CONTROL DATA
L coreomaTion]

CORPORATION

CONTROL DATA®
6000 COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

FORTRAN EXTENDED REFERENCE MANUAL
6000 VERSION 3
7600 VERSION 1

MATH S(

proas

NCE LIBRARY

L

The Math Science Library is the most efficient and comprehensive library of mathematical routines available.
It consists of over 400 routines selected for:

Speed

Accuracy

Reliability

Maintainability

Flexibility

Storage conservation

The eight areas of computational mathematics that are covered are:

e Programmed arithmetic
Elementary functions
Polynomials and special functions
Ordinary differential equations
Interpolation, approximation and quadrature
Linear algebra
Probability, statistics, and time series
Nonlinear equation solvers

The Math Science Library includes an 1800 page handbook, in eight volumes, guiding users to the routines
most suitable for their objectives.

The Math Science Library is operational on CONTROL DATA CYBER 70, 6000, and 7600 systems.

PREFACE

This publication describes the features of the FORTRAN Extended language

3 ~ AMAB® cAnn /ecnn/eenn /eonn /0000 s s
('v’Gl"SxOl’i 3. 0) for the CONTRCL DATA® VaUVU/00VUVU/00VVU/0iVu/iouy \JULupuLULD.

It is assumed that the reader has some knowledge of an existing FORTRAN
language and CONTROL DATA computer systems. The language described
herein is an extension of the ANSI FORTRAN language.

The FORTRAN compiler operates in conjunction with the Version 2 COMPASS
assembly language processor under the control of three operating systems: SCOPE
Version 3.3 and KRONOS® Version 2.0 for 6000 Series computers and SCOPE
Version 1.1 for the 7600 computer. The FORTRAN processor makes optimum use
of storage both during compilation and in generated machine language instructions.
Implementation of this processor provides the capability of compilation and exe-
cution within a single job operation as well as the simultaneous compilation of
several programs, utilizing the system's multi-programming features.

Control Data Corporation intends for the user of this product

to exercise only those features, specifications, and parameters
described in this document. Any use of adjunct code and/or un-
defined parameter values is done so at the user's risk.

Related manuals in which the FORTRAN user may find additional information
are:

Publication No.

SCOPE 3.3 Reference Manual 60305200
SCOPE 3.3 User's Guide 60252700
SIFT (FORTRAN Translator Program) 60358400
FORTRAN Extended Debug User's Guide 60329400
COMPASS 2 Reference Manual 60279900
7000 SCOPE 1 Reference Manual 60281200
KRONOS 2.0 Reference Manual 59150600

60329100 D

CONTENTS

PREFACE

CHAPTER 1

CHAPTER 2

60329100 D

PROPERTIES AND ELEMENTS OF FORTRAN

1.1
1.2

ol
RN

1.6

The FORTRAN Character Set
FORTRAN Statements
Statements
Continuations
Comments
Statement Label
Identification Field
Symbolic Names
Data Types
Constants
Integer
Real
Double Precision
Complex
Logical
Hollerith
Octal
Variables
Variable Names
Types of Variables
Arrays
Order of Array Storage
Subscripted Variables
Extended Core Storage

EXPRESSIONS

R
Q1 W W DD =

Arithmetic Expressions
Relational Expressions
Logical Expressions
Masking Expressions
Evaluation of Expressions

[,
o
[

1
-

UL L |
NNNDNRE R

A S IR RN
&mmm#%wwww

[B e B e W
|
© o o~ ~3]

i
ot
=

—

vi

CHAPTER 3

CHAPTER 4

CHAPTER 5

ASSIGNMENT STATEMENTS

3.1 Arithmetic Assignment
Mixed-Mode

3.2 Logical Assignment

3.3 Masking Assignment

CONTROL STATEMENTS

4,1 GO TO Statements
Unconditional GO TO
4.2 Assigned GO TO
Computed GO TO
4.3 IF Statements
Arithmetic IF Three-Branch
Arithmetic IF Two-Branch
Logical IF
Logical IF Two-Branch
4.4 DO Statement
DO Nests
DO Loop Execution
CONTINUE
4.5 CALL
RETURN
4,6 Program Control
STOP
PAUSE
END

INPUT/OUTPUT STATEMENTS

5.1 Modes of Input/Output
1/0 Lists
Read/Write Statements
Formatted Input/Output

Read

Input File

Write

Print/Punch

Print Control
5.5 Unformatted Input/Output

Read
Write
5.6 Namelist Statement
Input Data
Qutput Data

.7 Rewind
.8 Backspace
.9 Endfile
.10 ECS1I/0
.11 Mass Storage 1/0

() B4 I |
s o .
= w

[V B R B I

1
-

T
[ETEH

[N O L o o S
||III|I'L.LI
(s oUW, O]
N DN

1
e O o
NS

S

=
o

1
[y
o

(51}
1

oo v on
R AN
[N I R X e

1

WU'IU‘IMCHU'IO'IUICIHO'IU'IWU‘!U'IU'IM
o O

1
el e o 2B =R B I S B S

o

60329100 A

CHAPTER 7

CHAPTER 8

60329100 A

FORMAT STATEMENTS

6.1 Format Declaration
Field Descriptors
Field Separators
6.2 Conversion Specification
Iw Input
Iw Output
Ew.d Input
Ew.d Output
Fw.d Input
Fw.d Output
Gw.d Input
Gw.d Output
Dw.d Output
Dw.d Input
Ow Output
Ow Input
Aw Output
Aw Input
Rw Output
Rw Input
Lw Output
Lw Input
Complex Conversions
nP Scale Factor
6.3 Editing Specifications
nX
nH
New Record
L RN
Tn
6.4 Repeated Format Specifications
6.5 Variable Format

AUXILIARY INPUT/OUTPUT STATEMENTS

7.1 Buffer Statements
Buffer In
Buffer Out
7.2 ENCODE/DECODE Statements
Encode
Decode

SPECIFICATION AND DATA STATEMENTS

8.1 Dimensions
Variable Dimensions

8.2 Common

o “Labeled Common
Unlabeled Common
Arrangement of Common Blocks

[#2}
1
Y

11

|
A 0 N DN

[or B = = PR = R = SR FE = P« PR =PI« A = R = AR = i« I ~ PR = P = MY = PR © NI = I = I = e)
UL P T |
© W o =1

(o2« P Re = "« NI« NI« NI« NIl o)
[I B
=
o ~1 -3 &

1
[an
©

1~ =3 ~3 =3 =3 =3
|
U I CI RSP

1
[

TTETTT T
[T ST I JUR SR

vii

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

viii

8.3 Equivalence
8.4 External
8.5 TYPE

8.6 DATA

PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA,
AND LIBRARY ROUTINES

9.1 Main Program

9.2 Subroutine Subprograms
ENTRY Statement
Library Subroutines

9.3 Function Subprograms
Statement Functions
Intrinsic Function
External Function
External Function Reference
Basic External Functions

9.4 Block Data Subprogram

OVERLAYS AND SEGMENTS

10.1 Overlays
10.2 Segments
Segment Control Cards
Sections
Segments

DEBUGGING FACILITY
11.1 Format

11.2 Arrays Statement
11.3 Calls Statement
11.4 Funcs Statement
11.5 Stores Statement
11.6 Gotos Statement
11.7 Trace Statement
11.8 Nogo Statement

11.9 Deck Structure

11.10 Debug Statement
11.11 Area Statement

11.12 Off Statement

11.13 Printing Debug Output

FORTRAN CONTROL CARD

12.1 Control Card Format

12.2 Source Input Parameter

12.3 Binary (Object) Output Parameter
12.4 List Parameter

[T |
[=2 IV o

\
= €O O 00 00 =]

[]
(=}

(D@&Q(DQQ!FCDQDQD@@

Sy

[ay
(=)
I
[aiy

10-1
10-3
10-4
10-4
10-5

11-1

11-2
11-2
11-3
11-5
11-6
11-7
11-7
11-8
11-9
11-14
11-15
11-16
11-17

12-1
12-1
12-1
12-2
12-2

60329100 A

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

INDEX

60329100 A

=
Do D DD
3 o w

Optimization Parameter
Invariant Computations
Register Assignment

12,8 Rounded Arithmetic Parameter

12.9 Debugging Mode Parameter

12.10 Exit Parameter

12.11 System Text File Parameter

12.12 System Editing and I/O Reference Parameter

12.13 Assembler Parameter

12.14 Control Card Examples

12.15 Small Buffers

12.16 Reference Map Level
STANDARD SCOPE CHARACTER SETS
FORTRAN DIAGNOSTICS

CROSS REFERENCE MAP

LIBRARY SUBPROGRAMS
INTERMIXED COMPASS SUBPROGRAMS
STATEMENT FORMS

SYSTEM ROUTINE SPECIFICATIONS
DECK STRUCTURE

EXECUTION TIME I/0

SUBPROGRAM AND MEMORY STRUCTURE

FORTRAN-INTERCOM INTERFACE

Error Traceback and Calling Sequence Parameter
Update Parameter (Editing Parameters)

Index~1

ix

FORTRAIN CODING FORIM

PROGRAM SAMPLE PROGRAM 'CONTROL DATA NAME

CORPORATION

ROUTINE Cone DATE PAGE OF

mUo<—=t

STATEA FORTRAN STATEMENT SERIAL

MENT 0= ZERO Iz ONE 2: Two NUMBER
NO. @: ALPHA © I: ALPHA I Z: ALPHA 2

—~Z 00

s

V 001623€09

AU gL T OO0 2 131015164178 19120420]122]23|24|25|26) 27|26 (29) 30|31 | 3233|3438 36 37| 38| 39| 40| 41|42 (43|44 (45]46)47{48)45 5051 (52|53 |54[55|56|57(56) 59|60 |61 | 82|63 |64 (63 [86 (67 68 [6970]7(|72 73(74(73]76 77|78 7980

PRGIGIRIAM TS THE S$LIUT LGN ($F AN M DEGREE| P@LYNGMIAL B Y | LEA ST -1S0UA RSt {MIE|TIHI@ (D1 1 1 |t
P REALL X G10000),5, % (1310,0:) W G203) | @ G) A G LB GL L 20 g g i | [PBILYY

v JFORMAT (T2, T3/ 4F L4700 L e d e et g o (P82

ca a2 [BORMAT GSELS 6] 0 o i s L Lot 1t [P Y3,

v P AREADE G5 1) M NG GX G D=) o v Lo g e a1l POLY 4 |
LW=2*M+1

|lIll||||ll||l|l||lll||]|ll|||J||lll]1|ll||i|||IPLQJLIY‘,SA

[oL
v B BEMN2 e b e b v c e b et i it PALY 6 |
I B LT BN SRR NN cea et e g g b (BT
A1 DB, 5| 3= 20TV oy Lo i b S T W N RO O B R NS BT R O G | 212 90 41 - TR
N LA T I W L T I A N A T N TR SN bl [PeLY9,
e PGIIEN s i e b L L v |B8 LY 10,
R LU AR S S e RN I Lo e vy g g (B8 Ly 11|
a8 BIGID=00 e e g it PBLY L2,
1oL Dlﬂl11,61,111=11H|N1,J_111111|JJ|||||1||1||||||1||11|||||||||1||||1|11?1¢1L1Y4,11,311
JE T L A A AR I S I A I tR I NI I L v ey v v e v s g |y |POL Y14

Con P EGIEBGIFY QI ey ti et b v e e e g | g B9y 5

Coon] P (L3 =2 LB | T T Y Y T A O 0 B S B B VR BT U AU R SO A B 110 A5 4 Y- TR

s JIBEROI)FP e e b e i i bt oy (P9 LY 1,7

AR LR /0] L LK (TP R /1 S O I S S A I AT I N I A R N NN e \P1@) L Y18 ;|
L3018 GID =8 (I Y (I %P,

ViV T T T YO0 B 0 N O A O S B R AV SN RV R SRR AR U O R 2 11 71 1% LTI

2y eysie] T e syl aisagis e 7 ieg9 2021 22)23)24)25)26,27) 26129 30] 1 | 32/33 34, 35,38137,3839, 40 91142(43144143)46147)48149,50]31 3253 54155158 37;58132 160 Ja1 |62 63164 65,66 167168 169 70]7: 72|73, 74 175 76 177,76 75 00

FORM 252-B

Figure 1-1

PROPERTIES AND ELEMENTS OF FORTRAN

1.1
THE FORTRAN

CHARACTER SET

1.2
FORTRAN
STATEMENTS

60329100 C

Alphabetic:
Numeric:

Special:

AtoZ

0

+ 0

—~ N %

to 9

equals

plus

minus

asterisk

skash

left parenthesis

) right parenthesis
, comma
. decimal point
$ dollar sign
space (i.e., blank)

In addition, any character of the SCOPE character set (Appendix A) may be
used in Hollerith information and in comments.

FORTRAN source programs consist of an ordered set of statements from
which the compiler generates machine instructions and constants. These
statements describe a procedure to be followed during execution of the

program.

The statements comprising the FORTRAN program are written in the fol-

lowing columns:

Statements

Statement
Continuations

Comments

Column

1-5

6
7-172
73-80

1-5

7-72
73-80

{230

Content

Statement label (optional)
Blank or zero

FORTRAN statement
Identification field

Ignored

FORTRAN character other than
blank or zero

Continued FORTRAN statement

Identification field

Cor $or *
Comments.

1-1

Except in Hollerith constants, blanks may be used freely and are ignored by
the compiler. A coding line may contain more than one FORTRAN statement
if each statement is separated by the special character $§. The next column
following $ is interpreted the same as column 7 of a normal statement. A $
may serve as a statement separator for all statements except FORMAT, END,
or labeled statements.

Continuation

Any FORTRAN statement except a comment, END statement, or loader
directive may be continued. A statement may be continued on as many as
19 lines, each denoted by a continuation character (any acceptable character
other than blank or zero) in column 6 on the continuation card. A blank or
zero in column 6 denotes the first line of a statement. Blank ca.ls within
the input deck are ignored by the compiler; however, a continuaticn card
following a blank card is treated as a new statement. (See also chapter 11,
Debugging Facility.)

Comment

In Column 1, a C, *, or $ indicates a comment line. Comments do not
affect the program; they can be written in columns 2 to 80 and placed
anywhere in the program. When a comment occupies more than one line,
each line must begin with C, *, or $ in column 1. The continuation char-
acter in column 6 does not apply to comment cards. Comments can ap-
pear between continuation cards.

Statement Label

Statements are identified by unsigned integers which can be referred to

from other sections of the program. A statement label (from 1-99999) may
be placed anywhere in columns 1-5 of the initial line of a statement. Leading
zeros are ignored. In any program unit, each statement label must be unique.

Identification Field

The FORTRAN Extended compiler is designed so that input lines may be
greater than 80 characters long (e.g., when the input medium is a file pro-
duced by one of the source editing programs such as UPDATE). Only the
first 72 characters are processed by the compiler and only the first 100
characters appear on the listing. Positions beyond 72 may be used for
identification codes or sequencing.

60329100 D

1.3
SYMBOLIC
NAMES

1.4
DATA TYPES

1.5
CONSTANTS

1.5.1
INTEGER

60329100 C

A symbolic name may be any alphabetic character followed by 0-6 alphanu-
meric characters. It may not contain special characters. Embedded blanks
are ignored. Symbolic names are used for: subprogram and subroutine
names, function names, variables, block data program, main program,
input/output unit, common block, and namelist group names.

Each of the seven types of data has different significance. The types are:
integer, real, double precision, complex, logical, octal, and Hollerith.

Integer type may assume only whole number values. For multiplication and

division of integer operands, the result will be invalid if it exceeds 247-1,
For addition and subtraction, the full 60-bit word is used.

Real type data is carried in normalized floating point form. The magnitude
of values of real type data is in the range 10322 to 10-293 with approximately
15 significant digits and 14 digit precision.

Double precision data is similar to type real, but it has approximately 29
significant digits.

Complex data consists of an ordered pair of real data. Each part has the
same precision as real data. The first part is the real part, and the second °
is the imaginary part.

Logical data has only a true or false value. True is represented by any
negative value, and false is represented by any positive value including +zero.

Octal data may consist of any value from 0-7...7 which can be represented
in a maximum of 60 bits (20 octal digits).

Hollerith data consists of strings of characters. Blank characters are valid
in a Hollerith string.

A constant is an unvarying quantity. The types of constants are the same
as the types of data.

An integer constant is a string of up to 18 decimal digits with a magnitude

no larger than 2591, If multiplication or division is specified, the operands
and result should be less than 247_1. Effectively, an integer constant string
may contain up to 15 decimal digits with a maximum magnitude of 247.1. Tt
may not contain embedded commas. For example:

1-3

0 -2145637
67 45753576357
345 =77

The result of integer addition or subtraction must not exceed 259-1. Integers
used as subscripts and DO indexes are limited to 217-2. The integer constant
may be positive, zero, or negative (if unsigned, it is assumed to be positive)
and must be within the allowed magnitude.

The maximum value of an integer constant as a result of a conversion from

a real constant is 247-1, The maximum value of an integer constant as a
result of multiplication or division must not exceed 247-1. If the value should
exceed the magnitude allowed, the high order bits are lost.

1.5.2

REAL A real constant may be represented by a string of up to 15 significant decimal
digits. It contains a decimal point or an exponent representing a power of
10, or both. Real constants may be in the following forms:
n. .n n.n n.nE+s n. Ets nE+s .nE+s
n is the coefficient; E signifies that the succeeding datum is the exponent;
and s is the base 10 exponent. The value of s must be in the range -308 to
+337. The plus sign may be omitted if s is positive. The magnitude of
non-zero absolute real values may be in the range 107293 t0 10322, with
up to 15 significant digits. K the range of the real constant is exceeded, the
constant is considered zero and a compiler diagnostic is issued.
Examples:
3.E1 (means 3.0 x 101; or 30.)
3.1415768 31.41592E-01
314.07 .31415E01
-3.14159E+279 .31415E+01
30E02 -30E02
1.5.3

DOUBLE PRECISION A double precision constant is written as a string of digits and represented
internally by two words. The forms are:

.nD+s n.nD+s n. D+s nD+s

The D must always appear; the coefficient is n; s is the exponent of base 10.

1-4 60329100 D

The plus sign may be omitted for positive s. The range is the same as that
of a real constant but is accurate to approximately 29 decimal digits. I
the range is exceeded, a compiler diagnostic is issued.

Examples:

3.1415927D+1 3141.593D3
3.1416D0 31416.D-04
3131.593D-03 31416D02

1.5.4
COMPLEX A complex constant is an ordered pair of signed or unsigned real constants,
separated by a comma, and enclosed in parentheses (rl,r2). rl represents
the real part of the complex number; r2 represents the imaginary part.
rl and r2 must adhere to the magnitude specified for real constants. If
this range is exceeded, a compiler diagnostic is provided. Diagnostics also
occur when the pair contains integer constants, ‘including (0, 0).
Examples:
FORTRAN Representation Complex Numbers
(1.,6.55) 1. +6.551
(15.,16.7) 15. +16.7i
(-14.09,1.6E-03) -14.09 + . 00161
0.,-1.) 0. -1.0i
1.5.5
LOGICAL Logical constants assume only the values of true or false. When the com-

piler generates a value for the constant . TRUE., it will generate a minus
one; for the constant . FALSE., a zero is generated. Logical constants
must be preceded and followed by a period and have the forms:

.TRUE. or .T.
.FALSE. or .F.

Example:

LOGICAL X1,X2

X1=.T.
X2 =, FALSE.)) T

60329100 A 1-5

1.5.6
HOLLERITH

1.5.7
OCTAL

1-6

A Hollerith constant is of the form hHf, hRf (right justified), or hLf (left
justified). h is an integer constant whose value is greater tkan zero; f
represents the Hollerith data and must contain exactly h characters. When
the hHf form is used, if h is not a multiple of 10, the last word is left justi-
fied and blank filled. Incomplete words in the hRf and hLf forms are binary
zero filled.

Blanks are significant in a Hollerith data string. Hollerith constants are
stored internally in display code. (See Appendix A.)

Hollerith constants may be used in arithmetic expressions, DATA and CALL
statements, and in function argument lists. If the constant is an operand of
an arithmetic operation, an informative diagnostic to that effect is issued.

Examples:

6HCOGITO

4LERGO

3RSUM

3HSUM
The maximum number of characters allowed in a Hollerith constant depends
on its usage. In an expression, h may not be greater than 10; in a DATA
statement, h is limited only by the number of characters that can be contained
in a maximum of 19 continuation lines. If more than 10 characters are given

in a DATA statement for such a constant, only the last word will have the
appropriate fill.

An octal constant consists of 1 to 20 octal digits followed by a B. The
form is:

nj.. niB
If the constant exceeds 20 digits, or if a non-octal digit appears, a fatal
compiler diagnostic is issued. When fewer than 20 octal digits are specified,
the digits are right justified and zero filled.

Example:

2374216B
77777768
777000777000777B

60329100 A

1.6
VARIABLES A variable is a symbolic representation of a quantity that may assume
different values during execution of a program.

1.6.1

VARIABLE NAMES A variable name may be any combination of 1 to 7 alphanumeric characters,
must begin with an alphabetic character, and may contain embedded blanks.
It may not contain special characters. For a main program, the program
name may not appear as a symbolic name in any statement other than the
PROGRAM statement.

1.6.2

TYPES OF VARIABLES The type of a variable may be declared explicitly with the FORTRAN type
declarations. (The type of the data is converted to the type of the variable.)

For example:

INTEGER ABC123, GNU12, CATXXX, FIREOUT, JOKER
REAL ISPY, JASONII, KOOR47, NVRT, SAMPLE

If integer and real variables are not declared explicitly, the type is deter-
mined by the first character of the symbolic name. I the name begins with
1, J, K, L, M, or N, the variable is assumed to be integer.

115, JK26, KKK, LB02, NP456L, and MM are classed as integer variables
and must adhere to all limitations stated for that type. Variables beginning
with characters A-H and O-Z are considered to be real and must adhere to

all limitations stated for that type.

Complex, logical, and double precision variables must be declared explicitly
by a type declaration. The values which the variables represent must adhere
to the limitations stated for the corresponding type of constant.

Octal and Hollerith data are interpreted as though they were typeless. They
may be assigned to variables of any type, either with simple assignment
statements or with input statements, and will undergo no type conversion in
the process. When one -operand of an arithmetic operation is an octal or
Hollerith constant, it will be interpreted as if it agreed in type with the other
operand. When both operands are octal or Hollerith constants, they are con-
sidered to be type integer. The same rules apply to relational expressions.

Examples:

REAL X,Y -
100 X=20B .
200 Y= 10B + 10B

60329100 D » 1-7

| 163
ARRAYS.

| 1.6.4
ORDER OF ARRAY
STORAGE

1-8

After execution of these statements, X and Y will not have the same
value. X will have the real value 0.0, and Y will have the real value
16.0. The assignment is made to X in statement 100 without conver-
sion, and the octal value 00000000000000000020B is interpreted as a
floating point number indistinguishable from 0.0, since X is real. In
statement 200, however, because both operands of the addition are
type octal, the result is considered to be type integer, and the integer
16 is converted to floating point before being assigned to Y.

I= 10HTYPEWRITER + 001B
PRINT 1, I
1 FORMAT (1X,A10)

In this example, the word TYPEWRITES will be output.

X= 10HTYPEWRITER + 001B
PRINT 1, X
1 FORMAT (1X,A10)

In this example, 0 A5J,9R/J- will be output, due to the conversion to
floating point which will take place before assignment to X.

An array is an ordered set of variables identified by a variable name. Each
variable in the array is referred to by the array name followed by a subscript
which indicates its relative position within the array. The entire array may
be referenced by the array name without subscripts when used as an item in
an input/output list or in a DATA statement.

Arrays may have one, two, or three dimensions and must be defined at the
beginning of the program in a DIMENSION, COMMON, or type statement.
When a reference is made to an array, if the subscripts exceed the magni-
tude of the dimensions declared initially, a position outside the array will
be accessed. If the number of subscripts is greater than the number of
dimensions defined, a diagnostic is issued.

Arrays are stored in ascending storage locations, with the value of the first
of their subscripts increasing most rapidly and the value of the last increas-
ing least rapidly.

60329100 D

The following list shows the order of a three-dimension array A3,2,3).
The first subscript varies from 1 to 3, the second varies from 1 to 2, the
third varies from 1 to 3.

ALY ARLD AG,LL A@2,1) A@2,1) AB.2,1)—
L A@,1,2) A@,1,2) AG,1,2) A(L,2,2) A@,2,2) AB,2,2)

o a o a

] P A sm o+ o A 7 as A 10 ay A 1 \
—= A(1,1,3) A@2,1,3) A@,1,3) A(1,2,3) A{Z,2,93) A{3,2,3)

Array allocation is discussed further under DIMENSION declaration. The
location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of array.

Given DIMENSION A (L, M, N), the location of A(i,j,k), with respect to the
first element of the array, is given by A + (i~1+L*(j-1+M*(k-1)))*E.

E is the element length, the number of storage words required for each
element of the array. For real, logical, and integer arrays, E=1. For
complex and double precision arrays, E = 2.

Example:

In an array defined by DIMENSION A3, 3,3) where A is real, the loca-
tion of A(2,2,3) with respect to A(l,1,1) is:

LocnA(2,2,3) = LocnA(1,1,1) + 2-1+3%(2-1+3%(3-1))) ¥1 = LocnA+22

1.6.5 |

SUBSCRIPTED
VARIABLES A subscripted variable is an alphanumeric identifier that is the name of an

array followed by up to three subscript expressions representing a single
element within the array. The elements of a subscript expression are
separated by commas and the expression is enclosed in parentheses. Sub-
script expressions may be any legal arithmetic expression. If the number
of subscript expressions used in a reference is less than the declared di-
mensionality, the compiler assumes missing subscripts have a value of one
(see examples below). If the subscript list does not appear, all subscript
expressions are assumed to be one, and an informative diagnostic is issued.

¥ the subscript expression is not integer, the value will be truncated to
integer.

The value of the subscript must be greater than or equal to one and less than !
or equal to the maximum specified in the array specification statement, or

the reference will be outside the array. If the reference is outside the bounds
of the array, results are unpredictable.

FORTRAN Extended permits the following relaxation of the representation of
subscripted variables:

60329100 D 1-9

Given A(Dl,Dz,D3), where the Di are integer constants,
then A(I,J,K) implies A(I,J,K)
A(I,J) implies A(I,J,1)
A(D implies A(I,1,1)
A implies A(1,1, 1)t
Similarly for
A@D,,D,)
A(L,J) implies A(L,J)
A(D) implies A(I, 1)
A implies A(1,1) T

and for A(Dq)
A(D) implies A(I)
A implies A(1)t

The elements of a single-dimension array A(Dl) may not be referred to as
A(I,J,K) or A(,J). Diagnostics occur if this is attempted.

T Except in input/output lists and DATA statements.

1-10 60329100 A

1.6.6
EXTENDED CORE
STORAGE (ECS)

60329100 D

An ECS variable must be defined explicitly by a type declaration. Each ECS
variable occupies a 60-bit word and resides in extended core storage (ECS) in
the 6000 series. The 7600 ECSvariables reside in large core memory (LCM).

For the 7600, subroutines READEC and WRITEC will operate on LCM and
small core memory (SCM) in the same manner as ECS and central memory
in the 6000 series. ECS variables may appear in the source program only in
the following circumstances:

In 2 COMMON statement as an element of an ECS common block
In a CALL or function reference as an actual parameter

In a SUBROUTINE or FUNCTION statement as a dummy parameter
In a type ECS statement
In a DIMENSION statement

Only one common block may contain ECS variables, and all variables in the
block must be of type ECS.

1-11}

21
ARITHMETIC
EXPRESSIONS

60329100 A

EXPRESSIONS 2

An expression is a constant, variable (simple or subscripted), function ref-
erence, or any combination of these separated by operators and parentheses.
The four kinds of expressions in FORTRAN are: arithmetic and masking
{Boolean) expressions which have numerical values, and logical and rela-
tional expressions which have truth values. Each kind of expression is
associated with a group of operators and operands.

An arithmetic expression is formed with arithmetic operators and arithmetic
elements. Both the expression and its constituent elements identify values
of one of the types integer, real, double precision, complex, octal, or
Hollerith.

Arithmetic Operators Arithmetic Operands
+ addition Constants
- subtraction Variables (simple or subscripted)
* multiplication Evaluated functions

/ division
** exponentiation
Any unsigned constant, variable, or function reference is an arithmetic ex-

pression. If X is an expression, then (X) is an expression. If X and Y are
expressions, then the following are expressions:

X +Y X-Y
X*Y X/Y
_X X**Y
+X

An expression may not contain adjacent operators, such as X +/ Y. Omission
of an operator, as for implied multiplication (X) (Y), for instance, is not
valid and results in a compiler diagnostic.

The -mode-of an-arithmetic expression is determined by the type specifications
of the variables in the expression. The following table indicates how the mode
is determined from the possible combinations of variables.

Table 1. Mixed Mode Arithmetic Expressions
Double
- % ;
+ / |Hollerith |Integer |Real Precision Complex |Octal
Double
I Real C 1
nteger |Integer Integer ea Precision omplex |Integer
Real Real Real Real Dou.bl‘e Complex |Real
Precision
Double Double Double Double Double Double
. Complex L
Precision| Precision| Precision |Precision {Precision Precision
Complex | Complex |Complex |[Complex |[Complex | Complex |Complex
Double
Octal Integer Integer Real Precision Complex |Integer
Hollerith |Integer Integer |[Real D01‘1.b1.e Complex |Integer
Precision

The following examples are valid expressions:

A

3.14159

B + 16.

427

(XBAR +(B(I,J+1, K) /3))

-(C + DELTA * AERO)
(B - SQRT(B**2*(4*A*C))) /(2. 0*A)
GROSS - (TAX*0.04)
TEMP + V(M, MAXF(A, B))*Y**C/ (H-FACT(K+3))

The arithmetic operator denoting exponentiation (**) may be used to combine

constants, variables, expressions, and subscripted variables.

Rules

governing the types of variables and constants used in the exponentiation
operation are given on the following page:

60329100 A

2.2
RELATIONAL
EXPRESSIONS

60329100 A

Base

Integer

3

Complex

Double
Precision

Exponent

Integer

Real

Double Precision
Complex

Doublée Precision
Complex

Integet

Integer

Real

Double Precision
Complex

Result

Integer

Real

Double Precision
Complex

Real

Real

Double Precision
Complex

Complex

Double Precision
Double Precision
Double Precision
Complex

The following examples illustrate how constants, variables, and expressions
may be combined using the arithmetic operator, **.

Examples:

Expression
CVAB**(I-3)
D**B

C**]

BASE(M, K)**2. 1

K**5

314D-02%*
3.14D-02

Type Result
Real**Integer Real
Real**Real Real
Complex**Integer Complex

**Real

Integer**
Integer

Double Precision

Double Precision

Integer

**Double Precision

Double Precision

Double Precision

A relational expression has the value true or false; it contains two arithmetic
expressions separated by a relational operator. The types of operands may be

combined in the same manner as defined for arithmetic operators. Only the
real part of complex elements are compared by relational operators, except

for - EQand—NE+—

2-3

2-4

Relational operators indicate comparison operations between operands and
are enumerated below:

.EQ. Equal to (3

.NE. Not equal to (¥

.GT. Greater than (>)

.GE. Greater than or equal to (=)
.LT. Less than (<)

.LE. Less than or equal to (=)

A relational expression has the form:

a . opa

1 2

The a; are arithmetic expressions; op is an operator belonging to the above
set.

A relation is true if a; and a, satisfy the relation specified by op; otherwise
it is false. A false relational expression is assigned a positive value; a

true relational expression is assigned a negative value. Relations are eval-
uated as illustrated in the relation p.EQ.q, which is equivalent to the ques-
tion: Does p - ¢ =0? The difference is computed; and if it is zero, the
relation is true; if the difference is not zero, the relation is false. Relational
expressions are converted internally to arithmetic expressions according to
the rules of mixed-mode arithmetic (Table 1). These expressions are eval-
uated to produce the truth value of the corresponding relational expressions.

The order of dominance of the operand types within an expression is the order
stated for mixed mode arithmetic expressions.

In relational expressions, +0 is considered equal to -0.

aj op ag op ag. .. is not a valid expression. The relations a, op az, a; op
(az) are equivalent.

Examples:
A .GT. 16. R() .GE. R(I-1)
R -Q(D)*Z .LE. 3.141592 K .LT. 16
B-C .NE. D+E I.EQ. J(K)

@) -EQ. (J(K))

60329100 A

23

LOGICAL

EXPRESSIONS A logical expression is formed with logical operators and logical elements
and has the value true or false. (The values have the same internal repre-
sentation as for relational expressions, section 2.2.)

Logical Operators Alternate Form
.OR. Logical disjunction .O.
.AND. Logical conjunction LA,
.NOT. Logical negation .N.

A logical expression has the general form:

L1 op L2 op L3.. .
Li are logical variables, logical constants, logical functions, logical expres-
sions enclosed in parentheses, or relational expressions; and op is the logical
operator .AND. indicating conjunction or .OR. indicating disjunction.
The logical operator that indicates negation appears in the form:

.NOT. L1

Each expression is evaluated by scanning from left to right, with logical oper-
ations being performed according to the following hierarchy of precedence.

first .NOT.
then .AND.
then .OR.

A logical variable, logical constant, or a relational expression is, in itself,
a logical expression. If Ll’ L2 are logical expressions, then the following
are logical expressions:

. NOT. L1

Ll .AND. L2

L1 .OR. L2
If L is a logical expression, then (L) is a logical expression. If L L2 are
logical expressions and op is .AND. or .OR., then L op op L2 is never
legitimate. However, .NOT. may appear in combination with .AND. or .OR.
only as follows:

60329100 A 9-5

.AND. .NOT. L,
.OR. .NOT. L,
.AND. (.NOT....)

.OR. (.NOT....)

| o N
I = e =

-NOT. may appear with itself only in the form .NOT. (.NOT. (.NOT. L))
Other combinations cause compilation diagnostics.

¥ L, L, are logical expressions, the logical operators are defined as

follows:
. NOT. L1 is false only if L1 is true
L1 .AND. L2 is true only if Ll’ L2 are both true
L1 .OR. Lz is false only if Ll’ L2 are both false
Examples:

1., B-C=A=B+C
is written B - C .LE. A ,AND.A.LE.B+C

2. FICA greater than 176.0 and PAYNMB equal to 5889.0
is written FICA .GT. 176.0 .AND. PAYNMB . EQ. 5889.0

3. An expression equivalent to the logical relationship P implies Q
might be written in two ways:

.NOT. (P.AND.(.NOT. Q)
.N.(P.A.(.N.Q))

24
MASKING

EXPRESSIONS Masking expressions consist of masking operators and elements; they
resemble logical operations in appearance only.

In a masking expression, 60-bit logical arithmetic is performed bit-by-bit
on the operands within the expression. The operands may be any type vari-
ables, constants, or expressions, other than logical. No mode conversion is
performed during evaluation. If the operand is complex or double precision,
operations are performed on the real part, or higher order word. Although
the masking operators are identical in appearance to the logical operators,
their meanings are different. They are listed according to hierarchy. The
following definitions apply:

2-6 60329100 D

.NOT. or .N. bit-by-bit logical negation
.AND. or .A. bit-by-bit logical multiplication
.OR. or .O. bit-by-bit logical addition

The operations are described below:

P v p.AND.v p.OR.v .NOT.p
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

If Bi are masking expressions, variables or constants of any type other than
logical, the following are masking expressions:

.NOT.Bl Bl.AND.B Bl.OR. B2

2

If B is a masking expression, then (B) is a masking expression .NOT. may
appear with . AND. or .OR. only as follows:

.AND..NOT.
.OR..NOT

.AND. (.NOT. ...)
.OR. (.NOT. ...)

Masking expressions of the following forms are evaluated from left to right.

A _AND. B .AND. C...
A .OR. B.OR. C...

Masking expressions must not contain logical operands.

Examples:
A 77770000000000000000 octal constant
D 00000000777777777777 octal constant
B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant

60329100 A 2.7

25
EVALUATION OF
EXPRESSIONS

2-8

.NOT. A is 0000777777777TTTTTIT

A.AND. C is 20040000000000000000
A.AND..NOT.C is 57730000000000000000
B.OR..NOT.D is T7T777777000000001763

The last expression could also be written as B.O. .N.D

Function references are evaluated before any other operation is per-
formed.

Expressions are evaluated according to the following rules:

1.

3.

If the expression contains subexpressions enclosed by parentheses,
all such subexpressions must be evaluated before the expression

can be evaluated as a whole. The most deeply nested subexpression
will be evaluated first., Evaluation of a parenthesized subexpression
produces an intermediate result, which will be treated like any other
operand,

If the expression consists of a series of terms (including parenthe-
sized subexpressions) separated by operators, the order in which
the indicated operations are performed is determined by the prec-
edence of operators, as ‘follows:

*x exponentiation class 1
/ and * division and multiplication class 2
+ and - addition and subtraction class 3
relationals class 4
. NOT. class 5
.AND, class 6
.OR. class 7

The lowest class (1) of operations is performed first. Since unary
plus and minus signs are treated as operations on an implied zero,
they have a precedence of class 3, For example, +2 is treated as
0+2, and -3 is treated as 0-3.

When two or more operators of the same class appear in an ex-
pression, where parentheses do not indicate which operation is to
be performed first, evaluation proceeds from left to right.

Array element subscript expressions and arguments to functions will
be evaluated before the value of the array element or functionreference
is used as an intermediate result. If nesting of subscripts or function
references occurs, those most deeply nested will be evaluated first.

The type of an evaluated expression depends on the types of its terms
as explained in section 2.1. If dividing one integer by another produces
a remainder, the result is truncated; 11/3 produces the result 3.

60329100 D

The evaluation of an expression with any of the following conditions is
undefined:

Negative-value quantity raised to a real, double precision, or complex
exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand

Element for which a value is not mathematically defined, such as division

by zero

If the error traceback option is selected on the FTN card (Chapter 12), the
first three conditions will produce informative diagnostics.

In the following examples, R indicates an intermediate result in evaluation,
A**B/C+D*E*F-G is evaluated:
A**B R1
R /C — R,
D*E — R3
R3*F — R4
Ry-G — Rg
Ry +Rs—~ Rg evaluation completed
A¥¥B/(C+D)*(E*F-G) is evaluated:
A*¥*B — R1
C+D — R2
R,/R, — R
E*F — R4

3

R4—G —>R5

RS*R 5 RG evaluation completed

H(13)+C(I, J+2)¥(COS(Z))**2 is evaluated:

CoS(z) — R,
%k —
Rl 2 RZ

(Evaluation of the index function)

* —_
R *C(I,J+2) — R,
R +H(13) — R

, evaluation completed

60329100 C 2-9

The following are examples of expressions with embedded parentheses:

A*(B+((C/D)-E)) is evaluated.
C/D —R,

1
Rl—E —- R2
B+R2 —-R3
A"‘R3 —- R 4 evaluation completed

(A*(SIN(X)+1.)-Z)/(C*(D-(E+F))) is evaluated:
SIN(X) — Ry
R;+1l. — R,
* —
A R, - R
R,-Z —R

3

4

E+F —»RS

D—R5 — RG

C*RG — R7

R4/R7 —~ Ry evaluation completed

2-10 60329100 A

ASSIGNMENT STATEMENTS 3

3.1
ARITHMETIC
ASSIGNMENT

60329100 A

Statements are classified as executable or nonexecutable; executable state-
ments specify actions. Assignment statements are executable. They assign
values with four types of operations; arithmetic, logical, assign (Chapter 4),
and masking.

The general form of the arithmetic assignment statement is v = e, where v is
a variable, simple or subscripted, other than logical; and e is an arithmetic

expression. The = indicates that v is assigned the value of the evaluated ex-
pression e. Mode conversion occurs if v is of a type different from e.

Examples:

=-A
B(I, 4=CALC(I+1)*BETA+2. 3478
39 XTHETA = 7.4*DELTA /(A(I,J,K)+BETA)
RESPONS=SIN(ABAR(INV+2, JBAR) /ALPHA(J, KAPL(I))
4 JMAX =19
AREA=SIDE1*SIDE2
PERIM=2. *(SIDE 1+SIDE?2)

Several variables may be assigned the value of the same expression with the
following form:

V1:V2=. . Vm:e

The value of expression e is converted to the type of v, and stored; ¥, is

then converted to the type of v,,_1 and stored. The process is repeated until
a value is stored in v;.

Example:

RATE=2.0
DATA=6.9

DATA=DATA1=LDATA=DATA2=DATA*RATE

The variable, DATA2, equals 13.8 from the expression DATA*RATE.
LDATA equals 13 by real-to-integer conversion. DATA1 equals 13.0
by integer-to-real conversion; then DATA equals 13.0 by real-to-real
assignment.

MIXED-MODE The type of an evaluated expression is determined by the type of the dominant
operand; however, this does not restrict the types that identifier VvV may
assume. (v may not be logical). A complex expression may replace Vv, even
if v is real. TABLE 2 on page 3-4 shows the v = e relationship for all
standard modes. The mode of v determines the mode of the statement.

Examples:
Given: Ci’ A 1 Complex
D.,,A Double
i’2
R,,A Real
i3
Ii »A 4 Integer

1. Alqzl*cz-c3/c (6.905, 15.393)=(4.4,2. 1)*

4 (3.0,2.0)-(3.3,6.8)/(1.1,3.49)

The expression is complex; the result of the expression is a two-
word, floating point quantity. A 1 is complex, and the result re-
places A 1

2. A=, 4.4=(4.4,2.1)

The expression is complex, A3 is real, therefore, the real part of
C1 replaces A3.

3. A_=C_*(0.,-1.) 2.1<(4.4,2, 1*
3 1 (0.,-1.)

The expression is complex. Ag is real; the real part of the result
of the complex multiplication replaces A 3°

= * - - = * - (1%
4. A, Rl/R2 (Ry-R) +1) 13=8.4/4.2%(3.1-2. 1)+14-(1*2. 3)
1,*Rg)

The expression is real. A 4 is integer, the result of the expression
evaluation, a real, is converted to an integer replacing A 4

3-2 60329100 A

3.2

LOGICAL
ASSIGNMENT

3.3
MASKING
ASSIGNMENT

60329100 C

(¥}

A =D**2%x(Ty +{D *D \ 4+ {D ok *T))
29 2¥{Dyr (D™D) {B,*D,*Dy)

49, 68=2. 0D0**2*(3. 2D0+ (4. 1D0*1. 0D0))+(3. 2D0*2. 0D0*3. 2D0)

The expression is double precision. Ay is double precision, the
result of the expression evaluation, a double precision floating quantity
replaces A o

In the general form of the logical assignment statement,

v=e
v is a logical variable or subscripted logical variable, and e is a logical
expression.

Examples:

LOGICAL A, B,C,D,E, LGA, LGB, LGC
REAL F,G,H
A = B.AND.C.AND.D
A =F.GT.G.OR.F.GT.H
5 A=.N.(A.A..N.B).AND.(C.0.D)
LGA = .NOT.LGB
2109 LGC = E.OR.LGC.OR. LGB.OR.LGA.OR. (A.AND. B)

A multiple replacement statement of the following form is also allowed in
logical assignment statements:

Vi =Ve TV Te

In the masking assignment statement, v=-e, e is a masking expression, Vv is
a variable name and may be of any type other than logical. During the assign-
ment, no mode conversion occurs, and the value of the expression is assigned
to the first word of v if the type is double precision or complex with the least
significant or imaginary part set to zero.

Examples:

INTEGER 1,J, K, L, M, N(16)
REAL B,C,D, E, F(15)

N(2) =1.AND.J
B =C.AND.L

84 TF(J) =1.OR..NOT.L.AND. F(J)
N(l) =1.0.J.0.K.0.L.O.M
I=.N.I

3-3

A multiple replacement statement of the following form is also allowed in
masking assignment statements:

=e

Table 2 enumerates the assignment of e to v. These rules apply only for
arithmetic assignment statements.

