
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

Table of Contents

1.0 INTRODUCTION •.•.•.••.•
1.1 CYBIL COMPILER NAMING CONVENTIONS .
1.2 STATUS OF AVAILABLE COMPILERS .•.

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS •
2.1 SES PROCEDURE INTERFACE .
2.2 THE NOS CYBIL COMMAND••
2.3 Cl70 COMMAND PARAMETERS .
2.4 INTERACTIVE CYBIL ON NOS
2. 5 BATCH CYBIL ON NOS . • . • . • . •

3.0 COMPILING AND EXECUTING CYBIL
3.1 THE NOS/BE CYBIL COMMAND
3.2 COMMAND PARAMETERS ...•.
3.3 INTERACTIVE CYBIL ON NOS/BE .
3.4 BATCH CYBIL ON NOS/BE .

PROGRAMS ON NOS/BE

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
4.1 THE CYBIL COMMAND . . • •••
4.2 Cl80 COMMAND PARAMETERS •
4.3 INT~RACTIVE CYBIL ON C180
q.4 &ATCH CYBIL ON Cl80 •••

5.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE APOLLO
SYSTEM • • . • • • . • . • • •

5.1 THE APOLLO CYB COMMAND ..••
5.2 APOLLO COMMAND SWITCHES •.•.

6.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON-THE-C200
6.1 THE CYBIL C200 COMMAND
6.2 C200 COMMAND PARAMETERS •.
6. 3 RETURN STATUS • • • • . . • . • . • • .
6.4 CYBIL CS EXAMPLE ••••
6.5 CYBIL SS EXAMPLE

7.0 APPLICABLE DOCUMENTS
7 .1 GENERAL
7.2 Cl70
7~3 Cl80
7.4 MC68000
7.5 APOLLO
7 .6 PCODE . • ••.
7.7 C200 ••••

8.0 COMMON CYBIL COMPILERS •••.
8~1 CONSIDERATIONS IMPOSED BY THE NATURE OF CYBIL .•••

8.1.1 STORAGE MANAGEMENT - DYNAMIC VS. STATIC
8.1.1.1 Stack Frame .••.••••...•••

1

86/09/03
REV: I

1-1
1-1
1-1

2-1
2-1
2-1
2-2
2-6
2-7

3-1
3-1
3-1
3-6
3-6

4-1
4-1
4-2
4-7
4-8

5-1
5-1
5-1

6-1
6-1
6-1
6-4
6-5
6-5

7-1
7-1
7-1
7-2
7-2
7-2
7-2
7-3

8-1
8-1
8-2
8-2

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

8.1.1.2 Allocated Space •.••...•....
8.2 INLINE PROCEDURES AND FUNCTIONS IMPLEMENTATION
8.3 SOURCE LAYOUT CONSIDERATIONS

9.0 CYBIL-CC DATA MAPPINGS
9.1 UNPACKED BASIC TYPES

9.1.1 UNPACKED INTEGER
9.1.2 UNPACKED CHARACTER ••••
9.1.3 UNPACKED ORDINAL
9.1.4 UNPACKED BOOLEAN
9.1.5 UNPACKED SUBRANGE ..•..
9.1.6 UNPACKED REAL . • • • •••
9.1.7 UNPACKED LONGREAL. • • • . • •.•
9.1.8 POINTER TO FIXED TYPES .•••..•••
9.1.9 POINTER TO STRING ••
9.1.10 POINTER TO SEQUENCE
9.1.11 POINTER TO PROCEDURE .
9.1.12 UNPACKED SET .•
9.1.13 UNPACKED STRING
9.1.14 UNPACKED ARRAY .
9.1.15 UNPACKED RECORD

9.2 OTHER TYPES .••..
9.2.1 ADAPTABLE POINTERS .••.

9.2.1.1 Adaptable Array Pointer
9.2.1.2 Adaptable String Pointer
9.2.1.3 Adaptable Sequence Pointer
9.2.1.4 Adaptable Heap Pointer
9.2.1.5 Adaptable Record .••....•.•

9.2.2 BOUND VARIANT RECORD POINTERS .
9.2.3 STORAGE TYPES

9.2.3.1 Sequences .•••••
9.2.3.2 Heaps ••••.••
9.2.3.2.1 FREE BLOCKS •••.
9.2.3.2.2 ALLOCATED BLOCKS

9.2.4 CELLS ••••.••••••
9.3 PACKED DATA TYPES •••••••
9.4 SUMMARY FOR THE Cl70

10.0 CYBIL-CC RUNTIME ENVIRONMENT .
10.1 STORAGE LAYOUT OF A CYBIL-CC PROGRAM ..•...
10.2 REGISTER USAGE . . . • ..•..
10.3 LINKAGE WORD • • • • • • • • • •••
10.4 STACK FRAME LAYOUT • • • •••
10.5 CALLING SEQUENCES • • • •

10.5.1 PROCEDURE ENTRANCE (PROLOG)
10.5.2 PROCEDURE EXIT (EPILOG)
10.5.3 CALLING A PROCEDURE

10.6 PARAMETER PASSAGE
10.6.1 REFERENCE PARAMETERS •
10.6.2 VALUE PARAMETERS

10.7 RUN TIME LIBRARY •••.

2

86/09/03
REV: I

8-2
8-3
8-4

9-1
9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-7
9-7
9-7
9-8
9-8
9-8
9-8
9-8
9-9
9-9

9-10
9-10
9-10
9-12

10-1
10-1
10-1
10-2
10-3
10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-4

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

10.7.1 MEMORY MANAGEMENT
10.7.1.1 Memory Management Categories .
10. 7 .1. 2 Stack Management • . • . . • • •
10.7.1.3 Default Heap Management
10.7.1.4 User Heap Management
10.7.1.5 CMM Error Processing

10.7.2 I/O ••.•••••••.
10.7.3 SYSTEM DEPENDENT ACCESS ••••.•••

10.8 VARIABLES . • • • • • ••
10.8.1 VARIABLES TN SECTIONS
10.8.2 GATED VARIABLES
10.8.3 VARIABLE ALLOCATION
10.8.4 VARIABLE ALIGNMENT ••

10.9 STATEMENTS •.••••••
10.9.1 CASE STATEMENTS
10.9.2 STRINGREP .••..•

10.9.2.1 Pointer Conversions
10.9.3 INTER-OVERLAY PROCEDURE CALL

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.1 POINTERS•

11.1.1 ADAPTABLE POINTERS .•.•••...••
11.1.2 POINTERS TO SEQUENCES•...•
11.1.3 PROCEDURE POINTERS •.•..•
11.1.4.BOUND VARIANT ~ECORD POINTERS
11.1.5 POINTER ALIGNMENT .••••

11.2 RELATIVE POINTERS •••••...•
11.2.1 ADAPTABLE RELATIVE POINTERS
11.2.2 RELATIVE POINTERS TO SEQUENCES ...•.
11.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS .

11.3 INTEGERS • • . • • . • •••
11.4 CHARACTERS • • • • • . . •••
11.5 ORDINALS ••.
11.6 SUBRANGES
11.7 BOOLEANS ..
11.8 REALS ••..
11.9 LONGREALS
11.10 SETS
11.11 STRINGS ...
11.12 ARRAYS
11.13 RECORDS ..••..•..
11.14 STORAGE TYPES

11.14.1 HEAPS •.
11.14.2 SEQUENCES ••

11.15 CELLS • • • • • ••••..•.•
11.16 DETAILED SUMMARY FOR THE C180 •
11.17 SUMMARY FOR THE C180 •••••

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT .
12.1 REGISTER ASSIGNMENT
12.2 STACK FRAME DEFINITION •••••

3

86/09/03
REV: I

10-4
10-4
10-5
10-5
10-6
10-6
10-6
10-7
10-7
10-7
10-7
10-7
10-7
10-7
10-7
10-8
10-8
10-8

11-1
11-1
11-1
11-2
11-2
11-3
11-3
11-3
11-4
11-4
11-4
11-5
11-5
11-5
11-5
11-5
11-6
11-6
11-7
11-8
11-8
11-9

11-10
11-10
11-10
11-10
11-11
11-16

12-1
12-1
12-3

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.2.1 FIXED SIZE PART
12.2.2 VARIABLE SIZE PART

12.3 PARAMETER PASSAGE
12.3.1 REFERENCE PARAMETERS .
12.3.2 VALUE PARAMETERS •••
12.3.3 INTERLANGUAGE CALLING • • • •

12.4 BINDING SECTION DESCRIPTION ••••
12.5 EXECUTION ENVIRONMENT • • . • • • • •

12.5.1 VARIABLES ••••••••
12~5.1.l Variable Attributes ..•••..•
12.5.1.1.1 READ ATTRIBUTE •.•
12.5.1.1.2 #GATE ATTRIBUTE •.••••
12.5.1.2 Variable Allocation
12.5.1.3 Variable Alignment

12.5.2 STATEMENTS ••.••..•
12.5.2.1 CASE Statement •.••
12.5.2.2 STRINGREP •••...
12.5.2.2.1 POINTER CONVERSIONS
12.5.2.3 Records

12.6 EXTERNAL REFERENCES
12.7 PROCEDURE REFERENCES
12.8 FUNCTION REFERENCES
12.9 RUN TIME LIBRARY •.

12.9.1 HEAP MANAGEMENT
12~9.2 I/O ...•.•..•.

12.9.2.1 Common CYBIL I/O .

.
12.9.2.2 I/O on the C180 Simulator ••••.

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13. 1 POINTERS . • • • . . • • . • • • • • • • • • ·

13.1.1 ADAPTABLE POINTERS ...•••
13.1.2 PROCEDURE POINTERS •...••••••.
13.1.3 BOUND VARIANT RECORD POINTERS
13.1.4 POINTER ALIGNMENT •.•••••

13.2 RELATIVE POINTERS ••.••.•••
13.2.1 ADAPTABLE RELATIVE POINTERS
13.2.2 RELATIVE POINTERS TO BOUND VARIANT RECORDS •.

13 • 3 INTEGERS . • . • • • . . . • •
13 • 4 CHARACTERS • . • • •
13. 5 ORDINALS • • .

4

86/09/03
REV: I

12-4
12-5
12-5
12-6
12-6
12-8
12-9

12-10
12-10
12-10
12-10
12-10
12-11
12-11
12-11
12-12
12-12
12-12
12-12
12-12.
12-13
12-13
12-13
12-14
12-14
12-14
12-14

13 • 6 SUBRANGES • . . • • .

13-1
13-2
13-2
13-3
13-4
13-4
13-4
13-5
13-5
13-5
13-5
13-6
13-6
13-6
13-7
13-7
13-7
13-8
13-8
13-9
13-9
13-9

13. 7 BOOLEANS • • • • • • • . • • •
13 .8 REALS .. • • •
13.9 LONGREALS • • • • . ••••
13.10 SETS •.••
13.11 STRINGS .•.••.
13.12 ARRAYS •••.
13 .13 RECORDS . • . • • . . • • . . • • • . • • •
13.14 SEQUENCES •.•••
13 .15 HEAPS • •

13.15.1 SYSTEM HEAP •• 13-10

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.15.2 USER HEAPS ••••
13.16 CELLS ••.•••••.•
13.17 SUMMARY FOR THE MC68000 .

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT .
14 • 1 MEMORY • . • • • • • .

14.1.1 CODE .•••••
14.1.2 STATIC STORAGE •.
14.1.3 STACK ••••.

14.1.3.1 Stack Frame .•.•..
14.1.3.1.1 FIXED SIZE PART
14.1.3.1.2 VARIABLE SIZE PART
14.1.3.1.3 ARGUMENT LIST PART
14.1.3.1.4 P-REGISTER PART

14.1.4 SYSTEM HEAP
14.1.5 REGISTERS ..•.

14.2 PARAMETER PASSAGE . . • . .
14.2.1 REFERENCE PARAMETERS
14.2.2 VALUE PARAMETERS .. .

14.3 VARIABLES
14.3.1 VARIABLE ATTRIBUTES

14.3.1.1 Read Attribute •..
14.3.1.2 #Gate Attributes .

14. 3. 2 VARIABLE ALLOCAT-ioN / .
14.3.3 VARIABLE ALIGNMENT •

14.4 STATEMENTS ..••..
14. 4.1 CASE STATEMENT • . .• . • • .
14.4.2 STRINGREP ..•.

14.4.2.1 Pointer Conversions
14. 5 EXTERNAL REFERENCES . ·• •
14.6 PROCEDURE REFERENCES . • • •
14.7 FUNCTION REFERENCE •.•..
14.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

14.8.1 PROCEDURE CALL •.
14.9 PROLOG •.......••••
14.10 EPILOG ••..••
14.11 RUN TIME LIBRARY
14.12 HEAP MANAGEMENT .•

15.0 CYBIL-CU/IU TYPE AND VARIABLE MAPPING

16.0 CYBIL-CU/IU RUN TIME ENVIRONMENT .••

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.1 POINTERS ..••.••

17.1.1 ADAPTABLE POINTERS ••••••
17.1.2 PROCEDURE POINTERS ••.•••
17.1.3 BOUND VARIANT RECORD POINTERS
17.1.4 POINTER ALIGNMENT •••••

17.2 RELATIVE POINTERS •••••••••
17.2.1 ADAPTABLE RELATIVE POINTERS

5

86/09/03·
REV: I

. . . .

13-10
13-12
13-13

14-1
14-1
14-1
14-1
14-1
14-2
14-2
14-3
14-3
14-4
14-4
14-4
14-5
14-5
14-5
1_4-7
14-7
14-7
14-7
14-7
14-7
14-8
14-8
14-8
14-8
14-8
14-9
14-9

14-10
14-10
14-11
14-12
14-12
14-13

15-1

16-1

17-1
17-2
17-2
17-3
17-4
17-4
17-4
17-4

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.2.2 RELATIVE POINTERS TO BOUND VARIANT RECORDS •
17.3 INTEGERS ••
17.4 CHARACTERS .
17.5 ORDINALS .
17.6 SUBRANGES
17.7 BOOLEANS ••
17.8 REALS
17.9 LONGREALS
17.10 SETS
17 .11 STRINGS .
17 .12 ARRAYS ••••
17.13 RECORDS
17.14 SEQUENCES •
17 .15 HEAPS • .

17.15.1 SYSTEM HEAP
17.15.2 USER HEAPS

17.16 CELLS •..•.
17.17 SUMMARY FOR THE APOLLO

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT .
18. 1 MEMORY • • . • • •

18.1.1 CODE .•.•.
18.1.2 STATIC STORAGE ...•
18. 1. 3 STACK _.. • .• • • . • .

18.1.3.1 Stack Frame .•..
18.1.3.1.1 FIXED SIZE PART .•••
18.1.3.1.2 VARIABLE SIZE PART •
18.1.3.1.3 ARGUMENT LIST PART
18.1.3.1.4 P-REGISTER PART .••.

18.1.4 SYSTEM HEAP ..•.
18 .1. 5 REGISTERS

18.2 PARAMETER PASSAGE
18.2.1 REFERENCE PARAMETERS •
18.2.2 VALUE PARAMETERS •••.•••

18.2.2.1 Value Parameters to Internal Procedures
18.2.2.2 Value Parameters to XDCLed Procedures

18. 3 VARIABLES • . • • • • • •
18.3.1 VARIABLE ATTRIBUTES

18.3.1.1 Read Attribute ..•...
18.3.1.2 #GATE Attributes

18.3.2 VARIABLE ALLOCATION
18.3.3 VARIABLE ALIGNMENT .

18.4 STATEMENTS •••••••
18.4.1 CASE STATEMENT •••
18. 4. 2 STRINGREP . . • . •

18.4.2.1 Pointer Conversions
18.5 EXTERNAL REFERENCES ..••
18.6 PROCEDURE REFERENCES ••••.
18 • 7 FUN CT ION REFERENCE • • • • • . . • • • •
18.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

18.8.1 PROCEDURE CALL .•••••••••••••••

.•

6

86/09/03
REV:" I

17-5
17-5
17-5
17-6
17-6
17-6
17-7
17-7
17-7
17-8
17-8
17-9
17-9

17-10
17-10
17-10
17-13
17-13

18-1
18-1
18-1
18-1
18-1
18-2
18-2
18-3
18-3
18-4
18-4
18-4
18-5
18-5
18-5
18-5
18-7
18-9
18-9
18-9
18-9
18-9
18-9

18-10
18-10
18-10
18-10
18-10
18-11
18-11
18-12
18-12

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.9 PROLOG •••...
18.10 EPILOG •..•••••.
18.11 RUN TIME LIBRARY
18.12 HEAP MANAGEMENT .•

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING •
19. 1 POINTERS • • . • . • • • • • • • •

19.1.1 ADAPTABLE POINTERS .•.•.•.
19.1.2 PROCEDURE POINTERS ••••••..•••
19.1.3 BOUND VARIANT RECORD POINTERS .•••.
19.1.4 POINTER ALIGNMENT

19.2 INTEGERS •.
19 • 3 CHARACTERS • . • • • • • . . • • • • • • • .
19. 4 ORDINALS • • . • • • • • • • • •
19 • 5 SUBRANGES • • • • . • • • • - • . . • • .

19.5.1 WITHIN INTEGER DOMAIN ...•.
19.5.2 OUTSIDE INTEGER DOMAIN ..

19.6 BOOLEANS •.
19. 7 REALS . . • . • . • .
19.8 LONGREALS••
19.9 SETS ..•.
19.10 STRINGS •..........•••
19 .11 ARRAYS
19.12 RECORDS •..•...•••
19.13 SEQUENCES ••••.
19 .14 HEAPS • •

19.14.1 SYSTEM HEAP .•..••.••.
19.14.2 USER HEAPS

19. 15 CELLS • • • • • . • • •. . • • •
19.16 SUMMARY FOR THE PCODE GENERATOR

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20. 1 MEMORY . • . • • • • . . . • • •

20.1.1 CODE AND LITERALS ••••
20.1.2 STATIC STORAGE
20.1.3 STACK HEAP AREA •.••.

20.1.3.1 STACK FRAMES ..•.•
20.1.3.1.1 FUNCTION RETURN VALUE
20.1.3.2 ARGUMENT LIST
20.1.3.2.1 FIXED SIZE PART
20.1.3.2.2 MARK STACK CONTROL WORD

20. 1. 4 HEAP • . • • • •
20.1.4.1 System Heap
20.1.4.2 User Heap

20.2 PARAMETER PASSAGE .
20.2.1 REFERENCE PARAMETERS
20.2.2 VALUE PARAMETERS ••

20.3 VARIABLES •.•.•••
20.3.1 VARIABLE ATTRIBUTES

20.3.1.1 Variables in Sections
20.3.1.2 Read Attribute •••••

7

86/09/03
REV: I

18-13
18-14
18-15
18-16

19-1
19-1
19-2
19-2
19-3
19-3
19-3
19-3
19-3
19-3
19-3
19-4
19-4
19-4
19-5
19-5
19-5·
19-6
19-6
19-6
19-7
19-7
19-7
19-8
19-9

20-1
20-1
20-1
20-1
20-1
20-1
20-2
20-2
20-2
20-3
20-3
20-3
20-3
20-4
20-4
20-4
20-5
20-5
20-5
20-5

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.3.1.3 #GATE Attributes •
20.3.2 VARIABLE ALLOCATION
20.3.3 VARIABLE ALIGNMENT •

20.4 STATEMENTS ..•.••.
20.4.l STRINGREP •••••

20.4.1.1 Pointer Conversion •.
20. 5 EXTERNAL REFERENCES . • • •
20.6 EXTERNAL NAMES • . • • • • • •
20.7 PROCEDURE REFERENCE .•••.
20.8 FUNCTION REFERENCE • • • ..
20.9 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

20.9.1 PROCEDURE CALL • • •••
20.10 PROLOG ••..•••••••••.••••
20.11 EPILOG •.•..•••.••••.•••
20.12 RUN TIME LIBRARY •••.••••..••.

20.12.1 UNKNOWN AND/OR UNEQUAL LENGTH STRINGS •.
20.12.1.1 String Assignment
20.12.1.2 String Comparison

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.1 POINTERS .•....•....•..

21.1.1 ADAPTABLE POINTERS •....•.
21.1.2 POINTERS TO SEQUENCES •....
21.1.3 PROCEDURE POINTERS •..••...
21.1.4 BOUND VARIANT RECORD POINTERS
21.1.5 POINTER ALIGNMENT ••...•.

21.2 RELATIVE POINTERS .•........•••
21.2.1 ADAPTABLE RELATIVE POINTERS •••.
21.2.2 RELATIVE POINTERS TO SEQUENCES ..•..
21.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS •

21. 3 INTEGERS • -• • • • .
21.4 CHARACTERS •
21.5 ORDINALS •.
21.6 SUBRANGES
21.7 BOOLEANS ••
21.8 REALS
21.9 LONGREALS •...
21.10 SETS
21.11 STRINGS ..
21.12 ARRAYS
21.13 RECORDS ••.•..
21.14 STORAGE TYPES . • ••.

21.14.l HEAPS •••.••.
21.14.2 SEQUENCES .

21.15 CELLS ••.•.
21.16. DETAILED SUMMARY FOR THE C200 •
21.17 SUMMARY FOR THE CYBER 200 .•

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT •.
22.1 REGISTER AND STORAGE MODELS

22.1.1 STORAGE MANAGEMENT - DYNAMIC VS. STATIC •

8

86/09/03
REV: I

20-5
20-5
20-5
20-5
20-5
20-6
20-6
20-6
20-6
20-6
20-6
20-6
20-8
20-8
20-9
20-9
20-9
20-9

21-1
21-1
21-1
21-2
21-2
21-2
21-3
21-3
21-3
21-3
21-4
21-4
21-4
21-4
21-4
21-5
21-5
21-5
21-5
21-7
21-7
21-8
21-9
21-9
21-9
21-9

21-10
21-15

22-1
22-1
22-1

CDC PRIVATE

9
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

22.1.1.1 Display Vector •.•...•.
22.1.1.2 CYBIL Static Space •...

22.1.2 INTRA-MODULAR BINDING SECTIONS •..••
22.2 REGISTER USAGE CONSIDERATIONS

22.2.1 VSOS CONVENTIONS .•••
22.2.2 DISPLAY VECTOR • . • • •••.
22.2.3 CONSTANTS . • • . • • . • . . •••
22.2.4 OPERAND STACK/PARAMETER FRAME .••.
22. 2. 5 VARIABLES • . . • • . . • . . • . • • . . • • .

22.3 MULTI-FUNCTION SOLUTION FOR REGISTER/STACK/STORAGE .
22.3.1 STORAGE RESIDENT PICTURE OF STACK FRAME
22.3.2 REGISTER FILE ABSTRACTION OF STACK FRAME •
22.3.3 BINDING SECTION (VSOS "DATA BASE")

22.4 PROCEDURE CALL AND LINKAGE • • • •••••••••.
22.4.1 PARAMETER FORMATION
22.4.2 PROCEDURE CALL•..
22.4.3 PROCEDURE PROLOGUE .•...
22.4.4 PROCEDURE EPILOGUE •
22.4.5 POST CALL
22. 4. 6 "LONG" PROCEDURE EXIT . . . • •
22.4.7 PUSH DYNAMIC SPACE
22.4.8 EXTERNAL ENVIRONMENT INTERFACE SUMMARY •.

22.4.8.1 CYBIL -->·AE Linkage••
22.4.8.2 AE --> CYBIL Linkage .- •..•••.
22.4.8.3 Parameter Conformity Considerations .•.•••
22.4.8.3.1 TYPE • • • . ••.
22.4.8.3.2 METHOD ••
22.4.8.3.3 ALLOCATION ..
22.4.8.3.4 FORMAT •••••
22.4.8.3.5 EXAMPLE: CYBIL <--> FORTRAN
22.4.8.4 Interface to COMMON

22.4.9 AN EXAMPLE ••...
22. 5 VARIABLES • . . • . . • . . • . . • • • . •

22.5.1 VARIABLE ALIGNMENT .
22.6 STATEMENTS . . • • • •

22.6.1 CASE STATEMENT .••
22.6.2 STRINGREP .•..•.••.

22.6.2.1 Pointer Conversions ••.•.
22.7 RUN TIME LIBRARY •...•.•.•••

22.7.1 RUNTIME ERROR MESSAGES .
22.7.2 CYBIL ERROR HANDLER INTERFACE TO VSOS
22.7.3 TRACEBACK CAPABILIT.Y •
22.7.4 HEAP MANAGEMENT ••••••

22.7.4.1 ALLOCATE ••..••••
22.7.4.1.1 THE UNALIGNED ALLOCATE
22.7.4.1.2 THE ALIGNED ALLOCATE
22.7.4.2 FREE .••••••.•.
22.7.4.3 RESET a User Heap ..••
22.7.4.4 Establishing the System Heap ••..•
22.7.4.5 HEAP BLOCK HEADER ••..
22.7.4.6 RESTRICTiois ••••••••

..

22-1
22-2
22-2
22-2
22-3
22-5
22-5
22-5
22-6
22-7
22-7
22-9

22-11
22-14
22-14
22-16
22-16
22-19
22-20
22-20
22-21
22-21
22-22
22-22
22-22
22-22
22-22
22-23
22-23
22~23
22-24
22-25
22-25
22-26
22-26
22-26
22-26
22-26
22-26
22-27
22-28
22-28
22-29
22-30
22-30
22-31
22-31
22-32
22-32
22-34
22-3~

CDC PRIVATE

)

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

23.0 PROCEDURE INTERFACE CONVENTIONS
23.1 INTRODUCTION ••.•••.••••
23 • 2 PURPOSE • • • • • • • •
23. 3 GENERAL PHILOSPHY • • . •

23.3.1 INPUT PARAMETER CONVENTIONS •.••••
23.3.2 PARAMETER TYPING - CYBIL USAGE

24.0 PROGRAM LIBRARY CONVENTIONS
24.1 DECK NAMING CONVENTIONS
24.2 COMMON DECK USAGE ••...••
24.3 COMMON DECK CONTENT •••••.

24.3.1 PROGRAM INTERFACE DOCUMENTATION HEADER •
24.3.1.1 Procedures and Functions ••..
24.3.1.2 Data Structures •.•...••••

24.3.2 XREF DECLARATION COMMON DECK ...•
24.3.3 TYPE / CONST DECLARATION COMMON DECK
24.3.4 EXAMPLE DECK •..........•..

25.0 CYBIL CODING CONVENTIONS•
25.1 USAGE OF A SOURCE CODE FORMATTER •...•.
25.2 USE OF ~YBIL •.•. ~ .. ~ ...
25.3 USE OF THE ENGiisH LANGUAGE •.
25.4 CYBIL NAMING CONVENTION ..•.•..•
25.S MODULE AND PROCEDURE DOCUMENTATION
25.6 TITLE PRAGMATS .•....•.•.
25.7 COMMENTING CONVENTIONS AND GUIDELINES .•..
25.8 PROCEDURE AND DATA ATTRIBUTE COMMENT CONVENTIONS .
25.9 CYBIL CODE INSPECTION CHECKLIST

25.9.1 GENERAL GUIDELINES •....••..
25.9.2 ALGORITHM VERIFICATION ...•••.
25.9.3 MODULE DOCUMENTATION•.•.
25.9.4 PROCEDURE OR FUNCTION DOCUMENTATION

26.0 EFFICIENCIES ••••••.
26.1 GENERAL CONSIDERATIONS ••
26.2 SOURCE LEVEL EFFICIENCIES

26.2.1 GENERAL ..••...
26.2.2 CC EFFICIENCIES
26.2.3 CI/II EFFICIENCIES
26.2.4 CM/IM, CU/IU & CA/AA EFFICIENCIES
26.2.S CP EFFICIENCIES • • ••

. . . .

26.2.6 CS/SS EFFICIENCIES ••••••.••••.
26.3 COMPILATION ~FFICIENCIES • • •••

27.0 IMPLEMENTATION LIMITATIONS •
27.1 GENERAL ..•••••••
27.2 CC LIMITATIONS .•••.•
27. 3 CI/II LIMITATIONS • • • • • . .
27.4 CM/IM, CU/IU & CA/AA LIMITATIONS •
27.5 CP LIMITATIONS .••••••••

10

86/09/03
REV: I

23-1
23-1
23-1
23-1
23-2
23-2

24-1
24-1
24-1
24-1
24-2
24-2
24-3
24-3
24-3
24-4

25-1
25-2
25-2
25-4
25-5
25-5
25-6
25-7
25-7
25-8
25-8

25-10
25-10
25-10

26-1
26-1
26-1
26-1
26-5
26-6
26-7
26-7
26-8
26-8

27-1
27-1
27-1
27-2
27-2
27-3

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

27.6 CS/SS LIMITATIONS

28.0 COMPILER AND SPECIFICATION DEVIATIONS
28.1 GENERAL CYBIL IMPLEMENTATION DEVIATIONS
28.2 CC DEVIATIONS • . • • • • •••
28.3 CI/II DEVIATIONS .••.
28.4 CM/IM & CU/IU DEVIATIONS ••
28.5 CA/AA DEVIATIONS •...
28. 6 CP DEVIATIONS • . • . • • • .
28.7 CS/SS DEVIATIONS ...••.•..•••.

11

86/09/03
REV: I

27-3

28-1
28-1
28-1
28-1
28-1
28-2
28-2
28-2

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

HANDBOOK

for the

1

86/09/03
REV: I

CYBer Implementation Language

(CYBIL)

Submitted:
H. A. Wohlwend

Approved:

Copyright Control Data Corporation 1983

CDC Private

2
-~D" CYBER.' 'IMPLEMENTATION LANGUAGE

.. ~ !' .., : . '·.
,.... .. ~ _5:...,v..,t..

--·--·£-Y-BIL: Handbook
86/09/03

REV: I

REVISION DEFINITION SHEET

-------+----------+---
REV .. DATE DESCRIPTION

-------+----------+---
A 12/15/78 Original.

B 12/19/79 Updated to reflect current product status.

_:c·' , 09/17/80 Updated to reflect current product status •

. D 05/08/81 Updated to reflect current product status.

'
.E 12/11/81 Updated to reflect current product status.

~-- 08/05/82 Updated to reflect current product status.

G 04/22/83 Updated to reflect current product status.

H 07/31/84 Updated to reflect current status of the
various CYBIL products.

I 09/03/86 Updated to reflect · current status of the
various CYBIL products.

CDC Private

1-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
a~/'0'9 IO_~ ...

REV:- t ~.1 .. • ' •

~ '\' .
---~.~-r-.:-~:~~1 ·~

1.0 INTRODUCTION

1.0 INTRODUCTION

1.1 CYBIL COMPILER NAMING CONVENTIONS

The convention for naming the various CYBIL compilers is to
refer to a particular compiler as CYBIL/xy where x indicates the
host and y indicates the destination machine for that particular
compiler. At this time, host machines are CYBER 170 (C), the··
Cl80 (I), the Apollo (A) and the C200 (S). Target machines
besides those four are UCSD P-system (P), the Motorola MC68000
(M) and the Motorola MC68010 running UNIX (U). Thus CYBIL/II is
a compiler running on Cl80 generating code for Cl80, while
CYBIL/CM is a cross compiler running on Cl70 generating code for
the Motorola MC68000.

1.2 STATUS OF AVAILABLE COMPILERS

COMPILER

CYBIL-CC
CYBIL-CI
CYBIL-CP
CYBIL-CM
CYBIL-CS
CYBIL-CE
CYBIL-CA
CYBIL-CN
CYBIL-CU

CYBIL-II
CYBIL-IM
CYBIL-IU

CYBIL-SS
CYBIL-EE

CYBIL-AA

C - CYBER 170,
I - CYBER 180,
N - INTEL 8086,

STATUS

NOS AND NOS/BE PRODUCT
INTERNAL USE
NOS PRODUCT
NOS PRODUCT
INTERNAL USAGE
INTERNAL/ETA USAGE
INTERNAL USE
INTERNAL USE
INTERNAL USE

NOS/VE PRODUCT
INTERNAL USE
INTERNAL USE

INTERNAL USE
INTERNAL/ETA USAGE

INTERNAL/ETA USAGE

P - PCODE MACHINE,
S - CYBER 200,

M - MC68000,
A - APOLLO,

E - GF-10, U - MC68010/UNIX

CDC Private

CYBER IM!':LEM.ENTATION LANGUAGE

CYBIL Handbook·

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS

2-1

86/09/03
REV: I

Tw9 methods to access the CYBIL compilers are described in
this ._;s~ct.ion. The compilers provided through the SES are the
more §.l:,ab,le and more widely used. The compilers available
througb:.:.the. project catalog (LP3) are considerably more dynamic
and a~e.updated more frequently.

2.1 s~s PROCEDURE INTERFACE

An SES procedural interface is available for access to the
compiler and is described in the SES User's Handbook (ARH1833).

2.2 THE NOS CYBIL COMMAND

The CYBIL command calls the compiler, specifies the files .to
be used for input and output, and indicates the type of output to
be produced. This call statement may be ·in any one of the
fol lowing: f;OI'lDS:

.. ,.. ::··CYBIL(pl,p2, •. ,pn) comments

CYBIL. comments

-CYBIL, pl, p2, •• , pn. comments

CYBIL,pl,p2, •• ,pn.

Example:

CYBIL(I=COMPILE,L=LIST,B-B!Nl) COMPILE TEST CASES

The CYBIL compilers currently reside in the tools catalog SES
and in ttie project catalog LP3. To access the CYBIL compiler
which ru11s on·C170 and generates code for the Cl70 (CC):

:· :·~ ~ #\J.'.'.fACH, CYBIL=-CYBILC/UN•LP3.

To access the CYBIL-CC run time library:

ATTACH,CYBCLIB/UN=LP3.

CDC Private

2-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/0.9l.Q3r:: E.3a~·:s

REV: I
--'5'4~~i;~f. .: l (.<'!."~;
2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS
2.3 C170 COMMAND PARAMETERS

2.3 Cl70 COMMAND PARAMETERS
:· ,·':,_::cm::.~ IJ ~ r:

.. ·---------~---

The optional parameters pl,p2, •• ,pn must be separated by
commas and may be in any order. If no parameters are specified,
CYBIL is followed by a period or right parenthesis .. '.' ... If~·. §'>;-;·

parameter list is specified, it must conform to the syntax::for ~.;.r-:::
job control statements as defined in the NOS REFERENCE MANUAL !: "l<-•a:
(Publication number: 60435400), with the added restriction=that!UO"lt.:·
the comma, right parenthesis, and period are the only valid·'· nnr,
parameter delimiters. If comments are specified they are ignored
by the compiler, but printed in the dayfile. Default values .. :.~~;ii:i?~ LS:
used for omitted parameters.

In the following description of command parameters; < f.f.n> !:-':.

indicates a file name consisting of one letter followed by:· 0-:-6 l -;~""c:'

letters or digits. <chars> indicates one letter followed by 0-6
letters. <digit> indicates a single digit. __ : .. : .. ~ :~----· s.:

PARAMETER

EXIT OPTION

A

A=O

OBJECT FILE

B

B•O

B•<lfn>

CHECKING MODE

CHK=<chars>

DESCRIPTION
~. ::: ...

(Default: A=O)

System searches the control card record·fo:Z::- an.~:::wc.~Jc:.
EXIT card at the end of compilation if fatal
errors have been found. If such an EXIT- :'Card is
not present, the job terminates.

System advances to the next control card at the
end of compilation if fatal errors have been
found. If the EXIT option parameter is omitted,
this option is assumed. , ~,

(Default: B=LGO)

Object code is writ ten on file LGO. If ~fhi·s
parameter is omitted, this option is assumed.

: ,.· f;t:r_

If this parameter is specified, the compiler: ,.. hr!s
performs a full syntactic and semantic scan b"f!.. ·:. ~.: ·~fi,..:
the program, but object code will not be
generated, data will not be mapped, and milchine
dependent errors are not detected.

Object code is written on file <lfn>.

(Default: CHK=RST)

Selects a maximum of four of the following

CDC Private

2-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS
2.3 Cl70 COMMAND PARAMETERS

CHK=O

CHK

checking modes. Modes unspecified are
de-selected.

N Produce compiler generated code to test for
de-reference of NIL pointer.

R Produce compiler generated code to test
ranges. Range checking code is generated for
assignment to integer subranges, ordinal
subranges or character variables. Verifies
that all assignments in sets are within the
bounds of that set. All CASE statements are
checked to ensure that the selector
corresponds to one of the selection specs
specified when no ELSE clause has been
provided. All references to substrings are
verified. Verify that the offset specified
on a RESET •. TO statement is legitimate for
the specified sequence.

S Produce compiler generated code to test
subscripting of arrays.

T Produce compiler generated code to verify
that access to a variant record is consistent
with the value of its tag field (if the tag
field is present). This option is not
currently supported.

De-selects the compiler's checking modes.

Same as CHK=NRST.

DEBUGGING OPTION (Default: 0-0FF)

D•<chars> Selects a combination of the following options.

DS Debugging Statements. All debugging
statements will be compiled. A debugging
statement is a statement in the source which
is ignored by the product unless this option
is specified. Such statements are enclosed
by the NOCOMPILE/COMPILE maintenance control
pragmats.

FD Full Debug. Produce the symbolic debug
information (SD parameter) plus stylize the
code generated. This option is currently not
supported on all compilers.

CDC Private

2-4
CYBER IMPLEMENTATION LANGUAGE

86/09/03
CYBIL Handbook REV: .. I ·.1.:·::

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS
2.3 Cl70 COMMAND PARAMETERS

SOURCE INPUT

I

I•<lfn>

LIST OUTPUT

L

L=O

L=<lfn>

LIST FORMAT

LF or LF=CS612

LF==CS812

LIST OPTIONS

LO•< chars>

SD Symbolic Debug. Produce a symbol table and
line table for interactive debugging. Also
generates a NIL value for initialization of
static pointers & in the case of adaptable
pointers the descriptor field(s) are zeroed.

When more than one option is desired the format
is D•DSSD.

(Default: !=INPUT)

CYBIL source text is to be read from file
COMPILE. If the SOURCE INPUT parameter is
omitted, the source text is read from file
INPUT. Source input ends when an end-of-record,
end-of-file, or end-of-information is
encountered on the source input file.

Source text is read from file <lfn>.

(Default: L•OUTPUT)

Compilation listing is written on file LISTING.
When the LIST OUTPUT parameter is omitted file
OUTPUT is assumed.

All compile time output is suppressed. List
control toggles are ignored.

Compilation listing is to be written on file
<lfn>.

(Default: LF=CS612)

Compliation listing file, if selected is output
in the NOS 6/12 character set.

Compliation listing file, if selected is output
in the NOS 8/12 character set.

(Default: LO•S)

Selects a maximum of six of the following list
options.

A Produce an attribute list of source input
block structure and relative stack. The
attribute listing is produced following the
source listing on the file declared by the L

CDC Private

2-5
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS
2.3 C!70 COMMAND PARAMETERS

LO•O

OPTIMIZATION

OPT•<number>

option or on the file OUTPUT if L is absent.

F Produce a full listing. This option selects
options A, S and R.

0 Lists compiler generated object code. When 0
is selected, the listing includes an assembly
like listing of the generated object code.
This option has no meaning if the (object
file) B option has been set to 0.

R Symbolic cross reference listing showing
location of program entity definition and use
within a program.

RA Symbolic cross reference listing of all
program entities whether referenced or not.
Using both the RA and the A options (i.e.
LO=ARA) causes both the cross reference
listing and the attribute listing to be
provided for all program entities whether
referenced or not.

S Lists the source input file.

W Lists fatal diagnostics. If this option is
omitted, informative as well as fatal
diagnostics are listed.

X Works in conjunction with the LISTEXT pragmat
such that LISTings can be EXTernally
controlled on the compiler call statement.

No list options.

(Default: OPT=O) (Not supported on all
processors)

0 Provides for keeping constant values in
registers.

1 Provides for keeping local variables in
registers.

2 Provides for passing parameters to local
procedures in registers and for eliminating
redundant memory references, common
subexpressions, and jumps to jumps.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

2-6

86/09/03-
REV: I

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS
2.3 C170 COMMAND PARAMETERS

PADDING (Default: PAD=O) (Not supported on all
processors)

PAD-<number> Provides for generation of NOOP type
instructions between live instructions.

2.4 INTERACTIVE CYBIL ON NOS

For the programmer using interactive job processing, the
following illustrates the typical sequence of commands necessary
to compile and execute a CYBIL program. An alternative to this
method of operation is detailed in the section "BATCH CYBIL" .
. The example below assumes that you know how to use a terminal and
have some minimal knowledge of the NOS operating system. After
you have logged in:

. NOS COMMAND

BATCH
GET,SOURCE
ATTACH,CYBILC/UN=LP3
CYBILC,I=SOURCE,L=LISTING
GET,DATA
ATTACH,CYBCLIB/UN•LP3
LGO

. DES CR IPTI ON

ENTER BATCH
GET CYBIL SOURCE PROGRAM TEXT
ATTACH CYBIL COMPILER
COMPILE CYBIL SOURCE TEXT
GET DATA FILE
GET CYBIL RUN TIME LIBRARY
EXECUTE PROGRAM. ASSUMES THAT THE
CYBIL PROGRAM REFERENCES FILE NAMED
"DATA". LGO WAS PRODUCED BY THE
COMPILATION PROCESS
(CYBILC,I=SOURCE,L=LISTING).

CDC Private

'"¥ ~_. -.

.. ~ ("

.... \,. _,.,,..,

CYBER I]iPLEMENTATION LANGUAGE

CYBIL Handbook

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS
2.5 BATCH CYBIL ON NOS

2.5 -BATCH CYBIL ON NOS

2-7

86/09/03
REV: I

A CYBIL compilation and execution may be run as part of a NOS
submitted job. In this mode, the terminal is used to start the
compilation and execution. The programmer may then log off the
terminal (or do other terminal work) while the job is being
completed as a NOS batch job. Facilities exist to check on the
progress of a submitted batch job and to examine the output as
well as the dayfile from the terminal. A typical file for
accomplishing either immediate batch or deferred batch job
submission is shown below. The user number, password, and charge
card must be changed for successful execution.

