CONTROL DATA

CORPORATION

CONTROL DATA’

CYBER 70 COMPUTER SYSTEMS
MODELS 72,73,74,76

7600 COMPUTER SYSTEM

6000 COMPUTER SYSTEMS

FORTRAN EXTENDED REFERENCE MANUAL
MODELS 72, 73,74 VERSION 4

MODEL 76 VERSION 2

7600 VERSION 2

6000 VERSION 4

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD

REVISION

DESCRIPTION

A Original printing.

(10-22-71)

Publication No.
60305600

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

©1971
Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION

Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

PREFACE

This manual describes the FORTRAN Extended language (version 4.0) for the CONTROL DATA ® CYBER 70/
Models 72, 73 and 74, and 6200, 6400, 6500, 6600 and 6700 computers, and FORTRAN Extended (version 2.0)
for the CONTROL DATA CYBER 70/Model 76, 7600, 7601-1 and 761X computers. It is assumed that the reader
has knowledge of an existing FORTRAN language and the CONTROL DATA CYBER 70, 6000 Series or 7600 com-
puter systems. FORTRAN Extended is designed to comply with American National Standards Institute FORTRAN
language.

The FORTRAN compiler operates in conjunction with version 3.0 COMPASS assembly language processor under
control of the 6000 SCOPE operating system (version 3.4), and 7000 SCOPE operating system (version 2.0). The
FORTRAN compiler makes optimum use of the high speed execution characteristics of the CONTROL DATA
CYBER 70, 6000 Series and 7600 computer systems. It utilizes the SCOPE operating system’s multi-programming
features to provide compilation and execution within a single job operation, as well as simultaneous compilation of
several programs.

The following new features are included in FORTRAN Extended:

LEVEL statement

IMPLICIT statement

Hollerith strings in output lists

Expressions in output lists

Quote delimited Hollerith strings

Exclusive OR function

Messages on STOP and PAUSE statements

Line limit on output file at execution time

Syntax scan only during compilation

Program listings suppressed but reference map produced
Rewrite in place, mass storage

Multiple systems texts and local texts for intermixed COMPASS programs

This manual is _in three parts. The reference section, Part 1, contains a full description of the FORTRAN
Extended language.

60305600 A iii

Part 2 consists of a set of sample programs with input cards and output. Each program is preceded by a
short introduction which explains some of the more difficult aspects of the language for the less experienced
FORTRAN programmer.

Part 3 contains mainly systems information, although the applications programmer will be interested in the
character set in section 1 and the compilation and execution diagnostics in section 2.

Throughout the manual, CONTROL DATA extensions to the FORTRAN lan-
guage are indicated by blue type. Otherwise, FORTRAN Extended conforms to
ANSI standards.

Information which applies only to the CONTROL DATA CYBER 70/Model 76
and 7600 computers is indicated by red type.

iv 60305600 A

CONTENTS

PREFACE iii
STATEMENT FORMATS ix
PARTI
1 CODING FORTRAN STATEMENTS [-1-1 Masking Assignment I-4-5
The FORTRAN Character Set I-1-1 Multiple Assignment I-4-6
FORTRAN Statements [-1-2
Continuation I-1-2 5 CONTROL STATEMENTS I-5-1
Statement Separator I-1-2 GO TO Statement I-5-1
Statement Labels I-1-2 Unconditional GO TO I-5-2
Comments I-14 Computed GO TO 1-5-2
Columns 73-80 I-14 ASSIGN Statement I-54
Blank Cards I-14 Assigned GO TO I-5-5
Data Cards I-14 Arithmetic IF
Three Branch I-5-6
2 LANGUAGE ELEMENTS [-2-1 Arithmetic IF
Constants and Variables I-2-1 Two Branch I-5-6
Constants 1-2-1 Logical IF ,
Variable Names I-2-9 One Branch I-5-7
Arrays [-2-12 Logical IF
Array Structure [-2-15 Two Branch I-5-8
Subscripts 1-2-17 DO Statement I-5-8
Loop Transfer I-5-10
3 EXPRESSIONS I-3-1 CONTINUE [-5-14
Arithmetic Expressions I-3-1 PAUSE I-5-14
Evaluation of Expressions I-3-2 STOP I-5-15
Type of Arithmetic Expressions I-3-5 END I-5-15
Exponentiation I-3-6 RETURN I-5-16
“Relational Expressions 1-3-7
Evaluation of Relational 6 SPECIFICATION STATEMENTS 1-6-1
Expressions [-38 Type Statements I-6-1
Logical Expressions -39 Explicit Declarations [-6-2
Masking Expressions [-3-13 Storage Allocation I-6-5
Subscripts I-6-5
4 ASSIGNMENT STATEMENTS I4-1 DIMENSION Statement I-6-6
Arithmetic Assignment Statements 14-1 Adjustable Dimensions I-6-7
Conversion to Integer 142 COMMON I-6-8
Conversion to Real 14-3 EQUIVALENCE Statement I-6-11
Conversion to Double Precision 14-3 EQUIVALENCE and COMMON 1-6-16
Conversion to Complex 144 LEVEL Statement I-6-17
Logical Assignment 14-5 EXTERNAL Statement I-6-18

60305600 A v

vi

DATA Statement
BLOCK DATA Subprogram

PROGRAM UNITS

Main Program and Subprograms
Main Programs
Subprograms

FORTRAN LIBRARY
Intrinsic Functions
External Functions
Additional Utility Subprograms
Subroutines
Functions

INPUT/OUTPUT
FORTRAN Record Length
Carriage Control
Output Statements
PRINT
PUNCH
Formatted WRITE
Unformatted WRITE
INPUT Statements
Formatted READ
Unformatted READ
File Manipulation Statements
BUFFER Statements
NAMELIST
Input Data
Output
Arrays in NAMELIST
ENCODE and DECODE
ENCODE
DECODE

INPUT/OUTPUT LISTS AND
FORMAT STATEMENTS
Input/Output Lists

Array Transmission
FORMAT Statement

Data Conversion

Field Separators

Conversion Specification

Scale Factors

X

nH Output

nH Input

¥ K FELF

FORTRAN Record /

I-6-21
1-6-26

[7-1
17-1
17-1
174

I-8-1
[-8-1
I-8-6
1-89
189
I-8-13

1-9-1
[-9-2
1-9-2
1-9-2
[-9-2
[-9-2
194
[-94
I9-5
1-9-5
1-9-6
[-9-6
1-9-7
[-9-9
[9-11
[9-12
1-9-13
19-15
[-9-15
[-9-18

I-10-1
I-10-1
[-10-2
I-10-5
I-10-6
I-10-7
[-10-7
[-10-22
1-10-24
I-10-25
[-10-26
I-10-27
[-10-29

11

Repeated Format Specification
Printer Control Character

Tn

Execution Time Format
Statements

FORTRAN CONTROL CARD
I Source Input Parameter
B Binary Object File
L List Control
E Editing Parameter
T Error Traceback
Rounded Arithmetic Switch
D Debugging Mode Parameter
A Exit Parameter
S System Text File
GT Get System Text File
SYSEDIT System Editing
V Small Buffers Option
C Compass Assembly
R Symbolic Reference Map
PL Print Limit
Q Program Verification
Z Zero Parameter
LCM Large Core Memory Access
OPT Optimization Parameter

OVERLAYS

Overlays
Overlay Linkages
Creating an Overlay
Calling an Overlay

DEBUGGING FACILITY
Debugging Statements
Continuation Card
ARRAYS Statement
CALLS Statement
FUNCS Statement
STORES Statement

Hollerith Data
GOTOS Statement
TRACE Statement
NOGO Statement
Debug Deck Structure
DEBUG Statement
AREA Statement
OFF Statement
Printing Debug Output
STRACE

I-10-31
[-10-32
I-10-34

I-10-36

I-11-1
I-11-2
I-11-2
I-11-2
I-11-3
I-114
I-114
I-114
I-11-5
I-11-5
I-11-5
I-11-5
I-11-6
I-11-6
I-11-6
I-11-6
I-11-6
I-11-7
I-11-7
I-11-7

I-12-1
I-12-1
I-12-3
I-12-3
I-12-5

I-13-1
I-13-3
I-134
I-134
I-13-6
I-13-8
I-13-11
I-13-14
[-13-15
I-13-16
I-13-18
I-13-19
I-13-24
I-13-26
I-13-28
I-13-30
I-13-30

60305600 A

14 SYMBOLIC REFERENCE MAP I-14-1 Statement and Format Labels 1-149

Classes I-14-2 DO Loop Maps I-14-10
Entry Points 1-14-2 COMMON Blocks 1-14-12
Variables I-14-3 EQUIVALENCE Classes 1-14-12
File Names I-14-6 Program Statistics 1-14-14
External References I-14-7 Debugging (Using Reference Map) I-14-15
Inline Functions I-14-7 New Program I-14-15
NAMELIST Group Names [-14-8 Existing Program I-14-16

PARTII
1 SAMPLE PROGRAMS II-1-1 PROGRAM X 11-1-24

PROGRAM OUT 1I-1-1 PROGRAM VARDIM II-1-26

PROGRAM B 1I-14 PROGRAM VARDIM2 I1-1-28

PROGRAM MASK I-1-6 SUBROUTINE I0TA 1I-1-28

PROGRAM EQUIV I1-1-9 SUBROUTINE SET I1-1-28

PROGRAM COME II-1-11 FUNCTION AVG 11-1-29

PROGRAM LIBS 1I-1-14 FUNCTION PVAL 1I-1-30

PROGRAM PIE II-1-17 FUNCTION MULT 11-1-30

PROGRAM ADD I1-1-19 Main Program - VARDIM2 1I-1-31
ENCODE and DECODE I1-1-19 PROGRAM CIRCLE II-1-35

PROGRAM PASCAL I1-1-22

PART III

1 SOURCE PROGRAM Double Precision 114-7
CHARACTER SETS Ii-1-1 Complex I114-8
Logical and Masking 111-4-8
2 FORTRAN DIAGNOSTICS 11-2-1 Arithmetic Errors 111-4-8
Compilation Diagnostics 11-2-1 Tracing Arithmetic Errors 1I4-11

Execution Diagnostics 11-2-14
5 OBJECT-TIME INPUT/OUTPUT I11-5-1
3 SYSTEM ROUTINE Structure of Input/Output Files I1-5-1

SPECIFICATIONS II1-3-1 Definitions II-5-1

Calling SYSTEM I1-3-1 Record Manager III-5-2
Error Processing II-3-2 FORTRAN Default Conventions
Standard Recovery 111-3-3 (Sequential Files) II-5-3
Non-standard Recovery I11-3-3 FORTRAN Default Conventions

File Name Handling by SYSTEM ItI-3-6 (Random Files) II-54

Additional Block and Record Types III-5-5
4 ARITHMETIC 1114-1 BACKSPACE/REWIND I11-5-9

Floating Point Arithmetic I1-4-1 ENDFILE I1-5-11
Overflow (+° or - <) I114-3 Labeled Files 11-5-12
Underflow (+0 or -0) I1i4-3 BUFFER Input/Output II-5-13
Indefinite Result 11144 BUFFER IN II1-5-13
Non:standard Floating Point BUFFER OUT I1-5-14
Arithmetic 114-5 EOF Function (Non-buffered,

Integer Arithmetic 4.7 Input/Qutput) I-5-15

60305600 A vii

viii

IOCHEC Function
Parity Error Detection
Data Input Error Control
Programming Notes

FORTRAN-RECORD

MANAGER INTERFACE

File Information Table Calls
Updating File Information Table

File Commands

Error Checking

MASS STORAGE INPUT/OUTPUT
Accessing a Random File
Index Key Types
Mutlti-level File Indexing
Index Type
Master Index
Sub-index
Error Messages
Compatibility with Previous
Mass Storage Routines

RENAMING CONVENTIONS

Register Names

External Procedure Names

(Processor Supplied)
Call-by-Value
Call-by-Name

PROGRAM AND MEMORY
STRUCTURE

Subroutine and Function Structure
Main Program Structure

Memory Structure

II-5-16
HI-5-17
II1-5-17
I11-5-20

I11-6-1
111-6-1
I11-6-2
I11-6-3
HI1-6-8

H1-7-3
11-7-3
I1-7-4
H1-7-7
H1-7-8
1-7-8
1-7-8
HI-7-11

1I1-7-12

I11-8-1
11-8-1

I11-8-1
I11-8-1
I11-8-1

11-9-1
I11-9-2
11-9-3
I11-9-3

11

12

13

INTERMIXED COMPASS
SUBPROGRAMS

Entry Point

Call by Name Sequence
Call by Value Sequence
Library Entry Point Names
Control Return

FORTRAN-INTERCOM
INTERFACE

LISTINGS
DMPX.

SAMPLE DECK STRUCTURES
FORTRAN Source Program with
SCOPE Control Cards

Compilation Only

Compilation and Execution
FORTRAN Compilation with
COMPASS Assembly and Execution
Compile and Execute with
FORTRAN Subroutine and
COMPASS Subprogram

Compile and Produce Binary Cards
Load and Execute Binary Program
Compile and Execute with
Relocatable Binary Deck

Compile Once and Execute with
Different Data Decks

Preparation of Overlays
Compilation and Two Executions
with Overlays

INDEX

HI-10-1
IT1-10-1
I11-10-1
11-10-2
111-10-3
I11-10-3

I-11-1

II1-12-1
I-12-2

I-13-1
I-13-1
1I-13-2
1-13-2
I-13-3
11-134
IH-13-5
nI-13-6

I-13-7

II-13-8
I11-13-9

I-13-10

Index-1

60305600 A

STATEMENT FORMS

The following symbols are used in the descriptions of FORTRAN Extended statements:

v variable or array element
sn statement label

iv integer variable

name symbolic name

u input/output unit:

1- or 2-digit decimal integer constant
integer variable with value of: 1-99 or display code file name

fn format designator

iolist input/output list

Other forms are defined individually in the following list of statements.

ASSIGNMENT STATEMENTS

v = arithmetic expression

logical v = logical or relational expression

v = masking expression

MULTIPLE ASSIGNMENT

Vy SV, S = expression

172
CONTROL STATEMENTS
GO TO sn

GO TO (sn1 ,...,snm),iv

GO TO (sn1 ,.‘.,snm)iv

GO TO (sn1 S, snm) ,expression
GO TO (sn1 L ,snm) expression
60305600 A

Page
Numbers

4-1
4.5

4.5

Page

Numbers
GO TO iv,(sn1,...,snm) 55
GO TOiv({sny,...,sn) 5.5
ASSIGN sn TO iv 54
IF (arithmetic or masking expression) sn, , sn,,sn, 5-6
IF (arithmetic or masking expression) sn, ,sn, 5.6
IF (logical or relational expression) stat 57
IF (logical or relational expression) sn, , sn, 5.8
DO sn iv=m1,m2,m3 5-8
DO sn iv=m1,m2 58
sn CONTINUE 5.14
PAUSE 5-14
PAUSE n 5.14
PAUSE #c...c#* 5-14
STOP 5.15
STOP n 5-15
STOP #c...c# 5-15
END 5-15
n string of 1-5 octal digits
c...C string of 1-70 characters
TYPE DECLARATION
INTEGER name,, ..., name_ 6-2

TYPE INTEGER name .., name_

1

X 60305600 A

REAL name,,..., name

1"

TYPE REAL name,,...,name_

COMPLEX name,, ..., name_

L

TYPE COMPLEX name,, ..., name_

1

DOUBLE PRECISION name,,..., name_

DOUBLE name,, ... ,name_

1

TYPE DOUBLE PRECISION name ..,name_

1
TYPE DOUBLE name,, ..., name_
LOGICAL name,, ..., name_

TYPE LOGICAL name .., hame

17"

IMPLICIT type, (ac),.. ,,typen(ac)

(ac) is a single alphabetic character or range of characters represented by the first and last

character separated by a minus sign.