Table 2. Rules for Assignment of e to v

Double Precision
Double Precision
Complex
Complex

Complex

Complex

Double Precision
Complex

Integer

Real

Double Precision

Complex

v Type e Type Assignment

Integer Integer Assign

Integer Real Fix and Assign

Integer Double Precision |Fix and Assign

Integer Complex T Fix and Assign Real
Part

Real Integer Float and Assign

Real Real Assign

Real Double Precision |DP Evaluate and Real
Assign

Real Complex T Assign Real Part

Double Precision | Integer DP Float and Assign

Double Precision | Real Real Evaluate, DP Assign

Assign

T DP Float Real Part and Assign
T Float and Assign to Real Part, I
T Assign Real Part, I

T DP Evaluate and Real Assign to
Real Part, I

Assign

tProhibited combination under ANSI FORTRAN (but permitted in FORTRAN

Extended).

60329100 A

60329100 A

Assign indicates transmission of resulting value, without change, to entity.

Real Assign indicates transmission to entity, of as much precision as a
real value can contain.

DP Evaluate indicates evaluation of the expression according to rules of
arithmetic expression evaluation.

Fix indicates truncation of any fractional part of the result and transformation
to an integer value.

Float indicates transformation to a real value.

DP Float indicates transformation to a double precision value retaining, in
the process, as much precision as a double precision value can contain.

Real Part refers to the real portion of the complex value.

I indicates the imaginary part of the complex value is set to zero.

CONTROL STATEMENTS 4

Control statements alter the sequence of operations or affect the number of
iterations of a program section. Control statement labels must be associated
with executable statements within the same program unit. Control may not
be transferred to a non-executable statement. See appendix F.

4.1
GO TO STATEMENTS

UNCONDITIONAL
GO 1O GO TO k
When this statement is executed, control transfers to the statement identified
by k.
Example:
GO TO 100
GO TO 9
4.2
ASSIGNED GO TO ASSIGN k TO i

k is a statement label and i is an integer variable. Execution of this state-
ment and subsequent execution of an assigned GO TO statement using the
value i causes the statement k to be executed next. The label must refer to
an executable statement in the same program unit containing the ASSIGN
statement. k must be the label of an executable statement.

The integer variable i, once used in an ASSIGN statement, may not be ref-

erenced in any statement other than an assigned GO TO or an ASSIGN state-
ment until it has been defined in a replacement statement.

60329100 C 4-1

ASSIGNED GO TO

Example:

ASSIGN 10 TO KLOK
15 GO TO KLOK,(3,12, 10, 20)
12 CC = D+E -2%(F/G)

10 D = SQRT(B**C*(1-E))
ASSIGN 20 TO KLOK
GO TO 15

20 E =A+1.5

GO TO i, (k .k, ... k)

iis an integer variable, and k. are statement labels; i must contain the
value assigned by a preceding ASSIGN statement and it must be one of the
statement labels in the list. At execution, control transfers to statement
identified by k. If the value i is defined by other than an ASSIGN statement,
a transfer is made to the absolute memory address represented by the low
order 18 bits of i.

Example:
ASSIGN 26 TO INDEX

10 GO TO INDEX, (3,45,26,178,6)

26 BASE () = BASE (I+1)*FACT*(CONST**2. 0)
ASSIGN 45 TO INDEX
GO TO 10

60329100 A

COMPUTED GO TO

60329100 C

GO TO (k ,kz, . ,kn), i
k; are the statement labels and i is an integer variable. This statement acts
as a many-branch GO TO; i is preset or computed prior to its use in the GO
TO statement. Control transfers to ki, if 1=i=n, Ifiis less than one or
greater than n, a fatal error occurs. The comma separating the statement
number list and the index is optional. i must not be specified by an ASSIGN

statement.

Example:

N=N*I

GO TO (100,101,18,102,103)N

Control transfers to the statement numbered 102.
Example:

ISWICH=1

GO TO (10, 20,30) ISWICH(control transfers to 10

KSWICH=ISWICH+1

GO TO (11,41,31), KSWICH(control transfer is to statement 41)
Another form of the statement may be used where i is replaced by e:

GO TO (kl’kz’ cen ,kn), e

where e is a general expression of any type except logical.

The value of e is truncated and converted to integer and used in place of i.

Examples:

1. .

X=4.6

.
.

GO TO (10,110,11,12,13),X/K

Control is transferred to statement 110 since the integer part of the
expression X/K equals 2.

2. .

BRANCH 2.3
INDEX=4

GO TO (23,33,43,53,63),INDEX*BRANCH

Cause execution to terminate since the integer part of the evaluated
expression, INDEX*BRANCH, equals 9 and there is no ninth branch.

4.3
IF STATEMENTS

ARITHMETIC IF
THREE-BRANCH IF (e) k; ko, Ky

€ is an arithmetic expression of type integer, real, double precision, or
complex, and Ei are statement labels. For complex, only the real part is
used in selecting the branch. Execution of the statement results in evalua-
tion of e and transfer of control as follows:

e <0 to statement kl

e=90 to statement k2

e>0 to statement k3

4-4 60329100 B

ARITHMETIC IF
TWO-BRANCH

LOGICAL IF

60329100 A

I1=-2
K=1
J=3

1 IF (I*K*J)2,3,4 (control transfers to 2)
2 LDD=LDD+1
GO TO (40, 50,60)L.DD
40 IF (X*Y*SIN(X))11,12,13

A second form of the Arithmetic IF statement; an arithmetic two-branch IF
is allowed.

IF (e) kl,k2

e may be a masking or arithmetic expression; ¢ is evaluated and control is
transferred as follows:

e #0 to statement k 1
e=20 to statement k2
Example:

IF (P*J*DATA(K))100,101
100 IF (I*Y*K)105,106

IF (e) s
e is a logical expression and s is any executable statement except a DO state-
ment or another logical IF siatement. If the value of e is false, statement g

is treated as if it were a CONTINUE statement. If the value of e is true, s is
executed.

4-5

Example:

B4=DATA(])

YMAX=B(ILAST)
YMIN=B(IFRST)

16 IF (B4.GE.YMIN.AND.B4.LE. YMAX) GO TO 109
101 INDEX=INDEX+1
GO TO 110
109 KDEX=KDEX+1

If B4 is satisfied by the condition, YMIN < B4 < YMAZX, control transfers
from statement 16 to 109. If the condition is not satisfied, execution resumes
at statement 101.

LOGICAL IF
TWO-BRANCH Another form of the logical IF may be a two-branch statement:
IF (e) k .k,
If the logical statement is true, the statement identified by statement label
k, is executed next, if false the statement ky is executed.
4.4
DO STATEMENT The DO statement makes it possible to repeat a sequence of statements and

change the value of an integer control variable during the repetition. A DO
statement takes one of the forms:

D0n1=m1,m2,m3 or D0n1=m1,m2

The executable statement labeled n is the terminal statement of the sequence
to be repeated and must physically follow and be in the same program unit
as the DO statement.

4-6 60329100 A

DO NESTS

60329100 A

Le]
=5
o)

Exam

DO 100L=300, 400

IF(B(L)) 101,100
101 B(L-100)=B(L)
100 CONTINUE

Statement n (100 in the example) may not be a GO TO of any form, arithmetic
IF, RETURN, STOP, PAUSE, DO, two-branch logical IF, or a logical IF
followed by any of the preceding statements.

The simple integer variable i is the control variable; mj are the indexing
parameters; m; is the initial value of i, mg is the terminal value of i, and

mg is the incrementing parameter. m; may be either integer constants or
simple integer variables. If mg is not specified, a value of one is implied.

At execution of the DO statement. m;, my and mq must be greater than zero.
The range of each DO contains all executable statements between and including

the first executable statement after the DO and the terminal statement identi-
fied by n.

When a DO loop contains another DO loop, the grouping is called a DO nest.
Nesting may be to 50 levels. Either the last statement of a nested DO loop
must be the same as the last statement of the outer DO loop or it must occur
before it. If Dl’Dz’ ...Dy, represent DO statements where the subscripts
indicate that D, appears before Dy appears before Dg and ny,n9,...,0 Te€-
present the corresponding limits of the Dy, then n, must appear at or IIT))efore

Dm-1

Examples:

DO loops may be nested in common with other DO loops:

a. b. c.
—Dl _Dl —Dl
— D,
I k
n D
ng 2 3
L—n, F_DS Ln1=n2=n3
— Dy l_n3
L—,n1 e
4-7

DO LOOP
EXECUTION

4-8

The preceding diagrams would be coded as follows:

a. DO1lI=1,10, 2 b. DO100 L=2, LIMIT c. DO 51I=1,5
. DO 5 J=I, 10
: . DO 5 K=J,15
DO2J=15 DO 10 J=1, 10
: : 5 A = B*C
DO 3 K=2, 8 10 CONTINUE
3 CONTINUE DO 20 K=K1, K2
2 CONTINUE 20 CONTINUE
DO 4 1-1,3 100 CONTINUE
4 CONTINUE
1 CONTINUE

The loop defined by a DO statement is executed as follows:

1.

The control variable i is assigned the value represented by the
initial parameter my. The value of m, should be less than or equal
to the value of the terminal parameter m,; otherwise, the DO loop
is executed only once. (The control variables of each nested DO
loop must be unique.)

The range of the DO is executed.

After the DO is executed, the control variable is incremented by the
value mg (or by one if mg is not specified).

If the value of the control variable i after it is incremented by m_ is
less than or equal to the value of the terminal parameter m,,, execu-
tion of the range of the DO loop is repeated. When the value i is
greater than the value of m,, the DO has been satisfied and the
control variable i, becomes undefined (the value of i may be greater,
less than or =to m, at the termination of the loop execution, there-
fore its value cannot be assumed),

60329100 D

60329100 A

if the DO is nested, the control variable i of the next outer DO is
incremented by ms and execution continues repeating steps 4 and 5
until all the DO statements referencing this terminal statement are
satisfied. After the last DO is satisfied, execution continues with
the first executable statement following its terminal statement.

. . 17 . .
If mj, m,, Or mg are constants which exceed 2~ -2, a diagnostic
notes the error and the control variable is used modulo 217-1 for

iteration of the DO loop.

Before the DO is satisfied, an exit may be made from its range
through an IF or a GO TO statement. In this case, the control
variable retains the value last assigned to it before the exit.

Example:

DO 20 I=1,200
IF(-3) 20,10,10
20 CONTINUE
10 19=I

An exit from the range of the DO is made to statement 10 when the
value of the control variable I is equal to 3. The value of the integer
variable, I9 is equal to 3, since the last value assigned to I before
the exit from the DO range was 3.

A DO has an extended range if both of the following conditions are satisfied:

A GO TO or an IF statement within the range of a DO nest transfers
control outside the nest

A GO TO statement or an IF statement outside the nest causes con-

trol to re-enter a DO loop or nested set of DO loops as illustrated
below.

4-9

Examples:

1. 2. 3.
— Dy — Dy Dg
Aq
—_— A

——— - - - — B1 — — - —— -
|
|
~———-- B Dy 5 I
i
nl ———— — — C _..'.D6 I
|
n — |
3 |
—1—-—-———B2 ~———--| :

|
D4 SN J |

|

1

l'l4 —l’lG :

—-----B, A

L |

iy

Example 1 shows an exit at point A. Any re-entry into D, may be made as
illustrated at point B or at any subsequent point within the indicated loop.

Example 2 shows three nested loops with D5 and Dy being parallel. An exit

is made at point Al’ re-entry into D, may be made at points Bl’ By, or B3.
However, re-entry cannot be made into D3 or Dy because the control variables
for those loops have not been defined. If an exit is made from point A_, re-
entry may be made at C, Bl’ B2 or B3 but not at any other points within the
other loops.

The third example illustrates the capability of specifying an extended range
DO loop within the extended range of another loop. Loop D5 has an extended
range which is entered at point A3; the loop D,, which also has an extended
range beginning at point A 4 is contained within the extended range of D5.

A GO TO or an IF statement may not cause control to pass into the range of
a DO unless it is being executed as part of the extended range of that particu-
lar DO.

The control variable i and the parameters m;, my, and m, may not be rede-
fined during execution of the immediate or extended range of that DO. When
parameters are redefined during execution, the results are unpredictable.
An informative diagnostic is issued for redefinition during an immediate
range.

60329100 B

When a statement is the terminal statement of more than one DO loop, the
label of that terminal statement may not be used in any GO TO or IF state-
ment in the nest, except in the range of the innermost DO.

Example:

DO 10 J=1, 50
DO 10 1=1, 50
DO 10 M=1,100

GO TO 10

10 CONTINUE

When the IF statement is used to bypass several inner loops, different
terminal statements for each loop are required.

Example:

DO 10 K=1, 100
IF(DATA(K)-10.)20, 10,20
20 DO 30 L=1,20
IF(DATA(L)-FACT*K-10.)40,30,40
40 DO 50 J=1,5

GO TO (101,102, 50), INDEX
101 TEST=TEST+1
GO TO 104
103 TEST=TEST-1
DATA(K)=DATA(K)*2.0

50 CONTINUE
30 CONTINUE
10 CONTINUE

GO TO 104
102 DO 109 M=1,3

109 CONTINUE
GO TO 103
104 CONTINUE

60329100 A 4-11

CONTINUE

4.5
CALL

4-12

CONTINUE

This statement is most frequently used as the last statement of a DO loop to
provide a loop termination when a GO TO or IF would normelly be the last
statement of the loop. If CONTINUE is used elsewhere in the source program
it acts as a do-nothing instruction and control passes to the next sequential
program statement.

Example:
DO 10K =1,200

DATA(K)=DATB(K+1)
10 CONTINUE

The CALL statement, which transfers control to a subroutine subprogram,
may take one of the following forms:

CALL s (al,az, - ,an)
CALL s
CALL s (a,,a,,...,a), RETURNS (bysbyseeiyb)

CALL s, RETURNS (b_,b_,...,b)
1’2 n

8 is the name of a subroutine and a; are actual arguments which correspond to
dummy arguments specified in the subroutine subprogram. b; parameters
indicate labels of statements in the current calling program or subprogram.
The total number of parameters, aj + by, should not exceed 63.

The arguments (ai) appearing in the statement may be constants, variables,
array element names, array names, the name of an external procedure, etc.
(see p. 9-4). These arguments must correspond in number, order and type
with those specified in the SUBROUTINE statement (see chapter 9 for an
explanation of this statement).

The parameters b; must be specified with the RETURNS if alternate exits are
taken from the subroutine. If alternate exits are not taken, this specification
may be omitted, and control returns to the statement immediately following
the CALL. These parameters must also correspond to similar parameters
specified in the subroutine.

The return of control from the designated subroutine completes the execution
of the CALL statement,

60329100 A

60329100 A

Example:

10

101

102

103

104

10

20

30

40
50

PROGRAM MAIN (INPUT, OUTPUT)

CALL XCOMP(A, B,C), RETURNS(101, 102, 103, 104)

CONTINUE

GO TO 10
CONTINUE

GO TO 10
CONTINUE

GO TO 10
CONTINUE
END

SUBROUTINE XCOMP (B1,B2,G), RETURNS (A1,A2,A3,A4)
IF(B1*B2-4.159)10, 20,30

CONTINUE

RETURN Al
CONTINUE

RETURN A2
CONTINUE

IF (B1)40,50
RETURN A3
RETURN A4
END

4-13

RETURN RETURN or RETURN a
a is a formal parameter (as indicated in the RETURNS list).
Example:

SUBROUTINE XYZ, (P, T, U), RETURNS(A, B, C)
IF (P*T*U)1,2, 3
1 CONTINUE

RETURN A
2 CONTINUE

RETURN B
3 RETURNC
END

The statement, RETURN a, can appear only in a subroutine subprogram.
Execution of this statement returns control to the statement number corres-
ponding to a in the RETURN list,

A RETURN statement marks the logical end of a procedure (subroutine or
function) subprogram and may appear only in a procedure subprogram. Ina
subroutine subprogram, a RETURN statement returns control to the next
executable statement following the CALL statement of the current calling
program. In function subprograms, a RETURN statement returns control to
the statement containing the function reference.

4.6
PROGRAM CONTROL

STOP STOP n or STOP
n is a string of 1-5 octal digits.
When a STOP statement is encountered, n is displayed in the dayfile, the

executable program terminates and control returns to the monitor. If n is
omitted, blanks are implied.

4-14 60329100 A

PAUSE

END

60329100 B

PAUSEn or PAUSE

n is a string of 1-5 octal digits.

When a PAUSE statement is encountered, the executable program halts and
PAUSE n appears as a dayfile message on the display console. The operator
can continue or terminate the program with an entry from the console. The
program continues with the next statement. If n is omitted, blanks are
implied.

END
This must be the final statement and marks the physical end of the program
or subprogram. It is executable in the sense that it effects termination of a

main program or acts as a RETURN in a SUBROUTINE or FUNCTION, but it
should not be labeled.

4-15

INPUT/OUTPUT STATEMENTS 5

5.1
MODES OF
INPUT/OUTPUT

5.2
1/0 LISTS

60329100 C

The READ and WRITE input/output statements cause information to be
transferred between internal storage and external devices.

Input and output can be formatted or unformatted. Formatted information
consists of strings of characters acceptable to the FORTRAN processor.
Unformatted information consists of strings of binary word values in the
form in which they normally appear in storage. The transmission of for-
matted information is always associated with a FORMAT statement, as des-
cribed in chapter 6. Additionally, NAMELIST may be used for input/output
as discussed in section 5. 6.

The input list specifies the names of variables and array elements to which
information is transmitted from the external device. The output list speci-
fies the variables and array elements whose values are transmitted to the
external device. Both lists may take any of the following forms.

If no list appears on input, a logical record is skipped. Ouly Hollerith infor-
mation from the FORMAT statement can be output with a null (empty) output
list.

A simple list consists of a variable name, an array name, an array element
name, or a DO-implied list.

If an array name without any subscripts appears in a list, the entire array
(not just the first word of the array) is read or written.

Multiple simple lists may appear, separated by commas, each of which
may be enclosed in parentheses, such as: G..)s ()

A DO-implied list is a simple list followed by a comma and a DO-implied
specification, all enclosed in parentheses.

5-1

53
READ /WRITE
STATEMENTS

54
FORMATTED
INPUT/OUTPUT

READ

A DO-implied specification takes one of the following forms:

izml,mz,m3 or i=m1,m2
The elements i, m;, my and mq have the same meaning for the DO statement.
The range of DO-implied specification is that of the DO-implied list. For the
input lists, i, m 1’ m_ and m_ may appear within that range only as sub-

2
scripts.

3

Elements of a list are specified in order of occurrence from left to right.
The elements of a DO-implied list must be specified for the initial cycle
of the implied DO.

The parameters used with the READ/WRITE statements are defined as follows:

u Identifies the input/output unit; an integer constant or a simple
integer variable.

f Identifies the format specification; a FORMAT statement label or
an array name. If f is a statement label, the statement must appear
in the same program unit as the input or output statement.

k Input/output list indicating the data to be transferred.

The statements discussed in this section pertain to the transmission of data
according to a FORMAT specification.

Information processed by the READ and WRITE statements is divided into
records. Each time a READ or WRITE is executed at least one record is
processed. It is not possible to read several parts of a single record with
more than one READ statement.

READ (u,f)k READ (u,f) READ f,k

This statement transmits data from the external device for which the logical
unit number is the integer value of u. Information contained on u is scanned
and converted in accordance with the format specification identified by f.
The values, as a result, are assigned to the element specified by the list, k.
However, if the list is omitted, this statement means the next logical record
is bypassed (except for the case described on page 6-15 of reading Hollerith
characters into an existing H field within a FORMAT statement).

60329100 A

Example:

READ (2,10) (IDAT(]), I=1,10), C
10 FORMAT (2X, 10(I5,2X),F3.2)
DO 30 K=1, 10
READ (2, 20) (B2(K, J),J=1,5)
20 FORMAT (5(F10. 2, 1X))

30 CONTINUE

DAY AN A xAN U D

INPUT FILE READ f,k or READT

This statement results in the input of records from the SCOPE INPUT file.
The theory of operation is the same as that described for the formatted READ
statement.

Example:

READ 31,NAME, GREEN, HORNET
31 FORMAT (A10,F10.3,E20.2)

WRITE WRITE (u,f)k or WRITE (u,f)

The above statements write formatted records on the logical unit specified
by u. The parameters have the same meaning as described for the corre-
sponding READ statement. The contents of the resulting records consist
of the values of the list items in the order in which they appear in the list.
The values represented by the list variables are converted according to
the format specification, then transferred to the indicated output unit.

Example:

WRITE (6,10) L1,B1, L2, B2
10 FORMAT (2X,15,1X,F5. 2,15, F9. 3)
DO 20J=1,10
DO 20 K = 1,10
20 WRITE (4, 26) DATA1(J,K), DATAL (J,K)
26 FORMAT (2X, 15H THE VALUES ARE, 2F6.2)

If the list k in a formatted WRITE statement is omitted, the contents of the
created record are dependent upon the corresponding FORMAT statement.

Example:

WRITE (4, 27)
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES)

60329100 A 5-3

PRINT /PUNCH

When the list k is specified for formatted input or output, the corresponding
FORMAT declaration must contain at least one conversion specification other
than Hollerith.

PRINT f,k or PRINT f

The information specified by k is transferred as line printer images to the
SCOPE OUTPUT file, 136 characters or less per line in accordance with
FORMAT declaration f,

Example:

PRINT 20, DNAME
20 FORMAT (X,A10)

When the list designation is omitted, the statement has the form illustrated in
the following example:

PRINT 20
20 FORMAT (31H THIS IS THE END OF THIS REPORT)

The first character of formatted records is not printed, but is used by the line
printer to determine vertical spacing of records on a page. Appendix I,
carriage control characters, lists the control options.

PUNCH f, k or PUNCH {

The information specified by k is transferred to the SCOPE PUNCH file as
Hollerith images, 80 characters or less per card in accordance with FORMAT
declaration f. If the card image is longer than 80 characters, a second card
is punched with the excess characters. Omission of k is interpreted the same
as for the PRINT statement.

Example:

PUNCH 30, JOHN
30 FORMAT (X,I7)

60329100 A

5.5
UNFORMATTED
INPUT/OUTPUT The statements discussed herein transmit data without a FORMAT designation.

A SR P ~ X T
EAD (u) or READ {(u)

&)
m
>
(W)
=)

This form of the READ statement is classified as unformatted because of the
omission of the f parameter in the statement form. Execution of the state-
ment results in the sequential assignment of values, as they are read, to the
variables appearing in the list k. If the sequence of values required by the
list exceeds the length of the unformatted record the excess words retain
their previous values. If the number of values specified in the list is less
than the number of words in the logical record, the excess data is ignored.
If list is omitted, READ (u) spaces over one record.

Examples:

READ (30)

READ (31) DATA1, DATA2,IDATA
READ (32) (SUM(K), K=1, 100)
READ (33) 1,J,K,L, M, N

WRITE WRITE (y k or WRITE (u)
This form of the WRITE statement creates the next record on the unit identi-
fied by u. The contents of the record are the sequence of values specified
by the list k.

Examples:

WRITE (30) (DATA(I), I=1, 100)
WRITE (31) 1,J,K, R
WRITE (32) PAY, COST, BAL

If the list is omitted from the statement, a null record is written on the out-
put device. A null record is a record which consists of no data but contains

all the other properties of a legitimate record.
Example:

60329100 C 5-5

5.6
NAMELIST

STATEMENT

5-6

The NAMELIST statement permits the input and output of character strings
consisting of names and values without a format specification.

NAMELIST /yl/al/yz/az/ .. ./yn/an

Each y is a NAMELIST group name consisting of 1-7 characters which must
be unique within the program unit in which it is used. Each a is a list of the
form by,bg,..e »by; each being a variable or array name.

In' any given NAMELIST statement, the list a of variable names or array
names between the NAMELIST identifier y and the next NAMELIST identifier
(or the end of the statement if no NAMELIST identifier follows) is associated
with the identifier y.

Examples:

PROGRAM MAIN
NAMELIST/NAME1/N1,N2,R1,R2/NAME2/N3, R3, N4, N1

SUBROUTINE XTRACT (A, B, C)
NAMELIST/CALL1/L1,12,L3/CALL2/L3, P4,L5,B

A variable name or array name may be an element of more than one such list.
In a subprogram, b may be a dummy parameter identifying a variable or an
array, but the array may not have variable dimensions.

A NAMELIST group name may be defined only once in a program unit preced-
ing any reference to it. Once defined, any reference to a NAMELIST name
may be made in a READ, WRITE, PRINT, or PUNCH statement. The form
of the input/output statements used with NAMELIST is as follows:

READ (u,x)

READ x

WRITE (u,Xx)

PRINT x

PUNCH x

u is an integer variable or integer constant denoting a logical unit, and Xisa
NAMELIST group name.

60329100 A

INPUT DATA

60329100 A

Example:

Assume A,I, and L are array names
NAMELIST /NAM1/A, B,1,J/NAM2/C,K, L

READ (5, NAM1)

-

WRITE (8, NAM?2)

These statements result in the BCD (coded) input/outputs on the device
specified as the logical unit of the variables and arrays associated with
the identifiers, NAM1 and NAM2.

The current file on unit u is scanned up to an end-of-file or a record with a
$ in column 2 followed immediately by the name (NAMI1) with no embedded
blanks. Succeeding data items are read until a $ is encountered.

The data item, separated by commas, may be in any of three forms:

=c
a=d1,...,dj

,d

a(n)=d1,... -

v is a variable name, ¢ a constant, a an array name, and n is an integer
constant subscript. gi are simple constants or repeated constants of the
form k*c, where k is the repetition factor.

Example:

DIMENSION Y (3, 5)

LOGICAL L

COMPLEX Z

NAMELIST /HURRY/I1,12,13,K,M, Y, Z, L
READ (5, HURRY)

5-7

and the input record:

$HURRY I1=1, L=. TRUE., 12=2, 13=3. 5, Y(3, 5)=26, Y(1, 1)=11, 12. 0E1, 13, 4*14,
Z=(1.,2.),K=16, M=17$

produces the following values in memory:

11=1 Y(1,2)=14.0
12=2 Y(2,2)=14.0
13=3 Y(3,2)=14.0
Y(3,5)=26.0 Y(1,3)=14.0
Y(1,1)=11.0 K=16
Y(2,1)=120.0 M=17
Y(3,1)=13.0 z=(1.,2.)
L=. TRUE.

The number of constants, including repetitions, given for an unsubscripted
array name must equal the number of elements in that array. For a sub-
scripted array name, the number of constants need not equal, but may not
exceed, the number of array elements needed to fill the array.

v=c variable v is set to ¢
a=d1, ve.,d, the values d - are stored in consecutive elements
! of array a in the or&er in which the array is stored
internally.
a(n)=d 1 ,dm elements are filled consecutively starting at a(n)

The specified constant of the NAMELIST statement may be integer, real,
double precision, complex of. the form (c 1sC,)» or logical of the form . T., or
.TRUE.,.F.; or .FALSE. A logical or complex variable may be set only

to a logical and complex constant, respectively. Any other variable may be
set to an integer, real or double precision constant. Such a constant is con-
verted to the type of its associated variable.

Constants and repeated constant fields may not include embedded blanks.
Blanks, however, may appear elsewhere in data records.

A maximum of 150 characters per input record is permitted. More than one

record may be used for input data. All except the last record must end with

a constant followed by a comma, and no serial numbers may appear; the first
column of each record is ignored.

The set of data items may consist of any subset of the variable names

associated with x. These names need not be in order in which they appear
in the defining NAMELIST statement.

60329100 A

OUTPUT DATA

5.7
REWIND

5.8
BACKSPACE

60329100 A

When a NAMEILIST group name is referenced in a WRITE (u,x), PRINT x,

or PUNCH x statement, the entire list associated with that name is output as
BCD information. Output consists of at least three records. The first record
is a $ in column 2 followed by the group identifier x; the last record is a $in
column 2 followed by the letters END. Between these two records are as
many records as necessary to output the current values of all variables in the

list associated with x.

Each variable or array is output as a separate record, with no data appearing
in column 1 of any record. Simple variables are output as v =c. Elements
of dimensioned variables are output in the order in which they are stored
internally. Logical constants appear as T and F. The data fields are made
large enough to include all significant digits.

The records output by a WRITE (u,x) statement may be read by a READ (u,x)
statement. The maximum length of a record written by a WRITE (u,x) state-
ment is 130 characters. If unit u is the standard punch unit and a record to
be output contains more than 80 characters, a second card is used for the
record.

REWIND u

This statement positions unit u at its initial point. I the statement is not
applicable to the unit specified or u is at the initial point, the statement has
no effect.

Example:

REWIND 31
REWIND L

BACKSPACE u

Execution of this statement positions unit u so that what had been the preceding
user logical record becomes the next record, If the statement is not applicable
to the unit specified or unit u is at the initial point, the statement has no effect.

Example:

BACKSPACE 40
BACKSPACE K

5-9

5.9
ENDFILE ENDFILE u

When this statement is executed, an end-of-file record is written on unit u.
The end-of-file record indicates a demarcation of a file.

Example:
ENDFILE 31
ENDFILE M
5.10
ECS I/0 The following statements result in data transmission between ECS (Extended
Core Storage) and central memory.
CALL READEC (a,b,n)
CALL WRITEC (a,b,n)
a Simple or subscripted variable located in central memory.
b Simple or subscripted variable located in ECS common block.
n Integer constant or integer expression.
When either statement is executed, n consecutive words of data are trans-
mitted between central memory and ECS beginning at location 2 in central
memory and b in Extended Core Storage.
5.1
MASS
STORAGE 1/0 Four object time subroutines control record transmission between central

memory and a mass storage device. The references to these routines take
the following forms:

CALL OPENMS (u,ix, {,p) CALL WRITMS (u,fwa,n,i)
CALL READMS (u,fwa,n,i) CALL STINDX (u,ix, #)
u Logical unit number.

First word address of the index (in central memory).

e |5

Length of the index; £= 2 (number of index entries)+1 for a
name index; { = number of index entries+1 for a number
index.

Movement of data from disk to large core memory (LCM) is controlled by
the SCOPE operating system; it is initiated when the L.CM buffer pointers
cross a threshold.

5-10 60329100 A

60329100 A

=3
il
..J
53
2
[e]
8
(0]
0
=
D
h
o
e
n
"
0]
i
(0]
e}
g
[«
D
[« %
=
3
&
=
o
=]
)
3
(]
.
=1
Q
o
ke
ko]
L

indicates a number index.
fwa Central memory address of the first word of the record.

Number of central memory words to be transferred.
Record number or the address ¢

name (left justified display code with zero fill, 1 to 7 characters)
or number.

. -
f a cell containing the record

I

OPENMS is used to open the mass storage file. This routine informs SCOPE
that this file is a random access file. If the file exists, the master index
is read into the area specified by the program. OPENMS must be called
before READMS, WRITMS, and STINDX, and must be called only once per file.

The routines READMS and WRITMS perform the actual transfer of data to
or from central memory.

STINDX is used to change the file index to the base specified in the CALL
(See Appendix I for further information and examples concerning the use of

these routines.)

The random access name must be left justified display code, from 1-7 char-
acters long, with zero fill.

Random file processing employs a 30-bit index in 7000 SCOPE version 1
rather than an 24-bit index as in 6000 SCOPE Version 3.0.

5-11

FORMAT STATEMENTS 6

6.1
FORMAT
DECLARATION

FIELD DESCRIPTORS

60329100 A

The FORMAT statement is used in conjunction with the input/output of for-
matted records to indicate the manner of converting and editing information
between the internal representation and the external character strings.

FORMAT (qlt z t z

tq)

1°1%2%" " #n-1"nle

q series of slashes (optional)

t field descriptor or groups of field descriptors

z field separator

n may be zero

The FORMAT declaration is non-executable and may appear anywhere
in the program. It must have a statement label in columns 1-5.
FORMAT statements are analyzed for validity by the compiler.
Diagnostics are provided.

The format field descriptors are:

srEw.d
srFw.d
srGw.d
srDw.d

riw

rLw

rAw

rRw

rOw

thth' . .hn
nX

* .. k% or £, F

Tn

Single precision floating point with exponent
Single precision floating point without exponent
Single precision floating point with or without exponent
Double precision floating point with exponent
Decimal integer conversion

Logical conversion

Alphanumeric conversion

Alphanumeric conversion

Octal integer conversion

Hollerith character control

Intraline spacing

Hollerith string delimiters

Column tabulation

FIELD SEPARATORS

6.2
CONVERSION
SPECIFICATION

6-2

E,F, G, D, I, L, A, R, O, H, X, and T are the conversion codes which
indicate the type of conversion and editing.

w and n are non-zero integer constants which represent the field width in the
external character string. n used with T indicates the beginning column
position for subsequent information.

d is an integer constant which represents the number of digits in the frac-
tional part of the external character strings (except for G conversion).

r is the repeat count. I is represented by an optional non-zero integer
constant and indicates the repetition factor of the succeeding basic field
descriptor.

5 is optional and represents a scale factor.
h is one of the characters in the machine character set.
* or # is used to delimit Hollerith strings. prints as ' on many printers.)

For all descriptors, the field width w or n must be specified. If d is not
specified for w.d, it is assumed to be zero.

The. two format field separators are the slash (/) and the comma (,). Series
of slashes are another form of field separator. Field separators are used
to separate field descriptors and groups of field descriptors. The slash

is also used to specify demarcation of formatted records.

Leading blanks are not significant in numeric input conversions; other
blanks are treated as zeros. Plus signs may be omitted. An all blank
field is considered to be minus zero, except for logical input, where an all
blank field is considered to be FALSE. When an all blank field is read
with a Hollerith input specification (R or A), each blank character will be
translated into a display code 55 octal.

For the E, F, G, and D input conversions, a decimal point in the input
field overrides the decimal point specification of the field descriptor.

The output field is right justified for all output conversions. If the mumber
of characters produced by the conversion is less than the field width, lead-
ing blanks are inserted in the output field. The number of characters pro-
duced by an output conversion must not be greater than the field width. If
the field width is exceeded, an asterisk is inserted in the leading position
of the field .

60329100 A

Iw INPUT

lw OUTPUT

60329100 A

Any output which is sent to the line printer uses the first character on the
left for carriage control. Thus, the first character is lost and printing
begins in the first print position using the second character. This applies
only to line printers, not to other output devices.

This specification, in conjunction with an input statement, designates a
decimal integer constant; field length of w characters. The input field is
an optionally signed integer or blank. When a sign appears, it must pre-
cede the first digit in the fieid. Blanks are interpreted as zeros. The
value is stored right-justified in the specified variable.

Example:

READ 10,1,J,K, L, M,N
10 FORMAT (I3,17,12,13, 12, 14)

Stored Variable: I J K LM N

A e\l e A e,
Input Card: 139bb-15bb18bb7b3b1lb4
Al AN e e
Field Width: 3 7 2 32 4

I specification may also be used to indicate the output of decimal integer
values. The output quantity occupies w output character positions, right
justified:

ba...a
where b is a blank or minus sign if the integer is negative, a's are the digits
(maximum 15) of the integer. If the integer is positive, the + sign is sup-
pressed. If the field width w is larger than required, the output quantity is
right justified with blank fill to the left. If the field is too short, characters
are stored from the right; an asterisk occupies the leftmost position, with
excess characters being discarded from the left. If the infeger is greater
than 248-1, an X is printed in the field.

Example:
PRINT 10,1,J,K I contains -3762

10 FORMAT (18,110,I5) J contains +4762937
K contains +13

Result: bbb-3762bbb4762937bbb13
N, — o

8 10 5

6~3

Ew.d INPUT

6-4

The E specification designates the conversion and storing of a number in the
input field as a real number. The total number of characters in the input field
is specified by w; this field is scanned from left to right; blanks are inter-
preted as zeros.

Subfield structure of the input field:

input field
.

7 ™
+ +
 digit . E
integer fraction exponent

decimal point

The integer subfield begins with a sign (+ or -) or a digit and may contain a
string of digits. The integer field is terminated by a decimal point, D, E, +,
-, or the end of the input field.

The fraction subfield which begins with a decimal point may contain a string
of digits. The field is terminated by D, E, +, -, or the end of the input field.

The exponent subfield may begin with D, E, + or - followed by an integer
constant right adjusted in the field. When it begins with D, or E, asign is
optional between D or E and the string of digits of the subfield. The value of
the string of digits in the exponent subfield must be less than 323.

Permissible subfield combinations:

+1.6327E-04 integer fraction exponent
-32.7216 integer fraction

+328+5 integer exponent
.629E-1 fraction exponent

+136 integer only

. 07628431 fraction only

E-06 (interpreted exponent only
as zero)

60329100 A

In the Ew.d specification, d acts as a negative power-of-ten scaling factor
when an external decimal point is not present. The internal representation
of the input quantity is:

(integer subfield)xl()—dx 10(exponent subfield)

For example, if the specification is E7.8, the input quantity 3267+05 is con-
verted and stored as: 3267x10~8x105 = 3, 267.

A decimal point in the input field overrides d. The input quantity 3.672+5
read by an E9.d specification is always stored as 3.67 2x10°., When d does
not appear, it is assumed to be zero.

The field length specified by w in Ew.d should always be the same as the
length of the field containing the input number. When it is not, incorrect
numbers may be read, converted, and stored as shown below. The field w
includes blanks, significant digits, signs, decimal point, E or D and the
exponent.

Example:

READ 20,A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

Input quantities on the card are in three contiguous fields columns 1
through 24:

9 5 10

+6.47TE-01-2.36+5.321E+02bb

The second specification (E7.2) exceeds the width of the second field by
two characters.

Reading proceeds as follows:

9 7 10

+6,47E-01|-2.36+5 .321E+02bb

+6.47E-01(-2.36+5].321E+02bb

+6.47E-01 -2.36+5|.321E+02bb

60329100 A 6-5

First, +6.47-01 is read, converted, and placed in location A. Next,
-2.36+5 is read, converted, and placed in location B. The number
actually desired was -2.36, but the specification error (E7. 2 instead
of E5.2) caused the two extra characters to be read. The number read
(-2.36+b) is a legitimate input representation under the definitions and

restrictions.

Finally, .321E+0200 is read, converted, and placed in location C. Here
again, the input number is legitimate and is converted and stored, even
though it is not the number desired.

The above example illustrates a situation where numbers are incorrectly
read, converted, and stored, and yet there is no immediate indication that
an error has occurred.

Examples:

Ew.d Input

Specifi- Converted
Input Field cation Value
+143.26E-03 E11.2 . 14326
-12.437629E+1 E13.6 -124.37629
8936E+004 E9.10 .008936
327.625 E7.3 327.625
4.376 E5 4,376
-.0003627+5 E11.7 -36.27
-.0003627E5 E11.7 -36.27
blanks Ew.d -0.
1E1 E3.0 10.
E+06 E10.6 0.
1.bEbl E6.3 10.

6-6

Remarks

All subfields present
All subfields present

No fraction subfield; input

number converted as 8936.
x 10-10*4

No exponent subfield
No d in specification

Integer subfield contains
- only

Integer subfield contains
- only

All subfields empty

No fraction subfield; input
number converted as
1.x101

No integer or fraction sub-
field; zero stored regardless
of exponent field contents

Blanks are interpreted as
Z€eros

60329100 A

Ew.d OUTPUT Real numbers in storage are converted to the BCD character form for output
with the E conversion. The field occupies w positions in the output record;
with the real number right justified in the form:

b.a...ateee 100 = eee = 308
or
b.a...aExee 0=ee =99

b indicates no character position or minus sign; a's are the most significant
digits of the value, and eee are the digits in the exponent., If d is zero or no
character, the digits to the right of the decimal do not appear as shown above.
Field w must be wide enough to contain the significant digits, sign (if negative),
decimal point, E, and the exponent. Generally, w = d+6. Since positive num-
bers do not require a sign, space need not be reserved for one.

If the field is not wide enough to contain the output value, an asterisk is in-
serted in the high order position of the field. If the field is longer than the
output value, the quantity is right justified with blank fill to the left. If the
value being converted is indefinite, an I is printed in the field; if it is out of
range, an R is printed.

Examples:T

PRINT 10,A A contains -67.32 or +67.32
10 FORMAT (E10.3)

Result: b-.673E+02 or bb,673E+02

PRINT 10,A
10 FORMAT (E13.3)

Result: bbbb-.673E+02 or bbbbb.673E+02

PRINT 10,A A contains -67.32
10 FORMAT (ES8.3) no provision for - sign

Result: *,67E+02

PRINT 10,A
10 FORMAT (E10.6)

Result: *.6732E+02

Fw.d INPUT This specification is the same as Ew.d input specification. It may be used for
the transfer of real data that does not contain a decimal exponent.

TIn the é;;ﬁéies, 'the use of column 1 for 'c'ari'iaigé control has been ignored.
The results demonstrate the way in which data is converted, not the way the
line will appear when printed.

60329100 A 6-17

Fw.d OUTPUT

The field occupies w positions in the output record; the corresponding list
item must be a floating point quantity, which appears as a decimal number,
right justified

ba...a.a...a

b identifies a minus sign or no character position and a's represent the most
significant digits of the number.

The number of decimal places to the right of the decimal is specified by d. If
d is zero or omitted, digits to the right of the decimal point do not appear. If
the number is positive, the + sign is suppressed. If the field is too short to
accommodate the number, one asterisk appears in the high-order position of
the output field. Field w must be wide enough to contain significant digits,
sign (if negative), and a decimal point. If the field is longer than required to
accommodate the number, the number is right justified with blank fill to the
left. If the value being converted is indefinite, an I is printed in the field; if
it is out of range, an R is printed.

Examples:T
A contains +32,.69%4

PRINT 10,A
10 FORMAT(F7.3)

Result: b32.6%4

PRINT 11,A
11 FORMAT(F10.3)

Result: bbbb32.694
A contains -32.6%4

PRINT 12,A
12 FORMAT(F6.3) no provision for - sign

Result: *2.694

A contains .32694

PRINT 13,A,A
13 FORMAT(F4.3,F6.3)

Result: .327bb. 327

TIn the examples, the use of column 1 for carriage control has been ignored.
The results demonstrate the way in which data is converted, not the way the
line will appear when printed.

60329100 A

Gw.d INPUT Gw.d input specification is the same as the Ew.d inpuf specification.

Gw.d OUTPUT The G conversion specifies the transfer of real data where w designates the
field length and d denotes the number of significant digits of the value to be
represented.

The method of representation in the external output string is a function of the
magnitude of the real datum being converted. Let N be the magnitude of the
internal datum. The following tabulation exhibits a correspondence between
N and the equivalent method of conversion that will be effected:

Magnitude of Datum Equivalent Conversion Effected
0.1=N<1 F(w-4).d,4X

1 =N <10 F(w-4). (d-1), 4X

1042 =y < 10971 F(w-4).1,4X

10971 < N < 108 F(w-4).0,4X

Otherwise sEw.d

The effect of the scale factor is suspended unless the magnitude of the datum
to be converted exceeds the range that permits effective use of the F conver-
sion. If the value being converted is indefinite, an I is printed in the field;
if it is out of range, an R is printed.

When F conversion is used under Gw.d output specification, four blanks are
inserted within the field, right justified. Therefore, for effective use of
F conversion, w must be = d+6.

Examples:

PRINT 101,XYZ XYZ contains 77.132
101 FORMAT (G10. 3)
Result: bb77. 1bbbb
PRINT 101,XYZ XYZ contains 1214635.1
101 FORMAT (G10. 3)
Result: bb.121E+07

60329100 A 6-9

Dw.d OUTPUT

Dw.d INPUT

| ow ourrur

| ow INPUT

6-10

D conversion corresponds to Ew.d output. The field occupies w positions of
the output record, the list item is a double precision quantity which appears

as a decimal number, right justified. If the value being converted is indefinite,
an I is printed in the field; if it is out of range, an R is printed.

b.a* ' rateee 100 < eee < 308
or

b.a---aDzee 0=ee=99

D conversion corresponds to E conversion except that the list variables
must be double precison names. D is acceptable in place of E as the be-
gimning of an exponent subfield.

Example:
DOUBLE Z,Y,X

READ1, 7,Y,X
1 FORMAT (D18.11,D15,D17.4)

Input Card:
-6.31675298443D-03+2.7189264531476293477528869D~09
—. _y A ~ e /
18 15 17

O specification is used to output octal values. The output quantity occupies
w output character positions right justified.

aa...a

The a's are octal digits. If w is 20 or less, the rightmost w digits appear.
If wis greater than 20, the number is right justified in the field with blanks
to the left of the output quantity. A value output under O specification under-
goes no type conversion; a negative number is output in its one's comple-
ment internal form.

