
CYBIL for NOS/VE
System Interface

Usage

@::?)
CONT~OL

DATA

60464115

CYBIL for NOS/VE
System Interface

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features
and parameters.

Publication Number 60464115

Manual History

Revision B reflects release of NOS/VE 1.1.l at PSR level 613. It was printed
July 1984.

Revision B removed the Procedure Declaration subsections of each CYBIL
procedure description. Each parameter's CYBIL type was taken from the
Procedure Declaration subsection and incorporated into the parameter's
description. Chapter 1 was rewritten to improve usability. The SLC
commands GENMT and GENPDTwere removed; also any access method
procedure commands (AMP) were removed, as the AM product is documented
in the CYBIL File Interface manual.

Because changes to this manual are extensive, individual changes are not
marked. This edition obsoletes all previous editions.

Previous
Revision

A

Revision B

System
Level

1.0.2 October 1983

Manual History 3/ 4

Contents

About This Manual 7 Task Communication 4-1

Audience 7 General Wait 4-1
Organization 8 Job-Local Queues 4-4
Conventions 9 Queue Information
Additional Related Retrieval. 4-12

Manuals 10 Queue Communication
Ordering Manuals 10 Example 4-16
Submitting Comments 10

Condition Processing 5-1
How to Use System

Interface Calls 1-1 System Condition
Detection 5-1

Using System Interface Condition Handling 5-4
Procedures 1-1

System Naming
Convention 1-10 Message Generation 6-1

Procedure Call Description Status Record
Format 1-12 Generation 6-1

Status Severity Check 6-7
Message Formatting 6-10

Program Services 2-1
Interstate

Date and Time Communications 7-1
Retrieval 2-1

System Information Creating a NOS Job 7-1
Retrieval. 2-12 Starting a NOS Job 7-6

Job Information Communication Between the
Retrieval 2-1 7 Task and Job 7-7

Sense Switch NOS Job Communication with
Management. 2-25 the NOS/VE Task 7-10

Job Log Messages 2-28 Interstate Communication
Operator Messages 2-30 Example 7-17

Program Execution 3-1 Command Language

Program Description 3-1
Services 8-1

Task Parameters 3-9 Command Language
Task Initiation 3-10 Variables 8-1
Task Dependencies 3-14 String Conversion
Task Termination 3-17 Procedures 8-10

Revision B Contents 5

About This Manual

This manual describes CONTROL DATA® CYBIL procedure calls that
interface between the CDC® Network Operating System/Virtual
Environment (NOS/VE) and CYBIL programs. CYBIL is the
implementation language of NOS/VE.

NOS/VE provides a set of CYBIL procedures that serve as a program
interface between CYBIL programs and the operating system. These CYBIL
procedures are presented in two manuals: the CYBIL File Interface manual,
and this, the CYBIL System Interface manual.

Audience

This manual is written as a reference for CYBIL programmers. It assumes
that you know the CYBIL programming language as described in the CYBIL
Language Definition manual.

To use the procedure calls described in this manual, you must copy decks
from a system source library. Although this manual provides a brief
description of the commands required to copy procedure declaration decks,
the SCL Source Code Management manual contains the complete
description.

This manual also assumes that you are familiar with the System Command
Language (SCL). You can perform many system functions described in this
manual using either SCL commands or CYBIL procedure calls. All
commands referenced in this manual are SCL commands. For a description
of SCL command syntax, see the SCL Language Definition manual; for
individual SCL command descriptions, see the SCL System Interface and
SCL Language Definition manuals.

Other manuals that relate to this manual are shown on the Related Manuals
diagram on the reverse side of the title page.

Revision B About This Manual 7

CONVENTIONS

Conventions

boldface

italics

Within formats, procedure names are shown in boldface type.
Required parameters are also shown in boldface.

Within formats, optional parameters are shown in italics.

UPPERCASE Within formats, uppercase letters represent reserved words;
they must appear exactly as shown in the format.

lowercase

blue

examples

numbers

Revision B

Within formats, lowercase letters represent names and values
that you supply.

Within interactive terminal examples, user input is shown in
blue.

Examples are printed in a typeface that simulates computer
output. They are shown in lowercase, unless uppercase
characters are required for accuracy.

All numbers are base 10 unless otherwise noted.

About This Manual 9

How to Use System Interface
Calls 1

Using System Interface Procedures 1-1

Copying Procedure Declaration Decks 1-3
Expanding a Source Program 1-4
Calling a System Interface Procedure 1-6
Parameter List ... 1-6
Checking the Completion Status 1-8
Exception Condition Information 1-9

System Naming Convention .. 1-10

Procedure Call Description Format 1-12

How to Use System Interface
Calls I

NOS/VE provides a set of CYBIL procedures by which programs can request
system services. System services are functions which supply information to
application programs. These services are supported by the operating system.

This manual describes the system interface portion of the NOS/VE-supplied
CYBIL procedures. It provides the CYBIL programmer with the information
required to make calls to system interface procedures in CYBIL programs.

Using System Interface Procedures

Each CYBIL system interface procedure resides as an externally referenced
(XREF) procedure declaration in a deck on a system source library. In
general, to use a system interface procedure, you must include the following
statements in your CYBIL source program.

• A Source Code Utility (SCU) *COPYC directive to copy the XREF
procedure declaration from a system source library.

• Statements to declare, allocate, and initialize actual parameter variables
as needed.

• The procedure call statement.

• An IF statement to check the procedure completion status, which is
returned in the procedure's status variable.

Figure 1-1 lists a source program that illustrates use of a system interface
procedure. System-defined names are shown in uppercase letters; user
defined names in lowercase letters.

Hevision B How to lJ se System Interface Calls 1-1

USING SYSTEM INTERFACE PROCEDURES

Copying Procedure Declaration Decks

To use a system interface procedure in a CYBIL module, the module must
include an SCU *COPYC directive to copy the XREF procedure from a
system source library. The XREF procedure declarations for all system
interface calls are stored in decks on the source library file
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE.

The deck containing the procedure declaration has the same name as the
procedure. For example, the PMP$GET _TIME procedure is declared in a
deck named PMP$GET _TIME.

As shown in figure 1-1, the *COPYC directive begins in column 1, specifies
the name of the procedure to be copied, and follows the module statement. In
your CYBIL module, you will need only one *COPYC directive for each
unique call to a system interface procedure. For example, if the module in
figure 1-1 had called the PMP$GET _TIME procedure more than once, one
*COPYC directive to copy the XREF PMP$GET _TIME procedure deck
would suffice.

For more information about the *COPYC directive, see the SCL Source Code
Management manual.

Procedure declaration decks list the required parameters as well as the valid
parameter types that must be listed on a call to a system interface procedure.
When a CYBIL program is being compiled, the parameters specified on a call
to a system interface procedure are verified with the parameters and
parameter types listed in the procedure's XREF procedure declaration. If the
parameters on the call to the system interface procedure do not match the
parameters and parameter types defined in the XREF procedure declaration,
the program compilation will be unsuccessful. After the module in figure 1-1
is compiled, the XREF procedure declaration will be included in the source
listing.

An example of an XREF procedure declaration is shown later in this chapter
under the subheading, Calling a System Interface Procedure.

In this manual, the required parameters as well as the parameter's required
type are listed in the individual procedure call description format for each
system interface procedure. The parameter types for all CYBIL system
interface procedures are listed alphabetically in Appendix C.

Revision B How to Use System Interface Calls 1-3

USING SYSTEM INTERFACE PROCEDURES

For example, the command sequence in figure 1-2 performs the following
tasks.

1. Creates an empty source library on the default file RESULT.

2. Calls SCU. The base library is the empty library on file RESULT that
was created in step 1. The result library will be written on the user's
permanent file MY _LIBRARY in the user's master catalog at the end
of the SCU session.

3. Creates a deck on the source library named MY _PROGRAM. The deck
MY _PROGRAM now contains the CYBIL source program which was
contained in the local file, SOURCE_FILE.

4. Expands the MY _PROGRAM deck. Decks specified on *COPYC
directives are copied from the alternate base library file,
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. The expanded
text is written on the default file COMPILE.

5. Ends SCU processing. The WRITE_LIBRARY=TRUE parameter
indicates that the library is to be written on the result library file. (If
WRITE_LIBRARY=FALSE is used to end the SCU session, no result
library file is written; however, the expanded source text remains
available on the COMPILE file).

6. Calls the CYBIL compiler to compile the text on file COMPILE and
write a source listing on file LISTING.

For more information on creating source libraries and decks and on
expanding decks, see the SCL Source Code Management manual.

Revision B How to Use System Interface Calls 1-5

USING SYSTEM INTERFACE PROCEDURES

For example, the procedure declaration for the PMP$GET _TIME procedure
is as follows:

PROCEDURE [XREFJ pmpSget_time
(format: ostStime_formats;

VAR time: ostStime;
VAR status: ostSstatus);

This declaration indicates that a call to the procedure must specify three
parameters in its parameter list. The first parameter must specify an input
value of type OST$TIME _FORMATS; the second parameter must specify a
variable of type OST$TIME; and the third parameter must specify a variable
of type OST$STATUS.

The required parameter types for each parameter on a system interface
procedure are listed with the parameter name in each procedure's individual
description format. All parameter types are also listed alphabetically in
Appendix C.

For more information on declaring and assigning values to variables, see the
CYBIL Language Definition manual.

Revision B How to Use System Interface Calls 1-7

USING SYSTEM INTERFACE PROCEDURES

Exception Condition Information

When the procedure completes abnormally, NOS/VE returns additional
information about the exception condition that occurred. The following fields
of the status record return condition information when the key field,
NORMAL, is false.

identifier

Two-character string identifying the process that detected the error. Table
1-1 lists the identifiers returned by calls described in this manual.

condition

Error code that uniquely identifies the error (OST$STATUS_
CONDITION, integer). Each code can be referenced by its constant
identifier as listed in the Diagnostic Messages manual.

text

String record (type OST$STRING). The record has the following two
fields.

size

Actual string length in characters (0 through 256).

value

Text string (256 characters).

NOTE

The text field does not contain the error mesS<lge. It contains items of
information that are inserted in the error message template if a message
is formatted using this status record.

If the NORMAL field of the status record is false, the program determines its
subsequent processing. For example, it could check for a specific condition in
the CONDITION field or determine the severity level of the condition with
an OSP$GET _STATUS_SEVERITY procedure call.

Revision B How to Use System Interface Calls 1-9

SYSTEM NAMING CONVENTION

Table 1-1. Product Identifiers for System Interface Calls

Product
Identifier

AV

CL

IC

IF

JM

MM

OF

OS

PF

PM

Revision B

Product Function

Accounting and validation

Command language

Interstate communication

Interactive file and terminal management

Job management

Memory management

Operator facility

Operating system

Permananet file management

Program management

How to Use System Interface Calls 1-11

Program Services 2

Date and Time Retrieval ... 2-1

PMP$GET_DATE ... 2-2
PMP$GET _TIME .. 2-3
PMP$GET _LEGIBLE_DATE_ TIME 2-4
PMP$GET_COMPACT_DATE_TIME 2-6
PMP$COMPUTE_DATE_ TIME 2-7
PMP$FORMAT_COMPACT_DATE 2-8
PMP$FORMAT_COMPACT_TIME 2-9
Date and Time Retrieval Example 2-10

System Information Retrieval ... 2-12

PMP$GET _MICROSECOND_ CLOCK 2-13
PMP$GENERATE_ UNIQUE_NAME 2-14
PMP$GET_OS_ VERSION .. 2-15
PMP$GET _PROCESSOR_ATTRIBUTES 2-16

Job Information Retrieval .. 2-17

PMP$GET _ACCOUNT _PROJECT 2-18
PMP$GET _JOB_MODE .. 2-19
PMP$GET _JOB_NAMES ... 2-20
PMP$GET _SRUS ... 2-21
PMP$GET _TASK_ CP _TIME 2-22
PMP$GET _ TASK_ID ... 2-23
PMP$GET _ USER_IDENTIFICATION 2-24

Sense Switch Management ... 2-25

PMP$MANAGE_SENSE_SWITCHES 2-26
Sense Switch Example ... 2-27

Job Log Messages .. 2-28

PMP$LOG .. 2-29

Operator Messages ... 2-30

OFP$DISPLA Y _STATUS_MESSAGE 2-31
OFP$SEND _TO_ OPERATOR 2-32
OFP$RECEIVE_FROM_OPERATOR 2-33

Program Services 2

The program services described in this chapter provide the means to retrieve
information maintained by the operating system; change job sense switch
settings; and send messages to the job log, the system operator, or the job
status display.

Date and Time Retrieval

NOS/VE uses two date and time formats: legible and compact. Legible
format is used to display the date and time; compact format is used to
compute a new date and time.

The following procedures return the current date and time.

PMP$GET _DATE

Returns the current date in a legible format.

PMP$GET _TIME

Returns the current time in a legible format.

PMP$GET _LEGIBLE_DATE_ TIME

Returns the current date and time in a legible format.

PMP$GET _COMPACT _DATE_ TIME

Returns the current date and time in a compact format.

The PMP$COMPUTE_DATE_ TIME procedure computes a new compact
date and time from a base date and time in compact format and increments
the value for each date and time field.

The following procedures change the compact date or time format to a legible
date or time format.

PMP$FORMAT _COMPACT _DATE

Reformats a date from a compact format to a legible format.

PMP$FORMAT _COMPACT_ TIME

Reformats a time from a compact format to a legible format.

Revision B Program Services 2· 1

PMP$GET _TIME

Purpose Returns the current time in legible format.

Format PMP$GET _TIME (format, time, status)

Parameters format: ost$time_formats;

Format in which time is returned.

OSC$AMPM_ TIME

Format hour: minute AM or PM.
For example, 1: 15 PM.

OSC$HMS _TIME

Format hour: minute: second.
For example, 13: 15:21.

OSC$MILLISECOND _TIME

Format hour: minute: second: millisecond.
For example, 13: 15: 21: 453.

OSC$DEFAULT _TIME

PMP$GET _TIME

Default format selected during system installation.

Condition
Identifier

Revision B

time: VAR of ost$time;

Time returned.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$invalid _time_ format

Program Services 2-3

Condition
Identifiers

Revision B

PMP$GET _LEGIBLE_DATE_ TIME

time_format: ost$time_formats;

Format in which time is returned.

OSC$AMPM_ TIME

Format hour: minute AM or PM.
For example, Ql: 15 PM.

OSC$HMS_ TIME

Format hour: minute: second.
For example, 13: 15: 21.

OSC$MILLISECOND _TIME

Format hour: minute: second: millisecond.
For example, 13: 15: 21: 453.

OSC$DEFAULT _TIME

Default format selected during system installation.

time: VAR of ost$time;

Time returned.

status: VAR of ost$status;

Status record.

pme$invalid_ date _format
pme$invalid_ time _format

Program Services 2-5

PMP$COMPUTE_DATE_ TIME

PMP$COMPUTE_DATE_ TIME

Purpose Comput.es a new compact date and time from a base dat.e and
time also in compact format; increments value for each field.

Format PMP$COMPUTE_DATE_ TIME (base, increment,
result, status)

Parameters base: ost$dat.e_time;

Condition
Identifiers

Remarks

Revision B

Base dat.e and time returned by the PMP$GET _COMP ACT_
DATE_ TIME procedure.

increment: pmt$time_increment;

Increment values.

Field Content

year Increment value for year (int.eger).

month Increment value for month (int.eger).

day Increment value for day (int.eger).

hour Increment value for hour (int.eger).

minut.e Increment value for minut.e (int.eger).

second Increment value for second (int.eger).

millisecond Increment value for millisecond (int.eger).

result: VAR of ost$dat.e _time;

New dat.e and time in compact format.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT_ID.

pme$comput.e _overflow
pme$invalid_year

The increment values can be any combination of positive and
negative int.egers.

Program Services 2· 7

PMP$FORMAT _COMPACT_ TIME

PMP$FORMAT_COMPACT_TIME

Purpose Reformats a time from compact format to legible format.

Format PMP$FORMAT _COMPACT_ TIME (date_ time, format,
time, status)

Parameters date_ time: ost$date _time;

Condition
Identifiers

Revision B

Date and time returned by the PMP$GET _COMP ACT_
DATE_ TIME procedure.

format: ost$time_ formats;

Legible time format.

OSC$AMPM_ TIME

Format hour:minute AM or PM.
For example, 01: 15 PM.

OSC$HMS _TIME

Format hour: minute: second.
For example, 13: 15: 21.

OSC$MILLISECOND _TIME

Format hour: minute: second:millisecond.
For example, 13: 15: 21: 453.

OSC$DEFAULT_TIME

Default format selected during system installation.

time: VAR of ost$time;

Time in legible format.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$invalid_hour
pme$invalid_millisecond
pme$invalid_minute
pme$invalid_second
pme$invalid_time_format

Program Services 2-9

DATE AND TIME RETRIEVAL EXAMPLE

{ INITIALIZE ALL VARIABLES FOR INCREMENT }
increment.year :=O;
increment.month := 1;
increment.day :=O;
increment.hour :=O;
increment.minute :=O;
increment.second :=O;
increment.millisecond :=O;
pmp$compute_date_time Cbase_date_time, increment,

new_date_time, status);
IF NOT status.normal THEN

EXIT /time_example_block/;
!FEND;

pmp$format_compact_date Cnew_date_time,
oscSmonth_date, print_date, status);

IF NOT status.normal THEN
EXIT /time_example_block/;

!FEND;

pmp$format_compact_time Cnew_date_time,
oscSampm_time, print_time, status);

IF NOT status.normal THEN
EXIT /time_example_block/;

!FEND;
END /time_example_block/

PROCEND month_ahead;
MODEND date_time_example;

Revision B Program Services 2-11

PMP$GET_MICROSECOND_CLOCK

PMP$GET _MICROSECOND_CLOCK

Purpose Returns a 64-bit integer value.

Format PMP$GET _MICROSECOND_ CLOCK (microsecond_
clock, status)

Parameters microsecond_ clock: VAR of integer;

Integer value returned.

Condition
Identifier

Remarks

Revision B

status: VAR of ost$status;

Status record.

None.

The value returned is the current value of the microsecond
clock. Successive calls to the procedure always return different
values.

Program Services 2-13

PMP$GET_OS_ VERSION

PMP$GET_OS_ VERSION

Purpose Returns the operating system name and version number.

Format PMP$GET_OS_ VERSION (version, status)

Parameters version: VAR of pmt$os_name;

Condition
Identifier

Revision B

Operating system name and version number. The 22-
character string returned has the following format.

NOS/VE Rnn xxxxxxxxxxx

nn

Number indicating the operating system release level.

xxxxxxxxxxx

String defined during system installation.

status: VAR of ost$status;

Status record.

None.

Program Services 2-15

JOB INFORMATION RETRIEVAL

Job Information Retrieval
The following procedure calls are used by a task to get information about
itself or about the job to which it belongs. A task is the execution of a
program within a job.

Two of the calls, PMP$GET _TASK_ CP _TIME and PMP$GET _ TASK_ID,
are dependent on the task that issues the call.

PMP$GET _ACCOUNT _PROJECT

Returns the job account and project names.

PMP$GET _JOB _MODE

Returns the job execution mode (batch or mteractive).

PMP$GET _SRUS

Returns the system resource units used by job.

PMP$GET _TASK_ CP _TIME

Returns the amount of central processor time currently used by the task.

PMP$GET _ TASK_ID

Returns the identifier of the task within the job.

PMP$GET _ USER_IDENTIFICATION

Returns the job user and family names.

Revision B Program Services 2-17

PMP$GET _JOB _MODE

PMP$GET_JOB_MODE

Purpose Returns the current execution mode of the job to which the
task belongs.

Format PMP$GET_JOB_MODE (mode, status)

Parameters mode: VAR of jmt$job_mode;

Job mode.

Condition
Identifier

Revision B

JMC$BATCH

Batch job.

JMC$INTERACTIVE_ CONNECTED

Interactive job connected to terminal input.

JMC$INTERACTIVE_ CMND _DISCONNECT

Interactive job disconnected from terminal by user request
(see DETACH_ JOB command in SCL manual set).

JMC$INTERACTIVE_LINE_DISCONNECT

Interactive job disconnected from terminal by
communications equipment failure.

JMC$INTERACTIVE_SYS_DISCONNECT

Interactive job disconnected from terminal by (recovered)
system failure.

status: VAR of ost$status;

Status record.

None.

Program Services 2-19

PMP$GET _SRUS

PMP$GET_SRUS

Purpose Returns the current number of system resource units (SRUs)
accrued by the job to which the task belongs.

Format PMP$GET _SRUS (srus, status)

Parameters srus: VAR of jmt$sru_ count;

Condition
Identifier

Remarks

Revision B

Number of SRUs (0 through JMC$SRU _COUNT _MAX).

status: VAR of ost$status;

Status record.

None.

Currently, the SRU value is the number of microseconds of
CP time accumulated for the job in both monitor and job
modes.

Program Services 2-21

PMP$GET _ TASK_ID

PMP$GET _ TASK_ID

Purpose Returns the system-assigned identifier of the task.

Format PMP$GET _ TASK_ID (task_id, status)

Parameters task_ id: VAR ofpmt$task_id;

Condition
Identifier

Revision B

Task identifier (0 through PMC$MAX TASK ID).

status: VAR of ost$status;

Status record.

None.

Program Services 2-23

SENSE SWITCH MANAGEMENT

Sense Switch Management

NOS/VE maintains eight local sense switch values for each job. Each switch
is either set (on) or cleared (off). Initially, all sense switches for a job are
cleared (off).

The PMP$MANAGE_SENSE_SWITCHES procedure can set, clear, or
return the values of the job sense switches. The sense switch settings are
returned as a set of integers, 1 through 8. If an integer is included in the set,
its corresponding sense switch is set.

The procedure call specifies a set of switches to be set and a set of switches to
be cleared. It returns the set of switches that are set at completion of the
procedure.

NOTE

Do not set and clear a sense switch with the same procedure call. If a call
specifies that a sense switch is to be both set and cleared, the resulting
switch state is undefined at completion of the procedure.

You can determine the sense switch settings without changing them by
specifying no sense switch changes on the call; the procedure returns the
current sense switch settings.

Revision B Program Services 2-25

SENSE SWITCH EXAMPLE

Sense Switch Example

The following is the source text for a procedure declaration. The procedure
returns a boolean value indicating whether the sense switch specified by the
integer passed to the procedure is currently set.

MODULE sense_switch_example;

*copyc pmpSmanage_sense_switches

PROCEDURE sensor (switch: integer;
VAR switch_set : boolean;
VAR status: ostSstatus>;

VAR
on, off, current : pmtSsense_switches;

on := pmtsense_switches[J;
off := SpmtSsense_switches[J;

pmpSmanage_sense_switches Con, off, current,
status>;

IF NOT status.NORMAL THEN
RETURN;

I FEND;

switch_set := switch IN current;

PROCEND sensor;
MODEND sense_switch_example;

Revision B Program Services 2-27

PMP$LOG

PMP$LOG

Purpose Enters a message in the job log.

Format PMP$LOG (text, status)

Parameters text: pmt$log_msg_text;

Condition
Identifiers

Remarks

Revision B

Text to be entered in the job log (adaptable string).

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$EXTERNAL_LOG_MANAGEMENT _ID.

pme$logging _not _yet_ active
pme$job_log_no_longer_active

Each entry in the job log is a record of type PMT$JOB_LOG_
ENTRY. The record has the following fields.

time

Time of the log entry (type OST$MILLISECOND _TIME).

delimiter_!

Delimiter character.

origin

Process identifier indicating the source of the entry (two
character string).

delimiter_2

Delimiter character.

text

Message text as specified on the PMP$LOG call (type
PMT$LOG _MSG_ TEXT).

Program Services 2-29

OFP$DISPLAY _STATUS_MESSAGE

OFP$DISPLA Y _STATUS_MESSAGE

Purpose Sends a job status message.

Format OFP$DISPLAY _STATUS_MESSAGE (text, status)

Parameters text: string (*);
Job status message.

Condition
Identifier

Remarks

Revision B

status: VAR of ost$status;

Status record. The process identifier returned is
OFC$0PERATOR_FACILITY _ID.

ofe$message _too_ long

• The message sent by the call can appear on the operator's
job display or at an interactive t.erminal. The message
appears when the user or operator enters a DISPLAY_
JOB_STATUS command.

• If the message is longer than OFC$MAX_DISPLA Y _
MESSAGE characters, the message is truncated to that
length before it is sent. The exception condition
OFE$MESSAGE _TOO _LONG is returned to the caller.

Program Services 2-31

OFP$RECEIVE_FROM_OPERATOR

OFP$RECEIVE_FROM_OPERATOR

Purpose Receives a message the operator has sent to the task.

Format OFP$RECEIVE_FROM_ OPERATOR (wait, text,
operator _id, status)

Parameters wait: ost$wait;

Revision B

Indicates whether the task should wait for a message or
continue processing.

OSC$WA1T

Suspend execution until a message is received.

OSC$NOWAIT

Continue execution if no message is waiting.

text: VAR of ost$string;

Message.

Field Content

size Message length in characters (0 through
OSC$MAX_STRING_SIZE, 256).

value Message text (String of length OSC$MAX_
STRING _SIZE, 256).

operator _id: VAR of oft$operator _id;

Operator identifier. Currently, the only valid operator
identifier is SYSTEM_ OPERATOR.

status: VAR of ost$status;

Status record. The process identifier returned is
OFC$0PERATOR_FACILITY _ID.

Program Services 2-33

Program Execution 3

Program Description .. 3-1

Program Description Structure 3-6
PMP$GET _PROGRAM_SIZE 3-7
PMP$GET _PROGRAM_DESCRIPTION 3-8

Task Parameters .. 3-9

Task Initiation ... 3-10

PMP$EXECUTE .. 3-11
PMP$LOAD .. 3-13

Task Dependencies ... 3-14

PMP$A WAIT_ TASK_ TERMINATION 3-15
PMP$TERMINATE ... 3-16

Task Termination .. 3-17

PMP$ABORT ... 3-18
PMP$EXIT ... 3-19

Program Execution 3

A NOS/VE program is a set of object code modules. Program execution is the
process of combining and executing the modules that compose a program.

A task is an instance of program execution. More than one task can be
executing the same program at the same time. If you specify that the
program be loaded from an object library rather than an object file, all tasks
executing the program can share the same physical copy.

Each task has a separate virtual address space. The segment numbers
assigned to the task are meaningful only for that task and are discarded
after the task completes.

A task can initiate other synchronous or asynchronous tasks. It initiates a
task by calling the PMP$EXECUTE procedure. It terminates a task it has
initiated by calling the PMP$TERMINATE procedure. It can also suspend
itself until an initiated task terminates by calling the PMP$AW AIT _TASK_
TERMINATION procedure.

