
1
Oo/18/81

Tab1e of Contents

1.0 INTRODUCTIO~ • •••

z.o LANGUAGE OVERVIEW •

3.0 METALANGUAGE ANO BASIC CONSTRUCTS ••••
3.1 METALANGUAGE • ••••••••••••••
3.2 LEXICAL CONSTRUCTS • •••••••••••

3.2.1 ALPHABET • ••• • ••• • • • • • • •
3.2.2 IDENTIFIERS •• • • • • • •••• • •
3.2.3 BASIC SYMBOLS ••••••••••••
3.2.4 CONSTANTS ••••••••••••••
3.2.5 CONVENTIONS FOR BLANKS •••••• • •
3.Z.6 COMMENTS ••••••••• • •••••

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

4.0 CYBIL TYPES •••• • ••••• • ••••••••••••
4.1 TYPE DECLARATIONS •• • ••••••••• • •••••• •
4.Z TYPE HATCHING • • • • • • • • • • • • •• • • • •••••

4.2.1 TYPE EQUIVALENCE ••• • • • • • • • •••••••••
4.2.2 POTENTIAL EQUIVALENCE, INSTANTANEOUS TYPES ••••••

4.3 FIXED TYPES • •• • • • •••• • •• • •• • ••••••
4.3.1 BASIC TYPES ••••••••••••• • •• • ••••

4.3.1.1 Scalar Types •••••••••••••••••••
4.3.1.1.1 I~TEGER TYPE ••••••••••••• • ••••
4.3.1.1.2 CHARACTER TYPE • • • • • •• • •• • ••••••
4.3.1.1.3 ORDINAL TYPE •••••••••••• • •••••
4.3.1.1.4 BOOLEAN TYPE ••• • • • • • • • •• • • • • • •
4.3.1.1.5 SUBRANGE TYPE •••• • ••••• • • •••••
4.3.1.2 Floating Point Type •••••••••••••••
4.3.1.2.1 REAL TYPE • • • • • •••• • •• • • •••• •
4.3.1.z.2 LONGREAL TYPE •••••••••••••••••
4.3.1.3 Pointer Type •••••••••••
4.3.1.3.l ·POINTER TO CELL ••••• • ••
4. 3 .1. 4 Ce I I Type • • • • • • • • • • • •

4.3.2 STRUCTURED TYPES •••••• • • • ••
4.3.z.1 Set Type •••••••••••••
4.3.2.2 String Type •••••••••••
4.3.2.3 Array Type ••••••••••••
4.3~2.3.l PACKED ARRAYS • • • • • • • • •
4.3.Z.3.Z EXAMPLES OF ARRAY TYPE • •• • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

4.3.2.4 Record Type •••••••••••••••••••
4.3.2.4.l INVARIANT RECORDS ••••••••• • •••••
4.3.z.4.2 VARIANT RECORDS ANO CASE PARTS • • • • • • • • •
4.3.Z.4.3 RECORD TYPE EQUIVALENCE ••••••••••••
4.3.2.4.4 PACKED RECORDS • • ••••• • • ••••••••
4.3.Z.4.5 EXAMPLES OF RECORD TYPE •••••• • •••••

4.3.3 STORAGE TYPES • • ••••••••••••••••••
4.3.3.1 Sequence Type ••••••••••••••••••
4.3.3.2 Heap Type ••••••••••••••••••••
4.3.3.3 Sequence and Heap Space •••••••••••••

4.4 ADAPTABLE TYPES • • • •• • • • ••• • • •••••• • •
4.4.1 ADAPTABLE STRING •••• • ••••••••••••••

1-1

2-1

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-4
3-5

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-6
4-6
4-7
4-7
4-7
4-8
4-9
4-q
4-9

4-10
4-11
4-11
4-12
4-lZ
4-12
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-17
4-17

2
06/18/81

4.4.Z ADAPTABLE ARRAY • • • • •• • • • • • • • • • • • • •
4.,.3 ADAPTABLE RECORD • • • • • • • • • • • • • • • • • • •
4.4.4 ADAPTABLE SEQUENCE ••• • • • ••• • • •• • • • • •
4.4.5 ADAPTABLE HEAP •• • ••• • •••••••• • • •••

4.5 PROCEDURE TYPE •• • • ••• • ••• • •••• • •••••
4.6 SOUND VARIANT RECORD TYPE • • •••••• • •••••••
4.7 PACKING • • • • • • • ••• • • • • •• • • • • • • • ••
4.8 ALIGNMENT •
4.9 OTHER ASPECTS OF TYPES • • • • • • • • • • • • • • • • • •

4.9~1 VALUE AND NON-VALUE TYPES •• • •••••••••••
4.9.2 COMPARABLE AND NON-COMPARABLE TYPES • • • ••• • • •
4.9.3 FUNCTION-RETURN TYPES •••• • • ••••••••••
4.q.4 TYPE CONVERSION •••• • •• • • ••••••• • ••

5.0 VALUES AND VALUE CONSTRUCTORS • • • • • • • •••••••
5.1 CONSTANTS ANO CONSTANT DECLARATIONS ••••• • • ••••

5.1.1 CONSTANTS ••••••••••••••••••••••
5.1.2 CONSTANT EXPRESSIONS ••••••••••• • •••••
5.1.3 CONSTANT DECLARATIONS ••• • ••••••• • ••••

5.2 SET VALUE CONSTRUCTORS ••• • ••••••••• • • • • •
5.3 INDEFINITE VALUE CONSTRUCTORS • ••• • • • •• • • • • •

6.0 VARIABLES •••
6.1 VARIABLES AND VARIABLE DECLARATIONS • • •••••• • ••

6.1.1 ESTABLISHING VARIABLES ••••••••• • ••••• •
6.1.2 TYPING OF VARIABLES •••••• • ••••••••••

6.1.2.1 Instantaneous Types •••••••••••••••
6.1.3 EXPLICIT VARIABLE DECLARATIONS • • ••••••••••

6.2 ATTRIBUTES • •••••• • • • ••• • • • • • • • • • • •
6.2.1- ACCESS ATTRIBUTE •••••••••••• • •••••
&.2.2 STORAGE ATTRIBUTES AND LIFETIMES •••••••••••

6.2.2.1 Automatic Variables •••••••••••••••
6.z.z.z Static Variables •••••••••••••••••
6.Z.Z.3 lifetime Conventions •••••••••••••••
6.Z.Z.4 lifetime of Formal Parameters ••••••••••
6.2.z.5 Lifetime of Allocated Variables •••••••••
6.2.2.6 Pointer Lifetimes ••••••••••••••••

6.2.3 SCOPE ATTRIBUTES •• • •••• • •••••••••••
6.3 INITIALIZATION ••••••• • • • • •• • •• • •• • • •

6.3.1 I~ITIALIZATION CONSTRAINTS ••••••••••••••
6.4 SECTIONS AND SECTION DECLARATIONS • •••• • •• • •••
6.5 VALID COMBINATIONS OF ATTRIBUTES AND INITIALIZATIONS •••
6.6 VARIABLE REFERENCES •••• • •• • •• • • • • •• • ••

6.6.l POINTER REFERENCES ••• • •• • ••• • • • • • • • •
6.6.l.1 Examples of Pointer References ••••••••••

6.6.2 SUBSTRI~G REFERENCES •••••••• • ••••••••
6.6.2.1 Substring References as Character References •••

6.6.3 SUBSCRIPTED REFERENCE • •••••••••••••••
6.6.4 FIELD REFERENCES ••••• • •••••••• • • • • •

7.0 PROGRAM STRUCTURE • • • •• • ••••
7.1 COMPILATION UNITS ••••••••••
1.z MODULES •••••••••• • • • • •
7.3 DECLARATIONS AND SCOPE OF IDENTIFIERS
7.4 MODULE - STRUCTURED SCOPE RULES • ••
7.5 PROCEDURES AND FUNCTIONS • • • ••••

• •
• •
• •
• •
• •
• •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

4-18
4-18
4-19
4-20
4-20
4-20
4-21
4-21
4-22
4-22
4-22
4-23
4-23

5~

5-1
5-1
5-3
5-3
5-4
5-4

6-1
6-1
6-1
6-Z
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-6
6-6
6-7
6-7
6-8
6-9
6-9

6-10
6-12
6-13
6-15

7-1
7-1
7-1
7-2
7-Z
7-2

3
Ob/18/81

7.6 STRUCTURED SCOPE RULES • • • • • • • • • • • • • •
7.7 SCOPE ATTRIBUTES • • • • • • • • • • • • • ••••

7.7.1 ALIAS HAMES • • • •••••••••••• • •
7.8 DECLARATION PROCESSING ••••••••••••••

7.8.1 BLOCK-EMBEDDED DECLARATIONS •••••• • ••
7.8.Z MODULE-LEVEL DECLARATIONS •••••• • • ••

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

8.0 PROCEDURES AND FUNCTIONS •••••• • ••••••••
8.1 PROCEDURE DECLARATIONS • • • •••••••• • ••••
8.2 FUNCTION DECLARATIONS • • • • • • • • • • • •••••

8.2.1 SIDE EFFECTS •••••••••••••••••••
8.3 XOCL PROCEDURES AND FUNCTIONS •••••••• • •••
B.4 PARAMETER LIST •

• •
• •
• •
• •
• •
• •

9.0 EXPRESSIONS •••••••••••••••••• • •• • •
9.1 EVALUATION OF FACTORS • • • • • • ••• • • • • • • • • •
9.2 OPERATORS • • • • • • • • ••• • • • • • • • • • • • • •

9.Z.l NOT OPERATOR •••• • • • •• • • • • • •••••• •
9.2.2 MULTIPLYING OPERATORS ••••••• • ••••••••
9.2.3 SIGN OPERATORS • • • • • •••••••••••••••
9.2.4 ADDIMG OPERATORS • • ••••• • • • • • ••• • •••
9.2.5 RELATIONAL OPERATORS • • •• • • • • •••••• • ••

9.Z.5.l Comparison of Scalars ••••••••••••••
q.z.5.z Comparison of Pointers ••••••••••••••
9.2.5.3 Comparison of Floating Point Types. • ••••••
9.Z.5.4 Comparison of Strings ••••••••••••••
9.2.5.5 Relations Involving Sets •••••••••••••
9.2.5.& Relations Involving Arrays and Records ••••••
9.2.5.7 Non-Comparabte Types •••••••••••••••
9.2.5.8 Table of Comparable Types and Result Types ••••

9.3 ORDER OF EVALUATIOH ••••••••••••• • • • • • •

10.0 STATEMENTS ••••••••••••••••• • •••••
10.1 SEMICOLONS AS STATEMENT LIST DELIMITERS •••••••••
10.2 ASSIGNMENT STATEMENTS ••••••••••••••••••

10.Z.l ASSIGNMENT COMPATIBILITY OF TYPES • • • • • • • • ••
10.3 STATEMENT lABElS • •••••••••••••••••••

10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS ••••••
10.~ STRUCTURED STATEMENTS • • ••• • ••• • ••••• • • •

10.4.1 BEGIN STATEMENTS ••••••••••••••••••
10.4.Z WHILE STATEME~TS ••••••••• • •• • •••••
10.4.3 REPEAT STATEMENTS •• • •••••••••••••••
10.4.4 FOR STATEMENTS •••••••••••••••••••

10.5 CONTROL STATEMENTS ••• • • ••••••••••••••
10.5.1 PROCEDURE CALL STATEMENT • • • • ••••••• • ••

10.5.1.1 Value Parameters ••••••••••••••••
10.s.1.2 Reference Parameters ••••••••••••••

10.5.Z IF STATEMENTS ••••••••••••••••••••
10.5.3 CASE STATEMENTS •••••••••••••••••••
10.5.4 CYCLE STATEMENT •••••••••••••••••••
10.5.5 EXIT STATEMENT •••••••••••••••••••
10.5.6 RETURN STATEMENT ••••••••••••••••••
10.5.7 EMPTY STATE"ENT •••••••••••••••••• •

10.6 STORAGE MANAGEMENT STATEMENTS •••• • • • •• • • • ••
10.6.l ALLOCATION DESIGNATOR ••••••••••••• • ••
10.6.2 PUSH STATEMENT ••••••••••••••••• • •

7-3
7-3
7-4
7-5
7-5
7-5

8-1
8-1
a-z
8-3
8-4
8-4

9-1
9-3
9-4
9-4
9-5
9-6
9-6
9-9
9-9
9-9

9-10
9-10
9-10
9-11
9-11
9-12
9-13

10-1
10-1
10-2
10-2
10-3
10-4
10-4
10-4
10-5
10-5
10-6
10-7
10-7
10-8
10-8
10-9

10-10
10-12
10-13
10-14
10-14
10-15
10-15
10-18

4
06/18/81

10.6.2.1 System-Managed Stack ••••••••••
10.6.3 NEXT STATEMENT • ••••• • •••• • •• •
10.6.4 RESET STATEMENT •••••••••••••••

10.&.4.1 Reset Sequence •••••••••••••
10.6.4.2 Reset Heap •••••••••••••••

10.6.5 ALLOCATE STATEMENT •••••••••••••
10.6.6 FREE STATEMENT •••••••••••••••

• • • •
• • •• . . ·• .
• • • •
• •• • •
• • • •
• • • •

11.0 STANDARD PROCEDURES ANO FUNCTIONS ••••••••••••
11.1 BUILT-IN PROCEDURE •••••••••••••••••••

11.1.l STRINGREP ($, L, P) •• • ••••••••••••••
11.2 BUILT-IN FUNCTIONS •••••••••••••••••••

11.2.1 SUCC(X) • •• • •••••••••••••••••••
11.z.z PRED(X) • • • • • ••• • •••• • ••••• • • • •
11.2.3 ORD(X) • • •• • • • ••••••••••••••••
11.2.4 CHRCXJ •• • • • •••••••••• • •••••••
11.Z.5 SINTEGERCX) •••••••••••••••••••••
11.Z.6 SREAL(X) • • ••••••••••••••••• • ••
11.2.7 SLONGREAL(X) •••••••••• • •••••••••
11.2.8 STRLENGTH(X) •••••••••• • •••••••••
11.2.9 LOWERBOUNDtARRAY) •••• • • • • • • • • ••• • • •
11~2.10 UPPERBOUNDtARRAYl • • • • ••• • •• • • • • • • •
11.2.11 UPPERVALUE CX) •••••••••••••••••••
11.2.12 LOWERVALUE (X) • ••• • • • • • • • • • • • • • • •

11.3 REPRESENTATION DEPENDENT FUNCTIONS ••••••• • •• •
11.3.l #LOCC<VARIABLE>J • •••••••••••• • ••••
11.3.2 #SIZECARGUHENT) • • • • •••• • ••••••• • ••

11.4 SYSTEM DEPENDENT PROCEDURES •••••••••••• • • •
11.4.1 #INLINE ('KEYPOINT•, Pl, P2• P3J • • •• • • ••••

12.0 COMPILE-TIME FACILITIES •••••••••••••••••
12.1 CYBIL SOURCE TEXT •• • •••••••••••••••••
12.Z COMPILE TIME STATEMENTS ANO DECLARATIONS ••••••••

12.2.1 COMPILE-TIME VARIABLES •••••••••••••••
12.2.Z COMPILE TIME EXPRESSIONS ••••••••••••••
12.2.3 COMPILE-TIME ASSIGNMENT STATEMENT • • •••••• • •
iz.z.4 COMPILE-TIME IF STATEMENT ••••••••••••••

12.3 PRAGMATS •
12.3.1 TOGGLE CONTROL ••••••••••• • • • • • • • •
12.3.z TOGGLES ••••••• • •••••••••••••••

12.3.z.1 Listing Toggles •••••••••••••••••
12.3.Z.2 Run-Time Checking Toggles ••••••••••••

12.3.3 LAYOUT CONTROL •••••••••• • ••••••••
12.3.3.l Source Layout ••••••••••••••••••
12.3.3.2 listing layout •••••••••••••••••
12.3.3.2.l PAGINATION •••••••••• • ••• • •••
12.3.3.2.2 lINEATION • • •••••••••••••••••
12.3.3.2.3 TITLING ••••• • •••••••••• • •••

12.3.4 MAINTENANCE CONTROL ••••••• • • • • • • • • • •
12.3~5 COMMENT CONTROL • • • •••••••••• • • • • • •

13.0 IMPLEMENTATION-DEPENDENT FEATURES
13.1 DATA MAPPINGS • • • • ••• • • •

• • • • • • • •
• • • • • • • •

• • • •
• • • •

10-18
10-18
10-lCJ
10-19
10-lCJ
10-20
10-ZO

11-1
11-1
11-1
11-2
11-2
11-2
11-2
11-2
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-4
11-4
11-4
11-4
11-5
11-5

12-1
12-1
12-1
12-1
12-2
12-2
12-3
12-3
12-4
12-5
12-5
12-6
12-6
12-6
12-7
12-7
12-7
12-8
12-8
12-9

13-1
13-1

APPENDIX 4 - CYBIL METALANGUAGE CROSS-REFERENCE

5
06/18/81

• • • • • • • Al

APPENDIX B - CYBIL RESERVED WORD LIST • • • • • • • • • • • • Bl

CYBIL LANGUAGE SPECIFICATION

LANGUAGE SPECIFICATION

for the

CYBER IMPLEMENTATION LANGUAGE

<CYBILi

Written By:
H.A.Wohlwend

Approved By:
L.L.Bumgarner

1

06118/81
REV: 6

E.H.Michehl1 AO&C

DISCLAIMER:

This document is an internal working
paper only. It is subject to change and
does not necessarily represent any
off I cl al intent on the part of CDC.

Copyright Control Data Corporation 1981

CDC Private

2
CYBIL LANGUAGE SPECIFICATION

REV

1

z

3

4

5

6

• •
• • • • • • • I

• • • • • t

• • • ' •

06/18/81
REV: 6

REVISION DEFINITION SHEET

DATE

10/07/77

·• •
• •

DESCRIPTION

Orig i na t.

12/19/77 t Updated to reflect comments received through
: the DCS review •

06/27/78
• •

• •
10/16/78 :

12/07/79

• • • • • I

t • •

Updated to reflect vz.o of the language
definition •

Updated to reflect comments receiwed through
the DC S r e v i e w •

Updated to reflect approved DAP's and
miscellaneous clarifications •

t I

: 06/01/81 : Updated to reflect approved
• •

• I

• t

• • • • • I

• •

• • • • • • • I

• 1

I • • • • t

• ' • •
I • • • • • • •

• •
t •

: miscellaneous clarifications •
• • • • • I

I
I

• I

• I

I • • t

• • • •
I

' •

' • • I

• • • • • •
• ' • I

• ' • I

DAP 1 s and

CDC Private

CYBIL LANGUAGE SPECIFICATION
1-1

06118/81
REV: b

--1.0 INTRODUCTION

The CYBIL language is intended to be used as the system
implementation language for Control Data Corporation. This document
provides the definition for the CYBIL language. This specification
was developed from Rev. 5 of this specification and from OAP•s 53470•
S34711 $34841 53485, 535271 S3b54, 53691, 53873 and 53899.

These OAP 1 s have Implementation Language Design Team and OCS
review cycle approval.

CDC Private

CYBIL LANGUAGE SPECIFICATION
2-1

06/18/81
REV: 6

#N•NNW•#NNN#N#NN##NNN###N###N#N##NN###NNN•NN#M#N#N#N##N###NN######NN#M

z.o LANGUAGE OVERVIEW

A CYBIL program consists of i1Attman1~, which define actions
Involving programmatic etements, and dl~iacatlAn~, which define such
elements.

The definable elements include ~•CiJ~1~~ and 2L2~A~ULI~' atf
having the characteristics that are conventionally associated with
their names. Declarations of instances of variables are spelled out
in terms of an l~~ntltllL for the element and a tx21 description,
which defines the operational aspects of the element and, in many
cases, Indicates a notation for referencing. In the case of a
variable declaration, the type defines the set of values that may be
assumed by the variable. Types may be directly described in such
declarations, or they may be referenced by a type identifier, which
in turn must be defined by an explicit type declaration. A small set
of pre-defined types are provlded, together with notations for
defining new types in terms of existing ones.

In general, an element may not enter into operations outside the
domain indicated by its type, and most dyadic operations are
restricted to elements of equivalent types te.g., a character may not
be added to an integer>. Since the requirements for type equivalence
are severe, these operational constraints are strict. Departures
from them must be explicitly spelled-out in ter~s of G2n~~t.~1AD
!U.DQtiADi•

The b.a£1G. t~a~~ inc.I ude the pre-def I ned lntuc.t.1 cbat., and .tUUll~.ID
types, att having their conventional connotations, value sets, and
operational domains. These are iGalat. 1~RIS, which define
well-ordered sets of values. A scalar type may also be def1ned as an
QL~lnal t~al by enumerating the Identifiers which stand for Its
ordinal values, or as a ~Uht.~D~I of another scalar type by specifying
the smallest and largest vatues of the subrange. Also Included In
the basic types are the floating point types: t.cai and l~ngL~~!
types. !.Aint:c. t~2li are included in the basic types. They
represent location values, and other descriptive information, that
can be used to reference instances of variables and other CYBIL
elements. Pointer~ are bound to specific types, and pointer
variables may assume, as values, only pointers to elements of those
types • C.~11 tx21~ a r e a I s o i n c t u de d i n the b as I c t y p es • Ce I I s
represent the smallest addressable memory unit supported by an
Implementation.

S.tt.U.QIUt.lsl t.tJUli represent col I ecti ons of components- and are

CDC Private

CYBIL LANGUAGE SPECIFICATION
2-2

06/18/81
REV: 6

--2.0 LANGUAGE OVERVIEW

defined by describing their component types and indicating a
so-called 1t£u~lutlng m1thg~. These differ in the accessing
discipline and notation used to select Individual components. Four
structuring methods are avaitable: ~&t structure, ~1£log structure,
aLLi~ structure, and LA~ALd structure.

A SA1 type represents atl subsets of values of some scalar type.