Octal values are input under O specification. The field is wcharacters
in length.

The input field w consists of an integer subfield only (maximum of 20 octal

digits) containing +, -, 0 through 7, or blank. Only one sign may precede
the first digit in the field. Embedded blanks are interpreted as zeros.

60329100 D

Aw OUTPUT

Aw INPUT

60329100 A

INTEGER P, Q, R
READ 10,P,Q,R
10 FORMAT (010,012,02)

Input Card: 3737373737666b6644b444-0
4\ v

10 12 2

I

In storage:

P 00000000003737373737
Q 00000000666066440444
R 77TTTTTTTTICCTICOCTUT

A negative octal number is represented internally in one's complement

form (20 digits) obtained by subtracting each digit of the octal number from
seven. For example, if -703 is an input quantity, its internal representation
is TT7T7T7T777777777074.

That is, 77777777707T7T7T7777
-00000000000000000703
TTITTT7T7777777777074

A conversion is used to output alphanumeric characters. If w is 10 or more,
the quantity appears right justified in the output field, blank fill to left. If
w is less than 10, the output quantity is represented by leftmost w characters.

This specificaticn accepts FORTRAN characters including blanks. The in-
ternal represeuta:ion is 6000 Series display code; the field width is w char-
acters.

If w exceeds 10, the input quantity is the rightmost 10 characters in the field.
If w is 10 or less, the input quantity is stored as a left justified BCD word;
the remaining spaces are blank filled.

Example:

READ 10,Q,P,0
10 FORMAT (A8,A8,A4)

Input card: LUX MENTIS LUX ORBIS
N, om— “— p— “——
8 8 4

6-11

Rw OUTPUT

Rw INPUT

Lw OUTPUT

Llw INPUT

COMPLEX
CONVERSIONS

6-12

In storage: @ LUXbMENTbb
P ISbLUXbObb
(¢ RBISbbbbbb

This specification is similar to the Aw output with the following exception.
If w is less than 10, the output quantity represents the rightmost characters.

This specification is the same as the Aw input with the following exception.
If w is less than 10, the input quantity is stored as a right justified binary
zero filled word. :

Example:

READ 10,Q,P,0
10 FORMAT (R8,R8,R4)

Input card: LUX MENTIS LUX ORBIS
8 8 4

In storage: Q 00LUXbMENT

P 00ISbLUXbO
O 000000RBIS

L specification is used to output logical values. The output field is w char-
acters long, and the list item must be a logical element. A value of TRUE
or FALSE in storage causes w-1 blanks followed by a T or F to be output.

Example:

LOGICALI1,J,K, L I,K, L are negative (TRUE) and
PRINT 5,1,J,K,L J is positive (FALSE)
5 FORMAT (4L3)

Result: bbTbbFbbThbT

This specification accepts logical quantities as list items. The field is con-
sidered true if the first non-blank character in the field is T or false if it is

F. An all blank field is considered false. If the first non-blank character is
neither T nor F, the field is considered false.

The specification by which a complex variable is read or written requires the
designation of two real field descriptors: the first designates the real part,
the second the imaginary part. The field descriptors that may be used are:
E (Ew.d), F(Fw.d), or G(Gw.d).

60329100 A

nP SCALE FACTOR

60329100 A

Example:

INTEGER A

COMPLEX CC where A = 3762

PRINT 20,A,B,CC,D B =833.275
FORMAT (I5,F8.3,E10.4,E9.2,G11.5) CC = 36.292, -46.73

D =.62534
Results: b3762 b833.275 b. 3629E+02b-. 47TE+02 b.62534bbbb

A scale factor that may be used with F, E, G, and D conversions is of the
form:

nP

nPFw.d
nPEw.d
nPGw.d
nPDw.d

n, the scale factor, is a positive (unsigned) or negative integer constant.

A scale factor of zero is established when the format control is initiated; it
holds for all F, E, G, and D field descriptors until another scale factor is
encountered.

The scale factor n affects conversions as follows:

For F, E, G, and D input conversions (provided no exponent exists) in
the external field) and F output conversions: External number =
Internal number x 107

For F, E, G, 201 D input, the scale factor has no effect if there is
an exponent i.. *he external field.

For E and D output, the basic real constant part of the output quantity
is multiplied by 10™ and the exponent is reduced by n.

For G output, the effect of the scale factor is suspended unless the mag-
nitude of the data to be converted exceeds the range that permits effective
use of F conversion. If the effective use of the E conversion is required,
the scale factor has the same effect as with E output.

6-13

Examples:

Using an internal number of 3.1415926538, some output representations with
the use of a scale factor are:

Specification Output Representation
E20.2 .31E+01
1PE20.2 3.14E+00
4PE20.2 3141.59E-03
7TPE20.2 3141592. 65E-06
-1PE20.2 .03E+02
5PF20.2 314159. 27
-2PF20.4 . 0314
6.3
EDITING
SPECIFICATIONS
nX This specification permits spacing of input/output quantities; it permits

blanks to be inserted in an output record or n characters to be skipped in an
input record. The designation of 0X is ignored and bX is interpreted as 1X.
In the specification list, a comma following X is optional.

Examples:
INTEGER A A contains 7, B contains 13.6,
PRINT 10,A,B,C C contains 1462.37

10 FORMAT (12, 6X, F6. 2, 6X, E12.5)
Result: b7bbbbbbbl3. 60bbbbbbbb. 14624 E+04

READ 11,R,S,T
11 FORMAT (F5.2,3X,F5.2,6X, F5.2)

or

11 FORMAT (F5.2,3XF5.2,6XF5.2)
Input card: 14.62bb$13. 78bCOSTb15. 97
In storage: R 14.62

S 13.78
T 15.97

6-14 60329100 A

nH

60329100 A

cluding blanks, in the form of comments, titles, and headings. An unsigned
integer n specifies the number of characters, maximum of 136 to the right
of H that are transmitted to the output record; H denotes a Hollerith field;
the comma following an H field is optional.

This specification provides for the input or output of 6-bit characters, in-

Examples:
Source program:

PRINT 20
20 FORMAT (28HbBLANKSbCOUNTbINDANDHLFIELD.)

produces output record:

bBLANKSbCOUNTbINbANbHbFIELD.

Source program:

PRINT 30,A A contains 1.5
FORMAT (6HbLMAX=, F5.2) comma is optional

produces output record:
bLMAX = bl.50

The H specification may be used to read Hollerith characters into an existing
H field within the FORMAT specification. .

Example:

Source program:

READ 10
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb)

Input card:
\bTHISbISbAbVARIABLEbHEADINg

—~
27 columns

After READ, the FORMAT statement labeled 10 contains the alphanumeric
information read from the input card; a subsequent reference to statement 10
in an output statement acts as follows:

PRINT 10

produces the print line:

bTHISbISbAbVARIABLEbHEADING

NEW RECORD The slash (/) indicates the end of the last record anywhere in the specification
list. Consecutive slashes may appear and need not be separated from the
other list elements by commas. During output, the slash is used to produce
blank records. During input, it is used to bypass records. k(/) is equiva-
lent to /1/2, ... ’/k'

Examples:

1. PRINT 10
10 FORMAT (6X, THHEADING///3X, 5HINPUT, 2X, 6HOUTPUT)

Printout:
bbbbbbHEADING line 1
(blank) line 2
(blank) line 3
bbbINPUTbbOUTPUT line 4

Each line corresponds to a BCD record. The second and third records
are null and produce the line spacing illustrated.

2. PRINT 10,A,B,C,D
10 FORMAT (2E10.3/2F7.3)

In storage: A -11.6

B .325
C 46.327
D -14.261

Printout:

b-. 116 E+02bb. 325E+00
b46.327-14. 261

3. PRINT 11,A,B,C,D
11 FORMAT (2E10.3//2F7.3)

Printout:
b-. 116 E+02bb. 325E+00 line 1
(blank) line 2
b46.327-14.261 line 3

6-16 60329100 A

Tn

60329100 A

4. DIMENSION X(3)

PRINT 15, (X(I), =1, 3)
15 FORMAT (SHbRESULTS2(/)(3F8. 2))

Resultant lines:

bPRESULTS line 1
(blank) line 2
3.62 -4,03 -9.78 line 3

The same results may also be obtained by using the statement,
PRINT 15,X

Hollerith string delimiters are *...* and £...#. All characters (including)
blanks) enclosed by apair of delimitersareread or written. Eachcharacter
may appear in a field delimited by the other. In an nH delimited specifica-
tion, the * or #£ (' for some printers) will be reproduced.

Example:

PRINT 10
10 FORMAT (20X*THISbISbTHEbENDbLO FbTHISbRUN*,T52%.. HONEST*)

Result: (beginning in print position 20)

123456789312345678901234567T89017234956T890123456785012345678Yx
THIS IS THE END OF THIS wUN o0 e HOMNEST

This specification is used as a tabular column selection control. When Tn
is used, the format pointer is skipped to column n and the next format speci-
fication is processed. n may be ar; unsigned integer, maximum of 136. If
n = zero, column 1 is assumed. (If output is to a line printer, printing is
left-shifted one character due to carriage control requirements.)

Using card input, if n > 80 the column pointer is moved to column n but a
succeeding specification would read only blanks.

Examples:
1) PRINT 60

60 FORMAT (T80,*COMMENTS*, T60, *HEADING4*, T40
HEADING3, T20, *HEADING2*, T2, *HEADING1%*)

6-17

Produces the following output: print positions are indicated by the upper
line of numbers 1-80.

1 19 39 59 79
HEADING1 HEADING2 HEADING3 HEADING4 COMMENTS

2) WRITE (31,10)
10 FORMAT (T20,*LABELS¥)

The first 19 characters of the output record are skipped and
the next six characters, LABELS, are written on output unit
number 31 beginning in character position 20.

3) READ (20, 20)
20 FORMAT (T10,*COLUMNL1¥)

The first nine characters of the input record are skipped and
the next seven are read from input file 20; these seven char-
acters replace COLUMN]1, the data in storage.

6.4

REPEATED FORMAT

SPECIFICATIONS FORMAT specifications may be repeated by using an unsigned integer constant
repetition factor k as follows: k(spec). For example, to print the array Y:

PRINT 10, (Y(I),I=1,9)
10 FORMAT (3(3F8.3))
is equivalent to:
PRINT 10, (Y(D,I=1,9)
10 FORMAT (9F8.3)

When a group of FORMAT specifications repeats itself as in:

FORMAT (E15.3,F6.1,14,14,E15.3,F6.1,14,14)

the use of k produces:

FORMAT (2(E15.3,F6.1,214))

I no group repetition factor is specified, a basic group (repetition factor of
one) is assumed. If, however, the format control proceeds to the last outer
right parenthesis of the format specification, a test is made to determine if
another list element is specified. If not, control terminates. However, if
another list element is specified, the format control demands a new record
start and control reverts to that group repeat specification terminated by the
last preceding right parenthesis, or if none exists, then to the first left
parenthesis of the format specification.

6-18 60329100 A

6.5
VARIABLE FORMAT

60329100 A

Further groupings may be formed by enclosing field descriptors, field sep-
arators, or basic groups within parentheses, and a group repetition factor
may be specified for these groupings. The parentheses enclosing the format
specification are not considered as group delimiting parentheses.

FORMAT statement specifications may be nested to a depth of two. For
instance:

10 FORMAT(1H0,3E10.3/(12,2(F12.4,F10.3))/D28.17)

FORMAT specifications may be indicated at the time of program execution.
The specification, including left and right parentheses but not the statement
label or the word FORMAT, must be Hollerith data stored in an array. The
name of the array containing the specifications may be used in place of the
FORMAT statement labels in the associated input/output operation. The
array name specifies the location of the first word of the FORMAT informa-
tion and may appear with or without a subscript.

Examples:
1) Assume the following FORMAT specifications:

(E12.2,F8.2,17,2E20.3,F9.3,14)

This information can be punched in an input card and read by the
statements of the program such as:

DIMENSION IVAR(3)
READ 1, (IVAR(), I=1, 3)
1 FORMAT (3A10)

The elements of the input card are placed in storage as follows:

IVAR(L): (E12.2,F8.
IVAR(2): 2,17,2E20.
IVAR(3): 3,F9.3,14)

A subsequent output statement in the same program can refer to these
FORMAT specifications as:

PRINT IVAR,A,B,I,C,D,E,dJ
This produces exactly the same result as the program:

PRINT 10,A,B,1,C,D,E,J
10 FORMAT (El2.2, F8.2,17,2E20.3,F9.3,14)

6-19

2) DIMENSION LAIS1(3), LAIS2(2), A(6), LSN(3), TEMP(3)
DATA LAISV21H(2F6.3,17, 2E12.2, 311)/LAIS2/20H(16, 6X, 3F4.1, 2E12.2)/

Output statement:
PRINT LAIS1, (A()),F1,2),K, B, C, (LSN({J),J=1, 3)
which is the same as:

PRINT 1, (A(D),1=1,2),K, B, C, (LSN(J),J=1, 3)
1 FORMAT (2F6.3,17,2E12. 2, 311)

Output statement:
PRINT LAIS2, LA, (A(M), M=3,4),A(6), (TEMP(]), =2, 3)
which is the same as:

PRINT2, LA, (A(M), M=3,4),A(6), (TEMP()), I=2, 3)
2 FORMAT (16, 6X,3F4.1,2E12.2)

3) DIMENSION LAIS(3), VALUE(6)
DATA LAIS/26H(I3, 13HMEANbVALUEbIS, F6. 3)/

Output statement:
WRITE (10, LAIS NUM, VALUE(6)
which is the same as:

WRITE(10, 10)NUM, VALUE (6)
10 FORMAT(I3, 13HMEANbVALUEDIS, F6. 3)

6-20 60329100 A

AUXILIARY DATA TRANSMISSION STATEMENTS

7.1
BUFFER

STATEMENTS Some of the characteristics of buffered input/output are given below:

1.

The mode of transmission (BCD or binary) is tacitly implied by the
form of the input/output control statements. In a buffer control
statement, parity must be specified by a parity indicator.

The input/output control statements are associated with a list and
in BCD transmission, with a FORMAT statement. The buffer
control statements do not have a list; data transmission is to or
from one area in storage.

An input/output control statement does not return control to the
program until completion of the operation. A buffer control state-
ment initiates data transmission, then returns control to the pro-
gram, permitting the program to perform other tasks while data
transmission is in progress. Before buffered data is used, status
of the buffer operation should be checked through the UNIT function
(Appendix I). Failure to perform a status check renders the

result of the last buffer operation unpredictable.

In the following discussion, the parameters indicated are defined as follows:

u

fwa

lwa

Logical unit number; an integer constant or variable in the
range 1 to 99.

Recording mode; an integer constant or variable which may
assume the values of zero, designating even parity (coded
mode), or 1 indicating odd parity (binary mode). The record-
ing mode, p, is inoperative for mass storage units on the 7600,
but it still must be specified. Tape parity is controlled by the
input/output stations servicing the 7600.

First word address of the block of data to be transmitted.

Last word address of the block of data to be transmitted.
This address must be greater than or equal to fwa.

A unit referenced in a BUFFER statement may not be referenced in other
input/output statements except REWIND, BACKSPACE and ENDFILE.

60329100 A

BUFFER IN BUFFER IN (u,p) (fwa,lwa)

This statement transfers information from unit u in mode p to storage
locations fwa through lwa. Only one logical record is read for each
BUFFER IN statement.

BUFFER OUT BUFFER OUT (u,p) (fwa,lwa)

This statement initiates output of data from locations fwa through lwa onto
unit u. One logical record is written for each BUFFER OUT statement.

A more detailed discussion of these statements is given in Appendix I.

7.2

ENCODE/DECODE

STATEMENTS The ENCODE/DECODE statements are comparable to the formatted
WRITE/READ statements; however, no peripheral equipment is involved.
Information is transferred under FORMAT specifications from one area
of storage to another. The parameters in these statements are defined
as follows:

n Unsigned integer constant or a simple integer variable (not
subscripted) specifying the number of characters in the

record. n may be an arbitrary number of BCD characters.

f Statement number or array identifier representing the
FORMAT statement.

id Identifier of a variable or an array which supplies the
starting location of the BCD record.

k Input/output list.
The first record begins with the leftmost character position specified by id
and continues until n BCD characters have been transferred (10 BCD charac-
ters per computer word).
Each succeeding record begins with a new computer word, the integral
+
number of computer words allocated for each record is n+9 .

10

Further information on these statements is given in Appendix 1.

7-2 60329100 A

ENCODE

60329100 A

ENCODE (n,f,A)k

The list of variables, k, is transmitted according to the FORMAT f and
stored, n BCD characters per record, starting at location A. Ifnisnota
multiple of 10, the remainder of the word is blank filled, If the I/O list k
and the specification list { translate more than n characters per record, an
execution diagnostic occurs.

Examples:

A(l) = 10HABCDEFGHIJ
A(2) = 10HKLMNO

B(l) = 10HPQRSTUVWXY
B(2) = 10HZ12345

1. n = multiple of 10

ENCODE (20,1,ALPHA)A, B
1 FORMAT (A10,A5/A10,A6)
Result:

record a record b
A A

-~

N N\
ALPHA | ABCDEFGHIJ | KLMNO [bbbbb| PQRSTUVWXY | 712345 | bbb |
word 1 word 2 word 3 word 4

2, n # multiple of 10

ENCODE (16,1,ALPHA)A, B
1 FORMAT (A10,A6)

Result:
record a record b
' —A Y r —A ~\
ALPHA | ABCDEFGHIJ |KLMNOb |bbbb PQRSTUVWXY | Z12345 |bbbb j
word 1 word 2 X word 3 word 4
beginning of new record

3. ENCODE can be used to rearrange and change the information in a
record. The following example also illustrates that it is possible to
encode an area into itself and that encoding will destroy information
previously contained in an area.

7-3

PROGRAM ENCO2(OUTPUT)
I = 10RBCDEFGHIJK
IA = 1H1
ENCODE (8,10,1)1,1A, I

10 FORMAT (A3,A1,R4)
PRINT 11,1

11 FORMAT (020)
END

Print-out is:

02030434101112135555

The display code equivalent is:
BCD1HIJKbb

| 4, ENCODE may be used to calculate a field definition in a FORMAT speci-
fication at object time. Assume that in the statement FORMAT (2A10, Im)
the programmer wishes to specify m at some point in the program, sub-
ject to the restriction 2 =m = 9. The following program permits m to
vary.

IF(M.LT.10.AND.M.GT. 1)1,2
1 ENCODE (10,100,SPECMAT)M
100 FORMAT (7H(2A10,1, 11, 1H))

PRINT SPECMAT,A,B,J

M is tested to insure it is within limits. If not, control goes to statement
2 which could be an error routine. If M is within limits, ENCODE packs
the integer value of M with the characters: (2A10,I). This packed FOR-
MAT is stored in SPECMAT. SPECMAT contains (2A10,Im).

A and B will be printed under specification A10, and the quantity J under
specification 12, or I3, or ... or 19 according to the value of m.

] 7-4 60329100 D

DECODE DECODE (n,f,A)k

The information in n consecutive BCD characters (starting at address A) is
transmitted according to the FORMAT and stored in the list variables. If
the record ends with a partial word the balance of the word is ignored.
However, if the number of characters specified by the I/0 list and the
specification list f is greater thann (record length) per record, an exe-
cution diagnostic occurs. If DECODE attempts to process an illegal BCD
character for a given conversion specification, a FATAL error 78 diag-
nostic will occur.

Examples:
1, n # multiple of 10

DECODE (18,1, GAMMA) A6, B6
1 FORMAT (A10,AS8)

record a record b
’ A N A \
GAMMA | HEADERb121 | HEADbbO01 |31| HEADERb122 HEADbb02 ISﬂ
word 1 word 2 word 3 word 4

beginning of new record

Result:

A6(1) = HEADERb121
A6(2) = HEADbbO1bb
B6(1) = HEADERD122
B6(2) = HEADbb02bb

2. The following illustrates one method of packing the partial contents of
two words into one word. Information is stored in core as:

LOC(1) SSSSSxxxxx

LOC(6)xxxxxddddd
10 BCD ch/wd
To form SSSSSddddd in storage location NAME:
DECODE(10, 1, LOC (6)) TEMP
1 FORMAT (5X,A5)

ENCODE(10, 2, NAME) LOC(1), TEMP
2 FORMAT(2A5)

60329100 D 7-51

) 7-6

The DECODE statement places the last 5 BCD characters of LOC(6) into
the first 5 characters of TEMP. The ENCODE statement packs the
first 5 characters of LOC(1) and TEMP into NAME.

With the R specification; the program may be shortened to:

ENCODE (10, 1, NAME) LOC(1), LOC(6)
1 FORMAT (A5, R5)

60329100 D

SPECIFICATION AND DATA STATEMENTS 8

8.1
DIMENSION

60329100 A

DIMENSION, COMMON, EQUIVALENCE, EXTERNAL, and TYPE statements,

awvna ~alla ananifiantian vt CQnanificratinn atatar anta na nanavannifahla

alrLc \.au.cu Dycblllbdl«‘ull Dl«al«clllcllbb wpTuililiivavivil Dbabclljcllbb a].c JJ.OIJ.UAU\;‘U.MULC
statements which describe the characteristics, allocation and arrangement of
data. The ordering of specification statements is immaterial, but they must
appear before any statement function definition, DATA, NAMELIST, or exe-
cutable statements in the program.

Information necessary to allocate storage for arrays may be provided by
the DIMENSION statement.

DIMENSION vy (11),V2(12), e ,Vn(ln)

Each v, is a symbolic name and i. is the corresponding subscript. Each i;
may consist of one, two, or three integer constants designating the dimension-
ality for the array and defining the maximum value which a subscript may
assume in a subsequent array reference.

Example:

DIMENSION A (20,2, 5)
DIMENSION MATRIX(10, 10, 10), VECTOR(100)

An array name may not contain a subscript which assumes a value during
execution that is less than one or larger than the maximum length specified

in the DIMENSION statement. If such a condition exists, an element beyond
the array may be referenced. However, a subscript expression which assumes
the value zero renders a result which is undefined.

The maximum value a subscript may attain is indicated below:

Maximum
Dimen- Subscript Subscript Subscript
sionality Declarator Subscript Value Value
1 A) (a) a A
2 (A, B) (a,b) a+A*(b-1) A*B
3 (A,B,C) {a,b,c) atA*(b-1) A*B*C

+A*B*(c-1)

a,b,c are subscript expressions.
A, B, C are dimensions.

The number of computer words reserved for an array is determined by the
product of the subscripts in the subscript string and the type of the variable.
A maximum of 217-1 elements may be reserved in any one array. If the
maximum is exceeded, a diagnostic is issued.

Example:

COMPLEX CELL
DIMENSION CELL (20, 10)

The number of elements in the array CELL is 200. Since two words
are used to contain a complex element, 400 words are reserved. This
is also true for double precision arrays. For real, logical, and integer
arrays, the number of words in an array equals the number of elements
in the array.

If an array is dimensioned in more than one declaration statement, an infor-
mative diagnostic is issued and the first dimensions encountered are retained.

VARIABLE

DIMENSIONS If an entry in a declarator subscript is an integer variable name, the array
is variable, and the variable names are called variable dimensions. Such
an array may appear only in a procedure subprogram. The dummy argu-
ment list of the subprograms must contain the array name and the integer
names that represent the variable dimensions. The values of the actual
parameter list of the reference must be defined prior to calling the subpro-
gram and may not be redefined or undefined during execution of the subpro-
gram. The maximum size of the actual array may not be exceeded. Every
array in an executable program requires at least one associated constant
array declaration through subprogram references.

Example:

SUB ROUTINE XMAX (DATA, K, J)
DIMENSION DATA (K, 6,J)

In a subprogram, a symbolic name that appears in a COMMON statement
may not identify a variable array.

DIMENSION statements must appear before any statement function definition,
executable, DATA, or NAMELIST statements in the program.

8-9 60329100 A

8.2
COMMON

LABELED COMMON

60329100 A

The COMMON statement reserves blocks of storage for variables or arrays
appearing in one calling program or subprogram which may be shared and
referenced with variables or arrays of other subprograms. The areas of
common storage are specified by the statement form:

COMMON /Xl/al/' .. /Xn/an

Each a is a non-empty set of variable names, array names or array declara-
tors such as, v(i) illustrated for the DIMENSION statement, and each X is a
block name. Block names may be symbolic names or integer constants in
the range 0 to 9999999, but may not exceed seven characters in length.

Example:
COMMON/BLOCK1/A, T(10,15/BLOCK2/E, G,Q

The list of variable names (A and T or E, G, and Q) may not be dummy
parameters. The entries A and T are defined to be in the block labeled
BLOCKI and E, G, and Q are in the block labeled BLOCK2. These
blocks are referred to as labeled common. However, if the block name
is omitted as in:

COMMON/H/D,C,F//U,L,P(12,12)
or
COMMON 8,V,Z,X,M

the list of variables following the empty block name specification are
placed in unlabeled or blank common. In the two above examples, D, C,
and F are in the block H, whereas U, L, P, §, V, Z, X, and M are
defined in unlabeled common.

Any labeled common block may be referred to by any number of programs or
subprograms which comprise an executable program. References are made
by block name which must be identical in all references. The definition of
a1l labeled common blocks need not be made within any one program, but
must be made in the program unit in which the data is needed.

The length of a common block in a program unit is the sum of the storage re-

quired for the elements defined by the COMMON statement. The length of
labeled common blocks with the same label should be the same.

8-3

UNLABELED COMMON

ARRANGEMENT OF
COMMON BLOCKS

Example:

SUBROUTINE A SUBROUTINE B
REAL B, W, X(20) COMPLEX G, F(10)
COMMON/BLKA/V,W,X COMMON/BLKA/G, F

Both references to the COMMON block, BLKA, correspond in size,
That is, both subprograms define the block as containing 22 words;
subroutine A specifies 22 items of real type and the specification in
B indicates 11 items of complex type.

Reference may be made to the name of a labeled common block more than
once in any program or subprogram. Multiple references may occur in a
single COMMON statement, or the block name may be specified in any
number of individual COMMON statements. In both cases, the processor
links together all variables into a single labeled common block.

All variables defined in unlabeled or blank common blocks are assigned to
gether; that is, only one section of the storage allocated for common is
assigned to such variables. These variables are always referred to by an
unlabeled COMMON statement (block name is omitted).

Unlike labeled common, the sizes specified in various program units to be
executed together need not be the same. Size is measured in terms of
storage units.

Example:
SUBROUTINE ALPHA SUBROUTINE BETA

COMMON E, F, G(20, 10) COMMON H,A,D,S

Subroutine ALPHA defines an area of 202 words in unlabeled common,

BETA uses only 4 words or a maximum of 8 words of the storage already
defined.

The properties of common block names as used in all of the program units
of an executable program are as follows:

60329100 A

8.3
EQUIVALENCE

60329100 A

Each subprogram using a common block assigns the allocation of words
in the block. The entities used within the block may differ as to name,
type, and number of storage units although the block identifier itself
must remain the same.

When a block is labeled and the entities are defined for the block, the
values of identifiers in the corresponding positions (counted by the number
of preceding storage units) are the values referenced through COMMON
declaration in the executable program. The order of entities in the
labeled common block is significant throughout the executable program.

Example:

PROGRAM MAIN (INPUT, OUTPUT)
COMMON Al,A2,L1/B1/B2, B3
CALL CALLI(S, T, Z)

END
SUBROUTINE CALL1(X, Y, Z)

COMMON Al,D,M/B1/F,G

END

A double precision or a complex entity consists of two logical consecutive
storage units: a logical, real, or integer entity is one storage unit.

If any common block elements are type ECS, all the elements of that block
must be type ECS. No type ECS elements may appear in the blank common
block.

COMMON statements must appear before any statement function definitions,
executable, DATA, or NAMELIST statements in the program unit.

An EQUIVALENCE statement permits storage to be shared by two or more
entities, it does not imply equality of entities. Each element in a given list
is assigned the same storage (or part of the" same sto;agg) by the processor

8-5

EQUIVALENCE (k)), (), ..., (k)

Each k is a list of the form:

81,80, &y

Each a is an array name, a variable name, or an array element name (but
not 2 dummy argument or an ECS variable or array element), the subscripts
may contain only constants. m is greater than or equal to two. The number
of subscript expressions of an array element name must correspond to the
dimensionality of the array declarator, or it must be one.

EQUIVALENCE may not be used to reorder COMMON nor reposition the base,
The base of an equivalence group is the element with the smallest address; or,
if in common, it is the beginning element of the common block, When an ele-
ment of an array is referred to in an EQUIVALENCE statement, the relative
locations of the other array elements are, thereby, defined also.

The effect of an EQUIVALENCE statement upon common assignment may be
the lengthening of a common block beyond the last assignment for that block
made by a COMMON statement.

An element or array is brought into COMMON if it is equivalenced to an
element in COMMON. Two elements in COMMON must not be equivalenced
to each other.

The following examples illustrate changes in block lengths as the result of
EQUIVALENCE declaration.
Given: Arrays A and B
Sa subscript of A
Sb subscript of B

Examples:

1. A and C in common, B not in common
Sb = Sa is a permissible subscript arrangement

Sb > Sa is not
Block 1

origin A(1) COMMON/1/A(4),C
A(2) B(l) DIMENSION B(5)
A(3) B(2) EQUIVALENCE (A(3), B(2))

A4 B(3)
C B(4)
B(5)

EQUIVALENCE statements must appear before any statement function defini-
tions, executable, DATA, or NAMELIST statements in the program unit.

60329100 D

8.4

EXTERNAL The EXTERNAL statement defines variable names to be external procedure
names. This feature permits external procedure names to be passed as
arguments to another external procedure; the names must be defined in an
EXTERNAL statement in the program unit in which it is used.

EXTERNAL VoV eenV

n

v, are declared to be external procedure names.
Example:

EXTERNAL NAME1,NAME2, NAME3

CALL SUB(A, B, NAME2)
SUBROUTINE SUB(X, Y, IFUNC)

The user is also allowed to define an Intrinsic function name in an EXTERNAL
declaration. This re-definition of an intrinsic function name causes the
processor to consider any subsequent reference as an external function ref-
erence; the user must supply the procedure.

EXTERNAL statements must appear before any statement function definitions,
executable, DATA, or NAMELIST statements.

8.5

TYPE The TYPE declaration provides the processor with information concerning
the structure of variable and function identifiers. S8ix variable types may
be declared by the statement:

tvl,vz, cen ,vn
t may be INTEGER, REAL, DOUBLE PRECISION (or DOUBLE), COMPLEX,
LOGICAL or ECS optionally preceded by the characters TYPE. Eachvisa
variable name, array name, function name, or an array name with its dimen-
sions which assumes the type indicated by t.

A TYPE statement may be used to override or confirm implicit typing; it

must be used to declare entities to be double precision, complex, logical
or ECS; it may also supply dimension information.

60329100 A 8-7

8.6
DATA

8-8

Example:

INTEGER ACBS, AFDS,ITRC
TYPE COMPLEX CC, F

The TYPE declaration is non-executable and must precede any statement
function definitions, executable, DATA, or NAMELIST statements in a given
program unit. Any variable defined by a TYPE statement may not be re-
defined in another TYPE statement; when such a condition does exist, a
diagnostic occurs and the processor assumes the type as declared when first
encountered.

The DATA, data initialization, statement is used to define initial values of
variable or array elements not located in blank COMMON.

DATA vhstl/dhstl/ ,vhstz/dhstz/ yeoes vlistn/dhstn/

vlist

dlist

List of array names, array elements, variable names, or implied
DO loops separated by commas. Only one array name can be used
within an implied DO nest. The implied DO control parameters

must be constants. Subscripts used to identify an array element must
be integer constants.

One or more of the following forms separated by commas:

constant
(constant list)
rf*constant
rf*{constant list)
rf(constant list)

constant list List of constants separated by commas

rf Integer constant. The constant or constant list is
repeated the number of times indicated by rf.

Example:

DATA X,Y,Z2/32.5,-7.4,3./,8,T/1.5E3,. TRUE, /

Entries in the list are separated by commas. Hollerith constants may also
be included.

60329100 D

60329100 D

Example:
DIMENSION AMASS(10,10,10), A(10), B(5)
DATA (AMASS(G,K,3),K=1,10)/4*(—2.,5.139),6.9,10./
DATA (A(D),I=5,7)/2%(4.1),5.0/
DATA B/5*0.0/

ARRAY AMASS: ARRAY A:
AMASS(6,1,3) = -2. A(5) =4.1
AMASS(6,2,3) = 5.139 A6) =4.1
AMASS(6,3,3) = -2. A(T) =5.0
AMASS(6,4,3) =5.139
AMASS(6,5,3) = -2. ARRAY B:
AMASS(6,6,3) = 5.139 B(1) = 0.0
AMASS(6,7,3) = -2. B@) =0.0
AMASS(6,8,3) =5.139 B(®) = 0.0
AMASS(6,9,3) = 6.9 By = 0.0
AMASS(6,10,3) = 10, B(S) = 0.0

A one-to-one correspondence is necessary between the list items and the
constants which establish their initial value.

Example:

DIMENSION K(10),A(2)
DATA A/2.0/

The value 2.0 is stored in A(1), however, in A(2), there is no
definite value.

When the number of list elements exceeds the range of the implied DO, the

excessive list elements are not stored.
Example:

DIMENSION B(10)

DATA(B(J),J=1,5)/4%1.23,6%1.24/

The excessive values 5*1.24 are discarded.

8-9

If a list item is an array name with no control subscripts or parameters, the
constant list defines the values in the array to the maximum dimensional
length or until the constant list is exhausted.

An initially defined variable or array element may not be in blank common.
An alternate form of the data initialization statement has the form:

DATA (r1=d1), (r2=d2) ye s (rn:dn)
Each r is an array element name that may have from one to three control
subscripts or a list of names of variables and array elements (each of which
may be a single integer variable) and from one to three integer constant con-
trol parameters.
Each d is a list of constants and optionally signed constants, any of which
may be preceded by j*. The constants may be grouped by parentheses and
optionally preceded by j*; j is an integer constant.

Example:

DIMENSION D3(4), POQ(5, 5)
DATA (D3 = 5.,6.,7.,8.), ((POQ(L, J), I=1, 5), J=1, 5)=25%0)

which initializes:

D3(1) = 5.
D3(2) = 6.
D3(3) = 7.
D3(4) = 8.

and sets the entire POQ array to zero.

DATA statements must appear after all specification statements in a program
unit.

The type of the DATA value is determined by the form of the constant, not
the type of the list variables.

8-10 60329100 A

PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA,
AND LIBRARY ROUTINES

A FORTRAN Extended program consists of a main program with or without

e Ao i o o A PPN [aara Amraniid

subprograms. Subprograms are separate programs that are executed only
when called and may be defined by the programmer or be preprogrammed
and contained in the processor or system library.

9.1
MAIN PROGRAM The first statement of the main program must be one of the following forms;
it may begin anywhere after column 6.
PROGRAM s
PROGRAM s (f],fy,. .. ,f,)

s is a symbolic name of the majn program, f; are 1 to 6 character names
of all input/output files required by the main program and its subprograms.

The arguments must satisfy the following conditions within the program and
its subprograms at compile time.
File name INPUT must appear if the READ f,k statement is included.

File name OUTPUT must appear if any PRINT statement is included:
also needed for printing of execution time diagnostics.

File name PUNCH must appear if any PUNCH statement is included.

File name TAPE i (i is an integer constant 1-99) must appear if any
input/output statement invclviag unit i appears in the program. Ifi is
a variable, there must be a file name TAPE i for each value i may
assume.

Files may be equivalenced at compile time. For :xample,
(INPUT, OUTPUT, TAPEL = INPUT, TAPE2=OUTPUT)
All input normally provided by TAPEL] is to be extracted from INPUT
and all listable output normally recorded on TAPE2 is to be transmittad
to the OUTPUT f{ile.

In the list of parameters, equivalenced file names must follow those to which
they are made equivalent.

60329100 D 9-1

9-2

File buffers may be assigned a non-standard size at compile time;
(OUTPUT=400, TAPE4=OUTPUT). If buffer size is not indicated, 1025 is
assumed. For 7600, if no parameter is given, an SCM buffer size of 256g
is assumed and an 8192 word LCM buffer is assigned. The LCM buffer size
is not variable under SCOPE 1.1. If thebufferis explicitly assigneda length,
the assignment must appear with the first reference to the file on the pro-
gram card. The length may be specified in octal (with the trailing B)

or in decimal.

If the PROGRAM card is omitted, the FORTRAN processor assumes a pro-
gram name of START. when it encounters a statement that is not a comment
card. Input/output buffers and files for the program are equated to the
standard SCOPE system files INPUT and OUTPUT.

The equivalencing of files causes associated buffer and file names to be
equivalenced.

Example:

PROGRAM HELLO (TAPEl, TAPE2=TAPE1)

N=1
WRITE (N) A

.
.

END

PROGRAM HELLO (TAPE1l, TAPE2=TAPE1)

N=2
WRITE(N) A

END
The file name resulting from both programs is TAPE 1.

The file names declared on the program card are only names that may
result from I/O references within the program. If no parameters appear on
the control card which calls a program into execution, the non-equivalenced
declared names will be taken as the SCOPE file names to be accessed. If
parameters do appear on the control card which calls a program into execution,
each parameter will be the SCOPE file name to be accessed by the corre-
sponding program declared name. Inaprogram headed by the program card

PROGRAM name (fl,f2 yeoo ,fn)
which is called into execution by the control card

LGO(P;:Pgs+-+5P)

60329100 A

(where each p; may be null), a reference to the declared name f; will access
the SCOPE file fj if p; is null; otherwise, the SCOPE file p; will be accessed.
Only non-equivalenced program declared names may have a corresponding p;
specified on the control card which calls the program into execution:

Examples:
1. If a program is headed by the card
PROGRAM PROG (TAPE1,OUTPUT, TAPEZ2=OUTPUT)
and is called into execution with

LGO.

every reference to unit 1 within PROG will access the SCOPE file TAPE],
every print statement and every reference to unit 2 will access the SCOPE
file OUTPUT.

If PROG is called into execution with the control card
LGO(INPUT, LOAD)

every reference to unit 1 within PROG will access the SCOPE file INPUT;
every print statement or reference to unit 2 will access the SCOPE file
LOAD.

Calling PROG into execution with the control card
LGO(, , LOAD)

will act the same as using
LGO.

in the former case, there is an illegal attempt to change an equivalenced
declared name (the attempt is ignored).

2. If INPUT is to be changed to TAPE10, and the program is headed by the
card:

PROGRAM ELKE (OUTPUT, TAPE61=OUTPUT, INPUT)
this is achieved by

LGO(, , TAPE10)

9.2

SUBROUTINE

SUBPROGRAMS A subroutine is an external computational procedure defined by FORTRAN
statements which is identified by a SUBROUTINE statement and may or may
not return values to the calling program. The statement may have any one of
the following forms:

SUBROUTINE s (aj,a9, . . « ,ap) or SUBROUTINE s
. SUBROUTINE s (a1,a2, « » « ,2n), RETURNS (bg,b2, . . . ,bm)
or

SUBROUTINE s, RETURNS (b;,bg, « + + ,bp)

60329100 C 9-3

8 is the symbolic name of the subroutine, a; are the dummy arguments (these
may be variable names, array names or external procedure names), and b,
are variable names containing statement labels which indicate alternate exits
from the subroutine. SUBROUTINEs and FUNCTIONSs are restricted to a
maximum of 63 dummy arguments.

Example:

Calling Program Subprogram

SUBROUTINE PGM1 (X, Y, Z),
RETURNS (M, N)
U=VAWHT**2
X=Y*Z
20 IF (U+X) 25, 30, 35
25 RETURN M
30 RETURN N
35 Z=ZHX*Y)
RETURN
END

CALL PGM1 (A, B, C),
RETURNS (5, 10)

5 B=SQ;RT(A*C)

10 CALL PGM2 (D,E)

The above example illustrates the different types of returns which may be
made from a subroutine subprogram. If the RETURNS list is omitted from
the CALL statement in the calling program, a return of the form RETURN a
may not be made. However, the converse is permitted; a normal return via
the RETURN statement may be made to the calling program if the RETURNS
list is specified in the CALL statement.

Subroutine subprograms are constructed with the following restrictions:
Symbolic name of the subroutine must not appear in any other statement
in this subprogram.

Symbolic names of the dummy arguments may not appear in an EQUI-
VALENCE, COMMON, or DATA statement in the subprogram.

Subroutine subprograms do not require a RETURN statement if the pro-
cedure is completed upon executing the END statement. When the end
line is encountered, a return is implied.

Subroutine subprograms may contain any statements except BLOCK DATA
FUNCTION, or another SUBROUTINE statement.

El

Execution of a subroutine begins with the first executable statement of the
subprogram. Continuation is sequential unless a GO TO, IF, RETURN,
STOP or terminal statement of a DO is encountered, in which case execution
proceeds as indicated.

60329100 A

A reference to a subroutine is made by a CALL statement. The actual argu-
ments, which constitute the argument list, must agree in order, number,

and type with the corresponding dummy arguments in the defining program;
otherwise the results are unpredictable. The use of Hollerith constants and
octal constants, which are interpreted as though they were typeless (page 1-T),
as actual arguments is an exception to the rule requiring agreement of type.
An actual argument in a subroutine reference may be one of the following:

Constant

Variable name

Array element name

Array name

Name of an external procedure
ECS variable name

ECS array name

Any other expression

Several restrictions and rules govern the correspondence of actual argu-
ments in the calling program to dummy arguments in the subprogram:

If an argument in the calling program is an external function or subrou-
tine name, the corresponding dummy argument must be used in the
same manner.

An argument in the calling program must be a variable name, an array
element name, or an array name if it corresponds to a dummy argument
which is defined or redefined in the subprogram.

The association of arguments in the calling program is made by name
to dummy arguments appearing in executable statements, function
definition statements, or those used as adjustable dimensions in the
subprogram. However, if an argument takes the form of an expression
(any other expression), the association is by value rather than by name.

An argument which is an array element name containing variables in the
subscript expression may be replaced by the same argument with a con-
stant subscript with an equivalent value.

If a subroutine reference causes a dummy argument in the referenced
subroutine to become associated with another dummy argument in the
same subroutine or with an entity in common, a definition of either
entity within the subroutine is prohibited.

60329100 D 9-5

ENTRY STATEMENT

Example:

Assume X =3and Y =2

1) CALL SUBA (X,X) SUBROUTINE SUBA (A, B)
A=Y
Z=B
2) COMMON X SUBROUTINE SUBB (B)
CALL SUBB (X) COMMON A
END A=Y
Z=B
END

In the above examples, the first two statements in the subroutine set

X =Y then Z = X resulting with X = 2 and Z = 2. However, if the state-
ments are reversed the results obtained will be different; Z =X then

X =Y, the numeric values resulting are Z =3 and X = 2,

This statement provides alternate entry points to a function or subroutine
subprogram.

ENTRY name

Name is an alphanumeric identifier which may appear within the subprogram
only in the ENTRY statement. Each entry identifier must appear in a separate
ENTRY statement. The formal parameters, if any, appearing with the
FUNCTION or SUBROUTINE statement do not appear with the ENTRY state-
ment. They are assumed to be the same as those of the FUNCTION or
SUBROUTINE in which the ENTRY statement is located. ENTRY may appear
anywhere within the subprogram except within a DO; ENTRY statements
cannot be labeled. The first executable statement following ENTRY becomes
an alternate entry point to the subprogram.

In the calling program, the reference to the entry name is made just as if
reference were being made to the function or subroutine in which the ENTRY
is imbedded. The name may appear in an EXTERNAL statement and, if a
function entry name, in a TYPE statement,

The ENTRY name type must agree with the function name type. The name

may not be given a type explicitly in the defining program; it assumes the
same type as the name in the FUNCTION statement.

60329100 A

FUNCTION JOE (X, Y)
10 JOE=X+Y

RETURN

ENTRY JAM

IF (X.GT.Y) 10,20
20 JOE=X-Y

RETURN

END

This could be called from the main program as follows:

.