/JOB
XYZ,CM130000,Tl00.
USER,USE,PSWRD,FAMILY.
CHARGE,DEPT,PROJECT.
GET,SOURCE.
ATTACH,CYBILC/UN•LP3.
CYBILC,I=-SOURCE.
GET,DATA.
ATTACH,CYBCLIB/UN•LP3.
LGO.
DAYFILE,TEMP.
REWIND, TEMP.
COPYSBF,TEMP,OUTPUT.
REPLACE,OUTPUT•LISTING.
SES.PRINT OUTPUT
DAYFILE,LOOKSEE.
REPLACE,LOOKSEE.
EXIT.
DAYFILE,LOOKSEE.
REPLACE,LOOKSEE.

PROGRAMMER NAME
SUBSTITUTE APPROPRIATE INFORMATION

GET CYBIL SOURCE FILE
ATTACH CYBIL-CC COMPILER
COMPILE CYB.IL SOURCE
GET FILE OF DATA
GET CYBIL RUN TIME LIBRARY
EXECUTE PROGRAM

SAVE LIST
PRINT OUTPUT

SAVE DAYFILE
EXIT HERE ON ERRORS

ERROR DAYFILE

The control cards should be stored on some file (for example,
CYBCRUN). To compile and execute a CYBIL program (on file
SOURCE) simply use the NOS submit command: SUBMIT,CYBCRUN. NOS
will respond with the time of day (e.g., 10.21.57) and a job name
(e.g., ABUSF4Y). These two pieces of information should be
written down for future reference. The programmer can determine
the status of this submitted job with the NOS command:
ENQUIRE,JN•F4Y. NOS will reply with the job status (i.e.,
EXECUTING, JOB IN ROLLOUT QUEUE, INPUT QUEUE, PRINT QUEUE, or JOB
NOT FOUND). The PRINT QUEUE and JOB NOT FOUND message indicates
that the job is completed. The file .LOOKSEE contains the
complete dayfile for the job. So, from a terminal the commands:
GET,LOOKSEE then LIST,F•LOOKSEE lists the ·contents of the
dayfile. This will provide an overview of the execution of the

CDC Private

2-8
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03 ~~?r..···,

REV: I

2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS
2.5 BATCH CYBIL ON NOS

job. To obtain a detailed list of the output from the job,. the
commands: GET,LISTING then EDIT,LISTING are used. Text editor
commands are then used to examine the desired portions of the
listing.

Using this approach, the programmer has necessary information: .. '
available to him at the terminal. But, the programmer need not ,.
sit at (or tie up) a terminal unnecessarily while the program is ·1:
actually compiling and executing. ~

.: . ~-·

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE

3.1 THE NOS/BE CYBIL COMMAND

3-1

86/09/03
REV: I

The CYBIL command calls the compiler, specifies the files to
be used for input and output, and indicates the type of output to
be produced. This call statement may be in any one of the
following forms:

CYBIL(pl,p2, •• ,pn) comments

CYBIL. comments

CYBIL,pl,p2, .. ,pn. comments

CYBIL,pl,p2, •• ,pn.

Example: .

CYBIL(I=COMPILE,L=LIST,B=BINl) COMPILE TEST CASES

The
LP3.

CYBIL compiler currently
To access the CYBIL compiler:

ATTACH,CYBIL,I~·LP3.

reside in the project catalog

To access the CYBIL-CC run time library:

ATTACH,CYBCLIB,ID=-LP3.

3.2 COMMAND PARAMETERS

The optional parameters pl,p2, •. ,pn must be separated ·by
commas and may be in any order. If no parameters are specified,
CYBIL is followed by a period or right parenthesis. If a
parameter list is specified, it must conform to the syntax for
job control statements as defined in the NOS/BE REFERENCE MANUAL
(Publication number: 60493800), with the added restriction that
the comma, right parenthesis, and period are the only valid
parameter delimiters. If comments are specified they are ignored
by the compiler, but printed in the dayfile. Default values are
used for omitted parameters.

In the following description of command parameters, <lfn>
indicates a file name consisting of one letter followed by 0-6
letters or digits. <chars> indicates one letter followed by 0-6

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE
3.2 COMMAND PARAMETERS

letters. <digit> indicates a single digit.

3-2

86/09/03
REV: I

CDC Private

I-

3-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE
3.2 COMMAND PARAMETERS

PARAMETER

EXIT OPTION

A

A•O

OBJECT FILE

B

B•O

B-<lfn>

CHECKING MODE

CHK=<chars>

DESCRIPTION

(Default: A=O)

System searches the control card record for an
EXIT card at the end of compilation if fatal
errors have been found. If such an EXIT card is
not present, the job terminates.

System advances to the next control card at the
end of compilation if fatal errors have been
found. If the EXIT option parameter is omitted,
this option is assumed.

(Default: B=LGO)

Object code is written on file LGO. If this
parameter is omitted, this option is assumed.

If this parameter is specified, the compiler
performs a full syntactic and semantic scan of
the program, but object code will not be
generated, data will not be mapped, and machine
dependent errors are not detected.

Object code is written on file <lfn>.

(Default: CHK•RST)

Selects a maximum of four of the following
checking modes. Modes unspecified are
de-selected.

N Produce compiler generated code to test for
de-reference of NIL pointer.

R Produce compiler generated code to test
ranges. Range checking code is generated for
assignment to integer subranges, ordinal
subranges or character variables. Verifies
that all assignments in sets are within the
bounds of that set. All CASE statements are
checked to ensure that the selector
corresponds to one of the selection specs
specified when no ELSE clause has been
provided. All references to substrings are
verified. Verify that the offset specified
on a RESET •• TO statement is legitimate for
the specified sequence.

CDC Private

3-4
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook.
86/09/03

REV: I

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE
3.2 COMMAND PARAMETERS

CHK•O

CHK

S Produce compiler generated code to test
subscripting of· arrays.

T Produce compiler generated code to verify
that access to a variant record is consistent
with the value of its tag field (if the tag
field is present). This option is not
currently supported.

De-selects the compiler's checking modes.

Same as CHK•NRST.

DEBUGGING OPTION (Default: 0-0FF)

D•<chars>

SOURCE INPUT

I

I=<lfn>

LIST OUTPUT

L

L=O

L•<lfn>

Selects the following option.

DS Debugging Statements. All debugging
statements will be compiled. A debugging
statement is a statement in the source which
is ignored by the product unless this option
is specified. Such statements are enclosed
by the NOCOMPILE/COMPILE maintenance control
pragmats.

(Default: !=INPUT)

CYBIL source text is to be read from file
COMPILE. If the SOURCE INPUT parameter is
omitted, the source text is read from file
INPUT. Source input ends when an end-of-record,
end-of-file, or end-of-information is
encountered on the source input file.

Source text is read from file <lfn>.

The compiler expects the input file to be in 8
in 12 format.

(Default: L=OUTPUT)

Compilation listing is written on file LISTING.
When the LIST OUTPUT parameter is omitted file
OUTPUT is assumed.

All compile time output is suppressed.· List
control toggles are ignored.

Compilation listing is to be written on file

CDC Private

3-5
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE
3.2 COMMAND PARAMETERS

LIST OPTIONS

LO•< chars>

LO•O

<lfn>.

The compiler generates the output file in 8 in
12 format.

(Default: LO=S)

Selects a maximum of six of the following list
options.

A Produce an attribute list of source input
block structure and relative stack. The
attribute listing is produced following the
source listing on the file declared by the L
option or on the file OUTPUT if L is absent.

F Produce a full listing. This option selects
options A, S and R.

0 Lists compiler gene~ated object code. When 0
is selected, the listing includes an assembly
like listing of the generated object code.
This option has no meaning if the (object
file) B option has been set to 0.

R Symbolic cross reference listing showing
location of program entity definition and use
within a program.

RA Symbolic cross reference listing of all
program entities whether referenced or not.
Using both the RA and the A options (i.e.
LO•ARA) causes both the cross reference
listing and the attribute listing to be
provided for all program entities whether
referenced or not.

S Lists the source input file.

W Lists fatal diagnostics. If this option is
omitted, informative as well as fatal
diagnostics are listed.

X Works in conjunction with the LISTEXT pragmat
such that LISTings can be EXTernally
controlled on the compiler call statement.

No list options.

CDC Private

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

3-6

86/09/03
REV: I

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE
3.3 INTERACTIVE CYBIL ON NOS/BE

3.3 INTERACTIVE CYBIL ON NOS/BE

For the programmer using interactive job processing, the
following illustrates the typical sequence of commands necessary
to compile and execute a CYBIL program. An alternative to this
method of operation is detailed in the section "BATCH CYBIL".
The example below assumes that you know how to use a terminal and
have some minimal knowledge of the NOS/BE operating system.
After you have logged in:

NOS/BE COMMAND

ATTACH,SOURCE,ID• ..•
ATTACH,CYBILC,ID•LP3
CYBIL,I=SOURCE,L=LISTIN9
ATTACH,DATA,ID= ••.
ATTACH,CYBCLIB,ID•LP3
LGO

3.4 BATCH CYBIL ON NOS/BE

DESCRIPTION

GET CYBIL SOURCE PROGRAM TEXT
ATTACH CYBIL COMPILER
COMPILE CYBIL SOURCE TEXT
GET DATA FILE
GET CYBIL RUN TIME LIBRARY
EXECUTE PROGRAM. ASSUMES THAT THE
CYBIL PROGRAM REFERENCES FILE NAMED
"DATA". LGO WAS PRODUCED BY THE
COMPILATION PROCESS
(CYBIL,I•SOURCE,L=LISTING).

A CYBIL compilation and execution may be run as part of a
NOS/BE submitted job. In this mode, the terminal is used to
start the compilation and execution. The programmer may then log
off the terminal (or do other terminal work) while the job is
being completed as a NOS/BE batch job. Facilities exist to check
on the progress of a submitted batch job and to examine the
output as well as the dayfile from the terminal. A typical file
for batch job submission is shown below.

nos be

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

3.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON NOS/BE
3.4 BATCH CYBIL ON NOS/BE

PROGRAMMER NAME

3-7

86/09/03
REV: I

XYZ, TlOO.
ACCOUNT.USE,PW,FMLY,ABC
ATTACH,SOURCE,ID- •••
ATTACH,CYBIL,ID-LP3.
CYBIL,I•SOURCE.
ATTACH,DATA,ID- •••
ATTACH,CYBCLIB,ID=LP3.
LGO.

SUBSTITUTE APPROPRIATE INFORMATION
ACQUIRE CYBIL SOURCE FILE

EXIT.

ATTACH CYBIL-CC COMPILER
COMPILE CYBIL SOURCE
GET FILE OF DATA
GET CYBIL RUN TIME LIBRARY
EXECUTE PROGRAM
EXIT HERE ON ERRORS

Using this approach, the programmer need not sit
up) a terminal unnecessarily while the program
compiling and executing.

at (or tie
is actually

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180

4-1

86/09/03
REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE Cl80

Two methods to access the CYBIL compilers are described in
this section. The compiler provided through the standard system
command call is the more stable and more widely used. The
compilers available through the project catalog (LP3) are
considerably more dynamic and are updated more frequently. For a
detailed description of the command syntax see the NOS/VE Command
Interface ERS.

4.1 THE CYBIL COMMAND

The CYBIL command calls the compiler, specifies the files to
be used for input and output, and indicates the type of output to
be produced. This call statement has the following positional
form:

Example:

CYBIL [input•<file reference>]
[list•<file referenc~>]
[binary•<file reference>]
[list options•<options>]
[debug aids•<options>]
[error-level•<options>]
[optimization_level•<options>]
[instruction_scheduling•<options>]
[pad•< integer>]
[runtime checks•<options>]
[status•<status variable>]

CYBIL !=COMPILE L=LIST B=BINl "COMPILE TEST CASES"

A more dynamic version of the CYBIL compiler resides in the
project catalog LP3. To access this compiler and its runtime
library (both of which run on the C180 (II)):

ATTF .LP3.CYBILII.CYF$RUN TIME LIBRARY
SETCL ADD-$LOCAL.CYF$RUN_TIME_LIBRARY

It should be noted that this library contains a PROGRAM
DESCRIPTOR (CYBIL) which uses the compiler on this library rather
than the system version.

CDC PRIVATE

4-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
4.2 C180 COMMAND PARAMETERS

4.2 C180 COMMAND PARAMETERS

The parameter format matches the style indicated by the System
Interface Standard (S2196).

PARAMETER
NAMES

BINARY
B
BINARY OBJECT

DEBUG AIDS
DA

PARAMETER DESCRIPTION

(Default: B=$LOCAL.LGO)

If this parameter is omitted object code is
written to file $LOCAL.LGO.

If this parameter is specified as B=$null, the
compiler performs a full syntactic and semantic
scan of the program, but object code will not be
generated.

If the -parameter is specified as B=<file
·reference>, object code is written on file <file
reference>.

(Default: DA=NONE)

Selects a combination of the following debug
options. If this parameter is omitted the
default is DA=NONE.

ALL All of the available options are selected
for the Debug_Aids parameter~

OS Debugging Statements. All debugging
statements will be compiled. A debugging
statement is a statement in the source
which is ignored by the product unless this
option is specified. Such statements are
enclosed by the NOCOMPILE/COMPILE
maintenance control pragmats.

OT Debug Tables. Generate line number and
symbol tables as part of the object code.
In addition, also generate a NIL value for
initialization of static pointers & in the
case of adaptable pointers the descriptor
field(s) are zeroed.

NONE No options are selected for the Debug_Aids
parameter.

CDC PRIVATE

4-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
4.2 C180 COMMAND PARAMETERS

ERROR_LEVEL
EL

INPUT
I

(Default EL=W)

F List Fatal Diagnostics. If this option is
selected only fatal diagnostics will be
listed.

W List warning as well as fatal diagnostics.

(Default: !=$INPUT)

If the parameter is omitted, the source text is
read from file $INPUT. Source input ends when
an end-of-partition or end-of-information is
encountered on the source input file.

If the parameter is specified as I=<f ile
reference>, the source text is read from file
<file reference>.

INSTRUCTION_SCHEDULING (Default: IS=NO)
IS

LIST
L

LIST_OPTIONS
LO

This parameter specifies whether or not
instruction scheduling will be performed.
Quoting IS=YES selects this option, and must be
accompanied with the selection of
OPTIMIZATION_LEVEL = HIGH. This option is not
currently supported.

(Default: L=$LIST)

When the LIST parameter is omitted the
compilation listing is written on file $LIST.

If the parameter is specified as L=$null, all
compile time output is suppressed.

If the parameter is specified as L=<file
reference>, the compilation listing is written
on file <file reference>.

(Default: LO=S)

Selects a combination of the following list
options.

A Produce an attribute list of source input
block structure and relative stack. The

·attribute listing is produced following the
source listing on the file declared by the L

CDC PRIVATE

4-4
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
4.2 Cl80 COMMAND PARAMETERS

option or on the file $LIST if L is absent.

F Produce a full listing. This option selects
options A, S and R.

0 Lists compiler generated object code. When 0
is selected, the listing includes an assembly
like listing of the generated object code.
This option has no meaning if the (object
file) .B option has been set to $null.

R Symbolic cross reference listing showing
location of program entity definition and use
within a program.

RA Symbolic cross reference listing of all
program entities whether referenced or not.

S Lists the source input file.

X Works in conjunction.with. the LISTEXT pragmat
such that LISTings can be EXTernally
controlled on the compiler call statement.

If the parameter is specified as LO=NONE, no
list options are selected.

OPTIMIZATION LEVEL (Default: OPT=LOW)
OL
OPTIMIZATION
OPT

PAD

DEBUG Object code is stylized to facilitate
debugging. Stylized code contains a separate
packet of instructions for each executable
source statement, carries no variable values
across statement boundaries in registers,
notifies debug each time a beginning of
statement or procedure is reached.

LOW Provides for keeping constant values in
registers.

HIGH Provides for keeping local variables in
registers, passing parameters to local
procedures in registers, eliminates redundant
memory references·, common subexpressions and
jumps to jumps.

(Default: PAD=O)

CDC PRIVATE

4-5
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE Cl80
4.2 C180 COMMAND PARAMETERS

RUNTIME_CHECKS
RC

STATUS

Provides for generation of NOOP type
instructions between live instructions.

(Default: RC=NONE)

Selects a combination of the following options.

ALL All of the available options are selected
for the Runtime_Checks parameter.

N Produce compiler generated code to test for
de-reference of NIL pointers.

R Produce compiler generated code to test
ranges~ Range checking code is generated
for assignment to integer subranges, ordinal
subranges or character variables. All CASE
statements are checked to ensure that the
selector corresponds to one of the selection
specs specified when no ELSE clause has b~en
provided. All references.to substrings are
verified. Verify that the offset specified
on a RESET •• TO statement is legitimate for
the specified sequence.

S Produce compiler generated code to test
subscripting of arrays.

T Produce compiler generated code to verify
that access to a variant record is
consistent with the value of its tag field
(if the tag field is present). This option
is not currently supported.

NONE If this option is specified then no
runtime checking code will be generated.

This cannot currently be selected in combination
with OPTIMIZATION_LEVEL a HIGH.

(DEFAULT: not specified)

The compiler will
variable indicating
were found during
completed.

always return a
whether any FATAL

the compilation

status
errors

just

If a user status variable is specified, SCL will
pass the compilation status to the user and the

CDC PRIVATE

4-6
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE Cl80
4.2 C180 COMMAND PARAMETERS

user can take action if fatal compilations
occurred by testing this variable.

If a user status variable is not specified, then
SCL will terminate the current command sequence
if status returned from the the compiler is
abnormal.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

4-7

86/09/03
REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
4.3 INTERACTIVE CYBIL ON C180

4.3 INTERACTIVE CYBIL ON C180

For the programmer using interactive job processing, the
following illustrates the typical sequence of commands necessary
to compile and execute a CYBIL program. An alternative to this
method of operation is detailed in the section "BATCH CYBIL".
The example below assumes that you know how to use a terminal and
have some minimal knowledge of the NOS/VE operating system.
After you have logged in:

NOS/VE COMMAND

colt group to get
include gr;up-widgets
** -
scu ba=$user.scu_pl
expd cr•group to get
quit wl•false- -
cybil i=compile l•list
attf $user. dat.a
lgo

DESCRIPTION

"DEFINE WHAT GROUP TO GET OFF"
"THE SCU PL (SCU PL)"
"TERMINATE THIS FILE"
"CREATE COMPILE FILE"
"MOVE ""WIDGETS"" TO COMPILE"
"TERMINATE SCU"
'"COMPILE CYBIL TEXT"
"GET DATA FOR PROGRAM JUST COMPILED"
"EXECUTE PROGRAM. ASSUMES THAT THE
CYBIL PROGRAM REFERENCES FILE NAMED
""DATA"". LGO WAS PRODUCED BY THE
COMPILATION PROCESS •••
cybil i=compile l•list"

iiscl

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

4-8

86/09/03
REV: I

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
4.4 BATCH CYBIL ON C180

4.4 BATCH CYBIL ON C180

A CYBIL compilation and execution may be run as part of a
NOS/VE submitted job. In this mode, the terminal is used to
start the compilation and execution. The programmer may then log
off the terminal (or do other terminal work) wh'ile the job is
being completed as a NOS/VE batch job. Facilities exist to check
on the progress of a submitted batch job and to examine the
output as well as the log from the terminal. A typical file for
accomplishing a batch job submission is shown below.

job job_name•widgets

when any_fault do
disl all o•~user.job_failed
when end
colt group to get
include gr;up-widgets
** - .
scu.ba•$user.scu_pl
expd cr=group_to_get
quit wl•false
cybil i•compile l•list
attf $user.data
lgo
disl all o•list.eoi
prif list
delf $user.job_failed
status=ignore_status

jobend

"TO DO ONLY IF ERRORS OCCUR"
"SAVE JOB LOG FOR REVIEW"

"DEFINE WHAT GROUP TO GET OFF"
"THE SCU PL (SCU PL)"
"TERMINATE THIS FILE"
"CREATE COMPILE FILE"
"MOVE ""WIDGETS"" TO COMPILE"
"TERMINATE SCU"
"COMPILE.CYBIL TEXT"
"GET DATA FOR PROGRAM JUST COMPILED"
"EXECUTE THE PROGRAM ""WIDGETS"
"ADD THE JOB LOG TO ""LIST"
"PRINT LIST"-
" IF JOB PASSED DELETE ""JOB FAILED"
"(IN CASE FILE WAS NOT DEFINED)"

The commands should be stored on some file (for example,
widgets job). To compile and execute the CYBIL program WIDGETS
(on SCU=PL) simply use the NOS/VE INCLUDE FILE command:

include_file $user.widgets_job

IF the job fails, then the file JOB FAILED contains the
complete log for the job.

So, from a terminal the user can do the following:

disj s all
edif $user.job_failed

"FIND OUT IF ""WIDGETS"'' HAS FINISHED"
"DETERMINE FAILURE (IF FILE THERE)"

Using this approach, the programmer has necessary information
available to him at the terminal. But, the programmer need. not

iiscl

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

4.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
4.4 BATCH CYBIL ON Cl80

4-9

86/09/03
REV: I

sit at (or tie up) a terminal unnecessarily while the program is
actually compiling and executing.

CDC PRIVATE

5-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

5.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE APOLLO SYSTEM

5.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE APOLLO SYSTEM

5.1 THE APOLLO CYB COMMAND

The CYB command calls the compiler, specifies the files to be
used for input and output, and indicates the type of output to be
produced. This call statement has the following form:

CYB input_f i le [-switch] [opt ion] [-switch] [option]

Example:

CYB ABC -L -B

The compiler will look for the input file as ABC.CYB, create
the list file as ABC.LST and create the object file as ABC.BIN.

5.2 APOLLO COMMAND SWITCHES

These switches were chosen using Apollo Pascal compiler as a
guide line. If "N" is the first character in any switch, that
indicates the switch is turned off.

SWITCH

-(N]A

- [N] B [pathname]

DESCRIPTION

(Default: -NA)

If this switch is omitted, the compiler attempts
to compile the entire input file no matter how
many FATAL errors are encountered.

If this switch is specified, the compiler will
terminate after the first FATAL error is found.

(Default: -NB)

If this switch is omitted no object code is
created.

If this switch is specified as -B, the compiler
will create an object file and the name of the
file will be the input file name with .BIN
appended to it.

If a pathname was specified, that name will be
the name used for the object file.

CDC PRIVATE

5-2
CYBER IMPLEMENTATION ~GUAGE

CYBIL Handbook
86/09/03

·REV: I

5.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE APOLLO SYSTEM
5.2 APOLLO COMMAND SWITCHES

-[N]CHK [options]

-[N]COND

-[N)DB

-[N]DBA

(Default: -NCHK)

Selects a combination of the following options
for runtime_checking.

N Produce compiler generated code to test for
de-reference of NIL pointer.

R Produce compiler generated code to test
ranges. Range checking code is generated for
assignment to integer subranges, ordinal
subranges or character variables. All CASE
statements are checked to ensure that the
selector corresponds to one of the selection
specs 1pecif ied when no ELSE clause has been
provided. All references to substrings are
verified. Verify that the off set specified
on a RESET •• TO statement is legitimate for
the specified sequence.

S Produce compiler generated code to test
subscripting of arrays.

T Produce compiler generated code to verify
that access to a variant record is consistent
with the value of its tag field (if the tag
field is present). This option is not
currently supported.

If the switch is specified as -CHK, then all of
the above options will be set.

(Default: -NCOND)

IF -COND is selected, then all conditional
statements will be compiled. A conditional
statement is a statement in the source which is
ignored by the product unless this option is
apecif ied. Such statements are enclosed by the
NOCOMPILE/COMPILE maintenance control pragmats.

(default: -DB)

If this switch is specified, the compiler
includes Line Number information in the object
text.

(De~ault: -NDBA)

CDC PRIVATE

S-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I
-- -

5.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE APOLLO SYSTEM
S.2 APOLLO COMMAND SWITCHES

-(N]EXP

-IDIR

- [N] L [pathname]

-LO [options]

If this switch is selected, the compiler
includes Line Number and Symbol Table
information in the object text. In addition,
also generate a NIL value for initialization of
static pointers & in the case of adaptable
pointers the descriptor f ield(s) are zeroed.

(Default: -NEXP)

When -EXP is selected, the list file includes an
assembly like listing of the generated object
code.

This switch enables you to give up to 63
alternate pathnames for INCLUDE files. The
format of the switch is as follows:

-IDIR pathname [-IDIR pathname] •••

The compiler builds a search list of pathnames
specified in each IDIR switch (up to 63 may be
defined). If any INCLUDE file cannot be
successfully opened by it's given name, the
compiler concatenates each pathname in the
search list to the input file name given and
attempts to open the file. IF successful, that
file will be used as the INCLUDE file.

If the INCLUDE name begins with ".", .. ., .. , or
"/", searching beyond the given name will not be
attempted.

This option is not currently supported.

(Default: -NL)

If this switch is specified as -L, then the list
file is given the name of the input file except
.LST replaces .CYB as the suffix.

If the pathname is specified, that name will be
used as the name for the list file.

(Default: -LO S)

Selects a combination of the following list
options. For example, -LO AX

aascl

5-4
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

5.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE APOLLO SYSTEM
5.2 APOLLO COMMAND SWITCHES

-[N]OPT

A Lists compiler generated object code. When A
is selected, the listing includes an assembly
like listing of the generated object code.
This option has no meaning if the (object
file) B option has been set to 0.

F Produce a full listing. This option selects
options M, R and S.

L Works in conjunction with the LISTEXT pragmat
such that LISTings can be EXTernally
controlled on the compiler call statement.

M Produce an attribute list of source input
block structure and relative stack. The
attribute listing is produced following the
source listing on the file declared by the L
option or on the file OUTPUT if L is absent.

R Symbolic cross reference listing showing
location of program entity definition and.use
within a program.

S Lists the source input file.

X· Symbolic cross reference listing of all
program entities whether referenced or not.

If the parameter is specified as -LO 0, no list
options are selected.

(Default: -NOPT)

IF -OPT is selected, then the compiler
eliminates redundant memory references and
common subexpressions.

CDC PRIVATE

6-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

6.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C200

6.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C200

6.1 THE CYBIL C200 COMMAND

The CYBIL command calls the compiler, specifies the files to
be used for input and output, and indicates the type of output to
be produced. This call statement has the following form:

Example:

CYBIL [input=<file reference>]
[list=<file reference>]
[binary•<file reference>]
[lo=<options>]
[debug=<options>]
[elev=<options>]
[optimize=<options>]
[pad=<number>]
[rc=<options>]

CYBIL !=COMPILE L=LIST B•BINl.

6.2 C200 COMMAND PARAMETERS

The keywords were chosen using.the guide lines defined in the
CYBER 200 KEYWORD STANDARDIZATION REPORT (ARH3749). If a short
form of a keyword is defined below, it is the minimum required,
one can type in more than the minimum and still not use the long
form.

PARAMETER
NAMES

BINARY
B

PARAMETER DESCRIPTION

(Default: B=BINARY)

If this parameter is omitted object code is
written to file BINARY.

If this parameter is specified as B•O, the
compiler performs a full syntactic and semantic
scan of the program, but object code will not be
generated.

If the parameter is specified as B=<f ile
reference>, object code is written on file <file

CDC PRIVATE

6-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

6.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C200
6.2 C200 COMMAND PARAMETERS

DEBUG
DEB

ELEV

INPUT
I

LIST
L

reference>.

(Default: no option selected)

Selects a combination of the following debug
options.

D Debugging Statements. All debugging
statements will be compiled. A debugging
statement is a statement in the source which
is ignored by the product unless this option
is specified. Such statements are enclosed
by the NOCOMPILE/COMPILE maintenance control
pragmats.

S If this option is selected, the compiler
includes Symbol Table information ("level 0"
symbols only, no symbols within procedures
can be displayed) and a line table for each
module compiled •

. (Default: ELEV=W)

Selects the level of diagnostics that will be
listed.

F List Fatal Diagnostics. If this option is
selected only fatal diagnostics will be
listed.

W List informative as well as fatal
diagnostics.

(Default: !=INPUT)

If the parameter is omitted, the source text is
read from file INPUT. Source input ends when an
end-of-group or end-of-file is encountered on
the source input file.

If the parameter is specified as I=<f ile
reference>, the source text is read from file
<file reference>.

(Default: L=OUTPUT)

When the LIST parameter is omitted the
compilation listing is written on file OUTPUT.

CDC PRIVATE

6-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

6.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C200
6.2 C200 COMMAND PARAMETERS

LO

OPTIMIZE
OPT

If the parameter is specified as L=O, all
compile time output is suppressed.

If the parameter is specified as L=<file
reference>, the compilation listing is written
on file <file reference>.

(Default: LO•S)

Selects a combination of the following list
options. For example, LO=AX.

A Lists compiler generated object code. When A
is selected, the listing includes an assembly
like listing of the generated object code.
This option has no meaning if the (object
file) B option has been set to 0.

F Produce a full listing. This option selects
options M, R and S.

L Works in ·conjunction with the LISTEXT pragmat
such that LISTings can be EXTernally
controlled on the compiler call statement.

M Produce an attribute list of source input
block structure and relative stack. The
attribute listing is produced following the
source listing on the file declared by the L
option or on the file OUTPUT if L is absent.

R Symbolic cross reference listing showing
location of program entity definition and use
within a program.

S Lists the source input file.

X Symbolic cross referenc6 listing of all
program entities whether referenced or not.

If the parameter is specified as LO•O, no list
options are selected.

(Default: OPT=O)

Selects the code optimization level.

0 Provides for keeping constant values and
local variables in registers.

CDC PRIVATE

7-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

7.0 APPLICABLE DOCUMENTS

7.0 APPLICABLE DOCUMENTS

The following documents should prove to be helpful in your
software development process.

7.1 GENERAL

o CYBIL Language Specification (External-60457280,
Internal-ARH2298)

o This CYBIL Handbook (External-60457290, Internal-ARH3078)

o CYBIL Formatter ERS (External-60461810, Internal-ARH2619)

o Common CYBIL I/0 Reference Manual (ARH6794)

o User Guide for Analyze CYBIL Complexity (ARH7399)

o CYBIL Yser's Guide (Internal-SESD006)

o NOS Graphics User's Manual (60457270 03)*

o NOS Define Data Dictionary Tools User's Handbook (60457260)*

o TXTCODE User Guide (External-60460280, Internal-ARH2893)

o TXTFORM User Guide (External-60460290, Internal-ARH1737)

7.2 Cl70

o CYBIL Reference Manual (60455280)*

o CYBIL I/O Reference Manual (External-60460300,
Internal-ARH2739)

o CYBIL Debugger ERS (External-60460320, Internal-ARH3142)

o CYBIL Miscellaneous Routines (External-60460310,
Internal-SESD003)*

o SES User Handbook (External-60457250, Internal-ARH1833)*

o SES Procedure Writer's Guide (External-60460270,
Internal-ARH2894)

o NOS Screen Formatting Reference Manual (60460430)

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

7.0 APPLICABLE DOCUMENTS
7.3 C180

7.3 Cl80

0 CYBIL for NOS/VE Language Definition (60464113)*

0 CYBIL for NOS/VE System Interface Usage (60464115)

0 CYBIL for NOS/VE File Interface Usage (60464114)

7-2

86/09/03
REV: I

0 CYBIL for NOS/VE Keyed-file & Sort/Merge Interface (60464117)

0 NOS/VE Analysis Usage (60463915)

0 NOS/VE Program Interface ERS (ARH3610)

o A.AM 180 ERS (S2978)

o Post Rl A.AM ERS (54257)

o Debugger ERS (S4028)

o System Interface Standard (S2196)

7.4 MC68000

o CDCNET CYBIL Reference Manual (60462400)*

o CDCNET Motorola 68000 Utilities Reference Manual
(External-60462500, Internal-ARH5194)

o ERS for the MC68000 Absolute Linker (ARH4895)

o ERS for SES Object Code Utilities (External-60460330,
Internal-ARH2922)

o CDCNET M68000 Cross-Assembler Reference Manual
(External-60462700, Internal-ARH6363)

7.5 APOLLO

o APOLLO Aegis Domain System Programmer's Reference Manual (0005)

7.6~

o CYBIL P-Code Generator Reference Manual (60461290)*

o UCSD P-system Internal Architecture Guide
(SofTech Microsystems, Inc.)

o ERS for SES Object Code Utilities (External-60460330,

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

7.0 APPLICABLE DOCUMENTS
7.6 PCODE

7.7 C200

Internal-ARH2922)

7-3

86/09/03
REV: I

o C200 Standards and Conventions (17329020)

* Indicates the manual is also available via an online manual.

CDC PRIVATE

8-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

8.0 COMMON CYBIL COMPILERS

8.0 COMMON CYBIL COMPILERS

This section details the characteristics of all CYBIL
compilers.

8.1 CONSIDERATIONS IMPOSED BY THE NATURE OF CYBIL

CYBIL is a block-structured, recursive language, offering a
variety of data structures, and requiring storage management
features not found in static languages such as FORTRAN, IMPL or
even assembler.

Of critical importance is an understanding of lexical level,
scope of identifiers and the implication of recursion.

The visual appearance of a CYBIL module is a ~tatic map of the
scope of its contained declarations. Each declaration at the
outermost level is considered STATIC to the module. Within any
declared procedure in the module, contained declarations are at a
higher level (smaller scope) than those outside the procedure.
Since procedures may contain procedure declarations, the process
compounds. If we visualize a counter set to zero at the
beginning of the module, and incremented as each procedure
declaration is discovered (decremented when that procedure
declaration is terminated), we have defined the lexical level for
any declaration encountered.

The scope of an identifier is the environment containing it, both
statically and dynamically. Hence, the set of identifiers
available to a procedure at a given lex level is the set from all
lower lex levels which contain the procedure (static scope).
Dynamic scope is concerned with which values of an identifier set
are available. Because of recursion, a given set of variables
(static scope) may have several sets of dynamic values; the set
available is the most recently created set (dynamic, or flow,
scope).

Recursion is a generalization of the reentrancy problem. For
code to be reentrant, two constraints must be met:

1) the code must not modify itself, and

2) a separate data space must be provided for each invocation
of the code

The "separate data space" implies a dynamic allocation of the

CDC PRIVATE

8-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

8.0 COMMON CYBIL COMPILERS
8.1 CONSIDERATIONS IMPOSED BY THE NATURE OF CYBIL

apace, since the number of invocations to be encountered ia not
predictable. Therefore, the code references the data apace
indirectly, relative to a supplied locator (pointer). Hence, the
data space is based on a locator.

In order to permit recursion (a procedure or function may
{indirectly} call itself), the reentrant data apace must be again
subdivided ao that each invocation of a procedure or function may
obtain data apace for a new set of values for its data variables.
Since the number of recursive invocations ia not predictable, it
is limited only by physical constraints. The variables so
allocated at each invocation are called automatic, and have a
dynamic lifetime equal to that of the activation of the procedure
declaring them. Their values are lost when the procedure or
function deactivates (EXITs).

8.1.1 STORAGE MANAGEMENT - DYNAMIC VS. STATIC

8.1.1.1 Stack Frame

In CYBIL terms, the stack frame is the aet of automatic
variables, parameters, control information, register aave areas,
etc. aaaociated with a given invocation of a procedure. This
frame must be dynamically allocated. Procedure formal parameters
are treated as members of this stack frame, ie. as local
variables. Special attention is paid to function return values;
for a function, its return value is something static to it (i.e.
like a formal parameter or a local v~riable); whereas for the
invoker of a function, the return value is •erely an operand in
an expression. Thia contradiction •ust be accommodated.

8.1.1.2 Allocated Space

In addition to (automatic) stack frames, CYBIL requires the
implementation of apace acquisition for dynamic variables, the
number of which ia not declarable or predictable. These
variables fall into two categories:

o space obtained by a PUSH statement,
o apace obtained by an ALLOCATE statement.

A mechanism by which a variable amount of apace may be obtained
and allocated is thus required, and provided via the PUSH and
ALLOCATE statements.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

8.0 COMMON CYBIL COMPILERS
8.2 INLINE PROCEDURES AND FUNCTIONS IMPLEMENTATION

8.2 INLINE PROCEDURES AND FUNCTIONS IMPLEMENTATION

8-3

86/09/03
REV: I

The CYBIL Language Specification lists language considerations
for INLINE routines. Listed below are specific features of the
implementation:

o Local variable declarations in an INLINE routine become
part of the calling procedure's stack frame.

o Formal parameters are treated as local variable
declarations in the INLINE routine. At the point of call
to an INLINE routine the actual parameter is assigned to
the corresponding formal parameter local variable.
Reference parameters are accessed by assigning a pointer to
the actual parameter to the formal parameter local
variable.

o When the actual parameter for a value parameter is of an
adaptable type or is a substring then the parameter is
treated as though it were a read-only reference parameter,
i.e. a local copy of the parameter is not created. This
is necessary to allow type-fixing at execution time. A
restriction is imposed on adaptable array/record value
parameters that the actual parameter be aligned to a
machine addressable boundary.

o The result of an INLINE function reference is part of the
caller's stack frame. When one INLINE function is called
more than once within a atatement, the corresponding
results are separate, although they share the same name.

o Nested calls to INLINE routines are arbitrarily limited to
5 levels of nesting on the assumption that an inappropriate
amount of code expansion may be occurring when the nesting
level becomes too great. Excessive call nesting levels and
recursive calls are considered errors and terminate inline
substitution.

o Source statements in an INLINE routine body are not listed
at the point of call.

o No procedure or function declaration which is not XREFed
may appear within an INLINE routine declaration.

o No STATIC or XDCL variable may be declared within an INLINE
routine declaration.

o INLINE routines may be used with the interactive debugger.

cilfe

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

8.0 COMMON CYBIL COMPILERS
8.2 INLINE PROCEDURES AND FUNCTIONS IMPLEMENTATION

8-4

86/09/03
REV: I

The debugger considers an INLINE procedure call expansion
to be a series of statements on the same line as the
procedure call. The debugger considers an INLINE function
call expansion to be a series of statements on the same
line as the end of the phrase which includes the INLINE
function reference. Local variables declared in an INLINE
routine may not be accessible directly by name following an
inline call since the substitution process can result in
the creation of non-unique variable names. Variable names
in the calling procedure will always take precedence for
the debugger.

Note: Space reserved via a PUSH statement within an INLINE
routine will not be de-allocated until the calling routine exits.

8.3 SOURCE LAYOUT CONSIDERATIONS

If a source text line contains non-blank characters beyond the
column specified for the right source margin then a '.I '
character string is inserted in the source listing line after the
right margin. This is done to indicate the end of the compiler's
scan should a source text line erroneously exceed the designated
right margin.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

9.0 CYBIL-CC DATA MAPPINGS

9.0 CYBIL-CC DATA MAPPINGS

9-1

86/09/03
REV: I

The actual CYBER 60-bit word formats of each of the CYBER 170
CYBIL data types is described below. This information will provide
some insight into the amount of storage required for various CYBIL
data structures. This will allow the user to predict the storage
efficiency of his program. Unpacked data types provide for more
efficient data access at the expense of storage efficiency. Packed
data types provide for more efficient storage utilization at the
possible expense of access time and extra code. When data (or a
field of data) is aligned it will be placed on a CYBER 60-bit word
boundary. Unused fields are not necessarily zeros and should not be
altered by the (assembly language) programmer.

9.1 UNPACKED BASIC TYPES

9.1.1 UNPACKED INTEGER

The unpacked integer format consists of one 60-bit word. The
integer value is limited to the rightmost 48 bits of the word.
Ones's complement data representation is used. Integer values are
therefore restricted to -(2**48 - 1) <= INTEGER <= (2**48 - 1) or
-281474976710655 <s INTEGER <= 281474976710655. In the diagram
below, SIGN indicates sign extension. This field will be all zero's
if the integer is positive and all one's if the integer is negative.

59 47 0
+------------+---+

SIGN INTEGER VALUE
+------------+---+

CDC PRIVATE

9-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.1.2 UNPACKED CHARACTER

9.1.2 UNPACKED CHARACTER

The unpacked character format consists of one 8-bit ASCII
character right justified in the rightmost 12 bits of one 60-bit
CYBER word. Bit positions 11 through 8 are always zero. The
remaining 48 bits of the word are unused. This format provides for
the most efficient data access of characters at the expense of
storage efficiency. The ASCII data representation is used. For
example, an unpacked character 'A' would be represented as
XXXXXXXXXXXXXXX0101 (octal), 65 (decimal). The X's indicate unused
bit positions.

59 11 0
+---+------------+
II I I I I I I I I I UNDEFINED I I I I I I I I I I II CHARACTER I
+---+------------+
9.1.3 UNPACKED ORDINAL

An unpacked ordinal is represented as a positive integer value in
the rightmost bits of a 60-bit word. The integer value designates
the current ordinal value. The number of bits required to represent
an ordinal of N elements is: ceiling(log2(N)). For example, an
ordinal containing 10 decimal elements would require
ceiling(log2(10)) or 4 bits.

59 0
+---+------------+
II I I I I I I I I I UNDEFINED I I I I I I I I I I !I VALUE
+---+------------+
9.1.4 UNPACKED BOOLEAN

An unpacked boolean type will occupy one 60-bit word. Only one
bit (the sign bit) is used. The other 59 bits are unused. A sign
bit of 1 indicates the boolean value true. A sign bit of 0 indicates
the boolean value false.

58 0
+-+--+
I I/ I I I I I I I I I I I UNDEFINED I I I I I I I I I I I I I
+-+--+

CDC PRIVATE

9-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.1.5 UNPACKED SUBRANGE

9.1.5 UNPACKED SUBRANGE

An unpacked subrange of any scalar type is represented in the same
~anner as the scalar type of which it is a subrange.

