIT
ensures that input/output activity is complete; otherwise, file integrity might be endangered.

Example:

NW = LENGTH(5)

or

CALL LENGTHX(5.NW,NU8C)

CALL LABEL(u,labinfo) *
u Logical unit number.

lab info Name of 4-word array containing label information in the format given for words 9-12 of
the file environment table (FET) in the operating system reference manual.

This subroutine passes label information to the operating system.

The control statement that requests the tape for the job must have specified that the tape has labels before the
CALL LABEL statement can be used.

*Recognized but ignored under SCOPE 2.

60497800 F 8-25

On input, the specified file's label is compared with the indicated information in labinfo (unless it was so
checked when an earlier LABEL control statement was executed). If any of the relevant fields were filled
with binary zeros by CALL LABEL, these fields are set to the values contained in the label read. If there is
a mismatch between the label read and any field not zero-filled, a request is sent to the operator for a GO
or DROP response.

On output, the appropriate information from labinfo is written as a label at the beginning of the specified
file. If any of the relevant fields are filled with binary zeros, the corresponding label field will be set to an
appropriate default value.

CALL LABEL should not be used with files accessed with CYBER Record Manager interface routines.

ECS/LCM SUBPROGRAMS

CALL MOVLEV (a,b,n)

Transfers n consecutive words of data between a and b. a and b are variables or array elements; n
is an integer value. a is the starting address of the data to be moved and b is the starting address of the
receiving location.

Example:

CALL MOVLEV(A,B.1000)

No conversion is done by MOVLEV. If data from a real variable is moved to an integer type receiving field,
the data remains real.

Example:

CALL MOVLEV (A, I, 1000)

After the move, I does not contain the integer equivalent of A.

Example:

DOUBLE PRECISION 01 (500). 02(500)

CALL MOVLEV (01, 02, 1000)

Since Dl is defined as double precision, n should be set to 1000 to move the entire DI array.

CALL READEC(a,b,n)

Transfers data from extended core storage to central memory.

a is a simple variable or array element located in central memory. b is a simple variable or array element located
in an extended core storage block or LCM block. n is an integer constant or expression. n consecutive words
of data are transferred beginning with a in central memory and b in extended core storage.

8-26 60497800 c

CALL WRITEC(a,b,n)

Transfers data from central memory to extended core storage or LCM.

No type conversion is done.

Example:

LEVEL 3,B

CALL READEC(A,8,10)

CALL WRITEC(A,B,10)

TERMINAL INTERFACE SUBPROGRAMS*

CALL CONNEC (u,cs)

u unit designator.

cs optional character set designator (applicable to NOS/BE 1 only): cs is an integer with a value
from 0 to 2, in accordance with the character set to be used for the data entered or displayed
at the terminal:

0 display code (default)
l ASCII-95
2 ASCII-256 code

cs should not be specified if the installation character set is a 63-character set.

If a FORTRAN program to be run under INTERCOM for NOS/BE 1, under the NOS 1 Time-Sharing System, under
the NOS l Interactive Facility, or under HELL07 for SCOPE 2, calls for input/output operations through the user's
remote terminal, all files to be accessed through the terminal must be formally associated with the terminal at the
time of execution.

In particular, the file INPUT must be connected to the terminal if data is to be entered there and an alternate logical
unit is not designated in the READ statement. The file OUTPUT must be connected to the terminal if execution diag
nostics are to be displayed or printed at the terminal, or if data is to be displayed or printed there and an alternate unit
is not designated in the WRITE or PRINT statement. These files are automatically connected to the terminal when the
program is executed under NOS 1 or under the RUN command of the EDITOR utility of INTERCOM.

Under HELL07, any file can be connected by providing a FILE control statement specifying CNF = YES.

Under INTERCOM, any file can be connected to the terminal by the CONNECT command.

Under all operating systems, the user can connect any file from within the program by using the CALL CONNEC
statement.

A file n is considered still connected if a CALL CONNEC (n) has been made by a program running at a terminal and if
the program terminates under normal or abnormal circumstances without a CALL DISCON (n). Any subsequent
input/output on n will still be through the terminal unless the file is returned.

*More information about INTERCOM is in the INTERCOM reference manual and the INTERCOM Interactive
Guide for Users of FORTRAN Extended. More information about NOS 1 is in the NOS 1 Time-Sharing
User's reference manual and the Interactive Facility reference manual. More information about HELL07 is
in the SCOPE 2 reference manual.

60497800 F 8-27

Under NOS 1, if CONNEC specifies an existing local file, the buffers for the file are flushed (if it is an output
file) and the file is returned. A subsequent DISCON for the file causes the connected file to be returned, but the
pre-existing file is not reassociated with the file name.

If cs is not specified, it is set to 0. If display code is selected, input/output operations must be formatted, list
directed, NAMELIST 7 or buffered.

If either of the ASCII codes is selected, input/ output operations must be either formatted or buffered. When buffer
input/output is used, either a FILE control statement (section 16) specifying RT=S must be provided, or blanks
cannot terminate a line.

When a CALL CONNEC specifies a file already connected with the character set specified, the call is ignored. If
the file specified is already connected with a character set other than that specified, cs is reset accordingly.

Data input or output through a terminal under INTERCOM is represented ordinarily in a CDC 64-character or
ASCII 64-character set, depending on installation option. For these sets, ten characters in 6-bit display code
are stored in each central memory word. As described above, a terminal user can specify from within a
FORTRAN program that data represented in an ASCII 95-character set (providing the capability for recog
nizing lowercase letters) or an ASCII 256-character set (providing the capability for recognizing lower-case
letters, control codes, and parity) be input or output through the terminal. For the ASCII 95-character and
256-character sets, characters are stored in five 12-bit bytes in each central memory word. Characters in the
ASCII 95-character set are represented in 7-bit ASCII code right justified in each byte with binary zero fill;
characters in the ASCII 256-character set are represented in 8-bit ASCII code right justified in each byte with
binary zero fill. When data represented in either ASCII character set code is transferred with a formatted
input/output statement, the maximum record length should be specified in the PROGRAM statement as twice
the number of characters to be transferred (see section 7). Allowance should also be made in input/output
operations for the fact that internal characters require twice as much space as external characters.

When the ASCII 95-character or 256-character set has been specified for terminal input/output under INTER
COM, blanks following the end of data on each line are not translated into ASCII code but are retained in
display code (as 558). Unless the user eliminates them, these blanks will appear on output as lowercase m
characters (two blanks in display code translates to one m in ASCII code). For formatted input, the user
can identify the end of data on a line by scanning data entered in nR2 format until the Hollerith constant
2Rbb (b = blank) is found. For buffered input, the end can be determined by reading the data into an
array, manipulating it with a DECODE statement, and then scanning as with formatted input.

For a FORTRAN program run under NOS 1, any file can be connected to the terminal by the ASSIGN com
mand. In addition, the user can connect any file from within the program by using the statement:

CALL CONNEC (u)

Data input or output through a terminal under NOS 1 is represented ordinarily in a standard 61-character set.
However, the user can elect to have data represented in an ASCII 128-character set (which provides the capa
bility for recognizing control codes and lowercase, as well as uppercase, letters) by entering the ASCII com
mand. Characters contained in the standard set are stored internally in 6-bit display code, whether or not
the ASCII command has been entered. The additional characters which complete the ASCII 128-character set
are stored internally in 12-bit display code if the ASCII command has been entered; otherwise, they are
mapped into the standard 61-character set and stored internally in 6-bit display code.

Under any system, if a file specified in a CALL CONNEC exists as a local file but is not connected at the
time of the call, the me's buffer is flushed before the me is connected to the terminal; under NOS l, the
me is returned.

8-28 60497800 D

CALL DISCON (u)

This subroutine disconnects a file from within a FORTRAN program.

This request is ignored if the specified file is not connected. After execution of this statement under NOS/BE 1,
the specified file remains local to the terminal. In addition, if the file existed prior to connection, the file name
is re-associated with the information contained on the device where the file resided prior to connection. Data
written to a connected file is not contained in the file after it is disconnected. Under NOS 1, a CALL
DISCON causes the connected file to be returned; the disconnected file name is not re-associated with the
pre-existing information.

All files to be connected or disconnected during program execution must be declared in the PROGRAM state
ment. An attempt to connect or disconnect an undeclared file results in a fatal diagnostic.

Calls to CONNEC and DISCON are recognized and ignored when programs are not executed under INTERCOM
or interactively under NOS 1.

Examples:

CALL CONNEC (6)

K = 4LAGES
CALL CONNEC (K)

CALL COi'lf\;EC (6.2)

CALL CONNEC (4LOATAtl>

CALL DISCON (b)

MASS STORAGE INPUT /OUTPUT

Mass storage input/output (MSIO) subroutines allow the user to create, access, and modify files on a random basis
without regard for their physical positioning. Each record in the flle can be read or written at random without
logically affecting the remaining file contents. The length and content of each record are determined by the user.
A random file can reside on any mass storage device. Record Manager word addressable file organization is used to
implement MSIO files. The Record Manager reference manual contains details of word addressable implementation.

A file processed by mass storage subroutines should not be processed by any other form of input/output.

RANDOM FILE ACCESS

Random file manipulations differ from conventional sequential file manipulations. In a sequential file, records
are stored in the order in which they are written, and can normally be read back only in the same order.
This can be slow and inconvenient in applications where the order of writing and of retrieving records differ
and, in addition, it requires a continuous awareness of the current file position and the position of the required
record. To remove these limitations, a randomly accessible file capability is provided by the mass storage
input/output subroutines.

In a random file, any record may be read, written or rewritten directly, without concern for the position or
structure of the file. This is possible because the file resides on a random-access mass storage device that can
be positioned to any portion of a file. Thus, the entire concept of file position does not apply to a random
file. The notion of rewinding a random file is, for instance, without meaning.

60497800 D 8-29

To permit random accessing, each record in a random file .is uniquely and permanently identified by a record
key. A key is an 18- or 60-bit quantity, selected by the user and included as a parameter on the call to
read or write a record. When a record is first written, the key in the call becomes the permanent identifier
for that record. The record can be retrieved later by a read call that includes the same key, and it can be
updated by a write call with the same key.

When a random file is in active use, the record key infonnation is kept in an array in the user's field length.
The user is responsible for allocating the array space by a DIMENSION, type, or similar array declaration
statement, but must not attempt to manipulate the array contents. The array becomes the directory or index
to the file contents. In addition to the key data, it contains the word address and length of each record in
the file. The index is the logical link that enables the mass storage subroutines to associate a user call key
with the hardware address of the required record.

The index is maintained automatically by the mass storage subroutines. The user must not alter the contents
of the array containing the index in any manner: to do so may result in destruction of the file contents.
(In the case of a sub-index, the user must clear the array before using it as a sub-index, and read the sub
index into the array if an existing file is being reopened and manipulated. However, individual index entries
should not be altered.)

When a permanent file that was created by mass storage input/output routines is to be modified it must be
attached with modify and extend permissions (append permission under NOS 1). Under NOS/BE 1 and
SCOPE 2, the EXTEND control statement should be used after the file is modified. Failure to extend the
file can render it unusable.

In response to a call to open the file, the mass storage subroutine automatically clear the assigned index array.
If an existing file is being reopened, the mass storage subroutines locate the master index in mass storage and
read it into this array. Subsequent file manipulations make new index entries or update current entries.
When the file is closed, the master index is written from the array to the mass storage device. When the file
is reopened, by the same job or another job, the index is again read into the index array space provided, so
that file manipulation may continue.

MASS STORAGE SUBROUTINES

0 bject time input/output subroutines control the transfer of records between central memory and mass storage.

OPENING A Fl LE

OPENMS opens the mass storage file and informs the system that it is a random (word addressable) file.

CALL OPENMS (u,ix,lngth,t)

u Unit designator.

ix Name of the array containing the master index.

lngth Length of master index

for a number index: lngth ;;;;rs (number of entries in master index) + 1

f for a name index: lngth ;;;;rs 2 • (number of entries in master index) +

8-30 60497800 D

t Type of index.

t = 0 file has a number master index

t = I file has a name master index

The array (ix) specified in the call is automatically cleared to zeros. If an existing file is being reopened, the
master index is read from mass storage into the index array.

Example:

DIMENSION 1(11)

CALL OPENMS (5,1, 11,0)

These statements prepare for random input/output on the file TAPES using an I I-word master index of the
number type. If the file already exists, the master index is read into memory starting at address I.

WRITING RECORDS

WRITMS transmits data from central memory to the file.

CALL WRITMS (u,fwa,n,k,r,s)

u Unit designator.

fwa Name of the array in central memory (address of first word).

n Number of 60-bit words to be transferred.

k Record key.

for number index:

for name index

Rewrite.

1 ~ k ~ lngth - 1

k = any 60-bit quantity except ±0

r = Rewrite in place. Unconditional request; fatal error occurs if new record
length exceeds old record length.

s

r = -1

r = 0

Sub-index flag.

s = 1

s = 0

Rewrite in place if new record length does not exceed old record length,
otherwise write at end-of-data.

No rewrite; write at end-of-data (default value).

Write sub-index marker flag in index control word for this record.

Do not write sub-index marker flag in index control word (default value).

End-of-data (for r = -1 and r = 0) is defined to be immediately after the end of the data record which is
closest to end of information. The first record written at end-of-data overwrites the old index.

Except under SCOPE 2, Record Manager operates more efficiently if n is always a multiple of 64. The r
parameter can be omitted if the s parameter is also omitted. The s parameter is for future file editing
routines. Current routines do not test the flag, but the user should include this parameter in new programs
(when appropriate) to facilitate transition to a future edit capability.

Example:

CALL WRI TMS (3, DAT A, 25,6, 1)

60497800 E 8-31

This state
DATA, a

READINt

READ MS

CA'

u

fwa

n

k

Except u

Example:

This state
address o

CLOSIN(

CLOSMS
close a fi
a file ere
lay progr

Since ne'
unless th
might ab
cause the

When usi
file bef01
the (0,0)
overlay c

CA

u

8-32

A separate array space must be declared for each sub-index that will be in active use. Inactive s1
may, of course, be stored in the random file as additional data records.

The sub-index is read from and written to the file by the standard READMS and WRITMS calls,
indistinguishable from any other data record. Although the master index array area is cleared by
when the file is opened, STINDX does not clear the sub-index array area. The user must clear the
array to zeros. If an existing file is being manipulated and the sub-index already exists on the fil
must read the sub-index from the file into the sub-index array by a call to READMS before S
called. STINDX then informs the mass storage routine to use this sub-index as the current indeJ
WRITMS to an existing file using a sub-index must be preceded by a call to STINDX to inforn
storage routine where to place the index control word entry before the write takes place.

If the user wishes to retain the sub-index, it must be written to the file after the current index d
has been changed back to the master index, or a higher level sub-index by a call to STINDX.

Example I creates and modifies a random file using a number index:

8-34

PROGRAM MSl (TAPE3)

C CREATE RANDOM FILE WITH NUMBER INDEX.

c
c

DIMENSION INDEX(ll), DATA(25)
CALL OPENMS (3,INDEX,11,0)

DO 99 NRKEY=l,10

C (GENERATE RECORD IN ARRAY NAMED DATA.)
c
c

99 CALL WRITMS (3,DATA,25,NRKEY)

STOP
END

PROGRAM MS2 (TAPE3)

C MODIFY RANDOM FILE CREATED BY PROGRAM MSl.
C NOTE LARGER INDEX BUFFER TO ACCOMMODATE TWO NEW
C RECORDS.

DIMENSION INDEX(l3), DATA(25), DATAMOR(40)
CALL OPENMS (3,INDEX,13,0)

6

Type of index.

t = 0 file has a number master index

t = 1 file has a name master index

The array (ix) specified in the call is automatically cleared to zeros. If an existing file is being reopened, the
master index is read from mass storage into the index array.

Example:

DIMENSION 1(11)

CALL OPENMS (5,1,11,0)

These statements prepare for random input/output on the file TAPES using an 11-word master index of the
number type. If the file already exists, the master index is read into memory starting at address I.

WRITING RECORDS

WRITMS transmits data from central memory to the file.

CALL WRITMS (u,fwa,n,k,r,s)

u Unit designator.

fwa Name of the array in central memory (address of first word).

n Number of 60-bit words to be transferred.

k Record key.

r

for number index:

for name index

1 <; k <; lngth - 1

k = any 60-bit quantity except _:!:O

Rewrite.

r =

r = -1

r = 0

Rewrite in place. Unconditional request; fatal error occurs if new record
length exceeds old record length.

Rewrite in place if new record length does not exceed old record length,
otherwise write at end-of-data.

No rewrite; write at end-of-data (default value).

s Sub-index flag.

s = 1 Write sub-index marker flag in index control word for this record.

s = 0 Do not write sub-index marker flag in index control word (default value).

End-of-data (for r = -1 and r = 0) is defined to be immediately after the end of the data record which is
closest to end of information. The first record written at end-of-data overwrites the old index.

Except under SCOPE 2, Record Manager operates more efficiently if n is always a multiple of 64. The r
parameter can be omitted if the s parameter is also omitted. The s parameter is for future file editing
routines. Current routines do not test the flag, but the user should include this parameter in new programs
(when appropriate) to facilitate transition to a future edit capability.

Example:

CALL WRITMS (3,DATA,25,6, 1)

60497800 E 8-31

This statement unconditionally rewrites in place of file T APE3, starting at the address of the array named
DATA, a 25-word record with an index number key of 6. The default value is taken for the s parameter.

READING RECORDS

READ MS transmits data from the file to central memory.

CALL READMS (u,fwa,n,k)

u Unit designator

fwa Name of the array in central memory (address of first word)

n Number of 60-bit words to be transferred. If n is less than the record length, n words
are transferred without diagnostic.

k Record key

for number index:

for name index:

k = 1 ~ k ~ lngth - 1

k = any 60-bit quantity except !. 0

Except under SCOPE 2, Record Manager operates more efficiently if n is always a multiple of 64.

Example:
CALL READMS (3,DATAMOR,25,2)

This statement reads the first 25 words of record · 2 from unit 3 (T APE3) into central memory starting at the
address of the array DATAMOR.

CLOSING A FILE

CLOSMS writes the master index from central memory to the file and closes the file. CLOSMS is provided to
close a ftle so that it can be returned to the operating system before the end of a FORTRAN run, to preserve
a file created by an experimental job that might subsequently abort, or for other special purposes. In an over
lay program that is STATICly loaded, a mass storage file must be closed explicitly by CLOSMS.

Since new data records can overwrite the old index, a file which has had new data records added is invalid
unless the file is closed. (Under NOS/BEi and SCOPE 2 permanent files must also be extended.) Jobs which
might abort before closing the files should use RECOVR to recover and terminate normally (i.e. STOP) to
cause the files to be closed.

When using mass storage input/ output subroutines in overlays or segments, care should be taken to close a
file before program termination. If this is not possible, the mass storage input/output routines must reside in
the (0,0) overlay or root segment. This can be done by including a call to an MSIO routine in the (0,0)
overlay or root segment (the call need not be executed), or by using the LIBLOAD control statement.

CALL CLOSMS (u)

u Unit designator

8-32 60497800 D

Example:

CALL CLOSMS (2)

This statement closes the file T APE2.

SPECIFYING A DIFFERENT INDEX

STINDX selects a different array to be used as the current index to the file. The call permits a file to be
manipulated with more than one index. For example, when the user wishes to use a sub-index instead of
the master index, STINDX is called to select the sub-index as the current index. The STINDX call does not
cause the sub-index to be read or written; that task must be carried out by explicit READMS or WRITMS
calls. It merely updates the internal description of the current index to the file.

CALL STINDX (u,ix,lngth,t)

u Unit designator.

ix Name of the array in central memory containing the sub-index (first word address).

lngth Length of sub-index

for a number index: lngth ~ (number of entries in sub-index) + 1

for a name index: lngth ~ 2 * (number of entries in sub-index)+ 1

t Type of index. If omitted, t is the same as the current index.

t = 0 File has a number sub-index

t = 1 File has a name sub-index

Example 1:

DIMENSION SUBIX (10)

CALL STINDX (3,SUBIX,10,0)

These statements select a new index, SUBIX, for file T APE3 with an index length of l 0. The records ref
erenced via this sub-index use number keys.

Example 2:

DIMENSION MASTER (5)

CALL STINDX (2.MASTER,5)

These statements select a new index, MASTER, from file T APE2 with an index length of 5 and index type
unchanged from the last index used.

60497800 c 8-32. l /8-32 .2

INDEX KEY TYPES

There are two types of index key, name and number. A name key may be any 60-bit quantity except +O
or -0. A number key must be a simple positive integer, greater than 0 and less than or equal to the length
of the index in words, minus 1 word. The user selects the type of key by the t parameter of the OPENMS
call. The key type selection is permanent. Th.ere is no way to change the key type, because of differences
in the internal index structure. If the user should inadvertently attempt to reopen an existing file with an
incorrect index type parameter, the job will be aborted. {This does not apply to sub-indexes chosen by
STINDX calls; proper index type specification is the sole responsibility of the user.) In addition, key types
cannot be mixed within a file. Violation of this restriction might result in destruction of a file.

The choice between name and number keys is left entirely to the user. The nature. of the application may
clearly dictate one type or the other. However, where possible, the number key type is preferable. Job
execution will be faster and less central memory space will be required. Faster execution occurs because it is
not necessary to search the index for a matching key entry (as is necessary when a name key is used). Space
is saved due to the smaller index array length requirement.

MASTER INDEX

The master index type for a given file is selected by the t parameter in the OPENMS call when the index is
created. The type cannot be changed after the file is created; attempts to do so by reopening the file with
the opposite type index are treated as fatal errors.

SUB-INDEX

The sub-index type can be specified independently for each sub-index. A different sub-index name/number
type can be specified by including the t parameter in the STINDX call. If t is omitted, the index type
remains the same as the current index. Intervening calls which omit the t parameter do not change the most
recent explicit type specification. The type remains in effect until changed by another STINDX call.

STINDX cannot change the type of an index which already exists on a file. The user must ensure that the t
parameter in a call to an existing index agrees with the type of the index in the file. Correct sub-index type
specification is the responsibility of the user; no error message is issued.

MULTI-LEVEL FILE INDEXING

When a file is opened by an OPENMS call, the mass storage routines clear the array specified as the index
area, and if the call is to an existing file, locates the file index and reads it into the array. This creates the
initial or master index.

The user can create additional indexes (sub-indexes) by allocating additional index array areas, preparing
the area for use as described below, and calling the STINDX subroutine to indicate to the mass storage
routine the location, length and type of the sub-index array. This process may be chained as many times as
required, limited only by the amount of central memory space available. (Each active sub-index requires an
index array area.) The mass storage routine uses the sub-index just as it uses the master index; no distinc
tion is made.

60497800 A 8-33

A separate array space must be declared for each sub-index that will be in active use. Inactive sub-indexes
may, of course, be stored in the random file as additional data records.

The sub-index is read from and written to the file by the standard READMS and WRITMS calls, since it is
indistinguishable from any other data record. Although the master index array area is cleared by OPENMS
when the file is opened, STINDX does not clear the sub-index array area. The user must clear the sub-index
array to zeros. If an existing file is being manipulated and the sub-index already exists on the file, the user
must read the sub-index from the file into the sub-index array by a call to READMS before STINDX is
called. STINDX then informs the mass storage routine to use this sub-index as the current index. The first
WRITMS to an existing file using a sub-index must be preceded by a call to STINDX to inform the mass
storage routine where to place the index control word entry before the write takes place.

If the user wishes to retain the sub-index, it must be written to the file after the current index designation
has been changed back to the master index, or a higher level sub-index by a call to STINDX.

Example 1 creates and modifies a random file using a number index:

8-34

PROGRAM MSl (TAPE3)

C CREATE RANDOM FILE WITH NUMBER INDEX.

c
c

DIMENSION INDEX(ll), DATA(25)
CALL OPENMS (3,INDEX,11,0)

DO 99 NRKEY=l,10

C (GENERATE RECORD IN ARRAY NAMED DATA.)
c
c

99 CALL WRITMS (3,DATA,25,NRKEY)

STOP
END

PROGRAM MS2 (TAPE3)

C MODIFY RANDOM FILE CREATED BY PROGRAM MSl.
C NOTE LARGER INDEX BUFFER TO ACCOMMODATE TWO NEW
C RECORDS.

DIMENSION INDEX(13), DATA(25), DATAMOR(40)
CALL OPENMS (3,INDEX,13,0)

60497800 A

C READ 8TH RECORD FROM FILE TAPE3.

c
c

CALL READMS (3,DATA,25,8)

C (MODIFY ARRAY NAMED DATA.)
c
c

C WRITE MODIFIED ARRAY AS RECORD 8 AT END OF
C INFORMATION IN THE FILE

CALL WRITMS (3,DATA,25,8)

C READ 6TH RECORD.

c
c

CALL READMS (3,DATA,25,6)

C (MODIFY ARRAY.)
c

c

C REWRITE MODIFIED ARRAY IN PLACE AS RECORD 6.
CALL WRITMS (3,DATA,25,6,1)

C READ 2ND RECORD INTO LONGER ARRAY AREA.

c
c

CALL READMS (3,DATAMOR,25,2)

C (ADD 15 NEW WORDS TO THE ARRAY NAMED DATAMOR.)
c
c

C CALL FOR IN-PLACE REWRITE OF RECORD 2. IT WILL
C DEFAULT TO A NORMAL WRITE AT END-OF-INFORMATION
C SINCE THE NEW RECORD IS LONGER THAN THE OLD ONE,
C AND FILE SPACE IS THEREFORE UNAVAILABLE.

CALL WRITMS (3,DATAMOR,40,2,-1)

C READ THE 4TH AND 5TH RECORDS.

c
c

CALL READMS (3,DATA,25,4)
CALL READMS (3,DATAMOR,25,5)

C (MODIFY THE ARRAYS NAMED DATA AND DATAMOR.)
c
c

60497800 A 8-35

C WRITE THE ARRAYS TO THE FILE AS TWO NEW RECORDS.
CALL WRITMS (3,DATA,25,11)
CALL WRITMS (3,DATAMOR,25,12)

STOP
END

Example 2 uses a name index for a random file:

PROGRAM MS3 (TAPE7)

C CREATE A RANDOM FILE WITH NAME INDEX.

c
c

DIMENSION INDEX{9), ARRAY(l5,4)
DATA RECl ,REC2/7HRECORD1,:;i6RECORD2=¢=/
CALL OPENMS (7,INDEX,4,1)

C (GENERATE DATA IN ARRAY AREA.)
c
c

C WRITE FOUR RECORDS TO THE FILE. NOTE THAT
C KEY NAMES ARE RECORD(N).

CALL WRITMS (7,ARRAY(l,1),15,RECl)
CALL WRITMS (7,ARRAY(l,2),15,REC2)
CALL WRITMS (7 ,ARRAY (1, 3), 15 ,JHRECORD3)
CALL WRITMS (7,ARRAY(l,4),15,:;i6RECORD4=¢=)

C CLOSE THE FILE.

CALL CLOSMS (7)

STOP
END

Example 3:

8-36

PROGRAM MS4 (TAPE2)

C GENERATE SUBINDEXED FILE WITH NUMBER INDEX. FOUR
C SUBINDEXES WILL BE USED, WITH NINE DATA RECORDS
C PER SUBINDEX, FOR A TOTAL OF 36 RECORDS.

DIMENSION MASTER(5), SUBIX{lO), RECORD(50)
CALL OPENMS (2,MASTER,5,0)

DO 99 MAJOR=l,4

60497800 E

C CLEAR THE SUBINDEX AREA.
DO 77 I=l,10

77 SUBIX(I)=O

C CHANGE THE INDEX IN CURRENT USE TO SUBIX.
CALL STINDX (2,SUBIX,10)

C GENERATE AND WRITE NINE RECORDS.

c
c

DO 88 MINOR=l,9

C WRITE A RECORD.
88 CALL WRITMS (2,RECORD,50,MINOR)

C CHANGE BACK TO THE MASTER INDEX.
CALL STINDX (2,MASTER,5)

C WRITE THE SUBINDEX TO THE FILE.
CALL WRITMS (2,SUBIX,10,MAJOR,O,l)

99 CONTINUE

C READ THE 5TH RECORD INDEXED UNDER THE 2ND SUBINDEX.

c
c

CALL READMS (2,SUBIX,10,2)
CALL STINDX (2,SUBIX,10)
CALL READMS (2,RECORD,50,5)

C (MANIPULATE THE SELECTED RECORD AS DESIRED.)
c
c

STOP
END

Exainple 4:

PROGRAM MS5 (INPUT,OUTPUT,TAPE9)

C CREATE FILE WITH NAME INDEX AND TWO LEVELS OF SUBINDEX.

DIMENSION STATE(lOl), COUNTY(501), CITY(501), ZIP(lOO)
INTEGER STATE, COUNTY, CITY, ZIP

10 FORMAT (AlO,IlO)
11 FORMAT (IlO)
12 FORMAT (5X,8I15)

CALL OPENMS (9,STATE,101,1)

60497800 A ~7

8-38

C READ MASTER DECK CONTAINING STATES, COUNTIES, CITIES

C AND ZIP CODES.
DO 99 NRSTATE=l,50
READ 10,STATNAM, NRCNTYS

C CLEAR THE COUNTY SUBINDEX.
DO 21 I=l,501

21 COUNTY(I)=O

DO 98 NRCN=l,NRCNTYS
READ 10, CNTYNAM, NRCITYS

C CLEAR THE CITY SUBINDEX.
DO 31 I=l,501

31 CITY(I)=O

CALL STINDX (9,CITY,501)

DO 97 NRCY=l,NRCITYS
READ 10, CITYNAM, NRZIP

c CLEAR THE ZIP CODE LIST
DO 41 , J • l , l 00

41 ZIP(J) •O

DO 96 NRZ=l,NRZIP
96 READ 11,ZIP(NRZ)

97 CALL WRITMS (9,ZIP,NRZIP,CITYNAM)

.CALL STINDX (9,COUNTY,501)
98 CALL WRITMS (9,CITY,501,CNTYNAM)

CALL STINDX (9,STATE,101)
99 CALL WRITMS (9,COUNTY,501,STATNAM)

C FILE IS GENERATED. NOW PRINT OUT LOCAL ZIP CODES.

CALL STINDX (9,STATE,101)
CALL READ MS (9 , COUNTY, 501 , #CAL I FORNI A#)
CALL STINDX (9,COUNTY,501)
CALL READMS (9,CITY,501,#SANTACLARA#)
CALL STINDX (9,CITY,501)
CALL READMS (9,ZIP,100,#SUNNYVALE#)
PRINT 12, ZIP

CALL STINDX (9,STATE,101)

STOP
END

60497800 A

COMPATIBILITY WITH PREVIOUS MASS STORAGE ROUTINES

FORTRAN Extended mass storage routines and the files they create are not compatible with mass storage
routines and files created under versions of FORTRAN Extended before version 4. Major internal differences
in the file structure were necessitated by adding the Record Manager interface. However, source programs are
fully compatible. Any source program that compiled and executed successfully under earlier versions will do
so under this version, provided that all file manipulated by mass storage routines are manipulated only by
these routines.

FORTRAN-CYBER RECORD MANAGER INTERFACE

The CYBER Record Manager interface subroutines correspond closely to the CYBER Record Manager COMP ASS
macros. The names are different in some cases, and the parameters are not necessarily specified in the same order,
but the processing performed by each subroutine is for the most part the same as the corresponding COMPASS
macro.

Only a summary of the format, parameters, and purpose of each subroutine is given here. The differences in
usage of these routines among the five file organizations are not discussed. In order to use these routines, it is
necessary to refer to the CYBER Record Manager publications listed in the preface.

The user can either allocate buffers within a program block or allow CYBER Record Manager to allocate them
dynamically when the file is opened.

To allocate a buffer within the program block, an array must be dimensioned and the length and position of
the array specified by the BFS and FWB fields of the file information table. If either of these fields is zero
when the file is opened, CYBER Record Manager allocates a buffer in central memory following the execut
able code and blank common (if declared). In an overlay program, dynamically allocated buffers are assigned
to memory beyond the last word address of the longest overlay chain.

These routines are available under NOS/BE 1 and NOS 1, but not under SCOPE 2.

PARAMETERS

The first parameter in the call to every subroutine is the name of the array containing the file information table
being processed. This array should be dimensioned 35 words long; 20 words for the file information table
itself and 15 for the file environment table. Any other parameters can be omitted; default values are supplied
by CYBER Record Manager. With the exception of FILExx, parameters are identified strictly by position;
thus, parameters can be omitted only from the right.

When a program is compiled with OPT=2, wsa must be specified on all calls to GET, GETP, and GETN. Also,
ka must be specified on calls to GETN and PUT for indexed sequential, direct access, and actual key files.

Most of the parameters establish values for file information table fields. CYBER Record Manager always uses
the most recent value established for a field; if a parameter is omitted, the previous contents of the field are
used instead.

If the same subroutine is called twice in the same program unit with a different number of parameters, an
informative diagnostic is issued by the compiler.

60497800 F 8-39

Values for parameters can be:

Array or variable names, identifying areas used for communication between the user program and
CYBER Record Manager

Subprogram names for user owncode exits (must be specified in an EXTERNAL statement)

Integer values

L format Hollerith constants, used to express symbolic options and to identify ftle information table
fields

The following mnemonics are used in the subroutine formats below. The precise meaning of any parameter
depends on the file organization of the file being processed, as well as the subroutine being called. Not all
parameters are applicable to all file organizations.

8-40

fit Name of array containing file information table. Linked to the actual file by means of the LFN field.

afit Name of an array that contains a list of addresses of FITs terminated by a word of zeros.

wsa Working storage area. A variable, array, or array element name indicating the starting location
from which data is to be read or into which data is to be written.

pd Processing direction established when file is opened:

SLINPUT

6LOUTPUT

3LI-O

3LNEW

Read only

Write only

Read and write

File creation (indexed sequential, direct access, actual key only)

of File positioning at open time:

ILR

ILN

ILE

Rewind

No file positioning

Extend; file is positioned immediately before end of information

cf File positioning after close:

lLR

lLN

lLU

3LRET

3LDIS

3LDET

Rewind

No positioning

Unload

Return

Disconnect (terminal files only)

No positioning; release buff er space and remove from active file list

60497800 F

.I.

type Type of close (not a file information table field):

4LFILE File close

6LVOLUME Volume close

ka Location of key for access to record in a direct access, indexed sequential, or actual key
file. For GETN, key is returned to this location.

wa Location of word address for read or write of record in a word addressable file.

kp Character position (0 through 9) within word designated by ka in which key begins (direct
access, indexed sequential only).

mkl Major key length (indexed sequential only).

rl Record length in characters for record to be read or written.

ex Name of user owncode error exit subroutine.

dx Name of user owncode data exit subroutine.

post For duplicate key processing:

count

ptl

skip

l l.P Write record preceding current record

1 LN Write record as next record

1 LC Delete or replace current record

0 Delete or replace first record in duplicate key chain

Number of records to be skipped; positive count indicates forward skip, negative count indi
cates backward skip, zero count should not be used.

Number of characters to be used for a partial read or write.

Positioning before execution of GETP:

0 Continue reading at current position

4LSKIP Skip to beginning of next record before reading

lev Level number for end of section; 0 to 17.

id FIT identifier .

I Applies only to Initial Indexed Sequential files.

60497800 E 8-41

SUBROUTINES

In the subroutine formats below, braces are used to indicate that more than one parameter occupies the same
position. In all_ cases, these parameters are applicable to mutually exclusive file organizations.

CALL Fl LExx (fit, keyword1, value1, ... ,keywordn, valuen)

xx is SQ (for sequential files), IS (for indexed sequential files), DA (for direct access files), AK (for actual
key files) or WA (for word addressable files).

All parameters, with the exception of fit, are paired. The first parameter in each pair is the name of a file information
table field, in L format. The second parameter of each pair is the value to be set in that field. CALL FILE:xx must be
executed before the file is opened. CALL FILExx ensures that the object libraries BAMLIB and AAMLIB are made
available to the job.

CALL STOREF (fit, keyword, value)

STOREF specifies a value for a single file information table field. It can be called before or after the file is opened.
The keyword is the name of a file infonnation table field, in L format, and value is the value to be placed in that field.

IFETCH(fit,field) or CA.LL IFETCH(fit,field,value)

IFETCH is an integer function that returns the current value of a single file infonnation table field. A one-bit field is
returned in the sign bit; if the bit is 1, the value of the function is negative; if the bit is 0, the value of the function is
positive.

IFETCH can also be called as a subroutine; in which case, the value is returned in the integer variables specified as the
third parameter.

CALL OPENM(fit,pd,of)

OPENM opens a file and prepares it for further processing. Only FILE:xx, STOREF, and IFETCH can precede
execution of CALL OPENM.

CALL CLOSEM (fit,cf,type)

CLOSEM closes the file after all processing has been completed. Only STOREF and IFETCH can follow execution
ofCLOSEM.

. {ka} {ex} CALL GET(f1t,wsa, wa ,kp,mkl,rl, dx)

GET reads a record and returns it to the working storage area (wsa). The last parameter specifies dx for
sequential files, ex for all other files.

CALL PUT(fit,wsa,rl, {~:} ,kp,pos,ex)

PUT writes a record to the file from the working-storage area (wsa).

CALL GETP(fit,wsa,ptl,skip,dx)

GETP reads a partial record. The number of characters to be read is indicated by ptl.

8-42 60497800 F

CALL PUTP(fit,wsa,ptl,rl,ex)

PUTP writes a partial record. The number of characters to be written by this write is indicated by ptl; the
total number of characters to be written is given by rl (required only for record types U, W, and R).

CALL GETN(fit,wsa,ka,ex)

GETN r~ads the next record in sequential order from an indexed sequential, direct access, or actual key file.
The key of the record read is placed in ka after the read.

CALL DL TE(fit,ka,kp,pos,ex)

DLTE deletes a record from an indexed sequential, direct access, or actual key file. The key of the record
to be deleted is in the location specified by ka.

CALL REPLC(fit,wsa,rl,ka,kp,pos,ex)

REPLC replaces a record on a sequential, indexed sequential, direct access, or actual key file. The key of the
record to be replaced is in the location specified by ka; the new record is in the working storage area indicated
by wsa. For sequential files, the last record read is replaced by a record of exactly the same size.

CALL WEOR(fit,lev)

WEOR terminates a section or partition, or S type record.

CALL WTMK(fit)

Writes a tape-mark (equivalent to end of partition).

CALL ENDFI LE(fit)

Writes an end of partition.

CALL REWND(fit)

REWND positions a tape file to the beginning of the current volume. It positions a mass storage file to the
beginning of information.

CALL GETNR(fit,wsa,ex,ka)

GETNR transfers the next record in sequential order to the working storage area, unless an input/ output
operation is required, in which case control returns to the user before the input is complete. The user
must continue to call GETNR until the transfer is complete (FP field of the FIT is set to 0).

60497800 E 8-43

CALL FLUSHM(afit)

FLUSHM perfonns all file close operations (such as buffer flushing), but the file remains open.

CALL FLUSH1(fit)

FLUSHI performs the same function as FLUSHM, but for a single file instead of a list of files.

CALL FITOMP(fit,id)

FITDMP dumps the contents of the file information table to the error file ZZZZZEG. The CRMEP control
statement (see the CYBER Record Manager AAM reference manual) can then be used to print file ZZZZZEG.

CALL SEEKF(fit,ka,kp,inkl,ex)

SEEKF initiates block transfer to the file buffer. The program can continue processing while the transfer
occurs. This overlapping of central memory processing and input/output activity can shorten program execu
tion time.

CALL SKIP(fit,count)

SKIP repositions an indexed sequential or actual key file in a forward or backward direction a specified num
ber of records. It does not return a record to the working storage area. A positive value for count indicates
a forward move; a negative value indicates a backward move.

CALL STARTM(fit,ka,kp,mkl,ex)

STARTM positions an indexed sequential or alternate key index file to a record that meets a specific con
dition; the record is not transferred to the working storage area. The file is positioned according to the key
relation field in the file information table and the current value at the key address location.

ERROR CHECKING

CYBER Record Manager interface routines perform limited error checking to determine whether the call can
be interpreted, but actual parameter values are not checked.

The following fatal error conditions are detected at execution time, and a message appears in the dayfile:

8-44

FIT ADDRESS NOT
SPECIFIED

FORMAT ERROR

UNDEFINED SYMBOL

Array name was not specified.

Parameters were not paired (FILExx), or required parameters were not speci
fied (STOREF, !FETCH or SKIP).

A file information table field mnemonic or symbolic option was specified
incorrectly; for example, an incorrect spelling, or the _Qf_ parameter in
OPENM was not specified as R, N or E.

60497800 F

MULTIPLE INDEX PROCESSING

FOR TRAN Extended provides the capability of multiple indexing for IS, DA, and AK files via CYBER
Record Manager.

Each multiple-indexed file has an associated alternate key index file. An alternate key index is a cross
reference table of alternate values and IS, DA, or AK primary key values. The key-field position identifies
each table, which consists of all the different alternate key values that occur in the records of the file. Asso
ciated with each alternate key value is a list of primary keys, each of which identifies a record containing
the alternate key value.

To utilize this capability, the index file is specified in the XN field of the file information table. To open
the index file, the following statement is used:

CALL RMOPNX(fit,pd,of)

The parameters are the same as those of CALL OPENM. The file may be opened by a CALL OPENM instead
of CALL RMOPNX if XN was specified on a FILE control statement rather than by a CALL FILExx.

The following subroutine should be called to describe a key field when creating a new IS, DA, or AK file.
It must be called once for each key field in the record.

CALL RMKDEF(fit,kw ,kp,kl,ki,kt,ks,kg,kc)

fit

kw

kp

kl

ki

kt

ks

60497800 F

Name of an array containing the file information table.

Word of record in which key starts (0 = first word)

Starting character position of key (O through 9)

Key length in characters (1 through 255)

Summary index; reserved (O)

Key type: 0 = symbolic, 1 = signed integer, 2 = unsigned

Substructure for each primary key list in the index: I = index-sequential; F = FIFO;
U {default) = unique; specified as L format Hollerith constant.

8-45

kg Size of repeating group in which key resides (default = 0).

kc Occurrences of group (default = O).

To position a multiple index file, the following subroutine is used:

CA LL STARTM(fit,ka,kp,mkl,ex)

If the RKW and RKP parameters are set to indicate the primary key, STARTM positions the data file and
subsequent calls to GETN retrieve records in sequential order. If RKW and RKP indicate an alternate key,
ST ARTM positions the index file, and subsequent calls to GETN retrieve records in their order on the index
file.

FORTRAN-SORT/ MERGE INTERFACE

FORTRAN Extended provides the capability for processing data records under the Sort/Merge system from
within a FORTRAN program. The FORTRAN user of this feature should be familiar with the autonomous
functioning of the Sort/Merge system as described in the Sort/Merge Reference Manual.

Sort/Merge uses the unused part of the field length as a scratch area; if this is not adequate, additional field length
is obtained from the system. For this reason the STATIC control statement parameter must not be used for
programs using SORT/MERGE.

The FORTRAN subroutines interfacing with Sort/Merge are listed below. The series of calls to Sort/Merge sub
routines must begin with a call to SMSORT, SMSORTB, SMSORTP, or SMMERGE. If a file is processed by
C.YBER Record Manager subroutines, OPENM should be called before any of these routines. The Sort/Merge
subroutines are on the library SRTLIB.

In an overlay structured program using blank common, the Sort/Merge interface routines must not be called from
the (0,0) overlay.

CALL SMSORT (mrl,ba)

mrl Maximum length in characters of records to be sorted.

ba § LCM buffer area in decimal for intermediate scratch files constructed by Sort/Merge.

ba * Number of words of central memory to be used by Sort/Merge for working storage. If
omitted, amount is computed by Sort/Merge.

SMSORT calls for a sort on rotating mass storage.

CALL SMSORTB (mrl,ba)*

mrl Maximum length in characters of records to be sorted.

ba Number of words of central memory to be used by Sort/Merge for working storage. If
omitted, amount is computed by Sort/Merge.

SMSORTB calls for a balanced tape sort. SMTAPE (see below) must also be called.

§Applies only to SCOPE 2.

* Applies only to NOS 1 and NOS/BE 1.

8-46 60497800 F

CALL SMSORTP (mrl, ba)*

mrl Maximum length in characters of records to be sorted.

ba Number of words of central memory to be used by Sort/Merge for working storage. If
omitted, amount is computed by Sort/Merge.

SMSORTP calls for a polyphase tape sort. SMTAPE must also be called.

CALL SMMERGE (mrl,ba)

mrl Maximum length in characters of records to be merged.

ba § LCM buffer area in decimal for intermediate scratch files constructed by Sort/Merge.

ba* Number of words of central memory to be used by Sort/Merge for working storage. If
omitted, amount is computed by Sort/Merge.

SMMERGE calls for merge-only processing.

CALL SMFILE (dis,i/o,lfn,action)

dis File disposition:

=FSORT=F
=FMERGE=F
=FOUTPUT=F

File to be sorted.
File to be merged.
File to receive output.

i/o Mode of file input/output:

=FFORMATTED=F} F"l d . h c d . I =FCODED=F 1 e accesse wit iormatte mput output.

=FBINARY=#= File accessed with unformatted input/output.
o* File accessed with interfacing CYBER Record Manager subroutines

(see this section above).

lfn File name indicator:

u
nLfilename
fit*

Logical unit number, 0 to 99.
File name left justified with zero fill.
When i/o is specified as 0, an array containing the file information
table.

action File disposition following sort or merge:

=FREWIND=F
=FUNLOAD=F
=FNONE=F (default)

§ Applies only to SCOPE 2.

:f Applies only to NOS 1 and NOS/BE 1.

60497800 F 8-47

SMFILE must be called for each file to be sorted or merged, and once for the file to receive the output (unless SMOWN
is called). If a file is to be accessed with formatted or unformatted FORTRAN input/output, its name must be declared
in the PROGRAM statement. Files should be properly positioned before they are sorted or merged.

CA LL SMKEY(charpos,bitpos,nchar ,nbits,code,colseq,order)

charpos

bitpos

nchar

nbits

code

col seq

Integer specifying position of first character of sort key, considering the first characters as position
number 1.

Integer specifying position of first bit of sort key in character (or 6-bit byte) specified by charpos,
considering the first bit as position number 1.

Integer specifying number of characters or complete 6-bit byte in sort key.

Integer specifying number of bits in sort key in excess of those indicated by nchar.

Coding identifier:

DISPLAY
FLOAT
INTEGER
LOGICAL

Internal display code.
Floating point data.
Signed integer data.
Unsigned integer data (default).

The following identifiers must be specified in pairs separated by a comma, as indicated. Each pair
is positionally interchangeable:

SIGN,* LEADING#= Numeric data in display code; sign present as an overpunch
at beginning of field.

SIGN,*TRAILING* Numeric data in display code; sign present as an overpunch
at end of field.

SEPARATE;::f:.LEADING#= Numeric data in display code; sign is a separate character at
beginning of field.

SEPARATE,*TRAILING* Numeric data in display code; sign is a separate character
at end of field.

Collating sequence (applicable only if code is specified as *DISPLAY*):

ASCII6

COBOL6

DISPLAY
INTBCD
sequence

6-bit ASCII collating sequence (default for installations using
ASCII character set).
6-bit COBOL collating sequence (default for installations using
CDC character set)
Internal display collating sequence.
Internal BCD collating sequence.
Name of a collating sequence specified in a call to SMSEQ (see below).

If a code identifier other than DISPLAY is used, this field must be omitted; otherwise, run time
error 165 is issued.

order Order of sort processing.

Ascending (default).
Descending.

One SMKEY call is required to describe each sort key to be used. The first SMKEY call indicates the major key;
subsequent calls indicate additional or minor keys in the order encountered.

8-48 60497800 F

CALL SMSEQ (seqname,seqspec)

seqname Name of user supplied collating sequence.

seq spec Name of integer array, terminated with a negative number. containing entire sequence of
characters in order of collation.

SMSEQ specifies a user's collating sequence, or redefines the default to be a user collating sequence or a
standard collating sequence other than the system default.

The characters in seqspec can be specified as their octal equivalents in the form ijB or as Hollerith constants
in the form I Rx. Characters to collate equal are specified in a call to SMEQU (see below). Unspecified char
acters collate high (following the last character specified in seqspec) and equal.

CALL SMEOU (colseq,equspec)

col seq Collating sequence determined by a previous call to SM KEY (and perhaps SM SEQ).

equspec Name of an integer array, terminated with a negative number. containing characters to collate
equal to the last character, which must be included in colseq.

SMEQU specifies that two or more characters in the collating sequence are equal for comparison purposes.

CALL SMOPT (opt1, ... , opt
0

)

opt Non-ordered options separated by commas:

:#VERIFY:#=

:#=RETAIN:#

=i=VOLDUMP=F*
=i=DUMP=F*
=i=DUMP=f:,n=I=
=i=NODUMP=f:*
=i=NODAY=F:f:

=i=ORDER=i=,mo*
=FCOMPARE=i=
=i=EXTRACT=i=

Check output for correct sequencing (important for insertions
during output and merge input).
Retain records with identical sort keys in order of appearance
on input file.

Checkpoint dump at end-of-volume.
Checkpoint dump after 50,000 records.
Checkpoint dump after (decimal) n records.
No checkpoint dumps.
Suppress dayfile messages.

Merge order = mo (default: mo = 5).
The key comparison sorting technique is to be used.
The key extraction sorting technique is to be used.

=FCOMPARE=i= and =i=EXTRACT=i= are mutually exclusive. If both are omitted, Sort/Merge decides which to
use. *COMP ARE=i= usually decreases elapsed time while increasing central processor time, whereas =i=EXTRACT=i=
usually decreases central processor time while increasing elapsed time.

SMOPT specifies special record handling options. If SMOPT is called more than once, the last call will override all
previous calls. If SMOPT is called, it must be done immediately after the call to SMSORT or SMMERGE.

:f Applies only to NOS 1 and NOS/BE 1.

60497800 F 8-49

CALL SMTAPE (taplistf~

taplist List of logical file names, each in the form nLfilename, to be used in balanced or polyphase
tape merge.

The file names in taplist must not be declared in the PROGRAM statement. A balanced merge requires a mini
mum of four tapes; a polyphase merge, a minimum of three tapes.

CALL SMOWN (exitnum1,subname1, ... , exitnumn,subnamen)

exitnum Number of the owncode exit.

subname Name of the user-supplied owncode exit subroutine

Each subname specified in a call to SMOWN must appear in an EXTERNAL statement in the calling program.
For each subname specified, the user must supply a subroutine which exits through a call to system subroutine
SMRTN, in accordance with the owncode exit number and return address as follows:

exitnum entry

1 or 3 SUBROUTINE subname (a,rl)

2 or 4 SUBROUTINE subname

5 SUBROUTINE sub name (a1,rl1 ,a2 ,r12)

retaddr Return address:

0 Normal return address
I Normal return address + 1
2 Normal return address + 2
3 Normal return address + 3

exit

CALL SMRTN (retaddr), for retaddr = 1 or 3
CALL SMRTN (retaddr,b,rl), for retaddr = 0 or 2

CALL SMRTN (retaddr), for retaddr = 0
CALL SMRTN (retaddr,b,rl), for retaddr = I

CALL SMRTN (b1,r1 1,b2 ,r12), for retaddr = 0
CALL SMRTN (b1 ,rl 1), for retaddr = 1

a Integer array oflength (rl + 9)/10 in which Sort/Merge stores a record when subname is called.
Storing into .. a ·causes indeterminate results.

b Integer array oflength (rl + 9)/10 in which the user stores a record when subname is called.
b should not be the same as a.

rl Record length in characters.

No parameters are needed on SUBROUTINE subname for exit number 1 if there are no input files.

CALL SMEND

Required as the last in a series of Sort/Merge interfacing subroutines, SMEND initiates execution of the sort or merge.

CALL SMABT

Terminates a sequence of SORT/MERGE interface calls without calling Sort/Merge. The state of the interface
is the same as if no calls had been made.

=t Applies only to NOS 1 and NOS/BE 1.

8-50 60497800 F

FORTRAN-CYBER INTERACTIVE DEBUG INTERFACE

CYBER Interactive Debug (CID) is a debugging facility, available under NOS 1 and NOS/BE 1, which allows the user
to monitor and control the execution of programs from an interactive terminal. CID is on the library DBUGLIB.

A brief discussion of CID is presented here. For more information, refer to the CYBER Interactive Debug
reference manual.

FORTRAN Extended provides the capability of interfacing with CID. The CID features allow the user
to:

Suspend program execution at specified locations called breakpoints.

Set traps which cause program execution to be suspended on specific events, such as the loading of an
overlay.

Display values stored into variables and arrays while program execution is suspended.

Enter data into the program.

Interrupt and restart the program from the terminal.

Define and save sequences of CID commands to be executed automatically when a breakpoint or trap is
encountered during program execution.

CONTROL STATEMENT

In order to make use of all the CID facilities, a FORTRAN program must be compiled, loaded and
executed in debug mode. Debug mode is activated by the control statement

DEBUG or DEBUG(ON)

When a source program is compiled in debug mode, the compiler produces a line number table and a symbol
table along with the binary object code. The CID package is loaded along with the compiled code and
becomes part of the user's field length.

CID is deactivated by the control statement

DEBUG(OFF)

As an alternative to compiling with DEBUG(ON), the necessary compiler tables can be produced by
specifying DB or DB=ID on the FTN control statement. Subsequent executions with DEBUG(ON) can
make use of CID.

If debug mode has been activated with DEBUG(ON), it can be subsequently turned off for the duration of a
compilation by specifying DB=O on the FTN control statement. The default is DB=O.

A program that has been compiled with DEBUG(ON) or DB=ID can subsequently be executed with
DEBUG(OFF), but CID cannot be used.

60497800 F 8-51

USER-CID INTERACTION

In debug mode, after the user's program has been loaded, but before execution is initiated, CID requests input
of commands. - Typically, the user initially sets breakpoints and traps which specify debugging options to be
performed during program execution.

When a breakpoint or trap is encountered during execution, execution is suspended while CID performs the
sequence of commands specified in the body of the breakpoint or trap definition. With certain breakpoints
or traps, the user has the option of entering debug commands at the terminal before execution is resumed.

CID OUTPUT

Output from CID consists of informative messages, diagnostics, and the results of commands. Certain
informative messages always appear at the terminal; other messages are arranged into classes, and the user
can specify which message classes are to be sent to the terminal.

BATCH DEBUGGING

CID is primarily intended to be used interactively, but can be used in batch mode. In this case, the user must
place CID commands as the first record in the file DBUGIN.

Output from CID is written to a file called DBUGOUT. The type of output written to this file is controlled
in the same manner in which output is sent to the terminal when CID is used interactively.

INTERFACE TO COMMON MEMORY MANAGER

Common Memory Manager (CMM) is used for the management of field length, except when using the static loading·
options. CMM ensures that the field length is increased or decreased properly to accommodate assigned blocks.

Interface to CMM can be done to assign blocks of memory for arrays. This assignment is completely dynamic,
and for efficient use, the blocks should be returned to the system when finished.

The Common Memory Manager reference manual should be read for a detailed description of CMM usage.
The following descriptions are for simple CMM usage.

CMMALF is called to allocate a fixed position block. The array to be assigned is defined in the FORTRAN
program as an array of length 1. The proper offset to the base address of the array is calculated by using the
WCF function, adding one to this base address, and subtracting this value from the first word address of the
block returned by CMM. This calculated address, plus any subscript of the array desired, is used to reference
array elements. For example, the following statements assign a block and set the fifth element to 1:

8-52

PROGRAM CMMl
DIMENSION CMMAR(l)
ILEN=lO
CALL CMMALF(ILEN ,0,0,IFW A)
IOFF=IFWA-LOCF(CMMAR(l))+ 1
CMMAR(IOFF +5)=1.0

60497800 F

The calling sequence for CMMALF is:

CALL CMMALF(IBLKSZ,ISZCDE,IGRPID,IBLFWA)

IBLKSZ Number of words required for the block.

ISZCDE Size code:

0 Fixed size block (should be used in most cases).
1 Block can grow at last word address.
2 Block can shrink at last word address.
4 Block can shrink at first word address.
5 Block can grow at last word address and shrink at first word address.
6 Block can shrink at first and last word addresses.
7 Block can shrink at first and last word addresses and grow at last word

address.

IGRPID Group identifier:

0 Item does not belong to a group (normal usage).
> 0 The block is assigned to this group. The group number is determined by

calling CMMAGR (see the Common Memory Manager reference manual).
The group number may be any value greater than 0.

The value returned from a call to CMMALF is:

IBLFWA First word address of block allocated by CMM.

CMMFRF is called to free the fixed-position block when it is no longer needed. When the block is freed, the
contents of the block are no longer accessible.

The calling sequence for CMMFRF is:

CALL CMMFRF(IBLFWA)

IBLFWA First word address of block (must have been returned by CMMALF).

Other routines are available to accomplish other tasks, such as determining maximum field length and other statistics,
assigning blocks to groups, and releasing groups of blocks (see the Common Memory Manager reference manual). All
CMM interface routines for NOS and NOS/BE are on the library SYMLIB. Therefore, the statement LDSET I
(LIB=SYMLIB) must be included in the loader directives for a run using the CMM interface routines, or the user
should include a CALL SYMLIB subroutine call in the main program. SCOPE 2 users must specify SYMIO in the I
LDSET statement instead of SYMLIB.

POST MORTEM DUMP

Post Mortem Dump (PMD) analyzes the execution time errors in FORTRAN Extended Version 4 programs.
PMD provides interpreted output in a form which is more easily understood than the octal dump normally
output following a fatal error; PMD prints a summary of the error condition and the state of the program at
the time of failure in terms of the names used in the original program. The names and values of the variables

60497800 G 8-53

I

in the routine in which the error was detected are printed; this process is repeated, tracing back through the calling
sequence of routines until the main program is reached.

Use of PMD does not affect the use of FORTRAN Extended DEBUG or CYBER Interactive Debug. PMD is
activated by a hardware or software fatal error and can also intentionally be invoked by the user. PMD overrides
any user-supplied load map directive or MAP{ON) control statement. For example, the following statements do
not produce a load map if PMD was specified:

LDSET(MAP=SBEX)
LOAD(LGO)
EXECUTE.

However, the loader always writes a block and statistics map to file ZZZZZMP for PMD's use. It is the user's
responsibility to rewind and copy this file to output. If nonfatal loader errors occur, a summary of the errors is
included in the PMD output.

When PMD is used, the FORTRAN Extended compiler generates a loader request to preset all memory to a
special value for initialization testing. This preset is similar to that produced by the following load sequence:

LDSET(PRESETA=60000000000433400000)
LOAD(LGO)
EXECUTE.

Any user LDSET{PRESET=) loader specification is overridden.

PMD reloads the user field length before it aborts to allow a subsequent octal dump of the user's program if one has
been specified.

To use PMD, the PMD parameter must be specified on the FTN control statement. PMD will then be activated by a
fatal execution error or by one of the user-callable subroutines PMDLOAD or PMDSTOP. Information provided by
the dump includes the following, where applicable:

A summary of all nonfatal loader errors.

A list of all COMMON block length clashes.

The nature of the error that activated PMD.

The array-dumping parameters selected and the field length required to load and run the user program.

The activity of each file used by the user program at the time of the error.

The overlays in memory at the time of the error.

The location of the error in terms of statement labels and line numbers, if possible.

An annotated register dump; an attempt is made to associate each address register with a variable or array
referenced within the routine in which the error occurred.

An alphabetical list of all variables and their values, accessible from the current routines.

A printout of arrays according to specified parameters.

A message-tracing call beginning at the previous routine and ending when the main program is reached.

A completion message upon reaching the main program.

Variables are printed alphabetically. The column labeled RELOCATION is left blank for local variables. It contains
the block name for COMMON variables and F.P. nn for formal parameters, where nn indicates the parameter number.

In addition to being printed as numbers, INTEGER variables are interpreted as masks or characters in H, L, or R
format. In character representation, binary zeros are converted to blanks within a word, but a word with binary
zeros at each end has the first binary zero printed as a colon.

8-54 60497800 G

The column headed COMMENTS flags undefined local variables as *UNDEF, which indicates a potential source of error.

Variables passed as parameters to the previous routine in the traceback tree are labeled PARAM nn in the COMMENTS
column. The COMMENTS column contains F.P. nn where the same variable occurs more than once in an argument
string; nn points to the last occurrence. Constants passed in the previous routine are also printed at the end of the list
and given the symbolic name CONSTANT. Untraceable functions and subroutines passed as arguments are printed.

Full checking is carried out on subroutine or function arguments, and a warning message is issued if:

A routine is called with the wrong number of arguments.

A type conflict exists between actual and formal arguments.

The argument was a constant and the called routine either treated it as an array or corrupted it.

A conflict in the use of EXTERNAL arguments is detected; note that the results given for EXTERNAL arguments
can be imprecise because several utilities can reside within the same routine and PMD cannot differentiate
between them. For example, both SIN and COS reside within the routine SINCOS=.

A warning message is also issued if a real variable contains an unnormalized value, for example, integer.

For batch jobs, the dump is written to file OUTPUT. For jobs executed from an interactive terminal, the disposition
of the dump is determined by options specified on the execution control statement (typically LGO) as follows:

LGO,*OP=option [option] [option].

where option is one of the following:

T A condensed form of the dump is displayed at the terminal.

A The variables in all active routines are included in the dump. An active routine is a routine that has been
executed but is not necessarily in the traceback chain. This option is valid for batch, as well as interactive,
jobs.

F A full dump is written to the file PMDUMP when the job is executed with the file OUTPUT connected.
This option is valid for interactive jobs only and is the default if the *OP parameter is omitted.

PMD can be used with overlay programs. In this case, only variables defined in the overlay currently in memory are
dumped. The overlay numbers of the current overlay appear in the PMD output.

PMD output produced by a program compiled under a given optimization level can differ from that produced by the
same program compiled under a different optimization level. This occurs because different optimization levels
generate different sequences of object code. At the actual time of an abort, the machine instruction being executed for
a specified optimization level might be different from the instruction being executed for a different optimization level.

Variable values printed by PMD might differ for successive executions of the same program on certain computer systems.
This can occur on systems with parallel functional units such as the 6600, 6700, CYBER 70 models 74 and 76, and the
CYBER 170 models 175, 176, 750, and 760.

The formats of the optional PMD subroutine calls are as follows:

CALL
CALL
CALL

PMDARRY(i)
PMDARRY(i,j)
PMDARRY{i,j,k)

The last subroutine call listed causes dump of arrays to be limited to elements whose subscripts do not exceed i, j, and
k for their respective dimensions; i,j, and k represent the first, second, and third dimensions, respectively.

If k is omitted, three-dimensional arrays are not printed. If j and k are omitted, two- and three-dimensional arrays
are not printed; only one-dimensional arrays are printed.

60497800 G 8-55

I

I
I

Array dumping parameters can also be specified on the I.GO call card. The three formats are:

LGO,*DA=I

LGO, *DA=I+ J

LGO,*DA=I+J+K

Corresponds to call PMDARRY(I).

Corresponds to call PMDARRY(I,J).

Corresponds to call PMDARRY(I,J,K).

where I, J, and K represent the first, second, and third dimensions, respectively.

If neither CALL PMDARRY nor LGO~*DA= is used, the default array dimensions of I, J, and K are assumed
to be 20, 2, and 1, respectively.

Once PMDARRY has been called, the established conditions apply to all program units in the user program.
Any number of PMDARRY calls can be included; the most recent call determines the effective conditions.

Example:

DIMENSION RAY (10,10,10)

CALL PMDARRY (3,4,1)

Array elements are printed with the first subscript varying fastest and with a maximum of six values per line for .real,
integer, and logical arrays, and a maximum of three values per line for double precision and complex arrays.

The following twelve elements of array RAY will be printed:

(1, 1, 1H2,1, 1)(3,1, 1H2,3,2H2,2,1)(3,2,1)
(1,3, 1)(2,3,1)(3,3,1)(1,4,1)(2,4,1)(3,4,1)

If all the requested elements of an array have the same value, PMD will print the message:

ALL REQUESTED ELEMENTS OF THIS ARRAY WERE

If several consecutive elements of an array subblock have the same value, PMD will print the message:

ALL THREE ELEMENTS WERE

CALL PMDDUMP causes a dump of variables in the calling routine, not at once, but when an abort occurs or
when PMDLOAD or PMDSTOP is called. PMDDUMP and PMDLOAD or PMDSTOP need not be called from
the same routine. The dump includes an analysis of all active routines that have called PMDDUMP. These
active routines have been executed but are not necessarily in the traceback chain. Following an abort or call
to PMDSTOP, all routines in the traceback chain are dumped. A limit of ten successive calls to PMDDUMP
is imposed. The tenth call to PMDDUMP is converted to a PMDSTOP call.

CALL PMDLOAD causes an immediate dump of variables in the calling routine and in any routines that have called
PMDDUMP. Program execution continues normally after the dump unless PMDLOAD is called more than 10 times,
in which case a nonreturnable call to PMDSTOP occurs.

CALL PMDSTOP causes an immediate dump of variables in the calling routine, all routines in the traceback chain,
and any routines that have called PMDDUMP. The job is then aborted. Programs cannot recover from a call to
PMDSTOP.