Z = A+B-JOE(3. *P,Q-1)

.

R = SHJAM@, 2. *P)

LIBRARY SUBROUTINES Library subroutine subprograms may be referred to by any program with a

60329100 B

CALL statement. i must be an integer variable or constant, Jis an integer
variable.

CALL SLITE (i) Turn on sense lighti. Ifi= 0, turn all sense lights off.
1is 0 to 6; ifi > 6 or < 0, an informative diagnostic is given and all
sense lights remain unchanged.

CALL SLITET (i,j) If sense lightiis on, j= 1, if sense light i is off, j=2;
then turn sense light i off. iis 1to 6. Ifi >6 or < 0, an informative
diagnostic is given and all sense lights remain unchanged and j=2.

CALL SSWTCH (i,j) If sense switch i is on (down), j= 1, if sense switch i
is off (up), j=2,iis 1to6. Ifi >6 or < 0, an informative diagnostic
is given and all sense switches remain unchanged and j = 2.

CALL EXIT Terminate program execution and return control to the operat-
ing system.

CALL REMARK (H) Place a message, not to exceed 80 characters, in the
dayfile. H is a Hollerith specification or an array containing character

data. When an array name is used the message should be terminated by
at least 12 bits of binary zeros in the right end of a 60 bit word.

CALL DISPLA(H,k) Same as REMARK except the value of the second para-
meter is appended to the message. k may be either a real or integer
expression. The entire message including space for the value of k should
not exceed 80 characters. (If H is 40 characters or less this maximum

will not be exceeded.)

CALL RANGET(n) Obtain current generative value of RANF between 0 and 1.
n is a symbolic name. -

CALL RANSET(n) Initializé generative value of RANF. n is real.

9-7

9.3
FUNCTION
SUBPROGRAMS

STATEMENT FUNCTIONS

CALL DUMP (al,bl,fl, AN ,an,bn,fn)

e o+ ,a,b,f
CALL PDUMP (a,,b ,f , a,b,f)
Dump storage on the OUTPUT file in the indicated format. If PDUMP was
called, return control to the calling program; if DUMP was called, terminate
program execution and return control to the monitor. a; and b; identifiers
indicate the first word and the last word of the storage area to be dumped;
1 =n =20, The dump format indicators are as follows:

f= 0 or 3 octal dump

f=1 real dump '

f = 2 integer dump

f = 4 octal dump; this implies that a; and b; are statement numbers that
have been defined by an ASSIGN statement.

CALL STRACE Provides subroutine calling traceback information from the
subroutine whichcalls STRACE back tothe main program. Traceback
information is writtento the file DEBUG. To obtain traceback information
interspersed with the source program DEBUG should be equivalenced to
OUTPUT in the PROGRAM statement. (Refer to Section 11.13 STRACE.)

Statement function definitions must precede the first executable statement of
the program or subprogram and must follow any specification statements.

The name of a statement function must not appear in an EXTERNAL statement,
nor as a variable name or an array name in the same program or subprogram.
A statement function applies only to the program or subprogram containing

the definition; it is defined by a statement of the form:

a)=e

f(al,az,..., .

fis the statement function name, e is any expression. aj are variable names
which are dummy arguments indicating type, number, and order of arguments;
they may be the same as variable names of the same type appearing elsewhere
in the program unit. n may not exceed 63. f and e must be both logical or
both non-logical.

Examples:

1. LOGICAL C,P,EQV
EQV(C,P) = (C.A.P).O.(.N.C.A..N.P)

2. COMPLEX D,F
D(A, B) = (3.2,0.9)*EXP(A)*SIN(B) +(2. 0, 1.)* EXP(Y) * COS(B)

3. GROS(R,HRS,0OTHERS) = R*HRS -~ R* ,5*OTHERS

60329100 B

INTRINSIC FUNCTION The symbolic names of the intrinsic functions (built-in functions) have
special meaning and type as described in Appendix D. An intrinsic function
is referenced when the name of the function appears in an arithmetic or logical
expression. The actual arguments, which constitute the argument list, must
agree in type, number, and order with the specification in Appendix D and
may be any expression of the specified type.

Examples:

1) DATA(I)=DATA(I+1)*((FLOAT(MAX) /K()) /DATA(T))
2) IB(J)=IFIX(B(J))

The intrinsic functions SIGN, ISIGN, and DSIGN are defined when the value of
the second argument is zero, such that the sign of the second argument is
taken as positive (negative) for +0(-0). However, the functions AMOD and
MOD are not defined when the second argument is zero; division by zero
renders the results undefined.

EXTERNAL FUNCTION An external function is defined externally to the program or subprogram that
references it. An external procedure defined by FORTRAN statements headed
by a FUNCTION statement is called a function subprogram.

t FUNCTION f(al,az, . ’an) or FUNCTION f(a a)

A, ..
1’72’ >“n
t is INTEGER, REAL, DOUBLE, DOUBLE PRECISION, COMPLEX,
LOGICAL, or it is omitted.

f is the symbolic name of the function. If t is omitted the type of the
function is derived from f according to the type rules of implicit
definition.

aj are the dummy arguments; each may be a variable name, an array
name, or an external procedure name. 1<i<63.

The function name f must appear as a variable in the defining subprogram.
During every execution of the subprogram, the variable must be defined,
and once defined, it may be referenced or redefined. The value of the
variable when a RETURN statement is executed is the value of the function.
The function name f must not appear in any non-executable statement other
than the FUNCTION statement in the function subprogram.

The dummy argument names may not appear in an EQUIVALENCE, COMMON,
or DATA statement in the function subprogram. The function subprogram
may define or redefine one or more of its arguments so as to effectively re-
turn results in addition to the value of the function.

A function subprogram may contain any statement except BLOCK DATA,
SUBROUTINE, another FUNCTION STATEMENT, or any statement that
directly or indirectly references the function being defined.

60329100 B 9-9

When the END line is reached, a return is implied.
Example:

FUNCTION GRATER(A, B)
IF(A.GT.B)1,2

1 GRATER=A-B
RETURN

2 GRATER=A+B
END

EXTERNAL FUNCTION
REFERENCE An external function is referenced when it is used as an operand in an arith-
metic or logical expression. The actual arguments must agree in order,

number, and type with the corresponding dummy arguments in the defining
program.

f(a ,a)

L YRERRL

f is a symbolic name of the function, a, are the actual arguments. An actual
argument name in an external function reference may be one of the following:

Variable
Array element
Array name
External procedure reference
Constant
ECS variable
ECS array
ECS array element
Any other expression
The rules governing the association of arguments in the function call to

dummy arguments in the function are the same as those enumerated for
subroutine subprograms.

9-10 60329100 B

BASIC EXTERNAL
FUNCTIONS

9.4
BLOCK DATA
SUBPROGRAM

60329100 A

Examples:
1) W(I,J)=FA+FB-GRATER(C-D, 3. *AX/BX)

2) FUNCTION PHI (ALPHA, PHI2)
PHI=PHI2(ALPHA)
RETURN
END

The reference to the function PHI in example 2 may be:

EXTERNAL SIN
C=D-PHI(Q(K), SIN)

The replacement statement in the function PHI will produce the same result
as if it had been written PHI=SIN(Q(K)).

The basic external functions are described in Appendix D. These functions
are referred to in the section, External Function Reference. Arguments
may not be used for which a result is not mathematically defined and they
may not be of a type other than that specified.

Initialization of data to be stored in labeled common may be accomplished by
the specification of a BLOCK DATA subprogram which begins with a statement
of the form:

BLOCK DATA
or
BLOCK DATA d

d is the symbolic name of the BLOCK DATA subprogram. This param-
eter must be specified if the subprogram is to be included in a SEGMENT
(6000 series only),

The BLOCK DATA subprogram contains only specification and DATA state-
ments; executable statements are prohibited. Only the DATA, COMMON,
DIMENSION, EQUIVALENCE, and TYPE statements associated with the data
being defined are accepted; data may not be entered into an unlabeled (blank)
common block. If an entry for a common block is given an initial value in such
a subprogram, a complete set of specification statements for the entire block
must be included, even though some of the elements of the block do not appear
in DATA statements.

9-11

Example:

BLOCK DATA
COMMON/MAX/DATA(3),AA, BB/MIN/A, B, C, LAX
REAL LAX

INTEGER BB

COMPLEX A

DOUBLE PRECISION C

DATA LAX/145.12/,(DATA(),I1=1,3)/1.1,2*%9.3/,BB/1256/,A,B,C/
(2.0,1.0),13.6,172.5432D06/

END

Initial values may be entered into more than one block in a single subprogram.

9-12 60329100 A

OVERLAYS AND SEGMENTS 10

10.1
OVERLAYS

60329100 A

Programs that exceed available memory may be divided into independent
parts which may be called and executed as needed. Such programs can be
divided into segments or overlays. However, the segment feature is not
supported by 7600 LOADER and is not available to 7600 FORTRAN Extended

users under SCOPE version 1.

Segments are groups of subprograms that are loaded in relocatable form
when requested, giving the user explicit control over established inter-
program links. An overlay is a program combined with its subprograms
which is converted to absolute form and written on mass storage prior to
execution. During execution, overlays are called into memory and exe-
cuted as requested. OVERLAY and SEGMENT loader control cards must
start in column 7 or later and appear between subprograms or before the
first program. Compiler processing places them in the desired position
on the binary output file.

Each overlay is numbered with an ordered pair of numbers (I, J), each in
the range 0-77g, I denotes the primary level and J the secondary level. An
overlay with a non-zero secondary level is called a secondary overlay. It is
associated with and subordinate to the primary overlay which has the same
primary level and a zero secondary level. The initial or main overlay which
always remains in memory has levels (0,0). The significance of this dis-
tinction appears in the order in which overlays are loaded.

Overlay level numbers, such as (0,1), (0,2), (0,3)... are illegal. Primary
overlays all have their origin at the same point immediately following the
main overlay (0,0). The origin of secondary overlays immediately follows
the primary overlay. For any given program, all overlay identifiers must
be unique. The loading of any primary overlay destroys any previous
primary overlay. For this reason, no primary overlay may load other
primary overlays. Secondary overlays may be loaded only by the associated
primary overlay or main overlay. Thus two levels of overlays are available
to the programmer.

10-1

OVERLAY
CONTROL CARDS

10-2

Example:

Main Overlay (0,0)

6,0)| (7,0
2,0) (6,0)1 (7,0)

(1,0 “,0)

2,1

1
a,n |1,2 @) @,2)

4,3)

Overlays (1,1) and (1,2) are secondary to overlay (1,0)
Overlay (2,1) is secondary to overlay (2,0)

Overlay (2,1) may not be called from (1,0) or (1,1) or (1,2) but only
from (2,0) or (0,0)

Overlays (1,0), (2,0), (4,0)...may be called only from the main over-
lay (0,0)

OVERLAY (lfn, 11, 12, Cnnnnnn)

Ifn File name on which overlay is to be written; first overlay
card must have a named Ifn. Subsequent cards may omit it,
indicating that the overlays are related and are to be written
in the same lfn. A different Ifn on subsequent cards results
in generation of overlays to the new Ifn.

11 Primary level number in octal.

12 Secondary level number in octal. 11, 12 for the first overlay
card must be 0,0.

Cnnnnnn Optional parameter consisting of letter C and six-digit octal
number. If this parameter is present, the overlay is loaded
nnnnnn words from the start of blank common. This provides
a method of changing the size of blank common at execution
time. Cnnnnnn cannot be included on the overlay 0,0 loader
directive. If this parameter is omitted, the overlay is loaded
in the normal manner.

60329100 A

10.2
SEGMENTS T

60329100 D

Overlays are called by: CALL OVERLAY (fn,1,J,p,1)

OVERLAY is a FORTRAN execution time subroutine which translates the
FORTRAN call into a call to the loader.

fn Variable name of a location containing the name of the file (left
justified display code) that contains the overlay.

I Primary level of overlay; integer value 1-63
J Secondary level of overlay; integer value 0-63

p Recall parameter. Checks whether overlay specified was last one
loaded. If p equals 6HRECALL, the overlay is not reloaded if it is
already in memory.

1 Load parameter., Used to determine which value of the fn will be
used. 1 may be any value. If1is present and non-zero, the over-
lay designated by fn will be loaded from the system library; other-
wise, it will be loaded from the file designated by fn.

Prior to execution of this call which causes loading and execution of the
overlay, the overlay must have been made absolute and written on file fn.
When an END statement in the main program of an overlay is encountered,
control returns to the statement following the CALL OVERLAY which ini-
tialized execution of the overlay in question.

Numbers in the OVERLAY card are octal; thus to call OVERLAY (SAM, 1,11)
the FORTRAN statement CALL OVERLAY (3HSAM, 1,9,0) or CALL OVERLAY
(3HSAM, 1, 11B, 0) must be used.

A segment is a group of subprograms (possibly one) which are loaded together
when specified by the programmer. Segmentsare loaded at levels from 0-77g.
Level zero is reserved for the initial or main segment. Level zero, which
must contain a PROGRAM, remains in memory during execution,

The following definitions apply to segments.

Entry point. A named location within a subprogram that can be referenced
by another program — created by the SUBROUTINE, FUNCTION and
ENTRY statements.

External reference. A reference within a program or subprogram to the
entry point of some other subprogram — created by explicit CALL
statements, function references, I/0 statements, etc.

Link. The connection established between an external reference and an
entry point when the programs are loaded into memory.

Unsatisfied external. An external reference for which no matching entry
point can be found, and therefore no link established.

T The segment feature is not available to FORTRAN Extended users under
7000 SCOPE Version 1 or KRONOS 2.0.

10-3

10.2.1
SEGMENT
CONTROL CARDS T

SECTIONS

10-4

When the segment is loaded, external references will be linked to entry
points in previously loaded segments (those at a lower level). Similarly,
entry points in the segment are linked to unsatisfied external references in
previously loaded segments. Unsatisfied external references in the segment
remain unsatisfied; subsequent segment loading may include entry points to
satisfy the external references. Unsatisfied external references will be
satisfied, if possible, from the system library.

If a segment is to be loaded at a requested level which is less than or equal
to the level of the last loaded segment, all segments at levels down to and
including the requested level will be removed/delinked. Delinking a segment
at a given level requires that the linkage of external references in lower
levels to entry points in the delinked segment be destroyed so that the
external references are unsatisfied once again.

Once the delinking is complete, the segment is loaded. Only one occurrence
of a given subprogram or entry point is necessary since all levels may
eventually link to the subprogram. However, a user may force loading of
a subprogram by explicitly naming it in another segment at a higher level.
Thereafter, all external references in higher levels are linked to the new
version, In this manner, a subprogram and/or entry point can effectively
replace an identical one already loaded at a lower level. However, once a
linkage is established, it is not destroyed unless the segment containing the
entry point is removed.

Example:

The SIN routine is loaded in a segment at level 1. The user wishes to
try an experimental version of SIN, He loads a segment containing the
new SIN at level 2. Segments loaded at level 3 or higher will now be
linked to SIN at level 2 until a new level 2 or a new SIN is loaded.

Common blocks may be loaded with any segment. Labeled common may not
be cross-referenced in segments. Maximum blank common length is estab-
lished in the first segment which declares blank common.

This card defines a section within a segment. Segments are loaded by user
calls during execution or by monitor (MTR) during initial load.

SECTION (sname,pny,png,...,pny)
sname Name of section (7 alphanumeric characters maximum).

Py Names of subprograms in the section. If more than one
card is necessary to define a section, additional cards
with the same sname may follow consecutively.

f The éeg‘ment feature is not available to FORTRAN Extended users under
7000 SCOPE Version 1 or KRONOS 2.0.

60329100 D

SEGMENTS f

60329100 D

All subprograms within 2 section are loaded whenever the named section is
loaded. All section cards must appear prior to the SEGMENT and SEGZERO
cards which refer to the named sections.

All programs using segments must contain a SEGZERO card prior to any
of the binary text.

SEGZERO (sn,pnl,pnz, R ,pnn)

sn

Imi

Segment name

Names of subprograms or section names which make up
main or zero level segment. Defining other segments in a
similar manner reduces the list of subprograms in the
loader call.

SEGMENT (sn,pnl,pnz, v ,pnn)

The parameters are defined as in SEGZERO. In a segment, all programs
must reside on the same file. A segment defined in the user's program
need not be defined by a SEGMENT card; however, a SEGZERO card is
always required.

Segments may be loaded by the statement:

CALL SEGMENT (fn,e,a,lib, m)

fn

lib

Variable name of location which contains the file name
(left justified display code) from which the segment load
takes place.

Level of the segment load.

Variable name of array containing a list of SEGMENTS,
SECTIONS and/or SUBPROGRAMS to be loaded with this
call. In this list, the name must be in left justified dis-
play code, and the list must be terminated by a zero entry.
An initial list entry of zero signals a segment load of all
subprograms remaining on the file fn.

If zero or blank, unsatisfied externals are to be satisfied,
if possible, from the system library.

If zero or blank, a map of the segment load is not pro-
duced. lib and m need not be specified.

Once the named subprograms are loaded control returns to the statement
following the CALL SEGMENT. The programmer is free to call on the
loaded subprograms as desired.

tThe segment feature is not available to FORTRAN Extended users under

7000 SCOPE Version 1 or KRONOS 2.0,

10-5

DEBUGGING FACILITY n

The debugging node of compilation, along with the source cross-reference
map selection, is provided specifically to aid in the development or conver-
sion of programs. In the debugging mode of compilation, a programmer can
establish a record of selected operations as they are performed in the execu-
tion of his program. This mode facilitates debugging from a source listing,
and perhaps a source cross-reference map should core dumps be required;

it makes their interpretation much easier.

Features provided with the debugging mode of compilation:

Array bounds checking

Program flow tracing

Call and return tracing

Function call and value returned tracing

Stores checking

Assigned GO TO checking

Partial execution of routines containing fatal errors
The debugging mode is selected by the option D on the FTN control card
(Appendix C). In this mode, debugging selection cards are recognized.
If this mode is not specified, debugging selection cards are treated as
comments.
In the debugging mode, a program is compiled so that specified checks can
be performed during execution; however, execution will stop when a fatal
error is detected.
When a program is compiled in debug mode, 12000g words will be required

beyond the minimum field length for non-debug mode compilation. To
execute, 25008 words beyond the minimum will be required.

60329100 A 11-1

11.1
FORMAT

11.2
ARRAYS
STATEMENT

11-2

Debugging statements are punched in columns 7-72, as in the normal
FORTRAN statement. In addition:

Columns 1 and 2 of each statement must contain the characters C$

A continuation line must be flagged by a character in column 6 (any
FORTRAN character other than blank or zero). Columns 3-5 must
be blank.

1 213)4|5]6 7]8]9](10 11|12|13|14|15[16[17[18|19|20 21|22|23]24[25|26|27]28|2¥

Ci$L 11 | |Gsitialtiemem®)l L1 | 1L L L1111

111 I T Y T A T T I

Cl$ | | K|(lcloin|tiiinlalattlijoln] [L1inedf | | | ||
N — N

T If required

The restriction on the number of debug continuation lines is the same as for
FORTRAN continuationlines. When FORTRAN Extended isnot in debug mode
or when the program is used with another FORTRAN compiler, the debug
cards will be treated as comment cards. Since even working programs
sometimes exhibit new bugs, it could be advantageous to retain the debugging
statements in a program once checkout is complete.

In the following pages, excerpts from an actual printout of a working pro-
gram are used in conjunction with typewritten examples to illustrate the
debugging messages. A sample working program is reproduced in full at
the end of the chapter. (The reference map level specified on the FTN card
was R-1.)

The ARRAYS statement initiates subscript bounds checking on specified
arrays. Warning messages appear on the output if the address calculated by
the array indexing function is not within the storage allocated for the array.

C$ ARRAYS(aj,a5...a,)
C$ ARRAYS
Printout: CS$ ARRAYS(AL)D
(aq...a,) are the names of the arrays for which subscript bounds are to be

checked. If array names are not given, all arrays in the program unit are
checked.

60329100 B

The C$ ARRAYS statement does not provide checking of individual sub-
scripts, only checking of the address computed from all the subscripts.

When ARRAYS statement is used, a bounds check is made each fime an
element of an array is referenced. Bounds checking is not performed for
array references in an input/output list. If the element is not within the
overall bounds of the array, a message is printed with the job output, as
shown in the following example. After printing a message for an out of
bounds array reference, the reference is allowed to occur.

/DFRUG/ SBEMPLE AT LINE 11- THE SUBSCRIPT VALUE OF & IN RRRAY A} EXCEECS DIMENSIONED POUND OF s
/DFRUG/ AT LINE 11- THF SURSCRIPT VALUE OF 0 IN ARRAY A1 EXCEECS DIMENSICONEQ BDUND CF 5
/DFRUGY AT LINF 13- THE SUBSCRIPT VALUE OF 6 IN ARRAY A EXCEECS DIMENSIONED EPOUND OF S
I0FRUGY AT LINF 14- THF SUBSCRIPT VALUE Of 9 IN ARRAY 23 EXCEECS DIMFNSIONED POUND OF 5

——— ———TTTN—— S —_— o —— e~ ————"
Identifies Program Linc number Value of subscript Name of array Actual dimension
adebug- unit name of reference in reference being referenced limits of array

ging containing

message subseript
reference
1n3
CALLS
STATEMENT This statement traces calls to and returns from specified subroutines.
C$ CALLS(ay,...,ay)
C$ CALLS
Printout: cs$ CALLS(SUB1,SLITE)

The subroutine names for which call tracing is to be performed are indicated
by (a...a,). If this parameter is not specified, all subroutine calls are
traced. Nonstanda:d returns are also traced.

The message produced for each call and return is printed with the job out-
put as follows:

FOEBUG/ SAMPLE AT LINE 23- ROUTINE SuB1 CALLED AT LEVEL 0
/DEBUG/ AT LINMNE 24- ROUTINE SUB1 RETURNS TO LFVEL 8
fDFBUG/ AT LINE 25- ROUTINE SLITE CALLED AT LEVEL]
/DEBUG/ AT LINE 26- ROUTINF SLITF RETURNS TO LEVEL]
N N e e e N T e ———
Identifies Program Line number Name of Indicates call or
a-debug- - unit-name -eontaining- - - subreoutine - return status and

ging containing call or return called or level number
message reference returned

60329100 A 11-3

11-4

A main program is at level 0; a subroutine or function called by the main
program is at level 1; another subprogram called by a subprogram is at level
2, etc. Calls are shown in order of ascending level number, returns in order
of descending level number.

level 0 call
level 1 return SUB A call
level 2 return: SUB B

For example, subroutine SUB A is called at level 1 and a return is made to
level 0. SUB B is called at level 2 and a return is made to level 1.

60329100 B

1.4
FUNCS
STATEMENT

60329100 A

Function tracing is similar to call tracing except that functions return a
value that often is of concern to the programmer.

C$
C$

Printout:

FUNCS(a
FUNCS
cs

AR

a,)

n

FUNCS(FUN1, IABS,EXP)

The function names for which function tracing is to be performed are
indicated by (ags... ,a). If no names are listed, all functions are traced.
Functions used in array subscripts in input/output lists and statement
functions are not traced. A message is issued for each use of a function;
it is printed with the job output as shown below.

/DEPUG/
/DEBUG/
/0FRUG/
/0DEBUG/
/DEBUG/
/DEBUG/

——
Identifles
a debug-

gieg
message

SAMPLE

—
Program
unit using
functions

AT LINE 33-
AT LINE 33~
AT LINE 35~
AT LINF 35-
AT LINE 37~
AT LINE 37-
—————

Line number

containing the
function usage

REAL
REAL
INTEGER
INTEGER
REAL
REAL

——

Function
type

FUNCTION FUNL
FUNCTION FUN1
FUNCTION IABS
FUNCTION IABS
FUNCTION EXP
FUNCTION EXP

————————

Function
name

CALLED AT LEVEL 0
RETURNS A VALUE OF
CALLED AT LEVEL 0
RETURNS A VALUE OF
CALLED AT LEVEL [
RETURNS A VALUE OF

Rl
Level number of using
program unit including

call or return status

7743.000000
8242

23516063123

——

Value returned
by function

AT LEVEL [
AT LEVEL 1]

AT LEVEL L}
——

Level to which
value is being
returned

11-5

11.5
STORES
STATEMENT

11-6

The STORES statement is used to record changes in value ot speciiied simple
variables resulting from arithmetic assignment statements. Variables
altered as a result of use in an input list or a subroutine (function) parameter
list are not detected. Stores checking is not performed on the control var-
iable of a DO loop; stores checking is not performed when a variable is
changed as a result of a store into an equivalenced variable.

Stores checking cannot be specified for individual elements of an array.

C$ STORES(cl,cz, <+ 5Cp)
Printout:

c$ STORES(Al,AGAIN,I,A2.EQ.5.0, I AGAIN.LE.10)
cs$ STORES(C.EQ.(1,,1.),L.VALID.,D.NE.10,004)
c$ STORES(G.RANGE.,TR.EQ. .FALSE.)

(¢1,...Cp) can be variable names or relational expressions in the form:
variable name .relational operator. constant
or expressions with checking operators in the form:

variable name .checking operator.

The checking operators are:

RANGE prints when the value is out of range
INDEF prints when the value is indefinite
VALID prints for either out of range or indefinite

If variable names are used, a message is issued each time a new value is
stored inavariable or array element. If the relational or checking expres-
sion is used, a message is issued only when the stored value satisfies the
relation, The two components of the relational expression should be of the
same type, because no type conversion takes place before evaluation of the
relational expression. For example, the integer value 5 is not considered
equal to the real value 5.0. The message will contain:

/DEBUG/ SAMPLE AT LINE 48- THE NEW VALUE OF THE VARIABLE At I8 1.000000000
/DEBUG/ AT LINE 48~ THE NEW VALUE OF THE VARIABLE At 1S 2.,000000000
/DEBUG/ AT LINE 48- THE NEW VALUE CF THE VARIABLE At 18 3.000p800000
/7DEBUG/ AT LINE 48~ THE NEW VALUE OF THE VARIABLE A1 Is 4.000000008
/DEBUG/ AT LINE 48~ THE NEW VALUE CF THE VARIABLE A1 Is $.000000000
/DFBUG/ AT LINE 51- THE NEW VALUE OF THE VARIABLE AGAIN Is 3.141%30000
IDERUG/ AT LINE 53- THE NEW VALUE OF THE VARIABLE A2 Is $.000000000
/DFBUG/ AT LINE S4- THE NEW VALUE OF THE VARIABLE IAGAIN IS 10
7DEBUGY AT LINE S4=- THE NEW VALUE CF THE VARIABLE IAGAIN IS 9
/DEBUG/ AT LINE S4- THE NEW VALUE OF THE VARIABLE TIAGAIN IS 8
/DEBUG/ AT LINE S&= THE NEW VALUE OF THE VARIABLE IAGAIN IS 7
/DEBUG/ AT LINE S54= THE NEW VALUE OF THE VARIABLE IAGAIN IS 6
N N e ——N T —
Identifies Name of Line number Name of variable, New value of
a debug program of reference and message variable
message unit

60329100 D

i1.é
GOTOS
STATEMENT

nz
TRACE
STATEMENT

60329100 A

This statement checks the validity of the selected statement labels in an
assigned GO TO.

C$ GOTOS
The statement label assigned to the integer variable is compared with state—

s
ment labels in the list. A message is printed when the label value is not in
the list, but the transfer of control is allowed to occur.

FDERUG/ SAMPLE AT LINE 94- ASSIGNED GOTO INDEX CONTAINS THE ADORESS 087861. NO MATCH FOUND IN STATEMENT LABEL ADDRESS LISY

N———— N — e

Identifies Name of Line number Address of assigned go to Message
a debug- program of assigned statement label
ging anit go to -

message

When the TRACE statement is used, a message is produced for each intra-
program transfer of control at a level less than or equal to the level
specified by 1v.

C$ TRACE(Qv)
C$ TRACE
Printout: C$ TRACE(3)

If lv = 0, tracing will occur only outside DO loops; if 1v = n, tracing will
occur up to and including level n in a DO nest; if no level is specified, zero
level is implied. If a DO loop is not satisfied, the transfer back to the start
of the loop is not traced. Transfers resulting from nonstandard returns are
not traced. (These may be checked using C$ CALLS.) When tracing is
selected and an out-of-bound computed GO TO is executed, the value of the
incorrect index is printed before the job is terminated.
Flow tracing will follow these types of program flow control:

Simple GO TO

Computed GO TO

Assigned GO TO

Arithmetic IF

True side of logical IF

11-7

1.8
NOGO
STATEMENT

11-8

The output message will contain the following:

/DEBUG/ SAMPLE AT LINE 71~ CONTROL WILL BE TRANSFERRED TO STATEMENT 503 AT LINE
/BEBUG/ AT LINF 73- CONTROL WILL BE TRANSFERRED TO STATEMENT S@4 AT LINE
/DEBUG/ AT LINE 75- CONTROL WILL BE TRANSFERRED TO STATEMENT S0S AT LINE
/DEBUG/ AT LINME 77- CONTROL WILL BE TRANSFERRED TO STATEMENT 506 AT LINE

73
75
77
78

N Nt v et e p ———

Identifies Program Line number Statement number to which Line number of

a debug- unit name from which control was transferred statement to
ging control trans- which controtl

message ferred was transferred

The NOGO statement suppresses partial execution of a compiled routine
whenever a fatal compilation error occurs during compilation.

C$ NOGO
If the NOGO statement is not present and the debugging mode is in effect,
the program executes until a fatal error is encountered; at which paint,

the following message is issued:

FATAL ERROR ENCOUNTERED DURING PROGRAM
EXECUTION DUE TO COMPILATION ERROR.

Partial execution is not permitted for only three classes of errors:
Errors in the declarative statements
Missing DO loop terminators

Missing FORMAT statement numbers

60329100 A

11.9

DECK STRUCTURE Debugging statements may be interspersed with FORTRAN statements
in the source deck of a program unit (main program, subroutine, function).
The debugging statements apply to the program unit in which they appear.
Inclusion of interspersed debugging statements will change the FORTRAN
generated line numbers for a program (figure 11-1).

Debugging statements also may be grouped to form a debugging deck beginning
with a C$ DEBUG card. Debugging decks may be placed in a job in one of the
following ways:

As an external debugging deck in a separate file named by the D parameter
on the FTN card. When no name is specified by the D parameter, the
INPUT file is assumed. (Figure 11-2.)

Immediately preceding the first source deck in the compiler input
record (External Packet, figure 11-3).

Immediately after a program header card (PROGRAM, SUBROUTINE,
or FUNCTION statement) (Internal Packet, figure 11-4).

The range of a debugging statement depends on its position:

Location Range
External File Any or all program units
External Packet Any or all program units
Internal Packet Routine containing the packet
Interspersed Routine containing the specifications

Note: In the following illustrations, it is assumed that a 7/8/9 card terminates
each Control Card Record.

60329100 A 11-9

6/7/8/9]

L
L

Data Deck
7/8/9 |
L

L
L

Executable Statements

DEBUG
CARDS

Executable Statements
DEBUG :

CARDS

j Executable Statements

/ Specification Statements
Program Name Card |

A -
L H

V4
Control Card Record

SAMPLE DEBUG AID POSITION: As individual debug cards interspersed
in a program unit. The debug cards are inserted into the program where
they will be activated. This positioning is especially useful when a new
program is to be run for the first time and the accuracy of specific areas,
such as array bounds, is in doubt.

Figure 11-1. Sample Debug Aid Position

11-10 60329100 A

60329100 A

/

/

/

Source Debug Deck

Deck
Tape 1

(input) \
\ / (Tnput)

FTN (I= TAPE1,D)

Compiler

/[

/

/[

Source Deck

(Input)

/ (Input)

FTN (D= TAPE1)

Compiler

Figure 11-2. Sample Debug Aid Positions

SAMPLE DEBUG AID POSITIONS: Debug deck placed on a separate file
(external debug deck) named by the D parameter on the FTN control
card, and called in during compilation. With these positions, all pro-
gram units will be debugged (unless limiting bounds are specified in the
deck). This positioning is particularly useful when several jobs can be
debugged using the same debugging deck.

11-11

O oo=~1Id»

A
L
L

A
Data Deck

Neo N

/
/ Subroutine B

L

/

/
L
/ Program A

L
(Debug Deck (External Packet)
ya L
Vs J

Control Card Record

FTN (D)
i

SAMPLE DEBUG AID POSITION: As a deck, placed immediately in front
of the first source line (when the D file is the same as the source input file).
All program units (here, Program A and Subroutine B) will be debugged
(unless limiting bounds are specified in the debug deck). This positioning
is particularly useful when a program is to be run for the first time, since
it ensures that all program units will be debugged.

Figure 11-3. Sample Debug Aid Position

11-12 60329100 A

Nefoo o Jor)

L
VA

L
Data Deck

£

A
L
-

A
/ Source Deck
A

/
[Debug Deck (Internal Packet)

Program Name Card |

[Nelo ity

VA

A
L

Control Card Record

FTN (D)

SAMPLE DEBUG AID POSITION: As a deck, placed immediately after the
program header card and before any specification statements. All statements
in the program unit will be debugged (unless limiting bounds are specified in
the debug deck), but no statements in other program units will be debugged.
This positioning is especially useful when the job is composed of several
program units known to be free of bugs and one unit that is new or is known
to have bugs.

Figure 11-4. Sample Debug Aid Position

60329100 A 11-13

11.10
DEBUG
STATEMENT

11-14

A debug deck must begin with a DEBUG statement written in either of the
forms:

C$ DEBUG
C$ DEBUG(namel, - ,namen)

The program unit names, to which the debugging deck applies, must be
enclosed in parentheses.

In an internal debugging deck, the DEBUG statement must appear immedi-
ately after the PROGRAM, SUBROUTINE, or FUNCTION statement heading
the routine to which the debugging deck applies. Any names specified in the
DEBUG statement, other than the name of the enclosing routine, are ignored.
In a single external debugging deck, whether on the job INPUT file or not, the
DEBUG statement may contain a list of the program unit names to which the
deck applies. If no name appears, the debugging deck applies to all program
units being compiled.
When more than one C$ DEBUG card occurs in an external debugging deck,
this card specifies the routines to which the debugging specifications between
it and the next C$ DEBUG or non-debugging card apply.
This debug deck specifies arrays checking in all routines, stores checking
on the variable CHI in routines CHISQ, STATP, and calls checking in routine
MAIN.

C$ DEBUG

C$ ARRAYS

C$ DEBUG(CHISQ,STATP)

C$ STORES(CHI)

C$ DEBUG(MAIN)

C$ CALLS

60329100 B

11.11

AREA

STATEMENT The AREA statement allows a region smaller than a program unit to be
debugged. All debugging statements that apply to the program areas desig-
nated by the AREA statement must follow that statement. Each succeeding
AREA statement cancels the preceding program area designations.

When debugeing statements are interspersed within the source deck, areas are

1€l QeDULsSS

defined by the position of the debug statements and the AREA statement is un-
necessary. AREA statements interspersed in a source deck will be ignored.

The AREA statement can be written in two forms:
C$ AREA(bounds 1), cees (boundsn)
for use in a debugging deck with the statement:
C$ DEBUG
or
Cc$ AREA/namel/ (pounds), . . ./ namen/ (boundsn)
for use in a debugging deck with the statement:

C$ DEBUG(name ces namen)

1

C$ DEBUG

The second form of the AREA statement must be used in an external
debugging deck.

In the second form of the AREA statement, the /name_/parameter designates
the program units to which the bounds following it apply. Ifa (namei) list
appears on the C$ DEBUG card, the /name / parameter must be present

and namei must be included in the list. Otﬁerwise, the C$ AREA statement
and its associated debugging specifications are ignored. For an external
debugging deck the /name / field must be present when using either form

of the C$ DEBUG statement.

The (bounds) parameter may be written in one of the following forms:
(from field) indicates line position to be debugged

(from field, to field) defines a range of line positions which may be
in one of the following:

nnhnn FORTRAN statement label

60329100 B 11-15

Lnnnn Program line number as printed on the source
listing (source listing line numbers will change
when debugging cards are interspersed in the
program,)

id.n Legal UPDATE line identifier, from the source
line, where id = information in columns 73-79;
must begin with an alphabetic character and
contain no special characters; and n = columns
82-86. (80-81 are blank.)

* First line in the from field
Last line in the to field

A comma must be used to separate the line numbers, and embedded blanks
are not permitted.

C$ DEBUG(CHISQ)

C$ AREA/CHISQ/(210,400)

C$ ARRAYS(SVAL,RMS)

C$ DEBUG(CHISQ,STATP)

C$ AREA/CHISQ/(ZIO,*)/STATP/(LZO,L47),

C$ * (570, L.94)

C$ STORES(CHI)

C$ DEBUG(MAIN)

C$ AREA/MAIN/(MAIN.2,MOD1. 13)

C$ CALLS
11.12
OFF
STATEMENT C$ OFF statements are effective only on interspersed debug directives. In

a debugging deck, the C$ OFF statement is ignored.

C$ OFF(xl,xz, . ’Xn)

C$ OFF
Printout: C$ OFF
cs OFF(STORES,ARRAYS,GOTOS)

11-16 60329100 A

The C$ OFF statement deactivates subsequent references to debugging
options previously activated by interspersed specifications except for C$
NOGO. If a parameter list is specified, only the options in the list are
deactivated. Debugging options activated subsequent to the C$ OFF state-
ment and options activated by packet specifications will function normally.
The C$ OFF statement is effective at compile time only.

1113

PRINTING

DEBUG OUTPUT All debug messages produced by the object routines are written to a file
named DEBUG. The file DEBUG will be printed at job termination time,
since it has a print disposition. If the programmer wants to intersperse
debug information with his output, he should equate DEBUG to OUTPUT on
his program card. A FET and buffer will be supplied automatically at load
time if the programmer does not declare the DEBUG file on his program
card. For overlay jobs the buffer and FET will be placed in the lowest
level of overlay containing debugging. If this overlay level will be over-
written by a subsequent overlay load, the debug buffer will be cleared
before it is overwritten.

All object time printing is performed by seven debug routines coded in
FORTRAN. These routines are called by code generated when debugging is
selected on items such as arrays, calls, stores, etc. The seven routines
and their functions are:

ROUTINE FUNCTION
BUGARR Checks array subscripts
BUGCLL Prints messages when subroutines are

called. Return

BUGFUN Prints messages when functions
are called. Return

BUGGT.i Prints a message if the target
of an assigned GO TO is not in
the list.

BUGSTO Performs stores checking

BUGTRC Flow trace printing except for

true sides of logical IF

BUGTRT Flow trace printing for true sides of
logical IF .

60329100 D 11-17

STRACE

11-18

Traceback information from a current subroutine level back to the main level
is available through a call to STRACE, STRACE is an entry point in the object
routine BUGCLL. A program need not specify the D option on the FTN card

to use the STRACE feature.

STRACE output is written on the file DEBUG; to obtain traceback information
interspersed with the source program DEBUG should be equivalenced to

OUTPUT in the PROGRAM statement.

PROGREM FAIN (OUTPUT,DEBUG=O0UTPUT)
CALL fuBt
ERND

SUBROUTINE SuBl
CALL suBZ
RETURN

END

SUBROUTINE SuUB2
I = FUNC1(2)
RETUFPHK

END

FUNCTION FUNCI (K)
FUNC1 = Kk ** g
CALL STRACE
RETURN

END

Output from STRACE:

/DEBUG/ FUNC1 AT LINE 2Z- TRACE ROUTINE CALLEO
FUKC1 CALLED BY SUB2 AT LINE
SUE2 CALLED BY suBi AT LINE
SUEY CALLED BY FAIN AT LINE

2y FROM 1 LEVELS BACK
2, FROM 2 LEVELS BACK
2y FRON 3 LEVELS BACK

60329100 B

d 00162€09

6I-T1

PROGRAM

85

1

15

2

25

30

35

4o

45

14

55

SAMPLE DE EUG TRACE CCC 6660 FTN V3.0-P24¢ OPT=0 01/14/7% 16.58.14. FAGE

PROGRAM SAMPLE (OUTPUT, DEBUG=0UTPUT)
Cc$ DERUG
Ccg AREP (1,100)
cg ARRAYS (A1)
DIMENSION AL1(5), A2(5)
1 PRINT 99
99 FORMAT(//* MESSAGES SHOULD FOLLOW FOR REFERENCES TO A1{(0) AND
x/% N1(6), FOR BCTH LOADS AND STORES. THERE SHOULD BE NO MESSAGE
*x/% FCR p2.7%)
DO 108 I = 1,4

AL(2+1) = AL(u4-I) = 1
A2(2+1) = A2(4-T) =1
AGAIN = A1(2+1)
AGAIN = B1(4-1)
AGAIN = A2(2+1)

109 AGAIN = A2(4-1)

cg CALLS(SUEL,SLITE)
201 PRINT 29¢
299 FORMAT(//* THWO MESSAGES SHCULD FOLLCw, ONE FOR A CALL OF SUB1 WITH
**/% ARGUFENT 7743, AND ONE FOR A CALL CF SLITE WITH ARGUMENT 1.
**/% YHERE SHOULD BE NO MESSAGES FOR CALLS OF SUB2 AND SLITET.*)
CALL SUB1(7743)
CALL SuUB2(8242)
CALL SLITE(1)
2002 CALL SLITET(L,D)
c$ FUNCS (FUK1,TABS,,EXP)
201 PRINT 39¢
399 FORMAT(//* MESSAGES SHOULD FOLLOW FCR CALLS OF FUN1 WITH ARGUMENT
“¥7% 7743, IABS WITH ARGUMENT 8242, ANC EXP WITH ARGUMENT 3.14159.
¥/¥ THERE SHOULD BE NO MESSAGES FOR CALLS OF FUN2, ABS, OR ALOG.)
IAGAIN = FUN1:.(7743)
IAGAIN = FUN2I(7743)
TAGRIN = IABS(8242)
AGAIN = ABS(8242.)
AGAIN = EXP(3.14159)
463 AGAIN = ALOG(3.14159)
cg STORES(A1,AGAINYI4A2.EQ.5.,IAGAINLLE.1D)
401 PRINT 49¢
499 FORMAT(//* MESSAGES SHOULD FOLLOW FOR STORES INTO A1(1), AL(2),
*4/% p1(3)y AL(L4D, AL(5), I, AGAIN, A2(1), IAGAIN, IAGAIN, IAGAIN,
*%/% TAGATIN, AND TAGAIN. THE VALUES STORED IN THE RESPECTIVE
*%/% VARIPABLES SHCULD BE 1.5 245 3y 4oy 5.9 5y 3.44159, 5.,
**/% §¢. S, 8y 7, 6. THERE SHOULD BE NO OTHER STORES MESSAGES.*)
DO 482 T = 1410
AL(I) =1
IF(I.EQ.E)G0 TC 403
42 CONTINUE
403 AGATN = 3.1415¢
DO 500 I = 1,1C
A2(1) = 4. + I
500 IAGAIN = 16 - I
csg AREA(STL,600)
c$ TRACE(3)
501 PRINT 59¢
599 FORMAT(//* MESSAGES SHOULD FOLLOW FCF TRANSFERS CF CONTROL

02-11

d 00T63€09

PROGRAM

60

65

70

75

80

85

SAMPLE DEEUG TRACE CCC 66CD FTN V3.0~-P24C OPT=C

*x/® FRCM 502 TC 503, 563 TC 5G4, 504 TC 505, AND 505 TC 506.
¥s/% TFERE SHOULD BE NO OTHER CONTROL TRANSFER MESSAGES.*)

DO £10 I = 1,2
00 511 J = 1,2
D0 512 K = 1,2
D0 512 L = 1,2
DO 514 M = 1,2
GO TO 547

514 CONTINUE

SL7 GO TC (508,508,508,508),L

513 CONTINUE

5(8 ASSIGh 503 TO L

502 GO T0 Ly (503,506)

542 CONTIAUE

5(3 GO TC (504,504), 1

511 CONTINUE

5G4 GO TC S0€E

512 CONTINUE-

5(5% GO TC 50€

506 CONTINUE

6C0 CONTINUE

(4 4 QFF

A1(1) = 1.
GO TC 601

6f1 AGAIN = FUNL(1)
I=1
GO TC (6724602),1

602 CALL SUBI(7743)
AGATN = 3.7

1 GOTNE

7t1 PRIMNT 79¢

799 FORMAT(//* WILL NOW ATTEFPT AN ASSIGNED GO TO. SHOULD ISSUE
¥/% MESSAGE.)
ASSIGM 6327 TO IGO
GO TC IGC, (601,€02)

8(CONTINUE

€327 PRINT 6328

6728 FORMAT(///* ENC OF SAMPLE CEBLG PROGRAF.*)
END

Gi/714/71

1€458414.

