60484110

@ CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1

GUIDE FOR USERS

OF BASIC VERSION 3

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1

60484110

@ CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1

GUIDE FOR USERS

OF BASIC VERSION 3

CDC® OPERATING SYSTEMS:
NOS 2

NOS/BE 1

REVISION RECORD

Revision Description

A (03/19/82) Initial release under NOS 2 and NOS/BE 1; PSR level 552.

REVISION LETTERS I, O, Q, AND X ARE NOT USED . Address comments concerning this manual to:
CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE

©COPYRIGHT CONTROL DATA CORPORATION 1982 SUNNYVALE, CALIFORNIA 94086

All Rights Reserved)

Printed in the United States of America or use Comment Sheet in the back of this manual

ii ' 60484110 A

LIST OF EFFECTIVE PAGES

L~]

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed. :

Page Revision

Front Cover
Title Page
ii

iii/iv

v

vi

vii

viii

[N
E]

U

thru 2-5
thru 3-25
thru 4-8
thru 5-23

Wb}\ln«b‘wm—-v—-

[~ RNyl
[[}
Pt ND et pt N et et et et e N

D-2

Index~-1
Index-2
Comment Sheet
Mailer

Back Cover

(2 S RS a2 2 2 2 N A Sl E 2N

60484110 A iii/iv

PREFACE

This manual provides the BASIC programmer with
assistance in the debugging of BASIC Version 3
programs under the control of the CDC® CYBER
Interactive Debug Facility.

CYBER Interactive Debug (CID) operates under the
following operating systems:

NOS 2 for the CONTROL DATA® CYBER 170 Computer
Systems; CYBER 70 Computer System models 71,
72, 73, 74; and 6000 Computer Systems

NOS/BE 1 for the CDC CYBER 170 Computer Systems;
CYBER 70 Computer System models 71, 72, 73, 74;
and 6000 Computer Systems

You should have a copy of the CYBER Interactive
Debug reference manual available for reference, but
you need not be familiar with the manual. In addi-
tion, you should be familiar with BASIC 3 and should
be able to run jobs interactively under either NOS
Interactive Facility or the NOS/BE INTERCOM.

This guide provides a tutorial approach to CID
beginning with fundamental features and proceeding
through more advanced features. Section 1 provides
some background information and presents a summary
of the features of CID. Section 2 describes the
method for initiating a debug session with CID, and

The following manuals are of primary interest:

Publication

CYBER Interactive Debug Version 1 Reference Manual

BASIC Version 3 Reference Manual

The following manuals are of secondary interest:

Publication

CYBER Loader Version 1 Reference Manual

INTERCOM Version 5 Reference Manual

NOS Version 2 Manual Abstracts

NOS Version 2 Reference Set, Volume 3

System Commands

NOS/BE Version 1 Manual Abstracts
Software Publications Release History

XEDIT Version 3 Reference Manual

60484110 A

describes several useful CID commands; this section
contains sufficient information to allow the less
experienced user to make productive use of CID.
Sections 3 through 5 describe features which are
helpful in debugging more complex programs. This
user’s guide is not comprehensive in its approach
to CID; only those features considered useful to
BASIC programmers are described. Most of the fea-
tures described in this user’s guide are illustrated
by actual examples of debug sessions. This is
intended to help you become familiar with CID nota-
tional conventions and with information produced by
CID.

Additional information can be found in the publica-
tions listed below.

The NOS Manual Abstracts and the NOS/BE Manual
Abstracts are instant-sized manuals containing
brief descriptions of the contents and intended
audience of all NOS and NOS product set manuals,
and NOS/BE and NOS/BE product set manuals, respec-—
tively. The abstracts manuals can be useful in
determining which manuals are of greatest interest
to a particular user. The Software Publications
Release History serves as a guide in determining
which revision level of software documentation
corresponds to the Programming System Report (PSR)
level of installed site software. -

Publication
Number

60481400

19983900

Publication
Number

60429800
60455010

60485500

60459680
84000470
60481000
60455730

vi

. CDC manuals can be ordered from Control Data Corporation,

Literature and Distribution Services, 308 North Dale Street,
St. Paul, Minnesota 55103. .

This manual describes a subset of the features
and parameters documented in the CYBER Inter-
active Debug Version 1 Reference Manual and the
BASIC Version 3 Reference Manual. Control Data
cannot be responsible for the proper functioning
of any features or parameters not documented in
the CYBER Interactive Debug Version 1 Reference
Manual.

60484110 A

CONTENTS

X

NOTATIONS
1. INTRODUCTION

What Is Interactive Debugging?

Why Use CID?

Special CID Features for BASIC Programs

Effects of CID on Program Size and
Execution Time

Programming for Ease of Debugging

Batch Mode Debugging

2. GETTING STARTED

Beginning a Debug Session
Debug Control Statement
Executing Under CID Control
Entering CID Commands
Shorthand Notation for CID Commands
Multiple Command Lines
Referencing Source Statements by Line
Number Specification
Some Essential Commands
GO
QUIT
PRINT
SET,BREAKPOINT
HELP
Summary
Sample Debug Session

3. OTHER FUNDAMENTAL DEBUGGING TOOLS

Error and Warning Processing
Error Messages
Warning Messages
Breakpoints and Traps
Suspending Execution With Breakpoints
Frequency Parameters
Listing Breakpoints
Clearing Breakpoints
Suspending Execution With Traps
Trap Usage
Default Traps
END Trap
ABORT Trap
INTERRUPT Trap
User-Established Traps
SET, TRAP Command
LINE Trap
STORE Trap
Listing Traps
Clearing Traps
Interpret Mode
Summary of Breakpoint and Trap Characteristics
Displaying Program Variables
PRINT Command
MAT PRINT Command
LIST,VALUES Command
DISPLAY Command
Altering Program Values (LET Command)

60484110 A

[U U

R

wuuwwuwwwkfumwwwwuuw
NN NOAOOOOUVMUWWENNN - -

[}
i

3-10
3-11
3-12
3-13
3-13
3-13
3-14
3-15

3-16

Altering Program Execution (GOTO Command)
Displaying CID and Program Status Information
Debug Variables
LIST Commands
LIST,STATUS Command
Sample Debug Session

4. ADVANCED DEBUGGING TOOLS

Executing a Few Lines at a Time (STEP Command)
Control of CID Output
Types of Output
SET ,0UTPUT Command
SET,AUXILIARY Command
Chained-To BASIC Programs
Referencing Locations Outside Your BASIC
Program
Home Program
Qualification Notation
SET ,HOME Command
Debugging Aids for Programs With Multiple
Program Units
{#HOME Debug Variable
LIST,MAP

5. AUTOMATIC EXECUTION OF CID COMMANDS

Command Sequences
Collect Mode
Multiple Command Entry
Sequence Commands
Breakpoints and Traps With Bodies
Displaying Breakpoints and Traps With Bodies
Groups
Error Processing During Sequence Execution
Receiving Control During Sequence Execution
PAUSE Command
GO and EXECUTE Commands
Conditional Execution of CID Commands
IF Command
JUMP and LABEL Commands
Command Files
Saving Breakpoint, Trap, and Group Definitions
Editing a Command Sequence
Suspending a Debug Session
Editing Procedure
Interrupting an Executing Sequence
Command Sequence Example

APPENDIXES

A Standard Character Sets
B Glossary

C Batch Mode Debugging

D Summary of CID Commands

INDEX

3-17
3-17
3-17
3-19
3-19
3~20

i
00 £ W N = b e

10

U!MMU'ILInU\UIU’!

(S V]
[
—
[e=]

5-10
5-12
5-12
5-12
5-14
5~-14
5-17
5-17
5-18
5~20
5-21

A-1
B-1
C-1
D-1

vii

FIGURES

3-23
3-24
3-25

viii

Initiating a Debug Session

Example of HELP Command

Sample Debug Session

Debug Session Illustrating Error
Messages o

Debug Session Illustrating Warning
Messages

Program TRIANGL and Input Data

Debug Session Illustrating
SET, BREAKPOINT Command

Debug Session Illustrating
LIST,BREAKPOINT Command

Program ERRBAS and Debug Session
Illustrating ABORT Trap

Program SWAP

Debug Session Illustrating LINE Trap

Program ARRFILL

Debug Session Illustrating STORE Trap

Debug Session Illustrating LIST,TRAP
Command

Debug Session Illustrating CLEAR,TRAP
Command

Program ARRYB

Debug Session Illustrating
SET, INTERPRET Command

Program SORT

Debug Session Illustrating PRINT Command

Debug Session Illustrating MAT PRINT
Command

Debug Session Illustrating LIST,VALUES
Command

Program AVGBAS and Debug Session
Illustrating LET Command

Debug Session Illustrating GOTO Command

Debug Session Illustrating Debug
Variables

Debug Session Illustrating LIST,STATUS
Command

Program CORRBSC. Before Debugging

Correlation Coefficient Formula

Input Data for First Test Case and
Debug Session

Second Debug Session

Input Data for Second Test Case and
Debug Session

Input Data for Third and Fourth Test
Cases and Debug Session

Program CORRBSC With Corrections

Debug Session Illustrating STEP Command

SET,OUTPUT and SET,AUXILIARY Commands

Debug Session Illustrating
SET,AUXILIARY, SET,OUTPUT and
CLEAR,OUTPUT Commands

3-20

3-21
3-21
3-21

3-22
3-23

4-5 Debug Session Illustrating Home Program
Concept

4-6 Debug Session Illustrating SET,HOME
Command .

4-7 Debug Session Illustrating LIST,MAP

5-1 Breakpoint With Body

5-2 Debug Session Illustrating Breakpoint
With Body

5-3 Debug Session Illustrating Trap With
Body

5-4 Debug Session Illustrating
LIST ,BREAKPOINT Command for
Breakpoint With Body

5-5 SET,GROUP Command Example

5-6 Debug Session Illustrating Group
Execution Initiated at Terminal

5-7 Debug Session Illustrating Group
Execution Initiated From Breakpoint
Body

5-8 Program MATOP

5-9 First Debug Session for Program MATOP

5-10 Second Debug Session for Program MATOP

5-11 Debug Session Illustrating Error
Processing During Sequence Execution

5-12 Debug Session Illustrating PAUSE, GO,
and EXECUTE Commands

5-13 Example of JUMP and LABEL Commands

5-14 Debug Session Illustrating JUMP and
LABEL Commands

5-15 SET,GROUP Example

5-16 Debug Sessions Illustrating SAVE Command

5-17 Listing of File TRFILE

5-18 Debug Sessions Illustrating READ and
SAVE ,GROUP Commands

5-19 Editing a Command Sequence Under NOS

5-20 Editing a Command Sequence Under NOS/BE

5-21 Command Files for Program CORRBSC

5-22 Listing of File BFILE

5-23 Debug Session for Program CORRBSC Using
Command Sequences

TABLES

U

U!b«t.\b)k'dwwu
— N = U B W =

Listing of Auxiliary File AFILE

Trap Types

Trap Scope Parameters
DISPLAY Commands
Debug Variables

LIST Commands

CID Qutput Types

CID Notation

Sequence Commands

3-5
3-7
3-13
3-17
3-19
4-2
4-6
5-2

60484110 A

NOTATIONS

Certain notations are used throughout this manual.
The notations and their meanings are:

UPPERCASE

60484110 A

Horizontal ellipses indicate repe-
tition.

Uppercase text in examples of
terminal dialog 1indicates ter-
minal output. Uppercase words
in command formats must appear
exactly as shown. Only uppercase
words are used in command format
examples.

lowercase

Examples of

Lowercase text in examples of
terminal dialog indicates user
input. Lowercase words in com-
mand formats indicate values or
options supplied by the user.

actual terminal sessions appearing

in this manual were produced on a class 1 termi-
nal. The format of these terminal sessions might
differ slightly from the formats appearing at your

terminal.

INTRODUCTION 1

0

The CYBER Interactive Debug facility (CID) allows
you to interactively debug your executing BASIC
program. CID can be used with BASIC 3 programs
compiled under the NOS or NOS/BE operating systems.

Use of CID requires a mode of execution called
debug mode which is activated by a system control
statement. As long as debug mode is in effect,
execution of all your programs takes place under
CID control. CID allows you to enter commands that
perform the following operations:

Suspend program execution at specified locations

Suspend program execution on the occurrence of
selected conditions, such as modification of a
variable

Display the values of simple or subscripted
variables while execution is suspended

Change the values of simple or subscripted
variables while execution is suspended

Resume program execution at the location where
it was suspended or at another location

WHAT IS INTERACTIVE
DEBUGGING?

Interactive debugging means that you debug your
program while it 1is executing. In interactive

mode, CID allows you to suspend execution of your
program and enter commands directly from a terminal
while execution is suspended. CID executes each
command immediately after it is entered. Program
execution remains suspended until resumed by the
appropriate command. In this manner, you can con-
trol and monitor the execution of your program,
stopping at desired points to examine and modify
the values of program variables.

WHY USE CID?

Debugging often requires recompiling a - program
several times to make corrections or to add state-
ments that print intermediate values of program
variables. This debugging technique can be expen-
sive in terms of both machine and programmer time.

CID, however, allows you to debug a program by
referring only to the source listing and by ref-
erencing variables and line numbers symbolically.
Since CID allows you to make changes to your pro-
gram’s -data and flow of control as execution pro-
ceeds, you can often accomplish in a single session
debugging that would normally require several com-
pilations. Thus, considerable time can be saved,
especially when you are debugging programs that are
time-consuming to compile and execute.

60484110 A

SPECIAL CID FEATURES
FOR BASIC PROGRAMS

When the BASIC source program is compiled for use
with CID, additional tables are output with the
object code. These additional tables provide the
name, relative address, type, and dimension of
every program variable, and the relative locatioms
of all executable statements.

The table information is used by CID to provide
both the operations listed previously and certain
features currently available only to BASIC programs
compiled for use with CID. These features include
commands with a BASIC-like syntax and the capa-
bility of symbolically referencing locatioms within
an object program. The commands available only to
programs compiled for use with CID are indicated in
appendix D.

The BASIC-like syntax commands are PRINT, LET,
GOTO, MAT PRINT, and IF. These commands have the
same syntax and function as equivalent BASIC state-
ments except for the following restrictions (and
those noted in the command descriptions):

Arithmetic or string expressions cannot refer
to system or user-defined functions.

Arithmetic expressions cannot contain the expo-
nentiation operator A.

Multiple CID commands can appear on the same
line if they are separated by one or more semi-
colons. However, because items in a BASIC
print list can be separated by a semicolon, two
semicolons must separate a PRINT or MAT PRINT
command from any following commands.

The main advantage of the BASIC-like CID commands,
apart from their familiarity to BASIC programmers,
is that they provide automatic output formatting or
referencing by variable name.

Expressions used with these BASIC-like commands
follow the syntax and operator precedence rules of
BASIC expressions except that function - references
and exponentiation are not allowed.

For purposes of this user’s guide, it is assumed
that BASIC programs to be executed under CID con-
trol are compiled for use with CID, which makes
the special features available to BASIC programs.
Therefore, in the discussions of the CID capabil-
ities, no distinction is made between standard CID
features and the special features available to
BASIC programs. It is possible, though more diffi-
cult, to use CID with programs not compiled in
debug mode. See the CYBER Interactive Debug refer-

-ence manual . and the BASIC reference manual for a

description of this capability.

EFFECTS OF CID ON PROGRAM
SIZE AND EXECUTION TIME

CID affects your program’s field length in the
following manner. CID consists of several parts
that are similar to overlays. The main part is
always in memory and is approximately 4000g words
long. The other parts are exchanged in memory with
the program being debugged and can require up to
54000g words of memory. Therefore, if your pro-
gram is smaller than 54000g words, the field
length requirement when your program is debugged
under CID is approximately 60000g words. If your
program 1is larger than 54000g words, the field
" length requirement is 4000g words larger than the
size of your program.

Certain CID features require a mode of execution
called interpret mode (described in section 3),
which requires much more execution time than normal
execution. This can be a significant problem in
some programs. In some cases, however, you can
substitute an alternate feature that does not
require interpret mode.

PROGRAMMING FOR EASE
OF DEBUGGING

Even though CID offers many wuseful features, a
well-~designed program is much easier to debug than
a poorly-designed program. When designing your

1-2

program, make sure you understand what the program
is supposed to do before deciding how the program
will do it. :

Using a style of coding that avoids GOTIOs and
minimizes branches can help in the debugging pro-

-cess. A program that contains a minimum of branches

and flows logically from top to bottom is much
easier to understand than one that contains many
unnecessary branches. CID provides features that
allow you to trace the flow of control of your
executing program; this process is much easier if
the program avoids needlessly complex logic.

You should avoid programming tricks and shortcuts,
particularly if they depend on system idiosyn-—
cracies.

CID should not be considered a substitute for
proper programming practices. Program carefully
and try to minimize. the number of errors. Per-
forming a careful visual scan of the program before
execution can reveal many of the more obvious errors
and can reduce the amount of time spent debugging
your program.

BATCH MODE DEBUGGING

Although CID is intended to be used interactively,
it can be used in batch mode. Batch mode debugging
is described in appendix C.

60484110 A

GETTING STARTED

This section summarizes the operations necessary to
conduct a debug session and introduces several CYBER
Interactive Debug (CID) notation conventions. At
the end of the section, several fundamental com-
mands are presented and used in a sample debug
session. These commands enable you to conduct a
simple, but useful, debug session.

BEGINNING A DEBUG
SESSION

To execute a program under CID control (and to make
use of the BASIC capabilities), you must compile
and execute the program in debug mode. You turn on
debug mode with a system control statement.

DEBUG CONTROL STATEMENT

The DEBUG control statement activates debug mode.
The format of this statement is as follows:

DEBUG

or
DEBUG(ON)

When a BASIC program is compiled in debug mode,
special symbol tables for use by CID are generated
as part of the object code. When the program is
subsequently executed in debug mode, all of the CID
features can be used. Note that a program which
has not been compiled with debug mode activated can
still be executed in debug mode, but some of the
features described in this user’s guide will not be
available. '

When debug mode is on, you can interact with the
operating system and perform all other terminal
activities in a normal manner.

The statemeént to deactivate debug mode is as fol-
lows:

DEBUG(OFF)

After debug mode is turned off, programs that were
compiled in debug mode will be executed in normal,
non-debug mode. Debug mode should be turned off
only if you do not wish subsequent compilations and
executions to occur under CID control.

EXECUTING UNDER CID CONTROL

A debug session consists of the éequence of inter-
actions between you and CID that occurs while your
object program is executing in debug mode. The

60484110 A

session begins when you initiate execution of your
object program and ends when you enter the QUIT
command. For an explanation of the QUIT command,
see Some Essential Commands in this section.

To initiate a debug session, compile and execute
your program in a normal manner. The system loads
the CID program module, your binary program, and
system and library modules. Control then transfers
to an entry point in CID and CID issues the message:

CYBER INTERACTIVE DEBUG
?

The ? character is a prompt signifying that CID is
waiting for wuser input. At this point you can
enter CID commands.

The examples in figure 2-1 show the statements
necessary for compiling a program and initiating a
debug session under the NOS (examples 1 and 2)
and NOS/BE (examples 3 and 4) operating systems.
In this figure and in all terminal sessions in
this guide, user input is in lowercase and system
response is in uppercase.

Debugging a program can require more than one
debug session. If this is the case, you can termi-
nate the current debug session and initiate a new
session.

