A
[CR SRS Gy

CONTROL DATA

CORPFPORATION

FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CONTROL DATA®
CYBER 170 SERIES
CYBER 70 SERIES
6000 SERIES

7000 SERIES
COMPUTER SYSTEMS

New features,
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

as well as changes, deletions, and additions to information in this manual are

REVISION RECORD

REVISION DESCRIPTION
A Original Printing
(10-22-71)
B This revision uses shading to denote non-ANSI features and footnotes to indicate information that
(10-06-72) applies only to the Model 76 and 7600 computers or only to the Models 72, 73, 74, and 6000 computers
The sections on the Reference Map and COMPASS coded subprograms are new with more details and
examples. This manual supersedes (but does not invalidate) the previous edition.
C This revision corrects typographic errors and expands the description of some features. This revision
(5-25-73) reflects Version 4.0 of FORTRAN Extended available with SCOPE 3.4 and KRONOS 2.1 operating
systems. Pages affected are: iii, iv, vii thru xi, xvi, xviii, I-1-1, I-1-2, I-14, I-2-5 thru [-2-12, -3-5,
I-3-6, 1-3-8, 1-5-8, 1-5-15, [-5-16, 1-6-1, 1-6-6, 1-6-9, 1-6-11, 1-6-21 thru 1-6-26, I-7-1, I-7-2, 1-7-20, I-7-21,
I-8-1 thru -84, 1-8-6, 1-8-8 thru I-8-11, I-8-13, 1-9-1 thru 1-9-4, 1-9-8, 1-9-15, 1-9-16, 1-9-19, 1-9-20,
I-10-2, [-10-13, I-10-14, 1-10-16 thru I-10-18, I-10-21, I-10-23, I-10-24, 1-10-31, I-10-32, I-11-1, I-11-3,
I-114, 1-11-6, I-12-5 thru 1-129, I-13-1, [-13-20 thru I-13-22, II-1-1, 1I-1-2, II-1-15, 1I-1-17, II-1-37
thru 1i-1-39, III-2-1 thru II1-2-13, I1}-2-19, 111-2-20, I1I4-8, 1114-10, III-5-10, II1-5-17, III-6-1 thru
11-6-9, 11-7-1, 11I-7-6, 111-10-2, I1I-10-5, I1I-11-1, 111-12-1, III-12-2, I1I-13-1, 11I-13-9, A-1, A-2,
Index-l,;ndex 12, and C;mment Sheet
D This revision includes the new features of Version 4.1, as well as minor corrections. Major changes occur
(11-30-73) in sections 19 and I-10 for the I/O enhancements. FTN control card options are now arranged alpha-

betically. Pages affected: iii thru xxi; Part I: 1-2, 1-3, 14; 2-1, 2-2, 29, 2-10, 2-17; 3-8; 5-15, 5-16;

6-6, 6-8, 6-9, 6-11, 6-12, 6-13, 6-21, 6-25; 7-1, 7-2, 7-3, 720, 7-21; 8-12 thru 8-15; 9-1 thru 9-26; 10-1,

10-2, 10-6 thru 10-14, 10-18 thru 10-35; 11-1 thru 11-9; 12-9; 13-30; Part II: 1-37 thru 1-41; Part III:

1-1, 1-2, 1.9, 1-12; 2-3 thru 2-14, 2-19, 2-20; 3-3 thru 3-11; 4-11; 5-1, 5-3, 5-7, 5-11, 5-14; 8-1;

Publication No.

12-1, 12-2; 13-1, 13-2; A-1; Index 1 thru 18; Comment Sheet.

60305600
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.

FORTRAN Extended Version 4

Reference Manual

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
- SUNNYVALE, CALIFORNIA 94086

© 1971, 1972, 1973, 1974, 1975
Control Data Corporation or use Comment Sheet in the

Printed in the United States of America back of this manual

60305600 G

New features,
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

as well as changes, deletions, and additions to information in this manual are

REVISION RECORD (Cont'd)

REVISION

DESCRIPTION

E

This revision includes new features of Version 4.2 for use under SCOPE 3.4, KRONOS 2.1, and SCOPE

(5-10-74)

2.1; and it incorporates clarifications and technical and typographical corrections. Pages affected: iii

thru x; Part I: 4-3; 5-8, 59, 5-10; 6-12, 6-17, 6-18, 6-21, 6-25; 7-2, 7-8, 7-9; 8-1, 8-2, 8-5 thru 8-8,

8-13, 8-15; 9-7, 99, 9-11, 9-14; 10-1, 10-6, 10-34; 11-2 thru 11-9; Part III: 2-15 thru 2-19; 5-12, 5-19;

7-4; 11-1 thru 11-3; Index-2, 9, 10, 13; Comment Sheet.

F

This revision documents Version 4.3 of FORTRAN Extended for use under NOS 1.0, SCOPE 34,

(10-5-74)

KRONOS 2.1, and SCOPE 2.1. Changes include the following features: Time-sharing FORTRAN Option,

FTN Optimization (Phase III), FORTRAN Extended - SORT Interface, Multiple Arguments for Logical

Functions, NAMELIST Rewrite, Multiple-index Capability for Record Manager Advanced Access Files, and

Record Manager Word Addressable File Enhancements. Also incorporated are clarifications and technical

corrections. Pages affected: Cover, iii thru x.1; Part I: 2-2, 6, 7, 17; 3-2 thru §, 11, 12; 4-5; 5-5, 8

thru 10; 64, 12, 13, 17, 23, 24, 25; 7-2, 7, 8, 18 thru 21; 8-1 thru 21; 9-13 thru 22, 25; 104,

7, 8, 13, 16, 24, 25, 31 thru 38; 11-1 thru 10; 13-5, 13, 14, 15; Part II: 1-5, 9, 10, 15, 16, 18, 23,

38 thru 41; Part II: 1-1 thru 24; 2-1 thru 33; 3-1 thru 10; 4-1 thru 5,9, 11; 5-1 thru 12; 6-1,

10, 11; 72, 11; 8-1; 10-1,2,5,6,7; 11-1 thru 3; 13-1 thru 3; 14-1 thru 4; 15-1, 2; 16-1 thru

S; Index 1 thru 19; Comment Sheet. Specific pages affected by the features are as follows: Time-

sharing FORTRAN option: I-11-7, 8, 10; MI-1-17 thru 24; 2-1, 14 thru 25; 13-2; 14-1; 15-1, 2.

FTN Optimization (Phase III): III-14-1 thru 3. FORTRAN Extended - SORT Interface: III-16-1 thru 5.

Multiple Arguments for Logical Functions: I-7, 8; 8-1, 3; 11-8,9; III-8-1; 10-1, 5. NAMELIST

Rewrite: 1-6-24; 9-16 thru 19; II-1-10, 18, 39 thru 41; III-2-31, 32. Multiple Index Capability for

Record Manager Advanced Access Files: I1I-6-10, 11. Record Manager Word Addressable File Enhance-

ments: III-5-5, 6; 7-2.

G

This revision documents Version 4.4 of FORTRAN Extended. Changes include the following features:

(3-28-75)

Math Library Upgrade Phase II, CP079, I/O APLIST Modification, CP123, Dynamic Listing Control and

UO option, CP121.

Publication No.
60305600

60305600 G

i/ iv

B tmmiin 1 [—
SR .

LAl S

LIST OF EFFECTIVE PAGES

-}
New features, as well as changes, deletions, and
additions to information in this manual are indicated Feature Page Revision

by bars in the margins or by a dot near the page

number if the entire page is affected. A bar by the 1-8-19, 8-20 F

page number indicates pagination rather than content 8-21 G

has changed. 1-9-1, 9-2 G

9-3,94 D

9-5, 9-6 G

9-7 E

Feature Page Revision 9-8 D

9-9 G

Front Cover - 9-10 D

Title Page - 9-11 thru 9-13 G

ii thru xxviii G 9-14 F

I-1-1 thru 1-3 G 9-15 thru 9-27 G

14 D 1-10-1 E

[-2-1 thru 2-17 G 10-2 G

1-3-1 B 10-3 B

32 G 10-4 F

3-3,34 F 10-5 B

3-5 G 10-6 E

3-6 C 10-7 G

3-7 B 10-8 F

3-8 G 10-9 thru 10-11 D

3-9 B 10-12 A

3-10 A 10-13 F

3-11, 3-12 G 10-14 D

3-13 thru 3-15 B 10-15 A

3-16 A 10-16 F

1-4-1, 4-2 B 10-17 C

4-3 E 10-18, 10-19 D

44 B 10-20 A

4-5 F 10-21, 10-22 G

4-6 B 10-23 D

I-5-1 thru 5-16 G 10-24 G

[-6-1 thru ¢-24 G 10-25 F

1-7-1 thru 7-19 G 10-26 thru 10-28 D

I-8-1 thru 8-3 G 10-29 thru 10-39 G

84, 8-5 F I-11-1 thru 11-7 G

CP079 8-6, 8-7 G CP121 11-8 G

8-8 thru 8-14 G 11-9 G

8-15 F CP121 11-10 G

8-16 G [-12-1 thru 12-6 G

8-17 F 12-7,12-8 C

8-18 G 12-9 G

60305600 G

vi

Feature

Page

Revision

I-13-1

13-2

13-3, 134
13-5

13-6

13-7

13-8

13-9 thru 13-11
13-12 thru 13-15
13-16, 13-17
13-18

13-19

13-20 thru 13-22
13-23 thru 13-25
13-26 thru 13-28
13-29

13-30

13-31

II-1-1, 1-2

1-3

1-4

1-5

1-6 thru 1-9
1-10

1-11, 1-12
1-13

1-14

1-15

1-16

1-17

1-18

1-19

1-20 thru 1-22
1-23

1-24, 1-25
1-26

1-27

1-28 thru 1-36
1-37

1-38

1-39 thru 1-41
11I-1-1 thru 14
1-5

1-6

1-7

1-8, 1-9

1-10, 1-11

1-12

C

TETOMEIQOTQAUPEPETTEOTOTNQAE>PETIEFQEPOTOATQATOATOTATOOTOEO

Feature

Page

Revision

CP079
CP079

CP121

CP121

CP121

1I1-1-13

1-14

1-15

1-16 thru 1-24
11-2-1

2-2

2-3 thru 2-13
2-14 thru 2-31
2-32 thru 2-38
II1-3-1 thru 3-5
3-6 thru 3-12
111-4-1

422

4-3 thru 4-5
4-6, 4-7

4-8

4-9

4-10

4-11

4-12

HI-5-1

5-2 thru 5-5
5-6

5-7 thru 5-12
111-6-1 thru 6-11
111-7-1 thru 7-13
111-8-1

111-9-1

9-2

9-3

111-10-1 thru 10-3
104

10-5

10-6, 10-7
11-11-1

11-2

11-3

I1-12-1

12-2

12-3 thru 12-7
111-13-1

13-2

13-3 thru 13-11
I11-14-1

14-2

14-3

14-4, 14-5
111-15-1, 15-2

QOO0 QAUOOOOTAOATARQAQAPETOOOTMAOATMEAOAO>PAT AT OTW TR

60305600 G

Feature

Page

Revision

Feature

Page

Revision

III-16-1 thru 16-6
A-1

A-2

A-3

Index-1 thru?7
Comment Sheet
Return Env

Back Cover

I aNaN--NoNoNs)

|

60305600 G

vii/viii

PREFACE

This manual describes the FORTRAN Extended 4.4 language. FORTRAN Extended is designed to comply with l
American National Standards Institute FORTRAN language, as described in X3.9-1966. It is assumed the reader
has knowledge of an existing FORTRAN language and is familiar with the computer system on which the lan-
guage is used.

The FORTRAN Extended compiler operates in conjunction with the COMPASS 3 assembly language processor
under control of:

NOS 1.0 operating system for the CONTROL DATA® CYBER 170, CYBER 70/Models 72, 73, 74, and
6000 Series Computer Systems

SCOPE 3.4 and KRONOS 2.1 operating systems for the CDC CYBER 70/Models 72, 73, 74, and
6000 Series Computer Systems

SCOPE 2.1 operating system for the CDC CYBER 70/Model 76 and 7600 Computer Systems

Version 4.4 of FORTRAN Extended provides dynamic compilation listing control, Phase II of the Math
Library Upgrade (addition of SINH and COSH, plus further math library improvements), and optional indexed
array element prefetching and B-register preservation across FORTRAN Math Library basic external function
references.

This manual is in three parts. The reference section, Part I, contains a full description of the FORTRAN
Extended language.

Part II consists of a set of sample programs with input cards and output. Each program is preceded by a short
introduction which explains some of the more difficult aspects of the language for the less experienced FORTRAN
programmer.

Part III contains mainly information related to debugging, various interfaces, and additional details related to
the operation of FORTRAN Extended.

Other Documents of Interest Publication Number
COMPASS 3 Reference Manual 60360900
FORTRAN Common Library Mathematical Routines 60387900
FORTRAN Extended DEBUG User’s Guide 60329400
INTERCOM 4 Reference Manual 60307100
INTERCOM Interactive Guide for Users of FORTRAN Extended 60359700

60305600 G ix

KRONOS 2.1 Reference Manual 60407000

KRONOS 2.1 Time-Sharing User’s Reference Manual 60407600
LOADER Reference Manual 60344200
NOS 1.0 Reference Manual 60435400
NOS 1.0 Time-Sharing User’s Reference Manual 60435500
Record Manager Reference Manual 60307300
Record Manager Guide for Users of FORTRAN Extended 60385200
CYBER Record Manager User’s Guide 60359600
SCOPE 3.4 Reference Manual 60307200
SCOPE 2 Reference Manual 60342600
SIFT Programming System Bulletin 60358400
Sort/Merge Reference Manual 60343900
UPDATE Reference Manual 60342500

Throughout the manual, Control Data extensions to the FORTRAN language are indicated by shading. Other-
wise, FORTRAN Extended conforms to ANSI standards.

This product is intended for use only as described in this document. Control
Data cannot be responsible for the proper functioning of undescribed features
or undefined parameters.

X 60305600 G

CONTENTS

PREFACE i
STATEMENT FORMS xi
PART I
1 CODING FORTRAN STATEMENTS I-1-1 4 ASSIGNMENT STATEMENTS I-4-1
FORTRAN Character Set I-1-1 Arithmetic Assignment Statements 14-1
FORTRAN Statements I-1-2 Conversion to Integer 1-4-2
Continuation Lines I-1-2 Conversion to Real 14-3
Statement Separator I-1-2 Conversion to Double Precision 14-3
Statement Labels I-1-3 Conversion to Complex 1-4-4
Comments I-1-3 Logical Assignment 14-5
Columns 73-80 I-1-3 Masking Assignment 1-4-5
Blank Lines I-1-3 Multiple Assignment 14-6
Data I-13
5 CONTROL STATEMENTS I-5-1
2 LANGUAGE ELEMENTS [-2-1 GO TO Statement I-5-1
Constants [-2-1 Unconditional GO TO Statement I-5-1
Integer Constant [-2-1 Computed GO TO Statement = I-5-2
Real Constant [-2-2 ASSIGN Statement I-5-3
Double Precision Constant I-2-3 Assigned GO TO Statement I-54
Complex Constant 1-2-4 Arithmetic IF Statement I-5-5
Octal Constant I-2-5 Three-Branch Arithmetic IF
Hollerith Constant I-2-6 Statement I-5-5
Logical Constant [-2-8 Two-Branch Arithmetic IF
Variables 1-2-9 Statement I-5-5
Integer Variables I-2-10 Logical IF Statement I-5-6
Real Variables [-2-10 Standard-Form Logical IF
Double Precision Variables [-2-11 Statement I-5-6
Complex Variables I-2-11 Two-Branch Logical IF
Logical Variables [-2-11 Statement 1-5-7
Arrays I-2-12 DO Statement I-5-7
Subscripts I-2-14 DO Loops I-5-8
Array Structure I-2-15 Nested DO Loops I-5-9
CONTINUE Statement [-5-13
3 EXPRESSIONS I-3-1 PAUSE Statement [-5-14
Arithmetic Expressions I-32 =~ STOP Statement 1-5-14
Evaluation of Expressions I-3-3 END Statement I-5-15
Type of Arithmetic Expressions I-3-5 RETURN Statement I-5-15
Exponentiation I-3-6
Relational Expressions 1-3-7 6 SPECIFICATION STATEMENTS [-6-1
Logical Expressions 1-3-9 Type Statements I-6-1
Masking Expressions 1-3-13 Explicit Type Statements I-6-2

60305600 G

IMPLICIT Type Statement
DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
EQUIVALENCE and COMMON
LEVEL Statement
EXTERNAL Statement
DATA Statement

PROGRAMS, SUBPROGRAMS,
AND PROCEDURES
Main Program
PROGRAM Statement Format
PROGRAM Statement Usage
Block Data Subprogram
Procedures
Subroutine Subprogram
Function Subprogram
Basic External Function
Intrinsic Function
Statement Function
Procedure Communication
Passing Values to a Procedure
Using Arguments
Using Common
Using Arrays
Referencing a Function
Calling a Subroutine Subprogram
Using the ENTRY Statement

FORTRAN EXTENDED SUPPLIED
PROCEDURES
Intrinsic Functions
Basic External Functions
Additional Utility Subprograms
Operating System Interface
Routines
Debugging Aids
Random Number Generator
Mass Storage Input/Output
Input/Output Status Checking
Other Input/Output Subprograms
ECS/LCM Subprograms
Terminal Interface
CYBER Record Manager Interface
Sort/Merge Interface

INPUT/OUTPUT
FORTRAN Record Length
Carriage Control

Output Statements

I1-6-3
I-6-5
I-6-6
I-6-10
1-6-13
1-6-15
I-6-16
I-6-19

I-7-1
172
172
1-7-3
17-5
17-6
17-6
1-7-8
179
1-7-10
I-7-10
1-7-12
1-7-12
1712
1-7-14
1-7-14
1-7-15
17-16
1-7-18

I-8-1
[-8-1
I-8-6
1-8-9

I-8-9

I-8-15
I-8-16
1-8-16
1-8-18
[-8-19
1-8-20
1-8-21
1-8-21
I-8-21

[9-1
192
1-9-2
193

10

11

PRINT

PUNCH

Formatted WRITE

Unformatted WRITE

List Directed WRITE
INPUT Statements

Formatted READ

Unformatted READ

List Directed READ

List Directed Input Data Forms

List Directed Output Data Forms
File Manipulation Statements

REWIND

BACKSPACE

ENDFILE
BUFFER Statements
NAMELIST

Input Data

Output

Arrays in NAMELIST
ENCODE and DECODE

ENCODE

DECODE

INPUT/OUTPUT LISTS AND
FORMAT STATEMENTS
Input/Output Lists
IMPLIED DO in I/O List
FORMAT Statement

Data Conversion

Field Separators

Conversion Specification

Scale Factors

X Specification

nH Output

nH Input

*oURFE L LF

FORTRAN Record Slash

Repeated Format Specification

Printer Control Character

Tn Specification

V Specification

Equals Sign

Execution Time Format

Statements

FORTRAN CONTROL CARD
Parameters

A Exit Parameter

B Binary Object File

BL Burstable Listing

1-9-3
194
I-9-5
19-6
1.9-7
1-9-7
I-9-7
1-9-8
1.9-9
1.9-10
I-9-11
[-9-12
[-9-12
19-12
1-9-13
I-9-13
I-9-15
1-9-17
19-18
1-9-19
[-9-21
[-9-21
1-9-24

I-10-1
I-10-1
I-10-2
I-10-5
I-10-6
I-10-7
I-10-7
1-10-22
I-10-24
I-10-25
1-10-26
1-10-27
1-10-29
1-10-31
I-10-32
1-10-34
I-10-35
1-10-36

1-10-38

I-11-1
I-11-1
I-11-2
I-11-2
112

60305600 G

C COMPASS Assembly

D Debugging Mode Parameter

E Editing Parameter

EL Error Level

G Get System Text File

GO Automatic Execution

I Source Input File

L List Output File

LCM Level 2 and Level 3
Storage Access

ML Modlevel

OL Object List

OPT Optimization Parameter

P Pagination

PL Print Limit

Q Program Verification

R Symbolic Reference Map

ROUND Rounded Arithmetic
Computations

S System Text (Library) File

SEQ Sequential Input

SL Source List

SYSEDIT System Editing

T Error Traceback

TS Timesharing Mode

UO Unsafe Optimization

X External Text Name

Z Zero Parameter

SAMPLE PROGRAMS
PROGRAM OUT
PROGRAM B
PROGRAM MASK
PROGRAM EQUIV
PROGRAM COME
PROGRAM LIBS
PROGRAM PIE
PROGRAM ADD
DECODE (READ)
ENCODE (WRITE)
PROGRAM PASCAL

CROSS REFERENCE MAP
Optimizing Compilation Mode
Source Program

60305600 G

[-11-2
I-11-3
1-11-3
I-11-3
I-11-4
I-114
I-114
I-11-4

I-11-5
I-11-5
I-11-5
I-11-5
[-11-6
I-11-6
I-11-6
I-11-6

I-11-7
I-11-7
I-11-7
I-11-7
I-11-8
I-11-8
I-11-8
I-11-8
I-11-9
I-119

PART II

II-1-1
I1-1-1
II-1-4
I1-1-6
II-1-9
II-1-11
II-1-14
1-1-17
1I-1-19
II-1-19
II-1-19
-1-22

PART III
M1-1-1

I11-1-1
nI-1-2

12

13

FTN Control Card Samples

OVERLAYS

Overlay Communication
Creating an Overlay
Calling an Overlay

DEBUGGING FACILITY
Debugging Statements
Continuation Card
ARRAYS Statement
CALLS Statement
FUNCS Statement
STORES Statement
Variable Names
Relational Operators
Checking Operators
Hollerith Data
GOTOS Statement
TRACE Statement
NOGO Statement
Debug Deck Structure
DEBUG Statement
AREA Statement
OFF Statement
Printing Debug Output
STRACE Entry Point

PROGRAM X

PROGRAM VARDIM
PROGRAM VARDIM2
SUBROUTINE IOTA
SUBROUTINE SET
FUNCTION AVG
FUNCTION PVAL
FUNCTION MULT

Main Program — VARDIM2
PROGRAM CIRCLE
PROGRAM OCON

List Directed Input/Output

Entry Points
Variables
File Names

I-11-9

I-12-1
I-12-3
[-12-3
I-12-5

I-13-1

[-13-3

I-134

I-134

I-13-6

[-13-8

I-13-11
I-13-12
I-13-13
I-13-14
I-13-14
I-13-15
I-13-16
I-13-18
I-13-19
I-13-24
I-13-26
[-13-28
I-13-30
[-13-30

II-1-24
II-1-26
II-1-28
II-1-28
II-1-28
1I-1-29
II-1-30
II-1-30
II-1-31
1-1-35
II-1-37
II-1-40

hnI-1-6
1-1-7
nI-1-9

xiii

External References
Inline Functions
NAMELISTS
Statement Labels
DO Loops
Common Blocks
EQUIVALENCE Classes
Program Statistics
Error Messages

TS Mode
Common Blocks
Entry Points
Extemal References
Statement Labels
Variables
Blocks

FORTRAN DIAGNOSTICS
Compilation Diagnostics
Special Compilation Diagnostics
Compilation Diagnostics, TS Mode
Execution Diagnostics

EXECUTION-TIME PROCESSING
Error Processing
Extended Error Processing
SYSTEM
SYSTEMC
ERRSET
Execution-Time Options
File Name Handling
Print Limit Specification

ARITHMETIC

Floating Point Arithmetic
Overflow (+= or —~)
Underflow (+0 or -0)
Indefinite Result
Nonstandard Floating Point

Arithmetic

Integer Arithmetic
Double Precision
Complex
Logical and Masking

Arithmetic Errors

EXECUTION-TIME INPUT/OUTPUT
File and Record Definitions
Structure of Input/Output Files
Sequential Files
Random Files

1i-1-10
mI-1-11
nI-1-11
mI-1-12
I-1-13
111-1-14
MI-1-15
I1-1-16
1I-1-16
mI-1-17
HnI-1-20
1I1-1-20
1-1-20
i-1-21
I11-1-22
I-1-23

1-2-1
I-2-1
1I1-2-14
1-2-18
I1-2-31

11-3-1
II-3-1
I1-3-1
II1-3-1
nI1-3-2
111-3-7
I-3-9
111-3-9
11-3-11

1-4-1
111-4-1
1-4-3
11-4-3
111-4-4

11-4-5
111-4-7
111-4-7
111-4-8
11-4-8
111-4-8

111-5-1
I1-5-1
11-5-2
111-5-2
II1-5-6

10

FILE Control Card
Sequential File Backspace/Rewind
BUFFER Input/Output

BUFFER IN

BUFFER OUT
Labeled File Processing
Programming Notes

FORTRAN — CYBER RECORD
MANAGER INTERFACE

File Information Table Calls

File Commands :
Updating File Information Table
Key Hashing Subroutine

Error Checking

Multiple Index Processing

MASS STORAGE INPUT/OUTPUT
Random File Access
Index Key Types
Multi-Level File Indexing
Master Index
Sub-Index
Mass Storage Subroutine
OPENMS
WRITMS
READMS
CLOSMS
STINDX
Compatibility with Previous Mass
Storage Routines
Error Messages

RENAMING CONVENTIONS

Register Names

External Procedure Names
(Processor Supplied)
Call-by-Value
Call-by-Name

PROGRAM AND MEMORY
STRUCTURE

Subroutine and Function Structure
Main Program Structure

Memory Structure

INTERMIXED COMPASS
SUBPROGRAMS
Call by Name and Call by Value
Call by Name Sequence
Call by Value Sequence

60305600 G

I11-5-6

I11-5-8

I11-5-10
I11-5-10
II1-5-11
1-5-11
11-5-12

I11-6-1
I1-6-1
111-6-3
I11-6-3
I11-6-8
111-6-9
I11-6-10

111-7-1
11-7-1
I11-7-2
-7-5
1I1-7-6
111-7-6
111-7-9
111-79
1-7-9
I11-7-10
1mI1-7-11
nI-7-11

111-7-12
11-7-13

I11-8-1
I11-8-1

I11-8-1
111-8-1
I11-8-1

11-9-1
111-9-2
111-9-3
I11-9-3

111-10-1
111-10-1
I11-10-1
111-10-2

COMPASS Subprograms 11I-10-2 Compilation and Two Executions
Entry Point II-10-5 with Overlays I1-13-11
Restrictions on Using Library
Function Names I11-10-5 14 COMPILATION MODES AND
OPTIMIZATION 111-14-1
11 TERMINAL I/O WITH FORTRAN II-11-1 Object Code Optimization I11-14-2
Source Code Optimization 111-14-3
12 LISTINGS I1I-12-1
FORTRAN Listing Control 1-12-2 15 TIME-SHARING FORTRAN II-15-1
DMPX I11-12-3 Source Listing Format I11-15-1
Sequenced Line Format ITI-15-2
13 SAMPLE DECK STRUCTURES I1-13-1
- FORTRAN Source Program with 16 FORTRAN — SORT/MERGE
Control Cards I1-13-1 INTERFACE 11-16-1
Compilation Only 11-13-2 SORT I11-16-1
TS Mode Compilation Only 11-13-2 SORTB II1-16-1
Compilation and Execution II1-13-3 SORTP III-16-1
FORTRAN Compilation with MERGE I11-16-2
COMPASS Assembly and FILE II-16-2
Execution 111-13-4 KEY I1-16-3
Compile and Execute with Sequence I1I-16-3
FORTRAN Subroutine and Equate I1I-16-4
COMPASS Subprogram MI-13-5 Options II-16-4
Compile and Produce Binary Cards 11I-13-6 TAPE I11-16-5
Load and Execute Binary Program 11-13-7 Owncode I11-16-5
Compile and Execute with END I11-16-6
Relocatable Binary Deck I11-13-8
Compile Once and Execute with A STANDARD CHARACTER SETS A-1
Different Data Decks 1I-13-
Preparation of Overlays I11-13-10 INDEX Index-1
TABLES
PART I
3-1 Mixed Type Arithmetic Expressions 7-2 Procedure and Subprogram
with + - * / Operators I-3-5 Interrelationships [-7-2
7-1 Differences Between a Function and 8-1 Intrinsic Functions 1-8-2
Subroutine Subprogram I-7-1 8-2 Basic Extemal Functions I-8-7
PART III
5-1 Defaults for FIT Fields under
FORTRAN Extended I1-5-3
60305600 G XV

1-1 Program PASCAL

13-1 Example of Interspersed

Xvi

Debugging Statements

FIGURES

PART 1
I-1-4 13-2 Extemal Debugging Deck
13-3 Internal Debugging Deck
I-13-20 13-4 External Deck on Separate File

I-13-21
I-13-22
1-13-23

60305600 G

STATEMENT FORMS

The following symbols are used in the descriptions of FORTRAN Extended statements:

\ variable or array element

sn statement label

iv integer variable

m unsigned integer or octal constant or integer variable
name symbolic name

u input/output unit:

1- or 2-digit decimal integer constant, integer variable with value of: 0-99,
or a Hollerith value which is the filename left justified with zero fill

fn format designator

iolist input/output list

Other forms are defined individually in the following list of statements.

ASSIGNMENT STATEMENTS

v = arithmetic expression

logical v = logical or relational expression

v = masking expression

MULTIPLE ASSIGNMENT

\

17V

2 . Vn = expression

CONTROL STATEMENTS
GO TO sn

GO TO (sn1 y--u,8N_),iv
m

!“(‘3,'(’)’‘J'I:'O“(sn1 i snrﬁ') ,‘e'x'pressio‘r:\‘ .

60305600 G

Page
Numbers

I-4-1
I-4-5

I-4-5

14-6

I-5-1

I-52

I-5-2

Xvii

Page
Numbers

GO TO iv, (sn1 yeee SN) I-5-4

m

GOTOv(sn, ,...,sn) 15-4

ASSIGN sn TO iv I-5-3

IF (arithmetic or masking expression) sn, ,sn,,sn, I-5-5

'IF (arithinetic or masking expresion) sn, ,sn; 5.5

IF (logical or relational expression) stat I-5-6

I-5-7

1F (iégnihcaklkyérk Arekl‘étyib‘rfékt expressmn) sn.,sn,

DOsniv= m,, m,, m, I-5-7

DOsniv=m,,m, 1-5-7

1'

CONTINUE [-5-13

PAUSE « 1-5-14
PAUSE n I-5-14
PAUSE #c...c I5-14
sTOP I-5-14
STOPn I-5-14
STOP#e. ot £5-14

END I-5-15

TYPE DECLARATION

INTEGER name,, ..., name_ _ I-6-2

10"

TYPE INTEGER name 62

| xviit 60305600 G

REAL name name_

qrecer

TYPE REAL name,, .., name

COMPLEX name,,..., name_

1’

namen

TYPE COMPLEX name,,...,

DOUBLE PRECISION name,,...,name_

DOUBLE name name

qreece

TYPE DOUBLE PRECISION name.,..., name_

1
TYPE DOUBLE name,, . e name_

LOGICAL name name_

qrecee

TYPE LOGICAL name, ..., name,

. IMPLICIT type, (ac) .., type (ac)

(ac)isa smgle alphabetlc character or range of characters represented by the first and last

character separated by a minus srgn

EXTERNAL DECLARATION

EXTERNAL name name

qreee

STORAGE ALLOCATION
type name, (d;)
' kTY‘P'E type narhef (di) ;
DIMENSION name, (d,),...,name_(d)

i
three integer variables

type INTEGER, REAL, COMPLEX, DOUBLE, DOUBLE PRECISION or LOGICAL

60305600 G

d. array declarator, one to three integer constants; or in a subprogram, one to

Page
Numbers

I-6-2

1-6-2

I-6-2

I-6-2

I-6-3
I-6-3
I1-6-3

1-6-3

I-6-3
I-6-3

I-6-3

I-6-16

I-6-1

I-6-1

I-6-5

XiX

Page

Numbers
COMMONv,, ..., v, I-6-6
COMMON/bIkname1 /v1 PP /blknamen/v1 A 1-6-6
COMMON// v, , ..., v, I-6-6
blkname symbolic name or 1 - 7 digits |
// blank common
DATA vlist, /dlist1/ b, vlistn/dlistn/ 1-6-19
DATA (vlist=diist), . . ., (vlist=dlist) 1.6:19
vlist list of array names, array elements, variable names, ornmphedDO lié},
separated by commas
dlist one or more of the following forms separated by commas:
constant
(constant list)
rf*constant
§’rf*(constant hst)
;‘rf(constant hst)
constant list list of constants separated by commas
f integer constant. The constant or constant list is repeated
the number of times indicated by rf
l EQUIVALENCE (glist1), ceey (glistn) ‘ v 1-6-10
LEVEL n, a1 i [-6-15

unsxgned mteger‘l 2 or 3 ,

varlable array e]ement array name

xX 60305600 G

Page

MAIN PROGRAMS Numbers
PROGRAM name 1.7-2
PROGRAM name(fpar1, fpar2, cee fpark) 1-7-2
SUBPROGRAMS

FUNCTION name (p1 e pn) I-7-8
type FUNCTION name (p1 seeeaPy) I.7-8

type INTEGER, REAL, COMPLEX, DOUBLE, DOUBLE PRECISION I
or LOGICAL

SUBROUTINE name (p,,...,p) I-7-6
"SUBROUTINE name 1.7-6
SUBROUTINE name (p1 e .,pn), RETURNS (b1, - ,bm) ; I-7-6
’SUBROUT|NE name,RETURNS (b1 e ,bm) : | - I-7-6

ENTRY POINT -

ENTRY name 1-7-18

STATEMENT FUNCTIONS

name (p,,P,) = expression I-7-10

SUBPROGRAM CONTROL STATEMENTS

CALL name I-7-16

CALL name (p1 oo aP,) I-7-16

CALL name (p, ,...,p,),RETURNS (b,,...,by) 1-7-16

CALL name,RETURNS (by.....by) 17-16

RETURN 1:5-15

k"RETL’J‘RkNi"’ e - : I-5-15
i i%adummy argument ina RETURNS list

60305600 G xxi l

Page
Numbers

SPECIFICATION SUBPROGRAMS
BLOCK DATA 175

BLOCK DATA name 1-7-5

INPUT/OUTPUT

1-9-3

19-3

1.9-3

19-3

19-3

1.9-3

1-9-4

194

PUNCH (u,fn) iolist 194

f;'PU:",‘.C:H’*’,ﬁir‘)l’ust { o

PUNCH (ufn) ‘ 19-4
PUNCH (u") iolist 194
WRITE (u,fn) iolist 19-5
WRITE (u,fn) 1-9-5

R 19

WRITEfn 19-5
WRITE (u) iolist 19-6

WRITE (u) 19-6

1-9-7

) folist

WRITE®jolist 19-7

xxii 60305600 G

Page

Numbers
READ (u,fn)iolist 19-7
READ (u,fn) 1-9-7
READ fn,iolist 1-9-8
READ (u) iolist 19-8
READ (u) | 1-9-8
READ (u,”) iolist 199
READ*,iolist 199
BUFFER IN (u,p) {a,b) 19-13
BUFFER OUT (u,p) (a,b) 19-15 i
a first word of data olock to be transferred |
b last word of data block ’to be ’tra’nsferred k
P e ; intéger constant or integkerlkvariable. |
Zero = even parity, nonzero = oddkparity :
NAMELIST/group n‘a‘mkekk‘l'/a1,...,"ank/“.‘..'kk’/gv;roooocrhen/a1~,_"‘,’k.',akn bty 1916
READ (u,group name) o o ‘ 1.9.17
WRITE (u,kgrou’onarknc)k , = e | . | s
3 k ’arr‘ay names or‘variab’l'es |
group name | symbolic name idenfifying the groupa,,...,a_
INTERNAL TRANSFER OF DATA
ENCODE (c,fn,v) iolist o ~ | ' 19-22
'DECODE (efn olist | o L 1925

Vo startmg locatron of record Vanable or array name e

lcngth of record in characters Un51gned integer constant or srmple
integer vanable s e ;

60305600 G xxiii

Page

Numbers
FILE MANIPULATION
REWIND u [9-12
BACKSPACE u 1-9-12
ENDFILE u 1-9-13
FORMAT SPECIFICATION
sn FORMAT (fs1, e, fsn) I-10-5

fs; one or more field specifications separated by commas and/or grouped by
parentheses

DATA CONVERSION
srEw.d Single precision floating point with exponent 1-10-9,11
srEw.dEe Floating point with specified exponent length 1-109,11
erw.dDéyy Elc;a"tihg’ boiﬁt w:th speclﬂed 'ek;p’c,mentt, Iengt"h 1-109,11
srFw.d Single precision floating point without exponent 1-10-13,14
srGw.d Single precision floating point with or without exponent 1-10-15
srDw.d Double precision floating point with exponent 1-10-16,17
riw Decimal integer conversion 1-10-8
riw.z Integer with specified minimum digits I-10-8
I;LW Logical conversion 1-10-22
tAw Aphanumeric onversion 1101920
rRw Alphanumeric conversion 1-10-21
rOw Octal integer conversion 1-10-17,18
rOw.z Integer with specified minimum digits I-10-19
rZw Hexadecimal conversion 1-10-19

xxiv 60305600 G

Page

Numbers
stVw.d Variable type conversion 1-10-35
] optional scale factor of the form: nP
r optional repetition factor
w integer constant indicating field width
d integer constant indicating digits to right of decimal point
e integer indicating digits in exponent field
z integer specifying minimum number of digits
nX Intraline spacing 1-10-24
nH ...
oot Hollerith I-10-26
#...F
/ Format field separator; indicates end of FORTRAN record 1-10-29
Tn Column tabulation [-10-34
v Display code substitution I-10-35
= Numeric substitution : 1-10-36
FORTRAN Control Card I-11-1
OVERLAYS
CALL OVERLAY (fname,i,j,recall k) o L125
i primary overlay number
j secondary overlay number
recall if GHRECALL is specified, the overlay is not reloaded if it is already in
memory e
k L format Hollerith constant: name of library from which overlay is to
be loaded
any other non-zero value: overlay loaded from global library set
OVERLAY (fname,n,j Cn) s el ‘ S : 124
Py prlmary overlay number, octal :

- secondary overlay number, octal

i 6 dlg' : octal number mdlcatmg start of load relatlve to blank common

60305600 G ' XXV

' DEBUG

~ C$ DEBUG

Page
Number

I-13-24

C$ DEBUG (name, ,...,name)) | . ol 11324

C$ AREAbounds, , ..., bounds,

. C$ DEBUG

- C$ AREA/nameI/boundsv...,boundsn /namen/bouhds1 ,...,,'boundsn N

C$ DEBUG (name

or
~ C$ DEBUG

bounds

within program unit L ; : 1-13-27

external

debug deck 11327

1,...,namen)

(n,,n,) ni initial line position
n, terminal line position ; L
(ng) nysingle line;positi’o,n to bejdebug’ged‘ S
(n;,*) n, initial line position S
- * lastline of program
(*.n,) * first line of program
: n, terminal line position

C$ ARRAYS (a,

C$ ARRAYS

3

C$ CALLS(s,,..