PAGE

2

g 00162£09

12-11

PROGRAM

SAMPLE OEEUG TRACGE

SYMBOLIC REFERENCE MAF

ENTRY POINTS

2026 SAMPLE
VARIARBLES SN TYPE RELOCATION
2723 AGAIN REAL
2737 A2 REAL ARRAY
2724 IAGAIN INTEGER
2725 J INTEGER
2727 L INTEGER
FILE NAMES MODE
8 DEBUG 0 ouTPUT
EXTERNALS TYPE ARGS
ABS REAL 1
EXP REAL 1
FUN2 REAL 1
SLITE 1
sus1 1
STATEMENT LABELS
g INACTIVE 2471
0 201 INACTIVE 2510
¢ 301 INACTIVE 2534
0 401 INACTIVE]
2561 499 FMT 0
0 502 INACTIVE 2267
2311 505 2314
22564 508 9
0 512 0
2623 599 FMT L]
2331 602 0
6 80§ INACTIVE 2350
. STATISTICS
PROGRAM LENGTH 7228 4o€
BUFFER LENGTH 20228 1042
SUBROUTINE SuUB1L DEEUG TRACE

SUBROUTINE SUBL(I)
END

FM

99
299
399
402
500
503
506
510
513
600
701
6327

2732
2722
2731
2726
2730

T

CCC 6600 FTN V3.0-P240 0OPT=0

AL
I
Ice

ALOG
FUN1
IABS
SLITET
suez2

FMT
FMT
FMT

INACTIVE
INACTIVE

COC 6600 FTN V3.0-P240 OPT=0

REAL

INTEGER
INTEGER
INTEGER
INTEGER

REAL
REAL
INTEGER

ARRAY

BN

2205

0
2303
2241

2317
2647
26690

01/714/71 1€.58.14.

160
300
400
403
501
504
507
Si1
Si4
601
799
632¢

INACTIVE
INACTIVE

INACTIVE

FMT
FMT

01/14/71 16.58.14.

FAGE

PAGE

3

2g-11

g 00162£09

SUBRGUTINE SUBL DEEUG TRACE
SYMBOLIC REFERENCE MAF

ENTRY POINTS

2 SuRt
VARIABLES SN TYPE RELCCATION
"I INTEGER *UNUSED FePo
STATISTICS
PROGRAM LENGTH 78 7
SUBROUTINE SuB2 DE EUG TRACE
SUBRCLUTINE SUB2(T)
END
SUBROUTINE SUEZ2 DEEUG TRACE

SYMBOLIC REFERENCE MAF
ENTRY POINTS

2 suB2
VARIABLES SN TYPE RELOCATION
6 I INTEGER *LNUSED FePo
. STATISTICS
PROGRAM LENGTH 78 7
FUNCTION FUNL DEEUG TRACE
FUNCTION FUNLiA(I)
FUNL = T
END

CCC 6600 FTN Vv3.0-P240 OPT=(

CCC 6600 FTN V3.0-P240 OPT=(

CCC 66060 FTN V3.0-P240 OPT=0

CCC 6600 FTN V3.0-F240 OFT=C

01/714/71

01/14/71

01714771

01714771

16.58.14.

16.58.14.

16.58.14,

16458.14.

PAGE

FAGE

FAGE

FAGE

2

D 00162209

ge-11

FUNCTTON FUNL DEEUG TRACE

SYMROLIC REFFRENCE MBF

CENTRY PNINTS

2 Funy
| VARIAELES SN TYPE RELOCATION
: 12 FUNL REAL
" STATISTICS
PROGRAM LEMGTH 1R 11
FUNCTION FUNR? DEEUG TRACE
FUNTTION FUN2(I)
FUunz = I
END
FUNCTICN FUN? CEEUG TRACE

SYMBOLIC REFEPENGE MAF

ENTRY PCINTS

2 FUN2
VARIAELES SN TYPE RELCCATION
12 FUNZ REAL
STATISTICS
PROGRAM LENGTH 138 11

e

CLC 66L FIN V3eG-FZun 0PT=(

INTEGER

CLC 660 FTN v3.0=P24C OFT=C

CCC 6602 FIN V3l.0eP2ur 0PT=(

1 INTEGER

(1714771

wis14/71

t1714/72

1Ee58414e

1€.58414.

1€.58.14,

FAGE

FAGE

FAGE

¥e-11

d 00163€09

CCRE MAF 16,58.37. NORMAL CONTROL Gul129 013173 FOPRL! COBUGE
eeeTIME===|,CAD MODF ==Li-==L2=====TYPE=w=c=cr=cc==--o USER===+#===CALL======c== ~-<FWA LOAC--LWA LCAD=--BLNK CCMN--LENGTH--
FWA LOADER ©=&4771 FwA TABLES (52456
~PROGRAM==-=-=-ADDRESS~ =~LABELED=~-CCHMMON--
SAMFLE eroLnG
sueL 233044
SuA2 0353
FUNL tc3re2
FUN2 n3:75
GET3A rC3119
SI0% 03127
SYSTEMS (gusc?

ACGOERS {5465
BUGARRS Lesson
BUGCLLE 205570
BUGCTLE tee77
hin k3
332§$2§ §§2§;§ DEBUG object time routines
BUGSTOS Lres7i
BUGTRCY rC7745
DBGFETS r15167
KODERS 111173
ouTePTCE 042567
TRAGEXS 912663
ABSS t12712
1A8S3 112715
ALNLCGE r12720
ALOGS 012757
EXPE 213311
EXPE 613153
LEGVARE 043117
LOCFS £13124
SLITES ni3126
SLITETS £13150

d 00162€09

====UNSATISFIED EXTERNALS===w== REFERENCES

MESSAGES SHOULD FOLLCW FOR REFERENCES TO A1(0) AND
A1(6), FOR POTH LCADS AND STORES., THEPE SHOULD BE NO MESSAGE

FOR A2,

/0EAUG/ SAMPLE AT LINE 11~ THE SUBSCRIPT VALUE CF 6 IN ARRAY A1 EXCEEDS DIMENSICNED BOUNC CF 5
/DERUG/ AT LINE 11=- THE SURSCRIPT VALUE CF 0 IN ARRAY A1 EXCEECS DIMENSICNED EOUND CF 5
/CEBUGY AT LINE 12~ THE SURSCRIPT VALUE CF 6 IN ARRAY A1 EXCEEDS DIMENSICNED EOUNC CF 5
/0ERUG/ AT LINE 14- THE SUBSCRIPT VALUE CF ¢ IN ARRAY A1 EXCEEDS CIMENSICNED BOUNGC CF S

TWO MESSAGES SHCOULD FOLLNW, ONE FCR A CALL OF SUB1L WITH
ARGUMENT 7743, AND CNE FARP A CALL OF SLITE WITH ARGUMENT 1.
THERE SHEOULD BE NO MESSAGFS FOR CALLS OF SUB2 AND SLITET.

/DERUG/ SAMPLE AT LINE 22~ POLTINE SUFfiL CALLED AT LEVEL ¢
/CEBUG/ AT LINE 22- ROLTINE SUEL RETURNS TO LEVEL ¢
/0ERUG/ AT LINFE 2u- ROLTINE SLITE CALLEN AT LEVEL ¢
/CEBUG/ AT LINE 2%~ ROLTINE SLITE RETURNS TO LEVEL ¢

MESSAGES SHOULD FOLLCW FOR CALLS CF FUNL WITH ARGUMENT

7743, TARS WITH APGUMENT BR242,

THERE SHAOULD BE

ANC TXP WITH ARGUMENT 2,14159,

NO MESSAGES FCR CALLS CF FUN2,

A2S, OR ALCG.

¢e-11

/CEBUG/ SAMPLE AT LINE - PEAL FUNCTICN FUNL CALLEC AT LEVEL 0

/CEBUG/ AT LINE 1~ PEAL FUNCTION FUN1 RETURNS A VALUE OF 77434020660 AT LEVEL 3
/0EBRUG/ AT LINE 27- INTEGER FUNCTION IARS CALLEC AT LEVEL]

/CEEBUGY AT LINE 27~ INTEGER FUNCTION IARS RETURNS A VALUE CF 8242 AT LEVEL bl
/CERUG/ AT LTMFE 2~ PEAL FUNCTICN EXP CALLEC AT LEVFL c

/CEBUG/ AT LINE 2C- REAL FUNCTION EXP RETURNE A VALUE CF 23.14062123 AT LEVEL 0

MESSAGES SHOULD FOLLOW FOR STCRFS INTO A1(1), AL(2),

A1 (3), PLC(4), AI(S), T, AGATIY, A2(1), IAGAIN, IAGAIN, IAGAIN,
IAGAIN, AND TAGFIN, THE VALUES STCRED IN THE RESPECTIVE
VARIAEBLES SHOULD BE 1.y 24y T4y bay Sey 5y 2414153y 5.y

10. 9, 8y 7y 6. THERE SHAULD PE NC OTHER STORES MESSAGES.

/CEBUG/ SAMPLE AT LINMNE 45=- THE NEW VALUF GF THE VARIABLE 21 IS 1.060705031
/CEBUG/ AT LTINE 45~ THE NEW VALUE OF THE VARTABLE A1 IS 2elulruenyn
/CERUG/ AT LTNE 45~ THE NEW VALUF CF THE VARIARLE 21 IS 200060009
/CERUG/ AT LINE 4%~ THE NEW VALUE OF THE VARIAQLE 81 Is 4.00C1L06007
/0ERUG/ AT LINE 45- THE NEW VALUE CF THE VARTABLE Af Is SeulGluddd)
/CEBUG/ AT LTINE 4B=- THE NEW VALUE OF TSNE VARIADLE ACAIN 1S 3.1415090053
/0E2UG/ AT LIME S = THE NEW VALUE OF TrE VARIARLE A2 IS 5.623010000
/CERUG/ AT LTINE 51= THE NEW VALUE OF THZ VARTABLE IACAIN IS 10
/CEBUG/ AT LTNE 51~ THE NEW VALUE OF THE VARIABLE I1AGAIN IS E
/0EBUG/ AT LINE S1- THE NEW VALUE OF THE VARIAELE IAGAIN IS 8
/0EBUG/ AT LINME 51- THE NEW VALUE CF THE VARTAPRLE IAGAIN IS 7
/CEBUG/ AT LINE 61« THE NEW VALUE CF THE VARIABLE IAGAIN IS 6

MESSAGES SHOULD FOLLCw FOR TRANSFERS OF CCNTRCL

FROM 502 Te 573, 522 T0 574, €44 TC 55, AND 505 TQ S0€.

THERE SHAULD #E NC COTHER CONTFCL TRANSFER MESSAGES.

/CEBUG/ SAMPLF AT LIME €8~ CONTROL. WILL BE TRANSFERRED TC STATEMENT 523 AT LINE 7C

/CERUG/ AT LINE 7i - CONTROL wWILL BE TRANSFERRED TC STATEMENT 504 AT LINE 72
/CERUG/ AT LTNE 72- CONTROL WILL BE TRANSFERRED TC STATEMENT 505 AT LINE 74
/0ERUG/ AT LINE 74- CONTROL WILL BE TRANSFERRED TC STATEMENT 506 AT LINE 75

WILL NOW ATTEMPT AN ASSIGMED GC TC. SHCLLC ISSUE
MESSAGE.

/CERUG/ SAMPLE AT LTMNE Q7 -~ ASSIGNED GCTO INDEX CONTAINS THE ADDRESS 23245C. NO MATCH FOUND IN STATEMENT LABEL ADCRESS LIST

END OF SAMPLE CLBUG FROGVAM,

FORTRAN CONTROL CARD 12

12.1

CONTROL CARD
FORMAT

12.2

SOURCE INPUT
PARAMETER

60329100 A

The control card for compilation of a FORTRAN source program consists of
the characters FTN and an optional parameter list enclosed in parentheses.

If parameters are omitted, FTN is followed by a period. Comments follow-
ing the right parenthesis or period are transeribed to the dayfile in a normal
installation. The first improperly formed parameter terminates the FTN

control card scan.
TN (pl,pz, pn) comments
or
FTN. comments
When an error is detected in a control card, a dayfile entry is made con-

sisting of an asterisk (below the approximate column in which the compiler
encountered the error) and the following message:

*POINTS TO FTN CONTROL CARD ERROR
Example of dayfile:

365225 FIN(I=C/L=LIST)
0€.52.3€. *
B€.52+38« * PCINTS TC FTN CCANTROL CARC EFRCFR

The job will proceed with the options already processed or terminate and
branch to an EXIT(S) card, depending upon an installation option. Default
files or files specified in the control card must be in SCOPE 3 format.

If the source input parameter is omitted (default condition), the FORTRAN
source input file is assumed to be INPUT. If it is on any other file, a para-
meter of the following form must be provided:

12-1

I=lin (default I=INPUT)

Ifn is the logical file name of the file containing the source input.
Source input parameters of the forms IFINPUT and I are equivalent
to omitting the parameter.

12.3

BINARY (OBJECT)

OUTPUT PARAMETER If the binary output parameter is omitted (default condition), a relocatable
binary (object) file is written on a file named LGO. For any other output
file, a parameter of the following form must be provided:

B=lfn (default B=LGO)

1fn is the name of the file on which binary output is to be written.
Binary output parameters of the form B=LGO or B are equivalent
to omitting the parameter.

To suppress production of an object output file, the binary output parameter
must be of the form:

B=0

If the letter G appears in the binary output parameter, the object file will be
loaded and executed at the end of compilation.

G=lfn BG=lfn GB=lfn G

124

LIST PARAMETER If this parameter is omitted (default condition), a normal listing is provided
on QUTPUT; it includes the source program and informative and fatal
diagnostics. Other list options may be selected as follows:

y=lin (default L=OUTPUT,R=1)
y may be one or more of the following:

L Normal listing

Listing of diagnostics which indicate non-ANSI language usage

R Source keyed cross reference map (implies R=2) see para-
graph 12, 16

(0] Listing of generated object code

N Suppress listing of informative diagnostics and list only

diagnostics fatal to execution

12-2 60329100 B

12.5

ERROR TRACEBACK
AND CALLING
SEQUENCE
PARAMETER

12.6

Ifn is the file name on which list output is to be written, If Ifn is omitted,
listing will be on OUTPUT. If L=0 fatal diagnostics with the statements that
caused them will be listed; but all other listable output including intermixed
COMPASS will be suppressed.

Any combination (with no comma) of the above parameters provides the
features indicated. (Note: X and N cannot be used at the same time.)

LRON=lfn specifies all options are to be listed for the file named except non-
ANSI diagnostics, and LO selects source and assembly listing on OUTPUT.

CROSS REFERENCE MAP

The FORTRAN Extended cross reference map can be obtained using the R
option. This map is described in Appendix C.

The T mode of compilation is intended for use with programs in the debug-
ging stages. This parameter is indicated by Tf. When it is present, calls
to library functions will be made (with the call-by-name sequence), and
maximum error checking will be done. T mode forces inline functions to
become external functions. Full error traceback will be done if an error is
detected. T mode is selected automatically when Df or OPT=0 are specified.

When T is omitted, the compiler generates calls to library functions with the
call-by-value sequence (e.g., cause X1 to contain the parameter, RJ func-
tion). Minimum error checking will be done and no traceback will be provided
when errors are encountered. A significant saving in memory space and
execution time is realized.

UPDATE PARAMETER '

(EDITING
PARAMETERS)

60329100 D

An E or E=lfn (default E = COMPS) as a parameter requests that the object
code output from the compiler produce COMPASS subprogram line images
for UPDATE input. This output facilitates hand optimization of the compiler
generated object code.

*DECK, name (name = program unit name) is the first card image written on
the object code output file, COMPS (assumed when 1lfn does not appear).

An *END card image is written as the last card on the file. COMPASS is not
called automatically. The output file lfn or COMPS is rewound and ready for
UPDATE input. No binary file is produced.

The O-and -C-options are illegal when E is used. -

tSee Debugging Mode Parameter section in this chapter.
TTKRONOS 2.0 does not support UPDATE.

12-3

12.7
OPTIMIZATION
PARAMETER

12-4

When the E parameter is specified, the COMPS file will contain:

*COMDECK, FTN=MAC

Necessary FTNMAC text
*DECK prog etc.

IDENT prog
*CALL,FTN=MAC

assembly code

This is intended to be used as follows:

jobcard
FTN(E)
UPDATE (FCOMPS,N=OLDPL)
UPDATE(F) (to perform any user modifications)
COMPASS(I) (assembly code)
7/8/9
FORTRAN source code
7/8/9
UPDATE IDENTSs to modify assembly code
7/8/9
Data if necessary

6/7/8/9

The OPT parameter is of the form:
OPT=m

The level of optimization the compiler will perform is determined by the
value of m as follows:

m=0 fast compile mode (implies T mode)
m=1 standard compile mode

m=32 fast object code mode

If this parameter is omitted, the installation default option is assumed .
Debug mode D option on FTN card implies that OPT=0.

The OPT=2 level of optimization can offer significant execution speed increases
for certain classes of loops. Two types of optimization are performed:

e Moving of invariant computations from frequently executed regions
to less frequently executed regions.

e Assignment of variables and constants to registers over the body
of a loop.

60329100 C

Both DO loops and IF loops can be optimized within these constraints.
[] The loop must be the innermost loop (i.e., contain no loops).

® The loop must contain no branching statements (GO TO, IF or
RETURN) except a branch back to the start of the loop for IF loops.

The Toon doeg not contain nonstandard innu t/outout statements such
10e 100p aoes not contain nonslanaca L“rmw, output sta tements such

as BUFFER IN/BUFFER OUT, ENCODE/DECODE. In case stan-
dard I/O statements occur (or any external calls), only invariant
code removal will be attempted.

® Control must flow to the statement following the end of the loop when
the loop completes.

L4 Entry into the loop must be through the sequence of statements
preceding the start of the loop.

Invariant Computations

In many instances, either for clarity or by accident, calculations which do
not change on successive iterations are made within a loop., When these
computations are made outside the loop, the speed of the loop is improved
without changing the results.

Example 1:

DO 100 I =1,2000
100 A(I) = 3*I + J/K+5

A more efficient loop would be:

ITERM = J/K+5
DO 1001 =1,2000
100 A(T) = 3*I + ITERM
For clarity, the programmer may not wish to write the code in this form.

Using the OPT=2 level, the more efficient loop structure would be produced.
A message will be issued stating:

n WORDS OF INVARIANT RLIST REMOVED FROM
THE LOOP STARTING AT LINE x

RLIST is the intermediate language of the compiler. The message serves two

functions. It notifies the programmer that his loop has been modified,
and-it informs-him-of the magnitude of the change.- -

60329100 C 12-5

Example 2:

I=1
200 J = K+ L+4

ATy = M+I

I=1+1

IF(I. LE.100) GO TO 200

Use of OPT=2 will produce code as if Example 2 had been written as shown
below:
I=1

J=K+L+4
200 A(T) = M+1

I=1+1

IF(I. LE. 100) GO TO 200

Example 3:

DO 300 I=1,2000

A(T) = SQRT(FLOAT(I))

Ad) = A(l) + 3.5*R
300 CONTINUE

The computation of 3.5*R will be removed from the loop in spite of the
external call. In general, this process will occur unless R is a parameter
to the external routine or in COMMON. The use of a variable will not be
recognized as invariant if it is a member of an equivalence class for which
some member of the class is referenced inside the loop using nonstandard
subscripts. For standard subscripts, optimization will occur, although
the assumption is made that all subscripting is within the bounds of
dimensional declarations.

Register Assignment

For many loops, it is possible to keep commonly used variables and constants
in the registers. Eliminating loads and stores from the body of the loop
has two advantages:

° Reducing the number of loads and stores increases the execution
speed.

] The loop is shortened and may fit in the instruction stack of the 6600,

12-6 60329100 C

60329100 C

Presently up to four X registers may be assigned over a loop. The actual
number assigned depends on the number of candidates available for selection
and the complexity of the operations performed within the loop. When
registers are assigned, an informative message is printed:

n REGISTERS ASSIGNED OVER THE LOOP BEGINNING AT LINE x

Register assignment will not be performed for loops containing external
references.

Example 1:

Loop Without assignment | With assignment

DO 100 I=1,2000
A(T) =3.0
100 CONTINUE

12-7

12-8

Example 2:

Loop

Without assignment

With assignment

X=1.0
DO 200 I=1,100
X =X/.5+Y
A =X

200 CONTINUE

result to
register

60329100 A

12.8

ROUNDED
ARITHMETIC
PARAMETER The compiler will produce rounded arithmetic instructions for any combina~-
tion of arithmetic operators (+ - * /) if the parameter is specified in the
form:
ROUND=operators (default=OFF)
If this parameter is omitted (default condition), rounded arithmetic pro-
cessing does not take place.
12.9
DEBUGGING MODE
PARAMETER When this parameter is selected, the OPT=0 compilation and T error trace-
back modes are assumed. If the debugging mode parameter is omitted
(default condition), this mode of compilation does not take place. (The de-
bugging mode is described in Chapter 11.)
D or D=lfn (default = INPUT)
1fa specifies the file name of the debugging aid selection package.
12.10

—t

When this parameter is specified, the run will terminate and branch to an |
EXIT(S) control card if fatal errors occur during compilation. The form is:

EXIT PARAMETER

A (default off)

12.11

SYSTEM TEXT

FILE PARAMETER The S parameter specifies the systems text file to be used for intermixed
COMPASS programs.

S=0 or S=1fn (default 1fn = SYSTEXT)

If S=0 when COMPASS is called to assemble any intermixed COMPASS pro-
grams, it will not read in a system text file. If this parameter is omitted
(default condition), S=SYSTEXT is assumed.

7Not supported by 7600 SCOPE 1.1. I

60329100 D 12-9

12.12

SYSTEM EDITING
AND 1/O REFERENCE
PARAMETER

12.13
ASSEMBLER
PARAMETER

12.14
CONTROL CARD
EXAMPLES

12-10

This parameter is of the following form:

SYSEDIT= FILES
SYSEDIT=IDENT
SYSEDIT (default, both FILES and IDENT)

The FILES specification assures that all INPUT/OUTPUT references will
be accomplished indirectly through GETBA. In addition, the file names
are not entry points in the main program, and subprograms do not
produce external references to the file names. When IDENT is specified,
a $ is appended to the program name on both the IDENT and ENTRY
cards if the program name is the same as that of any FORTRAN object
library program.

The COMPASS assembler, rather than the FTN built-in assembler, can
be used to assemble the code generated by FTN. The COMPASS assembler
is specified with the following parameter:

C (default off)

The control card FTN. is equivalent to:
FTN (FINPUT,L=OUTPUT, B=LGO,S=SYSTEXT,OPT=1,R=1)
The control card:
FTN (A,LRN,G,S5=0)
will select the following options:
A Abort, branch to EXIT(S) card when errors occur in compilation

LRN List on the file OUTPUT, which will include a source-keyed
cross reference map, and suppress the informative diagnostics.

G The relocatable binary file is placed on file LGO. If compilation
is successful, it will be loaded and executed.

=0 When COMPASS is called to assemble intermixed COMPASS
subprograms, it will not read in a system text file.

60329100 B

i2.15

SMALL

BUFFERS When this option is selected, the compiler is forced to use 513-word
buffers for compiler intermediate files. Programs with a large number
of declarations may be compiled with a smaller field length if this
parameter is specified. Since less space is used in the buffers, compile
time may increase. The form of the parameter is:

\% (default = off)

12.16

REFERENCE

MAP LEVEL The kind of reference map (Appendix C) produced is determined by the R

option on the control card:
R=0 No map
R=1 Short map (symbols, addresses, properties)

R=2 Long map (short map, references by line number
and a DO-loop map)

R=3 Long map and printout of common block members
and equivalence classes

R Implies R = 2

If R is not specified the default option is R = 1 unless the L option equals 0;
then R = 0.

60329100 B 12-11

STANDARD SCOPE CHARACTER SETS A

The character set selected when the system is installed should be compatible with the printers.

With an instailation parameter, the instaliation keypunch formai standard can be selected as 026 or 029; the
installation parameter can also allow a user to override the standard; a user may select a keypunch mode for his input
deck by punching 26 or 29 in columns 79 and 80 of his JOB card or any 7/8/9 end-of-record card. The mode remains
set for the remainder of the job or until it is reset by a different mode selection on another 7/8/9 card.

60329100 A A-1

v

vV 00167€09

CDC 64-CHARACTER SET

Display Hollerith Hollerith External Display Hollerith Hollerith External
Code Character (026) (029) BCD Code Character (026) (029) BCD
00 tt 8-2 8-2 00* 40 5 5 5 05
01 A 12-1 12-1 61 41 6 6 6 06
02 B 12-2 12-2 62 42 7 7 7 07
03 C 12-3 12-3 63 43 8 8 8 10
04 D 12-4 12-4 64 44 9 9 9 11
05 E 12-5 12-5 65 45 + 12 12-8-6 60
06 F 12-6 12-6 66 46 - 1 11 40
07 G 12-7 12-7 67 47 * 11-8-4 11-8-4 54
10 H 12-8 12-8 70 50 / 0-1 0-1 21
1 I 12-9 12-9 71 51 (0-8-4 12-8-5 34
12 J 11-1 11-1 41 52) 12-8-4 11-8-5 74
13 K 11-2 11-2 42 53 $ 11-8-3 11-8-3 53
14 L 11-3 11-3 43 54 = 8-3 8-6 13
15 M 11-4 11-4 44 55 blank no punch no punch 20
16 N 11-5 11-5 45 56 , (comma) 0-8-3 0-8-3 33
17 (6] 11-6 11-6 46 57 . (period) 12-8-3 12-8-3 73
20 P 11-7 11-7 47 60 = 0-8-6 8-3 36
21 Q 11-8 11-8 50 61 [8-7 8-5 17
22 R 11-9 11-9 51 62] 0-8-2 12-8-7 32
23 S 0-2 0-2 22 63 % 8-6 0-8-4 16
24 T 0-3 0-3 23 64 #* 8-4 8-7 14
25 U 0-4 0-4 24 65 - 0-8-5 0-8-5 35
26 \% 0-5 0-5 25 66 v 11-0 or 11-0 or 52

27 w 0-6 0-6 26 11-8-2 11-8-2

30 X 0-7 0-7 27 67 A 0-8-7 12 37

31 M 0-8 0-8 30 70 t 11-8-5 8-4 55

32 Z 0-9 0-9 31 71 ' 11-8-6 0-8-7 56

33 0 0 0 12 72 < 12-0 or 12-0 or 72

34 ! ! ! 01 12-8-2 12-8-2

35 2 2 2 02

36 3 3 3 03 73 > 11-8-7 0-8-6 57

37 1 1 p 04 74 < 8-5 12-8-4 15
75 > 12-8-5 0-8-2 75
76 - 12-8-6 11-8-7 76
77 ;(semicolon) 12-8-7 11-8-6 77

TThis character is lost on even parity magnetic tape.

*Since 00 cannot be represented on ma

(number zero).

gnetic tape, it is converted to BCD 12. On input, it will be translated to display code 33

g 00167€09

eV

ASCIl 64-CHARACTER SUBSET"

Display Hollerith Hollerith ASCII Display Hollerith Hollerith ASCII
Code Character (026) (029) Code Code Character (026) (029) Code
- 00 01 8-2 8-2 072 40 5 5 5 065
.01 A 12-1 12-1 101 41 6 6 6 066
| 02 B 12-2 12-2 102 42 7 7 7 067
. 03 C 12-3 12-3 103 43 8 8 8 070
04 D 12-4 12-4 104 44 9 9 9 071
. 05 E 12-5 12-5 105 45 + 12 12-8-6 053
06 F 12-6 12-6 106 46 - 11 11 055
07 G 12-7 12-7 107 47 * 11-8-4 11-8-4 052
110 H 12-8 12-8 110 50 / 0-1 0-1 057
11 | 12-9 12-9 11 51 (0-8-4 12-8-5 050
12 J 11-1 11-1 112 52) 12-8-4 11-8-5 051
13 K 11-2 11-2 113 53 $ 11-8-3 11-8-3 044
14 L 11-3 11-3 114 54 = 8-3 8-6 075
i 15 M 11-4 11-4 115 55 blank no punch no punch 040
16 N 11-5 11-5 116 56 , {comma) 0-8-3 0-8-3 054
17 0 11-6 11-6 117 57 . {period) 12-8-3 12-8-3 056
20 P 11-7 11-7 120 60 # 0-8-6 8-3 043
21 Q 11-8 11-8 121 61 " (apostrophe) 8-7 8-5 047
22 R 11-9 11-9 122 62 ! 0-8-2 12-8-7 041
23 S 0-2 0-2 123 63 % 8-6 0-8-4 045
24 T 0-3 0-3 124 64 "{quote) 8-4 8-7 042
25 U 0-4 0-4 125 65 _ {underline) 0-8-5 0-8-6 137
26 v 0-5 0-5 126 66] 11-0 or 11-0 or 135
27 w 0-6 0-6 127 11-8-2 11-8-2
30 X 0-7 0-7 130 67 & 0-8-7 12 046
31 Y 0-8 0-8 131 70 @ 11-8-5 8-4 100
32 z 0-9 09 132 71 ? 11-8-6 0-8-7 077
33 0 0 0 060 72 [12-0 or 12-0 or 133
34 1 1 1 061 12-8-2 12-8-2
‘ gg g g g 822 73 > 11-8-7 0-8-6 076
37 4 4 4 064 74 < 8-6 12-8-4 074
75 N 12-8-5 0-8-2 134
76 ~~{circumflex) 12-8-6 11-8-7 136
77 ;(semicolon) 12-8-7 11-8-6 073

tThis character is lost on even parity magnetic tape.
*BCD representation is used when data is recorded on even parity magnetic tape. In this case, the octal BCD/display code

corréspondence is the same as for the CDC 64-character set.

v

V¥ 00162£09

CDC 63-CHARACTER SET

Display Hollerith Hollerith External Display Hollerith Hollerith External
Code Character (026) (029) BCD Code Character (026) (029) BCD
00 (none)t 16 40 5 5 5 05
01 A 12-1 12-1 61 41 6 6 6 06
02 B 12-2 12-2 62 42 7 7 7 07
03 C 12-3 12-3 63 43 8 8 8 10
04 D 12-4 12-4 64 44 9 9 9 11
05 E 12-5 12-5 65 45 + 12 12-8-6 60
06 F 12-6 12-6 66 46 - 11 11 40
07 G 12-7 12-7 67 47 * 11-8-4 11-8-4 54
10 H 12-8 12-8 70 50 / 0-1 0-1 21
11 | 12-9 12-9 71 51 (0-8-4 12-8-5 34
12 J 11-1 11-1 41 52) 12-8-4 11-8-5 74
13 K 11-2 11-2 42 53 $ 11-8-3 11-8-3 53
14 L 11-3 11-3 43 54 = 8-3 8-6 13
15 M 11-4 11-4 44 55 blank no punch no punch 20
16 N 11-6 11-b 45 56 , (comma) 0-8-3 0-8-3 33
17 0 11-6 11-6 46 57 . {period) 12-8-3 12-8-3 73
20 P 11-7 11-7 47 60 = 0-8-6 8-3 36
21 Q 11-8 11-8 50 61 [8-7 8-5 17
22 R 11-9 11-9 51 62] 0-8-2 12-8-7 32
23 S 0-2 0-2 22 63 :(colon) t 8-2 8-2 00*
24 T 0-3 0-3 23 64 #* 8-4 8-7 14
25 U 0-4 0-4 24 65 - 0-8-5 0-8-5 35
26 Vv 0-5 0-5 25 66 v 11-0 or 11-0 or 52

27 W 0-6 0-6 26 11-8-2 11-8-2

30 X 0-7 0-7 2 67 A 0-8-7 12 37

31 M 0-8 0-8 30 70 t 11-8-5 8-4 55

32 z 0-9 0-9 31 71 ! 11-8-6 0-8-7 56

33 0 0 0 12 72 < 12-0 or 12-0 or 72

34 ! ! ; g; 12-8-2 12-8-2

gg g :23 3 03 73 > 11-8-7 0-8-6 57

37 2 2 B 04 74 < 8-5 12-8-4 15
75 > 12-8-5 0-8-2 75
76 - 12-8-6 11-8-7 76
77 ;{semicolon) 12-8-7 11-8-6 77

tWhen the 63-Character Set is used, the punch code 8-2 is‘associated with display code 63, the colon. Display code 00g is not included in
the 63-Character Set and is not associated with any card punch. The 8-6 card punch (026 keypunch) and the 0-8-4 card -punch (029 key-
punch) in the 63-Character Set are treated as blank on input.

*Since 00 cannot be represented on magnetic tape, it is converted to BCD 12. On input, it will be translated to display code 33
(number zero).

FORTRAN DIAGNOSTICS B

Diagnostic messages are produced by the FORTRAN processor to inform the user of errors in the
e e o B A e Asamadon v A Armnand] dnm amrmAd aanirdbian. atinnm AvmAnag a A3

prograiun. Messages are pluudbcu QuTiig vuzupua,u.uu ana exXecurion; puxuphauuu eYToYs are Gis-
cussed in this appendix, a detailed discussion of the execution errors is given in Appendix G.

Errors detected during compilation are noted on the source listing, immediately following the END
card. Figure B-1 illustrates a listing and the format used by the processor in noting compilation
errors.

100 WRITE (8, 8)
8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/
119X,1H1/19X, 1H3)
101 I=5
5 8 A=I
102 A=SQRT(A)
103 J=A
104 DO 1K=3,J,2
105 L=I/K
10 106 IF(L*K-D)1,2,4
1 GO TO 108
107 WRITE (6,9)
5 FORMAT (I20)
2 I=1+2
15 108 IF(1000-1)7,4,3
4 WRITE (6,7)
9 FORMAT (14H PROGRAM ERROR)
7 WRITE (6,6)
6 FORMAT (31H THIS IS THE END OF THE PROGRAM)
20 109 STOP
END

60329100 A B-1

CARD NO. SEVERITY DIAGNOSTIC

01 I START. ASSUMED PROGRAM NAME WHEN NO HEADER STATEMENT
APPEARS
05 FE 8 DUPLICATE STATEMENT LABEL
FE A DO LOOP MAY NOT TERMINATE ON THIS TYPE OF
STATEMENT
21 FE UNDEFINED STATEMENT NUMBERS
FE UNDEFINED LABELS
3 16

Figure B-1. Sample Source Listing

The source of the errors is identified by the card number. This number corresponds to the card
number assigned by the processor indicated by the numbers on the extreme left side of the example.
The severity of the error is indicated by the code accompanying the message: I means informative
and has no effect on compilation or execution, FE indicates catastrophic to execution, FC means
the error is catastrophic to compilation, and ANSI indicates that the particular usage does not con-
form to ANSI standards. ANSI diagnostics are not listed unless requested by an X parameter on
the FTN control card.

B-2 60329100 D

a 0016809

g-g9

ANSI
ANST
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI
ANSI

ANSI

A RELATIONAL HAS A COMPLEX OPERAND.

ARRAY NAME OPERAND NOT SUBSCRIPTED, FIRST ELEMENT WILL BE USED

ARRAY NAME REFERENCED WITH FEWER SUBSCRIPTS THAN DIMENSIONALITY OF ARRAY.

DOLLAR SIGN STATEMENT SEPARATOR IS NON-ANSI USAGE

END

STATEMENT ACTING AS A RETURN IS NON-ANSI

ENTRY STATEMENT IS NON-ANSI

FLOATING PT DESCRIPTOR EXPECTED FOLLOWING SCALE FAGTOR DESIGNATOR.

GO TO STATEMENT CONTAINS NON-ANSI USAGES

HOLLERITH CONSTANT APPEARS OTHER THAN IN AN ARGUMENT LIST OF A CALL

HOLLERITH STRING DELINEATED BY SYMBOLS IS NON ANSI.

LOGICAL OPERATOR OR CONSTANT USAGE IS NON-ANSI

MASKING EXPRESSION IS NON-ANSI.

MULTIPLE REPLACEMENT STATEMENT IS NON=-ANSI.

NAMELIST STATEMENT IS NON-ANSI

NON=-

NON=-

ANSI FORM OF DATA STATEMENT

STANDARD SUBSCRIPT IS NON=ANSI.

0CTAL CONSTANT OR R,L FORMS OF HOLLERITH CONSTANT IS NON-ANSI

PLUS SIGN IS AN ILLEGAL CHARACTER.

PRECEDING FIELD DESCRIPTOR IS NON-ANSI.

RETURNS PARAMETERS IN CALL STATEMENT.

TAB
THE
THE
THE
THE
THE

THE

SETTING DESIGNATOR IS NON-ANSI.

EXPRESSION IN AN IF STATEMENT IS TYPE COMPLEX.

FORMAT OF THIS END LINE DOES NOT CONFORM TO ANSI SPECIFICATIONS.
NON-STANDARD RETURN STATEMENT IS NON=ANSI

TYPE COMBINATION OF THE OPERANDS OF AN EXPONENT OPERATOR IS NON=ANSI.
TYPE COMBINATION OF THE OPERANDS OF AN EQUAL-SIGN OPERATOR IS NON~ANSI.

TYPE COMBINATION OF THE OPERANDS OF A RELATIONAL OR ARITHMETIG OPERATOR

(OTHER THAN ¥*¥) IS

STATEMENT OR IN A DATA STATEMENT.

NON=ANST .

-4 |

ad 00162809

ANSI
ANSI
ANSI
ANSI
ANSI
FC
FC
FC

FC

FC
FC
FC
FC
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE

THIS FORM OF AN I/0 STATEMENT DOES NOT CONFORM TO ANSI SPECIFIGATIONS
THIS FORMAT DECLARATION IS NON-ANSI

THO=-BRANCH IF STATEMENT IS NON<-ANSI.

USE OF COMMENT CARD IN CONTINUED STATEMENT IS NON-ANSI

7 CHARACTER SYMBOLIC NAME IS NON-ANSI

ERROR TABLE OVERFLOW

MEMORY OVERFLOW DURING ASF EXPANSION

MISSING OR OUT OF RANGE LABEL ON DO STATEMENT

NOT ENOUGH ROOM IN WORKING STORAGE TO HOLD ALL OVERLAY CONTROL CARD INFORMATION
SYMBOL TABLE OVERFLONW

TABLE OVERFLOW, INCREASE FL

TABLES OVERLAPs INCREASE FL

THIS SUBPROGRAM HAS TOO0 MANY DO LOOPS

«NOT. MAY NOT BE PRECEDED BY NAME, CONSTANT, OR RIGHT PARENS.,

+ OR - SIGN MUST BE FOLLOWED BY A CONSTANT

A COMMA, LEFT PARENesy =4y.0Re» OR .AND. MUST BE FOLLOWED BY 4 NAME, CONSTANT, LEFT PAREN. 3=-4eNOT.y OR +

A COMPLEX BASE MAY ONLY BE RAISED TO AN INTEGER POWER

A CONSTANT ARITHMETIC OPERATION WILL GIVE AN INDEFINITE OR OUT~OF-RANGE RESULT.
A CONSTANT CANNOT BE CONVERTED. CHECK CONSTANT FOR PROPER CONSTRUCT.

A CONSTANT D0 PARAMETER MUST BE BETWEEN 3 AND 131K

A CONSTANT MAY NOT BE FOLLOWED BY AN EQUAL SIGNs NAME, OR ANOTHER CONSTANT.
A CONSTANT OPERAND OF A REAL OPERATION IS OUT OF RANGE OR INDEFINITE.

A DO LOOP MAY NOT TERMINATE ON A FORMAT STATEMENT

A DO LOOP MAY NOT TERMINATE ON THIS TYPE OF STATEMENT

A DO PARAMETER MUST BE A POSITIVE INTEGER CONSTANT OR AN INTEGER VARIABLE.
A FUNCTION REFERENCE REQUIRES AN ARGUMENT LIST.

A NAME MAY NOT BE FOLLOWED BY A CONSTANT.

a 0016609

| s-a

FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE

FE

A PREVIOUS STATEMENT MAKES AN ILLEGAL TRANSFER 70 THIS LABEL

A PREVIOUSLY MENTIONED ADJUSTABLE SUBSCRIPT IS NOT TYPE INTEGER.

A REFERENGCE TO THIS ARITHMETIC STATEMENT FUNCTION HAS UNBALANCED PARENTHESIS WITHIN THE PARAMETER LIST
A REFERENCE TO THIS ASF HAS A PARAMETER MISSING

A VARTABLE DIMENSION OR THE ARRAY NAME WITH A VARIABLE DIMENSION IS NOT A FORMAL PARAMETER
ALL ECS VARIABLES MUST APPEAR IN AN ECS COMMON BLOCK.

ALL ELEMENTS IN AN ECS COMMON BLOCK MUST BE TYPE ECS.

AN ARRAY REFERENCE HAS TOO MANY SUBSCRIPTS.

APPEARED WHERE A VARIABLE SHOULD HAVE

ARGUMENT NOT FOLLOWED BY COMMA OR RIGHT PARENTHESIS.

ARRAY OR COMMON VARIABLE MAY NOT BE DECLARED EXTERNAL

ASF HAS MORE DUMMY PARAMETERS THAN ALLOWED

BAD SUBSCRIPT IN EQUIV STMT

BAD SYNTAX ENCOUNTERED.

BASIC EXTERNAL OR INTRINSIC FUNCTION CALLED WITH WRONG TYPE ARGUMENT

BASIC OR INTRINSIC FUNCTION WITH AN INCORRECT ARGUMENT COUNT

COMMON BLOCK NAME NOT ENCLOSED IN SLASHES

COMMON VARIABLE IS FORMAL PARAMETER OR PREVIOUSLY DECLARED IN COMMON OR ILLEGAL NAME.
COMMON=-EQUIVALENCE ERROR

CONSTANT DATA ITEM MUST BE FOLLOWED BY A , / OR RIGHT PAREN

CONSTANT SUBSULRIPT VALUE EXCEEDS ARRAY DIMENSIONS

CONSTANT TABLE SONSTORS OVERFLOWED=STATEMENT TRUNCATED.ENLARGE TABLE OR SIMPLIFY STATEMENT
DaTA ITEM LISTS MAY ONLY BE NESTED 1 DEEP

DATA VARIABLE LIST SYNTAX ERROR

DEBUG EXECUTION OPTION SUPPRESSED DUE TO NATURE OF ABOVE FATAL ERRORS

DECLARATIVE STATEMENT OUT OF SZQUENCE

DEFECTIVE HOLLERITH CONSTANT. CHEGCK FOR CHARACTER COUNT ERROR OR LOST CONTINUATION CARD.

9-4 |

a 001638509

FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE

FE

DIVISION BY CONSTANT ZERO.

DO LIMIT OR REP FACTOR MUST BE AN INTEGER OR OCTAL CONSTANT BETWEEN 1 AND 131K
DO LOOPS TERMINATING ON THIS LABEL ARE IMPROPERLY NESTED

DOUBLY DEFINED FORMAL PARAMETER

OUMMY PARAMETER IN ASF DEFINITION OCCURED THWIGE

DUPLICATE LOOP INDEX OR DOESNT MATCH ANY SUBSGRIPT VARIABLE

DUPLICATE STATEMENT LABEL

ECS COMMON BLOCK MUST BE LABELED.

ECS REFERENGCE MUST BE A STAND-ALONE ARGUMENT.

ECS VARIABLE MAY NOT APPEAR IN AN EQUIV STMT

ENTRY POINT NAMES MUST BE UNIQUE - THIS ONE HAS BEEN PREVIOUSLY USED IN THIS SUBPROGRAM
ENTRY STATEMENT MAY NOT APPEAR IN A PROGRAM

ENTRY STATEMENT MAY NOT BE LABELED

ENTRY STATEMENTS MAY NOT OCCUR WITHIN THE RANGE OF A DO STATEMENT

EQUATED FILENAME NOT PREVIOUSLY DEFINED

EXPRESSION TRANSLATOR TABLE (ARLIST) OVERFLOWED. SIMPLIFY THE EXPRESSION.
EXPRESSION TRANSLATOR TABLE (FRSTB) OVERFLOWED. SIMPLIFY THE EXPRESSION.
EXPRESSION TRANSLATOR TABLE (OPSTAK) OVERFLOWED. SIMFLIFY THE EXPRESSION.

