
FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CONTROL DATA®
CYBER 170 SERIES
CYBER 70 SERIES
6000 SERIES
7000 SERIES
COMPUTER SYSTEMS

CONTROL DATA
C0f~PORA1 ION

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number ind~cates pagination rather than content has changed.

REVISION RECORD
REVISION DESCRIPTION

A Original Printin_g_

(10-22-71)

B This revision uses shading to denote non-ANSI features and footnotes to indicate information that

_(_10-06~72_1 applies only to the Model 76 and 7600 computers or only to the Models 72, 73, 74, and 6000 com_ll!Iters

The sections on the Reference Map and COMPASS coded subprograms are new with more details and

exam~es. This manual su~ersedes _{_but does not invalidatel the _2!evious edition.

c This revision corrects typographic errors and expands the description of some features. This revision

(5-25-73) reflects Version 4.0 of FORTRAN Extended available with SCOPE 3.4 and KRONOS 2.1 operating

systems. Pages affected are: iii, iv, vii thru xi, xvi, xviii, I-1-1, I-1-2, I-1-4, I-2-5 thru I-2-12, I-3-5,

I-3-6, I-3-8, I-5-8, I-5-15, I-5-16, I-6-1, I-6-6, I-6-9, I-6-11, I-6-21 thru I-6-26, I-7-1, I-7-2, I-7-20, I-7-21,

I-8-1 thru I-8-4, I-8-6, I-8-8 thru I-8-11, I-8-13, I-9-1 thru I-9-4, I-9-8, I-9-15, I-9-16, I-9-19, I-9-20,

I-10-2, I-10-13, I-10-14, I-10-16 thru I-10-18, I-10-21, I-10-23, I-10-24, I-10-31, I-10-32, I-11-1, I-11-3,

I-11-4, I-11-6, I-12-5 thru I-12-9, I-13-1, I-13-20 thru I-13-22, 11-1-1, 11-1-2, 11-1-15, 11-1-17, 11-1-37

thru 11-1-39, 111-2-1 thru 111-2-13, 111-2-19, 111-2-20, 111-4-8, 111-4-10, 111-5-10, 111-5-17, 111-6-1 thru

IJI-6-9, 11-7-1, III-7-6, 111-10-2, III-10-5, 111-11-1, 111-12-1, 111-12-2, 111-13-1, III-13-9, A-1, A-2,

Index-I, Index 12, and Comment Sheet

D This revision includes the new features of Version 4.1, as well as minor corrections. Major changes occur

(11-30-73) in sections I-9 and 1-10 for the I/O enhancements. FTN control card options are now arranged alpha-

betically. Pages affected: iii thruxxi; Part I: 1-2, 1-3, 1-4; 2-1, 2-2, 2-9, 2-10, 2-17; 3-8; 5-15, 5-16;

6-6, 6-8, 6-9, 6-11, 6-12, 6-13, 6-21, 6-25; 7-1, 7-2, 7-3, 7-20, 7-21; 8-12 thru 8-15; 9-1 thru 9-26; 10-1,

10-2, 10-6 thru 10-14, 10-18 thru 10-35; 11-1 thru 11-9; 12-9; 13-30; Part II: 1-37 thru 1-41; Part Ill:

1-1, 1-2, 1-9, 1-12; 2-3 thru 2-14, 2-19, 2-20; 3-3 thru 3-11; 4-11; 5-1, 5-3, 5-7, 5-11, 5-14; 8-1;

Publication No. 12-1, 12-2; 13-1, 13-2; A-1; Index 1 thru 18; Comment Sheet.

60305600

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

FORTRAN Extended Version 4
Reference Manual

© 1971, 1972, 1973, 1974, 1975
Control Data Corporation
Printed in the United States of America

ii

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

60305600 G

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD (Cont'd)
REVISION DESCRIPTION

E 1bis revision includes new features of Version 4.2 for use under SCOPE 3 .4, KRON OS 2.1, and SCOPE

(5-10-74) 2.1; and it incorporates clarifications and technical and typographical corrections. Pages affected: iii

thru x; Part I: 4-3; 5-8, 5-9, 5-10; 6-12, 6-17, 6-18, 6-21, 6-25; 7-2, 7-8, 7-9; 8-1, 8-2, 8-5 thru 8-8,

8-13, 8-15; 9-7, 9-9, 9-11, 9-14; 10-1, 10-6, 10-34; 11-2 thru 11-9; Part III: 2-15 thru 2-19; 5-12, 5-19;

7-4; 11-1 thru 11-3; Index-2, 9, 10, 13; Comment Sheet.

F This revision documents Version 4.3 of FORTRAN Extended for use under NOS 1.0, SCOPE 3.4,

(10-5-74) KRONOS 2.1, and SCOPE 2.1. Changes include the following features: Time-sharing FORTRAN Option,

FIN Optimization (Phase III), FORTRAN Extended - SORT Interface, Multiple Arguments for Logical

Functions, NAMELIST Rewrite, Multiple-index Capability for Record Manager Advanced Access Files, and

Record Manager Word Addressable File Enhancements. Also incorporated are clarifications and technical

corrections. Pages affected: Cover, iii thru x.1; Part I: 2-2, 6, 7, 17; 3-2 thru 5, 11, 12; 4-5; 5-5, 8

thru 10; 6-4, 12, 13, 17, 23, 24, 25; 7-2, 7, 8, 18 thru 21; 8-1 thru 21; 9-13 thru 22, 25; 10-4,

7, 8, 13, 16, 24, 25, 31 thru 38; 1 1-1 thru 1 0; 13-5, 13, 14, 15; Part II: 1-5, 9, 10, 15, 16, 18, 23,

38 thru 41; Part III: 1-1 thru 24; 2-1 thru 33; 3-1 thru 10; 4-1 thru 5, 9, 11 ; 5-1 thru 12; 6-1,

10, 11; 7-2, 11; 8-1; 10-1, 2, 5, 6, 7; 11-1 thru 3; 13-1 thru 3; 14-1 thru 4; 15-1, 2; 16-l thru

5; Index I thru 19; Comment Sheet. Specific pages affected by the features are as follows: Time-

sharing FORTRAN option: 1-11-7, 8, 10; III-1-17 thru 24; 2-1, 14 thru 25; 13-2; 14-1; 15-1, 2.

FIN Optimization (Phase III): III-14-1 thru 3. FORTRAN Extended - SORT Interface: III-16-1 thru 5.

Multiple Arguments for Logical Functions: 1-7, 8; 8-1, 3; 11-8, 9; III-8-1; 10-1, 5. NAMELIST

Rewrite: 1-6-24; 9-16 thru 19; 11-1-10, 18, 39 thru 41; 111-2-31, 32. Multiple Index Capability for

Record Manager Advanced Access Files: III-6-10, 11. Record Manager Word Addressable File Enhance-

ments: III-5-5, 6; 7-2.

G This revision documents Version 4.4 of FORTRAN Extended. Changes include the following features:

(3-28-75) Math Library Upgrade Phase II, CP079, 1/0 APLIST Modification, CP123, Dynamic Listing Control and

VO option, CP121.

Publication No.

60305600

60305600 G iii/iv

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and
additions to information in this manual are indicated
by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the
page number indicates pagination rather than content
has changed.

Feature Page Revision

Front Cover -
Title Page -
ii thru xxviii G
1-1-1 thru 1-3 G
1-4 D
1-2-1 thru 2-17 G
1-3-1 B
3-2 G
3-3, 3-4 F
3-5 G
3-6 c
3-7 B
3-8 G
3-9 B
3-10 A
3-11, 3-12 G
3-13 thru 3-15 B
3-16 A
1-4-1, 4-2 B
4-3 E
4-4 B
4-5 F
4-6 B
1-5-1 thru 5-16 G
1-6-1 thru 6-24 G
1-7-1 thru 7-19 G
1-8-1 thru 8-3 G
8-4, 8-5 F

CP079 8-6, 8-7 G
8-8 thru 8-14 G
8-15 F
8-16 G
8-17 F
8-18 G

60305600 G

Feature

CP121

CP121

Page Revision

1-8-19, 8-20 F
8-21 G
1-9-1, 9-2 G
9-3, 9-4 D
9-5, 9-6 G
9-7 E
9-8 D
9-9 G
9-10 D
9-11 thru 9-13 G
9-14 F
9-15 thru 9-27 G
1-10-1 E
10-2 G
10-3 B
10-4 F
10-5 B
10-6 E
10-7 G
10-8 F
10-9 thru 10-11 D
10-12 A
10-13 F
10-14 D
10-15 A
10-16 F
10-17 c
l 0-18 , 1 0-19 D
10-20 A
10-21, 10-22 G
10-23 D
10-24 G
10-25 F
10-26 thru 10-28 D
10-29 thru 10-39 G
I-11-1 thru 11-7 G
11-8 G
11-9 G
11-10 G
1-12-1 thru 12-6 G
12-7' 12-8 c
12-9 G

v

Feature Page Revision Feature Page Revision

1-13-1 c III-1-13 G
13-2 G 1-14 F
13-3, 13-4 B 1-15 B
13-5 G 1-16 thru 1-24 F
13-6 B III-2-1 G
13-7 G 2-2 A
13-8 G 2-3 thru 2.-13 F
13-9 thru 13-11 B 2-14 thru 2-31 G
13-12 thru 13-15 G CP079 2-32 thru 2-38 G
13-16, 13-17 B CP079 III-3-1 thru 3-5 G
13-18 G 3-6 thru 3-12 G
13-19 B III-4-1 A
13-20 thru 13-22 c 4-2 F
13-23 thru 13-25 B 4-3 thru 4-5 G
13-26 thru 13-28 G 4-6,4-7 A
13-29 B 4-8 c
13-30 G 4-9 G
13-31 B 4-10 c
11-1-1, 1-2 c 4-11 G
1-3 A 4-12 B
1-4 B III-5-1 F
1-5 G 5-2 thru 5-5 G
1-6 thru 1-9 B 5-6 F
1-10 F 5-7 thru 5-12 G
1-11, 1-12 B III-6-1 thru 6-11 G
1-13 A III-7-1 thru 7-13 G
1-14 B III-8-1 F
1-15 G III-9-1 B
1-16 F 9-2 A
1-17 c 9-3 G
1-18 F III-10-1 thru 10-3 G
1-19 G 10-4 B
1-20 thru 1-22 B 10-5 G
1-23 F 10-6, 10-7 F
1-24, 1-25 B III-11-1 G
1-26 A 11-2 F
1-27 B 11-3 G
1-28 thru 1-36 A III-12-1 G
1-37 D CP121 12-2 G
1-38 G 12-3 thru 12-7 G
1-39 thru 1-41 F III-13-1 D
Ill-1-1 thru 1-4 G 13-2 G
1-5 B 13-3 thru 13-11 G
1-6 F CP121 IIl-14-1 G
1-7 G 14-2 G
1-8, 1-9 F CP121 14-3 G
1-10, 1-11 B 14-4, 14-5 G
1-12 F III-15-1, 15-2 G

vi 60305600 G

Feature Page Revision Feature Page Revision

III-16-1 thru 16-6 G
A-1 G
A-2 c
A-3 B
lndex-1 thru 7 G
Comment Sheet G
Return Env -
Back Cover -

60305600 G vii/viii

PREFACE

This manual describes the FORTRAN Extended 4.4 language. FORTRAN Extended is designed to comply with I
American National Standards Institute FORTRAN language, as described in X3.9-1966. It is assumed the reader
has knowledge of an existing FORTRAN language and is familiar with the computer system on which the lan­
guage is used.

The FORTRAN Extended compiler operates in conjunction with the COMP ASS 3 assembly language processor
under control of:

NOS 1.0 operating system for the CONTROL DATA® CYBER 170, CYBER 70/Models 72, 73, 74, and
6000 Series Computer Systems

SCOPE 3.4 and KRONOS 2.1 operating systems for the CDC CYBER 70/Models 72, 73, 74, and
6000 Series Computer Systems

SCOPE 2.1 operating system for the CDC CYBER 70/Model 76 and 7600 Computer Systems

Version 4.4 of FORTRAN Extended provides dynamic compilation listing control, Phase II of the Math
Library Upgrade (addition of SINH and COSH, plus further math library improvements), and optional indexed
array element prefetching and B-register preservation across FORTRAN Math library basic external function
references.

This manual is in three parts. The reference section, Part I, contains a full description of the FORTRAN
Extended language. ·

I
Part II consists of a set of sample programs with input cards and output. Each program is preceded by a short
introduction which explains some of the more difficult aspects of the language for the less experienced FORTRAN
programmer.

Part III contains mainly information related to debugging, various interfaces, and additional details related to
the operation of FORTRAN Extended.

Other Documents of Interest Publication Number

COMP ASS 3 Reference Manual 60360900

FORTRAN Common Library Mathematical Routines 60387900

FORTRAN Extended DEBUG User's Guide 60329400

INTERCOM 4 Reference Manual 60307100

INTERCOM Interactive Guide for Users of FORTRAN Extended 60359700

60305600 G ix

I

KRONOS 2.1 Reference Manual 60407000

KRONOS 2.1 Time-Sharing User's Reference Manual 60407600

LOADER Reference Manual 60344200

NOS 1.0 Reference Manual 60435400

NOS 1.0 Time-Sharing User's Reference Manual 60435500

Record Manager Reference Manual 60307300

Record Manager Guide for Users of FORTRAN Extended 60385200

CYBER Record Manager User's Guide 60359600

SCOPE 3.4 Reference Manual 60307200

SCOPE 2 Reference Manual 60342600

SIFT Programming System Bulletin 60358400

Sort/Merge Reference Manual 60343900

UPDATE Reference Manual 60342500

Throughout the manual, Control Data extensions to the FORTRAN language are indicated by shading. Other­
wise, FORTRAN Extended conforms to ANSI standards.

x

This product is intended for use only as described in this document. Control
Data cannot be responsible for the proper functioning of undescribed features
or undefined parameters.

60305600 G

CONTENTS

PREFACE iii

STATEMENT FORMS xi

PART I

CODING FORTRAN STATEMENTS 1-1-1 4 ASSIGNMENT STATEMENTS 1-4-1
FORTRAN Character Set 1-1-1 Arithmetic Assignment Statements 14-1
FORTRAN Statements 1-1-2 Conversion to Integer 14-2
Continuation Unes 1-1-2 Conversion to Real 14-3
Statement Separator 1-1-2 Conversion to Double Precision 14-3
Statement Labels 1-1-3 Conversion to Complex 14-4
Comments 1-1-3 Logical Assignment 14-5
Columns 73-80 1-1-3 Masking Assignment 14-5
Blank Lines 1-1-3 Multiple Assignment 14-6
Data 1-1.:3

5 CONTROL STATEMENTS 1-5-1
2 LANGUAGE ELEMENTS 1-2-1 GO TO Statement 1-5-1

Constants 1-2-1 Unconditional GO TO Statement 1-5-1
Integer Constant 1-2-1 Computed GO TO Statement 1-5-2
Real Constant 1-2-2 ASSIGN Statement 1-5-3
Double Precision Constant 1-2-3 Assigned GO TO Statement 1-54
Complex Constant 1-2-4 Arithmetic IF Statement 1-5-5
Octal Constant 1-2-5 Three-Branch Arithmetic IF
Hollerith Constant 1-2-6 Statement 1-5-5
Logical Constant 1-2-8 Two-Branch Arithmetic IF

Variables 1-2-9 Statement 1-5-5
Integer Variables 1-2-10 Logical IF Statement 1-5-6
Real Variables 1-2-10 Standard-Form Logical IF
Double Precision Variables 1-2-11 Statement I-5-6
Complex Variables I-2-11 Two-Branch Logical IF
Logical Variables 1-2-11 Statement I-5-7

Arrays I-2-12 DO Statement 1-5-7
Subscripts 1-2-14 DO Loops 1-5-8
Array Structure 1-2-15 Nested DO Loops 1-5-9

CONTINUE Statement I-5-13
3 EXPRESSIONS 1-3-1 PAUSE Statement 1-5-14

Arithmetic Expressions 1-3-2 STOP Statement 1-5-14
Evaluation of Expressions 1-3-3 END Statement 1-5-15
Type of Arithmetic Expressions 1-3-5 RETURN Statement I-5-15
Exponentiation 1-3-6

Relational Expressions 1-3-7 6 SPECIFICATION STATEMENTS I-6-1
Logical Expressions I-3-9 Type Statements I-6-1
Masking Expressions 1-3-13 Explicit Type Statements I-6-2

60305600 G xi

IMPLICIT Type Statement I-6-3 PRINT I-9-3
DIMENSION Statement I-6-5 PUNCH I-9-4
COMMON Statement 1-6-6 Formatted WRITE I-9-5
EQUIVALENCE Statement I-6-10 Unformatted WRITE I-9-6
EQUIVALENCE and COMMON I-6-13 List Directed WRITE I-9-7
LEVEL Statement I-6-15 INPUT Statements I-9-7
EXTERNAL Statement I-6-16 Formatted READ I-9-7
DATA Statement I-6-19 Unformatted READ I-9-8

List Directed READ I-9-9
7 PROGRAMS, SUBPROGRAMS, List Directed Input Data Forms I-9-10

AND PROCEDURES I-7-1 List Directed Output Data Forms I-9-11
Main Program I-7-2 File Manipulation Statements I-9-12

PROGRAM Statement Format I-7-2 REWIND I-9-12
PROGRAM Statement Usage I-7-3 BACKSPACE I-9-12

Block Data Subprogram I-7-5 END FILE I-9-13
Procedures I-7-6 BUFFER Statements I-9-13

Subroutine Subprogram I-7-6 NAME LIST I-9-15
Function Subprogram I-7-8 Input Data I-9-17
Basic External Function I-7-9 Output I-9-18
Intrinsic Function I-7-10 Arrays in NAMELIST I-9-19
Statement Function I-7-10 ENCODE and DECODE I-9-21

Procedure Communication I-7-12 ENCODE I-9-21
Passing Values to a Procedure 1-7~12 DECODE I-9-24

Using Arguments I-7-12
Using Common I-7-14 10 INPUT/OUTPUT LISTS AND
Using Arrays 1-7-14 FORMAT STATEMENTS I-10-1

Referencing a Function I-7-15 Input/Output Lists I-10-1
Calling a Subroutine Subprogram I-7-16 IMPLIED DO in I/O List I-10-2
Using the ENTRY Statement I-7-18 FORMAT Statement I-10-5

Data Conversion I-10-6
8 FORTRAN EXTENDED SUPPLIED Field Separators I-10-7

PROCEDURES I-8-1 Conversion Specification I-10-7
Intrinsic Functions I-8-1 Scale Factors I-10-22
Basic External Functions I-8-6 X Specification I-10-24
Additional Utility Subprograms I-8-9 nH Output I-10-25

Operating System Interface nH Input I-10-26
Routines I-8-9 * ... **·· ·* I-10-27

Debugging Aids I-8-15 FORTRAN Record Slash I-10-29
Random Number Generator I-8-16 Repeated Format Specification I-10-31
Mass Storage Input/Output 1-8-16 Printer Control Character I-10-32
Input/Output Status Checking I-8-18 Tn Specification I-10-34
Other Input/Output Subprograms I-8-19 V Specification I-10-35
ECS/LCM Subprograms I-8-20 Equals Sign I-10-36
Terminal Interface I-8-21 Execution Time Format
CYBER Record Manager Interface I-8-21 Statements I-10-38
Sort/Merge Interface I-8-21

11 FORTRAN CONTROL CARD I-11-1
9 INPUT /OUTPUT I-9-1 Parameters I-11-1

FORTRAN Record Length I-9-2 A Exit Parameter I-11-2
Carriage Control I-9-2 B Binary Object File I-11-2
Output Statements I-9-3 BL Burstable Listing I-11-2

xii 60305600 G

C COMP ASS Assembly 1-11-2 FTN Control Card Samples I-11-9
D Debugging Mode Parameter 1-11-3
E Editing Parameter I-11-3 12 OVERLAYS I-12-1
EL Error Level I-11-3 Overlay Communication 1-12-3
G Get System Text File I-11-4 Creating an Overlay I-12-3
GO Automatic Execution I-11-4 Calling an Overlay I-12-5
I Source Input File 1-11-4
L List Output File I-11-4 13 DEBUGGING FACILITY I-13-1
LCM Level 2 and Level 3 Debugging Statements I-13-3

Storage Access I-11-5 Continuation Card I-13-4
ML Modlevel 1-11-5 ARRAYS Statement I-13-4
OL Object list I-11-5 CALLS Statement I-13-6
OPT Optimization Parameter I-11-5 FUNCS Statement I-13-8
P Pagination I-11-6 STORES Statement I-13-11
PL Print Limit I-11-6 Variable Names I-13-12
Q Program Verification I-11-6 Relational Operators I-13-13
R Symbolic Reference Map I-11-6 Checking Operators I-13-14
ROUND Rounded Arithmetic Hollerith Data I-13-14

Computations I-11-7 GOTOS Statement I-13-15
S System Text (Library) File I-11-7 TRACE Statement I-13-16
SEQ Sequential Input 1-11-7 NOGO Statement 1-13-18
SL Source list I-11-7 Debug Deck Structure I-13-19
SYSEDIT System Editing 1-11-8 DEBUG Statement I-13-24
T Error Traceback 1-11-8 AREA Statement 1-13-26
TS Timesharing Mode I-11-8 OFF Statement I-13-28
UO Unsafe Optimization 1-11-8 Printing Debug Output 1-13-30
X External Text Name I-11-9 STRACE En try Point I-13-30
Z Zero Parameter 1-11-9

PART II

SAMPLE PROGRAMS II-1-1 PROGRAM X II-1-24
PROGRAM OUT II-1-1 PROGRAM V ARDIM II-1-26
PROGRAM B II-1-4 PROGRAM V ARDIM2 II-1-28
PROGRAM MASK II-1-6 SUBROUTINE IOTA II-1-28
PROGRAM· EQUIV II-1-9 SUBROUTINE SET II-1-28
PROGRAM COME II-1-11 FUNCTION A VG II-1-29
PROGRAM LIBS II-1-14 FUNCTION PVAL II-1-30
PROGRAM PIE II-1-17 FUNCTION MULT II-1-30
PROGRAM ADD II-1-19 Main Program - VARDIM2 II-1-31

DECODE (READ) II-1-19 PROGRAM CIRCLE II-1-35
ENCODE (WRITE) II-1-19 PROGRAM OCON II-1-37

PROGRAM PASCAL II-1-22 List Directed Input/Output II-1-40

PART III

1 CROSS REFERENCE MAP III-1-1 Entry Points III-1-6
Optimizing Compilation Mode III-1-1 Variables III-1-7

Source Program III-1-2 File Names III-1-9

60305600 G xiii

External References III-1-10 FILE Control Card III-5-6
Inline Functions III-1-11 Sequential File Backspace/Rewind III-5-8
NAMELISTS III-1-11 BUFFER Input/Output III-5-10
Statement Labels III-1-12 BUFFER IN III-5-10
DO Loops III-1-13 BUFFER OUT III-5-11
Common Blocks III-1-14 Labeled File Processing III-5-11
EQUIVALENCE Classes III-1-15 Programming Notes III-5-12
Program Statistics III-1-16
Error Messages III-1-16 6 FORTRAN - CYBER RECORD

TS Mode III-1-17 MANAGER INTERFACE III-6-1
Common Blocks III-1-20 File Information Table Calls III-6-1
En try Po in ts IIl-1-20 File Commands III-6-3
External References IIl-1-20 Updating File Information Table III-6-3
Statement Labels III-1-21 Key Hashing Subroutine III-6-8
Variables III-1-22 Error Checking III-6-9
Blocks III-1-23 Multiple Index Processing III-6-10

2 FOR TRAN DIAGNOSTICS IIl-2-1 7 MASS STORAGE INPUT/OUTPUT III-7-1
Compilation Diagnostics IIl-2-1 Random File Access III-7-1

Special Compilation Diagnostics IIl-2-14 Index Key Types III-7-2
Compilation Diagnostics, TS Mode IIl-2-18 Multi-Level File Indexing III-7-5

Execution Diagnostics 111-2-31 Master Index III-7-6
Sub-Index III-7-6

3 EXECUTION-TIME PROCESSING III-3-1 Mass Storage Subroutine IIl-7-9
Error Processing III-3-1 OPENMS III-7-9
Extended Error Processing III-3-1 WRITMS III-7-9

SYSTEM III-3-1 READ MS III-7-10
SYSTEMC III-3-2 CLOSMS III-7-11
ERRSET III-3-7 STINDX 111-7-11

Execution-Time Options 111-3-9 Compatibility with Previous Mass
File Name Handling III-3-9 Storage Routines III-7-12
Print Limit Specification III-3-11 Error Messages III-7-13

4 ARITHMETIC III-4-1 8 RENAMING CONVENTIONS III-8-1
Floating Point Arithmetic III-4-1 Register Names III-8-1

Overflow (+"' or -00
) III-4-3 External Procedure Names

Underflow (+O or -0) III-4-3 (Processor Supplied) III-8-1
Indefinite Result III-4-4 Call-by-Value III-8-1
Nonstandard Floating Point Call-by-Name III-8-1

Arithmetic III-4-5
Integer Arithmetic III-4-7 9 PROGRAM AND MEMORY
Double Precision III-4-7 STRUCTURE III-9-1
Complex III-4-8 Subroutine and Function Structure III-9-2
Logical and Masking III-4-8 Main Program Structure III-9-3

Arithmetic Errors III-4-8 Memory Structure IIl-9-3

5 EXECUTION-TIME INPUT/OUTPUT III-5-1 10 INTERMIXED COMPASS
File and Record Definitions III-5-1 SUBPROGRAMS III-10-1
Structure of Input/Output Files III-5-2 Call by Name and Call by Value III-10-1

Sequential Files III-5-2 Call by Name Sequence III-10-1
Random Files III-5-6 Call by Value Sequence III-I 0-2

xiv 60305600 G

COMP ASS Subprograms III-10-2 Compilation and Two Executions
Entry Point 111-10-5 with Overlays IIl-13-11
Restrictions on Using Library

Function Names III-10-5 14 COMPILATION MODES AND
OPTIMIZATION III-14-1

11 TERMINAL 1/0 WITH FORTRAN III-11-1 Object Code Optimization 111-14-2
Source Code Optimization 111-14-3

12 LISTINGS III-12-1
FORTRAN Listing Control III-12-2 15 TIME-SHARING FORTRAN 111-15-1
DMPX III-12-3 Source Listing Format 111-15-1

Sequenced Line Format III-15-2
13 SAMPLE DECK STRUCTURES III-13-1

FORTRAN Source Program with 16 FORTRAN - SORT/MERGE
Control Cards III-13-1 INTERFACE III-16-1

Compilation Only III-13-2 SORT 111-16-1
TS Mode Compilation Only III-13-2 SOR TB IIl-16-1
Compilation and Execution III-13-3 SORTP IIl-16-1
FORTRAN Compilation with MERGE 111-16-2

COMP ASS Assembly and FILE III-16-2
Execution III-13-4 KEY 111-16-3

Compile and Execute with Sequence III-16-3
FORTRAN Subroutine and Equate III-16-4
COMP ASS Subprogram III-13-5 Options III-16-4

Compile and Produce Binary Cards III-13-6 TAPE III-16-5
Load and Execute Binary Program III-13-7 Own code 111-16-5
Compile and Execute with END III-16-6

Relocatable Binary Deck III-13-8
Compile Once and Execute with A STANDARD CHARACTER SETS A-1

Different Data Decks III-13-9
Preparation of Overlays III-13- to INDEX lndex-1

TABLES

PART I

3-1 Mixed Type Arithmetic Expressions 7-2 Procedure and Subprogram
with + - * / Operators 1-3-5 Interrelationships 1-7-2

7-1 Differences Between a Function and 8-1 Intrinsic Functions 1-8-2

Subroutine Subprogram I-7-1 8-2 Basic External Functions 1-8-7

PART III

5-1 Defaults for FIT Fields under
FORTRAN Extended III-5-3

60305600 G xv

1-1 Program PASCAL

13-1 Example of Interspersed
Debugging Statements

xvi

FIGURES

PART I

1-1-4

1-13-20

13-2 External Debugging Deck

13-3 Internal Debugging Deck

13-4 External Deck on Separate File

1-13-21

1-13-22

1-13-23

60305600 G

STATEMENT FORMS

The following symbols are used in the descriptions of FORTRAN Extended statements:

v variable or array element

sn statement label

iv integer variable

m unsigned integer or octal constant or integer variable

name symbolic name

u input/output unit:
1- or 2-digit decimal integer constant, integer variable with value of: 0-99,
or a Hollerith value which is the filename left justified with zero fill

fn format designator

iolist input/output list

Other forms are defined individually in the following list of statements.

ASSIGNMENT STATEMENTS

v = arithmetic expression

logical v = logical or relational expression

v = masking expression

MULTIPLE ASSIGNMENT

v1 = v2 = ... v
0

=expression

CONTROL STATEMENTS

GO TO sn

GO TO (sn1 , ... , snm) , iv

GO TO (sn
1

, ..• , snm) , expression

60305600 G

Page
Numbers

1-4-1

1-4-5

1-4-5

1-4-6

1-5-1

1-5-2

1-5-2

xvii

I

I

I

GO TO iv, (sn1 , ... , snm)

GO TO iv (sn1 , .• ~ ,snm)

ASSIGN sn TO iv

IF (arithmetic or masking expression) sn1 , sn2 , sn3

IF (arithmetic or masking expression) sn1 , sn2

IF (logical or relational expression) stat

IF (logical or relational expression) sn1 , sn2

DO sn iv= m1,m2

CONTINUE

PAUSE

PAUSE n

PAUSE -:/=c. ~ .c-::/=

STOP

STOP n

STOP-:/=c ... c=f.=

END

TYPE DECLARATION

INTEGER name1 , ... , namen

TYPE INTEGER name1 , ••• , namen

xviii

Page
Numbers

1-5-4

1-5-4

1-5-3

1-5-5

1-5-5

1-5-6

1-5-7

1-5-7

1-5-7

1-5-13

1-5-14

1-5-14

1-5-14

1-5-14

1-5-14

1-5-14

1-5-15

1-6-2

1-6-2

60305600 G

REAL name 1, ••• , namen

TYPE REAL name1, .•• , name
0

COMPLEX name1 , .•• , namen

TYPE COMPLEX name1 , .•• , name
0

DOUBLE PRECISION name1 , •.• , namen

DOUBLE name1 , ••• , namen

TYPE DOUBLE PRECISION name
1

, ••• , name
0

TYPE DOUBLE name1 , ••• , namen

. LOGICAL name1 , ••• , namen

TYPE LOGICAL name1 , ••• ,name
0

IMPLICIT type1 (ac), ... , typen (ac)

(ac) is a single alphabetic character or range of characters represented by the first and last
character separated by a minus sign.

EXTERNAL DECLARATION

EXTERNAL name1 , ... , namen

STORAGE ALLOCATION

type name1 (di)

TYPE type name1 (dj)

DIMENSION name1 (d 1), ... , namen (dn)

d· 1

type

60305600 G

array declarator, one to three integer constants; or in a subprogram, one to
three integer variables

INTEGER, REAL, COMPLEX, DOUBLE, DOUBLE PRECISION or LOGICAL

Page

Numbers

1-6-2

1-6-2

1-6-2

1-6-2

1-6-3

I-6-3

I-6-3

1-6-3

1-6-3

I-6-3

1-6-3

1-6-16

I-6-1

1-6-1

1-6-5

xix

I

I

I

COMMON v1 , •.• , v
0

COMMON/blkname1 /v1 , ••• , v0
••• /blkname/v1 , ••• , v

0

COMMON// v1 , .•. , v
0

blkname

II

symbolic name or 1 - 7 digits

blank common

DATA (vlist=dlist), ... , (vlist=dlist)

vlist list of array names, array elements, variable names, or implied DO list,
separated by commas

dlist one or more of the following forms separated by commas:

constant
(constant list)
rf*constant
rf*(constant list)
rf(constant list)

constant list list of constants separated by commas

rf integer constant. The constant or constant list is repeated
the number of times indicated by rf

EQU !VALENCE (glist1), ... , (glistn)

LEVEL n, a1 , ..• , a
0

n unsigned integer 1, 2 or 3

a variable, array element, array name

xx

Page
Numbers

I-6-6

I-6-6

I-6-6

I-6-19

I-6-19

I-6-10

1-6-15

60305600 G

MAIN PROGRAMS

PROGRAM name

PROGRAM name(fpar1, fpar2, ... , fpark)

SUBPROGRAMS

FUNCTION name (p1 , ... , pn)

type FUNCTION name (p1 , ... , pn)

type INTEGER, REAL, COMPLEX, DOUBLE, DOUBLE PRECISION
or LOGICAL

SUBROUTINE name (p1 , ••• , pn)

-SUBROUTINE name

SUBROUTINE name (p1 , ..• , pn), RETURNS (b1 , ... ,bm)

SUBROUTINE name,RETURNS (b1 , .•. ,bm)

ENTRY POINT

ENTRY name

STATEMENT FUNCTIONS

name (p1 , ..• , pn) =expression

SUBPROGRAM CONTROL STATEMENTS

CALL name

CALL name (p1 , ..• , Pn)

CALL name (p1 , .•. , pn),RETURNS (b 1 , ..• , bm)

CALL name,RETURNS (b 1 , ••• , bm)

RETURN

RETURN i

is a dummy argument in a RETURNS list

60305600 G

Page
Numbers

I-7-2

I-7-2

I-7-8

I-7-8

I-7-6

I-7-6

I-7-6

I-7-6

1-7-18

I-7-10

I-7-16

1-7-16

J.-7-16

I-7-16

I-5-15

I-5-15

xxi

I

Page
Numbers

SPECIFICATION SUBPROGRAMS

I BLOCK DATA 1-7-5

BLOCK DATA name 1-7-5

INPUT/OUTPUT

PRINT fn,iolist 1-9-3

PRINT fn 1-9-3

PRINT (u,fn) iolist 1-9-3

PRINT*,iolist 1-9-3

PRINT (u,fn) 1-9-3

PRINT (u,*) iolist 1-9-3

PUNCH fn,iolist 1-9-4

PUNCH fn 1-9-4
.,

PUNCH (u,fn) iolist 1-9-4

PUNCH*,iolist 1-9-4

PUNCH (u,fn) 1-9-4

PUNCH (u, *) iolist 1-9-4

WRITE (u,fn) iolist 1-9-5

WRITE (u,fn) 1-9-5

WRITE fn,iolist 1-9-5

WRITE'fn 1-9-5

WRITE (u) iolist 1-9-6

WRITE (u) 1-9-6

WRITE (u,*) iolist 1-9-7

WRITE* ,iolist 1-9-7

xxii 60305600 G

READ (u,fn)iolist

READ (u,fn)

READ fn,iolist

READ (u) iolist

READ (u)

READ (u, *) iolist

READ*,iolist

BUFFER IN (u,p) (a,b)

BUFFER OUT (u,p) (a,b)

a first word of data block to be transferred

b last word of data block to be transferred

p integer constant or integer variable.
zero = even parity, nonzero = odd parity

NAME LIST/group name1 /a1 , .•. , an/ ... /group namen/a1 , ... , an

READ (u,group name)

WRITE (u,group name)

ai array names or variables

group name symbolic name identifying the ·group a1 , ... , a
0

INTERNAL TRANSFER OF DATA

ENCODE (c,fn,v) iolist

DECODE (c,fn,v) iolist

v

c

60305600 G

starting location of record. Variable or array name

length of record in characters. Unsigned integer constant or simple
integer variable

Page
Numbers

1-9-7

1-9-7

1-9-8

1-9-8

1-9-8

1-9-9

1-9-9

1-9-13

1-9-15 I

1-9-16

1-9-17

1-9-19

1-9-22

1-9-25

xxiii

FILE MANIPULATION

REWIND u

BACKSPACE u

ENDFILE u

FORMAT SPECIFICATION

sn FORMAT (fs1, ... , fsn)

one or more field specifications separated by commas and/or grouped by
parentheses

DATA CONVERSION

srEw .d Single precision floating point with exponent

srEw.dEe Floating point with specified exponent length

srEw .d De Floating point with specified exponent length

srFw .d Single precision floating point without exponent

srGw.d Single precision floating point with or without exponent

srDw .d Double precision floating point with exponent

rlw Decimal integer conversion

rlw.z Integer with specified minimum digits

rLw Logical conversion

rAw Alphanumeric conversion

rRw Alphanumeric conversion

rOw Octal integer conversion

rOw .z Integer with specified minimum digits

rZw Hexadecimal conversion

xx·iv

Page
Numbers

1-9-12

1-9-12

1-9-13

1-10-5

1-10-9,11

1-10-9 ,11

1-10-9,11

1-10-13,14

1-10-15

1-10-16,17

1-10-8

1-10-8

1-10-22

1-10-19,20

1-10-21

1-10-17 ,18

1-10-19

1-10-19

60305600 G

srVw.d Variable type conversion

s optional scale factor of the form: nP

optional repetition factor

w integer constant indicating field width

d integer constant indicating digits to right of decimal point

e integer indicating digits in exponent field

z integer specifying minimum number of digits

nX Intraline spacing

* * Hollerith
nH ... }

=I= ••• =I=

Format field separator; indicates end of FORTRAN record

Tn Column tabulation

v Display code substitution

Numeric substitution

FOR TRAN Control Card

OVERLAYS

CALL OVERLAY (fname,i,j,recall,k)

primary overlay number

secondary overlay number

recall if 6HRECALL is specified, the overlay is not reloaded if it is already in
memory

k L format Hollerith constant: name of library from which overlay is to
be loaded

any other non-zero value: overlay loaded from global library set

OVERLAY (fname,i,j,Cn)

Cn

60305600 G

primary overlay number, octal

secondary overlay number, octal

n is a 6-digit octal number indicating start of load relative to blank common

Page
Numbers

1-10-35

1-10-24

1-10-26

1-10-29

1-10-34

1-10-35

1-10-36

1-11-1

1-12-5

1-12-4

xxv

DEBUG

C$

C$

C$

C$

C$

C$

DEBUG

DEBUG (name1 , ... , namen)

AREA bounds1 , ..• , boundsn !
DEBUG

within program unit

external
AREA/name1/bou11ds1 , ••. , boundsn , ... /namen/bounds1 , .•. , boundsn !

debug deck
DEBUG (name1 , ••. , namen)
or

C$ DEBUG

C$

C$

C$

C$

C$

C$

C$

I xxvi

bounds (n1 ,n2) n1 initial line position
n2 terminal line position

(n3) n3 single line position to be debugged

(n1 , *) n1 initial line position
* last line of program

(* ,n2) * first line of program
n2 terminal line position

(*, *) * first line of program
* last line of program

ARRAYS (a1 , ... ,an)

ARRAYS

ai array names

CALLS (s1 , ••• ,sn)

CALLS

Si subroutine names

FUNCS (f1, ... ,fn)

FUNCS

fi function name

GOTOS

Page
Number

I-13-24

I-13-24

I-13-27

I-13-27

Page
Numbers

I-134

I-134

1-13-6

I-13-6

I-13-8

I-13-8

I-13-15

60305600 G

C$ NOGO

C$ STORES (c
1

, .•• ,c
0

)

C$

C$

C$

C·
1

TRACE (Iv)

TRACE

Iv

OFF

variable name

variable name .relational operator. constant

variable name .relational operator. variable name

variable name .checking operator.

checking operators:

RANGE
INDEF
VALID

level number:

0

n

out of range
indefinite
out of range or indefinite

tracing outside DO loops

tracing up to and including level n in DO nest

C$ OFF (x1 , .•• ,xn)

any debug option

COMPASS SUBPROGRAM IDENTIFICATION

IDENT name (in column 11)

END (in column 11)

60305600 G

Page
Numbers

1-13-18

1-13-11

1-13-16

1-13-16

1-13-28

1-13-28

111-10-2

111-10-2

xx vii

CODING FORTRAN STATEMENTS 1-1

A FORTRAN program contains executable and non-executable statements. Executable statements specify
action the program is to take, and non-executable statements describe characteristics of operands, statement
functions, arrangement of data, and format of data.

The FORTRAN source program is written on the coding form illustrated in figure 1. Each line on the coding
form represents an 80-column card. The FORTRAN character set is used to code statements.

FORTRAN CHARACTER SET

Alphabetic

Numeric

Special

A to Z

0 to 9

equal
+ plus
- minus
* asterisk
I slash
(left parenthesis

right parenthesis
comma
decimal point

$ dollar sign
blank

¥:-or ' quote

In addition, any character (Appendix A) may be used in Hollerith constants and in comments. Blanks are not
significant except in Hollerith fields.

60305600 G 1-1-1

I

FORTRAN STATEMENTS

Column 1 C or $ or * indicates comment line

Columns 1-2 C$ indicates a debug statement if in DEBUG mode.

Columns 1-2 C/ indicates a list directive.

Columns 1-5 Statement label

Column 6 Any character other than blank or zero denotes continuation; does not
apply to comment lines. A debug continuation line must contain C$
in columns 1-2.

Columns 7-72 Statement

Columns 73-80
Identification field, not l Can contain information for
processed by compiler. debug AREA statement.

CONTINUATION

Statements are coded in columns 7-72. If a statement is longer than 66 columns, it can be continued on as
many as 19 lines. A character other than blank or zero in column 6 indicates a continuation line. Column 1
can contain any character other than C, *, or $; columns 2, 3, 4, and 5 can contain any character. Any
statement except a comment can be continued, including the END statement.

STATEMENT SEPARATOR

Several short statements can be written on one line if each is separated by the special character $. Each
statement following a $ sign is treated as a separate statement. For example:

1:CUM=24.$I=O $ IDIFF=1970-1626

is the same as

7

ACUM = 24.
I = 0
IDIFF = 1970-1626

$ can be used with all statements except FORMAT or debug statements. The statement following $ cannot
be labeled; the information following $ is treated exactly as if it were in column 7 on the next line.

• 1-1-2 60305600 G

STATEMENT LABELS

A statement label (any 1- to 5-digit integer) uniquely identifies a statement so it can be referenced by
another statement. Statements that will not be referenced do not need labels. Blanks and leading zeros are
not significant. Labels need not occur in numerical order; however, a given label must not be used more than
once in the same program unit. A label is known only in the program unit containing it; it cannot be refer­
enced from a different program unit. Any statement can be labeled, but only FORMAT and executable state­
ment labels can be referenced by other statements. A label on a continuation line is ignored.

COMMENTS

In column 1 a C, *, or $ indicates a comment line. Comments do not affect the program; they can be
written in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more
than one line, each line must begin with C, *, or $ in column 1. In a comment line a character in column 6
is not recognized as a continuation character. Comments can appear between continuation lines; they do not
interrupt the statement continuation.

Comment lines following an END line are listed at the beginning of the next program unit unless the END
line is continued.

COLUMNS 73-80

Any information can appear in columns 73-80 because they are not part of the statement. Entries in these
columns are copied to the source program listing. They are generally used to order the lines in a deck, but
can contain information for DEBUG AREA processing.

BLANK LINES

Blank lines can be used freely between statements to produce blank lines on the source listing. Unlike a
comment line, a blank line interrupts statement continuation, and the line following the blank line is the be­
ginning of a new statement even if it has the form of a continuation line.

DATA

No restrictions are imposed on the format of data read by the source program. Data input on cards is limited
to 80 characters per card, but a record can span more than one card. The maximum length of characters for
formatted, list directed, and NAMELIST records must agree with the length, r, specified in the PROGRAM
statement. If r is not specified, a default value of 150 is used.

60305600 G I-1-3 •

';"'
......
.h.

0\
0 w
0
V'l
0\
0
0

0

Q'Elljllll•JnUnl
FORTRAN CODING FORM

"·h?-H"t.tf'

I '"00

•AM ?;t>C4L I ::: I "6 ' OF I ROUTINE

T
y STATE- IC

MENT 0
N
T.

NO.
O• ZERO
jlfs ALPHA 0

FORTRAN STATEMENT

1 =ONE
I• ALPHA I

Figure I. Program PASCAL

Zs TWO
~-ALPHA Z

SERIAL
NUMBER

LANGUAGE ELEMENTS 1-2

CONSTANTS

A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
octal, Hollerith, and logical.

INTEGER CONSTANT

n is a numeric digit

I ~ m ~ 18 decimal digits

Examples:

237 -74 +136772 0 -0024

An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign
must be present. An integer constant must not contain a comma. The range of an integer constant is -259-1
to 259-I (259-I = 576 460 752 303 423 487).

Examples of invalid integer constants:

46. (decimal point not allowed)

23A (letter not allowed)

7,200 (comma not allowed)

When an integer constant is used as a subscript, as the index in a DO statement, or as an implied DO, the
maximum value is 21 7 -2 (217 -2 = 131 070), and the minimum is 1.

Integers used in multiplication and division should not have a value greater than 248-1. The result of integer
multiplication or division should be less than 248_1. If an operand or the result is larger than 248_1
(2 48 -1 = 281 474 976 710 655), the result is unpredictable; no diagnostic is provided. The resultant maxi­
mum value of conversion from real to integer or integer to real numbers is 248-1. If the value exceeds 248-1,
the high-order bits are lost and no diagnostic is provided. For integer addition and subtraction, the full 60-
bit word is used.

60305600 G 1-2-1

I

I

REAL CONSTANT

I n.n . n n . n.nE±s .nE±s n.E±s nE±sj

n Coefficient~ 15 decimal digits

E±s Exponent, the + sign is optional

s Base I 0 scale factor

A real constant consists of a string of decimal digits written with a decimal point or an exponent, or both.
Commas are not allowed. If positive, a plus sign is optional.

The range of a real constant is 10-293 to 10+322
; if this range is exceeded, a diagnostic is printed. Precision is

approximately 14 decimal digits, and the constant is stored internally in one computer word.

Examples:

7.5 -3.22 +4000. 23798.14 .5 - • 72 42.El 700.E-2

Examples of invalid real constants:

3,50. (comma not allowed)

2.5A (letter not allowed)

Optionally, a real constant can be followed by a decimal exponent, written as the letter E and an integer con­
stant indicating the power of ten by which the number is to be multiplied. If the E is present, the integer
constant following the letter E must not be omitted. The sign may be omitted if the exponent is positive, but
it must be present if the exponent is negative.

Examples:

42.El

.00028E+5

6.205El2

8.0E+6

700.E-2

7E20

(42. x 101 = 420.)

(.00028 x I 05 = 28.)

(6.205 x 10 12 = 6205000000000.)

(8. x 106 = 8000000.)

(700. x 10-2 = 7.)

(7. x 1010 = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 exponent not an integer

1-2-2 60305600 G

DOUBLE PRECISION CONSTANT

I n.nD±s .nD±s n.D±s nD±s (

n Coefficient

D±s Exponent, if s is positive the + sign is optional

s Base 10 scale factor

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving
extra precision. A double precision constant is accurate to approximately 2 9 decimal digits.

Examples:

5.834D2

14.D-5

9.2D03

-7.D2

3120D4

(5.834 x 102 = 583.4)

(14. X 10-5 = .00014)

(9.2 x 103 = 9200.)

(-7. x 101 = -700.)

(3120. x 104 = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing

D5 exponent alone not allowed

2, 1. 3D2 comma illegal

3.141592653589793238462643383279

60305600 G

D and exponent missing

I-2-3

I

I COMPLEX CONSTANT

I (rl, r2) I
rl Real part

r2 Imaginary part

Each part has the same range as a real constant.

Complex constants are written as a pair of real constants separated by a comma and enclosed m
parentheses.

FORTRAN Coding Complex Number

(1. ' 7. 54) I. + 7.54i i = v-r
(-2.lEl, 3.24) -21. + 3.24i

(4.0, 5.0) 4.0 + 5.0i

(0., -1.) 0.0 - l.Oi

The first constant represents the real part of the complex number, and the second constant represents the
imaginary part. The parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer
words.

Both parts of complex constants must be real; they may not be integer.

Examples of invalid complex constants:

(275, 3.24) 275 is an integer

(12. 7D-4 16 .1) comma missing and double precision not allowed

4.7E+2,l.942 parentheses missing

(0,0) 0 is an integer

R I h. h '" h I f I 0-293 to I 0 + 322
• ea constants w ic 1 orm t e comp ex constant may range rom

1-24 60305600 G

OCT AL CONST ANT

I n1 ... nmB f

n is an octal digit, 0 through 7. I ~ m ~ 20 octal digits

An octal constant consists of l to 20 octal digits suffixed with the letter B.

Examples:

777777B

52525252B

500127345B

Invalid octal constants:

8927778 8 and 9 are non-octal digits

770000000077777525252528 exceeds 20 digits

07766 0 not allowed

An octal constant must not exceed 20 digits nor contain a non-octal digit. If it does, a fatal compiler
diagnostic is printed. When fewer than 20 octal digits are specified, the digits are right justified and zero
filled. Octal constants can be used anywhere integer constants can be used, except: they cannot be used as
statement labels or statement label references, in a FORMAT statement, or as the character count when a
Hollerith constant is specified.

They can be used in DO statements, expressions, and DATA statements, and as DIMENSION specifica­
tions.

Examples:

BAT= (I*5252B) .OR. JAY masking expression

J = MAXO (I, lOOOB, J ,K+40B) octal constant used as parameter in function

NAME = I • AND. 77700000B masking expression

J = (52528 + N) /K arithmetic expression

DIMENSION BUF(lOOOB) dimension specification

When an octal constant is used in an expression. it assumes the type of the dominant operand of the
expression (Table 3-1. section 3).

60305600 G 1-2-5

I

I HOLLERITH CONSTANT

nHf nlf
nRf *f*
n Unsigned decimal integer representing number of characters in string. Must be

greater than zero, and not more than I 0 when used in an expression.

f

=;t!:

H

L

R

5 7

String of characters

String delimiter

Left justified with blank fill

Left justified with binary zero fill

Right justified with binary zero fill

PROGRAM HOLL (OUTPUT>
A = 6HA8COE.f
B = 6LABCDEF
C = 6RAHCDEF
D = ~ABCDEF;t
PRINT lt AtAtBtBtCtCtDtD

l FORMAT (024tA15>
STOP
END

Stored Internally: Display Code:

Ol020304050b55555555
01020304050600000000
0000000001020304osob
01020304050655555555

ABCDEf
ABCDEF::::
::::ABCOEF
ABCDEF

1-2-6

H format
L format
R format

*format

60305600 G

A Hollerith constant has two forms: one is an unsigned decimal integer following the letter H, L, or R
followed by a string of characters; the other is a =I= delimited string. For example:

5HLABEL =/=LABEL=/=

nHf

The integer n represents the number of characters in the string f including spaces (or blanks). Spaces are
significant only after the H, L, or R in a Hollerith constant.

18HTHIS IS A CONSTANT

7HTHE END

19HRESUL T NUMBER THREE

Hollerith constants may be used in arithmetic expressions, DATA and FORMAT statements, as arguments in
subprogram calls, and as list items in an output list of an input/output statement. If a Hollerith constant is
used as an operand in an arithmetic operation, an informative diagnostic is given.

In an expression, a Hollerith constant is limited to 10 characters.

A Hollerith string delimited by the paired symbols =I= =I= can be used anywhere the H form of the Hollerith
constant can be used. For example,

IF(V.EQ.'fYES'f) Y=Y+1.

PRINT 1, 1' SQRT = t, SQRT(4.)

FORMAT (A10,F10.2)

PRINT 2, 1' TEST PASSED 1'
2 FORMAT (2A10)

INTEGER LINE(?), N1THRU9

LOGICAL NEWPAGE

IF (NEWPAGE) LINE(?) = 1' PAGE 0 1' + N1 THRU 9

60305600 G 1-2-7

The symbol# can be represented within the string by two successive =;e symbols.

I An empty string such as OH or ::/=:/= is not permitted.

I

When the number of characters in a Hollerith constant is less than 10, the computer word is left justified
with blank fill. If it is more than I 0, but not a multiple of I 0, only the last computer word is left justified
with blank fill.

Examples:

7
READ 1,NAME

1 FORMAT (A7}

IF(NAME .EQ. 4HJOAN) GO TO 20

7
RITE (6, 1000)

FORMAT (lX, #NO COUNTRY THAT HAS BEEN THOROUGHLY EXPLORED IS

INFESTED WITH DRAGONS.¢)

nRf and nLf

A Hollerith constant of the form R or L is limited to IO characters and cannot be used in a FORMAT
statement.

I LOGICAL CONSTANT

A logical constant takes the forms:

.TRUE. or •. T. representing the value true

.FALSE. or .F. representing the value false

The decimal points are part of the constant and must appear.

~xamples:

LOGICAL Xl, X2

I-2-8

Xl

X2

.TRUE •

• FALSE.

60305600G

VARIABLES

A variable represents a quantity whose value can be varied; this value can be changed repeatedly during
program execution. Variables are identified by a symbolic name of one to seven letters or digits, beginning
with a letter. A variable is associated with a storage location; whenever a variable is used, it references the
value currently in that location.

A variable can have its type specified in a type statement (see section I-6) as integer, real, double prec1s1on,
complex, or logical. In the absence of an explicit declaration, the type is implied by the first character of
the name: I, J, K, L, M, and N imply type integer and any other letter implies type real, unless IMPLICIT
statements (see section I-6) are used to change this normal implicit type.

Example:

IMPLICIT DOUBLE PRECISION (A)

COMPLEX ALPHA

•
•
•
APPLE=ORANGES+PEARS

An explicit declaration overrides an IMPLICIT declaration. Therefore, ALPHA is type complex; APPLE is
type double precision.

DEFAULT TYPING OF VARIABLES

A-H,0-Z Real

I-N Integer

60305600 G 1-2-9 (\')

INTEGER VARIABLES

An integer variable is a variable that is typed explicitly or implicitly as described under variables.

The value range is -2 59_1 to 259_1. When an integer variable is used as a subscript, the maximum value is
217 -1. The resultant absolute value of conversion from integer to real, or real to integer must be less than
248. The operands, as well as the result, of an integer multiply or division must be less than 248 in absolute
value. If this value is exceeded, the results are unpredictable. The resultant absolute value of integer addition
or subtraction must be less than 259.

An integer variable occupies one word of memory.

Examples:

ITEM1 NSUM JSUM N72 J K2S04

REAL VARIABLES

A real variable is a variable that is typed explicitly or implicitly as described under variables.

The value range is I o-293 to 10+322 with approximately 14 significant digits of precision. A real variable
occupies one word of storage.

Examples:

AVAR SUM3 RESULT TOTAL2 BETA xx xx

• 1-2-10 60305600 G

DOUBLE PRECISION VARIABLES

Double precision variables must be typed by a type declaration. The value of a double precision variable can
range from 10-293 to 10+322 with approximately 29 significant digits of precision.

Double precision variables occupy two consecutive words of memory.

Example:

DOUBLE PRECISION OMEGA,X,IOTA

IMPLICIT DOUBLE PRECISION(A)

The variables OMEGA, X, IOTA and all variables whose first letter is A are double precision.

COMPLEX VARIABLES

Complex variables must be typed by a type declaration. A complex variable occupies two words of memory.
Each word contains a real number and each number can range from 10-293 to 10+322.

Example:

COMPLEX ZERA,MU,LAMBDA

LOGICAL VARIABLES

Logical variables must be typed by a type declaration. A logical variable has the value true or false and
occupies one word of memory.

Example:

LOGICAL L33,PRAVDA,VALUE

60305600 G 1-2-11

ARRAYS

A FORTRAN array is a set of elements identified by a single name composed of one to seven. letters and
digits beginning with a letter. Each array element is referenced by the array name and a subscript. The type
of the array elements is determined by the array name in the same manner as the type of a variable is deter­
mined by the variable name (see Variables in this section). The array name and its dimensions must be de­
clared in a DIMENSION or COMMON statement or a type declaration. Arrays can have one, two, or three
dimensions.

The number of dimensions in the array is indicated by the number of subscripts in the declaration.

DIMENSION STOR(6) declares a one-dimensional array of six elements

REAL STOR(3,7) declares a two-dimensional array of three rows and seven columns

LOGICAL STOR(6,6,3) declares a three-dimensional array of six rows, six columns and three planes

The entire array may be referenced by the unsubscripted array name when it is used as an item in an input/
output list or in a DATA statement. In an EQUIVALENCE statement, however, only the first element of the
array ·is· implied by the unsubscripted array name.

Examplel:

The array N consists of six values in the order: 10, 55, 11, 72, 91, 7

N{l) value 10
N(2) value 55
N(3) value 11
N(4) value 72
N(5) value 91
N(6) value 7

1-2-12 60305600 G

Example2:

The two-dimensional array TABLE (4,3) has four rows and three columns.

Column Column 2 Column 3

Row 1 44 10 105
Row 2 72 20 200
Row 3 3 11 30
Row 4 91 76 714

To refer to the number in row two, column three write T ABLE(2,3).

TABLE(3,3) = 30 TABLE(l,l) = 44 TABLE(4,1) = 91

TABLE(4,4) would be outside the bounds of the array and results are unpredictable.

Example3:

PROGPAM VllR0Itv1 (QIJTPUT.TAPE6=0UTPUT)
CO~Mf)1'J X(4.3)
Rflll YU»
CALL tiHA <X..l?)
CALI_ IOTA <Y.f,)
W~TTF <A•100) X•Y

ion FOPMAT <* ARP~Y x = *•l2Eq.1q~x.0ARRAY y = *6E9.l)
ST '.IP
E r~r)

The program declares and references two arrays: X is a two-dimensional array of 12 elements and Y
is a one-dimensional array of six elements.

60305600 G I-2-13 G

SUBSCRIPTS

A subscript indicates the position of a particular element in an array. A subscript consists of a pair of
parentheses enclosing one or more subscript expressions which are separated by commas. The subscript follows
the array name. A subscript expression can be any valid arithmetic expression. If the value of the expression is
not integer, it is truncated to integer.

If the number of subscript expressions is less than the number of declared dimensions, the compiler assumes the
omitted subscripts have a value of one. The number of subscript expressions in a reference must not exceed the
number of declared dimensions.

The value of a subscript must never be zero or negative. It should be greater than zero and less than or equal to
the maximum declared dimensions, or the reference will be outside the array. If the reference is outside the
bounds of the array, results are unpredictable.

The amount of storage allocated to arrays is discussed under DIMENSION declarations in section I-6.

Valid subscript forms:

A(l,K)

B(l+2,J-3,6*K+2)

LAST(6)

ARA YD(1,3,2)

STRING(3*K*ITEM+3)

Invalid subscript forms:

ATLAS(O)

0(1 .GE. K)

A(,t) or A(l,,K)

1-2-14

zero subscript causes a reference outside of the array
relational or logical expression illegal
only trailing subscript expressions can be omitted

60305600 G

Example:

Plane 1 Plane 2 Plane 3

Col 1 Col2 Col3 Col 1 Col2 Col3 Col 1 Col2 Col3

3 7 4 22 51 7 2 552 Row 1

7 8 9 0 98 6 77 60 3 Row2

3 207 99 85 100 8 Row3

NEXT (2,2)
subscript represents represents
NEXT (3) NEXT (3,2, 1) NEXT (2,2, 1)
represents
NEXT (3,1,1)

In the three-dimensional array NEXT when only one subscript is shown, the remaining subscripts are assumed to
be one.

ARRAY STRUCTURE

Arrays are stored in ascending locations: the value of the first subscript increases most rapidly, and the value of
the last increases least rapidly.

Example:

In an array declared as A(3,3,3), the elements of the array· are stored by columns in ascending locations.

Plane 1

Col 1 Co12 Col3

Row2

A111 JA121JA131 J J i
A211 A221 A231

i i i
A311 A321 A331

Plane 2

Row 1

Row3 Col 1 Col2 Col3
...___~~~~~~~~_____.,~~~~~~~~~---.

Row 1

Row2

A112 JA122 JA132 J J i
A212 A222 A232

J J l
A312 A322 A332

Plane 3

Row3 Col 1 Col2 Col3
'----~~~~~~~~---',...--~~~~~~~~~

Row 1

Row2

A113JA123JA133 J J i
A213 A223 A233

J J J
A313 A323 A333 Row3

60305600 G 1-2-15

I

The array is stored in linear sequence as follows:

Element

A(l, 1, 1)
A(2, 1, 1)
A(3,l,l)
A(l,2, 1)
A(2,2,l)
A(3,2,l)
A(l,3, 1)
A(2,3,l)
A(3,3,l)
A(l, 1,2)
A(2,l,2)
A(3,l,2)
A(1,2,2)
A(2,2,2)
A(3,2,2)
A(l,3,2)
A(2,3,2)
A(3,3,2)
A(l, 1,3)
A(2,l,3)
A(3,l,3)
A(l,2,3)
A(2,2,3)
A(3,2,3)
A(l,3,3)
A(2,3,3)
A(3,3,3)

stored in

stored in

Location Relative
to first Element

0
1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

To find the location of an element in the linear sequence of storage locations the following method can be
used:

Number of Array Location of Element
Dimensions Dimension Subscript Relative to Starting Location

1 ALPHA(K) ALPHA(k) (k-1)XE

2 ALPHA(K,M) ALPHA(k,m) (k-1+KX(m-1))XE

3 ALPHA(K,M,N) ALPHA(k,m,n) (k-1+KX (m-1+MX (n-1)))XE

K, M, and N are dimensions of the array.

k,m, and n are the actual subscript values of the array.

1-2-16 60305600G

l is subtracted from each subscript value because the subscript starts with 1, not 0.

E is length of the element. For real, logical, and integer arrays, E = 1. For complex and double
precision arrays, E = 2.

Examples:

Location of Element
Subscript Relative to Starting Location

INTEGER ALPHA (3) ALPHA(2) (2-1)X1=1

REAL ALPHA (3,3) ALPHA(3,1) (3-1+3X(1-1))X1 =2

REAL ALPHA (3,3,3) ALPHA(3,2, 1) (3-1+3X(2-1+3X(1-1)))X1 = 5

60305600 G 1-2-17

I

EXPRESSIONS 1-3

FORTRAN expressions are arithmetic, masking, logical and relational. Arithmetic and masking expressions
yield numeric values, and logical and relational expressions yield truth values.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned constants, variables, and function references separated
by operators and parentheses. For example,

(A-B)*F + C/D**E is a valid arithmetic expression

FORTRAN arithmetic operators:

+ addition
subtraction

* multiplication
I division

** exponen tia ti on

An arithmetic expression may consist of a single constant, variable, or function reference. If X is an
expression, then (X) is an expression. If X and Y are expressions, then the following are expressions:

X+Y X-Y

X*Y XIY

-X X**Y

+X

60305600 B 1-3-1

All operations must be specified explicitly. For example, to multiply two variables A and B, the expression
A *B must be used. AB, (A)(B), or A.B will not result in multiplication.

Expression Value of

3.78542 Real constant 3.78542

A(2*J) Array element A (2 * J)

BILL Variable BILL

SQRT(5.0) vs.-
A+B Sum of the values A and B

C*D/E Product of C times D divided by E

J**I Value of J raised to the power of I

(200 - 50) *2 300

EVALUATION OF EXPRESSIONS

The sequence in which an expression is evaluated is governed by the following rules, listed in descending precedence:

1. References to external functions are evaluated .

. 2. Arithmetic statement functions and intrinsic functions are expanded.

1-3-2

3. Subexpressions delimited by parentheses are evaluated, beginning with the innermost subexpressions.

4. Subexpressions defined by arithmetic, relational, ancl logical operators are evaluated according to the
following precedence hierarchy:

**

I *

+

.GT .. GE .. LT .. LE .. EQ .. NE.

.NOT.

.AND.

.OR.

(exponentiation)

(division or multiplication)

(addition or subtraction)

(relationals)

(logical)

(logical)

(logical)

60305600 G

5. Subexpressions containing operators of equal precedence are evaluated from left to right. However,
individual operations that are mathematically associative and/or commutative may be reordered by the
compiler to perform optimizations such as removal of repeated subexpressions or improvement of
functional unit usage. The evaluation of the expression A/B*C is guaranteed to algebraically equal
AC -;- B, not A-;- BC; but the specific order of evaluation here is indeterminate. The user can force a
definite ordering of mathematically associative operators of equal precedence by appropriate use of
parentheses. Subexpressions containing integer divisions are not reordered within the * / precedence
level because the truncation resulting from an integer division renders these operations non-associative.

Unary addition and subtraction are treated as operations on an implied zero. For example, +2 is treated as 0+2,
and -3 is treated as 0-3.

An array element (a subscripted variable) used in an expression requires the evaluation of its subscript. The
type of the expression in which a function reference or subscript appears does not affect, nor is it affected
by the evaluation of the arguments or subscripts.

The evaluation of an expression having any of the following conditions is undefined:

Negative-value quantity raised to a real. double precision. or complex exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand (section 4. part 3)

Element ror which a value is not mathematically defined. such as division by zero

Ir the error traceback option is selected on the FTN control card (section 11). the first three conditions will
produce informative diagnostics during execution. If the traceback option is not selected. a mode error
message is printed (section 4. part 3).

Two operators must not he used together. A *-B and Z/ + X are not allowed. However. a unary + or - can
he separated from another operator in an expression by using parentheses. For example.

A* (-B) and Z/ (+X)

B*-A andX/-Y*Z

Valid expressions
Invalid expressions

Each left parenthesis must have a corresponding right parenthesis.

Example:

(F ~ (x * Y) Incorrect. right parenthesis missing
(F .._ (X * Y)) Correct

Examples:

In the expression A-B*C

B is multiplied by C. and the product is subtracted from A.

60305600 F 1-3-3

The expression A/B-C*D**E is evaluated as:

D is raised to the power of E.

A is divided by B.

C is multiplied by the result of D**E.

The product of C*D**E is subtracted from the quotient of A divided by B.

The expression -A **C is evaluated as 0-A **C; A is first raised to the power of C and the result is
then subtracted from zero.

The expression A *B*C may be evaluated as ((A *B)*C), ((A *C)*B) or (A *(B*C)), since the operator * is
associative.

The expression A **B**C is evaluated as ((A **B)**C), since the operator ** is not associative.

Dividing an integer by another integer yields a truncated result: 11 /3 produces the result 3. Therefore.
when an integer expression is evaluated from left to right, J/K*I may give a different result than l*J/K.

Example:

I = 4 J = 3 K = 2

J/K*I I*J/K

3/2*4 = 4 4*3/2=6

An integer divided by an integer of larger magnitude yields the result 0.

Example:

N = 24 M = 27 K=2

N/M*K

24/27*2 = 0

Examples of valid expressions:

A

3.14159

B+16.427

(XBAR + (B (I , J +I, K) I 3. 0))

- (C + DELTA * AERO)

I-3-4 60305600F

(-B - SQRT(B**2-(4*A*C)))/(2.0*A)

GROSS - (TAX*0.04)

TEMP+ V(M,AMAXl(A,B))*Y**C/ (H-FACT(K+3))

TYPE OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be of type integer, real, double precision, or complex. The order of
dominance from highest to lowest is as follows:

Complex

Double Precision

Real

Integer

Table 3-1. Mixed Type Arithmetic Expressions with + - * I Operators

~
r r Octal or

Integer Real
Double

Complex Hollerith d
Precision

d Constant

Integer Integer Real
Double

Complex Integer
Precision

Real Real Real
Double

Complex Real
Precision

Double Double Double Double
Complex

Double
Precision Precision Precision Precision Precision

Complex Complex Complex Complex Complex Complex

Octal or
Double

Hollerith Integer Real
Precision

Complex Integer
Constant

When an expression contains operands of different types, type conversion takes place during evaluation.
Before each operation is performed, operands are converted to the type of the dominant operand. Thus the
type of the value of the expression is determined by the dominant operand. For example, in the expression
A *B-1/ J, A is multiplied by B, I is divided by J as integer, converted to real, and subtracted from the result
of A multiplied by B.

When an octal or Hollerith constant is used, type is not converted. When these constants are the only operands
in an expression, the result of the expression is type integer.

60305600G I-3-5

I

EXPONENTIATION

In exponentiation, the following types of base and exponent are permitted:

Base Exponent

Integer Integer, Real, Double Precision, Complex

Real Integer, Real, Double Precision, Complex

Double Precision Integer, Real, Double Precision, Complex

Complex Integer

The exponentation is evaluated from left to right. The expression A**B**C is, in effect, ((A**B)**C)

In an expression of the form A **B the type of the result is determined as follows:

Type of Result
Type of A Type of B of A**B

Integer Integer Integer
Real Real
Double Double
Complex Complex

Real Integer Real
Real Real
Double Double
Complex Complex

Double Integer Double
Real Double
Double Double
Complex Complex

Complex Integer Complex

The expression -2**2 is equivalent to 0-2**2. An exponent may be an expression. The following examples
are all acceptable:

B**2. A negative exponent must be enclosed in parentheses:

B**N A**(-B)

B**(2*N-l) NSUM* * (-J)

(A+B)**(-J)

1-3-6 60305600C

Examples:

Expression

CVAB**(I-3)

D* *B

C**I

BASE(M,K)**2.l

K**5

314D-02**3.14D-02

Type

Real**lnteger

Real**Real

Complex**lnteger

Double Precision
**Real

Integer**lnteger

Double Precision
**Double Precision

RELATIONAL EXPRESSIONS

Arithmetic or masking expression

op Relational operator

Result

Real

Real

Complex

Double Precision

Integer

Double Precision

A relational expression is constructed from arithmetic or masking expressions and relational operators.
Arithmetic expressions may be type integer, real, double precision, or complex. The relational operators are:

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

.LE . Less than or equal to

. EQ. Equal to

.NE. Not equal to

The enclosing decimal points are part of the operator and must be present.

60305600 B 1-3-7

Two expressions separated by a relational operator constitute a basic logical element. The value of this
element is either true or false. If the expressions satisfy the relation specified by the operator, the value is
true; if not, it is false. For example:

X+Y .GT. 5.3

If X + Y is greater than 5.3 the value of the expression is true. If X + Y is less than or equal to
5.3 the value of the expression is false.

A relational expression can have only two operands combined by one operator. a1 op a2 op a3 is not valid.

Relational operands may be of type integer, real, double precision, or complex, but not logical. With complex
operands, the relational operators .EQ. and .NE. test for equality on both the real and imaginary parts; for all
other relational operators only the real parts are compared.

Examples:

J.LT.ITEM
580.2 .GT. VAR
B .GE. (2.7,5.9E3)
E.EQ •• 5

(I) . EQ . (J (K))
C.LT. l.5D4

real part of complex number is used in evaluation

most significant part of double precision number is used in
evaluation

Relational expressions are evaluated according to the rules governing arithmetic expressions. Each
expression is evaluated and compared with zero to determine the truth value. For example, the expression
p.EQ.q is equivalent to the question, does p - q = O? q is subtracted from p and the result is tested for zero.
If the difference is zero or minus zero the relation is true. Otherwise. the relation is false.

If p is 0 and q is -0 the relation is true.

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for
example, the following relational expressions are equivalent:

A.GT.B

A.GT. (B)

(A) .GT.B

{A) .GT. (B)

1-3-8 60305600 G

Examples:

REAL A
A.GT.720

INTEGER I,J
I.EQ. J (K)

(I) . EQ • (N * J)

B.LE.3.754

Z.LT.35.3D+5

Examples of invalid expressions:

AMT • LT. (1. , 6. 55)

DOUBLE PRECISION BILL, PAY
BILL .LT. PAY

A+B.GE.Z**2

300.+B.EQ.A-Z

.5+2 •• GT •• 8+AMNT

A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression

B • LE. 3. 7 54 • EQ. C

LOGICAL EXPRESSIONS

logical operand or relational expression

op logical operator

A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression
has the value true or false.

Logical open1tors:

.NOT. or .N. logical negation

.AND. or .A. logical multiplication

.OR. or .0. inclusive OR

The enclosing decimal points are part of the operator and must be present.

60305600 B 1-3-9

The logical operators are defined as follows (p and q represent LOGICAL expressions):

.NOT.p

p.AND.q

p.OR.q

p

1

1

0

0

If p is true, .NOT.p has the value false. If p is false, .NOT.p has the
value true.

If p and q are both true, p.AND.q has the value true. Otherwise, false.

If either p or q, or both, are true then p.OR.q has the value true. If both
p and q are false, then p.OR.q has the value false.

Truth Table

q p .AND. q p .OR. q .NOT. p

1 1 1 0

0 0 1 0

1 0 1 1

0 0 0 1

If precedence is not established explicitly by parentheses. operations are executed in the following order:

.NOT.

.AND .

. OR.

1-3-10 60305600 A

Example:

PROGRAM LOGIC(OUTPUTtTAPE6=0UTPUT>
c
C THIS PROGRAM PRINTS OUT A TRUTH TA8LE FOR LOGICAL
C OPERATIONS WITH P AND Q
c

LOGICAL p,Q,LOGNEG,LOGMLTtLOGSUMtTABLE(4t2)
DATA TABLE/.TRUE·•·TRUE.,.fALS~.,.FALSE.,.TRU~.,.FALSE.,.TRUE•t

l.fALSE./
wRITE(6,lO>

10 FORMAT(61Hl p Q .Nor. Q p ·AND Q p .o
lR. Q /lQX, 51<1H-))

DO 20 I = l,t+
LOGNEG = .NOT. TAbLt(l,2>
LOGMLT = TAbLE<l•l> ·ANO. TABLE<It2>
LOGSUM = TAbLE<l•l> .OR. lA6LE<I,~>

20 wRITE<6•30) <TAbLE(ltJ),J=l•2>• LOGNEG, LOG~LT, LOGSUM
JO FORMAT<lHOt 5CL11))

STOP
END

Output:

p .NOT. Q P .AND Q ~ • o~. a
--------------------------~------~~~-------~-------

T T F T T

T F T F T

F T f F T

F F r F F

60305600 G 1-3-11 •

The operator .NOT. which indicates logical negation appears in the form:

.NOT. p

.NOT. can appear in combination with .AND. or .OR. only as follows (p and q are logical expressions):

p .AND .. NOT. q

p .OR .. NOT. q

p .AND.(.NOT. q)

p .OR.(.NOT. q)

I .NOT. can appear adjacent to itself only when the second operator is enclosed in parentheses .NOT. (.NOT.p).

Two logical operators can appear in sequence only in the forms .OR.NOT. and .AND .. NOT.

Valid logical expressions, where M, L, and Z are logical variables, are:

.NOT.L

.NOT.{X .GT. Y)

X .GT. Y .AND .. NOT.Z

(L) .AND. M

Invalid logical expressions, where P and R are logical variables, are:

.AND. P .AND. must be preceded by a logical expression

.OR. must be followed by a logical expression K .EQ. 1 .OR. 2

P .AND .. OR.R .AND. always must be separated from .OR. by a logical expression

1-3-12 60305600 G

Examples:

A, X, B, C, J, L, and K are type logical.

Expression Aternative Form

A • AND. • NOT. X A .A • • N. X

.NOT.B .N.B

A.AND.C A .A. C

J.OR.L.OR.K J.O.L.O.K

Examples:

B-C :::; A:::; B+C is written as B-C .LE. A .AND. A .LE. B+C
FICA > 176. andPAYNB = 5889. is written FICA .GT. 176 •• AND. PAYNB .EQ. 5889.

MASKING EXPRESSIONS

Masking expressions are similar to logical expressions, but the elements of the masking expression are of
any type variable, constant, or expression other than logical.

Examples:

J .AND. N • NOT. (B)

.NOT. 55 KAY .OR. 63

Masking operators are identical in appearance to logical operators but meanings differ. In order of
dominance from highest to lowest, they are:

.NOT. or .N. Complement the operand

.AND. or .A. Form the bit-by-bit logical product (AND) of two operands

.OR. or .o. Form the bit-by-bit logical sum (OR) of two operands

The enclosing decimal points are part of the operator and must be present. Masking operators are
distinguished from logical operators by non-logical operands.

60305600 B 1-3-13

Examples:

Expression Alternative Form

B .OR. D B • 0. D

A .AND • • NOT. c A .A. .N. c

BILL .AND. BOB BILL .A. BOB

I .OR. J .OR. K .OR. N I .o. J . n. K • 0. N

(.NOT. (• NOT. (• NOT. A • OR. B))) (.N.(.N.(.N. A.OR • B)))

The operands may be any type variable, constant, or expression (other than logical).

Examples:

TAX .AND. INT
.NOT. 55

734 .OR. 82

A .AND. 77B

B • OR. C
M .AND •• NOT. 77B

Extract the low order 6 bits of A
Logical sum of the contents of B and C
Clear the low order 6 bits of M:

In masking operations operands are considered to have no type. If either operand is type COMPLEX,
operations are performed only on the real part. If the operand is DOUBLE PRECISION only the most
significant word is used. The operation is performed bit-by-bit on the entire 60-bit word. For simplicity,
only I 0 bits ·are shown in the following examples. Masking operations are performed as follows:

J = 0101011101andI=1100110101

J .AND. I

The bit-by-bit logical product is formed

J 0101011101

I 1100110101

0100010101 Result after masking

J .OR. I

The bit-by-bit logical sum is formed

J 0101011101

I 1100 I 10 10 1

1101111101 Result after masking

1-3-14 60305600 B

.NOT. Complement the operand

.NOT. I

1100110101

0011001010 Result after masking

.NOT. may appear with .AND. and .OR. only as follows:

masking expression .AND .. NOT. masking expression

masking expression .OR .. NOT. masking expression

masking expression .AND. (.NOT. masking expression)

masking expression .OR. (.NOT. masking expression)

If an expression contains masking operators of equal precedence, the expression is evaluated from left to
right.

A .AND. B .AND. C

A .AND. Bis evaluated before B .AND. C

Using the following values:

A 77770000000000000000 octal constant

D 00000000777777777777 octal constant

B 00000000000000001763 octal form of integer constant

c 20045000000000000000 octal form of real constant

Masking operations produce the following octal results:

.NOT. A is 00007777777777777777

A .AND. C lS 20040000000000000000

A .AND .. NOT. C is 57730000000000000000

B .OR .. NOT. D lS 77777777000000001763

Invalid example:

LOGICAL A
A .AND. B .OR. C masking expression must not contain logical operand

60305600 B I-3-15

'Example:

PROGRAM HASK <INPUT,OUTPUT>
1 FOR~AT <1H1,SX,4HNAHE,I//)

PRINT 1
2 FORMAT <3A10,I11
3 READ 2,LNAHE,FNAHE,ISTATE,KSTOP

IF<~STOP.EQ.1>STOP

C IF. FIRST TWO CHARACTERS OF ISTATE NOT EQUAL TO CA REAO NEXT CARO

IFl<ISTATE.AN0.7777QOOOOOOOOOOOOOOOB>.NE.<2HCA.AN0.777700GOOOOOOOO
KDOOOOB>> GO TO 3

11 FORHAT<5X,2A10)
10 PRINT 11tlNAHEtFNAHE

GO TO 3
END

1-3-16 60305600 A

ASSIGNMENT STATEMENTS 1-4 .

An assignment statement evaluates an expression and assigns this value to a variable or array element. The
statement is written as follows:

v = expression

v is a variable or an array element

The meaning of the equals sign differs from the conventional mathematical notation. It means replace the
value of the variable on the left with the value of the expression on the right. For example, the assignment 1

statement A=B+C replaces the current value of the variable A with the value of B+C.

ARITHMETIC ASSIGNMENT STATEMENTS

v arithmetic expression

Replace the current value of v with the value of the arithmetic expression. The variable or array element
can be any type other than logical.

Examples:

A=A+l replace the value of A with the value of A+ I

N=J-100*20 replace N with the value of J-100*20

WAGE=PAY-TAX replace WAGE with the value of PAY less TAX

VAR=VALUE+(7/4)*32 replace the value of VAR with the value of VALUE+ (7 I 4)*32

B(4)=B(l)+B(2) replace the value of B(4) with the value of B(l)+B(2)

60305600 B 1-4-1

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type
conversion takes place. The expression is evaluated, converted to the type of the variable on the left, and
then replaces the current value of the variable. The type of an evaluated arithmetic expression is
determined by the type of the dominant operand. Below, the types are ranked in order of dominance from
highest to lowest:

Complex

Double Precision

Real

Integer

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given.

CONVERSION TO INTEGER

Value of IFORM
Value Assigned Example After Evaluation

Integer = Integer Value of integer IFORM = 10/2 5
expression re-
places v.

Integer = Real Value of real IFORM = 2.5*2+3.2 8
expression, trun-
cated to 48-bit
integer, replaces
v.

Integer= Double Precision Value of double IFORM = 3141.59303 3141593
precision expres-
sion, truncated to
48-bit integer,
replaces v.

Integer= Complex Value of real part IFORM = (2.5,3.0) + (1.0,2.0) 3
of complex
expression trun-
cated to 48-bit
integer, replaces
v.

1-4-2 60305600 B

CONVERSION TO REAL

Value of AFORM
Value Assigned Example After Evaluation

Real = Integer Value of integer AFORM = 200 + 300 500.0
expression, trun-
cated to 48 bits,
is converted to
real and replaces
v.

Real= Real Value of real AFORM = 2.5 + 7.2 9.7
expression re-
places v.

Real= Double Precision Value of most AFORM = 3421.D - 04 .3421
significant part
of expression re-
places v.

Real = Complex Value of real AFORM = (9.2, 1.1) - (2.1,5.0) 7.1
part of complex
expression re-
places v.

CONVERSION TO DOUBLE PRECISION

Value of SUM
Value Assigned Example After Evaluation

Double Precision = Integer Value of integer SUM= 7*5 35.DO
expression, trun-
cated to 48 bits,
is converted to
real and replaces
most significant
part. Least sig-
nificant part set
to 0.

Double Precision= Real Value of real SUM= 7.5*2 15.DO
expression re-
places most
significant part;
least significant
part is set to 0.

60305600 E 1-4-3

CONVERSION TO DOUBLE PRECISION (CONTINUED)

Value of SUM
Value Assigned Example After Evaluation

Double Precision Value of double SUM= 7.322D2 - 32.D -1 7.29D2
= Double Precision precision expres-

sion replaces v.

Double Precision = Complex Value of real SUM = (3.2,7.6) + (5.5, 1.0) 8.7DO
part of complex
expression re-
places v. Least
significant part
is set to 0.

CONVERSION TO COMPLEX

Value of AFORM
Value Assigned Example After Evaluation

Complex = Integer Value of integer AFORM = 2 + 3 (5.0,0.0)
expression, trun-
cated to 48 bits,
is converted to
real, and replaces
real part of v.
Imaginary part is
set to 0.

Complex = Real Value of real AFORM = 2.3 + 7.2 (9.5,0.0)
expression re-
places real part
of v. Imaginary
part set to 0.

Complex = Double Precision Most significant AF ORM = 20DO + 4.4D 1 (64.0,0.0)
part of double
precision expres-
sion replaces real
part of v. I mag-
inary part set to
0.

Complex = Complex Value of complex AFORM = (3.4, 1.1) + (7.3,4.6) (10.7,5.7)
expression replaces
variable.

1-4-4 60305600 B

LOGICAL ASSIGNMENT

Logical variable or array element = Logical or relational expression

Replace the current value of the logical variable or array element with the value of the expression.

Examples:

LOGICAL LOG2
I = 1

LOG2 = I .EQ.O

LOG2 is assigned the value .FALSE. because l~O

LOGICAL NSUM,VAR
BIG = 200.
VAR = .TRUE.
NSUM = BIG .GT. 200 •. AND. VAR

NSUM is assigned the value .FALSE.

LOGICAL A,B,C,D,E,LGA,LGB,LGC
REAL F,G,H
A B.AND.C.AND.D
A = F.GT.G.OR.F.GT.H
A= .NOT.(A.AND .• NOT.B).AND.(C.OR.D)
LGA .NOT.LGB
LGC = E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

MASKING ASSIGNMENT

v = masking expression

Replace the value of v with the value of the masking expression. v can be any type other than logical. No
type conversion takes place during replacement. If the type is double precision or complex, the value of the
expression is assigned to the first word of the variable: and the least significant or imaginary part set to
zero.

Examples:

60305600 F

B = D .AND. Z .OR. X
SUM = (1.0,2.0) .OR. (7.0,7.0)
NAME = INK .OR. JAY .AND. NEXT
J (3) = N • AND . 1

A = B • OR. (C. AND. Z)

14-5

INTEGER I,J,K,L,M,N(16)
REAL B,C,D,E,F(15)

N (2) = I. AND • J
B = C.AND.L
F(J) = I.OR •. NOT.L.AND.F(J)
I = • NOT. I
N(l) = I.OR.J.OR.K.OR.L.OR.M

MULTIPLE ASSIGNMENT

· 1 v1 = v2 = ... vn = expression

Replace the value of several variables or array elements with the value of the expression. For example,
X = Y = Z= (10+2)/SUM(l) is equivalent to the following statements:

Z (10 + 2)/SUM(l)

y = z

x y

The value of the expression is converted to the type of the variable or array element during each
replacement.

Examples:

NSUM = BSUM = ISUM = TOTAL = 10.5 - 3.2

l. TOTAL is assigned the value 7.3

2. ISUM is assigned the value 7

3. BSUM is assigned the value 7.0

4. NSUM is assigned the value 7

Multiple assignment is legal in all types of assignment statements.

1-4-6 60305600 B

CONTROL STATEMENTS 1-5

FORTRAN control statements provide a means of altering, interrupting, terminating, or otherwise modifying
the normal sequential flow of execution.

ASSIGN

GO TO

IF

DO

CONTINUE

PAUSE

STOP

END

RETURN

Control must be transferred to an executable statement only.

A statement can be identified by an integer, 1-99999, with leading zeros and embedded blanks ignored. Each
statement label must be unique in the program unit (main program or subprogram) in which it appears.

GO TO STATEMENT

The three types of GO TO statements are unconditional, computed, and assigned. The ASSIGN statement is
used in conjunction with the assigned GO TO and is therefore described in the GO TO statement group.

UNCONDITIONAL GO TO STATEMENT

7

(I IGO TO sn

sn is a label of an executable statement.

This statement transfers control to the statement labeled sn which must be an executable statement in the
current program unit.

60305600 G 1-5-1 •

Example:

10 A=B+Z
100 B=X+Y

IF(A-B)20,20,30
20 Z=A

GO TO 10 -c<fl:l'------Transfers control to statement 10
30 Z=B

STOP
END

COMPUTED GO TO STATEMENT

7
GO TO (sn,-,sn2 , .•• , snm), iv

7

sni is a label on an executable statement.

iv is an integer variable.

earn is an arithmetic or masking expression.

The computed GO TO statement transfers control to one of the statements referenced in the parentheses. If
the variable iv has a value of one, control transfers to the statement labeled sn 1; if the value is i, control
transfers to the statement labeled sni.

The variable iv can be replaced by an expression. The value of the expression is truncated and converted to
an integer, if necessary, and used in place of iv. The comma separating the statement label from the variable
or expression is optional.

The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN statement, the
object code is incorrect, but no compilation error message is issued.

If the value of the variable or expression is less than one or larger than the number of statement numbers in
parentheses, the transfer of control is undefined and a fatal error results at execution time.

Example 1:

GO TO(l0,20,30,20),L

GO TO(l0,20,30,20)1

• 1-5-2 60305600 G

The next statement executed is:

10 if L = 1

20 if L = 2

30 if L = 3

20 if L = 4

Example 2:

K=2

GO TO(l00,150,300hK

K=2

X=4.6

Statement 150 is executed next.

GO TO (10, 110, 11, 12, 13) ,X/K Control transfers to statement 110, since the integer value of the
expression X/K equals 2.

Example 3:

M=4

GO TO (100,200,300),M

Execution of the last example causes a fatal error during execution because fewer than four numbers are
specified in the list of statement labels.

ASSIGN STATEMENT

7

(11 ASSIGN
sn TO iv

sn is a label of an .executable statement.

iv is an integer variable.

The ASSIGN statement assigns a statement label to a variable u used in an assigned GO TO. The integer
variable assigned to iv represents the label of an executable statement to which control may be transferred
by an assigned GO TO statement. Once iv is used in an ASSIGN statement, it must not be referenced in
any statement, other than an assigned GO TO or another ASSIGN, until it has been redefined.

60305600 G 1-5-3 •

The assignment must be made prior to the execution of the assigned GO TO statement and sn (the label of
an executable statement) must be in the same program unit as both the ASSIGN and assigned GO TO
statements.

Example:

ASSIGN 10 TO LSWITCH
GO TO LSWITCH(5,10,15,20) Control transfers to statement 10

ASSIGNED GO TO STATEMENT

(

(
iv

7

I !GO TO
iv, (sn1 , •.. ,snm)

7

I IGO TO
iv (sn1 , ..• , snm)

is an integer variable.

is a list of all the statement labels to which control can be passed by this assigned
GO TO. Upon execution of the assigned GO TO, iv must be assigned to one of the
labels in the list.

The assigned GO TO statement transfers control to the statement label last assigned to iv by the execution of
a prior ASSIGN statement. All the statement labels in the list must be in the same program unit with both
the ASSIGN and the assigned GO TO statements. Omitting the list of statement labels causes a fatal error.
If a statement label is omitted from the list or the value of iv is defined by a statement other than an
ASSIGN statement, the results are unpredictable. (Control is transferred to the absolute memory address
represented by the low order 18 bits of iv.) The comma after iv is optional.

Example:

ASSIGN 50 TO JUMP
10 GO TO JUMP,(20,30,40,50) Statement 50 is executed immediately after statement 10.

20 CONTINUE

30 CAT=ZERO+HAT

40 CAT=l0.1-3.

50 CAT=25.2+7.3

• 1-5-4 60405600 G

ARITHMETIC IF STATEMENT

The arithmetic IF statement has a three-branch and a two-branch form. In both cases, zero is defined as a
word containing all bits set to zero or all bits set to one (+O or -0). If the type of the evaluated expression
is complex, only the real part is tested.

THREE-BRANCH ARITHMETIC IF STATEMENT

7

earn is an arithmetic or masking expression.

are labels on executable statements.

The three-branch IF statement transfers control to the statement labeled sn 1 if the value of the expression is
less than zero, to the statement labeled sn2 if it is equal to zero, or to the statement labeled sn3 if it is
greater than zero.

Example:

PROGRAM IF (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT)
READ (5,100) I,J,K,N

100 FORMAT (lOX,4!4)
IF(I-N) 3,4,6

3 ISUM=J+K
6 CALL ERRORl

PRINT 2, !SUM
2 FORMAT . (IlO)
4 STOP

END

TWO-BRANCH ARITHMETIC IF STATEMENT

7

(I I IF (earn) sn,.sn2

earn is an arithmetic or masking expression.

are labels on executable statements.

