
,.

CONTROL DATA
CORPORATION

CONTROL DATA®
6000 COMPUTER SYSTEMS

FORTRAN EXTENDED REFERENCE MANUAL
6000 VERSION 3

REVISION RECORD
REVISION DESCRIPTION

A Original publication.

B Revised December 196 7.

c Project updating of system and corrections in response to user comments.

(1-6-69)

D This revision includes changes required by release of SCOPE 3. 1. 6, and minor

(12-12-69) corrections to the text in response to user comments or errata. Pages affected

are: iii thru viii; 1-1, 2, 5, 6, 8 thru 10; 2-9; 3-1; 4-5, 9, 12; 5-4, 6, 9; 6-1

thru 3, 6-7 thru 10, 12, 6-16 thru 18; 7-2 thru 4; 8-1, 6, 8, 9, 10; 9-2, 9-2.1, lOj

B-2, 7, 8; C-2; D-1, 2, 3, 5; E-1; F-1thru4; G-1, 3, 5, 6 thru 11; H-5; I-1

thru 3, 7, 8; J-1, 2; Index 1 thru 9; Comment Sheet.

E Information included in this revision reflects changes made for version 3. 0

(7-23-70) which runs under SCOPE version 3. 2. Pages affected are: iii thru ix;

1-1 thru 1-10; 5-1, 5-2, 5-11; 6-1 thru 6-3, 6-17 thru 6-19; 9-6; 10-3;

11-1thru11-24; 12-1thru12-10; C-1 thru C-10; D-1, D-4; G-5, G-9;

H-1; I-1, I-3, I-5, I-7; K-1; Index-1 thru Index-11; Comment Sheet.

F Project updating of system and additional debugging information. Pages

(1-15-71) affected are: viii, ix; 1-5; 4-3; 5-11; 6-17, 6-18; 9-6 thru 9-8; 11-1thru11-24;

12-1 thru 12-4, 12-9 thru 12-11; C-1 thru C-4, C-9; D-1, D-2; I-4; Index-1

thru Index-11; Comment Sheet.

Publication No.

60176600

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Address comments concerning
this manual to:

©1968, 1969, 1970, 1971
Control Data Corporation
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Documentation Department
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

60176600 Rev. F

PREFACE

This publication describes the features of the FORTRAN Extended language
(version 3. 0) for the CONTROL DATA® 6400/6500/6600/6700 Computers.
It is assumed that the reader has some knowledge of an existing FORTRAN
language and the CONTROL DATA 6400/6500/6600/6700 Computer System.
The language described herein is an extension of the ANSI FORTRAN
language.

The FORTRAN compiler operates in conjunction with version 1. 1 COMPASS
assembly language processor under the control of the SCOPE operating
system (version 3. 2). The FORTRAN processor makes optimum use of
storage both during compilation and in generated machine language instruc
tions. Implementation of this processor provides the capability of compilation
and execution within a single job operation as well as the simultaneous
compilation of several programs, utilizing the system's multi-programming
features.

60176600 Rev. E iii

CONTENTS

PREFACE iii

CHAPTER 1 PROPERTIES AND ELEMENTS 01<' FORTRAN 1-1

1.1 The FORTRAN Character Set 1-1
1. 2 FORTRAN Statements 1-1

Statements 1-1
Continuations 1-2
Comments 1-2
Statement Label 1-2
Identification Field 1-2

1. 3 Symbolic Names 1-3
1. 4 Data Types 1-3
1..5 Constants 1-3

Integer 1-3
Real 1-4
Double Precision.- 1-4
Complex_. 1-5
Logical- 1-5
Hollerith 1-6
Octal 1-6

1. 6 Variables 1-7
Variable Names 1-7
Types of Variables 1-7
Extended Core Storage ...:a 1-8
Arrays 1-8
Order of Array Storage 1-8
Subscripted Variables 1-9

CHAPTER 2 EXPRESSIONS 2-1

2.1 Arithmetic Expressions 2-1
2.2 Relational Expressions 2-3
2.3 Logical Expressions 2-5
2.4 Masking Expressions- 2-6
2.5 Evaluation of Expressions 2-8

60176600 Rev. E v

CHAPTER 3 ASSIGNMENT STATEMENTS 3-1

3.1 Arithmetic Assignment- 3-1
Mixed-Mode 3-2

3.2 Logical Assignment 3-3
3.3 Masking Assignment 3-3

CHAPTER 4 CONTROL STATEMENTS 4-1

4.1 GO TO Statements 4-1
Unconditiopal GO TO 4-1

4.2 Assigned GO TO 4-1
Computed GO TO 4-3

4.3 IF Statements 4-4
Arithmetic IF Three-Branch 4-4
Arithmetic IF Two-Branch 4-5
Logical IF 4-5
Logical IF Two-Branch 4-6

4.4 DO Statement 4-6
DO Nests 4-7
DO Loop Execution 4-8
CONTINUE 4-12

4.5 CALL 4-12
RETURN 4-14

4.6 Program Control 4-14
STOP 4-14
PAUSE 4-15
END 4-15

CHAPTER 5 INPUT/OUTPUT STATEMENTS 5-1

5.1 Modes of Input/Output 5-1
5.2 I/O Lists 5-1
5.3 Read/Write Statements 5-2
5.4 Formatted Input/Output 5-2

Read 5-2
Input File 5-3
Write 5-3
Print/Punch 5-4
Print Control 5-4

5.5 Unformatted Input/Output 5-5
Read 5-5
Write 5-5

5.6 N amelist Statement 5-6
Input Data 5-7
Output Data 5-9

5.7 Rewind 5-9
5.8 Backspace 5-9
5.9 Endfile 5-10
5.10 ECS I/O 5-10
5.11 Mass Storage I/O 5-10

vi 601 76600 Rev. D

CHAPTER 6 FORMAT STATEMENTS 6-1

6.1 Format Declaration 6-1
Field Descriptors 6-1
Field Separators 6-2

6.2 Conversion Specification 6-2
Iw Input 6-3
Iw Output 6-3
Ew.d Input 6-4
Ew.d Output 6-7
Fw.d Input 6-7
Fw.d Output 6-8
Gw.d Input 6-9
Gw.d Output 6-9
Dw.d Output 6-10
Dw.d Input 6-10
Ow Output 6-10
Ow Input 6-10
Aw Output 6-11
Aw Input 6-11
Rw Output 6-12
Rw Input 6-12
Lw Output 6-12
Lw Input 6-12
Complex Conversions 6-12
nP Scale Factor 6-13

6.3 Editing Specifications 6-14
nX 6-14
nH 6-15
New Record 6-16

* * f- . .. f- 6-17 ...
Tn 6-17

6.4 Repeated Format Specifications 6-18
6.5 Variable Format 6-19

CHAPTER 7 AUXILIARY INPUT/OUTPUT STATEMENTS 7-1

7.1 Buffer Statements 7-1
Buffer In 7-2
Buffer Out 7-2

7.2 ENCODE/DECODE Statements 7-2
Encode 7-3
Decode 7-4

CHAPTER 8 SPECIFICATION AND DATA STATEMENTS 8-1

8.1 Dimensions 8-1
Variable Dimensions 8-2

8.2 Common 8-3
Labeled Common 8-3
Unlabeled Common 8-4
Arrangement of Common Blocks 8-4

60176600 Rev. E vii

8.3 Equivalence 8-5
8.4 External 8-7
8.5 TYPE 8-7
8.6 DATA 8-8

CHAPTER 9 PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA, 9-1
AND LIBRARY ROUTINES

9.1 Main Program 9-1
9.2 Subroutine Subprograms 9-2.1

ENTRY Statement 9-5
Library Subroutines 9-6

9.3 Function Subprograms 9-7
Statement Functions 9-7
Intrinsic Function 9-8
External Function 9-8
External Function Reference 9-9
Basic External Functions 9-10

9.4 Block Data Subprogram 9-10

CHAPTER 10 OVERLAYS AND SEGMENTS 10-1

10.1 Overlays 10-1
10. 2 Segments 10-3

Segment Control Cards 10-4
Sections 10-4
Segments 10-5

CHAPTER 11 DEBUGGING FACILITY 11-1

11.1 Format 11-2
11. 2 Arrays Statement 11-2
11. 3 Calls Statement 11-3
11. 4 Funes Statement 11-5
11. 5 Stores Statement 11-6
11. 6 Gotos Statement 11-7
11. 7 Trace Statement 11-7
11. 8 Nogo Statement 11-8
11. 9 Deck Structure 11-9
11.10 Debug Statement 11-14
11.11 Area Statement 11-15
11.12 Off Statement 11-16
11.13 Printing Debug Output 11-17

CHAPTER 12 FORTRAN CONTROL CARD 12-1

12.1 Control Card Format 12-1
12.2 Source Input Parameter 12-1
12.3 Binary (Object) Output Parameter 12-2
12.4 List Parameter 12-2

viii 60176600 Rev. F

12.5 Error Traceback and Calling Sequence Parameter 12-3

12.6 Update Parameter (Editing Parameters) 12-3

12.7 Optimization Parameter 12-4

Invariant Computations 12-5
Register Assignment 12-6

12.8 Rounded Arithmetic Parameter 12-9

12.9 Debugging Mode Parameter 12-9
12.10 Exit Parameter 12-9 I
12.11 System Text File Parameter 12-9
12.12 System Editing and I/0 Reference Parameter 12-10
12.13 Assembler Parameter 12-10
12.14 Control Card Examples 12-10
12.15 Small Buffers 12-11 I 12.16 Reference Map Level 12-11

APPENDIX A SOURCE PROGRAM CHARACTERS A-1

APPENDlX B FORTRAN DIAGNOSTICS B-1

APPENDIX C CROSS REFERENCE MAP C-1

APPENDlX D LIBRARY SUBPROGRAMS D-1

APPENDlX E INTERMlXED COMPASS SUBPROGRAMS E-1

APPENDlX F STATEMENT FORMS F-1

APPENDIX G SYSTEM ROUTINE SPECIFICATIONS G-1

APPENDIX H DECK STRUCTURE H-1

APPENDlX I OBJECT TIME I/O I-1

APPENDIX J SUBPROGRAM AND MEMORY STRUCTURE J-1

APPENDIX K FORTRAN-INTERCOM INTERFACE K-1

INDEX Index-1

60176600 Rev. F ix

~

Q)

0
r....i.
~
Q)
Q)

0
0

I FOR, TR..A.N" CODIN"G FQR_l\I.[-I

PROGRAM SAMPLE PROGRAM CONT~Ol DATA NAME
ROUTINE lel:l:i•i:W~lllel.48 DATE

1--.;;..;..;;.;...~~~~~~~~~"""'T'~~~~~~
PAGE OF

~1STATE-1g1 FORTRAN STATEMENT I
PMENTN Q:ZERO i=ONE 2=TWO

E NO. T. 0: ALPHA 0 I: ALPHA I i!: ALPHA

SERIAL
NUMBER

·1--1--1--,--1--1--1--l--l-+·l--l--l--j--l--l--J-+-l--l--l--l--l--j··i''i"J~l.'.-'~l'._7_l!.."~?

., ,_,,,,_, .. ,.,,_ .. ,_,~, .. ~_l_L

~~.J~~J~l--LL

Ll_L_j____L_J_j___l__

L.L _l.. L .J._j_J_J_J_L_.l.__l___L_ I .. l . l _ .1 _ L__l_ LJ __ _L__L_l____l__j _ _l__J_P_&LL_i¥.J ~l

__ LL LLL_LLJ .. L-t-1 I I LL.L.J_j__L_LL.L_l__L__ LL~1@1_!.1Y15 i L

LJ __ _L__L __l_L l_J_ LLJ._LL l__L. LL .1 I J _ _l _ _l_Ll__J__[__J_ _L j__J_ _ _j__J_ _J__l__L_J-~---.-~-.--~~~~-~-.

_ _l_l___j___J_J_ .1_ l .J ... 1 l L LLJ__L_L_ __l__J_ I I I I I ~~-i.!- 1:1°17L LL

,J1=121.1L1W1 I

_l_L_J___J__l___J_-1 _ _l__L I -l l J l LL~ L.L__l___J__l_l__L_.11· __ L-lp-1- ¢..LL1 Y-L8. 1 .J .!

l I I J__J_I _ : : _Ll__j___L_l__l _ _L ~1¢_iL1'J'.19_L.1_.J

_J j_J__J I I I I I I I I I P1¢..l.I.._iY1l_iQLl __J__j ___ j__

- Ll _1? 1-/~i.2.i~J_:'.LQ!.l~LL__l__l__L

W1_~i.!i_)_l~_J__j___J____L_J_L.J _j _J _L l !__J__L_l _L__'----L--'--L-L--'--'--

J_

I= 1 N
.l_LJ '1 L

L l

j_~~--L-~L~

t-------L- --L---'._---..L._....L._.......l,__l.__j~L_ l.- 1_ l .L_'--'--'--'----'--'----'--'f-'----'--'--'----'--'--'--'--'---+----'-+-p ~~i!i_!.i !.i
--'-- -'--'----'---'-~+-'----'---'-L_L_L_L_Lj_

_l_L__l__J_ I I _J_J_L.J_j_j_L_J_l '--'----'---'--'--'--'---'--+-J__J__l__j_l_j__J__l__J_j__L_f!'.101 L_ j~ ~_L3_J_ _J _

L_J___l_l_ _ _J__l_LLL_J _ _l__ -1 LL j__L_J__L_l_I I _l_L_J '---'---!f_1~1!-.JI11 L4 i - .L

LJ _ l _l__J_J___L_J__l___j____l__l__j__l___l_l__L__LL.l_l_ __ L_j _J _J__J__l__J___[__iJ _ _!__j___L_L_l___[__j __ l_ ~.J~LLJY11L51 L

'---'----+ -!_LJ_~JLL~L~LL l 1 LJ _ _J_ L J _ L _ LJ___J_J__J _ _L_l_L__l__l __[__l__l__l___l__J___J_---f-J----l--1- l_L_l__l__l pl fu.1.iX1116 L _J_

__ LJ _ _L_L_Jl l 1.l_ -'----'---jf-1.---L__L_-'-.L__l.-'---'---'--+ _l__l__J _ _l_l_ l .Ll.

.,, _1'..i_J_J__J~-"--~~-+-~~~~~~~ l_l I I .I l_L_Ll

I I , __ _l_LL.1_L_l__j_J__1!'&1L-1..¥.Ll.1_El_

I I I I _J__j_j J J _J 1 LLLL . ..L . L_ Pi ~l I.1 Y1-1:.i2.i__

--'---'-.i._+-f--1--'-'-..:;..L'--+---'---'--'-'-=-'--"-'--'--=-'--"----'--t _l_L_l_ .l. _.1_ -L L.l _ _l __ f__j___j_J_J__ __.__-'----'--'--'-+--'--

FOR'-'! 2~2· 8

Figure 1-1

1.1
THE FORTRAN
CHARACTER SET

1.2
FORTRAN
STATEMENTS

60176600 Rev. E

PROPERTIES AND ELEMENTS OF FORTRAN

Alphabetic:

Numeric:

Special:

A to Z

Oto 9

equals
+ plus
- minus
* asterisk
I slash
(left parenthesis

right parenthesis
, comma

decimal point
$ dollar sign

space (i.e. , blank)

1

In addition, any character of the SCOPE character set may be used in Holl
erith information and in comments.

FOR TRAN source programs consist of an ordered set of statements from
which the compiler generates machine instructions and constants. These
statements describe a procedure to be followed during execution of the
program.

The statements comprising the FORTRAN program are written in the fol
lowing columns:

Column Content

t
Statement label (optional)

Statements 6 Blank or zero
7-72 FOR TRAN statement
73-80 Identification field

r
Ignored

Statement 6 FOR TRAN character other than

Continuations blank or zero
7-72 Continued FORTRAN statement
73-80 Identification field

Comments { ~-80 C or$ or *
Comments

1-1

1-2

Except in Hollerith constants, blanks may be used freely and are ignored by
the compiler. A coding line may contain more than one FORTRAN statement
if each statement is separated by the special character $. The next column
following $ is interpreted the same as column 7 of a normal statement. A $
may serve as a statement separator for all statements except FORMAT, END,
or labeled statements.

Continuation

Any FOR TRAN statement except a comment, END statement, or loader
directive may be continued. A statement may be continued on as many as
19 lines, each denoted by a continuation character (any acceptable character
other than blank or zero) in column 6 on the continuation card. A blank or
zero in column 6 denotes the first line of a statement. Blank cards within
the input deck are ignored by the compiler; however, a continuation card
following a blank card is treated as a new statement. (See also chapter 11,
Debugging Facility.)

Comment

Comment information is designated by a C, *, or $ in column 1 of a state
ment. A comment statement has no effect upon the program. Comments
may be used to explain the logic of the program. They appear on the listing
2 through 80. Comments may not be continued by use of a continuation
character in column 6.

Statement Label

Statements are identified by unsigned integers which can be referred to
from other sections of the program. A statement label (from 1-99999) may
be placed anywhere in columns 1-5 of the initial line of a statement. Leading
zeros are ignored. In any program unit, each statement label must be unique.

Identification Field

The FORTRAN Extended compiler is designed so that input iines may be
greater than 80 characters long (e.g. , when the input medium is a file pro
duced by one of the source editing programs such as UPDATE). Only the
first 72 characters are processed by the compiler and only the first 100
characters appear on the listing. Positions beyond 72 may be used for
identification codes or sequencing.

60176600 Rev. E

1.3
SYMBOLIC
NAMES

1.4
DATA TYPES

1.5
CONSTANTS

1.5.1
INTEGER

60176600 Rev. E

A symbolic name may be any alphabetic character followed by 0-6 alphanu
meric characters. It may not contain special characters. Embedded blanks
are ignored. Symbolic names are used for: subprogram and subroutine
names, function names, variables, block data program, main program,
input/output unit, common block, and namelist group names.

Each of the seven types of data has different significance. The types are:
integer, real, double precision, complex, logical, octal, and Hollerith.

Integer type may assume only whole number values. For multiplication and
division of integer operands, the result is truncated to 48 bits. For addition
and subtraction, the full 60-bit word is used.

Real type data is carried in normalized floating point form. The magnitude
of values of real type data is in the range 10322 to lo-293 with approximately
15 significant digits and 14 digit precision.

Double precision data is similar to type real, but it has approximately 29
significant digits.<

Complex data consists of an ordered pair of real data. Each part has the
same precision as real data. The first part is the.real part, and the second
is the imaginary part.

Logical data has only a true or false value. True is represented by any
negative value, and false is represented by any positive value.

Octal data may consist of any value from 0-7 ... 7 which can be represented
in a maximum of 60 bits (20 octal digits).

Hollerith data consists of strings of characters. Blank characters are valid
in a Hollerith string.

A constant is an unvarying quantity. The types of constants are the same
as the types of data.

An integer constant is a string of up to 18 decimal digits with a magnitude
no larger than 259-1. If multiplication or division is specified, the operands
and result will be truncated to 48 bits. Effectively, an integer constant
string may contain up to 15 decimal digits with a maximum magnitude of
248-1. It may not contain embedded commas. For example:

1-3

1.5.2
REAL

1.5.3
DOUBLE PRECISION

1-4

0 -2145637
67 45753576357

345 -77

The result of integer addition or subtraction must not exceed 259-1. Integers
used as subscripts and DO indexes are limited to 217 -2. The integer constant
may be positive, zero, or negative (if unsigned, it is assumed to be positive)
and must be within the allowed magnitude.

The maximl'm value of an integer constant as a result of a conversion from
a real constant is 248_1. The maximum value of an integer constant as a
result of multiplication or division must not exceed 248_1. If the value should
exceed the magnitude allowed, the high order bits are lost.

A real constant may be represented by a string of up to 15 significant decimal
digits. It contains a decimal point or an exponent representing a power of
10, or both. Real constants may be in the following forms:

n.n n. n.nE±s n.E±s nE±s .nE±s

!!. is the coefficient;~ signifies that the succeeding datum is the exponent;
and§.. is the base 10 exponent. The value of§.. must be in the range -308 to
+337. The plus sign may be omitted if§.. is positive. The magnitude of
non-zero absolute real values may be in the range 10-293 to 10322, with

up to 15 significant digits. If the range of the real constant is exceeded, the
constant is considered zero and a compiler diagnostic is issued.

Examples:

3.El (means 3.0x101; or 30.)

3.1415768 31.41592E-Ol

314.07 .31415E01

-3.14159E+279 .31415E+Ol

30E02 -30E02

A double precision constant is written as a string of digits and represented
internally by two words. The forms are:

.nD±s n.nD±s n.D±s nD±s

The D must al ways appear; the coefficient is n.; §_ is the exponent of base 10.

60176600 Rev. E

1.5.4
COMPLEX

1.5.5
LOGICAL

60176600 Rev. F

The plus sign may be omitted for positive .2_. The range is the same as that
of a real constant but is accurate to approximately 29 decimal digits. If
the range is exceeded, a compiler diagnostic is issued.

Examples:

3. 1415927D+ 1

3.1416DO

3131. 593D-03

3141. 593D3

31416. D-04

31416D02

A complex constant is an ordered pair of signed or unsigned real constants,
separated by a comma, and enclosed in parentheses (rl, r2). rl represents
the real part of the complex number; r2 represents the imaginary part.
rl and r2 must adhere to the magnitude specified for real constants. If
this range is exceeded, a compiler diagnostic is provided. Diagnostics also
occur when the pair contains integer constants, including (0, 0).

Examples:

FORTRAN Representation

(1., 6. 55)

(15. '16. 7)

(-14. 09, 1. 6E-03)

(0.,-1.)

Complex Numbers

1. + G.55i

15. + 16. 7i

-14. 09 + . OO!Gi

0. -1.0i

Logical constants assume only the values of true or false. When the com -
piler generates a value for the constant . TRUE. , it will generate a minus
one; for the constant FALSE. , a zero is generated. Logical constants
must be preceded and followed by a period and have the forms:

. TRUE. or . T .

. FALSE. or . F.

Example:

LOGICAL Xl,X2

Xl = .T.
X2 =.FALSE.

1-5

I

1.5.6
HOLLERITH

1.5.7
OCTAL

1-6

A Hollerith constant is of the form hHf, hRf (right justified), or hLf (left
justified). h is an integer constant whose value is greater than zero; _f
represents the Hollerith data and must contain exactly h characters. When
the hHf form is used, if h. is not a multiple of 10, the last word is left justi
fied and blank filled. Incomplete words in the hRf and hLf forms are binary
zero filled.

Blanks are significant in a Hollerith data string. Hollerith constants are
stored internally in display code. (See Appendix A.)

Hollerith constants may be used in arithmetic expressions, DATA and CALL
statements, and in function argument lists. If the constant is an operand of
an arithmetic operation, an informative diagnostic to that effect is issued.

Examples:

6HCOGIT0

4LERGO

3RSUM

3HSUM

The maximum number of characters allowed in a Hollerith constant depends
on its usage. fu an expression, h may not be greater than 10; in a DATA
statement, h is limited only by the number of characters that can be contained
in a maximum of 19 continuation lines. If more than 10 characters are given
in a DATA statement for such a constant, only the last word will have the
appropriate fill.

An octal constant consists of 1 to 20 octal digits followed by a B. The
form is:

If the constant exceeds 20 digits, or if a non-octal digit appears, a fatal
compiler diagnostic is issued. When fewer than 20 octal digits are specified,
the digits are right justified and zero filled.

Example:

2374216B

7777776B

777000777000777B

60176600 Rev. E

1.6
VARIABLES

1.6.1
VARIABLE NAMES

1.6.2
TYPES OF VARIABLES

60176600 Rev. E

A variable is a symbolic representation of a quantity that may assume
different values during execution of a program.

A variable name may be any combination of 1 to 7 alphanumeric characters,
must begin with an alphabetic character, and may contain embedded blanks.
It may not contain special characters. For a main program, the program
name may not appear as a symbolic name in any statement other than the
PROGRAM statement.

The type of a variable may be declared explicitly with the FORTRAN type
declarations. (The type of the data is converted to the type of the variable.)

For example:

INTEGER ABC123, GNU12, CATXXX, FIBEOUT, JOKER

REAL ISPY, JASONII, KOOR47, NVRT, SAMPLE

If integer and real variables are not declared explicitly, the type is deter
mined by the first character of the symbolic name. If the name begins with
I, J, K, L, M, or N, the variable is assumed to be integer.

115, JK26, KKK, LB02, NP456L, and MM are classed as integer variables
and must adhere to all limitations stated for that type. Variables beginning
with characters A-Hand 0-Z are considered to be real and must adhere to
all limitations stated for that type.

Complex, logical, and double precision variables must be declared explicitly
by a type declaration. The values which the variables represent must adhere
to the limitations stated for the corresponding type of constant.

Octal and Hollerith data can be entered into or used in any type variable.
When an octal or Hollerith constant is used in an arithmetic operation, it
is used as is without conversion. If the constant in question is not combined
with another type of variable or constant, it is considered to be of integer type.

Examples:

JX = 7HACCOUNT
JX is an integer variable containing a Hollerith constant.

IITT = 357215B
IITT is an integer variable containing an octal constant.

1-7

1.6.3
EXTENDED CORE
STORA.GE (ECS)

~-· .. -----· ~ --··--

1.6.4
ARRAYS

1.6.5
ORDER OF ARRAY
STORAGE

1-8

BC= 174B + 623B
Addition of octal constants is treated as an addition of two integer con
stants; the result is converted to the type defined for BC and stored.

KLM = 3. 14 - 35B
KLM is defined as integer. The octal constant assumes the type of the
other operand (real) and the result is real. That result is converted
to integer before being stored in KLM.

An ECS variable must be defined explicitly by a type declaration. This type
of data occupies a 60-bit word and resides in Extended Core Storage. ECS
variables may appear in the source program only in the following circum
stances:

In a COMMON statement as an element of an ECS common block

In a CALL or function reference as an actual parameter

In a SUBROUTINE or FUNCTION statement as a dummy parameter

In a TYPE ECS statement

In a DIMENSION statement

Only one common block may contain ECS variables, and all variables in the
block must be of type ECS.

An array is an ordered set of variables identified by a variable name. Each
variable in the array is referred to by the array name followed by a subscript
which indicates its relative position within the array. The entire array may
be referenced by the array name without subscripts when used as an item in
an input/output list or in a DATA statement. In an EQUN ALENCE state
ment, however, only the first element of the array is implied by the
unsubscripted array name.

Arrays may have one, two, or three dimensions and must be defined at the
beginning of the program in a DIMENSION, COMMON, or type statement.
When a reference is made to an array, if the subscripts exceed the magni
tude of the dimensions declared initially, a position outside the array will
be accessed. If the number of subscripts is greater than the number of
dimensions defined, a diagnostic is issued.

Arrays are stored in ascending storage locations, with the value of the first
of their subscripts increasing most rapidly and the value of the last increasing
least rapidly.

60176600 Rev. E

1.6.6
SUBSCRIPTED
VARIABLES

60176600 Rev. E

The following list shows the order of a three-dimension array A(3, 2, 3).
The first subscript varies from 1 to 3, the second varies from 1 to 2, the
third varies from 1 to 3.

A(l,1,1) A(2, 1, 1) A(l,2,1) A(2,2,l) A(3,2,l)=i A(3, 1, 1)

C:A(l, 1, 2) A(2,l,2) A(3,l,2) A(l, 2, 2) A (2, 2, 2) A(3, 2, 2) =i

CA(l, 1, 3) A(2,l,3) A(3, 1, 3) A(l,2,3) A(2, 2, 3) A(3, 2, 3)

Array allocation is discussed further under DIM.ENSION declaration. The
location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of array.

Given DIMENSIONA(L,M,N), the location of A(i,j,k), with respect to the
first element of the array, is given by A+ (i-l+L*(j-l+M*(k-l)))*E.

E is the element length, the number of storage words required for each
element of the array. For real, logical, and integer arrays, E = 1. For
complex and double precision arrays, E = 2.

Example:

In an array defined by DIMENSION A(3,3,3) where A is real, the loca
tion of A(2,2,3) with respect to A(l, 1, 1) is:

LocnA(2,2,3) = LocnA(l.1,1) + (2-1+3*(2-1+3*(3-l)))*l = LocnA+22

A subscripted variable is an alphanumeric identifier that is the name of an
array followed by up to three subscript expressions representing a single
element within the array. The elements of a subscript expression are
separated by commas and the expression is enclosed in parentheses. Sub
script expressions may be any legal arithmetic expression. If the number
of subscript expressions used in a reference is less than the declared di
mensionality, the compiler assumes missing subscripts have a value of one
(see examples below). If the subscript list does not appear, all subscript
expressions are assumed to be one, and an informative diagnostic is issued.

If the subscript expression is not integer, the value will be truncated to
integer.

FORTRAN Extended permits the following relaxation of the representation of
subscripted variables:

1-9

1-10

Given A(D1 ,D2 ,D3), where the Di are integer constants,

then A (I, J, K) implies A (I, J, K)

A (I, J) implies A (I, J, 1)

A(I) implies A(I, 1, 1)

A implies A(l, 1, l)t

Similarly for

A(D
1

,D
2

)

A (I, J) implies A (I, J)

A (I) implies A (I, 1)

A implies A (1, 1) t

and for A (D1)

A (I) implies A (I)

A implies A(l)t

The elements of a single-dimension array A(D1) may not be referred to as
A(I,J,K) or A(I,J). Diagnostics occur if this is attempted.

t Except in input/output lists and DATA statements.

60176600 Rev. E

2.1
ARITHMETIC
EXPRESSIONS

EXPRESSIONS 2

An expression is a constant, variable (simple or subscripted), function ref
erence, or any combination of these separated by operators and parentheses.
The four kinds of expressions in FORTRAN are: arithmetic and masking
(Boolean) expressions which have numerical values, and· logical and rela
tional expressions which have truth values. Each kind of expression is
associated with a group of operators and operands.

An arithmetic expression is formed with arithmetic operators and arithmetic
elements. Both the expression and its constituent elements identify values
of one of the types integer, real, double precision, complex, octal, or
Hollerith.

Arithmetic Operators

+ addition

subtraction

* multiplication

I division

** exponentiation

Arithmetic Operands

Constants

Variables (simple or subscripted)

Evaluated functions

Any unsigned constant, variable, or function reference is an arithmetic ex
pression. If X is an expression, then (X) is an expression. If X and Y are
expressions, then the following are expressions:

X+Y

X*Y

-x
+X

X-Y

X/Y

x ** y

An expression may not contain adjacent operators, such as X +/ Y. Omission
of an operator, as for implied multiplication (X) (Y), for instance, is not
valid and results in a compiler diagnostic.

The mode of an arithmetic expression is determined by the type specifications
of the variables in the expression. The following table indicates how the mode
is determined from the possible combinations of variables.

2-1

2-2

Table 1. Mixed Mode Arithmetic Expressions

+ - * I Hollerith Integer Real
Double

Precision

Integer Integer Integer Real
Double

Precision

Real Real Real Real
Double

Precision

Double Double Double Double Double
Precision Precision Precision Precision Precision

Complex Complex Complex Complex Complex

Octal Integer Integer Real
Double

Precision

Hollerith Integer Integer Real
Double

Precision

The following examples are valid expressions~

A

3.14159

B + 16.427

(XBAR +(B(I, J +I, K) /3))

-(C +DELTA* AERO)

(B - SQRT(B**2*(4*A*C)))/(2.0*A)

GROSS - (TAX*O. 04)

TEMP+ V(M, MAXF(A, B))*Y**C/ (H-FACT(K+3))

Complex

Complex

Complex

Complex

Complex

Complex

Complex

Octal

Integer

Real

Double
Precision

Complex

Integer

In~eger

The arithmetic operator denoting exponentiation (**) may be used to combine
constants, variables, expressions, and subscripted variables. Rules
governing the types of variables and constants used in the exponentiation
operation are given on the following page:

2.2
RELATIONAL
EXPRESSIONS

60176600 Rev. C

Base Exponent Result

Integer Integer Integer
Real Real
Double Precision Double Precision
Complex Complex

Real Integer Real
Real Real
Double Precision Double Precision
Complex Complex

Complex Integer Complex

Double Integer Double Precision
Precision Real Double Precision

Double Precision Double Precision
Complex Complex

The following examples illustrate how constants, variables, and expressions
may be combined using the arithmetic operator, **

Examples:

Expression ~ Result

CVAB**(I-3) Real **Integer Real

D**B Real**Real Real

C**I Complex**Integer Complex

BASE(M, K)**2.1 Double Precision Double Precision
**Real

K**5 Integer** Integer
Integer

314D-02** Double Precision Double Precision
3.14D-02 **Double Precision

A relational expression has the value true or false; it contains two arithmetic
expressions separated by a relational operator. The types of operands may be
combined in the same manner as defined for arithmetic operators. Only the
real part of complex elements are compared by relational operators, except
for. EQ. and .NE.

2-3

Relational operators indicate comparison operations between operands and
are enumerated below:

.EQ.

.NE.

.GT.

.GE.

.LT.

.LE.

Equal to (=)

Not equal to (~)

Greater than (>)

Greater than or equal to (2::)

Less than (<)

Less than or equal to (:;:;)

A relational expression has the form:

The ai are arithmetic expressions; op is an operator belonging to the above
set.

A relation is true if ~1 and !!_2 satisfy the relation specified by op; otherwise
it is false. A false relational expression is assigned a positive value; a
true relational expression is assigned a negative value. Relations are eval
uated as illustrated in the relation p. EQ. q, which is equivalent to the ques
tion: Does p - q = 0 ? The difference is computed; and if it is zero, the
relation is true; if the difference is not zero, the relation is false. Relational
expressions are converted internally to arithmetic expressions according to
the rules of mixed-mode arithmetic (Table 1). These expressions are eval
uated to produce the truth value of the corresponding relational expressions.

The order of dominance of the operand types within an expression is the order
stated for mixed mode arithmetic expressions.

In relational expressions, +O is considered equal to -0.

al op a2 op a3 ... is not a valid expression. The relations a1 op a
2

, a1 op
(a

2
) are equivalent.

Examples:

A .GT. 16. R(I) .GE. R(I-1)

R -Q(I)*Z . LE. 3. 141592 K . LT. 16

B-C . NE. D+E I . EQ. J(K)

(I) . EQ. (J(K))

2-4 601 76600 Rev. C

2.3
LOGICAL
EXPRESSIONS A logical expression is formed with logical operators and logical elements

and has the value true or.false. (The values have the same internal repre
sentation as for relational expressions, section 2. 2.)

Logical Operators Alternate Form

. OR. Logical disjunction . 0 .

. AND. Logical conjunction . A .

. NOT. Logical negation . N.

A logical expression has the general form:

L. are logical variables, logical constants, logical functions, logical expres-
1

sions enclosed in parentheses, or relational expressions; and op is the logical
operator . AND. indicating conjunction or . OR. indicating disjunction.

The logical operator that indicates negation appears in the form:

.NOT. L
1

Each expression is evaluated by scanning from left to right, with logical oper
ations being performed according to the following hierarchy of precedence.

first . NOT.

then .AND.

then . OR.

A logical variable, logical constant, or a relational expression is, in itself,
a logical expression. If L

1
, L

2
are logical expressions, then the following

are logical expressions:

. NOT. L
1

L
1

.AND. L
2

L
1

.OR. L
2

If Lis a logical expression, then (L) is a logical expression. If L1, L
2

are
logical expressions and op is .AND. or . OR., then Lop op L 2 is never
legitimate. However, . NOT. may appear in combination with .AND. or . OR.
only as follows:

2-5

2.4
MASKING
EXPRESSIONS

2-6

L1 .AND .. NOT. L
2

L1 .OR .. NOT. L
2

L1 .AND. (.NOT)

L1 .OR. (.NOT)

. NOT. may appear with itself only in the form . NOT. (. NOT. (. NOT. L))
Other combinations cause compilation diagnostics.

If L1, L 2 are logical expressions, the logical operators are defined as
follows:

.NOT. L 1
L

1
.AND. L

2
L

1
.OR. L

2

Examples:

1. B-C::sA::sB+C

is false only if L
1

is true

is true only if L
1

, L
2

are both true

is false only if L
1

, L
2

are both false

is written B - C . LE. A . AND. A. LE. B+c

2. FICA greater than 176. 0 and PAYNMB equal to 5889. 0
is written FICA. GT. 176. 0 .AND. PAYNMB . EQ. 5889. 0

3. An expression equivalent to the logical relationship (P - Q)

may be written in two ways:

. NOT. (P.AND. (.NOT. Q))

. N. (P.A.(. N. Q))

Masking expressions consist of masking operators and elements; they
resemble logical operations in appearance only.

In a masking expression, 60-bit logical arithmetic is performed bit-by-bit
on the operands within the expression. The operands may be any type vari
ables, constants, or expressions, other than logical. No mode conversion is
performed during evaluation. If the operand is complex or double precision,
operations are performed on the real part, or higher order word. Although
the masking operators are identical in appearance to the logical operators,
their meanings are different. They are listed according to hierarchy. The
following definitions apply:

.NOT. or .N.

.AND. or .A.

.OR. or .0.

bit-by-bit logical negation

bit-by-bit logical multiplication

bit-by-bit logical addition

The operations are described below:

E. ~ p.AND.v p.OR.v .NOT.p

1 1 1 1 0

1 0 0 1 0

0 1 0 1 1

0 0 0 0 1

If B. are masking expressions, variables or constants of any type other than
logi6al, the following are masking expressions:

.NOT.B1

If Bis a masking expression, then (B) is a masking expression . NOT. may
appear with . AND. or . OR. only as follows:

.AND .. NOT .

. OR .. NOT

. AND. (. NOT. . ..)

. OR. (.NOT)

Masking expressions of the following forms are evaluated from left to right.

A .AND. B .AND. C ...

A . OR. B . OR. C ...

Masking expressions must not contain logical operands.

Examples:

A 77770000000000000000

D 00000000777777777777

B 00000000000000001763

c 20045000000000000000

octal constant

octal constant

octal form of integer constant

octal form of real constant

2-7

2.5
EVALUATION OF
EXPRESSIONS

2-8

.NOT. A

A.AND. C

A. AND .. NOT. C

B.OR .. NOT.D

is 00007777777777777777

is 20040000000000000000

is 57730000000000000000

is 77777777000000001763

The last expression could also be written as B.O .. N.D

Evaluation of expressions is generally from left to right with the precedence
of the operators and parentheses (the deepest nested parenthetical subex
pression is evaluated first) controlling the sequence of operation. The pre
cedence of operators for arithmetic evaluation is shown below:

** exponentiation class 1

I division class 2

* multiplication class 2

+ addition class 3

subtraction class 3

relationals class 4

.NOT . class 5

. AND. class 6

.OR. class 7

(Function references may be considered to be class 1.)

In an expression with no parentheses or within a pair of parentheses in which
unlike classes of operators appear, evaluation proceeds in the above order
(lowest class operators first). In expressions containing like classes of
operators, evaluation proceeds from left to right (A **B**C is evaluated as
(A **B)**C).

All function references and exponentiation operations which are not evaluated
inline are evaluated prior to other operations.

When writing an integer expression, it is important to remember not only the
left-to-right scanning process but also if dividing an integer quantity by an
integer quantity yields a remainder the result will be truncated; thus 11/3 = 3.

An array element name (a subscripted variable) used in an expression re
quires the evaluation of its subscript. The type of the expression in which
a function reference or subscript appears does not affect, nor is it affected
by the evaluation of the actual arguments or subscripts.

The evaluation of an expression with any of the following conditions is
undefined:

Negative-value quantity raised to a real, double precision, or complex
exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand

Element for which a value is not mathematically defined, such as division
by zero

If the error traceback option is selected on the FTN card (Appendix C), the
first three conditions will produce informative diagnostics.