ENTERING CID COMMANDS

The CID prompt for user response is a question
mark. In response to the ? character, enter a CID
command and press the transmission key (RETURN on
most terminals). CID then processes the command,
issues an informative message indicating the dis-
position of the command, or displays any output
that the command calls for and issues another ?
prompt. CID continues to 1issue prompts after
processing commands until you enter the command
to resume execution of your program or until you
terminate the session.

If you enter a command incorrectly, CID displays a
diagnostic message. One such message is as follows:

*ERROR - UNKNOWN COMMAND

If this message appears, determine the correct
format and reenter the command. You can. use the
HELP command, described later in this section, for
assistance with command formats. For a complete
listing of CID diagnostics, see the CYBER Inter-
active Debug reference manual.

2-1

EXAMPLE 1:

/basic =
OLD, NEW, OR LIB FILE: old,proga

READY.
debug —=r

READY.
run -

CYBER INTERACTIVE DEBUG

?

EXAMPLE 2:

/debug (on) =

/basfil =

CYBER INTERACTIVE DEBUG
?

EXAMPLE 3:

COMMAND- editor —=
..format basic —=

..edit ,proga

..debug

..run,basic -

CYBER INTERACTIVE DEBUG
?

EXAMPLE 4:

COMMAND- debug —==

CYBER INTERACTIVE DEBUG
?

Enter BASIC subsystem.
Designate PROGA as primary file.

Activate debug mode.

Compile program and initiate debug session.

Activate debug mode.

/x ,basic,i=proga,b=basfil ~&———————— Compile program.

Execute program and initiate debug session.

Enter edit mode.

Request BASIC format specifications.

Make PROGA the edit file.

Activate debug mode.

Compile program and initiate debug session.

Activate debug mode.

COMMAND- basic,i=proga —e———— Compile program and initiate debug session.

Figure 2-1.

SHORTHAND NOTATION FOR CID COMMANDS

Most standard CID commands have a shorthand form
that allows you to omit the comma separator and to
substitute abbreviations for the command name and
certain parameters. For example, the command

SET ,BREAKPOINT,L.250
can be abbreviated as follows:

SB L.250

In this guide, both short and long command forms
are described. However, to make sample debug ses-
sions as understandable as possible, long forms are
shown. You are encouraged to use the short forms
as you become familiar with CID; they have the same
effect as long forms.

Initiating a Debug Session

A more detailed explanation of CID command syntax
and a list of 1long and short command forms are
given in appendix D.

MULTIPLE COMMAND LINES

You can enter several CID commands on the line if
you separate them with semicolons. For example,
entering

SET , BREAKPOINT,L.210;G0

has the same effect as entering

SET , BREAKPOINT,L.210
GO

.Note that two semicolons must separate the PRINT .

(described later in this section) or the MAT PRINT
(see section 3) commands from the following command.

60484110 A

REFERENCING SOURCE
STATEMENTS BY LINE NUMBER
SPECIFICATION

Many of the CID command formats require that you
indicate a specific statement within the program
you are debugging. Source statements are refer—
enced by line number using the notation

L.n

where n is the statement line number. This nota-
tion denotes the source line having the specified
line number. Leading zeros can be omitted. Some
examples of line number references are as follows:

L.130
L.510

L.260

SOME ESSENTIAL COMMANDS

The following paragraphs describe several CID
commands you can use to conduct simple debug ses-
sions. These commands are the GO command, QUIT
command, PRINT command, and SET,BREAKPOINT com-
mand . (These commands are described in greater
detail in section 3.) The HELP command, which pro-
vides a quick summary of information about various
CID subjects, is also described.

The command forms presented here allow you to debug
only single unit BASIC programs (BASIC programs
which do not contain any FORTRAN subroutine calls).

To debug BASIC programs containing multiple pro-
gram units (BASIC main programs which call FORTRAN

subroutines), you must be familiar with the home
program concept described in section 4.

GO

The command to initiate or resume program execution
is as follows:

GO

If entered at the beginning of the debug session,
this command ‘initiates program execution. If
entered after execution has been suspended, this
command causes execution to resume at the statement
where it was suspended..

Once execution of your program has been suspended,

you can enter any number of CID commands. Execu-
tion remains suspended until you enter GO.

QUIT

The command to terminate a debug session is as
follows:

QUIT

60484110 A

In response to the QUIT command, the following
message is displayed under the NOS BATCH subsystem
and NOS/BE:

DEBUG TERMINATED

The following message is displayed under the NOS
BASIC subsystem:

SRU n.nnn UNTS.
RUN COMPLETE

The QUIT command causes an exit from the current
session and a return to system command mode. Files
accessed by the BASIC program are closed. Note,
however, that debug mode remains on until DEBUG(OFF)
is specified.

Breakpoints and other alterations to the object
program exist only for the duration of the debug
session. You can terminate a debug session any
time you have control (CID has issued a ? prompt).
The object program can then be executed normally,
or it can be executed again under CID control.

PRINT

CID provides several commands for displaying the
values of program variables. The simplest and most
useful of these is the command

PRINT output-list

where output-list is a list of any number of re-
stricted arithmetic or string expressions that are
separated by commas or semicolons. Restricted
expressions are BASIC expressions that do not refer
to system or user-defined functions, or do not
contain the exponentiation operator.

This command lists. the values of the specified
program variables. Values are formatted according
to type (numeric or string).

Some examples of the PRINT command are as follows:
PRINT A
PRINT B$(3:4)

PRINT S(10)

SET,BREAKPOINT

A breakpoint is a location within a program where
execution 1is to be suspended. The command to
establish a breakpoint has the form

SET ,BREAKPOINT,L.n

where L.n is a line number specification as de-
scribed earlier in this section under Referencing
Source Statements by Line Number Specification.
The short form of SET,BREAKPOINT is SB.

Examples . of the SET,BREAKPOINT command are as
follows:

SET , BREAKPOINT,L.140
Sets a breakpoint at line 140.
SB,L.210

Sets a breakpoint at line 210.

You can establish breakpoints at any time in the
debug session when execution is suspended and CID
has issued a ? prompt. A breakpoint can be estab-
lished at any executable statement. Only one
breakpoint can be set at a single statement.

When a breakpoint is encountered, CID receives
control and issues the message

*B #i AT L.n

where i is a breakpoint number assigned by CID, and
n is the number of the line where the breakpoint
was set. Breakpoints are assigned numbers by CID
when they are established. Up to sixteen break-
points can be in effect at the same time.

Establishing a breakpoint at a specified location
does not alter execution of the statement at that
location. When a breakpoint is encountered during
execution, control transfers to CID, which then
allows you to enter CID commands. Typically, com—
mands are entered to examine the values of program
variables, and then execution is resumed. When
execution is resumed, execution begins with the
statement at the breakpoint location.

HELP

CID provides a HELP command that displays a brief
summary of information about specific CID subjects
and commands. You can issue the HELP command when-—
ever you need assistance with a particular aspect
of CID.

Simply entering the command

HELP

causes CID to display a 1list of subjects. To
obtain additional information about any subject in
the list, enter the following command:

HELP, subject

For example, the command HELP,ERROR displays a‘
brief description of error processing.

A useful form of the HELP command is HELP,CMDS.
This command displays a complete list of CID com-
mands and a brief explanation of each. You can
obtain a more detailed explanation of any CID
command by entering

HELP,command
where command is any CID command. The HELP command
does not provide the same level of detail as the
CID reference manual, however, and should not be
considered a substitute for the reference manual.
The HELP command is illustrated in figure 2-2, which

shows the entry of the command HELP,SET,BREAKPOINT
to display a summary of the command parameters.

SUMMARY

To use CID, as presented in this section, follow
this step-by-step procedure:

1. Type DEBUG to turn on debug mode.

2. Compile and execute your program in a normal
manner. Control transfers to CID when execu-
tion begins. CID displays a message at the
terminal and waits for your input.

3. Set breakpoints as desired.

To set a breakpoint at a line number, enter
SET ,BREAKPOINT,L.n
where n is a line number.

4, Enter GO to begin program execution.

CID executes your program in a normal manner,
but returns control to you when a breakpoint

BREAKPOINT COMMAND IS.

SPECIFIC LOCATIONS IN USER'S PROGRAM. THE FORM OF THE SET

SB <LOCATION>,<FIRST>,<LAST>,<STEP>

occurse.
CYBER INTERACTIVE DEBUG
? help,set,breakpoint
SB - SET BREAKPOINT - ALLOWS YOU TO SET A BREAKPOINT AT A

WHERE <LOCATION> IS THE LOCATION IN YOUR PROGRAM AT HHICH
YOU WANT THE BREAKPOINT SET.

<FIRST>, <LAST> AND <STEP> ARE OPTIONAL AND ARE DEFAULTED TO
1, 131071 AND 1 RESPECTIVELY. THE BREAKPOINT IS NOT HONORED
UNTIL <LOCATION> HAS BEEN HIT <FIRST> TIMES. BUT, IT WILL BE
HONORED WHEN <LOCATION> IS HIT THE <FIRST>TH TIME AND EACH
<STEP>TH TIME AFTER THAT AS LONG AS <LAST> IS NOT EXCEEDED.
IF YOU TERMINATE THE SB COMMAND WITH AN OPEN BRACKET [, THEN
ALL COMMANDS UP TO A CLOSE BRACKET] WILL BE COLLECTED SUCH
THAT WHEN THE BREAKPOINT IS HONORED, THOSE COMMANDS WILL BE
EXECUTED.

2-4

Figure 2-2. Example of HELP Command

60484110 A

5. When control returns to you, the values of the not intended to present a suggested sequence of
program variables can be displayed by entering commands for debugging all programs. The actual
the command: commands used in a given debug session depend on

your program and, often, on your intuition.
PRINT output-list
A BASIC program and a debug session log are illus-

Enter GO to resume program execution. trated in figure 2-3. The program reads the values
for numeric variables A and B, calculates the value

6. Enter QUIT to terminate the session. Enter of A times the square root of B, then assigns this
DEBUG(OFF) to turn off debug mode. value to numeric variable C. Finally, the value of

C is printed. After the debug session is ini-

Debug sessions can become complicated; however, you tiated, a breakpoint is set at line number 120.
should always try to keep debug sessions short and When 1line 120 is reached during execution, CID
simple. If necessary, correct known bugs, recom- gains control and prompts for user input. The
pile your program, and conduct additional debug PRINT command is entered to display the values
sessions. assigned to the variables. Note that the value of

variable C is zero because the breakpoint suspended
program execution before the assignment statement
for variable C (line 120) was executed. Execution

SAMPLE DEBUG SESS'ON is then resumed with the GO command and the program

runs to completion. (The END trap, which occurs on
The preceding commands are now used to conduct a normal program termination, is described in section
sample interactive debug session. As you study 3.) Another PRINT command is entered to display
each example in this guide, keep in mind that the the values of the variables. At this point, the
purpose of the examples is to illustrate the pre- assignment statement at line 120 has been executed,
viously mentioned CID features; the examples are so the value of variable C is no longer zero.

Program VALUE:

00100 REM PROGRAM VALUE
00110 READ A,B

00120 LET C=A*SQR(B)
00130 PRINT C

00140 DATA 300,500
00150 END

Session Log:

CYBER INTERACTIVE DEBUG
? set,breakpoint,l.120 —«———Set breakpoint at line 120.

7 go = Initiate execution.

*B #1, AT L.120 ~€———————Breakpoint detected at line 120.

? print a;b;c —-= Display values of variables A, B, and C.

300 500 O

? go —-= Resume execution.

6708.2 —= Program output.

*T #17, END IN L.150 -«———Program runs to completion.

? print a;bj;c —-- Display final values of variables A, B, and C.

300 500 6708.2
? quit ——-— Terminate debug session.

Figure 2-3. Sample Debug Session

60484110 A 2-5

OTHER FUNDAMENTAL DEBUGGING TOOLS

Once you have compiled your BASIC program in debug
mode and have initiated a debug session, you are
ready to begin interactive debugging. Program
execution under CYBER Interactive Debug (CID) con-
trol involves interaction between you and CID. You
specify conditions for which program execution is
to be suspended, and CID gives you control when
these conditions are satisfied and allows you to
enter various CID commands to examine and alter the
status of your program.

The preceding section presented some elementary
commands you can use to conduct a simple debug
session. This section presents additional infor-
mation about the commands introduced in section 2
and describes other commands and CID features that

allow you to use CID more productively. The com--

mands discussed in this section enable you to do
the following: :

Suspend program execution; the commands are
SET,BREAKPOINT and SET,TRAP.

Display the current values of program variables
and arrays at the terminal while execution is

suspended; the commands are PRINT, MAT PRINT, -

LIST,VALUES, and DISPLAY.

Alter the contents of simple'and subscripted
variables; the command is LET.

Alter the flow of program execution; the com-
mand is GOTO.

ERROR AND WARNING PROCESSING

Each time you enter a command, CID checks - the
command for errors. If errors are detected, CID
issues an error. If a questionable situation
exists, CID issues a warning message.

ERROR MESSAGES

CID issues an error message whenever it encounters
a command that cannot be executed. Error messages
are usually caused by a misspelled command or an
illegal or misspelled parameter. CID does not
attempt to execute an erroneous command; instead,
CID issues an error message followed by a ? prompt.
The format of the error message is as follows:

*ERROR - message
?

The message contains a brief description of the
error. In response to an error message, you should
consult the CID reference manual or use the HELP
command to determine the correct command form, and
reenter the command.

Figure 3-1 illustrates two error messages. The
first message is caused by a misspelled PRINT
command. The second message is caused by the GO
command being entered after program execution has
terminated.

60484110 A

*T #17, END IN L.170
? prnit a
*ERROR — UNKNOWN COMMAND
? print a
2
? go
*ERROR - PROGRAM HAS COMPLETED
2

Figure 3-1. Debug Session
Illustrating Error Messages

WARNING MESSAGES

CID issues a warning message if the command you
have entered will have consequences you might not
be aware of or if the command will result in CID
action other than that which you have specified.
The warning message is followed by a special input
prompt; in response to this prompt, you can tell
CID either to execute the command or to ignore it.
The format of a warning message is:

*WARN - message
0K?

The message -describes the action CID will take if

allowed to execute the command. In response to a
warning message you can enter the following:

YES or OK
CID executes the command.
NO

CID disregards the command.
Any CID Command

CID disregards the previous command and
executes the new one.

Warning messages can be suppressed by an option on
the SET,OUTPUT command (described in section 4
under Control of CID Output). In this ‘case, CID
automatically takes the action indicated in the
message without providing notification.

Figure 3-2 illustrates two warning messages. The
first message occurs when a SET,BREAKPOINT command
is entered for a line beyond the last executable
statement of the program. In answer to the prompt,
OK is entered which causes a breakpoint to be set
at line 250. The second message occurs when a form
of the CLEAR,BREAKPOINT command is entered. In
answer to the prompt, NO is entered which means
that no breakpoints will be cleared.

See the CYBER Interactive Debug reference manual
for a complete list of warning messages and an
explanation of each.

? set ,breakpoint,1.260

*WARN - LINE 260 NOT EXECUTABLE - LINE 250 WILL BE USED

0K ? ok .
? clear ,breakpoint

*WARN - ALL WILL BE CLEARED

0K ? no
?

Figure 3-2. Debug Session IlLlustrating Warning Messages

BREAKPOINTS AND TRAPS

When conducting a debug session, you must initially
provide for gaining interactive control at some
point within your program. CID provides two methods
of doing this: breakpoints and traps.

A breakpoint (introduced 1in section 2) causes
suspension of program execution when a specified
line number is reached during execution. A trap
,causes suspension of program execution when a
specified condition is detected during execution.
Both breakpoints and traps cause CID to give con-
trol to you so that you can examine and alter the
status of your program at various points during
execution.

In a typical debug session, you establish break-
points and traps before initiating program exe-
cution. When a breakpoint is detected or a trap
condition occurs during execution, CID receives
control and, in turn, allows you to enter CID
commands.

In most debugging situations, breakpoints, rather
than traps, are recommended for suspending execu-
tion. Breakpoints allow you to suspend execution
at any executable statement in your program and
can, in most cases, be substituted for traps. Traps
can be useful in certain cases, but some trap types
require that you wunderstand compiler-generated
object code; only trap types useful to most BASIC
programmers are described here.

Breakpoints and traps exist until explicitly removed
with a clear command or until the debug session' is
terminated. An object program is not permanently
altered by any breakpoints or traps established
during a session.

CID provides commands that enable you to:
Set breakpoints and traps-
List existing breakpoints and tfaps
Clear existing breakpoints and traps

Save breakpoint and trép definitions on a
separate file for use in a later debug session

SUSPENDING EXECUTION
WITH BREAKPOINTS

A breakpoint is established at a specified location
within a program such that when the location is
reached during program execution, control passes to
CID. CID displays a message and gives control to
you.

You can use the SET,BREAKPOINT command (introduced
in section 2) to set breakpoints at any executable
statement in your program. For example,

SET ,BREAKPOINT,L. 100
sets a breakpoint at line 100 of your program.

It is important to note that breakpoints suspend
execution before the statement is executed. For
example, assume a program contains the statements

200 LET A=0.0
210 LET A=A+1.0

and that a breakpoint is set at line 210. When
line 210 is reached, execution is suspended imme-
diately; therefore, line 210 is not executed. Thus,
A has the value zero, rather than one. When exe-
cution is resumed, the statement at line 210 is
executed and the value of zero is replaced by one.

FREQUENCY PARAMETERS

When a breakpoint is set at a line number, execution
is suspended each time that line is reached. For
example, if a breakpoint is set at a line number
within a loop, suspension occurs on each pass
through the loop. This can result in many unnec—
essary breaks during the course of a debug session.
To alleviate this situation, CID provides another
form of the SET,BREAKPOINT command that is useful
for debugging loops and other sections of a program
that are executed frequently. The form of this
command is

SET ,BREAKPOINT,L.n,first,last,step

where first, last, and step are frequency parame-
ters. The parameter first indicates the first time

- the breakpoint suspends execution. The parameter

last indicates the last time the breakpoint sus—
pends execution. The parameter step indicates how
often the breakpoint suspends execution. For
example, the command)

SET , BREAKPOINT,L.150,10,100,5

sets a breakpoint at line 150. The breakpoint is
effective on the tenth time the statement is reached
and every fifth time thereafter, up through the |
hundredth time.

As an example of the use of the frequency parame—
ters, consider the following loop:

150 FOR I=1 TO 1000
160 LET X=X*I
170 NEXT I

60484110 A

To examine the progress of the iteration X=X*I, you
can set a breakpoint at line 170, specifying fre-
quency parameters to suspend execution at an inter-
val rather than on each pass through the loop. For
example,

SET,BREAKPOINT,L.170,3, 1000, 100

sets a breakpoint that suspends execution on every
hundredth pass through the loop starting with the
third pass and ending with the nine hundred and
third pass.

To illustrate the SET,BREAKPOINT command, the
program shown in figure 3-3 is executed under CID
control. The program TRIANGL, which calculates the
area of a triangle, reads input data from the file
TRARDAT. Subroutine AREA then performs the computa-
tion and returns the final result. Control branches
to the beginning of the program, and another record
is read and processed. A sample input file with
four lines is also shown in figure 3-3.