60305600 G I-5-5 •

The two-branch IF statement transfers control· to one of two executable statements. Control is transferred to
the statement labeled sn 1 if the value of the expression is not equal to zero and to the statement labeled
sn2 if it is equal to zero. ·

Example:

IF (I*J*DATA{K))l00,101
. 100 IF (I*Y*K)l05,106

LOGICAL IF STATEMENT

The logical IF statement has a standard form and a two-branch form.

STANDARD-FORM LOGICAL IF STATEMENT

((~lrf stat

elr is a logical or relational expression.

stat is any unlabeled executable statement other than DO, END, or another standard-form
logical IF.

The standard-form logical IF allows for conditional execution of a statement. If the logical or relational
expression is true, stat is executed. If the expression is false, statis skipped.

Examples:

IF (P.AND.Q) RES=7.2
50 TEMP=ANS*Z

If P and Q are both true, the value of the variable RES is replaced by 7.2; otherwise, the value of RES
is unchanged. In either case, statement SO is executed.

IF (A.LE. 2.5) CASH=l50.
70 B=A+C-TEMP

If A is less than or equal to 2.5, the value of CASH is replaced by 150. If A is greater than 2.5, CASH
remains unchanged.

IF (A.LT.B) CALL SUBl
20 ZETA=TEMP+RES4

If A is less than B, the subroutine SUBl is called. Upon return from this subroutine, statement 20 is
executed. If A is greater than or equal to B, statement 20 is executed and SUBl is not called.

• I-5-6 60305600 G

TWO-BRANCH LOGICAL IF STATEMENT

7

(
elr is a logical or relational expression.

sn 1, sn2 are labels on executable statements.

The two-branch logical IF allows for transfer of control to one of two executable statements. If the value of
the logical or relational expression is true, control is transferred to the statement labeled sn1. If the value of
the expression is false, control is transferred to the statement labeled sn2.

Example:

IF(K.EQ.100)60,70

If K is equal to 100, statement 60 is executed; otherwise statement 70 is executed.

DO STATEMENT

7

(11°0
sn iv=m1 ,m2

,m
3

7

(11°0
sn iv=m1 ,m2

sn Terminal statement label; an executable statement that must physically follow and reside in
the same program unit as its associated DO statement. The terminal statement must not be
any ·arithmetic or two-branch logical IF, a GO TO, RETURN, END, STOP, PAUSE, or
another DO statement.

iv Control variable; an integer variable.

Initial parameter. }

Terminal parameter.

Incrementation parameter.

60305600 G

Indexing parameters: unsigned integer or octal constants or
integer variables with positive non-zero values at execution such
that neither m1 +m3 nor m2+m3 is larger than 217-1. If the
indexing parameters exceed these constraints, the results are
unpredictable. If m3 is not specified, its value is assumed to be 1.

1-5-7 •

The DO statement makes it possible to repeat groups of statements and to change the value of an integer
variable during the repetition.

DO LOOPS

The range of a DO loop consists of all executable statements, from and including the first executable state­
ment after the DO statement to and including the terminal statement. Execution of a DO statement causes
the following sequence of operations:

1. iv is assigned the value of m1.

2. The range of the DO loop is executed.

3. iv is incremented by the value of m3.

4. iv is compared with m2. If the value of iv is less than or equal to the value of m2, the sequence
of operations starting at step 2 is repeated. If the value of iv is greater than the value of m2,
the DO is said to have been satisfied, the control variable becomes undefined, and control passes
to the statement following sn. If m1 is greater than or equal to m2, the range of the DO loop
is executed once.

A transfer out of the range of a DO loop is permissible at any time. When such a transfer occurs, the con­
trol variable remains defined at its most recent value in the loop. If control eventually is returned to the
same range, the statements executed while control is out of the range are said to define the extended range
of the DO. The extended range should not contain a DO statement.

The control variable must not be redefined in the range of a DO; such redefinition causes a fatal-to-execution
diagnostic to be issued. The control variable should likewise not be redefined in the extended range; such
redefinition causes the results of execution to be unpredictable.

The indexing parameters should not be redefined in either the range or the extended range of a DO. In
either case, the results of execution are unpredictable. Redefinition in the range of the DO causes an
informative diagnostic to be issued.

Example 1:

DO 10 I=l,11,3
IF(ALIST(I)-ALIST(I+l))15,10,10

15·ITEMP=ALIST(I)
10 ALIST(I)=ALIST(I+l)

300 WRITE(6,200)ALIST

The statements following DO up to and including statement 10 are executed four times. The DO
loop is executed with I equal to I, 4, 7, 10. Statement 300 is then executed.

• 1-5-8 60305600 G

Example 2:

DO 10 I=l,5
CAT=BOX+D

10 IF (X.GT.B.AND.X.LT.H)Z=EQUATE
6 A=ZERO+EXTRA

Statement 10 is executed five times, whether or not Z = EQUATE is executed. Statement 6 is
executed only after the DO loop is satisfied.

Example 3:

IVAR 9

DO 20 I = 1,200
IF (I-IVAR) 20,10,10

20 CONTINUE
10 IN = I

An exit from the range of the DO is made to statement 10 when the value of the control variable I
is equal to IV AR. The value of the integer variable IN becomes 9.

Example 4:

K=3
J=5
DO 100 I=J,K
RACK=2.-3.5+ANT(I)

100 CONTINUE

The DO loop is executed only once (with I = 5) because J is larger than K.

NESTED DO LOOPS

When a DO loop entirely contains another DO loop, the grouping is called a DO nest. DO loops can be
nested to 50 levels. The range of a DO statement can include other DO statements providing the range of
each inner DO is entirely within the range of the containing DO statement.

The last statement of an inner DO loop must be either the same as the last statement of the outer DO loop
or must occur before it. If more than one DO loop has the same terminal statement, a transfer to that
statement can be made only from within the range (or extended range) of the innermost DO, and the label
cannot be referenced in any GO TO or IF statement in the nest except in the range of the innermost DO.

A DO loop can be entered only through the DO statement. Once the DO statement has been executed, and
before the loop is satisfied, control can be transferred out of the range and then transferred back into the
range of the DO.

60305600 G I-5-9 •

A transfer from the range of an outer DO into the range of an inner DO loop is not allowed; however, a
transfer out of the range of an inner DO into the range of an outer DO is allowed because such a transfer
is within the range of the outer DO loop.

Illegal Legal

The use of and return from a subprogram within a DO loop are permitted. A transfer back into the range
of an innermost DO loop is allowed if a transfer has been made from the same loop.

I • I> Legal

Example I:

DIMENSION A(5,4,4), B(4,4)
DO 2 I 1,4
DO 2 J = 1,4
DO 1 K = 1,5

1 A(K,J,I) = O.O

2 B(J,i) = 0.0

This example sets arrays A and B to zero.

• 1-5-10

____...

~ Illegal

60305600 G

Example 2:

01 01 01

02 [02 [°3
n3 n2

---02

n2 [03
[°4

n4 n3

...... -----03

n1 = n2 = n3

n1 n1

DO loops can be nested completely within an outermost loop or can share a terminal statement. The diagrams
in ~xample 2 might be represented by the following code:

----DO 1 I=l,10,2

60305600 G

DO 2 J=l,5

[

DO 3 K=2,8

3 ~ONTINUE
2 CONTINUE

[

DO 4 L=l,3

4 ~ONTINUE

1 CONTINUE

DO 100 L=2,LIMIT

10 J=l,10

[DO

10 ~ONTINUE

[

DO 20 K=Kl ,K2

20 ~ONTINUE
100 CONTINUE

DO 5 I=l,5
DO 5 J=I,10
DO 5 K=J,15

5 A B*C

1-5-11 •

Example 3:

DO 10 J=l,50
DO 10 I=l,50
DO 10 M=l, 100

GO TO 10

10 CONTINUE

Since statement 10 is the terminal statement for more than one DO loop, it can be referenced in
a GO TO or IF statement in the range of the innermost DO. If 10 is referenced in one of the outer
loops, control is transferred out of the range with undefined results.

Example 4:

DO 10 K=l,100
IF{DATA{K)-10.)20,10,20

20 DO 30 L=l,20
IF{DATA{L)-FACT*K-10.)40,30,40

40 DO 50 J=l,5

GO TO {101,102,50),INDEX
101 TEST=TEST+l

GO TO 104
103 TEST=TEST-1

DATA{K)=DATA{K)*2.0

50 CONTINUE
30 CONTINUE
10 CONTINUE

GO TO 104
102 DO 109 M=l,3

109 CONTINUE
GO TO 103

104 CONTINUE

• 1-5-12 60305600 G

When an IF statement is used to bypass several inner loops, different terminal statements are required for each
loop.

CONTINUE STATEMENT

7

('"I lcoNnNuE

sn is a statement label.

The CONTINUE statement performs no operation. It is an executable statement that can be placed anywhere
in the executable statement portion of a source program without affecting the sequence of execution. The
CONTINUE statement is most frequently used as the last statement of a DO loop to provide loop termination
when a GO TO or IF would normally be the last statement of the loop. If the CONTINUE statement does
not have a label, an informative diagnostic is provided.

Example 1:

DO 10 I = 1, 11
IF {A{I)-A{I+l)20,10,10

20 ITEMPP = A{I)
A {I) =A {I+l)

10 CONTINUE

Example 2:

DO 20 I=l,20
1 IF {X{I) - Y{I))2,20,20
2 X {I) =X {I)+ 1. 0

Y{I)=Y{I)-2.0
GO TO 1

20 CONTINUE

60305600 G 1-5-13 •

PAUSE STATEMENT

7

(! 11 PAUSE

7

(WAUSE n

7

(WA USE :/:. c ... c :/:.

n is a string of 1-5 octal digits.

c ... c is a string of 1-70 characters.

When a PAUSE statement is encountered during execution, the program halts and PAUSE n, or c ... c, appears
as a dayfile message on the display console. The operator can continue or terminate the program with an
entry from the console. If the program is not terminated, it continues with the next statement. If n is
omitted, blanks are implied.

STOP STATEMENT

7

(llSTOP k .. d

n is a string of 1-5 octal digits.

c ... c is a string. of 1-70 characters.

The STOP statement terminates program execution. When a STOP statement is encountered during execution,
STOP n or STOP c ... c is displayed in the dayfile, the program terminates, and control returns to the
operating system. If n is omitted, blanks are implied. A program unit can contain more than one STOP
statement.

• 1-5-14 60305600 G

END STATEMENT

7

The END statement indicates the end of the program unit to the compiler. Every program unit must
physically terminate with an END statement. The END statement can follow a $ statement separator, be
labeled, and be continued. If control flows into or branches to an END statement, it is treated as if a
RETURN statement had preceded the END statement.

If the END statement is not continued (all three characters are on the same line with the D as the last
nonblank character), no scanning for possible continuation information is performed and any information
after the END statement is considered part of the next program unit. If the END statement is continued
(all three characters not on one line), any comment statements and blank lines following the END statement
are listed with the current program unit.

The following examples are interpreted as the end of one program unit, followed by another program unit
beginning with an illegal continuation line of either • FILE 3 or • = 4.

END
.FILE 3

END
• = 4

RETURN STATEMENT

(
7

(I I RETURN

is a dummy argument which appears in the RETURNS list in the SUBROUTINE statement.

The RETURN statement terminates the execution sequence within a program unit and normally returns
control to the current calling program unit. In a main program, execution of the program terminates and
control returns to the operating system when a RETURN is encountered.

When a RETURN statement is encountered in a function subprogram, control returns to the referencing
program unit and the evaluation of the expression is completed using the value returned from the function.
Since control must return to the referencing expression, a RETURN i statement in a function subprogram
causes a fatal error at compilation time.

60305600 G I-5-15 •

In a subroutine subprogram, a RETURN statement transfers control to the next executable statement
following the CALL statement in the calling program unit.

A RETURN i in a subroutine transfers control to the calling program statement label corresponding to i
in the RETURNS list. It allows control to return to an executable statement other than the one immediately
following the CALL statement and can only be used in a subroutine subprogram.

The RETURNS list is described in more detail in the Subroutine Subprogram and the Calling a
Subroutine Subprogram in section 1-7.

Example 1:

A = SUBFUN (D,E)
10 DO 200 I = 1,5

FUNCTION SUBFUN(X,Y)
SUB FUN X/Y
RETURN
END

When the RETURN statement is encountered in the function subprogram, control is returned to
the statement referencing the subprogram, and the value calculated by SUBFUN is stored in A.

Example 2:

Calling Program

CALL PGMl(A,B,C),
XRETURNS (5, 10)

5 B=SQRT(A*C)

10 CALL PGM2 (D,E)

Subprogram

SUBROUTINE PGMl(X,Y,Z),
XRETURNS (M, N)
U=x~··~·,y

x=z+x~w

20 IF (U+x) 25, 30, 35
25 RETURN M Return is to statement 5 in calling program.
30 RETURN N Return is to statement 10 in calling program.
35 Z=Z+(X~'•Y)

RETURN Return is to .statement following CALL PGM I .
END

Example 2 shows both forms of the RETURN statement in a subroutine subprogram.

• 1-5-16 60305600 G

SPECIFICATION STATEMENTS 1-6

Specification statements are non-executable; they define the type of a variable or array, specify the amount
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods
of sharing storage, and assign initial values to variables and arrays. The specification statements are:

IMPLICIT

Type

DIMENSION

COMMON

EQUIVALENCE

EXTERNAL

LEVEL

DATA

TYPE STATEMENTS

The IMPLICIT statement must precede other specification statements.

If any of these statements appears after the first executable statement or
statement function definition, the specification statement is ignored and a
fatal diagnostic is printed.

The DATA statement must follow all other specification statements
except statement function definitions and FORMAT statements (see
section III-9).

A type statement defines a variable, array, or function to be integer, real, complex, double precision, or logical.
An explicit type statement can be used to supply dimension information. The word TYPE as a prefix is
optional.

In the absence of an explicit type statement, the type of a symbolic name is implied by the first character
of the name: I, J, K, L, M, or N imply type integer and any other letter implies type real, unless an
IMPLICIT statement is used to change this normal implied type.

Basic external and intrinsic functions are implicitly typed, and need not appear in a type statement in the
user's program. The type of each library function is listed in section I-8.

60305600 G I-6-1 •

EXPLICIT TYPE DECLARATIONS

Five explicit type statements can be declared: INTEGER, REAL, COMPLEX, DOUBLE PRECISION, and
LOGICAL.

INTEGER

7

INTEGER name1, name2 , ..• , namen

The symbolic names listed are declared as type integer.

Example:

INTEGER SUM, RESULT, ALI ST

The variables SUM, RESULT and AUST are all declared as type integer.

REAL

7

REAL name1 , name2 , ..• , namen

The symbolic names listed are declared as type real.

Example:

REAL NEXT(7), ITEM

NEXT is declared as an array with 7 real elements, and ITEM is declared as a real variable.

COMPLEX

7

COMPLEX name1 , name2 , .•• , namen

The symbolic names listed are declared as type complex.

Example:

COMPLEX ALPHA, NAM, MASTER, BETA

The variables ALPHA, NAM, MASTER, BETA are declared as type complex.

• I-6-2 60305600 G

DOUBLE PRECISION

7

DOUBLE PRECISION name1 , name2 , ... , namen

TI1e symbolic names listed are declared as type double precision. DOUBLE can be used instead of
DOUBLE PRECISION.

Example:

DOUBLE PRECISION ALI ST, JUNR, BOX4

111~ variables AUST, JUNR, BOX4 are declared as type double precision.

LOGICAL

7

LOGICAL name1 , name2 , ••. , namen

The symbolic names listed are declared as type logical.

Example:

LOG I CAL P, Q, NUMBR4

The variables P, Q and NUMBR4 are declared as type logical.

IMPLICIT TYPE STATEMENT

7

type LOGICAL, INTEGER, REAL, DOUBLE PRECISION, DOUBLE, or COMPLEX

ac Single alphabetic character, or range of characters represented by the first and last character
separated by a minus sign. ac must be enclosed in parentheses.

60305600 G I-6-3 •

This statement specifies the type of variables or array elements beginning with the letters ac. Only one IMPLICIT
statement may appear in a program unit, and it must precede other specification statements. An IMPLICIT state­
ment in a FUNCTION or SUBROUTINE subprogram affects the type associated with dummy arguments and the

I function name, as well as other variables in the subprogram.·An.IMPLICIT statement cannot be used to dimension an
array.

Explicit typing of a variable name or array element in a type statement or FUNCTION statement overrides an
IMPLICIT specification.

Example 1:

IMPLICIT INTEGER(A-0,R)

REAL ASUM

ASUM = BOR + ROR * ANEXT

DECK = CROWN + B

The variables BOR, ROR, ANEXT, DECK, CROWN and B are of type integer; ASUM is type real.

Example 2:

PROGRAM COME (0UTPUT,TAPE6:0UTPUT>
IMPLICIT INTEGER <A-FtH>
DIMENSION E.(3t4)
COMMON A(l),BtCtOt ftGtH
EQUIVALENCE (A,Etl>
NAMELIST/VLIST/AtBtCtDtEtFtGtHtl

DO 1 J =· l t 12
l A(J)=J

WRITE (6tVLIST>
STOP
END

The arrays A and E and the variables B, C, D_, F, H, and I are of type integer; G is type real.

I-6-4 60305600 G

DIMENSION STATEMENT

7

di Array declarator, 1-3 integer constants. In a subprogram DIMENSION statement, they
can be integer variables.

namei Symbolic name of an array.

The DIMENSION statement is a nonexecutable statement which defines symbolic names as array names and
specifies the bounds of the array. More than one array can be declared in a single DIMENSION statement.
Arrays specified with a subprogram can have adjustable dimension specifications. (A further explanation of
adjustable dimension specifications appears under Procedure Communication in section I-7 .) Within the same
program, only one definition of an array is permitted.

The number of computer words reserved for an array is determined by the type of the array and the product
of the subscripts. For real, integer and logical arrays, the number of words in an array equals the number of
elements in the array. For complex and double precision arrays, the number of words reserved is twice the
product of the subscripts. No array can exceed 131,071 words.

Example:

COMPLEX BETA
DIMENSION BETA (2,3)

BETA is an array containing six elements; however, BETA has been defined as COMPLEX and two words
are used to contain each complex element; therefore, 12 computer words are reserved.

Example:

REAL NIL
DIMENSION NIL (6,2,2)

These statements could be combined into one statement with 24 words reserved for array NIL.

REAL NIL (6, 2, 2)

Example:

DIMENSION ASUM(l0,2)

DIMENSION ASUM (3), VECTOR (7,7)

The second specification of ASUM is ignored, and an informative message is printed. The specification for
VECTOR is valid and is processed.

60305600 G 1-6-5 •

I COMMON STATEMENT

(
blkname

II

7

(i I ICOMMON/ /vl' ... ,vn

7

COMMON/blkname1 /v1 , ..• ,vn .. ./blkname/v1 , ..• ,vn

7

I I COMMON

Block name or number enclosed in slashes. A block name is a symbolic
name. A block number is 1-7 digits; it must not contain any alphabetic
characters. Leading zeros are ignored. 0 is a valid block number. The
same block name or number can appear more than once in a COMMON
statement or a program unit; the loader links all variables in blocks having
the same name. or number into a single labeled common block.

Variables or array names which can be followed by constant subscripts
that declare the dimensions. The variable or array names are assigned to
blkname. The COMMON statement can contain one or more block
specifications.

Denotes a blank common block. If blank common is the first block in the
statement, slashes can be omitted.

Variables or arrays in a calling program or a subprogram can share the same storage locations with
variables or arrays in other subprograms by means of the COMMON statement. Variables and array names
are stored in the order in which they appear in the block specification.

COMMON is a non-executable statement. See section III-9 for proper location of COMMON statements relative
to other statements in the program unit. The COMMON specification provides up to 125 storage blocks that
can be referenced by more than one subprogram. A block of common storage can be labeled by a name or a
number. A COMMON statement without a name or number refers to a blank common block. Variables and
array elements can appear in both COMMON and EQUIVALENCE statements. A common block of storage can
be extended by an EQUIVALENCE statement; however, no common block can exceed 131,071 words.

1-6-6 60305600G

All members of a common block must be allocated to the same level of storage; a fatal diagnostic is issued if
conflicting levels are declared. If only some members of a common block are declared in a LEVEL statement,
the remaining members of that common block are allocated automatically to the same level; and an informative
diagnostic is issued.

Block names can be used elsewhere in the program as symbolic names, and they can be used as subprogram
names. Numbered common is treated as labeled common. Data stored in common blocks by the DATA
statement is available to any subprogram using these blocks.

The length of a common block, other than blank common, must not be increased by a subprogram using
the block unless the subprogram is loaded first by the operating system loader.

Example:

COMMON/BLACK/A(3)
DATA A/1. ,2. ,3./

COMMON/100/!(4)
DATA I/4,5,6,7/

Data may not be entered into blank common blocks by the DATA declaration.

The COMMON statement may contain one or more block specifications:

COMMON/X/RAG,TAG/APPA/Y,Z,B(5)

RAG and TAG are placed in block X. The array Band Y,Z are placed in block APPA.

Any number of blank common specifications can appear in a program. Blank, named and numbered
common blocks are cumulative throughout a program, as illustrated by the following example:

COMMON A,B,C/X/Y,Z,D//W,R

COMMON M,N/CAT/ALPHA,BINGO//ADD

These statements have the same effect as the single statement:

COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO

Within subprograms, dummy arguments are not allowed in the COMMON statement.

If dimension information for an array is not given in the COMMON statement, it must be declared in a
type or DIMENSION statement in that program unit.

60305600 G 1-6-1 I

Examples:

COMMON/DEE/Z(l0,4)

Specifies the dimensions of the array Zand enters Z into labeled common block DEE.

COMMON/BLOKE/ANARAY,B,D
DIMENSION ANARAY(l0,2)

COMMON/Z/X,Y,A
REAL X(7)

COMMON/HAT/M,N,J(3,4)
DIMENSION J(2,7)

In the last example, J is defined as an array (3.4) in the COMMON statement. (2, 7) m the
DIMENSION statement is ignored and an error message is printed.

The length of a common block, in computer words. is determined by the number and type of the variables
and array elements in that block. In the following statements. the length of common block A is 12 computer
words. The origin of the common block is Q(I).

REAL Q,R
COMPLEX S
COMMON/A/Q(4),R(4),S(2)

origin

Block A

QC I)
Q(2)
Q(3)
Q(4)
R(I)

R(2)

R(3)

R(4)

S(I)
S(I)
S(2)

S(2)

real part
imaginary part
real part
imaginary part

If a program unit does not use all locations reserved in a common block, unused variables can be inserted
in the COMMON declaration in the subprogram to ensure proper correspondence of common areas.

I 1-6-s 60305600G

Example:

COMMON I SUM/ A' B' c 'D main program

COMMON I SUM/ E (3) 'D subprogram

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area
reserved by A,B, and C.

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list.

COMMON/ SUM/D ,A, B 'c main program

COMMON/SUM/D subprogram

If program units share the same common block, they may assign different names and types to the members
of the block; but the block name or numbers must remain the same.

Example:

PROGRAM MAIN
COMPLEX C
COMMON/TEST/C(20)/36/A,B,Z

The block named TEST consists of 40 computer words. The length of the block numbered 36 is three
computer words.

The subprogram may use different names as in:

SUBROUTINE ONE
COMPLEX A
COMMON/TEST/A{lO),G(lO),K{lO)

The length of TEST is 40 words. The first lO elements (20 words) of the block represented by A are
complex elements. Array G is the next l 0 words, and array K is the last l 0 words. Within the
subprogram, elements of G are treated as floating point: elements of K are treated as integer.

60305600 G 1-6-9 I

EQUIVALENCE STATEMENT

7

EQUIVALENCE (glist1), ... ,(glistn)

Each glisti consists of two or more variables, array elements,· or array names, separated by commas.

Array elements must have integer constant subscripts. Dummy. arguments must not appear in an equivalence
statement. Equivalenced variables must· be assigned to the same level of storage. ·

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a pro­
gram unit. If it appears after .the first executable statement, a fatal diagnostic is printed.

EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as
opposed to COMMON which assigns two variables in different program units to the same location). Variables
or array elements not mentioned in an EQUIVALENCE statement are assigned unique locations.

Example:

DIMENSION JAN(6),BILL(l0)
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C)

The variables IRON, MAT and ZERO share the same location, the fifth element in array JAN and the
second element in array BILL share the same location, and the variables A,B and C share the same location.

When an element of an array is referred to in an EQUIVALENCE statement, the relative locations of the
other array elements are, thereby, defined also.

Example:

DIMENSION Y(4), B(3,2)
EQUIVALENCE (Y,B(l,2)), (X,Y(4))

This EQUIV ALEN CE statement causes storage to be shared by the first element in Y and the fourth
element in B and, similarly, the variable X and the fourth element in Y. Storage will be as follows:

I I-6-10

B(I, I)
B(2,I)
B(3,I)
B(1,2)
B(2,2)
B(3,2)

Y(I)
Y(2)
Y(3)
Y(4) x

60305600 G

The elements of a glist constitute an equivalence group. When an equivalence group contains an element that
appears in another equivalence group, these groups are merged and their elements constitute an equivalence
class.

Example:

DIMENSION A(100)

EQUIVALENCE (A,B), (C,A(SO)), (D,E), (F,Cl

These statements establish the following equivalence groups:

{A,B}, {A,c}, {c,F}, {o,E}

and the following equivalence classes:

{A,B,C,F}, {o,E}

The statement EQUIVALENCE (A,B),(B,C) has the same effect as EQUIVALENCE (A,B,C).

When no array subscript is given, it is assumed to be I.

DIMENSION ZEBRA(lO)
EQUIVALENCE (ZEBRA,TIGER)

means the same as the statements:

DIMENSION ZEBRA(lO)
EQUIVALENCE (ZEBRA(l),TIGER)

A logical. integer. or real entity equivalenced to a double prec1s10n or complex entity shares the same
location as the real or most significant part of the complex or double precision entity.

60305600 G 1-6-11

An array with multiple dimensions may be referenced with a single subscript. The location of the element
in the array may be determined by the following method:

DIMENSION A(K,M,N)

The position of element A(k,m,n) is given by:

A+(k-l+K*(m-l+M*(n-l)))*E

E is I if A is real, integer or logical; Eis 2 if A is complex or double precision.

Example:

DIMENSION AVERAG(2,3,4),TERM(7)
EQUIVALENCE (AVERAG(8),TERM(2))

Elements AVERAG (2,1,2) and TERM(2) share the same locations.

Two or more arrays can share the same storage locations.

Example:

DIMENSION ITIN(l0,10),TAX(lOO)
EQUIVALENCE(ITIN,TAX)

500 READ {5,40)ITIN

600 READ (5,70) TAX

The EQUIVALENCE declaration assigns the first elements of arrays ITIN and TAX to the same
location. READ statement 500 stores the array ITIN in consecutive locations. Before READ
statement 600 is executed, all operations involving ITIN should be completed; as the values of array
TAX are read into the storage locations previously occupied by ITIN.

Lengths of arrays need not be equal.

Examples:

DIMENSION ZER01(10,5),ZER02(3,3)
EQUIVALENCE (ZER01,ZER02)

EQUIVALENCE (ITEM,TEMP)

is a legal EQUIV ALEN CE statement

The integer variable ITEM and the real variable TEMP share the same location; therefore, the same
location may he referred to as either integer or real. However. the integer and real internal formats
differ; therefore the values will not be the same.

I 1-6-12 60305600 G

Example:

PROGRAM COME (0UTPUTtTAPE6:0UTPUT>
COMMON A(l)tBtCtOt FtGtH
INTEGER AtBtCtDtE(3t4>tft H
EQUIVALENCE (A~Etl>
NAMELIST/VLIST/AtBtCtDtEtF,GtHtl

DO 1 J = l t 12
l A<J>=J

WRITE (6tVLIST>
STOP
END

Output from Program COME:

$VLIST
A
B
c
D
E
F
G
H
I
$END

= 1,
2,
3,

= 4,
= 1, 2'
= 5,

0.0,
7,

= 1,

3, 4, 5, 6,

An explanation of this example appears in part 2.

EQUIVALENCE AND COMMON

7' 8, 9, 10, 11, 12

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. A
common block of storage may be extended by an EQUIV ALEN CE statement.

Example:

COMMON/HAT/A{4),C
DIMENSION B{5)
EQUIVALENCE {A{2),B{l))

Common block HAT will extend from A(1) to B(5):

/HAT/ Origin

60305600 G

A(l)
A(2)
A(3)
A(4)
c

B(l)
B(2)
B(3)
B(4)
B(5)

I-6-13 I

EQUIVALENCE statements which extend the origin of a common block are not allowed, however.

Example:

COMMON/DESK/E,F,G
DIMENSION H{4)
EQUIVALENCE {E,H{3))

The above EQUIVALENCE statement is illegal because H(l) and H(2) extend the start of the common
block DESK:

/DESK/

Origin E
F
G

H(l)
H(2)
H(3)
H(4)

An element or array is brought into COMMON if it is equivalenced to an element in COMMON. Two elements
in COMMON must not be equivalenced to each other.

Examples:

COMMON A,B,C
EQUIVALENCE (A,B) illegal

COMM ON I HAT I A (4) , C IX I Y , Z
EQUIVALENCE {C,Y) illegal

As stated in section I-2, indexing outside of array bounds is prohibited. Since the compiler attempts to
minimize the size of equivalence classes in common blocks to the smallest subset of the block that includes
all members named in associated EQUIVALENCE statements, all members of ~ common block will not
necessarily be considered as one array. The programming practice of intentionally referencing locations out­
side a known array may produce unintentional results as shown in the following example.

COMMON/ /A(4), B, D, N

DIMENSION AA(4)

EQUIVALENCE (AA, A(2))

D=2.

N=2

DO 10 1=1, 6

10 AA(I)=D*N

PRINT *,N

When these statements are compiled under OPT=O, N will have a value of 8 on exit. Under OPT=l or 2,
the evaluation of D*N will be moved out of the loop since AA and D (or N) are not recognized as being
in the same equivalence class. If the program is to produce the same results under all OPT levels, AA
must be dimensioned to include the entire common block in the equivalence class.

I-6-14 60305600 G

LEVEL STATEMENT

(

n

§ 2

3

2

3

7

List of variables or array names separated by commas

Unsigned integer l, 2, or 3 indicating level to which list is to be allocated.

Small core memory resident (SCM)

Large core memory resident (LCM). Directly addressable (or word addressable)

Large core memory resident, accessed by block transfer to or from small core memory
through MOVLEV subroutine call

Central memory resident

Central memory resident

Extended core storage resident, accessed by block transfer to or from central memory
through MOVLEV subroutine call

This statement assigns variables or array names to the level n. LEVEL statements must precede the first
executable statement in a program unit. Names of variables and arrays which do not appear in a LEVEL
statement are allocated to central memory.

No dimension or type information may be included in the LEVEL statement.

Variables and arrays appearing in a LEVEL statement can appear in DATA, DIMENSION, EQUIVALENCE,
COMMON, type, SUBROUTINE and FUNCTION statements. Data assigned to levels 2 and 3 must appear also
in COMMON statements or as dummy arguments in SUBROUTINE or FUNCTION statements.

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

:j:Applies only to CONTROL DATA CYBER 70/Models 72, 73 and 74, CYBER 170, and 6000 Series computers.

60305600 G 1-6-15 I

Data assigned to level 3 can be referenced only in: COMMON, DIMENSION, EQUIVALENCE, DATA, CALL,
SUBROUTINE, and FUNCTION statements. Level 3 items cannot be used in expressions.

No restrictions are imposed on the way in which reference is made to variables or arrays allocated to levels
I and 2.

If the level of any variable is multiply defined, the level first declared is assumed; and a warning diagnostic
is printed.

All members of a common block must be assigned to the same level; a fatal diagnostic is issued if
conflicting levels are declared. If some, but not all, members of a common block are declared in a LEVEL
statement, all are assigned to the declared level, and an informative diagnostic is printed.

If a variable or array name declared in a LEVEL statement appears as an actual argument in a CALL
statement, the corresponding dummy argument must be allocated to the same level in the called
subprogram.

If a variable or array name appears in an EQUIVALENCE and a LEVEL statement, the equivalenced
variables must all be allocated to the same level.

Example:

DIMENSION E(500),B(500),CM(l000)
LEVEL 3, E,B
COMMON /ECSBLK/ E,B

CALL MOVLEV (CM,E,1000)

The LEVEL statement allocates arrays E and B to extended core storage. They are assigned to a named
common block, ECSBLK. Starting at location CM (the first word address of the array CM), I 000 words of
central memory are transferred to the two arrays E and B in extended core storage by the library routine
MOVLEV.

EXTERNAL STATEMENT

7

I I EXTERNAL
name1 , ..• , namen

name1 , ••• ,name0 Subprogram names

Before a subprogram name is used as an argument to another subprogram. it must be declared m an
EXTERNAL statement in the calling program.

I 1-6-16 60305600 G

Any name used as an actual argument in a call is assumed to be a variable or array unless it appears in an
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a
standard system function, such as SQRT. However, an EXTERNAL statement is not required for intrinsic
functions used as actual arguments. If an intrinsic function name appears in an EXTERNAL statement, the
user must supply the function.

Example:

Calling Program

EXTERNAL SIN, SQRT
CALL SUBRT(2.0,SIN,RESULT)
WRITE (6,100) RESULT

100 FORMAT (F7.3)
CALL SUBRT(2.0,SQRT,RESULT)
WRITE (6,lOO)RESULT
STOP
END

Subprogram

SUBROUTINE SUBRT (A,B,C)
X=A+3.14159/2.
C=B(X)
RETURN
END

First the sine, then the square root are computed; and in each case, the value is returned in
RESULT. The EXTERNAL statement must precede the first executable statement, and always
appears in the calling program. (It may not be used with statement functions.)

A function call that provides values for an actual argument does not need an EXTERNAL statement.

Example:

Calling Program Subprogram

CALL SUBRT(SIN(X),RESULT) SUBROUTINE SUBRT(A,B)

B=A

END

An EXTERNAL statement is not required because the function SIN is not the argument of the
subprogram; the evaluated result of SIN(X) becomes the argument.

60305600G 1-6-11 1

Example:

PROGRAM VARDIM2(0UTPUT~TAPE6•0UTPUTtDEBUG•OUTPUT>
COMMON-X(4t3J
REAL Y(6)
EXTERNAL. MULT• AVG
NAMELIST/V/X,YtAAtAM
CALL SET<Yt6tO.>
CALL IOTA(Xtl2>
CALL INC·<x.12.-s.>
AA=PVAL·.< 12tAVG>
AM=PVAL(l2tMULT")
WRITE<6tV)
STOP
END

FUNCTION AVG(J)
C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF COMMON.

COMMON A <l 00)
AVG=O.
DO 1 I = 1,J.

1 AVG=AVG+A (I>
AVG=AVG/FLOAT<J>
RETURN
END

REAL FUNCTION MULT(J)
COMMON ARRAY<12>
MULT=ARRAY<l2>*ARRAY<l>-AVG(J/2)
RETURN
E N 0

An explanation of this example appears in part 2.

I 1-6-1 s 60305600G

DATA STATEMENT

7

DATA vlist1/dlist1/, ... , vlist/dlist/

7
DATA (vlist = dlist), ... , (vlist = dlist)

vlist List of array names, array elements, ·variable names, or an implied DO loop, separated by
commas. Unless they appear in an implied DO loop, array elements must have integer constant
subscripts.

dlist One or more of the following forms separated by commas:

constant
(constant list)
rf*constant
rf*(constant list)
rf(constant list)

constant list

rf

List of constants separated by commas.

Integer constant. The constant or constant list
is repeated the number of times indicated by
rf.

The data statement is non-executable and must follow all specification statements except statement function
definitions and FORMAT statements. It assigns initial values to variables or array elements. Only variables
assigned values by the DATA statement have specified values when program execution begins. The DAT A
statement cannot be used to assign values in blank common or to dummy arguments.

I

I

I
The number of items in the data list should agree with the number of variables in the variable list. If the data
list contains more items than the variable list, excess items are ignored, and an informative diagnostic is printed.
If the data list contains fewer items than the variable list, remaining variables are not defined, and an informative
diagnostic is printed.

The type of the constant in the data list should agree with the type associated with the corresponding name
in the variable list. If the types do not agree, the form of the value stored is determined by the constant used
in the DATA statement rather than by the type of the name in the variable list.

60305600 G I-6-19

An unsubscripted array name implies the entire array in the order it is stored in memory.

Example:

INTEGER B (10)
DATA B/000077B,000064B,3*000005B,5*000200B/

The following octal constants are stored in ARRAY B:

77B
64B

5B
5B
5B

200B
200B
2008
200B
200B

When a Hollerith specification is used in a DATA statement, it should not exceed 10 characters. For example,
to store the following values in an array A:

Location Contents

A(l) 1234567890

A{2) ABCDEFGHIJ

A{3) KLMNOPQRST

A(4) UVWXYZ +- *

the following statements should be used:

DIMENSION A(4)
DATA A/10Hl234567890,10HABCDEFGHIJ,10HKLMNOPQRST,10HUVWXYZ+- */

The following statements would not product the desired result:

DIMENSION A(4)
DATA A/20Hl234567890ABCDEFGHIJ,20HKLMNOPQRSTUVWXYZ+- */

They would initialize:

Location

I 1-6-20

A{l)

A{2)

A{3)

A(4)

Contents

1234567890

KLMNOPQRST

UVWXYZ+- *
undefined

60305600 G

IMPLIED DO IN DATA LIST

The implied DO can be used as a shortened notation for specifying items in the variable list of a DATA
statement. The implied DO in a DATA statement has the following form:

where:

varlist an array element or another implied DO. If it is an array element, its subscript
expressions must be of the form

M*i±N

where M and N are unsigned integer constants.

a simple integer variable called the index variable

unsigned integer constants specifying the initial value, terminal value, and
increment, respectively, for the index variable; if m3 and the preceding comma
are omitted, the value of m3 is assumed to be 1.

The range of the implied DO is varlist. Within the range, the value of the variable i must not be redefined.
If varlist contains more implied DOs, those implied DOs are considered to be nested within the containing
implied DO; the nested implied DO is completely processed for each value of "i in the containing implied DO.
Implied DOs can be nested a maximum of three deep.

When an implied DO is encountered in a DATA statement, the elements in its range are initialized for index
var_iable i with the value m1. The index variable is then increased by m3 and, if i is less than or equal to
m2, the range of varlist is initialized for the new value of i. This procedure continues until the value of the
index variable exceeds m2.

Example 1:

REAL ANARAY(lO)
DATA (ANARAY(I),I = 1,10)/1.,2.,3.,7*2.5/

The values stored in array ANARAY are:

ANARAY(l)

ANARAY(lO)

60305600 G,

I.
2.
3.
2.5
2.5
2.5
2.5
2.5
2.5
2.5

1-6-21 •

When an implied DO is used to store values into arrays, only one array name can be used within the implied
DO nest.

Example 2:

DIM.ENSION UNIT (10, 10)

DATA (UNIT(I, I), 1=1, 10)/10*1./

These two statements declare a matrix and preset the diagonal elements to ones.

Example 3:

DIMENSION AR(10)

DATA (AR(2*1+1),1=1, 4)/4*3.5/

These two statements declare a ten-word array and preset elements AR(3), AR(S), AR(7), and AR(9) to
3.5.

Example 4:

DIMENSION AMASS(l0,10,10), A(lO), B(5)
DATA (AMASS{6,K,3),K=l,10)/4*(-2.,5.139),6.9,10./
DATA (A(I),I=5,7)/2*(4.1),5.0/
DATA B/5*0.0/

These statements dimension arrays AMASS, A, and B and preset elements as follows:

ARRAY AMASS: ARRAY A

AMASS(6,1,3) -2. A(5) 4.1
AMASS(6,2,3) = 5.139 A(6) 4.1
AMASS(6,3,3) = -2. A(7) 5.0
AMASS(6,4,3) 5.139
AMASS (6 , 5. , 3) -2. ARRAY B:
AMASS(6,6,3) 5.139
AMASS(6,7,3) -2. B(l) o.o
AMASS(6,8,3) 5.139 B(2) o.o
AMASS(6,9,3) 6.9 B(3) o.o
AMASS(6,10,3) = 10. B(4) o.o

B(5) o.o
Example 5:

Invalid: DATA (A(I}, B(I), 1=1, 3)/1.. 2., 3. I 4 .• 5 .• 6./

Example 6:

2*(1.0, 2.0) Means repeat the real constants 1.0 and 2.0 twice

2*((1.0, 2.0)) Means repeat the complex constant (1.0, 2.0) twice

• 1-6-22 60305600 G

Example 6 illustrates the use of repeat specifications with real and complex constants. When a repeat
specification is used with complex constants, it is necessary to ensure that the parantheses that are part
of the complex constant are not confused with the parentheses enclosing the constant list.

Example 7:

P~OGRAH DATA C <OUTPUT,TAPE&=OUTPUT)
COMPLEX Z<3>,Z1
R:'.AL A<'+>
LOGICAL L

s N~MELIST/OUTII,L,x,z1,A,Z
D~TA I,L,x,z1,A,Z/5,.TRUE.,J.1415926S36,(2.1,-3.>,2•<1.,2.>,

10

s;cur

1 :: 5'

L = T•

1 3~<<1.,-1.~t)/

WiUTE<6,0UT>
STOP
ENO

X = .3141592653~E+Ol'

A = .lE•Olt .2~+01~ .lE+Ol, .2E+Olt

1END

Example 8:

The following are examples of alternative (nonstandard) forms of the DATA statement:

DATA (X=3.),(Y=5.)

INTEGER ARAY(5)
DATA (A=7.),(B=200.),(ARAY=l,2,7,50,3)

COMMON/BOX/ARAY4(3,4,5)
DATA (ARAY4(1,3,5)=22.5)

The statements:

DIMENSION D3(4),POQ(5,5)
DATA (D3 = 5.,~.,7.,8.),(((POQ(I,J),I=l,5),J=l,5)=25*0.)

60305600 G I-6-23 •

Initialize:

D3(1) = 5.
D3(2) = 6.
D3{3) 7.
D3(4) = 8.

and set the entire array POQ to zero.

When constants in a data list are enclosed in parentheses and preceded by an integer constant, the list is
repeated the number of times indicated by the integer constant. If the repeat constant is not an integer, a
compiler error message is printed.

• 1-6-24 60305600 G

PROGRAMS, SUBPROGRAMS, AND PROCEDURES 1-7

A program unit consists of FORTRAN statements, with optional comments, terminated by an END statement.
A main program is a program unit that does not begin with a SUBROUTINE, FUNCTION, or BLOCK DATA
statement. A subprogram is a program unit that begins with a SUBROUTINE, FUNCTION, or BLOCK DATA
statement. An executable program contains one main program with or without subprograms. A program unit
containing no FORTRAN statements other than an END statement is considered a null program; it is diagnosed
and ignored.

A subprogram is defined separately and can be compiled independently of a main program. If the subprogram
begins with a SUBROUTINE or FUNCTION statement, it is a procedure subprogram and can exchange no,
one, or more values through a list of arguments, through common, or both. If the subprogram begins with a
BLOCK DA TA statement, it is a specification subprogram.

A procedure is a procedure subprogram, statement function, intrinsic function, or basic external function.
Intrinsic functions and basic external functions are FORTRAN supplied procedures and are available to any
programmer. Statement functions and procedure subprograms are supplied by the programmer.

The differences between function and subroutine specification and use are summarized in table 7-1.

Table 7-1. Differences Between a Function and Subroutine Subprogram

Function Subroutine

How Used The name appearing in an expression is A CALL statement is used as
used as the reference. the reference.

Arguments One or more arguments must be included. Arguments need not be present.

How Typed Name is typed implicitly by first letter No type is associated with the
or explicitly by the type designation name.
appearing before the word FUNCTION.

Functions return a single value through the function name. Function subprograms defined by the programmer
also can return values through a list of arguments, through common, or both.

Table 7-2 summarizes the terminology of the overlapping categories of procedures and subprograms.

60305600 G 1-7-1 •

Table 7-2. Procedure and Subprogram Interrelationships

Statement Intrinsic
Basic

Function Subroutine Block Data
External

Function Function
Function

Subprogram Subprogram Subprogram

Procedure yes yes yes yes yes no

External procedure no no yes yes yes N/A

Subprogram no no no yes yes yes

Function yes yes yes yes no no

External function no no yes yes N/A N/A

Who defines user compiler compiler user user user

Where defined within compiler library external to external to external to
program unit program unit program unit program unit

NI A = not applicable

Programmer written procedures (statement functions, function subprograms, and subroutine subprograms) are
discussed below as a group. FORTRAN supplied procedures (intrinsic functions and basic external functions)
are discussed in detail in section 1-8. The only subprogram that is not a procedure is the block data sub­
program. Since it is not executable, it is discussed separately.

MAIN PROGRAMS

A main program can contain any FORTRAN statements except FUNCTION, SUBROUTINE, or BLOCK DATA;
it should have a PROGRAM statement, at least one executable statement, and an END statement. One main
program is required in any executable FORTRAN program unit.

PROGRAM STATEMENT FORMAT

• 1-7-2

7

PROGRAM name (fpar 1, fpar2 , ... , fpar n)

name Must be a unique symbolic name within the main program and cannot be used as a sub­
program name.

fpari The fpar can be any of the following forms:

60305600 G

file File name (1-6 letters or digits beginning with a letter) for each 1/0 file required by the
main program or its subprograms; the maximum number of file names is 50.

file=n n t is a decimal number specifying the buffer length; default length is 2002 octal words.

file=/r

file=n/r

r is the maximum length in characters for list directed, formatted, and NAMELIST
records; default length is 150 characters.

n/r defines both buffer and record lengths.

Filea is made equivalent to previously defined fileb.

In a program structured for overlays, the fpari parameter list is used only in the PROGRAM statement for
the main overlay. It is not used in primary and secondary overlay PROGRAM statements.

PROGRAM STATEMENT USAGE

The PROGRAM statement defines the program name that is used as the entry point name and the object
deck name for the loader. Optionally, the PROGRAM statement can declare files that are used in the pro­
gram and any subprograms that are called. If this statement is omitted from the main program, the program
is assumed to have the name START. and two files named INPUT and OUTPUT.

All file names used in standard FORTRAN input/output statements must be listed in the PROGRAM state­
ment. File names referenced by direct call to CYBER Record Manager must not be listed in the PROGRAM
statement. If a file name is referenced in a standard FORTRAN input/output statement in a main program,
but is not specified in the PROGRAM statement, a warning diagnostic is issued at compile time. If a file
name is referenced in a standard FORTRAN input/output statement in a subprogram, but is not specified in
the PROGRAM statement of the main program, a diagnostic is issued when the file is used at execution time.

File names on the PROGRAM statement must satisfy the following conditions:

• The file name INPUT must be declared if a READ statement without a logical unit
number is included in the program.

• The file name OUTPUT must be declared if a PRINT statement without a logical unit
number is included in the program.

o The file name PUNCH must be declared if a PUNCH statement without a logical unit
number is included in the program.

o The file name TAPEu (u is an integer constant 0-99) must be declared if any input/output
statement involving unit u appears in the program. At execution time, if u is a variable, there
must be a file name TAPEu for each value u may assume.

FORTRAN I/O routines add the characters TAPE as a prefix to the logical unit number to form the file
name. TAPE3 is the file name assigned to logical unit 3 and TAPES is the file name assigned to logical

t n is ignored if specified in a program run under SCOPE 2.1.

60305600 G I-7-3 •

unit S, but TAPES and TAPEOS do not specify the same file name. If T APEOS is used, it can be accessed
with FORTRAN I/O statements only by using the display code file name in L format (Input/Output in
section I-9 contains details).

TAPEu refers to a file located on rotating mass storage unless specified otherwise in the job deck before the
program is executed. The file is temporary unless made permanent by the user.

FORTRAN I/O statements use the buffer areas established by the file name specified in the PROGRAM
statement. The buffer length can appear only with the first reference to the file in the PROGRAM statement.
A buffer length of zero should be specified for a file referenced by a BUFFER statement. Since buffered
records are transmitted directly into and out of central memory, field length of the program is reduced by at
least 2000 (octal) words for each file declared with zero buffer length in the PROGRAM statement.

For files not referenced by BUFFER statements, the following values of n are suggested:t

For terminals: n=number of words in the largest record plus one.

For mass storage n~64. Large records and sequential reading/writing execute faster with a larger
buffer.

For tapes: Tape Format

SCOPE, SI, I, X

s
L

Minimum Value of n

128 for formatted.
S 12 for unformatted.

S 12 for formatted or unformatted.

~ maximum block length.

Record length, r, should be specified for files referenced in list-directed input/output statements. When file
names are made equivalent, the buffer length and record size specified apply to both files.

Examples:

PROGRAM ORB (INPUT,OUTPUT=1OOO,TAPE1=1NPUT,TAPE2=0UTPUT,TAPE4=1000/2000)

All input/output statements that reference TAPEl reference INPUT instead, and all listable output normally
recorded on TAPE2 is transmitted to the file named OUTPUT. TAPE4 has a buffer length of 1000 words
with a maximum of 2000 characters per record.

PROGRAM JIM(INPUT,TAPE19=INPUT)

TAPEl 9=INPUT must be preceded in the same statement by INPUT (or INPUT=buffer length). TAPEl 9
becomes the name for the file INPUT.

tnoes not apply to SCOPE 2.1.

• 1-7-4 60305600 G

PROGRAM SAMPLE (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT)

READ(5,100)A,B,C
100 FORMAT (3F7.3)

This statement reads from logical unit 5; it is declared in the
PROGRAM statement as TAPES which is equivalent to INPUT.

WRITE(6,200)A,B,C
200 FORMAT (1Hl,3F7.3)

Logical unit 6 is declared as TAPE6 in the PROGRAM state­
ment and equivalent to OUTPUT.

BLO'CK DATA SUBPROGRAM

7

(11 BLOCK DATA

7

(11 BLOCK DATA name

name identifies the BLOCK DATA subprogram if more than one is compiled.

The block data subprogram is a nonexecutable specification subprogram that can be used to enter data into
labeled or numbered common (but not blank common) prior to program execution. The name BLKDAT. is
assigned to the block data subprogram if it is not named by the user.

The block data subprogram contains only IMPLICIT, LEVEL, type, DIMENSION, COMMON, EQUIVALENCE,
DATA, and END statements. Any executable statements are ignored and a warning is issued. All DATA
statements must follow the specification statements. Data can be entered into more than one block of
common in a block data program.

Example:

BLOCK DATA ANAME
COMMON/CAT!X,Y,ZiDEF!R,S,T
COMPLEX X,Y
DATA X,Y/2*((1.0,2.7))/,R/7.6543/
END

Z is in block CAT and S and T are in DEF, although· no initial data values are defined for them.

60305600 G 1-7-5 •

PROCEDURES

The category of procedure to be used is determined by its particular capabilities and the needs of the program
being written. If the program requires the evaluation of a standard mathematical function, a FORTRAN
supplied intrinsic function or a basic external function can be used. If a single computation is needed
repeatedly, a user-written statement function is included in the program. If a number of statements are
required to obtain a single result, a function subprogram is written. If a number of calculations are required
to obtain several values, a subroutine is written.

Each procedure discussion contains a definition, description, and examples. Procedure Communication (later
in this section) contains details on how to use procedures and how procedures use arguments or common to
communicate.

SUBROUTINE SUBPROGRAMS

name

7

7

(I I SUBROUTINE
name

7

7

SUBROUTINE name, RETURNS (b
1

,b2 , .•• , bm)

Symbolic name of the subroutine.

Dummy arguments that must agree in order, number, type, and LEVEL with the actual
arguments passed to the subprogram at execution time.

Dummy statement label arguments that must agree in order, number, and LEVEL with the
actual statement labels passed to the subroutine at execution time.

The argument lists are optional and limited to a maximum of 63. parameters.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A sub­
routine subprogram must not directly or indirectly call itself. The subroutine subprogram communicates with
the calling program unit through a list of arguments passed with the CALL statement or through common.
Calling a Subroutine Subprogram later in this section contains more CALL statement details.

• 1-7-6 60305600 G

The SUBROUTINE statement contains the symbolic name that is used as the main entry point of the sub­
program. (The ENTRY statement specifies an alternate entry point in the subprogram.) The subprogram name
is not used to return results to the calling program, does not determine the type, and must not appear in any
other statement in the same subprogram.

Subroutine subprograms can contain any statements except PROGRAM, BLOCK DATA, FUNCTION, or
another SUBROUTINE statement. They begin with a SUBROUTINE statement, should have at least one
RETURN statement, and end with an END statement. If control flows into the END statement, then a
RETURN is implied. Control is returned to the calling program when a RETURN, RETURN i or END is
encountered.

Dummy arguments which represent array names must be dimensioned within the subprogram by a DIMENSION
or type statement. If an array name without subscripts is used as an actual argument in a CALL statement
and the corresponding dummy argument is not declared an array in the subprogram, the first element of the
array is used in the subprogram. Adjustable dimensions are permitted in subroutine subprograms (details are
given later in this section under Using Arrays).

The RETURNS list allows control to be returned to the calling program somewhere other than at the
executable statement immediately following the CALL statement. The CALL statement specifies actual
statement labels to replace the dummy statement label arguments in the RETURNS list. The actual statement
labels must correspond in order and number with the dummy statement label arguments. The
dummy statement label argument i is the statement to which control transfers when RETURN i is executed.

The RETURN statement in section I-5 and the CALL statement in this section give further details.

Example 1:

Calling Program Subprogram

SUBROUTINE ERRORl
WRITE (6,1)

1 FORMAT (5X,*NUMBER IS OUT OF RANGE*)

IF (A-B) 10,20,20

10 CALL ERRORl
20 RESULT=(A*CAT) +375.2-ZERO

RETURN
END

The subroutine ERRORl is called and executed if A-B is less than zero. Control returns to
statement 20. This example also illustrates that arguments need not be used.

60305600 G I-7-7 e

··Example 2:

Calling Program

CALL PGMl(A,B,C),
XRETURNS (5,10)

5 B=SQRT(A*C)

10 CALL PGM2 (D,E)

20

25
30
35

Subprogram

SUBROUTINE PGMl(X,Y,Z),
XRETURNS (M,N)

U=X* *Y
X=Z+X*Y
IF (U+X)
RETURN M
RETURN N
Z=Z+(X*Y)
RETURN
END

25, 30, 35

Return is to statement 5 in calling program
Return is to statement 10 in calling program

Return is to statement following CALL PGM I

This example illustrates the use of the RETURNS list as well as the use of the normal
RETURN statement.

FUNCTION SUBPROGRAM

7

(11 FUNCTION

7

type FUNCTION name {p1 , ... , Pn)

name Symbolic name of the subprogram.

p1, ... , Pn Dummy arguments that should agree in order, number, and type with the actual argu­
ments in the calling program. At least one argument is required; a maximum of 63 is
allowed.

type The type may be REAL, INTEGER, DOUBLE, DOUBLE PRECISION, COMPLEX, or
LOGICAL.

A function subprogram performs a set of calculations when its name appears in an arithmetic, logical, or
masking expression in a referencing program unit. Execution of the function subprogram must result in a
single value being defined for the function name. A function subprogram can modify the value of one
or more of its arguments or store data in common.

• I-7-8 60305600 G

Dummy arguments which represent array names must be dimensioned within the subprogram by a DIMENSION
or type statement. If an array name without subscripts is used as an actual argument in the function reference
and the corresponding dummy argument has not been declared an array in the subprogram, the first element
of the array is used in the subprogram. Adjustable dimensions are permitted in function subprograms (details
are given in Using Arrays later in this section).

The FUNCTION statement contains the subprogram symbolic name that is used as the entry point when the
function is referenced. (See Referencing a Function later in this section for more details.) The function
name must not appear in any nonexecutable statements other than the FUNCTION statement in the sub­
program. The type of the function name must be the same in the referencing program and the referenced
function subprogram. When type is omitted, the type of the function result is determined by the first
character of the function name.

The function subprogram can contain any statements except PROGRAM, BLOCK DATA, SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly references the function being
defined. The function subprogram begins with a FUNCTION statement,. should have at least one RETURN
statement, and has an END statement that is treated as a RETURN if executed. Control is returned to the
referencing program when either a RETURN or END is encountered. A RETURN i in a function subprogram
causes a fatal error at compilation time.

A function subprogram can have the same name as that of an intrinsic or basic external function supplied by
FORTRAN. Section 1-8 defines the conditions under which programmer supplied routines override the
FORTRAN supplied routines.

Example:

Calling Program

DIMENSION ARY (5,5)

10 RES=DIAG(ARY,5)**2

Subprogram

FUNCTION DIAG (A,N)
DIMENSION A(5,5)
DIAG=A(l,1)
DO 70 I=l,N

70 DIAG=DIAG*A(I,I)
RETURN
END

The statement labeled 10 contains the reference to function DIAG. The statement labeled 70 sets the
function name to a value. At the end of the function subprogram execution, RES will have the value of
DIAG squared.

BASIC EXTERNAL FUNCTION

A basic external function is a predefined procedure included with the system. Section 1-8 contains further
details.

60305600 G 1-7-9 •

INTRINSIC FUNCTION

An intrinsic function is a compiler-defined procedure that is inserted in the referencing program at compile
time. Section 1-8 contains further details.

STATEMENT FUNCTION

7

name Type of the function is determined by the type of the function name.

P 1' ... , Pn Dummy arguments must be simple variable names. At least one argument is required; a
maximum of 63 is allowed. These arguments should agree in order, number, type, and
LEVEL with the actual arguments used in the function reference.

expression Any arithmetic, masking, relational, or logical expression may be used. It may contain
references to intrinsic or basic external functions, statement functions, or function sub­
programs. Names in the expression that do not represent arguments are normal variables
having the same value as they have outside the function.

A statement function is a user-defined, single-statement computation and applies only to the program unit
containing the definition. Since the statement function only defines the function, the value is computed
when the function is referenced and the actual arguments are substituted for the dummy arguments in the
definition.

During compilation, the statement function definition is retained by the compiler. Whenever the function is
referenced, instructions are generated in-line to evaluate the function (as opposed to FUNCTION subprograms
for which an external procedure is used at each reference). The expansion of a statement function is the same
as writing the expression in place of the reference. Thus the statement function does not reduce execution
speed or efficiency.

Statement function names must not appear in DIMENSION, EQUIVALENCE, COMMON or EXTERNAL
statements; they can appear in a type declaration but cannot be dimensioned. Statement function names
must not appear as actual or dummy arguments. If the function name is type logical, the expression must
be logical. For other types, if the function names and expression differ, conversion is performed as part of
the function.

A statement function must precede the first executable statement and it must follow all specification state­
ments. A statement function must not reference itself either directly or indirectly.

• 1-7-10 60305600 G

Examples:

Statement Function Definitions

ADD(X,Y,C,D)=X+Y+C+D

AVERGE(O,P,Q,R)=(O+P+Q+R)/4

LOGICAL A,B,EQV
EQV(A,B)=(A.AND.B).OR.

(.NOT.A.AND •• NOT.B)

COMPLEX Z
Z(X,Y)=(l.,O.)*EXP(X)*COS(Y)

+(0.,1.)*EXP(X)*SIN(Y)

Example 1:

Statement Function References

RES1=GROSS-ADD(TAX,FICA,INS,RES3)

GRADE=AVERGE(TEST1,TEST2,TEST3,
TEST4)+MID

TEST=EQV(MAX,MIN).AND.ZED

RESULT=(Z(BETZ,GAMMA(I+K))**2-l.)
/SQRT(TWOPIE)

The statement function can be used to substitute a FORTRAN supplied function name in a program con­
taining an alternate name for this function.

SINF (X) =SIN (X) Statement function definition.

A=SINF(3.0+B)+7. Statement function reference.

The above sequence generates exactly the same object code as:

A=SIN(3.0+B)+7.

Example 2:

To compute one root of the quadratic equation ax2+bx+c=O, given values of a, b and c, an arithmetic
statement function can be defined as follows:

ROOT (A,B,C)={-B+SQRT(B*B-4.*A*C))/(2.0*A)

When the function is used in an expression, actual arguments are substituted for the dummy arguments
A,B,C.

RESA =ROOT (6.5,7.,1.)

is equivalent to writing:

RESA = (-7.+SQRT(7.*7.-4.0*6.5*1.0))/(2.0*6.5)

Wherever the statement function ROOT (A, B, C) is referenced, the definition of that function - in this
case (-B+SQRT(B*B-4.*A*C))/{2.*A) - is evaluated using the current values of the arguments A, B, C.

60305600 G 1-7-11 •

PROCEDURE COMMUNICATION

The procedures defined by a statement function or a procedure subprogram are executed when they are
referenced in a program unit.

PASSING VALUES TO A PROCEDURE

Values can be passed between a calling program unit and a procedure as actual arguments in an argument
list or through common. Arrays with adjustable dimensions can be used to pass values of arguments.
Arguments passed to a procedure must. agree with the procedure definition in order, number, type,· length,
and memory residence (See LEVEL in section 1-6).

·USING ARGUMENTS

Arguments used for communication between procedures are either actual or dummy (formal). The arguments
appearing in a subroutine CALL statement or a function reference are the actual arguments. The corre
sponding dummy arguments appear in the SUBROUTINE or FUNCTION statement. Ifa RETURNS list is
used, the actual statement label arguments appear in the CALL statement and the dummy statement label
arguments appear in the SUBROUTINE and RETURN statements.

The actual arguments (such as constants, arithmetic expressions,· logical expressions, variables, and array
names) allowed for a particular procedure are given in the discussion of the procedure reference.

Dummy arguments are used as variable, array or external procedure subprogram names within the subprogram
and can be used to returI} values to the calling program. The dummy arguments are replaced by the actual
arguments when the procedure is executed. Since all names are local to the program unit containing them,
the same dummy argument name can be used in more than one program unit. A dummy argument must
not appear in COMMON, EQUIVALENCE, or DATA statements within a program unit.

Dummy arguments representing array names must appear within the subprogram in a DIMENSION or type
statement giving dimension information. If dummy arguments are not dimensioned, they cannot be referenced
as an array in a subprogram.

In a subprogram, the definition of a dummy argument that is associated with a constant actual argument or
an entity in a common block in the same subprogram is prohibited. If a subprogram reference causes two
dummy arguments to be associated, the definition of either in the referenced subprogram is prohibited.

• 1-7-12 60305600 G

Example 1:

Calling Program

W(I,J)=FA+FB-GRATER(C-D,3*AX/BX)

Subprogram

FUNCTION GRATER(A,B}
IF (A.GT.B)l,2

1 GRATER=A-B
RETURN

2 GRATER=A+B
RETURN
END

This example shows the normal use of arguments in a function subprogram. The actual argument C-D is
used in place of the dummy argument A and 3*AX/BX is substituted for dummy argument B when the
function subprogram is executed.

Example 2:

CALL SUBA(1.51 SUBROUTINE SUBA(RI

IF (R.NE.OI R = 0

This example contains a prohibited definition of a dummy argument, R, which is associated with a con­
stant actual argument.

Example 3:

CALL SUBS (X, XI SUBROUTINE SUBS (A, Bl

A y

Z B

This example contains a prohibited definition of a dummy argument, A, which has been previously
associated with another dummy argument, B, in the referencing program unit.

Example 4:

COMMON X

CALL SU BC (XI

SUBROUTINE SUBC (Bl

COMMON A

A y

Z B

This example contains a prohibited definition of a dummy argument, B, which is associated with an entity
in common, A, in the same subprogram.

60305600 G 1-7-13 •

USING COMMON

Common can be used to transfer values between a calling program unit and a subprogram. Passing values
through common is more efficient than passing values through arguments in a CALL statement or function reference.

The definition of a dummy argument in a subprogram that is associated with an entity in a common block
in the same subprogram is prohibited.

Example:

PROGRAM .CMN ClNPUTtOUTPUT>
toMMON N£D ·c10> ~ ..
READ 3tN£0 .

3 FORMAT <1013>
.CALL· JAVG
STOP -
END
SUBROUTINE JAVG

C THIS SUBROUTINE COMPUTES THE AVERAGE ·of THE FIRST 10 ELEMENTS IN
C COMMON ..

COMMON NUO>
ISTORE - 0
DO 1 I - ltlO

1 isT6RE ·- tSTORE + NCI>
Ist6RE - ISfORE/iO
PRINT 2tlST0RE

2 FORMAT <~!AVERAGE -- 0~110>
RETURN
END

AVERAGE = 45

The array NED in program CMN and the array N in subroutine JAVG share the same locations in common.
NED(l) shares the same location with N(l), NED(2) with N(2), etc. The values read into locations
NED(l) through NED(IO) are available to subroutine JAVG. JAVG computes and prints the average of
these values.

USING ARRAYS

The array dimensions in a subprogram must be the same as those in the calling routine if the subscripts are
to agree between the called and calling program units. If a dummy argument is not dimensioned, it cannot
be referenced as an array in the subprogram.

If any of the entries in a subscript of a type or DIMENSION statement is an integer variable name, the
array is called an adjustable array. The variable names are called adjustable dimensions. Such an array
can only appear in a procedure subprogram. The dummy argument list of the subprogram must contain
the array name and the integer variable names that represent the adjustable dimensions. The values of the
actual arguments that represent array dimensions in the argument list of the reference must be defined
prior to calling the subprogram and cannot be redefined during execution of the subprogram. The absolute

• 1-7-14 60305600 G

size of the actual array may not be exceeded. For every array appearing in an executable program, there
must be at least one constant array dimension associated through subprogram references.

In a subprogram, an array name that appears in a COMMON statement must have fixed dimension
specifications.

REFERENCING A FUNCTION

A function is referenced when the name appears in an expression. A function must not directly or indirectly
reference itself. The reference can appear anywhere in an expression that an operand can be used.

When a statement function or intrinsic function is referenced, instructions are generated in-line to evaluate the
function. The value is computed with the actual arguments substituted for the dummy arguments in the
definition.

When a function subprogram or a basic external function is referenced, control is transferred to the function
subprogram and the values of the actual arguments are substituted for the dummy arguments. Control is
returned to the referencing program unit when a RETURN is encountered.

Actual arguments in a function subprogram reference may be an arithmetic or logical expression, constant
(including Hollerith), variable, array name, array element name, subroutine subprogram name, external
function name (not intrinsic function or statement function), or function reference (the function reference
is a special case of an arithmetic expression).

Example:

Calling Program

Z=A+B-JOE(3.*P,Q-1)

R=S+JAM(Q,2.5*P)

Function Subprogram

FUNCTION JOE(X,Y)
10 JOE=X+Y

RETURN
ENTRY JAM
IF(X.GT.Y)l0,20

20 JOE=X-Y
RETURN
END

Function subprogram JOE is executed as a result of its name appearing in another program unit.

60305600 G 1-7-15 •

CALLING A SUBROUTINE SUBPROGRAM

(WALL name

(WALL name (p1 , ..• , pn)

CALL name (p1 , ..• ,pn), RETURNS (b1 , ... ,bm)

7

CALL name, RETURNS (b1 , ... , bm)

name Name of subroutine called.

p 1, ... , Pn Actual arguments which must correspond in order, number, type, and LEVEL with
those specified in the SUBROUTINE statement.

b 1, ... , bm Actual statement labels in the calling program unit that correspond in order and number
with the dummy statement label arguments in the SUBROUTINE statement. This
specification can be omitted if control returns to the statement immediately following
the CALL statement.

The total number of arguments must not exceed 63.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. The CALL
statement transfers control to the subroutine and either a RETURN or a RETURN i in the subroutine returns
control to the calling program unit. If a RETURN is encountered, control is transferred to the first executable
statement following the CALL statement. If RETURN i is encountered, control is transferred to the statement
corresponding to i in the RETURNS list. (The RETURN statement in section I-5 and Subroutine Subprogram
in this section contain further details on the RETURNS list.)

The CALL statement can contain actual arguments and statement labels. They must correspond in order,
number, type, and memory level to those in the subroutine subprogram definition.

The name in the CALL statement can be an alternate entry point in a subroutine subprogram, as specified in
an ENTRY statement (described later in this section), or a subroutine name. The subroutine name must not
appear in any specification statement in the calling program except an EXTERNAL statement.

Actual arguments in a subroutine subprogram call can be any of the following: arithmetic or logical
expression, constant, variable, array name, array element name, subroutine subprogram name, basic external

• 1-7-16 60305600 G

function name (not an intrinsic or statement function name), function reference (the function reference is a
special case of an arithmetic expression).

Example 1:

Calling Program

DO 5 I = 1,20

1

5 CALL GRATER (STACK(I),TEMP(I))
2

Subprogram

SUBROUTINE GRATER {A,B)
IF (A.GT.B) 1,2
B = A - B
RETURN
B = A + B
RETURN
END

The subroutine subprogram GRATER is called 20 times since the CALL statement as the last statement in
a DO loop causes looping to continue until the DO loop terminal parameter, 20, is satisfied.

Example 2:

Calling Program

PROGRAM MAIN(INPUT,OUTPUT)

10 CALL XCOMP(A,B,C),
XRETURNS(lOl,102,103,104)

101 CONTINUE

GO TO 10
102 CONTINUE

GO TO 10
103 CONTINUE

GO TO 10
104 CONTINUE

END

Subroutine Subprogram

SUBROUTINE XCOMP (Bl,B2,G),
XRETURNS(Al,A2,A3,A4)

IF{Bl*B2-4.159)10,20,30
10 CONTINUE

RETURN Al
20 CONTINUE

RETURN A2
30 CONTINUE

IF (Bl)40,50
40 RETURN A3
50 RETURN A4

END

Return to 101

Return to 102

Return to 103

Return to 104

The values of A, B, and C in the CALL statement replace Bl, B2, and G in the SUBROUTINE statement
for use in the subprogram XCOMP. Statement numbers 101, 102, 103, and 104 replace Al, A2, A3, and
A4 in the subprogram and RETURN i statements.

60305600 G 1-7-17 •

USING THE ENTRY STATEMENT

7

(name

name is an entry point in a procedure subprogram.

The ENTRY statement defines an alternate entry point, which is other than the first executable statement, in
a procedure subprogram. The ENTRY statement can appear anywhere an executable statement can appear in
the subprogram except within the range of a DO where it is ignored and a warning diagnostic is issued. A
procedure subprogram can contain any number of ENTRY statements. The first executable statement following
ENTRY becomes the alternate entry point to the subprogram. ENTRY statements cannot be labeled and
cause a fatal-to-execution error in a main program unit.

In the subprogram, the entry name can appear only in the ENTRY statement and each name must appear
in a separate statement. A function entry name must be the same type as the name in the FUNCTION
statement, and it must be unique within the program.

In the calling program, the reference to the entry name is made just as if reference were being made to
the function subprogram or subroutine subprogram in which the entry name is contained. The name can appear
in an EXTERNAL statement, and if it is a function subprogram entry name, in a type statement.

The dummy arguments, if any, appearing with the FUNCTION statement or SUBROUTINE statement do not
appear with the ENTRY statement, but are assumed to be the same as for the main entry point.

In a function subprogram, the value of the function is the last value assigned to the name of the function,
regardless of which ENTRY statement was used to enter the subprogram. The function name is used to
return results to the calling program even though the reference was through an entry name.

Example 1:

Calling Program

COMMON SETl (25)

CALL CLEAR (SETl)

CALL FILL (SETl}

• I-7-18

Subroutine Subprogram

SUBROUTINE CLEAR (ARAY)
DIMENSION ARAY (25)
DO 100 I = 1, 25--------Main entry point

100 ARAY (I) = 0.0

ENTRY FILL
3 READ 2, VALUE, IPLACE ----Alternate entry point
2 FORMAT (lOX, F7.2, I4)

ARAY (IPLACE) = VALUE
IF (IPLACE .GT. 24} RETURN
GO TO 3
END

60305600 G

At some point in the calling program, a call is made to the subroutine: CALL CLEAR (SETI). The
array SETI is set to zero and values are read into the array. Later in the program, a call is made again
to the subroutine CLEAR; but this time it is entered at the entry point FILL. When FILL is called,
further values are read into the array SETI without first setting the array to zero.

Example 2:

Calling Program

RESULT=FSHUN(X,Y,Z)
RES2=FRED(R,S,T)

Subprogram

FUNCTION FSHUN(A,B,C)
3 FSHUN=A*B/C**2

RETURN
ENTRY FRED
IF(A .LE. 702.) GO TO 3
FSHUN=(C+A)/B
RETURN
END

When the FUNCTION FSHUN is entered at the beginning of the function, or through the ENTRY FRED,
the result will be returned to the calling program through the function name FSHUN.

Example 3:

FUNCTION CAT(A,B)

DOG=l0.+3.2
ENTRY.· DOG

1be .ENTRY name DOG is not valid because it has been used as a variable.

60305600 G 1-7-19 •

FORTRAN EXTENDED SUPPLIED PROCEDURES 1-8

FORTRAN Extended provides certain procedures that are of general utility or diffkult to express in FOR­
TRAN; they are referenced in the same way as user-written procedures. The three classes of FORTRAN
Extended supplied procedures are: intrinsic functions, basic external functions, and utility subprograms.

INTRINSIC FUNCTIONS

An intrinsic function is a compiler-defined procedure that returns a single value. It is inserted in the ref­
erencing program at compile time. The form of the intrinsic function reference is the same as the statement
function reference outlined in section I-7.

When a variable, array, or statement function is defined with the same name as that of an intrinsic function,
the user-supplied definition prevails.

When a function subprogram is defined with the same name as that of an intrinsic function, the user definition
prevails only if, in the calling program unit, the name of the function appears either in an EXTERNAL state­
ment or in an explicit type statement that changes the type associated with the intrinsic function.

In a calling program unit, if the name of an intrinsic function appears either in an EXTERNAL statement or
in an explicit type statement that changes the type associated with the function, the user must supply a func­
tion subprogram with the name of that function.

Table 8-1 lists the intrinsic functions provided by FORTRAN Extended. The results of functions with the
type listed as no mode assume the type of the expression in which they are used, unless that type is logical
(in which case the function result remains typeless).

60305600 G 1-8-1 •

-Oo
N

0\
0
w
0
Vl
0\
0
0
C')

Table 8-1. Intrinsic Functions

Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example

Absolute IAI 1 ABS Real Real Y=ABS(X)
Value IABS Integer Integer J=IABS(I)

DABS Double Double DOUBLE A,B
B=DABS(A)

Truncation Sign of A times 1 AINT Real Real Y=AINT(X)
largest integer ~ I A I INT Real Integer l=INT(X)
for I A I ~ 248-1 IDINT Double Integer DOUBLE Z

J=IDINT(Z)

Remainder- Al (mod A2) 2 AMOD Real Real B=AMOD(A 1,A2)
ing t MODtt Integer Integer J=MOD(l 1,12)
(see note)

Choosing Max(A1, 2 - 63 AMAXO Integer Real X=AMAXO(l,J,K)
largest A2, ...) AMAX1 Real Real A=AMAX1 (X,Y,Z)
value MAXO Integer Integer L=MAXO(l,J,K,N)

MAX1 Real Integer l=MAX1(A,B)
DMAX1 Double Double DOUBLE W,X.Y,Z

W=DMAX1 (X,Y,Z)

Choosing Min(A1, 2 - 63 AMINO Integer Real Y=AM I NO(I ,J)
smallest value A2, ...) AMIN1 Real Real Z=AMIN1 (X,Y)

MINO Integer Integer L=MINO(l,J)

MIN1 Real Integer J=MIN1(X,Y)
DMIN1 Double Double DOUBLE A,B,C

C=DMIN1 (A,B)

Float Conversion 1 FLOAT Integer Real Xl=FLOAT(I)
from integer
to real

I t MOD or AMOD (a,b) is defined as a-[a/b]b, where [X] is the largest integer that does not exceed the magnitude of X with sign the same
as X. The results are not defined when the second argument is zero.

tt The arguments of MOD must each be less than or equal to 247 -1.

°' 0
w
0
VI

°' 0
0

0

-6c
w

I

.
Table 8-1. Intrinsic Functions (Continued)

Intrinsic Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example

Fix Conversion from 1 IFIX Real Integer IY=IFIX(Y)
real to integer
Same as INT

Transfer Sign of A2tt 2 SIGN Real Real Z=SIGN(X,Y)
of Sign with IA1 I ISIGN Integer Integer J=ISIGN(l 1,12)

DSIGN Double Double DOUBLE X,Y,Z
Z=DSIGN(X,Y)

Positive If A1>A2 then 2 DIM Real Real A=DIM(C,D)
Difference A1-A2. If A1 IDIM Integer Integer J=IDIM(l 1,12)

<,A2 then 0.

Logical Bit-by-bit 2 - 63 AND any type t no mode A=AND(X,Y,Z)
Product logical AND of

A 1 through An

Logical Bit-by-bit 2 - 63 OR any type t no mode A=OR(X,Y,Z)
Sum logical OR of

A 1 through An

Exclusive OR Bit-by-bit 2 - 63 XOR any type t no mode A=XOR (X,Y ,Z)
Exclusive OR of
A 1 through An

Complement Bit-by-bit Boolean 1 COM PL any type t no mode B=COMPL(A)

complement of A l

t For a double precision or complex argument, only the high order or real part is used.
tt For functions SIGN, ISIGN, and DSIGN, the sign of the second argument is defined as positive when the value of that argument is +O

and negative when the value is -0.

-Oo
~

0\
0
w
0
VI
0\
0
0

'Tl

Table 8-1. Intrinsic Functions (Continued)

Intrinsic Number of Symbolic Type of

Function Definition Arguments Name Argument

Shift Shift Al, A2 2 SHIFT A 1 : any type tt
bit positions:
left circular if A2:integer
A2 is positive;
right with sign
extension, and
end off if A2 is
negative.

O~IA2 l~6ot

Mask Form mask of 1 MASK Integer
A 1 bits set to 1
starting at the
left of the word.

~1~6ot
Obtain Most 1 SNGL Double

Significant
Part of Double
Precision
Argument

Obtain Real 1 REAL Complex

Part of Complex
Argument

tMASK and SHIFT are undefined for arguments outside these bounds.

tt For a double precision or complex argument, only the most significant or real part is used.

Type of
Function Example

no mode B=SHIFT(A,I)

no mode A=MASK(I)

Real DOUBLE Y
X=SNGL(Y)

Real COMPLEX A
B=REAL(A)

0\
0
w
0
Ul
0\
0
0
'Tj

-Oo
&.

Intrinsic
Function

Obtain I magi-
nary Part of
Complex
Argument

Express Single
Precision Argu-
ment in Double
Precision Form

Express Two
Real Arguments
In Complex
Form

Obtain Conju-
gate of a Com-
plex Argument

Random Num-
ber Generator

Obtain address
of a variable,
array element,

or entry point
of external
subprogram

Definition

A1+A2i
(where i2 = -1)

a-bi
(where A=a+bi)

Returns values
uniformly distri-
buted over the
range (0, 1);
dummy argument
is ignored.

Argument is
the name of a
variable, array
element, or
external sub-
program

Table 8-1. Intrinsic Functions (Continued)

Number of Symbolic Type of Type of
Arguments Name Argument Function Example

1 AIMAG Complex Real COMPLEX A
D=AIMAG(A)

1 DBLE Real Double DOUBLE Y
Y=DBLE(X)

2 CMPLX Real Complex COMPLEX C
C=CMPLX(A 1,A2)

1 CON JG Complex Complex COMPLEX X,Y
Y=CONJG(X)

1 RANF any type Real Y=RANF(A)

1 LOCF any type Integer J=LOCF(O)

I

I

BASIC EXTERNAL FUNCTIONS

A basic external function is a predefined procedure included with the FORTRAN Common Library. These
procedures are used to evaluate standard mathematical functions such as sine, cosine, square root, etc. A
basic external function is referenced by the appearance of the function name with appropriate arguments in
an expression.

A basic external function ordinarily is called by value; however, it is called by name if, in the calling program
unit, the name of the function appears either in an EXTERNAL statement or in an explicit type statement
that overrides the type associated with the function, or if option T, D, or OPT=O is specified on the FTN
control card. (Section III-10 contains a description of Call By Value and Call By Name.)

When a variable, array, or statement function is defined with the same name as that of a basic external func­
tion, the user definition overrides the system definition.

When a FUNCTION subprogram is defined with the same name as that of a basic external function, the user
definition overrides the library definition only if, in the calling program unit, the name of the function appears
either in an EXTERNAL statement or in an explicit type statement that overrides the type associated with
the library function, or if option T, D, or OPT=O is specified on the FTN control card.

Table 8-2 lists the basic external functions.

Arguments for which a result is not mathematically defined, or those of a type other than that specified,
should not be used. Arguments of the trigonometric functions are in radians, and the inverse trigonometric
functions return principal values.

If the name of the function appears either in an EXTERNAL statement or in an explicit type statement that
overrides the type associated with the library function, or if option T, D, or OPT=O is specified on the FTN
control card, the arguments of all external functions are checked to ensure that they are neither indefinite
nor infinite and fall within the limits listed in the Definition column of table 8-1. Argument checking is pro­
vided unconditionally for the following functions: EXP, ALOG, ALOGIO, SIN, COS, SQRT, ATAN, ATAN2,
ASIN, ACOS, CABS, SINH, and COSH. An informative diagnostic is provided when an argument is found to
be invalid.

1-8-6 60305600 G

°' 0
w
0
Vi

°' 0
0

0

-00
.!.:i

Table 8-2. Basic External Functions

Basic External Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function Example

Exponential eA 1 EXP Real Real Z=EXP(Y)
-675.84~A<7 41.67 1 DEXP Double Double DOUBLE X,Y

I Y=DEXP(X)
e!X+iY) 1 CEXP Complex Complex COMPLEX A,B

-675.84<X<741.67 B=CEXP(A)
IY~7T x 246

Natural loge(A) 1 ALOG Real Real Z=ALOG(Y)
Logarithm A>O 1 DLOG Double Double DOUBLE X,Y

Y=DLOG(X)

loge(X+iY) 1 CLOGt Complex Complex COMPLEX A,B
x2+y2*0 B=CLOG(A)

Common log10 (A) 1 ALOG10 Real Real B=ALOG 1 O(A)

Logarithm A>O DLOG10 Double Double DOUBLE D,E
E=DLOG10(D)

Trigono- sin(A) 1 SIN Real Real Y=SIN(X)

metric I A~7T x 246 1 DSIN Double Double DOUBLE D,E
Sine E=DSIN(D)

sin(X+iY) 1 CSIN Complex Complex COMPLEX CC,F
IX 1<7T x 246 CC=CSIN(F)

IYl<741.67

Trigono- cos(A) 1 cos Real Real X=COS{Y)

metric !Al<7T x 246 1 DCOS Double Double DOUBLE D,E

Cosine E=DCOS(D)

cos(X+iY) 1 ccos Complex Complex COMPLEX CC,F
IX 1<7T x 246 CC=CCOS(F)
IYl<741.67

Hyperbolic tanh(A) 1 TANH Real Real B=TANH(A)

Tangent IAl<741.67

Hyperbolic sinh(A) 1 SINH Real Real B=SINH(A)

Sine IAl<741.67

Hyperbolic cosh(A) 1 COSH Real Real B=COSH(A)

Cosine !Al <741.67

tCLOG returns values with imaginary parts in the range (-7T,7T]. For x<O, therefore, CLOG(x+iO) returns an imaginary part with a value =+7T;
CLOG(x+iO+) returns an imaginary part with a value ~+7T; and CLOG (x-iO+) returns an imaginary part with a value ~-7T.

"'""" Oo
Oo

0\
0
w
0
Vi
0\
0
0

C')

Table 8-2. Basic External Functions (Continued)

Basic External Number of Symbolic Type of Type of

Function Definition Arguments Name Argument Function Example

Square (A)1/2 1 SQRT Real Real Y=SORT(X)

Root A~O 1 DSQRT Double Double DOUBLE D,E

CSQRTt
E=DSORT(D)

1 Complex Complex COMPLEX CC,F
CC=CSORT(F)

Arctangent arctan (A) 1 ATANtt Real Real Y=ATAN(X)
1 DATANtt Double Double DOUBLE D,E

E=DATAN(D)
arctan (A 1/A2) 2 ATAN2ttt Real Real B=ATAN2(A 1,A2)

A1 2+A22=FO 2 DATAN2ttt Double Double DOUBLE D,D1 ,D2
D=DATAN2(D1,D2)

Remaindering A1 (mod A2) 2 DMOD~ Double Double DOUBLE DM,D1,D2
DM=DMOD(D1 ,D2)

Modulus va2+b2 1 CABS Complex Real COMPLEX C
A=a+bi CM=CABS(C)

Arccosine arccos (A) 1 ACOS~~ Real Real X=ACOS(Y)
IAl~1

Arcsine arcsin (A) 1 ASIN ~~~ Real Real X=ASIN(Y)
IAl~1

Trigonometric tan (A) 1 TAN Real Real X=TAN(Y)

Tangent IAl~7T x 246

tCSORT returns values in the right half plane.
ttATAN and DATAN return values in the range (-.E.,2!:).

tttATAN2 and DATAN2 return values in the range t-1T;1T]. For x < 0, therefore, ATAN2(0,x) returns a value=+ 1T; ATAN2(0+,x)
returns a value:::::: + 1T; and ATAN2(0-,x) returns a value~ - 1T.

~ The function DMOD (a,b) is defined as a-[a/b]b,where[X] is the largest integer that does not exceed the magnitude of X with sign the same as X;
the result is not defined when the second argument is zero.

~~ ACOS returns values in the range [0,7T]. or ~~~ ASI N returns values in the range [- !!... , !!...].
2 2

ADDITIONAL UTILITY SUBPROGRAMS

The utility subprograms described below are supplied by the system and are always called by name (section I
III-10 gives more details). A user-supplied subprogram with the same name as a library subprogram overrides
the library subprogram.

In the definitions listed under the routines:

i and n are integer variables, constants, or expressions.

j is an integer variable.

a and b are variable or array names of any type.

u is a unit number or file name (nLx ... x).

H is a Hollerith specification.

OPERATING SYSTEM INTERFACE ROUTINES

DATE(a) or CALL DATE(a)t

The current date is returned as the value of argument a in the form lOHbmm/dd/yyb (unless it is changed I
at installation option), where b denotes a blank, mm is the number of the month, dd is the number of the
day within the month, and yy is the year. The value returned is Hollerith data and can be output using an
A format specification (PROGRAM LIBS, section II).

The type of the function DATE is real; thus if J and K are integer variables as in:

J = DATE(K)

J will not be useful because the value returned will have been converted from real to integer.

JDATE(a) or CALL JDATE(a)+

The current date is returned as the value of argument a in the form SRyyddd, where yy is the year and I
ddd is the number of the day within the year. The value returned is Hollerith data and can be output using
an R format specification.

tTuese routines can be used as functions or subroutines. The value is returned via the argument and the
normal function return.

*This routine is not available under SCOPE 2.1.

60305600 G 1-8-9

I

SECOND(t) or CALL SECOND(t)t

The central processor time is returned from start-of-job in seconds as a real number, usually accurate to two
decimal places. t is a real variable.

Example: DPTIM = SECOND (CP)

TIME(a) or CALL TIME(a)t

The current reading of the system clock is returned as the value of argument a in the form lOHbhh.mm.ss. ,
where b denotes a blank, and hh, mm, and ss are the number of hours, minutes, and seconds, respectively.
The value returned is Hollerith data and can be output using an A format specification (PROGRAM LIBS,
section II).

The type of the function TIME is real; thus if J and K are integer variables in the following statement, J is
not useful because the value returned will have been converted from real to integer.

Example: J = TIME(K)

CALL DISPLA (H,k)

A name and a value are placed in the dayfile. H is a Hollerith specification of not more than 80 characters;
k is a real or integer variable or expression and is displayed as an integer or real value.

Example: CALL DISPLA (7H TIME =, STOP-START)

CALL REMARK (H)

Places a message in the dayfile. Under SCOPE 2.1,.the maximum message length is 90 characters displayed
on one line. Under KRONOS 2.1, NOS 1.0, and SCOPE 3.4, the maximum message length is 80 characters
displayed 40 characters per line. A message exceeding the maximum length is truncated. A message shorter
than the maximum must have all zeros in the lower 12 bits of the last' word. These zeros are automatically
supplied when a Hollerith constant is used as the parameter.

Example: CALL REMARK (9HLAST DECK)

CALL SLITE(i)

Sense light i is turned on. If i = 0, all sense lights are turned off. If i is other than 0-6, an informative
diagnostic is printed and sense lights are not changed.

tThese routines can be used as functions or subroutines. The value is returned via the argument and the
normal function return.

1-8-10 60305600 G

CALL SLITET(i,j)

Sense light i is tested. If sense light i is on, j = 1; if sense light i is off, j = 2. If i is other than 1-6, an infor­
mative diagnostic is printed, all sense lights remain unchanged, and j = 2. Execution turns off sense light i if
it is on.

(Note: Logical variables generally provide a more efficient method of testing a condition than do calls to
SLITE or SLITET.)

CALL SSWTCH(i,j)

If sense switch i is on, j is set to 1; if sense switch i is off, j is set to 2. i is 1 to 6. If i is out of range, an
informative diagnostic is printed, and j is set to 2. The sense switches are set or reset by the computer operator
or by a SWITCH control card.

CALL OVERLAY(fname, primary, secondary, recall,k)

See section 1-12.

CALL EXIT

Program execution is terminated and control is returned to the operating system. (Note: use of the STOP
statement is preferable to CALL EXIT.)

CALL CHEKPTX(filelist)t

A checkpoint dump of the files specified by filelist is taken:

file list Is one of the following:

0 Checkpoint dump all files.

file array Checkpoint files specified in integer array filearray, which has the following
structure:

t Available only on SCOPE 3.4 and SCOPE 2.1.

60305600 G 1-8-11 •

:j:

59 17 11 0

Word 0 n 0000

Word 1 lfn1 f 1 +

Word 2 lfn2 t2+

~ ~ ~ ~

Word n lfnn fn +

n Number of files in following list, to a maximum of 42 {decimal).

Ifni Name (in left justified display code) of user mass storage files to be processed.

fn Octal number indicating specific manner in which lfn is to be processed.

0

2

3

Mass storage file is copied from beginning-of-information to its position at check­
point time, and only that portion will be available at restart. The file is positioned
at the latter point.

Mass storage file is copied from its position at check point time to end-of-information,
and only that portion will be available at restart. The file is positioned at the
former point.