FeP. WITH VARIABLE DIMENSIONS NOT ALLOWED IN A NAMELIST STATEMENT

FIELD WIDTH IS GREATER THAN 150 CHARACTERS. FORMAT ERROR SCAN WILL CONTINUE.
FILENAME IS GREATER THAN & CHARACTERS

FILENAME PREVIOUSLY DEFINED

FOLLOWED BY AN ILLEGAL ITEM

FORMAL PARAMETERS MAY NOT APPEAR IN COMMON OR EQUIV STMTS

FORMAT REFERENCE MUST BE A LEGAL STATEMENT NUMBER OR AN ARRAY REFERENCE.

FORMAT STATEMENT ENDS BEFORE END OF HOLLERITH STRING. ERROR SCANNING STOPS HERE.
FORMAT STATEMENT ENDS BEFORE LAST HOLLERITH COUNT IS COMPLETE. ERROR SCAN FOR THIS FORMAT STOPS AT

a 0016c€09

L-d

FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE

FE

FUNCTION NAME DOES NOT APPEAR AS A VARIABLE IN THIS SUBPROGRAM

GO TO STATEMENT = SYNTAX ERROR

GROUP NAME NOT SURRCUNDED BY SLASHS

GROUP NAME PREVIOUSLY REFERENCED IN ANOTHER CONTEXT

HEADER CARD NOT FIRST STATEMENT

HEADER CARD SYNTAX ERROR

I/0 LIST SYNTAX ERROR

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

ILLEGAL

BLOCK NAME

CALL FORMAT

CHARAGTER FOLLOWS PRECEDING AsIsLy0y0R R DESCRIPTORe. ERROR SCAN FOR THIS FORMAT STOPS HERE.
CHARAGTER FCLLOWS PRECEDING FLOATING PT DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HERE.
CHARAGTER FCLLOWS PRECEDING SIGN CHARACTER. ERROR SCANNING FOR THIS FORMAT STOPS HERE.
CHARAGCTER FOLLOWS TAB SETTING DESIGNATOR. ERROR SGAN FOR THIS FORMAT STOPS HERE.
CHARAGCTER. THE REMAINDER OF THIS STATEMENT WILL NOT BE COMPILED.

EXTENSION OF COMMON BLOCK ORIGIN

FORM INVOLVING THE USE OF A COMMA.

INPUT/0OUTPUT ADDRESS.

LABEL FIELD IN THIS STATEMENT

LABELS IN IF STATEMENT.

NAMELIST VARIABLE

RETURNS PARAMETER.

SEPARATOR BETWEEN VARIABLES

SEPARATOR ENCOUNTERED.

SEPARATOR IN EXTERNAL STATEMENT

USE OF THE EQUAL SIGN.

VARIABLE NAME FIELD IN ASSIGN OR ASSIGNED GOTO

8-d

a 00162209

FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE

IMPROPER FORM OF ENTRY STATEMENT. ONLY ALLOWABLE FORM IS [ENTRY NAME)

INTRINSIC FUNCTION REFERENCE MAY NOT USE A FUNCTION NAME AS AN ARGUMENT

INVOLVED IN CONTRADICTORY EQUIVALENCING

IS THE FIRST LINE NO. OF A LOOP THAT IS ENTERED FROM OUTSIDE ITS RANGE AND HAS NO EXITS
LEFT SIDE OF REPLACEMENT STATEMENT IS ILLEGAL.

LOGICAL AND NON-LOGICAL OPERANDS MAY NOT BE MIXED

LOGICAL EXPRESSION IN 3-BRANCH IF STATEMENT.

LOGICAL OPERAND USED WITH NON-LOGICAL OPERATORS.

LOOPS ARE NESTED MORE THAN 50 DEEP

MAXIMUM PARENTHESIS NESTING LEVEL EXCEEDED. ERROR SCAN FOR THIS FORMAT STOPS HERE.

MAY NOT BE FUNCTION, EXTERNALs FeP. OR IN BLANK COMMON

MISSING OR SYNTAX ERROR IN LIST OF TRANSFER LABELS

MORE THAN ONE RELATIONAL OPERATOR IN A RELATIONAL EXPRESSION.

MORE THAN 50 FILES ON PROGRAM CARD OR 63 PARAMETERS ON A SUBROUTINE OR FUNGCTION CARD
MORE THAN 63 ARGUMENTS IN ARGUMENT LIST.

NAMELIST STATEMENT SYNTAX ERROR

NO MATCHING LEFT PARENTHESIS.

NO MATCHING RIGHT PARENTHESIS IN ARGUMENT LIST.

NO MATCHING RIGHT PARENTHESIS IN SUBSCRIPT.

NO MATCHING RIGHT PARENTHESIS.

NO TERMINATING RIGHT PARENTHESIS IN OVERLAY,SEGMENT ,SEGZERO OR SECTION CARD

NON DIMENSIONED NAME APPEARS FOLLOWED BY LEFT PAREN

NON~STANDARD RETURN STATEMENT MAY NOT APPEAR IN A FUNCTION SUBPROGRAM

NUMBER OF CHARACTERS IN AN ENCODE/DECODE STATEMENT MUST BE AN INTEGER CONSTANT OR VARIABLE
NUMBER OF SUBSCRIPTS IS INCOMPATIBLE WITH THE NUMBER OF ODIMENSIONS DURING EQUIVALENCING
ONLY ONE ECS COMMON BLOCK MAY BE DECLARED

ONLY ONE SYMBOLIC NAME IN EQUIVALENCE GROUP

a 0016c£09

| 6-4a

FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE

FE

PARAMETER ON NON-STANDARD RETURN STATEMENT IS NOT A RETURNS FORMAL PARAMETER

PRECEDING CHARAGCTER ILLEGAL AT THIS POINT IN CHARACTER STRING. ERROR SCAN FOR THIS FORMAT STOPS HERE.
PREGCEDING CHARACTER ILLEGAL. SCALE FACTOR EXPECTEDs ERROR SCANNING FOR THIS FORMAT STOPS HERE.
PRECEDING HOLLERITH COUNT IS EQUAL TO ZERG. ERROR SCANNING FOR THIS FORMAT STOPS HERE.
PRECEDING HOLLERITH INDICATOR IS NOT PRECEDED BY A COUNT. SCANNING STOPS HERE.

PRESENT USE OF THIS LABEL CONFLICTS WITH PREVIOUS USES

REFERENCED LABEL IS MORE THAN FIVE CHARACTERS

RETURN STATEMENT APPEARS IN MAIN PROGRAM

RETURNS LIST ERROR

RETURNS OR EXTERNAL NAMES MAY NOT APPEAR IN DECLARATIVE STATEMENTS

RIGHT PARENTHESIS FOLLOWED BY A NAME, CONSTANT, OR LEFT PARENTHESIS.

SIMPLE VARIABLE OR CONSTANT FOLLOWED BY LEFT PARENTHESIS.

STATEMENT TOD LONG

SUBPROGRAM NAME MAY NOT BE REFERENCED IN A DECLARATIVE STATEMENT

SUBROUTINE NAME REFERRED TO BY CALL IS USED ELSEWHERE AS A NON=-SUBROUTINE NAME.
SYMBOLIC NAME HAS TOO MANY CHARACTERS

SYNTAX ERROR IN ASF DEFINITION

SYNTAX ERROR IN DATA ITEM LIST

SYNTAX ERROR IN DATA STATEMENT

SYNTAX ERROR IN EQUIVALENCE STATEMENT

SYNTAX ERROR IN IMPLIED DO NEST

SYNTAX ERROR IN SUBSCRIPT LIST,MUST BE OF FORM CON1*IVAR+CON2

TAB SETTING MAY NOT EXCEED 150. FORMAT ERROR SCAN WILL CONTINUE.

THE CONTROL VARIABLE OF A DO OR DO IMPLIED LOOP MUST BE A SIMPLE INTEGER VARIABLE

THE EXPRESSION IN A LOGICAL IF IS NOT TYPE LOGICAL

THE FIELD FOLLOWING STOP OR PAUSE MUST BE 5 OR LESS OCTAL DIGITS

ot-4 |

a 001638509

FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE
FE

FE

THE OPERATOR INDICATED (.NOT. OR A RELATIONAL) MUST BE FOLLOWED BY A CONSTANT, NAME, LEFT PAREN., =~ OR +

THE OPERATOR INDICATED (~,+,%,/, OR *¥) MUST BE FOLLOWED BY A CONSTANT, NAME, OR LEFT PARENTHESIS.
THE STATEMENT IN A LOGICAL IF MAY BE ANY EXECUTABLE STATEMENT OTHER THAN A DO OR ANOTHER LOGICAL IF
THE SYNTAX OF DO PARAMETERS MUST BE I=M1,M2,M3 OR I=M1i,M2

THE TERMINAL STATEMENT OF THIS DO PRECEDES IT

THE TYPE OF THIS IDENTIFIER IS NOT LEGAL FOR ANY EXPRESSION

THE VALUE OF THE PARITY INDICATOR IN A BUFFER I/0 STATEMENT MUST BE @ OR 1

THIS ASSIGN STATEMENT HAS IMPROPER FORMAT, ONLY ALLOWABLE IS [ASSIGN LABEL TO VARIABLE 1
THIS NAME MAY NOT BE USED IN A DATA STMT

THIS STATEMENT MAKES AN ILLEGAL TRANSFER INTO A PREVIOUS DO LOOP

THIS STATEMENT TYPE IS ILLEGAL IN BLOCK DATA SUBPROGRAM

TOO MANY LABELED COMMON BLOCKS, ONLY 125 BLOCKS ARE ALLOWED.

TOO MANY SUBSCRIPTS IN ARRAY REFERENCE.

TOTAL RECORD LENGTH IS GREATER THAN 155 CHARACTERS. FORMAT ERROR SCAN WILL CONTINUE.
UNDEFINED STATEMENT NUMBERS, SEE BELOW

UNIT NUHBER MUST BE BETWEEN 1 AND 99 INCLUSIVE.

UNIT NUMBER OR PARITY INDICATOR MUST BE AN INTEGER CONSTANT OR VARIABLE

UNMATCHED PARAMETER COUNT IN A REFERENCE TO THIS STATEMENT FUNCTION

UNMATCHED PARENTHESIS

UNRECOGNIZED STATEMENT

USE OF THIS PROGRAM OR SUBROUTINE NAME IN AN EXPRESSION,

VALUE OF ARRAY SUBSCRIPT IS .LT. 1 OR .GT. DIMENSIONALITY IN IMPLIED DO NEST

VARIABLE HAS MORE THAN THREE SUBSCRIPTS

VARIABLE IN ASSIGN OR ASSIGNED GO TO IS ILLEGAL

VARIABLE SUBSCRIPTS MAY NOT APPEAR WITHOUT DO LOOPS

VARIABLE WITH ILLEGAL SUBSCRIPTS

WAS LAST CHARACTER SEEN AFTER TROUBLE, REMAINDER OF STATEMENT IGNORED

a 00162€09

| 11-4

FE
FE

ZERO LEVEL RIGHT PARENTHESIS MISSING. SCANNING STOPS.

ZERO STATEMENT LABELS ARE ILLEGAL

A HOLLERITH CONSTANT IS AN OPERAND OF AN ARITHMETIC OPERATOR.

ARRAY NAME OPERAND NOT SUBSCRIPTED, FIRST ELEMENT WILL BE USED

ARRAY REFERENCE OUTSIDE DIMENSION BOUNDS

ASSUMED PRDGRAM NAME WHEN NO HEADER STATEMENT APPEARS

COMMA MISSING BEFORE VARIABLE INDICATED.

CONSTANT LENGTH «GT. VARIABLE LENGTH, CONSTANT TRUNCATED

DATA ITEM LIST EXCEEDS VARIABLE LIST, EXCESS CONSTANTS IGNORED

DATA VARIABLE LIST EXCEEDS ITEM LIST, EXCESS VARIABLES NOT INITIALIZED

DIMENSIONAL RANGE IS EXTENDED FOR EQUIVALENCING PURPOSES

DUE TO THE NUMEROUS ERRORS NOTED, ONLY THOSE WHICH ARE FATAL TO EXECUTION WILL BE LISTED BEYOND THIS
EWeD OR DW.D DESCRIPTOR BAD FOR OUTPUT, W SHOULD SATISFY W=7 .GE. D

FIELD WIDTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE I/0 DEVICE CAPACITY.

FILE LENGTH REQUESTED IS TOO LARGE. STANDARD LENGTH OF 20J0B SUBSTITUTED.

FLOATING POINT DESCRIPTOR EXPECTS DECIMAL POINT SPECIFIED. OUTPUT WILL INCLUDE NO FRACTIONAL PARTS.
FLOATING POINT SPECIFICATION EXPECTS DECIMAL DIGITS TO BE SPECIFIED. ZERO DECIMAL DIGITS ASSUMED.
MASK ARGUMENT OUT OF RANGE. A MASK OF 3 OR 63 WILL BE SUBSTITUTED FOR ARGUMENT

MAY NOT USED IN A DEBUG STATEMENT

MISSING I/0 LIST OR SPURIOUS COMMA

MORE STORAGE REQUIRED BY DO STATEMENT PROCESSOR FOR OPTIMIZATION

NO END CARD, END LINE ASSUMED

NON-BLANK CHARACTERS FOLLOW ZERO-LEVEL RIGHT PARENTHESIS. THESE CHARACTERS WILL BE IGNORED.

NUMBER OF DIGITS IN CONSTANT EXCEED POSSIBLE SIGNIFICANCE. HIGH ORDER DIGITS RETAINED IF POSSIBLE.
NUMERIC FIELD FOLLOWING TAB SETTING DESIGNATOR IS EQUAL TO ZERO, COLUMN ONE IS ASSUMED.

NUMERIC FIELD OMITTED IN PRECEDING SCALE FACTOR. ZERO SCALE ASSUMED.

PRECEDING FIELD WIDTH IS ZERO.

POINT

ei-4a |

a 00162809

PRECEDING FIELD WIDTH SHOULD BE 7 OR MORE.

PRECEDING SCALE FACTOR IS OUTSIDE LIMITS OF REPRESENTATION WITHIN THE MACHINE.

PRESENT USE IN CONTEXT OF THIS NAME DOES NOT MATCH PREVIOUS OCGURANCES IN DEBUG STMTS
PREVIOUSLY DIMENSIONED VARIABLE, FIRST OIMENSIONS WILL BE RETAINED

PREVIOUSLY TYPED VARIABLE, FIRST ENCOUNTERED TYPE IS RETAINED

REPEAT COUNT FOR PRECEDING FIELD DESCRIPTOR IS ZERO.

SEPARATOR MISSING. SEPARATOR ASSUMED HERE.

SINGLE WORD CONSTANT MATCHED WITH DOUBLE OR COMPLEX VARIABLE. PRECISION LOST.

SUPERFLUOUS SCALE FACTOR ENCOUNTERED PRECEDING CURRENT SCALE FACTOR.

TAB SETTING MAY EXCEED RECORD SIZE, DEPENDING ON USE.

THE CONSTANT LOWER LIMIT IS GREATER THAN THE CONSTANT UPPER LIMIT OF A Do

THE NUMBER OF ARGUMENTS IN A SUBROUTINE ARGUMENT LIST IS INCONSISTENT,

THE NUMBER OF ARGUMENTS IN THE ARGUMENT LIST OF A NON-BASIC EXTERNAL FUNCTION IS INCONSISTENT.
THE VARIABLE UPPER LIMIT AND THE CONTROL VARIABLE OF THIS DO ARE THE SAME PRODUCING A NON-TERMINATING LOOP
THERE IS NO PATH TO THIS STATEMENT

THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.

THIS STATEMENT BRANCHES TO ITSELF,

THIS STATEMENT REDEFINES A CURRENT LOOP CONTROL VARIABLE OR PARAMETER

TOTAL RECORD LENGTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE I/0 DEVICE CAPACITY.
X-FIELD PRECEDED BY A BLANK. 1X ASSUMED

X-FIELD PRECEDED BY A ZERG. NO SPACING OCCURS

CROSS REFERENCE MAP C

The cross reference map is a dictionary of all programmer created symbols appearing in a program unit, with the pro-
perties of each symbol and references to each symbol listed by source line number. The symbol names are grouped by

class and listed alphabetically within the groups. The reference map begins on a separate page following the source
listing of the program and the error dictionary.

The kind of reference map produced is determined by the R option on the control card:

R=0 No map

R=1 Short map (symbols, addresses, properties)

R=2 Long map (short map, references by line number and a DO-loop map)

R=3 Long map and printout of common block members and equivalence classes

R Implies R =2
If R is not specified the default option is R =1 unless the L option equals 0; then R=0.
Fatal errors in the source program will cause certain parts of the map to be suppressed, incomplete, or inaccurate. Fatal
to execution (FE) and fatal to compilation (FC) errors will cause the DO-loop map to be suppressed, and assigned ad-
dresses will be different; symbol references may not be accumulated for statements containing syntax errors.
For the long map, it may be necessary to increase field length by 1000(octal).
The number of references that can be accumulated and sorted for mapping is: field length minus 20000 (octal) minus
4 times the number of symbols. For a source program containing 1000 (decimal) symbols, approximately 8000

(decimal) references can be accumulated with a field length of 50000 octal.

Examples from the cross-reference map produced by the program which follows are interspersed with the general
format discussions.

The source program and the reference maps produced for both R = 1 and R = 3 follow. A complete set of maps for
R =2 is not included, but samples are shown with the discussion.

60329100 C C-1

SOURCE PROGRAM

Main Program

PROGRAM MAPS

PROGRAM MAPS

1 (INPUT,0UTPUT,, TAPES=INPUT ,TAPE6=0UTPUT)
INTEGER SIZEl, S1, SIZE2, S2
EQUIVALENCE(SIZE1,S1) 4 (SIZE2,S2)

5 NAMELIST/PARAMS/SIZEL,SIZE2
DATA S1,S2/712412/
READ (5,PARAMS)
WRITE (6,PARAMS)
PRINT1 MAPS 01
FORMAT(20SAMPLE PROGRAM TO ILLUSTRATE THE VARIOUS COMPILER MAPS.#)MAPS 02
CALL PASCAL (S1) MAFS 03
PRINT?2 MAFS 04
FORMAT(£0THE FOLLOWING WILL HAVE NO HEADINGS.?#) MAPS 05
CALL NOHEAD(S2) MAFS 06
STOP MAFS 07
END MAFS 08
Block Data Subprogram
BLOCK DATA
BLOCK DATA MAFS 09
COMMON/ARRAY/X(22) MAFS 10
INTEGER X MAPS 11
DATA X(22)71/ MAPS 12
END MAFS 13
Subprogram with
second entry
SUBROUTINE PASCAL
SUBROUTINE PASCAL(SIZE) MAFS 14
INTEGER L(22),SIZE MAPS 15
COMMON/ARRAY/L MAES 16
PRINT4y (I,I=1,SIZE) MAPS 17
FORMAT(44HOCOMBINATIONS OF M THINGS TAKEN N AT A TIME.//20X,3H-N-/MAFS 18
§2216) MAPS 19
ENTRY NOHEAD MAFS 20
M=MINO(21,MAX0(2,SIZE~1)) MAPS 21
D02I=1,M MAFS 22
K=22-1 MAPS 23
LK) =1 MAPS 24
D01J=K,21 MAFS 25
1 LI =L +L (J+1) MAFS 26
2 PRINT3IH (L (J) 3J=K,22) MAFS 27
3 FORMAT(2216) MAFS 28
RETURN MAFS 29
END MAPS 30

7/8/9 in column 1.
Namelist data

$SPARAMS

SIZE2 = T
SEND
€/7/8/9 in column 1.

C-2 60329100 C

R=1 MAPS

PROGRAM MAPS
SYM30LIC REFERENCE MAF

ENTRY POINTS

#0352 MAPS
VARIABLES SN TYPE RELOCATION
«125 SIZZ1 INTEGER 4126 -SIZE2 INTEGER
+125 Si INTESGER L126 S2 INTEGER
FILE NAMES MODE
0 INPUT 2022 QUTPUT FHMT 0 TAPES FNT 2022
EXTERNALS TYPE ARGS
NOHZAD 1 PASCAL 1
NAMELISTS
PARAMS
STATEMENT LABELS
4110 1 FMT +117 2 FMT
STATISTICS
PROGRAM LENGTH 558 53
BUFFER LENGTH 40448 2084
3LOCK DATA
SYM30LIC REFERENCE MAF
VARIABLES SN TYPE RELOCATION
0 X INTEGER APRAY ARRAY
COMMON BLOCKS LENGTH
ARRAY 22
STATISTICS
PROGRAM LENGTH 1] 0
COMMON LENGTH 268 22
SUBROUTINE PASCAL
SYM30LIC REFERENCE MAP
ENTRY POINTS
27 NOHEAD 2 PASCAL
VARIABLES SN TYPE RELOCATION
100 1 INTEGER 183 4 INTEGER
102 K INTEGER 0 L INTEGER ARRAY ARRAY
108 M INTEGER 0 SIZE INTEGER FePe
FILE NAMES MODE
OUTPUT FMT
INLINE FUNGCTIONS TYPE ARGS
MAXD INTEGER 0 INTRIN MING INTEGER 8 INTRIN
STATEMENT LABELS
0 1 0 2 7% 3
85 & FMT
COMMON BLOCKS LENGTH
ARRAY 22
STATISTICS
PROGRAM LENGTH 1068 79
COMMON LENGTH 268 22

60329100 C

TAPES

FMT

FeT

R=3 MAPS

PROGRAM MAPS
SYMBOLIC REFERENCE MAP

ENTRY POINTS DEF LINE REFERENCES
4052 MAPS 1
VARIABLES SN TYPE RELOCATION
4125 SIZEL INTEGER REFS 3 4 5
4126 SIZE2 INTEGER REFS 3 4 S
4125 Si1 INTEGER REFS 3 & 11 DEFINED
4126 S2 INTEGER REFS 3 & 14 OEFINED
FILE NAMES MODE
0 INPUT
2022 OUTPUT FHT WRITES 9 12
0 TAPES FHT READS 7
2022 TAPE® T WRITES 8
EXTERNALS TYPE ARGS REFERENCES
NOHEAD 1 14
PASCAL 1 11
NAMELISTS DEF LINE REFERENCES
PARANS 5 7
STATEMENT LABELS DEF LINE REFERENCES
4110 1 FMT 10 9
#1117 2 FMT 13 12

—«— missing for R=2 map

STATISTICS
PROSRAM LENGTH 658 53
BUFFER LENGTH 40448 2084

BLOCK DATA

SYMBOLIC REFERENCE MAP

VARIAZLES SN TYPE RELOCATION
o X INTESER ARRAY ARPAY REFS 2 3 DIFINZD
COMMON BLOCKS LENGTH P -
ARRAY 22 —«— missing for R=2 map
STATISTICS
PROGRAM LENGTH 1] 0
CGMMON LENGTH 268 22

SUBROUTINE PASCAL
SYMBOLIC REFERENCE MAP

ENTRY POINTS DEF LINE REFERENCES
27 NOHEAD 7 16
2 PASCAL 1
VARIABLES SN TYPE RELOCATION
100 I INTEGER REFS 4 10 DEFINED L
103 J INTEGER REFS 3*13 14 DEFINED 12
162 K INTEGER REFS 11 12 14 DEFINED
0 L INTEGER ARRAY ARRAY REFS 2 3 2%13 14
104 M INTEGER REFS L} DEFINED 8
0 SIZE INTEGER F.P. REFS 2 13 8 DEFINED
FILE NAMES MODE
OUTPUT FMT HRITES [14
INLINE FUNCTIONS TYYPE ARGS DEF LINE REFERENCES
MAXO INTEGER 8 INTRIN 8
MIND INTEGER 0 INTRIN 8
STATEMENY LABELS DEF LINE REFERENCES
0 1 13 12
0 2 14 9
76 3 FMT 15 14
85 &4 FMT 5 L
LOOPS LABEL INDEX FROM=TO LENGTH PROPERTIES
20 1 4 5B EXT REFS
Gy 2 .1 9 14 208 EXT REFS NOT INNER
51 1 J 12 13 28 INSTACK
COMMON BLOCKS LENGTH i 'n for R:
BLOCK ™ —— missing 2 map
STATISTICS
PROGRAM LENGTH 1068 70
COMMON LENGTH 268 22

C-4

oo

9
14

10
DEFINED
1

11

13

60329100 C

OUTPUT

$PARAMS

SIZE1 = 12
SIZE2 = 7
$END

SAMPLE PROGRAM TO ILLUSTRATE THE VARIOUS COMPILER MAPS.

GOMBINATIONS OF M THINGS TAKEN N AT A TIME.

-N-

1 2 3 & 5 6 7 8 3 10 i1

2 1

3 3 1

& 6 i 1

5 10 10 5 1

6 15 20 15 & 1

7 21 35 35 2% 7 1

8 28 56 70 56 28 8 i

9 36 84 126 126 84 36 3 1

10 45 120 210 252 210 120 45 10 1

11 55 165 330 462 462 330 165 55 11 i

12 66 220 495 792 924 792 495 220 83 12
THE FOLLOWING WILL HAVE NO HEADINGS.

2 1

3 3 1

4 6 4 1

5 10 10 5 1

6 15 20 15 6 1

7 21 35 3 21 7 1

60329100 C

General Format
Each class of symbol is preceded by a subtitle line that specifies the class and the properties listed.
Formats for each symbol class are different, but printouts contain the following information:
The octal address associated with each symbol relative to the origin of the program unit.
Properties associated with the symbol
List of references to the symbol for R=2 and R=3

All line numbers in the reference list refer to the line of the statement in which the reference occurs. Multiple refer-
ences in a statement are printed as n*1 where n is the number of references on line 1.

All numbers to the right of the name are decimal integers unless they are suffixed with B to indicate octal.

Names of symbols generated by the compiler (such as system library routines called for input/output) do not appear
in the reference map.

ENTRY POINTS

Entry point names include program and subprogram names and names appearing in ENTRY statements. The format
of this map is:

ENTRY POINTS DEFINITION REFERENCES
addr name def ref
addr Relative address assigned to the entry point.
name Entry point name as defined in FORTRAN source.
def Line number on which entry point name is defined (PROGRAM statement, SUBROUTINE
statement, ENTRY statement, etc.). (Not on R=1 maps.)
ref In subprograms only, line number of RETURN statements. (Not on R=1 maps.)
R=1:
ENTRY POINTS
27 NOHEAD 2 PASCAL
R=2 and R=3:
ENTRY POINTS DEF LINE REFERENGES
27 NOHEAD 7 16
2 PASCAL 1

C-6 60329100 C

VARIABLES

Variable names include local and COMMON variables and arrays, formal parameters, RETURNS names, and for
FUNCTION subprograms, the defined function name when used as a variable. The format of this map is:

VARIABLES SN TYPE RELOCATION
addr name * type prop block refs
addr Relative address assigned to variable name. If name is a member of a COMMON block,

addr is relative to the start of block.

name Variable name as it appears in FORTRAN source listing. Variables are listed in alphabeti-
cal order.

SN = stray name flag. (No entry appears under SN when R=1 is specified.) Variable names
which appear only once in a subprogram are indicated by * under the SN headline. Such
variable names are likely keypunch errors, misspellings, etc. In the long map, DO loops where
the index variable is not referenced will cause the index variable to be flagged as a (legal) stray
name.

type LOGICAL, INTEGER, REAL, COMPLEX, DOUBLE, or ECS.
Gives the arithmetic mode associated with the variable name. RETURNS appears if name
is a RETURNS formal parameter.

prop Properties associated with variable name are printed by keywords in this column:
*UNDEF Variable name has not been defined. A variable is defined if any of the
following conditions hold:
name appears in a COMMON or DATA statement.
is EQUIVALENCED to a variable that is defined.
appears on the left side of an assignment statement at the outermost
parenthesis level.
is the index variable in a DO lcop.
appears as a stand alone actual parameter in a subroutine or function
call.
appears in an input list (READ, BUFFERIN, etc.).

Otherwise, the variable is considered undefined. However, variables which
are used (in arithmetic expressions, etc.) before they are defined (by an
assignment statement or subprogram call) are not flagged.

ARRAY Variable name is dimensioned.

*UJNUSED name is an unused formal parameter.

block Name of COMMON block in which variable name appears. If blank, name is a local variable.
// indicates name is in blank COMMON.
F.P. indicates name is a formal parameter.

60329100 C C-7

refs

(Does not appear in short map, R=1)

References and definitions associated with variable name are listed by line number, begin-

ning with the following in-line subheadings:

REFS All appearances of name in declarative statements or statements where the
value of name is used.

DEFINED All appearances of name where its value may be altered such as in DATA,
ASSIGN, READ, ENCODE, or DECODE, BUFFER IN, assignment state-
ments, or as a DO loop index.

IO REFS All appearances of name in use as a variable file name in I/O statements.

R=1: This map form uses a double column format to conserve space. Headings appear only on the first columns.

VARIABLES
100 I
102 K
104 M

R=2 and R=3:

VARIABLES
100 1
103 J
102 K

6 L
101 M
S

0 sIze

C-8

SN

SN

TYPE
INTEGER
INTEGER
INTEGER

TYPE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

RELOCATION
103 J INTEGER
7 L INTEGER ARRAY ARRAY
o SIZE INTEGER FeP,4
RELOCATION
REFS 4 10 DEFINED L3 9
REFS 3%43 14 OEFINED 12 14
REFS 11 12 14 DEFINED 10
ARRAY ARRAY REFS 2 3 2%13 14 BEFINED 11 13
REFS 9 DEFINED 8
FePe REFS 2 L 8 DEFINED 1

60329100 C

FILE NAMES

File names include those explicitly defined in the PROGRAM header card as well as those implicitly defined (in
subprograms) through usage in I/O statements. The format of this map is:

FILE NAMES MODE
addr name mode refs
addr Relative address of the file environment table (FET) associated with the file name. The

file’s buffer starts at addr+21B. This column appears only in main programs (where the
file is actually defined). In subprograms, this column is blank.

name Name of the file as defined in PROGRAM statement or implied from usage in I/O state-
ments. For example, in a subprogram, WRITE(2) implies a reference to file TAPE2.

mode Indicates the mode of the file, as implied from it usage. One of the following will be
printed:
FMT Formatted /O eg. READ(2,901)

UNFMT Unformatted I/O READ(2)

BUF Buffer I/O BUFFER IN(2,0)
MIXED Some combination of the above.
blank Mode cannot be determined.
refs (Does not appear in short map, R=1.)
References are divided into three categories by in-line subheadings:
READS followed by list of line numbers referencing file name in input operations.
WRITES line numbers of output operations on file name.

MOTION line numbers of positioning operations (REWIND, BACKSPACE, ENDFILE)

on file name.
R=1:
FILE NAMES MODE
0 INPUT 2022 OUTPUT FMT 8 TAPES FMT 2022 TAPE6 F¥MT
R=2 and R=3:
FILE NAMES MODE
0 INPUT
2022 O0OUTPUT FMT WRITES 9 12
0 TAPES FMT READS 7
2022 TAPESB FMT WRITES 8

When a variable is used as a unit number in an I/O statement the following message is printed:

VARIABLE USED AS FILE NAMES, SEE ABOVE

60329100 C C9

EXTERNAL REFERENCES

External references include names of functions or subroutines called explicitly from a program or subprogram, as well
as names declared in an EXTERNAL statement. Implicit external references, such as those called by certain FORTRAN
source statements (READ, ENCODE, etc.) are not listed. The format of this map is:

EXTERNALS TYPE ARGS REFERENCES
name type args prop refs
name Name defined EXTERNAL as it appears in source listing.
type Applies to externals used as functions. Possible keywords are:

REAL, INTEGER, COMPLEX, DOUBLE, LOGICAL

Gives the arithmetic mode of external function.

NO TYPE No specific arithmetic mode defined.
Applies to certain library functions listed as externals in T mode. (T mode
is implied when OPT=0 or D mode is selected.)

This column will be blank for all externals used as subroutines in CALL statements.

args Number of arguments in call to external name.
prop Special properties associated with external name:
F.P name is a formal parameter (applies only for references within a program).

LIBRARY name is a library function called by value. In T compile modes, no LIBRARY
entries appear since all references to library functions (SIN, COS, etc.) will be
by name. (OPT=0 or D mode automatically implies T mode.})

refs Line number on which name is referenced. (Does not appear in short map, R=1.)
R=1:
EXTERNALS TYPE EPGS
MNOHCAD 1 PASCAL 1
R=2 and R=3:
EXTERNALS TYPE ARGS REFERENCES
NOHEAD 1 14
PASCAL i 11

C-10 60329100 C

INLINE FUNCTIONS

INLINE FUNCTIONS TYPE ARGS DEF LINE
name mode args ftype def
name Symbol name as it appears in the listing.
mode Arithmetic mode, NO TYPE means no conversion in mixed mode expressions.
args Number of arguments with which the function is referenced.
ftype INTRIN Intrinsic function.
SF Statement function.
def Blank for intrinsic functions; the definition line for statement functions.
refs Lines on which function is referenced.
R=1:
INLINE FUNCTIONS TYPE ARGS
MAXO INTEGER 0 INTRIN MINO INTEGER 0 INTRIN
R=2 and R=3:
INLINE FUNGTIONS TYPE ARGS DEF LINE REFERENCES
MAXD INTEGER 0 INTRIN 8
MINO INTEGER 0 INTRIN 8
NAMELISTS
NAMELISTS DEF LINE REFERENCES
name def refs
name Namelist group name as defined in FORTRAN source.
def Line on which namelist is defined.
(Does not appear in short map.)
refs Line numbers of references to name.
R=1:
NAMELISTS
PARAMS
R=2 and R=3:
NAMEL ISTS DEF LINE REFERENGES
PARAMS 5 7

60329100 C

REFERENCES

STATEMENT LABELS

The statement label map includes all statement labels defined in the program or subprogram. The format of this map

is:

addr

label

type

act

def
refs

R=1:

STATEMENT LABELS
0 1
65 & FNT

R=2 and R=3:

STATEMENT LABELS
0 1
o 2

76 3 FHuT
85 4 FMT

C-12

STATEMENT LABELS DEF LINE REFERENCE
addr label type act def refs

Relative address assigned to statement label. Inactive labels will have addr zero.
Statement label from FORTRAN source. Statement labels are listed in numerical order.

One of the following keywords:

FMT Statement label is a FORMAT statement.

UNDEF Statement label is undefined. refs will list all references to this undefined
label.

blank Statement label appears on a valid executable statement.

One of the following keywords:

INACTIVE label is considered inactive. It may have been deleted by optimization.
Terminal statements of a DO loop are inactive unless referenced as the
object of a transfer of control. Inactive labels will have addr zero.

NO REFS label is not referenced by any statements. This label may be removed safely
from the FORTRAN source.

blank Iabel is active or referenced.

Line number on which label was defined. (Does not appear in short map.)

Line numbers on which label was referenced. (Does not appear in short map.)

DEF LINE REFERENCES
13 2

14 9
15 14
5 4

60329100 C

DO-LOOPS

The DO-ioop map include

s all DO loops as well as implied DO loops not in DATA statements that appear in the pro-

gram and lists their properties. This map is generated only in the long map (R=2 and R=3). Loops are listed in order
of appearance in the program. The format of this map is:

fwa

term

mf

index

first-last

len

prop

R=2 and R=3:

LOOPS LABEL
20
a4 2
51 1

*
'y

INDEX

[

LOOPS LABEL INDEX FROM-TO LENGTH PROPERTIES
fwa term mf index first-last len prop

Relative address assigned to the start of loop body.
Statement label defined as end of loop, or blank for implied DO-loops in I/O statements.

* Indicates index is materialized (value of index in memory is the current value
of loop count).

blank Indicates index is not materialized (index is not used directly and is updated
in a register only; value in memory will not correspond to current loop count).

Variable name used as control index for loop, as defined by DO statement.
Line numbers of the first and last statements of the loop.
Number of computer words generated for the body of the loop (octal).

Various keyword prints are possible, describing optimization properties of the loop:
OPT Loop has been optimized.

INSTACK Loop fits into instruction stack (7 words or less, 6600 only¥).

EXT REFS Loop not optimized because it contains references to an external subprogram,
or it is the implied loop of an I/O statement.

ENTRIES Loop not optimized because it contains entries from outside its range.
NOT INNER Loop not optimized because it is not the innermost loop in a nest.

EXITS Loop not optimized because it contains references to statement labels outside
its range.

FROM-TO LENGTH PROPERTIES
4 5B EXT REFS
9 14 208 EXT REFS NOT INNER
12 13 28 INSTACK

+Loops that fit in the 6600 instruction stack have a maximum length of 7 words and usually run two to three times as
fast as a comparable loop that does not fit into the stack.

60329100 C

C-13

COMMON BLOCKS

The common block map lists common blocks and their members as defined in the source program. The format of this
map is:

COMMON BLOCKS LENGTH MEMBER - BIAS NAME(LENGTH)
block blen bias member (size)
block Common block name as defined in COMMON statement.
/1 represents blank common.
blen Total length of block in decimal.

If the long map is specified (R=3) the following details are printed for each member of each block:

bias Relative position of member in block; in decimal, gives the distance from the block origin.
member Variable name defined as a member of block.
size Number of words allocated for member.

Only variables defined as members of a common block explicitly by a COMMON statement are listed in this map.
Variables which become implicit members of a common block by EQUIVALENCE statements are listed in the EQUIV
CLASS map and the variable map.

R=1 and R=2:
COMMON BLOCKS LENGTH
ARRAY 22
COMMON BLOCKS LENGTH MEMBERS ~ BIAS NAME(LENGTH)
ARRAY 22 oL

C-14 60329100 C

EQUIVALENCE CLASSES

This map appears only when R=3 is selected. All members of an equivalence class of variables explicitly equated in
EQUIVALENCE statements are listed. Variables added through linkage to common blocks are not included. The

format of the map is:

cbase

base

clen
bias

member

size

R=3 only:

EQUIV CGLASSES LENGTH
S1z&1 i
SIZE2 1

60329100 C

EQUIV CLASSES LENGTH MEMBERS — BIAS NAME (LENGTH)
cbase base clen bias member (size)

Common base. A variabie name appears here if the equivaience ciass is in a common biock.
In such a case, cbase is the variable name of the first member in that common block.

ERROR Indicates this class is in error because more than one member is in common
or the origin of the block is extended by equivalence.

If the class is local (not in a common block), base is the name of the variable with the lowest
address. If the class is in a common block, base is the name of the variable in that common
block to which other variables were linked through an EQUIVALENCE statement.

Number of words allocated for base, (considered the class length).

Position of member relative to base; bias is in decimal.

Variable name defined as a member of an equivalence class. (Members having the same bias
which are associated with the same base and thus occupy the same locations.)

Size of member as defined by DIMENSION, etc.

MEMBERS ~ BIAS NAME(LENGTH)
0 Si1 (68}
0 s2 (&3]

C-15

PROGRAM STATISTICS

At the end of the reference map, the statistics are printed in octal and decimal. The format is:

STATISTICS

PROGRAM LENGTH Length of program including code, storage for local variables, arrays, constants,
temporaries, etc., but excluding buffers and common blocks.

BUFFER LENGTH Total space occupied by I/O buffers and FETs.

COMMON LENGTH Total length of common, excluding blank common.

BLANK COMMON Length of blank common.

R=1, R=2, and R=3:
STATISFICS
PROGRAM LENGTH 1068 76
COMMON LENGTH 268 22
ERROR MESSAGES
The following error messages are printed if sufficient storage is not available:
CANT SORT THE SYMBOL TABLE INCREASE FL BY NNNB

or

REFERENCES AFTER LINE NNN LOST INCREASE FL BY NNNB

DEBUGGING (Using the Reference Map)

New Program:

The reference map can be used to find names that have been punched incorrectly as well as other items that will not
show up as compilation errors. The basic technique consists of using the compiler as a verifier and correcting the FE

errors until the program compiles.

Using the listing, the R=3 reference map, and the original flowcharts, the following information should be checked by
the programmer:

Names incorrectly punched
Stray name flag in the variable map
Functions that should be arrays

Functions that should be inline instead of external

C-16 60329100 C

Variables or functions with incorrect type
Unreferenced format statements
Unused formal parameters
Ordering of members in common blocks
Equivalence classes
Existing Program:
The reference map can be used to understand the structure of an existing program. Questions concerning the loop

structure, external references, common blocks, arrays, equivalence classes, input/output operations, and so forth, can
be answered by checking the reference map.

60329100 C C-17

Intrinsic Function Symbolic Type of
& No. of Arguments Definition Example Name Argument Function
Absolute value lal Y=ABS(X) ABS Real Real
@) J=IABS() IABS Integer Integer
DOUBLE A,B DABS Double Double
B=DABS(A)
Truncation sign of a times Y=AINT(X) AINT Real Real
1 .
@ lngaelst integer I=EINT(X) INT Real Integer
DOUBLE Z IDINT Double Integer
J=IDINT(Z)
B=AMOD(A1, A2) AMOD Real Real
Modulo MOD or AMOD (a_,a_) »
is defined to be L 2 9=MOD(I1,12) MOD Integer Integer
a ~trunc(a 1/ az)*az DM=DMOD(D1,D2) DMOD Double Double
Choosing largest Max (a l,a 97") X=AMAXO0{,J,K) AMAXO Integer Real
value (=2) A=AMAX1(X,Y,Z) AMAX1 Real Real
L=MAXO0(I,J,K,N) MAXO Integer Integer
1=MAX1(A, B) MAX1 Real Integer
DOUBLE W,X,Y,Z DMAX1 Double Double
W=DMAX1(X,Y, Z)
Choosing smallest Min (al,az, L)) Y=AMINO(I,J) AMINO Integer Real
value (=2) _
Z=AMIN1(X,Y) AMIN1 Real Real
L=MINO(, J, K) MINO Integer Integer
J=MINL(X, Y) MIN1 Real Integer
DOUBLE A,B,C DMIN1 Double Double
C=DMIN1(A, B)
Float (1) Conversion from XI=FLOAT() FLOAT Integer Real
integer to real
Fix (1) Conversion from IY=IFIX(Y) IFIX Real Integer
real to integer -
same as INT
60329100 D D-1

Intrinsic Function
& No. of Arguments

Definition

Transfer of sign (2)

Positive difference (2)

Truncate to obtain most
significant part of double
precision argument (1)

Obtain real part of
complex argument (1)

Obtain imaginary part of
complex argument (1)

Express single precision
argument in double
precision form (1)
Express two real
arguments in complex
form (2)

Obtain conjugate of a
complex argument (1)

Shift (2)

Logical product (2)
Logical sum (2)
Complement (1)

Masking (1)

Sign of a, times [aj]

a; - Min(al, ag)

Shift aj by ag bit
positions:

left circular if a

is positive; right
with sign extension
if ay is negative

Generate a left
justified bit mask
of a; one bits

Example

Z=SIGN(X, Y)
J=ISIGN(11,12)

Z=DIM(X, Y)
J=IDIM(I1,12)

DOUBLE Y
X=SNGL(Y)
COMPLEX A
=REAL(A)
D=AIMAG(A)

DOUBLE Y
Y=DBLE(X)

COMPLEX C
C=CMPLX(A1,A2)

COMPLEX X,Y
=CONJG(X)

B=SHIFT(A,T)

C=AND(A1, A2)
D=OR(A1, A2)
B=COMPL(A)

J=MASK(I)

Symbolic Type of
Name Argument Function
SIGN Real Real
ISIGN Integer Integer
DSIGN Double Double
DIM Real Real
IDIM Integer Integer
SNGL Double Real
REAL Complex Real
AIMAG Complex Real
DBLE Real Double
CMPLX Real Complex
CONJG Complex Complex
SHIFT a: Single Octal
word
ay: Integer
AND Single word Octal
OR Single word Octal
COMPL Single word Octal
MASK Integer Octal

60329100 A

External Function Symbolic Type of

& No. of Arguments Definition Example Name Argument Function
Exponential (1) ed Z=EXP(Y) EXP Real Real
DOUBLE X,Y DEXP Double Double
Y=DEXP(X)
COMPLEX A,B CEXP Complex Complex
B=CEXP(A)
Natural logarithm (1) loge(a) Z=ALOG(Y) ALOG Real Real
Y=DLOG(X) DLOG Double Double
B=CLOG(A) CLOG Complex Complex
Common Logarithm (1) log10 (a) B=ALOG10(A) ALOG10 Real Real
DD=DLOG10(D) DLOG10 Double Double
Trigonometric sine (1) sin (a) Y=SIN(X) SIN Real Real
DS=DSIN(D) DSIN Double Double
CS=CSIN(C) CSIN Complex Complex
Trigonometric cosine cos (a) X=COS(Y) COS Real Real
& DC=DCOS(D) DCOS Double Double
CC=CCOS(C) CCOS Complex Complex
Hyperbolic tangent tanh (a) B=TANH(A) TANH Real Real
(8)]
Square root (1) @2 Y=SQRT(X) SQRT Real Real
DY=DSQRT(DX) DSQRT Double Double
CY=CSQRT(CX) CSQRT Complex Complex
Arctangent (1) arctan (a) Y=ATAN(X) ATAN Real Real
DY=DATAN(DX) DATAN Double Double
(2) arctan (al/az) B=ATANZ2(Al,A2) ATAN2 Real Real
D=DATAN2(D1,D2) DATAN2 Double Double
Modulus (1) V ATMAG2(2)+REALZ(a) CM=CABS(CX) CABS Complex Real
Arccosine (1) arccos (a) X=ACOS(Y) ACOS Real Real

60329100 A D-3

External Functions
& No. of Arguments

Arcsine (1)

Trigonometric
tangent (1)

Random number
generator (1)

Address of argument a
1)

1/0 status on buffer

unit (1)

1/0 status on non-
buffer unit (1)

Length (1)

Variable character-
istic (1)

Parity status on
non-buffer unit (1)

Date as returned by
6000 SCOPE is
bMM.DD.YY. (1)
7000 SCOPE is
bYY.MM.DD. (1)

Current reading of
system clock as
returned by SCOPE is
AHH.MM.SS. (1)

Time in seconds (1)

Definition
arcsin (a)

tan (a)

ranf (a) returns values
uniformly distributed
over the range [0,1)

loc (a)

= -1 unit ready;
no error

=0 EOF on last
operation

= +1 parity error

=0 no EOF in
previous read

Number of central
memory words read
on previous buffered
input request
-1 = indefinite
+1 = out of range

0 = Normal

0 = no parity error on
previous read

date(a)

time(a)

second(a) (accumu-
lated CP time)

Example

X=ASIN(Y)
Y=TAN(X)

X=RANF(DUM)

P=LOCF(X)

IO=UNIT(6)

IFL=EOF(4)

L=LENGTH(J)

LEN=LEGVAR(V)

IP=IOCHEC(5)

WHEN=DATE(D)

CLTIM=TIME(A)

CLTM=SECOND(A)

T To use this routine with 7600, the program must be run with a MODE(0) card.
11 May be used as functions or subroutines; value is returned via argument and normal function.