In the following examples, R indicates an intermediate result in evaluation.
A**B/C+D*E*F-G is evaluated:

A**B - R 1

R/C - R2
D*E - R3
R3*F - R4
R2-G-R5

R4+R5- R6 evaluation completed

A **B/(C+D) *(E*F-G) is evaluated:

A**B - R
1

C+D -R
2

R/R2 - R3
E*F - R4
R

4
-G -R

5

R3*R5 -R6 evaluation completed

H(13)+c(I,J+2)*(COS(Z))**2 is evaluated:

COS(Z) - R
1

R **2 -R 1 2

(Evaluation of the index function)

R2 *C(I,J+2) - R
3

R3+H(13) - R
4

evaluation completed

60176600 Rev. D 2-9

2-10

The following are examples of expressions with embedded parentheses:

A*(B+((C/D)-E).) is evaluated.

C/D -R
1

R -E :--- R
1 2

B+R
2

-R
3

A*R -R
3 4

evaluation completed

(A*(SIN(X)+l.)-Z)/(C*(D-(E+F))) is evaluated

SIN(X) - R1

Rl+l. - R2

A*R -R
2 3

R
3
-z - R

4
E+F -R

5

D-R5 - R6
C*R -R

6 7

R/R7 -R8
evaluation completed

60176600

3.1
ARITHMETIC
ASSIGNMENT

60176600 Rev. D

ASSIGNMENT STATEMENTS 3

Statements are classified as executable or nonexecutable; executable state
ments specify actions. Assignment statements are executable. They assign
values with four types of operations; arithmetic, logical, assign (Chapter 4),
and masking.

The general form of the arithmetic assi_gnment statement is v = e, where ~ is
a variable, simple or subscripted, other than logical; and~ is an arithmetic
expression. The = indicates that~ is assigned the value of the evaluated ex
pression~· Mode conversion occurs if~ is of a type different from ~·

Examples:

A= -A

B(I, 4)=CALC(l+l)*BETA+2. 3478

39 XTHETA = 7.4*DELTA/(A(I,J ,K)+BETA)

RESPONS=SIN(ABAR(INV+2,JBAR) /ALPHA(J, KAPL(I)))

4 JMAX = 19

AREA=SIDEl *SIDE2

PERIM=2. *(SIDE 1 +SIDE2)

Several variables may be assigned the value of the same expression with the
following form:

The value of expression~ is converted to the type of~ m and stored;~ m is
then converted to the type of ~m-l and stored. The process is repeated until
a value is stored in ~1 .

Example:

RATE=2. 0
DATA=6.9

DATA=DATA1=LDATA=DATA2=DATA*RATE

3-1

MIXED-MODE

3-2

The variable, DATA2, equals 13.8 from the expression DATA*RATE.
LDATA equals 13 by real-to-integer conversion. DATAl equals 13. 0
by integer-to-real conversion; then DATA equals 13. 0 by real-to-real
assignment.

The type of an evaluated expression is determined by the type of the dominant
operand; however, this does not restrict the types that identifier~ may
assume. ~may not be logical). A complex expression may replace ~' even
if ~ is real. TABLE 2 on page 3-4 shows the v = e relationship for all
standard modes. The mode of v determines the mode of the statement.

Examples:

Given: Ci,Al

Di,A2

Ri,A3

Ii,A4

Complex

Double

Real

Integer

(6.905, 15.393)=(4.4,2.l)*
< 3. o, 2. O) -< s. 3, 6. 8) I< L 1, 3. 4)

The expression is complex; the result of the expression is a two
word, floating point quantity. A

1
is complex, and the result re

places A
1

.

4. 4=(4. 4, 2. 1)

The expression is complex. A3 is real, therefore, the real part of
C

1
replaces A

3
.

2.1=(4. 4, 2. l)*
(0.,-1.)

The expression is complex. A 3 is real; the real part of the result
of the complex multiplication replaces A

3
.

13=8. 4/4. 2*(3.1-2.1)+14-(1*2. 3)

The expression is real. A 4 is integer, the result of the expression
evaluation, a real, is converted to an integer replacing A 4 .

60176600

3.2

LOGICAL
ASSIGNMENT

3.3
MASKING
ASSIGNMENT

5. A
2

=D**2*(D
2

+(D
3

*D
4

)) + (D
2

*D
1

*D
2

)

49. 68=2. OD0**2*(3. 2D0+(4.1DO*l. OD0))+(3. 2D0*2. OD0*3. 2DO)

The expression is double precision. A2 is double precision, the
result of the expression evaluation, a double precision floating quantity.
replaces A

2
.

In the general form of the logical assignment statement,

v=e

~ is a logical variable or subscripted variable, and~ is a logical expression.

Examples:

LOGICAL A, B, C, D, E, LGA, LGB, LGC
REAL F,G,H
A;= B.AND.C.AND.D
A = F. GT. G. OR. F. GT. H

5 A= .N.(A.A .. N.B).AND.(C.O.D)
LGA =.NOT. LGB

2109 LGC = E. OR. LGC. OR. LGB. OR. LGA. OR. (A. AND. B)

A multiple replacement statement of the following form is also allowed in
logical assignment statements:

In the masking assignment statement, v = e, ~is a masking expression, y is
a variable name and may be of any type other than logical. During the assign
ment, no mode conversion occurs, and the value of the expression is assigned
to the first word of .Y. if the type is double precision or complex with the least
significant or imaginary part set to zero.

Examples:

INTEGER I, J, K, L, M, N(l6)
REAL B, C, D, E, F(15)

N(2) =I. AND. J
B = C.AND. L

84 F(J) =I. OR .. NOT. L. AND. F(J)
N(~ =I.0.J.O.K.O.L.O.M
I=. N. I

3-3

3-4

A multiple replacement statement of the following form is also allowed in
masking assignment statements:

Table 2 enumerates the assignment of~ to ~· These rules apply only for
arithmetic assignment statements.

Table 2. Rules for Assignment of ~ to ~

v Type e Type Assignment

Integer Integer Assign

Integer Real Fix and As sign

Integer Double Precision Fix and Assign

Integer Complex t Fix and Assign Real

Part

Real Integer Float and Assign

Real Real Assign

Real Double Precision DP Evaluate and Real

Assign

Real Complex t Assign Real Part

Double Precision Integer DP Float and Assign

Double Precision Real Real Evaluate, DP Assign

Double Precision Double Precision Assign

Double Precision Complex t DP Float Real Part and Assign

Complex Integer t Float and Assign to Real Part, I

Complex Real t Assign Real Part, I

Complex Double Precision t DP Evaluate and Real Assign to
Real Part, I

Complex Complex Assign

tProhibited combination under USASI FORTRAN (but permitted in FORTRAN
Extended).

60176600 Rev. C

60176600 Rev. C

Assign indicates transmission of resulting value, without change, to entity.

Real Assign indicates transmission to entity, of as much precision as a
real value can contain.

DP Evaluate indicates evaluation of the expression according to rules ot
arithmetic expression evaluation.

Fix indicates truncation of any fractional part of the result and transformation
to an integer value.

Float indicates transformation to a real value.

DP Float indicates transformation to a double precision value retaining, in
the process, as much precision as a double precision value can contain.

Real Part refers to the real portion of the complex value.

I indicates the imaginary part of the complex value is set to zero.

3-5

4.1

GO TO ST A TEMENTS

UNCONDITIONAL
GO TO

4.2
ASSIGNED GO TO

60176600 Rev. C

CONTROL ST A TEMENTS 4

Control statements alter the sequence of operations or affect the number of
iterations of a program section. Control statement labels must be associated
with executable statements within the same program unit. Control may not
be transferred to a non-executable statement. See appendix F.

GO TOk

When this statement is executed, control transfers to the statement identified
by~·

Example:

GO TO 100
GO TO 9

ASSIGN k to i

~ is a statement label and!_ is an integer variable. Execution of this state
ment and subsequent execution of an assigned GO TO statement using the
value i causes the statement k to be executed next. The label must refer to - -
an executable statement in the same program unit containing the ASSIGN
statement. ~must be the label of an executable statement.

The integer variable.!_, once used in an ASSIGN statement, may not be ref
erenced in any statement other than an assigned GO TO or an ASSIGN state
ment until it has been defined in a replacement statement.

4-1

ASSIGNED GO TO

4-2

Example:

ASSIGN 10 TO KLOK

15 GO TO KLOK,(3, 12, 10,20)

12 CC = D+E -2*(F/G)

10 D = SQRT(B**C*(l-E))
ASSIGN 20 TO KLOK
GO TO 15

20 E =A+l.5

.!_is an integer variable, and Jsi are statement labels;.!_ must contain the
value assigned by a preceding ASSIGN statement and it must be one of the
statement labels in the list. At execution, control transfers to statement
identified by !s_. If the value .!_is defined by other than an ASSIGN statement,
a transfer is made to the absolute memory address represented by the low
order 18 bits of i.

Example:

ASSIGN 26 TO INDEX

10 GO TO INDEX, (3, 45, 26, 78, 6)
26 BASE (I) =BASE (I+l)*FACT*(CONST**2. 0)

ASSIGN 45 TO INDEX
GO TO 10

60176600 Rev. C

COMPUTED GO TO

60176600 Rev. F

k are the statement labels and i is a variable. This statement acts as a
clany-branch GO TO; i is preset or computed prior to its use in the GO TO

statement. Control transfers to~' if 1 ==.;; i:::: n. If !_is less than one or I
greater than n, a fatal error occurs. The comma separating the statement
number list and the index is optional, i. must not be specified by an
ASSIGN statement.

Example:

1=2
N=2

N=N*I

GO TO (100, 101, 18, 102, 103)N

Control transfers to the statement numbered 102.

Example:

ISWICH=l
GO TO (10, 20, 30) ISWICH(control transfers to 10)

KSWICH=ISWICH+l
GO TO (11, 41, 31), KSWICH(control transfer is to statement 41)

Another form of the statement may be used where .!_is replaced by~:

The value of~ is truncated and converted to integer and used in place ofj_.
Control transfers to the statement identified by the label, k·; where j is the
integer value of~ at the time of execution. If the value of dis less than one,
it is treated as equal to one; if it is greater than .!!_, it is treated as equal to
.!!.· The comma before~ is optional.

4-3

4.3
IF STATEMENTS

ARITHMETIC IF
THREE-BRANCH

4-4

Examples:

1.

2.

BRANCH=2.3
INDEX=4

GO TO (23, 33, 43, 53, 63), INDEX* BRANCH

Control transfers to statement 63 since the integer part of the evaluated
expression, INDEX*BRANCH, equals 9 and there is no ninth branch.

K=2
X=4.6

GO TO (10, 110, 11, 12, 13) ,X/K

Control is transferred to statement 110 since the integer part of the
expression X/K equals 2.

~ is an arithmetic expression of type integer, real, double precision, or
complex, and k. are statement labels. For complex, only the real part is

-1
used in selecting the branch. Execution of the statement results in evalua-
tion of e and transfer of control as follows:

e < 0

e = 0

e > 0

to statement k
1

to statement k
2

to statement k
3

60176600 Rev. C

ARITHMETIC IF
TWO-BRANCH

LOGICAL IF

60176600 Rev. D

Example:

I= -2
K = 1
J = 3

1 IF (I*K*J) 2, 3, 4 (control transfers to 2)
2 LDD=LDD+l

GO TO (40, 50 ,60) LDD
40 IF (X*Y*SIN(X))ll, 12, 13

A second form of the Arithmetic IF statement; an arithmetic two-branch IF
is allowed.

~ may be a masking or arithmetic expression;~ is evaluated and control is
transferred as follows:

e ;if 0

e = 0

Example:

to statement k
1

to statement k
2

IF (I*J*DATA(K))lOO, 101
100 IF (I*Y*K) 105, 106

IF (e) s

~is a logical expression and§. is any executable statement except a DO .state
ment or another logical IF statement. If the value of~ is false, statement§.
is treated as if it were a CONTINUE statement. If the value of ~is true, s is
executed.

4-5

LOGICAL IF
TWO-BRANCH

4.4
DO ST A TEMENT

4-6

Example:

B4=DATA(I)

YMAX=B(ILAST)
YMIN=B(IFRST)

16 IF (B4.GE. YMIN.AND. B4. LE. YMAX) GO TO 109
101 INDEX=INDEX+l

GO TO 110
109 KDEX=KDEX+l

If B4 is satisfied by the condition, YMIN::::: B4 ::::: YMAX, control transfers
from statement 16 to 109. If the condition is not satisfied, execution resumes
at statement 101.

Another form of the logical IF may be a two-branch statement:

If the logical statement is true, the statement identified by statement label
~l is executed next, if false the statement ~2 is executed.

The DO statement makes it possible to repeat a sequence of statements and
change the value of an integer control variable during the repetition. A DO
statement takes one of the forms:

or

The executable statement labeled!! is the terminal statement of the sequence
to be repeated and must physically follow and be in the same program unit
as the DO statement.

60176600 Rev. C

DO NESTS

60176600 Rev. C

Example:

DO 100L=300, 400
IF(B(L)) 101, 100

101 B(L-lOO)=B(L)
100 CONTINUE

Statement!!. (100 in the example) may not be a GO TO of any form, arithmetic
IF, RETURN, STOP, PAUSE, DO, two-branch logical IF, or a logical IF
followed by any of the preceding statements.

The simple integer variable .!_is the control variable; mi are the indexing
parameters; m 1 is the initial value of.!., ~ is the terminal value of 1 and
~ is the incrementing parameter. mi may be either integer constants or
simple integer variables. If .!!!.a is not specified, a value of one is implied.
At execution of the DO statement, m 1 , m 2 and !!!3 must be greater than zero.
The range of each DO contains all executable statements between and including
the first executable statement after the DO and the terminal statement identi
fied by!!·

When a DO loop contains another DO loop, the grouping is called a DO nest.
Nesting may be to 50 levels. Either the last statement of a nested DO loop
must be the same as the last statement of the outer DO loop or it must occur
before it. If D1 , D2, ... Dm represent DO statements where the subscripts
indicate that D1 appears before D2 appears before D3 and n 1, n2 , ... , nm re
present the corresponding limits of the Di, then nm must appear at or before

nm-1·

Examples:

DO loops may be nested in common with other DO loops:

a.
Dl

b.
Dl

c.
Dl

[2 [D2 D2 c: D3 n2

n2 [D3 nl =n2=n3

[D4 n3

n4
nl

nl

4-7

DO LOOP
EXECUTION

The preceding diagrams would be coded as follows:

a. DO 1 I=l, 10, 2 b. DO 100 L=2, LIMIT

DO 2 J=l, 5 DO 10J=l,10

DO 3 K=2,8 10 CONTINUE

3 CONTINUE DO 20 K=Kl,K2

2 CONTINUE 20 CONTINUE

DO 4 L=l,3 100 CONTINUE

4 CONTINUE

1 CONTINUE

c. DO 5 I=l, 5
DO 5 J=I, 10
DO 5 K=J,15

5 A= B*C

The loop defined by a DO .statement is executed as follows:

1. The c~mtrol variable .!_is assigned the value represented by the
initial parameter m 1. The value of m 1 should be less than or equal
to the value of the terminal parameter m 2; otherwise, the DO loop
is executed only once. (The control variables of each nested DO
loop m\J.St be unique.)

2. The range of the DO is executed.

3. After the DO is executed, the control variable is incremented by the
value m

3
(or by one if m

3
is not specified).

4. If the value of the control variable .!_after it is incremented by m
3

is
less than or equal to the value of the terminal parameter m 2 , execu
tion of the range of the DO loop is repeated. When the value .!_is
greater than the value of m 2 , the DO has been satisfied and the
control variable .L becomes undefined (the value of.!_ may be greater,
less than or = to m 2 at the termination of the loop execution, there
fore its value cannot be assumed).

4-8 60176600 Rev. C

60176600 Rev. D

5. If the DO is nested, the control variable i. of the next outer DO is
incremented by .!!!.3 and execution continues repeating steps 4 and 5
until all the DO statements referencing this terminal statement are
satisfied. After the last DO is satisfied, execution continues with
the first executable statement following its terminal statement.

6. If m 1 , m 2 , or m 3 are constants which exceed 2
17

-2, a diagnostic
notes the error and the control variable is used modulo 217 -1 for
iteration of the DO loop.

Before the DO is satisfied, an exit may be made from its range
through an IF or a GO TO statement. In this case, the control

. variable retains the value last assigned to it before the exit.

Example:

DO 20 I=l, 200
IF(I-3) 20, 10, 10

20 CONTINUE
10 I9=I

An exit from the range of the DO is made to statement 10 when the
value of the control variable I is equal to 3. The value of the integer
variable, I9 is equal to 3, since the last value assigned to I before
the exit from the DO tange was 3.

A DO has an extended range if both of the following conditions are satisfied:

1.

2.

A GO TO or an IF statement within the range of a DO nest transfers
control outside the nest

A GO TO statement or an IF statement outside the nest causes con
trol to re-enter a DO loop or nested set of DO loops as illustrated
below.

4-9

4-10

Examples:

2. 3.
D5 D2

1.