Mass storage file is copied from beJrinning-of-information to end-of-information; the
entire file will be available at restart time. The file is positioned at the point at
which the checkpoint was taken.

The last operation on the file determines how the mass storage file is copied.

I tnoes not apply to SCOPE 2.1.

1-8-12 60305600 G

Example:

DIMENSION IFILES(4)

I Fl LES(1) = 300008

IFILES(2) = 5LTAPE1 .OR. 100008

IFILES(3) = SL TAPE2 .OR. 300008

IFILES(4) = 5LTAPE3

CALL CHECKPTX(IFILES)

For more information, refer to the SCOPE 3.4 Reference Manual or the SCOPE 2 Reference Manual.

CALL RECOVR(name,flags, checksum)t

name Name of subroutine to be executed if flagged conditions occur.

flags Octal value for conditions under which recovery code is to be executed, as outlined below.
Conditions can be combined as desired, with octal values up to 1 77 allowed.

001 Arithmetic mode error.
002 PP call or auto-recall error.
004 Time or storage limit exceeded.
010 Operator drop, kill, or rerun.
020 System abort.
040 CP abort.
100 Normal termination.

checksum Last word address of recovery code to be checksummed; 0 if no checksum is desired.

The RECOVR subroutine allows a user program to gain control at the time that normal or abnormal job ter­
mination procedures would otherwise occur. Initialization of RECOVR at the beginning of a program establishes
the conditions under which control is to be regained and specifies the address of user recovery code. If the
stated condition occurs during program execution, control returns to the user code. If necessary, the system
increases the CP time limit. I/O time limit, or mass storage time limit to provide an installation defined min­
imum of time and mass storage for RECOVR processing. No limit is increased more than once in a job.
RECOVR can be called more than once during program initialization to reference different user recovery sub­
routines. These calls to RECOVR can use different combinations of conditions for the same or different user
recovery subroutines.

If the checksum parameter is zero, no checksum is done.

Us not available on SCOPE 2.1.

60305600 G I-8-13

I

I

I
If one of the user's selected error conditions occurs, RECOVR gains control, performs internal tasks, and then
transfers control to the user's recovery subroutine(s). The following three arguments are passed to the user's
recovery subroutine:

I

1. A 17-word integer array. The first 16 words are an image of the exchange package; the seventeenth
word is the contents of RA+ 1.

2. A flag that upon return, determines the type of program termination. If the user's recovery sub­
routine sets the flag non-zero, ENDRUN termination occurs upon completion of the last post­
processing subroutine. If the flag remains zero, the original error code, as well as the exchange
package, are restored and the job continues as if RECOVR had not been called. Altering the ex­
change package passed as argument 1 prevents the correct completion of the restore, but does not
impair system operation.

3. An array, starting at RA+ 1, that allows a FORTRAN subroutine to access all of the user's field
length.

Example:

PROGRAM MAIN(INPUT,OUTPUT)

EXTERNAL REPREV,CHKSUM

CALL RECOVR(REPREV,728,LOCF (CHKSUM))

STOP

END

SUBROUTINE REPREV(I XCHNG,IFLAG,IFLDLN)

DIMENSION IXCHNG(17), IFLDLN(400008)

IFLAG = 1

PRINT 10, IXCHNG, ~IFLDLN(t), 1=0,1008)

10 FORMAT (3(6X, 020))

RETURN

ENTRY CHKSUM ------------- determines end of code to be checksummed
END

1~g.;14 60305600 G

DEBUGGINGS AIDS

Dumps main memory on the OUTPUT file in the indicated format, PDUMP returns control to the calling pro­
gram; DUMP terminates program execution. ai and bi specify the beginning and the end of the storage area to
be dumped. 1 ~ n ~ 20. f is a format indicator, as follows:

f = 0 or 3 octal dump

f = 1 real dump

f = 2 integer dump

For f values 0-3, ai and bi are the first and last words dumped. If 4 is added to any f value, the contents of
ai and bi are used as the addresses of the first and last words dumped within the job's field length. An
ASSIGN statement or the LOCF function can be used to get addresses for the ai and bi parameters.

Examples: CALL PDUMP(A(1),A(100), 1) Dumps from A(l) to A(l 00) as real numbers

CALL PDUMP (0, 10008, 4) Dumps from location 0 to lOOOB in octal

CALL STRACE

Provides traceback information from the subroutine calling STRACE back to the main program. Traceback
information is written to the file DEBUG. To obtain traceback information interspersed with the source pro­
gram, DEBUG should be equivalenced to OUTPUT in the PROGRAM statement. (Refer to STRACE, section
1-13.)

LEGVAR(a)

Checks the value of variable a. Returns the result -1 if variable is indefinite, +l if out of range, and 0 if
normal. Variable a is type real; result is type integer.

CALL SYSTEM (errnum,mesg)

errnum is an error number, mesg is an error message. Refer to section III-3 for further information.

CALL SYSTEMC(errnum, speclist)

SYSTEMC allows for non-standard processing of library detected errors. Refer to section IIl-3 for further
information.

60305600 F 1-8-15

CALL ERRSET(num,lim)

For error numbers 78 and 79 on formatted, list directed, and NAMELIST reads, this subroutine sets maximum
number of errors, lim, allowed in input data befote termination. Error count is kept in location num. Refer to
section llI-3 for further information.

RANDOM NUMBER GENERATOR

RANF (n)t

Random number generator. Returns values uniformly distributed over the range (0,1); the values 0 and 1 are
excluded. n is a dummy argument which is ignored. Result is type real.

CALL RANSET(n)

Initializes seed of RANF. n is a bit pattern. Bit 20 will be set to 1 (forced odd), and bits 259 - 248 will be
set to 1717 octal.

CALL RANGET(n)

a Obtains current seed of RANF between 0 and 1. n is a symbolic name to receive the seed. It is not neces­
u sarily normalized. The value returned may be passed to RANSET at a later time to regenerate the same

sequence of random number::..

MASS STORAGE JNPUT/OUTPUT

Refer to section 111-7 for further information on the following routines:

CALL OPENMS (u,ix,lngth,t)

Opens mass storage file and informs Record Manager that file u is word addressable. If an existing file is opened,
the master index is read into the area specified by the program. u is the unit designator. ix is the first word
address of the index in central memory. lngth is the length of the index buffer; for a name index, lngth ~ 2 *
(number of records in file) + 1 ; for a number index, lngth ~ number of records in file + 1. t = 1: file is
referenced through a name index; t = 0: file is referenced through a number index.

Example: PROGRAM MS1 (TAPE3)

DIMENSION INDEX (11), DATA (25)

CALL OPENMS (3,INDEX,11,0)

t RANF is an intrinsic function.

1-8-16 60305600 G

CALL STI N DX {u,ix,lngth,t)

Changes index in central memory from master to subindex. u,ixJngth,t are the same as for OPENMS. If t is
omitted, whether the subindex is considered to be a name or a number index is determined by the value of
t specified in the most recent call to STINDX or OPENMS.

Example: CALL STINDX (2,SUBIX,10,0)

CALL CLOSMS (u)

Writes index from central memory to file and closes file. CLOSMS should be called before job termination.

Example: CALL CLOSMS (7)

CALL READMS (u,fwa,n,k)

Transmits data from mass storage to central memory. u is the unit designator, fwa is the central memory
address of the first word of the data area. n is the number of central memory words transferred. Number
index k has limits 1 ~ k ~ lngth -1. Name index k = any 60-bit quantity except ± 0.

Example: CALL READMS(3,DATA,25,6)

CALL WRITMS(u,fwa,n,k,r,s)

Transmits data from central memory to mass storage. u,fwa,n,k are the same as for READMS. r = +l: rewrites
in place however, it does not rewrite, and fatal error is printed, if new record length exceeds old record length.
r = -1 rewrites in place if space is available, otherwise writes at end of information. r = 0 no rewrite; writes at
end of information. The r parameter can be omitted if the s parameter is omitted. The default value for r is
0 (normal write).

s = 1 writes subindex marker flag in index control word for this record. s = 0 does not write subindex marker
flag in index control word for this record. The s parameter can be omitted; its default value is 0.

The s parameter is included for future random file editing routines. Current routines do not test the flag, but
user should include this parameter in new programs, when appropriate, to facilitate transition to a future edit
capability.

Example: CALL WRITMS (3,DATA,25,NR KEY ,1,1)

60305600 F 1-8-17

INPUT/OUTPUT STATUS CHECKING

FORTRAN Extended provides the capability of checking for an end-of-file or a parity error condition following
read operations via the functions UNIT, EOF, and IOCHEC.

Any of the following conditions encountered during a read returns an end-of-file status via the functions UNIT
or EOF:

End-of-section (in the case of file INPUT only)

End-of-partition

End-of-infonna ti on

Non-deleted W for~at flag record

Embedded tape mark

Terminating double tape mark

Terminating end-of-file label

Embedded zero length level 17 block

The functions UNIT and IOCHEC return a parity error indication for every record within or spanning a
block containing a parity error; however, such an indication does not necessarily refer to the immediately
preceding operation because of the record blocking/deblocking performed by the Record Manager input/output
routines.

§Parity status can be checked on write operations that access mass storage files when the write check option
has been specified on the REQUEST card for the file (SCOPE 2.1 Reference Manual). Write parity errors
for other types of devices (such as staged/on-line tape) are detected by the operating system, and a message
to this effect is written in the dayfile.

UNIT(u)

The UNIT function is used to check the status of a BUFFER IN or BUFFER OUT operation for an end-of­
file or parity error condition on logical unit u. The function returns the following values:

-1. Unit ready, no end-of-file or parity error encountered on the previous operation

+0. Unit ready, end-of-file encountered on the previous operation

+l. Unit ready, parity error encountered on the previous operation

Example: IF (UNIT(5)) 12,14,16

Control transfers to the statement labeled 12, 14 or 16 if the value returned was -1., 0., or +1., respectively.

If 0. or +l. is returned, the condition indicator is cleared before control is returned to the program. If the
UNIT function references a logical unit referenced by input/output statements other than BUFFER IN or
BUFFER OUT, the status returned always indicates unit ready and no error (-1.).

I §Applies only to SCOPE 2.1.

I-8-18 60305600 G

EOF(u)

The EOF function is used to test for an end-of-file condition on unit u following a formatted, list-directed,
NAMELIST, or unformatted read. Zero is returned if no end-of-file is encountered, or a non-zero value if end­
of-file is encountered.

Example: IF (EOF(5)) 10,20

returns control to the statement labeled 10 if the previous read encountered an end-of-file; otherwise, control
goes to statement 20.

If an end-of-file is encountered. EOF clears the indicator before returning control.

The EOF function returns a zero value following read or write operations on random access files, and also
following write operations on all types of files, regardless of whether an end-of-file condition has been detected;
therefore, the EOF function should not be used in those circumstances.

The user should test for an end-of-file after each READ statement to avoid input errors. If an attempt is made
to read on unit u and an EOF was encountered on the previous read operation on this unit, execution termi­
nates and an error message is printed.

IOCHEC(u)

The IOCHEC function tests for parity error on unit u following a formatted, list-directed, NAMELIST, or
unformatted read. The value zero is returned if no error has been detected.

Example: J = IOCHEC(6)

IF (J) 15,25

zero value would be returned to J if no parity error occurred and non-zero if an error had occurred; control
would transfer to the statement labeled 25 or 15 respectively.

If a parity error occurred, IOCHEC would clear the parity indicator before returning. Parity errors are handled
in this way regardless of the type of the external device.

OTHER INPUT/OUTPUT SUBPROGRAMS

LENGTH(u) or CALL LENGTHX(u,nw,ubc)

Returns information regarding the previous BUFFER IN or READMS call of the file designated by u. nw or
the value of LENGTH is set to the number of 60-bit words read. ubc is set to the number of unused bits in
the last word of the transfer. nw, ubc, and value returned are type integer.

Example: NW = LENGTH(5)

or

CALL LENGTHX(5,NW,NUBC)

60305600 F 1-8-19

CALL LABEL(u,fwa)

Sets tape label information for a file. u is the unit number. fwa is the address of the first word of the label
information. See section IIl-5 for further information.

ECS/LCM SUBPROGRAMS

CALL MOVLEV (a,b,n)

Transfers n consecutive words of data between a and b. a and b are variables or array elements; n is an
integer constant. a is the starting address of the data to be moved and b is the starting address of the receiv­
ing location.

Example: CALL MOVLEV(A,B,1000)

No conversion is done ,by MOVLEV. If data from a real variable is moved to an integer type receiving field,
the data remains real.

Example: CALL MOVLEV (A, I, 1000)

Afte-r the move, I does not contain the integer equivalent of A.

Example: DOUBLE PRECISION 01 (500), 02(500)

CALL MOVLEV (01 I 02, 1000)

Since DI is defined as double predsion, n should be set to 1000 to move the entire DI array.

CALL READEC(a,b,n)

Transfers data from extended core storage to central memory.

a is a simple variable or array element located in central memory. b is a simple variable or array element located
in an extended core storage block or LCM block. n is an integer constant or expression. n consecutive words
of data are transferred beginning with a in central memory and b in extended core storage.

CALL WRITEC(a,b,n)

Transfers data from central memory to extended core storage or LCM.

No type conversion is done.

LEVEL 3,B

CALL REAOEC(A,B,10)

CALL WRITEC(A,B,10)

1-8-20 60305600 F

TERMINAL INTERFACE

Refer to section III-11 for further information on the following routines:

CALL CONNEC{fd) or CALL CONNEC{fd,cs)

Associate file fd with terminal for input/output operations using the character set specified by cs.

CALL DISCON (fd)

Disassociate file fd from terminal.

CYBER RECORD MANAGER INTERFACE

These routines, interfacing with CYBER Record Manager, provide an alternative to standard FORTRAN I/O;
they should not be used with files referenced by standard FORTRAN I/O routines. Refer to section III-6
for further information.

SORT/MERGE INTERFACE

These routines, interfacing with Sort/Merge, provide an extended capability for processing data records in a
FORTRAN program. Refer to section IIl-16 for further information.

60305600 G I-8-21 •

INPUT/ OUTPUT 1-9

To input or output data, the following information is required:

Unit number of the input/output device

List of FORTRAN variables to receive input data or from which results are to be output.

Layout or format of data

READ, WRITE, PRINT, or PUNCH statements specify the input or output device and the list. The form of
data is designated by the FORMAT statement.

Data can be formatted or unformatted or list directed. In formatted mode, display code character strings are
converted and transferred according to a FORMAT statement. In unformatted mode, data is transferred in the
form in which it normally appears in storage, no conversion takes place, and no FORMAT statement is used.
In list directed mode, display code character strings are converted and transferred according to the type of the
list items.

Input/output control statements are discussed below. Input/output lists and the FORMAT statements are
covered in section 10.

The following definitions apply to all input/output statements:

u

fn

iolist

60305600 D

Input/output unit; the operating system associates this unit with an internal file name
which may be:

Integer constant of one or two digits (leading zeros are discarded). The compiler
associates these numbers with file names of the type TAPEu, where u is the file
designator (refer to PROGRAM statement, section 7).

Simple integer variable name with a value of:

l - 99, or

A display code file name (L format, left justified with binary zero fill). This is the
internal logical file name.

Format designator; a FORMAT statement number or the name of an array containing
the format specification. The statement number must identify a FORMAT statement in
the program unit containing the input/output statement.

Input/ output list specifying items to be transmitted (section 1-10).

I-9-1

All information is considered to be a file or part of a file. Local to a given job, a file is identified by a logical
file name (the internal file named, u). All control card references to a file identify it by the logical file name.
The internal central memory representation of a logical file name consists of its literal value in display code, left
justified and zero filled.

Several file names are given special significance. When one of these names is used, the following automatic dis­
position is made, unless the user has defined an alternate disposition:

Card input is assigned to the file INPUT.

Data in the file OUTPUT is assigned to the printer.

Data in the file PUNCH is assigned to the card punch as coded card output.

Data in the file PUNCHB is output on the card punch as binary card output.

FORTRAN RECORD 'LENGTH

For cards, formatted logical record length cannot exceed 80-characters and for print files, 137 char­
acters. Other files are limited to 150 characters unless the maximum record length is specified on the
PROGRAM statement (see section 1-7).

The length of an unformatted FORTRAN logical record is determined by the length of the input/output
list, and can be any size.

CARRIAGE CONTROL

The record length of print files is limited fo a maximum of 137 characters. The first character of the record
is the carriage control character and is never printed. The second character of the record appears in the first
print position.

The printer control characters are listed in section 1-10. For off-line printing, printer control is determined by
the installation printer routine.

1-9-2 60305600 G

OUTPUT STATEMENTS

PRINT

7

(11 PRINT fn,iolist

7

(WRINT fn

7

PRINT(u,fn) iolist

7

(11 PRINT*,iolist

7

(! 11 PRINT(u,fn)

7

(11 PRINT(u,*) iolist

This statement transfers information from the storage locations named in the input/output list to the file
named OUTPUT or the file specified by u, according to the specification in the format designator, fn or *
If the user has not specified an alternate assignment, the file OUTPUT is sent to the printer.

60305600 D 1-9-3

5 7
PROGRAM PRINT (OUTPUT)

=19
RINT 4,A,B,N

FORMAT (G20.6,Al0,I5)

The iolist can be omitted. For example,

PRINT 20
20 FORMAT (30H THIS IS THE END OF THE REPORT)

PUNCH
7

(WU NCH
fn,iolist

7

(WUN CH
f n

7

(11 PUNCH(u,fn) iolist

7

(11 PUNCH*,iolist

7

(11 PUNCH(u,*)
iolist

7

(11 PUNCH (u, f n)

Data is transferred from the storage locations specified by iolist to the file PUNCH or the file specified by u.
If the user has not specified an alternate assignment, the file PUNCH is output on the standard punch unit
as Hollerith codes, 80 characters or less per card in accordance with format specification, fn. If the card
image is longer than 80 characters, a second card is punched with the remaining characters.

1-9-4 60305600 D

5 7
PROGRAM PUNCH (INPUT,OUTPUT,PUNCH)

2 READ 3,A,B,C
3 FORMAT (3Gl2.6)

ANSWER = A + B - C
IF (A .EQ. 99.99) STOP
PRINT 4, ANSWER

4 FORMAT (G20.6)
PUNCH 5,A,B,C,ANSWER

5 FORMAT (3Gl2.6,G20.6)
GO TO 2
END

The iolist can be omitted. For examp_le,

PUNCH 30
30 FORMAT (lOH LAST CARD)

FORMATTED WRITE

7
~W-R--IT-E--(u-,-fn-)~io-li-st--------------------

7

(WRITE
(u,fn)

7

(11 WRITE fn,iolist

7

(11 WRITE fn

The formatted WRITE statement transfers information from the storage locations named in the input/output I
list to the file named OUTPUT or the file specified by u, according to the FORMAT specification, fn. If the
user has not specified an alternate assignment, the file OUTPUT is sent to the printer.

60305600 G 1-9-5

7
ROGRAM RITE (OUTPUT,TAPE6=0UTPUT)
=2.1
=3.
=7
RITE (6,100) X,Y,M

10 (2F6.2,I4)
STOP
END

The iolist can be omitted. For example,

WRITE (4,27)
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES)

UNFORMATTED WRITE

(1

Example:

7

(I IWRITE
(u) iolist

7

I IWRITE
(u)

PROGRAM OUT(OUTPUT,TAPE~O)
DIMENSION A(260),B(4000)

WRITE (10) A,B
END

This statement is used to output binary records. Information is transferred from the list variables, iolist, to
the specified output unit, u, with no FORMAT conversion. One record is created by an unformatted
WRITE statement. (Refer to section 5, part III). If the list is omitted, the statement writes a null record on
the output device. A null record has no data but contains all other properties of a legitimate record.

1-9-6 60305600 G

LIST DIRECTED WRITE

7

(11 WRITE(u,*J iolist

(11 WRITE*,iolist

Data is transferred from storage locations specified by the iolist to unit u in a manner consistent with the list
directed input described below.

For files referenced in list directed WRITE and PRINT statements, the maximum record length in characters
should be specified in the PROGRAM statement (section I-7).

Example: PROGRAM LUW <OUTPUT=/80, TAPE6::i0UTPUT>
INTEGER J(4)
COMPLEX Z<2>
00UBL£PRECISION Q
DATA J,z,011,-2,3,-4,(7.,-1.>.<-J.,2.>.1.o-s/
WRITE(6,*)J
WRITE(6,o)z,a
STOP
END

Output: 1 -2 3 -4
<1.,-1.l (-J.,2.) .00001

INPUT STATEMENTS

FORMATTED READ

7

(l WEAD
7

(u,fn) iolist

(u,fn)

1

These statements transmit data from unit u to storage locations named in iolist according to FORMAT specification
fn. The number of words in the list and the FORMAT specifications must conform to the record structure on the
input unit. If the list is omitted, one or more FORTRAN records will be bypassed. The number of records bypassed
is one plus the number of slashes interpreted in the FORMAT statement. Except for information read into H spec­
ifications in the FORMAT statement, the data in the records skipped is ignored.

60305600 E I-9-7

ROGRAM IN (INPUT,OUTPUT,TAPE4=INPUT,TAPE7=0UTPUT)

EAD (4,200) A,B,C
FORMAT (3F7.3)

= B*C+A
RITE (7,50) A
ORMAT (50X,F7.4)

STOP

The user should test for an end-of-file after each READ statement to avoid input/output errors. If an
attempt is made to read on unit u and an EOF was encountered on the previous read operation on this unit,
execution terminates and an error message is printed. (Refer to section 5, part III, EOF FUNCTION.)

7

(I IREAD
fn,iolist

This statement transmits data from the INPUT file to the locations named in iolist. Data is converted in
accordance with format specification fn.

ROGRAM RLIST (INPUT,OUTPUT)
EAD 5,X,Y,Z

FORMAT (3G20.2)
ESULT = X-Y+Z
RINT 100, RESULT

10 ORMAT (lOX,Gl0.2)
STOP
END

UNFORMATTED READ

7

(WEAD (u) iolist

7

(WEAD (u)

1-9-8 60305600 D

One record (section III-5) of information is transmitted from the specified unit, u, to the storage locations
named in iolist. Records must be in binary form; no FORMAT statement is used. The information is trans­
mitted from the designated file in the form in which it exists on the file. If the number of words in the
list exceeds the number of words in the record, execution diagnostic results. If the number of locations spe­
cified in the iolist is less than the number of words in the logical record, the excess data is ignored. If iolist
is omitted, READ (u) spaces over one record.

PROGRAM AREAD (INPUT,OUTPUT,TAPE2)
READ (2) X,Y,Z
SUM = X+Y+Z/2.

END

LIST DIRECTED READ

7

(11 READ(u,*)
iolist

7

(11 READ*, iolist

Data is transmitted from unit u or the file INPUT to the storage locations named in iolist. The input data
items are free-form with separators rather than in fixed-size fields.

A list directed READ following a list directed READ that terminated in the middle of a data record continues
with the same data record. When a list directed READ follows a formatted READ or a formatted READ
follows a list directed READ, a new data record is always used.

For files referenced in list directed READ statements, the maximum record length in characters should be
specified in the PROGRAM statement (section 1-7).

Example:

PROGRAM LuR<INPUTtOUTPur.rAf-'l::S=ll\IPUT·TAPE6=0UTPUT)
NAMELIST/OUT/CATtBlkO.OOG
RtAD<5t*>CATtBIROtUOG
WRITE (6tOUT>
STOP
END

Input:

13.3, -s.2, .01

Output:

$OUT CAT = .133t:.+02.
$Eh!U

BI kl) = -.5E+Ol• DUG = .lE-01•1

60305600 G 1-9-9

LIST DIRECTED INPUT DATA FORMS

The list directed READ statement is similar to formatted I/O statements except an asterisk replaces the
FORMAT statement number. For input statements, the form is:

READ *, iolist

READ(unit,*) iolist

Input data consists of a string of values separated by: one or more blanks, a comma or a slash either of
which may be preceded or followed by any number of blanks. Also, a line boundary, such as end of record
or end of card, serves as a value separator.

To repeat a value, an integer repeat constant is followed by an asterisk and the constant to be repeated.
Blanks cannot be embedded in a constant or the specification of a repeated constant.

A null may be input in place of a constant when the value assigned to the corresponding list entity· is not
to be changed. A null is indicated by the first character in the input string being a comma or by two com­
mas or slashes separated by an arbitrary number of blanks. Nulls may be repeated by specifying an integer
repeat count followed by an asterisk and any value separator. A null cannot be used for either the real or
imaginary part of a complex constant; however, a null can represent an entire complex constant.

When the value separator is a slash, remaining list elements are treated as nulls; when the next input state­
ment is executed for this specified unit, the character following the slash becomes the first input character
for the second READ. When the 1/0 list is exhausted and no slash has been encountered, the next list
directed input on the same unit will begin at the following value separator.

Constants in the input stream take the form of FORTRAN constants except: blanks are not allowed within
a constant and a decimal point omitted from a real constant is assumed to occur to the right of the right­
most digit of the mantissa. Otherwise, each constant must be of the same type as the corresponding list
entry, or the job will be terminated. Furthermore, a repeated constant such as 4*7 should not be used as
input data to variables of differing types.

For example:

READ(5,*) I, J, X, Y

can read correctly:

2*7, 2*7 but not 4*7

assuming that I and J are integer and X and Y are real.

Repeated constants or repeated null values should be used entirely by one read.

The only Hollerith constants permitted are those enclosed in the symbol -:/=. They may contain embedded blanks.
The paired symbols =f 'f can be used to represent a single j within a character constant. A character string can­
not be repeated, and it should be read into an integer variable or array. A character constant of less than 10
characters is padded on the right with blanks to fill the word. Only the first 10 characters are used if the
constant exceeds 10 characters.

1-9-10 60305600 D

LIST DIRECTED OUTPUT DATA FORM

List directed output is consistent with the input; however, null values, as well as slashes and repeated constants
are not produced. For real or double precision variables with absolute values in the range of 10-6 to 109, an
F format type of conversion is used; otherwise, an output is oI the IPE type. Trailing zeros in the mantissa
and leading zeros in the exponent are suppressed.

PRINT* ,list

For list directed PRINT statements, a blank is output as the first character (carriage control) of each record
and also as the first character when a long record is continued on another line; for list directed WRITE state­
ments, a blank is output as the first character of each record only.

List directed WRITE statements include the :f= symbols with the character output; therefore, they should be
used if the list directed record output is to be input subsequently with a list directed READ statement.

For example:

PROGRAM H<OUTPUT•/80)
x. = ~J.6.
PRINT*t-THE VALUE OF SQRTC-t Xt ~> IS ·~• SQRT<X>
WRITE*t~SAME WITH WRITEt SQRT(~, Xt _, IS ·~ ,SQRT<X>
STOP
END

Output:

THE VALUE OF SQRTt3.&> IS =1.8~736659&1J1
isAME WITH WRITE, SQRT(t 3.6 t) rs· =t 1.837366596101

60305600 G 1-9-1 I

FILE MANIPULATION STATEMENTS

Three statements can be used to manipulate files; REWIND, BACKSPACE, and ENDFILE.

REWIND

7

(11 REWIND u

The REWIND operation positions a file so that the next FORTRAN input/output operation references the first
rec.ord in the file; even though several ENDFILE statements may have been issued to that unit since the last
REWIND. A mass storage file is positioned at the beginning of information. If the file is already at beginning
of information, the statement acts as a do-nothing statement. (Refer to BACKSPACE/REWIND, section 5,
part III for further information.)

Example:

REWIND 3

BACKSPACE

7

(11 BACKSPACE u

Unit u is backspaced one logical record. If the file is at beginning of information, this statement acts as a
do-nothing statement. A backspace operation should not follow a list directed read on a given file.

§BACKSPACE is permitted for F, S, or W record format or for tape files with one record per block. (Refer to
BACKSPACE/REWIND, section 5, part III for further information.)

Example:

DO 1 LUN = 1,10,3

1 BACKSPACE LUN

Files TAPE I, T APE4, TAPE 7, and TAPE IO are backspaced one logical record.

§ Applies only to SCOPE 2.1.

I-9-12 60305600 G

END FILE

7

(11 ENDFILE u

An end-of-file mark is written on the designated unit.

Issuing an ENDFILE as the first operation on a file establishes the same default record and block types as
used for formatted 1/0 (RT=Z, BT=C).

Meaningful results are not guaranteed if ENDFILE is used on a random access file and subsequently a random
file subroutine, such as READMS, is call~d.

Example:

!OUT = 6LOUTPUT
END FILE !OUT

End-of-file is written on the file OUTPUT.

BUFFER STATEMENTS

The buffer statements and the read/write statements both accomplish data input/output; however, they
differ in the following respects:

A buffer control statement initiates data transmission and then returns control to the program so that
it can perform other tasks while data transmission is in progress. A read/write statement completes
data transmission before returning control to the program.

In a buffer control statement, parity must be specified by a parity indicator. In the read/write control
statement, the mode of transmission formatted (display code) or unformatted (binary) is tacitly
implied.

The read/write control statements are associated with a list and, if formatted, with a FORMAT
statement. The buffer statements are not associated with a list; data is transmitted to or from a block
of storage.

(
p

a

b

60305600 G

7

11 BUFFER
IN (u,p) (a,b)

Integer constant or simple integer variable. Designates parity on 7-track magnetic tape,
zero designates even parity; one designates odd parity. p is inoperative for other
peripheral devices.

First word of record to be transmitted.

Last word of record to be transmitted.

1-9-13

The address of b must be greater than or equal lo the address of a. In addition, a and b must be either the
same variable, or else in the same array, common block, or equivalence class. If a and b are different variables
or array elements in a common block without any equivalenced members, optimization may be degraded.

Example:

Given the following specification statements:

DIMENSION A(100), B(SO), F(50)

COMMON /Cl CA~ CB, CC

COMMON ID/ DD, OF

EQUIVALENCE (B,AI, (CC,F(25))

the following statements are valid:

BUFFER IN (,O) (A(2), A(100))

BUFFER IN (1,0) (CA, CC)

BUFFER IN (1,0) (B, A(100))

BUFFER IN (1,0) (CA, F(SO))

and the following are invalid:

BUFFER IN (1,0) (B, F(50))

BUFFER IN (1,0) (CB.DOI

Each BUFFER IN statement causes one record of information to be transmitted from unit u to storage loca­
tions a through b. A program should not reference either the unit u or the contents of storage locations a
through b between the time a BUFFER IN. statement is executed and the time a UNIT function (on the same
unit) indicates the buffer operation is complete. The length of a BUFFER IN record can be ascertained through

·either the LENGTH function or the LENGTHX library subroutine (section 8, part I).

5 7

PROGRAM TP <TAPE1,0UTPUT)
INTEGER REC<512J,RNUMB
REWIND 1
00 ~ RNUHe = 1,10000

1 BUFFER IN <1, 1> <REC< 1> ,REC<512>l

2 IF <UNIT<1>> 3,5,5
3 l<=L ENG THU>

C LENGTH RETURNS NUMBER OF WORDS TRANSFERRED BY BUFFER IN

1-9-14

4
100

5

FRINT 100,RNUHBt<REC<l>,I=i,K>
FORMAT <7HORECORO,I51<1X,10A10>>
STOP
ENO

60305600 F

Odd parity information is transferred from logical unit 1 into storage beginning at the first word of the
array, REC(l), and extending through the last word of the array, REC(512). The UNIT function tests I
the status of the buffer operation. If the buffer operation is completed without error, statement 3 is
executed. If an EOF or a parity error is encountered, control transfers to statement 5 and the program
stops.

Example:

DIMENSION CALC(50)
BUFFER IN (1,0) (CALC(l),CALC(50))

Even parity information is transferred from logical unit 1 into storage beginning at the first word of the
array, CALC(l), and extending through CALC(50), the last word of the array. I

7

(11 BUFFER
OUT (u,p) (a,b)

u,p,a,b are the same as for BUFFER IN

Contents of storage locations a through b are written on unit u in even or odd parity.

60305600 G I-9-15

Examples:

BUFFER OUT{2,0){0UTBUF{l),OUTBUF(4))

DIMENSION ALPHA{lOO)
BUFFER OUT {2,l){ALPHA(l),ALPHA{lOO))

One record is written for each BUFFER OUT statement. Section 5, part III contains further information
regarding BUFFER IN /OUT statements.

NAME LIST

The NAMELIST statement permits input and output of groups of variables and arrays with an identifying
name. No format specification is used.

7

NAMELIST/group name1 /a1 •••• ,a/ ... /group namen/a1 , •.• ,an

group name Symbolic name which must be enclosed in slashes and must be unique within
the program unit. ·

List of variables or array names separated by commas.

The NAMELIST group name identifies the succeeding list of variables or array names. Whenever an input
or output statement references the NAMELIST name, the complete list of associated variables or array
names is read or written.

A NAMELIST group name must be declared in a NAMELIST statement before it is used in an input/
output statement. The group name may be declared only once, and it may not be used for any purpose
other than a NAMELIST name in the program unit. It may appear in any of the input/output statements
in place of the format number:

READ (u, group name)
READ group name
WRITE (u, group name)
PRINT group name
PUNCH group name

It may not, however, be used in an ENCODE or DECODE statement in place of the format number. When
a NAMELIST group name is used, the list must be omitted from the input/output statement.

A variable or array name may belong to one or more NAMELIST groups.

I-9-16 60305600 G

Data read by a single NAMELIST name READ statement must contain only names listed in the referenced
NAMELIST group. A set of data items may consist of any subset of the variable names in the NAMELIST.
The value of variables not included in the subset remain unchanged. Variables need not be in the order in
which they appear in the defining NAMELIST statement.

PROGRAM NMLIST <INPUTtOUTPUTtTAPESzlNPUTtTAPE6•0UTPUT>
NAMELIST/SHIP/AtitCtlltl2
REAOCStSHIP>
I F < E Of' (5 > > l 0 t 2 0

10 PRINT*t - NO DATA FOUND ~
STOP

20 IF <C eLE. o.> 40t30
30 A = B + C

11 = 12 • 11
WRITE <6•SHIP>

40 STOP
END

Input record
2

(rSHIP A=l2.2,B=20.,C-3.4,Il=B,I2=50$

Output

SSHIP

A = .234E•02t

B = .2E•02t

c = .34E•Olt

11 = sa,

12 = so.

SEND

7

((u,group name)

When a READ statement references a NAMELIST group name, input data in the format described below is
read from the designated file. If the specified group name is not found before end-of-file, a fatal error occurs.
If the file is empty, control returns to the statement following the READ; however, a subsequent read on the
same file will result in a fatal error. Consequently, a NAMELIST read should be followed by a test for end-of­
file (see section III-5).

60305600 G 1-9-17

INPUT DATA

terminator

'6 array name(n) = constant , ... ,constant,

6 array name=constant, ... , constant,

6 variable=constant,
data items

6 $group name

Data items succeeding$ NAMELIST group name are read until another$ is encountered.

Blanks must not appear:

Between $ and NAMELIST group name

Within array names and variable names

Blanks may be used freely elsewhere.

More than one record can be used as input data in a NAMELIST group. The first column of each record is
ignored. All input records containing data should end with a constant followed by a comma; however the last
record may be terminated by a $ without the final comma.

Data items separated by commas may be in three forms:

variable = constant

array name = constant, ... ,constant

array name (unsigned integer constant subscripts)=constant, ... ,constant

Omitting a constant constitutes a fatal error.

Constants can be preceded by a repetition factor and an asterisk.

Example:

5 * (1. 7, -2. 4) five complex constants.

Constants may be integer, real, double precision, complex or logical. Logical constants must be of the form:
.TRUE .. T. T .FALSE .. F. or F. A logical variable may be replaced only by a logical constant. A complex
variable may be replaced only by a complex constant. A complex constant must have the form (real
constant, real constant). Any other variable may be replaced by an integer, real or double precision
constant; the constant is converted to the type of the variable.

1-9-18 60305600 G

OUTPUT

7

(I IWRITE(u,group name)

All variables and arrays, and their values, in the list associated with the NAMELIST group name are output
on the designated unit, u. They are output in the order of specification in the NAMELIST Statement.
Output consists of at least three records. The first record is a $ in column 2 followed by the group name;
the last record is a$ in column 2 followed by the characters END.

Example:

Output

PROGRAM NAME<INPUT,OUTPUT,TAPES=INPUTtTAPE6zOUTPUT>
NAMELIST/VALUES/TOTAL,QUANTtCOST
DATA QUANT,COST/15.,3.02/
TOTAL = QUANT*COST*l.3
WRITE (6tVALUES>
STOP
END

SVALUES

TOTAL = .saa89999999999E•o2,

QUANT = .1SE•02t

COST = .302E+Olt

SEND

No data appears in column 1 of any record. If the logical unit referenced is the standard punch unit and a
variable crosses column 80, this and following variables are punched on the next card. The maximum length
of a record written by a WRITE (u, group name) or PRINT group name statement is 136 characters (unless
a smaller maximum record length has been specified in the PROGRAM statement). Logical constants appear
as T or F. Elements of an array are output in the order in which they are stored.

Records output by a WRITE (u, group name) statement may be read by a READ (u, group name)
statement using the same NAMELIST name.

Example:

NAMELIST/ITEMS/X,Y,Z

WRITE (6, ITEMS)

60305600 G 1-9-19

Output record:

SITEHS

y .23749E•04t

SEND

This output may be read later in the same program using the following statement:

READ(5,ITEMS)

ARRAYS IN NAMELIST

In input data the number of constants, including repetitions, given for an array name should not exceed the
number of elements in the array.

Example:

2

INTEGER BAT(lO)
NAMELIST/HAT/BAT,DOT
READ (5,HAT)

(!$HAT BAT=2,3,8*4,DOT=l.05$END

The value of DOT becomes 1.05, the array BAT is as follows:

BAT(l) 2
BAT(2) 3
BAT(3) 4
BAT(4) 4
BAT(5) 4
BAT(6) 4
BAT(7) 4
BAT(8) 4
BAT(9) 4
BAT(lO) 4

Example:

DIMENSION GAY(5)
NAMELIST/DAY/GAY,BAY,RAY
READ (5,DAY)

Input Record:
2

GAY(3)=7.2,GAY(5)=3.0,BAY=2.3,RAY=77.2$

array element =constant, ... ,constant

1-9-20 60305600 G

When data is input in this form, the constants are stored consecutively beginning with the location given by
the array element. The number of constants need not equal, but may not exceed, the remaining number of
elements in the array.

Example:

DIMENSION ALPHA (6)
NAMELIST/BETA/ALPHA,DELTA,X,Y
READ (5,BETA)

Input record:
2

(!$BETA ALPHA{3)=7.,8.,9.,DELTA=2.$

In storage

ALPHA(3)
ALPHA(4)
ALPHA(5)
DELTA

7.

8.

9.
2.

Data initialized by the DATA statement can be changed later in the program by the NAMELIST statement.

Example:

PROGRAM COSTS (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT)
DATA TAX,INT,ACCUM,ANET/23.,10,500.2,17.0/
NAMELIST/RECORDS/TAX,INT,ACCUM,ANET
FIRST = TAX + INT
SECOND = FIRST * SUM

READ(5, RECORDS)

Input Record:
2

(~RECORDS TAX=27., ACCUM=666.2$

Example:

DIMENSION Y(3,5)
LOGICAL L
COMPLEX Z
NAMELIST/HURRY/Il,I2,I3,K,M,Y,Z,L
READ (5,HURRY)

60305600 G 1-9-21

I

Input record:

$HURRY ll=l,L=.TRUE.,l2=2,l3=3.5,Y(3,5)=26,Y(l,1)=11,
12.0E1,13,4*14,Z=(l.,2.),K=l6,M=l7$

produce the following values:

Il=l
12=2
13=3
Y(3,5)=26.0
Y(l,l)=ll.0
Y(2,l)=l20.0
Y(3,1)=13.0

Y(l,2)=14.0
Y(2,2)=14.0
Y(3,2)=14.0
Y(l,3)=14.0
K=l6
M=l7
Z=(l. ,2.)
L=.TRUE.

The rest of Y is unchanged.

ENCODE AND DECODE

The ENCODE and DECODE statements are used to reformat data in memory; information is transferred under
FORMAT specifications from one area of memory to another.

ENCODE is similar to a formatted WRITE statement, and DECODE is similar to a formatted READ statement.
Data is transmitted under format specifications, but ENCODE and DECODE transfer data internally; no peri­
pheral equipment is involved. For example, data can be converted to a different format internally without the
necessity of writing it out on tape and rereading under another format.

ENCODE

v

c

7

ENCODE (c,fn,v) iolist

Variable or array name which supplies the starting location of the record to be encoded.

Unsigned integer constant or simple integer variable specifying the length of each
record.

The first record starts with the leftmost character of the location specified by v and continues for c characters,
10 characters per computer word. If c is not a multiple of 10, the record ends before the end of the word is
reached; and the remainder of the word is blank filled. Each new record begins with a new computer word.
There is no intrinsic limit on c, except if v is a level 2 variable c must be less than or equal to 150.

f n

iolist

1-9-22

Format designator, statement label or integer variable, which must not be a NAME­
LIST group name or an *

List of variables to be transmitted to the location specified by v.

60305600 G

Example:

5 7

PROGRAM ENCDE <OUTPUT>
.DIMENSION A(2),ALPHAC4>

DATA AtB,C/lOHABCDEFGHIJ,lOHKLMNOPQRST•5HUVWXYt7HZ123456/
ENCODE ·c 40 t 1 , ALPHA> A, B, C

1 FORMAT <2A4tAS~A6l
PRINT.2,ALPHA

2 FORMAT <20H1CONTENTS OF ALPHA zt8Al0)
STOP
END

In memory after ENCODE statement has been executed.

EBCDKLMNUVI WXYZ12345

ALPHA (1) ALPHA (2) ALPHA (3) ALPHA (4)

ENCODE is a core-to-core transfer of data, which is similar to a formatted WRITE. Data in the iolist, in inter­
nal form, is converted under FORMAT specifications, fn, and written in display code into an array or variable.

An integral number of words is allocated for each record created by an ENCODE statement. If c is not a
multiple of IO, the record ends before the end of the word is reached; and the remainder of the word is
blank filled.

If the list and the format specification transmit more than the number of characters specified per record, an
execution error message is printed. If the number of characters transmitted is less than the length specified
by c, remaining characters in the record are blank filled.

For example, in the following program which is similar to program ENCDE above, the format statement
has been changed; so that two records are generated by the ENCODE statement. A(l) and A(2) are written
with the format specification 2A4, the I indicates a new record, and the remaining portion of the 40
character record, c, is blank filled. B and C are written into the second record with the specification AS and
A6, and the remaining characters are blank filled. The dimensions of the array ALPHA must be increased
to 8 to accommodate two 40-character records.

60305600 G 1-9-23

5 7

PROGRAM TWO <~UTPUT>
DIMENSION A<2ltALPHA(8)
DATA At8tC/lOHABCDEFGHIJtlOHKLMNOPQRSTt5HUVWXYt7HZ1234~6/
ENCODE <40tltALPHA>AtBtC

Output:

l FORMAT <2A4/AStA6>
PRINT 2tALPHA

2 FORMAT (20HlCONTENTS OF ALPHA =t8AIO>
STOP
END

CONTENTS OF ALPHA =ABCDKLMN

If this same ENCODE statement is altered to:

ENCODE (33,l,ALPHA)A,B,C
l FORMAT (2A4/A5,A6)

UVWXYZ12345

The contents of ALPHA remain the same. When a record ends in the middle of a word the
remainder of the word is blank filled (each new record starts at the beginning of a word).

Record 1

ABCDKLMN

ALPHA(1) ALPHA(2) ALPHA(3)

blank
fill

ALPHA(4)

t
end of record

Record 2

UVWXYZ1234 5·

ALPHA(5) ALPHA(6) ALPHA(7)

blank
fill

ALPHA(8)

t
end of record

The array in core must be large enough to contain the total number of characters specified in the ENCODE
statement. For example, if 70 characters are generated by the ENCODE statement, the array starting at
location v (if v is a single word element) must be dimensioned at least 7. If 2 7 characters are generated, the
array must be dimensioned 3. If only 6 characters are generated, v can be a I-word variable.

The following example illustrates that it is possible to encode an area into itself, and the information
previously contained in the area will be destroyed.

5 7

PROGRAM ENC02 (OUTPUT>
l=lOHBCDEFGHIJK
IA=lHl
ENCODE (8, 10, I) I , I A' l

10 FORMAT tA3tAltR4)
PRINT ll•l

11 fORMAf <All>
END

Printout is:

BCDIHIJKbb

1-9-24 60305600 G

ENCODE may be used to calculate a field definition in a FORMAT specification at object time. Assume
that in the statement FORMAT (2Al0,lm) the programmer wishes to specify m at some point in the
program. The following program permits m to vary in the range 2 through 9.

IF(M.LT.10.AND.M.GT.l)l,2
1 ENCODE (10,100,SPECMAT)M

100 FORMAT (7H(2Al0,I,Il,1H))

PRINT SPECMAT,A,B,J

M is tested to ensure it is within limits; if it is not, control goes to statement 2, which could be an
error routine. If M is within limits, ENCODE packs the integer value of M with the characters
(2A l 0,1). This packed FORMAT is stored in SPECMAT. SPECMAT contains (2A 1 O,lm).

A and B will be printed under specification A 10, and the quantity J under specification 12, through
19 according to the value of m.

The following program is another example of forming FORMAT statements internally:

PROGRAM !GEN (OUTPUT,TAPE6=0UTPUT)
DO 9 J=l,50
ENCODE (10,7,FMT)J

7 FORMAT (2H(I,I2,1H))
9 WRITE (6,FMT)J

STOP
END

In memory, FMT is first (I I) then (l 2), then (I 3), etc.

DECODE

7

DECODE (c,fn,v) iolist

c, f n, and v are the same as for ENCODE.

iolist is the list to receive variables from the location specified by v. iolist conforms to the
syntax of an input/output list.

60305600 G 1-9-25

5 7

2
100

90
3

8
300

PROGRAM ADO <INPUT,OUTPUTtTAPESzlNPUTtTAPE6•0UTPUT>
DIMENSION CARD (8), INK (77)
READ (5,100) KEYltCARD
FORMAT <Ilt7AlOtA9>
IF <EOF<S>> 80,90
IF <KEYl-2> 3t8t3.
CALL ERRORl
GO TO 2
WRITE <6t300) CARD
FORMAT <1Hlt7Al0tA7///)
DECODE ·<77tl7tCARD> INK

17 FORMAT (771 lJ
ITOT = 0
DO 4· I = l t 77"

4 ITOT = ITOT + INKCI>

200
80

ISAVE·= ITOT
WRITE (6t200> !SAVE
FORMAT. (19Xt*TOTAL OF 77 SCORES ON CARD 2 ~,110)
STOP
END
SUBROUTINE ERRORl
WRITE (6t l>

1 FORMAT <SX~*NUMBER IS NOT 2*)
RETURN.
END

(An explanation of this program appears in part II.)

DECODE is a core-to-core transfer of data similar to formatted READ. Display code characters in a variable or
an array, v, are converted under format specifications and stored in the list variables, iolist. DECODE reads from
a string of display code characters in an array or variable in memory; whereas the READ statement reads from
an input device. Both statements convert data according to the format specification, fn. Using DECODE, how­
ever, the same information can be read several times with differenct DECODE and FORMAT statements.

Starting at the named location, v, data is transmitted according to the specified format and stored in the list
variables. If the number of characters per record is not a multiple of 10 (a display code word contains 10 dis­
play code characters) the balance of the word is ignored. However, if the number of characters specified by
the list and the format specification exceeds the number of characters per record, an execution error message
is printed. DECODE processing an illegal BCD character for a given conversion specification produces a FATAL
error. If DECODE is processing an A or R FORMAT specification and encounters a zero character (6 bits
of binary zero), the character is treated as a colon under 64-character set or as a blank under 63-character set.

Example:

c ?16 multiple of I 0

I 1-9-26

DECODE (16,1,GAMMA) X,B,C,D
1 FORMAT (2A8)

60305600 G

beginning of new record\

Record 1 \ Record 2

Word 1 Word 2 I Word 1 Word 2

GAMMA HEADER 121 HEAD 0142 HEADER 122 HEAD 0233

Last 4 characters of the second
word in each record are ignored.

Data transmitted under this DECODE specification would appear in storage as follows:

X=HEADER 1
B=21HEAD
C=HEADER 1
D=22HEAD

The following illustrates one method of packing the partial contents of two words into one. Information is
stored in core as:

LOC(l)SSSSSxxxxx

LOC(6)xxxxxDDDDD

To form SSSSSDDDDD in storage location NAME:

DECODE(10,l,LOC(6))TEMP
1 FORMAT(5X,A5)

ENCODE(l0,2,NAME)LOC{l),TEMP
2 FORMAT(2A5)

The DECODE statement places the last 5 display code characters of LOC(6) into the first 5
characters of TEMP. The ENCODE statement packs the first 5 characters of LOC(I) and TEMP into
NAME.

Using the R specification, the example above could be shortened to:

ENCODE(10,l,NAME)LOC(l},LOC(6)
1 FORMAT(A5,R5)

60305600G 1-9-27

INPUT/OUTPUT LISTS AND FORMAT STATEMENTS 1-10

This chapter covers input/output lists and FORMAT statements. Input/output statements, which include
READ and WRITE, are covered in section 1-9.

INPUT /OUTPUT LISTS

The list portion of an input/output statement specifies the items to be read or written and the order of
transmission. The input/output list can contain any number of elements. List items are read or written
sequentially from left to right.

If no list appears on input, a record is skipped. Only Hollerith information from the FORMAT statement
can be output with a null (empty) output list.

A list consists of a variable name, an array name, an array element name, or an implied DO list. On output
the data list can include Hollerith constants and arithmetic expressions. Such expressions must not reference
a function if such reference would cause any input/output operations (including DEBUG output) to be
executed or would cause the value of any element of the output statement to be changed.

Multiple lists may appear, separated by commas, each of which may be enclosed in parentheses, such as:
(...),(...).

An array name without subscripts in an input/output list specifies the entire array in the order in which it
is stored. The entire array (not just the first word of the array) is read or written.

Subscripts in an input/output list may be any valid subscript (section 1-2).

Examples:

READ 100,A,B,C,D
READ 200,A,B,C(I),D(3,4),E(I,J,7),H
READ 101,J,A(J),I,B(I,J)
READ 202,DELTA
READ 102, DELTA(5*J+2,5*I-3,5*K),C,D(I+7)
READ 3,A,(B,C,D),(X,Y)

An implied DO list is a list followed by a comma and an implied DO specification, all enclosed in
parentheses.

60305600E 1-10-1

A DO-implied specification takes one of the following forms:

The elements i, m1, m2, and m3 have the same meaning as in the DO statement. The range of a DO-implied
specification is that of the DO-implied list. The values of i, m1, m2, and m3 must not be changed within the
range of the DO implied list by a READ statement.

On input or output, the list is scanned and each variable in the list is paired with the field specification
provided by the FORMAT statement. After one item has been input or output, the next format specification
is taken together with the next element of the list, and so on until the end of the list.

Example:

READ (5,20)1,M,N
20 FORMAT (I3,I2,I7)

Input record

Fff45~712l
100 is read into the variable L under the specification 13, 22 is read into M under the specification
I2, and 3456712 is read into N under specification 17.

Reading more data than is in the input stream produces unpredictable values. The EOF fanction described in
section I-8 may be used to test for end-of-file.

I IMPLIED DO IN llO LIST

Input/output of array elements may be accomplished by using an implied DO loop. The list of variables
followed by the DO loop index, is enclosed in parentheses to form a single element of the input/output list

Example:

READ (5,100) (A(I),I=l,3)

has the same effect as the statement

READ (5,100) A(l),A(2),A(3)

The general form for an implied DO loop is:

m.j,k are unsigned integer constants or predefined positive integer variables. If m3 , j3 or k3 is omitted.
a one is used for incrementing.

i 1 .. .in are integer control variables. A control variable should not be used twice in the same implied DO nest,
but array names, array elements, and variables may appear more than once.

1-10-2 60305600 G

The first control variable (ii) defined in the list is incremented first. ii is set equal to mi and the associated list is
transmitted; then ii is incremented by m 3 , until m2 is exceeded. When the first control variable reaches m 2 , it is
reset to m 1 ; the next control variable at the right (i 2) is incremented; and the process is repeated until the last
control variable (in) has been incremented, until k2 is exceeded.

The general form for an array is:

Example:

READ 100,((A(JV,JX),JV=2,20,2),JX=l,30)
READ 200,(BETA(3*JON+7),JON=JONA,JONB,JONC)
READ 300,(((ITMLIST(I,J+l,K- 2),I=l,25),J=2,N),K=IVAR,IVMAX,4)

An implied DO loop can be used to transmit a simple variable more than one time. For example, the list
item (A(K),B,K = 1,5) causes the variable B to be transmitted five times. An input list of the form
K,(A(l),I = l,K) is permitted, and the input value of K is used in the implied DO loop. The index variable
in an implied DO list must be an integer variable.

Examples of simple implied DO loop list items:

READ 400,(A(I),I=l,10)
400 FORMAT (E20.10)

The following DO loop would have the same effect:

DO 5 I=l,10
5 READ 400, A(I)

Example:

CAT,DOG, and RAT will be transmitted IO times each with the following iolist

(CAT , D 0 G , RAT , I= 1 , 10)

Implied DO loops may be nested.

Example:

DIMENSION MATRIX(3,4,7)
READ 100, MATRIX

100 FORMAT (I6)

Equivalent to the following:

DIMENSION MATRIX(3,4,7)
READ 100,(((MATRIX(I,J,K),I=l,3),J=l,4),K=l,7)

60305600 B 1-10-3

The list is similar to the nest of DO loops:

Example:

DO 5 K=l,7
DO 5 J=l,4
DO 5 I=l,3

5 READ 100, MATRIX(I,J,K)

The following list item transmits nine elements into the array E in the order: E(l, 1), E(1,2), E(l ,3),
E(2, I), E(2,2), E(2,3), E(3, I), E(3,2), E(3,3)

READ 100,((E(I,J),J=l,3)I=l,3)

Example:

~EAD lOO,(((((A(I,J,K),B(I,L),C(J,N),I=l,10),J=l,5),
X K=l,8),L=l,15),N=2,7)

Data is transmitted in the following sequence:

A(l,1,1), B(l,l), C(l,2), A(2,l,l), B(2,l), C(l,2) •••
••• A(l0,1,1), B(lO,l), C(l,2), A(l,2,1), B(l,l), C(2,2) •••
••• A(l0,2,1), B(lO,l), C(2,2), ••• A(10,5,l), B(lO,l), C(5,2) •••
••• A(l0,5,8), B(lO,l), C(5,2), ••• A(10,5,8), B(l0,15), C(5,2) •••

Data can be read from or written into part of an array by using the implied DO loop.

Examples:

READ (5,100) (MATRIX(I),I=l,10)
100 FORMAT (F7.2)

Data (consisting of one constant per record) is read into the first IO elements of the array MATRIX.
The following statements would have the same effect:

DO 40 I = 1,10
40 READ (5,100) MATRIX(I)

100 FORMAT (F7.2)

In this example, numbers are read from unit 5, one from each record,into the elements MATRIX(l)
through MATRIX(IO) of the array MATRIX. The READ statement is encountered each time the DO
loop is executed; and a new record is read for each element of the array. Each execution of a READ
statement reads at least one record regardless of the FORMAT statement.

1-10-4 60305600 F

READ (5,100) (MATRIX(I),I=l,10)
100 FORMAT (F7.2)

In the above statements, the implied DO statement is part of the READ statement; therefore, the
FORMAT statement specifies the format of the data input and determines when a new card will be
read.

If statement 100 FORMAT (F7.2) had been 100 FORMAT (4F20.10), only three cards would be
read.

To read data into an entire array, it is necessary only to name the array in a list without any subscripts.

Example:

DIMENSION B (10,15)
READ 13,B

is equivalent to

READ 13, ((B (I , J) , I= 1 , 10) , J = 1 , 15)

The entire array B will be transmitted in both cases.

FORMAT STATEMENT

Input and output can be formatted or unformatted. Formatted information consists of strings of characters
acceptable to the FORTRAN processor. Unformatted information consists of strings of binary word values
in the form in which they normally appear in storage. A FORMAT statement is required to transmit
formatted information.

(
sn

Example:

5 7

~11FORMAT

Statement label which must appear

Set of one or more field specifications separated by commas and/or slashes and
optionally grouped by parentheses

READ (5,100) INK,NAME,AREA
100 FORMAT (10X,I4,I2,F7.2)

FORMAT is a non-executable statement which specifies the format of data to be moved between input/output
device and main memory. It is used in conjunction with read and write statements, and it may appear anywhere in
the program.

60305600 B I-10-5

The FORMAT specification is enclosed in parentheses. Blanks are not significant except in Hollerith field
specifications.

Generally, each item in an input/output list is associated with a corresponding field specification in a FORMAT
statement. The FORMAT statement specifies the external format of the data, and the type of conversion to
be used, and defines the length of the FORTRAN record or records. COMPLEX variables always correspond
to two field specifications. DOUBLE variables correspond to one floating point field specification (D, E, F, G)
or two of any other kind. The D field specification will correspond to exactly one list item or half of a
COMPLEX item.

The type of conversion should correspond to the type of the variable in the input/output list. The
FORMAT statement specifies ·the type of conversion for the input data, with no regard to the type of the
variable which receives the value when reading is complete.

For example:

INTEGER N
READ (5,100) N

100 FORMAT (Fl0.2)

A floating point number is assigned to the variable N which could cause unpredictable results if N is
referenced later as an integer.

DATA CONVERSION

The following types of data conversions are available:

1-10-6

srEw.d

srEw.dEe

srEw.dDe

srFw.d

srGw.d

srDw.d

rlw

rlw.z

rLw

rAw

rRw

row

rOw.z

rZw

srVw.d

Single precision floating point with exponent

With explicitly specified exponent length

With explicitly specified exponent length

Single precision floating point without exponent

Single precision floating point with or without exponent

Double precision floating point with exponent

Decimal integer conversion

With minimum number of digits specified

Logical conversion

Character conversion

Character conversion

Octal integer conversion

With minimum number of digits specified

Hexadecimal conversion

Variable type conversion

60305600 E

E, F, G, D, I, L, A, R, 0, and Z are the codes which indicate the type of conversion.

w

d

e

z

Non-zero, unsigned integer constant specifying the field width in number of character pos­
itions in the external record. 111is width includes any leading blanks, + or - signs, decimal
point, and exponent.

Unsigned integer constant specifying the number of digits to the right of the decimal point
within the field. On output all numbers are rounded.

Non-zero, unsigned integer constant specifying the number of digits in the exponent.

Non-zero, unsigned integer constant less than 2 17-1 specifying the number of times the con­
version code is to be repeated.

Optional scale factor.

Unsigned integer constant specifying the minimum number of digits to be output.

The field width w must be specified for all conversion codes. If d is not specified for w.d, it is
assumed to be zero. w must be;=::: d.

FIELD SEPARATORS

Field separators are used to separate specifications and groups of specifications. The format field separators
are the slash (/) and the comma. The slash is also used to specify demarcation of formatted records.

CONVERSION SPECIFICATION

Leading blanks are not significant in numeric input conversions; other blanks are treated as zeros. Plus
signs can be omitted. An all-blank field is considered to be minus zero, except for logical input, where an
all-blank field is considered to be FALSE. · When an all-blank field is read with a Hollerith input specification,
each blank character is translated into a display code 55 octal.

For the E. F. G, and D input conversions, a decimal point in the input field overrides the decimal point
specification of the field descriptor.

The output field is right-justified for all output conversions. If the number of characters produced by the
conversion is less than the field width, leading blanks are inserted in the output field. The number of
characters produced by an output conversion must not be greater than the field width. If the field width is
exceeded, asterisks are inserted throughout the field.

Complex data items are converted on input/output as two independent floating point quantities. The
format specification uses two conversion elements.

Example:

COMPLEX A,B,C,D
PRINT 10,A

10 FORMAT (F7.2,E8.2)
READ 11,B,C,D

11 FORMAT {2El0.3,2{F8.3,F4.l))

60305600 G 1-10-7

Data of differing types may be read by the same FORMAT statement. For example:

10 FORMAT (I5,F15.2)

specifies two numbers, the first of type integer, the second of type real.

READ (5,15) NO,NONE,INK,A,B,R
15 FORMAT (3I5,2F7.2,A4)

reads 3 integer variables

reads 2 real variables

reads I character variable

lw and lw.z INPUT

The I conversion is used to input decimal integer constants.

lw lw.z

w is a decimal integer constant designating the total number of characters in the field including signs and
blanks. z is ignored on input.

The plus sign may be omitted for positive integers. When a sign appears, it must precede the first digit in
the field. Blanks are interpreted as zeros. An all blank field is considered to be minus zero. Decimal points
are not permitted. The value is stored in the specified variable. Any character other than a decimal digit.
blank, or the leading plus or minus sign in an integer field on input will terminate execution.

Example:

READ 10,I,J,K,L,M,N
10 FORMAT (I3,I7,I2,I3,I2,I4)

Input Card:

lb4

4

lw and lw.z OUTPUT

In storage:

I contains 139
J contains -1500
K con ta ins I 8

The I specification is used to output decimal integer values.

lw lw.z

L contains 7
M contains -0
N contains I 04

w is a decimal integer constant designating the total number of characters in the field including signs and
blanks. If the integer is positive the plus sign is suppressed. Numbers in the range of -259 + 1 to 259_1
(259_1=576 460 752 303 423 487) are output correctly.

z is a decimal integer constant designating the minimum number of digits output. Leading zeros are generated
when the output value requires less than z digits. If z=O, a zero value will produce all blanks. If z=w, no blanks
will occur in the field when the value is positive, and the field will be too short for any negative value. Not
specifying z produces the same results as z= 1.

1-10-8 60305600 F

The specification Iw or Iw.z outputs a number in the following format:

ba ... a

b Minus sign if the number is negative, or blank if the number is positive

a ... a May be a maximum of 18 digits

The output quantity is right justified with blanks on the left.

If the field is too short, all asterisks occupy the field.

Example:

PRINT 10,I,J,K

10 FORMAT (19, !10, I5.3)

Result:

Example:

WRITE (6,lOO)N,M,I

100 FORMAT (I5,I6,I9)

Result:

I contains -3 762
J contains + 4762937
K contains + 13

8 I 0
I

l st blank taken as
printer control character

N contains + 20
M contains -731450
I contains + 205

bb201** ** **jbbbbbb205j
~~ '-v--'

l st blank taken
as printer control
character

4 6 9

~pecificat:on too
small;* indicates field
is too short

Ew.d, Ew.dEe and Ew.dDe OUTPUT

5

E specifies conversion between an internal real value and an external number written with exponent.

Ew.d Ew.dEe Ew.dDe

w is an unsigned integer designating the total number of characters in the field~ w must be wide enough to
contain digits,. plus or minus signs, decimal point, E, the exponent, and blanks. Generally, w ~ d + 6
or w ~ d + e + 4 for negative numbers and w ~ d + 5 or w ~ d + e + 3 for positive numbers. Positive
numbers need not reserve a space for the sign of the number. If the field is not wide enough to contain the
output value, asterisks are inserted throughout the field. If the field is longer than the output value, the quan­
tity is right justified with blanks on the left. If the value being converted is indefinite, an I is printed in the
field; if it is out of range, an R is printed.

60305600 D 1-10-9

d specifies the number of digits to the right of the decimal within the field.

e specifies the number of digits in the exponent.

The Ew.d specification produces output in the following formats:

b.a ... aE ± ee For values where the magnitude of the exponent is less than one hundred

b.a ... a ± eee For values where the magnitude of the exponent exceeds one hundred

b is a minus sign if the number is negative, and a blank if the number is positive

a ... a is the most significant digits of the value correctly rounded

When the specification Ew.dEe or Ew.dDe is used, the exponent is denoted by E or D and the number of
digits used for the exponent field not counting the letter and sign is determined by e. If e is specified too
small for the value being output, the entire field width as specified by w will be filled with asterisks.

Examples:

PRINT 10 ,A A contains -67.32 or + 67.32
10 FORMAT (El0.3)

Result: -.673E+02 Ofb.673E+02

PRINT 10 ,A
10 FORMAT (E13.3)

Result: bbb-.673E+02 Ofbbbb.673E+02

If an integer variable is output under the Ew.d specification, results are unpredictable since the internal format
of real and integer values differ. An integer value does not have an exponent and wilJ be printed, therefore, as
a very small value or 0.0.

1-10-10 60305600 D

Ew.d, Ew.dEe and Ew.dDe INPUT

E specifies conversion between an external number written with an exponent and an internal real value.

Ew.d Ew.dEe Ew.dDe

w is an unsigned integer designating the total number of characters in the field, including plus or minus
signs, digits, decimal point, E and exponent. If an external decimal point is not provided, d acts as a
negative power-of- I 0 scaling factor. The internal representation of the input quantity is:

(integer subfield) x 10-u x 10 (exponent subfield)

For example, if the specification is E 10.8, the input quantity 3267E + 05 is converted and stored as:
3267 X 10-R X 105 = 3.267.

If an external decimal point is provided, it overrides d. If d does not appear it is assumed to be zero. e, if
specified, has no effect on input.

In the input data, leading blanks are not significant; other blanks are interpreted as zeros.

An input field consisting entirely of blanks is interpreted as minus zero.

The following diagram illustrates the structure of the input field:

integer
subfield

input field

fraction exponent
subfield

The integer subfield begins with a + or - sign, a digit, or a blank; and it may contain a string of digits. The
integer field is terminated by a decimal point, E, +, - or the end of the input field.

The fraction subfield begins with a decimal point and terminates with an E, +, - or the end of the input
field. It may contain a string of digits.

The exponent subfield may begin with E, + or -. When it begins with E, the + is optional between E and
the string of digits in the subfield.

For example, the following are valid equivalent forms for the exponent 3:

•

The range, in absolute value, of permissible values is 3.13152E-294 to 1.26501E322 approximately. Smaller
numbers will be treated· as zero; larger numbers will cause a fatal error message.

60305600 D 1-10-11

Valid subfield combinations:

+ 1.632 7E-04 Integer-fraction-exponent

-32.7216 integer-fraction

+ 328 + 5 integer-exponent

.629E-l fraction-exponent

+ 136 integer only

136 integer only

.07628431. fraction only

E-06 (interpreted as zero) exponent only

If the field length specified by w in Ew.d is not the same as the length of the field containing the input
number, incorrect numbers may be read, converted, and stored. The following example illustrates a
situation where numbers are read incorrectly, converted and stored; yet there is no immediate indication
that an error has occurred:

READ 20,A,B,C
20 FORMAT (E9.3,E7.2,El0.3)

On the card, input quantities are in three adjacent fields, columns 1-24:
I

~7E-01f2.36f5.323!!§1

9 5 10

9 7 10

1+6.47E-01 I I
+6.47E-01E2.3s+5f

+6.47E-Ol-2.36+5~321E+02bbl

First, + 647E-O I is read, converted and placed in location A. The second specification E7.2 exceeds
the width of the second field by two characters. The number -2.36 + 5 is read instead of -2.36. The
specification error (£7.2 instead of £5.2) caused the two extra characters to be read. The number
read (-2.36 + 5) is a legitimate input number. Since the second specification incorrectly took two
digits from the third number, the specification for the third number is now incorrect. The number
.321E+02bb is read. Trailing blanks are treated as zeros; therefore the number .321£+0200 is read
converted and placed in location C. Here again, this is a legitimate input number which is converted
and stored, even though it is not the number desired.

I-10-12 60305600 A

Exam pies of Ew .d input specifications:

Input Field Specification Converted Value Remarks

+143.26E-03 El 1.2 .14326 All subfields present

-12.437629E+1 E13.6 -124.37629 All subfields present

327.625 E7.3 327.625 No exponent subfield

4.376 E5 4.376 No d in specification

-.0003627+5 El 1.7 -36.27 Integer subfield left of decimal
contains only a minus sign and a
plus sign appears instead of E in
input field

-.0003627E5 El 1.7 -36.27 Integer subfield left of decimal
contains minus sign only

blanks Ew.d -0. All subfields empty

1E1 E3.0 10. No fraction subfield; input num-
ber converted as 1 .x 10

E+06 E10.6 0. No integer or fraction subfield;
zero stored regardless of expo-
nent field contents

1.bEb1 E6.3 10. Blanks are interpreted as zeros

1.0E13 E6.3 10000000000000.

Fw.d OUTPUT

The F specification outputs a real number without a decimal exponent.

Fw.d

w is an unsigned integer which designates the total number of characters in the field including the
sign (if negative) and decimal point. w must be ~ d + 2.

d specifies the number of places to the right of the decimal point. When d is zero, only the digits to the
left of the decimal and the decimal point are printed.

The plus sign is suppressed for positive numbers. If the field is too short, all asterisks appear in the output field.
If the field is longer than required, the number is right justified with blanks on the left. If the value being
converted is indefinite, an I is printed in the field; if it is out of range, an R is printed.

60305600 F I-10-13

The specification Fw.d outputs a number in the following format:

l,_ ___ decimal point

b ... a.a ... a

b Minus sign if the number is negative, or blank if the number is positive.

Examples:

Value of A FORMAT Statement PRINT Statement Printed Result

+32.694 10 FORMAT (1H ,F6.3) PRINT 10,A 32.694

+32.694 11 FORMAT (1H ,F10.3) PRINT11,A bbbb32.694

-32.694 12 FORMAT. (1H ,F6.3) PRINT 12,A ******

.32694 13 FORMAT (1H ,F4.3,F6.3) PRINT 13,A,A .327bb.327

The specification I H is the carriage control character.

Fw.d INPUT

On input F specification is treated identically to the E specification.

Examples of the F format specification:

Input Field Specification Converted Value Remarks

367.2593 F8.4 367.2593 Integer and fraction field

-4.7366 F7 -4.7366 Nod in specification

.62543 F6.5 .62543 No integer subfield

.62543 F6.2 .62543 Decimal point overrides d of speci-
fication

+144.15E-03 F11.2 .14415 Exponents are allowed in F input,
and may have P scaling

5bbbb F5.2 500.00 No fraction subfield; input number
converted as 50000x 10"2

bbbbb F5.2 -0.00 Blanks in input field interpreted as
-0

1-10-14 60'305600 D

Gw.d INPUT

Input under control of G specification is the same as for the E specification. The rules which apply to the E
specification apply to the G specification.

Gw.d

w Unsigned integer whifh designates ,the total number of characters in the fieldincluding
E, digits, sign, and decimal point

d Number of places to the right of the decimal point

Example:

READ (5,11) A,B,C
11 FORMAT (G13.6,2G12.4)

Gw.d OUTPUT

Output under control of the G specification is dependent on the size of the floating point number being
converted. The number is output under the F conversion unless the magnitude of the data exceeds the range
which permits effective use of the F. In this case, it is output under E conversion with an exponent.

Gw.d

w Unsigned integer which designates the total number of characters in the field including
digits, signs and decimal point, the exponent E, and any leading blanks.

d Number of significant digits output.

If a number is output under the G specification without an exponent, four spaces are inserted to the right of
the field (these spaces are reserved for the exponent field E ± 00). Therefore, for output under G conversion
w must be greater than or equal to d + 6. The six extra spaces are required for sign and decimal point plus
four spaces for the exponent field.

Example:

PRINT 200, YES
200 FORMAT (Gl0.3)

Output: b77 .1 bbbb

YES contains 77.132

b denotes a blank

If the decimal point is not within the first d significant digits of the number, the exponential form is used
(G is treated as if it were E).

60305600 A 1-10-15

Example:

PRiNT 100, EXIT
100 FORMAT (Gl0.3)

Output: .121E+07

Example:

READ (5,50) SAMPLE

WRITE (6,20) SAMPLE
20 FORMAT (1X,Gl7.8)

Data read by
READ statement

.1415926535bE-10

.8979323846

2643383279.

-693.9937510

Dw.d OUTPUT

Dw.d

EXIT contains 1214635. l

Data Output Format Option

.14159265E-10 E conversion

.89793238 F conversion

.26433833E+10 E conversion

-693.99375 F conversion

Type D conversion is used to output double precision variables. D conversion corresponds to E conversion
except that D replaces E at the beginning of the exponent subfield. If the value being converted is
indefinite, an I is printed in the field; if it is out of range, an R is printed.

1-10-16 60305600 F

Examples of type D output:

DOUBLE A,B,C
A 111111.11111
B = 222222.22222
C = A + B
PRINT 10,A,B,C

10 FORMAT (3D23.ll)

.11111111111D+06 .22222222222D+06 .33333333333D+06

The specification Dw.d produces output in the following format:

~ decimal point

b.a ... a±eee

b.a ... aD±ee

-308 s eee s 337

0 s ee :5 99

b Minus sign if the number is negative, or blank if the number is positive

a ... a Most significant digits

ee Digits in the exponent

Dw.d INPUT

D conversion corresponds to E conversion except that D replaces E at the beginning of the exponent
subfield.

The following diagram illustrates the structure of the input field:

Ow INPUT

integer
subfield

input field

fraction exponent
subfield

Octal values are converted under the 0 specification.

Ow

w is an unsigned integer designating the total number of characters in the field. The input field may contain
a maximum of 20 octal digits. Blanks are allowed and a plus or minus sign may precede the first octal digit.
Blanks are interpreted as zeros and an all blank field is interpreted as minus zero. A decimal point is not
allowed.

The list item corresponding to the Ow specification should be integer.

60305600 c I-10-17

Example:

INTEGER P,Q,R
READ 10,P,Q,R

10 FORMAT (010,012,02)

Input Card:

Input storage (octal representation):

p 00000000003737373737
Q 00000000666066440444
R 77777777777777777777

Ow OUTPUT

The 0 specification is used to output the internal representation in octal.

Ow Ow.d

w is an unsigned integer designating the total number of characters in the field. If w is less than 20, the
rightmost digits are output. For example, if the contents of location P were output with .the following
statement the digit 3737 would be output.

WRITE (6,1) P
100 FORMAT (lX,04)

location P 00000000003737373737

If w is greater than 20, the 20 octal digits (20 octal digits = a 60- bit word) are right justified with blanks
on the left.

For example, if the contents of location Pare output with the following statement

WRITE (6,200) P
200 FORMAT {lX,022)

Output would appear as follows:

bb00000000003737373737 b = blank

A negative number is output in one's complement internal form.

If d is specifi~d, the number is printed with leading zero suppression and with a minus sign for negative
numbers. At least d digits will be printed. If the number cannot be output in w octal digits, all asterisks
will fill the field.

1-10-18 60305600 D

Example:

I = -11

WRITE (6,200) I

Output would appear as follows:

bb77777777777777777764

The specification Ow produces a string of up to 20 octal digits. Two octal specifications must be used for variables
whose type is complex or double precision.

Zw INPUT and OUTPUT

Hexadecimal values are converted under the Z specification.

Zw

w is an unsigned integer designating the total number of characters in the field. The input field may contain
digits and the letters A through F. A maximum of 15 hexadecimal digits is allowed, blanks and a plus or
minus sign may precede the first hexadecimal digit. On output if w is greater than 15, leading blanks will
occur.

Aw INPUT

The A specification is used to input character data

Aw

w is an unsigned integer designating the total number of characters in the field.

Character information is stored as 6-bit display code characters, 10 characters per 60-bit word. For example, the
digit 4 when read under A specification is stored as a display code 3 7. If w is less than 10, the input quantity is
stored left justified in the word; the remainder of the word is filled with blanks.

Example:

READ (5,100) A
100 FORMAT (A7)

Input record:

(EXAMPLE

When EXAMPLE is read it is stored left justified in the l 0 character word

1234567890
@WMfPliJE I I I I

If w is greater than I 0, the rightmost I 0 characters are stored and remaining characters are ignored.

Example:

READ (5,200)B
200 FORMAT (A13)

603056000 1-10-19

Input record:

1 13

(SPECIFICATION

In storage:

12345678910

I clil]jrlCWI1rl@I

READ (5,10) Q,P,R
10 FORMAT (A10,Al0,A5)

Input record:

In storage:

12345678910

Q111Hlr@ ltj~ JAINI

Pll$IAIMIE1!JajlII

RI ®N§WI 11111

Aw OUTPUT

The A specification is used to output alphanumeric characters.

Aw

w is an unsigned integer designating the total number of characters in the field. If w is less than IO,
the leftmost characters in the word are printed. For example, if the contents of location A in the Aw
input example are output with the following statements:

WRITE (6,300)A
300 FORMAT (1X,A4)

In storage:

A l#f#JM 111

Characters EXAM are output

1-10-20 60305600 A

If w is greater than 10, the characters are output right-justified in the field, with blanks on the left. For I
example, if A in the previous example is output with the following statements:

WRITE (6,400)A
400 FORMAT (1X,Al2)

Output is as follows:

bbEXAMPLEbbb

Rw INPUT

b = blank

w is an unsigned integer designating the total number of characters in the field. The R specification is the
same as the A specification unless w is less than 10. If w is less than 10, the input characters are stored
right-justified, with binary zero fill on the left.

Example:

READ (5,600) HOO,RAY
600 FORMAT (R10,R5)

Input card:

~TS OFf§l
10 5

In storage:

HO 0 lijajsflJILfrj~b@fl

RAY ltj .. · IO@bfijE@@I

Rw OUTPUT

Rw

b = blank

w is an unsigned integer designating the total number of characters in the field.

This specification is the same as the A specification unless w is less than 10. If w is less than 10, the right­
most characters are output. For example, if RAY from the previous example is output with the following
statements:

WRITE (6,700) RAY
700 FORMAT (1X,R3)

60305600 G

Characters EST are output.

1-J0-21

lw INPUT

The L specification is used to input logical variables.

Lw

w is an unsigned integer designating the total number of characters in the field.

If the first non-blank character in the field is T, the logical value .TRUE. is stored in the corresponding list
item, which should be of type logical. If the first non-blank character is F, the value .FALSE. is stored. If the
first non-blank character is not Tor F, a diagnostic is printed. An all blank field has the value .FALSE.

lw OUTPUT

Lw

w is an unsigned integer designating the total number of characters in the field.

Variables output under the L specification should be of type logical. A value of .TRUE. or .FALSE. in
storage is output as a right justified Tor F with blanks on the left.

Example:

LOGICAL I,J,K
PRINT 5,I,J,K

5 FORMAT (3L3)

Output:

bTbbFbbT

SCALE FACTORS

I contains -0
J contains 0
K con ta ins -0

The scale factor P is used to change the position of a decimal point of a real number when it is input or
output. Scale factors may precede D, E, F and G format specifications.

nPDw.d nPDw.dEe nPDw.dDe

nPEw.d nPEw.dEe nPEw.dDe

nPFw.d

nPGw.d.

nP

n is the scale factor which can be any integer constant. w is an unsigned integer constant designating the
total width of the field. d determines the number of digits to the right of the decimal point.

1-10-22 60305600 G

A scale factor of zero is established when each format control statement is first referenced; it holds for all
F, E, G, and D field descriptors until another scale factor is encountered.

Once a scale factor is specified, it holds for all D, E, F, and G specifications in that FORMAT statement
until another scale factor is encountered. To nullify this effect for subsequent D, E, F, and G specifications,
a zero scale factor, OP must precede a specification.

Example:

15 FORMAT(2PE14.3,Fl0.2,Gl6.2,0P4Fl3.2)

The 2P scale factor applies to the E 14.3 format specification and also to the F 10.2 and G 16.2 format
specification. The OP scale factor restores normal scaling (10° = I) for the subsequent specification
4Fl3.2.

A scaling factor may appear independently of a D, E, F or G specification. It holds for all subsequent D, E,
For G specifications within the same FORMAT statement.until changed by another scaling factor.

Example:

FORMAT(3P,5X,El2.6,Fl0.3,0PD18.7,-lP,F5.2)

E 12.6 and F 10.3 specifications are scaled by 103
, the D 18. 7 specification is not scaled, and the F5.2

specification is scaled by l 0-1
•

The specification (3P,319,FI0.2) is the same as the specification (319,3PF10.2).

Fw.d SCALING

INPUT

The number in the input field is divided by 10n and stored. For example, if the input quantity 314.1592 is
read under the specification 2PF8.4, the internal number is 314.1592 X 10-2 = 3.141592. However, if an
exponent is read the scale factor is ignored.

OUTPUT

The number in the output field is the internal number multiplied by I 0". In the output representation, the
decimal point is fixed; the number moves to the left or right, depending on whether the scale factor is plus
or minus. For example, the internal number-3.1415926536 may be represented on output under scaled F
specifications as follows:

••••••••••••••••••••••••••••••
<-1PF13. G> -.314159
< F13. 6> -3.141593
(1PF13. 6) -31.415927
(JPF13. 6) -3141.592654
••••••••••••••••••••••••••••••

603056000 1-10-23

I

Ew.d AND Dw.d SCALING

INPUT

Ew.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor nP is to shift the output coefficient left n places and reduce the exponent by n.
In addition, the scale factor controls the decimal normalization between the coefficient and the exponent such
that: if n ~ 0, there will be exactly -n leading zeros and d + n significant digits after the decimal point; if
n > 0, there will be exactly n significant digits to the left of the decimal point and d - n + I significant digits
to the right of the decimal point. For example, the number -3.1415926536 is represented on output under the
indicated Ew .d scaling as follows:

••••••••••••••••••••••••••••••
<-3PE20. 4>
<-1PE20. 4>
< E20. 4)
(1PE20. 4)

< 3PE2U. 4>

-.0003E+iJ4
-.OJ1t..E+02
-.3142£+(1

-3.1416£+00
-314.16£-tZ

••••••••••••••••••••••••••••••

Gw.d SCALING

INPUT

Gw.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor is nullified unless the magnitude of the number to be output is outside the range
that permits effective use of F conversion. (namely, unless the number N < 10d-l or N ~ 10d). In these cases,
the scale factor has the same effect as described above for Ew .d and Dw .d scaling. For example, the numbers
-3.1415926536 and -.00031415926536 are represented on output under the indicated Gw.d scaling as follows:

•••••••••••••••••••••••••••••• • •••••••••••••••••••••••••••••
<-3PG20. a> -3.1t,153 (-3PG2f.!. fi) - • ~J ~ !J 3 1 4 E + c, J
<-1PG20. n> -J.ti.1sg <-1PG20. 6) -.031416[-02
(G20. 6) -3.1~159 (G20. a> -.31415~f-03
(1PG20. 6) -3.1lf159 (1PG2G. 5) -3.1'+1.593£-0l+
(JPG20 .. fJ) -3.1Lt159 (3PG2C. E;) -:Ht+.15J.3f-::.' 6
(5PG20. 6) -3.1415'3 (5PG20. 6) -3141S. Lff-Oi3
•••••••••••••••••••••••••••••• (7PG20. o> -3.14159

• •••••••••••••••••••••••••••••
X SPECIFICATION

The X specification is used to skip characters in an input line or output line. On output, any character
positions not previousiy filled during this record generation will be set to blank. It is not associated with a
variable in the input/output list.

I-10-24 60305600 G

nX Number of characters, n, to be skipped. An optional plus sign may precede n.

OX is ignored, X is interpreted as IX. The comma following X in the specification list is optional.

-nX Back up n characters, will not back up beyond the first column.

Example:

WRITE {6,100) A,B,C
100 FORMAT (F9.4,4X,F7.5,4X,I3)

Output record:

-342.743bbbbl.53190bbbbb22

on input n columns are skipped.

Example:

READ 11 , R, S , T
11 FORMAT (F5.2, 3X, F5.2, 6X, F5.2)

or

11 FORMAT (F5.2, 3XF5.2, 6XF5.2)

Input card:

14.62bb$13.78bCOSTbl5.97

In storage:

R 14.62
s 13.78
T 15.97

Example:

INTEGER A
PRINT 10,A,B,C

10 FORMAT (I2,6X,F6.2,6X,El2.5)

A

B

c

-342.743
1.53190
22

b is a blank

A contains 7
B contains 13.6
C contains 1462.37

Result: 7bbbbbbbl3.60bbbbbbb.146237E+04

The H specification is used to output strings of alphanumeric characters and like X, H is not associated with
a variable in the input/output list.

60305600 F I-10-25

nH

n Number of characters in the string including blanks.

H Denotes a Hollerith field. The comma following the H specification is optional.

For example, the statement:

WRITE (6,1)
1 FORMAT (15HbENDbOFbPROGRAM)

can be used to output the following on the output listing.

END OF PROGRAM

Examples:

Source program:

PRINT 20
20 FORMAT (28HbBLANKSbCOUNTbINbANbHbFIELD.)

produces output record:

BLANKSbCOUNTbINbANbHbFIELD.

Source program:

PRINT 30,A A contains 1.5
30 FORMAT {6HbLMAX=,F5.2)

produces output record:

LMAX=bl.50

nH INPUT

The H specification can be used to read Hollerith characters into an existing H field within the FORMAT
statement.

Example:

Source program:

READ 10
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb)

1-10-26 60305600 D

Input card:

rbTHIS IS A VARIABLE HEADING

After READ, the FORMAT statement labeled I 0 contains the alphanumeric information read from the
input card; a subsequent reference to statement I 0 in an output statement acts as follows:

... ...

PRINT 10

produces the print line:

.

THIS IS A VARIABLE HEADING

¥- ••• ¥-

Character strings delimited by a pair of * or =f=. symbols can be used as alternate forms of the H specification
for output. The paired symbols delineate the Hollerith field. This specification need not be separated from
other specifications by commas. If the Hollerith field is empty, or invalidly delimited a fatal execution error
.occurs, and an error message is printed.

An asterisk cannot be output using the specification * *. For example,

PRINT l

l FORMAT (*ABC*DE*)

The second * in the FORMAT statement causes the specification to be interpreted as *ABC* and
DE*, which is not valid.

The H specification or ¥- ... ¥- could be used to output this correctly:

PRINT l

l FORMAT (7H ABC*DE)

Output appears as follows: ABC*DE

PRINT 2

2 FORMAT (¥- ABC*DE::P.)

Output appears as follows: ABC* DE

¥- can be represented within¥- ... ¥- by two consecutive¥- symbols.

Example:

PRINT 3
3 FORMAT (¥- DON::P.¥-T::F-)

60305600 D 1-10-27

Output examples:

PRINT 10
10 FORMAT (~ SUBTOTALS*)

produces the following output:

SUBTOTALS

WRITE (6,20)
20 FORMAT (#bRESULT OF CALCULATIONS IS AS FOLLOWS#)

produces the following output:

RESULT OF CALCULATIONS IS AS FOLLOWS

PRINT l, #SQRT#, SQRT (4.)
1 FORMAT (AlO,El0.2)

produces the following output:

SQRT 2.0

Note: # is output as ' on some printers.

The * ... *or =l= ••• =I= specification can be used to read alphanumeric data; however, the effect differs depending
on whether * ... * or =l= ... =I= occurs in an actual FORMAT statement or in a format specification contained in a
variable or array. When the READ statement contains a constant specifying a FORMAT statement, alphanu­
meric characters are read into the * ... * or =/= ••• =/= specification. When a name occurs in the READ statement
to specify the format information (variable format), characters in the input stream are skipped and no change
is made in the * ... * or =l= ... =I= specification.

In FORMAT statements, the * ... * or =l= ••• =I= specification is changed to nH ... at compile time. This conversion
does not occur with variable format specifications.

1-10-28 60305600 D

FORTRAN RECORD SLASH

The slash indicates the end of a FORTRAN record anywhere in the FORMAT specification. Where a slash is
used to separate field specification elements, a comma is allowed but not required. Consecutive slashes can be
used and need not be separated from other elements by commas. When a slash is the last format specification I
to be processed, it causes a blank record to be written on output or an input record to be skipped. Normally,
the slash indicates the end of a record during output and specifies that further data comes from the next
record during input.

Example:

PRINT 10
10 FORMAT (6X, 7HHEADING///3X, 5HINPUT, 8H OUTPUT)

Printout:

HEADING -------- line 1
___ (blank)-- line 2
___ (blank) __ line 3

INPUT OUTPUT -------- line 4

Each line corresponds to a formatted record. The second and third records are blank and produce

the line spacing illustrated.

Example:

1=5

J=6

K=7

PRINT 1,1,J,K

FORMAT (315/F10.4)

PRINT 2

2 FORMAT(* A BLANK LINE SHOULD PRECEDE THIS LINE*)

Printout:
5 6 7

A BLANK LINE SHOULD PRECEDE THIS LINE

The variable list (I, J, K) is exhausted and processing continues until a variable conversion is encountered
(FI0.4). Since the slash has been processed, it causes a blank line to be printed, and FI0.4 is ignored
because there is nothing to be converted.

60305600 G 1-10-29

Example:

DIMENSION B(3)
READ (5,lOO)IA,B

100 FORMAT (I5/3E7.2)

These statements read two records; the first contains an integer number, and the second contains three real
numbers.

PRINT 11,A,B,C,D
11 FORMAT (2El0.2/2F7.3)

In storage:

A -11.6
B .325
c 46.327
D -14.261

Output:

b-.12E+02bbb.33E+OO
46. 327·-14. 261

PRINT 11,A,B,C,D
11 FORMAT (2El0.2//2F7.3)

Output:

b- .12E+02bbb. 33E+oo---------line I
-----------(blank) -line 2

46.327-14.261------------Iine 3

The second slash causes the blank line.

• 1-10-30 60305600 G

REPEATED FORMAT SPECIFICATION

FORMAT specifications can be repeated by prefixing the control characters D, E, F, G, I, A, R, L, Z, and 0
with a non-zero, unsigned integer constant specifying the number of repetitions required.

100 FORMAT {3I4,2E7.3) is equivalent to:100 FORMAT (I4,I4,I4,E7.3,E7.3)

50 FORMAT (4G12. 6) is equivalent to: 50 FORMAT (G12. 6 'Gl2. 6 'Gl2. 6 'G12. 6)

A group of specifications can be repeated by enclosing the group in parentheses and prefixing it with the
repetition factor.

1 FORMAT (I3,2(E15.3,F6.l,2I4))

is equivalent to the following specification if the number of items in the input/output list does not
exceed the format conversion codes:

1 FORMAT (I3,E15.3,F6.1,I4,I4,El5.3,F6.1,I4,I4)

A maximum of nine levels of parentheses is allowed in addition to the parentheses required by the FORMAT
statement.

If the number of items in the input/output list is fewer than the number of format codes in the FORMAT
statement, excess FORMAT codes are ignored.