A stL!ng tx2c of length
values of character type.
Sn> is called a ~ubst~lng.
provided.

n represents all ordered n-tuples of
An ordered ~-tuple of these values (1 ~ ~
Notation for accessing substrings Is

An aLLa~ txaA represents a structure consisting of components of
the same type. Each component is selected by an iLL•X s•11~1Qt
consisting of an ordered set of D Index values whose types are
indicated In the array definition.

A L&G2~d t~el represents a structure consisting of a fixed number
of components called fields, which may be of different types and
which must be Identified by tlc!.d Ul!CS&ttu:.~. In order that the type
of a selected fleld be evident from the program text (without
executing the program> a field selector is not a computable value,
but Instead is an Identifier uniquely denot1ng the component to be
selected. These component identifiers are declared in the record
type definition.

A 1•Ll&Qt Ll~At~ t~ec may be specif led as consisting of several
~atlaots. This implies that different variables, although said to be
of the same type, may assume structures which differ in a certain
manner. The difference ~ay consist of a different number and
different types of components. The variant which is assumed by the
current value of a record variable is Indicated by a component field
which is common to all variants and is called the 1ai field.

Array and record types may have associated 2a~klna atl~ibYtl~
which can be used to specify component space-time trade-offs. Access
time for specific co•ponents of packed (space-compressed) structures
can be shortened by declaring them to be aligned. Allgnc~ also
provides a method of specifying specific hardware boundaries.

StAtaaA t~RC~ represent structures to which other variables may be
added1 referenced, and deleted under expllclt program control. There
are two storage types, each with its own management and access
characteristics. Ssaucn~A t~a~~ and b§aa 1~2~~ represent storage
structures Nhose components may be of diverse type. Components of
~JUUllDG~i are 11 an aged through the ope r at I on s of r es et t I n g to the
first component and moving to the next component and are accessed
through pointers constructed as by-products of the Ql&t operator.
Space for components of h~A2 ~t~LA~I~ must be explicitly managed by

CDC Private

CYBIL LANGUAGE SPECIFICATION
2-3

06/18/81
REVi 6

--2.0 LANGUAGE OVERVIEW

the operation of AllA~Atl and !Lil;
through pointers constructed as
operation.

the components
by-products of

are
the

accessed
allocate

A~a2ta~!e t~el~ are array, record, string, sequence and heap types
defined in terms of one indefinite bound. They may be used as formal
parameters of procedures -- in which case the bounds of the actual
parameters are assumed; or they may be used to define pointers to
structures which are meant to be explicitly fixed during execution of
the progr.am.

Denotations for explicit values of the basic and structured types
consist of ~AD~tan1~ and constant expressions, which denote constant
vatues of the basic and string types; and xalu~ ~An~tc.u~t~£i which
are used to denote instances of values of set, array, and record
types. The boolean constants (f~l~~,1£YI> are pre-defined. New
constants can be Introduced by ~iD~tant de.~lac.atign~, which associate
an identifier with a constant expression.

Sit xa!uc Ganst~u~tAt.~, which include set type information, may be
used freety in set expressions. ln~4fiD11l SAt ~alu1 ~Qn~tLM~t~LS
can be used only in initialization of variables where their type is
explicitly indicated by the context in which they occur.

Variabtes can be declared with lnltl~lllati~n specifications and
with certain at1tltu1t1s. lo.l.tl.1ll1.a.tlsu1 e.xac.e.s.~lADi are evaluated
when storage for the il•tic variable is allocated, and the resultant
values are then assigned to the variable. The attributes Include
ac~CiS attclbuts~ - which specify the purposes for which the variable
may be accessed; ~tA~aa~ at1~1~~1l~ - which specify when storage for
the varlabte is to be allocated and when it is to be freed; and ~~AQ~
at1£i~Utl~ -which specify the program span over which the declaration
Is to hold (the scope of the declaration). Unless otherwise
specified, the scope of a declaration is the ~lQ~k containing the
declaration, including all contained sub-blocks except for those
which contain a re-declaration of the identifier.

a!A~ki are portions of programs which are grouped together as
R~A~~du£~~ or tun~t!AD~• and used to define scope and to provide
shielding of Identifiers. Procedures or functions have Identifiers
associated with them, so that the identified portions of the Program
can be activated on demand by statements of the language.

A 2~AGA~M£l Is dectared in terms of Its identifier, the associated
program, a set of attributes, and a llst of fgtmal aaL~m~.t~~~·
Formal parameters provide a mechanism for the binding of references
to the procedure with a set of values and variables the aG1U•1
aa~amct~t~ -- at the point of activation.

A t1uu;.tian retuf'ns a value of a specified type. These

CDC Private

CYBIL LANGUAGE SPECIFICATION
2-4

06/18/61
REV: 6

--2.0 LANGUAGE OVERVIEW

c:luLn:t~a:s are restricted to the basic types. and are specified In
the function declaration.

In addition to their other programmatic aspects, blocks provide
partial mechanisms for the shielding and sharing of variables and
portions of programs. aA~UiAi (together with scope attributes}
provide a mechanism for the shielding and sharing of dectarations.
Modules are primarily designed to permit program packaging at the
"source" language level.

S..tat.All&Jl.ti define actions to be performed.

SttuG.tUt.Cd s.tat~mc.a.ts. are constructs composed of statement lists:
h:g!o ~11t~•cot~ provide for execution or a list of statements; Hh!Jg
, fQt and ~cacat statements control repetitive execution of a single
statement list.

tDUtL~! ~tatcmADts cause the creation or destruction of execution
environments. They provide for the actlvation of procedures, and for
general changes in the flow of control. 1! ~tat•mcnti provide for
the conditional execution of one of a set of statement lists.

StSlt:ISUl maD.1.QllUUl.t s.t.1t1mJlo.t~ provide mechanisms for al tocati ng
new local variables, moving forward and backward over components of
sequences, and allocating and freeing variables in heaps.

A set of pre-defined procedures and functions exists which can be
used for storage management, scalar conversions, etc.

finall_y, .11.s.i~Ulfl.C!lt ~tAtf:Dl.CDt.S cause variables to assume new
values.

tgmai!~:.t1mA-fA~l1itlA1' that are essentially extra-linguistic In
nature, are used to control the compitation process and construct the
program to be compiled; these inctude Ggme!le:tlml ~aLl~~l~

sic.1'1Atl.1iRD1• and .c.stmaiiA:tlm.1 1..tat~m1ot1•

CDC Private

CYBIL LANGUAGE SPECIFICATION
3-1

06/18/81
REV: 6

--3.0 METALANGUAGE AND BASIC CONSTRUCTS

3 • O HEIALAliiU&if-AtiILBAS.lt_C.DHSIIUJC.IS

3 • 1 Hf IALAliGUUii

In this specification, syntactic constructs are denoted by English
words enclosed between angle brackets < and >• These words also
describe the nature or meaning of the construct, and are used in the
accompanying description of semantics.

Constructs not enclosed In angte brackets stand for themselves.

The symbol :t• is used to mean "is defined as", and the vertical
bar : is used to signal an alternative definition.

An optional syntactic unit (zero or one occurrences) is designated
by square brackets C and l.

Indefinite repetition (zero or more occurrences) is designated by
braces { and >.

The definition:

(field> t:• <fixed field)
: <variant field>

is read: " a field is either a fixed field or a variant field."

The definition:

<f lxed field> :1a
<field selectors> : <type>

is read: "a fixed field consists of field selectors, followed by a
colon, followed by a type."

The definition:

<field selectors> ::a
(field selector>C,<field selector>}

is read: "field selectors consist of a field selector~ followed by

CDC Private

CYBIL LANGUAGE SPECIFICATION
3-2

06/18/81
REV: 6

--3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.1 METALANGUAGE

--
zero or more comma separated field selectors."

The angle brackets. square brackets, and braces are also elements
of the language, and therefore are used tn syntactic constructs.
Such syntactic occurtences of these sy•bols wltl be underscored when
necessary.

The def lnltion:

<attributes> :is 1 <attribute){,(attribute>} l

Is read as, •attributes consist of an attr1bute followed by zero or
more comma-separated attributes, the entire set of attributes being
enclosed In square brackets."

Words reserved for specific purposes In the language will always
be underscored.

fxam.eltt=

The definition:

<array spec> i:a

A~tax L<index>l 2! <component type>

Is read as, "an array spec ts composed of the word •array• followed
by an index enclosed in square brackets, followed by the Mord •of 1

followed by a component type.•

Appendix A of this specification contains a sorted alphabetic list
of alt constructs in the syntax with their definitions.

3. 2 LEllC.AL-~DtiS.I!UIC.IS.

The lexical units of the language - identifiers, basic symbols,
and constants are constructed from one or more (juxtaposed)
elements of the alphabet.

3.2.1 ALPHABET

The alphabet
ASCII cnaracter
defined.

consists of tokens from a subset of the 256-valued
set: those for which graphic denotations are

CDC Private

CYBIL LA~GUAGE SPECIFICATION
3-3

06/18/81
Rev: 6

--3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.l ALPHABET

--
<ascii character> :is <alphabet>

:<unprintable>
:<string delimiter>

<alphabet> ::= <letter>
:<digit>
:<special mark>
:<blanks>
:<unused mark>

<letter> ::s A:a:c:o:e:F:G:H:I:J:K:L:M
:N:o:P:o:R:s:r:u:v:w:x:v:z
:a:b:c:d:e:r:g:h:1:J:k:1:m
:n:o:p:q:r:s:t:u:v:M:x:y:z

<string delimiter> ::= •

<special mark> ::= +:-:•:1:.:;:::,
:#:s:_:~:?:(:>:=:<:>:c:1:A:c:1

(blanks> ::a

3.2.2 IDENTIFIERS

Identifiers serve to denote constants, variables, procedures, and
other programmatic elements of the language.

<Identifier> ::a <letter>C<follower>l

<fo1tower> ::• <letter>:<digit>
:_:1:s:i

Identlf lers are restricted to a maximum of 31 characters, and
identifiers that differ only by case shifts of component letters are
considered to be Identical. Identifiers must begin with a letter and
may not contain embedded blanks. An exception is made to this rule
tor the system dependent functions and procedures which begin with
the # character.

CDC Private

CYBIL LANGUAGE SPECIFICATION
3-4

06/18/81
REV: 6

--3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.2.2 IDENTIFIERS

--

x2 Henry Job# A_Mordy_Identlfier

lst_char~cter_must_be_a_letter

number_of_characters_must_not_exceed_thirtyone

3.2.3 BASIC SYMBOLS

Selected identifiers, special marks and digraphs of special marks
are reserved for specific Purposes in the language; e.g., as
operators, separators, delimiters. These so-called "basic symbols"
wf 11 be introduced as they arise in the sequel.

Identifiers reserved for use as basic symbols will be shown as
underscored, lower-case words.

3.2.4 CONSTANTS

Constants are lexical constructs used to denote values of some of
the etementary data types. Their spellings, and the data types for
which constant denotations can be given- are described in Section
5.1.1.

3.2.5 CONVENTIONS FOR BLANKS

Identifiers, reserved words, and constants must not abut each
ot.her, and must not contain embedded blanks1 except str Ing
constants. Identifiers, reserved words, string terms and non-string
constants Must be contained on one input tine. Basic symbols
constructed as digraphs may not contain embedded blanks. Otherwise,
blanks may be employed freefy, and have no effect outside of
character constants and string constants where they represent
themselves.

CDC Private

CYBIL LANGUAGE SPECIFICATION
3-5

06/18/81
REV: 6

--3.0 METALANGUAGE AND BASIC CONSTRUCTS
3.Z.6 COMMENTS

--
3.Z.6 COMMENTS

Commentary strings may be used anywhere that blanks may be used
except within character and string constants.

<commentary string> ::• !<<comment character>}
<comment terminator>

<comment terminator> ··= l • • • t <end of line>

<comment character> ::= <any ASCII character except
a closing brace or end of line>

CDC Prlvate

CYBIL LANGUAGE SPECIFICATION
4-1

06/18/81
REV: 6

--4.0 CYBIL TYPES

4.0 Cil.lL-lltES

CYBIL types are used to def lne operational domains and
characteristics of variables (which take on values> and other
programmatic elements. CYBIL elements fall into two broad classes of
types.

<type> ::~ <fixed type>
:<fixable type>
:<procedure type>

<f lxable type) :ta <adaptable type>
:<bound variant record type>

Fixed types are used to def lne sets of values that can be assumed
by CYBIL variables. their operational domain and, in many cases, a
notation for referencing such values.

Fixable types are associated with data types whose precise
attributes are meant to be explicitly "fixed" during execution of the
program. Variables of a fixable type must be referenced in an
indirect manner; they may be referenced through the use of a pointer
or as a ror•al parameter of a procedure.

CYBIL provides a small set of pre-defined types, reserved
ldentif lers ror these, and notation for defining new types in terms
of existing ones.

Type declarations are used to Introduce new types, and identifiers
for the neNIY declared types.

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-2

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.1 TYPE DECLARATIONS

--
<type dectaration> ::a

1%2t <type spec>{• <type spec>}

<type spec> ::~ <identifier> = <type>

Type declarations can be used for purposes of brevity, clarity.
and accuracy. Once dectared• a type may be referred to elsewhere by
its declared type Identifier. The Identifier can have mnemonic value
and errors associated with repeated spelling-out of type
specif lcations are reduced.

In genera11 operations involving elements of non-equivalent types
are not allowed, and one type may not be used where another type Is
expected. Relaxations to these rules are sometimes permitted, and
will be stated as they arise.

4.2.l TYPE EQUIVALENCE

Two equivalent types can be expressed differentty. For example: a
declared type Identifier and the type it denotes have different
spellings; different expressions for sizes of arrays and other
co11ections of elements can yield the same value; format parameter
ldentif lers are not part of procedure types.

Rules for determining type equivalence are called-out In the
following sections on types.

4.2.Z POTENTIAL EQUIVALENCE, INSTANTANEOUS TYPES

Adaptable types and bound variant record types actually define
classes of related types. References to variables of such type are
meant to be explicitly fixed to a so-called ln~1antanlAU1 type during
the execution of the program. Such types are said to
be 2gt1ntlall~:Asulxal1nt to any of the types to which they can be
fixed. Since the determination of that type can be made onty during
program execution, references to variables of such types are
permitted wherever a reference to one of the instantaneous types is
valid. No compile-time error messages will be Issued; however, each
Implementation is required to carry out the required execution-time
checks for type-matching when selected by the programmer, and to
report violations tsee Compile-Time Facititities, Run-Time Checking
Toggles).

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-3

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.3 FIXED TYPES

--

Data types are used to define sets of values that may be assumed
by variables.

Fixed types consist of:

A) Basic types, which take on simple values.

8) Structured types. which define coliections of components.

C> Storage types, which are used as repositories for collections of
components of vartous types.

<fixed type> ::= <basic type>:<structured type>:<storage type>

4.3.l BASIC TYPES

Basic types define components that take on simple values.

<basic type> ::: <scalar type>
l<floating point type>
:<pointer type>
l<cell type>

Scalar types define welt-ordered sets of values for which the
following functions are defined1

~u~~ the succeeding value in the set;
2Ll~ the preceding value in the set.

<scalar type> ::= <integer type>
:<character type>
:<ordinal type>
:<boolean type>
:<subrange type>

4.3.1.1.1 INTEGER TYPE

<integer type> ::= lntl~ttt<integer type identifier>

<integer type identifier> :;~<Identifier>

CDC Private

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.t.1.l INTEGER TYPE

4-4

06/18/81
REV: 6

--
Integer type represents an Implementation-dependent subset of the

integers, and is equivalent to the subrange defined by

-nl • • .oa
where Bl and nZ denote implementation-dependent integers. In
general, If transportation of programs is Planned across
inplementatlons1 the explicit use of integer types should be avoided
In favor of subrange types.

f..tt.1.iss.ibl.t--iUi!.,et..atlDns: assignment, set membership test, all
relational operators, addition, subtraction, multiplication,
quotient, remainder and applicable standard procedures and
functions.

4.3.1.1.z CHARACTER TYPE

<character type> ::a ~batt<character type identifier>

<character type identifier> ::• <identifier>

Character type defines the set of 256 values of the ASCII
char~cter set, and is equiv~lent to the subrange defined by

chr(Ol •• chr(255l

where •chr" denotes the mapping function from integer type, onto
character type. Characters may be assigned & compared to strings.

fcLmlss1~1C--12~t•tiiDi: assignment, set membership test, all
relational operators, standard pr~cedures and functions.

4.3.1.1.3 ORDINAL TYPE

<ordinal type> ::•
<<ordinal constant Identifier llst>t

t<ordlnal type identifier>

<ordinal constant identifier list> ::a
<ordinal constant identifier>

,<ordinal constant identifier>
<-<ordinal constant Identifier>}

<ordinal constant identifier>::= <identifier>
<ordinal type identifier> i;a (identifier>

An ordinal type defines an ordered set of values by enumeration~
in the ordinal list, of the identifiers which denote the values.

CDC Private

CYBIL LANGUAGE SPECIFICATIOH
4-5

06/18/81
REV: 6

#------------------------#·---4.0 CYBIL TYPES
4.3.1.1.3 ORDINAL TYPE

--
Each of the Identifiers tat least two) in the ordinal list is thereby
declared as a constant of the particular ordinal type.

Two ordinal types ar~ equivalent If they are defined in terms of
the same ordinal type identifier.

e.i:t.miS..iib.1~--fUUlt.atlAJl.il assignment:, set membership t.est, al I
relational operators, standard procedures and functions.

f1ama11: The constants of the ordinal type "primary color" declared
by

t~al primary_color a (red, green, blue)

are denoted by "red"• "green", and "blue", and the following
relations hotd:

red < green
red < blue
green < blue

A Mapping from ordinals onto non-negative Integers is provided by
the At.d function. For the constants of the example, the fotlowing
retattons hold:

Qt.sf (red> = O
QUI t green) • 1
su:.d (blue> • Z

The ordinal type declaration

1~2& primary_cotor • (red, green, blue),
hot_color •(red, orange, yellow>

would be In error because of the dual definition of the identifier
"red" as a constant of two different ordinal types.

4.3.1.1.4 BOOLEAN TYPE

<boolean type> ::: ~A21CAQ
:<boolean type identifier>

<boolean type identifier>::• <Identifier>

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-6

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.3.1.1.4 BOOLEAN TYPE

--
Boolean type represents the ordered set of "truth
constant denotations are !11~1 and 1£ut1 and
equivalent to the ordinal type specified byt

values", whose
Is conceptually

tta!Sl•ttu1>1 except that Boolean operations are permitted on
Boolean types.

f~t•l~~lhlc __ Q2:~atlAn1: assignment, set membership test, att
relational operators t!als& < tLYI), the Boolean operations of sum,
product, difference. negation and standard procedures and functions.

4.3.1.1.5 SUBRANGE TYPE

<subrange type> ::=<subrange type identifier>
1<tower> •• <upper>

<tower> ::= <constant scalar expression>
<upper> ::• <constant scalar expression>

<subrange type identifier> ::: <identifier>

The lower bound must not be greater than the upper bound and both
must be of equivalent scalar types. Two subrange types are
equivalent if they have identical upper and lower bounds. An
improper subrange type (i.e., one that completely spans its •parent'
range) Is equivalent to its parent type.

Values of a subrange and values of Its parent range tor values of
other subranges of its parent type) may enter Jointly into dyadic
operations def lned for the parent type, and Into assignment
operations; execution time checks on the vatldity of such assignments
may be specified (see Run-Time Checking Toggles).

e~tmli~l~lA-i2CtatiAQS1 same as for the parent type.

t~ac non_negative Integer = o •• 32767,
letter • •A• •• •z•~
color= (red, orange, yellow- greent blue),
hotcolor • red •• yef loM,
range • -10 •• 10 ;

<floating point type> ::a <real type> : <tongreal type>

The floating point types define values that approximate the reat

CDC Private

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.1.2 Floating Point Type

4-7

06/18/81
REV: 6

--
nuebers and which are to be represented in a machine-dependent form
of scientific notation. The real and longreal types are intended to
have the same representation as FORTRAN REAL and DOUBLE PRECISION,
respect he I y.

4.3.1.2.1 REAL TYPE

< r ea I t y p e > : : = t..la! : < r e a I t y p e i den t i f I er >

<real type identifier> ti• <identifier>

The range and precision of the real type are
imptementation~dependent.
longreal and integer type
11.2).

Conversion functions between real,
are provided (cf. Standard Functions~

e1tta1~i.lb.11--1UUlt.A.tiADS!. ass i g nm en t,
addition, subtraction, multiplication,
standard procedures and functions.

4.3.t.z.z lONGREAl TYPE

all relation
division, and

operators,
a9plicable

<longreal type> ::• 1QDA£lll :<tongreat type identifier>

<longreal type identifier> ::= <identifier>

The range and precision of
Implementation-dependent. Conversion
longreal and integer type are provided
11.21.

f~tli~~lbl~---R2CLilllD~l assignment,
addition, subtraction~ multiplication,
standard procedures and functions.

the longreal type are
functions between real,
(cf. Standard Functions,

all relation
division, and

operators,
applicable

Pointer types represent location values, and other descriptive
Information, that can be used to reference instances of CYBIL objects
indirectly.

e.c.t.mlislb.11-AR.~t..a.tlans: assignment, comparison for equality and
inequality only, and standard procedures and functions.

Pointer types are Introduced by an up arrow, followed by a CYBIL
type to which the pointers are bound; pointer variables may assume,
as vatues, only pointers to that type. The only exception to this is
pointer to cell.

CDC Private

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.1.3 Pointer Type

4-8

06/18/81
REV: 6

-------·--------#·--
(pointer type> ::• <fixed pointer>

:<fixable pointer>
:<pointer to procedure>
~<pointer type identifier>

<fixed pointer> ::a A<fixed type>

<fixable pointer> ::• <adaptabt~ pointer>
:<bound variant pointer>

<adaptabte pointer> ::a A<adaptabte type>

<bound variant pointer> 1:= A<bound variant record type>

<pointer to procedure> ::a A<procedure type>

<pointer type Identifier>::• <Identifier>

Adaptable pointers provide the sole mechanism for accessing
objects of adaptable type, other than through formal parameters of
procedures. In particular, adaptable pointers and bound variant
pointers are used to access instances of adaptable variables and
bound variant records whose type has been 'fixed• by an a11Q~at~ or a
next statement.