9.1.6 UNPACKED REAL

The unpacked real format consists of one 60-bit word.
mantissa is located in the right most 48 bits of the word.
is located in bit 59, and the biased exponent occupies the
bits. One's complement data representation is used. Real
limited in magnitude to the range of 6.2630*10**(-294) to
1.2650*10**322, or zero.

59 47

The
·The sign

next 11
values are

0

+-+----------+---+
IS I EXPONENT MANTISSA
+-+----------+---+
9.1.7 UNPACKED LONGREAL

The unpacked real format consists of two adjacent 60-bit words.
The format of each word is the same as the format of a real number.
The first word contains the most-significant half of the mantissa,
the exponent and the sign of the number. The second word contains
the least-significant half of t.he mantissa, an exponent 48 less than
that in the first word, and the same sign as in the first word.
Longreal values are limited in magnitude to the range
6.2630*10**(-294). to 1.2650*10**322, or zero.

59 47 0
+-+----------+---+
ISIEXPONENTl I UPPER MANTISSA .
+-+----------+---+

59 47 0

+-+----------+---+
ISIEXPONENT2 I LOWER MANTISSA
+-+----------+---+

CDC PRIVATE

9-4
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.1.8 POINTER TO FIXED TYPES

9.1.8 POINTER TO FIXED TYPES

Pointers to fixed types (excluding strings, fixable types,
procedure types and sequence types) occupy the rightmost 18 bits of a
60-bit word. For all pointer types, the NIL pointer is represented
as an 18 bit field with the rightmost 17 bits all ones. In the
specific example of the direct pointer to fixed types a NIL pointer
would have the data representation XXXXXXXXXXXXXX377777 octal where
the X's indicate unused bit positions.

59 17 0
+--+-------------------+
I/ I I I I I I I UNDEFINED I I I I I I I I I I POINTER
+--+-------------------+
9.1.9 POINTER TO STRING

Pointers to strings are 18 bits long but have an additional 4 bit
"position" field to indicate which of the ten positi.ons (POS) in a
CYBER word contains the first character of the string. A string may
begin on any 12 bit boundary (bit positions 59,47,35,23, or 11). The
POS field will contain a value (0,2,4,6, or 8) indicating the
starting position of the string. For example, a POS value of 0
indicates that the string begins in the leftmost (bit 59) position of
the word pointed to.

59 21 17 0
+--------------------------------------+-----+-------------------+
I/ I I I I I I UNDEFINED I I I I I I I I POS I POINTER
+--------------------------------------+-----+-------------------+
9.1.10 POINTER TO SEQUENCE

Pointers to sequences contain the pointer plus an additional
descriptor word. This descriptor word contains an off set to the next
available (AVAIL) location in the sequence and an offset to the top
(LIMIT) of the sequence.

CDC PRIVATE

9-5
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.1.10 POINTER TO SEQUENCE

59 17 0
+--+-------------------+
I! I I I I I UNDEFINED I I I I I I I POINTER
+-------------------------+------------------+-------------------+
I! I I I UNDEFINED I I I II LIMIT I AVAIL
+-------------------------+------------------+-------------------+
I I I
9.1.11 POINTER TO PROCEDURE

Pointers to procedures are 36 bits long. Two 18 bit pointers are
contained in the 36 bit field. One of the pointers points to the
code and the other pointer points to the environment (stack) of the
procedure. For the outermost procedures, the tEnvironment is equal
to zero.

59 35 17 0

+-------------------------+------------------+-------------------+
I! I I I UNDEFINED I I I II tENVIRONMENT tCODE
+-------------------------+------------------+-------------------+
9.1.12 UNPACKED SET

An unpacked set will be left justified in the word or words it
occupies. One bit is required for each member in the set. A bit set
to one indicates that the set member is present. A zero bit
indica~es the set member is absent. If all the bits associated with
a set are zero the representation is of an "empty set". For example,
a set of 75 members will occupy two 60-bit words (120 bits). The
leftmost 75 bits of the 120 bit field will be used to represent the
set. The maximum size allowed for a set is 32,768 elements.

59 0
+-+-+---+-+-+--+
I I I ... I I , . I I I I I I I I I I UNDEFINED I I I I I I I I I I I
+-+-+---+-+-+--+
9.1.13 UNPACKED STRING

Unpacked strings will be 12 bits per character, five characters
per word, left justified in the word or words they occupy. The data
representation is the ASCII encoding (8 bits) right-justified within
a field of 12 bits.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYB IL Handbook·

9.0 CYBIL-CC DATA MAPPINGS
9.1.13 UNPACKED STRING

59 47 35 23 11

9-6

86/09/03
REV: I

0
+------------+------------+------------+------------+------------+

CHAR CHAR CHAR CHAR CHAR

+------------+------------+------------+------------+------------+
9.1.14 UNPACKED ARRAY

An unpacked array is a contiguous list of aligned instances of its
component types. A two dimensional array is thought of as a one
dimensional array of components which are one dimensional arrays.
This structure is continued for multi-dimensional arrays. Storage
for the array is mapped such that the right-most (inner-most) array
is allocated contiguous storage locations. Considering the typical
two dimensional array consisting of "rows and columns" the data
mapping would be by rows. The maximum number of elements in an array
is 262143. In general, there mut be sufficient storage to contain
the array.

9.1.15 UNPACKED RECORD

An unpacked record is a contiguous list of aligned fields.

9.2 OTHER TYPES

9.2.1 ADAPTABLE POINTERS

Pointers to adaptables are identical to pointers to the
corresponding non-adaptable type with the addition of descriptors
giving the length of the structures. In order to determine the size
of an adaptable pointer a scan is made of the target type and all its
contained types.

CDC PRIVATE

9-7
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.2.1 ADAPTABLE POINTERS

59 21 17 0
+--------------------------------------+-----+-------------------+
I/ I I I I I I I UNDEFINED I I I I I I I POS I POINTER I
+--------------------------------------+-----+-------------------+

DESCRIPTOR I
+---------------------------------~------------------------------+

The POS field is used only for adaptable strings as described
above in the discussion on Direct Pointer to String.

9.2.1.1 Adaptable Array Pointer

The descriptor for an adaptable array is:

59 53 35 17 0

+------+------------------+------------------+-------------------+
II I I I ARRAY SIZE LOWER BOUND ELEMENT SIZE
+------+------------------+------------------+-------------------+

The ARRAY and ELEMENT SIZE fields are either both in bits, or both
in words. The value for the sizes are in bits when the array is
packed.and is in words when the array is unpack~d.

9.2.1.2 Adaptable String Pointer

A pointer to an adaptable string will have a descriptor word. The
descriptor will contain the length of the adaptable string in 6 bit
quantities (i.e., twice the number of characters) as shown below:

59 11 0
+--------------------~----------------------------~-+------------+
II I I I I I I I I I UNDEFINED I I I I I I I I I I LENGTH
+---+------------+
9.2.1.3 Adaptable Sequence Pointer

A pointer to an adaptable sequence will have the same format as
the pointer to a fixed size sequence, as described above.

CDC PRIVATE

9-8
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.2.1.4 Adaptable Heap Pointer

9.2.1.4 Adaptable Heap Pointer

A pointer to an adaptable heap will have one descriptor word.
This word will contain the total size of the space allocated (in
words) as shown below:

59 17 0
+--+-------------------+
I/ I I I I I I I UNDEFINED I I I I I I I I I I SIZE I
+--+-------------------+
9.2.1.5 Adaptable Record

An adaptable record may have at most one adaptable field. A
pointer to an adaptable record requires a descriptor word for the
adaptable field. Since the adaptable field must be one of the above

• types, the descriptor will be as described above.

9.2.2 BOUND VARIANT RECORD POINTERS

A pointer to a bound variant record will consist of a pointer to
the record followed by a descriptor word which contains the size of
the particular bound variant record in use.

59 17 0
+--+-------------------+
I/ I I I I I I I UNDEFINED I I I I I I I I I I POINTER
+--+-------------------+
I! I I I I I I I UNDEFINED I I I I I I I I I I SIZE
+--+-------------------+
9.2.3 STORAGE TYPES

The amount of storage required for any user declared storage type
(sequence or heap) may be determined by summing the #SIZE of each
span plus, in the case of user heaps, some control informa'tion.

9.2.3.1 Seguences

Access to a sequence is through the control information associated

CDC PRIVATE

9-9
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.2.3.1 Sequences

with the pointer to sequence. The layout of the sequence is shoWn
below:

59 0
+--+

STORAGE FOR

SEQUENCE

+--+
9.2.3.2 Heaps

User declared heap storage must be managed differently than the
sequence because explicit programmer written ALLOCATE's and FREE's
may be executed. The heap, in general, consists of 1) a header word,
2) free areas (blocks) which are linked together (forward and
backward) and 3) areas in use as a result of explicit ALLOCATE
statement(s). For the heap data type, one additional header word is
added for each repetition count for each span specified. The heap
with its header word is illustrated below:

59 54 35 17 0
+------+------------------+------------------+-------------------+
I/ I I I I I UNDEFINED I II AVAIL SIZE tFREE BLOCK
+------+------------------+------------------+-------------------+

STORAGE FOR
FREE BLOCKS

AND USER
ALLOCATED DATA

+--+
9.2.3.2.1 FREE BLOCKS

The free blocks are a circular forward and backward linked list.
Free blocks are condensed each time the user code executes a FREE
statement referencing this heap. The storage map of a typical free
block is shown below:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

9.0 CYBIL-CC DATA MAPPINGS
9.2.3.2.1 FREE BLOCKS

59 54 35 17

9-10

86109103
REV: I

0
+------+------------------+------------------+-------------------+
II I I I FORWARD LINK BACKWARD LINK BLOCK SIZE
+------+------------------+------------------+-------------------+

FREE BLOCK

+--+
9.2.3.2.2 ALLOCATED BLOCKS

When the CYBIL program executes an ALLOCATE statement the free
block chain is re-arranged to make room for the allocated space in
the heap. For each ALLOCATE a one word header is added to the space
to maintain the size of the allocated area. This size information is
used to verify subsequent FREE statements. The format of an
allocated area in the user declared heap is:

59 17 0
+--+-------------------+
II I I j ·1 I I ~EFINED I I I I I I I I I I I BLOCK SIZE
+-----------------------J--------------------+---~---------------+

ALLOCATED SPACE

+--+
9.2.4 CELLS

A cell is allocated a word and is always aligned.

9.3 PACKED DATA TYPES

Packed data types are provided to allow the programmer to conserve
storage space at the possible expense of access time. The choice is
easily made by the programmer by simply using the 'PACKED' attribute
in the declaration of the structured type.

A packed integer occupies a 60 bit word.

A packed character is 8 bits (ASCII encoded).

A packed boolean is 1 bit.

A packed set occupies as many bits as there are elements in the

CDC PRIVATE

9-11
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

9.0 CYBIL-CC DATA MAPPINGS
9.3 PACKED DATA TYPES

set.

A packed ordinal of N elements is as long as the packed subrange
O •• N-1.

A packed subrange of any type except integer is as long as the
packed type of which it is a subrange.

A packed subrange of integers a •• b has its length computed as
follows: If a is>• 0, then ceiling(log2(b+l)), else
l+ceiling(log2(max(abs(a),b)+l)).

A packed real occupies a 60 bit word.

A packed longreal occupies two consecutive 60 bit words.

A packed string is the same as an unpacked string except that it
is aligned on a 12 bit boundary instead of a word boundary.

A packed array is a contiguous list of unaligned instances of its
packed component type with the length of the component type increased
by the smallest number of bits that will make the new length an even
divisor of 60 or a multiple of 60 bits; such that the array will fit
in an integral number of 60 bit words.

The length of a packed record is dependent upon the length and
alignment of its fields. The representation of a packed record is
independent of the context in which the packed-record is used. In
this way, all instances of the packed record will have the same
length and alignment whether they be variables, fields in a larger
record, elements of an array, etc. When the ALIGNED clause is used
on a field within a packed record, the field will be aligned to the
next word boundary.

A packed pointer to fixed type requires 18 bits. A packed pointer
to an adaptable type would require 120 bits. A packed pointer to
procedure requires 36 bits.

Storage types (heaps and sequences) require as much space as the
sum of the space requirements for each span as if it were defined as
an unpacked array.

A packed cell is allocated a word and is always aligned.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

9.0 CYBIL-CC DATA MAPPINGS
9.4 SUMMARY FOR THE C170

9.4 SUMMARY FOR THE C170

--~------
ALIGNMENT

+------------------------+
TYPE SIZE I UNPACKED I PACKED

+---------------+------------+----------+-------------+
I BOOLEAN I bit I LJ word I bit I

+---------------+------------+----------+-------------+
I INTEGER I word I word I word I

+---------------+------------+----------+-------------+
I SUBRANGE I as needed I RJ word I bit
+---------------+------------+----------+-------------+
I ORDINAL I as needed I RJ word I bit
+---------------+------------+----------+-------------+
I

CHARACTER I 12 bits/ I RJ word I bit
· 8 bits

+---------------+------------+----------+-------------+
· I REAL . I word I word I word I
+---------------+------------+----------+-------------+

I LONGREAL I 2 words I word I word I

+---------------+------------+----------+-------------+
I STRING I n * 12 bits I LJ word I 12 bit
+---------------+------------+----------+-------------+
I SET I as needed I LJ word I bit
+---------------+------------+----------+-------------+
I

ARRAY/RECORD I component I word I unaligned
dependent components

+---------------+------------+----------+-------------+
I FIXED POINTER I 18 bits I RJ word I bit I
+---------------+------------+----------+-------------+

I CELL I word I word I word I

+---------------+------------+----------+-------------+

9-12

86/09/03
REV: I

Note: The abbreviations LJ and RJ in the above table stand for left
and right justification.

CDC PRIVATE

10-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

10.0 CYBIL-CC RUNTIME ENVIRONMENT

10.0 CYBIL-CC RUNTIME ENVIRONMENT

10.1 STORAGE LAYOUT OF A CYBIL-CC PROGRAM

The first 101(8) words are (as always on CYBER) the job
communication area, which is described in the appropriate reference
manual. The following storage area comprises the static part (code
and static data) of the program. Usually it starts with the modules
loaded from the load file(s) (in the order of the LOAD requests),
followed by the modules from the library. The following storage
area, the dynamic area starts immediately after the static area and
is controlled by the memory manager. It contains:

o The stack.
o Dynamically allocated memory.

The dynamic area is capable of expanding and, if ~ecessary, the
memory manager incrementally extends the field length up to the
system. permitted maximum.

10.2 REGISTER USAGE

BO = 0
Bl = 1 - ~he generated code counts on this
B2 • dynamic link - callers stack frame pointer (top of stack)
B3 = stack segment limit
B4 = static link - set before a nested procedure is called
BS • pointer to extended parameter list

Xl
X2 last 5 parameters passed to callee,
X3 that fit into an X register
X4 starting with Xl
XS

Xl = on return from callee must contain the linkage word
X7 = linkage word passed to callee

X6 The function result if the value is one word or less;
otherwise it is a pointer to the function value and the
actual value is built in the callee's stack frame. The
caller must save it before any other stack activity
(procedure/function calls, or PUSH statements) takes place.

CDC PRIVATE

10-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

10.0 CYBIL-CC RUNTIME ENVIRONMENT
10.3 LINKAGE WORD

10.3 LINKAGE WORD

1 5 18 18 18
+---------+-----+------------+-------+-------+
Exception///// Potential Dynamic Return

Return ///// Caller Stack Link Address
///// Pointer

+---------+-----+------------+-------+-------+
The linkage word is identical to the first word of the stack (the

stack header), which if expressed in CYBIL syntax would be:

TYPE
stack_header: PACKED RECORD

exceptional return: boolean,
filler: O •• lF(16),
potential_caller_stkp: pointer,
dynamic_link: pointer,
return_address: address,
RECEND;

The meaning of the fields is as follows:

EXCEPTIONAL_RETURN:

POTENTIAL_CALLER_STKP:

DYNAMIC_LINK:

RETURN_ADDRESS:

This field is set whenever after the
procedure received control, a new stack
segment was acquired. It is not used by
the sta~k manager, but is meant as an aid
for post mortem processors and
programmers. Not normally used.

This field is set to the dynamic
predecessor's stack frame pointer if the
dynamic predecessor has multiple stack
frames. Otherwise, it is zero. Not
normally used.

This field contains whatever the current
procedure found in B2 when it received
control (pointer to caller's stack
frame).

Address to which the epilog will go to.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

10.0 CYBIL-CC RUNTIME ENVIRONMENT
10.4 STACK FRAME LAYOUT

10.4 STACK FRAME LAYOUT

SF + 0 Will contain the linkage word.

10-3

86/09/03"
REV: I

SF + 1 Will normally be the start of the user's data in the
stack frame if coding a COMPASS subroutine. Internally
a CYBIL procedure starts the user's data at SF+ 5.

10.5 CALLING SEQUENCES

The interfaces described in this section are available on common
deck ZPXIDEF which is available through the CYBCCMN parameter on SES
procedure GENCOMP.

10.5.1 PROCEDURE ENTRANCE (PROLOG)

MORE
START

•
=XCIL//SPE. increase field length
B2 caller's stack frame pointer to XO
18
X7+XO merge into linkage word
size of stack frame needed
B2-B7 move stack frame pointer
B3,B2,MORE check if room

RJ
sxo
LXO
BX6
SB7
SB2
GE
SA6 B2 store linkage info in stack

10.5.2 PROCEDURE EXIT (EPILOG)

RETLAB BSS
SAl
SB7
SB2
JP.

0
B2 load linkage word
Xl return address to B7
B2+size of stack frame needed
B7

10.5.3 CALLING A PROCEDURE

1) Set up parameters in Xl •.• X5 plus B5 if necessary.
2) Set up linkage word in X7.
3) Use an EQ instruction to jump to the procedure in mind. Must

not use a return jump.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

.CYBIL Handbook

10.0 CYBIL-CC RUNTIME ENVIRONMENT
10.6 PARAMETER PASSAGE

10.6 PARAMETER PASSAGE

10.6.l REFERENCE PARAMETERS

10-4

86/09/03
REV: I

In the case of reference parameters a pointer to the actual data
is generated and the pointer is passed as the parameter.

10.6.2 VALUE PARAMETERS

In the case of "big" value parameters (i.e., larger than 1 word in
length) the parameter list contains a pointer to the actual parameter
and the callee's prolog copies the parameter to the callee's stack
frame.

If the parameter length is less than or equal to a word then it is
a candidate for passing via one of the 5 X registers as described
above. If all 5 X registers are all ready in use, passing other
valu~ parameters, then the parameter is included in the extended
parameter list entries. In eit~er case it is a copy. of the actual
data.

Remember that adaptable pointers are bigger than one word in
length and consequently when they are passed as a value parameter
they are considered a "big" parameter.

10.7 RUN TIME LIBRARY

10.7.1 MEMORY MANAGEMENT

10.7.1.1 Memory Management Categories

Three categories of memory management occur for CYBIL programs:

1) Run Time Stack;
2) Default Heap; and
3) User Heap.

The run time stack and default heap managers use blocks of memory
obtained through run time library calls to the Common Memory Manager
(CMM). User heaps occupy memory designated by the CYBIL program and
are managed entirely by CYBIL run time routines.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

10.0 CYBIL-CC RUNTIME ENVIRONMENT
10.7.1.2 Stack Management

10.7.1.2 Stack Management

10-5

86/09/03
REV: I

Most of the stack management is done in the compiler generated
code. Only under exceptional conditions will run time library
routines be invoked. Each procedure activation has associated with
it a stackframe, which is used to keep local variables, compiler
generated temporaries, and procedure linkage information. The
stackframe consists of several fragments:

·1) The base fragment, which is acquired during the prolog, and

2) The extension fragments, which are acquired during the execution
of the procedure body through PUSH statements or through space
required to copy adaptable value parameters. At procedure
termination, the epilog releas~s the activation's stack frame,
possibly to be reused on later procedure activations.

This dynamic behavior implies that the run time stack must be part
of the dynamic memory area; i.e., ~ust coexist with the memory
manager.

The model used by CYBIL is a compromise between efficiency and
flexibility. It uses stack segments, each of which accommodates at
least one, but usually many, fragments. Within a stack segment, the
acquisition of a new fragment is done by inline code, unless the
current segment is exhausted where upon a stack management routine is
called to obtain a new stack segment from the memory manager.
Registers B2 and B3 are reserved throughout program execution to
maintain the state of the stack.

The default stack segment size is 1760(8) words which according to
our experience, is normally enough. In the case where additional
memory is required additional stack segments are obtained with an
incremental size of 1760(8) until adequate memory is obtained.

10.7.1.3 Default Heap Management

Memory Management for the default heap is done by calls to CMM
from a run time routine when an allocate or free request is made. In
some cases the run time interface for allocate may be able to release
unused stack s~gments to become available for the default heap. The
run time interface allows CMM to increase field length as necessary
but does not allow CMM to reduce field length, in order to curb the
potential for a job's field length to change up and down many times
during execution. Apart from the cases mentioned here, however,

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

10.0 CYBIL-CC RUNTIME ENVIRONMENT
10.7.1.3 Default Heap Management

10-6

86/09/03
REV: I

default heap management is under the control of CMM and. is
essentially transparent to the CYBIL program.

10.7.1.4 User Heap Management

The user heap manager manages contiguous storage areas (heaps)
which are organized into memory blocks. Each block is either free or
allocated. The free blocks are linked to form a free block chain,

whose start is identified by a free chain pointer. Initially, each
heap contains one free block.

An allocate request causes the memory manager to search the
specified heap's free block chain for a block that is sufficiently
big. Depending on the found block's excess size, either the whole
block or a sufficiently large part of it is ~eturned to the caller
(in the latter case the remainder is removed from the block and
inserted (as a new free block) into the free block chain). If it is
impossible to allocate a block· of the requested size a nil pointer
value is returned•for the request.

A free request causes a block to be inserted into the free block
chain of a heap. In order to reduce memory fragementation, it is
merged immediately with adjacent free blocks (if they exist).

10.7.1.5 CMM Error Processing

The CYBIL run time interface to CMM traps any fatal errors
detected by CMM. If the error condition is no more memory available
then a nil pointer is returned for the allocate call. For all other
other error conditions the job step is aborted with the dayfile
message '-FATAL CMM ERROR'. When the job is aborted register Xl
contains the CMM status word. See the CMM Reference Manual (Pub.
No. 60499200) section on own-code error processing for a description
of the CMM status word.

10.7.2 I/O

The CYBIL I/O utilities are available as part of the run time
system contained on CYBCLIB. The I/O interfaces are described in
document ARH2739 and supported via common decks on CYBCCMN in the SES
catalog.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

10.0 CYBIL-CC RUNTIME ENVIRONMENT
10.7.3 SYSTEM DEPENDENT ACCESS

10.7.3 SYSTEM DEPENDENT ACCESS

10-7

86/09/03
REV: I

A set of CYBIL callable routines are available and described in
the SES document: ERS for Miscellaneous Routines Interface SESD003.

10.8 VARIABLES

10.8.1 VARIABLES IN SECTIONS

Using
variable
variables.

the section
other than

10.8.2 GATED VARIABLES

attribute
to assure

on a variable has no effect on the
its residence with the static

The #GATE attribute. is ign?red on both variables and procedures.

10.8.3 VARIABLE ALLOCATION

Space for variables is allocated in the order in which they occur
in the input stream. No reordering is done. If a variable is not
referenced, no space is reserved.

10.8.4 VARIABLE ALIGNMENT

The <offset> mod <base> alignment feature of the language is
ignored. Quoting any combination of alignments will always result in
word alignment.

10.9 STATEMENTS

This section describes what may be
implementations of certain CYBIL statements.

10.9.1 CASE STATEMENTS

less than obvious

Alternate code is generated for case statements depending on the
density of selection specs. The "span" of selection values is equal
to the highest value found in a selection spec minus the lowest value
found in a selection spec, plus one. This is the number of words

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

10.0 CYBIL-CC RUNTIME ENVIRONMENT
10.9.1 CASE STATEMENTS

10-8

86/09/03
REV: I

that would be needed in a jump table, with one entry per word.. A
series of conditional jumps requires two words per selection spec
(one test against each bound). The CC code generator picks the
method that will result in less code: if the span of selection values
is less than twice the number of selection specs then a jump table is
generated, otherwise, a series of conditional jumps is generated. If
a conditional jump sequence is being generated and there is 9 or more
selection specs present a "midpoint label" is generated to bisect the
conditional jump sequence.

10.9.2 STRINGREP

10.9.2.1 Pointer Conversions

The default radix for the conversion of a pointer into a string is
defined as implementation dependent. For the C170 the resultant
string will be -the pointer represented in octal notation.

10.9.3 INTER-OVERLAY PROCEDURE CALL

Loading of user overlays must not clobber
calling overlay. This is particularily
parameters.

data residing in the
true of data passed via

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING

11-1

86/09/03
REV: I

The data mappings described in this section describe the mappings
as they are implemented today, with an eye toward conformance with
the SIS (52196).

11.1 POINTERS

A pointer to an object of data is composed of the address of the
first byte of the object plus any information required to describe
the data.

The address field of a pointer is a 6 byte Process Virtual Address
(PVA) which is always byte aligned and it has the following format:

PROCESS VIRTUAL ADDRESS = PACKED RECORD
RING NUMBER: 0 .. 15, { 4 bits, unsigned}
SEGMENT_NUMBER: 0 •. 4095, { 12 bits, unsigned}
BYTE_NUMBER: HALF_INTEGER, { 32 bits; signed}

RECEND.
The HALF INTEGER type is defined as the following subrange:

HALF INTEGER = -80000000(16) 7FFFFFFF(16).

The NIL pointer is the following constant:

NIL: PROCESS_VIRTUAL_ADDRESS := [OF(16), OFFF(16), 80000000(16).

Pointers to all fixed size data objects contain only the PROCESS
VIRTUAL ADDRESS, with the exception of pointer to sequence. Pointers
to adaptable type objects contain the PROCESS VIRTUAL ADDRESS (6
bytes) and the descriptor for the adaptable type object (the
descriptor follows physically the PVA).

11.1.1 ADAPTABLE POINTERS

Descriptors for adaptable types are byte aligned and they have the
following formats:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.1.1 ADAPTABLE POINTERS

11-2

86/09/03
REV: I

a) STRING - 2 byte size field indicating the length of the string
(0 •. 65535) in bytes.

b) ARRAY - 12 byte descriptor:

ARRAY_DESCRIPTOR = RECORD
ARRAY_SIZE: HALF_INTEGER, " in bits or bytes 11

LOWER BOUND: HALF INTEGER,
ELEMENT_SIZE: HALF_INTEGER," in bits or bytes 11

RECEND.

ARRAY SIZE and ELEMENT SIZE are either both in bits, or both in
bytes. The value for th; sizes are in bits when the array is
packed and is in bytes when the array is unpacked. Note: The
ELEMENT_SIZE may be dropped in future compiler updates.

c) USER HEAP - 4 byte size field indicating the maximum length of
the structure in bytes.

d) SEQUENCE - The format of a pointer to an adaptable sequence will
have the same format as the pointer to a fixed size sequence as
described below.

e) RECORD - Adaptable records have the descriptor of their adaptable
field as described above.

11.1.2 POINTERS TO SEQUENCES

The 14-byte pointer to sequence (fixed or adaptable has the
following format:

SEQUENCE_POINTER = RECORD
POINTER_SEQUENCE: PROCESS_VIRTUAL_ADDRESS,
LIMIT: HALF_INTEGER,
AVAIL: HALF_INTEGER,

RECEND.

The LIMIT is an offset to the top of the sequence and the AVAIL is
an offset to the next available location in the sequence.

11.1.3 PROCEDURE POINTERS

The 12-byte pointer to procedure has the following format:

PROC POINTER = RECORD

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.1.3 PROCEDURE POINTERS

11-3

86/09/03
REV: I

POINTER_TO_PROCEDURE_DESCRIPTOR: PROCESS_VIRTUAL_ADDRESS,
STATIC_LINK_OR_NIL: PROCESS_VIRTUAL_ADDRESS,

RECEND.

The first entry of the procedure pointer is a pointer to the
procedure descriptor in the Binding Section. This procedure
descriptor consists of two entries: a Code Base Pointer and a Binding
Section Pointer. This implies that the Code Base Pointer will have
the External Procedure Flag set for all procedures (including
internal procedures) which are called via a pointer to procedure.
This is done to ensure that the Binding Section Pointer is always
placed in register A3 during a call.

The second entry of the procedure pointer is the static link. A
level 0 procedure does not require a static link and, therefore, the
nil pointer is used. This is done to ensure that pointer comparison
will always work. -

The nil procedure pointer is the following constant:

NIL PROC POINTER: PROC POINTER :=
[-POINTER_TO_NIL_PROCEDURE_DESCRIPTOR, NIL]

where the nil procedure descriptor points to a run time library
procedure which handles the call through a nil procedure pointer as
an error.

11.1.4 BOUND VARIANT RECORD POINTERS

Pointers to bound variant records consist of a 6 byte PVA followed
by a 4 byte size descriptor.

11.1.5 POINTER ALIGNMENT

Pointer types are always byte aligned.

Pointer variables which occupy 8 bytes or more are word aligned on
the left;. whereas, smaller pointers are right justified in a word.
Pointer types are always byte aligned even in packed structures.

11.2 RELATIVE POINTERS

A relative pointer is a 4 byte field which gives the byte offset

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.2 RELATIVE POINTERS

of the object field from the start of the parent:

RELATIVE ADDRESS 0 •• 0FFFFFFFF(16).

Relative pointers are always byte aligned.

The NIL relative pointer is the following constant:

NIL: RELATIVE ADDRESS :a 80000000(16).

11.2.1 ADAPTABLE RELATIVE POINTERS

11-4

86/09/03
REV: I

Relative pointers referencing adaptable type objects consist of
the 4 byte relative-address plus a descriptor for the adaptable
object type. This descriptor physically follows the relative-address
field. Descriptors for adaptable relative pointer types have the
alignment and formats described above in the section titled Adaptable
Pointers.

11.2.2 RELATIVE POINTERS TO SE~UENCES

The 12-byte relative pointer to sequence (fixed or adaptable) has
the following format:

RELATIVE POINTER_TO_SEQUENCE = RECORD
RELATIVE_POINTER: RELATIVE_ADDRESS,
LIMIT: HALF_INTEGER,
AVAILABLE: HALF_INTEGER,

RECEND.

11.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS

Relative pointers to bound variant records consist of a 4-byte
relative_address followed by a 4-byte size descriptor.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.3 INTEGERS

11.3 INTEGERS

11-5

86/09/03
REV: I

Integer type variables are allocated 64 bits and are word aligned.

Unpacked
structure.

and packed types are byte aligned when within a

11.4 CHARACTERS

Character type variables are allocated 8 bits. Unpacked character
types are byte aligned while packed character types are bit aligned.

'A character variable is mapped as an unpacked character type and
it is right aligned in a word.

11.5 ORDINALS

Ordinal types are-mapped as the subrange 0 •• n-1, where n is the
number of elements· in the ordinal type.

11.6 SUBRANGES

An unpacked subrange type variable is allocated 8 bytes if its
lower bound is negative; 1 to 8 bytes otherwise (depending on value
of upper bound). An unpacked subrange type is byte aligned.

A packed subrange type, a •• b, is bit aligned and it has its
allocated bit length, L, computed as follows:

if a >• 0, then
if a < 0, then

L = CEILING (LOG2 (b+l))
L 1 + CEILING (LOG2 (MAX (ABS(a), b+l)))

A subrange variable is mapped as an unpacked subrange type and it
is right aligned in a word. A subrange with a negative lower bound
occupies the entire word.

The maximum integer
7FFFFFFFFFFFFFFF(16).

11.7 BOOLEANS

subrange is -8000000000000000(16)

An unpacked boolean type is allocated 1 byte and it is byte

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.7 BOOLEAN~

aligned.

11-6

86/09/03
REV: I

A packed boolean type is allocated 1 bit and it is bit aligned.

A boolean variable is mapped as an unpacked boolean type and it is
right justified in a word.

The internal value used for FALSE is zero and for TRUE it is one.

11.8 REALS

Real type variables are allocated 64 bits and are word aligned.
Unpacked and packed types are byte aligned when within a structure.
The magnitude of a real value can range from 4.8*10**(-1234) to
5.2*10**1232, or it can be zero.·

11.9 LONGREALS

Longreal type variables are allocated two consecutive 64 bit words
and are word aligned. Unpacked and packed types are byte aligned
when within a structure. The magnitude of a longreal value has the
same range as a type real value, described above.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.10 SETS

11.10 SETS

11-7

86/09/03
REV: I

The number of contiguous bits required to represent a set is the
number of elements in the base type of the associated set type. The
leftmost bit in the set representation corresponds to the first
element of the base type, the next.bit corresponds to the second
element of the base type, etc.

An unpacked set type is allocated a field of enough bytes to
contain the set elements and the set field is byte aligned.

A packed set type which contains more than 57 set elements is
mapped as an unpacked set type. A packed set type which contains 57
or less set elements is allocated a field with the number of bits
necessary to contain the set elements and the set field is bit
aligned.

If the set elements occupy a set field which is larger than the
number of elements in the base type of the set, then the· set entries

• a~e right. just~fied in the field and the filler bits to th• left of
the set elements are always zero.

A set variable is mapped as an unpacked set type. If the set
field containing the set elements will fit into a word then it is
right justified in the word; otherwise, the set field is word aligned
on the left.

The maximum size allowed for a set is 32,767 elements.

I . .(__ 1 r ' ',,.
,, 'l(.t'

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.11 STRINGS

11.11 STRINGS

11-8

86/09/03
REV: I

A string type is allocated the same number of bytes as there are
characters in the string.

String types are always byte aligned.

A string variable which occupies more than 8 bytes is word aligned
on the left; whereas, a smaller string is right ali.gned in a word.

11.12 ARRAYS

An unpacked array type is a contiguous list of aligned instances
of its component type.

A packed array type is a contiguous list of unaligned instances of
its component type. The array is aligned on a byte boundary if its

.element type starts on a byte boundary, or if the array is greater
than 57 bits.

If the array component type is byte aligned, then it occupies an
integral number of bytes.

Array variables are word aligned on the left.

The size of an array of aligned records will be a multiple of the
records alignment base.

In general, the size of arrays are limited by availability of
sufficient storage. The maximum size an array can ever be is the
size of a segment (i.e. 7FFFFFFF(l6)).

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.13 RECORDS

11.13 RECORDS

11-9

86/09/03
REV: I

An unpacked record type is a contiguous list of aligned fields.
It is aligned on the .boundary of the coarsest alignment of any of its
fields.

A packed record type is a contiguous list of unaligned fields. It
is aligned on the coarsest alignment of its component fields subject
to the rule that it must be at least byte aligned if the record is
greater than 57 bits.

When the ALIGNED feature is used on a field within a record, the
algorithm used will attempt to satisfy the offset value first (within
the word being allocated). If the first field of a record is
aligned, the record will take on the alignment base from the aligned
attribute quoted on that first field. If the other fields of a
record are also aligned, the record takes on the coarsest alignment
base from all the fields within the record.

The length of a packed record is dependent upon the length and
align~ent of its fields. The representation of a packed record is
independent of the context in which the packed record is used. In
this way, all instances of the packed record will have the same
length and alignment whether they be variables, fields in a larger
record, elements of an array, etc.

In an unpacked or packed record, the following field types (they
must not be the subject of a pointer or a reference parameter) are
defined as expandable: character, ordinal, subrange, boolean, and
set. If an expandable field is followed by a field of dead bits
which extends to the next field of the record (or to the end of the
record), then the expandable field is expanded to include as many
bits as possible up to the next field. Character, ordinal, subrange,
and boolean expansion is restricted to 32 bits. A set which contains
less than 57 elements can be expanded up to 57 bits, if it can be
expanded to the next field. A set which contains more than 57
elements can be expanded to the next byte boundary or to the next
field, whichever comes first.

The content of the dead bits is undefined.

If a record is byte aligned, then it occupies an integral number
of bytes.

The fields are allocated consecutively subject to their alignment
restrictions.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYB.IL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.13 RECORDS

11-10

86/09/03
REV: I

Record variables which take more than a word are left aligned in
the first word. Record variables which take less than a word are
right aligned in the word.

11.14 STORAGE TYPES

The amount of storage required for any user declared storage type
(sequence or heap) may be determined by summing the #SIZE of each
span plus, in the case of user heaps, some control information.

11.14.1 HEAPS

Both the Default Heap and the User Heap have the following format:

HEAP = PACKED RECORD
BLOCK STATUS: (AVAIL, USED),
SIZE!- 0 •• 7FFFFFFF(l6),
FORWARD FREE LINK: O .• OFFFFFFFF(l6),
BACKWARD I..INK: o .. OFFFFFFFF(16)",
FORWARD_LINK: O •. OFFFFFFFF(l6),
DATA_AREA: SPACE,

RECEND.

For the heap data type, an additional 16 byte header is added for
each repetition count for each span specified.

11.14.2 SEQUENCES

Sequences have the following format:

SEQUENCE = RECORD
DATA_AREA: SPACE,

RECEND.

As demonstrated the sequence has the space required to contain the
span(s) requested by the user.

11.15 CELLS

A cell type is allocated a byte and is always byte aligned.

CDC PRIVATE

11-11
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.16 DETAILED SUMMARY FOR THE C180 ·

11.16 DETAILED SUMMARY FOR THE C180

+---------------+---------------+--------+--------+--------+--------+
Number # of Align-
of signif- ment of
bits Align-_ icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 64 Word 48 Right
fixed size In packed rec 48 Byte 48 Right
object In unpacked rec 48 Byte 48 Right

In packed array 48 Byte 48 Right
In unpack array 48 Byte 48 Right

+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 64 Word len=48 Left
adaptable Byte len=l6 Left
string In packed rec 64 Word len=48 Left

Byte len=l6 Left
In unpacked rec 64 Word len=48 Left

Byte len=16 Left
In packed array 64 Word len=48 Left

Byte · len=16 Left
In unpack array 64 Word len=48 Left

Byte len=16 Left
+---------------+--~------------+--------+--------+--------+--------+
Pointer to Variable 144 Word len=48 Left
adaptable Byte Desc=96 Left
array In packed ·rec 144 Word len=48 Left

Byte Desc=96 Left
In unpacked rec 144 Word len=48 Left

Byte Desc=96 Left
In packed array 144 Word len=48 Left

Byte Desc=96 Left
In unpack array 144 Word len=48 Left

Byte Desc=96 Left
+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

11-12
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.16 DETAILED SUMMARY FOR THE C180

+---------------+---------------+--------+--------+--------+--------+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 80 Word ptr=-48 Left
user Byte len•32 Left
heap In packed rec 80 Byte ptr•48 Left

Byte len•32 Left
In unpacked rec 80 Byte ptr==48 Left

Byte len=32 Left
In packed array 80 Byte ptr=48 Left

Byte len=32 Left
In unpack array 80 Byte ptr=48 Left

Byte len=32 Left
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 112 Word ptr•48 Left
sequence Byte Desc•64 Left
fixed or In packed rec 112 Byte ptr•48 Left
aclaptable) Byte Desc•64 Left

In unpacked rec 112 Byte ptr=48 Left
Byte Desc•64 Left

In packed array 112 Byte ptr•48 Left
Byte Desc•64 Left

In unpack array 112 Byte ptr•48 Left
Byte Desc•64 Left

+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 48+n Word ptr•48 Right
adaptable In packed rec 48+n Word ptr•48 Right
record In unpacked rec 48+n Word ptr•48 Right

In packed array 48+n Word ptr•48 Right
In unpack array 48+n Word ptr=48 Right

see type of adaptable for descriptor
+---------------+---------------+--------+~-~-----+--------+--------+

Bound Variant Variable 80 Word ptr=48 Left
record pointer Byte len==32 Left

In packed rec 80 Byte ptr=48 Left
Byte len•32 Left

In unpacked rec 80 Byte ptr=48 Left
Byte len•32 Left

In packed array 80 Byte ptr=48 Left
Byte len=32 Left

In unpack array 80 Byte ptr•48 Left
Byte len=32 Left

+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

11-13
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

11.0 ~YBIL-CI/II TYPE AND VARIABLE MAPPING
11.16 DETAILED SUMMARY FOR THE C180

+---------------+---------------+--------+--------+--------+--------+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Relative Variable 32 Word 32 Right
Pointer In packed rec 32 Byte 32 Left

In unpacked rec 32 Byte 32 Left
In packed array 32 Byte 32 Left
In unpack array 32 Byte 32 Left

+---------------+---------------+--------+--------+--------+--------+
Adaptable Variable 32+n I Word I ptr=32 I Right I
relative see type of adaptable for descriptor
pointer In packed rec 32+n l Byte I ptr=32 I Left I

see type of adaptable for descriptor
In unpacked rec 32+n I Byte I ptr=32 I Left I

see type of adaptable for descriptor
In packed array 32+n I Byte I ptr=32 I Left I

see type of adaptable for descriptor
Jn unpack array 32+n I Byte I ptr=32 I Left I

see type of adaptable for descriptor
+---------------+---------------+--------+--------+--------+--------+
Relative Variable 96 Word ptr=32 Left
Pointer to Byte Desc=64 Left
Sequence (fixed In packed rec 96 Byte ptr=32 Left
or adaptable) Byte Desc=64 Left

In unpacked rec 96 Byte ptr=32 Left
Byte Desc•64 Left

In packed array 96 Byte ptr=32 Left
Byte Desc•64 Left

In unpack array 96 Byte ptr•32 Left
Byte Desc=64 Left

+---------------+---------------+--------+--------+--------+--------+
Relative Variable 64 Word ptr=32 Left
Pointer to Byte len=32 Left
Bound Variant In packed rec 64 Byte ptr=32 Left
Record Byte len=32 Left

In unpacked rec 64 Byte ptr=32 Left
Byte len•32 Left

In packed array 64 Byte ptr•32 Left
Byte len•32 Left

In unpack array 64 Byte ptr•32 Left
Byte len=32 Left

+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

11-14
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.16 DETAILED SUMMARY FOR THE C180

+---------------+---------------+--------+--------+--------+---~----+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 96 Word addr=48 Left
procedure Byte addr=48 Left

In packed rec 96 Byte addr=48 Left
Byte addr=48 Left

In unpacked rec 96 Byte addr=48 Left
Byte addr=48 Left

In packed array 96 Byte addr=48 Left
Byte addr=48 Left

In unpack array 96 Byte addr=48 Left
Byte addr=48 Left

+---------------+---------------+--------+--------+--------+--------+
Integer Variable 64 Word 64 . Right

In packed rec 64 Byte 64 Left
In unpacked rec 64 Byte 64 Left
Iri packed arraj 64 Byte 64 Left
In unpack array 64 Byte· 64 teft

+---------------+---------------+--------+--------+--------+--------+
Characters Variable 8 Word 8 Right

In packed rec 8 Bit 8 Left
In unpacked rec 8 Byte 8 Left.
In packed array 8 Bit 8 Left
In unpack array 8 Byte 8 Left

+---------------+---------------+--------+--------+--------+--------+
Subrange Variable Word Right
·and ordinals In packed rec Bit Right

In unpacked rec See Byte See Right
In packed array Above Bit Above Right
In unpack array Byte Right

+---------------+---------------+--------+--------+--------+--------+
Booleans Variable 64 Word 1 Right

In. packed rec 1 Bit 1 Left
In unpacked rec 8 Byte 1 Right
In packed array 1 Bit 1 Left
In unpack array 8 Byte 1 Right

+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

11-15
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.16 DETAILED SUMMARY FOR THE C180

+---------------+---------------+--------+--------+--------+--------+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+

Real Variable 64 Word 64 Right
In packed rec 64 Byte 64 Right
In unpacked rec 64 Byte 64 Right
In packed array 64 Byte 64 Right
In unpack array 64 Byte 64 Right

+---------------+---------------+--------+--------+--------+--------+
Longreal Variable 128 Word 128 Right

In packed rec 128 Word 128 Right
In unpacked rec 128 Word 128 Right
In packed array 128 Word 128 Right
In unpack array 128 Word 128 Right

+---------------+---------------+--------+--------+--------+--------+
Sets Variable Word Right

In packed rec Bit Left
In unpacked rec See · Byte See Left
In packed array Above Bit Above Left
In unpack array Byte Left

+---------------+---------------+--------+--------+--------+--------+
Strings Variable n bytes Word n bytes Left

In packed rec n bytes Byte n bytes Left
In unpacked rec n bytes Byte n byte~ Left
In packed array n bytes Byte n bytes Left
In unpack array n bytes Byte n bytes Left

+---------------+---------------+--------+--------+--------+--------+
Cell Variable 8 Byte 8 Left

In packed rec 8 Byte 8 Left
In unpacked rec 8 Byte 8 Left
In packed array 8 Byte 8 Left
In unpack array 8 Byte 8 Left

+---------------+---------------+--------+--------+--------+--------+

map180

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

11.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
11.17 SUMMARY FOR THE C180

11.17 SUM.MARY FOR THE C180

ALIGNMENT
+------------------------+

TYPE SIZE I UNPACKED I PACKED
+---------------+------------+----------+-------------+
I BOOLEAN I bit I RJ byte I bit
+---------------+------------+----------+-------------+
I INTEGER I 8 bytes I byte I byte
+---------------+------------+----------+-------------+

I SUBRANGE I as needed I RJ byte I bit I

+---------------+------------+----------+-------------+
I ORDINAL I as needed I RJ byte I bit I

+---------------+------------+----------+-------------+
I CHARACTER I byte I byte I bit
+---------------+-------~----+----------+-------------+
I REAL I 8 bytes I byte I byte
+---------------+------------+----------+-------------+
I LONGREAL I ·16 bytes I byte I byte I
+---------------+------------+----------+-------------+
I STRING I n bytes I byte I byte I

+---------------+------------+----------+-------------+
I SET I as needed I RJ byte I bit I

+---------------+------------+----------+-------------+
I

ARRAY/RECORD I component I byte I unaligned
dependent - components

+---------------+------------+----------+-------------+
I FIXED POINTER I 6 bytes I byte I byte I
+---------------+------------+----------+-------------+
I FIXED REL PTR I 4 bytes I byte I byte I
+---------------+------------+----------+-------------+
I CELL I byte I byte I byte
+---------------+------------+----------+-------------+

11-16

86/09/03
REV: I

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT

12-1

86/09/03
REV: I

The run time environment described in this section is as
implemented today, with an eye toward conformance to the CYBER 180
SYSTEM INTERFACE STANDARD· (S2196).