EXTERNAL DECLARATION

EXTERNAL name,, ..., name_

STORAGE ALLOCATION
type name, (d1)

TYPE type name, (d,)

DIMENSION name, (d1),...,namen (dn)

d; array declarator, one to three integer constants; or in a subprogram, one to
three integer variables

type INTEGER, REAL, COMPLEX, DOUBLE PRECISION or LOGICAL

60305600 A

Page
Numbers

6-2

6-2

6-3

6-3

6-3

6-18

6-6

Page

Numbers
COMMONv,, ..., v, 6-8
COMMON/blkname, /v1 A /blknamen/v1 A 6-8
COMMONY// Viseeea Vg 6-8
blkname symbolic name or 1 - 7 digits
/! blank common
DATA viist, /dlist1/ s oo viist /dlist / 6-21
DATA (var=dlist} , ..., {(var=dlist) 6-21
var variable, array element, array name or implied DO list
vlist list of array names, array elements, or variable names, separated by commas
dlist one or more of the following forms separated by commas:
constant
(constant list)
rf*constant
rf*(constant list)
rf(constant list)
constant list list of constants separated by commas
f integer constant. The constant or constant list is repeated
the number of times indicated by rf
EQUIVALENCE (v, , ..., v), ..., (v, ooouv) : 6-11
LEVEL n, CHEN 6-17
n unsigned integer 1,2 or 3
a variable, array element, array name

xii ‘ 60305600 A

Page

MAIN PROGRAMS Numbers

PROGRAM name (file, , ..., file_) 7-1

PROGRAM name 7-1

SUBPROGRAMS

FUNCTION name (p1, R pn) 7-6

type FUNCTION name (p1 yeeeaPy) 7-6
type INTEGER, REAL, COMPLEX, DOUBLE PRECISION or LOGICAL

SUBROUTINE name (p1,...,pn) 7-12

SUBROUTINE name 712

SUBROUTINE name (p,,...,p,), RETURNS (b,,...,b) 7-12

SUBROUTINE name,RETURNS (b1,...,bm) 7-12

ENTRY POINT

ENTRY name 7-20

STATEMENT FUNCTIONS

name (p1 paees pn) = expression 79

SUBPROGRAM CONTROL STATEMENTS

CALL name ' 7-14

CALL name (p1 pans ,pn) 7-14

CALL name (p,, ..., p,) RETURNS (b,,..., b, 7-14

CALL name, RETURNS (b1 R T8 7-14

RETURN 5-16

RETURN i 5-16
i is a dummy argument in ¢ RETURNS list

60305600 A

SPECIFICATION SUBPROGRAMS
BLOCK DATA

BLOCK DATA name

INPUT/OUTPUT
PRINT fn,iolist
PRINT fn

PUNCH fn,iolist
PUNCH fn

WRITE (u,fn) iolist
WRITE (u,fn)
WRITE (u) iolist
WRITE (u)

READ fn,iolist
READ (u,fn) iolist
READ (u,fn)

READ (u) iolist
READ (u)

BUFFER IN (u,p) (a,b)

BUFFER OUT(u,p) (a,b)

Xiv

first word of data block to be transferred
last word of data block to be transferred

integer constant or integer variable.
zero = even parity, nonzero = odd parity

Page
Numbers

6-26

6-26

9-3
9-3

94

9.4
9.5
9.5
9.5
9.5
96
9:6
9.7

9-9

60305600 A

NAMELIST/group name, /a ,a_/.../group name _/a,,...,a
H n

T 1 n

READ {u,group namej
WRITE {(u,group name)

3 array names, array elements, or variables

group name symbolic name identifying the groupa,,...,a
INTERNAL TRANSFER OF DATA
ENCODE (c,fn,v) iolist
DECODE (c,fn,v) iolist

v starting location of record. Variable or array name

c length of record in characters. Unsigned integer constant or simple
integer variable

FILE MANIPULATION
REWIND u
BACKSPACE u

ENDFILE u

FORMAT SPECIFICATION

sn FORMAT (fs,, ..., fs)

fs; one or more field specifications separated by commas and/or grouped by

parentheses

60305600 A

Page
Numbers

99
9-10

9-12

9-15

9-18

9-6

9-6

10-5

XV

Page

Numbers
DATA CONVERSION
srEw.d Single precision floating point with exponent 109
srFw.d Single precision floating point without exponent 10-13
stGw.d Single precision floating point with or without exponent 10-15
srDw.d Double precision floating point with exponent 10-16
riw Decimal integer conversion 10-8
rLw Logical conversion 10-22
rAw Alphanumeric conversion 10-19
rRBw Alphanumeric conversion 10-21
rOw Octal integer conversion 10-18
s optional scale factor of the form: 10-22
nPDw.d
nPEw.d
nPFw.d
nPGw.d
nP
r repetition factor
w integer constant indicating field width
d integer constant indicating digits to right of decimal point
nX Intraline spacing 10-24
nH... 10-25
* ... * rHollerith 10-27
#,..F 10-27
/ Format field separator; indicates end of FORTRAN record 10-29
Tn Column tabulation 10-34

xvi 60305600 A

Page

OVERLAYS Number
CALL OVERLAY (fname,i,j,recall k} 12-5
i primary overlay number
j secondary overlay number
recall if (HRECALL is specified, the overlay is not reloaded if it is already in
memory
k L format Hollerith constant: name of library from which overlay is to
be loaded
any other non-zero value: overlay loaded from global library set
OVERLAY (fname,i,j,Cn) v 124
i primary overlay number, octal
j secondary overlay number, octal
Cn n is a 6-digit octal number indicating start of load relative to blank common
DEBUG
C$ DEBUG 1324
C$ DEBUG (name1 ;... ,name_) 1324
C$ AREAbounds, ,...,bounds within program unit 1397
C$ DEBUG
C$ AREA/name, /bounds, ,...,bounds ,...,/name_/bounds, , ..., bounds
1 1 n n 1 n external
debua d 13-27
C$ DEBUG (name, , ..., name,) ebug deck
or
C$ DEBUG
bounds (n,,n,) n, initial line position

n, terminal line position
(ng) ngsingle line position to be debugged

(n,,*) n, initial line position
* last line of program

(*,n,) * first line of program
n,, terminal line position

(**) * first line of program
* Jast line of program

60305600 A xvii

C$

Cs

C$

C$

c$

C$

C$

Cs

Cs

C$

C$

C$

Cs

Xviii

ARRAYS (s,

ARRAYS

3

CALLS (s, ..

CALLS

5

FUNCS (a,, ..

FUNCS
f;

GOTOS

NOGO

STORES (c,,

1

TRACE (lv)
TRACE

Iv

OFF

OFF(XV.:,

.,a)

...,c)

,...,an)

array names

s

subroutine names

n

function name

n
variable name
variable name
variable name

variable name

.relational operator. constant
relational operator. variable name

.checking operator.

checking operators:

RANGE
INDEF
VALID

level number:

0

out of range
indefinite
out of range or indefinite

tracing outside DO loops

tracing up to and including level n in DO nest

any debug option

Page
Numbers

134

13-4

13-6

13-6

13-8

13-8

13-15

13-18

13-11

13-16

13-16

13-28

13-28

60305600 A

CODING FORTRAN STATEMENTS -1

A FORTRAN program contains executable and non-executable statements. Executable statements specify
action the program is to take, and non-executable statements describe characteristics of operands, statement
functions, arrangement of data, and format of data.

The FORTRAN source program is written on the codiﬁg form illustrated in figure 1. Each line on the

coding form represents an 80-column card. The source language character set (section 1, part 3) is used to
code statements.

THE FORTRAN CHARACTER SET

Alphabetic AtwZ }
Alphanumeric
Numeric 0to9
Special = equal) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign
/ slash blank
(left parenthesis #or' quote

In addition, any of the SCOPE set may be used in Hollerith constants and in comments. Blanks are not
significant except in Hollerith fields.

60305600 A 141

FORTRAN STATEMENTS

Column 1 Cor $ or * indicates comment line

Columns 1-2 C$ indicates debug statement

Columns 1-5 Statement label

Column 6 Any character other than blank or zero denotes continuation; does not

apply to comment cards. A debug continuation card must contain C$
in columns 1-2.

Columns 7-72 Statement
Columns 73-80 identification field, not processed by compiler
CONTINUATION

Statements are coded in columns 7-72; if a statement is longer than 66 columns, it may be continued on as
many as 19 lines. A character other than blank or zero in column 6 indicates a continuation line. Column |
can contain any character other than C *, or $; columns 2, 3, 4 and 5 may contain any character. Any
statement except a comment, END or OVERLAY may be continued.

STATEMENT SEPARATOR

Several short statements may be written on one line if each is separated by the special character $. The
statement following the $ sign is treated as a separate statement. For example:

7
ACUM=24.$1=0 $ IDIFF=1970-1626

is the same as

7

ACUM = 24.

I =20

IDIFF = 1970-1626

$ may be used with all statements except FORMAT, OVERLAY, or debug statements. The statement
following $ must not be labeled; the information following $ is treated exactly as if it were punched into
column 7 on a succeeding card.

STATEMENT LABELS

Columns 1-5 of the first line of a statement may be used for the statement label. All executable statements
(except END) may be labeled. Statements referenced by other statements must be labeled. Statement labels
are integers 1-99999, and they may appear in any order. Leading zeros and leading or embedded blanks
are not significant. Each statement label must be unique to the program unit in which it appears. In figure
1, statement labels are 4, 1, 2, and 3.

I-1-2 60305600 A

V¥ 00950£09

€11

A FORTRAN CODING FORM

PROGRAM ?ASCA’L NAME

ROUTINE DATE PAGE OF

T STATE- c FORTRAN STATEMENT

I ment [© 0= ZERO 1=ONE 2=TW0 SERIAL

: NO. ¥ @= ALPHA O I=ALPHA | 2=ALPHA Z NUMBER

112131416 [6]7)8|9)10]41)12/13|14 |15(16]17]15|19|20|21|22)23|24 2626 27|28 29|30| 3132|3334 |35| 363738 3940|4142 43) 4445 46 47|48 | 49) 50 | 51 52| 53 545 56 67 5859 60 611621 63 64) 65 | 66|67 68 | 69| 70 71) 72| 73741 75|76 774 7879 | 8O
e PegicRAM PASIAAL ((BYMPVTIC L ety v P v v b b b
11 1|N|TiEG(ER||L|(|1|1|)| I T T T T T T T A T T O O L A T I A O O A A
Lty PIATAL b ALA L bt rr it b e et b P b e
[Lty bt I NN AN e N NN
Lt PIRIINT sy G D= e v b b v v frv v e v e bt
4| | FIRMAT(44HLCaOMBITINIAITITIZINIS! [gF M TIRT INGIS. TMAKEN! N AT T A/1210K1, BHI=IN-1/] (1 1))
e BIOITED L i) I T T U T T T T O A O R Y
Cli11 Ld v v e e bt c e e v b b v e b b v e e et it
L1t DM\|ZI|=n1|,.|1|O||LJ et v b b e bbbt et bbb e by
Lo K=Edd =@t v v e vt vr v b vt b et b e e v v bbbt
Ll ko= ce by e v v v r b et e e e e bbbt bl ey
Ll | D gl whsikip o v fr g b vt rrr v bt by b et bbb b
IR N RN NN NN NN NN A NS R RN
1211 | PIRIGNITE 030, 1(i(diy =k lid o P b P e Py c i b b
Bt REfeMATQLULTEd | ce bt bt v b r et e r b r el bt
LA ISPl L v e it O Y O A B A A
L PIEND P s e br e e v e b e v v e b r v rr bt bbb et rre b bt
L1 L bbb el bt et e e bt gt v e e e bbb vt e bttt et b ey
111 Lo bt v e r bbb e e byt v b b r e b e ey v et cr vt bbb
11l Lo v v v v be vt bt r e e v bbb vt bt bttt bl r e b
bl pre byt v b et e e b v v b v rr e c bt e e r b r bt e bl
1121314|8]6]7)8)9|10]11412]13]14)15)1617|18|19)20]2122)23| 2425 |26| 27 28 20) 30| 31| 32]33| 34|35 36 37| 38|39 40| 41{42]43) 44) 4546 47 48] 49 50 | 51 52| 53) 54 55 56 57 | 58|59} 60 | 61| 62| 63 | 64| 65 |65 67 | 68 69| 70 | 79| 72| 73| 74| 76 76| 77 78 70| 80

Figure 1. Program PASCAL

COMMENTS

In column 1 a C, * or $ indicates a comment line. Comments do not affect the program; they can be
written in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more
than one line, each line must begin with C, *, or § in column 1. The continuation character in column 6
does not apply to comment cards. Comments can appear between continuation cards.

COLUMNS 73-80

Any information may appear in columns 73-80 as they are not part of the statement. Entries in these
columns are copied to the source program listing. but they are not processed by the compiler. They are
generally used to order the punched cards in a deck.

BLANK CARDS

If blank cards are used to separate statements, they will produce a blank line on the source listing. A line
following a blank card is treated as a new statement; therefore continuation cards must not follow blank
cards.

A blank card should not follow the END statement. If it does an informative diagnostic is printed.

DATA CARDS

No restrictions are imposed on the format of data cards read by the source program. Data can be written in
columns 1-80. Columns 73-80 are not ignored on data cards.

I-1-4 60305600 A

LANGUAGE ELEMENTS 1-2

CONSTANTS AND VARIABLES
CONSTANTS

A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
octal, Hollerith, and logical.

INTEGER CONSTANT

1 < m < 18 decimal digits
Examples:

237 -74 +138772 0 -0024
An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign
must be present. An integer constant must not contain a comma. The range of an integer constant is -2%-1

to 2%-1 (2*°-1 = 576 460 752 303 423 487).

Examples of invalid integer constants:

46. (decimal point not allowed)
23A (letter not allowed)
7,200 (comma not allowed)

When the integer constant is used as a subscript, or as the index in a DO statement or an implied DO, the
maximum value is 2'-2 (2"-2 = 131 070), and minimum is 1.

Integers used in multiplication and division are truncated to 48 bits. The result of integer multiplication or
division will be less than 2*-1. If the result is larger than 2%-1, (2*-1 = 281 474 976 710 655) high order
bits will be lost. No diagnostic is provided. The resultant maximum value of conversion from real to integer
or integer to real is 2*-1. If the value exceeds 2*-1, high order bits are lost; no diagnostic is provided. For
addition and subtraction, the full 60-bit word is used.

60305600 A [-2-1

REAL CONSTANT

n.n n. n.nExs .nExs n.Ets nEis]
n Coefficient < 15 decimal digits
E+s Exponent
S Base 10 scale factor

A real constant consists of a string of decimal digits written with a decimal point or an exponent, or both.
Commas are not allowed. If positive, a plus sign is optional.

The range of a real constant is 107 to 10**?; if this range is exceeded, a diagnostic is printed. Precision is
approximately 14 decimal digits, and the constant is stored internally in one computer word.

Examples:

7.5 -3.22 +4000. 23798.14 .5 - .72 42.E1 700.E-2
Examples of invalid real constants:

3,50. (comma not allowed)

2.54 (letter not allowed)
A real constant may be followed by a decimal exponent, written as the letter E and an integer constant
indicating the power of ten by which the number is to be multiplied. The field following the letter E may be
zero, but it must not be omitted. The sign may be omitted if the exponent is positive, but it must be present
if the exponent is negative. The range of the integer exponent is -308 through +337.
Examples:

42.E1 (42. x 10" = 420.)

.00028E+5 (.00028 x 10° = 28)

6.205E12 (6.205 X 10" = 6205000000000.)

8.0E+6 (8. X 10° = 8000000.)
700.E-2 (700. X 1072 = 7))
7E20 (7. X 10%® = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 CXpO]‘lCl’lt not an integer

I-2-2 60305600 A

DOUBLE PRECISION CONSTANT

[n.nDis .nDxs n.Dxs nDzs

n Coefficient
Dits Exponent
S Base 10 scale factor

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving
extra precision. A double precision constant is accurate to approximately 29 decimal digits.

Examples:
5.834D2 (5.834 X 10* = 583.4)
14.D-5 (14. x 10 = .00014)
9.2D03 (9.2 x 10° = 9200.)
-7.D2 (-7. X 10* = -700.)
3120D4 (3120. x 10* = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing

D5 exponent alone not ailowed

2,1.3D2 comma illegal
3.141592653589793238462643383279 D missing

60305600 A [-2-3

COMPLEX CONSTANT

(r1,r2)
rl Real part
r2 Imaginary part

Each part has the same range as a real constant.