When an initiated task completes, its status record is returned to the calling
task. The initiated task can terminate itself by returning from its starting
procedure or by calling the PMP$EXIT or PMP$ABORT procedures.

Program Description
To initiate another task, a task must initialize a program description
variable. The content of the program description variable is described in
table 3-1. A program description lists all modules that comprise a program; it
includes an object file list, a module list, an object library list, and the
starting procedure for the program.

Revision B Program Execution 3-1

PROGRAM DESCRIPTION

Table 3-1. Program Attributes Record (PMT$PROGRAM_..ATTRIBUTES)
(Continued)

Field

number_oL
objecl..files

number_oL
modules

number_oL
libraries

loacLmap_
file

loacLmap_
options

termination__
error.Jevel

Revision B

Content

Number of files in the object file list (type PMT$NUMBER....
OF_OBJECLFILES, 0 through PMC$MAX....OBJECT_
FUR.LIST).

Number of modules in module list (type PMT$NUMBER....
OF-MODULES, 0 through PMC$MAX....MODULE....LIST).

Number of libraries in the object library list (type
PMT$NUMBER....OF _LIBRARIES, 0 through PMC$MAX....
LIBRARY_LlST).

Name ofload map file (type AMT$LOCAL...FILE....NAME).

Set of load map options (type PMT$LOAD_MAP _
OPTIONS, set of the following constant identifiers).

PMC$NO ... LOAD-MAP

No load map.

PMC$SEGMENT-MAP

Segment map.

PMC$BLOCILMAP

Block map.

PMC$ENTRY_pOINT_MAP

Entry point map.

PMC$ENTRY_pOJNT...xREF

Entry point and external reference map.

Error severity that causes task termination (type
PMT$TERMINATION_..ERROR....LEVEL).

PMC$WARNING_LOAD_..ERRORS

Terminate the load when an error of warning severity
occurs.

PMC$ERROR....LOAD_..ERRORS

Terminate the load when an error of error severity occurs.

PMC$FATAL.LOAD ERRORS

Terminate the load when an error of fatal severity occurs.

(Continued)

Command Language Processing 3-3

PROGRAM DESCRIPTION

The starting procedure of a program is the name of the procedure where
execution of the program begins. For a CYBIL program, the procedure name
must be externally declared (have the XDCL attribute) or be declared within
a PROGRAM statement. If the starting procedure is not explicitly specified,
the system uses the last transfer symbol encountered during program
loading as the starting procedure. A transfer symbol is generated by either a
CYBIL or FORTRAN PROGRAM statement or by a COBOL PROGRAM-ID
statement.

An object file list is the list of object files whose modules are to be included in
the program. All modules on each of the files are included.

The program library list is the set of object libraries from which modules can
be loaded for the program. It has the following components.

1. Object libraries listed in the program description. The libraries are
searched in the order listed.

2. Object libraries quoted by the compiler or assembler in the object text
output; the libraries are searched in the order encountered during
loading. NOS/VE adds the libraries to the list before satisfying the
external references of the module that quoted the libraries.

3. Job library list. (You can change the contents of the job library with
the SCL command SET _PROGRAM_ATTRIBUTES.)

4. NOS/VE task services library. If desired, the task services library can
be searched earlier in the search order by specifying it in the program
library list in the program description. Although the task services
library is actually a system table, you can reference it in the program
library list using the reserved name
OSF$TASK_SERVICES_LIBRARY.

The module list in a program description is a list of modules to be loaded
from files in the program library list. In general, you specify a module in the
module list when a required entry point name is used in more than one
module in the program library list. By explicitly specifying the module, you
ensure that the correct entry point is loaded.

NOTE

When specifying program names for the module_list parameter, it is
important to remember to specify the program name using uppercase letters.
Because CYBIL converts all names to uppercase, the NOS/VE loader will be
unable to locate a program name specified in any other manner.

Revision B Program Execution 3-5

PMP$GET _PROGRAM_ SIZE

PMP$GET _PROGRAM_SIZE

Purpose Returns the sizes of the object file list, the module list, and the
library list within the program description of the requesting
task.

Format PMP$GET_PROGRAM_SIZE (number_of_object_
files, number_of_modules, number_of_libraries,
status)

Parameters number_ of_ object_ files: VAR of
pmt$number_of_object_files;

Condition
Identifier

Remarks

Revision B

Number of object files in the program description (0 through
PMC$MAX_ OBJECT _FILE_LIST).

number_ of_ modules: VAR of pmt$number _of_ modules;

Number of modules in the program description (0 through
PMC$MAX_MODULE_LIST).

number_ of_ libraries: VAR of pmt$number _of_ libraries;

Number of libraries in the program description (0 through
PMC$MAX_LIBRARY _LIST).

status: VAR of ost$status;

Status record.

None.

The list sizes returned can be used to allocate a program_
description variable for a PMP$GET _PROGRAM_
DESCRIPTION call.

Program Execution 3· 7

TASK PARAMETERS

Task Parameters

When a task is initiated, two parameters are passed to the starting procedure
of the task: a parameter list and a status record.

The parameter list provides input information to the task. The parameter list
must be an adaptable sequence. The content of the variable depends on the
requirements of the task. If the task requires no input, the parameter list is
empty.

For example, a CYBIL starting procedure would have the following format.

PROGRAM prog_name (param_list: clt$parameter_list;
VAR status: ost$status);

The status record passes the status of the completed task back to the
initiating task ifthe task completes by returning from its starting procedure.
If the task terminates by calling PMP$EXIT or PMP$ABORT, the status
record specified on the call is returned to the initiating task.

Revision B Program Execution 3-9

PMP$EXECUTE

PMP$EXECUTE

Purpose Initiates a task.

Format PMP$EXECUTE (program_ description, parameters,
wait, task_ id, task_ status, status)

Parameters program_ description: pmt$program_ description;

Revision B

Program description. The parameter is an adaptable sequence
that must contain a program_ attributes variable; the other
variables are optional. The variables are:

program_attributes

Program attributes including the presence and size of the
other variables (see table 3-1).

object_file_list

List of object files (PMT$0BJECT _FILE_LIST, adaptable
array of AMT$LOCAL_FILE_NAME).

module_list

List of modules (PMT$MODULE_LIST, adaptable array
of PMT$PROGRAM_NAME).

object_library _list

List of object libraries (PMT$0BJECT _LIBRARY _LIST,
adaptable array of AMT$LOCAL_FILE_NAME).

parameters: pmt$program_parameters;

Parameter list passed to the task (adaptable sequence).

wait: ost$wait;

Indicates whether or not the requesting task should wait until
the initiated task completes.

OSC$WAIT

Suspend execution until the initiated task terminates
(synchronous execution).

OSC$NOWAIT

Continue execution without waiting for the initiated task to
terminate (asynchronous execution).

Program Execution 3-11

PMP$LOAD

PMP$LOAD

Purpose Returns the address of the specified externally declared
procedure within the requesting task.

Format PMP$LOAD (name, kind, address, status)

Parameters name: pmt$program_name;

Condition
Identifiers

Remarks

Revision B

Procedure or variable name externally declared in the
program.

NOTE

If you are loading a CYBIL program, you must specify the
name using uppercase letters. The loader does not convert
lowercase letters to uppercase letters; therefore, if you specify
the name using lowercase letters, the loader cannot find the
name in the program library list.

kind: pmt$loaded_address_kind;

Address type returned.

PMC$PROCEDURE_ADDRESS

Procedure address.

PMC$DATA_ADDRESS

Data address.

address: VAR of pmt$loaded_address;

Address type and value.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

lle$entry _point_not_found
lle$insufficient_memory _to _load
lle$loader _malfunctioned
lle$premature _load_ termination
lle$tenn_ error _level_ exceeded

If the procedure is not yet defined in the requesting task, it is
loaded dynamically from the program library list. The
address assigned to it is returned.

Program Execution 3-13

PMP$AWAIT_TASK_TERMINATION

PMP$AW AIT _TASK_ TERMINATION

Purpose Suspends the task until a task it initiated terminates.

Format PMP$AWAIT _TASK_ TERMINATION (task_id, status)

Parameters task_id: pmt$task_id;

Condition
Identifier

Revision B

Task identifier returned by the PMP$EXECUTE call that
initiated the task.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$invalid_ task_id

Program Execution 3-15

TASK TERMINATION

Task Termination
When a task terminates, it returns a status record to the task_status variable
specified on the PMP$EXECUTE call that initiated the task. The content of
the status record depends on how the task terminated.

When the task is initiated, its status record is initialized for normal
completion. If the task does not change the contents of the status record and
terminates by returning from its starting procedure, the normal status record
is returned to the initiating task.

The task can specify the status record it returns by either changing the
contents of the status record returned when its starting procedure terminates,
or by specifying a status record on a PMP$EXIT or PMP$ABORT procedure
call.

The PMP$EXIT procedure terminates the task just as if the starting
procedure had returned to caller, except that the task specifies the status
record returned. The record can indicate either normal or abnormal status.
The task should call PMP$EXIT when it cannot perform its function due to
an error in the job environment or in the parameter list passed to it. The
condition code returned in the status record should notify the calling task of
the error.

Like the PMP$EXIT procedure, the PMP$ABORT procedure returns the
status record specified on its call. It should be used when the task detects an
internal failure. The PMP$ABORT procedure calls the debugging program to
execute the contents of the abort file before returning to the calling task. To
use this feature, you must specify the name of the abort file in the program
description. The abort file should contain a sequence of Debug commands
that will enable you to determine why the task failed.

Revision B Program Execution 3-17

PMP$EXIT

PMP$EXIT

Purpose

Format

Parameter

Condition
Identifier

Remarks

Revision B

Terminates the calling task, returning the specified status
record to the initiating task.

PMP$EXIT (status)

status: ost$statmi;

Status record returned to the task that initiated this task. The
status record is copied to the task_status variable specified on
the PMP$EXECUTE call that initiated the task.

None.

The PMP$EXIT procedure is used to indicate that the task
could not perform its function due to an error in the job
environment or in the parameter list passed to it.

Program Execution 3-19

Task Communication 4

General Wait .. 4-1

OSP$A WAIT _ACTIVITY_ COMPLETION 4-2

Job-Local Queues .. 4-4

PMP$DEFINE_ QUEUE ... 4-5
PMP$REMOVE_QUEUE .. 4-6
PMP$CONNECT_QUEUE ... 4-7
PMP$DISCONNECT _QUEUE 4-8
PMP$RECEIVE_FROM_QUEUE 4-9
PMP$SEND_TO_QUEUE .. 4-11

Queue Information Retrieval .. 4-12

PMP$GET_QUEUE_LIMITS 4-13
PMP$STATUS_QUEUE .. 4-14
PMP$STATUS_QUEUES_DEFINED 4-15

Queue Communication Example 4-16

Task Communication 4

Task communication within a job is provided by two NOS/VE mechanisms,
the general wait and the queue.

General Wait

The general wait mechanism is called by the OSP$AWAIT _ACTIVITY_
COMPLETION call. The task is suspended until one of the specified
activities completes. The possible activities include the expiration of a period
of time, the completion of a task, or the receipt of a message via a queue.

The general wait of the OSP$A WAIT _ACTIVITY_ COMPLETION call
allows resumption of the task as the result of any of the events specified on
the call. The PMP$AWAIT _TASK_ TERMINATION and PMP$RECEIVE_
FROM_ QUEUE calls can also suspend a task but can specify only one event
to resume the task.

Revision B Task Communication 4-1

Condition
Identifiers

Revision B

OSP$AW AIT _ACTIVITY_ COMPLETION

ready _index: VAR of integer;

Index into the wait list indicating the event that occurred.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$unknown_ queue _identifier
pme$usage_bracket_error

Task Communication 4-3

PMP$DEFINE_QUEUE

PMP$DEFINE_ QUEUE

Purpose Defines a queue.

Format PMP$DEFINE_QUEUE (name, removal_bracket,
usage_bracket, status)

Parameters name: pmt$queue_name;

Queue name.

Condition
Identifiers

Revision B

removal_ bracket: ost$ring;

Highest ring from which the queue definition can be removed
(1 through 15). It must be greater than or equal to the ring
from which the request is made.

usage_ bracket: ost$ring;

Highest ring from which the queue can be used (1 through 15).
It must be greater than or equal to the removal bracket ring.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$incorrect_ queue _name
pme$maximum_ queues_ defined
pme$queue _already_ defined
pme$request_gt_removal_ring
pme$usage _lt_removal_ bracket

Task Communication 4-5

PMP$CONNECT _QUEUE

PMP$CONNECT_QUEUE
Purpose Connects the task to a queue.

Format PMP$CONNECT _QUEUE (name, qid, status)

Parameters name: pmt$queue_name;

Condition
Identifiers

Revision B

Queue name as defined by a PMP$DEFINE_ QUEUE call.

qid : VAR of pmt$queue _connection;

Queue connection identifier assigned by system (1 through
PMC$MAX_ QUEUES_PER_JOB).

status : VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$incorrect _queue_ name
pme$maximum _tasks_ connected
pme$task _already_ connected
pme$unknown_ queue_ name
pme$usage _bracket_ error

Task Communication 4-7

PMP$RECEIVE_FROM_ QUEUE

PMP$RECEIVE_FROM_ QUEUE

Purpose Receives a message from a queue.

Format PMP$RECEIVE_FROM_QUEUE (qid, wait, message,
status)

Parameters qid: pmt$queue _connection;

Revision B

Queue connection identifier returned by the
PMP$CONNECT _QUEUE call.

wait: ost$wait;

Action taken if the queue is empty.

OSC$WAIT

Suspend task until a message is received.

OSC$NOWAIT

Continue task if message is not available.

Task Communication 4-9

PMP$SEND _TO_ QUEUE

PMP$SEND_ TO_QUEUE

Purpose Sends a message to a queue.

Format PMP$SEND _TO_ QUEUE (qid, message, status)

Parameters qid: pmt$queue_connection;

Condition
Identifiers

RevisionB

Queue connection identifier returned by the
PMP$CONNECT _QUEUE call.

message: pmt$message;

Message sent to the queue.

Field Content

sender_id Task identifier assigned by system (type
PMT$TASK_ID).

sender_ ring Ring of task (type OST$RING, 0 through
OSC$MAX_RING).

contents Key field indicating the message pointer kind
(type PMT$MESSAGE_KIND).

PMC$MESSAGE_ VALUE

Message in value field.

value Message sequence (type
PMT$MESSAGE_ VALUE).

status: VAR of ost$status;

Status record The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$error_number_of_segments
pme$error _pointer _privilege
pme$error _segment_privilege
pme$error_segment_message
pme$incorrect_message_ type
pme$incorrect_segment_message
pme$maximum_ queued_messages
pme$maximum_ queued_segments
pme$pass _sha.TP. _prohibited
pme$unknown_ queue _identifier
pme$usage_ bracket_ error

Task Communication 4-11

PMP$GET _ QUEUE_LIMITS

PMP$GET_QUEUE_UMITS

Purpose Returns the queue limits for the job.

Format PMP$GET _ QUEUE_LIMITS (queue _limits, status)

Parameters queue _limits: VAR of pmt$queue_limits;

Limits record.

Condition
Identifier

Revision B

maximum_ queues

Maximum queues that can be defined in the job (type
PMT$QUEUES _PER_JOB, 0 through
PMC$MAX_ QUEUES _PER_JOB).

maximum_ connected

Maximum tasks that can be connected to a queue (type
PMT$CONNECTED _ TASKS_PER_ QUEUE, 0 through
PMC$MAX_ QUEUES_PER_JOB).

maximum_messages

Maximum messages per queue (type PMT$MESSAGES _
PER_ QUEUE, 0 through
PMC$MAX_MESSAGES_PER_QUEUE).

status: VAR of ost$status;

Status record.

None.

Task Communication 4-13

PMP$STATUS_QUEUES_DEFINED

PMP$STATUS_ QUEUES_DEFINED

Purpose Returns the number of currently defined queues.

Format PMP$STATUS_QUEUES_DEFINED (count, status)

Parameters count: VAR of pmt$queues _per _job;

Number of queues currently defined (0 to
PMC$MAX_ QUEUES _PER_ JOB).

Condition
Identifier

Revision B

status: VAR of ost$status;

Status record.

None.

Task Communication 4-15

QUEUE COMMUNICATION EXAMPLE

{ This procedure executes the worker task with which }
{ the control task communicates. It assumes that }
{ the control task and the worker task both reside }
{in the same object file or object library.}

PROCEDURE execute_worker_task
(shared_segment_name: amtSlocal_file_name,
shared_segment_attributes:

array [1 •• *]OF amtSfile_item,
communication_queue_name: pmtSqueue_name;
VAR task_id: pmtStask_id;
VAR task_status: pmtStask_status;
VAR status: ostSstatus);

VAR
{ Parameter variables for PMPSGET_PROGRAM_SIZE. }

number_of_object_files: pmtSnumber_of_object_files,
number_of_modules: pmt$number_of_modules,
number_of_libraries: pmtSnumber_of_libraries,

{ Pointer to the program description for the worker }
{ task. }

worker_pr6gram: "pmtSprogram_description,

{ Pointer to the program attributes variable in the }
{ program description. }

worker_program_attributes: "pmtSprogram_attributes,

{Pointer to the parameter list for the worker task. }
worker_program_parameters: "pmtSprogram_parameters,

{Pointers to parameters in the parameter list. }
shared_segment_name_parm: "amtSlocal_file_name,
number_of_segment_attributes: ·1 •• amcSmax_attribute,
shared_segment_attributes_parm:

"array [1 •• *] of amtSfile_item,
communication_queue_name_parm: "pmtSqueue_name;

Revision B Task Communication 4-17

QUEUE COMMUNICATION EXAMPLE

{Builds the following worker task parameter List.}

{ 1. Shared segment Local file name.}
{ 2. Size of the array defining the correct file}
{ attributes for opening the shared segment. }
{ 3. File attributes for the shared segment. }
{ 4. Name of the Local queue to be used for }
{ communication between tasks. }

PUSH worker_program_parameters
[[REP 1 OF amtSLocal_file_name,
REP 1 OF amtSfile_attribute_keys,
REP UPPERBOUND Cshared_segment_attributes) OF
amtSfile_ i tern,
REP 1 of pmtSqueue_nameJJ;

RESET worker_program_parameters;

{1} NEXT shared_segment_name_parm IN
worker_program_parameters;

shared_segment_name_parm· := shared_segment_name;

{2} NEXT number_of_segment_attributes IN
worker_program_parameters;

number_of_segment_attributes" :=
UPPERBOUND Cshared_segment_attributes);

{3} NEXT shared_segment_attributes_parm:
[1 •• UPPERBOUND Cshared_segment_attributes)J
IN worker_program_parameters;

shared_segment_attributes_parm· :=
shared_segment_attributes;

{4} NEXT communication_queue_name_parm
IN worker_program_parameters;

communication_queue_name_parm· :=
communication_queue_name;

Revision B Task Communication 4-19

QUEUE COMMUNICATION EXAMPLE

{ The following variables define a message in the }
{ segment and the relative pointer to the message. }

message_to_worker: pmt$message,
message_to_worker_value_pointer: ApmtSmessage_value,
worker_text_pointer: Astring (8),
worker_text_relative_ptr_ptr:

Arel CHEAP (*)) Astring (8);

{ Creates the segment used to pass information }
{ between tasks. }

AMPSOPEN <shared_segment_name, amcSsegment,
Ashared_segment_attributes, shared_segment_id,
status);

IF NOT status.normal THEN
RETURN;

I FEND;

{ Gets a heap pointer to the beginning of the segment. }

AMPSGET_SEGMENT_POINTER (shared_segment_id,
amcSheap_pointer, shared_segment_pointer, status);

IF NOT status.normal THEN
RETURN;

IFEND;
shared_heap := shared_segment_pointer.heap_pointer;

{Defines and initializes the communication queue. }

PMPSDEFINE_QUEUE (communication_queue_name,
oscSuser_ring, osc$user_ring, status);

IF NOT status.normal THEN
RETURN;

I FEND;
PMPSCONNECT_QUEUE (communication_queue_name,

communication_queue, status);
IF NOT status.normal THEN

RETURN;
IFEND;

Revision B Task Communication 4-21

QUEUE COMMUNICATION EXAMPLE

{ This is the worker task program started by the }
{ control task. }

MODULE try_queues_worker_task;

??PUSH CLISTEXT := ON)??
•copyc AMPSOPEN
•copyc AMPSGET_SEGMENT_POINTER
*copyc PMPSCONNECT_QUEUE
•copyc PMPSRECEIVE_FROM_QUEUE
??POP??

PROGRAM worker_task (parameters:
pmtSprogram_parameters;
VAR status: ostSstatus);

VAR
{Pointer to the parameter list passed to the task. }

worker_parameters: ApmtSprogram_parameters,

{ These variables have the same functions as the }
{ control task variables with the same names. }

shared_segment_name: AamtSlocal_file_name,
number_of_segment_attributes: A1 •• amcSmax_attribute,
shared_segment_attributes:

Aarray [1 •• •]of amtSfile_item,
communication_queue_name: ApmtSqueue_name,
communication_queue: pmtSqueue_connection,
shared_segment_id: amtSfile_identifier,
shared_segment_pointer: amtSsegment_pointer,
shared_heap: AHEAP C * >,
message_from_control: pmtSmessage,
worker_text_pointer: Astring CB>,
message: ApmtSmessage_value,
worker_text_relative_ptr_ptr:

Arel CHEAP C *)) Astring CB>;

worker_parameters := Aparameters;
RESET worker_parameters;

Revision B Task Communication 4-23

QUEUE COMMUNICATION EXAMPLE

{ Worker task is now ready to communicate with the }
{ control task. This call requests a message from }
{the queue and waits until a message is available.}

PMPSRECEIVE_FROM_QUEUE (communication_queue, oscSwait,
message_from_control, status>;

IF NOT status.normal THEN
RETURN;

!FEND;

{Initialize a sequence pointer to access the queue}
{ message. }

message := ftmessage_from_control.value;
RESET message;

{ Get the relative pointer to the item in the shared }
{ segment from the message passed on the local queue. }

NEXT worker_text_relative_ptr_ptr IN message;

{Build a direct pointer from the relative pointer}
{ and the pointer to the shared segment. }

worker_text_pointer :=
#PTR (worker_text_relative_ptr_ptrft, shared_heapft);

IF worker_text_pointerft ='Hello!' THEN
{ Rejoice! Rejoice! Rejoice greatly! }
I FEND;

PROCEND worker_task;
MODEND try_queues_worker_task;

Revision R Task Communication 4-25

Condition Processing 5

System Condition Detection .. 5-1

PMP$ENABLE_SYSTEM_ CONDITIONS 5-2
PMP$INHIBIT _SYSTEM_ CONDITIONS 5-3

Condition Handling ... 5-4

Condition Handler Establishment 5-6
PMP$ESTABLISH_ CONDITION _HANDLER 5-9
PMP$DISESTABLISH_COND_HANDLER 5-11
Condition Handler Processing 5-12
System Condition Handler ... 5-13
PMP$CONTINUE_TO_CAUSE 5-15
Block Exit Processing Condition Handler 5-16
Interactive Condition Handler 5-17
Job Resource Condition Handler 5-17
Segment Access Condition Handler 5-18
Process Interval Timer Condition Handler 5-19
PMP$SET _PROCESS _INTERVAL_ TIMER 5-20
User-Defined Condition Handler 5-21
PMP$CAUSE_CONDITION 5-22
PMP$TEST _CONDITION _HANDLER 5-23

Condition Processing

A condition is an event that interrupts normal task processing. Conditions
are grouped into the following categories.

System conditions. Segment access conditions.

Block exit processing conditions. Process interval timer condition.

Interactive conditions. User-defined conditions.

Job resource conditions.

This chapter describes the following topics.

• Enabling and disabling detection of system conditions.

• Processing of conditions that occur within a task.

System Condition Detection

5

The PMP$ENABLE_SYSTEM_ CONDITIONS and PMP$INHIBIT _
SYSTEM_ CONDITIONS procedures enable and disable, respectively, the
detection of a set of system conditions. Table 5-1 lists the system conditions
that can be specified on the calls. It also indicates whether the condition is
enabled or disabled when the task begins.

If a system condition occurs while detection of the condition is disabled, the
condition remains pending. If the task subsequently enables detection of the
condition, NOS/VE clears the pending condition before enabling its
detection.

Table 5-1. System Conditions That Can Be Enabled or Disabled

Identifier

PMC$ARITHMETIC_OVERFLOW
PMC$ARITHMETIC...SIGNIFICANCE
PMC$DIVIDEJ'AULT
PMC$EXPONENT_OVERFLOW
PMC$EXPONENT_UNDERFLOW
PMC$FP -1NDEFINITE
PMC$FP -8IGNIFICANCE..LOSS
PMC$INVALID__BDP _DATA

Revision B

Initial State

Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Disabled
Enabled

Condition Processing 5-1

PMP$INHIBIT _SYSTEM_ CONDITIONS

PMP$1NHIBIT _SYSTEM_ CONDITIONS

Purpose Disables detection of the specified system conditions.

Format PMP$INHIBIT _SYSTEM_ CONDITIONS (conditions,
status)

Parameters conditions: pmt$system_conditions;

Condition
Identifier

Revision B

Condition set inhibited. The set can contain any of the
following identifiers.

PMC$ARITHMETIC _OVERFLOW

Arithmetic overflow.

PMC$ARITHMETIC SIGNIFICANCE

Arithmetic significance loss.

PMC$DIVIDE_FAULT

Divide fault.

PMC$EXPONENT_OVERFLOW

Floating point exponent overflow.

PMC$EXPONENT_UNDERFLOW

Floating point exponent underflow.

PMC$FP _INDEFINITE

Floating point indefinite.

PMC$FP _SIGNIFICANCE_LOSS

Floating point significance loss.

PMC$INVALID_BDP _DATA

Invalid BDP data.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$unselectable _condition

Condition Processing 5-3

CONDITION HANDLING

Table 5-2. Condition Processing When No Condition Handler Is
in Effect

Category

System condition

Block exit condition

Interactive condition

Job resource condition

Segment access condition

Process interval timer
condition

User-defined condition

System Standard Processing

Returns abnormal status and aborts
the task.

No processing; the task resumes.

Asks the interactive user whether the
task should resume or terminate.

Within an interactive job, asks the
interactive user whether the limit should
be increased. Within a batch job, returns
abnormal status and aborts the job.

Returns abnormal status and aborts
the task.

No processing; the task resumes.

No processing; the task resumes.