12.1 REGISTER ASSIGNMENT

AO DYNAMIC SPACE POINTER
Al CURRENT STACK FRAME POINTER
A2 PREVIOUS SAVE AREA POINTER
A3 BINDING SECTION POINTER
A4 ARGUMENT LIST POINTER
A5 STAT!(LINK
AlO A14 - PARAMETERS PASSED TO INTERNAL
X9 X13 - PROCEDURES OR FUNCTIONS
X14 - LINE NUMBER FOR RANGE CHECKING
A15 - FUNCTION RESULT IF SIMPLE POINTER
Xl5 - FUNCTION RESULT IF SCALAR

- DSP
- CSF
- PSA
- BSP
- ALP
- SL

- LN

X14 & X15 - FUNCTION RESULT IF DOUBLE PRECISION

The registers AO, Al and A2 always contain the assigned values.
Registers A5, Al5, Xl4 and X15 may be assigned other values during
the execution of the procedure.

Dynamic Space Pointer indicates the top of the current stack
frame.

Current Stack Frame pointer indicates the start of the current
stack frame.

Previous Save Area pointer indicates the location of the save area
for the previous procedure. When the previous procedure issued a
call for the current procedure, all relevant information for the
previous procedure was stored in the save area. This save area
contains the contents of all hardware registers that are required for
the previous procedure to execute normally when a return is issued by
the current procedure.

One of the functions of the hardware call instruction is to save a
designated set of registers into a save area. The save area is built
on top of stack frame of the procedure that issued the call. The
stack frame of the called procedure is built above the save area of

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.1 REGISTER ASSIGNMENT

12-2

86/09/03
REV: I

the calling procedure (Note that a CYBIL-CI/II program executes in
one ring only). The save area contains the following information:

REGISTERS: P,A0,Al,A2
FRAME DESCRIPTION
USER MASK

REGISTERS: A3
REGISTERS: XO

AF
XF

<---------------------------------
Minimum
Save
Area Maximum

<-------------------- Save
Area

<---------------------------------
Binding Section Pointer indicates the binding section of the

currently executing procedure.

Argument List Pointer points to the parameter list passed by the
calling procedure. The number of parameters passed will be contained
in register XO, bits 40 •. 43.

Static Link Pointer indicates the stack frame: of the enclosing
procedu~e if the called procedure is an internal procedure of the
calling procedure and is meaningle~s otherwise.

For internal (non~XREFed or XDCLed) procedures and functions
references, the parameters that fit into an X register or an A
register are passed in registers X9 through X13 and AlO through Al4.
The A registers are used for passing pointers and the X registers are
used for the other basic types which fit into a register. The
register selection starts with AlO and X9 respectively and with a
left to right parameter selection from the actual parameter list. If
all 5 of the particular type of register are all ready in use,
passing other parameters, then the parameter, is included with the
normal parameter list entries.

CDC PRIVATE

12-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.2 STACK FRAME DEFINITION

12.2 STACK FRAME DEFINITION

The stack frame consists of two distinct sections. The
section contains all data whose size is known at compile time.
other section contains all adaptable structures whose size can
be determined at execution time •.

Previous Save Area

first
The

only

Al=CSF -> =================-============ <-------------------

AO=DSP ->

Reserved Condition Handler

Function Result Save Area
(If needed)

Display

Pointers to Adaptable
Value Parameters & Long
Fixed Value Parameters

Automatic Variables

Short Fixed Value Parameters

Long Fixed Value Parameters

Descriptors and Workspace

Parameter List Workspace

Register Overflow Area

c
u
R
R
E

Fixed N
T

Size
s

Part T
A
c
K

F
R
A
M
E

=-====·--====·=----------~=-=- <------------
Variable

Adaptable Value Parameters & Size
Long Fixed Value Parameters Part

(If there is no room on
the fixed size part.)

<-------------------

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.2.1 FIXED SIZE PART

12.2.1 FIXED SIZE PART

12-4

_86/09/03
REV: I

This section contains some data, enough information to provide
addressability to all other data accessible by the current procedure
plus an initialized 8 byte field which has been provided for
condition .handling plus a word to be used as a function result save
area when the function has a non-local exit.

a) The "display" consists of pointers which enable the procedure to
access variables that have been declared in all inclosing
procedures. The format of the "display" is as follows:

CSF -> z••==-===========-====·===•a••=====

Reserved for Condition Handling

Function Result Save Area
--------r-------------------------- <------------------

CSF of Current Level 0 Procedure

CSF of Current Level 1 Procedure

CSF of Current Level (n-2) Proc.

CSF of Current Level (n-1) Proc.

Argument List Pointer

Copied from the
Caller's Display

<------------------
Set up

by the Prolog
(only if necessary)
<------------------

The prolog will save the static link (if it was passed in register
A5) into the display if and only if the procedure is nested. The
prolog will also save the parameter list pointer (if it was passed in
register A4) into the display if and only if the procedure contains
at least one locally defined procedure.

The static links, current stack frame pointers for each currently
active procedure, enable the current procedure to access variables
from containing procedures.

Each display entry is a six byte pointer which is right justified

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT·
12.2.1 FIXED SIZE PART

12-5

86/09/03
REV: I

in its display word. The total size of the display for a particular
procedure is based on that procedures nesting level.

b) Automatic variables or value parameters may be declared such that
all bounds and size information is known at compile time. In
this case, this fixed amount of storage required for the variable
is allocated out of the fixed bound part of the automatic stack.

c) Adaptable parameters may be declared such that some bounds and
size information is not known at compile time. In this case we
must allocate a type descriptor for the type which contains the
result of the calculation of all variable bounds and a variable
descriptor which contains information to locate the base address
of the variable bound part of the automatic stack. These
descriptors are all allocated in the fixed bound part of the
automatic stacks. In addition, a workspace·may be. required in
the fixed size part to hold temporaries for runtime descriptor
calculations.

d) A fixed size area is used to hold the parameter lists for
procedure calls. If the current procedure calls other
procedures, then the parameter list must be allocated in its own
fixed part area. Each actual parameter is represented in the
parameter list as either a value or a pointer. If the parameter
is passed by value and its formal parameter length is less than
or equal to 8 bytes, then the parameter will be represented in
the list by its value in the least number of bytes required to
hold the value. All other parame~ers are represented by 6 byte
po~nters (plus descriptor if required).

e) The overflow workspace is used to hold the contents of hardware
registers which are preempted during execution. The size of this
can be determined at compile time.

12.2.2 VARIABLE SIZE PART

This area contains storage for all adaptable value parameters
whose bounds and size information is not determinable at compile
time. The descriptors for these variables are contained in the fixed
size part.

12.3 PARAMETER PASSAGE

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.3.1 REFERENCE PARAMETERS

12.3.1 REFERENCE PARAMETERS

12-6

86/09/03
REV: I

In the case of reference parameters a pointer to the actual data
is generated and the pointer is passed as the parameter. The
parameter would be on a word boundary and be left aligned.

12.3.2 VALUE PARAMETERS

If the parameter length is less than or equal to a word then a
copy of the actual parameter is made in the parameter list. The
parameter would be right aligned but on a word boundary.

In the case of "big" value parameters (i.e., larger than 1 word in
length) the parameter list contains a pointer (left aligned and on a
word boundary) to either the actual parameter or a copy of the actual
parameter.

The nominal circumstance is that a copy is made of the data ..
However, if one of the.following conditions exists, then the value
parameter is not copied to the callers stack and a pointer to the
data is put into the parameter list.

The following are the rules for Copying Large Value Parameters in
the Caller:

1) Large constants that are passed as value parameters are not
copied.

2) Parameters that will be copied in the callee are not copied.

3) Copies are not made of value parameters that are passed as value
parameters to another procedure.

4) Copies are not made of variables that are defined to be in memory
sections that have the READ attribute.

5) Large automatic variables that are passed as value parameters are
not copied UNLESS:

a) The automatic variable is passed by reference in any
procedure call within the scope of the defining procedure, OR

b) A pointer is generated to the automatic variable in an
assignment statement using the t or #LOC operators, or the t or
#LOC operators are used to pass the address of the automatic

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.3.2 VALUE PARAMETERS

variable in the procedure call statement, OR

12-7

86/09/03
REV: I

c) The automatic variable is being passed to a nested procedure
within the scope of the procedure which defined the automatic
variable, and the automatic variable is modified in a nested
procedure within the scope of the procedure that defined the
automatic variable, OR

d) The automatic variable is a pointer and the pointer is
dereferenced on the procedure call.

The rules for Prolog Copies of Large Value Parameters in the
Callee are:

Copy value parameters in the prolog of the callee if the called
procedure or a nested procedure generates a pointer to the value
parameter via the unary pointer operator (t) or the #LOC operator
AND:

1) The pointer is passed as a parameter, OR

2) The pointer is not an automatic variable of the procedure, OR

3) The pointer is assigned to another pointer, OR

4) A pointer to the pointer is generated in an assignment statement
using the t or #LOC operators, OR

5) A pointer to the pointer is passed in a procedure call using the
t or #LOC operators, OR

6) The pointer is dereferenced on·· the left side of an assignment
statement, OR

7) The pointer is dereferenced on a procedure call and the call is
by reference, OR

8) The value parameter is a sequence or a structure that contains a
sequence AND

a) The pointer is generated to the 'sequence AND
b) A data item pointer is generated into the sequence with a
NEXT statement AND
c) The data item pointer escapes (i.e. one of 1 - 7 above
occurs).

If the called procedure or a contained procedure generates a

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.3.2 VALUE PARAMETERS

12-8

86/09/03
REV: I

pointer to the value parameter and the value of that pointer escapes,
or what the pointer points at is altered, then the callee's prolog,
copies the parameter to the callee's stack frame. The prolog also
generates a pointer to the copied data and stores it onto the
callee's stack. The generation of the pointer to the parameter is
done because the caller may be executing in a different ring than the
callee.

12.3.3 INTERLANGUAGE CALLING

For any potentially interlanguage call in which a System format
actual parameter list is passed that contains only simple reference
parameters: The parameter list is immediately preceded by a flag word
whose value is the 64-bit integer zero. The flag word need not
precede any other System format actual parameter lists.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12-9

86/09/03
REV: I

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.4 BINDING SECTION DESCRIPTION

12.4 BINDING SECTION DESCRIPTION

Binding Section Segments are intended to facilitate software
linking of both code and data segments from one procedure to another.
It is created by the system linker. The Binding Section Segments are
readable, but not writeable in the user ring.

The binding section for each separately compiled module must
contain any addressing information required by the procedures within
the module.

The following information is required in the binding section:

i) Addresses of external (XREF and EXTERNAL) data - 1 word each.
ii) Base addresses of portions of other segments to which code or

data is allocated - 1 word each.
iii) Addresses of.external (XREF and XDCL) procedures and their

binding section addresses within the binding segment - 2 words
each~

iv) Addresses of any internal procedures which are assigned to
tPROCEDURE in an assignment statement, or which appear as actual
parameters - 1 word each.

Note that all constant offsets within the binding section, that
are encoded within the code or initialized data blocks of a module,
must be marked as such - this will enable a linker to reorder ·or
combine binding segments.

The Binding Section starts
occupies a full word. There are
entries:

on a word boundary and each entry
three types of Binding Section

1) DATA POINTERS. Each data pointer is a PVA which occupies the
rightmost 48 bits of the word entry.

2) INTERNAL PROCEDURE POINTERS. Each internal procedure pointer is
a 64 bit Code Base Pointer.

3) EXTERNAL PROCEDURE POINTERS. Each external procedure pointer
consists of two consecutive entries. The first entry is a 64 bit
Code Base Pointer. The second entry is a PVA (occupying the
rightmost 48 bits of the word entry) which is the Binding Section
Pointer for the external procedure.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.5 EXECUTION ENVIRONMENT

12.5 EXECUTION ENVIRONMENT

12-10

86/09/03
REV: I

The following segments are required in the execution environment
of a CYBIL-CI/II external procedure:

1) An extensible stack described by the hardware regi·sters: DSP=AO,
CSF•Al, PSA=A2.

2) Binding segment portion described by a base address
binding section of the linked and loaded processes ••.
passed as parameter in A3 to the procedure when invoked.

3) Zero or one code segment.

4) Zero or more data segment portions.

Notes:

in the
address

a) Addressability of all static data and code is provided by
addresses contained in binding secti"on·.

b) Addressability of all enclosing level automatic references is
provided by addresses contained in the "display" which is located
in the first few words of the automatic stack frame of the
current procedure.

c) Addressability of parameters is provided by the address of the
parameter list passed in A4 on any call.

12.5.1 VARIABLES

12.5.1.1 Variable Attributes

12.5.1.1.1 READ ATTRIBUTE

The READ attribute when associated with a variable, will be used
to control compiler checking access by the user to the variable. As
such, the space for the variable will be reserved in the static
working section which has read and write attributes. To include a
variable in read only memory, the section declaration facility can be
used.

12.5.1.1.2 #GATE ATTRIBUTE

If you have to ask what this feature
should not be using the facility as

is used
it is

for you
hardware

probably
and O.S.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.5.1.1.2 #GATE ATTRIBUTE

12-11

86/09/03
REV: I

dependent. The reader is referred to the NOS/VE documentation for
further information.

To summarize, the #GATE attribute allows a procedure to be
accessed by another procedure at a higher ring level.

12.5.1.2 Variable Allocation

Space for variables is allocated in the order in which they occur
in the input stream. No reordering is done. If a variable is not
referenced, no space is reserved.

The components of unpacked arrays and records are mapped to
computer memory in their "natural order" such that if an array or
record was placed in a sequence and the sequence reset to the array
or record, the following would be true:

o A NEXT of a pointer to the appropriate component type yields
a pointer to the first element ~f the array or field of the
record.

o Subsequent NEXTs of pointers of appropriate component types
yield pointers to the second, third, and so on, elements of
the array or fields of the record.

If an array or record placed in a sequence is retrieved from the
sequence component by component, the types of the data accessed must
match the types of the corresponding elements of the array or fields
of the record.

12.5.1.3 Variable Alignment

The ALIGNED feature of the language is implemented in the language
such that an attempt is made to honor the <offset> field first. If
the data allocation is all ready beyond the <offset> in the word then
the <base> is honored first and then the <offset>.

The implementation dependent value for the alignment base for the
Cl80 is eight (8).

12.5.2 STATEMENTS

This section describes what may be
implementations of certain CYBIL statements.

less than obvious

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.5.2.1 GASE Statement

12.5.2.1 CASE Statement

12-12

86/09/03
REV: I

There are 2 alternative code sequences generated for the CASE
statement, depending on the characteristics of the case selectors.

The normal code sequence generated for a CASE statement is via a
series of conditional branches. The branch implementation is chosen
if the number of case selectors is less than twenty, or, if the
difference between largest and smallest case selectors is greater
than 1024 (a NOS/VE page) or, if the difference between largest and
smallest case selector is greater than the number of selectors
specified to the power of three. If the number of seletors specified
is more than 7, the code sequence that is generated is in the form of
a binary search.

The other alternative is a code sequence using a jump table for
the CASE statement. This jump table actually resides as a contiguous
series of 2 byte entries· in the read only working storage section.
The code generated does a load from this table . and then do~s a
(BRREL) branch relative instruction to the approp;iate case selector.

12.5.2.2 STRINGREP

12.5.2.2.1 POINTER CONVERSIONS

The default radix for the conversion of a pointer into a string is
defined as implementation dependent. For the C180 the resultant
string will be the pointer represented in hexadecimal notation. Note
that a C180 pointer requires a field length of 15 characters.

12.5.2.3 Records

Per agreement with NOS/VE, when a record value whose size is less
than or equal to 64 bits is loaded, the entire record value must be
accessed with a single load instruction. In particular, a single
instruction must be generated even if one of the fields of the record
is a pointer value.

12.6 EXTERNAL REFERENCES

During the compilation process a hash is computed for each XDCL
and XREF'ed variable and procedure. The hash is based on an
accumulation of the data typing. In the case of procedures the
parameter list is included in the process. The loader then chec~s

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12-13

86/09/03
REV: I

· 12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.6 EXTERNAL REFERENCES

these hash values to assure that the data types for all XDCL's and
XREF's agree. If they do not agree an appropriate error message is
generated by the loader.

12.7 PROCEDURE REFERENCES

Registers Al, A3, A4 and AS are used to pass information used by a
procedure to locate its data:

a) External Procedure: Al
.A3

A4

<---> Current Stack Frame Pointer
<---> Binding Section Pointer
<---> Argument List Pointer

b) Internal Procedure: Al <---> Current Stack Frame Pointer
A3 <---> Binding Section Pointer
A4 <---> Argument List Pointer
AS - <---> Static Link

. 12.8 FUNCTION REFERENCES

A function is a procedure that returns a value, as such the
register conventions are identical to procedure references described
above. The function value is in registers or in memory depending on
the type of value being returned.

If the function value is a simple pointer, then the value is
returned as a PVA in Al5.

If the function value is a scalar of known length less than or
equal to 64 bits in length, it is returned right aligned in X15.
Fill (if any) is zero bits.

If the function value is
returned in registers Xl4 & Xl5.
bits of the value.

double precision then the value is
Xl5 holds the least significant 64

If the function value is not of a type described above then the
result is stored left justified as the first element of the parameter
list. The second element of the parameter list, in this case,
specifies the first actual parameter.

12.9 RUN TIME LIBRARY

The procedures described below are available on the C~80 via:

rt180

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

12.0 CYBIL-CI/II RUN TIME ENVIRONMENT
12.9 RUN TIME LIBRARY

ATTF $LOCAL.CYF$RUN_TIME_LIBRARY.

12-14

86/09/03
REV: I

The procedures described below are available on the C170 via:

ATTACH,CYBILIB/UN=LP3.

12.9.1 HEAP MANAGEMENT

,To be supplied.

12.9.2 I/O

12.9.2.1 Common CYBIL I/O

The I/O on NOS/VE can be provided by the Common CYBIL I/0
interfaces defined in the Reference Manual ARH6794

12.9.2.2 I/0 on the Cl80 Simulator

An elementary I/0 capability is provided for execution on the
Advanced Systems Simulator. This procedure will display a string
expression on OUTPUT.

PROCEDURE [XREF] PXIO (str: string(*));

Note: This capability is replaced by the Simulated NOS/VE I/O
Interface (DAP ARH2735).

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING

13-1

86/09/03
REV: I

The MC68000 data formats for each of the supported CYBIL data types
is described in the following sections.

The MC68000 supports five basic data types as follows:

o Bits
o BCD digits (4 bits)
o Bytes (8 bits)
o Words (16 bits)
o Long Words (32 bits)

CYBIL does not utilize BCD digits.

Memory addresses are byte addresses. The byte address for a word or
a long word must be an even number.

On the MC68000, integers are represented in two's complement form.

Many packed scalar types are bit aligned and are allocated the number
of bits necessary to hold the scalar. However, if the number of bits
necessary to hold the scalar exceeds 15, the scalar is byte aligned
and is allocated an integral number of bytes.

Packed aggregates, i.e., arrays, records, sets, and strings, are
always byte aligned and are allocated the number of bytes necessary
to hold the aggregate.

Many unpacked types are word aligned and are allocated the number of
bytes necessary to hold the type. If only one byte is needed, the
type is byte aligned.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.1 POINTERS

13.1 POINTERS

13-2

86/09/03
REV: I

A pointer consists of an address field of 4 bytes and, for certain
pointer types, a descriptor. The address field contains a 32-bit
address of the first byte of the object (data or procedure).

The address field for a nil data pointer is the following constant:

00000000 (16)

The address field for a nil procedure pointer is described in the
paragraph on procedure pointers.

With the exception of pointers to sequences, pointers to fixed size
data objects consist of the address field only.

A pointer to a sequence consists of the 4-byte address field followed
by 2 4-byte fields indicating the size of the sequence in bytes, and
the byte offset to the next available position in the sequence.

13.1.1 ADAPTABLE POINTERS

Adaptable pointers are identical to pointers to the corresponding
fixed type with the exception that the pointer consists of the
address field and a descriptor containing information such as the
size of the structure.

An adaptable string pointer consists of the 4-byte address field
followed by a 2-byte size field indicating the length of the string
in bytes.

An adaptable array pointer consists of the 4-byte address field
followed by 2 4-byte fields indicating the array size and the lower
bound. The value for the array size is in bytes when the array is
unpacked, and in bits when the array is packed.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.1.1 ADAPTAB.LE POINTERS

13-3

86/09/03
REV: I

An adaptable sequence pointer consists of the 4-byte address field
followed by 2 4-byte fields indicating the size of the sequence in
bytes, and the byte offset to the next available position in the
sequence.

An adaptable heap pointer consists of the 4-byte address field
followed by a 4-byte size field containing the size of the heap in
bytes.

An adaptable record pointer consists of the 4-byte address field
followed by one of the above descriptors depending on the adaptable
field of the record. Thus, if the adaptable field is a string, the
adaptable record pointer consists of a 4-byte address field followed
by a 2-byte size field indicatin~ the length of the string in bytes.

13.1.2 PROCEDURE POINTERS

A procedure pointer consists of the 4-byte address field followed by
a 4-byte field containing the static link.

The address field contains the address of the procedure code.

The static link contains the address of the stack frame of the
enclosing procedure if the pointer is to an enclosed procedure.

A l~vel 0 procedure does not require a static link.
nil data pointer is used.

Therefore, the

For a nil procedure pointer, the address field contains the addren
of a run time library procedure and the static link field contains a
nil data pointer. The run time library procedure handles the call as
an error.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.1.3 BOUND VARIANT RECORD POINTERS

13.1.3 BOUND VARIANT RECORD POINTERS

13-4

86/09/03
REV: I

A bound variant record pointer consists of the 4-byte address field
followed by a 4-byte size field, containing the size of the record in
bytes.

13.1.4 POINTER ALIGNMENT

All unpacked pointer types are word aligned.
types are byte aligned.

13.2 RELATIVE POINTERS

All packed pointer

A relative pointer is a 4 byte field which gives the relative address
of the object field from the start of the parent.

With the exception of relative pointers to sequences, relative
pointers to fixed size data objects consist of the relative address
field only. A relative pointer to a sequence consists of the 4-byte
relative address field followed by 2 4-byte fields indicating the
size of the sequence in bytes, and the next available position in the
sequence.

An unpacked relative pointer is word aligned.

A packed relative pointer is byte aligned.

The NIL relative pointer is the following constant:

NIL RELATIVE_ADDRESS :• OFFFFFFFF(l6).

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.2.1 ADAPTABLE RELATIVE POINTERS

13.2.1 ADAPTABLE RELATIVE POINTERS

13-5

86/09/03
REV: I

Adaptable relative pointers are identical to adaptable pointers with
the exception that first four bytes holds a relative address rather
than an address.

13.2.2 RELATIVE POINTERS TO BOUND VARIANT RECORDS

A bound variant record relative pointer consists of the 4-byte
relative address field followed by a 4-byte size field, containing
the size of the record in bytes.

13.3 INTEGERS

Integer types are allocated 32 bits.

An unpacked integer type is word aligned.

A packed integer type is byte aligned.

An integer variable is mapped as an unpacked integer type.

13.4 CHARACTERS

An unpacked character type is allocated a byte and is byte aligned.

A packed character type is allocated 8 bits and is bit aligned.

A character variable is mapped as an unpacked character type.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.5 ORDINALS

13.5 ORDINALS

13-6

86/09/03
REV: I

Ordinal types are mapped as the integer subrange O •• n-1, where n is
the number of elements in the ordinal type.

13.6 SUBRANGES

An unpacked integer subrange type is allocated a word or a long word
depending on the values of the lower and upper bounds. An unpacked
integer subrange type is word aligned.

A packed subrange typ~, a •• b, is bit aligned and occupies an integral
number of bits if the bit length is 15 or less. A packed subrange
type is byte aligned and occupies an integral number of bytes if th~
bit length is greater than 15. The bit length, L, is computed. as
follows:

if a>• 0 then L:•
if a< 0 then L:=

CEILING (LOG2(b+l))
1 +CEILING (LOG2(MAX(ABS(a),b+l)))

A subrange variable is mapped as an unpacked subrange type.

The maximum integer subrange is -80000000(16) •• 7FFFFFFF(16).

13.7 BOOLEANS

An unpacked boolean is allocated a byte and is byte aligned.

A packed boolean type is allocated 1 bit and is bit aligned.

A boolean variable is mapped as an unpacked boolean type.

The internal value for FALSE is zero. The internal value for TRUE is

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.7 BOOLEANS

one.

13.8 REALS

Real types are allocated 32 bits.

An unpacked real type is word aligned.

A packed real type is byte aligned.

A real variable is mapped as an unpacked real type.

13.9 LONGREALS

Longreal types are allocated 64 bits.

An unpacked longreal type is word aligned.

A packed longreal type is byte aligned.

13-7

86/09/03
REV: I

A longreal variable is mapped as an unpacked longreal type.

13.10 SETS

The number of contiguous bits required to represent a set is the
number of elements in the base type of the associated set type. The
maximum number of elements is 32768. The leftmost bit represents the
first element, the next bit represents the second element, etc. The
set is left justified in its allocated field.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VAR.IABLE MAPPING
13.10 SETS

13-8

86/09/03
REV: I

An unpacked set type is word aligned and is allocated the numbe.r of
bytes necessary to hold the set.

A packed set type is byte aligned and is allocated the number of
bytes necessary to hold the set.

A set variable is mapped as an unpacked set type.

13 .11 STRINGS

An unpacked string type is word aligned and is allocated the number
of bytes necessary to hold the string.

A packed string type is byte aligned and is allocated the number of
byte~ necessary to hold the string.

A string variable is mapped as an unpacked string type .•

13.12 ARRAYS

An unpacked array type is a contiguous list of unpacked instances of
its component type. An unpacked array is aligned on a word boundary
and occupies an integral number of bytes.

A packed array type is a contiguous list of packed instances of its
component type. A packed array is aligned on a byte boundary and
occupies an integral number of bytes.

An array variable is aligned on a word boundary unless the array fits
in a byte.

In general, array sizes are limited by storage availability.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.13 RECORDS

13.13 RECORDS

13-9

86/09/03
REV: I

An unpacked record type is a contiguous list of unpacked fields. It
is aligned on a word boundary and occupies an integral number of
bytes.

A packed record type is a contiguous list of packed fields. It is
aligned on a byte boundary and occupies an integral number of bytes.

A record variable is aligned on a word boundary unless the record
fits in a byte.

13.14 SEQUENCES

A sequence type consists of the data area required to contain the
span(s) requested by the user. A sequence type is always word
aligned, and occupies an integral number of words.

With the exception of strings and sets, data within a sequence is
mapped in the same manner as variables. For example, a NEXT
statement which specifies a pointer to integer causes allocation of 4
bytes within the sequence starting at the next even byte boundary. A
NEXT statement which specifies a pointer to a boolean causes
allocation of 1 byte within the sequence starting at the next byte
within the sequence.

A NEXT statement which specifies a pointer to a string or set causes
allocation of the number of bytes needed to hold the string or set
starting at the next byte within the sequence, regardless of whether
the address is even or odd.

13.15 HEAPS

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.15.1 SYSTEM HEAP

13.15.1 SYSTEM HEAP

13-10

86/09/03
REV: I

The System Heap consists of blocks of memory dynamically allocated
and freed via operating system requests.

13.15.2 USER HEAPS

A user heap consists of a block of memory already allocated, either
statically or dynamically. Run time routines provide for allocating
and freeing blocks within the block already allocated.

A user heap consists of a Heap Header and storage for Data Blocks and
Free Blocks.

A Data Block consists of a Qata Block Header followed by storage for
user data.

A Free Block consists of a Free Block Header followed by storage
which is available for use.

A common format is used for all 3 headers as follows:

31 23 0
+--+-----+---------------+
IBKI SIZE
+--+-----+---------------+
I FORWARD_FREE_LINK
+------------------------+

BACKWARD LINK
+------------------------+
I FORWARD_LINK
+------------------------+

The field, BK, indicates the block kind: free_block, data_block, or
heap_block.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.15.2 USER HEAPS

13-11

86/09/03
REV: I

The CYBIL description of the common header format is as follows:

BLOCK KIND TYPE= (FREE BLOCK, DATA BLOCK, HEAP BLOCK),
OFFSET_TYPE = -80000000(16) •• 7fffffff(l6), -

BLOCK HEADER = PACKED RECORD
BLOCK KIND: BLOCK KIND TYPE,
SIZE:-O •• OFFFFFF(l6), -
FORWARD_FREE_LINK,
BACKWARD_LINK,
FORWARD_LINK: OFFSET_TYPE,

RECEND;

For the Heap Header, the fields are as follows:

BLOCK KIND: HEAP BLOCK
SIZE:-0 -
FORWARD FREE LINK: Link to Free Block.

·BACKWARD LINK: 0
- -

FORWARD LINK: 0

For the Data Block Header, the fields are as follows:

BLOCK_KIND: DATA_BLOCK
SIZE: Size of block
FORWARD_FREE_LINK: Not used
BACKWARD_LINK: Link to preceeding block
FORWARD_LINK: Link to succeeding block

For the Free Block Header, the fields are as follows:

BLOCK KIND: FREE BLOCK
SIZE:- Size of Block
FORWARD_FREE_LINK: Link to succeeding Free B.lock.
BACKWARD_LINK: Link to preceeding block
FORWARD_LINK: Link to succeeding block

Initially, a user heap consists of a free block with all three links
uninitialized. Thus the header contains only the block kind and the
block size. When the first allocate request is made, this free block
is transformed into a heap block consisting of a heap header and a
free block. Then the allocate request is satisfied from the free
block.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.15.2 USER HEAPS

13-12

86/09/03
REV: I

Subsequent allocate and free requests cause the heap block to be
subdivided into several data blocks and free blocks.

Adjacent free blocks are always combined as part of FREE request
processing.

A RESET request causes the heap block to be changed back to a free
block. Again, only the block kind and block size are reset in the
header. The links are left unchanged.

The amount of storage allocated for a heap is the sum of the
following:

o 16 bytes for the Free Chain Header
o 16 times the repetition count for each span specified (in order

to provide for block headers)
o sum of the spans_ specified ·

13.16 CELLS

A cell type is allocated a byte and is always byte aligned.

CDC PRIVATE

13-13
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

13.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
13.17 SUMMARY FOR THE MC68000

13.17 SUMMARY FOR THE MC68000

+-----------+-----------------------+-------------------------+
UNPACKED PACKED

+-----------+-----------+-----------+-----------+-------------+
I TYPE I ALIGN 1·sizE I ALIGN I srzE
+-----------+-----------+-----------+-----------+-------------+

BOOLEAN byte byte bit bit
INTEGER word long byte long
SUBRANGE word word/long bit/byte bits/bytes
ORDINAL word word bit bits
CHARACTER byte byte bit bits
STRING word bytes byte bytes
REAL word long byte long
LONGREAL word longs byte longs
SET word bytes byte bytes
ARRAY word bytes byte bytes
RECORD word bytes byte bytes
POINTER word words byte words
REL PTR word. words byte words
CELL byte byte byte byte

+-----------+-----------+-----------+-----------+-------------+

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT

14.1 MEMORY

14-1

86/09/03
REV: I

With regard to memory, a CYBIL program has the following parts:

0 Code
0 Static Storage
0 Stack
0 Heap

14.1.l CODE

The code section contains the instructions of the program.

14.1.2 STATIC STORAGE

The lifetime of static variables is the life of the program
execution.

Static storage may contain the following kinds of sections:

o Read Only Sections
o Read Write Sections

14.1.3 STACK

The storage area for the stack is determined at load time. The stack
grows from high numbered locations to low.

The stack consists of 2 kinds of entries, stack frames and register
save areas. The stack consists of alternat.ing stack frames and

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0.CYBIL-CM/IM RUN TIME ENVIRONMENT
14.1.3 STACK

14-2

86/09/03
REV: I

register save areas. If there are no registers to save, the size of
a r~gister save ar~a is zero.

14.1.3.1 Stack Frame

The stack frame consists of the following parts:

o The Fixed Size Part contains all data whose size is known at
compile time.

o The Variable Size Part contains storage allocated using PUSH
statements.

o The Argument List Part contains the parameters in the call to
the procedure.

o The P-register Part contains the return address.

14.1.3.1.1 FIXED SIZE PART

The Fixed Size Part contains some of the data which the procedure may
access directly, and addressing information for other data which the
procedure may access. The Fixed Size Part contains the following:

o Dynamic Link
o Display
o Automatic Variables
o Register Overflow Area
o Workspace

The Dynamic Link is the address of the stack frame for the calling
procedure.

The Display consists of Current Stack Frame (CSF) pointers for all
enclosing procedures. These pointers enable the procedure to access
variables that have been declared in all enclosing procedures. The
format of the Display is as follows:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.1.3.1.1 FIXED SIZE PART

+-----------------------------------+
low I CSF of Current Level (n-1) Proc

+-----------------------------------+
I CSF of Current Level (n-2) Proc
+-----------------------------------+

+-----------------------------------+
I CSF of Current Level 1 Proc I
+-----------------------------------+

high I CSF of Current Level 0 Proc I
+-----------------------------------+

14-3

86/09/03
REV: I

Copied from
caller's Display

If a procedure is nested, its prolog copies the caller's Display to
its Display. If a nested procedure has enclosed procedures, the
nested procedure's prolog also saves the Static Link (SL) in its
Display.

A Displa~ entry is a 32-bit address of a stack frame.

The Register Overflow Area is used to hold the contents of hardware
registers which are preempted during execution. The size of this is
determined at compile time.

The Workspace area is used to hold data such as an intermediate
result for an expression with sets as operands. This data is PUSH'ed
onto the stack.

14.1.3.1.2 VARIABLE SIZE PART

The Variable Size Part contains storage allocated using PUSH
statements.

14.1.3.1.3 ARGUMENT LIST PART

The argument list contains the actual parameters in the call to a
procedure.

The caller pushes parameters onto the stack from right to left •

. CDC PRIVATE

14-4
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.1.3.1.4 P-REGISTER PART

14.1.3.1.4 P-REGISTER PART

The P-register Part contains the return address.

14.1.4 SYSTEM HEAP

The ALLOCATE statement has the following forms:

o ALLOCATE <allocation designator> IN <heap variable>;
o ALLOCATE <allocation designator>;

If the second form is used, allocation takes place out of the default
heap. This is done by making an operating system request to obtain
the memory dynamically to satisfy the ALLOCATE stat~ment.

The FREE statement has the following forms:

o FREE <pointer variable> IN <heap.variable>;
o FREE <pointer variable>;

If the second form is used, an operating system request is made to
release the memory dynamically to satisfy the FREE statement.

14.1.5 REGISTERS

A7 - DYNAMIC SPACE POINTER
A6 - CURRENT STACK FRAME POINTER
A4 - STATIC LINK

- DSP
- CSF
- SL

Registers DSP and CSF always contain the assigned values.
registers may be assigned other values during the execution of
procedure.

Other
the

The· Dynamic Space Pointer indicates the top of the current stack
frame. Register A7 has special hardware significance as the system
stack pointer.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.1.5.REGISTERS

14-5

86/09/03
REV: I

The Current Sta~k Frame pointer indicates the start of the current
stack frame.

The Static Link pointer indicates the stack frame of the enclosing
procedure if the called procedure is an internal procedure of the
calling procedure. The Static Link pointer is meaningless otherwise.

14.2 PARAMETER PASSAGE

14.2.1 REFERENCE PARAMETERS

For a reference parameter, a pointer to the data is passed as the
parameter.

14.2.2' VALUE PARAMETERS

For value para•eters, the parameter list contains either a copy of
the actual parameter or a pointer to the parameter depending on the
parameter type.

A pointer to a packed record or a packed array which begins at an odd
address is never placed in the parameter list. Instead, the packed
record or packed array is copied onto the stack starting at an even
address, and the address of the copy is placed in the parameter list.
Hence, the callee is guaranteed that the packed record or packed
array begins at an even address.

Value parameters appear in the parameter list as follows:

CDC PRIVATE

14-6
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

14.0 CYBIL-CM/IM RUN TI~ ENVIRONMENT
14.2.2 VALUE PARAMETERS

Copy or
Pointer

Parameter List
Entry Size

Pointer copy 2 words for fixed pointer (except sequence).
6 words for fixed ptr to sequence.
3 words for adaptable string pointer.
6 words for adaptable array pointer.
6 words for adaptable sequence pointer.
4 words for adaptable heap pointer.
3-6 words for adaptable record pointer.

Integer copy 2 words

Character copy 1 byte. The character is in the upper 8 bits
of the word with lower bits unused.

Ordinal copy 1 word

Integer copy 1 or 2 words
Subrange

Boolean copy 1 byte. The boolean value is in the upper 8
bits of the word with lower bits unused.

Real copy 2 words

Longreal copy 4 words

Set pointer 2 words

String pointer 2 words for fixed string.
3 words for adaptable string.

Array pointer 2 words for fixed array.
6 words for adaptable array.

Record pointer 2 words for fixed record.
3-6 words for adaptable record.

Cell copy 1 word. The cell is in the upper 8 bits of the
word with lower bits unused.

Sequence pointer 6 words for fixed sequence.
6 words for adaptable sequence.

Heap pointer 4 words

CDC PRIVATE

\

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.3 VARIABLES

14.3 VARIABLES

14.3.1 VARIABLE ATTRIBUTES

14.3.1.1 Read Attribute

14-7

86/09/03
REV: I

The READ attribute, when associated with a variable, causes compile
time checking of access to the variable. No provision for execution
time checking is made.