Al
----A

-------Bl

------B

~~~---c 
n5 I 

I 
A3 I 

I 
'D6 I 

I 
n3 I 

I 
------B2 --- --, I 

I I [D4 - -- - -1-_J 

I 
n6 

I 
n4 I 

I 
------B3 A4 I 

I 

n2 
_ _.: __ J 

Example 1 shows an exit at point A. Any re-entry into D1 may be made as 
illustrated at point B or at any subsequent point within the indicated loop. 

Example 2 shows three nested loops with. D3 and D4 being parallel. An exit 
is made at point A1 , re-entry into D2 may be made at points B1 , B2 , or B

3
. 

However, re-entry cannot be. made into D3 or D4 because the control variables 
for those loops have not been defined. If an exit is made from point A

2
, re

entry may be made at C, B1 , B2 or B
3 

but not at any other points within the 
other loops. 

The third example illustrates the capability of specifying an extended range 
DO loop within the extended range of another loop. Loop D5 has an extended 
range which is entered at point A

3
; the loop n

9
, which also has an extended 

range beginning at point A
4

, is contained withm the extended range of n5 . 

If both conditions are satisfied, the extended range is defined as all state
ments that may be executed between pairs of control statements, the first of 
which satisfies condition 1 and the second of which satisfies condition 2. 
A GO TO or an IF statement may not cause control to pass into the range of 
a DO unless it is being executed as part of the extended range of that particu
lar DO. 

The control variable !.. and the parameters m1 , m2 , and m
3 

may not be rede
fined during execution of the immediate or extended range of that DO. When 
parameters are redefined during execution, the results are unpredictable. 
An informative diagnostic is issued for redefinition during an immediate 
range. 

60176600 Rev. C 



60176600 Rev. C 

When a statement is the terminal statement of more than one DO loop, the 
label of that terminal statement may not be used in any GO TO or IF state
ment in the nest, except in the range of the innermost DO. 

Example: 

DO 10 J=l, 50 
DO 10 I=l, 50 
DO 10 M=l, 100 

GO TO 10 

10 CONTINUE 

When the IF statement is used to bypass several inner loops, different 
terminal statements for each loop are required. 

Example: 

DO 10 K=l, 100 
IF(DATA(K)-10.) 20, 10, 20 

20 DO 30 L=l,20 
IF(DATA(L)-FACT*K-10. )40, 30,40 

40 DO 50 J=l, 5 

GO TO (101, 102, 50), INDEX 
101 TEST=TEST+l 

GO TO 104 
103 TEST=TEST-1 

DATA(K)=DATA(K)*2. 0 

50 CONTINUE 
30 CONTINUE 
10 CONTINUE 

GO TO 104 
102 DO 109 M=l, 3 

109 CONTINUE 
GO TO 103 

104 CONTINUE 

4-11 



CONTINUE 

4.5 
CALL 

4-12 

CONTINUE 

This statement is most frequently used as the last statement of a DO loop to 
provide a loop termination when a GO TO or IF would normally be the last 
statement of the loop. If CONTINUE is used elsewhere in the source program 
it acts as a do-nothing instruction and control passes to the next sequential 
program statement. 

Example: 

DO lOK = 1, 200 
DAT A(K) =DATB(K + 1) 

10 CONTINUE 

The CALL statement, which transfers control to a subroutine subprogram, 
may take one of the following forms: 

CALL s (a1,a2 , ... ,an) 

CALL s 

CALL s (a1,a2 , ... ,an)' RETURNS (b
1
,b2 , ... ,bm) 

CALL s, RETURNS (b
1

,b
2

, ... ,bn) 

~ is the name of a subroutine and ~ are actual arguments which correspond to 
dummy arguments specified in the subroutine subprogram. Qi parameters 
indicate labels of statements in the current calling program or subprogram. 
The total number of parameters, ai + bi, should not exceed 63. 

The arguments (ai) appearing in the statement may be constants, variables, 
array element names, array names, the name of an external procedure, etc. 
(seep. 9-4). These arguments must correspond in number, order and type 
with those specified in the SUBROUTINE statement (see chapter 9 for an 
explanation of this statement) . 

The parameters Qi must be specified with the RETURNS if alternate exits are 
taken from the subroutine. If alternate exits are not taken, this specification 
may be omitted, and control returns to the statement immediately following 
the CALL. These parameters must also correspond to similar parameters 
specified in the subroutine. 

The return of control from the designated subroutine completes the execution 
of the CALL statement. 

60176600 Rev. D 



60176600 Rev. C 

Example: 

PROGRAM MAIN (INPUT, OUTPUT) 

10 CALL XCOMP(A, B, C), RETURNS(lOl, 102, 103, 104) 

101 CONTINUE 

GO TO 10 
102 CONTINUE 

GO TO 10 
103 CONTINUE 

GO TO 10 
104 CONTINUE 

END 

SUBROUTINE XCOMP (Bl,B2,G),RETURNS (Al,A2,A3,A4) 
IF(Bl *B2-4. 159) 10, 20, 30 

10 CONTINUE 

RETURN Al 
20 CONTINUE 

RETURN A2 
30 CONTINUE 

/ 
~VD ....._ D 

/r" 
IF (B1)40, 50 

40 RETURN A3 
50 RETURN A4 

END 

4-13 



RETURN 

4.6 
PROGRAM CONTROL 

STOP 

4-14 

RETURN or RETURN a 

~ is a formal parameter (as indicated in the RETURNS list). 

Example: 

SUBROUTINE XYZ, (P, T, U), RETURNS( A, B, C) 

IF (P*T*U)l,2,3 
1 CONTINUE 

RETURN A 
2 CONTINUE 

RETURN B 
3 RETURN C 

END 

The statement, RETURN~' can appear only in a subroutine subprogram. 
Execution of this statement returns control to the statement number corres
ponding to~ in the RETURN list. 

A RETURN statement marks the logical end of a procedure (subroutine or 
function) subprogram and may appear only in a procedure subprogram. In a 
subroutine subprogram, a RETURN statement returns control to the next 
executable statement following the CALL statement of the current calling 
program. In function subprograms, a RETURN statement returns control to 
the statement containing the function reference. 

STOP n or STOP 

.!! is a string of 1-5 octal digits. 

When a STOP statement is encountered, n is displayed in the dayf ile, the 
executable program terminates and control returns to the monitor. If n is 
omitted, blanks are implied. 

60176600 Rev. C 



PAUSE 

END 

60176600 Rev. C 

PAUSE n or PAUSE 

!!. is a string of 1-5 octal digits. 

When a PAUSE statement is encountered, the executable program halts and 
PAUSE!!. appears as a dayfile message on the display console. The operator 
can continue or terminate the program with an entry from the console. The 
program continues with the next statement. If!!. is omitted, blanks are 
implied. 

END 

This must be the final statement and marks the physical end of the program 
or subprogram. It is executable in the sense that it effects termination of a 
main program or acts as a RETURN in a SUBROUTINE or FUNCTION, but it 
may not be labeled. 

4-15 





5.1 
MODES OF 
INPUT /OUTPUT 

5.2 
1/0 LISTS 

60176600 Rev. E 

INPUT/OUTPUT STATEMENTS 

The READ and WRITE input/output statements cause information to be 
transferred between internal storage and external devices. 

5 

Input and output can be formatted or unformatted. Formatted information 
consists of strings of characters acceptable to the FORTRAN processor. 
Unformatted information consists of strings of binary word values in the 
form in which they normally appear in storage. The transmission of for
matted information is always associated with a FORMAT statement, as des
cribed in chapter 6. Additionally, NAMELIST may be used for input/output 
as discussed in section 5. 6. 

The input list specifies the names of variables and array elements to which 
information is transmitted from the external device. The output list speci
fies the variables and array elements whose values are transmitted to the 
external device. Both lists may take any of the following forms. 

If no list appears on input, a record is skipped. Only Hollerith information 
from the FORMAT statement can be output with a null (empty) output list. 

A simple list consists of a variable name, an array name, an array element 
name, or a DO-implied list. 

If an array name without any subscripts appears in a list, the entire array 
(not just the first word of the array) is read or written. 

Multiple simple lists may appear, separated by commas, each of which 
may be enclosed in parentheses, such as:( ... ),( ... ). 

A DO-implied list is a simple list followed by a comma and a DO-implied 
specification, all enclosed in parentheses. 

5-1 



5.3 
READ/WRITE 
STATEMENTS 

5.4 
FORMATTED 
INPUT /OUTPUT 

READ 

5-2 

A DO-implied specification takes one of the following forms: 

or 

The elements_!_, m 1, m 2 and m 3 have the same meaning for the DO statement. 
The range of DO-implied specification is that of the DO-implied list. For the 
inp~t lists, _!_, m

1
, m

2 
and m

3 
may appear within that range only as sub

scripts. 

Elements of a list are specified in order of occurrence from left to right. 
The elements of a DO-implied list must be specified for the initial cycle 
of the implied DO. 

The parameters used with the READ/WRITE statements are defined as follows: 

u Identifies the input/ output unit; an integer constant or a simple 
integer variable. 

f Identifies the format specification; a FORMAT statement label or 
an array name. If !_is a statement label, the statement must appear 
in the same program unit as the input or output statement. 

k Input/output list indicating the data to be transferred. 

The statements discussed in this section pertain to the transmission of data 
according to a FORMAT specification. 

Information processed by the READ and WRITE statements is divided into 
records. Each time a READ or WRITE is executed at least one record is 
processed. It is not possible to read several parts of a single record with 
more than one READ statement. 

READ (u,f)k READ (u,f) READ f,k 

This statement transmits data from the external device for which the logical 
unit number is the integer value of ~· Information contained on ~ is scanned 
and converted in accordance with the format specification identified by_!. 
The values, as a result, are assigned to the element specified by the list, ~· 
However, if the list is omitted, this statement means the next logical record 
is bypassed (except for the case described on page 6-15 of reading Hollerith 
characters into an existing H field within a FORMAT statement). 

60176600 Rev. E 



INPUT FILE 

WRITE 

Example: 

READ (2, 10) (IDAT(I), I= 1, 10), C 
10 FORMAT (2X, 10(I5,2X),F3.2) 

DO 30K=l,10 
READ (2, 20) (B2(K, J), J=l, 5) 

20 FORMAT (5(F10. 2, lX)) 
30 CONTINUE 

READ f,k or READ f 

This statement results in the input of records from the SCOPE INPUT file. 
The theory of operation is the same as that described for the formatted READ 
statement. 

Example: 

READ 31, NAME, GREEN, HORNET 
31 FORMAT (A10,Fl0.3,E20.2) 

WRITE (u,f)k or WRITE (u,f) 

The above statements write formatted records on the logical unit specified 
by~· The parameters have the same meaning as described for the corre
sponding READ statement. The contents of the resulting records consist 
of the values of the list items in the order in which they appear in the list. 
The values represented by the list variables are converted according to 
the format specification, then transferred to the indicated output unit. 

Example: 

WRITE (6, 10) Ll, Bl, L2, B2 
10 FORMAT (2X,I5,1X,F5.2,I5,F9.3) 

DO 20J=1,10 
DO 20 K = 1, 10 

20 WRITE (4,26) DATAl(J,K), DATAl (J,K) 
26 FORMAT (2X, 15H THE VALUES ARE, 2F6. 2) 

If the list kin a formatted WRITE statement is omitted, the contents of the 
created record are dependent upon the corresponding FORMAT statement. 

Example: 

WRITE (4, 27) 
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES) 

60176600 5-3 



PRINT /PUNCH 

When the list~ is specified for formatted input or output, the corresponding 
FORMAT declaration must contain at least one conversion specification other 
than Hollerith. 

PRINT f ,k or PRINT f 

The information specified by k is transferred as line printer images to the 
SCOPE OUTPUT file ,IT36_Jh;racters or less per line in accordance with 
FORMAT declaration !._. -

Example: 

PRINT 20, DNAME 
20 FORMAT (X,AlO) 

When the list designation is omitted, the statement has the form illustrated in 
the following example: 

PRINT 20 
20 FORMAT (31H THIS IS THE END OF THIS REPORT) 

The first character of formatted records is not printed, but is used by the line 
printer to determine vertical spacing of records on a page. Appendix I, 
carriage control characters, lists the cQntrol options. 

PUNCH f, k or PUNCH f 

The information specified by k is transferred to the SCOPE PUNCH file as 
Hollerith images, 80 characters or less per card in accordance with FORMAT 
declaration!._. If the card image is longer than 80 characters, a second card 
is punched with the excess characters. Omission of~ is interpreted the same 
as for the PRINT statement. 

Example: 

PUNCH 30, JOHN 
30 FORMAT (X,17) 

5-4 60176600 Rev. D 



5.5 
UNFORMATTED 
INPUT /OUTPUT 

READ 

WRITE 

60176600 Rev. B 

The statements discussed herein transmit data without a FORMAT designation. 

READ (u) k or READ (u) 

This form of the READ statement is classified as unformatted because of the 
omission of the i parameter in the statement form. Execution of the state
ment results in the sequential assignment of values, as they are read, to the 
variables appearing in the list }5. The sequence of values required by the 
list may not exceed the length of the unformatted record. However, if the 
list is omitted, this statement serves merely to designate the bypassing of 
the next logical record; no information is transmitted from the source device. 

Examples: 

READ (30) 

READ (31) DATAl, DATA2,IDATA 

READ (32) (SUM(K), K=l, 100) 

READ (33) I, J, K, L, M, N 

WRITE (u) k or WRITE (u) 

This form of the WRITE statement creates the next record on the unit identi
fied by!!.· The contents of the record are the sequence oi values specified 
by the list _!s. 

Examples: 

WRITE ( 30) (DA TA(I), I=l, 100) 

WRITE (31) I, J, K, R 

WRITE (32) PAY, COST, BAL 

If the list is omitted from the statement, a null record is written on the out
put device. A null record is a record which consists of no data but contains 
all the other properties of a legitimate record. 

Example: 

WRITE (14) 

5-5 



5.6 
NAMELIST 
STATEMENT 

5-6 

The NAME LIST statement perm its the input and output of character strings 
consisting of names and values without a format specification. 

Each y is a NAMELIST group name consisting of 1-7 characters which must 
be unique within the program unit in which it is used. Each !!. is a list of the 
form b1 , b2 , .•• , bn; each being a variable or array name. 

In any given NAMELIST statement, the list~ of variable names or array 
names between the NAMELIST identifier y and the next NAMELIST identifier 
(or the end of the statement if no NAMELTST identifier follows) is associated 
with the identifier y. 

Examples: 

PROGRAM MAIN 
NAME LIST /NAME 1/Nl, N2, R 1, R2/NAME 2/N3, R3, N4, N 1 

SUBROUTINE XTRACT (A, B, C) 

NAMELIST/CALLl/Ll, L2, L3/CALL2/L3,P4, L5, B 

A variable name or array name may be an element of more than one such list. 
In a subprogram, Q. may be a dummy parameter identifying a variable or an 
array, but the array may not have variable dimensions. 

A NAME LIST group name may be defined only once in a program unit preced
ing any reference to it. Once defined, any reference to a NAME LIST name 
may be made in a READ, WRITE, PRINT, or PUNCH statement. The form 
of the input/output statements used with NAME LIST is as follows: 

READ (u,x) 

READx 

WRITE (u,x) 

PRINT x 

PUNCH x 

.'!:!_is an integer variable or integer constant denoting a logical unit, and x is a 
NAMELIST group name. 

60176600 Rev. D 



INPUT DATA 

Example: 

Assume A, I, and L are array names 

NAME LIST /NAMl/A, B, I, J/NAM2/C, K, L 

READ (5, NAMl) 

WRITE (8, NAM2) 

These statements result in the BCD (coded) input/outputs on the device 
specified as the logical unit of the variables and arrays associated with 
the identifiers, NAMl and NAM2. 

The current file on unit.!:!: is scanned up to an end-of-file or a record with a 
$in column 2 followed immediately by the name (NAMl) with no embedded 
blanks. Succeeding data items are read until a $is encountered. 

The data item, separated by commas, may be in any of three forms: 

v=c 

a= d
1

, ... , dj 

a(n) = d
1

, ... ,dm 

x_ is a variable name, ~ a constant, ~an array name, and .!!. is an integer 
constant subscript. d. are simple constants or repeated constants of the 

-1 
form k*c , where ~ is the repetition factor. 

Example: 

DIMENSION Y(3,5) 

LOGICAL L 

COMPLEX Z 

NAMELIST /HURRY/Il,12,13,K,M, Y, Z, L 

READ (5, HURRY) 

5-7 



5-8 

and the input record: 

$HURRY Il=l, L=. TRUE., I2=2,I3=3. 5, Y(3,5)=26, Y(l, 1)=11, 12. OEl, 13, 4*14, 
Z=(l., 2.), K=l6, M=l 7$ 

produces the following values in memory: 

Il=l 
I2=2 
I3=3 
Y(3, 5)=26. 0 
Y(l, 1)=11. 0 
Y(2, 1) =120. 0 
Y(3, 1)=13.0 

Y(l, 2)=14. 0 
Y(2, 2)=14. 0 
Y(3, 2)=14. 0 
y ( 1, 3) = 14. 0 
K=l6 
M=17 
Z=(l. ,2.) 
L=. TRUE. 

The number of constants, including repetitions, given for an unsubscripted 
array name must equal the number of elements in that array. For a sub
scripted array name, the number of constants need not equal, but may not 
exceed, the number of array elements needed to fill the array. 

v=c variable v is set to c 

a=d
1

, ... ,dj the values Q1, ... ,Q. are stored in consecutive elements 
of array a in the order in which the array is stored 
internally. 

a(n) =d
1

, ... , dm elements are filled consecutively starting at a(n) 

The specified constant of the NAME LIST statement may be integer, real, 
double precision, complex of the form (c 1,ci, or logical of the form. T., or 
. TRUE., .F., or. FALSE. A logical or complex variable may be set only 
to a logical and complex constant, respectively. Any other variable may be 
set to an integer, real or double precision constant. Such a constant is con
verted to the type of its associated variable. 

Constants and repeated constant fields may not include embedded blanks. 
Blanks, however, may appear elsewhere in data records. 

A maximum of 150 characters per input record is permitted. More than one 
record may be used for input data. All except the last record must end with 
a constant followed by a comma, and no serial numbers may appear; the first 
column of each record is ignored. 

The set of data items may consist of any subset of the variable names 
associated with x. These names need not be in order in which they appear 
in the defining NAMELIST statement. 

601 76600 Rev. C 



OUTPUT DATA 

5.7 

REWIND 

5.8 
BACKSPACE 

60176600 Rev. D 

When a NAMELlST group name is referenced in a WRITE (u,x), PRINT x, 
or PUNCH x statement, the entire list associated with that name is output as 
BCD information. Output consists of at least three records. The first record 
is a $ in column 2 followed by the group identifier x; the last record is a $ in 
column 2 followed by the letters END. Between these two records are as 
many records as necessary to output the current values of all variables in the 
list associated with x. 

Each variable or array is output as a separate record, with no data appearing 
in column 1 of any record. Simple variables are output as v = c. Elements 
of dimensioned variables are output in the order in which they are stored 
internally. Logical constants appear as T and F. The data fields are made 
large enough to include all significant digits. 

The records output by a WRITE (u,x) statement may be read by a READ (u,x) 
statement. The maximum length of a record written by a WRITE (u,x) state
ment is 130 characters. If unit.!! is the standard punch unit and a record to 
be output contains more than 80 characters, a second card is used for the 
record. 

REWIND u 

This statement positions unit!!. at its initial point. If the statement is not 
applicable to the unit specified or!!. is at the initial point, the statement has 
no effect. 

Example: 

REWIND 31 

REWIND L 

BACKSPACE u 

Execution of this statement positions unit.!! so that what had been the preceding 
user logical record becomes the next record. If the statement is not applicable 
to the unit specified or unit!!. is at the initial point, the statement has no effect. 

Example: 

BACKSPACE 40 

BACKSPACE K 

5-9 



5.9 
END FILE 

5.10 
ECS 1/0 

5.11 
MASS 
STORAGE 1/0 

5-10 

ENDFILE u 

\Vhen this statement is executed, an end-of-file record is written on unit u. 
The end-of-file record indicates a demarcation of a file. 

Example: 

ENDFILE 31 

ENDFILE M 

The following statements result in data transmission between ECS (Extended 
Core Storage) and central memory. 

CALL READEC (a,b,n) 

CALL WRITEC (a, b, n) 

a Simple or subscripted variable located in central memory. 

b Simple or subscripted variable located in ECS common block. 

n Integer constant or integer expression. 

When either statement is executed, !!. consecutive words of data are trans
mitted between central memory and ECS beginning at location~ in central 
memory and Q in Extended Core Storage. 

Four object time subroutines control record transmission between central 
memory and a mass storage device. The references to these routines take 
the following forms: 

CALL OPENMS (u,ix,.Q,p) 

CALL READMS (u,fwa, n, i) 

CALL WRITMS (u,fwa,n,i) 

CALL STINDX {u,ix,.Q) 

g_ Logical unit number. 

ix First word address of the index (in central memory) . 

.Q Length of the index; .Q ::::: 2 (number of index entries)+! for a name 
index; .Q 2: number of index entries+! for a number index. 

60176600 Rev. C 



60176600 Rev. F 

E_=l Indicates the file is referenced through a name index, p=O 
indicates a number index. 

fwa Central memory address of the first word of the record. 

~ Number of central memory words to be transferred. 

Record number or the address of a cell containing the record 
name (left justified display code with binary zero fill, 1 to 7 
characters) or number. 

OPENMS is used to open the mass storage file. This routine informs SCOPE 
that this file is a random access file; and if the file exists, the master index 
is read into the area specified by the program. OPENMS must be called 
before READMS, WRITMS, and STINDX. 

The routines READMS and WRITMS perform the actual transfer of data to 
or from central memory. 

STINDX is called to change the file index to the base specified in the CALL 
(See Appendix I for further information and examples concerning the use of 
these routines. ) 

The random access name must be left justified display code, from 1-7 char
acters long, with binary zero fill. 

5-11 

I 





6.1 
FORMAT 
DECLARATION 

FIELD DESCRIPTORS 

60176600 Rev. E 

FORMAT STATEMENTS 6 

The FORMAT statement is used in conjunction with the input/output of for
matted records to indicate the manner of converting and editing information 
between the internal representation and the external character strings. 

q series of slashes (optional) 

t field descriptor or groups of field descriptors 

z field separator 

n may be zero 

The FORMAT declaration is non-executable and may appear anywhere 
in the program. It must have a statement label in columns 1-5. 
FORMAT statements are analyzed for validity by the compiler. 
Diagnostics are provided. 

The format field descriptors are: 

srEw.d 

srFw.d 

Single precision floating point with exponent 

Single precision floating point without exponent 

srGw.d 

srDw.d 

Single precision floating point with or without exponent 

Double precision floating point with exponent 

rlw 

rLw 

rAw 

rRw 

rOw 

nHh h
2 
••• h 

1 n 

nX 

* ... * or =f ••• =f 

Tn 

Decimal integer conversion 

Logical conversion 

Alphanumeric conversion 

Alphanumeric conversion 

Octal integer conversion 

Hollerith character control 

Intraline spacing 

Hollerith string delimiters 

Column tabulation 

6-1 



FIELD SEPARATORS 

6.2 
CONVERSION 
SPECIFICATION 

6-2 

E, F, G, D, I, L, A, R, O, H, X, and Tare the conversion codes which 
indicate the type of conversion and editing. 

}Y' and!!. are non-zero integer constants which represent the field width in the 
external character string. !!. used with T indicates the beginning column 
position for subsequent information . 

.9.. is an integer constant which represents the number of digits in the frac
tional part of the external character strings (except for G conversion). 

£.is the repeat count. It is represented by an optional non-zero integer 
constant and indicates the repetition factor of the succeeding basic field 
descriptor . 

.§..is optional and represents a scale factor . 

.h. is one of the characters in the machine character set. 

* or f. is used to delimit Hollerith strings. (f prints as ' on many printers.) 

For all descriptors, the field width }Y or!!. must be specified. If .9.. is not 
specified for w. d, it is assumed to be zero. 

The two format field separators are the slash (/) and the comma (,). Series 
of slashes are another form of field separator. Field separators are used 
to separate field descriptors and groups of field descriptors. The slash 
is also used to specify demarcation of formatted records. 

Leading blanks are not significant in numeric input conversions; other 
blanks are treated as zeros. Plus signs may be omitted. An all blank 
field is considered to be minus zero, except for logical input, where an all 
blank field is considered to be FALSE. When an all blank field is read 
with a Hollerith input specification (R or A), each blank character will be 
translated into a display code 55 octal. 

For the E, F, G, and D input conversions, a decimal point in the input 
field overrides the decimal point specification of the field descriptor. 

The output field is right justified for all output conversions. If the number 
of characters produced by the conversion is less than the field width, lead
ing blanks are inserted in the output field. The number of characters pro
duced by an output conversion must not be greater than the field width. If 
the field width is exceeded, an asterisk is inserted in the leading position 
of the field . 

60176600 Rev. E 



lw INPUT 

lw OUTPUT 

Any output which is sent to the line printer uses the first character on the 
left for carriage control. Thus, the first character is lost and printing 
begins in the first print position using the second character. This applies 
only to line printers, not to other output devices. 

This specification, in conjunction with an input statement, designates a 
decimal integer constant; field length of Y:!.. characters. The input field is 
an optionally signed integer or blank. When a sigri appears, it must pre
cede the first digit in the field. Blanks are interpreted as zeros. The 
value is stored right-justified in the specified variable. 

Example: 

READ 10, I, J, K, L, M,N 
10 FORMAT (13, 17, 12, 13, 12, 14) 

Stored Variable: I J K LM N 

~-~ 
Input Card: 139bb-15bb18bb7b3blb4 

~-'-v-' 

Field Width: 3 7 2 3 2 4 

I specification may also be used to indicate the output of decimal integer 
values. The output quantity occupies~ output character positions, right 
justified: 

ba ... a 

where b is a blank or minus sign if the integer is negative, ~'s are the digits 
(maximum 15) of the integer. If the integer is positive, the + sign is sup
pressed. If the field width~ is larger than required, the output quantity is 
right justified with blank fill to the left. If the field is too short, characters 
are stored from the right; an asterisk occupies the leftmost position, with 
excess characters being discarded from the left. If the integer is greater 
than 248-1, an Xis printed in the field. 

Example: 

PRINT 10,I,J,K 
10 FORMAT (18' no' 15) 

I contains -3762 
J contains +4762937 
K contains + 13 

Result: bbb-3762bbb4762937bbb13 .__.,. __ ...__,,_., __ 
8 10 5 

60176600 Rev. E 6-3 



Ew.d INPUT 

6-4 

The E specification designates the conversion and storing of a number in the 
input field as a real number. The total number of characters in the input field 
is specified by~; this field is scanned from left to right; blanks are inter
preted as zeros. 

Subfield structure of the input field: 

input field 

+ + 

digit E 

integer fraction exponent 

'--decimal point 

The integer subfield begins with a sign ( + or -) or a digit and may contain a 
string of digits. The integer field is terminated by a decimal point, D, E, +, 
-, or the end of the input field. 

The fraction subfield which begins with a decimal point may contain a string 
of digits. The field is terminated by D, E, +, -, or the end of the input field. 

The exponent subfield may begin with D, E, + or - followed by an integer 
constant right adjusted in the field. When it begins with D, or E, a sign is 
optional between D or E and the string of digits of the subfield. The value of 
the string of digits in the exponent subfield must be less than 323. 

Permissible subfield combinations: 

+1. 6327E-04 

-32. 7216 

+328+5 

. 629E-1 

+136 

.07628431 

E-06 (interpreted 
as zero) 

integer fraction exponent 

integer fraction 

integer exponent 

fraction exponent 

integer only 

fraction only 

exponent only 

60176600 



In the Ew. d specification, Q acts as a negative power-of-ten scaling factor 
when an external decimal point is not present. The internal representation 
of the input quantity is: 

( . t bf" ld 10-d 10(exponent subfield) m eger su ie )x x 

For example, if the specification is_ E7. 8, the input quantity 3267+05 is con
verted and stored as: 3267x10-8x105 = 3. 267. 

A decimal point in the input field overrides d. The input quantity 3. 672+5 
read by an E9. d specification is always sto~d as 3. 672x105 . When d does 
not appear, it is assumed to be zero. 

The field length specified by~ in Ew. d should always be the same as the 
length of the field containing the input number. When it is not, incorrect 
numbers may be read, converted, and stored as shown below. The field w 
includes blanks, significant digits, signs, decimal point, E or D and the 
exponent. 

Example: 

READ 20,A,B,C 
20 FORMAT (E9. 3, E7. 2, ElO. 3) 

Input quantities on the card are in three contiguous fields columns 1 
through 24: 

9 5 10 ,_.....___ __ ~ 
+6.47E-Ol-2. 36+5. 321E+02bb 

The second specification (E7. 2) exceeds the width of the second field by 
two characters. 

Reading proceeds as follows: 

9 7 10 ,_.....___ ..-"-...,.-"-.. 

l+6.47E-Oll-2.36+5 .321E+02bb 

+6.47E-Oll-2. 36+5 I. 321E+02bb 

+6.47E-01-2.36+5 l. 321E+02bbj 

o-5 



6-6 

First, +6. 47-01 is read, converted, and placed in location A. Next, 
-2. 36+5 is read, converted, and placed in location B. The number 
actually desired was -2. 36, but the specification error (E7. 2 instead 
of E5. 2) caused the two extra characters to be read. The number read 
(-2. 36+5) is a legitimate input representation under the definitions and 
restrictions. 

Finally, . 32 lE +O 200 is read, converted, and placed in location C . Here 
again, the input number is legitimate and is converted and stored, even 
though it is not the number desired. 

The above example illustrates a situation where numbers are incorrectly 
read, converted, and stored, and yet there is no immediate indication that 
an error has occurred. 

Examples: 

Ew.d Input 
Specifi- Converted 

Input Field cation Value Remarks 

+143. 26E-03 Ell. 2 . 14326 All subfields present 

-12. 437629E+l El3.6 -124.37629 All subfields present 

8936E+004 E9.10 .008936 No fraction subfield; input 
number converted as 8936. 
x 10-10+4 

327. 625 E7. 3 327.625 No exponent subfield 

4.376 E5 4.376 No d in specification 

-.0003627+5 Ell. 7 -36.27 Integer subfield contains 
- only 

- . 0003627E5 Ell. 7 -36.27 Integer subfield contains 
- only 

blanks Ew.d -0. All subfields empty 

lEl E3.0 10. No fraction subfield; input 
number converted as 
1.xlOl 

E+06 El0.6 0. No integer or fraction sub-
field; zero stored regardless 
of exponent field contents 

1.bEbl E6.3 10. Blanks are interpreted as 
zeros 



Ew.d OUTPUT 

Fw.d INPUT 

60176600 Rev. D 

Real numbers in storage are converted to the BCD character form for output 
with the E conversion. The field occupies J!.. positions in the output record; 
with the real number right justified in the form: 

b. a •.• a±eee 100 ::::: eee :::: 308 

or 

b. a •.. aE±ee 0 ::::: ee :::: 99 

Q. indicates no character position or minus sign; _!!'s are the most significant 
digits of the value, and eee are the digits in the exponent. If£ is zero or no 
character, the digits to the right of the decimal do not appear as shown above. 
Field w must be wide enough to contain the significant digits, sign (if negative), 
decimal point, E, and the exponent. Generally, w :::: d+6. Since positive num
bers do not require a sign, space need not be reserved for one. 

If the field is not wide enough to contain the output value, an asterisk is in
serted in the high order position of the field. If the field is longer than the 
output value, the quantity is right justified with blank fill to the left. If the 
value being converted is indefinite, an I is printed in the field; if it is out of 
range, an R is printed. 

Examples:t 

PRINT 10,A A contains -67. 32 or +67. 32 
10 FORMAT (El0.3) 

Result: b-.673E+02 or bb.673E+02 

PRINT 10,A 
10 FORMAT (E13. 3) 

Result: bbbb-. 673E+02 or bbbbb. 673E+02 

PRINT 10,A A contains -67. 32 
10 FORMAT (ES. 3) no provision for - sign 

Result: *. 67E+ 02 

PRINT 10,A 
10 FORMAT (ElO. 6) 

Result: *. 6732E+02 

This specification is the same as Ew. d input specification. It may be used for 
the transfer of real data that does not contain a decimal exponent. 

trn the examples, the use of column 1 for carriage control has been ignored. 
The results demonstrate the way in which data is converted, not the way the 
line will appear when printed. 

6-7 



Fw.d OUTPUT 

6-8 

The field occupies ~ positions in the output record; the corresponding list 
item must be a floating point quantity, which appears as a decimal number, 
right justified 

ba ••• a.a •.• a 

g identifies a minus sign or no character position and ~' s represent the most 
significant digits of the number. 

The number of decimal places to the right of the decimal is specified by .2_. If 
.2_ is zero or omitted, digits to the right of the decimal point do not appear. If 
the number is positive, the + sign is suppressed. If the field is too short to 
accommodate the number, one asterisk appears in the high-order position of 
the output field. Field w must be wide enough to contain significant digits, 
sign (if negative), and a decimal point. If the field is longer than required to 
accommodate the number, the number is right justified with blank fill to the 
left. If the value being converted is indefinite, an I is printed in the field; if 
it is out of range, an R is printed. 

Examples:t 

A contains +32.694 

PRINT 10,A 
10 FORMAT(F7. 3) 

Result: b32. 694 

PRINT 11,A 
11 FORMAT(FlO. 3) 

Result: bbbb32. 694 

A contains -32.694 

PRINT 12,A 
12 FORMA T(F6. 3) no provision for - sign 

Result: *2.694 

A contains • 32694 

PRINT 13,A,A 
13 FORMAT(F4.3,F6.3) 

Result: • 327bb. 327 

tin the examples, the use of column 1 for carriage control has been ignored. 
The results demonstrate the way in which data is converted, not the way the 
line will appear when printed. 

60176600 Rev. D 



Gw.d INPUT 

Gw.d OUTPUT 

60176600 Rev. D 

Gw. d input specification is the same as the Ew. d input specification. 

The G conversion specifies the transfer of real data where ~designates the 
field length and £denotes the number of significant digits of the value to be 
represented. 

The method of representation in the external output string is a function of the 
magnitude of the real datum being converted. Let N be the magnitude of the 
internal datum. The following tabulation exhibits a correspondence between 
N and the equivalent method of conversion that will be effected: 

Magnitude of Datum 

O.l:::o N < 1 

l::SN<lO 

1od- 2 :::o N < 1od-l 

d-1 d 
10 ::::; N < 10 

Otherwise 

Equivalent Conversion Effected 

F(w-4). d, 4X 

F(w-4). (d-1), 4X 

F(w-4) .1, 4X 

F(w-4). 0, 4X 

sEw.d 

The effect of the scale factor is suspended unless the magnitude of the datum 
to be converted exceeds the range that permits effective use of the F conver
sion. If the value being converted is indefinite, an I is printed in the field; 
if it is out of range, an R is printed. 

When F conversion is used under Gw. d output specification, four blanks are 
inserted within the field, right justified. Therefore, for effective use of 
F conversion, ~must be::::: d+G. 

Examples: 

PRINT 101,XYZ 
101 FORMAT (GlO. 3) 

XYZ contains 77. 132 

Result: bb77. lbbbb 

PRINT 101, XYZ 
101 FORMAT (GlO. 3) 

XYZ contains 1214635. 1 

Result: bb.121E+07 

6-9 



Dw.d OUTPUT 

Dw.d INPUT 

Ow OUTPUT 

Ow INPUT 

6-10 

D conversion corresponds to Ew. d output. The field occupies ~ positions of 
the output record, the list item is a double precision quantity which appears 
as a decimal number, right justified. If the value being converted is indefinite, 
an I is printed in the field; if it is out of range, an R is printed. 

b.a· · ·a±eee 100::::; eee ::::; 308 

or 

b.a· · · aD±ee 0::::: ee :::s 99 

D conversion corresponds to E conversion except that the list variables 
must be double precison names. D is acceptable in place of E as the be
ginning of an exponent subfield. 

Example: 

DOUBLE Z, Y,X 
READl, Z, Y,X 

1 FORMAT (D18.11,D15,D17.4) 

Input Card: 

-6.31675298443D-03+2.7189264531476293477528869D-09 

18 15 17 

0 specification is used to output octal integer values. The output quantity 
occupies ~ output character positions right justified. 

aa ... a 

The ~' s are octal digits. If~ is 20 or less, the rightmost w digits appear. 
If~ is greater than 20, the number is right justified in the field with blanks 
to the left of the output quantity. A negative number is output in its one's 
complement internal form. 

Octal integer values are converted under 0 specification. The field is w 
characters in length. 

The input field~ consists of an integer subfield only (maximum of 20 octal 
digits) containing +, - , 0 through 7, or blank. Only one sign may precede 
the first digit in the field. Embedded blanks are interpreted as zeros. 

60176600 Rev. D 



Aw OUTPUT 

Aw INPUT 

G0176600 

Example: 

INTEGER P, Q, R 
READ 10, P,Q, R 

10 FORMAT (010,012,02) 

Input Card: 3737373737666b6644b444-0 
'-v-'~-

10 12 

In storage: 

p 00000000003737373737 
Q 00000000666066440444 
R 77777777777777777777 

2 

A negative octal number is represented internally in one's complement 
form (20 digits) obtained by subtracting each digit of the octal number from 
seven. For example, if -703 is an input quantity, its internal representation 
is 77777777777777777074. 

That is, 77777777777777777777 
-00000000000000000703 

77777777777777777074 

A conversion is used to output alphanumeric characters. If ~ is 10 or more, 
the quantity appears right justified in the output field, blank fill to left. If 
~ is less than 10, the output quantity is represented by leftmost ~ characters. 

This specification accepts FORTRAN characters including blanks. The in
ternal representation is 6000 Series display code; the field width is ~char
acters. 

If~ exceeds 10, the input quantity is the rightmost 10 characters in the field. 
If~ is 10 or less, the input quantity is stored as a left justified BCD word; 
the remaining spaces are blank filled. 

Example: 

READ 10, Q, P,O 
10 FORMAT (A8,A8,A4) 

Input card: LUX MENTIS LUX ORBIS .._,,._.. __.,. 
8 8 4 

6-11 



Rw OUTPUT 

Rw INPUT 

Lw OUTPUT 

Lw INPUT 

COMPLEX 
CONVERSIONS 

6-12 

In storage: Q 
p 

0 

LUXbMENTbb 
I.SbLUXbObb 
RBISbbbbbb 

This specification is similar to the Aw output with the following exception. 
If~ is less than 10, the output quantity represents the rightmost characters. 

This specification is the same as the Aw input with the following exception. 
If ~ is less than 10, the input quantity is stored as a right justified binary 
zero filled word. 

Example: 

READ 10,Q,P,O 
10 FORMAT (RS, RS, R4) 

Input card: LUX MENTIS LUX ORBIS 
...___... ~-.....----

8 8 4 

In storage: Q OOLUXbMENT 
P OOISbLUXbO 
0 OOOOOORBIS 

L specification is used to output logical values. The output field is w char
acters long, and the list item must be a logical element. A value of TRUE 
or FALSE in storage causes w-1 blanks followed by a T or F to be output. 

Example: 

LOGICAL I, J, K, L 
PRINT 5,I,J,K,L 

5 FORMAT (4L3) 

I, K, Lare negative (TRUE) and 
J is positive (FALSE) 

Result: bbTbbFbbTbbT 

This specification accepts logical quantities as list items. The field is con
sidered true if the first non-blank character in the field is T or false if it is 
F. An all blank field is considered false. If the first non-blank character is 
neither T nor F, the field is considered false. 

The specification by which a complex variable is read or written requires the 
designation of two real field descriptors: the first designates the real part, 
the second the imaginary part. The field descriptors that may be used are: 
E (Ew.d), F(Fw.d), or G(Gw.d). 

60176600 Rev. D 



nP SCALE FACTOR 

Example: 

INTEGER A 
COMPLEX CC where A = 3762 
PRINT 20,A,B,CC,D B = 833.275 
FORMAT (I5,F8.3,E10.4,E9.2,Gll.5) CC= 36.292, -46.73 

D = .62534 

Results: b3762 b833. 275 b. 3629E+02b-. 4 7E+02 b. 62534bbbb 

A scale factor that may be used with F, E, G, and D conversions is of the 
form: 

nP 
nPFw.d 
nPEw.d 
nPGw.d 
nPDw.d 

_!!, the scale factor, is a positive (unsigned) or negative integer constant. 

A scale factor of zero is established when the format control is initiated; it 
holds for all F, E, G, and D field descriptors until another scale factor is 
encountered. 

The scale factor n affects conversions as follows: 

For F, E, G, and D input conversions (provided no exponent exists) in 
the external field) and F output conversions: External number = 

Internal number x 10n 

For F, E, G, and D input, the scale factor has no effect if there is 
an exponent in the external field. 

For E and D output, the basic real constant part of the output quantity 
is multiplied by ion and the exponent is reduced by n. 

For G output, the effect of thP. scale factor is suspended unless the mag
nitude of the data to be converted exceeds the range that permits effective 
use of F conversion. If the effective use of the E conversion is required, 
the scale factor has the same effect as with E output. 

6-13 



6.3 
EDITING 
SPECIFICATIONS 

nX 

6-14 

Examples: 

Using an internal number of 3 .1415926538, some output representations with 
the use of a scale factor are: 

Specification Output Representation 

E20.2 
1PE20. 2 
4PE20. 2 
7PE20. 2 

-1PE20. 2 
5PF20. 2 

-2PF20. 4 

. 31E+Ol 
3.14E+OO 

314L59E-03 
3141592. 65E-06 

. 03E+02 
314159.27 

.0314 

This specification permits spacing of input/output quantities; it permits 
blanks to be inserted in an output record or!!. characters to be skipped in an 
input record. The designation of OX is ignored and bX is interpreted as lX. 
In the specification list, a comma following Xis optional. 

Examples: 

10 

INTEGER A 
PRINT 10,A, B, C 
FO.RlV[AT (12, 6X, F6. 2, 6X, El2. 5) 

A contains 7, B contains 13. 6, 
C contains 1462. 37 

Result: b7bbbbbbb13.60bbbbbbbb.14624E+04 

READ 11, R, S, T 
11 FO.RlV[AT (F5.2,3X,F5.2,6X,F5.2) 

or 

11 FO.RlV[AT (F5.2,3XF5.2,6XF5.2) 

Input card: i4. 62bb$13. 78bCOSTb15. 97 

In storage: R 14. 62 
s 13.78 
T 15. 97 



nH 

60176600 

This specification provides for the input or output of 6-bit characters, in
cluding blanks, in the form of comments, titles, and headings. An unsigned 
integer!!. specifies the number of characters, maximum of 136 to the right 
of H that are transmitted to the output record; H denotes a Hollerith field; 
the comma following an H field is optional. 

Examples: 

Source program: 

PRINT 20 
20 FORMAT (28HbBLANKSbCOUNTbINbANbHbFIELD.) 

produces output record: 

b BLANKSbC OUNTbINbANbHbFIE LD. 

Source program: 

PRINT 30, A A contains 1. 5 
FORMAT (6HbLMAX=, F5. 2) comma is optional 

produces output record: 

bLMAX = bl. 50 

The H specification may be used to read Hollerith characters into an existing 
H field within the FORMAT specification. 

Example: 

Source program: 

READ 10 
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb) 

Input card: 

J)TH!SbISbAbVARIABLEbHEADINg 
......,,... 

27 columns 

After READ, the FORMAT statement labeled 10 contains the alphanumeric 
information read from the input card; a subsequent reference to statement 10 
in an output statement acts as follows: 

PRINT 10 

produces the print line: 

bTHISbISbAbVARIABLEbHEADING 

6-15 



NEW RECORD The slash (/) indicates the end of the last record anywhere in the specification 
list. Consecutive slashes may appear and need not be separated from the 
other list elements by commas. During output, the slash is used to produce 
blank records. During input, it is used to bypass records. k(/) is equiva
lent to I/ 2 , ... , / k. 

Examples: 

1. PRINT 10 
10 FORMAT (6X, 7HHEADING///3X, 5HINPUT, 2X, 6HOUTPUT) 

Printout: 

bbbbbbHEADING line 1 

(blank) line 2 

(blank) line 3 

bbbINPUTbbOUTPUT line 4 

Each line corresponds to a BCD record. The second and third records 
are null and produce the line spacing illustrated. 

2. PRINT 10,A, B, C, D 
10 FORMAT (2El0. 3/2F7. 3) 

In storage: A -11. 6 
B .325 

Printout: 

c 46.327 
D -14.261 

b-.116E+02bb.325E+OO 
b46.327-14.261 

3. PRINT 11,A, B, C, D 
11 FORMAT (2El 0. 3/ /2F7. 3) 

Printout: 

b-. 116E+02bb. 325E+OO line 1 

(blank) line 2 

b46. 327-14. 261 line 3 

6-16 60176600 Rev. D 



* .. ·* -=/= ... =/= 

Tn 

4. DIMENSION X(3) 
PRINT 15, (X(I), I=l, 3) 

15 FORMAT (8HbRESULTS2(/)(3F8. 2)) 

Resultant lines: 

bRESULTS 

(blank) 

3. 62 -4.03 -9.78 

line 1 

line 2 

line 3 

The same results may also be obtained by using the statement, 
PRINT 15,X 

Hollerith string delimiters are * ... * and /:- . .. /:.. All characters (including) 
blanks) enclosed by a pair of delimiters are read or written. Each character 
may appear in a field delimited by the other. In an nH delimited specifica
tion, the * or /:. (' for some printers) will be reproduced. 

Example: 

PRINT 10 
10 FORMAT (20X*THISbISbTHEbENDbOFbTHISbRUN*,T52i' ... HONEST*) 

Result: (beginning in print position 20) 

1 2 3 '+? f. 7 t' <.; (: l ? :~ 4 ~) t 1 l H '-! · l ;..> J ,., ~:it· .' ~ ' 1 (' l ? J 4 ~ ul B 9, ·i 1 ~ 3 4 '::> 6 7 b <) O 1 2 j 4 '::> h 7 t1 i.J ·" 

l ri f ~' l ~' I ~If" t· I J U ' i f- T f..; T S ~ UN • • • t-HJf ~ t-_ ::;., 1 

This specification is used as a tabular column selection control. When Tn 
is used, the format pointer is skipped to column!!. and the next format speci
fication is processed. !!. may be any unsigned integer, maximum of 136. If 

n = zero, column 1 is assumed. (If output is to a line printer, printing is 
left-shifted one character due to carriage control requirements.) 

Using card input, if n > 80 the column pointer is moved to column.!! but a 
succeeding specification would read only blanks. 

Examples: 

1) PRINT 60 
60 FORMAT (TSO, *COMMENTS*, T60, *HEADING4*, T40 

*HEADING3*, T20, *HEADING2*, T2, *HEADING!*) 

60176600 Rev. F 6-17 

I 



6.4 
REPEATED FORMAT 
SPECIFICATIONS 

6-18 

Produces the following output: print positions are indicated by the upper 
line of numbers 1-80. 

1 

HEADINGl 

19 

HEADING2 

2) WRITE (31, 10) 

39 

HEADING3 

10 FORMAT (T20, *LABELS*) 

59 

HEADING4 

79 

COMMENTS 

The first 19 characters of the output record are skipped and 
the next six characters, LABELS, are written on output unit 
number 31 beginning in character position 20. 

3) READ (20, 20) 
20 FORMAT (TIO, *COLUMN!*) 

The first nine characters of the input record are skipped and 
the next seven are read from input file 20; these seven char
acters replace COLUMN!, the data in storage. 

FORMAT specifications may be repeated by using an unsigned integer constant 
repetition factor ls_ as follows: k(spec). For example, to print the array Y: 

PRINT 10, (Y(I),I=l,9) 
10 FORMAT (3(3F8. 3)) 

is equivalent to: 

PRINT 10, (Y(I),I=l,9) 

10 FORMAT (9F8.3) 

When a group of FORMAT specifications repeats itself as in: 

FORMAT (El5. 3, F6. 1, 14, 14, E15. 3, F6. l, 14, 14) 

the use of k produces: 

FORMAT (2(El5.3,F6.l,214)) 

If no group repetition factor is specified, a basic group (repetition factor of 
one) is assu~ed. If, however, the format control proceeds to the last outer 
right parenthesis of the format specification, a test is made to determine if 
another list element is specified. If not, control terminates. However, if 
another list element is specified, the format control demands a new record 
start and control reverts to that group repeat specification terminated by the 
last preceding right parenthesis, or if none exists, then to the first left 
parenthesis of the format specification. 

60176600 Rev. F 



6.5 

Further groupings may be formed by enclosing field descriptors, field sep
arators, or basic groups within parentheses, and a group repetition factor 
may be specified for these groupings. The parentheses enclosing the format 
specification are not considered as group delimiting parentheses. 

FORM.AT statement specifications may be nested to a depth of two. For 
instance: 

10 FORMA T(1H0, 3El0. 3/ (12, 2(F12. 4, FlO. 3))/D28. 17) 

VARIABLE FORMAT FORM.AT specifications may be indicated at the time of program execution. 
The specification, including left and right parentheses but not the statement 
label or the word FORMAT, must be Hollerith data stored jn an array. The 
name of the array containing the specifications may be used in place of the 
FORM.AT statement labels in the associated input/output operation. The 
array name specifies the location of the first word of the FORMAT informa
tion and may appear with or without a subscript. 

Examples: 

1) Assume the following FORMAT specifications: 

(E12. 2, FS. 2, I7, 2E20. 3, F9. 3, I4) 

This information can be punched in an input card and read by the 
statements of the program such as: 

DIMENSION IVAR(3) 
READ 1, (IVAR(!) I I=l, 3) 

1 FORMAT (3Al 0) 

The elements of the input card are placed in storage as follows: 

IVAR(.:.): 
IVAR(2): 
IVAR(3): 

(El2. 2,FS. 
2, I7, 2E20. 
3, F9. 3, I4) 

A subsequent output statement in the same program can refer to these 
FORMAT specifications as: 

PRINT IVAR,A,B,I,C,D,E,J 

This produces exactly the same result as the program: 

PRINT 10, A, B, I, C, D, E, J 
10 FORMAT (E12.2,F8.2,I7,2E20.3,F9.3,I4) 

60176600 Rev. E 6-19 



2) DIMENSION LAIS1(3), LAIS2(2),A(6), LSN(3), TEMP(3) 

DATA LAIS:J/21H(2F6.3,17, 2E12.2, 3Il)/LAIS2/20H(I6, 6X, 3F4.1, 2El2.2)/ 

Output statement: 

PRINT LAIS!, (A(I), I=l, 2), K, B, C, (LSN(J), J=l, 3) 

which is the same as: 

PRINT 1, (A(I), I=l, 2), K, B, C, (LSN(J), J=l, 3) 
1 FORMAT (2F6.3,I7,2E12.2,3Il) 

Output statement: 

PRINT LAIS2,LA, (A(M),M=3,4),A(6), (TEMP(I),I=2,3) 

which is the same as: 

PRINT2, LA, (A(M),M=3,4),A(6), (TEMP(I),1=2,3) 
2 FORMAT (16, 6X, 3F4.1, 2El2. 2) 

3) DIMENSION LAIS(3), VALUE (6) 

DATA LAIS/26H(I3, 13HMEANbVALUEbIS, F6. 3)/ 

Output statement: 

WRITE (10, LAIS)NUM, VALUE(6) 

which is the same as: 

WRITE(lO, lO)NUM, VALUE(6) 
10 FORMAT(I3, 13HMEANbVALUEbIS, F6. 3) 

6-20 60176600 



AUXILIARY DATA TRANSMISSION STATEMENTS 7 

7.1 
BUFFER 
STATEMENTS 

601 76600 Rev. C 

Some of the characteristics of buffered input/output are given below: 

1. The mode of transmission (BCD or binary) is tacitly implied by 
the form of the input/output control statements. In a buffer control 
statement, parity must be specified by a parity indicator. 

2. The input/output control statements are associated with a list and in 
BCD transmission, with a FORMAT statement. The buffer control 
statements are not associated with a list; data transmission is to or 
from one area in storage. 

3. Use of an input/output control statement does not return control to 
the program until completion of the operation. A buffer control 
statement initiates data transmission, then returns control to the 
program, permitting the program to perform other tasks while data 
transmission is in progress. Before buffered data may be used, 
status of the buffer operation should be checked through use of the 
UNIT function (see Appendix I). Failure to perform a status check 
renders the result of the last buffer operation unpredictable. 

In the following discussion, the definitions of the indicated parameters are 
as follows: 

u Logical unit number; an integer constant or variable which may 
range in magnitude from 1 to 99. 

p Recording mode; an integer constant or variable which may assume 
the value of zero, designating· even parity (coded mode) or 1 indicating 
odd parity (binary mode). 

A First word address of the block of data to be transmitted. 

B Last word address of the block of data to be transmitted. This 
address must be greater than or equal to A. 

A unit referenced in a BUFFER statement may not be referenced in other 
statements except REWIND, BACKSPACE and ENDFILE. 

7-1 



BUFFER IN 

BUFFER OUT 

7.2 
ENCODE/DECODE 
STATEMENTS 

7-2 

BUFFER IN (u, p} (A, B) 

This statement transfers information from unit!!. in mode£ to storage loca
tion A through B. Only one logical record is read for each BUFFER IN 
statement. 

BUFFER OUT (u, p) (A, B) 

This statement initiates output of data contained in locations A through B onto 
unit.!!..· One logical record is written for each BUFFER OUT statement. 

A more detailed discussion of these statements is given in Appendix I. 

The ENCODE/DECODE statements are comparable to the BCD WRITE/READ 
statements; however, no peripheral equipment is involved. Information is 
transferred under FORMAT specifications from one area of storage to 
another. The parameters in these statements are defined as follows: 

n Unsigned integer constant or a simple integer variable (not sub
scripted) specifying the number of characters in the record . .!!. may 
be an arbitrary number of BCD characters. 

f Statement number or variable identifier representing the FORMAT 
statement. 

A Identifier of a variable or an array which supplies the starting loca
tion of the BCD record. 

k Input/output list. 

The first record begins with the leftmost character position specified by ~and 
continues until .!!. BCD characters have been transferred (10 BCD characters 
per computer word). 

Each succeeding record begins with a new computer word J the integral num -
ber of computer words allocated for each record is n+9. 

10 

Further information on these statements is given in Appendix I. 

601766 00 Rev. D 



ENCODE ENCODE (n,f ,A)k 

The list of variables, ~' is transmitted according to the FORMAT!. and 
stored, !! BCD characters per record, starting at location ~. If !! is not a 
multiple of 10, the remainder of the word is blank filled. If the 1/0 list~ 
and the specification list!. translate more than !! characters per record, an 
execution diagnostic occurs. 

Examples: 

A(l) = lOHABCDEFGHIJ 
A(2) = lOHKLMNO 
B(l) = 1 OHPQRSTUVWXY 
B(2) = 10HZ12345 

1. n = multiple of 10 

ENCODE (20, l,ALPHA)A, B 
1 FORMAT (A10,A5/A10,A6) 

Result: 

record a record b 

ALPHA I ABCDEFGHIJ I KLMNO lbbbbb I PQRSTUVWXY I Z12345 I bbbb I 
word 1 word 2 word 3 word 4 

2. n -I multiple of 10 

ENCODE (16, 1,ALPHA)A, B 
1 FORMAT (A 10 , A6) 

Result: 

record a 

ALPHA ABCDEFGHIJ KLMNOb bbbb 

word 1 word 2 

record b 

Z12345 bbbb 

word 4 
beginning of new record 

3. ENCODE can be used to rearrange and change the information in a 
record. The following example also illustrates that it is possible to 
encode an area into itself and that encoding will destroy information 
previously contained in an area. 

60176600 Rev. D 7-3 



DECODE 

7-4 

PROGRAM ENC02(0UTPUT) 
I = lORBCDEFGHIJK 
IA= lHl 
ENCODE (8, 10,I)I, IA, I 

10 FORMAT (A3,Al,R4) 
PRINT 11,I 

11 FORMAT (020) 
END 

Print-out is: 

02030434101112135555 

The display code equivalent is: 

BCDlIITJKbb 

DECODE (n,f ,A)k 

The information in_!! consecutive BCD characters (starting at address~ is 
transmitted according to the FORMAT and stored in the list variables. If 
the record ends with a partial word the balance of the word is ignored. 
However, if the number of characters specified by the I/O list and the 
specification list f_ is greater than!!_ (record length) per record, an exe
cution diagnostic occurs. If DECODE attempts to process an illegal BCD 
code or a character illegal under a given conversion specification, that 
character is converted to a blank and conversion continues through!!. char
acters. 

Examples~ 

1. n -1- multiple of 10 

DECODE (18, l,GAMMA) A6, B6 
1 FORMAT (A10,A8) 

record a record b 

GAMMA HEADERb121 HEADbbOl 31 HEADERb122 HEADbb02 31 

word 1 word 2 word 3 word 4 

beginning of new record 

60176600 Rev. D 



Result: 

A6(1) = HEADERb121 
A6(2) = HEADbbOlbb 
B6(1) = HEADERb122 
B6(2) = HEADbb02bb 

2. The following illustrates one method of packing the partial contents of 
two words into one word. Information is stored in core as: 

LOC ( 1) SSSSSxxxxx 

LOC(6)xxxxxddddd 

10 BCD ch/wd 

To form SSSSSddddd in storage location NAME: 

DECODE( 10, 1, LOC (6))TEMP 
1 FORMAT (5X,A5) 

ENCODE(lO, 2, NAME) LOC(l), TEMP 
2 FORMAT(2A5) 

The DECODE statement places the last 5 BCD characters of LOC(6) into 
the first 5 characters of TEMP. The ENCODE statement packs the 
first 5 characters of LOC(l) and TEMP into NAME. 

With the R specification; the program may be shortened to: 

ENCODE (10, 1, NAME) LOC(l), LOC(6) 
1 FORMAT (A5, R5) 

3. DECODE may be used to calculate a field definition in a FORMAT speci
fication at object time. Assume that in the statement FORMAT (2A10, Im) 
the programmer wishes to specify m at some point in the program, sub
ject to the restriction 2 ::= m ::= 9. The following program permits m to 
vary. 

IF(M. LT. 10.AND. M. GT.1)1, 2 
1 ENCODE (10, 100,SPECMAT)M 

100 FORMAT (7H(2A10,I, Il, lH)) 

PRINT SPECMAT,A, B,J 

7-5 



7-6 

M is tested to insure it is within limits. If not, control goes to statement 
2 which could be an error routine. If M is within limits, ENCODE packs 
the integer value of M with the characters: (2A10,I). This packed FOR
MAT is stored in SPECMAT. SPECMAT contains (2A 10, Im). 

A and B will be printed under specification AlO, and the quantity J under 
specification 12, or 13, or ... or I9 according to the value of m. 



8.1 
DIMENSION 

60176600 Rev. D 

SPECIFICATION AND DATA STATEMENTS 8 

DIMENSION, COMMON, EQUIVALENCE, EXTERNAL, and TYPE statements, 
are called specification statements. Specification statements are nonexecutable 
statements which describe the characteristics, allocation and arrangement of 
data. The ordering of specification statements is immaterial, but they must 
appear before any statement function definition, DATA, NAMELIST, or exe
cutable statements in the program. 

Information necessary to allocate storage and define the reference for arrays 
may be provided by the DIMENSION statement. 

Each v. is a symbolic name and ij is the corresponding subscript. Each ij 
may cdnsist of one, two, or three integer constants designating the dimension
ality for the array and defining the maximum value which a subscript may 
assume in a subsequent array reference. 

Example: 

DIMENSION A(20, 2, 5) 
Dll\i1ENSION MATRIX(lO, 10, 10), VECTOR(lOO) 

An array name may not contain a subscript which assumes a value during 
execution that is less than one or larger than the maximum length specified 
in the DIMENSION statement. If such a condition exists, an element beyond 
the array may be referenced. However, a subscript expression which assumes 
the value zero renders a result which is undefined. 

The maximum value a subscript may attain is indicated below: 

Dimen- Subscript 
sionality Declarator Subscript 

1 (A) (a) 

2 (A, B) (a, b) 

3 (A, B, C) (a, b,c) 

a, b, c are subscript expressions. 
A, B, C are dimensions. 

Maximum 
Subscript Subscript 

Value Value 

a A 

a+A*(b-1) A*B 

a+A*(b-1) A*B*C 
+A*B*(c-1) 

8-1 



VARIABLE 
DIMENSIONS 

8-2 

The number of computer words reserved for an array is determined by the 
product of the subscripts in the subscript string and the type of the variable. 
A maximum of 217-1 elements may be reserved in any one array. If the 
maximum is exceeded, a diagnostic is issued. 

Example: 

COMPLEX CELL 

DIMENSION CELL (20, 10) 

The number of elements in the array CELL is 200. Since two words 
are used to contain a complex element, 400 words are reserved. This 
is also true for double precision arrays. For real, logical, and integer 
arrays, the number of words in an array equals the number of elements 
in the array. 

If an array is dimensioned in more than one declaration statement, an infor
mative diagnostic is issued and the first dimensions encountered are retained. 

If an entry in a declarator subscript is an integer variable name, the array 
is variable, and the variable names are called variable dimensions. Such 
an array may appear only in a procedure subprogram. The dummy argu
ment list of the subprograms must contain the array name and the integer 
names that represent the variable dimensions. The values of the actual 
parameter list of the reference must be ·defined prior to calling the subpro
gram and may not be redefined or undefined during execution of the subpro
gram. The maximum size of the actual array may not be exceeded. Every 
array in an executable program requires at least one associated constant 
array declaration through subprogram references. 

Example: 

SUBROUTINE XMAX (DATA, K,J) 

DIMENSION DATA (K,6,J) 

In a subprogram, a symbolic name that appears in a COMMON statement 
may not identify a variable array. 

DIMENSION statements must appear before any statement function definition, 
executable, DATA, or NAMELIST statements in the program. 

60176600 



8.2 
COMMON 

LABELED COMMON 

The COMMON statement reserves blocks of storage for variables or arrays 
appearing in one calling program or subprogram which may be shared and 
referenced with variables or arrays of other subprograms. The areas of 
common storage are specified by the statement form: 

COMMON Ix/a/ ... Ix/an 

Each~ is a non-empty set of variable names, array names or array declara
tors such as, v(i) illustrated for the DIMENSION statement, and each~ is a 
block name. Block names may be symbolic names or integer constants in 
the range 0 to 9999999, but may not exceed seven characters in length. 

Example: 

COMMONIBLOCKllA, T(lO, 15)IBLOCK2IE, G, Q 

The list of variable names (A and T or E, G, and Q) may not be dummy 
parameters. The entries A and T are defined to be in the block labeled 
BLOC Kl and E, G, and Qare in the block labeled BLOCK2. These 
blocks are referred to as labeled common. However, if the block name 
is omitted as in: 

COMMONIH/D, C, FI IU, L, P(12, 12) 

or 

COMMON S,V,Z,X,M 

the list of variables following the empty block name specification are 
placed in unlabeled or blank common. In the two above examples, D, C, 
and Fare in the block H, whereas U, L, P, S, V, Z, X, and Mare 
defined in unlabeled common. 

Any labeled common block may be referred to by any number of programs or 
subprograms which comprise an executable program. References are made 
by block name which must be identical in all references. The definition of 
all labeled common blocks need not be made within any one program, but 
must be made in the program unit in which the data is needed. 

The length of a common block in a program unit is the sum of the storage re
quired for the elements defined by the COMMON statement. The length of 
labeled common blocks with the same label should be the same. 

8-3 



Example: 

SUBROUTINE A 

REAL B, W,X(20) 

COMMON /BLKA/V, W, X 

SUBROUTINE B 

COMPLEX G, F(lO) 

COMMON/BLKA/G, F 

Both references to the COMMON block, BLKA, correspond in size. 
That is, both subprograms define the block as containing 22 words; 
subroutine A specifies 22 items of real type and the specification in 
B indicates 11 items of complex type. 

Reference may be made to the name of a labeled common block more than 
once in any program or subprogram. Multiple references may occur in a 
single COMMON statemenf, or the block name may be specified in any 
number of individual COMMON statements. In both cases, the processor 
links together all variables into a single labeled common block. 

UNLABELED COMMON All variables defined in unlabeled or blank common blocks are assigned to
gether; that is, only one section of the storage allocated for common is 
assigned to such variables. These variables are always referred to by an 
unlabeled COMMON statement (block name is omitted). 

ARRANGEMENT OF 
COMMON BLOCKS 

8-4 

Unlike labeled common, the sizes specified in various program units to be 
executed together need not be the same. Size is measured in terms of 
storage units. 

Example: 

SUBROUTINE ALPHA 

COMMON E, F, G(20, 10) 

SUBROUTINE BET A 

COMMON H,A,D,S 

Subroutine ALPHA defines an area of 202 words in unlabeled common, 
BETA uses only 4 words or a maximum of 8 words of the storage already 
defined. 

The properties of common block names as used in all of the program units 
of an executable program are as follows: 



8.3 
EQUIVALENCE 

60176600 

Each subprogram using a common block assigns the allocation of words 