Pointers are equivalent if they are defined in terms of equivafent
types. A pointer to a fixed type may be assigned and compared to an
adaptable pointer or bound variant record pointer If the adaptable
type is potentially equivalent to the fixed type.

See Section io.2, Assignment Statements, for rutes governing
pointer assignment.

4.3.1.3.l POINTER TO CELL

(pointer to cell> ::= A~t!l

A pointer to cell is a pointer type.

f~tmli~ibl~-02~La11ao~: as for pointers; in addition, pointers to
cell may be assigned to any pointer to fixed or bound variant type.
Such an assignment must not result In a pointer to fixed or bound
variant type hav1ng as its value a pointer to a variable that is not
of cell type and whose type is not equivalent to that to which the
target of the assignment is bound. Pointer to cel1 may be the target
of assignment of any pointer to fixed or bound variant type.

CDC Private

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.1.4 Cell Type

4-9

06/18/81
REV: 6

--
4.3.1.4 C.&!! .. l.lS.Jl

A cell type is a basl~ type that represents the smallest storage
site that is directly addressable by a pointer.

f!.Atmls.s.ib.ll-D.R~t..ltlsins.: assignment, comparison for equality and
Inequality only, and applicable standard functions.

4.3.2 STRUCTURED TYPES

Structured types represent collections of components, and are
defined by describing their component types and indicating a
so-catted .s.tt.Mi&1ut.in.a llAiDQJI• These differ in the accessing
discipline and notation used to select individual components. Four
structuring methods are available: set structure, string structure,
array structure, and record structure. Each witt be described in the
sequel.

<structured type> ::• <set type>
:<aggregate type>

<aggreoate type> ::= <string type>
:<array type>
:<record type>

4.3.2.1 ~At-Ixaa

<set type> ::a .lA.t ii! <base type>
:<set type identifier>

<base type> :t• <scalar type>

<set type identifier> ::• <scalar identifier>

<scalar Identifier> ::a <identifier>

A set type represents the set of atl subsets of values of the base
type. The nu•ber of elements defined by the base type must be
constrained (consider, e.g.~ iet Af lnt~gA&l• The number of elements
wl 11 be Implementation dependent, but no less than 256 (to
accommodate s&t A! Gbat>•

Set types ar~ equivalent if they have equivalent base types.

assignment, intersection, union,

CDC Private

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.Z.l Set Type

4-10

06/18/81
REV: 6

--
difference, symmetrlc difference, negation, inclusion, identity,
me1tbersnip.

fxAm21A' The set, akcess, declared by

UBI akcess = .i~t .2! (no_re ad, no_wr I te_, no_ex ecute J

represents the set of the following subsets of values of its ordinal
base type:

Sakcess C l {the empty set}
Sakcess Cno_readl
Sakcess Cno_writel
Sakcess tno_executel
Sakcess Cno_read1 no_writel
Sakcess Cno_read, no_executel
Sakcess Cno_write, no_executel
Sakcess Cno_read, no_wrlte, no_executel {the full set}

where the notation "Sakcess C ••• J" denotes a IAlU.A s&Alli.tt.u~t.At. for
the set type, akcess. Note that ~Y'' and 2LCd are not defined for
set types. The· values of a set variable are only partially ordered
by set inclusion. Sakcess Cno_read] and Sakcess Cno_writel satisfy
no order relation except inequality.

A string type represents ordered n-tuptes of values of character
type.

<string type> ::= <fixed string>
; <string type identlf ier>

<fixed string> ::a .i1t1n~ <<length>)

<length> ::= <positive integer constant expression>

<string type identifier> :: 2 <identifier>

A fixed string of length Q represents all ordered n-tuples of
values of character type. The length must be a positive integer
constant expression in the range 1 to 65535.

An ordered k-tuple of the values of a string fl <• k <• n> Is
ca11ed a sutls.tt.iDSl• Notation for accessing substrings fs provided.

Two string types are eq~ivalent if they have the same length.

CDC Private

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.3.2.z String Type

4-11

06/18/81
REV: b

--
Strings of different length may be assigned and compared. The

shorter Is blank-filled on the right for comparisons and for
assignments to tonger strings; truncation on the right is applied for
assignments to shorter strings. Characters may be compared and
assigned to strings of any length, and are treated as strings of
length one in such eases. Substrings or length one are treated as
characters in several specific Instances see Substring References
as Character References. ·

f£t•1~~1~1&-A2AL&11GDS' assignment, comparison (all six relational
operators), and standard procedures and functions.

An array type represents a structure consisting of components of
the sa•e type. Each component is selected by an array selector
consisting of an ordered set of n index values whose scalar type Is
Indicated by the indices in the definition.

<array type> :1= C 2A.GIUUI l <a r r a y type identifier>
: C Q.lj&KJ sll <a r r a Y spec>

<array type Identifier> : :a <Identifier>

<af'ray spec> ::·
AtLIX 1.<index>l 2! <component

<index>::. <scalar type>
~<constant scalar expression>

type>

•• <constant scalar expression>

<component type> ::• <fixed type>

Two array types are equivalent if they have the same packing, have
equivalent component types, and indexes are of equivalent type.

fctml~~l~1c_Qa~t411Aas: assignment and appticable standard
procedures and functions.

~.1.z.3.1 PACKED ARRAYS

Packing attributes are used to specify storage space versus access
time tradeoffs for array components. Components of a packed array
will be mapped onto storage so as to conserve storage space at the
possible expense of access time. The array itself (the collection of
components) Is always mapped onto an addressable memory location.

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-12

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.3.2.3.2 EXAMPLES Of ARRAY TYPE

--

t~~A hotness a iLCl~ Ccolorl 2t non_negatlve_lnteger,
token_code =at.LAX C~biLl A! token_c1ass.
arrayl • at.t..a~ c100 •• 2001 at 100 •• 300,

11 • 1 •• 100,
12 a ioo •• 200,
sl : 100 •• 3001

arrayZ : at.LA¥ £111 gf arrayl,
arrayZb • i£Li% till gf lt.t.1% Ci2l Qf sl;

The array types •arrav2' and •array2b 1 are alternate ways of
defining an array of arrays.

A record type represents a structure consisting of a fixed number
of components called !isldi• Fields are defined in terms of their
types and associated !llld scl~GtQL~L which are identifiers uniquely
denoting that field among all other fields of the record.

fAL•l~~i~1&-G2&Latigns: assignment, and comparison of in•ariant
records (containing no arrays as fields) for equality and inequality
ont Y•

<record type> :1= <Invariant record type>
:<variant record type>

4.3.2.4.l INVARIANT RECORDS

<invariant record type> :1•
C21~k~~J <invariant record type Identifier>
:c2a~k~d1 <Invariant record spec>

<Invariant record type identifier> ::: <identifier>

<Invariant record spec> ::•
~IGiL~ <fixed fietds> <recend>

<fixed fields> ::• <fixed field>{, <fixed fiefd>}
<fixed field> ::• <field setectors> : C<alignment>l <fixed type>

<fleld selectors> ::• <field selector> C1<fleld selector>}
<field selector> ::a <identifier>

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-13

06/18181
REV: b

--4.0 CYBIL TYPES
4.3.2.4.l INVARIANT RECORDS

--
See section 4.8 for a discussion on alignment.

4.3.2.4.2 VARIANT RECORDS AND CASE PARTS

A variant record consists of zero or more fixed fields followed by
one and only one Gas~ 2•Lt• A case part is a composite field that
may assume values of different types during execution of a program.
It Is defined in terms of an optional 1ag !!Ii~, and a list of the
admissible types (ca1fed ~a,iaDti> together with associated ~cl~ctiAn
~2:GS• During execution, the value of the tag field may be used to
determine the variant currently in use by being matched against the
setection specs associated with each variant. The variants
themselves may consist of zero or more fixed fields, optionally
followed by one and only one case part.

Access to a variant other than the currently active variant
produces undefined results. The currently active variation of a

.tagged variant record is the one associated Mith the current value of
the tag field selector. The currently active variation of a tagtess
variant record Is the one associated with the fleld that was the
target of the tast assignment to a field selector in the variations.
Thus, the currently active variation changes when the tag field
changes if there is a tag field or when an assignment is made to a
field in a variation other than the currently active variation for
tagtess variant records. When this happens alt fields in the newly
active variation become undefined except for the target of the
assignment for tagtess variant records.

The space atlocated for a variant record is the size of the
largest variant regardless of which variant is used.

<variant record type> ::a
C<aAGk&~>l <variant record type identifier>

:c<2aGk&d>l <variant record spec>

<variant record type identifier> ::= <identifier>

<variant record spec> ::a
L&GQL~ ((fixed fields>,] <case part> <recend>

<case part> ::a G~~~ <tag field spec>~!
<variations><casend>

<tag field spec> tta £<tag field selector> i 1 <tag field type>
<tag fietd selector> ::• <identifier>
<tag field type> ::a <scalar type)

<variations> :;= <variation> <• <vartatlon>}
<variation> ::• •<selection specs>• <variant>

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-14

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.3.2.4.Z VARIANT RECORDS AND CASE PARTS

--
<selection specs> ::• <selection spec>

{, <selection spec>}
<selection spec> ::= <constant scalar expression>

(•• <constant scalar expression>l

<variant> ::• C<fixed fields>l
:C<ftxed flelds>,J <case part>

<casend> ::• c,J ,e.n.cod

4.3.2.4.3 RECORD TYPE EQUIVALENCE

Two invariant record types are equivalent if they have the same
packing, the same nu•ber of fields, and if corresponding fields have
identical field selectors. the same alignment and equivalent types.
Two variant record types are equivalent if they have Identical tag
field selectors and equivalent tag field types, the same number of
variations and If variants having identical field selectors and
equivalent types are selected by the same selection values.

4.3.2.4.4 PACKED RECORDS

Packing attributes are used to specify storage space versus access
time tradeoffs for fields of records. Fields of packed records are
ma,ped onto storage so as to conserve space at the possible expense
of time. See section 4.7 and 4.8 for more details.

4.3.2.4.5 EXAMPLES OF RECORD TYPE

txac
d ate • .tJUi.2£. d

day : 1 •• 31,
Month : ~1tlOA (4),
year : iqoo •• 2100,

tiu;.AQ{b

status • uuau:.i
age : 6 •• &6,
married,
sex : IUUl! I.IQ,

t.CS..At.Ul'

red_book a tAQQ£d
name : i1Ling (3),
rstatus : status,
scores : Attaxco •• &1 2! date,

t. .t~e.Jl ,Cb

shape a (triangle. rectangte, circle),
angle • -1so •• 1ao,

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-15

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.3.2.4.5 EXAMPLES OF RECORD TYPE

--
figure • LIGQLG x,

y,
area : LC1!1Cfigure Is a varlant}

{record type}
CA11 s : shape Qf
• triangle •

size : t.1.11,
lncllnation.
angt eh
angleZ : angle,

= rectangle•
sidel1
s i de2 : lntcsu:c.1
skew,
angle3 : angle,

a circle a

diameter: inttAltt
cas.cog,
£..IGIDd;

4.3.3 STORAGE TYPES

Storage types represent structures to which other variables may be
added, deleted, and referenced under explicit program control.

<storage type> ::s <sequence type>
:<heap type>

<sequence type> ::= ~19 <<space>>

A sequence type represents a storage structure whose components
are referenced (by a sequential accesstng discipline) through
pointers constructed as by-products of the QCXt and £.CS..Ct
operations. In addition, sequences may be assigned to sequences; no
other operations are allowed.

Two sequences are equivalent if they have equivalent spaces.

4 • 3 • .3 • Z tl14.R-l~.RI

<heap type> ::a bAaR ((space>)

A heap type represents a structure whose components can be

CDC Private

CYBIL LANGUAGE SPECIFICATlOH

4.0 CYBIL TYPES
4.3.3.2 Heap Type

4-16

06/18/81
REV: 6

--
explicitly allocated (by the ~11AG~t: statement> and freed (by the
!L&A and ~•~st statements), and which are referenced by pointers
constructed as by-products of the ai.!AG.11~ statement. No other
operations on heaps are allowed.

Two heaps are equivalent If they have equivalent spaces.

A system-defined heap, that can be managed in the same manner as
user~defined heaps, is provided.

<space> ::•<fixed span>{,(fixed span>}

<f lxed span> 11•

CL~Q (positive integer constant expression> Qf]
<fixed type identifier>

<positive Integer constant expression> ::=
<constant scalar expression>

<fixed type identifier> ::• <identifier>
:<pre-def lned type Identifier>

<pre-defined type identifier> ::• int~gs~ i bAA!can : ~bac : ~All

A space attribute of the generat form

tla nl A! typel1 ~se n2 Qf type2. •••

specifies a requirement that sufficient space be provided to
simultaneously hold nl Instances of variables of typel, n2 instances
of variables of typez, and so on.

Two spaces are equivalent if they have the same number of spans,
and corresponding spans are equivalent. Two spans are equivalent if
they have the same number or repetitions of equivalent types.

The space attribute places no restriction on the types of the
variables that may be stored In a sequence or heap, other than that
the space availab1e for storage (as defined by the space attribute)
be large enough to hold that many Instances of the <fixed type
Identifier>. For example, the space attribute may be detined solely
in terms of integers, but the sequence or heap filled only with
strings of characters and boolean variables.

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-17

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.4 ADAPTABLE TYPES

--

Adaptable types are structural skeletons of structured and storage
types containing Indefinite bounds, indicated by an asterisk. They
may be used solely to define formal parameters of procedures and
adaptable pointers. the latter providing a mechanism for referencing
varlabtes of such types.

Adaptable types represent classes of related types to which they
can adapt. Ad apt a ti on to such an lo.s.t.a11taoe.o.11s type can occur in
three distinct ways:

Adaptable types can be explicitly fixed by the use of allocation
designators associated with storage management statements.

Adaptable types used as formal parameters are fixed by the actual
parameters sp~cified at procedure activation.

Adaptable pointer types used as left parts of assignment
statements are fixed by the assignment operation.

<adaptable type> ::= <adaptable aggregate type>
i<adaptable storage type)

<adaptable aggregate type> ::~ <adaptable string>
:<adaptable array>
:<adaptable record>

<adaptable storage type> ::a <adaptable sequence>
<adaptable heap>

4.4.1 ADAPTABlE STRING

Adaptable strings can adapt to strings of length O to 65535.

<adaptable string> ::= <adaptable fixed string>
: <adaptable string identifier>

<adaptable fixed string> tt= i1tinQ <<adaptable string length>)

<adaptable string length> ::• * : * <• <adaptable string bound>

<adaptabte string bound> s:~ <length>

<adaptable string identifier>::~ <identifier>

If the adaptable string bound is not specif led a string of maximum

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-18

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.4.1 ADAPTABLE STRING

--
allowable length Is permitted.

In addition any string operation which exceeds the length
specified by the adaptable string bound shall be an error and
appropriate compile and run time checks will be included.

Two adaptable string types are always equivalent.

4.4.Z ADAPTABLE ARRAY

Adaptable arrays adapt to a specific range of subscripts.

Adaptable arrays can adapt to any array with the same packing and
Identical component type. If the lower bound is provided by the
lower bound spec, the adaptable array can adapt only to arrays Mith
an Identical value for the lower bound.

<adaptable array> ::•
Ca•skc~J<adaptable array identifier>

I Caackcdl<adaptable array spec>

<adaptable array Identifier> ::• <Identifier>

<adaptable array spec> :1=
Itta~ i<adaptable array bound spec>l A! <component type>

<adaptable array bound spec> ::a <lower bound spec> •• *
: *

<tower bound spec> :ta <constant Integer expression>

<constant integer expression> ::= <constant expression>

The asterisk <•> indicates an adaptable bound of integer type.

Adaptable array types are equivalent if they have the same
packing, and equivalent component types, and If corresponding array
and component indices are equivalent. Two starred indices are always
equivalent. Two starred Indices with the tower bound spec selected
are equivalent if their lower vatues are the same.

4.4.3 ADAPTABLE RECORD

Adaptable records consist of zero or more fixed fields followed by
one and only one ~AaatAAl& !iAld• which Is a field of adaptable
type.

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-19

06/16/81
REVt 6

--·---------4.0 CYBIL TYPES
4.4.3 ADAPTABLE RECORD

--
Adaptable records can adapt to any record whose type is the same

except for the type of Its last field, which must be one to which the
adaptable field can adapt.

<adaptable record> ::a
C2a~t1dl<adaptable record type identifier>

tC2aGk1dl<adaptable record spec>

<adaptable record type identifier> tt= <Identifier>

<adaptable record spec> ::=
~lGA£~[<fixed flelds>1l<adaptable fietd><recend>

<adaptable field> ::•
<field setector>:C<alignment>J<adaptabte type>

Two adaptable record types are equivalent if they have the same
packing, the same af lgnment, the same number of fields, and
corresponding fields have identtcal field selectors and equivatent
types.

4.4.4 ADAPTABLE SEQUENCE

Adaptable sequences can adapt to a sequence of any size.

<adaptable sequence> :i• ~11<•)
:<adaptable sequence Identifier>

<adaptable sequence identifier> ::= <identifier>

The space for an adaptable sequence can be fixed by a <span
fixer>.

Two adaptable sequence types are always equivalent.

CDC Private

CYBIL LANGUAGE SPECIFICATION

4.0 CYBIL TYPES
4.4.5 ADAPTABLE HEAP

4-ZO

06/18/81
REV: 6

--
4.4.5 ADAPTABLE HEAP

Adaptable heaps can adapt to a heap of any size.

<adaptable heap> ::• b~aet*J
:<adaptable heap identifier>

<adaptable heap identifier> :t• <Identifier>

The space for an adaptable heap can be fixed by a .

Two adaptable heap types are always equivalent.

4.5 e1at£nua£~1ref

Procedures are Identified
activated on demand. Refer
semantics of procedures.

portions of
to chapters

programs
e.o and

that can be
10.0 for the

A procedure type defines an optional ordered list of formal
parameters.

(procedure type> ::a <procedure type Identifier>
:a~A~edut~ <proc type spec>

<procedure type identifier> ::= <identifier>

Procedure types are used for dectaration
procedures, there are no procedure variables.

of pointers to

Two procedure types are equivalent if corresponding param segments
h a v e t he s am e number o f f' o r m a I p a r a me t er s, i d en t i c a I m et ho d s
<reference or value), and equivalent types.

A bound variant record Is a varlant record whose case part Is
meant to be tixed to one of its constituent variants by the use of a
tag field fiKer. For bound variant records the <tag field selector>
is required. These are space saving constructs, since onty the space
required for the selected variant is at located.

Access to a variant other than the currently active variant
produces undefined results. The currently active variation of a
bound variant record Is the one associated with the current value of

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-Zl

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.6 BOUND VARIANT RECORD TYPE

--
the tag field selector. Thus. the currently active variation changes
when the tag field changes.

<bound variant record type> ::=
Caack&dl <bound variant record type identifier>

:c2ack~dl bAYQ~ <variant record spec>
:r2sGk~~l ~AUOd <variant r~cord type identifier>

<bound variant record type identifier> ::a
<variant record type identifier>

A bound variant record type may only be used to define pointers
for bound variant record types (i.e •• bound variant pointers>. Thus
a variable of this type is always allocated in a sequence or a heap,
or In the system-managed stack.

An allocation statement for a bound variant record type requires
the specification of the tag field values, which select the wariation
of the record allocated. In this case, only the specified space Is
allocated. A bound variant pointer is returned by such an allocate
state•ent.

If a formal parameter of a procedure ts of variant record type,
then the actual parameter may not be of bound variant record type.

Record assignment ts not allowed to a variable of bound variant
record type.

Two bound variant record types are equivalent if they are defined
In terms of equlvatent. unbound records. A bound variant record type
is never equivalent to a wariant record type.

4.7 !A~Kltii

A packed structu~e witl generally require less space at the
posstbte cost of greater overhead associated with access to Its
components. If the packing attribute is unspecified, then the
structure is assuaed to be unpacked. An inner structure does not
inherit the packing of any containing structure. Elements of packed
structures are not guaranteed to lie on addressable memory units.

4. 8 ALlitU:JEtiI

<at i gnment> : :• All.iUllA [[<offset> DlAd <base>ll

<offset> ::• <integer constant>

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-22

06/18/81
REV: 6

--4.0 CYBIL TYPES
4.8 ALIGNMENT
--

<base> ::• <Integer constant>

The a111DC~ attribute must be used to ensure addressability of
fields within packed records. Addressability is achieved at the
possible expense of storage space, so that the effect of packing may
be diluted.

Unpacked structures and their components are always addressable.
Packed structures are also addr~ssable unless they are unaligned
components of a packed structure, but their components are not unless
they are explleltly given the align~~ attribute. AllgnJng the first
field of a record aligns the record.

A second usage of the alignment feature is to cause variables to
be mapped onto a specified hardware address relative to a specified
Dase and A!t~Ct• The gfticl value must be less than the Rill and the
.base must be divisible by eight. The result is that an anonymous
filler ls created If necessary to ensure that the field begins on the
specified addressabl• unit. For automatic variables, the base may
only be eight. The <offset> and <base> elements are cetl counts.

4.9.1 VALUE AND NON-VALUE TYPES

Value assignments are permitted only to variables of the so-called
xaiu: types. The non-value types are:

Al Heaps.
B> Arrays of non-value component types.
C) Records containing a field of non-value type.

4.9.2 COMPARABLE ANO NON-COMPARABLE TYPES

Value comparisons ar~ permitted only between variables of the
so-cal led G.1.11aat.a1tlc types. The non-comparable types are:

A> Heaps.
BJ Sequences.
CJ Arrays.
D> Variant records.
E> Records containing a fletd of non-comparable type.