C$ CALLS

5

C$ FUNCS (fy, ..

C$ FUNCS

~ * last line of program
e S Page
; , i ; : o Numbers
ey, - - i e 1134

I-134

array names

n

Seyo Cona s e 1136

I-13-6

- subroutine names_

[-13-8

~ functionname

I-13-15

60305600 G

C$ NOGO

C$ STORES(c,,...

it

C$ TRACE (lv)

C$ TRACE
v
C$ OFF

)

Icn

variable name
variable name .relational operator. constant
variable name .relational operator. variable name
variable name .checking operator.

checking operators:

RANGE out of range
INDEF indefinite
VALID out of range or indefinite

level number:
0 tracing outside DO loops

n ttacing up to and including level n in DO nest

C$ OFF (x,...,x,)

Xj

any debug option

COMPASS SUBPROGRAM IDENTIFICATION

IDENT name

END

60305600 G

{(in column 11)

(in column 11)

Page
Numbers

I-13-18

I-13-11

I-13-16

I-13-16

[-13-28

I-13-28

I11-10-2

11-10-2

XXVii

CODING FORTRAN STATEMENTS I-1

A FORTRAN program contains executable and non-executable statements. Executable statements specify
action the program is to take, and non-executable statements describe characteristics of operands, statement
functions, arrangement of data, and format of data.

The FORTRAN source program is written on the coding form illustrated in figure 1. Each line on the coding
form represents an 80-column card. The FORTRAN character set is used to code statements.

FORTRAN CHARACTER SET

Alphabetic At Z
Numeric 0to9
Special = equal) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign
/ slash blank ‘
(left parenthesis #or' quote

In addition, any character (Appendix A) may be used in Hollerith constants and in comments. Blanks are not
significant except in Hollerith fields.

60305600 G I-1-1

FORTRAN STATEMENTS

Column 1 c ybor $ or * indicates comment line

Columns 1-2 C$ ‘indicates a deb’ug statement if in DEBUG mode.

Columns 1-2 C/ indicates a list directive.ﬁ

Columns 1-5 Statement label

Column 6 Any character other than blank or zero denotes continuation; does not B

apply to comment lines. . A debug continuation line must contain C$
in columns 1-2,

Columns 7-72 Statement

Identification field, not Can contain ‘information for

Columns 73-80 processed by compiler. debug AREA statement.

CONTINUATION

Statements are coded in columns 7-72. If a statement is longer than 66 columns, it can be continued on as
many as 19 lines. A character other than blank or zero in column 6 indicates a continuation line. Column 1
can contain any character other than C, *, or $ columns 2, 3, 4, and 5 can contain any character. Any
statement except a comment can be contmued mcludmg the END statement

] STATEMENT SEPARATOR

} Several short statements can be written on one hne if each is separated by the specral character $ Each
statement followmg a $ srgn is treated as a separate statement For example : S

ACUM=24. $I O $ IDIFF= 1970 1626

is the same as :

7

ACUM = 24.

Tision i iR
|ro1FF - 1970-1626

_$ can be used with all statements except FORMAT or debug statements. The statement followmg $ cannot
_be labeled the information following $ is treated exactly as if 1t were in column 7 on the next hne &

e I-1-2 60305600 G

STATEMENT LABELS

A statement label (any 1- to 5-digit integer) uniquely identifies a statement so it can be referenced by
another statement. Statements that will not be referenced do not need labels. Blanks and leading zeros are
not significant. Labels need not occur in numerical order; however, a given label must not be used more than
once in the same program unit. A label is known only in the program unit containing it; it cannot be refer-
enced from a different program unit. Any statement can be labeled, but only FORMAT and executable state-
ment labels can be referenced by other statements. A label on a continuation line is ignored.

COMMENTS

In column 1 a C, *, or § indicates a comment line. Comments do not affect the program; they can be
written in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more
than one line, each line must begin with C, *, or § in column 1. In a comment line a character in column 6
is not recognized as a continuation character. Comments can appear between continuation lines; they do not
interrupt the statement continuation.

Comment lines following an END line are listed at the beginning of the next program unit unless the END
line is continued.

COLUMNS 73-80

Any information can appear in columns 73-80 because they are not part of the statement. Entries in these
columns are copied to the source program listing. They are generally used to order the lines in a deck, but
can contain information for DEBUG AREA processing.

BLANK LINES

Blank lines can be used freely between statements to produce blank lines on the source listing. Unlike a
comment line, a blank line interrupts statement continuation, and the line following the blank line is the be-
ginning of a new statement even if it has the form of a continuation line.

DATA

No restrictions are imposed on the format of data read by the source program. Data input on cards is limited
to 80 characters per card, but a record can span more than one card. The maximum length of characters for
formatted, list directed, and NAMELIST records must agree with the length, r, specified in the PROGRAM
statement. If r is not specified, a default value of 150 is used.

60305600 G I-1-3 ®

o

a 009s0€09

CONTROL DATA
FORTRAN CODING FORM

CORPORATION

PROGRAM ? A(S CA’ . NAME
ROUTINE DATE PAGE oF
FORTRAN STATEMENT
Tl srate. [©
SERIAL
: MENT z 0=ZERO 1=0NE 2=TWO NUMBER
€ No. |o @=ALPHA O I=ALPHA | Z=ALPHAZ
1213145 |6]|7|8[9}10[11|12)13[14|15]16]17]18|19]20|2122|23(2425)26127|28|29|30|31{32|33{3435|36|37|3839|40|41{4243]44|45|46|47|48|49|50|51|52)53)54|55|56]57|58|59|60|61|6263 |64 65 |66|67168|63|70|71)72}73)74|75}76)77(78|73| 80
13141] 8|8 |10] 111241314 |15[16]17]18]19]20] 21)22]23|24 }25)26) 27| 28| 29|30| 3132|3334 35| 36)37) 38 39| 40| 41|42 43]44|45) 46| 47 48 49| 50| 51| 62) 63) 64 55| 56 57 58)59| 60| 6162] 63 |64] 65 | 666768 69) 70| 71) 721 73| 74 75{ 76 77| 78| 79]

L1 PlE@uGRIAlMIlRAISlaIAIL|(|¢'|U|T|P|um)| pe el er e v v v frre v vt frer v bt r b frer g

L1 IlNuTIEGIERHLI(dlll)l L byt b v br s vty e e v vt b e bt vt e brrr g
L I PAmALbOtINALA [v b e be v frr e v fer et et

Cl 111 Lol f et v r v rte v b eve v b vt e by
Lt | PRINT i QT Dim 3 c v bvov e b vv e frvr e v pr i
||) | FIgRIMIAIT(l414lH|11Cl@IAB.LLIN.IAIILLIﬁLNI§LﬂEI_lMJ_IIIHlIINIGSI TTAKEN N AT 1A ITILME L« [A/1210X1, S1H1=IN[-1/] 1111111
s s b e e Prver e brvr e bt b b ey
Cl |11 T 0TI T O 0 R U0 A U O B Y A A A A A I A

111 DIQ'IIZI]”III.rllIOIIIlllllII'IIIIlllllIlIIllllIIIIIIIIIIIII|I|Illll|ll||l||l

L=t =T e et bt e v v e e b e et e et e e v v e e ey v v et eyttt

PGk =e e v vt v bt e vt b v by e b b
Lo | o] whskdior et rr et el re b e e fer e iyl
g QD= DB ORIt e e e e bl
NN o715 T B YO BT AT TR Y INEY, = <IN K XU I I BV O 0 A N A B O O I O A A
1311 | RifRemAIT (112111511

I Y N T T T T T T T T Y I O O

111 SITIdIPII[lllIIlllll[[JlllllllllllLlIllIllIIIIIIIIIIlllllllllllllllll

1 11 END | g bt r gt b bt b et e e bbb bt r e s v e rre ety

111 111 DS N T O T T N Y 1 O I T I O I Y I Y O O I I N | I O I
L 11 111 1 VO Y T O Y O O A N | 1 T T I | T T O | I | I O T O Y 1
L 11 111 1 S A O N I B I I I B | 1 T | 1 T O O | | O S | | I O T
[L1 1 1 1 Y I I A B A I N T O I I I T | I I I B B | T I 1 O Y I I I

2|34 5|6 [7)8]9[10]|11{12|13]14]15|16]1718]19]20] 21| 22[23| 24|25 26] 27|28 20] 30| 31| 32|33 34|35 36| 37) 38 39 | 40| 41| 42| 43| 44] 45|46 47 | 48|49 | 50{51| 52 53| 54| 55| 56| 57| 58| 59|60 | 61{ 62| 63 | 64| 65 |66) 67| 68| 69 70 | 71{ 72| 73| 74| 75} 76| 77| 78] 79| 80

Figure 1. Program PASCAL

LANGUAGE ELEMENTS 1-2

CONSTANTS

A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
octal, Hollerith, and logical.

INTEGER CONSTANT

n is a numeric digit

1 < m < 18 decimal digits
Examples:

237 =74 +136772 o -0024
An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign
must be present. An integer constant must not contain a comma. The range of an integer constant is -2*-1

to 2%-1 (2™-1 = 576 460 752 303 423 487).

Examples of invalid integer constants:

46. (decimal point not allowed)
23A (letter not allowed)
7,200 (comma not allowed)

When an integer constant is used as a subscript, as the index in a DO statement, or as an implied DO, the
maximum value is 217-2 (217-2 = 131 070), and the minimum is 1.

Integers used in multiplication and division should not have a value greater than 248-1. The result of integer
multiplication or division should be less than 248-1. If an operand or the result is larger than 248-1

(2481 = 281 474 976 710 655), the result is unpredictable; no diagnostic is provided. The resultant maxi-
mum value of conversion from real to integer or integer to real numbers is 248-1. If the value exceeds 248-1,
the high-order bits are lost and no diagnostic is provided. For integer addition and subtraction, the full 60-
bit word is used.

60305600 G I-2-1

| REAL CONSTANT

tl.n n n. n.nEzs nEzts n.Exs nEzs
n Coefficient < 15 decimal digits

E+s Exponent, the + sign is optional

s Base 10 scale factor

A real constant consists of a string of decimal digits written with a decimal point or an exponent, or both.
Commas are not allowed. If positive, a plus sign is optional.

The range of a real constant is 10 to 10**%; if this range is exceeded, a diagnostic is printed. Precision is
approximately 14 decimal digits, and the constant is stored internally in one computer word.

Examples:

7.5 -3.22 +4000. 23798.14 .5 - .72 42.E1 700.E-2
Examples of invalid real constants:

3,50. (comma not allowed)

2.5A (letter not allowed)
Optionally, a real constant can be followed by a decimal exponent, written as the letter E and an integer con-
stant indicating the power of ten by which the number is to be multiplied. If the E is present, the integer

constant following the letter E must not be omitted. The sign may be omitted if the exponent is positive, but
it must be present if the exponent is negative.

Examples:
42.E1 (42. x 10" = 420.)
.00028E+5 (.00028 x 10° = 28))

6.205E12 (6.205 x 10" = 6205000000000.)

8.0E+6 (8. x 10° = 8000000.)
700.E-2 (700. X 107 = 7))
7E20 (7. X 10* = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 exponent not an integer

122 60305600 G

DOUBLE PRECISION CONSTANT

Ln.nDi's .nDxs n.Dxs nDisl

n Coefficient

Dxs Exponent, if s is positive the + sign is optional

3 Base 10 scale factor

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving
extra precision. A double precision constant is accurate to approximately 29 decimal digits.

Examples:
5.834D2 (5.834 X 10* = 583.4)
14.D-5 (14. X 10™ = .00014)
9.2D03 (9.2 x 10° = 9200.)
-7.D2 (-7. X 10* = -700.)
3120D4 (3120. x 10* = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing
D5 exponent alone not allowed
2,1.3D2 comma illegal
3.141592653589793238462643383279 D and exponent missing
60305600 G

I-2-3

COMPLEX CONSTANT

(r1,r2)
rl Real part
r2 Imaginary part

Each part has the same range as a real constant.

Complex constants are written as a pair of real constants separated by a comma and enclosed in
parentheses.

FORTRAN Coding Complex Number

(1., 7.54) 1. + 7.54i i= T
(-2.1E1, 3.24) 21, + 3.24i

(4.0, 5.0) 4.0 + 5.0i

(0., -1.) 0.0 - 1.0i

The first constant represents the real part of the complex number, and the second constant represents the
imaginary part. The parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer
words.

Both parts of complex constants must be real; they may not be integer.

Examples of invalid complex constants:

(275, 3.24) 275 is an integer

(12.7p-4 16.1) comma missing and double precision not allowed
4.7E+2,1.942 parentheses missing

(0,0) 0 is an integer

Real constants which form the complex constant may range from 107* to 10**2.

124 60305600 G

OCTAL CONSTANT

n is an octal digit, O through 7. 1 <m < 20 octal digits
An octal constant consists of 1 to 20 octal digits suffixed with the letter B.
Examples:
7777778
525252528
5001273458
Invalid octal constants:
8927778 8 and 9 are non-octal digits
770000000077777525252528 ;xceéds 20 digits |
07766 | 20 ﬁo’tkallow‘edy
An octal constant must not exceed 20d1gxtsnor (.Oryltdilkl”d n‘onkbc‘.”tAI kdigit If it does, a fatal compiler
diagnostic is printed. When fewer than 20 octal digits are specified, the digits are right justified and zero
~filled. Octal constants can be used anywhere integer constants can be used, “except: they cannot be used as
statement labels or statement la belyreferences in a FORMAT stdtement or as the character count when a

Hollerith constant is spec1ﬁed

They can be used in DO statements, expressxons and DATA statements, and as DIMENSION specifica-
tions. '

Examples:
BAT = (I*5252B) .OR. JAY masking expression

J = MAXO (I,1000B,J,K+40B) octal constant used as parameter in function

NAME = I .AND. 77700000B masking expression
J = (5252B + N)/K arithmetic expression
DIMENSION BUF(1000}3) - dimension speciﬁcation'

When dn octdl Lonsmnt is used in an expressmn 1t assumes the type of the dommant operdnd of‘ the
expressmn (Table 3 l section 3). : : : S !

60305600 G [-2-5

| HOLLERITH CONSTANT

HE it
ARt AR
n Unsigned decimal integer representing number of characters in string. Must be
greater than zero, and not more than 10 when used in an expression.
f String of characters
A svingdsimier
H Left justified with blank fill
e Leftjustified with binary zero fill
R ~ Right justified with binary zero fill
5] |7
PROGRAM HOLL (OQUTPUT)
A = 6HABCDEF
B = 6LABCDEF
C = 6RABCOEF
D = #ABCDEF#

PRINT 1o AsAsBeBeCoCoDsD
1| FORMAT (024+Al5)

STOP
END
Stored Internally: Display Code:
01020304050655555555 ABCDEF H format
01020304050600000000 ABCDEF:s:: s L format
00000000010203040506 : 2L ABCDEF R format
01020304050655555555 ABCDEF # format

I-2-6

60305600 G

A Hollerith constant has two forms: one is an unsigned decimal integer following the letter H, L, or R
followed by a string of characters; the other is a # delimited string. For example:

SHLABEL #LABELF#
nHf

The integer n represents the number of characters in the string f including spaces (or blanks). Spaces are
significant only after the H, L, or R in a Hollerith constant.

18HTHIS IS A CONSTANT

7HTHE END

19HRESULT NUMBER THREE
Hollerith constants may be used in arithmetic expressions, DATA and FORMAT statements, as arguments in
subprogram calls, and as list items in an output list of an input/output statement. If a Hollerith constant is
used as an operand in an arithmetic operation, an informative diagnostic is given.

In an expression, a Hollerith constant is limited to 10 characters.

A Hollerith strmg delimited by the palred symbols #* F# .can be used anywhere the H form of the Hollerith
constant can be used. For example

IF(V.EQ.# YES#) Y=Y+1 .

' PRINT 1, # SQRT = #, SQRT(4.)
B FORMAT (A10,F10.2)

~ PRINT 2, # TEST PASSED #
2. FORMAT (2A10)

INTEGER LINE(7), NTTHRU9

LOGICAL NEWPAGE
IF (NEWPAGE) LINE(7) = # PAGE 0+ + N1 THRU 9

60305600 G I-2-7

Thc symbol % can be‘represéntedVWithin the strihg by two successive #Hsy‘r‘h'byols.y
I An empty string such as OH or ## is not permitted.

When the number of characters in a Hollerith constant is less than 10, the computer word is left justified
with blank fill. If it is more than 10, but not a multiple of 10, only the last computer word is left justified
with blank fill.

Examples:

1’
READ 1,NAME
1| [FORMAT (A7)
IF(NAME .EQ. 4HJOAN) GO TO 20

7

& RITE (6, 1000) Bt e ~ ‘
1 1ooo FORMAT (1X, #NO COUNTRY THAT HAS; BEEN THOROUGHLY EXPLORED IS

INFESTED WITH DRAGONS #)r”"

an and an

: ~‘A Ho]lenth constant of' the form R or L is limited to 10 characters and cannot be used in a FORMA'

| LOGICAL CONSTANT
A logical constant takes the forms:
TRUE. or .T. representing the value true
.FALSE.;{)}:;’J‘?: representing the value false
The decimal points are part of the constant and must appear.

Examples:

LOGICAL X1, X2

.
.

X1
X2

.TRUE.
.FALSE.

I-2-8 ‘ 60305600 G

VARIABLES

A variable represents a quantity whose value can be varied; this value can be changed repeatedly during
program execution. Variables are identified by a symbolic name of one to seven letters or digits, beginning
with a letter. A variable is associated with a storage location; whenever a variable is used, it references the
value currently in that location.

A variable can have its type specified in a type statement (see section I-6) as integer, real, double precision,
complex, or logical. In the absence of an explicit declaration, the type is implied by the first character of
the name: I, J, K, L, M, and N imply type integer and any other letter implies type real, unless IMPLICIT
statements (see section I-6) are used to change this normal implicit type.

Example:

IMPLICIT DOUBLE PRECISION {(A)
COMPLEX ALPHA

L]

L]

APPLE=ORANGES+PEARS

An explicit declaratlon ovemdes an IMPLICIT declaratlon Therefore ALPHA is type complex; APPLE is
type double precmon , , :

DEFAULT TYPING OF VARIABLES

A-H,0-Z Real

I-N Integer

60305600 G I-2-9 ©

INTEGER VARIABLES

An integer variable is a variable that is typed explicitly or implicitly as described under variables.

The value range is -259-1 to 259-1. When an integer variable is used as a subscript, the maximum value is
217_1. The resultant absolute value of conversion from integer to real, or real to integer must be less than
248, The operands, as well as the result, of an integer multiply or division must be less than 248 in absolute

value. If this value is exceeded, the results are unpredictable. The resultant absolute value of integer addition
or subtraction must be less than 259,

An integer variable occupies one word of memory.
Examples:

ITEM1 NSUM JSUM N72 J K2804

REAL VARIABLES
A real variable is a variable that is typed explicitly or implicitly as described under variables.

The value range is 107293 to 10%322 with approximately 14 significant digits of precision. A real variable
occupies one word of storage.

Examples:

AVAR SUM3 RESULT TOTAL2 BETA XXXX

1-2-10 60305600 G

DOUBLE PRECISION VARIABLES

Double precision variables must be typed by a type declaration. The value of a double precision variable can
range from 10-293 to 10*322 with approximately 29 significant digits of precision.

Double precision variables occupy two consecutive words of memory.
Example:

DOUBLE PRECISION OMEGA, X, IOTA
IMPLICIT DOUBLE PRECISION{(A)

The variables OMEGA, X, IOTA and all variables whose first letter is A are double precision.

COMPLEX VARIABLES

Complex variables must be typed by a type declaration. A complex variable occupies two words of memory.
Each word contains a real number and each number can range from 107293 to 10+322,

Example:

COMPLEX ZERA,MU,LAMBDA

LOGICAL VARIABLES

Logical variables must be typed by a type declaration. A logical variable has the value true or false and
occupies one word of memory.

Example:

LOGICAL L33,PRAVDA,VALUE

60305600 G I-2-11

ARRAYS

A FORTRAN array is a set of elements identified by a single name composed of one to seven letters and
digits beginning with a letter. Each array element is referenced by the array name and a subscript. The type
of the array elements is determined by the array name in the same manner as the type of a variable is deter-
mined by the variable name (see Variables in this section). The array name and its dimensions must be de-
clared in a DIMENSION or COMMON statement or a type declaration. Arrays can have one, two, or three
dimensions.

The number of dimensions in the array is indicated by the number of subscripts in the declaration.

DIMENSION STOR(6) declares a one-dimensional array of six elements
REAL STOR(3,7) declares a two-dimensional array of three rows and seven columns
LOGICAL STOR(6,6,3) declares a three-dimensional array of six rows, six columns and three planes

The entire array may be referenced by the unsubscripted array name when it is used as an 1tem in an input/
output list or in a DATA statement. In an EQUIVALENCE statement however, only the ﬁrst element of the
Earray 1s 1mp11ed by the unsubscnpted array name , ' .

Examplel:

The array N consists of six values in the order: 10, 55, 11, 72, 91, 7

N(1) value 10
N(2) value 55
N(Q3) value 11
N@4) value 72
N(5) value 91
N(6) value 7

[-2-12 ' 60305600 G

Example2:

The two-dimensional array TABLE (4,3) has four rows and three columns.

Column 1 Column 2 Column 3
Row 1 44 10 105
Row 2 72 20 200
Row 3 3 11 30
Row 4 91 76 714

To refer to the number in row two, column three write TABLE(2,3).

TABLE(3,3) = 30 TABLE(1,1) = 44 TABLE(@4,1) = 91

TABLE(4,4) would be outside the bounds of the array and results are unpredictable.

Example3:

100

PROGRAM VARDIM (QUTPUTTAPEG6=QUTPUT)

COMMNN X (4e3)

REAL Y (A)

CALL INTA (X417}

CALLL TOTA (Yeh)

WRITE (Ae100) XaoY

FOEMAT (# ARRPAY X = #4312E9,1a5X+*ARRAY Y = #6£9,1)
STAD '

END

The program declares and references two arrays: X is a two-dimensional array of 12 elements and Y
is a one-dimensional array of six elements.

60305600 G

SUBSCRIPTS

A subscript indicates the position of a particular element in an array. A subscript consists of a pair of
parentheses enclosing one or more subscript expressions which are separated by commas. The subscript follows
the array name. ‘A subscript expression can be any vahd arithmetic expression. If the value of the expresswn is
not integer, it is truncated to integer.

If the number of subscript expressions is less than the number of declared dimensions, the éompiler assumes the
omitted subscripts have a value of one. The number of subscript expressions in a reference must not exceed the
number of declared dimensions.

The value of a subscript must never be zero or negative. It should be greater than zero and less than or equal to
the maximum declared dimensions, or the reference will be outside the array. If the reference is outside the
bounds of the array, results are unpredictable.

The amount of storage allocated to arrays is discussed under DIMENSION declarations in section I-6.
Valid subscript forms:

A(1K)

B(1+2,J-3,6*K+2)

LASTI(6)

ARAYD(1,3,2)

STR!NG(S*K*ITEM+3)

Invalid subscript forms:

ATLAS({0) zero subscript causes a reference outside of the array
D(1 .GE. K]} relational or logical expression illegal
Al1) or All,,K) only trailing subscript expressions can be omitted

1-2-14 60305600 G

Example:

Plane 1 Plane 2 Plane 3
Col 1 Col2 Col3 Col 1 Col2 Col3 Col 1 Col2 Col3
3 7 4 22 51 7 2 1 552 Row 1
7 8 9 0 98 6 77 60 3 Row 2
0 3:\ 2 3 207 99 85 100 8 Row 3

the single AXT (3,2\)—NEXT (2,2)

subscript represents represents
NEXT (3) NEXT (3,2,1) NEXT (2,2,1)
represents

NEXT (3,1,1)

In the three~dimensional array NEXT when only one subscript is shown, the remaining subscripts are assumed to
be one.
ARRAY STRUCTURE

Arrays are stored in ascending locations: the value of the first subscript increases most rapidly, and the value of
the last increases least rapidly.

Example:

In an array declared as A(3,3,3), the elements of the array are stored by columns in ascending locations.

Plane 1
Col 1 Col 2 Col 3
Row 1! A111 A121 A131
) ! |
Row 2 | A211 A221 A231 Plane 2
| | |
Row 3 | A311 A321 A331 Col 1 Col 2 Col 3
\
Row 1 Al112 A122 ~A132
| | }
Row 2| A212 A222 | A232 Plane 3
} ' }
Row 3| A312 A322- A332 Col 1 Col2 Col3
N
Row 1| A113 ~A123 (~A133
| | }
Row 2| A213 | A223 | A233
| | }
Row 3| A313- A323- A333
60305600 G 1-2-15

The array is stored in linear sequence as follows:

Location Relative

Element to first Element
A(LL1) stored in 0
A2, L1 1
A3, LD 2
A(L,2,1) 3
A(2,2,1) 4
A(3,2,1) 5
A(1,3,1) 6
A(2,3,1) 7
A(3,3,1) 8
A(1,1,2) 9
A(2,1,2) 10
A(3,1,2) 11
A(1,2,2) 12
A(2,2,2) 13
A(3,2,2) 14
A(1,3,2) 15
A(2,3,2) 16
A(3,3,2) 17
A(1,1,3) 18
A(2,1,3) 19
A(3,1,3) 20
A(1,2,3) 21
A(2,2,3) 22
A(3,2,3) 23
A(1,3,3) 24
A(2,3,3) Y 25
A(3,3,3) stored in 26
To find the location of an element in the linear sequence of storage locations the following method can be
used:
Number of Array Location of Element
Dimensions Dimension Subscript Relative to Starting Location

1 ALPHA(K) ALPHA(k) (k-1)XE

2 ALPHA(K M) ALPHA(k,m) (k-1+KX(m-1) }XE

3 ALPHA(K,M,N) ALPHA(k,m,n) (k-1+KX (m-1+MX (n-1))}XE

K, M, and N are dimensions of the array.

k,m, and n are the actual subscript values of the array.

I-2-16

60305600 G

1 is subtracted from each subscript value because the subscript starts with 1, not 0.

E is length of the element. For real, logical, and integer arrays, E = 1. For complex and double
precision arrays, E = 2.
Examples:
Location of Element
Subscript Relative to Starting Location
INTEGER ALPHA (3) ALPHA(2) (2-1)X1 =1
REAL ALPHA (3,3) ALPHA(3,1) (3-1+3X(1-1})X1=2
REAL ALPHA (3,3,3) ALPHA(3,2,1) (3-1+3X(2-1+3X(1-1)))X1 = 5

60305600 G 1-2-17

EXPRESSIONS -3

FORTRAN expressions are arithmetic, masking, logical and relational. Arithmetic and masking expressions
yield numeric values, and logical and relational expressions yield truth values.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned constants, variables, and function references separated
by operators and parentheses. For example, '

(A-B)*F + C/D**E is a valid arithmetic expression

FORTRAN arithmetic operators:

+ addition
subtraction
* multiplication
/ division
** exponentiation

An arithmetic expression may consist of a single constant, variable, or function reference. If X is an
expression, then (X) is an expression. If X and Y are expressions, then the following are expressions:

X+Y X-Y
X*Y XY
-X X**Y
+X

60305600 B [-3-1

All operations must be specified explicitly. For example, to multiply two variables A and B, the expression
A*B must be used. AB, (A)(B), or A.B will not resuit in multiplication.

Expression Value of

3.78542 Real constant 3.78542

A(2*%7) Array element A (2*])

BILL Variable BILL

SQRT(5.0) V5.

A+B Sum of the values A and B

C*D/E Product of C times D divided by E
J**I Value of J raised to the power of 1
(200 - 50)*2 300

EVALUATION OF EXPRESSIONS

l The sequence in which an expression is evaluated is governed by the following rules, listed in descending precedence:
1. References to extemal functions are evaluated.
.2. Arithmetic statement functions and intrinsic functions are expanded.
3. Subexpressions delimited by parentheses are evaluated, beginning with the innermost subexpressions.

4. Subexpressions defined by arithmetic, relational, and logical operators are evaluated according to the
following precedence hierarchy:

* * . .
(exponentiation)

/ * (division or multiplication)
+ - (addition or subtraction)

.GT. .GE. .LT. .LE. .EQ. .NE. (relationals)

.NOT. (logical)
.AND. (logical)
.OR. (logical)

1-3-2 60305600 G

5. Subexpressions containing operators of equal precedence are evaluated from left to right. However,
individual operations that are mathematically associative and/or commutative may be reordered by the
compiler to perform optimizations such as removal of repeated subexpressions or improvement of
functional unit usage. The evaluation of the expression A/B*C is guaranteed to algebraically equal
AC + B, not A + BC; but the specific order of evaluation here is indeterminate. The user can force a
definite ordering of mathematically associative operators of equal precedence by appropriate use of
parentheses. Subexpressions containing integer divisions are not reordered within the * / precedence
level because the truncation resulting from an integer division renders these operations non-associative.

Unary addition and subtraction are treated as operations on an implied zero. For example, 42 is treated as 0+2,
and -3 is treated as 0-3.

An array element (a subscripted variable) used in an expression requires the evaluation of its subscript. The
type of the expression in which a function reference or subscript appears does not affect, nor is it affected
by the evaluation of the arguments or subscripts.
The evaluation of an expression having any of the following conditions is undefined:

Negative-value quantity raised to a real. double precision. or complex exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand (section 4. part 3)

Element for which a value is not mathematically defined. such as division by zero
I the error traceback option is selected on the FTN control card (section 11). the first three conditions will
produce informative diagnostics during execution. If the traceback option is not selected. a mode error

message is printed (section 4. part 3).

Two operators must not be used together. A*-B and Z/ + X are not allowed. However. a undry + or - can
be separated from another operator in an expression by using parentheses. For example.

A*(-B) and Z/(+X) Valid expressions
B*-A and X/-Y*Z Invalid expressions

Each left parenthesis must have a corresponding right parenthesis.
Example:

(F - (X *Y) Incorrect. right parenthesis missing
(F~ (X *7Y)) Correct

Examples:
In the expression A-B*C

B is multiplied by C. and the product is subtracted from A.