Complex constants are written as a pair of real constants separated by a comma and enclosed in

parentheses.
FORTRAN Coding Complex Number
(1., 7.54) 1. + 7.54i i= y 1
(-2.1E1, 3.24) -21. + 3241
(4.0, 5.0) 40 + 5.0i
(0., -1.) 0.0 - 1.0i

The first constant represents the real part of the complex number, and the second constant represents the
“imaginary part. The parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer

words.
Both parts of complex constants must be real; they may not be integer.

Examples of invalid complex constants:

(275, 3.24) 275 is an integer

(12.7D-4 16.1) comma missing and double precision not allowed
4.7E+2,1.942 parentheses missing

(0,0) 0 is an integer

Real constants which form the complex constant may range from 1072 to 10%°2,

124

60305600 A

OCTAL CONSTANT T

n1‘..nt

n < m< 20 octal digits
An octal constant consists of 1 to 20 octal digits suffixed with the letter B.
Examples:

7777778

525252528

5001273458
Invalid octal constants:

892777B 8 and 9 are non-octal digits

770000000077777525252528 exceeds 20 digits

07766 O not allowed
An octal constant must not exceed 20 digits nor contain a non-octal digit. If it does, a fatal compiler
diagnostic is printed. When fewer than 20 octal digits are specified, the digits are right justified and zerc
filled. Octal constants can be used anywhere integer constants can be used, except: they cannot be used as
statement labels or statement label references, in a FORMAT statement, or as the character count when a

Hollerith constant is specified.

They can be used in DO statements, expressions, and DATA statements, and as DIMENSION specifica-
tions.

Examples:
BAT = (I*5252B) .OR. JAY masking expression

J = MAXO0 (I,1000B,J,K+40B) octal constant used as parameter in function

NAME = I .AND. 77700000B masking expression
J = (5252B + N)/K arithmetic expression
DIMENSION BUF(1000B) dimension specification

When an octal constant is used in an expression, it assumes the type of the dominant operand of the
expression (Table 3-1, section 3).

+Blue type indicates non-ANSI statements.

60305600 A I-2-5

HOLLERITH CONSTANTS

nHf nLf
nRf #i#E
n Unsigned decimal integer representing number of characters in string. Must be
greater than zero, and not more than 10 when used in an expression.
f String of characters
FEE String delimiters
H Left justified with blank fill
L Left justified with binary zero fill
Right justified with binary zero fill
51 |7
FPOCEAM HCLL (CUTFUT)
A = eHORCDEF
¢ = 6LARCDEF
C = 6RARCCEF
C = tARCDEF%

FRINT 15 AygAyE4RyCeCyl,yD
1| [For¥AT (024,815)

STCF
END
Stored Internally: Display Code:
01720364550€5555E855¢% ARCDEF A
0102030L35C6060¢0C000 BRCDEF B
COOCOOCGOR10202040500 AECNEF c
01020304050€E8555855 LRCDEF D

I-2-6 60305600 A

A Hollerith constant consists of an unsigned decimal integer, the letter H, and a string of characters. For
example:

5HLABEL
The integer represents the number of characters in the string. Spaces are significant in a Hollerith constant:
18HTHIS IS A CONSTANT
7HTHE END
19HRESULT NUMBER THREE

I = (+5HABCDE) is a valid statement; (+S5SHABCDE) is an expression and the + sign is an
operator.

nHf

Hollerith constants may be used in arithmetic expressions, DATA and FORMAT statements, as arguments
in subprogram calls, and as list items in an output list of an input/output statement. If a Hollerith constant
is used as an operand in an arithmetic operation, an informative diagnostic is given. In an expression or a
DATA statement. a Hollerith constant is limited to 10 characters. In a FORMAT statement or as an actual
argument to a subprogram, the length of the Hollerith string is limited to 150 characters.

A Hollerith string delimited by the paired symbols # can be used anywhere the H form of the Hollerith
constant can be used. For example.

IF(V.EQ.*YES##) Y=-Y+1.
PRINT 1, # SQRT = », SQRT(4.)
PRINT 2, 5 TEST PASSED #
INTEGER LINE(7), N1THRU9

LOGICAL NEWPAGE
IF (NEWPAGE) LINE(7) = # PAGE O # + N1 THRU 9

PROGRAM FL (OUTPUT)

PRINT 1y # FIELD LENGTH = #» IGETFL(I)
1 FORMAT (2A10s16)

END

60305600 A I-2-7

The symbol 5 can be represented within the string by two successive # symbols.

When the number of characters in a Hollerith constant is less than 10, the computer word is left justified
with blank fill. If it is more than 10, but not a multiple of 10, only the last computer word is left justified

with blank fill.

Examples:
| 7
READ 1,NAME
FORMAT (A7)
IF(NAME .EQ. 4HJOAN) GO TO 20
u’
RITE (6,1000)
100 ORMAT (1X, 73H NO COUNTRY THAT HAS BEEN THOROUGHLY EXPLORED IS
INFESTED WITH DRAGONS.)
nRf and nLf

A Hollerith constant of the form R or L is limited to 10 characters and cannot be used in a FORMAT
statement.
LOGICAL CONSTANTS
A logical constant takes the forms:
TRUE. o; T. representing the value true
FALSE F. representing the value false

The decimal points are part of the constant and must appear.

60305600 A

Examples:

5| |7
PROGRAM LOGIC(INPUT,OUTPUT, TAPES=TINPUT)

LOGICAL MALE,PHD,SINGLE,ACCEPT

INTEGER AGE

PRINT 20

20| FORMAT (¥4 LIST OF ELIGIBLE CANDIDATES*)

3 [READ (5,1) LNAME,FNAME,MALE,PHDySTNGLE,AGE

1| FORMAT (2A10,31L5,12)

IF (EOF(5)) 644

4 | [ACCEPT = MALE .AND. PHC .ANDe SINGLE .ANDe. (AGE .GT. 25 .AND.
S AGE «.LT. 45)

IF (ACCEPT) PRINT 2,LNAME,FNAME,AGE

2| FORMAT (1H0,2A10,43X,I2)

GO TO 3

6 STOP

END

(An explanation of this example appears in part 2.)

LOGICAL X1, X2

.TRUE.
.FALSE.

X1
X2

VARIABLE NAMES

Unless otherwise stated, the term variable applies to both Large Core Memory (LCM) and Small
Core Memory (SCM) variables. 1

A variable represents a quantity whose value may vary; this value may change repeatedly during program
execution. Variables are identified by a symbolic name of 1-7 alphanumeric characters, the first of which
must be alphabetic. A variable is associated with a storage location; and whenever the variable 1s used. it
assumes the value currently in that location. The five types of variables are: logical, integer, real, double
precision and complex.

The type of a variable is implied by its first character if it is not defined explicitly with a type declaration
(section 5). If type is not declared, a variable is type integer if the first character of the symbolic name is I,
J,K,L,Mor N, and if no IMPLICIT statement appears in that program unit.

TRed type applies to 7600 computer and CYBER 70 Model 76.

60305600 A 129

Examples:
IFORM =~ JINX2 KODE NEXT23 M

A variable not defined in a type declaration is type real if the first character of the symbolic name is any
letter other than 1, J, K, L, M, N, and if no IMPLICIT statement appears in that program unit.

Examples:
RESULT ASUM A73 BOX

Implied Typing of Variables

A-H, 0-Z Real

I-N Integer

INTEGER VARIABLE

An integer variable name must be 1-7 alphanumeric characters; the first letter must be 1, J, K, L, M, or N if
the type has not been defined explicitly.

The value range is -2%-1 to 2%*-1. When an integer variable is used as a subscript or as the index in a DO
statement, the maximum value is 277-2. The resultant absolute value of conversion from integer to real,
integer multiplication, integer division, or input/output under the I format specification must be less than
2*-1.If this value is exceeded, high order bits will be lost. The resultant absolute value of integer addition
or subtraction must be less than 27-1.

Examples:

ITEM1 NSUM JSUM N72 J K2504

REAL VARIABLES

A real variable name must be 1-7 alphanumeric characters of which the first must be any letter other than I,
J, K, L, M, or N if the type has not been defined explicitly.

The value range is 107 1o 10**2, with approximately 14 significant digits.
Examples:

AVAR SUM3 RESULT TOTALZ2 BETA XXXX

1-2-10 60305600 A

DOUBLE PRECISION VARIABLES .

Double precision variable names must be defined explicitly by a type declaration. The value of a .double
precision variable may range from 102 to 10***, with approximately 29 significant digits.

Example:

DOUBLE PRECISION OMEGA, X, IOTA

COMPLEX VARIABLES

Complex variables must be defined explicitly by a type declaration. A complex variable occupies two words
in storage. Each word contains a number in real variable format, and each number can range from 107 to
lo+322.

Example:

COMPLEX ZETA, MU, LAMBDA

LOGICAL VARIABLES

Logical variables must be defined explicitly by a type declaration. A logical variable has the value true or
false. A logical variable with a positive zero value is false; any other value is true.

Example:

LOGICAL L33, PRAVDA, VALUE

OCTAL AND HOLLERITH DATA
Octal and Hollerith data can be entered or used in any type variable. When an octal or Hollerith constant is

used in an arithmetic operation. it needs no conversion. If the constant is not combined with another type
of variable or constant, it is considered to be of integer type.

60305600 A I-2-11

Examples:
JX = 7HACCOUNT JX is an integer variable containing a Hollerith constant.
IITT = 357215B IITT is an integer variable containing an octal constant.

BC = 174B + 623B For addition, octal constants are treated as two integer constants; the result
is converted to the type defined for BC and stored.

KLM = 3.14 - 35B KLM is defined as integer. The octal constant assumes the type of the other

operand (real) and the result. which is real. is converted to integer before
being stored in KLM.

ARRAYS

A FORTRAN array is a set of elements identified by a single name. A particular element in the array may
be referenced by its position in the array. Arrays may have one, two, or three dimensions; the array name
and dimensions must be declared in a DIMENSION, COMMON or type declaration.

Example:

PROORAM VARDIM (OUTPUTSTAPE6=0UTRUT)

HE: :
Calll [OTA(x«12)
cabl I0TA(Ysb)
Nl TE (BalUu0) XeY

10U FOrMAT (#1ARRAY X = #4]12F6,000Xe¥ARKAY Y = #6Fb.0)
STuP
(NI

The number of elements in an array is the product of the dimensions. For example, STOR(3,7) contains 21
elements, STOR(6,6,3) contains 108. The number of subscripts must not exceed the number specified in the
array declaration. For example, a one dimensional array A(I) cannot be referred to as A(I,J) and a two
dimensional array A(LJ) cannot be referred to as A(1,J,K). Such references would produce a diagnostic.
The number of dimensions in the array is indicated by the number of subscripts in the declaration.
DIMENSION STOR(6) declares a one-dimensional array of six elements
REAL STOR(3,7) declares a two-dimensional array of three rows and seven columns

LOGICAL STOR(6,6,3) declares a three-dimensional array of six rows, six columns and three planes

Each element in the array is referred to by the array name followed by a set of expressions in parentheses,
called subscripts. Subscripts indicate the position of the element in the array.

[-2-12 60305600 A

Example:

The array N consists of six values in the order: 10, 55,11, 72, 91,7

N(I) value 10
N(Q2) value 55
N(3) value 11
N(4) value 72
N(5) value 91
N(6) value 7

The entire array may be referenced by the unsubscripted array name when it is used as an item in an
input/output list or in a DATA statement. In an EQUIVALENCE statement, however, only the first
element of the array is implied by the unsubscripted array name.

Example:

The two-dimensional array TABLE (4,3) has four rows and three columns.

Column 1 Column 2 Column 3
Row 1 44 10 105
Row 2 72 20 200
Row 3 3 11 30
Row 4 91 76 714

To refer to the number in row two, column three write TABLE(2,3).
TABLE(3,3) = 30 TABLE(1,1) = 44 TABLE(4,1) = 91
TABLE(4,4) would be outside the bounds of the array and results may be unpredictable.

Zero and negative subscripts are not allowed. I the number of subscripts in a reference is less than the
declared dimensions. the compiler assumes missing subscripts have a value of one.

60305600 A I-2-13

For example, in an array A(LJK)

A(L]) implies A (LJ.1)
A(I) implies A (L1.1)
A implies A (1.1.1)f

Similarly for A(LJ)
A(l) implies A(L1)
A implies A(L Dy

and for A(I)
A implies A(1)7

For example, in a three-dimensional array NEXT when only one subscript is shown, the remaining
subscripts are assumed to be one.

Plane 1 Plane 2 Plane 3
Coi 1 Col 2 Col 3 Col 1 Col 2 Col 3 Col 1 Col 2 Col 3
3 7 4 22 51 7 2 1 552 Row 1
7 8 9 0 98 6 77 60 3 Row 2
0 3;\ 2 3 207 99 85 100 8 Row 3
A Vi
Ksingle /NEXT (3,2\)—NEXT (22)
subscript represents represents
NEXT (3) NEXT (3,2,1) NEXT (2,2,1)
represents
NEXT (3,1,1)

TExcept in input/output lists, as arguments to functions or subroutines, and DATA statements.

I-2-14 60305600 A

ARRAY STRUCTURE

. Arrays are stored in ascending locations; the value of the first subscript increases most rapidly, and the
value of the last increases least rapidly.

Example:

In an array declared as A(3,3,3), the elements of the array are stored by columns in ascending

locations.

Row 1

Row 2

Row 3

60305600 A

Plane 1
Col 1 Col 2 Col 3
A1l A121 A131
} | !
A211 A221 A231 Plane 2
! ! {
A311 A321 A331 Col 1 Col 2 Col 3
Row 1 A112 A122 ~A132
} | |
Row 2| A212 A222 | A232
| ! !
Row3| A312 A322- A332
Row 1
Row 2
Row 3

I-2-15

The array is stored in linear sequence as follows:

Location Relative

Element to first Element
A(LLI stored in 0
A, 11) 1
A3, LT 2
A(1,2,1) 3
A(2,2,1) 4
A(3,2,1) 5
A(1,3,1) 6
A(2,3,1) 7
A(3.,3,1) 8
A(1,1,2) 9
A(2,1,2) 10
AG3,1,2) 11
A(1,2,2) 12
A(2,2,2) 13
A(3.2,2) 14
A(1,3,2) 15
A(2,3,2) 16
A(3,3,2) 17,
A(1,1,3) 18
A(2,1,3) 19
A(3,1.3) 20
A(1,2,3) 21
A(2.2.3) 22
A(3,2.3) 23
A(1,3,3) 24
A(2,3.3) Y 25
A(3,3.3) stored in 26
To find the location of an element in the linear sequence of storage locations the following method can be
used:
Number of Array Location of Element
Dimensions Dimension Subscript Relative to Starting Location

1 ALPHA(K) ALPHA(k) (k-1XE)

2 ALPHA(K M) ALPHA(k,m) (k-1+KX{m-1))XE

3 ALPHA(K,M,N}) ALPHA(k,m,n) {(k-1+KX{m-1+MX(n-1))XE

Figure 2-1. Array Element Location

K. M, and N are dimensions of the array.

k,m, and n are the actual subscript values of the array.

I-2-16

60305600 A

1 is subtracted from each subscript value because the subscript starts with 1, not 0.

E is length of the element. For real, logical, and integer arrays, E = 1. For complex and double
precision arrays, E = 2.
Examples:
Location of Element
Subscript Relative to Starting Location
INTEGER ALPHA (3) ALPHA(2) (2-1=1)
REAL ALPHA (3,3) ‘ ALPHA(3,1) (3-1+3X(1-1))X1=2
REAL ALPHA (3,3,3) ALPHA(3,2,1) (3-1+3X(2-1)+3X3X(1-1))X1 =5

A single subscript may be used for an array with multiple dimensions.

The amount of storage allocated to arrays is discussed under DIMENSION declarations in Section 5.

SUBSCRIPTS

A subscript can be any valid arithmetic expression. IT the value of the expression Is not integer, it is
truncated to integer.

The value of the subscript must be greater than zero and less than or equal to the maximum specified in the
array specification statement, or the reference will be outside the array. If the reference is outside the
bounds of the array, results are unpredictable.