D-4

Symbolic Type of

Name Argument Function
ASIN Real Real
TAN Real Real
RANF Dummy Real
LOCF Symbolic Integer
UNIT Integer Real
EOF Integer Real
LENGTH Integer Integer
LEGVART Real Integer
IOCHEC Integer Integer
DATE tt Hollerith Hollerith
TIMEtt Hollerith Hollerith
SECONDt} Real Real

60329100 C

[P 50 i
Subroutine

& No. of Arguments

Set Sense Light (1)

Test Sense Light (2)

Test Sense Switch (2)

Terminate (0)

Console Comment (1)

Console Value (2)

Obtain current

generative value of

RANF between 0 and 1 (1)
Initialize generative
value of RANF (1)

Dump memory (3-60)

Input checking (2)

Definition

1= i=6 turn sense light
i on. i=0 turn off all
sense lights.

If sense light i is on
j=1. Ioff j =2 Always
turn sense light i off

If sense switch i is on
(down) j = 1. If sense
switch i is off (up) j = 2.

Terminate program exe-
cution and return control
to the monitor

Place a message of up to
80 characters on dayfilet

Display up to a 10 charac-
ter message and value in
the dayfilef

ranget (a)

ranset (a), the generic
value is set to the nearest
odd number = a

dump (@,b, 1)
dump A to B according to f

ERRSET (a,b), set maxi-
mum number of errors, b,
allowed in input data before
fatal termination. Error
count kept in a.

Example

CALL SLITE()

CALL SLITET(L,J)

CALL SSWTCH(L, J)

CALL EXIT

CALL REMARK (2HHI)

CALL DISPLA
(2HX=,20.2)

CALL RANGET (X)

CALL RANSET (X)

CALL DUMP(A, B, 1)
CALL PDUMPX,Y,0)

CALL ERRSET(A, B)

Symbolic
_Name

SLITE

SLITET

SSWTCH

EXIT

REMARK

DISPLA

RANGET

RANSET

DUMP
PDUMP

ERRSET

Type of
Argument

Integer

Integer

Integer

Hollerith

a= Hollerith

a2=real or
integer

Symbolic

Real

Logical

Integer
Real
Double
Complex

Symbolic
Integer

tCharacters with a display code value above 57g are not allowed. The message must be terminated with binary
zeros, even if an entire word is necessary. (Use of a Hollerith constant of any form will provide such a ter-

mination automatically.)

60329100 D

INTERMIXED COMPASS SUBPROGRAMS E

Subprograms written in COMPASS may be intermixed with FORTRAN coded subprograms in the
source deck. COMPASS subprograms must begin with a card containing the word IDENT in columns
11-15, and terminate with card containing the word END in columns 11-13. Columns 1-10 of the

IDENT and END cards must be blank; column 14 of the END card must be blank.

Calling Sequence

When the FORTRAN compiler encounters a reference to an external subprogram, subroutine, or
function the following calling sequence is generated:

SA1 Argument list (if parameters appear)

RJ Subprogram name
where the argument list consists of consecutive words of the form:
VFD eso/argumenti

followed by a zero word.

Control Return

The COMPASS subprogram must restore the initial contents of A0 in A0 upon returning control to the
calling subprogram. When the COMPASS subprogram is entered via a function reference, the re-
sult of that function must be in X6 or X6 and X7 with the least significant or imaginary part of the
double precision or complex result appearing in X7.

Example

The following page contains an example of a simple COMPASS Function and the calling FORTRAN
main program. Since the function PF returns an integer value, it must be declared integer in
the calling program. The argument to PF may be either real or integer.

60329100 C E-1

Job Card

MAP (OFF)

FIN(S=

LGO.

0)

SYSTEXT IS NOT USED

7/8/9 in column 1.
PROGRAM PSAMP (OQUTPUT)
INTEGER PF
X=SART (24)
I=PF (X}
PRINT1s1
FORMAT (2S5H1THE PARITY OF SQRT(2) 1ISs12)

PF

STOP
END

IDENT
ENTRY
TITLE
COMMENT
SPACE
PF -

PF
PF
PF -

Gel11

COMPUTE PARITY OF WORD.
COMPUTE PARITY OF WORD.

COMPUTE PARITY OF WORD.

FORTRAN SOURCE CALL =--

RESULT

ENTRY
EXIT

EQ
SA2
CX3
MX0
BX6
EQ

END

PARITY

= ls IFF ARG HAS ODD NUMBER OF BITS SET.

= PF (ARG)

0y OTHERWISE.

(x1)
(X6)

(I}

#+1517
X1
x2
-1
-X02X3
PF

6/7/8/9 in column 1.

ADDRESS OF ARGUMENT,
RESULT.

ENTRY/EXITeee

ISOLATE LOWEST BIT
EXITeo

60329100 C

STATEMENT FORMS F
Statements Classification Page
Entry Points
PROGRAM s N 9-1
PROGRAM s (fl,fz,...,fn) N 9-1
SUBROUTINE s N 9-2
ces N 9-2
SUBROUTINE s (al,az, ,an)
SUBROUTINE s, RETURNS (bl’bz’ - ,bm) N 9-2
ces .o N 9-2
SUBROUTINE s (a,,2,, - -,a),RETURNS (b;,b,,....b)
N 9-8
FUNCTION { (al,az, ees ,an)
REAL FUNCTION f (al,az, .. ,an) N 9-8
DOUBLE FUNCTION f (al,az, e ,an) N 9-8
COMPLEX FUNCTION f (al,a2, ees ,an) N 9-8
INTEGER FUNCTION f (al,az, ves ,an) N 9-8
LOGICAL FUNCTION f (al,az, tee ,an) N 9-8
DOUBLE PRECISION FUNCTION f (al,az, e ,an) N 9-8
ENTRY s N 9-5
Specification Program Declaration
BLOCK DATA N 9-10
BLOCK DATA d N 9-10
Inter-subroutine
EXTERNAL v_,v_,...,V NS 8-7
1’2 n
Inter-subroutine Transfer Statements
CALL s 4-12
cees 4-12
CALL s (al,az, an)
CALL s, RETURNS (b},b,,...,b) 4-12
T N=Non-executable, S=Specification, E=Executable.
60329100 A F-1

Statements (Cont'd)

CALL s (al,az, e ,an), RETURNS (bl’bz’

RETURN
RETURN a

Data Declaration and Storage Allocation

Type Declaration

REAL vl,vz, e ,vn

DOUBLE Vl’VZ’ e ,vn
COMPLEX Vv_,V_,...,V
1’72 n
INTEGER vl,vz, .o ,vn
LOGICAL vl,vz, . ,vn
DOUBLE PRECISION vV

ECS vl,v

cee,V
2° 'n

PIEEETA A
TYPE REAL VirVgreees Vo

TYPE DOUBLE v_,v_,...,V
1772 n

,V
TYPE LOGICAL vl,vz, EEEAA

TYPE COMPLEX ViV ee- ’Vn
TYPE INTEGER v,_,v_,...
1’2 n
sV
TYPE DOUBLE PRECISION v_,v
TYPE ECS vl,v

vV

17 Vg1V

eee,V
2’ 'n

Storage Allocation

DIMENSION v, (i,), Vy(ig),...,v (i
COMMON /x_/a_/.../x /a

11 n n
EQUIVALENCE (kl) , (k2) yeees (kn)
DATA kl/dl/, k2/d2/ oo ,kn/dn/
DATA (r1=dl) , (r2=d2) seses (rn=dn)

o

Statement Function

f(al,az,..«. ,an) =e

.,b
m

Classification

E
E
E

NS
NS
NS
NS
NS
NS
NS
NS
‘NS
NS
NS
NS
NS
NS

NS
NS
NS

Page
4-12
4-14
4-14

8-1

8-6
8-8
8§-10

9-7

60329100 A

Symbol Manipulation and Control

Replacement Statements
Arithmetic
v=e 4 Logical

Masking
Intra-program Transfers

GO TO k

GO TO i, (kl,k2, ves ,kn)
GO TO (ki’kz’ ces ,kn), e
IF (e) k;,K,, Ky

IF (e) kl,k2

IF (e) s

Loop Control

DOni =m1,m2,m3

Miscellaneous Program Controls

ASSIGN k TO i
CONTINUE
PAUSE
PAUSE n
STOP

STOP n

Input/Output

1/0 Format

FORMAT (qqt1z92z9. - -t 2pas)

60329100 A

Classification

=

> I 5 T > B > I > B 5

H AR HE BH B ®H

Page

3-1
3-3

4-1
4-1
4-2
4-3
4-4
4-4

4-5

4-12
4-15
4-15
4-14
4-14

1/0 Control Statements Classification Page

READ f,k E 5-3
READ (u) k E 5-4
READ (u) E 5-4
READ (u,f) k E 5-2
READ (u,f) E 5-2
WRITE (u) k E 5-4
WRITE (u,{) E 5-3
WRITE (u,f) k E 5-3
PRINT f,k E 5-4
PUNCH {,k E 5-4
BUFFER IN (u,p) (A, B) E 7-2,1-2
BUFFER OUT (u,p) (A, B) E 7-2,1-2
Internal Manipulation
ENCODE (n,f,A) k E 1-6,7-3
DECODE (n,f,A) k E 1-6,7-3
Tape Handling
ENDFILE u E 5-10
REWIND u E 5-9,1-5
BACKSPACE u E 5-9,1-5
Miscellaneous
NAME LIST /yl/al/yz/az/ e /yn/an N 5-6
Program Termination
END N 4-15

F-4 60329100 A

SYSTEM ROUTINE SPECIFICATIONS G

The SYSTEM routine handles error tracing, diagnostic printing, termination of output buffers, and
All the FORTRAN mathematical routines relv

Q el PDrocedurlcs,; Al e Ui RAN HAUNEeINALICAal TOULLNeS Sy

transfer to specified non-standard error procedures.

LailsSicl W cCllieC OI==allt

on SYSTEM to complete these tasks. Also a FORTRAN coded routine may call SYSTEM. Any of

the parameters used by SYSTEM relating to a specific error may be changed by a user routine during
execution. The END processor also makes use of SYSTEM to dump the output buffers and print an
error summary. Since the initialization routine (Q8NTRY.), the end processors (END., STOP.,

and EXIT.), and SYSTEM must always be available, these routines are combined into one subprogram
with multiple entry points.

The calling sequence to SYSTEM passes the error number as the first parameter and an error
message as the second parameter. Several different messages may be associated with one error
number. The error summary given at program termination lists the total number of times each
error number was encountered.

The error number of zero is accepted as a special call to end the output buffers and return. If no
OUTPUT file is defined before SYSTEM is called, no errors are printed and a message to this effect
appears in the dayfile. Each printed line is subjected to the line limit of the OUTPUT buffer; when
the limit is exceeded, the job is terminated.

The error table is ordered serially (the first error corresponds to error number 1) and it is ex-
pandable at assembly time. The last entry in the table is a catch-all for any error number which
exceeds the table length. An entry in the error table appears as follows:

Print Error
Print Frequency Print Detection F/ A/ Non-Standard
Frequency Increment Limit Total NF NA Recovery Address
8 8 12 12 1 1 18

Print Frequency = PF

Print Frequence Increment = PFI

P¥ =0 and PFI =0, the diagnostic and traceback information are not listed.

PF =0 and PFI = 1, the diagnostic and traceback information are listed until the print limit is
reached.

PF =0 and PFI =n, the diagnostic and traceback information are listed only the first n times
unless the print limit is reached first.

PF =n, the diagnostic and traceback information are listed every nm time until the print limit
is reached.

60329100 A G-1

Fatal (F)/ Non-Fatal (NF)

If the error is non-fatal and a non-standard recovery address is not specified, error messages are
printed according to PRINT FREQUENCY and control is returned to the calling routine,

If the error is fatal and no non-standard recovery address is specified, error messages are printed
according to PRINT FREQUENCY, an error summary is listed, all output buffers are terminated,

and the job is terminated.

If a non-standard recovery address is specified, see Non-Standard Recovery.

Non-Standard Recovery

SYSTEM supplies the non-standard recovery routine with the following information:

Al Address of parameter list passed to the routine which detected the error
X1 Address of the first parameter
A0 Address of parameter list of the routine that called the routine which detected the error
Bl Address of a secondary parameter list, which contains, in successive words:
Error number passed in SYSTEM
Address of diagnostic word available to SYSTEM
Address within auxiliary table if A/NA bit is set, otherwise zero
Instruction consisting of RJ to SYSTEM in upper 30 bits and trace back information
in lower 30 bits for the routine that called SYSTEM
A2 Address of error table entry in SYSTEM

X2 Contents of error table entry

Information in the secondary parameter list is not available to FORTRAN-coded routines.

Non-Fatal Error

The routine which detected the error and SYSTEM are delinked from the calling chain and the non-
standard recovery routine is entered. When this routine exits in the normal routine, control returns
to the routine which called the routine which detected the error.

Thus, any faulty arguments may be corrected, and the recovery routine is allowed to call the rou-
tine which detected the error, providing corrected arguments. By not correcting the faulty argu-
ments in the recovery routine, a three routine loop can develop between the routine which detects

the error, SYSTEM, and the recovery routine. No checking is done for this case.

G-2 60329100 A

Fatal Error

SYSTEM calls the non-standard recovery routine in the normal fashion, with the registers set as
indicated above. If the non-standard recovery routine exits in the normal fashion returning control
to SYSTEM, an error summary is listed, all output buffers are terminated, and the job is terminated.

e AL e A 3
Use of the A/NA Bit

The A/NA bit is used only when a non-standard recovery address is specified.

If this bit is set, the address within an auxiliary table is passed in the third word of the secondary
parameter list to the recovery routine. This bit allows more information than is normally supplied
by SYSTEM to be passed to the recovery routine. The bit may be set only during assembly of SYS-
TEM, as an entry must also be made into the auxiliary table. Each word in the auxiliary table must
have the error number in its upper 10 bits so that the address of the first error number match is
passed to the recovery routine. An entry in the auxiliary table for an error is not limited to any
specific number of words.

The traceback information is terminated as soon as one of the following conditions is detected:

The calling routine is a program.
The maximum traceback limit is reached.
No traceback information is supplied.
To change an error table during execution, a FORTRAN type call is made to SYSTEMC with the
following parameters:
Error number
List containing the consecutive locations:
Word 1 Fatal/non-fatal (fatal = 1, non-fatal = 0)
Word 2 Print frequency
Word 3 Print frequency increment (only significant if word 2 = 0) special values:

word 2 =0, word 3 =0 never list error
word 2 =0, word 3 =1 always list error
word 2 = 0, word 3 =X list error only the first X times

Word 4 Print limit
Word 5 Non-standard recovery address
Word 6 Maximum traceback limit

If any word within the parameter list is negative, the value already in table entry is not to be
altered.

60329100 A G-3

(Since auxiliary table bit may be set only during assembly of SYSTEM, only then can an auxiliary

table entry be made.)

Error Listing

Message supplied by calling routine:

ERROR NUMBER xxxx DETECTED BY zzzzzzz AT yyyyyy

CALLED FROM cccccee AT ADDRESS wwwwww
or

CALLED FROM ccccec AT LINE dddd
(dddd is FORTRAN source line count)

ERROR SUMMARY

ERROR TIMES
XXXKX yyyy

(all numbers are decimal)

NO OUTPUT FILE FOUND

Functions of Entry Points

zzzzzzz and ccccee are routine
names, yyyyyy and wwwwww are

relocatable addresses

QS8NTRY. Initialize I/O buffer parameters

STOP. Enter STOP in dayfile and begin END processing

EXIT. Enter EXIT in dayfile and begin END processing

END. Terminate all output buffers, print an error summary, transfer control to the

main overlay if within an overlay; in any other case exit to monitor.

SYSTEM Handles error tracing, diagnostic printing, termination of output buffers and
either transfers to specified non-standard error recovery address, terminates
the job or returns to calling routine depending on type of error.

SYSTEMC Changes entry to SYSTEM's error table according to arguments passed.

60329100 A

Execution Diagnostics

Routine

ACGOER$

ACOS$

ALOGS$

ATLOG10$

ASINS$

ATANS

ATAN2$

CABS$

ZTOI$

CCOs$

CEXP$

CLOGS$

COS$

60329100 A

Message

ERROR IN COMPUTED GO TO STATEMENT:

INDEX VALUE INVALID

ABS(R).GT. 1.0
INFINITE ARGUMENT
INDEF ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ABS(R).GT. 1.0
INFINITE ARGUMENT
INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

X=Y=0.0
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW
INFINITE OR INDEF ARGUMENT

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

INFINITE OR INDEF ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

INFINITE OR INDEF ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

ZERO ARGUMENT
INFINITE OR INDEF ARGUMENT

ARG TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEF ARGUMENT - -

Error

No.

10

11

12

13

Routine

CSIN$

CSQRTS$

DABS$

DATANS

DATAN2$

DTOD$

DTOI$

DTOZ$

DTOX$

DCOS$

DEXP$

Message

INFINITE OR INDEF ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

INFINITE OR INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

X=Y=0.0
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW IN D**REAL(Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)* LOG(D) TOO LARGE

INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

ARG TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEF ARGUMENT

ARGUMENT TOO LARGE, FLOATING OVERFLOW
INFINITE ARGUMENT
INDEF ARGUMENT

Error
No.

14

15

16

17

18

19

20

21

21

22

23

60329100 A

Routine

DLOGS

DLOG103

DMOD$

DSIGN$

DSIN$

DSQRT$

EXP$

ITOJ$

IDINTS$

XTODS$

XTOI$

60329100 A

Message

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

DP INTEGER EXCEEDS 96 BITS
2ND ARGUMENT ZERO
INFINITE OR INDEF ARGUMENT

INFINITE ARGUMENT
INDEF ARGUMENT

ARG TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEF ARGUMENT

NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ARGUMENT TOO LARGE, FLOATING OVERFLOW
INFINITE ARGUMENT
INDEF ARGUMENT

INTEGER OVERFLOW
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

INTEGER OVERF LOW
INFINITE OR INDEF ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

7ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

Error

No.

24

25

26

27

28

29

30

31

32

33

34

Error

Routine Message No.
XTOY$ FLOATING OVERFLOW 35

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE OR INDEF ARGUMENT

SIN$ ARG TOO LARGE, ACCURACY LOST 36
INFINITE ARGUMENT
INDEF ARGUMENT

SLITE$ ILLEGAL SENSE LITE NUMBER 37
SLITET$ ILLEGAL SENSE LITE NUMBER 38
SQRTS$ NEGATIVE ARGUMENT 39

INFINITE ARGUMENT
INDEF ARGUMENT

SSWTCH$ ILLEGAL SENSE SWITCH NUMBER 40

TANS$ ARG TOO LARGE, ACCURACY LOST 41
INFINITE ARGUMENT
INDEF ARGUMENT

TANH$ INFINITE ARGUMENT 42
INDEF ARGUMENT

ITOD$ FLOATING OVERFLOW 44
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

ITOX$ FLOATING OVERFLOW 45
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE OR INDEF ARGUMENT

ITOZ$ FLOATING OVERFLOW IN I**REAL(Z) 46
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)* LOG(I) TOO LARGE
INFINITE OR INDEF ARGUMENT

G-8 60329100 A

Error

Routine Message No.
XTOZS$ FLOATING OVERFLOW IN X**REAL(Z) 47

ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(X) TOO LARGE

INFINITE OR INDEF ARGUMENT

FTNERRS$ COMPILATION ERROR ENCOUNTERED DURING PROGRAM 48
EXECUTION
INPUTNS$ TOO FEW CONSTANTS FOR UNSUBSCRIPTED ARRAY 49
OVERLA$ FATAL ERROR IN LOADER 50
SEGMEN$ FATAL ERROR IN LOADER 51
NON-FATAL ERROR IN LOADER 52
BACKSP$ UNASSIGNED MEDIUM, FILE NAME: XXXXXXX 53
BUFFEI$ UNASSIGNED MEDIUM, FILENAME: XxXXXXX 54
END-OF-FILE ENCOUNTERED, FILENAME: XXXXXXX 55
WRITE FOLLOWED BY READ ON FILE: XXXXXXX 56
BUFFER DESIGNATION BAD--FWA.GT.LWA 57
BUFFEOS$ UNASSIGNED MEDIUM, FILENAME: Xxxxxxx 58
BUFFER SPECIFICATION BAD--FWA, GT. LWA 59
ENDFIL$ UNASSIGNED MEDIUM, FILENAME: XXxxxxX 60
[FENDFS$ UNASSIGNED MEDIUM, FILENAME: XxXXXXX 61
INPUTB$ UNASSIGNED MEDIUM, FILENAME: XXXXXXX 62
END-OF-FILE ENCOUNTERED, FILENAME XXXXXXX 63
INPUTOS$ UNASSIGNED MEDIUM, FILENAME: XXXXXXX 64
OUTPTN$
INPUTC$ END-OF-FILE ENCOUNTERED, FILENAME: XXXXXXX 65
INPUTN$ PRECISION LOST IN FLOATING INTEGER CONSTANT 66

NAMELIST DATA TERMINATED BY EOF, NOT $
NAMELIST NAME NOT FOUND
NO I/O MEDIUM ASSIGNED
WRONG TYPE CONSTANT
INCORRECT SUBSCRIPT

TOO MANY CONSTANTS

(,$, OR = EXPECTED, MISSING
VARIABLE NAME NOT FOUND
BAD NUMERIC CONSTANT
MISSING CONSTANT AFTER *
UNCLEARED EOF ON A READ
READ PARITY ERROR

60329100 A G-9

Error

Routine Message No.
INPUTSS$ *DECODE*CHAR/REC.GT. 150% 66
IOCHECKS UNASSIGNED MEDIUM, FILENAME: xxxxxxx 67
KODERS$ *ILLEGAL FUNCTIONAL LETTER 68
*IMPROPER PARENTHESIS NESTING 69
*EXCEEDED RECORD SIZE 70
*SPECIFIED FIELD WIDTH ZERO 71
*FIELD WTH . LE. DECIMAL WTH 72
*HOLLERITH FORMAT WITH LIST 73
KRAKER$ *ILLEGAL FUNCTIONAL LETTER 74
*IMPROPER PARENTHESIS NESTING 75
*SPECIFIED FIELD WIDTH ZERO 76
*EXCEEDED RECORD SIZE 7
*ILLEGAL DATA IN FIELD * { ¥ 78
*DATA OVERFLOW *>* 79
*HOLLERITH FORMAT WITH LIST 80
LENGTH$ UNASSIGNED MEDIUM, FILENAME: =XXXXXXX 81
FTNBINS UNASSIGNED MEDIUM, FILENAME: xxxxxxx 82
OUTPTBS$
OUTPTCS$ UNASSIGNED MEDIUM, FILENAME: xxxx 83
CONNEC$
’OUTPTN$ OUTPUT FILE LINE LIMIT EXCEEDED 84
OUTPTS$ ENCODE*CHAR/REC . GT. 150* 85
REWINMS$ UNASSIGNED MEDIUM, FILENAME: =XxXxXxXxXxXX 86
KODER$ *LIST/FMT CONFLICT, SNGL/DBLE 87
INPUTBS$ WRITE FOLLOWED BY READ ON FILE: XXXXXXX 88
LIST EXCEEDS DATA, FILENAME: xxxxxxx 89
PARITY ERROR READING (BINARY) FILE: xXxXxXxxxx 90
INPUTC$ WRITE FOLLOWED BY READ ON FILE: XXXXXXX 91
PARITY ERROR READING (CODED) FILE: XXXXXXX 92
OUTPTB$ PARITY ERROR ON LAST READ ON FILE: XXXXXXX 93
OUTPTCS$ PARITY ERROR ON LAST READ ON FILE: xxxxxXXxX 94

G-10 60329100 B

Error

aLa

Routine Message No.
IOCHECS UNASSIGNED MEDIUM, FILENAME: XxxXXXXX 95
*STATUS OF BUFFER I/0 MUST BE CHECKED BY THE UNIT 96

FUNCTION * FILENAME: XXXXXXX

INITMS$ UNASSIGNED MEDIUM, FILENAME: XXXXXXX 87
READMS$

WRITMS$

INITMSS$ FILE DOES NOT RESIDE ON A RANDOM ACCESS DEVICE 98
READMSS FILE WAS NOT OPENED BY A CALL TO SUBROUTINE OPENMS 99
WRITEMS$

READMS$ RECORD NAME REFERRED TO IN CALL IS NOT IN THE FILE INDEX 100
INITMS$ INDEX BUFFER IS OF INSUFFICIENT LENGTH 101
WRITMS$)

LABELS UNASSIGNED MEDIUM, FILENAME: XXXXXXX 102
READMS$ *READ PARITY ERROR* 102
READMSS$ SPECIFIED INDEX IN THIS MASS STORAGE CALL .GT. MASTER 110

INDEX OR IS ZERO
WRITEC$ ECS UNIT HAS LOST POWER OR IS IN MAINTENANCE MODE 112

READECS$ ECS READ PARITY ERROR 113

60329100 A G-11

DECK STRUCTURE H

The following table shows the general form of a FORTRAN program unit. Groups, when present
must be ordered as shown. Statements within a group can appear in any order.

STATEMENTS

OVERLAY

PROGRAM™
FUNCTION*
SUBROUTINE*®
BLOCK DATA

type

COMMON
DIMENSION
EQUIVALENCE
EXTERNAL*

*

Statement function™
definitions

>3O

ENTRY*
Executable
statements™

-~ -rrmz > 2
s
» >0

END

* Not allowed in BLOCK DATA Subprograms
+ Namelist group name must be defined before it is used

Source Decks

Source decks are comprised of complete FORTRAN program unit source decks and/or COMPASS
source decks. Each COMPASS source deck must begin with an IDENT card (columns 11-15) and
terminate with an END card (columns 11-13); in both cases columns 1-10 must be blank. FORTRAN
and COMPASS program unit source decks may be in any order.

60329100 C H-1

SAMPLE DECK STRUCTURE

1. Compilation only

[XeZo b e}

|
Jilk

Source Deck

©ow-]

(FTN.

JOB.

2. Compilation and Execution

Nele b Nop)

7

JJM:

JOB.

60329100 A

3. Compilation and Execution with Binary Subroutine

6
7
8 j —
9 y .
/ 1
Data Deck
R
7
8
9 /g
9 =
p 4
/ Binary Deck
7
8
9
Source Deck
7
8
9

(Teo.

(LOAD(INPUT)

(FTN.

60329100 A

4. FORTRAN LOAD
AND EXECUTE

SEGMENTS .
N
/_L
SUBROUTINE ALLAN J
z
(SUBROUTINE START2
(END
Loads JACK, JOHN from A=
file HELP2 at level 2 {
Preparation of CALL SEGMENT(L,2,L2)]
SEGMENT call L2(2)=0 *p
12(1)=5L HELP2 |
v A—
Loads ALLAN, SAM from p—
file HELP1 at level 1
>/CALL SEGMENI(L,1,L9)
1.2(2)=0]

Preparation of

2(1)=5L HELPI
SEGMENT call

L=3LLGO
IMENSION L2(2)

(PROGRAM START1(INPUT,OUT PUﬂ

L
L

SUBROUTINE JOHN

H-4 60329100 C

5. OVERLAY PREPARATION OF
0,0;1,0;and 1,1

Source Deck

Source Deck

60329100 D

©o -1 &
T

data

H

1 Source Deck

PROGRAM MLT |

/OVERLAY(FRANK, 1,1) |

END |
(CALL OVERLAY(5HFRANK, 1, 1)

Vo

V4

V4

/

PROGRAM RDY |

OVERLAY (FRANK, 1, 0) | i

SUBROUTINE GROUCH(, J) | |

/END

CALL OVERLAY(5HFRANK, 1, 0)

CALL GROUCH(40, 0)

Vi

L

=

V4
/PROGRAM LEO(INPUT, OUTPUT, TAPEL)

OVERLAY(FRANK1, 0, 0) |

7
8

9/FRANKI1.

/ LGO.

FTN.

LMY.

EXECUTION TIME 1/O

STRUCTURE OF FILES

A file is an ordered sequence of logical records. Logical records are defined for each type of input/
output. For 7000 SCOPE version 1 FORTRAN Extended, all files are 7600 Z format, chain files in
which records are composed of a maximum of 511 words of data headed by a boundary control word.
All format conversion from or to X-mode tapes is done by the input/output stations supporting 7000
SCOPE version 1.

Nine track tape is supported for BUFFER IN and BUFFER OUT statements only.

FORMATTED I/O
READ(u,f)k WRITE(u,f)k READ f,k PRINT f,k PUNCH f,k

f can be: a FORMAT statement number; the name of an array which contains the FORMAT
information; or, a NAMELIST name.

k is an I/0O list. k is optional, when k is omitted the preceding comma also must be omitted.
u is a logical unit number.
The length of a logical record is determined by the I/O list and the FORMAT statement.

Formatted logical records can be a maximum of 1507 characters for input, 13719 characters for
output. The maximum length formatted logical record for cards is 80 characters. A logical re-
cord corresponds to a tape block on S and L tapest; on X tapes it is always 1361 characters.

UNFORMATTED I/0
READuk WRITE(wk

k and u are the same as defined above, however, u should not be assigned to the file OUTPUT.

The length of an unformatted logical record is determined by the length of the I/O list, and can be
any size. With unformatted I/O it is possible for a single logical record to be on several cards.

When I/0 is unformatted, the logical record is the same as a SCOPE logical record on internal files
or X+f magnetic tape files. On an S and L magnetic tape, the physical representation of logical
records is the same as that on a SCOPE internal tape; although SCOPE logical records are not de-
fined (on S- and L-style tapes, each tape block consists of a maximum of 5120, characters with

a logical record terminated by a tape block shorter than 51201(characters).

Since the physical representation of FORTRAN unformatted logical records is the same on S and L
tapes as that on SCOPE internal tapes, the files may be used interchangeably; a tape created as a
SCOPE internal tape may be read as an S or L tape. Likewise, a tape created by a FORTRAN job as
an S or L tape may be read as a SCOPE internal tape. In general, binary S and L tapes which were
not written by CDC FORTRAN (RUN or FTN) or as SCOPE tapes, cannot be read by FORTRAN Ex-
tended unformatted reads. S h

+Stranger tape and long record tape.
1iExternal tape in SCOPE 2 format.

60329100 D I-1

Jobs using small logical records will be more efficient if S magnetic tapes are used instead of
SCOPE internal or L tapes. Often, non-stop tape motion can be achieved when the buffer size is
in excess of 204814 words (four physical record units on magnetic tape).

BUFFER 1I/O
BUFFER IN (u,k) (A,B) BUFFER OUT (u,k) (A, B)

On SCOPE internal files (including tape files) and binary S magnetic tapes, the user logical record is
represented as a SCOPE logical record. On a coded X tape, the user logical record will always
consist of 14 words (136 characters on tape), and any attempt to write a record longer will result in

a fatal diagnostic. On S and L magnetic tapes, the user logical record is defined to be one tape block,
the information between two record gaps or between the load point and a record gap. On S magnetic
tapes, 512 words is the maximum record length.

BUFFER 1/0
BUFFEI (BUFFER IN)

Only one logical record is read each time BUFFEI is called. If the block length specified by the call

is longer than the logical record, excess block locations will not be changed by the read. If the logi-

cal record is longer than the block, excess words in the logical record are passed over. The number
of CM words transmitted to the program block may be obtained by referencing LENGTH.

After using a BUFFER IN (or BUFFER OUT) statement on unit i, and prior to a subsequent reference
to unit i, or to the information, the status of the BUFFER operation must be checked by a reference
to the UNIT function. This check insures that requested data has been transferred, and the buffer
parameters for the file have been properly restored. If an attempt is made to BUFFER IN past an
end-of-file without referencing the UNIT function, BUFFEI will abort the program with the diagnostic:
*BUF IN**ENDFILE file name

If a read is attempted, when the last operation on the file was a write, BUFFEI will abort the program
with the diagnostic: *BUF IN**LAST OP WRITE, file name

If the starting address for the block is greater than the terminal address, BUFFEI will abort the pro-
gram with the diagnostic: *BUF IN***FWA.GT.LWA, file name

If an attempt is made to BUFFER IN from an undefined file (file not declared on the PROGRAM card),
BUFFEI will abort the job with the diagnostic: *BUF IN**UNASSIGNED MEDIUM, file name
BUFFEO (BUFFER OUT)

One logical record is written each time the routine is called; record length is LWA-FWA+1,

A BUFFER OUT operation must be followed by a reference to the UNIT function. Since BUFFEQ
changes the buffer arguments for the file to point to the CM block specified in the call, calls to other
routines involving the same file may not follow any buffer operation until the pointers have been
restored by the UNIT function. If LWA is less than FWA, the program will be aborted and the follow-
ing diagnostic will appear in the dayfile: *BUF OUT**FWA, GT. LWA, file name

The UNASSIGNED MEDIUM diagnostic is similar to that issued by BUFFEL

1-2 60329100 B

Random Access Files (Mass Storage) ¥

There are two ways to use the mass storage subroutines. They may be used in the normal fashion
with one master index, or they may have a master index and many sub-indexes. A file has a name
or number index, and it is referenced by the following statements:

CALL OPENMS (u,ix,1,p) CAL

L
CALL READMS (u,fwa,n, i) CALL STINDX (u, ix, 1)

u is a logical unit number; ix is the first word address of the index in central memory; 1 is the index
length; p indicates how the file is referenced; fwa is central memory address of first word of record;
n is number of central memory words to be transferred; i is record number or cell address of the
record name or number. (See Chapter 5, Mass Storage 1/0.)

In all cases, it is necessary to open (CALL OPENMS) the mass storage file before calling READMS,
WRITMS, or STINDX. If the file exists, OPENMS reads the master index into the central memory
area specified in the call (the ix parameter).

The STINDX subroutine does not transfer data, it merely changes the file index in the FET to the
base specified in the call. After STINDX is called, READMS or WRITMS must be called to read in
or create the new index. If the next operation is to be a random access write (WRITMS) and the
file is referenced through a name index, the programmer (prior to calling WRITMS) must set to
zero the area reserved for the new index buffer (whose first word address is specified by the ix
parameter in the call to STINDX). The master index must be reset before job termination so that
the correct index will be written on the file.

Upon job termination, the mass storage file is closed automatically by FORTRAN. At this time the
index, as specified in the FET, is written as a record on the file.

Examples:

1. PROGRAM MS (TAPE5)
DIMENSION I(10), B(20),C(30)
CALL OPENMS(5,1, 10, 0)

C READ MASTER INDEX INTO I

CALL READMS (5, B, 20, 4)

C READ RECORD 4 INTO B (ASSUME THIS RECORD IS A SUB-INDEX)
CALL STINDX (5, B, 20)

C ALL SUBSEQUENT OPERATIONS ON UNIT 5 WILL USE

C B AS THE INDEX FOR THE FILE

CALL STINDX (5,1, 10)
C RESTORE MASTERINDEX =
END

TRandom file processing employs a 30-bit index in 7000 SCOPE version 1 rather than a 24-bit index
as is used in 6000 SCOPE.

60329100 A 1-3

2. PROGRAM MS (TAPES5)
C PROGRAM FOR CREATING RANDOM FILE
DIMENSION J(10), B(7),XYZ(20), ZXY (10), YXZ(50)
DATA JOE,SAM, PETE,SUB1/3LJOE, 3LSAM, 4LPETE, 41SUB1/, B/7*0/
CALL OPENMS(5, J, 10, 1)
CALL STINDX(5, B, 7)
DO 10 1,7
10 B())=0.
C USE INDEX B
CALL WRITMS(5,XYZ, 20, JOE)
CALL WRITMS(5, ZXY, 10, SAM)
CALL WRITMS(5,YXZ,50, PETE)
CALL STINDX(5, J, 10)
CALL WRITMS(, B, 7,SUBI)
C WRITE OUT THE SUB-INDEX
END

PROGRAM MS (TAPES5)

THIS MS FILE HAS NO SUB-INDEXES
DIMENSION I(10)
CALL OPENMS(5, 1, 10, 0)

C READ MASTER INDEX INTO I

.

C ANY READ OR WRITE ON THIS FILE WILL USE THE INDEX IN
C ARRAY I

aw

END

The execution-time routine END will close the file, causing the index at I to be rewritten on the file.

Status Checking

UNIT Function

The UNIT (i) function checks the status of a buffered operation (BUFFER IN or BUFFER OUT only)
on logical unit i. The function returns values as follows:

-1 unit ready, no previous error

+0 previous read encountered an end-of-file

+1 parity error on previous buffer operation
Example:

IF(UNIT(@i)) 12,14,16

Upon return from the UNIT function, control is transferred to the statement labeled 12, 14 or 16
if the value returned was -1, 0, or +1 respectively.

1-4 60329100 D

If the value returned is 0 or +1 the condition indicator is cleared before returning to program
control,

Note: If the UNIT function references a non-buffered unit (a unit referenced by 1/0 statements
other than BUFFER IN and BUFFER OUT), the status returned will always indicate unit ready
and no previous error (-1).

EOF Function

The EOF (i) function tests for end-of-file read (non-buffered) on unit i; then clears the end-of-file
indicator. The value zero is returned if no end-of-file was encountered on the previous read, or
non-zero if end-of-file was encountered on unit i.

When EOT function is used to turn off the end-of-file indicator, several data files can be read from
the same logical unit. On the file INPUT, either a 6/7/8/9 card (end-of-file) or a 7/8/9 card (end-
of-record) sets the end-of-file indicator; however, the EOF function will only clear the indicator
set by the 7/8/9 card. On files other than INPUT, an end-of-record does not set the end-of-file
indicator; only an end-of-file sets the end-of-file indicator.

Example:

IF (EOF(i)) 10,20

If i designates the file named INPUT, control will return to statement 10 if the previous read
encountered an end-of-file, or any 7/8/9 end-of-record card. Otherwise, control will go to
statement 20.

To insure against possible input/output errors, the user should make the EOF check after each READ
operation. If a READ on unit i is attempted after an EOF occurs on the previous READ and the EOF
bit was not cleared by an EOF test, execution is terminated. Following a WRITE operation on unit i,
EOF always will return a zero value.

This function has no meaning for random access files. If it is called in reference to a random access
file, a zero value always is returned.

IOCHEC Function

The TOCHEC (i) function tests for parity errors on non-buffered reads on unit i. The value zero is
returned if no error occurs.

Example:

J = IOCHEC(i)
IF (J) 15,25

A value of zero is returned to J if no parity error occurs, and non-zero is returned otherwise.
Control would then transfer to the statement labeled 25 or 15 respectively. If a parity error
occurs, IOCHEC will clear the parity indicator before returning.

Parity errors are handled in the above fashion regardless of the type of the external device.

Only READ parity errors are detected by the status checking tunctions. ‘WRITE parity errors
are detected and a message is written in the dayfile by the SCOPE system.

60329100 D I-5@

A parity error indication reveals parity error somewhere within the current logical record.
For nonbuffered coded files, this does not necessarily mean the error occurred within the last
record requested by the program because the I/O routines read a logical record ahead when-
ever possible.

Backspace/Rewind

If a BACKSPACE is requested on a coded file (except files created by the BUFFER QOUT statement)
the file is logically moved back one unit record. The backspace is attempted within the 1/0 buffer;
if this is not possible, the external I/0 device is repositioned.

Backspace on binary files and files created by BUFFER 1/0 statements reposition the external device
so that the last logical record becomes the next logical record.

When a BACKSPACE (or REWIND) request follows a write operation on a file, an end-of-file is

written followed by two backspaces (or by a rewind). Note that SCOPE may write trailer label infor-
mation immediately following the end-of-file written by FORTRAN.

FORMAT Field Separators

Field descriptors are normally delimited by field separators; however, some exceptions are
allowed. For example, the statement

10 FORMAT(F25.22F10.3)
would be interpreted as two descriptors, F25.22 and ¥10.3. Field separators should be used when-

ever ambiguity could result.

ENCODE/DECODE

Under SCOPE, a binary zero byte is used to terminate a unit record. When the DECODE processor
encounters a zero character (6 bits of binary zeros), that character is interpreted as a blank. Con-
version continues through n characters per record.

Whenever a record terminator (a slash or the right parenthesis if the list is not exhausted) is en-
countered in a FORMAT statement, the rest of the record is filled out with blanks (for ENCODE) or
ignored (for DECODE), and conversion continues beginning with the next record. (The length of
the record is specified by n in a DECODE (n,f,A)k or ENCODE (n,f,A)k statement.) The record

is restricted to a maximum length of 150 characters.

Example:

10 FORMAT (16(F10.4)) is illegal (the diagnostic EXCEEDED RECORD SIZE is issued)
10 FORMAT (10F10.4,/,6F10. 4) is allowed

I-6 60329100 A

Labeled Files

Labeled files are not supported by 7000 SCOPE version 1. The LABEL subroutine is maintained for
6000 compatibility. If it is used with 7000 SCOPE version1, a warning sent to the dayfile indicates
that no label checking or processing was performed.