CDC Private

CYBIL LANGUAGE SPECIFICATION
4-23

06/18/81
REV: 6

--4.0 CY8Il TYPES
4.9.3 FUNCTION-RETURN TYPES

--
4.9.3 FUNCTION-RETURN TYPES

The only types that can be associated with returned values of
functions are the basic types:

Al lDt.ca~t.• e&bat.., 1uu1le..ao.1 ordina1 types, subrange types,
8) pointer types,
C> f loatlng point types,
Ol eel t types.

4.9.4 TYPE CONVERSION

Mechanisms for converting values of some scalar types to values of
others are provided.

Al Ordinal, character and boolean values are convertible to integer
values through the AL~ function.

Bl Integer values between O and 255 are convertible to characters by
the ~b~ function.

CDC Private

CYBIL LANGUAGE SPECIFICATION
5-1

06/18/81
REV: 6

--5.0 VALUES AND VALUE CONSTRUCTORS

Two mechanisms are provided for explicitly denoting values:
~Atllt.ao.ts and 1.alt.Ut J&A!lS.ttiu:..to..ti• Const ants are used to denote
constant values of the basic types and strings. Value constructors
are used to denote Instances of values of set, array and record
types. There are two kinds of value constructors: ~~t x•!~~
~ADSlLU~tat.s, which include specif lc type identification; and
J.1ul:!lnltc xaliu: GAD.i.tt.uJ&tSU:..i, whose type must be determined
contextually.

5.1.l CONSTANTS

Constants are used to denote instances of vatues of the basic
types and of string types.

<constant> ::s <basic constant>:<string constant>

<basic constant> ::• <scalar constant>
t<f loating point constant>
:<pointer constant>

<scalar constant> ::. <ordinal constant>
:<boolean constant>
:<integer constant>
:<character constant>

<ordlnat constant> ::= <ordinal constant Identifier>

<boolean constant> ::• !Alli : t~Ul
: <boolean constant identifier>

<bootean constant identifier> :1= <identifier>

<integer constant> :1• <integer> : <integer constant identifier>

CDC Private

CYBIL LANGUAGE SPECIFICATION
5-2

06/18/81
REV: 6

--5.0 VALUES AND VALUE CONSTRUCTORS
5.1.1 CONSTANTS

--
<character constant> ::• '<char token>•

l~h~ <<integer constant>)
:<character constant Identifier>

<char token> ::= <alphabet>
: •• {two single quotes}

<character constant identifier> ::= <Identifier>

<floating point constant>::• <real constant>
: <longreal constant>

<real constant> ::: <real number> : <real constant Identifier>

<reat constant Identifier> ::= <Identifier>

<reat nuMber ::~ <unseated number>
: <scaled number>

<unscaled number> ::=<digit> {(digit>}. <dlglt>C<dlgit>}

<scaled number> ::• <mantissa> E<exponent>

<mantissa> ::• <digit>C<digit>}C.l{<digit>l

<exponent> :1• C<sion>l<dlgit>{<digit>l

<longreal constant> :t~ <longreal number>
: <longreal constant identifier>

<tongreal constant Identifier> ::s <identifier>

<tongreat number> ::• <mantissa> D<exponent>

<string constant> ::= <string term>
{ GAt <string term>}

<string terM> ::• <character constant>
:•r<char token> <char token> {(char token>ll'

<pointer constant> ::• oil

<Integer constant Identifier> ::a <identifier>

<integer> ::• <diglt>C<dlgit>J
: <digit>C<hex digit>}<base designator>

<hex digit> ::• A:e:c~o:e:F
:a:b:c:d:e:r
:<digit>

CDC Private

CYBIL LANGUAGE SPECIFICATION
5-3

06/18/81
Rev: 6

--5.0 VALUES AND VALUE CONSTRUCTORS
5.1.1 CONSTANTS

--
<base designator> ::= <<radix>>

<radix> ::• 2 : 10 t 16

If the base designator is omitted from an integer, then a radix of
10 is assumed. In all cases, the digits (or hex digits) are
constrained to be less than the specified radix.

Note that string constants can be empty, that Is, of zero length.

5.1.2 CONSTANT EXPRESSIONS

<constant scalar expression> ::• <constant expression>

<constant expression> :1• <simple expression>

Constant expressions are constructs denoting rules of computation
for obtaining scalar or string type values tat compile time) by the
application of operators to operands. The rules of application are
those for AX2~~~~!Ans (see section 9J with the following constraints:

AJ Factors of such expressions must be either constants or
parenthesized constant expressions.

8) The expressions must be simple expressions (relational operators
are not allowed).

C) The only functions allowed as factors in such expressions are the
Atd, ~bc1 ~Y~~ and RLld•

D> Substring references are not allowed.

5.1.3 CONSTANT DECLARATIONS

Constant declarations are used to introduce identifiers for
constant values. Once declared. such a CAn~tant id~nti!ll~ can be
used elsewhere to stand for the identified walue.

<constant declaration> :a•
~An~1 <constant spec> {, <constant spec>}

<constant spec> ::a <identifier> = <constant expression>

A constant spec associates an Identifier with the value and the
type of the constant expression.

CDC Private

CYBIL LANGUAGE SPECIFICATION
5-4

06/18/81
REV: b

--5.0 VALUES AND VALUE CONSTRUCTORS
5.2 SET VALUE CONSTRUCTORS

--

Set value constructors are used to denote instances of values of a
specified set type. and to denote instances of typed empty sets.

<set value constructor> ::=
S<set type identifier> I l {the empty set}

: S<set type identifier> 1 <set value elements>)

<set value elements> ::• <set value element>
{1<set value element>}

<set value element> ::a <expression>

Identifiers for set value constructors are obtained by prefixing
the •target set type• identifier with a dollar sign, 1 $'• The types
of the elements of the vatue constructor must match the ordered set
of co•ponents of the specif led target type. Set value constructors
can be used wherever an expression can be used.

A set value element is an expression whose value is of the base
type of the set. The elements of a set are unordered. Note that a
set value may be defined to be •empty• by not placing any e1ements
between the brackets: 1 and l•

Indefinite vatue constructors are used to denote instances of set~
array, or record type.

<indefinite value constructor> ::•
t<value elements>l

: 1 l {the empty set}

<value elements> s:a
<value element>{,<vatue element>}

<value element> :t• C<rep spec>J<initialization expression>
:c<rep spec>l<set value constructor>
tC<rep spec>l<indefinite value constructor>
:C<rep spec>l *

<rep spec> ::• tA2 <positive Integer elCpression> Sl!

The meaning of a value constructor is that the list of values are
assigned to the fields of a record or to the components of an array
In their natural order. The types of the elements of the vatue
constructor must match those of the components of the aggregate type

CDC Private

CYBIL LANGUAGE SPECIFICATION
5-5

06/18/81
REV: 6

--5.0 VALUES AMD VALUE CONSTRUCTORS
5.3 INDEFINITE VALUE CONSTRUCTORS

--
for which they provide the values.

Rep specs may be used sotety for array construction, and indicate
that the next n values are the same, as given by the value following
the "OF"•

Indefinite value constructors can be used only where their type is
explicitly indicated by the context In which they occur: as elements
of Indefinite value constructors, and for the in11iallz&ti2n of
variables (see the discussion on Initialization in Section 6).

The asterisk form for a value element indicates that an undefined
value aa~ be assigned to the field or component at this position in
the value list, unless it is a pointer in which case it is
lnltlallzed to nil·

CDC Private

CYBIL LANGUAGE SPECIFICATION
6-1

06/18/81
REV: 6

--6.0 VARIABLES

6.0 iA&lAliLES

6.1 lA&lABLfi-Ali12-!A!IAllLE-1lfC.LA&AlliltiS

Variables take on values of a specific type tor range of types).

Variables of fixed type can be declared by an explicit variable
declaration (see below> or can be declared as formal parameters of
procedures.

Varlables of adaptable type can only be declared as format
parameters of procedures, or must otherwise be explicitly established
by storage management operations.

6.1.1 ESTABLISHING VARIABLES

This process Involves:

Al The determination of the type of the variable;

Bl The al1ocation of storage for values to be taken on by the
variable;

C) The possible assignment of initial values to the variable;

OJ The possible binding of references lsee below> to that variable.

locally declared variables are automatically established on each
entry to the procedure block tn whtch they were declared. However.
so-called •static• variables are established once and only once.

Formal parameters of procedures are automatically established on
each call of that procedure.

So-catted •allocated' variables are established by storage
manage•ent operations (for type determination and storage attocationl
and by assignment operations (for initlallzatlon).

CDC Private

b-2
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

--6.0 VARIABLES
6.1.2 TYPING OF VARIABLES

--
6.1.2 TYPING OF VARIABLES

Adaptable types and bound variant record types actually define
classes of related types. Variables of such types <and pointers to
such variables) are explicitly meant to be 'fixed' to any or all
types of their type-class at different times during the execution of
a program.

The type to which a variable is fixed at a specific time during
execution of a program Is called its in~t~n1iDlAU1 type (at that
time). It Is a variable's instantaneous type that Is actually used
to determine the operations it may enter into at any point In time.

Variables of adaptable and bound variant record type are fixed in
three distinct ways:

AJ Formal parameters of adaptable types are fixed by the
Instantaneous types of their corresponding actual parameters on
each procedure catt or function reference of which they are a
part. <See Section 10.5.1 for the rules for fixing parameters.>

Bt Explicitly allocated variables of such types are fixed by the
allocation operation.

CJ A pointer whose instantaneous type is any of the types
an adaptable pointer can adapt, can be assigned to that
pointer. In such cases. both the value and the
assigned, thus fixing the instantaneous type of the
pointer.

to which
adaptable
type are
adaptable

CDC Private

CYBIL LANGUAGE SPECIFICATION
6-3

06/18/81
REV: 6

--6.0 VARIABLES
6.1.3 EXPLICIT VARIABLE DECLARATIONS

--
6.1.3 EXPLICIT VARIABLE DECLARATIONS

Variables are explicitly declared in terms of an identifier for
denoting them, a type, an optional set of att~lh~t~~ and an optional
lnltiallzatlAQ for static variables.

<variabte declaration>::•
1at <varlabte spec>

{,(variable spec>}

<variable spec> :i:
<variable identifiers> : C<attributes>l
<fixed type>C<lnitializatfon>l

<variable identifiers> ::•
<variable Identifier> C<atias>l
{,<variable identlfier>C<alias>l}

<variable identifier> ::• <identifier>

6. 2 AIIRlllUifS..

<attributes> ::: I<attribute>C•<attribute>>l

<attribute> ::a <access attribute>
:<storage attribute>
:<scope attribute>

6.2.1 ACCESS ATTRIBUTE

<access attribute> ::= r.&ad

Variables declared with the ~IA~ attribute are called •read-only'
vartables. Such variables inherit the static attribute, must be
lnltlallzed• may not be used as objects of assignment, and may be
used as actual paraaeters only If the corresponding formal parameter
fs not a ~at paraMeter. The~'•~ attribute is used for compiler
cheeking on access to variables and does not imply the variables
residence in read-onty storage on computer systems where that
facility is provided. If the access attribute ls not specified read
and write access is implied.

%1~ vl : C~CA4l lotAQlt :• 10; Cvl is read only, but
{Initial izatlon Is val Id}

~a~ v2 : 1D1~a~L ; {v2 may be read and written}

CDC Private

CYBIL LANGUAGE SPECIFICATIO~
6-4

06/18/81
REV: 6

--6.0 VARIABLES
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

--
6.2.2 STORAGE ATTRIBUTES AND LIFETIMES

<storage attribute> it= s.tatlG 1 <section name>

Storage attribute specifies when storage for an explicitly
declared varlable Is to be allocated (and initial values assigned if
necessary) and when It Is to be freed Cat which time vatu•s of the
variable become undefined). The programmatic domain in effect
between the time such storage Is allocated and the time It is freed
is called the •lifetime• of the variable.

The lifetime of an automatic variable is the block in which it was
declared: at location occurs on each entry to that block and freeing
occurs on each exit from that block. Variables not explicitly or
implicitly declared static have the automatic attribute.

The lifetime of a static variable is the entire program:
allocation and inltiatizatlon occur once and only once <at a time not
later than Initial entry to the block in ~hich the variable was
declared), and storage is not freed on exits from that block.

If neither storage attributes nor scope attributes are spectfled,
then the variable is treated as an automatic variable.

If the static attribute is specified then the variable is treated
as a static wariable.

If any of the scope attributes are specified, then the variable is
treated as a static variable.

Variables declared at the outermost level of a module body are
treated as static Yarlables •.

The lifetime of a formal parameter is the lifetime of the
procedure or Mhich It ts a part: the formal parameter Is established
on each entry to the procedure, and becomes undefined on exits from

CDC Private

CYBIL lANGUAGE SPECIFICATION
6-5

06/18/81
REV: 6

--6.0 VARIABLES
6.Z.2.4 Lifetime of Format Parameters

--
the procedure.

6. z. 2. 5 L.i!1tl11.&-A!-Alla..c.at.itsL~at.lab.l1~

Allocated varlabtes are established (but not initialized, except
in the case of tag fields of bound variant records) by an explicit
attocation operation, and become undefined Mhen they are explicitly
freed.

WatDlo~: Mote that generally a pointer value has a finite lifetime
different from that of the pointer variable. Automatic variables
cease to exist on exit from the block in which they were declared.
Allocated variables cease to exist when they are freed or when their
containing variable ceases to exist. Attempts to reference
non-existent variables by a designator beyond their lifetime is a
programming error and could lead to disastrous results. Failure to
tc~l a variable allocated via an automatic pointer before the
containing procedure returns will prevent space for that variable
from ever being released by the program.

6.Z.3 SCOPE ATTRIBUTES

<scope attribute> :: = J.dQl : ltAf : !stat:

Variable identifiers are used in variable denotations. Scope
attributes specify the regimen to be used to associate instances of
variable Identifiers with Instances of variabfe specs. The
programmatic domain over which a variable spec is associated with
instances of its associated variable identifiers that are used in
variable denotations, Is called the iQ~21 of that spec. If no scope
attribute is specified, the spec Is said to be lntltDll to the
procedure or function block In which it occurs, and a so-called ~1A~k
-£1~Yc1u£lng regimen is used.

Internal variables are always automatic variables <see above)
unless given a storage attribute. while scope-attributed variables
are always J.tat.il• Each of the scope attributes specifies certain
deviations from the block-structuring regimen. Broadly speaking, a
variable i~entifter associated with an &tit variable can be used to
denote a similarly identified variable having the gdcl attribute,
subject only to reasonable rules of specificational conformity.

ltl! variables can not be initiatlzed1 and each carries the
de-facto static storage attribute.

CDC Private

CYBIL LANGUAGE SPECIFICATION
6-6

06/18/81
REV: 6

--6.0 VARIABLES
6.Z.3 SCOPE ATTRIBUTES

--
for more details on scope attributes, see section 1.

There should exist only one declaration of a given variable or
procedure with the xd'l attribute within a compllatlon unit or within
a group of compilation units to be combined for execution.

The !aatc attribute is an extension of the ~d~! attribute to
extend the protection provided for in the environment provided by the
operating system. It may not be relevant on alt computer systems.
Specifying the !a~t~ attribute without also specifying x~~l Is a
compilation error.

6.3 ltilllALlZAilllli

Initializations are used to specify vatues to be assigned to
static variables.

<Initialization> ::a J• <initialization expression>

<Initialization expression> ::a <constant expression>
: <indefinite value constructor>
: A<global proc name>

<global proc name> ::• <procedure identifier>

When the variable is established, the type of the variable ts
determined, storage for a variable of that type is allocated as a
static variable, the initialization expression is evaluated, and the
resultant value is assigned to the variable according to the normal
rules for assignment.

6.3.1 INITIALIZATION CONSTRAINTS

1) If no initialization is specified~ the inltlal value is

2)

undefined, except that alt pointer components of static variables
are lnit1atlzed to all•

If the initialization expression is an
constructor, the variable must be either a
record. The type of the indefinite value
determined as the type of the variable.

Indefinite value
set, array, or
constructor is

3) An asterisk, '*'• can be used in indefinite value constructors to
Indicate uninltlatJzed elements of arrays and records. The
Initial values of such unlnltlalized elements are undefined~

except in the case of a pointer which is set to nil•

CDC Private

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.3.1 INITIALIZATION CONSTRAINTS

6-7

06/18/81
REV: 6

--
4) If the string elements are not of equal length and the variable

part is the longer, the initialization operator wilt append
blanks at the r1ght end or the variable. If the initialization
expression is longer, the value of the inltlallzation expression
will be truncated to fit the variable part.

5) Within variant record initialization. the case selector is
initialized In turn and is then used to determine the variant for
the ensuing fields of the record.

A section is a working storage area for specified variables
sharing common access attrlbutes.

<section declaration> i:• ''~ti~n <sections> {,<sections>}

<sections> ::=
<section name> {,<section name>} i <section attribute>

<section name> ita <Identifier>

<section attr1bute> ::= £ea~ : KLlte

Variables declared within a section having the read section
attribute will reside in read-only storage <on computer systems
providing that facility) and must have the read variable attribute.

6 • 5 ~A1.lQ_C.1Jl:Ull!lAll1lt!S_Qf _l!IB.lf1UlES-Ati12-ltilI1ALlZ.Ailflt!S

Only certain combinations of attributes are valid. These combine
with certain initialization assignments, some of which are optional,
some required, and some prohibited.

The table below further clarifies the legal combination of
attributes and specifies the rules for initialization.

CDC Pr Iv ate

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.5 VALID COKBINATIONS OF ATTRIBUTES AND INITIALIZATIONS

6-8

06/18/81
REV: 6

--
&II&lllUIE llilllAl.11All1lti

(1) none opt Iona I If static
otherwise prohibited

(2) t.ea.tl required

(3) ~1111G optional

(4 J s..ta.tls.1t1..ad required

(5) X.d.G! optional

(6) 1.d1&l1r:.1.ad required

(7) 1.AG.b 1.t1tlJ& optional

(8J 1.d1&!11t.a.t.is.,c.~ad required

(9) .I.tit prohibited

(lOJ u:.lf• c.1ad prohibited

Ul) .ltlltStatiG prohibited

(12) 1.tCf,~tat.iGt~IAd prohibited

(13) <sec ti on name> optional

(14) <section name>1t.C.Ad required

(15) <section name>, .isl~J. optional

(16) <section name>,1.stGl•t~.ad required

* Static attribute Is Implied for sections.

<variable> ::= <variable reference>
:<substring reference>

<variable reference> ::• <variable identifier>
:<pointer reference>A
:<subscripted reference>
t<fleld reference>

(4)

(2)

(7)

(8)

(5)

(6)

(11)

(12)

(10)

*

*
*
*

CDC Private

CYBIL LANGUAGE SPECIFICATION
6-9

06/18/81
REV: 6

---·----------------------------6~0 VARIABLES
6.6.l POINTER REFERENCES

--
6.6.1 POINTER REFERENCES

(pointer reference> ::• <pointer variable>
:<function reference>

<pointer variable> ::=<variable>

Whenever a variable reference denotes a variable of pointer type,
It Is referred to as a 2Alnt4£ £A!AC4Q~4 and the notation

<pointer reference>A

may be used to denote a variable whose type Is determined by the type
associated with the pointer variable. If another variable of pointer
type Is denoted by this reference, then

<pointer reference>AA

may be used as a variable r~ference. Note that variables of pointer
type can be components of structured variables as well as valid
return types for functions.

Given a variable Identifier, the notation to obtain a pointer
value to the variable which has a scope equal to or greater than the
pointer is:

A<varlable identifier>

Pointers are always bound to a specific type and pointer variables
may assume, as values, only pointers to objects of equivalent type.
The only exception to this is that pointer to cell can take on values
of any type and any fixed or bound variant pointer variable can
assume a value of pointer to cell. See Chapter 4 for further
explanation.

The special value nil is used to denote that a pointer variable
has no current assignment to a location.

~aL 1, J, k t io1~~1L' {Integer variables}

pl : Alntta~t, {pointer variable of type: pointer to integer}

PPi : AAlnt=~~t' {pointer variabte ot type:}
{pointer to pointer to Integer}

bl, bZ : baAl~~D ; {boolean variabtes--end of declarations}

CDC Private

CYBIL LANGUAGE SPECIFICATION

6.0 VARIABLES
6.6.1.1 Examples of Pointer References

6-10

06/18/81
REV: 6

--
A11AQA11 pi; {at locates space for an integer value and sets}

{pi to point to it}

allA~All ppi; {allocates space for a pointer to integer and}
{sets ppf to point to it}

J 1~ plA ; {the Integer variable J takes on the value 10}

k :: ppiAA ; {the integer varlabfe k takes on the value 10

bl :a J • k ; {the boolean variable takes on the value 1£~~}

bZ :s piA a ppiAA ; {the boolean variable b2 takes on the
{value 1LU&}

pt t• nil ; {the pointer variable pl is set to denote
{lack of indicating any varlabte}

k :• piA ; {statement is in error when pi has the
{value 011~-result of this statement
{will be implementation dependent}

l! ppi • Dll tbAD k J• k + 1 !fan~ ;
{valid test of ppi and valid statement}

pi :• A(i + J + Z * kl; {improper use of up arrow to request}
{location of an expression - an undefined concept}

6.6.Z SUBSTRING REFERENCES

<substring reference> t:•
<string variable>t<substrlng spec>)

<string variable> ::=<variable reference>

<substring spec> tt•
<first char>C.<substrlng length>l

<first char> ::= <positive integer expression>
<substrlng length> ::• <non-negative integer expression>

: *
<non-negative integer expression> :: s <scatar expression>

Values of string variables are ordered n-tuptes of character
values. Substring references yield fixed or null strings defined as

CDC Private

CYBIL LANGUAGE SPECIFICATION
6-11

06/18/81
REV: 6

--6.0 VARIABLES
6.6.2 SUBSTRING REFERENCES

--
follows.

let •s• denote a string whose current length is n.