Program TRIANGL:

00100 REM PROGRAM TRIANGL

00110 FILE #1="TRARDAT"

00120 IF END #1 GOTO 00170

00130 INPUT #1,X1,Y1,X2,Y2,X3,Y3

00140 Gosus 00190

00150 PRINT "THE AREA OF THE TRIANGLE IS ";A
00160 GOTO 00120

00170 sTOP

00180 REM SUBROUTINE AREA

00190 LET S1=SQR((X2-X1) N 2+(Y2-Y1) A 2)
00200 LET $2=SQR((X3-X1) N2+ (Y3-Y1)N2)
00210 LET S3=SQR((X3-X2) N2+(Y3-Y2) ™ 2)
00220 LET T=(S1452+53)/2.0

00230 LET A=SQR(T*(T=S1)*(T-S2)*(T-$3))
00240 RETURN

00250 END

Input Data:

0.0 0.0 2.0 0.0 0.0 2.0
0.0 1.0 0.5 2.0 -1.0 1.2
0.2 -2.9 -1.3 8.0 5.6 7.8
6.1 2.0 0.1 -4.0 3.2 7.0

Figure 3-3. Program TRIANGL and Input Data

A debug session using the program and data in
figure 3-3 is shown in figure 3-4. . In this ses-
sion, execution is suspended in the program imme-
diately before the control branches to subroutine
AREA in order to examine the input values. Execu-
tion is also suspended at the end of subroutine
AREA to examine the intermediate values and the
final result. To accomplish this, breakpoints are
set at line 140 and line 240 of the program. 1In
both SET,BREAKPOINT commands, the frequency param-—
eters 1,10,2 are included so that execution is
suspended only on- every other pass through the
program, beginning with the first pass. After the
tenth pass, the breakpoint is not recognized.
Because only four input lines are contained in file
TRARDAT, execution is suspended on the first and
third passes through the program. Each time exe-
cution is suspended, the PRINT command is entered
to ‘display the desired values, and the GO command
is entered to resume execution.

60484110 A

LISTING BREAKPOINTS

You .can display a list of breakpoints defined in a
debug session by entering the command:

LIST,BREAKPOINT, *

This command displays a list of all breakpoints in
the program. . The short form of LIST,BREAKPOINT is
LB. :

The LIST,BREAKPOINT command lists the breakpoints
that exist when the command is entered. The list
contains the number and location of each breakpoint
in the form

*B #i = L.n
where i is the breakpoint number assigned by CID.

If frequency parameters were - specified when the
breakpoint was set, they also appear in the list.

You can display a specific breakpoint by entering
the command

LIST,BREAKPOINT,loc

where loc is either a line number (L.n) or a break-
point number (#n).

If no breakpoints exist when a LIST,BREAKPOINT
command is entered, CID displays the following
message:

NO BREAKPOINTS

Examples of the LIST,BREAKPOINT command are as
follows:

LIST,BREAKPOINT, #5
Lists breakpoint number 5.
LB,L.150
Lists breakpoint at line 150.
Figure 3-5 illustrates a debug session for the
program shown in figure 3-3 in which some break-

points are defined and are listed 1later in the
session.

CLEARING BREAKPOINTS
When breakpoints are no longer necessary, you
can clear all breakpoints or individual break-

points by entering one of following forms of the
CLEAR ,BREAKPOINT command. The form

CLEAR ,BREAKPOINT, *

clears all breakpoints in the program.

If you do not include the asterisk and enter only
CLEAR , BREAKPOINT
CID displays the message:

*WARN - ALL WILL BE CLEARED
OK?

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.140,1,10,2 —=

? set,breakpoint,l.240,1,10,2 =

? g0

*B #1, AT L.140—==
? print x1;y1;x2;y2;x3;y3 —=

0 0 2 00 2
? g0 —=g

*B #2, AT L.240 ==

? print s§1;s2;s3;t;a —=

2 2 2.82843 3.41421 2
? Q0

THE AREA OF THE TRIANGLE IS 2-==

THE AREA OF THE TRIANGLE IS .55
*B #1, AT L.140 —=

? print x1;y1;x2;y2;x3;y3 -

.2 -2.9 -1.3 8 5.6 7.8

? go ==

*B #2, AT L.240 —=

? print s1;s82;s3;t;a -

11.0027 11.9854 6.9029 14.9455 37.455

? 90 =

THE AREA OF THE TRIANGLE 1S 37.455 ~e————————— Program output.

THE AREA OF THE TRIANGLE 1S 23.7—=
*T #17, END IN L.170 —e

IProgram runs to completion.

? quit -

Set breakpoint at line 140. Breakpoint suspends
execution on first and third passes.

Set breakpoint at line 240. Breakpoint suspends
execution on first and third passes.

Initiate execution.

Execution suspended at Tine 140.

Display first set of input values.

Resume execution.

Execution suspended at line 240.

Display intermediate values and final result.
Resume execution.

Program output.

Second record of input data executed.
Execution suspended at line 140.

Display third set of input data.

Resume execution.

Execution suspended at line 240.

Display intermediate values and final result.

Resume execution.

Fourth record of input data executed.

Terminate session.

Figure 3-4. Debug Session Illustrating SET,BREAKPOINT Command

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.140,1,10,2 -=

? set,breakpoint,l.240,1,10,2

Set breakpoint at line 140.

Set breakpoint at line 240.

? g0

*B #1, AT L.140 ==

Initiate execution.

Breakpoint detected at Tine 140.

? list,breakpoint ,* —=

List all breakpoints.

*B #1 = L.140,,10,2,

?

*B #2 = L.240,,10,2

" Figure 3-5.

This message serves as a reminder that the command
you have just entered will remove all breakpoints
in the entire program. If this is not what you
want, enter

NO

and CID disregards the CLEAR,BREAKPOINT command.
If you do want the CLEAR,BREAKPOINT command to be
executed, enter

OK

and CID clears all existing breakpoints.

3-4

Debug Session Illustrating LIST,BREAKPOINT Command

The form

CLEAR ,BREAKPOINT,loc-list
clears the specified breakpoints; loc-list is a
list of locations which are separated by . commas.
Each location has one of the following forms:

Len Line n of the program

in Breakpoint having number n

60484110 A

If a breakpoint does not exist at a specified
location, CID displays the message

NO BREAKPOINT loc
where loc is the breakpoint location.
The short form of CLEAR,BREAKPOINT is CB.

Some examples of the CLEAR,BREAKPOINT command are
as follows:

CLEAR, BREAKPOINT,L.140,L.200

Removes breakpoints from lines 140 and 200.
CLEAR , BREAKPOINT, #3, #5, #6

Removes breakpoints 3, 5, and 6.
CB,L.350,L.460

Removes breakpoints from lines 350 and 460.

SUSPENDING EXECUTION
WITH TRAPS

Traps suspend execution and give you control when-
ever specified conditions occur. For example,
traps can give you control when you enter a ter-
minal interrupt, when execution is terminated, or
when the beginning of a new line is reached.

TRAP USAGE

The traps most useful to the BASIC programmer are
the LINE and STORE traps. (The END, ABORT, and
INTERRUPT traps are also used, but they are estab-
lished automatically by CID.) The remaining CID
traps should not be used with BASIC programs be-
cause their use can be time-consuming, they are
aimed at machine language programmers, and they can
cause BASIC program execution to be suspended in
unexpected places. The traps described in this
section are 1listed in table 3-1. See the CYBER
Interactive Debug reference manual for information
about other CID traps.

When a trap condition is detected, execution is
suspended. CID gains control and issues a message
identifying the trap, followed by a ? prompt for

user input. The general format of the trap message
is as follows:

*T #i, type AT L.n

where i is the trap number which is assigned by CID
when the trap is set, type briefly describes the
condition that caused the trap, and n is the line
in the program where execution was suspended. If
IN rather that AT is specified, then execution was
suspended during and not before execution of the
indicated line.

An example of a trap message is as follows:

*T #3, LINE AT L.150
?

In this example, a LINE trap has been detected at
line 150 of the program; this trap was the third
one established.

In response to the ? prompt, you can enter any CID
command. Typically, you will use this opportunity
to examine the values of program variables and make

-any desired changes to these values. You can resume

program execution by entering the GO command.

Traps suspend execution when a specific event
occurs. Some traps suspend execution before the
event, while others suspend execution after the
event. This is an important distinction because it
can affect the status of variables you are display-
ing or altering. For example, assume that execution
is suspended at line 210 of the following program
segment:

200 LET A
210 LET A

nou
[=]
.
o

A+1.0

AN

If the trap suspends execution before the statement
at line 210 is executed, the value of A is zero.
If the trap suspends execution after the statement
is executed, the value of A is one.

Table 3-1 indicates, for each trap, the point in
execution where CID gets control.

The traps described in this section are of two
types: default and user-established. The de-
fault traps always exist; you need not specify a
SET,TRAP command for these traps. You set the
user—established traps with the SET,TRAP command.
Table 3-1 indicates default and user-established
traps.

TABLE 3-1. TRAP TYPES
Trap Type ggzst Condition Esta;;ished User Gets Coqtrol
| =
LINE L Beginning of an executable User Before the statement
statement is executed

STORE ., S Store to memory User After the store
INTERRUPT INT User interrupt Default - After the interrupt
END E Normal program termination Default After termination
ABORT A Abnormal program termination Default After termination

60484110 A

DEFAULT TRAPS

CID provides default traps that are automatically
set at the beginning of a debug session. These
traps allow you to gain control without explicitly
establishing any breakpoints and traps. The default
traps are the END, ABORT, and INTERRUPT traps.

Together, the END and ABORT traps transfer control
to CID when program execution terminates. = Thus,
for the initial debug session, you. can allow your
program to terminate; then by examining the status
of the program at the point of termination, you can
determine where breakpoints or traps should be set
for subsequent sessions.

END Trap

The END. trap gives control to CID when program
execution terminates normally, regardless of any
CID commands that have been entered to set or clear
traps.

The general format of the END trap message is as
follows:

*T #17, END IN L.n
?

where n is the line in which program execution
terminated. CID permanently assigns the number 17
to the END trap.

Note that the debug session does not end when
execution of your program terminates. After the
END trap message, CID isssues a ? prompt. In
response to the ? prompt, you can display program
variables as they exist at the time of termination,
reexecute part or all of your program (see GOTO
command described later in this section), or you
can terminate the session by entering QUIT. Enter-
ing the GO command after the END trap has occurred
causes CID to issue an error message because pro-
gram execution is complete and cannot continue any
further.

ABORT Trap

The ABORT trap is useful because it allows you to
gain control when program execution terminates
abnormally. The values of program variables as
they existed at the time of termination can be
examined. In some cases it is possible to change
program values and reexecute part or all of your
program (see GOTO command described later in this
section).

The general format of the ABORT trap message is as
follows:

*T #18, ABORT error message IN L.n

where error message indicates the reason the pro-
gram aborted and n is the line number in which
program .execution terminated. CID permanently
assigns the number 18 to the ABORT trap.

The ABORT trap can -also: occur when the execution
time limit is exceeded. Under NOS/BE; the trap
occurs immediately after the time limit is exceeded.

Under NOS, the operating system first gains control.
You can then direct the operating system to con-
tinue or to stop execution. If you direct the
operating system to continue execution, the program
resumes execution and the ABORT trap does not occur.
However, if you direct the operating system to stop
execution, -CID gains control and the ABORT trap
occurs.)

Deciding whether or not to continue execution
depends on the reason the time limit was exceeded.
If your program is executing an infinite loop, you
want execution to stop. However, if your program
simply requires more time to execute, Yyou want
execution to continue. If you are not sure about
whether to continue or stop execution, it is usually
best to stop execution and consult your program
listing to see if your program has an infinite loop.

When a time limit ABORT trap occurs under either
operating system, you are given a small amount of
additional time to execute CID commands; if this
time is exceeded, the debug session is terminated.

When the ABORT trap occurs, the number of the line
in which execution stopped is displayed in the trap
message. You can then analyze your program listing
to find the cause of abnormal termination. For
example, in the case of a time limit ABORT trap,
you could look for an infinite loop in the area
where the time 1limit occurreds Sometimes it is
useful to initiate another debug session and set
breakpoints to monitor program values before the
time limit is reached.

To illustrate how the ABORT trap works, a program
containing an error is executed under CID control.
The source listing and session log are shown in
figure 3-6. The statement LET C=(A+B)/(A-B) results
in division by zero. When division by zero is
attempted on line 120, CID immediately gains con-
trol and issues a trap message indicating that
the program aborted because division by zero was
attempted at line 120. The PRINT command is entered
to display the contents of variables A, B, C, and D
at the time the program aborted. Variables C and
D contain the value of zero because the program
aborted before they were assigned other values.
The QUIT command terminates the session.

INTERRUPT Trap

An INTERRUPT trap gives control to CID when you
issue a terminal dnterrupt.

The general format of the INTERRUPT trap message is
as follows: :

*T #19, INTERRUPT AT L.n

where n is the line wnumber at which program exe-
cution was suspended. The INTERRUPT trap is
permanently assigned the number 19 by CID.

The procedure for issuing a terminal interrupt

depends on the terminal type and on the interactive
communication system in use. See Interrupt in the
Glossary, appendix B.

60484110 A

Program ERRBAS:

00095 REM PROGRAM ERRBAS
00100 LET A=2.0

00110 LET B=2.0

00120 LET C=(A+B)/(A-B)
00130 LET D=C+1.0

00140 END

Session Log:

CYBER INTERACTIVE DEBUG
? GO -

Initiate execution.

? print a,b,c,d-=

*T #18, ABORT DIVISION BY ZERO IN L.120-e—————— ABORT trap suspends execution at line 120.

2 2 0
? quit-——

Display values of variables.

O-«—— Variables C and D were unchanged.

Terminate session.

Figure 3-6. Program ERRBAS and Debug Session Illustrating ABORT Trap

When you enter the appropriate interrupt sequence,
the process currently active is interrupted; CID
gets control, issues the INTERRUPT trap message,
and gives control to you. The INTERRUPT trap can
be used to terminate excessive output to the ter-
minal. It can also be used to interrupt a program
that you think is looping excessively at some
unknown location.

USER-ESTABLISHED TRAPS

In addition to the default traps, CID provides
traps that you can establish whenever you have
control. The user—established traps described in
this guide are the LINE and STORE traps. Up to
sixteen user-established traps can be in effect at
a given time.

SET,TRAP Command

The traps described in the following paragraphs are
established with the SET,TRAP command. This com—
mand has the form

SET, TRAP, type, scope

where type is one of the trap types listed in table
3-1, and- scope is one of the notation forms listed
in table 3-2. The short form of SET,TRAP is ST.

The scope parameter of the SET,TRAP command speci-
fies the program locations for which the trap is
effective. The scope- of a trap can be a single
location, such as a variable or a BASIC line num~
ber, or multiple locations, such as an array or a
range of lines.

Not all forms listed in table 3-2 are valid for all
CID trap types; valid forms depend on the parti-
cular type of trap you set. The forms listed in
table 3-2 are valid for the particular trap types
described in this guide.

Traps can be established whenever program execution
is suspended and CID has issued a ? prompt. If a
condition. for which you have established a trap
does not occur, the program executes normally.

60484110 A

TABLE 3-2, TRAP SCOPE PARAMETERS

Scope Trap is Set
* Everywhere
var For variable var
L.n At line n
Lem...L.n Everywhere within the range of
lines m thru n (m<n)
LINE Trap

The LINE trap suspends program execution and gives
control to CID before execution of each BASIC line
within the specified scope occurs. This trap
allows you to trace through an executing program
and to examine and alter variable values before
each statement is executed. The command to set a
LINE trap has the form

SET,TRAP,LINE, scope
where scope has one of the following forms:

*

The trap is set. for each line in your
program.

LemeosoLen

The trap is set for the range of lines m
through n (m<n). Note that no spaces can
separate the three periods in this notation.

Some .examples of the LINE trap are as follows:

SET,TRAP,LINE,*

Suspends execution before each executable
statement in the program.

3-7

SET, TRAP,LINE,L.100...L.140

Suspends execution before each of lines 100
through 140 is executed.

ST,LINE,L.250...L.290

Suspends execution before each of lines 250
through 290 is executed.

To illustrate the LINE trap, the program in figure
3-7 is executed under CID control. The session log
is shown in figure 3-8. Program SWAP reads data
into variables A and B, and then exchanges their
contents using variable C as temporary storage.
The first CID command sets a LINE trap at lines 130
through 160. The LINE trap occurs immediately
before each executable statement in that range.
The PRINT command, entered after each trap occurs,
shows the actual exchange of the contents of A and
B taking place. The GO command resumes execution
after each suspension. Note that both the LINE and
the END trap occur at line 160, the last executable
statement of the program. This illustrates that
more than one trap can occur at the same location.

00100 REM PROGRAM SWAP
00110 READ A,B

00120 DATA 3,5

00130 LET C=A

00140 LET A=B

00150 LET B=C

00160 END

Figure 3-7. Program SWAP

STORE Trap

The STORE trap suspends execution whenever data is
stored in the specified locations. The command to
set a STORE trap has the form

SET,TRAP,STORE ,var

where var is a simple or subscripted variable in
the program.

The STORE trap is useful because it allows you to
gain control whenever a specific variable is modi-
fied. You can then display the value stored into
the variable. A variable is modified whenever a
statement in the program is executed in which the
variable appears to the left of an equals sign or
whenever the variable receives data as a result of
an input operation.

Note that while STORE traps can detect stores into
any variable or range of variables, BASIC string
pointers are sometimes manipulated without affect-
ing the string to which they point. This means
that extraneous STORE traps can occur. Therefore,
if you use the STORE TRAP for a string variable and
a trap is detected, you should inspect the source
statement to verify that the string variable has
been changed and the trap is not an extraneous one.

Following are some examples of the STORE trap:
SET,TRAP,STORE,A

Suspends execution whenever data is stored
in the variable A.

CYBER INTERACTIVE DEBUG

*T #1, L AT L.130
? print aj;b;c

350
? go

*T #1, L AT L.140
? print a;b;c

353

*T #1, L AT L.150
? print a;b;c

5 53
? go

*T #1, L AT L.160
? print a;b;c

5 3 3
? go

? quit .

? set,trap,line,l.130...l.160—=—— Set LINE trap at lines 130 through 160.

? go == ‘Initiate execution.

? go LINE trap suspends execution at lines 130 through 160. After
—m— each suspension variables A, B, and C are displayed and exe-
cution is resumed. .

*T #17, END IN L.160 ~«—————— END trap occurs at line 160.

Figure 3-8. Debug Session Illustrating LINE Trap

3-8

60484110 A

SET, TRAP, STORE ,B(100)

Suspends execution whenever data is stored
in array element B(100).

ST,STORE,T(3,20)

Suspends execution whenever data is stored
in array element T(3,20).

To set a STORE trap that is effective for all ele-
ments of an array, or for particular elements within
an array, use the following ellipsis notation:

a(nl)...a(n2)

This notation denotes elements nl through n2 of
array a and can be used for one-, two-, or three-—
dimensional arrays.

The following exampleé use the ellipsis notation:
SET, TRAP,STORE,X(5)...X(12)

Suspends execution whenever data is stored
in any of the elements X(5) through X(12).

SET, TRAP,STORE,C(2,10)...C(3,15)

Suspends execution whenever data is stored
in any of the elements C€(2,10) through
C(3,15).

The STORE trap can be helpful in debugging a long
program in which a variable is being inadvertently
changed at an unknown location.

One significant disadvantage of the STORE trap is
that it requires interpret mode execution. (See
Interpret Mode following this discussion.) After
you set a STORE trap, CID displays the message:

INTERPRET MODE TURNED ON

Interpret mode greatly increases the execution time
a program requires. For this reason, you should
not set a STORE trap until you reach a point in a
debug session where you want the trap to be effec-
tive. When you reach a point in the session where
the trap is no longer needed, you should clear it
(see Clearing Traps).