Table 5-3. Condition Handler Scope

Condition Category

System conditions

Block exit processing
conditions

Interactive conditions

Job resource conditions

Segment access conditions

Process interval timer
condition

User-defined conditions

Revision B

Scope

Establishing block and its subordinate
blocks within the same execution ring.

Establishing block only.

Establishing block and its subordinate
blocks.

Establishing block and its subordinate
blocks.

Establishing block and its subordinate
blocks within the same execution ring.

Establishing block and its subordinate
blocks.

Establishing block and its subordinate
blocks within the same execution ring.

Condition Processing 5-5

Table 5-4. Condition Set Specification

Selector Identifier

PMC$ALL.CONDITIONS

PMC$CONDITION_
COMBINATION

PMC$SYSTEM_CONDITIONS

PMC$BLOCILEXJT _
PROCESSING

JMC$JOR.RESOURCE_
CONDITION

MMC$SEGMENT_
ACCESS_CONDITION

IFC$INTERACTIVE_
CONDITION

PMC$PJT _CONDITION

PMC$USER._DEFINED_
CONDITION

Revision B

Condition Field Name

None.

combination

system.....conditions

reason

job....resource_condition

segmenL.access_
condition_identifier

interactive_condition

None.

user_condition_name

CONDITION HANDLING

Condition Identifiers

None.

Set of category identifiers.

Set of one or more condition
identifiers listed in table 5-5
(PMT$SYSTEM-CONDITIONS).

Set of one or more of the following
condition identifiers:

PMC$BLOCILEXIT
Either a nonlocal EXIT
statement was executed,
deactivating the block, or the
procedure completed and control
returned to the procedure that
called it.

PMC$PROGRAM_
TERMINATION

A PMP$EXIT call was executed.

PMC$PROGRAM-ABORT

A PMP$ABORT call was executed.

JMC$TIME...LIMIT_CONDITION

Approaching time limit.

Only one of the following
condition identifiers:

MMC$SAC...READ_
BEYOND..EOI
Read beyond highest page
accessed.

MMC$SAC...READ-WRITE_
BEYOND...MSL
Read or write beyond the
maximum segment length.

MMC$SACJO...READ..ERROR

Read or write error on backup
disk storage.

Only one of the followinu
condition identifiers:

IFC$PAUSE...BREAK

The interactive user interrupted
the task.

IFC$TERMINATE...BREAK

The interactive user terminated
the task.

None.

User-defined condition name.

Condition Processing 5-7

PMP$ESTABLISH_ CONDITION _HANDLER

PMP$EST ABLISH_ CONDITION_HANDLER

Purpose Specifies condition handler procedure to process the specified
conditions.

Format PMP$ESTABLISH_ CONDITION _HANDLER
(conditions, condition_handler, establish_ descriptor,
status)

Parameters conditions: pmt$condition;

Condition
Identifiers

Revision B

Condition set the procedure processes (see table 5-4).

condition_handler: pmt$condition_handler;

Pointer to the condition handler procedure.

establish_descriptor: 'pmt$established_handler;

Pointer to descriptor space allocated within the current stack
frame.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$descriptor _address_ error
pme$handler _stack_ error
pme$inconsistent _stack
pme$incorrect _condition_ name
pme$invalid_ condition_ selector
pme$stack_ overwritten
pme$unselectable _condition

Condition Processing 5-9

PMP$DISESTABLISH_ COND _HANDLER

PMP$DISEST ABLISH_ COND_HANDLER

Purpose Disestablishes the condition handler currently in effect for the
specified conditions.

Format PMP$DISESTABLISH_ CO ND _HANDLER
(conditions, status)

Parameters conditions: pmt$condition;

Condition
Identifiers

Remarks

Revision B

Condition set specified on the PMP$ESTABLISH_
COND _HANDLER call that established this condition
handler (see table 5-4).

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$handler _stack_ error
pme$incorrect _condition_ name
pme$inconsistent _stack
pme$no _established_ handler

A condition handler can only be disestablished within its
scope. The scope of a condition handler depends on its
condition category as shown in table 5-3.

Condition Processing 5-11

SYSTEM CONDITION HANDLER

System Condition Handler

A syst.em condition handler can be established only for selectable syst.em
conditions. Table 5-1 lists the selectable syst.em conditions.

A task can establish a condition handler for a syst.em condition while
detection of the condition is inhibited. The condition handler is not used until
det.ection of the condition is enabled. Any pending condition is cleared before
detection of the condition is enabled.

If the syst.em condition occurs within the condition handler for that
condition and the condition handler has not established a new condition
handler for the condition, NOS/VE t.erminat.es the task and returns
abnormal status.

If a syst.em condition occurs while a condition handler is in effect for the
condition, NOS/VE passes a point.er to the stack frame save area of the
block where the syst.em condition occurred. With the following exceptions,
the P regist.er in the stack frame save area points to the instruction that
caused the syst.em condition. In the exceptions, the P regist.er points to the
instruction that follows the instruction that caused the syst.em condition.

Ring number zero Exponent underflow

Exponent overflow Floating point significance loss

RevisionB Condition Processing 5-13

PMP$CONTINUE_ TO_ CAUSE

PMP$CONTINUE_ TO_CAUSE

Purpose Continues the condition, causing NOS/VE to call the next
most recently established condition handler in effect for the
condition. The condition must be within the scope of the
condition handler.

Format PMP$CONTINUE_ TO_ CAUSE (standard, status)

Parameters standard: pmt$standard_selection;

Condition
ldentifers

Remarks

Revision B

Indicates whether or not NOS/VE should call the system
standard procedure if no other condition handler is in effect
for the condition.

PMC$EXECUTE_STANDARD_PROCEDURE

Call the system standard procedure.

PMC$INHIBIT _STANDARD _PROCEDURE

Do not call the system standard procedure; return
abnormal status to the condition handler that issued the
call.

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$handler _stack_ error
pme$inconsistent _stack
pme$invalid_ condition_handler
pme$invalid _ standard_selection
pme$no _condition_ to_ continue
pme$no _ established_handler
pme$recursive _continue
pme$stack_ overwritten

If no other condition handler is in effect for the condition and
the call specifies PMC$EXECUTE_STANDARD _
PROCEDURE, NOS/VE executes the standard condition
processing procedure for the condition category. Standard
condition processing for each condition category is described
in table 5-2.

Condition Processing 5-15

INTERACTIVE CONDITION HANDLER

Interactive Condition Handler

An interactive condition occurs when an interactive user interrupts his or her
terminal session with a pause break or a terminate break.

A PMP$ESTABLISH_ CONDITION _HANDLER call can associate only
one interactive condition with a condition handler. Therefore, to associate
multiple interactive conditions with a condition handler, the task must issue
a PMP$ESTABLISH_ CONDITION _HANDLER call for each condition.

The following are possible ways that a condition handler could process an
interactive condition.

• Prompt the interactive user for direction.

• Circumvent the interrupted process via a nonlocal exit.

• Return normal status, allowing the task to resume.

• Return abnormal status to terminate the task.

• Call PMP$EXIT or PMP$ABORT to terminate the task.

Job Resource Condition Handler

A job resource condition warns the task of an impending time limit violation.

A PMP$ESTABLISH_ CONDITION _HANDLER call can associate only
one job resource condition with a condition handler. (Currently, only one job
resource condition, time limit, exists.)

The following are possible ways that a condition handler could process a job
resource condition.

• Increase the limit associated with the condition and return normal status.

• Return abnormal status to terminate the task.

• Call PMP$EXIT or PMP$ABORT to terminate the task.

Revision B Condition Processing 5-17

PROCESS INTERVAL TIMER CONDITION HANDLER

Process Interval Timer Condition Handler

The process interval timer condition notifies the task of the expiration of the
process interval timer. The condition occurs only when the following
qualifications are met.

• A process interval timer condition handler is in effect.

• The process interval timer for the task has been set by a PMP$SET _
PROCESS _INTERVAL_ TIMER call.

• The process interval timer decrements to zero.

The process interval timer decrements only while the task is actually using
the central processor; it does not decrement while the processor has
interrupted to monitor mode or has been dispatched to another task.

Revision B Condition Processing 5-19

USER-DEFINED CONDITION HANDLER

User-Defined Condition Handler

A task can define a condition by naming it on a PMP$ESTABLISH_
CONDITION _HANDLER call. The user-defined condition occurs when the
task specifies the condition on a PMP$CAUSE_ CONDITION call.

A PMP$ESTABIJSH_ CONDITION _HANDLER call can associate only
one user-defined condition with a condition handler. Therefore, to associate
multiple user-defined conditions with a condition handler, the task must
issue a PMP$ESTABLISH_ CONDITION _HANDLER call for each
condition.

If the task calls the cause_ condition procedure while no condition handler is
in effect for the condition, the procedure returns abnormal status and the
task resumes.

If the task calls the cause_ condition procedure while a condition handler is
in effect for the condition, NOS/VE passes the descriptor pointer specified on
the cause_condition call to the condition handler.

The following are possible ways that a condition handler could process a
user-defined condition.

• Resume the task by returning normal status.

• Terminate the task by returning abnormal status or by calling the
PMP$EXIT or PMP$ABORT procedures.

If the condition handler returns normal status, the task resumes using the
same stack frame information in use when the condition occurred.

Revision B Condition Processing 5-21

PMP$TEST _CONDITION_ HANDLER

PMP$TEST _ CONDITION_HANDLER

Purpose

Format

Simulates the occurrence of an error condition to allow testing
of a condition handler for those conditions.

PMP$TEST _CONDITION _HANDLER (conditions,
save_ area, status)

Parameters conditions: pmt$condition;

Condition to be forced (see table 5-4).

Condition
Identifiers

Remarks

Revision B

save_area: 'ost$stack_frame_save_area;

Stack frame save area image to be passed to the condition
handler (see appendix D).

status: VAR of ost$status;

Status record. The process identifier returned is
PMC$PROGRAM_MANAGEMENT _ID.

pme$handler _stack_ error
pme$inconsistent _stack
pme$invalid_ condition _handler
pme$no _established_ handler
pme$unsupported_by _test_cond

The condition can be a job resource, segment access,
interactive, or process interval timer condition or a set of
system conditions; it cannot be a block exit or user-defined
condition or all conditions or a combination of condition
categories.

Condition Processing 5-23

Message Generation 6

Status Record Generation .. 6-1

Status Parameters .. 6-2
OSP$SET_STATUS_ABNORMAL 6-3
OSP$APPEND _STATUS_PARAMETER 6-4
OSP$APPEND _STATUS_INTEGER 6-5
OSP$SET_STATUS_FROM_CONDITION 6-6

Status Severity Check ... 6-7

OSP$GET _STATUS_SEVERITY 6-9

Message Formatting .. 6-10

Message Levels .. 6-11
OSP$FORMAT _MESSAGE 6-12
OSP$GET _MESSAGE_LEVEL 6-14
OSP$SET _MESSAGE_LEVEL 6-15

Message Generation 6

The NOS/VE program interface includes procedures to generate standard
status records and error messages. A standard status record describes one of
the system-defined exception conditions listed in the Diagnostic Messages
manual. The manual also lists the standard message templates associated
with the conditions.

Status Record Generation

As described in chapter 1, a procedure returns a status record to indicate its
completion status. The status record must be of type OST$STATUS. To
indicate normal completion, the normal field of the status record is set to
TRUE. To indicate abnormal completion, you must initialize abnormal
status in the status record.

To initialize an abnormal status record, the task can call the following
procedures.

• OSP$SET _STATUS_ABNORMAL for general status record
initialization.

• AMP$SET _FILE_INSTANCE_ABNORMAL for status record
initialization according to file interface conventions when the file
identifier is known. (This procedure is described in an appendix on file
access procedures in the CYBIL File Interface manual.)

• OSP$SET _STATUS_FROM_CONDITION for status record
initialization within a condition handler. The status record generated is
for the condition that caused the system to call the condition handler.

Revision 8 Message Generation 6-1

OSP$SET _STATUS_ABNORMAL

OSP$SET _STATUS_ABNORMAL

Purpose Initializes an abnormal status record.

Format OSP$SET_STATUS_ABNORMAL (identifier,
condition, text, status)

Parameters identifier: string (2);

Condition
Identifier

Remarks

Revision B

Two-character identifier of the process that detected the
condition.

condition: ost$status _condition;

Exception condition (specified by a condition identifier or the
integer code for the condition, 0 through OSC$MAX_
CONDITION).

text: string (*);
String to be used as the first status parameter in the text field.

status: VAR of ost$status;

Initialized status record.

None.

• If the specified text string is not the null string (its length
is nonzero), OSP$SET _STATUS_ABNORMAL inserts the
string into the status record text field as the first status
parameter. The first character of the text field is set to the
OSC$STATUS_PARAMETER_DELIMITER character.

The OSP$FORMAT _MESSAGE procedure uses the first
character of the text field, OSC$STATUS_PARAMETER_
DELIMITER character, to determine the beginning of each
status parameter in a status record.

• OSP$SET _STATUS_ABNORMAL discards any trailing
space characters in the string specified as the text
parameter before appending the string to the status record
text field.

• If the text string (after trailing spaces are discarded) does
not fit in the status record text field, OSP$SET _STATUS_
ABNORMAL truncates the rightmost characters so that
the string will fit into the field.

Message Generation 6-3

OSP$APPEND _STATUS_INTEGER

OSP$APPEND_STATUS_INTEGER

Purpose Converts an integer to its string representation and appends
the string to the text field of the status record.

Format OSP$APPEND_STATUS_INTEGER (delimiter, int,
radix, include_radix_specifier, status)

Parameters delimiter : char;

Condition
Identifier

Remarks

Revision B

First character appended. If the character matches the first
character of the text field (OSC$STATUS_PARAMETER_
DELIMITER), the text becomes the next status parameter; if
it does not match, the text is appended to the previous status
parameter.

int: integer;

Integer value.

radix: 2 .. 16;

Specifies the radix for the integer parameter (2 through 16).

include_ radix_ specifier : boolean;

Specifies whether to include the radix representation in the
string.

TRUE

Include radix.

FALSE

Omit radix.

status: VAR of ost$status; [input, output]

Status record to which the integer is appended.

None.

• OSP$APPEND_STATUS_INTEGER discards any
trailing space characters in the string specified as the text
parameter before appending the string to the status record
text field.

• If the text string (after trailing spaces are discarded) does
not fit in the status record text field, OSP$APPEND _
STATUS_INTEGER truncates the rightmost characters so
that the string is the correct length for the field.

Message Generation 6-5

STATUS SEVERITY CHECK

Status Severity Check

After calling a procedure, a task must check the status record returned. It
must first determine whether the status returned is normal or abnormal; for
example, you can use the following first phrase of an IF statement.

IF NOT status.NORMAL THEN

If the status returned is abnormal, it can then, if appropriate, check the
status severity level by calling OSP$GET _STATUS_SEVERITY as
illustrated in figure 6-1.

{ This module contains CYBIL procedures to generate a message }
{ and output it to the caller's job Log if the completion of }
{ procedure PMPSLOAD returns a status condition greater }
{ in severity than OSCSWARNING. }

MODULE sample;

{Required •COPYC directives to use CYBIL procedures}
{ in the CYBIL module. }
•copyc pmp$Load;
•copyc pmp$Log;
•copyc osp$format_message
•copyc osp$get_status_severity;

PROCEDURE [XDCLJ sample Centry_name: pmt$program_name);

CONST
max_Line_size = 60;

VAR
entry_address: pmtSLoaded_address,
severity: ostSstatus_severity,
message: ost$status_message,
pointer: "ostSstatus_message,
msg_Line_count: "ostSstatus_message_Line_count,
msg_Line_size: "ostSstatus_message_Line_size,
msg_Line_text: "string (*),
i: 1 •• osc$max_status_message_Lines,
stat: ost$status,
ignore_status: ost$status;

Figure 6-1. Checking the Status Severity Level
(Continued)

Revision B Message Generation 6-7

OSP$GET _STATUS_SEVERITY

OSP$GET_STATUS_SEVERITY

Purpose Returns the severity level of the status condition.

Format OSP$GET _STATUS_SEVERITY (condition, severity,
status)

Parameters condition: ost$status _condition;

Condition
Identifier

Revision B

Condition code (condition field from status record).

severity: VAR of ost$status_severity;

Severity level.

OSC$INFORMATION _STATUS

Informative status.

OSC$W ARNING _STATUS

Warning status.

OSC$ERROR_STATUS

Error status.

OSC$FATAL_STATUS

Fatal status.

OSC$CATASTROPHIC _STATUS

Catastrophic status.

status: VAR of ost$status;

Status record.

None.

Message Generation 6-9

MESSAGE FORMATIING

Message Levels

An OSP$FORMA T _MESSAGE call specifies the message level of the
generated message. The message level is the level of detail of the message.
The following are the message levels.

Brief Error message without the process identifier and condition
code. If a path is inserted in the message, it is presented
relative to the working catalog; standard file names appear
without the $LOCAL prefix.

Full Error message with the process identifier and condition code.
If a path is inserted in the message, it is presented as an
absolute path.

Explain Currently the same as full mode.

For example, the following is the brief message for condition identifier
PME$MAXIMUM_ QUEUED _MESSAGES.

--ERROR-- Maximum number of messages are already on MY_QUEUE.

The following is the full message.

--ERROR PM 235061-- Maximum number of messages are already
on MY_QUEUE.

The message level displayed in the job can be set by the SET _MESSAGE_
MODE command described in the SCL System Interface manual. A task can
determine the current message level with an OSP$GET _MESSAGE_
LEVEL call and change the current message level with an OSP$SET _
MESSAGE_LEVEL call.

Revision B Message Generation 6-11

Remarks

Revision B

OSP$FORMAT _MESSAGE

• If a message template is defined for the specified condition,
the status parameters within the text string are inserted in
the template to form the status message.

• If no message template is defined for the specified
condition, OSP$FORMAT _MESSAGE returns the
contents of the status record within the following line.

ID=xx CC=code TEXT=string

• If the generated message is longer than the specified max_
message_line parameter value, OSP$FORMAT _
MESSAGE splits the message into more than one line so
that no line is longer than the maximum length. It
attempts to split the message at a delimiter. If that is not
possible, it appends two periods to the end of the line to
indicate continuation on the next line.

• Any character in the inserted text that cannot be printed is
represented in the formatted message by a question mark
(?) character.

• The example in figure 6-1 illustrates the use of
OSP$FORMAT _MESSAGE.

Message Generation 6-13

OSP$SET _MESSAGE_LEVEL

OSP$SET_MESSAGE_LEVEL

Purpose Sets the message level of the job.

Format OSP$SET _MESSAGE_LEVEL (message_level, status)

Parameters message_level: ost$status_message_level;

Current message level setting.

Condition
Identifier

Revision B

OSC$CURRENT _MESSAGE_LEVEL

Current.

OSC$BRIEF _MESSAGE_LEVEL

Brief.

OSC$FULL_MESSAGE_LEVEL

Full.

OSC$EXPLAIN _MESSAGE _LEVEL

Currently, the same as full mode.

status: VAR of ost$status;

Status record.

None.

Message Generation 6-15

Interstate Communications 7

::;reating a NOS Job ... 7-1

Creating the Command Variable 7-2
Command Variable Content 7-2
Command Record Size Limit 7-3

Requesting the Link File .. 7-4
Assigning Link File Attributes 7-5

Starting a NOS Job ... 7-6

Communication Between the Task and Job 7-7

Link File Deadlock ... 7-7
Data Conversion ... 7-7
Sending Data to the NOS Job 7-8
Receiving Data from the NOS Job 7-8
Fetching Information About the Link File 7-9
Positioning the Link File .. 7-9
Unsupported File Interface Calls 7-9

NOS Job Communication with the NOS/VE Task 7-10

Subroutine Calling Convention 7-10
NOS Link Subroutines ... 7-11

OPENLNK Subroutine .. 7-11
CLOSLNK Subroutine .. 7-12
GETNLNK Subroutine .. 7-13
GETPLNK Subroutine .. 7-14
PUTNLNK Subroutine .. 7-15
PUTPLNK Subroutine .. 7-15
WREPLNK Subroutine ... 7-16

Interstate Communication Example 7-17

Interstate Communications 7

NOS jobs and NOS/VE jobs can be executed simultaneously. A task within
a NOS/VE job can start a NOS job. After starting the NOS job, the
NOS/VE task can send data to and receive data from the job.

The task and job communicate via a link file that acts as a message buffer.
The NOS/VE task starts the NOS job by opening the link file. After it closes
the link file, the NOS/VE task can no longer communicate with the NOS job,
although the NOS job continues until its termination.

A NOS/VE task can have only one link file open at a time. Therefore,
although a NOS/VE task can start more than one NOS job before it
terminates, it can communicate with only one NOS job at a time.

The only NOS/VE task with which the started NOS job can communicate is
the NOS/VE task that started it.

Creating a NOS Job
To start a NOS job, a NOS/VE task must prepare a NOS job command
record and a link file. To prepare a NOS job command record, the NOS/VE
task performs the following steps.

1. Declares a NOS/VE command variable.

2. Stores the NOS command record in the NOS/VE command variable.

3. Executes the SCL command SET _LINK_ATTRIBUTES to specify
NOS job accounting information.

To prepare a link file, the NOS/VE job performs the following steps:

1. Requests a link file.

2. Stores the NOS/VE command variable name as the user info
attribute value for the link file.

Requesting a link file can only be performed using the SCL command
REQUEST _LINK. However, the user _info attribute value can be set by
either an SCL command or a CYBIL procedure call.

Revision B Interstate Communications 7-1

CREATING A NOS JOB

Command Record Size Limit

The system cannot pass a NOS command record longer than 508 60-bit
words. If the command record is too large, the AMP$0PEN call to open the
link file returns abnormal status (ICE$PARTNER_JOB_ TOO_LONG).

The size limit includes the Z record delimiters the system adds when it
converts the NOS commands to NOS 64-character set Z records.

To minimize the length of the NOS/VE command variable, store the NOS
command sequence for the job as a NOS procedure. The NOS commands in
the NOS/VE command variable would then consist only of those NOS
commands required to access and execute the procedure file.

For example, the following NOS/VE commands declare a string variable
named NOSJOB and store a NOS command record that calls a NOS
procedure in the string variable.

CREATE_VARIABLE NAME=nos_job_record KIND=string
nos_job_record = 'myjob.;get,nosproc.;begin,,nosproc.'

The string variable could also be dimensioned as in the following example.

CREATE_VARIABLE NAME=nos_job_record KIND=string ••
DIMENSION=1 •• 3
nos_job_record(1) = 'myjob.'
nos_job_record(2) = 'get,nosproc.'
nos_job_record(3) = 'begin,,nosproc.'

By dimensioning the string variable, you can use semicolons in the NOS
commands. However, the variable DIMENSION must be more than a single
entry. (It cannot be 1..1, 2 .. 2, and so forth.)

Note that each NOS command in the example ended with a period. Also,
note that the NOS commands were in lowercase letters. This is valid because
the system converts all lowercase characters assigned to the command
variable to uppercase characters. Any trailing blanks are suppressed. The
ASCII character codes are converted to six-bit display codes for use by the
NOS system. Any ASCII character that cannot be converted to display code
becomes an asterisk.

Revision B Interstate Communications 7-3

CREATING A NOS JOB

Assigning Link File Attributes

The NOS/VE job or task must set the user _info attribute value for the link
file. The attribute value must be the name of the command variable
containing the NOS command record.

The REQUEST _LINK command sets the FAP attribute of the link file to the
name of the interstate communication FAP. Thuefore, you cannot associate
another F AP with a link file.

Specifying values for the following file attributes affects link file processing.
Values can be specified for other file attributes, but link file processing does
not use the values.

access_mode

To send information from the NOS job to the NOS/VE task, the access_
mode attribute must include the PFC$READ value. To send information
from the NOS/VE task to the NOS job, the access_mode attribute must
include PFC$SHORTEN, PFC$APPEND, or PFC$MODIFY values. All
other access_mode values are ignored.

error_ exit_ name

It can specify an error processing routine for the link file.

file_ organization

It must be AMC$SEQUENTIAL.

return_ option

It indicates whether the link file is detached when the file is closed or
when the job terminates.

ring_ attributes

Because the link file cannot be executed, only the read and write brackets
are relevant.

As described in the SCL System Interface and CYBIL File Interface
manuals, the following commands and procedures can set file attribute
values.

SET FILE_ATTRIBUTES command

CHANGE_FILE_ATTRIBUTES command

AMP$FILE call

AMP$0PEN call

Revision B Interstate Communications 7-5

COMMUNICATION BETWEEN THE TASK AND JOB

Communication Between the Task
and Job

The NOS/VE task and the started NOS job communicate by reading and
writing data to the link file. The link file acts as a message buffer.

If the NOS/VE task attempts to read or write data on the link file and the
NOS job has not yet opened the link file, the NOS/VE task is suspended. To
determine if the NOS job has opened the link file before attempting to read or
write to the file, the task can call AMP$FETCH_ACCESS _INFORMATION
and check whether the link file last_op_status is AMC$COMPLETE.

Link File Deadlock

The NOS/VE task and the NOS job must not be both reading or both
writing to the link file at the same time. If they do, ICF detects a deadlock
and returns abnormal status (ICE$READ _DEADLOCK or ICE$WRITE_
DEADLOCK) to the NOS/VE task.

To clear a read deadlock condition (ICE$READ _DEADLOCK), the task
must perform a write operation (such as an AMP$PUT _NEXT call).
Similarly, to clear a write deadlock condition (ICE$WRITE_DEADLOCK),
the task must perform a read operation (such as an AMP$GET _NEXT call).

Data Conversion

The system does not convert link file data. NOS/VE uses a 64-bit word; NOS
uses a 60-bit word. Therefore, when NOS/VE passes data to a NOS job, the
first four bits of each eight-byte word are lost, and when NOS passes data to
the NOS/VE task, the first four bits of each eight-byte word are zero.

The NOS/VE task must arrange the data in each word so that the data
passed to the NOS job is meaningful. The task may perform data conversion
using a F AP associated with a file other than the link file. Data would be
accessed via the file associated with the FAP and then converted and
transferred to and from the link file by the FAP.

Revision B Interstate Communications 7-7

COMMUNICATION BETWEEN THE TASK AND JOB

Fetching Information About the ·Link File

The following file access information items returned by an AMP$FETCH_
ACCESS_INFORMATION call are meaningful for a link file.

error_status

Returns the condition code returned by the last file interface request.

file_position

A file_position of AMC$EOP indicates that the NOS job has sent a
partition delimiter.

last_ access_ operation

Returns the last access request issued for this instance of open.

last_op_status

A last_op_status of AMC$COMPLETE indicates that the NOS job has
opened the link file.

previous_ record_ length

Returns the number of bytes in the last full record accessed.