An example of Post Mortem Dump output follows:

8-56 60497800 F

°' i
\0
.......J
00
0
0

'Tl

00
I

VI
.......J

PRIJGltllt E U"PL 76/b QPT•l TRACE P~DlfP FT" 4e3+80080•T•

5

10

u

zo

c c
~

PROGRA" EXA1PLCJ .. PUTtOUTPUTtTAPEleTAPEb•~UTPUTI
THIS P~~GRA" ILL~STRATES SD"E OF T~E FEATURES OF
THE P"D"P FEATUttE
ClllfPLE l(CVAR 1
LDGICU LVUl
lllME .. §ION IAlt~AYll0olloA~RAY~l10)
COMlfO" /~LOCl(A/ &~R&Ylf7tbtbl
EQUIVALENCE CMAS(l•~"AS<I
llATA CCIARRAYCltJl•l•ltlOt1J•l1Zt 110•3•10•-41
APRAYZIJ71•1717.1717
CVARl• .0.1.s 1
RYA~l•-ANTELOPE-
l VUl•.FU SE e
IVUl•lO~A"IT
IVUZ•lLUT
IVAff3•31UNT
IVAR4•11i&TflOOOO.lt
"Hl(l•"lSl(f481
CALL EXTRASC01VARltlA~RAYfl•Zt1l011ARRY21
STOP
END

SY .. IQLIC REFERENCE "'' CR•Zt
ENTRY PDllHS DEF L 114E REFEHNCES
62U EUNPL 1

VU UBL ES SN TYPE RELDCATJON
0 REAL •~it4Y BLIJCl(A RF.F'i 'J UIU Y)

tall) UltAY REAL AIUAY itEF~ • OEFl .. ED
t.ZS4 CONPLEl(CVUl REF 6 DEFINED
6267 IUUY INTEGU URAY ltEF'i 8 .. ll t.265 UltllY2 • lli&TEGU REFS 21
6Zt.O IVUl • ll'tTEGER llF.F f!i1ED 16
626) IVU2 • llHEGU OEF NED u b26 IVU) • lltTEGU DEF INEll
6Z63 IVU4 • IHEGE't OF.FINED llJ
t.256 lVU\ LflG,CAL RFF~ 7 DEFINED
6266 IUSI< INT GER AFF 10 OEFl~ED
t.Zt.6 RlfASK AEAL REF'i 10
6251 ROU • REAL OEFl~ED l't
t.264 VHl • REAL REFS 21

FILE NANES lfODE
0 INPUT

l054 OUTPUT
HlO TAPEl
Z0,4 UPU

EUERNALS TYPE UGS llEFERE"ICES
EXUAS 5 21

l'tllltE FU"IC fl OltS TYPE UGS DEF l l"IE REFERENCES
lltT l~TEGEil l rn1~ u
It.SI(NO TYPE 1 NTlt N zo

COltltON 8LOCKS LE~GTH
ILOC.U 252

STATISTICS
SY .. U8+011fTn llZB 7't
PltDGU't LE1GH ltl 18 1.b5
fUFFU LENGTH H'iOI\ lO'iO

Cit LABELED COlt"~N LE~GTH JH't 252
b5ZOH SC" USED

IZ u
OEFlltEO

15
20

80/06/05. lle55e37

EUlfPL
f.J(Al'IPL
EOlfPL
TO"E
EICAMPL
E U'f PL
TE ST Jl
f.l(AMPL
EUMPL
EU .. PL
EUlfPl
E UMPL
EU .. PL
TE ST J 1
TFSTJl
F.UMPL
E UllPL
F.UlfPl
F X AlfPL
EUPIPL
EJ(AlfPL
E UOL
EUlfPL

ll

ltAGF.

00
~
00

~
....J

8
-ri

SUlllOUTINE EXTllA~ 7616 0'1•1 H&CE 0"' FT" -.l+80080•T• R0/061051 ll.~5.17 PAGE l

l cou"qriurt NF. i: uusc t, J. uu n uun .u .. usEo, EU"Pl
DOU~lE P~er.1s1n .. DVAll JfHJl
l .. JEGf~ J&~ltY(NlelAllY2C11 EUMPL

' c COMltQ .. dLOC(LENGf~S OISAGlfE -- E~iOI T'IGGEI~ CALL TO PMOMP
COMMON llL~CKAI A-RAYll6t6tO) FUOL
IEAD fll J F.WU4Pl
HWltolD l F.U'1Pl

10 Wt IJE C 6e l0001 Ell<PL
1000 FOIMATClllt T~IS IS AN FJN P1ST MOITEM DUMP EllA"PLE •I T'UltE

l•l F II A .. Pl
11•),0 TEST Jl
IVAIU•IVAR6 EllAltP\ u OVAll•DSQRTCZ,00001 JfSTJ
Pl•J.H1H26 JESTJ

100 J • 0 t • SINCFLOATCJll

~
NFINITE DPEl& .. O ~EIFe J~IG~F.11 .. G & CALL T~ PMOltPoooWITi K IFCEIVl .. G

zo A VALUE OF EITHER tJ.OOOOOOO~OOOt ,,~ tPQSITIVE ANOEFJ~AT~t , .. ™i
VARIABLE L!STINGo•• AEiAUSF T~IS VALUE IJ MACHI F. OE E OENTt THI WILL
.. OT IE CHE CED F~I IN HE CO .. PlllSON IOU INE
ll•lllJ TESTJI
X•X+X TE~TJ

H CALL ABSENT FllAMP\
IFCJ.eo.01 ;o TO 100 TESTJ
RETURN Ell A" Pl
END EUMPL

SYMl~LIC REFERENCE MAP f 1•21
E•JIY POINTS DEF Ll~E REFERENCES

J UTUS l 27

VlllAILES SN TYPE RELQCATIO~
0 HRUl REU UUY ILRCU litF.FS 1

•• DYAR& DOUBLE lfFS ~ OEFl~FD 15

UUY ltTEGU AUU F,P, •EF1 DEFINED 1 URU NTEGEll UUY F,P, llEF 1 OEF NED 1

' l
l
~TEt'iER F ·'· l)Ef ... eo ' 12

• VAU • .. TEGEll l)EFltt B i·
1 VlH • itJE6 ll tUHOEF REF It 8 l1tnGl1t F ·'· 1EFI • n u DEFINED i a n

18

i It tNJEGEll F.P, ~EFS l OEFlttEO 1
1 Pl • I AL OEFJttF.D U

UNUSED 1IAL •UNUSED F.P. DEFlttED l
66 I IUL REFS U 2•21t OEFltilEO U U Zit

FILE'NA~ES NOD~
TOU UNFNT READS 8 "OTION 9
TAPH FMT llRITES 10

llfEIN&lS TYPE ARGS REFERENCES 'lse,., o ,. 5
D Qlf DOUBLE 1 LIR1t4•Y 15
SN RUL l LllURY 18

l~LINE FU~CflONS TYPE 41GS DEF LINE •EFEREttCES
FLOAT REAL 1 INH I~ 18

SJUUE .. T UllELS DEF LlttE ltEFEltEttCt:S
'" 100 11 26 H 1000 FNT l 10

COMMON 'LOC(S LE .. GTH
ILOCU l16

SUTISTICS
$YNTAl+DINT44 11?~
'ROGIA~ lENGT~ . 1Z~
SCM LA•ELED CONM~N lf,.GTH lJa•

U2001 SCft USED

JHIS IS AN FTtt POSJ NORTE~ ~UNP E•ANPLE

14
~" H6

°' 0
+:>.
\0
-.J
00
0
0

"'Tl

00
I

Vl
\0

FTN POST ~ORTE~ OU~P FT .. 4 EltltOlt ltEPORT 9~10&105. ll.55.4b.

•••YOUR J1~ HlS JHE F~LllWl~G .. l .. -FlTlL LOA~ E~ltO~C~lt
UNSATJSFIEO EiTE~ .. AL ~EF -- A~SENT

tt• YOUR JOB ~lS T~E F~LL1Wl .. G 1:~~~) .. / LE~GTH CLASHCESI&
/BLOCKA/ 1LOAOEO LENGTH• 252tLE .. r.TH IN ROUTINE EKTRAS • Zlb

Ill EXECUTIO~ 4lS TElt"INATEO BEClUSE YOUR PltOGRl" FllLEO WITH ERROil CONDITION O~ERFLOW

ARRAYS WILL BE PRINTED BY DEFAULT PARA"fTEltS (zo. z,
YOUR PltDGRA" ltEOUIRED 33400~ W~ltDS TO LOAD1 lblZ7R ~OROS TO ltUN

FILE STATUS AT Tl~E OF EltROlt

FILE NAltE
-INPUT
-OUTPUT

-UPEl

FORTRAN NAltES LASTOP
INPUT UNUSED
OUTPUT PUT/PUTP
TAPfb
UPEl RElll'4D"

STATUS FO BT RT RECOltO COUNT
SQ W 0

E-0-R SO C l 4

8-D-t SQ w 0

u

Ill JHE ERROR OCCURRED IN SUBROUTINE EXTltAS 1A80UT 4 wo~os AFTER LIN~

JHE REGrSTERS CD .. JAJ .. ED THE f~ll~WING AT THE TJMF. aF TiE ERROR

19 (Z WOROS BEFORE LINE

A-REGISTERS CCDNTAIN AODRESSESt lSSOCIATEO LOCATION
REG OCT ~AL SY"80L

AO 0067~?8 PARA"ETElt LIST ADDRESS
Al 0071171 ADDRESS OF A JE~PDRARY
AZ 0114648 llITHl'4 SINCOS.
AJ 0115251 WIT~IN SIMCOS.
A4 00b74JB PARA"EJER LIST ADDRESS
AS 0071448 X
Ab 0071448 X
A7 0067711 PARAMETER Z - J

+ D

• l

OCTAL VALUE
ClOt•OOOOOOOOOOOOOOOOb7578
CAlt•OOOOOOOOOOOOOOOOOOOOR
Cl?.1•040000710500000000009
(AJt•bOb4l5lb711555bZllOb8
CA4t•0000000000000000b771R
CA5t•177700000000000000008
(Abt•17770000000000000000R
Cl7t•000000000000000000008

Alt I Tli"E TIC VALUE
lDORESS QF PARA"ETER
o.
.5Q5?.~?.51R11'-?l8

-.4q5774z15001e-01
AOO~F.~5 ~f PARAM~TER

POSITIVE INFINITE
POSITIVE INFINITE

0

8-REGISJERS K-REG[5TERS CUSFD FOR C011PUTATIONt
REG OCT VAL DEC VAL REG OCTU VALUE

BO 0000008 • 0 XO 177700000000000000008
81 00710'9 • J65J Kl 000~00000000000000008

IZ 77t.OOOI • -1021 lli> 000000000004000071058
83 0000008 • 0 0 OOOOOOOOOOOOOOOOOOOOR
84 OOJOOOft • 0 Kit OOOOOOOOOOOOOQOOb77lR
85 OOOOlZB • 10 115 17Zlb00QOOOOOOOOOOOOR
Bb OllOOU • ltbll Xb 17770000000000000000R
81 OOOOOOB • 0 117 OOOOOOOOOOOOOOOOOOOOR

P--EGISTElt 0071078 C" FIELD LENGTli OZ1600A E~SILCM FIELD LFNGTli 00000000~

RA+O 00020l71100000000000~ ~A+l lOOOOOOOOOOOOJOOOOJOB PSO CCYl7b ONLY) 0003R

~ARIA8LES IN SUBROUTINE fllTRA~

••• Ttif

NA"E TYPE ~ELOCATION CURRFlllT VALUE

AltRAYl
DVARl
I
UR RAY
I ARRYl
NEllT ITE'1
IVU5

oHAL
OOUtll E
INTE:iElf
INTEGEll
INTEGER

WAS SF.T T1
llHFCl=Q

IRLOCKAI ARRAY (bt~ob)

le414Zllib?.1730q5o~Ri0lb6q

F.P. l 3 • lltC
F.P. l UQAY (101
F.P. 5 ARRAY Ill

A~ IJ~[~lflALIZF.1l vuuc - JVAR~

••~OT TNITIALl7FO••

AR (TH"E TIC VALUE
POSITIVE INFINITE
o.

b7~12517
o.

3'H7
3o0000i)000000

POSITIVE INFINITE
o.

COl111FNVi ~A"F

ARR l\'f l
I) VAR l
J
JAPIHY
[Alt~ Y?

I VA~ 'i

Z5t

C'iAR VALUE

5LD H

z

CliU VALUE

51tD H

ZR .. ._
3LOQa

QC g

~
....J
QC

8
""'

••• f~E NECf ITEN IS ~E~E~ DEFINED
IVU6 I NH GER 'fOT INIJULl ZEn
J INfE:ifR F.P. ~ 0
N JNfEGER F •'• ~ 10 • litJ
Pl REAL lel'tl5:JZ60000
UftUSEO ltUL F •'• fa .. 0 .. ITfED Fitn .. fHE CALL STATENENT ••

11101--1 REAL POSITIVE INFINITE

••• IOUfl .. E EXPECTED 6 ••GU .. ENTS aur was CALLED WIT~ 5 UGUMENU

••• &ll&YS IN SUIROUflNE EXTRAS

IU&. lltM&Y ARRAY1C6t6t6)
ALL REQUESTED ELE~ENTS DF THIS ARRAY ~EltE NOT INITULIZED

INTE,Elt &R•&Y llllRAYClO) DEClARED A~ (lRR&YCN)
&LL REOUESIEO ELENEttTS OF TilS ARRAY WEltE -~

INTEGER &llt&Y IARRYZCl)
ALL REQUESTED ELE~ENTS OF T~IS ARRAY WE~E NOi INITULIZEO

••• CALLED FRO .. LINE MUNIER 21 OF PIOGIU" E'U"PL

FJN POSJ NOITElt OUNP FTN 4 PllOGUN EICA .. PL

SIJUATION lJ THE TINE SUiRDUTINE EXTIAS WAS CALLEO Al LINE MUNIER ll OF PROGIUN E UMPL

••• VAllAILES IN PROGRAM EU .. ltL
MANE TYPE IELDCATION CURREIH VALUE

UUYl REAL l"LOCUI UIUY (7,6.6)
&lltlU REAL UIUY 110)
CVlll CONPLE If c 1.001)0000000 • 1.sooooooooo)

UUAY INJEGU UUY ClOt U
••• JME NEXT ITEM IS AN l~TEGEll HUY IN THE CALLED ROUTJNF

uuu INTEGER .. aT INlfULIZEO
IVUl INIEGER UHUIT ~R INTEGER > Z••~d-1
IVAU JNTE:iER 1LANT OR INTEGEM > 2••48-1
IVAU HtTEGER 50L2 • lRANT
IVAU INTEGER 10000 • llllllP
lVUl LOG ICU .FALSE.
MUIC1 INTEGER -~ocn •41•81f MASI<

••• THE NEXT VAllAILE CONTAl~S AN l~TEGER VALUE
lllUIC REAL -4015 •48-RIT "4$1(

••• THE NEXT VARlllLE IS UNNORllALIZEO
IVUl REAL .Z9696Z~5597~-270 10'4ANTElOPE

••• fHE NEXT ITEN IS AN INTEGER Vllll&8Lf. IN THE CALLE~ R~UTINE
VH1 RUL o.

••• fHE NEXT CONSTANT MAY HAVE 'EEN ALTERED IN THE CALLED RQUTl~F.
Cl1rtSU .. T INTEGER
CONSUNT IN TE GU

ARRAYS IN PROGRAM EXA .. PL

IEAl ARRAY ARRAYLC71616)

3 • lllC
10 • LU

ALL llE~UFSfED ELE~E~TS lf T~lS ARNAY WfllE NOT INlfllLIZEn

REAL &RlllY ARlllYZC30t
l&RllAYZCNt)

N•ltl6 ALL THESE ELE~F~TS ~ERE ~~T l~ITl4Ll7E0
N•l7 1717.17170000 ~~r 1~1Tllll7E1 ~OT l~ITIALl7.~n •MT l"UTIUIUD

co ENU

UG. 1

UG. 5

Alt Ge ?.

UG. L
'°'G• 4

IVAlt6
J
N
Pl
UNUHD
II

80106105 •. 11. 55.46.

"IANF.

UUYl
UIUYZ
CVUl
UH~Y

IAUYZ
IVUl
IVU2
IVAltl
IVU~
LV&Rl
ltASICl

UASIC

RVUl

VOL

CO~STUll
CONS run

0\
0
~
\D
-..J
00
0
0

"T1

00
I
0\

INTEGE~ &R~&Y l&~lt&Yll0t2t

CUU&YC•hOtt
N• l• 10 All TliESE ElE1tE'4TS tlERE

CIURAYCl4•ltt
N•l• 10 All Tttese EU"tENTS WEltf

TRACEBACK SUCCESSFULLY CO"PLETED

Ill END OF ERROR REPORT

l • lltC

_,.

DEBUGGING FACILITY 9

The debugging facility allows the programmer to debug programs within the context of the FORTRAN language.
Using the statements described in this section, the programmer can check the following:

Array bounds

Assigned GO TO

Subroutine calls and returns

Function references and the values returned

Values stored into variables and arrays

Program flow

The debugging facility, together with the source cross reference map, is provided specifically to assist the pro
grammer develop or convert programs.

The debugging mode is selected by specifying Dor D = lfn on the FTN control statement. This option auto
matically selects fast compilation (OPT=O) and full error traceback (T option). If any other optimization level
is specified, it will be ignored. Specification of both D and TS results in a fatal error. The following examples
are equivalent:

FTN (D)
FTN (D=INPUT,OPT=O,T)
FTN (D,OPT=2) OPT=2 is ignored, OPT=O and Tare automatically selected.

Debug output is written on the file DEBUG. The DEBUG file, which must be on a queue device, is given print
disposition and printed separately from the output file upon job termination. To obtain debugging information
on the same file as the source program, or any other queue device residentttt file, DEBUG must be equivalenced
to that file in the PROGRAM statement.

Examples:

PROGRAM EX (INPUT,OUTPUT,DEBUG=OUTPUT)

Debug output is interspersed with program output on the file OUTPUT.

PROGRAMEX(INPUT,OUTPUT,TAPEX,DEBUG=TAPEX)

Debug output is written on the file T APEX.

The following control statement sequence causes the debug output to be printed on the output file at termination
of the job. It is not interspersed with the results of program execution.

FTN(D)
LGO.
REWIND(DEBUG)
COPYCF(DEBUG,OUTPUT)
EXIT (S)tor EXIT. tt
REWIND(DEBUG)
COPYCF(DEBUG,OUTPUT)

tNOS/BE and SCOPE 2
ttNos 1

tttNOS/BE

Abnormal termination

60497800 E 9-1

In debug mode, programs execute regardless of most compilation errors. Execution, however, terminates when
a fatal error is detected, and the following message is printed:

FATAL ERROR ENCOUNTERED DURING PROGRAM EXECUTION
DUE TO COMPILATION ERROR

Partial execution of programs containing fatal errors allows the programmer to insert debugging statements to
assist in locating fatal and non-fatal errors. Partial execution is prohibited for only four classes of errors:

Any declarative error (any error encountered before at least one valid executable statement is found)

Any fatal compilation error (defined in Appendix B)

Any missing (undefined) DO termination

Any illegal transfer into an innermost DO loop that is not an extended range loop

When a program is compiled in debug mode, at least 15000 (octal) words are required beyond the minimum
field length for normal compilation. To execute, at least 2500 (octal) words beyond the minimum are re
quired. The CPU time required for compilation is also greater than for normal OPT=O compilation.

If the D option is not specified on the F1N control statement, all debugging statements are treated as com
ments; therefore, it is not necessary to remove debugging statements from a program.

All debugging options are activated and deactivated at compile time only. This compile time processing is
not to be confused with program flow at execution time.

Example:

PROGRAM TEST (OUTPUT,DEBUG=OUTPUT)

GO TO 4

C$ (DEBUGGING OPTION)
C$ (DEBUGGING OPTION)

4 CONTINUE

END

Even though a section of code may never be executed. the debugging options are processed at compile time
and are effective for the remainder of the program. In the above example, the code between the GO TO
statement and the CONTINUE statement may never be executed. However, debugging statements betwe~n
these statements are processed at compile time and are effective for the remainder of the program, or until
deactivated by a C$ OFF statement.

9-2 60497800 c

DEBUGGING STATEMENTS

ds

7

Type of option. beginning after column 6: DEBUG. AREA. ARRAYS. CALLS.
FUNCS. GOTOS. NOGO. OFF. STORES. TRACE

Argument list; details extent of the option. ds (not used with NOGO, GOTOS; required
for AREA. STORES; optional for other options)

CONTINUATION LINE

~7
11

(t
I I

Debugging statements are written in columns 7-72, as in a normal FORTRAN statement, but columns 1 and
2 of each statement must contain the characters C$. Any character, other than a blank or zero, in column
6 denotes a continuation line. Columns 3, 4, and 5 of any debugging statement must be blank. A maximum
of 19 continuation lines is allowed.

Comment lines may be interspersed with debugging statements. The statement separator ($) cannot be used
with debugging statements. When the debug mode is not selected, all debugging statements are treated as
comments.

Example:

C$ ARRAYS (A, BNUMB,ZlO, C, DLIST, MATRIX,
CS *NSUM, GTEXT,
CS *TOTAL)

ARRAYS STATEMENT

I I ARRAYS

7

(! I I ARRAYS

a 1 , ••• ,an array names

60497800 c 9-3

The ARRAYS statement initiates subscript checking on specified arrays. If no argument list is specified, all arrays in
the program unit are checked. Each time a specified or implied element of an array is referenced, the calculated
subscript is checked against the dimensioned bounds. The address is calculated according to the method described in
section 1. Subscripts are not checked individually. If the address is found to be greater than the storage allocated
for the array or less than one, a diagnostic is issued. The reference then is allowed to occur. Bounds checking is
not performed for array references in input/output statements, or in ENCODE/DECODE statements. In a subprogram,
the bounds that are checked are those in effect in the subprogram, including variable dimensions.

Example:

•
•
•
C$
•
• ..
•
•
*
* •
•
•
* •
•
•
•
0

•
•
•
0

•
•
•
•
•
•
CS
•
•
•
* •
•

9-4

l

PROGRAM AkRAYS tOUTPUT,OESUG=OUTPUT)
I~TEGER A<2>• 844>• C(b)t 0<2•3t4)
PRINT 1
FORMAT4°0 ARRAYS EXAMPLE*///)

TURN ON ARRAYS fOR AR~AYS A ANO 0

ARRAYS <At O'>

A<J) I~ OUT OF BUUNOS ANO AR~AYS IS ON fOR At SO A OIAbNOSTlC
IS PtHNTEO •

A (J) = 1

8(3) IS OUT Of HOUNDS BUT ARKAYS IS NOT ON FOR ~, SO NO
DIAGNOSTIC IS PRINTED.

8(5) = l
C<2> = ACAC3))

EVEN TH00GH A(3J WA$ OUT OF BOUNO~t TrlE ASSJG~MENT TOOK PLACE•
A(AtJ>> I~ E~Ul~ALENT TO A<I>. THIS SU~SCRIPT IS I~ dO~NOSt
HOWEVtk THE MEFERENCE TO A<J> WILL CAUSF A OIA~NOSTlC•

FU~ THE A~HAY O(L,M.N> THE STOHAGE ALLUCATEn IS L 0 M ,. Ne
THE SU8SCMIPT FOR THE ~LEM~NT DtltJtKJ JS CO~PUTEO AS fULLO~S

(1 + L* (..J-1 + M'° (t<-1>))
FOR THt ELEME~T UC-StOtb) lHE SUBSCRI~T AP~EARS TO
BE UUT OF B0UNDS b[CAU~E Tht l~UIVIOUAL SU~SCRIPTS A~E oUT
OF ~OUNUS· HOW~V~~. 22• TMt co~PuTtO AnD~ESSt IS LESS THAN
24, THE STOH~GE ALLOCATlDt AND NO DlAGNnSTI~ IS I~su~u •

TU~N ON AkKAYS FOR ALL A~~AYS

ARRAYS

WITH THIS FORM ALL ARkAY Rff EHENCE~ WILL dE CHECKED. THE~E wILL
BE DIAGNOSTICS tYk ti(S>• C<-l>• AND O<O.OtO>. ~ECAUS~ A(2)
IS IN B00~DS ANO Al4) IS IN AN l/O STATEMlNTt THEkE W!LL bE
NO DIAGNOSTICS ~Ok flTHtR Uf TrlESE REFE~ENCES •

A (2) = 1
B<5> = ~ • C<-1>
OtotOtO> = 1
PJdNT 2t A (4)

2 FOHMAT<lXt AlO>
ENO

60497800C

lllltUS Ul"PLC

/DEBUG/
/OUUG/
10£0Ulil
/OE9UGI
/Df'RUl:.I

IRlt&'fS AT LINE
IT Lt ... '"
AT Ltt1C
U ltflE
&T l TNF

13- T~ 'll•!'t"'":~t='T VIL 1£ ""
Zil- T,.~ 'i\IJll<;l'U?T VAL'IF' ni-
4.7- Tift !:Ul\':rH"T VllLUI' rir
le1• TH&" SUP<;CU•t V&LtJr ,,,.
.... ~ tHE.. sue<:C!UPT VALUE OS'

CALLS STATEMENT

(t
1 7

(t
subroutine names

J I• ~·"~' a
~ I" aaao a
c; llii <•H l'

•l 1iw a••n r.
-· IM <OY 0

s:rrHt''i Ol .. ENSfnr1ro n.n11"'i· l)F'
rrrnos l'll'INSIOlllO POUNll or
EllCEEOS 01,.t.NSil'l,tff.0 l!OUNO OF
c-rErns [IJ!C(NSlnr~£D 80UNl) llF'
OCEEDS OI"ENSIOteEO BOUND Of'

The CALLS statement initiates tracing of calls to and returns from specified subroutines. If there is no
argument list all subroutines will be traced. Non-standard returns, specified in a RETURNS list, are
included. To trace alternate entry points to a subroutine, either the entry points must be explicitly named in
the argument list, or the form with no argument list must be used (all external calls traced). The message
printed contains the names of the calling and called routines. as well as the line and level number of the
call and return.

A main program is at level zero; a subroutine or a function called by the main program is at level 1,
another subprogram called by the subprogram at level I, is at level 2, and so forth. Calls are shown in order
of ascending level number, returns in order of descending level number.

level 0

~
., call

level 1 return • .., call

~
level 2 return SUB B

For example, subroutine SUB A is called at level I and a return is made to level 0. SUB Bis called at
level 2 and a return is made to level l .

60497800 A 9-5

Example:

•

P"OGRAM CALLSCOUTPUT•DEbUG•OUTPUT) ·
PRll''fT 1

1 F'OM'4ATC•O CALLS TRACING•)

• TU~N·ON CALLS F'OM SUdROU-Tl~f.S CALLS! ANO CALLS2
•
C~ CALLSfCALLSl• CALL52)

x = 1.

•

CALL CALLSl CA•Y>t ~ETUHNS ClO)
10 If ex .EQ. 1.) CALL CALLS2(X)

CALL SUtsNOT
CALL CALLSlE cx,Y>

• OEbUG MESSAGES WILL BE. PRINTED f Ok CALLS TO AND HETUMNS fHOt4
* CALLSl AND CALLS2. S1~CE. lHf CALLS AWE F~OM THE MAIN PROGRAM~
• THEl' ARE AT LEVE.L O. THE CALLS TO SUBNnT ANO THE 4LTt.R""ATE
• ENT~Y POINT CALLSlt: AHt. NOT TRACED ttECA11SE THEY 00 NOl •P.PEAR
* IN THE ARGUMENT LlST Of THt CS CALLS STATEMENT •
•
•
• TURN ON CALLS FOH All SUti~OUTINES
•
C• CALLS

CALL SUSNOT
CALL CALLSZ U >
CALL CALLSlE CAtY>

* OL~UG MlSSAbES ~ILL ~l P~JNTEO FOM CALLS TO A~O RETURNS fkOM
• SU~hOTt CALL~~. ANO CALLSll• SINCE ALL CALLS ARl To BE
• T~ACED.

9-6

ENO

SU8HOUT1Nf. CALLSlCX,Y>• RETURNSCA)
y • -x
If CY .NE. X) RETURN A
RETURN
EMRY CALLSlE
~ETURN
ENO

SUBROUTINE CALLS2Cl)
CAtL CALLSlCX•Y>• RETURNSCS)

5 Rt.TURN
ENO

SUdROUTINE SUBNOT
x • -1.
CALL CALLSlCX•Y>• AETURNSCS)

5 RETURN
ENO

60497800 A

CALLS TtUCING
/DEBUG/ CALLS AT LINE 9- ROUTINE CALLS1 CALLEO Af LEVEL 0
/DEBUG/ AT LINE 10- ROUTINE CALL Si RETURNS TO LEVtl 0 AT STATEMENT 10
/DEBUG/ AT LINE 10- ROUTINE CALLS2 CALLEO At LEVEL 0
/DEBUG/ AT LINE 11- ROUTINE CULS2 RETURNS TO LEVEL 0
/DEBUG/ AT LINE 24- ROUTINE SUBNOT CALLED AT LEVEL 0
/DEBUG/ AT LINE 25- ROUTINE SUB NOT RETURNS TO LEVEL 0
/DEBUG/ AT LINE 25- ROUTINE CALLS2 CU LEO Al LEVEL 0
/DEBUG/ AT LINE 26- ROUTINE CALLS2 RETURNS TO LEVEL 0
/DEBUG/ AT LINE 26- ROUTINE CALLS1E ClllED AT LEVEL D
/DEBUG/ AT LINE 27- ROUTINE CALLS1E RETURNS TO LEVEL 0

In this example. only calls from the main program are traced. To trace calls from subprograms, a CS
CALLS statement must appear in the subprograms.

FUNCS STATEMENT

(t
1

(i
If no function names (a1 ••••• a11) are listed. all external functions referenced in the program unit are traced.
Alternate entry points must be named explicitly in the argument list. or implicitly in the CS FUNCS
statement with no paramenters.

Function tracing is similar to call tracing. but the value returned by the function is included in the debug
message. Each time a specified external function is referenced. a message is printed which contains the
routine name and line number containing the reference. function name and type. value returned, and level
number. The level concept is the same as for the CALLS statement.

Statement function references and intrinsic function references are not traced, nor are function references in
input/output statements.

60497800 c 9-7

Example:

The following program. V ARDIM2. illustrates both the CS FUN CS and C$ CALLS statements. All
function references in ~he main program are traced because C$ FUNCS appears without an
argument lis·i; references· to functions PV AL. AVG and MUL T and the values returned to the main
program (level O) are traced. All subroutine calls in the main program are traced also because a C$_ CALIS
statement with~ut an argument· list appears.

Function references within. the FUNCTION subprograms PV AL. AVG and MUL T are traced since
C$ FUNCS statements appear within thes.e subprograms. If no C$ FUNCS statements appear in the
subprograms. only main program function references will he traced. . .. --..