14.3.1.2 #Gate Attributes

The #GATE attribute is carried forward into the obj~ct text.

14.3.2 VARIABLE ALLOCATION

With the exception of byte size_ variables, space for variables is
allocated in the order in which they occur in the input stream. No
reordering is done other than allocating space in the stack from high
numbered locations to low. For byte size variables, however, space
may be allocated from gaps in space already allocated.

If a variable is not referenced, no space is reserved.

14.3.3 VARIABLE ALIGNMENT

A subset of the ALIGNED feature of the language is implemented. . The
subset provides for guaranteeing addressability only. Any offset or
base specification is ignored.

The implementation dependent value for the alignment base for the
MC68000 is two (2).

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.4 STATEMENTS

14.4 STATEMENTS

14.4.1 CASE STATEMENT

14-8

86/09/03
REV: I

There are 2 alternative code sequences generated for the CASE
statement, depending on the characteristics of the case selectors.

The jump table generated for the CASE statement actually resides as a
2 byte entry in a table which resides in the read only working
storage section. The code generated does a load from this table and
then does a (JMP) branch instruction to the appropriate case
selector.

The other alternative is a code sequence generated via a series of
conditional branches. Branch implementation is chosen ·if the number
of case selector.s is less than three, or, if the amount of space
required for a jump table exceeds the amount of space required for
branch instructions. · If the number of entries is more than 8, the
code sequence that is generated is in the form of a binary search.

14.4.2 STRINGREP

14.4.2.1 Pointer Conversions

The default radix for the conversion of a pointer into a string is
defined as implementation dependent. For the MC68000 the resultant
string will be the pointer represented in hexadecimal notation.

14.5 EXTERNAL REFERENCES

During the compilation process a hash is computed for each XDCL and
XREF variable and procedure. The hash is based on an accumulation of
data typing. In the case of procedures and functions the parameter
list is included in the .process. A loader may check these hash
values to assure that the data types for all XDCL and XREF items
agree. Agreement between data types must be exact. Even names used
to define data types must be identical. For example, the following

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.5 EXTERNAL REFERENCES

seemingly identical definitions produce different hashes:

MODULE one;
TYPE

p type= 0 •. 65535;
PROCEDURE [XREF] two (p: p_type);

MODEND one;

MODULE two;
PROCEDURE [XDCL] two (p: 0 •. 65535);
PROCEND two;

MODEND two;

14.6 PROCEDURE REFERENCES

14-9

86/09/03
REV: I

The following registers are used to pass information on a procedure
call:

a) External Procedure: DSP - Dynamic Space Pointer
CSF - Current Stack Frame Pointer

b) Internal Procedure: DSP - Dynamic Space Pointer

14.7 FUNCTION REFERENCE

CSF - Current Stack Frame Pointer
SL - Static Link

A function is a procedure that returns a value. As such, the
register conventions are identical to those for procedure references.
The function value is returned in a register or in memory depending
on the type of value being returned.

The function value is returned right aligned with sign extended or
zero filler bits on the left as appropriate in 0-register RV (D7) if
the function value is a simple pointer or a scalar.

For a longreal, the function value is returned in registers 06 and
D7.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.7 FUNCTION REFERENCE

14-10

86/09/03
REV: I

If the function value is not of a type described above, the result is
stored left justified as the first element of the parameter list.
The second element of the parameter list, in this case, specifies the
first actual parameter. For example, this may occur if a function
returns a pointer to a non-fixed type such as an adaptable array.
The pointer does not fit in a register, and therefore the parameter
list is used.

14.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

In the code sequences, symbols will be used to designate registers as
follows:

A7 - DYNAMIC SPACE POINTER - DSP
A6 - CURRENT STACK FRAME POINTER-- CSF
A4 - STATIC LINK - SL
D7 RETURNED VALUE RV

14.8.1 PROCEDURE CALL

The following illustrate instruction sequences for procedure calls:

External Procedure without Parameters

MOVEM.L
JSR
MOVEM.L

reglist,-(DSP)
external procedure
(DSP)+,r;glist

Save regs as needed
Call Procedure
Restore regs as needed

Internal Procedure and Static Link (SL)

MOVEM.L
MOVEA.L
BSR
MOVEM.L

reglist,-(DSP)
CSF,SL
internal proc
(DSP)+,r;glist

Save regs as neede~
Static Link
Call Procedure
Restore regs as needed

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.8.1 PROCEDURE CALL

Pointer to Procedure

MOVEM.L
MOVEM.L
JSR
MOVEM.L

reglist,-(DSP)
proc ptr(base),AO/SL
(AO)-
(DSP)+,reglist

Save regs as needed
Proc Addr & Static Link
Call Procedure
Restore regs as needed

Setup Argument List on Procedure Call

internal_proc(A,B,C,D)

MOVEM.L
MOVE.B
MOVE.W
MOVE.L
MOVE.W
MOVE.L
BSR
LEA
MOVEM.L

reglist,-(DSP)
A(CSF) ,-(DSP)
B(CSF),-(DSP)
C (CSF) , - (DSP)
D+4 (CSF) , - (DSP)
D(CSF),-(DSP)
internal proc
plist size(A7),(A7)
(DSP) +, regfis t

14.9 PROLOG

CYBIL statement

Save regs as needed
1-byte parameter
1-word parameter
2-word parameter
3-word parameter

Call Procedure
Pop parameters
Restore regs as needed

14-11

86/09/03
REV: I

The basic instruction sequence for the prolog is as follows:

pro log:
LINK CSF ,//-frame_size Form Dynamic Link & Update DSP

If the frame size is greater than 15 bits, the following instruction
sequence is ~sed instead of the LINK instruction:

LINK
SUBA.L

CSF,#-32766 Form Dynamic Link
#frame_size-32766,DSP Update DSP

If the display must be copied, the prolog is as follows:

CDC PR1VATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.9 PROLOG

pro log:
LINK CSF ,1/-frame_size Dynamic Link & Update DSP

14-12

86/09/03
REV: I

LEA
LEA
MOVE.W

display(SL),AO
display(CSF),Al
//lex_level-1,DO

Address to copy display from
Address to copy display to
Number of entries to copy - 1

copy display:
MOVE.L -(AO),-(Al)
DBF 00,copy_display

MOVE.L SL, -(Al) Add Static Link to display

If the number of display entries to be copied is small, a loop will
not be used.

14.10 EPILOG

The basic instruction sequence for the epilog is as follows:

epilog:
UNLK CSF

RTS

14.11 RUN TIME LIBRARY

DSP :• CSF
DSP :• DSP + 4
CSF := (DSP)
Return

The run time library consists of a set of modules containing object
code which generated code may reference. With the exception of the
arithmetic routines, run time library routines use normal calling
conventions.

The run time library contains the following modules:

o CYM ABORT - Contains procedure CYP ABORT for aborting the
program.

o CYM_ALLOCATE - Contains procedure CYP_ALLOCATE for allocating a

mapm68k

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

14.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
14.11 RUN TIME LIBRARY

block in a user heap.

14-13

86/09/03
REV: I

o CYM FREE - Contains procedure CYP FREE for freeing a block in a
user heap.

o CYM NIL ERROR - Contains procedure CYP_NIL to process calls to
a NIL pointer to procedure, and contains procedure CYP_ERROR to
process CYBIL run time detected errors.

o CYM STRINGREP Contains procedure CYP STRINGREP for the
STRINGREP built-in procedure.

o CYM_MPY_4_BYTES_BY_4_BYTES - Contains procedure CYP_MPY_4_BY_4
for integer multiplication.

o CYM DIV 4 BYTES BY 4 BYTES - Contains procedure CYP_DIV_4_BY_4
for-int;g;r divisi~n~

o CYM_MOD_4_BYTES_BY_4_BYTES - Contains procedure
• for integer remainder.

CYP MOD 4 BY 4 - - - -

In addition to the above, the compiler generates calls to the
following procedures for system heap management:

o CYP SYS ALLOC - Procedure to allocate a block in the system
heap.

o CYP SYS FREE - Procedure to free a block in the system heap.

In addition to the above, there may be other compiler-related
modules. Also, the run time library may contain other miscellaneous
utility modules, which are not compiler-related.

14.12 HEAP MANAGEMENT

The system heap is managed by making calls to the operating sys~em to
dynamically allocate and free memory.

User heaps are managed using run time routines. These run time
routines provide for allocating and freeing blocks of storage within
a storage area, along with combining adjacent free blocks.

mapm68k

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

15.0 CYBIL-CU/IU TYPE AND VARIABLE MAPPING

15.0 CYBIL-CU/IU TYPE AND VARIABLE MAPPING

15-1

86/09/03
REV: I

The CYBIL-CU/IU type and variable mappings are the same as those for
CYBIL-CM/IM.

ma pun ix

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

16.0 CYBIL-CU/IU RUN TIME ENVIRONMENT

16.0 CYBIL-CU/IU RUN TIME ENVIRONMENT

16-1

86/09/03
REV: I

The CYBIL CU/IU run time environment is the same as that for
CYBIL-CM/IM with the following exceptions:

o A function returns its value in register DO instead of 07.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING

17-1

86/09/03
REV: I

The MC68010/Apollo data formats for each of the supported CYBIL data
types is described· in the following sections. The data formats were,
where appropriate, selected to conform to the existing definition for
Apollo Pascal.

The MC68010/Apollo supports five basic data types as follows:

o Bits
o BCD digits (4 bits)
o Bytes (8 bits)
o Words (16 bits)
o Long Words (32 bits)

CYBIL does not utilize BCD digits.

Memory addresses are byte addresses. The byte address for a word or
a long word must be an even number.

On the Apollo MC68010, integers are represented in two's complement
form.

Certain packed scalar types are bit aligned and are allocated the
number of bits necessary to hold the scalar. However, if the scalar
would cross two word boundaries if allocated from the current bit
position, it will first be word aligned but still bit sized.

Packed sets follow the alignment rules of packed scalars. That is,
if the set does not cross more than one word boundary when allocated
from the current bit position, this position will be used.
Otherwise, it will be word aligned.

Packed aggregates, i.e., arrays, records, and strings, are always
word aligned and are allocated the number of bytes necessary to hold
the aggregate.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING

17-2

86/09/03
REV: I

Many unpacked types are word aligned and are allocated the number of
words necessary to hold the type. However, types BOOLEAN and CHAR
are byte aligned and one byte long.

17.1 POINTERS

A pointer consists of an address field of 4 bytes and, for certain
pointer types, a descriptor. The address field contains a 32-bit
address of the first byte of the object (data or procedure).

The address field for a nil data pointer is the following constant:

00000000 (16)

The address field for a.nil procedure pointer is described in the
paragraph on procedure pointers.

With the exception of pointers to sequences, pointers to fixed size
data objects consist of the address field only.

A pointer to a sequence consists of the 4-byte address field followed
by 2 4-byte fields indicating the size of the sequence in bytes, and
the byte offset to the next available position in the sequence.

17.1.1 ADAPTABLE POINTERS

Adaptable pointers are identical to pointers to the corresponding
fixed type with the exception that the pointer consists of the
address field and a descriptor containing information such as the
size of the structure.

An adaptable string pointer consists of the 4-byte address field
followed by a 2-byte size field indicating the length of the string
in bytes.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.1.1 ADAPTABLE POINTERS

17-3

86/09/03
REV: I

An adaptable array pointer consists of the 4-byte address field
followed by 2 4-byte fields indicating the array size and the lower
bound. The value for the array size is in bytes when the array is
unpacked, and in bits when the array is packed.

An adaptable sequence pointer consists of the 4-byte address field
followed by 2 4-byte fields indicating the size of the sequence in
bytes, and the byte offset to the next available position in the
sequence.

An adaptable heap pointer consists of the 4-byte address field
followed by· a 4-byte size field containing the size of the heap in
bytes.

An adaptable record pointer consists of the 4-byte address field
followed by one of the above descriptors depending on the adaptable
field of the ~ecord. Thus, if the adaptable ·field is a string, the
adaptable record pointer consists of a 4-byte address ffeld followed
by a 2-byte size field indicating the length of the string in bytes.

17.1.2 PROCEDURE POINTERS

A procedure pointer consists of the 4-byte address field followed by
a 4-byte field containing the static link.

The address field contains the address of the procedure code.

The static link contains the address of the stack frame of the
enclosing procedure if the pointer is to an enclosed procedure.

A level 0 procedure does not require a static link. Therefore, the
nil data pointer is used.

For a nil procedure pointer, the address field contains the address
of a run time library procedure and the static link field contains a
nil data pointer. The run time library procedure handles the call as
an error.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.1.3 BOUND VARIANT RECORD POINTERS

17.1.3 BOUND VARIANT RECORD POINTERS

17-4

86/09/03
REV: I

A bound variant record pointer consists of the 4-byte address field
followed by a 4-byte size field, containing the size of the record in
bytes.

17.1.4 POINTER ALIGNMENT

All unpacked pointer types are word aligned.
types are word aligned.

17.2 RELATIVE POINTERS

All packed pointer

A ·relative pointer is a 4 byte field which gives the relative address
of the object field from the start of the parent.

With the exception of relative pointers to sequences, relative
pointers to fixed size data objects consist of the relative address
field only. A relative pointer to a sequence consists of the 4-byte
relative address field followed by 2 4-byte fields indicating the
size of the sequence in bytes, and the next available position in the
sequence.

An unpacked relative pointer is word aligned.

A packed relative pointer is word aligned.

The NIL relative pointer is the following constant:

NIL: RELATIVE_ADDRESS := 0FFFFFFFF(16).

17.2.1 ADAPTABLE RELATIVE POINTERS

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.2.1 ADAPTABLE RELATIVE POINTERS

17-5

86/09/03
REV: I

Adaptable relative pointers are identical to adaptable pointers with
the exception that first four bytes holds a relative address rather
than an address.

17.2.2 RELATIVE POINTERS TO BOUND VARIANT RECORDS

A bound variant record relative pointer consists of the 4-byte
relative address field followed by a 4-byte size field, containing
the size of the record in bytes.

17.3 INTEGERS

Integer types are allocated 32 bits.

An unpacked integer type is word aligned.

A packed integer type is word aligned.

An integer variable is mapped-as an unpacked integer type.

17.4 CHARACTERS

An unpacked character type is allocated a byte and is byte aligned.

A packed character type is allocated a byte and is byte aligned.

A character variable is mapped as an unpacked character type.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.5 ORDINALS

17 .5 ORDINALS

17-6

86/09/03
REV: I

Ordinal types are mapped as the integer subrange 0 •• n-1, where n is
the number of elements in the ordinal type.

17.6 SUBRANGES

An unpacked integer subrange type will be mapped into· a word or a
long word depending on the range.

A packed subrange type, a •. b, is bit aligned and occupies an integral
number of bits if the datum does not cross more than one word
boundary.

A packed subrange type is
number of bits if the
boundaries.

word aligned
datum woulcl.

The bit length, L, is computed as follows:

CEILING (LOG2(b+l))

and occupies an
cross otherwise

if a>• 0 then L:=
if a< 0 then L:= 1 +CEILING (LOG2(MAX(ABS(a),b+l)))

A subrange variable is mapped as an unpacked subrange type.

integral
two word

The maximum integer subrange is -7FFFFFFF(16) .. 7FFFFFFF(16).

17.7 BOOLEANS

An unpacked boolean is allocated a byte and is byte aligned.

A packed boolean type is allocated 1 bit and is bit aligned.

A boolean variable is mapped as an unpacked boolean type.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA T-YPE AND VARIABLE MAPPING
17.7 BOOLEANS

17-7

86/09/03
REV: I

The internal value for FALSE is 0(16). The internal value for TRUE
is OFF (16) •

17.8 REALS

Real types are allocated 32 bits.

An unpacked real type is word aligned.

A packed real type is word aligned.

A real variable is mapped as an unpacked real type.

17.9 LONGREALS

Longreal types are allocated 64 bits.

An unpacked longreal type is word aligned.

A packed longreal type is word aligned.

A longreal variable is mapped as an unpacked longreal type.

17.10 SETS

The number of contiguous bits required to represent a set is the
number of elements in the base type of the associated set type. The
maximum number of elements is 32,768 which must fall in the range of
0 •• 32767. The rightmost bit represents the first element, the
next bit represents . the second element, etc. -The set is right
justified in its allocated field.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.10 SETS

17-8

86/09/03
REV: I

An unpacked set type is word aligned. Its allocation size depends on
the low ordinal in the set type:

If the low ordinal is zero, then the set is allocated the
number of words to hold it.
If the low ordinal is greater than zero, then the compiler
allocates filler bits for zero thru the low ordinal minus one.

If the packed set type has less than thirty two elements and would
not cross two word boundaries, it is bit aligned and allocated the
number of bits needed to hold it.

If the packed set type has less than thirty two elements but would
cross two word boundaries if allocation started at the current bit,
it is word aligned and allocated the minimum number of bits ne.eded to
hold it.

If the packed set type has thirty two or more elements,, it is aligned
and sized as if unpacked.

17.11 STRINGS

An unpacked string type is word aligned and is allocated the number
of bytes necessary to hold the string.

A packed string type is byte aligned and is allocated the number of
bytes necessary to hold the string.

A string variable is mapped as an unpacked string type.

17.12 ARRAYS

An unpacked array type is a contiguous list of unpacked instances of
its component type.

An unpacked array is aligned on a word boundary and occupies an

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.12 ARRAYS

integral number of words.

17-9

86/09/03
REV: I

A packed array type is a contiguous list of packed instances of its
component type. A packed array is aligned on a word boundary and
occupies an integral number of words.

An array variable is always aligned on a word boundary.

Note that APOLLO PASCAL does not support packed arrays (except an
array of CHAR which is equivalent to a CYBIL fixed string) and
therefore they should not be used when interfacing with the APOLLO
system.

17.13 RECORDS

An unpacked record type is a contiguous list of unpacked fields. It
is aligned on a word boundary and occupies an integral number of
words.

A packed record type is a contiguous list of packed fields. It is
aligned on a word boundary and occupies an integral number of words.

A record variable is always aligned on a word boundary.

Record fields of types boolean, char, subrange of char, and array of
char are byte aligned. The rest are word aligned (unpacked case).

17~14 SEQUENCES

A sequence type consists of the data area required to contain the
span(s) requested by the user. A sequence type is always word
aligned, and occupies an integral number of words.

With the exception of strings, data within a sequence is mapped in

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.14 SEQUENCES

17-10

86/09/03
REV: I

the same manner as variables. For example, a NEXT statement which
specifies a pointer to integer causes allocation of 4 bytes within
the sequence starting at the next even byte boundary. A NEXT
statement which specifies a pointer to a boolean causes allocation of
1 byte within the sequence starting at the next byte within the
sequence.

A NEXT statement which specifies a pointer to a string causes
allocation of the number of bytes needed to hold the string starting
at the next byte within the sequence, regardless of whether the
address is even or odd.

17.15 HEAPS

17.15.1 SYSTEM HEAP

The System Heap consists of blocks of memory dynamically allocated
and freed via operating system requests.

17.15.2 USER HEAPS

A user heap consists of a block of memory already allocated, either
statically or dynamically. Run time routines provide for allocating
and freeing blocks within the block already allocated.

A user heap consists of a Heap Header and storage for Data Blocks and
Free Blocks.

A Data Block consists of a Data Block Header followed by storage for
user data.

A Free Block consists of a Free Block Header followed by storage
which is available for use.

A common format is used for all 3 headers as follows:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.15.2 USER HEAPS

31 23 0
+--+-----+---------------+
jBKjFILL I SIZE
+--+-----+---------------+

FORWARD FREE LINK - -+------------------------+
I BACKWARD LINK
+------------------------+
I FORWARD LINK
+-----~------------------+

17-11

86/09/03
REV: I

The field, BK, indicates the block kind: free_block, data_block, or
heap_block.

The CYBIL description of the common header format is as follows:

BLOCK KIND TYPE= (FREE BLOCK, DATA BLOCK, HEAP BLOCK),
OFFSET_TYPE = -80000000(16) •. 7fffffff(16), -

BLOCK_HEADER = PACKED RECORD
BLOCK KIND: BLOCK KIND TYPE,
FILL:-0 •• 3F(16), - -
SIZE: O •• OFFFFFF(l6),
FORWARD_FREE_LINK,
BACKWARD_LINK,
FORWARD_LINK: OFFSET_TYPE,

RECEND;

For the Heap Header, the fields are as follows:

BLOCK_KIND: HEAP_BLOCK
FILL: 0
SIZE: 0
FORWARD_FREE_LINK: Link to Free Block.
BACKWARD_LINK: 0
FORWARD_LINK: 0

For the Data Block Header, the fields are as follows:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.15.2 USER HEAPS

BLOCK KIND: DATA BLOCK
FILL:- 0
SIZE: Size of block
FORWARD FREE LINK: Not used - -BACKWARD LINK: Link to preceeding block
FORWARD_LINK: Link to succeeding block

For the Free Block Header, the fields are as follows:

BLOCK_KIND: FREE BLOCK
FILL: 0
SIZE: Size of Block
FORWARD_FREE_LINK: Link to succeeding Free Block.
BACKWARD_LINK: Link to preceeding block
FORWARD LINK: Link to succeeding block

17-12

86/09/03
REV: I

Initially, a user heap consists of a free block with all three links
uninitialized. Thus the header contains only the ~lock kind and the
block size. When the first allocate request is made, this free block
is transformed into a heap block consisting of a heap header and a
free block. Then the allocate request is satisfied from the free
block.

Subsequent allocate and free requests cause the heap block to be
subdivided into several data blocks and free blocks.

Adjacent free blocks are always combined as part of FREE request
processing.

A RESET request causes the heap block to be changed back to a free
block. Again, only the block kind and block size are reset in the
header. The links are left unchanged.

The amount of storage allocated for a heap is the sum of the
following:

o 16 bytes for the Free Chain Header
o 16 times the repetition count for each span specified (in order

to provide for block headers)
o sum of the spans specified

CDC PRIVATE

17-13
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

17.0 CYBIL-CA/AA TYPE AND VARIABLE MAPPING
17.16 CELLS

17.16 CELLS

A cell type is allocated a byte and is always byte aligned.

17.17 SUMMARY FOR THE APOLLO

+-----------+-----------------------+-------------------------+
UNPACKED PACKED

+-----------+-----------+-----------+-----------+-------------+
I TYPE I ALIGN I SIZE I ALIGN I SIZE
+-----------+-----------+-----------+-----------+-------------+

BOOLEAN byte byte bit bit
INTEGER word long word long
SUBRANGE word word/long bit/byte bits/bytes
ORDINAL word word bit bits
CHARACTER cyte byte. byte byte
STRING word bytes byte bytes
REAL word long word long
LONGREAL word longs word longs
SET word bytes bit/byte bits/bytes
ARRAY word bytes word bytes
RECORD word bytes word bytes
POINTER word words word words
REL PTR word words byte words
CELL byte byte byte byte

+-----------+-----------+-----------+-----------+-------------+

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT

18.1 MEMORY

18-1

86/09/03
REV: I

With regard to memory, a CYBIL program has the following parts:

o Code
o Static Storage
o Stack
o Heap

18.1.1 CODE

The code section contains the instructions of the program.

18.1.2 STATIC STORAGE

The lifetime of static variables is the life of the program
execution.

Static storage may contain the following kinds of sections:

o Read Only Sections
o Read Write Sections

18.1.3 STACK

The storage area for the stack is determined at load time. The stack
grows from high numbered locations to low.

The stack consists of 2 kinds of entries, stack frames and register
save areas. The stack consists of alternating stack frames and

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.1.3 STACK

18-2

86/09/03
REV: I

register save areas. If there are no registers to save, the size of
a register save area is zero.

18.1.3.1 Stack Frame

The stack frame consists of the following parts:

o The Fixed Size Part contains all data whose size is known at
compile time.

o The Variable Size Part contains storage allocated using PUSH
statements.

o The Argument List Part contains the parameters in the call to
the procedure.

o The ?-register Part contains the return address.

18.1.3.1.1 FIXED SIZE PART

The Fixed Size Part contains some of the data which the procedure may.
access directly, and addressing information for other data which the
procedure may access. The Fixed Size Part contains the following:

o Dynamic Link
o Display
o Automatic Variables
o Register Overflow Area
o Workspace

The Dynamic Link is the address of the stack frame for the calling
procedure.

The Display consists of Current Stack Frame (CSF) pointers for all
enclosing procedures. These pointers enable the procedure to access
variables that have been declared in all enclosing procedures. The
format of the Display is as follows:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.1.3.1.1 FIXED .SIZE PART

+-----------------------------------+
low I CSF of Current Level (n-1) Proc

+-----------------------------------+
I CSF of Current Level (n-2) Proc
+-----------------------------------+

+-----------------------------------+
I CSF of Current Level 1 Proc
+-----------------------------------+

high I CSF of Current Level 0 Proc
+-----------------------------------+

18-3

86/09/03
REV: I

Copied from
caller's Display

If a procedure is nested, its prolog copies the caller's Display to
its Display. If a nested procedure has enclosed procedures, the
nested procedure's prolog also saves the Static Link (SL) in its
Display.

A Di.splay entry i's a 32-bi t address of a stack frame.

The Register Overflow Area is used to hold the contents of hardware
registers which are preempted during execution. The size of this is
determined at compile time.

The Workspace area is used to hold data such as an intermediate
result for an expression with sets as operands. This data is PUSH'ed
onto the stack.

18.1.3.1.2 VARIABLE SIZE PART

The Variable Size Part contains storage allocated using PUSH
statements.

18.1.3.1.3 ARGUMENT LIST PART

The argument list contains the actual parameters in the call to a
procedure.

The caller pushes parameters onto the stack from right to left.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.1.3,1.4 P-REGISTER PART

18.1.3.1.4 P-REGISTER PART

The P-register Part contains the return address.

18.1.4 SYSTEM HEAP

The ALLOCATE statement has the following forms:

I8-4

86/09/03
REV: I

o ALLOCATE <allocation designator> IN <heap variable>;
o ALLOCATE <allocation designator>;

If the second form is used, allocation takes place out of the default
heap. This is done by making an operating system request to obtain
the memory dynamically to satisfy the ALLOCATE statement.

The FREE statement has the following forms:

o FREE <pointer variable> IN <heap variable>;
o FREE <pointer variable>;

If the second form is used, an operating system request is made to
release the memory dynamically to satisfy the FREE statement.

18.1.5 REGISTERS

AO - POINTS TO THE ENTRY CONTROL BLOCK (ECB) FOR AN XDCL PROCEDURE
A7 - DYNAMIC SPACE POINTER - DSP
A6 - CURRENT STACK FRAME POINTER - CSF
A4 - STATIC LINK - SL

Registers DSP and CSF always contain the assigned values. Other
registers may be assigned other values during the execution of the
procedur~.

The Dynamic Space Pointer indicates the top of the current stack
frame. Register A7 has special hardware significance as the system

CDC PRIVATE

· CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.1.5 REGISTERS

stack pointer.

18-5

86/09/03
REV: I

The Current Stack Frame pointer indicates the start of the current
stack frame.

The Static Link pointer indicates the stack frame of the enclosing
procedure if the called procedure is an internal procedure of the
calling procedure. The Static Link pointer is meaningless otherwise.

18.2 PARAMETER PASSAGE

18.2.1 REFERENCE PARAMETERS

For a reference parameter, a pointer to the data ~s passed as the
parameter.

18.2.2 VALUE PARAMETERS

For value parameters, the parameter list contains either a copy of
the actual parameter or a pointer to the parameter depending on the
parameter type.

18.2.2.1 Value Parameters to Internal Procedures

Value parameters are passed to internal procedures (not XDCLed) as
follows:

CDC PRIVATE

18-6
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.2.2.1 Value Parameters to Internal Procedures

Pointer

Integer

Copy or
Pointer

copy

copy

Parameter List
Entry Size

2 words for fixed pointer (except sequence).
6 words for fixed ptr to sequence.
3 words for adaptable string pointer.
6 words for adaptable array pointer.
6 words for adaptable sequence pointer.
4 words for adaptable heap pointer.
3-6 words for adaptable, record pointer.

2 words

Character copy 1 word. The character is in the upper 8 bits
of the word with lower bits unused.

Ordinal copy 1 word

Integer copy 1 or 2 words
Subrange

Boolean. copy 1 word. The boolean value is in the upper 8
bits of the word with lower bits unused.

Real copy 2 words

Longreal copy 4 words

Set copy 1 or 2 words (if the SET size is 4 bytes or
less)

String

Array

Record

Cell

pointer 2 words (if the SET size is greater than 4
bytes)

pointer 2 words for fixed string.
3 words for adaptable string.

pointer 2 words for fixed array.
6 words for adaptable array.

copy 1 or 2 words (if the RECORD size is 4 bytes or
less)

pointer 2 words (if the RECORD size is greater than 4
bytes)
3-6 words for adaptable record.

copy 1 word. The cell is in the upper 8 bits of the
word with lower bits unused.

CDC PRIVATE

CYBER .IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.2.2.1 Value Parameters to Internal Procedures

Sequence pointer 6 words for fixed sequence.

18-7

86/09/03
REV: I

6 words for adaptable sequence.

Heap pointer 4 words

18.2.2.2 Value Parameters to XDCLed Procedures

If the callee procedure has been XDCLed, the value parameter is
copied onto the run time stack. In addition, a pointer to the value
is also generated and is passed to the callee.

Be aware that all value parameters are copied onto the stack before a
pointer to each of them is generated as the parameter to be
interpreted by the callee.

The size of the pointer to the copy on the stack is represented by
the Entry Size column in the table below. The size of the fixed
pointer is always 2 words.

Given a procedure cali: abc (x,y);

where x and y are value parameters then

Stack layout at time
of call to abc

Registers to be
restored after
abc completes

------> copy of x

---> copy of y

ptr to copy of x

ptr to copy of y

Register
Save Area

Copies of Value
Parameters

Parameter List

Refer to the CYBIL-CA/AA Type & Variable Mapping section for a
description of the sizes of the copies of the value parameters & the
implicitly generated pointers to the value parameters.

CDC PRIVATE

18-8
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.2.2.2 Value Parameters to XDCLed Procedures

Value parameters to XDCLed procedures appear in the par.ameter 1 is t as
follows:

Pointer

Integer

Character

Ordinal

Integer
Subrange

B-eolean

Real

Longreal

Set

String

Array

Record

Copy or
Pointer

pointer

copy

pointer

pointer

pointer

pointer

pointer

pointer

pointer

pointer

pointer

pointer

pointer

Parameter List
Entry Size

2 words for fixed pointer (except sequence).

6 words for fixed ptr to sequence.
3 words for adaptable string pointer.
6 words for adaptable array pointer.
6 words for adaptable sequence pointer.
4 words for adaptable heap pointer.
3-6 words for adaptable record pointer.

2 words

2 words. The character value parameter is in
the upper 8 bits of ·the word with lower bits
unused.

2 words

2 words

2 words.
upper 8
unused.

The boolean value parameter is in the
bits of the word with lower bits

2 words

4 words

2 words

2 words for fixed string.
3 words for adaptable string.

2 words for fixed array.
6 words for adaptable array.

2 words
3-6 words for adaptable record.

Cell pointer 1 word. The cell is in the upper 8 bits of the
word with lower bits unused.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.2.2.2 Value Parameters to XDCLed Procedures

Sequence pointer 6 words for fixed sequence.
6 words for·adaptable sequence.

Heap pointer 4 words

18.3 VARIABLES

18.3.1 VARIABLE ATTRIBUTES

18.3.1.1 Read Attribute

18-9

86/09/03
REV: I

The READ attribute, when associated with a variable, causes compile
time checking of access to the variable. No provision for execution
time checking is made.

18.3.1.~ #GATE Attributes

Quoting the #GATE attribute causes the internal value parameter code
sequence to be generated. This attribute is used within the CYBIL
runtime library to interface with calls generated by the compiler.
The #GATE attribute should not normally be used.

18.3.2 VARIABLE ALLOCATION

With the exception of byte size variables, space for variables is
allocated in the order in which they occur in the input stream. No
reordering is done other than allocating space i~ the stack from high
numbered locations to low.

If a variable is not referenced, no space is reserved.

18.3.3 VARIABLE ALIGNMENT

A subset of the ALIGNED feature of the language is implemented. The
subset provides for guaranteeing addressability only. Any offset or
base specification is ignored.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.4 STATEMENTS

18.4 STATEMENTS

18.4.1 CASE STATEMENT

18-10

86/09/03
REV: I

There are 2 alternative code sequences generated for the CASE
statement, depending on the characteristics of the case selectors.

The jump table generated for the CASE statement actually resides as a
2 byte entry in a table which resides in the read only working
storage section. The code generated does a load from this table and
then does a (JMP) branch instruction to the appropriate case
selector.

The other alternative is a code sequence generated via a series of
conditional branches. Branch implementation is chosen if the number
of case selectors is less than three, or, if the amount of space
required for a jump table exceeds the amount of space required for
branch instructions. If the number of entries is more than 8, the
code sequence that is generated is in the form of a binary search.

18.4.2 STRINGREP

18.4.2.1 Pointer Conversions

The default radix for the conversion of a pointer into a string is
defined as implementation dependent. For the Apollo the resultant
string will be the pointer represented in hexadecimal notation.

18.5 EXTERNAL REFERENCES

During the compilation process a hash ~s computed for each XDCL. and
XREF variable and procedure. The hash is based on an accumulation of
data typing. In the case of procedures and functions the parameter
list is included in the process. A loader may check these hash
values to assure that the data types for all XDCL and XREF items
agree. Agreement between data types must be exact. Even names used
to define data types must be identical. For example, the following
seemingly identical definitions produce different hashes:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.5 EXTERNAL REFERENCES

MODULE one;
TYPE

p type= 0 .. 65535;
PROCEDURE [XREF] two (p: p_type);

MODEND one;

MODULE two;
PROCEDURE [XDCL] two (p: 0 •• 65535);
PROCEND two;

MODEND two;

18.6 PROCEDURE REFERENCES

18-11

86/09/03
REV: I

The following registers are used to pass information on a procedure
call:

a) External Procedure: DSP - Dynamic Space Pointer
CSF - Current Stack Frame Pointer

b) Internal Procedure: DSP - Dynamic Space Pointer·

18.7 FUNCTION REFERENCE

CSF - Current Stack Frame Pointer
SL - Static Link

A function is a procedure that returns a value. As such, the
register conventions are identical to those for procedure references.
The function value is returned in a register or in memory depending
on the type of value being returned.

The function value is returned right aligned with sign extended or
zero filler bits on the left as appropriate in register AO if the
function value is a pointer or in register DO if it is a scalar.

If the function value is not of a type described above, the result is
stored left justified as the first element of the parameter list.
The second element of the parameter list, in this case, specifies the
first actual parameter. For example, this may occur.if a function
returns a pointer to a non-fixed type such as an adaptable array.
The pointer does not fit in a register, and therefore the parameter
list is used.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

18.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

18-12

86/09/03
REV: I

In the code sequences, symbols will be used to designate registers as
follows:

A7 - DYNAMIC SPACE POINTER - DSP
A6 - CURRENT STACK FRAME POINTER - CSF
A4 - STATIC LINK - SL
AO,DO - RETURNED VALUE (which register depends on value type)

18.8.1 PROCEDURE CALL

The following illustrate instruction sequences for procedure calls:

External Procedure (or XDCL Internal Procedures) without Param·eters

MOVEM.L
LEA.L
JSR
MOVEM.L

reglist,-(DSP)
proc ptr(base),AO
(aO)-
(DSP)+,reglist

Save regs as needed

Call Procedure
Restore regs as needed

Internal Procedure (not XDCLed) and Static Link (SL)

MOVEM.L
MOVEA.L
BSR
MOVEM.L

reglist,-(DSP)
CSF,SL
internal proc
(DSP)+,r;glist

Pointer to Procedure

MOVEM.L
MOVEM.L
JSR
MOVEM.L

reglist,-(DSP)
proc ptr(base),AO/SL
(AO)-
(DSP)+,reglist

Save regs as needed
Static Link
Call Procedure
Restore regs as needed

Save regs as needed
Proc Addr & Static Link
Call Procedure
Restore regs as needed

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18-13

86/09/03
REV: I

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.8.1 PROCEDURE CALL

Setup Argument List on Internal Procedure Call

internal_proc(A,B,C,D)

MOVEM.L
MOVE.B
MOVE.W
MOVE.L
MOVE.W
MOVE.L
BSR
LEA
MOVEM.L

reglist,-(DSP)
A(CSF),-(DSP)
B(CSF),-(DSP)
C (CSF) , - (DSP)
D+4(CSF),-(DSP)
D(CSF),-(DSP)
internal_proc
plist size(A7), (A7)
(DSP) +,reg! is t

CYBIL statement

Save regs as needed
1-byte parameter
1-word ·parameter
2-word parameter
3-word parameter

Call Procedure
Pop parameters
Restore regs as needed

Setup Argument List on an External Procedure Call

external_proc(A,B,C)

MOVEM.L
MOVE.B
MOVE.L
LEA.L
MOVE.L
LEA.L
MOVE.L
LEA.L
MOVE.L
LEA.L
JSR
LEA
MOVEM.L

reg! is t, -(DSP).
A(CSF),-(DSP)
C (CSF) , - (DSP)
6(DSP),A0
AO,-(DSP)
B (CSF) ,AO
AO,-(DSP)
OC(DSP),AO
AO,-(DSP)
proc ptr(base),AO
(AO)-
plist size(A7),(A7)
(DSP)+,reglist

18.9 PROLOG

Where A and C are value parameters
and B is a.reference parameter

Save registers as· needed
Make copy of A
Make copy of C
Address of copy of A
Parameter 1 defined
Address of copy of B
Parameter 2 defined
Address of copy of C
Parameter 3 defined
Load procedure ECB address
Call procedure
Pop parameters and copies of A & C
Restore registers

The basic instruction sequence for the prolog is as follows:

CDC PRIVATE

18-14
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.9 PROLOG

pro log:
. LINK CSF,/1-frame_size Form Dyn Link & Update DSP

If the frame_size is greater than 15 bits, the following instruction
sequence is used instead of the LINK instruction:

LINK
SUBA.L

CSF,/1-32766 Form Dynamic Link
/lframe_size-32766,DSP Update DSP

If the display must be copied, the prolog is as follows:

prolog:
LINK

LEA
LEA
MOVE.W

CSF ,f/-frame_size

display(SL) ,AO
display(CSF),Al
f/lex_level-1,DO

copy display:
MOVE.L -(AQ),-(Al)
DBF 00,copy_display

MOVE.L SL,-(Al)

Dynamic Link & Update DSP

Address to copy display from
Address to copy display to
Number of entries to copy - 1

Add Static Link to display

If the number of display.entries to be copied is small, a loop will
not be used.

18.10 EPILOG

The basic instruction sequence for the epilog is as follows:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.10 EPILOG

epilog:
UNLK CSF DSP

DSP
CSF

·= .
:•
:=

CSF
DSP + 4
(DSP)

18-15

86/09/03
REV: I

ADD.W
MOVE.L
RTS

/18,A7
(A7) +,AS

POP the zero and the ECB address
Restore A5
Return

18.11 RUN TIME LIBRARY

The run time library consists of a set of modules containing object
code which generated code may reference. With the exception of the
arithmetic routines, run time library routines use normal calling
conventions.

The run time library contains the following modules:

o CYM ABORT
program.

Contains procedure CYP ABORT for a~orting the·

o CYM ALLOCATE - Contains procedure CYP ALLOCATE for allocating a
block in a user heap.

o CYM_FREE - Contains procedure CYP FREE for freeing a block in a
user heap.

o CYM NIL ERROR - Contains procedure CYP NIL to process calls to
a NIL pointer to procedure, and contai~s procedure CYP_ERROR to
process CYBIL run time detected errors.

o CYM STRINGREP Contains procedure CYP STRINGREP for the
STRINGREP built-in procedure.

0 CYM MPY 4 BYTES BY 4 BYTES - Contains procedure CYP MPY 4 BY 4
-int;g;r multipli~ation. - - - -

for

0 CYM_DIV_4_BYTES_BY_4_BYTES - Contains procedure CYP DIV 4 BY 4 - - - -for integer division.

0 CYM MOD 4 BYTES BY 4 BYTES - Contains procedure CYP MOD 4 BY 4
-int;g;r remiinde;. - - - -for

In addition to the above, the compiler generates calls to the
following procedures for system heap management:

mapaplo

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

18.0 CYBIL-CA/AA RUN TIME ENVIRONMENT
18.11 RUN TIME LIBRARY

18-16

86/09/03
REV: I

o CYP_SYS_ALLOC - Procedure to allocate a block in the system
heap.

o CYP_SYS_FREE - Procedure to free a block in the system heap.

In addition to the above, there may be other compiler-related
modules. Also, the run time library may contain other miscellaneous
utility modules, which are not compiler-related.

18.12 HEAP MANAGEMENT

The system heap is managed by making calls to the operating system to
dynamically allocate and free memory.

User heaps are managed using run time routines. These run time
routines provide for allocating and freeing blocks of storage within
a storage area, along with combining adjacent free blocks.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING

19-1

86/09/03
REV: I

The Pcode data formats for each of the supported CYBIL data types is
described in the following sections. These data mappings are
compatible with the UCSD version IV.0 format.

The Pcode interpreter supports three basic data types as follows:

o Bits
o Bytes (8 bits)
o Words (16 bits)

Integers are represented in two's complement form.

Quoting any combination of the CYBIL alignment attribute will result
in word alignment.

19.1 POINTERS

A pointer consists of an address field of 2 bytes and, for certain
pointer types, a descriptor. The address field contains a 16-bit
address of the first byte of the object (data or procedure).

The value of the nil data pointer is constructed via the LDCN pcode
instruction whose normal value is:

0001 (16)

The address field for a nil procedure pointer is described in the
paragraph on procedure pointers.