60305600 F I-3-3

The expression A/B-C*D**E is evaluated as:
D is raised to the power of E.
A is divided by B.
C is multiplied by the result of D**E.-
The broduct of C*D**E is subtracted from the quotient of A divided by B.

The expression -A**C is evaluated as 0-A**C; A is first raised to the power of C and the result is
then subtracted from zero.

The expression A*B*C may be evaluated as ((A*B)*C), ((A*C)*B) or (A*(B*C)), since the operator * is
associative. '

The expression A**B**C is evaluated as ((A**B)**C), since the operator ** is not associative.

Dividing an integer by another integer yields a truncated result: 11/3 produces the result 3. Therefore,
when an integer expression is evaluated from left to right, J/K*I may give a different result than I*J/K.

Example:
I=4 J =3 K=2
J/K*I I*J/K
3/2*%4 = 4 4*3/2 =6
An integer divided by an integer of larger magnitude yields the result 0.
Example:
N=24 M=27 K=2
N/M*K
24/27*2 =0
Examples of valid expressions:
A
3.14159
B+ 16.427
(XBAR +(B(I,J+I,K) /3.0))

-(C + DELTA * AERO)

I-34 60305600 F

(-B - SQRT(B**2-(4*A*C)))/(2.0%A)
GROSS - (TAX*0.04)

TEMP + V(M,AMAX1(A,B))*Y**C/ (H-FACT(K+3))

TYPE OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be of type integer, real, double precision, or complex. The order of
dominance from highest to lowest is as follows:

Complex

Double Precision

Real
Integer
Table 3-1. Mixed Type Arithmetic Expressions with + - * |/ Operators
2nd Double Octal or
1st gperand] neeqer Real Prosicion Complex Hollerith
operand Constant
Double
Int Int R
nteger nteger eal Precision Complex Integer
Real Real Real DOlfb.le Complex Real
Precision
Double Double Double Double Double
.. Complex . .
Precision Precision Precision Precision Precision
Complex Complex Complex Complex Complex Complex
Octal or Double
Hollerith Integer Real N Complex Integer
Precision
Constant

When an expression contains operands of different types, type conversion takes place during evaluation.
Before each operation is performed, operands are converted to the type of the dominant operand. Thus the
type of the value of the expression is determined by the dominant operand. For example, in the expression
A*B-1/], A is multiplied by B, I is divided by J as integer, converted to real, and subtracted from the result

of A multiplied by B.

When an octal or Hollerith constant is used, type is not converted. When these constants are the only operands
in an expression, the result of the expression is type integer.

60305600 G I-3-5

EXPONENTIATION

In exponentiation, the following types of base and exponent are permitted:

Base
Integer

Real

Double Precision

Complex

Exponent

Integer, Real, Double Precision, Complex

Integer, Real, Double Precision, Cémpléx

Integer, Real, Double Precision,:'Comkpl,exk

Integer

The exponentation is evaluated from left to right. The expression A**B**C is, in effect, ((A**B)**C)

In an expression of the form A**B the type of the result is determined as follows:

Type of Result

Type of A Type of B of A**B
Integer Integer _Integer
Real Real
- Double - Double
' Complex _Complex
Real Integer Real
Real Real
_Double Double
- Complex - Complex
Double Integer Double
Real Double
_Double _Double
~ Complex Complex:
Complex Integer Complex

The expression -2**2 is equivalent to 0-2**2. An exponent may be an expression. The following examples

are all acceptable:
B**2.

B**N

B**(2*N-1)

(A+B)**(-1)

I-3-6

A negative exponent must be enclosed in parentheses:

A**(-B)

NSUM**(-J)

60305600 C

Examples:

Expression

CVAB**(I-3)

D**B

c**I

BASE(M,K)**2.1

Type
Real**Integer
Real**Real
Complex**Integer

Double Precision

**Real
K**5 Integer**Integer
314D-02**3,14D-02 Double Precision

**Double Precision

RELATIONAL EXPRESSIONS

ap,d;

op

Arithmetic or masking expression

Relational operator

Result
Real
Real
Complex

Double Precision

Integer

Double Precision

A relational expression is constructed from arithmetic or masking expressions and relational operators.
Arithmetic expressions may be type integer, real, double precision, or complex. The relational operators are:

GT.
GE.
LT.
LE.
EQ.
NE.

The enclosing decimal points are part of the operator and must be present.

60305600 B

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

I-3-7

Two expressions separated by a relational operator constitute a basic logical element. The value of this
element is either true or false. If the expressions satisfy the relation specified by the operator, the value is
true; if not, it is false. For example:

X+Y .GT. 5.3

If X+Y is greater than 5.3 the value of the expression is true. If X+Y is less than or equal to
5.3 the value of the expression is false.

A relational expression can have only two operands combined by one operator. a, op a, op a, is not valid.
Relational operands may be of type integer, real, double precision, or complex, but not logical. With complex
operands, the relational operators .EQ. and .NE. test for equality on both the real and imaginary parts; for all
other relational operators only the real parts are compared. ‘ '

Examples:

J.LT.ITEM

580.2 .GT. VAR

B .GE. (2.7,5.9E3) ~ real part of complex number is used in evaluation

E.EQ..5

(I) -EQ. (J(K))

C.LT. 1.5D4 most significant part of double precision number is used in
evaluation

Relational expressions are evaluated according to the rules governing arithmetic expressions. Each
expression is evaluated and compared with zero to determine the truth value. For example, the expression
p-EQ.q is equivalent to the question, does p - ¢ = 0? q is subtracted from p and the result is tested for zero.
If the difference is zero or minus zero the relation is true. Otherwise, the relation is false.

If pis 0 and q is -0 the relation is true.

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for
example, the following relational expressions are equivalent:

A.GT.B
A.GT.(B)
(A).GT.B

(A).GT.(B)

I-3-8 60305600 G

Examples:

REAL A "AMT .LT. (1.,6.55)
A.GT.720

DOUBLE PRECISION BILL, PAY
INTEGER I,J BILL .LT. PAY
I.EQ.J(K)

A+B.GE.Z**2
(I).EQ.(N*J)

300.+B.EQ.A-Z
B.LE.3.754

.5+2. .GT. .8+AMNT
Z.LT.35.3D+5

Examples of invalid expressions:
A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression

B .LE. 3.754 .EQ. C

LOGICAL EXPRESSIONS

L1 op L2 op L3 op...Ln

L..L, logical operand or relational expression

op logical operator
A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression

has the value true or false.

Logical operators:

NOT. or .N. logical negation
AND. or A, logical multiplication
.OR. or .O. inclusive OR

The enclosing decimal points are part of the operator and must be present.

60305600 B ' 1-3-9

The logical operators are defined as follows (p and q represent LOGICAL expressions):

.NOT.p If p is true, NOT.p has the value false. If p is false, NOT.p has the
value true.

p-AND.gq If p and q are both true, p.AND.q has the value true. Otherwise, false.

p-ORq If either p or g, or both, are true then p.OR.q has the value true. If both

p and q are false, then p.OR.q has the value false.

Truth Table

p q p.AND. q p.OR.q NOT.p
1 1 1 1 0
1 0 0] 1 0
0 1 0 1 1
0 0 0 0 1

If precedence is not established explicitly by parentheses, operations are executed in the following order:

.NOT.

.AND.

.OR.

I-3-10

60305600 A

Example:

PROGRAM LOGIC(OUTPUTsTAPE6=0UTPUT)

c
c THIS PROGKRAM PRINTS OUT A TRUTH TABLE FOR LOGICAL
c OPERATIONS WITH P AND Q
C
‘ LOGICAL PysQsLOGNEGYLOGMLT 9LOGSUMsTABLE (442)
DATA TABLE/+eTRUEe9eTRUE o9 eFALSE e 9eFALSEeyeTRUE 09 eFALSE.9eTRUE .Y
1.FALSE./
WRITE(6,10)
10 FURMAT (61H1 P Q «NOT. Q P «AND Q P o0

1Re @ /10Xxs S1(1H=))
DO 20 1 = lsa

LOGNEG = .NOT. TAbLE(I'Z)
LOGMLT = TAELE(Is1l) eANU. TABLE(Iv2)
LOGSUM = TABLE(Isl) «OR. TABLE(IsZ)

20 WRITE(630) (TABLE(IsJ)sJ=1s2)9 LUGNEGs LOGMLTs LOGSUM
30 FORMAT(1HOs 5(L11)?

sTor
END
Output
P G «NOT. Q P «AND Q P +OR. @
T T F T T
T F T F T
f T F F T
F F] F F

60305600 G I-3-11 ®

The operator .NOT. which indicates logical negation appears in the form:
.NOT. p
.NOT. can appear in combination with .AND. or .OR. only as follows (p and q are logical expressions):
p -AND..NOT. q
p -OR.NOT. q
p -AND.(NOT. q)
p -OR(NOT. q)
l .NOT. can appear adjacent to itself only when the second operator is enclosed in parentheses .NOT. (NOT.p).
Two logical operators can appear in sequence only in the forms .OR.NOT. and .AND..NOT.
Valid logical expressions, where M, L, and Z are logical variables, are:
.NOT.L
NOT.(X .GT. Y)
X .GT. Y .AND..NOT.Z
(L) .AND. M

Invalid logical expressions, where P and R are logical variables, are:

.AND. P .AND. must be preceded by a logical expression
K .EQ. 1 .0R. 2 .OR. must be followed by a logical expression
P .AND. .OR.R .AND. always must be separated from .OR. by a logical expression

I-3-12 60305600 G

Examples:

A, X, B,C, J, L, and K are type logical.

Expression Aternative Form

A .AND. .NOT. X A .A. .N. X

.NOT.B .N.B

A.AND.C A .A.C

J.OR.L.OR.K J.0.L.0.X
Examples:

B-C < A < B+C is written asB-C ,LE. A ,AND. A ,LE. B+C
FICA >176. and PAYNB = 5889. is written FICA .GT. 176. .AND. PAYNB .EQ. 5889.

»MASKING EXPRESSIONS

Masking expressxons are sxmllar to loglcal expressions, but the elements of the masking expression are of
any type vartable constant or expressmn other than logical. " '

Examples:
J .AND. N .NOT. (B)
.NOT. 55 KAY .OR. 63

Masking operators are identical in appearance to logical operators but meanmgs differ. In order of
dominance from highest to lowest, they are: '

.NOT. or .N. Complement the operand
.AND. or .A. Form the bit-by-bit logical prodttot;(AND) of two operands
.OR. or .O. Form the bit-by-bit logical sum (OTR)"of two‘operands

The enclosing decimal pomts are part of the operator and must be present Maskmg operators are;
distinguished from logical operators by non loglcal operands : ~

60305600 B [-3-13

Examples:

Expression o G ~ Alternative Form

B ’.QR. D et | B0
A .AND. .NOT. C | A N.C
B’IIk.L‘,.kAND'. BOB | S ' lBILL .:Ak.A:BoB

I <OR. T .OK. K .OR. N AT i '1".0'.;-3 Q. K .0. N
(.NOT. (.Nor.‘(.ﬁor.l ’A .OR. B){))« (N. (.N. (N. A.OR. B)))

‘The Operands may be any type variable; constaynt, or expression (other than logical).,
Examples:

TAX .AND. INT

.NOT, 55
734 .OR. 82 .
A .AND. 77B S ~ Extract the low order 6 bits of A

B .OR., C Logrcal sum of the contents of B and C

Clear the low order 6 brts of M 5

M .aND. NOT r,B,'{ﬁ“["]flf

In maskrng operatlons operands are consrdered to have no type If erther operand is type COMPLEXk.,
_operations are performed only on the real part. If the ooperand is DOUBLE PRECISION only the most
significant word is used. The operation is. performed bit-by-bit on the entire 60-bit word. For srmphcrty,f
o nly 10 b1ts are shown in the followmg examples Maskmg operatlons are performed as follows o :

J = 0101011101 and 1— 1100110101

The blt by-brt logrcal product 1s‘fyormed i s
oy 0101011101 |

. I* 1100110101

0100010101~ Result after masking

JORI

T he’bit—by-kbit logical sum ’is,forr"ne,d’ o
~J 0101011101

11100110101

1101111101 Resultafter masking

I-3-14 60305600 B.

.NOT. Complement the operand
.NOT.1

I 1100110101

0011001010 Result after masking

NOT. may appear with .AND. and .OR. only as follows:
masking expression .AND. .NOT. masking expression
masking expression .OR. .NOT. masking expression
masking expression .AND. (NOT. masking expression)
masking expression .OR. (NOT. masking expression)

If an expression contains masking operators of equal precedence, the expression is evaluated from left to
right.

A .AND. B .AND. C

A .AND. B is evaluated before B .AND. C

Using the following values:

A 77770000000000000000 octal constant

D 00000000777777777777 octal constant

B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant

Masking operations produce the following octal results:

NOT. A is 00007777777777777‘7‘77
A AND. C is 20040000000000000QOO
A .AND. .NOT. C is 57730000000000000000
B .OR. .NOT. D is 77777777000000001763

Invalid example:

 LOGICAL A S , S i e
A .AND. B .OR. C masking expression must not contain logical operand

60305600 B I-3-15

lEXdﬁqﬂé;TmﬂfﬁFff““””

 PROGRAM MASK (INPUT, OUTPUT) .

~ FORMAT (1H1,5x,4HNAnE,///: '

 PRINT 1 o
' FORMAT (3A10,I1)

READ 2,L NAME, FNAHE,ISTATE,KSTOP

~ IF(KSTOP EQ.i)STOP

’ c IF FIRST THO CHARACTERS OF ISTATE NOT EQUAL TO CA READ NEXT CARD

% ‘11

1-3-16

IF!(ISTATE AND 777700000000000000008)oNEo(ZHCA AND-????GOODUUOUDDU

K00000B)) GO TO 3

FORMAT (5X,2410)
PRINT 11,LNANE,FNAME
60 T03 :
e

60305600 A

ASSIGNMENT STATEMENTS -4

An assignment statement evaluates an expression and assigns this value to a variable or array element. The
statement is written as follows:

v = expression
v is a variable or an array element
The meaning of the equals sign differs from the conventional mathematical notation. It means replace the

value of the variable on the left with the value of the expression on the right. For example, the assignment
statement A=B+C replaces the current value of the variable A with the value of B+C.

ARITHMETIC ASSIGNMENT STATEMENTS

v = arithmetic expression

Replace the current value of v with the value of the arithmetic expression. The variable or array element
can be any type other than logical.

Examples:
A=A+1 replace the value of A with the value of A+1
N=J-100*20 replace N with the value of J-100*20
WAGE=PAY-TAX replace WAGE with the value of PAY less TAX
VAR=VALUE+(7/4)*32 replace the value of VAR with the value of VALUE +(7/4)*32
B(4)=B(1)+B(2) replace the value of B(4) with the value of B(1)+B(2)

60305600 B I-4-1

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type
conversion takes place. The expression is evaluated, converted to the type of the variable on the left, and
then replaces the current value of the variable. The type of an evaluated arithmetic expression is
determined by the type of the dominant operand. Below, the types are ranked in order of dominance from
highest to lowest: ’

Corhplex

Double Precision

Real

Integer

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given.

CONVERSION TO INTEGER

Value of IFORM

Value Assigned Example After Evaluation
Integer = Integer Value of integer IFORM = 10/2 5
expression re-
placesv.
Integer = Real Value of real IFORM =25%2+3.2 8

expression, trun-
cated to 48-bit
integer, replaces
V.

Integer = Double Precision Value of double IFORM = 3141.593D3 3141593
precision expres—
sion, truncated to
48-bit integer,
replaces v.

Integer=Complex | Valueofrealpart | IFORM=(2530)+(1.02.0 | 3
G e | ofcomplex g : Lo o
| expression trun- |

~ cated to 48-bit |
| integer, replaces

142 : 60305600 B

CONVERSION TO REAL

Value Assigned

Example

Value of AFORM
After Evaluation

Real = Integer

Value of integer
expression, trun-
cated to 48 bits,
is converted to
real and replaces
V.

AFORM =200 + 300

500.0

Real = Real

Value of real
expression re-
places v.

AFORM =25+7.2

9.7

Real = Double Precision

Value of most
significant part
of expression re-
places v.

AFORM = 3421.D - 04

.3421

Real = Complex

Value of real
part of complex
expression re-
placesv.

AFORM = (9.2,1.1) - (2.1,5.0)

7.1

CONVERSION TO DOUBLE

PRECISION

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision = Integer

Value of integer
expression, trun-
cated to 48 bits,
is converted to
real and replaces
most significant
part. Least sig-
nificant part set
to 0.

SUM=7%5

35.D0

Double Precision = Real

Value of real
expression re-
places most
significant part;
least significant
part is set to O.

SUM =7.5%2

16.D0

60305600 E

1-4-3

CONVERSION TO DOUBLE PRECISION (CONTINUED)

) Value of SUM
Value Assigned Example After Evaluation
Double Precision Value of double SUM =7.322D2 - 32.D -1 7.29D2
= Double Precision precision expres-
sion replaces v.
Double Precision = Complex | Value of real - SUM = (3.2,7.6) + (5.5,1.0) 8700
: Rl ‘ part of complex | ; o : e .
expression re-
places v. Least
significant part
is set to 0.
CONVERSION TO COMPLEX
Value of AFORM

Value Assigned

Example

After Evaluation

Complex = Integer

~ Value of integer

expression, trun-
cated to 48 bits,

_isconvertedto
. real, and replaces

real part of v.

Imaginary partis |
| settoO.

'AFORM =2+3

. (6000

Complex = Real

Valueofreal

expressionre- -

placesrealpart |
| Ghv e | e
“partsetto 0. |

| AFORM=23+7.2

“,"Cokr‘n'p"l‘ex = DoQbIe Precision -

~ Most significant
| partofdouble
| precision expres- | ©
| sionreplacesreal |

| partofv. Imag-

inary part setto

 AFORM =20D0+4.4D1

. (ea000)

Complex = Complex

Value of complex
expression replaces
variable.

AFORM = (3.4,1.1} + (7.3,4.6)

(10.7,6.7)

1-4-4

60305600 B

LOGICAL ASSIGNMENT

Logical variable or array element = Logical or relational expression

Replace the current value of the logical variable or array element with the value of the expression.
Examples:

LOGICAL LOG2
I =1
LOG2 = I .EQ.O

LOG?2 is assigned the value .FALSE. because [0

LOGICAL NSUM,VAR

BIG = 200.

VAR = .TRUE.

NSUM = BIG .GT. 200. .AND. VAR

NSUM is assigned the value .FALSE.

LOGICAL A,B,C,D,E,LGA,LGB,LGC

REAL F,G,H

A = B.AND.C.AND.D

A - F.GT.G.OR.F.GT.H

A = .NOT.(A.AND..NOT.B).AND.(C.OR.D)
.NOT.LGB
E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

|l
Q0
Q »
[

MASKING ASSIGNMENT

v = masking expression

Replace the value of v with the value of the masking expression. v can be any type other than logical. No
type conversion takes place during replacement. If the type is double precision or complex, the value of the
expression is assigned to the first word of the variable: and the least significant or imaginary part set to
zero.

Examples:

B =D .AND. Z .OR. X
~ SUM = (1.0,2.0) .OR. (7.0,7.0)
~ NAME = INK .OR. JAY .AND. NEXT
© J(3) = N .aWD.I
. A - B.OR. (C.ANDLZ) . - -

60305600 F [-4-5

 INTEGER I,J,K,L,M,N(16)
REAL B,C,D,E F(15) :

'N(2) - I.AND. I
B = C.AND.L ,
~ F(J) = I.OR..NOT.L.AND. F(J)
I = .NOT.I i £
 N(1) = I.OR.J.OR. K OR.TL.OR.M

MULTIPLE ASSI‘GNMENT

v, =V, = ...V, = expression

‘Replace the value of several variables or array. elemems with the value of the expressmn For example
X =Y = Z= (lO+2)/SUM(1)1s equ1valent to the followmg statements ' o

/ u' -

(10 + 2)/SUM(1)
"-Xy,f—ﬂY

The value of the expressxon is converted to the type of the varlable or array element durmg each
”replacement : - , : ; .

;Examples:,

b NSUM BSUm;=fxs TOTAL - 1o 5 - 3 2

e TOTAL is asmgned the value 73 e e

. | 2 ISUM is a531gned the value 7

e 3 BSUM is asmgned the value 7 0
4. NSUM 1s a551gned the value 7

Multlple ass1gnment is legal m all types of assxgnment statements.‘

14-6 60305600 B

CONTROL STATEMENTS 1-5

FORTRAN control statements provide a means of altering, interrupting, terminating, or otherwise modifying
the normal sequential flow of execution.

ASSIGN PAUSE
GO TO STOP

IF END

DO RETURN
CONTINUE

Control must be transferred to an executable statement only.

A statement can be identified by an integer, 1-99999, with leading zeros and embedded blanks ignored. Each
statement label must be unique in the program unit (main program or subprogram) in which it appears.

GO TO STATEMENT

The three types of GO TO statements are unconditional, computed, and assigned. The ASSIGN statement is
used in conjunction with the assigned GO TO and is therefore described in the GO TO statement group.

UNCONDITIONAL GO TO STATEMENT

7
GO TO sn

sn is a label of an executable statement.

This statement transfers control to the statement labeled sn which must be an executable statement in the
current program unit.

60305600 G I-5-1 @

Example:

10 A=B+2Z
100 B=X+Y
IF(A-B)20,20,30
20 Z=A
GO TO 10 ~¢————————Transfers control to statement 10
30 Z=B
STOP
END

COMPUTED GO TO STATEMENT

7
GO TO (sn,",sn2 s, snm) ,iv

|]GO TO (sn;sny, ... 80,) eam

| — — —

sy is a label on an executable statement.

iv is an integer variable.
Ceam s an arithmetic or masking expression.
The computed GO TO statement transfers control to one of the statements referenced in the parentheses. If

the variable iv has a value of one, control transfers to the statement labeled sn; if the value is i, control
transfers to the statement labeled sn;.

"Ihe vanable iv can be replaced by an expressxon The value of the expression is truncated and converted to

an integer, if necessary, and used-in place of -iv. The ‘comma separating the statement label from the vanable
or express1on is optlonal Sl , ‘ : /

The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN statement, the
object code is incorrect, but no compilation error message is issued.

If the value of the variable or expression is less than one or larger than the number of statement numbers in
parentheses, the transfer of control is undefined and a fatal error results at execution time.

Example 1:

GO0 TO0(10,20,30,20),L

I-5-2 60305600 G

The next statement executed is:

10if L=1
20if L=2
30if L=3
20ifL=4
Example 2:
K=2
GO T0(100,150,300)K Statement 150 is executed next.
K=2
X=4.6

GO TO(10,110,11,12,13),X/K Control transfers to statement 110, since the integer value of the
expression X/K equals 2.

Example 3:
M=4
GO TO (100,200,300),M

Execution of the last example causes a fatal error during execution because fewer than four numbers are
specified in the list of statement labels.

ASSIGN STATEMENT

7
ASSIGN sn TO iv

sn is a label of an executable statement.

iv is an integer variable.
The ASSIGN statement assigns a statement label to a variable u used in an assigned GO TO. The integer
variable assigned to iv represents the label of an executable statement to which control may be transferred

by an assigned GO TO statement. Once iv is used in an ASSIGN statement, it must not be referenced in
any statement, other than an assigned GO TO or another ASSIGN, until it has been redefined.

60305600 G I-5-3 @

The assignment must be made prior to the execution of the assigned GO TO statement and sn (the label of

an executable statement) must be in the same program unit as both the ASSIGN and assigned GO TO
statements.

Example:

ASSIGN 10 TO LSWITCH
GO TO LSWITCH(5,10,15,20) Control transfers to statement 10
ASSIGNED GO TO STATEMENT

7
GO TO iv, (sn1 yeea,SN

- |leo TO v (sny.isn)
iv is an integer variable.
(sn Poeees snm) is a list of all the statement labels to which control can be passed by this assigned

GO TO. Upon execution of the assigned GO TO, iv must be assigned to one of the
labels in the list.

The assigned GO TO statement transfers control to the statement label last assigned to iv by the execution of
a prior ASSIGN statement. All the statement labels in the list must be in the same program unit with both
the ASSIGN and the assigned GO TO statements. Omitting the list of statement labels causes a fatal error.
If a statement label is omitted from the list or the value of iv is defined by a statement other than an
ASSIGN statement, the results are unpredictable. (Control is transferred to the absolute memory address
represented by the low order 18 bits of iv.) The comma after iv is optional.

Example:

ASSIGN 50 TO JUMP
10 GO TO JUMP,(20,30,40,50) Statement 50 is executed immediately after statement 10.

20 CONTINUE

30 CAT=ZERO+HAT
40 CAT=10.1-3.

.

50 CAT=25.2+7.3

® I-5-4 60405600 G

ARITHMETIC IF STATEMENT

The arithmetic IF statement has a three-branch and a two-branch form. In both cases, zero is defined as a
word containing all bits set to zero or all bits set to one (+0 or -0). If the type of the evaluated expression
is complex, only the real part is tested.

THREE-BRANCH ARITHMETIC IF STATEMENT

7
IF {eam) snq. snop.sng3

eam is an arithmetic or masking expression.
SNy, sy, sng are labels on executable statements.

The three-branch IF statement transfers control to the statement labeled sny if the value of the expression is
less than zero, to the statement labeled sfy if it is equal to zero, or to the statement labeled sn3 if it is
greater than zero.

Example:

PROGRAM IF (INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT)
READ (5,100) I,J,K,N
100 FORMAT (10X,4I4)

IF(I-N) 3,4,6

3 ISUM=J+K

6 CALL ERROR1
PRINT 2, ISUM

2 FORMAT .(I10)

4 STOP
END

TWO-BRANCH ARITHMETIC IF STATEMENT

7
IF (eam) snq.sny

‘eam is an arithmetic or masking expression.

' f;snfl s STy a‘reklabé,ls on executable statements.

60305600 G I-5-5 ®

The two-branch IF statement transfers control to one of two executable statements. Control is transferred to
the statement labeled s"l if the value of the expressmn is not equal to zero and to the statement labeled
sn2 if 1t is equal to zero. ' o e ~ .
Example:
IF (I*J*DATA(K))100,101
100 IF (I*Y*K)105,106

LOGICAL IF STATEMENT

The logical IF statement has a standard form and a two-branch form.

STANDARD-FORM LOGICAL IF STATEMENT

7
: IF (elr) stat
|
|
elr is a logical or relational expression.
stat is any unlabeled executable statement other than DO, END, or another standard-form
logical IF.

The standard-form logical IF allows for conditional execution of a statement. If the logical or relational
expression is true, stat is executed. If the expression is false, stat is skipped.

Examples:

IF (P.AND.Q) RES=7.2
50 TEMP=ANS*Z

If P and Q are both true, the value of the variable RES is replaced by 7.2; otherwise, the value of RES
is unchanged. In either case, statement 50 is executed.

IF (A.LE. 2.5) CASH=150.
70 B=A+C-TEMP

If A is less than or equal to 2.5, the value of CASH is replaced by 150. If A is greater than 2.5, CASH
remains unchanged.

IF (A.LT.B) CALL SUB1
20 ZETA=TEMP+RES4

If A is less than B, the subroutine SUBI is called. Upon return from this subroutine, statement 20 is
executed. If A is greater than or equal to B, statement 20 is executed and SUBI is not called.

I-5-6 : 60305600 G

TWO-BRANCH LOGICAL IF STATEMENT

7
IF (elr) shq, sy

— —— —

elr is a logical or relational expression.

sny,sny are labels on executable statements.
The two-branch logical IF allows for transfer of control to one of two executable statements. If the value of
the logical or relational expression is true, control is transferred to the statement labeled sny. If the value of
the expression is false, control is transferred to the statement labeled sfy.
Example:

IF(K.EQ.100)60,70

If K is equal to 100, statement 60 is executed; otherwise statement 70 is executed.

DO STATEMENT

7
DO sn iv=m,,m,,m,

T ' e
| DO sn iv=m,,m,
I
I
sn Terminal statement label; an executable statement that must physically follow and reside in
the same program unit as its associated DO statement. The terminal statement must not be
any "arithmetic or two-branch logical IF, a GO TO, RETURN, END, STOP, PAUSE, or
another DO statement.
iv Control variable; an integer variable.
my Initial parameter. Indexing parameters: unsigned integer or octal constants or
integer variables with positive non-zero values at execution such
m, Terminal parameter. that neither my+ms nor my+my is larger than 217-1. If the
indexing parameters exceed these constraints, the results are
my Incrementation parameter. unpredictable. If mg is not specified, its value is assumed to be 1.

60305600 G I-5-7 @

The DO statement makes it possible to repeat groups of statements and to change the value of an integer
variable during the repetition.

DO LOOPS

The range of a DO loop consists of all executable statements, from and including the first executable state-
ment after the DO statement to and including the terminal statement. Execution of a DO statement causes
the following sequence of operations:

1. iv is assigned the value of mj.

2. The range of the DO loop is executed.

3. iv is incremented by the value of m3.

4. ivis compared with m,. If the value of iv is less than or equal to the value of m,, the sequence
of operations starting at step 2 is repeated. If the value of iv is greater than the value of mj,
the DO is said to have been satisfied, the control variable becomes undefined, and control passes

to the statement following sn. If m; is greater than or equal to m,, the range of the DO loop
is executed once. -

A transfer out of the range of a DO loop is permissible at any time. When such a transfer occurs, the con-
trol variable remains defined at its most recent value in the loop. If control eventually is returned to the
same range, the statements executed while control is out of the range are said to define the extended range
of the DO. The extended range should not contain a DO statement.

The control variable must not be redefined in the range of a DO; such redefinition causes a fatal-to-execution
diagnostic to be issued. The control variable should likewise not be redefined in the extended range; such
redefinition causes the results of execution to be unpredictable.

The indexing parameters should not be redefined in either the range or the extended range of a DO. In
either case, the results of execution are unpredictable. Redefinition in the range of the DO causes an
informative diagnostic to be issued.

Example 1:

DO 10 I-1,11,3
IF(ALIST(I)-ALIST(I+1))15,10,10
15-ITEMP=ALIST(I)
10 ALIST(I)=ALIST(I+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including statement 10 are executed four times. The DO
loop is executed with I equal to 1, 4, 7, 10. Statement 300 is then executed.

® 1-5-8 ’ 60305600 G

Example 2:

DO 10 I=1,5

CAT=BOX+D
10 IF (X.GT.B.AND.X.LT.H)Z=EQUATE
6 A=ZERO+EXTRA

Statement 10 is executed five times, whether or not Z = EQUATE is executed. Statement 6 is
executed only after the DO loop is satisfied.

Example 3:

IVAR = 9

DO 20 I = 1,200

IF (I-IVAR) 20,10,10
20 CONTINUE
10 IN = I

An exit from the range of the DO is made to statement 10 when the value of the control variable I
is equal to IVAR. The value of the integer variable IN becomes 9.

Examplé 4

K=3
. J=5
DO 100 I=J,K
~ RACK=2.-3.5+ANT(I)
100 CONTINUE

The DO loop is executed only once (with I = 5) because J is larger than K.

NESTED DO LOOPS

When a DO loop entirely contains another DO loop, the grouping is called a DO nest. DO loops can be
nested to 50 levels. The range of a DO statement can include other DO statements providing the range of
each inner DO is entirely within the range of the containing DO statement.

The last statement of an inner DO loop must be either the same as the last statement of the outer DO loop
or must occur before it. If more than one DO loop has the same terminal statement, a transfer to that
statement can be made only from within the range (or extended range) of the innermost DO, and the label
cannot be referenced in any GO TO or IF statement in the nest except in the range of the innermost DO.

A DO loop can be entered only through the DO statement. Once the DO statement has been executed, and

before the loop is satisfied, control can be transferred out of the range and then transferred back into the
range of the DO.

60305600 G I-5-9 o

A transfer from the range of an outer DO into the range of an inner DO loop is not allowed; however, a
transfer out of the range of an inner DO into the range of an outer DO is allowed because such a transfer

is within the range of the outer DO loop.

D Ilegal

—)

m———
ff——

Legal

The use of and return from a subprogram within a DO loop are permitted. A transfer back into the range
of an innermost DO loop is allowed if a transfer has been made from the same loop.

Legal

Example 1:

DIMENSION A(5,4,4), B(4,4)
D021 =
DO 2 J
DO 1 K =
1 A(K,J,I)
2 B(J,1) =

1,4
1,4
1,5
= 0.0
0.0

This example sets arrays A and B to zero.

I-5-10

mmm——

—~——

Illegal

60305600 G

Example 2:

FD1

— D2
D3
[n3
— n2
~ D4
— n4

Lnl

DO loops can be nested completely within an outermost loop or can share a terminal statement. The diagrams

— D1
F-DZ
— N2
— D3
L n3
— n1

in example 2 might be represented by the following code:

60305600 G

Do 1 I-1,10,2

f——D0 2 J=1,5

.
.

DO 3 K=2,8

3 CONTINUE

—— 2 CONTINUE

[:—DO 4 L=1,3
4 CONTINUE

1 CONTINUE

DO 100 L=2,LIMIT

]:JO 10 J=1,10
10 (:EONTINUE

]:)0 20 K=K1,K2
20 (EJONTINUE

-—— 100 CONTINUE

— D1

——— D2

-— n1=n2=n3

D3

—— DO 5 I=1,5
b— DO 5 J=1,10
t—— DO 5 K=J,15

[-5-11

Example 3:

10

DO 10 J=1,50
DO 10 I=1,50
DO 10 M=1,100

GO TO 10

CONTINUE

Since statement 10 is the terminal statement for more than one DO loop, it can be referenced in
a GO TO or IF statement in the range of the innermost DO. If 10 is referenced in one of the outer

loops, control is transferred out of the range with undefined results.

Example 4:

20

40

101

103

50
30
10

102

109

104

®]-5-12

DO 10 K=1,100
IF(DATA(K)-10.)20,10,20

DO 30 L=1,20
IF(DATA(L)-FACT*K~10.)40,30,40
DO 50 J=1,5

GO TO (101,102,50),INDEX
TEST=TEST+1

GO TO 104

TEST=TEST-1
DATA(K)=DATA(K)*2.0

CONTINUE
CONTINUE
CONTINUE

.
.

GO TO 104
D0 109 M=1,3

CONTINUE
GO TO 103
CONTINUE

60305600 G

When an IF statement is used to bypass several inner loops, different terminal statements are required for each
loop.