PROGRAM VAPOIM2tOUTPUT,TAPE6aOUTPUT,DE9UG=OUTPUT>
c T11IS' PROG~A" USES VARIABLE Ol"ENSIONS •ND MANY SUBPROGRAM CONCEPTS

~~~HON XC4,3t I 

REAL Yt6l 
5_ EXTERNAL HULT, AVG 

PVALSFU,YI = PVA.i.f>C,Y), 
CULS 

ll 

u 

20 

2S 

5 

10 

9-8 

Cl 

·c 
c 
c 
Cl 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

t 
c 

c 

2 

CALL SETCY,&,O.) 
CALL IOTACX,121 
CaLL INC(X,12,-s.J 

All EXTERNAL CALL' ARE DIAGNOSED. 

FUNCS 
AA =·PVALSFC12tAVG> 
A" : P.V.ALSF C12 ,HUL n 

PVALSF IS A STATEMENT FUNCT'ION, SO THE FUNCS STATEMENT DOES NOT . 
APPLY TO IT ANO NO MESSAGE IS PRINTED. HOMEYER, THE EXTERNAL 
FUNCTION PVAL IS REFERENCED WITHIN THE CODE FOR PVALSF, 
ANO .THOSE REFERENCES ARE OJAGNOSEO. 

"ULT ANO AVG ARE HAMES AS A9'~U"!NT-S TO PVALSF, HOWEVER, THE 
FUNCTIONS ARE NOT ACTUALLY REFERENCED AND "ESSAGES ARE NOT 
PRINTED. 

STOP 
END 

SUSROUTINE SET CA,"tV) 
SET PUTS THE VALUE V INTO EVERY ELEMENT OF THE ARRAY A 
DIMENSION AfHJ 
0011=1,H 
uu=o.a 

ENTRY INC ,. 
INC ADDS THE VALUE V TO EVERY ECEHENT IN THE ARRAY A 
0021=1,H 
Ut>=A<U+V 
RETURN 
ENO 

60497800 A 



5 

10 

s 

10 

11 

sueROUTINE IOTA (A,M) 
C IOTA PUTS CONSECUTIVE INTEGE~S STARTING AT 1 IN EVERY ELEMENT OF 
C THE ARRAY A 

DI HENS I ON A (H) 
0011=1,M 

1 ACI>=I 
RETURN 
END 

FUNCTION PVAL<SIZE,WAY> 
C PVAL COMPUTES THE POSITIVE VALUE OF WHATEVER REAL VALUE IS RETURNED 
C BY A FUNCTION SPECIFIED WHEN PVAL WAS CALLEO. SIZE IS AN INTEGER 
C VALUE PASSED ON TO THE FUNCTION." 

INTEGER SIZE 
CS PUNCS CABS) 

PVAL=ABS<WAY<SIZEJ) 
c 
c 
c 
c 

WAY DOES NOT APPEAR IN THE ARGUMENT LIST FOR THE FUNCS STATEMENT, 
SO ONLY THE REFEREtCE TO.ABS IS DIAGNOSED. 

RETURN 
END 

FUNCTION AVG<J> 
C AVG COHPUTES THE AVERAGE OF THE FI,ST J ELEMENTS OF COMMON. 

COMMON AUOO> 
AVG=O. 
DOU=t ,J 

1 AVG=AVG+A(I) 
Cl FUNCS 
c 
C All EXTERNAL ~UNCTION REFERENCES WILL BE DIAGNOSED. 
c 

AVG=AVG/FLOAT<J> 
RETURN 
ENO 

REAL FUNCTION MULT(J) 
C HULT COMPUTES A STRANGE AVERAGE. IT MULTIPLIES THE FIRST AND 12TH 
C ELEMENTS OF COMMON AND SU8TR6CTS FROM THIS THE AVERAGE (COMPUTED 
C BY THE FUNCTION AVG> OF THE FIRST J/2 WORDS IN COMMON. 
c 

cs 
c 
c 
c 

60497800 A 

COMHON ARRA YU 2) 
FUNCS 

All EXTERNAL FUNCTION REFERENCES NILL 8E DIAGNOSED. 

HULT=ARRAYU2> •ARRAYUl•AVGCJ/2r 
RETURN 
E N· Q 

9-9 



/OF:flur;/ VAflLT 1'1? AT LINE IJ- f.'!Jl:Ttm: SET G!\ll fO u lfh..l 0 
/OfflUG/ AT LINE g- l<OLT IN'-: SEl KE fUR.Wi TO Lt':.V(L 0 
/OECIJG/ AT LINE 9- "OliT Hit:. IOU ~ll.L1.(0 AT LF.l/H 0 
/OEOUG/ AT LINE 10- i-'l!JTINE IOTA ;.,~TUHl::i TO Lf.'IH 0 
/0£CUG/ AT L HIE 10- l=JUTitH: INC Cl\Ll f..{J Ai l ::llt..l 0 
/OfJJUG/ AT LINE· 11- hi UJ INF. 1NC ,~[ TUkNS TO L.[V[L 0 . 
/l'F.:PUG/ H L !NC: ._?- f-E t••- FUN:;H<i:l P'JAL .;ALi.FD AT LCl/£L 0 
/OEOU(,/ "r LINE 1">- kE AL FU NC Tl 1JN l'llAL i\E TU~:-;s A \fl\LUC. OF 1.5UUOl.HluJO AT 1.EVEL 0 
/OfUU(,/ AT LIN£ lo- «~:.'\L FU~~C fl JN P\l~l CAL LC:u .\T L£11t.L I) 

/Of PUt;/ HllLT AT LINE u- R.E ·'L FUNG TI ON Av;-. l.Ali.lO .\f L£Vt1. 2 
/OF. PUG~ I\ T L ltlE 11- ;.,t,1\L' F<Jll(.;f[1)M AV':, l".f T'J~. NS A I/ALU£ CF - 1. SO tl tl G 0 IJ 0 u AT ;.£'/t:.L 2 
IOHHiC.I VllROIM?. AT L rnE 1r.- l<Ei\L FUNCTION i>VAt f~i~ i v~~G A VALUE OF 20.~uuuli1.11.10 AT Lt..VH I) 

STORES STATEMENT 

7 

I !STORES I 
An argument l}st must be specified for the STORES statement. 

(c1 , •• .,en) are variable names or expressions in the forms: 

variable name 

variable name .relational operator. constant 

variable name .relational operator. variable name 

variable name .checking operator. 

Relational operators are .EQ., .NE., .GT. .. GE ... LT. .. LE. 

Checking operators are .RANGE .. .INDEF., .VALID. 

Example: 

C$ STORES(SUM,DGAMP,AX,~ET.LT.4,ROWSUM.RANGE.) 

C$ STORES(Al,AGAIN,I,A2.EQ.5.0,IAGAIN.LE.IVAR} 

C$ STORES(C.EQ.(1.,l.),L.VALID.,D.NE.10.004) 

C$ STORES(G.RANGE.,TR.EQ •• FALSE.) 

9-10 60497800 c 



The STORES statement is used to record changes in value of specified variables or arrays. The STORES 
statement applies only to assignment statements. Values changed as a result of input/output. or use in 
DATA, ASSIGN, and COMMON statements, or argument lists to subroutines and functions are not detected. 
The STORES statement does not apply to the index variable in a DO loop. 

If the value of a variable in an EQUIV ALEN CE group is changed. the STORES statement will not detect 
changes to the value of other variables in the group. 

VARIABLE NAMES 

In the first form of the STORES statement, a message is printed each time the value of a variable or an 
array element changes. The variable and name of the array must appear as arguments in the C$ STORES 
statement. 

Example: 

PROGRA~ STORES CI NPUT ,OlJTPUT, OE BUG = OUTPUT> 
LOGICAL L1,L2 

1fJ 

CS STORES (NSUM,OGAHP,AX> 
NSUH :: 20 
DGAMP : .S 
A J( = 7 • 2 + DG A MP 
L1 = .TRUE. 
L? = .FALSE. 
PLANT = 2.5 
A = 7.5 
PRINT 3 

3 FORHAT UHO l 
STOP 
END 

Each time the value of the variables NSUM, DGAMP and AX changes, a message is printed. The 
values of PLANT. A. LI and L2 are not printed. since they do not appear in the argument list. 

/DEBUG/ STO~ES AT LINE 
/DEBUG/ AT LINE 
/DEBUG/ AT LINE 

60497800 A 

~- THE NEW VALUE OF THE VARI•BLE NSUH 
5- THE NEW VALUE OF THE VARIABLE OGAMP 
6- THE MEN VALUE OF THE VlRIABL~ AX 

IS 20 
ts .saoooooooo 
IS 7.7GIOHH8 

9-11 



Array elements should not be specified in the parameter list of a STORES statement; the array name must be 
used. If an array element appears, an informative diagnostic is printed. Changes to any element of the array 
are noted; only the array name without subscript is listed. 

Example: 

1D 

P~OGRAH STORAR (lNPUT,OUTPUT,OEBUG=OUTPUTl 
REAL AftOt, 8(,,2> 

CS STORES (A,8> 
eu,21 = 5~5 
Bt4, 2l = o. 
DO .. N : 1,3 

It A(N) = N+t 
PRINT 5 

S FOR"AT UHIJ 
STOP 
ENO 

/DEBUG/ STORlR 
/DEBUG/ 

AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LIME 

~- THE NEW VALUE OF THE VlRilBLE 8 
5- THE NEW VALUE OF THE VARI~BLE B 
1- THE NEW VALUE OF THE VARIABLE A 
1- THE NEW VALUE OF THE VARIABLE A 
1- THE NEW VALUE OF THE VARIA'BLE A 

/DEBUG' 
/DEBUG/ 
/DEBUG/ 

IS 
IS 
IS 
IS 
IS 

5.500000000 
o. 

2.000000000 
3.oooooaooo 
... 000000000 

The values stored into array elements B(l,2) and B(4,2) appear in the debug output under the array 
name B in both cases, and array elements A( I), A(2 ). and A(3) appear under the array name A. 

RELATIONAL OPERATORS 

In the second form of the C$ STORES statement, a message is printed only when the stored value satisfies the 
relation specified in the argument list. The two components of the relational expression must be of the same type. 

PROGRAM STJ CINPUTtOUTPUTtDEBUGaOUTPUT) 
5 FORMAT UttO) 

PRINT 5 
M = 5 

CS STORES Cl.EQ.3.N.LE.MtANT> 
I = 3 
I = It 
N = 4 
N = 6 
J = 10 
ANT = 77.0 
END 

/DEBUG/ STl 
/DEBUG/ 
/DEBUG/ 

9-12 

AT LINE 
AT LINE 
AT LINE 

6- THE NEW VALUE Of THE VARIABLE I 
8- THE NEW VALUE Of THE VARIABlE N 

11- THE NEW VALUE Of THE VARIABLE ANT 

IS 3 
IS 4 
IS 77.00000000 

60497800 A 



I appears in the debug output when it is equal to 3; N appears when it is less than or equal to M. 
Since no relational operator is specified with ANT, it is printed whenever the value changes. 

CHECKING OPERATORS 

In the third form of the STORES statement, a message is issued only when the stored value is out of range, 
indefinite, or invalid as specified by the checking operator. 

RANGE Out of range 

INDEF Indefinite 

VALID Out of range or indefinite 

For example: 

CS STORES (ROWSUM .RANGE •• COLSUM • VALID.) 

Whenever the value to be stored into ROWSUM is out of range, a message is printed. Whenever the 
value to be stored into COLSUM is out of range or indefinite, a message is printed. 

HOLLERITH DATA 

Hollerith data stored in a variable of type integer is interpreted by the STORES statement as an integer 
number. Hollerith data stored in a variable of type real or double precision is interpreted as a real or 
double precision number. 

In the following example, the three integer variables IHOLL, IRIGHT and ILEFT contain the characters 
PA in display code (20 and 01 ). 

I HOLL 20015555555555555555 

P A blank till 

I RIGHT 00000000000000092001 

zero till P A 

I LEFT 20010000000000000000 

P A zero till 

60497800 A 9-13 



Example: 

PROGHAM OlitOL llM'UTtOUTPUT•OE~UG•OUTPUT> 

CS D£8u:> 
CS STORCSCIHOl.LtIRlGHTtlLEFTthOLL) 

5 

10 

/OE~\JG/ DErtOL 
;Ot::>UG/ 
/OflH1G/ 
/OC:c1U\t/ 

1~0Lt.•2n?A 

lRIGHT•2~PA 
It.E;T=-<?i.:PA 
HOLl.•2H?A 
P~lNT l 

1 FOFIHAT &lhC> 
STOP 
END 

AT LINE 
AT LINE 
AT LINE 
AT LIN£ 

6• TnE NEW VALUE Of THE VA~lAb~£ lnO~L I~ ••••••••••veq• 
7• TnE .._C.111 VALUE Of THt: VAtdAC.L.E lRhiHf IS 1025 
a- TnE ~EW VALUE OF THE VARlAY~E II.EFT l~ ······••¥••··· 
9• THE ~EW VALUE Of THE VA"lABLE HOl.1. IS e40Zl071096E•lS 

The variables IHOLL, IRIGHT, and ILEFT are interpreted as integer numbers. Since the field width allocated 
by the STORES option (14 digits) is insufficient to contain the converted quantities represented by IHOLL 
and ILEFT, these fields are filled with asterisks. The variable IRIGHT is converted and printed out by the 
STORES option as 1025. 

The variable HOLL is interpreted as a real number, and its value is printed out. 

GOTOS STATEMENT 

7 

(t I I GOTOS 

No argument list can be specified with the C$ GOTOS statement. The GOTOS statement initiates checking 
of all assigned GO TO statements to ensure that the statement label assigned to the integer variables is in the 
GO TO statement list. If no match is found, a message is printed and transfer of control continues. 

5 

10 

15 

20 

PPOGRAM GO TO~ COUTPUT,OERUr.=OUTPUT) 
INTEGER A 

CS G(ITOS 
• (GOTOS NEVER USES AN llRGUMENT LIST> 

ASSIGN 1 TO A 
GO TO II U, 2, 3) 

IN THIS CllSE NO MESSAGE IS PRINTED SINCE THE LABEL ASSIGNED TO 
A IS IN T~E GOTO LIST. 

It PRINT 10 
10 FORMAT(• --CONT~OL TRAN'>FE~EO TO STATEMENT LABEL It--•> 

STOP 
1 ASSIGN It TO A 

GO TO A C1, z, 3) 

IN THIS CASE A MESSAGE TS PRINTED SINCE THE LAREL ~ IS NOT IN 
THE r.oTo LTST. CONTPOL THEN TRANSFERS TO LABEL ... 

2 CONTINUE 
3 CONTINUE 

E.,O 

fOfqtJG/ GOTO<; AT LIN~ 1&- AS'!GNE:n :;:)TQ IN::l':X CONTAINS TliE Anf)PESS 002151. NO MATCM FOUNC IM STllTEl'ff IH lAflEL AOOPE'SS LIST 
--CONTPOL T~ANSFE~EO TO STATEMENT LAREL ~--

9-14 60497800 A 



TRACE STATEMENT 

(T 11 TRACE llvl I 
1 7 

(i WRACE I 
Iv is a level number 0-49. If Iv = 0, tracing occurs only outside DO loops. If Iv = n, tracing occurs up to 
and including level n in a DO nest. If no level is specified, tracing occurs only outside DO loops. 

The C$ TRACE statement traces the following transfers of control within a program unit: 

GOTO 

Computed GO TO 

Assigned GO TO 

Arithmetic IF 

True side of logical IF 

Transfers resulting from a return specified in a RETURNS list are not traced. (These can be checked by the 
CS CALLS statement.) 

If an out-of-bound computed GO TO is executed, the value of the incorrect index is printed before the job 
is terminated. 

Messages are printed each time control transfers during execution. The message contains the routine name, 
the line where the transfer took place, and the number of the line to which the transfer was made, as well 
as the statement number of this line, if present. 

A message is printed each time control transfers at a level less than or equal to the one specified by Iv. For 
example, if a statement C$ TRACE(2) appears before a sequence of DO loops nested four deep, tracing 
takes place in the two outermost loops only. 

TRACE messages are produced at execution time, but TRACE levels are assigned at compile time; 
therefore, the compile time environment determines the tracing status of any given statement. For example, 
a DO loop TRACE statement applies only to control transfers occurring between the DO statement and its 
terminal statement at compile time (physically between the two in the source listing). 

60497800 A 9-15 



Example: 

10 

level 0 

level 1 

cs 

level 2 cs 

PROGRAM PCOUTPUT,OE9UG=OUTPUT> 
DATA .J/O/ 
TRACE CU 
If CJ .EQ. O> GO TO 11 

11 DO 1 11 = 1, 3 
if C CJ+1t .EQ. It ) GO TO 12 

12 J'= 1 
DO 2 12 = 1, S 
J = J + 12 
GO TO 2 

2 CONTINUE 
TRACEC3> 
DO 20 I2 = 1, 3 
IF C 12 .EQ. 3 > GO TO 20 
.J = 2 

20 [

level 3 OD 3 I 3· = 1 , 4 

IF C J .GT. 13 ) GO TO 31 

[ 

31 DO ft lit = 1, 2· 
level 4 GO TO It 

It CONTINUE 
3 CONTINUE 

20 CONTINUE 

25 

/DEBUG/ P 
/DEBUG/ 
/DEBUG/ 
/DEBUG/ 
/DEBUG/ 
IOE13UG/ 
/DEBUG/ 
/DEBUG I 
/DEBUG/ 
/DEBUG/ 
/DEBUG/ 
/DEBUG/ 
/DEBUG/ 
/OE BUG/ 
/DEBUG/ 
/DEBUG/ 
/DEBUG/ 
/DF.8UG/ 
/DEBUG/ 
/DEBUG/ 
/DEBUG/ 
/OE BUG/ 

J = ·o 
1 CONTINUE 

END 

AT LINE 
AT LINE 
At LTNE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 
AT LINE 

4- CONTROL TRANSFERRED TO THE T~lF- SIDE OF LOGICAL IF EXPRESSION 
4- CONTROL WILL BE T~ANSFE~RED TO SlATEHENT 11 AT LINE S 
&- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGIClL IF EXPRESSION 
6- CONTROL WILL SE TRANSFERRED TO SlATEHENT 12 AT LINE 1 

17- CONTROL TRANSFERRED TO THE TRU~ SIDE OF LOGICAL IF EXPRESSION 
17- CONTROL WILL BE T~ANS~ERREO TO SlATEHENT 31 AT LINE 18 
17- COl\ITROL TRANSFfR"REO TO THE TRUE SIDE OF LOGICAL IF EXPRESSION 
17- CONT~OL WILL gE TRANSFERRED TO SlATEHENT 31 AT LINE 18 
11t- CONTROL TRANSFERRED TO THE TRUE SIOE OF LOGICAL If EXPRESSION 
1~- CONTPOL MILL BE TRANSFERRED TO SlATEMENT 20 AT LINE 22 
17- CONTROL T~ANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION 
17- CONTROL WILL gE TRANSFERRED TO SlATEMENT 31 AT LINE 18 
17- CONTROL TRANSFERRED TO THE TRUE SIOE OF LOGICAL IF EXPRESSION 
17- CONTROL WILL BE TRANSFERRED TO SlATEHENT 31 AT LINE 18 
14- CONT~Ol TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION 
14- CONTPOL WILL BE TRANSFERRED TO SlATEHENT 20 AT LINE 22 
17- CONTROL TRANSFERRF.:D TO THE TRUE SIDE OF LOGICAL If EXPRESSION 
17- CONTROL WILL BE TRANSFERRED TO SlATEHENT 31 AT LINE 18 
17- CONTROL TRANSFERRED TO THE TRUE SIDE Of' LOGICAL IF EXPRESSION 
17- CONTROL WILL ~E TRANSFERRED TO SlATEHENT 31 AT LINE 18 
14- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF ~XPRESSION 
14- CONTROL ~Ill BE TRANSFERRED TO SlATEMENT 20 AT LINE 22 

In the first level 2 loop no debug messages are printed since the TRACE( I) statement is in effect. However, 
when the TRACE(3) statement becomes effective, flow is traced up to and including level 3. There are no 
messages for transfers within the level 4 loop. To trace only inner loops, for example levels 3 and 4 in the 
above example, a C$ TRACE(4) statement is placed immediately before the DO statement for the level 3 

. loop (line 16). A C$ OFF (TRACE) statement is placed after the terminal line for the level 3 loop, so that 
subsequent program flow in levels 0, 1, and 2 is not traced. 

9-16 60497800 A 



The level number applies to the entire program unit; it is not relative to the position of the C$ TRACE 
statement in the program. For example, to trace the level 4 DO loop in Program P: 

CS TRACE(4) 

must be specified. Positioning the statement C$ TRACE( I) before statement 31 would not achieve the same 
result. 

Care must be taken with the use of debugging statements within DO loops. Since nested loops are executed 
more frequently, the quantity of debug output may quickly multiply. 

The CS TRACE (Iv) statement traces transfers of control within DO loops; however, transfers between the 
terminal statement and the DO statement are not traced. 

Example: 

DO 100 I • 1.10 

100 CONTINUE 

Transfers from statement 100 to the DO statement are not traced. 

NOGO STATEMENT 

1 7 

(T I INoGo 

No argument list is specified with this statement. The NOGO statement suppresses partial execution of a pro
gram containing compilation errors. 

If a NOGO statement is present anywhere in the· program, it applies to the entire program. It is therefore 
not affected by an OFF statement or by bounds in an AREA statement. 

DEBUG DECK STRUCTURE 

Debugging statements may be interspersed with FORTRAN statements in a program unit (main program, sub
routine, function). The debugging statements apply to the program unit in which they appear. Interspersed 
debugging statements (figure 9-1) .change the FORTRAN generated line numbers for a program. 

60497800 A 9-17 



Debugging statements also may be grouped to form a debugging deck in one of the following ways: 

As a deck placed immediately after the PROGRAM, SUBROUTINE or FUNCTION statement heading 
the routine to which the deck applies (internal debugging deck, figure 9-3). Any names specified in 
the DEBUG statement, other than the name of the enclosing routine, are ignored. 

As a deck immediately .preceding the first source deck in the source input file (external debugging deck, 
figure 9-2). 

As one or more decks on the file specified by the D parameter on the FTN control statement (external 
debugging deck, figure 9-4). When no name is specified by the D parameter, the INPUT file is assumed. 

All debugging decks must be headed by a C$ DEBUG statement. In an internal debugging deck, the C$ 
DEBUG statement is used without an argument list, since the deck can only appear to the routine in which 
it is inserted. In an external debugging deck, a C$ DEBUG may be used with or without an argument list. 
The statements in the external debugging deck apply to all program units in the compilation. 

la l 7 
8 

_L 
.L 

9 .L 
.L 

Data Deck 
:::L 

/7 
8 ..r 9 .L 

_L 
L 

Debug { 
Statements 

{_Executable Statements 

I C$ OFF (FUNCS) l 
IC$ STORES(A) l~ 

.L 
L 

i.........i .L 
{_Executable Statements 

IC$ CALLS 

IC$ FUNCS 
1 

L 
L 

~ { Executable Statements 

Debug { 
Statements 

_L_ 
_L_ 

.L ... .L 

{_Specification Statements 
I-' 

~ 

PROGRAM Statement l 
7 1 8 

g I; FTN(D) 
l 

...._ 
/ Job Statement 

~ 

"-I 

Debugging statements are interspersed; they are inserted at the point in the program where they will be activated. 

Figure 9-1. Example of Interspersed Debugging Statements 

9-18 60497800 A 



Is 
7 
8 
9 

_L_ 
L 

_L_ 

/Data Deck 

~ 

External 
Debugging 

Deck 
{ 

/7 
8 
9 

7 
8 
9 

1, 
f Subroutine B 

f 
f 

L 
f 

f Program A 
~ 
~ ......__ 

F 
_L 

( ($ DEBUG 

F 

L FTN(D) 

f Job Statement 

l 
::t. 

J_ 

'"" .... .... 
~ 

~ 
~ 

The external debugging deck is placed immediately in_ front of the first source line. All program units (here, 
Program A and Subroutine B) will be debugged (unless limiting bounds are specified in the deck). This 
positioning is particularly useful when a program is to be run for the first time, since it ensures that all 
program units will be debugged. 

Figure 9-2. External Debugging Deck 

60497800 A 9-19 



6 
7 
8 
9 

L 
~~ L 

Internal { 
Debugging 

Deck 

.L -
Data Deck 

7 
8 
9 

L 
_L 

L 
L ....._ 

.L 

. ~Source Deck 

L 
.L {C$ DEBUG 

f PROGRAM Statement 

!1 
8 
9 FTN(D) 

/ Job Statement 

~ 

..... 

1 

~ 
I-" 

I-

1 
to-

I-

1 
_I_ 

_L l 

When the debugging deck is placed immediately after the PROGRAM statement and before any specification 
statements, all statements in the program unit will be debugged (unless limiting bounds are specified in the 
deck); no statements in other program units will be debugged. This positioning is best when the job is 
composed of several program units known to be free of bugs and one unit that is new or known to have 
bugs. 

Figure 9-3. Example of Internal Debugging Deck 

9-20 60497800 A 



I 

I Debug Deck (INPUT file) 

I 
FTN (l=TAPE1,D) 

Compil• 

L 
I 

I 

/Source Deck (INPUT file) 

FTN (D•TAPE1) 

Compiler 

The debugging deck is placed on a separate file (external debugging deck) named by the D parameter on 
the FTN control statement and called in during compilation. All program units will be debugged (unless the 
program units to be debugged are specified in the deck). This positioning is useful when several jobs can be 
processed using the same debugging deck. 

Figure 9-4. Example of External Deck on Separate File 

60497800 A 9-21 



DEBUG STATEMENT 

1 7 

1 .7 

(1 11 DEBUG (name1 •...• name") 

name, , ... ,name" routines to which the debugging deck applies 

Internal and external debugging decks start with a DEBUG statement and end with the first line other than 
a debugging statement or comment. Interspersed debugging statements do not require a DEBUG statement. 

In an internal debugging deck, the first form of the statement (without an argument list) is generally used, 
since the deck can apply only to the p.rogram unit in which it appears. If a name is specified it must be the 
name of the routine containing the debugging deck; if any other name is specified, an informative diagnostic 
is printed. 

In an external debugging deck, if no names are specified, the deck applies to all routines compiled. 
Otherwise, it will apply to only those program units specified by name, , ... ,name"; if any other name is 
specified, an informative diagnostic is printed. 

Example: 

In the following program, a DEBUG statement is not required since the debugging statement, C$ 
STORES (A,B), is interspersed. 

10 

9-22 

PROGRAM STORAR CINPUT,OUTPUT,OE8UG=OUTPUTI 
REAL AC10>, ec~,2• 

CS STORES CA,B> 
ec1,2> = s.s 
Btlt,2) = O. 
DO It N = 1t3 

It A4N> = N+1 
PRINT S 

5 FORMAT C1Hll 
STOP 
END 

60497800 A 



However, if the C$ STORES statement immediately follows the PROGRAM statement, this is an internal debugging 
deck, and a C$ DEBUG statement must appear. 

5 

10 

PROGRAM DEHOL <INPUT,OUTPUT,OEBUG=OUTPUT> 

CS DEBUG 
CS STORESCIHOL,IRIGHT,ILEFT,HOLL> 

IHOL=2HPA 
IRIGHT=2RPA 
ILEFT=2LPA 
HOLL=2HPA 
PRINT 1 

1 FORMAT (1HO> 
STOP 
END 

There can be several DEBUG statements in an external deck, and a routine can be mentioned more than 
once. 

CS DEBUG 
CS STORES(I,J) 
CS DEBUG(MAIN,EXTRA,NAMES) 
C$ ARRAYS(VECTAB,MLTAB) 
CS DEBUG(MAIN) 
CS TRACE 
CS CALLS(EXTRA,NAMES) 

AREA STATEMENT 

1 7 

(Ct WREA bounds1 •.•. ,bounds0 

1 7 

C 
1
$ AR EA/name/bounds1 •...• bounds" •..• I name/bounds1 , ...• boundsn 

I 
I 

C$ AREA(bounds1, ••• ,bounds0 ) is used in internal debugging decks only. 

name, ,namei, ... ,name0 are the names of routines to which the bounds apply. 

bounds are line positions defining the area to be debugged. 

60497800 A 9-23 



bounds can be written in one of the following forms: 

n, Initial line position. 

Di Terminal line position. 

(DJ) DJ Single line position to be debugged. 

n, Initial line position. 

• Last line of program. 

(*,Dz) • First line of program • 

Dz Terminal line position. 

(*,*) • F~t line of program. 

• Last line of program. -

Line positions can be: 

nnnnn 

Lnnnn 

id.n 

Statement label 

Source program line number as printed on the source listing by the FORTRAN 
Extended compiler (source liSting line numbers change when debugging statements are 
interspersed in the program). 

UPDATE line identifier (defined in the UPDATE Reference Manual); id must begin with 
an alphabetic character and contain no special characters. 

A comma must be used to separate the line positions, and embedded blanks are not permitted. Any of the 
line position forms can be combined and bounds can overlap. 

The AREA statement is used to specify an area to be debugged within a program unit. All debugging 
statements applicable to the program areas designated by the AREA statement must follow that statement. 
Each AREA statement cancels the preceding program AREA statement. An AREA statement (or contiguous 
set of AREA statements) specifies bounds for all debugging statements that occur between it and the next 
C$ DEBUG, AREA statement, or FORTRAN source statement. 

AREA statements may appear only in an external or an internal- debugging deck (figures 9-2, 9-3, and 9-4). 
If they are interspersed in a FORTRAN source deck,· they will be ignored. 

9-24 60497800 A 



In an external debugging deck, the following form, with /name/ specified, must be used. It can be used 
with both forms of the DEBUG statement. 

1 7 

(Y 
1 

C$ 
I 

AREA/name1 /bounds1 , ... , bounds" , ... /namen/bounds1 , ... , bounds" 

I 
I 

or 

7 

c,s DEBUG (name1 , ..• ,namen) 

I 
I 
I 

1 7 

C,$ AREA/name1/bounds1 , ..• ,bounds", ... /name/bounds1 , ..• ,bounds" 

I 
I 

If /name/ is omitted, or names in the /name/ list do not appear in (name1, ••• ,name0 ) in the DEBUG 
statement, the AREA statement is ignored. 

In an internal debugging deck, the following form is used, and the bounds apply to the program unit that 
contains the deck. 

C$ 
I 

60497800 A 

I 
I 

7 

AREA bounds1, ... ,bounds" 

9-25 



Example: 

External deck 

C$ DEBUG 
CS AREA/PROGA/(XNEW.10,XNEW.30)/SUB/*,L50) 
C$ ARRAYS (TAB,TI~LE,DAYS) 

C$ AREA/SUB/(15,99) 
C$ STORES (DAYS) 

Internal deck 

C$ DEBUG 
CS AREA (LlO,*) 
CS FUNCS (ABS) 

OFF STATEMENT 

1 

x, , ... ,x0 debug options 

7 

I 
I 

The OFF statement deactivates the options specified by xi or all currently active options except NOGO, if 
no argument list exists. Only options activated by interspersed debugging statements are affected. Options 
activated in debug decks or by subsequent debugging statements are not affected. 

The OFF statement is effective at compile time only. In a debugging deck, the OFF statement is ignored. 

9-26 60497800 A 



Example: 

10 

15 

PROGRAM OFF COUTPUT,OEBUG=OUTPUTI 
Cl DEBUG 
CS STORES CC> 

INTEGER A, Bt C 
CS STORESCA, BJ 

A = 1 
8 = 2 
c = 3 

• 
• MESSAGES WILL BE PRINTED FOR STORES IN'O A, Bt ANO C • 
• 
CS OFF 
• 

A = 
B = c : 

• THE 
• 

4 
5 
6 
OFF STATEMENT WILL ONLY AFFECT THE INTERSPERSED DEBUGGING 
STATEMENT, SO THERE MILL BE NO MESSAGES FOR STORES INTO 

20 • 
• 

A OR B. HOHEVER, Ci STORESCC) IN THE DEBUGGING DECK IS NOT 
AFFECTED, ANO A MESSAGE ~S PRINTED FOR A STORE INTO C • 

• 

/DEBUG/ OFF 
/OEaUGI 
/DEBUG/ 
/DEBUG/ 

ENO 

AT LINE 
AT LINE 
AT LINE 
AT LINE 

7- THE ~EW VALUE OF THE VARIABLE A 
a- THE NEW VALUE OF THE VARIABLE B 
9- THE .NEW VALUE OF THE VARIABLE C 

17• THE NEW VALUE OF THE VARIABLE C 

PRINTING DEBUG OUTPUT 

IS 
IS 
IS 
IS 

Debug messages produced by the object routines are written to a file named DEBUG. The file is printed upon 
job termination, unless otherwise specified by the user, because it has a print disposition. To intersperse debug
ging information with output, the programmer should equate DEBUG to OUTPUT on the PROGRAM statement. 
An FET and buffer are supplied automatically at load time if the programmer does not declare the DEBUG file 
in the PROGRAM statement. For overlay jobs, the buffer and FET will be placed in the lowest level of overlay 
containing debugging. If this overlay level would be overwritten by a subsequent overlay load, the debug buffer 
will be cleared before it is overwritten. 

At object time, printing is performed by seven debug routines. These routines are called by code generated at 
compile time when debugging is selected. 

60497800 A 9-27 

1 
2 
3 
6 



Routine 

BU GARR 

BUGCLL 

BUG FUN 

BUGGTA 

BUGSTO 

BUGTRC 

BUGTRT 

Function 

Checks array subscripts 

Prints messages when subroutines are called and when return to calling 
program occurs 

Prints messages when functions are calJed and when return to calling 
program occurs 

. Prints a message if the target of an assigned GO TO is not in the list 

Performs stores checking 

Flow trace printing except for true sides of logical IF 

Flow trace printing for true sides of logical IF 

STRACE ENTRY POINT 

Traceback information from a current submutine level back to the main level is available through a call to 
STRACE. STRACE is an entry point in the objeCt routine BUGCLL. A program need not specify the D 
option on the FTN control statement to use the STRACE feature. 

STRACE output is written on the file DEBUG; to obtain traceback information interspersed with the source 
program's output, DEBUG should be equivalenced to OUTPUT in the PROGRAM statement. 

Examples: 

9-28 

PROGRAM MAIN (OUTPUT,DEBUG=OUTPUT) 
CALL SUBl 
END 

SUBROUTINE SUBl 
CALL SUB2 
RETURN 
END 

SUBROUTINE SUB2 
I = FUNC1(2) 
RETURN 
END 

FUNCTION FUNCl (K) 
FUNCl = K •• 10 
CALL STRACE 
RETURN 
END 

60497800 A 



Output from STRACE: 

/DEBUG/ FUNCl AT LINE J• T~ACE ltOUTINE CALLED 
FUNCl CALLED IY SU82 
suaz CALLEO IY SU81 
SU81 CALLEO BY MAIN 

AT UNI 
AT LINI 
AT LlNI 

2, F~O" 
2t FltO" 
2, FltOM 

1 LEVELS BACK 
2 LEVELS BACIC 
3 LEVELS BACK 

A main program is at level O; a subroutine or function called by the main program is at level 1; another 
subprogram called by a subprogram is at level 2, etc. Calls are shown in order of ascending level number, 
returns in order of descending level number. · 

For additional information regarding the debugging facility, refer to the FORTRAN Extended Debug 
User's Guide. 

60497800 A 9-29 





FTN CONTROL STATEMENT 

The FORTRAN Extended compiler is called from the library and executed by an FTN or FTN4 control 
statement. Either control statement calls the compiler, specifies the files to be used for input and output, 
and indicates the type of output to be produced. Either control statement may be used in any of the 
following forms: 

F1TN(p1 ,p2 , ... , p
0

) comments 

! 11 

1 
I I 

, ... , p
0

. comments 

11 

Examples: 

FTN (A,L,R,GO,S=O) 

FTN4 (A,L,R,GO,S=O) 

PARAMETERS 

I 

10 

The optional parameters, p1, ... ,pn must be separated by commas and may be in any order. If no parameters 
are specified, FTN is followed by a period or right parenthesis. If a parameter list is specified, it must con
form to the syntax for job control statements as defined in the operating system reference manual, with the 
added restriction that a comma is the only valid parameter delimiter. Columns following the right parenthesis 
or period can be used for comments; they are ignored by the compiler, but are printed on the dayfile. 

Default values are used for omitted parameters. These defaults are set when the system is installed; since 
installations can change default values, the user should determine what default values are in effect at the user's 
particular installation. 

Unrecognizable parameters are ignored. Conflicting options either are resolved or cause compilation to ter
minate, depending on the severity of the conflict; this resolution is indicated in a dayfile entry. 

The values of the A, B, D, G, I, L, ML, P, S, and X parameters are passed to COMPASS when intermixed 
COMP ASS subprograms are present. 

60497800 F 10-1 



In the following description of the FTN control statement parameters, lfn indicates a file name consisting of one to 
seven letters and digits, the first a letter. Two or more options using the same file terminates compilation with a 
message to the dayfile. 

A 

B 

EXIT PARAMETER (Default: A = O) 

A 

A=O 

If fatal errors have occurred during compilation, the system aborts the job to the next 
EXIT{S) control statement (NOS/BE 1 and SCOPE 2) or EXIT control statement (NOS l}. 
If no such control statement is found, the job is terminated. This option has no effect on 
interactive jobs. A takes precedence over GO but not over D. 

System advances to the next control statement at end of compilation whether or not fatal 
errors have been found. 

BINARY OBJECT FILE (Default: B = LGO) 

B 

B =lfn 

B=O 

Generated binary object code is output on file LGO. 

Generated binary object code is output on file lfn. 

No binary object file is produced. Cannot be specified with GO. 

The B option conflicts with the Q and E options. 

BL BURSTABLE LISTING (Default: BL= O) 

c 

BL 

BL=O 

Generates output listing that is easily separable into components by issuing page ejects 
between source code, error summary {if present), cross reference map, and object code (if 
requested}; and ensures that each program unit listing contains an even number of pages 
(page parity) issuing a blank page at the end if necessary. 

Generates listings in compact format. 

COMPASS ASSEMBLY (Default: C = 0) 

c 

C=O 

Selects the COMPASS assembler to process the symbolic object code generated by 
FORTRAN Extended. When the C parameter is specified, FTNMAC is selected as a 
system text for the COMPASS assembly; therefore, if the C option is selected, the 
maximum number of system texts that can be specified with the G and S parameters is six. 

Selects the FORTRAN Extended internal assembler (regardless of installation default), 
which is two to three times faster than the COMP ASS assembler. 

The C option conflicts with the TS, Q, and E options. 

CC CONTROL STATEMENT CONTINUATION PARAMETER (Default: CC = 0) 

cc 

CC=O 

Example: 

10-2 

Causes the FORTRAN Extended compiler to interpret the following control statement as 
a continuation of the FTN control statement, thus allowing the FTN control statement 
to be continued on more than one line. The CC parameter must be repeated on each 
statement in the sequence with the exception of the last statement in the sequence; the 
CC parameter must not appear on the last statement in the sequence. Each statement in 
the sequence of continued statements must be terminated by a period or a right 
parenthesis. 

The FTN control statement appears on one line only. 

FTN,l=INPUT,CC. 

L=OUTPUT,CC. 
B=LGO. 

60497800 G 



D DEBUGGING MODE PARAMETER (Section 9) {Default: D = 0) 

D = lfn 

D 

D=O 

This option must be specified if the debug utility described in section 9 is to be 
used. lfn is the name of the file where the user debug deck resides (see figure 
9-4, section 9). Binary object code is generated on the file indicated by the B 
parameter regardless of compilation errors or the exit parameter A. Interspersed 
COMP ASS code, if present, is assembled under the COMP ASS D optfon. Specify
ing D automatically activates OPT=O and the T option; thus, FTN{D) is equivalent 
to FTN(D,OPT=O,T,A=O). 

Implies D = INPUT 

Debug statements are ignored. 

OPT=l and OPT=2 are ignored if D or D=lfn is specified. The D option conflicts with the TS option. 

DB CYBER INTERACTIVE DEBUG PARAMETER (Default: DB = 0) 

DB= ID 

DB= 0 

DB 

This option must be specified if the program is to be debugged using CYBER 
Interactive Debug and the DEBUG control statement (NOS 1 and NOS/BE 1 
only) has not been included. If the DB parameter is specified, the binary 
object code is complemented by a line number table and a symbol table. 
CYBER Interactive Debug uses these tables while processing the user's program to 
determine variable locations, source line locations, and other useful debugging 
information. 

No debug tables are generated. If CYBER Interactive Debug has been turned 
on with the DEBUG control statement, specifying DB = 0 turns it off for the 
duration of the compilation. 

Implies DB = ID. 

Specifying the DB option automatically activates the TS option. The DB option conflicts with the D 
and OPT = 0, 1, or 2 options. For more information, refer to the CYBER Interactive Debug 
reference manual. 

E EDITING PARAMETER (Default: E = O) 

E = lfn 

E 

E=O 

Generated object code is output as COMPASS line images on the file lfn, which 
is rewound at the end of compilation. Each program unit is prefaced with the line 
image, *DECK,program, so that the file will be suitably formatted for input to 
UPDATE or MODIFY. Binary object code is not produced, and COMPASS is not 
called. When the file lfn is assembled subsequently, S=FTNMAC must be specified 
on the COMPASS control statement. 

Implies E = COMPS 

Object file is generated in normal binary code rather than as COMP ASS line 
images. 

The E option conflicts with the B, C, GO, OL, TS, and Q options. 

60497800 D 10-3 



EL ERROR ~EVEL (Appendix B) (Default: EL = I) 

EL= A 

EL= I 

EL= N 

EL= W 

EL= F 

Lists diagnostics indicating all non-ANSI usages, as well as fatal diagnostics; lists 
informative diagnostics if compiling under OPT = 0, I, or 2; lists note and warning 
diagnostics if compiling in TS mode. 

Lists informative and fatal diagnostics if compiling under OPT = 0, I, or 2; lists 
note, warning, and fatal diagnostics if compiling in TS mode. 

Lists note, warning, and fatal diagnostics if compiling in TS mode; lists fatal 
diagnostics if compiling under OPT = 0, 1, or 2. 

Lists warning and fatal diagnostics if compiling in TS mode; lists fatal diagnostics 
if compiling under OPT = 0, l, or 2. 

Lists fatal diagnostics. 

ER ERROR RECOVERY (Default: ER if in TS or OPT=O mode 
ER=O if in OPT= 1 or 2 mode) 

ER 

ER=O 

Code is generated for object time reprieve. When this option is selected, any of 
the following execution time errors are reprieved: arithmetic mode error, bad 
system request in RA + I, CP or IO time limit exceeded, mass storage limit 
exceeded, or an operator drop. When the error occurs within the field length 
occupied by the user program, the name of the program unit and number of 
the line in which the error occurred are written to the job dayfile and (under 
NOS I only) the OUTPUT file. (Under OPT=l or 2, the line number might be 
approximate, since optimization can rearrange portions of the code.) When the 
error occurs outside the user's field length, only the P-register contents are 
shown. This option increases the size of object code and should be used only 
while a program is being debugged. 

No code is generated for object time reprieve. 

G GET SYSTEM TEXT Fl LE (Default: G = 0) 

G = lfn 

G = lfn/ovl 

G 

G=O 

Loads the first system text overlay from the sequential binary file, lfn. 

Searches the sequential binary file, lfn, for a system text overlay with the name 
ovl and loads the first such overlay encountered. 

Implies G = SYSTEXT 

Prevents system text loading from sequential binary file. 

A maximum of seven system texts can be specified by any combination of the G, S, and C parameteis. 

This feature is for COMP ASS subprograms only. 

GO AUTOMATIC EXECUTION (LOAD AND GO) (Default: GO = 0) 

GO 

10-4 

Binary object file (B option) is loaded and executed at end of compilation; file is 
not rewound before compilation. 

60497800 E 



GO= 0 Binary object file is not loaded and executed. 

The GO option conflicts with the Q, E, and B = 0 options. 

SOURCE INPUT FILE (Default: I = INPUT) 

I = lfn Source code to be compiled appears on file lfn. Compilation ends when an end 
of section, end of partition, or end of information is encountered. 

Implies I = COMPILE 

L LIST OUTPUT Fl LE (SECTION 12) (Default: L = OUTPUT) 

L = lfn 

L 

L=O 

Listable output (specified by list control options BL, EL, OL, R, and SL) is to be 
written onto file lfn. If list control options are not specified, the listing consists 
of the source program, informative and fatal diagnostics, and a short reference 
map. 

Implies L =OUTPUT 

Fatal diagnostics and the statement that caused them are listed on the file 
OUTPUT. All other compile-time output, including intermixed COMP ASS, is 
suppressed. List control options are ignored. 

LCM LEVEL 2 AND LEVEL 3 STORAGE ACCEsst (Default: LCM = D) 

LCM= D 

LCM= I 

LCM 

Direct mode: selects 17-bit address mode for level 2§ or 3 data. This method 
produces more efficient code for accessing data ssigned to level 2 or 3. User 
LCM or ECS field length must not exceed 131,071 words. 

Indirect mode: selects 21-bit address mode for level 2 § or 3 data. This mode 
depends heavily upon indirect addressing. LCM = I must be specified if the 
execution LCM or ECS field length exceeds 131,071 words. 

Implies LCM = D 

In TS mode, all LCM addressing is done in 21-bit mode, regardless of the LCM parameter. 

ML MODLEVEL 

ML= nnn 

ML 

(Default: ML) 

Specifies nnn as the value of the MOD LEVEL micro used by COMP ASS. nnn 
consists of 1 to 7 letters and digits. 

Uses current date in the form yyddd (where yy is the year and ddd is the number 
of day within the year) for the MODLEVEL micro. 

OL OBJECT LIST (SECTION 14) (Default: OL = 0) 

OL 

OL = 0 

Generated object code is listed on the list output file. 

Object code is not listed. 

The OL option conflicts with the Q and E options. 

t See LEVEL statement, section 3, for further information. 
§Applies only to Control Data CYBER 170 Model 176, CYBER 70, Model 76 and 7600 computers. 

60497800 E 10-5 



I 

OPT OPTIMIZATION PARAMETER (SECTION 11) (Default: OPT = 1) 

p 

PD 

PL 

OPT= 0 

OPT= 1 

OPT= 2 

OPT 

Fast compilation (automatically activates T and ER options). 

Standard optimization 

Maximum optimization 

Implies OPT= 2 

The OPT option conflicts with the TS and SEQ options. 

PAGINATION 

p 

P=O 

(Default: P = 0) 

Page numbering of output listing is continuous from subprogram to subprogram, 
including intermixed COMPASS output. 

Page numbers begin at 1 for each subprogram. 

PRINT DENSITY (Default: PD = 6) 

PD= 6 

PD= 8 

PD 

Compile time listings are produced at a density of six lines per inch. 

Compile time listings are produced at a density of eight lines per inch. 

Implies PD = 8. 

Print density of six is assumed upon entry. Listing control is changed only when print density of eight is 
requested, then returned to six when finished. 

PRINT LIMIT 

PL= n 

(Default: PL = 5000) 

n is the maximum number of records (print lines) that can be written at execution 
time to the file OUTPUT. Under NOS/BE 1 and SCOPE 2, n must not exceed 
ten characters. If n is suffixed with the letter B, it is interpreted as an octal 
number and must not exceed 777 777 777B; otherwise, it is interpreted as a 
decimal number and must not exceed 9 999 999 999. 

Under NOS 1, n must not exceed seven characters. The maximum value is therefore 
777 777B if octal or 9 999 999 if decimal. 

The PL parameter is operative only when appearing on an FTN control statement 
used to compile a main program. 

The print limit (specified at compilation-time either explicitly or by default) can 
be overridden at execution-time by a parameter of the same format appearing on 
the LGO or EXECUfE control card; see Execution Control Statement, section 15. 

PMD POST MORTEM DUMP (Default: PMD = 0) 

PMD 

PMD = 0 

PS PAGE SIZE 

PS= n 

10-6 

This parameter must be specified if the Post Mortem Dump Facility is to be used. 
Symbol tables are written to separate files that are accessed by the Post Mortem 
Dump Facility so that a symbolic analysis of error conditions, variable names and 
values, and traceback information can be written to an output file. 

No symbol table files are generated. 

(Default: PS = 60 if PD = 6 
PS = 80 if PD = 8) 

n is the maximum number of lines per page for compiler listings (including headers). 
If n < 4, the default value is substituted. 

60497800 G 



PW PAGE WIDTH 

PW 

PW= n 

Implies PW = 72 

(Default: PW = 126 if a printer output file 
PW = 72 if a terminal output file) 

n is the number of characters on a line of listable output. Values less than 50 
or greater than 136 are diagnosed and ignored. 

The PW option is valid only with '!'S mode. 

Q PROGRAM VERIFICATION (Default: Q = 0) 

Q 

Q=O 

Quick mode: compiler performs full syntactic scan of the program, but no object 
code is produced. No code addresses are provided if a reference map is requested. 
This mode is substantially faster than a normal compilation; but it must not be 
selected if the program is to be executed. 

Normal compilation. 

The Q option conflicts with the 8, C, GO, OL, TS, and E options. 

R SYMBOLIC REFERENCE MAP (SECTION 13) (Default: R = 1) 

R=O No map 

R=l Short map (symbols, addresses, properties, DO loop map) 

R=2 Long map (short map plus references by line number) 

R=3 Long map plus listing of common block members and equivalence classes 

R Implies R = 2 

In TS mode, R = 3 is identical to R = 2; common and equivalence classes are not listed. 

ROUND ROUNDED ARITHMETIC COMPUTATIONS (Default: ROUND = 0) 

ROUND= op 

ROUND= 0 

ROUND 

op is any combination of the arithmetic operators + - * I specified with no 
separators. Single precision real and complex floating point arithmetic operations 
are performed using the hardware rounding feature, as described in the various 
computer systems reference manuals. 

Computation is not rounded. 

Implies ROUND = + - * I 

The ROUND option controls only the in-line object code compiled for arithmetic expressions; it does 
not affect computations by library subprograms or input/output routines. 

60497800 c 10-7 



S SYSTEM TEXT (LIBRARY) FILE (Default: S = SYSTEXT if G parameter = 0 

S = ovl 

S = lib/ovl 

S=O 

s 

S = 0 if G parameter is other than G = 0) 

System text overlay, ovl, is loaded from the job's current library set. 

System text overlay, ovl, is loaded from the user library ftle or system library, lib. 

System text file is not loaded when COMPASS is called to assemble any inter
mixed COMP ASS programs. 

Implies S = SYSTEXT 

This feature is for COMPASS subprograms only. Up to seven system texts can be specified by repeating 
this option. 

SEQ SEQUENCED INPUT (SECTION 11) (Default: SEQ= O) 

SEQ Source input file is in sequenced line fonnat. 

SEQ= 0 Source input ftle is in standard FORTRAN format. 

Specifying the SEQ option automatically activates the TS option; sequenced line format is not recognized 
in optimizing mode or by COMP ASS. The SEQ option conflicts with the OPT option. 

SL SOURCE LIST (SECTION 12) (Default: SL) 

SL Source program is listed on the file specified by the L parameter. 

SL= 0 Source program is not listed. 

STATIC STATIC LOADING (NOS 1, NOS/BE 1 only) (Default: STATIC = 0) 

STATIC 

STATIC= 0 

Inhibits dynamic memory management at execution time by CRM. The compiler 
generates a set of LDSET, USE directives specifying each of the capsules needed by 
the program. The specified library programs are then statically loaded. STATIC 
is required for any program that dynamically extends blank common. 

No special LDSET directives are generated and CRM uses dynamic memory 
management at execution time. This option results in a decrease in field length 
needed at execution time. 

SYSEDIT SYSTEM EDITING (Default: SYSEDIT = O) 

SYSEDIT 

SYSEDIT = 0 

10-8 

All input/output references are accomplished indirectly through a table search at 
object time. File names are not entry points in the main program, and subpro
grams do not produce external references to the file name. 

Input/output references are accomplished directly; file names are used as entry 
points in the main program, and subprograms produce external references to the 
file name. 

60497800 D 



This option is used when building libraries that contain more than one relocatable main program. It is 
also necessary when compiling subroutines containing input/output references to files declared in COBOL 
4 or 5 programs. 

T ERROR TRACEBACK (Default: T = O) 

T 

T=O 

Full error traceback occurs when an error is detected. Calls to basic external 
functions are made with call-by-name sequence (section 17). 

No traceback occurs when an error is detected. Calls to basic external functions 
are made with the more efficient call-by-value sequence. A saving in memory 
space and execution time is realized. 

This option is provided to assist in debugging programs. Selecting the D parameter or OPT=O auto
matically activates the. T option. Only the execution-time errors listed in appendix B are traced. 

TS TIMESHARING MODE (SECTION 11) (Default: OPT = 1) 

TS In time-sharing mode, compilation speed and field length are optimized at the 
expense of execution speed and field length. Time-sharing mode is preferable to 
the optimizing compilation modes (OPT = 0, 1, or 2) for the debugging stages of 
a program. Specifying option TS together with option C, D, E, Q, or OPT con
stitutes a fatal control statement error. 

UO UNSAFE OPTIMIZATION (SECTION 11) (Default: UO = 0) 

uo 

uo = 0 

Allows the compiler to perform certain optimizations which are potentially unsafe. 
UO is ignored unless OPT = 2 is also specified. 

Unsafe optimization is not performed. 

X EXTERNAL TEXT NAME (Default: X = OLDPL) 

x = lfn 

x 

File lfn is source of external text (XTEXT) when location field of XTEXT pseudo 
instruction is blank. Only one X parameter may be specified. 

Implies X = OPL. 

This feature is for COMPASS subprograms only. 

Z ZERO PARAMETER (Default: Z = O) 

Z All subroutine calls having no parameters are forced to pass a parameter list con
sisting of a zero word. This feature is useful to COMPASS-coded subroutines 
expecting a variable number of parameters. Z should not be specified unless 
necessary, since programs require less memory if Z is omitted. 

Z = 0 The zero word parameter list is not passed for calls with no parameters. 

60497800 G 10-9 I 



I 

FTN CONTROL STATEMENT EXAMPLES 

Example 1: 

FTN (A,EL=F,GO,L=SEE,R=2,S=O,SL=O) 

Selects the following options: 

Example 2: 

A 

EL=F 

GO 

L=SEE 

R=2 

S=O 

SL=O 

FTN (GO,T) 

Skip to an EXIT (NOS 1) or EXIT(S) (NOS/BE l and SCOPE 2) control statement 
if fatal errors occur during compilation. 

Fatal diagnostics only are listed. 

Generated binary object file is loaded and executed at end of successful compilation. 

listed output appears on file SEE. 

Long reference map is listed. 

When COMPASS is called to assemble an intermixed COMPASS subprogram, it does 
not read in a system text file. 

Source program is not listed. 

Source program on INPUT file; object code on LGO; source program, short map, informative and fatal 
diagnostics listed on file OUTPUT; call-by-name sequence generated for calls to basic external functions; no 
debug package; optimizing compilation mode; and unrounded arithmetic. Program is executed if no fatal 
errors occur. 

Example 3: 

FTN. 

Selects the following options (unless option default values are changed by the installation): 

A=O I= INPUT R=l 

B=LGO L=OUTPUT ROUND=O 

BL=O LCM=D S=SYSTEXT 

C=O ML=yyddd SEQ=O 

CC=O OL=O SL 

D=O OPI'=l STATIC=O 

DB=O P=O SYSEDIT=O 

E=O PD=6 T=O 

EL=I PL=SOOO TS=O 

ER=O PS=60 UO=O 

G=O PW= 126 (if not connected file) X=OLDPL 

GO=O Q=O Z=O 

10-10 60497800 G 



COMPILATION MODES AND OPTIMIZATION 11 

FORTRAN Extended provides several alternative modes for compilation. Their characteristics, together with 
the FTN control statement parameter required to activate them, are as follows: 

Q 

TS 

OPT=O 

OPT=l 

OPT=2 

D 

VO 

Fastest compilation; compiler performs full syntactic scan of source code, but produces 
no object code. Minimum field length required for compilation approximates that of OPT=O. 
OPT=O, OPT=l, and OPT=2 are ignored if specified. Expedient for finding errors in a pro
gram before attempting to execute it. 

Very fast, one-pass compilation. little optimization of object code; execution time of 
object code approximates that of OPT=O. Minimum field length t for compilation is 
400oo+ or 35000§. Expedient for a program which is recompiled before each execution, 
unless execution time is over twice as large as compilation time. 

Fast, two-pass compilation; little optimization of object code. Most programs can be com
piled in the minimum field length of 46000+ or 43000 § . 

Two-pass compilation; moderate optimization of object code. Most programs can be com
piled in the minimum field length of 46000+ or 43000 § . Expedient for programs which 
are recompiled before each execution but require excessive execution time in TS mode. 

Relatively slow, two-pass compilation; extensive optimization of object code; fastest execution. 
Minimum field length required for compilation is 54000+ or 51000§. Programs in which the 
longest program unit consists of less than about 600 statements can be compiled in a field 
length of 60000; above that, field length required for compilation is proportional to the 
number of executable statements in, and the complexity of, the longest program unit. This 
optimization level is expedient for programs whose code is executed many times per com
pilation; it should not be used for undebugged progr~ms since code redistribution in opti
mization renders debugging difficult if the executing program terminates abnormally. 

Activates FORTRAN Extended debugging facility (see section 9). Minimum field length 
required for compilation is 63000+ or 61000§. Automatically activates OPT=O; OPT=l 
and OPT=2 are ignored if specified. Specification of TS is a fatal error. Necessary for 
programs in which execution-time debugging is desired. 

Provides additional potentially unsafe object code optimization when both the OPT=2 and 
UO options are specified. 

t Field lengths are given in octal. 

+Applies only to NOS 1 and NOS/BE 1. 

§Applies only to SCOPE 2. 

60497800 c 11-1 



OPTIMIZING MODE 

When TS is not present on the FlN control statement (OPT=O, l, or 2) the compiler functions in optimizing 
mode. Time-sharing mode and optimizing mode differ not only in the kinds of optimizations performed, but 
also in the listing format produced. Source listings are described in section 12, reference map format in 
section 13, object code format in section 14, and diagnostics in Appendix B. 

In optimizing mode, optimizations can be performed in two ways: by the compiler and by the user. User 
optimization includes not only the standard methods that represent good programming practice, but also cer
tain specific methods that enable the compiler to optimize more effectively. Source code optimization and 
object code optimization are discussed below. 

OBJECT CODE OPTIMIZATION 

OPT=O 

In the OPT=O compilation mode, compile time evaluations are made of constant subexpressions, redundant 
instructions and expressions within a statement are eliminated, and PERT critical path scheduling is done to 
utilize the multiple functional units efficiently. 

OPT=1 

In the OPT= 1 compilation mode, the following optimizations take place in addition to those in OPT=O: 

1. Redundant instructions and expressions within a sequence of statements are eliminated 

2. Subscript calculations are simplified, and values of simple integer variables are stored in machine 
registers throughout loop execution, for innermost loops satisfying all of the following conditions: 

No entries other than by normal entry at the beginning of the loop. 

No exits other than by normal termination at the end of the loop. 

No external references (user function references or subroutine calls; input/output, STOP, or 
PAUSE statements, or basic external function references) in the loop. 

No IF or GOTO statement in the loop branching backward to a statement appearing 
previously in the loop. 

OPT=2 

In the OPT=2 compilation mode, the compiler collects information about the program unit as a whole and 
the following optimizations are attempted in addition to those in both OPT=O and OPT=l: 

I. 

2. 

11-2 

Values of simple variables are not retained when they are not referenced by succeeding statements. 

Invariant (loop-independent) subexpressions are evaluated prior to entering the loops containing 
them. 

60497800 A 



uo 

3. For all loops, the evaluation of subscript expressions containing a recursively defined integer var
iable (such as I when I=I+ 1 appears within the loop) is reduced from multiplication to addition. 

4. Array addresses, values of simple variables in central memory, and subscript expressions are stored 
in machine registers throughout loop execution for all loops. 

5. In all loops and in complicated sections of straight-line code, array references and subscript values 
are stored in machine registers. 

6. In small loops, indexed array references are prefetched after safety checks are made to ensure that 
the base address of the array and its increment are reasonable and should not cause an out-of
bounds reference (mode 1 error). 

In unsafe optimization mode, the optimizations listed below are made, in addition to the optimizations made 
under OPT=2, since OPT=2 must also be selected. If OPT=2 is omitted, UO is not invoked. 

1. In small loops, indexed array references are prefetched unconditionally without any safety checks. 

Example: 

REAL B(l00,100) 

DO 20 I = 1,100,10 
20 S = S + B(J,I) 

When the compiler prefetches the reference to B, the last reference to B in the loop is B(J,110) 
which might cause an out-of-bounds error at execution time if the array B is stored near the end 
of the field length. 

2. When a basic external function is referenced, the compiler assumes that the contents of certain B 
registers are prese1Ved for use following the function processing. 

Example: 

REAL A(lO),C(lO) 

DO 10 I= l,N 
10 C(J) = EXP(A(I)) 

The compiler might assign I and N to B registers during the loop. 

In a loop, the registers available for assignment are determined by the presence or absence of external ref
erences. External references are user function references and subroutine calls, input/output statements, and 
basic external functions {SIN, COS, SQRT, EXP, and so on). 

60497800 D 11-3 



When UO is not selected, the compiler assumes that any external reference modifies all the registers; therefore 
it does not expect any register contents to be preserved across function calls. 

If a math library other than the FORTRAN Common library is used at an installation to supply basic external 
functions, the B register portion of the UO option must be deactivated by an installation option in order to 
ensure correct object code. 

SOURCE CODE OPTIMIZATION 

To achieve maximum object code optimization regardless of optimization level, the user should observe the 
following practices for programming source code: 

1. Since arrays are stored in column major order, DO loops (including implied DO loops in input/ 
output lists) which manipulate multi-dimensional arrays should be nested so that the range of the 
DO loop indexing over the first subscript is executed first. 

Example: 

DIMENSION A(20,30,40), B(20,30,40) 

DO 10 K = 1, 40 
DO 10 J = 1, 30 
DO 10 I = 1, 20 

lOA(I),K) = B(I),K) 

2. The number of different variable names in subscript expressions should be minimized. 

Example: 

X = A{l+l,1-1) + A(I-1,I+l) 

is more efficient than: 

IPl = I+l 
IMl = 1-1 
X = A(IPl ,IMI) + A{IMl ,IPI) 

3. The use of EQUIVALENCE statements should be avoided, especially those including simple variables 
and arrays in the same equivalence class. 

4. Common blocks should not be used as a scratch storage area for simple variables. 

5. Program logic should be kept simple and straightforward; program unit length should be less than 
about 600 executable statements. 

6. The use of dummy arguments (formal parameters) and variable dimensions should be avoided 
if possible; common or local variables should be used instead. 

11-4 60497800 A 



7. The first n-1 dimensions of an n-dimensional array should be either a non-negative power of 2 
or the sum or difference of two non-negative powers of 2. 

8. Recurrent expressions should be grouped so that they can be recognized for optimization. 

Example: 

AA= X*A/Y 
BB = X*B/Y 

is less efficient than 

AA= A*(X/Y) 
BB = B*(X/Y) 

likewise, invariant and constant expressions should be grouped appropriately. 

Example: 

DO IO I = 1, SO 
lOB(I) = 1. + A(I) + X 

is less efficient than 

DO 10 l = l, SO 
10 B(I) = (1. + X) + A(I) 

Example: 

x = 1024 .• 8 • 3.14159 

is less efficient than 

x = {1024. * 3.14159) * 8 

9. Multiple references to a basic external function within a statement should be algebraically reduced 
to a single reference. 

Example: 

Y = ALOG(A) + ALOG(B) 

is less efficient than 

Y = ALOG(A*B) 

60497800 F 11-5 



l 0. In a small summation loop, it is better to use a temporary variable to keep the sum than to reference 
an array element directly. 

Example: 

S=O 
DO lOOK = 1,N 

100 S = S + A(I,K) * B(K,J) 
C(I,J) = S 

is more efficient than 

C(I,J) = 0 
DO 100 K = l,N 

100 C(I,J) = C(I,J) + A(I,K) * B(K,J) 

TIME-SHARING MODE 

When the TS option is specified on the FTN control statement, FORTRAN Extended operates in time-sharing 
(TS) mode. Compilation is one-pass; therefore, no overlay reloading is required to compile multiple program 
units, and the number of disk accesses is reduced. The minimum compilation field length is 40000 octal. The· 
CPU time spent in compilation is 30% to 75% less than that for optimizing mode (OPT=O, OPT=l, or OPT=2). 
The object code is not highly optimized and thus executes approximately at the rate of that produced by 
OPT=O. 

Time-sharing mode is permissive in that it accepts some keyword misspellings and punctuation errors. When 
this occurs, a warning level diagnostic is issued, since the program may not compile under optimizing mode. 

Misspelled keywords will be recognized if the string length matches the keyword length, the first four characters 
match, and the context is unambiguous. 

For example, 

COMMUN A{2) 

will be recognized as a COMMON declaration and a warning diagnostic will be issued. However, 

COMMUNC(I) = 2+1 

will be correctly interpreted as a replacement statement or a statement function definition, depending on 
whether or not COMMUNC was previously dimensioned. 

Some punctuation errors which do not inhibit the compiler from correctly interpreting a statement will be 
accepted. 

For example, in 

DO 10, I= 1,10 

the first comma will be diagnosed and ignored. 

11-6 60497800C 



TS LISTINGS 

Listings in time-sharing mode differ from those produced in optimizing mode. These differences are described 
in section 12 (Compiler listings) and under Cross Reference Map (section 13), Diagnostics (Appendix B), and 
Object Code (section 14). 

SEQUENCED LINE FORMAT 

When time-sharing mode is selected for program compilation, a FORTRAN Extended program may be coded in 
sequenced line format instead of in the standard format described in section 1. If the source code is in se
quenced line format, the option SEQ must be specified on the FTN control statement. 

The format for sequenced line coding is as follows: 

seqnum d sl stat 

seqnum Sequence number consisting of 1-5 digits, assigned in ascending order 

d blank First line of a statement 

+ Continuation line 

Any other character Comment line 

sl Optional statement label consisting of 1-5 digits. 

} 

1 column immediately following 
sequence number 

stat FORTRAN source statement; may begin anywhere after d and continue through column 
80 

Example: 

00100 PROGRAM XYZ (OUTPUT) 
0011 OC COMPUTE AREA 
00120 DIMENSION A(IOO), B(lOO), 
00130+ C(200) 
00140 10 CALL SUB(A,B,C,100) 
00150 STOP 
00160 END 

60497800 B 11-7 





COMPILER LISTINGS 12 

The listings produced by FORTRAN Extended during compilation are affected by control statement options 
(the defaults are SL, EL=I, OL=O, R=l, and L=OUTPUT). The types of listings produced, and the control 
statement options that influence them, are as follows: 

Source listing 

Diagnostics 

Object code 

Reference Map 

Includes all source lines submitted for compilation as part of the source input file. 
Determined by SL control statement option. 

Includes informative, note, warning, ANSI, and fatal diagnostics, as determined by 
the EL control statement option (see Appendix B). Fatal diagnostics cannot be 
suppressed. 

Includes generated object code, listed as assembly language instructions (see section 
14). Selected by OL control statement option. 

Includes compiler assigned locations, as well as other attributes, of all symbolic 
names, statement labels, and other program entities in each program unit (see section 
13). Determined by R control statement option. 

The file to which listings are written is determined by the L control statement option; specifying L=O sup
presses all listings except fatal diagnostics (which are then written to OUTPUT). 

The formats of the listings produced are also influenced by the compilation mode (time-sharing or optimizing), 
and by the presence of listing control directives (C/ directives), discussed below. 

OPTIMIZING MODE LISTINGS 

In optimizing mode, a header line at the top of each page of compiler output contains the program unit type 
and name, the computer used to compile and the target computer for which the compiler was assembled, 
some of the control statement options, compiler version and mod-level, date, time, and page number. 

The source program is listed 60 lines per page (including headers), unless a different value is specified by the PS 
control statement option. Every fifth source line is numbered. These numbers are used in the error messages and 
in the cross reference map. 

Diagnostics are collected and listed at the end of each program unit (subprogram or main program). listed with 
each diagnostic is the line number of the source line during the processing of which the error was detected, as 
well as possible information in the DETAILS column relating to the nature of the error, and the severity level of 
the error. Diagnostic format is explained fully in Appendix B. 

Object code listings, if selected, are collected and listed together at the end of each program unit. Object listing 
format is described in section 14. Cross reference listing format for optimizing mode compilation is described in 
section 13. 

60497800 B 12-1 



TIME-SHARING MODE LISTINGS 

Time-sharing mode listings differ from optimizing mode listings in several ways. A diagnostic is listed on 
the listing file immediately after the source line that caused detection of the error. Object listings, when 
requested by the OL control statement option, are interspersed with the source code. 

When the page width (PW) parameter on the FTN control statement is less than 126, the output listing is 
reformatted so that source statements and error messages fit within the specified limits. Source statements 
break at the maximum line length and resume in the tenth printed column with >>>> in columns three 
through six. Error messages break at the nearest blank with the second line flagged the same as source state
ments. 

Any listing made on a file connected to a terminal with no page width specified automatically has a line length 
of 72 characters (the PW default for ftles connected to terminals). 

If PW is greater than or equal to 126 (either by default or by specific setting), the header line is identical to 
that produced in optimizing mode. If PW is less than 126, the header line is split into two lines. 

LISTING CONTROL DIRECTIVES 

LIST directives permit control over the listings produced by the EL (error level), OL (object listing), R (refer
ence map), and SL (source listing) options selected on the FTN control statement. The LIST directives affect 
only the program unit in which they appear. Options are controlled only if they have been selected by the FTN 
control statement or by default; LIST directives cannot produce a listing for an option that was not selected. 

The format of LIST directives is: 

7 (r I usT .option 

Cf must appear in columns 1 and 2 with columns 3 through 6 blank 

option NONE stops source program listing and ·can suppress the other listings 

ALL resumes source program listing 

LIST, option appears anywhere within columns 7 through 72. Leading, trailing, and embedded blanks 
are allowed; continuation is not permitted. 

Statements that have a C/ in columns I and 2 but do not conform to the directive format are processed as 
comments with no diagnostic issued. A LIST directive cannot be combined with another statement through 
a $ separator. A LIST directive within a continuation sequence causes a fatal diagnostic to be issued. Direc
tives can appear in a C$ debug deck. 

LIST,NONE stops source program listing. The directive itself is listed but subsequent source lines, including 
additional LIST,NONE directives, are not listed. However, when LIST,NONE is the first physical line of a 
program unit, neither it nor the page header is listed. 

12-2 60497800 B 



LIST,ALL resumes source program listing beginning with the directive itself. The listing will be restarted 
immediately regardless of the number of preceding UST,NONE directives. If no further LIST,NONE directives 
are encountered, any information requested on the FTN control statement that is normally listed following the 
END line is listed in full. 

In optimizing mode, if LIST,NONE is active when an END statement is encountered, no reference map or 
object listing is output and no diagnostic summary appears unless the program unit contained at least one fatal 
error. If fatal errors are detected, the incorrect statements are listed as well as a complete diagnostic sum
mary with errors of all levels requested by the EL control statement parameter. 

In time-sharing mode, LIST,NONE inhibits listing of interspersed blocks of object code requested by the OL 
parameter. Any requested reference map is not listed if UST.NONE is active when an END statement is 
encountered. Diagnostics, and the statements causing them, are listed together even if LIST,NONE is active. 

Example 1: 

If the R=3 (long reference map) control statement option is chosen and LIST.NONE is active for 90 
lines of the l S~line source program, 60 lines of the source program are listed but map information is 
accumulated for all 150 lines. The complete map is listed unless LIST,NONE is active when the END 
statement is encountered. 

Example 2: 

Assume the following program is compiled with TS, EL=A, and R=3 options: 

Cl 
Cl 
Cl 

Cl 

100 
Cl 

60497800 A 

PPO<;RAM P 
COM.lAfNT 
LIST.NONE 
COM~ENT 

DIMENSION A<lOI 
t~TEGfR svc 
LI ST• All 
CO 100 I=t.10 
A<t>=O. 
LIST.NONE 
Qf TURN 
END 

12-3 



Since UST ,NONE is active when the END statement is encountered, no reference map is produced. 
listing output is: 

1 

ANSI • 

f, 

FATAL • 

10 
11 

ANSI • 
NOTE • 

P~OG~AH P 
CI COMMENT 
STATEMENT IS NOT DEFINED IN A~SI 
C I L IS T, NONE 

TNTEGfQ 8/C 
EXPE~TF.O COH"A ~OUNO ~/ 

CI LIST ,ALL 

100 
Cl 

n 0 10 0 I= J, 10 
AU>=O. 
L TS T, NONF. 
RFTU~N 

RSTU~N IN HAI~ PQOGRAH 
~~TURN ACTS AS E~n 

1 FO~TQAN ~~ROR IN P 

Example 3: 

Assume the program of Example 2 is compiled with EL=A, R=3, and OPT=l options. listing output is: 

PROGRAM D 74174 OPT•I 

PRQr;RAM P 
Cl C0"4M[NT 

3 c, ll4iT•NONE 
6 INTEGER R/C 
1 Cl LIST •ALL 

00 100 1•1•10 
100 ACl>•O. 

lO Cl LIST.NONE 

CARO NN. SEVERITY OETAILS 

I ANSI 

OIAr.NOSIS o~ PROeLEM 

THIS STATEMENT TYPE IS NON-ANSI. 
6 F'E / 
8 I I 

11 I 

ILLEGAL SYNTAX AFTER INITIAL KEYWORD OR NAN£. 
THI~ STATEMENT REOE~INES ' CURRENT LOO~ CONTROL vAAJAILE o• ~ARAMETE•· 
RETURN STATEMENT APPEARS IN NAIN PA06RAMe 

A full error summary is produced since a fatal error was detected at line 6. 

Example 4: 

Example 4 shows the listing produced by a compilation resulting from the control statement: 

FlN, TS,OL,R=O,PW= 50. 

12-4 60497800 B 



The listing is as follows: 

FTN 4 • & +l+2C 02/t0/76 15.~2.26 PAGE 1 
7 3171+ TS 

1 SUB~OUTINE TNIT (A,~,VI 

c HUT 0 urs THE VALUE v INTO EVEf\>Y EL 
> > > > E MJ:" NT 0 F TJ.i ~ A'-' RA Y ~ 

0 
38 
38 

t+B 
48 

I OE NT INtT 
NE INIT 

c; c 

L. 5 i:JC)S 
sqo 
S iJO 

'lO 1 t= 
BSS 
sqo 

1 A(I>= V 

1 ,'1 

0 
R2-LEN. 
B2 +L • 0 

~ 
B2 +O +J 

TRACE. 

F • STATEMENT FUNCTION OEFINITION MUST OCCUP 
>>>> BEFO~E FIRST EXECUfABLE 

W • ST ATEM ENT LA llEL IGNORE 0 
ENTQY AOOIT 

C AOOYT 400S TH~ VALUE V TO EVERY ELE 
>>>> HENT IN ARRAY A 

W • ENTRY INSIDE 00 LOOP IS IGNO~En 
t:'Q L.11 

00 2 T = 1,M 
F • INDEX OF OUTER 00 RF.OEFI~EO RY CURRENT DO 

CI l IS T, NO NE 
10 2 An 1 = A< n + v 

F • STATEMENT FUNCTION DEFINITION HUST OCCUP. 
>>>> 0~FORE FI~<>T ::x=:cuTABL~ 

W • STATEMENT LABEL IGNO~EO 
CI LIST, ALL 

E~O 

F • STATEMENT LABEL .2 ~EFERENCFO SUT 
>>>> NOT OEFINEO 

F • STATEMENT LA~El .t REFERENCED BUT 
>>>> NOT DEFINED 

F • 00 LOOP .1 NOT TERMINATED BEFORE END 
>>>> OF P~OG~AM 

F • 00 LOOP .2 NOT TERMINATED BEFORE ENO 
>>>> OF PROGRAM 

The error messages result from the omission of a DIMENSION statement for the array A. No object code is 
produced for statements following the statement in which the first fatal error occurs. Between the LIST, 
NONE directive and the LIST,ALL directive, only statements causing error messages are listed. 

60497800 B 12-5 





CROSS REFERENCE MAP 13 

The cross reference map is a dictionary of all programmer created symbols appearing in a program unit, with 
the properties of each symbol and references to each symbol listed by source line number. The symbol name~ 
are grouped by class and listed alphabetically within the groups. The reference map follows the source listing 
of the program and the diagnostics. 

OPTIMIZING COMPILATION MODE 

The kind of reference map produced is determined by the R option on the FTN control statement. 

R=O No map 

R =I Short map (symbols, addresses, properties, and a DO loop map) 

R = 2 Long map (short map plus references by line number) 

R = 3 Long map and printout of common block members and equivalence classes 

R Implies R = 2 

If R is not specified, the default option is R = 1 ; however, L = 0 forces R = 0. 

Fatal errors in the source program will cause certain parts of the map to be suppressed, incomplete, or inaccurate. Fatal 
to execution (FE) and fatal to compilation (FC) errors will cause the DO-loop map to be suppressed, and assigned ad
dresses will be different; symbol references may not be accumulated for statements containing syntax errors. 

For the long map, it may be necessary to increase field length by IOOO(octal). 

The number of references that can be accumulated and sorted for mapping is: field length minus 20000 (octal) 
minus 4 times the number of symbols. For example, in a source program containing 1000 (decimal) symbols, 
approximately 8000 (decimal) references can be accumulated with a field length of 50000 octal. 

Examples from the cross-reference map produced by the program which follows are interspersed with the general 
format discussions. 

The source program and the reference maps produced for both R = I and R = 3 follow. A compiete set of maps for 
R = 2 is not included, but samples are shown with the discussion. 

60497800 A 13-1 



SOURCE PROGRAM 

Main Program 

PROGRAM MAPS HAPS 00~ 
lCJNPUT.oUTPUT.TAPES•INPUT.TAPE6•0UlPUT) HAPS oo• 

INTEGER SIZEl• Sl• SJZEl• 52 •STRAY HAPS 007 
EQUJYALENCECSIZEl•Sl)•CSIZE2•S2t HAPS 008 

5 NAHELIST/PARAMS/SIZEl•SlZE2 HAPS 009 
DATA Sl,S2/12•12/ MAPS 010 

100 RtAOCS,PAHAMS) HAPS Oil 
WRITEC6,PARAMSJ MAPS 012 
PHINTl MAPS OlJ 

10 roRMATC-O~AMPLE PROGRAM TO ILLUSTRATE THE VARIOUS COMPILER MAPS.l)HAPS 01~ 
CALL PASCALCSl) MAPS 015 
PRINT2 MAPS OI• 

2 fORMATC10THE fOLLOWJNG WILL HAVE NO HEAOINGSell MAPS 017 
CALL NOHEAOCS21 MAPS 018 

15 STOP MAPS 019 
£NO MAPS 020 

Block Data Subprogram 

5 

Subprogram with 
second entry 

5 

10 

15 

13-2 

1 
2 
3 

BLOCK DATA 
COMMON/ANARRAY/XC22) 
INTEGER .ll 
DATA AC22tll/ 
ENO 

SUBROUTINE PASCALCSlZEJ 
JNTFGER LC22>•SJZE 
CO~MON/ANAH~AY/L 

PRJNT4t Cltl•ltSIZEI 
fORMATC44HOCOMHJNAlJONS OF M THINGS TAKEN N AT A 

S2i?l6> 
ENTJH NCJHEAO 
H•MINOC2l•MAXOC2tSIZ£•1JI 
002J•ltM 
K•2Z-I 
.LCK>•l 
DOlJ•Kt21 
LIJJ•LCJ)•LCJ•lt 
PRINT3tCLCJJtJ•Ktl2) 
FORMAT 122161 
RETURN 
ENO 

MAPS 021 
MAPS Oi2 
MAPS 023 
MAPS 024 
MAPS 025 

HAPS 026 
MAPS Oi!1 
MAPS 028 
MAPS 029 

TIME.l/20X,3H·~•/MAPS OJO 
MAPS OJl 
MAPS 03Z 
MAPS 033 
MAPS OJ't 
MAPS 035 
MAPS OJ• 
MAPS 037 
MAPS 038 
MAPS 039 
MAPS 040 
MAPS 041 
MAPS Olt2 

60497800 A 



R=1 MAPS 

SY~eJLIC RE~ERENCE MAP CA•)J 

Et~JQY POI~TS 
4111 MAPS 

VAqlAtlLf.S SN TYPE 
U.1TEGE~ 
lt>4Tt.uER 
lhTEGt:R 

REl.OCA TION 
1tl 76 SllEl 
4175 ST-'AY 
1tl71 Sc? 

fl40DE 
2041 OUTPUT 

UTEkNALS 
NOtiEAt> 

NANELlSTS 
PAP AMS 

STATE"ENT LAWELS 
4153 1 fMT 

STATlSTlCS 
P~OGkAM Lft~u TH 
l:fUrfER LEmiTff 

BLOCK OATA 

TYPE lRGS 
l 

158 
41038 

SY~SOLIC REf£RENCE MAP IR•lt 

ftl 
Zll5 

YA"lAdlES SN TYPE 
UdEGU 

HELOCATION 
0 Jl ARRAY ANARRAY 

COMMO~ BLOCKS LENGTH 
ANARAAY ll 

STATISTICS 
PROGRAM LENGTH 
CM LABELEO COMMON LENGTH 

08 
269 

~r"BOLIC REFlkENCE MAP 1H•l> 

Et4TAt POINTS 
27 N'Jt1EAU 3 PASCAL 

0 
22 

VARlASLES 
115 l 
117 K 

SN TYPE 
lt4TE.uEA 
IUTEGE~ 
UHE.<iER 

R£LOCAflON 

116 "' 

f"ILE NAMES 
OUTPUT 

MOOE 
rMT 

I '"L Jr.,E FUN CT l ONS fYPE AAGS 
"•XO l~TEGER 0 INTHlN 

STATEMENT LAiELS 
0 l 

76 4 FMT 

LOOPS L•t3EL lt40El Ffo!OM·TO LErdiTH 
ll I • 4 "" 4lt l I 9 •• 2ftfl 
Sl l J 12 ll ll 

COMMON &LOCKS LE"4GTH 
ANAR~AY 2Z 

STATISTIC'» 
PROC,RAM LENGTH l2lit IJ 
CM LABELED COMM0f4 LEhGlH 268 zz 

60497800 F 

FMT 

0 l 

4117 SUEZ 
4116 St 

PASCAL 

fMf 

120 .J 
0 \. 
0 SIZE 

MINO 

PROP-EIH IES 

INTEG£R 
INTEGEM 

0 TAPES 

INTEGER 
ltd EGER 
INTEGEH 

INTEGER 

OT REFS 
EAT REFS NOT INNER 

It.SUCK 

NAME 2041 TAPE6 NAME 

0 100 

ARRAY 

0 INTRlk 

ANARRAY 
f.P. 

tll l 

INACTIVE 

P~Gf 

PAGE 

rMT 

13-3 



R=2/R=3 MAPS 

SY"90LIC ll(F[RfNC[ MAP fJt•lt 

fNfH POl"H OP'r LIHf .... MAPS I 

V .. JABLFS SN JYP[ .. .,. 517rl lttTCGU 
•111 suu l'1f£G£A 
4US STlllY • l•lf[fiU •11• SI IHH'.G[A 
•11' Sl l•lf£GEA 

'1U: NAMES 11400[ 
0 Jt1PUf 

20•1 OUTPUT F'MT 

• Tu>f5 N114[ 
2041 TAP£' NINf 

[U[RNILS TYP[ 
Nt>~[&D 
P&o;(AL 

NAM[Ll~fo; orr LINE 
P&U&MS ~ 

Sflf[M£NT LAlf:LS 
4ltljJ I FMT 
4166 l FMT 

R[Jf"IN«S 

R[lOClflON 

•UtlD[F 

WAITES 
READS 

WAil[$ 

IRGS R[F[A[NC[S 

I •• I 11 

R[F[lf[HCfS ., 
DEr LINE .. 

ll 

• 
RE:f[P[NC(S 

9 
12 

R['5 
R[FS 
•us 
R£FS 
REFS 

1 • 

0 IOO INACflY[ ., 
rau1v cu-iscs 

tljll[l 
517£2 

L[NGfH 
I 

ITATISTln 
PAC)GqAM LfNr.TH 
IUf'FfA LENGTH 

8l.OCK DATA 

' 
Mf'Nt!OS - 81AS NAMCfUNGTMt 

TSP .. .,,, 
0 SI flt 
• sz fl) 

61 
Zll~ 

1V14 Of'l•I 

SYMIOl.IC lt[F[R[NCt MA, tR•lt 

YANIAllUS 
0 II 

SH lYP[ 
IN1EGH 

COMMOlf ltLOCU LCNGTH 
AN&NRAY 22 

SflTl511CS 
PROGllAM LENITH 

ACLOCATION 
ARRAY ANAMA&Y 

MCMllRS • •l&S NAiii fLlNITHt 
I A IHt 

C" LAIEUD C0"9IOlt LOlllN •• ... • II 

~UHHOUf lN[ PA~CllL 

SYMIOLIC fl(F[H(NCt MAP flt•Jt 

f.tt1AY POUITS 
27 HOH[AD 

J PASCAL 

YARIAil.[$ SN 
II~ I 
120 J 
117 " • L 
lit. M 

• SUE 

FIL£ NAMES 
OUlPUl 

INLlhl F'UftCYIONS 
MUO 
NlllfO 

STATEMENT UIELS 
0 I 
• 2 

Df.' LINl 
1 
I 

TYPE 
INIEGlA 
lllTE6lR 
lllUG[lt 
lt"1£C.CA 
ltlT[GlA 
lltlCGER 

MOOE 
Fiil 

TYPE 
lltfE.G[lt 
lltl£GER 

113 J F'MT 

16 • '"' 

LOOPS LABEL INOU 

R[,[M[NCU 
16 

RELOCATION 

ARRAY 

AAGS 

• • INTUN 
INTIUN 

DEF LINC 
1l 
l• 
IS 
5 

REFS 
lt[fS 
REFS 

ANIRRAY RlfS 
ACn 

F'oP~ RU rt 

llAl1£5 • 
OfF tlN£ RErEACM:U 

• • 
R£f£AENCES 
ll 

9 

•• • 
PROPERflU 

.. 

I 

4 
J•U .. z • z 

14 

, , 
l , 
> 

• • 
• • 

s • 
II 
t• 

DUI NED 
DEFINED 

omitted from R=2 map 

02121175 t9el6elle 

., .•. • 
omitted from R=2 map 

F'TN ••••Ofl• 

.. KFIH£D • ' •• DEFINlD H •• ll •• DEFINED .. 
J 2•13 ••• HFIHt'.D 

KFltCD • • • DUINCD 

21 I 
FROM-TO 

4. 
• 14 
ll ll 

UHGTH •• 241 
UI ltl'5 .,. 2 I 

sz 1 .J 

COMltUlf BLOCKS UNG TH 
AHAAAAt 

SllllSllCS 
PROGRAM UNGlN 

22 

llf REFS NOf INNER 
JI INH&CIC 

M£MR£RS - llAS NAME ILlNOTHt 
IL t22t 

...... ____ omitted from R=2 map 
,__~~~--~~~~~~~ ..... 

CM U8£UD COMMON UNelN 
12ll 
ZH 

u ,, 

• • 

., .• 

II 

l 

I 

., 

60497800 F 



General Format: 

Each class of symbol is preceded by a subtitle line that specifies the class and the properties listed. 

Formats for each symbol class are different, but printouts contain the following information: 

The octal address associated with e.ach symbol relative to the origin of the program unit. 

Properties associated with the symbol 

List of references to the symbol (for R=2 and R=3 only) 

All line numbers in the reference list refer to the line of the statement in which the reference occurs. Multiple refer
ences in a statement are printed as n*i where n is the number of references on line i. 

All numbers to the right of the name are decimal integers unless they are suffixed with B to indicate octal. 

Names of symbols generated by the compiler (such as system library routines called for input/output) do not appear 
in the reference map. 

ENTRY POINTS 

Entry point names include program and subprogram names and names appearing in ENTRY statements. The format 
of this map is: 

addr 

name 

def 

ref 

R=l: 
ENTltY POINTS 

27 MDMEAD 

R=2andR=3: 

ENTRY POINTS 
addr name 

DEFINITION 
def 

Relative address assigned to the entry point. 

Entry point name as defined in FORTRAN source. 

REFERENCES 
ref 

Line number on which entry point name is defined (PROGRAM statement, SUBROUTINE 
statement, ENTRY statement, etc.). (Not on R=l maps.) 