If 1 <• i <• n thens

Al •s(i)' yields a fixed string of length one, consisting of the
i-th character of s;

If l <= i <• n + 1 and 0 <• k <• n + 1 - i, then:

BJ •scl.k>' yields a fixed string of length k, consisting of the
I-th through the f i+k-ll-th character of s1 or a nul1 substring;

C> •s(l1*>' Is equivalent to 1 s(i,n-i+ll 1 and yields the rest of the
string starting with the i-th character, or a nutt string.

Otherwise, an error results.

CDC Private

CYBIL LANGUAGE SPECIFICATION
6-12

06/18/81
REV: 6

--6.0 VARIABLES
6.6.2 SUBSTRING REFERENCES

--

If a string variables is declared and initialized by

~At s : ~t~lngt6t :: 1 ABCDEF•;

then the following relations hotd

s(l) • 'A'
s(6) = 'F'
sCl,6) • s
stZ,0) • tt

s1z,5) • 'BCDEF•
s(Z,*) • s(215)
s(l,*) = s
s(7,•> • ••

and sf8) and s(8,0) are Illegal.

If a pointer variable is declared and Initialized by:

then psAlit and psA(i•J> become valid references to substrings of s.

Note that a string constant, even if declared with an identifier
for denoting It, Is not a variable, so that a substring of such a
string constant is not a defined entity of CYBIL, e.g.,

GIDSt str24 a 1 helper 1 ;

•••
string2 :m str24(31*) ; {invalid substring reference--str24}

{is a string constant}

Substring references of the form •s(~)•, and onty such, may be
used wherever a character expression Is allowed, and are treated as
characters in such cases. Specifically, substrings of the form
•stk)•:

Al May be compared with characters;

Bl May be tested for membership lint in sets of characters:

C> Hay be used as initial and final values of !AL statements
controlled by a character variable;

0) May be used as selectors in Gii~ statements;

E) May be used as arguments of the standard procedures and functions

CDC Private

6-13
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

6.0 VARIABLES
6.6.2.1 Substrlng References as Character References

--

F> May be assigned to character variables, and may be actual
parameters to formal parameters of character type.

G> Hay be used as index values corresponding to character-type
indices.

6.6.3 SUBSCRIPTED REFERENCE

<subscripted reference> ::= <array variable> t<subscr1pt>l

<array variable> ::= <varlable>

<subscript> i:: <scalar expression>

A subscripted reference denotes a component of an array variable,
whose value type Is the component type of the array variable. A
subscript may be of any type that can be assigned to a variable of
the corresponding index type. Note that, to this end, any subrange
Is considered to be or equlv3fent type as Its parent range tor any
subrange thereof).

If an array varlable Is declared and initialized by:

and an Integer varlabte Is declared and initialized by

then the following relations hold

aCl1 = 5
aCl-11 • 4

•
•
•

a{i-4) a 1

However, the reference aCi+ll would be in error.

If an array variable Is declared by:

CDC Private

CYBIL LANGUAGE SPECIFICATION
6-14

06/18/81
REV: 6

--6.0 VARIABLES
6.6.3 SUBSCRIPTED REFERENCE

--
then bCllCZJ becomes a valid reference to the array b.

If a pointer variable Is declared and initialized by:

then paACJl becomes a vatid reference to components of a.

CDC Private

CYBIL LANGUAGE~ SPECIFICATION
6-15

06/18/81
REV: 6

--·-----------------------------b.O VARIABLES
6.6.4 FIELD REFERENCES

--·---------------
6.6.4 FIELD REFERENCES

<f leld reference> ::=
<variable reference>{.<record subreference>l

<record subreference> ::•
<field se1ector>:<subscripted reference>

A field reference denotes a fietd of a record variable.
field selector names can be used In other records, the
variable must be specified.

For the record variable declared and initialized by

1%2A tr • t.A~AL~ age : 6 •• &b,
married,
sex : 1UlAl&an,
date : t.&~A~~ day : 1 •• 31,

month : 1 •• 12,
year : 10 •• ao,

t.&C.e.D~,

~at r : tr •• C23,fa1~~~ti:.u11C315,731l;

the following relatfons hold

r.age a 23
r.married a !AlSA
r.sex • tt.Ul
r.date.day • 3
r.date.month • 5
r.date.year • 73

If a pointer variable is declared and initialized by:

then

•••

become valid references to fields of tr.

Since
record

CDC Private

CYBIL LANGUAGE SPECIFICATION
7-1

06/16/81
REV: 6

--7.0 PROGRAM STRUCTURE

7.1 C.DHJ!ll.AilDti-Utilii

A CYBIL program is a collection of i1sc!at.•.tlsins which is meant to
be translated, via a ~AmallallAD process, into a CYBIL AhJc~t mAdUl~
• Object modules resulting from separate compilations can be
combined, vla a !ln~lDA process, into a single object module, and may
undergo further transformations into a form capable of direct
execution.

<compilation unit> ::• <moduie declaration>
{;<Module declaration>} C;l

Since statements are constrained to appear solely within the body
of a RLA~l~~t.l or tan~tiAD dc~lat.•tlAD• compilation units consist
solely of a list of declarations. All such declarations must be
capable of being evaluated at the time of co•pitation. All variables
declared In a co•pitatlon unit's declaration list will automatically
be given the statlG stA£a9c att£i~u1~·

1.2 t!DllUL.ES

A Module is a collection of declarations.

<modute declaration> ::a
mQ4Ul& <module identifier> C<allas>J;

<module body>
mRd&ad C<module ldentlfier>l

<module Identifier> ::• <Identifier>
<m~dule body>::= <declaration list>

<declaration list> 1:= {(declaration>;>

The -~~ulc ld1nti!i1£ can be used to provide clarity and to assist
in post-compilation activities, such as linking and debugging.

CDC Private

CYBIL LANGUAGE SPECIFICATION
7-2

06/18/81
REV: 6

--7.0 PROGRAM STRUCTURE
7.3 DECLARATIONS ANO SCOPE OF IDENTIFIERS

--

Declarations Introduce objects together with Identifiers which may
be used to denote these objects elsewhere in a program.

<declaration> ::• (type declaration>
: <constant declaration>
: <variable declaration>
: <Procedure declaration>
: <function declaration>
: <section declaration>
: <empty>

The programmatic domain over which alt uses of an identifier are
associated with the same object is called the ~~Q2C of the
identifier. Within a compllatlon unit, such a Programmatic domain is
either a module body, a atR'~~Ut~ body or a tun~tiAn body. The scope
of an identifier is determined by the context in which it was
declared and by optional ~G..QJU~ at.tc.ll:ua.tc~ which may be associated
with declarations of variables and procedures.

The scope of an Identifier declared in one of the constituent
declarations of the body of a module, is the body of that module.

A procedure or a function consists of a statement list preceded by
an optional declaration list. Procedures and functions ha•e three
purposes:

1> Procedures and functions control the scope of identifiers.

2) Unlike modules~ procedures and functions control the processing
of declarations and determine when declarations take effect.

3) Unlike •odules, procedures and functions include statements,
which traftslate into algorithmic actions in the resulting
pro gr am.

CDC Private

CYBIL LANGUAGE SPECIFICATION
7-3

06/18181
REV: 6

--1.0 PROGRAM STRUCTURE
7.6 STRUCTURED SCOPE RULES

--

1) Except f<>r !i&li s.1.l~GtAt.S. (see below), the scope of an
Identifier declared in the constituent declaration list of a
procedure or function ts the body of that procedure or function.

ZJ If an identifier la~cls. a structured statement then its scope Is
that statement.

3J If the scope of an Identifier includes a non-xrefed procedure or
functjon declaration, then its scope is extended 'downward' to
Include the body of that pr~cedure or function, unless the body
lncludes a re-declaration of the identifier.

4) The scope of an identifier which is declared as a formal
par~meter of a pr~cedur• or function is the body of the procedure
or funct I on.

5) Fietd selectors are identifiers introduced as part of the
declaration of a record type for purposes of selecting fields of
records. Except for the restriction that field selectors
associated with the same record type must be unique, identifiers
used as f leld selectors may be re-declared with impunity.

6l Except for field selectors, no more than one declaration of an
Identifier can be included in the constituent declarations and
state•ents of the body of a procedure or function.

1.1 SC.D.tt-AlI!l.llUI.ES

The scope attributes &dG! and &~~! cause the scope of Identifiers
to be extended, In a dlscontinous manner, to include other
compitation units, but do not otherwise contravene either
module-structured or block-structured scope rules.

Variables. prbcedures and functions that are part of one module,
but are meant to be referenced fro• other modules, must have the x~~l
attribute associated with the• by explicit declaration. Other
modules which are meant to reference such objects must declare them
with the itcf attribute.

!BEE variables can not be initialized, and alt xdc.1 and XL~!
variabtes are automatically given the ~t.a.tlc. stAt..aac .at.t.c.Uu1.tc

The declarations for objects shared among modules must match; for
example, an identifier with the &~'1 attribute in one module and the
xc~! attribute in other modules must denote the same object in all

CDC Private

CYBIL LANGUAGE SPECIFICATION
7-4

06/18/81
REV: 6

--7.0 PROGRAM STRUCTURE
7.7 SCOPE ATTRIBUTES

--
such modules. Violations of such matching rules are detected during
the linking processing on some computer systems.

7.7.1 ALIAS NAMES

An •alias• is an alternate spelling which may be specified for an
Identifier. Its reasons for existence are varied: to meet
system-requirements of spelling which are invalid in CYBIL, to equate
two differing spellings for an entity between two different
compilation units, to avoid Identifier spelling conflicts among
different compilation units or with system standard names, etc. As
such, this feature will only be supported on host systems where this
requirement exists.

An atlas Is to be used outside of a compitation unit only- and
will not function as an alternative spelling for an identifier within
the compitation unit in which it is defined as an alias.

Aliases may be furnished for identifiers of modules, procedures.
and variables by following the Identifier associated with a
declaration of such an object by an Ali.a~ i.IUU~i!lG.1tl2n•

<alias> ::a alia~ • <alphabet> { <alphabet> } •

In order for an alias to •reach' the host system, it must be
associated with an object that is externalized in some way: by virtue
of being &LC!'d' or xdGl'd• All other aliases will be inoperative
except for taking up room during the compilation process.

If an identifier which is extern~lized has an alias specified,
then only the atlas will be made known outside of the compilation
unit <I.e., the identifier Itself witl DQt be made known outside of
the compltation unit).

Afso refer to 6.1 for variable declarations, and to 8.1 for
procedure declarations.

f1.a11a.l,t~:

madu.11 outer aliAS 1 CYMSOUT 1 ; •••

atA~AdY~I [g~~ll searcher allai •CYP$SEARCH 1 <~i£ lst2, •••

~i£ V2 Allai 'CYVSZFLAG'• V3 allli •CYVS3FLAG' : [~~'!] lntA~A~J

CDC Private

7-5
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

--7.0 PROGRAM STRUCTURE
7.8 DECLARATION PROCESSING

--
1. 8 llEC.LAfU.IlClti_f&UC.f~SltUi

7.8.l BLOCK-EMBEDDED DECLARATIONS

Except for the constituent declarations of a compilation unit
be1ow), declaration processing Is governed solely
btock-structure. During compilation. all constituent lists
block are gathered together and are processed en-masse, all
declarations coming Into effect slmuttaneously.

<see
by

of a
such

Block-structure also governs declaration processing during
execution of the resulting programs. On entry to a block, all
declarations Included In the block's constituent list are again
collected together, storage for automatic variables is allocated, and
alt identifier~ declared by such declarations become accessible. On
exit from a block, all identifiers declared within that block become
lnaccesslble1 the values of automatic variables become undefined, and
the variables allocated on the system-managed stack become
undef lned.

7.8.2 MODULE-LEVEL DECLARATIONS

Objects declared at the outer•ost level of a modu1e are associated
with no block at alt. Such declarations must be evaluated, and
required storage allocated, prior to program execution. Accordingly•
all •~rlables so declared are automatically given the static storage
attribute, as are all scope-attributed variables.

CDC Private

CYBIL LANGUAGE SPECifICATION
8-1

06118/81
REV: 6

--a.o PROCEDURES ANO FUNCTIONS

A procedure or function declaration defines a portion of a program
and associates an identifier with it so that it can be activated
(i.e., executed) on demand by other statements in the language. A
procedure or function Is Invoked by a procedure call statement or
function reference.

A procedure call statement or function reference causes the
execution of the constituent declarations and statement lists of the
procedure or function after substituting the actual parameters of the
call for the formal parameters of the declaration.

8 • 1 J!.RllC.ED.U&f;...JlfCLARAiltlt:!S.

There are the following forms of procedure decfaration:

<procedure declaration> ::a
2LAC~~UL~ 1 XLA! l (proc spec>

: 2t.JlatUIUt.AC1.<Proc attr I bute>JJ<proc spec>;
<proc body><proc end>

ALAg~am <proc spec>;<proc body><proc end>

The first form is used to refer to a procedure which has been
compiled as part of a different module. The procedure ~ust have been
declared with the x~~l attribute, and with an equivalent parameter
list in that module.

The second and third foras declare the procedure identifier to be
a procedure of the kind specified by its parameter list and
associates the Identifier with the constituent declaration list and
statement list of the dectaration.

The QtQitAI declaration Is used to identify the first procedure of
a program to be executed, when required by the system. It may only
be present on a single outermost bf ock level procedure of the
compltatton unit.

If more than one compilation unit ts to be linked together for
execution, then only one procedure with a RtQgLam declaration may be
present among all those compilation units being linked.

The procedure type is elaborated on entry to the block in which it

CDC Private

8-2
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

--a.o PROCEDURES AND FUNCTIONS
8.1 PROCEDURE DECLARATIONS

--
fs declared, and remains fixed throughout the execution of that
block.

<proc spec> ::a (procedure identifier> C<allas>J <proc type spec>

(proc type spec> ::• C<parameter list>l
(parameter list> 1:= ((param segment> {;Cparam segment>})
Cparam segment> ::= <reference params>

: <value params>
<reference params> ::= r..at. <param> { ,(param>}
<param> ::• <for•al param list>: (parameter type>
<value params> ::= <value param>C,<value param>}
<walue param> ::• <formal param list> :

(parameter type) c:~ <default>]
<default> ::• <constant>

<formal param 11st> ::•<formal parameter identifier>
{,<formal parameter Identifier>}

<formal parameter identifier> ::a <identifier>

<parameter type> ::a <fixed type>
:<adaptable type>

<proc body>::: <declaration list> <statement list>

(proc end> ::• 2£AG~D~ {(procedure identifier>]

<procedure identifier>::• <identifier>

The default vatue provides an optional parameter capability for
the value parameters on xt1t•ed procedures. Reference parameters may
not be optional. See section 10.5 for a discussion on procedure
calls invotving optional parameters.

The !~&ti attribute Is an extension of the xj'! attribute to
extend the pr~tection provided for In the environment provided by the
operating syste•• It may not be relevant on all computer systems.
SpecifyiAg the b.atc attribute without also specifying 1.d~l is a
compilation error.

a.2 fUtJtillJti_QEC.L!&lllDtiS

<functton dectaratlon> tl• tUDQ11An I •'=1 l <func spec>
t !UD~tiaa CI func attributell <func spec> ;

<func body> <f unc end>

CDC Private

CYBIL LANGUAGE SPECIFICATION

a.o PROCEDURES AND FUNCTIONS
8.2 FUNCTION DECLARATIONS

8-3

06/18/81
REV: 6

--
<func spec> ::=<function identifier> C<alias>l<func type spec>

<function identifier> 1:= <identifier>

<func type spec> ::• [(parameter list>l : <result type>

<result type> ::= <basic type)

<func attribute> ::= <pr~c attribute>

<func body> ::• <proc body>

<func end> ::• !UD~:n~ C<function identifier>]

Function declarations serve to define parts of the program which
compute a value of the basic type. Functions are activated by the
evaluation of a function reference which is a constituent of an
expression.

The value of a function Is the value last assigned to its function
identifier before returning (either by fatting through the funcend,
by a return statement. or by an exit statement>. The resutts of
returning by any means from a function prior to assignment of a value
to the function identifier (for the current execution) are
undefined.

8.2.1 SIDE EFFECTS

A function returns a vafue through the Identifier of the
function. When a function changes the value of a variable other than
the local variables of the function that change is a side effect.
CYBIL prevents side effects by restricting assignments, procedure and
function calls, and the use of non-local •ariables in user defined
functions.

The left-hand side of an assignment statement within a function
•ay not be any of the following:

o A non-local variable,
o A reference parameter of the function,
o A pointer variable followed by a dereference (4

).

User defined functions may not contain:

o Procedure catl statements that call user-defined procedures~
o Parameters of type pointer to procedure,
o ALLOCATE, FREE1 PUSH or NEXT statements that have parameters

CDC Private

CYBIL LANGUAGE SPECIFICATION
8-4

06/18/81
REV: b

--a.o PROCEDURES AND FUNCTIONS
8.2.1 SIDE EFFECTS
--

that are not local variables.

These restrictions may make it necessary to use a procedure for
some purposes for which a function might otherwise be used. However
this inconvenience may provide more rellabillty by preventing side
effects.

The attribute s~~l may only be used on a procedure or
declared at the outer~ost tevel; i.e., not contained in
procedure or function. It specifies that the procedure or
should be made referenceable fro• other modules which
declar~tion for the same procedure or function identifier
.,ef attribute. The parameters must also be the same.

function
another

function
have a

with the

A parameter list Is a set of variable declarations In the <proc
type spec> or <func type spec> <not in the <proc body>) which
provides a mechanism for the binding of references to the procedure
or function call environment in a manner which permits selection of
entities to be bound at each invocation of the procedure or
function. This is accomplished by providing the procedure or
function with a set of values and variables, so-called actual
parameters, at the point of call.

A value parameter results in the value of the actual parameter, at
the point of catf, being associated with the formal parameter. See
section 10 for precise rules governing parameter passing. The cat led
procedure or function may not assign a value to one of its value
parameters, nor use It as an actual reference parameter to any
procedure or function it may call.

The type of a formal value parameter may be any fixed or adaptable
type except the so-called non-value types: heaps, records and arrays
of non-value types (i.e., any type which cannot enter into an
assignment statement may be neither a formal nor an actual value
parameter}.

A reference parameter results in the formal parameter designating
the corresponding actual para•eter throughout execution of the
procedure. Assignments to the formal parameter thus cause changes to
the variable that was passed as the corresponding actual parameter.

The type of a format reference parameter may be any fixed or

CDC Private

CYBIL LANGUAGE SPECIFICATION

8.0 PROCEDURES ANO FUNCTIONS
8.4 PARAMETER LIST

8-5

06/18/81
REV: 6

--
adaptable type.

~at al, az, bl, b2, c, d, q, r t lnt:Q~t ; {m > o.n > 0}
(Greatest Common Divisor x of m and n,
{Extended Euclid's Algorithm.}

al :• 0 ;
al t• 1 ;
bl :a 1 ;
bl :• 0 ;
c := m . ' d :• n ;

itbill d <> 0 do.
{al * m + bl * n • d, a2 * m + b2 * n • c
{gcd(c, d) a gcd(m, n)}

q :a c gji
r =· c JUUi
a2 :a aZ
bZ :• bZ
c t• d .

' d :• r . ,
r 1• al •

' al : 2: aZ . ' a2 : • r ;
r : • bl ;
bl : • bl ;
bl t • r ;

tlb.il&Dd ;

x :• c;
y : = aZ i
z : 11 bZ;

d ;
d . ,
q * al . ' q * bl ;

C• • gcd(m, n>, y * m + z * n • gcd(m, n)}
Rt.O..GJUUi gc d;

CDC Private

CYBIL LANGUAGE SPECIFICATION
8-6

06/18/81
REV: 6

--a.o PROCEDURES AND FUNCTIONS
8.4 PARAMETER LIST

--
!YD&&tiAD 11 in <a: ln.t•.;cc.; b: lnl.Cit.C.t. l: J.ntJu1e.t.;

i! a) b t.1110
min =· b;

els•
min :: a;

!f..e.od;

!UDGJlDd min;

CDC Private

CYBIL LANGUAGE SPECIFICATION
9-1

Ob/18/81
REV: 6

--9.0 EXPRESSIONS

9.0 fle.&fSSlQti~

Expressions are constructs denoting rutes of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operands (i.e ••
variables and constants>• operators. and functions.

C.su1itant e.&Rt.&S.S.iAOS. are expressions In vo Iv i ng cons tan ts and a
subset of the operators and functions (cf., Section 5).

<expression> ::• <simple expression>
:<slmpte expression><relationa1 operator>

<simple expression>

<simple expression> ::= <term> : <sign operator><term>
:<simple expression>

<adding operator><term>

<term> ::~ <factor>
: <term><muttlplying operator><factor>

<factor> ::• (y3riabte>l<constant>:<constant identifier>
:<set value constructor>:<function r~ferenee>
:A<procedure identifier>:A<variable>
:<<expression>t:nit<factor>

<multiplying op er a tor> ::. * • di~ • I • IUU1 an.d I ' •
<sign operator> ::: <sign>
<sign> : : s + • -•
<adding operator> : : . +

,, - • At XAt • I

<relational operator> ::a < <= • > •)a = • <> la • • •

CDC Private

9-2
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

--9.0 EXPRESSIONS

<function r~ference> 1:~ <built-in function reference>
:<user defined function reference>

<user defined function reference> ::=
<function ldentifier><<actual parameter>
(, <actual parameter>}>
: <function identifier)()

<built-In function reference> ::: iU~~ <<scalar expression>)
:2r..1d <<scalar expression>)
:2t~ ((expression>)
:Gbt t<expression>J
:i1atc~~t <<expression>>
:ic~ai (<expression>>
: llU!Ul.tJlA! <<expression>>
:i.tr.l&Djltb <<fixed string type identifier>

i<string variable>>
:1~~S.tbRUD~ <<fixed array type Identifier>

:<array variable>)
hUUllt..tuuuul f<flxed array type identifier>

:<array variabte>l
iuea:t~A!u: C<scalar type ldentlf ier>

:<scalar variable>>
l!AlltlAlUA t<scalar type identifier>

l<scalar variable>>
:112; <<variable>>
:ti!lc<<variable>

:<fixed type identifier>
:<adaptable type> : [<adaptable field fixer>l>

<fixed string type identifier> ::a <string type identifier>

<fixed array type identifier> ::a <array type identifier>

<fixed type Identifier> 1:• <identifier>

<scalar type Identifier> ::• <scalar identifier>

<scalar variable> ::•<variable>

See Section 11 for the details of these built-in functions.