To illustrate the STORE trap, the program in figure
3-9 was executed under CID control to produce the
debug session in figure 3-10. The STORE trap is
set- so that CID gets control whenever data is
stored into array A. Execution is subsequently
suspended on each pass through the loop when the
value of variable C is stored into each of the four
elements of the array A. Note that because BASIC
stores array elements in row order, A(1,1)+l corre-
sponds to A(1,2), A(l,1)+2 corresponds to A(2,1),
and A(1,1)+3 corresponds to A(2,2). .

60484110 A

00100 REM PROGRAM ARRFILL
00110 OPTION BASE 1
00120 DpIM A(2,2)
00130 LET C=1

00140 FOR I=1 TO 2
00150 FOR J=1 TO 2
00160 LET A(I,J)=C
00170 LET C=C#+1
00180 NEXT J

00190 NEXT I

00200 END

Figure 3-9. Program ARRFILL

LISTING TRAPS O
To display a list of traps defined for a debug
session, enter one of the following forms of the
LIST,TRAP command:
LIST,TRAP,*
Lists the type, number, and location of all
currently defined traps.
LIST,TRAP,type,*
Lists all traps of the specified type that
are currently defined.
LIST,TRAP,type,scope
Lists the trap identified by the specified
type and scope.
LIST,TRAP,#nl,#n2,...,inn
Lists all traps identified by the specified
number.
The short form of LIST,TRAP is LT.
LIST,TRAP output has the following form:
T #n = type scope
where n is the trap number assigned by CID, type is
the trap type as listed in table :3-1, and scope is

the location of the trap in the form specified in
the SET,TRAP command.

If no traps exist when LIST,TRAP is entered, CID
displays the message:

NO TRAPS

‘Figure 3-11 shows a debug session for the program

shown in figure 3-7 in which some traps are estab-
lished and then listed.

CYBER INTERACTIVE DEBUG

INTERPRET MODE TURNED ON
7 go

*T #1, STORE INTO A(1,1) IN L.160
? print c¢;a(1,1)

1 1
? go

*T #1, STORE INTO A(1,1)+1 IN L.160
? print c;a(1,2) .

2 2

*T #1, STORE INTO A(1,1)+2 IN L.160
? print c;a(2,1)

33
? go

*T #1, STORE INTO A(1,1)+3 IN L.160
? print c;a(2,2)

4 4
? go

*T #17, END IN L.200
? quit

? set,trap,store,a(1,1)...a(2,2) -«—— Set store trap for array A.

? go STORE trap suspends execution each time a value is stored
‘ ~=— in array A.
of the array, A(1,1)+1 to the second word, and so forth.

Note that A(1,1) corresponds to the first word

Figure 3-10. Debug Session Illustrating STORE Trap

CYBER INTERACTIVE DEBUG
? set,trap,line,l.130...1.160 —

Set LINE trap.

? set,trap,store, 2=

INTERPRET MODE TURNED ON
? g0 —-x

Set STORE trap for variable A.

Initiate execution.

*T #2, STORE INTO A IN L.110
? list,trap,*—=

?

T #1 = LINE L.130...L.160, T #2 = STORE A

Display trap information.

Figure 3-11. Debug Session Illustrating LIST,TRAP Command

CLEARING TRAPS
When a wuser-defined trap is no longer needed in
the debug session, you can clear it by using the
CLEAR,TRAP command. This command has the following
forms:

CLEAR,TRAP,*

Removes all wuser-defined traps in your
program.

CLEAR', TRAP, type , *

Removes all traps of the specified type.

3-10

CLEAR,TRAP, type, scope

Removes trap identified by the specified
type and scope. R

CLEAR,TRAP,#nl,#n2,...,#nm

Removes the traps identified by the speci-
fied numbers.

The short form of CLEAR,TRAP is CT.
The type parameter can be any of the types listed

in table 3-1 except for the default INTERRUPT, END,
and ABORT traps which cannot be cleared.

60484110 A

Following are some examples of the CLEAR,TRAP
command :

CLEAR, TRAP,LINE,*

Clears all LINE traps.
CLEAR, TRAP, STORE, *

Clears all STORE traps.
CLEAR,TRAP, #2,#4,#5

Clears the traps identified by trap numbers
2, 4, and 5.

CT,*
Clears all traps.

A debug session using the CLEAR,TRAP command is
illustrated in figure 3-=12 (using program ARRFILL
shown in figure 3-9). The CLEAR,TRAP command is
issued after the third pass through the 1loop,
allowing the program to run to completion without
interruption. Note that the END trap is not removed
by the CLEAR,TRAP command.

INTERPRET MODE

The STORE trap requires a mode of execution called
interpret mode. In interpret mode, each machine
instruction is simulated by CID. Interpret mode
is automatically activated when a STORE trap is
set; it remains on until the trap is cleared by a
CLEAR,TRAP command or until explicitly turned off.
CID indicates interpret mode by issuing the message:

INTERPRET MODE TURNED ON

Execution in interpret mode is much more time-
consuming than normal execution. For this reason,
you should use STORE traps sparingly.

You can reduce the amount of execution time required
for interpret mode by turning interpret mode off
while executing portions of a program not currently
being debugged. The commands to turn off interpret
mode are:

SET, INTERPRET , OFF
or
CLEAR, INTERPRET

Traps requiring interpret mode become inoperative
when interpret mode is turned off. You can reacti=-
vate them with the command:

SET ,INTERPRET ,ON

To illustrate the SET,INTERPRET command, the pro-
gram shown in figure 3-13 is executed in debug mode
to produce the debug session shown in figure 3-14.
In this example, a STORE trap, which activates
interpret mode, is established for variable K in
the main portion of the program. Interpret mode is
then turned off while subroutine SETB is execut-
ing. .To accomplish this, breakpoints are set at
the beginning and at the end of the subroutine.
When execution is suspended at the first break-
point, interpret mode is turned off; when execution
is suspended at the second breakpoint, interpret
mode is turned back on, reactivating the STORE trap.

This method of turning off interpret mode is rather
cumbersome since the SET,INTERPRET commands must be
entered on each pass through the subroutine. A
better method is to include the SET,INTERPRET com-
mands in a command sequence so they can be executed
automatically. Command sequences are described in
section 5. .

CYBER INTERACTIVE DEBUG

INTERPRET MODE TURNED ON

*T #1, STORE INTO A(1,1) IN L.160
? go
? go

*T #1, STORE INTO A(1,1)+2 IN L.160
? clear,trap,store,* =

INTERPRET MODE TURNED OFF
? list,trap,* e

NO TRAPS
? g0 —=g-

*T #17, END- IN L.200 -
? quit

? set,trap,store,a(1,1)...a(2,2)—e——— Set STORE trap for array A.

? g0 —= Initiate execution.

*T #1, STORE INTO A(1,1)+1 IN L.160 p-==— STORE trap suspends execution on each store into array A.

Remove STORE trap.
Display trap information.

Resume execution.:

Program runs to completion.

Figure 3-12. Debug Session Illustrating CLEAR,TRAP Command

60484110 A

3-11

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190

REM PROGRAM ARRYB
OPTION BASE 1

DIM B(5)

LET N=5

LET K=1

Gosus 200

LET K=2

Gosus 200

STOP

REM SUBROUTINE SETB

Only one breakpoint can be established at a
single statement; however, a single breakpoint
and one trap of each type can be set to occur
at a single statement.

Breakpoints and traps exist for the duration of
the debug session unless removed by a CLEAR
command or inhibited by the SET,INTERPRET,OFF

command before the session is terminated.

The frequency parameters of the SET,BREAKPOINT
command can be used to avoid suspending execu-
tion on each pass through a loop.

CID automatically establishes END, ABORT, and
INTERRUPT traps so that you receive control on
any program termination, even if you have not
explicitly established any breakpoints or traps.

00200 IF K=2 THEN 250
00210 FOR I=1 TO N
00220 LET B(I)=1

00230 'NEXT I

00240 RETURN

00250 FOR I=1 TO N
00260 LET B(I)=-1
00270 NEXT I

00280 RETURN

00290 END
Figure 3-13. Program ARRYB

SUMMARY OF BREAKPOINT

AND TRAP CHARACTERISTICS

Breakpoints suspend execution before the state—
ment at the breakpoint location is executed.
The point in the execution of a statement at
which a trap suspends execution depends omn the
trap type. When execution 1is resumed, the
statement at the breakpoint or trap location is
executed in a normal manner.

The following is a summary of breakpoint and trap
information presented in this section:

Breakpoints and traps can be set,
listed any time CID has control and has prompted

you for input.

The STORE trap activates INTERPRET mode, which
increases execution time. Execution time can
be reduced by specifying the SET,INTERPRET,OFF
command when executing portions of the program
already debugged.

cleared, or

? go

? go

? go

? go

? print k

2
? quit

CYBER INTERACTIVE DEBUG
? set,trap,store, k —==

INTERPRET MODE TURNED ON
? set,breakpoint,l.200 -«—— Set breakpoint at first executable statement of subroutine SETB.

? set,breakpoint,i.240

-~=«—— Set breakpoints at the RETURN statements in SETB.
? set,breakpoint,L.280

*T #1, STORE INTO K IN L.140--=—— STORE trap at line 140.

Set STORE trap for variable K.

-*B #1, AT L.200 ===
? set,interpret,off —«————————— Turn off interpret.mode.

Breakpoint suspends execution at Tine 200.
(STORE trap inhibited.)

*B #2, AT L.240 ==
? set,interpret,on -

Breakpoint suspends execution at line 240.

*T #1, STORE INTO K IN L.160--—— STORE trap at line 160.

Turn on interpret mode.. (STORE trap reactivated.)

Figure 3-14.

Debug Session Illustrating SET,INTERPRET Command

60484110

DISPLAYING PROGRAM VARIABLES

When program execution is suspended and CID has
prompted you for input, you can enter commands to
display the values of program variables as they
existed at the time of suspension. This discus-
sion includes the most useful forms of the display
commands.

CID provides four commands for displaying the
values of program variables: the PRINT command,
the MAT PRINT command, the LIST,VALUES command, and
the DISPLAY command. These commands are summarized
in table 3-3.

PRINT COMMAND

The PRINT command, introduced in section 2, is the
most useful of the display commands for the BASIC
programmer. This command is similar in format and
function to the BASIC list-directed PRINT state-
ment. The format is:

PRINT output-list

The output-list elements must be separated by
commas or semicolons and can consist of any of the
following: .

Simple and subscripted variables
Numeric and string constants

BA§IC expressions not involving exponentiation
or functions

Variables used ‘in the output-list must exist in the
program. Expressions cannot contain references to
functions or to the exponentiation operator. CID
does not support partial print lines. The trailing
comma or semicolon is ignored in CID. Images,
PRINT USING statements, and file ordinals cannot be
used in CID.

Figure 3-15 shows a program that reads five names
and ages, then sorts the names in alphabetical
order, keeping the age with the corresponding name.

00100 REM PROGRAM SORT
00110 OPTION BASE 1

00120 DIM N$(5)

00130 DIM A(5)

00140 PRINT "INPUT 5 NAMES";
00150 MAT INPUT N$

00160 PRINT "INPUT 5 AGES";
00170 MAT INPUT A

00180 FOR I=1 TO 4

00190 FOR J=I+1 TO 5

00200 IF N$(I)>N$(J) THEN GOSuUB 00250
00210 NEXT J

00220 NEXT I

00230 sToP

00240 REM SUBROUTINE SWAP
00250 LET T$=N$(I)

00260 LET N$(I)=N$(J)

00270 LET N$(J)=T$

00280 LET S=A(D)

00290 LET A(I)=A(J)

00300 LET A(J)=S

00310 RETURN

00320 END

Figure 3-15. Program SORT

A debug session illustrating the PRINT command is
shown in figure 3-16. Note that in displaying the
elements of N§$ you must specify the subscript. To
display the entire array N$ using the PRINT com-
mand, you must specify each element of the array
separately. Note also the substring reference that
is used for the last PRINT command in the session.

MAT PRINT COMMAND

The MAT PRINT command is similar to the BASIC
MAT PRINT statement. It prints complete one-,
two-, or three-dimensional arrays. (Note that the
BASIC MAT PRINT statement does not support three-
dimensional arrays.) The format for this command
is as follows:

MAT PRINT array-list
where array-list is a list of one or more one-,

two—, or three-dimensional arrays separated by
commas or semicolons.

TABLE 3-3. DISPLAY COMMANDS
Command Description Formatting Scope
PRINT ‘Displays contents of Automatic according to Home program only

specified variables

MAT PRINT Displays contents of
specified arrays
LIST,VALUES Lists alphabetically all
: variable names and values
within specified scope
DISPLAY Displays contents of

specified variable
type

variable type

Automatic according to
variable type

Automatic according to
variable type

User—-specified;
default is variable

Home program only

Specified program unit; entire program
if none specified

Default is home program; variables can
be qualified for other than home
program

60484110 A

3-13

CYBER INTERACTIVE DEBUG
? set ,breakpoint,l.200 —=

INPUT 5 NAMES ? van,dana,sheiLa,betty,rick}
INPUT 5 AGES? 38,62,25,49,57 —

*B #1, AT L.200 ==
? print i;j —-

1 2
? g0 —=

*B #1, AT L.200
? print i;j

1 3
? go

*B #1, AT L.200
? print i;j

N

1 4
? print n$(1);a1),n$(4);a(4) -
DANA 62 BETTY 49

? clear,breakpoint , #1 —=

? go

*T #17, END IN L.230 -
? print 1;j;t$(1:2);s —-

5 6 VA 38
? quit

Set breakpoint at line 200.

"7 go = Initiate execution. ,

Input data.
Breakpoint detected at line 200.
Display variables I and dJ.

- Resume execution.

Display names and ages of the two elements to be compared.

Clear breakpoint number 1.

Display final values of variables I, J, T$, and S.

Figure 3-16. Debug Session Illustrating PRINT Command

Following are some examples of the MAT PRINT com-
mand :

MAT PRINT A,B

Prints the arrays A and B.

MAT PRINT X1$

Prints the string array XlS§.

Arrays listed in the array list must exist in the
BASIC program. Elements of the array are printed
in row order (the rightmost subscript changes most
rapidly) with spacing between items controlled by
the comma or semicolons as it is for the PRINT com-
mand. A blank line is output after each row and an
extra blank line is output between arrays. For a
three—-dimensional array, each plane is printed in
row order. Two blank lines separate one plane from
another. = An extra blank line is output between
arrays. .

Assuming the base set in the OPTION statement is
one, the MAT PRINT command prints a 2x2 array A as
follows:

AC1,1) A(1,2)
A(2,1) A(2,2)

3-14

A 2x2x2 array A is printed as follows:

A(1,1,1) A(1,1,2)
A(1,2,1) A(1,2,2)

A(2,1,1) A(2,1,2)
AC2,2,1) A(2,2,2)

Figure 3-17 shows a debug session illustrating the
MAT PRINT command. The program in figure 3-15
was executed under CID control to produce the ses-
sion log. A breakpoint is set at line 180 and
program execution is begun. When the breakpoint is
detected, the MAT PRINT command is entered to dis-
play unsorted arrays N$ and A. The breakpoint is
cleared, execution is resumed, and the program runs
to completion. After the END trap occurs, the
MAT PRINT command is again entered to display the
sorted arrays N$ and A. '

LIST,VALUES COMMAND

The LIST,VALUES command alphabetically 1lists all
variables defined in the source program and the
current value of each. This command automatically
formats the variables according to the variable
type as declared in the source program. The format
of the command is as follows:

LIST,VALUES

The short form of LIST,VALUES is LV.

60484110 A

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.180 -

? go

Set breakpoint at line 180.

Input data.

INPUT 5 NAMES ? van,dana,sheila,betty,rick }
INPUT 5 AGES? 38,62,25,49,57 =

Breakpoint detected at line 180.

*B #1, AT L.180 —=

? mat print n$,a —=

VAN DANA SHEILA BETTY

Display the unsorted arrays.

? clear,breakpoint,*

? g0

*T #17, END IN L.230

? mat print n$,3

BETTY DANA RICK SHEILA
49 62 57 25
? quit

RICK
57
Clear all breakpoints.
Resume execution.
Display the sorted arrays.
VAN
38

Figure 3-17. Debug Session IlLlustrating MAT PRINT Command

The LIST,VALUES command provides a formatted snap-
shot of the values of program variables; however,
it can produce excessive output, particularly if
the program contains large arrays. You can either
send the output to an auxiliary file (described in

section 4) or use an alternate command to display

sélected values. Use the PRINT, MAT PRINT, or
DISPLAY command to avoid large amounts of output.

Because the LIST,VALUES command displays all program
variables, it is slow and can add substantially to
the execution time of a debug session, particularly
for programs with many variables.. It is well worth
the additional time in many cases, but alternate
commands should always be considered.

To illustrate the LIST,VALUES command, the program
shown in figure 3-15 is executed under CID control
to produce the debug session in figure 3-~18. A
breakpoint is set at line 180 so that execution is
suspended = before any sorting occurs. When the
breakpoint is detected, the LIST,VALUES command is
entereds The program values are formatted accord-
ing to their type. The breakpoint is cleared, the
GO command is entered, and execution resumes. When
the program terminates, the LIST,VALUES command is
entered again. :

60484110 A

DISPLAY COMMAND

The DISPLAY command displays the contents of speci-
fied variables. The DISPLAY cannot be used to
display string variables. If you try to display a
string variable with the DISPLAY command, the con-
tents of the string pointer, not the value of the
string, is printed. '

You should use the PRINT command in most cases
because it provides for automatic formatting of
variables and is more familiar. Also, while the
PRINT command allows you to specify a 1list of
variables,” a separate DISPLAY command must be used
for each variable. The DISPLAY command, however,
offers the following advantages:

DISPLAY allows you to specify the format of
each variable, whereas PRINT performs automatic
formatting. In most cases, automatic formatting
is more convenient. However, in 'situations
where you want to display the value of a vari-
able in a format other than its declared or
implicit format, you must use the DISPLAY
‘command . ‘

DISPLAY is the only command that can display
the values of debug variables (described later
in this section).

3-15

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.180 =

? g0 —-=

Set breakpoint at line 180.

Initiate execution.

INPUT 5 NAMES ? van,dana,sheila,betty,rick

| <

INPUT 5 AGES? 38,62,25,49,57

Input data.

*B #1, AT L.180

Breakpoint detected at line 180.

? Llist,values —=

Display all program variables
and their values.

P.SORTBAS

AC1) = 38, A(2) = 62, A(3) = 25, A(4) = 49, A(5) = 57

1= 1, J= 0, N$(1) = "VAN", N$(2) = "DANA"

N$(3) = "SHEILA", N$(4) = "BETTY", N$(5) = "RICK", s=0

T$ = oan -
? clear,breakpoint,1.180 — Clear breakpoint at 1ine 180.
? g0 = = Resume execution.

*T #17, END IN L.230
? list,values = Display all program variables
and their final values.

P.SORTBAS <

A1) = 49, AQ2) = 62, A(3) = 57, AC4) = 25, A(5) = 38

I1=5, J= 6, N$(1) = "BETTY", N$(2) = "DANA", N$(3) = "RICK"

N$(4) = "SHEILA", N$(5) = "VAN", S = 38, T$ = "VAN"
? quit

Figure 3-18. Debug Session Illustrating LIST,VALUES Command

The DISPLAY command has the format
DISPLAY,variable,format
where variable is a simple or subscripted variable

in the source program, and format is an optional
format indicator whose valid values are as follows:

F Floating=-point (numeric base 10)
I Integer

C Character

o] Octal

The default format is the variable type as declared
in the program. The short form of DISPLAY is D.