Examples:

Valid subscripts:
A(I,K)
B(I+2,J-3,6%*K+2)
LAST(8)
ARAYD(1,3,2)

STRING(3*K*ITEM+3)

Invalid subscripts:

ATLAS(0) zero subscript not allowed
D(1 .GE. K) relational or logical expression illegal
Z14(-4) negative subscript not allowed

60305600 A I-2-17

EXPRESSIONS -3

FORTRAN expressions are arithmetic, masking. logical and relational. Arithmetic and masking expressions
yield numeric values, and logical and relational expressions yield truth values.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned constants, variables, and function references separated
by operators and parentheses. For example,

(A-B)*F+C/D**E is a valid arithmetic expression

FORTRAN arithmetic operators:

+ addition
subtraction
* multiplication
/ division
o exponentiation

An arithmetic expression may consist of a single constant, variable, or function reference. If X is an
expression, then (X) is an expression. If X and Y are expressions, then the following are expressions:

X+Y X-Y
X*Y X/Y
-X XY
+X

60305600 A 3.1

All operations must be specified explicitly. For example, to multiply two variables A and B, the expression
A*B must be used. AB, (A)(B), or A.B will not result in multiplication.

Expression Value of

3.78542 Real constant 3.78542

A(2*7) Array element A (2*])

BILL Variable BILL

SQRT(5.0) V5.

A+B Sum of the values A and B

C*D/E Product of C times D divided by E
J**1 Value of J raised to the power of |
(200 - 50)*2 300

EVALUATION OF EXPRESSIONS

The precedence of operators for the evaluation of expressions is shown below:

(exponentiation)

/ * (division or multiplication)

(addition or subtraction)
.GT. .GE. LT. .LE. .EQ. NE. (relationals)

.NOT. (logical)
.AND. (logical)
.OR. (logical

Unary addition or subtraction are treated as operations on an implied zero. For example, +2 is treated as
0+2, -3 is treated as 0-3.

Expressions are evaluated from left to right with the precedence of the operators and parentheses
controlling the sequence of operation (the deepest nested parenthetical subexpression is evaluated first).

However, any function references and exponentiation operations not evaluated inline are evaluated prior to
other operations.

In an expression with no parentheses or within a pair of parentheses in which unlike classes of operators

appear, evaluation proceeds in the above order. In expressions containing like classes of operators,
evaluation proceeds from left to right A**B**C is evaluated as ((A**B)**C).

I-3-2 60305600 A

An array element name (a subscripted variable) used in an expression requires the evaluation of its
subscript. The type of the expression in which a function reference or subscript appears does not affect, nor

is it affected by the evaluation of the arguments or subscripts.

The evaluation of an expression having any of the following conditions is undefined:

Negative-value quantity raised to a real, double precision, or complex exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand (section 4, part 3)

Element for which a value is not mathematically defined, such as division by zero

If the error traceback option is selected on the FTN control card (section 11), the first three conditions will
produce informative diagnostics during execution. If the traceback option is not selected, a mode error

message is printed (section 4, part 3).

Two operators must not be used together. A*-B and Z/+ X are not allowed. However, a unary + or - can

be separated from another operator in an expression by using parentheses. For example,

A*(-B) and Z/(+X) Valid expressions
B*-A and X/-Y*Z Invalid expressions

Each left parenthesis must have a corresponding right parenthesis.

Example:

(F+ (X*Y) Incorrect, right parenthesis missing
(F+(X*Y)) Correct

Examples:
In the expression A-B*C
B is multiplied by C, and the product is subtracted from A.
The expression A/B-C*D**E is evaluated as:
D is raised to the power of E.
A is divided by B.

C is multiplied by the result of D**E.

The product of C*D**E is subtracted from the quotient of A divided by B.

The expression -A**C is evaluated as 0-A**C; A is first raised to the power of C and the result is then

subtracted from zero.

60305600 A

I-3-3

An expression containing operators of equal precedence is evaluated from left to right.
A/B/C

A is divided by B, and the quotient is divided by C. (A/B)/C is an equivalent expression.

The expression A**B**C is, in effect, ((A**B)**C).

Dividing an integer by another integer yields a truncated result: 11/3 produces the result 3. Therefore,
when an integer expression is evaluated from left to right, J/K*I may give a different result than I*J/K.

Example:
I1-=4 J=3 K=2
J/K*I I*J/K
3/2*4 = 4 4*3/2 =186

An integer divided by an integer of larger magnitude yields the result 0.
Example:
N =24 M=27 K=2
N/M*K
24/27*2 =0
Examples of valid expressions:
A
3.14159
B +16.427
(XBAR +(B(I,J+I,K) /3.0))
-(C + DELTA * AERO)
(B - SQRT(B**2*(4*A*C)))/(2.0%A)
GROSS ~ (TAX*0.04)

TEMP + V(M,MAXF(A,B))*Y**C/ (H-FACT(K+3))

[-34 60305600 A

TYPE OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be of type integer, real, double precision, or complex. The order of

dominance from highest to lowest is as follows:

Complex

Double Precision

Real
Integer
Table 3-1. Mixed Type Arithmetic Expressions
2na - Doubl
1st gperand) Hollerith Integer Real uble Complex Octal
Precision
operand t
Double
Hollerith Integer Integer Real OL.’ . Complex Integer
Precision
Double
Integer Integer Integer Real Precision Complex integer
Real Real Real Real Double Complex Real
Precision
Double DOUbIe ‘DOL'It?Ie Double DOUble Comp]ex DDOl:E)‘Le.\
Precision Precision Frecision Precision Precision Frecision
Complex Complex Complex Complex Complex Complex Complex
Double
Octal Integer Integer Real u ; Complex Integer
Precision

t Operatorsare + - * /

When an expression contains operands of different types, type conversion takes place during evaluation.
Before each operation is performed, operands are converted to the type of the dominant operand. Thus the
type of the value of the expression is determined by the dominant operand. For example, in the expression
A*B-1/J, A is multiplied by B, I is divided by J as integer, converted to real, and subtracted from the result

of A multiplied by B.

60305600 A

I-3-5

EXPONENTIATION

In exponentiation, the following types of base and exponent are permitted:

Base

Integer

Real

Double Precision

Complex

The exponent is evaluated from left to right. The expression A**B**C is, in effect, ((A**B)**C)

Power

Integer, Real, Double Precision. Complex

Integer, Real, Double Precision, Complex

Integer, Real, Double Precision, Complex

Integer

In an expression of the form A**B the type of the result is determined as follows:

Type of Result
Type of A Type of B of A**B
Integer Integer Integer
Real Real
' Double Double
Complex Complex
Real Integer Real
Real Real
Double Double
Complex Complex
Double Integer Double
Real Double
Double Double
Complex Complex
Complex Integer Complex

The expression -2**2 is equivalent to 0-2**2. An exponent may be an expression. The following examples

are all acceptable:
B**2.
B**N
B**(2*N-1)

(A+B)**(-J)

I-3-6

A negative exponent must be enclosed in parentheses:

A**(_B)

NSUM**(-7J)

60305600 A

Examples:

Expression Type

CVAB**(I-3) Real**Integer

D**B Real**Real

C**I Complex**Integer

BASE(M,K)**2.1 Double Precision
**Real

K**5 Integer**Integer

314D-02**3. 14D—02* Double Precision

**Double Precision

RELATIONAL EXPRESSIONS

a, ,212

op

Arithmetic or masking expression

Relational operator

Result
Real
Real
Complex

Double Precision

Integer

Double Precision

A relational expression is constructed from arithmetic or masking expressions and relational operators.
Arithmetic expressions may be type integer, real, double precision, or complex. The relational operators are:

GT.
GE.
LT.
LE.
EQ.

.NE.

The enclosing decimal points are part of the operator and must be present.

60305600 A

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

I-3-7

Two expressions separated by a relational operator constitute a basic logical element. The value of this
element is either true or false. If the expressions satisfy the relation specified by the operator, the value is
true; if not, it is false. For example:

X+Y .GT. 5.3

If X+ is greater than 5.3 the value of the expression is true. If X+ is less than or equal to
5.3 the value of the expression is false.

A relational expression can have only two operands combined by one operator. a, op &, op a; is not valid.
Relational operands may be of type integer, real, double precision, or complex. but not logical. With the
exception of the relational operators .EQ. and .NE., only the real part of complex operands are used in
evaluation.

Examples:

J.LT.ITEM
580.2 .GT. VAR

B .GE. (2.7,5.9E3) real part of complex number is used in evaluation
E.EQ..5

(I) .EQ. (J(K))
C.LT. 1.5D4 most significant part of double precision number is used in
evaluation

EVALUATION OF RELATIONAL EXPRESSIONS

Relational expressions are evaluated according to the rules governing arithmetic expressions. Each
expression is evaluated and compared with zero to determine the truth value. For example, the expression
p-EQ.q is equivalent to the question, does p - ¢ = 0? q is subtracted from p and the result is tested for zero.
If the difference is zero or minus zero the relation is true. Otherwise, the relation is false.

If pis 0 and q is -0 the relation is true.

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for
example, the following relational expressions are equivalent:

A.GT.B
A.GT.(B)
(A).GT.B

(A).GT.(B)

1-3-8 60305600 A

Examples:

REAL A AMT .LT. (1.,6.55)
A.GT.720

DOUBLE PRECISION BILL, PAY
INTEGER I,J BILL .LT. PAY
I.EQ.J(K)
A+B.GE.Z**2
(I).EQ.(N*J)
300.+B.EQ.A-Z
B.LE.3.754
.5+2. .GT. .8+AMNT

Z.LT.35.3D+5
Examples of invalid expressions:

A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression

B .LE. 3.754 .EQ. C

LOGICAL EXPRESSIONS

L1 op L2 op L3 op...L

n

L.L, logical operand or relational expression

op logical operator
A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression

has the value true or false.

Logical operators:

NOT. or .N. logical negation
AND. or A. logical multiplication
.OR. or .O. inclusive OR

The enclosing decimal points are part of the operator and must be present.

60305600 A I-3-9

The logical operators are defined as follows (p and q represent LOGICAL expressions):

NOT.p

p-AND.q

p.-ORgq

Truth Table

If p is true, NOT.p has the value false. If p is false, NOT.p has the

If p and q are both true, p.AND.q has the value true. Otherwise, false.

If either p or g, or both, are true then p.OR.q has the value true. If both
p and q are false, then p.OR.q has the value false.

p.AND. q p.OR.q .NOT.p
1 1 0
0 1 0
0 1 1
0 0 1

If precedence is not established explicitly by parentheses, operations are executed in the following order:

NOT.

.AND.

.OR.

1-3-10

60305600 A

Example:

FROGCRAM LOGIC(INFUT,OLTPUT,TAPES=INPUT)
LOGICAL MALE,FHD,SINGLE,ACCEPT
INTEGER AGE
FRINT 20
20 FORNMAT (%41 LIST OF ELIGIBLE CANDIDATES*®)
3 REAC (5,1) LNAME,FNAME,MALE,PHC,SINGLE,AGE
1 FORMAT (2A10,3L5,1I2)
IF (EOF(5))6,44
4 ACCEPT = MALE +ANOC. FFD ,AND. SINGLE oAND. (ACE .GT1. 25 JAND.
S AGE «LT. 45)
IF (ACCEPT) PRINT 2,LNAME,FNAME,AGE
2 FORMAT (1HO0,2R10,43X,1I2)

G0 10 3
6 STOF
END
Data Cards:

RALPH ERICSON T T T 20
JOHN S SLIOGHT] T T 26
MILURED MINSTER F T T 4i

JUSTInN BROWN T T T 30

JAMES SMITH T F T 2

Output:
LIST OF ELIGIBLE CANDIDATES
JOHN S, SLIGHT 26
JUSTIN BROKN 30

60305600 A I-3-11

The operator .NOT. which indicates logical negation appears in the form:
NOT. p
NOT. may appear in combination with .AND. or .OR. only as follows (p and q are logical expressions):
p -AND.NOT. q
p -OR.NOT. q
p -AND.(NOT. q)
p -OR(NOT. q) *
.NOT. may appear adjacent to itself only in the form .NOT.(.(NOT.(.NOT.p))
Two logical operators may appear in sequence only in the forms .OR..NOT. and .AND..NOT.
Valid Logical Expressions:
LOGICAL M,L
NOT.L
NOT. (X .GT.Y)
X.GT. Y .AND.NOT.Z
(L) AND. M
Invalid Logical Expressions:

P,Q, and R are type logical

.AND. P .AND. must be preceded by a logical expression
.OR. R .OR. must be preceded by a logical expression
P.AND..OR.R .AND. always must be separated from .OR. by a logical expression

I-3-12 60305600 A

Examples:

A, X, B, C, J, L, and K are type logical.

Expression Aternative Form

A .AND. .NOT. X A .A. N. X

.NOT.B .N.B

A.AND.C A .A.C

J.OR.L.OR.K J.0.L.0.K
Examples:

B-C <A < B+C is written asB-C .LE. A .AND. A .LE, B+C
FICA >176. and PAYNB = 5889. is written FICA .GT. 176. .AND. PAYNB .EQ. 5889.

MASKING EXPRESSIONS

Masking expressions are similar to logical expressions, but the elements of the masking expression are of
any type variable, constant. or expression other than logical.

Examples:
J .AND. N .NOT. (B}
.NOT. 55 KAY .OR. 63

Masking operators are identical in appearance to logical operators but meanings differ. In order of
dominance from highest to lowest, they are:

.NOT. or .N. Complement the operand
.AND. or .A. Form the bit-by-bit logical product (AND) of two operands
.OR. or .0. Form the bit-by-bit logical sum (OR) of two operands

The enclosing decimal points are part of the operator and must be present. Masking operators are
distinguished from logical operators by non-logical operands.

60305600 A I-3-13

Examples:

Expression Alternative Form
B .OR. D B .0. D
A .AND. .NOT. C A .A. .N. C

BILL .AND. BOB BILL .A. BOB
I .OR. J .OR. K .O0R. N I .0.J .0. K .0. N

(.NOT. (.NOT.(.NOT. A .OR. B))) («N.(.N.(.N. A.OR. B)))

The operands may be any type variable, constant. or expression (other than logical).
Examples:

TAX .AND. INT
.NOT. 55

734 .OR. 82

A .AND. 77B

B .OR. C

M .AND. .NOT. 77B

Extract the low order 6 bits of A
Logical sum of the contents of B and C
Clear the low order 6 bits of M.
In masking operations operands are considered to have no type. If either operand is type COMPLEX.,
operations are performed only on the real part. If the operand is DOUBLE PRECISION only the most
significant word is used. The operation is performed bit-by-bit on the entire 60-bit word. For simplicitv.
only 10 bits are shown in the following examples. Masking operations are performed as follows:
J=010101110T and I [100T1010]
J.AND. I
The bit-by-bit logical product is formed
J 0101011101

I 1100110101

0100010101 Result after masking

J.OR.1

The bit-by-bit logical sum is formed
J 0101011101
1 1100110101

1101111101 Result after masking

1-3-14 60305600 A

.NOT. Complement the operand
NOT. 1

1 1100110101

0011001010 Result after masking

.NOT. may appear with .AND. and .OR. only as follows:
masking expression .AND. NOT. masking expression
masking expression .OR. NOT. masking expression
masking expression .AND. (NOT. masking expression)
masking expression .OR. (NOT. masking expression)

If an expression contains masking operators of equal precedence, the expression is evaluated from left to
right.

A .AND. B .AND. C
A .AND. B is evaluated before B .AND. C

Using the following numbers:

A 77770000000000000000 octal constant

D 00000000777777777777 octal constant

B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant

Masking operations produce the following octal resuits:

.NOT. A is 00007777777777777777
A AND. C is 20040000000000000000
A AND. NOT. C is 57730000000000000000
B .OR. NOT. D is 77777777000000001763

Invalid example:

LOGICAL A
A .AND. B .OR. C masking expression must not contain logical operand

60305600 A I-3-15

Example:

PROGRAM MASK (INPUT,OLTPUT)

1 FORMAT (1H145X,4HNAME,///)
FRINT 1

2 FORMAT (3A10,I1)

3 READ 2,LNAME,FNAMEISTATE,KSTOF
IF(KSTOP.EQ.1)STOP

C IF FIRST TWO CHARACTERS OF ISTATE NOT EQUAL TO CA READ NEXT CARD

IFC(ISTATE.AND.77770000063000000000B) «NE«(2HCA.AND.77770030600000000
KG600G0B)) GO TO 3
11 FORMAT(5X,2A10)
10 FRINT 11,LNAME,FNAME
GO 7O 3
END

I-3-16 60305600 A

ASSIGNMENT STATEMENTS -4

An assignment statement evaluates an expression and assigns this value to a variable or array element. The
statement is written as follows:

v = expression
v is a variable or an array element
The meaning of the equals sign differs from the conventional mathematical notation. It means replace the

variable on the left with the value of the expression on the right. For example, the assignment statement
A=B+C replaces the current value of the variable A with the value of B+C.