With the exception of pointers to string and pointers to sequences,
pointers to fixed size data objects consist of the address field
only.

A pointer to string consists of an even, 2-byte address field
followed by a 2-byte field indicating the starting byte offset of the
possible substring. A value of zero indicates the first character
position of the string and the bytes are numbered consecutively.

A pointer to a sequence consists of the 2-byte address field followed
by ·2 2-byte fields indicating the size of the sequence in words, and
the word offset to the next available position in the sequence.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.1.1 ADAPTABLE POINTERS

19.1.1 ADAPTABLE POINTERS

19-2

86/09/03
REV: I

Adaptable pointers are identical to pointers to the corresponding
fixed type with the exception that the pointer consists of the
address field and a descriptor containing information such as the
size of the structure.

An adaptable string pointer consists of the 2-byte address field,
followed by a 2-byte position indicator, followed by a 2-byte size
field indicating the length of the string in bytes.

An adaptable array pointer consists of the 2-byte address field
followed by 3 2-byte fields indicating the array size, the lower
bound and the upper bound. The value for the array size is in words
independent of packing.

An adaptable sequence pointer consists of the 2-byte address field
followed by 2 2-byte fields indicating the size of the sequence in
words, and the word offset t~ the next available position in the
s~quence.

An adaptable heap pointer consists of the 2-byte address field
followed by a 2-byte size field containing the size of the heap in
words.

An adaptable record pointer consists of the 2-byte address f keld
followed by one of the above descriptors aepending on the adaptable
field of the record. Thus, if the adaptable field is a string, the
adaptable record pointer consists of a 2-byte address field, followed
by a 2-byte position indicator, followed by a 2-byte size field·
indicating the length of the string in bytes.

19.1.2 PROCEDURE POINTERS

A procedure pointer consists of
procedure number, followed by a
followed by a 2-byte static link.

a 2-byte field
2-byte pointer

A level 0 procedure does not require a static link.
nil data pointer is used.

containing the
to E_rec field,

Therefore, the

For a nil procedure pointer, the address field contains the address
of a run time library procedure which handles the call as an error,
and the static link field contains a nil data pointer.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.1.3 BOUND VARIANT RECORD POINTERS

19.1.3 BOUND VARIANT RECORD POINTERS

19-3

86/09/03
REV: I

A bound variant record pointer consists of the 2-byte address field
followed by a 2-byte size field, containing the size of the record in
words.

19.1.4 POINTER ALIGNMENT

All pointer types are word aligned.

19.2 INTEGERS

Integer types are allocated 16 bits.

An unpacked integer type is word aligned.

A packed integer type is word aligned.

An integer variable is mapped as an unpacked integer type.

19.3 CHARACTERS

An unpacked character type is allocated 16 bits and is right
justified on a word boundary.

A packed character type is allocated 8 bits and is bit aligned.

A character variable is mapped as an unpacked character type.

19.4 ORDINALS

Ordinal types are mapped as the integer subrange O •• n-1, where n is
the number of elements in the ordinal type.

19.5 SUBRANGES

19.5.1 WITHIN INTEGER DOMAIN

An unpacked integer subrange type is allocated a word (16 bits) and
is word aligned.

A packed subrange type, a •• b, with a negative is allocated and

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.5.1 WITHIN INTEGER DOMAIN

19-4

86/09/03
REV: I

aligned as an unpacked integer subrange type. If a is non-negative
then it is bit aligned and it has its allocated bit length, L,
computed as follows:

L:= CEILING (LOG2(b+l))

A subrange variable is mapped as an unpacked subrange type.

19.5.2 OUTSIDE INTEGER DOMAIN

Subranges of integer type can encompass the range -32768 32767.
For these large subranges, the implementation for packed will be the
same as that for unpacked. This requires a minimum of 3 words, the
first reserved for sign, the remaining to contain four digits per
word, four bits per digit.

For the subrange a .. b, let
n := number_of_digits (max (abs (a), abs (b)))

then the number of data words required, would be:
n I/words ·

5 •• 8 3 ..
9 •• 12 4

13 •• 16 5

The internal representation of long subranges is as binary integers.

19.6 BOOLEANS

An unpacked boolean type is allocated 16 bits right justified on a
word boundary.

A packed boolean type is allocated 1 bit and is bit aligned.

A boolean variable is mapped as an unpacked boolean type._

The internal value used for FALSE is zero and for TRUE is one.

19.7 REALS

Real types are allocated 32 bits.

An unpacked real type is word aligned.

A packed real type is word aligned.

A real variable is mapped as an unpacked real type.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.7 REALS

19-5

86/09/03
REV: I

See the UCSD P-system Internal Architecture Guide, page 14, for the
internal representation of real numbers.

19.8 LONGREALS

Treated the same as reals.

19.9 SETS

The number of contiguous bits required to represent a set is the
number of elements in the base type of the associated set type. The
rightmost bit represents the first element, the next bit represents
the second element, etc.

An unpacked set type is allocated a field of enough words to contain
the set elements. The set field is word aligned.

Example
TYPE

Sl =SET OF 150 •• 156;
VAR

A: 51;

Set A resides as follows:

15 0
+---+

n+ol 11s611s511s411s311s2115111so1
+---+

A packed set type is mapped as an unpacked set type.

A set variable is mapped as an unpacked set type.

The maximum size allowed for a set is 4079 elements.

19.10 STRINGS

A string type is allocated the same number of bytes as there are
characters in the string.

An unpacked string type is word aligned and occupies an integral
number of words. Any filler byte is zero.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.10 STRINGS

19-6

86/09/03
REV: I.

A packed string type is word aligned and occupies an integral number
of words.

A string variable is mapped as an unpacked string type.

The maximum length of a string is limited to 32767 characters.

In many respects a string is represented as a packed array of
character. String constants reside in the constant pool with the odd
character positions occupying the lower portion of each word. The
even character positions occupy the upper portion of each word.

19.11 ARRAYS

An unpacked array type is a contiguous list of alig~ed instances of
its component type. The array is aligned on a word boundary and
occupies an integral number of words.

A packed array type is a contiguous list of unaligned instances of
its component type with the restriction that the component type can
not cross word boundaries. The array is aligned on its first element
and occupies as many bits as needed.

An array variable is mapped as an unpacked array type.

In general, array sizes are limited by storage availability.

19.12 RECORDS

An unpacked record type is a contiguous list of aligned fields. It
is aligned on a word boundary, and occupies an integral number of
words.

A packed record type is a contiguous list of unaligned fields with
the restriction that a component field can not cross word boundaries.
It is aligned on its first field, and occupies as many bits as
needed.

A record variable is mapped as an unpacked record type.

19.13 SEQUENCES

A sequence type consists of the data area required to contain the
span(s) requested by the user. A sequence type is always word

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

. CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.13 SEQUENCES

aligned, and occupies an integral number of words.

19 .14 HEAPS

19.14.1 SYSTEM HEAP

The system heap is as described in the UCSD manuals.

19.14.2 USER HEAPS

19-7

86/09/03
REV: I

A user heap consists of a Free Chain Header and storage for Allocated
Blocks and Free Blocks.

An Allocated Block consists of an Allocated Block Header followed by
storage for user data.

A Free Block consists of a Free Block Header followed by storage
which is available for use.

A common format is used for all 3 headers as follows:

15 0
+--+---------------------+
Is I SIZE
+--+---------------------+
I FORWARD FREE LINK - -+------------------------+
I BACKWARD LINK
+------------------------+
I FORWARD LINK
+------------------------+

The field, S, indicates the status of the block, AVAILABLE or USED.

The CYBIL description of the common header format is as follows:

BLOCK HEADER a PACKED RECORD
BLOCK STATUS: (AVAILABLE,USED),
SIZE:-0 •• 7FFF(16),
FORWARD_FREE_LINK: O .• OFFFF(l6),
BACKWARD LINK: 0 .. OFFFF(16),
FORWARD LINK: O •• OFFFF(16),

RECEND;

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.14.2 USER HEAPS

For the Free Chain Header, the fields are as follows:

BLOCK_STATUS: Set to AVAILABLE
SIZE: Size of heap
FORWARD FREE LINK: Link to Free Block.
BACKWARD LINK: 0
FORWARD LINK: 0

For the Allocated Block Header, the fields are as follows:

BLOCK_STATUS: . Set to USED.
SIZE: Size of block
FORWARD FREE LINK: Not used - -BACKWARD_LINK: Link to preceeding block
FORWARD_LINK: Link to succeeding block

For the Free Block Header, the fields are as follows:

BLOCK_STATUS: Set to AVAILABLE
SIZE: Size of Block
FORWARD_FREE_LINK: Link to succeeding Free Block.
BACKWARD_LINK: Link to preceeding block
FORWARD_LINK: Link to succeeding block

19-8

86/09/03
REV: I

Initially, a user heap consists of the Free Chain Header and a Free
Block. Typically, an ALLOCATE request is made causing the Free Block
to be ·divided into a Free Block and an Allocat_ed Block.

Adjacent free blocks are always combined as part of FREE request
processing.

The amount of storage allocated for a user heap is the sum of the
following:

o 8 bytes for the Free Chain Header
o 8 times the repetition count for each span specified (in order

to provide for block headers)
o sum of the spans specified

19 .15 CELLS

A cell type is allocated 16 bits and is always word aligned.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

19.0 CYBIL-CP TYPE AND VARIABLE MAPPING
19.16 SUMMARY FOR THE PCODE GENERATOR

19.16 SUMMARY FOR THE PCODE GENERATOR

+-----------+---------------------+--------------------+
UNPACKED PACKED

+-----------+-----------+---------+-----------+--------+
I TYPE I ALIGN I SIZE I ALIGN I SIZE
+-----------+-----------+---------+-----------+--------+

BOOLEAN word word bit bit
INTEGER word word word word
SUBRANGE word word bit bits

word long
ORDINAL word word bit bits
CHARACTER word word bit byte
STRING word words word bytes
REAL word 2 words word 2 words
SET word words word words
ARRAY word words word words
RECORD word word-s word words
POINTER word words word words
CELL word word word word

+-----------+-----------+---------+-----------+--------+

19-9

86/09/03
REV: I

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.0 CYBIL-CP RUN TIME ENVIRONMENT

20.0 CYBIL-CP RUN TIME ENVIRONMENT

20-1

86/09/03
REV: I

The instructions generated by the CYBIL Pcode generator are per the
UCSD version IV.0 P-system.

20.1 MEMORY

With regard to memory, a CYBIL program has the following parts:

o Code and Literals
o Static Storage
o Stack Heap Area

20.1.1 CODE AND LITERALS

Program counter relative addressing is used to refer to code and
literals except for the following:

o Pointers to procedures
o Calls to external procedures

For the above, full 16-bit addresses are used.

20.1.2 STATIC.STORAGE

The lifetime of static variables is the life of the program
execution.

20.1.3 STACK HEAP AREA

The Stack Heap area is a storage area for the stack and the system
heap. The stack grows from high numbered locations to low. The
system heap grows from low numbered locations to high. If a
collision occurs, the program aborts.

20.1.3.1 STACK FRAMES

The stack frame consists of four parts ordered from high addresses to
low:

Function return value (optional)

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.1.3.1 STACK FRAMES

Argument list (optional)

20-2

86/09/03
REV: I

Fixed sized part containing all automatic and implied, local
variables and fixed local copies of non-scalar, value
parameters (optional)

Mark Stack Control Word (MSCW) provided and manipulated by the
Pcode interpreter during call and RPU Pcode interpretations.

The first two parts are pushed onto the operand stack as the call is
being formed. The next part and the MSCW is placed onto the stack by
the interpreter as part of the call interpretation. The RPU (return)
instruction causes the discarding of all but the optional return·
value.

20.1.3.1.1 FUNCTION RETURN VALUE

A scalar size operand normally. For functions that provide a.pointer
value requiring a descriptor (adaptable, bound variant), the Pcode
calling/returning seq~ence may have as many as three words of
returning value. Fo~·functions returning large integer subranges,
the value may require ·four to iix words.

20.1.3.2 ARGUMENT LIST

Each actual parameter is represented in the parameter list as a value
or a pointer. The pointer may include descriptor information for -
adaptable and bound variant formal parameters.

Adaptable parameters may be declared such that not all bounds and
size information is known at compile time. In this case the compiler
allocates a type descriptor which contains the result of the
calculation of all variable bounds, and a variable descriptor which
contains information to locate the base address of the variable bound
part of the automatic stack. These descriptors are in the argument
list of the stack frame.

20.1.3.2.1 FIXED SIZE PART

The Fixed
directly.

Size Part contains data which the procedure may access
The Fixed Size Part con~ains the following:

Automatic Variables

Value Parameters

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.1.3.2.1 FIXED SIZE PART

Workspace

20-3

86/09/03
REV: I

Automatic variables and value parameters may be declared such that
all bounds and size information is known at compile time. In this
case, the required storage is allocated from the Fixed Size Part ·of
the stack frame.

20.1.3.2.2 MARK STACK CONTROL WORD

Five full words providing:

MS STAT
parent.

pointer to the activation record of the lexical

MSDYN - pointer to the activation record of the caller.

MSIPC
caller.

seg-relative byte pointer to point of call in the

MSENV - E_Rec pointer of the caller.

MSPROC - procedure number of caller.

20.1.4 HEAP

Memory. management for the system heap and user heaps is done via
calls to standard run time routines.

20.1.4.1 System Heap

To allocate space on the system heap a procedure call of the form:

SYSALLOC (pointer_to_type, number_of_words)

is generated. To de-allocate space on the system heap a call of the
form:

VARDISPOSE (pointer_to_type, number_of_words)

is generated. The value of NIL is assigned to the variable
pointer_to_type.

20.1.4.2 User Heap

To allocate space on the user heap a call of the form:

CDC PRIVATE·

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.1.4.2 User Heap

CYP$ALLOCATE_IN_USER_HEAP(pointer_to_type,number_of_words,
pointer_to_user_heap)

20-4

86/09/03
REV: I

is generated. The result of the call is a pointer that has the
address of the first location allocated in the user heap.

To de-allocate space on a user heap a call of the form:

CYP$FREE_IN_USER_HEAP(pointer_to_type,pointer_to_user_heap)

is generated. The value of NIL is assigned to the reference
parameter pointer_to_type.

To reset a user heap a call of the form:

CYP$RESET_USER_HEAP(pointer_to_user_heap: tHEAP(*))

is generated.

20.2 PARAMETER PASSAGE

20.2.1 REFERENCE PARAMETERS

For a_reference parameter, a pointer to the data is passed as the
parameter.

20.2.2 VALUE PARAMETERS

There are two styles of passing value parameters. Scalar types and
sets are passed by copying the value of the variable onto the stack.

Other structured types are passed by pushing the address of the
structure. In the prolog of the called procedure, the structure is
copied into the local data area.

In order to preserve the string pointer structure (pointer/offset),
string constants, when appearing as the actual parameter will be
copied into the caller's local storage as part of the call.

Adaptable value parameters are passed as
parameters. This is done because there is no
stack space.

if they were reference
mechanism to "PUSH"

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.3 VARIABLES

20.3 VARIABLES

20.3.1 VARIABLE ATTRIBUTES

20.3.1.1 Variables in Sections

Using the section attribute on a
variable other than to assure
variables.

20.3.1.2 Read Attribute

20-5

86/09/03
REV: I

variable has no effect
its residence with the

on the
static

The READ attribute, when associated with a variable, causes compile
time checking of access to the variable. No provision for execution
time checking is made.

20.3.1.3 #GATE Attributes

The #GATE attribute is ignored.

20.3.2 VARIABLE ALLOCATION

Space for variables is allocated in the order in which they occur in
the input stream. No reordering is done other than allocating space
in the stack from high numbered locations to low.

If a variable is not referenced, no space is reserved.

20.3.3 VARIABLE ALIGNMENT

A subset of the ALIGNED feature of the language is implemented. The
subset provides for guaranteeing addressabili__~~ Any offset or
base specification is ignored. ,~/

20.4 STATEMENTS

20.4.1 STRINGREP

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.4.1.1 Pointer Conversion

20.4.1.1 Pointer Conversion

20-6

86/09/03
REV: I

The default radix for the conversion of a pointer into a string is
defined as implementation dependent. For Pcode the resultant string
will be the pointer represented in hexadecimal notation.

20.5 EXTERNAL REFERENCES

During the compilation process a hash is computed for each XDCL and
XREF variable and procedure. The hash is based on an accumulation of
data typing. In the case of procedures the parameter list is
included in the process. A loader may check these hash values to
assure that the data types for all XDCL and XREF items agree.

20.6 EXTERNAL NAMES

The external/entry point names are limited by the UCSD system to be
the first 8 characters.

20.7 PROCEDURE REFERENCE

20.8 FUNCTION REFERENCE

A function is a procedure that returns a value. The function value
is returned via the RPU pcode instruction.

20.9 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

20.9.1 PROCEDURE CALL

A procedure/function call can be separated into several subsequences.
If the called procedure is a function, then the initial Pcode
sequence causes room for the function return value, e.g.,

SLDC 0

would be appropriate for an integer function call.

Because of the high to low allocation mechanism of UCSD stack frames,
the procedure body of the called function will reference the function
return value in the last allocated space of its stack frame.

Should the called procedure have parameters, then the parameter

CDC PRIVATE

20-7
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.9.1 PROCEDURE CALL

values or addresses are pushed onto the stack in the normal left to
right order. If the formal parameter is of reference type, then the
address of the actual parameter is pushed. Otherwise, if the
parameter is of scalar type then its value is pushed, else the
address is pushed and the procedure's prolog will make a local copy.

In some cases above where "the address is pushed" is used, if the
formal parameter requires a descriptor (adaptables and bound variant
records), then the descriptio~ is pushed along with the address.

Within the called procedure, because of the high to low nature of the
stack frame, the first formal parameter will be allocated the highest
offset in the frame (just lower than the optional function return
value). This repeats with the last parameter having the lowest
offset of all parameters.

Summarizing, a procedures stack frame is allocated beginning at word
offset 1 in the following order:

.
Automatic variables and local copies for value, non-scalar
parameters.

Parameter value and address/descriptors in a right to left
order.

Function return value.

The procedure call Pcode instruction is selected from a set of
several depending upon the lexicgraphical distance between caller
and callee. All calls contain the called procedures ordinal. This
ordinal is a Pcode Generator assigned value assigned from 2 (except
for PROGRAM declarations which will be given ordinal number 1)
upwards (p-ord in examples below).

Examples:

CPL p-ord

SCP! 1 p-ord

SCP! 2 p-ord

CPI n p-ord

Used to call local (child) procedures to the calling
procedure and its body (i.e., LEX= +1).

Used to call sibling procedures of the calling
procedure (LEX= 0).

Used to call parent procedures of the calling
procedure (LEX= -1).

Used to call intermediate, but non-global procedures

CDC PRIVATE

20-8
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.9.1 PROCEDURE CALL

(LEX< -1).

CPG p-ord Used to call outer level procedures local to this
module.

CXG seq p-ord Used to call XREF procedures that are located in
other compilation units.

CPF Used to call formal procedures that have been
introduced in CYBIL text as pointers to procedures.

20.10 PROLOG

All non-scalar, value parameters have an area for a local copy of the
actual parameter. The prolog for a procedure will contain Pcodes to
move the data into this local area.

Para~eters of adaptable type are loaded by the calling mechanism in
reverse order . (because of the· downward growing operand stack).
Prolog code appears to reverse thi~ order.

Implicit within the interpretation of the procedure call Pcodes are
several functions that classically have been the explicit jobs of
prolog in Pcode machines.

Since these wi 11 not be present in the PROLOG,. but assumed the
responsibility of the interpreter, it is worthwhile to list them:

Stack frame creation - each procedure has a fixed stack frame
size; the interpreter must "push" this area onto the dynamic
stack; this size is the datasize word at the head of the
procedure's code.

Mark Stack Control Word (MSCW) located at the head of the stack
frame.

20. 11 EPILOG

The epilogue contains only the following:

RPU size

Size is the number of words to release from the stack. It is based
on the two fixed sizes for:

mappcde

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

20.0 CYBIL-CP RUN TIME ENVIRONMENT
20.11 EPILOG

Automatic variables and local parameter storage.

Actual parameters.

20-9

86/09/03
REV: I

The value of size for RPU is not necessarily the same as the datasize
value used by the interpreter in the prolog. It differs by and
includes the additional size of the actual parameters.

20.12 RUN TIME LIBRARY

20.12.1 UNKNOWN AND/OR UNEQUAL LENGTH STRINGS

Support for unknown and/or unequal length strings is provided by
calls to standard run time routines.

20.12.1.1 String Assignment

For string assignments a call of the following form is provided:

CYP$MOVE_STRING(pointer_to_left_string,left_string_length,
pointer_to_right_string~right_string_length).

20.12.1.2 String Comparison

For string comparison a function call of the following form is
provided:

CYP$COMPARE_STRING (operation, pointer_to_left_string,
left string length, pointer to right string,
right string length) : boolea~. -- -

The boolean function value indicates the result of applying one of
the six relational operators on the specified strings. The
relational operators are represented as: equal = 1, not equal 2,
greater than or equal = 3, less than = 4, less than or equal = 5, and
greater than = 6.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING

21.1 POINTERS

21-1

86/09/03
REV: I

For this document the term address means a bit address.

A pointer to an object of data is composed of the address of the
first byte of the object plus any information required to describe
the data.

The NIL pointer is the following constant:

NIL: ADDRESS:= 000000000001(16).

Pointers to all fixed size objects contain only the ADDRESS.
Pointers to adaptable type objects contain the ADDRESS (6 bytes) and
the descriptor for the adaptable type object· (the descriptor
physically follows the Address).

21.1.1 ADAPTABLE POINTERS

Descriptors for adaptable types are word aligned and they have the
following formats:

a) STRING - 2 byte size field indicating the length of the string
(0 •• 65535) in bytes.

b) ARRAY descriptor:

ARRAY_DESCRIPTOR = RECORD
ARRAY_SIZE: INTEGER, " in bits or bytes "
LOWER_BOUND: INTEGER,
UPPER_BOUND: INTEGER,

RECEND.

The value for the ARRAY_SIZE field is in bits when the array is
packed and is in bytes when the array is unpacked.

c) USER HEAP - 6 byte size field indicating the maximum length of
the structure in bytes.

d) SEQUENCE - The format of a pointer to an adaptable sequence will
have the same format as the pointer to a fixed size sequence as
described below.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.1.1 ADAPTABLE POINTERS

21-2

86/09/03
REV: I

e) RECORD - Adaptable records have the descriptor of their adaptable
field as described above.

21.1.2 POINTERS TO SEQUENCES

The 3 word pointer to sequence (fixed or adaptable) has the
following format:

SEQUENCE_POINTER = RECORD
POINTER_SEQUENCE: ADDRESS,
LIMIT: INTEGER,
AVAIL: INTEGER,

RECEND.

The LIMIT is an off set to the top of the sequence and the AVAIL is
an offset to the next available location in the sequence.

21.1.3 PROCEDURE POINTERS

The 2 word pointer to procedure has the following format:

PROC POINTER = RECORD
ADDRESS_OF_THE_ENTRY_POINT: ADDRESS,
ADDRESS_OF_MODULE_DATA_BASE: ADDRESS,

RECEND.

The second entry of the procedure pointer is the address of the
data base for the module which contains the entry point.

The nil procedure pointer is the following constant:

NIL PROC POINTER: PROC POINTER ·=
[-NIL,-undefined] • -

21.1.4 BOUND VARIANT RECORD POINTERS

Pointers to bound variant records consist of
right justified in the first word followed
descriptor right justified in the second word.

a 6
by a

byte Address
6 byte size

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.1.5 POINTER ALIGNMENT

21.1.5 POINTER ALIGNMENT

21-3

86/09/03
REV: I

Pointer variables occupy a word and are right justified in a word.
Pointers with descriptors have each field of the descriptor word
aligned and right justified. Pointer types have this same mapping,
even in packed structures.

21.2 RELATIVE POINTERS

A relative pointer is a 4 byte field which gives the byte offset
of the object field from the start of the parent:

RELATIVE ADDRESS 0 •. 0FFFFFFFF(l6).

Relative pointers are always byte aligned. The relative pointer
is constrained to never cross a word boundary.

The NIL relative pointer is the follo.wing constant:

NIL: RELATIVE ADDRESS :• 80000000(16).

21.2.1 ADAPTABLE RELATIVE POINTERS

Relative pointers referencing adaptable type objects consist of
the 4 byte relative-address plus a descriptor for the adaptable
object type. This descriptor physically follows the relative-address
field. Descriptors for adaptable relative pointer types have the
alignment and formats described above in the section titled Adaptable
Pointers.

21.2.2 RELATIVE POINTERS TO SEQUENCES

The 3 word relative pointer to sequence (fixed or adaptable) has
the following format:

RELATIVE_POINTER_TO_SEQUENCE = RECORD
RELATIVE_POINTER: RELATIVE_ADDRESS,
LIMIT: INTEGER,
AVAILABLE: INTEGER,

RECEND.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS

21.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS

21-4

86/09/03
REV: I

Relative pointers to bound variant records consist of a 4-byte
relative address right justified in the first word followed by a
6-byte size descriptor right justified in the second word.

21.3 INTEGERS

Integer type variables are allocated 64 bits and are word aligned.
The integer value is limited to the rightmost 48 bits of the word,
with the leftmost 16 bits being zeroes.

Unpacked and packed types are also word aligned even when within a
structure and never cross a word boundary.

An integer value is represented by a two's complement binary
representation in the range of +(2**47-1) to -(2**47).

21.4 CHARACTERS

Character types are allocated 8 bits. Unpacked character types
are right justified in a word. Packed character types are byte
aligned.

A character variable is mapped as an unpacked character type and
it is right aligned in a word.

21.5 ORDINALS

Ordinal types are mapped as the subrange 0 •• n-1, where n is the
number of elements in the ordinal type.

21.6 SUBRANGES

An unpacked subrange type is allocated 8 bytes and is word
aligned. The subrange is constrained to never cross a word boundary.

A packed subrange type, a .• b, is bit aligned and it has its
allocated bit length, L, computed as follows:

if a >=
if a <

0, then
0, then

L
L

CEILING (LOG2 (b+l))
1 +CEILING (LOG2 (MAX (ABS(a), b+l)))

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-C~/SS TYPE AND VARIABLE MAPPING
21.6 SUBRANGES

21-5

86/09/03
REV: I

A subrange variable is mapped as an unpacked subrange type and it
is right aligned in a word. A subrange with a negative lower bound
occupies the entire word.

The maximum integer
7FFFFFFFFFFF(l6).

21. 7 BOOLEANS

subrange is -800000000000(16)

An unpacked boolean type is allocated 1 word and it is word
aligned.

A packed boolean type is allocated 1 bit and it is bit aligned.

A boolean variable is mapped as an unpacked boolean type and it is
right justified in a word.

The internal value used for FALSE is zero and for TRUE it is one.

21.8 REALS

Real type variables are allocated 64 bits and are word aligned.

Unpacked and packed types are also word aligned when within a
structure and never cross a word boundary.

The magnitude of a real value can range from (2**(-28625)) to
(2**(28719)). The range of useful coefficients is from
800000000000(16) to 7FFFFFFFFFFF(l6) which provides a range of -2 **
47 through (2 ** 47) -1. Useful exponents range from 9000(16) to
6FFF(l6) which provides a range of -28672 to 28671.

21. 9 LONGREALS

Longreal type variables are handled identical to real type
variables.

21.10 SETS

The number of contiguous bits required to represent a set is the
number of elements in the base type of the associated set type. The
leftmost bit in the set representation corresponds to the first
element of the base type, the next bit corresponds to the second

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.10 SETS

element of the base type, etc • .

21-6

86/09/03
REV: I

An unpacked set type is allocated a field of enough bytes to
contain the set elements and the set field is left justified on a
word boundary.

A packed set type is allocated a field with
necessary to contain the set elements and
aligned.

the number of bits
the set field is bit

Packed and unpacked set types are left justified in their
allocated field.

A set variable is mapped as an unpacked set type.

The maximum size allowed for a set is 32,768 elements.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.11 STRINGS

21.11 STRINGS

21-7

86/09/03
REV: I

A string type is allocated the same number of bytes as there are
characters in the string.

String types are always byte aligned.

A string variable is word aligned and left justified.

21.12 ARRAYS

An unpacked array type is a contiguous list of aligned instances
of its component type. The array is aligned on a word boundary and
occupies an integral number of words.

A packed array type is a contiguous list of unaligned instances of
its component type. The array is aligned on a byte boundary if its
element type starts on a byte boundary. When arrays and records are
fields of a packed structure the nested structure begins on a word
boundary.

If the array component type is byte aligned, then it occupies an
integral number of bytes.

Array variables are word aligned on the left.

The size of an array of aligned records will be a multiple of the
records alignment base.

In general, the size of arrays are limited by availability of
sufficient storage.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.13 RECORDS

21.13 RECORDS

21-8

86/09/03
REV: I

An unpacked record type is a contiguous list of aligned fields.
It is aligned on the boundary of the coarsest alignment of any of its
fields.

A packed record type is a contiguous list of unaligned fields. It
is aligned on the maximum alignment of its component fields. When
arrays and records are fields of a packed structure the nested
structure begins on a word boundary.

The length of a packed record is dependent upon the length and
alignment of its fields. The representation of a packed record is
independent of the context in which the packed record is used. In
this way, all instances of the packed record will have the same
length and alignment whether they be variables, fields in a larger
record, elements of an array, etc.

In an unpacked or packed record, the following field types ·are
defined as expandable: character, ordinal, subrange, boolean, and
set. If an expandable field is followed. by a field of· dead bits
which extends to the next field of the record (or to the end of the
record), then the expandable field is expanded to include as many
bits as possible up to the next field.

The content of the dead bits is undefined.

If a record is byte aligned, then it occupies an integral number
of bytes.

The fields are allocated consecutively subject to their alignment
restrictions. To get records to pack up tight, use booleans,
ordinals, subranges or sets as they will bit align. However, no
subrange or set will cross a word boundary; if it spills into the
next word, the whole thing will be mapped into the next word.

Record variables are left aligned in the first word.

When the ALIGNED feature is used on a field within a record, the
algorithm used will attempt to satisfy the offset value first (within
the word being allocated).

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.14 STORAGE TYPES

21.14 STORAGE TYPES

21-9

86/09/03
REV: I

The amount of storage required for any user declared storage type
(sequence or heap) may be determined by summing the #SIZE of each
span plus, in the case of user heaps, some control information.

21.14.1 HEAPS

Data in both the default Heap and the User Heap have the following
format:

ADDRESS= -1 .. 7FFFFFFFFFFF(16)

BLOCK HEADER = PACKED RECORD
BLOCK STATUS: (FILLER, AVAIL, USED, INTERNAL),
FILLER: 0 .• 7FFF(l6),
SIZE: 0 •. 7FFFFFFFFFFF(16),
FORWARD FREE LINK: ALIGNED (2 MOD 8] ADDRESS,
BACKWARD LINK: ALIGNED [2 MOD 8] ADDRESSs
FORWARD_LINK: ALIGNED (2 MOD 8] ADDRESS~
DATA_AREA: SPACE,

RECEND.

For the heap data type, an additional 24 byte header is added for
each repetition count for each spa~ specified.

21.14.2 SEQUENCES

Sequences have the following format:

SEQUENCE = RECORD
DATA_AREA: SPACE,

RECEND.

As demonstrated the sequence has the space required to contain the
span(s) requested by the user.

21.15 CELLS

A cell type is allocated a byte and is always byte aligned.

CDC PRIVATE

21-10
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.16 DETAILED SUMMARY FOR THE C200
---!

21.16 DETAILED SUMMARY FOR THE C200

+---------------+---------------+--------+--------+--------+--------+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 64 Word 48 Right
fixed size In packed rec 64 Word 48 Right
object In unpacked rec 64 Word 48 Right

In packed array 64 Word 48 Right
In unpack array 64 Word 48 Right

+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 128 Word len=48 Right
adaptable Word len=16 Right
string In packed rec 128 Word len=48 Right

In unpacked rec

In packed array

In unpack array

Word
128 Word

Word
128 Word

Word
128 Word

Word

len=16 Right
len=48 R~ght
len=16 Right
len=48 ·Right
len=16 Right
len=48 Right
len=16 Right

+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 256 Word len=48 Right
adaptable Word Desc=192 Right
array In packed rec 256 Word len=48 Right

Word Desc=l92 Right
In unpacked rec 256 Word len=48 Right

Word Desc=l92 Right
In packed array 256 Word len=48 Right

Word Desc=192 Right
In unpack array 256 Word len=48 Right

Word Desc=192 Right
+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.16 DETAILED SUMMARY FOR THE C200

21-11

86/09/03
REV: I

+---------------+---------------+--------+--------+--------+--------+
Number II of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 128 Word ptr=48 Right
user Word len=48 Right
heap In packed rec 128 Word ptr•48 Right

Word len=48 Right
In unpacked rec 128 Word ptr•48 Right

Word len=48 Right
In packed array 128 Word ptr=48 Right

Word len=48 Right
In unpack array 128 Word ptr=48 Right

Word len=48 Right
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 192 Word ptr•48 Right
sequence Word Desc=128 Right
(fixed or In packe'Ci rec 192 Word ptr•48 Right
adaptable) Word Des·c=-128 Right

In unpacked rec 192 Word ptr•48 Right
Word Desc=l28 Right

In packed array 192 Word ptr•48 Right
Word Desc•128 Right

In unpack array 192 Word ptr=48 Right
Word Desc=128 Right

+-~-------------+---------------+--------+--------+--------+--------+
Pointer to Variable 64+n Word ptr=48 Right
adaptable In packed rec 64+n Word ptr ... 48 Right
record In unpacked rec 64+n Word ptr=48 Right

In packed array 64+n Word ptr=48 Right
In unpack array 64+n Word ptr=48 Right

see type of adaptable for descriptor
+---------------+---------------+--------+--------+--------+--------+

Bound Variant Variable 128 Word ptr=48 Right
record pointer Word len=48 Right

In packed rec 128 Word ptr=48 Right
Word len=48 Right

In unpacked rec 128 Word ptr=48 Right
Word len=48 Right

In packed array 128 Word ptr=48 Right
Word len=-48 Right

In unpack array 128 Word ptr•48 Right
Word len=48 Right

+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

21-12
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.16 DETAILED SUMMARY FOR THE C200

+---------------+---------------+--------+--------+--------+--------+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Relative Variable 32 Word 32 Right
Pointer In packed rec 32 Byte 32 Left

In unpacked rec 32 Word 32 Right
In packed array 32 Byte 32 Left
In unpack array 32 Word 32 Right

+---------------+---------------+--------+--------+--------+--------+
Adaptable Variable 64+n I Word I ptr=32 I Right I

relative see type of adaptable for descriptor
pointer In packed rec 64+n I Word I ptr=32 I Right I

see type of adaptable for descriptor
In unpacked rec 64+n I Word I ptr=32 I Right I

see type of adaptable for descriptor
In packed array 64+n I Word I ptr=32 I Right I

see type of adaptable for descriptor
In unpack ~rray 64+n I Word I ptr=32 I Right I

see type of adaptable for descriptor
+---------------+---------------+--------+--------+--------+--------+
Relative Variable 192 Word ptr""'32 Right
Pointer to Word Desc=128 Right
Sequence In packed rec 192 Bit ptr=32 Left
(fixed or Word Desc=128 Right
adaptable) In unpacked rec 192 Word ptr .. 32 Right

Word Desc•128 Right
In packed array 192 Bit ptr=32 Left

Word Desc=l28 Right
In unpack array 192 Word ptr•32 Right

Word Desc=-128 Right
+---------------+---------------+--------+--------+--------+--------+
Relative Variable 128 Word ptr=32 Right
Pointer to Word len=48 Right
Bound Variant In packed rec 128 Word ptr=32 Right
Record Word len•48 Right

In unpacked rec 128 Word ptr=32 Right
Word len•48 Right

In packed array 128 Word ptr•32 Right
Word len=48 Right

In unpack array 128 Word ptr=32 Right
Word len•48 Right

+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

21-13
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.16 DETAILED SUMMARY FOR THE C200

+---------------+---------------+--------+--------+--------+----~---+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+
Pointer to Variable 128 Word addr=48 Right
procedure Word addr=48 Right

In packed rec 128 Word addr=48 Right
Word addr=48 Right

In unpacked rec 128 Word addr=48 Right
Word addr=48 Right

In packed array 128 Word addr=48 Right
Word addr=48 Right

In unpack array 128 Word addr=48 Right
Word addr~48 Right

+---------------+---------------+--------+--------+--------+--------+
Integer Variable 64 Word 48 Right

In packed rec 64 Word 48 Right
In unpacked rec 64 Word 48 Right
In packed array 64 Word 48 Right
In unpack array 64 Word 48 Right

+---------------+---------------+--------+--------+--------+--------+
Characters Variable 8 Word 8 Right

In packed rec 8 Byte 8 Left
In unpacked rec 8 Word 8 Right
In packed array 8 Byte 8 Left
In unpack array 8 Word 8 Right

+---------------+---------------+--------+--------+--------+--------+
Subrange Variable Word Right
and ordinals In packed rec Bit Right

In unpacked rec See Word See Right
In packed array Above Bit Above Right
In unpack array Word Right

+---------------+---------------+--------+--------+--------+--------+
Booleans Variable 64 Word 1 Right

In packed rec 1 Bit 1 Left
In unpacked rec 64 Word 1 Right
In packed array 1 Bit 1 Left
In unpack array 64 Word 1 Right

+---------------+---------------+--------+--------+--------+--------+

rmap200

21-14
CYBER IMPLEMENTATION LANGUAGE

·CYBIL Handbook
86/09/03

REV: I

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.16 DETAILED SUMMARY FOR THE C200

+---------------+---------------+--------+--------+--------+--------+
Number # of Align-
of signif- ment of
bits Align- icant signif.

Data Type Usage used ment bits bits
+---------------+---------------+--------+--------+--------+--------+

Real Variable 64 Word 64 Right
In packed rec 64 Word 64 Right
In unpacked rec 64 Word 64 Right
In packed array 64 Word 64 Right
In unpack array 64 Word 64 Right

+---------------+---------------+--------+--------+--------+--------+
Longreal Variable 64 Word 64 Right

In packed rec 64 Word 64 Right
In unpacked rec 64 Word 64 Right
In packed array 64 Word 64 Right
In unpack array 64 Word 64 Right

+---------------+----~----------+--------+--------+--------+--------+
Sets Variable Word Left

• In packed rec Bit Left
In unpacked rec See Word See Left
In packed array Above Bit Above Left
In unpack array Word Left

+---------------+---------------+--------+--------+--------+--------+
Strings Variable n bytes Word n bytes Left

In packed rec n bytes Byte n bytes Left
In unpacked rec n bytes Byte n bytes Left
In packed array n bytes Byte n bytes Left
In unpack array n bytes Byte n bytes Left

+---------------+---------------+--------+--------+--------+--------+
Cell Variable 64 Byte 8 Left

In packed rec 8 Byte 8 Left
In unpacked rec 64 Byte 8 Left
In packed array 8 Byte 8 Left
In unpack array 64 Byte 8 Left

+---------------+---------------+--------+--------+--------+--------+

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

21.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
21.17 SUMMARY FOR THE CYBER 200

21.17 SUMMARY FOR THE CYBER 200

ALIGNMENT

21-15

86/09/03
REV: I

+----------------------------------+
TYPE SIZE I UNPACKED I PACKED I VARIABLE I

+---------------+------------+----------+------------+----------+
I BOOLEAN I bit I RJ word I bit I RJ word I

+---------------+------------+----------+------------+----------+
I INTEGER I word I RJ word I RJ word I RJ word I
+---------------+------------+----------+------------+----------+
I SUBRANGE I as needed I RJ word I bit I RJ word I
+---------------+------------+----------+------------+----------+
I ORDINAL I as needed I RJ word I bit I RJ word
+---------------+---~--------+----------+------------+----------+
I CHARACTER I byte I RJ word I byte I RJ word
+---------------+------------+----------+------------+----~-----+
I REAL I word I word I word I word I

+---------------+------------+----------+------------+----------+
I LONGREAL I word I word I word · 1 word
+---------------+------------+----------+------------+----------+
I STRING I n bytes I LJ word I byte I LJ word
+---------------+------------+----------+------------+----------+
I SET I as needed I LJ word I bit I ·LJ word
+---------------+------------+----------+------------+----------+
I

ARRAY/RECORD I component I fi~ld I unaligned I LJ word I
dependent alignment components

+---------------+------------+----------+------------+----------+
I FIXED POINTER I 6 bytes I RJ word I RJ word I RJ word
+---------------+------------+----------+------------+----------+

I FIXED REL PTR I 4 bytes I RJ word I byte I RJ word
+---------------+------------+----------+------------+----------+
I CELL I byte I LJ word I byte I LJ word
+---------------+------------+----------+------------+----------+

Note: The abbreviations LJ and RJ in the above table stand for left
and right justification.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT

22.1 REGISTER AND STORAGE MODELS

22.1.1 STORAGE MANAGEMENT - DYNAMIC VS. STATIC

22.1.1.1 Display Vector

22-1

86/09/03
REV: I

The CYBIL language has
reentrancy I recursion.
dynamic space are used:

a concept of based storage to permit
As such, three levels of organization of

o reentr~nt space - allocated for each activation of a process

o static scope space - the current static scope of a procedure

o dynamic scope space - the current dynamic set of values to be
associated with static scope

The device for implementing and maintaining organization·in this
space is usually called the "display vector". Conceptually, the
display vector is an unbounded, three dimensional array of pointers
to data space (each is a "base", as noted above). A
pseudo-declaration of the display vector might be:

CONST
maximum_recursion = infinity,
maximum lex level = infinity,
maximum:number_of_tasks = infinity;

TYPE
base = tdata_space_block,
dynamic_scope_space ARRAY [O •• maximum recursion] OF base,
static_scope_space =ARRAY [O .• maximum:lex_level] OF

dynamic_scope_space,
reeentrant_space =ARRAY [O •• maximum number of tasks] OF

static_scope_spice; - -

VAR
display_vector: reentrant_space;

In general,- the display vector is not implemented in this fashion.
Indeed the infinity implied is impractical. More importantly code
access to data is essentially concerned only with the "middle index",

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.1.1.1 Display Vector

static scope.