CDC Private

CYBIL LANGUAGE SPECIFICATION
9-3

06/18/81
REV: 6

--9.0 EXPRESSIONS

Factors:
x
15
(x + y + z)
Scotorset Cred, e, greenl
nat P

Terms:
x * y
I ~lr. 3
P AO.cl q
(x <= y) AQd (y (Z)

Slmpte expressions:
)(+ y

- x
booll at. bool2
i * j + 1
hue ~ Scotorset Cred, green]

Expressions:
x • l
p <• 2
(l(j) 2 (j(k)

c in huel

The value of a variable, as a factor, is the value last assigned
to it as possibly modified by subsequent assignments to its
components.

The value or an unsigned number is the value of type in.te.~uu:.
denoted by it In the specified radix system.

The value of a real or tongreal constant is the number denoted by
It.

String constants consisting of a single character denote the value
of type ~DA~ of the character between the quote marks.

String constants of n ln > 1> characters denote the fixed ~.t.tlllJI
(nl value consisting of the characters between the quote marks.

The constant n11 denotes a null pointer value of any pointer
type.

CDC Private

CYBIL LANGUAGE SPECIFICATIO~
9-4

06/18/81
REVt 6

--9.0 EXPRESSIONS
q.1 EVALUATION OF FACTORS

---------------·--
A constant identifier ts replaced by the constant It denotes. If

this in turh Is a constant identifier, the process is repeated until
a constant of one of the above forms results. The value is then
obtained as above.

The value of a set value constructor is the value obtained from
the vatues of Its constituent expressions of type specified by its
set type identifier.

The value of an up-arrow folloved by a variable of type T is the
pointer watue that designates that variable.

The value of an up-arrow followed by a procedure identifter of
procedure type P Is the pointer to procedure value that designates
the current instance of declaration of that procedure.

A function reference specifies the execution of a function. The
actual par•meters are substituted for the corresponding formal
paraeeters in the declaration of the function. The body is then
executed. The value of the function reference is the value last
assigned to the function identifier. The meaning or, and
restrictions on, the actual parameter~ is the same as for the
procedure call state•ent tsee 10.5.1).

The value of a parenthesized expression is the value of the
expression which Is enclosed by the parentheses.

The type of the value of a factor obtained from a variabte or
function reference whose type is a subrange of some scalar type Is
that scalar type.

9. 2 ll.?.f &!IQ&.S

Operators perform operations on a value or a pair of values to
produce a neM value. Most of the operators are define~ only on basic
types. though some are defined on most types. The following sections
define the range of appf icabtlity, as well as result. of the defined
operators~ An operation on a variable or component which has an
undefined value will be undefined in result.

9.2.1 NOT OPERATOR

The not operator, n1!1 applies to factors of type boolean. When
applied the meaning is negatton; i.e., DA1 t~u~ ~ !al~c and nAt !al~~
?. true.

CDC Pr I vate

9-5
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

--9.0 EXPRESSIONS
9.2.2 MULTIPLYING OPERATORS

--
9.2.2 MULTIPLYING OPERATORS

The following table shows the multiplying operators, the types of
their permissible operands, and the type of the result.

: Op er a tor: Operation :operands • I Result • • : ,.._._.__: ~~----·~._,._._._ _.._....,._..__._._ ___________ : ,.-,._,._.._..._.-..--...... : ..___.,... ___ ,.., ___ ._:
:• :multiplication :1nt~a~I. or lin1e.~~~ :
: : : integer :
: : : subrange : :
t : : I.Ill : UtJl :
: : :1~n~L~Al :1an~£~al :
• • • • • ' • • • •
:JS!~
• • • • • • • • • •
' • • • • I

• • • •

:set Intersection
:- the set consisting of
• elements common to the t

• two sets •
:integer quotient
: for ., b1 n positive
• integers • • a di:v: b = n where n is the •
I largest integer such • • that b*n < .: a •
:ror one or two negative
• Integers • • l-a) s11x b ~ (8) slll (-b) • - (a sUx b), a sUJ. b a -(-a) .dlx (-b)

:~e.1 st! type:~At. o.t type:
:I T • T • t I • • • • I • • • • • • • •
:1nt.111st or :1a.t1J1~t • •
:integer • • I •
:subrange • • • • • t

• • • • • ·• • • • ' • • I • • • • •
!. • • • • • • • • • I

+---.-.-.--.-,..- ... +-,_.-..... -~ ... ---.... .---.... --~--... .-.-.... .-.--..-,-------.-...-+-·--.-........ ._. _ + ... ----~--------...--+

• •
:real and longreal quotient
t •

: c.e.a1
: li!Ult..1.il

:t.&.al
:1201tJU!

• • • I +..-.-------------+----.,--------...-..... ._ ___ _.._ ----~----------------+---------....,,-----·---·--------------+
: msut
• • • •
: ao.d
• • • • • • • • • • • • • •

: remainder function
:a mAd b ~ a - Ca div bl*b

:logical 'and'
: tJ:.Ul and !.al~l ~ !.l!ii
: tut& &Dd .ti:111 : tc..u.c -:t.als.c .an.st !ali.e ~ t.a!~l
:ta!sc JUUi tc.u~ s ta!se. -:•When the first operand Is
:ta!s.11 the second is never
:evaluated.

:1nt~AiJ:. or :1nt&get
:integer :
:subrange

: 1HUl1:.an • b.IUlllaQ • • • • • • • • • • • • • • ' • • ' • • • • • • ' t I

• • • • • •

• ,,
• • • • • • • ' • • • t +------.-...--...-..-+---.----.-----------------.._, ____ ._.._ __. _____ ._+-·------------.... --+------·----------+

CDC Private

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.2.3 SIGH OPERATORS

9-6

06/18/81
REVt 6

--
9.2.3 SIGN OPERATORS

The • operator can be applied to integer, real and longreal types
only. For types lntege~, real and longreal it denotes the identity
operation and results in integer, reat or longreal type Cl.e., a~+
a).

The - operator can be applied to integer, real, longreat and set
types only. It denotes sign inversion--1.e.1 -a ~ 0 - a for
integers, reals or longreals. It denotes complementation for sets
with respect to the base type - i.e., the set of all elements of the
base type not contained in the specif led set.

q.z.4 ADDING OPERATORS

The following table shows the adding operators, the types of their
permissible operands• and the type of the result.

CDC Private

CY8ll LANGUAGE SPECIFICATION
9-7

06/18/81
REV: 6

---#·-----9.0 EXPRESSIONS
9.2.4 ADDING OPERATORS

--
: Operator: Operations

:+
• t

• • • • • •
I • • • • • • • ,.
I

:-
• ' • I

• • • t

• ' • •
• • • • • ..
• • • • • • • •
I
I

• • • •
: At.
• •
• •

• • • •

• t

• •
• •

:addition
• • • ' • • • t

:set union
:- the set consisting of
• all elements of both • • sets. I

:subtraction
• • • • • ' • •
:boolean difference
: tc.iu: - tt.u ; !al1.c •
: tr.ua - !~lil ~ ttuc
:1a11.c - 1t.Ut ~ tali~'
: ta1SA - !•lsc~~ !A!S~

:set difference
:- the set consisting of
: elements of the left
: operand that are not
: also eleMents of the
: right operand •

:logical •or•
:tLYA At 1LUA ~ ttU~'
: ttUA At. !Alll ~ tLUA
:tAliA At ttYC ~ tLUA1
: tali& At tal~t ~ !a!s1
:• When the first operand
:Is 1tYl1 the second is
:never evaluated •

:exclusive •or•
:tLU& &A£ 1LYA ~ !&11&
:tr.u1 ~At !alic ~ ttus
:tAllA ¥AL tLYC ~ ttYI
:1.111 &At !alsc ~ tali•

• t

,,
• • • • • • • • •
• • • t
I •
' I

• I

• • • • • t

:
• t

• ' • I

• I

• • • '
• t
t •

I •
I • • I

• •
I

• I

• t
t • • •

Operands

illtJUUtt. or
integer
subrange
t.cal
iAlUlt.~Al

t
I Result

:1111e.a1.t
• • • t

: C.itil
: 1A1Ult.~A!

• •
t • • • • •
I • • •

~~t Sl! type:i.1.t ii! type:
T • T • • • • •

lntJUltt. or : !ntflAl.C.
integer :
subrange :
i::al :c.e.al
lSlQAL~al :1AnAt.&il

• • • • • • • •

• ' • t

• t

• • • t

• t

f

• • • • • • • • • •

iat ~! type:1At gf type:
T : T :

~GQiJUlD

• t
• t

• •
• •

: tUUllA.IQ
• • • • • t

• • :

• • • • • •

• • • • • •
: ' +~---- ... -.... -.-..... -..---.._.~,_-~-----.-.----+.------._ ____ .._.~.-.-+ .. .___. ___ ._,---·+
• • • •

:symmetric difference
:- the set of elements

• • • '
s=t ~t type:1tt g! type:

T t T

CDC ?rivate

CYBIL LANGUAGE SPECIFICATION
9-8

06/18/81
REV: 6

--·-----------9.0 EXPRESSIONS
9.Z., ADDING OPERATORS

--
• • • •

contained In either
set but not both sets. • •

• • • • • t

CDC Private

CYBIL LANGUAGE SPECIFICATION
9-9

06/18/81
REV: 6

--9.0 EXPRESSIONS
9.2.5 RELATIONAL OPERATORS

-------~--
9.2.5 RELATIONAL OPERATORS

Relational operators are the primary means of testing values in
CYBIL. They yield the boolean value ttYC if the specified relation
holds between the operands, and the value !al~~, otherwise.

All six comparison operations< (less than), <= (less than or
equal to), > (greater than), >• (greater than or equal toJ, a (equal
to), and<> (not equal to) are defined between operands of the same
scalar type, or substrings of length one and ~bat•

For operands of type 1UtlSS£ they have their usual meaning.

For operands of type Juia.l~ao the relation !.al~A < tt.UJ: defines the
order Ing.

For operands, a and b, of type ~bit, the relation a A2 b hotds If
and only if the relation ~t~la) A2 Qt~(b) holds, where i2 denotes any
of the six comparison operators and Qt.~ Is the mapping function from
character type to Integer type defined by the ASCII collating
sequence.

For operands of any ordinal type r, a• b if, and only if, a and b
are the same value; a < b If, and only If, a precedes b In the
ordered list of values defining T.

Operands of type subrange of some
compared with operands whose type
subrange of that parent type.

parent scalar type may be
is the parent type or another

Two pointers can be compared if they are pointers to either
equlw~lent or potentially equivalent types. In the latter case, one
or both of the pointers may be pointers to adaptable or bound variant
types. The instantaneous type of such pointers must be equivalent to
the type of the pointer they are being compared with; if It Is not,
the operation ts undefined.

Pointers may be co~pared for equality and Inequality only.

A pointer of any type May be compared for equality or inequality
with the value Dll•

A pointer comparison results in equality if both pointers

CDC Private

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.Z.5.2 Comparlson of Pointers

q-10

06/18/81
REV: 6

--
designate the same variable, or if they both have the value nli•

Two pointers to procedur~ ar• equal if they designate the same
Instance of declaration of a procedure.

All six relations are defined between operands of real and·
longreal types, respectively. Comparison for equality and inequality
is done within the precision limits of the host machine.

Alf six relational operators may be applied to operands whose
values are strings. If the actual lengths of the two strings
entering into the operation are unequal, blanks are conceptually
appended to the string having the shorter length.

Strings are compared to each other character by character from
left to right until total equality or inequality is determined, as
follows. let n be the length of the strings a and b <n ~ 1), and ~2
be any of the six comparison operators, then:

o a a b iff a(i) : b(i) for all l~i~n

o For op one of <>, <• >

a op b lff for some k, l~kSn
a(k) op b(k) AMO
a<IJ • blit for l~i<k

o a>= b iff a= b OR a> b

o a < • b iff a • b OR a< b

The relation a lo s Is true If the scalar value a is a member of
the set value s. The base type of the set must be the same as, or a
subrange of, the type of the scalar, or the scalar type may be a
subrange of the base type of the set.

The set operations a (identical tot, <> (different from) <• lis
included in), and·>= (includes) are defined between two set values of
the same base type.

sl • s2 is true If all members of sl are contained

CDC Private

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.2.5.5 Relations Involving Sets

9-11

06/16/81
REV: b

--
in sz, and alt members of sZ are contained in sl.

sl <> s2 Is true when sl : sZ is false.

sl <• s2 is true If all members of sl are also
members of sz.

sl >= s2 is true if all members of s2 are also
members of sl.

ll Arrays may never be compared. Structures which contain an array
as component or field may never be compared.

2) Variant records can not be compared. Other record types may be
compared for equality or Inequality only. Two equivalent records
are equal if and only if corresponding fields are equal.

Certain types in the tanguage cannot be compared. These are
heaps~ sequences, arrays, variant records, and records containing a
fietd of a non-comparable type. However, pointers to non-comparable
types can be compared.

CDC Private

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIONS
9.Z.5.8 Table of Comparable Types and Result Types

9-12

Ob/18/81
REV: 6

--

• •

The following table shows the relational operators, the types of
their permissible operands, and the type of the result.

• • Left • • ' •
: Operator : Operation : Op er a.nd • •

Right
Operand : Result

• •
t •

• < • • t

• • • • • (: • • • • • • • • • • • • > • • • •): • • • • a t

<>

• lJl • • • • t • • • • • • • t

• • • • • • • • • • • • • • • I

t • • • • • • •
• • • • I

<> • • • (: • • • ,,
• • >• • • •
• • • • •
I <> • • • • • • • • • • • • • • • • • • I • • • ,,
• • • I

• ' t I

• • • •

- less than t any scalar: T• where • • • • type T • T and r• • • • • - less than or • • are comp- I • t •
equal to • • arable • • • •

- greater than • stt.lositnl • st.t.lna<n> t • • • - greater than • S.< k) *
,,

Jib.It. • • • ' or equal to • GD.It. • SC kl * • t • • - equal to I •
' • - not equal to • • t t

set membership: any scalar: s.at A! T• • •
test type T • where T q • • and T • • t

• • are • t • • • • comp- t
I • • • I arable • • ' •

: Stk) * : iAt A!
: Gbat.

- identity
-. d If fer ent
- is contained

in - contains

- equat to
- not equal

to

• • • •
• • • I

' '

• •
I
t

• •

: type
• ' • t

S.&1 gf T • ~.tt A! T t

where T Is: • ' any sea-: ' •
I ar type: • I

• • • t

any non- • T lthe • • •
variant • same typet: t

record I •
type T I •
contain-:
Ing no • • • '
arrays • •

any • T or Dll • • t

pointer • • I t

type T I •
or Dll. • • • •

tlAQle.an

tuu1lt:.1n
IUUllC.iD
b.O.AlA.iQ

IUUll~.IQ

bAalcan

tuuile.an

tlAale.an

• I

• • • • • •
• •
I • • • • • • •
• t

• • • •
' I
I
t

I
I

t
I

• t

t • • •
' ' • •
• t

• •
• • • I

• • • • • • • I

t • • '
+---..-.----~-----+--.-... .__ ________ .,... ___ +·------------~--+-.---.-------... --+--·-..-----------.-.----+

CDC Private

CYBIL LANGUAGE SPECIFICATION

9.0 EXPRESSIO~S
9.2.5.8 Table of Comparable Types and Result Types

9-13

06/18/81
REV: 6

--
l*l Substring of form S(k) with a length of one imptied.
The form SCk.l} is not legal in these contexts.

The rules of composition specify operator precedence according to
five classes of operators. The not operator has the highest
precedence, followed by the multiplying operators, followed by the
sign oper~tors, then the adding operators• and finally, with the
lowest precedence, the re1atlonal operators.

The precise order in which the operands entering into an
expression are evaluated is only partially defined. The order of
apptieatton or operator~ Is defined by the composition rules (and
their implied hierarchy of operator precedence> with the exception
that the order of application is undefined for any sequence of
commutative operators of the same precedence ctass. For example:

ll The expression a * b * c dlE d is evaluated as <a * b • cl ~ll d•
and the internal order of evaluation of the first term fs
undefined.

2J The expression a + b + c - d is evaluated as (a + b + c) -d, with
the internal order of evaluation of (a + b + c) undefined.

3) In the ey3fuation of boolean expressions, terms and factors are
evaluated from left to right, and evaluation terminates as soon
as the value of the term or expression is determined.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10~1

06/18/81
REV: 6

--10.0 STATEMENTS

10.0 SIAI£ttEliIS

Statements denote algorithmic actions, and are said to be
executable. A statement list denotes an ordered sequence of such
actions. A statement is separated from its successor statement by a
semicolon. The successor to the last statement of a statement list
Is determined by the structured statement or procedure of which it
forms a part.

<statement list> ::= <statement>C;<statement>l

<statement> ::• <assignment statement>
:<structured statement>
:<control statement>
:<storage management statement>

Since the successor of the last statement of a statement list is
uniquely determined by the structured statement or procedure of which
It Is a part, semicolons are not required as statement ltst
delimiters. However, since the ~m2t1 statement is allowed,
semicolons ~ay be so used for consistency of presentation.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-2

06/18/81
REV: 6

--10.0 STATEMENTS
10.2 ASSIGNMENT STATEMENTS
--

The assignment statement is used to replace the current value of a
variable by a new value derived from an expression.

<assignment statement> ::•
<variable> := <expression>

10.2.1 ASSIGNMENT COMPATIBILITY OF TYPES

The part to the left of the assignment operator (::) is evaluated
to obtain a reference to some variable. The expression on the right
is evaluated to obtain a value. The value of the referenced variable
is replaced by the vatue of the expression.

The variable on the left may be of any data type except for:

o Any variable specified as read-only, or a format •alue parameter
of any containing procedure.

o Any bound varlant record.

o The tag fletd of any bound variant record.

o Heaps, and arrays and records containing heaps.

The variable or function identifier. on the left and the expression
on the right must be of equivalent Instantaneous type, except as
noted below:

o The types of the variable and the expression may be subranges of
an equivalent parent type, or one may be a subrange of the other.
If the value of the expression is not a value of the type of the
variable, the program Is in error.

o If the teft part is a character variable, a string variable or a
substring, the expression may be a character expression, a string
or a substring.

o If the strings, substrings or character elements are not of equal
length and the destination part (left pa~t) is the longer, the
assignment operator will append blanks at the right end of the
destination variable. If the source part <right part) is longer,
the assignment will truncate the value of the source part on the
right to fit the destination part.

o Assignment of two substrings which overlap one another is not

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-3

06/18/81
REV: 6

--10.0 STATEMEHTS
10.2.1 ASSIG~HE~T COMPATIBILITY OF TYPES

--
allowed and the results are unpredictable.

o If the left part Is a variant record, the right part may be a
bound variant record of otherwise equivalent types.

o If the left part is a pointer, its scope must be less than or
equal to the scope of the data to which It is pointing. For
example, a static pointer variable cannot point to a local
varlabte.

o If the left part Is a pointer to a bound variant record• the
expression may be a pointer to an otherwise equivalent •unbound'
variant record.

o If the 1eft part is an adaptable pointer, the right part must be
either a pointer to any of the instantaneous types to which the
left part pointer can adapt, or an adaptable pointer which has
been adapted to one of those types. Both the type of the
expression and its value are assigned, thus setting the current
type of the assignee.

o If the left part is a fixed or bound variant pointer type, the
right part ~ay be a pointer to cell. The only effect of the
assignment is as follows: after the assignment, the value returned
by an application of the llA~ function on the de-referenced value
of the lefthand side as argument will be equal to the right-hand
side value.

o If the left part is a pointer to cell, the right part may be a
pointer type. The value assigned Is a pointer to the first cell
allocated for the variable pointed-to by the right side.

o WacnlnA1 Note that generally a pointer value has a finite lifetime
fsee Sectio~ 6.Z.2J different from that of the pointer variable.
Automatic variables cease to exist on exit from the block in which
they were declared. Allocated variables cease to exist when they
are freed. Attempts to ~eference non-existent variables by a
designator beyond their lifetime is a programming error and could
lead to disastrous results.

A structured statement may be labeled by preceding 1t with a
structured statement identifier. This allows the statement to be
explicitly referred to by other constituent statements <e.g., exit,
cyete). Such a labeling of a statement constitutes the declaration
of the structured statement ldentlf ier and hence the ldentlf ier must
differ fr~• al1 other Identifiers declared in the same block.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-4

06/18/81
REV: 6

--10.0 STATEMENTS
10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS

--
10.3.1 SCOPE OF STRUCTURED STATEMENT IDENTIFIERS

If a strbctured statement Identifier labels a constituent
structured statement of a procedure declaration or a begin statement.
then Its scope Is that procedure declaration or begin statement. It
is impossible to refer to a structured statement identifier on a
structured statement from outside that state•ent. A structured
statement identifier may optionally follow a structured statement
(except £A2&A1•• unt11J, in which case It must be identical to the
structured statement ldentffer labeling that statement. This ts for
cheeking purposes only, and does n~t affect the meaning of the
program. The scope of a structured statement identjfier does not
include procedures called from within its scope.

<structured statement identifier> ::• t<identifier>L

E.1..aaa111

/check_range/
•bill val < 0 dA

•
•
•

tibllADd /check_range/;

1 o. 4 SIBJJC.IUB.E12-S.IAift1EtilS.