ARITHMETIC ASSIGNMENT STATEMENTS

v = arithmetic expression

Replace the current value of v with the value of the arithmetic expression. The variable or array element
can be any type other than logical.

Examples:
A=A+1 replace the value of A with the value of A+1
N=J-100*20 replace N with the value of J-100%20
WAGE=PAY-TAX replace WAGE with the value of PAY less TAX
VAR=VALUE+(7/4)*32 replace the value of VAR with the value of VALUE +(7/4)*32
B(4)=B(1)+B(2) replace the value of B(4) with the value of B(1)+ B(2)

60305600 A 14-1

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type
conversion takes place. The expression is evaluated, converted to the type of the variable on the left, and
then replaces the current value of the variable. The type of an evaluated arithmetic expression is
determined by the type of the dominant operand. Below, the types are ranked in order of dominance from
highest to lowest:

Complex

Double Precision

Real

Integer

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given.

CONVERSION TO INTEGER

Value of IFORM
Value Assigned Example After Evaluation

Integer = Integer Value of integer IFORM = 10/2 5
expression re-
places v.

Integer = Real Value of real IFORM =25%2+3.2 8
expression, trun-
cated to 48-bit
integer, replaces
V.

Integer = Double Precision Value of double IFORM = 3141.593D3 3141593
precision expres-
sion, truncated to
48-bit integer,
replaces v.

Integer = Complex Value of real part IFORM = (2.5,3.0) + (1.0,2.0) 3
of complex
expression trun-
cated to 48-bit
integer, replaces
V.

14-2 60305600 A

CONVERSION TO REAL

Value of AFORM
Value Assigned Example After Evaluation

Real = Integer Value of integer AFORM = 200 + 300 500.0
expression, trun-
cated to 48 bits,
is converted to

real and replaces

A

Real = Real Value of real AFORM =25+7.2 9.7
expression re-
places v.

Real = Double Precision Value of most AFORM =3421.D - 04 3421

significant part
of expression re-
places v.

Feal = Complex Vaine of real AFORM =19.2,1.1)-12,15.0) 7.1
part of complex
axprassion ra-

0iaces v.

CONVERSION TO DOUBLE PRECISION

Value of SUM
Value Assigned Example After Evaluation

Double Precision = Integer Value of integer SUM=7%5". 35.D0
expression, trun-
cated to 48 bits,
is converted to
real and replaces
most significant
part. Least sig-
nificant part set
to 0.

Double Precision = Real Value of real SUM =75%2 15.D0
expression re-
places most
significant part;
least significant
part is set to 0.

60305600 A 1-4-3

CONVERSION TO DOUBLE PRECISION (CONTINUED)

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision
= Double Precision

Value of double
precision expres—
sion replaces v.

SUM =7.322D2 - 32.D -1

7.29D2

Double Precision = Complex

Value of real
part of complex
expression re-
places v. Least
significant word

is set to 0.

SUM = (3.2,7.6) + (5.5,1.0)

8.7D0

CONVERSION TO COMPLEX

Value Assigned

Example

Value of AFORM
After Evaluation

Complex = Integer

Value of integer
expression, trun-
cated to 48 bits,
is converted to
real, and replaces
real part of v.
Imaginary part is
set to 0.

AFORM=2+3

(5.0,0.0)

Complex = Real

Value of real
expression re-
places real part
of v. Imaginary
part set to 0.

AFORM =23+7.2

(9.5,0.0)

Complex = Double Precision

Most significant
part of double
precision expres-
sion replaces real
part of v. Imag-
inary part set to
0.

AFORM = 20D0 + 4.4D1

(64.0,0.0)

Complex = Complex

Value of complex
expression replaces
variable.

AFORM = (3.4,1.1) + (7.3,4.6)

(10.7,5.7)

144

60305600 A

LOGICAL ASSIGNMENT

Logical variable or array element = Logical or relational expression

Replace the current value of the logical variable or array element with the value of the expression.
Examples:

LOGICAL LOG2
I =1
L0G2 = I .EQ.O

LOG?2 is assigned the value .FALSE. because =0

LOGICAL NSUM,VAR

BIG = 200.

VAR = .TRUE.

NSUM = BIG .GT. 200. .AND. VAR

NSUM is assigned the value .FALSE.

LOGICAL A,B,C,D,E,LGA,LGB,LGC

REAL F,G,H

B.AND.C.AND.D

A = F.GT.G.OR.F.GT.H

A = .NOT.(A.AND..NOT.B).AND.(C.OR.D)
.NOT.LGB

LGC = E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

"
]

|

[}

=
I

MASKING ASSIGNMENT

v = masking expression

Replace the value of v with the value of the masking expression. v can be any type other than logical. No
type conversion takes place during replacement. If the type is double precision or complex, the value of the
expression is assigned to the first word of the variable: and the least significant or imaginary part set to

Z€10.
Examples:

B =D .AND. Z .OR. X

SUM = (1.0,2.0) .OR. (7.0,7.0)
NAME = INK .OR. JAY .AND. NEXT
J(3) = N .AND. I

A = (B.EQ.C) .OR. Z

60305600 A

14-5

INTEGER I,J,K,L,M,N(16)
REAL B,C,D,E,F(15)

N(2) = I.AND.J

B = C.AND.L

F(J) = I.0R,.NOT.L.AND.F(J)
I = .NOT.I

N(1) = I.OR.J.OR.K.OR.L.OR.M

MULTIPLE ASSIGNMENT

v, =V, = ...V = expression

Replace the value of several variables or array elements with the value of the expression. For example,
X =Y = Z= (10+2)/SUM(1) is equivalent to the following statements:

Z = (10 + 2)/SUM(1)
Y -2
X =Y

The value of the expression is converted to the type of the variable or array element during each
replacement.

Examples:
NSUM = BSUM = ISUM = TOTAL = 10.5 - 3.2
1. TOTAL is assigned the value 7.3
2. ISUM is assigned the value 7
3. BSUM is assigned the value 7.0
4. NSUM is assigned the value 7

Multiple assignment is legal in all types of assignment statements.

1-4-6 60305600 A

CONTROL STATEMENTS I-5

FORTRAN statements are executed sequentially. However, the normal sequence may be altered with
control statements.

ASSIGN PAUSE
GO TO STOP

IF END

DO RETURN
CONTINUE

Control may be transferred to an executable statement only; a transfer to a non-executable statement results
in a fatal diagnostic. Compilation continues, but the program is not executable unless it is compiled in
debug mode.

Statements are identified by an integer, 1-99999. Leading zeros are ignored. Each statement number must
be unique in the program or subprogram in which it appears.

In the following control statements:
sn = statement label

iv = integer variable

GO TO STATEMENT

The three GO TO statements are: unconditional, computed, and assigned.

60305600 A 1-5-1

UNCONDITIONAL GO TO

7
GO TO sn

Control transfers to the statement labeled sn.
Example:

10 A=B+Z
100 B=X+Y
IF(A-B)20,20,30
20 Z=A
GO TO 10 .¢«———Transfers control to statement 10
30 Z=B
STOP
END

COMPUTED GO TO

GO TO (snysny, ... sn), iv

7
l GO TO (sn,,snz,...,snm),expression

|

The comma separating the statement label list and the variable or expression is optional. This statement
causes a transfer to one of the statement labels in parentheses. depending on the value of the variable. The
variable. iv, can be replaced by an expression. The value of the expression is truncated and converted to
integer if necessary, and used in place of iv.

Example:
GO T0(10,20,30,20),L
G0 T0{10,20,30,20)L
The next statement executed will be:
10if L = 1
20if L = 2

[-5-2 60305600 A

]
w

30if L

]

20if L = 4

The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN staiement, the
object code is incorrect, but no compilation error message is issued.

If the value of the expression is less than 1, or larger than the number of statement numbers in parentheses,
the transfer of control is undefined and a fatal error results. For example, execution of the following

computed GO TO statement will cause a fatal error.

M=4
GO TO (100,200,300),M

Less than 4 numbers are specified in the list of statement numbers; therefore, the next statement to be
executed 1s undefined.

60305600 A 1-5-3

Examples:

ASSIGN STATEMENT

35

45

20

10

K=2
GO T0(100,150,300)K

K=2
X=4.6

-

G0 TO(10,110,11,12,13),X/K

L

GO TO0(35,45,20,10)L-5

B=CAT**2

ANS=RES+ERROR

7

statement 150 will be executed next

statement 45 will be executed next.

ASSIGN sn TO iv

control transfers to statement 110 since the integer
part of the expression X/K equals 2

The value of iv is a statement label to which control may transfer. This statement is used in conjunction
with the assigned GO TO statement. sn must be the label of an executable statement in the same program
unit as the ASSIGN statement.

I-5-4

63005600 A

Example:

ASSIGN 10 TO LSWITCH
GO TO LSWITCH(5,10,15,20) control transfers to statement 10

Once the integer variable. iv. is used in an ASSIGN statement, it must not be referenced in any statement,
other than an assigned GO TO. until it has been redefined.

ASSIGNED GO TO

GO TO iv, (sn1 yeeeSN)

m

7
T -
| GO TO iv (sn1,...,snm)
!
| I
Example:
ASSIGN 50 TO CHOICE
10 GO TO CHOICE, (20,30,40,50) statement 50 is executed immediately after statement
. 10

.

30 CAT=ZERO+HAT

40 CAT=10.1-3.

50 CAT=25.2+7.3

This statement transfers control to the statement label last assigned to the variable. The assignment must
take place in a previously executed ASSIGN statement.

The comma after iv is optional. Omitting the list of statement labels (sn,....sn,,) causes a fatal error. If the
value of iv is defined by a statement other than an ASSIGN statement. the results are unpredictable. (A
transfer is made to the absolute memory address represented by the low order 18 bits of iv.)

The ASSIGN statement assigns to the variable one of the statement labels specified in parentheses.
Example:
GO TO NAPA,(5,15,25)

If 5 is assigned to NAPA, statement 5 is executed next. if 15 is assigned to NAPA, statement 15 is
executed next, if 25 is assigned to NAPA, statement 25 is executed next.

60305600 A I-5-5

ARITHMETIC IF

THREE BRANCH

7

IF (arithmetic or masking expression} s, SN, SN,

—— e —

expression < 0 branch to sn,
expression = 0 branch to sn,

expression > 0 branch to sn,

This statement transfers control to sn, if the value of the arithmetic or masking expression is less than zero,
sn, if it is equal to zero, or sn; if it is greater than zero. Zero is defined as a word containing all bits set to
zero or all bits set one (40 or -0).

Example:

PROGRAM IF (INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT)
READ (5,100) I,J,K,N
100 FORMAT (10X,414)
IF(I-N) 3,4,6
3 ISUM=J+K
6 CALL ERROR1
PRINT 2, ISUM
2 FORMAT (I10)
4 STOP
END

If the type of the evaluated expression is complex. only the real part is tested.

ARITHMETIC IF

TWO BRANCH

7

IF (expression) Ny SN,

Cthe expression 15 pot equal o O, and @ s i s

I-5-6 60305600 A

Example:
IF (I*J*DATA(K))100,101

100 IF (I*Y*K)105,106

LOGICAL IF

7
iF (logical or relational expression) stat

stat is any executable statement other than DO, END or a logical IF.

If the expression is true, stat is executed. If the expression is false, the statement immediately following the
IF statement is executed.

.FALSE. = +0
.TRUE. 1is any value other than +0

Examples:

IF (P.AND.Q) RES=7.2
50 TEMP=ANS*Z

If P and Q are both true, the value of the variable RES is replaced by 7.2. Otherwise, the value of
RES is unchanged. In either case, statement 50 is executed.

IF (A.LE. 2.5) CASH=150.
70 B=A+C-TEMP

If A is less than or equal to 2.5, the value of CASH is replaced by 150. If A is greater than 2.5
CASH remains unchanged.

IF (A.LT.B) CALL SUB1
20 ZETA=TEMP+RES4

If A is less than B, the subroutine SUBL is called. Upon return from this subroutine, statement 20 is
executed. If A is greater than or equal fo B, statement 20 is executed, and SUBI is not called.

60305600 A I-5-7

LOGICAL IF

TWO BRANCH
7

IF (logical or relational expression) sny 8N,

If the value of the expression is true. sn, is executed. If the value of the expression is false. sn, is executed.
Example:
IF(K.EQ.100)860,70

If K is equal to 100. statement 60 is executed: otherwise statement 70 is executed.

DO STATEMENT

DO sn iv=m1,m m

273

7

I DO sn iv=m1 m,

iv is a non-subscripted integer variable called the index

[ORI —

m;. m,. m,. the indexing parameters, may be unsigned integér or octal constants or simple integer variables
with positive values no larger than 2'-2. If m, is not specified. it is assigned the value 1. If the indexing
parameters exceed 2'"-2 (or 10 digits) with or without leading zeros, the performance of the loop is
unspecified.

The DO statement is used to execute repeatedly a section of program up to and including the statement
labeled sn. sn must be an executable statement in the same program unit as the DO statement. If m, exceeds
m, on initial entry to the loop, the loop is executed once; and control passes to the statement following sn.

m, is the initial value assigned to iv; m, is the limit value, and m, is the amount added to the initial value
each time the DO loop is executed. When the value of iv exceeds m,, the DO loop is completed; and control
passes to the statement following sn. At execution, m,. m,. and m, must be greater than zero. The range of
each DO loop contains all executable statements between and including the first executable statement after
the DO and the terminal statement identified by sn. An extended range is a transfer of control out of the
range of a DO loop followed by a transfer back into the same DO loop.

The control variable and the parameters m,. m,. and m; may not be redefined during execution of the

immediate or extended range of the DO. When parameters are redefined during execution, the results are
unpredictable. An informative diagnostic is issued for redefinition during an immediate range.

[-5-8 60305600 A

The last statement in a DO loop must not be an arithmetic IF or GO TO statement, a two branch logical IF,
a RETURN, END, STOP, PAUSE or another DO statement, or a logical IF containing any of the
preceding statements.

Examples:

DO 10 I-1,11,3
IF(ALIST(I)-ALIST(I+1))15,10,10 .
15 ITEMP=ALIST(I)
10 ALIST(I)=ALIST(I+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including statement 10 are executed 4 times. The DO loop is
executed with I equal to 1,4,7,10. Statement 300 is then executed.

K=3

J=5

DO 100 I=J,K

RACK=2.-3.5+ANT(I)
100 CONTINUE

The DO loop would be executed once only (with I=5) because J is larger than K.

DO 10 I=1,5

CAT=BOX+D
10 IF (X.GT.B.AND.X.LT.H)Z=EQUATE
6 A=ZERO+EXTRA

Statement 10 is executed five times whether or not Z = EQUATE is executed. Statement 6 is
executed only after the DO loop is satisfied.

After the last execution of the DO loop, control passes to the statement following sn, and the DO is
satisfied. When the DO is satisfied, the index variable iv becomes undefined. A transfer out of the range of
a DO loop is permissible at any time. When such a transfer occurs, the index variable iv remains defined as
its most recent value in the loop.

Example:

DO 20 I = 1,200

IF (I-IVAR) 20,10,10
20 CONTINUE
10 IN = I

An exit from the range of the DO is made to statement 10 when the value of the control variable I is equal
to IVAR. The value of the integer variable, IN, becomes 9.

60305600 A I-59

LOOP TRANSFER

The range of a DO statement may include other DO statements providing the range of each inner DO is
entirely within the range of the containing DO statement. The last statement of an inner DO loop must be

either the same as the last statement of the outer DO loop or occur before it.

If more than one DO loop has the same terminal statement, a transfer to that statement may be made only
from within the range (or extended range) of the innermost DO. When a DO loop contains another DO
loop, the grouping is called a DO nest. DO loops may be nested to 50 levels.