If the number of items in the input/output list exceeds the number of format conversion codes when the final
right parenthesis in the FORMAT statement is reached, the line formed internally is output. The FORMAT
control then scans to the left looking for a right parenthesis within the FORMAT statement. If none is found,
the scan stops when it reaches the beginning of the FORMAT specification. If a right parenthesis is found,
however, the scan continues to the left until it reaches the field separator which precedes the left parenthesis
pairing the right parenthesis. Output resumes with the FORMAT control moving right until either the output
list is exhausted or the final right parenthesis of the FORMAT statement is encountered.

A repetition factor can be used to indicate multiple shashes, n(/), where n is an unsigned integer constant
indicating the number of slashes required and n-1 is the number of lines skipped on output.

Example:

PRINT 15, (A(I),I=l,9)
15 FORMAT (8HbRESULTS4(/),(3F8.2))

Format statement 15 is equivalent to:

15 FORMAT (8HbRESULTS//// (3F8.2))

60305600 G 1-10-31

I

I

Printout:

Example:

RESULTS ~~~~~~~~~~~~~~ line I
-------- (blank)- line 2

3.62
-6.33

6.21

--------- (blank)-- line 3
--------- (blank)- line 4

-4.03
7.12

-6.74

-9.78 ---------line 5
3 .49 line 6

-1.18 line 7

READ (5,300)1,J,E,K,F,L,M,G,N,R
300 FORMAT (I3,2(I4,F7.3),I7)

is equivalent to storing data in I with format 13, J with 14, E with F7.3, K with 14, F with F7.3, and L
with 17. A new record is then read; data is stored in M with the format 14, G with F7.3, N with 14,
and R with F7.3.

READ (5,100) NEXT, DAY, KAT, WAY, NAT, RAY, MAT
100 FORMAT (I7,(F12.7,I3))

NEXT is input with format 17, DAY is input with Fl2.7, KAT is input with 13. The FORMAT state­
ment is exhausted (the right parenthesis has been reached), a new card is read, and the statement is
rescanned from the group {Fl2.7,13). WAY is input with the format Fl2.7, NAT with 13, and from
a third card, RAY with Fl2.7, and MAT with 13.

PRINTER CONTROL CHARACTER

The first character of a printer output record is used for carriage control and is not printed. It appears in all
other forms of output as data.

The printer control characters are as follows:

Character Action

Blank Space vertically one line then. print

0 Space vertically two lines then print

1
Eject to the first line of the next
page before printing

+
No advance before printing; allows
overprinting

Any other Refer to the operating system
character reference manual

1-10-32 60305600 G

For output directed to the card punch or any device other than the line printer, control characters are not
required. If carriage control characters are transmitted to the card punch, they are punched in column one.

Carriage control characters are required at the beginning of every record to be printed, including new
records introduced by means of a slash. Carriage control characters can be generated by any means.

Examples:

FORMAT (1HO,F7.3,I2,Gl2.6)

FORMAT (1Hl,I5,*RESULT = *,F8.4)

FORMAT (*l*,I4,2(F7.3))

FORMAT (1X,I4,G16.8)

Example:

PROGRAM CHARCON (OUTPUT>
PRINT 10

10 FORMAT <lHlt
PRINT 20
FORMAT (3(/) >

SXt *HERE WE ARE AT THE TOP OF A NEW PAGE*>

20

50
60

40
70
30

10

oo JO 1 = 2,a
IF (l ·EQ. 4 .oR. I .Ea. 6) 40t50
PRINT 60
FORMAT (21Xt ~
GO TO 30
PRINT 70

x ~ I lH+t 20Xt ~

FORMAT (20Xt ~ XXXXXXXXXX ~ I lH•t l9Xt ~
CONTINUE
PRINT 80
FORMAT <lHOt SXt ~~E61N TIC TAC TOE ~)
STOP
END

60305600 G

========== ~)

1-10-33

Output

HE~~ WE ARE AT THE TOP OF A NEW PAGE

I I
I I

li!llillll
I I

1111111111
I I
I I

BEGIN TIC TAC TOE

Tn SPECl_FICATION

This specification is a column selection control.

Tn

n Unsigned integer. If n = zero, column 1 is assumed.

When Tn is used, control skips columns right or left until column n is reached; then the next format specifi­
cation is processed. Using card input, if n > 80 the column pointer is moved to column n, but a succeeding
specification would read only blanks.

READ 40, A, B, C

40 FORMAT (T1 I F5.2, T11, F6.1, T21, F5.2)

Input:

84. 7 3bbbbb2436.2bbbb89 .14.

A is set to 84.73, B to 2436.2, and C to 89.14.

WRITE (31, 10)

10 FORMAT (T20,*LABELS*)

The first 19 characters of the output record are skipped and the next six characters, LABELS, are
written on output unit number 31 beginning in character position 20.

With T specification, the order of a list need not be the same as the printed page or card input, and the
same information can be read more than once.

When a T specification causes control to pass over character positions on output, positions not previously
filled during this record generation are set to blanks; those already filled are left unchanged.

I 1-10-34 60305600 G

Example:

5 7

FROGRAM TEST <OUTFUT>
FOR~AT (12<1DH0123456789ll
PRINT 1
FRit\T 60

60 FOR~AT <Tso,•coMHENTS•,T&O,•HEAOING4•,T~O,
X •HEAOING3•,T20,~HEAOING2•,T2,•HEAOING1•)

FRINT 10
10 FORMAT (20X•THIS IS T~E ENO OF THIS RUN•TS2• ••• HO~EST•)

FRit\T 1
STOF
ENO

1tl,1671•1t21'1671911Z1,1671tltll,1671911Z1•1671tllZ1'9671tltZS'l671tl111•1t71tltl~l671tllll~llfltlll1'1671tlll1•1171t
M!AOING1 HEAOINGZ HEADING I HEADING~ cc•"ENTS

1HIS IS T~E ENO OP 1HIS AUN eeeHOHEST .

IZ1~56799D121,167191123~56719D1Z3,56789D1Z3,5671911Z3~16719D121'16719111141171tllZ1•5671tll21~••11t11zs'''''''IZl•ll71t

Since the first character in a line output to the printer is used for printer control, T2 is output in the first
print position.

The following example shows that it is possible to destroy a previously formed field inadvertently. The
specification TS destroys part of the Hollerith specification l OH DISASTERS.

1 FORMAT (lOH DISASTERS,T5,3Hl23)
PRINT 1

produces the following output:

DIS123ERS

V SPECIFICATION

When V is encountered in a FORMAT statement, the rightmost 6 bits from the current variable in the input/
output list are interpreted as display code for a character to be used in place of the V as the conversion speci­
fication for the next variable in the input/output list. V can be used as a dummy specification for the follow-
ing conversions: A, D, E, F, G, I, L, 0, P, R, T, X and Z. It cannot be used as the E or D explicitly I
specifying exponent length, as in Ew.dVe.

60305600 G 1-10-35

Example:

PROGRAM V <OUTPUT)
INTEGER AFORMATt RFORMAT
Af ORMAT a lRA
Rf ORHAT a: lRR
NUM = lOH01234567i9
PRINT lOt AFORMATt NUH

10 FORMAT fT8t *FORMAT SPECIFICATION TAKEN FROM VARIABLE AFORHATI NUH
- OUTPUTS AS *t VS /)

PRINT 20• RFORHATt NUH
20 FORMAT CT8t *FORMAT SPECIFICATION TAKEN FROH VARIAiLE RFORMATI NUH

- OUTPUTS AS *• VSJ
STOP
END

Output:

FORMAT SPECIFICATlON TAKEN FROM VARIABLE AFORMATJ NUM OUTPUTS AS 01234

FORMAT SPECIFICATION TAKEN FROM VARIABLE RFORHATJ NUM OUTPUTS AS 56769

EQUALS SIGN

When = is encountered in a FORMAT statement, the current variable in the input/output list supplies a posi·
tive integer value to be used in place of the = in the conversion specification for the next variable in the
input/output list. The = can be used in place of a number anywhere within a FORMAT statement. Such use

I of= precludes compilation syntax checking of the FORMAT statement. V and = can be combined in one

conversion specification.

Example:

PROGRAM EQUALS (OUTPUT>
INTEGER W Cl 0)
DATA W/lt2t3t4t5t6t7t8t9tl0/
NUM = lOH012J456789
DO 10 I :a: ltlO

10 PRINT 20t WCI>• NUM
ZO FORMAT (l30t A•)

STOP
END

1·10·36 60305600 G

Output:

0
01
012
0123
01234
012345
0123456
01234567
012345678
0123456789

A variable must exist in the 1/0 list for each time an = or V is processed in the format statement.

Example:

DIMENSION A(5),B(5)

13 = 3

PRINT 1,13,A,13,B

1 FORMAT(1X,5F10.=)

Two lines of five values each are printed; however, 13 must be repeated in the 1/0 list or the first value
of B is used to replace the =.

Example:

PROGRAM VEQUALS (OUTPUT>
INTEGER FORMAT<2>t W(lO>
DATA FORMAT/lRAt lRR/t W/lt2t3t4t5t&t7t8t9tl0/
NUM : lOH01234567i9
DO 10 I = lt2
DO 10 J = ltlO
K = J
If <I .EQ• 2> K = 11-J

10 PRINT 20t FORMATCl>t W(K)t NUM
20 FORMAT <T20t V•>

STOP
ENO

60305600 G 1-10-37

Output: 0
01
012
0123
01234
012345
0123456
01234567
012345678
0123456789
0123456789
l23t+S67i9
23456789
3456789
456789
56789
6789
789
89
9

EXECUTION TIME FORMAT STATEMENTS

Variable FORMAT statementscan be read in as part of the data at execution time and used by READ,
WRITE, PRIJ\TT, PUNCH, ENCODE, or DECODE statements later in the program. The format is read in
as alphanumeric text under the A specification and stored in an array or a simple variable, or it may be
included in a DATA statement. The format must consist of a list of format specifications enclosed in
parentheses, but without the word FORMAT or the statement label.

For example, a data card could consist of the characters:

((E7 .2 ,G20. 5 ,F7.4,13) .

The name of the array containing the specifications is used in place of the FORMAT statement number in
the associated input/output statement. The array name, which appears with or without subscripts, specifies
the location or the first word of the FORMAT information.

For example, assume the following FORMAT specifications:

(E12.2,F8.2,I7,2E20.3,F9.3,I4)

This information on an input card can be read by the statements of the program such as:

t 1-10-38

DIMENSION IVAR(3)
READ 1, IVAR

1 FORMAT (3Al0)

60305600 G

The elements of the input card are placed in storage as follows:

IVAR(l)
IVAR(2)
IVAR(3)

(E12.2,F8.
2,I7,2E20.
3,F9.3,I4)

A subsequent output statement in the same program can refer to these FORMAT specifications as:

PR I NT IV AR , A , B , I , C , D , E , J

Produces exactly the same result as the program.

PRINT 10, A, B, I, C, D, E, J

10 FORMAT (E12.2,F8.2,I7,2E20.3,F9.3,I4)

60305600 G 1-10-39 I

FORTRAN CONTROL CARD 1-11

The FORTRAN Extended compiler is called from the library and executed by an FTN control card. The FTN
control card calls the compiler, specifies the files to be used for input and output, and indicates the type of
output to be produced. This control card may be in any of the following forms:

F1TN(p1 ,p2 , ... ,pn) comments

! 11

I I

comments

11

I I

, ... , Pn. comments

11

Example:

FTN (A,L,R,GO,S=O)

PARAMETERS

The optional parameters, p 1 '···Pn must be separated by commas and may be in any order within the parentheses.
If no parameters are specified, FTN is followed by a period or right parenthesis. If a parameter list is specified,
it must conform to the syntax for job control statements as defined in the operating system reference manual,
with the added restriction that a comma is the only valid parameter delimiter. Card columns following the right
parenthesis or period can be used for comments; they are ignored by the compiler, but are printed on the day­
file.

Default values are used for omitted parameters. These defaults are set when the system is installed; since instal­
lations can change default values, the user should determine what default values are in effect at the user's
particular installation.

Unrecognizable parameters are ignored. Conflicting options either are resolved or cause compilation to terminate,
depending on the severity of the conflict; this resolution is indicated in a dayfile entry.

The values of the A, B, D, G, I, L, ML, P, S, and X parameters are passed to COMPASS when intermixed
COMP ASS subprograms are present.

In the following description of the FTN control card parameters, lfn indicates a file name consisting of 1 letter
followed by 0-6 letters or digits.

60305600 G 1-11-1

I

I

I

I

A EXIT PARAMETER (Default: A = 0)

B

A

A=O

System searches the control card record for an EXIT card at end of compilation
if fatal errors have been found. If such a card is not present, the job terminates.

System advances to the next control card at end of compilation if fatal errors
have been found.

BINARY OBJECT FILE (Default: B = LGO}

B Generated binary object code is output on file LGO.

B = lfn Generated binary object code is output on file lfn.

B=O No binary object file is produced. Cannot be specified with Go.

The B option conflicts with the Q and E options.

BL BURST ABLE LISTI NG (Default: BL = 0)

c

BL

BL= 0

Generates output listing that is easily separable into components by issuing page
ejects between source code, error summary (if present), cross reference map, and
object code (if requested); and ensures that each program unit listing contains an
even number of pages (page parity) issuing a blank page at the end if necessary.

Generates listings in compact format.

COMPASS ASSEMBLY (Default: C = 0)

c

C=O

Selects the COMPASS assembler to process the symbolic object code generated by
FTN. When the C parameter is specified, FTNMAC is selected for the system
texts for the COMPASS assembly; therefore, if the C option is selected, the
maximum number of system texts that can be specified with the G and S
parameters is six.

Selects the FTN internal assembler (regardless of installation default), which is two
to three times faster than the COMPASS assembler.

I The C option conflicts with the TS, Q, and E options.

I
1-11-2 60305600 G

D DEBUGGING MODE PARAMETER (Default: D = 0)

E

D = lfn

D

D=O

Titls option must be specified if the debug utility described in section 1-13 is to
be used. lfn is the name of the file where the user debug deck resides (see figure
13-4, section 1-13). Binary object code is generated on the file indicated by the
B parameter regardless of compilation errors or the exit parameter A. Interspersed
COMPASS code, if present, is assembled under the COMP ASS D option. Specify­
ing D automatically activates OPT=O and the T option; thus, FTN(D) is equivalent
to FTN(D,OPT=O,T).

Implies D = INPUT

Debug statements are ignored.

OPT=l, or OPT=2, is ignored if D or D=lfn is specified. The D option conflicts with the TS
option.

EDITING PARAMETER (Default: E = 0)

E = lfn

E

E=O

Generated object code is output as COMP ASS line images on the file lfn, which
is rewound at the end of compilation. Each program unit is prefaced with the line
image, *DECK,program, so that the file will be suitably formatted for input to
UPDATE or MODIFY. Binary object code is not produced; and COMPASS is not
called. When the file lfn is assembled subsequently, S=FTNMAC must be specified
on the COMP ASS control card.

Implies E = COMPS

Object file is generated in normal binary code rather than as COMP ASS line images.

The E option conflicts with the B, C, GO, OL, TS, and Q options.

EL ERROR LEVEL (Default: EL = I)

EL= A

EL= I

EL= N

EL= W

EL= F

60305600 G

Lists diagnostics indicating all non-ANSI usages, as well as fatal diagnostics; lists
informative diagnostics if compiling under OPT = 0, 1, or 2; lists note and warning
diagnostics if compiling in TS mode.

Lists informative and fatal diagnostics if compiling under OPT = 0, 1, or 2; lists
note, warning, and fatal diagnostics if compiling in TS mode.

Lists note, warning, and fatal diagnostics if compiling in TS mode; lists fatal diag­
nostics if compiling under OPT = 0, 1, or 2.

Lists warning and fatal diagnostics if compiling in TS mode; lists fatal diagnostics if
compiling under OPT = 0, 1, or 2.

Lists fatal diagnostics.

1-11-3

I

I

I

G GET SYSTEM TEXT FILE (Default: G = 0)

G = lfn

G = lfn/ovl

G

G=O

Loads the first system text overlay from the sequential binary file, lfn.

Searches the sequential binary file, lfn, for a system text overlay with the name
ovl and loads the first such overlay encountered.

Implies G = SYSTEXT

Prevents system text loading from sequential binary file.

A maximum of seven system texts can be specified by any combination of the G, S, and C parameters.

This feature is for COMP ASS subprograms only.

GO AUTOMATIC EXECUTION (LOAD AND GO) (Default: GO = 0)

GO Binary object file is loaded and executed at end of compilation.

GO= 0 Binary object file is not loaded and executed.

I The GO option conflicts with the Q, E, and B = 0 options.

I

L

SOURCE INPUT FILE (Default: I = INPUT)

I = lfn Source code to be compiled appears on file lfn. Compilation ends when an end-of­
section, end-of-partition, or end-of-information is encountered.

Implies I = COMPILE

LIST OUTPUT Fl LE (Default: L = OUTPUT)

L = lfn

L

L=O

Listable output (specified by list control options BL, EL, OL, R, and SL) is to be
written onto file lfn. If list control options are not specified, the listing consists of
the source program, informative and fatal di~gnostics, and a short reference map.

Implies L = OUTPUT

Fatal diagnostics and the statement that caused them are listed on the file OUTPUT.
All other compile-time output, including intermixed COMPASS, is suppressed. List
control options are ignored.

I-11-4 60305600 G

LCM LEVEL 2 AND LEVEL 3 STORAGE ACCESSt (Default: LCM = D)

LCM= D

LCM= I

LCM

Direct mode: selects 17-bit address mode for level 2 § or 3 data. This method
produces more efficient code for accessing data assigned to level 2 or 3. User
LCM or ECS field length must not exceed 131,071 words.

Indirect mode: selects 21-bit address mode for level 2 § or 3 data. This mode
depends heavily upon indirect addressing. LCM = I must be specified if the execu­
tion LCM or ECS field length exceeds 131,071 words.

Implies LCM = D

In TS mode, all LCM addressing is done in 21-bit mode, regardless of the LCM parameter.

ML MODLEVEL

ML= nnn

(Default: ML)

Specifies nnn as the value of the MOD LEVEL micro used by COMP ASS. nnn
consists of 1 to 7 letters or digits.

ML Uses current date in the form yyddd (where yy is the year and ddd is the number I
of day within the year) for the MODLEVEL micro.

OL OBJECT LIST

OL Generated object code is listed on the list output file.

OL = 0 Object code is not listed.

The OL option conflicts with the Q and E options.

OPT OPTIMIZATION PARAMETER (see section III-14)

OPT= 0 Fast compilation (automatically activates T option).

OPT= 1 Standard compilation and execution.

OPT= 2 Fast execution.

OPT Implies OPT = 2

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.
t See LEVEL statement, section 1-6, for further information.

60305600 G

(Default: OL = 0)

I

(Default: OPT = I)

1-11-5

·P PAGINATION

p

P=O

PL PRINT LIMIT

PL= n

(Default: P = 0)

Page numbering of output listing is continuous from subprogram to subprogram,
including intermixed COMPASS output.

Page numbers begin at I for each subprogram.

(Default: PL = 5000)

n is the maximum number of records that can be written at execution-time on the
.file OUTPUT. n must not exceed 999 999 999. If n is suffixed with the letter B,
it is interpreted as an octal number and must not exceed 77 777 777.

The PL parameter is operative only when appearing on an FTN card used to
compile a main program.

The print limit (specified at compilation-time either explicitly or by default) can
be overridden at execution-time by a parameter of the same format appearing on
the LGO or EXECUTE control card; see Execution Time Options, section III-3.

Cl PROGRAM VERIFICATION (Default: Q = 0)

Q

Q=O

Quick mode: compiler performs full syntactic scan of the program, but no object
code is produced. No code addresses are provided if a reference map is requested.
This mode is substantially faster than a normal compilation; but it must not be
selected if the program is to be executed.

Normal compilation.

I The Q option conflicts with the B, C, GO, OL, TS, and E options.

R SYMBOLIC REFERENCE MAP (see section III-I) (Default: R = I)

R=O No map

R =I Short map (symbols, addresses, properties, DO loop map)

R=2 Long map (short map plus references by line number)

R=3 Long map plus listing of common block members and equivalence classes

R Implies R = 2

In TS mode, R = 3 is identical to R = 2; common and equivalence classes are not listed (see section
III-15).

I-11-6 60305600 G

ROUND ROUNDED ARITHMETIC COMPUTATIONS (Default: ROUND = 0)

s

ROUND= op

ROUND= 0

ROUND

op is any combination of the arithmetic operators + - * / Single precision real
and complex floating point arithmetic operations are performed using the hard­
ware rounding feature, as described in the various Computer Systems Reference
Manuals.

Computation for the indicated operators is not rounded.

Implies ROUND = +-*/

The ROUND option controls only the in-line object code compiled for arithmetic expressions; it does
not affect computations of library subprograms or input/output routines.

SYSTEM TEXT (LIBRARY) FILE

(

Default: S = SYSTEXT

) I
S = ovl

S = lib/ovl

S=O

s

if G parameter = 0
s = 0

if G parameter is
other than G = 0

System text overlay, ovl, is loaded from the job's current library set.

System text overlay, ovl, is loaded from the user library file or system library,
lib. (Valid only if the operating system supports partitioned library sets.)

System text file is not loaded when COMPASS is called to assemble any intermixed
COMP ASS programs.

Implies S = SYSTEXT

This feature is for COMP ASS subprograms only.

SEQ SEQUENCED INPUT (Default: SEQ = 0)

SEQ Source input file is in sequenced line format (see section III-15).

SEQ= 0 Source input file is in standard FORTRAN format.

Specifying the SEQ option automatically activates the TS option; sequenced line format is not recognized
by the optimizing compiler or COMPASS. The SEQ option conflicts with the OPT = 0, 1, or 2 options. I

SL SOURCE LIST (Default: SL)

SL Source program is listed on the file specified by the L parameter.

SL= 0 Source program is not listed.

60305600 G I-11-7

I

SYSEDIT SYSTEM EDITING (Default: SYSEDIT = 0)

T

SYSEDIT

SYSEDIT = 0

All input/output references are accomplished indirectly through a table search at
object time. File names are not entry points in the main program, and subprograms
do not produce external references to the file name.

Input/output references are accomplished directly; file names are used as entry
points in the main program, and subprograms produce external references to the
file name.

This feature is used primarily for system-resident programs.

ERROR TRACEBACK (Default: T = 0)

T

T=O

Full error traceback occurs when an error is detected. Calls to basic external
functions are made with call-by-name sequence (see section III-10).

No traceback occurs when an error is detected. Calls to basic external functions
are made with the more efficient call-by-value sequence. A saving in memory space
and execution time is realized.

This option is provided to assist in debugging programs. Selecting the D parameter or OPT=O automatically
activates the T option.

TS TIMESHARING MODE (Default: OPT = 1)

TS In TS mode, compilation speed and field length are optimized at the expense of
execution speed and field length. TS mode is preferable to the optimizing com­
pilation modes (OPT = 0, 1, or 2) for the debugging stages of a program. (For
more information about TS mode, see sections III-2, III-14, and III-15.) Specify­
ing option TS together with option C, D, E, or Q constitutes a fatal control card
error. If TS is specified, any OPT parameters are ignored.

UO UNSAFE OPTIMIZATION (Default UO = 0)

1-11-8

uo

uo = 0

Allows the compiler to perform certain optimizations which are potentially
unsafe. UO is ignored unless OPT = 2 is also specified. Section III-14 contains
further details.

Unsafe optimization is not performed.

The installation cannot select UO as a default option.

60305600 G

x

z

EXTERNAL TEXT NAME (Default: X = OLDPL)

x = lfn

x

File lfn is source of external text (XTEXT) when location field of XTEXT pseudo
instruction is blank. Only one X parameter may be specified.

lmpies X = OPL.

1bis feature is for COMPASS subprograms only.

ZERO PARAMETER (Default: Z = 0)

z

Z=O

All subroutine calls having no parameters are forced to pass a parameter list con­
sisting of a zero word. This feature is useful to COMP ASS-coded subroutines
expecting a variable number of parameters. Z should not be specified unless
necessary, since programs require less memory if Z is omitted.

The zero word parameter list is not passed.

FT.N CONTROL CARD SAMPLES

Example:

FTN (A,EL=F,GO,L=SEE,R=2,S=O,SL=O)

Selects the following options:

A

EL=F

GO

L=SEE

R=2

S=O

SL=O

Example:

FTN (GO,T)

Branch to an EXIT card if compilation ·errors occur.

Fatal diagnostics only are listed.

Generated binary object file is loaded and executed at end of successful compilation.

Listed output appears on file SEE.

Long reference map is listed.

When COMP ASS is called to assemble an intermixed COMPASS subprogram, it does
not read in a systems text file.

Source program is not listed.

Source program on INPUT file; object code on LGO; source program, short map, informative and fatal
diagnostics listed on file OUTPUT; call-by-name sequence generated for calls to basic external functions;
no debug package; standard compile mode; and unrounded arithmetic. Program is executed if no fatal
errors occur.

60305600 G 1-11-9

I

I

Example:

FTN.

Selects the following options (unless option default values are changed by the installation):

A=O I=INPUT R=l

B=LGO L=OUTPUT ROUND=O

BL=O LCM=D S=SYSTEXT

C=O ML=yyddd SEQ=O

D=O OL=O SL

E=O OPT=l SYSEDIT=O

EL=I P=O T=O

G=O PL=SOOO TS=O

I GO=O Q=O UO=O

X=OLDPL

Z=O

1-11-10 60305600 G

OVERLAYS 1-12

To reduce the amount of storage required, and to make more efficient use of his field length, a user can
divide his program into overlays. Prior to execution, the object modules of an overlay program are linked by
the loader and placed on a mass storage device or tape file in their absolute form; no time is required for
linkmg at execution time. (See Loader Reference Manual for more details.)

An overlay is a portion of a program written on a file in absolute form and loaded at execution time
without relocation. As a result, the size of the resident loader for overlays can be reduced substantially.
Overlays can be used when the organization of core can be defined prior to execution.

When each overlay is generated, the loading operation is completed by loading library and user
subprograms and linking them together. The resultant overlay is in fixed format, in that internal references
are fixed in their relationship to one another. The entire overlay has a fixed origin address within the field
length and, therefore, is not relocatable. The overlay loader simply reads the required overlay from the
overlay file and loads it starting at its pre-established origin in the user's field length.

Overlays are loaded into memory at three levels: zero, primary, and secondary.

Fixed starting
address for

primary overlays

Fixed starting
address for (1,n)

secondary overlays

Zero overlay (0,0)

Primary overlay (1,0)

Secondary overlay (1, 1)

The zero or main overlay is loaded first and remains in core at all times. A primary overlay may be loaded
immediately following the zero overlay, and a secondary overlay immediately following the primary
overlay. Overlays may be replaced by other overlays. For example, if a different secondary overlay is
required, the overlay loader simply reads it from the overlay file and places it in memory at the same
starting address as the previously loaded overlay.

60305600G 1-12-1

I

I

Zero
overlay

(0,0) Fixed starting address

for primary overlay Primary
overlay (4,0) llllllllllJ-~~~~~~~~illllllllllz~rom Primary Starting address for

overlay
(
3

,
01

secondary overlay
(4,2)

Secondary
overlay

(3,1) -~~~--

Fixed starting address

for secondary overlay

When a primary overlay is loaded, the previously loaded primary overlay and any of its associated
secondary overlays are destroyed. Loading a secondary overlay destroys a previously loaded secondary
overlay. Loading any primary overlay destroys any other primary overlay. For this reason, no primary
overlay may load other primary overlays.

Overlays are identified by a pair of integers:

zero or main overlay (0,0)

primary overlay (n,0)

secondary overlay (n,k)

n and k are positive integers in the range 0-77 octal. For any given program execution, all overlay
identifiers must be unique.

For example, (1,0) (2,0) (3,0) (4,0) are primary overlays. (3,1) (3,2) (3,5) (3,7) are secondary overlays
associated with primary overlay (3,0). Secondary overlays are denoted by the primary number and a non­
zero secondary number. For example, (1,3) denotes that secondary overlay number 3 is related to primary
overlay (l,D). (2,5) denotes secondary overlay 5 is related to primary overlay (2,o).

A secondary overlay can be called into core by its primary overlay or by the main overlay. Thus overlay
(0,0) and overlay (1,0) may call (1,2); but overlay (2,0) may not call (l,2).

Overlay numbers (O,n) are not valid. For example, (0,3) is an illegal overlay number.

Execution is faster if the more commonly used subprograms are placed in the zero overlay, which remains in main
memory at all times, and the less commonly used subprograms are placed in primary and secondary overlays which
are called into memory as required.

An overlay can consist of one or more FORTRAN or COMPASS program units. Each overlay must contain
one FORTRAN main program;. it need not be the first program unit in the overlay. The program name in
the PROGRAM statement becomes the primary entry point for the overlay when the overlay is called.

1-12-2 60305600 G

OVERLAY COMMUNICATION

Data is passed between overlays through labeled or blank common. Any element of a labeled or blank
common block in the main overlay (0,0) may be referenced by any higher level overlay. Any labeled or
blank common declared in a primary overlay may be referenced only by the primary overlay and its associ­
ated secondary overlays - not by the zero overlay. If blank common is used for communicating between
overlays, the user must ensure that sufficient field length is reserved to accommodate the largest loaded over­
lay in addition to blank common. Data stored in blank common must be used by each level of the overlay
in exactly the same format, since no linkage is provided between the different levels of overlay and blank
common at execution or load time.

Blank common is located at the top (highest address) of the first overlay in which blank common is declared.
For example, if blank common is declared in the (0,0) overlay, it is located at the top of the (O,O) overlay
and is accessible to all higher level overlays. If blank common is declared in the (1,0) overlay, it is allocated
at the top of the (l ,O) overlay and is accessible only to the associated (l ,k) overlays. Labeled common blocks
are generated in the overlay in which they are first encountered; data may only be preset in labeled common
blocks in this overlay.

On the CDC CYBER 70/Model 76 and 7600 computers, LCM common blocks must be defined and preset in
the main (O,O) overlay. The entire overlay structure can reference an LCM common block.

CREATING AN OVERLAY

An overlay is established by an OVERLAY directive preceding the program units for that overlay. An overlay
consists of all program units appearing between its OVERLAY directive and the next OVERLAY directive or
an end-of-file (6/7 /8/9) card. The directive must be punched starting in column 7 or later and must be con­
tained wholly on one card.

The PROGRAM statement for the zero or main overlay (0,0) must specify all file names such as INPUT,
OUTPUT, TAPEl, etc., required for all overlay levels. File names should not appear in PROGRAM statements
for other than the (0,0) OVERLAY.

Loading overlays from a file requires an end-around search of the file for the specified overlay; this can be
time consuming in large files. When speed is essential, each overlay should be written on a separate file, or it
should be called in the same order in which it was generated.

The group of relocatable decks to be processed by the loader to create an overlay must be presented to the
loader in the following order. The main overlay must be loaded first. Any primary group followed by its
associated secondary group can follow, then any other primary group followed by its associated secondary
group, and so forth.

60305600 G 1-12-3 •

The OVERLAY directive format is:

(
fname

i,j

7 I !OVERLAY (fname,i,j,Cnl

Name of the file on which the generated overlay is to be written.

Overlay level numbers in understood octal.

Cn Optional parameter consisting of the letter C and a 6-digit octal number, which
indicates the overlay is to be loaded n words from the start of blank common.

The first overlay directive must have a file name and i,j must be 0,0. Subsequent directives can omit file
name indicating that the overlays are to be written on the same file. All overlays need not reside on the
same file. The second overlay directive must be the zero level of a primary overlay such as 3 ,0.

If the Cn parameter is omitted, the overlay is loaded in the normal way directly after the zero overlay. The
Cn parameter cannot be included on the zero overlay directive. It is used on primary and secondary overlay
directives to allow the programmer to change the size of blank common at execution time.

Example:

OVERLAY(FNAME,0,0)
PROGRAM CAT(INPUT,OUTPUT,TAPE5=INPUT)

OVERLAY(l,0)
PROGRAM A

OVERLAY(l,1)
PROGRAM B

OVERLAY(l,2)
PROGRAM C

OVERLAY(l,3)
PROGRAM D

All the above overlays are written on the file FNAME.

• 1-12-4 60305600 G

CALLING AN OVERLAY

Primary and secondary overlays are called with a CALL OVERLAY statement while the zero overlay (0,0) is
loaded when a program call control card is encountered. The format of the CALL OVERLAY statement is:

fname

ij

recall

k

7

CALL OVERLAY (fname,i,j,recall,k)

The variable name of the location containing the name of the file in H format.

Overlay level numbers in understood octal.

Optional recall parameter.

Optional parameter specifying where the overlay is located; can be zero, non-zero,
or 7-character L format Hollerith constant.

If the k parameter is zero or not specified, the overlay is included in the file referenced by fname. If a non­
zero k parameter is specified, fname is the variable name of the location containing the overlay to be loaded.
If k is a 7-character Hollerith constant, the overlay is loaded from the library named in the constant. If k
is any other non-zero value, the overlay is loaded from the global library set (refer to the appropriate oper­
ating system reference manual or the Loader Reference Manual).

The three parameters, fname, i, and j must be specified or the results are unpredictable.

When a RETURN or END statement is encountered in the main program of a zero overlay, execution of the
program terminates and control returns to the operating system. When either of the statements is encoun­
tered in a primary or secondary overlay, control returns to the next executable statement after the CALL
OVERLAY statement that invoked the current overlay.

60305600 G 1-12-5 •

Example 1:

CALL OVERLAY(lHA,1,0)

This statement causes a primary overlay to be loaded from the file named A.

Example 2:

CALL OVERLAY(3HBJR,O,O,O,l)

This statement, which specifies the k parameter as a non-zero value, causes a main overlay with
the name BJR to be loaded from the global library set.

Example 3:

OVERLAY(XFILE,0,0)
PROGRAM ONE(INPUT,OUTPUT,PUNCH)

CALL OVERLAY(5HXFILE,l,0,0)

STOP
END
OVERLAY(XFILE,1,0)
PROGRAM ONE ZERO
CALL OVERLAY(5HXFILE,l,l,O)

RETURN
END
OVERLAY(XFILE,1,1)
PROGRAM ONE ONE

RETURN
END

Execution of RETURN in the 1,1 overlay returns control to the statement in the 1,0 overlay following the
1,1 call. Execution of RETURN in the 1,0 overlay returns control to the statement in the main overlay
following the 1,0 call.

• 1-12-6 60305600 G

Primary Overlay
(1,0)

Source Deck

Main Overlay
(0,0)

Source Deck

FTN.

7
8
9

6
7
8
9

Data

END

PROGRAM MLT

OVERLAY(FRANK,1,1)

END

Source Deck !
Secondary Overlay

(1, 1)

CALL OVERLAY (5HFRANK,1,1,0)

PROGRAM ROY

OVERLAY(FRANK, 1,0)

SUBROUTINE GROUCH(X)

END

CALL OVERLAY(SHFRANK,1,0,0)--+-~- Call to

CALL GROUCH(40,0)

PROGRAM LEO(INPUT,OUTPUT,TAPE1)

OVERLAY(FRANK,0,0)

FRANK.

LOAD(LGO)

Job Card

Primary Overlay
FRANK 1,0

Preparation of Overlay 0,0; 1,0; and 1, 1

60305600 c 1-12-7

The above example illustrates the preparation of zero, primary and secondary overlays. The zero
overlay, FRANK,0,0, consists of a main program LEO and a subroutine GROUCH. The primary
overlay FRANK 1,0 consists of a main program ML T and a data deck. All three overlays reside on
the file FRANK.

The LOAD(LGO) card requests the loader to load the program from the file LGO. As the loader reads
file LGO, it encounters the overlay directive OVERLAY (FRANK,0,0) which instructs it to create a
main overlay from the program and write it on file FRANK. When the absolute form of all the over­
lays has been generated, execution begins when the control card FRANK. is encountered. FRANK. causes
the main overlay to be loaded from file FRANK and executed.

During execution of the main overlay, the CALL OVERLAY (5HFRANK, 1,0,0) statement is
encountered and the primary overlay 1,0 is loaded into central memory. The CALL OVERLAY
(5HFRANK, 1, 1) statement in the primary overlay causes the secondary overlay to be loaded into
memory.

The primary and secondary overlays can reside on files other than FRANK. For example, the
primary overlay could be on file JIM and the secondary overlay on file JOHN.

Example:

FTN.
LGO.
FRANK.
7/8/9

OVERLAY (FRANK,0,0)
PROGRAM LEO (INPUT,OUTPUT,TAPEl)

CALL OVERLAY (3HJIM,l,O,O)

OVERLAY (JIM,1,0)
PROGRAM RDY

CALL OVERLAY (4HJOHN,1,l,0)
END
OVERLAY (JOHN,1,1)
PROGRAM MLT

END

The following program, which contains several subroutines and functions, is to be used repeatedly. The
entire program can be generated, therefore, as a main overlay and placed on the file in the absolute
form. The control card CATALOG creates a permanent file OVRLY where the absolute form of the

1-12-8 60305600 c

program will be kept. When the program is required again, the permanent file OVRL Y is called by an
ATTACH control card.

The first program must be a main program; in this case program A.

Control
Cards

Main
Overlay

1
FTN.
LOAD(LGO)
NOGO.
CATALOG(REPEAT,OVRLY,ID=IBB)
7/8/9

OVERLAY (REPEAT,0,0)
PROGRAM A (INPUT,OUTPUT,TAPEl)

END
SUBROUTINE B

END
FUNCTION C

END
SUBROUTINE D

END
REAL FUNCTION E

END
7/8/9

data
6/7/8/9

Main program A and the subroutines and functions B-E reside on the file REPEAT in absolute form.
They can be called and executed without recompilation by the control cards:

job card

ATTACH(REPEAT,OVRLY,ID=IBB)
REPEAT.
6/7/8/9

The operating system or· Loader Reference Manual gives full details of the control cards wMch appear in the
above· program.

60305600 G 1-12-9

I

I

DEBUGGING FACILITY 1-13

The debugging facility allows the programmer to debug programs within the context of the FORTRAN
language. Using the statements described in this section, the programmer can check the following:

Array bounds

Assigned GO TO

Subroutine calls and returns

Function references and the values returned

Values stored into variables and arrays

Program flow

The debugging facility, together with the source cross reference map, is provided specifically to assist the
programmer develop or convert programs.

The debugging mode is selected by specifying D or D = lfn on the FTN control card (section 1-11). This
control card parameter automatically selects fast compilation (OPT=O) and full error traceback (T option).
If any other optimization level is specified, it will be ignored. The following examples are equivalent:

FTN (D)
FTN (D=INPUT,OPT=O,T)
FTN (D,OPT=2) OPT=2 is ignored, OPT=O and Tare automatically selected.

Debug output is written on the file DEBUG. When the job terminates, the DEBUG file is given a print dis­
position and it is printed separately from the output file. To obtain debugging information on the same file
as the source program, or any other file, DEBUG must be equivalenced to that file in the PROGRAM state­
ment.

Examples:

PROGRAM EX (INPUT,OUTPUT,DEBUG=OUTPUT)

Debug output is interspersed with program output on the file OUTPUT.

PROGRAMEX(INPUT,OUTPUT,TAPEX,DEBUG=TAPEX)

Debug output is written on the file TAPEX.

60305600 c I-13-1

The following control card sequence causes the debug output to be printed on the output file at termination
of the job. It is not· interspersed with the results of program execution.

FTN(D)
LGO.
REWIND(DEBUG)
COPYCF(DEBUG,OUTPUT)
EXIT (s) Abnormal termination
REWIND(DEBUG)
COPYCF(DEBUG,OUTPUT)

When the debug mode is selected, programs execute regardless of most compilation errors. Execution,
however, terminates at that point in the program where a fatal error is detected, and the following message
is printed:

FATAL ERROR ENCOUNTERED DURING PROGRAM EXECUTION
DUE TO COMPILATION ERROR

Partial execution is prohibited for only four classes of errors:

Any declarative error (any error encountered before at least one valid executable statement is found).

Any fatal compilation error (defined in section III-2).

Any missing (undefined) DO termination.

Any illegal transfer into an innermost DO loop that is not an extended range loop.

Partial execution of programs containing fatal errors allows the programmer to insert debugging statements in
the program to assist in locating fatal and non-fatal errors.

When a program is compiled in debug mode, at least 12000 (octal) words are required beyond the minimum
field length for normal compilation. To execute, at least 2500 (octal) words beyond the minimum are re­
quired. The CPU time required for compilation is also greater than for normal OPT=O compilation.

If the D option is not specified on the FTN control card,· all debugging statements are treated as comments;
therefore, it is not necessary to remove the debugging statements after the program is sufficiently debugged.

• 1-13-2 60305600 G

All debugging options are activated and deactivated at compile time only. This compile time processing is
not to be confused with program flow at execution time.

PROGRAM TEST (OUTPUT,DEBUG=OUTPUT)

GO TO 4

C$ (DEBUGGING OPTION)
C$ (DEBUGGING OPTION)

4 CONTINUE

END

Even though a section of code may never be executed, the debugging options are processed at compile time
and are effective for the remainder of the program. In the above example, the code between the GO TO
statement and the CONTINUE statement may never be executed. However, debugging statements between
these statements are processed at compile time and are effective for the remainder of the program, or until
deactivated by a C$ OFF statement.

DEBUGGING STATEMENTS

ds

60305600 B

7

Type of option, beginning after column 6: DEBUG, AREA, ARRAYS, CALLS,
FUNCS, GOTOS, NOGO, OFF, STORES, TRACE

Argument list; details extent of the option, ds (not used with NOGO, GOTOS; required
for AREA, STORES; optional for other options)

1-13-3

CONTINUATION CARD

Debugging statements are written in columns 7-72, as in a normal FORTRAN statement, but columns I
and 2 of each statement must contain the characters C$. Any character, other than a blank or zero, in
column 6 denotes a continuation line. Columns 3, 4, and 5 of any debugging statement must be blank. The
restriction on the number of continuation lines is the same as for FORTRAN continuation lines.

Comment cards may be interspersed with debugging statements. The statement separator($) cannot be used
with debugging statements. When the debug mode is not selected, all debugging statements are treated as
comments.

Example:

C$ ARRAYS (A, BNUMB,ZlO, C, DLIST, MATRIX,
C$ *NSUM, GTEXT,
C$ *TOTAL)

ARRAYS STATEMENT

7

(!
array names

The ARRAYS statement initiates subscript checking on specified arrays. If no argument list is specified, all arrays in
the program unit are checked. Each time a specified or implied element of an array is referenced, the calculated
subscript is checked against the dimensioned bounds. The address is calculated according to the method described in
figure 2-1, section 2. Subscripts are not checked individually. If the address is found to be greater than the storage
allocated for the array or less than one, a diagnostic is issued. The reference then is allowed to occur. Bounds check­
ing is not performed for array references in input/output statements, or in ENCODE/DECODE statements.

1-13-4 60305600 B

PROGRAM ARRAYS COUTPUT,OEBUG=OUTPUT>
INTEGER Al2>• 8(4>• C(b)• 0(2tJ,4)
PRINT l
FORMAT(0 0 ARRAYS EXAMPLfO///)

0 TURN ON ARRAYS FOR ARRAYS A ANO 0

C~ ARRAYS (A, ~)
0

0 Al3> IS OUT OF BOUNDS AND ARHAYS IS ON FOR A• SO A DIAbNOSTIC
~ IS PRINTED.

A(J) = l

0 6(3) IS OUT Of HOUNDS BUT ARHAYS IS NOT ON FOR 8, SO NO
o DIAGNOSTIC IS PRINTED.

9(5) = l

C<2> = A(A(J))

* EVEN THU0GH A(J) WA~ OUT OF BOUND~, THE ASSIG~MENT TOOK PLACE.
* A(AlJ)) I~ E.iJUlVALErH TO A(l). THIS SUP.SCRIPT IS rr~ rlOLJNOS•
* HOWEV~k THE HEFERENCE TO Al3) WILL CAUSF A DIAGNOSTIC•

Dl-5•0•6> = 99

* FUR THE A~~AY O(L,M,N> THE STORAGE. ALLUCATEn IS L 0 M ~ N.
* THE SUclSCRIPT FOR THE ~LEM~NT D<I•JtK) JS CO~PUTED AS FOLLOWS
* <I + L'°<~-1 + M*(K-ll))
* FOR THt ELEME~T uc-s.o,b) lHE SU8SCRI~T APPEARS TO
* 8E UUT OF 80UNOS b~CAU~E Tht l~UiVIOUAL S0~SCRIPTS A~E 0UT
* Of clOUNUS· HOWEV~k• 22• Trlt CUMPUTtO AnOHESS• IS LESS THAN
0 24, THE ST0R~6E ALLOCATtD. AND NO DlAGNOSTfC IS I~su~u.

*
0 TURN ON A~RAYS FOR ALL A~RAYS

C$ ARRAYS

0 WITH THIS FORM ALL ARkAY R[f£k~NCE~ WILL dE CHECKED. T~E~E wlLL
• 8£ DIAGNOSTIC~ f ijk 8(5)• C(-}), AND oco.o.o>. tiECAUSt A(2)
* IS IN 80J~DS ANO A(~) IS IN AN I/0 STATEMENT, THEkE WILL bl
0 NO DIAGNOSTICS FOk ~ITH~R Uf TrlESE R£FERENCES.

A(2) = l
8<5> = ~ + C<-1>
0<0.0.0> = 1
PRINT 2t A(4)

2 FURMATClXt AlO>
ENO

60305600 G

.ARRAYS .EXA!1PLE

/DEBUG/ A'R~AYS

/DEBUG/
/DEBUG/
/DEBUG/
/DE8UG/

AT LINE
AT LINi:­
AT LINE
AT LINE
Al._l_INE

13- THE SUB~C~IPT VALUE OF
20- THE SUASCRIPT VALUE OF
47~ THE- SUBSCRIPT.VALUE OF
47- TH(sueSCRIDT VALUE OF

-.!i.lL"". .. -1.HL SUBSC!UP..t. VA.LUE OF

CALLS STATEMENT

(a1 , ••• , a
0

)

7

(i
subroutine names

3 IM ARPAY A
3 IN ARRAY A
5 IN ARRAY B

-1 IN ARRAY C
-8 IN ARRAY 0

EXCEEDS DIMENSIONED BOUNO OF
EXCEEDS DIMENSIONED BOUND OF
EXCEEDS DIMENSIONED BOUND OF
EXCEEDS DIMENSIONED BOUND Of
EJCCEED.S. Cl111EttSIONED .. BOUND OF

2
2
4
6

24

The CALLS statement m1tiates tracing of calls to and returns from specified subroutines. If there is no
argument list all subroutines will be traced. Non-standard returns, specified in a RETURNS list, are
included. To trace alternate entry points to a subroutine. either the entry points must be explicitly named in
the argument list, or the form with no argument list must be used (all external calls traced). The message
printed contains the names of the calling and called routines, as well as the line and level number of the
call and return.

A main program is at level zero; a subroutine or a function called by the main program is at level I,
another subprogram called by the subprogram at level I, is at level 2, and so forth. Calls are shown in order
of ascending level number, returns in order of descending level number.

level 0

~
... call

~ level 1 return ~ ~ call

t t
level 2 return SUB B

For example. subroutine SUB A is called at level l and a return is made to level 0. SUB Bis called at
level 2 and a return is made to level I.

1-13-6 60305600 B

Example:

P~OGRAM CALLStOUTPUT•OEbUG=OUTPUT>
PRINT l

l FORMAT<~O CALLS TRACING•)

* TURN ON CALLS FUR SU~ROUTINES CALLSl AND CALLS2

C~ CALLSCCALLSlt CALLS2>
x = 1.
CALL CALLSl (AtY)t RETU~N5 (10)

10 IF ex .EQ. l.> CALL CALLS2(X)
CALL SUtsNOT
CALL CALLSlE (X,Y)

* OE~UG MESSAGES WILL BE PRINTED FOk CALLS TO AND ~ETUHNS FROM
* CALLS} AND CALLS2. SINCE THE CALLS ARE FROM THE MAIN PROGRAMt
* TH~Y ARE AT LEVEL O. THE CALLS TO SUBNnT ANO THE ALTtR~ATE
* E"4TRY POINT CALLS-IC: ARt. NOT TRACED bECA11SE: THEY DO f':JOT APPEAR
* IN THE ARGUMENT LlST Of TH~ CS CALLS STATEMENT.
*
* * TURN ON CALLS FOR ALL SUBROUTINES

c~ CALLS
CAL.L SUBNOT
CALL CALLS2<X>
CALL CALLSlE cx.v>
Ol~UG M~SSAGES WILL Bl P~lNTED FOM CALLS TO AND RETURNS fkOM

su~~OTt CALL~~. ANO CALLSl~. SINCE ALL CALLS ARE TO BE"
TRACED.

ENO

SUBROUTINE CALLSlCX,Y), RETURNS(A)
y = -x
If (Y .NE. X) RETURN A
RETURN
ENTRY CALLSlE
RETURN
END

SUBROUTINE CALLS2(X)
CAtL CALLSlCXtY)t RETURNS(S)

5 RETURN
ENO

SUdROUTlNE SUBNOT
x = -1.
CALL CALLSl(XtY)t RETURNSCS>

5 Rt::TURN
ENO

60305600 G

I

I

1-13-7

I

CALLS TRACING
/DEBUG/ CALLS AT LINE
/OE8UG/ AT LINE
/DEBUG/ AT LINE
/DEBUG/ AT LINE
/DEBUG/ AT LINE
/DEBUG/ AT LINE
/DEBUG/ AT LINE
/DEBUG/ AT LINE
/DEBUG/ AT LIME
/DEBUG/ AT LINE

9- ROUTINE C•LLS1 CALLEO
10- ROUTINE CaLLS1 RETURNS
10- ROUTINE CALLS2 CALLED
11- ROUTINE CALLS2 RETURNS
24- ROUTINE SUBNOT CALLEO
25- ROUTINE SUBNOT RETURNS
25• ROUTINE CALLS2 CALLED
26- ROUTINE CALLS2 RETURNS
26- ROUTINE CALLS1E ClLlEO
27- ROUTINE CALLS1E RETURNS

A1" LEVEL
TO LEVEL
A1' LEVEL
TO LEVEL
AT LEVEL
TO LEVEL
Al LEVEL
TD LEVEL
AT LEVEL
TO LEVEL

a
0 AT STATEMENT 10

• 0
0
0
a
0
D
0

In this example, only calls from the main program are traced. To trace calls from subprograms, a C$
CALLS statement must appear in the subprograms.

FUNCS STATEMENT

7

11 FUNCS

7

(i
If no function names (a1 , .. .,a0) are listed, all external functions referenced in the program unit are traced.
Alternate entry points must be named explicitly in the argument list, or implicitly in the C$ FUNCS
statement with no paramenters.

Function tracing is similar to call tracing, but the value returned by the function is included in the debug
message. Each time a specified external function is referenced, a message is printed which contains the
routine name and line number containing the reference, function name and type, value returned, and level
number. The level concept is the same as for the CALLS statement.

Statement function references are not traced,nor are function references,in input/output statements.

1-13-8 60305600 G

Example:

5

10

15

20

25

5

10

The following program, V ARDIM2, illustrates both the C$ FUNCS and C$ CALLS statements. All
function references in the main program are traced because C$ FUNCS appears without an
argument list; references to functions PVAL, A VG and MUL T and the values returned to the main
program (level 0) are traced. All subroutines in the main program are traced also because a C$
CALLS statement without an argument list appears.

Function references within the FUNCTION subprograms PY AL, AVG and MUL T are traced since
C$ FUNCS statements appear within these subprograms. If no C$ FUNCS statements appear in the
subprograms, only main program function references will he traced.

c

cs

c
c
c
cs

c
c
c
c
c
c
c
c
c

c

1
c

c

2

PROGRAM VAROIH2(0UTPUT,TAPE6=0UTPUT,OEBUG=OUTPUT>
THIS PROGRAM USES VARIABLE OIHE~IONS ~ND HANY SUBPROGRAM CONCEPTS
COMMON XC4,3t
REAL Y<6l
EXTERNAL HULT, AVG
PVALSF<X,Y) = PVALIX,Y)
CULS
CALL SET<Y,6,0.>
CALL IOTACX,12)
CALL INC(X,12,-5.)

All EXTERNAL CALLS ARE DIAGNOSED.

FUNCS
AA = PVALSf (12,AVG)
AH : PVALSF(12,MULT>

PVALSF IS A STATEMENT FUNCTiaN, SO THE FUNCS STATEMENT DOES NOT
APPLY TO IT ANO NO MESSAGE IS PRINTED. HOWEVER, THE EXTERNAL
FUNCTION PVAL IS REFERENCEO WITHIN THE CODE FOR PVALSF,
ANO THOSE REFERENCES ARE DIAGNOSED.

HULT ANO AVG ARE NAMES AS A~~UH~NTS TO PVALSF, HOWEVER, THE
FUNCTIONS ARE NOT ACTUALLY REFERENCED AND HESSAGES ARE NOT
PRINTEO.

STOP
ENO

SUBROUTINE SET <A,H,V)
SfT PUTS THE VALUE V INTO EVERY ELEHENT OF THE ARRAY A
Olt1ENSION A(H)
001!=1,H
AU>=o.o

ENTRY INC
INC ADOS THE VALUE V TO EVERY E~EHENT IN THE ARRAY A
0021=1,H
AU>=A<U+V
RETURN
ENO

60305600 B 1-13-9

10

10

10

1-13-10

SUSROUTINE IOTA <A,H>
C IOTA PUTS CONSECUTIVE INTEGE~S STARTING AT 1 IN EVERY ELEMENT OF
C THE ARRAY A

DIMENSION A (H)
D01I=1,H

1 AU>=I
RETURN
ENO

FUNCTION PVAL(SIZE,WAY>
C PVAL COMPUTES THE POSITIVE VALUE OF WHATEVER REAL VALUE IS RETURNED
C BY A FUNCTION SPECIFIED WHEN PVAL WAS CALLEO. SIZE IS AN INTEGER
C VALUE PASSED ON TO THE FUNCTION~

INTEGER SIZE
CS P'UNCS CABS>

PVAL=ABS<WAYCSIZE>>
c
c
c
c

WAY DOES NOT APPEAR IN THE ARGUMENT LIST FOR THE FUNCS STATEMENT,
SO ONLY THE REFEREt«:E TO ABS IS DIAGNOSED.

RETURN
ENO

FUNCTION AVG<J>
C AVG COMPUTES THE AVERAGE OF THE FI~ST J ELEMENTS OF COHMON.

COMMON A (10 OJ
AVG=O.
D01I=1,J

1 AVG=AVG+A(I)
CS FUNCS
c
C All EXTERNAL FUNCTION REFERENCES WILL BE DIAGNOSED.
c

AVG=AVG/FLOAT(J)
RETURN
ENO

REAL FUNCTION MULT(J)
C HULT COMPUTES A STRANGE AVERAGE. IT MULTIPLIES THE FIRST AND 12TH
C ELEMENTS OF COMMON ANO SUBTRACTS FROM THIS THE AVERAGE (COMPUTED
C BY THE FUNCTION AVG> OF THE FIRST J/2 WORDS IN COMHON.
c

cs
c
c
c

COMHON ARRAYC12t
FUNCS

All EXTERNAL FUNCTION REFERENCES WILL BE DIAGNOSED.

HULT=ARRAYU2l •ARRAY(u-AVGfJ/2r
RETURN
E N· 0

60305600 B

/OE8UG/ VAROit12 AT LINE a- ROUTINE SET CALLEO AT LEVEL 0
/DEBUG/ AT LINE 9- ROUTINE SET RETURNS TO LEVEL a
/OfllUG/ AT LINE 9- ROUTINE IOTA CALLEO Al LEVEL 0
IOHUG/ AT LINE 10- ROUTINE IOTA Ri::T~NS TO LEVEL 0
IOEOUG/ AT lltlE 10- ROUTINE INC CALLED AT LEVEL 0
/DEBUG/ AT LINE 11- ROUTINE INC RETURNS TO LEVEL 0
IO(!!UG/ AT LINE 15- REAL FUNCTION PVAL CALLED AT LEVEL 0
/UEBi.JG/ AVG AT Lf.t.IE 11- REAL FmlCTJON FLOAT CALLEO AT LEVEL 2
/Dff"JIJ(j/ AT LINE 11- REAL FUNCTION FLOAT "ETURNS A VALUE OF 12.00000000 AT LEVEL ?.
/OF.9UG/ PVllL AT LINE 7- RF.Al FUNCTION Af\S CALLEO AT LEVEL 1
/OE ~UGI AT LINE 7- REAL FUNCTION ABS RETU~"IS A VALUE OF 1.sooooi!ooo AT LEVEL 1
/OE'1UG/ VAROlt12 AT LINE 15- REAL FUNCTION PVAL RETURNS A VALUE OF 1.500000000 AT LEVEL 0
/DEBUG/ AT LINE 16- REAL FUNCTION PVAL CALLEO Ill LEVEL 0
/OE13UG I HULT AT LINE 11- REAL FUNCTION AVG CALLEO IT LEVEL 2
/DEBUG/ AVG AT LINE 11- REAL FUNCTION FLOAT CALLEO Al LEVEL J
/DE AUG/ AT LINE 11• REAL FUNr.TIOtJ FLOAT RETUR~S A VALUE OF 6.000000000 AT LEVEL 3
/OrnUG/ HULT AT LINE 11- REAL FUNCTION AVG RETURt~S A VALUE OF -1.500000000 AT LEVEL 2
/OEgUG/ P'#Al AT LINE 7- REAL fUNC TION ABS CALLEO lT LEVEL 1
/OE BUG/ AT LINE 1- REAL FUNCTION •es RETURNS A VALUE OF i&.50000000 AT LEVEL 1
/DEOUG/ VA~OIH2 AT LINE 16- REAL FUNCTION PVlL RETURNS A VALUE OF 26.50000000 AT LEVEL 0

STORES STATEMENT

7

An argument list must be specified for the STORES statement.

(c1 , •• .,en) are variable names or expressions in the forms:

variable name

variable name .relational operator. constant

variable name .relational operator. variable name

variable name .checking operator.

Relational operators are .EQ., .NE., .GT., .GE., .LT., .LE.

Checking operators are .RANGE., .INDEF., .VALID.

Example:

C$ STORES(SUM,DGAMP,AX,NET.LT.4,ROWSUM.RANGE.)

C$ STORES(Al,AGAIN,I,A2.EQ.5.0,IAGAIN.LE.IVAR)

C$ STORES(C.EQ.(l.,l.),L.VALID.,D.NE.10.004)

C$ STORES(G.RANGE.,TR.EQ •• FALSE.)

60305600 B 1-13-11

The STORES statement is used to record changes in value of specified variables or arrays. The STORES
statement applies only to assignment statements. Values changed as a result of input/output, or use in
DATA, ASSIGN, COMMON, or argument lists to subroutines and functions are not detected. The
STORES statement does not apply to the index variable in a DO loop.

If the value of a variable in an EQUN ALEN CE group is changed, the STORES statement will not detect
changes to the value of other variables in the group.

I VARIABLE NAMES

In the first form of the STORES statement, a message is printed each time the value of a variable or an
array element changes. The variable and name of the array must appear as arguments in the C$ STORES
statement.

Example:

s

10

PROGRAM STORES (!NPUT,OUTPUT,OEBUG = OUTPUT)
LOGICAL L1,l2

C$ STORES fNSUM,OGAHP,AX>
NSUH = 20
OGAHP = .5
A)(= 7. 2 + OG A MP
L1 = .TRUE.
l2 = .FALSE•
PLANT = 2.5
A = 7.5
PRINT 3

3 FORHA T <t HO>
STOP
ENO

Each time the value of the variables NSUM, DGAMP and AX changes, a message is printed. The
values of PLANT, A, L 1 and L2 are not printed. since they do not appear in the argurnent list.

/OEBUG/ STO~ES
/OE BUG/
/OE9UG/

I-13-12

AT LINE
AT LIME
AT LINE

~- THE NEW VALUE OF THE VARI•BLE NSUH
S- THE MEN VALUE OF THE VARUBLE OGAMP
6- THE NEW VALUE OF THE VARIABL~ AX

IS
IS
IS

20
.sooooooooo
7.7HOHHO

60305600 G

Array elements should not be specified in the parameter list of a STORES statement; the array name must I
be used. If an array element name appears, an informative diagnostic is printed.

Example:

10

PPOGRAH SlORAR «INPUT,OUTPUT,OEBUG=OUTPUT)
REAL A110), BC~,2>

CS STORES (A,e>
BU,2) = 5.5
Bti.,2> = O.
DO 4 N = 1,3

r+ Aon = N+1
PRINT 5

S fCRHAT UHOI
STOP
ENO

I DEBUG/ STORa R
/OEBUG/

AT LlNE
AT LINE
AT LINE
AT LINE
AT LINE

4- THE NEH VALUE OF THE VARIABLE B
5- THE NEW VALUE OF THE VARI~BLE B
7- THE NEW VALUE OF THE VARIABLE A
7- THE NEH VALUE OF THE VARIABLE A
7- THE NEW VALUE OF THE VARIA'tlLE A

I OE BUG/
/DEBUG/
/DEBUG/

IS
IS
IS
IS
IS

5.500000000
o.

2.000000000
3.000000000
4.000000000

The values stored into array elements B(l,2) and B(4,2) appear in the debug output under the array
name B in both cases, and array elements A(1), A(2), and A(3) appear under the array name A.

RELATIONAL OPERATORS

In the second form of the C$ STORES statement, a message is printed only when the stored value satisfies the
relation specified in the argument list. The two components of the relational expression must be of the same type.

PROGRAM STJ ClNPUTtOUTPUTtOEBUG20UTPUT)
5 FORMAT llttO> . .

PRINT 5 .
M = 5

CS STORES 11.EQ.3,NeLE.MtANT)
1 = 3
1 = 4
N = 4
N = 6
j = 10
ANT = 77e0
END

/DEBUG/ STJ
/DEBUG/
/DEBUG/

60305600 G

AT LINE
AT LINE
AT LINE

6- THE NEW VALUE Of THE VARIABLE I
8• THE NEW VALUE Of THE VARIABLE N

11- THE NEW VALUE OF THE VARIABLE ANT

IS 3
IS 4
IS 77.00000000

1-13-13

I appears in the debug output when it is equal to 3~ N appears when it is less than or equal to M.
Since no relational operator is specified with ANT, it is printed whenever the value changes.

I CHECKING OPERATORS

In the third form of the STORES statement, a message is issued only when the stored value is out of range,
indefinite, or invalid as specified by the checking operator.

RANGE Out of range

INDEF Indefinite

VALID Out of range or indefinite

For example:

C$ STORES (ROWSUM .RANGE., COLSUM • VALID.)

Whenever the value to be stored into ROWSUM is out of range, a message is printed. Whenever the
value to be stored into COLSUM is out of range or indefinite, a message is printed.

HOLLERITH DATA

Hollerith data stored in a variable of type integer is interpreted by the STORES statement as an integer
number. Hollerith data stored in a variable of type real or double precision is interpreted as a real or
double precision number.

In the following example, the three integer variables IHOLL, !RIGHT and ILEFT contain the characters
PA in display code (20 and 0 I).

!HOLL 20015555555555555555

P A blank fill

!RIGHT 00000000000000002001

zero fill P A

!LEFT 20010000000000000000

P A zero fill

1-13-14 60305600 G

Example:

PROCi~AM OlHOL ClN~UTtOUTPUTtOEliUG•OUTPUT>

CS Ot:BUG
CS STORCSCIH0LLtIRlGHTtlLEFTtl10LLl

s

10

/OEt>vG/ 0£r10L
/Ot:ciUC./
/OESvG/
/OC:oUG/

1HOLL•21i?A
lRICiHT•ZKPA
lLEfh<!LPA
H0LL•2H?A
P~INT l

1 FORMAT Cl110>
STOP
END

AT LINE
AT LINE
AT LINE
AT LlNE

6• THE NEW VALUE Of TriE V.\"111.b!..E IliOc..L
7• THE N~W VALUE Of TH~ VA~lA&LE lRluHC
a- TnE NEW VALUE Of THE VARlAY!..E lLEFT
9• THE ~EW VALUE OF THE VA~lABLE HOLL

I~ ••••••••••••••
IS 1025
IS ••••••••v•••••
lS .4021071096E•lS

The variables IHOLL, !RIGHT, and ILEFT are interpreted as integer numbers. Since the field width allocated
by the STORES option (14 digits) is insufficient to contain the converted quantities represented by IHOLL
and ILEFT, these fields are filled with asterisks. The variable !RIGHT is converted and printed out by the
STORES option as 1025.

The variable HOLL is interpreted as a real number, and its value is printed out.

GOTOS STATEMENT

7

(t
No argument list can be specified with the C$ GOTOS statement. The GOTOS statement initiates checking I
of all assigned GO TO statements to ensure that the statement label assigned to the integer variables is in the
GO TO statement list. If no match is found, a message is printed and transfer of control continues.

5

15

20

P~OGRAM GO TOS COUTPUT,OEAUG=OUTPUTt
INTEGER A

CS GOTOS
• CGOTOS NEVER USES AN ARGUMENT LIST>

.
•

•

ASSIGN 1 TO A
GO TO A C1, 2, 3)

IN THIS CASE NO MESSAGE IS PRINTED SINCE THE LABEL ASSIGNED TO
A IS IN THE GOTO LIST •

It PRINT 10
10 FORMAT(• --CONTROL TRaNSFERED TO STATEMENT LABEL 4--•>

STOP
1 ASSIGN 4 TO A

GO TO A (1, 2, 3)

IN THIS CASE A MESSAGE ts PRINTED SINCE THE LABEL 4 IS NOT IN
THE GOTO LIST. CONTPOL THEN TRANSFERS TO LABEL 4.

2 CONTINUE
3 CONTINUE

ENO

IOEBUG/ GOTOS AT LINE 1&- ASSIGNEO GOTO INDEX CONTAINS THE ADDRESS 002151. NO HaTCH FOUND IN STATEMENT LABEL ADOPESS LIST
--CONT~OL TRANSFERED TO STATEMENT LAAEL 4--

60305600 G I-13-15

TRACE STATEMENT

(Ci I !TRACE
(Iv)

7

Iv is a level number 0-49. If Iv = 0, tracing occurs only outside DO loops. If Iv = n, tracing occurs up to
and including level n in a DO nest. If no level is specified, tracing occurs only outside DO loops.

The C$ TRACE statement traces the following transfers of control within a program unit:

GOTO

Computed GO TO

Assigned GO TO

Arithmetic IF

True side of logical IF

Transfers resulting from a return specified in a RETURNS list are not traced. (These can be checked by the
C$ CALLS statement.)

If an out-of-bound computed GO TO is executed, the value of the incorrect index is printed before the job
is terminated.

Messages are printed each time control transfers during execution. The message contains the routine name,
the line where the transfer took place, and the number of the line to which the transfer was made, as well
as the statement number of this line, if present.

A message is printed each time control transfers at a level less than or equal to the one specified by Iv. For
example, if a statement C$ TRACE(2) appears before a sequence of DO loops nested four deep, tracing
takes place in the two outermost loops only.

TRACE messages are produced at execution time, but TRACE levels are assigned at compile time;
therefore, the compile time environment determines the tracing status of any given statement. For example,
a DO loop TRACE statement applies only to control transfers occurring between the DO statement and its
terminal statement at compile time (physicallybetween the two in the source listing).

I-13-16 60305600 B

Example:

PPOGPAH P<OUTPUT,OERUG=OUTPUTl
DATA J/01

level 0 C.$ TPACE C1 >
IF <J • EQ. 0) GO TO 11

I) level 1 11 00 1 I1 = 1, 3
IF ((J+1) .E'1 • I1) GO TO 12

12 J = 1

['~'" 00 2 12 = 1, 5
J = J + !2

10 GO TO 2
2 CONTINUE

cs Tf\'ACE<3>
level 2 DO 20 12 = 1, 3

IF (!2 .Ea. 3 J GO TO 20
15 J = 2

['"13
DO 3 I3 = 1, 4
IF (J .GT. n> GO TO 31

31 00 lt 14 = 1, ?

'""" [~ GO TO 4
20 CONTINUE

CONTINUE
20 CONTINUE

J = 0
1 CONTINUE

25 ENO

IOEBUGI p AT LINE 4- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 4- CONTROL WILL BE T~ANS~ERRED TO SlATEHENT 11 AT LINE 5
I OE BUG I AT LTNE 6- CONTROL TRANSFERRED TO THE. TRUE SIDE OF LOGICAL IF EXPRESSION
IOEBUG/ AT LINE 6- CONTROL HILL BE TRANSFERRED TO SlATEHENT 12 AT LINE 7
/DEBUG/ AT LINE 17- CONTROL TRANSFERRED TO THE TRU~ SIOE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LltfE 17- CONTROL WILL BE T~ANS~ERREO TO SlATEHENT 31 AT LINE 18
I DEBUG/ AT LINE 17- CONTROL TRANSFfR"REO TO THE TRUE SIDE Of LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 17- CONT~OL WILL 9E TRANSFERRED TO SlATEHENT 31 AT LINE 18
/DEBUG/ AT LINE 11t- CONTROL TRANSFERRED TO THE TRUE SlOE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 14- CONTPOL WILL BE TRANSFERRED TO SlATEHENT 20 AT LINE 22
/OEBUG/ AT LINE 17- CONTROL TRANSFERRED TO T~E TRUE SIOE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 17- CONTROL WILL 9E TRANSFERRED TO SlATEMENT 31 AT LINE 18
I DEBUG/ AT LINE 17- CONTROL TRANSFERRED TO THE T~UE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 17- CONTROL MILL BE TRANSFERRED TO S1ATEMENT 31 AT LINE 18
/OEBUG/ AT LINE 14- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 11t- CONTROL WILL BE TRANSFERRED TO S1ATEMENT 20 AT LINE 22
/DEBUG/ AT LINE 17- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/OF.BUG/ AT LINE 17- CONTROL WILL BE TRANSFERRED TO SlATEMENT 31 AT LINE 18
/DEBUG/ AT LINE 17- CONTROL TRANSFERRED TO THE TRUE SIDE Of LOGICAL IF EXPRESSION
/DEBUG/ AT LINE 17- CONTROL WILL ~E TRANSFERRED TO S1ATEHENT 31 AT LINE 18
/DEBUG/ AT LINE 11t- CONTROL TRANSFERRED TO THE TRUE SIDE OF LOGICAL IF EXPRESSION
/OE BUG/ AT LINE 14- CONTROL WILL BE TRANSFERRED TO SlATEHENT 20 AT LINE 22

In the first level 2 loop no debug messages are printed since the TRACE(I) statement is in effect. However,
when the TRACE(3) statement becomes effective, flow is traced up to and including level 3. There are no
messages for transfers within the level 4 loop. To trace only inner loops, for example levels 3 and 4 in the
above example, a C$ TRACE(4) statement is placed immediately before the DO statement for the level 3
loop (line 16). A C$ OFF (TRACE) statement is placed after the terminal line for the level 3 loop, so that
subsequent program flow in levels 0, l, and 2 is not traced.

60305600 B 1-13-17

I

The level number applies to the entire program unit; it is not relative to the position of the C$ TRACE
statement in the program. For example, to trace the level 4 DO loop in Program P:

C$ TRACE(4)

must be specified. Positioning the statement C$ TRACE(I) before statement 31 would not achieve the same
result.

Care must be taken with the use of debugging statements within DO loops. Since nested loops are executed
more frequently, the quantity of debug output may quickly multiply.

The C$ TRACE (Iv) statement traces transfers of control within DO loops; however, transfers between the
terminal statement and the DO statement are not traced.

Example:

DO 100 I = 1,10

100 CONTINUE

Transfers from statement I 00 to the DO statement are not traced.

NOGO STATEMENT

No argument list can be specified with this statement. The NOGO statement suppresses partial execution of
a program containing compilation errors.

If a NOGO statement is present anywhere in the program, it applies to the entire program. It is therefore
not affected by an OFF statement or by bounds in an AREA statement.

1-13-18 60305600 G

DEBUG DECK STRUCTURE

Debugging statements may be interspersed with FORTRAN statements in the source deck of a program
unit (main program, subroutine, function). The debugging statements apply to the program unit in which
they appear. Interspersed debugging statements (figure 13-1) change the FORTRAN generated line
numbers for a program.

Debugging statements also may be grouped to form a debugging deck in one of the following ways:

As a deck placed immediately after the PROGRAM, SUBROUTINE or FUNCTION statement
heading the routine to which the deck applies (internal debugging deck, figure 13-3). Any names
specified in the DEBUG statement, other than the name of the enclosing routine, are ignored.

As a deck immediately preceding the first source deck in the job INPUT file (external debugging
deck, figure 13-2).

As one or more decks on the file specified by the D parameter on the FTN control card (external
debugging deck, figure 13-4). When no name is specified by the D parameter, the INPUT file is
assumed.

All debugging decks must be headed by a C$ DEBUG card. In an internal debugging deck, the C$ DEBUG
card is used without an argument list, since the deck can only apply to the routine in which it is inserted. In
an external debugging deck, a C$ DEBUG may be used with or without an argument list. The statements in
the external debugging deck apply to all program units in the compilation.

60305600 B 1-13-19

Debug
Cards

Debug
Cards

6
7
8 I

.L
9 L

L

Data Deck
_l

/7 1--
8 t-

9 .L
"'"' .L

f_

I

{_Executable Statements
/

IC$ OFF (FUNCS) l 1--

C$ STORES(A) i~~
L

.L
~ L

' . (Executable Statements

I

f C$ CALLS
~

IC$ FUNCS
L

.L
.L

' { Executable Statements

L
L

_L
1 t-

{ Specification Statements
to-"

~
~

PROGRAM Statement J ~
I-'

7 r 8
9 l

FTN(D)
..__

Job Card

'-----i

-

Debugging cards are interspersed; they are inserted at the point in the program where they will be
activated.

Figure 13-1. Example of Interspersed Debugging Statements

1-13-20 60305600 c

6
7
8
9

L
_L

_L

Data Deck

7
8
9

f Subroutine B .___

_L
L

_L
L

/Program A
I.

1.-_,

L
_L External

Debugging
Deck

{ {C$ DEBUG

7
8
9 _L

L FTN(D)

Job Card

1
I

]

I--
I-

""" I-

I-
t--

The external debugging deck is placed immediately in front of the first source line. All program units (here,
Program A and Subroutine B) will be debugged (unless limiting bounds are specified in the deck). This
positioning is particularly useful when a program is to be run for the first time, since it ensures that all
program units will be debugged.

Figure 13-2. External Debugging Deck

60305600 c 1-13-21

Internal {
Debugging

Deck

6
7
8
9

.L
.L

L

Data Deck

/1
8
9 _L_

.L
L

L .__
L

~ Source Deck

.L
.L

{ C$ DEBUG

PROGRAM Statement

7
8
9 FTN(D)

Job Card ----
-----i

1.....1

1

.....
"""" I-

J
~

t-

I
]_

When the debugging deck is placed immediately after the program name card and before any specification
statements. all statements in the program unit will be debugged (unless limiting bounds are specified in the
deck): no statements in other program units will be debugged. This positioning is best when the job is
composed of several program units known to be free of bugs and one unit that is new or known to have
bugs.

Figure 13-3. Internal Debugging Deck

1-13-22 60305600 c

/
I

/

I Debug Deck

(Input)

~I
(Input)

FTN (l=TAPE1,D)

Compiler

/
/

/

Source Deck

(Input)

I
(Input)

FTN (D= TAPE1)

Compiler

The debugging deck is placed on a separat~ file (external debugging deck) named by the D parameter on
the FTN control card and called in during compilation. All program units will be debugged (unless the
program units to be debugged are specified in the deck). This positioning is useful when several jobs can be
processed using the same debugging deck.

Figure 13-4. External Deck on Separate File

60305600 B 1-13-23

DEBUG STATEMENT

(T
7

11 DEBUG

name1 , ... ,name0 routines to which the debugging deck applies

Internal and external debugging decks start with a DEBUG statement and end with the first card other than
a debugging statement or comment. Interspersed debugging statements do not require a DEBUG statement.

In an internal debugging deck, the first form C$ DEBUG statement without an argument list is generally
used, since the deck can apply only to the program unit in which it appears. If a name is specified it must
be the name of the routine containing the debugging deck; if any other name is specified, an informative
diagnostic is printed.

In an external debugging deck, if no names are specified, the deck applies to all routines compiled.
Otherwise, it will apply to only those program units specified by name, , ... ,name0 ; if any other name is
specified, an informative diagnostic is printed.

Example:

In the following program, a DEBUG statement is not required since the debugging statement, CS
STORES (A,B), is interspersed.

5

10

1-13-24

PROGRAM STORAR <INPUT,OUTPUT,OEBUG=OUTPUTl
REAL A<10>, 8(~,2)

C$ STORES CA,B>
B<i,2> = 5.5
Bl4,2> = O.
00 4 N = 1,3

It A<N> = N+1
PRINT 5

S FORMAT <1H0)
STOP
END

60305600 B

However, if the C$ STORES statement immediately follows the PROGRAM statement, this is an internal debugging
deck, and a C$ DEBUG statement must appear.

5

10

PROGRAM OEHOL <INPUT,OUTPUT,OEBUG=OUTPUTl

C$ DEBUG
C$ STORES<IHOL,IRIGHT,ILEFT,HOLL>

IHOL=2HPA
IRIGHT=2RPA
ILEFT=2LPA
HOLL=2HPA
PRINT 1

1 FORMAT <1HO>
STOP
ENO

There can be several DEBUG statements in an external deck, and a routine can be mentioned more than
once.

C$ DEBUG
C$ STORES(I,J)
C$ DEBUG(MAIN,EXTRA,NAMES)
C$ ARRAYS(VECTAB,MLTAB)
C$ DEBUG(MAIN)
C$ TRACE
C$ CALLS(EXTRA,NAMES)

60305600 B 1-13-25

I

AREA STATEMENT

C$
I
I
I

C
1
$ AREA bounds1 , .•. ,boundsn

I
I

7

AREA/name1/bounds1 , .•• , boundsn, ... /name/bounds1 , .•. ,boundsn

C$ AREA(bounds1, ... ,bounds0) is used in internal debugging decks only.

name1,namei, ... ,name
0

are the names of routines to which the bounds apply.

bounds are line positions defining the area to be debugged.

bounds can be written in one of the following forms:

n, Initial line position.

n2 Terminal line position.

n3 Single line position to be debugged.

n, Initial line position.

* Last line of program.

* First line of program.

n1 Terminal line position.

(*, *) * First line of program.

* Last line of program.

Line positions can be:

nnnnn

Lnnnn

id.n

Statement label.

Source program line number as printed on the source listing by the FORTRAN
Extended compiler (source listing line numbers change when debugging cards are
interspersed in the program).

UPDATE line identifier (defined in the UPDATE Reference Manual); id must begin with
an alphabetic character and contain no special characters.

I A comma must be used to separate the line positions, and embedded blanks are not permitted. Any of the
line position forms can be combined and bounds can overlap.

1-13-26 60305600 G

The AREA statement is used to specify an area to be debugged within a program unit. All debugging
statements applicable to the program areas designated by the AREA statement must follow that statement.
Each AREA statement cancels the preceding program AREA statement. An AREA statement (or contiguous
set of AREA statements) specifies bounds for all debugging statements that occur between it and the next
C$ DEBUG, AREA statement, or FORTRAN source statement.

AREA statements may appear only in an external or an internal debugging deck (figures 13-2, 13-3, and
13-4). If they are interspersed in a FORTRAN source deck, they will be ignored.

In an external debugging deck, the following form, with /name/ specified, must be used. It can be used
with both forms of the DEBUG statement.

(Ci$ 11 DEBUG

1 7

C$
I

AR EA/name1 /bounds1 , ... , boundsn , ... /namen/bounds1 , .•. , boundsn

I
I

or

c,$ DEBUG (name1, •.. ,namen)

I
I
I

1 7

c,$ AREA/name1/bounds1 , .•• ,bounds0 , ... /name/bounds1 , •.• ,boundsn

I
I
I

If /name/ is omitted, or names in the /name/ list do not appear in (name1, ••• ,name0) in the DEBUG
statement, the AREA statement is ignored.

In an internal debugging deck, the following form is used, and the bounds apply to the program unit that
contains the deck.

60305600 G

c'$
I

I
I

AR EA bounds1 , ... ,boundsn

1-13-27

Example:

External deck

C$ DEBUG
I C$ AREA/PROGA/(XNEW.10,XNEW.30)/SUB/*,L50)

C$. ARRAYS (TAB,TITLE,DAYS)
C$ AREA/SUB/(15,99)
C$ STORES (DAYS)

Internal deck

C$ DEBUG
C$ AREA (LlO,*)
C$ FUNCS (ABS)

OFF STATEMENT

(1
7

x1 , ••• ,x0 debug options

The OFF statement deactivates the options specified by xi or all currently active options except NOGO, if
no argument list exists. Only options activated by interspersed debugging statements are affected. Options
activated in debug decks or by subsequent debugging statements are not affected.

The OFF statement is effective at compile time only. In a debugging deck, the OFF statement is ignored.

1-13-28 60305600 G

s

10

Ci
C$

C$

•

PROGRAH OFF COUTPUT,OEBUG=OUTPUTI
DEBUG
STOR ES<C>
INTEGER A, B, C
STORESCA, Bl

A = 1
B = 2
c = 3

• HESSAGES HILL BE PRINTED FOR STORES IN'O A, B, ANO C •
•
C$ OFF
•

15

•
•

20 •
•
•

/DEBUG/ OFF
/DEBUG/
/DEBUG/
/DEBUG/

60305600 B

A =
B =
c ::

4
5
6

THE OFF STA TE HE NT Wil. L ONLY AFFECT THE INTERSPERSED DEBUGGING
STATEMENT, SO THERE HILL BE NO MESSAGES FOR STORES INTO
A OR Be HOWEVER, C£ STORES<CJ IN THE DEBUGGING DECK IS NOT
AFFECTED, ANO A MESSAGE ~S PRINTED FOR A STORE INTO C •

ENO

AT LINE
AT LINE
AT LINE
AT LINE

7- THE ~EW VALUE OF THE VARIABLE A
8• THE NEW VALUE OF THE VARIABLE B
9- THE .NEW VALUE OF THE VARIABLE C

17• THE NEW VALUE OF THE VARIABLE C

IS
IS
IS
IS

1-13-29

1
2
3
&

PRINTING DEBUG OUTPUT

Debug messages produced by the object routines are written to a file named DEBUG. The file is always
printed upon job termination, as it has a print disposition. To intersperse debugging information with
output, the programmer should equate DEBUG to OUTPUT on the program card. An FET and buffer are
supplied automatically at load time if the programmer does not declare the DEBUG file in the PROGRAM
statement. For overlay jobs, the buffer and FET will be placed in the lowest level of overlay containing
debugging. If this overlay level would be overwritten by a subsequent overlay load, the debug buffer will be
cleared before it is overwritten.

At object time, printing is performed by seven debug routines coded in FORTRAN. These routines are
called by code generated at compile time when debugging is selected.

Routine

BU GARR

BUGCLL

BUG FUN

BUGG TA

BUGSTO

BUGTRC

BUGTRT

I STRACE ENTRY POINT

Function

Checks array subscripts

Prints messages when subroutines are called and when return to calling
program occurs

Prints messages when functions are called and when return to calling
program occurs

Prints a message if the target of an assigned GO TO is not in the list

Performs stores checking

·Flow trace printing except for true sides of logical IF

Flow trace printing for true sides of logical IF

Traceback information from a current subroutine level back to the main level is available through a call to
STRACE. STRACE is an entry point in the object routine BUGCLL. A program need not specify the D
option on the FTN card to use the STRACE f ea tu re.

STRACE output is written on the file DEBUG; to obtain traceback information interspersed with the source
program's output, DEBUG should be equivalenced to OUTPUT in the PROGRAM statement.

PROGRAM MAIN

1-13-30

PROGRAM MAIN (OUTPUT.DEBUG=OUTPUT)
CALL SUBl
END

60305600 G

SUBROUTINE SUB 1

SUBROUTINE SUBl
CALL SUB2
RETURN
END

SUBROUTINE SUB2

SUBROUTINE SUB2
I = FUNC1(2)
RETURN
END

FUNCTION FUNCl

FUNCTION FUNCl (K)
FUNCl = K ** 10
CALL STRACE
RETURN
END

Output from STRACE:

/DEBUG/ FUNC1 AT LINE 3- T~ACE ROUTINE CALLEO
FUHC1 CALLED BY SUB2
suaz CALLEO BY SUB1
SUB1 CALLED BY HAIN

AT LlNI
AT LINE
AT LINll

2, FROH
2t FROH
2t FROH

1 LEVELS BACK
2 LEVELS BACK
3 LEVELS BACK

A main program is at level O; a subroutine or function called by the main program is at level I; another
subprogram called by a subprogram is at level 2, etc. Calls are shown in order of ascending level number,
returns in order of descending level number.

For additional information regarding the debugging facility, refer to the FORTRAN Extended Debug
User's Guide.

60305600 B I-13-31

SAMPLE PROGRAMS

PROGRAM OUT

Program OUT illustrates the WRITE and PRINT statements.

Features:

Control cards

WRITE and PRINT statements

Carriage control

PROGRAM statement

PAT,Tl0,CM45000.

11-1

The job card must precede every job. PAT is the job name. TIO specifies a maximum of 10 (octal) seconds
central processor time, and CM45000 requests 45000 (octal) words of memory for the job.

FTN.

Specifies the FORTRAN Extended compiler and uses the default parameters. (section 11, part 1.)

LGO.

The binary object code is loaded and executed.

If no alternative files are specified on the FTN card, the FORTRAN Extended compiler reads from the file
INPUT and outputs to two files: OUTPUT and LGO. Listings, diagnostics, and maps are output to OUT­
PUT and the relocatable object code to LGO.

7/8/9

The end-of-record card (EOR) or end-of-section card (EOS) separates control cards from the remainder of the
INPUT file. The end-of-record card is a multi punch 7 /8/9 in column 1; it must follow the control cards in
every job.

60305600 c 11-1-1

PROGRAM OUT (OUTPUT,TAPE6=0UTPUT)

The PROGRAM card identifies this as the main program with the name OUT and specifies the file
OUTPUT. Output unit 6 will be referenced in the program. All files used by a program must be specified in
the PROGRAM card of the main program.

T APE6 =OUTPUT is included because output unit 6 is referenced in a WRITE statement. The unit number
must be preceded by the letters TAPE. All data written to unit 6 will be placed in the file OUTPUT and
output to the printer.

WRITE (6,200) INK

The WRITE statement outputs the variable INK to output unit 6. If a PRINT statement had been used
instead of WRITE:

PRINT 200, INK

TAPE6=0UTPUT would not be needed in the PROGRAM card; PROGRAM OUT (OUTPUT) would be
sufficient.

100 FORMAT (*1 THIS WILL PRINT AT THE TOP OF A PAGE*)

This FORMAT statement uses * *to delimit the literal. 1 is a carriage control character which causes the
line to be printed at the top of a page.

200 FORMAT (I5,* = INK OUTPUT BY WRITE STATEMENT*)

Although the variable INK is 4 digits, a specification of IS is given because the first character is always
interpreted as a control. In this case, the carriage control character is a blank and output will appear on the
next line.

6171819

This is the end of file (EOF) or end of partition card; a multipunch 617 /8/9 in column 1. This card must
appear as the last card in each job.

11-1-2 60305600 c

PATtT10tCM45000.
FTN.
LGO.
7 /8/9 in column 1

PROGRAM OUT COUTPUTtTAPE 6=0UTPUT)
PRINT 100

100 FORMAT <*l THIS WILL PRINT AT THE TOP OF A PAGE*>
INK = 2000+4000
WRITE (6t200) INK

200 FORMAT <ISt* = INK OUTPUT BY WRITE STATEMENT*>
PRINT 300, INK

300 FORMAT <lH tl4,30H = OUTPUT FROM PRINT STATEMENT)
STOP
END

6/7 /8/9 in column 1

Output:

THIS WILL PRINT AT THE TOP OF A PAGE
6000 = INK OUTPUT 8' WRITE STATEMENT
6000 = OUTPUT FROM PRINT STATEMENT

60305600 A II-1-3

PROGRAM B

Program B generates a table of 64 characters indicating which character set is being used. The internal bit
configuration of any character can be determined by its position in the table. Each character occupies six
consecutive bits.

Features:

Octal constants

Simple DO loop

PRINT statement

FORMAT with H,/,1,X and A elements

The print statement PRINTl has no input/output list; it prints out the heading at the top of the page using
the information provided by the FORMAT statement on line 3. 25H specifies a Hollerith field of 25
characters, 1 is the carriage control character, and the two slashes I I cause one line to be skipped before the
next Hollerith field is printed. The slash at the end of the FORMAT specification skips another line before
the program output is printed.

NCHAR= 00 01 02 03 04 05 06 07 00 OOB

This statement places an octal constant in NCHAR. The blanks and leading zeros could be omitted without
affecting the program; they are included for readability. A computer word can hold ten 6-bit characters;
but since this statement uses only 8 characters, the 4 zeros at the end of the octal constant position the 8
characters into the left 48 bits of the computer word. The 8 characters are left justified so they may be
printed using A format.

DO 3 I=l,8
J=I-1

These statements output numbers 0 through 7. A DO index cannot begin with a zero.

II-1-4 60305600 B

PRINT 2, J, NCHAR

Prints out 0 through 7 (the value of J) on the left and the 8 characters in NCHAR on the right. The first
iteration of the DO loop prints NCHAR as it appears on line 4. The octal value 01 is a display code A, 02
is a B, 03 is a C, etc.

NCHAR=NCHAR 10 10 10 10 10 10 10 10 00 OOB

The octal constant 10101010101010100000B is added to NCHAR; and when this is printed on the second
iteration of the DO loop, the octal value 10 is printed as a display code H, 11 as I, 12 as J, etc. Compare
these values with the Character Set listed in Appendix A.

8BBBBtT10tCM70000tP15.
MAP <OFF>
FTN.
LGO.
7 /8/9 in column 1

PROGRAM B <OUTPUT)
PRINT 1

1 FORMAT<2SH1TABLE OF INTERNAL VALUES//12H 01234567,/)
NCHAR= 00 01 02 03 04 05 06 07 00 OOB
DO 3 I = ltB
J=I-1
PRINT 2, J,NCHAR

2 FORMAT<I3tlXtA8)
3 NCHAR=NCHAR+lO 10 10 10 10 10 10 10 00 008

STOP
END

6/7 /8/9 in column 1

Output:

TABLE OF INTERNAL VALUES

01?34567

o : ~. nr.oE f G
1 HT~KLMNO
2 PQR STUVW
3 XYZ01234
l+ ?671:l.Q+-•
5 I()$= , •
6 :: I l ~~ t .. v "

7 •+<><~--;

60305600 G 11-1-5

I

PROGRAM MASK

Program MASK reads names and home states from data cards ignoring all but the first two letters of the
state name. If the state name starts with the letters CA, the name is printed.