Positioning the Link File

An AMP$REWIND call for a link file resets the file position to AMC$BOI.
The AMP$SKIP call is not supported for link files.

Unsupported File Interface Calls

The operations performed by the following file interface calls are undefined
for a link file. Therefore, when a link file is specified on one of these calls, the
procedure returns normal status but does not perform the requested
operation.

AMP$SEEK_DIRECT
AMP$SKIP

The following file interface calls are invalid for a link file.

AMP$GET _SEGMENT _POINTER
AMP$SET _SEGMENT _EOI
AMP$SET _SEGMENT _POSITION
AMP$WRITE_ TAPE_MARK

Revision B Interstate Communications 7.9

NOS JOB COMMUNICATION WITH THE NOS/VE TASK

NOS Link Subroutines

The following are the subroutines used to read and writ.e to a link file.

Procedure

OPENLNK

CLOSLNK

GETNLNK

GETPLNK

PUTNLNK

PUTPLNK

WREPLNK

Function

Opens the link file.

Closes the link file.

Reads a record from the link file.

Reads a partial record from the link file.

Writ.es a record on the link file.

Writ.es partial record on the link file.

Writes a partition delimit.er on the link file.

The subroutine descriptions follow in the order the subroutines are listed
above.

OPENLNK Subroutine

The OPENLNK subroutine opens the link file for reading and writing by the
NOS job step.

NOTE

If a NOS job not started by a NOS/VE task calls the OPENLNK subroutine,
the system aborts the job without reprieve or exit processing.

The subroutine call has the following format.

CALL OPENLNK (status)

status

Name of variable into which the subroutine returns one of the
following integer condition codes.

0 Normal completion.

1 The link file is already open.

2 The NOS/VE task has closed the link file.

Revision B Interstate Communications 7-11

NOS JOB COMMUNICATION WITH THE NOS/VE TASK

GETNLNK Subroutine

The GETNLNK subroutine reads the next record of data from the link file.

The read always begins at the beginning of the next record.

If the working storage area is not long enough for the entire record, the
subroutine fills the working storage area and sets the file position as
midrecord. The job step must call the GETPLNK subroutine to get the rest of
the record.

The subroutine call has the following format.

CALL GETNLNK (wsa, wsal, length, unused, position, status)

wsa

Name of the working storage area.

wsal

Name of the variable containing the length of the working storage
area.

length

Name of the variable in which the integer number of words read is
returned.

unused

Name of the variable in which the unused bit count is returned. The
unused bit count is the number of least significant bits in the last used
working storage word that do not contain data.

position

Name of the variable in which one of the following integer position
codes is returned.

1 Midrecord

2 End-of-record

3 End-of-partition

4 End-of-information

status

Name of the variable into which the subroutine returns one of the
following integer condition codes.

0 Normal completion.

1 The job has not opened the link file.

2 The NOS/VE task has closed the link file.

3 The program attempted to read data after the EOI of the file.

Revision B Interstate Communications 7-13

NOS JOB COMMUNICATION WITH THE NOS/VE TASK

PUTNLNK Subroutine

The PUTNLNK subroutine writes the next record of data to the link file. If
the current file position is midrecord, the preceding partial record is
terminated before the next record is written.

The subroutine call has the following format.

CALL PUTNLNK (wsa, wsal, status)

wsa

Name of the working storage area.

wsal

Name of the variable containing the length of the working storage
area.

status

Name of the variable into which the subroutine returns one of the
following integer condition codes.

0 Normal completion.

1 The job has not opened the link file.

2 The NOS/VE task has closed the link file.

PUTPLNK Subroutine

The PUTPLNK subroutine writes a partial record of data to the link file.

The subroutine can write the beginning, middle, or end of a record,
depending on the value of the term parameter.

If the link file is closed before the end of a record is written, the incomplete
record is terminated before the link file is closed.

The subroutine call has the following format.

CALL PUTPLNK (wsa, wsal, term, status)

wsa

Name of the working storage area.

wsal

Name of the variable containing the length of the working storage
area.

Revision B Interstate Communications 7-15

INTERSTATE COMMUNICATION EXAMPLE

Interstate Communication Example

The following example demonstrates interstate communication using these
steps.

1. A CYBIL program named NOS_READ starts a NOS job.

2. The NOS job executes a NOS procedure file named PROCFIL.

3. The NOS procedure compiles and executes a FORTRAN program
named VEWRITE.

4. The VEWRITE program reads a file named DATAFL and writes its
data to the link file.

5. The NOS_READ program reads the data from the link file and writes
it to the output file.

The following is a source listing of the INTERSTATE _EXAMPLE program.

MODULE interstate_example;

•copyc clpScreate_variable
•copyc clpSwrite_variable
•copyc ampSopen
•copyc ampSget_next
•copyc ampSput_next
•copyc ampSc Lose
•copyc ampSfetch_access_information
•copyc pmpSexit

PROGRAM nos_read;

CONST
{This is the number of words in the array read}
{from the Link fi Le. }
{ num_words = 25; }

TYPE
{The following data structure describes an array}
{of NOS di splay code words. The first four bi ts}
{of each word are zero bits added when a NOS word}
{ is transferred to NOS/VE. The rest of the word}
{is 10 6-bit characters.}

Revision B Interstate Communications 7-17

INTERSTATE COMMUNICATION EXAMPLE

{The ASCII character codes in this array are}
{ ordered to correspond to the di splay code }
{collating sequence. Note, however, that the}
{ASCII code in the 00 position is 20, the code for}
{ space, rather than 3a, the ASCII code for colon. }

asci i : [READ] ARRAY [Q •• 63] OF 0 •• 255 :=
[20C16),41C16),42C16),43C16),44C16),45C16),46C16),47C16),
48C16),49C16),4aC16),4bC16),4cC16),4dC16),4eC16),4fC16),
50C16),51C16),52C16),53C16),54C16),55C16),56C16),57C16),
58C16),59C16),5aC16),30C16),31C16),32C16),33C16),34C16),
35C16),36C16),37C16),38C16),39C16),2bC16),2dC16),2aC16),
2fC16),28C16),29C16),24C16),3dC16),20C16),2cC16),2eC16),
23C16),5bC16),5dC16),25C16),22C16),5fC16),21C16),26C16),
27C16),3fC16),3cC16),3eC16),40C16),5cC16),5eC16),3bC16)J;

{Loop that stores an ASCII code in the string to}
{ correspond to each di splay code in the array. }
string_position := O;
/word_ loop/
FOR word_position := 1 TO num_words DO

/char_loop/
FOR char _position := 1 TO 10 DO
string_position := string_position + 1;
CASE char _position OF
=1=
ascii_stringCstring_position) :=
$CHARCascii[display_code[word_positionJ.char_1J);
=2=
ascii_string(string_position) :=
$CHARCascii[display_code[word_positionJ.char_2J);
=3=
ascii_stringCstring_position) :=
SCHARCascii[display_code[word_positionJ.char_3J);
=4=
ascii_string(string_position) :=
SCHARCascii[display_code[word_positionJ.char_4J);
=5=
ascii_stringCstring_position) :=
SCHARCascii[display_code[word_positionJ.char_5J);

Revision B Interstate Communications 7-19

INTERSTATE COMMUNICATION EXAMPLE

{The main program begins here. }

VAR
status: ostSstatus,

link_file: [STATIC] amtSlocal_file_name :=
'LINK_FILE',

link_fid: amtSfile_identifier,
l ink_access_selections: [STATIC] array [1 •• 2J of
amtSaccess_selection :=
[[amcSuser_info,'NOS_JOB_RECORD'J,
[amcSfile_access_procedure,'icpSfap_control'JJ,

{ ICPSFAP_CONTROL is the interstate communication}
{ FAP. It can also be assigned using a}
{ REQUEST_LINK command.}

{The following are the variable declarations used to}
{initialize the command variable.}

nos_job_record: cltSvariable_reference,
variable_value: cltSvariable_value,
variable_scope: cltSvariable_scope,
job_record: record

CASE 1 •• 2 OF
=1=

cv: ARRAY [1 •• (1*(2+256))] of cell,
=2=

sv: ARRAY [1 •• 1] of
RECORD

size: ostSstring_size,
value: stringC256>,

RECEND,
CASEND,

rec end,

access_ info: [STATIC] array [1 •• 1 J of
amtSaccess_info := [[*, amcSlast_op_status, *]],

wsa_ptr : ACELL,
wsa_ length : amtSwork i ng_storage_ length,
word_array: word_array _type,
string_variable: stringC256),

transfer_count: amtStransfer_count,
byte_address: amtSfile_byte_address,
file_position: amtSfile_position,
notify: string(8);

Revision B Interstate Communications 7-21

INTERSTATE COMMUNICATION EXAMPLE

{These statements notify the NOS job that the NOS/VE}
{task is ready to receive the data.}

notify := ' READY ';
ampSput_nextCLink_fid, Anotify,8,byte_address, status);
IF NOT status.NORMAL THEN

pmpSexit(status);
!FEND;

print_string(' Sent READY to Link file.');

{The following statements read a 25-word array of}
{data from the Link fi Le.}

wsa_ptr := Aword_array;
wsa_Length := #size(word_array);
ampSget_next Clink_fid, wsa_ptr, wsa_Length,

transfer _count, byte_address, fi Le_position,status);
IF NOT status .NORMAL THEN

pmpSexit(status);
I FEND;

{The following statements convert and write the data}
{to the output fi Le. }

print_string(' Read the fol Lowing record from Link.');
string_variable :=' ';
convert_display_code_to_asciiCword_array,

string_variable);
print_string(string_variable);

{These statements notify the NOS job that the NOS/VE}
{task has finished reading data from the Link fi Le.}
notify:=' DONE ';
ampSput_nextCLink_fid, Anotify,8,byte_address, status);
IF NOT status.NORMAL THEN

pmpSexitCstatus);
!FEND;

amp$close Clink_fid, status);
IF NOT status.NORMAL THEN

pmp$exit(status);
I FEND;

amp$close(output_fid, status);
IF NOT status.NORMAL THEN

pmp$exit(status);
I FEND;

PROCEND nos_read;
MODEND interstate_example;

Revision B Interstate Communications 7-23

INTERSTATE COMMUNICATION EXAMPLE

CALL GETNLNKCMESS, 1, LEN, UNUSED, POS, STATUS)
IF (STATUS .NE. O> GO TO 40

CALL PUTNLNK CWSA, N, STATUS)
IF (STATUS .NE. 0> GO TO 40

C DATA WRITIEN TO LINK FILE

CALL GETNLNKCMESS, 1, LEN, UNUSED, POS, STATUS)
IF (STATUS .NE. 0> GO TO 40

C DATA READ FROM LINK FILE

CALL CLOSLNK (STATUS)
40 STOP

END

The data file read by the VEWRITE program can contain up to 25 lines of
data with 10 uppercase characters per line. Assume that the following is the
contents of DATAFL for this demonstration.

THIS IS T
HE MESSAGE
TO BE SEN

T TO NOS/V
E

Assuming the NOS _READ program is stored as deck X on source library X,
the following NOS/VE command sequence expands, compiles, and executes
the program.

/scu b=x
sc/expd d=x ab=Ssystem.cybi L.osfSprogram_interface
sc/end no
/cybil i=compile L=Listing
/lgo
Output fi Le opened.
Command variable created.
Command variable written.
Link file opened.
NOS job returned AMCSCOMPLETE status.
Sent READY to Link file.
Read the following record from Link.
THIS IS THE MESSAGE TO BE SENT TO
NOS/VE
I

Revision B Interstate Communications 7-25

Command Language Services 8

Command Language Variables .. 8-1

Variable Kind and Dimension 8-1
Variable Scope ... 8-2
CLP$CREATE_ VARIABLE .. 8-3
CLP$DELETE_ VARIABLE .. 8-5
CLP$READ _VARIABLE ... 8-6
CLP$WRITE_ VARIABLE .. 8-8

String Conversion Procedures ... 8-10

CLP$CONVERT _INTEGER_ TO _STRING 8-11
CLP$CONVERT _INTEGER_ TO_RJSTRING 8-13
CLP$CONVERT _STRING_ TO _INTEGER 8-15
CLP$CONVERT _STRING_ TO_NAME 8-16
CLP$CONVERT _STRING_ TO_FILE 8-17
CLP$CONVERT _ VALUE_TO_STRING 8-18

Command Language Services

This chapter describes procedures that provide the following system
command language (SCL) services.

• Command language variable use

• String conversion

SCL uses these procedures when processing commands that specify
command variables or request string conversion.

Command Language Variables

8

The CLP$CREATE _VARIABLE call creates a command language variable.
A command language variable associates a name with a value in memory.
Besides a name and a value, a variable also has a kind, a dimension, and a
scope.

Variable Kind and Dimension

A variable can be any of the following kinds.

• String

• Integer

• Boolean

• Status record

The variable could also be an array of elements of the specified kind. The
CLP$CREATE _VARIABLE call specifies the upper and lower bounds of the
array.

A variable is initialized according to its type.

• String: null string

• Integer: zero

• Boolean: FALSE

• Status record: normal status

Revision B Command Language Services 8-1

CLP$CREATE_ VARIABLE

CLP$CREATE_ VARIABLE

Purpose Declares and initializes a command language variable.

Format CLP$CREATE_ VARIABLE (name, kind, max_string_
size, lower _bound, upper _hound, scope, variable,
status)

Parameters name: string (*);
Variable name.

Revision B

kind: clt$variable_kinds;

Variable kind.

CLC$STRING VALUE

String

CLC$INTEGER_ VALUE

Integer

CLC$BOOLEAN_VALUE

Boolean

CLC$STATUS_ VALUE

Status record

max_ string_ size: ost$string_size;

Maximum length of a string variable.

lower_ bound: clt$variable_dimension;

Smallest subscript of an array variable (CLC$MIN _
VARIABLE_DIMENSIONS through
CLC$MAX_ VARIABLE_DIMENSION).

upper _bound: clt$variable_dimension;

Largest subscript of an array variable (CLC$MIN _
VARIABLE _DIMENSION through
CLC$MAX_ V ARIABLE_DIMENSION).

Command Language Services 8-3

CLP$DELETE_ VARIABLE

CLP$DELETE_ VARIABLE

Purpose Removes a command variable from the current block.

Format CLP$DELETE_ VARIABLE (name, status)

Parameters name: string (*);

Condition
Identifier

Revision B

Variable name defined when the variable was declared.

status: VAR of ost$status;

Status record.

None.

Command Language Services 8-5

CLP$READ _VARIABLE

Table 8-2. Variable Value (CLT$VARIABLE_ VALUE)

Field

descriptor

kind

Content

Name of the value kind as defined when the variable
was created (string oflength OSC$MAX_NAME_SIZE,
31 characters). When writing a variable value, you need
not initialize this field.

Key field identifying the value kind (CLT$VARIABLE_
KINDS).

CLC$STRING_ VALUE

The maximum string size is in the max_string_size
field and the value is in the string_ value field.

CLC$REAL_ VALUE

The value is currently unimplemented.

CLC$INTEGER_ VALUE

The value is in the integer_ value field.

CLC$BOOLEAN_VALUE

The value is in the boolean_ value field.

CLC$ST ATUS_ VALUE

The value is in the status_ value field.

max_string_size Maximum string size (OST$STRING_SIZE, 0, to
OSC$MAX_STRING_SIZE, 256). When writing a string
variable, this field should be initialized to the same
value specified when the variable was created.

string_ value Pointer to an array of one or more strings (• array [1..*]
of cell).

integer_ value Pointer to an array of one or more integers (• array
[1..*] of CLT$INTEGER, see the int field in table 9-1).

boolean_ value Pointer to an array of one or more boolean values
(• array [1..*] of CLT$BOOLEAN, see the bool field in
table 9-1).

status_ value Pointer to an array of one or more status records
(.array [1..*] ofCLT$STATUS).

Revision B

A status record is returned as a type CLT$STATUS
record instead of a type OST$ST ATUS record so that
each field can be directly referenced as if it was an SCL
variable. The content of the CLT$STATUS record is the
same as that of an OST$STATUS record.

Command Language Services 8-7

(Continued)

Revision B

CLP$WRITE_ VARIABLE

variable_value.kind := clcSstring_value;
variable_value.max_string_size :=

oscSmax_string_size;
variable_value.string_value := y;

However, if the variable is an array of strings, you can declare
and initialize the value using the following statements.

CONST
string_array_elements = 2;

VAR
variable_value: cltSvariable_value,
x: record

case 1 •• 2 of
=1=

{ Each array entry is the sum of the size field }
{ Length (2) plus the maximum string Length (256) }

cv: array[1 ••
Cstring_array_elements *
(2+256))]
of cell,

=2=
sv: array[1 ••

string_array_elements] of
record

size: ostSstring_size,
value: stringC256),

rec end,
ca send,

rec end,
x.sv[1J.size := 25;
x.sv[1J.value :=

' This is the first string';
x.sv[2J.size := 26;
x.sv[2J.value :=

' This is the second string';
variable_value.kind := clcSstring_value;
variable_value.max_string_size :=

oscSmax_string_size;
variable_value.string_value := ·x.cv;

Command Language Services 8-9

CLP$CONVERT _INTEGER_ TO _STRING

CLP$CONVERT _INTEGER_ TO _STRING

Purpose Converts an integer to its string representation in the
specified radix.

Format CLP$CONVERT _INTEGER_ TO _STRING (int, radix,
include_radix_specifier, str, status)

Parameters int: integer;

Integer value.

Revision B

radix: 2 .. 16;

Representation radix (2 through 16).

include_radix_specifier: boolean;

Indicates whether a trailing radix enclosed in parentheses is
included.

TRUE

Radix included.

FALSE

Radix omitted.

str: VAR of ost$string;

String record.

Field Content

size Actual string length (0 through 256).

value String representation (256 characters). The string
data is left-justified in the 256-character field.

status: VAR of ost$status;

Status record.

Command Language Services 8-11

CLP$CONVERT _INTEGER_ TO _RJSTRING

CLP$CONVERT _INTEGER_ TO_RJSTRING

Purpose

Format

Converts an integer to its right-justified string representation
in the specified radix.

CLP$CONVERT _INTEGER_ TO _RJSTRING (int,
radix, include_radix_specifier, fill_ character, str,
status)

Parameters int: integer;

Integer value.

Revision B

radix: 2 .. 16;

Representation radix (2 through 16).

include_ radix_ specifier: boolean;

Indicates whether a trailing radix enclosed in parentheses is
included.

TRUE

Radix included.

FALSE

Radix omitted.

fill_ character: char;

Character used to fill in the string.

str: VAR of string (*);
String generated. The string length is chosen when the string
variable is allocated.

status: VAR of ost$status;

Status record.

Command Language Services 8-13

CLP$CONVERT _STRING_ TO _INTEGER

CLP$CONVERT _STRING_ TO _INTEGER

Purpose Converts the string representation of an integer to the integer
value.

Format CLP$CONVERT _STRING_ TO _INTEGER (str, int,
status)

Parameters str: string (*);
String.

Condition
Identifiers

Remarks

Revision B

int: VAR of clt$integer;

Record returned describing the integer value.

Field Content

value Integer value (type integer).

radix Representation radix (2 through 16).

radix_specified Indicates whether a radix was specified in
the string.

TRUE

Radix specified.

FALSE

Radix omitted.

status: VAR of ost$status;

Status record.

Any command language condition whose code is within
the range 170100 through 170199.

The string representation can include a leading sign and a
trailing radix enclosed in parentheses.

Command Language Services 8-15

CLP$CONVERT _STRING_ TO _FILE

CLP$CONVERT _STRING_ TO _FILE

Purpose Interprets a string as a file reference. It performs the following
operations.

• Interprets the file reference in the string and assigns a
local file name to the file.

• Establishes the validation ring of the file as the ring of the
caller.

Format CLP$CONVERT_STRING_TO_FILE (str, file, status)

Parameters str: string (*);

Condition
Identifiers

Revision B

String containing a file reference.

file: VAR of clt$file;

File record returned. The record consists of the following field.

local_file_name

Assigned local file name (type
AMT$LOCAL_FILE_NAME).

status: VAR of ost$status;

Status record.

Any command language condition whose code is within
the range 170100 through 170199 or 170500 through 170599.

Command Language Services 8-17

Remarks

Revision B

CLP$CONVERT_ VALUE_TO_STRING

If the record describes an integer, name, file, boolean, or
status record, the procedure returns the string equivalent of
the value. For a file, the full file reference is returned
(beginning with a : character as described in the SCL System
Interface manual). The string returned for a status record
depends on the current job message level (described in chapter
6).

If the record describes an array reference, the procedure
returns the following string containing the array name.

ARRAY: name

If the record describes an application value, the contents of
the descriptor field of the record is returned. However, if the
descriptor field is blank, the procedure returns the following
string.

APPLICATION VALUE

If the record describes a value of unknown type, the procedure
returns the following string.

UNKNOWN VALUE

Command Language Services 8-19

Command Language Processing 9

Command Processor. 9-1

Parameter Descriptor Table (PDT) . 9-2
PDT Declaration Syntax . 9-2
Application Value Scanner 9-4

Retrieving Parameter List Information 9-11
CLP$SCAN_PARAMETER_LIST 9-12
CLP$TEST _PARAMETER 9-13
CLP$GET_SET_COUNT .. 9-14
CLP$GET_ VALUE_COUNT 9-15
CLP$TEST_RANGE ... 9-16
CLP$GET_ VALUE .. 9-17
CLP$GET_PARAMETER .. 9-18
CLP$GET_PARAMETER_LIST 9-19
File References ... 9-20
CLP$GET_PATH_DESCRIPTION 9-21
CLP$GET_ WORKING_CATALOG 9-24
CLP$SET_WORKING_CAtALOG -9-25
Subparameter Lists ... 9-26
CLP$PUSH_PARAMETERS 9-27
CLP$POP _PARAMETERS 9-28

Command Utility ... 9-29

Utility Command List Search Mode 9-30
CLP$PUSH_ UTILITY ... 9-31
CLP$POP _UTILITY ... 9-35
Utility Subcommands .. 9-36
CLP$SCAN _COMMAND _FILE 9-37
CLP$END _SCAN_ COMMAND _FILE 9-38
Command Utility Example 9-38

Utility Functions .. 9-52

CLP$SCAN _ARGUMENT _LIST 9-57

Token Scanning ... 9-58

CLP$SCAN _TOKEN .. 9-61

Expression Evaluation .. 9-62

CLP$SCAN _EXPRESSION 9-63

Command Language Processing 9

NOS/VE allows you to define new commands. These user-defined commands
are interpreted the same way system-defined SCL commands are interpreted.
The commands use standard SCL command and parameter syntax.

To write a program that defines a command, you should first understand
how the system processes SCL commands. Each command is processed by a
part of the system called the SCL interpreter. The SCL interpreter expects
the command and parameter syntax described in the SCL Language
Definition manual.

At the SCL command level, the SCL interpreter recognizes only commands
that are in the command list for the job. For the SCL interpreter to recognize
a command you define at the SCL command level, you must add your
command to the beginning of the command list for the job using the SCL
command SET_ COMMAND _LIST. The process of adding to the command
list is described in the SCL Language Definition manual.

You add either an object library or a catalog to a command list by using
SET_ COMMAND _LIST. The object library or catalog must contain
programs or procedures in executable form. Each program or procedure
processes a command and is, therefore, referred to as a command processor.

Command Processor

The SCL interpreter accepts commands that consist of a command verb and
a parameter list. (The parameter list can be empty.) When the SCL
interpreter reads a command, it finds and calls the appropriate command
processor, passing it the parameter list and a status variable. The command
processor uses the parameter list as input information and the status
variable to return its completion status. The required procedure declaration is
as follows (type CLT$COMMAND).

PROCEDURE name (parameter _list: clt$parameter _list;
VAR status: ost$status);

To use its parameter list information, the command processor calls the
CLP$SCAN_PARAMETER_LIST procedure to parse the parameter list
according to the SCL parameter syntax rules. To parse a parameter list, the
CLP$SCAN _PARAMETER_LIST command requires the parameter list
that was passed to the command processor and the Parameter Descriptor
Table (PDT) that defines the valid parameters for the parameter list.

Revision B Command Language Processing 9-1

COMMAND PROCESSOR

You can specify the parameter definitions one per line or more than one on a
line if separated by semicolons (;). The following general formats are both
valid:

PDT pdt_ variable_name (
parameter_ definition
parameter_ definition)

PDT pdt_ variable_name (
parameter_ definition; parameter_ definition)

If a parameter definition does not fit on one line, you can use continuation
lines. (A continuation line ends with an ellipsis[..].)

Each parameter definition has the following general format:

parameter _names: value_ specification=default _specification

A parameter definition within a PDT declaration uses the same syntax as a
parameter definition within an SCL procedure header. For a full description
of the parameter definition syntax, see the SCL Language Definition
manual.

The following example shows the PDT declaration that could generate a
PDT for the SCL command ATTACH_FILE.

PDT attach_command_pdt (
file, f : FILE= $REQUIRED
local_file_name, lfn: NAME
password, pw : NAME OR KEY none = none
access_modes, access_mode, am : LIST OF KEY read, ••

append, modify, execute, shorten, write, all =
(read, execute)

share_modes, share_mode, sm : LIST OF KEY read, ••
append, modify, execute, shorten, write, all, ••
none = (read, execute)

wait, w : BOOLEAN = false
STATUS)

Notice that the STATUS parameter definition is a special case. It does not
require a value or default specification. If the parameter name is STATUS,
NOS/VE assumes that the parameter is the status variable and that it has
no default.

Revision B Command Language Processing 9-3

COMMAND PROCESSOR

The following defines the required parameter list for a scanner program.

<value_name: cltSapplication_value_name;
keywords: -array[1 •. *] of ostSname;
text: string(*);
VAR value: cltSvalue;
VAR status: ostSstatus);

value_name

Application value name as specified in the parameter definition.

keywords

Pointer to the array of keywords defined as valid parameter values.

text

Parameter string passed to the procedure for evaluation.

value

Result of the evaluation. The parameter value must be returned as a
type CLT$VALUE record (see table 9-1).

status

Status record.

Revision B Command Language Processing 9-5

COMMAND PROCESSOR

Table 9-1. Evaluated Expression Value (Type CLT$VALUE)
(Continued)

Field

application

var_ref

str

file

name

Revision B

Content

Value recognized by the application (CLT$APPLICATION_
VALUE, 256-character sequence). This field is generated
only ifthe kind field is set to CLC$APPLICATION_
VALUE.

Command variable reference (CLT$VARIABLE_
REFERENCE, see table 9-2). This field is generated only if
the kind field is set to CLC$V ARIABLE_REFERENCE.