DIMENSION A(5,4,4), B(4,4)

Example:
DO21I =1,4
DO 2 J =1,4
DO 1K =1,5
1 A(K,J,I) = 0.0
2 B(J,I) = 0.0
Examples:

DO loops may be nested in common with other DO loops:

— D1
~— D2
D3
[n3
— n2
— D4
— n4
-~ n1

I-5-10

— D1

— n1

— D2

— n2

— D3

— n3

— D1

———— D2

D3

— n1=n2=n3

60305600 A

The preceding diagrams could be coded as follows:

DO 1 I=1,10,2

3 CONTINUE

2 CONTINUE
DO 4 L=1,3
4 CONTINUE

1 CONTINUE

10

20

100

DO 100 L=2,LIMIT

DO 10 J=1,10
CONTINUE

DO 20 K=K1,K2

CONTINUE

CONTINUE

DO 5 I=
DO 5 J=
DO 5 K=
5 A = B*C

G H

LadiR®l
(SN e]

-y

A DO loop may be entered only through the DO statement. Once the DO statement has been executed, and
before the loop is satisfied, control may be transferred out of the range and then transferred back into the

range of the DO.

A transfer from the range of an outer DO into the range of an inner DO loop is not allowed. However, a
transfer out of the range of an inner DO into the range of an outer DO is allowed because such a transfer
1s within the range of the outer DO loop.

60305600 A

11legal

—)

m—
[R—

Legal

I-5-11

The use of, and return from, a subprogram within a DO loop is permitted. A transfer back into the range
of an innermost DO loop is allowed if a transfer has been made from that same loop.

D
S ——

Legal -¢— |llegal

When a statement is the terminal statement of more than one DO loop, the label of that terminal statement
may not be used in any GO TO or IF statement in the nest, except in the range of the innermost DO.

Example:
DO 10 J=1,50
DO 10 I-1,50
DO 10 M=1,100
GO TO 10

10 CONTINUE

When the IF statement is used to bypass several inner loops. different terminal statements for each loop are
required.

1-5-12 60305600 A

Example:

101

103

50
30

102

109

104

In the following illustration, transfers 2, 3, and 4 are acceptable; 1, 5, and 6 are not.

DO 10 K=1,100
IF(DATA(K)-10.)20,10,20

DO 30 L=1,20
IF(DATA(L)-FACT*K-10.)40,30,40
DO 50 J=1,5

GO TO (101,102,50),INDEX
TEST=TEST+1

GO TO 104

TEST=TEST-1
DATA(K)=DATA(K)*2.0

.

CONTINUE
CONTINUE
CONTINUE

GO TO 104
DO 109 M=1,3

CONTINUE
GO TO 103
CONTINUE

w

n

o

Lol

[=2]

60305600 A

I-5-13

CONTINUE

5 7
sn| |CONTINUE

—_— e —— e

Example:

DO 10 I = 1,11
IF (A(I)-A(I+1)20,10,10
20 ITEMPP = A(I)
A (I) = A (I+1)
10 CONTINUE

CONTINUE is a statement that may be placed anywhere in the source program without affecting the
sequence of execution. It is used most frequently as the last statement in the range of a DO loop to avoid
ending the loop with an illegal statement. The CONTINUE statement should contain a statement label in
columns 1-5. If it does not, it serves no purpose; and an informative diagnostic is provided.

DO 20 I-1,20
1 IF (X(I) - Y(I))2,20,20
2 X(I)=X(I)+1.0

Y(I)=Y(I)-2.0
GO TO 1
20 CONTINUE

The use of the CONTINUE statement avoids ending the DO loop with the statement GO TO 1.

PAUSE

PAUSE l

PAUSE n |

; | [PAUSE #c...c #
o
:

n is a string of 1-5 octal digits.

c..c is a string of 1-70 characters.

When a PAUSE statement is encountered during execution, the program halts and PAUSE n, or c..c,
appears as a dayfile message on the display console. The operator can continue or terminate the program
with an entry from the console. The program continues with the next statement. If n is omitted, blanks are
implied.

I-5-14 60305600 A

STOP

' 'STOP

—_—— e =

STOP n

—— — — —

STOP #c...c#

n is a string of 1-5 octal digits.

c...c is a string of 1-70 characters.

When a STOP statement is encountered during execution, STOP n, or STOP c...c, is displayed in the dayfile,

the program terminates and control returns to the operating system. If n is omitted, blanks are implied. A
program unit may contain more than one STOP statement.

END

END

The END line terminates compilation of a program unit. This line should be the last statement in a
‘program or subprogram.If an END line is omitted and a SCOPE end of record or end of file immediately
follows the last source program statement, an informative diagnostic is printed.

If an END statement is executed in a subprogram, control returns to the calling program. When an END
statement is encountered in the main program of an overlay, control returns to the statement following the
CALL OVERLAY statement which initialized loading and execution of the overlay.

The END line can follow a statement separator ($), and can be continued. No blank cards, nor blank
continuation cards, should follow the card containing the final character D. If they do, an informative
diagnostic is printed.

60305600 A [-5-15

PROGRAM RLIST (INPUT, OUTPUT)
READ 5,X,Y,Z
5 FORMAT (3F10.4)
RESULT = X-Y+Z
PRINT 100, RESULT
100 FORMAT (11H1 RESULT IS ,F7.3)
END

RETURN

RETURN

7
RETURN i

1is a dummy argument which appears in the RETURNS list

RETURN returns control from a subprogram to the calling program. Control returns to the next executable
statement following the CALL. In function subprograms, a RETURN statement returns control to the
statement containing the function reference. A subprogram may contain more than one RETURN
statement. A RETURN statement in a main program has the same effect as an END line, and an
informative message is issued during compilation.

Example:
A = SUBFUN (D,E) FUNCTION SUBFUN(X,Y)
10 D0 200 I = 1,5 SUBFUN = X/Y
. RETURN
. END

.

RETURN i can appear only in a SUBROUTINE subprogram with a RETURNS list. (A RETURN i in a
FUNCTION subprogram causes a fatal error at compilation time.) The statement labels in the RETURNS
list in the CALL statement correspond to the dummy statement labels in the SUBROUTINE statement in
the SUBROUTINE subprogram. When a SUBROUTINE subprogram is called, the actual statement labels
replace the dummy statement labels i O

corresponding to i in the RETURNS list.

ST T iy e g et pey Fleas X TCT 7Ty . Talye!
CRETURN ©oreturns control o the statement labed

el

I-5-16 60305600 A

Example:

PROGRAM MAIN (INPUT,OUTPUT)

10 CALL XCOMP(A,B,C),RETURNS(101,102,103,104)

101 CONTINUE

.

GO TO 10
102 CONTINUE

GO TO 10
103 CONTINUE

.

GO TO 10
104 CONTINUE
END

SUBROUTINE XCOMP (B1,B2,G),RETURNS(Al,A2,A3,A4)
IF(B1*B2-4.159)10,20,30
10 CONTINUE

RETURN Al
20 CONTINUE

RETURN A2
30 CONTINUE

IF (B1)40,50
40 RETURN A3
50 RETURN A4
END

Program MAIN passes statement labels 101,102,103 and 104 to subroutine XCOMP to replace the
dummy RETURNS arguments A1,A2,A3 and A4. If RETURN Al is reached in the subroutine, a
return is made to statement 101; if A2 is reached, a return is made to statement 102, A3 to 103, and
A4 to 104.

60305600 A I-5-17

Example:

SUBROUTINE XYZ(P,T,U),RETURNS(A,B,C)
IF (P*T*U)1,2,3
1 CONTINUE

-

RETURN A
2 CONTINUE

RETURN B
3 RETURN C
END

Example:

FUNCTION Y(X)
IF (X.LT. 3.2) GO TO 30
40 Y = 0.7 * X + 1.237
RETURN
30 Y = 0.012 * X + 7.2
RETURN
END

I-5-18 60305600 A

SPECIFICATION STATEMENTS -6

Specification statements are non-executable; they define the type of a variable or array, specify the amount
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods
of sharing storage, and assign initial values to variables.

IMPLICIT ‘ The IMPLICIT statement must precede other specification statements

Type

DIMENSION

COMMON If any of these statements appear after the first executable statement or
> statement function definition, it is ignored and a fatal diagnostic is

EQUIVALENCE printed.

EXTERNAL

LEVEL

DATA J The DATA statement should precede the first executable statement. If a

DATA statement appears after the first executable statement, it must not
define variables or arrays referenced in the preceding executable state-
ments.

TYPE STATEMENTS

A type statement explicitly defines a variable, array, or function to be integer, real, complex, double
precision, or logical. The type statement may be used to supply dimension information. The word TYPE as
a prefix is optional.

A symbolic name not explicitly defined in a type, FUNCTION or IMPLICIT statement is implicitly defined
as type integer if the first letter of the name is LJK,L,M,N; if it is any other letter, the type is real. An

explicit definition can override or confirm an implicit definition.

Basic external and intrinsic functions are implicitly typed, and need not appear in a type statement in the
user’s program. The type of each library function is listed in section 8.

60305600 A I-6-1

EXPLICIT DECLARATIONS
INTEGER

7
INTEGER name

1+ NAMe, ..., name

|
|
I
I
The symbolic names listed are declared to be of type integer.

Example:
INTEGER SUM, RESULT, ALIST
The variables SUM, RESULT and ALIST are all defined as type integer.

REAL
7

REAL name

1° namez, ceey namen

Example:
REAL LIST,JOB3,MASTER4
The variables LIST, JOB3, and MASTER4 are all defined as type real.
A real variable is stored in floating point format in one word in memory.

COMPLEX
7
COMPLEX name

1- Name,, ..., name

T

1

I

|

|

The symbolic names listed are defined as type complex.

Example:

COMPLEX ALPHA, NAM, MASTER, BETA
The variables ALPHA, NAM, MASTER, BETA are defined as type complex.

A complex variable is stored as two floating point numbers in two consecutive 60-bit words in memory; the
first word is the real part, and the second word is the imaginary part.

I-6-2 60305600 A

DOUBLE PRECISION
7
DOUBLE PRECISION name

1. hame,, ..., name_

Double precision variables occupy two consecutive words of memory; the first for the most significant part
and the second for the least significant part.

The symbolic names listed are declared to be of type double precision. DOUBLE may be used instead of
DOUBLE PRECISION.

Example:
DOUBLE PRECISION ALIST, JUNR, BOX4

The variables ALIST, JUNR, BOX4 are defined as type double precision.

LOGICAL
7

LOGICAL name, , name,, ..., name_

The symbolic names listed are defined as type logical.

Example:

LOGICAL P,Q,NUMBR4

The variables P,Q and NUMBR4 are defined as type logical.

IMPLICIT STATEMENT

7
!
| ’IMPLICIT type, {ac, ,...,acn),...,'type"(ac1 soensac)
o
' [
type LOGICAL. INTEGER, REAL, DOUBLE PRECISION, or COMPLEX
(ac) Single alphabetic character, or range of characters represented by the first and last

character separated by a minus sign. ac must be enclosed in parentheses.
Example:

IMPLICIT REAL (I-M, X), COMPLEX (A-D,N)

60305600 A I-6-3

This statement specifies the type of variables or array elements beginning with the letters ac. Only one
IMPLICIT statement may appear in a program unit, and it must precede other specification statements. An
IMPLICIT statement in a FUNCTION or SUBROUTINE subprogram affects the type of dummy
arguments and the function name, as well as other variables in the subprogram.

Explicit typing of a variable name or array element in a type statement or FUNCTION statement overrides
an IMPLICIT specification.

Examples:
IMPLICIT INTEGER(A-D,N,R)
DIMENSION GRAD (10,2)
ASUM = BOR + ROR * ANEXT
DECK = CROWN + B

The variables ASUM, BOR, ROR, ANEXT, DECK. CROWN and B are of type integer.

In the following example the statement INTEGER A.B,C.D can be replaced by an IMPLICIT
statement

PROGRAM COME (OUTPUT,TAPE6=OUTPUT)

PROGRAM CO E (OUTPUT TAPEo OUTPUT)

COMMON A(lO) B c,D

Example:

The statement INTEGER AB.C.D.E(3.4).F.H is replaced by an IMPLICIT statement. A DIMEN-
SION statement is added since an IMPLICIT statement cannot be used to dimension an array. The
IMPLICIT statement must also precede all other specification statements.

PROGRAM COME (OUTPUT,TAPES=0UTPUT)
COMMON A(1)4BsCoeDs F,G
INTEGER A9BeCoDyE(394) 4l
EQUIVALENCE (AsE,s1)
NAMELIST/VLIST/AsByCoDsE9sF9GoHsI

DO 1 U =1y 12
1 A(I)Y=J

WRITE (6,VLIST)
STOP
END

PE6=0UTPUT)

9Co oH

’
EQUIVALENCE (AsEeI)
NAMELIST/VLIST/A9BeCesDsEsF 9GoHs 1

DO1 J =19 12
1 A(J)=d

WRITE (6sVLIST)

STOP
END

STORAGE ALLOCATION

SUBSCRIPTS

A subscripted symbolic name in the type specification is the name of an array, and the product of the
subscripts is the number of elements in the array.

Example:
INTEGER ZERO(3,3)
defines ZERO as an array of type integer containing 9 integer elements.
REAL NEXT(7),ITEM
defines NEXT as an array with 7 real elements, and ITEM as a real variable
INTEGER CANS(10),NRUMS(7,3),B0X

defines CANS as an integer array with 10 elements, NRUMS as an integer array with 21 elements,
and BOX as an integer variable

60305600 A I-6-5

Dimension information should be specified only once for any array name, a second specification is ignored
but a warning message is printed.

Examples: -
INTEGER ZERO(3,3) invalid if both statements appear in the same program; second
DIMENSION ZERO(4,3) definition is ignored

INTEGER CAT valid; CAT is an integer array
DIMENSION CAT(4,3,2)

These statements could be shortened to one statement:

INTEGER CAT (4,3,2)

DIMENSION STATEMENT

7
T
I DIMENSION name1(d1),...,namen(dn)
I
d; Array declarator, 1-3 integer constants. In a subprogram DIMENSION
statement, they can be integer variables.
name,,...,name, Symbolic name of an array

PROGRAM SUM (INPUT,0UTPUT,TAPES=INPUT» TAPE6=0UTPUT)
DIMENSION INK (10)
READ (S¢100) INK

100 FORMAT (1014)
DO 4 I = 1,10

4 ITOT = ITOT + INK(I)

WRITE (6+200) ITOT

200 FORMAT (10Xo#TOTAL = #4 I4)
END

DIMENSION is a non-executable statement which defines symbolic names as array names and specifies the
bounds of the array.

Example:

DIMENSION TOTAL (7,2)
TOTAL is defined as a real array of 14 elements.
More than one array can be declared in a single DIMENSION statement.
Example:

DIMENSION A(10),B(7,5),C(20,2,4)

The number of computer words reserved for an array is determined by the product of the subscripts and
the type of the array. For real, integer and logical arrays, the number of words in an array equals the
number of elements in the array. For complex and double precision arrays, the number of words reserved is
twice the product of the subscripts.

I-6-6 60305600 A

Example:

COMPLEX BETA
DIMENSION BETA (2,3)

BETA is an array containing six elements; however, BETA has been defined as COMPLEX and two
words are used to contain each complex element; therefore, 12 computer words are reserved.

REAL NIL .
DIMENSION NIL (6,2,2) reserves 24 words for the array NIL

Example:

DIMENSION ASUM(10,2)

DIMENSION ASUM (3), VECTOR (7,7)

The second specification of ASUM is ignored, and an informative message is printed. The specification for
VECTOR is valid and is processed.

ADJUSTABLE DIMENSIONS

Within a subprogram, array dimension specifications may use integer variables, as well as integer constants,
provided the array name and all the variable names used for array dimension specifications are dummy
arguments of the subprogram. The actual array name and values for the dummy variables are defined by
the calling program.

FUNCTION DTOTAL (ARRAY,N)
DIMENSION ARRAY (N,N)

DIOTAL = O.
D011 =1,N
1 DTOTAL = DTOTAL + ARRAY (I,I)
RETURN
END

The above function totals the elements on the major diagonal of any square array. The array name
and dimensions are arguments.