In subprograms only, line number of RETURN statements. (Not on R=l maps.) 

J PASCAi. 

ENTRY POINTS DEF LINE • REFEREICES 
2f NOHEAO 7 16 
J PASCAi. t 

60497800 A 13-5 



VARIABLES 

Variable names include local and COMMON variables and arrays, formal parameters, RETURNS names, and for 
FUNCTION subprograms, the defined function name when used as a variable. The format of this map is: 

addr 

name 

• 

type 

prop 

block 

13-6 

VARIABLES SN 
addr DaJDe • 

TYPE 
type prop 

RELOCATION 
block refs 

Relative address assigned to variable name. If name is a member of a COMMON block, 
addr is relative to the start of block. 

Variable name as it appears in FORTRAN source listing. Variables are listed in alphabeti
cal order . 

SN= stray name flag. (No entry appears under SN when R=l is specified.) Variable names 

that appear only once in a subprogram are indicated by * under the SN headline. 
Such variable names are likely keypunch errors, misspellings, etc. In the long map, 
DO loops where the index variable is not referenced cause the index variable to 
be flagged as a stray name. 

LOGICAL, INTEGER, REAL, COMPLEX, or DOUBLE. 
Gives the arithmetic mode associated with the variable DaJDe. RETURNS appears if name 
is a RETURNS formal parameter. 

Properties associated with variable name and printed by keywords in this column: 
*UNDEF Variable name has not been defined. A variable is defined if any of the 

following conditions holds: 
DaJDe appears in a COMMON or DATA statement. 

is equivalenced to a variable that is defined. 
appears on the left side of an assignment statement at the outermost 

parenthesis level. 
is the index variable in a DO loop. 
appears as a stand-alone actual parameter in a subroutine or function 

call. 
appears in an input list (READ, BUFFERIN, etc.). 

Otherwise, the variable is considered undefined; however variables which 
are used (in arithmetic expressions, etc.) before they are defined (by an 
assignment statement or subprogram call) are not flagged. 

ARRAY Variable name is dimensioned. 

*UNUSED name is an unused formal parameter. 

Name of COMMON block in which variable name appears. If blank, name is a local variable. 
I I indicates name is in blank COMMON. 
F.P. indicates name is a formal parameter. 

60497800 A 



refs (Does not appear in short map, R=l.) 
References and definitions associated with variable name are listed by line number, begin
ning with the following in-line subheadings: 

REFS All appearances of name in declarative statements or statements where the 
value of name is used. 

DEFINED 

IO REFS 

All appearances of name where its value may be altered such as in DATA, 
ASSIGN, READ, ENCODE, or DECODE, BUFFER IN, assignment state
ments, or as a DO loop index. 

All appearances of name in use as a variable file name in I/O statements. 

R=l: This map form uses a double column format to conserve space. Headings appear only on the first columns. 

VARI AILES Sii "" RlLOC•fl• us I INYlGElt Ill " INIHU 
111 K INTEGEA • L l1111£GEI AllRAY ANMIUf 
ll6 II INflGP • ... INIHEI , .... 

R=2 and R=3: 

VAlllAllllS SN TYPE RELOCATION 
11~ I INTEGllt •Ers • .. DUIN£D • • lit J INfEGER REFS JelJ •• DUIN£D lZ I• 
111 I( INTEGH REFS u II •• KFINlO •• • L Wflttt.A ARRAY AlwlltRAY R[Fli z J l•lJ l• DlFlf!ICD ll a> 
11• " INT£G[lt REFS • HFINED • • SUE ltfTEG£R '·'· REFS I • I KFINED 

FILE NAMES 

File names include those explicitly defined in the PROGRAM statement as well as those implicitly defined (in 
subprograms) through usage in input/output statements. The format of this map is: 

addr 

name 

60497800 A 

FILENAMES 
addr name 

MODE 
mode refs 

Relative address of the file information table (FIT) associated with the file name. The 
file's buffer starts at addr+348 This column appears only in main programs (where the 
file is actually defined). In subprograms, this column is blank. 

Name of the file as defined in PROGRAM statement or implied from usage in 
input/output statements. For example, in a subprogram, WRITE(2) implies a refer
ence to file TAPE2. 

13-7 



mode 

refs 

R•l: 

FILI HHS 
I JN"'1 

F!Ll lt~S llODE 
I Ut"'1 

11•1 OUTPUT '"1 
I 1APH •Alll ,... ,.,,, ..... 

Indicates the mode of the file, as implied from it usage. One of the following will be 
printed: 
FMT Formatted 1/0 e.g. READ(2,901) 

FREE list I>irected 1/0 READ(2,*) 

UNFMT Unformatted 1/0 READ(2) 

NAME Namelist Name 1/0 READ(2,NAMEIN) 

BUF Buffer 1/0 BUFFER IN(2,0) 

MIXED Some combination of the above. 

blank Mode cannot be determined. 

(Does not appear in short map, R=l .) 
References are divided into three categories by in-line subheadings: 
READS followed by list of line numbers referencing file name in input operations. 

WRITES 

MOTION 

line numbers of output operations on me name. 

line numbers of positioning operations (REWIND, BACKSPACE, ENDFILE) 
onfllename. 

.... OUTPUT F"1 t. 1APH ..... , lkl UPH 

llRJ1ES 
RHOS 

llRJ1U 

9 
7 
I 

u 

When a variable is used as a unit number in an input/output statement the following message is printed: 

VARIABLE USED AS FILE NAMES, SEE ABOVE 

EXTERNAL REFERENCES 

External references include names of functions or subroutines called explicitly from a program or subprogram, as well 
as names declared in an EXTERNAL statement. Implicit external references, such as those called by certain FORTRAN 
source statements (READ, ENCODE, etc.) are not listed. The format of this map is: 

13-8 

EXTERNALS 
name 

TYPE 
type 

ARGS 
arp 

External name as it appears in source listing .. 

prop 
REFERENCES 

refs 

60497800A 



type 

args 

prop 

refs 

R=l: 

EXTERNALS 
NOHE AD 

R=2 and R=3: 

EXTERNALS 
NOHE AD 
PASCAL 

Applies to externals used as functions. Possible keywords are: 

REAL, INTEGER, COMPLEX, DOUBLE, LOGICAL 
Gives the arithmetic mode of external function. 
NO TYPE No specific arithmetic mode defined. 

Applies to certain library functions listed as externals in T mode. (T mode 
is implied when OPT=O or D mode is selected.) 

This column will be blank for all externals used as subroutines in CALL statements. 

Number of arguments in call to external name. 

Special properties associated with external name: 
F.P name is a formal parameter (applies only for references within a subprogram). 
LIBRARY name is a library function called by value. In T compile modes, no LIBRARY 

entries appear since all references to library functions (SIN, COS, etc.) will be 
by name. (OPT=O or D mode automatically implies T mode.) 

Line number on which name is referenced. (Does not appear in short map, R=l.) 

TYPE ARGS 
1 

TYPE AitGS 
1 
1 

REFERENCES 
11t 
u 

PAsc-. 

INLINE FUNCTIONS 

Inline functions include names of intrinsic and statement functions appearing in the subprogram. The subtitle line is: 

name 

mode 

args 

ftype 

def 

refs 

60497800 c 

INLINE FUNCTIONS 
name 

TYPE 
mode 

Symbol name as it appears in the listing. 

ARGS 
args 

DEF 
ftype 

LINE 
def 

REFERENCES 
refs 

Arithmetic mode, NO TYPE means no conversion in mixed mode expressions. 

Number of arguments with which the function is referenced. For functions with a 
variable number of arguments (such as MAX, AND, etc.) 0 is shown. 

INTRIN Intrinsic function. 

SF Statement function. 

Blank for intrinsic functions; the definition line for statement functions. 

Lines on which function is referenced. 

13-9 



R=l: 

INLINE FUNCTIONS TYPE ·lRGS 
MAXO INTEGER 0 INTRIN NINO INTEGER 0 INTRIN 

R=2 and R=3: 

INLINE FUNCTIONS TYPE lRGS DEF LINE REFERENCES 
MAXI INTEGER I INTRJN I 
NINI INTEGER I INTRIN I 

NAME LISTS 

name 

def 

refs 

R=l: 

NlMELISlS 
PAIUMS 

R=2 and R=3: 

NAMELISTS 
name 

DEF LINE 
def 

REFERENCES 
refs 

Namelist group name as defined in FORTRAN source. 

Line on which namelist is defined. } 
(Does not appear in short map.) 

Line numbers of references to name. 

NlMELISTS DEF LINE REFERENCES 
7 P•RlHS 5 

STATEMENT LABELS 

The statement label map includes all statement labels defined in the program or subprogram. The format of this map 
is: 

addr 

label 

type 

13-10 

STATEMENT LABELS 
addr label type 

DEF LINE 
act def 

REFERENCE 
refs 

Relative address assigned to statement label. Inactive labels will have addr zero. Ter
minal statements of a DO loop also will have addr zero (unless referenced as the 
object of a transfer of control). 400 000 will be shown if no address is assigned; 
usually, a fatal error occurred and the final phase of compilation did not take place. 

Statement label from FORTRAN source program. Statement labels are listed in nu
merical order. 

One of the following keywords: 
FMT Statement label is a FORMAT statement. 

UNDEF Statement label is undefined. refs lists all references to this unde-
/ 

fined label. 

blank Statement label appears on a valid executable statement. 

60497800 A 



R=l: 

act 

def 

refs 

STATEMENT LAeELS 
0 1 

7t 1t F"T 

R=2 and R=3: 

SUTEMEtn LABELS 
11 1 
0 2 

UJ 3 FMT 
7t It FMT 

DO LOOPS 

One of the following keywords: 
INACTIVE label is considered inactive. It may have been deleted by optimization. 

NO REFS 

blank 

Inactive labels will have addr zero. 

label is not referenced by any statements. Th.is label may be removed 
safely from the FORTRAN source program. 

label is active or referenced. 

Line number on which label was defined. (Does not appear in short map.) 

Line numbers on which label was referenced. (Does not appear in short map.) 

OEF LINE 
u 
lit 
15 
s 

D 2 

REFERENCES 
12 

9 
lit 

It 

11J J F"T 

The DO-loop map includes all DO loops as well as implied DO loops not in DATA statements that appear in 
the program and lists their properties. This map is suppressed if fatal errors have been detected in the source 
program or if Q was specified on the FTN control statement. Loops are listed in order of appearance in the 
program. The format of this map is: 

fwa 

term 

index 

60497800 E 

LOOPS 
fwa 

LABEL 
term 

INDEX 
index 

FROM-TO 
rmt-last 

Relative address assigned to the start of loop body. 

LENGTH 
len 

PROPERTIES 
prop 

Statement label defined as end of loop, or blank for implied DO loops in input/output 
statements. 

Variable name used as control index for loop, as defined by DO statement. 

Une numbers of the rust and last statements of the loop. 

13-11 



len 

prop 

R=l, R=2, and R=3: 

LOOFS LABEL 
20 
lt3 2 
51 1 

• 
INOEX 
I 
I 
J 

COMMON BLOCKS 

Number of words generated for the body of the loop (octal). 

Various keywords might appear, describing optimization properties of the loop; 
OPT Loop has been optimized. 

INSTACK Loop fits into instruction stack (less than or equal to 7:j: or 10§ words); 
likely to run two to three times as fast as a comparable loop that does 
not fit into the stack. 

EXT REFS Loop not optimized because it contains references to an external subprogram, 
or it is the implied loop of an input/output statement. 

ENTRIES Loop not optimized because it contains entries from outside its range. 

NOT INNER Loop not optimized because it is not the innermost loop in a nest. 

EXITS 

FROM-TO .. 
9 tit 

12 13 

Loop not optimized because it contains references to statement labels outside 
its range. 

LENGTH PROPERTIES 
lt8 _ EXT REFS 

208 EXT REFS NOT INliER 
28 INSTACK 

The common block map lists common blocks and their members as defined in the source program. The format of this 
map is: 

block 

storage type 

blen 

COMMON BLOCKS 
block 

LENGTH 
storage blen 

type 

MEMBER - BIAS NAME(LENGTH) 
bias member (size) 

Common block name as defined in COMMON statement. 
I I represents blank common. 

Hardware type of storage device where the block is located: ECS, LCM, or blank 
(blank indicates CM or SCM). 

Total length of block in decimal. 

:j: Applies only to Control Data CYBER 70 Model 74 and 6600 computers. 

§Applies only to Control Data CYBER 70 Model 76, CYBER 170 Models 175 and 176, and 7600 computers. 

13-12 60497800 F 



If the long map is specified (R=3) the following details are printed for each member of each block: 

bias Relative position of member in block; in decimal, gives the distance from the block origin. 

member Variable name defined as a member of block. 

size Number of words allocated for member. 

Only variables defined as members of a common block explicitly by a COMMON statement are listed in this map. 
Variables which become implicit members of a common block by EQUIVALENCE statements are listed in the EQUIV 
CLASS map and the variable map. 

R=l and R=2: 

COMMON BLOCKS LENGTH 
ANARRAY ZZ 

R=3: 

COMMON BLOCKS LENGTH MEMBERS • BIAS NAMECLENGTHI 
ANARAAY 22 0 L C22t 

EQUIVALENCE CLASSES 

This map appears only when R=3 is selected. All members of an equivalence class of variables explicitly equated in 
EQUIVALENCE statements are listed. Variables added through linkage to common blocks are not included. The 
format of the map is: 

chase 

base 

cl en 

bias 

member 

size 

R=3 only: 

EQUIV CLASSES LENGTH 
SIZE1 1 
SIZE2 1 

60497800 E 

EQUIV CLASSES LENGTH MEMBERS - BIAS NAME (LENGTH) 
chase base clen bias member (size) 

Common base. A variable name appears here if the equivalence class is in a common block. 
In such a case, chase is the variable name of the first member in that common block. 
*UNDEF Indicates this class is in error because more than one member is in common 

or the origin of the block is extended by equivalence. 

If the class is local (not in a common block), base is the name of the variable with the lowest 
address. If the class is in a common block, base is the name of the variable in that common 
block to which other variables were linked through an EQUIVALENCE statement. 

Number of words allocated for base (considered the class length). 

Position of member relative to base; bias is in decimal. 

Variable name defined as a member of an equivalence class. (Members having the same bias 
which are associated with the same base and thus occupy the same locations.) 

Size of member as defined by DIMENSION, etc. 

"EMBERS • BIAS NAMECLENGT~> 
I S1 CU 
G S2 « 11 

13-13 



PROGRAM STATISTICS 

At the end of the reference map, the statistics are printed in octal and decimal. The format is: 

STATISTICS 

PROGRAM LENGTH Length of program including code, storage for local variables, arrays, constants, 
temporaries, etc., but excluding buffers and common blocks. 

BUFFER LENGTH Total space occupied by input/output buffers and file information table. 

CM LABELED 
COMMON LENGTH 

Total length of common, excluding blank common, in CM/SCM and 
ECS/LCM. Maximum of two entries. 

BLANK COMMON 

R=l, R=2, and R=3: 

STAllSJICS 
PAOCiAAM LENGJN 
CM LAltELlD C8'1MON LEN6TH 

ERROR MESSAGES 

Length of blank common in CM/SCM or ECS/LCM. 

Ill& 
ZH 

H 
22 

The following error messages are printed if sufficient storage is not available: 

CANT SORT THE SYMBOL TABLE INCREASE FL BY NNNB 

or 

REFERENCES AFTER LINE NNN LOST INCREASE FL BY NNNB 

DEBUGGING (USING THE REFERENCE MAP) 

New Program: 

The reference map can be used to find names thai have been punched incorrectly as well as other items that will not 
show up as compilation errors. The basic technique consists of using the compiler as a verifier and correcting the FE 
errors until the program compiles. 

Using the listing, the R=3 reference map, and the original flowcharts, the following information should be checked by 
the programmer: 

Names incorrectly punched 

Stray name flag in the variable map 

Functions that should be arrays 

Functions that should be inline instead of external 

13-14 60497800 A 



Variables or functions with incorrect type 

Unreferenced format statements 

Unused formal parameters 

Ordering of members in common blocks 

Equivalence classes 

Existing Program: 

The reference map can be used to understand the structure of an existing program. Questions concerning the loop 
structure, external references, common blocks, arrays, equivalence classes, input/output operations, and so forth, can 
be answered by checking the reference map. 

TIME-SHARING MODE 

In TS mode, the reference map appears immediately following the source listing of the program (regardless of the 
BL control statement parameter). Line length of the listing is determined by the PW control statement parameter. 

The kind of reference map produced is determined by the R option on the FTN control statement; 

R=O No map 

R=l Short map (symbols, addresses, properties) 

R=2} R=
3 

Long map (short map plus references by page and line number) 

R Implies R=2 

If R is omitted, an R=l map is produced (unless L=O is specified on the FTN control statement). 

On the following pages appear examples of a short and a long map. Portions of these maps appear in the sub
sequent format discussion. 

60497800 A 13-15 



-'f -a-.. 

a-.. 
~ 
\0 
-...J 
00 

8 
t::d 

1 SUB~OUTI"'IE PASCAUSI7El 
INTl::GER U221,SIZE 
COIH10N/At.IARRAY /L 
PRINT4, <I,I=1,S!ZEI 

5 4 FORMATl44HOCOHBINATIONS OF M THINGS TAKEN N AT A 

10 

15 

--COHHON BLOCKS--

1 
2 
~ 

$2?.Ii;J " 
ENT~Y NOHEAO 
M=MtN 0 121tMA)(0 ( z, SI ZE-1>) 
OOZI=t,M 
K =2 2- I 
LIKJ=t 
001 J=K,21 
L I J >=LI JI +L ( J+i I 
PRI~T3,(L(Jl,J=Kt2?.> 

FOR"1A H22I6l 
RFTURN 
ENO 

260 /ANARRH/ 

--ENTRY PO!NTS--

16B 

-·EXTERNALS•• 

--STATEMENT LABELS--

.1 rn 

••VARIABLE MAP•• 

I t u 
K I 
H I 
HIND I 
OUTC I. -
OUTPUT; -
SIZE I AU 

NO HEM 

f'lU TCI. OtJTr.R. 

0 '3 

1178 
1210 
12 28 

INTRTNc::IC 
EXTERNAL. 
EXTE~NAL. 

013 

1518 PROGRAM•UNTT L~NGTH 

410000 CM STORAGE USEO 

66P PASCAL 

OUTPUT~ 

.2 !O 

17 SYMROL S 

• 0 77 SE CO NOS 

46P 

J 
L 
MA X11 
NOHEAl"l 
OUTCR. 
PASCAL 

• 3 

u 

HAPS 026 
MAPS 027 
HAPS 028 
MAPS 029 

TI~E.l/20X,3H-N•/HAPS 030 
l"APS 031 
HAPS 032 
MAPS 033 
HAPS 034 
MAPS 035 
HAPS 036 
MAPS 037 
HAPS 038 
HAPS 039 
HAPS 040 
HAPS 041 
HAPS 042 

F 102B 

12J 'l 
ilB /ANARRAY/ 22 

! NT RI NS IC 
1&9 ENTRY 

EXTER"'IAL. 
6&B FNT~Y 

... F ne 

::r:J 
II _. 

s: 
)> 
'"ti 

"" 



°' 0 
.(::l. 
\0 
......:i 
00 
0 
0 

t:i::i 

-w 
I -......:i 

5UBROUTINE PASCALCSIZE> 
INTEGER L(22>tSIZE 
~ 0'1"10 NIA NARRA VIL 
PRINT!+, <I,I=t,SIZE> 

5 4 FOQ~ATl44HDCOHBINATIONS OF 1 THINGS TA~EN N AT A 

11) 

15 

--COHHON BLnCKS--

~ 
3 

$2<'H» 
ENT'?Y NOHEAO 
H=MINOl21,HAXDCZ,STZE-1>> 
DOZ I= 1,1o1 
1(=22- I 
L(Kl=1 
001J=K,Z1 
L<J>=L<J>+L<J+1) 
PRINT3,CL(J),J:K,22t 
l"OJ;>'1AT<Z2IF.>l 
R"'TURN 
!:NO 

~&'l /ANARJ;>AY/ 

--ENTRY POINTS--

tf>B NOHEA"l &f.B 

--EXTERNALS--

our: r. OIJTCR. OUTPUT: 

--STATEMENT LABELS--

.1 'l'.n oq 12 13 L 

.? IO 4613 q 14 L 

.3 F 102'1 14 w 115 l. 

.4 F 72'l 4 w i; L 

--VAJUABLE HAP--

I I u 1178 
J I u 1?0Fl 
K I 121B 
L I O"l IANARRAY/ 22 
H I 122B 
MAXO I INTRINSIC 
MINO I INT'UNSIC 
NOHE AO - U.9 f.NTRY 
OUTC I. -. EXTERNAL. 

--VARIABLE MAP--

OUTCR. - E'XTERNAL. 
OUTPUT:; - EXTERNllL. 
PASCAL - H9 ENTIH 
SIZE I AU OB 

1518 PROGRAM-UNIT L"'NGTH 1 7 SYMBOLS 

410008 CH STORAGE USEQ .089 SECONOS 

011c;c AL 

4 ,. 4 .. 
12 r 13 s 
10 = 11 s 

2 n 3 0 
~ = q c 

" ~ 
1 r-
4 w 14 w 

It w .... 
4 w t .. w 
1 "'. 
1 A z 0 

47 REFERENCl='S 

MAPS OZ& 
HAPS 027 
MAPS OZ8 
"lAPS ozq 

Tt~EollZllXtl~-N-IHAPS 030 
"'APS 031 
MAPS 032 
MAPS 033 
HAPS 0 34 
MAPS 035 
MAPS 036 
lllAPS 037 
'1APS 036 
MAPS 1)!9 
f-1APS 040 
14APS Olt1 
MAPS OltZ 

~ c 10 
lJ s 13 s 14 c 
1? c 14 c 
1l : 1l 13 

lit .. 14 M 

It c 'I A 

lit s 
13 = lit M 

:0 
II 

.!" 
:0 
II 
w 
s: 
~ 
Cl> 



COMMON BLOCKS 

The common block map lists common blocks as defined in the source program. The format of this map is: 

- - COMMON BLOCKS 

length /block/ 

length 

block 

R=l, R=2, R=3: 

Length (in octal) of common block. 

Common block name as defined in COMMON statement. 
11 represents blank common. 

--COMMON BLnCKS--

?6B /MJARPAY/ 

ENTRY POINTS 

This map lists names of program units, names appearing in ENTRY statements, and (for a main program) all 
file names defined in the PROGRAM statement. The format is: 

- - ENTRY POINTS 

addr name 

addr Relative address (in octal) of the entry point in the program unit. 

name Entry point name as defined in source program. 

R=l, R=2, R=3: 

--ENTRY POINTS--

~m HE AO 668 PASCAL 

EXTERNAL REFERENCES 

External references include names of functions or subroutines called explicitly from a program or subprogram, 
names declared in an EXTERNAL statement, and external references generated by the compiler. The format of 
this map is: 

- - EXTERNALS 

name 

name Name of routine externally referenced. 

13-18 60497800 B 



R=l, R=2, R=3: 

·-EXTE PNAL S•• 

OU TC I. ourc~. OUTPUT: 

STATEMENT LABELS 

This map includes all statement labels defined in the program or subprogram. The format is: 

STATEMENT LABELS 

label properties addr references 

label 

properties 

addr 

references 

R=l: 

••STAT~~ENT LA~~LS•• 

.1 tD 

R=2, R=3: 

••STATEMENT LABELS-· 

.1 !O 

.2 to 

.3 C" ... " 

60497800 B 

Statement label, preceded by a period. Labels are listed in ascending numerical order. 

Properties as follows: 

F 
D 

label references a format statement. 
label references a terminal statement of a DO loop. 

blank 
label is inactive (never referenced by transfer or input/output statement). 
None of the above properties. 

Relative address (in octal) assigned to this label. Some inactive labels will have an 
addr of zero. 

Line number and type of reference to statement label. References do not appear in 
the short map (R=l). The type can be: 

L label appears in label field. 
D label referenced in a DO statement. 
R label referenced in a READ statement. 
W label referenced in a WRITE or PRINT statement. 
F label referenced in a FORMAT statement. 
A label referenced in an ASSIGN statement. 
blank Any other reference. 

08 

OR 12 
i.i;a q 

tll<'D llo w 
720 .. \of 

.z ID 

1 J l 
ti. L 
15 L 
s l 

• l F lOZB ... F 728 

13-19 



VARIABLES 

All symbolic names referenced in the program unit are listed here. The format of this map is: 

VARIABLE MAP - -

13-20 

name type properties addr block length references 

name Name of variable as it appears in source listing. 

type Variable type: 

properties 

I INTEGER 
R REAL 
D DOUBLE PRECISION 
Z COMPLEX 
L LOGICAL 
N NAMELIST name 

No type 

Properties as follows: 

A 
u 

blank 

Variable is used as a formal parameter. 
Variable is undefined. 
Variable is equivalenced to a defined variable. 
None of the above. 

addr Relative address (in octal) assigned to this variable. 

block Name of common block in which variable appears, or (if no address is specified) a 
description of the type of symbolic name: 

length 

references 

name is an entry point. ENTRY 
SUBROUTINE name is a user supplied SUBROUTINE subprogram or a library 

utility subprogram. 
name is an intrinsic function. 
name is a statement function. 
name is a basic external function. 
name is a user supplied FUNCTION subprogram. 

INTRINSIC 
STAT-FUNC 
B.E.F. 
FUNCTION 
EXTERNAL name appears in an EXTERNAL statement or is a compiler 

generated external reference. 

Array length (in decimal) for dimensioned variables. 

Line number and type of reference to variable. References do not appear 
in the short map (R=l). The type can be: 

A 
c 
D 
E 
F 

Variable appears as argument to subroutine or function. 
Variable appears as DO loop control variable. 
Variable appears in specification statement. 
Variable used as entry point. 
Variable appears in IF statement. 

60497800 B 



R=l: 

--VAUA~RE ~AP•• 

I 
I( 

H 
HINO 
OU TC I. 
OUTPIJTE 
SIZE 

R=2, R=3: 

••VA~IABLE HAP•• 

I 
J 
I( 

L 
~ 

t'A"ICO 
HP.10 
NOHE AD 
OUTCt. 

60497800 c 

T u 
I 
t 
I 

I AU 

t lJ 
t u 
t· 
t 
t 
I 
I 

I 
R 
s 
w 
x 

blank 

1178 
1?.18 
1228 

08 

11. 7B 
1'>Cll 
1218 

CB 
1?28 

1~8 

Variable appears in DATA statement. 
Variable appears in READ statement. 
Variable appears in subscript. 
Variable appears in WRITE or PRINT statement. 
Variable appears as an external reference. 
Variable appears on the left side of an arithmetic replacement statement. 
Variable appears in ENCODE or DECODE statement. 
Variable appears on the right side of an arithmetic replacement statement. 

INTRINSIC 
EXTEqNALe 
EXTE~NALe 

J t u 1209 
L I 08 llANARRAY/ 22 
l'IAXO I INTRINSIC 
NOHE AO 1;a E' NTqY 

OUTC~. EXTERNAL. 

PASCAL &&B ENfqy 

.. r, Ct "' ~ c 10 
12 c 1. 3• s 13 s 13 s 14 c tit s 

/ANAl.11)0 I ~?. 
10 = 11 s 1? c 1 It c 
z ,, 3 0 11 = 13 t3 13 = 14 N 
8 = q c 

I NT~ INS re ~ A 
INTIUN5tC ~ 
FNTQV 7 ~ 

EXTERll!AL. .. w 1 Ct w 

13-21 





OBJECT CODE 14 

The structure of the object code produced by FORTRAN Extended differs depending on whether the com
piler is operating in time-sharing mode (TS control statement option) or optimizing mode (OPT=O, 1, 2 
control statement option). The format of the object code listing (if selected by the OL control statement 
option) also differs. 

Both compilation modes produce object code in units called blocks (see the COMPASS Reference Manual). 
These blocks include not only the code produced by compilation of the executable statements in the user's 
program, but also storage for variables, constants, and compiler-generated temporary entities, as well as other 
special purpose areas. The names of these blocks, as well as their exact contents, differ between the two 
compilation modes. 

Also discussed in this section is the arrangement in memory of user code, library routines, and common blocks 
after the program is loaded. 

OPTIMIZING MODE 

The following description of the arrangement of code and data within main program, subroutine and function 
program units does not include the arrangement of data within common blocks because this arrangement is 
specified by the programmer. However, the diagram of a typical memory layout later in this section illustrates 
the position of blank common and labeled common blocks. 

SUBROUTINE AND FUNCTION STRUCTURE 

The code within subprograms is arranged in the following blocks (relocation bases) in the order given. 

START. Code for the primary entry and for saving AO 

VARDIM. Address substitution code and any variable dimension initialization code 

ENTRY. Either a full word of NO's (46000 ... 46000B) or no storage used for this block 

CODE. Code generated by compiling: 

Executable statements 

Parameter lists for external procedure references within the current procedure 

Storage for compiler-generated temporary entities 

DATA. Storage for simple variables, FORMAT statements, and program constants 

DATA.. Storage for arrays other than those in common 

60497800 A 14-1 



HOL 

formal parameters 

Storage for Hollerith constants 

One local block for each dummy argument in the same order as they appear in 
the FUNCTION or SUBROUTINE statement, to hold tables used in address sub
stitution for p,rocessing references to dummy arguments. 

MAIN PROGRAM STRUCTURE 

START. 

CODE. 

DATA.} 
DATA.. 
HOL. 

Input/output file buffers and a table of file names specified in the PROGRAM 
statement 

Transfer address code plus the code specified for the subroutine and function 
CODE. block 

Same as SUBROUTINE and FUNCTION structure 

RENAMING CONVENTIONS 

In optimizing mode, the names of some programmer defined and system supplied entities are changed so as 
to prevent ambiguity for the assembler. 

REGISTER NAMES 

The compiler changes some legal FORTRAN names so that FORTRAN object code can be used as assembler 
input. When a two-character name begins with A, B, or X and the last character is 0 to 7, the compiler 
adds a dollar sign ($) to the name for the object code listing. (AO-A 7, BO-B7, and XO-X7 represent registers 
that might be used by the FORTRAN Extended compiler.) 

EXTERNAL PROCEDURE NAMES 

The name of a system supplied external procedure called by value is suffixed with a decimal point. The 
entry point is the symbolic name of the external procedure and a decimal point suffix. For example, EXP. 
COS. CSQRT. The names of all external procedures called by value are listed in table 8-2 (Basic External 
Functions). A procedure is not called by value and the name is not suffixed with a decimal point if it 
appears either in an EXTERNAL statement or an overriding type statement, or if option T, D, or OPT=O is 
specified on the FTN control statement. 

The call-by-name entry point is the symbolic name of the external procedure with no suffix. External 
procedures called by name ·appear in section 8 (Utility Subprograms). Any name which appears in table 8-1 
(Intrinsic Functions) or table 8-2 (Basic External Functions) is called by name if it appears in an EXTERNAL 
statement or in an overriding type statement; those listed as Basic External Functions are also called by name 
if option T, D, or OPT=O is specified on the FTN control statement. 

14-2 60497800 A 



LISTING FORMAT 

If object code is listed when the compiler is in optimizing mode, the code produced for each program 
unit is listed following the reference map (if any) for that program unit. If a LIST,NONE directive is in 
effect when the END line for that program unit is compiled, no object code is listed. Otherwise, the object 
code for the entire unit is listed, including code generated for lines that fall between LIST,NONE and 
LIST,ALL directives. 

TIME-SHARING MODE 

The following blocks are used in the object code generated by the compiler operating in time-sharing mode 
for both main programs and subprograms. 

CODE 

LITERAL 

FORMAT 

TEMP 

ARG 

NAMELIST 

VARIABLE 

BUFFER 

LISTING FORMAT 

Code resulting from compilation of executable statements, and parameter list for 
current subprogram (not used in main programs) 

Storage for constants of all kinds 

Compressed versions of FORMAT declarations (interpreted at execution time) 

Compiler-generated temporary entities 

Argument lists for external subprograms called in this program unit 

Argument lists for calls to NAMELIST input/output 

Storage for variables and arrays not declared in common or in ECS/LCM 

Input/output buffers 

When the compiler is in time-sharing mode, generated object code lines are grouped and listed immediately 
following the source lines that produced them. The number of lines listed at any one time is usually less 
than a program unit. If a UST,NONE directive is in effect at the time that the compiler would normally 
list a group of object code, the entire group is not listed. Conversely, if no LIST,NONE directive is in effect 
at such a time, the entire group of object code is listed, even if some of the object lines were generated by 
source lines whose listing has been suppressed by intervening UST,NONE directives. Therefore, the object 
code listed does not always correspond exactly to the source code listed when LIST,NONE directives are 
present in the program unit. The compiler in time-sharing mode always uses the FORTRAN Extended inter
nal assembler to assemble gener~-ted- object code. 

In time-sharing mode, some of the generated object code lines are not listed, in order to make the listing 
easier to read. However, all the lines generated from executable statements in the source program are listed. 

60497800 D 14-3 





EXECUTION CONTROL STATEMENT 15 

Optional parameters can be included on the control statement that calls into execution a program compiled 
by FORTRAN Extended. This control statement is normally either the name of the file to which the binary 
object code was written (LGO is the default) or an EXECUTE card specifying the name of the main entry 
point of the program (the name used on the PROGRAM statement or START, if the PROGRAM statement 
was omitted). The parameters that can be included on this control statement are of several kinds: 
alternate file names, print limit specification (PL), and Post Mortem Dump output and subscript limit I 
specifications. 

ALTERNATE FILE NAME SPECIFICATION 

The file names specified on the PROGRAM statement (INPUT, OUTPUT if the PROGRAM statement is 
omitted) are compiled into an internal file table within the body of the main program. The address of this 
table is passed to Q2NTR Y (FTNRP2 if ER is specified on the FORTRAN control statement) at execution 
time. 

The logical file name that appears in the file information table is determined in one of three ways: 

1. If no file names are specified on the execution control statement, the logical file name is the file 
name in the PROGRAM statement. 

Example: 

FTN. 
LGO. 

PROGRAM TESTl (INPUT,OUTPUT,TAPE1,TAPE2) 

Contents of internal file table before execution of 
Q2NTRY: 

000 ••• 017 

Contents of internal file table and following 
addresses after execution of Q2NTRY: 

INPUT ••• fit address 
OUTPUT •• fit address 
TAPE 1 ••• fit address 
TAPE2 ••• fit address 

The logical file names in the file information 
table will be: 

INPUT 
OUTPUT 
TAPEl 
TAPE2 

2. If the file names are specified on the execution control statement, the logical file name is the name 
specified there. A one-to-one correspondence exists between parameters on this statement and 
para meters in the PROGRAM statement. 

The user should ensure that no two file information tables have the same logical file name after this 
process. 

60497800 G 15-1 

I 



I 

PRINT LIMIT SPECIFICATION 

A parameter can be specified on the execution control statement to regulate the maximum number of 
records that can be written at execution-time on the file OUTPUT. This parameter has the same form as 
the PL parameter specified at compilation-time on the FTN control statement. If specified on the 
execution control statement, it overrides the value specified either explicity or by default at 
compilation-time (section 10). This parameter may appear anywhere in the parameter list; it does not 
affect file name substitution. 

The print limit parameter (specified either at compilation-time or at execution-time) is operative only on 
files with the name OUTPUT in the first word of its corresponding file information table. Thus, if a file 
name declared in the PROGRAM statement is superseded at execution-time by the file name OUTPUT as 
described previously, the print limit parameter will be operative on the original file name. Conversely, if 
the file name OUTPUT is superseded at execution-time by another file name, the effect of the print limit 
parameter is nullified. 

Examples: 

LGO(PL=2000) 

EXECUTE(,FILEl,OUTPUT,PL=lOOO,FILE2) 

NOTE 

FILE2 is placed in internal file table 

The BACKSPACE, ENDFILE, and REWIND statements 
cause the line count for the print limit test to be reset 
to zero at that point in the program. For example, if a 
program had a PL=lOO and 99 lines had been output when 
a BACKSPACE command was executed, the output line 
count would be reset to zero, allowing an additional 100 
lines to be output before the print limit would be 
reached. 

POST MORTEM DUMP PARAMETERS 

Two parameters can be included on the execution control statement to control Post Mortem Dump output 
and to specify limits on array subscripts. 

The PMD output parameter specifies the destination and format of the dump. The parameter appears on 
the execution control statement in the following format: 

*OP= list 

The option list consists of one or more of the following, not separated by separators: 

A Causes variables in all active routines to be included in the dump. An active routine is one that 
has been executed but is not necessarily in the traceback chain. 

F Causes a full dump to be written to the file PMDUMP when the job is executed with the file 
OUTPUT connected. This option is valid for interactive jobs only. 

T Causes a condensed form of the dump to be displayed at the terminal. File OUTPUT must be 
connected. This option is valid for interactive jobs only. 

If the *OP parameter is omitted, dumps are sent to file PMDUMP when the job is executed from a terminal 
with file OUTPUT connected. 

15-2 60497800 G 



Example: 

LGO(*OP=AF) 

The PMD subscript limit parameter controls the printing of arrays by PMD. This parameter has the same 
effect as a CALL PMDARRY in a source program. The parameter appears on the execution control 
statement in one of the following formats: 

*DA=i 

*DA=i+j 

*DA=i+j+k 

In these formats, i, j, and k represent integers that specify the maximum values of the subscripts of arrays 
to be printed. The integers specified for i, j, and k apply to the first, second, and third dimensions, 
respectively. 

Example: 

LGO(*DA=2+5) 

. 
DIMENSION RAY(20,20) 

As a result of these statements, PMD will print the following elements of the array RAY: 

RAY(l,l), 
RAY(l,2), 
RAY(l,3), 
RAY(l,4), 
RAY(l,5), 

60497800 G 

RAY(2,l) 
RAY(2,2) 
RAY(2,3) 
RAY(2,4) 
RAY(2,5) 

15-3 





INPUT /OUTPUT IMPLEMENTATION 16 

This section describes the structure of files read and written by FORTRAN Extended. All files read and written 
as a result of user requests at execution time are processed through CYBER Record Manager. The files read and 
written at compile time by the compiler itself (including source input, coded output and binary output) are 
processed by SCOPE 2 Record Manager when compilation is under SCOPE 2, and by operating system routines 
when compilation is under NOS 1 or NOS/BE 1. 

EXECUTION-TIME INPUT /OUTPUT 

All input and output between a file referenced in a FORTRAN Extended program and the file storage device 
is under control of Record Manager. The version of Record Manager used depends on the operating system: 

NOS 1 and NOS/BE 1 use CYBER Record Manager Basic Access Methods Version 1.5 {BAM), encom-
passing sequential and word addressable file organizations, for standard input/output statements, and 
CYBER Record Manager Advanced Access Methods Version 2 {AAM) for indexed sequential, direct access, and 
actual key file organizations, and multiple index capability, through the CYBER Record Manager interface routines. 

SCOPE 2 uses the SCOPE 2 Record Manager for all input/output. 

In this manual, the term CRM refers to features supported under BAM and AAM, but not under the 
SCOPE 2 Record Manager. 

These versions of Record Manager normally appear the same to FORTRAN users; however, they do offer 
substantially different capabilities. Standard file organizations and record formats are defined to facilitate file 
interchange and access through different products. 

CYBER Record Manager can be called directly, as described in section 8, to use the extended file structure and 
processing available. SCOPE 2 Record Manager cannot be called directly. This section deals only with Record 
Manager processing that results from standard language use. 

File processing is governed by values compiled into the file information table (FIT) for each file. 

If a file or its FIT is changed by other than standard FORTRAN input/output statements, subsequent 
FORTRAN input/output to that file may not function correctly. Thus, it is recommended that the user not 
try to use both standard FORTRAN and non-standard input/output on the same file within a program. 

FILE AND RECORD DEFINITIONS 

A file is a collection of records referenced by its logical file name. It begins at beginning of information and 
ends with end of information. 

A record is data created or processed by: 

One execution of an unformatted READ or WRITE. 

One card image or a print line defined within a formatted, list directed, or NAMELIST READ or WRITE. 

One call to READMS or WRITMS. 

One execution of BUFFER IN or BUFFER OUT. 

60497800 D 16-1 



On storage, a file may have records in one of 8 formats (record types) defined to Record Manager. Only 4 
of these are part of standard processing: 

Z Record is terminated by a 12-bit zero byte in the low order byte position of a 60-bit word. 

W Record length is contained in a control word prefixed to the record by Record Manager. 

U Record length is defined by the user. 

S System logical record. 

The remaining types can be formatted within a program under user control and written to a device using a 
WRITE statement if the FILE control statement is used to specify another record type. Similarly, these 
types can be read by a READ statement. 

The user is responsible for supplying record length information appropriate to each type before a write and 
for determining record end for a read. For example, a D type record requires a field within the record to 
specify record length. 

Unformatted READ and WRITE are implemented through the GETP and PU1P macros of Record Manager; 
consequently, record operations must conform to macro restrictions. Specifically, RT=R and RT=Z cannot be 
specified for unformatted operations. 

STRUCTURE OF INPUT/OUTPUT FILES 

FORTRAN Extended sets certain values in the file information table depending on the nature of the input/ 
output operation and its associated file structure. Table 16-1 lists these values for their respective FIT fields; 
all except those marked with an asterisk (*) can be overridden at execution-time by a FILE control state
ment. (Numbers in parentheses refer to notes listed following the table.) 

SEQUENTIAL Fl LES 

The following information is valid, unless the FIT field is overridden by a FILE control statement. 

With READ and WRITE statements, the record type (RT) depends on whether the access is formatted or unfor
matted. A formatted WRITE produces RT=Z records, with each record terminated by a system-supplied zero 
byte in the low order bits of the last word in the record. An unformatted WRITE produces RT=W records, in 
which each record is prefixed by a system-supplied control word. Blocking is type C for formatted and I for un
formatted records. The files named INPUT, OUTPUT, and PUNCH always have record type Zand block type C. 

These files should only be processed by formatted, list-directed, and namelist input/output statements. 

With READ and WRITE statements, the record type is W for all file types; blocking is I for tape files, and un
blocked for all other files. 

PRINT and PUNCH statements produce z+ type records with C type blocks or w§ type records unblocked 
for processing on unit record equipment. 

BUFFER IN and BUFFER OUT assume s* -type or w§ -type records. Formatting is determined by the 
parity designator in each BUFFER statement. An unformatted operation does not convert character codes 
during tape reading or writing (CM=NO), while a formatted operation does. 

*Applies only to NOS 1 and NOS/BE 1. 

§Applies only to SCOPE 2. 

16-2 60497800 D 



TABLE 16-1. DEFAULTS FOR FIT FIELDS UNDER FORTRAN EXTENDED 

FIT Fields 

Meaning 

CIO buff er size (words) 

Block type 

Close flag (positioning of file after 
close) 

Length in characters of record trailer 
count field (T type records only) 

Conversion mode 

Beginning character position of 
trailer count field, numbered from 
zero (T type records only) 

Length field (D type records) or 
trailer count field (T type records) 
is binary 

Type of information to be 
listed in dayfile 

Type of information to be 
listed on error file 

Error options 

Trivial error limit 

Length in characters of an F or Z 
type record (same as MRL) 

File organization 

Character length of fixed header for 
T type records 

Length of user's label area 
(number of characters) 

t Applies only to NOS 1 and NOS/BE 1 

§Applies only to SCOPE 2., 

60497800 G 

Mnemonic 

(1) BFst 

BT 

CF 

CL 

CM 

CP 

c1+ 

DFC 

EFC 

EO 

ERL 

FL 

FO 

HL 

(7) LBL 

~ ~ ~ -5 ~ .,, E- .,, E-
~ E- ~ - ~- ~o 

~tl.l .... =:: ..... Cl:: 
~ - () ~ ~~ =::Cl:: ::: ...J f 
~ ~ .... Q Ee ~~ 

'1.c '1.c e '1 2 < ..E < '1.c '1.c 
Q ~ -~ ~ =~ ;l ;l 

'1.c ... ;u:~ ;l Cl:: == 
20028 2002B 2002B 

c*/(9)§ It /(9)§ ct /(9) § 

N* N* N* 

0 0 0 

YESt/NJ NO (2) 

0 0 0 

NO NO NO 

3 3 3 

0 0 0 

AD AD AD 

0 0 0 

150 (5)* n/a n/a 

SQ* SQ* SQ* 

0 0 0 

0 * 0 * 0 * 

~= = 0. ....... 
~ c5 
tl.l-.... 
~ 6. 
~ ..5 

2002B 

n/a 

N t/R§ * I 

n/a 

n/a 

n/a 

n/a 

3 

0 

AD 

0 

n/a 

WA* 

n/a 

n/a 

16-3 



I 

TABLE 16-1. DEFAULTS FOR FIT FIELDS UNDER FORTRAN EXTENDED (Contd) 

FIT Fields 

Meaning Mnemonic 

Logical file name LFN 

Length in characters of record LL 
length field (D type records) 

Beginning character position of LP 
record length, numbered from zero 
(D type records) 

Label type (7) LT 

Maximum block length in characters MBL 

Minimum block length in characters MNB :j: 

Minimum record length in characters MNR :j: 

Maximum record length in characters (5) MRL 

Multiple of characters per K, E type MUL :t: 
block 

Open flag (positioning of file after (7) OF 
open) 

Padding character for K, E type PC :j: 
blocks 

Processing direction PD 

Number of records per K type block RB 

:j: Applies only to NOS 1 and NOS/BE 1. 

§Applies only to SCOPE 2. 

16-4 

~ ~ ~ -5 .. .,, E- .,, E-
-ct;~; ~- 2= 0 -= ! :s i! ~ 1U ~ == Ee ~~ = ~ ·- Q '- '-e~2< J: < ~~ 0 < -~ ~ =~ '- z ..:I= ::::> = == 

(3) (3) (3) 

0 0 0 

0 0 0 

ANY ANY ANY 

0 0 0 

0 0 0 

0 0 0 

n/a 223_1 (8) * 

2 2 2 

N* N* N* 

76B 76B 76B 

IO IO IO 

1 1 1 

-ta. 
S8 
f'1 ~ 

r'-1 ::I 
r'-1 c. 
"° = ~-

(3) 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

N+ /R§ * 

n/a 

IO 

n/a 

60497800 G 



TABLE 16-1. DEFAULTS FOR FIT FIELDS UNDER FORTRAN EXTENDED (Contd) 

~ ~ "'1 -s ~ .... .. ••c:d• 'O Eo-c 
~t;~; ~- ~o 00 = 

-~ o:s .e-
FIT Fields G> - ~ ~ ~~ ~~ ~s : ...;i ... ec "'1 ~ = "'1 ·- Q 

""'""' 
{"'1-e :E 2 < .... ..;: < ""'""' rlJ = 

Meaning Mnemonic 0 < .~ ~ =~ :::> :::> ~ c.. 
"'4 z ...;i = :::> ~ == :E i.5 

Record mark character (R records) RMK 62B n/a 62B n/a 

"'" ~ .J. ~ 

Record type RT Z+/W~(lO) w (6) S+/WS u 

Length field (D type\ records) or SB :j: NO NO NO n/a 
trailer count field (T · type records) 
has sign overpunch 

Suppress buffering SBF :j: No* No* YES(l 1) No* 

Suppress read ahead SPR NO NO NO n/a 

Character length of trailer portion TL 0 0 0 n/a 
of T type records 

User label processing (7) ULP NO NO NO NO 

End of volume flag (positioning VF u u u u 
of file at volume CLOSEM time) 

Notes: n/a 

* 
(1) 

(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

FIT field not applicable to this input/output mode. 

Default cannot be overridden by a FILE control statement. 

Default can be changed by PROGRAM statement. FILE control statement can specify a value 
smaller than the value established by the program, but the buffer location remains unchanged. 
If BFS=O, Record Manager allocates a new buffer and computes an appropriate length. 

Set by parity designator in BUFFER IN or BUFFER OUT statement. 

Set by PROGRAM statement or execution control statement (section 15). 

Set by Record Manager. 

Default can be changed on PROGRAM statement. For formatted, NAMELIST, and list-directed 
READ/WRITE statements, a FILE control statement can decrease but not increase the maximum 
record length. 

Default can be overridden by a FILE control statement only if RT:foR and RT:foZ. For RT=F, 
FL must be a multiple of 10. 

The LABEL subroutine (section 8) sets LBL=80, LT=ST, OF=R, and ULP=F. 

Maximum record length equal to length of record specified in BUFFER IN or BUFFER OUT 
statement. 

Unblocked if mass storage file; I if tape file. 

Default can be overridden by FILE control statement only if RT:foU. 

On a CYBER 170 Model 176, SBF must be set to NO on a FILE control statement if a level 2 or 
3(LCM) variable is used in a buffer statement under NOS/BE. 

:j: Applies only to NOS 1 and NOS/BE 1. 
§Applies only to SCOPE 2. 

60497800 D 16-5 



The ENDFILE statement writes a boundary condition known as an end of partition. When this boundary is 
encountered during a read, the EOF function returns end of file status. An ·end of partition may not neces
sarily coincide with end of information, however, and reading can continue on the same file until end of 
information on the file has been encountered. 

End of partition is written as the. file is closed during program termination. A third boundary for sequential 
files, a section, is not recognized during reading except for the special case of the file INPUT. 

MASS STORAGE INPUT/OUTPUT 

Files created by the random mass storage routines OPENMS, WRITMS, STINDX, and CLOSMS {described in 
section 8) are word addressable ftles. The master index, which is the last record in the file, is created 
and maintained by FORTRAN routines rather than Record Manager routines. 

One WRITMS call creates one ut type record; one READMS call reads one U type record. If the length 
specified for a READMS is longer than the actual record, the excess locations in the user area are not changed 
by the read. If the record is longer than the length specified for a READMS, the excess words in the record 
are skipped. 

FILE CONTROL STATEMENT 

The FILE control statement provides a means to override FIT field values compiled into a program and con
sequently a means to change processing normally supplied for standard input/output. In particular, it can be 
used to read or create a file with a structure that does not conform to the assumptions of default processing. 

A FILE control statement can also be used to supplement standard processing. For example, setting DFC can 
change the type of Record Manager information listed in the dayfile. 

At execution time, FILE control statement values are placed in the FIT when the referenced file is opened. 
These values have no effect if the execution routines do not use the fields referenced. Furthermore, 
FORTRAN routines may, in some cases, reset FIT fields after the FILE control statement is processed. These 
fields are noted in Table 16-1. 

Format of the FILE card is: 

FILE{lfn,field=value, ... ) 

lfn File name as it appears on the execution control statement; if fik name does not appear 
there, then lfn is file name as it appears in the PROGRAM statement. 

field FIT field mnemonic 

value Symbolic or integer value 

tRecord type W was written through FORTRAN Extended Version 4.2. Existing files with RT=W are recognized 
and processed correctly under subsequent versions of FORTRAN Extended without user action. 

16-6 60497800 D 



The FILE control statement may appear anywhere in the control statements prior to program execution, but it 
must not interrupt a load set. 

This deck illustrates the use of the FILE control statement to override default values supplied by the 
FORTRAN compiler. Assuming the source program is using formatted writes and 100-character records are 
always written, the file is written on magnetic tape with even parity, at 800 bpi. No labels are recorded, and 
no information is written except that supplied by the user. The following values are used: 

Block type = character count 

Record type = fixed length 

Record length = 100 characters 

Conversion mode = YES 

, 6 
7 
8 
9 L 

L 
L J Data Deck 

f 7 l 
8 L 
9 L FORTRAN source program 

1 
L 

f 1 
....__ 8 

9 

L LGO. 

L Fl LE(T APE 1, BT=C,RT= F, FL= 100,CM=YES) 

fl_ REOUEST(TAPE1,MT,HY,VSN=HAVEN) 

LFTN. r Accounting Statements 

( Job Statement 

t As required by the operating system. 

tt Format applicable to NOS/BE 1. 

60497800 D 

i--

.......... 

~ 

.......... 

i--

~ 

I-
I-

I-

I-

16-7 



SEQUENTIAL FILE OPERATIONS 

BACKSPACE/REWIND 

Backspacing on FORTRAN files repositions them so that the previous record becomes the next record. 

§BACKSPACE is permitted only for files with F, S, or W record type or tape files with one record per block. 

The user should remember that formatted input/output operations can read/write more than one record; 
unformatted input/output and BUFFER IN/OUT read/write only one record. 

The rewind operation positions a magnetic tape file so that the next FORTRAN input/output operation 
references the first record. A mass storage file is positioned to the beginning of information. 

The following table details the actions performed prior to positioning. 

Condition Device Type 

Last operation was Mass Storage 
WRITE or BUFFER 
OUT 

Unlabeled Magnetic 
Tape 

Labeled Magnetic 
Tape 

+Applies only to NOS 1 and NOS/BE 1. 

§Applies only to SCOPE 2. 

16-8 

Action 

Any unwritten blocks for the file are written. 

An end-of-partition is written. 

If record format is W, a deleted zero length re-
cord is written. 

Any unwritten blocks for the file are written. 

If· record format is W, a deleted zero length re-
cord is written. 

Two file marks are written. 

Any unwritten blocks for the file are written. 

If record format is W, a deleted record is written. 

A file mark is written. 

A single EOF label is written. 

Two file marks are written. 

60497800 c 



§ 

Condition Device Type 

Last operation was Mass Storage 
WRITE or BUFFER 
OUT 

Unlabeled Magnetic 
Sor L Tape 

Labeled Magnetic 
Tape or Unlabeled 
System Magnetic 
Tape 

Last operation Mass Storage 
was READ, 
BUFFER IN or Unlabeled 
BACKSPACE Magnetic Tape 

Labeled 
Magnetic Tape 

No previous § Magnetic Tape 
operation 

§ Mass Storage 
t All Devices 

Previous 
operation was 
REWIND 

t Applies only to NOS 1 and NOS/BE 1. 

§Applies only to SCOPE 2. 

60497800 A 

Action 

ENDFI LE is issued. 

Any unwritten blocks for the file are written. 
End-01'-information is flagged in R BT chain. 

ENDFILE is issued. 
Any unwritten blocks for the file are written. 

Two file marks are written. 

ENDFI LE is issued. 

Any unwritten blocks for the file are written. 

A tape mark is written. 

A single EOF label is written. 

Two tape marks are written. 

None 

None 

None 

If the file is assigned to on-line magnetic tape, a 
REWIND request is executed. 

§ If the file is staged, the REWIND request has no 
effect. The file is staged and rewound when it is 
first referenced. 

REWIND request causes the file to be rewound 
when first referenced. 

Current REWIND is ignored. 

16-9 



§ 

ENDFILE 

The following table indicates the action taken when an ENDFILE statement is executed. The action depends on 
the record and block type, as well as the device on which the file resides. 

Device Type 
Record Type 

Sor L Tape 

w An end-of-partition flag is written. 

The block is terminated. 

Other The block is terminated. 

A tape mark is written. 

Record Type 
Blocked 

w An end-of-partition flag is written. 

The block is terminated. 

z If C type blocking, the block is ter-
minated. Otherwise, the block is ter-
minated and a tape mark recovery 
control word is written. 

s If C type blocking, the block is termi"". 
nated with a zero length PRU of level 
17. Otherwise, the block is terminated 
and a tape mark recovery control word 
is written. 

Others on The block is terminated. 
Mass Storage 

A.tape mark recovery control word is 
written. 

Others on The block is terminated. 
Magnetic Tape 

A tape mark is written. 

; Applies oi1ly to NOS 1 and NOS/BE 1. 

§Applies only to SCOPE 2 

16-10 

Other Device 

An end-of-partition flag is written. 

The block is terminated with a short 
PRU of level 0. 

The block is terminated with a short 
PRU of level 0. 

A zero length PRU of level 17 is written. 

Blocking 

Unblocked 

An end-of-partition flag is written. 

A level 17 PRU is written. 

Not applicable. 

Ignored. 

Not applicable. 

60497800 A 



INPUT/OUTPUT RESTRICTIONS 

Meaningful results are not guaranteed in the following circumstances: 

1. Mixed formatted and unformatted read/write statements and buffer input/output statements on the same 
file (without an intervening REWIND, ENDFILE, or without encountering an End of File (EOP) as 
determined by the EOF Function). 

2. Requesting a LENGTH function or LENGTHX call on a buffer unit before requesting a UNIT function. 

3. Two consecutive buffer input/output statements on the same file without the intervening execution of a 
UNIT function call. 

4. Failing to close a mass storage input/output file with an explicit CLOSMS in an overlay program that is 
STA TI Cly loaded. 

5. Writing formatted records on a seven-track S or L tape without specifying CM=NO on a FILE control 
statement. 

6. Using items in an input/output list after encountering end-of-file in a read. 

7. Attempting to write a noise record on an Sor L tape. This can occur with block types K and E (and C 
for SCOPE 2) using record types F,D,R,T, or U with MNB < noise size. 

COMPILE-TIME INPUT/OUTPUT 

The compiler expects source input files to have certain characteristics and it produces coded and binary files 
which must be structured in specific ways according to the operating system under which it runs. A program 
compiled under SCOPE 2 must be executed under control of SCOPE 2; a program compiled under other 
operating systems cannot be executed under SCOPE 2. Programs compiled under NOS 1 or NOS/BE 1 can 
be executed under either of these operating systems. 

Under SCOPE 2, the compiler uses SCOPE 2 Record Manager for all input/output operations. (However, a FILE 
control statement should not be used since the compiler overrides file information table settings after this 
control statement is processed.) Under the other operating systems, the compiler makes direct calls to the 
operating system for input/output; CRM is not used. 

The structure of the text files read by the compiler is described in the COMPASS Version 3 reference manual. 
SCOPE 2 structure is identified in the tables below by the equivalent SCOPE 2 Record Manager parameters. 

60497800 D 16-11 



SOURCE INPUT FILE STRUCTURE 

A source input file must have the following structure. Only the first 90 characters of each record are proc
essed or reproduced in the listing output file. 

File Characteristics NOS/BE 1 and NOS 1 SCOPE 2 

File organization Sequential operating system default Sequential (FO=SQ) unblocked 
format with file terminated by a 
short or zero length PRU 

Record type Zero-byte terminated Control word (RT=W) 

Maximum record length 158 characters 158 characters (MRL=158) 

Conversion mode Not applicable No (CM=NO) 

Label type of tape Under operating system control Unlabeled (L T=UL) 

16-12 60497800 c 



CODED OUTPUT FILE STRUCTURE 

Two coded output files may be produced: the listing file and the file of COMP ASS line images. Format is 
as follows: 

File Characteristics NOS/BE 1 and NOS 1 SCOPE 2 

File organization Sequential operating system default Sequential (FO=SO) unblocked 
format with file terminated by a 
short PRU 

Maximum block length Not applicable None 

Record type Zero byte terminated (equivalent to Control word ( RT=W) 
Record Manager Z type) 

Maximum record length 137 characters 137 characters 

Conversion mode Not applicable No (CM=NO) 

Tape label type Under operating system control Unlabeled ( L T=U L) 

BINARY OUTPUT FILE STRUCTURE 

The format of the executable object code file is as follows: (the content of the file differs, depending on the 
loader supported by the operating system) 

File Characteristics NOS/BE 1 and NOS 1 SCOPE 2 

File organization Sequential operating system default Sequential (FO=SO) unblocked 
format with file terminated by a 
zero length PRU which is then 
backspaced over 

Record type Operating system logical record Control word (RT=W) 
(equivalent to Record Manager 
S type) 

Maximum record length None 1,310, 710 characters 

Conversion mode Not applicable No (CM=NO) 

Tape label type Under operating system control Unlabeled ( L T=U) 

60497800 D 16-13 





COMPASS SUBPROGRAM LINKAGE 17 

Both subroutines and functions may be written in COMPASS assembly language and called from a FORTRAN 
source program. For either, register AO is the only register that must be restored to its initial condition before 
the subprogram returns control to the calling routine. 

When a FORTRAN generated subprogram is called, the calling routine must not depend on values being preserved 
in any registers other than AO. 

CALL BY NAME AND CALL BY VALUE 

To increase speed, arguments to library functions are normally passed to subprograms by placing their values in 
registers. This method is call by value. For user defined subprograms, the addresses of the arguments are passed 
to the subprogram. This method is call by name. 

CALL BY NAME SEQUENCE 

The FORTRAN compiler uses the call by name sequence when a subroutine or function name differs from any of 
those listed in tables 8-1 and 8-2. Call by name is also used when a listed subroutine or function also appears 
in an EXTERNAL or overriding type statement, or (except in the case of intrinsic functions) the program unit 
specifies D, T, or OPT=O on the FTN control statement. 

The call by name sequence generated is shown below: 

SAi Address of the argument list (if parameters appear) 
The list contains the addresses of the arguments passed to and returned from the subprogram. 

+RJ Subprogram name 

-VFD 12/line number, 18/trace word address 

line number Source line number of statement containing the reference 

trace word address Address of the trace word for the calling routine 

Arguments in the call must correspond with the argument usage in the called routine, and they must reside 
in the same level. 

The argument list consists of consecutive words in the following form followed by a word of binary zeros. The 
sign bit will be set in the argument list for any argument entry address that is LCM or ECS. 

VFD 60/address of argument 

When the RETURNS list form is used, the list of return addresses is located immediately after a word of binary 
ones which follows the argument list. The RETURNS list is terminated by a word of binary zeros. The sub
routine accesses the addresses by offsetting the address of the argument list, which is contained in register AO. 

60497800 E 17-1 



CALL BY VALUE SEQUENCE 

For increased efficiency the compiler generates a call by value code sequence for references to library functions if 
the function name does not appear in an EXTERNAL or overriding type statement and (in the case of external 
functions only) the D, T, or OPT=O options on the FTN control statement are not specified. The name of 
any library function called by value or generated in line must appear in an EXTERNAL statement in the calling 
routine if the call by name calling sequence is required (section 8 lists the library functions called by value and 
generated in-line). 

The call by value code sequence consists of code to load the arguments into Xl through X4, followed by an 
RJ instruction to the function. Two registers are used for each double precision or complex argument. 

INTERMIXED COMPASS SUBPROGRAMS 

Subprograms in COMP ASS assembly language can be intermixed with FORTRAN coded subprograms in the 
source deck. Intermixed COMP ASS subprograms must begin with a source line containing the word IDENT 
in columns 11 through 15, with columns 1 through 10 blank, and column 16 blank; 

1 11 16 

'lllllll!!llllllllll;;1
1
;11:11111111111111111111111111 I D E N T 11111/lf brank 

The subprogram ends with any legal COMPASS H~D line. A COMPASS subprogram cannot interrupt a 
FORTRAN program unit; it must be placed after the END line of the FORTRAN program unit and before 
the beginning of the next program unit. A COMPASS subprogram can also be the first or last program 
unit in a source deck. 

If the COMP ASS subprogram changes the value of AO, it must restore the initial contents of AO upon returning 
control to the calling subprogram. When the COMPASS subprogram is entered by a function reference, the 
subprogram must return the function result in X6 or X6 and X7 with the least significant or imaginary part 
of the double precision or complex result appearing in X7. 

The COMPASS assembler normally requires the system text SYSTEXT, which is the default for the S param
eter. The amount of storage available depends on installation options. Insufficient storage for SYSTEXT 
causes an error. The user may need to specify a larger field length for compilation or a different option for 
S. See the COMP ASS reference manual and section 10 of this manual for more details on systems texts. 

Example: 

This example shows a simple COMPASS function and the calling FORTRAN main program. The parity func
tion, PF, returns an integer value; therefore it must be declared integer in the calling program. The argument 
to PF may be either real or integer. 

The title and comments are unnecessary; they are included to encourage good programming practice. The 
following is a recommended convention. 

17-2 

PF EQ *+1S17 ENTRY/EXIT 

This statement causes a jump to 400 0008 plus the location of the entry point of the routine if the 
function is not entered with a return jump. This results in a mode error that can quickly be identified. 
Since AO is not used in this subprogram, -it need not be restored. 

60497800 c 



Source Deck 

job card 
t.4AP$0FF> 
FTN(Q:O) 
LGO. 
?/8/9 in cotumn 1. 

Pi:>OGPAM N,PSAMP (OUTPUT> 
INTEGF.R PF. PVAL<~4) 
0011=1·24 
PVAL<I>=PF<I> 
PRINT~•<l•l=l•24)•PVAL 

~ FOPMATC32HOINTEGERS ANO T~tlR PARITY ~ELOW/(2413)) 
STOP 
ENO 

IOENT PF 
ENTRY PF 

PF TITLE PF - CO~PUTE PARITY OF ~ORD. 
COMMENT. CO~PUTE PARITY OF WORD. 

PF 5PACE 4•11 
*** PF - COMPUTE PARITY OF WORD. 

FORTRAN SOURCE CALL --

O~SULT = le IFF ARG HAS ODD NlJ~RER Of qns SET. 
= Ot OT11ERWISE. 

** ENTRY CXl) = ADDRESS OF ARGUMENT. 
* fXIT (X6> = RE5ULT. 

PF *•1517 ENT?Y/EXIT ••• 

main program 

EQ 
SA2 
co 
~XO 

flX6 
EQ 

X 1---------------get the argument value 
X2' count the I bits in X2 and leave result in X3 
-1 form a mask in XO 
-XO*X3 ISOLATE LO~EST 8JT,.._putresultintoX6 
Pf EXIT •• 

ENO 
6/?/8/9 in coZumn 1. 

Output 

INlEGE~S -~C l~El~ FA~IlY BELOW 
1 c 3 ~ 5 6 7 8 9 10 11 1c 13 14 15 1E 17 18 19 20 21 22 23 2~ 
1101(j011001011010010 11 0 0 

60497800 A 17-3 



ENTRY POINT 

For subprograms written in FORTRAN, the compiler uses the following conventions in generating code: 

The entry point of the subprogram (for reference by an RJ instruction) is preceded by two words. The first is a trace 
word for the subprogram; it contains the subprogram name in left justified display code {blank filled) in the upper 
42 bits and the subprogram entry address in the lower 18 bits. The second word is used to save the contents of AO 
upon entry to the subprogram. The subprogram restores AO upon exit. 

Trace word: VFD 42/name, 18/entry address 

AO word: DATA 0 

Entry point: DATA 0 

RESTRICTIONS ON USING LIBRARY FUNCTION NAMES 

Functions written in FORTRAN that have library function names listed in tables 8-1 or 8-2, such as AMAXI or 
SQRT, must be declared EXTERNAL in the calling program unit. This declaration is necessary because the compiler 
produced functions always use the call by name calling sequence. 

Functions written in COMPASS that have basic external library names listed in table 8-2, such as SQRT, should be 
written using the call by name sequence when they are declared EXTERNAL in the calling routine; or they should 
use the call by value rules if they are not declared EXTERNAL. 

Functions written in COMP ASS that have intrinsic library names listed in table 8-1, such as AMAXl, must be 
declared EXTERNAL in the calling routine; otherwise in-line coding is generated for them (the COMPASS coding is 
ignored}. Furthermore, the call by name sequence must be used. 

If a library function, called by value, is to be overridden by a routine coded in COMPASS, the COMPASS routine 
must use the library function name with a period appended as the entry point name (e.g., SIN.) to use the call by 
value calling sequence. 

The following sample illustrates the code generated for: a library function call, SQRT; an external function call, 
ZEUS; and a reference to an intrinsic (in-line) function, AMAXl. 

The coding· generated for the external function, ZEUS, is illustrated also. 

MAPCOF'F> 
FTNCR=O.OU 
1/8/f "' to6lmn l 

P~OGRAM SlJftLNK 
X=SORTC7.0) 
Y=ZEUSCJCtl.0) 
ENO 
FUNCTTON ZEUSCARGltARG2> 
ZEUS=AMAXlCARGltARG2t0e) 
RETURN 
ENO 

6/1/8/9· "' eolumn 1 

17-4 60497800 A 



000000 START• 
000001 START. 
00000? START. 

000001 START. 
000004 SlART. 

ooooor.; CODE. 

00001F. DATA. 
OOOOlF- DATA. 
000017 DATA. 

0000?0 DATA. 
0000?1 DATA. 

OOOOOn CODE. 

000007 conE. 

000010 CODE. 

000011 CODE. 

00001? CODE. 
000011 CODE. 
000011 CODE. 
000014 CODE. 
00001c:; CODE. 

60497800 D 

ooonoo 
000005 
000005 
ooooos 
000016 
000022 
000022 

0001)05 
000000 
000000 
ooon11 
ooon04 
000~00 
000000 

FXTERNAL5 
ENn. 7EUS 

2ioooooooooooooooooJ 
0~000000000000011610 
onoooooooooooooooooo 

onoooooooooooooooooo 
?l250214161J5r.;ooooos 

c;110000000 START• 
0100000000 <EXT> 

17227000000000000000 
1 7204000000000000000 

5i10onoo lA [)A TA. 
0100000000 <EXT"> 

c;160000020 DATA. 
511(1000013 CODE. 

oioooooooo <EXT'> 
0001000004 

5i°60000021 l)ATA. 
s110000004 ST AR,.• 

0400000000 <EXT> 

00000000000000000020 DATA. 
06000000000000000017 DATA. 
onoooooooooooooooooo 

IOENT SUBLN'< 
USE SU< 
LOSET LIB=FORTRAN 
USE START. 

STAIH • 
VAPOI"'• 
ENTRY. 
CODE. 
DATA. 
DATA •• 
HOLe 

SQRT. 

LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 

Q?.NTRY • 

LI RLNK • t35S OB 
LIBLNK 0Btl1610A 

fILES. BSS OB 
l)ATA 0 
TRACE SUBLNKtSU8Lf\IK 
USE CODE. 
PENT RY SUBLNl(t••O 
5Al LIBLNK. 
RJ Q2NTRY. 
USE OATA. 
IJSE DATA •• 
USE DATA. 

CON. BSS 00 
nATA 172270000000000000003 } constant table 
nATA 172040000000000000009 
FXT ENO. 
EXT ZEUS 
EXT SQRT. 
EXT Q2NTRY. 

x BSS 18 
y ASS 18 source line number 

USE CODE. 2/ * LI ·~E 
SAl CON. get actual parameter 
RJ 5QPT. into Xl 
SA6 x 
SAl ( AP l ~get address of parameter 

+ RJT ZEUS• 3•~ list into Al 

SA6 y 
SAl TRACE. 
EQ END. 

CAPl BSS 
OB J APL X parameter address list 

APL CON.+lR 
APL 

z. ENO SURLf\JI( 

17-5 



ooooon START. 
000001 START. 
OOOOO;:> START. 
000001 START. 
000004 START. 
000005 START. 

000011 DATA. 

00000"- conE. 

000007 COOf. 

OOOOlf'l cooE. 

0000 l 1 CODE• 

00001;:> CODE. 
000014 AR<;2 

17-6 

000000 
000006 
000006 
000006 
000013 
000014 
000014 
OOOOllt 
000014 

FXTEC~ALS 
SPA. 

OODt\06 
ooonoo 
000000 
ooo--os 
ooono1 
ooonoo 
000.:00 
ooonoo 
ooonoo 

JDENT Z£U~ 
IJ5£8ll( 
LDSET LIB•fOATRAN 
USE STAAT. 

START. 
VAQOJM. 
ENTRY. 
coor. 
DATA. 
DATA •• 
HOL. 
ARr;) 
A~r,2 

LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 
LOCAL 

---------------name of program unit 
/ IJSE DATA. and entry point address 

/ llSE !;TART. 
J,0~25?.35555~5000004 TRACE ZEus.zrus.2R 
0~000000000000000000 .... ----------------cell to save AO in 
5i4000001Jl064446000} 
5i300000015203000~00 

PENTRY ZEUStENTRY • • l •O restores AO on exit 

0·~0040000461000460001 .... ----------------entry point 
741;01)5401051~0000001 saves AO and sets AO 

54500 

t;l?40 

l t 670 

l i 670 

5040000001 
53150 

310.12 

11061 

1 "Hf!(I 

137?3 
21073 

22700 
?1773 

5170000013 DATA. 
040000000? START. 

F"ORPAR ARGl 
F"ORPAQ ARG2 
•tSE DATA.• 
tJ<;E OATA. 
F"XT SPA. 

VALUE• BSS 18 
USE 

• 

z. 

SAS 
SA4 
SAJ 
SA2 
rxo 
AX7 
AXO 
l:.iX6 
BXO 
LX7 
AX7 
BX6 
8X7 
SA7 
EQ 
ENO 

COr>E. 

AO 
AO•lR 
XS 
X4 
X3-X2 
X2-X3 
73R 
X7•XO 
X6-X3 
BO.XO 
73~ 

X7•xo 
X6-XO 
VALUE. 
EXIT• 

to the new Al 

Ll"JE 

60497800 D 



SAMPLE DECK STRUCTURES 

FORTRAN SOURCE PROGRAM WITH CONTROL STATEMENTS 

Refer to the operating system reference manual for details of control statements. 

Control 
Statements 

la 
7 
8 
9 

~' END 

_L 
_L 

_L 
_L 

.I 

I FORTRAN statements 

I SUBROUTINE RVIE (C,J,L) 

L END 
.L 

_L 

~( FORTRAN statements 

FUNCTION RTSM (A,B) 

L END 
.L 

{ FORTRAN statements 

~ PROGRAM MAIN 

r: {LGO. 

{FTN. 

{ t Accounting statements 

I Job statement 

t As applicable for operating system or installation. 

60497800 D 

.. )·" 
1-

I'"' 

l 

I 

1--

1-

,_.... 
I_.... 

.... 

""' 

FORTRAN 
SOURCE 
PROGRAM 

18 

18-1 



COMPILATl"ON ONLY 

7 
8 
9 

FTN (0,EL=A) 

Job statement 

TS MODE COMPILATION ONLY 

18-2 

7 
8 
9 

FTN(TS,B=O) 

Job statement 

EL=A- All diagnostics (including 
ANSI) listed on file 
OUTPUT 

0 - Full syntactic error 
scan of program 

- TS compilation mode is 
desired, or optimizing 
compilation modes are 
not available 

B=O - Binary object file is 
not produced 

60497800 A 



COMPILATION AND EXECUTION 

/6 
7 
8 L 
9 L 

L 
L 

{_ data 

/7 l 8 L 

9 
L 

L 

{ FORTRAN source deck I-
t'I"" ... 

/7 
8 
9 

{LGO. ... 
{FTN. 

•..'"" 
i---

Job statement ...... 

~ 

i--

60497800 A 18-3 



FORTRAN COMPILATION WITH COMPASS ASSEMBLY 
AND EXECUTION 

FORTRAN and COMPASS program unit source decks can be in any order. COMPASS source decks must begin 
with a line containing the word IDENTb in columns 11-16. Columns 1-10 of the IDENT line must be blank. 

/5 1 7 L 

8 .L 
.L 

9 l data 

(1 l 8 

1t. 9 

'l I COMPASS source deck 

L 
L 

L 
.., {_ FORTRAN source deck 

(1 l 8 
{LGO. 9 

L FTN(L,EL=A) 

f Job statement 

._ 

18-4 

:I 
_l 

.l 
]_ 

to-

u~~ 

.Aiv 

I--' 

........-

~ 
:,.-:.-

.... 
I-

L - Source program and 
short reference map 
on file OUTPUT 

EL=A- All diagnostics (including 
ANSI) listed on file 
OUTPUT 

60497800 A 



COMPILE AND EXECUTE WITH FORTRAN SUBROUTINE AND 
COMPASS SUBPROGRAM 

60497800 A 

7 
8 
9 

data 

END 

ENTRY A1 

IDENTSUB 

SUBROUTINE S1 (P1 ,P2) 

LGO (,OUTPUT) 

FTN. 

PROGRAM DONE (INPUT,TAPE2) 

Job statement. 

Data will be written 
to OUTPUT rather 
than TAPE2. 

18-5 



COMPILE AND PRODUCE BINARY CARDS 

18-6 

6 
7 
8 
9 

7 
8 
9 

source deck 

PROGRAM BOB(INPUT,OUTPUT,TAPE1) 

FTN (B=PUNCHB,OPT=2) 

Job statement 

OPT=2 specifies 
full optimization 

60497800 A 



LOAD AND EXECUTE BINARY PROGRAMt 

Is 
7 
8 
9 

'l l 
:I 

'1 
l 

l 

I data 

.. 
/1 1 8 

9 
_[ 

/7 l 8 
9 'l "] 

1 
--. 'l 

II 
binary deck 

/7 
8 
9 

f 1NPUT. 1 
r 

I MAP(OFF) l 
Job statement 

..___ 

i......-i 

tunder NOS 1, a 6/7 /9 card, instead of two 7 /8/9 cards, must follow the binary deck to signify end-of-input 
to the loader. 

60497800 D 18-7 



COMPILE AND EXECUTE w·nH RELOCATABLE BINARY DECKt 

Is 
7 
8 
9 

.L 
L 

I 

L 
L 

( data 

I-

/1 l I-' 
I-' 

8 ~ 

9 11 ~I-' 
8 
9 .L 

.L 
L 

{_ binary deck 

~7 
8 
9 

L 
L 

L 
L 

--I source deck 

L 
. 

PROGRAM ALFRED(INPUT,OUTPUT,TAPE1,TAPE5,T APE6) 

/7 
8 
9 

{EXECUTE. 

{ LOAD(LGO) 

~ LOAD(INPUT) 

IFTN. 

I Job statement ~ 

~ 

I-

-1 

tunder NOS l, a 6/7 /9 card, instead of two 7 /8/9 cards, must follow the binary deck to signify end-of-input to 
the loader. 

18-8 60497800 D 



COMPILE ONCE AND EXECUTE WITH DIFFERENT DATA DECKS 

7 
8 
9 

60497800 A 

6 
7 
8 
9 

7 
8 
9 

7 
8 
9 

data #!2. 

data #1 

PROGRAM SUBS (INPUT,OUTPUT) 

LGO,,TAPE2. 

REWIND,LGO. 

LGO,,TAPE1. 

FTN. 

Job Statement 

Output will be on two 
separate files; output 
from data #1 wi 11 be on 
TAPE1, output from 
data #2 on TAPE2. 

18-9 



PREPARATION OF OVERLAYS 

Primary Overlay t 
(1,0) 

Source Deck t 

Main Overlay 
(0,0) 

Source Deck 

1.8-10 

I 

} 
) 

/6 l 7 L>L~~~-~~~~~-

8 L>L~~-~~~~~~--. 
l!(Data 1 

L 
L 

L 
L 

l 
{_ END 

} 

Secondary Overlay 
(1, 1) 

Source Deck 

-----OV--ER_L_A_Y_(-FR_A_N_K_,-1,~1)~__.I 

PROGRAM MLT 

( END l 
LL CALL OVERLAY (5HFRANK,1,1,0) 

PROGRAM ROY 

OVERLAY(FRANK, 1,0) l 
END 

'l~.~~~~~~~~~~~~ ...... ~ 
I' SUBROUTINE GROUCH(X) 

END 

CALL OVERLAY(5HFRANK,1,0,0) ... ~.---+---Call to 
Primary Overlay 

CALL GROUCH(40,0) 
FRANK 1,0 

L 
L 

L 
L. 

{_ PROGRAM LEO(INPUT,OUTPUT,TAPE1) 

7 
8 
9 

OVERLAY(FRANK,0,0) 

FRANK. 

{_LOAD(LGO) 

~ [_FTN. 

/'Job statement 

l 
l 

l 

60497800 A 



COMPILATION AND 2 EXECUTIONS WITH OVERLAYS 

16 l 7 
8 f 

9 f 
L 

f 
_L 

/ 

L( source deck 

( OVERLAY(CH,0,0) 
I-" 

f 1 
.... 

~ 
I-" 

8 
""'" 9 

,.... 

f CH. (ABSOLUTE OVERLAY) l:: 
f x. (RELOCATABLE) l 

I FTN(B=X) 

Job statement 

....._ 

~ 

...__ 

60497800 A 18-11 





SAMPLE PROGRAMS 

PROGRAM OUT 

Program OUT illustrates the WRITE and PRINT statements. 

Features: 

Control statements for batch execution 

WRITE and PRINT statements 

Carriage control 

PROGRAM statement 

PAT,TlO 

The job statement must precede every job. PAT is the job name. TIO specifies a maximum of 10 (octal) 
seconds central processor time. 

FTN. 

Specifies the FORTRAN Extended compiler and uses the default parameters. (section 10) 

LGO. 

The binary object code is loaded and executed. 

19 

If no alternative files are specified on the FTN control statement, the FORTRAN Extended compiler reads 
from the file INPUT and outputs to two files: OUTPUT and LGO. listings, diagnostics, and maps are output 
to OUTPUT and the relocatable object code to LGO. 

7/8/9 

The 7/8/9 card separates control statements from the remainder of the job deck (INPUT file). This card 
contains a mul tipunched 7, 8, and 9 in column 1; it follows control statements in every batch job. 

60497800 D 19-1 



PROGRAM OUT (OUTPUT.TAPES-OUTPUT) 

The PROGRAM statement identifies the main program by the name OUT and specifies the file OUTPUT. 
Logical unit 6 will be referenced in the program. All files used by FORTRAN input/output statements in a 
program must be specified in the PROGRAM card of the main program. 

T APE6=0UTPUT is included because unit number 6 is referenced in a wRITE statement. The unit number 
will be prefixed by the letters TAPE. All data written to T APE6 will be placed in the file OUTPUT and 
eventually output to the printer. 

WRITE (6.200) INK 

The WRITE statement outputs the variable INK to TAPE6. If a PRINT statement had been used instead of 
WRITE: 

PRINT 200. INK 

TAPE6=0UTPUT would not be needed in the PROGRAM card; PROGRAM OUT (OUTPUT) would be 
sufficient. 

100 FORMAT (*l THIS WILL PRINT AT THE TOP OF.A PAGE*) 

This FORMAT statement uses * * to delimit the literal. 1 is a carriage control character which causes the 
line to be printed at the top of a page. 

200 FORMAT (I5,* = INK OUTPUT BY WRITE STATEMENT*) 

Although the variable INK is 4 digits, a specification of 15 is given because the first character is always inter
preted as carriage control. In this case, the carriage control character is a blank and output will appear on 
the next line. 

6/7/8/9 

The 6/7/8/9 card contains the characters 6, 7, 8, and 9 multipunched in column 1. It is the last card in 
every job deck (INPUT file), indicating to the system the end of this particular job. 

19-2 60497800 A 



Complete Job Deck: 

PATtTlO 
FTN. 
LGO. 
7 /8/9 in column 1 

PROGRAM OUT (OUTPUTtTAPE 6=0UTPUT> 
PRINT 100 

100 FORMAT <*l THIS WILL PRINT AT THE TOP OF A PAGE*) 
INK = 2000+4000 
WRITE (6t200> INK 

200 FORMAT <ISt* = INK OUTPUT BY WRITE STATEMENT*> 
PRINT 300, INK 

300 FORMAT <lH tl4t30H = OUTPUT FROM PRINT STATEMENT} 
STOP 
END 

6/7 /8/9 in column 1 

Output: 

THIS WILL PRINT AT THE TOP OF A PAGE 
&000 = INK OUTPUT BY WRITE STATEMENT 
&000 = OUTPUT FROM FRINT STATEMENT 

PROGRAM B 

Program B generates a table of 64 characters indicating the character set being used. The internal bit config
uration of any character can be determined by its position in the table. Each character occupies six bits. 

Features: 

Octal constants 

Simple DO loop 

PRINT statement 

FORMAT with H,/ ,I,X and A elements 

NCHAR= 00 01 02 03 04 05 06 07 00 OOB 

The print statement PRINTl has no input/output list; it prints out the heading at the top of the page using 
the information provided by the FORMAT statement labeled 1. 2SH specifies a Hollerith field of 25 char
acters, 1 is the carriage control character, and the two slashes cause one line to be skipped before the next 
Hollerith field is printed. The slash at the end of the FORMAT specification skips another line before the 
program output is printed. 

60497800 D 19-3 



DO 3 1=1,8 
J=I-1 

These statements generate numbers 0 through 7 (a DO index cannot be a zero). 

PRINT 2, J, NCHAR 

Prints 0 through 7 (the value of J) on the left and the 8 characters in NCHAR on the right. The first iteration 
of the DO loop prints NCHAR as it appears on line 4. The octal value 01 is a display code A, 02 is a B, 03 is 
a C, etc. 

NCHAR=NCHAR + 10 10 10 10 10 10 10 10 00 OOB 

The octal constant 101010101010101000008 is added to NCHAR; when this is printed on the second iteration 
of the DO loop, the octal value 10 is printed as a display code H, 11 as I, 12 as J, etc. Compare these values 
with the character set listed in Appendix A. 

Program: 

1 

2 
3 

Output: 

PROGRAM B <OUTPUT> 