in the block. The entities used within the block may differ as to name, 
type, and number of storage units although the block identifier itself 
must remain the same. 

When a block is labeled and the entities are defined for the block, the 
values of identifiers in the corresponding positions (counted by the number 
of preceding storage units) are the values referenced through COMMON 
declaration in the executable program. The order of entities in the 
labeled common block is significant throughout the executable program. 

Example: 

PROGRAM MAIN (INPUT, OUTPUT) 

COMMON Al, A2, Ll/Bl/B2, B3 

CALL CALLl(S, T, Z) 

END 
SUBROUTINE CA LLl (X, Y, Z) 

COMMON Al,D,M/Bl/F,G 

END 

A double precision or a complex entity consists of two logical consecutive 
storage units: a logical, real, or integer entity is one storage unit. 

If any common block elements are type ECS, all the elements of that block 
must be type ECS. No type ECS elements may appear in the blank common 
block. 

COMMON statements must appear before any statement function definitions, 
executable, DATA, or NAMELIST statements in the program unit. 

An EQUIVALENCE statement permits storage to be shared by two or more 
entities, it does not imply equality of entities. Each element in a given list 
is assigned the same storage (or part of the same storage) by the processor 

8-5 



8-6 

Each ~ is a list of the form: 

Each ~is either a variable name or an array element name (but not a dummy 
argument or an ECS variable or array element), the subscripts may contain 
only constants . .!!!. is greater than or equal to two. The number of subscript 
expressions of an array element name must correspond to the dimensionality 
of the array declarator, or it must be one. 

EQUIVALENCE may not be used to reorder COMMON nor reposition the base. 

The effect of an EQUIVALENCE statement upon common assignment may be 
the lengthening of a common block beyond the last assignment for that block 
made by a COMMON statement. 

When EQUIVALENCE is used for two variables or array elements, the name 
of the variables or arrays may not both appear in COMMON statements in the 
same program. 

The following examples illustrate changes in block lengths as the result of 
EQUIVALENCE declaration. 

Given: Arrays A and B 

Examples: 

Sa subscript of A 

Sb subscript of B 

1. A and C in common, B not in common 

Sb ~ Sa is a permissible subscript arrangement 

Sb> Sa is not 

Block 1 

origin A(l) COMMON/I/ A(4), C 

A(2) B(l) DIMENSION B(5) 

A(3) B(2) EQUIVALENCE (A(3), B(2) ) 

A(4) B(3) 

c B(4) 

B(5) 

EQUIVALENCE statements must appear before any statement function defini
tions, executable, DATA, or NAMELIST statements in the program unit. 

60176600 Rev. D 

' \ 



8.4 
EXTERNAL 

8.5 
TYPE 

G017GGOO 

The EXTERNAL statement defines variable names to be external procedure 
names. This feature permits external procedure names to be passed as 
arguments to another external procedure; the names must be defined in an 
EXTERNAL statement in the program unit in which it is used. 

EXTERNAL v
1

, v
2

, ... , vn 

v. are declared to be external procedure names. 
1 

Example: 

EXTERNAL NAMEl, NAME2, NAME3 

CALL SUB(A, B, NAME2) 
SUBROUTINE SUB(X, Y, IFUNC) 

The user is also allowed to define an Intrinsic function name in an EXTERNAL 
declaration. This re-definition of an intrinsic function name causes the 
processor to consider any subsequent reference as an external function ref
erence; the user must supply the procedure. 

EXTERNAL statements must appear before any statement function definitions, 
executable, DATA, or NAMELIST statements. 

The TYPE declaration provides the processor with information concerning 
the structure of variable and function identifiers. Six variable types may 
be declared by the statement: 

tv1 ,v
2

, ... ,vn 

.!_may be INTEGER, HEAL, DOUBLE PRECISION (or DOUBLE), COMPLEX, 
LOGICAL or ECS optionally preceded by the characters TYPE. Each y is a 
variable name, array name, function name, or an array name with its dimen
sions which assumes the type indicated by J.. 

A TYPE statement may be used to override or confirm implicit typing; it 
must be used to declare entities to be double precision, complex, logical 
or EC S; it may also supply dimension information. 

8-7 



8.6 
DATA 

8-8 

Example: 

INTEGER ACBS, AFDS,ITRC 

TYPE COMPLEX CC, F 

The TYPE declaration is non-executable and must precede any statement 
function definitions, executable, DATA, or NAMELIST statements in a given 
program unit. Any variable defined by a TYPE statement may not be re
defined in another TYPE statement; when such a condition does exist, a 
diagnostic occurs and the processor assumes the type as declared when first 
encountered. 

The DATA, data initialization, statement is used to define initial values of 
variable or array elements not located in blank COMMON. 

Each k is a list containing names of variables and/or array elements, but 
may not be dummy arguments. Each k may also be an array name which 
can have from one to three variable or integer constant control subscripts. 
Each£ is a list of constants, optionally signed, which designate the values 
which each !s. is to assume. 

Example: 

DATA X, Y, Z/32. 5, -7. 4,3. / ,s, T/1.5E3,. TRUE./ 

Entries in the list are separated by commas. Hollerith constants may also 
be included. 

The list £may be grouped by parentheses, any of which may be preceded by 
a repetition factor, j *. 

Example: 

DIMENSION AMASS(lO, 10, 10), A(lO), B(5) 

DATA (AMASS(6, K, 3), K=l, 10)/4*(-2., 5.139), 6. 9, 10. / 

DATA (A(I), I=5, 7)/2* (4 .1) ,5. 0/ 

DATA B/5*0. 0/ 

60176600 Rev. D 



60176600 Rev. D 

ARRAY AMASS: 

AMASS(6, 1,3) = -2. 

AMASS(6, 2, 3) = 5. 139 

AMASS(6, 3, 3) = -2. 

AMASS(6,4,3) = 5.139 

AMASS(6,5,3) = -2. 

AMASS(6,6,3) = 5.139 

AMASS(6, 7 ,3) = -2. 

AMASS(6,8,3) = 5.139 

AMASS(6, 9,3) = 6. 9 

AMASS(6,10,3) = 10. 

ARRAY A: 

A(5) =4.1 

A(6) =4.1 

A(7) = 5. 0 

ARRAY B: 

B(l) = 0. 0 

B(2) = 0. 0 

B(3) = O. 0 

B(4) = 0.0 

B(5) = 0.0 

A one-to-one correspondence is necessary between the list items and the 
constants which establish their initial value. 

Example: 

DIMENSION K(lO), A(2) 

DATA A/2. 0/ 

The value 2. 0 is stored in A(l), however, in A(2), there is no 
definite value. 

When the number of list elements exceeds the range of the implied DO, the 
excessive list elements are not stored. 

Example: 

DIMENSION B(lO) 

DATA(B(J) ,J=l ,5)/4*1. 23, 6*1. 24/ 

The excessive values 5*1. 24 are discarded. 

8-9 



8-10 

If a list item is an array name with no control subscripts or parameters, the 
constant list defines the values in the array to the maximum dimensional 
length or until the constant list is exhausted. 

An initially defined variable or array element may not be in blank common. 

An alternate form of the data initialization statement has the form: 

Each.!:. is an array element name that may have from one to three control 
subscripts or a list of names of variables and array elements (each of which 
may be a single integer variable) and from one to three integer constant con
trol parameters. 

Each Q_ is a list of constants and optionally signed constants, any of which 
may be preceded by j*. The constants may be grouped by parentheses and 
optionally preceded by j *; J is an integer constant. 

Example: 

DIMENSION D3(4), POQ(5, 5) 

DATA (D3 = 5., 6., 7., 8.), (((POQ(I, J), I=l, 5), J=l, 5)=25*0) 

which initializes: 

D3(1) = 5. 

D3(2) = 6. 

D3(3) = 7. 

D3(4) = 8. 

and sets the entire POQ array to zero. 

DATA statements must appear after all specification statements in a program 
unit. 

The type of the DA TA value is determined by the form of the constant, not 
the type of the list variables. 

60176600 



9.1 

PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA, 

AND LIBRARY ROUTINES 
9 

A FORTRAN Extended program consists of a main program with or without 
subprograms. Subprograms are separate programs that are executed only 
when called and may be defined by the programmer or be preprogrammed 
and contained in the processor or system library. 

MAIN PROGRAM The first statement of the main program must be one of the following forms; 
it may begin anywhere after column 6. 

60176600 

PROGRAM s 

PROGRAM s (f1 , f2 , ... , fn) 

~ is a symbolic name of the main program, !i are the names of all input/ 
output files required by the main program and its subprograms. 

The arguments must satisfy the following conditions within the program and 
its subprograms at compile time. 

File name INPUT must appear if the READ f, k statement is included. 

File name OUTPUT must appear if any PRINT statement is included: 
also needed for printing of execution time diagnostics. 

File name PUNCH must appear if any PUNCH statement is included. 

File name TAPE i (i is an integer constant 1-99) must appear if any 
input/output statement involving unit .!.appears in the program. If !_is 
a variable, there must be a file name TAPE .!.for each value .!.may 
assume. 

Files may be equivalenced at compile time. For example, 

(INPUT, OUTPUT, TAPEl =INPUT, TAPE2=0UTPUT) 

All input normally provided by TAPEl is to be extracted from INPUT 
and all listable output normally recorded on TAPE2 is to be transmitted 
to the OUTPUT file. 

In the list of parameters, equivalenced file names must follow those to which 
they are made equivalent. 

9-1 



9-2 

File buffers may be assigned a non-standard size at compile time; 
(OUTPUT=4000, TAP E4=0UTPUT). If buffer size is not indicated, 1025 is 
assumed. If the buffer is explicitly assigned a length, the assignment must 
appear with the first reference to the file on the program card. The length 
may be specified in decimal or in octal with the trailing B. 

If the PROGRAM card is omitted, the FORTRAN processor assumes a pro
gram name of START. when it encounters a statement that is not a comment 
card. Input/output buffers and files for the program are equated to the 
standard SCOPE system files INPUT and OUTPUT. 

The equivalencing of files causes associated buffer and file names to be 
equivalenced. 

Example: 

PROGRAM HELLO (TAPEl, TAPE2=TAPE1) 

N=l 
WRITE (N) A 

END 

PROGRAM HELLO (TAPEl, TAPE2=TAPE1) 

N=2 
WRITE(N) A 

END 

The file name resulting from both programs is TAPE 1. 

The file names declared on the program card are the only names that may 
result from I/0 references within the program. If no parameters appear on 
the control card which calls a program into execution, the non-equivalenced 
declared names will be taken as the SCOPE file names to be accessed. If 
parameters do appear on the control card which calls a program into execu
tion, each parameter will be the S.COPE file name to be accessed by the 
corresponding program declared name. In a program headed by the program 
card 

which is called into execution by the control card 

LGO(p1, P2 , · · · , Pn) 

60176600 Rev. D 



9.2 
SUBROUTINE 
SUBPROGRAMS 

60176600 Rev. D 

(where each Pi may be null), a reference to the declared name fi will access 
the SCOPE file fi if Pi is null; otherwise, the SCOPE file Pi will be accessed. 
Only non-equivalenced program declared names may have a corresponding Pi 
specified on the control card which calls the program into execution. 

Example: 

If a program is headed by the card 

PROGRAM PROG (TAPEl,OUTPUT, TAPE2=0UTPUT) 

and is called into execution with 

LGO. 

every reference to unit 1 within PROG will access the SCOPE file TAP El, 
every print statement and every reference to unit 2 will access the SCOPE 
file OUTPUT. 

If PROG is called into execution with the control card 

LGO(INPUT, LOAD) 

every reference to unit 1 within PROG will access the SCOPE file INPUT; 
every refer print statement or reference to unit 2 will access the SCOPE 
file LOAD. 

Calling PROG into execution with the control card 

LGO(, , LOAD) 

will act the same as using 

LGO. 

in the former case, there is an illegal attempt to change an equivalenced 
declared name (the attempt is ignored). 

A subroutine is an external computational procedure defined by FORTRAN 
statements which is identified by a SUBROUTINE statement and may or may 
not return values to the calling program. The statement may have any one of 
the following forms: 

SUBROUTINE s (a1, a2 , ... , an) or SUBROUTINE s 
SUBROUTINE s (a1 , a2 , ... , an), RETURNS (b 1 , b2 , ... , bm) 

or 

9-2.1 





~is the symbolic name of the subroutine, ~i are the dummy arguments (these 
may be variable names, array names or external procedure names), and b. 

-1 
are variable names containing statement labels which indicate alternate exits 
from the subroutine. SUBROUTINEs and FUNCTIONs are restricted to a 
maximum of 63 dummy arguments . ..--'-"I 
Example: 

Calling Program 

CALL PGMl (A, B, C), 
RETURNS (5, 10) 

5 B=SQRT(A *C) 

10 CALL PGM2 (D, E) 

Subprogram 

SUBROUTINE PGMl (X, Y, Z), 
RETURNS(M,N) 

U=V*W+T**2 
X=Y*Z 

20 IF (U+X) 25, 30, 35 
25 RETURN M 
30 RETURN N 
35 Z=Z+(X*Y) 

RETURN 
END 

The above example illustrates the different types of returns which may be 
made from a subroutine subprogram. If the RETURNS list is omitted from 
the CALL statement in the calling program, a return of the form RETURN ~ 
may not be made. However, the converse is permitted; a normal return via 
the RETURN statement may be made to the calling program if the RETURNS 
list is specified in the CALL statement. 

Subroutine subprograms are constructed with the following restrictions: 

Symbolic name of the subroutine must not appear in any other statement 
in this subprogram . 

Symbolic names of the dummy arguments may not appear in an EQUI
VALENCE, COMMON, or DATA statement in the subprogram. 

Subroutine subprograms do not require a RETURN statement if the pro
cedure is completed upon executing the END statement. When the end 
line is encountered, a return is implied. 

Subroutine subprograms may contain any statements except BLOCK DATA, 
FUNCTION, or another SUBROUTINE statement. 

Execution of a subroutine begins with the first executable statement of the 
subprogram. Continuation is sequential unless a GO TO, IF, RETURN, 
STOP or terminal statement of a DO is encountered, in which case execution 
proceeds as indicated. 

9-3 



9-4 

A reference to a subroutine is made by a CALL statement. The actual argu
ments, which constitute the argument list, must agree in order, number, 
and type with the corresponding dummy arguments in the defining program; 
otherwise the results are unpredictable. The use of a Hollerith constant or 
octal constant as an actual argument is an exception to the rule requiring 
agreement of type. An actual argument in a subroutine reference may be 
one of the following: 

Constant 

Variable name 

Array element name 

Array name 

Name of an external procedure 

ECS variable name 

ECS array element name 

ECS array name 

Any other expression 

Several restrictions and rules govern the correspondence of actual arguments 
in the calling program to dummy arguments in the subprogram: 

If an argument in the calling program is an external function or subrou
tine name, the corresponding dummy argument must be used in the 
same manner. 

An argument in the calling program must be a variable name, an array 
element name, or an array name if it corresponds to a dummy argument 
which is defined or redefined in the subprogram. 

The association of arguments in the calling program is made by name 
to dummy arguments appearing in executable statements, function 
definition statements, or those used as adjustable dimensions in the 
subprogram. However, if an argument takes the form of an expression 
(any other expression), the association is by value rather than by name. 

An argument which is an array element name containing variables in the 
subscript expression may be replaced by the same argument with a con
stant subscript with an equivalent value. 

If a subroutine reference causes a dummy argument in the referenced 
subroutine to become associated with another dummy argument in the 
same subroutine or with an entity in common, a definition of either 
entity within the subroutine is prohibited. 

60176600 Rev. C 



ENTRY ST A TEMENT 

60176600 

Example: 

Assume X = 3 and Y = 2 

1) CALL SUBA (X, X) 

2) COMMON X 
CALL SUBB (X) 

END 

SUBROUTINE SUBA (A, B) 

A=Y 
Z=B 

SUBROUTINE SUBB (B) 
COMMON A 

A=Y 
Z=B 
END 

In the above examples, the first two statements in the subroutine set 
X = Y then Z = X resulting with X = 2 and Z = 2. However, if the state
ments are reversed the results obtained will be different; Z = X then 
X = Y, the numeric values resulting are Z = 3 and X = 2. 

I 

This statement provides alternate entry points to a function or subroutine 
subprogram . 

ENTRY name 

Name is an alphanumeric identifier which may appear within the subprogram 
only in the ENTRY statement. Each entry identifier must appear in a separate 
ENTRY statement. The formal parameters, if any~ appearing with the 
FUNCTION or SUBROUTINE statement do not appear with the ENTRY state
ment. They are assumed to be the same as those of the FUNCTION or 
SUBROUTINE in which the ENTRY statement is located. ENTRY may appear 
anywhere within the subprogram except within a DO; ~~TRY~~J::itei;nen_t~ 
s.g.~Q.Lb.e)abeleq. The first executable statement following ENTRY becomes 
an alternate entry point to the subprogram. · 

In the calling program, the reference to the entry name is made just as if 
reference were being made to the function or· subroutine in which the ENTRY 
is imbedded. The name may appear in an EXTERNAL statement and, if a 
function entry name, in a TYPE statement. 

The ENTRY name type must agree with the function name type. The name 
may not be given a type explicitly in the defining program; it assumes the 
same type as the name in the FUNCTION statement. 

9-5 



I 

Examples: 

FUNCTION JOE(X, Y) 
10 JOE=X+Y 

RETURN 
ENTRY JAM 
IF (X. GT. Y) 10, 20 

20 JOE=X-Y 
RETURN 
END 

This could be called from the main program as follows: 

Z = A+B-JOE(3. *P,Q-1) 

R = S+JAM(Q, 2. *P) 

LIBRARY SUBROUTINES Library subroutine subprograms may be referred to by any program with a 
CA LL statement. ..! must be an integer variable or constant, J is an integer 
variable. 

9-6 

CALL SLITE (i) Turn on sense light i. If i = 0, turn all sense lights off. 
i is 0 to 6; if i > 6 or < 0, an informative diagnostic is given and all 
sense lights remain unchanged. 

CALL SLITET (i, j) If sense light i is on, j = 1, if sense light i is off, j= 2; 
then turn sense light i off. i is 1 to 6. If i > 6 or < 0, an informative 
diagnostic is given and all sense lights remain unchanged and j=2. 

CALL SSWITCH (i, j) If sense switch i is on (down), j = 1, if sense switch i 
is off (up), j = 2, i is 1 to 6. If i > 6 or < 0, an informative diagnostic 
is given and all sense switches remain unchanged and j = 2. 

CALL EXIT Terminate program execution and return control to the operat
ing system. 

CALL REMARK (H) Place a message, not to exceed 40 characters, in the 
dayfile. H is a Hollerith specification. 

CALL DISPLA(H,k) Displays a variable name and its numerical value in 
the dayfile. The value k is displayed as an integer if not normalized 
and in floating point format if normalized. H is a Hollerith specification. 

CALL RANGET(n) Obtain current generative value of RANF between 0 and 1. 
n is a symbolic name. 

CALL RANSET(n) Initialize generative value of RANF. n is real. 

60176600 Rev. F 



9.3 
FUNCTION 
SUBPROGRAMS 

CALL DUMP (a ,b ,f
1

, ... ,a ,b ,f) 
1 1 n n n 

CALL PDUMP (a
1

, b
1

, f
1

, ... , an' bn' fn) 

Dump storage on the OUTPUT file in the indicated format. If PD UMP was 
called, return control to the calling program; if DUMP was called, terminate 
program execution and return control to the monitor. ai and bi identifiers 
indicate the first word and the last word of the storage area to be dumped; 
1 :::=n:::= 20. The dump format indicators are as follows: 

f = 0 or 3 octal dump 

f = 1 real dump 

f = 2 integer dump 

f = 4 octal dump; this implies that ai and bi are statement numbers that 
have b.een defined by an ASSIGN statement. 

I 

STATEMENT FUNCTIONS Statement function definitions must precede the first executable statement of 
the program or subprogram and must follow any specification statements. 
The name of a statement function must not appear in an EXTERNAL statement, 
nor as a variable name or an array name in the same program or subprogram. 
A statement frmction applies only to the program or subprogram containing 
the definition; it is defined by a statement of the form: 

l. is the statement function name, ~is any expression. Ei are variable names 
which are dummy arguments indicating type, number, and order of arguments; 
they may be the same as variable names of the same type appearing elsewhere 
in the program unit. n may not exceed 63. f and e must be both logical or 
both non-logical. 

Examples: 

1. LOGICAL C, P, EQV 
EQV(C, P) = (C. A. P). 0. (. N. C. A .. N. P) 

2. COMPLEX D, F 
D(A, B) = (3. 2, 0. 9) * EXP(A) *SIN(B) +(2. 0, 1.) * EXP(Y) * COS(B) 

3. GROS(R, HRS, OTHERS) = R*HRS + R* . 5*0THERS 

60176600 Rev. F 9-7 



I INTRINSIC FUNCTION 

EXTERNAL FUNCTION 

I 

9-8 

The symbolic names of the intrinsic functions (built-in functions) have 
special meaning and type as described in Appendix D. An intrinsic function 
may be referenced when it is used as a primary in an arithmetic or logical 
expression. The actual arguments, which constitute the argument list, must 
agree in type, number, and order with the specification in Appendix D and 
may be any expression of the specified type. 

Examples: 

1) DATA(I) =DATA(I + 1) * ((FLOAT( MAX) /K(I)) /DATA(I)) 

2) IB(J)=IFIX(B(J)) 

The intrinsic functions SIGN, ISIGN, and DSIGN are defined when the value of 
the second argument is zero, such that the sign of the second argument is 
taken as positive (negative) for +0(-0). However, the functions AMOD and 
MOD are not defined when the second argument is zero; division by zero 
renders the results undefined. 

An external function is defined externally to the program or subprogram that 
references it. An external procedure defined by FORTRAN statements headed 
by a FUNCTION statement is called a function subprogram. 

t FUNCTION f(a
1

,a
2

, ... ,an) or FUNCTION f(a
1
,a

2
, ... ,an) 

.!_is INTEGER, REAL, DOUBLE, DOUBLE PRECISION, COMPLEX, 
LOGICAL, or it is omitted. 

f is the symbolic name of the function. If _1 is omitted the type of the 
function is derived from f according to the type rules of implicit 
definition. 

_gi are the dummy arguments; each may be a variable name, an array 
name, or an external procedure name. l::::::i::::::63. 

The function name_! must appear as a variable in the defining subprogram. 
During every execution of the subprogram, the variable must be defined, 
and once defined, it may be referenced or redefined. The value of the 
variable when a RETURN statement is executed is the value of the function. 
The function name_! must not appear in any non-executable statement o.ther 
than the FUNCTION statement in the function subprogram. 

The dummy argument names may not appear in an EQUIVALENCE, COMMON, 
or DATA statement in the function subprogram. The function subprogram 
may define or redefine one or more of its arguments so as to effectively re
turn results in addition to the value of the function. 

A function subprogram may contain any statement except BLOCK DATA, 
SUBROUTINE, another FUNCTION STATEMENT, or any statement that 
directly or indirectly references the function being defined. 

60176600 Rev. F 



EXTERNAL FUNCTION 
REFERENCE 

60176600 Rev. B 

When the END line is reached, a return is implied. 

Example: 

FUNCTION GRATER(A, B) 
IF(A. GT. B) 1, 2 

1 GRATER=A-B 
RETURN 

2 GRATER=A+B 
El\1D 

The reference to an external function may also be established when it is 
used as an operand in an arithmetic or logical expression. The actual argu
ments must agree in order, number, and type with the corresponding dummy 
arguments in the defining program. 

f is a symbolic name of the function, a. are the actual arguments. An actual 
- -1 
argument name in an external function reference may be one of the following: 

Variable 

Array element 

Array name 

External procedure reference 

Constant 

ECS variable 

ECS array 

ECS array element 

Any other expression 

The rules governing the association of arguments in the function call to 
dummy arguments in the function are the same as those enumerated for 
subroutine subprograms. 

9-9 



BASIC EXTERNAL 
FUNCTIONS 

9.4 
BLOCK DATA 
SUBPROGRAM 

9-10 

Examples: 

1) W(I,J)=FA+FB-GRATER(C-D, 3. *AX/BX) 

2) FUNCTION PHI (ALPHA, PHI2) 
PHI=PHI2 (ALPHA) 
RETURN 
END 

The reference to the function PHI in example 2 may be: 

EXTERNAL SIN 

C=D-PHI(Q(K), SIN) 

The. replacement statement in the function PHI will produce the same result 
as if it had been written PHI=SIN(Q(K)). 

The basic external functions listed in Appendix D are referred to in the 
manner described in the section, External Function Reference. Arguments 
may not be used for which a result is not mathematically defined and they 
may not be of a type other than that specified. 

Initialization of data to be stored in labeled common may be accomplished by 
the specification of a BLOCK DA TA subprogram which begins with a statement 
of the form: 

BLOCK DATA 

or 

BLOCK DATA d 

Q. is the symbolic name of the BLOCK DATA subprogram. This param
eter must be specified if the subprogram is to be included in a SEGMENT 
as defined for SCOPE. 

The BLOCK DATA subprogram contains only specification and DATA state
ments; executable statements are prohibited. Only the DATA, COMMON, 
DIMENSION, EQUIVALENCE, and TYPE statements associated with the data 
being defined are accepted; data may not be entered into an unlabeled (blank) 
common block. If an entry for a common block is given an initial value in such 
a subprogram, a complete set of specification statements for the entire block 
must be included, even though some of the elements of the block do not appear 
in DATA statements. 

60176600 Rev. D 



Example: 

BLOCK DATA 

COMMON/MAX/DATA(3) ,AA, BB/MIN/A, B, C, LAX 

REAL LAX 

INTEGER BB 

COMPLEX A 

DOUBLE PRECISION C 

DATA LAX/145.12/, (DATA(I), I=l, 3)/1. 1, 2*9. 3/, BB/1256/ ,A, B, C/ 
(2.0,1.0),13.6,172.5432D06/ 

END 

Initial values may be entered into more than one block in a single subprogram. 

9-11 





10. l 
OVERLAYS 

OVERLAYS AND SEGMENTS 

Programs that exceed available memory may be divided into independent 
parts which may be called and executed as needed. Such programs can be 
divided into segments or overlays. 

Segments are groups of subprograms that are loaded in relocatable form when 
requested, giving the user explicit control over established interprogram 
links. An overlay is a program combined with its subprograms which is 
converted to absolute form and written on mass storage prior to execution. 
During execution, overlays are called into memory and executed as requested. 
OVERLAY and SEGMENT loader control cards are recognized by the compiler 
if they start in column 7 or later and appear between subprograms. Compiler 
processing places them in the desired position on the binary output file. 

Overlay processing allows programs to be divided into independent parts 
which may be called and executed as needed. Each part (overlay) must 
consist of a single main program and any necessary subprograms. 

Each overlay is numbered with an ordered pair of numbers (I, J), each in 
the range 0-77 8. I denotes the primary level, J, the secondary level. An 
overlay with a non-zero secondary level is called a secondary overlay and is 
associated with and subordinate to the overlay which has the same primary 
leve and a zero secondary level, called the primary overlay. The initial or 
main overlay which always remains in memory has levels (0, 0). The signif
icance of this distinction appears in the order in which overlays are loaded. 

Overlay level numbers, (0, 1), (0, 2), (0, 3) ... are illegal. Primary overlays 
all have their origin at the same point immediately following the main overlay 
(0, 0). The origin of secondary overlays immediately follows the primary 
overlay. For any given program execution, all overlay identifiers must be 
unique. The loading of any primary overlay destroys any other primary 
overlay. For this reason, no primary overlay may load other primary 
overlays. Secondary overlays may be loaded only by the associated primary 
overlay or main overlay. Thus two levels of overlays are available to the 
programmer. 

An overlay may reference subprograms in its own overlay, in the main over
lay, or in its associated primary overlay. 

10-1 



OVERLAY 
CONTROL CARDS 

Example: 

Main Overlay (0, 0) 

(2' 0) 
(6' 0) (7' 0) 

(1, 0) (4' 0) 

(2' 1) 

(1, 1) (1,2 
(4 ,2) i---- (4' 1) (4 ,3) t----1 

.____ 

Overlays (1, 1) and (1, 2) are secondary to overlay (1, 0) 

Overlay (2, 1) is secondary to overlay (2, 0) 

... 

Overlay (2, 1) may not be called from (1, 0) or (1, 1) or (1, 2) but only 
from (2, 0) or (0, 0) 

Overlays (1, 0), (2, 0), (4, 0) ... may be called only from the main over
lay (0, 0) 

OVERLAY (lfn, 11, 12, Cnnnnnn) 

lfn File name on which overlay is to be written; first overlay 
card must have a named lfn. Subsequent cards may omit it, 
indicating that the overlays are related and are to be written 
in the same lfn. A different lfn on subsequent cards results 
in generation of overlays to the new lfn. 

11 Primary level number in octal. 

12 Secondary level number in octal. 11, 12 for the first overlay 
card must be 0, 0. 

Cnnnnnn Optional parameter consisting of letter C and six-digit octal 
number. If this parameter is present, the overlay is loaded 
nnnnnn words from the start of blank common. This provides 
a method of changing the size of blank common at execution 
time. Cnnnnnn cannot be included on the overlay 0, 0 loader 
directive. If this parameter is omitted, the overlay is loaded 
in the normal manner. 

10-2 60176600 Rev. C 



10.2 
SEGMENTS 

60176600 Rev. E 

Overlays are called by: 

CALL OVERLAY (fn, I, J, p, 1) 

OVERLAY is a FORTRAN execution time subroutine which translates the 
FOR TRAN call into a call to the loader. 

fn Variable name of a location which contains the name of the file 
(left justified display code) that contains the overlay 

I Primary level of overlay 

J Secondary level of overlay 

p Recall parameter. If p equals 6HRECALL, the overlay is not 
reloaded if it is already in memory. 

Load parameter. Used to determine which value of the fn will 
be used. 1 may be any value. If 1 is present and non-zero, the 
overlay designated by fn will be loaded from the system library; 
otherwise, it will be loaded from the file designated by fn. 

Prior to execution of this call which causes loading and execution of the 
overlay, the overlay must have been made absolute and written on file fn. 
When an END statement in the main program of an overlay is encountered, 
control returns to the statement following the CALL OVERLAY which initi
alized execution of the overlay in question. 

A segment is a group of subprograms (possibly one) which are loaded together 
when specified by the programmer. Segments are loaded at levels from 0-77 8· 
Level zero is reserved for the initial or main segment. Level zero, which 
must contain a PROGRAM, remains in memory during execution. 

The following definitions apply to segmentation. 

Entry point. A named location within a subprogram that can be referenced 
by another program - created by the SUBROUTINE, FUNCTION and 
ENTRY statements. 

External reference. A reference within a program or subprogram to the 
entry point of some other subprogram - created by explicit CALL 
statements, function references, 1/0 statements, implicit functions, 
etc. 

Link. The connection established between an external reference and an entry 
point when the programs are loaded into memory. 

Unsatisfied external. An external reference for which no matching entry 
point can be found, and therefore no link established. 

10-3 



10.2.1 
SEGMENT 
CONTROL CARDS 

SECTIONS 

10-4 

When the segment is loaded, external references will be linked to entry 
points in previously loaded segments (those at a lower level). Similarly, 
entry points in the segment are linked to unsatisfied external references 
in previously loaded segments. Unsatisfied external references in the 
segment remain unsatisfied; subsequent segment loading may include entry 
points to satisfy the external references. Unsatisfied external references 
may be satisfied, if possible, from the system library. 

If a segment is to be loaded at a requested level which is less than or 
equal to the level of the last loaded segment, all segments at levels down 
to and including the requested level will be removed/delinked. Delinking 
a segment at a given level requires that the linkage of external refer
ences in lower levels to entry points in the delinked segment be destroyed 
so that the external references are unsatisfied once again. 

Once the delinking is complete, the segment is loaded. Only one occur
rence of a given subprogram or entry point is necessary since all levels 
may eventually link to the subprogram. However, a user may force load
ing of a subprogram by explicitly naming it in another segment at a higher 
level. Thereafter, all external references in higher levels are linked to 
the new version. In this manner, a subprogram and/ or entry point can 
effectively replace an identical one already loaded at a lower level. How
ever, once a linkage is established, it is not destroyed unless the seg
ment containing the entry point is removed. 

Example: 

The SINE routine is loaded in a segment at level 1. The user wishes 
to try an experimental version of SINE. He loads a segment con
taining the new SINE at level 2. Segments loaded at level 3 or high
er will now be linked to SINE at level 2 until a new level 2 or a new 
SINE is loaded. 

Common blocks may be loaded with any segment. Labeled common may 
not be cross-referenced in segments. Maximum blank common length is 
established in the first segment which declares blank common. 

This card defines a section within a segment. Segments are loaded by user 
calls during execution or by MTR during initial load. 

sname 

pn. 
1 

Name of section (7-characters maximum). 

Names of subprograms in the section. If more than one 
card is necessary to define a section, additional cards with 
the same sname may follow consecutively. 

60176600 Rev. C 



SEGMENTS 

60176600 Rev. C 

All subprograms within a section are loaded whenever the named section is 
loaded. All section cards must appear prior to the SEGMENT cards which 
refer to the named sections. 

All programs requiring segmentation loading must contain a SEGZERO card 
prior to any of the binary text. 

sn 

pn. 
l 

Segment name 

Names of subprograms or section names which make up 
main or zero level segment. Defining other segments in a 
similar manner reduces the list of subprograms in the 
loader call. 

The parameters are defined as in SEGZERO. In a segment, all programs 
must reside on the same file. A segment defined in the user's program 
need not be defined by a SEGMENT card; however, a SEGZERO card is 
always required. 

Segments may be loaded by; 

CALL SEGMENT (fn, e, a, lib, m) 

fn Variable name of location which contains the file name 
(left justified display code) from which the segment load 
takes place. 

e Level of the segment load. 

a Variable name of array containing a list of SEGMENTS, 
SECTIONS and/or SUBPROGRAMS to be loaded with this 
call. In this list, the name must be in left justified dis
play code, and the list must be terminated by a zero entry. 
An initial list entry of zero signals a segment load of all 
subprograms remaining on the file fn. 

lib If zero or blank, unsatisfied externals are to be satisfied, 
if possible, from the system library. 

m If zero or blank, a map of the segment load is not pro
duced. lib and m need not be specified. 

Once the named subprograms are loaded control returns to the statement 
following the CALL SEGMENT. The programmer is free to call on the 
loaded subprograms as desired. 

10-5 





60176600 Rev. F 

DEBUGGING FACILITY 11 

The debugging nD de of compilation, along with the source cross-reference 
map selection, is provided specifically to aid in the development or conver
sion of programs. In the debugging mode of compilation, a programmer can 
establish a record of selected operations as they are performed in the execu
tion of his program. This mode facilitates debugging from a source listing, 
and perhaps a source cross-reference map should core dumps be required; 
it makes their interpretation much easier. 

Features provided with the debugging mode of compilation: 

Array bounds checking 

Program flow tracing 

Call and return tracing 

Function call and value returned tracing 

Stores checking 

Assigned GO TO checking 

Partial execution of routines containing fatal errors 

The debugging mode is selected by the option D on the FTN control card 
(Appendix C). In this mode, debugging selection cards are recognized. 
If this mode is not specified, debugging selection cards are treated as 
comments. 

In the debugging mode, a program is compiled so that specified checks can 
be performed during execution; however, execution will stop when a fatal 
error is detected. 

When a program is compiled in debug mode, 120008 words will be required 
beyond the minimum field length for non-debug mode compilation. To 
execute, 2500 8 words beyond the minimum will be required. 

11-1 



11.1 
FORMAT 

11.2 
ARRAYS 
STATEMENT 

11-2 

Debugging statements are punched in columns 7-72, as in the normal 
FOR TRAN statement. fu addition: 

Columns 1 and 2 of each statement must contain the characters C$ 

A continuation line must be flagged by a character in column 6 (any 
FORTRAN character other than blank or zero). Columns 3-5 must 
be blank. 

t if required 

The restriction on the number of debug continuation lines is the same as for 
FORTRAN continuation lines. When FORTRAN Extended is not in debug 
mode or when the program is used with another FORTRAN compiler, the 
debug cards will be treated as comment cards. Since even working programs 
sometimes exhibit new bugs, it could be advantageous to retain the debugging 
statements in a program once checkout is complete. 

In the following pages, excerpts from an actual printout of a working pro
gram are used in conjunction with typewritten examples to illustrate the 
debugging messages. A sample working program is reproduced in full at 
the end of the chapter. 

The ARRAYS statement initiates subscript bounds checking on specified 
arrays. Warning messages appear on the output if the address calculated by 
the array indexing function is not within the storage allocated for the array. 

C$ ARRAYS(a1,a2 ... an) 

C$ ARRAYS 

(a1 ... a ) are the names of the arrays for which subscript bounds are to be 
checke!. If array names are not given, all arrays in the program unit are 
checked. 

60176600 Rev. F 



11.3 

CALLS 
STATEMENT 

/OEAUG/ 
/OE PUG/ 
/OFRUG/ 
/Of13UG/ 

~ 

Identifies 
a debug-

glng 
message 

The C$ ARRAYS statement does not provide checking of individual sub
scripts, only checking of the address computed from all the subscripts. 

When ARRAYS statement is used, a bounds check is made each time an 
element of an array is referenced. Bounds checking is not performed for 
array references in an input/output list. If the element is not within the 
overall bounds of the array, a message is printed with the job output, as 
shown in the following example. After printing a message for an out of 
bounds array reference, the reference is allowed to occur. 

SH1PLE 
SAMPLE 
SAt4PLE 
SAMPLE 

~ 

Program 
unit name 
containing 
subscript 
reference 

AT LINE 
AT LINE 
AT LINE 
AT LINE 

11- THE SUBSCRIPT VALUE OF 
11- THF SUPSCRIPT VALUE OF 
13- Tf-1£ SUBSCRIPT VALUE OF 
14- THE SUBSCRIPT VALUE OF 

Linc number 
of reference 

Value of subscript 
in reference 

6 IN ARRAY Al 
0 IN ARRAY Al 
6 IN ARRAY Al 
0 IN ARRAY Al 

Name of array 
being referenced 

EXCEEDS DIHENSIONEO ~OUNO OF 
EXCEECS OIHENSIONF.O eoUNO OF 
EXCEEDS OI~ENSIONEO eoUNO OF 
EXCEECS DIHFNSIONEO eOUNO OF 

Actual dimension 
limits of array 

This statement traces calls to and returns from specified subroutines. 

C$ CALLS 

The subroutine names for which call tracing is to be performed are indicated 
by(a1 ... an). If this parameter is not specified, all subroutine calls are 
traced. Nonstandard returns are also traced. 

The message produced for each call and return are printed with the job out
put as follows: 

/OFBUG/ SAMPLE AT LINE 23- ROUTINE SUB1 CALLEO AT LEVEL 0 
/Of8UG/ SAMPLE AT LINE 24- ROUTINE SUB! RETURNS TO LEVEL 0 
/DFBUG/ SAHPLF. AT LINE 25- ROUTINE SLITE CA LL ED AT LEVEL 0 
/DEBUG/ SAMPLE AT LINE 26- ROUTINF. SLI TF. RETURNS TO LEVEL 0 

..__,.._... ..__,.._... ----- ----- - -
Identifies Program Line number Name of Indicates call or 
a debug- unit name containing subroutine return status and 

ging containing call or return called or level number 
message reference returned 

60176600 Rev. F 11-3 



11-4 

A main program is always at level zero; subroutines are at any level other 
than zero. Calls are always in order of ascending level number; returns are 
always in order of descending level number. 

level 0 

level 1 

level 2 

~call 
return~call 

return~ 
Traceback information from the current subroutine level back to the main 
level is available through a call STRACE, an entry point in the object routine 
BUGCLL. The output is printed on a file named DEBUG; however, the pro
gram need not be compiled in debug mode to use this feature. 

PROGPA~ ~AI~ 

SURROUTINE SUE!. 

SUEROUTINE SU~2 

P~rcP~~ ~AIN ccuTPUT,DEBLG=OUTPUT> 
CALL ~lJ81 

El\IO 

StJrPrL THE sue1 
CALL ~lJ82 

Pf'TURI\ 
ENO 

SU!?PCL THE SlJ82 
I = FLl\IC1 CZ> 
PE'TUH 
nm 

FUNCTION FUNC1 

OS 

Output from STRACE: 

FU~CTION FUNC1 (K) 

FUNC 1 = I< •• 1: 
CALL STR ACE 
PE TUPI\ 
END 

/DEBUG/ FUl\IC1 ll T L HI': TR~CE ROLTINE CALLED 
FU I\ C 1 CAL l ED 8 Y SU~ i:' AT LI t\E 2 , FR 0 H 1 LEVE l S 8 ACK 
SUF2 CALLED 8Y sue1 AT LINE 2, FRCH 2 LEVELS BACK 
SUE1 CALLED PY "'AIN AT LHE 2, FRCt-1 3 LEVELS BACK 

60176600 Rev. F 



11.4 
FUN CS 
STATEMENT 

/DFPUG/ 
/Dl'OUG/ 
/DFl'UG/ 
/DEBUG/ 
/nEAUG/ 
/DfE'UG/ 

~ 

Identifies 
a debug-

ging 
message 

60176600Rev. F 

Function tracing is similar to call tracing except that functions return a 
value that often is of concern to the programmer. 

C$ FUNCS 

The function names for which function tracing is to be performed are indicated 
by (a1, ... , a ) . If no names are listed, all functions are traced. Functions n . 
used in array subscripts in input/output lists and statement functions are 
not traced. A message is issued for each use of a function; it is printed 
with the job output as shown below. 

SAMPLE AT LINE 33- PEAL FUNCTION FUN1 CALLED AT LEVEL 0 
SAMPLE AT L TNF 33- Rf AL FUNr.TION FUN1 RETURNS A VALUE OF 7743.000000 AT LEVEL 
SAMPLE AT L HIE JS- INTEGER FUNCTI!'N TABS CALLED AT LEVEL 0 
SM•PLF AT LTNF 35- IN"iEGFR FUNCTICN !ABS RETURNS A VALUE OF ~242 AT LEVEL 
SAMPLE AT LINE 37- Pf AL FUNCTION EXP CALLED ar LEVEL 0 
SAMPLE AT LINE 37- PFAL FUN CT I CN EXP RETURNS A VALUE OF 23.11 .. 063123 AT LEVEL 

~ -------~ ---------- --------------- -------- ---------
Program Linc number Function Function Level number of using Value returned Level to which 

unit using containing the type program unit including by function value is being 

functions function usage call or return status returned 

11-5 



11.5 
STORES 
STATEMENT 

11-6 

/DEBUG/ 
IOFBUG/ 
IDE!IUGI 
IDFAUG/ 
/DEBUG/ 
/l)FRUG/ 
/l)fPUG/ 
/DFBUG/ 
/DfAUG/ 
/DEPUG/ 
/OE~UG/ 

/IJfRUG/ 

~ 

Identifies 
a debug-

ging 
message 

The STORES statementis used to record changes in value of specified 
variables resulting from arithmetic assignment statements. Variables 
altered as a result of use in an input list or a subroutine (function) para
meter list are not detected. Stores checking is not performed on the con
trol variable of a DO loop; stores checking is not performed when a variable 
is changed as a result of a store into an equivalenced variable. 

(c1, ... en) can be variable names or relational expressions in the form: 

variable name . relational operator. constant 

or expressions with checking operators in the form: 

variable name . checking operator. 

The checking operators are: 

RANGE prints when the value .is out of range 

IN DEF prints when the value is indefinite 

VALUE prints for either out of range or indefinite 

If variable names are used, a message is issued each time a new value is 
stored in a variable or array element. If the relational or checking expres
sion is used, a message is issued only when the stored value satisfies the 
relation. The message will contain: 

SAMPLE AT LINE 48- THE NEH VALUE OF THE VARIABLE Ai IS i.000000000 SAMPLE AT LH'E 48- THE NEH VALUE CF THE VARIABLE Ai IS 2.000000000 SAHPLE AT lINF 48- THE NEH VALUE CF THE VARIABLE Ai IS 3.000000000 SAHPLF llT LINE 411- THE NEH VALUE OF THE VARIABLE Ai IS 4.000000000 SAMPLE AT LINE 48- THE NEH VALUE CF THE VARIAeLE Ai IS 5.000000000 SAMPLF: AT LINE 5i- THE NEH VALUE OF THE VARIABLE AGAIN IS 3.i4i590000 SAMPLE AT LINE 53- THE NEH VALUE CF THE VARIABLE A2 IS 5.000000000 SAMPLE , AT LTNE 54- THE NEH VALUE OF THE VARIABLE IAGAIN IS 10 SAMPLE AT LINE 54- THE NEH VALUE CF THE VARIABLE I AGAIN IS q 
SAMPLF: AT LINE 54- THE NEH VALUE CF THE VARIABLE IAGAIN IS 8 SAMPLE AT LH'E 54- THE NEH VALUE OF THE VARIABLE IAGAl:N IS 7 SAMPLE AT LINE 54- THE NEH VllLUE OF THE VARIABLE IAGlIN IS & 

'-'v--' ----------- -----------Name of Line number Name of variable, New value of 
program of reference and message variable 

unit 

60176600 Rev. F 



11.6 
GOTOS 
STATEMENT 

11.7 
TRACE 
STATEMENT 

This statement checks the validity of the selected statement labels in an 
in an assigned GO TO. 

C$ GOTOS 

The statement label assigned to the integer variable is compared with 
statement labels in the list. A message is printed when the label value is 
not in the list, but the transfer of control is allowed to occur. 

/OE8\JG/ SAMPLE AT LINE q4- ASSIGNEO GOTO INOEX CONTAINS THE ADORESS 007061. NO HATCH FOUNO IN SHTEHENT LABEL AOORESS LIST 

Identifies Name of Line number Address of assigned go to 
statement label 

Message 
a debug- program of assigned 

ging unit go to 
message 

When the TRACE statement is used, a message is produced for each intra
program transfer of control at a level less than or equal to the level specified 
by lv. 

C$ TRACE(lv) 

C$ TRACE 

If lv = 0, tracing will occur only outside DO loops; if lv = n, tracing will 
occur up to and including level n in a DO nest; if no level is specified, zero 
level is implied. If a DO loop is not satisfied, the transfer back to the start 
of the loop is not traced. Transfers resulting from nonstandard returns are 
not traced. (These may be checked using C$ CALLS.) When tracing is sel
ected and an out-of-bound computed GO TO is executed, the value of the 
incorrect index is printed before the job is terminated. 

Flow tracing will follow these types of program flow control: 

Simple GO TO 

Computed GO TO 

Assigned GO TO 

Arithmetic IF 

True side of logical IF 

60176600 Rev. F 11-7 



11.1 
NOGO 
STATEMENT 

11-8 

/Of BUG/ 
/OfElUG/ 
/OfAUG/ 
/0£8UG/ 

~ 

Identifies 
a debug-

ging 
message 

The output message will contain the following: 

SAMPLE II T LINE 71- CONTPOL WILL eF TPANSFERRED TO STATEt!ENT 503 AT LINE 73 
SAMPLF. AT L INF 73- Cf1NTROL WILL er TRANSFERRED TC STATEMENT 504 A'1 LINE 75 
SAMPLE AT LINE 75- CONTQOL WILL eE TRANSFERRFO TO STATEMENT '505 AT LINE 77 
SAMPLE AT LINF. 77- CONTROL WlL L BF TRANSFERRED TO STATEMENT 5!16 Al LINE 1e 

....._,,,,_.,, -------- '--- ._./ ----------.......--
Program Line number Statement number to which Line number of 

unit name from which control was transferred statement to 

control trans- which control 

fer red was transferred 

The NOGO statement suppresses partial execution of a compiled routine 
whenever a fatal compilation error occurs during compilation. 

C$ NOGO 

If the NOGO statement is not present and the debugging mode is in effect, 
the program executes until a fatal error is encountered; at which point, 
the following message is issued: 

FATAL ERROR ENCOUNTERED DURING PROGRAM 
EXECUTION DUE TO COMPILATION ERROR. 

Partial execution is not permitted for only three classes of errors: 

Errors in the declarative statements 

Missing DO loop terminators 

Missing FORMAT statement numbers 

60176600 Rev. F 



11.9 
DECK STRUCTURE 

60176600 Rev. F 

Debugging statements may be interspersed with FORTRAN statements 
in the source deck of a program unit (main program, subroutine, function). 
The debugging statements apply to the program unit in which they appear. 
Inclusion of interspersed debugging statements will change the FORTRAN 
generated line numbers for a program (figure 11-1). 

Debugging statements also may be grouped to form a debugging deck beginning 
with a C $ DEBUG card. Debugging decks may be placed in a job in one of the 
following ways: 

As on external debugging deck in a separate file named by the D parameter 
on the FTN card. When no name is specified by the D parameter, the 
INPUT file is assumed. (Figure 11-2.) 

Immediately preceding the first source deck in the compiler input 
record (External Packet, figure 11-3). 

Immediately after a program header card (PROGRAM, SUBROUTINE, 
or FUNCTION statement) (Internal Packet, figure 11-4). 

The range of a debugging statement depends on its position: 

Location 

External File Any or all program units 

External Packet Any or all program units 

Internal Packet Routine containing the packet 

Interspersed Routine containing the specifications 

Note: In the following illustrations, it is assumed that a 7 /8/9 card terminates 
each Control Card Record. 

11-9 



11-10 

DEBUG 
CARDS 

DEBUG 
CARDS 

/6 l 7 
8 L 
9 L 

L 
L 

L 

~Data Deck 

7 1 8 
9 _L 

L 
_L 

{Executable Statements 

C$ CALLS J 
C$ FUNCS 

L 
r-

~ {Executable Statements 

_L 

r-
_{Specification Statements 

C$ ARRAYS l 
/C$AREA l 

IC$ DEBUG 

L-------1 
Program Name Card 

t-' 
f-

I-' 
t-

t:::: 

1--' 
t-

f-
i---

t-' 
f-

...._____., ~ 
Control Card Record 

._____, 

L..--

SAMPLE DEBUG AID POSITION: As individual debug cards interspersed 
in a program unit. The debug cards are inserted into the program where 
they will be activated. This positioning is especially useful when a new 
program is to be run for the first time and the accuracy of specific areas, 
such as array bounds, is in doubt. 

Figure 11-1. Sample Debug Aid Position 

l 

60176600 Rev. F 



60176600 Rev. F 

.L 
_f_ 

L 
Debug Deck 

I (Input) 

FTN (I= TAPE!, D) 

Compiler 

L 
L 

Source Deck 

(Input) 

I (Input) 

FTN (D= TAPE!) 

Compiler 

t
i

t-

SAMPLE DEBUG AID POSITIONS: Debug deck placed on a separate file 
(external debug deck) named by the D parameter on the FTN control 
card, and called in during compilation. With these positions, all pro
gram units will be debugged (unless limiting bounds are specified in the 
deck). This positioning is particularly useful when several jobs can be 
debugged using the same debugging deck. 

Figure 11-2. Sample Debug Aid Positions 

11-11 



11-12 

6 
7 
8 
9 _L 

_L 
_L 

_L_ 

~Data Deck 

7 

I 8 
9 t-

l I-' 

Subroutine B 

_L_ 

.._ J!-
_L_ 

{Program A 

.L 
.L 

{_Debug Deck (External Packet) 

_L ~ 

_L t-
L t-

Control Card Record 
~ 

t-----' 

I-' 

!-------' 

FTN (D) 
I-

t-
I-

SAMPLE DEBUG AID POSITION: As a deck, placed immediately in front 
of the first source line (when the D file is the same as the source input file). 
All program units (here, Program A and Subroutine B) will be debugged 
(unless limiting bounds are specified in the debug deck). This positioning 
is particularly useful when a program is to be run for the first time, since 
it ensures that all program units will be debugged. 

Figure 11-3. Sample Debug Aid Position 

60176600 Rev~ F 



FTN (D) 

60176600 Rev. F 

6 
7 
8 
9 

.L 
_L 1---J 

.L 

11 Data Deck 

7 l 8 
9 I 

_L_ 
_/__ 

...._____, .C-
LJ:Source Deck 

L 
_L 

(Debug Deck (Internal Packet) 
I-' 

J 
~ 

Program Name Card I-
I-

I-

l 
~ 

Control Card Record 

SAMPLE DEBUG AID POSITION: As a deck, placed immediately after the 
program header card and before any specification statements. All statements 
in the program unit will be debugged (unless limiting bounds are specified in 
the debug deck), but no statements_ in other program units will be debugged. 
This positioning is especially useful when the job is composed of several 
program m1its lmown to be free of bugs and one unit that is new or is known 
to have bugs. 

Figure 11-4. Sample Debug Aid Position 

11-13 



11.3 
DEBUG 
STATEMENT A debug deck must begin with a DEBUG statement written in either of the 

forms: 

C$ DEBUG 

C$ DEBUG(name1 , ... , namen) 

The program unit names, to which the debugging deck applies, must be 
enclosed in parentheses. 

In an internal debugging deck, the DEBUG statement must appear immedi
ately after the PROGRAM, SUBROUTINE, or FUNCTION statement heading 
the routine to which the debugging deck applies. Any names specified in the 
DEBUG statement, other than the name of the enclosing routine, are ignored. 

In a single external debugging deck, whether on the job INPUT file or not, the 
DEBUG statement may contain a list of the program unit names to which the 
deck applies. If no name appears, the debugging deck applies to all program 
units being compiled. 

When more than one C$ DEBUG card occurs in an external debugging deck, 
this card specifies the routines to which the debugging specifications between 
it and the next C$ DEBUG or non-debugging card apply. 

This debug deck specifies arrays checking in all routines, stores checking 
on the variable CHI routines CHISQ, STATP, and calls checking in routine 
MAIN. 

C$ DEBUG 

C$ ARRAYS 

C$ DEBUG(CHISQ, STATP) 

C$ STORES(CHI) 

C$ DEBUG(MAIN) 

C$ CALLS 

11-14 60176600 Rev. F 



11.11 
AREA 
STATEMENT 

60176600 Rev. F 

The AREA statement allows a region smaller than a program unit to be 
debugged. All debugging statements that apply to the program areas desig
nated by the AREA statement must follow that statement. Each succeeding 
AREA statement cancels the preceding program area designations. 

AREA statements may appear only in a debugging deck. If they are inter
spersed in a FORTRAN source deck, they will be ignored. 

The AREA statement can be written in two forms: 

C$ AREA(bounds1), ... , (boundsn) 

for use in a debugging deck with the statement: 

C$ DEBUG 

or 

C$ AREA/name/ (boundsi>, ... /name/ (boundsn) 

for use in a debugging deck with the statement: 

C$ DEBUG(name
1

, ... , namen) 

C$ DEBUG 

The second form of the AREA statement must be used in an external 
debugging deck. 

In the second form of the AREA statement, the /name ./parameter designates 
the program units to which the bounds following it app\y. If a (name.) list 

l 
appears on the C$ DEBUG card, the /name./ parameter must be present 
and name. must be included in the list. OtKerwise, the C$ AREA statement 
and its as1sociated debugging specifications are ignored. For an external 
debugging deck the /name./ field must be present when using either form 
of the C$ DEBUG statemeJt. 

The (bounds) parameter may be written in one of the following forms: 

(from field) indicates line position to be debugged 

(from field, to field) defines a range of line positions which may be 
in one of the following: 

nnnnn FOR TRAN statement label 

11-15 



11.12 
OF'F 
STATEMENT 

Lnnrm 

id. n 

* 

Program line number as printed on the source 
listing (source listing line numbers will change 
when debugging cards are interspersed in the 
program.) 

Legal UPDATE line identifier, from the oource 
line, where id = information in columns 73-79; 
must begin with an alphabetic character and con
tain no special characters; and n = columns 
82-86. (80-81 are blank.) 

First line in the from field 
Last line in the to field 

A comma must be used to separate the line numbers, and embedded blanks 
are not permitted. 

C$ DEBUG(CHISQ) 

C$ AREA/CHISQ(210, 400) 

C$ ARRAYS(SVAL, RMS) 

C$ DEBUG(CHISQ, STATP) 

C$ AREA/CHJSQ/(210, *)/STATP/(L20, L47), 

C$ * (570, L94) 

C$ STORES(CHI) 

C$ DEBUG (MAJN) 

C$ AREA/MA JN/ (MAJN. 2, MODI. 13) 

C$ CALLS 

C$ OFF statements are effective only on interspersed debug directives. 
In a debugging deck, the C$ OFF statement is ignored. 

C$ OFF 

11-16 60176600 Rev. F 



11.13 
PRINTING 
DEBUG OUTPUT 

60176600 Rev. F 

The C$ OFF statement deactivates subsequent references to debugging 
options previously activated by interspersed specifications except for C$ 
NO GO. If a parameter list is specified, only the options in the list are 
deactivated. Debugging options activated subsequent to the C$ OFF state
ment and options activated by packet specifications will function normally. 
The C$ OFF statement is effective at compile time only. 

All debug messages produced by the object routines are written to a file 
named DEBUG. The file always will be printed at job termination time, 
since it has a print disposition. If the programmer wants to intersperse 
debug information with his output, he should equate DEBUG to OUTPUT on 
his program card. A FET and buffer will be supplied automatically at load 
time if the programmer does not declare the DEBUG file on his program 
card. For overlay jobs the buffer and FET will be placed in the lowest 
level of overlay containing debugging. If this overlay level will be over
written by a subsequent overlay load, the debug buffer will be cleared 
before it is overwritten. 

All object time printing is performed by seven debug routines coded in 
FORTRAN. These routines are called by code generated when debugging is 
selected on items such as arrays, calls, stores, etc. The seven routines 
and their functions are: 

ROUTINE 

BUGARR 

BUGCLL 

BUGFUN . 

BUGGTA 

BUGSTO 

BUGTRC 

BUGTRT 

FUNCTION 

Checks array subscripts 

Prints messages when subroutines are 
called. Return 

Prints messages when functions 
are called. Return 

Prints a message if the target 
of an assigned GO TO is not in 
the list. 

Performs stores checking 

Flow trace printing except for 
true sides of logical IF 

Flow trace printing for true sides of 
logical IF. 

11-17 



I-' 
I-' 
I 

I-' 
00 

0) 

0 
I-' 
-:J 
0) 
0) 
0 
0 

~ 
CD 
~ 

~ 

PROGRAM 

05 

1t• 

15 

211 

25 

3: 

35 

4:' 

L 
I 55 

C$ 
C$ 
C$ 

SAf"PLE DEEUG TRACE CCC 6600 FTN V3.0-P240 OPT=O 01/14/71 16.56.14. 

PROr.RA~ SAMPLE<OUTPUT, OEBUG=OUTPUT> 
OEPUG 
llRE/1(1 1 100) 
ARRAYS<A1) 
DIMENSION A1C5l, A2(5l 
PR It\ll '39 

9q FORMAT(//• MESSAGES SHOULD FOLLOW FOR REFERENCES TO A1(0l ANO 
••/• A1<6l 1 FOR BCTH LOADS ANO STORES. THERE SHOULD BE NO MESSAGE 
••1• FCR 112.•) 

00 1 Ct I = 1, 4 
A1<2+Il = A1<4-I> 
A.2<2+Il : A2C4-Il 
AGAIN = 111<2+!1 
AGAIN = 111 C4-I> 
AGAJf\c = A2C2+I> 

1r~ AGAIN = 112(4-Il 
C$ CALLSCSUf1 1 SLITEl 

2f 1 PRH1T 29C: 
29g FORMAT(//• TWO ~ESSAGES SHCULD FOLLC~, ONE FOR A CALL CF sue1 WITH 

••1• ARGU~ENT 7743 1 AND ONE FOR A CALL CF SLITE WITH ARGUMENT 1. 
••1• T~ERE SHOULD BE NO MESSAGES FOR CALLS OF SUB2 ANO SLITET.•) 

CALL SllB1C77431 
CALL SUfl2Cl321+21 
CALL HITE<11 

3r1 CALL SLilETC1 1Il 
C$ FUNCSCFUN11IAeS,EXPl 

3r1 PPHIT 3GS 
390 FORMAT(//• MESSAGES 

••1• 7743 1 !ABS WITH 
••1• T~ERE SHOULD BE 

!AGAIN= FUN1C77Lt3l 
!AGAIN : FUN2C7743l 
!AGAIN = I~OSC8242} 

AGAIN = ABSC821+2.l 
AGAIN = EXPC3.11+15Gl 

SHOULD FOLLOW FC~ CALLS CF FUN! WITH ARGUMENT 
ARGU~E~T 8242, a~r EXP WITH ARGUHErT 3.11+159. 
~O MESSAGES FOR CALLS CF FUN2 1 ABS, OR ALOG,¥) 

4~· AGAI~ = ALOGC3,11+159l 
Cl STOPE~CA1,AGAIN 1 I 1 A2.E0,5. 1 IAGAIN.LE.1Cl 

4t.1 POHIT 1+gc: 
4qq FOoNATC//• MESSAGES SHOUL~ FOLLOW FC~ STORES INTO A1C1l 1 A1C2l, 

0 1• A1(3), A1C4), A1C5l, I, AGAIN, 112<1>, IAGAIN1 !AGAIN, IAGAII\, 
••t• JAGAIN, ANO !AGAIN, THE VALUES STCRED IN THE RESPECTIVE 
••1• VAPillBLES SHCULO BE 1., 2., 3., 4., 5., 5, 3.14159 1 5., 
••1• 1~. ~, 81 7, 6, THERE SHO~LD 3E NC OTHER STORES MESSAGES.•> 

DO 4~2 I = 1 1 1~ 
Al<Il = I 
IFCI,EO.SIGO TC 403 

4(2 C0~1 TINUE 

4~3 AGATN = 3,1415~ 

5( '] 

C$ 
C$ 

501 
5gg 

0 0 ? f 0 I = 1 , ·1 C 
A2C1l = 4. + I 
IAGl\IN = 16 - I 
AREA<sr1,600> 
TRACE C3> 
PRINT 59': 
FORMAT(//• MESSAGES SHOULD FOLLOW FC~ lRANSFERS CF CONTROL 

FAGE 1 



m 
0 ...... 
-..:i 
m 
m 
0 
0 

~ 
CD 
< 

~ 

...... 

...... 
I ...... 
~ 

PROGRAM 

6(! 

65 

70 

75 

BC 

8? 

9~: 

SAl"PLE DEEUG TRACE CCC 66CO FTN V3.0-P24C OPT=C 01/14/71 1E.58.14. 

r.$ 

C$ 

514 
5( 7 
513 
5[ !l 
SC 2 
512 
sr 3 
511 
50 4 
51~ 
5( 5 
SC 6 
f:( (! 

Hi 

6(2 

7r 1 
799 

8[ r. 
6327 
Ei?28 

••1• F~CM 502 TC 503, 5G3 TC 5u4r 504 TO 5t5, ANO 505 TC 5D6. 
••1• T~ERE SHOULD BE NO OTHER CONTROL T~ANSFER MESSAGES.•> 

DO 51f. I = 1,2 
00 511 J = 1, 2 
DO 512 K = 1,2 
DO 513 L = 1,2 
DO 514 M = 1r2 
GO TO S•J7 
CONTINUE 
GO TC (5C8,5081508,508> ,L 
CONT HUE 
ASSIGI\ 503 TO L 
GO TC' L1 (5!J3,5C6) 
CONT HUE 
GO TC (504 1 504> 1 1 
CONT HUE 
GO TC 505 
CONT HUE 
GO TO SOE 
CONTINUE 
COt<THUE 
OFF 
A1C1l = 1. 
r;o TC 601 
AGAIN = FUN1U1 
I = 1 
GO TC! (6'.!2,602> ,I 
CALL SUfl1<7743> 
AGATI'\ = 3.7 
GOH"S 
PP.HIT 790: 
FORMAT(//• WILL NOW ATTE~PT Al\ ASSIGl\EC GO TC. SHOULD ISSUE 

••1• f"ESSAGE.•) 
ASSIGI\ 6327 TO IGO 
GO TC IGC, (ca1,ec21 
CO~'THUE 
PP.INT 6328 
FORMAT(///• ENC CF SAMPLE CEB~G PROG~A~.•) 

ENO 

PllGE 2 



,_. ,_. 
I 

N> 
0 

m 
0 ,_. 
,-.;] 
m 
m 
0 
0 

l:ij 
CD 
< 
1-rj 

FR OGRAM SAMPLE CEEUG TRACE 

SYMgOLIC RFFEPE~CE MAF 

ENTRY POINTS 
2026 SAMPLE 

VARIARLES SN TYPE RELOCATION 
2723 AGAIN REAL 
2737 A2 REAL llPRllY 
2724 !AGAIN INTEGER 
2725 J INTEGi::R 
2727 L INTEGC-:R 

FILE NAMES MCOE 
0 OE~UG 0 CUTPUT 

EXTERNALS T'rFE ARES 
AAS REAL 1 
EXF REAL 1 
FUt\2 REAL 1 
SLITE 1 
SUR1 1 

STATEl"ENT LAPELS 
n 1 INflGTIVE 2471 
0 2\11 INACTIVE 2511) 
c 31' 1 !NAGTIVf 2534 
0 401 INflCTIVf '.l 

2561 4gg FMT J 
(: 5"2 

2311 5il5 
2254 5~ Fl 

[l 512 
2623 5qq FMT 
2331 6'.i 2 

0 R:'1 ~ 

STATISTICS 
SYl"TAFl+Dil'lTAB 

PROG~AH LENGTH 
EUFFER LENGTH 

SURROIJTINE 

H1Ar.TIVE 2267 
2314 

a 
0 
lj 

u 

INACTIVE 235'l 

26SB 182 
7228 466 

2L'228 H42 

SU81 DEEIJG TRACE 

SUPROLTI~E sue1<I> 
ENO 

CCC 6600 FTN V3.0-P240 OPT~c ()1/14171 1E.58.14. FAGE 3 

2732 Ai REAL ARRAY 
2722 I INTEGER 
2731 IGC INTEGER 
2726 K INTEGER 
273:! M INTEGER 

Fl"T 

ALOG REAL 1 
FL~ 1 PEAL 1 
Ill ES INTEGER 1 
SL ITET 2 
SLB2 1 

qq FMT J HQ 
2qg FMT :.J 3C:! INACTIVE 
3qq PIT 0 4u 3 INACTIVE 
4:J2 2205 403 
5JC n 501 INACTIVE 
5 !J 3 23J3 5C4 
50 E 2241 5G7 
51) iJ 511 
513 0 514 
6 ~ :i INACTIVE 2317 601 
7J1 11\ACTIVE 2647 799 Fl'T 
6327 2660 6328 Fl'T 

CCC 66t0 FTN V3.0-P240 OPT~U 01114171 16.58.14. PAGE 1 



0) 
0 
I-' 
-.:i 
0) 
0) 
0 
0 

!;:ij 
CD 
< 
1-tj 

I-' 
I-' 
I 
~ 
I-' 

SURqQUTINE SU~1 OEEUG TRACE 

SYM~OLIC qEFEPE~CE f-1AF 

ENTl<Y POINTS 
2 SUf'11 

VARIAl>LES 
n I 

SN TYFE 
INTEG'O:P 

STATISTICS 
SYt'TAP+Dif-1TAS 

PROG"AM LENGTH 
3·R 

78 

SUP'!OUTINE sue~ 

Rl:'.LCCATION 
•LNUSED F.P. 

24 
7 

CE FUG TRACE 

SUPPCLTI~E SU82(!) 
END 

SUP~OlJTINF. ~UE::> 

SY~'lOLIC REFEPE~rF M~F 

ENTRY PCINTS 
2 SUR2 

OEF.UG lPACE 

VARIAFLES 
(: I 

S~I TY PE 
INHGl:P 

~ELOCAlION 

SUTISTICS 
SYf-1TA'l+DTf-1TAn 

PROGRAM LENGlH 

FUNCTICN 

•LNUSED F.P. 

:L8 
78 

FUN1 

24 
7 

DEEUG 

FUNCTION FUNHil 
FUt\1 = I 
END 

TRACE 

CCC 660C FTN V3.C-P24f OPT=~ 01114/71 16.58.14. PAGE 

CCC 6~f~ FTN V3.0-P24C OPT=G ~1114171 16.58.14. FAGE 

CCC &6GJ FTN V3.0-P240 OPT=D 01114171 16.58.14. FAGE 

CCC 66f0 FTN V3.0-F240 OFT=C 01114171 16.58.14. FAGE 



lo-' 
lo-' 
I 

t-.:> 
t-.:> 

m 
0 
lo-' 
-.J 
m 
m 
0 
0 

!:d 
CD 
< 

~ 

FUl\:CTJf'N FUN1 DE EIJG TRACE 

SYM~OLIC PEFFPE~CE MAF 

ENTRY Pr.INTS 
2 FUN1 

VARIAELES SN 
1? FUN1 

STATISTICS 
SY"'T A8+fJIMHfl 

PROGPAH LE~1 GT~ 

FUl\:CTI0N 

Fu~:crrrN 

TYPE RELOCATION 
RE:t• L 

3~n 

1'f1 

FUii:? 

2E 
11 

DE F.UG 

FIH:r:Tlf'N FUN2<Il 
FU~1 2 = I 
EN(1 

FlJf'-".'.' CEEUG 

TRACE 

TRACE 

SYM~OLJC REFEPC~CE ~AF 

ENTRY Pr:INTS 
FUN2 

VAP.IAE'LES SN 
12 FUN2 

STAlISTICo;: 
SYl'TAf'l+OIMTAEl 

PROGRAM LEMGTf-l 

TYPE 
REAL 

32 A 
UR 

2E 
11 

~ELCCATION 

CCC 66CQ FTN V3.C-P24l OPT=C t1114171 1c.58.14. FAGE 

INTEGER F.F. 

CCC GM FTN V3o0-P24r OPT=C ~1114171 ic.58.14. FAGE 

CCC 661.'! FTN V3.ll-F24:' OPT=·~ C1114171 H.58.14. FAGE 2 

INTEGER F.F. 



m 
0 
I-' 
-.:i 
m 
m 
0 
0 

~ 
CD 
< 
1-Ij 

I-' 
I-' 
I 

I:\:) 
w 

CCRE ~AF 16.58.37. NOP~Al CONTROL ~~l1Jl J13173 -~ •• J1 lJ;u~~ 
---TI~t---LCAD ~ODF --L1--L2-----TYPE---------------LSER---++---CALL-------------FWA LOAC--LWA LCAO--BLN~ cc~~--LENGTH-
FWA LrADEP '.~4771 F~A lABLES C52456 
-PROGFDM----A00°ESS- --LAeELED---CC~MON--
SA~FLE rr:1~c 

SUP1 :c3·44 
SUA2 rl 3 53 
FUN1 C(3_62 
FUN2 r~3·75 

GET9A ~r311~ 

srr.~ ~3127 
SYSTE~: C47C2 
ACGOEP$ f5465 
AUGARF$ cssr~ 

EUGCLL~ (557~ 

8UGGTL~ CE'77 