Structured statements are constructs composed of statement lists.
They provide scope control• selective execution, or repetitive
executioA of their constituent statement lists.

<structured statement> ::• [<structured statement identifier>]
<repeat statement>

:c<structured statement identifier)] <delimited statement>
C<structured statement ldentif ler>l

<delimited statement> ::• <begin statement>
: <while statement>
: <for statement>

10.4.1 BEGIN STATEMENTS

Begin statements permit the execution of a single statement list.
Exit Is either through completing execution of the last statement of
the statement list or through an explicit transfer of control.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-5

06/18181
REV: 6

--10.0 STATEMENTS
10.4.l BEGIN STATEMENTS

--
The successor of the last statement of the statement list of a

begin statement Is the successor of the begin statement.

<begin state•ent> ::=
b~aln <statement list> ~nd

10.4.2 WHILE STATEMENTS

A white statement controls repetitive execution of its constituent
statement list.

<while statement> ::•
Mh!l~ <expression> dA <statement tist> Kbi!~Dd

The expression controlling repetition must be of type boolean.
The statement list is repeatedly executed until the expression
becomes f411S• If Its value is tal~A at the beginning, the statement
list Is not executed at alt.

The successor of the last statement of the constituent statement
list of a while state~ent is the while statement itself.

E1.amal.cs.:

ttbll~ aCil <> x .dg
t :: I + l;

tth!!aa1J;

"bilA i > 0 .dA
it i • z tbcn

z ::: z * x;
l!~D.di
i :a I 1111 2;
x := x * x;

•llll.e.BtU

10.4.3 REPEAT STATEMENTS

A repeat statement controts
constituent statement list.

<repeat statement> ::s

repetitive

£C2~at <statement list> until <expression>

execution of I ts

CDC Private

CYBIL LANGUAGE SPECIFICATIO~
10-6

06/18/81
REV: 6

--1 0. 0 ST A, TE MEN T S
10.4.3 REPEAT STATEMENTS
--

The expr~ssion controlling repetition must be of type boolean.
The statement list between the symbols u2~at and until is repeatedty
(and at least once) executed until the expression becomes true.

Exama.ta:

t..llU~•t
k := i mgd j;
i := J;
j :a k;

until J = o;

10.4.4 FOR STATEMENTS

The for statement indicates that its constituent statement list is
to be repeatedty executed Mhite a progression of values is assigned
to a variable, which is called the control variable of the for
statement.

<for statement> ::a
fQt <control variable> :=<for list>~~

<statement list> !DL~nd
<for list> ::=

<Initial value> tg <final vatue>
:<Initial value> gg~ntg <final value>

<control variable>::= <variable identifier>
<Initial value> ::=<scalar expression>
<flnal value> ::= <scalar expression>
<scalar expression> ::= <expression>

The control variabfe, initial value and final value must all be of
equivalent scalar type or subranges of equivalent types.

The control variable may not be an unaligned component of a packed
structure.

Assignment to the control variable, either explicit or by passing
as a ~at. parameter~ within the statement list Is a fatat compilation
error.

The initial value and final value are evaluated once on entry to
the for statement, as is the name of the control variable. Thus,
subsequent assignments to components of these expressions have no
effect on the sequencing of the statement.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-7

06/18/81
REV: 6

--10.0 STATEMENTS
10.4.4 FOR STATEMENTS

--
If the initial value is greater than the finat value in the t2 form,
or if the Initial value is less than the final value in the ~2~ntg
form, then no assignment is made to the control variable and the
statement list Is not executed.

If the exit from the statement is a normal one, then the value of
the control variable is the final value. If the exit is caused by
the A< statement, the value of the control variable is that which
was in effect when the ~xit statement was executed.

Control statements cause the transfer of control to a different
execution environment or to a statement other than the successor
statement In the same environment, or both.

<control statement>::= <procedure call statement>
: <if statement> : <case statement>
: <cycle statement>
: <exit statement> : <return statement>
: <empty statement>

10.5.1 PROCEDURE CALL STATEMENT

A procedure call statement causes the creation of an environment
for the execution of the specif led procedure and transfers control to
that procedure. <cf., Chapter a.o Procedures.) A procedure call
statement may never be used to activate a function.

<procedure call statement> ::a
<procedure reference> <actual parameter list>

<procedure reference> ::•<procedure identifier>
: <Potnter to procedure reference> A

<pointer to procedure reference> ::= <pointer reference>

<actual parameter list> ::=
<<actual parameter>{•<actual parameter>})

: f<keyNord parameter> {,(keyword parameter>})
: <empty>

<keyword parameter> ::•
<formal parameter name> :a <actual parameter>

<empty> :;=

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-8

06/18/81
REV: 6

--10.0 STATEMENTS
10.5.1 PROCEDURE CALL STATEMENT

--
<actual parameter> ::= <expression>

: <empty>

An actual parameter corresponds to the formal parameter which
occupies the same relative position in the format parameter list.
When using the keyword form, actual parameters may be specified in
any order. However, no procedure call can use part keyword and part
positional form. In either form, parameters which are optional
(formal read parameters with a default) may be omitted by using an
empty positional parameter or by not being specified in the keyword
form. In either case, the value given the omitted parameter is that
declared as the default value. With these default parameters, commas
used to mark out to the end of the parameter list are unneces~ary.

A value par~meter causes the association within the called
procedure of the value of the actual parameter at the point of call
with the name of the formal parameter. The type of the parameter is
fixed as follows:

1) If the formal parameter is of fixed type, then the actual
parameter may be any expression which could be. assigned to a
variable of that type, except in the case of strings which must
be of equal length.

2) If the formal parameter is of adaptable type, the Instantaneous
type of the actual parameter must be one of those to which the
adaptable type can adapt.

3) If the formal parameter is an adaptable pointer, then the actual
parameter may be any pointer expression which could be assigned
to that adaptable pointer. Both the value and the instantaneous
type of the actual parameter are assigned1 thus fixing the type
ot the formal parameter.

A iat parameter causes the formal parameter to
actual parameter throughout execution or the procedure.
to the formal parameter thus cause changes to the
actual parameter. An actual parameter corresponding to
parameter must be addressable.

designate the
Assignments

corresponding
a ~It formal

The type designated by the formal parameter is fixed as follows:

1) If the formal parameter is of fixed type, the actual parameter

CDC Private

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
io.s.1.z Reference Parameters

10-9

06/18/81
REVt 6

--
must be a variable or substring reference of equivalent type.

2) If the formal parameter is of adaptable type, the actual
parameter must be a varlable or substring reference whose type Is
potentially equivalent.

10.5.2 IF STATEMENTS

The If statement provides for the execution of one (and only one)
of a set of statement lists depending on the value of boolean
expressiontsJ. The boolean expression(s) following the it or :1~:1!
symbols are evaluated In order until one is found whose vatue is 1£U~
• The subsequent statement list is then executed.

If the value of alt Boolean expression(s) are fll~~, then either
no statements are executed. or the statement list following the :lsl
symbol is eKecuted (if present>.

The successor to the last statement of a constituent statement
ltst of an if statement Is the successor of the If statement.

<if statement> ::=
it<if body> l iflQd

<if body>::= <expression> tb:o <statement list>
t Ilic <statement list> : ~!s1if <If body>J

E.l.il.2l!J.1

lf. x < Y tb.co
x : • y;

it111.d;

if. x <• 5 tb.en
z : . l;

else!! x > 30
z :: z;

&ls cl! x 2 15
z t• 3;

AlJ.1
z := 4J

!tcod;

th~Jl

tlu:.n

In the first example• x takes on the value of ~ if and only If the
relation x < y holds>. In the second example. i will take on one of
the values <1,z,3,4) depending on the value of &•

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-10

06/18/81
REV: 6

--10.0 STATEMENTS
10.5.3 CASE STATEMENTS

--
10.5.3 CASE STATEMENTS

A case statement selects one of Its component statement ltsts for
execution depending on the value of the selector expression.

<case statement> ::= GA~~ <selector> A! <cases>
C~l~: <statement tist>l ~a~:D~

<selector> :t= <scalar expression>

<cases> ::• <a case>C;<a case>}
<a case> ::= =<selection spec>C1<selectlon spec>}•

<statement list>

<selection spec> ::=
<constant scalar expression>

[•• <constant scalar expression>]

The case statement selects for execution that statement list (if
any> which has a selection specification which Includes the value of
the selector. If no selection specification includes the value of
the selector, the statement list following els~ is selected when the
etse option is empfoyed. If the value of the selector is not
Included In any selection spec and the cli~ Is omitted, the program
Is in error.

The selector and alt selection specifications must be of the same
scafar type or subranges of the same type. No two selection
specifications may include the same values (i.e., selection must be
unique).

Selection specs are restricted to
expressions.

simple constant scalar

The successor of the last statement of a selected statement list
Is the successor of the case statement.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-11

Oo/18/61
REV: 6

---·--------------------------10.0 STATEMENTS
10.5.3 CASE STATEMENTS

--

G.ISI operator .Q!
=plus:)(:: x + , ;
•minus• x :: x - y ;
•times= x ::)(* y ;

G~SIDSU

Cli.C i A!
•l• x :.a x+l . ,
•2= x :a x+2 ;
•3= x :a x+3 ;
•4= x :.a x+4 . ' ~!Sil
x t• -x . .,

Gil~And;

t~ac lextype • (basic, lnconst, realconst, stringconst1
identifier),

symbol • t~~At.d
G4~A lex : lextype Qf
•basic•

name :: sy11botid1
class : operation,

af nconst=
v a I u e : J.o.t.ltQCt.'
optimiz : ~A~lAan'

=realconst=
v a I ue : t.~.a.1~

=strlngconst=
length : 1 •• 255,
strlngbuf : A~tt.lo~l*),

•identifier•
identno : intAAAI.,
decl : Asymbolentry,

.GIS.JlD.5h.
C.CG~Ddl

~.II.
cursym : symbol,
sign : b2A1.c•n := !al11.;

insymbol;
Ga~A cursym.lex A!

•basic•
it cursym.name• minus th•D

sign l• nA1 sign;
.C!St. .

error <•missing operand•>;
!f.1ns1;

=I nc,onst•
cur~ym.optimiz :a (cursym.value<haltword);

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-12

06/18/81
REV: 6

---·------10.0 STATEMENTS
10.5.3 CASE STATEMENTS

--
lt sign th.en

s ion : • !,a.lsiU
cursym.value :• -cursym.value;

lf.llD.dJ
arealconst•

if sign .tll~o
sign : 2 !.al~~;
cursym.value := -cursym.value;

ltADd;
•stringconst=

error <•string constant where arithmetic type expected•);
=identifier=

cursym.dect := symbolsearch;
lf cur~ym.dectA.typ <> constdecl tb:n

variable (cursym.deet);
t:l~.e

cursym :a cursym.declA.valueA;
itsuul;

S&Ai.t.Ddi

10.5.4 CYCLE STATE~ENT

The cycle statement allows the conditional by-passing of the
remainder of the statements of the constituent statement list of the
designated repetitive statement, causing reevaluation of the
expression controlling the structured statement, thus cycling it to
Its next Iteration (If any).

<cycle statement> ::= ~~~le <structured statement identlf ier>

The structured statement Identifier must Identify a repetitive
statement (f~L, •bile, or ~~R~at statement), which statically
encompasses the cycle statement, i.e., the cycle statement must be
within the scope of the structured statement.

Thus, the cycle statement has
re-executing the statement list of a
for, repeat, or while.

x : • aC l l;
/flnd_smal lest/

f,Q~ k S• 2 1A n dQ
if. x < aCkl .t.bAD.

Gl~iA /find_s•allest/;
l!.1nd;

the effect of (potentially)
repetitive statement such as

x :a aCkl; {this assignment skipped when x < aCkl}

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-13

Ob/18/81
REVt b

---------·--10.0 STATEMENTS
10.5.4 CYCLE STATEMENT

--
Cthls finds the smallest value In atll thru aCnl}

tu~cn~ /find_smallest/;

10.5.5 EXIT STATEMENT

The exit statement causes execution to continue at the successor
of a designated structured statement, procedure or function ••

<exit statement> ::~ ~~11 <structured statement Identifier>
: <procedure Identifier>
: <function identifier>

If a procedure or function identifier Is designated as the object
of the exit, then that procedure or function must stat1catly
encompass the exit statement within the same module. If a structured
statement Identifier Is designated as the object of the exit, then
that identifier must be for a structured statement which statically
encompasses the exit statement within the same module.

Note that the exit statement with either a str~ctured statement
Identifier, procedure identifier or function identifier designated
permits multiple levels of exit with a single statement. Thus, exit
can permit r~cursive nests to be terminated with a single statement
by selection of the appropriate structured statement, procedure or
function identifier.

CDC Private

10-14
CYBIL LANGUAGE SPECIFICATION

06/18/81
REV: 6

--10.0 STATEMENTS
10.5.5 EXIT STATEMENT

--
EJ:.llU!l4S:
/meaningfut_tabel/

~Aaln x :~ y + 27 J {example of &xit <label>}
found :a tals.c; •••

/for_white_toop/
!At k :• l 1A 10000 dA

J : & k ;
if Ii IQd 2) : 0 tb&D

b[k] =· !.iii.Ci
'!~A

prlme(f, answer} ; {test If prime}
tlb.il.& tt.11.C .dA

1! answer a 5 thAD
A< /for_while_loop/; {goes to •bound := j;• statement}

lfAnsl ;
answer := answer - 5 ;
lt answer <• 0 tb&D

A&il /meanlngfut_tabel/; Cextti •bl!t' f2t
{aAd hagln stmt and goes to • lt found tb&D ••• •}

.Ltcnsa;
illllitDdi

!tend;
!AL.CD~ /for_while_toop/;
{exit /for_whlte_toop/ causes control to transfer here}
bound :• J;
found s= t.uuu

~U~ /meaningful_label/;
{exit /meanlngful_label/; causes control to transfer here}
i! found tblD ••• ;

10.5.6 RETURN STATEMENT

The return statement causes the current procedure or function to
return i.e. completes the current activation of the procedure or
function.

<return statement> ::• ~AtYLD

10.5.7 EMPTY STATEMENT

An empty statement denotes no action and consists of no symbols.

<empty statement> ::•

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-15

06/18/81
REVt 6

--10.0 STATEMENTS
10.6 STORAGE MA~AGEMENT STATEMENTS

--

There are two storage types~ sequences and heaps, defined in the
language• each with its own unique management and access
characteristics. Variables of such types define structures into
which other variables may be placed, referenced, and deleted under
program control according to the discipline Implied by the type of
the storage variable. Storage management statements are the means
for effecting this control, and for managing the placement of
variables into the so-called sxst~m-sta~k·

<storage management statement> ::a (push statement>
:<next statement>
:<reset statement>
l<allocate statement>
:<free statement>

10.6.l ALLOCATION DESIGNATOR

An allocation designator specifies the type of the variable to be
managed by the storage management statements. An allocation
designator is either:

A) A pointer to a f lxed type, In which case a variable of the type
designated by the pointer variabte is specified;

or

B> An adaptable pointer (or bound variant record pointer) followed
by a t12A flxlt (see below) which specifies the adaptable bounds,
lengths, sizes, or tag fields, in which case a variable of the
resultant fixed type is designated and the adaptable or bound
Yar1ant record pointer is set to designate a v~riabte of that
type.

<allocation designator> ::=
<fixed pointer variable>

:<adaptable array pointer variable> : l<star fixer>l
t<adaptable string pointer variable> : t<length fixer>l
:<adaptable storage pointer variable> : !J
:<adaptable record pointer variable> : [<adaptable fietd fixer>l
:<hound variant record pointer variable> :

{<tag field flxers>l

<fixed pointer variable> ::•<pointer variable>

<adaptable array pointer variable> ::= (pointer variable>

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-16

Oo/18/81
REV: 6

--10.0 STATEMENTS
10.6.l ALLOCATION DESIGNATOR

--
<adaptable string pointer variable> ::= <pointer variable>

<adaptable storage pointer variable> ::• (pointer variable>

<adaptable record pointer variable> ::• <pointer variable>

<bound variant record pointer variable> ::: <pointer variable>

<tag field fixers> :i• <scalar expression>
: <constant fixers>C1<scalar expression>]

<constant fixers> ::a <constant scalar expression>
{1<constant scalar expression>}

<adaptable field fixer> ::• <star fixer>
:<length f lxer>
:

<star f lxer> ::= <scalar expression> •• <scalar expression>
<tength fixer> ::= <positive integer expression>
 ::= ({, }J
 ::= [£&a (positive integer expression> All

<fixed type identifier>

1) Star fixers are used In the fixing of adaptabte bounds of
arrays. Values for both the lower and upper bound •ust be
specified in the star fixer. If the lower bound was provided by
a toMer bound spec, the corresponding value specified in the star
fixer must be identical to the value specified by the to~er bound
spec.

2) length fixers are used in the fixing of adaptable bounds of
strings.

31 Span fixers are used tn the fixing of adaptable bounds of heaps
or sequences.

4) The type and value of an adaptable field fixer must select one of
the types to which the associated adaptable pointer can adapt.

5) The order, types, and values of tag field fixers must select
those variants to which the associated bound variant record
pointer can be bound. All but the last of these tag field fixers
must be constant expressions.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-17

Ob/18/81
REV: 6

--10.0 STATEHENTS
10.6.l ALLOCATION DESIGNATOR

--
6) For the bounds list used in an allocation designator, entries are

required only for the dimenion which is adaptable.

7) Pointers associated with type fixers are set to designate a
variable or the type fixed by the type fixer (whenever the
statement in which they occur is executed>. They will then
designate a variable of that fixed type until they are either
reset by a subsequent assignment operation or re-fixed by a type
fixer in a subsequent storage management operation.

E1.:am2la!

txai
tipe • at~a~c1 •• •1 A! atLai c1 •• s1 at acta% c10 •• 201

Qf it.t.a~ (Zl •• 24] A! lntJUIAt ;
xat

point t "tipe ,
bunch i b.c.aa t tea z 5000 sit J.ntiu1.ct t ;

(point 1s an adaptable pointer variable}
•••

t.ASlt bunch;
•••

&11RQl11 point : Cl •• 151 la bunch ;

This allocate statement would cause the allocation of an array of
four dimensions with components of type lntt~IL1 with dimensions:

1 to 151 1 to 5, 10 to zo, and 21 to 24.

and wo~td set the pointer varlable1 point, to designate that array.

CDC Private

CYBIL LANGUAGE SPECIFICATION

10.0 STATEMENTS
10.6.2 PUSH STATEMENT

10-18

06/18/81
REV: 6

--------------#·--
10.&.2 PUSH STATEMENT

The push statement causes the allocation of space for a variable
on the system-managed stack (system stack), and sets an allocation
designator to designate that variable tor to the pointer value nil If
there is insufficient space for the allocation>. The value of the
newly allocated variable (or of any component thereof, in the case of
structured variables) remains undefined until the subsequent
assignment of a value to the variable or to its components.

<push statement> ::• 2u~h <allocation designator>

A variable allocated on the system-stack can not be explicitly
de-allocated by the user. Instead, de-allocation occurs
automatically on exit from the procedure containing the allocating
!UIS.b statement, at which time space for the variable, Is released and
its value becomes undefined.

E&.aa211:

~ac local array : -.aL~aic1 •• •1 2! intca1£ ;
ausb tocalarray :c1 •• 201;

{allocate space for array c1 •• 201 of integer on
{system stack, I-th element can be r~ferenced
{as local~rrayACIJ}

10.6.3 NEXT STATEMENT

The next statement sets the allocation designator to designate the
current element of the sequence, and causes the neKt element to
become the current element. This results in the positioning
Information in the variable of type pointer to sequence to be
updated. After a reset or an allocation of a sequence, the current
element Is the first element of the sequence. Note that the ordered
set of variables comprising a sequence is determined a1gorlthmlcally
by the sequence of execution of next statements.

The type of the pointer variable must be the same when the data is
retrieved from a sequence as when that same data was stored Into the
sequence; otherwise, the program is in error.

If the execution of a next statement would cause the new current
element to lie outside the bounds of the sequence, then the

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-19

06/18/81
REV: 6

--·-------------------------10.0 STATEMENTS
10.6.3 NEXT STATEMENT

--
atlocatton designator Is set to the value nil•

<next statement> ::a
Q&~t <allocation designator> ln <pointer to sequence variable>

<pointer to sequence variable> ::• <pointer variable>

DA~1 lenoth_ptr in buf_ptr ;
Qt¥t stgptr : c1 •• 1ength_ptr•1 in buf_ptr ;

10.6.4 RESET STATEMENT

The reset statement causes either positioning in a sequence, or
en-masse freeing of all varlabtes of a heap. Space for freed
variables is released and their values become undefined.

<reset statement> ::•
~c~~t <pointer to sequence variable> CtA <pointer varlabte>l

: t~~ll <heap variable>

Wa~nlng1 a ~&£~t statement is required Prior to the first allocate
statement for any user-defined sequence or heap to reset the sequence
or heap to an •empty• status; otherwise, the program is in error.

The reset sequence statement causes the positioning Information
contained In a variable of type pointer to sequence to be reset. If
the optional 1~ clause Is not specified, the first element of the
sequence becomes the current element of the sequence. If the tA Is
specified, the element in the sequence pointed to by the <pointer
variable> becomes the current element of the sequence. The use of a
pointer variable whose value had not been set by a next statement for
the sa•e sequence. or whose value is nil' is an error.

The reset heap statement causes all elements currently allocated
in the specified heap to be freed en-masse.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-20

06/18/81
REV: 6

--10.0 STATEMENTS
10.6.5 ALLOCATE STATEMENT

--
10.6.5 ALLOCATE STATEMENT

The allocate statement causes the allocation of a variable of the
specified type In the specified heap and sets the allocation
designator to designate that variable or to the value nil if there is
insufficient space for the allocation. If a heap var1abfe is not
specified, the allocation takes place out of the universal (system
defined) heap.