~~~~!r~2SH1TABLE OF INTERNAL VALUES//12H 
NCHAR= 00 01 02 03 04 05 06 07 00 008
DO 3 I = 1.8
J=I-1
PRINT 2, J,NCHAR
FORMAT U3t1XtA8>
NCHAR=NCHAR+lO 10 10 10 10 10 10 10 00 008
STOP
END

TABLE OF INTERNAL WILUES

812345&7

0 IABCDEFG
1 HIJKLHNO
2 PQRSTUVM
3 XYZ01231t .. 567eq+-•
5 /Ct Ss 9 •

6 :r) 1.#,- YA

7 ••<>~~ .. ;

19-4

01234567,/)

60497800 A

PROGRAM MASK

Program MASK reads names and home states, ignoring all but the first two letters of the state name. If the
state name starts with the letters CA, the name is printed.

Feature:

Masking

1 FORMAT (1Hl,5X,4HNAME,///)
PRINT 1

The printer is directed to start a new page, print the heading NAME, and skip 3 lines.

3 READ 2,LNAME,FNAME,ISTATE,KSTOP
IF(KSTOP.EQ.l)STOP

The last name is read into I.NAME, first name into FNAME, and home state into ISTATE. The last record con
tains a one which will be read into KSTOP as a stop indicator. The IF statement on line 6 tests for the stop
indicator.

IF((ISTATE.AND.77770000000000000000B).NE.(2HCA.AND.777700000000000
KOOOOOB)) GO TO 3

The relational operator .NE. tests to determine if the first two letters read into variable ISTATE match the two
letters of the Hollerith constant CA. The last eight characters (48 bits) in ISTATE are masked and the two re
maining characters are compared with the word containing the Hollerith constant CA, also similarly masked. If
the bit string forming one word is not identical to the bit string forming the other word, ISTA TE is not equal
to CA and the IF statement test is true.

The bit configuration of CALIFORNIA, the Hollerith constant CA and the mask follows:

California

Hollerith c A L I F 0 R N I A

Octal 03 01 14 11 06 17 22 16 11 01

Bit 000011 000001 001100 001001 00(>°110 001111 010010 001110 001001 000001

60497800 A 19-5

Constant CA

Hollerith c A blank blank blank blank blank blank blank blank

Octal 03 01 55 55 55 55 55 55 55 55

Bit 000011 000001 101101 101101 101101 101101 101101 101101 101101 101101

Mask

Octal 77 77 00 00 00 00 00 00 00 00

Bit 111111 111111 000000 000000 000000 000000 000000 000000 000000 000000

When the masking expression (ISTATE.AND.77770000000000000000B) is completed, the first two charac
ters of CALIFORNIA remain the same and last eight characters are zeroed out. The AND operation
follows:

000011 000001 001100 001001 000110 001111 010010 001110 001001 000001

111111 111111 000000 000000 000000 000000 000000 000000 000000 000000

000011 000001 000000 000000 000000 000000 000000 000000 000000 000000

When (2HCA.AND. 77770000000000000000B) is evaluated, the same result is obtained. Thus, in both
words, all bits but those forming the first two characters will be masked, making a valid basis for compar
ing the first two characters of both words. If the result of the mask is true, the last name and first name are
printed (statement 10), otherwise the next record is read.

Program:

~~UG~AM MASK (lNPUTtUuTPUT)
l f'i)t-<MAT (lHlt~Xtt.tHNAMt.t///)

PwlNT l
2 fOkMAT (JAlOtll>
3 REAU 2tLNA~E,fNAMEtlSTATEtKSTU~

IFCKSTOP.EQ.l)STUP

C If Fl~ST TWO CHA~ACTtRS Uf IST~TE NOT EQUAL TO CA kEAD N~XT CAKu

11
10

19-6

1F(CISTATE.ANU.77770000000000000000~).N~.(2HCA.AN0.771700UOO
KOOOOOUOOOOJd)) GO TO 3

fOk.MATt5Xt.c:'.AlO>
PRINT lltL~AMEtfNAME
GO Tu 3
END

60497800 A

Data records:

BROWN, PHILLIP
BICAROI, R. J.
CROl#Nt SYL~IA
HIGENBERf tZELDA
MUNCH, GARY G.
SMITH SIMON
DEAN ROGER
RIPPLE SALLY
JONES STAN
HEATH BILL

Output:

NAME

M.CA
KENTUCKY
CAL
MAINE
CALIF.
CA
GEORGIA
NEW YORK
OREGON
NU~ YORK

BROWN,
CROWN,
MUNCH,
SMITH

PHILLIP H.
S'LVIA
GARY G.
SIMON

PROGRAM EQUIV

l

Program EQUIV places values in variables that have been equivalenced and prints these values using the
NAMELIST statement.

Features:

EQUIV ALEN CE statement

NAMELIST statement

EQUIVALENCE (X,Y),(Z,I)

Two real variables X and Y are equivalenced; the two variables share the same location in storage, which
can be referred to as either X or Y. Any change made to one variable changes the value of the others in an
equivalence group as illustrated by the output of the WRITE statement, in which both X and Y have the
value 2. The storage location shared by X and Y contains first l. (X = 1.), then 2. (Y = 2.).

The real variable Z and the integer variable I are equivalenced, and the same location can be referred to as
either real or integer. Since integer and real internal formats differ, however, the output values will not be
the same.

For example, the storage location shared by Z and I contained first 3. (real value), then 4 (integer value).
When I is output, no problem arises; an integer value is referred to by an integer variable name. However,
when this same integer value is referred to by a real variable name, the value 0.0 is output, because the
internal format of real and integer values differ.

60497800 A 19-7

5958

Integer

Sign

59 58

Real

Sign

Biased
Exp

48 47

59

Fraction(m)

48

Although they can be referred to by names of different types, the internal bit configuration does not change.
An integer value output as a real variable has a zero exponent and its value will be small.

When variables of different types are equivalenced, the value in the storage location must agree with the
type of the variable name, or unexpected results may be obtained.

WRITE(6,0UTPUT)

0

0

This NAMELIST WRITE statement outputs both the name and the value of each member of the NAME
LIST group OUTPUT defined in the statement NAMELIST /OUTPUT /X,Y,Z,I. The NAMELIST group is
preceded by the group name, OUTPUT, and terminated by the characters $END.

Program:

19-8

~ROGRAM EQUIV (OUTPUT,TAPE&=OUTPUT>
EQUIVALENCE (~,l),(2,I>
N~MELIST/OUTPUT/X,Y,Z,I

><=1.
Y=2•
2=3.
I=lt
WRITEC6,0UTPUT>
STOF
END

60497800 F

Output:

SOUTPUT

x = .2E•Olt

y = .2E•Olt

z = o.o.

I = 4t

SEND

PROGRAM COME

Program COME places variables and arrays in common and declares another variable and array equivalent
to the first element in common. It places the numbers I through 12 in each element of the array A and
outputs values in common using the NAMELIST statement.

Features:

COMMON and EQUIV ALEN CE statements

NAMELIST statement

COMMON A(l),B,C,D, F,G,H

Variables are stored in common in the order of appearance in the COMMON statement A(I),B,C,D,F,G,H.
Variables can be dimensioned in the COMMON statement; and in this instance, A is dimensioned so that it
can be subscripted later in the program. If A were not dimensioned, it could not be used as an array in
statement l.

INTEGER A,B,C,D,E(3,4),F,H

All variables with the exception of G are declared integer. G is implicitly typed real.

EQUIVALENCE(A,E,I)

The EQUIV ALEN CE statement assigns the first element of the arrays A and E and an integer variable I to
the same storage location. Since A is in common, E and I will be in common. Variables and array elements
are assigned storage as follows:

60497800 A 19-9

Relative
Address 0 +1

I

E(1.1) E(2.1)

A(1) B

A(2)

DO 1 J=l,12
1 A(J)=J

+2 +3 +4

E(3.1) E(1.2) E(2.2)

c D F

A(3) A(4) A(5)

+5 +6 +7 +8 +9 +10 +11

EC3.2) E(1.3) E(2,3) E(3.3) E(1,4) E(2.4) E(3.4)

G H

A(6) A(7) A(8) A(9) A(10) A(11) A(12)

The DO loop places values I through 12 in array A. The first element of array A shares the same storage
location with the first element of array E. Since Bis equivalent to E(2, I), A(2) is equivalent to B, A(3) to C,
A(4) to D, etc.

Any change made to one member of an equivalence group changes the value of all members of the group.
When I is stored in A, both E(l, I) and I have the value 1. When 2 is stored in A(2), B and E(2, I) have the
value 2. Although B and E(2,l) are not explicitly equivalenced to A(2), equivalence is implied by their
position in common.

The implied equivalence between the array elements and variables is illustrated by the output.

NAMELIST/V/A,B,C,D,E,F,G,H,I

The NAMELIST statement is used for output. A NAMELIST group, V, containing the variables and arrays
A,B,C,D,E,F,G,H,I_ is defined. The NAMELIST WRITE statement, WRITE(6,V), outputs all the members of
the group in the order of appearance in the NAMELIST statement. Array E is output on one line in the
order in which it is stored in memory. There is no indication of the number of rows and columns (3,4).

G is equivalent to E(3,2) and yet the output for E(3,2) is 6 and G 0.0. G is type real and E is type integer.
When two names of different types are used for the same element, their values will differ because the
internal bit configuration for type real and type integer differ (refer to Program EQUN).

Program:

19-10

PROGRAM COME COUTPUT,TAPE6=0UTPUT)
COMMON AC1>,e,c,o, F,G,H
INTEGER A,e,c,o,EC3,4),F, H
EQUIVALENCE IAtEtI>
NA"ELIST/V/A,e,c,D,E,F,G,H,I

DO 1 J = 1, 12
1 A<J>=J

WRITE <6,V)
STOP
END

60497800 A

Output:

sv
A • 1,

B • 2,

c • 3t

D = "''
E = 1, 2, 3, 4, s, 6, 7t a, 9t 11~· 11.

F = s,

G = o.o,
H = 1,

I - it -
SEND

PROGRAM LIBS

Program LIBS illustrates library subroutines provided by FORTRAN Extended.

Features:

EXTERNAL used to pass a library subroutine name as a parameter to another library routine.

Division by zero.

LEGVAR used to test for overflow or divide error conditions.

Library functions used:

LOCF

LEGVAR

Library subroutines used:

DATE

TIME

SECOND

RANG ET

60497800 A

12,

19-11

DA TE is a library subroutine which returns the date entered by the operator from the console. DA TE is
declared external because it is used as a parameter to the function LOCF. Declaring DA TE external does
not prevent its use as a library subroutine in this program.

PRINT 2,TODAY,CLOCK

2 FORMAT(*!TODAY=*, AlO, * CLOCK=* ,AlO)

These statements print the date and time. The leading and trailing blanks appear with the 10 alphanumeric
characters returned by the subroutine DA TE because the operator typed in the date this way. The value re
turned by TIME is changed by the system once a second, and the position of the digits remain fixed; a
leading blank always appears. The format of DA TE and TIME can be checked by observing any listing, as
the routines DA TE and TIME are used by the compiler to print out the date and time at the top of compiler
output listings.

CALL SECOND(TYME)

When SECOND is calle~, the variable name TYME is used. A variable name cannot be spelled the same as
a program unit name. If Program LIBS had not called the subroutine TIME, a variable name could be
spelled TIME.

LOCATN=LOCF(DATE)

DA TE is not a variable name as it appears in an EXTERNAL statement.

Library function LOCF returns the address of DA TE.

CALL RANGET(SEED)

Library subroutine RANGET returns the seed used by the random number generator RANF if it is called.
If RANGET is called after RANF has been used, RANGETwill return the value currently being processed
by the random number generator. With the library subroutine RANSET, this same value could be used to
initialize the random number generator at a later date.

PRINT 3, TYME, LOCATN, LOCATN, SEED, SEED

3 FORMAT(*OTHE ELAPSED CPU TIME IS*,Gl4.5,* SECONDS.*//* LOCATION OF
1 DATE ROUTINE IS=*,015,* OR*,I7,* IN DECIMAL.*/*OTHE INITIAL VALUE
2 OF THE RANF SEED IS *,022,*, OR*,G30.15,* IN G30.15FORMAT.*)

These statements print out the values returned by the routines SECOND, LOCF, and RANGET.

Asterisks are used to delineate Hollerith fields in the format specification to illustrate the point that exces
sive use of asterisks can be extremely difficult to follow.

Y=O.O
WOW=7.2/Y
IF(O.NE. LEGVAR(WOW))PRINT4,WOW

19-12 60497800 c

These statements illustrate the use of the library function LEGV AR within an IF statement to test the validity
of division by zero. LEGVAR checks the variable WOW. This function returns a result of -1 if the variable is
indefinite, + 1 if it is out of range, ·and 0 if it is normal. Comparing the value returned by LEGV AR with 0
shows that the number is either indefinite or out of range. The output R shows the variable is out of range.

The line of-*-* on the output is produced by the FORMAT specification in statement number 4: 50{2H*-).

Program:

c

c

c

c

F~OG~AM LI9S (OUTPUT)

EXTERNAL DUE

CALL OAT~ <TODAY)
CALL TIME <CLOCK>

P~INT 2, TODAY, CLOC~
2 FO~MAT<•1TOOAY=•, A10, • CLOCK=•, A1C)

CALL SECOND<TY~E>

LO~ATN=LO~F(OATE>
CALL RANGET<SEEO>

PP.INT ~,TYME, LOCATN, LOCATN, SEEO, SEED
3 FOQ~AT(~JTHE EL~PS~O CPU TI~E IS•,Gl4.5,• SECONOS.•//4 LOCATION OF

1 CATE 0 0UTIN£ IS=•,015,• OR•,I7,• IN ~ECI~AL.•/•GTHE I~ITIAL ~ALUE
2 OF THE R~NF SEE~ rs•,022,•, OR•,GJa.1s,• IN GJ0.15 FORMAT.•)

v=o.o
WO"l=7.2/Y
!F(Q .NE. LEG~A~(WQW))P~INT~,wow
STOP

~ ~o~~AT(lHO,Su<ZH•->1• CIVIOE ER~OR, wow P~INTS AS=•,G10.z>
ENO

Output:

TvDAYa 07/31/74 C~OCK• 15.47.33.

ThE lL4PStU CPU TIM~ IS leOOJO St::CO"IOSe

LOCATIO~ OF DATE ROuTI~E IS•OOOOonooooo~J47 OR 2791 IN OECI~AL.

THE l~ITl~L VALUE OF T~E RA~F SEEO IS 1717127432147741Jl~S. OR .170998394044023 IN Gl0.15 FORMAT.

DIVIDE ERRORt. ~0~ PRINTS AS• R

PROGRAM PIE

Program PIE calculates an approximation of the value of 7f' •

Feature:

Library function RANF

The random number generator, RANF, is called twice during each iteration of the DO loop, and the values
obtained are stored in the variables X and Y.

60497800 A 19-13

DATA CIRCLE,DUD/2*0.0/

The DATA statement initializes the variables CIRCLE and DUD with the value 0.0.

Each time the DO loop is iterated, a random number, uniformly distributed over the range 0 through 1, is
returned by the library function RANF, and this value is stored in the variable X. The value of X will be
~ X < 1. DUD is a dummy argument which must be used when RANF is called.

Y•RANF(DUD)

RANF is referenced again; this time to obtain a value for Y.

IF(X*X+Y*Y.LE.l.)CIRCLE•CIRCLE+l.

The IF statement and the arithmetic expression 4. *CIRCLE/ 10000. calculate an approximation of the value
of 7r • The value of 7r is calculated using Monte Carlo techniques. The IF statement counts those points
whose distance from the point (0., 0.) is less than one. The ratio of the number of points within the quarter
circle to the total number of points approximates 1I4 of 7r . The value PI is printed by the NAMELIST
statement WRITE(6,0UT)

Program:

PROGRAM PIElOUTPUT,TAPf6=0UTPuT>
DATA CIRCLltOU0/2*0.0/
NAMELIST/OUT/PI

UO 1 I = ltlOOOO
X=RANf (OUO>
Y=~ANf (OUD>
If tX.*X+Y*Y .Lle l •) CIRCLE=CIRCLE• l •

1 CONTINUE-

Output:

19-14

Pl=4.*CIRCLE/lOOOO.
ltl~ITE<6tOUT>

SOUT

SEND

60497800 A

PROGRAM ADD

Program ADD illustrates the use of the DECODE statement. The ENCODE and DECODE statements are
simpler to understand when related to the READ and WRITE statements.

Features:

DECODE statement.

DECODE (READ)

A READ statement places the image of each record read into an input buffer. Compiler routines convert the
character string in the record into floating point, integer or logical values, as specified by the FORMAT state
ment, and store these values in the locations associated with the variables named in the list.

With DECODE, the array specified in the DECODE statement is used as the input buffer. The number of
words moved to the input list from the array is determined by the record length.

With the READ statement, when the FORMAT specification indicates a new record is to be processed (by a
slash or the final right parenthesis of the FORMAT statement), a new record is read into the input buffer.

With the DECODE statement, when the FORMAT statement indicates a new record is to be processed (by a
slash or final right parenthesis), the next part of the array is used as the input buffer. The record length in
dicates the number of words to move into the array.

ENCODE (WRITE)

A WRITE statement causes the output buffer to be cleared. Data in the WRITE statement list is converted
into a character string according to the format specified in the FORMAT statement, and placed in the output
buffer. When the FORMAT statement indicates an end of a record with either a slash or the final right
parenthesis, the character string is passed from the output buffer to the output system; the output buffer area
is reset, and the next string of characters is placed in the buffer.

The ENCODE statement is processed by compiler. routines in the same way as the WRITE statement, but with
the array specified within the parentheses of the ENCODE statement used as the output buffer. The number
of words per record in the array is determined by the record length.

The number of computer words in each ENCODE or DECODE record is determined by dividing the
record length by 10 and rounding up. For example, a record length of 33 requires 4 words, and a record
length of 71 requires 8 words.

In the following program, the format of data on input is specified in column 1. If column 1 is a one, each
of the remaining columns is a data item. If column 1 is a two, each pair of the remaining columns is a data
item. If column 1 is a three or greater, each triplet of the remaining columns is a data item. Based on the
information in column 1, the correct DECODE statement (the proper format and item count) is selected. The
program then totals and prints out the items in each input record.

60497800 A 19-15

INTEGER CAR0(8)tlN(7~)tTOTAL

CARD is dimensioned 8 to receive the 79 characters in columns 2 through 80. IN is dimensioned 79 to receive the
numeric values of the input items.

10 ~EADC5tll>~EYtCARO

11 FORMATCllt7AlOtA9)

The first column of the record is read into KEY under I format, and the remaining 79 characters are read
into the array CARD under A format; so they can be converted later to I format with a DECODE statement.

lFCfOfC~>.NE.O>STOP

Tests for the end of data in which case the program simply stops.

KfYaMAXOCltMINO(KEVt3))

(}uarantees that 1 <; KEY <; 3.

40 TOTAL=O

004lI=ltN

41 TOTAL=TOTAL•INtl>

Adds up the items and leaves the total in TOTAL

WRITEt6tl2>TOTALtNtKEYtCAROtCINCI>tl= ltNi

12 fOWMATt/l6t20H IS THE TOTAL OF THE tl3t20H NOM8E~S ON THE CARD/

112t7Al0tA9/l6H THE NUMBERS AkE/(2014))

Outputs the results.

GOTOlO

Goes back to process the next record.

19-16 60497800 A

Program:

PwOGRAH ADO
l<INPUT.OUT~UTeTAPES•lNPUT.TAPEb=OUT~UT)

INTEGER CA~OeIN<7~).T0TAL
10 WfAD<~•ll)r\EYeCAkO
11 FO~MAT<Ile7AlOtA9>

IF<EOF<S>.NE.O>STOP
KEY=MAXO<l•MINO<KEY•J>>
(jQTOU •2•3> tKEY

l OECOOE<7~e9ltCA~O>lN
91 FOHMAT<79Il>

N=79
tJOT040

2 OECOOE<78e92tCA~D><IN<l>tl=l•39>
92 fORMAT<3~12>

N=39
bOT040

3 OECOOE<78e9ltCARO><IN<l>•l=lt26>
93 FORMAT<2o13>

N=26
40 TOTAL=O

lJ04ll=ltN
41 TOTAL=TOTAL•lN<l>

W~ITE(6tl2>TOTALtNtK~YtCAROt<lN(l>tl= ltN)
12 FORMAT(/l6t20H IS THl TOTAL Of THE tl3t20rl NUMB£~~ ON THE CARO;

ll2t7AlOtA9/loH THE NUMBERS AHE/(2ul4))
GOTOlO
ENU

Input:

21J2255476b9887755J32103322456b6877965541~333~21123o5478965~1236SS47896541236028
302144~66998774566322144556666552336552221444~566332~56b69988566o5547788S4887029
55566663223666~52332214455b66998877655222144455bll2~33033244~o66~98877455889b0JO
l0234~6668889988778~96555444455666553J2221!123302J3)3b699855~5222ll444477788~031

Output:

1900 IS T~E TtTAL OF THE 39 NUHEE~S O~ THE CA~O
21322S~47bcS86775S33210332245&668779t554123332~1123654789654123655476~E~4123o028
THt N\Jtt·EE!iS AH

13 2~ ~~ ~i 66 ~8 87 7~ ~3 32 10 3~ 22 45 && 68 77 9E 55 ~1
23 33 2~ 11 23 65 47 89 65 41 23 &5 54 78 9& 54 12 3E 2

1438C IS T~E TCTAL Of THE 26 NUHeeRS ON THE CA~O
30 2144 ~e ess e 11'tS6& 3221:·4:1~tof:&fi~ 23~ ~s2 2211+1+4~~ 6c 33255f:o699 e 6566&~:1'+11ee5tt e e1029
THE Nl.tEERS AH
~1 445 tcS 987 74S 6t3 221 44S ~Ee 665 ~23 365 522 214 445 566 332 556 &c9 988

~66 65~ 't77 88~ 488 7~2

13840 IS T~E TCTAL OF THE 2b NUMEE~S O~ THE CA~O
35566Ef3~2~EccS5233221'+4S56oo9S8877&55222144455&112233033241+s666998877455ees&o3o
HE NUtl.EEICS AH
~6 66t 322 :6c e~~ 233 221 44~ 5cE 099 887 7&5 ~22 214 445 se1 122 330 3:2 ~~~
6ct 9S8 £77 't~5 889 &~3

37(1 IS T~E TCTAL Of THE 79 NUHEE~S O~ TH~ CA~O
102345ccceee9see118996~S5'+44455&tc5533222111233o233336t99855552221144447775e~o31
TH Nl.ttSEfiS AfiE

Cl 2 3 " s c 0 6 e e 8 ~ 9 e 8 1 7 e c; 9
6 5 5 5 4 4 4 4 s 5 6 E 6 5 5 3 3 2 2 2
1 1 1 2 3 3 0 2 ~ 3 3 3 6 6 9 9 8 - 5 5
5 2 2 ~ 1 1 4 '+ 4 '+ 7 7 7 8 8 5 0 ~ 1

60497800 A 19-17

PROGRAM PASCAL

Program PASCAL produces a table of binary coefficients (Pascal's triangle).

Features:

Nested DO loops

DATA statement

Implied DO loop

INTEGER L(ll)

L is defined as an J I -element integer array.

DATA L(ll)/l/

The DATA statement stores the value J in the last element of the array L. When the program is executed
L(JI) has the initial value I.

PRINT 4,(I,I=l,11)

This statement prints the headings. The implied DO loop generates the values 1 through 1 J for the column
headings.

PRINT 3,(L(J),J=K,11)

This is a more complicated example of an implied DO loop. The index value J is used as a subscript instead
of being printed. The end of the array is printed from a variable starting position. The l, which appears on
the diagonal in the output is not moving in the array; it is always in L(J I); but the starting point is
moving.

DO 2 l=l,10
K=ll-I

These statements illustrate the technique of going backwards through an array. As I goes from I to 10, K
goes from 10 to 1. The increment value in a DO statement must be positive, therefore,

DO 2 l=l,10
K•ll-I

provides a legal method of writing the illegal statement DO 2 K = I 0, 1,-1.

19-18 60497800 A

DO 1 J=K,10
1 L(J)=L(J)+L(J+l)

This inner DO loop generates the line of values output by statement number 2. When control reaches
statement 2, the variable J can be used again because statement number 2 is outside the inner DO loop.
However, if I were used in statement 2 instead of J, the statement 2 PRINT 3,(L(l),I = K, I I) would be an
error. Statement 2 is inside the outer DO loop and would change the value of the index from within the
DO loop. Changing the value of a DO index from inside the loop is illegal and will cause a fatal error or a
never ending loop.

Program:

c

FROGRA~ FASCAL <OUTPUT>
U.:TEG ER U 11>
DATA L<11> 111

PR I NT i. , U , I= 1 , 11 >
4 FORf'iATC44~1COMBINATIONS OF M THINGS TAKEN NAT A TIME.l/20X,3H·N·/

~11Ifl>
DO 2 I = 1,10
K=11-I
LCK>=1
OC 1 J = IC,10

1 L<J>=L<J>+L<J+U
2 PRINT 3, <L (J) ,J=K, 1U
3 FORHA T< 1115)

STOF
ENO

Output:

COf':BINATIONS OF H THI~GS TAKEN

-N-
1 2 3 4 5 6
2 1
3 3 1 .. f: l+ 1
5 1 () 10 i :;I 1
6 15 20 15 6 1 ..,

21 JS 3~ 21 7 I

8 28 ~6 70 56 28
~ 36 84 12t. 126 84

10 45 120 21Ct 252 210
11 !> 5 165 330 462 462

PROGRAM x

N AT A TIME.

7 8 9 10 11

1
e 1

3E 9 1
1.20 45 10 1
33t 165 55 11 1

Program X references a function EXTRAC which squares the number passed as an argument.

Features:

Referencing a function

Function type

Program X illustrates that a function type must agree with the type associated with the function name in
the calling program.

60497800 E 19-19

K-EXTRAC(7)

Since the first Jetter of the function name EXTRAC is E, the function is implicitly typed real. EXTRAC is
referenced, and the value 7 is passed to the function as an argument. However, the function subprogram is
explicitly defined integer, INTEGER FUNCTION EXTRAC(K), and the conflicting types produce errone
ous results.

The argument 7 is integer which agrees with the type of the dummy argument K in the subprogram. The
result 49 is correctly computed. However, when this value is returned to the calling program, the integer
value 49 is returned to the real name EXTRAC; and an integer value in a real variable produces an
erroneous result (refer to program EQUN).

This problem arises because the programmer and the compiler regard a program from different viewpoints.
The programmer often considers a complete program to be one unit whereas the compiler treats each program
unit separately. To the programmer, the statement

INTEGER FUNCTION EXTRAC(K)

defines the function EXTRAC integer. The compiler, however, compiles integer function EXTRAC and the
main program separately. In the subprogram EXTRAC is defined integer, in the main program it is defined
real. Information which the main program needs regarding a subprogram must be supplied in the main
program - in this instance the type of the function.

There is no way for the compiler to determine if the type of a program unit agrees with the type of the
name in the calling program; therefore, no diagnostic help can be given for errors of this kind.

The second time, the program was run with EXTRAC declared integer in the calling program, and the correct result
was obtained.

First program:

PROGRAM X (OUTPUT>
C WITH EXT~AC OECLAHED INTEGER ThE RESULT SHOULO SE 49, OTHEHwlSE IT
C ~ILL &~ ZERO

K = EXTHAC '7>
PtHNT l• K

1 FORMAT ClHl•lS>
STOP

19-20

ENO

INTEGER FUNCTION EXTRAC CK)
EATNAC = K*K
RETURN
E"'O

60497800 A

Output:

0

Second program:

FROGRAM) <OUTPUT)
C MITH EXTRAC DECLARED I~TEGER THE RESULT SHOULD BE 49, OTHERWIS: IT
C WILL EE ZERO

n:nG ER £)(TRAC
K = E XTf(•C (7)
FnNT 1, t<

1 FORMAT <1~1,IS>
STOP

Output:

Et.0

INTEGER Fl.iNCTION EXTRAC <K>
E><TRAC : IC•k
RETURN
ENO

PROGRAM VARDIM

Program V ARD IM illustrates the use of variable dimensions to allow a subroutine to operate on arrays of
differing size.

Features:

Passing an array to a subroutine as a parameter.

An array name used as a parameter passes the address of the beginning of the array and no dimension
information.

COMMON X(4,3)

Array X is dimensioned (4,3) and placed in common.

REAL Y(6)

Array Y dimensioned (6) is explicitly typed real. It is not in common.

CALL IOTA(X,12)

The subroutine IOTA is called. The first parameter to JOT A is array X, and the second parameter is the
number of elements in that array, 12. The number of elements in the array rather than the dimensions (4,3)
is used which is legal.

60497800 A 19-21

SUBROUTINE IOTA(A,M)
DIMENSION A(M)

Subroutine IOTA has variable dimensions. Array A is given the dimension M. Whenever the main program
calls IOTA, it can provide the name and the dimensions of the array; since A and M are dummy argu
ments, IOTA can be called repeatedly with different dimensions replacing M at each call.

CALL IOTA(:X,12)

When IOTA is called by the main program, the actual argument X replaces A; and 12 replaces M.

DO 1 I-1,M
1 A(I)•I

The DO loop places the numbers I through 12 in consecutive elements of array X.

CALL IOTA(Y,6)

When IOTA is called again, Y replaces A and 6 replaces M; and numbers I through 6 are placed in
consecutive elements of array Y. Notice the type of the arguments in the calling program agree with the
type of the arguments in the subroutine. X and A are real, 12 and Mare integer.

Names used in the subroutine are related to those in the calling program only by their position as argu
ments. If a variable I was in the calling program, it would be completely independent of the variable I in
the subroutine IOTA.

The WRITE statement outputs the arrays X and Y.

Program V ARDIM:

PROGRAM VAROIH (OUTPUT,TAPE&=OUTPUT>
CflMMON XC'e,3)
REAL YCU
Cl\Ll IOTUX,12)
CALL ICU<Y,&>
WRITE Ct,10Ci> X,Y

100 FOP.~AT c•1ARRAY x = •,12F&.01•0ARRAY y = •oFE.~)
STOP
END

Subroutine IOTA:

SUBROUTI~E IOTA CA,M>
C IOTA STORES CONSECUTIVE INTEGERS IN EVERY ELE"~Nl CF THE A~RAY A
C STARTING AT 1

OIMENSIOt. A CH>
00 1 I = 1,M

1 ~U>=I

19-22

RET~N
ENO

60497800 A

Output:

AR ~A\')(= 1. 2. 3. s. 7. 8. 10. 11. 1z.
1. '+. s.

PROGRAM VARDIM2

V ARDIM2 is an extension of program V ARDIM. Subroutine IOTA is used; in addition, another subrou
tine and two functions are used.

Features:

Multiple entry points

Variable dimensions

EXTERNAL statement

COMMON used for communication between program units

Passing values through COMMON

Use of library functions ABS and FLOAT

Calling functions through several levels

Passing a subprogram name as an argument

Program VARDIM2 describes the method of a main program calling subprograms and subprograms
calling each other. Since the program is necessarily complex, each subprogram is described separately
followed by a description of the main program.

SUBROUTINE IOTA

SUBROUTINE IOTA is described in program VARDIM.

SUBROUTINE SET

SUBROUTINE SET(A,M,V) places the value V into every element of the array A. The dimension of A is
specified by M.

Subroutine SET has an alternate entry point INC. When SET is entered at ENTRY INC, the value V is
added to each element of the array A. The dimension of A is specified by M.

The DO loop in subroutine SET clears the array to zero.

FUNCTION AVG

This function computes the average of the first J elements of common. J is a value passed by the main
program through the function PV AL.

60497800 A 19-23

This function subprogram is an example of a main program and a subprogram sharing values in common.
The main program declares common to be 12 words and FUNCTION AVG declares common to be JOO
words. Function AVG and the main program share the first 12 words in common. Values placed in
common by the main program are available to the function subprogram.

The number of values to be averaged is passed to FUNCTION PV AL by the statement AA = PV AL(l 2,AVG) and
function PVAL passes this number to function AVG: PVAL=ABS(WAY(SIZE))

COMMON A(lOO)

Function AVG declares common 100 so that varying lengths (less than 100) can be used in calls. In this
instance, only 12 of the 100 words are used.

DO 1 I=l,J
1 AVG=AVG+A(I)

The DO loop adds the 12 elements in common.

AVG=AVG/FLOAT(J)

This statement finds the average. The library function FLOAT is used to convert the integer 12 to a floating
point (real) number to avoid mixed mode arithmetic.

The average is returned to the statement PVAL=ABS(WAY(SIZE)) in function PVAL.

FUNCTION PVAL

Function PV AL references a function specified by the calling program to return a value to the calling
program. This value is forced to be positive by the library function ABS.

The main program first calls PV AL with the statement AA= PV AL(12,AVG), passing the integer value 12
and the function AVG as parameters.

INTEGER SIZE

PY AL declares SIZE integer - the type of the argument in the main program (integer 12) agrees with the
corresponding dummy argument (SIZE) in the subprogram.

PVAL=ABS(WAY(SIZE))

The value of PV AL is computed. This value will be returned to the main program through the function
name PVAL. Two functions are referenced by this statement; the library function ABS and the user written
function AVG. The actual arguments 12 and AVG replace SIZE and WAY.

19-24 60497800 A

PVAL=ABS(AVG(l2))

Function AVG is called, and J is given the value 12. The average of the first 12 elements of common are
computed by AVG and returned to function PV AL. Library function ABS finds the absolute value of the
value returned by A VG.

AM=PVAL(l2,MULT)

In this statement in the main program, PV AL is referenced again. This time the function MUL T replaces
WAY.

FUNCTION MULT

MULT multiplies the first and twelfth words in COMMON and subtracts the product from the average
(computed by the function A VG) of the first J /2 words in common.

COMMON ARRAY(l2)

Common is declared 12; MUL T shares the first 12 words of common with the main program.

MULT=ARRAY(12)*ARRAY(l)-AVG(J/2)

The twelfth and first element in common are multiplied and the average of J 12 is subtracted. This is an
example of a subprogram calling another subprogram - the function AVG is used to compute the average.

MAIN PROGRAM - VARDIM2

The main program calls the subroutines and functions described.

COMMON X(4,3)

Twelve elements in the array X are declared to be in common.

REAL Y(6)

The real array Y is dimensioned 6.

EXTERNAL MULT, AVG

Function names MUL T and AVG are declared EXTERNAL. Before a subprogram name is used as an
argument to another subprogram, it must be declared in an EXTERNAL statement in the calling program.
Otherwise it would be treated by the compiler as a variable name.

60497800 A 19-25

CALL SET(Y,6,0.)

Subroutine ~ET is called. The arguments (Y,6,0.) replace the dummy arguments (A,M,V).

DIMENSION Y (6)
DO l I = 1,6

1 Y(I) • O.O
..

The array Y is set to zero. The NAMELIST output shows the 6 elements of Y contain zero.

CALL IOTA(X,12}

Subroutine IOTA is called. X and 12 replace the dummy arguments A and M

DIMENSION X (12)
DO 1 I=l,12

1 X(I) = I

the value of the subscript is placed in each element of the array X. Program V ARDIM output shows the
value of Xis l through 12.

CALL INC(X,12,-5.)

Subroutine SET is called, this time through entry point INC. The arguments (X, 12,-5.) replace the dummy
arguments (A,M,V)

DO 2 I""l,12
2 X(I) • X(I} + -5.

-5. is added to each element in the array X. Program VARDIM2 output shows X is now -4,-3,-2,
-1,0, l,2,3,4,5,6,7

AA•PVAL(l2,AVG)

Function PV AL is called and its value replaces AA.

AM•PVAL(l2,MULT)

Function PV AL is called again with different arguments and the value replaces AM.

19-26 60497800 A

Complete program:

PROGRAM VARDIM2COUTPUT1TAPE6•0UTPUT,OEIUG•OUTPUT>
C THIS PROGRAH USES VARIABLE DIMENSIONS ANO HANY SUIFROGRAM CONCEPTS

COMMON >c < .. 131
~EAL YC6>
EXTERNAL MULTt AVG
NAHELIST/VIX,Y,AA 1 A"
CALL SET<,,6,0.l
CALL IOTACX,12>
CALL INC<x,12,-s.>
AA=FVAL <12t AVG>
AHsfVALU2,MUL Tl
MRITE<61V>
STOP
ENO

SUBROUTINE SET CA,H,V)
C SET PUTS THE VALUE V INTO EVERY ELEMENT OF THE ARRAY A

DIMENSION ACH>
001I=1tH

1 ACI>=o.o
c

ENTRY INC
C INC ADOS THE VALUE V TO EVER' ELEMENT IN THE ARRAY A

00 2 I = 1tM
2 ACII = A(I) + V

RETURN
END

SUBROUTINE IOTA CA,HJ
C IOTA PUTS CONSECUTIVE INTEGERS STARTING AT 1 IN EVERY ELEMENT OF
C THE ARRAY A

DIMENSION ACM)
001Ist,H

1 A CI>=I
RETURN
ENO

FUNCTION PVALCSIZE,WA'>
C PVAl CCHPUTES THE POSITIVE VALUE OF WHATEVER REAL VALLE IS RETURNED
C BY A FUNCTION SPECIFIED WHEN PVAL WAS CALLED. SIZE IS AN INTEGER
C VALUE PASSED ON TO THE FUNCTION.

INTEGER SIZE
PVAL=ABSCWAYCSIZEJJ
RETURN
END

60497800 A 19-27

FUNCTION AVG(J)
C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF CCH~ON.

COMt10N A<1Ll0)
AVG=O.
DO 1 I = 1,J

1 AVG=AVG+A<I>
AVG=AVG/FLOAT (J)
RETURN
ENO

REAL FUNCTION HULT<J>
C HULT MULTIPLIES THE FIRST ANO TWELTH ELEMENTS OF COMMON ANO
C SUSTRACTS FROM THIS THE AVERAGE <COMPUTED
c BY THE FUNCTION AVG) CF THE FIRST J/2 WORDS IN co~~ON.
c

COHHON ARRA' <12>
MULT=ARRAY<12>•ARRAY<1>-AVG(J/2)
RETURN
E N 0

x = -.4E•C1, -.3E+1J1, -.ZE•Ol, -.lE•Ol, e.o, .lE•illt .i:?c•lll, .3E•01,
eof+Ol, e7Et011

'y 0. 0. 0. 0' 0. 0' 0. J' 0. 0 ' 0. 0 t

AM = .Z6~E+OZ,

SEND

PROGRAM CIRCLE

Program CIRCLE finds the area of a circle which circumscribes a rectangle.

Features:

Definition and use of both FUNCTION subprograms and statement functions.

This program has a hidden bug. We suggest you read the text from the start if you intend to find it.

A programmer wrote the following program to find the area of a circle which circumscribes a rectangle,
and wrote a function named DIM to compute the diameter of the circle.

19-28 60497800 c

The area of a circle is 7rR2• which is approximately the same as 3.1416/4*Diameter**2.

P~OG~AM ClkCLE (OUTPUT>
A=4.0
~=J.o
A~EA=3.14lb/4eO*OIM(AtB)**2

PRINT It A~EA
1 fJHMATtG~0.10)

Output:

STOP
E\tD
fUNCTlON OIM(X•Y>
OIM=5wkT<X*X•Y*Y>
t<E TUR1~
Ei··HJ

.7851t0000CJO

The programmer was completely baffled by the result; the area of a circle circumscribing a rectangle 12
square inches should be more than . 785! Another programmer quickly pointed out that a simple function
like DIM should have been written as a statement function. Since FORTRAN Extended compiles statement
functions inline, it would execute much faster because no jump nor return jump would be generated by the
function.

The programmer rewrote the program as follows:

P~Oij~AM CIMCLE (OUTPUT)
OIM(XtY>=S~Rl(X*X•Y*Y>
A=4.0
t:t=J.o
A~EA=3.l4lo/4.0*DIM(AtB>**2
PRINT lt AREA

l fOkMAT (G2U.10>
STOP
Ei\iu

and obtained the correct result.

60497800 A

When the programmer wrote the function subprogram, it had the same
name as a library intrinsic function. If the name of an intrinsic function
is used for a user written function, the user written function is ignored.

19-29

PROGRAM OCON

Program OCON illustrates some problems that may occur with octal or Hollerith constants.

Features:

Octal Constants in expressions

The compiler generally treats both octal and Hollerith constants as having no type; therefore, no mode conver
sion is done when they are used in expressions. If, however, the compiler is forced to assume a type for an
octal or Hollerith constants, it will treat them as integer. When an expression contains only operands having no
type, integer arithmetic is used. For example:

B=lOB+lOB

The expression is evaluated using integer arithmetic. Furthermore, for subsequent operations, the result of integer
arithmetic is treated as true integer. Thus, in the above example, the expression on the right is evaluated using
integer arithmetic; and the integer result is ·converted to real before the value is stored in B. Comparing the
values produced in OCON for A and B illustrates this effect.

With floating point arithmetic whenever the left 12-bits of the computer word are all zeros or all ones, the value
of that number is zero. (See Appendix D discussion of Underflow.) This explains why the output value of A
from OCON is zero.

C=B+lOB

Floating point arithmetic is used to evaluate the expression; and the octal constant lOB is used without type con
version, making its value zero. Note in the output from OCON, the values of Band C are equal.

D=l+lOB

No problem arises in the above expression as it is evaluated with integer arithmetic; then the result is converted
to real and stored in D.

E=B+I+lOB

The compiler, in scanning the above expression left to right, encounters the real variable B and uses real arithmetic
to evaluate the expression. Again, the octal constant 1 OB has the real value of zero.

If the expression were written as:

E=lOB+l+B or E=l+lOB+B

The first two terms would be added using integer arithmetic; then that result would be converted to real and
added to B. In this case, the octal constant lOB would effectively have the value eight.

This is similar to the mode conversion which occurs in:

or

These expressions would give different values for X and Z. More information on the evaluation of mixed mode
expressions is in section 2.

19-30 60497800 A

F=A.EQ.77B

Real arithmetic is used to compare the value because A is a type real name. The value in A and the constant
77B both have all zeros in the leftmost 12 bits; both have value zero for real arithmetic; therefore, the value
assigned to F is . TRUE.

To avoid the confusion illustrated in this example, simply use integer names for values that come from octal
or Hollerith constants or character data that is input using A or R format elements. To illustrate, this program
was rerun with the names A, B, C, D, and E all as type integer.

All these examples use octal constants; however, the same problem occurs with Hollerith, especially when it
is right-justified. The following coding illustrates the point:

REAL ANS

READ 2, ANS
2 FORMAT{R3)

IF(ANS .EQ. 3RNO)PRINT3
3 FORMAT {*-NEGATIVE RESPONSE*)

PRINT3 of the logical IF is always executed independently of information in the data records.

With real variables:

5

10

60497800 A

PROGRAM OCONCOUTPUT,TAPE6sOUTPUTI
LOGICAL F
NAHELISTIOUTIA,e,c,o,E,F
As2QB
8=108+108
C=B+108
I=S
D= I•1DB
E=B+I+10B
F=A.EQ.778
MRI TE (6 ,oun
STOP
EHO

19-31

Output:

$OUT

A • o.o,
8 • e16E•02t

c • e16Et02t

D a e13E•G2t

E • .21E•82t

F • Tt

SEND

With integer variables:

s

10

Output:

$OUT

A

a

c

0

E ,
SEND

19-32

• 16,

• 16,

• 21tt

• 13,

• 29t . ,,

PROGRAM OCONIOUl'PUTtTAPE6•0UTPUTI
INTEGER A,a,c,o,E
LOGICAL F
H~HELIST/OUT/A181C..OtEtF
A=.208
B=1DB•10B
C=B+lOB
I=S
o=iuoe
E=B+I+108
F•A.EQ.778
NIUTEC610UTt
STOP
E"D

60497800 A

LIST DIRECTED INPUT /OUTPUT

List directed input/output eliminates the need for fixed data fields. It is especially useful for input since the
user need not be concerned with punching data in specific columns. List directed input does not require the
user to name each item as does NAMELIST input.

Used in combination, list directed input and NAMELIST output simplify program design. Such a program is
easy to write, even for persons just learning the language; knowledge of the FORMAT statements is not required.
This facility is particularly useful when FORTRAN programs are being run from a remote terminal.

Example:

HZ, no.
MAPtOFf>
FTNtH=O>
LGO.
7/8/9

P~OG~AH ~ASY IO <INPUT=/60,0UTPUTtfAPfS=INPUT,TAPE&=OUTPUJ)
;oHPUT~ THE. H::A t.N~ ~l\OIU:.> OF AN lNSCRIB~O ;1R~LE OF un TRIANGLE""•

~EAL SIJESCl)
~QUl~AL~Nc::csIO~Sl1),A),&S1DES<2>,s>,<SlOESC3),;)
NlHE~ISf /O~T/SilES,AREA,RAOIUS

3 R~AD<S,•>SllES

7/8/9
3 It s
6t7'6
l*l
It.

5
6

IF<fOF(;l.N::.Dt~TOP
S= tA•B•;) IZ.
-~EA=SQ~T<S•<S-l>•<s-a>•<S-C))
HOIUS="~El/S
IHIH.U;, OUU
'OT03
ENO

12.Sl21~52t 22e4536t25
6/7/8/9'

Output:

SOUT

SIOES

AREA z .6E•Olt

RADIUS = elE+Olt

SEND

60497800 c 19-33

IOUT

SJOES • .6£•01• .7E•Olt e8E•Olt

AREA •• 20333162567589£•02•

RADIUS •• 19364916731037£•01•

SEND

SOUT

SIDES = .IE•Olt elE•Olt elE•Olt

AREA a .43301270189222E•OO•

RADIUS • e28867513459481E•OOt

SEND

SOUT

AREA • e992~5674164922E•Olt

RADIUS = .~3228756555323E•Olt
SEND

SOUT

AREA =· .14040422058737E•03t

RADIUS • .4681252858Z998E•Olt

SEND

The user may enter the three input values in whatever way is convenient, such as: one item per line (or card),
one item per line with each item followed by a comma, all items on a single line with spaces separating each
item, all items on a line with a comma and several spaces separating each item, or any combination of the
foregoing. Furthermore, even though all input items are real, the decimal point is not required when input
value is a whole number.

19-34 60497800 A

STATIC OPTION 20

The STATIC option is available to those users of FORTRAN Extended who wish to disable Common Memory
Manager so they can do their own memory management by over-indexing blank common. The practice of over
indexing blank common is not recommended. The STATIC option is provided to allow continued use of programs
which rely on over-indexing of blank common.

Since STATIC involves usage of non-ANSI standard capabilities, compliance with future ANSI FORTRAN standards
may preclude future availability of this option.

Use of this option is restricted when a mixture of both static and dynamically compiled subprograms is executed.
When the main program is compiled with STATIC, the entire set of loaded routines must be STATIC or unpredictable
results will occur. If the main program is non-static, there is no restriction on whether all, part, or none of the sub
programs are static.

When the STATIC option is on for a main program, the compiler issues a LDSET to FCL which causes CMM to be
disabled.

Users wishing to exercise control over memory management but not wishing to use the STATIC option should refer
to the Common Memory Manager Interface described in section 8. This facility allows calls to CMM directly from
FORTRAN Extended. These calls allow the user to obtain blocks of memory directly from CMM rather than forcing
use of the STATIC option and over-indexing of blank common.

60497800 F 20-1

STANDARD CHARACTER SET A

Control Data operating systems offer the following variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

Depending on another installation option, the system assumes an input deck has been punched either in 026
or in 029 mode (regardless of the character set in use). The user, however, may specify the alternate mode by
a 26 or 29 punched in columns 79 and 80 of the job card or any 7 /8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS 1, the alternate mode can be specified also by a 26 or 29 punched in columns 79 and 80 of any
6/7 /9 card, as described above for a 7 /8/9 card. In addition, 026 mode can be specified by a card with 5/7 /9
multipunched in column 1, and 029 mode can be specified by a card with 5/7 /9 multipunched in column 1
and a 9 punched in column 2.

When the 63-character set is used, the display code character 008 under A or R FORMAT conversion will be
converted to a space, display code 558 for ENCODE and DECODE as well as formatted input/output statement.

No conversions occur with the A or R FORMAT element when the 64-character set is used.

60497800 A A-1

CDC ASCII

Display Holl•ith Extern11I
Graphic Punch Code FORTRAN Code Graphic Punch BCD

(octal) (026) Code Subset (029) (octal)

: (colon) oot : (colon) tt 8-2 00 : (colon) tt 8-2 072
A 01 A 12·1 61 A 12-1 101
B 02 8 12-2 62 8 12-2 102
c 03 c 12-3 63 c 12·3 103
D 04 D 12-4 64 D 12-4 104
E 06 E 12-5 65 E 12-5 105
F 06 F 12-6 66 F 12-6 106
G 07 G 12-7 67 G 12-7 107
H 10 H 12-8 70 H 12-8 110
I 11 I 12-9 71 I 12-9 111
J 12 J 11-1 41 J 11-1 112
K 13 K 11-2 42 K 11-2 113
L 14 L 11-3 43 L 11-3 114
M 15 M 11-4 44 M 11-4 115
N 16 N 11-5 45 N 11-5 116
0 17 0 11-6 46 0 11-6 117
p 20 p 11-7 47 p 11-7 120
a 21 a 11-8 50 a 11-8 121
R 22 R 11-9 51 R 11-9 122
s 23 s ().2 22 s ().2 123
T 24 T 0-3 23 T ().3 124
u 25 u 0-4 24 u 0-4 125
v 26 v ().5 25 v 0-5 126
w 27 w ().6 26 w ().6 127
x 30 x ().7 27 x ().7 130
y 31 y ().8 30 y ().8 131
z 32 z ().9 31 z ().9 132
0 33 0 0 12 0 0 060
1 34 1 1 01 1 1 061
2 35 2 2 02 2 2 062
3 36 3 3 03 3 3 063
4 37 4 4 04 4 4 064
5 40 5 5 05 5 5 065
6 41 6 6 06 6 6 066
7 42 7 7 07 7 7 067
8 43 8 8 10 8 8 070
9 44 9 9 11 9 9 071

+(plus) 45 + 12 60 + 12-8-6 063
- (minus) 46 - 11 40 - 11 065
* (asterisk) 47 . 11-8-4 54 * 11-8-4 062
I (slash) 50 I ().1 21 I ().1 057

((left paren) 51 (().8-4 34 (12-8-5 060
) (right paren) 52) 12-8-4 74) 11-8-5 Cli1
$ (currency) 53 $ 11-8-3 53 $ 11-8-3 044

=(equals) 54 = 8-3 13 = 8-6 075
blank 55 blank no punch 20 blank no punch 040

• (comma) 56 , (comma) 0-8-3 33 , (comma) 0-8-3 Cli4
. (decimal point) 57 • (pe~od) 12-8-3 73 • (period) 12-8-3 066

60 0-8-6 36 , 8-3 043
61 [8-7 17 [12-8-2 133
62] 0-8-2 32] 11-8-2 135
63 % tt 8-6 16 % tt ().8-4 045

"(quote) 64 - 8-4 14 " (quote) 8-7 042
65 r- 0-8-5 35 (underline) 0-8-5 137
66 v 11-0 52 - ! 12-8-7 041
67 " 0-8-7 37 & 12 046

' (apostrophe) 70 t 11-8-5 55 ' (apostrophe) 8-5 047
71 ' 11-8-6 56 ? 0-8-7 077
72 < 12-0 72 < 12-8-4 074
73 > 11-8-7 57 > ().8-6 076
74 s 8-5 15 @ 8-4 100
75 ~ 12-8-5 75 \ 0-8-2 134
76 -. 12-8-6 76 - (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

t Twelve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than two colons.
tt1n installations using a 63-graphic set, display code 008 has no associated graphic or card code; display code 638 is the colon

(8-2 punch). The % graphic and related card codes do not exist and translations yield a blank (558).

A-2 60497800 F

HEXADECIMAL-OCTAL CONVERSION TABLE

~
First Hexadecimal Digit

I
3 5 7 8 9 E 0 1 2 4 6 A B c D F

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360

Hexadecimal

Digit 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361

2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 347 367

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376

-
F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377

Octal 000- 040- 100- 140 - 200- 240- 300- 340-

037 077 137 177 237 277 337 377

60497800 A A-3

FORTRAN DIAGNOSTICS

Diagnostic messages are produced by the FORTRAN Extended compiler during both compilation and execu
tion to inform the user of errors in the source program, input data or intermediate results.

COMPILATION DIAGNOSTICS

The compile time diagnostics issued by FORTRAN Extended differ in format and content for optimizing mode
and time-sharing mode.

OPTIMIZING IVODE DIAGNOSTICS

Errors detected during compilation are noted on the source listing immediately following the END statement.
The format of the message is as follows:

CARD NO. SEVERITY DETAILS DIAGNOSTIC

n e a error message

n

e

Line number where error was detected. This number is assigned by the FORTRAN
Extended compiler. Some declarative statement diagnostics show the line number
of the first non-declarative statement; END line number is used for undefined state
ment number diagnostics.

Indicates the type of diagnostic. In the following pages, compile time diagnostics
are listed alphabetically by error type.

FC

FE

ANSI

Informative message which indicates minor syntax errors or omissions
which have no effect upon compilation or execution.

When an error of this type is encountered during compilation, the
remaining portion of the program is checked for syntax errors only.
Program is not executed.

Error fatal to execution. Program compiles but does not execute.

Usage does not conform to ANSI standard FORTRAN (X3.9 - 1966).
ANSI diagnostics are not listed unless the EL=A parameter is specified
on the FTN control statement.

a Information in this column will differ according to the type of error encountered.
For example, if the same statement label is used more than once, the label number
is printed. If a message of the format en CD n appears, en is the column number
in which the error was detected, and n is the card number.

error Error message printed by compiler.
message

In table B-1, the message "see DETAILS column" refers to the DETAILS column described above.

The optimizing mode diagnostics are shown in table B-1.

60497800 D 8-1

~ Example:
N

100 WRITE l&,8>
8 FO~HAT CS2H FOLLOWING IS A LIST OF PRit£ NUMBERS FROM 1 TO 1000/

119i,1H1/19X,1H3J
1Q 1 l= 5

8 A=I
lOZ A=SQRT<A)
1ll3 J: A
10~ 00 1 K:J,J,Z
105 L=IIKfXCEEOS
10& IF<L•K·I>1,Ztlt

1 GO TO 10 8
107 WRITE <& ,9>

5 fORHA T < IZO)
Z I=hZ

1oa IF <1uwa-r> 1,~,J
It WRITE (o, 7)

CJ f0r(l1Af (1CtH PROaRlH ERROR>
7 WRlTE C6,&>

6 FORliAT '31H THIS IS THE END Of THE PROGRAM>
109 STOP

ENO

CHO NR. SE"::urv OETAlL.S OIAGNOS1S OF P;(OSL£H

1
2
3
5
CJ

11
16
21

3
°' ~
-...J
00
0
0

t:1

I
=E 72 co 2
FE
FE &
FE <EXCEEDS
FE
FE 7
FE

UNOEFIN~Q LABELS

•?~OGRAH ST,RT. <INPUT,OUTPUT>• ASSUHEO WHEN HEAOER STATEHfNT IS 0£F£CTIV£ OR OHITTEO.
ZERO LE~EL ~IGHf PARENTHESIS HISSING. SCA~NING SiOPS.
UNRECOGNIZEO STATEHENT.
DUPLICATE SJArEHENT LlBEL.
SYMBOLIC NAHE HlS TOO HANV CHARACTERS.
A 00 LOOP HAY NOT TE~HINATE ON THIS rVPE OF SJATEMENT.
P~ESENT USE OF rHIS lABEL CONFLICTS ~IJH PRE~IOUS US£S.
UNOEfINEO SfAJE~ENJ LASELCSJ, SEf LIST a£LO~.

°' 0
.j::..
\0
-.]
00
0
0

0

t::tl
~

Message

ANSI A COMMENT LINE
WITHIN A CONTINUED
STATEMENT IS NON-ANSI.

ANSI A RELATIONAL HAS
A COMPLEX OPERAND.

ANSI AN EXPRESSION IN
AN OUTPUT STATEMENT
1/0 LIST IS NON-ANSI
USAGE.

ANSI AN EXPRESSION OF
THE FORM A **B**C IS
NON-ANSI, AND IS
EVALUATED FROM LEFT
TO RIGHT.

ANSI ARRAY NAME
OPERAND NOT SUB-
SCRIPTED. FIRST
ELEMENT WILL BE USED.

ANSI ARRAY NAME
REFERENCED WITH FEWER
SUBSCRIPTS THAN
DIMENSIONALITY OF
ARRAY.

ANSI ATTEMPT TO BACK
UP BEFORE COLUMN ONE
CA USES POSITIONING TO
BE SET AT COLUMN ONE.

ANSI BACKING UP WITH X
SPECIFICATION IS NON-
ANSI.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

Complex operands are not Self-evident. Optimizing mode compiler.
permitted in relational
expressions.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Remaining subscripts are Self-evident. Optimizing mode compiler.
assumed to be one.

An attempt has been made Check column count in /nH+ Optimizing mode compiler.
to backspace beyond column specification.
one.

-nX specification is not Change to /nH+ specification. Optimizing mode compiler.
permitted in ANSI.

t::t:I
i

0\

~
" 00
0
0

0

Message

ANSI CONTROL FLOW INTO
END LINE NOT PERMITTED.

ANSI DATA VARIABLE TYPE
DOES NOT MATCH
CONSTANT

ANSI DOLLAR SIGN
STATEMENT SEPARATOR
IS NON-ANSI USAGE.

ANSI END STATEMENT
ACTING AS A RETURN IS
NON-ANSI.

ANSI ENTRY STATEMENT IS
NON-ANSI.

ANSI FLOATING POINT
DESCRIPTOR EXPECTED
AFTER SCALE FACTOR
DESIGNATOR.

ANSI GO TO STATEMENT
CONTAINS NON-ANSI
USAGES.

ANSI HOLLERITH CONSTANT
APPEARS OTHER THAN IN
AN ARGUMENT LIST OF A
CALL STATEMENT OR IN
A DATA STATEMENT.

ANSI HOLLERITH STRING
DELIMITED BY SYMBOLS
IS NON-ANSI.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

The END line is non-executable Precede the END line by a Optimizing mode compiler.
and must not appear in the STOP, RETURN, or GO TO
flow of execution. statement.

The type of a constant does Use the proper type declara- Optimizing mode compiler.
not agree with the type of tion, or change the constant
the variable into which it is type to agree with the
stored. variable type.

Self-evident. Self-evident. Optimizing mode compiler.

Control must not flow into Self-evident. Optimizing mode compiler.
an END statement.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Computed GO TO variable See DETAILS column. Optimizing mode compiler.
is an expression or comma
following terminal paren
is missing.

Self-evident. Self-evident. Optimizing mode compiler.

Hollerith specification must Self-evident. Optimizing mode compiler.
be denoted by nH.

°' ~
\0
-.....)
00
0
0

tr'.!

to
~

Message

ANSI IMPLICIT STATEMENT
IS NON-ANSI.

ANSI LOGICAL OPERA TOR
OR CONST ANT USAGE IS
NON-ANSI.

ANSI MASKING EXPRESSION
IS NON-ANSI.