~~~~~~'~ ~ ~~;~ ) DEBUG object time routines 
AUGSTO£ f6S71
BUGTFC~ f7715
DBGFETS 1~147
KODER$ 11173
OUTPTC~ 12S~7

TPAGEX$ 12~6?

An Si 12712
!AB~$ 12715
AL~LCGr 1272r
ALOGl
EXF!.
f.XPIO
LEGVAF~

LOCF~

SLITE$
SLITEH

'.'12757
'13 11
~.1 ~ 5?
' 1311 7
r P124
'13t26
i 131~[

......

......
I

[_\j

~

m
0
-;i
m
~
0
0

!:d
CD
<
~

----utisn TISFifD E XTEP~AL s-----

MESSAGES SHOULD FOLLC~ F~P PEFEPE~CES TC A1<Jl ANf1
A1 <6 I, FOR POTH Lrnos ~~~ STrRES. THEPE SHOULD BE ~O ~ESSAGE
FOR A~.

/Of8UG/ Sll~PLF AT LH' 11- THE SUBSCRIPT VALUE CF
/OE8UG/ AT LH 11- THE SU8SCRIPT VALUE CF
/CEBUG/ JI T LH' 1~- THE SU8SCPIPT VALUE CF
/OEl]UG/ I\ T LIN i4- THE SURSCPIPT VALUE CF

TWO MESSAGES SHrULD FCLLOW, n~E FCR A [ALL OF SU81 h!T~

ARGUMENT 7741, fND CNE FOP A C'LL CF SLITE HITH APGLHENT 1.
THERE SbJULf1 er Nn PESSQ~FS Fr~ COLLS OF SUB2 ANO SLITET.
/OE8UG/ Sl\~PLE AT LI~E 22- POLTINE SU~1 CALLEO AT LE~EL

/DEBUG/ AT LJ~E 2~- POLTI~E SUE1 RETURNS TO LEVEL
IDEeUGI aT LINF 2L- ROLTrNE SLITF CALLED AT L~VEL

/CEBUG/ 8T LINE zr- ~nLTJNE SLITE RETURNS TO LfVEL

MESSAGES SHOULD FOLLCW F1P CfiLLS CF FU~1 hITH APGu~ENT
77.,3, Tll~S WITH APGU~E~T 8242, l\NC :xP hITH ARGUMENT 3.1~15g.

T~ERE S~0uLn eE Nn PES<:ASEC: Fr~ COLLS CF FUN2, A<>S, OR ALCG.

PEFERH'CES

6 It. ARRAY Ai
(' I~ ARRAY A1
6 IN AR~AY Ai
(It-. ARRAY A1

/Cf:BUG/ SAt' 0 LE" AT LP'E ::i 1- PE nl FU~CTICN FLN1 CALLE[AT LEVEL

EXCEEDS OIME~SICNED BOUND CF
EXCEEDS OIME~SICNEO EOUNO CF
EXCEEDS DIME~SICNED EOUNC CF
EXCEEDS CIME~SICNEO eou~c CF

/CEBUG/ AT LH'C 7 1- 0 EOL FU~CTION FCN1 RETURN~ A VALUE OF 7743. J.' J~C :' AT LEVEL
/OE8UG/ AT LHcf ~?- INTEGER FU~CTION IA~S CALL'OC AT LEVEL ()

/CE BUG/ llT Llt'E 3?- TNTEGER FU~CTION IAqS q(TURNS A VALUE CF 8242 AT LEVEL
/CEFlUG/ ft T LT~>= 3<:- PEAL FU~CTICN EXD CALL EC AT LEVFL c
/CEBUG/ llT L H:E :<~-"EAL FUf\CTION EXP PETU~NS A VAL~E CF 23.14063123 AT LEVEL

MESSAGES <:HnULD FIJLLCV.: F:)P STrr-FS INTO ni (1)' A 1 (2 l ,
Al (3) , ~ 1 (4) ' ~ 1 (';) ' I, rir;a P', n c1i, IAGllIN, IAGAII\, IAGAH:,
HGAIN, ~N') IAGrn1 • Tµ~ VDL~~S STC?EO IN THE RESPECTIVE
Vl\t<IAF.LES SHCJCL (1 ''[1. ' ·.~. ' ~., 4., ?., ~, ~.1!+1?~ 5.'
iO. g, A' 7. "'. THr:Pic SWllJLf' Ff NC OTHER STORES ~E SAGIOS,
/CE~UG/ <;.H'f>LE ll T LI "'o 4'=,- T!i". "l[W VALUf CF Tl- VA'<IABLE 01 IS 1. () r;i::' JI'. [J j 1
/CEBUG/ ~T L HF 4~- T~r NEW VALUF OF TH Vllr<JAGLE Al IS 2. s a.· l: i"' j o·,c,
/CE~UG/ ~T LH"' 4~- T~E N~h VALUF CF Tl-- VARIAPLE ~ 1 IS 3. ;J L 0 ~ ~ G 1 J
/CE~UG/ AT LI NE 4r_ T4~ NEW VALUE OF TH VA~IAQLE n1 IS l+. r. 't c 1. 0 J ,_l 1
/DfE'UG/ I\ T LI ~·r 4S- THE ~EW VDLUE CF TH VAql\l"LE Ai IS 5. u 0 ~ l i.:; a :i 1
/Cf.eUG/ l\T L H•E 4~- THE NEW VALUE CF T~ Vf.f; IAOLE n GAIN IS 3.11+1sq o:J
/OEeUG/ AT LT~· r: ~ - TH: ~EW VALUE OF Tr VARil\!:'LE Ac rs 5. G: :JC ·1 '.J!J J
/CE'lUGI I\ T LP, F 51- THE N~W VALUE CF TH vaqAf'LE IJl(AJN IS 1J
/CF8US/ t.T LTNE 51- T4E NEW VALUE OF TH VllqABLE I AGAIN IS
/OE~UG/ I\ T LI~·~ 51- THE NEW VALUE OF TH VA~ IAELE HGAIN IS
/CE!:UG/ AT Lit'E ~1- THE NEW VALUE CF TH VARTl\f:'LE IllGATN IS
/CE8UG/ r. T LH't S1- THE NEW VALUE CF H Vf.RIAOLE IllGl\IN IS

MESSAGES SHnULD FOLL(~ Fl TPA SFERS OF CCNTqCL
FROM 5C2 TO 5·~, S~~ TO~ 4, ' 4 TC 5C5, AND ?~5 TO 50c.
THERE SHf1ULQ ~E NC CTH[Q ONT" L lRANSFER MESSAGES.
/DEBUG/ Sl\P;::u:- AT LH'IO EP- CO~TROL hILL BE TRl\NSFERDED TC
/CEF.UG/ ~·T LI~1 E 7: - co~nOL I.ILL '3E TRllN~FERREO TC
/CE8UG/ AT LTNE 72- CO~TROL WILL BE TRANSFERPED TC
/OEf!UG/ AT L H'I:: 74- CO~TROL WILL BE TRANSFERRED TC

HILL NOh ATTE~PT AN llSSI~NE"D GC TC. SHCCLC ISSUE
MESSAGE.