CONTINUE STATEMENT

7
sn| [CONTINUE

sn is a statement label.

The CONTINUE statement performs no operation. It is an executable statement that can be placed anywhere

" in the executable statement portion of a source program without affecting the sequence of execution. The
CONTINUE statement is most frequently used as the last statement of a DO loop to provide loop termination
when a GO TO or IF would normally be the last statement of the loop. If the CONTINUE statement does
not have a label, an informative diagnostic is provided.

Example 1:

DO 10 I = 1,11

IF (A(I)-A(I+1)20,10,10
20 ITEMPP = A(I)

A (I) = A (I+1)
10 CONTINUE

Example 2:

DO 20 I-1,20
1 IF (X(I) - Y(I))2,20,20
2 X(I)=X(I)+1.0

Y(I)=Y(I)-2.0

GO TO 1
20 CONTINUE

60305600 G [-5-13 e

PAUSE STATEMENT

7
: PAUSE
|
7 ,
: PAUSE n
! f,,]f 7 . i ¢
. I PAUSE #c...c# .) B B
o
n is a string of 1-5 octal digits.

c. . .c is a st{rink'g of 1-70 ché’rééiérs.:

When a PAUSE statement is encountered during execution, the program halts and PAUSE n, or c.. .c, appears
as a dayfile message on the display console. The operator can continue or terminate the program with an
entry from the console. If the program is not terminated, it continues with the next statement. If n is
omitted, blanks are implied.

STOP STATEMENT

l 7
| STOP
|
|
|

7

STOP n

n is a string of 1-5 octal digits.
Cc...c isastring of 1-70 characters.
The STOP statement terminates program execution. When a STOP statement is encountered during execution,
STOP n or STOP c...c is displayed in the dayfile, the program terminates, and control returns to the

operating system. If n is omitted, blanks are implied. A program unit can contain more than one STOP
statement.

® [-5-14 : 60305600 G

END STATEMENT

END

The END statement indicates the end of the program unit to the compiler. Every program unit must
physically terminate with an END statement. The END statement can follow a $ statement separator, be
labeled, and be continued. If control flows into or branches to an END statement, it is treated as if a
RETURN statement had preceded the END statement.

If the END statement is not continued (all three characters are on the same line with the D as the last
nonblank character), no scanning for possible continuation information is performed and any information
after the END statement is considered part of the next program unit. If the END statement is continued
(all three characters not on one line), any comment statements and blank lines following the END statement
are listed with the current program unit.

The following examples are interpreted as the end of one program unit, followed by another program unit
beginning with an illegal continuation line of either , FILE 3 or . = 4.

END END
.FILE 3 . =4

RETURN STATEMENT

7
| RETURN
|
|

7

RETURN i

i is a dummy argument which appears in the RETURNS list in the SUBROUTINE statement.

The RETURN statement terminates the execution sequence within a program unit and normally retumns
control to the current calling program unit. In a main program, execution of the program terminates and
control retums to the operating system when a RETURN is encountered.

When a RETURN statement is encountered in a function subprogram, control returns to the referencing
program unit and the evaluation of the expression is completed using the value returned from the function.

- Since control must return to the referencing expression, 2 RETURN i statement in a function subprogram
i 4 fatal emor it Compilgiion time: | ; T e A e e B

60305600 G I-5-15

In a subroutine subprogram, a RETURN statement transfers control to the next éxecutable statement
following the CALL statement in the calling program unit.

‘A RETURN i in a subroutine transfers control to the calhng program statement label correspondmg to i
in the RETURNS list. It allows control to return to an executable statement other than the one 1mmed1ate1y
followmg the CALL statement and can only be used in a subroutine subprogram. '

The RETURNS list is descnbed in more detarl in the Subroutme Subprogram and the Callmg a
‘Subroutine Subprogram in section I—7

Example 1:
A = SUBFUN (D,E) FUNCTION SUBFUN(ZX,Y)
10 DO 200 I = 1,5 SUBFUN = X/Y
. RETURN '
. END

When the RETURN statement is encountered in the function subprogram, control is returned to
the statement referencing the subprogram, and the value calculated by SUBFUN is stored in A.

Example 2:
Calling Program : : L Subprogram

. : ‘ SUBROUTINE PGM1 (X Y,2),

. B . XRETURNS (M N) i

CALL PGM1(A,B,C), U=Xiry

XRETURNS (5,10) X=2+X*Y

. : 20 IF (U+X) 25, 30 35 :

. 25 RETURN M~ Return is to statement 5 in calling program

. .- B 30 RETURN N Return is to statement 10 in calling program.

5 - B=SQRT(A*C) o : 35 Z=Z+(X*Y) ‘ : e r : :

o : ~ RETURN “ Return is to statement following CALL PGMI.
. END : :

10 CALL PGM2 (D,E)

.

Example 2 shows both forms of the RETURN statement in a subroutine subprogram.

® I-5-16 60305600 G

SPECIFICATION STATEMENTS -6

Specification statements are non-executable; they define the type of a variable or array, specify the amount
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods
of sharing storage, and assign initial values to variables and arrays. The specification statements are:

IMPLICIT The IMPLICIT statement must precede other specification statements.

Type

DIMENSION

COMMON If any of these statements appears after the first executable statement or

EQUIVALENCE statement function definition, the specification statement is ignored and a
fatal diagnostic is printed.

EXTERNAL

LEVEL

DATA The DATA statement must follow all other specification statements

except statement function definitions and FORMAT statements (see
section III-9).

TYPE STATEMENTS

A type statement defines a variable, array, or function to be integer, real, complex, double precision, or logical.
An explicit type statement can be used to supply dimension information. The word TYPE as a prefix is
optional. -

In the absence of an explicit type statement, the type of a symbolic name is implied by the first character

of the name: I,J, K, L, M, or N imply type integer and any other letter implies type real, unless an

IMPLICIT statement is used to change this normal implied type.

Basic extemal and intrinsic functions are implicitly typed, and need not appear in a type statement in the
user’s program. The type of each library function is listed in section I-8.

60305600 G I-6-1 o

EXPLICIT TYPE DECLARATIONS

Five explicit type statements can be declared: INTEGER, REAL, COMPLEX, DOUBLE PRECISION, and
LOGICAL.

INTEGER

7
INTEGER name

1 Name, , ..., name_

|
I
I
I
The symbolic names listed are declared as type integer.
Example:
INTEGER SUM, RESULT, ALIST
The variables SUM, RESULT and ALIST are all declared as type integer.
REAL

7

REAL name,, name,, ..., hame_

The symbolic names listed are declared as type real.
Example:

REAL NEXT(7), ITEM

NEXT is declared as an array with 7 real elements, and ITEM is declared as a real variable.

COMPLEX

7
COMPLEX name

name,,...,name_

1° 2

T

1

|

1

|

The symbolic names listed are declared as type complex.
Example:

COMPLEX ALPHA, NAM, MASTER, BETA
The variables ALPHA, NAM, MASTER, BETA are declared as type complex.

e [-6-2 60305600 G

DOUBLE PRECISION

7

The symbolic names listed are declared as type double precision. DOUBLE can be used instead of

DOUBLE PRECISION name name,, ..., name_

1’

DOUBLE PRECISION.

Example:

DOUBLE PRECISION ALIST, JUNR, BOX4

The variables ALIST, JUNR, BOX4 are declared as type double precision.

LOGICAL

7

LOGICAL name name,, ..., name_

1

The symbolic names listed are declared as type logical.

Example:

LOGICAL P,Q,NUMBR4

The variables P, Q and NUMBR4 are declared as type logical.

IMPLICIT TYPE STATEMENT

7

type

ac

60305600 G

IMPLICIT type, (ar:1 ,...,acn),...,typen(aciy,.k.’.,acn)

LOGICAL, INTEGER, REAL, DOUBLE PRECISION,"DOUBLE, or COMPLEX

Single alphabetic character, or range of characters represented by the first and last character

separated by a minus sign. ac must be enclosed in parentheses.

[-6-3 o

This statement specifies the type of variables or array elements beginning with the letters ac. Only one IMPLICIT
statement may appear in a program unit, and it must precede other specification statements. ‘An IMPLICIT state-
ment in a FUNCTION or SUBROUTINE subprogram affects the type associated with dummy arguments and the
function name, as well as other variables in the subprogram.- An. IMPLICIT statement cannot be used to dimension an
array. : : :

Explicit typing of a variable name or array element in a type statement or FUNCTION statement overrides an
IMPLICIT specification.

Example 1:

IMPLICIT INTEGER(A-D,R)
REAL ASUM

ASUM = BOR + ROR * ANEXT
DECK = CROWN + B

The variables BOR, ROR, ANEXT, DECK, CROWN and B’ére of type integer; ASUM is type kreal.‘ :
Example 2: ’ - : e e

PROGRAM COME (OUTPUT;TAPE6 OUTPUT);f“'
IMPLICIT INTEGER (A=FsH) a
'DIMENSION E(394) ;ﬂ

COMMON A(1)9BsCsDys F’G'H

EQUIVALENCE (AsEsI) ' :
NAMELIST/VLIST/A’89C909E9FoG,HoI

DO 1 J=1s 12
1 A =EJ

WRITE (69VLIST)
STOP
END

The arrays A and E and the variables B, C, D, F, H, and I are of type integer; G is type real.

I-6-4 60305600 G

DIMENSION STATEMENT

(1

di Array declarator, 1-3 integer constants. In a subprogram DIMENSION statement, they
can be integer variables.

7
DIMENSION name, (d1 | name_ (dn)

name; Symbolic name of an array.

The DIMENSION statement is a nonexecutable statement which defines symbolic names as array names and
specifies the bounds of the array. More than one array can be declared in a single DIMENSION statement.
Arrays specified with a subprogram can have adjustable dimension specifications. (A further explanation of
adjustable dimension specifications appears under Procedure Communication in section 1-7.) Within the same
program, only one definition of an array is permitted.

The number of computer words reserved for an array is determined by the type of the array and the product
of the subscripts. For real, integer and logical arrays, the number of words in an array equals the number of
elements in the array. For complex and double precision arrays, the number of words reserved is twice the
product of the subscripts. No array can exceed 131,071 words.

Example:

COMPLEX BETA
DIMENSION BETA (2,3)

BETA is an array containing six elements; however, BETA has been defined as COMPLEX and two words
are used to contain each complex element; therefore, 12 computer words are reserved.

Example:

REAL NIL
DIMENSION NIL (6,2,2)

These statements could be combined into one statement with 24 words reserved for array NIL.
REAL NIL (6,2,2)

Example:

DIMENSION ASUM(10,2)

DIMENSION ASUM (3), VECTOR (7,7)

The second specification of ASUM is ignored, and an informative message is printed. The specification for
VECTOR is valid and is processed.

60305600 G I-6-5 e

| COMMON STATEMENT
7

COMMON/ /v,,...,v

7
COMMON/bIkname1 /v1 e Ve ./blknamen/v1 pee V¥

7
COMMON v, ,..

Y

!
I
!
l

blkname Block name or number enclosed in slashes. A block name is a symbolic
‘name. A block number 1s 1-7 dlglts 1t must not contain any alphabetic
characters Leadmg zeros are 1gnored 0 isa vahd block number. The
same block name or number can appear more than once in a COMMON
statement or a program unit; the loader links all variables in blocks having
the same name or number into a single labeled common block.

ViV Variables or array names which can be followed by constant subscripts
that declare the dimensions. The variable or array names are assigned to
blkname. The COMMON statement can contain one or more block
specifications.

// Denotes a blank common block. If blank common is the first block in the
statement, slashes can be omitted.

Variables or arrays in a calling program or a subprogram can share the same storage locations with
variables or arrays in other subprograms by means of the COMMON statement. Variables and array names
are stored in the order in which they appear in the block specification.

COMMON is a non-executable statement. See section III-9 for proper location of COMMON statements relative
to other statements in the program unit. The COMMON specification provides up to 125 storage blocks that
can be referenced by more than one subprogram. A block of common storage can be labeled by a name or a
ﬂnumber A COMMON statement without a name or number refers to a blank common block. Variables and
array elements can appear in both COMMON and EQUIVALENCE statements. A common block of storage can
be extended by an EQUIVALENCE statement; however, no common block can exceed 131,071 words.

I-6-6 60305600 G

All members of a common block must be allocated to the same level of storage; a fatal diagnostic is issued if
conflicting levels are declared. If only some members of a common block are declared in a LEVEL statement,
the remaining members of that common block are allocated automatically to the same level; and an informative
diagnostic is issued.

Block names can be used elsewhere in the program as symbolic names, and they can be used as subprogram
names. Numbered common is treated as labeled common. Data stored in common blocks by the DATA
statement is available to any subprogram using these blocks.

The length of a common block, other than blank common, must not be increased by a subprogram using
the block unless the subprogram is loaded first by the operating system loader.

Example:

COMMON/BLACK/A(3)
DATA A/1.,2.,3./

COMMON/100/I(4)
DATA 1/4,5,6,7/

Data may not be entered into blank common blocks by the DATA declaration.
The COMMON statement may contain one or more block specifications:
COMMON/X/RAG,TAG/APPA/Y,Z,B(5)
RAG and TAG are placed in block X. The array B and Y,Z are placed in block APPA.

Any number of blank common specifications can appear in a program. Blank, named and numbered
common blocks are cumulative throughout a program, as illustrated by the following example:

COMMON A,B,C/X/Y,Z,D//W,R

COMMON M,N/CAT/ALPHA,BINGO//ADD
These statements have the same effect as the single statement:
COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO
Within subprograms, dummy arguments are not allowed in the COMMON statement.

If dimension information for an array is not given in the COMMON statement, it must be declared in a
type or DIMENSION statement in that program unit.

60305600 G 1-6-7 |

Examples:
COMMON/DEE/Z(10,4)

Specifies the dimensions of the array Z and enters Z into labeled common block DEE.

COMMON/BLOKE/ANARAY,B,D
DIMENSION ANARAY(10,2)

COMMON/Z/X,Y,A
REAL X(7)

COMMON/HAT/M,N,J(3,4)
DIMENSION J(2,7)

In the last example, J is defined as an array (3.4) in the COMMON statement. (2,7) in the
DIMENSION statement is ignored and an error message is printed.

The length of a common block, in computer words. is determined by the number and type of the variables
and array elements in that block. In the following statements. the length of common block A is 12 computer
words. The origin of the common block is Q(1).

REAL Q,R
COMPLEX S
COMMON/A/Q(4),R(4),S(2)

Block A

origin Q)
Q)
Q(3)
Q4
R(I)
R(2)
R(3)
R(4)
S(1) real part
S(h imaginary part
S(2) real part
S(2) " imaginary part

If a program unit does not use all locations reserved in a common block, unused variables can be inserted
in the COMMON declaration in the subprogram to ensure proper correspondence of common areas.

l 168 60305600 G

Example:
COMMON/SUM/A,B,C,D main program
COMMON/SUM/E(3),D subprognun

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area
reserved by A,B, and C.

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list.

COMMON/SUM/D,A,B,C main program

COMMON/SUM/D subprogram

If program units share the same common block, they may assign different names and types to the members
of the block; but the block name or numbers must remain the same.

Example:

PROGRAM MAIN
COMPLEX C
COMMON/TEST/C(20)/36/A,B,2

The block named TEST consists of 40 computer words. The length of the block numbered 36 is three
computer words.

The subprogram may use different names as in:

SUBROUTINE ONE
COMPLEX A
COMMON/TEST/A(10),G(10),K(10)

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A are
complex elements. Array G is the next 10 words, and array K is the last 10 words. Within the
subprogram, elements of G are treated as floating point; elements of K are treated as integer.

60305600 G I-6-9

EQUIVALENCE STATEMENT

7 .
EQUIVALENCE (glisty), ... (glist,)

Each glist; consists of two or more variables, array elements, or array names, separated by commas.

Array elem}e;x’lts must have integer constant subscripts. Dummy arguments must not appear in an equivalence
statement. Equivalenced variables must be assigned to the same level of storage.

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a pro-
gram unit. If it appears after the first executable statement, a fatal diagnostic is printed.

EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as
opposed to COMMON which assigns two variables in different program units to the same location). Variables
or array elements not mentioned in an EQUIVALENCE statement are assigned unique locations.

Example:

DIMENSION JAN(6),BILL(10)
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C)

The variables IRON, MAT and ZERO share the same location, the fifth element in array JAN and the
second element in array BILL share the same location, and the variables A,B and C share the same location.

When an element of an array is referred to in an EQUIVALENCE statement, the relative locations of the
other array elements are, thereby, defined also.

Example:

DIMENSION Y(4), B(3,2)
EQUIVALENCE (Y,B(1,2)), (X,Y(4))

This EQUIVALENCE statement causes storage to be shared by the first element in Y and the fourth
element in B and, similarly, the variable X and the fourth element in Y. Storage will be as follows:

B(1,1)
B(2,1)
B(3.1)
B(1,2) Y(1)
B(2,2) Y(2)
B(3,2) Y(3)

Y(4) X

| 1610 60305600 G

The elements of a glist constitute an equivalence group. When an equivalence group contains an element that
appears in another equivalence group, these groups are merged and their elements constitute an equivalence
class.

Example:

DIMENSION A(100)
EQUIVALENCE (A,B), (C,A(50)), (D,E), (F,C)

These statements establish the following equivalence groups:
ash {ach {crh foe}
and the following equivalence classes:
{aBCF}, {DE}
The statement EQUIVALENCE (A,B),(B,C) has the same effect as EQUIVALENCE (A,B,C).
i When nok array subscript is given, it is assumed to be 1. ‘ | | B

DIMENSION ZEBRA(lO)
EQUIVALENCE (ZEBRA TIGER)

~ means the same as the stdtements :

DIMENSION ZEBRA(]_O) ;
EQUIVALENCE (ZEBRA(l) TIGER)

A lOgl(,d] integer. or real entity equwalenced to a double precision or complex entlly shares the same
location as the real or most significant part of the complex or double precision entity.

60305600 G I-6-11

An array with multiple dimensions may be referenced with a single subscript. The location of the element
in the array may be determined by the following method:

DIMENSION A(K,M,N)
The position of element A(k,m,n) is given by:
A+(k-1+K*(m-1+M*(n-1)))*E

E is 1 if A is real, integer or logical; E is 2 if A is complex or double precision.

Example:

DIMENSION AVERAG(2,3,4),TERM(7)
EQUIVALENCE (AVERAG(8),TERM(2))

Elements AVERAG (2,1,2) and TERM(2) share the same locations.
Two or more arrays can share the same storage locations.
Example:

DIMENSION ITIN(10,10),TAX(100)
EQUIVALENCE(ITIN,TAX)
500 READ (5,40)ITIN

600 READ (5,70) TAX

The EQUIVALENCE declaration assigns the first elements of arrays ITIN and TAX to the same
location. READ statement 500 stores the array ITIN in consecutive locations. Before READ
statement 600 is executed, all operations involving ITIN should be completed; as the values of array
TAX are read into the storage locations previously occupied by ITIN.

Lengths of arrays need not be equal.
Examples:

DIMENSION ZERO1(10,5),ZER02(3,3)
EQUIVALENCE (ZERO1,ZER02) is a legal EQUIVALENCE statement

EQUIVALENCE (ITEM,TEMP)

The integer variable ITEM and the real variable TEMP share the same location; therefore, the same

location may be referred to as either integer or real. However. the integer and real internal formats
differ; therefore the values will not be the same.

| 1-6-12 60305600 G

Example:

PROGRAM COME (OUTPUTs»TAPE6=0UTPUT)

COMMON A(1)9BsCoeDs FoeGyH
INTEGER A9B9sCoDsE(394)9Fs H
EQUIVALENCE (AsEs 1)

NAMEL IST/VLIST/AsBsCoD9sE9sFoGoHo I

DO 1 J =1y 12
1 A(J)=J

WRITE (6sVLIST)

STOP
END

Output from Program COME:

$VLIST

A = 1,
B = 2,
c = 3,
D = 4,
E =1, 2, 3, 4, 5, 6, 7, 8,
F = 5,
G = 0.0,
H = 7,
I = 1,
$END

An explanation of this example appears in part 2.

EQUIVALENCE AND COMMON

11,

12

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. A

common block of storage may be extended by an EQUIVALENCE statement.

Example:
COMMON/HAT/A(4),C
DIMENSION B(5)
EQUIVALENCE (A(2),B(1))
Common block HAT will extend from A(1) to B(S):

/HAT/ Origin

60305600 G

A(l)
A(2)
AQ3)
A(4)

B(I)
B(2)
B(3)
B(4)
B(5)

1-6-13 |

EQUIVALENCE statements which extend the origin of a common block are not allowed, however.
Example:

COMMON/DESK/E,F,G

DIMENSION H(4)

EQUIVALENCE (E,H(3))

The above EQUIVALENCE statement is illegal because H(1) and H(2) extend the start of the common

block DESK:
/DESK/ H(1)
H(2)
Origin E H(3)
F H4)
G

An element or array is brought into COMMON if it is equivalenced to an element in COMMON. Two elements
in COMMON must not be equivalenced to each other.

Examples:

COMMON A,B,C
EQUIVALENCE (A,B) illegal

COMMON /HAT/ A(4),C /X/ Y,Z
EQUIVALENCE (C,Y) illegal

As stated in section I-2, indexing outside of array bounds is prohibited. Since the compiler attempts to
minimize the size of equivalence classes in common blocks to the smallest subset of the block that includes
all members named in associated EQUIVALENCE statements, all members of a common block will not
necessarily be considered as one array. The programming practice of intentionally referencing locations out-
side a known array may produce unintentional results as shown in the following example.

COMMON/ /A(4),B,D, N
DIMENSION AA(4)
EQUIVALENCE (AA, A(2))
D=2.
N=2
DO 10 1=1,6

10 AA(1)=D*N
PRINT *N

When these statements are compiled under OPT=0, N will have a value of 8 on exit. Under OPT=1 or 2,
the evaluation of D*N will be moved out of the loop since AA and D (or N) are not recognized as being
in the same equivalence class. If the program is to produce the same results under all OPT levels, AA
must be dimensioned to include the entire common block in the equivalence class.

1-6-14 60305600 G

LEVEL STATEMENT

7
| LEVEL n, a, ,...,a
n
I
|
|
F PR List of variables or array names separated by commas
n Unsigned integer 1, 2, or 3 indicating level to which list is to be allocated.
1 Small core memory resident (SCM)
§ 2 Large core memory resident (LCM). Directly addressable (or word addressable)
3 Large core memory resident, accessed by block transfer to or from small core memory
through MOVLEV subroutine call
I Central memory resident
i 2 Cemrdlmemoryresxdem

Extended core stordge reSIdent accessed by bloc

; trﬁa,,nysfer to or from central memory
*’_’ythrough MOVLEV subroutme call o '

ifThxs statemem asmgns vandbles or array names to the level n. LEVEL stdtemems must precede the first
fexecutable statement in a program unit. Ndmes of variables and arrays whlch do not appear in a LEVEL
*ystatement are allocated to central memory : ~

No dlmensxon or type mformdtmn may be 1ncluded in the LEVEL slatement
Varlables and- arrays appeanng in a LEVEL statement can appear in DATA DIMENSION, EQUIVALENCE,

COMMON, type, SUBROUTINE and FUNCTION statements. Data a531gned to levels 2 and 3 must appear also
in COMMON statements or as dummy arguments in SUBROUTINE or FUNCTION statements.

§Apphes only to CONTROL DATA CYBER 70/Mode] 76 and 7600 computers

iApphes’o ly, to CONTROL DATA CYBER 70/Models 72, 73 and 74 CYBER 170 dnd 6000 Serles computers .

60305600 G 1-6-15 |

Data : assrgned to level 3 can be referenced only in: COMMON DIMENSION EQUIVALENCE DATA CALL ;
SUBROUTINE and FUNCTION statements. Level 3 items cannot be used in expressrons e

No restrictions are rmposed on the way in whrch ref'erence is made to var1ables or arrays allocated to levels ‘
land 2. ’

If the level of any varrable 1s multrply defined, the level first declared is assumed and a warmng dtagnosttc
is printed.

All members of :a common block must be assigned to the same level a fatal dragnostrc is issued if
_conflicting levels are declared. If some, but not all, members of a common block are declared in a LEVEL
statement, all are assrgned to the declared level, and an mformatrve dragnostrc is printed.

'If a variable or array name declared in a LEVEL statement appears as an actual argument in a CALL
‘statement, the correspondmg dummy argument must be allocated to the same level in the called
'subprogram ~ , o : Sa

If a variable or array name appears in an EQUIVALENCE and a LEVEL statement the equtvalenced
‘varrables must all be allocated to the same level. ‘

'Exa’mple:"‘ =
,,‘DIMENSION E(500) B(500) CM(lOOO)

~ LEVEL 3, E,B Sl
COMMON /ECSBLK/ E,B

e

CALL MOVLEV (cm E, 1ooo"‘

The LEVEL statement allocates arrays E and B to extended core storage They are a551gned to a named
~common block, ECSBLK Startmg at location CM (the first word address of the . array CM) 1000 words of
- ~central memory are transferred to the two arrays E and B m extended core storage by the hbrary routme i

EXTERNAL STATEMENT

7

EXTERNAL name, ,...,name_

name,,...,name, Subprogram names

Before a subprogram name is used as an argument to another subprogram. it must be declared in an
EXTERNAL statement in the calling program.

I-6-16 60305600 G

Any name used as an actual argument in a call is assumed to be a variable or array unless it appears in an
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a
standard system function, such as SQRT. However, an EXTERNAL statement is not required for intrinsic
functions used as actual arguments. If an intrinsic function name appears in an EXTERNAL statement, the

user must supply the function.
Example:
Calling Program

EXTERNAL SIN, SQRT
CALL SUBRT(2.0,SIN,RESULT)
WRITE (6,100) RESULT

100 FORMAT (F7.3)

CALL SUBRT(2.0,SQRT,RESULT)
WRITE (6,100)RESULT
STOP
END

Subprogram

SUBROUTINE SUBRT (A,B,C)
X=A+3.14159/2.

C=B(X)

RETURN

END

First the sine, then the square root are computed; and in each case, the value is returned in
RESULT. The EXTERNAL statement must precede the first executable statement, and always
appears in the calling program. (It may not be used with statement functions.)

A function call that provides values for an actual argument does not need an EXTERNAL statement.

Example:
Calling Program

CALL SUBRT(SIN(X),RESULT)

Subprogram

SUBROUTINE SUBRT(A,B)

An EXTERNAL statement is not required because the function SIN is not the argument of the
subprogram; the evaluated result of SIN(X) becomes the argument.

60305600 G

I-6-17 |

Example:

PROGRAM VARDIMZ2 (OUTPUT» TAPE6=0UTPUT »DEBUG=0UTPUT)
COMMON X (493)

REAL Y (6)

EXTERNAL. MULTs AVG
NAMELIST/V/XsYsAAsAM
CALL SET(Y9690,.)
CALL IOTA(Xs12)

CALL INC(Xs129-5,)
AA=PVAL (124AVG)
AM=PVAL (129MULT)
WRITE(6,V)

STOP

END

FUNCTION AVG(J)
C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF COMMON,

‘COMMON A(100)
AVG=0,
DO 1 I = 1.J

1 AVG=AVG+A(I)
AVG=AVG/FLOAT (J)
RETURN
END

REAL FUNCTION MULT (J)

COMMON ARRAY(12)
MULT=ARRAY (12) *ARRAY (1) =AVG (J/2)
RETURN

E N D

An explanation of this example appears in part 2.

| 1-6-18 60305600G

DATA STATEMENT

7
DATA vlist, /dlist, /, ..., viist_/dlist_/

7
DATA (vlist =dlist), . . ., (vlist =dlist)

vlist List of array names, array elements,-variable names, or an implied DO loop, separated by

commas. Unless they appear in an implied DO loop, array elements must have integer constant
subscripts.

dlist One or more of the following forms separated by commas:

constant
(constant list)
rf*constant
rf*(constant list)
rf(constant list)

constant list List of constants separated by commas.

rf Integer constant. The constant or constant list
is repeated the number of times indicated by
rf.

The data statement is non-executable and must follow all specification statements except statement function
definitions and FORMAT statements. It assigns initial values to variables or array elements. Only variables
assigned values by the DATA statement have specified values when program execution begins. The DATA
statement cannot be used to assign values in blank common or to dummy arguments.

The number of items in the data list should agree with the number of variables in the variable list. If the data
list contains more items than the variable list, excess items are ignored, and an informative diagnostic is printed.
If the data list contains fewer items than the variable list, remaining variables are not defined, and an informative
diagnostic is printed.

The type of the constant in the data list should agree with the type associated with the corresponding name

in the variable list. If the types do not agree, the form of the value stored is determined by the constant used
/in the DATA statement rather than by the type of the name in the variable list. . o

60305600 G I-6-19

An unsubscripted array name implies the entire array in the order it is stored in memory.

Example:

INTEGER B(10)
DATA B/000077B,000064B,3*000005B,5*000200B/

The following octal constants are stored in ARRAY B:

77B
64B
5B
5B
5B
200B
200B
200B
200B
200B

When a Hollerith specification is used in a DATA statement, it should not exceed 10 characters. For example,
to store the following values in an array A:

Location Contents
AQ1) 1234567890
A(2) ABCDEFGHIJ
AQ3) KLMNOPQRST
A(4) UVWXYZ + - *

the following statements should be used:

DIMENSION A(4)
DATA A/10H1234567890,10HABCDEFGHIJ, 10HKLMNOPQRST ,10HUVWXYZ+— */

The following statements would not product the desired result:

DIMENSION A(4)
DATA A/20H1234567890ABCDEFGHIJ,20HKLMNOPQRSTUVWXYZ+~- */

They would initialize:

Location Contents
A(D) 1234567890
AQ2) KLMNOPQRST
A(3) UVWXYZ + - *
A(4) undefined

| 1620 60305600 G

IMPLIED DO IN DATA LIST

The implied DO can be used as a shortened notation for specifying items in the variable list of a DATA
statement. The implied DO in a DATA statement has the following form:

(varlist, i=m{, m,, ms)

where:
varlist - an array element or another implied DO. If it is an array element, its subscript
expressions must be of the form
M#*i+N
where M and N are unsigned integer constants.
i a simple integer variable called the index variable
my, My, mg unsigned integer constants specifying the initial value, terminal value, and

increment, respectively, for the index variable; if m3 and the preceding comma
are omitted, the value of mgy is assumed to be 1.

* The range of the implied DO is varlist. Within the range, the value of the variable i must not be redefined.
If varlist contains more implied DOs, those implied DOs are considered to be nested within the containing

- implied DO; the nested implied DO is completely processed for each value of i in the containing implied DO.

~ Implied DOs can be nested a maximum of three deep. '

- When an implied DO is encountered in a DATA statement, the elements in its range are initialized for index
varjable i with the value my. The index variable is then increased by mg and, if i is less than or equal to
m,, the range of varlist is initialized for the new value of i. This procedure continues until the value of the

- index variable exceeds my.

Example 1:

REAL ANARAY(10)
DATA (ANARAY(I),I = 1,10)/1.,2.,3.,7*2.5/

The values stored in array ANARAY are:

ANARAY(1) 1.

2.5

2.5

2.5
25
2.5
2.5
25

60305600 G- 1-6-21 e

! When an 1mp11ed DO is used to store values mto arrays only one array name can be used wrthm the rmphed:
; DO nest ‘ : : : '

: Ekample 2 L

DIMENSION UNIT (10, 10)
DATA (UNIT(I =1, 10)/10*1/

- These two statements declare a matrix and preset the diagonal elements to ones.
: Example KH

; DIMENSION AR(10)
, DATA (AR(2*|+1) I= 1 4)/4*35/

: These two statements declare a ten-word array and preset elements AR(3) AR(S) AR(7), and AR(9) to ~
35, i a : i

4 Example 4

 DIMENSION AMASS(IO 10, 1o), A(lO), B(5) S
 DATA (AMASS(8,K,3),K-1, 10)/4*(-2.,5 139) e 9, 10 /
 DATA (A(I),I=5, 7)/2% (4. 1), 5.0/ :

' DATA B/5*0. 0/ }lfyp_:_ﬁ .

'Ihese statements drmensmn arrays AMASS A and B and preset elements as follows

ARRAY AMASS; -
fAMASS(G,l,S)Hfoz.;fJ“ A(5) # 4;11, o
'AMASS(6,2,3) ;*5;139;,ff3 A(6) = 4.1

 AMASS(6,3,3) = -2. A(7) 5;0 '

 AMASS(6,4,3) = 5.139 S

 AMASS(6,5,3) = -2. ARRAYB

. AMASS(6,6,3) = 5.139 ,

- AMASS(6,7,3) = -2. ,“;B(1)~% 0.0
 AMASS(6,8,3) - 5.139 B(2) - 0.0
 AMASS(6,9,3) = 6.9 ~ B(3) = 0.0

~ AMASS(6,10,3) = 10. B(4) = 0.0

‘ : STl ~ B(5) = 0.0
« Example s: S

Invahd - DATA (A(l), BI),1=1,3)1.,2.,3.,4.,5.,6/

; Example 6

2*(1 0 2 0 Means repeat the rea] constants 1.0 and 2.0 twice
e k, 2*((1 0 2 0)) Means repeat the complex constant (1 0 2 0) thce = ,

® 1622 . 60305600 G

Example 6 illustrates the use of repeat specifications with real and complex constants. When a repeat
specification is used with complex constants, it is necessary to ensure that the parantheses that are part
of the complex constant are not confused with the parentheses enclosing the constant list.

Example 7:
PROGRAM DATA C (OUTPUT,TAPE6=0UTPUT)
COMPLEX 2(3),21
RIAL A(4)
LOGICAL L
5 NAMELIST/ZOUT/IZL 9X9Z1yAyZ -
DATA IsLlyX9Z19Ap2/59¢ TRUEey3414159265369(2e15=3.1,2% (10924)y
1 3*((Le9=1.50/
WRITE(6,0UT)
STOP
10 END
$CUT
1 = 5,
Lo = Ty
X = .31415925535E+01)
21 = (L21E5019=a3E901)s
A= .1E0Ls L2£+01> .1E+01, .2E+01,
z = (L1E+019=215E+01)s (+1E+01ls=cIiSE+01)s (J1E+01s=o1SE+01)5
 SEND '
Example 8:

The following are examples of alternative (nonstandard) forms of the DATA statement:

DATA (X=3.),(Y¥=5.)