ANSI MULTIPLE REPLACE-
MENT STATEMENT IS
NON-ANSI.

ANSI NAMELIST STATEMENT
IS NON-ANSI.

ANSI NON-ANSI BLANK
LINES OCCURRED IN THIS
PROGRAM UNIT.

ANSI NON-ANSI FORM OF
BLOCK DATA STATEMENT.

ANSI NON-ANSI FORM OF
DATA STATEMENT.

ANSI NON-ANSI FORM OF
TYPE DECLARATION.

ANSI OBJECT OF LOGICAL
IF IS ILLEGAL DO
TERMINATOR.

ANSI OCCURRENCES OF
ASTERISK OR DOLLAR
SIGN NON-ANSI COMMENT
LINES.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

ANSI does not permit single Self-evident. Optimizing mode compiler.
character logical operators.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

ANSI interprets blank lines Add continuation character to Optimizing mode compiler.
as initial lines. column 6 of initial lines follow-

ing blank lines.

The form BLOCK DATA name Use BLOCK DATA. FORTRAN Optimizing mode compiler.
is invalid in ANSI FORTRAN. assigns name BLKDAT.

Alternate DATA statement Self-evident. Optimizing mode compiler.
syntax not permitted by ANSI.

Self-evident. See DETAILS column. Optimizing mode compiler.

DO loop cannot terminate on Self-evident. Optimizing mode compiler.
logical IF whose object is
GOTO, RETURN, END, STOP,
PAUSE, of DO statement.

ANSI comment line indicated Self-evident. Optimizing mode compiler.
by 'C' in column 1.

~ TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Message Significance Action Issued By

ANSI OCT AL CONST ANT OR Only nH Hollerith specification Self-evident. Optimizing mode compiler.
R,L FORMS OF HOLLERITH permitted.
CONSTANT IS NON-ANSI.

ANSI OMISSION OF FIELD A comma must follow the Self-evident. Optimizing mode compiler.
SEPARATOR AFTER Hollerith string.
HOLLERITH STRING IS
NON-ANSI.

ANSI ONE OF THE FOLLOW- Self-evident. Self-evident. Optimizing mode compiler.
ING NON-ANSI FORMS HAS
BEEN USED - EW.DDE,
EW.DEE, IW.Z, OW.Z.

ANSI PLUS SIGN IS A Non-ANSI allows an optional Self-evident. Optimizing mode compiler.
NON-ANSI CHARACTER. +to precede format X

specification.

ANSI PRECEDING FIELD Self-evident. See DETAILS column. Optimizing mode compiler.
DESCRIPTOR IS NON-ANSI.

ANSI REDEFINITION OF Integer variable used as an Self-evident. Optimizing mode compiler.
PARAMETER USED array declarator in a DIMEN-
AS DIMENSION INDICATOR SION statement was altered
IS NON-ANSI. in a subsequent expression.

ANSI RETURNS PARAMETERS Non-standard RETURN is Self-evident. Optimizing mode compiler.
IN CALL STATEMENT. non-ANSI.

ANSI SAME NAME USED AS Usage violates ANSI class Reference the subprogram Optimizing mode compiler.
FUNCTION AND SUBROUTINE restrictions. either as a function or as

a subroutine.

ANSI SUBSCRIPT DOES NOT Non-ANSI allows subscript Self-evident. Optimizing mode compiler.
CONFORM TO ANSI expression to be any valid
STANDARD. arithmetic expression.

ANSI TAB SETTING Self-evident. Self-evident. Optimizing mode compiler.
DESIGNATOR IS NON-ANSI.

§
~

ANSI THE EXPRESSION IN Expression in arithmetic. Self-evident. Optimizing mode compiler.
AN IF STATEMENT IS

00

8 TYPE COMPLEX.
C'.)

0\

~
\O·
-....J
00
0
0

0

~

~

Message

ANSI THE FORMAT OF
THIS END LINE DOES
NOT CONFORM TO ANSI
SPECIFICATIONS.

ANSI THE NON-STANDARD
RETURN STATEMENT IS
NON-ANSI.

ANSI THE TYPE COMBINA-
TION OF THE OPERANDS
OF A RELATIONAL OR
ARITHMETIC OPERA TOR
(OTHER THAN **) IS
NON-ANSI.

ANSI THE TYPE COMBINA-
TION OF THE OPERANDS
OF AN EQUAL-SIGN
OPERATOR IS NON-ANSI.

ANSI THE TYPE COMBINA-
TION OF THE OPERANDS
OF AN EXPONENT
OPERA TOR IS NON-ANSI.

ANSI THIS FORM OF AN
1/0 STATEMENT DOES
NOT CONFORM TO ANSI
SPECIFICATIONS.

ANSI THIS FORMAT
DECLARATION IS
NON-ANSI.

ANSI THIS STATEMENT
TYPE IS NON-ANSI.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

ANSI END line cannot be Self-evident. Optimizing mode compiler.
labeled or continued.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Use FLOAT or IFIX to Optimizing mode compiler.
change type.

Self-evident. Use FLOAT or IFIX to Optimizing mode compiler.
change type.

Self-evident. Use FLOAT or IFIX to Optimizing mode compiler.
change type.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

~

~
-...)
00

8
~

Message

ANSI TWO-BRANCH IF
STATEMENT IS NON-ANSI.

ANSI USE OF A NUMBER
AS LABELED COMMON
BWCK NAME IS
NON-ANSI.

ANSI 7 CHARACTER
SYMBOLIC NAME IS
NON-ANSI.

ANSI DATA VARIABLE
DOES NOT MATCH
CONSTANT.

FC ERROR TABLE
OVERFWW.

FC MEMORY OVERFWW
DURING ASF EXPANSION.

FC NOT ENOUGH ROOM IN
WORKING STORAGE TO
HOLD ALL OVERLAY
CONTROL CARD
INFORMATION.

FC SYMBOL TABLE
OVERFLOW.

FC TABLE OVERFLOW,
INCREASE FL.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Maximum is 6 characters. Self-evident. Optimizing mode compiler.

Type of variable in a Change one or the other. Optimizing mode compiler.
DATA statement does
not match its associated
constant.

Too many errors have been Correct as many errors as Optimizing mode compiler.
detected in the user's possible and recompile.
program unit. Compilation
cannot continue.

Arithmetic statement function Simplify statement function Optimizing mode compiler.
caused memory overflow. or reduce number of calls.

There are too many overlays Reduce the number of Optimizing mode compiler.
in the user's program. Com- overlays and recompile.
pilation terminated.

There are too many symbols Reduce the number of symbols OptimiZing mode compiler.
in the user's program unit. in the program unit, or
Compilation terminated. modularize and compile each

module separately.

A compiler table has Increase field length with Optimizing mode compiler.
overflowed. RFL control statement

and recompile.

0\

~
\0
....J
00
0
0

"Tj

\'XI
-b

Message

FC TABLES OVERLAP,
INCREASE FL.

FC THIS SUBPROGRAM HAS
TOO MANY DO LOOPS.

FE A COMPLEX BASE MAY
ONLY BE RAISED TO AN
INTEGER POWER.

FE A CONSTANT ARITHMETIC
OPERATION WILL GIVE AN
INDEFINITE OR OUT-OF
RANGE RESULT.

FE A CONSTANT CANNOT
BE CONVERTED. CHECK
CONSTANT FOR PROPER
CONSTRUCT.

FE A CONSTANT DO
PARAMETER MUST BE
GREATER THAN OR
EQUAL TO 1 AND LESS
THAN OR EQUAL TO
131070.

FE A CONSTANT MAY
NOT BE FOLLOWED BY
AN EQUAL SIGN, NAME,
OR ANOTHER CONSTANT.

FE A CONSTANT OPERAND
OF A REAL OPERATION IS
OUT OF RANGE OR
INDEFINITE.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance I Action I Issued By

Compiler tables have overlapped. I Increase field length when RFL I Optimizing mode compiler.
control statement and recompile.

The compiler cannot process
all the DO loops.

Self-evident.

A constant expression has a
value that will cause an
execution error.

Self-evident.

A DO loop indexing parameter
was assigned a value outside
the legal range.

Self-evident.

The constant has an illegal
value; the operation cannot
be perform

Reduce the number of DO
loops and recompile.

Self-evident.

Check expression for division
by zero.

See DETAILS column.

See DETAILS column.

See DETAILS column.

See DETAILS column.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

~

!..
0

°' ~
\0
-.J
00
0
0

"l'1

Message

FE A C/ LIST DIRECTIVE
MAY NOT BE FOLLOWED
BY A CONTINUATION LINE.

FE A DO LOOP MAY NOT
TERMINATE ON A FORMAT
STATEMENT.

FE A DO LOOP MAY NOT
TERMINATE ON THIS
TYPE OF STATEMENT.

FE A DO PARAMETER
MUST BE A POSITIVE
INTEGER CONSTANT
OR AN INTEGER
VARIABLE.

FE A FUNCTION REFERENCE
REQUIRES AN ARGUMENT
LIST.

FE A NAME MAY NOT BE
FOLLOWED BY A
CONSTANT.

FE A PREVIOUS STATEMENT
MAKES AN ILLEGAL
TRANSFER TO THIS LABEL.

FE A PREVIOUSLY MEN-
TIONED ADJUSTABLE
SUBSCRIPT IS NOT TYPE
INTEGER.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Check for illegal tr an sf er to Optimizing mode compiler.
terminal statement of DO
or to FORMAT label.

Formal parameter used as Specify proper type statement. Optimizing mode compiler.
subscript is not type integer.

O'I

~
\0
......:i
00
0
0

0

to
.!..

FE

FE

FE

FE

FE

FE

FE

Message

A REFERENCE TO THIS
ARITHMETIC STATEMENT
FUNCTION HAS UNBALANCED
PARENTHESIS WITHIN THE
PARAMETER LIST.

A REFERENCE TO THIS
ASF HAS A PARAMETER
MISSING.

A VARIABLE DIMENSION
OR THE ARRAY NAME WITH
A VARIABLE DIMENSION IS
NOT A FORMAL PARAMETER.

ABSOLUTE VALUE OF
INTEGER CONSTANT
GREATER THAN 2**59-1.

ALL LEVEL 2 or 3 ITEMS
MUST BE FORMAL PARAM-
ETERS OR IN COMMON.

AN ARRAY REFERENCE
HAS TOO MANY SUBSCRIPTS.

APPEARED WHERE A
VARIABLE WAS EXPECTED.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

The number of parameters Self-evident. Optimizing mode compiler.
in the reference must match
the number of parameters in
the function definition.

Variable dimensions can appear Self-evident. Optimizing mode compiler.
only in a subprogram. The
array name and variable
representing the adjustable
dimension must be passed as
arguments.

Self-evident. Self-evident. Optimizing mode compiler.

A data item declared to be Self-evident. Optimizing mode compiler.
level 2 or 3 must appear
in a common statement or
in subprograms, as dummy
arguments in the argument
list.

The number of subscripts in an Self-evident. Optimizing mode compiler.
array reference must not exceed
the number of declared dimen-
sions.

Self-evident. See DETAILS column. Optimizing mode compiler.

~
I -N

~
-l
00

8
0

Message

FE ARG TO WCF MAY
NOT BE AN EXPRESSION.

FE ARGUMENT NOT
FOLLOWED BY COMMA OR
RIGHT PARENTHESIS.

FE ARITHMETIC STATEMENT
FUNCTION REDEFINED.

FE ARRAY HAS MORE THAN
THREE SUBSCRIPTS.

FE ARRAY OR COMMON
VARIABLE MAY NOT BE
DECLARED EXTERNAL.

FE ARRAY WITH ILLEGAL
SUBSCRIPTS.

FE ASF HAS MORE DUMMY
PARAMETERS THAN
ALLOWED.

FE BAD SUBSCRIPT IN
EQUIV STMT.

FE BAD SYNTAX
ENCOUNTERED.

FE BASIC EXTERNAL OR
INTRINSIC FUNCTION
CALLED WITH WRONG
TYPE ARGUMENf.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

More than one definition for Might be an array usage with no Optimizing mode compiler.
the same statement function. DIMENSION statement.

Self-evident. Self-evident. Optimizing mode compiler.

An array or COMMON variable Self-evident. Optimizing mode compiler.
appears in an EXTERNAL
statement.

Self-evident. Self-evident. Optimizing mode compiler.

The argument list of an Self-evident. Optimizing mode compiler.
arithmetic statement function
can contain up to 63 dummy
arguments.

The subscript of an array See DETAILS column. Optimizing mode compiler.
element in an EQUIVALENCE
statement is invalid.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

°' 0
~

'° -...J
00
0
0

0

txJ
I -w

FE

FE

FE

FE

FE

FE

FE

FE

FE

Message

BASIC OR INTRINSIC
FUNCTION WITH AN
INCORRECT ARGUMENT
COUNT.

COMMON BLOCK LENGTH
EXCEEDS 131071 WORDS.

COMMON VARIABLE IS
FORMAL PARAMETER OR
PREVIOUSLY DECLARED
IN COMMON OR ILLEGAL
NAME.

CONFLICTING LEVEL
DECLARATIONS EXIST IN
THIS COMMON BLOCK.

CONSTANT DATA ITEM
MUST BE FOLLOWED BY
A , / OR RIGHT PAREN.

CONST ANT SUBSCRIPT
VALUE EXCEEDS ARRAY
DIMENSIONS.

DATA ITEM LISTS MAY
ONLY BE NESTED 1 DEEP.

DATA VARIABLE LIST
SYNTAX ERROR.

DEBUG EXECUTION
OPTION SUPPRESSED DUE
TO NATURE OF ABOVE
FATAL ERRORS.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

The number of arguments in a Self-evident. Optimizing mode compiler.
function call must agree with
the number of arguments
defined for the function.

Self-evident. Self-evident. Optimizing mode compiler.

A variable cannot appear in Self-evident. Optimizing mode compiler.
more than one COMMON
block, or in COMMON and
subprogram argument list.

Variables within a COMMON Self-evident. Optimizing mode compiler.
block must exist at the same
level in memory, as declared
in the LEVEL statement.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Nested implied-DO specifica- Self-evident. Optimizing mode compiler.
tions are not permitted in
the DATA statement.

Self-evident. See DETAILS column. Optimizing mode compiler.

In debug mode the partial Correct other compilation errors Optimizing mode compiler.
execution option was and recompile.
specified, but errors have
occurred which prohibit
execution.

t:x:l
I
~

~

0\

~
-...J
00

8
0

FE

FE

FE

FE

FE

FE

FE

FE

FE

Message

DECLARATIVE STATE-
MENT OUT OF SEQUENCE.

DEFECTIVE HOLLERITH
CONSTANT. CHECK FOR
CHARACTER COUNT ERROR,
MISSING ::/= DELIMITER OR
LOST CONTIN CARD.

DIVISION BY CONSTANT
ZERO.

DO LIMIT OR REP
FACTOR MUST BE AN
INTEGER OR OCTAL CON-
STANT BETWEEN 1 AND
131K.

DO LOOPS TERMINATING
ON THIS LABEL ARE
IMPROPERLY NESTED.

DOUBLY DEFINED
FORMAL PARAMETER.

DUMMY PARAMETER
IN ASF DEFINITION
OCCURRED TWICE.

DUPLICATE LOOP INDEX
OR DOESNT MATCH ANY
SUBSCRIPT VARIABLE.

DUPLICATE STATEMENT
LABEL.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

See section 1 for required order Re-order statements. Optimizing mode compiler.
of nonexecutable statements.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Branch to terminal statement Check control structure of Optimizing mode compiler.
occurs from an outer DO. program unit.

Parameter occurs twice in a Self-evident. Optimizing mode compiler.
FUNCTION or SUBROUTINE
statement.

Dummy parameter can occur Self-evident. Optimizing mode compiler.
only once in an arithmetic
statement function definition.

DATA statement implied DO Self-evident. Optimizing mode compiler.
error.

Self-evident. Self-evident. Optimizing mode compiler.

§
\0
......J
00
0
0

'T1

t::ti
,!...
Vl

Message

FE ECS/LCM REFERENCE
MUST BE A ST AND-ALONE
ARGUMENT TO AN
EXTERNAL ROUTINE.

FE ENTRY POINT NAMES
MUST BE UNIQUE -
THIS ONE HAS BEEN
PREVIOUSLY USED IN
THIS SUBPROGRAM.

FE ENTRY STATEMENT
MAY NOT APPEAR IN
A PROGRAM.

FE ENTRY STATEMENT
MAY NOT BE LABELED.

FE ENTRY STATEMENTS
MAY NOT OCCUR WITHIN
THE RANGE OF A DO
STATEMENT.

FE EQUATED FILENAME
NOT PREVIOUSLY
DEFINED.

FE EQUIVALENCED COMMON
BLOCK EXCEEDS 131071
WORDS.

FE EXTERNAL NAME IN
ARGUMENT LIST MUST
APPEAR IN EXTERNAL
STATEMENT.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Level 3 variables cannot be used Self-evident. Optimizing mode compiler.
in expressions.

Self-evident. Self-evident. Optimizing mode compiler.

ENTRY statement can appear Self-evident. Optimizing mode compiler.
only in a subprogram.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

File name in PROGRAM Re-order file definitions. Optimizing mode compiler.
statement must be defined
before appearing on right
of equals sign.

Equivalencing of variables in Self-evident. Optimizing mode compiler.
common extends block past
maximum size.

A subroutine function, or entry Self-evident. Optimizing mode compiler.
point name appearing in an
argument list must be declared
EXTERNAL:

~ -0-..

0-..
0
~
\0
-......)

00
0
0

0

Message

FE FIELD WIDTH IS
GREATER THAN 131,071.
SCANNING STOPS.

FE FILENAME IS GREATER
THAN 6 CHARACTERS.

FE FILENAME PREVIOUSLY
DEFINED.

FE FIRST WORD AND LAST
WORD ADDRESSES OF
DATA TRANSMISSION BLOCK
MUST BE IN THE SAME
LEVEL.

FE FOLLOWED BY AN
ILLEGAL ITEM.

FE FORMAL PARAMETERS
MAY NOT APPEAR IN
COMMON OR EQUIV STMTS.

FE FORMAT REFERENCE
ILLEGAL.

FE FORMAT STATEMENT
ENDS BEFORE END OF
HOLLERITH STRING.
ERROR SCAN FOR THIS
FORMAT STOPS HERE.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By
-

Error in FORMAT statement. See DETAILS column. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Duplicate file definition in Eliminate all but one definition. Optimizing mode compiler.
PROGRAM statement.

The first and last word Self-evident. Optimizing mode compiler.
addresses of the data to be
moved by a buffer statement
or MOVLEV are not in the
same level.

Self-evident. See DETAILS column. Optimizing mode compiler.

A dummy argument in a Self-evident. Optimizing mode compiler.
subprogram has appeared in
a COMMON or EQUIV A-
LENCE statement.

Bad syntax for format Self-evident. Optimizing mode compiler.
parameter in input/output
statement.

An error was detected while Check FORMAT statements; Optimizing mode compiler.
processing a Hollerith string possible incorrect length
in a FORMAT statement. specification for Hollerith

string or missing continuation
line.

0\
0

~
-.J
00
0
0

0

o:i
I --.J

Message

FE FORMAT STATEMENT
ENDS BEFORE LAST
HOLLERITH COUNT IS
COMPLETE. ERROR
SCAN FOR THIS FORMAT
STOPS AT H.

FE FUNCTION NAME DOES
NOT APPEAR AS A
VARIABLE IN THIS SUB
PROGRAM.

FE F.P. WITH VARIABLE
DIMENSIONS NOT ALLOWED
IN A NAM ELIST ST ATE-
M ENT.

FE GO TO STATEMENT -
SYNTAX ERROR.

FE GROUP NAME NOT
SURROUNDED BY
SLASHES.

FE GROUP NAME
PREVIOUSLY REFERENCED
IN ANOTHER CONTEXT.

FE HEADER CARD NOT
FIRST STATEMENT.

FE HEADER CARD SYNTAX
ERROR.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance

An error was detected while
processing a Hollerith string in
a FORMAT statement.

In a function subprogram, the
fun ct ion name must be
assigned a value.

An array with adjustable
dimensions is not allowed in
a NAMELIST statement.

Self-evident.

Self-evident.

NAMELIST group names must
be unique.

PROGRAM, FUNCTION or
SUBROUTINE statement
occurred after the first
statement of the program
unit.

Error in PROGRAM, FUNC
TION or SUBROUTINE
statement.

Action Issued By

Check FORMAT statements for I Optimizing mode compiler.
incorrect length specification for
Hollerith string or missing con-
tinuation line.

Self-evident.

Self-evident.

See DETAILS column.

Check group names in
NAMELIST statements.

Self-evident.

Statements are out of order
or an END line is missing.

See DETAILS column.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

t:::C
.!...
00

°' ~
\0
-....J
00
0
0

"T'.I

FE

FE

FE

FE

FE

FE

FE

FE

Message

ILLEGAL BLOCK NAME

ILLEGAL CHARACTER
FOUND IN IMPLICIT
STATEMENT.

ILLEGAL CHARACTER
FOLLOWS PRECEDING
A, I, L, 0, R OR Z
DESCRIPTOR. ERROR
SCAN FOR THIS FORMAT
STOPS HERE.

ILLEGAL CHARACTER
FOLLOWS PRECEDING
FLOATING POINT
DESCRIPTOR. ERROR
SCAN FOR THIS FORMAT
STOPS HERE.

ILLEGAL CHARACTER
FOLLOWS PRECEDING SIGN
CHARACTER. ERROR SCAN
FOR THIS FORMAT STOPS
HERE.

ILLEGAL CHARACTERS
AFTER TERMINATING
RIGHT PARENTHESIS.

ILLEGAL CHARACTER.
THE REMAINDER OF THIS
STATEMENT WILL NOT BE
COMPLETED.

ILLEGAL EXTENSION
OF COMMON BLOCK
ORIGIN.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

The second of two characters Self-evident. Optimizing mode compiler.
in an IMPLICIT specification
precedes the first character.

An error was detected in a See DETAILS column. Optimizing mode compiler.
field specification in a
FORMAT statement.

An error was detected in a See DETAILS column. Optimizing mode compiler.
floating point field specifica-
tion in a FORMAT statement.

Error detected in FORMAT See DETAILS column. Optimizing mode compiler.
statement.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

A COMMON block origin Check EQUIVALENCE state- Optimizing mode compiler.
has been extended backwards. ments for improper equivalencing

of COMMON variables.

0\

~
\0
-.)
00
0
0

0

t'O
!..
\0

Message

FE ILLEGAL FORM
INVOLVING THE USE
OF A COMMA.

FE ILLEGAL LABEL FIELD.

FE ILLEGAL LABELS IN IF
STATEMENT.

FE ILLEGAL LIST ITEM
ENCOUNTERED IN AN 1/0
LIST SEQUENCE.

FE ILLEGAL NAMELIST
VARIABLE.

FE ILLEGAL RETURNS
PARAMETER.

FE ILLEGAL SEPARATOR
ENCOUNTERED.

FE ILLEGAL SEPARATOR
IN EXTERNAL STATEMENT.

FE ILLEGAL SYNTAX AFTER
INITIAL KEYWORD OR
NAME.

FE ILLEGAL SYNTAX IN
CALL STATEMENT.

FE ILLEGAL SYNTAX lN
COMMON DECLARATION.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. See DETAILS column. Optimizing mode compiler.

Self~vident. Self~vident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

A parameter in the "RETURNS See DETAILS column. Optimizing mode compiler.
list" statement contains an
error.

A character other than a / or , See DETAILS column. Optimizing mode compiler.
was used as a separator.

A character other than , was See DETAILS column. Optimizing mode compiler.
used as a separator in the
EXTERNAL statement.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

t::C
~
0

°' ~
\0
-:i
00
0
0

'TJ

Message

FE ILLEGAL SYNTAX IN IF
STATEMENT.

FE ILLEGAL SYNTAX IN
IMPLICIT STATEMENT.

FE ILLEGAL SYNTAX IN
IMPLIED DO SPECIFICATION.

FE ILLEGAL TYPE SPECIFIED
IN IMPLICIT STATEMENT.

FE ILLEGAL USE OF A
FUNCTION NAME.

FE ILLEGAL USE OF THE
EQUAL SIGN.

FE ILLEGAL VARIABLE
NAME FIELD IN ASSIGN
OR ASSIGNED GOTO.

FE IMPROPER FORM OF
ENTRY STATEMENT.
ONLY ALLOWABLE FORM
IS (ENTRY NAME)

FE INCORRECT SYNTAX
FOLLOWING INDICATED
ELEMENT.

FE INTEGER CONSTANT
FOR MULTIPLICATION OR
DIVISION EXCEEDS 2**48-1.

FE INTRINSIC FUNCTION
REFERENCE MAY NOT USE
A FUNCTION NAME AS AN
ARGUMENT.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

°' 0
~
\0
-...J
00
0
0

0

ti:'
tG -

Message

FE INVALID LEVEL NUMBER
SPECIFIED.

FE INVALID USE OF A
CHARACTER STRING.

FE INVOLVED IN CONTRA-
DICTORY EQUIVALENCING.

FE ITEMS IN DIFFERENT
LEVELS OF STORAGE MAY
NOT BE EQUIVALENCED.

FE LEFT SIDE OF REPLACE-
MENT STATEMENT IS
ILLEGAL.

FE LOADER DIRECTIVE
OUT OF SEQUENCE.
MUST PRECEDE PROGRAM
UNIT HEADER LINE.

FE LOGICAL AND NON-
WGICAL OPERANDS MAY
NOT BE MIXED.

FE LOGICAL EXPRESSION
IN 3-BRANCH IF
STATEMENT.

FE LOGICAL OPERAND USED
WITH NON-LOGICAL
OPERATORS.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

A LEVEL statement specified a Self-evident. Optimizing mode compiler.
level number other than 1,2,or 3.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

The OVERLAY directive must Self-evident. Optimizing mode compiler.
precede the PROGRAM,
FUNCTION, or SUBROUTINE
statement.

Self-evident. Self-evident. Optimizing mode compiler.

Only masking and arithmetic Self-evident. Optimizing mode compiler.

expressions can be used in a
3-branch IF statement.

Self-evident. Check type declarations; logical Optimizing mode compiler.
operands must be declared type
LOGICAL.

c:i
~
N

gj
t
-.....)
00

8
'Tj

FE

FE

FE

FE

FE

FE

FE

FE

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Message Significance Action Issued By

LOOP BEGINNING AT THIS A DO loop cannot be entered Check all GO TO statements Optimizing mode compiler.
CARD NO IS ENTERED FROM from outside its range, except for illegal branches into range
OUTSIDE ITS RANGE AND when control is transferred out of DO loop; check for missing
HAS NO EXITS. of the range and then back in. branch out of DO loop range.

LOOPS ARE NESTED Self-evident. Self-evident. Optimizing mode compiler.
MORE THAN 50 DEEP.

MAXIMUM PARENTHESIS Self-evident. Self-evident. Optimizing mode compiler.
NESTING LEVEL EXCEEDED.
ERROR SCAN FOR THIS
FORMAT STOPS HERE.

MAY NOT BE FUNCTION, DATA statement tried to See DETAILS column. Optimizing mode compiler.
EXTERNAL, F .P. OR IN initialize an illegal variable.
BLANK COMMON.

MISSING OR SYNTAX Bad or no labels on list for Self-evident. Optimizing mode compiler.
ERROR IN LIST OF assigned or computed GO TO.
TRANSFER LABELS.

MISSING, BAD, OR Self-evident. Check DO loops for missing Optimizing mode compiler.
OUT OF RANGE LABEL label, mispunched label, or
ON DO STATEMENT. incorrect nestiilg.

MORE THAN ONE Self-evident. Self-evident. Optimizing mode compiler.
RELATIONAL OPERATOR
IN A RELATIONAL
EXPRESSION.

MORE THAN 49 FILES Self-evident. Self-evident. Optimizing mode compiler.
ON PROGRAM CARD OR 63
PARAMETERS ON A SUB-
ROUTINE OR FUNCTION
CARD.

°' ~
'° -....)

00
0
0

0

~

~
w

Message

FE MORE THAN 63 ARGU-
MENTS IN ARGUMENT LIST.

FE NAMELIST STATEMENT
SYNTAX ERROR.

FE NO MATCHING LEFT
PARENTHESIS.

FE NO MATCHING RIGHT
PARENTHESIS IN
ARGUMENT LIST.

FE NO MATCHING RIGHT
PARENTHESIS IN
SUBSCRIPT.

FE NO MATCHING RIGHT
PARENTHESIS.

FE NON DIMENSIONED NAME
APPEARS FOLLOWED BY
LEFT PAREN.

FE NON-STANDARD RETURN
STATEMENT MAY NOT
APPEAR IN A FUNCTION
SUBPROGRAM.

FE NUMBER OF ACTUAL
PARAMETERS PLUS
RETURNS EXCEED 63.

FE NUMBER OF CHARACTERS
IN AN ENCODE/DECODE
STATEMENT MUST BE AN
INTEGER CONSTANT OR
VARIABLE.

TABLE B-1. 017I'IMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

t:x:I
~
~

°' 0

~
-......)

00
0
0

0

Message

FE NUMBER OF SUBSCRIPTS
IS INCOMPATIBLE WITH THE
NUMBER OF DIMENSIONS
DURING EQUIVALENCING.

FE ONLY LIST DIRECTED
OUTPUT STATEMENTS MAY
END WITH A COMMA.

FE ONLY ONE SYMBOLIC
NAME IN EQUIVALENCE
GROUP.

FE PARAMETER ON NON-
STANDARD RETURN
STATEMENT IS NOT A
RETURNS FORMAL
PARAMETER.

FE PRECEDING CHARACTER
ILLEGAL AT THIS POINT IN
STRING. ERROR SCAN FOR
THIS FORMAT STOPS HERE.

FE PRECEDING CHARACTER
ILLEGAL. SCALE FACTOR
EXPECTED. ERROR SCAN
FOR THIS FORMAT STOPS
HERE.

FE PRECEDING HOLLERITH
COUNT IS EQUAL TO ZERO.
ERROR SCAN FOR THIS
FORMAT STOPS HERE.

FE PRECEDING HOLLERITH
INDICATOR IS NOT
PRECEDED BY A COUNT.
SCANNING STOPS HERE.

TABLE B-1. OPfIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Number of subscripts in Self-evident. Optimizing mode compiler.
EQUIVALENCE statement
must be less than or equal
to the number of dimensions.

Self-evident. Check for incomplete statement; Optimizing mode compiler.
missing continuation.

Symbolic names must appear Self-evident. Optimizing mode compiler.
in pairs.

The parameter on a non- Self-evident. Optimizing mode compiler.
standard return must appear
in a RETURNS parameter list.

Self-evident. See DETAILS column. Optimizing mode compiler.

The scale factor must be an See DETAILS column. Optimizing mode compiler.
integer constant followed by P.

Self-evident. Check for mispunched Hollerith Optimizing mode compiler.
count.

Self-evident. Check for mispunched Hollerith Optimizing mode compiler.
count.

°' i
\0
-....J
00
0
0

0

o:i
~
Vl

Message

FE PRESENT USE OF THIS
LABEL CONFLICTS WITH
PREVIOUS USES.

FE PROGRAM OR SUB-
ROUTINE NAME MAY NOT
BE REFERENCED IN A
DECLARATIVE STATEMENT.

FE RECORD LENGTH IS
GREATER THAN 131,071.

FE REFERENCED LABEL IS
MORE THAN FIVE
CHARACTERS.

FE RETURN STATEMENT
APPEARS IN MAIN
PROGRAM.

FE RETURNS LIST ERROR.

FE RETURNS OR EXTERNAL
NAMES MAY NOT APPEAR
IN DECLARATIVE
STATEMENTS.

FE RIGHT PARENTHESIS
FOLLOWED BY A NAME,
CONSTANT, OR LEFT
PARENTHESIS.

FE SIMPLE VARIABLE OR
CONSTANT FOLLOWED BY
LEFT PARENTHESIS.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

The label used in a DO state- Self-evident. Optimizing mode compiler.
ment follows another usage,
i.e., FORMAT.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Check for syntax error; non-label Optimizing mode compiler.
parameter.

Self-evident. Self-evident. Optimizing mode compiler.

Incorrect use of parenthesis. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

c:;

~
°'

°' ~
-J
00
g
0

Message

FE STATEMENT TOO LONG.

FE SUBROUTINE NAME
REFERRED TO BY CALL IS
USED ELSEWHERE AS A
NON-SUBROUTINE NAME.

FE SYMBOLIC NAME HAS
TOO MANY CHARACTERS.

FE SYNTAX ERROR IN ASF
DEFINITION.

FE SYNTAX ERROR IN
DATA ITEM LIST.

FE SYNTAX ERROR IN
DATA STATEMENT.

FE SYNTAX ERROR IN
DUMMY ARGUMENT LIST
OF STATEMENT FUNCTION.

FE SYNTAX ERROR IN
EQUIVALENCE STATEMENT.

FE SYNTAX ERROR IN
IMPLIED DO NEST.

FE SYNTAX ERROR IN
INPUT /OUTPUT
STATEMENT.

FE SYNTAX ERROR IN
LOADER DIRECTIVE.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Signnificance Action Issued By

Maximum of 19 continuation Self ~vident. Optimizing mode compiler.
lines allowed.

Self~vident. Check for subroutine name used as Optimizing mode compiler.
a variable name.

Maximum of 7 characters is Self~vident. Optimizing mode compiler.
allowed.

Arithmetic statement function Self ~vident. Optimizing mode compiler.
definition contains an error.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self~vident. See DETAILS column. Optimizing mode compiler.

Self~vident. See DETAILS column. Optimizing mode compiler.

Self~vident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS coluJll1l. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

0\

~
\C
-...J
00

8
"T1

to
~
......i

Message

FE SYNTAX ERROR IN
SUBSCRIPT LIST, MUST BE
OF FORM CONI*VAR*
CON2.

FE TAB SETTING IS GREATER
THAN 131,071. SCANNING
STOPS.

FE TABLE OVERFLOW
(ARLSZ) - SIMPLIFY
EXPRESSION OR SEE
ANALYST.

FE TABLE OVERFLOW
(CONSTORS) - SIMPLIFY
STATEMENT OR SEE
ANALYST.

FE TABLE OVERFLOW
(MXFRSTB) - SIMPLIFY
EXPRESSION OR SEE
ANALYST.

FE TABLE OVERFLOW
(MXOSE) - SIMPLIFY
EXPRESSION OR SEE
ANALYST.

FE THE CONTROL VARIABLE
OF A DO OR DO IMPLIED
LOOP MUST BE A SIMPLE
INTEGER VARIABLE.

FE THE EXPRESSION IN A
LOGICAL IF IS NOT TYPE
LOGICAL.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. See DETAILS column. Optimizing mode compiler.

The tab control specification Tn Self-evident. Optimizing mode compiler.
contains an error.

The expression has caused a Self-evident. Optimizing mode compiler.
compiler table to overflow.

The statement has caused a Self-evident. Optimizing mode compiler.
compiler table to overflow.

The expression has caused a Self-evident. Optimizing mode compiler.
compiler table to overflow.

The expression has caused a Self-evident. Optimizing mode compiler.
compiler table to overflow.

Self-evident. Check DO statement; expressions Optimizing mode compiler.
and non-integer variables cannot
be used.

Self-evident. Self-evident. Optimizing mode compiler.

c::i
I

N
00

°' ~
\0
-.....)
00
0
0

"T1

Message

FE THE FIELD FOLLOWING
STOP OR PAUSE MUST BE
5 OR LESS OCTAL DIGITS
OR A QUOTE-DELIMITED
STRING.

FE THE OPERATOR
INDICATED (-,+,*,/,OR**)
MUST BE FOLLOWED BY
A CONSTANT, NAME OR
LEFT PARENTHESIS.

FE THE STATEMENT IN A
LOGICAL IF MAY BE ANY
EXECUTABLE STATEMENT
OTHER THAN A DO OR
ANOTHER LOGICAL IF.

FE THE SYNTAX OF DO
PARAMETERS MUST BE
I=Ml,M2,M3 OR I=Ml,M2.

FE THE TERMINAL
STATEMENT OF THIS DO
PRECEDES IT.

FE THE TYPE OF THIS
IDENTIFIER IS NOT LEGAL
FOR ANY EXPRESSION.

FE THE VALUE OF THE
PARITY INDICATOR IN A
BUFFER 1/0 STATEMENT
MUST BE 0 OR 1.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

The terminal statement of a Check for incorrect labeling. Optimizing mode compiler.
DO loop must follow the DO
statement.

. Name used in expression has Self-evident. Optimizing mode compiler.
been defined as a non-
variable, eg, statement function.

Self-evident. Self-evident. Optimizing mode compiler.

°' ~
TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

-..J

~ Message Significance Action Issued By
0

0 FE THIS ASSIGN STATEMENT Self-evident. Self-evident. Optimizing mode compiler.
HAS IMPROPER FORMAT,
ONLY ALLOWABLE IS
(ASSIGN LABEL TO
VARIABLE).

FE THIS NAME MAY NOT DATA statement variable name Self-evident. Optimizing mode compiler.
BE USED IN A DATA STMT. is program or subprogram

name.

FE THIS OPERATOR (.NOT. Self-evident. Check the statement for a syntax Optimizing mode compiler.
OR A RELATIONAL) MUST error.
BE FOLLOWED BY A
CONSTANT, NAME, LEFT
PAREN, +OR -

FE THIS PROGRAM UNIT Self-evident. Check for a function or subroutine Optimizing mode compiler.
CALLS ITSELF. reference with the same name as

the containing function or sub-
routine.

FE THIS STATEMENT MAKES A branch cannot be made into Self-evident. Optimizing mode compiler.
AN ILLEGAL TRANSFER a previous DO loop unless the
INTO A PREVIOUS DO branch is within the extended
LOOP. range of the DO.

FE THIS STATEMENT TYPE Self-evident. See DETAILS column. Optimizing mode compiler.
IS ILLEGAL IN BLOCK
DATA SUBPROGRAM.

FE TOO MANY LABELED Self-evident. Self-evident. Optimizing mode compiler.
COMMON BLOCKS, ONLY
125 BLOCKS ARE ALLOWED.

FE TOO MANY SUBSCRIPTS The number of subscripts in an Self-evident. Optimizing mode compiler.
IN ARRAY REFERENCE. array reference cannot exceed

= the number of declared
~
\0 dimensions.

°' ~
0

§
\0
......:1
00
0
0

tT'.f

Message

FE TOTAL RECORD LENGTH
IS GREATER THAN 131,071.
SCANNING STOPS.

FE UNDEFINED STATEMENT
LABEL(S). SEE LIST BELOW.

FE UNIT NUMBER MUST BE
BETWEEN 1 AND 99
INCLUSIVE.

FE UNIT NUMBER OR PARITY
INDICATOR MUST BE AN
INTEGER CONST ANT OR
VARIABLE.

FE UNMATCHED PARAMETER
COUNT IN A REFERENCE TO
THIS STATEMENT FUNCTION.

FE UNMATCHED PARENTHE-
SIS.

FE UNRECOGNIZED OPERATOR.

FE UNRECOGNIZED STATE-
MENT.

FE USE OF THIS PROGRAM
OR SUBROUTINE NAME IN
AN EXPRESSION.

FE VALUE OF ARRAY
SUBSCRIPT IS .LT. 1 OR
.GT. DIMENSIONALITY IN
IMPLIED DO NEST.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By
·-

FORMAT statement has a record Break the FORMAT down to use Optimizing mode compiler.
width that is too large. two 1/0 statements or use a slash

to create a new record.

The label(s) are referenced in Determine which statements are Optimizing. mode compiler.
branch statements but do not missing labels; branch statements
appear as labels anywhere in might specify incorrect labels.
the program.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

The indicated arithmetic, logical, Self-evident. Optimizing mode compiler.
or relational operator is incorrectly
specified.

Self-evident~ Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

°' ~
....J
00
0
0

0

ti:'
&

Message

FE VARIABLE IN ASSIGN OR
ASSIGNED GO TO IS ILLEGAL.

FE VARIABLE SUBSCRIPTS
MAY NOT APPEAR WITHOUT
DO LOOPS.

FE WAS LAST CHARACTER
SEEN AFTER TROUBLE.
REMAINDER OF STATEMENT
IGNORED.

FE ZERO IS SPECIFIED AS
REPEAT COUNT. SCANNING
STOPS.

FE ZERO LEVEL RIGHT
PARENTHESIS MISSING.
SCANNING STOPS.

FE ZERO STATEMENT
LABELS ARE ILLEGAL.

FE + OR - SIGN MUST BE
FOLLOWED BY A CONSTANT.

FE .NOT. MAY NOT BE
PRECEDED BY NAME,
CONSTANT, OR RIGHT
PARENS.

I A HOLLERITH CONSTANT
IS AN OPERAND OF AN
ARITHMETIC OPERA TOR.

I A TYPE WAS DECLARED
FOR THIS VARIABLE OR
FUNCTION. THIS
DECLARATION IGNORED.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Only statement labels can appear Self-evident. Optimizing mode compiler.
in ASSIGN statement.

DAT A statement processor Self-evident. Optimizing mode compiler.
expected an implied DO.

Self-evident. See DETAILS column. Optimizing mode compiler.

The repeat count in a FORMAT Self-evident. Optimizing mode compiler.
statement must be GT zero.

Unbalanced parenthesis. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Self-evident. Optimizing mode compiler.

If a type is declared more than Self-evident. Optimizing mode compiler.
once, the first declaration is
assumed.

t:.t1
I w
N

O'I

~
-i
00

8
0

I

I

I

I

I

I

I

I

I

Message

AN IF STATEMENT MAY
BE MORE EFFICIENT THAN
A 2 OR 3 BRANCH COM-
PUTED GO TO STATEMENT.

ARGUMENT COUNT
INCONSISTENT WITH PRIOR
USAGE.

ARRAY NAME OPERAND
NOT SUBSCRIPTED, FIRST
ELEMENT WILL BE USED.

ARRAY REFERENCE
OUTSIDE DIMENSION
BOUNDS.

CHARACTER BOUNDS
REVERSED IN IMPLICIT
STATEMENT.

COMMA MISSING BEFORE
VARIABLE INDICATED.

CONSTANT TOO LONG.
HIGH ORDER DIGITS
RETAINED, BUT SOME
PRECISION LOST.

CONTROL VARIABLE IN
COMMON OR EQUIVALENCED,
OPTIMIZATION MAY BE
INHIBITED.

DATA ITEM LIST EXCEEDS
VARIABLE LIST, EXCESS
CONSTANTS IGNORED.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

In certain cases, an IF statement Self-evident. Optimizing mode compiler.
generates less object code than
a 2 or 3 branch computed GO
TO statement.

Subroutine call argument list Self-evident. Optimizing mode compiler.
has a different number of
arguments in a prior call.

Self-evident. Self-evident. Optimizing mode compiler.

This reference can give Increase the declared dimension Optimizing mode compiler.
unpredictable results. or correct the reference.

The bounds should be ordered Self-evident. Optimizing mode compiler.
alphabetically.

Self-evident. See DETAILS column. Optimizing mode compiler.

The constant length exceeds the Self-evident. Optimizing mode compiler.
capability of the computer.

The control variable of a DO Self-evident. Optimizing mode compiler~
statement appears in a COMMON
or EQUIV ALEN CE statement.

Self-evident. Self-evident. Optimizing mode compiler.

°' 0
~
\0
-...J
00
0
0

0

~

~
w

I

I

I

I

I

I

I

Message

DATA VARIABLE LIST
EXCEEDS ITEM LIST,
EXCESS VARIABLES NOT
INITIALIZED.

DIMENSIONAL RANGE IS
EXTENDED FOR EQUI-
VALENCING PURPOSES.

FIELD WIDTH IS
GREATER THAN 137
CHARACTERS. IT MAY
EXCEED THE 1/0 DEVICE
CAPACITY.

FIELD WIDTH OF A CON-
VERSION DESCRIPTOR
SHOULD BE AS LARGE AS
THE MINIMUM SPECIFIED
FOR THAT DESCRIPTOR.

FILE LENGTH REQUESTED
IS TOO LARGE. STANDARD
LENGTH OF 2000B
SUBSTITUTED.

FRACTIONAL DIGIT COUNT
MISSING FROM CONVERSION
DESCRIPTOR. DEPENDING
ON DESCRIPTOR, ONE OR
ZERO ASSUMED.

FWA AND LWA NOT IN
SAME ARRAY, EQUIVALENCE
CLASS, OR COMMON BLOCK.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONrD)

Significance Action Issued By

Self-evident. The missing data items should be Optimizing mode compiler.
inserted.

Equivalence processing has caused Self-evident. Optimizing mode compiler.
a dimensional array to have its
length increased.

Self-evident. Self-evident. Optimizing mode compiler.

Self-evident. Reduce program size or requested Optimizing mode compiler.
field length.

Self-evident. Self-evident. Optimizing mode compiler.

Incorrect field width specifica- See DETAILS column. Optimizing mode compiler.
tion in FORMAT statement.

Will produce unpredictable Self-evident. Optimizing mode compiler.
results.

t:x:i
~

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

~

Message Significance Action Issued By

I HOLLERITH CONSTANT A word can contain up to 10 Reduce constant length if succeed- Optimizing mode compiler.
. GT. 10 CHARACTERS, EXCESS characters. This can cause over- ing words must be preserved .
CHARACTERS INITIALIZED storing of other information in
INTO SUCCEEDING WORDS. succeeding words.

I INVOLVED IN REDUNDANT The indicated variable was equi- Check all equivalence statement. Optimizing mode compiler.
EQUIVALENCING. valenced more than once to the

same variable.

I I/O BUFFER LENGTH SPECI- Self-evident. Buffer size specification must have Optimizing mode compiler.
FICA TION IS NOT MEANING- value between 0 and 218 - 1 .
FUL- -VALUE IGNORED.

I 1/0 FILE NOT DEFINED. The file has not been declared in This message should be ignored for Optimizing mode compiler.
a PROGRAM statement. all programs residing in primary or

secondary overlays. For programs
that reside in the main overlay or
are not part of an overlay structure,
the indicated file must be declared
in the PROGRAM statement.

I LEVEL CONFLICTS WITH Self-evident. Self-evident. Optimizing mode compiler.
PREVIOUS DECLARATION
ORIGINAL LEVEL RETAINED.

I WWER LIMIT .GE. UPPER If the lower limit of a loop is Self-evident. Optimizing mode compiler.
LIMIT, ONE TRIP LOOP. greater than the upper limit, the

loop is executed once.

I MASK ARGUMENT MUST Self-evident. Self-evident. Optimizing mode compiler.
BE NONNEGATIVE AND
LESS THAN 61.

I MAY NOT BE USED IN A Self-evident. See DETAILS column. Optimizing mode compiler.
DEBUG STATEMENT.

I MORE STORAGE REQUIRED Loop code is possibly sub- Increase field length and recompile. Optimizing mode compiler.
BY DO STATEMENT PRO- optimized.
CESSOR FOR OPTIMIZATION.

0--

~
-...)

00

8
C')

°' t
......:i
00
0
0

0

°' ~
VI

I

I

I

I

I

I

I

I

I

I

Message

NO DIGIT PRECEDED X-FIELD
IX ASSUMED.

NO END CARD, END LINE
ASSUMED.

NON-INNER LOOP BEGINNING
AT THIS CARD IS ENTERED.

NOT ALL ITEMS IN THIS
COMMON BLOCK OCCUR IN
LEVEL STATEMENTS.

NUMERIC FIELD FOLLOWING
TAB SETTING DESIGNATOR IS
EQUAL TO ZERO. COLUMN
ONE WILL BE ASSUMED.

NUMERIC FIELD OMITTED
FROM PRECEDING· SCALE
FACTOR. ZERO SCALE
FACTOR ASSUMED.

PRECEDING FIELD WIDTH IS
ZERO.

PRECEDING FIELD WIDTH
SHOULD BE 7 OR MORE.

PRECEDING SCALE FACTOR
EXCEEDS THE LIMIT OF
REPRESENTATION WITHIN THE
MACHINE.

PRESENT USE IN CONTEXT
OF THIS NAME DOES NOT
MATCH PREVIOUS OCCUR-
RENCES IN DEBUG STMTS.

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Significance Action Issued By

Self-evident. Self-evident. Optimizing m~de compiler.

Self-evident. Self-evident. Optimizing mode compiler.

A DO loop should be entered only Self-evident. Optimizing mode compiler.
through a DO statement.

Same level is assumed for all Self-evident. Optimizing mode compiler.
members of the block.

Self-evident. Ensure that the correct setting is Optimizing mode compiler.
specified.

Self-evident. Ensure that the correct scale factor Optimizing mode compiler.
is specified.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Self-evident. See DETAILS column. Optimizing mode compiler.

Variable or subroutine name has Self-evident. Optimizing mode compiler.
been used in mixed contexts.

& TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

°'
Message Significance Action Issued By

I PREVIOUSLY DIMENSIONED Self-evident. All but the desired DIMENSION Optimizing mode compiler.
ARRAY. FIRST DIMENSIONS declaration should be removed.
WILL BE RETAINED.

I SEPARATOR MISSING. A I or , is missing. Self-evident. Optimizing mode compiler.
SEPARATOR ASSUMED HERE.

I SHIFT ARGUMENT MUST BE Self-evident. Self-evident. Optimizing mode compiler.
GREATER THAN -61 AND
LESS THAN 61.

I SINGLE WORD CONSTANT Double and complex variables Use DOUBLE or COMPLEX type Optimizing mode compiler.
MATCHED WITH DOUBLE OR require 2 words. declarations.
COMPLEX VARIABLE. PRE-
CISION LOST.

I SPURIOUS CHARACTERS Self-evident. See DETAILS column. Optimizing mode compiler.
AFTER CONTINUE IGNORED.

I SUPERFLUOUS SCALE The superfluous scale factor is See DETAILS column. Optimizing mode compiler.
FACTOR ENCOUNTERED ignored.
BEFORE THE CURRENT
SCALE FACTOR.

I TAB SETTING MAY EXCEED Self-evident. Reduce tab setting. Optimizing mode compiler.
RECORD SIZE, DEPENDING
ON USE.

I THE UPPER LIMIT AND CON- Self-evident. Self-evident. Optimizing mode compiler.
TROL VARIABLES OF THIS
DO ARE THE SAME, PRODUC-
ING A NON-TERMINATING
LOOP.

~
-....)

I THERE IS NO PATH TO THIS The statement cannot be executed. Check for logic error; possible miss- Optimizing mode compiler.
STATEMENT. ing label.

00 g
0

~
-.)
00

8
~

t:;O

l>
-.)

TABLE B-1. OPTIMIZING MODE DIAGNOSTICS (CONT'D)

Message Significance Action Issued By

I THIS IF DEGENERATES INTO I This statement can be replaced by I Self-evident.
A SIMPLE TRANSFER TO THE a GO TO statement.

Optimizing mode compiler.

LABEL INDICATED.

I THIS STATEMENT BRANCHES I This statement results in an
TO ITSELF. infinite loop.

Self-evident. Optimizing mode compiler.

I THIS STATEMENT FORM IS Program contains an obsolete I Self-evident. I Optimizing mode compiler.
OBSOLETE. USE A LEVEL 3
STATEMENT.

I THIS STATEMENT MAY
REDEFINE A CURRENT LOOP
CONTROL VARIABLE OR
PARAMETER, OPTIMIZATION
INHIBITED.

"TYPE ECS" statement.

The variable to the left of the = I Substitute another variable for the I Optimizing mode compiler.
is also used as a DO loop control control variable in this statement.
variable.

I THIS STATEMENT REDEFINES The variable to the left of the = I Substitute another variable for the I Optimizing mode compiler.
A CURRENT LOOP CONTROL is also used as a DO loop control control variable in this statement.
VARIABLE OR PARAMETER. variable.

I TOTAL RECORD LENGTH IS
GREATER THAN 137 CHARAC
TERS. IT MAY EXCEED THE
1/0 DEVICE CAPACITY.

I VARIABLE NOT DECLARED
IN LABEL COMMON.

I X-FIELD PRECEDED BY A
ZERO. NO SPACING OCCURS.

I *PROGRAM START. (INPUT,
OUTPUT)* ASSUMED WHEN
HEADER STATEMENT IS
DEFECTIVE OR OMITTED.

I ***DUE TO THE MANY
ERRORS NOTED, ONLY THOSE
WHICH ARE FATAL WILL BE
LISTED HEREAFTER.

Self-evident.

All variables within block data
subprogram must be declared
in COMMON.

Self-evident.

Self-evident.

Self-evident. I Ensure that correct spacing is
specified.

The PROGRAM, FUNCTION, or I Self-evident.
SUBROUTINE statement contains
an error or has been omitted.

Informative messages will not be
listed.

Correct as many errors as possible
and recompile.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

Optimizing mode compiler.

TIME-SHARING MODE DIAGNOSTICS

When time-sharing mode is selected, compilation error messages are intermixed with the source listing as they are
detected. The format of the error message is:

severity * text

The severity indicator is truncated to the first letter if page width (as specified by the PW control statement option)
is less than 126. The indicators are:

FATAL

WARNING

NOTE

ANSI

Error is fatal to execution.

Error is severe, but not fatal. Syntax is incorrect, but probable meaning is presumed.

Minor syntax error or omission.

Usage does not conform to ANSI X3.9 - 1966 FORTRAN specification. Listed only if
EL=A list option is specified on the FTN control statement.

In addition to the above, certain unsuppressible nonfatal diagnostics are always listed regardless of the EL specifica
tion on the FTN control statement; they are indicated by five dashes as the severity indicator.

The compilation diagnostics produced in time-sharing mode are shown in table B-2. Ellipses denoted by are
replaced in an actual message by items from the relevant source statement, distinguished by a preceding r- (or _).
Micro names delimited by * pairs (such as =1:-MAX.SARG*) are replaced by numerical values supplied by the system.

B-38 60497800 D

Example:

1 SUBROUTINE SUB< A,9)
DIMENSION A (2)
COM~N 9(4)

• MISSPELLEO KEYWORD -- ~coHHON ASSUMED
FATAL • USAGE CONFLICT -- ~8 IS DUHHY-ARG AND CANNOT BE COMMON

DO 10, I=t,4
MA·RNING • ~'lHHA AFTER DO LIBEL IGNORED
ANSI • COMMA NOT PERMITTED AFTER 00 LABEL

lj W~ITE ('+t 11> A,B
11 FOR"4AH2A10l

VARIABL=A+B
ANSI • ARRAY •A ~ISSING SUBSCRIPT -- FIRST ELEHENT ASSUMED
ANSI • ARRAY ~a iISSING SUBSCRIPT -- FIRST ELE"'IENT ASSUMED

: ONTINUE
NOTE • CONTINUE WITH NO STATEMENT LABEL -- IGNO~EO

• ENO LINE ABSENT
ANSI • CONTROL FLOW INTO ENO LINE NOT PERMITTED
FATAL • STATEMENT LABEL .10 REFERENCED BUT NOT DEF INEO
FATAL • no LOOP .10 NOT TERMINATED BEFORE ENO OF PROGRAM

-·COMMON 8LOCt<S--

OB II

--EXTERNAL s--

OOTCI. TAPErt:

--STATEMENT LA~ELS--

.10 OU OB

·-VA~IAl3LE MAP--

A R AU OB
r I u 139
SUS OB ENT~V
VARIABL ~ 11+8

15 B PROGRAM-UNIT LEN:; TH

410008 CH STORAGE USEO

3 FORTRAN fRRO~S I~ SUB

.11

2

CJ SYHROLS

• 028 SECONDS

F

B
OUTC I.
TAP£4:

R AU
llB "' EXTERNAL.

fXTERNAL.

60497800 D B-39

l
0

°' ~
.....:i
00

8
0

i

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS

Message Significance Action

ANSI A TERM IN SUBSCRIPT ... ON ... Self-evident. Self-evident.
IS NOT INTEGER.

ANSI ANSI REQUIRES AN 1/0 LIST. Self-evident. Self-evident.

ANSI ANSI REQUIRES THE WORD The DOUBLE statement is non-ANSI. Change to DOUBLE PRECISION.
PRECISION.

ANSI ARRAY ... MISSING SUBSCRIPT - Self-evident. Self-evident.
FIRST ELEMENT ASSUMED.

ANSI ARRAY ... MUST HA VE IMPLIED Self-evident. Self-evident.
LOOP.

ANSI COMMA AFTER VARIABLE NAME Self-evident. Self-evident.
IN ASSIGNED GO TO IS REQUIRED.

ANSI COMMA BEFORE VARIABLE NAME Self-evident. Self-evident.
IN COMPUTED GO TO IS REQUIRED.

ANSI COMMA NOT PERMITTED AFTER Self-evident. Self-evident.
DO LABEL.

ANSI COMPLEX EXPRESSION IN AN IF Self-evident. Self-evident.
STATEMENT.

ANSI COMPUTED GO TO INDEX MUST Index is of incorrect type. Self-evident.
BE INTEGER.

CONVERSION OF HOLLERITH
CONSTANTS.

ANSI COMPUTED GO TO INDEX MUST BE Constant or expression not permitted. Self-evident.
VARIABLE.

ANSI CONTROL FLOW INTO END LINE NOT Self-evident. Insert RETURN or STOP.
PERMITTED.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler .

Time-sharing mode
compiler.

~
0
..j::..
\0
-...J
00
0
0

u

to
!.

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

ANSI DATA VARIABLE ... DOES NOT Self-evident. Declare proper type in type
MATCH CONSTANT TYPE. statement.

ANSI DECIMAL POINT IS NOT SPECIFIED Self-evident. Self-evident.
FOR THE CONVERSION CODE ...

ANSI EQUAL SIGN = IS SPECIFIED FOR A Probable syntax error in format Self-evident.
DIGIT. specification.

ANSI EXPONENT LENGTH IS SPECIFIED Self-evident. Self-evident.
FOR THE CONVERSION CODE ...

ANSI FORM OF SUBSCRIPT ... ON ... NOT Self-evident. Self-evident.
DEFINED IN ANSI.

ANSI FORMAT INDICATOR ... MUST BE Variable format indicator must be an Self-evident.
ARRAY. array.

ANSI HOLLERITH ARGUMENT IS NON- Self-evident. Self-evident.
ANSI.

ANSI HOLLERITH CONSTANT IN EXPRES- Self-evident. Self-evident.
SION NON-ANSI.

ANSI HOLLERITH CONSTANT LONGER Excess characters are truncated. Self-evident.
THAN 1 WORD·

ANSI HOLLERITH DIMENSION FOR ... A Hollerith constant has been used for Self-evident.
a dimension.

ANSI LIST DIRECTED 1/0 IS NON-ANSI. Self-evident. Self-evident.

ANSI MASK EXPRESSION NON-ANSI. Self-evident. Self-evident.

ANSI MINIMUM DIGITS SPECIFIED FOR THE FORTRAN Extended FORMAT Self-evident.
CONVERSION CODE ... minimum digit specified has been used.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

I
N

°' ~
\0
-...J
OQ

8
t'!1

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

ANSI MULTIPLE ASSIGNMENT IS NON-ANSI. Self-evident. Self-evident.

ANSI MULTIPLE STATEMENT PER CARD Self-evident. Self-evident.
NOT PERMITTED.

ANSI NAMELIST 1/0 IS NON-ANSI. Self-evident. Self-evident.

ANSI NON-ANSI FORM OF BLOCK DAT A The form BLOCK DATA name is Use BLOCK DATA. FORTRAN
STATEMENT invalid in ANSI FORTRAN. assigns name BLKDAT.

ANSI NON-ANSI HOLLERITH FORM. Hollerith constant delimited by-=/= Change to Hollerith count of
character is non-ANSI. the form nH.

ANSI NON-ANSI SYNTAX IN THIS DAT A Self-evident. Self-evident.
STATEMENT.

ANSI NON-ANSI TYPE COMBINATIONS Self-evident. Use type declaration to ensure
WITH OPERATOR. correct type.

ANSI NUMERIC BLOCK NAME NOT Self-evident. Self-evident.
PERMITTED.

ANSI OBJECT OF IF IS ILLEGAL DO The last statement of a DO loop can-· Self-evident.
TERMINATOR. not be branched to by an IF state-

ment.

ANSI OCTAL DATA TYPE NOT DEFINED Self-evident. Self-evident.
IN ANSI.

ANSI OCTAL DIGITS REQUIRED. Self-evident. Self-evident.

ANSI PAREN REPEAT LIST IS NOT Self-evident. Self-evident.
PERMITTED.

ANSI PAUSE MAY NOT BE A DO TERMINAL. A DO loop must not end with a Self-evident.
PAUSE statement.

ANSI REDEFINITION OF PARAMETER Integer variable used as an array Self-evident.
..... USED AS DIMENSION INDICATOR declarator in a DIMENSION state-
IS NON-ANSI. ment was altered in a subsequent

expression.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

O"I
0
~
\0
-....)

00
0
0

CJ

t:O
1
w

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

ANSI RETURN IN MAIN PROGRAM. Self-evident. Replace with STOP.

ANSI S CODE IS SPECIFIED. S-code is non-ANSI. Self-evident.

ANSI SAME NAME USED AS FUNCTION Usage violates ANSI class restrictions. Reference the sub-
AND SUBROUTINE. program either as a

function or as a
subroutine.

ANSI SHORT FORMS OF LOGICAL Self-evident. Self-evident.
OPERATORS OR CONSTANT NOT
ALLOWED.

ANSI SKIP COUNT FOR X CODE IS Self-evident. Self-evident.
PRECEDED BY ...

ANSI STATEMENT IS NOT DEFINED IN Self-evident. Self-evident.
ANSI.

ANSI TCODEIBNULLORZEROCOLUMN Character T must be preceded by Self-evident.
POINTER RESET AT 1. integer.

ANSI THE WORD TYPE IS NOT PERMITTED. Self-evident. Self-evident.

ANSI THIS FORM OF DATA STATEMENT Self-evident. Self-evident.
NOT PERMITTED.

ANSI X CODE PRECEDED BY NON-DIG IT - Self-evident. Self-evident.
1 X ASSUMED.

ANSI X CODE PRECEDED BY ZERO - Self-evident. Self-evident.
X CODE IGNORED.

ANSI 2 BRANCH IF IS NON-ANSI. Self-evident. Self-evident.

ANSI 7 CHARACTER SYMBOL ... IS ANSI allows only 6 characters. Self-evident.
NON-ANSI.

ANSI ... BLANK STATEMENTS WERE ANSI does not permit blank lines. Self-evident.
IGNORED.

Issued By

Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

I
Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

Time-sharing mode compiler.

Time""sharing mode compiler.

Time-sharing mode compiler.

~

t

~
-.J
00

8
t:1

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

ANSI ... INDEX PARAMETER NOT SIMPLE
INTEGER VARIABLE OR CONST ANT.

Index parameter cannot be expression I Self-evident.
or type other than integer.

ANSI . . . IS DEFINED TO BE A BASIC
EXTERNAL FUNCTION.

The indicated user-defined name I Self-evident.
conflicts with a FORTRAN function
name.

ANSI ... IS DEFINED TO BE INTRINSIC. I The indicated user-defined name con- I Self-evident.
flicts with a FORTRAN function
name.

ANSI ... IS SPECIFIED AS CONVERSION I Illegal format specification.
CODE.

CONTINUE ... SYNTAX ERROR IN I Self-evident.
IMPLIED DO ON ARRAY ...

FATAL A C/-LIST DIRECTIVE CANNOT BE I Self-evident.
FOLLOWED BY A CONTINUATION LINE.

FATAL ARGUMENT COUNT NOT EQUAL
TO THAT DEFINED FOR INTRINSIC ...

Self-evident.

FATAL ARGUMENT COUNT ON ... MUST I Self-evident.
BE MORE THAN ONE.

FATAL ARGUMENT COUNT ON ... Self-evident.
EXCEEDS =FMAX.SARG=F

Self-evident.

Self-evident.

Self-evident.

Self-evident.

Self-evident.

Self-evident.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compilei.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

FATAL ARGUMENT MODE MUST AGREE
WITH TYPE DEFINED FOR LIBRARY
FUNCTION ...

Self-evident. Check definition of function to 'Time-sharing mode
determine correct argument type. compiler.

FATAL ARITHMETIC IF HAS STATEMENT
AS OBJECT.

Object must be of form sl ,s2, or I Self-evident.
sl ,s2,s3, where sl ,s2,s3 are statement
labels.

Time-sharing mode
compiler.

0\
0
~
\0
-..)

00
0
0

0

to
1
Vl

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message

FATAL ARRAY DECLARATION FOR
MISSING RIGHT PAREN.

Significance

Self-evident.

Action

Self-evident.

FATAL ARRAY ... DIMENSION INDICA- I Self-evident. Self-evident.
TOR NOT INTEGER.

FATAL ARRAY ... DIMENSION I Self-evident. Self-evident.
INDICATOR ... EXCEEDS 2** 17-1.

FATAL ARRAY ... EXCEEDS I Self-evident. Self-evident.
=I= 3 -::/=- DIMENSIONS.

FAT AL ARRAY ... HAS A VARIABLE I Self-evident. Self-evident.
SUBSCRIPT WITH NO IMPLIED LOOP.

FATAL ARRAY ... NULL OR ZERO I Self-evident. Self-evident.
DIMENSION INDICATOR.

FAT AL ARRAY ... SIZE EXCEEDS I Self-evident. Self-evident.
2** 17-1.

FATAL ASF EXPRESSION TYPE CON
FLICTS WITH FUNCTION TYPE.

FATAL BUFFER DIRECTION INDICATOR
MUST BE IN OR OUT.

FATAL BUFFER 1/0 ADDRESS MUST BE
VARIABLE.

FAT AL BUFFER 1/0 LWA MUST BE
GREATER THAN OR EQUAL TO FWA.

FATAL BUFFER 1/0 PARITY INDICATOR
MUST BE INTEGER CONSTANT OR
VARIABLE.