Because the DISPLAY command automatically formats
variables, it 1is necessary to specify the format
parameter only when you want to display a variable
in a format other than that declared in the BASIC
program.

Some examples of the DISPLAY command are as follows:
DISPLAY,Z
Displays the variable Z in default format.
DISPLAY,X(3,7),0
Displays element X(3,7) in octal format.

The DISPLAY command displays only the first word of
an array when an array name is specified. To dis-
play successive elements within an array, specify
the first and last words separated by three periods
(ellipsis notation), as in the following example:

'DISPLAY,A(5)...A(10)

This statement displays elements 5 through 10 of
array A in default format.

ALTERING PROGRAM VALUES
(LET COMMAND)

CID provides a command that allows you to alter the
values of program variables. The LET command is
identical in form and function to the BASIC LET
statement. This command allows you to make cor-
rections to your program as execution proceeds,
eliminating the need for recompiling each time an
error is discovered.. The LET command has the form

LET variable=expression

where variable is a simple or subscripted variable,
and expression is any valid BASIC arithmetic ex-
pression not involving functions or exponentiation.
The LET command functions exactly as in BASIC: the
expression is evaluated and its value is assigned
to- the variable on the left of the equal sign; the
previous contents of the receiving variable are
destroyed.

The variables referenced in the LET command must
exist in the BASIC program being debugged. Multi-
ple assignments, references to functions, and use
of the exponentiation operator are not allowed; all
other arithmetic operators and the string concate-
nation operator can be used in the expressions.

You can enter the LET command whenever CID has
prompted you for input. For example, if program
execution is suspended and you have detected a
variable - that has an incorrect or illegal value,
you can use the LET command to assign a new value
to the variable. When you resume execution of the
program, the new value is used in subsequent compu-
tations involving the altered variable.

60484110 A

Changes made with the LET command do not exist
beyond the end of the debug session. When a pro-
gram 1is reexecuted, either in debug mode or in
normal mode, all program variables have the values
defined in the original compiled version.

Following are some examples of the LET command:
LET A=B

Replaces the current value of A with the
current value of B.

LET M=N+I-1

Evaluates the expression using the current
value of N and I and assigns the value to M.

LET B(I,J)=A(I,J)*A(L,J)+4.5

Evaluates the expression using the current
value A(I,J) and assigns the value to
B(L,J).

LET D$(3:6)="DEFG"

Assigns the character expression DEFG to
D$(3:6).

Figure 3-19 shows a program and debug session that
uses the LET command. The program calculates the
average of 10 numbers. The program contains an
‘error: the statement LET A=S*10.0 should be LET
A=8/10.0. ’

To enable the program to execute correctly, a
breakpoint is set at line 180. When execution is
suspended at this location, the program has already
calculated an incorrect value for A. The LET com-—
mand is then entered to calculate the correct value
of A. The new value is used in the subsequent
PRINT statement when execution is resumed. The
erroneous statement must be replaced by the pro-
grammer in the corrected version of the source
program.

ALTERING PROGRAM EXECUTION
(GOTO COMMAND)

CID provides a command that alters the normal flow
of program execution. The GOTO command resumes
execution of the program at a specified line num-
ber. This command is in the same format as the
BASIC statement GOTO. The command format is

GOTO n

where n is the line where execution is to be con-
tinued.

For example,
GOTO 150

causes program execution to continue at line number
150.

When the GOTO command is executed, program execu-
tion will begin at the specified line number and
continue until the program reaches a breakpoint or
trap, or until the program terminates.

The GOTO command should not be used to initiate

execution at the beginning of a debug session be-
cause program initialization will not take place.

60484110 A

Also, care should be taken when you enter this
command because it changes the flow of program
execution. :

Figure 3-20, which uses the program shown in figure
3-15, shows a debug session illustrating the GOTO
command. A breakpoint is set at line 160 so that
program execution is suspended before the list of
ages is entered. After the breakpoint is detected,
the GOTO command is used to resume execution at the
line immediately following the input line for the
ages. When the program has terminated, the sorted
arrays N$ and A are diplayed. Note that all the
ages are zero because the line requesting the list
of ages was bypassed.

DISPLAYING CID AND PROGRAM
STATUS INFORMATION

The following paragraphs describe some CID features
and commands that allow you to obtain various kinds
of information about the current debug session.
These features include:

Debug variables that contain useful information
about the current session; the values of these
variables can be displayed at the terminal.

LIST commands that can display such things as
breakpoint and trap information, and the cur-
rent status of your program.

DEBUG VARIABLES

CID provides variables that contain information
about the current status of the debug session and
the executing program. You can display the con-
tents of debug variables whenever you have control.
CID updates these variables; you cannot alter their
contents directly.

Although many debug variables are primarily intended
for use by assembly language programmers, some of
them can provide information useful to BASIC pro-
grammers. Those variables that are most useful to
BASIC programmers are listed in table 3-4. (Home
program is discussed in section 4 and groups in
section 5.) See the CYBER Interactive Debug refer-—
ence manual for a description of the other debug
variables not listed in the table.

TABLE 3-4. DEBUG VARIABLES

Variable Description

#LINE Number of BASIC line executing at
time of suspension

#pC Previous contents; on STORE trap,
#PC contains the value previously
stored in the trapped variable

{fHOME Home program name

#8P Number of existing breakpoints

#TP Number of existing traps

#cp Number of existing groups

Program AVGBAS:

00100 REM PROGRAM AVGBAS
00110 DIM X(9)

00120 LET $=0.0

00130 MAT READ X

00140 FOR 1=0 TO 9
00150 LET $=S+X(I)

00160 NEXT I

00170 LET A=S*10.0

00190 MAT PRINT X
00200 PRINT "MEAN: ";A

00220 END

Session Log:

CYBER INTERACTIVE DEBUG

? go

*B #1, AT L.180 —=
? print a —-=

628.
? let a=s/10.0 -

? print a —=

6.28
? g0 —-

THE NUMBERS ARE AS FOLLOWS:
5.2

3.4
9.6
7.8
2.3

6.9
4.5
13.3
8.1

MEAN: 6.28
*T #17, END IN L.220
? quit

00180 PRINT "THE NUMBERS ARE AS FOLLOWS: "

00210 DATA 5.2,3.4,9.6,7.8,2.3,1.7,6.9,4.5,13.3,8.1

? set,breakpoint,l.180 -«———— Set breakpoint to suspend execution at line 180.

Execution suspended.
Display value of A.

Calculate correct value for A.

Display new value of A.

Resume execution.

1.7 ><— Program prints data used and new value of A.

Figure 3-19. Program AVGBAS and Debug Session Illustrating LET Command

To display the contents of a debug variable, you
must use the DISPLAY command; debug variables
cannot be displayed with the PRINT command or
LIST,VALUES command. All variables except {#PC are
automatically displayed in the appropriate format.
Because #PC contains a numeric value, you should
specify the F format on the DISPLAY command. Octal
format is the default. :

3-18

The #LINE variable contains the number of the BASIC
source line that was executing at the time of sus-
pension. - The output of the DISPLAY,#LINE command

is P.name L.n, where name is the home program name

and n is the line number. CID normally prints this
for you when a breakpoint or trap occurs, but. you
might wish to display the value yourself at times,
especially when using command sequences (described
in section 5).

60484110 A

CYBER INTERACTIVE DEBUG

Set breakpoint at line 160.

? set,breakpoint,l.160 =

? 90

Initiate execution.

INPUT 5 NAMES ? van,dana,sheila,betty,rick -
*B #1, AT L.160 —=

Input names.
Breakpoint detected at line 160.

? goto 180 —=

Resume execution at line 180.

*T #17, END IN L.230 =

Program terminates.

? mat print n$,a

BETTY DANA RICK SHEILA
0 0 0 0
? quit

Display the contents of arrays N$ and A.

VAN

Figure 3-20. Debug Session Illustrating GOTO Command

The {#PC variable can be displayed after execution
has been suspended by a STORE trap. #PC contains
the previous contents of the variable and can be
displayed only when a STORE trap has occured. Note
that #PC is not useful when a STORE trap has occured
on a string variable.

The #BP and #TP variables contain the numbers of
breakpoints and traps, respectively, that are
defined for the current debug session. These
variables are especially useful for longer, more
complex debug sessions.

A debug session using debug variables is illus-
trated in figure 3-21. The program executed to
produce this session is shown in figure 3-3. In
this example, a breakpoint and a STORE trap are
defined. While execution is suspended, the DISPLAY
command is used to display the values of various
debug variables. Note that when #PC is displayed,
the F option is specified so that the value is
displayed in floating point format.

LIST COMMANDS

The LIST commands allow you to list various types
of information relevant to the current debug ses-
sion or to your program. The LIST commands are
summarized in table 3-5.

The LIST commands are particularly useful with
longer debug sessions in which you are constantly
changing the status of the session. For example,
you can initially set some breakpoints or traps,
clear some or all of them later in the session,
and set new onmes. With the LIST commands you can
keep track of this and other CID information. The
LIST,BREAKPOINT and LIST,TRAP commands are described

earlier in this section. The LIST,MAP command is

described - in section 4 and the 'LIST,GROUP command
in section 5.

60484110 A

TABLE 3-5. LIST COMMANDS

Command Description

LIST,BREAKPOINT Lists breakpoint information

LIST,TRAP Lists trap information

LIST,GROUP Lists command group informa-
tion

LIST,MAP Lists load map information

LIST,STATUS Lists information about cur-
rent status of debug session

LIST,VALUES Lists names and values of

user—defined variables

Some of the LIST commands can produce a large
volume of output. It is possible to prevent this
output from appearing at the terminal by writing
it to a separate file that can then be printed.
The commands to accomplish this are described in
section 4 under Control of CID Output. ®

LIST,STATUS Command

The LIST,STATUS command displays a brief summary of
the status of a debug session as it exists at the
time the command is issued. This command has the
form: :

LIST,STATUS

The short form of LIST,STATUS is LS.

3-19

CYBER INTERACTIVE DEBUG
? set ,breakpoint,.190

? go

*B #1, AT L.190
? set,trap,store,a

INTERPRET MODE TURNED ON
? display,#bp -

#BP = 1

? display,#tp —=
HTP =1

? go

*T #1, STORE INTO A IN L.230
? display,#line -=

#LINE P. TRIANGL L.230
? display,#pc,f =

#PC = 0.0 —=
? clear,breakpoint #1

? go

THE AREA OF THE TRIANGLE IS 2 —-x—— Program output.
*T #1, STORE INTO A IN L.230
? display,#pc,f —=

#PC = 2.0

?

Display current number of breakpoints.

Display current number of traps.

Display number of line where execution suspended.

Display previous contents of changed variable in floating point format.

Variable A had no previous value.

Display previous contents of changed variable in floating point format.

Figure 3-21.

Information displayed by the LIST,STATUS command
includes:

Home program name

Number of breakpoints currently defined
Number of traps currently defined
Number of groups currently defined
Status of veto mode (on or off)

Status of interpret mode (on or off)

Current output options which specify the type
of CID output sent to the terminal

Current auxiliary file options which define an
auxiliary output file and specify the type of
output to be sent to the auxiliary output file

Figure 3-22 illustrates the use of the LIST,STATUS
command. The command is issued near the beginning
of the debug session.

SAMPLE DEBUG SESSION

The following paragraphs present some examples of
interactive debugging using the commands described
in this section.

3-20

Debug Session Illustrating Debug Variables

The program entitled CORRBSC reads pairs of numbers
and calculates the correlation coefficient of the
numbers. The source listing is shown in figure
3-23.

The correlation coefficient is a means of measuring
the degree of statistical correlation between two
sets of numbers. The formula for the correlation
coefficient is shown in figure 3-24.

The correlation coefficient can have any value
between -1 and 1. A coefficient with a magnitude
close to 1 indicates close correlation.

The program in figure 3-23 contains a number of
errors. The program compiles successfully, but
does not run to completion.

To execute the program, some test cases are re-—
quired. If possible, test cases for which results
are known should be included. In the example in
figure 3-23, the first test case consists of pairs
of equal numbers; if the program is correct, it
should calculate a correlation coefficient of 1.0.

The first debug session and the first set of input
data are shown in figure 3-25. At first no. break-
points or traps are set; GO is entered to initiate
program execution. The program is allowed to exe-—
cute until termination, at which time the ABORT trap
gives control to you. The trap message indicates
that a subscript error has occurred.

60484110 A

CYBER INTERACTIVE DEBUG
? set,breakpoint,l.190

? go

*B #1, AT L.190
? set,trap,store,a

INTERPRET MODE TURNED ON
? list,status

HOME = P.TRIANGL, 1 BREAKPOINTS,
INTERPRET ON, OUT OPTIONS = I W E D, AUXILIARY CLEAR

?

1 TRAPS, NO GROUPS, VETO OFF

Figure 3-22. Debug Session Illustrating LIST,STATUS Command

00100 REM PROGRAM CORRBSC
00110 REM CORRBSC CALCULATES A CORRELATION COEFFICIENT

00120 OPTION BASE 1
00130 DIM X(5),Y(5)

00140 REM INITIALIZATION

00150 LET §$1=0
00160 LET s$2=0
00170 LET §3=0
00180 LET S4=0
00190 LET S$5=0
00200 LET M=1

00210 REM READ IN' NUMBERS TO BE CORRELATED
00220 FILE #1="CORRFIL"

00230 IF END #1 GOTO 00270

00240 INPUT #1,X(M),Y(M)

00250 LET M=M+1
00260 6070 00230

00270 IF M<>0 THEN GOTO 00310
00280 PRINT "EMPTY INPUT FILE"

00290 sTOP

00300 REM CALCULATE THE CORRELATION COEFFICIENT

00310 FOR I=1 TO M_
00320 LET $1=S1+X(I)
00330 LET $2=52+Y(I)

00340 LET S$3=S3+X(I)"2
00350 LET S4=S4+Y(I) "2
00360 LET S5=X(I)+Y(I)

00370 NEXT I

00380 LET N=(M*S5-S1%S2)A2
00390 LET D=(M*S3-S1/2)*(M%xS$4-5212)

00400 LET R=SQR(N/D)

00410 PRINT "CORRELATION COFFICIENT = ";R

00420 END

Figure 3-23. Program CORRBSC Before Debugging

nZxy-Zx Zy

r =

~Jn Tx2-(Xx)2 \Jn Sy2-(Ty)2

r Correlation coefficient
n . Number of pairs to be correlated
X,y Values to be correlated

> Summation symbol; for example, Zx
is the sum of all x values

Figure 3-24. Correlation Coefficient Formula

60484110 A

Commands now can be entered to determine the cause
of the error. The PRINT command displays the value
of variable M, which is one too large. By analyzing
the program listing, it can be seen that there is a
logic error in the program which will always cause
M to be one greater than the number of data pairs
read. Although not shown in the debug session,
this also implies that because the program contains
no check on the number of records read, an array
bounds error can occur if the number of records
exceeds the size of the array. The program can be
corrected by initializing M to O at 1line 200,
switching lines 240 and 250, and inserting a test
for the number of data pairs read. However, in
order to learn as much as possible from this debug
session, the value of M is temporarily corrected,
using the LET command, and the session is continued.

3-21

Input Data:

1.0 1.0

5.1 5.1
100.5 100.5
10.0 10.0
7.6 7.6

Session Log:

CYBER INTERACTIVE DEBUG
? g0

Initiate execution.

*T #18, ABORT SUBSCRIPT ERROR IN L.320 -
? print m =

ABORT trap occurs.
Print value of variable M.

6
? let m=5 =

Change value of M.

? mat print X,y —=

1 5.1 100.5 10

1 5.1 100.5 10

? goto 380 =

Print contents of arrays X and Y.

7.6
7.6

Continue éxecution at line 380.

CORRELATION COFFICIENT = .426385 =

*T #17, END IN L.420
? quit :

Program prints result.

Figure 3-25. Input Data for First

Next, the MAT PRINT command is entered to display
the contents of arrays X and Y. After this, the
GOTO command is entered to continue program execu-
tion at line 380. The program terminates normally,
but the value of R is incorrect. The debug session
is then terminated.

The second session is shown in figure 3-26. (The
program in its original form is used for this ses-
sion.) Breakpoints are set at lines 270, 370, and
400. The breakpoint is set at line 370 to suspend
execution on each pass through the loop of lines
310 through 370.

Execution is initiated and the correct value is
calculated for M. The display of intermediate
values on each pass through the loop indicates a
possible error: the value of the wvariable S5
should be increasing on each pass as more values
are added to it. However, the display shows that
this value is not increasing. The calculation of
S5 in line 360 is incorrect; the correct statement
is

LET S5=S5+X(I)*Y(I)
The debug. session can be continued by using the LET

command to calculate and insert the correct value
of 85. First, execution is resumed to allow the

3-22

Test Case and Debug Session

loop to complete. After the last pass through the
loop, the correct value is calculated.

The next suspension occurs at line 400. The values
of N and D are printed. For R to have a value of
1.0, N and D must be equal, and the PRINT command
shows that this is the case. Execution is resumed
at line 400 which calculates the final result. The
program runs to completion and the session is
terminated. The program now appears to execute
correctly.

At this point, it is a good idea to incorporate all
the accumulated changes into the source program,
recompile, and rerun the program with the same data
to verify the corrections. The program, however,
should not be considered completely debugged until
it has been tested on additional sets of input data.

For the next test case, data records .are included
in which all the X values are equal. The input
file and session log are shown in figure 3-27. The
program aborts because division by zero is attempted
in line 400. By using CID commands to display
intermediate values, you can see that variable D,
the denominator in the equation at line 400, has
the value of 0. CID has helped determine the loca-
tion of the error, but in order to understand why
the error occurred, it is necessary to understand
the mathematics of the program.

’

60484110 A

CYBER INTERACTIVE DEBUG

? set,breakpoint ,l.270 = Set breakpoint at line 270.
? set,breakpoint,l.370 = Set breakpoint at line 370.
? set,breakpoint,l.400 —= Set breakpoint at line 400. -
? go

*B #1, AT L.270
? let m=m-1 —= Calculate correct value for M.

? go

*B #2, AT L.370
? print i;s1;s2;s3;s4;s5

1T 1 1 1 1 2
? go

*B #2, AT L.370
? print i;s1;s2;s3;s4;s5

2 6.1 6.1 27.01 27.01 10.2
? go

*B #2, AT L.370
? print i;s1;s2;s3;s4;s5 Breakpoint suspends execution on each pass thru loop;
display intermediate values while execution is suspended.
3 106.6 106.6 10127.3 10127.3 201
? go

*B #2, AT L.370
? print i;s1;s2;s3;s4;s5

4 116.6 116.6 10227.3 10227.3 20
? go

*B #2, AT L.370
? print 1;s1;s2;s3;s4;s5

5 124.2 124.2 10285. 10285. 15.2
? let s5=x(1)*y(1)+x(2)*y(2)+x(3) *xy(3)
-«— Calculate correct value for S5.
? Let s5=s5+x(4)*y(4)+x(5)*y(5)

? print s5

10285.
? go

*B #3, AT L.400
? print n;d—= — Display values of N and D.

1.29596E+9 1.29596E+9
? go

CORRELATION COFFICIENT = 1 = Program prints correct result.
T #17, END IN L.420
? quit

Figure 3-26. Second Debug Session

60484110 A

3-23

Input Data:

3.0 1.0
3.0 5.1
3.0 100.5
3.0 10.0
3.0 7.6

Session Log:

CYBER INTERACTIVE DEBUG

? go -

*T #18, ABORT DIVISION BY ZERO 1IN L.400
? print r;n;d -

0 3.05900E+6 0 —==
? quit

Initiate execution.