Feature:

Masking

1 FORMAT (1Hl,5X,4HNAME,///)
PRINT l

The printer is directed to start a new page, print the heading NAME, and skip 3 lines.

3 READ 2,LNAME,FNAME,ISTATE,KSTOP
IF(KSTOP.EQ.l)STOP

The last name is read into LNAME, first name into FNAME, and home state into !STATE. The last card in
the deck contains a one which will be read into KSTOP as a stop indicator. The IF statement on line 6 tests
for the stop indicator.

IF((ISTATE.AND.77770000000000000000B).NE.(2HCA.AND.777700000000000
KOOOOOB)) GO TO 3

The relational operator .NE. tests to determine if the first two letters read from the data card into variable
!STATE match the two letters of the Hollerith constant CA. The last eight characters (48 bits) in ISTATE
are masked and the two remaining characters are compared with the word containing the Hollerith con­
stant CA, also similarly masked. If the bit string forming one word is not identical to the bit string forming
the other word, !STATE is not equal to CA and the IF statement test is true.

The bit configuration of CALIFORNIA, the Hollerith constant CA and the mask follows:

California

Hollerith c A L I F 0 R N I A

Octal 03 01 14 11 06 17 22 16 11 01

Bit 000011 000001 001100 001001 000110 001111 010010 001110 001001 000001

II-1-6 60305600 B

Constant CA

Hollerith c A blank blank blank blank blank blank blank blank

Octal 03 01 55 55 55 55 55 55 55 55

Bit 000011 000001 101101 101101 101101 101101 101101 101101 101101 101101

Mask

Octal 77 77 00 00 00 00 00 00 00 00

Bit 111111 111111 000000 000000 000000 000000 000000 000000 000000 000000

When the masking expression (!STATE.AND. 77770000000000000000B) is completed, the first two charac-
ters of CALIFORNIA remain the same and last eight characters are zeroed out. The AND operation
follows:

000011 000001 001100 001001 000110 001111 010010 001110 001001 000001

111111 111111 000000 000000 000000 000000 000000 000000 000000 000000

000011 000001 000000 000000 000000 000000 000000 000000 000000 000000

When (2HCA.AND.77770000000000000000B) is evaluated, the same result is obtained. Thus, in both
words, all bits but those forming the first two characters will be masked, making a valid basis for compar­
ing the first two characters of both words. If the result of the mask is true, the last name and first name are
printed (statement I 0), otherwise the next card is read.

60305600 B 11-1-7

PROGRAM MASK (INPUTtOUTPUTJ
l FORMAT (1Hl•SXt4HNAMEt///)

PRINT l
2 FORMAT (3Al0tll>
3 READ 2tLNAMEtfNAMEtlSTATEtKSTOP

lFCKSTOP.EQ.lJSTOP

C IF FIRST TWO CHARACTERS Of !STATE NOT EQUAL TO CA REAU NEXT CA~O

IF<<ISTATE.AND.77770000-000000000000BJ.Nf.<2HCA·ANU.7777QOUOOU0000U
KOOOOOBJ> GO TO 3

11 fORMAT<SXt2AlO>
10 P~INT lltLNAMEtfNAME

GO TO 3
Et·.w

Data cards:

BROWN, PrllLLlP
BICARDlt R. J.
CR 0 WI~ , S Y l V l A
HIGENBERFtZELDA
MUNCH, GARY G.
SMITH SIMON
DEAN ROGER
RIPPLE SALLY
JONES STAN
HEATH BILL

M.CA
KENTUCKY
CAL
MAIN£
CALIF.
CA
Gt:O~GIA
NEW YOt<K
OREGON
Nbt/ YOkK

Output:

11-1-8

NAME

9ROWN,
CROWN,
MUNCH,
SMITH

PHILLIP M.
S'LVIA
GARY G.
SIMON

l

60305600 B

PROGRAM EQUIV

Program EQUIV places values in variables that have been equivalenced and prints these values using the
NAMELIST statement.

Features:

EQUN ALEN CE statement

NAMELIST statement

EQUIVALENCE (X,Y),(Z,I)

Two real variables X and Y are equivalenced; the two variables share the same location in storage, which
can be referred to as either X or Y. Any change made to one variable changes the value of the others in an
equivalence group as illustrated by the output of the WRITE statement, in which both X and Y have the
value 2. The storage location shared by X and Y contained first 1. (X = 1.) then 2. (Y = 2.).

The real variable Z and the integer variable I are equivalenced, and the same location can be referred to as
either real or integer. Since integer and real internal formats differ, however, the output values will not be
the same.

For example, the storage location shared ·by Z and I contained first 3. then the integer value 4 When I is
output, no problem arises; an integer value is referred to by an integer variable name. However, when this
same integer value is referred to by a real variable name, the value 0.0 is output. The internal format of
real and integer values differ.

Integer

Sign

Real

Sign

59 58

59 58

Biased
Exp

0

59

46 47 0

Fraction(m)

48

Although they can be referred to by names of different types. the internal bit configuration does not change.
An integer value output as a real variable does not have an exponent and its value will be small.

When variables of different types are equivalenced. the value in the storage location must agree with the
type of the variable name; or unexpected results may be obtained.

60305600 B 11-1-9

WRITE(6,0UTPUT)

This NAMELIST WRITE statement outputs both the name and the value of each member of the NAME­
LIST group OUTPUT defined in the statement NAMELIST /OUTPUT /X,Y,Z,I. The NAMELIST group is
preceded by the group name, OUTPUT, and terminated by the characters $END.

Output:

. 11-1-10

FROGRAM EQUIV <OUTPUT,TAPE&=OUTPUT>
EQUIVALENCE <X,,l,<Z 7 Il
NAMELIST/OUTPUT/X,Y,Z,I
X=1.
Y=2.
Z=3.
I=4
WRITE< 6, OUTPUT>
STOF
ENO

$OUTPUT

x = .2E+Olt

y = .2E+Olt

l = o.o,

I = 4,

SEND

60305600 F

PROGRAM COME

Program COME places variables and arrays in common and declares another variable and array equivalent
to the first element in common. It places the numbers 1 through 12 in each element of the array A and
outputs values in common using the NAMELIST statement.

Features:

COMMON and EQUIVALENCE statements

NAMELIST statement

COMMON A(l),B,C,D, F,G,H

Variables are stored in common in the order of appearance in the COMMON statement A(l),B,C,D,F,G,H.
Variables can be dimensioned in the COMMON statement; and in this instance, A is dimensioned so that it
can be subscripted later in the program. If A were not dimensioned, it could not be used as an array in
statement 1.

INTEGER A,B,C,D,E(3,4),~,H

All variables with the exception of G are declared integer. G is implicitly typed real.

EQUIVALENCE(A,E,I)

The EQUIVALENCE statement assigns the first element of the arrays A and E and an integer variable I to
the same storage location. Since A is in common, E and I will be in common. Variables and array elements
are assigned storage as follows:

Relative
Address 0

I

E(1, 1)

A(1)

60305600 B

+1

E(2,1)

B

A(2)

+2 +3 +4

E(3,1) E(1,2) E(2,2)

c D F

A(3) A(4) A(5)

+5 +6 +7 +8 +9 +10 +11

E(3,2) E(1,3) E(2,3) E(3,3) E(1,4) E(2,4) E(3,4)

G H

A(6) A(7) A(8) A(9) A(10) A(11) A(12)

II-1-11

DO 1 J=l,12
1 A(J)=J

The DO loop places values I through 12 in array A. The first element of array A shares the same storage
location with the first element of array E. Since B is equivalent to E(2, 1), A(2) is equivalent to B, A(3) to C,
A(4) to D, etc.

Any change made to one member of an equivalence group changes the value of all members of the group.
When I is stored in A, both E(l, I) and I have the value I. When 2 is stored in A(2), B and E(2, I) have the
value 2. Although B and E(2, I) are not explicitly equivalenced to A(2), equivalence is implied by their
position in common.

The implied equivalence between the array elements and variables is illustrated by the output.

NAMELIST/V/A,B,C,D,E,F,G,H,I

The NAMELIST statement is used for output. A NAMELIST group, V, containing the variables and arrays
A,B,C,D,E,F,G,H,I is defined. The NAMELIST WRITE statement, WRITE(6,V), outputs all the members of
the group in the order of appearance in the NAMELIST statement. Array E is output on one line in the
order in which it is stored in memory. There is no indication of the number of rows and columns (3,4).

G is equivalent to E(3,2) and yet the output for E(3,2) is 6 and G 0.0. G is type real and E is type integer.
When two names of different types are used for the same element, their values will differ because the
internal bit configuration for type real and type integer differ (refer to Program EQUIV).

FROGRAM COME (OUTPUT,TAPEG=OUTPUT>
COMMON A<1>,a,c,o, F,G,H
INTEGER A,s,c,o,E<3,4),F, ·H
EQUIVALENCE <A,E,I>
NAHELIST/V/A,s,c,o,E,F,G,H,I

00 1 J = 1, 12
1 A<J>=J

11-1-12

WRITE <6,V>
STOP
ENO

60305600 B

Output:

$V

A = 1,

8 = 2,

c = 3,

0 = 4,

E = 1, 2, 3, 4, 5, 6, 7, a, g, 10, 11, 12,

F = 5,

G = 0. ()'

H = 1,

I = 1,

$ENO

60305600 A 11-1-13

PROGRAM LIBS

Program LIBS illustrates library subroutines provided by FORTRAN Extended.

Features:

EXTERNAL used to pass a library subroutine name as a parameter to another library routine.

Division by zero.

LEGV AR used to test for overflow or divide error conditions.

Library functions used:

LOCF

LEGVAR

Library subroutines used:

DATE

TIME

SECOND

RANG ET

DATE is a library subroutine which returns the date entered by the operator from the console. DATE is
declared external because it is used as a parameter to the function LOCF. Declaring DATE external does
not prevent its use as a library subroutine in this program.

PRINT2,TODAY,CLOCK
2 FORMAT(*lTODAY=*Y, AlO, * CLOCK=*,AlO)

These statements print the date and time. The leading and trailing blanks appear with the I 0 alphanumeric
characters returned by lhe subroutine DATE because the operator typed in the date this way. However,
since he may choose to use a 4-digit year, it may be prudent to use A 11 in the output FORMAT specifica­
tion to guarantee at least one leading space. The value returned by TIME is changed by the system once a
second, and the position of the digits remain fixed; a leading blank always will appear. The format of
DATE and TIME can be checked by observing any listing, as the routines DATE and TIME are used by the
compiler to print out the date and time at the top of compiler output listings.

11-1-14 60305600 B

CALL SECOND(TYME)

When SECOND is called, the variable name TYME is used. A variable name cannot be spelled the same as
a program unit name. If Program LIBS had not called the subroutine TIME, a variable name could be
spelled TIME.

LOCATN=LOCF(DATE)

DATE is not a variable name as it appears in an EXTERNAL statement.

Library function LOCF returns the address of DA TE.

CALL RANGET(SEED)

Library subroutine RANGET returns the seed used by the random number generator RANF if it is called.
If RANGET is called after RANF has been used, RANGET will return the value currently being processed
by the random number generator. With the library subroutine RANSET, this same value could be used to
initialize the random number generator at a later date.

PRINT3, TYME, LOCATN, LOCATN, SEED, SEED
3 FORMAT(*OTHE ELAPSED CPU TIME IS*,Gl4.5,* SECONDS.*//* LOCATION OF

1 DATE ROUTINE IS=*,015,* OR*,17,* IN DECIMAL.*/*OTHE INITIAL VALUE
2 OF THE RANF SEED IS *,022,*, OR*,G30.15,* IN G30.15FORMAT.*)

These statements print out the values returned by the routines SECOND, LOCF, and RANGET.

Asterisks are used to delineate Hollerith fields in the format specification to illustrate the point that exces­
sive use of asterisks can be extremely difficult to follow. .

Y=O.O
WOW=7.2/Y
IF(O.NE. LEGVAR{WOW))PRINT4,WOW

These statements illustrate the use of the library function LEGV AR within an IF statement to test the validity
of division by zero. LEGV AR checks the variable WOW. This function returns a result of -1 if the variable is
indefinite, + 1 if it is out of range, and 0 if it is normal. Comparing the value returned by LEGV AR with 0
shows that the number is either indefinite or out of range. The output R shows the variable is out of range.

Division by zero is allowed; representation for an infinite value is given in section III4.t

Division by zero causes an immediate overflow condition error.§

The line of -*-* on the output is produced by the FORMAT specification in statement number 4: 50(2H*-).

tApplies only to CONTROL DATA CYBER 70/Models 72, 73, 74, CYBER 170, and 6000 Series computers.
§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

60305600 G 11-1-15

c

c

c

PRQG~AM LIBS (OUTPUT)

EXTERNAL DATE

CALL OAT~ <TODAY>
CALL TIME <CLOCKl

PqINT 2, TODAY, CLOC~
2 FO~MATC•1TOOAY=•, A!O, • CLOCK=•, AlQ)

CALL SECONO<TYME>
LOCATN=LO~FCOATEJ
CALL RANGETCSEEO>

PP.INT ~,TYME, LOCATN, LOCATN, SEEO, SEEQ
3 FOQ~AT(~OTHE EL~PSED CPU TIME IS•,Gt4.5,• SECONDS.•//+ LOCATION OF

1 CATE ~OUTINE IS=•,01s,• OR•,I7,• IN aECI~AL.•/•GTHE INITIAL ~ALUE

2 OF THE ~~NF SEE~ IS•,022,•, OR•,GJ0.15,• IN G30.15 FORMAT.•)
c

v:o.o
WOW=7.2/Y
!FCO .NE. LEG~A~CWOWJ)P~INT4,WOW
STOP

~ ~c~~AT(1HO,SO<ZH•-)/• CIV!OE ER~OR, wow P~INTS AS=•,G10.z>
E'NO

Output:

TvDAy: 07/31/74 CLOCK= 1S.47e33.

ThE lLAPSlO CPU TIMc IS leO<iJO st::co~os.

LOC~TION OF DATE ROuTI~E IS•00000000000~347 OR 2791 IN OECJ~AL•

TME l~IT!AL VALUE OF THE RANF SEEO IS 171712743214774131~5, OR

DIVIDE ERRORt, WO~ PRINTS AS= R

11-1-16

.170998J9t+044023 IN GJ0.15 FOR~AT.

60305600 F

PROGRAM PIE

Program PIE calculates an approximation of the value of rr .

Feature:

Library function RANF

The random number generator, RANF, is called twice during each iteration of the DO loop, and the values
obtained are stored in the variables X and Y.

DATA CIRCLE,DUD/2*0.0/

The DATA statement initializes the variables CIRCLE and DUD with the value 0.0.

Each time the DO loop is iterated, a random number, uniformly distributed over the range 0-1, is returned
by the library function RANF, and this value is stored in the variable X. The value of X will be O:::; X <I.
DUD is a dummy argument which must be used when RANF is called.

Y=RANF(DUD)

RANF is referenced again; this time to obtain a value for Y.

IF(X*X+Y*Y.LE.l.)CIRCLE=CIRCLE+l.

The IF statement and the arithmetic expression 4. *CIRCLE/ I 0000. calculate an approximation of the value
of 7r. The value of rr is calculated using Monte Carlo techniques. The IF statement counts those points
whose distance from CIRCLE(O.O) is less than one. The ratio of the number of points within the quarter
circle to the total number of points approximates I I 4 of rr. The value PI is printed by the NAMELIST
statement WRITE(6,0UT)

60305600 c 11-1-17

PROGRAM PIElOUTPUTtTAPE6=0UTPUT)
0ATA CIRCLEtDUD/~*O.O/
NAMELIST/OUT/PI

DO l I = ltlOOOO
X=RANf (DUO>
Y=RANF(OUD>
IF<X*X+Y*Y.LE.l.>CIRCLE=CIRCLE+l.

1 CONTINUE-

Output:

11-1-18

PI=4.*CIRCLE/lOOOO.
WRITE(6tOUT>

STOP
END

sour

SEND

60305600 F

PROGRAM ADD

Program ADD illustrates the use of the DECODE statement. The ENCODE and DECODE statements are
simpler to understand when related to the READ and WRITE statements.

Features:

DECODE statement.

DECODE (READ)

A READ statement places the image of each card read into an input buffer. The card image occupies eight
computer words, each word containing ten display code characters. Compiler routines convert the character
string in the card image into floating point, integer or logical values, as specified by the FORMAT statement,
and store these values in the locations associated with the variables named in the list.

With DECODE, the array specified in the DECODE statement is used as the input buffer. The number of I
words moved to the input buffer from the array is determined by the record length.

With the READ statement, when the FORMAT specification indicates a new record is to be processed (by a
slash or the final right parenthesis of the FORMAT statement), a new record is obtained by reading another
card into the input buffer.

With the DECODE statement, when the FORMAT statement indicates a new record is to be processed (by a I
slash or final right parenthesis), the next part of the array is used as the input buffer. The record length in­
dicates the number of words to move forward in the array.

ENCODE (WRITE)

A WRITE statement causes the output buffer to be cleared to spaces (effectively). Data in the WRITE
statement list is converted into a character string according to the format specified in the FORMAT statement,
and placed in the output buffer. When the FORMAT statement indicates an end of a record with either a
slash or the final right parenthesis, the character string is passed from the output to the output system; the
output buffer area is reset to spaces (effectively), and the next string of characters is placed in the buffer.

The ENCODE statement is processed by compiler routines in the same way as the WRITE statement, but with I
the array specified within the parentheses of the ENCODE statement used as the output buffer. The number
of words per record in the array is determined by the record length.

60305600 G 11-1-19

The number of computer words in each ENCODE or DECODE record is determined by dividing the
record length by 10 and rounding up. For example, a record length of 33 requires 4 words, and a record
length of 71 requires 8 words.

As a mnemonic aid, it may be useful to remember READ ends with a D and corresponds to DECODE,
WRITE ends with an E and corresponds to ENCODE.

In the following program, the format of data on the input cards is specified in column 1. If column 1 is a one, each
of the remaining columns is a data item. If column 1 is a two, each pair of the remaining columns is a data item. If
column 1 is a three or greater, each triplet of the remaining columns is a data item. Based on the information in
column 1, the correct DECODE statement (the proper format and item count) are selected. The program then totals
and prints out the items in each input card.

PKOGRAM ADU 000
l<INPUTtOUT~UT~TAPES:lNPUT,TAPEb=OUTPUT) 001

INTEGER CAR0(b),!Nt79>,TOTAL 002
10 HEAO<~•ll>KEYtCAkD 003
11 FORMAT<Ilt7AlO,A9) OOc+

IF<EOF<S>.NE.O>STOP OOS
KEY=MAXO(ltMINO<KEYt3)) 006
bOl0<1•2•3)tKEY 007

1 DECOOE<79,9ltCA"O>IN 008
91 fORMAT(79Il> 009

N=79 010
bOT040 Oli

2 OECOOt::<7th92tCArW) <IN<I>tI:ld9> 012
92 FORMAT<3~12) 013

N=39 014
GOT040 01~

3 UECOOE<78t93,CAR0) <IN<I>•l=l•26> Olh
93 FORMAT<2bl3) 017

N=26 Ol~
40 TOTAL=O 019

0041 I=l •N 020
41 TOTAL=TUTAL+lN<l> 021

WRlTE<6tl2>TOTAL•Nt~cYtCAROt<lN(l)tl= l•N> 022
12 fORMAT(/l6t20H IS THE TOTAL OF THE •l3t20rl NUMB£kb ON THE CARO; 023

ll2,7Al0tA9/l6H THE NUM8£RS ARE/(2014>> 024
GOTOlO 025
ENU 026

7/8/9 lN COLUMN l• 027
213225S4766988775SJ321033224566687796554ld333~21123b547ti96541236S547~96541236028
302l4456699877456632214455666655233655222l444~566332~56bb9988566o5547788S4887029
555666632236665523322l445So66998877655222144455bll223303~244~o66998877455889b03o
l0234~66688899887789965554444556665~3J222lll23302J333b6998555S22211~4447778d5031

000

11-1-20 60305600 B

Output:

1900 IS 1,..t lCTAL OF THE 39 NUHEERS O~ THE CARD
213225~~76cS867755332103322456668779655412333221123654789654123655478SE541236028
THt:. Nlil"EHS AH

13 22 :~ ~i 66 98 87 7~ ~3 32 10 3~ 22 45 66 68 77 9E SS 41
23 33 22 11 23 tS 47 89 65 41 23 65 54 78 96 54 12 3E 2

14380 IS TrE TGTAL OF THE 26 NUMBERS ON THE CARO
302144:Eegse774566322144~Stbt6~~233~s2221444~soc3325S6c699ee5666~s~77ees4ee1029
THE Nt.t'EERS ARE

21 44~ t~9 987 745 6c3 221 445 :EE 665 ~23 365 522 214 445 566 332 556 669 988
~66 655 477 88~ 488 702

13840 IS lrE lCTAL OF THE 2b NUMEE~S o~ THE CARD
35566EE3223EcE5~23322144556669S8877655222144455611223303324456669988774558Sg6030
ll-E f\JU~EERS AH
5.:i6 c66 322 ~66 6~5 233 221 4~~ ~EE 699 887 765 522 214 445 561 122 330 3~2 ~4~
6cc 9S8 E77 4~5 889 6C3

370 IS .TI-" E TClAL OF THE 79 NUHEERS O~ THE:. CARO
102345E6c8ee9ga87789965554444556tES533222111233~233336t9985555222114444777ae~o31
HE Nl.l"EERS AH

0 2 3 4 5 c 6 6 e e 8 s 9 e 8 7 7 e c; 9
6 s s s 4 4 4 4 ., 5 6 E 6 5 5 3 3 2 2 2
1 1 1 2 3 3 c 2 3 3 3 3 6 6 g 9 8 ., 5 5
5 2 2 2 1 1 4 '+ It 4 7 7 7 8 6 5 0 ~ 1

lNT~GER CAR0(8),[N(79),J0TAL

CARD is dimensioned 8 to receive the 79 characters in columns 2 through 80. IN is dimensioned 79 to receive the
numeric values of the input items.

10 KEAD<Stll>KEYtCARD

11 FORMAT(llt7Al0tA9)

The first column of the card is read into KEY under I format, and the remaining 79 characters are read into the
array CARD under A format; so they can be converted later to I format with a DECODE statement.

lF<~OF<~>.NE.O>STOP

Tests for the end of data in which case the program simply stops.

Guarantees that the value of KEY is greater than zero and less than or equal to three.

40 TOTAL=O

D04ll=ltN

41 TOTAL=TOTAL+IN<I>

Adds up to correct number of items and leaves the total in TOT AL.

60305600 B 11-1-21

12 FO~MAT(/l6,20H IS THE TOTAL OF THE tl3t20H NUM8EkS ON THE CARD;

112t7AlOtA9/l6H THE NUM8ERS AME/(2014))

Outputs the results.

&OTOlO

Goes back to process the next card.

PROGRAM PASCAL

Program PASCAL produces a table of binary coefficients (Pascal's triangle).

Features:

Nested DO loops

DAT A statement

Implied DO loop

INTEGER L(ll)

L is defined as an I I-element integer array.

DATA L(ll)/l/

The DATA statement stores the value I in the last element of the array L. When the program is executed
L(11) has the initial value 1.

PRINT 4,(I,I=l,11)

This statement prints the headings. The implied DO loop generates the values I through 11 for the column
headings.

PRINT 3,(L(J),J=K,11)

This is a more complicated example of an implied DO loop. The index value J is used as a subscript instead
of being printed. The end of the array is printed from a variable starting position. The I, which appears on
the diagonal in the output is not moving in the array; it is always in L(I I); but the starting point is
moving.

Il-1-22 60305600 B

DO 2 I=l,10
K=ll-I

These statements illustrate the technique of going backwards through an array. As I goes from l to 10, K
goes from l 0 to l. The increment value in a DO statement must be positive, therefore,

DO 2 I=l,10
K=ll-I

provides a legal method of writing the illegal statement DO 2 K = 10, l ,-l.

DO 1 J=K,10
1 L(J)=L(J)+L(J+l)

This inner DO loop generates the line of values output by statement number 2. When control reaches
statement 2; the variable J can be used again because statement number 2 is outside the inner DO loop
However, if I were used in statement 2 instead of J, the statement 2 PRINT 3,(L(l),I = K, l l) would be an
error. Statement 2 is inside the inner DO loop and would change the value of the index from within the
DO loop. Changing the value of a DO index from inside the loop is illegal and will cause a fatal error or a
never ending loop.

FRCGRAl-1

10

15

CO t':BINATIONS OF

1 2 3
2 1
3 3 1
Lt c 4
5 10 10
6 15 20 ., 21 35 I

8 28 56
g 36 8'1

10 45 120
11 55 165

60305600 F

c

FASCAL

FROGRA~ FASCAL <OUTPUT>
HJTEG ER L<11)
DATA L<11> /1/

PR I NT 4 , <I , I= 1 , 11>
4 FORMAT<44~1COMBINATIONS OF H THINGS TAKEN N AT A TIME.//20X,3H·N-/

~11I~)

DO 2 I = 1,10
K= 11- I
L<K>=1
DC 1 J = I<, 10

1 L<J>=L<J>+L<J+U
2 PRINT 3, <L<J) ,J=K, 11>
3 FORHAT<11I5)

STOF
END

H THINGS TAKEN N AT A TIME.

-N-
4 5 6 7 8 9

1
'-" :;I 1

15 6 1
3~ 21 7 1
70 56 28 8 1

12t 126 84 36 g 1
210 252 210 120 45 10
330 462 462 33G 165 55

10 11

1
11 1

11-1-23

PROGRAM X

Program X references a function EXTRAC which squares the number passed as an argument.

Features:

Referencing a function

Function type

Program X illustrates that a function type must agree with the type associated with the function name in
the calling program.

K=EXTRAC(7)

Since the first letter of the function name EXTRAC is E. the function is implicitly typed real. EXTRAC is
referenced, and the value 7 is passed to the function as an argument. However. the function subprogram is
explicitly defined integer, INTEGER FUNCTION EXTRAC(K). and the conflicting types produce errone­
ous results.

The argument 7 is integer which agrees with the type of the dummy argument K in the subprogram. The
result 49 is correctly computed. However, when this value is returned to the calling program. the integer
value 49 is returned to the real name EXTRAC; and an integer value in a real variable produces an
erroneous result (refer to program EQUIV).

This problem arises because the programmer and the compiler regard a program from different viewpoints.
The programmer often considers his complete program to be one unit whereas the compiler treats each
program unit separately. To the programmer, the statement

INTEGER FUNCTION EXTRAC(K)

defines the function EXTRAC integer. The compiler. however. compiles integer function EXTRAC and the
main program separately. In the subprogram EXTRAC is defined integer. in the main program it is defined
real. Information which the main program needs regarding a subprogram must be supplied in the main
program - in this instance the type of the function.

There is no way for the compiler to determine if the type of a program unit agrees with the type of the
name in the calling program: therefore. no diagnostic help can be given for errors of this kind.

The second time, the program was run with EXTRAC declared integer in the calling program, and the correct result
was obtained.

11-1-24 60305600 B

PROGRAM X <OUTPUT>
C WITH EXTRAC DECLARED INTEGER ThE RESULT SHOULU BE 49, OTHERwISE lT
C #ILL 8~ ZERO

K = EXTKAC<7>
PRINT 1' K

1 FORMAT (lHl, 15>
STOP
END

INTEGER FUNCTION EXTRAC (Kl
E~ T~AC = -·K*K
RETURN
ENO

Output:

0

FROG~At1 X

FROGRAM ~ <OUTPUT>
C WITH EXTRAC DECLARED INTEGER THE RESULT SHOULD BE 49, OTHERHIS~ IT

FUNCTICN

Output:

60305600 B

C WILL BE ZERO
H.:TE::GER EXTRAC
K = EXTRllC<7>
FRI NT 1, K

1 FORMAT <11-'1,IS>
STOP
E::J..JO

EXT RAC

INTEGER FLNCTION E:.XTRAC <K>
EXTRAC = l<"'K
RETURN
END

II-1-25

PROGRAM VARDIM ,_

Program V ARD IM illustrates the use of variable dimensions to allow a subroutine to operate on arrays of
differing size.

Features:

Passing an array to a subroutine as a parameter.

A subroutine name used as a parameter passes the address of the beginning of the array and no
dimension information.

COMMON X(4,3)

Array X is dimensioned (4,3) and placed in common.

REAL Y(6)

Array Y dimensioned (6) is explicitly typed real. It is not in common.

CALL IOTA(X,12)

The subroutine IOTA is called. The first parameter to JOT A is array X, and the second parameter is the
number of elements in that array, 12. The number of elements in the array rather than the dimensions (4,3)
is used which is legal.

SUBROUTINE IOTA(A,M)
DIMENSION A{M)

Subroutine IOTA has variable dimensions. Array A is given the dimension M. Whenever the main program
calls IOTA, it can provide the name and the dimensions of the array; since A and M are dummy argu­
ments, IOTA can be called repeatedly with different dimensions replacing M at each call.

CALL IOTA(X,12)

When IOTA is called by the main program, the actual argument X replaces A; and t 2 replaces M.

II-1-26 60305600 A

DO 1 I=l,M
1 A(I)=I

The DO loop places the numbers l through 12 in consecutive elements of array X.

CALL IOTA(Y,6)

When IOTA is called again, Y replaces A and 6 replaces M; and numbers l through 6 are placed in
consecutive elements of array Y. Notice the type of the arguments in the calling program agree with the
type of the arguments in the subroutine. X and A are real, 12 and M are integer.

Names used in the subroutine are related to those in the calling program only by their position as argu­
ments. If a variable I was in the calling program, it would be completely independent of the variable I in
the subroutine IOTA.

The WRITE statement outputs the arrays X and Y.

FFCGRAl''I VAR DIM

PROGRAM VAROIM COUTPUT,TAPEo=OUTPUT>
C0MMON XC!f,3)
RE. AL Y (U
CALL ICTACX,12)
CALL ICTACY,E»
WRITE <t 7 1uu> X,Y

100 FOPMAT <•!ARRAY X = •,12F6.0/•0ARRAY Y
STOF
E.NO

~l.1EROl..TINE IOTA

c
c

SUBROUTl~E IOTA <A,M>
IOTA STORES CONSECUTIVE INTEGERS IN EVERY ELEM~NT CF THE A~RAY A
ST A RT I NG AT 1
DIMENSIOt-- ACM>
DO 1 I = 1,M

1 A<I>=I
RE TURN
El'--'0

Output:

AR F. AY X = 2. 3. L; • 5. 6. 7. 8. g, 10. 11. 12.

ARRAY Y = 1. 2. 3. 4. s. 6.

60305600 B 11-1-27

PROGRAM VARDIM2

VARDIM2 is an extension of program VARDIM. Subroutine IOTA is used: in addition. another subrou­
tine and two functions are used.

Features:

Multiple entry points

Variable dimensions

EXTERNAL statement

COMMON used for communication between program units

Passing values through COMMON

Use of library functions ABS and FLOAT

Calling functions through several levels

Passing a subprogram name as an argument

Program V ARDIM2 describes the method of a main program calling subprograms and subprograms
calling each other. Since the program is necessarily complex. each subprogram is described separately
followed by a description of the main program.

SUBROUTINE IOTA

SUBROUTINE IOTA is described in program VARDIM.

SUBROUTINE SET

SUBROUTINE SET(A,M,V) places the value V into every element of the array A. The dimension of A is
specified by M.

Subroutine SET has an alternate entry point INC. When SET is entered at ENTRY INC. the value V is
added to each element of the array A. The dimension of A is specified by M.

The DO loop in subroutine SET clears the array to zero.

11-1-28 60305600 A

FUNCTION AVG

This function computes the average of the first J elements of common. J is a value passed by the main
program through the function PV AL.

This function subprogram is an example of a main program and a subprogram sharing values in common.
The main program declares common to be 12 words and FUNCTION AVG declares common to be 100
words. Function AVG and the main program share the first 12 words in common. Values placed in
common by the main program are available to the function subprogram.

The number of values to be averaged is passed to FUNCTION PV AL by the statement AA = PV AL(l 2,A VG) and
function PVAL passes this number to function AVG: PVAL=ABS(WAY(SIZE))

COMMON A(lOO)

Function AVG declares common l 00 so that varying lengths (less than 100) can be used in calls. In this
instance, only 12 of the l 00 words are used.

DO 1 I=l,J
1 AVG=AVG+A(I)

The DO loop adds the 12 elements in common.

AVG=AVG/FLOAT(J)

This statement finds the average. The library function FLOAT is used to convert the integer 12 to a floating
point (real) number to avoid mixed mode arithmetic.

The average is returned to the statement PVAL=ABS(WAY(SIZE)) in function PVAL.

60305600 A 11-1-29

FUNCTION PVAL

Function PV AL references a function specified by the calling program to return a value to the calling
program. This value is forced to be positive by the library function ABS.

The main program first calls PVAL with the statement AA= PVAL(12,AVG), passing the integer value 12
and the function A VG as parameters.

INTEGER SIZE

PV AL declares SIZE integer - the type of the argument in the main program (integer 12) agrees with the
corresponding dummy argument (SIZE) in the subprogram.

PVAL=ABS(WAY(SIZE))

The value of PVAL is computed. This value will be returned to the main program through the function
name PV AL. Two functions are referenced by this statement; the library function ABS and the user written
function AVG. The actual arguments 12 and A VG replace SIZE and WAY.

PVAL=ABS(AVG(12))

Function A VG is called, and J is given the value 12. The average of the first 12 elements of common are
computed by A VG and returned to function PV AL. Library function ABS finds the absolute value of the
value returned by AVG.

AM=PVAL(12,MULT)

In this statement in the main program, PV AL is referenced again. This time the function MU LT replaces
WAY.

FUNCTION MULT

MUL T multiplies the first and twelth words in COMMON and subtracts the product from the average
(computed by the function AVG) of the first J/2 words in common.

COMMON ARRAY(l2)

Common is declared 12; MUL T shares the first 12 words of common with the main program.

II-1-30 60305600 A

MULT=ARRAY(12)*ARRAY(l)-AVG(J/2)

The twelfth and first element in common are multiplied and the average of J /2 is subtracted. This is an
example of a subprogram calling another subprogram - the function AVG is used to compute the average.

MAIN PROGRAM - VARDIM2

The main program calls the subroutines and functions described.

COMMON X(4,3)

Twelve elements in the array X are declared to be in common.

REAL Y(6)

The real array Y is dimensioned 6.

EXTERNAL MULT, AVG

Function names MULT and AVG are declared EXTERNAL. Before a subprogram name is used as an
argument to another subprogram, it must be declared in an EXTERNAL statement in the calling program.
Otherwise it would be treated by the compiler as a variable name.

CALL SET(Y,6,0.)

Subroutine SET is called. The arguments (Y,6,0.) replace the dummy arguments (A,M,V).

DIMENSION Y (6)
DO 1 I = 1,6

1 Y(I) = 0.0

The array Y is set to zero. The NAMELIST output shows the 6 elements of Y contain zero.

60305600 A 11-1-31

CALL IOTA(X,12)

Subroutine IOTA is called. X and 12 replace the dummy arguments A and M

DIMENSION X (12)
DO 1 I=l,12

1 X(I) = I

the value of the subscript is placed in each element of the array X. Program V ARD IM output shows the
value of X is 1 through 12.

CALL INC(X,12,-5.)

Subroutine SET is called, this time through entry point INC. The arguments (X.12.-5.) replace the dummy
arguments (A,M,V) ·

DO 2 I=l,12
2 X(I) = X(I) + -5.

-5. is added to each element in the array X. Program V ARDIM2 output shows X is now -4.-3.-2.
-l,O,l,2,3,4,5,6,7

AA=PVAL(12,AVG)

Function PV AL is called and its value replaces AA.

AM=PVAL(l2,MULT)

Function PV AL is called again with different arguments and the value replaces AM.

PROGRAM VAROIM2<0UTPUT,TAPE6=0UTPUT,OEBUG=OUTPUTJ
c THIS PROGRAM USES VARIABLE DIHENSIONS ANO HANY SUBFROGRAH CONCEPTS

COMMON X C4, 3)

11-1-32

REAL Y<6>
EXTERNAL HULT, AVG
NAHELIST/V/X,Y,AA,AM
CALL SETO,&,O.>
CALL IOTA<X,12>
CALL INCCX,12,-5.)
AA=FVAL <12, AVG>
AM=FVAL <12 ,HULT>
WRITE <G, V>
STOP
ENO

60305600 A

SUBROUTINE SET <A,M,Vl
C SET PUTS THE VALUE V INTO EVERY ELEMENT OF THE ARR~Y A

DIMENSION A<M>
0011=1,M

1 A<I>=O.O
c

ENTRY INC
C INC ADDS THE VALUE V TO EVER' ELEMENT IN THE ARRAY A

00 2 I = 1,M
2 A<I> = A<I> + V

RETURN
ENO

SUB~OUTINE IOTA <A,H>
C IOTA PUTS CONSECUTIVE INTEGERS STARTING AT 1 IN EVERY ELEMENT OF
C THE ARRAY A

DIMENSION A<H>
0011=1,H

1 A<I>=I
RETURN
ENO

FUNCTION PVALCSIZE,HA'>
C PVAL CCHPUTES THE POSITIVE VALUE OF WHATEVER REAL VALLE IS RETURNED
C SY A FUNCTION SPECIFIED WHEN PVAL WAS CALLED. SIZE IS AN INTEGER
C VALUE PASSED CN TO THE FUNCTION.

INTEGER SIZE
PVAL=ABS<WAY<SIZE>>
RETURN
ENO

FUNCTION AVG<J>
C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF CCMMON.

COMMON A<1ll0)
AVG=O.
DO 1 I = 1,J

1 AVG=AVG+A<I>
AVG=AVG/FLOAT (J)

RETURN
ENO

60305600 A 11-1-33

REAL FUNCTION MULT<J>
C MULT MULTIPLIES THE FIRST AND TWELTH ELEMENTS OF COMMON AND
C SUSTRACTS FROM THIS THE AVERAGE <COMPUTED
C 8V THE FUNCTION AVG) OF THE FIRST J/2 WORDS IN COM~ON.
c

sv

COMMON ARRA9t <12>
MULT=ARR~Y<12>•ARRAY<1>-AVG(J/2)
RETURN ,
E N. 0

x • -0.4E+o1, -o.3E+Dt, -o.2E+o1, -o.1E+o1, a.a, o.1E+o1, o.2E+o1,
o.6E+o1, o.1E+o1,

Y • o.o, o.o, a.o, o.o, o.o, o.o,

AA • o.1sE+o1,

AH • 0.2&5E+02,

SEND

11-1-34

0.3E+01, 0.4E+01t 0.5E+01,

60305600 A

PROGRAM CIRCLE

Program CIRCLE finds the area of a circle which circumscribes a rectangle.

Features:

Definition and use of both FUNCTION subprograms and statement functions.

This program has a hidden bug. We suggest you read the text from the start if you intend to find it.

A programmer wrote the following program to find the area of a circle which circumscribes a rectangle,
and wrote a function named DIM to compute the diameter of the circle.

The area of a circle is 7rR2
, which is approximately the same as 3.1416/4*Diameter**2.

P~UGkAM ClkCLt COUf~Ul)

A=4.0
t:S=J. 0
A~~A=J.l4lb/4.J*UIM(A.,d)~*2

~r< l NT l., At<t.A
l F H·n"i A f C G ~ 0 • l 0)

~1uP

Output:

t. 1U
r u f"~ CT l 01-.J u I ;v1 (A .. Y >

u l !' = '::> t.i k T < X * f.. + l' -:..~ Y)
HC. ·1 Uk 1 ·~

t:: i L>

.7BS40CIOOOO

60305600 A 11-1-35

The programmer was completely baffled by the result; he felt the area of a circle circumscribing a rectangle
12 square inches should be more than . 785 ! He consulted another programmer who quickly pointed out
that a simple function like DIM should have been written as a statement function. Since FORTRAN
Extended compiles statement functions inline, it would execute much faster because no jump nor return
jump would be generated by the function.

The programmer rewrote his program as follows:

P~Ub~AM CIKCLE (OUTPUT)
OIM<X•Y>=S~Rl(X*X•Y*Y>
A=4.0
d=J.o
AKEA=J.1416/4.0*0lM(AtH)**c
t-'1-< INT 1, AREA

1 Fukl'-1AT <G2U.l0>
sruP
E ···JU

and obtained the correct result.

11-1-36

When the programmer wrote his function subprogram, he used the same
name as a library intrinsic function. If the name of an intrinsic function
is used for a user written function, the user written function is ignored.

60305600 A

PROGRAM OCON

Program OCON illustrates some problems that may occur with octal or Hollerith constants.

Features:

Octal Constants in expressions

The compiler generally treats both octal and Hollerith constants as having no type; therefore, no mode conver­
sion is done when they are used in expressions. If, however, the compiler is forced to assume a type for an
octal or Hollerith constants, it will treat them as integer. When an expression contains only operands having no
type, integer arithmetic is used. For example:

B=lOB+lOB

The expression is evaluated using integer arithmetic. Furthermore, for subsequent operations, the result of integer
arithmetic is treated as true integer. Thus, in the above example, the expression on the right is evaluated using
integer arithmetic; and the integer result is :converted to real before the value is stored in B. Comparing the
values produced in OCON for A and B illustrates this effect.

With REAL arithmetic whenever the left 12-bits of the computer word are all zeros or all ones, the value of
that number is zero. (See section III-4 discussion of Underflow.) This explains why the output value of A from
OCON is zero.

C=B+ 1 OB

REAL arithmetic is used to evaluate the expression; and the octal constant 1 OB is used without type conversion,
making its value zero. Note in the output from OCON, the values of B and C are equal.

D=I+lOB

No problem arises in the above expression as it is evaluated with integer arithmetic; then the result is converted
to REAL and stored in D.

E:::B+I+lOB

The compiler, in scanning the above expression left to right, encounters the REAL variable B and uses REAL
arithmetic to evaluate the expression. Again, the octal constant lOB has the REAL value of zero.

If the expression were written as:

E=lOB+I+B or E=l+IOB+B

The first two terms would be added using integer arithmetic; then that result would be converted to REAL and
added to B. In this case, the octal constant 1 OB would effectively have the value eight.

60305600 D 11-1-37

I

This is similar to the mode conversion which occurs in:

X=Y*3/S or Z=3/S*Y

The above expressions would give different values for X and Z. More information on the evaluation of mixed
mode expressions is in section 1-3.

F=A,EQ,77B

REAL arithmetic is used to compare the values because A is a type REAL name. The value in A and the
constant 77B both have all zeros in the leftmost 12 bits; both have value zero for real arithmetic; therefore,
the value assigned to F is .TRUE.

To avoid the confusion illustrated in this example, simply use integer names for values that come from octal
or Hollerith constants or character data that is input using A or R format elements. To illustrate, this program
was rerun with the names A, B, C, D, and E all as type INTEGER.

All these examples use octal constants; however, the same problem occurs with Hollerith, especially when it
is right-justified. The following coding illustrates the point:

REAL ANS

READ 2, ANS
2 FORMAT(R3)

IF(ANS ,EQ. 3RNO)PRINT3
3 FORMAT (*-NEGATIVE RESPONSE*)

PRINT3 of the logical IF is always executed independently of information in the data cards.

11-1-38 60305600 G

WITH REAL VARIABLES

PROGRAM OCONlOUTPUT,TAPE6=0UTPUT) $OUT
LOGICAL F
NAHELISTIOUTIA,e,c,o,E,F A = o.o,
A= 208

s B= 10B+10B B = .16E•02,
C= B+10 B
I=5 c = e 16E tQ 2,
D=I+1DB
E=B+I+10B 0 = .13Efo02,

lO F= A. EQ. 776
WRITE Co ,oun E = .21E+02,
STOP
EHO F = r,

$ENO

WITH INTEGER VARIABLES

PROGRAM OCONCOUTPUT,TAPE6=0UTPUT) 'OUT
INTEGER A,a,c,o,E
LOGICAL F A = 16,
N~HELIST/OUTIA,e,c,o,E,F

s A=.208 e = 16,
8=108+108
C=B+l!JB c = 24,
I=S
D=i1-iaa 0 = 13,

10 E=B+I+10B
F= A• EQ. 779· E = 29,
HR.ITEC&,oun
STOP F = F,
E~D

SEND

60305600 F 11-1-39

LIST DIRECTED INPUT /OUTPUT

List directed input/output eliminates the need for fixed data fields. It is especially useful for input since the
user need not be concerned with punching data in specific columns. List directed input does not require the
user to name each item as does NAMELIST input.

Used in combination, list directed input and NAMELIST output simplify program design. Such a program is
easy to write, even for persons just learning the language; knowledge of the FORMAT statemens is not required.
This facility is particularly useful when FORTRAN programs are being run from a remote terminal.

Example:

H2, TlO.
HAPCOFf >

f TNCH=O>
LGO.
7/8/9

PkOGRAM EASY IO (lNPUTtOUTPUTtTAPE5=INPUTtTAPE6~0UTPUT)
COMPUTE THt ARlA ANO HAOIUS Of AN INSCRIBED CIRCLE OF ANY TRIANGLE•

f<EAL SIOESl3)
~QUIVALENC~(SIOES(l)tA>tCSI0lS(2)t8>tCSIDESCJ)tC)
NAMELIST/OUT/SIOEStAREAtRAOIUS

3 REAOCSt*)SlOES

7/8/9
J 4 5
6t7tij
3°1
4"
5
6

lFCEOfCS).NE.O>STOP
s=•A•t3•C>12.
AHEA=SQRTCS*lS•A)*CS•B>*CS•C))
HAOIUS=AREA/S
WI-ti TE (6 tOUT>
tiOTOl
ENO

12.532l452t Z2•4536t25
6/7/8/9'

Output:

sour
SIDES = • 3E•Ol t 14£+01 t eSE+Ol t

RADIUS : elE+Olt

SEND

11-1-40 60305600 F

sour
SIDES = .6E+Olt .7E+Olt .BE•Olt

AREA = .20333162567589E•02t

RADIUS = .19364916731037E•Olt

SEND

SOUT

SIDES = .lE+Olt .lE•Olt elE+Olt

AREA = .43301270189222E•OOt

RADIUS = .288~7513459481E+OOt

SEND

SOUT

SIDES = .4E•Olt .SE+Olt .6E+Olt

AREA = .99215674164922E•Olt

RAOll)S = .13228756555323E•Olt

SEND

SOUT

SIDES = el25321452E+02t e224536E+02t .2SE+02t

AREA -· .l4040422058737E•03t

RADIUS = .46812528582998E+Olt

SEND

The user may enter the three input values in whatever way is convenient for him; such as: one item per line
(or card), one item per line with each item followed by a comma, all items on a single line with spaces separ­
ating each item, all items on a line with a comma and several spaces separating each item, or any combination
of the foregoing. Furthermore, even though all input items are real, the decimal point is not required when
input value is a whole number.

60305600 F 11-1-41

CROSS REFERENCE MAP 111-1

The cross reference map is a dictionary of all programmer created symbols appearing in a program unit, with the pro­
perties of each symbol and references to each symbol listed by source line number. The symbol names are grouped by
class and listed alphabetically within the groups. The reference map begins on a separate page following the source
listing of the program and the error dictionary.

OPTIMIZING COMPILATION MODES (OPT=0,1,2)

The kind of reference map produced is determined by the R option on the control card:

R=O No map

R = 1 Short map (symbols, addresses, properties, and a DO loop map)

R = 2 Long map (short map plus references by line number)

R = 3 Long map and printout of common block members and equivalence classes

R Implies R = 2

If R is not specified, the default option is R = 1; however L = 0 forces R = 0.

Fatal errors in the source program will cause certain parts of the map to be suppressed, incomplete, or inaccurate. Fatal
to execution (FE) and fatal to compilation (FC) errors will cause the DO-loop map to be suppressed, and assigned ad­
dresses will be different; symbol references may not be accumulated for statements containing syntax errors.

For the long map, it may be necessary to increase field length by 1000(octal).

The number of references that can be accumulated and sorted for mapping is: field length minus 20000 (octal)
minus 4 times the number of symbols. For example, in a source program containing 1000 (decimal) symbols,
approximately 8000 (decimal) references can be accumulated with a field length of 50000 octal.

Examples from the cross-reference map produced by the program which follows are interspersed with the general
format discussions.

The source program and the reference maps produced for both R = 1 and R = 3 follow. A complete set of maps for
R = 2 is not included, but samples are shown with the discussion.

The header line that appears at the top of each page of compiler output contains: the program unit type, the
compiling machine, the target machine, control card options, version and mod-level of the compiler, date, time,
and page number.

60305600 G lll-1-1

I

I

I

SOURCE PROGRAM

Main Program

PROGRAM HAPS 74/74 OPT::al FTN 4.4•~EL• 02/28/75 09.32.57.

PROGRAM MAPS MAPS 00~
lCINPUTtOUTPUTtTAPESslNPUTtTAPE6•0UTPUTI HAPS oo•

INTEGER SIZEl• Slt S1ZE2t S2 tSTRAY MAPS 007
EQUIVALENClCSIZEl•SlltCSIZE2tS2J HAPS 008

5 NAHELIST/PARAMS/SIZEltSIZE2 HAPS 009
DATA Sl,S2/12tl2/ HAPS 010

100 RE.ADC51PARAMS) MAPS 011
WRITEC6tPARAMSI HAPS 012
PHlNTl MAPS 013

lo fORMATCitOSAMPLE PROGRAM TO ILLUSTRATE THE VARIOUS COMPILER MAPS.lfJMAPS 014
CALL PASCAL CSU
PRINTZ

2 FORMATClfOTHE FOLLOWING WILL
CALL NOHEADCS2t

15 STOP
END

Block Data Subprogram

BLOCK DATA

5

Subprogram with
second entry

74/74 OPT•l

BLOCK DATA
COHMON/ANARRAY/XC221
INTEGER X
DATA XC22J/ll
END

SUBROUTINE PASCAL 74174 OPT•l

SUBROUTINE PASCALCSlZEJ
INTFGER LC22>eSIZE
CO~MUN/ANAH~AY/L

PHINT4t Cltl•ltSIZEI

HAVE NO HEADINGSelft

FTN 4e4+DEL•

F.TN 4.4+0EL•

5 4 FORMATC44HOCOMBINAT10NS OF M THINGS TAKEN NAT A

10

15

S2216)
ENHH NOUEAO
H=MINOC2ltHAXOC2tSIZE~lll
0021=-ltM
K•22-I
.LCK>=l
D01J=Kt2l

l LCJ>=LCJl•LCJ•lJ
2 PRINT3tCLCJltJ•Ktl21
3 FORHATC22161

RETURN
END

?/8/9 in column 1.

Namelist data

IIl-1-2

iPARAMS
SIZE2 = 1,

SEND
6/?/8/9 in column 1.

HAPS 015
HAPS 016
HAPS 017
HAPS 018
HAPS 019
MAPS 020

0212a11s o9.32.s1.

HAPS 021
HAPS 022
HAPS 023
HAPS 024
MAPS 025

02/28175 09.32.57.

MAPS 026
MAPS Ot?.7
MAPS 028
HAPS 029

TIHE.112ox,JH-N•/HAPS OJO
MAPS OJl
MAPS 032
HAPS 033
MAPS 034
HAPS 035
HAPS 0311
MAPS 037
MAPS 038
HAPS 039
HAPS 040
HAPS 041
MAPS 042

PAGE

PAGE

PA6E

60305600 G

R=1 MAPS

PROGRAM MAPS 74174 OPT•l

SYMBOLIC REF'ERENCE HAP CR•ll

ENTRY POINTS
4111 HAPS

VARIAtllES SN TYPE RELOCATION
4176 SIZEl INTEGER
4175 ST~AY INTluER •uNoEF
4177 52 lhTEGER

FILE NAMES HOOE
0 INPUT 2041 OUTPUT

EllTEkNALS TYPE ARGS
NOHE AO l

NAMELlSTS
PAR AMS

STATEMENT LAWELS
1tl5l 1 FMT 41•&

STATlSTlCS
PROGRAM LENGTH 7Si '1
liUffER LEl .. uTH 41039 2115

BLOCK DATA 74/74 OPT•l

SY~BOLIC REfERENCE HAP CR•l 1

VAklAtJLES SN TYPE HELOCATION
0 Jl INTEGER ARRAY

COMHOl'i BLOCKS LENGTH
AN ARRAY 22

STATISTICS
PROGRAM LENGTH OB
CH LABELED COMMON LENGTH 26i

SUOROUf l~E PASCAL 74/14

SYMBOLIC REfEkENCE MAP CR•ll

ENTRY POINTS
27 NOHEAO 3 PASCAL

ANARRAY

0
22

OPT•l

VARIABLES
115 I
117 K
116 M

SN TYPE
ltHE.uER
llHEGER
INTlfJER

RELOCATION

FILE NAMES
ourPuT

HOOE
F'MT

l~LIHE FUNCTIONS TYPE ARGS
H•XO INTEGER 0 INTRIN

STATEMENT LAiELS
0 l

76 4 FHT

LOOPS LABEL
21
44 2
52 l

INDEX
• I
• I

J

COMMON BLOCKS LENGTH
ANARRAY 22

STATISTICS
PROCiRAH LENGTH
CH LABELED COMMON LENGTH

60305600 G

FROM-TO
4 4
9 14

12 13

12Jb
268

LENGTH
48

249
38

83
22

0

F'TN 4e4•~EL•

4117 SIZE2
4116 Sl

FMT 0

2

2

PASCAL

fHT

f"TN 4.4•"EL•

f"Tt-4 4e4+gfL•

120 J
0 L
0 SIZE

MINO

PROPERTIES
E>. T REFS
EXT REFS

INS TACK

02128175 09eJZ.S7•

INTEGER
INTEGER

TAPES NAME 2041

021 ;>817'>

02/78175

INTEGER
INTEGER
INTEGER

INTEGER

NOT INNER

0 100

o9.J2.s1.

09.32.57.

ARRAY ANARRAY
fePe

0 INTRIN

113 3

Pl\GE

TAPE6 NAME

INACTIVE

PAG.E'

PAGE

F'HT

III-1-3 •

I R=2/R=3 MAPS

PROGRAM MAPS

SYMBOLIC RErERENCE

ENTRY POl~ITS orr LINE
4111 MIPS J

YIRtl9L£S SN TYPE
4176 s llf'l ltlTEGEA
4177 Stl£2 IPITEGER
4175 STRIY • l•ITEr.r.A
4116 SI ltlTEGEA
4177 S2 ltlTEGEA

f'ILE NAMES MOOE
0 lflPUT

2041 OUTPUT F'MT
0 TAP£5 NI .. [

2041 TIP£6 NAME

[XTEANILS TYPE
NO-iE&D
P&t;CIL

NAMELIST.; Off' LINE
P&UIMS 5

STITENFNT Ll8F:LS
4l'iJ I f'MT
4166 l f'MT

74174 OPT•I

MIP fR•JI

RErrRCNCES

AELOCITION

•UPIOEF'

WAITES
READS

WAITES

IRGS REF'CR[NC[S
I 14
I II

R[f'ERENC£5
1

01:'.P' LINE
10
ll

II

REFCAENC[S
9

12

Ar rs
AErS
A['5
REF'S
REF'S

1 •

0 1110 IN&CTIVC 1

[OUIY CLlt;SCS
CilZEI
Sl7£2

LENGTH
I
I

ITITISTICS
PROGRAM LCNliTH
1urrEA LENGTH

BLOCK DITA

M£MllERS - eras NIMEfLENGTHJ

7511
4103fl

0 SI flJ
0 52 fll

61
Zll'i

14114 OPT•l

SYHllOL IC REFERENCE MAP tA•JJ

VIN llllLCS
0 x

SH TYPE
I Ht EGER

COMHOlf llLOCICS LENGTH
IHlllRIY lZ

ITlflSllCS
PAOGRIM LENGTH
CM LIBELED COMMON LlNGTH

$UHMOUI INt l'A'.>CIL

AELOCITION
ARRAY ANAMRAY RtrS

MEMBERS • llllS NIM! CUNG THI

OI
161

I I .CHI

• 22

SYHIOLIC Nf.f'ENENCt. Mii' CA•JJ

f.NTAY POHITS
l1 NOHEIO

3 PASCAL

VIAIAIJl.ES
11!1 I
llO J
ll 7 K

0 L

116 " o sue
FILE NAMES

OUTPUT

DH LIPlf.
1
I

SN TYPE
INTEGER
lllTEGEA
Hill GEA
INTEC.EA
INTEGLR
INTEGER

MODE

'"'

ACFCNENCU
16

ACLOCATIDlf
R[f'S
flHS
fl[f'S

IAAAY ANARAAY REFS
REFS

r.P. fl[f'S

WAITES •

4
J•ll
ll
z
9
z

14

INLI .. [FUNCTIONS
MUO

TYPE
INTEGER
INTEGER

IRGS DEF l.INE REFERENCES

MIPIO

SUTEPIENT LlllELS
0 I
0 2

Ill J ,.HT
,6 4 f'HT

LOOPS l&BCL INDEX
ll • I

0
0

INTRIN
INTAIN

DEF' LINE
ll ,,
15

5

FA0'4-l0
• 4

AEfERENCES
IZ ,
14 •

• •

PAoPERTJES
UT R£'5

3
3 , , ,

12

• •
• 4

s
5

JI
14

DEF'INED
OErlNED

omitted from R=2 map

02/28175 09.36.JB.

3 OEr&NED

omitted from R=2 map

f'JN 4o4•0f lo 0i'/7H11'> 09.36038•

10 OEF'1~1ED 4 ' •• DEFINED IZ 14
lZ 14 DEFINED IO

J Z•U •• DCrlNED
l>Cf'IM[O I

• • DUINED

.. z • I ••• 12 ll

LENGTH

"' 2411 ur REF'S NOY INNER
Sl I .J

COM'40N lfLOCKS LENGTH
INAAAlt

STATISTICS
PROGRAM L[NOlH

2Z

CM LIBELED COMMON LENGTH

III-1-4

JI INSTICIC

MEMBERS • llAS WAMECLENGTHJ

lZll
Z6tl

t L tzzt

IJ ,,
... omitted from R=2 map

6
6

PAGE

II

l

IJ

60305600G

OUTPUT

$PARAt1S

SI ZE1 = 12,

SI ZE2 = 1,

iE NO

SA t1Pl E PROGRAM TO Ill USTRATE THE VARIOUS COHPILER HAPS.

CO HBINATIONS OF " THINGS TAKEN N AT A TIHE.

-N-
1 2 3 4 5 6 7 8 9 10 11 12
2 1
3 3 1
4 6 4 1
5 10 10 5 1
6 15 20 15 6 1
7 21 35 35 21 7 1
8 28 5& 70 5& 28 8 1
9 36 84 126 126 84 36 9 1

10 45 120 210 252 210 120 4S 10 1
11 5: 165 33() '+62 462 330 165 55 11 1
12 66 220 495 792 924 792 495 220 66 12 1

THE FCLLOHING WILL HAVE NO HEADINGS.
2 1
3 3 1
4 6 4 1
5 10 10 5 1
6 15 20 15 6 1
7 21 35 35 21 7 1

60305600 B III-1-5

General Format:

Each class of symbol is preceded by a subtitle line that specifies the class and the properties listed.

Formats for each symbol class are different, but printouts contain the following information:

The octal address associated with each symbol relative to the origin of the program unit.

Properties associated with the symbol

List of references to ~he symbol (for R=2 and R=3 only)

All line numbers in the reference list refer to the line of the statement in which the reference occurs. Multiple refer­
ences in a statement are printed as n*i where n is the number of references on line i.

All numbers to the right of the name are decimal integers unless they are suffixed with B to indicate octal.

Names of symbols generated by the compiler (such as system library routines called for input/output) do not appear
in the reference map.

ENTRY POINTS

Entry point names include program and subprogram names and names appearing in ENTRY statements. The format
of this map is:

addr

name

def

ref

R=l:

ENHY POINTS
27 MOHEAD

R=2 and R=3:

ENTRY POINTS
addr name

DEFINITION
def

Relative address assigned to the entry point.

Entry point name as defined in FORTRAN source.

REFERENCES
ref

Line number on which entry point name is defined (PROGRAM statement, SUBROUTINE
statement, ENTRY statement, etc.). (Not on R=l maps.)

In subprograms only, line number of RETURN statements. (Not on R=l maps.)

3 PASCAL

ENTRY POINTS DEF LINE • REFERENCES
21 NOHEAO 7 16
J PASCAL 1

IIl-1-6 60305600F

VARIABLES

Variable names include local and COMMON variables and arrays, formal parameters, RETURNS names, and for
FUNCTION subprograms, the defined function name when used as a variable. The format of this map is:

addr

name

*

type

prop

block

60305600 G

'VARIABLES SN
addr name *

TYPE
type prop

RELOCATION
block refs

Relative address assigned to variable name. If name is a member of a COMMON block,
addr is relative to the start of block.

Variable name as it appears in FORTRAN source listing. Variables are listed in alphabeti­
cal order.

SN= stray name flag. (No entry appears under SN when R=l is specified.) Variable names

that appear only once in a subprogram are indicated by * under the SN headline.
Such variable names are likely keypunch errors, misspellings, etc. In the long map,
DO loops where the index variable is not referenced cause the index variable to
be flagged as a (legal) stray name.

LOGICAL, INTEGER, REAL, COMPLEX, or DOUBLE.
Gives the arithmetic mode associated with the variable name. RETURNS appears if name
is a RETURNS formal parameter.

Properties associated with variable name and printed by keywords in this column:
*UNDEF Variable name has not been defined. A variable is defined if any of the

following conditions holds:
name appears in a COMMON or DATA statement.

is EQUIVALENCED to a variable that is defined.
appears on the left side of an assignment statement at the outermost

parenthesis level.
is the index variable in a DO loop.
appears as a stand-alone actual parameter in a subroutine or function

call.
appears in an input list (READ, BUFFERIN, etc.).

Otherwise, the variable is considered undefined; however variables which
are used (in arithmetic expressions, etc.) before they are defined (by an
assignment statement or subprogram call) are not flagged.

ARRAY Variable name is dimensioned.

*UNUSED name is an unused formal parameter.

Name of COMMON block in which variable name appears. If blank, name is a local variable.
/I indicates name is in blank COMMON.
F.P. indicates name is a formal parameter.

III-1-7

refs (Does not appear in short map, R=I.)
References and definitions associated with variable name are listed by line number, begin­
ning with the following in-line subheadings:

REFS All appearances of name in declarative statements or statements where the
value of name is used.

DEFINED

IO REFS

All appearances of name where its value may be altered such as in DATA,
ASSIGN, READ, ENCODE, or DECODE, BUFFER IN, assignment state­
ments, or as a DO loop index.

All appearances of name in use as a variable file name in I/O statements.

R=l: This map form uses a double column format to conserve space. Headings appear only on the first columns.

VARJABLCS SN TYPE RELOC~TION
115 I INTEGER 120 .I INTEGER
117 K INTEGtA • L INTEGER ARRAY AN ARRAY
116 H INTEGER • SIZE INTEGER f'ePe

R=2 and R=3:

VAAIAllLES SN TYPE RELOCATION
ns I INTEGER REFS 4 .. DEflNED 4 9
lZO J INTEGER REFS l•U 14 DEFINED 12 14
111 I(INTEGER RErS 11 12 14 DEFINED 10

0 L ltHl(if.R ARRAY AhlMRAY REr5 2 J 2•U 14 DEFINED ll u
lltt H INTEGER RErS 9 DEFINED • 0 SIZE INTEGER f'oPo REFS 2 4 I DEFINED

111-1-8 60305600 F

FILE NAMES

File names include those explicitly defined in the PROGRAM header card as well as those implicitly defined (in
subprograms) through usage in 1/0 statements. The format of this map is:

addr

name

mode

refs

R=I:

FILE NAHES HOOE
0 INFUT

R=2 and R=3:

FILE NAHES HOOE
0 INFUT

20•l OUTPUT FHT
0 TAPE5 NAHE

20•l TAFE6 NAHE

FILE NAMES
addr name

MODE
mode refs

Relative address of the file information table (FIT) associated with the file name. The
file's buffer starts at addr+34B This column appears only in main programs (where the
file is actually defined). In subprograms, this column is blank.

Name of the file as defined in PROGRAM statement or implied from usage in 1/0 state­
ments. For example, in a subprogram, WRITE(2) implies a reference to file TAPE2.

Indicates the mode of the file, as implied from it usage. One of the following will be
printed:
FMT Formatted 1/0 e.g. READ(2,901)

FREE List Directed 1/0 READ(2,*)

UNFMT Unformatted 1/0 READ(2)

NAME Namelist Name 1/0 READ(2,NAMEIN)

BUF Buffer 1/0 BUFFER IN(2,0)

MIXED Some combination of the above.

blank Mode cannot be determined.

(Does not appear in short map, R=I .)
References are divided into three categories by in-line subheadings:
READS followed by list of line numbers referencing file name in input operations.

WRITES

MOTION

line numbers of output operations on file name.

line numbers of positioning operations (REWIND, BACKSPACE, END FILE)
on file name.

Z01tl OUTPUT FHT 0 TAPES NAHE NAHE

WRITES
READS

WRITES

9
7
8

12

When a variable is used as a unit number in an 1/0 statement the following message is printed:

VARIABLE USED AS FILE NAMES, SEE ABOVE

60305600 F IIl-1-9

EXTERNAL REFERENCES

External references include names of functions or subroutines called explicitly from a program or subprogram, as well
as names declared in an EXTERNAL statement. Implicit external references, such as those called by certain FORTRAN
source statements (READ, ENCODE, etc.) are not listed. The format of this map is:

name

type

args

prop

refs

R=l:

EXTERNALS
NO HEAD

R=2 and R=3:

EXTERNALS
NOHEAD
PASCAL

IIl-1-10

EXTERNALS
name

TYPE
type

ARGS
args prop

Name defined EXTERNAL as it appears in source listing.

Applies to externals used as functions. Possible keywords are:

REAL, INTEGER, COMPLEX, DOUBLE, LOGICAL
Gives the arithmetic mode of external function.
NO TYPE No specific arithmetic mode defined.

REFERENCES
refs

Applies to certain library functions listed as externals in T mode. (T mode
is implied when OPT=O or D mode is selected.)

This column will be blank for all externals used as subroutines in CALL statements.

Number of arguments in call to external name.

Special properties associated with external name:
F.P name is a formal parameter (applies only for references within a program).

LIBRARY name is a library function called by value. In T compile modes, no LIBRARY
entries appear since all references to library functions (SIN, COS, etc.) will be
by name. (OPT=O or D mode automatically implies T mode.)

Line number on which name is referenced. (Does not appear in short map, R=l .)

TYPE ARGS
1

TYPE ARGS
1
1

REFERENCES
11+
11

PASCAi.

60305600 B

INLINE FUNCTIONS

lnline functions include names of intrinsic and statement functions appearing in the subprogram. The subtitle line is:

name

INLINE FUNCTIONS
name

TYPE
mode

Symbol name as it appears in the listing.

ARGS
args

DEF
ftype

LINE
def

REFERENCES
refs

mode Arithmetic mode, NO TYPE means no conversion in mixed mode expressions.

args Number of arguments with which the function is referenced.

ftype INTRIN Intrinsic function.

SF Statement function.

def Blank for intrinsic functions; the definition line for statement functions.

refs Lines on which function is referenced.

R=l:

INLINE FUNCTIONS TYPE ARGS
HAXO INTEGER 0 INTRIN HIND INTEGER 0 INTRIN

R=2 and R=3:

INLINE FUNCTIONS TYPE
HlXll INTEGER
HINO INTEGER

NAME LISTS

name

def

refs

R=l:

NAHELISTS
PARA HS

R=2 and R=3:

NAHEL ISTS DEF LINE
P•RAHS 5

60305600 B

ARGS DEF LINE REFERENCES
D INTRIN II
II INTRIN II

NAME LISTS
name

DEF LINE
def

REFERENCES
refs

Namelist group name as defined in FORTRAN source.

Line on which namelist is defined. }

Line numbers of references to name.

REFERENCES
7

(Does not appear in short map.)

111-1-11

STATEMENT LABELS

The statement label map includes all statement labels defined in the program or subprogram. The format of this map
is:

R=l:

addr

label

type

act

def

refs

STATEHENT LAeELS
0 1

76 It FHT

R=2 and R=3:

STATEMENT LABELS
0 1
0 2

113 3 FHT
76 It FHT

III-1-12

STATEMENT LABELS DEF LINE
act

REFERENCE
refs addr label type def

Relative address assigned to statement label. Inactive labels will have addr zero. Ter­
minal statements of a DO loop also will have addr zero (unless referenced as the
object of a transfer of control). 400 000 will be shown if no address is assigned;
usually, a fatal error occurred and the final phase of compilation did not take place.

Statement label from FORTRAN source program. Statement labels are listed in nu­
merical order.

One of the following keywords:
FMT Statement label is a FORMAT statement.

UNDEF

blank

Statement label is undefined. refs will list all references to this unde­
fined label.

Statement label appears on a valid executable statement.

One of the following keywords:
INACTIVE label is considered inactive. It may have been deleted by optimization.

NO REFS

blank

Inactive labels will have addr zero.

label is not referenced by any statements. This label may be removed
safely from the FOR TRAN source program.

label is active or referenced.

Line number on which label was defined. (Does not appear in short map.)

Line numbers on which label was referenced. (Does not appear in short map.)

DEF LINE
13
lit
15

5

0 2

REFERENCES
12

CJ
lit

It

ill 3 FHT

60305600 F

DO-LOOPS

The DO-loop map includes all DO loops as well as implied DO loops not in DATA statements that appear in
the program and lists their properties. This map is suppressed if fatal errors have been detected in the source
program or if Q was specified on the FTN control card. Loops are listed in order of appearance in the pro­
gram. The format of this map is:

f wa

term

mf

index

first-last

len

prop

R=l, R=2, and R=3:

LOOFS LABEL
20
43
52

I NO EX
• I
• I

J

LOOPS
fwa

LABEL INDEX
term mf index

FROM-TO
first-last

LENGTH
len

PROPERTIES
prop

Relative address assigned to the start of loop body.

Statement label defined as end of loop, or blank for implied DO-loops in I/O statements.

*

blank

Indicates index is materialized (value of index in memory is the current value
of loop count).

Indicates index is not materialized (index is not used directly and is updated
in a register only; value in memory will not correspond to current loop count).

Variable name used as control index for loop, as defined by DO statement.

Line numbers of the first and last statements of the loop.

Number of computer words generated for the body of the loop (octal).

Various keyword prints are possible, describing optimization properties of the loop:
OPT Loop has been optimized.

INSTACK Loop fits into instruction stack (less than or equal to 7:j: or 10§ words);
likely to run two to three times as fast as a comparable loop that does
not fit into the stack.

EXT REFS Loop not optimized because it contains references to an external subprogram,
or it is the implied loop of an I/O statement.

ENTRIES Loop not optimized because it contains entries from outside its range.

NOT INNER Loop not optimized because it is not the innermost loop in a nest.

EXITS

FR OH-TO
4
g 14

12 13

Loop not optimized because it contains references to statement labels outside
its range.

LENGTH
48

208
28

PROPERTIES

INST ACK

EXT REFS
EXT REFS NOT INllE R

:j: Applies only to CONTROL DATA CYBER 70/Model 74 and 6600 computers.
§Applies only to CONTROL DATA CYBER 70/Model 76, CYBER 170/Model 175, and 7600 computers.

60305600 G III-1-13

I

COMMON BLOCKS

The common block map lists common blocks and their members as defined in the source program. The format of this
map is:

block

storage type

blen

COMMON BLOCKS LENGTH MEMBER - BIAS NAME(LENGTH)
block storage bl en bias member (size)

type

Common block name as defined in COMMON statement.
I I represents blank common.

Hardware type of storage device where the block is located: ECS, LCM, or blank
(blank indicates CM or SCM).

Total length of block in decimal.

If the long map is specified (R=3) the following details are printed for each member of each block:

bias Relative position of member in block; in decimal, gives the distance from the block origin.

member Variable name defined as a member of block.

size Number of words allocated for member.

Only variables defined as members.of a common block explicitly by a COMMON statement are listed in this map.
Variables which become implicit members of a common block by EQUIVALENCE statements are listed in the EQUIV
CLASS map and the variable map.

R=l and R=2:

COMMON BLOCKS LENGTH
ANARRAY 22

R=3:

COMMON BLOCKS LENGTH MEMBERS • BIAS NAHECLENGTH)
ANARRAY 22 o L czz•

III-1-14 60305600 F

EQUIVALENCE CLASSES

This map appears only when R=3 is selected. All members of an equivalence class of variables explicitly equated in
EQUN ALENCE statements are listed. Variables added through linkage to common blocks are not included. The
format of the map is:

chase

base

cl en

bias

member

size

R=3 only:

EQUIV CLASSES LENGTH
SIZE1 1
SIZE2 1

60305600 B

EQUN CLASSES LENGTH MEMBERS - BIAS NAME (LENGTH)
chase base cl en bias member (size)

Common base. A variable name appears here if the equivalence class is in a common block.
In such a case, cbase is the variable name of the first member in that common block.
ERROR Indicates this class is in error because more than one member is in common

or the origin of the block is extended by equivalence.

If the class is local (not in a common block), base is the name of the variable with the lowest
address. If the class is in a common block, base is the name of the variable in that common
block to which other variables were linked through an EQUN ALENCE statement.

Number of words allocated for base, (considered the class length).

Position of member relative to base; bias is in decimal.

Variable name defined as a member of an equivalence class. (Members having the same bias
which are associated with the same base and thus occupy the same locations.)

Size of member as defined by DIMENSION, etc.

HEHBERS - BIAS NAHE(LENGT~>
0 S1 Ul
0 S2 UI

III-1-15

PROGRAM STATISTICS

At the end of the reference map, the statistics are printed in octal and decimal. The format is:

STATISTICS

PROGRAM LENGTH Length of program including code, storage for local variables, arrays, constants,
temporaries, etc., but excluding buffers and common blocks.

BUFFER LENGTH Total space occupied by 1/0 buffers and FIT/FET.

CM LABELED
COMMON LENGTH

Total length of common, excluding blank common, in CM :j: /SCM § and
ECS+/LCM§. Maximum of two entries.

BLANK COMMON Length of blank common in CM :j: /SCM § or ECS :j: /LCM§.

R=l, R=2, and ·R=3:

STATISTICS
PAOliRAM LENGTH
CM LAYELED CO~MON LENGTH

ERROR MESSAGES

1238
268

11
2l

The following error messages are printed if sufficient storage is not available:

CANT SORT THE SYMBOL TABLE INCREASE FL BY NNNB

or

REFERENCES AFTER LINE NNN LOST INCREASE FL BY NNNB

DEBUGGING (Using the Reference Map)

New Program:

The reference map can be used to find names that have been punched incorrectly as well as other items that will not
show up as compilation errors. The basic technique consists of using the compiler as a verifier and correcting the FE
errors until the program compiles.

Using the listing, the R=3 reference map, and the original flowcharts, the following information should be checked by
the programmer:

Names incorrectly punched

Stray name flag in the variable map

Functions that should be arrays

Functions that should be inline instead of external

:j:Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74, CYBER 170, and 6000 Series computers.

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

III-1-16 60305600 F

Variables or functions with incorrect type

Unreferenced format statements

Unused formal parameters

Ordering of members in common blocks

Equivalence classes

Existing Program:

The reference map can be used to understand the structure of an existing program. Questions concerning the loop
structure, external references, common blocks, arrays, equivalence classes, input/output operations, and so forth, can
be answered by checking the reference map.

TS MODE

In TS mode, the reference map appears immediately following the source listing of the program (regardless of
the BL parameter).

The kind of reference map produced is determined by the R option on the FTN control card:

R=O No map

R=l Short map (symbols, addresses, properties)

R=2} R=J Long map (short map plus references by page and line number)

R Im plies R =2

If R is omitted, an R=l map is produced (unless L=O is specified on the FTN control card).

The header line that appears at the top of each page of compiler output contains: the first line of the program
unit, version and mod-level of the compiler, date, time, and page number.

On the following pages appear examples of a short and a long map. Portions of these maps appear in the sub­
sequent format discussion.

60305600 F III-1-17

R=1 MAPS

.1

l
K.
H
HI~O
CilJTCJ.
OUTPUT:
SIZE

HLOCI<
ADDRESS
LlNGTr1

III-1-18

SUHHOUTlNE PASCALCSllE.)
11•

J
3
3

SUBkOUTINE PASCALCSllE)
lNJtGlH LCll)tSIZE
COHHON/ANARRAY/L
PRINT4t Cltl•ltSIZE)

08/01/7~ 14.13.03.
TS

PAGt.
/73

MAP!>
MAPS
HAPS
HAPS

14
14
14
21
21
26
26
26
32
32
52
52
sz

4 fO~HATC44HOCOHSlNATIONS Of M THINGS TAKEN NAT A TlHEell20Xt3H•N•/HAP5
HAPS
MAPS
MAPS
MAPS
MAI'S
HAPS
MAPS
HAPS
MAI'S
HAPS
MAPS
HAPS

O~b

021
028
Ol9
030
031
OJ2
033
034
OJ!>
036
037
OJB
039
040
041
042

Z6 IANARRAY/

IS NOHE AO

OUTCI.

ID 0

u 107
111
llZ

AU 0

1
2
3

52216)
ENTRY hOHEAD"
H=HlNOC2ltHAXOC2tSIZE•l))
002l•ltH
K:i:22•1
LCK>al
OOlJ:sKt21
L(J>•LCJ> •LCJ•U
PRlNT3tCLCJleJ•Kt22>
fOHHATC2216)
RETURN
END

•• C 0 M H 0 N 8 l 0 C K $

E N T R Y P 0 I N T S --

Si PASCAL

E X T E R N A L S

OUTCR. OUTPufa

•• S T A T E H E N T L A B E L S ••

.2 ID 40 .J

-- VA.RI A 8 L E H A P

J u 110
L 0
HAXO

INTRIHSIC NOHE AO 15
EXTERNAL. OUT CR.
EXTERNAL. PASCAL 56

F 72 .4 f

/ANARRAYI zz
INTRINSIC
ENTRY
EXTERNAL•
ENTRY

COL>E
3

57

LITERALS
62

fORHAlS
62
12

TEMPS
74

0

ARGS
74
13

NAHELl!>T
107

VAHIAWLES BUFflRS

0

37100 STORAGE USED
113 PROGRAH•uNIT LENGTH

HODEL 74
COMPILATION

107 lll
0 4 0

17 SOURCE STATEMENTS
ell6 SECONDS

17 SYMBOLS

60305600 F

R=2, R=3 MAPS

BLOCK

r
J
K
L

" HAICI
HllfO

.1

.2

.3 ...

NO>tEID
OUTCI.
OUTCRe
OUTPUT:
PASCAL
SUE

ADDRESS
LENG~H

SU8AOUTIH£ PASCALfSl7tl
11

OM/Ol/71t 14·1~.~~.
/7]

l
3
3

lit
l ..
1 ..
21
21
26
26
26
32
32
52
sz
52

26 /ANAAAAY/

15

ID
ID
r
r

t
I
I
I
r
I
I

NOHE AO

OUTCle

u
u

0
40
72
62

117
uo
1.U

0
1.12

15

56
I IU a

CODE
3

57

l
z
3

SlJIJl<CIUJ lNE l'ASCAL CSU£1 HAPS lZJ
INfEGE~ LIZZltSIZE ~APS lZ~
COH~UN/ANAMkAY/L HAPS l'~

PHINftu Cltl•ltSIZEI HAPS 126
ro~HAfl HOCOHBlHATJONS or·N THINGS TAKEN NAT A TIMEe//20Xt3H•N-/Hll'S 127

$Zll&I MAI'S 1'8
ENJRY NOHEAD MAI'S 129
H•HINOC2l{MAkOC2tSIZE•lll MAI'S 130
OO~l•ltM MAI'S Ill
K•2Z•I HAPS 132
LCKl•l HAPS lll
OOlJ•Kt21 HAPS 134
LCJl•LCJl•LCJ•ll HAPS 135
PRIHTJtCLCJltJ•~tlZI HAPS 136
FOHHATC221&1 HAPS 1J7
METUMN MAI'S 138
£HD MAPS ll9

OUJCRe

1112 D
l/09 0
I/lit W
l/Olt W

•• C 0 M H 0 N I L 0 C K S

E N T A Y P 0 I N T S ·•

s• PASCAL

E X T [A N A L S

OUT_PUTE

•• S~ ATE HEN T LA IE LS••

l/13 L
I/lit L
I/IS L
l/05 L

•• V A R I A I L E M A P ••

l/O't C tlOlt M
till c till s
lllO • llll s

l/09 c
1113 s
1/12 c

1110
llU S ,,, .. c ,,, .. s
'"" c IA NARO YI u llOZ 0 111 J 0 lilt • 1/U vu l/U •

1109 • l/09 c
lHTRIH'>IC 1109 A
IMTIUNSIC llOS
ENUY 1107 E
EJTUHALe llllt .. "'" " EXTERNAL. ""' .. tlllt .. ""It ""' .. EJT[ltNALe "" llllt If 1/llt 1/llt "
EMT RT 1111 r

1111 • 1112 D 1/8' c 1111.

LITERALS fORHATS TEMPS ARGS NAHELIST YARIAWLES BUFFERS
62 62 11t lit 107 107 113'

0 lZ 0 13 0 .. 0

37300 STORAGE USED MODEL 7ft 17 SOURCE STATEMENTS 17 SYMBOLS
lll PROGRAM•UNIT LENGTH COHP1LAT10N .1s2 SECONDS 48 REFERENCES

,,., .. "

60305600 F III-1-19

COMMON BLOCKS

The common block map lists common blocks as defined in the source program. The format of this map is:

length /block/

length

block

R=l, R=2, R=3:

26 /AP<oArHUV/

ENTRY POINTS

- - COMMON BLOCKS

Length (in octal) of common block.

Common block name as defined in COMMON statement.
// represents blank common.

-· C 0 M ~ n N 8 L 0 C K S

This map lists names of program units, names appearing in ENTRY statements, and (for a main program) all
file names defined in the PROGRAM statement. The format is:

- - ENTRY POINTS - -

addr name

addr Relative address (in octal) of the entry point in the program unit.

name Entry point name as defined in source program.

R=l, R=2, R=3:

E ~ T A v p 0 l ~ T s --

15 56

EXTERNAL REFERENCES

External references include names of functions or subroutines called explicitly from a program or subprogram,
names declared in an EXTERNAL statement, and external references generated by the compiler. The format of
this map is:

- - EXTERNALS - -

name

name Name of routine externally referenced.

III-1-20 60305600 F

R=l, R=2, R=3:

E I T E ~ N A L S

OUTCI. OUT CR. OUT PU Ti

STATEMENT LABELS

This map includes all statement labels defined in the program or subprogram. The format is:

- - STATEMENT LABELS - -

label properties addr references

R=l:

10

R=2, R=3:

.1

.2

.l

.4

label

properties

addr

references

to
ID

F
F

0

60305600 F

0
40
7Z
62

Statement label, preceded by a period. Labels are listed in ascending numerical order.

'Properties as follows:

F label references a format statement.
D label references a terminal statement of a DO loop.
I label is inactive (never referenced by transfer or input/output statement).
blank None of the above properties.

Relative address (in octal) assigned to this label. Some inactive labels will have an
addr of zero.

Page number, line number, and type of reference to statement label. References do
not appear in the short map (R=l). The type can be:

L label appears in label field.
D label referenced in a DO statement.
R label referenced in a READ statement.
w label referenced in a WRITE or PRINT statement.
F label referenced in a FORMAT statement.
A label referenced in an ASSIGN statement.
blank Any other reference.

••ST ATE HEN T L:A BEL S ••

.2 ID 40 .J F

•• S T A T E ~ E " T L A B E L S ••

lll~ D
110~ D
l/llt w
l/Olt W

1/13 L
llllt L
1115 L
1/05 L

72 .4 f 62

III-1-21

VARIABLES

All symbolic names referenced in the program unit are listed here. The format of this map is:

- - VARIABLE MAP - -

name type properties addr block length references

III-1-22

name Name of variable as it appears in source listing.

type Variable type:

properties

I INTEGER
R REAL
D DOUBLE PRECISION
Z COMPLEX
L LOGICAL
N NAMELIST name

No type

Properties as follows:

A
u

blank

Variable is used as a formal parameter.
Variable is undefined.
Variable is equivalenced to a defined variable.
None of the above.

addr Relative address (in octal) assigned to this variable.

block Name of common block in which variable appears, or (if no address is specified) a
description of the type of symbolic name:

length

references

name is an entry point. ENTRY
SUBROUTINE name is a user supplied SUBROUTINE subprogram or a library

utility subprogram.
name is an intrinsic function.
name is a statement function.
name is a basic external function.
name is a user supplied FUNCTION subprogram.

INTRINSIC
STAT-FUNC
B.E.F.
FUNCTION
EXTERNAL name appears in an EXTERNAL statement or is a compiler

generated external reference.

Array length (in decimal) for dimensioned variables.

Page number, line number, and type of reference to variable. References do not
appear in the short map (R=l). The type can be:

A
c
D
E
F

Variable appears as argument to subroutine or function.
Variable appears as DO loop control variable.
Variable appears in specification statement.
Variable used as entry point.
Variable appears in IF statement.

60305600 F

R=l:

I I u
K I
M I
MINO I
OUTCI•
OUTPUT:
SUE I AU

R=2, R=3:

I I u 107
J I u 110
IC I 111
L I 0

" I 112
HAXO I
HI .. O I
HOliEAO 15
OUTCI.
OUT CR.
OUTPUT:
PASCAL 56
SIZE 1 AU 0

BLOCKS

I
R
s
w
x

Variable appears in DATA statement.
Variable appears in READ statement.
Variable appears as subscript.
Variable appears in WRITE or PRINT statement.
Variable appears as an external reference.

blank
Variable appears on the left side of an arithmetic replacement statement.
Variable appears on the right side of an arithmetic replacement statement.

.. Y A R I A 8 L E M A P

101 J I u 110
lll L I 0 /ANARRAY/ 22
112 MAXO I INTRINSIC

lNT~tNSIC NOHEAO 15 ENTRY
EXTEDNAL• OUTCR• EXTERNAL•
EXTERNAL• PASCAL 56 ENTRY

0

-- 'I A R I A B L E H A p --
l/Olt C 1/0lt If 1109 c 1110
1/lZ C 1113 s 1113 s l/13 s 1111t c llllt s
1110 a 1111 s ·1112 c llllt c

/ANARRAY/ 22 1102 0 110 l D 1111 a 1/13 1/13 1/13.
1/09 =i 1109 c

INTRINSIC 1105 A
INTRINSIC 1109
ENTRY 1101 E
EXTERNAL. 1/0lt w 1/llt M
EXTERNAL. 1/0lt .. l/Olt If 1/llt .. 1/llt w
E>rTE~NAL. 1/0lt 1/0lt If 1/llt 1/ilt w
ENTRY 1101 E

1101 A 1102 0 1/0ft c 1/08 A

The address and length of the various blocks comprising the object code are listed, regardless of the R param­
eter. The format of this map is:

1/llt ..

BLOCK CODE LITERALS FORMATS TEMPS ARGS NAMELIST VARIABLES BUFFERS
ADDRESS
LENGTH

CODE Generated executable code.

LITERALS Constants used by the program.

FORMATS Storage for format declarations.

TEMPS Temporary storage locations generated by the compiler.

ARGS Subprogram call argument lists.

60305600 F III-1-23

NAMELIST

BUFFERS

R=O, R=l, R-2, R=3:

BLOCK
ADDRESS
LENGTH

III-1-24

Namelist storage.

1/0 buffers defined.

CODE
J

57

LITF'RALS
62

0

FORMATS
62
12

TEMPS
74

0

ARGS
74
13

NA"4ELIST
107

0

VARI~BLES BUFFERS
107 113

4 0

60305600 F

FORTRAN DIAGNOSTICS 111-2

Diagnostic messages are produced by the FORTRAN Extended compiler during both compilation and execution
to inform the user of errors in the source program, input data or intermediate results.

COMPILATION DIAGNOSTICS

The compile time diagnostics issued by FTN are different in OPT=0,1,2 than in TS mode. The description
of error message format for TS mode appears later in Compilation Diagnostics, TS Mode. The following
information applies to compilation under OPT=0,1,2.

Errors detected during compilation are noted on the source listing immediately following the END statement.
The format of the message is as follows:

CARD NO.

n

11

e

SEVERITY DETAILS DIAGNOSTIC

e a error message

Card number where error was detected. This number is assigned by the FORTRAN
Extended compiler. Some declarative statement diagnostics will show the line number
of the first non-declarative statement; END line number is used for undefined state­
ment number diagnostics.

Indicates the type of diagnostic. In the following pages, compile time diagnostics are
listed alphabetically by error type.

Informative message which indicates minor syntax errors or omissions
which have no effect upon compilation or execution.

FC When an error of this type is encountered during compilation, the remain­
ing portion of the program is checked for syntax errors only. Program is
not executed.

FE Error fatal to execution. Program compiles but does not execute.

ANSI Usage does not conform to ANSI standard FORTRAN (X3.9 - 1966).
ANSI diagnostics are not listed unless the EL=A parameter is specified on
the FTN control card.

a Information in this column will differ according to the type of error encountered.
For example, if the same statement label is used more than once, the label number
is printed. If a message of the format en CD n appears, en is the column number in
which the error was detected, and n is the card number.

error Error message printed by FORTRAN Extended compiler.
message

60305600 G III-2'" 1

S Example:
N
N

5

111

15

20

CUO NO.