TATEMENT 5J3
TATEMENT 504
TATE~Ell:T 5'.l5
TATEMEll:T 5C6

s
13
7
6

AT LINE
AT LINE
AT LINE
AT LINE

n
72
74
75

5
5
5
5

/CEeUG/ SD~PLE AT LTNE ~-- AS~JGNEO GCTO INDEX CONTAI~S Tl--E ADDRESS ~~2450. NO HATCH FOU~C IN STATEHENT LABEL AOCRESS LIST

E~D OF ~/\PPL~ creus PP0G?DH.

12.1
CONTROL CARD
FORMAT

12.2
SOURCE INPUT
PARAMETER

60176600 Rev. F

FORTRAN CONTROL CARD 12

The control card for compilation of a FORTRAN source program consists of
the characters FTN and an optional parameter list enclosed in parentheses.
If parameters are omitted, FTN is followed by a period. Comments follow
ing the right parenthesis or period are transcribed to the dayfile in a normal
installation. The first improperly formed parameter terminates the FTN
control card scan.

FTN (p
1

, p
2

, •.. pn) comments

or

FTN. comments

When an error is detected in a control card, a dayfile entry is made con
sisting of an asterisk (below the approximate column in which the compiler
encountered the error) and the following message:

*POINTS TO FTN CONTROL CARD ERROR

Example of dayfile:

06.52.35.FTN<I=O/l=LISTl
OE.S2.3E. •
OE.52.3E. • POINTS TO fTN CC~lROL CARC E~RC~

The job will proceed with the options already processed or terminate and
branch to an EXIT(S) card, depending upon an installation option. Default
files or files specified in the control card must be in SCOPE 3 format.

If the source input parameter is omitted (default condition), the FORTRAN
source input file is assumed to be INPUT. If it is on any other file, a para
meter of the following form must be provided:

12-1

I

I

I

I

12.3
BINARY {OBJECT)

I=lfn (default !=INPUT)

lfn is the logical file name of the file containing the source input.
Source input parameters of the forms !=INPUT and I are equivalent
to omitting the parameter.

OUTPUT PARAMETER If the binary output parameter is omitted (default condition), a relocatable
binary (object) file is written on a file named LGO. For any other output
file, a parameter of the following form must be provided:

12.4
LIST PARAMETER

12-2

B=lfn (default B=LGO)

lfn is the name of the file on which binary output is to be written.
Binary output parameters of the form B=LGO or B are equivalent
to omitting the parameter.

To suppress production of an object output file, the binary output parameter
must be of the form:

B=O

If the letter G appears in the binary output parameter, the object file will be
loaded and executed at the end of compilation.

G=lfn BG=lfn GB=lfn G

If this parameter is omitted (default condition), a normal listing is provided
on OUTPUT; it includes the source program and informative and fatal
diagnostics. Other list options may be selected as follows:

y=lfn (default L=OUTPUT,R::l)

y may be one or more of the following:

L Normal listing

X Listing of diagnostics which indicate non-ANSI language usage

R

0

N

Source keyed cross reference map (implies R=2)

Listing of generated object code

Suppress listing of informative diagnostics and list only
diagnostics fatal to execution

60176600 Rev. F

12.5
ERROR TRACEBACK
AND CALLING
SEQUENCE
PARAMETER

12.6
UPDATE PARAMETER
(EDITING
PARAMETERS)

60176600 Rev. F

lfn is the file name on which list output is to be written. If lfn is omitted,
listing will be on OUTPUT. If L=O fatal diagnostics with the statements that
caused them will be listed; but all other listable output including intermixed
COMPASS will be suppressed.

Any combination (with no comma) of the above parameters provides the
features indicated. (Note: X and N cannot be used at the same time.)

LRON=lfn specifies all options are to be listed for the file named except non
ANSI diagnostics, and LO selects source and assembly listing on OUTPUT.

CROSS REFERENCE MAP

The FORTRAN Extended cross reference map can be obtained using the R
option. This map is described in Appendix C.

The T mode of compilation is intended for use with programs in the debugging
stages. This parameter is indicated by Tt. When it is present, calls to
library functions will be made (with the call-by-name sequence), and maxi
mum error checking will be done. Full error traceback will be done if an
error is detected.

When T is omitted, the compiler generates calls to library functions with the
call-by-value sequence (e.g. , cause Xl to contain the parameter, RJ func
tion). Minimum error checking will be done and no traceback will be
provided when errors are encountered. A significant saving in memory
space and execution time is realized.

An E or E=lfn (default E = COMPS) as a parameter requests that the object
code output from the compiler produce COMPASS subprogram line images
for UPDATE input. This output facilitates hand optimization of the compiler
generated object code.

*DECK, name (name = program unit name) is the first card image written on
the object code output file, COMPS (assumed when lfn does not appear).
An *END card image is written as the last card on the file. COMPASS is not
called automatically. The output file lfn or COMPS is rewound and ready for
UPDATE input. No binary file is produced.

t See Debugging Mode Parameter section in this chapter.
NOTE: The 0 option is not legal when E is used.

12-3

I

I

12.7
OPTIMIZATION
PARAMETER

12-4

The OPT parameter is of the form:

OPT=m

The level of optimization the compiler will perform is determined by the
value of m as follows:

m= 0 fast compile modet

m= 1 standard compile mode

m=2 fast object code mode

If this parameter is omitted, the installation default option is assumed .
Debug mode D option on FTN card implies that OPT= 0.

The OPT= 2 level of optimization can offer significant execution speed increases
for certain classes of loops. Two types of optimization are performed:

• Moving of invariant computations from frequently executed regions
to less frequently executed regions.

• Assignment of variables and constants to registers over the body
of a loop.

Both DO loops and IF loops can be optimized within these constraints.

• The loop must be the innermost loop (i.e. , contain no loops).

• The loop must contain no branching statements (GO TO, IF or
RETURN) except a branch back to the start of the loop for IF loops.

• The loop does not contain nonstandard input/output statements such
as BUFFER IN/BUFFER OUT, ENCODE/DECODE. In case stan
dard I/O statements occur (or any external calls), only invariant
code removal will be attempted.

• Control must flow to the statement following the end of the loop when
the loop completes.

• Entry into the loop must be through the sequence of statements
preceding the start of the loop.

tSee Debugging Mode Parameter section in this chapter.

60176600 Rev. F

60176600 Rev. E

Invariant Computations

In many instances, either for clarity or by accident, calculations which do
not change on successive iterations are made within a loop. When these
computations are made outside the loop, the speed of the loop is improved
without changing the results.

Example 1:

DO 100 I= 1,2000

100 A(I) = 3*I + J/K+ 5

A more efficient loop would be:

ITERM = J/K+5

DO 100 I= 1,2000

100 A(I) = 3*I + ITERM

For clarity, the programmer may not wish to write the code in this form.
Using the OPT=2 level, the more efficient loop structure would be produced.
A message will be issued stating:

n WORDS OF INVARIANT RLIST REMOVED FROM
THE LOOP STARTING AT LINE x

RLIST is the intermediate language of the compiler. The message serves two
functions. It notifies the programmer that his loop has been modified,
and it informs him of the magnitude of the change.

Example 2:

I=l

200 J = K+L+4

A(I) = M+I

I= I+ 1

IF(I. LE. 100) GO TO 200

12-5

12-6

Use of OPT==2 will produce code as if Example 2 had been written as shown
below:

I= 1

J = K+L+4

200 A(I) = M+I

I= I+l

IF(I. LE. 100) GO TO 200

Example 3:

DO 300 I= 1,2000

A(I) = SQRT(FLOAT(I))

A(I)=A(I)+ 3.5*R

300 CONTINUE

The computation of 3. 5*R will be removed from the loop in spite of the
external call. In general, this process will occur unless R is a parameter
to the external routine or in COMMON. The use of a variable will not be
recognized as invariant if it is a member of an equivalence class for which
some member of the class is referenced inside the loop using nonstandard
subscripts. For standard subscripts, optimization will occur, although
the assumption is made that all subscripting is within the bounds of
dimensional declarations.

Register Assignment

For many loops, it is possible to keep commonly used variables and constants
in the registers. Eliminating loads and stores from the body of the loop
has two advantages:

• Reducing the number of loads and stores increases the execution
speed.

• The loop is shortened and may fit in the instruction stack of the 6600.

Presently up to four X registers may be assigned over a loop. The actual
number assigned depends on the number of candidates available for selection
and the complexity of the operations performed within the loop. When
registers are assigned, an informative message is printed:

n REGISTERS ASSIGNED OVER THE LOOP BEGINNING AT LINE x

Register assignment will not be performed for loops containing external
references.

60176600 Rev. E

60176600 Rev. E

Example 1:

Loop

DO 100 I= 1, 2000

A(I) = 3. 0

100 CONTINUE

Without assignment With assignment

12-7

12-8

Example 2:

Loop

x = 1.0

DO 2 0 0 I= 1, 10 0

X = X/.5+y

A(I) = X

200 CONTINUE

Without assignment With assignment

60176600 Rev. E

12.8
ROUNDED
ARITHMETIC
PARAMETER

12.9
DEBUGGING MODE
PARAMETER

12.10
EXIT PARAMETER

12.11
SYSTEM TEXT
FILE· PARAMETER

60176600 Rev. F

The compiler will produce rormded arithmetic instructions for any combina
tion of arithmetic operators (+ - * /) if the parameter is specified in the
form:

ROUND= operators (default= OFF)

If this parameter is omitted (default condition), rounded arithmetic pro
cessing does not take place.

When this parameter is selected, the OPT= 0 compilation and T error trace
back modes are assumed. If the debugging mode parameter is omitted
(default condition), this mode of compilation does not take place.

Dor D=lfn (default = INPUT)

lfn specifies the file name of the debugging aid selection package.

When this parameter is specified, the run will terminate and branch to an
EXIT(S) control card if fatal errors occur during compilation. The form is:

A (default off)

The S parameter specifies the systems text file to be used for intermixed
COMP ASS programs.

S = 0 or S = lfn (default lfn = SYSTEXT)

If S=O when COMPASS is called to assemble any intermixed COMPASS pro
grams, it will not read in a system text file. If this parameter is omitted
(default condition), S:;;: SYS TEXT is assumed.

12-9

I

I

I

12.12
SYSTEM EDITING
AND I/ 0 REFERENCE
PARAMETER This parameter is of the following form:

12.13
ASSEMBLER
PARAMETER

12.14
CONTROL CARD
EXAMPLES

12-10

SYSEDIT= FILES

SYS EDIT= ID ENT

SYSEDIT (default, both FILES and ID ENT)

The FILES specification assures that all INPUT/OUTPUT references will
be accomplished indirectly through GETBA. In addition, the file names
are not entry points in the main program, and subprograms do not
produce external references to the file names. When !DENT is specified,
a $ is appended to the program name on both the IDENT and ENTRY
cards if the program name is the same as that of any FORTRAN object
library program.

The COMPASS assembler, rather than the FTN built-in assembler, can
be used to assemble the code generated by FTN. The COMPASS assembler
is specified with the following parameter:

C (default off)

The control card FTN. is equivalent to:

FTN (I= INPUT ,L=OUTPUT, B=LGO, S=SYSTEXT, OPT=l, R=l)

The control card:

FTN (A,LRN,G,S=O)

will select the following options:

A Abort, branch to EXIT(S) card when errors occur in compilation

LRN List on the file OUTPUT, which will include a source-keyed
cross reference map, and suppress the informative diagnostics.

G Placed on file LGO, the relocatable binary file. If compilation
is successful, it will be loaded and executed.

S= 0 When COMPASS is called to assemble intermixed COMP ASS
subprograms, it will not read in a system text file.

60176600 Rev. F

12.15
SMALL
BUFFERS

12.16
REFERENCE
MAP LEVEL

60176600 Rev. F

When this option is selected, the compiler is forced to use 513-word
buffers for compiler intermediate files. Programs with a large number
of declarations may be compiled with a smaller field length if this
parameter is specified. Since less space is used in the buffers, compile
time may increase. The form of the parameter is:

v (default= off)

The kind of reference map produced is determined by the R option on
the control card:

R=O

1

2

3

blank

No map

Short map (symbols, addresses, properties)

Long map (short map, references by line number
and a DO-loop map)

Long map and printout of common block members
and equivalence classes

Implies R = 1

The default option is R = 1 unless the L option equals O; then R = 0.

12-11

APPENDIX SECTION

CDC 6500

DISPIAY CODE CHARACTER DISPLAY CODE CHARACTER

00 blank 45 +
01 A 46
02 B 47 *
03 c 50 I
04 D 51 (
05 E 52)
06 F 53 $
07 G 54 =
10 H 55 blank
11 I 56 , (comma)
12 J 57 • (period)
13 K 60 -
14 L 61 [
15 M 62]
16 N 63 : (colon)
17 0 64 ~
20 p 65
21 Q 66 v
22 R 67 " 23 s 70 ·r
24 T 71 i
25 u 72 <
26 v 73 >
27 w 74 <
30 x 75 >
31 y 76 -,
32 z 77 (semico·lon)
33 0
34 1
35 2
36 3
37 4
40 5
41 6
42 7
l~3 8
44 9

SOURCE PROGRAM CHARACTERS A

FORTRAN CHARACTERS

Console Hollerith
Alphabetic Display Card
Characters Code Punch

A 01 12-1

B 02 12-2

c 03 12-3

D 04 12-4
E 05 12-5

F 06 12-6

G 07 12-7

H 10 12-8

I 11 12-9

J 12 11-1

K 13 11-2

L 14 11-3

M 15 11-4

N 16 11-5

0 17 11-6
p 20 11-7

Q 21 11-8

R 22 11-9

s 23 0-2

T 24 0-3

u 25 0-4

v 26 0-5

w 27 0-6

x 30 0-7
y 31 0-8

z 32 0-9

Numeric
Characters

0 33 0

1 34 1

2 35 2

3 36 3

4 37 4

5 40 5

6 41 6

7 42 7

8 43 8

9 44 9

A-1

Special
Characters

+

I

(

$

*

)

blank

Character

-

f

v
/\

<
>
~

~

--.

end-of-
line

tu-o and 11-8-2 are equivalent
tt 12-0 and 12-8-2 are equivalent

A-2

Console
Display
Code

45
46
50
54
56
51
53
47
57
52
55

ADDITIONAL CHARACTERS

Console
Display
Code

60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

0000

Hollerith
Card
Punch

12
11
0-1
8-3

0-8-3
0-8-4

11-8-3
11-8-4
12-8-3
12-8-4
space

Hollerith
Card
Punch

0-8-6
8-7

0-8-2
8-2
8-4

0-8-5
11-ot

0-8-7
11-8-5
11-8-6

12-ott
11-8-7

8-5
12-8-5
12-8-6
12-8-7

FORTRAN DIAGNOSTICS

Diagnostic messages are produced by the FORTRAN processor to inform the user of errors in the
program. Messages are produced during compilation and execution; compilation errors are dis
cussed in this appendix, a detailed discussion of the execution errors is given in Appendix G.

B

Errors detected during compilation are noted on the source listing, immediately following the END
card. Figure B-1 illustrates a listing and the format used by the processor in noting compilation
errors.

100 \\TRITE (6, 8)
8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/

119X, 1Hl/19X, 1H3)
101 I=5

5 8 A=I
102 A=SQRT(A)
103 J=A
104 DO 1K=3,J,2
105 L=I/K

10 10 6 IF (L * K - I) 1, 2 , 4
1 GO TO 108

107 WRITE (6, 9)
5 FORMAT (I20)
2 I=I+2

15 108 IF(1000-I)7, 4, 3
4 WRITE (6, 7)
9 FORMAT (14H PROGRAM ERROR)
7 WRITE (6, 6)
6 FORMAT (31H THIS IS THE END OF THE PROGRAM)

20 109 STOP
END

60176600 Rev. B B-1

CARD NO. SEVERITY

01 I

05 FE

11 FE

21 FE

~5 FE

DIAGNOSTIC

START. ASSUMED PROGRAM NAME WHEN NO HEADER STATEMENT
APPEARS

8 THIS STATEMENT NUMBER HAS BEEN USED BEFORE

A DO LOOP MAY NOT TERMINATE ON THIS TYPE OF
STATEMENT

7 THIS REFERENCED FORMAT NUMBER DOES NOT APPEAR
ON A FORMAT STATEMENT

3 THIS REFERENCED STATEMENT NUMBER DOES NOT APPEAR
ON AN EXECUTABLE STATEMENT

Figure B-1. Sample Source Listing

The source of the errors is identified by the card number. This number corresponds to the card
number assigned by the processor indicated by the numbers on the extreme left side of the example.
The severity of the error is indicated by the code accompanying the message: I means informative
and has no effect on compilation or execution, FE indicates catastrophic to execution, FC means
the error is catastrophic to compilation, and USASI indicates that the particular usage does not con
form to USASI standards. USASI diagnostics are not listed unless requested by an X parameter on
the FTN control card.

B-2 60176600 Rev. D

The diagnostics that follow are printed in full capitals, for readability, they are shown here in upper
and lower case.

FC Errors

Compiler error at ER21A or ER21B of DO processor.

Tables overlap, more memory required.

Auxiliary table overflow.

Arithmetic statement function has caused a table overflow while being processed. More memory
required.

Symbol table overflow. Reduce number of variables.

CONLIST too big, too many constants.

Tables overlap during equivalence processing. More memory required.

Insufficient memory.

The statement beginning at line is too complex for this compiler. Please simplify it.

Not enough room in working storage to hold all OVERLAY control card information.

FE Errors

Loops are nested more than 50 deep.

The terminal label of a DO must be an integer constant between 0 and 100, 000.

The terminal statement of this DO precedes it.

The control variable of a DO or DO implied loop must be a simple integer variable.

The syntax of DO parameters must be I=M
1

, M
2

, M
3

or I=M1, M
2

.

A constant DO parameter must be between 0 and 131K.

A DO parameter must be an integer constant or variable.

This statement number has been used before.

A previous statement in this nest references this statement number illegally.

This statement references a previous statement number in this nest illegally.

A DO loop may not terminate on this type of statement.

A DO loop which terminates here includes one or more unterminated DO loops.

Entry statements may not occur within the range of a DO statement.

B-3

This DO loop is unterminated at program end.

This loop is entered from outside its range but has no exit.

This referenced statement number does not appear on an executable statement.

This referenced FORMAT number does not appear on a FORMAT statement.

Program card delimiter missing.

Filename is greater than 6 characters.

Filename previously defined.

Unit number or parity indicator must be an intege! constant or variable.

Equated filename not previously defined.

Unrecognized statement.

Illegal label field in next statement.

Statement too long.

Symbolic name has too many characters.

Unmatched parenthesis.

Unlabeled FORMAT statement.

Duplicate statement label.

RETURNS list error.

Doubly defined formal parameter.

No legal list terminator.

Illegal separator between variables.

Variable has more than three subscripts.

Variable with illegal subscript.

Variable dimension is not a formal parameter.

Variable in common has either an adjustable subscript or is a formal parameter.

Header card not first statement.

Common block name not enclosed in slashes.

COMMON variable is formal parameter or previously declared in COMMON.

Illegal block name.

Illegal separator in EXTERNAL statement.

A ·reference to this arithmetic statement function was not followed by an open parenthesis.

Insufficient memory, possibly a recursively defined arithmetic statement function.

A reference to an improperly specified arithmetic statement function has been encountered.

B-4

A reference to this arithmetic statement function has unbalanced parenthesis within the parameter
list.

Unmatched parameter count in a reference to this statement function.

A constant cannot be converted. Check constant for proper construct.

RETURN statement appears in main program.

Non-standard RETURN statement may not appear in a function subprogram.

Parameter on non-standard RETURN statement is not a RETURNS formal parameter.

Illegal sequence in I/ 0 list.

FORMAT reference must be an integer constant or an array reference.

Entry point names must be unique - this one has been previously used in this subprogram.

Improper form of ENTRY statement, only allowable form is {entry name}

Referenced label is more than five characters.

ENTRY statement is not allowed to appear within a program, only in a subroutine or function.

There is an entry in this namelist statement other than a slash, a comma, or a variable.

NAME LIST name is either not a variable or a variable that has been previously defined.

NAMELIST group name is not surrounded by slashes.

- this entry appeared in a position where a variable should have appeared.

Name of a variable that is not allowed to be used in conjunction with NAME LIST.

- this variable has variable dimensions, this is not allowed in conjunction with NAME LIST.

Statement number is not allowed on an ENTRY statement.

The.re is insufficient room to process this statement, more memory required.

Formal parameters or ECS variables cannot appear in EQUIVALENCE statements.

Subscripts not integer constants. Equivalencing abandoned.

Only one symbolic name in EQUIVALENCE group.

Syntax error in EQUIVALENCE statement.

Subscript value is out of range of the array as determined by the dimensions.

COMMON-EQUIVALENCE error.

Number of subscripts is incompatible with the number of dimensions during EQUIVALENCEing.

Common block origin extended, extension not allowed.

Symbol was involved in contradictory equivalencing. Equivalencing abandoned.

B-5

Either the expected list of transfer labels is non-existent, empty, or not enclosed in parentheses.

This is not a recognizable form of the GO TO statement.

There is a non numeric entry in this list of transfer labels.

Number of characters in an ENCODE/DECODE statement must be an integer constant or variable.

More than 50 files on program card or 63 parameters on subroutine or function card.

Declarative statement out of sequence.

Error table overflow.

This ASSIGN statement has improper format, only allowable is [ASSIGN no. to variable] .

Illegal identifier in variable list of DATA statement.

Variable appearing in DATA statement may not be in blank COMMON.

Variable appearing in DATA statement may not be a formal parameter.

Variable appearing in DATA statement may not be a function name.

Illegally typed variable in DA TA statement must be only integer, real, double, complex, or logical.

Illegal format of DATA statement.

All items in data list of DATA statement must be constant.

Repeat factor of DATA items and DO limits must be integer.

Constant subscript of variable must be integer.

No terminating right parenthesis after subscript or DO variables.

DO control variable not used as subscript in DATA statement.

No equal sign after DO variable in DATA statement.

Implied DO loop may have only 3 limits.

Variable appeared as subscript but its DO limits were never defined.

Non dimensioned identifier appears with subscripts in DATA statement.

Unmatched parentheses in DATA statement.

Zero statement labels are illegal.

Illegal character after DATA item, must be comma, slash, or left par en.

Only a comma or end of statement may follow terminating slash or right parenthesis in a DA TA
statement.

Slash, equal sign, or left parenthesis must follow variable list.

Illegal use of the equal sign.

Variable followed by left parenthesis.

No matching right parenthesis.

No matching left parenthesis.

B-6

The operator indicated (-, +, *, I, or **) must be followed by a constant, name, or left parenthesis.

More than 63 arguments in argument list.

A constant may not be followed by an equal sign.

Expression translator table OPSTAK overflowed, simplify the expression.

Logical operand used with non-logical operators.

No matching right parenthesis in subscript.

Local entry point referred to as external function.

Statement function reference may not use a function name as an argument.

Argument not followed by comma or right parenthesis.

A function reference requires an argument list.

Illegal CALL format.

Expression translator table FRSTB overflowed, simplify the expression.

Illegal input/output address.

Right parenthesis followed by a name, constant, or left parenthesis.

More than one relational operator in a relational expression.

A comma, left paren, =, . OR. , or . AND. must be followed by a name, constant, left paren, -
.NOT., or+.

An array reference has too many subscripts.

No matching right parenthesis in argument list.

Illegal form involving the use of a comma.

Logical and non-logical operands may not be mixed.

Division by constant zero.

A complex base may only be raised by an integer.

Use of this program or subroutine name in an expression.

Subroutine name referred to by CALL is used elsewhere as a non-subroutine name.

Illegal call format.

Illegal returns parameter.

Illegal labels in IF statement.

Logical expression in 3-branch IF statement.

The stateme;nt in a logical IF may be any executable statement other than a DO or another logical IF.

The expression in a logical IF is not type logical.

60176600 Rev. D B-7

Left side of replacement statement is illegal.

A reference to this ASF has a parameter missing.

All elements in an ECS common block must be type ECS.

A previously mentioned adjustable subscript is not type integer.

All ECS variables must appear in an ECS common block.

The type of this identifier is not legal for any expression.

A constant operand of a real operation is out of range or indefinite.

Referenced label is greater than five characters.

This combination of operand types is not allowed in this version.

Implied DO in I/O statement is unterminated, check paren count and syntax.

___ was last character seen before trouble. Remainder of statement was skipped.

Double or complex operand in subscript expression not allowed.

Double or complex argument not legal for this intrinsic function.

No terminating right parenthesis in OVERLAY, SEGMENT, SEGZERO or SECTION card.

I Errors

This statement redefines a current loop control variable or parameter.

More storage required by DO statement processor for optimization.

The variable upper limit and the control variable of this DO are the same producing a
non-terminating loop.

The constant lower limit is greater than the constant upper limit of a DO

No END card. End line assumed.

START. assumed program name when no header statement appears.

Undefined variable, i.e. , this variable is never initialized.

Previously dimensioned variable, first dimensions will be retained.

Previously typed variable, first encountered type is retained.

Dummy parameter in an arithmetic statement function definition occured twice

Arithmetic statement function has more dummy parameters than are allowed (20).

There is an entry following the right parentheses of this assigned GO TO list.

In this unconditional GO TO there is an entry following the transfer statement label.

More data items appear in data list than array can contain, excess items are discarded.

More memory would have resulted in better optimization.

B-8 6017600 Rev. D

Array name operand not subscripted; first element will be used.

The number of arguments in the argument list of a non-basic external function is inconsistent.

The number of arguments in a subroutine argument list is inconsistent.

Number of digits in constant exceed possible significance. High order digits retained when possible.

USASI Usage Diagnostics

Dummy parameter in .an arithmetic statement function definition occurred twice.

Arithmetic statement function has an improperly formed parameter list or no == following the list.

The non-standard RETURN statement is not USASI FORTRAN.

This statement is non-USASI.

Non-USASI form of DATA statement.

More than one equal sign.

Array name referenced with fewer subscripts than the dimensionality of the array.

FORMAT Statement Validation Diagnostic Messages

The word preceding the diagnostic has the following form:

xx cd nnnn

where

xx is a card column number

nnnn is a card number

Example:

67 cd 5 refers to column 67 of card 5

Informative Diagnostics:

Separator missing, separator assumed here.

X field preceded by a blank, lX assumed.

X field preceded by a zero, no spacing occurs.

Preceding field width is zero.

Preceding field width should be 7 or more.

Floating point descriptor expects decimal point specified. Output will include no fractional parts.

60176600 Rev. C B-9

Floating point specification expects decimal digits to be specified. Zero decimal digits assumed.

Repeat count for preceding field descriptor is zero.

Field width is outside inner limits. Check use of this format to assure device can handle this
record size.

Preceding scale factor is outside limits of representation within the machine.

Superfluous scale factor encountered preceding current scale factor.

Record size outside inner limits. Check use of this format to assure device can handle this
record size.

Field width of preceding floating point descriptor should be 7 or more than decimal digits specified.

Numeric field following tab setting designator is equal to zero, column one is assumed.

Numeric field omitted in preceding scale factor. Zero scale assumed.

Non-blank characters follow zero-level right parenthesi~. These characters will be ignored.

Tab setting may exceed record size depending on use.

USASI Usage Diagnostics:

Plus sign is an illegal character.

Preceding field descriptor is non-USASI.

Floating point descriptor expected following scale factor designator.

Tab setting designator is non-USASI.

Hollerith string delineated by symbols is non-USASI.

Fatal to Execution Diagnostics:

Preceding character illegal at this point in character string. Error scan for this format stops here.

Illegal character follows preceding floating point descriptor. Error scan for this format stops here.

Illegal character follows preceding A, I, L, O, or R descriptor. Error scan for this format
stops here.

Illegal character follows tab setting designator. Error scan for this format stops here.

Illegal character follows preceding sign character. Error scanning for this format stops here.

Preceding character illegal, scale factor expected. Error scanning for this format stops here.

Preceding Hollerith count is equal to zero. Error scanning for this format stops here.

Format statement ends before last Hollerith count is complete. Error scan for this format stops at H.

Format statement ends before end of Hollerith string. Error scanning stops here.

Preceding Hollerith indicator is not preceded by a count. Error scanning stops here with format
incomplete.

B-10 60176600 Rev. C

Zero level right parenthesis missing. Scanning stops.

Preceding field width outside outer limits for record size. Scanning continues.

Preceding record outside outer limits for record size. Scanning continues.

Tab setting is outside outer limits for record length. Scanning continues.

FORTRAN Extended Assembler Diagnostics:

Storage overflow, no object program will be produced.

Increase field length by xxxxx.

60176600 Rev. C B-11

CROSS REFERENCE MAP c

The cross reference map is a dictionary of all programmer created symbols appearing in a program
llllit, with the properties of each symbol and references to each symbol listed by source line num
ber. The symbol names are grouped by class and are listed alphabetically within the groups. The
reference map begins on a separate page following the source listing of the program and the error
dictionary.

The kind of reference map produced is determined by the R option on the control card:

R=O

1

2

3

blank

No map

Short map (symbols, addresses, properties)

Long map (short map, references by line number and a DO-loop map)

Long map and printout of common block members and equivalence classes

Implies R = 1

The default option is R = 1 llllless the L option equals O; then R = 0.

Errors in the source program will cause certain parts of the map to be suppressed, incomplete,
or inaccurate. Fatal execution and fatal compilation errors will cause the DO-loop map to be
suppressed, and assigned addresses will be different; symbol references may not be accumulated
for statements containing syntax errors.

For the long map, it may be necessary to increase field length by lOOO(octal).

The number of references that can be accumulated and sorted at reference map time is: field
length - 20000(octal)-4 x (number of symbols). For a source program containing one thousand
symbols, approximately eight thousand references can be accumulated with a field length of
50000 octal.

In the following pages, examples from the actual cross-reference map produced by the debugging
program reproduced in chapter 11 are interspersed with the general format discussions. The
complete cross reference map and the generating program may be found at the conclusion of
chapter 11.

60176600 Rev. F C-1

I

General Format

Formats for each symbol class are different, but printouts for all the classes contain the following
information:

Program or common relative address of the symbol (in octal with leading zeros suppressed)

The symbol as it appears in the FOR TRAN source listing

Properties associated with the symbol

List of references to the symbol

All line numbers in the reference list refer to the line of the statement in which the reference
occurs. Multiple references in a statement are printed as n*l where n is the number of references
on line 1.

All numbers to the right of the name are decimal integers unless they are suffixed with a B which
indicates octal.

Names of symbols generated by the compiler (such as system library routines called for input/
ouput) do not appear in the reference map.

CLASSES OF SYMBOLS

Each class of symbol is preceded by a subtitle line that specifies the class and the properties listed.

Entry Points

Entry point symbols include subprogram names and names appearing in ENTRY statements. The
subtitle line is printed:

C-2

ENTRY POINTS

RA Name

DEFINITION

Def

REFERENCES

Ref

RA

Name

Def

Ref

Program relative address

Entry point name as it appears in the FORTRAN source

Line number of subprogram statement or line on which ENTRY statement occurs

Line number (none for a main program). In a subprogram, RETURN statements are
references to the entry point. (For a function subprogram, references to the
function value appear in the variable map.)

ENTRY POINTS
2026 SAMPLE

60176600 Rev. F

Example:

SUBROUTINE SUBR
COMMON A, B, C
IF(A .EQ. 0.0) GO TO 10
RETURN

10 B = C**2
A= B+C
RETURN
END

The subtitle line and properties are:

ENTRY POINTS

2 SUBR

Variables

DEFINITION

1

REFERENCES

4 7

Variable symbols include local and common variables and arrays, formal parameters, RETURNS
names, and for a function subprogram, the function name when used as a variable. The subtitle
line is:

VARIABLES SN TYPE RELOCATION

RA Name * Type Properties Blockname (Refs, Defined, IO Refs)

RA

Name

SN

Program or common relative address; 0 for formal parameters

Variable name as it appears on the source listing

Stray name flag. Names which are variable names and appear only once
in a subprogram are indicated by *. Variables in this category are stray,
since they may be keypunch errors, misspellings, etc. A legal usage
that would cause a stray name is a DO loop where the control variable
is not referenced. (Present only for R = 2 or R = 3)

Type The arithmetic mode of a variable (logical, integer, real, double precision, com
plex, or ECS). RETURNS is printed for RETURNS formal parameters. Types are
offset to aid in debugging.

Properties The following keywords may be printed out in this column:

*UNDEF

60176600 Rev. F

The symbol has not been defined. A symbol is defined if any of the
following conditions hold:

It appears in a COMMON or DA TA statement

It is a non-base member of an equivalence class

It appears on the left side of an assignment statement, at the outermost
parenthesis level

It is the control variable in a DO loop

C-3

I

I

I

I

I

It appears as a stand alone actual parameter in a subroutine or function
call

It appears in an input I/O list

ARRAY

*UNUSED

Variables used before definition are not detected
Symbol is dimensioned.

Name is an unused formal parameter. If nothing is printed and the name is
not a RETURNS parameter, it is a simple variable.

Bloclmame blank Local symbol (address is program unit relative)

F· P· Formal parameter

II Symbol is in blank common, RA relative to blank common

name Name of common block where symbol appears; RA is common relative

Refs, Defined, IO Refs

REFS

DEFINED

IO REFS

References and definitions are the rightmost items in a variable map.

References are collected for variable symbol names appearing in declarative
statements or used in assignment statements.

Definitions are listed for names appearing in DATA statements, the control
variable of a DO loop, names defined in an ASSIGN or assignment statement,
and names defined by READ or ENCODE/DECODE statements. The subprogram
header line defines formal parameters.

Input/ output references are collected for symbols used as variable file names
in an I/O statement.

In a function subprogram, references to the function name are listed in the variable map.

I References are collected after statement functions are expanded and are not collected for the
arguments before expansion.

Example: If ASF (J) = (J + 1)/ (J - 1) is a statement function and K = ASF (I) is on line 5:
two references will be listed for I on line 5.

VARIABLES SN TYPE RELOCATION
2723 AGAIN REAL 2732 A1 REAL
2737 A2 REAL ARRAY 2722 I INTEGER
2724 I AGAIN INTEGER 2731 IGO INTEGE~

2725 J INTEGER 2726 K INTEGER
2727 L INTEGER 2730 " INTEGER

File Names

ARRAY

File names inelude those used as logical file names (unit number) in the input/output statements or
names declared as files on the program card in a main program. The subtitle line is printed:

FILE NAMES MODE

FET Name Mode Reference

C-4 60176600 Rev. F

FET Program relative address of the file environment table associated with the file. The
file's buffer starts at FET + 17D (listed in a main program and blank in subroutine).

Name Filename

Mode One of the following will be printed:

blank If the mode cannot be determined from operations on the file

UNFMT Unformatted I/O, no conversion

FMT Formatted I/O

BUF Buffer I/0

MIXED Some combination of the above

References are divided into the categories:

READS Input operations

WRITES Output operations

MOTION Positioning operations; rewind/backspace and ENDFILE

FILE NAMES MOOE
0 DEBUG 0 OUTPUT FHT

External References

External references include names of subroutines or functions external to a subprogram. Nam es of
system routines not explicitly called in the source program such as those used for input/ output and
exponentiation will be suppressed. The subtitle line is:

EXTERNALS TYPE ARGS REFERENCES

Name Type Args Prop Refs

Name

Type

Args

Prop

Symbol name as it appears in the FORTRAN source

blank Subroutine

NO TYPE Conversion will follow the same rule as for octal or Hollerith data

Other Arithmetic mode

Number of arguments used to reference symbol

Blank

LIBRARY

Programmer defined function or subroutine

Formal parameter

Call by value library function

Refs Lines on which symbol was referenced

In T or D mode, no LIBRARY functions appear since they are all called by name and most intrinsic
functions are compiled as external references.

60176600 Rev. E C-5

EXTERNALS
ABS
EXP
FUN2
SLITE:
SU81

Inline Functions

TYPE
REAL
REAL
Rf Al

ARGS
1
1
1
1
1

ALOG
FUN1
ues
SLITET
SU82

REAL
REAL
INTEGER

1
1
1
2
1

Inline functions include names of intrinsic and statement functions appearing in the subprogram.
The subtitle line is:

INLINE FUNCTIONS TYPE

Name Mode

ARGS

Ar gs

DEF

Ftype
Name Symbol name as it appears in the listing

LINE

Def

REFERENCES

Refs

Mode Arithmetic mode, NO TYPE means no conversion in mixed mode expressions

Args Number of arguments with which the function is referenced

Ftype INTRIN Intrinsic function

SF Statement function

Def Blank for intrinsic functions.; the definition line for statement functions

Refs Lines on whiL, ... flmction is referenced

N amelist Group Names

This listing includes names declared as namelist group names in NAMELIST statements. The
subtitle line is:

NAME LISTS DEF LINE REFERENCES

Name Line of definition References to group name

Statement and Format Labels

The label map includes all statement labels appearing in the program. Labels may be referenced in
input/output, GO TO, ASSIGN, IF or CALL statements with RETURNS lists. The subtitle line is:

C-6

STATEMENT LABELS

RA label Type Activity

DEF LINE

Def

REFERENCE

Refs

RA label Program relative address. Inactive labels are printed with a zero address.

Type Blank

FMT

UNDEF

Executable statement number

Format number

Label is undefined

60176600 Rev. E

Activity Blank Label is active or referenced

INACTIVE Label is inactive (statement number)

NO REFS Label is defined as a format number and not referenced

Def Line number in which label appeared in columns 1-5 of a source statement

Refs Lines in which label was referenced

Active labels are those for which the compiler has not deleted all references by optimization.

The following example contains the only reference to the label 5 in a program. The label is inactive
because the compiler deletes jumps to the next statement.

IF(X)l0,5,10

5 X=l

10 continue

Labels referenced only in DO statements as loop terminators are not assigned addresses.

Inactive labels and those used as loop terminators cannot be assigned any meaningful address by the
compiler.