String record (0ST$STRING). This field is generated only if
the kind field is set to CLC$STRING_ VALUE.

Field

size

value

Content

Actual string length (0ST$STRING_SIZE, 0
through OSC$MA}LSTRING_SIZE).

String (256 characters).

File record (CLT$FILE). This field is generated only if the
kind field is set to CLC$FILE_ VALUE. The file record
consists of the following field.

locaLfile_name

Local file name (AMT$LOCALFILE_NAME).

Name record (CLT$NAME). This field is generated only if
the kind field is set to CLC$NAME_ VALUE.

Field

size

value

Content

Actual name length (1 through OST$MA}L
NAME_SIZE).

Name (31 characters).

(Continued)

Command Language Processing 9-7

COMMAND PROCESSOR

Table 9-2. Variable Reference (CLT$VARIABLE_REFERENCE)

Field

reference

lower_bound

upper_bound

value

Revision B

Content

Variable reference string record (0ST$STRING).

Field

size

Content

Actual string length (0ST$STRING--8IZE, 0
through OSC$MAX...STRING_SIZE).

value String (256 characters).

Lower array bound (CLT$V ARIABLE__DIMENSION).

Upper array bound (CLT$VARIABLE__DIMENSION).

Variable value or values (CLT$V ARIABLE_ VALUE).

Field

descriptor

kind

Content

Name of the value kind (string oflength
OSC$MAX-.NAME--8IZE, 31 characters).

Key field identifying the value kind
(CLT$V ARIABLE._J{INDS).

CLC$STRING_ VALUE

The maximum string size is in the
max_string_size field and the value is in
the string_value field.

CLC$REAL VALUE

The value is currently unimplemented.

CLC$INTEGER.... VALUE

The value is in the integer_ value field.

CLC$BOOLEAN_VALUE

The value is in the boolean__value field.

CLC$STATUS_VALUE

The value is in the status_value field.

(Continued)

Command Language Processing 9-9

RETRIEVING PARAMETER LIST INFORMATION

Retrieving Parameter List Information

Guided by the PDT, the CLP$SCAN _PARAMETER_LIST procedure parses
a parameter list according to SCL syntax rules. The command processor can
then use the following calls to get information about the components of the
parameter list.

CLP$TEST _PARAMETER

Whether a parameter value is specified in the actual parameter list or is
provided by a default value.

CLP$GET _SET_ COUNT

Number of value sets specified for a parameter.

CLP$GET_VALUE_COUNT

Number of values in a value set.

CLP$TEST _RANGE

Whether the value is specified as a range.

CLP$GET _VALUE

An actual parameter value.

CLP$GET _PARAMETER

The entire parameter string.

CLP$GET _PARAMETER_LIST

The entire parameter list string.

Revision B Command Language Processing 9-11

CLP$TEST _PARAMETER

CLP$TEST PARAMETER

Purpose Tests whether a parameter list contains a value for the
specified parameter.

Format CLP$TEST _PARAMETER (parameter _name,
parameter _specified, status)

Parameters parameter _name: string (*);
Parameter name.

Condition
Identifiers

Remarks

Revision B

parameter_ specified: VAR of boolean;

Indicates whether the parameter is specified.

TRUE

Parameter is specified.

FALSE

Parameter is omitted.

status: VAR of ost$status;

Status record.

cle$unexpected _call_ to
cle$unknown _parameter _name

The parameter list used is the parameter list scanned by a
prior CLP$SCAN _PARAMETER_LIST call.

Command Language Processing 9-13

CLP$GET_VALUE_COUNT

CLP$GET_VALUE_COUNT

Purpose Returns number of values specified in a value set.

Format CLP$GET _VALUE_ COUNT (parameter _name, value_
set_number, value_count, status)

Parameters parameter _name: string (*);
Parameter name.

Condition
Identifiers

Remarks

Revision B

value_set_number: 1 .. clc$max_ value_sets;

Value set number.

value_ count: VAR of 0 .. clc$max_ values _per _set;

Number of values.

status: VAR of ost$status;

Status record.

cle$unexpected _call_ to
cle$unknown_parameter _name

• A value set is a set of values enclosed in parentheses
specified for a parameter.

• The parameter list used is the parameter list scanned by a
prior CLP$SCAN _P ARAMETER_LlST call.

Command Language Processing 9-15

CLP$GET _VALUE

CLP$GET _VALUE

Purpose Returns a parameter value.

Format CLP$GET_ VALUE (parameter_name, value_set_
number, value_number, low _or _high, value, status)

Parameters parameter _name: string (*);
Parameter name.

Condition
Identifiers

Remarks

Revision B

value_set_number: 1 .. clc$max_ value_sets;

Value set number indicating which value set of the
parameter _name is being referenced. (The number of value
sets for the parameter _name is returned using the
CLP$GET _SET_ COUNT procedure.)

value_number: 1 .. clc$max_ values_per_set;

Value number indicating which value of the value_set_
number is being referenced. (The number of values in the
value_set_parameter is returned using the CLP$GET _
VALUE_ COUNT procedure.)

low _or _high: clt$low _or_high;

Indicates whether the upper or lower bound of the range is
returned.

CLC$LOW

Return the lower bound.

CLC$HIGH

Return the upper bound.

value: VAR of clt$value;

Parameter value (see table 9-1).

status: VAR of ost$status;

Status record.

cle$unexpected _call_ to
cle$unknown_parameter _name

• The parameter list used is the parameter list scanned by a
prior CLP$SCAN _PARAMETER_LIST call.

• If the parameter list of the command did not specify a
value for the parameter specified on the CLP$GET _
VALUE call, CLP$GET _VALUE returns value kind
CLC$UNKNOWN _VALUE in the value record returned.

Command Language Processing 9-17

CLP$GET _PARAMETER_LIST

CLP$GET PARAMETER LIST - -
Purpose Returns the entire parameter list.

Format CLP$GET _PARAMETER_LIST (parameter _list,
status)

Parameters parameter _list: VAR of ost$string;

Parameter list record.

Condition
Identifier

Remarks

Revision B

Field

size

value

Content

Actual value list length (0ST$STRING _SIZE, 0,
through OSC$MAX_STRING_SIZE, 256).

Value list string (256 characters).

status: VAR of ost$status;

Status record.

cle$unexpected _call_ to

The parameter list used is the parameter list scanned by a
prior CLP$SCAN_PARAMETER_LIST call.

Command Language Processing 9-19

CLP$GET _pATH_DESCRIPTION

CLP$GET_PATH_DESCRIPTION

Purpose Returns description of a command language file reference.

Format CLP$GET_PATH_DESCRIPTION (file, file_reference,
path_ container, path, cycle_selector, open_position,
status)

Parameters file: clt$file;

File record consisting of the following field. This is the record
returned by a CLP$GET _VALUE call for the value kind
FILE.

local file_name

File name (type AMT$LOCAL_FILE_NAME).

file_reference: VAR of clt$file_reference;

File reference record. Following are the fields and their
contents.

path_name

Absolute path name (CLT$PATH_NAME, 256-character
string).

path_name_size

Actual length of the path name (1 through the value of
CLC$MAX_PATH_NAME_SIZE, 256).

validation_ ring

Indicates whether the ring is known and if so, provides the
ring number (see table 9-3).

Table 9-3. Validation Ring Specification

Field

known

number

Revision B

Content

Key field indicating whether the validation ring is known
(boolean).

TRUE

The validation ring is specified in the number field.

FALSE

The validation ring is unknown.

Validation ring number if known (OST$V ALID_RING,
1 .. 15).

Command Language Processing 9·21

CLP$GET _PATH_DESCRIPTION

Table 9-4. Command Language Cycle Specification
(CLT$CYCLE..SELECTOR)

u

Field Content

specification Indicates how the cycle is specified (CLT$CYCLE_
SPECIFICATION).

CLC$CYCLE_QMITTED

No cycle specified.

CLC$CYCLE-SPECIFIED

A cycle number was specified.

CLC$CYCLE_NEXTJfIGHEST

The next highest cycle was requested.

CLC$CYCLE_NEXT....LOWEST

The next lowest cycle was requested.

value Actual cycle value record (PFT$CYCLE_SELECTOR).

Revision B

Field

cycle_option

Content

Key field (PFT$CYCLE-OPTIONS).

PFC$LOWESLCYCLE.

Lowest cycle.

PFC$HIGHEST_CYCLE

Highest cycle.

PFC$SPECIFIC_CYCLE

Cycle specified in the cycle_number
field.

cycle_number Specific cycle number (PFC$MINIMUM_
CYCLE_NUMBER through
PFC$MAXIMUM_CYCLE NUMBER).

Command Language Processing 9-23

CLP$SET _ WORKING_CATALOG

CLP$SET_WORKING_CATALOG

Purpose Sets the working catalog.

Format CLP$SET _WORKING_ CATALOG (catalog, status)

Parameters catalog: string (*);
Catalog name.

Condition
Identifiers

Remarks

Revision B

status: VAR of ost$status;

Status record.

Any command language condition whose code is within
the range 170100 through 170199 or 170500 through 170599.

The working catalog is the default catalog used if no catalog
is specified in a file reference. The initial working catalog in a
job is the $LOCAL catalog. You can change the working
catalog with a CLP$SET _WORKING_ CATALOG call or the
SCLcommand SET_ WORKING_CATALOG.

Command Language Processing 9·25

CLP$PUSH_PARAMETEBS

CLP$PUSH PARAMETERS

Purpose

Format

Parameter

Condition
Identifier

Remarks

Revision B

Establishes the environment for scanning a parameter list.

CLP$PUSH_PARAMETERS (status)

status: VAR of ost$status;

Status record.

None.

After scanning the parameter list and retrieving parameter
values, the program calls CLP$POP _PARAMETERS to
return to the previous environment.

Command Language Processing 9-27

COMMAND UTILITY

Command Utility

Each task has its own SCL command stack. The first entry on the stack is
the current SCL command list for the job. A task can push and pop
command list entries from its stack.

A command utility is a task that adds its own entry to its command stack so
that it can process subcommands. To do so, it performs the following steps.

1. Defines its subcommand list and function list. The list specifies a
command processor for each subcommand and function.

2. Calls CLP$PUSH_ UTILITY to establish the utility command
environment. CLP$PUSH_ UTILITY pushes the subcommand list and
function list on the task's SCL command stack and allocates storage
for utility command variables.

3. Calls CLP$SCAN _COMMAND _FILE to call the SCL interpreter to
process command input. The SCL interpreter processes each command
entry. If the command entered is a utility subcommand, the SCL
interpreter calls the command processor specified in the utility
command list.

4. Calls CLP$END _SCAN_ COMMAND _FILE to direct the SCL
interpreter to stop processing command input for the utility. It is
normally called from the utility subcommand processor that
terminates utility processing (such as the QUIT processor in the
command utility example in this section).

5. Calls CLP$POP _UTILITY to disestablish the utility environment. It
removes the utility command and function list from the SCL command
stack.

Writing a program as a command utility has the following advantages.

• The utility writer does not write routines to parse commands or parameter
lists or call the appropriate command processors.

• Utility users can enter SCL statements controlling the order of command
execution (such as iteration and condition checks) within the
subcommand sequence.

• The command syntax for the utility is the SCL command syntax with
which the utility user is already familiar.

Revision B Command Language Processing 9-29

CLP$PUSH_ UTILlTY

CLP$PUSH_ UTILITY

Purpose Establishes a new command environment.

Format CLP$PUSH_ UTILITY (utility _name, search_mode,
commands, functions, status)

Parameters utility _name: ost$name;

Command environment name.

Revision B

search_mode: clt$command_search_modes;

Command list search mode.

CLC$GLOBAL_COMMAND_SEARCH

All command lists searched; escape mode allowed.

CLC$RESTRICTED_COMMAND_SEARCH

Except in escape mode, only the utility command list is
searched; in escape mode, all command lists except the
utility command list are searched.

CLC$EXCLUSIVE_ COMMAND _SEARCH

Only the utility command list is searched; escape mode is
not allowed.

Command Language Processing 9-31

Condition
Identifier

Revision B

CLP$PUSH_ UTILITY

functions: "clt$function_list;

Utility function list pointer. The list is an adaptable array of
one or more CLT$FUNCTION _LIST _ENTRY records. Each
record has the following fields.

name

Function name (0ST$NAME, 31 characters).

kind

Key field (CLT$FUNCTION _LIST _ENTRY _KIND).

CLC$LINKED _FUNCTION

The function processor is already loaded and linked in
the task's address space. The function pointer is in the
function field.

CLC$UNLINKED FUNCTION

The function processor is not yet loaded or linked. The
function module name is in the procedure_name field.

function

Pointer to the function procedure (CLT$FUNCTION). This
field is generated only if the kind field is CLC$LINKED _
FUNCTION.

procedure_name

Name of the function procedure that must be loaded before
it is called (PMT$PROGRAM_NAME). This field is
generated only if the kind field is CLC$UNLINKED _
FUNCTION.

status: VAR of ost$status;

Status record.

None.

Command Language Processing 9-33

CLP$POP _UTILITY

CLP$POP _UTILITY

Purpose

Format

Parameter

Condition
Identifier

Revision B

Disestablishes the most recently established command
environment.

CLP$POP _UTILITY (status)

status: VAR of ost$status;

Status record.

cle$unexpected _call_ to

Command Language Processing 9-35

CLP$SCAN _COMMAND _FILE

CLP$SCAN_ COMMAND _FILE

Purpose Calls the SCL interpreter to read and interpret command
input from the specified file.

Format CLP$SCAN _COMMAND _FILE (file, utility _name,
prompt_string, status)

Parameters file: amt$local_file_name;

Condition
Identifiers

Remarks

Revision B

Local file name. Usually, the file is the current command
input file (referenced as CLC$CURRENT _
COMMAND _INPUT).

utility _name: ost$name;

Name of the utility that uses the command input as specified
on a previous CLP$PUSH_ UTILITY call.

prompt_string: string (*);
Prompt string used if the command file is assigned to an
interactive terminal.

status: VAR of ost$status;

Status record.

All command language conditions.

• The SCL interpreter processes the commands on the
specified file as if the commands were a statement list of
an unlabeled block statement.

• To end command interpretation prior to reaching the end
of-information on the command file, the task must call the
CLP$END _SCAN_ COMMAND _FILE procedure. The
CLP$END _SCAN_ COMMAND _FILE call is usually
issued within the command processor that ends utility
processing.

Command Language Processing 9-37

COMMAND UTII.JTY EXAMPLE

Assuming the object module generated by compilation of the program is on
file LGO, the following statement sequence shows how to generate an object
library containing the module, add the object library to the command list,
and then execute the utility.

/create_object_Library
COL/add_module Library=Lgo
COL/generate_Library Library=my_Library
COL/quit
/set_command_List add=my_Library
/info_please
What information do you want?
Enter an information command or

enter quit to Leave the utility.
To display:

--processor attributes, enter: processor
--SRUs accumulated for the job, enter: srus
--CPU time accumulated for the task, enter: cp_time
--account and project numbers: acct_proj

Info item?/@rpcesspr
--ERROR-- @RPCESSPR is not a command.
Info item?/processor
Processor attributes:

CPU model P3
Serial number 2
Page size 8192 bytes

Info item?/srus
0499116 SRUs.
Info item?/cp_time
Accumulated CPU time for the task

434051 microseconds in job mode
9 microseconds in monitor mode

Info item?/acct_proj
Account D5923
Project P693N354
Info item?/quit
Bye now.
I

!Wvision B Command Language Processing 9-39

COMMAND UTILITY EXAMPLE

{This procedure writes a message to the output file.}
{It assumes that the output file has been opened and}
{its file identifier returned in a variable named}
{ output_fid. }

PROCEDURE put_message (message: string(*));

VAR
byte_address: amtSfile_byte_address,
stat: ostSstatus;

ampSput_next Coutput_fid, #LOCCmessage),
#SIZECmessage), byte_address, stat);

IF NOT stat.normal THEN
pmpSexitCstat);

I FEND;
PROCEND put_message;

{ This procedure displays instructions after a user }
{ enters the info_please command. }

PROCEDURE display_ instructions;

put_message C' What information do you want?');
put_message C' Enter an information command or ');
put_message (' enter quit to leave the utility.');
put_message C' To display:');
put_message

(' --processor attributes, enter: processor');
put_message

(' --SRUs accumulated for the job, enter: srus');
put_message

C' --CPU time accumulated for the task, enter: cp_time');
put_message

(' --account and project numbers: acct_proj');

PROCEND display_instructions;

Revision B Command Language Processing 9-41

COMMAND UTILITY EXAMPLE

PUSH message_ptr_1: [17+serial_no_string.sizeJ;
message_ptr_1"C1,17) :=' Serial number';
message_ptr_1"(18,serial_no_string.size) :=

serial_no_string.valueC1,serial_no_string.size);
put_message(message_ptr_1");

clpSconvert_integer_to_string Cattributes.page_size,
10, false, page_size_string, stat);

IF NOT stat.normal THEN
pmpSexitCstat>;

!FEND;

PUSH message_ptr_2: [19+page_size_string.sizeJ;
message_ptr_2"C1,13) := ' Page size ';
message_ptr_2"(14,page_size_string.size) :=

page_size_string.valueC1,page_size_string.size);
message_ptr_2"((page_size_string.size+14),6) :=

'bytes';
put_message (message_ptr_2");

PROCEND processor_command;

Revision B Command Language Processing 9-43

COMMAND UTILITY EXAMPLE

{ This procedure processes the cp_time command. }
{ It returns the number of microseconds accumulated in }
{ job mode and in monitor mode for the task. }

PROCEDURE cp_time_command(cp_time_parameter_list:
cltSparameter_list;
VAR stat: ostSstatus);

VAR
cp_time: pmtStask_cp_time,
job_mode_string: ostSstring,
monitor_mode_string: ostSstring,
message_ptr_1, message_ptr_2: "string(*);

pmp$get_task_cp_time(cp_time, stat);
IF NOT stat.normal THEN

pmpSexit(stat);
!FEND;

put_message<' Accumulated CPU time for the task');

clp$convert_integer_to_string(cp_time.task_time, 10,
false, job_mode_string, stat>;

IF NOT stat.normal THEN
pmpSexit(stat);

!FEND;

Revision B Command Language Processing 9-45

COMMAND UTILITY EXAMPLE

{ This procedure processes the acct_proj command. }
{ It returns the account and project names for the }
{ job. }

PROCEDURE acct_proj_command
Cacct_proj_parameter_list: cltSparameter_list;
VAR stat: ostSstatus);

VAR
account: avtSaccount_name,
project: avtSproject_name,
message1, message2: stringCoscSmax_name_size+9);

pmpSget_account_projectCaccount,project, stat>;
IF NOT stat.normal THEN

pmpSexit Cstat>;
I FEND;

message1C1,9> := ' Account ';
message1C10,STRLENGTHCaccount)) :=account;
put_message Cmessage1>;

message2C1,9) :='Project ';
message2C10,STRLENGTHCproject)) := project;
put_messageCmessage2>;

PROCEND acct_proj_command;

{ This procedure processes the quit command. It }
{sends a message and then ends the command file}
{ scan by the SCL interpreter. }

PROCEDURE quit_command Cquit_parameter_list:
cltSparameter_list; VAR stat: ostSstatus>;

put_message C' Bye now.');

clpSend_scan_command_fileCutility_name, stat>;
IF NOT stat.normal THEN

pmpSexitCstat>;
I FEND;
PROCEND quit_command;

Revision B Command Language Processing 9-47

{ STATUS }
[[clcSoptionalJ,
1, 1,
1, 1,
clcSvalue_range_not_allowed,
[NIL,

COMMAND UTILITY EXAMPLE

clcSvariable_reference, clcSarray_not_allowed,
clcSstatus_valueJJJ;

VAR
info_please_pdt_dv1: [STATIC, READ,

clsSpdt_names_and_defaultsJ string(?) :='$output';

?? POP ??

clpSscan_parameter_list Cparameter_list,
info_please_pdt, status>;

IF NOT status.normal THEN
pmpSexitCstatus);

!FEND;

{The following calls get the input and output file}
{names and open the input and output files.}

clpSget_valueC'output',1,1,clcSlow,output_file,status>;
IF NOT status.normal THEN

RETURN;
!FEND;

ampSopenCoutput_file.file.local_file_name, amcSrecord,
NIL, output_fid, status>;

IF NOT status.normal THEN
RETURN;

IF END;

display_instructions;

Revision B Command Language Processing 9-49

COMMAND UTILITY EXAMPLE

{The following call directs the SCL interpreter to}
{ begin interpreting the commands entered in the }
{input file. It prompts for command input with the}
{ string Info item? When it reads a command, it }
{ finds the command processor, calls it, and passes }
{the parameter List to it.}

clpSscan_command_file CclcScurrent_command_input,
utility_name, 'Info item?', status>;

IF NOT status.normal THEN
RETURN;

!FEND;

ampSclose(output_fid, status>;

clpSpop_utilityCstatus>;

PROCEND info_please;
MODEND command_utility_example;

Revision B Command Language Processing 9-51

UTILITY FUNCTIONS

Table 9-5. Argument Descriptor (CLT$ARGUMENT_])ESCRIPTOR)

Field

requirecLor_
optional

value...kincL
specifier

Revision B

Content

Indicates whether the parameter is required or optional
and its default, if any (CLT$REQUIRED_OR._
OPTIONAL).

Field

selector

default

Content

Key field determining whether the parameter
is required or optional.

CLC$REQUIRED

The parameter is required; no default value
is supplied.

CLC$0PTIONAL

The parameter is optional; no default value
is supplied.

CLC$0PTIONAI.._WITILDEFAULT

The parameter is optional; the default field
is generated to supply the default value.

Pointer to the default value (- string(*)).

Value kind specifier (CLT$V ALUE_IUND_SPECIFIER,
see table 9-6).

Command Language Processing 9-53

UTILITY FUNCTIONS

Table 9-6. Value Kind Specifier (CLT$VALUE_KJND_SPECIFIER)
(Continued)

Field

array_
allowed

variable_
kind

value_name

Revision B

Content

CLC$REALV ALUE

This value is currently unimplemented.

CLC$BOOLEAN_VALUE

Boolean value.

CLC$STATUS_ VALUE

Status record.

Indicates whether the command variable can be an
array (used only if kind is CLC$V ARIABLE_
REFERENCE).

CLC$ARRA Y_NOT_ALLOWED

The variable cannot be an array.

CLC$ARRA Y_ALLOWED

The variable can be an array.

Indicates the variable type or the type of each element
in the array variable (used only if kind is
CLC$V ARIABLE_REFERENCE).

CLC$STRING_ VALUE

String.

CLC$REAL VALUE

This value is currently unimplemented.

CLC$INTEGER_ VALUE

Integer.

CLC$BOOLEAN_VALUE

Boolean.

CLC$STATUS_ VALUE

Status record.

CLC$ANY_ VALUE

Any type.

Name passed to the application value scanner
(CLT$APPLICATION_ VALUE_NAME). It is used
only if the kind is CLC$APPLICATION_ VALUE).

(Continued)

Commanrl Language Processing 9-55

CLP$SCAN _ARGUMENT _LIST

CLP$SCAN_ARGUMENT_LIST

Purpose Scans the argument list of a function.

Format CLP$SCAN_ARGUMENT _LIST (function_name,
argument_list, adt, avt, status)

Parameters function_name: clt$name;

Function name record.

Condition
Identifiers

Revision B

Field Content

size Actual name length (0ST$NAME_SIZE, 1 through
OSC$MAX_NAME_SIZE).

value Function name string (0ST$NAME, 31 characters).

argument_list: string (*);
Argument list.

adt: • clt$argument_descriptor_table;

Pointer to the argument descriptor table.

avt: • clt$argument_ value_table;

Pointer to the argument value table.

status: VAR of ost$status;

Status record.

Any command language condition whose code is within
the range 170100 through 170599 or 171000 through 171099.

Command Language Processing 9-57

TOKEN SCANNING

Table 9-7. Token Record (CLT$TOKEN) (Continued)

Field

str

name

int

Content

String record (OST$STRING). This field is generated only if
the kind field value is CLC$STRING_TOKEN.

Field

size

value

Content

Actual string length (0ST$STRING-8IZE, 0
through OSC$MAX....STRING_SIZE).

String (256 characters).

Name (CLT$NAME). This field is generated only ifthe kind
field value is CLC$NAME_TOKEN.

Field

size

value

Content

Actual name length (1 through OSC$MAX....
NAME_SIZE).

Name (31 characters).

Integer value (CLT$INTEGER). This field is generated only
if the kind field value is CLC$INTEGER...TOKEN.

Field

value

radix

radix_
specified

Content

Integer value (integer).

Radix used (2 through 16).

Indicates whether a radix was specified.

TRUE

Radix specified.

FALSE

Radix omitted.

rnum Floating point value (CLT$REAL). (Although CLP$SCAN_
TOKEN recognizes real number input, real number
processing is currently unimplemented.)

Revision B Command Language Processing 9-59

CLP$SCAN_TOKEN

CLP$SCAN_ TOKEN

Purpose Scans the next lexical unit.

Format CLP$SCAN_TOKEN (text, index, token, status).

Parameters text: string (*);
Text to be scanned.

Condition
Identifiers

Revision B

index: VAR of ost$string_index; [input, output]

Index to next character (input and output value).

token: VAR of clt$token;

Lexical unit.

status: VAR of ost$status;

Status record.

Any command language condition whose code is within
the range 170100 through 170199.

Command Language Processing 9-61

CLP$SCAN _EXPRESSION

CLP$SCAN_EXPRESSION

Purpose Scans and evaluates an expression.

Format CLP$SCAN_EXPRESSION (expression, value_kind_
specifier, value, status)

Parameters expression: string (*);
Expression.

Condition
Identifiers

Revision B

value_kind_specifier: clt$value_kind_specifier;

Value kind specifier.

value: VAR of clt$value;

Value of expression.

status: VAR of ost$status;

Status record.

Any command language condition whose code is within
the range 170100 through 170599 or 171000 through 171099.

Command Language Processing 9-63

CLP$COLLECT _COMMANDS

CLP$COLLECT _COMMANDS

Purpose Collects commands on the specified file.

Format CLP$COLLECT _COMMANDS (local_file _name,
terminator, status)

Parameters local_ file_ name: amt$local _file_ name;

Condition
Identifier

Remarks

Revision B

Local file name of the file on which the commands are
collected.

terminator: ost$name;

Name that terminates the copy.

status: VAR of ost$status;

Status record.

None.

• CLP$COLLECT _COMMANDS is designed for use by a
utility subcommand processor that requires input from the
command file.

• CLP$COLLECT _COMMANDS directs the SCL
interpreter to copy commands read from the command file
to another file without interpreting or processing the
commands. It continues copying commands until it reads
the specified terminator (the terminator is not copied).