1
2
3
s
CJ
CJ

11
16
21

SEVERIT\

I
FE
FE
FE
FE
FE
FE
FE
FE

100 MRilE (6,8l
8 FOR~AT (52H FOLLOWING IS A LIST OF PRIME NUMBERS F~Of' 1 TO 10001

11q),1H1/1qX,1H3t
101 1=5
8 A=I

102 A=SCRHAt
103 J:A
104 DO 1 Ks3,Jt2
105 L=l/KEXCEEDS
106 JF(l•K-l)t,2,-

1 GO 10 108
107 MRilE (f),q)

S FORf'AT U20J
2 I=I+2

108 IFC1000-I)7,4,3
It MAilE C6, 7>

9 FOR~AT (14H P~OGRA" E~RORt
7 WRilE <t,6)
6 FOR"AT C31H T~IS IS T~E ENO OF THE P~OGAAH)

109 STOP
ENO

START.
07 CD

I

7

DIAGNOSTIC

ASSU~EO P~OGRA~ Nl~E WHEN ~O HEADER STATE~ENT JPFEARS
~ ZE~O LEVEL RIG~T PAPEHTHESIS HISSING. SCJNNI~~ STOFS.
UNRECOG~I2EO STATE"ENT
DUPLICATE STATE~E~T LABEL
SYHBOLIC ~AHE HAS TOO HANY CHARACTERS
THE OPERATOR INCICATED c-,+,•,1, OR ••) "UST EE FOLLOWED BY A CONSTANT, NAME, OR LEFT PARENTHESIS.
A DO LOOP ~A' NOT TERMINATE ON THIS T'PE CF STITE"E~T
PRESENT USE er THIS LABEL CONFLICTS WITH FREVICU! ~SES
UNDEFINED STATE"E~T NUHBERS, SEE BELOW

UNDEFINED LABELS

°' 0 w
0
VI

°' 0
0

>

3

0\
0
w
0
VI
0\
0
0

'T.I

---~..)
w

ANSI

ANSI

ANSI

A COMMENT LINE WITHIN A CONTINUED STATEMENT IS NON•ANSI.

A RELATIONAL HAS A COMPLEX OPERAND.

AN EXPRESSION IN AN OUTPUT STATEMENT 1/0 LIST IS NON ANSI USAGE.

ANSI ARRAY NAME OPERAND NOT SUBSCRIPTED. FIRST ELEMENT WILL BE USED.

ANSI ARRAY NAME REFERENCED WITH FEWER SUBSCRIPTS THAN DIMENSIONALITY OF ARRAY•

ANSI ATTEMPT TO BACK UP BEFORE COLUMN ONE CAUSES POSITIONING TO iE SET AT COLUMN ONE.

ANSI BACKING UP WITH X SPECIFICATION IS NON-ANSI.

ANSI DOLLAR SIGN STATEMENT SEPARATOR IS NON-ANSI USAGE.

ANSI ENO STATEMENT ACTING AS A RETURN IS NON-ANSI.

ANSI ENTRY STATEMENT IS NON-ANSI.

ANSI FLOATING POINT DESCRIPTOR EXPECTED AFTER SCALE FACTOR DESIGNATOR.

ANSI GO TO STATEMENT CONTAINS NON-ANSI USAGES.

ANSI HOLL~RITH CONSTANT APPEARS OTHER THAN IN AN ARGUMENT LIST Of A CALL STATEMENT OR IN A DATA STATEMENT.

ANSI HOLLERITH STRING DELIMITED BY SYMBOLS IS NON-ANSI.

ANSI IMPLICIT STATEMENT IS NON-ANSI.

ANSI LOGICAL OPERATOR OR CONSTANT USAGE IS NON-ANSI.

ANSI MASKING EXPRESSION IS NON-ANSI.

ANSI MULTIPLE REPLACEMENT STATEMENT IS NON-ANSI•

ANSI NAMELIST STATEMENT IS NON-ANSI.

ANSI NON-ANSI BLANK LINES OCCURRED IN THIS PROGRAM UNIT.

ANSI NON-ANSI FORM OF DATA STATEMENT.

ANSI NON-ANSI FORM OF TYPE DECLARATION.

ANSI NON•STANDARD SUBSCRIPT IS NON-ANSI.

ANSI OCCURRENCES OF ASTERISK OR DOLLAR SIGN NON-ANSI COMMENT LINES.

ANSI OCTAL CONSTANT OR RtL FORMS OF HOLLERITH CONSTANT IS NON-ANSI.

ANSI

ANSI

OMISSION Of FIELD SEPARATOR AFTER HOLLERITH STRING IS NON-ANSI.

ONE OF THE FOLLOWING NON-ANSI FORMS HAS BEEN USED -- EW.DDEt EW.OEEt 1w.z. ow.z.

---t!.>
Ji.

°' 0
w
0
Vl

°' 0
0

'Tl

2

ANSI PLUS SIGN IS A NON-ANSI CHARACTER.

ANSI PRECEDING FIELD DESCRIPTOR IS NON-ANSI.

ANSI RETURNS PARAMETERS IN CALL STATEMENT.

ANSI TAB SETTING DESIGNATOR IS NON-ANSI.

ANSI THE EXPRESSION IN AN IF STATEMENT IS TYPE COMPLEX.

ANSI THE FORMAT OF THIS END LINE DOES NOT CONFORM TO ANSI SPECIFICATIONS.

ANSI THE NON-STANDARD RETURN STATEMENT IS NON-ANSI•

ANSI THE TYPE COMBINATION OF THE OPERANDS Of AN EQUAL-SIGN OPERATOR IS NON-ANSI.

ANSI THE TYPE COMBINATION OF THE OPERANDS OF AN EXPONENT OPERATOR IS NON-ANSI•

ANSI THE TYPE COMBINATION OF THE OPERANDS OF A RELATIONAL OR ARITHMETIC OPERATOR <OTHER THAN **) IS NON-ANSI.

ANSI T~IS FORM OF AN 1/0 STATEMENT DOES NOT CONFORM TO ANSI SPECIFICATIONS.

ANSI THIS FORMAT DECLARATION IS NON-ANSI•

ANSI THIS STATEMENT TYPE IS NON-ANSI.

ANSI TWO-BRANCH IF STATEMENT IS NON-ANSI•

ANSI USE OF A NUMBER AS LABELED COMMON BLOCK NAME IS NON•ANSI.

ANSI 7 CHARACTER SYMBOLIC NAME IS NON•ANSI.

FC ERROR TABLE OVERFLOW.

FC MEMORY OVERFLOW DURING ASf EXPANSION.

FC NOT ENOUGH ROOM IN WORKING STORAGE TO HOLD ALL OVERLAY CONTROL CARD INFORMATION.

FC SYMBOL TABLE OVERFLOW.

FC TABLE OVERFLOW, INCREASE FL.

FC TABLES OVERLAP, INCREASE FL.

FC THIS SUBPROGRAM HAS TOO MANY DO LOOPS.

FE .NOT• MAY NOT BE PRECEDED BY NAME, CONSTANT• OR RIGHT PARENS•

FE

FE

FE

+ OR - SIGN MUST BE FOLLOWED BY A CONSTANT.

A COMMA• LEFT PAREN •• =•·OR •• OR .AND. MUST BE FOLLOWED BY A NAME. CONSTANT• LEFT PAREN •• - •• NOT •• o~ ••

A COMPLEX BASE MAY ONLY BE RAISED TO AN INTEGER POWER.

~
w
0
Va

°' 0
0
'Tj

---t!..>
&.

3

f E

f E

f E

A CONSTANT ARITHMETIC OPERATION WILL GIVE AN INDEFINITE OR OUT-OF-RANGE RESULT.

A CONSTANT CANNOT BE CONVERTED. CHECK CONSTANT FOR PROPER CONSTRUCT.

A CONSTANT DO PARAMETER MUST BE GREATER THAN OR EQUAL TO 1 AND LESS THAN OR EQUAL TO 131071.

FE A CONSTANT MAY NOT BE FOLLOWED ~y AN EQUAL SIGN, NAME, OR ANOTHER CONSTANT.

FE A CONSTANT OPERAND OF A REAL OPERATION IS OUT OF RANGE OR INDEFINITE.

FE A 00 LOOP MAY NOT TERMINATE ON A FORMAT STATEMENT.

FE A DO LOOP MAY NOT TERMINATE ON THIS TYPE OF STATEMENT.

FE A 00 PARAMETER MUST BE A POSITIVE INTEGER CONSTANT OR AN INTEGER VARIABLE.

fE A FUNCTION REFERENCE REQUIRES AN ARGUMENT LIST.

FE A NAME HAY NOT BE FOLLOWED BY A CONSTANT.

FE A PREVIOUS STATEMENT MAKES AN ILLEGAL TRANSFER TO THIS LABEL•

FE A PREVIOUSLY MENTIONED ADJUSTABLE SUBSCRIPT IS NOT TYPE INTEGER.

FE A REFERENCE TO THIS ARITHMETIC STATEMENT FUNCTION HAS UNiALANCEO PARENTHESIS WITHIN THE PARAMETER LIST.

FE A REFERENCE TO THIS ASF HAS A PARAMETER HISSING.

FE A VARIABLE DIMENSION OR THE ARRAY NAME WITH A VARIA9LE DIMENSION IS NOT A FORMAL PARAMETER.

FE ALL ECS ITEMS MUST APPEAR IN A COMMON BLOCK.

FE AN ARRAY REFERENCE HAS TOO MANY SUBSCRIPTS.

FE APPEARED WHERE A VARIABLE wAS EXPECTED.

FE ARG TO LOCF MAY NOT BE AN EXPRESSION.

FE ARGUMENT NOT FOLLOWED BY COMMA OR RIGHT PARENTHESIS.

FE ARITHMETIC STATEMENT FUNCTION REDEFINED.

FE ARRAY HAS MORE THAN THREE SUBSCRIPTS.

FE ARRAY OR COMMON VARIABLE MAY NOT ~E DECLA~ED lXTERNAL.

FE ARRAY wlTH ILLEGAL SUBSCRIPTS.

FE ASF HAS MORE DUMMY PARAMETERS THAN ALLOWED·

FE

FE

BAD SUBSCRIPT IN EQUIV STMT.

BAD SYNTAX ENCOUNTERED.

---N

°'

0\

8
0
Vi
0\
0
0

'T.1

4

f'E BASIC EXTERNAL OR INTRINSIC FUNCTION CALLEO WITH WRONG TYPE ARGUMENT.

f'E BASIC OR INTRINSIC FUNCTION WITH AN INCORRECT ARGUMENT COUNT•

FE COMMON BLOCK LENGTH EXCEEDS 131071 WORDS.

fE COMMON VARIABLE IS FORMAL PARAMETER OR PREVIOUSLY DECLARED IN COMMON OR ILLEGAL NAME.

FE COMMON-EQUIVALENCE ERROR.

FE CONFLICTING LEVEL DECLARATIONS EXIST IN THIS COMMON BLOCK.

FE CONSTANT .DATA ITEM MUST BE FOLLOWED iY A t I OR RIGHT PARENe

f'E CONSTANT SUBSCRIPT VALUE EXCEEDS ARRAY DIMENSIONS.

f'E CONSTANT TABLE CONSTORS OVERFLOWED-STATEMENT TRUNCATED.ENLARGE TABLE OR SIMPLIFY STATEMENT.

FE DATA ITEM LISTS HAY ONLY BE NESTED 1 DEEP.

FE DATA VARIABLE LIST SYNTAX ERROR.

FE DEBUG EXECUTION OPTION SUPPRESSED DUE TO NATURE OF ABOVE FATAL ERRORS.

FE DECLARATIVE STATEMENT OUT OF SEQUENCE.

FE DEFECTIVE HOLLERITH CONSTANT. CHECK FOR CHARACTER COUNT ERROR, MISSING - DELIMITER OR LOST CONTIN CARO.

FE DIVISION BY CONSTANT ZERO.

FE DO LIMIT OR REP FACTOR MUST BE AN INTEGER OR OCTAL CONSTANT BETWEEN 1 AND 131K.

FE DO LOOPS TERMINATING ON THIS LABEL ARE IMPROPERLY NESTED.

FE DOUBLY DEFINED FORMAL PARAMETER.

FE DUMMY PARAMETER IN ASF DEFINITION OCCURED TWICE.

FE DUPLICATE LOOP INDEX OR DOESNT HATCH ANY SUBSCRIPT VARIA8LF.•

FE DUPLICATE STATEMENT LABEL.

FE ECS/LCM REFERENCE MUST BE A STAND-ALONE ARGUMENT TO AN EXTERNAL ROUTINE.

FE EITH~R OR BOTH OF FWA AND LWA ARE FORMAL PARAMETERS.

FE ENTRY POINT NAMES MUST BE UNIQUE - THIS ONE HAS BEEN PREVIOUSLY USED IN THIS SUBPROGRAM.

FE

FE

FE

ENTRY STATEMENT MAY NOT APPEAR IN A PROGRAM.

ENTRY STATEMENT MAY NOT BE LABELED.

ENTRY STATEMENTS MAY NOT OCCUR WITHIN THE RANGE Of A 00 STATEMENT.

0\
0 w
0
Ul

~
0

'Tl

---N
~

FE

f E

f E

EQUATED FILENAME NOT PREVIOUSLY DEFINED.

EQUIVALENCED COMMON BLOCK EXCEEDS 131071 WORDS.

EXPRESSION TRANSLATOR TABLE <ARLIST> OVERFLOWED. SIMPLIFY THE EXPRESSION.

ff EXPRESSION TRANSLATOR TABLE <FRSTB > OVERFLOWED. SIMPLIFY THE EXPRESSION.

ff EXPRESSION TRANSLATOR TABLE <OPSTAK> OVERFLOW~D. SIMPLIFY THE EXPRESSION.

fE F.P. WITH VARIABLE DIMENSIONS NOT ALLOWED IN A NAMELIST STATEMENT.

ff FIELD WIDTH IS GREATER THAN l3lt071• SCANNING STOPS.

fE FILENAME IS GREATER THAN 6 CHARACTERS.

ff FILENAME PREVIOUSLY DEFINED.

5

FE FIRST WORD AND LAST WORD ADDRESSES or DATA TRANSMISSION iLOCK MUST BE IN THE SAME LEVEL.

ff FOLLOWED BY AN ILLEGAL ITEM.

FE FORMAL PARAMETERS MAY NOT APPEAR IN COMMON OR EQUIV STMTS.

ff FORMAT REFERENCE ILLEGAL.

FE FORMAT STATEMENT ENDS BEFORE END Of HOLLERITH STRING. ERROR SCAN FOR THIS FORMAT STOPS HERE.

FE FORMAT STATEMENT ENDS BEFORE LAST HOLLERITH COUNT IS COMPLETE. ERROR SCAN FOR THIS FORMAT STOPS AT H •

FE FUNCTION NAME DOES NOT APPEAR AS A VARIABLE IN THIS SUBPROGRAM.

fE FWA ANO LWA NOT IN SAHE ARRAY• EQUIVALENCE CLASSt OR COMMON BLOCK.

FE GO TO STATEMENT - SYNTAX ERROR.

FE GROU~ NAME NOT SURROUNDED BY SLASHSe

FE GR04P NAME PREVIOUSLY REFERENCED IN ANOTHER CONTEXT.

FE HEADER CARO NOT FIRST STATEMENT.

FE HEADER CARO SYNTAX ERROR.

FE ILLEGAL BLOCK NAME.

FE ILLEGAL CHARACTER BOUND IN IMPLICIT STATEMENT.

FE ILLEGAL CHARACTER FOLLOWS PRECEDING A•l•LtOtR OR Z DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HEHEe

f E

FE

ILLEGAL CHARACTER FOLLOWS PRECEDING FLOATING POINT DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HERE.

ILLEGAL CHARACTER FOLLOWS PRECEDING SIGN CHARACTER. ERROR SCAN FOR THIS FORMAT STOPS HERE.

---N
Oo

0\
0
w
0
Vi
0\
0
0

'T]

6

f E ILLEGAL CHARACTER FOLLOWS TAB SETTING DESIGNATOR. ERROR SCAN FOR THIS FORMAT STOPS HERE.

FE ILLEGAL CHARACTER. THE REMAINDER Of THIS STATEMENT WILL NOT BE COMPILED•

FE ILLEGAL EXTENSION OF COMMON iLOCK ORIGIN.

FE ILLEGAL FORM INVOLVING THE USE OF A COMMA.

FE ILLEGAL LABELS IN IF STATEMENT.

FE ILLEGAL LIST ITEM ENCOUNTERED IN AN 1/0 LIST SEQUENCE.

FE ILLEGAL NAMELIST VARIABLE•

FE ILLEGAL RETURNS PARAMETER.

FE ILLEGAL SEPARATOR ENCOUNTERED.

FE ILLE~AL SEPARATOR. IN EXTERNAL STATEMENT.

FE ILLEGAL SYNTAX AFTER INITIAL KEYWORD OR NAME.

FE ILLEGAL SYNTAX IN CALL STATEMENT.

FE ILLEGAL SYNTAX IN COMMON DECLARATION.

FE ILLE~AL SYNTAX IN IF STATEMENT.

FE ILLEGAL SYNTAX IN IMPLICIT STATEMENT.

FE ILLEGAL TYPE SPECIFIED IN IMPLICIT STATEMENT.

FE ILLEGAL USE OF A FUNCTION NAME.

FE ILLE~AL USE OF THE EQUAL SIGN.

FE ILLEGAL VARIABLE NAME FIELD IN ASSIGN OR ASSIGNED GOTO.

f E IMPROPER FORM OF ENTRY STATEMENT. ONLY ALLOWABLE FORM IS ENTRY NAME l.

FE INTRINSIC FUNCTION REFERENCE MAY NOT USE A FUNCTION NAME AS AN ARGUMENT.

FE INVALID LEVEL NUMBER SPECIFIED.

FE INVALID USE Of A CHARACTER STRING.

FE INVOLVED IN CONTRADICTORY EQUIVALENCING.

FE

f E

FE

ITEMS IN DIFFERENT LEVELS Of STORAGE MAY NOT BE EQUIVALENCED•

LEFT SIDE OF REPLACEMENT STATEMENT IS ILLEGAL.

LEVEL"J VARIABLE MAY NOT APPEAR IN AN EQUIVALENCE STATEMENT•

0\
0
w
0
VI
0\
0
0

'T:l

---N
\o

FE

FE

FE

LOADER DIRECTIVE OUT Of SEQUENCE. MUST PRECEDE PROGRAM UNIT HEADER LINE•

LOGICAL AND NON-LOGICAL OPERANDS MAY NOT ~E MIXED.

LOGICAL EXPRESSION IN 3-BRANCH If STATEMENT.

FE LOGICAL OPERAND USED WITH NON-LOGICAL OPERATORS.

7

FE LOOP BEGINNING AT THIS CARO NO IS ENTERED FROM OUTSIDE ITS RANGE AND HAS NO EXITS.

FE LOOPS ARE NESTED MORE THAN 50 DEEP.

FE MAXIMUM PARENTHESIS NESTING LEVEL EXCEEDED· ERROR SCAN FOR THIS FORMAT STOPS HERE.

FE MAY NOT BE FUNCTION• EXTERNALt f .P. OR IN 8LANK COMMON.

FE MISSING OR SYNTAX ERROR IN LIST Of TRANSFER LABELS.

FE MISSING• BAD• OR OUT OF RANGE LABEL ON DO STATEMENT.

FE MORE THAN ONE RELATIONAL OPERATOR IN A RELATIONAL EXPRESSION•

FE MORE THAN 50 FILES ON PROGRAM CARO OR 63 PARAMETERS ON A SUIROUTINE OR FUNCTION CARO.

FE MORE THAN 63 ARGUMENTS IN ARGUMENT LIST.

FE NAMELIST STATEMENT SYNTAX ERROR.

FE NO MATCHING LEFT PARENTHESIS.

FE NO MATCHING RIGHT PARENTHESIS IN ARGUMENT LIST.

fE NO MATCHING RIGHT PARENTHESIS IN SUBSCRIPT.

FE NO MATCHING RIGHT PARENTHESIS.

FE NON DIMENSIONED NAME APPEARS FOLLOWED BY LEFT PAREN.

FE NON-INNER LOOP BEGINNING AT THIS CARU IS ENTERED FROM OUTSIDE ITS RANGE•

FE NON-STANDARD RETURN STATEMENT MAY NOT APPEAR IN A FUNCTION SUBPROGRAM.

FE NUMBER Of ACTUAL PARAMETERS PLUS RETURNS EXCEED &3.

FE NUMBER Of CHARACTERS IN AN ENCODE/DECODE STATEMENT MUST ~E AN INTEGER CONSTANT OR VARIABLE.

FE NUMBER OF SUBSCRIPTS IS INCOMPATIBLE WITH THE NUMBER OF DIMENSIONS DUQING EQUIVALENCING.

FE ONLY ONE SYMBOLIC NAME IN EQUIVALENCE GROUP.

f E

FE

PARAMETER ON NON-STANDARD RETURN STATEMENT IS NOT A RETURNS fOHMAL PARAMETER.

PRECEDING CHARACTER ILLEGAL AT THIS POINT IN ~T~ING. ERROR SCAN FOR THIS FORMAT STOPS HE~E.

-= t
0

°' 0
w
0
Vi

°' 0
0

'Tj

A

FE

FE

PRECEDING CHARACTER ILLEGAL. SCALE FACTOR EXPECTED. ERROR SCAN FOR THIS FORMAT STOPS HERE.

PRECEDING HOLLERITH COUNT IS EQUAL TO ZERO. ERROR SCAN FOR THIS FORMAT STOPS HERE.

fE PRECEDING HOLLERITH INDICATOR IS NOT PRECEDED BY A COUNT. SCANNING STOPS HERE.

FE PRESENT USE OF THIS LABEL CONFLICTS WITH PREVIOUS USES.

FE PROGRAM OR SUBROUTINE NAME MAY NOT BE REFERENCED IN A·OECLARATIVE STATEMENT•

FE RECORD LENGTH IS GREATER THAN 13lt07l.

FE REFERENCED LABEL ·IS MORE THAN FIVE CHARACTERS.

fE RETU~N STATEMENT APPEARS IN MAIN PROGRAM.

FE RETURNS LIST ERROR.

FE RETURNS OR EXTERNAL NAMES MAY NOT APPEAR IN DECLARATIVE STATEMENTS.

FE RIGHT PARENTHESIS FOLLOWED BY A NAMEt CONSTANT, OR LEFT PARENTHESIS.

FE SIMPLE VARIABLE OR CONSTANT FOLLOWED BY LEFT PARENTHESIS.

FE STATEMENT TOO LONG.

FE SUBROUTINE NAME REFERRED TO iY CALL IS USED ELSEWHERE AS A NON-SUBROUTINE NAME.

FE SYMBOLIC NAME HAS TOO MANY CHARACTERS.

FE SYNTAX ERROR IN ASF DEFINITION.

FE SYNTAX ERROR IN DATA ITEM LIST.

FE SYNTAX ERROR IN DATA STATEMENT.

FE SYNTAX ERROR IN DUMMY ARGUMENT LIST Of STATEMENT FUNCTION.

FE SYNTAX ERROR IN EQUIVALENCE STATEMENT.

FE SYNTAX ERROR IN IMPLIED 00 NEST•

FE SYNTAX ERROR IN INPUT/OUTPUT STATEMENT.

FE SYNTAX ERROR IN LOADER DIRECTIVE.

FE SYNTAX ERROR IN SUBSCRIPT LISTtMUST SE OF FORM CONl*IVAR+cON2e

FE

FE

FE

TAB SETTING IS GREATER THAN 13lt07l• SCANNING STOPS.

THE CONTROL VARIABLE Of A DO OR 00 IMPLIED LOOP MUST 8E A SIMPLE INTEGER VARIABLE.

THE EXPRESSION IN A LOGICAL If IS NOT TYPE LOGICAL.

FE THE FIELD FOLLOWING STOP OR PAUSE MUST BE 5 OR LESS OCTAL DIGITS OR A QUOTE-DELIMITED STRING.

0\
0 w
0
VI

§
'T1

---t

FE THE OPERATOR INDICATED <-•••*•/• OR **) HUST ~E FOLLOWED av A CONSTANTt NAMEt OR LEFT PARENTHESIS.

f E

f E

FE

f E

THE STATEMENT IN A LOGICAL If HAY BE ANY EXECUTABLE STATEMENT OTHER THAN A DO OR ANOTHER LOGICAL IF.

THE SYNTAX OF DO PARAMETERS MUST ~E I=MltM2tM3 OR l=HltM2.

THE TERMINAL ST~TEMENT Of THIS DO PRECEDES IT•

THE TYPE OF THIS IDENTIFIER IS NOT LEGAL FOR ANY EXPRESSION.

FE THE VALUE Of THE PARITY INDICATOR IN A BUFFER 1/0 STATEMENT MUST BE 0 OR 1.

FE THIS ASSIGN STATEMENT HAS IMPROPER fORMATt ONLY ALLOWABLE IS (ASSIGN LAiEL TO VARIABLE J.

FE THIS NAME MAY NOT BE USED IN A DATA STMT.

FE THIS OPERATOR (.NOT. OR A RELATIONAL> MUST BE FOLLOWED av A CONSTANT~ NAME, LEFT PAREN, • OR -.

FE THIS PROGRAM UNIT CALLS ITSELF.

FE THIS STATEMENT MAKES AN ILLEGAL TRANSFER INTO A PREVIOUS DO LOOP.

FE THIS STATEMENT TYPE IS ILLEGAL IN BLOCK DATA SUBPROGRAM.

FE TOO MANY LABELED COMMON BLOCKSt ONLY 125 BLOCKS ARE ALLOWED•

FE TOO MANY SUBSCRIPTS IN ARRAY REFERENCE.

FE TOTAL RECORD LENGTH IS GREATER THAN l3lt071. SCANNING STOPS•

FE UNDEFINED STATEMENT NUMBERSt SEE BELOW.

FE UNIT NUMBER MUST BE BETWEEN l AND 99 INCLUSIVE.

FE UNIT NUMBER OR PARITY INDICATOR MUST BE AN INTEGER CONSTANT OR VARIAiLE•

FE UNMATCHED PARAMETER COUNT IN A REFERENCE TO THIS STATEMENT FUNCTION.

FE UNMATCHED PARENTHESIS.

FE UNRECOGNIZED STATEMENT.

FE USE Of THIS PROGRAM OR SUBROUTINE NAME IN AN EXPRESSION.

FE VALUE OF ARRAY SUBSCRIPT IS .Lr. l OR .GT. DIMENSIONALITY IN IMPLIED DO NEsT.

FE VARIABLE IN ASSIGN OR ASSIGNED GO TO IS ILLEGAL.

FE VARIABLE SUBSCRIPTS MAY NOT APPEAR WITHOUT DO LOOPS.

FE WAS LAST CHARACTER SEEN AFTER TROUBLE. REMAINDER Of STATEMENT IGNORED.

f E

f E

WORKING STORAGE EXCEEDED• FORMAT SCAN HALTED•

ZERO IS SPECIFIED AS REPEAT COUNT. SCANNING STOPS.

FE ZERO LEVEL RIGHT PARENTHESIS MISSING. SCANNING STOPS.

---~
N

O'I
0
(J.J

0
Vt
O'I
0
0
'Tj

FE

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

10

ZERO STATEMENT LABELS ARE ILLEGAL.

*** DUE TO THE MANY ERRORS NOTEDt ONLY THOSE WHICH ARE FATAL WILL BE LISTED HEREAFTER.

PROGRAM START. <INPUT,OUTPUT> ASSUMED WHEN HEADER STATEMENT IS DEFECTIVE OR OMITTED.

A HOLLERITH CONSTANT IS AN OPERAND OF AN ARITHMETIC OPERATOR•

A TYPE WAS DECLARED PREVIOUSLY FOR THIS VARIA~LE OR FUNCTION• THIS OECLARATIO~ IGNORED.

AN If STATEMENT MAY BE MORE EFFICIENT THAN A 2 OR 3 BRANCH COMPUTED GO TO STATEMENT.

ARGUMENT COUNT INCONSISTENT WITH PRIOR USAGE.

ARRAY NAME OPERAND NOT SUBSCRIPTED, FIRST ELEMENT WILL 8E USED.

ARRAY REFERENCE OUTSIDE DIMENSION BOUNDS.

CHARACTER BOUNDS REVERSED IN IMPLICIT STATEMENT.

COMMA HISSING BEFORE VARIABLE INDICATED.

CONSTANT LENGTH .GT. VARIABLE LENGTHt CONSTANT TRUNCATED.

CONSTANT TOO LONG. HIGH ORDER DIGITS RETAINED, iUT SOME PRECISION LOST.

CONTROL VARIABLE IN COMMON OR EQUIVALENCEOt OPTIMIZATION MAY 8E INHlilTED.

DATA ITEM LIST EXCEEDS VARIAiLE LISTt EXCESS CONSTANTS IGNORED.

DATA VARIABLE LIST EXCEEDS ITEM LISTt EXCESS VARIABLES NOT INITIALIZED.

DECIMAL DIGITS EXPECTED AFTER DECIMAL POINT. DEPENDING ON THE DESCRIPTOR, A O~E OR A ZERO IS ASSUMED.

DECIMAL POINT SPECIFICATION HISSING FROM FLOATING POINT DESCRIPTOR.

DIMENSIONAL RANGE IS EXTENDED FOR EQUIVALENCING PURPOSES.

FIELD WIDTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE 1/0 DEVICE CAPACITY.

FIELD WIDTH OF A CONVERSION DESCRIPTOR SHOULD BE AS LARGE AS THE MINIMUM SPECIFIED FOR THAT DESCRIPTOR.

FILE LENGTH REQUESTED IS TOO LARGE. STANDARD LENGTH OF 20008 SUBSTITUTED.

FWA AND LWA NOT IN SAME ARRAY OR EQUIVALENCE CLASS.

1/0 BUFFER LENGTH SPECIFICATION IS NOT MEANINGFUL--VALUE Ir.NORED.

ILLEGAL CHARACTERS AFTER TERMINATING RIGHT PARENTHESIS IGNORED.

ILLEGAL LABEL FIELD.

LEVEL CONFLICTS WITH PREVIOUS DECLARATION. ORIGINAL LEVEL RETAINED.

LOWER LIMIT .GE. uPPER LIMITt ONE TRIP LOOP.

MASK ARGUMENT MU5T BE NONNEGATIVE ANO LESS THAN 61.

~
~
8 ,,.,

---~ -w

I

I

I

I

I

I

I

I

I

I

I

1

MAY NOT USED IN A DEBUG STATEMENT.

HISSING l/O LIST OR SPURIOUS COMMA.

MORE STORAGE REQUIRED BY DO STATEMENT PROCESSOR fOR OPTIMIZATION.

NO DIGIT PRECEDED X-FIELD. lX ASSUMED.

NO ENO CARDt END LINE ASSUMED.

NOT ALL ITEMS IN THIS COMMON BLOCK OCCUR IN LEVEL STATEMENTS•

NUMERIC FIELD FOLLOWING TAB SETTING DESIGNATOR IS EQUAL TO ZERO. COLUMN ONE WILL BE ASSUMED.

NUMERIC FIELD OMITTED FROM PRECEDING SCALE FACTOR. ZERO SCALE FACTOR ASSUMED.

PRECEDING FIELD WJDTH IS ZERO.

PRECEDING FIELD WIDTH SHOULD BE 7 OR MORE.

PRECEDING SCALE FACTOR EXCEEDS THE LIMIT Of REPRESENTATION WITHIN THE MACHINE.

PRESENT USE IN CONTEXT Of THIS NAME DOES NOT MATCH PREVIOUS OCCURRENCES IN DE~UG STMTS.

PREVIOUSLY DIMENSIONED ARRAY. FIRST DIMENSIONS WILL BE RETAINED.

SEPARATOR MISSING. SEPARATOR ASSUMED HERE.

SHIFT ARGUMENT MUST BE GREATER THAN -61 AND LESS THAN 61.

SINGLE WORD CONSTANT HATCHED WITH DOUBLE OR COMPLEX VARIA8LE• PRECISION LOST•

SPURIOUS CHARACTERS AFTER CONTINUE IGNORED.

SUPERFLUOUS SCALE FACTOR ENCOUNTtRED BEFORE THE CURRENT SCALE FACTOR.

TAB SETTING MAY EXCEED RECORD SIZE, DEPENDING ON USE.

THE UPPER LIMIT ANO CONTROL VARIABLES OF THIS 00 ARE THE SAMEt PRODUCING A NON-TERMINATING LOOP.

THERE IS NO PATH TO THIS STATEMENT.

THIS If DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.

THIS STATEMENT BRANCHES TO ITSELF.

THIS STATEMENT FORM IS OBSOLETE. USE A LEVEL 3 STATEMENT.

THIS STATEMENT MAY REDEFINE A CURRENT LOOP CONTROL VARIABLE OR PARAMETERt OPTIMIZATION INHIBITED.

THIS STATEMENT REDEFINES A CURRENT LOOP CONTROL VARIABLE OR PARAMETEk.

TOTAL RECORD LENGTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE 1/0 DEVICE CAPACITY.

T~IVIAL EQUIVALENCE GROUPt IGNORED.

X-f IELD PRECEDED BY A ZERO. NO SPACING OCCURS.

SPECIAL COMPILATION DIAGNOSTICS

When a compilation is aborted or prematurely terminated for internal reasons, one or more of the following
messages appears if D or OPT=O, I or 2 has been selected. The message listed last is supplied only when TS
mode is selected.

DAYFILE MESSAGES

nnnn ASSEMBLY ERRORS IN prognam

A compiler, operating system or hardware error has occurred while compiling prognam.

COMPILING prognam
LAST STATEMENT BEGAN AT LINE nnnnn
ERROR AT aaaaa IN ddddddd
LAST OVERLAY LOADED - (p,s)

A compiler, operating system or hardware error has occurred while compiling prognam. Variable parameters in
this message are as follows:

prognam

nnnnn

ddddddd

aaaaaa

p,s

Name of the source program unit.

Approximate compiler-assigned source line number where the difficulty arose. During
transitions from one phase of the compilation to another, the END line number may be
displayed.

Name of the compiler internal deck where the abort occurred. May be RA+O if control
was accidentally transferred to the control point job communications area.

Address relative to the origin of the internal deck (as above) where the abort occurred.

Primary and secondary level numbers of the overlay last loaded before the abort
occurred. The overlays are:

0,0 - Control card cracker; global communication and control

1,0 - TS-mode compilation overlay

2,0 - Optimizing compilation batch controller

2,1 - Optimizing compilation normal pass I (lexical scan, parse, intermediate
language generation)

2,2 - Optimizing compilation pass 2 (global and local optimization, object code
generation)

2,3 - Optimizing compilation diagnostic phase (occurs between pass 1 and pass 2)

2,4 - Optimizing compilation C$ DEBUG pass 1

2,5 - · Optimizing compilation reference map generation and object code assembly
phase)

e III-2-14 60305600 G

DEAD CODE IN prognam

Please refer to the message STATEMENTS BEGINNING AT THE BELOW. LINE NUMBERS ARE UNREACH­
ABLE (DEAD CODE), AND WI LL NOT BE PROCESSED in the following section entitled Compiler Output
Listing Message for a full description of this error condition.

ECS READ ERROR
ECS WRITE ERROR

An ECS/LCM read or write parity error has been detected. During compilation, this difficulty can occur only
when OPT=2 has been selected.

FTN/FBV - BLOCK READ ERROR

A compiler, operating system or hardware error has occurred. The most probable cause is a disk or READ NS
(read non-stop) 1/0 command error. During compilation, this difficulty can occur only when OPT=2 has been
selected.

NULL PROGRAM IGNORED AFTER prognam

A program unit has been detected that does not contain a single executable statement. It is ignored.

OBJECT CODE END LlNE MISSING

A compiler, operating system or hardware error has occurred.

**PASS 2 MEMORY OVERFLOW **

Please refer to the similar message entry in the Compiler Output Listing Messages description that follows.

** PREMATURE EOF ON -REFMAP- FILE.

A compiler, operating system or hardware error has occurred. This error can occur only when a long reference
map has been selected by R=2 or 3 on the control card.

(TS MODE ONLY)

EMPTY INPUT FILE. NO COMPILATION.

An end-of-record, end-of-partition, or end-of-section was encountered on the first read of the input file.

60305600 G 111-2-15 •

COMPILER OUTPUT LISTING MESSAGES

The following error messages can appear in the body of the compilation listing. If present, they will be
located after the source program and standard error summary listings. They may appear before, during or
after the reference map and object code listings, depending on the exact error condition. The message format
is quite different from that of the standard error summary; each message is usually left-justified on the output
listing page, and may be preceded by several blank lines or a page eject.

CANT SORT SYMBOL TABLE
INCREASE FL BY ffffB

Not enough CM/SCM field length was available to generate a reference map. ffff is a rough estimate of the
additional field length that is necessary for generating the map. This error cannot occur if the reference map
has been suppressed by selecting R=O on the control card.

*** MEMORY OVERFLOW IN -FAX-

Not enough CM/SCM field length was available for final assembly of the binary object code. No estimate
can be provided for the additional memory required; IOK to 20K increments are suggested.

PASS 2 MEMORY OVERFLOW AT SOURCE LINE nnnn IN compnam

This message may indicate a genuine memory overflow, or may result from a compiler error. If compnam is
JAM-ERR, a compiler error has occurred. Otherwise, not enough CM/SCM field length was available for
completing pass 2 of an optimizing compilation. Since field length requirements increase with higher degrees
of optimization, the problem can be eliminated either by increasing the field length or by decreasing the
optimization level selection.

REFERENCES AFTER LINE nnnn LOST
INCREASE FL BY ffffB

Not enough CM/SCM field length was available to generate a complete long reference map. nnnnn is the
approximate compiler-assigned source line number where the difficulty arose. ffff is a rough estimate of-the
additional field length needed for generating the complete map. This error can occur only when a long
reference map has been selected by R=2 or 3 on the control card.

• III-2-16 60305600 G

STATEMENTS BEGINNING AT THE BELOW LINE.
NUMBERS ARE UNREACHABLE (DEAD CODE),
AND WILL NOT BE PROCESSED.

One or more executable statements in the source program can never be executed, due to the program flow of
control. No object code has been compiled for any dead statements. Due to the possible severity of the
error, it is accompanied by the dayfile message, DEAD CODE IN prognam. The error condition is detected
only when OPT=2 has been selected.

A simple example of the error follows:

A=2.

GO TO 30

C THE NEXT STATEMENT CANNOT BE EXECUTED.

A=A+1.

30 STOP

END

A more subtle example is:

60305600 G

A=2.

ASSIGN 40 TO J

ASSIGN 50 TO J

ASSIGN 60 TO J

GO TO J, (40,50)

C THE NEXT STATEMENT CANNOT BE EXECUTED, BECAUSE

C ITS LABEL DOES NOT APPEAR IN THE GO-TO TRANSFER

C LIST.

60 A=A+1.

40 STOP

50 STOP

END

III-2-17 ct

COMPILATION DIAGNOSTICS, TS MODE

When TS mode is selected, error messages are intermixed with the source listing as they are detected. The
format of the error message is:

severity * text

The severity can be:

FATAL

WARNING

NOTE

ANSI

Error is fatal to execution.

Error is severe, but not fatal. Syntax is incorrect, but probable meaning is presumed.

Minor syntax error or omission.

Usage does not conform to ANSI X3.9 - 1966 FORTRAN specification. Listed only if
EL=A list option is specified.

In addition to the above, certain unsuppressible non-fatal diagnostics may be listed (regardless of the EL speci­
fication on the FTN control card).

On the following pages appear the compilation diagnostics produced in TS mode, grouped according to the
processor that detects the error. Ellipses denoted by are replaced in an actual message by items from
the relevant source statement, distinguished by a preceding~ (or_). Micro names delimited by -:/= pairs (such
as -:/=MAX.SARG-:/=) are replaced by numerical values supplied by the system.

Example:

•FATAL

WARNING
A N S l

A N S I
A N S I

NOTE

------A N S I
•FATAL*
•FATAL*

BLOCK
Al)ORESS
LENGTH

•
•
• •

•
•
• • • • •

SUBROUTINE SUBfA,B> 08/01/74 15.00.lb.

J
J

J

J
J
J

3

11

SU~ROUTI~E SUB(At8)
DIMENSION Af21
COMMEN E1l41

MISS~ELLEU KEYWORD -- ~COMMON A~SUHEO
USAGE CONFLICT -- ~i IS DUMHY•ARG ANO CANNOT SE COMMON

DO lOt l=lt4
COMMA AFTER Do LABEL IGNORED
COMMA NOT PER~ITTED AFf£R 00 LABEL

·wRITEf4tl,U AtB
11 fORMATf2Al01

VARlABL=A•W
ARRAY ~A MISSING SUWSCRIPT -- f IRST ELEMENT ASSUHFO
ARRAY ~a MISSING SUiSCRIPT -- FIRST ELEMENT ASSUMfD

CONTINUE
CONTINUE WITH NO STATEMENT LABEL -- IGNORED
END LINE ABSENT
CONTROL FLOW INTO ENO LINE NOT PERMITTED
STATEMENT LABEL .10 REFERENCED iUT NOT OEFJNEO
DO LOOP .10 NOT TERMINATED BEFORE END Of PROGRAM

TS

CODE
3
0

LITERALS
J

FORMATS
3

TEMf'S
5
0

ARGS
5
5

NAMELIST VARIAiLES BUFFERS
12 12 14

0 2 0 2 0

37100 STORAGE USED HODEL 71t
COMPILATION

8 SOURCE STATEMENTS
.021 SECONDS 14 PROGRAM•UNIT LENGTH

PAGE
173

J FORTRAN ERRORS IN sue

e III-2-18 60305600 G

0\
0
w
0
Vl
0\
0
0

C')

---I N
I

.........
\0

•

FATAL
FATAL
FATAL
FATAL
FATAL
WARNING
WAR"JING
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL

FATAL
FATAL
FATAL
NOTE
FATAL
FATAL
NOTE
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
WAR"JING

ANSI
ANSI
ANSI
ANSI
ANSI
NOTE

FTN<TS) COMPILE-TIME ERROR MESSAGFS

ARGUMENT PROCESSOR.

ONLY ~MAX.SARG# OUM~Y ARGUMENTS ARE PERMITTED -- EXCESS IGNnREO
DUM~y ARGUMENT ••••• PREVIOUSLY DEFINED
DUMMY ARGUMENT ••••• MUST BEGIN WITH LETTER
SYNTAX -- EXPECTED RETURNS FOUND •••••
SYNTAX -- EXPECTED LEFT PAREN OR COMMA FOUND •••·•
ILLEGAL CHAPACTER AFTER RIGHT PAREN
MISSPELLED KEYWORD -- ••••• RETURNS ASSUMED
SYNTAX IN ARGUMENT LIST -- EXPECTED LEFT PAREN FnUND
SYNTAX ERROR IN ARGUMENT LIST
FUNCTION MUST HAVE AT LEAST ONE DUMMY ARGUMENT
RETURNS LIST NOT PERMITTED IN FUNCTION STATEMENT
SYNTAX -- EXPECTED E.O.s. OR RETURNS PARAMETER FnUND
NAME ••••• DID NOT APPEAR IN RETURNS LIST

ASF PROCESSOR

ILLEGAL STATEMENT FUNCTION SYNTAX -- TROUBLF STADTED AT •••••
STATEMENT FUNCTION ••••• -- ARG~MENT SYNTAX
5TATE~ENT FUNCTION ••••• -- MISPLACED EQUAL SIGN
STATE~ENT FUNCTION ••••• HAS NULL DEFINITION -- TGNORED
STATEMENT FUNCTION ••••• REFERENCl -- CLOSING PAPEN MISSING
RECURSIVE DEFINITION OF STATEMENT FUNCTION •••••
ARGUMENT •••••2 IS NEVER USEO WITHIN STATEMENT F•rNCTION •••••
nUMMY ARGUMENT ••••• 2 CAN occUR ONLY ONCE IN ••••• OEFINITION
REFERENCE TO STATEMENT FUNCTION ••••• HAS A NULL PARAMETFR
IJNMATCH~O PARAMETER COUNT TO STATEMENT FUNCTION ·••••
STATEMENT FUNCTION SYNTAX IN DUMMY ARGUMENT LIST -- EXPECTEn COM~A FOUND •••••
STATEMENT FUNCTION SYNTAX -- EXPECTEO COMMA FOUNn E.o.s.
STATEMENT FUNCTION SYNTAX IN DUMMY PARAMETEP LIST -- NULL APGUMENT
DUMMY PARAMETER ••••• OF STATEMENT FUNCTION NOT ~IMPLE VARJA8LE
PREVIOUS DEFINITION OF STATfMENT FUNCTION ••••• TS OVERRIDOFN

ASSORTED ANSJ ERRORS

ANSI REQIJIRES THE WORD ?RECISION
CONTROL FLOW INTO END LINE NOT PERMITTED
STATEMENT IS NOT DEFINED IN ANSI
STATE~ENT IS NOT DEFINED IN ANSI
RETtJRN TN MAI"J PPOGRAM
RETURN ACTS AS END

• --;G
~
0

8
0
V\

°' 8
0

WARNING
WAPNING
F'ATAL
WARNING

F'ATAL
FATAL
FATAL
F' ATAL
NOTF
FATAL
FATAL
ANSI
AN<;I
ANSI

FATAL
F'ATAL
FATAL

F'ATAL
ANSI
FATAL
FATAL
FATAL
WAQNYNG
FATAL
FATAL

NOTE
~OTt

FATAL
~ion:

NOTE
NOTF
MOTF
FATAL

FTNCTS> COMPILf-TIME ERROR MESSAGF.S

ASSIGN STATEMENT.

oToo ASSUMED FOR •••••
VARIAALF. ••••• NOT INTEGER
STATEMENT LABEL ••••• MUST 8F NUMERIC
COMMA AFTER STATEMENT LAREL IG~ORED

ARITH PROCfSSOR.

ASSIGNMF~T STATEMENT REQUIRES A VARIABLE ON L~FT OF EQUAL STGN
LOGICAL AND NON- LOGICAL OPERANDS MAy NOT Bf Mix~D
LOGICAL OPERAND U5EO WITH NON- LOGICAL OPERATOR
ILLEGAL USE OF OPERATOR I OPERAND -- ••••• •••••?
HOLLERITH CONSTANT IN EXPRESSION EXCEEDS 10 CHAR~CTERS
ILL~GAL FORM INVOLVING THE U5E OF A COMMA
ILLEGAL lJSf OF ASSIGNMENT OPERATOR
MASK EXPRESSION NON- ANSI
HOLLfRITH CONSTANT IN EXPRESSION NON- ANSI
MULTIPLE ASSIGNMENT IS NON- ANSI

CALL STATEMENTS.

CALL STATfMENT MJSSJNG ROUTINE NAME
~YNTAX -- EXPECTED LEFT PARF.N OR COMMA AFTEP. R011TINF. NAMf FriUND •••••
PETURNS PARAMETfR ••••• MUST BE NUMEPIC LABFL

COMMON PROCESSOR.

SYNTAX ERROR IN BLOCK NAME
NUMERIC ALOCK NAME NOT PfRMJTTfO
PREMATURF E.o.s. -- EXPECTED BLOCK NAME
ONLY tMAX.BLKt COMMON BLOCK ARE PERMITTED -- USEn // INSTEAn
SYNTAX -- EXPECTED COMMA OR SLASH FOUND •••••
co~~ON STATEMENT WITHOUT A LIST IS IGNOQED
ILLEGAL BLOCK NAME IN COMMON STATEMENT
PRE~ATUR~ E.o.s. -- EXPECTED SYMBOL

CONSTANT RfOUCTTON.

CONSTANT TEPM OF ZEPO -- IGNORED
CONSTANT MULTIPLY BY ZERO -- PESULTS SET TO ZERO
CONSTANT DIVIDE RY ZERO -- ~ESULTS SFT TO I~FTNJTE
INTEGER DIVIDE RY ZERO -- ~ESULTS SET TO ZEPO
nIVInE I~TO ZEPO -- RESULTS SET TO ZfRO
~ULTIPLY 8Y ONE -- IGNORED
OIVYDE 8Y ONf -- IGNORED
QESllLTS OF CONSTANT IJSEO WITl-1 ••• •. OPFRATOP OUT OF RAl\JG~

0\
0 w
0
Vi
0\
0
0

~

--;c
~

•

NOTE

ANSI
FATAL
NOTf­
WAR"J I NG
ANSI
FATAL
FATAL
ANSI
FATAL
fATAL
fAUL
FATAL
WAP~ING

ANST
ANc:;I
F"ATAL
WARNING
FATAL
FATAL
FATAL
FATAL
fATAL
FATAL
fATAL
fATAL
CONT IN
FATAL
FATAL
FATAL
FATAL
WARN J fllG
FATAL
FATAL

fATAL
ANSI
FATAL
F"ATAL
NOTF::
WAD'JJNG
WARl\JP..JG
ANST

F"TN<TS> CO~PILE-TIME ERROR MESSAGfS

CONTINUE STATEMENT PROCES50R.

CONTINUE WITH NO STATEMENT LABEL IGNORED

DATA STATEMENT PROCESSOR.

ARRAY ••••• MUST HAVf IMPLIED LOOP
••••• IS IN // COMMON -- DATA IGNORED
EXCF.c:;s CONSTANTS IGNORED
TOO FEW CONSTANTS -- VARIABLE ••••• AND FOLLOWINr. NOT INITALIZD
PAREN REPEAT Ll5T IS NOT PERMITTED
DATA INTO ••••• IS ILLEGAL
ILLEGAL REPEAT CONSTANT
HOLLERITH CONSTANT LONGER THAN ONE ITEM
SYNTAX EQROR IN DATA CONSTANT LIST
TLLEGAL CONSTANT FOLLOWING + OR -
REPEAT fACTOR IN DATA CONSTANT LIST MUST NOT BE ~FSTEO
TLL~GAL SEPARATOR FOLLOWING DATA CONSTANT
NULL DATA STATEMENT JS IGNORfD
ALTERNATF FORM OF DATA STATEMENT NOT PERMJTTfD
NON- ANSI CONSTRUCTS IN THIS DATA STATEMENT
SYNTAX ERROR IN DATA STATEMENT
••••• CONSTANT TOO LONG -- TRUNCATED
ILLEGAL SEPARATOR AF"TER •••••
SYNTAX ~PROR IN IMPLIED DO NEST
IMPLIED DO INDEX MUST BE FOLLOWED AY EQUAL
!~PLIED 00 LOWEP LIMIT MUST RE NUMERIC
NO COMMA AFTER LOWER Ll~JT
IMPLIED no UPPER LIMIT MUST RE NUMFRIC
IMPLIED no INCPFMF.NT MUST BE NUMERIC
MISSING RIGHT PAPEN AFTER IMPLIED DO
~YNTAX IN IMPLIED DO ON ARRAY •••••
DATA VA~JABLE LIST S~NTAX EPPOR
NO MATCH OF LOOP INDEX AND SUBSCRIPT
ARRAY ••• • • HAS A VARIABLE SUBSCRIPT WITH NO lMPt JED LOOP
••••• S1JR5CRIPT LESS THAN ONE OR EXCfEDS Olt-lff\JSJnN
VARTAALE ••••• QEFEPENCED A~ APRAY
OATA SUR~CRIPT LTST SYNTAX FPROR
••• •. StJRSCR I PT FXCEEDS ?~•q 7-1

CONVfRSIO~ OF CONSTANT ~ECTION.

CONSTANT CAN NOT RE CONVFRTFO -- CHECK SYNTAX
OCTAL DATA TYPF NOT DEFINED IN ANSI
~AGNITUOF OF EX?ONENT EXCEEOS 512
ILL~GAL FOP~ OF FXPONENT •••••
C0N5TANT MISSING EXPONENT FIELD -- lfRO A~SIJ~ED
OCTAL CONSTANT EXCEEDS 20 DIGITS -- TRUNCAlFn
NO~- OCTAL DIGIT IN OCTAL CONSTANT -- IGNORFO
COMPLEX CONSTANT MUST BE (REAL ' R~Al >

• --;c
tG
N

°' 0 w
0
Ul

°' 0
0

C)

FAUL
ANSI

FATAL
FATAL
FATAL
FATAL
FATAL
WAR'\JJNG
FATAL
FATAL
WARNING
FATAL
FATAL
ANSI
FATAL
FATAL

FATAL
FATAL
WARNING
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
NOTF.'.
ANSI
-OOPS­
NOTF.
WAR'\JING
FATAL
FATAL
NOTF.:
FATAL
ANSI
WARNING

FATAL
FATAL

FTN<TSl COMPILE-TIME ERROR MESSAGFS

LOGICAL CONSTANT DECLARED PART OF COMPLEX CONSTA~T
DOUBLE CONSTANT DECLARED PART Of COMPLEX CONSTANT -- TRUNCATED

DI~ENSION PROCESSOR.

SYNTAX IN DIMENSION STATEMENT
ARRAY ••••• DIMENSION INDICATOR NOT INTEGER
ARRAY ••••• NULL OR ZERO DIMENSION INDICATOR
VARIABLE DIMENSION ARRAY ••••• ~UST BE DUMMY ARGt1MENT
VARIABLE DIMENSION INDICATOR ••••• MUST BE DUMMY ARGUMENT
VARIABLE ••••• HAS NO Dl~ENSION INDICATOR -- IGNnREO
ARRAY ••••• EXCEEDS ~MAX.DIM~ DIMENSIONS
ARRAY ••••• DIMENSION INDICATOR •••••2 EXCEEDS 2**17-1
DIMENSION OF ••••• IGNORED. PRIOR DIMENSION RETATNED·
ARRAY ••••• DIMENSION INDICATOR -- TERMINAL RIGHT PAREN MIS~ING
SYNTAX ERROR ON DIMENSION INDICATOR FOR •••••
HOLLERITH DIMENSION FOR •••••
NEGATIVE DIMENSION FOR ••••• -- SET TO 1
VARIABLE DIMENSION INDICATOR ••••• IS NOT INTEGEQ

DO PROCESSOR.

SYNTAX OF DO MUST BE l=Ml•M2eM3 OR M},M2
INDEX PARAMETER MlJST AE INTEGER OR OCTAL

LIMIT LESS THAN INITIAL -- O~E TRIP LOOP
••••• INDEX PARAMETER IS TOO LARGE
••••• INDEX PARAMETER MUST BE SIMPLE VARIABLE
••••• INDEX PARAMETER MUST RF POSITIVE
THIS STATEMENT REDEFINES A DO CONTROL INDEX
DO LOOP ••••• NOT TERMINATED BEFORE END OF PROGR~M
INDEX OF OUTER DO REDEFINED BY CURRENT DO
IMPROPER NESTING OF DO LOOP5
DO CONCLUSION NOT COMPILED -- DO DEFINITION ERROo
••••• INOEX PARAMETER MUST RE SIMPLE INTEGER VARTABLE OR CO~STANT
DO CONTROL INDEX MUST BE SIMPLE INTEGER VARIABLE
00 COLLAPSES TO NOTHING -- IGNORED
THIS STATEMENT RFOEFINES A 00 INDEX PARAMETER
•••••2 -- ILLEGAL TRANSFER TO INSIDE A CLOSfD DO LOOP
TRANSFER PREVIOUSLY FLAGGED IS ILLEGAL
POSSIALE ILLEGAL TRANSFER FROM OUTSIDE CURRENT On
DO STATEMENT SYNTAX -- EXPECTED CONTROL IND~X -- FOUNO E.O.~.
COMMA NOT PERMITTED AFTER DO LABEL
COMMA AFTER DO LAAEL IGNORED

EQUIVALENCE PROCESSOR.

SYNTAX IN EQUIV. 5TATEMENT
MISSING REGINNING LEFT PAREN AT •••••

0\
0 w
0
Vi
0\
0
0

0

--;c
~
w

•

FATAL
FATAL
FATAL
FATAL
WARNING

WARNING
FATAL
FATAL
FATAL
WARNING

NOTf
FATAL
WARNING
WARNING

WARNING
FATAL
FATAL
FATAL
WARNING
ANSI
FATAL
ANSI
ANSI
WARNING
ANSI
ANSI
ANSI
FATAL
FATAL
ANc;I
ANSI
ANSI
WAP.NJNG
ANc;J
FATAL
FATAL
WARNING
FATAL
FATAL

FTN(TS> COMPILE-TIME ERROR MESSAGES

SUBSCRIPT ••••• EXCEEDS 2**17-1
MISSING COMMA AT •••••
MORE THAN ~MAX.DIM~ SUBSCRIPT
SUBSCRIPT ••••• MUST BE NON- ZERO NU~ERIC INTEGEP CONSTANT
TRIVIAL EQUIV. GROUP WITH ONLY ONE MEMBER I' IGNnRED

CLOSE OF DECLARATIVES PROCESSING.

REDUNDANT EQUIV. SPEC.
CONFLICT IN EQUIV. 5PEC.
NO DIMENSION FOUND FOR EQUIV. VARIABLE •••••
EXCESS SUBSCRIPTS ON EOUJV. VARIABLE •••••
MISSING SUBSCRIPTS 5ET TO ONF. FOR EQUIV. VARIABLF

EXTERNAL PROCESSOR.

••••• ALREADY EXTERNAL
SYNTAX -- EXPECTED COMMA FOUND •••••
PREMATURf E.o.s. -- EXPECTED VARIAALE AT
MUST NOT DECLARE ENTRY ••••• AS EXTERNAL -- IGNOPED

FORMAT PROCESSOR.

FORMAT MUST HAVE STATEMENT LABEL
TERMINAL RIGHT PAREN MISSING
ONLY 9 PAREN LEVELS ALLOWED
REPEAT COUNT IS NOT ALLOWED BEFORE THE FIELn DES~RIPTOR •••••
T COnE RESETS COLUMN POINTER, OVERLAYING PREVIOU~ LINE IMAGF
T EDIT IS NULL OR ZF.RO. cOLIJMN POINTER RESET AT nNE
c;IG~ED COUNT ALLOWED ONLY BEFORE P OR NX CODE
S CODE IS SPECIFIED
SKIP COUNT FOR X CODE IS PRECEDED BY •••••
RACKSPACE ATTEMPTED BEYOND FIRST COLUMN -- COLUM~ POINTER RFSET TO FIRST COLUMN
X CODE PRECEDED RY NON- DIGIT -- lX ASSUMED
X CODE PRECEDED BY ZERO -- X CODE IGNORED
••••• IS SPECIFIED AS CONVERSION CODE
ZERO IS SPECIFIED AS REPEAT COUNT
FIELD WIDTH OF THE CONVERSION CODE ••••• IS ZERO OR NOT SPEcIFIEn
MINIMUM OIGITS IS SPECIFIED FOR THE CONVERSION cnDE •••••
OECI~AL POINT IS NOT SPECIFIED FOR THE CONVERSI0~1 CODE •••••
FXPONENT LENGTH IS SPECIFIED FOR THE CONVERSION rODE ••••• ·
FIELD WIDTH OF CONVERSION CODE •••• • IS LESS THA"-' THE MI1HM1JM REQUIRED
fQUAL SIGN = IS SPECIFIED FOR A DIGIT
COUNT FOR H CODE IS ZERO OR MISSING -- SCAN STOP~
REOCRD LENGTH EXCEEDS 131•071 COLUMNS
RECORD LENGTH EXCEEDS 137 COLUMNS -- MAY EXCEED T/0 DEVICE
UNKNOWN FORMAT CODE ••••• -- SCAN RESU~ES AT NEXT SEPARATOR
CHARACTER ••••• FOUND BEYOND Tt:RMINAL RIGHT PARPJ

• ---~
~

0\
0
w
0
Vi
0\
0
0

C'1

FATAL
FATAL
FATAL
FATAL

FATAL
FATAL
WAPNING
NOTf
NOTJ:
FATAL
ANSt
ANSI
\ilAR"JtNG
NOTF.
ANc;I
FATAL
ANSI

FATAL
FATAL
FATAL
FATAL
AN<;I

FATAL
ANSI
ANC:. J
FATAL
1~APN ING
WARNING
FATAL
FATAL
ANSI
FATAL
FATAL
FATAL
FATAL

FTN(TS> CQMPILf-TIME ERROR MESSAGES

TERMINAL RIGHT PAREN MISSING
FORMAT LABEL PRfVIOUSLY REFERENCED AS DO STATEMEl'IT LABEL
FOR~AT LABEL PRfVIOUSLY PEFERENCED AS CONTROL STATEMENT LABFL
DUPLICATF DEFINJTION Of CURRENT FORMAT NUMBER

GO TO STATEMENT.

SYNTAX IN GO TO STATEMENT
OBJECT OF GO TO MISSING
OBJECT OF GO TO NOT INTEGER VARIABLE
NULL TRANSFER STATEMENT -- TRANSFER IGNORED
IF RESULTS IN A NULL TRANSFER -- TEST IGNORF.D
EXPECTED LEFT PAREN -- FOUND •••••
REOUIPES COMMA BEFORE VARIABLE NAME IN COMPUTED r.O TO
REQUIRES COMMA AFTER VARIABLE NAME IN ASSIGNED G~ TO
STATEMENT TRANSFFRS TO ITSELF
STATEMENT CAN TRANSFER To ITSELF
COMPUTED GO TO INDEX MUST BE SIMPLE VARIABLE
COMPUTED GO TO INDEX MUST NOT BE LOGICAL
COMPUTED GO TO INDEX MUST BE INTEGER

CONVERSION OF HOLLE~1TH CONSTANTS.

7ERO LENGTH SPECIFIED ON HOLLERITH CONSTANT
r.o.s. BEFORE HOLLERITH COUNT fXHAUSTED
TER~INAL DELIMITER ••••• MISSING
NO CHARACTERS FOUND IN ••••• DELIMITED HOLLF.RITH STRING
NON- ANSI HOLLfRITH FORM

If PROCE<;SOP.

ILLEGAL If STATEMENT -- OBJECT ~ISSING
? BRANCH IF IS NON- ANSI
OBJECT OF IF IS ILLEGAL 00 TERMINATOR
.ILLEGAL OBJECT OF If -- TROU8LE STARTED AT •••••
THIS IF RESULTS IN A SIMPLE TRANSFER TO STATEMENT INDICATED
LAST If RESULTS IN A NULL TRANSFER TO THIS STATE~ENT
INVALID OBJECT OF LOGICAL IF
3 ARANCH If NOT DEFINED FOR LOGICAL RESULTS
COMPLEX EXPRE<;StON IN AN IF STATEMENT
ARITHMETIC IF HAS STATEMENT AS OBJECT
ONLY ONE LA8EL IN IF STATEMENT
LOGICAL IF ~U5T NOT BE 08JECT OF LOGICAL IF
TOO ~ANY LAAELS IN LOGICAL IF

0\
0
w
0
lJl
0\
0
0

C')

FATAL
FATAL
WARNING
FAHL
WAPNING
WAO!\I ING
FATAL
FATAL
WARNING
FATAL
FATAL
WAR~HNG

COMPLR
ANSI
NOTf
ANSI
WAPNING
WAONJNG
FATAL
WARNING
WARNING
\olAPNING
NOTE
FATAL
ANSI
FAHL
ANSI
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FAHL
FATAL

- FATl\L - NOTF: 'i
N FATAL
I FAUL N

lJl

•

FTN(TS> COMPILf-TIME ERROR MESSAGES

I/0 PROCESSOR.

UNIT DE~IGNATOR ••••• MU~T BE SIMPLE INTEGER VARTABLE OR CONSTANT
MISSING UNIT DESIGNATO~ IN J/O STATEME"IT
F.:XTRANEOIJS COMMA IGNORED
UNIT DESIGNATOR EXCEEDS TWO DIGITS
EXTRA CHARACTERS ••••• AFTER FILE NAME IGNORED
~XTRA CHARACTER ••••• AFTER FILE NAME IGNORED
FORMAT DFSIGNATOR MISSING
MISSING RIGHT PAREN AFTER UNIT IS ASSUMED
ASSUMED COMMA AFTER UNIT OR FOR~AT -- FOUND •••••
PREMATURE E.o.s. IN 1/0 SUBSCRIPT
EXCESS LEFT PAREN IN 1/0 SUBSCRIPT
TERMINAL CHARACTER ••••• CHANGED TO RIGHT PAREN
IMPLIED DO NOT TERMINATED
ERR= IS NON- ANSI
FRR= IS IGNOREO
END= IS NON- ANSI
END= IS IGNORED ON WRITE STATEMENT
FOUND ••••• AFTER FORMAT -- ASSUMED RIGHT PAREN
MISSING RIGHT PAPEN AFTER FORMAT IS ASSUMED
••••• IS NOT A LEGAL KEYWORD
ERR= SPECIFIED TWICE
END= SPECIFIED TWICE
END= IS TGNORED
UNFORMATEO I/O NOT ALLOWED IN THIS STATEMENT
ANS I REQll I RES AN I 10 LI ST
THIS STATEMENT REQUIRES AN I/O LIST
LIST DIRECTED I/O IS NON- ANSI
ZERO IS AN ILLFGAL IJN IT NUMRER
RUFFER DIRECTION INDICATOR MUST BE IN OR OUT
BUFFF.R T/0 PARITY INDICATOR MUST BE INTEGEP CONSTANT OR VARTAgLE
SYNTAX -- BEGINNING LEFT PAPEN MISSING
SYNTAX -- EXPECTED COMMA AFTER UNIT OESIGNATOR -- FOUND •••••
5YNTAX -- EXPECTF.D RIGHT PARFN AFTER PARITY INDirATOR -- FOlt~D •·•••
SYNTAX -- EXPECTED LEFT PAREN AEFORE fWA -- FOUNn •••••
~UFFER l/0 ADDRESS MUST RE VARIABLE
BUFFER 1/0 PARITY INDICATOR VALUE MUST BE 0 OR l
BUFFER 1/0 FWA AND LWA MUST BE IN SAME ARRAY co~~ON OR EQUIV CLA~S
RUFFER 1/0 LwA MUST RE GREATER THAN OR ~QUAL TO FWA
EXCESS LEFT PAREN IN l/O LI5T
SYNTAX IN 1/0 IMPLIED DO
~XCE55 RIGHT PAR~N IN 1/0 LIST
FXPRESSION IN INPUT LIST IS ILLEGAL
CONSTANT IN INPUT LIST IS ILLEGAL
IMPLIED LOOP IS REDUCED
I NOT ALLOWED P~ FOP MATTED I 10 OR UNFOR'-1ATED I NP11T LI ST
FORMATTED 1/0 OR UNFORMATED INPUT LIST CANNOT EN~ WITH COMYA

• ---~
~
°'

°' 0 w
0
VI

°' 0
0

0

ANSI
FATAL
WARNING
ANSI
NOTE

FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL

FATAL
FATAL
FATAL
FATAL
FATAL

FATAL
FATAL
FATAL
FATAL

FATAL
FATAL
FATAL
WAPNING
FATAL
FATAL
FATAL
NOTE
FATAL
FATAL
FATAL

FTN<TS> COMPILE-TIME ERROR MESSAGFS

FORMAT REFERENCED IN l/O.

FORMAT INDICATOR ••••• MUST BE ARRAY
FORMAT INDICATOR MUST NOT Bf EXPRESSION
I/O LIST IGNORED WHEN USING NAMELIST
NAMELIST 1/0 IS NON- ANSI
REDUNDANT PAREN IN I/0 LIST

ENCODE I DECODE.

EXPECTED LEFT PAREN BEFORE COUNT -- fOU~D •••••
EXPECTED COMMA AFTER COUNT -- FOUND •••••
FORMAT INDICATOR ••••• IS NAMELIST NAME
EXPECTED COMMA AFTER FORMAT INDICATOR -- FOUND •·•••
FXPECTEO RIGHT PAREN AFTER STRING ADDRESS -- F0Uhl0 •••••
PREMATURE E.o.s. IN ENCODE OR DECODE
STRING AnDRESS MUST BE ARRAY ELEMENT OR SIMPLE VARIABLE
ILLEGAL CHARACTER COUNT
ILLEGAL FORMAT INDICATOR •••••

NAMELIST PROCESSING.

SYNTAX ERROR IN NAMELIST
MISSING SLASH ON GROUP NAME
EXPECTED NAME -- FOUND •••••
GROUP NAME ••••• PREVIOUSLY DEFINED
VARIABLE DIMENSION NOT PERMITTED IN NAMELIST

PARENTHESIS MIS-MATCH•

TOO FEW RIGHT PAPEN
TOO FEW LEFT PAREN
TOO FEW RIGHT PAPEN OR PREVIOUS SYNTAX ERROR -- 'CAN STOPPEn AT •••••
TOO FEW LEFT PAREN OR PREVIOUS SYNTAX ERROR -- SrAN STOPPED AT •••••

LEVEL PROCESSING

INTEGER 1,2 OR 3 MUST FOLLOW LEVEL
COMMA MUST FOLLOW LEVEL NUMBER
MISSING VARIABLE OR ARRAY NAME IN LEVfl LIST
MULTIPLY OEFINEn LEVEL FOR NAME ••••• -- IGNORED
COMMA OQ E.o.s. MUST FOLLOW LEVEL LIST NAME
NAME ••••• IS LEVEL AND MUST BE COMMON OR DllMMY ~RGUMENT
LEVEL CONFLICT IN COMMON BLOCK •••••
NOT All NAMES IN COMMON 8LOCK ••••• ARE IN LEVEL STATEMENT
NAME ••••• IS IN EQUIV• GROUP THAT IS LEVEL AND MUST BE COM~ON
NAMf ••••• IS IN EQUIV. GROUP THAT HAS LEVEL CON~LICT
LEVEL 3 NA~E ••••• MAY NOT OCCUR IN THIS STATEME~T

0\
0 w
0
Vi
0\
0
0

a

= ;c
I

N
-....J

•

FATAL
FATAL
FATAL
ANSI
WARNING
FATAL
FATAL

FATAL
FATAL
ANSI
ANSI

WARNING

WAPNil'JG
FATAL
FATAL

FATAL
WARNING
FATAL
FATAL
FATAL

WARNING
WARNING
WARNING
WARNING
FAHL

NOTE
FATAL
NOTt

WARNING
WARNING
WAR~ING
WARNING
WARNING

FTN(T5) COMPILF-TIME FRROR MESSAGES

MASTF.R LOOP.

THIS IS NOT A FOPTRAN STATEMENT
STATEMENT FUNCTION DEFINITION MUST OCCUR 8EFORE FIRST EXECUTABLE
EXECUTA8LE STATEMENT ILLEGAL IN BLOCK DATA SUBPRnGRAM
ONLY tANS.CONT~ CONTINUATN CARDS ARE PERMITTED
INITIAL LINE IS CONTINUATN
••••• STATEMENT MUST OCCUR BEFORE FIRST STATfMENT FUNCTION nfFINJTION
THIS STATEMENT MAY NOT BE A DO TERMINAL
END LINE ABSENT
HEADER CARO NOT FIRST STATEMENT -- IGNORED
I~PLICIT STATEMENT MUST OCCUR BEFORE ANY DECLARATIV
••••• BL~NK STATEMENTS WERE IGNORED
MULTIPLE STATEMENT PER CARD NOT PERMITTED
MULTIPLE STATEMENT IGNORED AFTER END
MULTIPLE STATEMENT IGNORED AFTER LOADER DIRFCTIVF
MISSPELLED KEYwORD -- ••••• •••••2 ASSUMED
NULL STATEMENT WITH LABEL -- CONTINUE ASSUMFO
PROGRAM LENGTH EXCEEDS 20°11-l
TABLE OVERFLO~ -- INCREASE F.L. AND RERUN
NO COMPILE TO CORE -- NOT ENOUGH CORE
SCRATCH FILE SPILLS TO DISK
REFERENCf FILE SPILLS TO DISK
PREMATURE E.O.S OR MISSING RIGHT PAREN
PREMATUR~ E.o.s. OR EXTRA TRAILING SEPARATOR •••••
PREMATURE E. O. S.
RETURNS PARAMETER ••••• NOT ALLOWED IN THIS STAT~MENT
~TATEMENT LABEL ••••• REFERENCED BUT NOT DEFINED
TRIVIAL PROGRAM UNIT IGNORED
FOLLOWING STATEMENT DOES NOT BEGIN WITH SEQUENCE NUMBER -- rOMMENT ASSUMFD
NO PATH TO THIS STATEMENT
NO PATH TO THE ENTIRE RANGE OF DO
NULL LOADER DIRECTIVE IS IGNORED
LOADER DIRECTIVE MUST BEGIN WITH LEFT PAREN
NO COMPILE TO CORE -- LOADER DIRECTIVE
NO COMPILE TO CORE -- INTERMIXED COMPASS
LOADER DIRECTIVE SHOULD ~E CONTAINED ON ONE CARO
SYNTAX ERROR IN CROGRAM UNIT NAME
MISSING PROGRAM STATEMENT -- PROGRAM START. ASSU~ED

ENTRY PROCESSOR.

NAME ••••• PREVIOUSLY DEFINED -- ENTRY STATEMENT IGNORED
fNTRY IN~IDE DO LOOP IS IGNORED
MISSING NAME -- ENTRY STATEMENT IGNORED
FNTRY STATEMENT IGNORED IN MAIN PROGRAM
ILLfGAL NAME -- ENTRY STATEMENT IGNORED

• ---tG
tG
00

0-..
0
w
0
VI
0\
0
0

~

NOTE
ANSI
l\JOTF.
F" A TAL
ANSI
F"ATAL

F"ATAL
FAT~L
FATAL
F"ATAL
F"AUL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
FATAL
F" A TAL
FATAL
F"ATAL
WARNING
FATAL
F"ATAL
F"ATAL
NOTF.

WAPl\JJNG
FATAL
ANSI
At.JS!
FATAL
F"ATAL
FATAL
WAQNING

WARNING
l\JOTE
NOTS::
AN~I

FTN<TS> COMPILE-TIME ERROR MESSAGES

5UBSCRIPT PROCESSOR.

MIS5ING 5UBSCRIPTS ON ••••• ARE ASSIGNED VALUE o~ ONE
FORM OF SUBSCRIPT •••••2 ON ••••• NOT DEFINED IN ANSI
SUBSCRIPT •••••2 FOR ••••• NOT INTEGER -- TRUNCATED
SUBSCRIPT •••••? ON ••••• MUST NOT BE LOGICAL
A TERM IN SUBSCRIPT ••••• 2 ON ••••• IS t.JOT INTEG~R
TOO MANY SUBSCRIPTS ON •••••

STATcMENT LAAEL PROCESSOR.

~ULTIPLY DEFINED STATEMENT LABEL •••••
PREVIOUS REFERENCE TO THIS DO LABEL IS ILLEGAL
00 LOOP •••••2 PREVIOUSLY DEFINED -- ILLEGAL NESTING
IJ5AGE CONFLICT -- ••••• 2 PREVIOUSLY DEFINED AS on TERMINAL
USAGE CONFLICT -- •••••2 PREVIOUSLY DEFINED AS FnRMAT
ILLEGAL TRANSFER TO ••••• 2 FORMAT
ILLEGAL PEFERENCE TO STATEMENT LABEL ••••• AS A ~O~MAT
PREVIOUS REFERENCE TO DO LAREL ••••• ? IS ILLEGAL
PREVIOUS REFERENCE TO FORMAT LABEL •••••2 IS ILL~GAL
ILLEGAL TRANSFER TO DO •••••2 TERMINATOR
ILLEGAL REFERENCE TO FORMAT STATEMENT LABEL ••••• 2
PREVIOUS TRANSFER TO ••••• IS FROM OUTSIDE CURREttT DO
USAGE CONFLICT -- ••••• PREVIOUSLY USED AS A FORuAT LABEL
STATEMENT LABEL ••••• EXCEEDS FIVE DIGITS
STATEMENT LAAEL ••••• CONTAINS NON- DIGIT
STATEMENT LABEL ON NON- EXECUTABLE IGNORED
THE TERMINAL STATEMENT OF DO ••••• 2 PRECEDES THE DO DEFINITTON
STATtMEl\JT LABEL EXPECTED BUT NOT FOUND
STATEMENT LABEL ZERO JS ILLEGAL
STATEMENT LAAEL ZERO IGNORED

SIJBQOUTI NE/FUNCTION REFERENCE PROCESS I NG.

NUMBfR 0F ARGUM~NTS IN REFERENCE TO ••••• I5 NOT CONSISTENT
ARGUMENT ~ODE MUST AGREE WITH TYPE DFFI~EO FOR Lr8RARY FllNCTJON
••••• IS DEFINED 8Y c.D.C• TO BE INTRINSIC
••••• I5 DEFINfn BY c.D.C• TO BE A.E.F.
ARGUMENT COUNT ON ••••• EXCEEDS tMAX.SARGt
ARGUMENT COUNT ON •••••3 MUST BE MORF THAN ONE
ARGUMENT COUNT DIFFERS FROM DEFINED FOR JNTAINSir ••••• 3
FUNCTION NAME IS NEVER ASSIGNED A VALUE

STOP I PAIJSf PROCESSING

UNKNOWN F'ORM -- RLANK ASSUMED
HOLLERITH ARGU~FNT ~UST NOT EXCEED 70 C~ARACTEHS
CONSTANT EXCEEDS 5 DIGITS -- TRUNCATED
PAUSE MAY NOT RE A 00 TERMINAL

.....

0\
0 w
0
Vl
0\
0
0

0

--;c
tG
\0

•

ANSI

WARNING
FATAL
WARNING
WARNING
WARNING
WARNING
FATAL
WARNING
WARNING
FATAL
FATAL

F"ATAL
FATAL
FATAL
FATAL.
ANSI
FATAL

FATAL

WARNING
FATAL
\ti ARNING
NOTE
ANSI
A"Jc; I
FATAL
FATAL
FATAL
FATAL
WARNING
FATAL
\!/ARI.JING
FATAL
FATAL

fTNCTS> COMPILE-TIME fRROR MESSAGES

HOLLERITH ARGUMENT IS NON-ANSI

PROGRAM STATEMENT FILE DECLARATION.

FILE ••••• PREVIOUSLY DEFINED -- IGNORED
EXPECTED RIGHT PAREN OR COMMA -- FOUND •••••
ILLEGAL RUFFER LENGTH FOR FILE ••••• -- DEFAULT 1rSED
BUFFER LENGTH FOR FILE ••••• EXCEEDS 3600008 -- nEFAULT USEn
nNLY tMAX.PARGt FILES ARE PERMITTED -- EXCESS IGtJORED
FILE ••••• 2 NOT DEFINED -- EQUIV. IGNORED
EQUAL SIGN MUST BE FOLLOWED 8Y NAME OR NUMREP. OR SLASH
ILLEGAL RECORD LENGTH FOR FILE ••••• -- DEFAULT 11SEO
RECORD LFNGTH FOR FILE ••••• EXCEEDS 2**17-1 -- nEFAULT USEn
FILE NA~E ••••• 2 EXCEEDS 6 CHARACTERS
SYNTAX ERROR IN PROGRAM CARD -- SCAN STOPPED AT ·••••

TRANSLATION OF VARIAALE SECTION.

REFERENCE TO VARIABLE ••••• AS A FUNCTION OR ARR~Y
REFERENCE TO FUNCTION ••••• REQUIRES AN ARGUMENT LIST
REFERENCf TO I~TRINSIC ••••• REQUIRES AN ARGUMENT LIST
SUBROUTINE ••••• REFERENCE AS A FUNCTIO~
ARRAY ••••• MISSING SUBSCRIPT -- FIRST ELEMENT A~SUMEO
SYNTAX fRROR -- EXPECTED SYMROL BUT FOUND ••••• -- SCAN Of rARD ~TOPPED
NAME EXCfEDS 7 CHARACTE~S -- TRUNCATED TO •••••
LEFT SlnE OF EQUAL SIGN IS ILLEGAL

TYPE PROCESSOR.

TYPING or ••••• IGNORED -- PPIOR TYPING RETAINED
5YNTAX -- EXPECTED COMMA FOUND •••••
CONF"LICT IN RANGE INDICATOR -- FIRST HOLDS
*SIZE SPEC ON ••••• IS IGNORED
*SIZE WA5 USED ••••• TIMES
THE WORD TYPE IS NOT PERMITTED
TYPf MU5T BE FOLLOWED BY A TYPE INDICATOR
••••• IS NOT A LEGAL TYPE
F.XPECTEO LEFT PAREN -- FOUNO •••••
RANGE INDICATOR ••••• MUST Rf A LETTER
RANi,E INnICATOR ••••• NOT SINGLE LETTER -- TRUNC~TED TO ••••• 3
RANGE BACKWARD -- •••••2 NOT LESS THAN ••••• -- T~UNCATED
T~IVIAL RANGF -- ••••• 2 SA~F AS •••••
FXPECTEO RIGHT PAREN -- FOUNO •••••
F.XPECTED E.o.s. -- FOUNn ANn IGNORED •••••

• ---~
~
0

°' 0 w
0
Vl

°' 0
0

C')

FATAL
FATAL
WARNING
FATAL
FATAL
ANSI
FATAL
WARNING
WARNING

FATAL
FATAL
NOTE
NOTE
WARNING

COJ.4PLR

FTN<TS> COMPIL~-TIME ERROR MESSAGFS

I/0 UNIT DESIGNATOR.

I/0 UNIT DESIGNATOR MUST BE INTEGER
I/0 UNIT DESIGNATOR MUST BE SIMPLE VARIABLE
I/0 FILE ••••• NOT DEFINED
CHARACTEP. ••••• NOT DEFINED IN STANDARD FORTRAN -- SCAN OF r.ARD ~TOPPED
USAGE CONFLICT -- ••••• PREVIOUSLY USED AS •••••?
DOES NOT ALLOW SHORT FORMS OF LOGICAL OPERATORS nR CONSTANT~
USAGE CONFLICT -- ••••• IS ••••• 2 ANO CANNOT BE ••••• 3
SYNTAX -- EXPECTED E.o.s. -- FOUND AND IGNORED ·~···
SYNTAX -- EXPECTED E.O.S. -- FOUND ANO IGNOQEO •·•••

EXP PROCESSOR

OPERAND TO ** OPERATOR MUST NOT BE LOGICAL
COMPLEX MUST ONLY BE RAISED TO INTEGER POWER
ZERO ** 7ERO -- RESULTS INDEFINITE
INTEGER ** NEGATIVE CONSTANT -- RESULTS ZERO
EVALUATION OF CONSTANTS WILL RESULT IN OUT OF RA~GE OR INDEFINITF RESULTS

SYSTEM ERROR COMPILER MALFUNCTION

**** COMPILE ERROR ****

EXECUTION DIAGNOSTICS

Execution diagnostics are printed on the source listing in the following format:

ERROR NUMBER x DETECTED BY routine AT ADDRESS y

or

ERROR NUMBER x DETECTED BY routine

followed by

CALLED FROM routine AT ADDRESS z

or

CALLED FROM routine AT LINE d

y and z are octal addresses, x is a decimal error number, and d is a decimal line number as printed on the
source listing.

Example:

1

5

PROGRAM EXERR

1
2
3

74/74 OPT=l

PROGRAM EXERR(INPUT,OUTPUT>
N=S
GO TO (lt2t3>tN
N=N+l
N=N+2
STOP
END

CARD NR. ~EVERITY DETAILS DIAGNOSIS Of PROBLEM

3 I AN IF STATEMENT MAY BE MORE EFFICIENT
THAN A 2 OR 1 BRANCH COMPUTED GO TO
STATEMENT.

ERROR IN COMPUTED GOTO STATFMENT- INDEX VALUE INVALID

ERROR NUM8ER 1
CALLED FROM EXERR

DETECTED BY GOTOF.R= AT ADDRESS 000004
AT LINE 3

In the following list of execution diagnostics under class, the letters are interpreted as follows:

F = Fatal

I = Informative, non-fatal

A= Always

D = Debug

T = Trace

The severity level (fatal or non-fatal) of any error can be changed by a call to SYSTEMC (see section III-3).

60305600 G III-2-31

Error
No. Class Message Routine

I FA ERROR IN COMPUTED GO TO STATEMENT GOTO ER=
INDEX VALUE INV AUD

I 2 I A ARG,UMENT ABS V ALUE.GT.1 ACOSIN=(ACOS)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

3 I A ARGUMENT ZERO ALOG
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

4 I A ARGUMENT ZERO ALOGlO
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

I 5 I A ARGUMENT ABS V ALUE.GT.1 ACOSIN=(ASIN)
ARGUMENT INFINITE
ARGUMENT INDEFINITE

6 I A ARGUMENT INDEFINITE ATAN

7 A ARGUMENT VECTOR ZERO ATAN2
ARGUMENT INFINITE
ARGUMENT INDEFINITE

8 I A ARGUMENT TOO LARGE CABS
ARGUMENT INFINITE
ARGUMENT INDEFINITE

9 I T ZERO TO THE ZERO POWER ZTOI
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

10 I T INFINITE ARGUMENT ccos
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

11 I T INFINITE ARGUMENT CEXP
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

12 I T ZERO ARGUMENT CLOG
INFINITE ARGUMENT
INDEFINITE ARGUMENT

III-2-32 60305600 G

Error
No. Class Message Routine

13 I A ARGUMENT TOO LARGE, ACCURACY LOST COS (in I ARGUMENT INFINITE SIN COS=)
ARGUMENT INDEFINITE

14 I T INFINITE ARGUMENT CSIN
INDEFINITE ARGUMENT
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

15 I T INFINITE ARGUMENT CSQRT
INDEFINITE ARGUMENT

16 I T FLOATING OVERFLOW DTOX (D**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

17 I T INFINITE ARGUMENT DATAN
INDEFINITE ARGUMENT

18 I T x=v=o.ot DATAN2
INFINITE ARGUMENT
INDEFINITE ARGUMENT

19 I T FLOATING OVERFLOW DTOD (D**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

20 I T ZERO TO THE ZERO POWER DTOI (D**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

21 I T FLOATING OVERFLOW IN D**REAL(Z)t DTOZ (D**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(D)t TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

tX and Y=real; Z=complex; D=double precision

60305600 G III-2-33

Error
No. Class Message Routine

22 I T ARGUMENT TOO LARGE, ACCURACY LOST DCOS
INFINITE ARGUMENT
INDEFINITE ARGUMENT

23 I T ARGUMENT TOO LARGE, FLOATING OVERFLOW DEXP
INFINITE ARGUMENT
INDEFINITE ARGUMENT

24 I T ZERO ARGUMENT DLOG
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

25 I T ZERO ARGUMENT DLOGJO
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

26 I T DOUBLE PRECISION INTEGER EXCEEDS 96 BITS DMOD
2ND ARGUMENT ZERO
INFINITE ARGUMENT
INDEFINITE ARGUMENT

28 I T ARGUMENT TOO LARGE, ACCURACY LOST DSIN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

29 I T NEGATIVE ARGUMENT DSQRT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

30 I A ARGUMENT TOO LARGE, FLOATING OVERFLOW EXP
ARGUMENT INFINITE
ARGUMENT INDEFINITE

I
31 I T INTEGER OVERFLOW ITOJ

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

III-2-34 60305600 G

Error
No. Class Message Routine

33 I T FLOATING OVERFLOW XTOD (X**D)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

34 I T ZERO TO THE ZERO POWER XTOI (X**I)
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

35 I T FLOATING OVERFLOW XTOY (X**Y)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

36 I A ARGUMENT TOO LARGE, ACCURACY LOST SIN (in
ARGUMENT INFINITE SINCOS=)
ARGUMENT INDEFINITE

37 T ILLEGAL SENSE LITE NUMBER SLITE

38 T ILLEGAL SENSE LITE NUMBER SLIT ET

39 A ARGUMENT NEGATIVE SQRT
ARGUMENT INFINITE
ARGUMENT INDEFINITE

40 T ILLEGAL SENSE SWTICH NUMBER SSWTCH

41 T ARGUMENT TOO LARGE, ACCURACY LOST TAN
INFINITE ARGUMENT
INDEFINITE ARGUMENT

42 I T INFINITE ARGUMENT TANH
INDEFINITE ARGUMENT

I
44 I T FLOATING OVERFLOW ITOD (I**D)

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THl DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

60305600 G III-2-35

Error
No. Class Message Routine

45 I T FLOATING OVERFLOW ITOX (I**X)
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

46 I T FLOATING OVERFLOW IN I**REAL(Z)t ITOZ (I**Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(I)t TOO LARGE
INFINITE ARGUMENT
INDEFINITE ARGUMENT

47 I T FLOATING OVERFLOW IN X**REAL(Z)t XTOZ
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(X)t TOO LARGE
INFINITE ARGUMENT

I 48 F D FATAL ERROR ENCOUNTERED DURING PROGRAM EXECUTION FTNERR=
DUE TO COMPILATION ERROR

49 A COMMA MISSING AT END OF RECORD - COMMA ASSUMED NAMIN=
A NAMELIST DATA TERMINATED BY EOF NOT $
A CONSTANTS MISSING AT END OF RECORD - NEXT RECORD READ

I 50 F A FATAL ERROR IN LOADER OVERLA=

I
51 A Set by user via subroutine SYSTEM or SYSTEMC.

52 F A Set by user via subroutine SYSTEM or SYSTEMC. Error numbers larger
than those listed in this table become error 52.