A further explanation of adjustable dimensions appears in section 7.

60305600 A I-6-7

COMMON

i
| COMMON/ /v , ... v,
!
I

COMMON/bIkname1/v1 PP T ./blknamen/v1, R

n

7
COMMON v, ,...,v
n

1
|
I
|

blkname Block name or number enclosed in slashes. A block name is a symbolic
name. A block number is 1-7 digits; it must not contain any alphabetic
characters. Leading zeros are ignored. 0 is a valid block number. The
same block name or number can appear more than once in a COMMON
statement or a program unit; the SCOPE loader links all variables in
blocks having the same name or number into a single labeled common
block.

VsV Variables or array names which can be followed by constant subscripts
that declare the dimensions. The variable or array names are assigned io
blkname. The COMMON statement can contain one Or more block

specifications.
// Denotes a blank common block. If blank common is the first block in the
statement, slashes can be omitted.
Example:

PROGRAM CMN (INPUT,OUTPUT)

COMMON NED (10)

READ 34NED

3 FORMAT (101I3)

CALL JAVG

STOP

END

Variables or arrays in a calling program or a subprogram can share the same storage locations with
variables or arrays in other subprograms by means of the COMMON statement. Variables and array names
are stored in the order in which they appear in the block specification.

COMMON is a non-executable statement. If DIMENSION, COMMON and type specifications appear
together, the order is immaterial. The COMMON specification provides up to 125 storage blocks that can
be referenced by more than one subprogram. A block of common storage can be labeled by a name or a
number.A COMMON statement without a name or numberrefers to a blank common block. Variables and
array elements can appear in both COMMON and EQUIVALENCE statements. A common block of
storage can be extended by an EQUIVALENCE statement.

I-6-8 60305600 A

All members of a common block must be allocated to the same level of storage; a fatal diagnostic is issued
if conflicting levels are declared. An informative diagnostic is issued if some, but not all, members of a
common block are declared in LEVEL statements, and all members are assigned to the declared level.

if any common block member is exiended core storage (ECS) resident (section 6, part 3) all members of she
block must be ECS resident. No ECS resident elements can appear in blank common

Block names can be used elsewhere in the program as symbolic names, and they can be used as subprogram
names. Numbered common is treated as labeled common. Data stored in common blocks by the DATA
statement is available to any subprogram using these blocks.

The length of a common block, other than blank common, must not be increased by a subprogram using
the block unless the subprogram is loaded first by the SCOPE loader.

Example:

COMMON/BLACK/A(3)
DATA A/1.,2.,3./

COMMON/100/1(4)
DATA 1/4,5,6,7/

Data may not be entered into blank common blocks by the DATA declaration.
The COMMON statement may contain one or more block specifications:
COMMON/X/RAG,TAG/APPA/Y,Z,B(5)
RAG and TAG are placed in block X. The array B and Y,Z are placed in block APPA.

Any number of blank common specifications can appear in a program. Blank, named and numbered
common blocks are cumulative throughout a program, as illustrated by the following example:

COMMON A,B,C/X/Y,Z,D//W,R

COMMON M,N/CAT/ALPHA,BINGO//ADD
Have the same effect as the single statement:
COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO
Within subprograms, dummy arguments are not allowed in the COMMON statement.

If dimension information for an array is not given in the COMMON statement, it must be declared in a
type or DIMENSION statement in that program unit.

60305600 A I-69

Examples:
COMMON/DEE/Z(10,4)
Specifies the dimensions of the array Z and enters Z into labeled common block DEE.

COMMON/BLOKE/ANARAY,B,D
DIMENSION ANARAY(10,2)

COMMON/Z/X,Y,A
REAL X(7)

COMMON/HAT/M,N,J(3,4)
DIMENSION J(2,7)

In the last example, J is defined as an array (3,4) in the COMMON statement. (2,7) in the
DIMENSION statement is ignored and an error message is printed.

The length of a common block, in computer words, is determined by the number and type of the variables
and array elements in that block. In the following statements, the length of common block A is 12 computer
words. The origin of the common block is Q(1).

REAL Q,R
COMPLEX S
COMMON/A/Q(4),R(4),5(2)

Block A

origin Q1)
Q(2)
Q(3)
Q4
R(1)
R(2)
R(3)
R(4)
S(1) real part
S(1) imaginary part
S(2) real part
S(2) Imaginary part

If a program unit does not use all locations reserved in a common block, unused variables can be inserted
in the COMMON declaration in the subprogram to ensure proper correspondence of common areas.

I-6-10 60305600 A

Example:
COMMON/SUM/A,B,C,D main program
COMMON/SUM/E(3),D subprogram

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area
reserved by A,B, and C.

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list.
COMMON/SUM/D,A,B,C main program

COMMON/SUM/D subprogram

If program units share the same common block, they may assign different names and types to the members
of the block; but the block name or numbers must remain the same.

Example:

PROGRAM MAIN
COMPLEX C
COMMON/TEST/C(20)/36/A,B,Z

The block named TEST consists of 40 computer words. The lehgth of the block numbered 36 is three
computer words.

The subprogram may use different names as in:

SUBROUTINE ONE
COMPLEX A ,
COMMON/TEST/A(10),G(10),K(10)

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A are
complex elements. Array G is the next 10 words, and array K is the last 10 words. Within the
subprogram, elements of G are treated as floating point; elements of K are treated as integer.

EQUIVALENCE STATEMENT

7
]
| EQUIVALENCE (v1,...,vn),...,(v1,...,vn)
|
'

V-V, are variables, array elements, or array names which can be of different types.

Subscripts must be integer constants. The parentheses are part of the EQUIVALENCE group and must be
present. Two or more variables, array elements, or array names can be included in an equivalence group.
Dummy arguments and constants are not allowed. More than one equivalence group can appear. ECS
resident variables or array elements are not allowed in an equivalence group. Equivalenced variables must
be assigned to the same level of storage.

60305600 A I-6-11

Example:

PROGRAM EQUIV (OUTPUT TAPE6=0UTPUT)
EQUIVALENCE (XeY) e (Zs1)
NAMELIST/0UTPUT/X9YeZol

X=1,

Y=20

72=3.

I=4

WRITE (6+0UTPUT)

STOP

END

$OUTPUT
X

0.2E+01,

Y 0.2E+01,

L[]

4 0.0,

I Ly

$END

An explanation of this example appears in part 2.

1-6-12 60305600 A

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a
program unit. If it appears after the first executable statement, a fatal diagnostic is printed. Variables or
array elements not mentioned in an EQUIVALENCE statement are assigned unique locations.

EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as
‘opposed to COMMON which assigns two variables in different program units to the same location).

Example:

DIMENSION JAN(6),BILL(10)
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C)

The variables IRON, MAT and ZERO share the same location, the fifth element in array JAN and the
second element in array BILL share the same location, and the variables A,B and C share the same location.

When an element of an array is referred to in an EQUIVALENCE statement, the relative locations of the
other array elements are, thereby, defined also.

Example:

DIMENSION Y(4), B(3,2)
EQUIVALENCE (Y,B(1,2)), (X,Y(4))

This EQUIVALENCE statement causes storage to be shared by the first element in Y and the fourth
element in B and, similarly, the variable X and the fourth element in Y. Storage will be as follows:

B(1,1)
B(2,1)
B(3,1)
B(1,2) Y(1)
B(2,2) Y(2)
B(3,2) Y(3)

Y(4) X
The statement EQUIVALENCE(A,B),(B,C) means the same as EQUIVALENCE (A,B,C).

When no array subscript is given, it is assumed to be 1.

DIMENSION ZEBRA(10)
EQUIVALENCE (ZEBRA,TIGER)

Means the same as the statements:

DIMENSION ZEBRA(10)
EQUIVALENCE (ZEBRA(1),TIGER)

A logical, integer, or real entity equivalenced to a double precision or complex entity shares the same
location as the real or most significant part of the complex or double precision entity.

60305600 A I-6-13

An array with multiple dimensions may be referenced with a single subscript. The location of the element
in the array may be determined by the following method:

DIMENSION A(K,M,N)
The position of element A(k,m,n) is given by:
A+(k-1+K* (m-1+M* (n-1))*E
E is 1 if A is real, integer or logical; E is 2 if A is complex or double precision.

Example:

DIMENSION AVERAG(2,3,4),TERM(7)
EQUIVALENCE (AVERAG(8),TERM(2))

Elements AVERAG (2,1,2) and TERM(2) share the same locations.

Two or more arrays can share the same storage locations.

Example:

DIMENSION ITIN(10,10),TAX(100)
EQUIVALENCE(ITIN,TAX)

.

500 READ (5,40)ITIN

600 READ (5,70) TAX

The EQUIVALENCE declaration assigns the first elements of arrays TIN and TAX to the same
location. READ statement 500 stores the array TIN in consecutive locations. Before READ
statement 600 is executed, all operations involving ITIN should be completed; as the values of array

TAX are read into the storage locations previously occupied by ITIN.

Lengths of arrays need not be equal.

Examples:

DIMENSION ZERO1(10,5),ZER02(3,3)
EQUIVALENCE (ZERO1,ZER02) is a legal EQUIVALENCE statement

EQUIVALENCE (ITEM,TEMP)

The integer variable ITEM and the real variable TEMP share the same location; therefore, the same

location may be referred to as either integer or real. However, the integer and real internal formats
differ; therefore the values will not be the same.

1-6-14 60305600 A

Example:

PROGRAM COME (OUTPUTsTAPE6=QUTPUT)
COMMON A(1)9+BoeCsesDe FoeGoeH

INTEGER AeBeCoDoE(394)sFs H
EQUIVALENCE (AsEsI)
NAMELIST/VLIST/A9BsCoeDsEoF oGoHs I

DO1 J =1 12
1 A(D)=J

WRITE (69VLIST)

STOP
END

Output from Program COME:

SVLIST

A = 1,
B = 2y

C = 3y

D = 4y

E = 1y 29y 3y 4y 55 b6y 74 8y
F = 5

G = 0.0y
H = 7

I = 1,
$END

An explanation of this example appears in part 2.

60305600 A

9y

10,

i1,

12,

I-6-15

EQUIVALENCE AND COMMON

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. A
common block of storage may be extended by an EQUIVALENCE statement.

Example:
COMMON/HAT/A(4),C
DIMENSION B(5)

EQUIVALENCE (A(2),B(1))

Common block HAT will extend from A(1) to B(5):

/HAT/
Origin A(l)
AQ2) B(1)
A(3) B(2)
A(4) B(3)
C B(4)
B(5)

EQUIVALENCE statements which extend the origin of a common block are not allowed, however.
Example:

COMMON/DESK/E,F,G

DIMENSION H(4)

EQUIVALENCE (E,H(3))

The above EQUIVALENCE statement is illegal because H(1) and H(2) extend the start of the
common block DESK:

/DESK/
H(1)
H(2)
origin E H(3)
F H(4)

G

No two elements in the same common block or in different common blocks may be set equivalent to each
other.

I-6-16 60305600 A

Examples:

COMMON 4,B,C
EQUIVALENCE (A,B) illegal

COMMON /HAT/ A(4),C /X/ Y,Z
EQUIVALENCE (C,Y) illegal

LEVEL STATEMENT

7
| HLEVEL n a ,...a
n

I

|

| |
a;,..,4, List of variables or array names separated by commas
n Unsigned integer 1, 2, or 3 indicating level to which list is to be allocated.
I Small core memory resident (SCM)
2 Large core memory resident (LCM). Directly addressable (or word addressable)
3 Large core memory resident, accessed by block transfer to or from small core memory

through MOVLEYV subroutine call

1 Central memory resident
2 Central memory resident
3 Extended core storage resident. accessed by block transfer to or from central memory

through MOVLEYV subroutine call

This statement assigns variables or array names to the level n. LEVEL statements must precede the first
executable statement in a program unit. Names of variables and arrays which do not appear in a LEVEL
statement are allocated to small core memory (level 1) in 7600, and central memory (levels 1 and 2) in
6000 series computers.

No dimension or type information may be included in the LEVEL statement.
Variables and arrays appearing in a LEVEL statement can appear in DATA, DIMENSION, EQUIVA-

LENCE, COMMON, type, SUBROUTINE and FUNCTION statements. Data assigned to levels 2 and 3
must appear also in COMMON statements or as dummy arguments in SUBROUTINE statements.

60305600 A I-6-17

Data assigned to level 3 can be referenced only in COMMON, CALL. SUBROUTINE, FUNCTION and
DIMENSION statements. Level 3 items cannot be used in expressions.

No restrictions are imposed on the way in which reference is made to variables or arrays allocated to levels
1 and 2.

If the level of any variable is multiply defined, the level first declared is assumed; and a warning diagnostic
is printed.

All members of a common block must be assigned to the same level; a fatal diagnostic is issued if
conflicting levels are declared. If some, but not all, members of a common block are declared in a LEVEL
statement, all are assigned to the declared level, and an informative diagnostic is printed.

If a variable or array name declared in a LEVEL statement appears as an actual argument in a CALL
statement, the corresponding dummy argument must be allocated to the same level in the called
subprogram.

If a variable or array name appears in an EQUIVALENCE and a LEVEL statement, the equivalenced
variables must all be allocated to the same level.

Example:

DIMENSION E(500),B(500),CM(1000)
LEVEL 3, E,B
COMMON /ECSBLK/ E,B

.

CALL MOVLEV (CM,E,1000)

The LEVEL statement allocates arrays E and B to extended core storage or to LCM. They are
assigned to a named common block. ECSBLK. Starting at location CM (the first word address of the
array CM), 1000 words of central memory are transferred ro the two arrays E and B in extended
core storage or LCM by the library routine MOVLEV.

EXTERNAL STATEMENT

7

EXTERNAL name, ,..., name_

name,,...,name, Subprogram names

Before a subprogram name is used as an argument to another subprogram, it must be declared in an
EXTERNAL statement in the calling program.

1-6-18 60305600 A

Any name used as an actual argument in a call is assumed to be a variable or array unless it appears in an
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a
standard system function, such as SQRT. However, an EXTERNAL statement is not required for intrinsic
functions used as actual arguments. If an intrinsic function name appears in an EXTERNAL statement, the
user must supply the function.

Example:

Calling Program Subprogram
EXTERNAL SIN, SQRT SUBROUTINE SUBRT (A,B,C)
CALL SUBRT(2.0,SIN,RESULT) X=A+3.14159/2.
WRITE (6,100) RESULT C=B(X)

100 FORMAT (F7.3) RETURN
CALL SUBRT(2.0,SQRT,RESULT) END
WRITE (6,100)RESULT
STOP
END

First the sine, then the square root are computed; and in each case, the value is returned in
RESULT. The EXTERNAL statement must precede the first executable statement, and always
appears in the calling program. (It may not be used with statement functions.)

A function call that provides values for an actual argument does not need an EXTERNAL statement.

Example:
Calling Program Subprogram
CALL SUBRT(SIN(X),RESULT) SUBROUTINE SUBRT(A,B)
B=A
END

An EXTERNAL statement is not required because the function SIN is not the argument of the
subprogram; the evaluated result of SIN(X) becomes the argument.

60305600 A I-6-19

Example:

PROGRAM VARDIMZ (OUTPUT» TAPE6=0UTPUTsDEBUG=0UTPUT)
COMMON X{4+3)

REAL Y (6)

EXTERNAL MULTs AVG
NAMELIST/V/XeYsAAsAM
CALL SET(Y9640,)
CALL IOTA(Xs12)
CALL INC(X9l2¢=~5,)
AA=PVAL (124+AVG)
AM=PVAL (12,MULT)
WRITE (64V)

STOP

END

FUNCTION AVG(J)
C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF COMMON,

COMMON A(100)
AVG=0,
DO 1 I =10J

1 AVG=AVG+A(I)
AVG=AVG/FLOAT (J)
RETURN
END

REAL FUNCTION MULT(J)

COMMON ARRAY (12)
MULT=ARRAY (12) #*ARRAY (1) ~AVG(J/2)
RETURN

E N D

An explanation of this example appears in part 2.