• CLP$COLLECT _COMMANDS writes one command per
line on the specified file even if more than one command
was entered on a line of the command file. For example,
suppose the specified terminator name is BREAKEND and
CLP$COLLECT _COMMANDS reads the following line
from the command file.

disl o=my_file;copf Listing;breakend

CLP$COLLECT _COMMANDS writes the following
output on the specified file.

disl O"'my_file
copf Listing

Command Language Processing 9-65

CLP$GET _DATA_LINE

CLP$GET _DAT A_LINE

Purpose Reads the next line from the current command file.

Format CLP$GET _DATA_LINE (prompt_string, line, got_
line, status)

Parameters prompt_string: string (*);

Condition
Identifier

Remarks

Revision B

Prompt string used if the command file is assigned to an
interactive terminal.

line: VAR of ost$string;

Line read (up to 256 characters).

got_line: VAR of boolean;

Indicates whether a line was read or the end-of-information
encountered.

TRUE

A line was read.

FALSE

No line was read; the call read the end-of-information
indicator.

status: VAR of ost$status;

Status record.

None.

• CLP$GET _DATA_LINE directs the SCL interpreter to
return the next line read from the command file without
interpreting or processing the line.

• CLP$GET _DATA_LINE is designed for use by a utility
subcommand processor that requires input from the
command file.

Command Language Processing 9-67

SCANNING DECLARATIONS

Scanning Declarations

You can call CLP$SCAN_PROC_DECLARATION to parse a PDT
declaration. The SCL interpreter calls CLP$SCAN _PROC _
DECLARATION to parse an SCL procedure header. The INPUT_ TYPE
parameter on the CLP$SCAN_PROC_DECLARATION call specifies the
type of input provided.

CLP$SCAN_PROC_DECLARATION requires you to provide a procedure
to preprocess its input. The procedure pointer must be of type CLT$PROC _
INPUT _PROCEDURE. The following is the CLT$PROC _INPUT_
PROCEDURE type declaration.

cltSproc_input_procedure = ftprocedure
(VAR Line: ostSstring;
VAR index: ostSstring_index;
VAR token: cltStoken;
VAR status: ostSstatus>;

The first parameter returns the next input line. The second parameter
returns the position of the character following the first token in the line. The
third parameter returns the first token in the line.

The preprocessing procedure must perform the following tasks.

• Determine whether a line is a continuation line. If it is, the procedure
must remove the ellipsis (..) and concatenate the line with the next line.

• Discard all lines that contain only spaces or comments.

• Return an empty line (a line of size zero) when it reads the end of the
input.

Revision B Command Language Processing 9-69

CLP$SCAN _PROC _DECLARATION

CLP$SCAN_PROC_DECLARATION

Purpose Parses a PDT declaration or an SCL procedure header.

Format CLP$SCAN_PROC_DECLARATION (input_ type,
get _line, proc _name _area, parameter _name _area,
parameter _area, symbolic_parameter _area, extra_
info_area, proc_names, pdt, symbolic_parameters,
status)

Parameters input_ type: clt$proc _in put_ type;

Revision H

Indicates whether the input is a PDT declaration or an SCL
procedure header.

CLC$PROC _INPUT

The input is an SCL procedure header.

CLC$PDT _INPUT

The input is a PDT declaration.

get_line: clt$proc_input_procedure;

Pointer to the procedure that preprocesses the input.

proc_name_area: VAR of SEQ (*);
Adaptable sequence in which the procedure CLP$SCAN _
PROC_DECLARATION stores the procedure names as an
array.

parameter _name_area: VAR of SEQ (*);
Adaptable sequence in which the procedure CLP$SCAN _
PROC_DECLARATION stores the parameter names as an
array.

parameter _area: VAR of SEQ (*);
Adaptable sequence in which the procedure CLP$SCAN _
PROC_DECLARATION stores the parameter descriptors.

symbolic _parameter_ area: VAR of SEQ (*);
Adaptable sequence in which the procedure CLP$SCAN _
PROC_DECLARATION stores the original unevaluated
form of any expressions. (When generating CYBIL
statements, GENPDT uses the original expression within the
statement.)

Command Language Processing 9-71

PDT POINTERS

PDT Pointers

A PDT (as described in table 9-9) contains two pointers: a pointer to a list of
possible parameter keywords and a pointer to a list of parameter descriptors.
Each entry in the list of parameter keywords references an entry in the list of
parameter descriptors.

Table 9-9. Parameter Descriptor Table
(Type CLT$PARAMETER_DESCRIPTOR_TABLE)

Field

names

parameters

RPvision B

Content

Pointer to an array listing all parameter names ("array [L*]
of CLT$PARAMETER...NAME_ DESCRIPTOR).

The order of the names in the array is irrelevant except
when an error in a positional parameter is reported. The
error is reported using the name in that position of the
names array.

Field

name

number

Content

Name used to specify the parameter when it is
specified by name, rather than position (type
OST$NAME).

Index into the parameter descriptors array of
the entry describing the parameter (1 through
CLC$MAK_P ARAMETERS).

More than one name can reference the same
parameter descriptor.

Pointer to an array listing the parameter descriptors
("array [1 .. *]of CLT$PARAMETEILDESCRIPTOR;
see table 9-10).

The order of the entries in the parameters array must
correspond to the positional order of the parameters in the
parameter list. One entry must exist for each parameter.

Command Language Processing 9-73

PARAMETER DESCRIPTOR

Parameter Descriptor

Each parameter that can be specified on a command must have a parameter
descriptor that can be referenced via the command processor PDT. The
parameter descriptor specifies the valid syntax of the parameter
specification.

SCL allows a parameter specification to specify more than one value. It can
be a series of one or more value sets with one or more values in each set.
Each value can specify a single value or a range of values.

For example, the following could be a parameter specification:

((23,4,5),6,(12 .. 15,2))

It specifies three value sets. The first value set contains three values: 23, 4,
and 5. The second value set contains one value: 6. The third value set
contains two values: 12 .. 15 and 2.

A parameter descriptor as described in table 9-10 provides the following
information about a parameter:

• Whether the parameter is required or optional. For an optional parameter,
it indicates whether the parameter has a default value and, if it has one,
the default value itself.

• The maximum and minimum number of value sets allowed for th~
parameter.

• The maximum and minimum number of values allowed within a value set
for the parameter.

• Whether a value for the parameter can be specified as a range.

• The value kind specifier for the parameter.

Revision B Command Language Processing 9-75

VALUE KIND SPECIFIER

Value Kind Specifier

Each parameter descriptor specifies a value kind specifier (see table 9-6). The
value kind specifier describes a valid value for the parameter.

SCL processes each parameter value as an expression to be evaluated. The
result of the expression evaluation is a CLT$VALUE record (described in
table 9-1).

An expression can be evaluated as the value itself or as a keyword, array, or
command variable reference that specifies the value.

The value kind specifier provides the following additional information,
depending on the value kind:

• Name: Maximum and minimum name length.

• String: Maximum and minimum string length.

• Integer: Maximum and minimum value.

• Keyword: Pointer to the list of valid keywords.

• Command variable: Variable type and whether the variable can be an
array.

• Application value: Application value scanner and the value name passed
to the scanner. The application value scanner is executed to evaluate the
expression.

Revision B Command Language Processing 9-77

Appendixes

Glossary ... A-1

ASCII Character Set .. B-1

Constant and Type Declarations C-1

Stack Frame Save Area ... D-1

Glossary A

A

Abort

The immediate abnormal termination of a task.

B

Beginning-of-Information (BOI)

c

The point at which file data begins. The byte address at the beginning-of
information is always zero.

Catalog

A directory of files and catalogs maintained by the system for a user. The
catalog $LOCAL contains only file entries.

Also, the part of a path that identifies a particular catalog in a catalog
hierarchy. The format is as follows:

name.name name

where each name is a catalog. See Catalog Name and Path.

Catalog Name

The name of a catalog in a catalog hierarchy (path). By convention, the
name of the user's master catalog is the same as the user's user name.

Command Utility

A NOS/VE processor that adds its command list (referred to as its
subcommands) to the beginning of the SCL command list. The
subcommands are removed from the command list when the processor
terminates.

Condition Handler

A statement or procedure to which control is transferred when a condition
occurs. The statement or procedure is executed only ifit has been
established as the condition handler for the specified condition and the
condition occurs in its scope.

Revision B Glossary A-1

GLOSSARY

J

Job

A set of tasks execut.ed for a user name. NOS/VE accepts interactive and
batch jobs.

Job Library List

L

Object libraries included in the program library list for each program
execut.ed in the job.

List

0

A command format notation specifying that a parameter can be given
several values. See Value List.

Object File

A file containing one or more object modules.

Object Module

A compiler-generat.ed unit containing object code and instructions for
loading the object code. It is accept.ed as input by the loader and the object
library generator.

Revision B Glossary A-3

GLOSSARY

Q

Queue

R

A sequence of messages. Tasks can communicate by adding and
removing messages in a queue to which the tasks are connected.

Record

A unit of data than can be read or written by a single 1/0 request.

Ring

The level of hard ware protection given a file or segment. A file is protected
from unauthorized access by tasks executing in higher rings.

See Execution Ring.

Ring Attribute

A file attribute whose value consists of three ring numbers, referred to as
rl, r2, and r3. The ring numbers define the four ring brackets for the file
as follows:

Read bracket is 1 through r2.

Write bracket is 1 through rl.

Execute bracket is rl through r2.

Call bracket is r2+ 1 through r3.

~vision R Glossary A-5

GLOSSARY

u
Utility

v

A NOS/VE processor consisting of routines that perform a specific
operation. See Command Utility.

Value

An expression or application value specified in a parameter list. Each
value must match the defined kind of value for the parameter. Keywords,
constants, and variable references are all values.

Value Count

An integer expression indicating the number of value elements supplied
for a parameter.

Value Element

A single value or a range of values represented by two values separated
by an ellipsis. For example:

value or value .. value

See Value, Value List, and Value Set.

Value List

A series of value sets separated by spaces or commas and enclosed in
parentheses. If only one value set is given in the list, the parentheses can
be omitted. For example:

value set or (value set, value set,value set)

See Value, Value Element, and Value Set.

Revision 8 Glossary A-7

ASCII Character Set B

Table B-1 lists the ASCII character set used by the NOS/VE system.

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents each 7-
bit ASCII code in an 8-bit byte. The 7 bits are right-justified in each byte. For
ASCII characters, the left-most bit is always zero.

Revision B ASCII Character Set B-1

ASCII CHARACTER SET

Table B-1. ASCII Character Set (Continued)

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
05!l 3B 073 Semicolon

060 3C 074 Less than
061 30 075 Equals
062 3E 076 > Greater than
06:J 3F 077 ? Question mark

064 40 100 @ Commercial at
065 41 IOI A Uppercase A
066 42 102 B Uppercase B
067 43 103 c Uppercase C

068 44 104 D Uppercase D
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

072 48 ll[J H Uppercase H
073 49 lll I Uppercase I
074 4A ll2 J Uppercase J
075 4B ll3 K Uppercase K

076 4C ll4 L Uppercase L
077 4D 115 M Uppercase M
078 4E ll6 N Uppercase N
079 4F ll7 0 Uppercase 0

080 50 120 p Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 s Uppercase S

084 54 124 T Uppercase T
085 55 125 u Uppercase U
086 56 126 v Uppercase V
087 57 127 w Uppercase W

088 58 130 x Uppercase X
089 59 131 y Uppercase Y
090 5A 132 z Uppercase Z
091 5B 133 [Opening bracket

(Continued)

Revision B ASCII Character Set B-3

Constant and Type Declarations C

This appendix lists the constant and type declarations used by the
procedures described in this manual. In general, the declarations are listed in
alphabetical order by identifier name. However, the numeric order of ordinal
constants is maintained.

AV

Types

avt$account_name ost$name;

avt$project_name = ost$name;

CL

Constants

clc$assign_token = clc$eq_token;
clc$command_Language_id = 'cl';
clc$current_command_input

'$COMMAND
clc$echoed_commands

'$ECHO
clc$error_output =

'$ERRORS
clc$job_command_input

'COMMAND
clc$job_command_response =

'$RESPONSE
clc$job_input =

'INPUT
clc$job_output =

'OUTPUT

'· ,

'· ,

'· ,

'· ,

'· ,

'· ,

'· ,
clc$keyword_value = clc$unknown_value;
clc$Listing_output =

'$LIST

Revision B

'· ,

Constant and Type Declarations C-1

Types

cltSapplication_value =SEQ (ostSstring);

cltSapplication_value_name = ostSname;

cltSapplication_value_scanner =
procedure (value_name: cltSapplication_value_name;

keyword_values: Aarray [1 •• *] of ostSname;
text: string (* >;

VAR value: cltSvalue;
VAR status: ostSstatus>;

cltSargument_descriptor = record
required_or_optional: cltSrequired_or_optional,
value_kind_specifier: cltSvalue_kind_specifier,

rec end;

cltSargument_descriptor_table = array [1 •• * J
of cltSargument_descriptor;

cltSargument_value_table = array [1 •• * J
of cltSvalue;

cltSav_scanner_kind = CclcSunspecified_av_scanner,
clcSlinked_av_scanner, clcSunlinked_av_scanner>;

CL

Revision B Constant and Type Declarations C-3

cltSfunction_list =array [1 •• * J of
cltSfunction_list_entry;

cltSfunction_list_entry = record
name: ostSname,
case kind: cltSfunction_list_entry_kind of
= clcSlinked_function =

func: cltSfunction,
= clcSunlinked_function =

procedure_name: pmtSprogram_name,
ca send,

rec end;

cltSfunction_list_entry_kind = (clcSlinked_function,
clcSunlinked_function>;

cltSinteger = record
value: integer,
radix: 2 •• 16,
radix_specified: boolean,

rec end;

cltSlexical_kinds = (clcSunknown_token,
clcSspace_token, clcSeol_token, clcSdot_token,
clcSsemicolon_token, clcScolon_token,
clcSlparen_token, clcSlbracket_token,
clcSlbrace_token, clcSrparen_token,
clcSrbracket_token, clcSrbrace_token,
clcSuparrow_token, clcSrslant_token,
clcSquery_token, clcScomma_token,
clcSellipsis_token, clcSexp_token, clcSadd_token,
clcSsub_token, clcSmult_token, clcSdiv_token,
clcScat_token, clcSgt_token, clcSge_token,
clcSlt_token, clcSle_token, clcSeq_token,
clcSne_token, clcSstring_token, clcSname_token,
clcSinteger_token, clcSreal_token>;

cltSlow_or_high = CclcSlow, clcShigh);

cltSname = record
size: ostSname_size,
value: ostSname,

rec end;

CL

Revision B Constant and Type Declarations C-5

cltSproc_input_type = CclcSproc_input,
clcSpdt_input);

cltSproc_names = array [1 •• * J of ostSname;

cltSreal = record
significant_digits: 1 ••
clcSmax_significant_digits,
preferred_exponent: integer,
value: array [1 •• 16] of cell,

rec end;

cltSrequired_or_optional = record
case selector: CclcSrequired, clcSoptional,

clcSoptional_with_default) of
= clcSrequired =

,
= clcSoptional =

,
= clcSoptional_with_default =

default: "string C * >,
ca send,

rec end;

cltSstatus = record
normal: cltSboolean,
identifier: cltSstatus_identifier,
condition: cltSinteger,
text: ostSstring,

rec end;

cltSstatus_identifier = record
size: ostSstring_size,
value: string C2>,

rec end;

cltSsub_command_list =array [1 •• * J of
cltSsub_command_list_entry;

cltSsub_command_list_entry = record
name: ostSname,
case kind: cltSsub_command_list_entry_kind of
= clcSlinked_sub_command =

command: cltScommand,
= clcSunlinked_sub_command,

clcSprocedure_sub_command =
procedure_name: pmtSprogram_name,

ca send,
rec end;

CL

Revision B Constant and Type Declarations C-7

= clcSreal_value =
rnum: c L tSrea L,

= clcSinteger_value =
int: cltSinteger,

= clcSboolean_value =
bool: cltSboolean,

= clcSstatus_value =
status: ostSstatus,

ca send,
rec end;

cltSvalue_kind_specifier = recor~
keyword_values: Aarray [1 •• * J of ostSname,
case kind: cltSvalue_kinds of
= clcSkeyword_value, clcSany_value =

,
= clcSvariable_reference =

array_allowed: CclcSarray_not_allowed,
clcSarray_allowed),

variable_kind: clcSstring_value
clcSany_value,

= clcSapplication_value =
value_name: cltSapplication_value_name,
scanner: record

case kind: cltSav_scanner_kind of
= clcSunspecified_av_scanner =

,
= clcSLinked_av_scanner =

proc: AcltSapplication_value_scanner,
= clcSunlinked_av_scanner =

name: pmtSprogram_name,
ca send,

rec end,
= clcSfile_value =

,
= clcSname_value =

min_name_size: ostSname_size,
max_name_size: ostSname_size,

= clcSstring_value =
min_string_size: ostSstring_size,
max_string_size: ostSstring_size,

= clcSinteger_value =
min_integer_value: integer,
max_integer_value: integer,

= clcSreal_value, clcSboolean_value,
clcSstatus_value =
,

CL

ca send,
rec end;

Revision R Constant and Type Declarations C-9

{ Status variables are mapped to cltSstatus records }
{ rather than ostSstatus records so that the individual)
{ fields of an SCL status variable can be directly}
{ referenced as if they were SCL variables of the }
{ appropriate kind. The size subfields of the }
{ identifier and text fields of a cltstatus record }
{ represent the correspondiing current_string_size. }

status_value: Aarray [1 •• * J of cltSstatus,
ca send,

rec end;

cltSvariable_scope = record
case kind: cltSvariable_scope_kind of
= clcSlocal_variable •• clcSxref_variable =

,
= clcSutility_variable =

utility_name: ostSname,
ca send,

rec end;

cltSvariable_scope_kind = (clcSlocal_variable,
clcSjob_variable, clcSxdcl_variable,
clcSxref_variable, clcSutility_variable>;

CL

Revision B Constant and Type Declarations C-11

JM

Constants

jmcSjob_management_id ='JM';
jmcSjob_sequence_number_size = 5;
jmcSnull_job_sequence_number = ' S';
jmcSsru_count_max = Offffffffffff(16);
jmcStime_Limit_condition = 1;

Types

jmtSjob_mode = (jmcSbatch,jmcSinteractive_connected,
jmcSinteractive_cmnd_disconnect,
jmcSinteractive_Line_disconnect,
jmcSinteractive_sys_disconnect);

jmtSjob_resource_condition =
pmtScondition_identifier;

jmtSjob_sequence_number =
string (jmcSjob_sequence_number_size);

jmtSqueue_reference_name = ostSname;

jmtSsru_count = 0 •• jmcSsru_count_max;

JM

Revision B Constant and Type Declarations C-13

OF

Constants

ofcSoperator_facility_id = 'OF';
ofcSmax_send_message = 64;
ofcSmax_display_message = 64;

Types

oftSoperator_id = ostSname;

Revision B

OF

Const.ant and Type Declarations C-15

Types

ostSactivity = record
case activity: ostSwait_activity OF
=oscSawait_time=

milliseconds: 0 •• 0FFFFFFFF(16),
=pmcSawait_task_termination=

task_id: pmtStask_id,
=pmcSawait_local_queue_message=

qid: pmtSqueue_connection,
ca send,

recend;

ost$binary_unique_name = packed record
processor: pmt$processor,
year: 1980 •• 2047,
month: 1 •• 12,
day: 1 •• 31,
hour: 0 •• 23,
minute: 0 •• 59,
second: 0 .• 59,
sequence_number: 0 •• 9999999,

recend;

ostSdate = record
case date_format: ostSdate_formats of
= oscSmonth_date =

month: ostSmonth_date, { month DD, YYYY }
= oscSmdy_date =

mdy: ost$mdy_date, { MM/DD/VY }
= oscSiso_date =

iso: ostSiso_date, { YYYY-MM-DD }
= oscSordinal_date =

ordinal: ostSordinal_date, { YYYYDDD }
= oscSdmy_date =

dmy: ostSdmy_date { DD/MM/VY }
ca send,

rec end;

OS

Revision B Constant and Type Declarations C-17

ostSminimum_save_area = packed record
p_register: ostSp_register,
vmid: ostSvirtual_machine_identifier,
undefined: 0 •• OfffC16>,
aO_dynamic_space_pointer: ·cell,
frame_descriptor: ostSframe_descriptor,
a1_current_stack_frame: ·cell,
user_mask: ostSuser_conditions,
a2_previous_save_area: ·ostSstack_frame_save_area,

rec end;

ostSmonitor_condition =
CoscSdetected_uncorrected_err, oscSnot_assigned,
oscSshort_warning, oscSinstruction_spec,
oscSaddress_specification, oscSexchange_request,
oscSaccess_violation, oscSenvironment_spec,
oscSexternal_interrupt, oscSpage_fault,
oscSsystem_call, oscSsystem_interval_timer,
oscSinvalid_segment_ring_O,
oscSout_call_in_return, oscSsoft_error,
oscStrap_exception);

ostSmonitor_conditions = set OF
ostSmonitor_condition;

ostSmonth_date = string C18);

ostSname = string CoscSmax_name_size>;

ostSname_size = 1 •• oscSmax_name_size;

ostSordinal_date = string (7);

ostSp_register = PACKED record
undefined1: 0 •• 3C16),
global_key: ostSkey_lock_value,
undefined2: 0 •• 3(16>,
local_key: ostSkey_lock_value,
pva: ostSpva,

rec end;

ostSpage_size = oscSmin_page_size
oscSmax_page_size;

ostSpva = packed record
ring: ostSri ng,
seg: ostSsegment,
offset: ostSsegment_offset,

rec end;

OS

Revision B Constant and Type Declarations C-19

ostSstatus_message_level =
CoscScurrent_message_level,
oscSbrief_message_level, oscSfull_message_level,
oscSexplain_message_level);

ostSstatus_message_line =string C * >;

ostSstatus_message_line_count = 0
oscSmax_status_message_lines;

ostSstatus_message_line_size = 0
oscSmax_status_message_line;

ostSstatus_severity = CoscSinformative_status,
oscSwarning_status, oscSerror_status,
oscSfatal_status, oscScatastrophic_status);

ostSstring = record
size: ostSstring_size,
value: string CoscSmax_string_size),

rec end;

ostSstring_index = 1 •• oscSmax_string_size + 1;

ostSstring_size = 0 •• oscSmax_string_size;

ostSunique_name = record
case boolean of
= TRUE =

value: ostSname,
= FALSE =

dollar_sign: string <1>,
sequence_number: string C7),
p: string (1),
processor_model_number: string C1>,
s: string C1),
processor_serial_number: string C4),
d: string (1),

year: string (4),
month: string (2),
day: string C2),
t: string (1),
hour: string (2),
minute: string C2>,
second: string C2),

ca send,
recend;

OS

Revision B Constant and Type Declarations C-21

PF

Constants

pfc$family_name_index = 1;
pfc$master_catalog_name_index =

pfc$family_name_index + 1;

pfcSmaximum_cycle_number = 999;
pfc$maximum_retention = 999;

pfcSminimum_cycle_number = 1;
pfc$minimum_retention = 1;

pfc$permanent_file_id = 'PF';

pfcSsubcatalog_name_index =
pfcSmaster_catalog_name_index + 1;

Types

pftSapplication_info =string CoscSmax_name_size>;

pft$array_index = 1 •• 7FFFFFFFC16>;

pft$change_descriptor = record
case change_type: pft$change_type of
= pfc$pf_name_change =

pfn: pft$name,
= pfcSpassword_change =

password: pft$password,
= pfc$cycle_number_change =

cycle_number: pft$cycle_number,
= pfcSretention_change =

retention: pftSretention,
= pfcSLog_change =

log: pft$log,
= pfc$charge_change =

,
ca send,

rec end;

PF

Revision B Constant and Type Declarations C-23

pft$group = record
case group_type: pft$group_types of
= pfcSpublic =

,
= pfcSfami Ly =

family_description: record
family: ostSfamily_name,

rec end,
= pf c$account =

account_description: record
family: ostSfamily_name,
account: avtSaccount_name,

rec end,
= pfcSproject =

project_description: record
family: ost$family_name,
account: avtSaccount_name,
project: avtSproject_name,

rec end,
= pfcSuser =

user_description: record
family: ostSfamily_name,
user: ostSuser_name,

rec end,
= pfc$user account =

user_account_description: record
family: ostSfamily_name,
account: avtSaccount_name,
user: ostSuser_name,

rec end,
= pfcSmember =

member_description: record
family: ost$family_name,
account: avtSaccount_name,
project: avtSproject_name,
user: ostSuser_name,

rec end,
ca send,

rec end;

Revision B

PF

Constant and Type Declarations C-25

PM

Constants

pmcSdebug_mode_on = TRUE;
pmcSdebug_mode_off = FALSE;

pmcSmax_connected_per_queue = 20;
pmcSmax_Library_List = OffffC16);
pmcSmax_messages_per_queue = 100;
pmcSmax_module_List = OffffC16>;
pmcSmax_object_file_List = OffffC16);
pmcSmax_queues_per_job = 20;
pmcSmax_segs_per_message = 12;
pmcSmax_task_id = OffffffffC16);

pmcSmaximum_pit_value = 7fffffff(16>;
pmcSminimum_pit_value = 1000;
pmcSprogram_management_id = 'PM';

Types

pmtSascii_Logs = pmcSsystem_Log •• pmcSjob_Log;

pmtSascii_Logset = set of pmtSascii_Logs;

pmtSbinary_Logs = pmcSjob_statistic_Log
pmcSstatistic_Log;

pmtSbinary_Logset = set of pmtSbinary_Logs;

pmtSblock_exit_reason = set of CpmcSblock_exit;
pmcSprogram_termination, pmcSprogram_abort);

pmtSconnected_tasks_per_queue = 0
pmcSmax_connected_per_queue;

PM

Revision B Constant and Type Declarations C-27

pmt$condition_identifier = 0 •• 255;

pmt$condition_information =cell;

pmt$condition_name = ost$name;

pmt$condition_selector = (pmc$all_conditions,
pmc$system_conditions, pmc$block_exit_processing,
jmc$job_resource_condition,
mmc$segment_access_condition,
ifc$interactive_condition, pmc$pit_condition,
pmc$user_defined_condition,
pmc$condition_combination);

pmt$cpu_model_number = (pmc$cpu_model_p1,
pmccpu_model_p2, pmccpu_model_p3,
pmc$cpu_model_p4);

pmt$cpu_serial_number = 0 •• Offff(16);

pmt$debug_mode = boolean;

pmt$established_handler =record
established: boolean,
est_handler_stack: "pmt$established_handler,
handler: pmt$condition_handler,
established_conditions: pmt$condition,
handler_active: pmt$condition_handler_active,

recend;

pmt$global_logs = pmc$account_log •• pmc$system_log;

pmt$global_binary_logs = pmc$account_log ••
pmc$statistic_Log;

pmt$global_binary_logset = set of
pmt$global_binary_logs;

pmt$global_logset = set of pmt$global_logs;

pmt$initialization_value = Cpmc$initialize_to_zero,
pmc$initialize_to_alt_ones,
pmc$initialize_to_indefinite,
pmc$initialize_to_infinity);

PM

Revision B Constant and Type Declarations C-29

pmtSmessage_kind = (pmcSmessage_value,
pmc$no_message, pmc$passed_segments,
pmcSshared_segments);

pmtSmessage_value = SEQ (REP 1 of
pmtSsegments_per_message, REP
pmcSmax_segs_per_message of pmtSqueued_segment);

pmtSmessages_per_queue = 0
pmc$max_messages_per_queue;

pmtSmodule_List =array [1 •• * J of
pmtSprogram_name;

pmtSnumber_of_Libraries 0 •. pmcSmax_Library_List;

pmtSnumber_of_modules = 0 pmcSmax_module_List;

pmtSnumber_of_object_files = 0 •.
pmcSmax_object_file_List;

pmtSobject_file_List =array [1 .• * J of
amtSLocal_file_name;

pmtSobject_Library_List =array [1 •• * J of
amtSLocal_file_name;

pmtSos_name = string (22); { NOS/VE Rnn Level nnnn }

pmtSpit_value = pmcSminimum_pit_value
pmcSmaximum_pit_value;

pmtSprocessor = record
serial_number: pmtScpu_serial_number,
model_number: pmtScpu_model_number,

recend;

pmtSprocessor_attributes = record
model_number: pmtScpu_model_number,
serial_number: pmtScpu_serial_number,
page_size: ostSpage_size,

rec end;

PM

Revision B Constant and Type Declarations C-31

pmtSprog_description_contents = set of
pmtSprog_description_content;

pmtSprogram_name = ostSname;

pmtSprogram_parameters = SEQ (* >;

pmtSqueue_connection = pmcSmax_queues_per_job;

pmtSqueue_Limits =record
maximum_queues: pmtSqueues_per_job,
maximum_connected: pmtSconnected_tasks_per_queue,
maximum_messages: pmtSmessages_per_queue,

rec end;

pmtSqueue_name = ostSname;

pmtSqueue_status = record
connections: pmtSconnected_tasks_per_queue,
messages: pmtSmessages_per_queue,
waiting_tasks: pmtSconnected_tasks_per_queue,

rec end;

pmtSqueued_segment = record {* not supported in R1}
case kind: pmtSqueued_segment_kind of
= pmcSmessage_pointer =

pointer: Acell,
= pmcSmessage_heap_pointer =

heap_pointer: AHEAP (* >,
= pmcSmessage_sequence_pointer =

sequence_pointer: ASEQ C * >,
ca send,

rec end;

pmtSqueued_segment_kind = CpmcSmessage_pointer,
pmcSmessage_heap_pointer,
pmcSmessage_sequence_pointer>;

pmtSqueues_per_job = 0 •• pmcSmax_queues_per_job;

pmtSsegments_per_message = 1
pmcSmax_segs_per_message;

pmtSsense_switches = set OF 1 •• 8;

pmtSstandard_selection =
CpmcSexecute_standard_procedure,
pmcSinhibit_standard_procedure>;

PM

Revision B Constant and Type Declarations C-33

Stack Frame Save Area

A stack frame is the space allocated within a task stack to store the
environment of a procedure and the contents of its local variables.