55 FA END-OF-FILE ENCOUNTERED, FILENAME- - - -xxxxxxx BUFIN=

56 F A WRITE FOLLOWED BY READ, FILENAME- - - - -xxxxxxx BUFIN=

57 F A AREA SPECIFICATION SPANS SCM/LCM BUFIO=

58 FA BUFFER DESIGNATION BAD- - FW A.GT.LWA BUFIO=

59 F A BUFFER SPECIFICATION BAD- -FWA.GT.LWA BUFOUT=

I 62 F A FILENAME NOT DECLARED-xxxxxxx GETFIT=

t Z=complex; !=integer, X=real

III-2-36 60305600 G

Error
No. Class Message Routine

63 FA END-OF-FILE ENCOUNTERED, FILENAME-xxxxxxx INPB=

65 FA END-OF-FILE ENCOUNTERED, FILENAME-xxxxxxx INPC=

66 F A NAMELIST NAME NOT FOUND-xxxxxxx NAMIN=
FA INCORRECT SUBSCRIPT
FA TOO MANY CONSTANTS
FA , ($ OR = EXPECTED, MISSING
FA VARIABLE NAME NOT FOUND-xxxxxxx
FA CONSTANT MISSING

67 F A DECODE RECORD LENGTH .LE. 0 DECODE=
DECODE LCM RECORD .GT. 150 CHARACTERS

68 FA *ILL-PLACED NUMBER OR SIGN FMTAP=
F A *ILLEGAL FUNCTIONAL LETTER

69 FA *IMPROPER PARENTHESIS NESTING FMTAP=

70 F A *EXCEEDED RECORD SIZE FMTAP=

71 F A *SPECIFIED FIELD WIDTH ZERO FMTAP=
F A *BAD VALUE FOR = OR V I

72 FA *FIELD WIDTH .LE. DECIMAL WIDTH FMTAP=

73 F A *HOLLERITH FORMAT WITH LIST FMTAP=

78 FA *ILLEGAL DATA IN FIELD .t. INCOM=

79 FA *DATA OVERFLOW .t. IN COM=

83 F A OUTPUT FILE LINE LIMIT EXCEEDED OUTC=
NAMOUT:=:

85 F A ENCODE CHARACTER/RECORD .LE. 0 ENCODE=
ENCODE LCM RECORD .GT. 150 CHARACTERS

88 . FA WRITE FOLLOWED BY READ ON FILE-xxxxxxx INPB=

89 FA LIST EXCEEDS DATA, FILENAME-xxxxxxx INPB=

90 F A PARITY ERROR READING (BINARY) FILE-xxxxxxx INPB=

91 F A WRITE FOLLOWED BY READ ON FILE-xxxxxxx INPC=

92 F A PARITY ERROR READING (CODED) FILE-xxxxxxx INPC=
NAM IN=

60305600 G III-2-37

Error
No. Oass Message Routine

93 FA PARITY ERROR ON LAST READ ON FILE-xxxxxxx OUTB=

94 FA PARITY ERROR ON LAST READ ON FILE-xxxxxxx OUTC=

97 FA INDEX NUMBER ERROR RANMS=

98 FA FILE ORGANIZATION OR RECORD TYPE ERR RANMS=

99 F A WRONG INDEX TYPE RANMS=

100 F A INDEX IS FULL RANMS=

101 FA DEFECTIVE INDEX CONTROL WORD RANMS=

102 F A RECORD LENGTH EXCEEDS SPACE ALLOCATED RANMS=

103 F A 6RM/7DM I/O ERR NUMBER 000 RANMS=

104 F A INDEX KEY UNKNOWN RANMS=

112 FA ECS UNIT HAS LOST POWER OR IS IN WRIT EC
MAINTENANCE MODE

113 FA ECS READ PARITY ERROR READ EC

114 F A CONNEC CHARACTER CODE CONVERSION CONDIS
IS OUT OF RANGE

115 I A ARGUMENT INFINITE EXP
ARGUMENT INDEFINITE
ARGUMENT TOO SMALL

116 I A ARGUMENT INFINITE HYP=(COSH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

117 I A ARGUMENT INFINITE HYP=(SINH)
ARGUMENT INDEFINITE
ARGUMENT TOO LARGE

III-2-38 60305600 G

EXECUTION - TIME PROCESSING 111-3

FORSYS= is a multiple entry routine which handles program initialization, error tracing, diagnostic printing,
and termination of output buffers. FORSYS= has the following entry points:

Q8NTRY. Initializes input/output buffer parameters.

STOP. Enters STOP in dayfile and begins END processing.

EXIT Enters EXIT in dayfile and begins END processing.

END. Terminates all output buffers and prints an error summary. If in a secondary overlay,
returns control to the calling primary overlay; if in a primary overlay, returns control
to the main overlay; otherwise, advances to the next job step.

ABNORM. Issues an error message to the dayfile and aborts the job step.

SYS END. Closes all files.

SYSERR. Handles error tracing and diagnostic printing.

IO ERR. Issues a fatal record manager diagnostic to output file.

A routine SYS=AID interfaces, through its entry point SYSAID., between FORSYS= and math library routines.

ERROR PROCESSING

All routines which perform error checking call the routine FORSYS= at the entry point SYSERR. to issue
diagnostic and traceback information. For a non-fatal (informative) error, this information is printed, and con­
trol is returned to the routine that called the routine detecting the error. For a fatal error, diagnostic and
traceback information is printed, all output buffers are flushed, and the job is terminated.

EXTENDED ERROR PROCESSING

SYSTEM

The subroutine SYSTEM enables the user to issue an execution-time error message.

CALL SYSTEM(errnum, mesg)

errnum

mesg

60305600 G

Error number decimal: an integer constant or integer variable with a value of 0
to 9999. The error numbers listed in section III-2 retain the severity association
indicated there. Error numbers 51 (non-fatal) and 52 (fatal) are reserved for the
user.

Error message: entered as a Hollerith constant with the first character used as a
carriage control character and not printed.

III-3-1

I

I

I

I

I

If error number zero is entered, the message is ignored, the output buffers are flushed, and control is returned
to the calling program.

The file OUTPUT should be declared before SYSTEM is called. Otherwise, no errors are printed; and a message
to this effect is entered in the dayfile.

Each line is printed unless the line limit of the OUTPUT buffer is exceeded, in which case the job is terminated.

Example:

CALL SYSTEM (3, =F CHECK DATA =F)

SYSTEMC

SYSTEMC enables the user to alter the contents of the error table, which contains specifications that regulate
error processing.

In the error table, the first entry corresponds to error number 1, the second to error number 2, and so on.
Each entry has the following format:

59 51

print frequency
frequency increment

print frequency

frequency increment

print limit

detection total

F/NF

III-3-2

43 31 20 17 0

detection F,A user-specified
print limit

total NN recovery address FA

Ordinarily, print frequency value is 0. If the value is changed to n by a
call to SYSTEMC, diagnostic and traceback information is listed every nth
time until the print limit is reached.

Ordinarily, frequency increment value is 1. This specification can be changed
by a call to SYSTEMC if the call specifies print frequency as 0. When fre­
quency increment is 0, diagnostic and traceback information is not listed;
when it is 1, such information is listed until the print limit is reached; when
the frequency increment is n> 1, such information is listed only the first n
times unless the print limit is reached first.

Ordinarily, print limit value is 7777 octal. It can be changed by a call to
SYSTEMC.

Detection total is a running count of the number of times an error occurs.
The final value is reported in the error summary issued at end of job if
SYSTEMC is called during execution.

This bit specifies the severity of the error: 1 indicates a fatal error; 0, non­
fatal. The severities of system defined errors are given in section III-2. All
errors defined by the user with these numbers in a call to SYSTEM retain
the specified severity. The severity of any error can be changed by a call to
SYSTEMC, however.

60305600 G

A/NA The A/NA bit is ignored unless a non-standard recovery address is specified;
it can be set only during assembly of SYSTEMC. When this bit is set, the
address in an auxiliary table is passed in the third word of the secondary
argument list to the recovery routine. Each word in the auxiliary table must
have the error number in its upper I 0 bits, so that the address of the first
error number match is passed to the recovery routine. An entry in the aux­
iliary table for an error. is not limited to any specific number of words.

user-specified
recovery address

This address is specified in a call to SYSTEMC.

SYSTEMC is called by the following statement:

CALL SYSTEMC (errnum,speclist)

errnum

speclist

Error number for which non-standard recovery is to be implemented.

Integer array containing error processing specifications in consecutive
locations:

F/NF (I = fatal, 0 = non-fatal).
Print frequency
Frequency increment
Print limit
User-specified error recovery routine address

word I
word 2
word 3
word 4
word 5
word 6 Maximum traceback limit applicable to all errors; this limit is

20 unless changed by a call to SYSTEMC

A negative value for any word in the speclist indicates that the current value of that specification is not to be
change~. A user-specified error recovery routine activated by a call to SYSTEMC can be canceled by a
subsequent call with word 5 of the speclist set to zero.

If SYSTEMC has been called, an error summary is issued at job termination indicating the number of times
each error occurred since the first call to SYSTEMC.

For an error detected by a routine in the math library, a user-supplied error recovery routine should be a
function subprogram of the same type as the FORTRAN function detecting the error. For any other error,
a user-supplied error recovery routine should be a subroutine subprogram.

When an error previously referenced by a SYSTEMC call is detected, the following sequence of operations is
initiated:

I. Diagnostic and traceback information is printed in accordance with the specification in the pertinent
error table entry. The traceback information is terminated for any of the following conditions:

60305600 G

Calling routine is a program.

Maximum traceback limit is reached.

No traceback information is supplied.

111-3-3

I

I

2. If the SYSTEMC call references a user-specified error recovery routine address, SYSTEMC,
FORSYS=, and the routine detecting the error are delinked from the calling chain, and the
user-supplied error recovery routine is entered.

3. If the error is non-fatal, control returns to the routine that called the routine detecting the error.
An error summary is printed at job termination.

4. If the error is fatal, all output buffers are flushed, an error summary is printed, and the job is
terminated.

If a non-standard recovery address is specified in the SYSTEMC call, the following information is available to
the user recovery routine:

Register Contents

Al Address of argument list passed to routine detecting the error for errors detected by a
math library routine.

Address of the FIT for error 103.

Undefined for all other errors.

XI Address of the first argument in the list for errors detected by a math library routine.

Undefined for all other errors.

AO Address of argument list of routine that called the routine detecting the error.

Bl Address of a secondary argument list containing, in successive words:

A2

X2

IIl-3-4

Error number associated with this error.

Address of message associated with this error.

Address within auxiliary table if A/NA bit set; otherwise 0.

In upper 30 bits, instruction consisting of RJ to SYSERR.j; in lower 30 bits, address of
traceback information for routine detecting the error.

Information in the secondary argument list is not available to user supplied error recovery
routines coded in FORTRAN.

Address of error table entry for this error.

Contents of error table entry for this error.

60305600 G

Example 2:

PROGRAM EXPECT(OUTPUT)
DIMENSION IRAY(6)
DATA IRAY /6 * (-0)/

C SET PRINT LIMIT TO ZERO
IRAY(4)=0

X = EXP(800.0)
X = EXP(-800.0

C CALL SYSTEMC TO INHIBIT PRINTING OF ERROR 115
C AND START ERROR SUMMARY ACCUMULATION

CALL SYSTEMC (115,IRAY)
PRINT *, "/= "/=

PRINT *,"/=*****SYSTEMC IS CALLED TO SUPPRESS PRINTING"/=
X "/=OF ERROR 115"/=

X = EXP(800.0)
X = EXP(-800.0)

PRINT *,/: :f

PRINT *,:/:*****ERROR 115 DETECTED BUT NOT PRINTED:/:
END

ARGUMENT TOO LARGE, FLOATING OVERFLOW
ERROR NUMBER 30 DETECTED BY EXP

ARGUMENT TOO SMALL
ERROR NUMBER 115 DETECTED BY EXP

*****SYSTEMC IS CALLED TO SUPPRESS PRINTING OF ERROR 115

ARGUMENT TOO LARGE, FLOATING OVERFLOW
ERROR NUMBER 30 DETECTED BY EXP

*****ERROR 115 DETECTED BUT NOT PRINTED

ERROR SUMMARY
ERROR
0030
0115

TIMES
0001
0001

Program EXPECT illustrates a non-standard error recovery in a math library routine and how to suppress
the printing of error message 115.

60305600 G III-3-5 •

Example:

PROGRAM EXAMPLCTAPEl,OUTPUT)
EXTERNAL ITSOK
DIMENSION NARRAY(6)
DATA NARRAY/6*(•1)/
NARRAY<l, • 0
NARRAY(5t a LOCF<ITSOK)
NARRAY(6) • 1
CALL SYSTEMCC66,NARRAY>
NAMELISTIDATAl/AtB
READ Cl• DATAl>
REWIND 1
NAMELISTIDATA2/AtB
READ <1• OATA2>
NAMELIST/DATAOUTIAtB
PRINT DATAOUT
STOP
END
SUBROUTINE ITSOK
PRINT 10

10 FORMAT (oOOATA SET NAMED ABOVE NOT USED*>
RETURN
END

Input:

SDATA2
A = 3.,
B = 4. t
s

Output:

NAMELIST NAME NOT FOUND •· DATAt
ERROR NUMBER 0066 DETECTED BY NAMIN• AT ADDRESS 000435

DATA SET NAMED ABOVE NOT USED

SDATAOUT

A = ,JE+Olt

B = e4E+Olt

SEND

ERROR SUMMARY
ERROR TIMES.

0066 0001

I III-3-6 60305600 G

ERRSET

The subroutine ERRSET enables the user to input data without the risk of termination when improper data
is encountered.

CALL ERRSET(num, lim)

num Integer variable; returns the current total of accumulated errors.

lim Integ~r constant or integer variable; the program will not terminate when data errors are
encountered until the value of lim has been exceeded. The maximum permissible value of
lim is 259 _1.

ERRSET can be used to inhibit job termination when data is being input with a formatted, NAMELIST, or
list directed read. It operates only when data is encountered that would ordinarily cause job termination under
error number 78 ("ILLEGAL DATA IN FIELD") or error number 79 ("DATA OVERFLOW").

CALL ERRSET initializes an error count location (num) and specifies a maximum limit (lim) on the number
of data errors allowed before termination. ERRSET continues in effect for all subsequent READ statements
until the limit is reached. ERRSET can be reactivated with another call, which will reinitialize the error count
location and reset the limit. A CALL ERRSET with lim specified as zero nullifies a previous call; improper
data will then result in job termination as usual.

When improper data is encountered in a formatted or NAMELIST read with ERRSET in effect, the bad data
field is bypassed, and processing continues at the next field. When improper data is encountered in a list
directed read, control moves to the statement immediately following the READ statement.

Example:

The following example illustrates the use of ERRSET to suppress normal fatal termination when large
sets of data are being processed .

•

•
CALL ERRSET(KOUNT,200)
READ(l,125}(ARAY(I),I·l.1500)

125 FO~MAT (3Fl0.5,ElO.l)
IF (KOUNT.GT.O) GO TO 500

500 CALL ERRSET(KOU?lT,200)
READ(l,125)(BRAY(I),I•l,1500)
I~ (KOUNT.GT.O) GO TO 600

60305600 G m-3-7 I

600 CALL ERRS!T(KOUNT,100)
READ(l.230)(LRAY(I).I•l.500)
PRINT 99, KOUNT
READ(4.127) (MRAY(I), I•.l. 500}
PRINT 9 9 • KOUNT
READ { 4 • 2 2 5) (NRA Y (I) , I• l. 50)

•
•
•

I7(KOUNT.GT.O) GO TO 700

700 CALL EXIT
END

When ERRSET is called, a limit of 200 errors is established. The number of errors will be stored in KOUNT.
After ARAY is read, KOUNT is checked. If errors occur, the following statements are not processed and a
branch is made to statement 500. Had ERRSET not been called, fatal errors would have terminated the pro­
gram before the branch to statement 500. At statement 500, ERRSET once more initializes the error count,
and execution continues.

Example:

PROGRAM EXAMPLCTAPEltOUTPUT)
DIMENSION ACARDCS>
CALL ERRSET(NUMt2>
READCltlO> CACARD<l>•l=ltS>

10 FORMAT <F4.l>
PRINT 20t NUM

20 FORMAT ClHOt llt ~ DATA ERRORS f0UND 0 //)

PRINT JO, CACARD<i>,I=ltS>
30 FORMAT (lXt F4.l)

STOP
END

Input:

47.l
25./
48.3
24t6
91.2

I III-3-8 60305600 G

Output:

RECORD NO. 2 25./
•••••••••• 123456789012345678901234567890

* ERROR DATA INPUT * ILLEGAL DATA IN FIELD *•*
ERROR NUMBER 0078 DETECTED BY INCOM= AT ADDRESS 000200
CALLED FROM KRAKER= AT ADDRESS 000353
CALLED F~OM INPC= AT ADDRESS 000074
CALLED tROM EXAMPL AT LINE 0004

RECORD NO. 4 24t6
•• ~ ••••••• 123456789012345678901234567890

* ERROR DATA INPUT * ILLEGAL DATA IN FIELD *•*
ERROR NUMBE~ 0078 DETECTED BY INCOM=· AT ADDRESS 000200
CALLED FROM KRAKER= AT ADDRESS 000353
CALLED FROM INPC= AT ADDRESS 000074
CALLED FROM EXAMPL AT LINE 0004

2 DATA ERRORS FOUND

47.1
o.o

48.3
o.o

91.2

EXECUTION TIME OPTIONS

FILE NAME HANDLING

The file names in the PROGRAM statement are placed in RA+2 and the locations immediately following by
FORSYS= (entry point Q8NTRY.). RA is the reference address, the absolute address where the user's field
length begins. The file name is left justified, and the file's file information table (FIT) address is right justified
in the word.

The logical file name (LFN) which appears in the first word of the file information table is determined in one
of three ways:

1. If no file names are specified on the LGO or EXECUTE control card, the logical file name is the file name
in the PROGRAM statement.

Example:

FTN.
LGO.

PROGRAM TESTl(INPUT,OUTPUT,TAPEl,TAPE2)

60305600 G m-3-9 1

Contents of RA+2 before execution of Q8NTRY:

000 ... 000
000 ... 000

Contents of RA+ 2 after execution of Q8NTRY:

INPUT ... fit address
OUTPUT .. fit address
TAPE I ... fit address
T APE2 ... fit address

The logical file names in the file information
table will be:

INPUT
OUTPUT
TAPE I
TAPE2

2. If file names are specified on the LGO or EXECUTE control card, the logical file name is the name speci­
fied there. A one-to-one correspondence exists between parameters on the LGO or EXECUTE card and
parameters in the PROGRAM statement.

Example:

FTN.
LGO(,,DATA,ANSW)

PROGRAM TEST2(INPUT,OUTPUT,TAPE1,TAPE2,TAPE3=TAPE1)

Contents of RA+ 2 before execution of Q8NTRY:

000 ... 000
000 ... 000
DATA .. 000
ANSW .. 000

Contents of RA+ 2 after execution of Q8NTRY:

INPUT ... fit address
OUTPUT .. fit address
TAPE I ... fit address
T APE2 ... fit address
T APE3 ... fit address of TAPE l

The logical file names in the file information
table will be:

INPUT
OUTPUT
DATA
ANSW
uses TAPE I file information table

3. If a file name in the PROGRAM statement is equivalenced, the logical file name is the file to the right of
the equals sign. A corresponding file name in the LGO or EXECUTE control card is ignored.

Example:

FTN.
LGO(,,DATA,ANSW)

PROGRAM TEST3(INPUT,OUTPUT,TAPE1=0UTPUT,TAPE2,TAPE3)

I III-3-10 60305600G

Contents of RA+2 before execution of Q8NTRY:

000 ... 000
000 ... 000
DATA .. 000
ANSW .. 000

Contents of RA+2 after execution of Q8NTRY:

INPUT ... fit address
OUTPUT .. fit address
TAPEl ... fit address of OUTPUT
T APE2 ... fit address
T APE3 ... fit address

PRINT LIMIT SPECIFICATION

The logical file 1names in the file information
table will be:

INPUT
OUTPUT
uses OUTPUT file information table
ANSW
TAPE3

A parameter can be specified on the LGO or EXECUTE control card to regulate the maximum number of
records that can be written at execution-time on the file OUTPUT. This parameter has the same form as the
PL parameter specified at compilation-time on the FTN control card. If specified on the LGO or EXECUTE
card, it overrides the value specified either explicitly or by default at compilation-time (see section I-11). This
parameter may appear anywhere in the parameter list of the LGO or EXEUCTE card; it does not affect the
correspondence of file names between the LGO or EXECUTE card and the FTN card.

The print limit parameter (specified either at compilation-time or at execution-time) is operative only on files
with the name OUTPUT in the first word of its corresponding file information table. Thus, if a file name
declared in the PROGRAM statement is superseded at execution-time by the file name OUTPUT as described
previously, the print limit parameter will be operative on the original file name. Conversely, if the file name
OUTPUT is superseded at execution-time by another file name, the effect of the print limit parameter is
nullified.

Examples:

LGO(PL=2000)

EXECUTE(,FILEl ,OUTPUT,PL=IOOO,FILE2)

60305600 G III-3-11 I

Example:

III-3-12 I

Loop

x = 1.0

DO 200 1=1,100

X = X/.5+Y

A(I) = X

200 CONTINUE

Without register assignment With register assignment

60305600 G

ARITHMETIC 111-4

FLOATING POINT ARITHMETIC

Floating point arithmetic is carried out in the functional units of the central processor.

59 48 0

I 1 I 11-bits I 48-bits I.
Sign Biased Integer Coefficient Assumed

Exponent bfriarv point

In the 60-bit floating point format shown above, the binary point is considered to be to the right of the
coefficient. The lower 48 bits express the integer coefficient. which is the equivalent of approximately 14
decimal digits. The sign of the number is the highest order bit of the packed word. Negative numbers are
represented by the one's complement of the 60-bit number.

The exponent portion of the floating point format is biased by 2000 octal. This particular format for
floating point numbers was chosen so that the packed form may be treated as a 60-bit integer for sign.
equality and zero tests. (Refer to 6400/6500/6600 Computer Systems Reference Manual or 7600 Com­
puter System Reference Manual for details of the hardware pack instruction.)

The following table summarizes the configurations of bits 5 8 and 59 and the signs of the possible combina­
tions. The number is negative if bit 59 is l and positive if bit 59 is 0.

Bit 59 Coefficient Sign Bit 58 Exponent Sign

0 Positive 1 Positive

0 Positive 0 Negative

1 Negative 0 Positive

1 Negative 1 Negative

60305600 A 111-4-1

To add or subtract two floating point numbers, the floating point ADD unit enters the coefficient with the
smaller exponent into the upper half of an accumulator and shifts it right by the difference of the expo­
nents. Then it adds the other coefficient into the upper half of the accumulator. The result is a double length
register with the following format:

95 47 0

Most Significant Bits Least Significant Bits

--------------------~-~----------------;-------------------""'----............ ______ _ Upper half result Binary Lower half result

point

If single precision is selected, the result is the upper 48 bits of the 96-bit result and the larger exponent.
Selecting double precision causes the lower 48 bits of the 96-bit result and the larger exponent minus 60
oc;tal (or 48) to be returned as the result. The subtraction of 60 octal (or 48) is necessary because effectively,
the binary point -is moved from the right of bit 48 to the right of bit 0.

The multiply units generate 96-bit products from two 48-bit coefficients. The result of a multiply operation
is a double length register with the following format:

95 47 0

Most Significant Bits Least Significant Bits

--~~~~~~~~~~~~~~~~~__.~~~~~~~~~~~~~~~~~~--'• Binary
___________ _...----~------. __________________ _.-----..............,-~._.._.___________ point

Upper half result Lower half result

When unrounded instructions are used, the upper and lower half results with proper exponents may be
recovered separately; when rounded instructions are used, only upper half results may be obtained.

If single precision is selected, the upper 48 bits of the product and the sum of the exponent~ plus 60 octal
(or 48) are returned as the result. The addition of 60 octal (or 48) is necessary because, effectively, the
binary point is moved from the right of bit 0 to the right of bit 48 when the upper half of the 96-bit result
is selected. If double precision is selected, the lower 48 bits of the product and the sum of the exponents is
the result.

Some examples of floating point numbers are shown below in octal notation.

Normalized floating point + 1 1 720 4000 0000 0000 0000

Normalized floating point + 100 1726 6200 0000 0000 0000

Normalized floating point -100 6051 15 77 7777 7777 7777

Normalized floating point 1 o+64 2245 6047 4037 2237 7733

Normalized floating point -10-64 6404 2570 0025 6605 5317

III-4-2 60305600 F

OVERFLOW (+oo or -oo)

Overflow of the floating point range is indicated by an exponent of 3777 for a positive result and 4000 for
a negative result. These are the largest exponent values that can be represented in floating point format, as
shown in the floating point table. If the computed value of an exponent is exactly 3777 or 4000, a partial
overflow condition exists. The error mode 2 flag is not set by a partial overflow. However, any further
computation in floating point functional units with this exponent will set an ,error mode 2 flag. A complete
overft.ow occurs when a floating point functional unit computes a result that requires an exponent larger
than 3 777 or 4000.

{

In this case the result is given a 3777 or 4000 exponent and a zero coefficient. The sign of the coefficient
t remains the same, as if the result had not exceeded the floating point range. Any further computation in

§

§

floating point functional units with this result sets an error mode 2 flag.

In this case, the result is given a 3777 or 4000 exponent and a zero coefficient. The sign of the coefficient
remains the same, as if the result had not exceeded the floating point range. The coefficient calculation is
ignored, and the overflow condition flag is set in the Program Status Designator (PSD) register. When
the overflow condition occurs, the overflow flag in the PSD register causes an overflow condition message to
be printed and the program to abort. Alternative actions (SCOPE 2.1 Reference Manual) can be specified
by the user.

UNDERFLOW (+ 0 or -0)

Underflow of the floating point range is indicated by an exponent of 0000 for positive numbers and 7777
for negative numbers, the smallest exponent values that can be represented in floating point format. If these
exponent values happen to be the exact representation of a result, a partial underflow condition exists; and
the underflow condition flag is not set. However, further computation in floating point functional units
with these exponents may set the underflow condition flag.

A complete underflow occurs when a floating point functional unit computes a result that requires an
exponent smaller than 0000 or 7777. In this case the result is given a 0000 or 7777 exponent and zero
coefficient. The sign of the coefficient will be the same as that generated if the result had not fallen short of
the floating point range. Thus, the complete underflow indicator is a word of all zero bits, or all one bits,
depending on the sign. It is the same as a zero word in integer format.

t No underflow indicator is set and no error message is printed.

A complete underflow occurs for this instruction whenever the exponent computation results in less than
-1776 octal. This situation is sensed as a special case, and a complete zero word with proper sign results; the
coefficient calculation is ignored, and the underflow condition flag is set in the PSD register. When the
underflow condition occurs, the underflow flag in the PSD register causes an underflow condition message
to be printed and the program to abort. Alternative actions (SCOPE 2.1 Reference Manual) can be specified
by the user.

tApplies only to CONTROL DATA CYBER 70/Models 72, 73, 74, CYBER 170, and 6000 Series computers.

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

60305600 G III-4-3

INDEFINITE RESULT

An indefinite result indicator is generated by a floating point functional unit when a calculation cannot be
resolved; such as a division operation where the divisor and the dividend are both zero. Another case is
multiplication of an overflow number times zero. An indefinite result is a value which cannot occur in
normal floating point calculations. An indefinite result is represented by a minus zero exponent and a zero
coefficient (I 7770 --- 0).

t Any floating point functional unit receiving an indefinite indicator as an operand wilf generate an indefi­
nite result regardless of the other operand value, and sets an error mode 4 flag.

I § When the indefinite result is generated, a flag is set in the PSD register, an indefinite condition message is printed,
and the program aborts. Alternative actions (SCOPE 2.1 Reference Manual) can be specified by the user.

FLOATING POINT REPRESENTATION TABLE

Positive Coefficient Negative Coefficient

OVERFLOW Complete Overflow = 3777 0- - - _· 0 Complete Overflow = 4000 7 - - - - 7

Partial Overflow = 3777 X- - - - X Partial Overflow = 4000 X- - - - X

INTEGERS Largest: *Largest:
7- - - - 7. x 2+ 1776 = 3776 7 - - - - 7 -7- - - - 1. x r 1776 = 4001 0- - - - 0

Smallest: *Smallest:
1. x 2° = 2000 0- - - 01 -1. x 2° = 5777 7 - - - 76

ZERO Positive Zero = 2000 0- - - - 0 Negative Zero = 5777 7- - - - 7

INDEFINITE Indefinite Operand =17770----0 **Indefinite Operand = 6000 7 - - - - 7

OPERANDS

FRACTIONS Largest: *Largest:

1- - - - 1. x r 60 =17177----7 -7 - - - - 1. x r 60 = 6060 0- - - - 0

Smallest: *Smallest:
1. x r11n = 0000 0- - - 01 -1. x r1111 = 7777 7 - - - 76

UNDERFLOW Complete Underflow = 0000 0- - - - 0 Complete Underflow = 7777 7 - - - - 7

Partial Underflow = 0000 X- - - - X Partial Underflow = 7777 X- - - - X

*In absolute value.
**An indefinite operand with a negative sign can occur only from packing or Boolean operations.

***FORTRAN represents positive zero by 0000 0- - -0 and negative zero by 7777 7- - -7.

tApplies only to CONTROL DATA CYBER 70/Models 72, 73, 74, CYBER 170, and 6000 Series computers.

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

111-44 60305600 G

NONSTANDARD FLOATING POINT ARITHMETIC

Non-standard floating point representation:

OOOOX-----· X is treated by multiply and divide as positive zero (+O)
7777X------ X is treated by multiply and divide as negative zero (-0)
3 777X------X is treated as positive infinity (+ 00)

4000X------X is treated as negative infinity (-oo)
l 777X------X is treated as positive indefinite (+IND)
6000X------X is treated as negative indefinite (-IND)

where X is an unspecified octal digit.

If the correct result of an operation coincides with any of the above exponents, no error flag is set.

When a floating point arithmetic unit uses one of these six special forms as an operand, however, only the
following octal words can occur as results and the associated error mode flag is set.

3 7770------0
40007------7
17770------0
00000------0

positive infinity (+ oo)
negative infinity (- oo)
positive indefinite (+IND)
positive zero (+0)

Overflow condition flag
Overflow condition flag
Indefinite condition flag
Underflow condition flag

The following tabulations show results of the add, subtract, multiply and divide operations using various
combinations of infinite, indefinite, and zero quantities as operands. The designations w and n are defined
as follows:

w = any word except ±oo, IND
, n = any word except ±00 , IND, or ± 0

ADD
XI = X2 + X3

X3

w +oo -oo ±IND

w - +oo -oo IND

+oo +oo +oo IND IND
X2

-oo -oo IND -oo IND

±IND IND IND IND IND

60305600 G III-4-5

I

w

+oo
X2

-oo

±IND

+N -N

+N - -

-N - -

+O 0 0

X2 -0 0 0

+oo +oo -oo

-oo -oo +oo

±IND IND IND

III4-6

SUBTRACT
XI = X2 - X3

X3

w +oo

- -oo

+oo IND

-oo -oo

IND IND

MULTIPLY
XI = X2 * X3

X3

+O -0

0 0

0 0

0 0

0 0

IND IND

IND IND

IND IND

-oo ±IND

+oo IND

+oo IND

IND IND

IND IND

+oo -oo ±IND

+oo -oo IND

-oo +oo IND

IND IND IND

IND IND IND

+oo -oo IND

-00 +oo IND

IND IND IND

60305600 A

DIVIDE
Xl = X2 I X3

X3

+N -N +O -0 +oo -oo ±IND

+N - - +oo -oo 0 0 IND

-N - - -oo +oo 0 0 IND

+O 0 0 IND IND 0 0 IND

X2 -0 0 0 IND IND 0 0 IND

+oo +oo -oo +oo -oo IND IND IND

-oo -oo +oo -oo +oo IND IND IND

±IND IND IND IND IND IND IND IND

INTEGER ARITHMETIC

Central processor has no 60-bit integer multiply or divide instructions. Integer multiplication and division
are performed with 48-bit arguments. The exponent of the result is set to zero. 48-bit integer multiplication
is performed with an integer multiply instruction, but integer division must be performed in the floating
divide unit.. Integer arithmetic is accomplished by putting the integers into unnormalized floating point
format using the pack instruction with a zero exponent value.

In integer division, the exponent of the resulting quotient is removed and the result is shifted to compensate
for the fact that the result was normalized. In FORTRAN Extended, integer results of multiplication or
division are expressed within 48 bits. Full 60-bit one's complement integer sums and differences are
possible internally as the central processor has integer addition and subtraction instructions. However,
because the binary-to-decimal conversion routines use multiplication and division, the range of integer
values output is limited to those which can be expressed with 48 bits.

DOUBLE PRECISION

Although complete arithmetic instructions using double precision arguments are not provided by the hard­
ware, the FORTRAN compiler generates code for true double precision by using instructions which give
upper and lower half results with single precision arguments.

60305600 A 1114-7

COMPLEX

Complex arithmetic instructions are not provided by hardware. The FORTRAN compiler generates code
for complex arithmetic by using single precision floating point instructions.

LOGICAL AND MASKING

Logical and masking operations are provided by hardware logical instructions which operate on the entire 60-bit
word {refer to section 2, part I). Positive values are considered false; negative values are true. The constant
TRUE. generates -1; the constant .FALSE. generates zero.

ARITHMETIC ERRORS

Arithmetic errors are classifed at execution time as mode I - 7:

Mode Error

Address out of range

§ {Reference to LCM or SCM outside established limits.

LCM or SCM block range

2 Operand is an infinite number

3 Address out of range or operand is infinite number

4 Indefinite operand

5 Address out of range or indefinite operand

6 Operand is infinite or indefinite number

7 Operand is infinite, indefinite or address is out of range

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

III-4-8 60305600 c

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Mode 7

Address out of range. A non-existent storage location has been referenced. Mode 1
errors may be caused by:

calling a non-existent subprogram during execution

using an incorrect number of arguments when calling a subprogram

a subscript assuming an illegal value

no dimensons specified for an array name

Infinite operand. One of the operands in a real operation is infinite. Infinity is the result
whenever the true result of a real operation would be too large for the computer, or when
division by zero is attempted. A value of infinity may be returned when some functions are
referenced. For example, EXP(999.) would be infinity.

In the following example, Z would be given the value infinity. When the addition Z + 56.
is attempted execution terminates with a mode 2 error.

1 FORMAT (F12.3)
y = o.
Z = 23.2/Y
PRINT 1, Z
CAT = Z + 56.

When the print statement is executed, an R is printed to indicate an out of range
value.

Address is out of range or operand is infinite number.

Indefinite operand. One of the operands in a real operation is indefinite. An indefinite
result is produced by dividing 0. by 0. or multiplying an infinite operand by 0. An
illegal library function reference may return an indefinite value. For example, SQRT
(-2.) would produce an indefinite result. An attempt to print an indefinite value pro­
duces the letter I.

Address is out of range or indefinite operand.

Operand is infinite or indefinite. A mode 6 arithmetic error occurs when a real opera­
tion is performed with one operand infinite and the other operand indefinite.

Operand is infinite, indefinite, or address is out of range.

:j: When an arithmetic error occurs the following type of message appears in the dayfile and execution is
terminated:

.tHlDRESS =00?135

:j:Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74, CYBER 170, and 6000 Series computers.

60305600 G III-4-9

I

§

When an arithmetic error occurs, the following type of message appears in the dayfile under the headings shown
below:

1 4 • 3 0 • 3 6 :: 0 0 0 1 2 • 0 5 9 :: s y s • SC006 - SCM DIRECT RANGE

CODExxnnn

xx SC or JM

nnn

SC indicates System Control; JM, Job Management. System Control provides system
overlay loaders and some communication between operating system overlays. Job Manage­
ment controls user program input/output, and prepares user programs for execution.

Index number of the message.

MESSAGE AND MEANING The message and an interpretation {if necessary) are printed.

LEVEL

x

F

w

CODE

SCOOI
SC002
SC003
SC004
scoos
SC006
SC007
SC008
SC009
SCOIO
SCOll
SC012
SC040

Indicates the level of severity of the error as follows:

Job terminates. No EXIT processing occurs.

Job terminates. EXIT processing occurs.

Warning is printed, and error is ignored. Processing continues, although the portion of the
program containing the error may not be executed.

Informative message is printed.

MESSAGE AND MEANING LEVEL

LCM PARITY F
SCMPARITY F
LCM BLOCK RANGE F
SCM BLOCK RANGE F
LCM DIRECT RANGE F
SCM DIRECT RANGE F
PROGRAM RANGE F
BREAKPOINT F
STEP CONDITION F
INDEFINITE CONDITION F
OVERFLOW CONDITION F
UNDERFLOW CONDITION F
JOB MAKING 6000 REQUEST IN RAS+l; F

RAS+l of user area is non-zero.

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

III-4-10 60305600 c

The following example outlines a method for detecting the location of an arithmetic error. When the
following program is executed:

5

this message appears in the dayfile:

PROGRAM ERR (0UTPUT,TAPE1=0UTPUf)
NaHELIST /OUTIT,E
DATA T,EI0.,1./

1 WRITE (1, OUT>
E = E/T + 1.
T = T - 1.
GO TO 1
ENO

15.12.32.ERROR MODE = 2. ADDRESS •002154

2154 is one plus the address at which the error was detected. The error was detected at address 2153. To
locate this address in the program, turn to the Load Map and read the entries under PROGRAM AND
BLOCK ASSIGNMENTS.

BLOCK ADORE SS LENGTH FILE

ERR 101 2071 LGO

/QB.IO.I 2172 134
FORSYS= 2326 643 SL-FORTRAN

GETFIT= 3171 34 SL-FORTRAN

/IO.BUF./ 3225 227
NAMOUT= 3454 600 SL-FORTRAN

SYSAID= 4254 l SL-FORTRAN

/JMPS.RM/ 4255 11
LBUF.SQ 4266 133 SL-SYS IO
/CON.RM/ 4421 6

The user program ERR occupies storage locations 101 through 2171. Location 2153 lies between 101 and
2171 and is therefore in the main program ERR. It is location 2052 relative to the beginning of ERR (all
locations are relative to the first word address of the program load); 2153 - 101 = 2052 (octal).

tApplies only to CONTROL DATA CYBER 70/Models 72, 73, 74, CYBER 170, and 6000 Series computers.

60305600 G III-4-11

I

---~
~

N

O'\
0
w
0
Vi
O'\
0
0

t:C

USER EXCHANGE PACKAGE

p JO 00013~ AO u450CC ~p 00000~
RAS 00 C1732J A1 001342 91 00~321
FLS O~ v4500~ A2 OO~J14 82 u~0003
PSD 00 ~60003 A3 Ou0153 03 OGOOOO
RAL 00 OOOOOJ A4 000146 84 000027
FLL 00 ~OijQOO AS 000147 ~5 000~06
NEA 40 016140 A6 000146 06 J00001
EEA 00 C10~6a A7 OQOJ21 87 000001

XO 3777 OOOJ 0000 OJOQ 0000
X1 0000 0000 0000 0004 500~
X2 3111 oouo Jooo oaoo o~oo
X3 172~ 4000 JOOO 0000 0000
X4 OJOC 0000 ~000 0000 000~
XS 1721 5335 &735 6735 6735
X6 &057 3777 7777 7777 7777
X7 3111 ao~o 0000 oo~o OOQO

SC<AO>= SCCP >= 5475 0040 0~00 1314 6C0ft
SCCA1>= 0000 OOJu j000 oro4 5000 SC<B1>= 3353 051; 0400 JOOO 0000
SC<A2>= 1717 0631 ~631 4631 4632 SC<B2l= 2~01 20~5 3400 ooco 01on
sc<A3>= 1120 4000 0000 ocoo oooa SCCB3>= 0000 00~0 0~00 JOOO 0000
SGCA4J= 6057 3777 7777 7777 7177 srce4>= o~o~ ooQo 0000 0000 onoo
SCCAS>= 1721 5135 67~5 6735 6735 sece5>= 0311 1520 23~0 10~0 0217
SCCA6J= 6057 3777 7777 1771 7177 srce~>= 0000 0000 ooon 0000 0000
SCCA7>= 3~53 0516 0400 0000 uOOO srce7>= 0100 0000 oryou 0000 0000

sc<xO>= 0000 caoo 0000 oroo 0000 L~CXO>=
SCCX1>= Lrcx1>=
sc<x2>= ~auo orno 0000 ~coo ooo~ LCCX2>=
SC(X3)= 0000 0~00 0000 OGOO 0000 LCCX3>=
SC<X4>= 0000 00~0 OGO~ 0000 0000 LCCX~>=
SCCXS>= LC(XS>=
SCCX~>= ~010 0000 00~0 0000 000~ LCCX6>=
SCCX7>= 0000 ~000 0000 uOOO 0000 LCC~7>=

EXECUTION-TIME INPUT/ OUTPUT 111-5

All input and output between a file referenced in a FORTRAN Extended program and the file storage device
is under control of a Record Manager. When running on SCOPE 2, 7000 Record Manager is used; when running
on other systems, the CYBER Record Manager is used. These Record Managers normally appear the same to
FORTRAN users; however, they do offer substantially different capabilities. Standard file organizations and
record formats are defined to facilitate file interchange and access through different products.

Record Manager can be called directly, as described in III-6, to use the extended file structure and processing
available. This section deals only with Record Manager processing that results from standard language use.

File processing is governed by values compiled into the file information table (FIT) for each file.

If a file or its FIT is changed by other than standard FORTRAN 1/0
statements, subsequent FORTRAN 1/0 to that file may not function
correctly. Thus, it is recommended that the user not try to use both
standard FORTRAN and non-standard 1/0 on the same file within a
program.

FILE AND RECORD DEFINITIONS

A file is a collection of records referenced by its logical file name. It begins at beginning-of-information and
ends with end-of-information.

A record is data created or processed by:

One unformatted READ or WRITE.

One card image or a print line defined within a formatted, list directed, or NAMELIST READ or
WRITE.

One READ MS or WRITMS.

One BUFFER IN or BUFFER OUT.

On storage, a file may have records in one of 8 formats defined to Record Manager. Only 4 of these are
part of standard processing:

Z Record is terminated by a 12-bit zero byte in the low order byte position of a 60-bit word.

W Record length is contained in a control word prefixed to the record by Record Manager.

60305600 F III-5-1

U Record length is defined by the user.

S SCOPE logical record.

The remaining types can be formatted within a program under user control and written to a device using a
WRITE statement if the FILE card is used to specify another record type. Similarly, these types can be read
by a READ.

The user is responsible for supplying record length information appropriate to each type before a write and
for determining record end for a read. For example, a D type record requires a field within the record to
specify record length.

Unformatted READ and WRITE are implemented through the GETP and PUTP macros of Record Manager;
consequently, record operations must conform to macro restrictions. Specifically, RT=R cannot be performed
for unformatted operations.

STRUCTURE OF INPUT /OUTPUT FILES

FORTRAN Extended sets certain values in the file information table depending on the nature of the input/
output operation and its associated file structure. Table III-5-1 lists these values for their respective FIT fields;
all except those marked with an asterisk (*) can be overridde.n at execution-time by a FILE card. (Numbers
in parentheses and asterisks refer to notes listed following the table.)

SEQUENTIAL FILES

With READ and WRITE statements, the record type (RT) depends on whether the access is formatted or
unformatted. A formatted WRITE produces RT=Z records, with each record terminated by a system-supplied
zero byte in the low order bits of the last word in the record. An unformatted WRITE produces RT=W records,
in which each record is prefixed by a system-supplied control word. Blocking is type C or I for formatted and
unformatted records, respectively.

With READ and WRITE statements, the record type is W for all file types; blocking is I for unformatted tape
files, and unblocked for all other files.

PRINT and PUNCH statements produce z+ type records with C type blocks or w§ type records unblocked
for processing on unit record equipment.

BUFFER IN and BUFFER OUT assume s+-type or w§-type records. Formatting is determined by the parity
designator in each BUFFER statement. An unformatted operation does not convert character codes (CM=NO),
while a formatted operation does.

I :j:Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2.1.

III-5-2 60305600 G

TABLE III-5-1. DEFAULTS FOR FIT FIELDS UNDER FORTRAN EXTENDED

~ ~
A "O ~

"°~~;:
(!) - 0 ~ FIT Fields :::: -:i ~
~ ~ Q

e=s2<
Meaning Mnemonic 0 ~ -~ ~

~ ~~

CIO buffer size (words) (1) BFS:j: 2002B

Block type BT c+
Close flag (positioning of file at CF N
CLOSEM time)

Length in characters of record trailer CL 0
count field (T type records only)

Conversion mode CM YES

Beginning character position of CP 0
trailer count field, numbered from
zero (T type records only)

Length field (D type records) or Cl NO
trailer count field (T type records)
is binary

Error options EO AD

Trivial error limit ERL 0

Extended diagnostic flag EXD NO

Length in character of an F or Z FL 150 (5)
type record

File organization FO SQ*

Character length of fixed header for HL 0
T type records

Length of user's label area (7) LBL 0 *
(number of characters)

:j:Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2.1.

60305600 G

-~ ~
"O ~
(!) - ~o
-~
~~ ~~

Eo ~~
~~

i.£ < ~~
i:: ~ ::::> ::::>

::::> ~ ~~

2002B 2002B

I c+
N N

0 0

NO (2)

0 0

NO NO

AD AD

0 0

NO NO

0 0

SQ* SQ*

0 0

0 * 0 *

ti)

::;
~ -~
~
ti)

::;
Q
<
~
~

2002B I
n/a

N:l:/R§ *

n/a

n/a

n/a

n/a

AD

0

NO

0

WA*

n/a

n/a

III-5-3

TABLE III-5-1. DEFAULTS FOR FIT FIELDS UNDER FORTRAN EXTENDED (continued)

~ ~
... "O f-4

.Q'~~;
Cl) - C) ~

FIT Fields ::= ...J ~
co:s~ Q

e~2<
0 < .~ ~

Meaning Mnemonic ~ z .:I r:i:::

Logical file name LFN (3)

Length in characters of record LL 0
length field (D type records)

Beginning character position of LP 0
record length, numbered from zero
(D type records)

Label type (7) LT u

Maximum block length (MBL is set MBL (4)
as the number of characters but is
converted and maintained as the
number of words)

Minimum block length in characters MNB 0

Minimum character length of R MNR 0
type records

Maximum record length in characters (5) MRL ISO

Multiple of characters per K, E type MUL 2
block

Open flag (positioning of file at (7) OF N
OPENM time)

Padding character for sequential PC 76B
file blocks

Processing direction PD IO

Number of records per K type block RB I

t Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2.1.

III-5-4

-5 ~
"O f-4 ~o Cl) -

- r:i::: ~~ r:i::: r:i:::
eo ~~

~~ r.£< ~~ :5 ga ==
(3) (3)

0 0

0 0

u u

(4) (4)

0 0

0 0

223_1 (8) *

2 2

N N

76B 76B

IO IO

I I

ti)

~ -r:i:::
~
ti)

~
Q
<
~
r:i:::

(3)

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

N:j: /R§ *

n/a

IO

n/a

60305600 G

TABLE III-5-1. DEFAULTS FOR FIT FIELDS UNDER FORTRAN EXTENDED (continued)

c<3 ~
~ 't:I [-c

-d'~ ~;:
cu - u <. FIT Fields ::: ..J ~
~ ~ Q

e ::iS ~ <
Meaning Mnemonic 0 < .;a~

~ z ..J ~

Record mark character RMK 62B

Record type RT z+;w§

Length field (D type records) or SB NO
trailer count field (T type records)
has sign overpunch

Error message dispostion sos YES

Suppress read ahead SPR NO

Character length of trailer portion TL 0
of T type records

User label processing (7) ULP NO

End of volume flag (positioning VF u
of file at volume CLOS EM time)

Notes:

n/a

*

FIT field not applicable to this I/O mode.

Default cannot be overridden by a FILE card.

[-c ~
't:I [-c -:::i
cu - ~o
-~
~ <. ~~

Eo ~~
~~ o< ~~

~~ :::> :::> :::> ~ ~~

n/a 62B

w (6) s+;w§

NO NO

YES YES

NO NO

0 0

NO NO

u u

00
::iS
[-c -~
<.
00
::iS
Q
<
~
~

n/a

u

n/a

YES

n/a

n/a

NO

u

(1) Default can be changed on PROGRAM statement; if the FILE card resets BFS, a different
buffer will be used.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Set by parity designator in BUFFER IN or BUFFER OUT statement.

Set by PROGRAM statement or EXECUTE control card.

Set by Record Manager.

Default can be changed on PROGRAM statement.

Default can be overridden by a FILE card only if RT:fR and RT:fZ.

Use of the LABEL subroutine sets LBL=80, LT=ST, OF=R, and ULP=F.

Maximum record length equal to length of record specified in BUFFER IN or BUFFER
OUT statement.

tApplies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2 .1.

60305600 G III-5-5

The ENDFILE statement writes a boundary condition known as an end-of-partition. When this boundary is
encountered during a read, the EOF function returns end-of-file status. An end-of-partition may not necessarily
coincide with end-of-information, however, and reading can continue on the same file until end-of-information
on the file has been encountered.

End-of-information is written as the file is closed during program termination. A third boundary for sequential
files, a section, is not recognized during reading except for the special case of the file INPUT.

RANDOM FILES

Files created by the random mass storage routines OPENMS, WRITMS, STINDX, and CLOSMS (described in
section IIl-7) create an indexed word addressable file. The master index, which is the last record in the file, is
created and maintained by FORTRAN routines rather than Record Manager routines.

One WRITMS call creates on ut format record; one READ MS call reads one U format record. If the length
specified for a READMS is longer than the actual record, the excess locations in the user area are not changed
by the read. I~ the recor4 is longer than the length specified for a READMS, the excess words in the record
are skipped.

FILE CONTROL CARD

The FILE card provides a means to override FIT field values compiled into a program and consequently a
means to change processing normally supplied for standard input/output. In particular, the FILE card can be
used to read or create a file with a structure that does not conform to the assumptions of default processing.

A FILE card also can be used to supplement standard processing. For example, setting EXD=YES produces a
full error message for Record Manager errors, instead of an error number only.

At execution time, FILE card values are placed in the FIT when the referenced file is opened. FILE card
values have no effect if the execution routines do not use the fields referenced. Furthermore, FORTRAN
routines may, in some cases, reset FIT fields after the FILE card is processed. These fields are noted in Table
III-5-1.

Format of the FILE card is:

FILE(lfn,field=value, ...)

lfn File name as it appears on the EXECUTE or LGO control card; if file name does not
appear there, then lfn is file name as it appears in the PROGRAM statement.

field FIT field mnemonic

value Symbolic or integer value

tRecord type W was written through Version 4.2. Existing files with RT=W are recognized and processed
correctly under subsequent versions of FORTRAN Extended without user action.

III-5-6 60305600 F

:j: An LDSET loader control card must appear in the load set of a program using a FILE card. An acceptable
format is:

LDSET(FILES=lfn)

lfn File name appearing on FILE card.

The FILE card itself may appear anywhere in the control cards prior to program execution, but it must not
interrupt a load set.

This deck illustrates the use of the FILE card to override default values supplied by the FORTRAN compiler.
Assuming the source program is using formatted WRITEs and 100-character records are always written, the file
is written on magnetic tape in 1000-character blocks (except possibly the last block) with even parity, at 800
bpi. No labels are recorded, and no information is written except that supplied by the user. Records are
blocked 10 to a block. The following values are used:

Block type = character count

= 1000 characters

ngth

Maximum block length

Record type = fixed le

Record length = 100 c

Conversion mode = YE

haracters

s

,. 6

7
8
9 _L_

L
L

(Data Deck

f 7 1
8 L
9 L FORTRAN source program

1
L

f 7
.___ 8

9

LLGO.

L LOSET(FILES=TAPE1) l 1--

L FILE(TAPE1 ,BT=C,MBL=1000,RT=F,FL=100,CM=YES)

t[REQUEST(TAPEl,MT,HY,VSN=HAVEN)

{FTN.
1---r Account Card

I-

(Job Card
!'---'

~

r--
1---

+noes not apply to SCOPE 2.1.
t If requied by the operating system.
ttFormat applicable to SCOPE 3.4 only.

60305600 G

......

I-'

~

~

t-'

III-5-7

I

SEQUENTIAL FILE OPERATIONS

BACKSPACE/REWIND

Backspacing on FORTRAN files repositions them so that the last logical record becomes the next logical
record.

§BACKSPACE is permitted only for files with F, S, or W record format or tape files with one record per
block.

The user should remember that formatted input/output operations can read/write more than one record;
unformatted input/output and BUFFER IN/OUT read/write only one record.

The rewind operation positions a magnetic tape file so that the next FORTRAN input/output operation
references the first record. A mass storage file is positioned to the beginning of information.

The following table details the actions performed prior to positioning.

Condition Device Type

Last operation was Mass Storage
WRITE or BUFFER
OUT

Unlabeled Magnetic
Tape

Labeled Magnetic
Tape

§Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.

t Applies only to SCOPE 2.1.

III-5-8

Action

Any unwritten blocks for the file are written.

If record format is W, a deleted zero length re-
cord is written.

Any unwritten blocks for the file are written.

If record format is W, a deleted zero length re-
cord is written.

Two file marks are written.

Any unwritten blocks for the file are written.

lfrecord format is W, a deleted record is written.

A file mark is written.

A single EOF label is written.

Two file marks are written.

60305600 G

Condition Device Type Action

Last operation was Mass storage (no Any unwritten blocks for the file are written.
WRITE. BUFFER blocking)

If record format is S, a zero length level 17 block
OUT or ENDFI LE

is written.

Unlabeled Magnetic Any unwritten blocks for the file are written.
Tape or Blocked

If record format is S, a zero length level 17 block
Mass Storage

§ is written.

Two file marks are written (on tape).

Labeled Magnetic Any unwritten blocks for the file are written.
Tape or Labeled

If record format is S, a zero length level 17 block
Blocked Mass
Storage

is written.

A file mark is written.

A single EO F label is written.

Two file marks are written.

Last operation Mass Storage None
was READ,
BUFFER IN or Unlabeled None
BACKSPACE Magnetic Tape

Labeled If the end of information has been reached,
Magnetic Tape labels are processed.

No previous Magnetic Tape If the file is assigned to on-line magnetic tape, a
operation REWIND request is executed.

§ If the file is staged, the REWIND request has no
effect. The file is staged and rewound when it is
first referenced.

Mass Storage REWIND request causes the file to be rewound
when first referenced.

Previous Current REWIND is ignored.
operation was
REWIND

§Applies only to SCOPE 2.1.

60305600 G lll-5-9

ENDFILE

The ENDFILE operation introduces a delimiter into an input/output file. ENDFILE writes an end-of-partition
for W record types. ENDFILE terminates the current block for a magnetic tape file and writes a]eve] I 7 zero
length block for record types W, D, R, T, F, and U, and record type Z with and without C blocking.

A WRITE/BUFFER OUT can foJlow an ENDFILE operation. 1f the file has records of the format W, S, or
Z with C blocking or it is a mass storage file with any other block/record formats, no special action is per­
formed. However, if the file is assigned to magnetic tape and has a record format other than W, S, or z with
C blocking, a tape mark is written preceding the requested record.

Meaningful results are not guaranteed if an ENDFILE is written on a random access fiJe, and subsequently a
random fiJe subroutine, such as READMS, is cal1ed.

BUFFER INPUT/OUTPUT

t The maximum lengths for physical records on tape can be exceeded using the BUFFER input/output state­
ment if the L parameter on the REQUEST control card is specified.

BUFFER IN/OUT statements can he used to achieve some ~egree of overlap hetween the user program
and input/output with an external device (mass storage or tape); however the memory area specified in the
BUFFER IN/OUT statement will not he used as the physical record huffer. These huffers are maintained
within an operating system huffer area in LCM. The execution or a BUFFER IN/OUT statement, there­
fore. involves movement of a record hetween system huffers in LCM and the memory area specified in the
BUFFER IN /OUT statement. Correspondence hetween ·individual BUFFER statements and physical rec­
ords on a device depends upon the hlock specification. For example, K hlocking with a record count or one
ensures that each BUFFER IN/OUT corresponds to a hlock.

BUFFER IN

1. Only one record is read each time a BUFFER IN is performed. If the length specified by the BUFFER
statement is longer than the record read, excess locations are not changed by the read. If the record read
is longer than the length specified by the BUFFER statement, the excess words in the record are ignored.
The number of central memory words transferred to the program block can be obtained by referencing
the function LENGTH or the subroutine LENGTHX (section 8, part I).

2. When records do not terminate on a word boundary (such as might occur on a file not created by BUFFER
statements), and if the number of words requested in a BUFFER IN is greater than or equal to the number
of words in the record, the exact length of the record can be determined by using the LENGTHX library
subroutine. LENGTHX returns the number of unused bits in the last word of the data transfer as well as
the number of central memory words transferred (section 8, part I).

I :j: Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2 .1.

111-5-10 60305600 G

3. After using a BUFFER IN/OUT statement on unit u, and prior to referencing unit u or the contents of
storage locations a through b, the status of the BUFFER operation must be checked by a reference to the
UNIT function (section 8, part I). This status check ensures that the data has actually been transferred,
and the buffer parameters for the file have been restored.

4. If an attempt is made to BUFFER IN past an end-of-file without testing for the condition by referencing
the UNIT function, the program terminates with the diagnostic: END OF FILE ENCOUNTERED file name

5. If the last operation on the file was a write operation, no data is available to read. If a read is attempted,
the program terminates with the diagnostic: WRITE FOLLOWED BY READ ON FILE

6. If the starting address for the block is greater than the terminal address, the program terminates with the
diagnostic: BUFFER DESIGNATION BAD FWA.GT.WA, file name

7. If an attempt is made to BUFFER IN from an undefined file (a file not declared on the PROGRAM card),
the program terminates with the diagnostic: UNASSIGNED MEDIUM, file name

BUFFER OUT

I. One record is written each time a BUFFER OUT is performed. The length of the record is the terminal
address of the record (LWA) - starting address (FWA) + l.

2. As with BUFFER IN, a BUFFER OUT operation must be followed by a reference to the UNIT func­
tion. This reference must occur prior to any other reference to the file.

3. If the terminal address is less than the first word address. the program terminates and the following
diagnostic is issued:

BUFFER SPECIFICATION BAD FWA.GT.L WA. file name

4. The UNASSIGNED MEDIUM diagnostic is similar to that issued from a BUFFER IN.

LABELED FILE PROCESSING

FORTRAN Extended has the capability of input/output processing of labeled files on magnetic tape. The
following subroutine is provided to pass label information to the operating system.t

CALL LABEL(u,labinfo)

u

lab info

Logical unit number.

Name of 4-word array containing label information in the format given for words 9-12
of the file environment table (FET) in the operating system reference manual.

The control card that requests the tape for the job must have specified that the tape has labels before the
CALL LABEL statement can be used.

tThe CALL LABEL subroutine has no effect under SCOPE 2.1.

60305600 G III-5-11 I

On input, the specified file's label is compared with the indicated information in labinfo (unless it was so
checked when an earlier LABEL control card was executed). If any of the relevant fields were filled with
binary zeros by CALL LABEL, these fields are set to the values contained in the label read. If there is a
mismatch between the label read and any field not zero-filled, a request is sent to the operator for a GO
or DROP response.

On output, the appropriate information from labinfo is written as a label at the beginning of the specified
file. If any of the relevant fields are filled with binary zeros, the corresponding label field will be set to an
appropriate default value.

CALL LABEL should not be used with files accessed with direct Record Manager input/output routines.

PROGRAMMING NOTES

Meaningful results are not guaranteed in the following circumstances:

1. Mixed formatted and unformatted read/write statements on the same file {without an intervening REWIND).

2. Mixed buffer input/output statements and read/write statements on the same file.

3. Requesting a LENGTH function of LENGTHX call on a buffer unit before requesting a UNIT function.

4. Two consecutive buffer input/output statements on the same file without the intervening execution of a
UNIT function call.

5. Violating any of the restrictions specified in Table III-5-1.

6. Failing to close a mass storage input/output file with an explicit CLOSMS in an overlay program.

7. Writing formatted records on a seven-track S or L tape without specifying CM=NO on a FILE card.

8. Using the first variable of an input/output list after encountering end-of-file in a formatted read.

9. Issuing an ENDFILE as the first operation on a file.

III-5-12 60305600 G

FORTRAN - CYB ER RECORD MANAGERt INTERFACE+ 111-6

The FORTRAN user can access Record Manager+ facilities by calling external subprograms that use the COM-
. PASS Record Manager macros. The subprograms described here allow limited access to the Record Manager
macros without requiring the user to write his own subprograms in COMPASS. Subprograms are provided to
create, access, position, and process the files and to modify the file information tables. The Record Manager
Reference Manual includes a complete description of each macro and its parameters.

FILE INFORMATION TABLE CALLS

To place values in the file information table the user can call one of the following subroutines:

FILESQ for sequential files

FILEW A for word addressable files

FILEIS for indexed sequential files

FILEDA for direct access files

FILEAK for actual key files

7

CALL Fl LExx (fit,keyword
1

,value
1

, ... ,keywordn,valuen}

All parameters, with the exception of fit, are paired; the first parameter is the keyword which indicates the field in
the file information table, the second parameter is the value to be placed in the field. Only the pertinent parameters
need be specified, and they may appear in any order. Since a FORTRAN call can contain a maximum of 63 param­
eters, 31 file information table fields can be specified with a FILExx call.

xx

fit

SQ, WA, IS, DA, or AK

Name of an array. Record Manager resides in the user's field length, and the array must be
large enough to contain both the file information table (FIT) and the file environment table
(FET). 35 words should be allocated; 20 words for the file information table and 15 words
for the file environment table. The FIT is created by the subroutine FILExx, beginning in

the first word of the array. Record Manager supplies the information which is placed in
the user's array after the FIT.

tRecord Manager implies CYBER Record Manager throughout this section.
:j:This information applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.

60305600 G III-6-1

I

Keyword

Value

INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

Specifies a file information table field, An FIT field mnemonic is passed as an L format
Hollerith constant. FIT mnemonics are described in the Record Manager Reference Manual.

Example:

3LFWB
3LLFN
2LKL

Value to be placed in the FIT field specified by keyword. The following three types of values
are allowed:

Names of arrays or external subroutines.

Example: Specify the array RCD as the user's record area .

. . . , 3LWSA,RCD, ...

Integer constants or integer variables.

Example: Set the key length field to ten characters.

... , 2LKL,10, ...

Symbolic option keywords. The value of some FIT fields must be supplied symbolically
(see Record Manager Reference Manual). Symbolic option keywords are passed as L format
Hollerith constants.

Example: Select the duplicate key processing option .

. . . , 3LKDl,3LYES, ...

To insure that the routines required for processing various record types are loaded, the subroutines FILEDA,
FILEIS, and FILEAK force the loading of entry points GET.D, GET.T, and GET.R. Subroutine FILESQ
forces the loading of entry points GET.W, GET.F, GET.S, GET.U, GET.D, GET.T, GET.R, GET.Z, and
GET.SP. For the record types not needed in a particular run, loading of those routines can be suppressed
with LDSET(OMIT= ...).

ACCESSING FILE INFORMATION TABLE FIELDS

Contents of the FIT can be accessed by using the integer function IFETCH.

IFETCH (fit,keyword)

fit Names of the array containing file information table.

keyword Character name of the field.

III-6-2 60305600 G

INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

If the keyword specifies a one-bit field, negative result is returned if the bit is on and can be sensed by a positive­
negative check; otherwise it is returned as an integer value.

Example:

M=IFETCH(FILE,2LRL)

The record length is returned to the function IFETCH and replaces the value of M.

FILE COMMANDS

After the file information table is created using CALL FILExx file accessing commands can be issued. The first
command must be OPENM, and the last CLOSEM.

In file commands, the parameters are identified strictly by their position; thus, parameters can be omitted only from
the right. In FORTRAN, unlike COMPASS macros, adjacent commas are illegal in a subroutine call. When parameters
are omitted the current value of the corresponding FIT fields remain unchanged. If the same subroutine is called
twice, each with a different number of parameters, the compiler issues an informative diagnostic.

In some file commands a parameter position can have two meanings, for example {~~} in CALL PUT, the top

parameter al ways applies to index sequential or direct access files, and the bottom to word addressable files.

In the following description of the file commands, fit is the name of the array containing the file information table.

Example:

The fotlowing call sets up the FIT for a direct access file:

CALL FILEDA (FILE,3LLFN,7LSDAFILE,3LFWB,BUFFER,3LBFS,400,3LBCK,3LYES)

The FIT and the FET are to be constructed in the array named FILE. The file name (LFN) is SDAFILE. The buffer
is to be placed in the 400-word array BUFFER. 3LBCK,3LYES selects the block checksumming option.

UPDATING FILE INFORMATION TABLE

After the file information table is created, it can be updated by calls to the subroutine STOREF.

7

CALL STOREF (fit,keyword,value)

fit Array where the file information table was created.

keyword File information table field.

value Value to be placed in the field.

60305600 G III-6-3

INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

Example:

CALL STOREF (FILE,2LRL,250)

Sets record length in the FIT, in the array FILE, to 250 characters.

7

(11 CALL OPENM (fit,pd,of)

OPENM prepares a file for processing. Each Ille must he opened heforc processing.

pd Processing direction cstahlished when file is opened:

5LINPUT Read only

6LOUTPUT Write only

3Ll-O Read and write

3LNEW Indexed se4uential or direct access file to he created (write only)

of Open Hag specifics position or file when it is opened:

ILR

ILN

ILE

7

Rewind: Ille is rewound hcrorc any other open procedures arc
performed.

No Ille positioning is done hel'ore other open procedures.

hie is positioned immediately herore end or information to allow
extensions to a mass storage file.

I I CALL CLOSEM (fit)

I I
I l s.

Terminates processing.

{
ka} t {ex'} (fit,wsa, wa ,kp,mkl,rl, dx)

t kp is not applicable to AK files.

111-6-4 60305600 G

INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

GET reads a record from an input/output device and delivers it to the user's record area.

wsa

ka

wa

mkl

rl

ex

dx

Address of user's record area.

Address of user's key area for direct access or indexed sequential record to he read.

Word address on file where reading is lo start.

Beginning character position of key within ka. Key positions arc ordered from left to right
(0-9).

Major key length on indexed sequential files.

Record length in characters.

Address of exit subroutine to be entered when an error occurs (word addressable, index
sequential or direct access files). The value of ex must not be zero.

Address of end of the external subroutine to be entered at end of data for sequential files.

7

PUT places a record in a file.

pos For duplicate key processing, value may be I LP to precede the current record or I LN to
make it the next record.

wsa,rl,ka,wa,kp,ex are the same as for GET.

GETN (fit,wsa,ka,ex)

GETN accesses the next record on the file.

7

i I • {ka} t CALL DL TE (fit, wa ,kp,pos,ex)

tkp is not applicable to AK files.

60305600 G III-6-5

I

I INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

DLTE deletes a record from the file.

ka

wa

pos

Key address of record to be deleted.

Word address of record to be deleted.

Value may be 1 LC to specify the current (last referenced) record to be deleted, or zero to
delete the first record in a duplicate key chain.

7

CALL R EPLC (fit,wsa,rl,ka,kpfpos,ex)

REPLC replaces an existing record with a record from the user's record area.

pos

(

Value may be 1 LC to specify the current (last referenced) record to be replaced, or zero
which will replace the first record in a duplicate key chain.

7

CHECK (fit)

CHECK determines whether input/output operations on a file are complete and upon completion returns control.

(
Repositions a file.

count

7

11 CALL SKIP (fit~countl

Number of logical records to be skipped; positive for a forward skip, negative for a backward
skip.

7

CALL SEEKF (fit,ka,kptmkl,ex)

SEEKF allows central memory processing to overlap input/output operations.

t kp is not applicable to AK files.

III-6-6 60305600 G

INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

7

(WEOR (fit,lev)

WEOR terminates a section, and an S type record.

lev Level number (any value 0 to 168) to be appended if record type is S; default is zero.

7

(WTMK (fit)

Writes a tape-mark.

7

(ENDFI LE (fit)

Writes an end of partition.

7

(
REWND (fit)

REWND positions a tape file to the beginning of the current volume. It positions a mass storage file to the beginning
of information.

7

CALL GETP (fit,wsa,ptl,4LSKIP,dx)

GETP retrieves partial records; it may be used to retrieve an arbitrary amount of data from a record.

wsa

ptl

skip

dx

60305600 G

Name of user's record area to receive the record.

Partial transfer length. Number of characters to be transferred.

Causes Record Manager to advance to next record before getting data if the value is 4LSKIP.
Otherwise zero should be used.

Name of end-of-data routine.

111-6-7

I INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

7

CALL PUTP (fit,wsa,ptl,rl,ex)

Writes a portion of a record.

wsa Address of user's record area from which the record portion will be taken.

ptl Partial transfer length specifies the number of characters to be transferred.

rl Record length in characters (required only for U, W, and R type records).

ex Address of error subroutine.

KEY·- HASHING SUBROUTINE FOR DIRECT ACCESS FILE

A hashing subroutine is used to generate, from the key, an integer value for locating the record.

A user-coded randomizing subroutine may be specified for a DA file instead of the system-supplied default hash
subroutine. A key analysis utility is available to help the user decide if his hash subroutine is more suitable for the
file than the default subroutine. This subroutine should be added to a user library, as it must be supplied each time
the file is processed.

In the user's main program the entry address of the hash subroutine must be declared external and set into the HRL
field of the FIT prior to the first open of the file. During processing of the file the hash subroutine is called by DA
with the following argument list:

Key length, in characters
Key, left justified and zero filled
Number of home blocks
Returned result

All arguments are integer, and the returned result must be non-negative. The value used is the returned result mod
(number of home blocks minus one).

The following example illustrates how subroutine MYHASH is specified for file MYFILE. The hash result is the
product of the words of the key.

III-6-8 60305600 G

INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

PROGRAMS
INTEGER rIT<3S>
EXTERNAL MYHASH
CALL FILEO~<FITt3LLFNt6LMYfILEt3LHRLtMYHASHt ••• >

•
•
•

END
SUAROUTINE MYHASH(KLtKEY•HMR.RESULT>
INTEGER KEY<l>•HMAtRESULT
KW=<KL+9)/10
00 20 J:ir:l•KW

?O RF.SULT=RESULT~KEYCI>
RF" TURN
ENO

ERROR CHECKING

FORTRAN/Record Manager routines perform limited error checking to determine whether the call can be inter­
preted, but actual parameter values are not checked.

The following error conditions are detected, and a message appears in the dayfile:

FIT ADDRESS NOT
SPECIFIED

FORMAT ERROR

UNDEFINED SYMBOL

Example of error message:

ERROR IN STOREF CALL

UNDEFINED SYMBOL IMPUT

Array name was not specified.

Parameters were not paired (FILExx), or required parameters were not speci­
fied (STOREF, IFETCH or SKIP).

A file information table field mnemonic or symbolic option was specified
incorrectly; for example, an incorrect spelling, or the Qf parameter in OPENM
was not specified as R, N or E.

60305600 G III-6-9

I INFORMATION ON THIS PAGE DOES NOT APPLY TO SCOPE 2.1.

MULTIPLE INDEX PROCESSING

FORTRAN Extended provides the capability of multiple indexing for IS, DA, and AK files via the CYBER
Record Manager.

Each multiple -indexed file has an associated alternate key index file. An alternate key index is a cross-reference
table of alternate key values and IS, DA, or AK primary key values. The key-field position identifies each table,
which consists of all the different alternate key values that occur in the records oJ the file. Associated with each
alternate key value is a list of primary keys, each of which identifies a record containing the alternate key value.

To utilize the capabilities, the following statement should be used:

CALL FILExx(fit,2LXN,indxlfn, ...)

xx IS, DA, or AK.

fit Name of an array containing the FIT.

indxlfn Name of the alternate key index file, specified a,s L format Hollerith constant.

XN may also be specified on a FILE control card.

To open the file, the following statement should be used:

CALL RMOPNX(fit,pd,of)

The parameters are the same as those of CALL OPENM. The file may be opened by a CALL OPENM instead
of CALL RMOPNX if XN was specified on a FILE control card rather than by a CALL FILExx.

The following subroutine should be called to describe a key field to Record Manager when creating a new IS,
DA, or AK file. It must be called once for each key field in the record.

CALL RMKDEF(fit,KW ,KP ,KL,KI,KT ,KS,KG,KC)

fit

KW

KP

KL

KI

KT

KS

KG

KC

III-6-10

Name of an array containing the FIT.

Word of record in which key starts (0 = first word)

Starting character position of key (0-9)

Key length in characters (1-255)

Summary index reserved (0)

Key type 0 = symbolic; I = signed integer; 2 = unsigned

Substructure for each primary key list in the index: I = index-sequential; F = FIFO;
U (default)= unique; can be specified as L format Hollerith constant.

Size of repeating group in which key resides (default = 0).

Occurrences of group (default = 0).

60305600 G

To posit ion the index file tu the first primary key for a given alternate key value (KA), a CALL GET with
rl = I should be used.

To access the record for the next primary key in the record, a CALL GETN should be used.

For updating, the logical file name of the alternate key index file must be specified in the FILE card.

Tu retrieve the number of records containing an alternate key value (KA), a CALL GET with rl = I may be
used.

Before performing alternate key operations, the FIT parameters RKW (word displacement of alternate key in
record), RKP (character position of key in record), and KL (key length) should be set with calls to STOREF. I

60305600 G IJI-6-11

MASS STORAGE INPUT/OUTPUT 111-7

Mass storage input/output (MSIO) subroutines allow the user to create, access, and modify multi-record files
on a random basis without regard for their physical position or internal structure. Each record in the file
can be read or written at random without logically affecting the remaining file contents. The length and con­
tent of each record are determined by the user. A random file can reside on any mass storage device for
which Record Manager word addressable file organization is defined. (The Record Manager Reference Manual
and 7000 SCOPE Reference Manual contain details.)

RANDOM FILE A:CCESS

Random file manipulations differ from conventional sequential file manipulations. In a sequential file,
records are stored in the order in which they are written. and can normally be read back only in the same
order. This can be slow and inconvenient in applications where the order of writing and retrieving records
differ and, in addition, it requires a continuous awareness of the current file position and the position of the
required record. To remove these limitations, a randomly accessible file capability is provided by the mass
storage input/output subroutines.

In a random file, any record may be read, written or rewritten directly, without concern for the position or
structure of the file. This is possible because the file resides on a random-access rotating mass storage device
that can be positioned to any portion of a file. Thus. the entire concept of file position does not apply to a
random file. The notion of rewinding a random file is. for instance. without meaning.

To permit random accessing. each record in a random file is uniquely and permanently identified by a
record key. A key is an 18- or 60-bit quantity. selected hy the user and included as a READMS or
WRITMS call parameter. When a record is first written. the key in the WRITMS call becomes the perma­
nent identifier for that record. The record can be retrie\'ed later hy a READMS call that includes the same
key, and it can be updated by a WRITMS call with the same key.

When a random file is in active use. the record key information is kept in an array in the user's field length.
The user is responsible for allocating the array space by a DIMENSION, type or similar array declaration
statement. but must not attempt to manipulate the array contents. The array becomes the directory or index
to the file contents. In addition to the key data. it contains the word address and length of each record in
the file. The index is the logical link that enables the mass storage subroutines, in conjunction with Record
Manager. to associate a user call key with the hardware address of the required record.

The index is maintained automatically by the mass storage subroutines. The user must not alter the contents
of the array containing the index in any manner: to do so may result in destruction of the file contents. (In
the case of a sub-index. the user must clear the array before using it as a sub-index; and read the sub-index
into the array if an existing file is being reopened and manipulated. However. individual index entries
should not he altered.)

Under SCOPE, when a permanent file that was created by mass storage input/output routines is to be modified, the
EXTEND control card should be used to ensure that the new index is made permanent.

60305600 G III-7-1

In response to an OPENMS call, the mass storage subroutines automatically clear the assigned index array.
If an existing file is being reopened, the mass storage subroutines will locate the master index in mas~
storage and read it into this array. Subsequent file manipulations make new index entries or update current
entries. When the file is closed, the master index is written from the array to the mass storage device. When
the file is reopened, by the same job or another job, the index is again read into the index array space
provided, so that file manipulation may continue.

INDEX KEY TYPES

There are two types of index key, name and number. A name key may be any 60-bit quantity except + 0 or
-0. A number key must be a simple positive integer, greater than 0 and less than or equal to (lngth - I). The
user selects the type of key by the (t) parameter. The key type selection is permanent. There is no way to
change the key type, because of differences in the internal index structure. If the user should inadvertently
attempt to reopen an existing file with an incorrect index type parameter, the job will be aborted. (This does
not apply to sub-indexes chosen by STINDX calls; proper index type specification is the sole responsibility
of the user.) In addition, key types cannot be mixed within a file. Violation of this restriction may result in
destruction of a file.

The choice between name and number keys is left entirely to the user. The nature of the application may
clearly dictate one type or the other. However, where possible, the number key type is preferable. Job
execution will be faster and less central memory space will be required. Faster execution occurs because it is
not necessary to search the index for a matching key entry (as is necessary when a name key is used). Space
is saved due to the smaller index array length requirement.

1 111-1-2 60305600 G

Example I:

PROGRAM MSl (TAPE3)

C CREATE RANDOM FILE WITH NUMBER INDEX.

c
c

DIMENSION INDEX(ll), DATA(25)
CALL OPENMS (3,INDEX,11,0)

DO 99 NRKEY=l,10

C (GENERATE RECORD IN ARRAY NAMED DATA.)
c
c

99 CALL WRITMS (3,DATA,25,NRKEY)

STOP
END

PROGRAM MS2 (TAPE3)

C MODIFY RANDOM FILE CREATED BY PROGRAM MSl.
C NOTE LARGER INDEX BUFFER TO ACCOMMODATE TWO NEW
C RECORDS.

DIMENSION INDEX(13), DATA(25), DATAMOR(40)
CALL OPENMS (3,INDEX,13,0)

C READ 8TH RECORD FROM FILE TAPE3.

c
c

CALL READMS (3,DATA,25,8)

C (MODIFY ARRAY NAMED DATA.)
c
c

C WRITE MODIFIED ARRAY AS RECORD 8 AT END OF
C INFORMATION IN THE FILE

CALL WRITMS (3,DATA,25,8)

C READ 6TH RECORD.

c
c

CALL READMS (3,DATA,25,6)

C (MODIFY ARRAY.)
c

60305600 G III-7-3

c

C REWRITE MODIFIED ARRAY IN PLACE AS RECORD 6.
CALL WRITMS (3,DATA,25,6,1)

C READ 2ND RECORD INTO LONGER ARRAY AREA.

c
c

CALL READMS (3,DATAMOR,25,2)

C (ADD 15 NEW WORDS TO THE ARRAY NAMED DATAMOR.)
c
c

C CALL FOR IN-PLACE REWRITE OF RECORD 2. IT WILL
C DEFAULT TO A NORMAL WRITE AT END-OF-INFORMATION
C SINCE THE NEW RECORD IS LONGER THAN THE OLD ONE,
C AND FILE SPACE IS THEREFORE UNAVAILABLE.

CALL WRITMS (3,DATAMOR,40,2,-1)

C READ THE 4TH AND 5TH RECORDS.

c
c

CALL READMS (3,DATA,25,4)
CALL READMS (3,DATAMOR,25,5)

C (MODIFY THE ARRAYS NAMED DATA AND DATAMOR.)
c
c

C WRITE THE ARRAYS TO THE FILE AS TWO NEW RECORDS.
CALL WRITMS (3,DATA,25,11)
CALL WRITMS (3,DATAMOR,25,12)

STOP
END

This example creates and modifies a random file using a number index.

Example 2:

PROGRAM MS3 (TAPE7)

C CREATE A RANDOM FILE WITH NAME INDEX.

c
c

DIMENSION INDEX(9), ARRAY(15,4)
DATA RECl ,REC2/7HRECORD1,:PRECORD2#/

C (GENERATE DATA IN ARRAY AREA.)
c
c

IIl-7-4 60305600 G

C WRITE FOUR RECORDS TO THE FILE. NOTE THAT
C KEY NAMES ARE RECORD(N).

CALL WRITMS (7,ARRAY(l,1),15,RECl)
CALL WRITMS (7,ARRAY(l,2),15,REC2)
CALL WRITMS (7,ARRAY(l,3),15,7RRECORD3)
CALL WRITMS (7,ARRAY(l,4),15,#RECORD4#)

C CLOSE THE FILE.

CALL CLOSMS (7)

STOP
END

This example uses a name index for a random file.

MULTI-LEVEL FILE INDEXING

When a file is opened by an OPENMS call, the mass storage routines clear the array specified as the index
area, and if the call is to an existing file, locates the file index and reads it into the array. This creates the
initial or master index.

The user can create additional indexes (sub-indexes) by allocating additional index array areas, preparing
the area for use as described below, and calling the STlNDX subroutine to indicate to the mass storage
routine the location. length and type of the sub-index array. This process may be chained as many times as
required. limited only by the amount of central memory space available. (Each active sub-index requires an
index array area.) The mass storage routine uses the sub-index just as it uses the master index; no distinc­
tion is made.

A separate array space must be declared for each sub-index that will be in active use. Inactive sub-indexes
may, of course. be stored in the random file as additional data records.

The sub-index is read from and written to the file by the standard READMS :md WRITMS calls, since it is
indistinguishable from any other data record. Although the master index array area is cleared by OPEN MS
when the file is opened. STINDX does not clear the sub-index array area. The user must clear the sub-index
array to zeros. Ir an existing file is being manipulated and the sub-index already exists on the file. the user
must read the sub-index from the file into the sub-index array by a call to READMS before STINDX is
called. STINDX then informs the mass storage routine to use this sub-index as the current index. The first
WRITMS to an existing file using a sub-index must he preceded hy a call to STINDX to inform the mass
storage routine where to place the index control word entry before the write takes place.

1 r the user wishes to retain the sub-index. it must he written to the file after the current index designation
has been changed hack to the master index. or a higher level sub-index by a call to STINDX.

60305600 G IIl-7-5

I

MAS'TE·R INDEX

The master index type for a given file is selected by the t parameter in the OPENMS call when the index is
created. The type cannot be changed after the file is created; attempts to do so by reopening the file with
the opposite type index are treated as fatal errors.

SUB-INDEX

The sub-index type can be specified independently for each sub-index. A different sub-index name/number
type can be specified by including the t parameter in the STINDX call. If t is omitted, the index type
remains the same as the current index. Intervening calls which omit the t parameter do not change the most
recent explicit type specification. The type remains in effect until changed by another STINDX call.

STINDX cannot change the type of an index which already exists on a file. The user must ensure that the t
parameter in a call to an existing index agrees with the type of the index in the file. Correct sub-index type
specification is the responsibility of the user; no error message is issued.

Example:

PROGRAM MS4 (TAPE2)

C GENERATE SUBINDEXED FILE WITH NUMBER INDEX. FOUR
C SUBINDEXES WILL BE USED, WITH NINE DATA RECORDS
C PER SUBINDEX, FOR A TOTAL OF 36 RECORDS.

DIMENSION MASTER(5), SUBIX(lO), RECORD(50)
CALL OPENMS (2,MASTER,5,0)

DO 99 MAJOR=l,4

C CLEAR THE SUBINDEX AREA.
DO 77 I=l,10

77 SUBIX(I)=O

C CHANGE THE INDEX IN CURRENT USE TO SUBIX.
CALL STINDX (2,SUBIX,10)

C GENERATE AND WRITE NINE RECORDS.

c
c

III-7-6

DO 88 MINOR=l,9

60305600 G

c WRITE A RECORD.
88 CALL WRITMS (2,RECORD,50,MINOR)

c CHANGE BACK TO THE MASTER INDEX.
CALL STINDX (2,MASTER,5)

c WRITE THE SUBINDEX TO THE FILE.
CALL WRITMS (2,SUBIX,10,MAJOR,O,l)

99 CONTINUE

C READ THE 5TH RECORD INDEXED UNDER THE 2ND SUBINDEX.

c
c

CALL READMS (2,SUBIX,10,2)
CALL STINDX (2,SUBIX,10)
CALL READMS (2,RECORD,50,5)

C (MANIPULATE THE SELECTED RECORD AS DESIRED.)
c
c

STOP
END

PROGRAM MS5 (INPUT,OUTPUT,TAPE9)

C CREATE FILE WITH NAME INDEX AND TWO LEVELS OF SUBINDEX.

DIMENSION STATE(lOl), COUNTY(501), CITY(501), ZIP(lOO)
INTEGER STATE, COUNTY, CITY, ZIP

10 FORMAT (AlO,IlO)
11 FORMAT (IlO)
12 FORMAT (5X,8Il5)

CALL OPENMS (9,STATE,101,1)

C READ MASTER DECK CONTAINING STATES, COUNTIES, CITIES

C AND ZIP CODES.
DO 99 NRSTATE=l,50
READ 10,STATNAM, NRCNTYS

C CLEAR THE COUNTY SUBINDEX.
DO 21 I=l,501

21 COUNTY(I)=O

60305600 G III-7-7

DO 98 NRCN=l,NRCNTYS
READ 10, CNTYNAM, NRCITYS

C CLEAR THE CITY SUBINDEX.

c

DO 31 I=l,501
31 CITY(I)=O

96

97

98

99

CALL STINDX (9,CITY,501)

DO 97 NRCY=l,NRCITYS
READ 10, CITYNAM, NRZIP

DO 96 NRZ=l,NRZIP
READ 11,ZIP(NRZ)

CALL WRITMS (9,ZIP,100,CITYNAM)

CALL STINDX (9,COUNTY,501)
CALL WRITMS (9,CITY,501,CNTYNAM)

CALL STINDX (9,STATE,101)
CALL WRITMS (9,COUNTY,501,STATNAM,

FILE IS GENERATED. NOW PRINT OUT LOCAL

CALL STINDX (9,STATE,101)

ZIP CODES.

CALL READMS (9,COUNTY,501,#CALIFORNIA#)
CALL STINDX (9,COUNTY,501)
CALL READMS (9,CITY,501,#SANTACLARA#)
CALL STINDX (9,CITY,501)
CALL READMS (9,ZIP,100,#SUNNYVALE#)
PRINT 12, ZIP

CALL STINDX (9,STATE,101)

STOP
END

III-7-8 60305600 G

MASS STORAGE SUBROUTINES

Object time input/output subroutines control the transfer of records between central memory and mass storage
These routines use the word addressable feature available through Record Manager.

OPEN MS

7
CALL OPENMS (u,ix,lngth,t)

u Unit designator.

ix Name of the array containing the master index.

lngth Length of master index

for a number index:

for a name index:

Type of index.

lngth ~(number of en tries in master index)+ 1

lngth ~ 2 * (number of entries in master index) + 1

t = 0 file has a number master index

t = 1 file has a name master index

OPENMS opens the mass storage file and informs Record Manager that it is a random (word addressable) file.
The array specified in the call is automatically cleared to zeros. If an existing file is being reopened, the
master index is read from mass storage into the index array.

Example:

DIMENSION I(11)
CALL OPENMS (5,1,11,0)

These statements prepare for random input/output on unit 5 using an 11-word master index of the number
type. If the file already exists, the master index is read into memory starting at address I.

WRITMS

7

CALL WRITMS (u,fwa,n,k,r,s)

u Unit designator.

fwa Name of the array in central memory (address of first word).

60305600 G III-7-9 •

n Number of 60-bit words to be transferred.

k Record key.

for number index: k = 1 ~ k ~ lngth - 1

for name index k = any 60-bit quantity except ±0

r Rewrite.

r = 1 Rewrite in place. Unconditional request; fatal error occurs if new record length
exceeds old record length.

r = -1 Rewrite in place if space available, otherwise write at end of information.

r = 0 No rewrite; write normally at end-of-information (default value).

s Sub-index flag.

s = 1 Write sub-index marker flag in index control word for this record.

s = 0 Do not write sub-index marker flag in index control word (default value).

WRITMS transmits data from central memory to the selected mass storage device. Except under SCOPE 2.1,
Record Manager operates more efficiently if n is always a multiple of 64. The r parameter can be omitted
if the s parameter is also omitted. The s parameter is for future file editing routines. Current routines do
not test the flag, but the user should include this parameter in new programs (when appropriate) to facilitate
transition to a future edit capability.

Example:

CALL WRITMS (3,DATA,25,6,1)

This statement unconditionally rewrites in place on file T APE3, starting at the address of the array named
DATA, a 25-word record with an index number key of 6. The default value is taken for the s parameter.

READ MS

7
CALL READMS (u,fwa,n,k

u Unit designator

fwa Name of the array in central memory (address of first word)

n Number of 60-bit words to be transferred.

• III-7-10 60305600 G

k Record key

for number index: k = 1 ~ k ~ lngth - 1

for name index: k = any 60-bit quantity except ±0

READMS transmits data from mass storage to central memory. Except under SCOPE 2.1, Record Manager
operates more efficiently if n is always a multiple of 64.

Example:

CALL READMS (3,DATAMOR,25,2)

This statement reads the first 25 words of record 2 from unit 3 (T APE3) into central memory starting at the
address of the array DATAMOR.

CLOSMS

7 r ! ICALL CLOSMS (u}

u Unit designator

CLOSMS writes the master index from central memory to the file and closes the file. CLOSMS is provided
to close a file so that it can be returned to the operating system before the end of a FORTRAN run, to pre­
serve a file created by an experimental job that might subsequently abort, or for other special purposes.

Example:

CALL CLOSMS (2)

This statement closes the file TAPE2.

STINDX

7
CALL STI N DX {u,ix,lngth,t)

u Unit designator.

ix Name of the array in central memory containing the sub-index (first word address).

lngth Length of sub-index

for a number index: lngth (number of entries in sub-index) + 1

for a name index: lngth 2 * (number of entries in sub index) +

60305600 G IIl-7-11 O

Type of index. If omitted, t is the same as the current index.

t = 0 File has a number sub-index

t = I File has a name sub-index

STINDX selects a different array to be used as the current index to the file. The call permits a file to be
manipulated with more than one index. For example, when the user wishes to use a sub-index instead of
the master index, STINDX is called to select the sub-index as the current index. The STINDX call does not
cause the sub-index to be read or written; that task must be carried out by explicit READMS or WRITMS
calls. It merely updates the internal description of the current index to the file.

Example I:

DIMENSION SUBIX (IO)
CALL STINDX (3,SUBIX,10,0)

These statements select a new index, SUBIX, for file TAPE3 with an index length of 10. The records ref­
erenced via this sub-index use a number index.

Example 2:

DIMENSION MASTER (5)
CALL STINDX (2,MASTER,5)

These statements select a new index, MASTER, from file T APE2 with an index length of 5 and index type
unchanged from the last index used.

COMPATABILITY WITH PREVIOUS M 1ASS STORAGE ROUTINES

FORTRAN Extended mass storage routines and the files they create are not compatible with mass storage
routines and files created under versions of FORTRAN Extended (before version 4) Major internal differences
in the file structure were necessitated by adding the Record Manager interface. However, source programs are
fully compatible. Any source program that compiled and executed successfully under earlier versions will do
so under this version, provided that all file manipulations were and continue to be executed by mass storage
routines.

IIl-7-12 60305600 G

ERROR MESSAGES

Random file processing errors are fatal; the job terminates and one of the following error messages is
printed:

97 INDEX NUMBER ERR

98

The index number key is negative, zero, or greater than the index buffer length minus one.

FILE ORGANIZATION ERR

During the initial OPENMS call, mass storage routines set the file organization as word aJdress­
able (FO=WA)and the record type to U (RT=U). A conflicting file organization was specified in an external
subroutine call or FILE control card.

99 WRONG INDEX TYPE

An attempt was made to open an existing file with the wrong index type parameter. File index type
is permanently determined when a file is created.

I 00 INDEX IS FULL

WRITMS was called with a name index key, and the end of the index buffer occurred before a
match was found. Either the name key is in error, or the buffer must be lengthened.