22-2

86/09/03
REV: I

The outer index, reentrant space is operating system defined,
provided, and maintained; it is allocated at process creation.
Programmatically, a process is only concerned with the space
allocated for its execution it is not concerned with other
activations (reentrancies).

The inner index, dynamic space, is generally maintained by procedure
linkage mechanisms, and is distributed through stack management
logic. This results from the fact that only the most recent
activation's data space is available for access; it is only necessary
to be able to delink an activation (pop the auto frame) as a
procedure terminates.

The middle index is maintained as a singly dimensioned array (vector)
of bases to current activations at each lex level, in as much as
these bases are used in virtually all data accesses.

22.1.1.2 CYBIL Static Space

Each CYBIL module may· contain outer (level 0) variable declarations.
Such items are static with respect to the module. (CYBIL also
permits STATIC, XREF and XDCL attributes, having the same effect.)

A load module may consist of several CYBIL modules, and thus several
static areas. Each of these is compile time (ergo, loader)
allocatable, analogous to code space. Each contained variable is
located relative to the start of its static block; therefore, it may
be accessed by its relative relocatable address. On the other hand,
it may also be treated as based on its static block origin.

22.1.2 INTRA-MODULAR BINDING SECTIONS

Because a CYBIL module may contain several procedures, and since both
the module and the procedures individually have static (binding
section) requirements-, and further since the VSOS conventions wi 11 be
observed, the binding section of a CYBIL module (analogous to "data
base" in vsos)' must be partitioned to accommodate module and
procedure specific needs.

22.2 REGISTER USAGE CONSIDERATIONS

The CYBER 200 offers a large set of manipulatable registers, together

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.2 REGISTER USAGE CONSIDERATIONS

with a means of loading/unloading them (SWAP).

22.2.1 VSOS CONVENTIONS

VSOS conventionalizes the first 20(16) registers.
observe these conventions.

22-3

86/09/03
REV: I

C200 CYBIL will

It is noted that four of these registers contain the frequently used
constants machine zero, one(binary), 1A(16) and 20(16).

CDC PRIVATE

22-4
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.2.1 VSOS CONVENTIONS

+---+
0 I machine zero

+---+
1 •.
2 I

data flag branch exit addr
data flag branch entry addr

+---+
3 ••

temporary registers
13

+---+
14 I 20(16) I

+---+
15 I 1A(l6) I

+---+
16 I 1 c16)

17

18 ••
·19

lA

lB

lC

lD

lE

lF

+---------+---+
I #parms I pointer to parameter frame
+---------+---+
I

function result -word 1
function result -word 2

+-----------------------~-----------~----------~----+
I return addres.s
+---------+---+
I lex I pointer to dynamic space
+---------+---+
I //rsc I pointer to current save frame
+---------+---+ I #rsp I pointer to previous save frame
+---------+-----------------------------------.------+
I size I pointer to database area for module
+---------+---+
I data flag table pointer for DFBM
+---+

Register File - VSOS Conventional Us~ge

CDC PRIVATE

I

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.2.2 DISPLAY VECTOR

22.2.2 DISPLAY VECTOR

22-5

86/09/03
REV: I

Virtually all references to based variables, and optionally static
variables, involve adding an offset to the base for computing an
address. Register residence is thus indicated for the static-scope
index of the display vector. Viewed from a given procedure, the
display vector components from static to its lex level should be
resident.

Static variables may be addressed by their known location, rather
than by their known offset from a base (also known), but this leads
to code relocation, which has been avoided in the CYBIL code
generator for CYBER 200.

22.2.3 CONSTANTS

Constants derive from many sources in CYBIL program decomposition.

The kinds of constants ~re:

o scalar computational constants

o real computational constants

0 structured computational constants

o pointers to (addresses of) XREF variables

o address offset constants

o addresses of procedures

o addresses of procedure binding sections (data base)

Of the above, only structured constants cannot be register resident;
however, their addresses may be. Constants are a· major candidate for
register residency. C200 CYBIL does, on a procedure basis, determine
all used constants, select the subset most frequently used (if
register space is limited), and cause them to be preloaded via SWAP
in procedure prologue.

22.2.4 OPERAND STACK/PARAMETER FRAME

Use of ~egisters for the operand stack is highly desirable to avoid

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.2.4 OPERAND STACK/PARAMETER FRAME

22-6

86/09/03
REV: I

superfluous store/load operations. Further, the data mappings
selected for C200 CYBIL dictate that scalars will be register sized
and manipulatable, obviating the more cumbersome storage ·to storage
operations. Further, in the event of embedded function references,
the operand stack must be saved, then reloaded and extended, a
natural function in the VSOS linkage convention (if they are register
resident).

proc, the parameters to a
the callee, however, they are
More on this in the next

From the point of view of the calling
callee proc are like operands. To
members of its automatic stack frame.
section; at this point is noted the
parameters as operand stack elements.

desirability of treating these

22.2.5 VARIABLES

It is natural to consider making local automatic variables register
resident (RRV). The access speed is obvious. However, several CYBIL
realities complicate this, and in some instances lead to difficult to
resolve ambiguifies, viz:

o Large CYBIL variables will not fit, causing the automatic stack
frame to be divergent in character

o Pointers to (or addresses of) register resident variables
cannot be easily visualized, and are ambiguous

o What is local to a given procedure, is global to a contained
proc, causing complex interpretation of static scope/access.

However, variables meeting the following
register residency. Experience shows
satisfy these tests.

tests are candidates for
many local variables will

o Variable is not the object of a pointer, no matter how
disguised (either by dereference, actual ref parameter, etc.)
and has no component which is

o The variable's size is such that it may be cradled in a
register - <= 8 bytes

o The variable is not globally accessed, which would put it in
the static scope (storage resident) of code generated elsewhere

o Variable is not a complex pointer (cµrrently, all such pointers
exceed 8 byte length)

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.2.5 VARIABLES

0 Its type is scalar (integer,
subrange), pointer, cell, or

ordinal, character,
real. String type

22-7

86/09/03
REV: I

boolean,
is not

permitted inasmuch as substring references are indirect and
could confuse algorithms for string operations. Storage,
structured and adaptable types are verboten as they are
dynamically allocated and/or indirectly referenced.

Note that nothing prevents the addresses of objectionable objects
from being register resident.

22.3 MULTI-FUNCTION SOLUTION FOR REGISTER/STACK/STORAGE

The solution described below accommodates the somewhat unrelated, and
sometimes confli~ting, requirements of:

o VSOS conventions, particularly regarding linkage and registers

o CYBIL essentials regarding linkage

o ·Automatic stack frame lin~age.

o Conversion of parameters to callee stack frame elements

o Function return value conversion

o Register resident variables

o Management of display vector dynamic and static scope

o CYBIL <--> non-CYBIL environment linkage

The dynamic nature of the stack frame and its contents renders static
verbal description difficult. The only "time" a procedure's entire
stack frame is storage resident is when the procedure has called
another procedure (which, following VSOS convention, has saved the
register file of the caller). The following descriptions begin with
this state, then proceed to an abstraction holding during active
execution of the given procedure. In conclusion, the "binding
section" is discussed.

22.3.1 STORAGE RESIDENT PICTURE OF STACK FRAME

The following figure depicts the stack frame of a given procedure
when it is activated but has called another procedure, thus being
entirely storage resident. The· pointers indicated are the contents

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.3.1 STORAGE RESIDENT PICTURE OF STACK FRAME

22-8

86/09/03
REV: I

of the noted VSOS conventional registers, as well as the display
vector entry for the lexical level of this procedure.

Note also that various segments of the depicted frame may in fact be
empty in a given instance.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.3.1 STORAGE RESIDENT PICTURE OF STACK FRAME

+---------------------------------------+
lo

previous stack frame

+---------------------------------------+
I

function return value (if any) 1<--DV[lex
level}

+---------------------------------------+
I parameter frame (if any)
+---------------------------------------+
I

auto vars and compiler generated
variables

+---------------------------------------+
I

PUSH'ed variables and by value
adaptable parameters

+---------------------------------------+
(these items saved by called proc) <--CSF (#lC)

VSOS conventional regs.
display vector
constants (PC, see below)
r.egister resident local vars

+---------------------------------------+
(also saved)

operand stack, including
callee function ret value (if any) <--PFP (#17)
callee's parameter frame (if any)

(callee's frame begins at PFP)
+---------------------------------------+
I rest of callee frame 1<--DSP (#lB)
+---------------------------------------+

hi I •••
+---------------------------------------+

Stack Frame Layout

The frame begins at DV[lex level] and terminates before PFP.

22.3.2 REGISTER FILE ABSTRACTION OF STACK FRAME

22-9

86/09/03
REV: I

During execution within the subject procedure, a portion of the stack
frame is made register resident for efficiency. Initially, the
subject procedure's prologue initializes the areas from VSOS

·convention registers through the PC (Preferred Constants). In

CDC PRIVATE

22-10
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.3.2 REGISTER FILE ABSTRACTION OF STACK FRAME

storing its caller's registers, it has defined the function return
value I parameter frame (which were operand stack elements in the
caller). Ensuing calls to other procedures result in restoration of
the register abstract (VSOS convention).

Thus the registers contain dynamically the segment between CSF and
DSP.

Upon termination of this given procedure, its stack frame is
·discarded (popped) with the exception of the function return value.

Upon return to this procedure from a called procedure, the code
generator model discards that portion of the operand stack which was
the parameter frame for the called procedure (no physical action
taken). This is detailed more fully in the succeeding section on
linkage.

The following figure summarizes the register file abstract.

+---+
20 I pointer to database for module of active procedure!

+---------+---+
21 I 1 I display vector, lex•l

+---------+---+
22 I 2 I display vector, ~ex=2 ·

+---------+--~--------------------------------------+

I • . I •••
+---------+---+

20+lex I lex I display vector, lex=lex of current proc I
+---------+---+

2l+lex,
up even PC, registers reserved to contain at most

144-RRV favored constants and pointers
register resident local vars, at most 144-PC

+---+
<=CO

operand registers
FF

+---+

Register File - CYBIL Convention Extension

CDC PRIVATE

I
I .

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.3.3 BINDING SECTION (VSOS "DATA BASE")

22.3.3 BINDING SECTION (VSOS "DATA BASE")

The Binding Section is created per CYBIL module, and
static. It contains all global (CYBIL static)
addition, the remainder is subsetted into Binding
Constants (BSFC's), one per contained procedure.

+--------------------------+
programmer declared
static variables

structured constant pool

+--~-----------------------+

BSFC of procedure 1

+--------------------------+
BSFC of procedure 2

+--------------------------+

+--------------------------+
BSFC of last procedure

+--------------------------+

Static (Database) Storage Layout

22-11

86/09/03
REV: I

is of course
variables. In
Section/Favored

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.3.3 BINDING SECTION (VSOS "DATA BASE")

22-12

86/09/03
REV: I

Because the size of a BSFC is unlimited (theoretically), but the
register resident portion is bounded, each BSFC area is divided into
two areas, as shown in Figure 2.5.

+-------------------+----------------------------------+
preferred const's
PC

prologue usable constants
pointer to XREF vars
pointer to XREF procs
pointer to proc binding sect
off sets of based (auto) vars
computational constants
real constants
pointer to structured csts

+-------------------+----------------------------------+
overflow const's pointer to XREF vars

pointer to XREF procedures
pointer to XREF proc data base

+-------------------+----------------------------------+
Expansion ~f BSFC

CDC PRIVATE

22-13
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.3.3 BINDING SECTION (VSOS "DATA BASE")

The next figure illustrates the PC region "prologue usable
constants". The full import of this is discussed later: here is
noted the construct is devised to simplify procedure prologue and to
implement "single-swap" procedures. In the figure, the environment
target register is given, followed by the PC offset of th~ pre-load
quantity.

+---+
lA: 0 I --- I

+---+
lB: 1 lex level of procedure in length field,

plus size(auto frame)+size(max save regs)
raised even

+---+
lC: 2 rounded up even of size of function return

value, parameter frame, and automatic variables,
plus max save regs (evened) in length field

+---+
lD: 3 I ---

+---+
lE: 4 I ---

+---+
lF: 5 I ---

+---+
20: 6 I pointer to database (static) I

+---+
I • • • I
+---+

20+lex: negative size of function return value, if local
proc/func - 0 otherwise (XDCL and prog)

6+lex
+---+

Expansion of PC for Prologue Purposes

The Preferred Constant (PC) area is to be loaded by procedure
prologue as the PC register constant area, with the balance remaining
storage resident.

The prologue usable constants include lexical level, frame sizings,
and pointer to module static (data base) useful at prologue.

Note that the PC area is sizewise defined by the register area
available for it. It is quite possible that the code generator would

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.3.3 BINDING SECTION (VSOS "DATA BASE")

22-14

86/09/03
REV: I

have desired to include more of the items in the categories listed
than space permitted. In this event, and with the exception of
procedure pointers, the generated code will contain ES/EX
instructions to create the desired values, as opposed to loading them
from a storage area such as the "overflow" constants.

22.4 PROCEDURE CALL AND LINKAGE

This section describes the object code generated for calling and
exiting procedures. It uses the conventions of the VSOS with respect
to the register file and dynamic space. It also anticipates that an
XDCL CYBIL procedure may have been called from a non-CYBIL
environment and that a call to an XREF procedure may leave the CYBIL
environment.

The basic method of passing parameters is with a parameter frame.
·Interfacing with other languages that pass via registers, etc. is
not considered here.

The parameter frame is actually· created .in. the operand register area
of the caller. The prologue of the callee" will save the caller's
registers including their mutual parameter frame in a fashion that
upon completion, the parameter frame falls into the low area of the
callee's stack frame. This is accomplished with the SWAP instruction
in the callee's prologue.

22.4.1 PARAMETER FORMATION

The parameter formation will follow contiguously through the area.

Each actual parameter is evaluated and either the actual value or the
address of the actual variable is placed into the parameter area.
Some actual values (pointers with descriptors) and variable
references (adaptable structures) may require several registers.

CDC PRIVATE

22-15
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.1 PARAMETER FORMATION

The following chart indicates the created register contents per
parameter:

+--------------+------------+-------------------------------+
I Fonn;~=aram I By Value I By Reference I

+--------------+------------+-------------------------------+
boolean
integer
subrange value address
ordinal
character
real
long real
cell
fixed pointer
fixed rel ptr

+--------------+------------+-------------------------------+
I

pointer to I value I address of pointer variable
adaptable with desc.

+--------------+-----~------+--~---------~------------~-----+
I fixed string I address I ~ddress
+--------------+------------+-------------------------------+
I adapt string I see by ref I address of string and length
+--------------+------------+-------------------------------+
I set I address I address
+--------------+------------+-------------------------------+
I fixed array I address I address
+--------------+------------+-------------------------------+

adapt array see by ref address of array and its
descriptor - size, lower
and upper bound

+--------------+------------+-------------------------------+
I fixed record I address I address
+--------------+------------+-------------------------------+
I

adapt record I see by ref I address of record and its I

descriptor per adaptable field
+--------------+------------+-------------------------------+
I fixed storage! address· I address
+--------------+------------+-------------------------------+
I adapt storage! see by ref I address with descriptor
+--------------+------------+-------------------------------+
Those parameters passed by value that have their addresses placed
into a register will have the callee's prologue create a local copy
of the parameter value into its own stack frame.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.2 PROCEDURE CALL

22.4.2 PROCEDURE CALL

22-16

86/09/03
REV: I

After the parameters have been formed, the object procedure is
called. (The pseudo code in this document uses the decision
construct IF ••• THEN ••• ELSE. This construct does not appear in the
object code, but rather represents decisions made by the compiler in
determining which sequence of code to emit.) The following steps in
pseudo code indicate the object instructions:

set the pointer to the callee's database into register #lE

for calls within this module this will be this module's static
pointer; for XREF procedure calls it will be to the static area
of the module containing the XREF procedure

form par~meter frame pointer in #17

enter number of params to length fld of #17; since the call may
leave the CYBIL environment, the register must be set up for
potential use by the callee

set the address of the target procedure into a register

if the call is to an XREF procedure, store the actual parameters at
the location pointed to by the parameter frame pointer (PFP) in
register #17. This is necessary in the event the procedure is an
IMPL procedure. IMPL accesses the parameters BEFORE its prologue
SWAP!

execute a BSAVE instruction

At this point control has been transferred to the called procedure.

22.4.3 PROCEDURE PROLOGUE

The prologue for CYBIL procedures is based upon VSOS conventions with
two extensions:

o an automatic stack frame exists for the procedure which

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.3 PROCEDURE PROLOGUE

contains:

22-17

86/09/03
REV: I

function return value, zero (for pure procedures) or more
words at off set zero of the frame

parameters, zero (for parameterless procedures) or more
words

local declared variables, zero or more words for locally
declared variables

implied variables, the compiler
temporary storage for intermediate
operations, FOR loop control)

may generate local
results (e.g. set

dynamic storage, for objects of PUSHed pointers or
storage of adaptable value parameters

o display vector residing in registers
lex is the lexicographical level
procedure

21(16) .. 20(16)+lex where
of the active (called)

In the next discussion, use is made of the PC area depicted above.

The steps in pseudo code for the prologue consists of:

save registers (lB,) lC into (10,) 11

these are the immediately useful environment registers that must
be kept available for some remaining prologue computation. Note
that register lB (DSP) is only saved in XDCL and program
prologues.

compute the address of the callee's register initialization area
and set length (raised even), into #lE

add the offset (compiler known constant) of the callee's BSFC
area to the address of the module's database (contained in #lE)

protect data flag register #lF

in order to defend lF against interrupts occurring during the
swap, it is stashed in the BSFC location which will be loaded
into lF by the swap.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.3 PROCEDURE PROLOGUE

22-18

86/09/03
REV: I

save the caller's registers at the area designated by #lC and load
the PC registers from the BSFC in static

this will not only save the caller's registers into an area just
before the start of the callee's stack frame, but also store the
parameter values into the front of the callee's stack frame It
also loads the PC with 1) lex level, frame sizes, and pointer to
static for prologue use, 2) hard constants, 3) pointers to XREF
objects, and 4) address offsets to static and au~omatic
variables

set lD from 11

this has the effect of aging CSF to PSF

set up this levels display vector entry

IF this is XDCL, add preloaded BSFC constant 0 to old DSP (10).
IF local, add preloaded constant (-size func ret val) to PFP
(17). .

update lB (DSP) packing in lex level

the BSFC will contain lex level for lB in the address field, and
the sum of SIZE(auto frame) (evened) and SIZE(max regs to save
during calls) (evened). If XDCL, this is added to old DSP (10),
otherwise it is added to DVx computed above. The lex level
helps in "long" procedure EXITs and adds information for core
and register dumps

compute the current save area address and place into #lC

this is simply the automatic stack frame size (function return
value, parameters, local variables) rounded up to even (this
constant is preloaded in the BSFC for register lC) plus either
1) old DSP (10), if XDCL, or 2) DVx, if local

IF this procedure is XDCL THEN

IF there are parameters THEN

copy the frame from #17t to (DV[lex]+size(frv))t

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.3 PROCEDURE PROLOGUE

I FEND

I FEND

22-19

86/09/03
REV: I

this step worries about a call from outside the CYBIL environment
where the parameter frame may not have been near the end of the
caller's saved registers.

restore other display registers for intermediate '1ex levels

The values to restore are located at word offsets 6+lex relative
to lD. For each such vector element the instruction sequence
would be:

ES f/21, 1+6

LOD [#lD,#21],#21

where 1 is in the rang~ ! .. <current lex>-1

copy in value parameters that were not passed by value

refer to the chart above in the "By Value" column where address
is indicated. For adaptable parameters, the storage will be
"pushed" into the local stack frame; for fixed parameters, the
storage has been pre-allocated.

22.4.4 PROCEDURE EPILOGUE

Both epilogue and post call code conform with the VSOS convention
with the extension of needing to interface with non-CYBIL
environments relative to function return values. For Epilogue:

IF this procedure is XDCL and size of function return value

is 1 or 2 words THEN

move function return value to register(s) #18 (and #19)

I FEND

this set of instructions anticipates returning to a non-CYBIL

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.4 PROCEDURE.EPILOGUE

22-20

86/09/03
REV: I

environment such as IMPL which expects the return value(s) in
registers #18 and #19

reload (SWAP) the caller's registers using #lD

branch based on register #lA

22.4.5 POST CALL

For post call:

IF call to XREF and size of function return value is 1 or 2 words
THEN

.
move registers #18 (and #19) to operand register area

I FEND

this set of instructions anticipates having returned from a
non-CYBIL environment

22.4.6 "LONG" PROCEDURE EXIT

RETURNs and EXITs in the currently active procedure simply generate
branches to the epilogue code. EXITs of a globally encompassing
procedure by the currently active procedure cause a reloading of the
encompassing procedure's environment (SWAPs) prior to generating its
epilogue code (see 2.2.5). In high level terms, if the lex level of
the proc to exit is dlex, then:

WHILE current lex <> dlex DO

reload registers per #lD

wHILEND

environment has been forced to that for the encompassing
procedure

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.6 "LONG" PROCEDURE EXIT

do epilogue of procedure

The WHILE loop above actually exists in object code.
to instructions that are more C200-like:

ES 10,dlex

SWAP 10,15,0

LTOR lB, 11

IBXNE,BRB 10,0,2,11,12

<epilogue code>

22.4.7 PUSH DYNAMIC SPACE

22-21

86/09/03
REV: I

Reducing this

This function (primitive) is used by both the PUSH storage management
statement and the prologue code to find room for adaptable, by value,
parameters in the automatic stack frame of the current procedure.
Its input is the size of the space needed, its output is the address
of the acquired space. The algorithm evens the space required, and
adds this increment to both the CSF (lC) and DSP (lB). DSP must of
course protect our stack frame from interrupts. The original value
of CSF is returned as the pointer to the PUSH'ed space.

22.4.8 EXTERNAL ENVIRONMENT INTERFACE SUMMARY

Problems associated with cross-linkage between CYBIL and non-CYBIL
environments derive from linkage mechanics, function return values,
and parameter passing (type, method, allocation, and format).

C200 CYBIL will support inter-environment calls when

o The alien environment (AE) observes VSOS conventions for
linkage

o The AE observes VSOS convention for functin return value (FRV)

o The AE parameter formats can be successfully described in
CYBIL, and implementation dependent mappings, etc. are known
to be compatible

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.8 EXTERNAL ENVIRONMENT INTERFACE SUMMARY

22-22

86/09/03
REV: I

explicitly indicate the
(XREF), or the source of a
CYBIL assumes most such

Exceptions are functions

Because no CYBIL construct exists to
environment ·of a non-local procedure
reference to a local XDCL procedure, C200
events represent inter-environment linkage.
whose type is strongly peculiar to CYBIL.

22.4.8.1 CYBIL--> AE Linkage

A CYBIL reference to an XREF
solution of linkage and FRV
summary, CYBIL assures:

procedure is the indicator. The
problems were discussed above. In

o parameter frame pointer #17 is defined to point to params in
save area

o register #lB is rounded even up

o parameters are stored at PFPt (PFP = #17)

o #18 (and #19) is used as source of FRV

These items may be neglected if within CYBIL environment (CE).

22.4.8.2 AE --> CYBIL Linkage

The indicator is the XDCL proc attribute. In summary, CYBIL assures:

o display vector entry is set

o copies params from frame pointer PFPt into this proc's auto
frame

o duplicates FRV in #18 and #19

22.4.8.3 Parameter Conformity Considerations

22.4.8.3.1 TYPE

The coder must determine that an intersection exists between the CE
types and the AE types. This is commonly implementation dependent.

22.4.8.3.2 METHOD

CYBIL offers passage by value, in which case a copy of the variable
is physically passed, and by reference, in which case a pointer to

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.8.3.2 METHOD

22-23

86/09/03
REV: I

the actual variable is passed. An additional complication is the by
value structure, for which CYBIL passes (or expects) a pointer with
the tacit assumption a copy will be made (or is made).

Further, CYBIL interfaces only via a parameter frame in storage.
Register resident parameters are not supported.

22.4.8.3.3 ALLOCATION

The user must determine that semantics regarding parameter alignment
and mapping, especially size, are compatible. This is very
implementation dependent. Watch carefully the semantics regarding
objects of pointers.

22.4.8.3.4 FORMAT

Additional (usually implementation dependent) semantics must be
determined to be compatible with regard to data format. For example,
integer ranges, set member order, value conventions (boolean, NIL),
etc.

22.4.8.3.5 EXAMPLE: CYBIL <--> FORTRAN

o All FORTRAN parameters are by reference

o Most intersecting types are conformable in allocation and
format

The conformity table is:

CYBIL

boolean

integer
subrange,ordinal

character

real
longreal
string
set
array
cell, pointers,
adaptables,
records,storage

FORTRAN

No exact equiv

integer
No exact equiv

floating point
double prec. f/p
"string"
logical
array
N/A

Comments

CYBIL logic gives 0 •• 1
acts upon 0,<>0-trouble

CYBIL may produce err if
given value out range

CYBIL passes as ts,l=l
receives as ts

Not supported

Careful with semantics
Depends on elements

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.8.3.5 EXAMPLE: CYBIL <--> FORTRAN

22.4.8.4 Interface to COMMON

22-24

86/09/03
REV: I

CYBIL will likely be used in a hybrid environment with IMPL and
FORTRAN. CYBIL has no construct analogous to the COMMON construct of
these languages.

C200 CYBIL will cause loader text, compatible with the COMMON
construct, to be generated for all CYBIL XDCL variables. This
solution results in less efficient code generation for XDCL variable
access, and destroys CYBIL semantics regarding static initialization
of XDCL variables, and may cause implementation dependent,
non-repeating object module/loader performance anomalies.

CDC PRIVATE

22-25
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.4.9 AN EXAMPLE

22.4.9 AN EXAMPLE

In order to demonstrate the pseudo code presented above, consider the
following example which has a local CYBIL procedure with parameters
and a subsequent call to the procedure:

PROCEDURE
RTOR
IS (IX)
ELEN
ES

STO
SWAP
ADDX
ADDX
ADDX
RTOR

local(i: integer; VAR s: STRING(*)) ;
/llC, II 11 {save CSF
/llE,<BSFC offset>
/llE, <PC size>
/112,0005

[tf lE, {112] , /f lF
lllE' II 15 'lflC
If 2x, {fl 7 , If 2x
/llB, fl2x, /flB
#lC, fl2x, /llC
fill, II lD

{offset in BSFC where lF will be
{swapped in
{stash DFT so swap will reset
{save caller's regs and load PC
{set proc's display entry
{set new DSP
{set CSF = new save area
{restor CSF as PSF

PROCEND local;
SWAP /llD,#15,0 {reload caller's registers

{return to caller BADF, BR 0, /llA

local(5,'abcdefg');
ES /IC0,5 {load parameter one by value

{address of string constant is
{in register in PC of caller

R TOR /Is c, /ICl

ES
RTOR
ES
ADDX
ELEN
EX
BSAVE

22.5 VARIABLES

lfC2,7 {length for formal adapt
#20,#lE {move STATIC to DBP
/f10,40(16)*(lst parm reg - 1A(16)) {set up PFP
#lC,#10,#17 {new parm frame pointer
#17,<parm count in words>
#local,<delta to proc> {address of local in PC
/flA,#local,/llA {of caller

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.5.1 VARIABLE ALIGNMENT .

22.5.1 VARIABLE. ALIGNMENT

22-26

86/09/03
REV: I

The implementation dependent value for the alignment base for the
C200 is eight (8).

22.6 STATEMENTS

22.6.1 CASE STATEMENT

There are 2 alternative code sequences generated for the CASE
statement, depending on the characteristics of the case selectors.

The first alternative is a code sequence consisting of a selector
range check, followed by an indexed jump into a jump table generated
for the CASE statement selector range. This jump table consists of
unconditional jumps· to the case entry points. The table thus
actually resides in the inline executable code section.

The other alterna~ive is a code sequence co.nsisting of a series of
conditional branches. Branch implementation is chosen if the number
of case selectors is less than three, or, if the difference between
smallest and largest case selectors is greater than the number of
entries to the third power. If the number of entries is more than 8,
the code sequence that is generated is in the form of a binary
search.

22.6.2 STRINGREP

22.6.2.1 Pointer Conversions

The default radix for the conversion of a pointer into a string is
defined as implementation dependent. For the C200 the resultant
string will be the pointer represented in hexadecimal notation.

22.7 RUN TIME LIBRARY

The following interfaces are implicitly callable during the
ex~cution of any C200 CYBIL program.

To allocate space in the heap:

CYP$ALLOCATE (VAR alloc ptr: tblock header;
length: half_word {in bytes};

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN T~ME ENVIRONMENT
22.7 RUN TIME LIBRARY

heap ptr: tARRAY[index range] OF cell;
base: 0 •• 0FFFFFFFF(l6));

heap_ptr = NIL => pointer to system heap

To free an allocated block in a specified heap:

CYP$FREE (VAR user space to be freed: tCELL;
heap_ptr: tARRAY [index:ra~ge] OF cell);

heap_ptr = NIL => pointer to system heap

To reset a user heap:

CYP$RESET
(heap_ptr: tarray [index_range] OF CELL;
heap_size: 0 .. max_heap_size);

To determine the string representation of a given type:

CYP$SXRINGREP (VAR dest size: .INTEGER;
·VAR dest: STRING(*);

22-27

86/09/03
REV: I

elem_list: ARRARY [*] OF put_elem_description_type);

To.process CYBIL runtime detected errors:

CYP$ERROR (composite number: INTEGER;
module_name_ptr:-tmod_name);

where:
line count:= composite number DIV 10000(16);
erro;_count := composit;_number MOD 10000(16);

To process calls to a NIL pointer to procedure:

CYP$NIL;

To terminate execution gracefully call:

CYP$TERMINATE;

22.7.1 RUNTIME ERROR MESSAGES

o ... unequal string length
2 ••• subscript erro;

! ... adaptable length error
3 ••• range_err;r -

4 ••• undefined-case 5 ••• reset_to_error
14 •• substring_start_error 15 •• substring_length_error

CDC PRIVATE

22-28
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7.1 RUNTIME ERROR MESSAGES

18 •• negative_allocation
20 •• nil_pointer

19 •• wrong_size_expr_for_REP
21 •• unselected CASE

22 •• free_of_unalloc._block
24 •• upper_merge_error

23 •• lower merge error
25 •. err_n; outside msg array

22.7.2 CYBIL-ERROR HANDLER INTERFACE TO VSOS

Any runtime detected error needs to be communicated to the user
and then the task terminated. the following VSOS SIL interfaces will
be used to do this:

QSSNDMJC (ptr_to_len_msg, ptr_to_len_of_msg{in bytes},
ptr_to_msg_msg, ptr_to_msg_to_be_sent,
ptr_to_status_msg, ptr_to_status,
ptr_to_errmsg_msg, ptr_to_errmsg);

After the runtime error message is sent, the task is terminated:

Q5TERM (termination_state, system_return_code);

tetmination_state => ptr to 'ABORT' message

system_return_code => ptr to 'FATAL' message

The following comment has been
addresses will not be overlooked but
affect the CYBIL implementation:

added so that the problem it
the problem itself does not

If the job monitor is to be rewritten in CYBIL, a means must be
found to allow that task to send a runtime message. Under the
current mechanism this is not possible.

22.7.3 TRACEBACK CAPABILITY

A traceback capability has been added to the C200 runtime package
to facilitate debugging. Each stack frame-in the runtime stack that
is of CYBIL origin will be analyzed. The data output will include
the module and p_address within the module where that procedure will
start execution when control is returned to it. The contents of the
dynamic space and the active registers at that point will also be
output.

Traceback data will be created automatically when any CYBIL
runtime error is encountered.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7~3 TRACEBACK CAPABILITY

22-29

86/09/03
REV: I

The name of the traceback file defaults to "TRACE". this can be
changed by calling RPVINIT:

PROCEDURE [XREF] rpvinit ALIAS 'SW=ERRI' (out: tfile;
user_cleanup•proc: tprocedure);

where
OUT has been created by calling PR#OPEN
USER CLEANUP PROC is a procedure to be executed after

- the traceback (normally NIL)

A traceback can be generated at any point by calling RPVTRACE:

PROCEDURE [XREF] rpvtrace (str_p: tSTRING(*));

where
STR_P points to a title line for the traceback.

The tracback analysis does not require that the CYBIL modules be
compiled with any DEBUG options set.

There are currently two ways to look at an ASCII file:

Print it:
MFQUEUE,TRACE,DD=C8,ST=Ml0,

JCS="ROUTE,UJN=zzz,DC=PR,EC=A9,TID=C.".

or look at with an editor on the frontend:

MFLINK(TRACE,DD=C8,ST=Ml0,I=SENDTRAC)
(switching to the frontend)
ATTACH(TRACE)
FCOPY(P•TRACE,PC=ASCII8,N=XXX,NC=ASCII)
XEDIT,XXX

22.7.4 HEAP MANAGEMENT

The basic approach is that within the heap sufficient information
will be maintained that a chain of free and used space is available.
On an ALLOCATE, a scan is done from the start of the heap to find
space sufficient for what is requested; upon finding such a spot it
is marked as used. Once a space is "allocated", it stays in the same
place for the life of the data.

On a FREE request, the space is marked as available and combined
(if possible) with other adjacent free areas to reduce memory

CDC PRIVATE·

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7.4 HEAP MANAGEMENT

22-30

86/09/03
REV: I

fragmentation and, hence, becomes reusable memory.
attempt made at garbage collection.

There is no

If the programmer has not specified a user heap on the ALLOCATE
and FREE statements, the compiler assumes the system heap is intended
to be used.

Alignment specified on the first field of a record to be allocated
will be honored by the allocation processor.

The following additional criteria were used in designing the HEAP
MANAGEMENT MODEL:

(a) Space that has been FREE'D must be potentially reusable.

(b) Space for the SYSTEM HEAP must be obtained thru standard
VSOS linkages.

(c) Linkage must be provided so that it is possible to get to
STATIC space allocated for the SYSTEM HEAP that is not
necessarily contiguous.

22.7.4.1 ALLOCATE

If the user specifies a non-zero alignment base, ALLOCATE performs
alignment processing as described in the following section. Normal
allocation starts on a two word boundary and proceeds as-follows.

22.7.4.1.l THE UNALIGNED ALLOCATE

(1) Starting with the forward_free_link
search for a block whose size
length requested +24 bytes.

in the first heap word,
is greater than or equal to

(2) If the block's size is 40 or more bytes larger than the amount
needed, split it into two blocks. Allocate the lower block
to the user, and return the second to the free chain. (A
lagging pointer points to previous free block.) Return to
caller.

Otherwise: Remove the block from the free chain and allocate
entire block to the user. Return to caller.

I FEND.

(3) If the search failed, set alloc_ptr to NIL and return.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7.4.1.2 THE ALIGNED ALLOCATE

22.7.4.1.2 THE ALIGNED ALLOCATE

(4) If alignment_base < 8, go to (1).

22-31

86/09/03
REV: I

(5) Starting with the forward_free_link in the first heap word,
search for a block whose size is greater than or equal to space
requested +24 bytes.
Compute L = (block offset+24) MOD alignment_base.
If L=O,

If block size> (length requested +40),
Put upper part of block on free chain
Allocate length requested to user
Return to caller

Otherwise:
Allocate entire block to user
Return to caller

ifend
Otherwise:

-Compute loc difference= alignment base-L.
If length_r;quested+40 <= block size - loc_difference,

Put upper part of block on free chain
Allocate length requested to user

Otherwise:
Allocate entire block to user

ifend
if loc_difference>= 24

Put block of loc difference bytes on free chain
Otherwise:

Put loc_difference bytes into previous block
if end

ifend
Return to caller.

(6) If search failed, set alloc_ptr to NIL and return to caller.

22.7.4.2 FREE

FREE processing inserts the specified block of memory back into
the free chain. In addition, if the previous or next block, or both,
are free, they are combined with the current block, as described
below. FREE processing proceeds as follows.

(1) If the current block's block status is not USED, issue an error
message and abort.

Otherwise:

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7.4.2 FREE

Set combined to false.
if end

(2) ·If the block below current bock is AVAIL,

22-32

86/09/03
REV: I

combine current block with previous block by revising its
size and forward link. Revise the next blocks backward link
and make the lowe; previous block the current block. Revise
the forward_free_link in previous free block. Set combined
to true.

if end

(3) If the block above current block is AVAIL,
combine current block with the next block by revising the
current block's size and forward_link. Set the current
block's block_status to AVAIL. Return to caller.

Otherwise:
If combined is true, return to caller.
Otherwise:

Put the current block at the head of the free chain in the
first word of the heap and set its block status to AVAIL.
Return to caller

if end
ifend

22.7.4.3 RESET a User Heap

RESET initializes the free-chain header by storing a descriptor in
the first word of the heap. The word indicates the size of the heap
and the first usable byte in the heap. The second word is
initialized by the ALLOCATE procedure. The code necessary to
accomplish this task is done by a call to a run time routine.

22.7.4.4 Establishing the System Heap

The system heap is initialized at run time for the first ALLOCATE
by calling the VSOS system interface (to obtain memory space):

QSMEMORY(ptr_to_space_req_msg,ptr_to_space_req{in words},
ptr_to_space_acq_msg,ptr_to_space_acq{bit addr})

This space is then initialized by setting up 3 block_headers:

(1) block header (STATUS
(2) block_header (STATUS
(3) block header (STATUS

USED, SIZE = 0)
AVAIL, SIZE = space-3*24)
USED, SIZE = 0)

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7.4.4 Establishing the System Heap

22-33

86/09/03
REV: I

If more space is required than is available in the current memory
space, Q5MEMORY is called again to get more space and ·then
block_header (3) of the old space and block_header (1) of" the new
space are linked together so there is always a path from one static
space to the n~xt.

The default size requested of Q5MEMORY will be 16384 (32*512)
words. In the case where the user requests space greater than the
default the actual size requested will be passed along to Q5MEMORY.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7.4.5 HEAP BLOCK HEADER

22.7.4.5 HEAP BLOCK HEADER

BLOCK_HEADER (CYBIL description in STORAGE TYPES section):

I 01 I 48 I
+----+-----------------------------------+
I s I SIZE I
+--+
I FORWARD FREE LINK - -+--+
I BACKWARD LINK
+--+

FORWARD LINK
+--+

22-34

86/09/03
REV: I

FREE SPACE (OR DATA AREA) SIZE-24 BYTES

+--+

Free Block Format:

S=BLOCK_STATUS: Designates whether block is available or
used. avail in this case.

SIZE: Size of block in bytes, limited to 2**47-1.
FORWARD_FREE_LINK: Offset in bytes to next free block.
BACKWARD LINK: Offset to prev. block (alloc. or free).
FORWARD_LINK: Offset to next block (alloc. or free).

Allocated Block Format:

S=BLOCK STATUS: Set to used i~ this case.
Remai~ing fields are as described above.

Free Chain Header Format:

S=BLOCK_STATUS: Set to avail.
SIZE: Size of heap initially
FORWARD_FREE_LINK: Set to 24

c200env

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

22.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
22.7.4.6 RESTRICTIONS

22.7.4.6 RESTRICTIONS

(1) Allocation occurs on a word boundary. If other
boundary is desired, set alignment_base to
alignment.

than
the

22-35

86/09/01
REV: I

a word
desired

(2) If a Free is done referencing a heap after a RESET of that heap
(and before the appropriate ALLOCATE), the results are
undefined.

(3) Specification of a very large alignment_base value may result
in no block being allocated even in an empty heap and the value
NIL returned.

(4) If any block header information is altered by the user, further
results are undefined when allocating or freeing in that heap.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

23.0 PROCEDURE INTERFACE CONVENTIONS

23.0 PROCEDURE INTERFACE CONVENTIONS

23.1 INTRODUCTION

23-1

86/09/03
REV: I

The purpose of this section is to describe the conventions that
should generally be used by designers of procedural interfaces.

23.2 PURPOSE

The purpose of the following conventions is to achieve a software
system which exhibits the beneficial characteristics of being
understandable, reliable, efficient, maintainable, etc.

23.3 GENERAL PHILOSPHY

.
~ Select simple straightforward interfaces. Complex interfaces,

those whose description contain 'and', 'or', and conditional
clauses, impair understanding of the function. If there is not an
evident choice between a single complex interface and multiple
simple interfaces, choose the simple interfaces.

- A single interface encompassing multiple
which cannot be performed in conjunction
unduly increases validation overhead. A
each intrinsic function is preferred.

intrinsic functions,
with one another,

simple interface for

- If the intrinsic functions encompassed by a single interface
require different degrees of user privilege, each intrinsic
function should be a single simple interface.

- The combination of multiple intrinsic functions into a single
interface is practical when the functions can logically be
performed in conjuction with one another.

o Input parameters should be validated early in the processing when
the correlation between the potential error and the actual
parameter is readily identifiable. This aids in ensuring that
diagnostics accurately reflect the cause of the error.

o Wherever feasible, delegate the error prognosis to the requestor
(i.e., return control to the requestor with accurate information
when an error is detected).

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

23-2

86/09/03
REV: I

23.0 PROCEDURE INTERFACE CONVENTIONS
23.3 GENERAL PHILOSPHY

0 Ref rain from exposing internal structures or concepts via
externalized interfaces. Before externalizing internal str·uctures
or concepts rate the probability of change and the user
consequences (re-code, re-compilation, etc.) if in fact the
externalization changes.