D

A stack frame has the format shown in figure D-1. Figure D-2 shows the
format of the P register in the first word of the stack frame. Figure D-3 is the
CYBIL declaration of the OST$STACK_ FRAME_ SA VE_AREA. Table D-1
describes the content of a stack frame save area.

A task is allocated stack space when it is initiated. The first frame of a task
stack is that of the system task initiation procedure. When the initiation
procedure calls the starting procedure of the program, a stack frame for that
procedure is allocated on the stack. Subsequently, during the task, whenever
a procedure is called, a stack frame is allocated for the procedure.

When a procedure completes and returns to its caller, its stack frame is
removed from the stack. If the task completes normally via the starting
procedure returning to its caller, the starting procedure frame is removed
from the stack. If the task terminates by calling the PMP$EXIT or
PMP$ABORT procedure, each frame of the stack is removed, in succession,
without completion of the procedure associated with the stack frame.
However, if a block exit processing condition handler is associated with a
frame, the condition handler is executed before the frame is removed.

Revision B Stack Frame Save Area D-1

STACK FRAME SAVE AREA

TYPE
ost$stack_frame_save_area = record

minimum_save_area: ost$minimum_save_area,
undefined: 0 •• Offff(16),
a3: "cell,
user_condition_register: ostSuser_conditions,
a4: "cell,
monitor_condition_register:

ost$monitor_conditions,
aS: "cell,
a_registers: array[6 •• OfC16)J OF record

undefined: 0 .. Offff(16),
a_register: "cell,

rec end,
x_registers: array [ostSregister_numberJ OF

ost$x_register,
rec end;

TYPE
ost$minimum_save_area = packed record

p_register: ost$p_register,
vmid: ost$virtual_machine_identifier,
undefined: 0 •• Offf(16),
aO_dynamic_space_pointer: "cell,
frame_descriptor: ost$frame_descriptor,
al_current_stack_frame: "cell,
user_mask: ost$user_conditions,
a2_previous_save_area:

"ostSstack_frame_save_area,
rec end;

TYPE
ostSframe_descriptor = packed record

critical_frame_flag; boolean,
on_condition_flag: boolean,
undefined: 0 •• 3(16),
x_starting: ostSregister_number,
a_terminating: ostSregister_number,
x_terminating: ostSregister_number,

recend;

*copyc OSDSREGISTERS
*copyc OSDSCONDITIONS
*copyc OSTSVIRTUAL_MACHINE_IDENTIFIER

Figure D-3. Stack Frame Save Area Type Declaration

Revision B Stack Frame Save Area D-3

STACK FRAME SAVE AREA

Table D-1. Stack Frame Save Area (Type IST$STACK_FRAME_
SA VE AREA) (Continued)

Field Content
frame_
descriptor

Packed record (type OST$FRAME_DESCRIPTOR).

critical_ frame_ flag

Boolean.

on_condition_flag

Boolean.

undefined

0 through 3 hexadecimal.

x_starting

Type OST$REGISTER_NUMBER, integer.

a_ terminating

Type OST$REGISTER_NUMBER, integer.

x_ terminating

TYPE OST$REGISTER_NUMBER, integer.

al_current_ Current stack frame pointer (- cell).
stack_ frame

user_mask Set of user conditions (type OST$USER_ CONDITIONS, see
table D-2).

a2_previous_ Pointer to previous stack frame save area (type -
save_area OST$STACK_FRAME_SAVE_AREA).

(Continued)

Revision B Stack Frame Save Area D-5

STACK FRAME SA VE AREA

Table D-2. User Conditions (OST$USER_CONDITIONS)

Following are the identifiers and meanings for OST$USER_CONDITIONS.

OSC$PRIVILEGED_INSTRUCTION
Improper attempt to execute a privileged instruction.

OSC$UNIMPLEMENTED_INSTRUCTION
Instruction code not implemented for this processor.

\
OSC$FREE_FLAG
Notification to process that an event occurred while it was not in active
execution.

OSC$PROCESS_INTERV AL_ TIMER
Process interval timer decremented to zero.

OSC$INTER_RING_POP
Attempted to pop stack frame from another ring.

OSC$CRITICAL_ FRAME_FLAG
Attempted to return from a critical stack frame.

OSC$KEYPOINT
Keypoint instruction executed.

OSC$DIVIDE_FAULT
Error in divide operation.

OSC$DEBUG
Debug interrupt.

OSC$ARITHMETIC_ OVERFLOW
Arithmetic overflow error.

OSC$EXPONENT_ OVERFLOW
Exponent overflow error.

OSC$EXPONENT_ UNDERFLOW
Exponent underflow error.

OSC$FP _SIGNIFICANCE_LOSS
Floating point significance loss.

OSC$FP _INDEFINITE
Floating point indefinite error.

OSC$ARITHMETIC_SIGNIFICANCE
Arithmetic significance loss.

OSC$INVALID_BDP_DATA
Invalid BDP data error.

Revision B Stack Frame Save Area D-7

Index

Index

A

A registers D-4
Abnormal status 1-8
Abort A-1
Abort file execution 3-17
Aborting a task 3-18
Access_mode file attribute 7-5
Access violation condition D-6
Account name retrieval 2-18
Activity completion wait 4-2
Address retrieval for externally

declared procedure 3-13
Address space 3-1
Address specification error

condition D-6
ADT 9-52
ALTERNATE_BASE

parameter 1-4
AMP$0PEN exception

conditions 7-6
Appending a status parameter 6-4
Appending an integer as a status

parameter 6-5
Application value scanner 9-4
Argument descriptor table 9-52
Argument list 9-52
Argument value table 9-52
Arithmetic overflow condition D-5
Arithmetic significance

condition D-5
Assigning link file attributes 7-5
Attributes 7-5

Data conversion 7-7
Deadlock 7-7
Exception conditions 7-6

Audience 7
AV declarations C-1
AVT 9-52
Awaiting activity completion 4-2
Awaiting task termination 3-15

B

Base library 1-4

Revision B

Batch mode 2-19
Beginning-of-information A-1
Block exit processing condition

handler 5-16
BOI A-1

c
Calling a system interface

procedure 1-6
Catalog A-1
Catalog name A-1
Catalog path 9-20
Causing a condition 5-22
Central processor

Attribute retrieval 2-16
Time retrieval 2-22

Checking the completion
status 1-8

CL declarations C-1
Clearing a link file deadlock 7-7
Clock value 2-13
Closing the link file 7-12
CLOSLNK subroutine 7-12
CLP$COLLECT_COMMANDS

procedure 9-65
CLP$CONVERT _INTEGER TO

RJSTRING procedure 8-13 -
CLP$CONVERT _INTEGER TO

STRING procedure 8-11 - -
CLP$CONVERT _STRING TO

FILE procedure 8-17 - -
CLP$CONVERT STRING TO

INTEGERproc;iure 8-15-
CLP$CONVERT STRING TO

NAME procedu; 8-16 -
CLP$CONVERT _VALUE TO

STRING procedure 8-18 - -
CLP$CREATE_ VARIABLE

procedure 8-3
CLP$DELETE_ VARIABLE

procedure 8-5
CLP$END_SCAN_ COMMAND

FILE procedure 9-38 -

CYBIL System Interface Index-1

Continuing a condition 5-15
Converting

Integer to left-justified
string 8-11

Integer to right-justified
string 8-13

String to file reference 8-1 7
String to integer 8-15
String to name 8-16
String values 8-10
Value to string 8-18

*COPYC directive 1-2
Copying procedure declaration

decks 1-4
Copyright information 2
CPtime 2-22
CPU attribute retrieval 2-16
Creating a NOS job 7-1
Creating the command

variable 7-2
Procedure description 8-3

Critical_frame_flag D-3
CYBER 170 exchange request D-6
CYBIL 7

D

Element types 1-10
Manual set 8
Procedure call 1-6
Procedures 1-1

Data conversion for a link file 7-7
Data transmission to and from a

link file 7-8
Date and time retrieval 2-1

Example 2-10
Debug interrupt condition D-5
Debug mode 3-10
Deck A-2
DECK parameter 1-4
Defining

Conditions 5-21
Parameter value kinds 9-4
Queues 4-5
SCL commands 9-1

Deleting a command variable 8-5
Dependencies 3-14
Description format 1-12

Revision R

Detected uncorrected error
condition D-6

Disabling system condition
detection 5-3

Disconnecting a task from
a queue 4-8

Disestablishing a condition
handler 5-11

Disestablishing a parsing
environment 9-28

Displaying a job status
message 2-31

Divide fault condition D-5
Dynamic loading 3-10
Dynamic space pointer D-3

E

Enabling system condition
detection 5-2

End-of-information A-2

INDEX

Ending a command file scan 9-38
Entering a message in the job

log 2-28
Environment specification error

condition D-6
EOI A-2
Error codes 1-9
Error_exit_name file attribute 7-5
Error message formatting 6-10
Error message templates 6-10
Escape mode 9-30
Establishing a condition

handler 5-9
Establishing a parsing

environment 9-27
Evaluating expressions 9-62
Evaluating file references 9-20
Example programs

Command utility 9-39
Date and time retrieval 2-10
Interstate communications 7-17
Queue communication 4-16
Sense switch retrieval 2-27
System interface use 1-2

Exception condition 1-9
Exchange request condition D-6

CYBIL System Interface Index-3

Global key D-3
Glossary definition A-2

H

How to use

I

System interface calls 1-1
This manual 7

ICE$ exception conditions 7-6
IDENTIFICATION

procedure 2-24
IF declarations C-12
Information returned 1-9
Inhibiting system conditions 5-3
Initializing a command

variable 8-1,3,8
Initializing a program

description 3-6
Initiating a task 3-10
Input parameters 1-6
Input preprocessing procedure 9-69
Instruction specification error

condition D-6
Interactive condition handler 5-17
Interactive mode 2-19
Interpreting a string as a file

reference 8-17
Inter_ring_pop condition D-5
Interstate communications 7-1

Example 7-17
Invalid BDP data condition D-5
Invalid segment condition D-6

J

JM declarations C-13
Job A-3
Job information retrieval 2-17
Job library list 3-5

Glossary definition A-3
Job local queues 4-4
Job log

Entry format 2-29

Revision B

Messages 2-28
Job mode retrieval 2-19
Job mode time retrieval 2-22
Job names retrieval 2-20
Job resource condition

handler 5-1 7
Job status message 2-30
Job variable 8-2

K

Keypoint condition D-5

L

Legible format for date and
time 2-1

Lexical unit 9-61
Link file 7-1
Link subroutines 7-11
Linked function 9-33
Linked subcommand 9-34
List A-3
Local file name 8-17
Local key D-3
Local queues 4-4
Local variable 8-2
Log messages 2-28

M

INDEX

Managing sense switches 2-25
Manual

Conventions 9
History 3
Organization 8

Mass storage backup error
handling 5-18

Memory access violation
condition D-6

Message formatting 6-10
Message generation 6-1
Message levels 6-10
Message sending via a queue 4-4
Message templates 6-10
Microsecond clock 2-13

CYBIL System Interface Index-5

Glossary definition A-4
Pause break handling 5-17
PDT 9-2

Declaration example 9-3
PDT Pointers 9-73
PF declarations C-23
PM declarations C-27
PMP$ABORT procedure 3-18
PMP$A WAIT_ TASK_

TERMINATION procedure 3-15
PMP$CAUSE_ CONDITION

procedure 5-22
PMP$COMPUTE_DATE_ TIME

procedure 2-7
PMP$CONNECT _QUEUE

procedure 4-7
PMP$CONTINUE_ TO_ CAUSE

procedure 5-15
PMP$DEFINE_ QUEUE

procedure 4-5
PMP$DISCONNECT _QUEUE

procedure 4-8
PMP$DISESTABLISH_

COND_HANDLER
procedure 5-11

PMP$ENABLE_SYSTEM_
CONDITIONS procedure 5-2

PMP$ESTABLISH_
CONDITION_HANDLER
procedure 5-9

PMP$EXECUTE procedure 3-11
PMP$EXIT procedure 3-19
PMP$FORMAT _COMPACT_

DATE procedure 2-8
PMP$GENERATE_ UNIQUE_

NAME procedure 2-14
PMP$GET _ACCOUNT_

PROJECT procedure 2-18
PMP$GET _COMPACT _DATE_

TIME procedure 2-6
PMP$GET _DATE procedure 2-2
PMP$GET _JOB_MODE

procedure 2-19
PMP$GET _JOB_NAMES

procedure 2-20
PMP$GET _LEGIBLE_DATE_

TIME procedure 2-4
PMP$GET _MICROSECOND_

CLOCK procedure 2-13

Revision B

INDEX

PMP$GET _OS_ VERSION
procedure 2-15

PMP$GET_PROCESSOR_
ATTRIBUTES procedure 2-16

PMP$GET _PROGRAM_
DESCRIPTION procedure 3-8

PMP$GET _PROGRAM_SIZE
procedure 3-7

PMP$GET _ QUEUE_LIMITS
procedure 4-13

PMP$GET _SRUS procedure 2-21
PMP$GET _TASK_ CP _TIME

procedure 2-22
PMP$GET _ TASK_ID

procedure 2-23
PMP$GET _TIME procedure 2-3
PMP$GET _USER_

IDENTIFICATION
procedure 2-24

PMP$INHIBIT _SYSTEM_
CONDITIONS procedure 5-3

PMP$LOAD procedure 3-13
PMP$LOG procedure 2-29
PMP$MANAGE_SENSE_

SWITCHES procedure 2-26
PMP$RECEIVE_FROM_ QUEUE

procedure 4-9
PMP$REMOVE_ QUEUE

procedure 4-6
PMP$SEND _TO_ QUEUE

procedure 4-11
PMP$SET _PROCESS_

INTERV AL_TIMER 5-20
PMP$STATUS_QUEUE

procedure 4-14
PMP$STATUS_ QUEUES_

DEFINED procedure 4-15
PMP$TERMINATE

procedure 3-16
PMP$TEST _CONDITION_

HANDLER procedure 5-23
Pointer A-4
Positioning the link file 7-9
\prefix character 9-30
Prefix character for SCL escape

mode 9-30
Preprocessing procedure 9-70
Privileged instruction

condition D-5

CYBIL System Interface Index-7

Ring attribute A-5
Ring_attributes file attribute 7-5

s
Scanning

Argument lists 9-57
Command files 9-37
Command lines 9-68
Declarations 9-69
Expressions 9-63
Parameter lists 9-12

SCL command definition 9-1
SCL command stack 9-29
SCL interpreter 9-1
SCL procedure A-6
SCL services 8-1
Scope of a condition handler 5-4
scu

Directives 1-1
Example 1-6
Source library 1-4

Segment A-6
Numbers 3-1

Segment access condition
handler 5-89

Selectable system conditions 5-8
Sending

Data to a NOS job 7-8
Job status message 2-31
Operator message 2-32
Queue message 4-11

Sense switch management 2-25
Example 2-27

Serial number retrieval 2-16
SET_ COMMAND _LIST

command 9-1
Setting an abnormal status record

For a file identifier 6-1
For any process identifier 6-3
Within a condition handler 6-6

Setting the
Message level 6-15
Process interval timer 5-20
Working catalog 9-25

Severity of an error 6-7
Short warning condition D-6

Revision B

Simulating a condition
occurrence 5-23

Soft error condition D-6
Source Code Utility 1-1
Source text preparation

example 1-6
SRUs 2-21

Glossary definition A-6
Stack frame save area D-1

INDEX

Stack of command lists 9-29
Standard condition processing 5-4
Standard error message

generation 6-10
Starting a NOS job 7-6
Starting a task 3-11
Starting procedure 3-5

Glossary definition A-6
Status check 1-8
Status delimiter character 6-2
Status parameters 6-1
Status record generation 6-1
Status severity check 6-7
Status variable 1-8
Statusing a queue 4-14
Statusing queues defined 4-15
String conversion procedures 8-10
String variable initialization 8-8
Subparameter lists 9-26
Suspending a task 4-1
Switch settings 2-25
System call condition D-6
System command language

services 8-1
System condition detection 5-1
System condition handler 5-13
System implementation

language 5
System information retrieval 2-12
System interface

Procedure call 1-6
Program example 1-3

System interval timer
condition D-6

System naming convention 1-11
System operator messages 2-30
System resource units 2-21

Glossary definition A-6

CYBIL System Interface lndex-9

Virtual memory A-8
VMID D-3

w
Working catalog 9-20

Glossary definition A-8
WREPLNK subroutine 7-16
Write deadlock 7-7
Writing a command variable 8-8

Revision B

INDEX

Writing a log message 2-29
Writing to the link file 7-15

x
X registers D-4
XDCL variable 8-2
XREF procedure

declaration 1-3
XREF variable 8-2

CYBIL System Interface Index-11

CYBIL for NOS/VE, System Interface 60464115 B

We would like your comments on this manual. While writing it, we made some assumptions about who would use it
and how it would be used_ Your comments will help us improve this manual. Please take a few minutes to reply.

Who Are You? How Do You Use This Manual? Which Do You Also Have'?

D Manager

D Systems Analyst or Programmer

D Applications Programmer

D Operator

D Other

0 As an Overview

0 To Learn the Product/System

D For Comprehensive Reference

D For Quick Look-up

What programming languages do you use?

D Any SCL Manuals

0 CYBIL File Interface

D CYBIL Language Definition

Which are helpful to you'? D Procedures Imlex (imside covers) D Glossary D Related Manuals page

D Character Set 0 Other: --------------------

How Do You Like This Manual? Check those that apply.

Yes Somewhat No

0 0 0 ls the rn.anual easy to read (print Rizc. page layout, and so on)'!

0 0 0 Is it easy to understand?

0 0 0 Is the order of tupic8 logical?

0 0 0 Are there pnough examples?

0 0 0 Art> the examples helpful? (D Too simple D Too complex)

0 0 0 IR the technical information accurate?

0 0 0 Can you easily find what you want?

0 0 0 Do the illustrations help you?

0 0 c T)oes the manual tell you what you need tu know about the topic?

Comments? If applicable, note page number and paragraph.

Would you like a reply? CJ Y PS C No Continue on other side

From:

Name Company ~- _____________ _

Address Date ___________ _

Phone No.

Please send program listing and output if applicable to your comment.

(Continued from inside front cover)

OSP$SET _MESSAGE_LEVEL 6-15
OSP$SET _STATUS_ABNORMAL 6-3
OSP$SET_STATUS_FROM_CONDITION 6-6
PMP$ABORT ... 3-18
PMP$AWAIT _TASK_ TERMINATION 3-15
PMP$CAUSE_CONDITION .. 5-22
PMP$COMPUTE_DATE_ TIME 2-7
PMP$CONNECT _QUEUE ... 4-7
PMP$CONTINUE_ TO_ CAUSE 5-15
PMP$DEFINE_ QUEUE ... 4-5
PMP$DISCONNECT _QUEUE 4-8
PMP$DISESTABLISH_COND_HANDLER 5-11
PMP$ENABLE_SYSTEM_CONDITIONS 5-2
PMP$ESTABLISH_ CONDITION_ HANDLER 5-9
PMP$EXECUTE .. 3-11
PMP$EXIT ... 3-19
PMP$FORMAT _COMPACT_DATE 2-8
PMP$FORMAT_COMPACT_TIME 2-9
PMP$GENERATE_UNIQUE_NAME 2-14
PMP$GET _ACCOUNT _PROJECT 2-18
PMP$GET_COMPACT __ DATE_ TIME 2-6
PMP$GET_DATE ... 2-2
PMP$GET _JOB_MODE .. 2-19
PMP$GET _JOB_NAMES ... 2-20
PMP$GET _LEGIBLE_ DATE_TIME 2-4
PMP$GET_MICROSECOND __ CLOCK 2-13
PMP$GET _OS_ VERSION .. 2-15
PMP$GET PROCESSOR A'J'TRIBUTES 2-16
PMP$GET_PROGRAM .. DESCRIPTION 3-8
PMP$GET_PROGRAM_SIZE .. 3-7
PMP$GET <~UEUELIMITS 4-13
PMP$GET SRUS _ 2-21
PMP$GET .TASK CP TIME 2-22
PMP$G ET TASK _fl> ... 2-23
PMP$C:ET.TIME .. 2-3
PMP$GET llSEH Il>ENTIFICATION 2-24
PMP$INHIBITSYSTEM CONDITIONS 5-3
PMI'$LOAI> .. 3-13
PMP$1 DC: .. 2-29
PMP$MANA<iE_ SENSE SWITCHES 2-26
PMP$1U:CEIVJ<: FROM (~{ IEUE 4-9
l'MP$HEMOVE. <~UEUE .. 4-6
PMl'$S~:NIJ TO qm:trr: .. 4-11
PMl'$~.:;i.:T PHOCESS IN'f'l<:HV AL TIMER G-20
l'M1'$STATUS (~lJEllE .. 4-14
l'M1'$STATllS <~UEUl·:s m:FINEI> 4-15
l'Ml'$TERMINATE .. :l-lfi
PM1'$TEST C'ONIHTION llANIH .Elt G-2:~

Related Manuals

Background (Access as Needed):

SCL SCL SCL
Language System Advanced
Definition Interface File

I
Usage 11- Usage - Management I

Usage

QI 60464013 60464014 60486113

==

CYBIL Manual Set:

CYBIL CYBIL CYBIL
Language File Sequential
Definition Management I and Byte-

I
Usage Usage - Addressable -Files Usage

60464113 60464114 60464116

Additional References:

L

SCL SCL
Source Code

Diagnostic
Messages
for
NOS/VE

Management I
Usage

6046431 3 cJJ

Object Code
Management

Usage I
60464413 QI 60464613 0

=== ===

- Indicates the reading sequence. a Indicates an online version of the manual is available.

© 1985 by Control Data Corporation.
All rights reserved.
Print.ed in the Unit.ed States of America.

2 CYBIL Keyed-File and Sort/Merge Interfaces

-
CYBIL
System
Interface
Usage

60464115

Revision B

Preface

CYBIL Manual Set
This manual belongs to the CYBIL manual set. Besides this manual, the
CYBIL manual set is composed of these manuals:

CYBIL Language Definition

Contains the complete language specification for CYBIL, the NOS/VE
implementation language, and an explaination of the Debug utility as
used with CYBIL.

CYBIL File Management

Describes the procedure calls that interface between a CYBIL program
and the NOS/VE file system. It describes local file management and
the assignment of files to device classes with a chapter describing each
device class. It also describes file attribute definition and file opening
and closing.

CYBIL Sequential and Byte Addressable Files

Describes the procedure calls that allow a CYBIL program to read and
write sequential and byte addressable files. It describes both segment
access and record access.

CYBIL System Interface

Describes system-defined CYBIL procedures that serve as the interface
between a program and non-I/O system capabilities. It describes
program management, condition processing, interstate
communication, and system command language (SCL) calls.

8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Preface

I

•

Vertical bars in the margin indicate changes or
additions to the text from the previous revision.

A dot next to the page number indicates that a
significant amount of text (or the entire page) has
changed from the previous revision.