Display values of R, N, and D.

Value of 0 for D caused the division by zero error
message.

Figure 3-27. Input Data for Second Test Case and Debug Session

In the formula for the correlation coefficient, the
calculation n¥x2- (£x)2 has a value of zero
if all the x values are equal. Whenever a division
occurs in a program, you should always be alert to
the possibility of a zero denominator and include
statements testing for that possibility.

To complete the debugging process, two more test
cases are run in one debug session: one in which
closely correlated data values are input from the
file CORFILL, and one in which widely scattered
data values are entered using the CID LET command

(figure 3-28). Using CID to enter test data is a
convenient technique for running test cases, but
you must be sure that all variables are initialized
correctly before you reexecute part or all of a
program. i

The results of both tests appear to be correct. In
a real situation, the results should be verified
whenever possible by comparing them with known
results . or by performing hand calculations. The
final version of CORRBSC, with all corrections
included, is shown in figure 3-29.

Input Daté:

10.1 10.1
20.5 20.5
6.0 6.0
34.0 32.9
4.4 4.5

Session Log:

CYBER INTERACTIVE DEBUG

? g0 =

CORRELATION COFFICIENT = .999799 =

Initiate execution.

Program prints result.

*T #17, END IN L.420 -
? set,breakpoint,1.220

Program execution terminates.

Reinitialize program variables, but

? goto 150) -

*B #1, AT L.220
? let x(1)=0.0

7 let y(1)=5.0
? Let x(2)=0.1

stop before reading file CORRFIL.

Input new values for X(1), Y(1),

? let y(2)=500

? Llet x(3>=100

7 let y(3)=0.0

X(2), Y(2), X(3) and Y(3).

Figure 3-28. 1Input Data for Third and Fourth Test Cases and Debug Session (Sheet 1 of 2)

3-24

60484110 A

? let m=3 -

Set M so that only the values just

input will be used to calculate R.

? mat print X,y -

Print the contents of arrays X and Y.

*T #17, END IN L.420
? quit

0 .1 100 34 4.4

5 500 0 32.9 4.5
? goto 270 —= Resume program execution.
CORRELATION COFFICIENT = .506772 Program prints result.

Figure 3-28.

Input Data for Third and Fourth Test Cases and Debug Session (Sheet 2 of 2)

00100
00110

00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480

REM PROGRAM CORRBSC
REM CORRBSC CALCULATES A CORRELATION COEFFICLENT
OPTION BASE 1

DIM X(5),Y(5)

REM INITIALIZATION

LET $1=0

LET $2=0

LET $3=0

LET S4=0

LET §5=

LET M=0

REM READ IN NUMBERS TO BE CORRELATED

FILE #1="CORRFIL"

IF END #1,GOTO 00300

LET M=M+1T

IF M>5 THEN GoTo 002807

INPUT #1,X(Mm),Y(M)T

60TO 00230 n

PRINT "TOO MUCH INPUT. LIMIT IS 5 PAIRS."

LET M=M-1

IF M<>0 THEN GOTO 00340

PRINT "EMPTY INPUT FILE"

STOP
REM

FOR

LET

LET

LET

CALCULATE THE CORRELATION COEFFICIENT
I1=1 TO M

$1=514X(1)

$2=52+Y(1)

$3=S3+X(1) 2

LET S4=S54+Y(I) N2

LET $5=S54X(I)*Y(I)

NEXT I

LET N=(M*S5-51%52) A 2

LET D=(M*S3-51/2)* (M*S4=-S2 A 2)

IF D<>0 THEN 00460

PRINT "ERROR-ALL X'S ARE EQUAL"T
sTopf

LET R=SQR(N/D)

PRINT "CORRELATION COFFICIENT = ";R
END

findicates correction.

Figure 3-29.

60484110 A

Program CORRBSC With Corrections

ADVANCED DEBUGGING TOOLS h 4

This section describes some advanced CYBER Inter-
active Debug (CID) tools. The commands described
in this section allow you to do the following:

Execute your program a few lines at a time; the
command is STEP.

Control output created by CID commands; the
commands are SET,QUTPUT and SET,AUXILIARY.

Reference FORTRAN subroutines outside your
BASIC main program; the command is SET,HOME.

Keep track of the current home program and other
program units; the commands are DISPLAY,#HOME
and LIST,MAP.

EXECUTING A FEW LINES
AT A TIME (STEP COMMAND)

The STEP command initiates or resumes program
execution until a specified number of lines have
been executed and then gives you control. The
format of the STEP command is as follows:

STEP,n,LINE,scope

where n is the number of lines to be counted before
execution is suspended (default is 1) and scope is
the address range indicating which lines are to be
counted. The short form of STEP is S.

The scope parameter can take one of the following
forms:

*

All lines are to be counted (default value).
L.m...L.n

All 1lines in the specifled address range
are to be counted (m<n). :

If no parameters are specified, the previous STEP
command is reexecuted. If no prior STEP command
exists for the current debug session, the default
values for parameters n and scope are used and,
therefore, STEP,1,LINE,* is executed.

When you gain control as a result of a STEP com-—
mand, CID suspends program execution and issues the
followmng message:

*S LINE AT address

The address is a reference to the next line to be
executed. CID next issues the ? prompt for input.
In response, you can enter any CID command.

60484110 A

If a breakpoint or trap suspends program execution
before a STEP command has completed its action, the
STEP command is discontinued. For example, if you
issue the command

STEP,5,LINE

and a breakpoint occurs after two lines are exe-
cuted, you gain control at the breakpoint, and the
STEP command is discontinued.

If a STEP command suspends program execution at the
same time as a breakpoint or trap, the breakpoint
or trap. takes precedence and the STEP command is
considered finished. You must issue another STEP
command to continue stepping through your program.

In the following examples, the STEP command shown
will be executed as described unless a breakpoint
or trap gives you control before the STEP command
has completed its action.

STEP, 6 ,LINE

Execution is suspended after the next six
lines in the program have been executed.

STEP, 1

Execution is suspended after the next line
in the program is executed.

$,1,LINE,L.240...L.380

Execution . is suspended after 1line 240 is
executed. To continue suspending execution
one line at a time for the entire specified
-scope, enter the command STEP without
parameters after each suspension occurs.

The debug session in figure 4-1, produced by exe-
cuting the program in figure 3-15 (see section 3)
in debug mode, illustrates the STEP command. The
STEP command is used to allow subroutine SWAP to be
executed a few lines at a time. When the STEP
command causes execution to be suspended, the names
and ages being exchanged are displayed to make sure
the swap is executing properly. Note that when the
second STEP command, which does not specify any
parameters, is issued, STEP,3,LINE is reexecuted.

CONTROL OF CID OUTPUT

The CID commands PRINT, MAT PRINT, LIST, and DISPLAY
can generate large amounts of output. As an alter-
native to displaying all CID output at the terminal,
you can define an auxiliary output file and specify
certain types of CID output to be written. to the

file. The commands to control CID output are
SET,O0UTPUT and SET,AUXILIARY.

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.250 —=

? g0 -

INPUT S NAMES ? van,dana,sheila,betty,rick
INPUT 5 AGES? 38,62,25,49,57

*B #1, AT L.250 -

? print n$(i) ,n$(j) -

VAN | DANA

? step,3,line -

*S LINE AT L.280 ==

? print n$(i),n$(j) —=

DANA VAN
? print a(i),a(j) -
38 62

? step =

*S LINE AT L.310 -

? print a(i),a(j) -

62 38

? g0

*B #1, AT L.250
? print n$(i),n$(j) , alid;a(j)

DANA BETTY 62 49
? step,6,line

*S LINE AT L.310 -

? print n$(i),n$(j),alid;al(i)

BETTY DANA 49 62
? quit

Set breakpoint at line 250.

Initiate execution.

Breakpoint suspends execution at line 250.
Display names to be swapped.

Execute three lines and suspend execution.

STEP suspends execution at line 280.
Display exchanged names.

Display ages to be swapped.

STEP,3,LINE is reexecuted.

STEP suspends execution at line 310.

hDisp]ay exchanged ages.

Terminate STEP.

Execute six lines and suspend execution.
STEP suspends execution at line 310.

e

Figure 4-1. Debug Session Illustrating STEP Command

TYPES OF OUTPUT

For wuse with the SET,OUTPUT and SET,AUXILIARY
commands, CID output is classified according to
type, with each type represented by a one-letter
code. The output type codes along with their
descriptions are listed in table 4-1.

SET,OUTPUT COMMAND

The SET,OUTPUT command specifies the types of output
to be displayed at the terminal., The SET,0UTPUT
command has the form

SET ,OUTPUT, type-list

where type-list is a list of output type codes as
shown in table 4-1., The type codes can be sepa-—
rated by commas or entered without separators. The
short form of SET,OUTPUT is SOUT.

Including an output code in the option list of the
SET,OUTPUT command causes the associated output
type to be displayed at the terminal, Omitting an
output code from the option 1list suppresses the
associated output type. Thus, vhen you specify a
SET,OUTPUT command, any output type excluded from
the option 1list is not displayed at the terminal.

4-2

TABLE 4-1. CID OUTPUT TYPES

Output Code Description
E Error messages
\4 Warning messages
D Debug output produced by execution

of CID commands; includes output
produced by LIST, PRINT, MAT
PRINT, and DISPLAY commands

I Informative messages; includes
trap and breakpoint messages

R Echo commands read from group and
file command sequences when a READ
command is executed

B Echo commands read from trap and
breakpoint body command sequences

T Echo commands read from the
terminal

60484110 A

For example, the command
SET,OUTPUT,E,W,I

causes output types E, W, and I to be displayed at
the terminal while it suppresses types D, R, and B.

The default output types are E, W, D, and I; if you
do not enter a SET,OUTPUT command, these output
types are displayed at the terminal. You do not
need to specify type T in a SET,OUTPUT command
because all user input is displayed at the terminal
when it is entered.

The only output types not automatically displayed
are commands executed in command sequences (types R
and B). Command sequences are. described in sec-
tion 5. To display this output in addition to the
default types, enter the command:

SET,OUTPUT,E,W,I,D,R,B

If you specify the R option on the SET,OUTPUT
command, then whenever a READ command is executed,
each command in the specified group or file is
displayed at the terminal as it is executed., If
you specify the B option, then whenever a break-
point or trap is executed, each command in the body
is displayed as it is executed.

The only output types that cannot be suppressed
are the informative messages issued when break-
points or traps are detected (these are included
in type I). These messages are always displayed
regardless of SET,OUTPUT specifications. Error
messages (type E) can be suppressed only if you
have provided for writing them to an auxiliary file
with the SET,AUXILIARY command. If you attempt to
suppress error messages but have not provided for
writing them to an auxiliary file, CID issues an
error message.

If you suppress warning messages by omitting W from
the SET,OUTPUT command, CID executes. all commands
that would normally generate a warning message. No
? prompt is issued; CID takes the corrective action
described in the warning message, responding as if
- you had entered a YES or OK response (described in
section 3 under Error and Warning Processing).

To suppress all output to the terminal (except
breakpoint and trap messages), you can issue either
a SET,OUTPUT command with no option list . or the
command : :

CLEAR, OUTPUT
The short form of CLEAR,QUTPUT is COUT.

Before entering either of these commands, however,
you must provide for writing error messages to an
auxiliary file. : o

After a CLEAR,OUTPUT command has been issued, you
can restore output to default conditions with the
command:

‘SET,OUTPUT,E,W,D, T

The SET,OUTPUT command can be used in conjunction
with the SET,AUXILIARY command to suppress certain
types of output to the terminal and to send that
output type to an auxiliary file. The most common

60484110 A

output to suppress is type D, the output produced
by the execution of CID commands. This includes
output produced by the PRINT, MAT PRINT, LIST,VALUES
and DISPLAY commands, all of which can produce
excessive output.

SET,AUXILIARY COMMAND

The SET,AUXILIARY command defines an auxiliary
output file and specifies which types of CID output
are to be written to that file. The SET,AUXILIARY
command has the following form:

SET,AUXILIARY,1fn,type~list

where 1fn is the name of the auxiliary file and
type~list is a 'list of the output type codes as
shown in table 4-1. The type codes can be sepa-
rated by commas or entered without separators. The
short form of SET,AUXILIARY is SAUX.

The SET,AUXILIARY command has no effect on output
that is being displayed at the terminal. For
example, the command

SET ,AUXTLIARY ,FAUX,I,D

creates a file named FAUX and writes all informative
and command output messages to the file. These
messages are also displayed at the terminal unless
you have entered the appropriate SET,OUTPUT command
to suppress these output types.

You can change the option specifications for an
auxiliary file by entering another SET,AUXILIARY
command that specifies a file name and a new option
list; you need not close the file beforehand.

Only one auxiliary file can be in use at a time.
The QUIT command closes the auxiliary file cur-

rently in use. To close an auxiliary file before
the end of a debug session, enter the command:

CLEAR ,AUXILIARY
The short form of CLEAR,AUXILIARY is CAUX.

You can close an auxiliary file any time during a
debug session.

The auxiliary file is a local file. After you
terminate the debug session, you can display the
auxiliary file at the terminal, send it to - a
printer, or store it on a permanent storage de-
vice. CLEAR,AUXILIARY does not rewind the file.
After issuing a CLEAR,AUXILIARY you can issue a
SET,AUXILIARY for the same file in the same or in a
subsequent session, and the additional information
will be written after the end-of-record.

A common use of the SET,AUXILIARY command is to
preserve a copy of a debug session log. For exam-
ple, the command

SET,AUXILIARY,OUTF,E,W,D,I,T

issued at the beginning of a debug session, writes
the output types E, W, D, I, and T to file OUTF,
thus creating a copy of the session exactly- as
displayed at the terminal. Note that when out-
putting to an auxiliary file, you must specify the .
T option to include user-entered commands in the
file.

4-3

Example 1 in figure 4-2 illustrates a SET,OUTPUT
command used in conjunction with' a SET,AUXILIARY
command to suppress output to the terminal and
write it to an auxiliary file. This example sup-
presses all output produced by CID commands (type
D), creates an auxiliary file called LGF to which
this output is to be written, writes the values
of all program variables to LGF, closes LGF, and
resets output options to original conditionms.

Example 2 in figure 4-2 illustrates a CLEAR,OUTPUT
command used with a SET,AUXILIARY command. This
example defines an auxiliary file named AUXF to
receive error messages and output from CID commands,
turns off output to the terminal (except for break-
point and trap messages), writes program variables
and contents to AUXF, restores terminal output to
normal default conditions, and closes AUXF.

An example of a debug session using an auxiliary
file is illustrated in figure 4-3. This session
was produced by executing program TRIANGL (figure
3-3 in section 3) under CID control. In this exam-
~ple, an auxiliary file AFILE is defined; the D
option causes output from CID commands to be sent
to AFILE. A breakpoint is set at line 240 of
subroutine AREA, and output to the terminal is
suppressed. (Note, however, that the breakpoint
message and the program output still appear.) On
each pass through subroutine AREA, the breakpoint
suspends execution, and LIST,VALUES is entered to
write all variable names and values to the auxiliary

file. After the third pass through AREA, normal
output conditions are restored, the value of the
variable A is displayed, and the session is termi-
nated. File AFILE (figure 4-4) contains the output
from the LIST,VALUES command. (Another way of
doing this would be to include the SET,OUTPUT and
LIST,VALUES commands in a breakpoint body. This
would preclude the necessity of reentering these
commands on each pass through the subroutine.
Breakpoint bodies are described in section 5.)

Example 1:

set ,output e, w,i
set ,auxiliary,lgf,d
List,values
clear,auxiliary

set ,output e, w,i,d

D D D D W)

Example 2:

set ,auxiliary,auxf,d, e
clear ,output
List,values

set ,output ,e,w,d,i
clear, auxiliary

D W) D D o)

Figure 4-2. SET,OUTPUT and
SET,AUXILIARY Commands

CYBER INTERACTIVE DEBUG

? set,breakpoint,L.240

? clear ,output

? go

*B #1, AT L.240
? Llist,values

? go
THE AREA OF THE TRIANGLE IS 2
*B #1, AT L.240
? Llist,values
? go
THE AREA OF THE TRIANGLE IS .55
*B #1, AT L.240
? list,values
? go
THE AREA OF THE TRIANGLE IS 37.455

*B #1, AT L.240
? set ,output,e,w,d,i

? print a -

23.7
? quit

? set,auxiliary,afile,d,e —«—————— Establish auxiliary file AFILE and send all command output and
error messages to this file.

Suppress output to terminal.

List variables and values while execution is suspended on each
pass through subroutine AREA. OQutput is written to AFILE.

Restore normal output to terminal.

Display value of A. This value is also written to AFILE.

Figure 4-3. Debug Session Illustrating SET,AUXILIARY, SET,OUTPUT and CLEAR,OUTPUT Commands

44

60484110 A

1 CYBER INTERACTIVE DEBUG
0

*B #1, AT L.240

P.TRIANGL . .

A= 2, s1= 2, S2= 2, S3= 2.82843, T= 3.41421, x1= o0 —=—First pass.
X2=2, X3=0, YI=10, Y2= 0, Y3= 2

*B #1, AT L.240

P.TRIANGL

A= .55, S1= 1.11803, s2= 1.0198, S§3 = 1.7, T = 1.91892 (—=—>Second pass.
X1=0, X= .5 X3=-1, Yi=4, Y2= 2, Y3= 1.2

*B #1, AT L.240

P.TRIANGL

A= 37.455, S1 = 11.0027, S2 = 11.9854, S3 = 6.9029 ~=—Third pass.
T = 14.9455, X1 = .2, X2=-1.3, X3= 5., Y1 =-2.9 ,

Y2= 8, Y3= 7.8

*B #1, AT L.240

23.7

Figure 4-4., Listing of Auxiliary File AFILE

CHAINED-TO BASIC PROGRAMS

It is not possible to CHAIN to another BASIC pro-
gram when CID is in control. Since the BASIC CHAIN
statement is logically equivalent to a STOP state—
ment followed by the BASIC subsystem OLD and RUN
commands, the CHAIN statement causes an END trap.
To use the CHAIN statement, you must quit the
current debug session and begin a new session by
manually issuing the appropriate system commands to
compile and execute the program called in the CHAIN
statement. (Under NOS, the chained-to program will
already have been made the primary file.)

REFERENCING LOCATIONS
OUTSIDE YOUR BASIC PROGRAM

BASIC programs sometimes consist of a BASIC main
program that calls one or more FORTRAN subrou—
tines. CID allows you to debug both the BASIC main
program and the FORTRAN subroutines in the same
debug session. In order to do this, you must be
familiar with the concept of the home program.

HOME PROGRAM

When a BASIC main program which calls FORTRAN
subroutines is executed under CID control, execu-
tion can be suspended in the main program or in any
of the FORTRAN subroutines. The default home pro—
- gram is the program unit in control at the time of
suspension.

It is important to note that if the current home
program. is a FORTRAN subroutine, the BASIC CID
commands LET, IF, GOTO, PRINT, and MAT PRINT cannot
be used because their BASIC-like syntax is not
FORTRAN compatible. Instead you must use equiva-
lent FORTRAN CID commands with FORTRAN-like syntax.
For further explanation of FORTRAN CID commands,
see the CYBER Interactive Debug reference manual.

illustrated by the
(Figure 4-5 also -

The home program concept is
debug session in figure 4-5.