1-6-20 60305600 A

DATA STATEMENT

l l DATA (var =dlist), ..., (var = dlist)

]

—_—— —

7
T ; : . -
| DATA VllSt1/d|ISt1/, .o, Vlist /dlist /
|
|
|
var Variable, array element, array name or implied DO
vlist List of array names, array elements, variable names, or an implied DO loop, separated
by commas. Array elements must have integer constant subscripts, unless they appear in
an implied DO loop.
dlist One or more of the following forms separated by commas:
constant
(constant list)
rf*constant

rf*(constant list)
rf(constant list)

constant list List of constants separated by commas

rf Integer constant. The constant or constant list
is repeated the number of times indicated by
rf.

The DATA statement assigns to variables or array elements initial values which are compiled into the
object program from source program statements. When source program execution begins, these values are
assumed by the variables or arrays. Any variables not assigned values by the DATA statement are
unspecified.
Example:

DATA A,B,C/3.,27.5,5.0/ assigns 3.t0 A, 27.5t0B,50t0 C
The DATA statement is non-executable and should, as good programming practice, precede the first
executable statement in the program or subprogram. The DATA statement must follow all specification
statements. One DATA statement must not contain both forms of the list (vlist/dlist/ and var=dlist).

Dummy arguments or elements in blank common cannot be assigned values in a DATA declaration.

In the DATA statement, the type of constant stored is determined by the structure of the constant rather
than by the type of the variable in the statement.

60305600 A I-6-21

Example:
DATA IRUN/10./

10. is stored as a real constant, not as an integer, as might be expected from the form of the
symbolic name IRUN.

DATA ITEM, JOB/10,10./

An integer constant 10 is stored in ITEM, and a real constant 10. is stored in JOB. The two constants
will be stored differently:

0000000000000000012 integer
1723500000000000000 real
Any future use of the integer variable JOB could produce erroneous results.

The value of the item in the data list is assigned to the corresponding variable in the variable list. The
number of items in the data list should agree with the number of variables in the variable list.

Example:
DATA A,B,C/7.,8.,9./ 7. 8. and 9. are assigned to A, B, and C respectively.

If the data list contains more items than the variable list, excess items are ignored, and an informative
diagnostic is printed.

Example:

COMMON/LABEL/A(3)
DATA A/1.,2.,3.,4./

Constants 1.,2. and 3. are stored in array locations A, A+ 1, A+2; constant 4. is discarded; and an
informative message is printed.

If the data list contains fewer items than the variable list, the value of the remaining variable is not defined,
and an informative diagnostic is printed.

Example:

COMMON/NAME/C(3)
DATA C/1.,2./

Constants 1. and 2. are stored in locations C(1) and C(2); the content of C(3), that is, location C+2
is not defined.

I-6-22 60305600 A

The implied DO loop may be used to store values into arrays.
Example:

REAL ANARAY(10)
DATA (ANARAY(I),I = 1,10)/1.,2.,3.,7*2.5/
Values stored in array ANARAY:

ANARAY(}) 1.
2.

3,

25
25
2.5
2.5
2.5
Y 2.5
ANARAY(10) 2.5

When an implied DO is used to store values into arrays, only one array name can be used within the
implied DO nest. The array name in the implied DO nest is not related in any way to an array of the same
name in the same program unit.
Example:

Invalid: DATA (A(I),B(I),I=1,3)/1.,2.,3.,4.,5.,6./

Valid: DpATA ((C(I,J),J=1,4,3),1-1,3)/1.,2.,3.,4.,5.,6./
Example:

DATA A,B,C,D/4*2.7/

The value 2.7 is assigned to the variable A,B,C and D. If the number preceding the asterisk is not an
integer, a fatal diagnostic is printed.

The following examples illustrate the use of the DATA statement:

COMPLEX PROTER (4)
DATA PROTER/4*((1.0,2.0))/

60305600 A 1-6-23

4 complex constants (1.0,2.0) are stored in the ARRAY PROTER

1.0
2.0

1.0
2.0

1.0
20

1.0
20

Note: (1.0,2.0) is a complex constant, 2*(1.0,2.0) means repeat a constant list containing elements
1.0 and 2.0 twice, 2*((1.0,2.0)) means repeat the complex constant (1.0,2.0) twice.

Example:
DATA A(1,3)/16.239/
16.239 is stored in the element in the first row, 3rd column of array A.

DIMENSION B(10)
DATA B/000077B,000064B,3*000005B,5*000200B/

The following octal constants are stored in ARRAY B:

77B
64B
5B
5B
5B
200B
200B
200B
200B
200B

COMMON/HERA/C(4)
DATA C/3.6,3*10.5/

ARRAY C contains the following elements:
3.6
10.5
10.5
10.5

LOGICAL L(4)
DATA L/4*.TRUE./

The logical variables in array L are set to the value TRUE.

I-6-24 60305600 A

Examples of alternative form of DATA statement:

DATA (X=3),(Y=5)

TANIMTAT
INTEGER

DATA

ARAY
A=7),(

(&3]

(9)

B=200.), (ARAY=1,2,7,50,3)
COMMON/BOX/ARAY4(3,4,5)

DATA (ARAY4(1,3,5)=22.5)

DIMENSION D3(4),P0Q(5,5)
DATA (D3 = 5.,6.,7.,8.),(((P0Q(I,J),I=1,5),J=1,5)=25%0)

initializes:

D3(1)
D3(2)
D3(3)
D3(4)

[
PN

and sets the entire POQ array to zero.

When constants in a data list are enclosed in parentheses and preceded by an integer constant, the list is
repeated the number of times indicated by the integer constant. If the repeat constant is not an integer. a
compiler error message is printed.

Example:

DIMENSION B(10)
DATA((B(I),I=1,10)=15.,2.,3.7,7(4.32))

DIMENSION AMASS(10,10,10), A(10), B(5)

DATA (AMASS(6,K,3),K=1,10)/4*(-2.,5.139),6.9,10./
DATA (A(I),I=5,7)/2*(4.1),5.0/

DATA B/5*0.0/

ARRAY AMASS: ARRAY A
AMASS(6,1,3) = -2. A(B) = 4.1
AMASS(6,2,3) = 5.139 A(B) = 4.1
AMASS(6,3,3) = -2. A(7) = 5.0
AMASS(6,4,3) = 5.139
AMASS(6,5,3) = -2. ARRAY B:
AMASS(6,6,3) = 5.139
AMASS(6,7,3) = -2. B(1) = 0.0
AMASS(6,8,3) = 5.139 B(2) = 0.0
AMASS(6,9,3) = 6.9 B(3) = 0.0
AMASS(6,10,3) = 10. B(4) = 0.0

' B(5) = 0.0

60305600 A 1-6-25

Data may not be entered into blank common with a DATA statement.

When a Hollerith specification is used in a DATA statement, it should not exceed 10 characters.

For example, to store the following values in an array A
A(1) = 1234567890
A(2) = ABCDEFGHIJ
A(3) = KLMNOPQRST
A(4) = UVWXYZ+-*

The following statements should be used:
DIMENSION A(4)

DATA A/10H1234567890,10HABCDEFGHIJ,10HKLMNOPQRST, 10HUVWXYZ+~- */

The following statements would not produce the desired result:

DIMENSION A(4)
DATA A/20H1234567890ABCDEFGHIJ,20HKLMNOPQRSTUVWXYZ+~ */

They would initialize
A(1) 1234567890
A(2) KLMNOPQRST
A(3) UVWXYZ+- *
A(4) undefined

BLOCK DATA SUBPROGRAM

Data may be entered into labeled or numbered common (but not blank common) prior to program

execution by the use of the BLOCK DATA subprogram. This subprogram should contain only the DATA,
COMMON, DIMENSION, EQUIVALENCE, type, and END statements associated with the data defined.
Any executable statements will be ignored, and a warning printed.

A BLOCK DATA subprogram has one of the following formats:

BLOCK DATA name

END

BLOCK DATA

END
pame is any legal FORTR AN nume. It idendfies the BLOCK DATA subprog

S ol B n g TRT N SLT
v 17 mere than one BLOTK
DATA subprogram is compiled. |

nothe name BLKIDATA,

i the user does not name the block, ir is oiv

I-6-26 60305600 A

DATA may be entered into more than one block of common in one subprogram.

Example:

BLOCK DATA ANAME
COMMON/CAT/X,Y,Z/DEF/R,S,T
COMPLEX X,Y

DATA X,Y/2*((1.0,2.7))/,R/7.6543/
END

Z is in block CAT, and S and T are in DEF; although no initial data values are defined for them.
The DATA statement must follow the specification statements.

BLOCK DATA
COMMON/ABC/A(5),B,C/BILL/D,E,F

COMPLEX D,E

DOUBLE PRECISION F

DATA (A(L),L=1,5)/2.3,3.4,3*7.1/,B/2034.756/,D,E,F/2*((1.0,2.5)),
S 7.86972415872D30/

END

60305600 A [-6-27

PROGRAM UNITS -7

MAIN PROGRAM AND SUBPROGRAMS

A FORTRAN program may be written with or without subprograms. Oneé main program is required in any
executable FORTRAN program; any number of subprograms may be included.

MAIN PROGRAM

A main program should begin with the PROGRAM statement. If this statement is omitted from the main
program, the program is assumed to have the name START., and files INPUT and OUTPUT are assumed.

PROGRAM STATEMENT

Under the SCOPE operating system, all data usad bv g program must have 2 file name. The FORTRAN
programmer should list this file nam= in the PROGRAM statement. The FORTRAN compiler adds the
characters TAPE as & prefix w each logical unit number referenced in tae user’s program to form a file
name. For example, logical unit 3 is assignad the file name TAPE3. and the programmer should list the file
name TAPE3 in the PROGRAM stctement if he references logical unit 3 in his program. SCOPE file
names INPUT, OUTPUT and PUNCH should appear in the PROGRAM statement when READ. WRITE

and PUNCH statements are used in a program.

The file name must appear in the PROGRAM statement of the main program even if the read or write
statement is in a subprogram.

7
PROGRAM name (file,..., file)

name Must be a unique symbolic name within the main program and cannot
be used as a subprogram name. It will be the entry point name and the
object deck name for the SCOPE loader.

(file,....file) Names of all input/output files required by the main program and its
subprograms; maximum number of file names is 50. All internal file
names used in input/output statements should be declared. If the
program is to be loaded as an overlay (but not as the main overlay) this
parenthetical list must be omitted.

file 1-6 character file name

60305600 A I-7-1

file=n n is a decimal number specifying the buffer length. It must appear with
the first reference to the file in the PROGRAM statement. If no buffer
length is specified, a default double buffer (2002B) is assumed. A buffer
length of zero can be specified. For example, PROGRAM X (TAPE=0)
is a legal statement.

If file=n is specified in a 7600 program, it is ignored.

file, =file,, Files will be made equivalent. File m must have been previously defined.

File names may be made equivalent at compile time, but file m must
have been previously defined in the same PROGRAM statement. All
references in the source code to file n refer to file m. Since m and n refer
to the same file, any buffer length specified applies to both file names.

Example:
PROGRAM ORB (INPUT,OUTPUT=1000,TAPE1=INPUT, TAPE2=0UTPUT)

All input/output statements which reference TAPE1 will instead reference INPUT, and all listable
output normally recorded on TAPE2 would be transmitted to the file named OUTPUT.

Only one level of parentheses is allowed in the PROGRAM statement. The PROGRAM statement is
scanned from left to right.

Example:
PROGRAM SORT (INPUT,OUTPUT, TAPE5=INPUT,COMPILE=4000,TAPE20=COMPILE)

At compile time, the file names should satisfy the following conditions (file names can be changed at
execution time by SCOPE control cards). If these conditions are not met, a warning diagnostic is printed:

1. File name INPUT should be defined if any READ fn, iolist statement is included in the
program.

2. File name OUTPUT should be defined if any print statement is included. If execution error
messages are to be listed, OUTPUT must be included.

3. File name PUNCH should be defined if any PUNCH statement is included in the program.

4. File name TAPEu (u is an integer constant 1-99) should be defined if any input/output
statement involving unit u appears in the program. At execution time, if u is a variable, there
must be a file name TAPEu for each value u may assume.

At execution time, if file names have not been defined in the PROGRAM statement, they must be defined

by SCOPE control cards (refer to File Name Handling by System, section 3, part 3). If they are not defined,
a fatal error results and the message UNDEFINED FILE NAME is printed.

172 60305600 A

The characters TAPE are added as a prefix to each logical unit number in the user’s program. Logical unit

3 is assigned the file name TAPE3, logical unit 4 is assigned the file name TAPE4. Note, TAPES and
TAPEOQS are not the same file name.

A logicai unit number is assigned by writing TAPEu = filenam, where filenam is the name of the file with
which the logical unit number is to be associated.

Examples:
PROGRAM X (INPUT,TAPE5=INPUT)
PROGRAM Y (OUTPUT,TAPE2=0UTPUT)
PROGRAM OUT(OUTPUT,TAPE6=0UTPUT)
WRITE(6,200)A,B,C Logical unit 6 must be declared as TAPE6
200 FORMAT (1H1,3F7.3) in the PROGRAM statement.
PROGRAM IN(INPUT,TAPES5=INPUT)
READ(5,100)A,B,C This statement reads from logical unit 5,
100 FORMAT (3F7.3) it is declared in the PROGRAM statement
as TAPES.

When a file name is made equivalent to another file, the file name appearing to the right of an equals sign
must have been previously declared in the same statement.

Example:

In the following statement, INPUT and OUTPUT are defined before they appear to the right of the

equals sign. TAPES becomes an alternate name for the file INPUT, and TAPE6 becomes an
alternate name for OUTPUT.

PROGRAM SAMPLE (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT)

Example:
PROGRAM JIM(INPUT,TAPE19=INPUT)

TAPE19=INPUT must be preceded in the same statement by INPUT (or INPUT = buffer length)

60305600 A 1.7-3

If any of the following statements are used in a program or its subprograms, the logical unit number, u.
must appear as file name TAPEu in the program statement:

WRITE (u) iolist ENDFILE u

WRITE (u,fn) iolist BACKSPACE u

READ (u) iolist REWIND u

READ {(u,fn) iolist BUFFER IN (u,p) {(a,b)

BUFFER OUT {u,p) (a,b)
If u is a variable, there must be a file name TAPEu for each value u can assume in the source program.
Example:

PROGRAM KAY(INPUT,OUTPUT,TAPE6O=INPUT,TAPES1=0UTPUT)

READ(60,100)ALIST
1CC FORMAT (F7.3)

WRITE (€1,200)ALIST
200 FORMAT (1HC,F7.3;

READ (5]

SUBPROGRAMS

A subprogram is headed by a BLOCK DATA, FUNCTION, or SUBROUTINE statement. A subprogram
headed by a BLOCK DATA statement is a specification subprogram as described in Section 6. A
subprogram headed by a FUNCTION or SUBROUTINE statement is called a procedure subprogram.

174 60305600 A

Procedure subprograms are of two types: subroutine and function. Function subprograms return a single
value to the expression containing the function’s name. The four kinds of functions are:

Statement functions defined
FUNCTION subprograms | user aefine

Intrinsic functions (in-line functions) .
system supplied

library functions

Subroutine subprograms may return a number of values (or none at all); they are referenced by a CALL
statement. The two kinds of subroutines are:

User subroutine

Library subroutine
Subprograms are defined separately from the calling program and may be compiled independently of the
main program. They are complete program units conforming to all the rules of FORTRAN programs. The
term program unit refers to either a main program or a subprogram.
A subprogram may call other subprograms as long as it does not directly or indirectly call itself. For
example, if program A calls program B, B may not call A. A calling program is a program unit which calls
a subprogram.
Subprogram definition statements declare certain names to be dummies representing the arguments of the
subprogram—these are called dummy arguments. They are used as ordinary names within the defining
subprogram and indicate the number, type and order of the arguments and how they are used. The dummy
arguments are replaced by the actual arguments when the subprogram is executed. Dummy arguments may
not appear in COMMON, EQUIVALENCE, or DATA statements.
Actual parameters appear in subroutine calls

CALL SUB3 (7.,CAT, 8.932)

or function references

A = B + ROOT (6.5,7.,B0X)

60305600 A 1-7-5

FUNCTION SUBPROGRAM

DEFINING A FUNCTION SUBPROGRAM

FUNCTION name (p,,....p,)

n

type FUNCTION name (p,,...,p,)

PrseooPn Dummy arguments which should agree in order, number, and type with the
actu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>