IOI DEFECTIVE INDEX CONTROL WORD

This message may occur for either of two reasons:

I. An OPENMS for an existing file found the master index control word has been destroyed. Since
this word was properly set when the file was last closed, the user should check for an external
cause of file destruction.

2. A READMS or WRITMS call has encountered a defective index control word. Check for an
improperly cleared sub-index array, for a program sequence that writes into an index array (other
than the required initial zeroing) or for an external cause of file destruction.

102 RECORD LENGTH EXCEEDS SPACE AVAILABLE

I. During an OPENMS call, not enough index buffer space was provided for the master index of an
existing file.

2. During a WRITMS call with in-place rewrite requested (r = + I), the new record length exceeded
the old record length.

I 03 6RM/7DM 1/0 ERR NUMBER 000

Record Manager has detected an error; the actual error number appears in the message. Refer to
Record Manager Reference Manual to identify the source of the error.

104 INDEX KEY UNKNOWN

No data record exists for the user's index key. This error may be diagnosed for a READMS call or
for a WRITMS call with rewrite requested (r = + I).

60305600 G III-7-13

I

RENAMING CONVENTIONS 111-8

The following information will be useful only to the assembly language programmer.

REGISTER NAMES

The compiler changes some legal FORTRAN names so that FORTRAN object code can be used as COM­
PASS input. When a two-character name begins with A. 8. or X and the last character is 0 to 7. the
compiler adds a currency symbol ($) to the name for the object code listing. (AO-A 7, 80-87. and XO-X7
represent registers to the'COMPASS assembler which may be used by the FORTRAN Extended compiler).

EXTERNAL PROCEDURE NAMES (PROCESSOR SUPPLIED)

CALL-BY-VALUE

The name of a system supplied external procedure called by value is suffixed with a decimal point. The
entry point is the symbolic name of the external procedure and a decimal point suffix. For example. EXP.
COS. CSQRT.

The names of all external procedures called by value are listed in table 8-2 Basic External Functions, section
8, part 1. A procedure will not be called by value and the name will not be suffixed with a decimal point if
it appears either in an EXTERNAL statement or an overriding type statement, or if option T, D, or OPT=O is
specified on the FTN control card.

CALL-BY-NAME

The call-by-name entry point is the symbolic name of the external procedure with no suffix.

External procedures called by name appear in section 8, part 1 under the heading Additional Utility Subprograms.
Any name which appears in table 8-1 Intrinsic Functions or table 8-2 Basic External Functions are called by
name if it appears in an EXTERNAL statement or in an overriding type statement; those listed as Basic External
Functions are also called by name if option T, D, or OPT=O is specified on the FTN control card.

60305600 F III-8-1

PROGRAM AND MEMORY STRUCTURE 111-9

The following table shows the general form of a FORTRAN program unit. Statements within a group may
appear in any order, but groups must be ordered as shown. Comment lines can appear anywhere within the
program.

STATEMENTS

1 OVERLAY

PROGRAM*

2 FUNCTION*
SUBROUTINE*
BLOCK DATA

3 IMPLICIT

type
COMMON

4 DIMENSION
EQUIVALENCE *
EXTERNAL* F

LEVEL 0
R

Statement function* Nt M 5
A* definitions A
M D

T
E A

ENTRY* L T

6 Executable I A

statements* s
T

7 END

*Not allowed in BLOCK DATA Subprograms
t Namelist group name must be defined before it is used

The following description of the arrangement of code and data within PROGRAM, SUBROUTINE and
FUNCTION program units does not include the arrangement of data within common blocks because this
arrangement is specified by the programmer. However, the diagram of a typical memory layout at the end
of this section illustrates the position of blank common and labeled common blocks.

60305600 B III-9-1

SUBROUTINE AND FUNCTION STRUCTURE

The code within subprograms is arranged in the following blocks (relocation bases) in the order given.

START.

VARDIM.

ENTRY.

CODE.

DATA.

DATA..

HOL.

FORMAL
PARAMETERS.

III-9-2

Code for the primary entry and for saving AO

Address substitution code and any variable dimension initialization
code

Either a full word of NO's or nothing

Code generated by compiling:

Executable statements

Parameter lists for external procedure references within the current
procedure

Storage statements

DO loops and optimizing temporary use

Storage for simple variables, FORMAT statements, and program
constants

Storage for arrays other than those in common

Storage for Hollerith constants

One local block for each dummy argument in the same order as they
appear in the subroutine statement, to hold tables used in address
substitution for processing references to dummy arguments

60305600 A

MAIN PROGRAM STRUCTURE

START.

CODE.

DATA.
DATA ..
HOL.

MEMORY STRUCTURE

Input/output Ille hutfers and a tahle of file names specified in the
program statement

Transfer address code plus the code specified for the suhroutine and
function CODE. hlock

Same as SUBROUTINE and FUNCTION structure

Memory is not cleared, and subprograms are loaded as they appear in the input file starting at the pro­
gram's reference address (RA) + IOOB, toward the user's field length (FL). RA to RA + IOOB is the
communication region used by the operating system. Labeled common blocks are loaded prior to the
subprogram in which they are first referenced. Library routines are loaded immediately after the last
suhprogram and are followed hy hlank common.

Typical memory layout:

FL

60305600G

Communication Region

Common block ABLE

PROGRAM TEST
includes 1/0 buffer area

SUBROUTINE SUB

FORSYS=
OUTC=

KO DER=
OUTCOM=
COMIO=

Blank Common

FL TOUT=
SIN
GETFIT=

III-9-3

INTERMIXED COMPASS SUBPROGRAMS 111-10

Both SUBROUTINES and FUNCTIONS may be written in COMPASS Assembly language and called from a
FORTRAN source program. For either, register AO is the only register that must be restored to its initial condition
when the subprogram returns control to the calling routine.

When a FORTRAN generated subprogram is called, the calling routine must not depend on values being preserved
in any registers other than AO.

CALL BY NAME AND CALL BY VALUE

To increase speed, arguments to library functions are normally passed to subprograms by placing their values in
the registers. This method is call by value. For user defined subprograms, the address of the arguments are
passed to the subprogram. This method is call by name.

CALL BY NAME SEQUENCE

The FORTRAN compiler uses the call by name sequence when a subroutine or function name differs from any of
those listed in table I-8-1 and I-8-2. Call by name is also used when a listed subroutine or function also appears
in an EXTERNAL or overriding type statement, or (except in the case of intrinsic functions) the program unit
specifies D, T, or OPT=O on the FTN control card.

The call by name sequence generated is shown below:

SAi

+RJ

-VFD

Address of the argument list (if parameters appear)

Subprogram name

12/line number, 18 /trace word address

line number

trace word
address

Source line number of statement containing the reference

Address of the trace word for the calling routine

Arguments in the call must correspond with the argument usage in the called routine, and they mu&t reside
in the same level.

The argument list consists of consecutive words in the following form followed by a zero word. The sign bit will
be set in the argument list for any argument entry address that is LCM§ or ECS.:j:

VFD 60/address of argument

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.
tApplies only to CONTROL DATA CYBER 70/Models 72, 73, and 74, CYBER 170, and 6000 Series computers.

60305600 G III-10-1

I

CALL BY VALUE SEQUENCE

For increased efficiency the compiler generates a call by value code sequence for references to library functions
if the function name does not appear in an EXTERNAL or overriding type statement and (in the case of external
functions only) the D, T, or OPT=O options on the FTN control card are not specified. The name of any library
function called by value or generated in line must appear in an EXTERNAL statement in the calling routine if the
call by name calling sequence is required (section 8, part I lists the library functions called by value and generated in-line).

The call by value code sequence consists of code to load the arguments into XI through X4, followed by an RJ
instruction to the function. The second register loaded for a double precision or complex argument contains the least
significant or imaginary part of the argument.

COMPASS SUBPROGRAMS

Subprograms in COMPASS assembly language can be intermixed with FORTRAN coded subprograms in the source
deck. COMPASS subprograms must begin with a card containing the word IDENTb, in columns 11-16, and
terminate with a card containing the word ENDb, in columns 11-14 {b denotes a blank). Columns 1-10 of the
IDENT and END cards must be blank.

III-10-2

11

•........ ················1
.:1111111111111111111111::11111:11111111111:1111111111111

1 DENT

11 14

16

~!l!lll!l!l!l!l!l!l!li!1ll!llllllllllllllllllllililliil E N D 111\~!J blank

blank

60305600 G

If the COMPASS subprogram changes the value of AO, it must restore the initial contents of AO upon returning
control to the calling subprogram. When the COMPASS subprogram is entered by a function reference, the sub­
program must return the function result in X6 or X6 and X7 with the least significant or imaginary part of the
double precision or complex result appearing in X7.

The COMPASS assembler normally requires the system text SYSTEXT, which is the default for the S parameter.
The amount of storage available depends on installation options. Insufficient storage for SYSTEXT causes an
error. The user may need to specify a larger field length for compilation or a different option for S. See the
appropriate operating system reference manual and section I-11 of this manual for more details on systems texts.

Example:

The following page contains an example of a simple COMPASS Function and the calling FORTRAN main program.
The parity function, PF, returns an integer value; therefore it must be declared integer in the calling program. The
argument to PF may be either real or integer.

The title and comments are unnecessary; they are included to encourage good programming practice. The fol­
lowing is a recommended convention.

PF EQ *+1S17 ENTRY/EXIT

This statement causes a jump to 400 0008 plus the location of the entry point of the routine if the
function is not entered with a return jump. This results in a mode error that can quickly be identified.
Since AO is not used in this subprogram, it need not be restored.

60305600 G III-10-3 o

SOURCE DECK

job card

~AP<OFF>

FTN(Q=O>
LGO.
7/8/9 in column 1.

PPOGPAM l\l,PS.tV-1P (OlJTPIJT)
INTEGFR PF, PVAL(24)
OOlI=l.24
PVALCI>=PFCI>
PRINT~,(J,I=l•24)tPVAL

2 FOPMATC1?HOINTEGER5 AND T~fIR PARITY AELOW/(2413))
STOP

PF

PF

*
*
*
*
*
*
*

**
*

PF

ENn
HlENT PF
fNTPY PF
TITLE PF - cn~PUTE PARITY OF WORD.
COMMENT CO,,.,PUTE PARITY OF WORD.
SPACE 4•11
PF - COMPUTE PARITY OF WORD.

FORT~AN SOURCf CALL --

OARITY = PF (A~G)

P~5lJL T = 1. IFF ARG HAS ODD NIJMAF.R Of qns SET.
= o, OTHE:RWISE.

ENT~Y (Xl~ = ADnPfSS OF APGUMENT.
fXIT (X6) = RE~lJLT.

*•1517 ENTPY/EXIT •••

main program

f()

SA2
en
~XO

RX6
EQ

X 1----------------get the argument value
X? count the I bits in X2 and leave result in X3
- l form a mask in XO
-XO*X3 I SOLA TE LOWEST lilT-4-put result into X6
PF EXIT ••

fND
6/7/8/9 in column 1.

OUTPUT

INlEGE~S ~~C l~EI~ FA~IlY BtLOH
1 2 3 ~ ~ c 7 8 g 10 11 1~ 13 14 15 1€ 17 16 19 20 21 22 23 2~
1101G0110010110100 10 11 0 0

III-I 0-4 60305600 B

ENTRY POINT

For subprograms written in FORTRAN, the compiler uses the following conventions in generating code:

The entry point of the subprogram (for reference by an RJ instruction) is preceded by two words. The first is a trace
word for the subprogram; it contains the subprogram name in left justified display code (blank filled) in the upper
42 bits and the subprogram entry address in the lower 18 bits. The second word is used to save the contents of AO
upon entry to the subprogram. The subprogram restores AO upon exit.

Trace word: VFD 42/name, 18/entry address

AO word: DATA 0

Entry point: DATA 0

RESTRICTIONS ON USING LIBRARY FUNCTION NAMES

Functions written in FORTRAN that have library function names listed in tables 8-1 or 8-2, such as AMAXl or
SQRT, must be declared EXTERNAL in the calling program unit. This declaration is necessary because the compiler
produced functions always use the call by name calling sequence.

Functions written in COMPASS that have basic external library names listed in table 8-2, such as SQRT, should be
written using the call by name sequence when they are declared EXTERNAL in the calling routine; or they should
use the call by value rules if they are not declared EXTERNAL.

Functions written in COMPASS that have intrinsic library names listed in table 8-1, such as AMAXl, must be
declared EXTERNAL in the calling routine; otherwise in-line coding is generated for them (the COMPASS coding is
ignored). Furthermore, the call by name sequence must be used.

If a library function, called by value, is to be overridden by a routine coded in COMPASS, the COMPASS routine
must use the library function name with a period appended as the entry point name (e.g., SIN.) to use the call by
value calling sequence.

The following sample illustrates the code generated for: a library function call, SQRT; an external function call,
ZEUS; and a reference to an intrinsic (in-line) function, AMAXl.

The coding generated for the external function, ZEUS, is illustrated also.

t-1AP<OFF)
FTM (f.<=O .OU
7/8/9 in column 1

PPOGRAM SUHLNK
X=SORT(7.0>
Y;; ZEUS< X' l. 0 >

ENU
FUNCTTON !EU~(A~Gl.ARG2l
ZEl IS=A'.iiAX 1 (ARG 1, AfHi?., 0. l
t-:ETU~tJ

UJO
6/7/8/9 in column 1

60305600 G III-10-5

PROGRAM

PROGRAM

GOOOOO START.
G00001 START.

[00002 CODE.

G00013 DATA.
IJ(JO 013 DATA.
COCi014 DATA.

COC015 DATA.
Ci0001E; DATA.

GOO 0 C;3 CODE..

COCiOG4 COCE.

G00005 CCOE.

0 fJ 0 J Of: CCCE.

(j 0 0 0 07 CCDE.
G00010 CODE.
Ci00010 CODE.
L00011 CCDE.
GOO!l12 CCCE.

III-10-6

SUBLNK

FRO GR AH SU BL NI<
X=SQRTC7.0>
Y= ZEUS (X, 1. 0 >
END

SUBLNK

000000
000002
000002
000002
000013
000017
000017

OPT=1

000002
000000
000000
000011
000004
000000
OOOOOD

£><TERNA LS
END. ZEUS

77777777777777766167
23250214161355000002

5110000LOO START.
01CiCiOCOOOO <EXT>

1722700000GOCOOOOOOO
17204000000000000000

S110000013 DATA.
0100000000 <EXT>

5160000015 DATA.
5110000010 CODE.

OHOOOOGOO <EXT>
0 00300()001

5160000016 DATA.
S110000001 START.

04CiOOOOCOC <EXT>

OOOOOOOOOOOOC0000015 DATA.
00000000000000000014 DATA.
oocooooc~ooootoijOOOJ

IO ENT SUBLNI<
USESLK
LOS ET LIB=FORTRAN
LOSET LlB•SYSIO
USE START.

START. LOCAL
VAROIH. LOCAL
ENTRY. LOCAL
CODE. LOCAL
DATA. LOCAL
DATA •• LOCAL
HOL. LOCAL

SQRT. Q8NTRY.

FILES. BSS oe
DATA 7777777777777776E1G7B
TRACE SUELNK,sueLNK
USE CODE.
PENT RY SUBLNK
SA1 FILES.
RJ Q8NTRY.
USE DATA.
USE DATA ••
USE DATA.

DATA 172270000000000000008 constanttable
CON. BSS oe }

DATA 1720400000000000000CB
EXT END.
EXT ZEUS
EXT SQRT.
EXT Q8NTRY.

x BSS 1e
y BSS 18

USE CODE.
• LINE 2 -4-- source line number

SA1 CON .~get actual parameter into XI
RJ SQRT.
SA6 x
SA1 CAP1---get address of parameter list into XI

+ RJT ZEUS, 38

SAG y
SA1 TRACE.
EQ ENO.

CAP1 ess OB

} P"ramot« •dd"" H•t
APL)(

APL CON.+18
APL
ENO sueLNK

60305600 F

FUNCTION ZEUS

Ft.;NClION

IJOGOCO SHRT.
GOOOC1 START.
000002 START.
C00003 START.
GOl1004 SH.RT.
GOOOOS START.

000013 DATA.

GOOOG6 CCCE.

000007 CODE.

CU001G CODE.

000011 CCOE.

000012 CCDE.

60305600 F

ZEUS

FUNCTION ZEUSCARG1,ARG2)
ZEUS=AMAX1CARG1,ARG2,0.>
RETURN
END

OPT=1

000000
000006
000006
000006
000013
000014
000011+
000011+
GO 0 014

000006
000000
000000
000005
000001
0 0 00 0 0
000000
000000
0{]0000

ID ENT ZEUS
USE BLK
LOS ET LIB=FORTRAN
LOS ET LIB=SYSIO
USE START•

:ST ART.
VARDIH.
ENTRY.
CODE•
DATA.
DATA.•
HOL.
ARG1
ARG2

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL

,----------------name of program unit
32 C5252355S s=-5 0 0 0 0 04/o O 00 0 0 TRACE ZEUS, ZEUS, 2 6 and entry point address
0 0 Ci O 0 0 0 0 0 0 0 O O O 0 0 0 0 0 cell to save AO in

S 14 0 0 0 0 0 131 G 61+ I+ 4 6 C 0 0 l PEN TRY ZEUS t ENT RY • ' 1 restores AO on exit
S130000001520300GCGOf-------------------'~

01+ (04 0 00 G 26 10 0 0460 0 IJ.4----------------entry point

7 4 t 0 0 5 40105 1b0000001 saves AO and sets AO
FOR PAR ARG1 to the new Al

54~00

53240

15t3 0

15705

504000 00(;1
53350

31032
21073

11702

36067
22SOO

21573

5170000013 DATA.
0400000002 START.

FORFAR ARG2
USE DAT A.
USE OAT A ••
USE DATA.

VALUE• BS S 18
USE CODE.

SAS AO
SAi+ A0+18
SA3 XS
SA2 XI+
FXO X3-X2
AXO 738
BX 7 XO• X2
ax6 -xo•x3
IXO Xc+x 7
LX5 ao,xo
AXS 738
BX7 -xs• XO
SA? VALUE.
EQ EXIT•
ENC

LINE 2

III-10-7

TERMINAL 1/0 WITH FORTRAN t 111-11

If a FORTRAN program to be run under SCOPE's INTERCOM or under the KRONOS or NOS Time-Sharing
System calls for input/output operations through the user's remote terminal, all files to be accessed through the
terminal must be formally associated with the terminal at the time of execution.

In particular, the file INPUT must be connected to the terminal if data is to be entered there and an alternate
logical unit is not designated in the READ statement. The file OUTPUT must be connected to the terminal if
execution diagnostics are to be displayed or printed at the terminal,or if data is to be displayed or printed
there and an alternate logical unit is not designated in the WRITE or PRINT statement. These files are auto­

matically connected to the terminal when the program is executed under either KRONOS or NOS or under the
RUN command of the EDITOR utility of INTERCOM.

For a FORTRAN program run under INTERCOM, any file (including INPUT and OUTPUT) can be connected
to the terminal by the CONNECT command. In addition, the user can connect any file from within the pro­
gram by using either of the statements:

CALL CONNEC (fd,cs)

CALL CONNEC (fc.l)

f d file designator: fd can be a logical unit number u, a Hollerith constant nLfilename, or a
simple integer variable with a value of u or nLfilename. u is an integer constant from
1 to 99 (associated by the compiler with the file name TAPEu); filename is a file name of
I to 6 letters or digits beginning with a letter.

cs character set designator: cs should be an integer constant or an integer variable with a
value of 0 to 2, in accordance with the character code set to be used for the data entered
or displayed at the terminal:

0 display code
1 ASCII-95 code
2 ASCII-256 code

+Applies only to INTERCOM, KRONOS Time-Sharing System, or NOS Time-Sharing System. More information
Jbout INTERCOM is in the INTERCOM Reference Manual and the INTERCOM Interactive Guide for Users of
FORTRAN Extended. More information about KRONOS is in the KRONOS 2.1 Reference Manual and the
KRONOS 2.1 Time-Sharing User's Reference Manual. More information about NOS is in the NOS 1.0 Reference
\1anual and the NOS 1.0 Time-Sharing User's Reference Manual.

60305600 G III-11-1

I

If cs is not specified, it is set to 0. If display code is selected, input/output operations should be formatted,
list-directed, NAMELIST, or buffered. If either of the ASCII codes is selected, input/output operations should
be either formatted or buffered. When a CALL CONNEC specifies a file already connected with the character
set specified, the call is ignored. If the file specified is already connected with a character set other than that
specified, cs is reset accordingly.

Data input or output through a terminal under INTERCOM is represented ordinarily in a CDC 64-character,
ASCII 64-character, or CDC 63-character set, depending on installation option. For these sets, ten characters
in 6-bit display code are stored in each central memory word. As described above, a terminal user can specify
from within a FORTRAN program that data represented in an ASCII 95-character set (providing the capability
for recognizing lowercase letters) or an ASCII 256-character set (providing the capability for recognizing lower­
case letters, control codes, and parity) be input or output through the terminal. For the ASCII 95-character
and 256-character sets, characters are stored in five 12-bit bytes in each central memory word. Characters in
the ASCII 95-character set are represented in 7-bit ASCII code right justified in each byte with binary zero
fill; characters in the ASCII 256-character set are represented in 8-bit ASCII code right justified in each byte
with binary zero fill. When data represented in either ASCII character set code is transferred with a formatted
1/0 statement, the maximum record length should be specified in the PROGRAM statement as twice the number
of characters to be transferred (see section 1-7).

When the ASCII 95-character or 256-character set has been specified for terminal input/output under INTER­
COM, blanks following the end of data on each line are not translated into ASCII code but are retained in
display code (as 558). Unless the user eliminates them, these blanks will appear on output as lowercase m
characters (two blanks in display code translates to one m in ASCII code). For formatted input, the user
can identify the end of data on a line by scanning data entered in nR2 format until the Hollerith constant
2Rbb (b = blank) is found. For buffered input, the end can be determined by reading the data into an array,
manipulating it with a DECODE statement, and then scanning as with formatted input.

For a FORTRAN program run under KRONOS or NOS, any file can be connected to the terminal by the ASSIGN
command. In addition, the user can connect any file from within the program by using the statement:

CALL CONNEC (fd)

fd, the file designator, should be specified as described above for programs run under INTERCOM.

Data input or output through a terminal under KRONOS or NOS is represented ordinarily in a standard 61-
character set. However, the user can elect to have data represented in an ASCII 128-character set (which pro­
vides the capability for recognizing control codes and lowercase, as well as uppercase, letters) by entering the
ASCII command. Characters contained in the standard set are stored internally in 6-bit display code, whether

_ or not the ASCII command has been entered. The additional characters which complete the ASCII 128-character
set are stored internally in I 2-bit display code if the ASCII command has been entered; otherwise, they are
mapped into the standard 61-character set and stored internally in 6-bit display code.

Under SCOPE, KRONOS, and NOS, if a file specified in a CALL CONNEC exists as a loca1 file but is not
connected at the time of the call, the file's buffer is flushed before the file is connected to the terminal. Any
file can be disconnected from within a FORTRAN program by the statement:

CALL DISCON (fd)

III-11-2 60305600 F

This request is ignored if the specified file is not connected. After execution of this statement, the specified
file remains local to the terminal. In addition, if the file existed prior to connection, the file name is
re-associated with the information contained on the device where the file resided prior to connection. Data
written to a connected file is not contained in the file after it is disconnected.

All files to be connected or disconnected during program execution must be declared in the PROGRAM
statement. An attempt to connect or disconnect an undeclared file results in a diagnostic fatal to execution.

Calls to CONNEC and DISCON are ignored when programs are not executed under INTERCOM or interactively I
under KRONOS or NOS.

Examples:

CALL CONNEC (6)

K = 4LAGE.S
CALL CONNEC (K)

CALL CONNEC (6,2)

CALL CONNEC C4LOATA,l>

CALL DISCON (6)

60305600 G III-11-3

LISTINGS 111-12

During a typical compilation and execution, source program, reference map, and core map listings are produced
(unless LIST,NONE fa in effect).

A header line at the top of each page of compiler output contains the program unit type and name, the
machine used and the target machine for which the compiler was assembled, control card options, compiler
version and mod-level, date, time, and page number.

The source program is listed 60 lines per page (including headers); every fifth source line is numbered. These
numbers are used in the error messages and in the cross reference map.

The compiler produces a reference map for each routine compiled. The compiler generated addresses assume
loading of program units starts at location 0. A description of the reference map is described in section III-1.

A map is produced by the loader at load time. In this map, the user program starts at relative address lOlg.
(The first 101 words, 0-100, serve as the communication region between the operating system and the user
program.) Refer to the Loader Reference Manual for details of the load map.

To find the address of a variable, the address of the program unit, which appears in the load map, is added to the
address of the variable which appears in the reference map. All locations and addresses in the reference map and
the-core map are in octal.

For example:

VARIAOLES
0 A

17 AVG
Q]D I

0 J

PROGRAM AND

BLOCK
VAROIH2
SET
IOTA
PVAL
AVG

HULT

SN TYPE
REAL
REAL
INTEGER
INTEGER

BLOCK ASSIGNHENTS.
ADDRESS LENGTH

101 2141
22lt2 34
2276 15
2313 33

@§) 21
2367 20

FILE
LGO
LGO
LGO
LGO
LGO
LGO

the address of the location generated for the variable I would be:

2346
+20

2366

60305600 G III-12-1

FORTRAN IJISTING CONTROL

LIST directives permit a source program listing to be stopped or restarted at any line. They also provide
control of the non-fatal diagnostic summary, reference map, and object code listing on a program unit basis.
LIST directives can only suppress a listing that would otherwise appear; they cannot add a listing if it has not
been.· selected on . the FTN control card.

LIST directives have no effect if TS mode. is selected.

The format of the LIST directive is:

Cf

option

7

rST,option

must appear in columns . J and 2 with columns 3 through 6 blank

NONE _stops sou.rce ·program listing and can·. suppress the other listings

ALL resumes source. program listing

LIST, option appears anywhere within. columns 7 through 72. Leading, trailing, and embedded blanks
are allowed; continuation is not permitted.

Lines that do not conform to the LIST directive. format. are processed as comment lines, assuming. column
contains a C. No diagnostic is issued.

LIST directives can be placed anywhere in a source program or CS debug deck, except they must not interrupt
statement continuation. A list statement within a continuation sequence causes a fatal-to-execution diagnostic
to be issued.

LIST directives control only the listings for the program unit in which they appear.

LIST ,NONE stops source program listing. The directive itself is listed but subsequent source lines, including
additional LIST,NONE directives, will not be listed. However, when LIST,NONE is the first physical line of a
program unit, neither it nor the page header is listed.

LIST,ALL resumes source program listing beginning with the directive itself. The listing will be restarted
immediately regardless of the number of preceding LIST,NONE directives.

If LIST,NONE is active when an END statement is encountered, no reference map or object listing is output.
No diagnostic summary appears unless the program unit contained fatal errors. If fatal source program errors
were detected, output includes the incorrect statements and a complete diagnostic summary containing errors
of all levels requested by the EL parameter on the FTN control card.

e III-12-2 60305600 G

Partial maps, diagnostic summaries, and object listings cannot be obtained. The LIST directives have no effect
on the process of accumulating information to be output; they only control whether to list or not to list
information. A LIST directive cannot override a control card parameter that inhibits the accumulation of
information for a listing.

Example:

If the R=3 (long reference map) control card option is chosen and LIST,NONE is active for 90 lines of
the ISO-line source program, 60 lines of the source program are listed but map information is accumu­
lated for all 150 lines. The complete map is listed unless LIST,NONE is active when the END statement
is encountered.

DMPX.

When a program does not compile or execute successfully, a partial dump is produced. A DMPX includes the
contents of the registers, the first 101 words of the user's field length (the communication region), and the
contents of the 101 (octal) words immediately preceding and immediately following the addresses where the

job terminated.

l. P Address of program step to be executed next if job had not terminated.

2. RA Reference address: absolute address where user's field begins. All other addresses are
relative to this address.

3. FL Field length of job.

4. EM Default exit mode.

5. RE Extended core storage reference address.

6. FE Field length assigned to job in extended core storage.

7. MA Address used for linkage between the operating system and user program.

8.

9.

10.

11.

12.

13.

14.

60305600 G

Address registers.

Contents of address registers.

Index registers.

Contents of index registers.

Operand registers.

Contents of operand registers.

Contents of locations specified in the A register. For example, items 8 and 9 show
register A2 contains the address 002155, and item 14 shows location 002155 contains
1725 2420 2524 0000 0133.

III-12-3

15.

16.

I III-124

Address of 60-bit word in central memory, followed by contents of that word (in octal).

Indicates that contents of previous locations are repeated up to but not including this
location

60305600 G

0\
0
w
0
VI
0\
0
0
()

-:;:=
.......
N
~

-

OHPX.

G),p
@-~A
@-FL
@-EH
@-RE

®
,....FE

HA
0/@

013552
31210 0
065000
070000
DO ODDO
000000
o o 11+0 o

® ® @ @
AO 002133 BO ODOODO
A1 ~ 81 000001
A2 ~ 82 ODOOD1
A3 00211+0 83 00001+0
A4 004474 84 000130
AS 00213S BS 000001
A6 000001 86 004636
A7 002140 87 002206

XO
X1
X2
X3
XI+
XS
X6
X7

7777 7777 7777 7777 7776
0000 0000 ODDO DODO 0000
0000 0000 0000 DODD 4776
0000 0216 5000 0000 0004
DODO 0000 0000 DODO 0005
0000 OOQO 0000 ODDO D002
D1D2 2400 0000 0000 0000
DODD DODO 0100 0000 2165
~ ,

@) 00000
00004
DD010
OD014
00020
OD024
00037
00040
DDD44
00053
00054
00 06D
DDD64
ODD70
00100

13452
13454
1346D
1346lt
13470
1347lt
135DD
13504
1351D
13511+
13520
13521+
13530
13534
13540
13541+
13550
13554
13560
13561+
13570
13571+
13600
136Dlt
13610

@
ooono 00000 00000 00000
ODODD DODOO 00000 DODOO
32323 23232 17200 00354
DODOO 00000 00000 00000
01022 14000 00000 D5152

~00000 00000 DODOO 00015
~00000 00000 00000 00007

00000 00000 00000 00000
ODOOO DODOO DODOO 00000
DODOO 00000 00000 DODOO
51100 00001 03110 00054
56124 63310 13415 21422
14071 70000 DODOO DODOO
DODOO DODOO 00000 00000

~11162 02524 00000 DDODD

5D100 00021 20101 46000
43744 20130 15117 373lt1
03220 13465 66340 46000
63510 02500 11034 46000
50100 00020 43770 20106
11771 12774 0331+5 13474
15117 63510 50100 00006
36441 71600 0011+2 46000
50100 00015 43752 11771
63440 61600 1353D 37121+
20744 54710 63420 46000
02500 11034 61000 46000
64330 50100 00020 1+3770
11771 74150 12771 46000
03315 13540 20766 54710
50100 0001S 7671D 20772
04000 13563 DODOO 00000
54610 04000 13551 460DO
13661 13161 13661 46000
S1100 00001 03110 13564
20150 36661 01000 13552
03010 13571 51100 00001
01000 13552 61000 46000
20636 51600 13606 74660
00000 DODOO 00000 00000

@

cca1•= 0000 oooa 0000 0000 0000
CCA2l= C1725 2,.20 2524 0000 0133::;>
CCA3>= 0000 0000 0100 0000 2165
C(A4>= ODDO 0000 ODDO 0000 0004
CCA5l= ODDO 0000 0240 4000 0000
CCA6l= ODDO 0000 0000 0000 0000
ccA7>= 0000 oooa 0100 0000 2165

CCBU=
c (82) =
c (83) =
CCB4l=
c (85) =
CCB6l=
C<B7>=

0000
0000
0000
0000
0000
5140
0000

DODO
0000
0000
0000
0000
0044
ODDO

00002~11162 02524
@) 32323 23232

) tJOOOO DODOO
00017~23312 31726

0311+1 72305
00000 00000

00000
22140
aoooo
14000
35530
0'0000

00100
00322
00000
00001
00000
00000

00043~00000 00000 aoooo 50106
00046~55555 55555 55555 55542

64550 02500 00000 46000
61447 77776 03040 OC056
00000 00000 aoooo 13607

03210 13456 50100 00002
03330 13456 10411 46000
50100 00020 43770 20106
27701+ 51300 07654. 40773
15117 36441 12147 77765
20766 54710 04000 10710
43744 20130 15117 46000
50100 00015 43701 12771
12773 03335 13511 54710
03210 12246 37442 46000
61600 13522 U4000 1c246
26454 56330 &3340 4EOOO
20106 11771 12774 46000
03315 13535 20744 5L710
50100 00015 ~3210 10710
12771 54710 50100 00015
01300 00000 00000 DODOO
51100 00066 a3J10 13557
51600 13551 10611 46000
04001+ 13565 61000 4EDOO
04000 07354 00000 00000
03110 13573 71100 00001
0400lt 13601 61000 46000
36116 20123 Dl+DDO 13577

13652~00000 00000 00000 00000

17252 42025 24000 02133
03171 52023 00000 00305
00000 00000 00000 50167

00000 00000 00000 00000
00032~00000 DODOO 00000 50064

00000 00000 00000 00000

DODOO 00000 00000 00000
07040 00060 51600 00001
40000 00000 00000 00100

50100 00015 20101 46000
11771 20766 54710 14422
26707 36377 63373 37443
03310 13473 10411 66331
50500 00015 20530 73550
50300 00015 73330 37114
54710 46000 61000 46000
56330 50100 00020 43770
50100 00020 43752 20130
64330 27444 61600 13525
50400 00020 20430 73440
03345 13532 20766 54710
50100 00017 43770 20106
54301 43744 20330 15337
76710°20770 15717 54710
04000 04474 00000 00000
51100 13550 04000 13560
51100 00001 01000 13550
51100 00001 03110 13565
71602 20314 20652 36662
04000 13570 61000 46000
20622 12161 73610 20123
00000 00000 00000 00000

DODO
0000
0000
0000
DODO
7404
0000

0000
0000
ODDO
0000
0000
0000
ODDO

DODO
0000
0000
0000
0000
4613
aooo

32323 23232 22150 00337
DODOO DODOO DODOO 50121

00000 00000 00000 oooon

00052~00000 00000 00000 00002

13443 03040 00060 67402
00000 00000 00000 OD021
00000 00000 4DOOO 00000

0321D 13476 37224 48000
61600 13456 50100 00021
20302 37443 03040 10710
50100 00020 43770 20106
50100 00017 4377D 20106
53550 37113 D3210 13507
03040 10710 36~34 46000
20106 15117 63310 46000
11771 12771+ D3345 13517
50100 00021 63510 10577
or.ODD 13514 61000 46000
50100 OOD15 lt3752 20130
11771 76140 12771 46000
501DO 00015 73110 37431
6160D 13456 04000 11052
51100 00001 03110 1355~
r110D 00130 20160 46000
20652 01000 13552 46000
71602 20314 0400D 13563
53160 20173 03310 13571
71603 24616 12661 20651
03210 13577 20151 13116
71603 24616 12661 2D651

--";"" ,......
N

°'

°' 0
w
0
VI

°' 0
0
C')

XJP OUHP

p 00 000227 ~o 061000 np JOOOOO 'lCCllJ>= ~r.c~ >= 01JG OOCO 0700 0000 0320
RAS 00 01S400 Al 000004 81 OOJ~01 'l".CA1>= ?.000 COJO OOCU QJuJ 0017 SC<q1>= 0000 1JGO OJOO 0000 0000
FLS 00 06100G A2 000005 82 0~0000 'lC(A~>= OGOO OGJO OJOO 0000 JOOG src~?): oono OJOO OOGJ 0000 tOOO
PSO oo 060000 ~3 000000 n1 o~oooo "~(A3)= QGOO OOJO 0000 0000 0000 c;rcnJ)= oooc JQOO QOGO JOOO 0000
RAL 00 2S7000 A4 000000 ~4 000001 SC(/14)= 0000 OOJO 0000 Q~OO ococ ~ccn4): oc~o JJJO 0000 0000 CODD
FLL OD 0200DO AS 00012~ ~5 000111 SC(A5>= 00~6 0452 0000 0000 032S sr.c~S>= OOOJ :ooo orioo 0000 C312
NEA 00 015020 ~6 OC0120 86 000000 SC<A6)= 0211 1600 0000 JOOO 0000 ~~(~6>= OO~G JGOO 0000 0000 0000
EEA oo 010460 111 000000 ~7 oc~ooo sr.CA7>= 0000 0000 QOOO 0000 0000 sr.cn7)= oocc uOOO 0000 0000 cooo

XO 7700 0000 0000 0000 0000 "~(X~>= ~000 OQJO 0000 GOOD 0000 LCCYO>= co~c JQ&~ OOOJ JOOO cooo
X1 0000 0000 ooao 0011 6174 sr.rx1>= Lr.CX1> =
X2 0000 0000 OOOJ 0000 0000 ~C(X2J= ocoo 0000 oooc OJOO ooac LCCX2>= tlJOO J1CO aacJ 0000 cooa
X3 7117 7777 7777 7777 7775 c;r.onJ= LrCX3>=
X4 7777 7777 7777 7777 7774 SC<X4>= Lr(X4)=
XS OOOC 0000 COOO 0000 OOOG sr.cx~>= 0000 ~OJO QOOG 0000 0000 Lr-<XSJ= OOOG ~OJO oao1 0000 0000
X6 0211 1600 COJJ 0000 0000 SC(X~): 0000 OOOC COCC OJOO OGOO LCCX6): OOOG 100U uJOO 0000 LOOO
X7 0000 0000 cooo oooc 0000 ~~cx1>= outG ooJo aaoo co~o 0000 Lrrv?>= 0000 cooc u100 ooco coco

SC 000000 OOOOOJOOOOCOOOJOOQO~ ooon.ooocoaoooooooooo 2405152000uLCU000001 C211160GOGOJOCCOD001
SC 000004 20GGOOGOOOOOOOOOG017 OuOOOOOOOOQOOOOCOOOO 232400000rcoooooron2 01032COCOC00~0000017 p 0

SC 0001110 OOOOGOOOuOOOuCOOOCOO ~OOOOOGOJGQOOOOOC010 O~OOOGOOOCGOC07266JO occccaooooaoJOOQ3600 H
SC 000014 OOGJO]OOGOOOCOOOOOGO OO~OOO~OOOJCOOOJOOJu ocooor:aaoocQ00~11~24 ono203JOQOOOOJ013624
SC 000020 OOOOOOOOOOOOOGOU3034 00621000JOOOOC634Q~1 ooooooooouaouoooooot 400000004000000052~6 X1 H SA
SC OOU024 O('OQOOJOOOOOOOQOOOOO ooncocooouooouocoooo uOCOOOOCOODOUOG04452 ~06210uJGOOuC0634001
SC 000030 00000000000000000001 oooaocoooooooco~oooa ooooGcooouooocoooooo 01oo~coooooaaooooooo A
SC 000034 OOOGOJOOOOOO~OOOOOOO 031720312~2700000000 OOOOOOOOOCJOOOOOGJOO OOOOOOOJOOCuOOOOJCOO f';OPYSH
SC 000040 GOOGOJ30000000000000 0~1720312327000000JG OOOOOOOCJCOOOOOOOOOO OOCOOOO~OOOOJOCOJCOO COPY SH
SC 000044 OGCOCQJOOOOOOOOOOOOO FOUAL TYQU 000061
SC 000064 03172031232700000003 OOGOOCOOOOOOOOOCJOOO 00000000003000~00000 0303233JOOGOUCOQJ002 COPYSH c
SC 000070 0317203123275124J5!5 205~0?1116562C52GOJO JOOOOCJOuOOOOOuOOOCO OOOO(CO~COCOOOOJGOOO r.QPYSW(TEHP,BIN,Pl
SC 000074 00000000000000000000 otaoooaoooaoooouOO~O GOOOOOOOOOOtiOOPJOOOO 5~UO~COOJJC077030165
SC 000100 240S1520000QGOQOOOOO 000~76460042010006~4 CuOOOCJ0554020GOOOCO OJOOCCOJC~GOJG000232 TEHP - 7A FIJ
SC 000104 OOOOOJOOOOOOCOOJO~OO OOOOOOQOJC40JCOOOJ~u 000&04520GD000000325 OJOOCOOOO~QO~OOOJOOO s
SC 000110 OOOCOGOOOOOOOOOOCOOO OQOQOOGOGOOOOCOG0312 000001aoaoooooooo112 OOOQG~OOJCOJOOG002S4 CJ
SC OOC 114 OOOG1JOOOOGOOOilOOOQO 00000000~00000201os4 ~OCOOJJOJ~u~OOJCTCJOO OJ000101~JGOOOOJOOOO H PH
SC 000120 0?111600~00COCOQOOOO JOOJ764600000200101~ OJOCCJ115540GOGOOJQQ GOOOCOO~JGDCOOOuDOOQ BIN - R H

SC 000124 oooooooooaooooouoooo ooocooooao4ouuocoJJO uoo~o4s~aoo0Goooo32s oJoccGa~ooJJJOOuuooo 5

SC 000130 uOOOOOOOOOOOOOOOGOOO 00000000000000000115 aoooo~1000000000~222 CQOOOCJOJJOOJDJOJQOO CM

SC 000134 00001000000000000000 OO~OOCOQJJOOOL1760J1 ~OOOOJO~QO~OSOCCOOJO COOOCJO~JJOCJDOOJOOO H 0 A

TE'4P A0IN A
5T SCCP 0

x 3
A 3T BCX A 3T

AS s J3
9) H 5A

f';CP B

$ A
5P BZ

FD> cu
AJ E!=

5
F'O) cu

El~

°' § 7600 Load Map 0
w
0
VI

°' 0
0
Q S C O P E 2 L 0 A D M A P LOADE~ VERSION l.O 02127175 17.22.'56 PAGE 2

<;TOP. 1162 VARDIMi? 143
AR"lOPM. 1171
SY<;AQG= 1205
IOFRQ. 1?24 NAMOUT= 2213
SYSE~m. 1247
c:;yP:t; 1250
CLSLNK. 1264
SYSERR. 1317 GETF"IT= 1762

NA HOUT= 2210
<;YP=l 1361
SYP=2 1366
SYP=) 1435
SYPz4 1443
<;YS2= 1516
CDD. 1554
C'ID. 1563
con. lS70
~F"N. 1S77 NAMOllT::ir 2053 2063
FECOPF. 1604 NA~OUT=• 2030
LI ~~L II"'. 1A34 NA"IOUT::ir 2204
l-1SGAO. 1A53
OAGF" IT• 1664

GETF lT=
r.FTFTT. 1735 NA~OUT= 2007
NAME. 1773

NAMOUT=
NA'-10llT. 2003 VMWIM2 142

OUTCOM=
FEOL. 2265 NA~OUT= 2141
FEOI. 2272 NA.'.IOllT= 2142
FEOXF'L. 2340 fl TOUT= 615 1007
FEOAF'M. 2346 FL TOUT= 641 644 646 652 1005

NA'40UT= 2153
FEOALS. 2353 FL TOUT= 57'5 576 577 601 773 774 1001 1003
F'EOCNV. 2366 f"LTOUT= 613
FECCHR. 2432 NA'40UT= 2222
f"EORlF. 2443 f"L TOUT= 170
f"ECiRlO. 2447 NAMOUT= 2106 2130 2151 2163 2166 2172
F'EONTL. 2454 NAMOUT= 2156

SYSAID=
SYSAID= 2467 oa.10. 414

--';-< _.

~ I §Applies only to SCOPE 2.1.

SAMPLE DECK STRUCTURES

FORTRAN SOURCE PROGRAM WITH CONTROL CARDS

Refer to the operating system reference manual for details of control cards.

16
7
8
9

~ END

_L
_L

.L
_L

I

{ FORTRAN statements

I SUBROUTINE RVIE (C,J,L)
....

1-
I-'

1-

! END
_L

.L

~ FORTRAN statements

FUNCTION RTSM (A,B) 1
L END

.L

{_ FORTRAN statements

~(PROGRAM MAIN

ri L LGO.

I
[_ FTN. I--'

Control
Cards

{_ t Account card.

/Job card
1-

·-·-

1-

f Account card follows the job card in KRONOS and should be in all KRONOS decks.

60305600 D

FORTRAN
SOURCE
PROGRAM

111-13

III-13-1

COMPILATION ONLY

7
8
9

FTN (0,EL=A)

Job card

I TS MODE COMPILATION ONLY

III-13-2

7
8
9

FTN(TS,B=O)

Job card

EL=A- All diagnostics (including
ANSI) listed on file
OUTPUT

Q - Full syntactic error
scan of program

TS - TS compilation mode is
desired, or optimizing
compilation modes are
not available

B=O - Binary object file is
not produced

60305600 G

COMPILATION AND EXECUTION

6
7
8 .L
9 L

I
.L

{_ data

/7 l 8 _L_

9
.L

L

{ FORTRAN source deck· t-

t-...

/7
8
9

{LGO.
1-1

[_FTN.
....
~

Job card
......,

~

1--

60305600 G III-13-3

FORTRAN COMPILATION WITH COMPASS ASSEMBLY AND EXECUTION

FORTRAN and COMPASS program unit source decks can be in any order. COMPASS source decks must
begin with a card containing the word IDENTb in columns 11-16 and terminate with a card containing the
word ENDb in columns 11-14 (b denotes a blank). Columns I-IO of the IDENT and END cards must be
blank.

I m-13-4

/1
8
9

l
data

1

COMPASS source deck

FORTRAN source deck

l
{LGO.

L FTN(L,EL=A)

EV103,T6000,CM55000, EC100.

l
l

- Source program and
short reference map
on file OUTPUT

EL=A- All diagnostics (including
ANSI) listed on file
OUTPUT

60305600 G

COMPILE AND EXECUTE WITH FORTRAN SUBROUTINE AND COMPASS
SUBPROGRAM

60305600 G

7
8
9

6
7 .
8
9

data

END

ENTRY A1 ·

IDENT SUB

SUBROUTINE S1 (P1 ,P2)

LGO (,OUTPUT)

FTN.

PROGRAM DONE (INPUT,TAPE2f

DMW13,T200,CM55000,EC1000.

Data will be written
to OUTPUT rather
than TAPE2.

m-13-5 I

COMPILE AND PRODUCE BINARY CARDS

I III-13-6

6
7
8
9

7
8
9

source deck

PROGRAM BOB(INPUT,OUTPUT,TAPE1)

FTN (B=PUNCHB,OPT=2)

CBSP,T600,CM70000,EC1000,P2.

OPT=2 specifies
full optimization

60305600 G

LOAD AND EXECUTE BINARY PROGRAM

/5
7
8
9

I; l
]_

I; 1
1

data

...

/7 1 8
9 J

/7 l 8
9 I]

1

'(binary deck

/7
8
9

I INPUT. 1
r

I MAP(OFF) l
REQUEST FILE. l

MARGO,T2000,CM 15000,EC100,P7.

L.._,_.

L.._,_.

._____,

60305600 G 111-13-7 I

COMPILE AND EXECUTE WITH RELOCATABLE BINARY DECK

6
7
8
9

1
_L

~

_L
_L

J
data

I-

1
I-

7 I-

8 1-._>-
9 /7

8
9 J

_L
I

f_ binary deck

..._ 7
8
9

1
L

/
/

I
source deck

{_
.,

PROGRAM ALFRED(INPUT,OUTPUT,TAPE1 ,TAPE5,T APE6)

/7
8
9

L EXECUTE.

[_ LOAD(LGO)

=t: LOAD(INPUT)

FTN. l
REQUEST TAPE 1. .._

EACF24,T770,CM55000,EC400._

L...-

L...-

I II 1-13-8 60305600 G

COMPILE ONCE AND EXECUTE WITH DIFFERENT DATA DECKS

7
8
9

60305600 G

6
7
8
9

7
8
9

7
8
9

data #2

data #1

PROGRAM SUBS (INPUT,OUTPU"f)

LGO,,TAPE2.

LGO,,TAPE1.

FTN.

KSCED,T500,CM60000, EC500.

Output will be on
two separate files;
data #1 will be on
TAPE1, data #2
on TAPE2.

IIl-13-9

PREPARATION OF OVERLAYS

Primary Overlay
(1,0)

Source Deck

Main Overlay
(0,0)

Source Deck

I III-13-10

6 l
7 L

/
S LL

~Data l 7 l
8 (END Secondary Overlay
9 1/- J_ (1, 1)

~
~ PROGRAM MLT) Source Deck

OVERLAY(FRANK, 1, 1)

r

END l ~

(CALL OVERLAY (5HFRANK,1,1,0)

/
L

L
/

PROGRAM ROY

OVERLAY(FRANK, 1,0) I
END

L.-- 'l: / SUBROUTINE GROUCH(X)

I (END

{ CALL OVERLAY(5HFRANK,1,0,0) ..._

) L(CALL GROUCH(40,0)
(
) £

/ 1----1 /

{ PROGRAM LEO(INPUT,OUTPUT,TAPE1)1
I-

OVERLAY(FRANK,0,0) l 1--
7 l 8
9 FRANK. l

{NOGO.

1.....-.1 (LOAD(LGO)

~ (FTN.
II"

I---

Job Card ,__

r---'

Call to
Prim ary Overlay

RANK 1,0 F

60305600 G

COMPILATION AND 2 EXECUTIONS WITH OVERLAYS

6 I 7
8 f

9 L
L

L
/

L

L(source deck

(OVER LAY(CH,0,0)
lo-"

/7
lo-"

I-.....
8
9 ~

CH. (ABSOLUTE OVERLAY) c
x. (RELOCATABLE) l

FTN(B=X)

JOBTWO ,T100 ,CM50000.

L....-

L.-......1

~

60305600 G III-13-11 I

COMPILATION MODES AND OPTIMIZATION 111-14

FORTRAN Extended provides several alternative modes for compilation. Their characteristics, together with
the FTN control card parameter required to activate them, are as follows:

Q

TS

OPT=O

OPT=l

OPT=2

D

uo

Fastest compilation; compiler performs full syntactic scan of source code, but produces
no object code. Minimum field length required for compilation approximates that of OPT=O.
OPT=O, OPT=l, and OPT=2 are ignored if specified. Expedient for finding errors in a pro­
gram before attempting to execute it.

Very fast, one-pass compilation. Little optimization of object code; execution time approx­
imates that of OPT=O. Minimum field lengtht for compilation is 40000l or, 35000§. I
Expedient for a program which is recompiled before each execution, unless execution time
is over twice as large as compilation time. For more information regarding TS mode, see
section III-15.

Fast, two-pass compilation; little optimization of object code. Most programs can be com­
piled in the minimum field length of 46000+ or 43000§.

Two-pass compilation; moderate optimization of object code. Most program5 can be com­
piled in the minimum field length of 46000+ or 43000 §. Expedient for programs which
are recompiled before each execution but require excessive execution time in TS mode.

Relatively slow, two-pass compilation; extensive optimization of object code; fastest execution ..
Minimum field length required for compilation is 54000:1: or 51000 §. Programs in which the
longest program unit consists of less than about 600 statements can be compiled in a field
length of 60000; above that, field length required for compilation is proportional to the
number of executable statements in, and the complexity of, the longest program unit. This
optimization level is expedient for programs whose code is executed many times per com­
pilation; it should not be used for undebugged programs since code redistribution in opti­
mization renders debugging difficult if the executing program terminates abnormally.

Activates FORTRAN Extended debugging facility (see section 1-13). Minimum field length
required for compilation is 61000+ or 56000§. Automatically activates OPT=O; OPT=l
and OPT=2 are ignored if specified. Necessary for programs wherein execution-time debugging
is desired.

Provides additional potentially unsafe object code optimization when both the OPT=2 and I
UO options are specified. Prefetches indexed array references in small loops unconditionally
and preserves the values in certain B registers across basic external function calls.

t Field lengths are given in octal.
fApplies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2.1.

60305600 G 111-14-1

I

OBJECT CODE OPTIMIZATION

OPT=O

In the OPT=O compilation mode, compile time evaluations are made of constant subexpressions, redundant
instructions and expressions within a statement are eliminated, and PERT critical path scheduling is done to
utilize the multiple functional units efficiently.

OPT=l

In the OPT=l compilation mode, the following optimizations are effected in addition to those in OPT=O:

I. Redundant instructions and expressions within a sequence of statements are eliminated.

2. Subscript calculations are simplified, and values of simple integer variables are stored in machine
registers throughout loop execution, for innermost loops satisfying all of the following conditions:

OPT=2

No entries other than by normal entry at the beginning of the loop.

No exits other than by normal termination at the end of the loop.

No external references (user function references or subroutine calls; input/output, STOP, or
PAUSE statements) in the loop.

No IF or GOTO statement in the loop branching backward to a labeled statement appearing
previously in the loop.

In the OPT=2 compilation mode, the compiler collects. information about the program unit as a whole and
the following optimizations are attempted in addition to those in both OPT=O and OPT= I :

I. Values of simple variables are not retained when they are not referenced by succeeding statements.

2. Invariant (loop-independent) subexpressions are evaluated prior to entering the loops containing them.

3. For all loops, the evaluation of subscript expressions containing a recursively defined integer variable
(such as I=I+l) is reduced from multiplications to additions.

4.

5.

6.

IIl-14-2

Array addresses, values of simple variables in central memory, and subscript expressions are stored
in machine registers throughout loop execution for all loops.

In all loops and in complicated sections of straight-line code, array references and subscript values
are stored in machine registers.

In small loops, indexed array references are prefetched after safety checks are made to ensure
that the base address of the array and its increment are reasonable and should not cause an out­
of-bounds reference (mode I error).

60305600 G

uo

In unsafe optimization mode, the optimizations listed below are made, in addition to the optimizations made
under OPT=2, since OPT=2 must also be selected. If OPT=2 is omitted, UO is not invoked.

1. In small loops, indexed array references are prefetched unconditionally without any safety checks.

Example:

REAL B(l00,100)
DO 20 I = 1,100,10

20 S = S + B(J ,I)

When the compiler prefetches the reference to B, the last reference to B in the loop is B(J ,110)
which might cause an out-of-bounds error at execution time.

2. When a math library function is referenced, the compiler assumes that the contents of certain
B registers are preserved for use following the function processing.

Example:

REAL A(lO),B(IO)
DO 10 I= l,N

IO B(J) = EXP(A(I))

The compiler assigns I and N to B registers during the loop.

In a loop, the registers available for assignment are determined by the presence or absence of external ref­
erences. External references are user functions and subroutines, calls, I/O statements, and FORTRAN math
library functions (SIN, COS, SORT, EXP, and so on).

When UO is not selected, the compiler assumes that any external reference modifies all the registers; therefore
it does not expect any register contents to be preserved across function calls.

If a math library other than the FORTRAN Common Library is used at an installation, the B register portion
of the UO option can be deactivated by reinstallation of the compiler.

60305600 G III-14-3 e

SOURCE <:ODE OPTIMIZATION

To achieve maximum object code optimization regardless of optimization level, the user should observe the
following practices for programming source code:

1. Since arrays are stored in column major order, DO loops (including implied DO loops in input/
output lists) which manipulate multi-dimensional arrays should be nested so that the range of the
DO loop indexing over the first subscript is executed first.

Example:

DIMENSION A(20,30,40), B(20,30,40)

DO 10 K = 1, 40
DO 10 J = 1, 30
DO 10 I = 1, 20

10 A(I,J ,K) = B(I,J ,K)

2. The number of different variable names in subscript expressions should be minimized.

Example:

X = A(I+ 1,1-1) + A(I-1,I+ 1)

is more efficient than:

IPl = l+l
IMl = 1-1
X = A(IPl ,IMl) + A(IMl ,!Pl)

3. The use of EQUIVALENCE statements should be avoided, especially those including simple variables
and arrays in the same equivalence class.

4. Common blocks should not be used as a scratch storage area for simple variables.

5. Program logic should be kept simple and straightforward; program unit length should be less than
about 600 executable statements.

6. The use of dummy arguments (formal parameters) and variable dimensions should be avoided
if possible; common or local variables should be used instead.

7. The first n-1 dimensions of an n-dimensional array should be either a power of 2 or the sum or
difference of two powers of 2.

• 111-14-4 60305600 G

8. Common expressions should be grouped so that they can be recognized for optimization.

Example:

AA= X*A/Y
BB = X*B/Y

is less efficient than

AA= A*(X/Y)
BB = B*(X/Y)

Likewise, invariant and constant expressions should be grouped appropriately.

Example:

DO 10 I = 1, SO
10 B(I) = I. + A(I) + X

is less efficient than

DO 10 I= 1, SO
10 B(I) = (1. + X) + A(I)

Example:

X = 1024. * B * 3.141S9

is less efficient than

X = (1024. * 3.141S9) * B

9. Multiple references to a basic external function within a statement should be algebraically reduced
to a single reference.

6030S600 G IIl-14-5

TIME· SHARING FORTRAN 111-15

When the TS option is specified on the control card, FTN operates in Time-sharing (TS) mode. Compilation is
one-pass; therefore, no overlay reloading is required to compile multiple program units, and the number of disk
accesses is reduced. The minimum compilation field length is 40000 octal. The CPU time spent in compilation
is 30% to 75% less than that for optimizing mode (OPT=O, OPT=l, or OPT=2). The object code is not highly
optimized and thus executes approximately at the rate of that produced by OPT=O.

Time-sharing mode is permissive in that it accepts some keyword misspellings and punctuation errors. When
this occurs, a warning level diagnostic is issued, since the program may not compile under two-pass mode.

Misspelled keywords will be recognized if the string length matches the keyword length, the first four characters
match, and the context is unambiguous.

For example,

COMMUN A(2)

will be recognized as a COMMON declaration and a warning diagnostic will be issued. However,

COMMUNC(I) = 2+ I

will be correctly interpreted as a replacement statement or a statement function definition, depending on
whether or not COMMUNC was previously dimensioned.

Some punctuation errors which do not inhibit the compiler from correctly interpreting a statement will be
accepted.

For example, in

DO 10, I = 1 , 10

the first comma will be diagnosed and ignored.

SOURCE LISTING FORMAT

In TS mode, certain listing differences occur. The main source listing differences are as follows:

Source line numbers are not printed on every fifth line as in other modes. Instead, a code address
appears before each line.

When the OL option is selected, generated object code is listed interspersed with the source code. Only
the mnemonic instruction is listed, not the octal equivalent.

60305600 G III-15-1

Diagnostics are listed on the output file immediately after the statement which caused them.

For a description of the cross reference map in TS mode, see section III-I. For a description of the compile­
time diagnostics in TS mode, see section III-2.

SEQUENCED LINE FORMAT

When TS mode is selected for program compilation, a FORTRAN Extended program may be coded in sequenced
line format as well as in the standard ·format described in section 1-1. If the source code is in sequenced line
format, the option SEQ should be specified on the FTN control card.

The format for sequenced line coding is as follows:

seqnum d sl stat

seqnum

d

Sequence number consisting of 1-5 digits, assigned in ascending order

blank

+

Any other
Character

First line of a statement

Continuation line

Comment line

sl Optional statement label consisting of 1-5 digits; must be followed by a blank

stat FORTRAN source statement; may begin anywhere after d and continue through column
80

Example:

00100 PROGRAM XYZ (OUTPUT)
0011 OC COMPUTE AREA
00120 DIMENSION A(IOO), B(IOO),
00130+ C(200)
00140 IO CALL SUB(A,B,C,100)
00150 STOP
00160 END

I III-15-2 60305600 G

FORTRAN - SORT/MERGE INTERFACE 111-16

FORTRAN Extended provides the capability for processing data records under the Sort/Merge system from
within a FORTRAN program. The FORTRAN user of this feature should be familiar with the autonomous
functioning of the Sort/Merge system as described in the Sort/Merge Reference Manual. A job containing a
FORTRAN program interfacing with Sort/Merge must contain an RFL card (SCOPE 3.4 and SCOPE 2.1) or
a REDUCE(-) card (KRONOS 2.1 and NOS 1.0) to reserve field length and a LIBRARY(COBOL) or a LDSET I
(LIB=COBOL) card before the LGO card.

The FORTRAN subroutines interfacing with Sort/Merge are listed below under the corresponding Sort/Merge
macro or directive. The series of calls to Sort/Merge subroutines must begin with a call to SMSORT,
SMSORTB, SMSORTP, or SMMERGE.

SORT

CALL SMSORT (mrl,ba)

mrl Maximum length in characters of records to be sorted.

ba§ LCM buffer area in decimal for intermediate scratch files constructed by Sort/Merge.

SMSORT calls for a sort on rotating mass storage.

SORTS

CALL SMSORTB (mro+

mrl Maximum length in characters of records to be sorted.

SMSORTB calls for a balanced tape sort. SMTAPE (see below) must also be called.

SORTP

CALL SMSORTP (mrl)f

mrl Maximum length in characters of records to be sorted.

SMSORTP calls for a polyphase tape sort. SMT APE must also be called.

:j: Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2 .1 .

60305600 G III-16-1

I

I

MERGE

CALL SMMERGE (mrl,ba)

mrl Maximum length in characters of records to be merged.

ba § LCM buffer area in decimal for intermediate scratch files constructed by Sort/Merge.

I SMMERGE calls for merge-only processing.

I

FILE

CALL SMFI LE (dis,i/o,lfn,action)

dis File disposition:

-=FSORT-=F
-=FMERGE-=F
-=FOUTPUT-=F

i/o Mode of file input/output:

-=FFORMATTED-=F }
-=FCODED-=F
-=FBINARY-=F
0 :j:

lfn Logical file name:

u
nLfilename
fit :j:

File to be sorted.
File to be merged.
File to receive output.

File accessed with formatted input/output.

File accessed with unformatted input/output.
File accessed with interfacing Record Manager subroutines.

Logical unit number, 1 to 99.
File name left justified with zero fill.
When i/o is specified as 0, an array containing the file information
table.

action File disposition following sort or merge:

-=F REWIND-=F
-=FUNLOAD-=F
-=FNONE-=F (default)

SMFILE must be called for each file to be sorted or merged, and once for the file to receive the output
(unless SMOWN is called). If a file is to be accessed with formatted or unformatted FORTRAN input/output,
its name must be declared in the PROGRAM statement. +If a file is to be accessed with Record Manager
subroutines, OPENM should be called prior to SMFILE. Files should be properly positioned before they are
sorted or merged.

:j: Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2.1.

III-16-2 60305600 G

KEY

CALL SMKEY (charpos,bitpos,nchar,nbits,code,colseq,order)

charpos

bitpos

nchar

nbits

code

colseq

Integer specifying position of first character of sort key, considering the first character as
position number I.

Integer (usually 1) specifying position of first bit of sort key in character (or 6-bit byte)
specified by charpos, ~onsidering the first bit as position number 1.

Integer specifying number of characters or complete 6-bit byte in sort key.

Integer (usually 0) specifying number of bits in sort key in excess of those indicated by nchar.

Coding identifier:

-=FDISPLAY-=F
-=FFLOAT-=F
-=FINTEGER-=F
-=FLOGICAL=F
=FSIGN-=F

Internal display code.
Floating point data.
Signed integer data.
Unsigned integer data (default).
Numeric data in display code; sign represented by overpunch on
low order character of sort key.

Collating sequence (applicable only if code is specified as -=FDISPLAY-=F):

-=FASCII6-=F

-=FCOBOL6-=F

-=FDISPLAY-=F
-=FINTBCD-=F
seq name

6-bit ASCII collating sequence (default for installations using
ASCII 64-character set).
6-bit COBOL collating sequence (default for installations using
ASCII or CDC 63-character set or CDC 64-character set).
Internal display collating sequence.
Internal BCD collating sequence.
Name of a collating sequence specified in a call to SMSEQ (see
below).

order Order of sort processing:

Ascending (default).
Descending.

One SMKEY call is required to describe each sort key to be used. The first SMKEY call indicates the
major key; subsequent calls indicate additional or minor keys in the order encountered.

SEQUENCE

CALL SMSEO (seqname,seqspec)

seqname Name of user supplied collating sequence.

seq spec Name of integer array, terminated with a negative number, containing entire sequence of
characters in order of collation.

60305600 G III-16-3

I

I SMSEQ specifies a user's collating sequence, or redefines the default to be a user collating sequence or a
standard collating sequence other than the system default.

The characters in seqspec can be specified as their octal equivalents in the form ijB or as Hollerith constants
in the form lRx. Characters to collate equal are specified in a call to SMEQU (see below). Unspecified char­
acters collate high (following the last character specified in seqspec) and equal.

EQUATE

CALL SMEQU (colseq,equspec)

colseq Collating sequence determined by a previous call to SMKEY (and perhaps SMSEQ).

equspec Name of an integer array, terminated with a negative number, containing characters to collate
equal to the last character, which must be included in colseq.

I SMEQU specifies that two or more characters in the collating sequence are equal for comparison purposes.

OPTIONS

CALL SMOPT (optlist)

optlist Non-ordered series of options as follows:

-::/=VERIFY-:/= Check output for correct sequencing (important for insertions
during output and merge input).

-:/=RETAIN-::/=

-::/=VOLDUMP-::/=:j:

Retain records with identical sort keys in order of appearance
on input file.

-::/=DUMP-::/=:j:
-::/=DUMP-::/=,n:j:
-::/=NODUMP-::/=:j:
=FNODAY-::/=:j:
-::/=ORDER-::/=,mo+
-::/=ORDER*-::/=,mo :j:

Checkpoint dump at end-of-volume.
Checkpoint dump after 50,000 records.
Checkpoint dump after (decimal) n records.
No checkpoint dumps.
Suppress dayfile messages.

Merge order = mo l (default: mo = 5).
Merge order ~ mo ~

I SMOPT specifies special record handling options.

§ If SMOPT is called, it must be done immediately after the call to SMSORT or SMMERGE.

I t Applies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.
§Applies only to SCOPE 2.1.

III-164 60305600 G

TAPE

CALL SMTAPE (taplist):j:

taplist List of logical file names, each in the form nLfilename, to be used in balanced or polyphase
tape merge.

The file names in taplist must not be declared in the PROGRAM statement. A balanced merge requires a mini­
mum of four tapes; a polyphase merge, a minimum of three tapes.

OWN CODE

CALL SMOWN (exitnum1 ,subname1, ••• ,exitnumn,subnamen)

exitnum Number of the owncode exit.

subname Name of the user-supplied owncode exit subroutine

Each subname specified in a call to SMOWN must appear in an EXTERNAL statement in the calling program.
For each subname specified, the user must supply a subroutine which exits through a call to system subroutine
SMRTN, in accordance with the owncode exit number and return address as follows:

exitnum entry

1 or 3 SUBROUTINE subname (a,rl)

2 or 4 SUBROUTINE subname

5 SUBROUTINE subname (a1,rl 1 ,a2 ,rl2)

retaddr Return address:

0 Normal return address
I Normal return address + 1
2 Normal return address + 2
3 Normal return address + 3

exit

CALL SMRTN (retaddr), for retaddr = 1 or 3
CALL SMRTN (retaddr,b,rl), for retaddr = 0 or 2

CALL SMRTN (retaddr), for retaddr = 0
CALL SMRTN (retaddr,b,rl), for retaddr = 1

CALL SMRTN (b1,rl 1,b2 ,rl2), for retaddr = 0
CALL SMRTN (b1 ,rl 1), for retaddr = 1

b
a t f Integer array of length rl/l 0 in which Sort/Merge stores a record when sub name is called

rl Record length in characters

No parameters are needed on SUBROUTINE subname for exit number I if there are no input files.

tApplies only to NOS 1.0, KRONOS 2.1, and SCOPE 3.4.

60305600 G 111-16-5

END

CALL SMEND

Required as the last in a series of Sort/Merge interfacing subroutines, SMEND initiates execution of the sort or
merge.

I III-16-6 60305600 G

ST AN DARO CHARACTER SETS A

CONTROL DATA operating systems offer the following variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

These character sets are listed in table A-1. The set in use at a particular installation was specified when the
operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026
or in 029 mode (regardless of the character set in use). The user, however, may specify the alternate mode by
a 26 or 29 punched in columns 79 and 80 of the job card or any 7 /8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS and KRONOS, the alternate mode can be specified also by a 26 or 29 punched in columns 79
and 80 of any 6/7 /9 card, as described above for a 7 /8/9 card. In addition, 026 mode can be specified by a
card with 5/7 /9 multipunched in column ·l, and 029 mode can be specified by a card with 5/7 /9 multipunched
in column 1 and a 9 punched in column 2.

When the 63-character set is used, the display code character 008 under A or R FORMAT conversion will be
converted to a space, display code ss8 for ENCODE and DECODE as well as FORMATTED 1/0 statement.

No conversions occur with the A or R FORMAT element when the 64-character set is used.

60305600 G A-1 e

~
N

°' 0
VJ
0
VI

°' 0
0
("")

STANDARD CHARACTER SETS

ASCII Hollerith External ASCII ASCII Hollerith External ASCII

CDC Graphic Display Punch BCD Punch ASCII CDC Graphic Display Punch BCD Punch ASCII

Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code

: t oat 8-2 00 8-2 3A 6 6 41 6 06 6 36

A A 01 12-1 61 12-1 41 7 7 42 7 07 7 37

B B 02 12-2 62 12-2 42 8 8 43 8 10 8 38

c c 03 12-3 63 12-3 43 9 9 44 9 11 9 39

D D 04 12-4 64 12-4 44 + + 45 12 60 12-8-6 2B

E E 05 12-5 65 12-5 45 - - 46 11 40 11 2D

F F 06 12-6 66 12-6 46 * * 47 11-8-4 54 11-8-4 2A

G G 07 12-7 67 12-7 47 I I 50 0-1 21 0-1 2F

H H 10 12-8 70 12-8 48 ((51 0-8-4 34 12-8-5 28

I I 11 12·9 71 12·9 49)) 52 12-8-4 74 11-8-5 29

J J 12 11-1 41 11·1 4A $ $ 53 11-8-3 53 11-8-3 24

K K 13 11-2 42 11-2 4B = = 54 8-3 13 8-6 3D

L L 14 11-3 43 11-3 4C blank blank 55 no punch 20 no punch 20

M M 15 11-4 44 11-4 4D , (comma) , (comma) 56 0-8-3 33 0-8-3 2C

N N 16 11 ·5 45 11-5 4E . (period) . (period) 57 12-8-3 73 12-8-3 2E

0 0 17 11-6 46 11-6 4F - # 60 0-8-6 36 8-3 23
p p 20 11-7 47 11-7 50 [(61 8-7 17 12-8-2 58

Q Cl 21 11-8 50 11-8 51 J J 62 0-8-2 32 11-8-2 5D

R R 22 11-9 51 11-9 52 %tt % 63 8-6 16 0-8-4 25

s s 23 0-2 22 0-2 53 * 11 (quote) 64 8-4 14 8-7 22

T T 24 0-3 23 0-3 54 ~ (underline) 65 0-8-5 35 0-8-5 5F
-

u u 25 0-4 24 0-4 55 v ! 66 11-0 or 52 12-8-7 or 21

v v 26 0-5 25 0-5 56 11-8-2ttt 11-0ttt

w w 27 0-6 26 0-6 57 f\ & 67 0-8-7 37 12 26

x x 30 0-7 27 0-7 58 t ' (apostrophe) 70 11-8-5 55 8-5 27

y y 31 0-8 30 0-8 59 i ? 71 11-8-6 56 0-8-7 3F

z z 32 0-9 31 0-9 5A < < 72 12-0 or 72 12-8-4 or 3C

0 0 33 0 12 0 30 12-8-2ttt 12-0ttt

1 1 34 1 01 1 31 > > 73 11-8-7 57 0-8-6 3E

2 2 35 2 02 2 32 ::; @ 74 8-5 15 8-4 40

3 3 36 3 03 3 33 ~ \ 75 12-8-5 75 0-8-2 5C

4 4 37 4 04 4 34
-,

....--..(circumflex) 76 12-8-6 76 11-8-7 5E

5 5 40 5 05 5 35 ; (semicolon) ; (semicolon) 77 12-8-7 77 11-8-6 3B

tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line mark is converted to

external BCD 1632.
tt In installations using the CDC 63-graphic set, display code 00 has no associated graphic or Hollerith code; display code 63 is the colon (8-2 punch).

tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

HEXADECIMAL-OCTAL CONVERSION TABLE

~
First Hexadecimal Digit

0 1 2 3 4 5 6 7 8 9 A B c D E F

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360

Hexadecimal

Digit 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361

2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 347 367

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377

Octal 000 - 040 - 100- 140- 200- 240 - 300- 340 -

037 077 137 177 237 277 337 377

60305600 B A-3

Abort
dump III-12-3
recovery 1-8-13

Actual arguments 1-7-7, 1-7-9, 1-7-12
AREA debug statement 1-13-26
Arguments

actual 1-7-7, 1-7-9, I-7-12
dummy or formal 1-7-7, 1-7-9, 1-7-12
using 1-7-12

Arithmetic
assignment 1-4-1
complex 111-4-8
double precision 111-4-7
IF statement 1-5-6
integer 111-4-7
logical and masking 111-4-8
mode errors 111-4-8
operators 1-3-1
statement function 1-7-10

Arrays
dimensions 1-6-7, 1-6-10, I-7-14, II-t-26
element location 1-2-16, 1-10-3
EQUIVALENCE 1-6-14
NAMELIST 1-9-19
names 1-7-7
structure 1-2-15
subscripts I-2-14
transmission 1-6-21, I-10-2

type statements I-6-1
ARRAYS debug statement I-13-4
ASSIGN statement I-5-3

assigned GO TO I-5-4
Assignment statements

arithmetic I-4-1
logical I-4-5
masking I-4-5
multiple I-4-6

Asterisk
comment I-1-3
Hollerith I-10-27
multiplication I-3-1

60305600 G

INDEX

B suffix for octal I-2-5
Binary

card punch I-9-2, 111-13-5
I/O, see unformatted
Program execution 111-13-6

BACKSPACE I-9-12, 111-5-8
Basic external function I-7-9, I-8-6
Blank

line I-1-3
common I-6-8

Block
common I-6-6
data subprogram I-7-5

Boolean, see masking
Buffer I-7-4

input/output 111-5-10
IN statement I-9-13, III-5-10
OUT statement I-9-14, 111-5-11
PROGRAM statement I-7-2

C comment line I-1-3
Cf listing control 111-12-2
C$ debug statement I-13-1
CALL statement I-7-16
Call-by-Name 111-8-1, III-10-1
Call-by-Value III-8-1, III-I 0-2
Calling

overlay I-12-5
subroutine subprogram I-7-16
tracing subroutine calls I-13-6

CALLS debug statement I-5-13
Carriage control I-9-2, I-10-32
Character set I-1-1, A-1
CHECK III-6-6
CHEKPTX I-8-11
CLOSEM III-6-4
CLOSMS I-8-17
Coding column significance I-1-2
Comma I-10-7
Comment line 1-1-3

Index-I •

Common
statement 1-6-6
and equivalence 1-6-10, 1-6-13
using common 1-7-14
overlay communication 1-12-3

COMP ASS assembler
calling sequence III-8-1, III-10-5
program entry points 111-10-5
subprogram 11-10-2

Compilation modes III-1-1
listings III-12-1
modes III-1-1

Compiler
call 1-11-1
diagnostics III-2-1
supplied functions 1-8-1

Complex
arithmetic III-4-7
constants 1-2-4
type statement 1-6-2
variables 1-2-11

Computed GO TO 1-5-2
CONNEC 1-8-21, III-11-1
Constants

complex 1-2-4, 1-4-4
double precision 1-2-3, 1-4-3
Hollerith 1-2-6, 11-1-37
integer 1-2-1, 1-4-2
logical 1-2-8
octal 1-2-5, 11-1-37
real 1-2-2, 1-4-3

Continuation 1-1-2
Control

carriage 1-9-1, 1-10-32
column (Tn) 1-10-34
listing III-12-2
statements 1-5-1

Control card
FILE III-5-6
OVERLAY 1-12-4
parameters for FTN 1-11-1

Conversion
data on input/output 1-10-6
mixed mode 1-3-5
octal to Hexadecimal A-3
specifications for input/output 1-10-7

Cross reference map III-1-1

• Index-2

D double precision constant 1-2-3
Data conversion on input/output 1-10-6
DATE 1-8-9
Dayfile messages 1-8-10
DEBUG statement 1-13-24
Debug

deck structure 1-13-19
printing output 1-13-30
statements 1-13-1
STRACE entry point 1-13-30

Debugging aids 1-8-15, 1-13-1
ERRSET 1-8-16, III-3-6
using reference map III-1-16

Deck structure
program III-13-1
debug 1-13-19

Declarations 1-6-1
DECODE statement 1-9-24, 11-1-19
Diagnostics 11-2-1

compilation time III-2-1
execution time III-2-31
mass storage III-7-13
record manager III-6-9

DIMENSION
statement 1-6-5
adjustable 1-7-14

DISCON 1-8-21, III-11-2
DISPLA 1-8-10
Display code A-1
Division 1-3-1

by zero III-4-5
DLTE III-6-5
DO loops 1-5-8

implied in DATA list 1-6-21
implied in 1/0 list 1-10-2
nested DO loops 1-5-9
range 1-5-7
transfer 1-5-7, 1-5-10

DO statement 1-5-7
Dollar sign

comment column 1 1-1-3
multiple statement separator 1-1-2

Double precision
arithmetic III-4-7
constants 1-2-3
conversion 1-4-3
type declaration 1-6-1
variables 1-2-11

60305600 G

DUMP 1-8-15, III-12-3
Dw conversion, output and input 1-10-16, 1-10-17

scaling 1-10-24

ECS/LCM subprograms 1-8-20
LEVEL 1-6-15

ENCODE statement 1-9-21, 11-1-19
END statement 1-5-15
EOF function 1-8-19
Equals sign 1-10-35
EQUIVALENCE

statement 1-6-10
and common 1-6-13
LEVEL 1-6-15

Error codes
execution time III-2-31
mass storage III-7-11
mode error III-4-10

Error processing
by FORSYS= III-3-1
by Record Manager III-6-9
SYSTEM or SYSTEMC III-3-1

Errors, arithmetic mode III-4-8
ERRSET 1-8-16, III-3-6
Evaluation of expressions 1-3-2, 1-3-8
Execution time

diagnostics IIl-2-31
file name handling III-3-9
FORMAT 1-10-38
input/output IIl-5-1
options III-3-8

EXIT 1-8-11
Exponentiation 1-3-6
Expressions 1-3-1

arithmetic 1-3-1
logical 1-3-9
masking 1-3-13
relational 1-3-7
subscripts 1-2-14

Extended range of DO loop 1-5-8
EXTERNAL

function 1-8-6
statement 1-6-16

Ew conversion, output and input 1-10-9, 1-10-11
scaling 1-10-24

FALSE 1-2-8
File

control card III-5-6

60305600 G

definition III-5-1
labeled III-5-11
name handling III-3-8
name (TAPEu) 1-7-3
structure III-5-2

File information table (FIT)
defaults for standard 1/0 III-5-3
direct call by Record Manager III-6-1

FILExx III-6-1, III-6-10
Floating point III-4-1

indefinite and infinite results III-4-4
overflow III-4-3
underflow III-4-3

Formal argument (parameter) See Dummy
argument

FORMAT
execution time 1-10-38
repeat specification 1-10-31
slash 1-10-29
statement 1-10-5

FORSYS= III-3-1
FORTRAN compiler call 1-11-1
FTN control card 1-11-1
FUNCS debug statement 1-13-8
Function

basic external 1-7-9, 1-8-5
intrinsic 1-7-10, 1-8-1
referencing a 1-7-15
statement 1-7-10
subprogram 1-7-6
tracing a reference 1-13-8

Fw conversion, output and input 1-10-13, 1-10-14
scaling 1-10-23

GET III-6-4
GETN III-6-5
GETP III-6-7
GO TO statements 1-5-1

assigned GO TO 1-5-4
computed GO TO 1-5-2
unconditional GO TO 1-5-1

GOTOS debug statement 1-13-15
Gw conversion, input and output 1-10-15

scaling 1-10-24

H specification 1-2-6
Hashing key for direct access file III-6-8
Hexadecimal/Octal conversion A-3

lndex-3 •

Hierarchy in expressions 1-3-2
Hollerith

constant 1-2-6
data interpreted by STORES 1-13-14
format element 1-10-25
input specification 1-10-25
output specification 1-10-26

IF statements 1-5-5
standard-form logical 1-5-6
three-branch arithmetic 1-5-5
two-branch arithmetic 1-5-5
two-branch logical 1-5-7

IMPLICIT
statement 1-6-3
typing of variables 1-2-9

Implied DO in
DATA list 1-6-21, 11-1-22
1/0 list 1-10-2

Indefinite result, floating point III-4-4
Index

DO loop 1-5-8
mass storage files III-7-2
MIP files III-6-10
STINDX III-7-11

Infinite result, floating point III-4-4
Input

BUFFER IN IIl-5-10
file 1-7-3
list directed 1-9-9
NAMELIST 1-9-17
statements 1-9-7

Input/Output
BUFFER III-5-10
execution time III-5-1
lists 1-10-1, 1-10-31
statement definition 1-9-1
status checking 1-8-18

IOCHEC 1-8-19
Integer

arithmetic 1-2-1, III-4-7
constants 1-2-1
conversion 1-4-2
statement 1-6-2
variables 1-2-10

INTERCOM, terminal 1/0 III-11-1
Intrinsic functions 1-7-10, 1-8-1
lw conversion, input and output 1-10-8

• Index-4

JDATE 1-8-9
Job decks, sample III-13-1

L specification 1-2-6
LABEL 1-8-20, IIl-5-11
Labels

statement number 1-1-3
RETURNS list 1-7-7

Labeled
common 1-6-6
files IIl-5-11

LEGVAR 1-8-15
LENGTH 1-8-19
LCM, see ECS
LEVEL

statement 1-6-7, 1-6-15
OVERLAY 1-12-1

LGO 1-11-2
Library functions 1-8-1
List directed .

input data forms 1-9-10, 11-1-40
output data forms 1-9-11, 11-1-40
READ 1-9-9
WRITE 1-9-7

Listings
control III-12-1
map III-1-1

Load map III-12-7
Loader control cards

LDSET III-6-2
OVERLAY 1-12-4

LOGICAL
assignment statement 1-4-5
constants 1-2-8
file names III -3-8
and masking operations III-4-8
statement 1-6-3
unit number 1-7-3
variables 1-2-11

Looping, DO 1-5-8
Lw conversion, input and output 1-10-22

Main program 1-7-2
Map symbolic or cross reference

optimizing mode III-1-1
TS mode III-1-17

Masking
expression 1-3-13

60305600 G

assignment statement 1-4-5
Mass storage input/output III-7-1

OPENMS 1-8-16, IIl-7-9
STINDX 1-8-17, III-7-11
CLOSMS 1-8-17, IIl-7-11
READMS 1-8-17, IIl-7-10
WRITMS 1-8-17, III-7-9

Memory layout III-9-3
Messages

TS mode diagnostic III-2-14
optimizing mode diagnostic III-2-1
special compilation III-2-10
execution diagnostics III-2-30

Mixed-Mode arithmetic conversion 1-3-5
Mode

arithmetic errors 111-4-9
debug 1-13-1
optimizing III-14-1
time-sharing {TS) III-15-1

MOVLEV 1-8-20
Multiple

assignment statement 1-4-6
index processing III-6-10
statement separator $ 1-1-2

NAMELIST statement 1-9-15
READ 1-9-16
WRITE 1-9-18

Names
common block 1-6-7
file 1-7-3
PROGRAM 1-7-2
variable 1-2-9

Nesting
DO loops 1-5-8
parentheses 1-10-2

NOGO debug statement 1-13-18
Number

common block 1-6-7
formats, see constants
statement label 1-1-3

Object program execution III-13-6
Octal

constants 1-2-5
hexadecimal conversion A-3

OFF debug statement 1-13-28
OPENM III-6-4
OPENMS 1-8-16, III-7-9

60305600 G

Operands
evaluation 1-3-6
result III-4-5

Operating system interface routines 1-8-9
Operators 1-3-1
Optimization

object code III-14-2
source code III-4-4
unsafe III-14-5

Options FTN control card 1-11-1
Order, statements in program unit III-9-1
Output

BUFFER OUT III-5-11
file 1-7-3
list directed data forms 1-9-11
NAMELIST data form 1-9-18
print limit specification III-3-10
record length 1-9-2
statements 1-9-3

Overflow, arithmetic III-4-3
Overlays 1-12-1

directive 1-12-4
sample deck 1-12-7, III-13-9

Ow conversion, input and output 1-10-7, 1-10-8
Own code, COMP ASS III-I 0-1

P scale factors 1-10-22
Parameter, see argument
Parentheses, nesting 1-10-2
PAUSE statement 1-5-14
PDUMP 1-8-15
Precedence of operators 1-3-2
Print

control characters 1-9-2, 1-10-32
error frequency III-3-1
limit specification III-3-10
statement 1-9-3, 1-9-11

Procedure communication 1-7-12
passing values I-7-12
using arguments 1-7-12

Program
maps IIl-1-1
sample 11-1-1
statement 1-7-2
units 1-7-1

Punch
codes A-2
file 1-7-3
statements 1-9-4

PUT III-6-5

lndex-5 •

PUTP III-6-8

R specification I-2-6
Random

access III-7 - I
files III-5-6, III-6-1
number routines I-8-16

RANF I-8-I6
Range of DO loop I-5-8
READ statements I-9-7

formatted I-9-7
list directed I-9-9, I-9-10
NAMELIST I-9-I6
unformatted I-9-8

READEC I-8-20
READMS I-8-17
Real

constant I-2-2
conversion I-4-3
statement I-6-2
variable I-2-10

Record
definition III-5-I
I/O record length I-7-3, I-9-2
types III-5-1

Record Manager
file handling III-5-1
files/ direct handling III-6-1

Recovery I-8-I3, III-3-3
RECOVR I-8-13
Reference maps III- I -1
Register names III-8-I
Relational

evaluation I-3-8
operators I-3-7

REMARK I-8-I 0
REPLC III-6-6
RETURN statement I-5-I5
RETURNS list I-5-16, I-7-7, I-7-I6
REWIND I-9-I 2, III-5-8
REWND III-6-7
RMKDEF III-6-10
RMOPNX III-6-IO
Rw conversion, input and output I-10-2I

Sample
coding form I-1-4
COMPASS subprogram III-10-4
decks III-13-1

• lndex-6

FTN control card I-11-9
programs 11-1-1

Scale factors I-10-22
Scaling I-10-23
SECOND I-9-10
SEEKF 111-6-6
Sense

light I-8-11
switch I-8-10

Separator
slash and comma I-10-7
$ statement I-1-3

Sequential file structure III-5-2
SKIP III-6-6
Slash in FORMAT statement I-10-29, I-10-3I
SLITE I-8-10
SLITET I-8-I I
Sort/Merge interface IIl-16-I
Specification statements I-6-1
SSWTCH I-8-I I
Standard, FORTRAN ANSI v
Statement

format I-I-2
FORTRAN, see individual statement name
function I-7-10
labels or numbers I-1-3
order in program unit III-9-1
separator, multiple I-I-2

STINDX I-8-17, IIl-7-I I
STOP statement I-5-I4
STOREF 111-6-3
STORES debug statement I-13-I I
STRACE I-8-I5
Structure

debug decks I-13-19
memory III-9-3
program units III-9-I

Subprograms
block data I-7-5
function I-7 -8
subroutine I-7-6

Subroutine
calling I-7 - I 6
statement I-7-6

Subscripts I-2-I4
and arrays I-2-12
checking in debug I-I3-4

Symbolic
or cross reference map III-I-I, Ill-I-I 7
name I-2-9

Syntax xi

60305600 G

SYSTEM and SYSTEMC 1-8-15, Ill-3-1

TAPEu 1-7-3
Terminal interface III-11-1

CONNEC 1-8-21, 111-11-1
DISCON 1-8-21, 111-11-1

Texts, system 1-11-7
TIME 1-8-10
Time-Sharing (TS) mode

compilation diagnostics 111-2-18
characteristics I I 1-15-1
cross reference map 111-1-17
terminal interface III-11-1

Tn (tab) specification 1-10-34
TRACE

debug statement 1-13-16
reference 1-3-18

Traceback mode 1-13-30
TS mode 111-15-1
TRUE 1-2-8
Type of

arithmetic expressions 1-3-5
function 1-7-9, 1-8-1
masking expression 1-3-15
variable 1-2-9

Type statements
dimension information in 1-6-5
explicit 1-6-2
implicit 1-6-3

Unary operators and evaluation 1-3-3
Unconditional GO TO 1-5-1
Underflow, arithmetic III-4-3
Unformatted

READ 1-9-8
WRITE 1-9-6

UNIT 1-8-18
Unit number 1-7-3
Utility subprograms 1-8-9

V specification 1-10-35
Variable

dimensions in a subprogram 1-7-7, I-7 -14
FORMAT statements 1-10-38
name and type 1-2-9

60305600 G

Variables 1-2-9
complex 1-2-11
double precision 1-2-11
integer 1-2-10
logical 1-2-11
real 1-2-10

WEO R 111-6-7
WRITE statement 1-9-5, 1-9-6

formatted 1-9-5
list directed 1-9-7
NAMELIST 1-9-18
unformatted 1-9-6

WRITEC 1-8-20
WRITMS 1-8-17
WTMK 111-6-7

X specification 1-10-24

Zero operand III-4-5
Zw conversion, input and output 1-10-19

.AND. 1-3-9

.EQ. 1-3-7

.FALSE. 1-2-8

.GE. 1-3-7

.GT. 1-3-7

.LE. 1-3-7

.LT. 1-3-7

.NE. 1-3-7

.NOT. 1-3-9

.OR. 1-3-9

.TRUE. 1-2-8

$ 1-1-3
* 1-1-3, 1-10-27
=/= 1-10-27
I I-10-29, I-10-31

lndex-7 e

COMMENT SHEET CONTROL DATA
CORPORATION

TITLE: FORTRAN Extended Version 4 Reference Manual

PUBLICATION NO. 60305600 REVISION G

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: ____________ _ POSITION:---------------

COMPANY

NAME:~--------------------------------~~

ADDRESS=----------------------------------~

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

STAPLE

FOLD I -- -- ------ -- -- -- -- -- --1

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I

I
I

I

I

I
I

__________________________ J
FOLO FOLD I

STAPLE STAPLE

I
I

I
I
I
I
I

~ ~CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

CONTROL DATA . - -. - . . 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

,.INTED IN U.S.A.