When the PROGRAM statement is compiled, FET's (file environment tables) are set up for each file
declared. All fields in the FET label information for a given file are set to zero, except the reel
number which is set to 1. If the file has been declared as labeled on a REQUEST control card,
SCOPE compares the label with the information in the FET when the file is opened. The information
will not compare, and if the initial use of the file is for input, SCOPE will allow the job to continue
only after instructions are entered from the display console. If the initial use of the file is for
output, SCOPE will write a default label on the tape, and the job will continue.

Only files recorded on1/2 inch magnetic tape may be labeled. For the FORTRAN programmer to
compare label information or to create a standard label containing given information, an execution
subroutine (LABEL) is provided to set the desired information into the FORTRAN prepared FET.

If the label information is properly set up, and subroutine LABEL is referenced prior to any other
reference to the file, then when the file is opened, the label and the information are compared for
an input tape or the information is written on an output tape.

The form of the call is:
CALL LABEL (u,fwa)
u is the unit number

fwa is the address of the first of four consecutive words containing the desired label infor-
mation to be placed into the FET, The information must be in the mode and format
discussed in the SCOPE Reference Manual.

The four words beginning at fwa are transferred directly to words 10 through 13 of the FET for the
file designated by u.

Carriage Control Characters

Character Action Before Printing Action After Printing

AT Space 1 Eject to top of next page 1T
BY Space 1 Skip to last line of page{T
1 Eject to top of next pagetT No space

27 Skip to last line on pageiT No space

+ No space No space

0 (zero) Space 2 No space

- (minus)f Space 3 No space

blank Space 1

+For 7600 FORTRAN Extended, vertical spacing for these and any other characters is determined
by the input/output station servicing 7000 SCOPE, version 1.

T$The top of a page is indicated by a punch in channel 8 of the carriage control tape for the 501 printer
and channel 1 for the 512 printer. The bottom of page is channel 7 in the 501 and 12 in the 512.

60329100 B 1-7

When the following characters are used for carriage control, no printing takes place. The remainder
of the line will not be printed.

Q Clear auto page eject
R Select auto page eject
S Clear 8 vertical lines per inch (512 printer)
T Select 8 vertical lines per inch (512 printer)
I pmT Output remainder of line (up to 30 characters) on the B display and the dayfile and

(col 1-2) wait for the JANUS typein /OKuu. For files assigned to a printer, n.GO. must be
typed to allow the operator to change form or carriage control tapes.

any other See SCOPE Reference Manual.

Any pre-print skip operation of 1, 2 or 3 lines that follows a post skip operation will be reduced to
0, 1 or 2 lines.

The functions Q through T should be given at the top of a page. S and T can cause spacing to be
different from the stated spacing if given in other positions on a page. Q and R will cause a page
eject before the next line is printed.

Meaningful results are not guaranteed in the following circumstances:
1. Mixed mode files within a logical file.

2. Mixing buffer I/0 statements and standard Read/Write statements on the same file (without a
REWIND in between).

3. Requesting a LENGTH function on a buffer unit before requesting a UNIT function.

4. Two consecutive buffer I/0 statements on the same file without the intervening execution of a
UNIT function call.

5. Making an ENDFILE call on a random file and then calling any of the
random-file subroutines, such as READMS, again.

A FORTRAN formatted WRITE will produce X's, R's, or I's in an output field under the following
conditions:

1. Fixed point format will produce X's in the output field if the internal data is out of range
(greater than or equal to 2**48),

2. TFloating point format will produce R's in the output field if the internal data is out of range
or I's if it is indefinite (as defined for 6400/6600 hardware).

Disposition of files at run termination:

1. All indexed files (randomly accessible files) are closed through SCOPE.

2. Output files are demarcated by FORTRAN with an end-of-file and are not rewound. No
action is taken on input files.

| fNot supported by 7600 SCOPE 1.1.

1-8 60329100 D

Structure of 7000 SCOPE version 1 Input/Output Files

All files are in 7600 Z format chain files which contain physical records of not more than 511 words,
headed by a boundary control word. The boundary word contains a pointer to the next control word
in the physical record.

e file indicate one of three conditions:

End-of-record control word denotes the end of a logical record
End-of-file control word denotes the end of a logical file

End-of-information control word denotes the end of the physical file.

All X-mode tapes are converted by the input/output stations supporting 7000 SCOPE version 1, and
tapes are not processed on line by FORTRAN Extended.

60329100 A I-9

Memory Structure

Subprograms are loaded as encountered in the input file from RA+100B toward FL. Labeled common
blocks are loaded prior to the subprogram in which they first occur. Library routines are loaded
immediately after the last encountered subprogram and these are followed by blank common.

The following is a typical memory layout.

RA

RA+100B Communication Region

Common block ABLE
PROGRAM TEST includes I/0 buffers.
SUBROUTINE SUBR

SYSTEM$
OUTPTCS$
SIO$
GETBAS
KODERS$
SIN.

Blank Common

J-2 60329100 A

FORTRAN-INTERCOM INTERFACE' K

When a program is entered at an INTERCOM control point, INTERCOM associates INPUT and

OUTPUT files of the program with the user's remote terminal device, and ali references to these
files are directed to the terminal. With calls to the CONDIS library subprogram, the user may
specify other files to be associated with the terminal.

The user can associate any logical file in his program with a remote device, with the statement:
CALL CONNEC (lfn)

If a file is already connected, the request will be ignored. I the file has been used already, but
not connected, this request will clear the file's buffer, write an end-of-file, and backspace over it
before the connection is performed.

A file is disconnected by:
CALL DISCON (lfn)

This request will be ignored if the file is not connected. After a disconnect, the file is reassociated
with its former device.

Ifn File name parameter of the form:
tape logical unit number, 1 to 99

Hollerith constant in the format hlfilename

integer variable containing either of the above
Examples:

CALL CONNEC (3LEWT)
CALL DISCON (6)
K=5LINPUT

CALL DISCON (K)

J=12

CALL CONNEC (J)

Any files listed on the PROGRAM card may be connected or disconnected during program execution.
An attempt to connect or disconnect an undefined file will result in a fatal execution time error,

and the job will be terminated.

CONNEC and DISCON calls are ignored when programs are not executed through an INTERCOM
control point. e

Interactive input/output is supported only for formatted and NAMELIST reads and writes.

TKRONOS 2. 0 does not support INTERCOM.

60329100 D K-1

INDEX

A
Input / Output of Alphanumeric Data with A Specification 6-11
ABS
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
ACOS
Library Functions ATAN, DATAN, ATAN2, DATAN2, CABS, ACOS D-3
Actual
Actual Arguments or Parameters in a CALL Statement 4-12
Actual Arguments and Dummy or Formal Arguments to a Subroutine Subprogram 9-5
AIMAG
Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
AINT
‘Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
Allocation
Ordering of Storage Allocation for an Array 1-8, 1-11
Allocation of Storage for an Array via DIMENSION Statement 8-1
ALOG
Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
ALOG10
Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
Alphanumeric
Alphanumeric or Hollerith Constants 1-6
Input / Output of Alphanumeric Data with A Specification 6-11
Input / Output of Alphanumeric Data with R Specification 6-12
H Specification for Input / Output of Hollerith or Alphanumeric Data 6-15
AMAXO
Library Functions DMOD, AMAX0, AMAX1, MAX0, MAX1, DMAX1 D-1
AMAX1
Library Functions DMOD, AMAX0, AMAX1, MAX(0, MAX1, DMAX1 D-1
AMINO
Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
AMIN1
Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
AMOD
Zero as Argument to SIGN, ISIGN, DSIGN, AMOD, and MOD 9-9
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
AND
Logical Operators OR, AND, NOT 2-5
Masking Operators NOT, AND, OR 2-7
Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2Z
AREA
AREA Debugging Statement 11-15
Arguments
Actual Arguments or Parameters in a CALL Statement 4-12
Actual Arguments and Dummy or Formal Arguments to a Subroutine Subprogram 9-5
60329100 D Index-1 e

Arithmetic
Arithmetic Expressions and Operators 2-1
Arithmetic Assignment Statement 3-1
Three-Branch Arithmetic IF 4-4
Two-Branch Arithmetic IF 4-5
Array
Definition of Array 1-8
Array Name without Subscript 1-8
Array with More than One Dimension 1-8, 1-9
Subscript of an Array Element 1-9
Array Name in NAMELIST Statement 5-8
Maximum Bounds of an Array Subscript 8-1
Variable Dimension of an Array in a Subprogram 8-2
Ordering of Storage Allocation for an Array 1-8, 1-11
Allocation of Storage for an Array via DIMENSION Statement §-1
ARRAYS
ARRAYS Debugging Statement 11-2
Array Element
Subscript of an Array Element 1-9
ASCII
ASCII 64 Character Subset A-3
ASIN
Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4
Assembler
Specification of COMPASS Assembler via C Parameter on FIN Control Card 12-11
ASSIGN
ASSIGN Statement 4-1
Assigned
Assigned GO TO Statement 4-2
Assignment
Arithmetic Assignment Statement 3-
Multiple Assignment Statement 3-1
Logical Assignment Statement 3-3
Masking Assignment Statement 3-3
ATAN
Library Functions ATAN, DATAN, ATANZ, DATANZ, CABS, ACOS D-3
ATAN2
Library Functions ATAN, DATAN, ATAN2, DATANZ, CABS, ACOS D-3

1

B
Octal Constants Designated by B 1-6

BACKSPACE
Syntax of REWIND and BACKSPACE Statements 5-9
Execution of BACKSPACE and REWIND Statements I-6

BCD

External BCD Codes A-1 through A-4
Binary

Binary Output Parameter on FTIN Card 12-2
Blank

Use of Blank in Source Program 1-2
Unlabeled Common or Blank Common Blocks 8-4
Blank Card in Source Program 1-2
BLOCK DATA
Initialization of Labeled Common Blocks via BLOCK DATA Subprogram 9-11

® Index-2 60329100 D

Bounds
Maximum Bounds of an Array Subscript 8-1
Buffer
Small Buffer Specification via V on FTN Cont
Implementation of Buffer Input / Output I-2
Buffer Size Assignment 9-2
Buffered

itrol

Card

Characteristics of Buffered Input and Output 7-1

BUFFER IN
Syntax of BUFFER IN and BUFFER OUT Statements

BUFFER OUT
Syntax of BUFFER IN and BUFFER OUT Statements

BUGARR

Debug Printing Routines BUGARR, BUGCLL, BUGFUN,
BUGCLL

Debug Printing Routines BUGARR, BUGCLL, BUGFUN,
BUGFUN

Debug Printing Routines BUGARR, BUGCLL, BUGFUN,
BUGGTA

Debug Printing Routines BUGARR, BUGCLL, BUGFUN,
BUGSTO

Debug Printing Routines BUGSTO, BUGTRC, BUGTRT
BUGTRC

Debug Printing Routines BUGSTO, BUGTRC, BUGTRT
BUGTRT

Debug Printing Routines BUGSTO, BUGTRC, BUGTRT
Built-in Functions

Intrinsic or Built-in Functions 9-9

7-2
Execution of BUFFER IN and BUFFER OUT Statements

I-2

7-2
Execution of BUFFER IN and BUFFER OUT Statements

I-2
BUGGTA
BUGGTA
BUGGTA
BUGGTA
11-17
11-17
11-17

11-17
11-17
11-17
11-17

C

Specification of COMPASS Assembler via C Parameter on FIN Control Card 12-11
CABS

Library Functions ATAN, DATAN, ATAN2, DATAN2, CABS, ACOS D-3
CALL

CALL ... RETURNS Statement 4-12

Syntax of CALL Statement for Subroutine Subprogram 4-12
CALL Statement and Actual Arguments for a Subroutine Subprogram

Calling Sequence

Calling Sequence and Control Return for COMPASS Subprogram E-1

CALLS
CALLS Debugging Statement 11-3
Card
Blank Card in Source Program 1-2
Carriage Control
Printer Carriage Control Requirement 5-4
Printer Carriage Control Characters I-7
CCcos

Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3

CEXP

Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3

60329100 D

Index-3 e

Character
ASCIT 64 .Character Subset A-3
FORTRAN Character Set 1-1
Standard SCOPE Character Sets A-1
CDC 64 Character Set A-2
CDC 63 Character Set A-4
CLOG
CMP%;brary Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2
Column
Tabular Column Selection Control Character T 6-17
Columns
Card Columns Used in FORTRAN Statements 1-1
Comma
Slash and Comma as FORMAT Field Separators 6-2
Comment
Comment Information 1-2
COMMON
Interaction of EQUIVALENCE and COMMON Statements 8-6
EQUIVALENCE, COMMON, and DATA Statements in a Function Subprogram 9-9
Common Blocks
Arrangement of Common Blocks 8-4
Unlabeled Common or Blank Common Blocks 8-4
Load of Common Blocks with Segments 10-4
List of Common Blocks in Cross Reference Map C(C-14
Transferring Program and Subprogram Values through Common Blocks 8-3
Labeled Common Blocks 8-3
Initialization of Labeled Common Blocks via BLOCK DATA Subprogram 9-11
COMPASS
Specification of COMPASS Assembler via C Parameter on FIN Control Card 12-11
Calling Sequence and Control Return for COMPASS Subprogram E-1
Example of a COMPASS Subprogram E-2
COMPASS Subprogram Intermixed in FORTRAN Source Deck E-1

Compilation

T Mode of Compilation Specified on FTIN Control Card 12-3
COMPL

Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2
Complex

Complex Constants 1-5

Complex Elements in Relational Expressions 2-3

Input / Output of Complex Data 6-12

Double Precision and Complex Variables in Common Blocks 8-5
Computed

Computed GO TO Statement 4-3
CONJG

Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2
Constants

Definition of Constants 1-3

Integer Constants 1-3

Real Constants 1-4

Complex Constants 1-5

Alphanumeric or Hollerith Constants 1-6

Octal Constants Designated by B 1-6

D in Double Precision Constants 1-4

Logical Constants TRUE and FALSE 1-5

e Index-4 60329100 D

Continuation
Continuation Lines 1-2
Continue
Continue Statement 4-12
Control
Calling Sequence and Control Return for COMPASS Subprogram E-1
Control Card
SECTION Control Card 10-4
SEGZERO Control Card 10-5
SEGMENT Control Card 10-5
FTN (FORTRAN Extended) Control Card Format 12-1
Examples of Usage of Parameters on FIN Control Card 12-11
File Names as LGO Control Card Parameters 9-3
Format of OVERLAY Control Card 10-1, 10-2
Control Variables
Control Variables and Index Parameters in DO Statements 4-7
Conversion
Type Conversion in Mixed-Mode Arithmetic Expressions 2
Type Conversion in Mixed-Mode Relational Expressions 2-4
Type Conversion of Mixed-Mode in Assignment Statements 3-2, Table

2
Conversion Specifications for Formatted Input / Output 6-2
COoS

3-4

Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3

Cross
Cross Reference Map C-1
CSIN

Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3

CSQRT

Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3

C$
Characters C$ in Debugging Statement 11-2

D
D in Double Precision Constants 1-4
Input / Output of Double Precision Data with D Specification 6-10
DABS
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
Data
Transmission of Data Record According to FORMAT Specification 5-2
EQUIVALENCE, COMMON, and DATA Statements in a Function Subprogram
Data Initialization with DATA Statement §8-8
DATAN
Library Functions ATAN, DATAN, ATANZ, DATANZ, CABS, ACOS D-3
DATAN2
Library Functions ATAN, DATAN, ATANZ, DATANZ, CABS, ACOS D-3
Data Types
List of Data Types 1-3
Means of Specifying Data Types of Variables 1-7
DATE
Library Functions LEGVAR, IOCHEC, DATE, TIME, SECOND D-4
DBLE
Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK
DCOS

9-9

D-2

Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3

60329100 D

Index-5

DEBRUG
DEBUG Statement as Beginning of Debugging Deck 11-14
DEBUG File 11-17
Debugging
Debugging Mode of Compilation 11-1
Format of Debugging Statements 11-2
Debugging Deck Structure 11-9
Debugging Mode Parameter on FTN Control Card 12-9
Examples of Debugging Facility Use 11-19 through 11-25
Deck
Source Deck Structure for a FORTRAN Program with Examples H-5
Declarations
Specification Statements or Declarations 8-1
DECODE
Syntax of DECODE Statement 7-2, 7-4, 7-5
Execution of ENCODE and DECODE Statements I-6

Delinking

Delinking of a Segment 10-4
DEXP

Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
Diagnostics

Diagnostics and Traceback Information under Control of System Routine G-1
Execution Error Diagnostics by Controlling Routine G-5 through G-11
FORTRAN Diagnostics or Error Messages B-1
DIM
Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
Dimension
Array with More than One Dimension 1-8, 1-9
Variable Dimension of an Array in a Subprogram §8-2
Allocation of Storage for an Array via DIMENSION Statement 8-1
Disk
Input / Output for Random Access Devices (Disk) 5-10
DISPLA
System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7, D-5
Display Codes
Display Codes A-1 through A-4
DLOG
Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
DLOG10
Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
DMAX1
Library Functions DMOD, AMAX0, AMAX1, MAX0, MAX1, DMAX1 D-1
DMIN1
Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
DMOD
Library Functions DMOD, AMAX0, AMAX1, MAX0, MAX1l, DMAX1 D-1
DO
Syntax of DO Statements and DO Loops 4-6
Nested DO Loops 4-7
Control Variables and Index Parameters in DO Statements 4-7
Execution of DO Loops 4-8
Transfer from or into DO Loops 4-9
Implied DO Loops 5-1
Implied DO Loops in DATA Statement §-8
List of DO Loops in Cross Reference Map C-13
DO Loop Optimization via OPT Parameter on FIN Control Card 12-4

® Index-6 60329100 D

Double Precision
Double Precision and Complex Variables in Common Blocks 8-5
D in Double Precision Constants 1-4
Input / Output of Double Precision Data with D Specification 6-10
DO Implied
DO Implied List 5-2
DSIGN
Zero as Argument to SIGN, ISIGN, DSIGN, AMOD, and MOD 9-9
Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
DSIN
S kibrary Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, GCSQRT
DSQRT

Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3

Dummy

Actual Arguments and Dummy or Formal Arguments to a Subroutine Subprogram

DUMP
System Subroutines RANGET, RANSET, DUMP, PDUMP, ERRSET 9-7, 9-8, D-5

E

E in Exponent Form of Real Constant 1-4

Input of Real Number with Exponent E Specification 6-4

Output of Real Number with Exponent E Specification 6-7
ECS

ECS (Extended Core Storage) Variables 1-11

ECS Input / Output Routines READEC and WRITEC 5-10
Editing

UPDATE or Editing Parameters on FTN Control Card 12-3
ENCODE

Syntax of ENCODE Statement 7-2, 7-3

Execution of ENCODE and DECODE Statements 1I-6

END

END Statement 4-15
ENDFILE

Syntax of ENDFILE Statement 5-10
ENTRY

ENTRY Statement in Subprogram 9-6
Entry Point
Definition of Entry Point 10-3
List of Entry Points in Cross Reference Map C-6
EOF
Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4
End-of-File Test via EOF Function I-5
E
¢ Relational Operators EQ, NE, GT, GE, LT, LE 2-4
EQUIVALENCE
Sharing of Storage via EQUIVALENCE Statement 8-5
Interaction of EQUIVALENCE and COMMON Statements 8-6
EQUIVALENCE, COMMON, and DATA Statements in a Function Subprogram 9-9
List of Equivalence Classes in Cross Reference Map C-15
Error
Error Listing by SYSTEM Routine G-4
Error Messages in Cross Reference Map C(C-16
Execution Error Diagnostics by Controlling Routine G-5 through G-11
Non-Standard Error Recovery G-2

60329100 D Index-7

9-5

Error Messages
FORTRAN Diagnostics or Error Messages B-1
ERRSET
System Subroutines RANGET, RANSET, DUMP, PDUMP, ERRSET 9-7, 9-8, D-5
Evaluation
Evaluation of Expressions and Precedence or Hierarchy of Operators 2-8
Exit
Exit Parameter on FTN Control Card 12-9
System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7, D-5
EXP
Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
Exponent
E in Exponent Form of Real Constant 1-4
Input of Real Number with Exponent E Specification 6-4
Output of Real Numbher with Exponent E Specification 6-7
Exponentiation
Type Conversion :in Mixed Mode Exponentiation 2-3
Expressions
Definition of Expressions 2-1
Arithmetic Expressions and Operators 2
Relational Expressions and Operators 2
Logical Expressions 2-5
Masking Expressions 2-6
Evaluation of Expressions and Precedence or Hierarchy of Operators 2-8
Extended Core Storage
ECS (Extended Core Storage) Variables 1-11
EXTERNAL
EXTERNAL Statement for Definition of External Procedure Names 8-7
Definition of an External Function ox Function Subprogram 9-9
Reference to External Function within Calling Program 9-10
Definition of Unsatisfied External 10-3
External BCD Codes A-1 through A-4
List of External References in Cross Reference Map (C-10
Definition of External Reference 10-3

F
F Input Specification for Real Numbers 6-7
F Qutput Specification for Real Numbers 6-8
FALSE
Logical Constants TRUE and FALSE 1-5
Field

Slash and Comma as FORMAT Field Separators 6-2
Omission of FORMAT Field Separators 1-6
Field Descriptors for FORMAT Statement 6-1
File
SCOPE INPUT File 5-3
Specification and Equivalencing of a File in PROGRAM Statement 9-1, 9-2
List of File Names in Cross Reference Map C-9
File and Logical Record Structure I-1
File Label Information I-7
Input / Output File Structure for 7600 I-9
File Names as LGO Control Card Parameters 9-3
FLOAT
Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1

® TIndex-8 60329100 D

Floating Point
Floating Point. See Real.
Formal
FORﬁXtual Arguments and Dummy or Formal Arguments to a Subroutine Subprogram
T
Transmission of Data Record According to FORMAT Specification 5-2
Slash and Comma as FORMAT Field Separators 6-2
Repeated Format Specifications 6-18
Variable Format Specifications 6-19
Omission of FORMAT Field Separators 1I-6
Field Descriptors for FORMAT Statement 6-1

Formatted

Distinction between Formatted and Unformatted Input / Output 5-1
Input of Formatted Data via READ Statement 5-2
Output of Formatted Data via WRITE Statement 5-3
Conversion Specifications for Formatted Input / Output 6-2
Execution of Formatted and Unformatted Input / Output I-1
FORTRAN
Statement Forms for FORTRAN Statements F-4
FORTRAN Interface with INTERCOM K-1
Source Deck Structure for a FORTRAN Program with Examples H-5
FORTRAN Extended
Structure of FORTRAN Extended Program 9-1
FTN (FORTRAN Extended) Control Card Format 12-1
FTN
FIN (FORTRAN Extended) Control Card Format 12-1
Examples of Usage of Parameters on FTN Control Card 12-11
FUNCS
FUNCS Debugging Statement 11-5
Function
Evaluation of a Function or Subscript within an Expression 2-8
Definition of an External Function or Function Subprogram 9-9
Reference to External Function within Calling Program 9-10
Arrangement of Code and Data for Subroutine and Function J-1, J-2
Functions
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1

Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3

Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4

Library Functions DMOD, AMAX0, AMAX1, MAX0, MAX1, DMAX1 D-1

Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2
Library Functions ATAN, DATAN, ATAN2, DATAN2, CABS, ACOS D-3

Library Functions LEGVAR, IOCHEC, DATE, TIME, SECOND D-4

G

G Input / Output Specification for Real Numbers 6-9
GE

Relational Operators EQ, NE, GT, GE, LT, LE 2-4
GOTOS

GOTOS Debugging Statement 11-7
GO TO

Computed GO TO Statement 4-3
Unconditional GO TO Statement 4-1

60329100 D Index-9

Assigned GO TO Statement 4-2
GT
Relational Operators EQ, NE, GT, GE, LT, LE 2-4

H

H, R, and L in Hollerith Constants 1-6

H Specification for Input / Output of Hollerith or Alphanumeric Data 6-15
Hierarchy

Evaluation of Expressions and Precedence or Hierarchy of Operators 2-8
Hollerith

Alphanumeric or Hollerith Constants 1-6

H Specification for Input / Output of Hollerith or Alphanumeric Data 6-15

* ,.% and /.../ as Hollerith String Delimiters 6-17

Hollerith 026 and 029 Punch Codes A-1 through A-4

Hollerith Constants and Octal Constants as Subroutine Arguments 9-5

I
Integer Input / Output with I Specification 6-3
TABS
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
Identification
Identification Field in Input Lines 1-2
IDIM
Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
IDINT
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
IF
Three-Branch Arithmetic IF 4-4
Two-Branch Arithmetic IF 4-5
One-Branch Logical IF 4-5
Two-Branch Logical IF 4-6
IFIX
Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
Implied
Implied DO Loops 5-1
Implied DO Loops in DATA Statement 8-8
INDEF
Checking Operators for STORES Debugging Statement RANGE, INDEF, VALID 11-6
Index
Permissible Range of Subscript or Index 1-4
Control Variables and Index Parameters in DO Statements 4-7
Initialization
Data Initialization with DATA Statement 8-8
Initialization of Labeled Common Blocks via BLOCK DATA Subprogram 9-11
Inline Functions
List of Inline Functions in Cross Reference Map C-11
Input
pDistinction between Formatted and Unformatted Input / Output 5-1
Input of Formatted Data via READ Statement 5-2
SCOPE INPUT File 5-3
Unformatted Input via READ Statement 5-5
Input of Data in NAMELIST Form via READ 5-7
ECS Input / Output Routines READEC and WRITEC 5-10
Characteristics of Buffered Input and Output 7-1

® Index-10 60329100 D

File Names INPUT, QUTPUT, PUNCH, and TAPE i in PROGRAM Statement 9-1
Implementation of Buffer Input / Output I-2

Execution of Formatted and Unformatted Input / Output I-1

Input / Output File Structure for 7600 I-9

Input / Output List 5-1

Mass Storage Input / Output via OPENMS, READMS, WRITMS, and STINDX 5-10, 1I-3

INT
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
Integer
Integer Constants 1-3
Integer Input / Output with I Specification 6-3
INTERCOM
FORTRAN Interface with INTERCOM K-1
Intrinsic
Intrinsic or Built-in Functions 9-9
Intrinsic Function Names in EXTERNAL Statement 8-7
TOCHEC
Parity Error Detection via IOCHEC Function 1I-5
Library Functions LEGVAR, IOCHEC, DATE, TIME, SECOND D-4
ISIGN
Zero as Argument to SIGN, ISIGN, DSIGN, AMOD, and MOD 9-9
Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2

L

H, R, and L in Hollerith Constants 1-6

Input / Output of Logical Data with L Specification 6-12
Label

File Label Information I-7
Labeled

Labeled Common Blocks 8-3

Initialization of Labeled Common Blocks via BLOCK DATA Subprogram 9-11
Labels

List of Statement Labels in Cross Reference Map C-12

Statement Labels or Numbers 1-2

Statement Labels in Computed GO TO 4-3

Statement Labels in an Assigned GO TO 4-1, 4-2
LCM

Transmission of Data to and from LCM (7600 only) 5-10

LCM and SCM Buffer Size for 7600 9-2

LE

Relational Operators EQ, NE, GT, GE, LT, LE 2-4
LEGVAR

Library Functions LEGVAR, IOCHEC, DATE, TIME, SECOND D-4
LENGTH

GOLibrary Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4

L
File Names as LGO Control Card Parameters 9-3

Library
Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3
Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4
Library Functions DMOD, AMAX0, AMAX1, MAX0, MAX1, DMAX1 D-1
Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2

60329100 D Index-11 e

Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2
Library Functions ATAN, DATAN, ATAN2, DATAN2, CABS, ACOS D-3
Library Functions LEGVAR, IOCHEC, DATE, TIME, SECOND D-4
Link
Definition of Link 10-3
List
List Parameter on FTN Card 12-2
Input / Output List 5-1

Load

Load of Common Blocks with Segments 10-4
LOCF

Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4
Logical

Logical Expressions 2-5

Logical Operators OR, AND, NOT 2-

Logical Assignment Statement 3-3

One-Branch Logical IF 4-5

Two-Branch Logical IF 4-6

Input / Output of Logical Data with L Specification 6-12

Logical Constants TRUE and FALSE 1-5
Loops

Syntax of DO Statements and DO Loops 4-6

Nested DO Loops 4-7

Execution of DO Loops 4-8

Transfer from or into DO Loops 4-9

Implied DO Loops 5-1

Implied DO Loops in DATA Statement 8-8

List of DO Loops in Cross Reference Map (-13

DO Loop Optimization via OPT Parameter on FTN Control Card 12-4
LT

Relational Operators EQ, NE, GT, GE, LT, LE 2-4

5

Main Program

PROGRAM Statement in Main Program 9-1
MASK

Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-Z
Masking

Masking Expressions 2-6

Masking Operators NOT, AND, OR 2-

Masking Assignment Statement 3-3
Mass Storage

Mass Storage Input / Output via OPENMS, READMS, WRITMS, and STINDX 5-10, 1I-3
MAXO0

Library Functions DMOD, AMAX0, AMAX1, MAX0, MAX1, DMAX1 D-1
MAX1

Library Functions DMOD, AMAX0, AMAX1, MAX0, MAX1, DMAX1 D-1
MINO

Library Functions AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
MIN1

Library Functions .AMINO, AMIN1, MINO, MIN1, DMIN1, FLOAT, IFIX D-1
Mixed-Mode

Type Conversion in Mixed-Mode Arithmetic Expressions 2-2

Type Conversion in Mixed-Mode Relational Expressions 2-4

Type Conversion of Mixed-Mode in Assignment Statements 3-2, Table 3-4

7

® Index-12 60329100 D

MOD

Zero as Argument to SIGN, ISIGN, DSIGN, AMOD, and MOD 9-9

Library Functions ABS, IABS, DABS, AINT, INT, IDINT, AMOD, MOD D-1
Mode

Mode. See Type.
Multiple

Multiple Assignment Statement 3-1

NAMELIST

NAMELIST Statement 5-6

Input of Data in NAMELIST Form via READ 5-7

Array Name in NAMELIST Statement 5-8

Output of Data in NAMELIST Form via WRITE 5-9

List of NAMELIST Groups in Cross Reference Map C-11
Names

Formation and Use of Symbolic Names 1-3

Formation of Variable Names 1-7

NE

Relational Operators EQ, NE, GT, GE, LT, LE 2-4
Nested

Nested DO Loops 4-7
NOGO

NOGO Debugging Statement 11-8
Non-Standard

Non-Standard Error Recovery G-2
NOT

Logical Operators OR, AND, NOT 2-

Masking Operators NOT, AND, OR 2-
Numbers

Statement Labels or Numbers 1-2

5
7

0

Input / Output of Octal Data with O Specification 6-10
Octal

Octal Constants Designated by B 1-6

Input / Output of Octal Data with O Specification 6-10

Hollerith Constants and Octal Constants as Subroutine Arguments 9-5
OFF

OFF Statement in Debugging Mode 11-16
OPENMS

Mass Storage Input / Output via OPENMS, READMS, WRITMS, and STINDX 5-10, I-3
Operators

Arithmetic Expressions and Operators 2-1

Relational Expressions and Operators 2-3

Logical Operators OR, AND, NOT 2-5

Masking Operators NOT, AND, OR 2-7

Evaluation of Expressions and Precedence or Hierarchy of Operators 2-8
OPT

Optimization Parameter OPT on FIN Control Card 12-4
Optimization

Assignment to Registers for Optimization in Fast Object Code Mode 12-6

Optimization Parameter OPT on FIN Control Card 12-4
OR

Logical Operators OR, AND, NOT. 2-5 ..

60329100 D Index-13 ®

Masking Operators NOT, AND, OR 2-7

Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2
Output

Distinction between Formatted and Unformatted Input / Output 5-1

Output of Formatted Data via WRITE Statement 5-3

Formatted Output via PRINT and PUNCH Statements 5-4

Unformatted Output via WRITE Statement 5-5

Output of Data in NAMELIST Form via WRITE 5-9

ECS Input / Output Routines READEC and WRITEC 5-10

Characteristics of Buffered Input and Output 7-1

File Names INPUT, OUTPUT, PUNCH, and TAPE i in PROGRAM Statement 9-1

Implementation of Buffer Input / Output I-2

Execution of Formatted and Unformatted Input / Output I-1

Input / Output List 5-1

Mass Storage Input / Output via OPENMS, READMS, WRITMS, and STINDX 5-10,
Overlay

Definition of Overlay and Segment 10-1

Parameters for CALL OVERLAY Statement 10-3

Format of OVERLAY Control Card 10-1, 10-2

p

P Specification for Scale Factor in Input / Output 6-13
Parameters

Actual Arguments or Parameters in a CALL Statement 4-12
Parity

Specification of Parity in a Buffer Control Statement 7-1
PAUSE
PAUSE Statement 4-15
PDUMP
System Subroutines RANGET, RANSET, DUMP, PDUMP, ERRSET 9-7, 9-8, D-5
Precedence
Evaluation of Expressions and Precedence or Hierarchy of Operators 2-8
PRINT
Formatted Output via PRINT and PUNCH Statements 5-4
Printer
Printer Carriage Control Requirement 5-4
Printer Carriage Control Characters I-7
Procedure
EXTERNAL Statement for Definition of External Procedure Names 8-7
Program
Structure of FORTRAN Extended Program 9-1
PROGRAM Statement in Main Program 9-1
Specification and Equivalencing of a File in PROGRAM Statement 9-1, 9-2
Source Deck Structure for a FORTRAN Program with Examples H-5
PUNCH
Formatted Output via PRINT and PUNCH Statements 5-4
File Names INPUT, OUTPUT, PUNCH, and TAPE i in PROGRAM Statement 9-1

R

H, R, and L in Hollerith Constants 1-6)

Input / Output of Alphanumeric Data with R Specification 6-12
Random Access

Input / Output for Random Access Devices (Disk) 5-10

e Index-14 60329100 D

RANF
Obtaining or Initializing Cenerative Value of RANT with RANGET and RANSET
Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4

RANGE

Checking Operators for STORES Debugging Statement RANGE, INDEF, VALID 11-6

RANGET

System Subroutines RANGET, RANSET, DUMP, PDUMP, ERRSET 9-7, 9-8, D-5
RANSET

System Subroutines RANGET, RANSET, DUMP, PDUMP, ERRSET 9-7, 9-8, D-5
READ

READ and WRITE Statement Parameters 5-2

Input of Formatted Data via READ Statement 5-2

Unformatted Input via READ Statement 5-5

Input of Data in NAMELIST Form via READ 5-7
READEC

ECS Input / Output Routines READEC and WRITEC 5-10
READMS

Mass Storage Input / Output via OPENMS, READMS, WRITMS, and STINDX 5-10,
Real

Real Constants 1-4

Input of Real Number with Exponent E Specification 6-4

Output of Real Number with Exponent E Specification 6-7

F Input Specification for Real Numbers 6-7

F Output Specification for Real Numbers 6-8

G Input / Output Specification for Real Numbers 6-9

Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
Record

Transmission of Data Record According to FORMAT Specification 5-2

Slash as Record Terminator 6-16

File and Logical Record Structure I-1
Reference _

Reference to External Function within Calling Program 9-10

Obtaining Cross Reference Map via List Parameter on FIN Card 12-3

Reference Map Level Parameter on FIN Control Card 12-11

Cross Reference Map C-1

Example Program with Cross Reference Map C-5
Registers

Assignment to Registers for Optimization in.Fast Object Code Mode 12-6
Relational

Relational Expressions and Operators 2-3

Relational Operators EQ, NE, GT, GE, LT, LE 2-4

Evaluation of Relational Expressions 2-4

Type Conversion in Mixed-Mode Relational Expressions 2-4
REMARK

System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7, D-5
RETURN

RETURN Statement in a Subroutine Subprogram 9-4

RETURN from a Function Subprogram 9-9

Calling Sequence and Control Return for COMPASS Subprogram E-1

RETURN Statement in a Subprogram 4-14
RETURNS

CALL ... RETURNS Statement 4-12

RETURNS Option in a Subroutine 9-4
REWIND

Syntax of REWIND and BACKSPACE Statements 5-9

Execution of BACKSPACE and REWIND Statements I-6

60329100 D Index-15

9-7

I-3

ROUND
Rounded Arithmetic via ROUND Parameter on FTN Control Card 12-9

Scale Factor

P Specification for Scale Factor in Input / Output 6-13
SCM

LCM and SCM Buffer Size for 7600 9-2
SCOPE

SCOPE INPUT File 5-3

Standard SCOPE Character Sets A-1

SECOND

Library Functions LEGVAR, IOCHEC, DATE, TIME, SECOND D-4
SECTION

SECTION Control Card 10-4
Segment

Definition of Overlay and Segment 10-1

Terms Applicable to a Segment 10-3

SEGMENT Control Card 10-5

CALL SEGMENT Statement 10-5

Delinking of a Segment 10-4

BLOCK DATA Subprogram within a SEGMENT 9-11
SEGZERO

SEGZERO Control Card 10-5
SHIFT

Library Functions DBLE, CMPLX, CONJG, SHIFT, AND, OR, COMPL, MASK D-2
SIGN

Zero as Argument to SIGN, ISIGN, DSIGN, AMOD, and MOD 9-9

Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
SIN

Library Functions EXP, DEXP, CEXP, ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN D-3
Slash

Slash and Comma as FORMAT Field Separators 6-2

Slash as Record Terminator 6-16
SLITE

System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7, D-5
SLITET

System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7, D-5
SNGL

Library Functions SIGN, ISIGN, DSIGN, DIM, IDIM, SNGL, REAL, AIMAG D-2
Source

Source Deck Structure for a FORTRAN Program with Examples H-5
Source Input

Source Input Parameter on FTN Card 12-1

Spacing

X Specification for Spacing in Input / Output 6-14
Specification

Specification Statements or Declarations 8-1
SQRT

Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3
SSWTCH

System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7, D-5
Statement

$§ as Statement Separator 1-2

Statement Labels in Computed GO TO 4-3

Statement Forms for FORTRAN Statements F-4

® Tndex-16 60329100 D

Statement Labels in an Assigned GO TO 4-1, 4-2
Statement Functions 9-8
STINDX
Mass Storage Input / Output via OPENMS, READMS, WRITMS, and STINDX 5-10,
STOP
STOP Statement 4-14
Storage
Sharing of Storage via EQUIVALENCE Statement 8-5
Ordering of Storage Allocation for an Array 1-8, 1-11
Allocation of Storage for an Array via DIMENSION Statement 8-1
STORES
STORES Debugging Statement 11-6
STRACE
STRACE Debugging Aid 11-18
Subprogram
Variable Dimension of an Array in a Subprogram 8-2
Subroutine Subprogram 9-3
ENTRY Statement in Subprogram 9-6
Definition of an External Function or Function Subprogram 9-9
Example of a COMPASS Subprogram E-2
Transferring Program and Subprogram Values through Common Blocks 8-3
COMPASS Subprogram Intermixed in FORTRAN Source Deck E-1
Syntax of CALL Statement for Subroutine Subprogram 4-12
RETURN Statement in a Subprogram 4-14
Actual Arguments and Dummy or Formal Arguments ‘to a Subroutine Subprogram 9-
Subroutine
Subroutine Subprogram 9-3
System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7
Arrangement of Code and Data for Subroutine and Function J-1, J-2
System Subroutines RANGET, RANSET, DUMP, PDUMP, ERRSET 9-7, 9-8, D-5
Syntax of CALL Statement for Subroutine Subprogram 4-12
Actual Arguments and Dummy or Formal Arguments to a Subroutine Subprogram 9-5
Subscript
Permissible Range of Subscript or Index 1-4
Array Name without Subscript 1-8
Subscript of an Array Element 1-9
Evaluation of a Function or Subscript within an Expression 2-8
Maximum Bounds of an Array Subscript 8-1

4
1
w

[}

, D-5

Symbolic

Formation and Use of Symbolic Names 1-3
SYSEDIT

SYSEDIT Parameter on FTN Control Card 12-10
SYSTEM

SYSTEM Routine Specifications G-1

Entry Points of SYSTEM Routine G-4

System Subroutines SLITE, SLITET, SSWTCH, EXIT, REMARK, DISPLA 9-7, D-5

System Subroutines RANGET, RANSET, DUMP, PDUMP, ERRSET 9-7, 9-8, D-5
Systems Text File

Specification of Systems Text File via S Parameter on FIN Control Card 12-9

Tabular Column Selection Control Character T 6-17

T Mode of Compilation Specified on FIN Control Gard 12-3
Tabular

Tabular Column Selection Control Character T 6-17

60329100 D Index-17 e

TAN
Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4
TANH
Library Functions DSIN, CSIN, COS, DCOS, CCOS, TANH, SQRT, DSQRT, CSQRT D-3
TAPE
File Names INPUT, OUTPUT, PUNCH, and TAPE i in PROGRAM Statement 9-1
TIME
Library Functions LEGVAR, IOCHEC, DATE, TIME, SECOND D-4
TRACE
TRACE Debugging Statement 11-7
Traceback
Diagnostics and Traceback Information under Control of System Routine G-1
TRUE
Logical Constants TRUE and FALSE 1-5
Type
Type of Data 1-3
Type Conversion in Mixed-Mode Arithmetic Expressions 2-
Type Conversion in Mixed-Mode Relational Expressions 2

2
-4
Type Conversion of Mixed-Mode in Assignment Statements 3-

2, Table 3-4

Unconditional
Unconditional GO TO Statement 4-1
Unformatted
Distinction between Formatted and Unformatted Input / Output 5-1
Unformatted Input via READ Statement 5-5
Unformatted Output via WRITE Statement 5-5
Execution of Formatted and Unformatted Input / OQutput I-1
UNIT
Library Functions ASIN, TAN, RANF, LOCF, UNIT, EOF, LENGTH D-4
Status Checking via UNIT Function I-4

Unlabeled

Unlabeled Common or Blank Common Blocks 8-4
Unsatisfied

Definition of Unsatisfied External 10-3
UPDATE

UPDATE or Editing Parameters on FTN Control Card 12-3

vV
Small Buffer Specification via V on FIN Control Card 12-11
VALID
Checking Operators for STORES Debugging Statement RANGE, INDEF, VALID 11-6
Variable
Formation of Variable Names 1-7
Variable Dimension of an Array in a Subprogram 8-2
Variables
List of Variables in Cross Reference Map (-7

WRITE
READ and WRITE Statement Parameters 5-2
Output of Formatted Data via WRITE Statement 5-3
Unformatted Qutput via WRITE Statement 5-5
Output of Data in NAMELIST Form via WRITE 5-9

o Index-18 60329100 D

WRITEC :
ECS Input / Output Routines READEC and WRITEC 5-10
WRITMS
Mass Storage Input / Output via OPENMS, READMS, WRITMS, and STINDX

X

X Specification for Spacing in Input / Output 6-14
Zero

Zero as Argument to SIGN, ISIGN, DSIGN, AMOD, and MOD 9-9
026

Hollerith 026 and 029 Punch Codes A-1 through A-4
029
Hollerith 026 and 029 Punch Codes A-1 through A-4

63
CDC 63 Character Set A-4

64
CDC 64 Character Set A-2
ASCII 64 Character Subset A-3

7600
Transmission of Data to and from LCM (7600 only) 5-10
LCM and SCM Buffer Size for 7600 9-2
Input / Output File Structure for 7600 I-9

$ as Statement Separator 1-2

E *
_.% and /.../ as Hollerith String Delimiters 6-17

/o ./
* % and /.../ as Hollerith String Delimiters 6-17

60329100 D

Index-19

CUT ON THIS LINE

— — —— ————— — —— — m— Ge— — —— ar——

COMMENT SHEET CONTROL DATA

CORPORATION

TITLE: EORTRAN Extended Reference Manual (6000 Version 3/7000 Version 1)

PUBLICATION NO. 60329100 REVISION D

This form is not intended to be used as an order blank. Contro!l Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME :

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

E——
BUSINESS REPLY MAIL S——
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I
—
E—
POSTAGE WILL BE PAID BY ———
CONTROL DATA CORPORATION E——
Documentation Department —
215 Moffett Park Drive S——
Sunnyvale, California 94086
EEE——
—
EE—
S
- FoLO T T T T T T T T T T T T T T T T T e
STAPLE

STAPLE

STAPLE

FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

CUT ON THIS LINE

> »CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

CONTROL DATA
| corroraTion]

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO.. MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	H-01
	H-02
	H-03
	H-04
	H-05
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	J-02
	K-01
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	replyA
	replyB
	xBack