STATEMENT LABELS
0 1 INACTIVE 2471 99 FHT a 100
0 201 INACTIVE 2510 299 FHT D 300 INACTIVE
0 301 INACTIVE 2534 399 FHT D 400 INACTIVE
0 401 INACTIVE 0 40 2 2205 403

2561 4<39 FHT 0 50 0 D 501 INACTIVE
0 502 INACTIVE 22f7 503 2303 504

2311 505 2314 50 6 2241 507
2254 508 0 510 D 511

0 512 0 513 0 514
2623 5qg FMT 0 600 INACTIVE 2317 601
2331 602 0 701 INACTIVE 2647 7gg Ft1T

0 600 INACTIVE 2350 6327 2660 6328 FHT

DO-LOOQ Ma:es

This map is a printout of all DO loops appearing in the source program and their properties. The
map may be generated by the R = 2 or R = 3 option. Loops are listed in order of their appearance
in the program. The subtitle line is:

LOOPS

fwa

fwa

term

mf

LABEL

term mf

INDEX

index

FROM-TO

lf-lt

LENGTH PROPERTIES

len prop

First word address of loop body

Label associated with end of loop, or blank for I/O loop

* Loop index is kept in memory to generate code for loop counting
mechanism

60176600 Rev. E C-7

index

lf-lt

len

prop

blank Other

Variable used to control loop

Numbers of first and last lines of loop

Number of instruction words generated for body of loop

If loop can be optimized, one of these messages is printed:

OPT Loop has no properties which inhibit optimization

INSTACK Loop is seven words or less, compiler assembled in 6600 mode

If loop is not optimized by the compiler, the reasons are listed:

EXT REFS Loop contains references to an external subroutine or function, or
it is an input/output loop

ENTRIES Loop is entered from outside its range

EXITS Loop contains references to labels outside its range

NOT Loop is not innermost loop in a nest
INNER

Loops that fit in the 6600 instruction stack have a ma.Ximum length of seven words, and usually
run two to three times as fast as a comparable loop that does not fit in the stack.

Common Blocks

Common block sy~bols include common block names and names declared in common statements to
be variables and arrays in common. The subtitle line is printed:

COMMON BLOCKS LENGTH MEMBERS - BIAS NAME (LENGTH)

bname bl en bias mname (size)

bname Block name

bl en Total block length

When the common block members are to be printed (R == 3), the following details appear for each
member declared in a COMMON statement.

bias

mname

size

Common relative address (distance from block origin)

Member name

Number of words allocated for member

If an equivalence class is linked to common, all members of the class become members of the
common block. These members are listed in the equivalence class printout.

C-8 60176600 Rev. E

Equivalence Classes

This class of symbol is collected only when R = 3. All members of an equivalence class explicitly
mentioned in EQUIVALENCE statements are listed. Any symbols added through linkage to common
are not included. The subtitle is:

EQUIV

phase

phase

base

cl en

bias

mname

size

CLASSES MEMBERS - BIAS NAME (LENGTH)

base cl en bias mnrune (size)

ERROR Class is in error (more than one member in common or block
origin extended by equivalence)

base member Class in common

blank Other

If the class is local, base is the name of the base member of the class, the
one with the smallest address. (If the class is in common, the nrune of the
symbol in common which linked the equivalence class to the common block
is printed.) When an equivalence class is in common, the base member of
the equivalence class is the first member of the common block.

Class length or span

Distance from the class base to the member

Member name

Number of words allocated for the member

Members of a class are printed in the order of increasing bias. If the class is in error, the
numbers associated with the class length and bias are meaningless.

Progrrun Statistics

At the end of the reference map, the statistics are printed in octal and decimal. The subtitle line is:

STATISTICS

program length Progrrun length including code, storage for local variables, arrays, con
stants, temporaries, etc., but excluding buffers and common blocks.

buff er length

common length

blank common

Total space occupied by I/O buffers and FETs

Total common length, excluding blank common

Length of blank common

STATISTICS
P~OGRAM LENGTH

BUFFER LENGTH

60176600 Rev. F

7228
20228

466
1042

C-9

I

I

I

Error Messages

The following error messages are printed if sufficient storage is not available:

CANT SORT THE SYMBOL TABLE INCREASE FL BY NNNB

or

REFERENCES AFTER LINE NNN LOST INCREASE FL BY NNNB

DEBUGGING (USING THE REFERENCE MAP)

New Program:

The reference map can be used to find names that have been punched incorrectly as well as other
items that will not show up as compilation errors. The basic technique consists of using the com
piler as a verifier and correcting the FE errors until the program compiles.

Using the listing, the R=3 reference map, and the original flowcharts, the following information
should be checked by the programmer:

Names incorrectly punched

Stray name flag in the variable map

Functions that should be arrays

Functions that should be inline instead of external

Variables or functions with incorrect mode

Unreferenced format statements

Unused formal parameters

Ordering of members in common blocks

Equivalence classes

Existing Program:

The reference map can be used to understand the structure of an existing program. Questions
concerning the loop structure, external references, common blocks, arrays, equivalence classes,
input/output operations, and so forth, can be answered by checking the reference map.

C-10 60176600 Rev. E

LIBRARY SUBPROGRAMS D

Intrinsic Function Symbolic Type of
& No. of Arguments Definition Example Name Argument Function

Absolute value lal Y=ABS(X) ABS Real Real

(1)
J=IABS(I) IABS Integer Integer

DOUBLE A, B DABS Double Double
B=DABS(A)

Truncation trunc (a)== [a] if a2:0 Y=AINT(X) AINT Real Real
(1) -[-a]ifa<O

I=INT(X) INT Real Integer
where the function repre-
sented by [a] is defined DOUBLE Z ID INT Double Integer
to be the integer i that J=IDINT(Z)
satisfies i:S a< i+ 1

B=AMOD(Al, A2) AMOD Real Real
Modulo MOD or AMOD (a

1
, a)

is defined to be
2 J=MOD(Il, I2) MOD Integer Integer

a
1

-trunc(a/a
2

)*a
2

DM=DMOD(Dl, D2) DMOD Double Double I
Choosing largest Max (a

1
, a

2
, ...) X=AMAXO(I, J, K) AMAXO Integer Real

value (::::2)
A=AMAXl(X, Y, Z) AMAX! R~al Real

L=MAXO(I,J ,K,N) MAXO Integer Integer

I=MAXl(A, B) MAXl Real Integer

DOUBLE W,X,Y,Z DMAXl Double Double
W=DMAXl(X, Y, Z)

Choosing smallest Min (a
1

, a
2

, ...) Y=AMINO(I,J) AMINO Integer Real
value (2:2)

Z=AMINl(X, Y) AMIN! Real Real

L=MINO(I,J, K) MINO Integer Integer

J=MINl(X, Y) MIN! Real Integer

DOUBLE A, B, C DMINl Double Double
C=DMINl(A, B)

Float (1) Conversion from XI=FLOAT(I) FLOAT Integer Real
integer to real

Fix (1) Conversion from IY=IFIX(Y) IFIX Real Integer
real to integer

60176600 Rev. F D-1

Intrinsic Function Symbolic Type of
& No. of Arguments Definition Example Name Argument Function

Transfer of sign (2) Sign of a 2 times la1I Z=SIGN(X, Y) SIGN Real Real

J=ISIGN(Il, !2) !SIGN Integer Integer

DSIGN Double Double

Positive difference (2) a 1 - Min(a1 ,a2) Z=DIM(X, Y) DIM Real Real

J=IDIM(Il, 12) !DIM Integer Integer

Truncate to obtain most DOUBLE Y SNGL Double Real
significant part of double X=SNGL(Y)
precision argument (1)

Obtain real part of COMPLEX A REAL Complex Real
complex argument (1) B=REAL(A)

Obtain imaginary part of D=AIMAG(A) AI MAG Complex Real
complex argument (1)

Express single precision DOUBLE Y DBLE Real Double
argument in double Y=DBLE(X)
precision form (1)

Express two real al+ a2 V-1 COMPLEX C CMPLX Real Complex
arguments in complex C=CMPLX(Al, A2)
form (2)

Obtain conjugate of a COMPLEX X, Y CONJG Complex Complex
complex argument (1) Y=CONJG(X)

Shift (2) Shift a 1 by a 2 bit B=SHIFT(A, I) SHIFT al: Single Octal
positions: word
left circular if az

a2: Integer
is positive; right
with sign extension
if a2 is negative

Logical product (2) al A a2 C=AND(Al, A2) AND Single word Octal

Logical sum (2) al v a2 D=OR(Al, A2) OR Single word Octal

I Complement (1) -,a B=COMPL(A) COMPL Single word Octal

I Masking MASK(!) MASK Integer Octal

D-2 60176600 Rev. F

External Function Symbolic Type of
& No. of Arguments Definition Example Name Argument Function

Exponential (1) ea Z=EXP(Y) EXP Real Real

DOUBLE X,Y DEXP Double Double
Y=DEXP(X)

COMPLEX A,B CEXP Complex Complex
B=CEXP(A)

Natural logarithm (1) log (a) Z=ALOG(Y) ALOG Real Real
e

Y=DLOG(X) DLOG Double Double

B=CLOG(A) CLOG Complex Complex

Common Logarithm (1) log
10

(a) B=ALOGlO(A) ALOGlO Real Real

DD=DLOGlO(D) DLOGlO Double Double

Trigonometric sine (1) sin (a) Y=SIN(X) SIN Real Real

DS=DSIN(D) DSIN Double Double

CS=CSIN(C) CSIN Complex Complex

Trigonometric cosine cos (a) X=COS(Y) cos Real Real
(1)

DC=DCOS(D) DCOS Double Double

CC=CCOS(C) ccos Complex Complex

Hyperbolic tangent tanh (a) B=TANH(A) TANH Real Real
(1)

Square root (1) (a)l/2 Y=SQRT(X) SQRT Real Real

DY=DSQRT(DX) DSQRT Double Double

CY=CSQRT(CX) CSQRT Complex Complex

Arctangent (1) arctan (a) Y=ATAN(X) ATAN Real Real

DY=DATAN(DX) DATAN Double Double

(2) arctan (a/a
2

) B=ATAN2(Al,A2) ATAN2 Real Real

D=DAT AN2(Dl, D2) DATAN2 Double Double

Modulus (1) v' AIMAG 2(a)+REAL2(a) CM=CABS(CX) CABS Complex Real

Arc cosine (1) arccos (a) X=ACOS(Y) ACOS Real Real

60176600 Rev. D D-3

External Functions Symbolic Type of
& No. of Arguments Definition Example Name Argument Function

Arcsine (1) arcsin (a) X=ASIN(Y) ASIN Real Real

Trigonometric tan (a) Y=TAN(X) TAN Real Real
tangent (1)

Random number ranf (a) returns values X=RANF(DUM) RANF Dummy Real
generator (1) uniformly distributed

over the range [0, 1)

Address of argument a lac (a) P=LOCF(X) LOCF Symbolic Integer
(1)

I/O status on buffer == -1 unit ready; IO=UNIT(6) UNIT Integer Real
unit (1) no error

== 0 EOF on last
operation

== +l parity error

I/O status on non- == 0 no EOF in IFL=EOF(4) EOF Integer Real
buffer unit (1) previous read

Length (1) Number of central L=LENGTH(J) LENGTH Integer Integer
memory words read
on the previous I/O
request for a particu-
lar file

Variable character- -1 = indefinite LEN=LEGV AR(V) LEGVAR Real Integer
istic (1) + 1 = out of range

0 =Normal

Parity status on 0 = no parity error on IP=I0CHEC(5) IOCHEC Integer Integer
non-buffer unit (1) previous read

Date as returned by date(a) WHEN=DATE(D) DATEt Value Hollerith
SCOPE (1) Returned

Current reading of time(a) CLTIM=TIME(A) TIMEt Variable Hollerith
system clock as
returned by SCOPE (1)

Time in seconds (1) second (a) CLTM=SECOND(A) SECONDt Real Real
(accumulated CP
time)

t These routines may be used as functions or subroutines. The value is always returned via the argument and
via the normal function return.

D-4 60176600 Rev. E

Subroutine
& No. of Arguments

Set Sense Light (1)

Test Sense Light (2)

Test Sense Switch (2)

Terminate (0)

Console Comment (1)

Console Value (2)

Obtain current
generative value of
RANF between 0 and 1 (1)

Initialize generative
value of RANF (1)

Dump memory (3-60)

Input checking (2)

Definition

1 ::S i ::S 6 turn sense light
is on. i = 0 turn off all
sense lights.

If sense light i is on
j = 1. If off j = 2 Always
turn sense light i off

If sense switch i is down
j = 1. If sense switch i is
up j = 2.

Terminate program exe
cution and return control
to the monitor

Place a message of up to
80 characters on dayf ile t

Display up to a 10 charac
ter message and value in
the dayfilet

ranget (a)

ranset (a), the generic
value is set to the nearest
odd number ;::= a

dump(a, b, f)

dump A to B according to f

ERRSET (a,b), set maxi
mum number of errors, b,
allowed in input data before
fatal termination. Error
count kept in a.

Example

CALL SLITE(I)

CALL SLITET(I, J)

CALL SSWTCH(I,J)

CALL EXIT

Symbolic
Name

SLITE

SLIT ET

SSWTCH

EXIT

CALL REMARK (2HHI) REMARK

CALL DISPLA DISPLA
(2HX=,20. 2)

CALL RANGET(X) RANGET

CALL RANSET(X)

CALL DUMP(A, B, 1)

CALL PDUMP(X,Y ,O)

CALL ERRSET(A, B)

RANS ET

DUMP

PDUMP

ERRSET

Type of
Argument

Integer

Integer

Integer

Hollerith

al Hollerith

a2=real or
integer

Symbolic

Real

Logical

Integer
Real
Double
Complex

Symbolic
Integer

tcharacters with a display code value above 578 are not allowed. The message must be terminated with binary
zeros, even if an entire word is necessary. (Use of a Hollerith constant of any form will provide such a ter
mination automatically.)

60176600 Rev. D D-5

INTERMIXED COMPASS SUBPROGRAMS E

Subprograms written in COMPASS may be intermixed with FORTRAN coded subprograms in the
source deck. COMPASS subprograms must begin with a card containing the word !DENT in columns
11-15, and terminate with card containing the word END in columns 11-13. Columns 1-10 of the

!DENT and END cards must be blank; column 14 of the END card must be blank.

Calling Sequence

When the FORTRAN compiler encounters a reference to an external subprogram, subroutine, or
function the following calling sequence is generated:

SAl Argument list (if parameters appear)

RJ Subprogram name

where the argument list consists of consecutive words of the form:

VFD 60/argument.
1

followed by a zero word.

Control Return

The COMPASS subprogram must restore the initial contents of AO in AO upon returning control to the
calling subprogram. When the COMPASS subprogram is entered via a function reference, the re
sult of that function must be in X6 or X6 and X7 with the least significant or imaginary part of the
double precision or complex result appearing in X7.

60176600 Rev. D E-1

Statements

Entry Points

PROGRAM s

PROGRAM s (£
1

,£
2

, ... ,fn)

SUBROUTINE s

STATEMENT FORMS

SUBROUTINE s (a
1

, a
2

, .•. ,an)

SUBROUTINE s, RETURNS (b
1

, b
2

, ... ,bm)

SUBROUTINE s (a
1
,a

2
, ... ,a),RETURNS (b ,b , ... ,b)

n 1 2 m
FUNCTION f (a

1
,a

2
, .•. ,an)

REAL FUNCTION f (a
1

, a
2

, ... ,an)

DOUBLE FUNCTION f (a
1
,a

2
, ... ,an)

COMPLEX FUNCTION f (a
1
,a

2
, •.• ,an)

INTEGER FUNCTION f (a
1
,a

2
, ... ,an)

LOGICAL FUNCTION f (a
1

, a
2

, ... , an)

DOUBLE PRECISION FUNCTION f (a
1
,a

2
, ... ,an)

ENTRY s

Specification Program Declaration

BLOCK DATA

BLOCK DATA d

Inter-subroutine

EXTERNAL v
1
,v

2
, ..• ,vn

Inter-subroutine Transfer Statements

CALL s

CALL s (a
1
,a

2
, .•• ,an)

CALL s, RETURNS (b
1
,b

2
, ... ,bm)

t N=Non-executable, S=Specification, E=Executable.

60176600 Rev. D

Classification

Nt

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

NS

E

E

E

9-1

9-1

9-2

9-2

9-2

9-2

9-8

9-8

9-8

9-8

9-8

9-8

9-8

9-5

9-10

9-10

8-7

4-12

4-12

4-12

F

F-1

Statements (Cont'd)

CALL s (a
1

, a
2

, •.• , an), RETURNS (b
1

, b
2

, .•• , bm)

RETURN

RETURN a

Data Declaration and Storage Allocation

Type Declaration

. REAL v
1

, v
2

, ..• , vn

DOUBLE v
1
,v

2
, ... ,vn

COMPLEX v
1
,v

2
, ..• ,vn

INTEGER v
1

,v
2

, •.• ,vn

LOGICAL v
1

,v
2

, •.. ,vn

DOUBLE PRECISION v
1

, v
2

, ... , v n

ECS v
1
,v

2
, •.• ,vn

TYPE REAL v
1
,v

2
, •.• ,vn

TYPE DOUBLE v
1

,v
2

, •. • ,vn

TYPE COMPLEX v
1
,v

2
, ••• ,vn

TYPE INTEGER v
1
,v

2
,. •• ,vn

TYPE LOGICAL v1,v2,. • • ,vn

TYPE DOUBLE PRECISION v l' v
2

, ..• , v n

TYPE ECS v
1
,v

2
, ..• ,vn

Storage Allocation

DIMENSION v l (i
1
), v

2
(i 2), ..• , v n(in)

COMMON Ix/a/ .•. Ix/an

EQUIVALENCE (k
1
) , (k

2
), ... , (kn)

DATA k/d/, k21d/, ••• ,k/d/

DATA (r 1 =dl), (r 2=d2), ..• '(rn =dn)

Statement Function

F-2

Classification

E

E

E

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

N

N

E

Page

4-12

4-14

4-14

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-7

8-1

8-3

8-6

8-8

8-10

9-7

60176600 Rev. D

Symbol Mani2ulation and Control Classification Page

Replacement Statements

(Arithmetic E 3-1

v=e Logical E 3-3

Masking E 3-3

Intra-program Transfers

GO TOk E 4-1

GO TO i, (kl,k2' ... ,kn) E 4-1

GO TO (k
1

, k
2

, ... ,kn), e E 4-2

IF (e) k
1

, k
2

, k
3 E 4-3

IF(e)k
1

,k
2 E 4-4

IF (e) s E 4-4

Loop Control

DO n i = m
1

,m
2

,m
3 E 4-5

Miscellaneous Program Controls

ASSIGN k TO i E 4-1

CONTINUE E 4-12

PAUSE E 4-15

PAUSE n E 4-15

STOP E 4-14

STOPn E 4-14

In2ut/Out2ut

I/O Format

FORMAT (q1t1z1t2z2 .•. tnznq2) N 6-1

60176600 Rev. D F-3

I/O Control Statements Classification Page

READ f,k E 5-3

READ (u) k E 5-4

READ (u) E 5-4

READ (u,f) k E 5-2

READ (u,f) E 5-2

WRITE (u) k E 5-4

WRITE (u,f) E 5-3

WRITE (u,f) k E 5-3

PRINT f,k E .5-4

PUNCH f,k E 5-4

BUFFER IN (u,p) (A, B) E 7-2 ,I-2

BUFFER OUT (u,p) (A, B) E 7-2,I-2

Internal Manipulation

ENCODE (n,f ,A) k E I-6,7-3

DECODE (n,f,A) k E 1-6,7-3

Tape Handling

ENDFILE u E 5-10

REWIND u E 5-9 ,I-5

BACKSPACE u E 5-9,I-5

Miscellaneous

NAMELIST /y/a/y/a/ ••. /y/an N 5-6

Program Termination

END N 4-15

F-4 60176600 Rev. D

SYSTEM ROUTINE SPECIFICATIONS G

The SYSTEM routine handles error tracing, diagnostic printing, termination of output buffers, and
transfer to specified non-standard error procedures. All the FORTRAN mathematical routines rely
on SYSTEM to complete these tasks. Also a FORTRAN coded routine may call SYSTEM. Any of
the parameters used by SYSTEM relating to a specific error may be changed by a user routine during
execution. The END processor also makes use of SYSTEM to dump the output buffers and print an
error summary. Since the initialization routine (Q8NTRY.), the end processors (END., STOP.,
and EXIT.) , and SYSTEM must always be available, these routines are combined into one subprogram
with multiple entry points.

The calling sequence to SYSTEM passes the error number as the first parameter and an error
message as the second parameter. Several different messages may be associated with one error
number. The error summary given at program termination lists the total number of times each
error number was encountered.

The error number of zero is accepted as a special call to end the output buffers and return. If no
OUTPUT file is defined before SYSTEM is called, no errors are printed and a message to this effect
appears in the dayfile. Each printed line is subjected to the line limit of the OUTPUT buffer; when
the limit is exceeded, the job is terminated.

The error table is ordered serially (the. first error corresponds to error number 1) and it is ex
pandable at assembly time. The last entry in the table is a catch-all for any error number which
exceeds the table length. An entry in the error table appears as follows:

Print
Print Frequency
Frequency Increment

8 8

Print Frequency = PF

Error
Print Detection
Limit Total

12 12

Print Frequence Increment = PFI

F/ A/ Non-Standard
NF NA Recovery Address

1 1 18

PF = 0 and PFI = 0, the diagnostic and traceback information are not listed.

PF = 0 and PFI = 1, the diagnostic and traceback information are listed until the print limit is
reached.

PF = 0 and PFI = n, the diagnostic and traceback information are listed only the first n times
unless the print limit is reached first.

PF = n, the diagnostic and traceback information are listed every nth time until the print limit
is reached.

601 76600 Rev. D G-1

Fatal (F)/ Non-Fatal (NF)

If the error is non-fatal and a non-standard recovery address is not specified, error messages are
printed according to PRINT FREQUENCY and control is returned to the calling routine.

If the error is fatal and no non-standard recovery address is specified, error messages are printed
according to PRINT FREQUENCY, an error summary is listed, all output buffers are terminated,
and the job is terminated.

If a non-standard recovery address is specified, see Non-Standard Recovery.

Non-Standard Recovery

SYSTEM supplies the non-standard recovery routine with the following information:

Al Address of parameter list passed to the routine which detected the error

X 1 Address of the first parameter

AO Address of parameter list of the routine that called the routine which detected the error

Bl Address of a secondary parameter list, which contains, in successive words:

Error number passed in SYSTEM

Address of diagnostic word available to SYSTEM

Address within auxiliary table if A/NA bit is set, otherwise zero

Instruction consisting of RJ to SYSTEM in upper 30 bits and trace back information
in lower 30 bits for the routine that called SYSTEM

A2 Address of error table entry in SYSTEM

X2 Contents of error table entry

Information in the secondary parameter list is not available to FORTRAN-coded routines.

Non-Fatal Error

The routine which detected the error and SYSTEM are delinked from the calling chain and the non
standard recovery routine is entered. When this routine exits in the normal routine, control returns
to the routine which called the routine which detected the error.

Thus, any faulty arguments may be corrected, and the recovery routine is allowed to call the rou
tine which detected the error, providing corrected arguments. By not correcting the faulty argu
ments in the recovery routine, a three routine loop can develop between the routine which detects
the error, SYSTEM, and the recovery routine. No checking is done for this case.

G-2

Fatal Error

SYSTEM calls the non-standard recovery routine in the normal fashion, with the registers set as
indicated above. If the non-standard recovery routine exits in the normal fashion returning control
to SYSTEM, an error summary is listed, all output buffers are terminated, and the job is terminated.

Use of the A/NA Bit

The A/NA bit is used only when a non-standard recovery address is specified.

If this bit is set, the address within an auxiliary table is passed in the third word of the secondary
parameter list to the recovery routine. This bit allows more information than is normally supplied
by SYSTEM to be passed to the recovery routine. The bit may be set only during assembly of SYS
TEM, as an entry must also be made into the auxiliary table. Each word in the auxiliary table must
have the error number in its upper 10 bits so that the address of the first error number match is
passed to the recovery routine. An entry in the auxiliary table for an error is not limited to any
specific number of words.

The traceback information is terminated as soon as one of the following conditions is detected:

The calling routine is a program.

The maximum traceback limit is reached.

No traceback information is supplied.

To change an error table during execution, a FORTRAN type call is made to SYSTEMC with the
following parameters:

Error number

List containing the consecutive locations:

Word 1

Word 2

Word 3

Fatal/non-fatal (fatal = 1, non-fatal = 0)

Print frequency

Print frequency increment (only significant if word 2 = 0) special values:

word 2 = 0, word 3 = 0 never list error
word 2 = 0, word 3 = 1 always list error
word 2 = 0, word 3 = X list error only the first X times

Word 4

Word 5

Word 6

Print limit

Non-standard recovery address

Maximum traceback limit

If any word within the parameter list is negative, the value already in table entry is not to be
altered.

60176600 Rev. D G-3

(Since auxiliary table bit may be set only during assembly of SYSTEM, only then can an auxiliary
t~ble entry be made.)

Error Listing

Message supplied by calling routine:

ERROR NUMBER xxxx DETECTED BY zzzzzzz AT yyyyyy

CALLED FROM cccccc AT ADDRESS wwwwww

or

CALLED FROM cccccc AT LINE dddd

(dddd is FORTRAN source line count)

ERROR SUMMARY

ERROR
xxxxx

TIMES
yyyy

(all numbers are decimal)

zzzzzzz and cccccc are routine
names, yyyyyy and wwwwww are
relocatable addresses

NO OUTPUT FILE FOUND

Functions of Entry Points

G-4

QSNTRY.

STOP.

EXIT.

END.

SYSTEM

SYSTEMC

Initialize I/0 buffer parameters

Enter STOP in dayfile and begin END processing

Enter EXIT in dayfile and begin END processing

Terminate all output buffers, print an error summary, transfer control to the
main overlay if within an overlay; in any other case exit to monitor.

Handles error tracing, diagnostic printing, termination of output buffers and
either transfers to specified non-standard error recovery address, terminates
the job or returns to calling routine depending on type of error.

Changes entry to SYSTEM' s error table according to arguments passed.

60176600

Execution Diagnostics

Error

Routine Message No.

ACGOER$ ERROR IN COMPUTED GO TO STATEMENT: 1
INDEX VALUE INVALID

ACOS$ ABS(R). GT .1. 0 2

INFINITE ARGUMENT
INDEF ARGUMENT

ALOG$ ZERO ARGUMENT 3

NEGATIVE ARGUMENT
IN FINITE ARGUMENT
INDEF ARGUMENT

ALOG10$ ZERO ARGUMENT 4
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

ASIN$ ABS(R). GT. 1. 0 5
INFINITE ARGUMENT
INDEF ARGUMENT

ATAN$ INFINITE ARGUMENT 6
INDEF ARGUMENT

ATAN2$ X=Y=O. 0 7
INFINITE OR INDEF ARGUMENT

CABS$ FLOATING OVERFLOW 8
INFINITE OR INDEF ARGUMENT

ZTOI$ ZERO TO THE ZERO POWER 9
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

CCOS$ INFINITE OR INDEF ARGUMENT 10
ABS (REAL PART) TOO LARGE
ABS (!MAG PART) TOO LARGE

CEXP$ INFINITE OR INDEF ARGUMENT 11
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

CLOG$ ZERO ARGUMENT 12
INFINITE OR INDEF ARGUMENT

COS$ ARG TOO LARGE, ACCURACY LOST 13
INFINITE ARGUMENT
INDEF ARGUMENT

60176600 Rev. E G-5

Error
Routine Message No.

CSIN$ INFINITE OR INDEF ARGUMENT 14
ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

CSQRT$ INFINITE OR INDEF ARGUMENT 15

DABS$ INFINITE ARGUMENT 16
INDEF ARGUMENT

DATAN$ INFINITE ARGUMENT 17
INDEF ARGUMENT

DATAN2$ X=Y=O.O 18
INFINITE OR INDEF ARGUMENT

DTOD$ FLOATING OVERFLOW 19
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

DTOI$ ZERO TO THE ZERO POWER 20
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

DTOZ$ FLOATING OVERFLOW IN D**REAL(Z) 21
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE'TO THE COMPLEX POWER
IMAG(Z)*LOG(D) TOO LARGE
INFINITE OR INDEF ARGUMENT

DTOX$ FLOATING OVERFLOW 21
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

DCOS$ ARG TOO LARGE, ACCURACY LOST 22
INFINITE ARGUMENT
INDEF ARGUMENT

DEXP$ ARGUMENT TOO LARGE, FLOATING OVERFLOW 23
INFINITE ARGUMENT
INDEF ARGUMENT

G-6 60176600 Rev. D

Error
Routine Message ~

DLOG$ ZERO ARGUMENT 24
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

DLOG10$ ZERO ARGUMENT 25
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEF ARGUMENT

DMOD$ DP INTEGER EXCEEDS 96 BITS 26
2ND ARGUMENT ZERO
INFINITE OR INDEF ARGUMENT

DSIGN$ INFINITE ARGUMENT 27
INDEF ARGUMENT

DSIN$ ARG TOO LARGE, ACCURACY LOST 28
INFINITE ARGUMENT
INDEF ARGUMENT

DSQRT$ NEGATIVE ARGUMENT 29
INFINITE ARGUMENT
INDEF ARGUMENT

EXP$ ARGUMENT TOO LARGE, FLOATING OVERFLOW 30
INFINITE ARGUMENT
INDEF ARGUMENT

ITOJ$ INTEGER OVERFLOW 31
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

IDINT$ INTEGER OVERFLOW 32
INFINITE OR INDEF ARGUMENT

XTOD$ FLOATING OVERFLOW 33
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR INDEF ARGUMENT

XTOI$ ZERO TO THE ZERO POWER 34
ZERO TO THE NEGATIVE POWER
INFINITE OR INDEF ARGUMENT

60176600 Rev. D G-7

Error
Routine Message No.

XTOY$ FLOATING OVERFLOW 35
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE OR INDEF ARGUMENT

SIN$ ARG TOO LARGE, ACCURACY LOST 36
INFINITE ARGUMENT
INDEF ARGUMENT

SLITE$ ILLEGAL SENSE LITE NUMBER 37

SLITET$ ILLEGAL SENSE LITE NUMBER 38

SQRT$ NEGATIVE ARGUMENT 39
INFINITE ARGUMENT
INDEF ARGUMENT

SSWTCH$ ILLEGAL SENSE SWITCH NUMBER 40

TAN$ ARG TOO LARGE, ACCURACY LOST 41
INFINITE ARGUMENT
INDEF ARGUMENT

TANH$ INFINITE ARGUMENT 42
INDEF ARGUMENT

ITOD$ FLOATING OVERFLOW 44
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DBLE POWER
INFINITE OR IND EF ARGUMENT

ITOX$ FLOATING OVERFLOW 45
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE OR IND EF ARGUMENT

ITOZ$ FLOATING OVERFLOW IN I**REAL(Z) 46
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(I) TOO LARGE
INFINITE OR IND EF ARGUMENT

G-8 60176600 Rev. D

Routine

XTOZ$

FTNERR$

INPUTN$

OVER LA$

SEGMEN$

BACKSP$

BUFFEI$

BUFFEO$

END FIL$

IFENDF$

INPUTB$

INPUTO$
OUTPTN$

INPUTC$

INPUTN$

60176600 Rev. E

Message

FLOATING OVERFLOW IN X**REAL(Z)
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER
IMAG(Z)*LOG(X) TOO LARGE
INFINITE OR INDEF ARGUMENT

COMPILATION ERROR ENCOUNTERED DURING PROGRAM
EXECUTION

TOO FEW CONSTANTS FOR UNSUBSCRIPTED ARRAY

FATAL ERROR IN LOADER

FATAL ERROR IN LOADER
NON-FATAL ERROR IN LOADER

UNASSIGNED MEDIUM, FILE NAME: xxxxxxx

UNASSIGNED MEDIUM, FILENAME: xxxxxxx
END-OF-FILE ENCOUNTERED, FILENAME: xxxxxxx
WRITE FOLLOWED BY READ ON FILE: xxxxxxx
BUFFER DESIGNATION BAD--FWA. GT. LWA

UNASSIGNED MEDIUM, FILENAME: xxxxxxx
BUFFER SPECIFICATION BAD--FWA. GT. LWA

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

UNASSIGNED MEDIUM, FILENAME: xxxxxxx
END-OF-FILE ENCOUNTERED, FILENAME xxxxxxx

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

END-OF-FILE ENCOUNTERED, FILENAME: xxxxxxx

PRECISION LOST IN FLOATING INTEGER CONSTANT
NAME LIST DATA TERMINATED BY EOF, NOT$
NAMELIST NAME NOT FOUND
NO I/O MEDIUM ASSIGNED
WRONG TYPE CONSTANT
INCORRECT SUBSCRIPT
TOO MANY CONSTANTS
(, $, OR = EXPECTED, MISSING
VARIABLE NAME NOT FOUND
BAD NUMERIC CONSTANT
MISSING CONSTANT AFTER *
UNCLEARED EOF ON A READ
READ PARITY ERROR

Error
No.

47

48

49

50

51
52

53

54
55
56
57

58
59

60

61

62
63

64

65

66

G-9

Routine

INPUTS$

IOCHECK$

KODER$

KRAKER$

LENGTH$

FTNBIN$
OUTPTB$

OUTPTC$
CONNEC$

OUTPTN$

OUTPTS$

REWINM$

KODER$

INPUTB$

INPUTC$

OUTPTB$

OUTPTC$

G-10

Message

*DECODE*CHAR/REC. GT. /50*

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

*ILLEGAL FUNCTIONAL LETTER
*IMPROPER PARENTHESIS NESTING
*EXCEEDED RECORD SIZE
*SPECIFIED FIELD WIDTH ZERO
*FIELD WTH. LE. DECIMAL WTH
*HOLLERITH FORMAT WITH LIST

*ILLEGAL FUNCTIONAL LETTER
*IMPROPER PARENTHESIS NESTING
*SPECIFIED FIELD WIDTH ZERO
*EXCEEDED RECORD SIZE
ILLEGAL DATA IN FIELD~*
DATA OVERFLOW>*
*HOLLERITH FORMAT WITH LIST

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

UNASSIGNED MEDIUM, FILENAME: xxxx

OUTPUT FILE LINE LIMIT EXCEEDED

ENCODE*CHAR/REC . GT. 150*

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

*LIST/FMT CONFLICT, SNGL/DBLE

WRITE FOLLOWED BY READ ON FILE: xxxxxxx
LIST EXCEEDS DATA, FILENAME: xxxxxxx
PARITY ERROR READING (BINARY) FILE: xxxxxxx

WRITE FOLLOWED BY READ ON FILE: xxxxxxx
PARITY ERROR READING (CODED) FILE: xxxxxxx

PARITY ERROR ON LAST READ ON FILE: xxxxxxx

PARITY ERROR ON LAST READ ON FILE: xxxxxxx

Error
No.

66

67

68
69
70
71
72
73

74
75
76
77
78
79
80

81

82

83

84

85

86

87

88
89
90

91
92

93

94

60176600 Rev. D

Routine

IOCHEC$

INITMS$
READ MS$
WRITMS$

INITMS$

READ MS$

WRITE MS$

READ MS$

INITMS$
WRITMS$

LABEL$

READMS$

READMS$

WRIT EC$

READ EC$

Message

UNASSIGNED MEDIUM, FILENAME: xxxxxxx
*STATUS OF BUFFER I/0 MUST BE CHECKED BY THE UNIT

FUNCTION* FILENAME: xxxxxxx

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

FILE DOES NOT RESIDE ON A RANDOM ACCESS DEVICE

FILE WAS NOT OPENED BY A CALL TO SUBROUTINE OPENMS

RECORD NAME REFERRED TO IN CALL IS NOT IN THE FILE INDEX

INDEX BUFF ER IS OF INSUFFICIENT LENGTH

UNASSIGNED MEDIUM, FILENAME: xxxxxxx

READ PARITY ERROR

SPECIFIED INDEX IN THIS MASS STORAGE CALL. GT. MASTER
INDEX OR IS ZERO

ECS UNIT HAS LOST POWER OR IS IN MAINTENANCE MODE

ECS READ PARITY ERROR

60176600 Rev. D

Error

~

95
96

97

98

99

100

101

102

102

110

112

113

G-11

DECK STRUCTURE H

Program Unit Structure

FORTRAN Extended program unit source decks are divided into five sections as follows; they must
conform to the order shown.

Section

A

B

c

D

E

Content

Program unit identification (PROGRAM, SUBROUTINE, FUNCTION, or
BLOCK DATA card)

Specification statements (DIMENSION, TYPE, etc.)

Statement function definition

Executable statements (X=Y, GOT014, etc)

END statement

Section A should appear in every program. Sections B, C and D may include FORMAT statements
and comment lines. Sections C and D may include NAMELIST and DATA statements. If Section A
is a BLOCKDATA statement, Sections C and D may not be included in the progran unit. Section E
should appear if multiple subprograms are used, since if no recognizable header card is present
on the following subprogram, a fatal error occurs.

Source Decks

Source decks are comprised of complete FORTRAN program unit source decks and/or COMPASS
source decks. Each COMPASS source deck must begin with an IDENT card (columns 11-15) and
terminate with an END card (columns 11-13); in both cases columns 1-10 must be blank. FORTRAN
and COMPASS program unit source decks may be in any order.

60176600 Rev. E H-1

SAMPLE DECK STRUCTURE

1. Compilation only

2. Compilation and Execution

H-2

JOB.

JOB.

7
8
9

7
8
9

FTN.

Source Deck

Data

Source Deck

LGO.

60176600

3. Compilation and Execution with Binary Subroutine

6 l 7
8 L

//

9 H
Y/
Y/ w

Data Deck
l

7 1 8

:i 9 7
8

/
9 //

~
Y/
~

(Binary Deck

7 l 8
9

ff Source Deck

77
8
9 (LGO.

_[LOAD(INPUT)

(FTN.
JOB.

1-------'

H-3

4. FORTRAN LOAD
AND EXECUTE
SEGMENTS

Preparation of
SEGMENT call

Loads JACK, JOHN from
file HELP2 at level 2

Loads ALLAN, SAM from
file HELPl at level 1

Preparation of
SEGMENT call

data

7

~ SUBROUTINE ALLAN

SUBROUTINE START2

END

l CALL SEGMENT(L, 2, L2)

L2(2)=0

L2(1)=5L HELP2

- CALL SEGMENT(L, 1, L2)·

L2(2)=0

IMENSION L2(2)

PROGRAM ST ARTl(INPUT,OUTPUT)

SEGMENT(HELP2, JACK, JOHN)

SEGMENT(HELPl, ALLAN, SAM)

H-4

SEGZERO(HELP, STARTl, START2)

7
8
9

LGO.

FTN.

DRY.

60176600 Rev. C

5. OVERLAY PREPARATION OF
O , O ; 1, 0 ; and 1 , 1

60176600 Rev. D

(

Source Deck (
I

(
\

Source Deck

_[:::a
l

~ ~ l
9 .L

.L

L-t::data

/7 l 8
9 {END

________ il..a....;....... ~ Source Deck P_Il.OGRAM ML T)

I OVERLA Y(FRANK, 1, 1)

I
/END l

.__ /_CALL OVERLAY(5HFRANK, 1, 1)

_L

.L

_LL ______ l l
PROGRAM RDY

OVERLA'Y(FRANK, 1, 0)
l

l

......., 'I SUBROUTINE GROUCH(X)

~ l_LEND
._ lf CALL OVERLA Y(5HFRANK, 1, 0)

LCALL GROUCH(40, 0)
L

.L

.L I

{PROGRAM LEO(INPUT, OUTPUT, TAPEl)

OVERLAY (FRANK!, 0, 0)

7
8 ~
9 ~F-RA __ N_K--1.----------------------............,,

LLGO.