23.3.1 INPUT PARAMETER CONVENTIONS

Input parameters in the following conventions
parameters in the XREF procedure declaration.

o Declare all input parameters to be value parameters.

are formal

- If for any reason input parameters are declared as reference
parameters, the actual parameters must be moved to local
automatic variables prior to validity check and subsequent
usage. Further, all input parameters declared as reference
parameters must be moved before any validation or usage occurs.

o All input parameters must be checked for validity with explicit
language statements prior to use. In fact all input parameters
should be validated before any parameter is use~

o Input parameters which specify
should be discrete parameters
record).

subfunction or function option
(i.e., should not be a field of a

23.3.2 PARAMETER TYPING - CYBIL USAGE

Parameter types are declared in terms of the CYBIL pre-defined
types or type identifiers which resolve to the pre-defined types.

o The first inclination should be to declare parameter types as type
identifiers, declaring their ultimate types with TYPE declarations.

- The language and
array, and record
identifiers.

general ease of use dictates that ordinal,
parameter types be declared as type

- For parameter types other than POINTER · and CELL, before
selecting the pre-defined types consider the following: 1) if
the· concept of the parameter is used by more than one external
interface, use a type identifier; 2) if the parameter type has
any significant probability of change, use a type identifier;
and 3) if the parameter identifier cannot accurately convey the

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

23.0 PROCEDURE INTERFACE CONVENTIONS
23.3.2 PARAMETER TYPING - CYBIL USAGE

23-3

86/09/03
REV: I

purpose and intent, use a supportive type identifier.

o Ordinal or BOOLEAN parameter types are pref erred over INTEGER or
integer subrange when declaring subfunction or option parameters.
If the scope of a BOOLEAN parameter type has any significant
probability of exceeding binary, that parameter type should be
declared as an ordinal type.

o Take advantage of the self documenting aspect of ordinals by using
descriptive ordinal type identifiers and ordinal constant
identifiers on parameters.

o An ordinal type should be consistent within itself, that is, there
should be an evident relationship among the ordinal type identifier
and the ordinal constant identifiers.

o An ordinal type should support only one conc~pt.

o Before utilizing an ordinal subrange_ in an interface, consider
defining a new ordinal type. If an ordinal subrange is the
appropriate choice, declare that subrange as a type identifier.

o Integer subrange is preferred over INTEGER when declaring numeric
parameters. This improves the natural type checking provided by
the CYBIL language. Further, the integer subrange should be
declared as a type identifier and the bounds of the subrange should
be-specified with descriptive constant (CONST) declarations. The
low bounds, if zero or one, need not be specified with constant
declarations.

o Use a constant (CONST) declaration to specify length of string type
parameters.

o SET type provides a mechanism by which multiple subfunctions or
options may be discreetly specified with a single parameter. This
use of set type is pref erred over the use of codes each of which
specifies a combination of subfunctions or options.

o For adaptable STRING formal parameters include the adaptable string
bound in the formal parameter definition.

o ARRAY type parameters will provide a convenient, useful, efficient
interface in the bounds of the convention objectives if the
following criteria is achieved

- The function can be logically performed on multiple arguments
of the same type (array components) with one request; or the

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

23-4

86/09/03
REV: I

23.0 PROCEDURE INTERFACE CONVENTIONS
23.3.2 PARAMETER TYPING - CYBIL USAGE

function can logically generate multiple values of the same
type with one request.

o RECORD type parameters provide a convenient, useful interface in
the bounds of the convention objectives if the record can be
thought of (in the user's sense) as a single unified entity (i.e.,
no field of the record has particular significance in absence of
any other field). If a field does not meet this criteria, it
should be a discrete parameter.

- A record parameter type will simplify interfaces and be
convenient when the record is also a parameter of other
external interface procedures and does not require user
initialization or manipulation of contents - the user need only
be concerned with the concept of the parameter, its structure
and contents are transparent.

- Each field should have an evident consistent relationship with
the other fields of the record. Merely being parameters of a
function does not establish the unified relationship.

- If a field by itself has particular significance, that field
should be a discrete parameter. Fields which are subfunction
or option parameters to a function have such significance and
should be discrete parameters.

- A record type parameter should not contain fields which are
superfluous to the execution of a function. Each field of an
input parameter record should be essential to the execution of
the function (i.e., each field should be a required argument).
Each field of an output parameter record should contain a value
returned by the function.

- Record type parameters may contain superfluous fields if the
fields are present for symmetry with other functions
supporting the same concept. Use of this direction to
justify superfluous fields should be minimized - superfluous
fields will impair user understanding and result in excessive
re-work at maintenance and extension time.

- A record type parameter should be solely an input parameter or
solely an output parameter (i.e., a record should not contain
some fields which are input parameters and other fields which
are output parameters).

o Input parameters should not
internal objects - validation

be pointers (CYBIL pointer type) to
of the pointer object would be

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

23.0 PROCEDURE INTERFACE CONVENTIONS
23.3.2 PARAMETER TYPING - CYBIL USAGE

virtually impossible.

23-5

86/09/03
REV: I

o Pointers to internal objects (output parameters of CYBIL pointer
type) must not be returned to the user - unnecessary exposure of
internal data will result if such pointers are returned.

o Pointer type formal parameters should be declared only when the
pointer object of the actual parameter can take one of several
types (i.e., the pointer object type is not known at compile-time,
but is resolved at execution-time). The formal parameter pointer
type should ultimately resolve to 'tCELL'.

o PACKED structures, adaptable types, and BOUND variant records have
some applicability in external interfaces, but their use should be
the exception rather than the norm.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

24.0 PROGRAM LIBRARY CONVENTIONS

24.0 PROGRAM LIBRARY CONVENTIONS

24.1 DECK NAMING CONVENTIONS

24-1

86/09/03
REV: I

For a detailed discussion of the deck naming conventions the
reader is referred to the Cl80 System Interface Standard. The
section titled Systemwide Conventions has considerable discussion of
naming conventions, product identifiers and classes of names.

When converting fron the Cl70 source management facilities to the
C180 source code utility (SCU) all XREF declarations, documentation
headers and module decks can be renamed. The new deck name can be
expanded to a full name (up to 31 characters) of the item contained
in the deck.

24.2 COMMON DECK USAGE

Common decks are restricted to four classes of usage:

- XREF declarations to be used by modules accessing procedures or
variables defined in another module.

- TYPE and CONST declarations to be shared by _modules dealing
with the same data types or constants.

- Documentation header text describing an interface. A common
deck of this type must be called from the module which contains
the XDCL definition of the interface being described.

- PROCEDURE or FUNCTION declarations which may.be expanded INLINE
as part of calling modules; as opposed to being called through
an XDCL/XREF interface. INLINE procedures OR functions may
occasionally be the most practical way to implement a "module"
(in the Structured Design sense) due to performance and/or
scope considerations. All common decks of this type must be
documented accordingly. A PROCEDURE or FUNCTION implemented in
this fashion must not be dependent on the static link, i.e. it
must be completely self-contained.

24.3 COMMON DECK CONTENT

CDC PRIVATE

24-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

24.0 PROGRAM LIBRARY CONVENTIONS
24.3.1 PROGRAM INTERFACE DOCUMENTATION HEADER

24.3.1 PROGRAM INTERFACE DOCUMENTATION HEADER

24.3.1.1 Procedures and Functions

The PROCEDURE or FUNCTION documentation header consists of CYBIL
comments which describe the procedure, its calling sequence and
parameters. The general format for the procedure documentation
header is as follows:

123456789012345 •.•
1) {
2) { The purpose of this request is to ..•
3) { whatever this request does.
4) {
5) {
6) {
7) {
8) {
9) {

10) {
11) {
12) {
13) {

X.XP$REQUEST NAME (FIRST_PARAM,
LAST_ P ARAM)

... '

FIRST PARAH: (input) This parameter specifies
;hatever this parameter specifies.

LAST PARAH: (output) This parameter specifies
-whatever this parameter specifies.

where:
line 1: blank comment line
line 2: indent 4: describe the purpose of the request
line 3: indent 2: for purpose continuation, if necessary
line 4: blank comment line
line 5: indent 8: request calling sequence; use all capital

letters; parameter names must be the same and must be in
the same order as in the XREFed procedure declaration

line 6: indent 10 for parameter continuation if necessary
line 7: blank comment line
line 8: indent 2: describe first parameter; specify whether it

is input, input-output, or output
line 9: indent 8: for parameter description continuation, if

necessary
line 10: blank comment line separates each parameter
line 13: blank comment line

Also, when listing parameters one should strive to list all input
parameters first followed by input-output parameters followed by all
output parameters unless there is an obvious symmetry with other
requests that would be violated. The status parameter, if p~esent
should always be the last parameter on every request.

CDC PRIVATE

24-3
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

24.0 PROGRAM LIBRARY CONVENTIONS
24.3.1.2 Data Structures

24.3.1.2 Data Structures

Each data structure will include a documentation header consisting
of CYBIL comments which describe what the structure is for and how it
is used. The general format is as described for the "purpose"
section of the procedure header.

24.3.2 XREF DECLARATION COMMON DECK

The XREF declaration common deck contains ~ CYBIL XREF declaration
followed by a *copyc to all of the TYPE or CONST declaration common
decks necessary to compile this declaration in isolation (assume a
CYBIL module only calls one XREF declaration common deck).

It is very important that all XREF declaration common
perform *callc's · (instead of *call) to necessary decks.
prevents duplicate definitions of identifiers in the caller's
module.

C170 Example:

AMXREWD
COMMON

PROCEDURE [XREF] amp$rewind(f ile identifier:
amt$file- identifier; -
wait:ostSwait;

VAR status:ost$status);

?? PUSH (LIST :=OFF, LISTEXT := ON) ??
,"callc amdfid
*callc osdwnw
*callc osds tat
?? POP ??

24.3.3 TYPE / CONST DECLARATION COMMON DECK

decks
This

CYBIL

The TYPE
and/or CONST
declaration
isolation.

I CONST declaration
declarations followed

common decks necessary

common deck contains CYBIL TYPE
by a *copyc to all of the

to compile this common deck in

It is very important that the declaration
*copyc's (instead of *copy) to common decks.

common decks perform
This prevents duplicate

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

24.0 PROGRAM LIBRARY CONVENTIONS
24.3.3 TYPE / CONST DECLARATION COMMON DECK

definitions of identifiers in the caller's CYBIL module.

C180 Example:

AMT$LOCAL_FILE NAME

TYPE
amt$local_file name ost$name;

*copyc ost$name

24.3.4 EXAMPLE DECK

24-4

86/09/03
REV: I

In order to be· certain that interfaces provided for the end-user
or other functional areas are specified accurately and consistently,
each contributor should produce an example compilation unit that
includes references to all type and procedure declarations he/she is
responsible for and an example of the usage of each_ interface. By
compiling all declarations, the checking logic of the compilers will
aid.accuracy and consistency; by trying examples of the interface,
the contributor will gain a feeling for the efficacy of the
interface.

CDC PRIVATE

25-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

25.0 CYBIL CODING CONVENTIONS

25.0 CYBIL CODING CONVENTIONS

This document specifies the CYBIL coding conventions suggested for
the CYBIL users. There are several general aims of coding
conventions which underlie all of the specific proposals that follow:

1. There are a variety of routine, mundane aspects associated with
writing programs: a set of coding conventions remove from the
programmer trivial decisions relating to module format, name
generation, etc. thereby leaving more time to concentrate on
important matters.

2. The primary purpose of documentation and the readability of
source code is to help someone other than the developer
understand what is going on. Code should have appropriate
commentary, i.e. comments that indicate the function being
performed by the line(s) of code and not what the statement
performs. Don't just echo the code· with comments; make every
comment count.

3. During the lifetime of a large software product like an operating
system or a compiler, the average developer will come in contact
with a large number of modules written by and maintained by many
other programmers. A consistent set of coding conventions helps
the programmer "feel at home" with a new module and therefore is
able to begin doing useful work sooner.

4. To as great an extent as reasonable, all coding conventions
should be generated and reinforced by automated methods.

S. Source code is the ultimate documentation of any program,
particularly a program written in a higher level language such as
CYBIL. Therefore, in all CYBIL programming, a consistent
emphasis should be placed on producing lucid, readable,
self-documenting code.

6. All commentary in the source code should be written so that it:
a) provides information not readily apparent from reading the
code, b) is of a sufficiently algorithmic nature, c) is at a
consistent level of detail, and d) when discussing variables,
uses the actual variable name.

CDC PRIVATE

\

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

25.0 CYBIL CODING CONVENTIONS
25.1 USAGE OF A SOURCE CODE FORMATTER

25.1 USAGE OF A SOURCE CODE FORMATTER

25-2

86/09/03
REV: I

The major software tool for generating and enforcing CYBIL coding
conventions should be the source code formatter (FORMAT_CYBIL_SOURCE,
FORCS nee: CYBFORM).

25.2 USE OF CYBIL

1. Use the straight forward features of the language.

2. Use library routines and built-in functions where ever possible.

3. Keep portability in mind, avoid machine dependent code.

4. Choose a data representation that makes the program simp"le.

5. Use block structure to articulate program structure: a declaration
should alw.ays .be declared at the "lowest" (or most local) level
possible.

6. Avoid the use of static variables and the static link. In general
a procedure should only reference its own arguments and its own
local variables.

7. In general, interfaces between modules should be procedures or
functions, not XDCL/XREF variables. This will lower coupling
between separate modules and make it easier to modify one module
independently of another.

8. Always use label names that describe the process being performed
by the structured statement to which the label refers.

9. Always repeat the label in the terminating statement of a
structured statement (the formatter will do this): e.g.:

/search_symbol_table/
FOR i := 1 TO 10 DO

FOREND /search_symbol_table/;

10. In general avoid the use of type INTEGER; few variables require
subranges that large. Using proper subranges improves the
integrity of your program.

11. In declarations of procedure parameter lists, always separate each
formal parameter with a semicolon marking each with a VAR (for

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

25.0 CYBIL CODING CONVENTIONS
25.2 USE OF CYBIL

25-3

86/09/03
REV: I

reference parameters) or "absence of VAR" (for value parameters)
as appropriate.

12. Always declare all input parameters before all output parameters
unless there is an obvious symmetry that would be disturbed.

13. Cover all end cases. CASE statements should cover all variants,
with ELSE being used to cover "unplanned" cases.

14. It should be clear why the branch points in the code exist. This
is best done through proper use of meaningful names, or if that is
not possible, through documentation. This includes ELSE & ELSEIF
clauses.

15. Avoid unnecessary branch points.

16. Procedures and functions should be used for two purposes: 1)
"subroutines", 2) to "structure" the program thereby making the
.function of the program obvious at a high level.

17. Use recursive procedures for recursively-defined data structures.

18. Arguments to procedures should also be used for two purposes: 1)
"subroutine parameters", 2) as documentation which allows the
reader to see all data referenced by the procedure by looking at
the procedure call statement. In the latter ~ase, the formal and
actual parameter names should be the same.

19. The comments should precede the code which it describes.

20. Don't comment bad code; rewrite it.

21. Trailing comment delimiter of '}' should be used only when
required: i.e., usage of end-of-line as a comment delimiter is
encouraged.

22. In compound arithmetic, conditional or relational expressions, use
parenthesis to denote precedence. Do not depend on the language
operator precedence rules.

23. If a logical expression is hard to understand, transforming it
will of ten make it simplier to understand.

24. Make exhaustive decisions (i.e. IF statement expressions) and
order for machine efficiency.

25. Avoid literal constants, it is better to quote the literal within

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

25.0 CYBIL CODING CONVENTIONS
25.2 USE OF CYBIL

25-4

86/09/03
REV: I

the CONSTant declaration and then reference it symbolically.

26. Don't use a variable for more than one purpose.

27. Avoid language tricks. Don't get sucked into the
"microeff iciency" syndrome. The simplier code is of ten the more
efficient. After the system works, time critical modules can be
optimized as necessary.

28. Avoid using the #LOC function as it can have a detrimental effect
on code generation efficiency and maintainability.

29. Limit the use of the CYCLE, EXIT and RETURN statements as it makes
the code harder to understand for subsequent readers.

25.3 USE OF THE ENGLISH LANGUAGE

The key to making programs readable is the usage of meaningful,
non-cryptic English names for all CYBIL constructs; specifically:

L When naming type
fields, consider
declaration; e.g.:

identifiers and record fields, particularly
the way the name will look in the code, not the

TYPE
program_descriptor ·= record

load_map: load_map_options,
re_cend,
load map options = record

file name : file name,
opti~ns : (all,n~thing),

recend;
VAR

my_program : program_descriptor;

my_program.load_map.file_name := 'LOADMAP';

2. Meaningful module, procedure, function and variable names should
be used.

3. Similar variable names should not be used as they will cause
confusion.

4. Procedure and function names should describe the process the
procedure performs.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

25.0 CYBIL CODING CONVENTIONS
25.3 USE OF THE ENGLISH LANGUAGE

25-5

86/09/03
REV: I

5. Labels should always describe the function being performed by· the
structured statement to which they refer; e.g.:

/search symbol table/ {instead of}
/11/ - -

6. Labels are a powerful documentary aide and
encouraged. However, they are not an excuse for
unstructured code.

their usage is
writing sloppy,

7. Booleans should always describe the TRUE condition; e.g.:

IF file_is_open THEN {instead of}

IF file_switch THEN

25.4 CYBIL NAMING CONVENTION

It cannot be emphasized too strongly that names should be chosen
for how they will read in the code body of a procedure, not how they
look in the data declaration. This is particularly true of variables
and field names in type declarations.

The system naming convention for the user interfaces is described
in the System Interface Standard (SIS). That is also the convention
for linkage (entry-point or external) names. However, -local names
should use no convention other than meaningful English. If it is
impractical to describe the full meaning of a variable through a
meaningful name, then a descriptive comment is required.

25.5 MODULE AND PROCEDURE DOCUMENTATION

Standard documentation for each module and each XDCLed procedure
or function within a module should be provided. The procedure
documentation is also encouraged for local procedures and functions
as well. Care should be taken to m1n1m1ze commentary becoming
outdated as changes are made to the code.

MODULE <module identifier>;

{ PURPOSE:
{ This should contain the purpose of the module and the
{ reasons for grouping these declarations in the module rather
{ than the purpose of each procedure.

CDC PRIVATE

25-6
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

25.0 CYBIL CODING CONVENTIONS
25.5 MODULE AND PROCEDURE DOCUMENTATION

{ DESIGN:
{ This should contain an overview of the module design; i.e.,
{ an outline of how it works in general terms. Usage of
{ specific variables or procedure names is discouraged in this
{ description.
{ NOTES:
{ This should contain information of interest to the
{ user or maintainer. Including items such as: exceptions,
{ special cases, assumptions, dependencies, related documents,
{ etc.

<procedure or function declaration>;

{ PURPOSE:
{ This should describe the process the procedure or
{ function performs rather than the method used.
{ DESIGN:
{ This should contain an overview of the procedures design;
{ i.e., a desc·ription of how it works in specific terms.
{ Usage of specif_ic variables or proc;edure names is discouraged
{ in this description.
{ NOTES:
{ This should contain information of interest to the
{ user or maintainer. Including items such as: exceptions,
{ special cases, assumptions, dependencies, related documents,
{ exit conditions, etc.
{ GLOBAL VARIABLES:
{ This should contain a list of the global variables which are
{ referenced by the procedure.

25.6 TITLE PRAGMATS

Using the TITLE pragmat can make the code more readable and speed
the finding of certain functions with a compilation unit.

Each module should be titled in the following way:

<major product identifier>[:<component identifier> •••]
<sp><sp>[JXDCLl]<procedure identifier>l<section identifier>

for example:
NOS/VE : task establisher

[XDCL] pmp$establish_task

cybilcv

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

25.0 CYBIL CODING CONVENTIONS
25.7 COMMENTING CONVENTIONS AND GUIDELINES

25.7 COMMENTING CONVENTIONS AND GUIDELINES

25-7

86/09/03
REV: I

In general, comments should be standalone blocks describing why or
what a series of CYBIL statements are doing. Care should be taken
not to use comments that will become outdated by detailed changes to
the code. The basic concept behind comments should be to provide
nonredundant information. Comments should be preceded and followed
by a blank line and start in the first available source character on
the line. Again, remember that the purpose of comments is to help
someone other than the original developer of the module understand
what the module is doing.

25.8 PROCEDURE AND DATA ATTRIBUTE COMMENT CONVENTIONS

Comments should also be used to convey software or system
attributes which are not discernable from CYBIL declarations. These
comments should be concise and abut CYBIL declaration constructs
rather th~n being standalone blocks.

cybilcv

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

25.0 CYBIL CODING CONVENTIONS
25.9 CYBIL CODE INSPECTION CHECKLIST

25.9 CYBIL CODE INSPECTION CHECKLIST

25-8

86/09/03
REV: I

When doing code inspections on CYBIL source code the following
checklist may prove to be helpful. Comments, suggestions and
additions to this inspection checklist are welcome and should be sent
to Harvey Wohlwend - ARH280.

25.9.1 GENERAL GUIDELINES

+-+

I I Is the function being performed expressed in plain language in the
implemented code?

+-+
+-+
I I Is the product presented in an overall neat appearance?
+-+
+-+
I I Have structured programming techniques been used?
+-+
+-+

I I
+-+
+-+

I I
+-+
+-+

Does each CASE statement have.all
quoted?

Has the product
formatter?

been formatted

variants covered

with the· CYBIL

I I Does the product match the CYBIL coding conventions?
+-+
+-+

or an

source

ELSE

code

I I Does the implementation conform to
standards/conventions? (ANSI, ISO, SIS, etc.)

the necessary

+-+
+-+
I I Are the module and procedure documentation blocks completed?
+-+
+-+

I I Are comments useful or are they simply alibis for poor coding?
+-+
+-+
I I Do the comments and the code agree?
+-+
+-+
I I Are meaningful names used that won't be confused?
+-+

CDC PRIVATE

25-9
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

25.0 CYBIL CODING CONVENTIONS
25.9.1 GENERAL GUIDELINES

+-+
I I Have any constraints been listed in the NOTES (as needed)?
+-+
+-+

Has the report
reviewed? If
reimplementing.

from
the

the Analyze CYBIL Complexity tool been
Discriminant- val~e is HIGH consider

+-+
+-+

I I
Has any reusable code been identified &
Organization?

delivered to the Tools

+-+
+-+
j I Is code from the reusable code library used wherever possible?
+-+
+-+

I I
Are there
blocks?

repeated code segments, whether within or between

+-+
+-+

I I
+-+
+-+

Is there a one-to-one relationship between
the design & modules implemented?

modules indicated in

Is there a one-to-one relationship between intermodular
connections indicated in the design.- and intermodular references
implemented?

+-+
+-+
I I Is everything in the design implemented?
+-+
+-+
I I Is there anything in the code that is not in the design?
+-+
+-+
I I Has this been built to be testable?
+-+

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

25.0 CYBIL CODING CONVENTIONS
25.9.2 ALGORITHM VERIFICATION

25.9.2 ALGORITHM VERIFICATION

+-+
I I Are all variables initialized before use?
+-+
+-+
I I Any variables or parameters which are not used?
+-+
+-+
I I Is the branch taken the correct way on equality tests?
+-+
+-+
I I Any unreachable code segments?
+-+
+-+
I I Does every data structure result in a control statement?
+-+

25.9.3 MODULE DOCUMENTATION

+-+
I I Are the module documentation guidelines followed?
+-+

25.9.4 PROCEDURE OR FUNCTION DOCUMENTATION

+-+
I I Are the procedure documentation guidelines followed?
+-+
+-+
I I Are the exit conditions listed in the DESIGN description?
+-+
+-+
I I Does the documentation precede the code?
+-+
+-+
I I Any obscure code annotated?
+-+

25-10

86/09/03
REV: I

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

26.0 EFFICIENCIES

26.0 EFFICIENCIES

. 26-1

86/09/03
REV: I

This section lists a group of programming tips to help the user
make better utilization of the CYBIL development environment. As
such, it is not an exhaustive list and will be added to as additional
hints become known. The CYBIL Project would appreciate any other
information which may assist the usage of CYBIL.

These ideas are guidelines, they should be followed only when
clarity of code is not compromised.

26.1 GENERAL CONSIDERATIONS

o Make it right before you make it faster.

o Make it fail-safe before you make it faster.

o Make it clear before you make it faster.

o Keep it simple to make it faster. ·

o Don't diddle code to make it faster; find a better algorithm.

o It is best to measure your program before making "efficiency"
changes.

o Be sure to check the default values for compile options, use the
correct values for your situation. For performance runs select
optimization when possible. Avoid selecting stylized code for
debug since it will generate extra code and slow the program's
execution. Also the presence of range checking code can be
expensive and the presence of debug & line tables for debugging
purposes will slow the loading process.

26.2 SOURCE LEVEL EFFICIENCIES

26.2.1 GENERAL

o Range checking code requires additional storage space and is time
consuming. One can eliminate all generated range checking code by
setting "RC=NONE" or "CHK=O" on the call statement (or
??SET(CHKRNG:=OFF)?? in the source program). Setting CHK=O on
the call statement, while debugging programs, is not recommended

CDC PRIVATE

26-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook
86/09/03

REV: I

26.0 EFFICIENCIES
26.2.1 GENERAL

since legitimate program errors may not be diagnosed. A better
approach is to request range checking on the call statement (or in
the source program) and then min1m1ze, using good programming
practice, the amount of checking code generated. Consider the
following program segment:

TYPE
a= o •• 10;

VAR
index,y: a,
x: array [a] of integer;

y := 5;
index := y;
x [index] : = 3 ;

Since variables "index" and "y" are defined to be of type "a" (the
subrange 0 •. 10) the assignment "index :•y;" will not (and need
not) be checked for proper range even if range checking is
requested. Similarly; the statement "x[inde~~ :=3;" will not (and
need not) contain range checking code. If variables "y" and
"index" were· declared to be INTEGER (or some type other than the
subrange 0 •• 10) range checking code would be required.

o Any timed executions should be run after the CYBIL code has been
built with checking code turned off.

0 There is a significant amount of overhead associated with any
procedure call. If a procedure is being called in a looping
construct, it may pay to call the procedure once and put the loop
tests inside the called procedure.

o References to variables via the static chain in nested procedures
cause an overhead associated with that reference. In general, a
procedure should only reference static variables, arguments and
its own automatic variables.

0

0

Assignment of records is done' with one large move, while record
comparison is done field by field. Therefore, all other things
being equal, it is best for performance reasons, to organize
fields within records with the most likely non-conforming fields
first.

Move structures rather
require structuring the
purpose.

than lots of elementary items.
elements together especially

This may
for this

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

26-3

86/09/03
REV: I

26.0 EFFICIENCIES
26.2.1 GENERAL

o Reference to adaptable structures are slower than references to
fixed structures because the adaptable has a descriptor field
which must be accessed.

0

0

0

Quoting a constant for the <lower bound
array will result in more efficient
efficient <lower bound spec> is 0 (zero).

spec>
object

on an
code.

adaptable
The most

References to fields within a record require no execution penalty.

Repeated references to complex~ata ~tructured (via pointers or
indexing operations) may, in certain circumstances, be made more
efficient by pointing a local pointer at the structure and use it
to replace the complex references.

o For adaptable strings include the adaptable string bound whenever
possible.

o Inappropriate use of the null string facility can be an expensive
NOOP. •·

o Ini~ialization of static variables incurs no run time overhead.

o If a record is being initialized with constants at run time it is
often more efficient to define a statically initialized variable
of the same type and do record assignment.

0 A packed structure will generally require less space at the
possible cost of greater overhead associated with access to its
components. This is because elements of packed structures are not
guaranteed to lie on addressable memory units.

o When organizing data within a packed structure it is more space
efficient to group bit aligned elements together.

o The STRING data type is a more efficient declaration than a PACKED
ARRAY OF CHAR.

o When considering alternative data structures for homogeneous data
the user should first consider ARRAYs, then SEQuences and finally
HEAPs.

o When considering alternatives between the HEAP and SEQuence
storage types, the following should be considered. The HEAP is
the more inefficient mechanism requiring the greatest overhead in
terms of space requirements and the more execution overhead.
SEQuences are the more efficient in terms of both storage and

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

26.0 EFFICIENCIES
26.2.l GENERAL

execution overhead.

26-4

86/09/03
REV: I

o The NEXT and RESET statements as used on sequences and user heaps
are implemented as inline code. Whereas the implementation for
ALLOCATE and FREE is a procedure call to run time library
routines.

o Space in a heap is consumed only when an ALLOCATE statement is
executed. In addition to the space ALLOCATEed by the CYBIL
program, a header is added to maintain certain chaining
information. For this reason, ALLOCATEing small types incurs a
large percentage overhead.

o Code for the PUSH statement is generated inline and, as such, is
considerably faster than an ALLOCATE and FREE combination.

o For efficiency and maintainability reasons the use of #LOC should
be avoided.

o. When a definition contains a number of 'flags' or attributes, the
following should·9e considered when choosing between BOOLEANs or a
SET type:

o If the record is not packed the SET will reduce the size of the
definition

o Any sub-set of the attributes of a SET can be tested at once.
o If a single element test is desired an unpacked BOOLEAN is

slightly more efficient than a SET.

o Usage of boolean expressions is more efficient than conditional
statements. For example, use:

equality·= (a=b);

Do not use:

IF a=b THEN
equality := TRUE;

ELSE
equality := FALSE;

!FEND;

o Rather than coding long IF sequences a CASE statement should be
considered when using a proper selector.

o Compound boolean expressions should be ordered such that the first
condition is the one which has the highest probability of

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

26-5

86/09/03
REV: I

26.0 EFFICIENCIES
26.2.1 GENERAL

0

terminating the condition evaluation for the nominal case.

Compile
produces
in the

time evaluation
better object

of expressions involving constants
code if all constants (at the same level)

grouped together. For example, the . I _ expression are
expression:

x := 5 * y * c * 2 ;
~!""~, ""~ "'4~0 l'IM>Vl.1 C.r>t.4~
15 ~~z-e ~ °""' cgw./t,..J

will produce object
variables (Y and C).

code using two constants (5 and 2) and two
If the expression is rewritten:

x := s * 2 * Y * c;

with the constants together, the compiler (at compile time) will
combine the expression "5 * 2" into the constant "10" and produce
object code to evaluate the expression using only one constant
(the ten) and two variables (Y and C).

o When doing divide by a power of two on a positive integer subrange
a shift~ instruction can be generated. Because a shift instruction
tends to be considerably faster than a divide instruction it is a
benefit to define positive integer subranges.

o Certain conversion functions (i.e.
require no execution time overhead.

$INTEGER, $CHAR, etc.)

o The code generated for STRINGREP is a call to a run time library
routine. Using STRINGREP to concatenate substrings is very
inefficient, when substring assignment will fulfill the same
purpose.

o A file should not be opened before it is needed. As soon as a
file is no longer needed, it should be closed. An overhead is
involved in opening & closing files. Therefore, unnecessary opens
& closes should be avoided.

26.2.2 CC EFFICIENCIES

o A copy is currently being made of all value parameters. This
implementation is subject to change.

0 Pointers to strings
general, begin at
created explicitly
supplying a string

are inefficient because the string may, in
any character boundary. These pointers may be
by assignment statements or implicitly by
as an actual parameter for a call by reference

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

26.0 EFFICIENCIES
26.2.2·cc EFFICIENCIES

26-6

86/09/03
REV: I

formal parameter. If possible, align strings so that they begin
·on a word boundary.

o Run time routines are called for the string operations of
assignment & comparison when:

1) Neither string is aligned or,
2) Lengths are known and unequal or,
3) Either or both lengths are unknown at compile time.

Otherwise the faster inline code is generated.

o It is possible to modify the buffer size used by the CYBIL I/O
package. For an explanation see the ERS for CYBIL I/0 (ARH2739).
If there are very few accesses to a file, it may be best to select
a small buffer, since overall field length will be reduced,
thereby increasing total system throughput by decreasing swap
rates, allowing more jobs to run concurrently, etc.

26.2.3 CI/II EFFICIENCIES

o Use ANALYZE PROGRAM DYNAMICS and MEASURE PROGRAM EXECUTION to do a
detailed st~dy of -your program's efficiency -with respect to
execution, page faults and module connectivity. Both are
described in the SCL Object Code Management manual.

o Programs should be bound to improve the overall load and execution
time. This can be done via ANALYZE_PROGRAM_DYNAMICS,
MEASURE_PROGRAM_EXECUTION utility, or either of the Object Library
Generator sub.commands BIND_MODULE or CREATE_MODULE.

o For large programs with a great deal of static data, prelinking
the program may be helpful.

o The NOS/VE command DISPLAY_SYSTEM_DATA can be used to gather
overall system information during your program execution during
block time.

o There is also a statistic facility that can be used to assist in
data collection and reporting. The ACTIVATE LOCAL STATISTICS
command, the ACTIVATE STATISTICS command and the
DISPLAY_BINARY_LOG utility- are the interesting functions here. 2
They are described in the System Performance & Maintenance Manual.

o The adaptable string bound construct should be quoted whenever
possible to give the compiler a clue as to the maximum length.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

26-7

86/09/03
REV: I

26.0 EFFICIENCIES
26.2.3 CI/II EFFICIENCIES

0

0

This will often result in more efficient code being generated for
adaptable strings.

References to XDCL variables and variables declared within a

SECTION will be made via the binding section _a_n-d, ___ co-n--s- e-qu_e-.ntly, a-n.;f overhead is associated with the first referenc~. , . -
41,l .:•·{;, t' (!; ~···~'."< &-:·#-•If'. (i-J"-~f;~-·ft-(

The code generator does not currently move invaf iant code out of
loops. Consequently, access to variables through the binding
section within a loop would be more efficient if the initial
access to the variable is outside the loop.

o The reach of the load & store instructions on the C180 is limited
to 2**16. When using large variables the offset may become
greater than this threshold and result in an extra instruction
being generated to handle the large offset. This would indicate
organizing the more frequently used variables first in very large
user stacks. (....e., g· i!e-i?'4.(_~~~ ~.It_ filtJ··t· ~XI<-)

o For additional discussion of performance the reader is encouraged
to reference the NOS/VE Analysis usage manual.

26.2.4 CM/IM, CU/IU & CA/AA EFFICIENCIES

o Subranges should never be any larger than necessary. Having
subranges larger than necessary negates CYBIL's range checking,
and generally causes less efficient code. In particular,
definitions of symbols such as int16 and uintl6, which define
16-bit signed or 16-bit unsigned integer subranges should be
avoided. These tend to cause register extend operations when used '
in arithmetic operations. For example, if 2 16-bit values are
added, the values must be extended to 32 bits before adding them
in order to guarantee a correct result.

26.2.5 CP EFFICIENCIES

o The UCSD p-system does not have an exclusive or instruction.
Therefore, s~t references using the XOR operator generates a lot
of code.

o Using long integer subranges results in less efficient code.

o The most commonly used variables should be entered first in the
list of variables for a procedure. The first n variables in a
procedure are accessed by a 1 byte instruction, the others by 2

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

26.0 EFFICIENCIES
26.2.5 CP EFFICIENCIES

26-8

86/09/03
REV: I

bytes. Consequently large structures (i.e. arrays) should b~ the
last variables in the list.

o Using global variables in other modules should be avoided.

o Avoid FOR statements in favor of WHILE or REPEAT. They are faster
and produce less code.

o Use base 0 for arrays rather than 1. E.g. use "ARRAY [0 • • n-1
] " instead of "ARRAY [1 • • n] ".

26.2.6 CS/SS EFFICIENCIES

o A copy is currently being made of all value parameters. This
implementation is subject to change.

26.3 COMPILATION EFFICIENCIES

If compilation time is a factor, the following. items could be
considered as they do affect the compilation rate~

o Compiling source code with the sequence numbers provided by the
source management system slows the compilation process.

o The generation of information to interface to the symbolic
debuggers slows the compilation process.

o The generation of stylized code slows the compilation process.

o The generation of range checking code slows the compilation
process.

o The selection of listings slows the compilation process. This
includes the source listing, the cross reference listing, the
attribute listing and the object code listing.

o Generating a source listing with the generated code included is
slower than if just the source listing is being obtained.

o Actually, for the normal CYBIL user very little can be done to
improve the compilation rate. However, rest assure that
considerable effort has been expended to reduce the number of
recompilations necessary to produce a debugged program.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

27.0 IMPLEMENTATION LIMITATIONS

27.0 IMPLEMENTATION LIMITATIONS

27.1 GENERAL

27-1

86/09/03
REV: I

o Maximum number of lines in a single compilation unit is 65535.

o Maximum number of unique identifiers allowed in
compilation unit is 16383.

a single

o Maximum number of user defined procedures in a single compilation
unit is 999.

o Procedures can only be nested 255 levels deep.

o Maximum number of compile time variables used in conditional
compilations is limited to 1023.

o Maximum number of error messages printed per module is 2000.

o Maximum number of elements defined in a single ordinal list is
limited to 16384.

o Integer constants are restricted to 48 bits on the Cl70.

o Nested calls to inline . routines (procedures or functions) are
limited to 5 levels of nesting.

o Maximum number of stacked(PUSHed), toggle control pragmats is 25.

o Nested calls to INLINE routines are limited to 5 levels of
nesting.

27.2 CC LIMITATIONS

o Case selector values limited to less than 2**17.

o Pointer fields within initialized packed records must be aligned
for use within Cl70 capsules or overlay capsules.

o Packed arrays whose element size exceeds 2**17 bits gets a
subscript range error.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

27.0 IMPLEMENTATION LIMITATIONS
27.3 CI/II LIMITATIONS .

27.3 ·CI/II LIMITATIONS

27-2

86/09/03
REV: I

o Maximum number of lines in a single compilation unit is 32767 when
run time error checking is selected.

o Nesting level of structured statements is limited to 63 levels
deep.

o FOR statements can only be nested 15 levels deep.

o The statement FOR I := j OOWNTO LOWERVALUE (INTEGER) (or its
equivalent) will result in an arithmetic overflow if the proper
hardware traps are enabled.

o Procedures may only be nested 50 levels deep.

o Number .of parameters passed to an xrefed procedure is 127, while
an xrefed function is limited to 126.

o The reach of jump instructions is limited to 2**16 so the size of
compilation units should be appropriately controlled.

o The stack size of a single procedure is limited to 2**15 bytes.

o Long constants are not included in the debug symbol tables
produced.

27.4 CM/IM, CU/IU & CA/AA LIMITATIONS

o Maximum number of lines in a single compilation unit is 32767 when
run time error checking is selected.

o Nesting level of structured statements is limited to 63 levels
deep.

o FOR statements can only be nested 15 levels deep.

o Procedures may only be nested 50 levels deep.

o Number of parameters passed to an xrefed procedure is 127, while
an xrefed function is limited to 126.

o The reach of jump instructions is limited to 2**16 so the size of
a module should be appropriately controlled.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

27.0 IMPLEMENTATION LIMITATIONS
27.4 CM/IM, CU/IU & CA/AA LIMITATIONS

o The stack frame size is limited to 2**15 bytes.

27.5 CP LIMITATIONS

27-3

86/09/03
REV: I

o In general the size of arrays and strings should be limited to
less than 2'°'*15 bytes-.

o Maximum number of procedures in a single module is limited to 254.

o The maximum nesting level of procedures is 30.

o The use of long integer subranges is not allowed in the following
areas:

o Array subscripts,
o As the <first char> or as the <substring length> on any

string reference,
o As the selector on a case statement,
o As a actual parameter to a formal reference parameter of

tY.pe integer.
o As the control variable, starting value or ending value of

a FOR statement·.

o The result of a Stringrep operation on a floating point number is
limited to 6 digits.

27.6 CS/SS LIMITATIONS

o Array size limited to 2**32.

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

28.0 COMPILER AND SPECIFICATION DEVIATIONS

28.0 COMPILER AND SPECIFICATION DEVIATIONS

28-1

86/09/03
REV: I

This section is intended to provide sufficient detail to be able
to understand those features where the compiler implementation lags
the language specification.

28.1 GENERAL CYBIL IMPLEMENTATION DEVIATIONS

o Support adaptable arrays of zero dimension.
o Double Precision Floating Point (LONGREAL).
o RESET TO with a relative pointer.
o STRLENGTH of constant identifier.

28.2 CC DEVIATIONS

o NIL Relative Pointer value.
o #SPOIL intrinsic.
o #SEQ function.
o #SIZE of adaptable types.
o Run time checking on accessing f i~lds of variant records is not

supported.
o Relative Pointer Types.
o General Intrinsics.
o Partial condition evaluation on OR operator not supported.
o Library pragmat.
o Actual value parameters > 1 word must be addressable.

28.3 CI/II DEVIATIONS

o Run time checking on accessing fields of variant records is not
supported.

o If a non-local exit from an UNSAFE function is done, the function
result value is always undefined.

28.4 CM/IM & CU/IU DEVIATIONS

o NIL Relative Pointer value.
o #SPOIL intrinsic.
o #SEQ function.
o Run time checking on accessing fields of variant records is not

supported.
o Library pragmat.
o Single Precision Floating Point (REAL).

CDC PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL Handbook

28.0 COMPILER AND SPECIFICATION DEVIATIONS
28.5 CA/AA DEVIATIONS

28.5 CA/AA DEVIATIONS

o NIL Relative Pointer value.
o #SPOIL intrinsic.
o #SEQ function.

28-2

86/09/03
REV: I

o Run time checking on accessing fields of variant records is not
supported.

o If a non-local exit from an UNSAFE function is done, the function
result value is always undefined.

o Library pragmat.

28.6 CP DEVIATIONS

o NIL Relative Pointer value.
o #SPOIL intrinsic.
o Static initialization.
o PUSH statement is not supported.
o #SEQ function.
o #SIZE of adaptable types.
o Run time checking on acces.sing fields of variant records is not

supported.
o Relative Pointers.
o General Intrinsics.
o Library pragmat.
o Copies of adaptable value parameters are never made.

28.7 CS/SS DEVIATIONS

o NIL Relative Pointer value.
o Library pragmat.

CDC PRIVATE