60484110 A

shows one way to compile a BASIC main program with
a FORTRAN subroutine for use with CID.) Break-
points are set to suspend execution in the main
program after the call to SUBA, and in SUBA itself.
When execution is suspended in SUBA, SUBA is the
home program and the PRINT command shows 2.0 as the
value of A; when execution is suspended in the main
program, 1.0 is the value of A.

In some cases, you might want to reference a loca-
tion in a program unit other than the home program.
One way to accomplish this is to use CID commands
which allow a variable name or line number to be
qualified by a program unit name.

"QUALIFICATION NOTATION

Qualification notation allows you to specify a
variable name or 1line number that occurs in a
program unit other than the home program. This
notation has the following forms:
P.prog var
Denotes variable var in program unit prog.
P.prog L.n
Denotes line n in program unit prog.
The program unit name and the variable or 1line
number . are separated by an underscore character.
Qualification notation is valid for all CID com-
mands covered in this user’s guide except the PRINT,
MAT PRINT, GOTO, and LET commands.

Some examples of qualification notation are as
follows:

P.FACT N
Variable N in program unit FACT,
P,SUBA L.410

Line 410 in program unit SUBA.

/debug(on) =

DEBUG (ON)
/x,basic,i=bmain,b=lgo,go=0,1
1 BMAIN

0

00100 REM PROGRAM BMAIN
00110 LET A=1.0

00120 CALL SUBA

00130 PRINT "A=";A
00140 STOP

.006 CP SECONDS COMPILATION TIME
/ftn5,i=suba,b=lgo,lo=s/-a
1 FTN 5.14552 81/12/30. 08.32.26 PAGE
SUBROUTINE SUBA 74/74 OPT=0

1 SUBROUTINE SUBA
2 A=2.0
3 RETURN
4 END
0.007 CP SECONDS COMPILATION TIME.

/g0 —-=

~———— Compile BASIC main program BMAIN.

«s—— Compile FORTRAN subroutine SUBA.

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.130 -

? set,breakpoint,p.suba_L.3

? QO -

*B #2, AT P.SUBA_L.3 -

? print*,a e

2.
? go

*B #1, AT L.130 (OF P.BMAIN) —=

? print a -

1
? quit

.124 CP SECONDS EXECUTION TIME

Activate debug mode.

Load and execute BMAIN and SUBA.
Set breakpoint at line 130 of BMAIN.
Set breakpoint at line 3 of SUBA.
Initiate execution.

Breakpoint 2 detected.

Display the value of A using FORTRAN CID PRINT
command.

Breakpoint 1 detected. .
Display the value of A using BASIC CID PRINT
command.

Figure 4~5. Debug Session Illustrating Home Program Concept

Qualification notation can be substituted for the
normal variable or line number in CID commands for
which this notation is valid, as in the following
examples:

SET ,BREAKPOINT ,P.ADD L.210

Sets a breakpoint at line 210 of program
unit ADD.

SET,TRAP,STORE,P.PROC_A

Sets a STORE trap for variable A in program
unit PROC.

Qualification notation also appears in many types
of CID informative output. For example, the message

*B #1 AT P.NOSUB_L.140

indicates that a breakpoint was encountered at line
140 of the current home program unit NOSUB.

CID notation forms are summarized in table 4-2,

4-6

TABLE 4-2. CID NOTATION

Notation Description

P.prog Program unit prog

var Simple or subscripted variable
name

P.prog var Variable in program unit

prog

L.n Source line having sequence
number n

P.prog L.n Source line having sequence
number n in program unit prog

60484110 A

SET, HOME COMMAND

As an alternative to qualification notation or in
cases where this notation is invalid, you can spec—
ify locations outside the default home program by
first issuing the command

SET,HOME , program-unit

where program—unit specifies which program wunit
is the home program. Any wunqualified variable
names or line numbers specified after entering the
SET,HOME command belong to program~unit. The short
form of SET,HOME is SH.

It is important to note that the SET,HOME command
does not alter the location where execution resumes
when you issue GO; execution always resumes at the
location where it was suspended, regardless of
SET,HOME specification. 1In addition, when execu—
tion is resumed, a previous SET,HOME specification
is lost, and the home program reverts to the one
currently executing.

The debug session in figure 4-6, which wuses the
programs shown in figure 4-5, illustrates an exam-
ple of the SET,HOME command. Note that on program
termination, the home program is once again the
main program. To print the value of A in subrou-
tine SUBA, the SET,HOME command must be entered.

DEBUGGING AIDS FOR PROGRAMS
WITH MULTIPLE PROGRAM UNITS

CID provides features that can be helpful when your
BASIC main program contains a number of FORTRAN
subroutine calls, The #HOME debug variable tells
you the name of the program unit where execution is
suspended (unless you changed the home program name
with the SET,HOME command). The LIST,MAP command
provides you with a concise 1list of subroutine
names.

#HOME DEBUG VARIABLE

The #HOME debug variable is a special variable

‘belonging to CID. This variable always contains

the name of the current home program. You can
display the contents of this variable with the
command :

DISPLAY, #HOME

CID displays the name of the current home program
in the form:

#HOME=P, program—unit

Although CID normally displays the home program
name when suspension occurs in a different program
unit, this variable is useful for determining the
subroutine in which execution is suspended. Note,
however, that if you change the home program with
the SET,HOME command, #HOME ‘contains the name of
the new home program.

LIST MAP

The LIST,MAP command, which displays Lload map
information, is wuseful when your BASIC program
contains many FORTRAN subroutine calls because it
provides a concise list of subroutine names. This
command has the forms:

LIST,MAP

Lists all modules (program units) in your
field length. The list includes BASIC and
FORTRAN library modules as well as user-
defined modules.

LIST,MAP,P.namel,P.name2,...,P.namen

Lists the first word address (FWA), length
(octal words), and all entry point names
for the specified program units.

Figure 4-7 illustrates a debug session for the pro-
grams in figure 4-5 in which the LIST,MAP command
is issued.

CYBER INTERACTIVE DEBUG

? gO -

*B #1, AT L.130 —=
? print a -

1
? set ,home,suba =

? print*,a -

2.
? g0 -t

A= 1

? print a -

1
? quit

? set,breakpoint,l.130 ~e—————— Set breakpoint at 1ine 130 of home program (BMAIN).
Initiate execution.

Execution suspended at 1ine 130.
Display value of A defined in home program (BMAIN).

Designate FORTRAN subroutine SUBA as home program.

‘Display value of A defined in home program (SUBA).
Resume execution (at point of suspension in BMAIN).

*T #17, END IN P.BMAIN L.140 —«— Program terminates.
Display value of A defined in home program (BMAIN).

Figure 4-6. Debug Session Illustrating SET,HOME Command

60484110 A

CYBER INTERACTIVE DEBUG
? list,map

DBUG., BMAIN, SUBA,
BASOGEN, BASERRS, CPU.CPM,

? Llist,map,p.bmain -

BASEGEN, BASRTS, BASSINT, BASSMGR

CPU.LFM, CPU.SYS, UCLOAD

PROGRAM - BMAIN, FWA = 3446B,

ENTRY POINTS - BASINT.,
? list,map,p.suba —=

LENGTH = 554B

BASSRT., BMAIN

PROGRAM - SUBA, FWA = 42228B,

?

LENGTH = 21B, ENTRY POINTS - SUBA

User programs.

Display first word address,
length, and entry points of
BMAIN.

‘Display first word address,

length, and entry points of
SUBA. .

Figure 4-7.

Debug Session Illustrating LIST,MAP

60484110 A

AUTOMATIC EXECUTION OF CID COMMANDS S

m

In many cases, you need to enter the same command
or sequence of commands repeatedly during the
course of a debug session. Reentering complicated
assignment commands in this manner can be a time-
consuming process. To eliminate this process,
CYBER Interactive Debug (CID) provides you with the
ability to define, save, and automatically execute
sequences of commands. This feature can be used to
improve - debugging efficiency = whenever the same
group of CID commands must be entered repeatedly.
Automatic command execution is commonly used when
debugging loops and in multiple debug sessions that
require the same commands. In addition, CID pro-
vides some special sequence commands that allow you
to incorporate BASIC-like logic into command se-
quences. For example, sequence commands allow
branching and conditional execution of CID commands.

COMMAND SEQUENCES

A command sequence, which consists of a series of
CID commands, is executed automatically either when
certain conditions occur or when you enter the
appropriate command from the terminal.

There are three ways to establish a command ' se-
quence:

By defining -a command sequence as part of a
breakpoint or trap. This causes the sequence
to be executed whenever the breakpoint or trap
occurs., A sequence defined in this manner is
called a breakpoint body or trap body.

By defining a command sequence called a group.
A group is executed by issuing a READ command
from the terminal or from another command
sequence.

By creating a file which contains a command
sequence. The commands in this file are exe-
cuted by issuing a READ command at the terminal
or from another command sequence.

During normal execution, CID prompts you for input
-after a command is executed. During sequence execu-
tion, however, CID executes all the commands in the
sequence without interruption. Once execution of
the sequence is completed, execution of your pro-
gram resumes at the point where it was suspended.
You do not get control .during sequence execution
unless you provide for it by using the PAUSE com-
mand, which is described later in this section.

Command sequences can be nested; that is, command
sequences can be called from other command se-
quences. However, a command sequence must have
finished executing before it can be executed again.
(It cannot execute itself, directly or indirectly.)

60484110 A

COLLECT MODE

Collect mode is a mode of execution in which CID
commands are not executed immediately after they
are entered, but are included in a command sequence
for execution at a later time. Collect mode must
be activated before you can define a breakpoint
body, a trap body, or a group. The procedure for
entering and leaving collect mode is described
under Breakpoints and Traps With Bodies.

Commands in a sequence you are creating cannot be
altered while CID is in collect mode. If you want
to change a command you have -entered, you must
leave collect mode and proceed as described under
Editing a Command Sequence, or you must reenter the
entire command sequence.

MULTIPLE COMMAND ENTRY

You can enter more than one command on a single
line by separating the commands by a semicolon.
For example:

SET,BREAKPOINT,L.250;LIST,VALUES;GO

Note that because a semicolon can be used to sepa-
rate items in the BASIC PRINT and MAT PRINT state-
ments, the CID PRINT and MAT PRINT commands must be
separated by two semicolons from the next command
in a multiple command line, as in the following
example:

SET,BREAKPOINT,L.310;MAT PRINT A;;GO

In interactive mode, CID does not execute the
multiple command line until you press the RETURN
key; it then executes the commands in the order you
entered them. In collect mode, the commands are
not executed immediately, but are included in the
command sequence for execution at a later time.

This method of command entry is especially con-
venient when you are defining command sequences
because you do not have to wait for an input prompt
before entering each command.

SEQUENCE COMMANDS

CID provides a set of connﬁands intended specifically
for use with command sequences. These-commands are
summarized in table 5-1.

TABLE 5-1. SEQUENCE COMMANDS

Command Description

EXECUTE Resumes execution of your program

GO Resumes the process most recently
suspended

IF Performs conditional execution of
commands

JUMP Transfers control within a

command sequence to a label
defined by a LABEL command

LABEL Defines a label within a command
sequence
PAUSE Temporarily suspends execution of

the current command sequence and
reinstates interactive mode
allowing commands to be entered
from the terminal

READ Initiates execution of a command
sequence defined as a group or
stored on a file; reestablishes
trap, break point, and group
definitions stored on a file

BREAKPOINTS AND TRAPS
WITH BODIES

A body is a sequence of commands specified as part
of a SET,BREAKPOINT or SET,TRAP command. To define

a breakpoint or trap with a body, you must first
initiate collect mode by including a left bracket
as the last parameter of the SET,BREAKPOINT or
SET, TRAP command. For example:

SET, TRAP,LINE,1.140...1.180 [

The bracket and the preceding parameter must not
be separated by a comma; the blank separator is
optional.

When the above command is entered, CID displays:

IN COLLECT MODE
?

You then enter the commands that make up the body.
Each command entered while CID is in collect mode
becomes part of the body. CID scans the command
for syntax errors but does not execute the com-
mand. Any number of commands can be included in a
body, but command sequences should. be kept short
and simple so that debugging the sequence does not
require more time than debugging your program.

5-2

To leave collect mode and return to interactive
mode, enter a right bracket in response to the ?
prompt or at the end of a command line. CID then
displays

END COLLECT MODE
?

and you can continue the session.
An exémple of defining a breakpoint with a body is
shown in figure 5-1. Note that the command sequence

shown in figure 5-1 can also be entered as follows:

SET ,BREAKPOINT,L.180[LET Y=X/2.0;PRINT X,Y]

? set,breakpoint,L.180 [

IN COLLECT MODE
? let y=x/2.0

? print x,y

2?1

END COLLECT MODE

Figure 5-1. Breakpoint With Body

When a breakpoint or trap with a body is encoun-
tered, program execution is suspended and the
commands in the body are executed automatically.
Program execution then resumes at the breakpoint or
trap location; CID does not give control to you
upon completion of the command sequence.

When a breakpoint or trap with a body is encoun-
tered during execution, the normal breakpoint or
trap message is not displayed. However, you can

provide your own notification of the execution of a
breakpoint or trap body by including a PRINT com-

mand in the sequence.

You do not get control during execution of a se-
quence unless you have provided for it by including
a PAUSE command (described under Receiving Control
During Sequence Execution) in the body. When the
body has been executed, execution of your program
automatically resumes at the location where it was
suspended.

An example of the procedure for establishing a
breakpoint body is illustrated in figure 5-2. The
program used in this example is shown in figure 3-3
(see section 3). A breakpoint with a body is
established at the RETURN statement in subroutine
AREA, The breakpoint body contains the following
commands:

A PRINT command to display a message at the
beginning of the sequence

A DISPLAY command to display the contents of
the #LINE variable which contains the current
line number

Two PRINT commands to display the input values
and the value of A

60484110 A

CYBER INTERACTIVE DEBUG
? set,breakpoint,.240 [—=

IN COLLECT MODE
? print "in subroutine area"

? display,#line
? print "input is ";x1;y1;x2;y2;x3;y3

? print "area is ";a

END COLLECT

IN SUBROUTINE AREA
HLINE = P.TRIANGL L.240

INPUTIS 0 0 2 0 0 2

AREA IS 2
THE AREA OF THE TRIANGLE IS 2 ~eagm———
IN SUBROUTINE AREA

HLINE = P.TRIANGL L.240

INPUT IS 0 1 .5 2-1 1.2

AREA IS .55
THE AREA OF THE TRIANGLE IS .55

IN SUBROUTINE AREA

#LINE = P.TRIANGL L.240

INPUT IS .2 -2.9 -1.3 8 5.6 7.8
AREA IS 37.455
THE AREA OF THE TRIANGLE IS 37.45S
IN SUBROUTINE AREA

HLINE = P.TRIANGL L.240

INPUT IS 6.1 2.1 -4 3.2 7
AREA IS 23.7
THE AREA OF THE TRIANGLE IS 23.7

*T #17, END IN L.170

? quit

Set breakpoint at line 240 and activate collect mode.

Breakpoint body. Commands are incliuded to display message,
current line number, input values, and final result.

?] - Turn off collect mode.

? g0 = Initiate program execution.

Output from program.

On each pass thru subroutine AREA, the breakpoint suspends
program execution and the commands in the body are exe-
~ cuted. After all input records are processed, the program

terminates.

Figure 5-2. Debug Session Illustrating Breakpoint With Body

Subroutine AREA is called four times; each time the
breakpoint is detected, the commands in the sequence
are executed.

Figure 5-3 shows how a trap body can be used to
trace program execution. In this session, a LINE
trap with a body is set. The trap body displays the
value of the debug variable #LINE. Figure 5-3 uses
the program shown in figure 3-13 (see section 3).

DISPLAYING BREAKPOINTS
AND TRAPS WITH BODIES

You can display a list of the commands in a break-
point body by entering one of the following forms
of the LIST,BREAKPOINT command:

LIST,BREAKPOINT,L.m,...,Len

Displays the complete definitions, including
the bodies (if any), of the breakpoints at
the specified lines, m,...,n.

LIST,BREAKPOINT,#nl,#n2,...,#mm

Displays the complete definitioms, including
the bodies (if any), of the breakpoints
having numbers =nl, n2,...,nm; breakpoint
numbers are assigned by CID when the break-
points are established.

60484110 A

Other forms of the LIST,BREAKPOINT command list the

.breakpoint: location but not the commands in the

body. :

Following are some examples of the LIST,BREAKPOINT
command .

LIST,BREAKPOINT, #1,#5,#6

Lists the locations and bodies of break-
points 1, 5, and 6.

LB,L.190

Lists the location and body of the break-
point at line 190.

Figure 5-4 illustrates a LIST,BREAKPOINT command
for the breakpoint established in figure 5-2.

To display a list of the commands in a trap body,
enter the command:

LIST,TRAP,#nl,#n2,...,#nm

This form of the LIST,TRAP command displays the
trap types, locations, and bodies (if any) of the
traps having numbers nl, n2,...,nm; the trap num-
bers are assigned by CID when the traps are estab-
lished. Other forms of the LIST,TRAP command list
only the trap type and location.

Initiate execution.

~«———— Qutput from trap body shows program flow.

Figure 5-3. Debug Session Illustrating Trap With Body

Display the complete definition of breakpoint #1 including the
breakpoint location and all commands in the breakpoint body.

CYBER INTERACTIVE DEBUG .
? set,trap,line,* [display,#line]-e——— Set LINE trap with body.
? GO =
#LINE = P.ARRYB L.100
#LINE = P.ARRYB_L.110
#LINE = P.ARRYE L.120
#LINE = P.ARRYB L.130
#LINE = P.ARRYB L.140
#LINE = P.ARRYE L.150
#LINE = P.ARRYB L.200
HLINE = P.ARRYE L.210
HLINE = P.ARRYE L.220
#LINE = P.ARRYB L.230
#LINE = P.ARRYE L.220
HLINE = P.ARRYB L.230
#LINE = P.ARRYB L.220
#LINE = P.ARRYB L.230
HLINE = P.ARRYB_L.220
#LINE = P.ARRYB L.230
#LINE = P.ARRYB L.220
HLINE = P.ARRYB L.230
#LINE = P.ARRYB L.240
#LINE = P.ARRYE L.160
HLINE = P.ARRYB L.170
#LINE = P.ARRYB L.200
#LINE = P.ARRYE L.250
#LINE = P.ARRYB L.260
#LINE = P.ARRYB L.270
#LINE = P.ARRYE L.260
HLINE = P.ARRYB_L.270
HLINE = P.ARRYB L.260
HLINE = P.ARRYB L.270
#LINE = P.ARRYE_L.260
#LINE = P.ARRYB L.270
#LINE = P.ARRYE L.260
#LINE = P.ARRYB L.270
#LINE = P.ARRYE L.280
#LINE = P.ARRYE..180
*T #17, END IN T.180
? quit

? list,breakpoint ,#1 =

*B #1 = L.240

SET ,BREAKPOINT,L.240 [

PRINT. "IN SUBROUTINE AREA"

DISPLAY,#LINE

PRINT "INPUT IS ";X1;Y1;X2;Y2;X3;Y3

PRINT "AREA IS ";A

3

?

Figure 5-4. Debug Session Illustrqting LIST,BREAKPOINT Command for Breakpoint With Body

For example,
LIST,TRAP,#2,i#5

lists the type, location, and body of the traps
numbered 2 and 5.

GROUPS

A group is a sequence of commands established and
assigned a name during a debug session, -but not

5-4

explicitly associated with a breakpoint or trap. A
group exists until you clear it or terminate the
debug session and is executed by entering an appro-
priate READ command. The command to establish a
group is as follows:

SET ,GROUP ,name [

where name is the name by which you reference the .
group. The left bracket activates collect mode, as
with breakpoint and trap bodies. All CID commands
subsequently entered become part of the sequence

60484110 A

until you terminate the sequence by entering a
rlght bracket. The short form of SET,GROUP is SG.