INTEGER ARAY(5)

DATA (A=7.),(B=200.),(ARAY=1,2,7,50,3)
- COMMON/BOX/ARAY4(3,4,5) ,
‘DATAk(ARAY4(1;3;5)=22.5) j f

~ The statements:

((POR(T,J),1-1,5).3-

60305600 G : [-6-23 ®

‘Inltlahze

o D3(1)

=N R

- D3(2)
- D3@) =
D3@4) =

~ and set the entire array POQ to zero.

When constants in a data list are enclosed in parentheses and preceded by an integer constant, the list is
~ ‘repeated the number of times indicated by the mteger constant. If the repeat constant is not an integer, a -
. “compller error message is pnnted : i o : o

® I-6-24 60305600 G

PROGRAMS, SUBPROGRAMS, AND PROCEDURES -7

A program unit consists of FORTRAN statements, with optional comments, terminated by an END statement.
A main program is a program unit that does not begin with a SUBROUTINE, FUNCTION, or BLOCK DATA
statement. A subprogram is a program unit that begins with a SUBROUTINE, FUNCTION, or BLOCK DATA
statement. An executable program contains one main program with or without subprograms. A program unit
containing no FORTRAN statements other than an END statement is considered a null program; it is diagnosed
and ignored.

A subprogram is defined separately and can be compiled independently of a main program. If the subprogram
begins with a SUBROUTINE or FUNCTION statement, it is a procedure subprogram and can exchange no,
one, or more values through a list of arguments, through common,or both. If the subprogram begins with a
BLOCK DATA statement, it is a specification subprogram.

A procedure is a procedure subprogram, statement function, intrinsic function, or basic extemnal function.
Intrinsic functions and basic extemal functions are FORTRAN supplied procedures and are available to any

programmer. Statement functions and procedure subprograms are supplied by the programmer.

The differences between function and subroutine specification and use are summarized in table 7-1.

Table 7-1. Differences Between a Function and Subroutine Subprogram

Function Subroutine
How Used The name appearing in an expression is A CALL statement is used as
used as the reference. the reference.
Arguments One or more arguments must be included. Arguments need not be present.
How Typed Name is typed implicitly by first letter No type is associated with the
or explicitly by the type designation name.
appearing before the word FUNCTION.

Functions return a single value through the function name. Function subprograms defined by the programmer
also can return values through a list of arguments, through common, or both.

Table 7-2 summarizes the terminology of the overlapping categories of procedures and subprograms.

60305600 G I-7-1

Table 7-2. Procedure and Subprogram Interrelationships
- Basic . .
Statement Intrinsic Function Subroutine Block Data
Function Function External Subprogram Subprogram Subprogram
. Function prog prog prog
Procedure yes yes yes yes yes no
External procedure | no no yes yes yes N/A
Subprogram no no no yes yes yes
Function yes yes yes yes no no
External function no no yes yes N/A N/A
Who defines user compiler | compiler user user user
Where defined within compiler library external to external to external to
program unit program unit | program unit | program unit
N/A = not applicable

Programmer written procedures (statement functions, function subprograms, and subroutine subprograms) are

discussed below as a group. FORTRAN supplied procedures (intrinsic functions and basic external functions)
are discussed in detail in section I-8. The only subprogram that is not a procedure is the block data sub-
program. Since it is not executable, it is discussed separately.

MAIN PROGRAMS

A main program can contain any FORTRAN statements except FUNCTION, SUBROUTINE, or BLOCK DATA;
it should have a PROGRAM statement, at least one executable statement, and an END statement. One main
program is required in any executable FORTRAN program unit.

PROGRAM STATEMENT FORMAT

7
PROGRAM name (fpar1,fpar2,. iy fparn)

name Must be a unique symbolic namek within the main program and cannot be used as a sub- ;,f
- progmmamame. | ‘
 fpay Thefparcanbeany of the following forms:

I-7-2 60305600 G

file File name (1-6 letters or digits beginning with a letter) for each I/O file required by the
main program or its subprograms; the maximum number of file names is 50.

file=n nf is a decimal number specifying the buffer length; default length is 2002 octal words.

file=/r r is the maximum length in characters for list directed, formatted, and NAMELIST
records; default length is 150 characters.

file=n/r n/r defines both buffer and record lengths.
file=filey, File, is made equivalent to previously defined filey,.

In a program structured for overlays, the fpar; parameter list is used only in the PROGRAM statement for
the main overlay. It is not used in primary and secondary overlay PROGRAM statements.

PROGRAM STATEMENT USAGE

The PROGRAM statement defines the program name that is used as the entry point name and the object
deck name for the loader. Optionally, the PROGRAM statement can declare files that are used in the pro-
gram and any subprograms that are called. If this statement is omitted from the main program, the program

is assumed to have the name START. and two files named INPUT'and OUTPUT

- All file names used in standard FORTRAN mput/output statements must be listed in the PROGRAM state~
- ment. File names referenced by direct call to CYBER Record Manager must not be listed in the PROGRAM
~ statement. If a file name is referenced in a standard FORTRAN input/output statement in a main program,
but is not specified in the PROGRAM statement, a warning diagnostic is issued at compile time. If a file
name is referenced in a standard FORTRAN input/output statement in a subprogram, but is not specified in
~the PROGRAM statement of the mam program, a diagnostic is issued when the file is used at execution time.

kk File names on the PROGRAM statement must satisfy the following conditions:

o The file name INPUT must be declared if a READ statement without a loglcal unit
number is included in the program.

e The file name OUTPUT must be declared if a PRINT statement without a loglcal unit
number is included in the program.

° The file name PUNCH must be declared if a PUNCH statement w1thout a loglcal unit
number is included in the program.

° The file name TAPEu (u is an integer constant 0-99) must be declared if any input/output
statement involving unit u appears in the program. At execution time, if u is a variable, there
must be a file name TAPEu for each value u may assume.

- FORTRAN I/0 routines add the characters TAPE as a prefix to the logical unit number to form the file S
- name. TAPE3 is theﬁ,leuname‘ assigned to logical unit 3 and TAPES is the file name assigned to logical

 program run under SCOPE 2.1

60305600 G I-7-3

unit 5 but TAPES ‘and TAPEO5 do not specify the same file name. If TAPEQS rs 'us'ed‘ it can bek accessed
e with FORTRAN I/O statements only by usmg the drsplay code file name in L format (Input/Output in
; ,sectron 1-9 contams detmls) , , ,

TAPEu refers to a ﬁle located on rotatmg mass storage unless specrfred otherwrse in the _]Ob deck before the
program is executed. The file is temporary unless made permanent by the user. ,

FORTRAN 1/O statements use the buffer areas established by the ﬁle name specrﬁed in the PROGRAM ,
statement. The buffer length can appear only with the first reference to the file in the PROGRAM statement.
A buffer length of zero should be specified for a file referenced by a BUFFER statement. Since buffered =
records are transmitted directly into and out of central memory, field length of the program is reduced by at k
least 2000 (octal) words for each file declared w1th zero buffer length in the PROGRAM statement

For files not referenced by BUFVFER statements, the yfollowrng values of n are suggested:T

~For terminals:’ ' ,n=number of words in the'largest record plus one.
l-"or‘ mass storage'k,:‘ n>64 I.arge records and sequentral readmg/wntmg execute faster wrth a larger k~ 7
; ~ buffer. i
For tap’e’s:"' ; Tage Forma s ’ Mrmmum Value of n o
k j‘;"’"SCOPE sr 1 x 18 formatted -

i 512 for unformatted

S ‘ 512 for formatted or unformatted

- l> maxrmum block length

~ Record length I, should be specrﬁed for ﬁles refereneed in llst—drrected 1nput/output statements When ﬁle =
‘names are made equ1valent the buffer length and recordk size specified apply to both files. i

Examples:
PROGRAM ORB (INPUT OUTPUT -1000 TAPE1 INPUTTAPE2 OUTPUT TAPE4—1000/2000)
% All 1nput/output statements that reference TAPE] reference INPUT mstead and all lrstable output normally
recorded on TAPE2 is transmitted to the file named OUTPUT. TAPE4 has a buffer length of 1000 words
with a- maxrmum of 2000 characters per record.

PROGRAM JIM(INPUT TAPE19 -INPUT)

- . TAPE19= INPUT must be preceded in the same statement by INPUT (or lNPUT—buffer length) TAPE19
o becomes the name for the file INPUT.

~ ¥Does not apply to SCOPE 2.1.

I-7-4 60305600 G

PROGRAM SAMPLE (INPUT,OUTPUT,TAPES5=INPUT,TAPE6=0UTPUT)

READ(5,100)A,B,C This statement reads from logical unit 5; it is declared in the
100 FORMAT (3F7.3) PROGRAM statement as TAPES5 which is equivalent to INPUT.

WRITE(6,200)A,B,C Logical unit 6 is declared as TAPE6 in the PROGRAM state-
200 FORMAT (1H1,3F7.3) ment and equivalent to OUTPUT.

BLOCK DATA SUBPROGRAM

7
l BLOCK DATA

7
BLOCK DATA name

name identifies the BLOCK DATA subprogram if more than one is compiled.

The block data subprogram is a nonexecutable specification subprogram that can be used to enter data into
labeled or numbered common (but not blank common) prior to program execution. The name BLKDAT. is
assigned to the block data subprogram if it is not named by the user.

The block data subprogram contains only IMPLICIT, LEVEL, type, DIMENSION, COMMON, EQUIVALENCE,
DATA, and END statements. Any executable statements are ignored and a warning is issued. All DATA
statements must follow the specification statements. Data can be entered into more than one block of

common in a block data program.
Example:

BLOCK DATA ANAME
COMMON/CAT.X,Y,Z/DEF/R,S,T
COMPLEX X,Y

DATA X,Y/2*((1.0,2.7))/,R/7.6543/
END

Z is in block CAT and S and T are in DEF, although no initial data values are defined for them.

60305600 G I-7-5 e

PROCEDURES

The category of procedure to be used is determined by its particular capabilities and the needs of the program
being written. If the program requires the evaluation of a standard mathematical function, a FORTRAN
supplied intrinsic function or a basic external function can be used. If a single computation is needed
repeatedly, a user-written statement function is included in the program. If a number of statements are
required to obtain a single result, a function subprogram is written. If a number of calculations are required
to obtain several values, a subroutine is written.

Each procedure discussion contains a definition, description, and examples. Procedure Communication (later
in this section) contains details on how to use procedures and how procedures use arguments or common to
communicate.

SUBROUTINE SUBPROGRAMS

7
SUBROUTINE name (p1 Pys---ibp)

7
| SUBROUTINE name
- |
|
l;,
: S,U‘BRQL{TVINE "name,’ (p, pz /P) RETURNS (b1, 2';",‘,'bm) :
5 ; :
1 : L
] SUBROUTINE name RETURNS (b1, 2 ,.;..‘,bfm~); e
P i
1
name Symbolic name of the subroutine.

P1s---sPp Dummy arguments that must agree in order, number, type, and LEVEL with the actual
arguments passed to the subprogram at execution time. S
by, ..,b_ Dummy statement label arguments that must agree in order, number, and LEVEL w1th the’"‘,
e a actual statement labels passed to the subroutme at executlon tlme Co ~

 The argument lists are optional and limited to a maximum of 63 parameters.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A sub-
routine subprogram must not directly or indirectly call itself. The subroutine subprogram communicates with
the calling program unit through a list of arguments passed with the CALL statement or through common.
Calling a Subroutine Subprogram later in this section contains more CALL statement -details.

I-7-6 - 60305600 G

The SUBROUTINE statement contains the symbolic name that is used as the main entry point of the sub-
program. (The ENTRY statement specifies an alternate entry point in the subprogram.) The subprogram name -
is not used to return results to the calling program, does not determine the type, and must not appear in any
other statement in the same subprogram.

Subroutine subprograms can contain any statements except PROGRAM, BLOCK DATA, FUNCTION, or
another SUBROUTINE statement. They begin with a SUBROUTINE statement, should have at least one
RETURN statement, and end with an END statement. If control flows into the END statement, then a
RETURN is implied. Control is returned to the calling program when a RETURN, RETURN i or END is
encountered.

Dummy arguments which represent array names must be dimensioned within the subprogram by a DIMENSION
or type statement. If an array name without subscripts is used as an actual argument in a CALL statement
and the corresponding dummy argument is not declared an array in the subprogram, the first element of the
array is used in the subprogram. Adjustable dimensions are permitted in subroutine subprograms (details are
given later in this section under Using Arrays).

The RETURNS list allows control to be returned to the calling program somewhere other than at the
executable statement immediately following the CALL statement. The CALL statement specifies actual
statement labels to replace the dummy statement label arguments in the RETURNS list. The actual statement
labels must correspond in order and number with the dummy statement label arguments. The

dummy statement label argument i is the statement to which control transfers when RETURN i is executed.

The RETURN sta‘temenkt in section 1-5 and the CALL statement in this section give further details.

Example 1:
Calling Program Subprogram
SUBROUTINE ERROR1
WRITE (6,1)
1 FORMAT (5X,*NUMBER IS OUT OF RANGE*)
IF (A-B) 10,20,20 RETURN
10 CALL ERROR1 END

20 RESULT=(A*CAT) +375.2-ZERO

The subroutine ERRORI is called and executed if A-B is less than zero. Control returns to
statement 20. This example also illustrates that arguments need not be used.

60305600 G I-7-7

~ XRETURNS (5,10)

.

5 B=SQRT(A*C)
10 CALL PGM2 (D,E)

N

~ CALL PGM1(A,B,C),

.20
.25
S 30
35

 Subprogram

SUBROUTINE PGMI(X Y, Z),
XRETURNS (M, N)

U=X**Y
CX=Z+X*Y ,

IF (u+x),25 30, 35 : L

RETURN M Return is to statement 5 in callmg progrdm =
'RETURN N ~Return is to statement 10 in calling program
Z=Z+(X*Y) e ,
RETURN ‘ Return"is to statement folloWing CALL PGMl &

END

ThlS example ﬂlustrates the use of the RETURNS hst as well as the use of the normal

~RETURN statement.

FUNCTION SUBPROGRAM

7

FUNCTION name (p1,...,pn)

type FUNCTION name (p1 P N

name Symbolic name of the subprogram.

P{>---5Pp Dummy arguments that should agree in order, number, and type with the actual argu-
ments in the calling program. At least one argument is required; a maximum of 63 is
allowed.

type The type may be REAL, INTEGER, DOUBLE, DOUBLE PRECISION, COMPLEX, or
LOGICAL.

A function subprogram performs a set of calculations when its name appears in an arithmetic, logical, or
‘masking expression in a referencing program unit. Execution of the function subprogram must result in a
single value being defined for the function name. A function subprogram can modify the value of one
or more of its arguments or store data in common.

1-7-8

60305600 G

Dummy arguments which represent array names must be dimensioned within the subprogram by a DIMENSION
or type statement. If an array name without subscripts is used as an actual argument in the function reference
and the corresponding dummy argument has not been declared an array in the subprogram, the first element
of the array is used in the subprogram. Adjustable dimensions are permitted in function subprograms (details
are given in Using Arrays later in this section).

The FUNCTION statement contains the subprogram symbolic name that is used as the entry point when the
function is referenced. (See Referencing a Function later in this section for more details.) The function
name must not appear in any nonexecutable statements other than the FUNCTION statement in the sub-
program. The type of the function name must be the same in the referencing program and the referenced
function subprogram. When type is omitted, the type of the function result is determined by the first
character of the function name.

The function subprogram can contain any statements except PROGRAM, BLOCK DATA, SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly references the function being
defined. The function subprogram begins with a FUNCTION statement, should have at least one RETURN
statement, and has an END statement that is treated as a RETURN if executed. Control is retumed to the
referencing program when either a RETURN or END is encountered. A RETURN i in a function subprogram
causes a fatal error at compilation time.

A function subprogram can have the same name as that of an intrinsic or basic external function supplied by
FORTRAN. Section I-8 defines the conditions under which programmer supplied routines override the
FORTRAN supplied routines. '

Example:
Calling Program Subprogram

DIMENSION ARY (5,5) FUNCTION DIAG (A,N)
. ‘ DIMENSION A(5,5)
. DIAG=A(1,1)
. DO 70 I=1,N

10 RES=DIAG(ARY,5)**2 70 DIAG=DIAG*A(I,I)
. RETURN
. END

The statement labeled 10 contains the reference to function DIAG. The statement labeled 70 sets the
function name to a value. At the end of the function subprogram execution, RES will have the value of
DIAG squared.

BASIC EXTERNAL FUNCTION

A basic external function is a predefined procedure included with the system. Section I-8 contains further
details.

60305600 G ‘ I-7-9 e

INTRINSIC FUNCTION

An intrinsic function is a compiler-defined procedure that is inserted in the referencing program at compile
time. Section I-8 contains further details.

STATEMENT FUNCTION

7
Ir name (p1 PPz, pn) = expression
|
|
name Type of the function is determined by the type of the function name.

P{»--->Pp Dummy arguments must be simple variable names. At least one argument is requirg_zd; a
‘maximum of 63 is allowed. These arguments should agree in order, number, type, and
‘LEVEL with the actual arguments used in the function reference.

expression Any arithmetic, masking, relational, or logical expression may be used. It may contain
references to intrinsic or basic external functions, statement functions, or function sub-
programs. Names in the expression that do not represent arguments are normal variables
having the same value as they have outside the function.

A statement function is a user-defined, single-statement computation and applies only to the program unit
containing the definition. Since the statement function only defines the function, the value is computed
when the function is referenced and the actual arguments are substituted for the dummy arguments in the
definition.

During compilation, the statement function definition is retained by the compiler. Whenever the function is
referenced, instructions are generated in-line to evaluate the function (as opposed to FUNCTION subprograms
for which an external procedure is used at each reference). The expansion of a statement function is the same
as writing the expression in place of the reference. Thus the statement function does not reduce execution
speed or efficiency.

Statement function names must not appear in DIMENSION, EQUIVALENCE, COMMON or EXTERNAL
statements; they can appear in a type declaration but cannot be dimensioned. Statement function names
must not appear as actual or dummy arguments. If the function name is type logical, the expression must
be logical. For other types, if the function names and expression differ, conversion is performed as part of
the function.

A statement function must precede the first executable statement and it must follow all specification state-
ments. A statement function must not reference itself either directly or indirectly.

e I-7-10 60305600 G

Examples:

Statement Function Definitions Statement Function References

ADD(X,Y,C,D)=X+Y+C+D RES1=GROSS-ADD(TAX,FICA,INS,RES3)

AVERGE(O,P,Q,R)=(0+P+Q+R)/4 GRADE=AVERGE(TEST1,TEST2,TEST3,
TEST4)+MID

LOGICAL A,B,EQV

EQV(A,B)=(A.AND.B).OR. TEST=EQV(MAX,MIN).AND.ZED
(.NOT.A.AND..NOT.B)

COMPLEX Z RESULT=(Z(BETZ,GAMMA (I+K))**2-1.)

Z(X,Y)=(1.,0.)*EXP(X)*COS(Y) /SQRT (TWOPIE)

+(0.,1.)*EXP(X)*SIN(Y)
Example 1:

The statement function can be used to substitute a FORTRAN supplied function name in a program con-
taining an alternate name for this function.

SINF(X)=SIN(X) Statement function definition.

.
.

A=SINF(3.0+B)+7. Statement function reference.
The above sequence generates exactly the same object code as:
A=SIN(3.0+B)+7.
Example 2:

To compute one root of the quadratic equation ax2+bx+c=0, given values of a, b and c, an arithmetic
statement function can be defined as follows:

ROOT (A,B,C)=(-B+SQRT(B*B-4.*A*C))/(2.0%A)

When the function is used in an expression, actual arguments are substituted for the dummy arguments
A, B, C.

RESA = ROOT (6.5,7.,1.)
is equivalent to writing:

RESA = (-7.+SQRT(7.*7.-4.0*6.5%*1.0))/(2.0%6.5)

Wherever the statement function ROOT (A, B, C) is referenced, the definition of that function — in this
case (-B+SQRT(B*B—4.*A*C))/(2.*A) — is evaluated using the current values of the arguments A, B, C.

60305600 G I-7-11 ®

PROCEDURE COMMUNICATION

The procedures defined by a statement function or a procedure subprogram are executed when they are
referenced in a program unit.

PASSING VALUES TO A PROCEDURE

Values can be passed between a calling program unit and a procedure as actual arguments in an argument
list or through common. Arrays with adjustable dimensions can be used to pass values of arguments.
Arguments ‘passed to a procedure must agree with the procedure definition in order, number, type, length,
-E[and memory resndence (See LEVEL in section 16)

-USING ARGUMENTS

Arguments used for communication between procedures are either actual or dummy (formal). The arguments
appearing in a subroutine CALL statement or a function reference are the actual arguments The corre-
kspondmg dummy arguments appear in the SUBROUTINE or FUNCTION statement. If a RETURNS list. 1s g
f‘used the actual statement label arguments appear in the CALL statement and the dummy statement label
‘;Jarguments appear in the SUBROUTINE and RETURN statements.

The actual arguments (such as constants, arithmetic expressions, logical expressions, variables, and array
names) allowed for a particular procedure are given in the discussion of the procedure reference.

Dummy arguments are used as variable, array or external procedure subprogram names within the subprogram
and can be used to return values to the calling program. The dummy arguments are replaced by the actual
arguments when the procedure is executed. Since all names are local to the program unit containing them,
the same dummy argument name can be used in more than one program unit. A dummy argument must
not appear in COMMON, EQUIVALENCE, or DATA statements within a program unit.

Dummy arguments representing array names must appear within the subprogram in a DIMENSION or type
statement giving dimension information. If dummy arguments are not dimensioned, they cannot be referenced
as an array in a subprogram.

In a subprogram, the definition of a dummy argument that is associated with a constant actual argument or

an entity in a common block in the same subprogram is prohibited. If a subprogram reference causes two
dummy arguments to be associated, the definition of either in the referenced subprogram is prohibited.

® I.7-12 60305600 G

Example 1:

Calling Program Subprogram

FUNCTION GRATER(A,B)
IF (A.GT.B)1,2
1 GRATER=A-B
RETURN
2 GRATER=A+B
RETURN
END

W(I,J)=FA+FB-GRATER(C-D,3*AX/BX)

This example shows the normal use of arguments in a function subprogram. The actual argument C-D is
used in place of the dummy argument A and 3*AX/BX is substituted for dummy argument B when the

function subprogram is executed.

Example 2:

SUBROUTINE SUBA(R)
IF (RNEOOR = 0

CALL SUBA(1.5)

This example contains a prohibited definition of a dummy argument, R, which is associated with a con-
stant actual argument.

Example 3:

CALL SUBB (X, X) SUBROUTINE SUBB (A, B)

A=Y
z B

This example contains a prohibited definition of a dummy argument, A, which has been previously
associated with another dummy argument, B, in the referencing program unit.

Example 4:
COMMON X SUBROUTINE SUBC (B)
CALL SUBC (X) COMMON A

A =Y
Z = B

This example contains a prohibited definition of a dummy argument, B, which is associated with an entity
in common, A, in the same subprogram.

60305600 G [-7-13

USING COMMON

Common can be used to transfer values between a calling program unit and a subprogram. Passing values
through common is more efficient than passing values through arguments in a CALL statement or function reference.

The definition of a dummy argument in a subprogram that is associated with an entity in a common block
in the same subprogram is prohibited.

Example:

PROGRAM .CMN (INPUTsOUTPUT)
COMMON NED (10) |
READ 3sNED

3 FORMAT (1013)
CALL: JAVG
STOP
END
SUBROUTINE JAVG

C THIS SUBROUTINE COMPUTES THE AVERAGE OF THE FIRST 10 ELEMENTS IN

C COMMON
COMMON N(10)
ISTORE = 0
DO 1 I '=1s10
1 ISTORE = ISTORE ¢ N(I)
ISTORE = ISTORE/10

PRINT 2»ISTORE
2 FORMAT (®1AVERAGE = #5110)
RETURN
END
AVERAGE = 45

The array NED in program CMN and the array N in subroutine JAVG share the same locations in common.
NED(1) shares the same location with N(1), NED(2) with N(2), etc. The values read into locations
NED(1) through NED(10) are available to subroutine JAVG. JAVG computes and prints the average of
these values.

USING ARRAYS

The array dimensions in a subprogram must be the same as those in the calling routine if the subscripts are
to agree between the called and calling program units. If a dummy argument is not dimensioned, it cannot

be referenced as an array in the subprogram.

If any of the entries in a subscript of a type or DIMENSION statement is an integer variable name, the
array is called an adjustable array. The variable names are called adjustable dimensions. Such an array
can only appear in a procedure subprogram. The dummy argument list of the subprogram must contain
the array name and the integer variable names that represent the adjustable dimensions. The values of the
actual arguments that represent array dimensions in the argument list of the reference must be defined
prior to calling the subprogram and cannot be redefined during execution of the subprogram. The absolute

I-7-14 60305600 G

size of the actual array may not be exceeded. For every array appearing in an executable program, there
must be at least one constant array dimension associated through subprogram references.

In a subprogram, an array name that appears in a COMMON statement must have fixed dimension
specifications.

REFERENCING A FUNCTION

A function is referenced when the name appears in an expression. A function must not directly or indirectly
reference itself. The reference can appear anywhere in an expression that an operand can be used.

When a statement function or intrinsic function is referenced, instructions are generated in-line to evaluate the
function. The value is computed with the actual arguments substituted for the dummy arguments in the
definition.

When a function subprogram or a basic external function is referenced, control is transferred to the function
subprogram and the values of the actual arguments are substituted for the dummy arguments. Control is
returned to the referencing program unit when a RETURN is encountered.

Actual arguments in a function subprogram reference may be an arithmetic or logical expression, constant
(including Hollerith), variable, array name, array element name, subroutine subprogram name, external
function name (not intrinsic function or statement function), or function reference (the function reference
is a special case of an arithmetic expression).

. Example:

Calling Program : Function Subprogram
Z=A+B-JOE(3.*P,Q-1) FUNCTION JOE(X,Y)
. ' 10 JOE=X+Y

. ‘ ' RETURN

. ENTRY JAM
R=5+JAM(Q,2.5*P) IF(X.GT.Y)10,20

. 20 JOE=X-Y

. RETURN
. ; V : END

Function 'subprogram JOE is executed as a result of its name appeanngm another program unit.

60305600 G I-7-15 ®

CALLING A SUBROUTINE SUBPROGRAM

CALL name

CALL name (p,,...,p,)

m

CALL name (p,,...,p,), RETURNS (b, ,...,b)

CALL name, RETURNS (b, ,...,b)

name Name of subroutine called.

Pps---5Ppy Actual arguments which must correspond in order, number, type,fénd.LEVEL: w1th
those specified in the SUBROUTINE statement.

3 Actual statement labels in the callmg program umt that correspond in order and number
with the dummy statement label arguments in the SUBROUTINE statement. This
spec1ﬁcat10n can be. omltted if control returns to the statement 1mmedrately followrng
the CALL statement. :

- The total ,number of,,ar’gument‘s must not exceed 63.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. The CALL
statement transfers control to the subroutine and either a RETURN or a RETURN i in the subroutine returns
control to the calling program unit. If a RETURN is encountered, control is transferred to the first executable
statement following the CALL statement. If RETURN i is encountered, control is transferred to the statement

‘corresponding to i in the RETURNS list. (The RETURN statement in section I-5 and Subroutine Subprogram

in this section contain further details on the RETURNS list.)

The CALL statement can contain actual arguments and statement labels. They must correspond in order,
number, type, and memory level to those in the subroutine subprogram definition.

_The name in the CALL statement can be an alternate entry point in a subroutine subprogram, as specified in
an ENTRY statement (described later in this section), or a subroutine name. The subroutine name must not

appear in any specification statement in the calhng program except an EXTERNAL statement.

Actual arguments in a subroutine subprogram call can be any of the following: arithmetic or logical
expression, constant, variable, array name, array element name, subroutine subprogram name, basic extermnal

1-7-16 60305600 G

function name (not an intrinsic or statement function name), function reference (the function reference is a
special case of an arithmetic expression).

Example 1:

Calling Program Subprogram
DO S5 I =1,20 SUBROUTINE GRATER (A,B)
. IF (A.GT.B) 1,2
. 1 B=A-B

5 CALL GRATER (STACK(I),TEMP(I)) RETURN
. 2B =A+B
. RETURN

END

The subroutine subprogram GRATER is called 20 times since the CALL statement as the last statement in
a DO loop causes looping to continue until the DO loop terminal parameter, 20, is satisfied.

Example 2:
Calling Program o Subroutine Subprogram
PROGRAM MAIN(INPUT,OUTPUT) '
10 CALL XCOMP(A,B,C), a SUBROUTINE XCOMP (B1,B2,G),
 XRETURNS(101,102,103,104) XRETURNS (Al,A2,A3,A4)
e isj~, : T B IF(B1*B2-4.159)10,20,30
o £ R 10 CONTINUE
101 CONTINUE) e .
. ‘ : RETURN A1 Return to 101
GO TO 10 , ‘ 20 CONTINUE '
102 CONTINUE : Lo

. . . s i .

RETURN Az ;'1j] Return to 102
CONTINUE S

GO TO 10
103 CONTINUE

e Sl TR (B1)40,50 e
. gTO0 . 40 RETURN A3 Retrn 10103
104 CONTINUE = e i n o - 50 RETURN A4 ~ Return to 104
**ENna*“.x‘ ~~i,'”7°];iJ*:gafvtﬁ;g o '_END{ i e

’uyﬂw SUBROUTINE ﬂawnw

The values of A B and C in ‘the CALL statement replace Bl B2 and (
s in- and 104 replace Al, A2

nfthe*subprogram XCOMP.. Statement numbers 101 102>, 1
the subprogram and RETURN 1 statements ‘

60305600 G I-7-17 e

'USING THE ENTRY STATEMENT

7
ENTRY name

name is an entry point in a procedure subprogram.

The ENTRY statement defines an altemate entry point, which is other than the first executable statement, in

a procedure subprogram. The ENTRY statement can appear anywhere an executable statement can appear in
the subprogram except within the range of a DO where' it is ignored and a waming diagnostic is issued. A
procedure subprogram can contain any number of ENTRY statements. The first executable statement following
ENTRY becomes the alternate entry point to the subprogram. ENTRY statements cannot be labeled and

cause a fatal-to-execution error in a -main program unit.

In the subprogram, the entry name can appear only in the ENTRY statement and each name must appear
in a separate statement. A function entry name must be the same type as the name in the FUNCTION
statement, and it must be umque w1thm the program

In the calling ‘program, the reference to ‘the entry name“ns‘ made just as if reference were being made to :
“the function subprogram or subroutine subprogram in which the entry name is contained. The name can appear -

in an EXTERNAL statement, and lf 1t is a functlon subprogram entry name in a type statement

The dummy arguments if any, appearmg w1th the FUNCTION statement or SUBROUTINE statement do not
~ appear w1th the ENTRY statement, but are assumed to ‘be the same as for the ‘main entry pomt

In a function subprogram, the value of the functlon is the last value ass1gned to the ‘name of the functron
regardless of which ENTRY statement was used to enter the subprogram The functlon name is used to
retum results to the calhng program even though the reference was through an entry name ‘

, Example 1:

Calling Program e Subroutine Subprogram
COMMON SET1 (25) .~ SUBROUTINE CLEAR (ARAY)
o ; - DIMENSION ARAY (25) S
. G ,‘ uo 100 I = 1,25= Main entry point
CALL CLEAR (SET1) 100 ARAY (I) = 0.0 : :
. , o ENTRY FILL
. L 3 READ 2, VALUE, IPLACE<——— Alternate entry point
. ‘ i 2 FORMAT (10X, F7.2, I4)
CALL FILL (SET1) ARAY (IPLACE) = VALUE

Fs . IF (IPLACE .GT. 24) RETURN
. 0T B T '

e END

1-7-18 60305600 G

At some point in the calling program, a call is made to the subroutine: CALL CLEAR (SET1). The
array SETI is set to zero and values are read into the array. Later in the program, a call is made again
to the subroutine CLEAR; but this time it is entered at the entry point FILL. When FILL is called,
further values are read into the array SET1 without first setting the array to zero.

Example 2:

Calling Program Subprogram

RESULT=FSHUN(X,Y,Z) FUNCTION FSHUN(A,B,C)
RES2-FRED(R,S,T) 3 FSHUN=A*B/C**2

RETURN

ENTRY FRED

IF(A .LE. 702.) GO TO 3

FSHUN=(C+A)/B

RETURN

END

When the FUNCTION FSHUN is entered at the beginning of the function, or through the ENTRY FRED,
the result will be returned to the calling program through the function name FSHUN.

.Example 3:
FUNCTION CAT(A,B)

 DOG=10.+3.2
~ENTRY'DOG

~ The ENTRY name DOG is not valid because it has been used as a variable.

60305600 G I-7-19 e

FORTRAN EXTENDED SUPPLIED PROCEDURES -8

FORTRAN Extended provides certain procedures that are of general utility or difficult to express in FOR-
TRAN; they are referenced in the same way as user-written procedures. The three classes of FORTRAN
Extended supplied procedures are: intrinsic functions, basic external functions, and utility subprograms.

INTRINSIC FUNCTIONS

An intrinsic function is a compiler-defined procedure that returns a single value. It is inserted in the ref-
erencing program at compile time. The form of the intrinsic function reference is the same as the statement
function reference outlined in section I-7.

When a variable, array, or statement function is defined with the same name as that of an intrinsic function,
the user-supplied definition prevails.

When a function subprogram is defined with the same name as that of an intrinsic function, the user definition
prevails only if, in the calling program unit, the name of the function appears either in an EXTERNAL state-
ment or in an explicit type statement that changes the type associated with the intrinsic function.

In a calling program unit, if the name of an intrinsic function appears either in an EXTERNAL statement or
in an explicit type statement that changes the type associated with the function, the user must supply a func-
tion subprogram with the name of that function.

Table 8-1 lists the intrinsic functions prbvided by FORTRAN Extended. The results of functions with the

type listed as no mode assume the type of the expression in which they are used, unless that type is logical
(in which case the function result remains typeless).

60305600 G [-8-1

(43!