VFTN.
1

1
l

1

H-5

OBJECT TIME 1/0

STRUCTURE OF FILES

A file is an ordered sequence of user logical records. Each type of input/output that a FORTRAN
programmer can use has a user logical record definition:

FORMATTED I/O

READ f,k
PRINT f,k

PUNCH f,k
READ(u,f) k

READ(u,f)
WRITE (u, f) k

WRITE(u,f)

For formatted I/O the user logical record (also referred to as a unit record) corresponds to a card
image or a print line. User logical records may be a maximum of 15010 characters for input but
only 13710 are transferred on output records. A user logical record corresponds to a tape block
on Sand L tapest; on X tapes it always is 13610 characters.

UNFORMATTED I/O

READ (u) k WRITE (u) k

When I/O is unformatted, the user logical record is the same as a SCOPE logical record on internal
files or xtt magnetic tape files. On an S and L magnetic tape the physical representation of user
logical records is the same as that on a SCOPE internal tape although there is no SCOPE-logical
record definition (i.e., on S- and L-style tapes each tape block will consist of a maximum of 5120
characters with a user logical record terminated by a tape block shorter than 5120 characters).

Since the physical representation of FORTRAN unformatted user logical records is the same on S and
L tapes as that on SCOPE internal tapes, the files may be used interchangeably; a tape created as a
SCOPE internal tape may be read as an S or L tape. Likewise, a tape created by a FORTRAN job as
an S or L tape may be read as a SCOPE internal tape. Tapes written as X tapes must be read as X
tapes.

Throughput of small user logical records can be increased if S magnetic tapes are used instead of
SCOPE internal or L tapes. Non-stop tape motion can often be achieved when the buffer size is in
excess of 2048 words, which is four physical record units on magnetic tape.

10

BUFFER I/O

BUFFER IN (u,k) (A,B)

tstranger tape and Long record tape.
ttExternal tape in SCOPE 2 format.

60176600 Rev. E

BUFFER OUT (u,k) (A,B)

I-1

On SCOPE internal files (including tape files) and binary S magnetic tapes, the user logical record is
represented as a SCOPE logical record. On a coded X tape, the user logical record will always
consist of 14 words (136 characters on tape), and any attempt to write a record longer will result in
a fatal diagnostic. On S and L magnetic tapes, the user logical record is defined to be one tape block,
the information between two record gaps or between the load point and a record gap. On S magnetic
tapes, 512 words is the maximum record length.

BUFFER 1/0

BUFFEI (BUFFER IN)

Only one logical record is read each time BUFFEI is called. If the block length specified by the call
is longer than the logical record, excess block locations will not be changed by the read. If the logi
cal record is longer than the block, excess words in the logical record are passed over. The number
of CM words transmitted to the program block may be obtained by referencing LENGTH.

After using a BUFFER IN (or BUFFER OUT) statement on unit i, and prior to a subsequent reference
to unit i, or to the information, the status of the BUFFER operation must be checked by a reference
to the UNIT function. This check insures that requested data has been transferred, and the buffer
parameters for the file have been properly restored. If an attempt is made to BUFFER IN past an
end-of-file without referencing the UNIT function, BUFFEI will abort the program with the diagnostic:
*BUF IN**ENDFILE file name

If a read is attempted, when the last operation on the file was a write, BUFFEI will abort the program
with the diagnostic: *BUF IN**LAST OP WRITE, file name

If the starting address for the block is greater than the terminal address, BUFFEI will abort the pro
gram with the diagnostic: *BUF IN***FWA. GT. LWA, file name

If an attempt is made to BUFFER IN from an undefined file (file not declared on the PROGRAM card),
BUFFEI will abort the job with the diagnostic: *BUF IN**UNASSIGNED MEDIUM, file name

BUFFEO (BUFFER OUT)

One logical record is written each time the routine is called; record length is LWA-FWA+l.

A BUFFER OUT operation must be followed by a reference to the UNIT function. Since BUFFEO
changes the buffer arguments for the file to point to the CM block specified in the call, calls to other
routines involving the same file may not follow any buffer operation until the pointers have been
restored by the UNIT function. If LWA is less than FWA, the program will be aborted qnd the follow
ing diagnostic will appear in the dayfile: *BUF OUT**FWA. GT. LWA, file name

The UNASSIGNED MEDIUM diagnostic is similar to that issued by BUFFEI.

I-2 60176600

Random Access Files (Mass Storage)

Two degrees of sophistication are available using the mass storage subroutines. It is possible to
utilize the routines in a normal fashion having just one master index, or it is possible to have a
master index and many sub-indexes. A file may have a name or a number index and is referenced
in one of the following ways:

CALL OPENMS (u, ix, 1, p)

CALL READMS (u, fwa, n, i)

CALL WRITMS (u,fwa,n,i)

CALL STINDX (u, ix, 1)

u is a logical unit number; ix is the first word address of the index in central memory; 1 is the index
length; E. indicates how the file is referenced; fwa is central memory address of first word of record;
n is number of CM words to be transferred; i is record number or cell address of record name or
;umber. (See Chapter 5, Mass Storage I/O.)

In all cases it is necessary to open (CALL OPENMS) the mass storage file before calling READMS,
WRITMS, or STINDX. If the file exists, OPENMS reads the master index into the CM area specified
in the call (the ix parameter).

The STINDX subroutine causes no transfer of data, it merely changes the file index in the FET to the
base specified in the call. After calling STINDX it is necessary to call READMS or WRITMS to read
in or create the new index. After making a call to STINDX, if the next operation on that file is to be
a random access write (WRITMS) and if the file is being referenced through a name index, the pro
grammer must zero out the area reserved for the new index buffer (whose first word address is
specified by the ix parameter in the call to STINDX) prior to calling WRITMS. The master index
must be reset before termination of the job so that the correct index will be written on the file.

Upon termination of the job, the mass storage file is closed automatically by FORTRAN. At this
time the index as specified in the FET is written as a record on the file.

Examples:

1. PROGRAM MS (TAPE5)
DIMENSION I(lO), B(20), C(30)
CALL OPENMS(5, I, 10, 0)

C READ MASTER INDEX INTO I

CALL READMS (5, B, 20, 4)
C READ RECORD 4 INTO B (ASSUME THIS RECORD IS A SUB-INDEX)

CALL STINDX (5, B, 20)
C ALL SUBSEQUENT OPERATIONS ON UNIT 5 WILL USE
C B AS THE INDEX FOR THE FILE

CALL STINDX (5, I, 10)
C RESTORE MASTER INDEX

END

601 76600 Rev. E 1-3

I

2. PROGRAM MS (TAPE5)
C PROGRAM FOR CREA TING RANDOM FILE

DIMENSION J(lO), B(7),XYZ(20), ZXY(lO), YXZ(50)
DATA JOE, SAM, PETE, SUB1/3LJOE, 3LSAM, 4LPETE, 4LSUB1/
CALL OPENMS(5, J, 10, 1)
CALL STINDX(5, B, 7)
DO 10 I=l, 7

10 B(I)=O.

C USE INDEX B
CALL WRITMS(5,XYZ,20,JOE)
CALL WRITMS(5, ZXY, 10, SAM)

CALL WRITMS(5, YXZ,50,PETE)
CALL STINDX(5, J, 10)

CALL WRITMS(5, B, 7, SUBl)
C WRITE OUT THE SUB-INDEX

END

3. PROGRAM MS (TAPE5)
C THIS MS FILE HAS NO SUB-INDEXES

DIMENSION 1(10)
CALL OPENMS(5, I, 10, 0)

C READ MASTER INDEX INTO I

C ANY READ OR WRITE ON THIS FILE WILL USE THE INDEX IN
C ARRAY I

END

The execution-time routine END will close the file, causing the index at I to be rewritten on the file.

Status Checking

UNIT Function

The UNIT (i) function checks the status of a buffered operation (BUFFER IN or BUFFER OUT only)
on logical unit i. The function returns values as follows:

-1 unit ready, no previous error

+O previous read encountered an end-of-file

+1 parity error on previous read

Example:

I-4

IF(UNIT(i)) 12, 14, 16

Upon return from the UNIT function, control is transferred to the statement labeled 12, 14 or 16
if the value returned was -1, O, or +1 respectively.

60176600 Rev. F

If the value returned is 0 or +1 the condition indicator is cleared before returning to program
control.

Note: If the UNIT function references a non-buffered unit (a unit referenced by I/O statements
other than BUFFER IN and BUFFER OUT), the status returned will always indicate unit ready
and no previous error (-1).

EOF Function

The EOF (i) function tests for end-of-file read (non-buffered) on unit i. The value zero is returned
if no end-of-file was encountered on the previous read, or non-zero if end-of-file was encountered
on unit i.

Example:

IF (EOF(i)) 10,20

If j_ designates the file named INPUT, control will return to statement 10 if the previous read
encountered an end-of-file, or any 7 /8/9 end-of-record card. Otherwise control will go to
statement 20.

The user should make the EOF check after each READ operation to insure against possible input/
output errors. If a READ on unit.!_ is attempted and an EOF was encountered on the previous READ
operation, execution is terminated and a diagnostic message issued.

If the previous operation on unit.!_ was a write, EOF will always return a zero value. Only when an
end-of-file is read will the ehd-of-file condition exist.

This function has no meaning when applied to a mass storage file. If the EOF function is called in
reference to a MS file, a zero value is always returned.

IOCHEC Function

The IOCHEC (i) function tests for parity errors on non-buffered reads on unit.!_. The value zero is
returned if no error occurs.

Example:

J = IOCHEC (i)
IF (J) 15, 25

A value of zero is returned to J if no parity error occurs, and non-zero is returned otherwise.
Control would then transfer to the statement labeled 25 or 15 respectively. If a parity error
occurs, IOCHEC will clear the parity indicator before returning.

Parity errors are handled in the above fashion regardless of the type of the external device.

Only read parity errors are detected by the status checking functions. Write parity errors are
detected and a message is written in the dayfile by the SCOPE system.

60176600 Rev. E I-fi

A parity error indication reveals parity error somewhere within the current logical record.
For nonbuffered coded files, this does not necessarily mean the error occurred within the last
record requested by the program because the I/O routines read a logical record ahead when
ever possible.

Backspace/Rewind

If a BACKSPACE is requested on a coded file (except files created by the BUFFER OUT statement)
the file is logically moved back one unit record. The backspace is attempted within the I/0 buffer;
if this is not possible, the external I/O device is repositioned.

Backspace on binary files and files created by BUFFER I/O statements reposition the external device
so that the last logical record becomes the next logical record.

When a BACKSPACE (or REWIND) request follows a write operation on a file, an end-of-file is
written followed by two backspaces (or by a rewind). Note that SCOPE may write trailer label infor
mation immediately following the end-of-file written by FORTRAN.

FORMAT Field Separators

Field descriptors are normally delimited by field separators; however, some exceptions are
allowed. For example, the statement

10 FORMAT(F25. 22F10. 3)

would be interpreted as two descriptors, F25. 22 and FlO. 3. Field separators should be used when
ever ambiguity could result.

ENCODE/DECODE

Under SCOPE, a binary zero byte is used to terminate a unit record. When the DECODE processor
encounters a zero character (6 bits of binary zeros), that character is interpreted as a blank. Con
version continues through n characters per record.

Whenever a record terminator (a slash or the right parenthesis if the list is not exhausted) is en
countered in a FORMAT statement, the rest of the record is filled out with blanks (for ENCODE) or
ignored (for DECODE), and conversion continues beginning with the next record. (The length of
the record is specified by n in a DECODE (n,f,A)k or ENCODE (n,f,A)k statement.) The record
is restricted to a maximum length of 150 characters.

Example:

I-6

10 FORMAT (16(F10. 4)) is illegal (the diagnostic EXCEEDED RECORD SIZE is issued)
10 FORMAT (10F10.4,/,6F10.4) is allowed

60176600 Rev. E

Labeled Files

Only files recorded on 1/2 inch magnetic tape may be labeled files.

When the PROGRAM line is compiled, FET's (File Environment Tables) are set up for each file
declared. All the fields in the FET label information for a given file are set to zero with one excep
tion; the reel number is set to 1. If the file has been declared as labeled on a REQUEST control
card, SCOPE compares the label with the information in the FET when the file is opened. The in
formation will not compare, and if the initial use of the file is for input SCOPE will allow the job
to continue only after instructions are entered from the display console to do so. If the initial use
of the file is for output SCOPE will write a default label on the tape and the job will continue.

In order for the FORTRAN programmer to compare label information or to create a standard label
containing given information, an object time subroutine (LABEL) is provided to set the desired
information into the FORTRAN prepared FET.

If the label information is properly set up, and subroutine LABEL is referenced prior to any other
reference to the file, then when the file is opened the label and the information are compared for
an input tape, or the information is written on an output tape.

The form of the call is:

CALL LABEL (u, fwa)

where:

u is the unit number

fwa is the address of the first of four consecutive words containing the desired label infor
mation to be placed into the FET. The information must be in the mode and format
discussed in Appendix C of the SCOPE 3. 2 Reference Manual.

The four words beginning at fwa are transferred directly to words 10 through 13 of the FET for
the file designated by u.

Carriage Control Characters

Character

A
B
1
2
+
0 (zero)
- (minus)
blank

Action Before Printing

Space 1
Space 1
Eject to top of next page
Skip to last line on page
No space
Space 2
Space 3
Space 1

Action After Printing

Eject to top of next paget
Skip to last line of page t
No spacet
No spacet
No space
No space
No space

t The top of a page is indicated by a punch in channel 8 of the carriage control tape for the 501 printer
and channel 1 for the 512 printer. The bottom of page is channel 7 in the 501 and 12 in the 512.

60176600 Rev. E I-7

When the following characters are used for carriage control, no printing takes place. The remainder
of the line will not be printed.

Q

R

s
T

PM
(col 1-2)

any other

Clear auto page eject

Select auto page eject

Clear 8 vertical lines per inch (512 printer)

Select 8 vertical lines per inch (512 printer)

Output remainder of line (up to 30 characters) on the B display and the dayfile and
wait for the JANUS typein /OKuu. For files assigned to a printer, n. GO. must be
typed to allow the operator to change form or carriage control tapes.

See SCOPE Reference Manual.

Any pre-print skip operation of 1, 2 or 3 lines that follows a post skip operation will be reduced to
0, 1 or 2 lines.

The functions Q through T should be given at the top of a page. S and T can cause spacing to be
different from the stated spacing if given in other positions on a page. Q and R will cause a page
eject before the next line is printed.

Notes

Meaningful results are not guaranteed in the following circumstances:

1. Mixed mode files within a logical file.

2. Mixing buffer I/O statements and standard Read/Write statements on the same file (without a
REWIND in between) .

3. Requesting a LENGTH function on a buffer unit before requesting a UNIT function.

4. Two consecutive buffer I/O statements on the same file without the intervening execution of a
UNIT function call.

A FORTRAN formatted WRITE will produce X's or I's in an output field under the following
conditions:

1. Fixed point format will produce R's in the output field if the internal data is out of range
(greater than or equal to 2**48).

2. Floating point format will produce R's in the output field if the internal data is out of range
or I's if it is indefinite (as defined for 6400/6600 hardware).

Disposition of files at run termination:

1. All indexed files (randomly accessible files) are closed through SCOPE.

2. Output files are demarcated by FORTRAN with an end-of-file and are not rewound. No
action is taken on input files.

I-8 60176600 Rev. E

SUBPROGRAM AND MEMORY STRUCTURE

This appendix describes the arrangement of code and data within PROGRAM, SUBROUTINE and
FUNCTION subprograms. It does not describe the arrangement of data within common blocks
because this is specified by the programmer; however, their placement in memory is described.

SUBROUTINE and FUNCTION Structure

J

The code within procedure subprograms is arranged in the following blocks (relocation bases) in the
given order.

START.

VARDIM.

ENTRY.

CODE.

FORMAL
PARAM
ETERS

DATA.

DATA .•

HOL.

The code for the primary entry and the saving of AO.

The address substitution code and the variable dimension initialization code.

Either a full word of NO' s or nothing.

The code generated by compiling executable statements followed by parameter
lists for external procedure references \\;ithin the current procedure.

One local block for each formal parameter in the order in which they appear on
the subroutine header card, to hold tables used in address substitution for pro
cessing reference to dummy arguments.

Storage for usage declared variables, format statements, constants and compiler
generated temporaries.

Storage for dimensioned local variables.

Storage for Hollerith constants.

Main subprograms consist of the following blocks:

START. The I/0 buffers and a table of files specified in the PROGRAM card.

CODE. The transfer address code plus the code specified for the CODE. block above.

DATA. Storage for usage declared variables, format statements, constants and compiler
generated temporaries.

DATA.. Storage for dimensioned local variables.

HOL. Storage for Hollerith constants.

60176600 Rev. D J-1

Memory Structure

Subprograms are loaded as encountered in the input file from RA+lOOB toward FL. Labeled common
blocks are loaded prior to the subprogram in which they first occur. Library routines are loaded
immediately after the last encountered subprogram and these are followed by blank common.

The following is a typical memory layout.

RA

RA+lOOB

J-2

Communication Re_g_ion

Common block ABLE
1-----

PROGRAM TEST includes I/0 buffers. ----
SUBROUTINE SUBR ----
SYSTEM$

OUTPTC$

SIO$

GE TBA$

KODER$

SIN.

Blank Common

60176600 Rev. D

FORTRAN- INTERCOM INTERFACE K

When a program is entered at an INTERCOM control point, INTERCOM associates INPUT and
OUTPUT files of the program with the user's remote terminal device, and all references to these
files are directed to the terminal. With calls to the CONDIS library subprogram, the user may
specify other files to be associated with the terminal.

The user can associate any logical file in his program with a remote device, with the statement:

CALL CONNEC (lfn)

If a file is already connected, the request will be ignored. If the file has been used already, but
not connected, this request will clear the file's buffer, write an end-of-file, and backspace over it
before the connection is performed.

A file is disconnected by:

CALL DISCON (lfn)

This request will be ignored if the file is not connected. After a disconnect, the file is reassociated
with its for.mer device;

lfn File name parameter of the form:

tape logical unit number, 1 to 99

Hollerith constant in the format hLfilename

integer variable containing either of the above

Examples:

CALL CONNEC (3LEWT)
CA LL DISCON (6)
K=5LINPUT
CALL DISCON (K)
J=l2
CALL CONNEC (J)

Any files listed on the PROGRAM card may be connected or disconnected during program execution.
An attempt to connect or disconnect an undefined file will result in a fatal execution time error,
and the job will be terminated.

CONNEC and DISCON calls are ignored when programs are not executed through an INTERCOM
control point.

Interactive input/output is supported only for formatted and NAMELIST reads and writes.

60176600 Rev. E K-1

ANSI
ANSI Usage Diagnostics B-9

AREA
AREA STATEMENT 11-15

ARITHMETIC
ARITHMETIC ASSIGNMENT 3-1
ARITHMETIC EXPRESSIONS 2-1
ARITHMETIC IF, TWO-BRANCH 4-5
ARITHMETIC IF, THREE-BRANCH 4-4

Array
Array storage order 1-8

Arrays
Arrays 1-8
ARRAYS STATEMENT 11-2

Assembler
Assembler Diagnostics B-11

ASSEMBLY
ASSEMBLY PARAMETER 12-10

ASSIGNED GOTO
ASSIGNED GOTO 4-1

ASSIGNMENT
ASSIGNMENT STATEMENTS 3-1

AUXILIARY

INDEX

AUXILIARY DATA TRANSMISSION STATEMENTS 7-1
Aw

Aw INPUT 6-11
Aw OUTPUT 6-11

BACKSPACE
BACKSPACE 5-9

Backspace/Rewind
Backspace/Rewind I-6

BINARY
BINARY OUTPUT PARAMETER 12-2
OUTPUT PARAMETER, BINARY 12-2

BLOCK
BLOCK DATA ROUTINES 9-1
BLOCK DATA SUBPROGRAM 9-10

BUFFEI
BUFFEI I-2

BUFFEO
BUFFEO I-2

BUFFER
BUFFER I/O I-1
BUFFER IN 7-2

60176600 Rev. F ·

I

I

Index-1

BUFFER OUT 7-2
BUFFER STATEMENTS 7-1

I BUFFERS, SMALL 12-11

CALL
CALL 4-12

CALLING
CALLING SEQUENCE PARAMETER 12-3

CALLS
I CALLS STATEMENT 11-3

Carriage
Carriage Control Characters I-7

CHARACTER
CHARACTER SET 1-1, A-1

Comment
Comment 1-2

COMMON
COMMON 8-3
COMMON BLOCKS, ARRANGEMENT OF 8-4
COMMON BLOCK SYMBOLS, CROSS REFERENCE MAP C-8

COMMON,
COMMON, LABELED 8-3
COMMON, UNLABELED 8-4

COMPASS
COMPASS SUBPROGRAMS, INTERMIXED E-1

Complex
Complex 1-5
COMPLEX CONVERSIONS 6-12

COMPUTED
COMPUTED GOTO 4-3

CONSTANTS
CONSTANTS 1-3

Continuation
Continuation 1-2

CONTINUE
CONTINUE 4-12

CONTROL
CONTROL CARD 12-1
CONTROL CARD EXAMPLES 12-10
CONTROL CARD FORMAT 12-1
CONTROL CARD, OVERLAY 10-2
CONTROL CARD PARAMETER 12-1
CONTROL CARD, SEGMENT 10-4
CONTROL STATEMENTS 4-1
PROGRAM CONTROL 4-14

CONVERSION
CONVERSION SPECIFICATION 6-2

Core
Extended Core Storage (ECS)

CROSS
1-7

CROSS REFERENCE MAP 12- 3' C-1
CROSS REFERENCE MAP DEBUGGING USE C-10
CROSS REFERENCE MAP ERROR MESSAGES C-10
CROSS REFERENCE MAP EXTERNAL REFERENCES
CROSS REFERENCE MAP FILE NAMES C-4
CROSS REFERENCE MAP FORMAT C-2
CROSS REFERENCE MAP FORMAT LABELS C-6
CROSS REFERENCE MAP !NL !NE FUNCTIONS C-6
CROSS REFERENCE MAP LOOP MAPS C-7

Index-2

C-5

60176600 Rev. F

CROSS REFERENCE MAP NAMELIST GROUP NAMES C-6
·CROSS REFERENCE MAP PROGRAM STATISTICS C-9
CROSS REFERENCE MAP STATEMENT LABELS C-6
CROSS REFERENCE MAP SYMBOLS C-2
CROSS REFERENCE MAP SYMBOLS COMMON BLOCKS C-8
CROSS REFERENCE MAP SYMBOLS, ENTRY POINT C-2
CROSS REFERENCE MAP SYMBOLS EQUIVALENCE CLASSES
CROSS REFERENCE MAP SYMBOLS, VARIABLES C-3

DATA
AUXILIARY DATA TRANSMISSION STATEMENTS 7-1
DATA AND SPECIFICATION STATEMENTS 8-1
DATA STATEMENT 8-8
DATA TRANSMISSION, AUXILIARY 7-1
DATA TYPES 1-3

DEBUG
DEBUG DECK STRUCTURE 11-9
DEBUG STATEMENT 11-14
DEBUG STATEMENT FORMAT 11-14

DEBUGGING
DEBUGGING FACILITY 11-1
DEBUGGING MODE PARAMETER 12-9
DEBUGGING USING CROSS REFERENCE MAP C-10

DECK
DECK STRUCTURE H-1

DECODE
DECODE 7-4

DECODE/ENCODE
DECODE/ENCODE I-6
DECODE/ENCODE STATEMENTS 7-2

DESCRIPTORS
FIELD DESCRIPTORS 6-1

Diagnostics
ANSI Usage Diagnostics B-9
Assembler Diagnostics B-11
DIAGNOSTICS B-1
USASI Usage Diagnostics B-9

DIMENSION
DIMENSION 8-1

DIMENSIONS,

DO
DIMENSIONS, VARIABLE 8-2

DO LOOP EXECUTION· 4-8
DO NESTS 4-7
DO STATEMENT 4-6

Double
Double Precision 1-4

Dw.d

ECS

Dw.d INPUT 6-10
Dw.d OUTPUT 6-10

ECS 1-7
ECS I/O 5-10
I/O, ECS 5-10

EDITING
EDITING .SPECIFICATIONS 6-14

C-9

60176600 Rev. F Index-3

I

Editing, H Descriptor 6-15
Editing, X Descriptor 6-14
Editing, T Descriptor 6-17
Editing, * * 6-17
Editing, i•••i 6-17

ELEMENTS
ELEMENTS AND PROPERTIES 1-1

ENCODE
ENCODE 7-3

ENCODE/DECODE
ENCODE/DECODE I-6
ENCODE/DECODE STATEMENTS 7-2

END
END 4-15

ENDFILE
ENDFILE 5-10

Entry
Entry Points, CROSS REFERENCE MAP SYMBOLS C-2
ENTRY STATEMENT 9-5

EOF
EOF Function I-5

EQUIVALENCE
EQUIVALENCE 8-5
EQUIVALENCE CLASS SYMBOLS, CROSS REFERENCE MAP C-9

ERROR
ERROR MESSAGES, CROSS REFERENCE MAP C-10
ERROR TRACEBACK PARAMETER 12-3

Errors
Errors, FC
Errors, FE
Errors, I

Ew.d
Ew.d INPUT
Ew.d OUTPUT

B-3
B-3

B-8

6-4
6-7

I EXIT
Exit Parameter 12-9

EXPRESSION
EXPRESSION EVALUATION
EXPRESS IONS 2 -1

2-8

Extended
Extended Core Storage (ECS)

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL

8-7
FUN CT ION 9 - 8
FUNCTION REFERENCE

1-7

9 -9
External References CROSS REFERENCE MAP C-5

FC
FC Errors B-3

FE
FE Errors B-3

FIELD
FIELD DESCRIPTORS 6-1
FIELD SEPARATORS 6-2
FIELD SEPARATORS, FORMAT I-6
FORMAT Field Separators I-6

FILE
FILE NAMES, CROSS REFERENCE MAP C-4

Index-4 60176600 Rev. F

FILE STRUCTURE I-1
Files

Files, Labeled I-7
Files, Random Access I-3

FILE,
FILE, INPUT 5-3

FORMAT
FORMAT DECLARATION 6-1
FORMAT Field Separators I-6
FORMAT LABELS, CROSS REFERENCE MAP C-6
FORMAT STATEMENTS 6-1
FORMAT, AREA STATEMENT 11-8
FORMAT, ARRAYS STATEMENT 11-9
FORMAT, CALLS STATEMENT 11-10
FORMAT, CONTROL CARD 12-1
FORMAT, DEBUG STATEMENT 11-14
FORMAT, FUNCS STATEMENT 11-5
FORMAT, GOTOS STATEMENT 11-7
FORMAT, NOGO STATEMENT 11-8
FORMAT, REPEATED 6-18
FORMAT, STORES STATEMENT 11-6
FORMAT, TRACE STATEMENT 11-7

FORMATTED
FORMATTED I/O 5-2, I-1

FORMAT,
FORMAT, CROSS REFERENCE MAP C-2
FORMAT, OFF STATEMENT 11-16
FORMAT, VARIABLE 6-19

FUN CS
FUNCS STATEMENT 11-5

FUNCTION
FUNCTION REFERENCE EXTERNAL 9-9
FUNCTION Structure J-1
FUNCTION SUBPROGRAMS 9-7

Functions
Functions, EOF I-5
Functions, IOCHEC I-5
Functions, UNIT I-4
FUNCTIONS, EXTERNAL 9-8
FUNCTIONS, INTRINSIC 9-8
FUNCTIONS, STATEMENT 9-7

GOTO
COMPUTED GOTO 4-3
GOTO 4-1

GOTOS
GOTOS STATEMENT 11-7

Gw.d

H

Gw.d INPUT 6-9
Gw.d OUTPUT 6-9

Editing, H Descriptor 6-15
Hollerith

Hollerith 1-5

60176600 Rev. F Index-5

I

I

I

I

I \Errors B-8
I dent i_:f_i_c~tion

Identification Field 1-2
IF

IF,

IF STATEMENTS 4-4
IF, TWO-BRANCH LOGICAL 4-6

IF, LOGICAL 4-5
IF, THREE-BRANCH ARITHMETIC 4-4
IF, TWO-BRANCH ARITHMETIC 4-5

Inline
Inline Functions, CROSS REFERENCE MAP C-6

INPUT
INPUT DATA (NAMELIST) 5-7
INPUT FILE 5-3
INPUT PARAMETER, SOURCE 12-1
INPUT, Aw 6-11
INPUT, Dw.d 6-10
INPUT, Ew.d 6-4
INPUT, Fw.d 6-7
INPUT, Gw.d 6-9
INPUT, lw 6-3, 6-12
INPUT, Ow 6-10
INPUT, Rw 6-12

INPUT/OUTPUT
INPUT/OUTPUT STATEMENTS 5-1

Integer
Integer 1-3

INTERCOM
INTERCOM INTERFACE K-1

INTERMIXED
INTERMIXED COMPASS SUBPROGRAMS E-1

INTRINSIC
INTRINSIC FUNCTION 9-8

IOCHEC

I/O
IOCHEC Function I-5

I/O LISTS 5-1
I/O MODES 5-1
I/O REFERENCE PARAMETER 12-10
I/O, BUFFER I-1
I/O, ECS 5-10
I/O, FORMATTED 5-2, I-1
I/O, MASS STORAGE 5-10
I/O, OBJECT TIME I-1
I/O, UNFORMATTED 5-5, I-1

LABELED
LABELED COMMON 8-3
Labeled Files I-7

Labels
Labels, Statement 1-2

I Leve 1
Level, Reference Map 12-11

LIBRARY
LIBRARY ROUTINES 9-1
LIBRARY SUBPROGRAMS D-1
LIBRARY SUBROUTINES 9-6

Index-6 601 76600 Rev. F

LIST
LIST PARAMETER 12-2

Logical
Logical 1-5
LOGICAL ASSIGNMENT 3-3
LOGICAL EXPRESSIONS 2-5
LOGICAL IF 4-5
LOGICAL IF, TWO-BRANCH 4-6

LOOP

lw

LOOP MAPS, CROSS REFERENCE MAP C-7

lw INPUT 6-3, 6-12
lw OUTPUT 6-3, 6-12

MAIN

MAP
MAIN PROGRAM 9-1

CROSS REFERENCE MAP 12-3, C-1
CROSS REFERENCE MAP DEBUGGING USE C-10
CROSS REFERENCE MAP ERROR MESSAGES C-10
CROSS REFERENCE MAP EXTERNAL REFERENCES C-5
CROSS REFERENCE MAP FILE NAMES C-4
CROSS REFERENCE MAP FORMAT C-2
CROSS REFERENCE MAP FORMAT LABELS C-6
CROSS REFERENCE MAP INLINE FUNCTIONS C-6
CROSS REFERENCE MAP LOOP MAPS C-7
CROSS REFERENCE MAP NAMELIST GROUP NAMES C-6
CROSS REFERENCE MAP PROGRAM STATISTICS C-9
CROSS REFERENCE MAP STATEMENT LABELS C-6
CROSS REFERENCE MAP SYMBOLS C-2
CROSS REFERENCE MAP SYMBOLS COMMON BLOCKS C-8
CROSS REFERENCE MAP SYMBOLS, ENTRY POINT C-2
CROSS REFERENCE MAP SYMBOLS EQUIVALENCE CLASSES C-9
CROSS REFERENCE MAP SYMBOLS, VARIABLES C-3
Reference Level 12-11

MASKING
MASKING ASSIGNMENT 3-3
MASKING EXPRESSIONS 2-6

MASS
MASS STORAGE I-3
MASS STORAGE I/O 5-10

Memory
Memory Structure J-2
MEMORY STRUCTURE, SUBPROGRAM AND J-1

MIXED-MODE
MIXED-MODE 3-2

MODES
MODES OF I/O 5-1

NAME LIST
NAMELIST GROUP NAMES, CROSS REFERENCE MAP C-6
NAMELIST STATEMENT 5-6

NESTS,
NESTS, DO 4-7

60176600 Rev. F

I

Index-7

I

NEW
NEW RECORD 6-16

NOGO
NOGO STATEMENT 11-12

OBJECT
OBJECT OUTPUT PARAMETER 12-2
OBJECT TIME I/O I-1
OUTPUT PARAMETER, OBJECT 12-2

Octal
Octal 1-6

OFF
OFF STATEMENT 11-14

OPTIMIZATION
OPTIMIZATION PARAMETERS 12-4

OUTPUT
OUTPUT DATA (NAMELIST) 5-9
OUTPUT PARAMETER, BINARY 12-2
OUTPUT PARAMETER, OBJECT 12-2
OUTPUT, Aw 6-11
OUTPUT, Dw.d 6-10
OUTPUT, Ew.d 6-7
OUTPUT, Fw.d 6-8
OUTPUT, Gw.d 6-9
OUTPUT, lw 6-3
OUTPUT, Ow 6-10
OUTPUT, Rw 6-12

OVERLAY
OVERLAY CONTROL CARDS 10-2

OVERLAYS

Ow

p

OVERLAYS 10-1
OVERLAYS AND SEGMENTS 10-1

Ow INPUT 6-10
Ow OUTPUT 6-10

P SCALE FACTOR 6-13
PARAMETERS

PARAMETERS, ASSEMBLER 12-10
PARAMETERS, BINARY OUTPUT 12-2
PARAMETERS, CALLING SEQUENCE 12-3
PARAMETERS, DEBUGGING MODE 12-9
PARAMETERS, ERROR TRACEBACK 12-3
PARAMETERS, EXIT 12-9
PARAMETERS, I/O REFERENCE 12-10
PARAMETERS, LIST 12-2
PARAMETERS, OBJECT OUTPUT 12-2
PARAMETERS, OPTIMIZATION 12-4
PARAMETERS, ROUNDED ARITHMETIC 12-9
PARAMETERS, SOURCE INPUT 12-1
PARAMETERS, SYSTEM EDITING 12-10
PARAMETERS, SYSTEM TEXT FILE 12-9
PARAMETERS, UPDATE 12-3

PAUSE
PAUSE 4-15

Index-8 60176600 Rev. F

PRINT/PUNCH
PRINT/PUNCH 5-4

PROGRAM
PROGRAM CONTROL 4-14
PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA, AND LIBRARY ROUTINES 9-1
PROGRAM STATISTICS, CROSS REFERENCE MAP C-9

PRO PE RT IES
PROPERTIES AND ELEMENTS 1-1

PUNCH/PRINT
PUNCH/PRINT 5-4

Random
Random Access Files I-3

READ
READ 5-2

READ/WRITE
READ/WRITE STATEMENTS 5-2

Re al
Real 1-4

RECORD,
RECORD, NEW 6-16

REFERENCE
REFERENCE MAP LEVEL 1 2-11

RELATIONAL
RELATIONAL EXPRESSIONS 2-3

REPEATED
REPEATED FORMATS 6-18

RETURN
RETURN 4-14

REWIND
REWIND 5-9

Rewind/Backspace
Rewind/Backspace I-6

ROUNDED
ROUNDED ARITHMETIC PARAMETER 12-9

ROUTINES,
ROUTINES, BLOCK DATA 9-1
ROUTINES, LIBRARY 9-1
ROUTINES, PROGRAM FUNCTION 9-1
ROUTINES, SUBROUTINE 9-1

Rw
Rw INPUT 6-12
Rw OUTPUT 6-12

SCALE
P SCALE FACTOR 6-13
SCALE FACTOR, nP 6-13

SEGMENT
SEGMENT CONTROL CARDS 10-4

SEGMENTS
SEGMENTS 10-3
SEGMENTS AND OVERLAYS 10-1

SEGMENTS,
SEGMENTS, SECTIONS

SEPARATORS
FIELD SEPARATORS

60176600 Rev. F

10-4

6-2

I

Index-9

I SMALL
SMALL BUFFERS 12-11

SOURCE
SOURCE DECK STRUCTURE H-1
SOURCE INPUT PARAMETER 12-1
SOURCE PROGRAM CHARACTERS A-1

SPECIFICATION
SPECIFICATION AND DATA STATEMENTS 8-1

STATEMENT
STATEMENT FORMS F-1
STATEMENT FUNCTIONS 9-7
Statement Label 1-2
STATEMENT LABELS, CROSS REFERENCE MAP C-6
STATEMENTS 1-1

Status
Status Checking I-4

STOP
STOP 4-14

Storage
Storage Order, Arrays 1-8

STORES
I STORES STATEMENT 11-6

SUBPROGRAM
SUBPROGRAM AND MEMORY STRUCTURE J-1
SUBPROGRAM STRUCTURE H-1, J-1
SUBPROGRAM SUBROUTINES 9-2.1
SUBPROGRAMS, BLOCK DATA 9-10
SUBPROGRAMS, FUNCTION 9-7
SUBPROGRAMS, INTERMIXED COMPASS E-1
SUBPROGRAMS, LIBRARY D-1

SUBROUTINES
SUBROUTINES 9-1
SUBROUTINE SUBPROGRAMS 9-2.l

Subscripted
Subscripted Variables 1-9

SYMBOLIC
SYMBOLIC NAMES 1-3

SYMBOLS,
SYMBOLS, CROSS REFERENCE MAP C-2

SYSTEM
SYSTEM EDITING PARAMETER 12-10
SYSTEM ROUTINE SPECIFICATIONS G-1
SYSTEM TEXT FILE PARAMETER 12-9

Index-10 60176600 Rev. F

T
Editing, T Descriptor 6-17

TEXT
PARAMETERS, SYSTEM TEXT FILE 12-9

TRACE
TRACE STATEMENT 11-7

TRACEBACK
ERROR TRACEBACK PARAMETER 12-3

TYPE
TYPE DECLARATION 8-7

Unconditional
Unconditional GOTO 4-1

UNFORMATTED
UNFORMATTED I/O 5-5, I-1

UNIT
UNIT Function I-4

UNLABELED
UNLABELED COMMON 8-4

UPDATE
UPDATE PARAMETER 12-4

USASI
USASI Usage Diagnostics B-9

VARIABLE
VARIABLE DIMENSIONS 8-2
VARIABLE FORMAT 6-19
Variable Names 1-6
Variable Types 1-7

VARIABLES
VARIABLES 1-6
Variables, CROSS REFERENCE MAP SYMBOLS C-3
Variables, Subscripted 1-9

WRITE
WRITE 5-3, 5-5

WRITE/READ
WRITE/READ STATEMENTS 5-2

x
Editing, X Descriptor 6-14

* *
Editing, * * 6-17
Editing, ~ ••• 1 6-17

60176600 Rev. F Index-11

I

~ ' -

I
~I
)

)
)

COMMENT SHEET CONTROL DATA·
- •• - & •

TITLE: 6400/6500/6600 FORTRAN Extended Reference Manual

PUBLICATION NO. 601766_00 REVISION F

Control Data Corporation solicits your comments about this manual with a view to improving its usefulness in later
editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME:------------ POSITION:------------

BUSINESS
ADDRESS=----------------------------~

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

STAPLE

FOLD I -- -- ------ ---- -- -- -- --1

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department
215 Moffett Park Drive
Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

-

I

I

lw

I~
I~
la

I

I

-------------------------.-J
FOLD FOLD I

STAPLE STAPLE

I

I

I
I
I
I
I

...... cur OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60176600

CONTROL DATA
CORPORATION

CORPORATE HEADQUARTERS. 8100 34th AVE. SO .• MINNEAPOLIS. MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