If function is logical, expression must I Self-evident.
be logical. If function is not type
logical, expression must not be
relational or logical.

BUFFER statement incorrect; correct I Self-evident.
form is BUFFER IN or BUFFER
OUT.

BUFFER 1/0 address must not be I Self-evident.
constant or expression.

Self-evident. I Self-evident.

Self-evident. Self-evident.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

l
°'

~
-..J
00

8
t::I

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL BUFFER I/O PARITY INDICATOR Self-evident. Self-evident.
VALUE MUST BE ZERO OR 1.

FATAL CALL STATEMENT MISSING Self-evident. Self-evident.
ROUTINE NAME.

FATAL CHARACTER ... FOUND AFTER Self-evident. Self-evident.
TERMINAL RIGHT PAREN.

FATAL CHARACTER . , . NOT DEFINED Self-evident. Self-evident.
IN STANDARD FORTRAN - CARD SCAN
STOPPED.

FATAL COMMA MUST FOLLOW LEVEL Self-evident. Self-evident.
NUMBER.

FATAL COMMA OR E.0.S. MUST FOLLOW Comma or end of statement expected; Self-evident.
LEVEL LIST NAME. line contains extraneous information.

FATAL COMPLEX MUST ONLY BE RAISED Self-evident. Self-evident.
TO INTEGER POWER.

FATAL COMPUTED GO TO INDEX MUST Index is of incorrect type. Self-evident.
NOT BE LOGICAL.

FATAL CONFLICT IN EQUIVALENCE The indicated EQUIVALENCE Check all EQUIVALENCE
SPECIFICATION FOR ... specification is inconsistent with a statements.

previous EQUIVALENCE
specification.

FATAL CONSTANT CANNOT BE Constant contains syntax error. Self-evident.
CONVERTED.

FATAL CONSTANT DIVIDE BY ZERO - Division by zero is an undefined Self-evident.
RESULTS SET TO INFINITE. operation.

FATAL CONSTANT IN INPUT LIST IS Self-evident. Self-evident.
ILLEGAL.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

°' ~
\0
-.J
00
0
0

'=='

t:x:l

!.
-.J

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL COUNT FOR H CODE ZERO OR Hollerith constant must be positive Self-evident.
MISSING - SCAN STOPPED. integer.

FATAL DAT A INTO . . . IS ILLEGAL. Self-evident. Self-evident.

FATAL DATA SUBSCRIPT LIST SYNTAX Self-evident. Self-evident.
ERROR.

-FATAL DATA VARIABLE LIST SYNTAX Self-evident. Self-evident.
ERROR.

FATAL DO CONTROL INDEX MUST BE DO control index cannot be expres- Self-evident.
SIMPLE INTEGER VARIABLE. sion, constant, or type other than

integer.

FATAL DO LOOP ... PREVIOUSLY The label is used in a previous ·DO Self-evident.
DEFINED - ILLEGAL NESTING. statement.

FATAL DO LOOP ... NOT TERMINATED Do loop terminator missing. Rewrite statement or use
BEFORE END OF PROGRAM. different variable for DO

index.

FATAL DO STATEMENT SYNTAX - The DO statement is incomplete. Self-evident.
EXPECTED CONTROL INDEX -
FOUND E.0.S.

FATAL DUMMY ARGUMENT ... CAN Self-evident. Self-evident.
OCCUR ONLY ONCE IN ... DEFINITION.

FATAL DUMMY ARGUMENT ... MUST Self-evident. Self-evident.
BEGIN WITH LETTER.

FATAL DUMMY ARGUMENT ... A dummy argument can only appear Self-evident.
PREVIOUSLY DEFINED. once in the FUNCTION or

SUBROUTINE statement.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

t TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

00

Message Significance Action Issued By

FATAL EQUAL SIGN MUST BE FOLLOWED Self-evident. Self-evident. Time-sharing mode
BY NAME, NUMBER, OR SLASH. compiler.

FATAL EXCESS LEFT PAREN IN I/O LIST. Self-evident. Self-evident. Time-sharing mode
compiler.

FATAL EXCESS LEFT PAREN IN I/O Self-evident. Self-evident. Time-sharing mode
SUBSCRIPT. compiler.

FATAL EXCESS RIGHT PAREN IN I/O Self-evident. Self-evident. Time-sharing mode
UST. compiler.

FATAL EXCESS SUBSCRIPTS ON EQUIVALENCE variable has more Self-evident. Time-sharing mode
EQUIVALENCE VARIABLE ... subscripts than declared dimension. compiler.

FATAL EXECUTABLE STATEMENT Self-evident. Self-evident. Time-sharing mode
ILLEGAL IN BLOCK DATA compiler.
SUBPROGRAM.

FATAL EXPECTED COMMA AFTER Self-evident. Self-evident. Time-sharing mode
COUNT - FOUND ... compiler.

FATAL EXPECTED COMMA AFTER Self-evident. Self-evident. Time-sharing mode
FORMAT INDICATOR - FOUND ... compiler.

FATAL EXPECTED COMMA FOUND . . . Self-evident. Self-evident. Time-sharing mode
compiler.

FATAL EXPECTED COMMA OR SLASH Self-evident. Self-evident. Time-sharing mode
FOUND ... compiler.

FATAL EXPECTED COMMA FOUND ... Self-evident. Self-evident. Time-sharing mode
compiler.

~
....;i

FATAL EXPECTED E.0.S. OR RETURNS Syntax error in RETURNS list. Self-evident. Time-sharing mode
PARAMETER FOUND ... compiler .

8
0

0\

~
\D
-:i
00
0
0

0

co
!.
\D

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL EXPECTED E.0.S. - FOUND AND End of statement expected. Self-evident.
IGNORED ...

FATAL EXPECTED LEFT PAREN BEFORE Self-evident. Self-evident.
COUNT - FOUND ...

FATAL EXPECTED LEFT PAREN FOR AN Self-evident. Self-evident.
ARGUMENT LIST, FOUND ...

FATAL EXPECTED LEFT PAREN OR Self-evident. Self-evident.
COMMA AFTER ROUTINE NAME
FOUND ...

FATAL EXPECTED LEFT PAREN OR Self-evident. Check for error in argument
COMMA FOUND ... list.

FATAL EXPECTED LEFT PAREN - Self-evident. Self-evident.
FOUND ...

FATAL EXPECTED NAME - FOUND ... Self-evident. Self-evident.

FATAL EXPECTED RETURNS FOUND ... Self-evident. Check for error in SUB-
ROUTINE statement.

FATAL EXPECTED RIGHT PAREN AFTER Self-evident. Self-evident.
STRING ADDRESS - FOUND ...

FATAL EXPECTED RIGHT PAREN OR Self-evident. Self-evident.
COMMA - FOUND ...

FATAL EXPECTED RIGHT PAREN - Self-evident. Self-evident.
FOUND ...

FATAL EXPECTED SYMBOL BUT Self-evident. Self-evident.
FOUND ... - SCAN OF CARD STOPPED.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

= ~
0

§
'° -l
00

8
'T1

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL EXPONENT EXCEEDS 512. Self-evident. Self-evident.

FATAL EXPRESSION IN INPUT LIST IS An arithmetic expression cannot Self-evident.
ILLEGAL. appear in an I/O list.

FATAL EXTERNAL ARGUMENT ... MUST If a function, subroutine, or entry Self-evident.
BE DEFINED AS EXTERNAL. point name appears in an argument

list, it must be declared EXTERNAL.

FATAL E.O.S. BEFORE END OF Premature end of statement Check for incorrect Hollerith
HOLLERITH COUNT. encountered. count.

FATAL FIELD WIDTH OF CONVERSION Self-evident. Self-evident.
CODE ... IS ZERO OR NOT SPECIFIED.

FATAL FORMAT DESIGNATOR MISSING. This form of the I/O statement must Self-evident.
specify the label FORMAT statement.

FATAL FORMAT INDICATOR MUST NOT Self-evident. Self-evident.
BE EXPRESSION.

FATAL FORMAT INDICATOR ... IS NAMELIST name cannot be used Self-evident.
NAMELIST NAME. . in ENCODE/DECODE.

FATAL FORMAT LABEL PREVIOUSLY Self-evident. Self-evident.
REFERENCED AS CONTROL STATEMENT
LABEL.

FATAL FORMAT LABEL PREVIOUSLY Self-evident. Self-evident.
REFERENCED AS DO STATEMENT
LABEL.

FATAL FUNCTION MUST HA VE AT Self-evident. Self-evident.
LEAST 1 DUMMY ARGUMENT.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

°' ~
\0
-....J
00
0
0

0

to
&i

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL FUNCTION NAME IS NOT The function name must be assigned Self-evident.
ASSIGNED A VALUE. a value within the function.

FATAL GROUP NAME ... PREVIOUSLY The group name appears twice in the Self-evident.
DEFINED. same statement or in an earlier

statement.

FATAL HEADER CARD NOT FIRST PROGRAM, SUBROUTINE, or Self-evident.
STATEMENT - IGNORED. FUNCTION must be first statement

of program.

FATAL ILLEGAL BLOCK NAME IN Self-evident. Self-evident.
COMMON STATEMENT.

FATAL ILLEGAL CHARACTER COUNT. Must be integer constant or simple Self-evident.
integer variable LE.150.

FATAL ILLEGAL CONSTANT FOLLOWING Self-evident. Self-evident.
+OR-.

FATAL ILLEGAL FORM INVOLVING THE Self-evident. Self-evident.
USE OF A COMMA.

FATAL ILLEGAL FORM OF EXPONENT ... Self-evident. Self-evident.

FATAL ILLEGAL FORMAT INDICATOR ... Must be legal statement label. Self-evident.

FATAL ILLEGAL IF STATEMENT - Self-evident. Self-evident.
OBJECT MISSING.

FATAL ILLEGAL NESTING OF DO LOOPS. The range of an inner DO must be Self-evident.
within the range of an outer DO.

FATAL ILLEGAL OBJECT OF IF - Self-evident. Self-evident.
TROUBLE STARTED AT ...

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

~
&
tv

°' ~
-....)
00

8
0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL ILLEGAL OBJECT OF LOGICAL IF. Object must be expression or GO TO. Self-evident.

FATAL ILLEGAL RANGE-.... NOT LESS Self-evident. Self-evident.
THAN ... - TRUNCATED.

FATAL ILLEGAL REFERENCE TO FORMAT The label was previously defined as a Self-evident.
STATEMENT LABEL ... FORMAT label.

FATAL ILLEGAL REFERENCE TO The label referenced as a FORMAT Self-evident.
STATEMENT LABEL ... AS A FORMAT. appears as the label of an executable

statement.

FATAL ILLEGAL REPEAT CONSTANT. Self-evident. Self-evident.

FATAL ILLEGAL SEPARATOR AFTER ... Self-evident. Self-evident.

FATAL ILLEGAL SEPARATOR FOLLOWING Separator must be), I, or , . Self-evident.
DATA CONSTANT.

FATAL ILLEGAL TRANSFER INTO RANGE Indicated statement branches into a Self-evident.
OF DO. DO loop.

FATAL ILLEGAL TRANSFER TO DO ... A DO terminator cannot be Self-evident.
TERMINATOR. referenced outside the DO loop.

FATAL ILLEGAL TRANSFER TO ... Self-evident. Self-evident.
FORMAT.

FATAL ILLEGAL USE OF ASSIGNMENT Illegal use of equal sign. Self-evident.
OPERATOR.

FATAL ILLEGAL USE OF ENTRY ... ENTRY cannot be labeled; within Self-evident.
range of DO; used as object of IF.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

0\
0

~
-...J
00
0
0

0

c::i
I

Vt
w

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL ILLEGAL USE OF OPERATOR/ Self-evident. See items filled in.
OPERAND - ...

FATAL IMPLICIT STATEMENT MUST Self-evident. Self-evident.
OCCUR BEFORE DECLARATIVES.

FATAL IMPLIED DO INCREMENT MUST Self-evident. Self-evident.
BE NUMERIC.

FATAL IMPLIED DO INDEX MUST BE Self-evident. Self-evident.
FOLLOWED BY EQUAL.

FATAL IMPLIED DO LOWER LIMIT MUST Self-evident. Self-evident.
BE NUMERIC.

FATAL IMPLIED DO NOT TERMINATED. Self-evident. Check statement for syntax
errors.

FATAL IMPLIED DO UPPER LIMIT MUST Self-evident. Self-evident.
BE NUMERIC.

FATAL INDEX OF OUTER DO Inner DO index is same as outer. Self-evident.
REDEFINED BY CURRENT DO. DO index, or inner DO contains

statement which redefines outer
DO index.

FATAL INTEGER GREATER THAN Self-evident. Self-evident.
2** 48-1 IN MULTIPLY OR DIVIDE.

FATAL INTEGER GREATER THAN Self-evident. Self-evident.
2** 48-1 IN REAL EXPRESSION.

FATAL INTEGER OPERATION RESULTS Results of operation exceed capacity Self-evident.
IN OVERFLOW. of machine.

FATAL INTEGER- I, 2, OR 3 MUST Self-evident. Self-evident.
FOLLOW LEVEL.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

°' & TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)
+:-

Message Significance Action Issued By

FATAL 1/0 UNIT DESIGNATOR MUST BE Self-evident. Self-evident. Time-sharing mode
INTEGER. compiler.

FATAL 1/0 UNIT DESIGNATOR MUST BE Cannot be expression or array. Self-evident. Time-sharing mode
SIMPLE VARIABLE. compiler.

FATAL LEFT SIDE OF EQUAL SIGN IS Self-evident. Self-evident. Time-sharing mode
ILLEGAL. compiler.

FATAL LEVEL CONFLICT IN COMMON All members of a COMMON block Self-evident. Time-sharing mode
BLOCK ... must be assigned to same level. compiler.

FATAL LEVEL 3 NAME . . . MAY NOT Level 3 data cannot be used in Transfer •to central memory Time-sharing mode
OCCUR IN THIS STATEMENT. expressions. with MOVLEV call. compiler.

FATAL LOADER DIRECTIVE MUST BEGIN Self-evident. Self-evident. Time-sharing mode
WITH LEFT PAREN. compiler.

FATAL WCF ARGUMENT MUST NOT BE WCF argument must be a variable. Self-evident. Time-sharing mode
CONSTANT OR EXPRESSION. compiler.

FATAL WGICAL AND NON-LOGICAL Self-evident. Self-evident. Time-sharing mode
OPERANDS MAY NOT BE MIXED. compiler.

FATAL LOGICAL IF MUST NOT BE Self-evident. Self-evident. Time-sharing mode
OBJECT OF LOGICAL IF. compiler.

FATAL LOGICAL OPERAND USED WITH Self-evident. Self-evident. Time-sharing mode
NON-WGICAL OPERATOR. compiler.

FATAL MISSING COMMA AT ... Self-evident. Self-evident. Time-sharing mode
compiler.

~
FATAL MISSING LABEL IN ARITHMETIC Arithmetic IF must specify 2 or 3 Self-evident. Time-sharing mode

IF. labels. compiler .
....;i

8 FATAL MISSING LEFT PAREN AT ... Self-evident. Self-evident. Time-sharing mode

0 compiler.

0\
0

~
.......)

00
0
0

0

t::xi
~
Vi

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL MISSING RIGHT PAREN AFTER A right parenthesis was expected at Compiler assumes the missing
FORMAT IS ASSUMED. the end of the statement. parenthesis.

FATAL MISSING RIGHT PAREN AFTER Self-evident. Self-evident.
IMPLIED DO.

FATAL MISSING RIGHT PAREN AFTER Compiler inserts the missing Self-evident.
UNIT IS ASSUMED. parenthesis.

FATAL MISSING SLASH ON GROUP Self-evident. Self-evident.
NAME.

FATAL MISSING UNIT DESIGNATOR IN Self-evident. Self-evident.
1/0 STATEMENT.

FATAL MISSING VARIABLE OR ARRAY LEVEL statement has no or illegal Self-evident.
NAME IN LEVEL LIST. names.

FATAL MORE THAN 3 SUBSCRIPT. Self-evident. Self-evident.

FATAL MULTIPLE DEFINITION OF Self-evident. Check FORMAT statements
CURRENT FORMAT NUMBER. for duplicate label.

FATAL MULTIPLE STATEMENT IGNORED Self-evident. Self-evident.
AFTER LOADER DIRECTIVE.

FATAL MULTIPLY DEFINED STATEMENT Self-evident. Self-evident.
LABEL ...

FATAL NAME ... IS IN EQUIV. GROUP Items in an equivalence group must Self-evident.
THAT HAS LEVEL CONFLICT. have same level declaration.

FATAL NAME . . . IS IN LEVEL Level 2 or 3 data must appear in Self-evident.
EQUIVALENCE GROUP AND MUST BE COMMON or as dummy arguments.
COMMON.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sh~ring mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

~
0\

~
-...J
00

8
0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL NAME . . IS LEVEL AND MUST Level 2 or 3 data must be in Self-evident.
BE COMMON OR DUMMY ARGUMENT. COMMON or in dummy argument

list.

FATAL NAME . . . NOT IN RETURNS The indicated name must appear in a Self-evident.
LIST. RETURNS list in the header

statement.

FATAL NEGATIVE DIMENSION FOR ... Self-evident. Self-evident.
- SET TO 1.

FATAL NESTING OF REPEAT COUNT IN Self-evident. Self-evident.
DATA CONSTANT LIST IS ILLEGAL.

FATAL NO CHARACTERS FOUND IN ... Self-evident. Self-evident.
DELIMITED HOLLERITH STRING.

FATAL NO COMMA AFTER LOWER LIMIT. Self-evident. Self-evident.

FATAL NO DIMENSION FOUND FOR Self-evident. Self-evident.
EQUIVALENCE VARIABLE ...

FATAL NO MATCH OF LOOP INDEX The same variable must be used for Self-evident.
AND SUBSCRIPT. loop index and subscripts.

FATAL OBJECT OF GO TO MISSING. The GO TO does not specify a Self-evident.
statement label.

FATAL ONLY LIST DIRECTED OUTPUT The comma at the end of this Self-evident.
STATEMENTS MAY END WITH A statement is illegal.
COMMA.

FATAL ONLY 1 LABEL IN IF STATEMENT. Self-evident. Self-·evident.

FATAL ONLY 9 PAREN LEVELS Self-evident. Self-evident.
ALWWED.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing· mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

0\
0
.p.
\0
-....J
00
0
0

0

o;
&i
-....J

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL ONLY 19 CONTINUATION CARDS Self-evident. Self-evident.
ARE PERMITTED.

FATAL ONLY 500 COMMON BLOCKS ARE Too many common blocks. Self-evident.
PERMITTED.

FATAL ONLY 63 DUMMY ARGUMENTS Self-evident. Self-evident.
ARE PERMITTED - EXCESS IGNORED.

FATAL OPERAND TO ** OPERATOR Self-evident. SElf-eviden t.
MUST NOT BE LOGICAL.

FATAL PREMATURE E.0.S. Premature end of statement. Check for incomplete
statement.

FATAL PREMATURE E.O.S. IN ENCODE End of statement encountered; Self-evident.
OR DECODE. statement incomplete.

FATAL PREMATURE E.O.S. IN 1/0 End of statement encountered; Self-evident.
SUBSCRIPf. part of statement missing.

FATAL PREMATURE E.0.S. OR MISSING End of statement encountered or Check for incomplete statement.
RIGHT PAREN. missing right parenthesis.

FATAL PREMATURE E.0.S. - EXPECTED Premature end of statement. Check for incomplete statement.
BLOCK NAME.

FATAL PREMATURE E.0.S. - EXPECTED Premature end of statement. Check for incomplete statement.
SYMBOL.

FATAL PREVIOUS REFERENCE TO DO A DO label must not be referenced Check all previous references
LABEL . . . IS ILLEGAL. outside the DO loop. to the label.

FATAL PREVIOUS REFERENCE TO The label was previously defined as Self-evident.
FORMAT LABEL ... IS ILLEGAL. a FORMAT label.

FATAL PREVIOUS REFERENCE TO THIS The label of the terminal statement Self-evident.
DO LABEL IS ILLEGAL. of a DO loop cannot be r.eferenced

by a statement outside the loop.

Issued By

Time-sharing mode
compiler

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

t::C
&
00

°'
~
-.....J
00

8
0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL PREVIOUS TRANSFER TO ... IS A label within a DO loop cannot Self-evident.
FROM OUTSIDE CURRENT DO. be referenced outside the loop.

FATAL PROGRAM LENGTH EXCEEDS Program exceeds machine capability. Shorten program or use overlay
2** 17-1. structure.

FATAL RANGE INDICATOR ... MUST Self-evident. Self-evident.
BE A LETTER.

FATAL RECORD LENGTH EXCEEDS Self-evident. Check for incorrect repeat
2** 17-1 COLUMNS. specification, Hollerith count,

format specification.

FATAL RECURSIVE DEFINITION OF The function appears on both sides Self-evident.
STATEMENT FUNCTION ... of an equal sign.

FATAL REFERENCE TO B.E.F Reference to basic external function Self-evident.
REQUIRES AN ARGUMENT LIST. requires argument list.

FATAL REFERENCE TO FUNCTION ... Self-evident. Self-evident.
REQUIRES AN ARGUMENT LIST.

FATAL REFERENCE TO INTRINSIC ... Self-evident. Self-evident.
REQUIRES AN ARGUMENT LIST.

FATAL REFERENCE TO STATEMENT Function reference requires a Self-evident.
FUNCTION ... HAS A NULL parameter.
PARAMETER.

FATAL REFERENCE TO VARIABLE ... The variable has a subscript or Self-evident.
AS A FUNCTION OR ARRAY. argument list but is not declared

an array or function.

FATAL REPEAT COUNT IS NOT ALLOWED A repeat count was used with a Self-evident.
BEFORE THE FIELD DESCRIPTOR ... descriptor that does not require

one.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

0\

~
-....)
00
0
0

t::i

tx:i
&.
\0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL RESULTS OF CONSTANT USED The indicated operation is undefined. Self-evident.
WITH ... OPERATOR INFINITE OR
INDEFINITE.

FATAL RETURNS LIST NOT PERMITTED Only standard RETURN is permitted Self-evident.
IN FUNCTION STATEMENT. in FUNCTION subprogram.

FATAL RETURNS PARAMETER . . . Self-evident. Self-evident.
MUST BE NUMERIC LABEL.

FATAL RETURNS PARAMETER ... NOT Self-evident. Self-evident.
ALWWED IN THIS STATEMENT.

FATAL SIGNED COUNT ALLOWED ONLY Self-evident. Self-evident.
BEFORE P OR X CODE.

FATAL STATEMENT FUNCTION DEFINI- Self-evident. Self-evident.
TION MUST OCCUR BEFORE FIRST
EXEC UT ABLE.

FATAL STATEMENT FUNCTION DUMMY A constant or expression appears in Self-evident.
PARAMETER ... NOT SIMPLE the parameter list of a function
VARIABLE. definition.

FATAL STATEMENT FUNCTION ... Self-evident. Self-evident.
REFERENCE - RIGHT PAREN MISSING.

FATAL STATEMENT FUNCTION ... - Syntax error in statement function. Self-evident.
MISPLACED EQUAL SIGN.

FATAL STATEMENT LABEL EXPECTED The statement form requires a Self-evident.
BUT NOT FOUND. statement label.

FATAL STATEMENT LABEL ZERO IS Self-evident. Self-evident.
ILLEGAL.

FATAL STATEMENT LABEL ... Self-evident. Self-evident.
CONTAINS NON-DIGIT.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

=
~
0

°' ~
....J
00

8
~

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL STATEMENT LABEL ... EXCEEDS Self-evident. Self-evident.
5 DIGITS.

FATAL STATEMENT LABEL ... MUST Self-evident. Self-evident.
BE NUMERIC.

FATAL STATEMENT LABEL ... The indicated label does not appear Check for missing label.
REFERENCED BUT NOT DEFINED. as a statement label anywhere in the

program.

FATAL STRING ADDRESS MUST BE Self-evident. Self-evident.
ARRAY ELEMENT OR SIMPLE
VARIABLE.

/

FATAL SUBROUTINE ... REFERENCE Self-evident. Self-evident.
AS A FUNCTION.

FATAL SUBSCRIPT ... ON ... MUST Self-evident. Self-evident.
NOT BE LOGICAL.

FATAL SUBSCRIPT ... EXCEEDS Self-evident. Self-evident.
2** 17-1.

FATAL SUBSCRIPT ... MUST BE NON- Self-evident. Self-evident.
ZERO NUMERIC INTEGER CONSTANT.

FATAL SYNTAX ERROR IN ARGUMENT Self-evident. Check argument list.
LIST.

FATAL SYNTAX ERROR IN BLOCK NAME. Self-evident. Self-evident.

FATAL SYNTAX ERROR IN DATA Self-evident. Self-evident.
CONSTANT LIST.

FATAL SYNTAX ERROR IN DATA Self-evident. Self-evident .
STATEMENT.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

0\
0
~
\0
-....J
00
0
0

0

~

~ -

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL SYNTAX ERROR IN DIMENSION Self-evident. Self-evident.
STATEMENT.

FATAL SYNTAX ERROR IN EQUI- Self-evident. Self-evident.
VALENCE STATEMENT.

FATAL SYNTAX ERROR IN GO TO Self-evident. Self-evident.
STATEMENT.

FATAL SYNTAX ERROR IN IMPLIED DO Self-evident. Self-evident.
NESTING.

FATAL SYNTAX ERROR IN 1/0 IMPLIED Self-evident. Self-evident.
DO.

FATAL SYNTAX ERROR IN NAMELIST. Self-evident. Self-evident.

FATAL SYNTAX ERROR IN PROGRAM Self-evident. Self-evident.
CARD - SCAN STOPPED AT ...

FATAL SYNTAX ERROR IN PROGRAM Syntax error on PROGRAM, Self-evident.
UNIT NAME. FUNCTION, SUBROUTINE card.

FATAL SYNTAX ERROR ON DIMENSION Self-evident. Self-evident.
INDICATOR FOR ...

FATAL SYNTAX OF DO MUST BE I=Ml, Syntax error in DO statement. Self-evident ..
M2, M3, OR Ml ,M2.

FATAL TABLE OVERFLOW - INCREASE Self-evident. Specify FL parameter on FTN
FIELD LENGTH AND RERUN. card.

FATAL TERMINAL DELIMITER ... Self-evident. Self-evident.
MISSING.

FATAL TERMINAL RIGHT PAREN Self-evident. Self-evident.
MISSING.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

?'
°' N

~
-......)

g
~

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL THE TERMINAL STATEMENT OF Self-evident. Self-evident.
DO ... PRECEDED THE DO DEFINITION.

FATAL THIS IS NOT A FORTRAN Unrecognizable statement. Self-evident.
STATEMENT.

FATAL THIS STATEMENT MAY NOT BE Following statements cannot end a Self-evident.
A DO TERMINAL. DO loop: arithmetic or two-branch

logical IF, GO TO, RETURN, END,
STOP, PAUSE, or DO.

FATAL THIS STATEMENT REDEFINES A Self-evident. Rewrite statement or use
DO CONTROL INDEX. different variable for DO index.

FATAL THIS STATEMENT REQUIRES AN Self-evident. Self-evident.
1/0 LIST.

FATAL TOO FEW LEFT PAREN. Self-evident. Self-evident.

FATAL TOO FEW LEFT PAREN OR Self-evident. Self-evident.
PREVIOUS SYNTAX ERROR - SCAN
STOPPED AT ...

FATAL TOO FEW RIGHT PAREN. Self-evident. Self-evident.

FATAL TOO FEW RIGHT PAREN OR Self-evident. Self-evident.
PREVIOUS SYNTAX ERROR - SCAN
STOPPED AT ...

FATAL TOO MANY LABELS IN LOGICAL Self-evident. Self-evident.
IE.

FATAL TOO MANY SUBSCRIPTS ON ... Maximum number of subscripts is 3. Self-evident.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

°' 0

~
-...J
00
0
0

0

tc
&
w

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL TYPE MUST BE FOLLOWED BY Statement is incomplete; one of Self-evident.
A TYPE INDICATOR. REAL, INTEGER, COMPLEX,

DOUBLE PRECISION, LOGI-
CAL required.

FATAL UNFORMATTED I/O NOT This form requires a format Self-evident.
ALLOWED IN THIS STATEMENT. specification.

FATAL UNIT DESIGNATOR EXCEEDS Self-evident. Self-evident.
2 DIGITS.

FATAL UNIT DESIGNATOR ... NOT Self-evident. Self-evident.
SIMPLE INTEGER VARIABLE OR
CONSTANT.

FATAL UNKNOWN FORMAT CODE ... - Self-evident. Self-evident.
SCAN RESUMES AT NEXT SEPARATOR.

FATAL UNMATCHED PARAMETER The function reference and function Self-evident.
COUNT TO STATEMENT FUNCTION ... definition contain differing numbers

of parameters.

FATAL USAGE CONFLICT ... Self-evident. Check previous loops for use of
PREVIOUSLY DEFINED AS DO same label.
TERMINAL.

FATAL USAGE CONFLICT - ... The label was previously used as a Self-evident.
PREVIOUSLY DEFINED AS FORMAT. format label.

FATAL USAGE CONFLICT - ... CANNOT The indicated function name conflicts Check all other usages; function
BE STATEMENT FUNCTION. with a previous usage. name might be used as variable

or array name.

FATAL USAGE CONFLICT - ... IS ... Self-evident. Self-evident. /

AND CANNOT BE . . .

FATAL USAGE CONFLICT - ... The label was previously defined as a Self-evident.
PREVIOUSLY USED AS A FORMAT FORMAT label.
LABEL

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

~
TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action Issued By

FATAL USAGE CONFLICT - ... Self-evident. Self-evident. Time-sharing mode
PREVIOUSLY USED AS ... compiler.

FATAL VARIABLE DIMENSION ARRAY ... A variable dimension array can appear Self-evident. Time-sharing mode
MUST BE DUMMY ARGUMENT. only in a subprogram, and must compiler.

appear as a dummy argument.

FATAL VARIABLE DIMENSION Self-evident. Self-evident. Time-sharing mode
INDICATOR ... IS NOT INTEGER. compiler.

FATAL VARIABLE DIMENSION Self-evident. Self-evident. Time-sharing mode
INDICATOR ... MUST BE DUMMY compiler.
ARGUMENT.

FATAL VARIABLE DIMENSION NOT Self-evident. Self-evident. Time-sharing mode
PERMITTED IN NAMELIST. compiler.

FATAL ZERO IS AN ILLEGAL UNIT Self-evident. Self-evident. Time-sharing mode
NUMBER. compiler.

FATAL ZERO IS SPECIFIED AS REPEAT Self-evident. Self-evident. Time-sharing mode
COUNT. compiler.

FATAL ZERO LENGTH SPECIFIED ON Self-evident. Self-evident. Time-sharing mode
HOLLERITH CONSTANT. compiler.

FATAL 3 BRANCH IF NOT DEFINED Self-evident. Self-evident. Time-sharing mode
FOR LOGICAL RESULTS. compiler.

FATAL /NOT ALLOWED IN FORMATTED Self-evident. Self-evident. Time-sharing mode
1/0 OR UNFORMATTED INPUT LIST. compiler.

FATAL . . . - ILLEGAL TRANSFER TO To branch inside a DO loop, a branch Self-evident . Time-sharing mode

~
INSIDE A CLOSED DO LOOP. must previously have been made out compiler.

of the loop.

-...J

8
0

°' ~
\0
-.....)

00
0
0

IT]

ti;:l

6"
(Ji

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

FATAL ... ILLEGAL EXTENSION OF The EQUIVALENCE statement has Check all EQUIVALENCE
COMMON BLOCK ORIGIN. extended the common block origin statements for contradictory

backwards. equivalencing.

FATAL . . . ILLEGAL FIRST ELEMENT OF Self-evident. See item filled in .
EXPRESSION.

FATAL ... INDEX PARAMETER IS TOO DO index must be ~ 131070. Self-evident.
LARGE.

FATAL ... INDEX PARAMETER MUST BE Self-evident. Self-evident.
INTEGER OR OCTAL.

FATAL ... INDEX PARAMETER MUST BE Self-evident. Self-evident.
POSITIVE.

FATAL ... INDEX PARAMETER BE Index variable cannot be constant or Self-evident.
SIMPLE VARIABLE. expression.

FATAL ... lS IN BLANK COMMON - Blank COMMON cannot be data Self-evident.
DATA IGNORED. loaded.

FATAL ... IS NOT A LEGAL TYPE. Self-evident. Self-evident.

FATAL ... IS NOT IN LABELED The usage of the indicated variable Check common blocks; data
COMMON. requires that the variable be in cannot be loaded into blank

labeled common. common.

FATAL ... STATEMENT MISPLACED. Self-evident. Self-evident.

FATAL . . . SUBSCRIPT EXCEEDS 2**17-1. Self-evident. Self-evident.

FATAL ... SUBSCRIPT LESS THAN I OR Self-evident. Self-evident.
EXCEEDS DIMENSION.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler .

Time-sharing mode
compiler.

Time-sharing mode
compiler.

~
Q\
Q\

§
\0
-.....)
00

8
0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

WARNING ASF MODELESS EXPRESSION If function is type logical, the Self-evident.
ASSIGNED TO LOGICAL FUNCTION. expression must be logical.

WARNING ASSUMED COMMA AFTER Compiler inserts the missing comma. Self-evident.
UNIT OR FORMAT - FOUND ...

WARNING BUFFER LENGTH FOR FILE ... Self-evident. Self-evident.
EXCEEDS 3600008 - 360000B USED.

WARNING COMMA AFTER DO LABEL Self-evident. Self-evident.
IGNORED.

WARNING COMMA AFTER STATEMENT Self-evident. Self-evident.
LABEL IGNORED.

WARNING COMMON STATEMENT WITH NO Self-evident. Self-evident.
LIST IS IGNORED.

WARNING CONFLICT IN RANGE Self-evident. Check for overlap of ranges in
INDICATOR - FIRST RETAINED. IMPLICIT statement.

WARNING ... CONSTANT TOO LONG - Self-evident. Self-evident.
TRUNCATED. I

WARNING DIMENSION OF ... IGNORED; If a dimension is declared more than Self-evident.
PRIOR DIMENSION RETAINED. once, first declaration is assumed.

WARNING ENTRY INSIDE DO LOOP IS An ENTRY statement cannot appear Self-evident.
IGNORED. inside a DO loop.

WARNING ENTRY STATEMENT IGNORED An ENTRY statement in the main Self-evident.
IN MAIN PROGRAM. program has no purpose.

WARNING ENTRY ... MUST NOT BE Self-evident. Self-evident.
DECLARED EXTERNAL - IGNORED.

WARNING EXPECTED E.0.S. - FOUND End of statement expected. Self-evident.
AND IGNORED ...

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

°' 0

~
-....)

00
0
0

0

to
6"
-....)

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

WARNING EXTRA CHARACTER . . . File name in 1/0 statement must Self-evident.
AFTER FILE NAME IGNORED. match file on PROGRAM statement.

WARNING EXTRANEOUS COMMA Self-evident. Self-evident.
IGNORED.

WARNING FILE ... NOT DEFINED ... The file was not declared on the Self-evident.
EQUIVALENCE IGNORED. PROGRAM statement. filea = fileb

ignored.

WARNING FILE ... PREVIOUSLY Doubly defined file on PROGRAM Self-evident.
DEFINED - IGNORED. card.

WARNING FORMAT MUST HAVE Self-evident. Self-evident.
STATEMENT LABEL.

WARNING FOUND ... AFTER FORMAT - The indicated character appeared Compiler assumes the missing
ASSUMED RIGHT PAREN. where a right parenthesis was parenthesis.

expected.

WARNING FWA AND LWA NOT IN SAME First word address and last word Check declarative section of
ARRAY, EQUIVALENCE CLASS, OR address must be in same COMMON program for inconsistencies
COMMON BLOCK. block, equivalence class, or array. involving FWA and LWA.

WARNING IF RESULTS IN A SIMPLE The IF can be replaced by a GO TO. Self-evident.
TRANSFER.

WARNING ILLEGAL BUFFER LENGTH An illegal buffer length was specified, Self-evident.
FOR FILE ... - 2003B USED. e.g., characters, negative number.

WARNING ILLEGAL CHARACTER AFTER Items appearing after argument list Check for premature right
RIGHT PAREN. are ignored; processing continues. parenthesis or misspelled

RETURNS.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

t:x:I
~
00

0\

t
-.....)
00
0
0

0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

WARNING ILLEGAL NAME - ENTRY Self-evident. Self-evident.
STATEMENT IGNORED.

WARNING ILLEGAL RECORD LENGTH Default is 150 characters. Self-evident.
FOR FILE ... -DEFAULT USED.

WARNING INITIAL LINE IS CONTINUA- Self-evident. Check for missing line or mis-
TION. placed character in column 6.

WARNING 1/0 FILE ... NOT DEFINED. The indicated file has not been This message should be ignored
declared in the PROGRAM for all programs residing in
statement. primary or secondary overlays.

For programs that reside in the
main overlay or are not part of
an overlay structure, the in-
dicated file must be declared
in the PROGRAM statement.

WARNING I/O LIST IGNORED WHEN Self-evident. Self-evident.
USING NAMELIST.

WARNING LAST IF RESULTS IN A NULL IF acts as a do-nothing statement. Check syntax of IF.
TRANSFER TO THIS STATEMENT.

WARNING LIMIT LESS THAN INITIAL - Only 1 pass will be made through Check DO statement for
1 TRIP LOOP. the loop. errors.

WARNING MISSING NAME - ENTRY Self-evident. Self-evident.
STATEMENT IGNORED.

WARNING MISSING SUBSCRIPTS SET TO EQUIVALENCE variable contains Self-evident.
1 FOR EQUIVALENCE VARIABLE ... fewer subscripts than declared

dimension.

WARNING MISSPELLED KEYWORD - ... Item appearing after argument list is Check for premature right
RETURNS ASSUMED. interpreted as the keyword parenthesis or misspelled

RETURNS. RETURNS.

WARNING MULTIPLE IMPLICIT ST ATE- The first IMPLICIT statement is Self-evident.
MENTS NOT PERMITTED - IGNORED. assumed.

WARNING MULTIPLY DEFINED LEVEL Self-evident. Self-evident.
FOR NAME ... - IGNORED.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

0\

~
\0
-:i
00
0
0

0

ll'
&
\0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

WARNING NAME ... PREVIOUSLY Self-evident. Check for another usage of
DEFINED - ENTRY STATEMENT the ENTRY name.
IGNORED.

WARNING NO PATH TO THE ENTIRE The statements in the loop cannot Check for logic error; incorrect
RANGE OF DO. be reached. branch.

WARNING NO PATH TO THIS STATEMENT. The statement cannot be reached. Check for logic error; missing
label.

WARNING NO SEQUENCE NUMBER FOUND In SEQ mode all executable state- Self-evident.
ON FOLLOWING STATEMENT - COMMENT ments must contain a sequence
ASSUMED. number.

WARNING NON-OCTAL DIGIT IN OCTAL Digit must be less than or equal to 7. Self-evident.
CONSTANT - IGNORED.

WARNING NULL DATA STATEMENT IS Self-evident. Self-evident.
IGNORED.

WARNING NULL LOADER DIRECTIVE IS Self-evident. Check for incomplete loader
IGNORED. directive.

WARNING NULL STATEMENT WITH Self-evident. Self-evident.
LABEL - CONTINUE ASSUMED.

WARNING NUMBER OF ARGUMENTS IN Number of arguments in reference Self-evident.
REFERENCE TO ... IS NOT must agree with number in FUNC-
CONSISTENT. TION or SUBROUTINE statement.

WARNING OBJECT OF GO TO NOT Object of assigned GO TO must be Self-evident.
INTEGER VARIABLE. a simple integer variable.

WARNING ONLY =I= MAX. PARG =I= FILES Too many files were specified on the Self-evident.
ARE PERMITTED, EXCESS IGNORED. PROGRAM statement.

WARNING PREMATURE E.O.S. OR EXTRA End of statement encountered or Check for incomplete statement.
TRAILING SEPARATOR ... extra I or , .

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

! TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

'
0 ,,,,,

Message Significance Action Issued By

WARNING PREMATURE E.O.S. - End of statement encountered; Self-evident. Time-sharing mode
EXPECTED VARIABLE AT ... statement is incomplete. compiler.

WARNING PREVIOUS DEFINITION OF The function was defined more than Self-evident. Time-sharing mode
STATEMENT FUNCTION ... IS once; the most recent definition is compiler.
OVERRIDDEN. in effect.

t
WARNING RANGE INDICATOR ... NOT Self-evident. Self-evident. Time-sharing jf de

1 LETTER - TRUNCATED TO ... compiler.

WARNING RECORD LENGTH EXCEEDS Self-evident. Reduce record length. Time-sharing mode
137 COLUMN - MAY EXCEED 1/0 compiler.
DEVICE.

WARNING RECORD LENGTH FOR FILE ... Self-evident. Self-evident. Time-sharing mode
EXCEEDS 2** 17-1 - DEFAULT USED. compiler.

WARNING REDUNDANT EQUIVALENCE Self-evident. Check for occurrence of Time-sharing jwde
SPECIFICATION FOR ... indicated symbol in previous compiler.

EQUIVALENCE statement.

WARNING RESULTS OF CONSTANT This will cause arithmetic error when Check for division by zero; Time-sharing mode
EVALUATION WILL BE OUT OF RANGE used in calculation. addition, subtraction, division, compiler.
OR INDEFINITE. or multiplication whose result

is .GT.10322 in magnitude.

WARNING STATEMENT LABEL IGNORED. Non-executable statements should Self-evident. Time-sharing mode
not contain labels. compiler. ~

'-
WARNING STATEMENT TRANSFERS TO Self-evident. Self-evident: .. Time-sharing mode

ITSELF. compiler.

WARNING T CODE RESETS COLUMN Self-evident. Check for missing I or Time-sharing mode

°' ~
POINTER, OVERLAYING CURRENT incorrectly set T specification. compiler.
LINE.

-.....)

8
t::i

WARNING TERMINAL CHARACTER . . . The indicated character appeared Compiler assumes a right Time-sharing mode
CONVERTED TO RIGHT PAREN. where a right parenthesis was parenthesis. compiler.

~ expected.

0\

t
-.....)

00
0
0

0

t:xl
!.:i -

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

WARNING THIS STATEMENT REDEFINES Self-evitlent. Correct statement or change
A DO INDEX PARAMETER. index parameter in DO

statements.

WARNING TOO FEW CONSTANTS - Self-evident. Initialize the variables;
VARIABLES FROM ... MAY NOT uninitialized variables can
BE INITIALIZED. cause execution time errors.

WARNING TRIVIAL EQUIVALENCE An equivalence must contain 2 Self-evident.
GROUP WITH ONLY 1 MEMBER IS members.
IGNORED.

WARNING TRIVIAL RANGE - ... SAME Self-evident. Self-evident.
AS ...

WARNING TYPING OF ... IGNORED - The symbol appeared in more than Self-evident.
PRIOR TYPING RETAINED. 1 type statement; first type assumed.

WARNING UNKNOWN FORM - BLANK Unrecognizable form of statement. Self-evident.
ASSUMED.

WARNING VARIABLE ... HAS NO Self-evident. Self-evident.
DIMENSION INDICATOR - IGNORED.

WARNING VARIABLE ... NOT INTEGER. Self-evident. Self-evident.

WARNING VARIABLE ... REFERENCED The indicated variable was Self-evident.
AS ARRAY. referenced with a subscript but was

not dimensioned.

WARNING X CODE RESETS COLUMN Self-evident. Check for missing / or
POINTER, OVERLAYING CURRENT LINE. incorrect X specification.

WARNING *TO* ASSUMED FOR ... Syntax error in ASSIGN Self-evident.
statement.

WARNING . . . CONSTANT TOO LONG .-- The constant exceeds the length of Self-evident .
TRUNCATED. the variable into which it is stored.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sh2.ring mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

~
N

°' ~
-..J
00

8
0

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

WARNING . . . CONVERSION CODE FIELD Self-evident. Self-evident .
WIDTH IS LESS THAN MINIMUM
REQUIRED.

WARNING . . . IS NOT A LEGAL Self-evident . Self-evident.
KEYWORD.

NOTE ARGUMENT ... IS NOT USED IN Self-evident. Probable error in function
FUNCTION ... definition.

NOTE CONSTANT EXCEEDS S DIGITS - Self-evident. Self-evident.
TRUNCATED.

NOTE CONSTANT MISSING EXPONENT Self-evident. Self-evident.
FIELD - ZERO ASSUMED.

NOTE CONSTANT MULTIPLY BY ZERO - Self-evident. Self-evident.
RESULTS SET TO ZERO.

NOTE CONSTANT TERM OF ZERO - Self-evident. Self-evident.
IGNORED.

NOTE CONTINUE WITH NO STATEMENT Self-evident. Self-evident.
LABEL - IGNORED.

NOTE DIVIDE BY 1 - IGNORED. Self-evident. Self-evident.

NOTE DIVIDE INTO ZERO - RESULTS Division by zero is an undefined Self-evident.
SET TO ZERO. operation.

NOTE DO CONCLUSION NOT COMPILED - No terminal statement of DO loop Self-evident.
DO DEFINITION ERROR. was encountered.

NOTE EXCESS CONSTANTS IGNORED. Number of constants greater than Self-evident.
number of variables.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

0\

~
\0
-....)

00
0
0

0

t::x:i
~
w

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

NOTE HOLLERITH ARGUMENT MUST Self-evident. Self-evident.
NOT EXCEED 70 CHARACTERS.

NOTE HOLLERITH CONSTANT IN Constant is truncated. Self-evident.
EXPRESSION EXCEEDS 10 CHARACTERS.

IF RESULTS IN A TRANSFER TO THE The IF statement is redundant. Self-evident.
NEXT LINE.

NOTE IMPLIED LOOP IS REDUCED. An implied DO loop has been Self-evident.
reduced to a simple list.

NOTE INTEGER DIVIDE BY ZERO - Division by zero is an undefined Self-evident.
RESULTS SET TO ZERO. operation.

NOTE INTEGER** NEGATIVE Self-evident. Self-evident.
CONSTANT - RESULTS ZERO.

NOTE LOADER DIRECTIVE MUST BE Self-evident. Self-evident.
CONTAINED ON 1 CARD.

NOTE MISSING PROGRAM STATEMENT - Program is assigned name ST ART. Self-evident.
PROGRAM START ASSUMED.

NOTE MISSING SUBSCRIPTS ON . . . Array reference has fewer subscripts Self-evident.
ARE ASSIGNED VALUE OF ONE. than declared dimension.

NOTE MULTIPLY BY 1 - IGNORED. Self-evident. Self-evident.

NOTE NUT EVERY NAME IN COMMON Same level for all members assumed. No action necessary.
BLOCK ... IS IN A LEVEL
STATEMENT.

NOTE NULL TRANSFER STATEMENT - A GO TO statement branches to the Self-evident.
TRANSFER IGNORED. following statement.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compile.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

t:r::I
~
.i:..

~
.....J
00

8
~

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

NOTE POSSIBLE ILLEGAL TRANSFER A possible illegal extended range Self-evident.
FROM OUTSIDE CURRENT DO. inside a DO has been encountered.

NOTE RETURN ACTS AS END. A RETURN statement should not Replace with STOP.
be used in a main program.

NOTE STATEMENT CAN TRANSFER TO Self-evident. Self-evident.
ITSELF.

NOTE STATEMENT FUNCTION ... - Statement function expansion reduces Check for error in function
HAS NULL DEFINITION - IGNORED. to a null code sequence. definition statement.

NOTE STATEMENT LABEL ZERO Self-evident. Self-evident.
IGNORED.

NOTE SUBSCRIPT ... FOR ... NOT Self-evident. Self-evident.
INTEGER - TRUNCATED.

NOTE TRIVIAL DO LOOP - IGNORED. DO loop contains no executable Self-evident.
statements.

NOTE ZERO** ZERO - RESULTS Results in arithmetic error at Self-evident.
INDEFINITE. execution time.

NOTE . . . PREVIOUSLY DEFINED AS The indicated symbol appeared in an Check for use of subprogram
EXTERNAL. EXTERNAL declaration. name as a variable name.

END LINE ABSENT. Self-evident. Self-evident.

MISSPELLED KEYWORD - Self-evident. Self-evident.
ASSUMED.

MULTIPLE STATEMENT IGNORED AFTER Self-evident. Self-evident.
END.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler,

Time-sharing mode
compiler .

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler.

Time-sharing mode
compiler .

~
-J
00

8
0

= !.i
VI

TABLE B-2. TIME-SHARING MODE DIAGNOSTICS (CONT'D)

Message Significance Action

NAME EXCEEDS 7 CHARACTERS - Self-evident. Self-evident.
TRUNCATED TO ...

TRIVIAL PROGRAM UNIT IGNORED. A program unit has generated no Self-evident.
executable code.

Issued By

Time-sharing mode
compiler.

Time-sharing mode
compiler.

tF
-....J

°'

~
-....J
00

8
t::1

SPECIAL COMPILATION DIAGNOSTICS

When a compilation is aborted or prematurely terminated for internal reasons, one or more of the messages shown in table B-3 appear. This
table also includes messages that appear only in the dayfile that are not caused by dayfile internal error. Unless otherwise noted, these
messages appear only in optimizing mode.

Message

nnnn ASSEMBLY ERRORS IN
prognam

COMPILING prognam
LAST STATEMENT BEGAN AT

LINE nnnnn
ERROR AT aaaaa IN ddddddd
LAST OVERLAY LOADED - (p,s)

TABLE B-3. SPECIAL COMPILATION DIAGNOSTICS

Significance

A compiler, operating system, or hardware error has
occurred while compiling n prognam.

Compiler, operating system or hardware error has
occurred while compiling program {TS and OPT
mode).

prognam

nnnnn

ddddddd

aaaaaa

p,s

Name of source program unit.

Approximate compiler-assigned
source line number where the
difficulty arose. During transi
tions from one phase of compila
tion to another, the END line
number might be displayed.

Name of compiler internal deck
where abort occurred. Might be
RA+O if control was accidentally
transferred to the control point
job communications area.

Address relative to origin of internal
deck where abort occurred.

Primary and secondary level numbers
of overlay last loaded before abort
occurred:

0,0 - Control statement cracker;
global communication and
control

Action

See systems analyst.

See systems analyst.

Issued By

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

°' 0

~
-...J
00
0
0

"Tl

o;:i
I

-...J
-...J

Message

DEAD CODE IN program

ECS
ECS

READ ERROR
WRITE ERROR

FTN/FBV - BLOCK READ ERROR

TABLE B-3. SPECIAL COMPILATION DIAGNOSTICS (CONT'D)

Significance

1,0 - TS-mode compilation overlay

2,0 - Optimizing compilation batch
controller

2,1 - Optimizing compilation normal
pass 1 (lexical scan, parse,
intermediate language generation)

2,2 - Optimizing compilation pass
2 (global and local optimization,
object code generation)

2,3 - Optimizing compilation diagnostic
phase (occurs between pass 1 and
pass 2)

2,4 - Optimizing compilation C$ DEBUG
pass 1

2,5 - Optimizing compilation reference
map generation and object code
assembly phase

Action Issued By

FORTRAN
Extended Compiler.

A section of code is unreachable and cannot be processed.I Same as STATE- I FORTRAN
MENTS BEGINNING Extended Compiler.
AT THE BELOW

ECS/LCM read or write Parity error. Can occur only
under OPT=2.

Compiler, operating system, or hardware error. Most
probable cause is a disk or READNS (read non-stop)
input/output command error. Can occur only under
OPT=2.

LINE NUMBERS
ARE UNREACH-
ABLE (DEAD
CODE), AND WILL
NOT BE PROC-
ESSED.

See systems analyst. I FORTRAN
Extended Compiler.

See systems analyst. I FORTRAN
Extended Compiler.

cc
~
00

~
\0
......J
00
0
0
lofj

TABLE B-3. SPECIAL COMPILATION DIAGNOSTICS (CONT'D)

Message

NULL PROGRAM IGNORED AFTER
program.

OBJECT CODE END LINE MISSING

** PASS 2 MEMORY OVERFLOW **

** PREMATURE EOF ON
-REFMAP- FILE.

* PROGRAM CONTAINS
SEQUENCES THAT ARE TOO
LONG. CANNOT BE COMPILED.

EMPTY INPUT FILE. NO
COMPILATION.

CM REQUIRED FOR LOAD
EXCEEDS 131K.

Significance I Action

A program unit (other than a BLOCK DATA sub- I Self-evident.
program) does not contain any executable statements;
it is ignored. Compiler, operating system, or
hardware error.

Compiler, operating system, or hardware error. I See systems analyst.

Compiler, operating system, or hardware error.
Can occur only when R=2 or 3 is selected.

The program contains one or more long
sequences of statements that are not broken
up by a statement label definition, an IF
statement, or a GO TO statement.

Same as similar
message in Compiler
Output Listing
Messages below.

See systems analyst.

Compile the program
at a lower mode of
optimization or
modify the program
so as to break up
the long code
sequence.

An end-of-partition or end-of-section was encountered I Self-evident.
on the first read of the input (TS mode only).

Address exceeds 13 lK. I Reduce size of
program.

Issued By

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

Optimizing Mode
Compiler.

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

COMPILER OUTPUT LISTING MESSAGES

The error messages can appear in the body of the compilation listing in optimizing mode only. If present, they are
located {listed in table B-4) after the source program and standard error summary listings. They may appear before,
during or after the reference map and object code listings, depending on the exact error condition. The message
format is different from that of the standard error summary; each message is usually left-justified on the output
listing page, and may be preceded by several blank lines or a page eject.

An example of dead code, which would produce the last diagnostic in table B-4 is as follows:

A=2.

GO TO 30

C THE NEXT STATEMENT CANNOT BE EXECUTED.

A=A+1.

30 STOP

END

A more subtle example is:

A=2.

ASSIGN 40 TO J

ASSIGN 50 TO J

ASSIGN 60 TO J

GO TO J, (40,50)

C THE NEXT STATEMENT CANNOT BE EXECUTED, BECAUSE

C ITS LABEL DOES NOT APPEAR lN THE GO-TO TRANSFER

C LIST.

60 A=A+1.

40 STOP

50 STOP

END

EXECUTION DIAGNOSTICS

Execution diagnostics are the same whether the source program was compiled in optimizing mode or time
sharing mode. Execution diagnostics are printed on the source listing in the following format:

ERROR NUMBER x DETECTED BY routine AT ADDRESS y

or

ERROR NUMBER x DETECTED BY routine

followed by

CALLED FROM routine AT ADDRESS z

or

CALLED FROM routine AT LINE d

y and z are octal addresses, x is a decimal error number, and d is a decimal line number as printed on the
source listing.

60497800 D B-79

~

&
0

§
\0
'1
00
0
0

"r1

TABLE B-4. COMPILER OUTPUT LISTING MESSAGES

Message

CANT SORT SYMBOL TABLE
INCREASE FL BY ffffB.

Significance

Not enough CM/SCM field length available to
generate a reference map. ffff is an estimate of
additional FL necessary for generating the map.
Cannot occur if R=O is specified.

*** MEMORY OVERFLOW IN -FAX-I Not enough CM/SCM field length for final assembly
of binary object code. Additional memory required
varies; lOK to 20K increments are suggested.

PASS 2 MEMORY OVERFLOW AT
SOURCE LINE nnnn IN compnam

REFERENCES AFTER LINE nnnn
LOST INCREASE FL BY ffffB

STATEMENTS BEGINNING AT THE
BELOW LINE NUMBERS ARE UN
REACHABLE (DEAD CODE), AND
WILL NOT BE PROCESSED.

LCM FL EXCEEDS 131071 WORDS
(LCM=I REQUIRED).

Could be genuine memory overflow, or a compiler
error. If compnam is JAM-ERR, a compiler error
has occurred. Otherwise, not enough CM/SCM field
length was available for pass 2 of an optimizing
compilation.

Not enough CM/SCM field length available to generate
a long reference map, nnnnn is the approximate
compiler-assigned source line number where the
difficulty arose. ffff is a rough estimate of the
additional field length needed for generating the
complete map. This error can occur only when
R=2 or 3 is selected.

Executable statements in the source program can
never be executed, due to program flow of control.
No object code is compiled for dead statements.
Accompanied by dayfile message DEAD CODE IN
prognam. Detected only when OPT=2 has been
selected.

LCM= I must be specified if the execution LCM
field length exceeds 131071 words.

Action

Increase field length
before recompilation.

Increase field length
before recompilation.

Increase field length or
decrease optimization
level.

Increase field length
before recompilation.

Self-evident.

Specify LCM= I on
compiler call.

Issued By

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

FORTRAN
Extended Compiler.

Example:

l

5

PROGRAM EXERR

1
2
3

74/74 OPT=l

PROGRAM EXERR(INPUT,OUTPUT>
l\J=5
GO TO <l•2t3>tN
N=N+l
N=N+2
STOP
ENO

CARD NR. ~EVERITY OETAILS DIAGNOSIS OF PROBLEM

3 I AN IF STATEMENT MAY BE MOPE EFFICIENT
T~AN A 2 OR 1 BRANCH COMPUTED GO TO
STATEMENT.

ERROR IN COMPUTED GOTO STATFMENT- INDEX VALUE INVALID

ERROR NUMBER l D~TECTEO BY GOTOFR= AT ADDRESS 000004
AT LINE 3 CALLED FROM f XERR

In the list of execution diagnostics shown in table B-5, the letters under class are interpreted as follows:

F = Fatal

I = Informative, non-fatal

D = Debug (diagnostic issued only in debug mode)

T = Trace (diagnostic issued only in trace mode)

A = Always (diagnostic always issued)

The severity level (fatal or non-fatal) of any error except for erroneous data input from a connected
file can be changed by a call to SYSTEMC (section 8).

In the messages, X and Y are real numbers, D is a double precision number, I is an integer, and Z is a
complex number.

60497800 E

NOTE

For some execution time errors, only a dayfile message of
FTN - FATAL ERRORn is issued; n contains a meaning
less value such as zero. This type of error usually indicates
an erroneous branch into the FORTRAN library routines.
For example, a missing END card on an intermixed
COMPASS subprogram could cause this type of error.

B-81

t
N

~
-..J
00

8
0

TABLE B-5. EXECUflON DIAGNOSTICS

No. Class Message Significance Action Issued By

1 F A ERROR IN COMPUfED GO TO STATEMENT - Value .LT .1 or Self-evident. GOTO ER=
INDEX VALUE INV AUD .GT. number of

statement numbers

2 I A ARGUMENT ABS VALUE .GT. 1 tt t ACOSIN=(ACOS)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

3 I A ARGUMENT ZERO tt t ALOG
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

4 I A ARGUMENT ZERO tt t ALOGlO
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

5 I A ARGUMENT ABS VALUE .GT. 1 tt t ACOSIN=(ASIN)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

6 I A ARGUMENT INDEFINITE tt t ATAN

7 I A ARGUMENT VECTOR ZERO tt t ATAN2
ARGUMENT INFINITE
ARGUMENT INDEFINITE

8 I A ARGUMENT TOO LARGE tt t CABS
ARGUMENT INFINITE
ARGUMENT INDEFINITE

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by zero, or by an addition, subtraction, multiplication or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated. by dividing zero by zero.

°' 0
~
\0
.......:i
00

8
l'T:l

co
I

00
w

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

9 I T ZERO TO THE ZERO POWER tt t ZTOI (ZX*I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

10 I T INFINITE ARGUMENT tt t ccos
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

11 I T INFINITE ARGUMENT tt t CEXP
INDEFINITE ARGUMENT
ARGUMENT (REAL) OUT OF RANGE
ARGUMENT (IMAG) OUT OF RANGE

12 I T ZERO ARGUMENT tt t CLOG
INFINITE ARGUMENT
INDEFINITE ARGUMENT

13 I A ARGUMENT TOO LARGE, ACCURACY LOST tt t SINCOS=(COS)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

14 I T INFINITE ARGUMENT tt t CSIN
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

15 I T INFINITE ARGUMENT tt t CSQRT
INDEFINITE ARGUMENT

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by zero, or by an addition, subtraction, multiplication or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated by dividing zero by zero.

cc
I

00
~

°' ~
\0
-....J
00
0
0 ..,,

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

16 I T FLOATING OVERFLOW tt t DTOX (D**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE BASE IN EXPONENTIATION
INFINITE ARGUMENT
INDEFINITE ARGUMENT

17 I A ARGUMENT INFINITE H t DATAN
ARGUMENT INDEFINITE

18 I A ARGUMENT VECTOR 0,0 tt t DATAN2
ARGUMENT INFINITE
ARGUMENT INDEFINITE

19 l T FLOATING OVERFLOW tt t DTOD (D**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

20 I T ZERO TO THE ZERO POWER tt t DTOI (D**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

21 I T FLOATING OVERFLOW IN D** REAL(Z) H t DTOZ (D**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(D) TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by zero, or by an addition, subtraction, multiplication or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated by dividing zero by zero .

°' ~
-.J
00

8
0

= Jo
VI

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

22 I T ARGUMENT TOO LARGE, ACCURACY LOST tt t DCOS
INFINITE ARGUMENT
INDEFINITE ARGUMENT

23 I A ARGUMENT TOO LARGE tt + DEXP
ARGUMENT INFINITE
ARGUMENT INDEFINITE

24 I T ZERO ARGUMENT tt t DLOG
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

25 I T ZERO ARGUMENT tt t DLOGlO
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

26 I T DP INTEGER EXCEEDS 96 BITS tt t DMOD
2ND ARGUMENT ZERO
INFINITE ARGUMENT
INDEFINITE ARGUMENT

28 I T ARGUMENT TOO LARGE, ACCURACY LOST tt t DSIN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

29 I T NEGATIVE ARGUMENT tt t DSQRT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

30 I A ARGUMENT TOO LARGE, FLOATING OVERFLOW Self-evident. t EXP
ARGUMENT INFINITE
ARGUMENT INDEFINITE

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by zero, or by an addition, subtraction, multiplication or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated by dividing zero by zero.

t
0-,

0-,

~
-....)
00

8
0

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

31 I T INTEGER OVERFLOW Self-evident. t ITOJ (I**J)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

33 I T FLOATING OVERFLOW tt t XTOD (X**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

34 I T ZERO TO THE ZERO POWER tt t XTOI (X**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

35 I T FLOATING OVERFLOW tt t XTOY (X**Y)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

36 I A ARGUMENT TOO LARGE, ACCURACY LOST Self-evident. t SINCOS=(SIN)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

37 I T ILLEGAL SENSE LITE NUMBER Number not in range Self-evident. SLITE
1-6; lights not
changed.

38 I T ILLEGAL SENSE LITE NUMBER Number not in range Self-evident. SLITET
1-6; lights not
changed.

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generate<:! by dividing a non-zero number by zero, or by an addition, subtraction,. multiplication or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated by dividing zero by zero.

~
-...J
00
0
0

"Tl

= &
-...J

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

39 I A ARGUMENT NEGATIVE tt t SQRT
ARGUMENT INFINITE
ARGUMENT INDEFINITE

40 I T ILLEGAL SENSE SWITCH NUMBER Number not in range Self-evident. SSWTCH
1-6; return parameter
set to 2.

41 I A ARGUMENT TOO LARGE tt t TAN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

42 I T INFINITE ARGUMENT tt t TANH
INDEFINITE ARGUMENT

44 I T FLOATING OVERFLOW tt t ITOD (l**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE T.O THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

45 I T FLOATING OVERFLOW tt t ITOX (l**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

46 I T FLOATING OVERFLOW IN I** REAL(Z) tt t ITOZ (I**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(I) TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by zero, or by an addition, subtraction, multiplication or division whose result

was greate~ than I 0322 in absolute value. Indefinites are usually generated by dividing zero by zero.

tx:I
~
00

°'
~
-l
00

8
"T1

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Mess3:ge Significance Action Issued By

47 I T FLOATING OVERFLOW IN X** REAL(Z) tt t XTOZ(X**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(X) TOO LARGE
INFINITE OR INDEF ARGUMENT

48 FD FATAL ERROR ENCOUNTERED DURING Self-evident. Correct the FTNERR=
PROGRAM EXECUTION DUE TO compilation

COMPILATION ERROR error and
recompile.

49 I A COMMA MISSING AT END OF RECORD - Error occurred during Check NAME- NAMIN=
COMMA ASSUMED NAMELIST processing. LIST input

I A NAME LIST DAT A TERMINATED BY EOF NOT $ data for
I A CONSTANTS MISSING AT END OF RECORD - errors.

NEXT RECORD READ

so FA FATAL ERROR IN LOADER. Error occurred during Inspect load OVERLA=
load. map to deter-

mine cause of
error.

51 I A Set by user via subroutine SYSTEM or SYSTEMC. Defined by user. Self-evident.

52 FA Set by user via subroutine SYSTEM or SYSTEMC. Defined by user. Self-evident.
Error numbers larger than those listed in this table
become error 52.

53 FA NOT ENOUGH FL FOR SORT /MERGE. More memory required Extend SMXXX=
for SORT /MERGE program
processing. field length.

+ Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by zero, or by an addition, subtraction, multiplication or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated by dividing zero by zero.

~
~
-..J
00

8
"T1

= Jo
\0

No.

55

56

57

58

59

60

62

63

65

Class

FA

FA

FA

FA

FA

FA

FA

FA

FA

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

Message Significance

END-OF-FILE ENCOUNTERED, FILENAME Attempt to read past
- - - - xxxxxxx. end-of-file.

WRITE FOLLOWED BY READ, FILENAME A READ cannot follow
- - - - - xxxxxxx. a WRITE unless a

REWIND intervenes.

AREA SPECIFICATION SPANS SCM/LCM. In a buffered I/O
statement the first
and last word
addresses must be on
the same level.