D 00950£09

Table 8-1. Intrinsic Functions

Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
Absolute 1Al 1 ABS Real Real Y=ABS({X)
Value IABS Integer Integer J=1ABS(l) ,
DABS Double Double DOUBLE A,B
B=DABS(A)
Truncation Sign of A times 1 AINT Real Real Y=AINT(X)
largest integer < | A INT Real Integer C1=INT(X)
for [A| < 2481 IDINT Double Integer 'DOUBLEZ
J=IDINT(Z)
Remainder- A1 (mod A2) 2 AMOD Real Real B=AMOD(A1,A2)
ing T MOD Tt Integer Integer J=MOD(11,12})
(see note)
Choosing Max(A1, 2 - 63 AMAX0 Integer Real X=AMAXO0(1,J,K)
largest A2,...) AMAX1 Real Real A=AMAX1(X,Y,Z)
value MAXO0 Integer Integer L=MAXO0(l,J,K,N})
MAX1 Real Integer 1=MAX1(A,B)
DMAX1 Double Double DOUBLEW,XX.Y,Z
W=DMAX1(X,Y,Z)
Choosing Min(A1, 2 -63 AMINO Integer Real Y=AMINO(I,J)
smallest value A2,...) AMIN1 Real Real Z=AMIN1(X,Y)
MINO Integer Integer L=MINO(I,J)
MIN1 Real Integer J=MIN1(X,Y}
DMIN1 Double Double "DOUBLEABC
C=DMIN1(A,B)
Float Conversion 1 FLOAT Integer Real X1=FLOAT (1)
from integer
to real

+ MOD or AMOD (a,b) is defined as a-[a/b]b, where [X] is the largest integer that does not exceed the magnitude of X with sign the same
as X. The results are not defined when the second argument is zero.

T+ The arguments of MOD must each be less than or equal to 247 _1,

D 00950€£09

€81

Table 8-1. Intrinsic Functions (‘Continued)

complement of A

L

Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
Fix Conversion from 1 IFIX Real Integer 1Y=IFIX{Y)
real to integer
Same as INT
Transfer Sign of A2TT 2 SIGN Real Real Z2=SIGN(X,Y)
of Sign with 1A1] ISIGN Integer Integer J=ISIGN(I1,12)
DSIGN Double Double DOUBLE X,Y.,2
Z=DSIGN(X,Y)
Positive If A1>A2 then 2 DIM Real Real A=DIM(C,D)
Difference A1-A2. If A1l IDIM Integer Integer J=IDIM(11,12)
<A2 then 0.
Logical Bit-by-bit 2 - 63 AND any type T no mode A=AND(X,Y,Z)
Product logical AND of
A1 through A,
Logical Bit-by-bit 2 -63 OR any type ¥ no mode A=0R(X,Y,Z)
Sum logical OR of
A, through A |
~ Exclusive OR Bit-by-bit 2 - 63 XOR any type 1 no mode A=XOR(X,Y,Z)
o Exclusive OR of '
A, through A,
Complement Bit-by-bit Boolean 1 COMPL any type no mode B=COMPL(A)

For a double precision or complex argument, only the high order or real part is used.
For functions SIGN, ISIGN, and DSIGN, the sign of the second argument is defined as positive when the value of that argument is +0
and negative when the value is -0.

81

4 00950€09

Table 8-1. Intrinsic Functions (Continued)

Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
- Shift Shift A1, A2 2 SHIFT ‘Al:anytypett | nomode B=SHIFT(A,I)
L ey bit positions: ' e e B L o
left circular if ~ A2:integer
‘A2 is positive; : :
right with sign
extension, and
end off if A2is
negative. :
0<|A2|<60t |
~ Mask Form mask of 1 MASK | Integer no mode A=MASK (1)
S A1 bitssetto 1 Lk el : o
starting at the
left of the word.
L o 0<A1<60T i S :
Obtain Most 1 SNGL Double Real DOUBLEY
Significant X=SNGL(Y)
Part of Double
Precision
Argument
Obtain Real 1 REAL Complex Real COMPLEX A
Part of Complex B=REAL(A)
Argument

TMASK and SHIFT are undefined for arguments outside these bounds.

Tt For a double precision or complex argument, only the most significant or real part is used.

4 00950€09

&8l

Table 8-1. Intrinsic Functions (Continued)
Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example

Obtain Imagi- 1 AIMAG Complex Real COMPLEX A
nary Part of D=AIMAG(A)
Complex
Argument
Express Single 1 DBLE Real Double DOUBLE Y
Precision Argu- Y=DBLE(X)
ment in Double
Precision Form
Express Two A1+A2i 2 CMPLX Real Complex COMPLEX C
Real Arguments (where i%= -1) C=CMPLX(A1,A2)
In Complex
Form
Obtain Conju- a-bi 1 CONJG Complex Complex COMPLEX X,Y
gate of a Com- {(where A=atbi) Y=CONJG(X)
plex Argument
Random Num- Returns values 1 RANF . any type Real Y=RANF(A)
ber Generator uynifon‘*mly distri-

buted over the

range (0,1);

dummy argument

is ignored.
Obtain address Argument is 1 LOCF any type Integer J=LOCF(Q)
of a variable, the name of a
array element, variable, array

~or entry point element, or
of external external sub-
subprogram program

BASIC EXTERNAL FUNCTIONS

A basic external function is a predefined procedure included with the FORTRAN Common Library. These
procedures are used to evaluate standard mathematical functions such as sine, cosine, square root, etc. A
basic external function is referenced by the appearance of the function name with appropriate arguments in
an expression.

A basic external function ordinarily is called by value; however, it is called by name if, in the calling program
unit, the name of the function appears either in an EXTERNAL statement or in an explicit type statement
that overrides the type associated with the function, or if option T, D, or OPT=0 is specified on the FTN
control card. (Section III-10 contains a description of Call By Value and Call By Name.)

When a variable, array, or statement function is defined with the same name as that of a basic external func-
tion, the user definition overrides the system definition.

When a FUNCTION subprogram is defined with the same name as that of a basic external function, the user
definition overrides the library definition only if, in the calling program unit, the name of the function appears
either in an EXTERNAL statement or in an explicit type statement that overrides the type assocmted with

the library function, or if option T, D, or OPT=0 is specified on the FTN control card.

Table 8-2 lists the basic external functions.

Arguments for which a result is not mathematically defined, or those of a type other than that specified,
should not be used. Arguments of the trigonometric functions are in radians, and the inverse trigonometric
functions return principal values.

If the name of the function appears either in an EXTERNAL statement or in an explicit type statement that
overrides the type associated with the library function, or if option T, D, or OPT=0 is specified on the FTN
control card, the arguments of all external functions are checked to ensure that they are neither indefinite

nor infinite and fall within the limits listed in the Definition column of table 8-1. Argument checking is pro-
vided unconditionally for the following functions: EXP, ALOG, ALOGI10, SIN, COS, SQRT, ATAN, ATAN2,
ASIN, ACOS, CABS, SINH, and COSH. An informative diagnostic is provided when an argument is found to
be invalid.

1-8-6 60305600 G

D 00950£09

L-81

Table 8-2. Basic External Functions

Basic External Number of | Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
Exponential eA 1 EXP Real Real Z=EXP{Y)
-675.84<A<741.67 1 DEXP Double Double DOUBLE XY
Y=DEXP(X)
e (X+Y) 1 CEXP Complex Complex COMPLEX A,B
-675.84<X<741.67 B=CEXP(A)
Y K x 246
Natural log, (A) 1 ALOG Real Real Z=ALOG(Y)
Logarithm A>0 1 DLOG Double Double DOUBLE X,Y
Y=DLOG(X)
log, (X+iY) 1 cLoGt Complex Complex COMPLEX A B
X2+Y2#£0 B=CLOG(A)
Common logqo(A) 1 ALOG10 Real Real B=ALOG10(A)
Logarithm "A>0 DLOG10 Double Double DOUBLED,E
E=DLOG10(D)
Trigono- sin(A) 1 SIN Real Real Y=SIN(X)
metric | Ak x 246 1 DSIN Double Double DOUBLE D,E
Sine E=DSIN(D)
sin{X+iY) 1 CSIN Complex Complex COMPLEX CC,F
[X|<m x 246 CC=CSIN(F)
lYI<741.67
Trigono- cos{A) 1 CoSs Real Real X=COS(Y)
metric [AI<n x 246 1 DCOS Double Double DOUBLE D,E
Cosine E=DCOS(D)
cos(X+iY) 1 CCOs Complex Complex COMPLEX CC,F
IX|<m x 246 CC=CCQOS(F)
1YI<741.67
Hyperbolic tanh(A) 1 TANH Real Real B=TANH(A)
Tangent |AI<741.67
~ Hyperbolic - sinh(A) 1 SINH Real Real B=SINH(A)
S | IAI<74167
cosh(A) 1: COSH Real Real B=COSH(A)
|A|<741.67

+CLOG returns values with imaginary parts in the range (-7,m]. For x<0, therefore, CLOG(x+i0) returns an imaginary part with a value =+m;

CLOG(x+i0") returns an imaginary part with a value ~+m; and CLOG (x-i0") returns an imaginary part with a value ~-.

Table 8-2. Basic External Functions (Continued)

881

Basic External Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example
Square (A)112 1 SQRT Real Real Y=SQRT(X)
Root A>0 1 DSQRT Double Double DOUBLE D,E
E=DSQRT(D)
1 csarTf Complex Complex COMPLEX CC,F
CC=CSQRT(F)
Arctangent arctan (A) 1 ATANTT Real Real Y=ATAN(X)
1 DATANTT Double Double DOUBLE D,E
E=DATAN(D)
arctan (A1/A2) 2 ATAN2TTT Real Real B=ATAN2(A1,A2)
A12+A22#0 2 DATAN2TTT | Double Double DOUBLE D,D1,D2
D=DATAN2(D1,D2)
Remaindering A1 {mod A2) 2 DMOD ¢ Double Double DOUBLE DM,D1,D2
DM=DMOD(D1,D2)
Modulus VaZ+b2 1 CABS Complex Real COMPLEX C
A=atbi CM=CABS(C)
- Arccosine arccos (A) - 1 | Acosg "Rt‘e’a(Real X=ACOS(Y)
~ Arcsine arcsin (A) i ASINEEE | Real “Real X=ASIN(Y)
e [AIK b dednoaan e ‘
~ Trigonometric | tan (A) f1 TAN | Real Real X=TAN(Y)
Tangent IAI<T x 246 s G

D 00950€09

TCSQRT returns values in the right half plane.
++ATAN and DATAN return values in the range (-1,-;—").
T1TATAN2 and DATAN2 return values in the range ?—n’,n]. For x < 0, therefore, ATAN2(0,x) returns a value = + m; ATAN2(0% x)
returns a value = + 7; and ATAN2(0",x) returns a value =~ - 7.
£ The function DMOD (a,b) is defined as a-[a/b]b,where[X] is the largest integer that does not exceed the magnitude of X with sign the same as X;
the result is not defined when the second argument is zero.
£ ACOS returns values in the range [0,m]. or £&& ASIN returns values in the range [- %, %],

ADDITIONAL UTILITY SUBPROGRAMS

The utility subprograms described below are supplied by the system and are always called by name (section
[II-10 gives more details). A user-supplied subprogram with the same name as a library subprogram overrides
the library subprogram.
In the definitions listed under the routines:

i and n are integer variables, constants, or expressions.

j is an integer variable.

a and b are variable or array names of any type.

u is a unit number or file name (nLx . . . x).

H is a Hollerith specification.

-OPERATING SYSTEM INTERFACE ROUTINES

ﬁDATEh)orCALL DATEhﬂ

i' The current date is retumed as the value of argument a in the form VIOVHbmm/dd/yyb (unless it is changed I
at installation option), where b denotes a blank, mm is the number of the month, dd is the number of the

: day within the month, and yy is the year. The value returned is Hollerith data and can be output using an

;;_A format spec1ﬁcatxon (PROGRAM LIBS, section II).

~The type of the functlon DATE is real; thus if J and K are 1nteger variables as in:

4= DATE(K)

J will not be useful becaus‘é,the value returned will have been converted from real to integer.

JDATEh)orCALLJDATEhﬂ

The current date is retumed as the value of argument a in the form 5Ryyddd where yy is the year and '
ddd is the number of the day within the year. The value returned is Hollenth data and can be output using
an R format specification. e e

1 These rou'tines: can be
normal functlon retur:
‘fiThls routme 1s not avzulable u nder SCOPE 2 1

”d‘~a§‘ 'fnnctidns or subroutines; The value is'ret‘um'e'd’k yié ‘kthe4 argument andu?the'," ;

60305600 G 1-8-9

B ssc’amb«)" or c‘ALL"SEcoND(t)T

‘ The central processor t1me is retumed from start—of-—_job in seconds as a real number usually accurate to two‘4
decrmal places t 1s a real vanable ~ .

Example: DPTIM=SECOND,(CP), S

 TIME(a) or CALL TIME(a)!

“ The current reading of the system clock is returned as the value of argument a in the form - lOthh.mm.ss. -
where b denotes a blank, and hh, mm, and ss are the number of hours, minutes, and seconds respectively.
The value returned is Hollerith data and can be output usmg an A format spe01ﬁcat10n (PROGRAM LIBS
section II).

h The type of the functlon TIME is real; thus if J and K are 1nteger vanables in the followmg statement, J is
‘not useful because the value retumed w1ll have been converted from real to mteger

tExample ‘ I =TIME(K)

5 CALL DISPLA: (i-i‘k)

A name and a value are placed in the dayﬁle H isa Hollenth specrﬁcatlon of not more than 80 characters;‘
 k is a real or 1nteger varrable or expressmn and is dlsplayed as-an mteger or rea] value ‘ :

, Example: e cALL DlSPLA (7H TIMI?;,STOP-S"’I'ART) -

| CALL REMARK (H)

- Places a message in the dayﬁle Under SCOPE 2. 1 the ‘maximum message length is 90 characters dlsplayed
~on one line. Under KRONOS 2 1, NOS 1 .0, and SCOPE 34, the maximum message length is 80 characters
displayed 40 characters per line. A message exceeding the maximum length is truncated. A message shorter

~ than the maximum must have all zeros ‘in the lower 12 bits of the last word. These zeros are automatlcally

supphed ‘when a Hollenth constant is used as the parameter

Example: el ,CALL REMARK (OHLAST DECK)

* CALL SLITE()

~ Sense light i is turne’d'on Ifi=0,al sense hghts are turned off. If i is other than 0-6,: an informative"
: kdlagnostrc is prmted and sense hghts are not changed : 5 O

b TThese routines can be used as functrons or subroutmes The value is returned via the argument and the
: :,norrnal functlon retum shmu e e T e e :

I-8-10 60305600 G

CALL SLITET(i,;j)
Sense light i is tested. If sense light iis on, j = 1;if sense light i is off, j = 2. If i is other than 1-6, an infor-
mative diagnostic is printed, all sense lights remain unchanged, and j = 2. Execution tumns off sense light i if

it is on.

(Note: Logical variables generally provide a more efficient method of testing a condition than do calls to
SLITE or SLITET.)

CALL SSWTCH(i,j)

If sense switch i is on, j is set to 1; if sense switch i is off, j is set to 2. i is 1 to 6. If i is out of range, an
informative diagnostic is printed, and j is set to 2. The sense switches are set or reset by the computer operator
or by a SWITCH control card.

CALL OVERLAY (fname, primary, secondary, recall k)

See section [-12.

CALL EXIT

Program execution is termlnated and control is returned to the operatmg system. (Note: use of the STOP
_statement is preferable to CALL EXIT.) ;

1 CALL CHEKPTX(flIehst)T

A checkpomt dump of the files specxﬁed by filelist is taken:

filelist - Is one of the following:
0 Checkpoint dump all files.
filearray Checkpoint files specified in mteger array ﬁlearray, which has the followmg
i structure : ;

SCOPE 3.4 and SCOPE 2.1.

60305600 G I-8-11 @

Word 1 Tooane ny, ceean il

Word2 | , iy k |

rWordn, i L : PLLL k fi

n : ‘Number of ﬁles in followmg hst to a maxrmum of 42 (decrmal)

lfni 'Name (1n left]ustlﬁed drsp]ay code) of user mass storage ﬁles to be processed.,i L

H s ‘Octal number 1ndrcat1ng specrﬁc manner in whrch lfn is to be processed

& '0 k h "Mass storage ﬁle is copled from begrnmng-of mformauon to 1ts pOSlthl’l at check 7
- point time, and only that portron w111 be avaﬂable at restart The ﬁle is posrtloned
- at'the latter pomt ' o e ~ L e

S , 1 b Mass storage ﬁle is copred from its posmon at check pomt trme to end-of-mformatlon
i k [‘and only that portron w1ll be avarlable at restart The ﬁle is posmoned at the G
: -~ former pomt : S ~ ; : k :

B ,Mass storage fxle rs copled from beg:mmng-of mformatron to end of-mformatron thek
‘ ~ entire file will be available at restart time. The ﬁle is posrtroned at the pomt at
. whrch the checkpomt was taken i

3 : The'last operatronk on the ﬁle detennines‘_how‘“the,mass,storage file is ‘copied. o

| fpocs not apply to scoPE 21.

1-8-12 60305600 G

Example:

DIMENSION IFILES(4)

IFILES(1) = 300008

IFILES(2) = SLTAPE1 .OR. 100008
IFILES(3) = SLTAPE2 .OR. 300008
IFILES(4) = 5LTAPE3

CALL CHECKPTX{IFILES)

For more information, refer to the SCOPE 3.4 Reference Manual or the SCOPE 2 Reference Manual.

CALL RECOVR(name,flags, checksum) T

. name Name of subroutine to be executed if ﬂagged conditions occur.
- flags . Octal value for condmons under which recovery code is to be executed, as outlined below.
e © Conditions cyan‘be, combined as desired, with octal values up to 177 allowed.

001 7“_,Ar1thn'1etlc mode error.
002 PP call or auto-recall error.
004 Time or storage limit exceeded
010 Operator drop, kill, or rerun. -

020 System abort. ‘
040 ~ CP abort. :
100~ Normal termination.

checksum Iast word address of recovery code to be checksummed; 0 if no checksum is desired.

The RECOVR subroutine allows a user program to gain control at the time that normal or abnormal job ter-
mination procedures would otherwise occur. Initialization of RECOVR at the beginning of a program establishes
the conditions under which control is to be regained and specifies the 'address of user recovery code. If the
stated condition occurs during program execution, control returns to the user code. If necessary, the system
increases the CP time limit. I/O time limit, or mass storage time limit to prov1de an installation defined min-
imum of time and mass storage for RECOVR processing. No limit is ‘mycreased more than once in a job.
RECOVR can be called more than once during program initialization to reference different user recovery sub-

~routines. These calls to RECOVR can use different combinations of conditions for the same or different user
? recovery subroutmes

:,If ~‘Vthe checksum paramet‘e;r is zero, no checksum is done.

60305600 G I-8-13

If one of the user’s selected error condltrons occurs, RECOVR galns control performs 1nternal tasks and then k
transfers control to the user’s recovery subroutlne(s) The followmg three arguments are passed to the user’ s e
recovery subroutme el L

. l A 17-word mteger array The ﬁrst 16 words are an 1mage of the exchange package the seventeenth
word is the contents of RA+1 , G ; ! Lk «

2. A ﬂag that upon return determines the type of program termination. If the user’s recovery sub-
~ routine sets the flag non-zero, ENDRUN termination occurs upon completion of the last post-
‘processing subroutine. If the flag remains zero, the orrgmal error -code, as well as the exchange s
_ package, are restored and the job continues as if RECOVR had not been called. Altering the ex-
~change package passed as argument 1 prevents the correct completron of the restore but does not
. 1mpa1r system operatron i : : : i -

3 ~An array, startmg at RA+1 that allows a FORTRAN subroutrne to access a11 of the user s ﬁeld
o ~1ength e a i o -

PROGRAM MAIN(INPUT OUTPUT)
EXTERNAL REPREV,CHKSUM

CALL RECOVR(REPREV,728,LOCF (CHKSUM))

~ PRINT 10, IXCHNG, (IFLDLN(I) -
- FORMAT (3(6X, 020)) i

1:8-14 | 60305600 G

DEBUGGINGS AIDS

CALL DUMP (aq,bq,f1,..., ap.by.fy)

CALL PDUMP (aq,bq,fq,..., agb,.fy)

Dumps main memory on the OUTPUT file in the indicated format, PDUMP returns control to the calling pro-

gram; DUMP terminates program execution. aj and b; specify the beginning and the end of the storage area to
be dumped. 1 < n < 20. f is a format indicator, as follows:

f=0o0r3 octal dump
f=1 real dump
f=2 integer dump

For f values 0-3, a; and by are the first and last words dumped. If 4 is added to any f value, the contents of
a; and bj are used as the addresses of the first and last words dumped within the job’s field length. An
ASSIGN statement or the LOCF function can be used to get addresses for the a; and b; parameters.
Examples: CALL PDUMP(A(1),A(100), 1) Dumps from A(1) to A(100) as real numbers

' CALL PDUMP (0, 10008, 4) ~ Dumps from location 0 to 1000B in octal

CALL STRACE

Provides traceback information from the subroutine calling STRACE back to the main program. Traceback
jmforrnatxon is written to the file DEBUG. To obtain traceback mformatlon mterspersed with the source pro-
“gram, DEBUG should be equrvalenced to OUTPUT in the PROGRAM statement (Refer to STRACE sectron
:‘I-13) ‘ ‘ e - t
“,LEGVAR (a)

Checks the value of vanable a. Retums the result -1 if vanable 1s 1ndeﬁmte +1° 1f out of range and 0 if

‘normal. Variable a is type real; result is type mteger

CALL SYSTEM (errnum mesg)

kerrnum 1s an error number mesg is an error message Refer to sectron III’3 for further mformatlon =

' ;ALL,SYSTEMC(errnum, spechst)

YSTEMC allows for"non
nformatron

kk:'dard pmcessmg of hbrary dete"ed errors Refer to sectlon III‘3 for

60305600 F [-8-15

CALL ERRSET(num,lim)

For error numbers 78 and 79 on formatted, list directed, and NAMELIST reads, this subroutine sets maximum
number of errors, lim, allowed in input data befote termination. Error count is kept in location num. Refer to
section III-3 for further information.

RANDOM NUMBER GENERATOR

RANF (n)f

Random number generator. Returns values uniformly distributed over the range (0,1); the values 0 and 1 are
excluded. n is a dummy argument which is ignored. Result is type real.

CALL RANSET(n)

Initializes seed of RANF. n is a bit pattern Bit 20 will be set to 1 (forced odd), and bits 259 - 248 will be
set to 1717 octal. ~

CALL RANGET(n)

Obtains current seed of RANF between 0 and- 1. nis a symbolic name to receive the seed. It is not neces-

-sarily normalized. The value returned may be passed to RANSET at a later time to regenerate the same
sequence of random numbers. ~

'MASS STORAGE INPUT/OUTPUT

Refer to section III-7 for further information on the following routines:

CALL OPENMS (u,ix,Ingth,t)

Opens mass storage file and informs Record Manager that file u is word addressable. If an existing file is opened,
the master index is read into the area specified by the program. u is the unit designator. ix is the first word
address of the index in central memory. Ingth is the length of the index buffer; for a name index, Ingth > 2 * :
(number of records in file) + 1 ; for a number index, Ingth > number of records in file + 1. t = 1:file is
referenced through a name index; t =0: file is referenced through a number index.

Example: PROGRAM MS1 (TAPE3)
DIMENSION INDEX (1), DATA (26)
CALL OPENMS (3,INDEX,11,0)

‘ TRANFlsanmtnnsm functlon it o - e

I-8-16 60305600 G

CALL STINDX (u,ix,Ingth,t)
Changes index in central memory from master to subindex. u,ix,Ingth,t are the same as for OPENMS. If t is
omitted, whether the subindex is considered to be a name or a number index is determined by the value of

t specified in the most recent call to STINDX or OPENMS.

Example: CALL STINDX (2,SUBIX,10,0)

CALL CLOSMS (u)
Writes index from central memory to file and closes file. CLOSMS should be called before job termination.

Example: CALL CLOSMS (7)

CALL READMS (u,fwa,n,k)

,Transmits data from mass storage to central memory. u is the unit designator, fwa is the central memory
‘address of the first word of the data area. n is the number of central memory words transferred Number
;‘mdex k has hrmts 1< k < lngth 1 Name mdex k = any 60-b1t quantlty except 0.

iExample "_CALWL“ BEAnmsts,pArA,pzs,e) -

iCALLzWRITMS(u fwa n, k r,s)

?Transmrts data from ‘central m mory to mass storage u fwa,n k are the same as for READMS r= +1 rewntes‘,‘
in place ,however, it does not rewnte and fatal error is prmted if new record Iength exceeds old record length.
1 rewrites in place if space s avarlable otherwise writes at end of mformatron r= O no rewrite; writes at
end of information. The r.parameter can be omrtted if the s parameter is. omrtted The default value for ris
'O'(normal wrrte) e o S R

:s -,1 wntes subrndex marker ﬂag rn mdex control word for thrs record s=0 does no wrrte submdex marker :
;ﬂag 1n mdex control word for thrs record The s parameter can be omltted its default value is 0 :

;The s parameter is rncluded for future random file edrtmg routmes Current routmes do not test the ﬂag, but
user -should include thrs parameter 1n new programs, when appropnate to facrhtate transrtron to a‘«:f ure edrt
jcapablhty : : . : : i : e - i :

‘,Examplez CALL WRITMS (3,DATA 25,NRKEY,1,1)

60305600 F I-8-17

'INPUT/OUTPUT STATUS CHECKING

FORTRAN Extended provides the capability of checking for an end-of-file or a parity error condmon followmg
read operations via the functions UNIT, EOF, and IOCHEC

k Any of the followmg conditions encountered durmg a read returns an end-of-file status via the functrons UNIT
or EOF
End- of-sectlon (in the case of file INPUT only)
End- of—partition
‘End- of-mformatron :
Non deleted W format flag record
kk Embedded tape mark
' Terminating double tape mark
~ Terminating end-of-file label ’ ,
kVEmbedded zero length level k17'block : ‘,’ ‘
ﬁ"The functions UNIT‘and IOCHEC retu'rn a par‘rtyerror indication k’for ever’y' record ‘within ‘or' Spannrng a
“block containing a parity error; however, such an indication does not necessarily refer to the immediately -

preceding operatron because of the record blockrng/deblockrng performed by the Record Manager mput/output .
routines. : :

§Parity status can be checked on wrrte operatrons that access ‘mass storage files when the wrrte check optron :
has been specified on the REQUEST card for the file (SCOPE 2.1 Reference Manual). Write parity errors
for other types of devices (such as staged/on-hne tape) are. detected by the operatmg system and a message
to this effect is wrrtten in the dayﬁle

UNIT(u)

The UNIT functron is used to check the status of a: BUFFER IN or BUFFER OUT operatron for an end- of
file or parrty error condrtlon on logrcal umt u. The functron returns the followmg values ‘

-1 . ~ Unit ready, no end-of-ﬁle or parrty error encountered on thesprevrous operatron
+0 ~ Unit kready, end-offfrle encountered on the previous operation k
+1. ' U’nttready,‘ panty errorencountered on the orevious operatikon

Examnle: k ‘k IFk("UN’l’T’(S))’ 12’,1,4,1s"~ = |

, Controltransfers‘ to the statement labeled 12 14 Or 16 if the value returned Was'-l 0 or +l respectrvely

i}If 0. or +1 is returned the condrtlon 1ndrcator is. cleared before control is returned to the program If the
UNIT functron references a logical unit referenced by input/output statements other than BUFFER IN or
kBUFFER OUT the status returned always mdrcates ‘unit ready and no_error (l)

ff§App11es only to SCOPE 21,

[-8-18 60305600 G

EOF(u)

The EOF function is used to test for an end-of-file condition on unit u following a formatted, list-directed,
NAMELIST, or unformatted read. Zero is returned if no end-of-file is encountered, or a non-zero value if end-
of-file is encountered.

Example: IF (EOF(5)) 10,20

returns control to the statement labeled 10 if the previous read encountered an end-of-file; otherwise, control
goes to statement 20.

If an end-of-file is encountered. EOF clears the indicator before returning control.

The EOF function returns a zero value following read or write operations on random access files, and also
following write operations on all types of files, regardless of whether an end-of-file condition has been detected;
therefore, the EOF function should not be used in those circumstances.

The user should test for an end-of-file after each READ statement to avoid input errors. If an attempt is made
to read on unit u and an EOF was encountered on the previous read operation on this unit, execution termi-
nates and an error message is printed.

IOCHEC(u)

The IOCHEC function tests for parity ‘errork‘ on unit u following- a ‘fOrmatted, list-directed, NAMELIST, or
_unformatted read. The value zero is returned if no error has been detected.

Example: 4= rocmscte)
s |r= (J) 1525 :

;zero value would be returned to J 1f no panty error occurred and non -zer1o if an error had occurred control
would transfer to the statement labeled 25 or 15 respectlvely :

If a panty error occurred IOCHEC would clear the panty 1ndlcator before returrung Par1ty errors are handled
,m th1s way regardless of the type of the external device.

OTHER INPUT/OUTPUT SUBPROGRAMS

'kLENGTH(u) or CALL LENGTHX(u,nw,ubc)

Returns mformatron regardmg the prewous BUFFER IN or READMS call of the f11e desrgnated by u. nw or ,
the value of LENGTH is set to the number of 60-bit words read. ubc is set to the number of unused brts in
_the last word of the transfer nw, ubc and value returned are type 1nteger .

- NW = LENGTH(S)

xEnwaUsD

60305600 F I-8-19

‘CALL‘ LAB‘EL(’u vaa)

Sets tape label 1nformat10n for a ﬁle u is the unit number fwa is the address of the ﬁrst word of the label
information. See sectlon II1-5 for further information. ,

ECS/LCM SUBPROGRAMS

CALL MOVLEV (a,b,n)

' Transfersn consecutive words of data between a and b. a and b are variables or array elements; n is an
.integer constant. a is the starting address of the data to be moved and b is the startrng address of the recerv-
ing locatlon :

Example: ~ CALL MOVLEV(A B,1000)

No conversion is done by MOVLEV If data from a real vanable is moved to an mteger type receiving fleld
the data remains real. : :

Example: CALL MOVLEV (A, 1, 1,000* :
After the move I does not contarn the mteger equrvalent of A

Example: oousus PRECISION D1(500) oz(soo)

CALL MOVLEV (D1 D2, 1000)

Smce Dl 1s deﬁned as double prec1sron n should be set to 1000 to move the entlre D1 array

',CALL READEC(a b n)

i Transfers data from extended core storage to central memory

ais a 51mple varlable or array element located m central memory b is a srmple vanable or array element locatedi
in an extended core storage block or LCM block. n- is an integer constant or expressmn n consecutlve words
of data are transferred begrnmng w1th a m central memory and b in extended core storage e

CALL WRITEC(abn)
Transfers data from eentral iymemory‘f: toj‘ extended core kstorage : or; LCM.
:fNo" tYPé :convetsioryl,is‘y,do}flyé;‘ e o

LEVEL 3 B

L CALL READEC(A 8,10)

o CALL WRITEC(A B 10

1-8-20 60305600 F

TERMINAL INTERFACE

Refer to section III-11 for further information on the following routines:

CALL CONNEC(fd) or CALL CONNEC(fd,cs)

Associate file fd with terminal for input/output operations using the character set specified by cs.

CALL DISCON(fd)

Disassociate file fd from terminal.

CYBER RECORD MANAGER INTERFACE

These routines, interfacing with CYBER Record Manager, provide an alternative to standard FORTRAN 1/O;
they should not be used with files referenced by standard FORTRAN I/O routines. Refer to section III-6

‘ for further information.

' SORT/MERGE INTERFACE

:, These foutines, interfacing with SOrt/Me‘rge; provxde aﬁ extended ’capab‘ilify“ for processing data records in a
- FORTRAN program. Refer to section III-16 for further information. =~

60305600 G [-8-21

INPUT/OUTPUT 1-9

To input or output data, the following information is required:
Unit number of the input/output device
List of FORTRAN variables to receive input data or from which results are to be output.

Layout or format of data

READ, WRITE, PRINT, or PUNCH statements specify the input or output device and the list. The form of
data is designated by the FORMAT statement.

Data can be formatted or unformatted or list directed. In formatted mode, display code character strings are
converted and transferred according to a FORMAT statement. In unformatted mode, data is transferred in the
form in which it normally appears in storage, no conversion takes place, and no FORMAT statement is used.
In list directed mode, display code character stnngs are converted and transferred accordmg to the type of the
list items.

Input/output control statements are discussed below. Input/output lists and the FORMAT statements are
covered in section 10.

The following definitions apply to all input/output statements:
u Input/output unit; the operating system associates this unit with an internal file name

which may be:

Integer constant of one or two digits (leading zeros are discarded). The compiler
associates these numbers with file names of the type TAPEu, where u is the file
designator (refer to PROGRAM statement, section 7).

Simple integer variable name with a value of:
1-99,0r

A display code file name (L format, left Justlﬁed with bmary zero fill). This is the
_internal logical file name.

fn Format designator; a FORMAT statement number or the name of an array containing
the format specification. The statement number must identify a FORMAT statement in

the program unit containing the input/output statement.

iolist Input/output list specifying items to be transmitted (section 1-10).

60305600 D 1-9-1

All information is considered to be a file or part of a file. Local to a given job, a file is identified by a logical
file name (the internal file named, u). All control card references to a file identify it by the logical file name.
The internal central memory representation of a logical file name consists of its literal value in display code, left
justified and zero filled.

Several file names are given special significance. When one of these names is used, the following automatic dis-
position is made, unless the user has defined an alternate disposition:

Card input is assigned to the file INPUT.

Data in the file OUTPUT is assigned to the printer.

Data in the file PUNCH is assigned to the card puncf{ as coded card output.

Data in the file PUNCHB is output on the card punch as binary card output.

FORTRAN RECORD LENGTH

For cards, formatted logical record length cannot exceed 80-characters and for print files, 137 char-
acters. Other files are limited to 150 characters unless the maximum record length is specified on the
PROGRAM statement (see section I-7).

The length of an unformatted FORTRAN logical record is determined by the length of the input/output
list, and can be any size.

CARRIAGE CONTROL

The record length of print files is limited to a maximum of 137 characters. The first character of the record
is the carriage control character and is never printed. The second character of the record appears in the first
print position.

The printer control characters are listed in section I-10. For off-line printing, printer control is determined by
the installation printer routine.

1-9-2 60305600 G

OUTPUT STATEMENTS

PRINT
7

PRINT fn,iolist

7

N

PRINT fn

7

PRINT(u,fn) iolist

7
PRINT™,iolist

7
PRINT(u,fn)

/N TN TN

7

PRINT(u,*) iolist

~ This statement transfers information from the storage locations naqme’d in the input/output list to the file
-named OUTPUT or - the file specified by u, according to-the specification in the format designator, fn or *

_ If the user has not specified an alternate assignment, the file OUTPUT is sent to the printer.