Note that the first ~11~~~1£ statement for any heap (other than
the system heap) must be preceded by the execution of a tc~~t
statement for that heap~ or the program will be in error.

<allocate statement> i:a a11Q~a1~ <allocation designator>
t in <heap wariabte>J

<heap variable> ::: <variable>

alla~atc my_array : C0 •• 491; {allocate space In system heap}
a11Q~A1~ sym_ptr !n symbol_table;

10.6.6 FREE STATEMENT

The free statement causes the deletion of a specified variable
from the specified heap or from the system heap if the lD clause is
omitted: space for the variable is released, and its value becomes
undef lned.

A pointer variable specifies the variable to be freed. If the
variable specified is not currently allocated in the heap. the effect
Is undefined. Execution of the free statement sets the pointer
variable to the value nl!• Use of a pointer variab1e with a value of
nil to attempt data access Is an error. Freeing a nll pointer Is an
error.

CDC Private

CYBIL LANGUAGE SPECIFICATION
10-21

06/18/81
REV: 6

--10.0 STATEMENTS
10.6.& FREE STATEMENT

--
<free statement> ::•

t&•l (pointer variabte>C!n <heap variabte>l

!t&I sym_ptr in symbol_table;
tr.at r1y _array;

CDC Private

CYBIL LANGUAGE SPECIFICATION
11-1

06/18/81
REV: 6

--11.0 STANDARD PROCEDURES AND FUNCTIONS

11. O SIAfillAfUl-l!&!JCf.QU&fS._6~12-EUt!C.IlDtiS

Certain standard procedures and functions have been defined for
CYBIL which have been included because of the assumed frequency of
their use or because they would be difficult or impossible to define
In the tanguage In a •achine-lndependent way.

11.1 BUlLI:ltt_e.&Cl.tf1lURf

11.1.1 STRINGREP ($1 l1 P)

In this procedure, S is a <string variable>, l Is a <result
length>, and P is a scalar expression.

The string representation procedure facilitates the conversion of
P to its representation as a strlno of characters.

The value of P is converted into a string of characters. The
resulting string Is returned, left-Justified, in the <string
variable> s. The <result length> L returned Is an integer variable
Mhose value is the length (in characters) of the result string.

If the expression to be converted Is an inteoer expression, the
resultant strtng shall be in the base 10. If the integer expression
Is negative in value~ then a minus sign precedes the leftmost
significant digit within the field. If positive, then a blank
character precedes the integer value. If the field given is not tong
enough to contain all the digits of the value of the Integer
expression, then the output field is filled with a string of asterisk
char act er s.

If the expression to be converted is an ordinal expression, then
the integer value of the ordinal is handled in exactly the same
manner as an Integer element.

If the expression to be converted Is a boolean expression, then
the five character string • TRUE' or 'FALSE' is placed left Justified
Into the output f letd with a length of 5. If the field length given
is not long enough to contain all five characters, then the output
field is filled with a string of asterisk characters.

CDC Private

CYBIL LANGUAGE SPECIFICATION
11-2

Oo/18/81
REV: 6

--11.0 STANDARD PROCEDURES AND FUNCTIONS
11.1.1 STRINGREP IS, L, Pl

--
The conversion rules for floating point are to be defined.

ll~Z iUlLI~l~-fUHCilOHS

The following standard functions return values of the specified
type.

11.2.1 SUCCCX)

The type of the expression, x1 must be scalar, and the resutt Is
the successor value of x if It exists; if not, the program is in
error.

11.2.2 PRED(X)

The type of the expression, x1 must be scalar, and the result is
the predecessor value of x If It exists; if not, the program is in
error.

11.Z.3 ORO(XJ

Peturns the
the expression,

integer representation or the value x.
x, must be Qtdloal1 ~b•~· or hA21~an•

The type of

If x ts biQlAiD then zero <OJ is returned for talit· and one <l>
for ttU&• If x Is ~bit' the value returned is the ordinal number, In
the ASCII collating sequence, of •• If x is an ordinal constant, the
value returned is the ordinal number of that constant.

11.2.4 CHR(X)

X •ust be an integer expression yielding a value O ~ x ~ 255. The
value returned Is the character whose ordinal number in the ASCII
collating sequence is x.

CDC Private

CYBIL LANGUAGE SPECIFICATION
11-3

06/18/81
REV: 6

--11.0 STANDARD PROCEDURES AND FUNCTIONS
11.Z.5 SINTEGERCX>

--
11.2.5 $INTEGER(XJ

Returns the integer value corresponding to the value of x. The
type of the expression, x, must be A&~loa!, ~ha~, bADleaB1 lnt•aet or
subrange of integer, tlJl or lADit~•i• The conversions are done as
follows:

a) if X is ordinal, the value returned is the ordinal number of
the ordinal constant identifier associated with the
or din a I v a I u.e;

bl if X is character, the value returned is the ordin·at number,
In the ASCII collating sequence, of the value of X;

cl Ir X Is boolean. zero (0) is returned for f.al~c and one fl)
for 1tJ11;

d) if X is an integer value that. value is returned;

e) if X is a real or longreal value, that vafue is first
truncated to a whole number. If the resultant value
is within the range of type integer, then that value
is returned, otherwise, an out-of-range error occurs.

11.Z.6 SREAL(X)

Returns the real number which is the Implementation dependent
approximation of the 1D1CAA~ or iADQLCA! expression. In the case of
a longrea1, the most significant part is returned. lonoreals are
truncated as part of the conversion.

11.2.7 SLONGREAL(X)

Returns a longreal result which is the Implementation dependent
approximation of the lDttGlt or LA•l expression.

11.Z.8 STRLENGTH(X)

Returns the length of the string x. For a fixed string this Is
the allocated length, and x may be either a string variable or a
string type identifier. For an adaptable string this is the current
length and x must be an adaptable string reference.

CDC Private

CYBIL LANGUAGE SPECIFICATION
11-4

06/18/81
REV: b

--11.0 STANDARD PROCEDURES AND FUNCTIONS
11.Z.9 LOWERBOUNO(ARRAY)

--
11.2.9 LOWERBOUNOtARRAY)

Returns the value of the low bound of the array Index. The type
of the resutt is the index type of the array. The argument <array)
may be either an array variable or a fixed array type identifier.

11.2.10 UPPERBOUHOIARRAY)

Returns the value of the upper bound of the array index. The type
of the result is the index type of the array. The argument (array)
may be either an array variable or a fixed array type identifier.

11.2.11 UPPERVALUE CX>

Accepts as argument either a scalar type identifier or a variable
of scalar type. It returns the largest possible value which an
argument of that type can take on. The type of the result is the
type of x.

11.2.12 LOWERVALUE CX)

Accepts as argument either a scalar type identifier or a variable
of scalar type. It returns the smallest possib1e value which an
argument of that type can take on. The type of the result Is the
type of •·

11.3 lf.t&lS.EtiI•I1Cti_J2EfEf112EtJI-EUt:tt.IllltiS

11.3.1 #LOCC<VARIABLE>)

Returns a pointer to the first cell allocated for the specified
var I able.

11.3.Z #SIZECARGUMENT)

Returns the number of cells required to contain the varlabte, or a
variable of the argument type. The argument may be either a variable

CDC Private

CYBIL LANGUAGE SPECifICATION
11-5

06/18/81
REV: 6

--11.0 STANDARD PROCEDURES AMD FUNCTIONS
11.3.2 #SIZECARGU"EHT)

--
or a fixed, adaptable or bound variant type identifier. In the case
of adaptable type identifier the adaptable field fixer must also be
specified. In the case of the bound variant type Identifier, the
variant requiring the largest size is the value returned.

The capability to generate certain Cl80 instructions inllne Is
provided by the following general form:

#INLINE t•name'• pl~ ••• pn)

where name is the identifier for the set of instructions to be
generated.

11.4.1 #INLINE C'KEYPOINT'1 Pl, Pl• Pl)

Causes the keypoint instruction to be generated intine based on
the following parameters:
pl is a constant expression in the range o •• 15 and becomes the

Instructions J field,
pl - is a constant or variabte expression, if it is the constant zero

then the K field of the instruction is zero, If not zero or a
variable then that value is placed in an X register and that
register becomes the instruction's K field,

p3 - Is a constant expression in the range o •• OFFff(lbl and becomes
the instructlon•s Q field.

CDC Private

CYBIL LANGUAGE SPECIFICATION
12-1

06/18/81
REV: 6

-----·-----------------------------------#·---------------------------12.0 COMPILE-TIME FACILITIES

lZ .o t.Q?l!.1Lf:IU1f-EAtlLlllES.

Compile-time facilltles are essentially extra-linguistic in nature
in that they are used to construct the program to be comPiled and to
control the compilation process, rather than having a meaning in the
progr•• itself. These, together with commentary and programmatic
elements of the language, are the elements of a CYBIL iA~t~I tt&t•

12.1 tlBlJ.._s.au&C..E_lfXI

<text> ::= <text item> {<text item>}

<text item> ::a <pragmat statement>
: <compile-time state•ent>
: <Identifier>
: <constant>
: <basic symbol other than ??>
: <comment>

<compile-time statement> ::•<compile-time declaration>
: <compile-time assignment>
: <compile-time if>

12.2 t1l.tltlLE-IlttE_S.IAIEf1ElilS._AtiD.-D.EC.L.AB.AI1QtiS.

lZ.2.1 COMPILE-TIME VARIABLES

Compil~-tlme variables of type boolean may be declared by means of
the compile-time declaration statement.

<compile-time declaration> ::=
? ~•~<compile-time var spec>

{,<compite-tlme-var spec>} ?;
<compile-time var spec> ::=

<identifier list> : <compile-time type> ta
<compile-tlMe expression>

<compile-time type> ::• ~AAlAaQ

The following rules apply:

CDC Private

CYBIL LANGUAGE SPECIFICATION
12-2

06/18/81
REV: 6

--12.0 COMPILE-TIME FACILITIES
12.Z.l COMPILE-TIME VARIABLES

--
1. The compf te-tfme declaration statement must appear before the use

of any of the compile-time variables. The scope of the
compile-time variable is from the point of declaration to the end
of the module.

z. Compite-time variables may be used only within compile-time
expressions and compile-time assignment statements.

3. Identifiers or compf te-tlme variables may not be the same as any
other program identifiers.

12.2.2 COMPILE TIME EXPRESSIONS

Compile-time expressions must be composed only of constants and
compile-time variables, but excluding identifiers for user-defined
constants.

The operators defined on compile-time variables are:

<compile-time expression> ::s <compile-time term>
:<compile-time expression><disJunctive operator>

<compile-time term>

<compile-time term> ::a <compile-time factor>
:<compile-time term> an~ <compile-time factor>

<compile-time factor> ::a ttM~:tal~~:<compite-time variable>
:<<compile-time expression>J: nAt <compile-time factor>

<disjunctive operator> ::~ ~t : &At

12.2.3 COMPILE-TIME ASSIGNMENT STATEMENT

The value of a co•pile-time variable may be altered by a
compile-time assignment statement.

<compile-time assignment> ::•? <variable> :=
<compile-time expression> ?;

CDC Private

CYBIL LANGUAGE SPECIFICATION
12-3

06/18/81
REV: 6

--12.0 COMPILE-TIME FACILITIES
12.z.4 COMPILE-TIME IF STATEMENT

--
12.Z.4 COMPILE-TIME If STATEMENT

The compile-time if statement is used to make the compilation of a
piece of source code conditional upon the value or some boolean
expression.

<compile-time if> ::•
? 1! <compile-time expression> tbca <text>
C? 11~1 <text>J
? i.t•tuS

The fol1owing rules apply:

l> The expression must be a compile-time boolean expression.

2) Compilation of the <text> occurs only if the value is t~u:.

fx.111a1c.:

? ~•t smatt_size : ~AQlCAD =~ t~uc?;
~·~ Table : A££AX Cl •• 501 gt int~g:~ ;
? if smatl_stze • ttu& tb~o

{might Include this procedure call into program.}
Bubblesort (Table);

? Alli
{or call on procedure Quicksort in program.}
Qulcksort <Table);

? lliUUl

1z.3 !&Ai!!Aii

Prag•ats are used to specify and control:

A) Sour6e and object text tlstlngs produced as by-products of
coapilation, and their layouts;

Bl layout aspects of the source text;

CJ Kinds of run-time error checking;

0) Other aspects of the compilation process.

CDC Private

CYBIL LANGUAGE SPECIFICATION
12-4

06118/81
REV: 6

--lZeO COMPILE-TIME FACILITIES
12.3 PRAGMATS

--
(pragmat statement> ::=

?? <pragmat> C ,(pragmat> } ??

(pragmat> ::= <toggle control>
: <layout control>
: <maintenance control>
: <comment controf >

12.3.1 TOGGLE CONTROL

Uniquely Identified control elements, called tA~All~, are used to
control aspects of compitation. Each toggle is associated with a
specific type of listing, run-time checking, or other activity.
Toggles take on the vatue An or a!!• If ~n, the activity associated
with the toggle is carried out, otherwise, it is not.

Toggle controls are used tot

A) Set the values of indivtduat toggles;
8) Save and restore alt toggle values in a LIFO manner;
C> Reset alt toggles to their Initial values.

<The initial settings of toggles are specified below.)

<toggle control> ::a ~ct <<toggle setting f ist>l
t au~b <<toggle setting list>>

211!
tC~llt

<toggle setting list> ::a <toggle setting> {,(toggle setting>}
<toggle setting> ::a <t~ggle Identifiers> :s <condition>

: <empty>

<condition> ::• An : Q!!

The operations are as follows.

lat: All settings specified in the fist are carried out en-masse.
If a toggte is affected by more than one toggle setting, the
rightmost setting for that toggle is carried out.·

fy~bt A record of the current state of all toogles is saved for
future restoration in a LIFO manner; the current state remains
Intact. A set operation is then carried out.

eaa: The last state record saved becomes the current state. If
none ~ave been saved• the Jnltial state becomes current.

CDC Private

CYBIL lANGUAGE SPECIFICATION
12-5

06/18/81
REV: 6

--12.0 COMPILE-TIME FACILITIES
12.3.l TOGGLE CONTROL

--
&A~~t: The initial state becomes current, and any saved state records

are wiped out.

The maxlmu• allowable number of saved state records witl be
implementation dependent, but should not be less than one.

12.3.2 TOGGLES

<toggle identifters> ::•<listing toggles>
: <checking toggles>

Toggle identifiers may be used freely for other purposes outside
of pragmats.

<llstlng toggles> ::• 11s1 : llstQbJ
: !lst~t~ : 11slt&t : !istall

List flnltlally Is An>: Controls all other listing toggles. When AD
, a source listing is produced, and other listing aspects are
controlled by the other listing toggles. When 2!! no listings can be
produced.

LlstAbJ (initiatly is a!!l: Controls the listing of generated object
code, which is interspersed with source code, followjng the
corresponding source line.

Ll~t,t1 (initially is 2!tJ: Controls
control pragmats. The format control
toggles and the layout controls.

the listing of the format
pragmats are the listing

Lls14Xt <Initially is A!!>: When set to ~n the listing of source
state•ents Is Axternally controlled via a compiler call list option.

L1£1A11t The union of all listing toggles. When set to 20 or A!!
then all other listing toggles are set to QQ or Qft respectively.

CDC Private

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES
tz.3.z.2 Run-Time Checking Toggles

12-6

06/18/81
REV: 6

--

<checking toggles> ::: cb~£DA
: i&btu.utl
: chlu1ii
: Qhkta.g
l Abl.&11

t.hkLOA (default is 4nJ1 controls the generation of object code that
performs the range checking of scalar subr'ange assignments and that
performs the range checking of case variables.

t.bklSlll (default is a.at: controls the generation of obJect code that
checks array subscripts f tndices> and substring selectors to verify
that they are valid.

tbknll (defau1t is Aft>: controls the generation of object code that
checks for a nil value when a pointer dereference is made.

Cbktag (default Is go>• controls the generation of object code that
verifies that references to a fief d of a variant record are
consistent with the value of its tag field {if a tag field is
present}.

Cbka!l: The union of a11 checking toggles; sets all four of ~h~Lng,

~hksu~1 'hkmil• and ~bkta~ as a group.

The effects on the object code that ts generated by these toggles
being turned QQ or ~!! is implementation and system dependent.

12.3.3 LAYOUT CONTROL

layout controls are used to specify source text margins and to
specify and control listing layout.

<layout control> ::• <source layout>
: <listing •ayout>

<source tayout> ::• <source margin control>

<source margin control> ll•
• •

lt!t
tlsab.t

:• <left>
t= <right>

CDC Private

CYBIL LANGUAGE SPECIFICATION

12.0 COMPILE-TIME FACILITIES
12.3.3.l Source layout

12-7

06/18/81
REV: 6

--
<left> ::• <Integer>
<r1ght> ::• (iAteger>

{where 0 <left, and (left +10) (a right<= 110}

All source text to the left of the !1tt-th and the right of the
LlAbt-th pos1tion are ignored. Default values for left and Light are
1 and 79 respectively.

<listing layout> :i~ <pagination>
i <tineation>
: <titting>

12.3.3.Z.l PAGINATION

(pagination> ::: aaai£li• := (pagesize>
: ~JCG..t

(pagesize> ::• <Integer>
{20<• pagesize, default•58}

The 2ag1ilUl value specified gives the maximum number of tine
positions that constitute a page. The first line position is catted
the 1A2 of Page, and the last line position, the ~2ttim•

The cJAGt pragmat causes the paper to be advanced to the top of
the neKt page.

12.3.3.2.2 LINEATION

< I i n e a t i on> i : • Ul.l~lD.SJ : = < s p a c i n g >
: ~k12 : 2 <number of lines>

<spacing> ::a 1 : 2 : 3

<number of lines> ::a <integer>
{where 1 <= number of lines}

The ~2lGiUSJ controt may have the value i, 21 or 3, for single,
double, or triple spacing respectively. The default value is 1. A
value of zero may not be used to Indicate overprinting. Use of
if legal values will result in no change in spacing, and an error
mess~ge Mill be given.

The skla value causes a skip of the number of tine positions
specified; It the Integer given is larger than pagestze or would
cause a skip past the bottom of the current page, then the skip is to

CDC Private

CYBIL LANGUAGE SPECIFICATION
12-8

06/18/81
REV: 6

--12.0 COMPILE-TIME FACILITIES
12.3.3.2.Z LINEATION

--
the top of the next page.

12.3.3.Z.3 TITLING

A standard title line is printed atop each page, and then one line
position is skipped. Any additional titles defined by the user are
then printed one-per-line, single-spaced. A skip of <spacing> number
of lines then occurs.

<titling>::•
1uu1tlt1: tz •<char token> {<char token>}'

: 1it11 t• •<char token> {<char token>>•
: Al.dtilil

A single quote mark within a char string is indicated by using a
pair of adjacent single quote marks. Thus, if the char string were
to consist of only a single quote mark, It would be Indicated by four
(4) Immediately adjacent single quotes, e.g., ''''•

licMt!tla= The current title is saved and the character string
given as a new title becomes the current title. A standard page
header is the first title printed on a page, followed by
user-specified titles in the order in which they were saved; i~e.,
titles are saved in a LIFO manner, but are printed In a FIFO manner.
There will always be a single empty line between the standard page
header and the tlttes defined by the user. There w111 always be at
least one blank line between the titles and the text or the standard
header and the text.

The maximum number of titles allowed wltt be 10. An attempt to
add more than the maximum will be ignored, without comment.

1111•= The character
title. If there is
current.title.

string replaces the current user-defined
none, then the character string becomes the

Dldtltlct The last user-defined titte saved becomes the current
title; Is there is none, then no action Is taken.

The titling does not take effect until the top of the next printed
page.

12.3.4 HAINTENAHCE CONTROL

<maintenance control> ::• ~Amell& : UA~Amalll

In the absence of a maintenance control, ~2m2l!I Is the default
option. The Dl~~•Rllc option continues Mith listing the following

CDC Private

CYBIL LANGUAGE SPECIFICATION
12-9

Ob/18/81
REV: 6

--12.0 COMPILE-TIME FACILITIES
12.3.4 MAINTENANCE CONTROL

--
text according to the listing toggles and layout controls,
interpreting and obeying pragmat directives in the text, but
compltatlon of the source Is omitted until a ~Amalle directive Is
encountered or until a mAdAD~ statement Is encountered.

lZ.3.5 COMMENT CONTROL

<comment control> ::• ~AmmAnt := •<char token>C<char token>l'

Including the coMment control pragmat signals the compiler to
inc1ude the character string in the binary output generated by the
compllatton process. This allows for COPYRIGHTing products and for
commenting object code facilities llke load maps.

CDC Private

CYBIL LANGUAGE SPECIFICATION
13-1

06/18/81
REV: 6

--13.0 IMPLEMENTATION-DEPENDENT FEATURES

13.0 lt!f.L.El!Etillllllti:DffftiJlE.tiI-EfAlUB.fS

In contr~st to the pr~viously discussed aspects of the language,
the language features discussed in this section may be dependent upon
the compiter•s allocation algorithms or the hardware design. These
features may be used anywhere. but should be used with caution.

i3.1 Qlia_111ee1HiS.

The mapping of data stor~ge will depend on a compiter•s target
machine and data mapping algorlthms. All effects of data mapping
wif 11 therefore be implementation dependent: bit-sizing, positioning,
relative positlontng effects of packing attr1butes. Data mapping
algorithms for specific implementations may be published; these can
be used to achieve specific sizings and positionings for that
implementation.

CDC Private

CYBIL LANGUAGE SPECIFICATION

Ae.E.Et!llll-A_:_ t.IilL ... ttf I A LAHG. UA Gf _C.BJlS..S.:B.fEf&E.tiC.f

Al

06/18/81
REV: 6

CDC Private

CYBIL LANGUAGE SPECIFICATION
AZ

06/18/81
REV: 6

CDC Private

CYBIL LANGUAGE SPECIFICATION
Bl

06/18/81
REV: 6

CDC Private