The command to execute a group is as follows:
READ,name

where name is the group name assigned in the
SET,GROUP command. You can issue .a READ command
directly from the terminal or from another command
sequence. In response to a READ command, CID
executes the commands in the group. After a group
has been executed, control returns to CID (if the
READ was entered from the terminal) or to the next
command in the sequence that issued the READ.

A group can be used when the same sequence of
commands is to be executed at different locations
in a program because a group, unlike a breakpoint
or trap body, can be executed at any time during
the debug session. Figure 5-5 shows an example of
a simple group definition.

? set,group,grpa [

IN COLLECT MODE
Let x=y+z
print x,y,z
]

END COLLECT
?

-~

[K]

Figure 5-5. SET,GROUP Command Example

The command sequence in figure 5-5 is executed by
entering the command:

READ, GRPA

When a group is ' established, it is assigned a
number in the same manner as breakpoints and traps.
A group can be referred to by number or name in the
LIST, CLEAR, and SAVE commands.

You can list the names and numbers of the groups
currently defined by entering one of the following
forms of the LIST,GROUP command:

LIST,GROUP,*

Lists the names and numbers of all groups
defined for the current debug session.
This statement does not 1list the commands
contained in the groups.

LIST,GROUP,name-list

Lists the commands contained in the groups
specified in name-list. Group names are
separated by commas.

LIST,GROUP,#nl,#n2,...,#om

Lists the commands contained in the groups
identified by the specified numbers.

The short form of LIST,GROUP is LG.

Normally, a group exists for the duration of a
debug session. You can remove existing groups from
the current debug session by entering one of the
following forms of the CLEAR,GROUP command:

CLEAR,GROUP, *

Removes all currently defined groups.
CLEAR,GROUP ,name-list

Removes the specified groups.
CLEAR,GROUP, #nl,#n2,...,#m

Removes the groups identified by the speci-
fied numbers.

The short form of CLEAR,GROUP is CG.

Figures 5-6 and 5-7, which use the program shown in
figure 3-13 (see section 3), illustrate debug ses-
sions using groups. In figure 5-6, two breakpoints
are set in subroutine SETB. When either breakpoint
is reached, the READ command is issued from the
terminal. In figure 5-7, the same breakpoints are
established except that a body containing a READ
command is defined for each breakpoint. This
causes the body to be executed automatically with
no intervention from the user when the breakpoints
are encountered. By defining a single group in-
stead of defining a body for each breakpoint, you
need enter the command sequence only once.

CYBER INTERACTIVE DEBUG
? set,group,grpone [\

IN COLLECT MODE

? print "executing grpone"

Define GRPONE. Commands are included
display a message, the current line num-

? display,#line > —

? mat print b

21)

END COLLECT
? set,breakpoint,l.240 -

ber, and the contents of array B.

Set breakpoint at line 240 of subroutine

? set,breakpoint,.280 -

AREA.
Set breakpoint at line 280 of subroutine

AREA.

Figure 5-6. Debug Session Iliustrating Group Execution Initiated at Terminal (Sheet 1 of 2)

60484110 A

? Llist,breakpoint,#1,#2 - List breakpoint definitions.

*B #1 = L.240, *B #2 = L.280

? 90 e ' Initiate execution.
*B #1, AT L.240 S , Breakpoint suspends execution at line 240.
? read,grpone —s Execute the commands in GRPONE.

EXECUTING GRPONE
HLINE = P.ARRYB_L.240
1 1 1 1 1

7 Q0 Resume execution.

*B #2, AT L.280
? read,grpone — : Execute the commands in GRPONE.

EXECUTING GRPONE
H#LINE = P.ARRYB L.280
-1 S -1 -1 -1

? quit

Figure 5-6. Debug Session Illustrating Group Execution Initiated at Terminal (Sheet 2 of 2)

CYBER INTERACTIVE DEBUG
? set,group,grpone L

IN COLLECT MODE

? print "executing grpone" . .
> Define GRPONE. Commands are included
2 display,#Lline — to display a message, the current line
1SpRaYL RN number, and the contents of array B.

? mat print b

71

END COLLECT

: Set breakpoints at lines 240 and 280.
? t,b -
set breakpoint,(.240 Cread,grponel } _ Define a body for each breakpoint which

contains a READ command to initiate exe~
cution of the commands in GRPONE.

? Llist,breakpoint, #1,#2 = List the definitions of the breakpoints.

*B #1 = L.240
SET,BREAKPOINT,L.240 [
READ, GRPONE]

*B #2 = L.280
SET,BREAKPOINT ,L.280 [
READ , GRPONE]

? 90 - Initiate program execution.

? set,breakpoint,l.280 [read,grponel

EXECUTING GRPONE
HLINE = P.ARRYB L.240

1 T 1 1 1
i The breakpoints of lines 240 and 280
suspend program execution and the READ
: i ~=—— commands in the bodies are automatically
EXECUTING CRPONE executed, causing the commands in GRPONE
-1 i -1 -1 -1 -1

*T #17, END IN L.180
? quit

Figure 5-7. Debug Session Illustrating Group Execution Initiated From Breakpoint Body

5-6 _ 60484110 A

In figure 5-7, note that there are three levels of
execution: the program, the breakpoint body, and
the group. When the breakpoint is reached, the
program is suspended and execution of the break-
point body is initiated. When the READ command is
encountered, execution of the breakpoint body 1is
suspended while the group is executed. When exe-
cution of the group is complete, execution of the
suspended breakpoint body resumes at the command
following the READ. When execution of the break-
point body is complete, execution of the suspended
program resumes.

Groups are especially useful when the same sequence
of commands is to be executed at more than one
location within a program. An example of this is
illustrated in figures 5-8 and 5-9. The program
MATOP defines two matrices and calls the BASIC
arithmetic matrix operations to add, subtract, and
multiply the matrices and store the results in an
array called M3. The purpose of the debug session

(figure 5-9) is to print the contents of M3 after

each matrix operation is performed. To accomplish
this, a group named MTRX is defined to contain the
appropriate MAT PRINT command. After each sub-
routine call, a breakpoint with a body containing a
command to execute the commands in group MIRX is
set. When each breakpoint is encountered, the
group commands are automatically read and executed.

00100 REM PROGRAM MATOP
00110 OPTION BASE 1

00120 DIM M3(3,3)

00130 MAT READ M1(3,3)

00140 MAT READ M2(3,3)

00150 MAT M3=M1+M2

00160 MAT M3=M1-M2

00170 MAT M3=M1*M2 -

00180 DATA 1,2,3,4,5,6,7,8,9
00190 DATA 10,11,12,13,14,15,16,17,18
00200 END

Figure 5-8. Program MATOP

CYBER INTERACTIVE DEBUG
? set,group,mtrx [\

IN COLLECT MODE
? print "printing the contents of m3"

? display,#line >

? mat print m3

2?3

END COLLECT
? set,breakpoint,L.160 [read,mtrx]

? set,breakpoint,l.170 L[read,mtrx]
? set,breakpoint,1.180 L[read,mtrx]

? List,group,mtrx e

*G #1 = MTRX
SET,GROUP ,MTRX [

PRINT "PRINTING THE CONTENTS OF M3"
DISPLAY,#LINE

?AT PRINT M3

PRINTING THE CONTENTS OF M3
HLINE = P.MATOP_L.160

1 13 15
17 19 : 21
23 25 27

- Define group MTRX. Command is included to display the
values of array M3.

Set breakpoints at lines 160, 170, and 180. In each break-
~=~———— point body, include a READ command to initiate execution in
group MTRX.

Display the definition of group MTRX.

? 90 s Initiate program execution.

Breakpoint suspends execution at Tine 160. READ command is
executed, and control returns in program.

Figure 5-9. First Debug Session for Program MATOP (Sheet 1 of 2) -

60484110 A

PRINTING THE CONTENTS OF M3
#LINE = P.MATOP_L.170
-9 -9 -9
-9 -9 -9
-9 -9 -9
PRINTING THE CONTENTS OF M3
#LINE = P.MATOP_L.180
84 90 96
201 : 216 231
318 342 366
*T #17, END IN L.200
? quit

Breakpoint suspends execution at line 170. READ command is
executed.

-«———— Breakpoint suspends execution at line 180. READ command is
executed, and program runs to completion.

Figure 5-9. First Debug Session for Program MATOP (Sheet 2 of 2)

The debug session in figure 5-10 is identical to
the debug session in figure 5-9 except that in
figure 5-10 the command READ,MTRX is issued from
the terminal instead of a breakpoint body. Note
that when the READ command is executed in the
breakpoint body (figure 5-9), program execution
continues after the group commands are executed.
However, when the READ command is entered at the
terminal (figure 5-10), control returns to CID
after the group commands are executed, and program
execution must be resumed with a GO command.

ERROR PROCESSING DURING
SEQUENCE EXECUTION

When CID is in collect mode and you are defining a
command sequence, CID scans each command you enter
for syntax errors. If a syntax error is detected,
CID displays an error message followed by a ?
prompt. You can then reenter the command. How-
ever, other errors such as nonexistent line number
or variable name cannot be detected wuntil CID
attempts to execute the command.

CID issues normal error and warning messages. during
sequence execution. When an error or warning con-
dition is detected, CID suspends execution of the
sequence and issues a message followed by an input
prompt (? for error messages; OK? for warning mes-
sages) on the next line. You can instruct CID to
disregard the command, replace the command with
another command, or, in the case of warning mes-
sages, execute the command. The ways in which you
can respond to error and warning messages are
summarized as follows:

5-8

OK or Yes

CID executes the command (for warning mes-
sages only).

NO
CID disregards the command. Execution
resumes at the next command in the sequence.
NO,SEQ

CID disregards the command and all remain-
ing commands in the sequence.

Any other CID command

CID executes the specified command line in
place of the current command, and resumes
execution of the sequence.

An example of error processing during sequence
execution is illustrated in figure 5-11. During
execution of group CGRP, CID issues three error
messages. After each message is issued, CID gives
you control. In response to the first error mes-
sage, a new command, which will be executed in
place of the incorrect command, is entered. In
response to the second error message, NO is entered,
instructing CID to ignore the incorrect command and
resume execution of the sequence. In response to
the third error message, NO,SEQ is entered, in-
structing CID to disregard the incorrect command
and all remaining commands in the sequence and to
give you control.

60484110 A

CYBER INTERACTIVE DEBUG
? set,group,mtrx [

IN COLLECT MODE
? print "printing the contents of m3"

» display,#line ~=— Define a group to print array M3.
? mat print m3
21

END COLLECT
? set,breakpoint,i.160

? set ,breakpoint,L.170 Set breakpoints at lines 160, 170 and 180.
? set,breakpoint,L.180

? go

*B #1, AT L.160

? read, mtrx Initiate execution of group while execution is suspended at line
160.

PRINTING THE CONTENTS OF M3
HLINE = P.MATOP L.160

1 13 ' 15
17 19 ‘ 21
23 25 27
? go = Resume program execution.
*B #2, AT L.170
? read,mtrx - - : %:;:igg.execution of group while execution is suspended at

PRINTING THE CONTENTS OF M3
#LINE = P.MATOP_L.170

-9 = -9
-9 -9 -9

-9 \ -9 -9

? go <= Resume program execution.

*B #3, AT L.180

? read,mtrx - %r;:":i?&e’.execution of group while execution is suspended at

PRINTING THE CONTENTS OF M3
HLINE = P.MATOP_L.180

84 90 96

201 216 231

318 342 366
? quit

Figure 5-10. Second Debug Session for Program MATOP

60484110 A ’ . 5-9

? Llist,group,cgrp =

Display group definition.

*G #1 = CGRP
SET,GROUP,CGRP [
PRINT B(15)

LET X=1.0

LET €=2.0

LET Y=3.0

LET Z=X+Y

PRINT "z=";1

LET B(4)=B(4)+C
PRINT "B(4)=";B(4)
1

? read,cygrp -

Initiate execution of group CGRP.

*CMD - (PRINT B(15)) *ERROR - SUBSCRIPT OUT OF RANGE -«—— Indicated command contains error.

? print b(5)
0

? NO =k

*CMD - (LET €=2.0) *ERROR - NO PROGRAM VARIABLE C -«—— Indicated command contains error.

Replace incorrect command with new command
and resume group execution.

= 4

? no,seq -

*CMD - (LET B(4)=B(4)+C) *ERROR - NO PROGRAM VARIABLE C-w— Indicated command contains error.

Disregard erroneous command and resume group
execution.

? g0 —-x

/ commands in group. Control returns to CID.

Disregard erroneous command and all remaining

Resume program execution.

*T #17, END IN L.160
Ll

Figure 5-11. Debug Session Illustrating Error Processing During Sequence Execution

RECEIVING CONTROL DURING
SEQUENCE EXECUTION

Normally, a command sequence- executes to completion
without returning control to CID. In some in-
stances, however, you could want to temporarily
gain control during execution of a sequence for the
purpose of entering other commands and then resume
execution. You can use the PAUSE command to sus-
pend execution of a sequence and the GOTO (described
in section 3), GO, or EXECUTE commands to resume
execution.

PAUSE COMMAND

The purpose of the PAUSE command is to suspend
execution of a command sequence. The formats of
the PAUSE command are as follows:

PAUSE
and
PAUSE,"string"

where string is any string of characters. When CID
encounters this command in a sequence, execution of
the sequence is suspended and CID gets control. If
a string. is specified, the character string is
displayed when the PAUSE command is executed.

5-10

The PAUSE command is meaningful only in a command
sequence; if entered directly from the terminal, it
is ignored. i

~When a PAUSE command is encountered in a breakpoint-

or trap body, CID displays the breakpoint or trap
message followed by any string of characters in-
cluded in the PAUSE command. CID then prompts you
for input; you can enter any valid CID command.

GO AND EXECUTE COMMANDS

"The functions of the GO and EXECUTE commands are

identical except when issued following suspension
of a command sequence. In this case, the functionms
of the GO and EXECUTE commands are as follows:)

GO resumes execution of the suspended sequence.

EXECUTE causes an immediate exit from the se-
quence and resumes execution of the program.

The debug session in figure 5-12 illustrates the
PAUSE, GO, and EXECUTE commands. This session was-
produced by executing program TRIANGL, shown in
figure 3-3 (see section 3), under CID control. The
purpose of this session is to suspend execution at
the beginning of the subroutine AREA in order to
display the input values and change them if nec~
essary, and to suspend execution at the end of the
subroutine in order to display the calculated area.

60484110 A

CYBER INTERACTIVE DEBUG
? set,breakpoint,1.190 [

IN COLLECT MODE

? print "input is";x1;y1;x2;y2;x3;y3 . . .
}.q————-Set breakpoint with body at line 190 of subroutine AREA.

? pause,''changes?"

? print "end of group"

21)

END COLLECT
? set,trap,store,a [

INTERPRET MODE TURNED ON
IN COLLECT MODE -«=—— Set STORE trap with body for variable A.

? print "area is";a

? 1]
END COLLECT
? QO - Initiate program execution.
INPUT IS0 0 2 0 0 2= Breakpoint suspends execution; sequence execution initiated.
*B #1, AT L.190 }#_ . .
CHANGES? PAUSE command suspends execution and displays message.
? QO - Resume sequence execution.

END OF GROUP
AREA IS 2 —= STORE trap initiates execution of trap body.
THE AREA OF THE TRIANGLE IS 2 ~w——eu-o Program output. :

INPUT IS 0 1 .5 2 -1 1. 2_} Breakpoint suspends program execution on second pass through

*B #1, AT L.190 ¢)
CHANGES?\ AREA; PAUSE command suspends sequence execution.

? let x1=1.0
} — Assign new values to X1 and Y1.

? let y1=2.0

? 90 = Resume sequence execution.

END OF GROUP

AREA IS .2
THE AREA OF THE TRIANGLE 1S .2
INPUT IS .2 -2.9 -1.3 8 5.6 7.8
*B #1, AT L.190

CHANGES?

? let . x3=3.9

. Third pass through AREA. Assign new value to X3 and resume
execution.

? go

END OF GROUP

AREA IS 28.19
THE AREA OF THE TRIANGLE IS 28.19

INPUT IS 6.1 2 .1 -4 3.2 7 Fourth pass through AREA. Resume execution. Program runs to
*B #1, AT L.190 completion. :
CHANGES ? ' :
? execute

AREA IS 23.7

THE AREA OF THE TRIANGLE IS 23.7
*T #17, END IN L.170

? quit

Figure 5-12. Debug Session Illustrating PAUSE, GO, and EXECUTE Commands

60484110 A 5-11

To accomplish this, a breakpoint with a body is set
at line 190 in subroutine AREA. Three commands are
included in the body: two PRINT commands and a
PAUSE command. A STORE trap is established for the
variable A, A body containing a command to print
the value of A is defined for this trap. On each
of the four passes through subroutine AREA, the
commands in the sequence are executed automati-
cally. When the PAUSE command is detected on the
first pass, GO is entered to resume sequence exe-
cution. On the next two passes through the sub-
routine, while sequence execution 1is suspended
because of the PAUSE command, LET commands are
entered to change the values of some of the input
variables. When the PAUSE command is detected on
the fourth pass, EXECUTE is entered to resume pro-—
gram execution immediately. Note that this time
the second PRINT command in the breakpoint body is
not executed.

CONDITIONAL EXECUTION
OF CID COMMANDS

CID allows conditional execution of commands in
much the same manner as BASIC allows for condi-
tional execution of statements. CID provides an IF
command that is similar to the BASIC IF statement
and a JUMP command which must be used with a LABEL
command.

IF COMMAND

The IF command is used to control the selection of
CID commands based on a comparison of program vari-
ables or computed variables.

The format of the IF command is as follows:

IF relexp THEN command

where relexp 1s a relational expression and command
is any valid CID command. If the relational ex-
pression is true, the command is executed.

The form of a relational expression is the same as
the form in BASIC. The following relational opera—
tors are valid: =, >, <, <>, <=, and >=.

The logical operators AND, OR and NOT can be used
to connect simple relational expressions. IF THEN
~ELSE is not supported.

The following restrictions apply to the use of the
IF command:

Only variables defined in the current home
program can appear.

CID debug variables are not allowed.

Function references and exponentiation are not
allowed.

Although the consequent command in an IF command
can be any valid CID command, it is usually a
PRINT, LET, or GOTO command, as in the following
examples:

5-12

IF X>Y+Z THEN PRINT "VALUES ARE ";X,Y

If X is greater than Y+Z, print the values
of X and Y.

IF I=1 THEN LET Z=X*2.0

If I is equal to 1, the value X times 2.0
replaces the current value of Z.

IF A>0.0 AND B<0.0 THEN GOTO 150

If the value of A is greater than zero and
the value of B is less than zero, control
transfers to line 150 of the program.

Although you can issue an IF command from the
terminal, this command is especially useful in
command sequences. You can use the IF command
together with the GO, GOTO, or EXECUTE commands to
perform a test and conditionaliy transfier control
to another command in the sequence, or to exit from
the sequence as in the following examples:

IF A>B OR A<C THEN GO

If the value of A is greater than the value
of B or less than the value of C, exit from
the current sequence and resume execution
of the most recently suspended process.

IF I<>0.0 THEN GOTO 270

If the value of I is not equal to zero,
exit from the current sequence and resume
program execution at statement 270.

IF X+T<Y+S THEN EXECUTE

If the valu