60305600 D

1-9-3

5]1|7

ROGRAM PRINT (OUTPUT)
A=1.2

[B=3HYES

IN=19

PRINT 4,A,B,N

ﬁ FORMAT (G20.6,A10,15)

,Theﬁ jolist can be omitted. For example,

PRINT 20 S S
20 FORMAT (30H THIS IS THE END OF THE REPORT)

PUNCH
e .

PUNCH fn,iolist

PUNCH fn

PUNCH(u,fn) iolist

PUNCH*,’io‘Iki’st : o i

7 .
~PUNCH(u,*) iolist

7
PUNCH(u,fn) .

'”Data is transferred from the storage locations specrﬁed by jolist to the file PUNCH or the f11e spemﬁed by u. ‘f !
~If the user has not specified an alternate assignment, the file PUNCH is output-on the standard punch unit

- as Hollerith codes, 80 characters or less per card in accordance with format specrﬁcatlon fn If the card '
'k'_lmage 1s longer than 80 characters, a second card rs punched wrth the remammg characters '

194 60305600 D

5(|7

PROGRAM PUNCH (INPUT,OUTPUT,PUNCH)
2||READ 3,A,B,C

3||[FORMAT (3G12.6)

ANSWER = A + B - C

IF (A .EQ. 99.99) STOP
PRINT 4, ANSWER
4||FORMAT (G20.6)

PUNCH 5,A,B,C,ANSWER
5||[FORMAT (3G12.6,G20.6)
GO TO 2

END

The iolist can be omitted. For example,

PUNCH 30
30 FORMAT (10H LAST CARD)

FORMATTED WRITE

7
[: WRITE (u,fn) iolist
|
|
7
/1 WRITE (u,fn)
|
|
7

‘WRITE fn,iolist

7
WRITE fn

S — —

The formatted WRITE statement transfers information from the storage locations named in the input/output
list to the file named OUTPUT or the file specified by u, according to the FORMAT specification, fn. If the
user has not specified an alternate assignment, the file OUTPUT is sent to the printer.

60305600 G I-9-5

7

ROGRAM RITE (OUTPUT,TAPE6=0UTPUT)
=2.1

=3.

=7

RITE (6,100) X,Y,M

100 [FORMAT (2F6.2,14)

STOP

END

The iolist can be omitted. For example,
WRITE (4,27)
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES)
UNFORMATTED WRITE

7
' WRITE (u) iolist

|
WRITE (u)

il
I
[
I

Example:

PROGRAM OUT (OUTPUT,TAPE1O)
DIMENSION A(260),B(4000)

WRITE (10) A,B
END

This statement is used to output binary records. Information is transferred from the list variables, iolist, to
the specified output unit, u, with no FORMAT conversion. One record is created by an unformatted
WRITE statement. (Refer to section 5, part III). If the list is omitted, the statement writes a null record on
the output device. A null record has no data but contains all other properties of a legitimate record.

196 60305600 G

LIST DIRECTED WRITE

7
WRITE(u,”) iolist

Ve

WRITE* iolist

Data is transferred from storage locations specified by the iolist to unit u in a manner consistent with the list
directed input described below.

For files referenced in list directed WRITE and PRINT statements, the maximum record length in characters
should be specified in the PROGRAM statement (section 1-7).

Example: PROGRAM LOW (OUTPUT=/80+sTAPE6=0UTPUT)
- INTEGER J(4)
COMPLEX Z(2)
DOUBLEPRECISION @ 1
DATA J9ZyQ/19=2939=49(7s9~1e)9“3.92)’1 D'S/
WRITE(64#)d
WRITE(é,“)Z!Q
STOP
END

1 (Tug-14) (=3.,2.) 00001

INPUT STATEMENTS

FORMATTED READ

7
/ : READ (u,fn) iolist
|
|

7
READ (u,fn)

r

These statements transmit data from unit u to storage locations named in iolist according to FORMAT specification
fn. The number of words in the list and the FORMAT specifications must conform to the record structure on the
input unit. If the list is omitted, one or more FORTRAN records will be bypassed. The number of records bypassed
is one plus the number of slashes interpreted in the FORMAT statement. Except for information read into H spec-
ifications in the FORMAT statement, the data in the records skipped is ignored.

60305600 E 1.9-7

PROGRAM IN (INPUT,OUTPUT,TAPE4-INPUT,TAPE7-OUTPUT)
READ (4,200) A,B,C

200/ [FORMAT (3F7.3)

A = B*C+A

WRITE (7,50) A

50[[FORMAT (50X,F7.4)

STOP

The user should test for an end-of-file after each READ statement to avoid input/output errors. If an
attempt is made to read on unit u and an EOF was encountered on the previous read operation on this unit,
execution terminates and an error message is printed. (Refer to section 5, part III, EOF FUNCTION.)

READ ‘fn’,'io,lki‘s't :

This statement transmits data from the INPUT file to the locations named in iolist. Data is converted in
accordance with format specification fn.

PROGRAM RLIST (INPUT,OUTPUT)
READ 5,X,Y,Z

5| [FORMAT (3G20.2)

RESULT = X-Y+Z

PRINT 100, RESULT

100| [FORMAT (10X,G10.2)

STOP

END

UNFORMATTED READ

7
READ (u) iolist

7
READ {(u)

1-9-8 60305600 D

One record (section III-5) of information is transmitted from the specified unit, u, to the storage locations
named in iolist. Records must be in binary form; no FORMAT statement is used. The information is trans-
mitted from the designated file in the form in which it exists on the file. If the number of words in the
list exceeds the number of words in the record, execution diagnostic results. If the number of locations spe-
cified in the iolist is less than the number of words in the logical record, the excess data is ignored. If iolist
is omitted, READ (u) spaces over one record.

PROGRAM AREAD (INPUT,OUTPUT,TAPE2)
READ (2) X,Y,Z
SUM = X+Y+Z/2.

END

LIST DIRECTED READ

7
/—: READ(u,*) iolist

l

|

7

/7I ; READ*, iolist

! ,

I

Data-is transmitted from unit u or the file INPUT to the storage locations named in iolist. The input data
items are free-form w1th separators rather than in flxed -size fields.

~ A list directed READ following a list directed READ that terminated in the middle,of a-data record continues
with the same data record. When a list directed READ follows a formatted READ or a formatted READ
follows a list directed READ, a new data record is always used.

For files referenced in list directed READ statements, the maximum record length in characters should be
specified in the PROGRAM statement (section I-7).

Example:

PROGRAM LUR (INPUT»OQUTPUT s TAFES= lNPUToTAPEb:nUTPUT)
NAMELTIST/0UT/CAT98IKDs00G '
READ(S9#)CATsBIRDDUG

WRITE(6s0UT)

- STOP
END
kInput ,
13.35 -5. 2,
Qutput. e i el S
- souT ;.ﬁ?cAr,f? | =q=,;.l33t+02v BIKD = -,SE+0ls DUG = .1E-01.]

60305600 G [-9-9

" LIST DIRECTED nN‘Pur DATA FOR'MS'

The lrst drrected READ statement is srmrlar to formatted I/O statements except an asterrsk replaces the
~ FORMAT statement number. For input statements, ‘the form is:

READ *, jolist
READ(unit *) iolist

~Input data consists of a string of values separated by one or more blanks, a comma or a slash either of
- which may be preceded or followed by any number of blanks. Also a lme boundary, such as end of record
- or end of card serves as a value separator ,

' To repeat a value, an mteger repeat constant is followed by an asterrsk ‘and the constant to be repeated
Blanks cannot. be embedded in a constant or the specrﬂcatron of a repeated constant

A null may be mput in place of a constant when the value assrgned to the correspondmg list entlty is not ,
- to be changed. A null is indicated by the first character in the input string being a comma or by two com-

~ mas or slashes separated by an ‘arbitrary number of blanks. Nulls may be repeated by specrfymg an integer
repeat count followed by an asterisk and any value separator ‘A null cannot be used for either the real or
flmagmary part of a complex constant however a null can represent an entrre complex eonstant '

~ When the va]ue separator is a slash remarnmg lrst elements are treated as nulls when the next 1nput state-:, «
~ ment is executed for this specrﬁed unit, _the character followrng the slash becomes the first 1nput character -
: for the second READ When ‘the I/O lrst s exhausted and no s]ash has been encountered the next lrst

drrected mput on the same umt W1ll begm at the followmg value separator Pn

; Constants in the mput stream take the form of FORTRAN constants except blanks are not allowed wrthrn o
~a constant and a decimal point omrtted from a real constant is assumed to oceur to the right of the rrght- .
most digit of the mantissa. Otherwise, each constant. must be of the same type as the corresponding list

entry, or the job will be terminated. Furthermore, a repeated constant such as 4*7 should not be used as
mput data to varrables of drffermg types i :
~ For ,exarnple: ; :

READ(S,") 1,4, X, ¥
', can read correctly:
~2*7, 2*7 but not a*7

- assuming that I and J are integer and X and Y are real.

L Repeated constants or repeated nul] values should be used entrrely by one read.
' The only Hollerrth constants perrmtted are those enclosed in the symbol % They may contam embedded blanks;
~ The paired symbols # # can be used to represent a smgle # within a character constant. A character string can-
_not be repeated, and it should be read into an integer variable or array. A character constant of less than 10

. "characters is padded on the right with blanks to ﬁll the word Only the frrst lO characters are used 1f the
- constant exceeds 10 characters r S st

1-9-10 60305600 D

LIST DIRECTED OUTPUT DATA FORM

List directed output is consistent with the input; however, null values, as well as slashes and repeated constants
are not produced. For real or double precision variables with absolute values in the range of 106 to 109, an
F format type of conversion is used; otherwise, an output is of the IPE type. Trailing zeros in the mantissa
and leading zeros in the exponent are suppressed.

PRINT* list

For list directed PRINT statements, a blank is output as the first character (carriage control) of each record
and also as the first character when a long record is continued on another line; for list directed WRITE state-
ments, a blank is output as the first character of each record only.

List directed WRITE statements include the # symbols with the character output; therefore, they should be
used if the list directed record output is to be input subsequently with a list directed READ statement.

For example:

PROGRAM H(OUTPUT=/80)

X = 346. , Co

PRINT®s#THE VALUE OF SGRT(#s X» #) IS m#s SQRT(X)
 WRITE®¢#SAME WITH WRITEs SQRT(#s Xs» #) IS = »SQRT(X)
- eND

Output:

THE VALUE OF SQRT(3.6) I3 =1.837366596131 |
#SAME WITH WRITE, SQRT(# 3.6 #) IS =# 1.837366595101

60305600 G 1-9-11

| FILE MANIPULATION STATEMENTS

I Three statements can be used to manipulate files; REWIND, BACKSPACE, and ENDFILE.

REWIND

7
REWIND u

The REWIND operation positions a file so that the next FORTRAN input/output operation references the first
record in the file; even though several ENDFILE statements may have been issued to that unit since the last
REWIND. A mass storage file is positioned at the beginning of information. If the file is already at beginning
of information, the statement acts as a do-nothing statement. (Refer to BACKSPACE/REWIND, section 5,

part III for further information.)

Example:

REWIND 3

BACKSPACE
7
BACKSPACE u

Unit u is backspaced one logical record. If the file is at beginning of information, this statement acts as a
do-nothing statement. A backspace operation should not follow a list directed read on a given file.

§BACKSPACE is permitted for F, S, or W record format or for tape files with one record per block. (Refer to
BACKSPACE/REWIND, section 5, part III for further information.)
Example:

DO 1 LUN = 1,10,3
1 BACKSPACE LUN

Files TAPE1, TAPE4, TAPE7, and TAPE10 are backspaced one logical record.

I § Applies only to SCOPE 2.1.

1-9-12 60305600 G

ENDFILE

7
ENDFILE u

An end-of-file mark is written on the designated unit.

Issuing an ENDFILE as the first operation on a file establishes the same default record and block types as
used for formatted I/O (RT=Z, BT=C).

Meaningful results are not guaranteed if ENDFILE is used on a random access file and subsequently a random
file subroutine, such as READMS, is called.

Example:

IOUT = 6LOUTPUT
END FILE IOUT

End-of-file is written on the file OUTPUT.

- BUFFER STATEMENTS

The buffer statements and the read/write statements both accomplish data input/output; however, they
differ in the following respects:

A buffer control statement initiates data transmission and then returns control to the program so that
it can perform other tasks while data transmission is in progress. A read/write statement completes
data transmission before returning control to the program.

In a buffer control statement, parity must be specified by a parity indicator. In the read/write contro}
statement, the mode of transmission formatted (display code) or unformatted (binary) is tacitly
implied.

The read/write control statements are associated with a list and, if formatted, with.a FORMAT
statement. The buffer statements are not associated with a llSt data 1s Iransmmed to or from a block
of storage.

7
BUFFER IN (u,p) fa,b)

|
I
I
I
p Integer constant or simple integer variable. Designates parity on 7-track magnetic tape,

~zero designates even parity; one designates odd parity. p is inoperative for other
o ;perrpheral devrces

',;‘FII‘SI word of record to be transmitted.

‘;k'V:'Last word of record to be transmitted.

60305600 G 1-9-13

'Yf'eThe address of b must be greater than or equal to the address of a. In addrtlon a and b must be elther the
jsame vanable or else in the same array, common block, or equrva]ence class. If a and b are different varrables
or array elements in a common block wrthout any equ1valenced members, optlmrzatron may be degraded

,iExample:k e

Given the following speciﬁcation statements:

~ DIMENSION A(100), B(50), F(50).

~ COMMON /c/ CA, CB, CC
COMMON /D/ DD, DF

EQUIVALENCE (B Al (cc F(25)l

o BUFFER IN (0 (A(2) A(1OD))
~ BUFFER IN (1,0) (CA, CC)
_ BUFFER IN (1,0) (B, Al1!

the following

i o be transm ed rom un u to storage 1
b. ‘the its of storage locations ;
fthrough b between the tlme a BUFFER IN statement is executed and the tlme a UNIT function (on the same i
umt) mdlcates ‘the buffer operatmn,ls complete Ihe length of a BUFFER IN record can be ascertamed through,,

5 7,;; . T R e
PROGRAM TP (TAPEi,ouTPUT)1e~~<~‘

INTEGER REC(SiZ),RNUMB

REWIND 1 :

0o 4 RNUHB 1,10000,WN~

1 BUFFER IN (1,1) (REC(i),REC(eiz:)

2l ltF (UNIT(1)) 3,5,5
3 k= LENGTH(i) ~

e LENGTH RETURNS NUMBER oF NORDS TRANSFERRED BY BUFFER IN

Tl PRINT 1OD,RNUNB,(REC(I),I 1,K)
| 100 _FORHAT (7HORECORD,I§/(1X,1OA10))
fﬂfns STOP :
‘77,IEND,”, e

1-9-14 60305600 F

Odd parity information is transferred from logical unit 1 into storage beginning at the first word of the
array, REC(1), and extending through the last word of the array, REC(512). The UNIT function tests l
the status of the buffer operation. If the buffer operation is completed without error, statement 3 is
executed. If an EOF or a parity error is encountered, control transfers to statement 5 and the program
stops.

Example:

DIMENSION CALC(50)
BUFFER IN (1,0) (CALC(1l),CALC(50))

Even parity information is transferred from logical unit 1 into storage beginning at the first word of the
array, CALC(1), and extending through CALC(50), the last word of the array.

7
l BUFFER OUT (u,p) (a,b)

|

upab are the same as for BUFFER IN

. Cbntents of storage Joca‘tioynys',a‘kthrykough,b are written on umtu in even or odd parity.

60305600 G I-9-15

Examples:
BUFFER OUT(2,0)(OUTBUF(1), VOUTBUF’(4))

DIMENSION ALPHA(100)
BUFFER OUT (2,1)(ALPHA(1),ALPHA(100))

One record is written for each BUFFER OUT statement. Section 5, part III contains further information
regarding BUFFER IN/OUT statements. - ‘

NAMELIST

The NAMELIST statement permits input and output of groups of variables and arrays wrth an 1dent1fy1ng '
name. No format specification is used. .

7

n

NAMELlST/group name /a ,.',. a./.../group namen/ai PR |

n

group name Symbolrc name whrch must be enclosed in slashes and must be umq wrthr
I = the program umt i S S L 3

a,, Wy - Lrst of varrables or array names separated by commas

The NAMELIST group name 1dentrﬁes the succeedmg lrst of varrab]es or array names. Whenever an mput
or output statement references the NAMELIST name the complete lrst of assocrated varrables or arrayk,
‘names is read or written. ~ '

EA NAMELIST group name must be declared ina NAMELIST statement before it is-used in an mput/
output statement. The group name may be declared only once, and it may not be used for any purpose'f
‘other than a NAMELIST name in the program umt It may appear in any of the rnput/output statements
in place of the format number: ~

READ (u, group name)
READ group.name
WRITE (u, group name)
PRINT group name
PUNCH group name

It may not however be used i in an ENCODE or DECODE statement in place of the format number When‘ g
a NAMELIST group name is used, the lrst must be omttted from the 1nput/output statement =

A varrable or array name may belong to one or more NAMELIST groups

| 1-9-16 : : 60305600 G

Data read by a single NAMELIST name READ statement must contain only names listed in the referenced

NAMELIST group. A set of data items may consist of any subset of the variable names in the NAMELIST.

The value of variables not included in the subset remain unchanged. Variables need not be in the order in
which they appear in the defining NAMELIST statement.

PROGRAM NMLIST (INPUTsQUTPUT s TAPES=INPUT» TAPE6=0UTPUT)
NAMELIST/SHIP/A+89Colls1I2
READ (SeSHIP)
IF (EOF(5)) 10420
10 PRINT#y # NO DATA FOUND #
STOP
20 IF (C oLE. 0.) 40930
30 A=8 ¢+ C

I1 = 12 « I1

WRITE (6+SHIP)
40 STOP

END

Input record
5 i

(SHIP A-12.2,B-20.,0-3.4,11-8,12-50%

()utput
| f'ﬁy"ikSSHIP | =
| ‘A | - : . 2*345 ’0.2;"
e
C’ = -345‘019
Il = SBe
12 | = S0
SEND
7

READ (u,group name)

'When a READ statement references a NAMELIST group name, input data in the format described below s
-read from*thefdesrgnated flle If the specified group name is not found before end- of ﬁle a fatal error occurs

60305600 G 19-17 |

“INPUT DATA

. /_terminator e

(Aarrav name(n) = constant ,...,constant, R ‘

(Aarray name=constant, ..., constant,

: (Avari‘able‘—‘constant, :

b >dataltems i

: /A$group name T

' Data items succeeding $ NAMELIST group name are read until another §$ is encountered

E“;IMore than one record can be used as input data in a NAMELIST group ,The ﬁrst column of each record s
~ ignored. All input records containing data should end with a constant followed by a comma however thelast .
; [,record’ may be. temnnated by a $ without the ﬁnal comma s ~ ;

'{,'i"'Data 1tems separated by commas may be in three f orms,_,
e vanable constant :

array name = constant, ,constant

-array name (uns1gned mteger constant subscnpts)_ °0nstant : ,QOHSt"aht"_‘u S
kVOrmttmg a constant consntutes a fatal error : " : ; : e
? Constants can 1 be preceded by a repetmon factor and an asterlsk
: Examp]e : , k

5*(1 7,-2. 4) ﬁve complex constants

: Constants may be integer, real, double precision, complex or logical. Logical constants must be of the form

JTRUE..T. T .FALSE. .F.or F. A logrcal variable may be replaced only by a logical constant. A complex
variable may be replaced only by a complex constant. A complex constant must have the form (real
~ constant, real constant). Any other variable may be replaced by an mteger, real or. double prec1sron
constant; the constant is converted to the type of the variable. g - : :

I I-9-18 60305600 G

OUTPUT

7
WRITE(u,group name)

All variables and arrays, and their values, in the list associated with the NAMELIST group name are output
on the designated unit, u. They are output in the order of specification in the NAMELIST Statement.
Output consists of at least three records. The first record is a $ in column 2 followed by the group name;
the last record is a $ in column 2 followed by the characters END.

Example:

PROGRAM NAME (INPUT,OUTPUT, TAPES=INPUT ¢ TAPE6=OUTPUT)
NAMELIST/VALUES/TOTAL sQUANT»COST

DATA QUANT,COST/15,+3,02/

TOTAL = QUANT#COST#1,.3

WRITE (6sVALUES)

STOP

END

Output
SVALUES

TOTAL

.58889999999999E +02

QUANT

15E+02»

"

COsT «302E+015

SEND
No data appears in column 1 of any record. If the logical unit referenced is the standard punch unit and a
variable crosses column 80, this and following variables are punched on the next card. The maximum length
of a record written by a WRITE (u, group name) or PRINT group name statement is 136 characters (unless

a smaller maximum record length has been specified in the PROGRAM statement). Logical constants appear
as T or F. Elements of an array are output in the order in which they are stored.

Records output by a WRITE (u, group name) statement may bé read by a READ (u, group name)
statement using the same NAMELIST name. , : ’ :

Example: '

~ NAMELIST/ITEMS/X,Y,Z

~ WRITE (6,ITEMS)

60305600 G 1-9-19

Output record

SITENS

Lx e 73ezEe03n
CREag gy .257495“0:..‘

z = L2225Ee020
: VSLNU e T

Thrs output may be read Iater in the same program usrng the f ollowmg statement

READ(5 ITEMS)

",‘ARRAYS IN NAMEI.IST

In mput data the number of constants mc]udmg repetrtlons grven f or an array name should not exceed the
, number of elements in the array ‘ i ¢« « : ; ~,

:Ex‘ample:: -

s ‘,BAT(I)‘
 BAT(2)
~ BAT(3)

. BATM4)

.~ BAT(5)
BAT(7)

~ BAT(@®)
~ BAT(9)
BAT(10)

ADRAABRBRRBWLN

k‘ Example:

DIMENSION GAY(S) :
'NAMELIST/DAY/GAY,BAY, RAY
READ (5,DAY)

Input Record
. L i :
(|$DAY GAY(S) -7.2, GAY(S)—

L array element —constant....,constant,;,‘f,,_

.0,BAY-2.3,RAY=77.28

| 19-20 60305600 G

When data is input in this form, the constants are stored consecutively beginning with the location given by

the array element. The number of constants need not equal, but may not exceed, the remaining number of
elements in the array.

Example:

DIMENSION ALPHA (6)
NAMELIST/BETA/ALPHA,DELTA,X,Y
READ (5,BETA)

Input record:
2

1
(ISBETA ALPHA(3)=7.,8.,9.,DELTA=2.§
|

In storage
ALPHA(3) 7.
ALPHA(4) 8.
ALPHA(5) 9.
DELTA 2.

Data initialized by the DATA statement can be changed later in the program by the NAMELIST statement.
‘Example: :

PROGRAM COSTS (INPUT,OUTPUT,TAPE5-INPUT,TAPE6-OUTPUT)
DATA TAX,INT,ACCUM,ANET/23.,10,500.2,17.0/
NAMELIST/RECORDS/TAX,INT,ACCUM, ANET '

FIRST - TAX + INT

'SECOND. %_EIRST‘*‘SUM

READ(5 RECORDS)

-

Input Record:

(}$RECORDS TAX-27., ACCUM-666.2%

Exafﬁple: .

",,“DIMENSION Y(S 5)

;M ¥,2, Lfr

60305600 G 1-9-21

tInput‘ ‘record: ’

$HURRY I1-1,L=.TRUE.,I2-2,13=3.5,Y(3,5)-26,Y(1,1)-11,
12.0E1,13,4*14,2=(1.,2.),K=16,M=17§ .

produce the following values:

I1=1 - Y(1,2)=14.0

I2-2 ¥(2,2)=14.0
13-3 Y(3,2)=14.0
Y(3,5)=26.0 Y(1,3)=14.0
¥(1,1)=11.0 K-16
‘ '¥(2,1)=120.0 M=17 i , e
I y3,1)-13.0 ~ z=(1.,2.) The rest of Y is unchanged.

aL=,TRUE.f

tENCODE AND DECODE

;The ENCODE and DECODE statements are used to reformat data 1n memory, mformatlon lS transferred under
FORMAT specrﬁcatlons from one area of memory to another , o

;ENCODE is 31m11ar to a formatted WRITE statement and DECODE 1s srmrlar to a formatted READ stateme :
Data is transmltted under format spemﬁca’uons, but. ENCODE and DECODE transfer data mternally, no pen- s
pheral equtpment is mvolved For example, data can be converted to a drfferent format 1ntema11y wrthout the,’
;necessuy of wrrtmg 1t out on tape and rereadmg under another format‘ ‘ :

, ENCODE(c,fn'V) l0|tst —

v e Variable or array namej‘\}vhichl sup'pkliesl the starting location Of ,thefrecbrd to ‘;bef’encoded.k
c o Unsrgned mteger constant or srmple mteger varlable specrfymg the length of each‘
- - record. : '

The first record starts with the Teftmost character of the location specified by v and continues for ¢ characters,
10 characters per computer word. If ¢ is not a multrple of 10, the record ends before the end of the word is
reached; and the remainder of the word is blank filled. Each new record ‘begins with a new computer word.
‘There is no intrinsic 11m1t on c, except 1f visa level 2 vanable ¢ must be less than or equal to 150

fn Format desrgnator statement label or mteger vanable whtch must not be a NAME- :
LIST group name or an N : e , ;

~iolist Llst of varrables to be transmltted i) the locatlon specrﬁed by V.

| 1022 60305600 G

Example:

5| |7
PROGRAM ENCDE (OUTPUT)

[IDIMENSION A(2) sALPHA(4)

DATA AsBsC/10HABCDEFGHIJ910HKLMNOPQRST s SHUVWXY s 7THZ123456/
ENCODE (40+,1sALPHA)A$BsC

1| FORMAT (2A49A59A6)

PRINT 2+ALPHA

2| FORMAT (20H1CONTENTS OF ALPHA =x=48A10)

STOP

END

In memory after ENCODE statement has been executed.

ABCDKLMNUV|WXYZ12345

~ ALPHA(1) ALPHA(2) ALPHA(3) ALPHA (4)

'ENCODE is a core-to-core transfer of data whrch is similar to a formatted WRITE Data in the iolist, in inter-
vnal form, 1s converted under FORMAT spe01ﬁcat10ns fn, and wntten 1n dlsplay code into an array or variable.

',An mtegral number of words is allocated for each record created by an ENCODE statement. If ¢ is not a
‘multiple of lO the record ends before the end of the word is reached and the remamder of the word is
: blank filled ‘ - : : s : :

t‘If the lrst and the l‘ormat specrﬁcatron transmrt more than the number of characters specrﬁed per record, an
execution error message is prrnted If the number of characters transmrtted is less than the length specrﬁed
byc, remarmng characters in the record are blank filled.

For example in the following program whrch is similar to program 'ENCDE above, the format statement
has been changed; so that two records are generated by the ENCODE statement. A(1) and A(2) are written
with the format specrﬁcatron 2A4, the / indicates a new record, and the remaining portion of the 40
‘character record, c, is blank filled. B and C are written into the second record with the specrﬁcatron A5 and
A6, and the remaining characters are blank filled. The drmensrons of the array ALPHA must be mcreased"',
to 8 to accommodate two 40-character records ~ , ‘

60305600 G 1923 |

5|17 , :
PROGRAM TWO (OUTPUT)

DIMENSION A(2) yALPHA(8) : ‘ ' T A
DATA A;BsC/lOHABCDEFbHIJ’10HKLMNOPQRST95HUVWXY97H212J4‘36/ ~
ENCODE (40919ALPHA)A9BsC ;

1 FORMAT (2A4/ASsA6)

| |PRINT 2sALPHA ‘
2| [FORMAT (20H1CONTENTS OF ALPHA —98A10)

STOP
END

v~ Output:

CONTENTS OF ALPHA =ABCDKLMN«‘ | . UVWXYZ12345

- If this same ENCODE statement is altered to:, o

ENCODE (33 1 ALPHA)A B,C
1 FORMAT (2A4/A5 AG)

The contents of ALPHA remain the same When a record ends in the mtddle of a. word the
remainder of the word is blank ﬁlled (each new record starts at the begmnmg of a word)

SEtas e b blank
ALPHA(‘H ALPHA(2) ALPHA(S) S ALPHA(4) ALPHA(S) ALPHA() ALPHA(?) ALPH A(8)

acokLMN | | |] blenk quxY212'34 5

: : endofrecord s S e ” : endofrecord -
'[The array in core must be large enough to contain the total number of characters specrﬁed in the ENCODE '
statement. For example, if 70 characters are generated by the ENCODE statement, the array starting at

location v (if v is a single word element) must be dimensioned at least 7. If 27 characters are generated the
array must be dimensioned 3. If only 6 characters are generated v can be a l‘word varrable

The following example illustrates that it is possible to encode an area mto 1tself and the rnformatron
prevrously contained in the area will be destroyed

5117 3 i -
PROGRAM ENCO2 (OUTPUT)
1=10HBCDEFGHI JK

IA=lHl £
| |ENCODE (851051) IsIAsl

10| [FORMAT (A35A15R4).

PRINT 1151
11 tURMAr (All)
~ lleno

i Prmtout is:

_ BCDIHIKbb

19-24 60305600 G

ENCODE may be used to calculate a field definition in a FORMAT specification at object time. Assume
that in the statement FORMAT (2A10,Im) the programmer wishes to specify m at some point in the
program. The following program permits m to vary in the range 2 through 9.

IF(M.LT.10.AND.M.GT.1)1,2
1 ENCODE (10,100,SPECMAT)M
100 FORMAT (7H(2A10,I,I1,1H))

PRINT SPECMAT,A,B,J

M is tested to ensure it is within limits; if it is not, control goes to statement 2, which could be an
error routine. If M is within limits, ENCODE packs the integer value of M with the characters
(2A10,I). This packed FORMAT is stored in SPECMAT. SPECMAT contains (2A10,Im).

A and B will be printed under specification A10, and the quantity J under specification 12, through
19 according to the value of m.

:ThéfolkIOWing program is anothér exampléof forming FORMAT s'ktat"emen‘ts internally:

, PROGRAM IGEN (OUTPUT TAPEG OUTPUT)

D0 9 J-1,50 e e :
ENCODE (10,7, FMT)J -

7 FORMAT (2H(I 12, 1H))

then (I3), ctc.

DECODE. =

DECO,D‘EH (‘c,fn,v), iolist

c, f n, and v are the same as for ENCODE

is the llst to receive vanables from lhe locauon ,pecx ed'
,;syntax of | an mput/output hst ' o

60305600 G 1925 |

5|17
PROGRAM ADD (INPUToOUTPUT,TAPESRINPUT9TAPEG-OUTPUT)
DIMENSION CARD (8), INK (77)
~ 2||READ (5,100) KEY1,CARD
 100{ [FORMAT (I157A105A9)
~ ||IF (EOF (5)) 80,90
90| |[IF (KEY1=2) 39843
3/ |CALL ERROR1
GO TO 2
 8||WRITE (6+300) CARD
300 [FORMAT (1H157A105A7///)
| |PECODE (77,17,CARD) INK
17| [FORMAT (7711)
~|j1ToT = 0
{lbo 41 =157
4/[ITOT = ITOT + INK(I)
ISAVE = ITOT | .
~ |[WRITE (6+200) ISAVE g -
200 [FORMAT (19X,*TOTAL or i sconss ON CARD = *.110)
80 |[sTOP s - s t
v
|lsuBrouTINE ERRORI | |
~ |IWRITE (691) -
~ 1||FormAT (5X9*NUMBER IS NOT 2*)
|IRETURN .
lEND

(An explanatlon of :this program appears in part II)

'DECODE is a core- to -core transfer of data 51mllar to formatted READ Drsplay code characters in a vanable or
“an array, v, are_converted under format specrﬁcatlons and stored in the list vanables iolist. DECODE reads from
a string of display code characters in an array or variable in memory; ‘whereas the READ statement reads from k
~an input device. Both statements convert data according to the format spemﬁcatron fn. Using DECODE, how-
ever, the same information can be read several times wrth drfferenct DECODE and FORMAT statements.

‘Starting at the named Iocatron, v, data is transmrtted accordmg to the specified format and stored in the hst
‘variables. If the number of characters per record is not a multiple of 10 (a display code word contains 10 dis-
‘play code characters) the balance of the word is ignored. However, if the number of characters specified by

the list and the format specrﬁcatron exceeds the number of characters per record, an execution error message

is printed. DECODE processing an illegal BCD character for a given conversion specification produces a FATAL
‘error. If DECODE is processing an A or R FORMAT specification and encounters a zero character (6 bits

“of binary zero), the character is treated as a colon under 64-character set or as a blank under 63-character set.

Example
: c;ﬁ multrple of lO

 DECODE (16 1, GAMMA) x B c D . e
1 FORMAT'(‘ZAB) e e

| 1926 60305600 G

beginning of new record
Record 1 \ Record 2

Word 1 Word 2 | Word 1 Word 2

GAMMA | HEADER 121 | HEAD 0142 | HEADER 122 |HEAD 0233

Last 4 characters of the second
word in each record are ignored.

Data transmitted under this DECODE specification would appear in storage as follows:

X=HEADER 1
B=21HEAD
C=HEADER 1
D-22HEAD

~The followmg 1llustrdtes one method of packmg the partial contents of two words into one. Information is
stored in core as: .

LOC(1)SSSSSxxxxx

.

LOC()xxxxxDDDDD
To form SSSSSDDDDD in storage locauon NAME

DECODE(lO 1 LOC(G))TEMP‘ :
‘1 FORMAT(5X,A5)

ENCODE(10,2,NAME)LOC(1), TEMP
2 FORMAT(ZAS) A

.The DECODE statement pldces the last 5 dlsplay code Lharacters of LOC(6) mto the ﬁrﬁl 5
chdrdcters of TEMP The ENCODE stalemem deks Ihe ﬁrst 5 chdrduers of LOC(l) dnd TEMP mto
TNAME i Lo e

‘ Usmg the R speuﬁcduon, the example above could be shortened to

;NCODE(IO 1 NAME)LOC(I)‘LOC(G)f‘

FORMAT(A5' 5)

60305600 G : 1927 |

INPUT/OUTPUT LISTS AND FORMAT STATEMENTS 1-10

This chapter covers input/output lists and FORMAT statements. Input/output statements, which include
READ and WRITE, are covered in section 1-9.

INPUT/OUTPUT LISTS

The list portion of an input/output statement specifies the items to be read or written and the order of
transmission. The input/output list can contain any number of elements. List items are read or written
sequentially from left to right.