BUFFER DESIGNATION BAD - - FWA.GT.LWA. First-word address
must be LE last word
address.

BUFFER SPECIFICATION BAD - - - FW A.GT .LWA. First-word address
must be LE last word
address.

BFS EXCEEDS ALLOCATED STATIC SIZE, User supplied FILE
LFN-xxxxxxx. card sets BPS larger

than FTN PROGRAM
statement declaration
in STATIC option run.

FILENAME NOT DECLARED-xxxxxxx. Filename must be
declared in PROGRAM
statement.

END-OF-FILE ENCOUNTERED, Attempt to read past
FILENAME-xxxxxxx. end-of-file.

END-OF-FILE ENCOUNTERED, Attempt to read past
FILENAME-xxxxxxx. end-of-file.

Action Issued By

Rewind before BUFIN=
reading or
correct program
logic.

Self-evident. BUFIN=

Self-evident. BIFIO=

Self-evident. BUFIO=

Self-evident. BUFOUT

Omit BFS speci- FORSYS=
fication from
FILE card.

Self-evident. GETFIT=

Rewind file or INPB=
correct program
logic.

Rewind file or INPC=
correct program NAMIN=
logic.

txi
~
0

0\

~
\0
-....J
00
0
0

0

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

66 FA NAMELIST NAME NOT FOUND-xxxxxxx. Error occurred during Check NAME- NAMIN=
FA INCORRECT SUBSCRIPT. NAMELIST processing. LIST input
FA TOO MANY CONSTANTS. data for errors.
FA , ($ OR = EXPECTED, MISSING.
FA VARIABLE NAME NOT FOUND-xxxxxxx.
FA CONSTANT MISSING.

67 FA DECODE _RECORD LENGTH .LE. 0. Bad first parameter to Self-evident. DECODE=
DECODE LCM RECORD .GT. 150 CHARACTERS. DECODE.

68 FA * ILL-PLACED NUMBER OR SIGN. Illegal FORMAT. Self-evident.
FA * ILLEGAL FUNCTIONAL LETTER. Illegal FORMAT. Self-evident. FMTAP=

69 FA * IMPROPER PARENTHESIS NESTING. Illegal FORMAT. Self-evident. FMTAP=

70 F A * EXCEEDED RECORD SIZE. The maximum record Change rl FMTAP=
length specified on the parameter on
PROGRAM statement PROGRAM
or on the FILE con- statement or
trol statement has been MRL parameter
exceeded. on FILE con-

trol statement,
whichever is
appropriate.t

71 FA * SPECIFIED FIELD WIDTH ZERO. w=O in FORMAT. Self-evident. FMTAP=
* BAD VALUE FOR = OR V. Self-evident. Self-evident.

72 FA * FIELD WIDTH .LE. DECIMAL WIDTH. w ~ d in FORMAT. Self-evident. FMTAP=

73 FA * HOLLERITH FORMAT WITH LIST. The FORMAT has no Change one or IN COM=
specifiers corresponding the other.
to the 1/0 statement.

t If the maximum record length (MRL) is specified on the PROGRAM statement and on the FILE control statement, the minimum value
if used; hence, the FILE control statement can decrease but not increase the maximum record length.

~
TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

-..J g No. Class Message Significance Action Issued By

0 78 FA * ILLEGAL DATA IN FIELD . t . Usually a non-digit in Fix input data. INCOM=
a numeric input field.

79 FA * DATA OVERFLOW . t . Input value GT Fix input data. INCOM=
1.26501E322.

83 FA OUTPUT FILE LINE LIMIT EXCEEDED. The default or speci- Specify PL on OUTC=
fled print limit to FTN statement NAM OUT=
OUTPUT was exceeded. or change

program to
print less.

85 FA ENCODE CHARACTER/RECORD .LE. 0. Bad first parameter Self-evident. ENCODE=
ENCODE LCM RECORD .GT. 150 CHARACTERS. to ENCODE.

88 FA WRITE FOLLOWED BY READ ON FILE-xxxxxxx. A READ cannot Self-evident. INPB=
follow a WRITE un-
less a REWIND
intervenes.

89 FA LIST EXCEEDS DATA, FILENAME-xxxxxxx. More words were Check for miss- INPB=
specified in the I/O ing data or
list than existed in incorrect input
the record of the list.
file.

90 FA PARITY ERROR READING (BINARY) Probable disk or tape See systems INPB=
FILE-xxxxxxx. error. t analyst.

91 FA WRITE FOLLOWED BY READ ON FILE-xxxxxxx. A READ cannot Self-evident. INPC=
follow a WRITE
unless a REWIND
intervenes.

92 FA PARITY ERROR READING (CODED) Probable disk or tape See systems INPC=
FILE-xxxxxxx. error. analyst. NAMIN=

=
~ -

~ TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)
t...>

No. Class Message Significance Action Issued By

93 FA PARITY ERROR ON LAST READ ON Probable disk or See systems OUfB=
FILE-xxxxxxx. tape error. analyst.

94 FA PARITY ERROR ON LAST READ ON Probable disk or See systems OUTC=
FIL&xxxxxxx. tape error. analyst.

97 FA INDEX NUMBER ERROR. Non-ex~stent index Self-evident. RANMS=
value specified or
bad file.

98 FA FILE ORGANIZATION ERR OR FILE NOT OPEN. Self-evident. Call OPENMS. RANMS=

99 FA WRONG INDEX TYPE. Wrong type specified Self-evident. RANMS=
to OPENMS.

100 FA INDEX IS FULL. Self-evident. Increase index RANMS=
size.

101 FA DEFECTIVE INDEX CONTROL WORD. Bad file. File must be RANMS=
recreated.

102 FA RECORD LENGTH EXCEEDS SPACE ALLOCATED. Self-evident. Increase space RANMS=
allocation. BUFIO=

103 FA 6RM/7DM I/O ERR NUMBER xxx. Record Manager See Record RANMS=
error. Manager Reference

Manual.

104 FA INDEX KEY UNKNOWN. Self-evident. Self-evident. RANMS=

105 FA RECORD LENGTH NEGATIVE. Self-evident. Fix call. RANMS=

107 FA ILLEGAL PARAMETER VALUE. Argument to SORT I Self-evident. SMXXXX=

~
MERGE routine has
bad value .

....J

~
0 108 FA TOO FEW OR TOO MANY PARAMETERS. Self-evident. Self-evident. SMXXX=

Cl

§
\0
......J
00

8
tr'!

= '6 w

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

109 F A KEYWORD (xxxxxxxx) INVALID. Self- evident. Self-evident. SMXXX=

110 FA A ROUTINE CALLED OUT OF SEQUENCE. Sequence (SMSORT, Self-evident. SMXXX=
SMSORTB, SMSORTP,
or SMMERGE), (other
SORT/MERGE calls),
(SMEND or SMABT)
not followed.

111 F A LCM BLOCK COPY ERROR. Parity error. See systems COMIO=, DECODE=,
analyst. ENCODE=, INPB=,

OUTB=, READEC,
WRIT EC

112 F A ECS UNIT HAS LOST POWER OR IS IN Hardware error. See systems WRIT EC
MAINTENANCE MODE. analyst.

113 F A ECS READ PARITY ERROR Possible hardware See systems READ EC
error. analyst.

114 FA CONNEC CHARACTER CODE CONVERSION Bad second argument Change to CO ND IS
IS OUT OF RANGE in CALL CONNEC. specify correct

character set.

115 I A ARGUMENT INFINITE tt t EXP
ARGUMENT TOO SMALL, RESULT UNDERFLOW Self-evident.

116 I A ARGUMENT INFINITE tt t HYP=(COSH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

117 I A ARGUMENT INFINITE tt t HYP=(SINH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

118 I A ARGUMENT TOO SMALL, RESULT UNDERFLOW Self-evident. t DEXP

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by a zero, or by an addition, subtraction, multiplication, or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated by dividing zero by zero.

~

~
.f::i.

°' ~
'° -..J
00

8
0

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

119 I A ARGUMENT INFINITE tt t DHYP=(DCOSH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

120 I A ARGUMENT INFINITE tt t DHYP=(DSINH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

121 I A ARGUMENT INDEFINITE tt t DTANH

122 I A ARGUMENT INFINITE tt t DTAN
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

123 I A ARGUMENT INFINITE tt t DASNCS(DASIN)
ARGUMENT INDEFINITE
ARGUMENT .GT. 1.0.

124 I A ARGUMENT INFINITE tt t DASNCS(DACOS)
ARGUMENT INDEFINITE
ARGUMENT .GT. 1.0.

125 I A ARGUMENT INDEFINITE tt t ERF(ERF)

126 I A ARGUMENT INDEFINITE tt t .ERF(BRFC)

127 I A ARGUMENT' TOO LARGE tt t ERF(ERFC)

128 I A ARGUMENT INFINITE tt t AT ANH
ARGUMENT INDEFINITE
ARGUMENT .GE. 1.0.

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated by dividing a non-zero number by a zero, or by an addition, subtraction, multiplication, or division whose result
was greater than 10322 in absolute value. Indefinites are usually generated by dividing zero by zero.

§
\0
-....l
00

8
"Tl

= ~
v.

TABLE B-5. EXECUTION DIAGNOSTICS (CONT'D)

No. Class Message Significance Action Issued By

129 I A ARGUMENT INFINITE tt t SINO
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

130 I A ARGUMENT INFINITE tt t COSD
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

131 I A ARGUMENT INFINITE tt t TAND
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE
ARGUMENT ODD MULTIPLE OF 90.

132- Reserved for FTNS
164

165 FA INV AUD SEQUENCE SMKEY call specified a col- Ensure coding SMKEY
seq parameter without identifier is set
specifying a coding identifier to DISPLAY.
of DISPLAY. SMKEY call
specified a invalid col-seq
parameter or an invalid code
identifier.

166 F A RESERVED COL SEQ SMSEQ/SMEQU call specified Select another SMSEQ/SMEQU
a sequence name equivalent to name for the user-
one of the standard collating supplied collating
sequence names (ASCII6/ sequence.
COBOL6/DISPLAY/INTBCD)
in an attempt to redefine it.

167- Reserved for FTNS
217

t Check for undefined argument; if argument is calculated, check for undefined or illegal operand.

tt Infinites can be generated b:t dividing a non-zero number by a zero, or by an addition, subtraction, multiplication, or division whose
result was greater than 103 2 in absolute value. Indefinites are usually generated by dividing zero by zero.

tp REPRIEVE PROCESSOR DIAGNOSTICS
'° °'

~
-..J
00

8
tTj

Execution time diagnostics are issued by the FORTRAN reprieve processor. Object time reprieve occurs in TS and OPT=O modes unless ER=O has been
specified on the FTN control statement, and in OPT=l and OPT=2 modes if ER has been specified on the FTN control statement. The error message
is written to the job dayfile and, under NOS 1 only, to file OUTPUT. Execution terminates following object time reprieve. The messages are listed
in table B-6.

TABLE B-6. OBJECT TIME REPRIEVE DIAGNOSTICS

Message Significance Action

TIME LIMIT EXCEEDED Program execution time has exceeded the allowed Check for infinite loop; use OPT=l or 2 compilation;
time limit. increase time limit with ETL statement (NOS/BE I),

SETTL statement (NOS 1), or on job statement.

MODE=nn An invalid arithmetic computation has occurred at Refer to appendix D.
or near the indicated line.

MEMORY PARITY A hardware error has occurred. Rerun program. If error recurs, consult systems
analyst.

INDEFINITE VALUE An illegal arithmetic operation was performed at Check for an uninitialized variable or a 0/0
or near the indicated line. division.

INFINITE VALUE An illegal arithmetic operation was performed at Check for division by zero or an arithmetic operation
or near the indicated line. whose result was greater than 10322 or less than

10-294 in absolute value.

BAD ADDRESS The program referenced an inaccessible area of Check for any situation that has caused valid addresses
memory. to be overwritten, such as DO loop that has exceeded

array boundaries. Check for use of initialized variables.
Check for I/O statements that exceed buffer size.

PP ABT A peripheral processor (system function call) Consult systems analyst.
has aborted during reprieve processing.

ERROR CODE nnn An arithmetic mode error has occurred at or Refer to appendix D.
near the indicated line.

BAD PP A bad peripheral processor call was made. Consult systems analyst.

i
\0
-..J
00

8
m

°' ~
~

Message

DROPPED

KILL

RERUN

ECS PAR

AUTORCL

MS LIMIT EXCEEDED

NULL PP

1/0 LIMIT EXCEEDED

LCM LIMIT EXCEEDED

PARITY ERROR

OVER-INDEXED ARRAY

UNSATISFIED EXT

BAD RESULT

TABLE B-6. OBJECT TIME REPRIEVE DIAGNOSTICS (CONT'D)

Significance I Action

The job has been terminated by the operator.

The job has been terminated by the operator.

The operator has rerun the job.

A hardware error has occurred while accessing ECS.

Automatic recall error.

A mass storage output operation has exceeded
available mass storage.

Program attempted to call a nonexistent peripheral
processor (system function).

1/0 operations exceeded limits established by the
site.

Consult operator or dayfile for message from operator.

Consult operator or dayfile for message from operator.

Consult operator or dayfile for message from operator.

Rerun program. If error recurs, consult systems
analyst.

Consult systems analyst.

Decrease the amount of data being written to mass
storage.

Consult systems analyst.

Check for runaway 1/0 or consult systems analyst.

A write operation (WX or WL) has exceeded I Decrease the amount of data being written to LCM.
available LCM.

Probable hardware error. I Consult systems analyst.

Program referenced a location outside array bounds. I Use C$ DEBUG, CYBER Interactive Debug, or
Post Mortem Dump to locate error.

Unsatisfied external reference. A call was made to I Check for missing subprogram or misspelled sub-
a non-existent function at subroutine. program name. See load map or dayfile.

Program attempted an illegal mathematical operation. I Use C$ DEBUG, CYBER Interactive Debug, or
Post Mortem Dump to locate the error.

STATEMENT FORMS

The following symbols are used in the descriptions of FORTRAN Extended statements:

v variable or array element

sn statement lah"1

iv integer variable

m unsigned integer or octal constant or integer variable

name symbolic name

u input/output unit:
1- or 2-digit decimal integer constant, integer variable with value of: 0-99, or an
integer variable containing a Hollerith value which is the filename in L format

fn format designator

iolist input/output list

Other forms are defined individually in the following list of statements.

ASSIGNMENT STATEMENTS

v = arithmetic expression

logical v ~ logical or relational expression

FLOW CONTROL STATEMENTS

GO TO sn

(jQ .•.... 1"9. <~'.1~-.•. •. ··~tTl)~y
GQ·····T()•-<sni •. •.· .. •.~:,~n,)i~pritniC>ri·.

GP tq (~1· ! ·•· ·~m>!x~

60497800 A

c

Page
Numbers

2-19

2-19

4-1

4-2

4-2

4-2

4-2

C-1

GO TO iv, (sn1 , ... ,snm)

ASSIGN sn TO iv

IF (arithmetic ,expression) sn1 , sn2 , ~n3

IF (logical or relational expression) stat

CONTINUE

PAUSE

PAUSE n

STOP

STOPn

END

TYPE DECLARATION

INTEGER name1, •.• , name"

C-2

Page
Numbers

4-4

4-4

4-3

4-S

4-S

4-6

4-7

4-7

4-7

4-12

4-13

4-13

4-13

4-14

4-14

4-14

4-14

3-1

3-1

60497800 A

COMPLEX name1 , ... , name"

DOUBLE PRECISION name1 , .•. , name"

LOGICAL name1 , ••. , name
0

EXTERNAL DECLARATION

EXTERNAL name1 , ... , name"

STORAGE ALLOCATION

type name1 (dj)

d· 1 array declarator, one to three integer constants; or if name is a dummy argu
ment in a subprogram, one to three integer variables or constants

type INTEGER, REAL, COMPLEX, DOUBLE PRECISION or LOGICAL

60497800 A

Pap
Numbers

3-2

3-2

3-2

3-2

3-2

3-2

3-2

3-2

3-3

3-3

3-3

3-14

3-1

3-1

3-4

C-3

COMMON v1, ...• v,
1

COMMON/blkname1/v1 , ... , v
0

••• lblkname/v1 , ... , v
0

COMMON// v1 , ••• , v n

hlknamc

II

symbolic name

blank common

OAT A vlist1 /dlist1 I , ... , vlist/dlist/

vlisti list ray elements, variable names,
separated by conunas

dlisti one or more of the following forms sep-.uated by commas:

constant

rf*constant

constant list

rf

list of constants separated by commas

integer constant. The constant or constant list is repeated
the number of times i'ldicated by rf

EQUIVALENCE (glist1), ... , (glistn)

C-4

Paae
Numbers

3-S

3-S

3-S

3-15

3-1 s

3-8

3-12

60497800 A

SUBPROGRAMS

FUNCTION name (p1 , ... , P
0

)

type FUNCTION name (p1 , .•. , P
0

)

type INTEGER, REAL, COMPLEX, :~~~~1• DOUBLE PRECISION
or LOGICAL

SUBROUTINE name (p1 , ..• , Pn)

SUBROUTINE name

STATEMENT FUNCTIONS

name (p1 , ... , Pn) :;:: expression

SUBPROGRAM CONTROL STATEMENTS

CALL name

CALL name (p1 , ..• , Pn)

:.qf\LL.n~rtj~<l>1/-.l~,·~~·r~.~ .. ~[Ui:tN~{~1 ~>~··.··•·,6rriJ

~A~l ~~:~~t~~~jJ~~:'f . -<%f

RETURN

i

60497800 A

Page
Numbers

7-2

7-2

7-8

7-8

7-6

7-6

7-6

7-6

7-18

7-10

7-16

7-16

7-16

7-16

4-15

4-15

C-5

SPECIFICATION SUBPROGRAMS

BLOCK DATA

INPUT/OUTPUT

WRITE (u,fn) iolist

WRITE (u,fn)

WRITE (u) iolist

WRITE (u)

C-6

Page
Numben

1-5

1-5

5-2

5-2

5-3

5-10

5-3

5-10

5-3

5-3

5-4

5-10

5-4

5-10

5-4

5-4

5-5

5-5

5-7

5-7

5-10

5-10

60497800 A

Page
Numbers

READ (u,fn)iolist 5-5

READ (u,fn) 5-5

5-S

5-6

READ (u) iolist S-7

READ (u) 5-7

5-8

5-8

5-19

5-20

5-11

5-13

5-13

5-14

5-15

5-15

S-15

5-15

S-15

60497800 A C-7

FILE MANIPULATION

REWIND u

BACKSPACE u

ENDFILE u

FORMAT SPECIFICATION

sn FORMAT (fs1, ... , fsn)

one or more field specifications separated by commas and/or grouped by
parentheses

DATA CONVERSION

srEw.d Single precision floating point with exponent

srFw.d Single precision floating point without exponent

srGw.d Single precision floating point with or without exponent

srDw.d Double precision floating point with exponent

rlw Decimal integer conversion

rlw Logical conversion

rAw Alphanumeric conversion

C-8

Page
Numbers

5-21

5-24

5-26

5-26

5-26

6-5

6-9

6-9

6-9

6-13

6-14

6-16

6-7

6-7

6-21

6-18

6-20

6-17

60497800 A

nX

I

s optional scale factor of the form: nP

optional repetition factor

w integer constant indicating field width

d integer constant indicating digits to right of decimal point

Intraline spacing

Hollerith

Format field separator; indicates end of FORTRAN record

OVERLAYS

CALL OVERLAY (fname,i,j,recall,k)

fname

i,j

recall

k

ftl,ame
. i;j .

. Crt

60497800 c

name of file or overlay in H format

octal with a B or decimal equivalent overlay numbers

if 6HRECALL is specified, the overlay is not reloaded if it is already in
memory

L format Hollerith constant: name of library from which overlay is to
be loaded

any other non-zero value: overlay loaded from global library set

113.me of file

t:j.Yertay rtumQef$'
.n)s ~· 6-digit.·oc~{~uitiber indicating start of toad relative to blank comniltlilC}

Page
Numbers

6-17

6-18

6-24

6-25

6-28

6-32

6-34

6-34

7-23

7-22

C-9

DEBUG

C$

C$

C$

C$

C$

C$

C$

C$

C$

C$

C$

C$

C$

C$

DEBUG

DEBUG (name1 , ... , name
0

)

AREA bound51 '· · ·'bounds" i within program unit

DEBUG \

AREA/name1tbound51, ... , bounds0 , • • • /name0 /bounds1 , ... , bounds0 I external

debug deck
DEBUG (name1 , ..• , name

0
)

or
DEBUG

bounds (n1 ,n2) n1 initial line position
~ terminal line position

(n3) n3 single line position to be debugged

(n1 , *) n1 initial line position
* last line of program

(* ,n2) * first line of program
n2 terminal line position

(*, *) * first line of program
* last line of program

ARRAYS (a1 , ••• ,an)

ARRAYS

3i array names

CALLS (s1 , ••. , s
0

)

CALLS

Si subroutine names

FUNCS (f1, ... ,fn)

FUNCS

fi function name

GOTOS

Page
Numbers

9-22

9-22

9-23

9-23

9-3

9-3

9-5

9-5

9-7

9-7

9-14

C-10 60497800 C

CS NOGO

CS STORES (c1 , ••• ,en)

cs TRACE (Iv)

cs TRACE

lv

cs OFF

variable name

variable name .relational operator. constant

variable name .relational operator. variable name

variable name .checking operator.

checking operators:

RANGE
INDEF
VALID

level number:

0

n

out of range
indefinite
out of range or indefinite

tracing outside DO loops

tracing up to and including level n in DO nest

cs OFF (x 1, •.• ,xn)

X· 1
any debug option

LISTING CONTROL DIRECTIVES

Cl LIST, NONE

Cl LIST, ALL

60497800 c

Pag~

Number'

9-17

9-10

9-1 s

9-15

9-26

9-26

12-2

12-2

C-11

ARITHMETIC

This section explains the internal format of numbers used in FORTRAN programs and the kinds of arithmetic
performed on them. It is intended primarily to aid in reading octal dumps and interpret operating system mode
error messages. The actual instructions generated for any sequence of code depend on the context of the code
as well as the optimization level selected.

INTERNAL FORMATS FOR VALUES

D

The internal format used to store a FORTRAN variable, array element, constant, or expression depends strictly on
the type.

REAL NUMBERS

Real numbers are stored in 60-bit floating point format as shown in figure D-I.

59 48 0

I 1 I 11-bits I 48-bits I.
Sign Biased Integer Coefficient Assumed

Exponent binary point

Bits 4 7 through 0 contain the coefficient of the number (equivalent to about I 4 decimal digits). The binary
point is considered to be at the right of bit 0. The exponent is biased by 2000 octal; that is, the exponent
is represented by an I I-bit quantity (one's complement notation is used for negative numbers), 2000 octal is
added to this quantity, and the low order I 1 bits are used.

Additionally, real numbers are normalized. A normalized number is one in which bit 47 is the most significant
bit; that is, bit 47 is different from bit 59. The special case of a word of all zero bits (positive zero) is also a
normalized number. For every bit position that the coefficient is shifted to the left to achieve normalization, the
exponent is reduced in value by one.

The sign of the number is represented by bit 59; the number is positive if bit 59 is 0 and negative if bit 59 is I.
Negative numbers are represented in one's complement form.

Minus zero (a word of all 1 bits) is considered to be equal to positive zero (a word of all zero bits) when the
relational operators are used; minus zero is not considered less than positive zero. Minus zero is considered
zero for arithmetic IF statements.

Table D-1 summarizes the configurations of bits 58 and 59 and the exponent and coefficient signs resulting
from each combination.

60497800 E D-I

TABLE D-1. BITS 58 AND 59 COMBINATIONS

Bit59 Coefficient Sign Bit58 Exponent Sign

0 Positive 1 Positive

0 Positive 0 Negative

1 Negative 0 Positive

1 Negative 1 Negative

Some examples of floating point numbers, as they would appear in octal format, are as follows:

Number

+l.

+100.

-100.

l.E64

-l.E-64

0.

DOUBLE PRECISION

Octal Representation

1720 4000 ()()()() 0000 0000

1726 6200 0000 0000 0000

6051 1577 7777 7777 7777

2245 6047 4037 2237 7733

6404 2570 0025 6605 5317

0000 0000 0000 0000 0000

Double precision numbers occupy two consecutive words, each in the floating point format shown in figure D-1.

The first word contains the more significant part of the number, and the second word contains the less significant
part.

Although complete arithmetic instructions using double precision arguments are not provided by the hardware,
the FORTRAN Extended compiler generates code for true double precision by using instructions that give upper
and lower half results with single precision arguments.

Some examples of double precision numbers, as they would appear in octal format, are as follows:

Number

7.8349268430137

-2348585858574758224012

0.000

1928374651928374650256

-0.000

l .23423423423423423423423423423400

D-2

Octal Representation

First Word

26334153710320065255

57120455517237124716

00000000000000000000

35347102140424723427

77777777777777777777

17204737554312750737

Second Word

25530330560116025671

57721332647630553777

00000000000000000000

34542402521200675526

77777777777777777777

16405543127507375543

60497800 A

COMPLEX NUMBERS

Complex numbers are of the form a + bi, where the real part (a) occupies the first word, and the imaginary
part (b) occupies the second word. Both words contain real numbers in the format shown in figure D-1. The
formulas used for arithmetic for complex numbers are as follows:

(a+ bi) :1: (c + di}= (a :t c) + (b :t d) i

(a+ bi) * (c + di)= (ac - bd) + (ad + be) i

ac+bd be-ad
---+ i
c2 + d2 c2 + d2

(a+ bi) I (c + di) =

Some examples of complex numbers, as they would appear in octal format, are as follows:

Number

(5.7,6.3)

(764E45 ,-l 2.2E-45)

(36.567985456983,2E-l 10)

INTEGERS

Octal Representation

First Word

17225546314631463146

21604135136170411021

17254444263576544542

Second Word

17226231463146314632

63013513153413026764

11436006220176715720

The full 60-bit word is used for internal representation of integers. Bit 59 is the sign bit (0 for a positive number,
1 for a negative number), and the other 59 bits represent the magnitude of the number. Only the lower 48 bits
are used for multiplication and division in most cases, as well as for conversion from an integer to a real number;
the full 60 bits are used for addition and subtraction. In the case of multiplication, division, and conversion, the
upper 12 bits might be disregarded (except for the sign bit) without diagnostic if the operation takes place at
execution time. Where constants are involved, the compiler might issue a diagnostic at compile time.

Some examples of integers, as they would appear in octal format, are as follows:

Number

247 - 1

12131214121312

-2

LOGICAL VALUES

Octal Representation

00003777777777777777

00000260420455254540

77777777777777777775

There are only two logical values: .TRUE. and .FAI.SE. .TRUE. is represented internally by a negative number
(bit 59 is l) and .FAI.SE. is represented internally by a positive number (bit 59 is 0).

60497800 c D-3

TYPELESS OPERANDS

Typeless operands include octal and Hollerith constants, masking expressions, and the values returned. by the
intrinsic functions AND, OR, XOR, COMPL, SHIFT, and MASK. Typeless operands are never converted but
assume the type of the expression in which they occur. If they are used in an expression, the user must be
aware of value associated with the bit pattern of a typeless operand in the context it is used (see Section 2).

Some examples of typeless operands, and their internal representation, are as follows:

Operand

9ROR NOT28

234 .OR. 4LYECH

SHIFT(COMPL(MASK(l 2)),4)

OVERFLOW

Octal Representation

00172255161724553502

31050310000000000352

00177777777777777760

Overflow of the floating point range is indicated by a word whose upper 12 bits are 3777 8 for a positive result
and 40008 for a negative result. These are the largest values that can be represented in floating point format, as
shown in Table D-2. If the result of a computation has exactly 37778 or 40008 in the upper 12 bits, no error
results immediately, but if the number is used subsequently, an error condition results. This situation is known
as partial overflow.

Complete overflow occurs when an operand whose upper 12 bits would be larger than 3777 8 or 40008 is gen
erated. Complete overflow also occurs when the result of a computation has a mathematically infinite value;
for example, division by zero. Certain library functions return an infinite operand when called with invalid
arguments. In the case of complete overflow, the upper 12 bits of the operand are set to 37778 or 40008 and
the coefficient is set to all zero bits. The sign of the operand is the same as if the number had not exceeded the
floating point range. Further action depends on the computer being used.

On a CYBER 70 Model 71, 72, 73, or 74, CYBER 170 Model 171, 172, 173, 174, or 175,or 6000
series computer, no action is taken unless the operand is used again. In this case, the error mode 2
flag (see below) is set. The program aborts and an error message is listed unless this error has been
disabled by a MODE control statement or by installation option.

On a CYBER 70 Model 76, CYBER 170 Model 176, or 7000 series computer, the overflow condition
flag is set in· the Program Status Designator register as soon as complete overflow occurs. This flag
causes an overflow message to be listed and the program to abort. This condition also results from
the use of an operand that was not generated by an arithmetic operation.

UNDERFLOW

Underflow occurs when the result of a computation would have a value less than 00008 or 7777 8 in
the upper 12 bits. In this case, the word is set to all zeros.

On a CYBER 70 Model 71, 72, 73, or 74, CYBER 170 Model 171, 172, 173, 174, or 175, or 6000
series computer, no further action is taken.

On a CYBER 70 Model 76, CYBER 170 Model 176, or 7000 series computer, no action is taken unless
underflow has been selected as a mode error by a MODE control statement or by installation default. In
this case, the underflow condition flag is set in the Program Status Designator register as soon as the
underflowed result is generated. This flag causes an underflow message to be listed and the program to
abort.

D-4 60497800 c

TABLE D-2. FLOATING POINT REPRESENTATION

Positive Operand Negative Operand

OVERFLOW Complete Overflow 3 7770 . . .08 4000 ... 08
Partial Overflow 3 777X . . .x8 4000X .. .x8

LARGEST ~l.265014083171E+322 = 37767 ... 7g ~-1.265014083171E+322 = 40010 ... 08
ABSOLUTE ~l.265014083171E+322 = 37767 ... 78 ~ -1.265014083171E+322 = 40010 ... 08
VALUE

SMALLEST
NORMALIZED

~3.131513062514E-294 = 000140 ... 08 ~-3.131513062514E-294 = 777637 ... 78 ABSOLUTE
VALUE

ZERO 0 ... 08 7 ... 78

INDEFINITE 17770 ... 08 60007 ... 7g

If underflow is selected as a mode error on the CYBER 70 Model 76, it is unlikely that a FORTRAN program
will compile or execute successfully. Therefore, this error condition should not be enabled when FORTRAN
programs are compiled or executed.

INDEFINITE OPERANDS

An indefinite result is generated when a calculation cannot be resolved, such as a division operation when the
divisor and dividend are both zero. The internal representation of an indefinite operand does not correspond to
any number; the operand is represented by a minus zero exponent and a zero coefficient (17770 ... 08). Further
action depends on the computer being used.

On a CYBER 70 Model 71, 72, 73, 74, CYBER 170 Model 171, 172, 173, 174, or 175, or 6000 series
computer, no action is taken unless the indefinite operand is used again. In this case, the error mode 4
flag (see below) is set. The program aborts and an error message is listed unless this error has been
disabled by a MODE control statement or by installation option.

On a CYBER 70 Model 76, CYBER 170 Model 176, or 7600 series computer, the indefinite flag is set
in the Program Status Designator register as soon as the operand is generated. This flag causes a message
to be listed and the program to abort.

COMPUTATION WITH NON-STANDARD OPERANDS

If any mode error conditions have been disabled by the MODE control statement or by installation option,
computations with these operands, which would normally cause the program to abort, can continue.

The following tables (D-3 through D-6) show the results of arithmetic operations using non-standard operands
in all possible combinations. In these tables, W represents any value except infinite or indefinite, and N
represents any positive value except infinite, indefinite, or zero.

60497800 c D-5

X2

X2

+N

-N

+O

X2 -0

+co

-co

±IND

D-6

TABLE D-3. NON-STANDARD ADD
Xl = X2 + X3

X3

w +oo -co

w - +oo -co

+co +oo +oo IND

-co -oo IND -oo

±IND IND IND IND

TABLE D-4. NON-STANDARD SUBTRACT
Xl = X2 - X3

X3

±IND

IND

IND

IND

IND

w +co -oo ±IND

w - -oo +co

+oo +oo IND +oo

-oo -co -co IND

±IND IND IND IND

TABLE D-5. NON-STANDARD MULTIPLY
X 1 = X2 * X3

X3

+N -N +O -0 +oo

- - 0 0 +oo

- - 0 0 -oo

0 0 0 0 IND

0 0 0 0 IND

+oo -oo IND IND +oo

-oo +co IND IND -00

IND IND IND IND IND

IND

IND

IND

IND

-oo ±IND

-co IND

+co IND

IND IND

IND IND

-oo IND

+co IND

IND IND

60497800A

+N

+N -

-N -
+o 0

X2 -0 0

+oo +oo

-oo -oo

±IND IND

TABLE ~6. NON-STANDARD DIVIDE
Xl = X2 / X3

X3

-N +o -0 +oo

- +oo -oo 0

- -oo +oo 0

0 IND IND 0

0 IND IND 0

-oo +oo -oo IND

+oo -oo +oo IND

IND IND IND IND

-oo ±IND

0 IND

0 IND

0 IND

0 IND

IND IND

IND IND

IND IND

ARITHMETIC MODE ERRORS

Arithmetic mode errors occur when the central processor encounters an instruction whose execution is impossible or
meaningless. The errors recognized, and the format of the message that is issued, vary depending on the operating
system.

NOS/BE 1 AND NOS 1 ERROR CONDITIONS

The following mode errors are issued under NOS/BE 1 and NOS 1 :

Mode

00

01

02

03

04

05

06

07

Error

Program stop (CYBER 70 series and CYDER 170 series only). Might result from attempting
to execute a word of zeros or from a bad assigned GOTO statement or missing EXTERNAL
statement.

Address out of range. A storage location outside the user's field length has been referenced.
This error could be the result of an illegal array subscript, a call to an undefined subprogram,
or a subroutine call with an incorrect number of arguments.

Infinite operand (defined above)

Infinite operand and address out of range

Indefinite operand

Indefinite operand and address out of range

Infinite or indefinite operand

Infinite operand and indefinite operand

When executing on a CYBER 170 computer, the first digit might be nonzero, indicating a hardware error (as
described in the appropriate operating system reference manual).

60497800 D D-7

When an arithmetic mode error occurs, a message of the following type is issued:

time ERROR MODE = n. ADDRESS = xxxxxx

where n is the error type and :xxxxxx is the address in octal of the relative location where the error occurred.

SCOPE 2 ERROR CONDITIONS

When an arithmetic error occurs under SCOPE 2, the following type of message appears in the dayfile under the
headings shown below:

14.30.36*00012.059*SYS. SC006 - SCM DIRECT RANGE

CODExxnnn

xx SC or JM

nnn

SC indicates System Control; JM, Job Management. System Control provides system
overlay loaders and some communication between operating system overlays. Job Manage
ment controls user program input/output, and prepares user programs for execution.

Index number of the message.

MESSAGE AND MEANING The message and an interpretation (if necessary) are printed.

LEVEL

x

F

w

CODE

SCOOI
SC002
SC003
SC004
SC005
SC006
SC007
SC008
SC009
SCOJO
SCOll
SC012
SC040

D-8

Indicates the level of severity of the error as follows:

Job terntinates. No EXIT processing occurs.

Job terminates. EXIT processing occurs.

Warning is printed, and error is ignored. Processing continues, although the portion of the
program containing the error may not be executed.

Informative message is printed.

MESSAGE AND MEANING

LCM PARITY
SCMPARITY
LCM BLOCK RANGE
SCM BLOCK RANGE
LCM DIRECT RANGE
SCM DIRECT RANGE
PROGRAM RANGE
BREAKPOINT
STEP CONDITION
INDEFINITE CONDITION
OVERFLOW CONDITION
UNDERFLOW CONDITION
JOB MAKING 6000 REQUEST IN RAS+l;

RAS+ I of user area is non-zero.

LEVEL

F
F
F
F
F
F
F
F
F
F
F
F
F

60497800 A

GLOSSARY E

This glossary does not include terms defined in the ANSI standard for FORTRAN, X3.9-1966.

ADVANCED ACCESS METHODS (AAM) - A file manager that processes indexed sequential, direct access, and
actual key file organizations, and supports the Multiple Index Processor. (See CYBER Record Manager.)

BASIC ACCESS METHODS (BAM) - A file manager that processes sequential and word addressable file organiza
tions. (See CYBER Record Manager.)

BLANK COMMON BLOCK - An unlabeled common block. No data can be stored into a blank common block
at load time. The size of the block is determined by the largest declaration for it. Contrast with
labeled common block.

BLOCK - In the context of input/output, a physical grouping of data on a file that provides faster data transfer.
Record Manager defines four block types on sequential files: I, C, K, and E. Other kinds of blocks
are defined for indexed sequential, direct access, and actual key files.

Also refers to a common block.

BOI (Beginning-of-Information) - Record Manager defines beginning-of-information as the start of the first
user record in a file. System-supplied information, such as an index block, control word, or tape
label, exist prior to beginning-of-information.

BUFFER - An intermediate storage area used to compensate for a difference in rates of data flow, or times of
event occurrence, when transmitting data between central memory and an external device during
input/output operations.

BUFFER STATEMENT - One of the input/output statements BUFFER IN or BUFFER OUT.

CALL BY NAME - A method of referencing a subprogram in which the addresses of the actual arguments are
passed.

CALL BY VALUE - A method of referencing a subprogram in which only the values of the actual arguments
are passed.

COMMON BLOCK - An area of memory that can be declared in a COMMON statement by more than one
relocatable program and used for storage of shared data (see BLANK ·COMMON BLOCK and
LABELED COMMON BLOCK).

CYBER RECORD MANAGER (CRM) - A generic term relating to the common products AAM and BAM that
run under the NOS 1 and NOS/BE 1 operating systems and which allow a variety of record types,
blocking types, and file organizations to be created and accessed. The execution time input/ output of
COBOL 5, FORTRAN Extended 4, Sort/Merge 4, ALGOL 4, and the DMS-170 products is imple
mented through CRM. Neither the input/output of the NOS 1 and NOS/BE 1 operating systems
themselves nor any of the system utilities such as COPY or SKIPF is implemented through CRM. All
CRM file processing requests ultimately pass through the operating system input/output routines.

60497800 D E-1

In this manual, the term CRM (or CYB ER Record Manager) refers to the versions of Record Manager
supported by NOS 1 and NOS/BE I; the term Record Manager refers to these versions plus the
SCOPE 2 Record manager.

EOF(End-of-File) - A particular kind of boundary on a sequential file, recognized by the functions EOF and
UNIT, and written by the END FILE statement. Any of the following conditions is recognized as
end-of-file:

End of section (for INPUT file only)

End of partition

End of information (EOI)

W type record with flag bit set and delete bit not set
Tape mark

Trailer label

Embedded zero length level 17 block

ENTRY POINT - A location within a program unit that can be branched to from other program units.
Each entry point has a unique name.

EOI (End-of-information) - The end of the last programmer record in a file. Trailer labels are considered
to be past end-of-information. End-of-information is undefined for unlabeled S or L tapes.

EQUIVALENCE CLASS - A group of variables and arrays whose position relative to each other is defined as. a
result of an EQUIVALENCE statement.

EXTERNAL REFERENCE - A reference fu one program unit to an entry point in another program unit.

FIELD LENGTH - The area (number of words) in central memory assigned to a job.

FILE - A logically related set of information; the largest collection of information that can be addressed by
a file name. Starts at beginning-of-information and ends at end-of-information.

FILE CONTROL STATEMENT - A control statement that contains parameters used to build the file information
table for processing. Basic file characteristics such as organization, record type, and description can
be specified on this statement.

FIT (File Information Table) - A table through which a user program communicates with Record Manager.
All file processing executes on the basis of fields in the table. Some fields can be set by the
FORTRAN user in the FILE control statement.

LABELED COMMON BLOCK - A common block into which data can be stored at load time. The first
program unit declaring a labeled common block determines the amount of memory allocated.
Contrast with blank common block.

LOGICAL FILE NAME - The name by which a file is identified; consists of one to seven letters or digits, the
first a letter. Files used in standard FORTRAN Extended input/output statements must be defined
in the PROGRAM statement, and can have a maximum of six letters or digits.

MAIN OVERLAY - An overlay that must remain in memory throughout execution of an overlayed program.

MASS STORAGE INPUT /OUTPUT - The type of input/output used for random access to files; it involves the
subroutines OPENMS, READMS, WRITMS, CLOSMS, and STINDX.

E-2 60497800 D

OBJECT CODE - Executable code produced by the compiler.

OBJECT LISTING - A compiler-generated listing of the object code produced for a program, represented as
COMP ASS code.

OPTIMIZING MODE - One of the compilation modes in the FORTRAN Extended compiler, indicated by the
control statement options OPT=O, 1, and 2, or by omission of the TS option.

OVERLAY - One or more relocatable programs that were relocated and linked together into a single absolute
program. It can be a main, primary, or secondary overlay.

PARTITION - Record Manager defines a partition as a division within a file with sequential organization.
Generally, a partition contains several records or sections. Implementation of a partition boundary
is affected by file structure and residence.

Device RT BT Physical Representation

PRU device w I A short PRU of level 0 containing one-
word deleted record pointing back to
last I block boundary, followed by a
control word with flag indicating parti-
tion boundary.

w c A short PRU of level 0 containing a
control word with a flag indicating
partition boundary.

D,F,R,S,T,U,Z c A short PRU of level 0 followed by a
zero-length PRU of level 17.

Sor L w I Separate tape block containing as many
format tape deleted records of record length 0 as

required to exceed noise record size,
followed by a deleted one-word record
pointing back to the last I block
boundary, followed by a control word
with a flag indicating a partition
boundary.

w c Separate tape block containing as many
deleted records of record length 0 as
required to exceed noise record size,
followed by a control word with a
flag indicating a partition boundary.

D,F,T,R,S,U,Z C,K,E Tapemark.

Any other tape format Undefined.

Notice that in a file with W type records a short PRU of level 0 terminates both a section and a partition.

60497800 D E-3

PRIMARY OVERLAY - A second level overlay that is subordinate to the main overlay. A primary overlay can
call its associated secondary overlays and can reference entry points and common blocks in the main
overlay.

PROGRAM UNIT - A sequence of FORTRAN statements terminated by an END statement. The FORTRAN
program units are main programs, subroutines, functions, and block data subprograms.

PRU - lJnder NOS 1 and NOS/BE 1, the amount of information transmitted by a single physical operation of a
specified device. The size of a PRU depends on the device:

A PRU which is not full of user data is called a short PRU; a PRU that has a level terminator but
no user data is called a zero-length PRU.

Size in Number
Device of 60-bit Words

Mass storage 64

Tape in SI format with 128
coded datat

Tape in SI format with 512
binary data

Tape in xt or I 512
format

Tape in other Undefined
format

tNot supported under NOS 1

PRU DEVICE - A mass storage device or a tape in SI (NOS 1 and NOS/BE 1), I (NOS 1 and NOS/BE 1), or X
(NOS/BE 1 only) format, so called because records on these devices are written in PRU's.

RECORD - Record Manager defines a record as a group of related characters. A record or a portion
thereof is the smallest collection of information passed between Record Manager and a user program in
a single read or write operation. Eight different record types exist, as defined by the RT field of the
file information table.

Other parts of the operating systems and their products might have additional or different definition
of records.

RECORD MANAGER -- A generic term relating to the common products AAM and BAM that run under the
NOS 1 and NOS/BE 1 operating systems and which allow a variety of record types, blocking types,
and file organizations to be created and accessed. The execution time input/output of COBOL 5,
FORTRAN Extended 4, Sort/Merge 4, ALGOL 4, and the DMS-170 products is implemented through
CRM. Neither the input/output of the NOS 1 and NOS/BE 1 operating systems themselves nor any
of the system utilities such as COPY or SKIPF is implemented through CRM. All CRM file processing
requests ultimately pass through the operating system input/output routines.

E-4

In this manual, the term CRM (or CYB ER Record Manager) refers to the versions of Record Manager
supported by NOS 1 and NOS/BE 1 ; the term Record Manager refers to these versions plus the
SCOPE 2 Record manager.

60497800 D

RECORD TYPE - The term record type can have one of several meanings, depending on the context. ·Record
Manager defines eight record types established by an RT field in the file information table.

REFERENCE MAP - A part of listing produced by a FORTRAN compilation, which displays some or all of the
entities used by the program, and provides other information such as attributes and location of these entities.

RELOCATION - Placement of object code into central memory in locations that are not predetermined and
adjusting the addresses accordingly.

SECONDARY OVERLAY - The third level of overlays. A secondary overlay is called into memory by its
associated primary overlay. A secondary overlay can reference entry points and common blocks in boht
of its associated primary overlay and the main overlay.

SECTION - CYBER Record Manager defines a section as a division within a file with sequential organization.
Generally, a section contains more than one record and is a division within a partition of a file. A
section terminates with a physical representation of a section boundary.

Device RT BT Physical Representation

PRU device w I Deleted one-word record pointing back
to last I block boundary followed by a
control word with flags indicating a
section boundary. At least the control
word is in a short PRU of level 0.

w c Control word with flags indicating a
section boundary. The control word
is in a short PRU of level 0.

D,F,R,T,U,Z c Short PRU with level less than 17 octal.

D,F,R,T,U,Z K Undefined.

s Any Undefined.

Sor L w I A separate tape block containing as
format tape many deleted records of record length

0 as required to exceed noise record
size followed by a deleted one-word
record pointing back to last I block
boundary followed by a control word
with fl~gs indicating a section boundary.

w c A separate tape block containing as
many deleted records of record length
0 as required to exceed noise record
size, followed by a control word with
flags indicating a section boundary.

D,F,R,T,U,Z C,K,E Undefined.

s Any Undefined.

Any other tape format Undefined.

The NOS 1 and NOS/BE 1 operating systems equate a section with a system-logical-record of level 0 through
16 octal.

60497800 D E-5

SEQUENTIAL - A me organization in which the location of each record is defined only as occurring
immediately after the preceding record. A file position is defined at all times, which specifies the next
record to be read or written.

SOURCE CODE - Code written by the programmer in a language such as FORTRAN, and input to a
compiler.

SOURCE LISTING - A compiler-produced listing, in a particular format, of the user's original source program.

SYSTEM-LOGICAL-RECORD - Under NOS/BE 1, a data grouping that consists of one or more .PRUs terminated
by a short PRU or zero-length PRU. These records can be transferred between devices without loss of
structure.

TIME-SHARING MODE - One of the compilation modes in the FORTRAN Extended compiler, indicated by the
TS control statement option.

UNIT DESIGNATOR - An integer constant, or an integer variable with a value of either 0 to 99 or an L format
logical file name. In input/output statements, indicates on which file the operation is to be performed.
It is linked with the actual file name by the PROGRAM statement.

WORD ADDRESSABLE - A file organization in which the location of each record is defined by the ordinal of
the first word in the record, relative to the beginning of the file.

WORKING STORAGE AREA - An area within the user's field length intended for receipt of data from a file
or transmission of data to a file. Transmission to or from a buffer intervenes, except for buffer
statements.

ZERO-BYTE TERMINATOR - 12 bits of zero in the low order position of a word that marks the end of the
line to be displayed at a terminal or printed on a line printer. The image of cards input through
the card reader or terminal also has such a terminator.

E-6 60497800 D

A conversion, input and output 6-18
Abort, recovery 8-12
ABS 8-2
ACOS 8-7
Actual arguments 7-7, 7-9, 7-12
AIMAG 8-5
AINT 8-2
ALOG 8-6
ALOGIO 8-6
AMAXO 8-2
AMAX1 8-2
AMINO 8-2
AMINl 8-2
AMOD 8-2
AND 8-3
AREA debug statement 9-23
Arguments

Actual 7-12
Dummy or format 7-12

Arithmetic
Assignment 2-15
Complex D-3
Double precision D-2
Expressions 2-1
IF statement 4-5
Integer D-3
Mode errors D-7
Operators 2-1
Statement function 7-10

I Arrays
Description 1-13
Dimensions 3-4
Element location 1-16
EQUIV ALEN CE 3-9
NAMEUS'r 5-17
Structure 1-16
In subprogram 7-14
Subscripts 1-15
Transmission 6-1
Type statements 3-1

ARRAYS debug statement 9-3
ASIN 8-7
A~IGN statement 4-3
Assigned GO TO 4-4
Assignment statements

Arithmetic 2-15
Logical 2-18
Masking 2-19
Multiple 2-19

Asterisk
Comment 1-3
Hollerith 6-26
Multiplication 2-1

ATAN 8-7
ATAN2 8-7
ATANH 8-6.2

B suffix for octal 1-8
BACKSPACE 5-27
Basic external function 7-9, 8-1
Batch debugging 8-51
Binary

1/0 (see Unformatted)
Program execution 18-7

60497800 G

INDEX

Blank
Common 3-6
Line 1-4

Block
Data subprogram 7-5
Common 3-6

Boolean (see Masking)
Buffer

Input/output 16-2
IN statement 5-20
OUT statement 5-22
In PROGRAM statement 7-4

C comment line 1-3
Cl listing control 12-2
C$ debug statement 9-3
CABS 8-7
CALL statement 7-16
Call-by-name 14-2, 17-1
Call-by-value 14-2, 17-2
Calling

Overlay 7-23
Subroutine subprogram 7-16
Tracing subroutine calls 9-5

CALLS debug statement 9-5
Carriage control 6-31
ccos 8-6
CEXP 8-6
Character set 1-1, A-1
CHECKPTX 8-11
CID 8-51
CLOCK 8-10
CLOG 8-6
CLOSEM 8-42
CLOSMS 8-32
CMMALF 8-53
CMMFRF 8-53
CMPLX 8-5
Coding column significance 1-1
Column usage 1-1
Comment line 1-3
Common

And equivalence 3-11
Block 3-5
::>verlay communication 7-21
Statement 3-5
Using common 7-14

Common memory manager 8-52
COMPASS assembler

Calling sequence 17-1
Program entry points 17-4
Subprogram 17-2

Compilation modes
Characteristics 11-2
Listings 12-1

Compile time input/output 16-11
Compiler

Call 10-1
Diagnostics B-1
Supplied functions 8-1

COMPL 8-3
Complex

Arithmetic D-3
Constants 1-7

Index-I

I
I
I

I

I

I

I

Complex (Contd)
Conversion 2-17
Type statement 3-2
Variables 1-13

Computed GO TO 4-2
CONJG 8-5
CONNEC 8-27
Constants

Complex 1-7
Double precision 1-6
Hollerith 1-9
Integer 1-5
Logical 1-11
Octal 1-8
Real 1-5

I
Continuation

FTN control statement 10-2
Line 9-3
Statement 1-3

CONTINUE statement 4-12
Control

Carriage 6-31
Column (Tn) 6-32
Listing 12-2

Control card (see Control statement)
Control statement

I DEBUG 8-51
FILE 16-6
Parameters for FTN 10-1

Conversion
Data on input/output 6-6
Mixed mode 2-5
Octal to hexadecimal A-3
Specifications for input/output 6-7

cos 8-6
COSD 8-6.1
COSH 8-6
Cross reference map 13-1
CSIN 8-6
DSQRT 8-7
CY BER Record Manager interface 8-39
CYBER Interactive Debug interface 8-51

I D conversion
Input and output 6-16
Scaling 6-23

D double precision constant 1-6
DAI5 8-2
DACOS 8-7
DASIN 8-7
Data conversion on input/output 6-6
DATA statement 3-15
DATAN 8-7
DATAN2 8-7
DATE 8-9
Dayfile messages 8-10
DBLE 8-5
DCOS 8-6
QCOSH 8-6
DEBUG statement 9-22

I nebug
Deck structures 9-17

I Facility 9-1
Interface, FORTRAN-CYBER 8-50
Printing output 9-27
StateDlents 8-51, 9-3
Terminal output 8-52
STRACE entry point 9-28
User-debug interaction 8-52

lndex-2

Debugging aids
CYBER Interactive Debug 8-51
Debugging facility 9-1
ERRSET 8-20
Using reference map 13-14

Deck structure
Debug 9-17
Program 18-1

Declarations 3-1
DECODE statement 5-25
DEXP 8-6
Diagnostics

Compilation B-1
Compiler output listing messages B-79
Execution B-82
Optimizing mode B-1
Special compilation B-76
Time-sharing mode B-38

DIM 8-3
DIMENSION

Statement 3-4
Adjustable 7-14

DISCON 8-29
DISPLA 8-10
Display code A-1
Division

By zero D-4
Operator 2-1

DLOG 8-6
DLOGIO 8-6
DLTE 8-43
DMAXl 8-2
DMINl 8-2
DMOD 8-7
DO loops

Implied in DATA list 3-19
Implied in 1/0 list 6-2
Nested DO loops 4-9
Range 4-8

DO statement 4-7
Dollar sign

Comment column 1 1-3
Multiple statement separator 1-3

Double precision
Arithmetic D-2
Constants 1-6
Conversion 2-16
Type declaration 3-2
Variables 1-13

DSIGN 8-3
DSlN 8-6
DSINH 8-6
DSQRT 8-7
DTAN 8-7
DTANH 8-6
DUMP 8-14

E conversion, output and input 6-9
ECS/LCM

LEVEL statement 3-13
Subprograms 8-26

ENCODE statement 5-22
END statement 4-14
ENDFILE 5-27, 8-43
END-OF-DATA 8-31
END-OF-SECTION 8-23
ENTRY statement 7-18
EOF function 8-24
Equals sign in FORMAT 6-34

60497800 G

I

I

I
I

I

I

EQUIVALENCE
And common 3-11
LEVEL 3-13
Statement 3-8

ERP 8-6.1
ERFC 8-6.1
Error codes

Execution time B-29
Mode error D-7

Error numbers B-81
Error processing

By record manager 8-44
SYSTEM or SYSTEMC 8-15

Errors, arithmetic mode D-7
Evaluation of expressions 2-2
Execution diagnostics B-82

I
Execution control statement

Alternative file name 15-1
Print limit specification 15-2
Post mortem dump parameters 15-2

Execution time
Diagnostics B-29
File name handling 15-1
FORMAT 6-36
Input/output 16-1

EXIT 8-11
Exponentiation 2-6

I Expressions
Arithmetic 2-1

I Definition 2-1
Logical 2-9
Masking 2-12
Relational 2-7
Subscripts 1-15

Extended range of DO loop 4-8
External

Function, basic 8-1
Statement 3-14

I F conversion
Output and input 6-13
Scaling 6-22

FALSE 1-11
File

I Alternate name specification 15-1
Control statement 16-6
Definition 16-1
Labeled 8-25
Name handling 15-1
Name (TAPEu) 7-3
Structure 16-2

File information table (FIT)
Defaults for standard 1/0 16-3
Direct call by record manager 8-39

FILExx 8-42
FLOAT 8-2

I Floating point
Indefinite results D-5

I Internal format D-1
Overflow D-4
Underflow D-4

Formal argument (parameter) (see Dummy argument)
FORMAT

Execution time 6-36
Repeat specification 6-29
Slash 6-28
Statement 6-5

Formatted input/output 5-2
FORTRAN compiler call 10-1

60497800 G

FORTRAN-CYBER Interactive Debug
Batch debugging 8-52
Control statement 8-51
Debug output 8-52
Interface 8-51
User-debug interaction 8-52

FTN control statement 10-1
FUNCS debug statement 9-7
Function

Basic external 7-9, 8-1
Intrinsic 7-10, 8-1
Referencing a 7-15
Statement 7-10
Subprogram 7-8
Tracing a reference 9-7

G conversion
Input and output 6-14
Scaling 6-23

GET 8-42
GETN 8-43
GETP 8-42
Glossary E-1
GO TO statements

Assigned GO TO 4-4
Computed GO TO 4-2
Types 4-1
Unconditional GO TO 4-1

GOTOS debug statement 9-14

H specification
FORMAT specification 6-25
Hollerith constant 1-10

Hexadecimal/octal conversion A-3
Hierarchy in expressions 2-2
Hollerith

Constant 1-9
Data interpreted by STORES 9-13
Format element 6-25

I conversion, input and output 6-7
IABS 8-2
IDIM 8-3
!DINT 8-2
IF statements

Arithmetic 4-5
Standard-form logical 4-6
Three-branch arithmetic 4-5
Two-branch arithmetic 4-5
Two-branch logical 4-7

!FETCH 8-42
IFIX 8-3
IMPLICIT

Statement 3-3
Typing of variables 1-11

Implied DO in
DATA list 3-19
1/0 list 6-2

Indefinite result, floating point D-5
Index

DO loop 4-7
Mass storage files 8-29
Multiple (record manager) files 8-44

Infinite result, floating point D-4
Input

BUFF ER IN 5-20
File 7-3
List directed 5-8
NAMELIST 5-14

I

I

I

I
I

Index-3

Input/output
BUFFER 16-11
Compile time 16-11
Execution time 16-1
Lists 6-1
Mass storage 8-29
Statements 5-1
Status checking 8-23

IOCHEC 8-24
IO time limit 10-4
INT 8-2
Integer

Arithmetic D-3
Constants 1-5
Conversion 2-16
Statement 3-1
V eriables 1-12

INTERCOM, terminal 1/0 8-27
Intrinsic functions 7-18, 8-1
ISIGN 8-3

JDATE 8-9
Job decks, sample 18-1

L conversion, input and output 6-21
L in Hollerith constant 1-11
LABEL 8-25
Labels

RETURNS list 7-7
Statement number 1-3

Labeled
Common 3-6
Files 8-25

LEGVAR 8-15
LENGTH, LENTHX 8-25
LCM, see ECS
Level

OVERLAY 7-20
Statement 3-12

LGO 15-1
Library functions 8-1

I UMERR 8-20
List directed

Input data for ms 5-9
Output data forms 5-11
READ 5-8
WRITE 5-10

I Listings
Compiler 12-1
Control 12-''.
Map 13-1

LOCF 8-5
Logical

Assignment statement 2-18
Constants 1-11
Expressions 2-9
File names 15-1
IF statement 4-6
Statement 3-3
Unit number 7-3
V eriables 1-13

I Loops
DO 4-8
Nested DO 4-9

Main program 7-2
Map symbolic or cross reference

Optimizing mode 13-1.
TS mode 13-15

MASK 8-4

lndex-4

Masking
Assignment statement 2-19
Expression 2-12

Mass storage
CLOSMS 8-32
Input/output 8-29
OPENMS 8-30
READMS 8-32
STINDX 8-32.1
WRITMS 8-31

MAXO 8-2
MAXl 8-2
Messages

Execution diagnostics B-29
Optimizing mode diagnostic B-1
Special compilation B-3
TS mode diagnostic B-4

MINO 8-2
MINi 8-2
Mixed-mode arithmetic conversion 2-5
MOD 8-2
Mode

Arithmetic errors D-7
Debug 9-1
Optimizing 11-2
Time-sharing (TS) 11-6

MOVLEV 8-26
Multiple

Assignment statement 2-19
Index processing 8-44
Statement separator$ 1-3

NAMELIST
Parameters 5-13
READ 5-14
WRITE 5-15

Names
Common block 3-6
File 7-3
PROGRAM 7-2
Variable 1-11

Nesting
DO loops 4-9
Parentheses 6-2

NOGO debug statement 9-17
Number

Common block 3-6
Formats (see Constants)
Statement label 1-3

NUMERR 8-20

0 conversion, input and output 6-17
Object code 14-1
Octal

Constants 1-8
Hexadecimal conversion A-3

OFF debug statement 9-26
OPENM 8-42
OPENMS 8-30
Operands

Evaluation 2-2
Nonstandard floating point ~5

Operating system interface routines 8-9
Operators 2-1
Optimization

Object code 11-2
Source code 11-4
Unsafe 11-3

Options FTN control statement 10-1
OR 8-3
Order, statements in program wiit 1-4

60497800 G

I
I

I

Output
BUFFER OUT 5-22
File 7-3
List directed data forms 5-11
NAMELIST data form 5-16
Print limit specification 15-3
Record length 5-2

Overflow, arithmetic D-4
I Overlays

Calling 7-23
I Description 7-19

Directive 7-22
Sample deck 7-26

P scale factors 6-21
Parameter, see argument
Parentheses, nesting 6-2
PAUSE statement 4-13
PDUMP 8-14

I Post mortem dump
Description 8-53
Dump disposition 8-55, 15-2

Precedence of operators 2-2
Print

Control characters 6-31
Limit specification 15-3
Statement 5-3

I Procedure commmication
Passing values 7-12
Using arguments 7-12

Program
Maps 13-1
Sample 19-1
Units 7-1

PROGRAM statement 7-2
Punch

Codes A-2
File 7-3
Statement 5-4

PUT 8-42
PUTP 8-43

R conversion, input and output 6-20
R in Hollerith constant 1-11
Random

Access 8-29
Number routines 8-8

RANF 8-5, 8-8
Range of DO loop 4-8
READ statements

Formatted 5-5
List directed 5-8
NAMELIST 5-14
Unformatted 5-7

READEC 8-26
READMS 8-32
REAL 8-5
Real

Constant 1-5
Conversion 2-18
Statement 3-2
Variable 1-12

Record
Definition 16-1
1/0 record length 5-2, 7-3
Types 16-1

Record manager (see also CYBER)
File handling 16-1
Files/direct handling 8-39

Recovery 8-12
RECOVR 8-12
Reference, function 7-15

60497800 G

.. :

Reference maps 13-1
Register names 14-2
Relational

Evaluation 2-8
Expres.~iOlls 2-7
Operators 2-7

REMARK 8-10
REPLC 8-43
Reprieve 10-4
RETURN statement 4-15
RETURNS list 4-15, 7-7
REWIND 5-27
REWND 8-43
RMKDEF 8-45
RMOPNX 8-45
ROUND 10-7

Sample
Coding form 1-2
COMPASS subprogram 17-2
Decks 18-1
FTN control statement 10-9
Programs 19-1

Scale factors 6-21
Scaling 6-22
SECOND 8-9
Sense

Light 8-10
Switch 8-11

Separator
Slash and comma 6-7
$ statement 1-3

Sequenced line format 11-7
Sequential file structure 16-2
SHIFT 8-4
SIGN 8-3
SIN 8-6
SIND 8-6.1
SINH 8-6
Slash in FORMAT statement 6-28
SLITE 8-10
SNGLE 8-4
Sort/Merge interface 8-46
Specification statements 3-1
SSWI'CH 8-11
Standard, FORTRAN ANSI v
Statement

Format 1-1
FORTRAN (see Individual statement name)
Function 7-10
Labels or numbers 1-3
Order in program unit 1-4
Separator, multiple 1-3

STATIC option 20-1
STINDX 8-32.1
STOP statement 4-14
STOREF 8-42
STORF.8 debug statement 9-10
STRACE 8-15, 9-28
Structure

Debug decks 9-17
Memory 14-4
Program units 1-4

Subprograms
Block data 7-5
Function 7-8
Miscellaneous utility 8-8
Subroutine 7-6

Subroutine
Calling 7--16
Statement 7-6

Index-5

I Subscripts
And arrays 1-13

I Definition 1-15
Checking in debug 9-3

Symbolic
Or cross reference map 13-1
Name 1-11

Syntax C-1
SYSTEM and SYSTEMC 8-15

TAN 8-7
TAND 8-6.1
TANH 8-6
TAPEu 7-3
Terminal interface 8-27
Texts, system 10-7
'11ME 8-10
Time-Sharing ('IS) mode

Characteristics 11-6
Compilation diagnostics B-14
Cross reference map 13-15

Tn (tab) specification 6-32
TRACE debug statement 9-15
Traceback mode 9-28
'IS mode 11-6
TRUE 1-11
Type of

Arithmetic expressions 2-5
Function 7-8, 8-1
Masking expression 2-19
Variable 1-11

Type statements
Dimension information in 3-1
Explicit 3-1
Implicit 3-3

Unary operators and evaluation 2-3
Unconditional GO TO 4-1
Underflow, arithmetic D-4
Unformatted

READ 5-7
WRITE 5-7

UNIT 8-23
Unit number 7-3
User-Debug interaction 8-52
Utility subprograms ·· 8-8

Index-6

V specification 6-34
Variable

Dimensions in a subprogram 7-7, 7-14
FORMAT statements 6-36
Name and type 1-11

Variables
Complex 1-13
Definition 1-11
Double precision 1-13
Integer 1-12
Logical 1-13
Real 1-12

WEOR 8-43
WRITE statement

Formatted 5-5
List directed 5-10
NAMELIST 5-15
Unformatted 5-7

WRITEC 8-27
WRITMS 8-31
WfMK 8-43

X specification 6-24
XOR 8-3

Z conversion, input and output 6-18
Zero operand D-4

.AND. 2-9

.EQ. 2-7

.FALSE. 1-11

.GE. 2-7

.LE. 2-7

.LT. 2-7

.NE. 2-7

.NOT. 2-9

.OR. 2-9

.TRUE. 1-11

$ 1-3
* 1-3, 2-1, 6-26

Hollerith constant 1-10
FORMAT specification 6-27

I 6-28
= in FORMAT 6-34

60497800 G

I
I

w z
:::i

C> z
0 _,
<
I
:> u

COMMENT SHEET

MANUAL TITLE: FORTRAN Extended Version 4 Reference Manual

PUBLICATION NO.: 60497800 REVISION: G

STREET ADDRESS=------------------------------

CITY: ______________ STATE: _______ ZIP CODE: _______ _

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any erron, suggested additions or deletions, or general comments below (please
include page number references).

0 Please reply 0 No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES ANO TAPE

PE TAPE

t
ILO FOLD I
·--~-----------------------------1

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park Drive
Sunnyvale, California 94086

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED ST~ TES

;'l0--rolo-l

w z
:::;

C> z
0 _,
<
~
:::>
u

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@::?)
CONT"OL DATA CO~O~TION