If no list appears on input, a record is skipped. Only Hollerith information from the FORMAT statement
can be output with a null (empty) output list.

A list consists of a variable name, an array name, an array element name, or an implied DO list. On output
the data list can include Hollerith constants and arithmetic expressions. Such expressions must not reference
a function if such reference would cause any input/output operations (including DEBUG output) to be
executed or would cause the value of any element of the output statement to be changed.

~ Multiple lists may appear, separated by commas, each of which may be enclosed in parentheses, such as:

(..),(...).

An array name without subscripts in an input/output list specifies the entire array in the order in which it
is stored. The entire array (not just the first word of the array) is read or written.

Subscripts in an input/output list may be any valid subscript (section I-2).
Examples:

READ 100,4,B,C,D

READ 200,A,B,C(I),D(3,4),E(I,J,7),H

READ 101,J,A(J),I,B(I,J)

READ 202,DELTA

READ 102, DELTA(5*J+2,5*I-3,5%K),C,D(I+7)
READ 3,A,(B,C,D),(X,Y)

An implied DO list is a list followed by a comma and an implied DO specification, all enclosed in
parentheses.

60305600 E I-10-1

A DO-implied specification takes one of the following forms:

i1 = m;,m,,m, i = m,m,
The elements i, m;, m,, and m; have the same meaning as in the DO statement. The range of a DO-implied
specification is that of the DO-implied list. The values of i, m,, m,, and m; must not be changed within the
range of the DO implied list by a READ statement.
On input or output, the list is scanned and each variable in the list is paired with the field specification
provided by the FORMAT statement. After one item has been input or output, the next format specification
is taken together with the next element of the list, and so on until the end of the list.

Example:

READ (5,20)L,M,N
20 FORMAT (I3,12,17)

Input record

é00223456712
| -

100 is read into the variable L under the specification 13, 22 is read into M under the specification
12, and 3456712 is read into N under specification 17.

Reading more data than is in the input stream produces unprediciable values. The EOF function deseribed
section 1:8 may be used o test for end-offil

IMPLIED DO IN 1/0 LIST

Input/output of array elements may be accomplished by using an implied DO loop. The list of variables
followed by the DO loop index, is enclosed in parentheses to form a single element of the input/output list

Example:
READ (5,100) (A(I),I-1,3)
has the same effect as the statement
READ (5,100) A(1),A(2),A(3)
The general form for an implied DO loop is:
(eoe((list,i,=m,my,m;y), i3, Josd3)seeeri =K, kyk;)

m.j,k are unsigned integer constants or predefined positive integer variables. If m;, j; or k; is omitted.
a one is used for incrementing.

ij...ip are integer control variables. A control variable should not be used twice in the same implied DO nest,
but array names, array elements, and variables may appear more than once.

I-10-2 60305600 G

The first control variable (i,) defined in the list is incremented first. i, is set equal to m, and the associated list is
transmitted; then i, is incremented by mj, until m, is exceeded. When the first control variable reaches m,, it is
reset to m,; the next control variable at the right (i) is incremented; and the process is repeated until the last
control variable (i,,) has been incremented, until k, is exceeded.
The general form for an array is:
(((A(I,J,K),i=m,m,,m),1i=0,0y, 0;),13=K,ky,k;)

Example:

READ 100, ((A(JV,JX),JV=2,20,2),JX=1,30)

READ 200, (BETA(3*JON+7),JON=JONA,JONB,JONC)

READ 300, (((ITMLIST(I,J+1,K- 2),I-1,25),J=2,N),K=IVAR,IVMAX,4)
An implied DO loop can be used to transmit a simple variable more than one time. For example, the list
item (A(K),B,K=1,5) causes the variable B to be transmitted five times. An input list of the form
K,(A(I),I=1,K) is permitted, and the input value of K is used in the implied DO loop. The index variable
in an implied DO list must be an integer variable.

Examples of simple implied DO loop list items:

READ 400, (A(I),I=1,10)
400 FORMAT (E20.10)

The following DO loop would have the same effect:

DO 5 I=1,10
5 READ 400, A(I)

Example:
CAT,DOG, and RAT will be transmitted 10 times each with the following iolist

(CAT, DOG, RAT, I-1,10)

Implied DO loops may be nested.

Example:
DIMENSION MATRIX(3,4,7)
READ 100, MATRIX

100 FORMAT (I6)

Equivalent to the following;:

DIMENSION MATRIX(3,4,7)
READ 100, (((MATRIX(I,J,K),I-1,3),J=1,4),K=1,7)

60305600 B I-10-3

The list is similar to the nest of DO loops:

(=]
o

1,
1,
1

=M =]
[elN)
oo w
H oo R
I
[

’

5 READ 100, MATRIX(I,J,K)
Example:

The following list item transmits nine elements into the array E in the order: E(1,1), E(1,2), E(1,3),
E(2,1), E(2,2), E(2,3), E(3,1), E(3,2), E(3,3)

READ 100, ((E(I,J),J=1,3)I=1,3)
Example:

READ 100)(((((A(I9J9K)9B(I’L)’C(J’N)vI=l’1O)aJ=l!5)’
X K=1,8),L=-1,15),N=2,7)

Data is transmitted in the following sequence:

A(1,1,1), B(1,1), C(1,2), A(2,1,1), B(2,1), C(1,2)...
...A(10,1,1), B(l0,1), C(1,2), A(1,2,1), B(1l,1), C(2,2)...

..A(10,2,1), B(10,1), C(2,2),...A(10,5,1), B(10,1), C(5,2)...
...A(10,5,8), B(10,1), C(5,2),...A(10,5,8), B(10,15), C(5,2)...

Data can be read from or written into part of an array by using the implied DO loop.
Examples:

READ (5,100) (MATRIX(I),I-1,10)
100 FORMAT (F7.2)

Data (consisting of one constant per record) is read into the first 10 elements of the array MATRIX.
The following statements would have the same effect:

DO 40 I = 1,10
40 READ (5,100) MATRIX(I)
100 FORMAT (F7.2)

In this example, numbers are read from unit 5, one from each record,into the elements MATRIX(1)
through MATRIX(10) of the array MATRIX. The READ statement is encountered each time the DO
loop is executed; and a new record is read for each element of the array. Each execution of a READ
statement reads at least one record regardless of the FORMAT statement.

I-104 60305600 F

READ (5,100) (MATRIX(I),I=1,10)
100 FORMAT (F7.2)

In the above statements, the implied DO statement is part of the READ statement; therefore, the
FORMAT statement specifies the format of the data input and determines when a new card will be
read.

If statement 100 FORMAT (F7.2) had been 100 FORMAT (4F20.10), only three cards would be
read.

To read data into an entire array, it is necessary only to name the array in a list without any subscripts.
Example:

DIMENSION B (10,15)
READ 13,B

is equivalent to
READ 13, ((B(I,J),I=1,10),J=1,15)

The entire array B will be transmitted in both cases.

FORMAT STATEMENT

Input and output can be formatted or unformatted. Formatted information consists of strings of characters
acceptable to the FORTRAN processor. Unformatted information consists of strings of binary word values
in the form in which they normally appear in storage. A FORMAT statement is required to transmit
formatted information.

5 7
sn| | FORMAT (fs1,...,fs)

n

sn Statement label which must appear

fs,,....fs, Set of one or more field specifications separated by commas and/or slashes and
optionally grouped by parentheses

Example:

READ (5,100) INK,NAME,AREA
100 FORMAT (10X,I4,I2,F7.2)

FORMAT is a non-executable statement which specifies the format of data to be moved between input/output

device and main memory. It is used in conjunction with read and write statements, and it may appear anywhere in
the program.

60305600 B I-10-5

The FORMAT specification is enclosed in parentheses. Blanks are not significant except in Hollerith field
specifications.

Generally, each item in an input/output list is associated with a corresponding field specification in a FORMAT
statement. The FORMAT statement specifies the external format of the data, and the type of conversion to
be used, and defines the length of the FORTRAN record or records. COMPLEX variables always correspond
to two field specifications. DOUBLE variables correspond to one floating point field specification (D, E, F, G)
or two of any other kind. The D field specification will correspond to exactly one list item or half of a
COMPLEX item.

The type of conversion should correspond to the type of the variable in the input/output list. The
FORMAT statement specifies the type of conversion for the input data, with no regard to the type of the
variable which receives the value when reading is complete.

For example:

INTEGER N
READ (5,100) N
100 FORMAT (F10.2)

A floating point number is assigned to the variable N which could cause unpredictable results if N is
referenced later as an integer.

DATA CONVERSION

The following types of data conversions are available:
stEw.d Single precision floating point with exponent
~stEw.dEe With explicitly specified exponent length -
srEwdDe With explicitly specified exponent length

stFw.d Single precision floating point without exponent

stGw.d Single precision floating point with or without exponent
stDw.d Double precision floating point with exponent

rlw Decimal integer conversion

rLw Logical conversion

TAW Character conversion

fRw Character conversion

exadecimal conversios

Variable type conversion

1-10-6 60305600 E

E,F,G, D, I, L, A, R, O, and Z are the codes which indicate the type of conversion.

w Non-zero, unsigned integer constant specifying the field width in number of character pos-
itions in the external record. This width includes any leading blanks, + or - signs, decimal
point, and exponent.

d Unsigned integer constant specifying the number of digits to the right of the decimal point
within the field. On output all numbers are rounded.

e Non-zero, unsigned integer constant specifying the number of digits in the exponent.

r Non-zero, unsigned integer constant less than 217-1 specifying the number of times the con- |
version code is to be repeated.

s Optional scale factor.

z Unsigned integer constant specifying the minimum number of digits to be output.

The field width w must be specified for all conversion codes. If d is not specified for w.d, it is
assumed to be zero. w must be > d.

FIELD SEPARATORS

Field separators are used to separate specifications and groups of specifications. The format field separators
are the slash (/) and the comma. The slash is also used to specify demarcation of formatted records.

CONVERSION SPECIFICATION

Leading blanks are not significant in numeric input conversions: other blanks are treated as zeros. Plus
signs can be omitted. An all-blank field is considered to be minus zero, except for logical input, where an
all-blank field is considered to be FALSE. When an all-blank field is read with a Hollerith input specification,
each blank character is translated into a display code 55 octal.

For the E. F. G. and D input conversions, a decimal point in the input field overrides the decimal point
specification of the field descriptor.

The output field is right-justified for all output conversions. If the number of characters produced by the
conversion is less than the field width, leading blanks are inserted in the output field. The number of
characters produced by an output conversion must not be greater than the field width. If the field width is
exceeded, asterisks are inserted throughout the field.

Complex data items are converted on input/output as two independent floating point quantities. The
format specification uses two conversion elements.

Example:

COMPLEX A,B,C,D
PRINT 10,A

10 FORMAT (F7.2,E8.2)
READ 11,B,C,D

11 FORMAT (2E10.3,2(F8.3,F4.1))

60305600 G I-10-7

Data of differing types may be read by the same FORMAT statement. For example:
10 FORMAT (I15,F15.2)
specifies two numbers, the first of type integer, the second of type real.

READ (5,15) NO,NONE,INK,A,B,R
15 FORMAT (3I5,2F7.2,A4)

reads 3 integer variables
reads 2 real variables

reads 1 character variable

Iw and lw.z INPUT

The I conversion is used to input decimal integer constants.
w Iw.z

w is a decimal integer constant designating the total number of characters in the field including signs and
blanks. z is ignored on input.

The plus sign may be omitted for positive integers. When a sign appears, it must precede the first digit in
the field. Blanks are interpreted as zeros. An all blank field is considered to be minus zero. Decimal points
are not permitted. The value is stored in the specified variable. Any character other than a decimal digit.
blank, or the leading plus or minus sign in an integer field on input will terminate execution.

Example:

READ 10,I1,J,K,L,M,N
10 FORMAT (13,17,12,13,1I2,14)

Input Card: In storage:
~ontal contains 7
1590b-150 018 b Aol b4 I contains 139 L .
3 % > 5 2 4 J contains -1500 M contains -0
K contains 18 N contains 104

Iw and Iw.z OUTPUT
The I specification is used to output decimal integer values.

w lwz
w is a decimal integer constant designating the total number of characters in the field mcludmg signs and
blanks. If the integer is positive the plus sign is suppressed. Numbers in the range of 259 + 1 to 259-1
(259-1=576 460 752 303 423 487) are output correctly.
7 is a decimal 1nteger constant des1gnatmg the mlmmum number of dlgltS output Leadmg zeros are generated;,“"
‘when the ‘output value requires less than z dlgltS If z=0, a zero value will. produce all blanks. If Z=W, no blanks

‘will occur in the field when the value is positive, and the ﬁeld W1ll be too short for any negatlye value Not
'spemfymg z produces the same results asizEll e 8 ,

I-10-8 60305600 F

The specification Iw or Iw.z outputs a number in the following format:

ba...a
b Minus sign if the number is negative, or blank if the number is positive
a..a May be a maximum of 18 digits

The output quantity is right justified with blanks on the left.

If the field is too short, all asterisks occupy the field.

Example:
PRINT 10,I,7J,K I contains -3762
J contains +4762937
10 FORMAT (19,I10,I15.3) K contains + 13
Result: bbb-3762 bbb4762937lbeBJ
N— —~— ~—
8 10
7
Ist blank taken as
printer control character
Example:
WRITE (6,100)N,M,I N contains + 20
M contains -731450
100 FORMAT (I15,16,19) I contains +205
Result: bb20|** * * **|bbbbbb 205
4 6 9
4
Ist blank taken specification too
as printer control small; * indicates field
character is too short

Ew.d, EwdEs and EwdDe OUTPUT
E specifies conversion between an internal real value and an external number written with exponent.
Ewd EwdEs EwdDe

w is an unsigned integer designating the total number of characters in the field, w must be wide enough to
contain digits, plus or minus signs, decimal point, E, the exponent, and blanks. Generally, w > d + 6
orw > d + e + 4 for negative numbers and w > d + 5 or w>d+te+ 3 for positive numbers Positive
numbers need not reserve a space for the sign of the number. If the field is not wide enough to contain the
output value, asterisks are inserted throughout the field. If the field is longer than the output value, the quan-
tity is right justified with blanks on the left. If the value being converted is indefinite, an I is printed in the
field; if it is out of range, an R is printed.

60305600 D [-10-9

d specifies the number of digits to the right of the decimal within the field.
& sposifes the mumber of s in the exonet,
The Ew.d specification produces output in the following formats:
b.a...aE % ee For values where the magnitude of the exponent is less than one hundred
b.a..a * eee For values where the magnitude of the exponent exceeds one hundred
b is a minus sign if the number is negative, and a blank if the number is positive
a...a is the most significant digits of the value correctly rounded
: «";When the spemﬁcatwn Ew. dEe or Ew dDe is used the exponent is denoted by E or D and the number of‘

~ digits used for the exponent field not counting the letter and sign is determined by e. If e is specified too i
Lo small for the va]ue bemg output the entlre ﬁe]d Wldth as spemﬁed by w w1]l be ﬁl]ed w1th astensks

Examples:
PRINT 10,4 A contains -67.32 or +67.32
10 FORMAT (E10.3)
Result: -.673E+02 Or b.673E+02
PRINT 10,A

10 FORMAT (E13.3)

Result: bbb-.673E+02 Or bbbb.673E+02

If an integer variable is output under the Ew.d specification, results are unpredictable since the internal format
of real and integer values differ. An integer value does not have an exponent and will be printed, therefore, as
a very small value or 0.0.

I-10-10 60305600 D

Ew.d, Ew.dEe and Ew.dDe INPUT

E specifies conversion between an external number written with an exponent and an internal real value.

Ew.d Ew.dEe Ew.dDe

w is an unsigned integer designating the total number of characters in the field, including plus or minus
signs, digits, decimal point, E and exponent. If an external decimal point is not provided, d acts as a
negative power-of-10 scaling factor. The internal representation of the input quantity is:

(integer subfield)x 107 x 10 (exponent subfield)

For example, if the specification is E10.8, the input quantity 3267E+05 is converted and stored as:
3267x 107 10°=3.267.

If an external decimal point is provided, it overrides d. If d does not appear it is assumed to be zero. e, if
specified, has no effect on input.

In the input data, leading blanks are not significant; other blanks are interpreted as zeros.
An input field consisting entirely of blanks is interpreted as minus zero.

The following diagram illustrates the structure of the input field:

input field
+ +
digit Eor D
integer fraction exponent
subfield subfield

The integer subfield begins with a + or - sign, a digit, or a blank; and it may contain a string of digits. The
integer field is terminated by a decimal point, E, +, - or the end of the input field.

The fraction subfield begins with a decimal point and terminates with an E, +, - or the end of the input
field. It may contain a string of digits.

The exponent subfield may begin with E, + or -. When it begins with E, the + is optional between E and
the string of digits in the subfield.

For example, the following are valid equivalent forms for the exponent 3:

E+ 03|E 03|E03|E+ 3|E3|+ 3|+3|(D3{D+3|D+ 3

e 000 oo oo o080 L N X] LN L J LN) LN J oo 0 oo 00

The range, in absolute value, of permissible values is 3.13152E-294 to 1.26501E322 approximately. Smaller
numbers will be treated as zero; larger numbers will cause a fatal error message.

60305600 D I-10-11

Valid subfield combinations:

+1.6327E-04 Integer-fraction-exponent
-32.7216 integer-fraction

+328+5 integer-exponent

629E-1 fraction-exponent

+136 integer only

136 : integer only

07628431 fraction only

E-06 (interpreted as zero) exponent only

If the field length specified by w in Ew.d is not the same as the length of the field containing the input
number, incorrect numbers may be read, converted, and stored. The following example illustrates a
situation where numbers are read incorrectly, converted and stored; yet there is no immediate indication
that an error has occurred:

READ 20,4,B,C
20 FORMAT (E9.3,E7.2,E10.3)

On the card, input quantities are in three adjacent fields, columns 1-24:

fiie.47E—OH:E:3GES.321£+0§
. T - 1

—

9 5 10

9 7 10

+6.47E-01
+6.47E-01F2.36+5
+6.47E-01-2.36+5L 321E+02bb

First, +647E-01 is read, converted and placed in location A. The second specification E7.2 exceeds
the width of the second field by two characters. The number -2.36+5 is read instead of -2.36. The
specification error (E7.2 instead of E5.2) caused the two extra characters to be read. The number
read (-2.36+45) is a legitimate input number. Since the second specification incorrectly took two
digits from the third number, the specification for the third number is now incorrect. The number
.321E+02bb is read. Trailing blanks are treated as zeros; therefore the number .321E +0200 is read
converted and placed in location C. Here again, this is a legitimate input number which is converted
and stored, even though it is not the number desired.

I-10-12 ' : 60305600 A

Examples of Ew.d input specifications:

Input Field Specification Converted Value Remarks
+143.26E-03 E11.2 .14326 All subfields present
-12.437629E+1 E13.6 -124.37629 All subfields present
327.625 E7.3 327.625 No exponent subfield
4.376 E5 4.376 No d in specification
-.0003627+5 E11.7 -36.27 Integer subfield left of decimal
contains only a minus sign and a
plus sign appears instead of E in
input field
-.0003627E5 E11.7 -36.27 Integer subfield left of decimal
contains minus sign only
blanks Ew.d -0. All subfields empty
1E1 E3.0 10. No fraction subfield; input num-
ber converted as 1.x10
E+06 E10.6 0. No integer or fraction subfield;
zero stored regardless of expo-
nent field contents
1.bEb1 E6.3 10. Blanks are interpreted as zeros
1.0E13 E6.3 10000000000000.
Fw.d OUTPUT

The F specification outputs a real number without a decimal exponent.

Fw.d

w is an unsigned integer which designates the total number of characters in the field including the
sign (if negative) and decimal point. w must be > d + 2.

d specifies the number of places to the right of the decimal point. When d is zero, only the digits to the

left of the decimal and the decimal point are printed.

The plus sign is suppressed for positive numbers. If the fi eld is too short, all astensks appea
If the field is longer than requ1red the number is rlght _]UStlﬁed with blanks on the left

. ”,converted s mdetmlte a

60305600 F

I-10-13

The specification Fw.d outputs a number in the following format:

decimal point
b...al.a...a

b Minus sign if the number is negative, or blank if the number is positive.
Examples:
Value of A FORMAT Statement ~ PRINT Statement Printed Result
+32.694 10 FORMAT (1H ,F6.3) | " PRiNTjQ,A'f 32.694
+32.694 11 FORMAT (1H [F10.3) ;“‘V'PR;N"T 1A bbbb32.694
-32.694 12 FORMAT (1H ,F6.3) ,"f"P’Rl‘NT ‘1'21.‘?‘,\ o iiitad
32694 13 FORMAT (1H F4.3F6.3) | pmNT IAA 3276b.327
The specification 1H is the carriage control character.
Fw.d INPUT
On input F specification is treated identically to the E specification.
Examples of the F format specification:
Input Field Specification Converted Value Remarks
367.2593 F8.4 367.2593 : Integer and fraction field
-4.7366 F7. -4,7366 No d in specification
.62543 F6.5 .62543 No integer subfield
.62543 F6.2 62543 Decimal point overrides d of speci-
fication
+144.15E-03 F11.2 14415 Exponents are allowed in F input,
and may have P scaling
5bbbb F5.2 500.00 No fraction subfield; input number
converted as 50000x1072
bbbbb F5.2 -0.00 Blanks in input field interpreted as
-0

I-10-14 60305600 D

Gw.d INPUT

Input under control of G specification is the same as for the E specification. The rules which apply to the E
specification apply to the G specification.

Gwd
w Unsigned integer which designates the total number of characters in the field including
E, digits, sign, and decimal point
d Number of places to the right of the decimal point
Example:

READ (5,11) A,B,C
11 FORMAT (G13.6,2G12.4)

Gw.d OUTPUT

Output under control of the G specification is dependent on the size of the floating point number being
converted. The number is output under the F conversion unless the magnitude of the data exceeds the range
which permits effective use of the F. In this case, it is output under E conversion with an exponent.

Gw.d

w Unsigned integer which designates the total number of characters in the field including
digits, signs and decimal point, the exponent E, and any leading blanks.

d Number of significant digits output.

If a number is output under the G specification without an exponent, four spaces are inserted to the right of
the field (these spaces are reserved for the exponent field E +00). Therefore, for output under G conversion
w must be greater than or equal to d + 6. The six extra spaces are required for sign and decimal point plus
four spaces for the exponent field.

Example:

PRINT 200,YES YES contains 77.132
200 FORMAT (G10.3)

Output: b77.1bbbb b denotes a blank

If the decimal point is not within the first d significant digits of the number, the exponential form is used
(G is treated as if it were E).

60305600 A o I-10-15

Example:

PRINT 100, EXIT
100 FORMAT (G10.3)

Output: .121E+07
Example:

READ (5,50) SAMPLE

WRITE (6,20) SAMPLE
20 FORMAT (1X,G17.8)

EXIT contains 1214635.1

Data read by
READ statement

Data Qutput

Format Option

.1415926535bE-10

.8979323846

2643383279.

-693.9937510

.14159265E-10

89793238

.26433833E+10

-693.99375

E conversion

F conversion

E conversion

F conversion

Dw.d OUTPUT

Dw.d

Type D conversion is used to output double precision variables. D conversion corresponds to E conversion
except that D replaces E at the beginning of the exponent subfield. If the value being converted is

indefinite, an I is printed in the field; if it is out of range, an R is printed.

I-10-16

60305600 F

Examples of type D output:

DOUBLE A,B,C

A =111111.11111
B = 222222.22222
C=A+B

PRINT 10,A,B,C
10 FORMAT (3D23.11)

.11111111111D+06 .22222222222D+06 .33333333333D+06

The specification Dw.d produces output in the following format:

l_ decimal point

ba...ateee -308 < eee < 337

b.a..aD tee 0<ee=<99
b Minus sign if the number is negative, or blank if the number is positive
a.a Most significant digits
ee Digits in the exponent

Dw.d INPUT

D conversion corresponds to E conversion except that D replaces E at the beginning of the exponent
subfield.

The following diagram illustrates the structure of the input field:

input field
+ +
digit DorE
integer fraction exponent
subfield subfield

~ Ow INPUT

~ Octal values are converted under the O specification.

, kd“OWCd

The listitem corresponding to the Ow speciﬁfé‘tldh"i‘shféu«lﬁ;bf-fsmtégf:x ;

60305600 C [-10-17

Example: k

INTEGER P,Q,R
READ 10,P,Q,R
10 FORMAT (010,012,02)

Input Card:
F373737373 666b6644b44q—0[
10 12 2

Input storage (octal representation): "

P]00000000003737373737
Q [00000000666066440444
R\77777777777777777777

Ow OUTPUT

‘The O specification is used to ouytk‘put' the internal representation in octal.

Ow OWd G

w is an unsigned integer desngnatmg the total number of characters in the ﬁeld If W is less than 20 thek

rightmost digits are output. For example, if the contents of locatton P were output wrth the followmg ‘
statement the dlgtt 3737 would be output ,

WRITE (6,1)'P 1ocanonP00000000003737373737
100 FORMAT (1X,04) ,

If wis greater than 20, the 20 octal dlgllS (20 octal dlgtts a‘ 60~,’bit vuord) are right justified with blanks
on the left. S r G : ; : oI ST

'For example, if the contents of location P are'o'utput with the following statement

WRITE (6,200) P
200 FORMAT (1X,022)

Output would appear as follows:
',bboooooooooos,73737373'7' b. = blank
A negauve number is output in one’s complement internal form.

If d is specified, the number is prmted with leading zero suppression and with' a- minus sign for negattve

numbers. At least d digits will be prmted If the number cannot be output in w octal digits, all asterisks
k w111 ﬁll ’the ﬁeld

I-10-18 60305600 D

Example:
I =-11
WRITE (6,200) I
Output would appear as follows:

bb777777TTTTTTT?7777764

The specification Ow produces a string of up to 20 octal digits. Two octal specifications must be used for variables
whose type is complex or double precision.

Zw INPUT and OUTPUT

Hexadecimal values are converted under the Z specification.
Zw

w is an unsigned integer designating the total number of characters in the field. The input field may contain
digits and the letters A through F. A maximum of 15 hexadecimal digits is allowed, blanks and a plus or
minus sign may precede the first hexadecimal digit. On output if w is greater than 15, leading blanks will

occur.
Aw INPUT

The A specification is used to input character data
Aw
w is an unsigned integer designating the total number of characters in the field.
Character information is stored as 6-bit display code characters, 10 characters per 60-bit word. For example, the

digit 4 when read under A specification is stored as a display code 37. If w is less than 10, the input quantity is
stored left justified in the word; the remainder of the word is filled with blanks.

Example:

READ (5,100) A
100 FORMAT (A7)

Input record:

rEXAMPLE
When EXAMPLE is read it is stored left justified in the 10 character word

1234567890
FXIAMPIIE]] |

If w is greater than 10, the rightmost 10 characters are stored and remaining characters are ignored.

Example:

READ (5,200)B
200 FORMAT (Al3)

60305600 D [-10-19

Input record:

1 13
(SPECIFICATION

In storage:

12345678910

iAo

READ (5,10) Q,P,R
10 FORMAT (A10,A10,A5)

Input record:

~ g
-

THIS IS ANIEXAMPLE KNOW
\qr
10 10 5

In storage:
12345678910
QT (1 [Ap
» [FRAFEEE
Rl][] 1]

Aw OUTPUT
The A specification is used to output alphanumeric characters.
Aw
w is an unsigned integer designating the total number of characters in the field. If w is less than 10,
the leftmost characters in the word are printed. For example, if the contents of location A in the Aw

input example are output with the following statements:

WRITE (6,300)A
300 FORMAT (1X,A4)

In storage:

A [EHERH]T]

Characters EXAM are output

1-10-20 60305600 A

If w is greater than 10, the characters are output right-justified in the field, with blanks on the left. For l
example, if A in the previous example is output with the following statements:

WRITE (6,400)A
400 FORMAT (1X,A12)

Output is as follows:

bbEXAMPLEDbDD b = blank

Rw INPUT

w is an unsigned integer designating the total number of characters in the field. The R specification is the
same as the A specification unless w is less than 10. If w is less than 10, the input characters are stored
right-justified, with binary zero fill on the left.

Example:

READ (5,600) HOO,RAY
600 FORMAT (R10,R5)

o Input card: s .
((RESULTS OF TEEI :

- In storage

HOO EEE 1uEEC &y
 RAY CﬂDSUuES | : b = b“d?‘k

Rw OUTPUT

' Aw

wisan un91gned mteger desxgndtmg the total number of characters in the reld

- This specification is the same as the A specxﬁcatlon unless wis less than 10. If w._is less than IO the rxght-' :
most characters are output For example if RAY from the prev10us example 1s output w1th the followmg
statements S i : o ; g

. WRITE (6 700) ,RAY”
700 FORMAT (1X,R3)

~ Characters EST ure,,outpm.yf o

60305600 G [-10-2]

Lw INPUT
The L specification is used to input logical variables.
Lw
w is an unsigned integer designating the total number of characters in the field.
If the first non-blank character in the field is T, the logical value .TRUE. is stored in the corresponding list

item, which should be of type logical. If the first non-blank character is F, the value .FALSE. is stored. If the
first non-blank character is not T or F, a diagnostic is printed. An all blank field has the value .FALSE.

Lw OUTPUT
Lw
w is an unsigned integer designating the total number of characters in the field.

Variables output under the L specification should be of type logical. A value of .TRUE. or .FALSE. in
storage is output as a right justified T or F with blanks on the left.

Example:
LOGICAL I,J,K I contains -0
PRINT 5,I,J,K J contains 0
5 FORMAT (3L3) K contains -0
Output:
bTbbFbbT

SCALE FACTORS

The scale factor P is used to change the position of a decimal point of a real number when it is input or
output. Scale factors may precede D, E, F and G format specifications.

wowd nbbwidEs | neDwidDs’

nPFw.d
nPGw.d.
P

n is the scale factor which can be any integer constant. w is an unsigned integer constant designating the
total width of the field. d determines the number of digits to the right of the decimal point.

1-10-22 ‘ 60305600 G

A scale factor of zero is established when each format control statement is first referenced; it holds for all
F, E, G, and D field descriptors until another scale factor is encountered.

Once a scale factor is specified, it holds for all D, E, F, and G specifications in that FORMAT statement
until another scale factor is encountered. To nullify this effect for subsequent D, E, F, and G specifications,
a zero scale factor, OP must precede a specification.
Example:
15 FORMAT(2PE14.3,F10.2,G16.2,0P4F13.2)
The 2P scale factor applies to the E14.3 format specification and also to the F10.2 and G16.2 format
specification. The OP scale factor restores normal scaling (10° = 1) for the subsequent specification

4F13.2.

A scaling factor may appear independently of a D, E, F or G specification. It holds for all subsequent D, E,
F or G specifications within the same FORMAT statement,until changed by another scaling factor.

Example:
FORMAT(SP SX E12 6, FlO 3, OPD18 7, -1P F5 2)

El2 6 and FlO 3 spec1ﬁcauons Are scaled by 103 the DI8. 7 spemﬁcauon is not scaled, and the F5.2
] specxﬁcauon is scaled by lO"' e

The speclﬁcauon (3P 319,F10. 2) is the same as the specxﬁcatlon (319 3PF 10 2)

Fw.d SCALING
INPUT

The number in the input field is divided by 10M and stored. For example, if the input quantity 314.1592 is
read under the specification 2PF8.4, the internal number is 314.1592 X 102 = 3.141592. However, if an
exponent is read the scale factor is ignored.

OUTPUT

The number in the output field is the internal number multiplied by 10". In the output representation, the
decimal point is fixed; the number moves to the left or right, depending on whether the scale factor is plus
or minus. For example, the internal number-3.1415926536 may be represented on output under scaled F
specifications as follows:

(=1PF13. 6) =e314159
(F13. ©) -34141593
(1PF13. 6) -31.415927
(3PF13. 6) =3141.592654

00 ¢ 000 850000000 00 000008 000600 000

60305600 D , I-10-23

Ew.d AND Dw.d SCALING

INPUT

Ew.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor nP is to shift the output coefficient left n places and reduce the exponent by n.
In addition, the scale factor controls the decimal normalization between the coefficient and the exponent such
that: if n < 0, there will be exactly -n leading zeros and d + n significant digits after the decimal point; if

n > 0, there will be exactly n significant digits to the left of the decimal point and d - n + 1 significant digits

to the right of the decimal point. For example, the number -3.1415926536 is represented on output under the
indicated Ew.d scaling as follows:

PO 8 00000 VOB VDA IS ISH 08N S

(‘3PEZU- 4) -.0003E+04
(-1PE20. &) ~-«0314E+02
(E20, &) ~eJ3142E+(1
(1PE20. &) -3.1416E+CD
(3FE2C. &) -314.16€E-{2

P® 5 68 0088 088 050009 CIDELE SN
Gw.d SCALING

INPUT

Gw.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor is nullified unless the magnitude of the number to be output is outside the range
that permits effective use of F conversion (namely, unless the number N < 104-1 or N > lOd). In these cases,
the scale factor has the same effect as described above for Ew.d and Dw.d scaling. For example, the numbers
-3.1415926536 and -.00031415926536 are represented on output under the indicated Gw.d scaling as follows:

L L B I BN BN BN BN IR BN BN NE BR BN BN CBE BUIN BN BN NE BE BN BE BE N N B) 00 O B O & GO B OO0 LSOO B IO PAET PISES Se

(~3PG20. 5) -3.14153 (-3PG2C. f) ~eZU0314E+LT
(-1PG20. 6) -3.14159 (-1PG20. 6) ~e031416E~02
(G20« 6) ~3.14159 (620« o) ~e314153E~-03
(1PG20. 6) -3.14159 (1PG2C. 6) =2.141593£-C
(3PG2C. ©) -3.14159 (3PG2C. 6) -314.1533F~-36
(5PG20. £) ~3.14159 (5PG20. b6) ~31415.33F-03
P® 0B SO VLLIBDVVLBNE NI OBDLIANGGT SO (7P6200 o) -3414152

X SPECIFICATION

OB O & 058083090 0088000 00080 e

The X specification is used to skip characters in an input line or output line. On output, any character
positions not previously filled. during this record generation will be set to blank. It is not associated with a
variable in the input/output list.

1-10-24

60305600 G

nX Number of characters, n, to be skipped. An optional plus sign may precede n.

0X is ignored, X is interpreted as 1X. The comma following X in the specification list is optional.

-nX Back up n characters, will not back up beyond the first column.

Example:
WRITE (6,100) A,B,C A = -342.743
100 FOR<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>