Ordering Manuals
Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Submitting Comments
The last page of this manual is a comment sheet. Please tell us about any
errors you found in this manual and any problems you had using it.

If the comment sheet in this manual has been used, please send your
comments to:

Control Data Corporation
Publications and Graphics Division
P.O. Box 3492
Sunnyvale, California 94088-3492

Please include this information with your comments:

The manual title, publication number, and revision level (for this manual:
I CYBIL Keyed-File and Sort/Merge Interfaces Usage, 60464117 B)

Your system's PSR level (if you know it)

Your name, your company's name and address, your work phone number,
and whether you want a reply

I Also, if you have access to SOLVER, the CDC online facility for reporting
problems, you can use it to submit comments about this manual. When it
prompts you for a product identifier for your report, please specify AAS when
commenting on the keyed-file interface and SM8 when commenting on the
Sort/Merge interface.

10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Copying Procedure Decks

Procedure Deck Names

I To use CYBIL program interface calls, you copy a deck for each procedure
call you use. The deck has the same name as the procedure call.

For example, if your program uses the AMP$0PEN, AMP$GET _KEY, and
AMP$CLOSE calls, it must use these three directives:

*COPYC AMPSOPEN
*COPYC AMPSGET_KEY
*COPYC AMPSCLOSE

Expanding Your Program

Before you compile a CYBIL program that uses program interface calls, you
use SCU to expand the program, as follows:

1. You must begin with an existing source library file. If you do not have
one, you can create an empty source library using the CREATE_
SOURCE_LIBRARY command.

2. Start an SCU utility session, specifying a source library file.

3. Create one or more decks containing your program text.

4. Expand the decks containing your program text. Specify these two files as
the alternate base libraries from which SCU copies the program interface
decks:

$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE
$SYSTEM.COMMON.PSF$EXTERNAL_INTERFACE_SOURCE

5. End the SCU utility session.

This process gives you the expanded program text that can be compiled.

The following is a minimal command sequence that performs the preceding
steps (numbered 1 through 5). It uses only temporary files and assumes your
program text is on file $USER.PROGRAM_ TEXT. (/,sci, and sc../ are
system prompts; you do not enter them.)

1. /create_source_Library result=temporary_Library

2. /scu base=temporary_Library

3. sc/create_deck deck=temporary_deck
sc •• /modification=temporary_modification source=Suser.program_text

4. sc/expand_deck deck=temporary_deck ••
sc •• /alternate_base=CSsystem.cybil.osfSprogram_interface,
sc •• /$system.common.psf$external_interface_source)

5. sc/quit write_Library=no

Introduction-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Status Checking

Status Checking
The last parameter on every program interface call is the status parameter.
Yo~must specify a status variable (type OST$STATUS) as the last
parameter on a call. When the procedure completes, it returns its completion
status in the specified status variable.

You can specify an error-exit procedure to process errors returned by file
interface procedures. (It does not process Sort/Merge errors.) The error-exit
procedure is specified by the error_ exit_name or error_ exit_procedure file
attribute.

If an error-exit procedure is specified for an instance of open, a file interface
procedure calls the error-exit procedure when it returns abnormal status. The
abnormal status is passed to the error-exit procedure which, in turn, passes
its completion status to the status variable specified on the call.

An error-exit procedure is effective only while the file is open. It is not
effective for AMP$0PEN or AMP$CWSE calls. For these calls, and for files
without error-exit procedures, you must check the contents of the status
variable after the call to determine if the call completed successfully.

A status record is returned in the status variable. If the NORMAL field of the
status record is TRUE, the procedure completed normally. If the NORMAL
field is FALSE, the procedure completed abnormally.

For example, these lines show an AMP$0PEN call and the status check
following the call:

AMPSOPEN C lfn, AMCSRECORD_ACCESS, NIL, fid, status >;
IF NOT status.NORMAL THEN

PMPSEXITC status);
IFEND;

For the PMP$EXIT call description and additional information on condition
handling, see the CYBIL System Interface manual. A more complete
example of status variable processing is given by the p#inspect_status_
variable and p#display _status_ variable procedures in appendix E.

Exception Condition Information

When the procedure completes abnormally, the procedure returns additional
information about the exception condition (the error) that occurred. The
following variant fields of the OST$STATUS record return condition
information when the key field, NORMAL, is FALSE:

Introduction-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

System Naming Convention

System Naming Convention

In general, all CYBIL program int.erface identifiers follow a syst.em naming
convention as follows:

idx$name

id Two charact.ers identifying the process that uses the identifier.
(These are the same process identifiers returned in the
IDENTIFIER field of the status record.)

x Charact.er indicating the type of CYBIL element identified.
These are the element types:

c Constant
d Declaration of multiple or complex types
e Error condition
f File
i Inline text or code
k Keypoint or keyword
m Module
p Procedure
s Section
t Type
v Variable
x Element with XDCL attribut.e

$ The $ charact.er indicat.es that CDC defined the identifier.

NOTE

To avoid redefining a CDC identifier, do not use the$ charact.er
in identifiers that you define.

name A string describing the purpose of the element referenced by the
identifier.

For example, the identifier AMP$CREATE_KEY _DEFINITION follows the
naming convention:

• Its process identifier is AM (Access Method).

• It identifies a procedure (P).

• It is a CDC-defined identifier ($).

• Its purpose is the creation of an alt.emate-key definition
(CREATE_ KEY _DEFINITION)

Introduction-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Indexed-Sequential File Organization

Indexed-Sequential File Organization

The indexed-sequential file organization allows content addressing of
records; that is, you can directly access a record by the contents of one or
more fields of data in the record. The fields of data by which a record is
addressed are its key fields, and the contents of those fields are its key
values.

An indexed-sequential file always has a primary key. (It can also have one
or more alternate keys as described in the Alternate Keys section of this
chapter.)

Each primary-key value is unique within the file; there can be no duplicate
primary-key values in a file.

The indexed-sequential file organization is used only when you can assign a
unique value to each record stored in the file. This unique value is usually a
field of data within the record (an embedded key), although it can be a value
assigned to the record and not included in the record data (a nonembedded
key).

For example, the primary key for an employee file could be the employee's
name. However, because two employees could have the same name, it is
better to assign a unique identification number to each employee and use
that number as the primary key for the file.

The indexed-sequential file organization should be used if a requirement
exists to read file records both sequentially and randomly. For example, the
records in an employee file could be read sequentially to produce a listing of
all employees or read randomly to update individual records.

When an indexed-sequential file is read sequentially, its records are accessed
in ascending order by key value. The order is kept even when new records are
added to the file. For example, if an employee file is read sequentially using
its primary key (the employee identification number), the records are read in
ascending order by their identification number.

Indexed-Sequential File Structure

This section gives a general description of the indexed-sequential structure.
You can use indexed-sequential files without knowing their structure.
However, if you understand the indexed-sequential structure and how it
grows, you can create more efficient indexed-sequential files by specifying
appropriate values for structural parameters.

The internal structure of an indexed-sequential file is designed to provide
both random and sequential access to the data records in the file. File space
is divided into blocks, all the same size.

I 1-1 ·2 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Indexed-Sequential File Organization

Let's suppose you request to read randomly the record with key value 6.
When the record is read, these steps are performed:

1. The index records are searched to find the index record whose range of
key values includes the key value 6.

2. After the correct index record (the second one) is found, the search for the
record continues with the data block to which the second index record
points.

3. The second data block is searched for the record with key value 6. When
the record is found, its data is returned to the requestor.

Next, suppose you request that all records in the file shown in figure I-1-1 be
read sequentially. These steps are performed:

1. The first index record is read to find the first data block.

2. The records from the first data block are read in order.

3. The second index record is read to find the second data block.

4. The records from the second data block are read in order.

5. The sequential read ends because there are no more index records and, so,
no more data blocks to read.

This process reads the records in key-value order because both the index
records and the data records are kept in key-value order.

Data-Block Split

Usually, a block has some empty space, called padding, that was left empty
so that additional records could be written later to the block. Suppose, as
shown in figure I-1-2, that a data block has been filled, a new record is to be
written, and its key value is within the range of key values of the records in
the full data block. For the file structure to be maintained, the data block
must be split.

When a data-block split occurs, records in the data block whose key values
are less than the key value of the new record remain in the existing block. All
records in the existing block that come after the new record are moved to the
newly created block.

The new record is put into either the new block or the existing block,
depending on the relative amount of empty space in the blocks and the size
of the new record. If the new record does not fit in either block, another new
block is created and the new record is put into that block.

I I-1-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Organization

Index Levels

As with data blocks, index blocks are also initially created with some empty
space (index-block padding). However, for each new data block created due
to a data-block split, another index record must be created. With the addition
of many data records, the initial index block becomes full. When the index
block is full, the next data-block split causes an index-block split.

As shown in figure I-1-3, when the initial index block splits, it causes the
creation of another index level.

The index levels are numbered from the top down as index level 0, index level
1, and so forth. Index level 0 always has only one index block; it is always
the starting point for an index search.

The index block at an upper level contains an index record for each index
block at the next lower level. For example, the index block at level 0 contains
an index record for each index block at level 1.

A search for a data record requires an index-block search at each index level.
For example, the level-0 search finds the index record that points to the
appropriate level-1 index block. If the file has only two index levels, the level
1 search finds the index record that points to the appropriate data block.

As you can see, the addition of another index level increases the time
required to find an individual data record.

Index levels can be added up to the index-level limit of 15 levels. This sets a
limit on the number of records in the file.

The index-level limit is reached when addition of another record to the file
would require creation of another index level, but 15 index levels already
exist in the file. When this happens, the index-level-overflow flag is set and
no more records can be added to the file.

I I-1-6 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Indexed-Sequential File Organization

(Continued)

After the Index-Block Split:

Keyed File

Data Block

rn
Data Block

6 6

Index Block

7
Data Block

Index Block

8

9

IO

Data Block

9

Data Block

Figure 1-1-3. Index-Block Split

I I-1-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Direct-Access File Organization

Direct-Access File Organization

The direct-access file organization is like the indexed-sequential file
organization in its use of a primary key. You define the primary key for the
file when you create the file. It can be a field embedded in the record or a
nonembedded value. Each primary-key value in the file must be unique; the
file can contain no duplicate primary-key values.

Like an indexed-sequential file, a direct-access file can have alternate keys.
An alternate key for a direct-access file is the same as an alternate key for
an indexed-sequential file. Alternate keys are described later in this chapter.

Like indexed-sequential file records, you must specify the primary-key value
when writing or deleting a direct-access file record. Similarly, you must
specify either a primary-key value or an alternate-key value to read a
direct-access file record.

Direct-access and indexed-sequential files differ in the ordering of records in
the file:

• When records are read sequentially from an indexed-sequential file, the
records are returned in order, sorted by primary-key value.

• When records are read sequentially from a direct-access file, the records
are returned unordered.

In general, random record access is faster for the direct-access file
organization than for the indexed-sequential file organization. This is
because the direct-access file organization determines the location of a record
directly from its primary-key value. (In indexed-sequential files, a record can
be found only after a search at each index level.)

Direct-Access File Structure

The direct-access file structure is designed to locate each record directly by
its primary-key value. The primary-key value directly specifies the file block
containing the record.

File space in a direct access file is divided into equal-size blocks. Initially, all
blocks in the file are home blocks (as opposed to overflow blocks).

When a record is written to a direct-access file, its primary-key value is
hashed to produce the number of the home block in which the record is
written. If the home block does not contain enough empty space for the new
record, the record is written to an overflow block.

• I-1-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Direct-Access File Organization

At this point, a record is to be written with primary-key value ABC. Hashing
of the value ABC produces block number 2, but there is insufficient space for
the record in home block 2 so it is written in an overflow block.

Home
Blocks

Overflow
Block

2

II

Later, to read the record with primary-key value ABC, the primary-key
value is hashed to produce block number 2. Home block 2 is searched for
primary-key value ABC. When it is not found in the home block, the search
continues in the overflow block until the record is found.

An ideal direct-access file structure has these characteristics:

• Sufficient home blocks are allocated and records are uniformly distributed
among the home blocks so as to avoid overflow.

• Each block contains a limited number of records so as to minimize the
search time in each block.

• The number of home blocks is not so large that the file contains excessive
unused space.

These characteristics are determined by the file attribute values specified
when the file is created. You must specify the initial_home_block_count and
can optionally specify the max_block_length and the hashing_procedure_
name attributes. (The attributes are described in chapter 1-2.)

One other characteristic to be considered when selecting the number of home
blocks is the loading factor. The loading factor is the percentage of block
space used. To allow for less-than-uniform distribution of records in the
home blocks, the loading factor should be no greater than 90%.

To illustrate, suppose the direct access file is to contain 10,000 80-byte
records (80,000 bytes of record data). Using a block size of 4096 bytes, 20
home blocks would be sufficient if the hashing procedure could guarantee
uniform distribution of the records in the home blocks. This would result in a
loading factor of nearly 98% (80,000 divided by 81,920). However, because
uniform distribution should not be expected, the number of home blocks
allocated should be at least 22 (for a loading factor of 89%). (It is also
recommended that the home block count be a prime number; thus, 23 would
be a better home block count for the file in this example.)

e 1-1-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Direct-Access File Organization

The system divides the value it receives from the hashing procedure by the
number of home blocks and uses the remainder as the home block number.
For example, if the number of blocks is 97, it divides the hashed value by 97
and uses the remainder (an integer from 0 through 96) as the home block
number. A more uniform distribution of records is expected if the number of
home blocks is a prime number.

Direct-Access Primary Keys

In general, the primary key of a direct-access file has the same
characteristics as the primary key of an indexed-sequential file. You specify
whether the primary key is embedded or nonembedded, its position (if the
key is embedded), and the key length. However, a key _type attribute value
specified for a direct-access file is ignored; the key_ type attribute for a
direct-access file is always uncollated.

Unlike an indexed-sequential file, sequential access calls to a direct-access
file while the primary-key is selected do not return the file records sorted by
primary-key value. The calls return records according to their physical
location in the direct-access file. Records within each block are ordered
according to the default ASCII collating sequence, but the blocks are not
ordered by primary-key values.

Direct-access file records can be accessed in order if one or more alternate
keys are defined for the file. The alternate index keeps the alternate-key
values in sorted order. Sequential access calls while an alternate key is
selected return records in the order provided by the alternate index.

If appropriate, you could define an alternate key for the same field as an
embedded primary key. In this way, you could access direct-access file
records in primary-key value order.

e I-1-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

A record can contain more than one alternate-key value ifthe alternate key
is defined as a field that repeats in the record; thus, a single record could
contain several alternate-key values. For example, the license numbers of
several cars owned by one person as follows:

Data Record: R. Petty 1 LB AU 2ASM451 ELK 592

Alternate Index: Alternate Key
Value

Primary Key
Values

1 LB AU
2ASM451
ELK 592

The Alternate Index

R. Petty
R. Petty
R. Petty

The index for the primary key was described earlier in this chapter. Each
alternate key defined for a file has its own index.

An alternate index contains index records, each of which associates an
alternate-key value with the primary-key values of the records containing
that alternate-key value. The list of primary-key values associated with an
alternate-key value is the key list for that alternate-key value.

When you select an alternate key and then specify an alternate-key value,
the system searches for the value in the alternate index. lfit finds the
alternate-key value, it uses the primary-key values in the key list for the
alternate-key value to access the data records.

When one or more alternate keys are defined for a file, file updates require
more time because the alternate indexes must also be updated. Alternate
keys should be used only when the additional record access capability offsets
the cost of increased time spent for file updates.

Alternate-Key Definition

The attributes of an alternate key are specified by its alternate-key
definition.

These attributes are required to define an alternate-key:

Key name
Key position
Key length

An alternate key has a name so that it can be selected later for use. The
alternate-key position and length define the alternate-key field within the
record.

I I-1-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

For example, suppose you write three records to the file in this order:

McDarrels
Burger Duke
Willys

Hamburgers
Hamburgers
Hamburgers

The following shows the resulting key list in primary-key order and in
first-in-first-out order:

Alternate
Key Value

Hamburgers

Key Lists

Ordered by
Primary Key

Burger Duke
McDarrels
Willys

First In
First Out

McDarrels
Burger Duke
Willys

Duplicate-Key Value Error Processing

If duplicate values are not allowed and a duplicate is found in a record about
to be written to the file, the record is not written to the file and a trivial error
(status AAE$DUPLICATE_ALTERNATE_KEY) is returned.

A trivial error (status AAE$UNEXPECTED _DUP _ENCOUNTERED) also
occurs if a duplicate value is found while a new alternate index is being
created. However, the record containing the duplicate value cannot be
discarded, because it is already in the file. Subsequent processing depends on
whether incrementing the trivial-error count causes the count to exceed the
trivial-error limit as set by the user.

• If the trivial-error limit is not exceeded, the apply operation redefines the
alternate key being applied to allow duplicates, ordered by primary-key
value, discards the partially built index, and builds the redefined index.

• If the trivial-error limit is reached, the apply operation returns the status
condition AAE$DUPLICATE_KEY _LIMIT and removes all alternate
indexes it has created. (Deleted indexes are not restored.)

In either case, a message describing the action taken is written to the
$ERRORS file.

I 1-1-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

Sparse-Key Control

You can use sparse-key control to create an alternate index that includes or
excludes records depending on the character in a specific position in the
record.

For example, suppose a student file has a one-character code indicating the
student's class. To get a mailing list for juniors and seniors only, you could
define an alternate index controlled by the class code.

To specify sparse-key control, you specify three values:

Value

Sparse-key control position

Sparse-key control characters

Sparse-key control effect
(Indicates whether the
alternate-key value should be
included or excluded if the
sparse-key character matches)

Example

Position of the class code in the record

Junior and senior class code
characters

Included if the class code indicates a
junior or senior record

Assume that the sparse-key control position is the first character after the
name field and that the junior and senior class codes are 3 and 4. If the
following records are copied to the file, the first three records are included in
the alternate index, but not the last record.

Louis Skolnik 4
Gilbert Sullivan 4
ELL iot Wermzer
Judy Manhasset

3
2

The sparse-key control position must be within the minimum record length.
If you specify sparse-key control for an alternate key, the alternate-key field
or fields need not be within the minimum record length.

A nonfatal (trivial) error (status AAE$SPARSE_KEY _BEYOND_EOR) is
returned if both of these conditions are true for a record:

• The character at the sparse_key _control_position indicates that the
record should be included in the alternate index

• The record has no alternate-key value because the record ends before the
alternate-key field

When an apply or write operation detects this error, it does not include the
record in the alternate index. (A write operation does write the record to the
file.)

I I-1-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate Keys

Repeating Groups

The repeating-groups attribute allows a data record to contain more than
one value for the same alternate key. This allows a primary-key value to be
associated with more than one alternate-key value.

To specify an alternate-key field within a repeating group:

1. Specify the first alternate-key field by its key position, key length, and
key type. All subsequent alternate-key fields have the same length and
type as the first.

2. Specify repeating groups for the alternate key by specifying the repeating
group length: that is, the distance from the beginning of the first instance
of the alternate key to the beginning of the second instance of the
alternate key in the record.

3. Specify the repeating-group count: that is, how many times the alternate
key field repeats in the record.

You can specify that the repeating group repeats a fixed number of times or
that it repeats until the end of the record.

• If the alternate-key field repeats a fixed number of times, all
alternate-key fields must be within the minimum record length.

• If the alternate-key field repeats to the end of the record, the minimum
record length imposes no restriction. The system stores as many
alternate-key values as the record length allows.

Repeating groups cannot be used with concatenated keys or when
duplicate-key values are allowed and ordered first-in-first-out.

For example, suppose each record in a membership file lists the sports the
member enjoys and his or her years of experience as follows (columns are
counted from zero):

Field: Sports and Sports Experience

Columns: Variable number of 2-field pairs beginning at column 75 The
Sports field is 10 characters followed by a 2-digit Sports
Experience field

Type: ASCII characters

I I-1-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested Files

Nested Files

A nested file is a file structure defined within a NOS/VE file cycle. It is
recognized and used by the keyed-file interface; it is not recognized or used
by the NOS/VE file system.

The keyed-file interface provides nested files so as to extend the NOS/VE
limit on the number of files a task can use. All nested files defined in a file
share the same memory segment. This provides effective memory use when
the nested files are much smaller than the segment size limit (232 bytes).

The keyed-file interface creates the initial nested file (named $MAIN _FILE)
when it creates the keyed file. It uses $MAIN_FILE as the default nested file;
other nested files are used only when explicitly selected.

An AMP$CREATE_NESTED_FILE call can create a nested file (in
addition to the default nested file $MAIN _FILE). The call defines the
attributes applicable to the nested file only. These include its:

File organization

Record attributes, including its record type and its minimum and
maximum record lengths

Primary-key attributes, including its key position, key length, key type,
and collation table

Structural attributes applicable to the file organization

All other file attributes apply to all nested files in a keyed file. The
RECORD_LIMIT attribute specifies the maximum number ofrecords in
each nested file. For more information on attributes, see Creating a Keyed
File later in chapter I-2.

Each alternate-key definition applies to only one nested file. To define an
alternate key for a nested file other than the default nested file ($MAIN_
FILE), you first select the nested file and then define the alternate key.
Similarly, to select an alternate key for a nested file other than the default
nested file ($MAIN _FILE), you first select the nested file and then select the
alternate key.

e I-1-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

I File_ Organization Attribute

To creat.e a keyed file, you specify a keyed-file organization as the file_
organization attribut.e. Currently, the keyed-file organizations are

I indexed-sequential and direct-access.

To specify indexed-sequential file organization, you initialize an attribut.e
record as follows:

[AMCSFILE_ORGANIZATION, AMCSINDEXED_SEQUENTIALJ

I To specify direct-access file organization, you initialize an attribut.e record as
follows:

[AMCSFILE_ORGANIZATION, AMCSDIRECT_ACCESSJ

The other keyed-file attribut.es define record attribut.es, primary key
attribut.es, file structure attribut.es, and processing attribut.es.

Record Attributes

These attribut.es describe the data records to be writt.en to the keyed file.

NOTE

The record attribut.es are all preserved attribut.es, that is, the attribut.e value
is stored with the file when the file is first opened and cannot be changed
thereaft.er.

I The following lists the CYBIL attribut.e identifier (AMC$xxx) followed by the
valid attribut.e values:

AMC$RECORD_TYPE

Record type: AMC$FIXED, AMC$V ARIABLE, or AMC$UNDEFINED.
The default is AMC$UNDEFINED.

AMC$MAX_RECORD_LENGTH

Maximum number of byt.es in a data record (from 1 through 65497). You
must specify a value for this attribut.e when defining a keyed file.

I-2·2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

Creating a Keyed File

AMC$KEY _POSITION

Position of the leftmost byte in the primary key (specified only if the key
is embedded). The byte positions in a record are numbered from the left,
beginning with 0. The default is 0.

AMC$KEY _TYPE

Primary key type: AMC$UNCOLLATED_KEY, AMC$INTEGER_KEY,
or AMC$COLLATED_KEY. The default is AMC$UNCOLLATED_KEY.

For direct-access files, any value specified for the key_ type attribute is
ignored. The key_ type for a direct-access file is always uncollated.

AMC$COLLATE_ TABLE_NAME

Name of the collating sequence by which collated keys are ordered
(required if the key_ type is collated).

The name can be the name of a NOS/VE predefined collating sequence
or, for a user-defined collating sequence, the name of an entry point in an
object library. See appendix D for more information.

File Structure Attributes

These attributes affect the internal file structure. Keyed-file structure is I described in chapter I-2.

The first group of attributes applies to all keyed-file organizations; the
groups that follow each apply to one keyed-file organization only.

NOTE

The file structure attributes are all preserved attributes. That is, the attribute
value is stored with the file when the file is first opened and (except for
record_limit) cannot be changed thereafter.

I-24 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Creating a Keyed File

Block Length Guideline Attributes

NOTE

The following attributes do not set limits; their values are used only as
guidelines for determining the block length when the file is created.

AMC$AVERAGE_RECORD_LENGTH

Estimated median record length, in bytes, of the data records to be stored
in the file. (The length should not include a nonembedded key.)

If you omit this parameter, the system uses the arithmetic mean between
the maximum and minimum record lengths in its calculation of the block
size.

AMC$ESTIMATED_RECORD_COUNT

Estimated number of data records to be stored in the file. If you do not
define this attribute, the system uses in its calculation of the block size
either the AMC$RECORD_LIMIT value, or if that attribute is not
defined, the value 100,000.

AMC$INDEX_LEVELS

Target number of index levels for the file (0 through 15). The default value
is2.

I This attribute applies only to indexed-sequential files.

AMC$RECORDS_PER_BLOCK

Estimated number ofdata records to be stored in each data block. If you
do not define this attribute, the system uses the value 2 in its calculation
of the block size.

1-2-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

AMC$HASHING_PROCEDURE_NAME

Pointer to a record identifying the hashing procedure to be executed with
this file ("amt$hashing_procedure_name). The record has these fields:

NAME

OBJECT_LIBRARY

Entry point name of the hashing procedure
(pmt$program_name). All letters in the name
must be specified as uppercase.

File path to the object library containing the
hashing procedure (amt,$path_name,
256-character string). This feature is currently
unimplemented; specify OSC$NULL_ NAME
as the field value.

The default hashing procedure is the one provided by the system, entry
point AMP$SYSTEM_HASHING_PROCEDURE.

If a hashing procedure other than the default is specified, it must be a
procedure declared with the XDCL attribute within the global library set
of the job or defined within the task. The hashing procedure must be
available whenever the file is used; otherwise, AMP$0PEN returns the
condition aae$cant_load_hash_routine.

Processing Attributes

These attributes set keyed-file processing options.

NOTE

The forced_ write and lock_ expiration_ time attributes are preserved
attributes, but their values can be changed by the CHANGE_FILE_
ATTRIBUTES command. For more information, see the SCL System
Interface Usage manual.

The error_limit and message_control attributes are temporary attributes;
their values can be changed each time the file is opened.

• I-2-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Creating a Keyed File

Writing Records

Records can be writt.en to a keyed file opened with at least append access. (If
alt.ernate keys are defined for the file, it must be opened with modify, append,
and short.en access.)

You can writ.e records to a new keyed file using either AMP$PUT _KEY or
AMP$PUT _NEXT calls. Use of AMP$PUT _KEY calls is recommended for
writing keyed files. AMP$PUT _NEXT should be used only if a common
int.erface for writing records, regardless of file organization, is required.

NOTE

An AMP$PUT _NEXT call cannot specify a key value. When the keyed file
has a nonembedded primary key, AMP$PUT _NEXT takes the key value
from the beginning of the working storage area. It stores the first key _length
byt.es as the nonembedded primary-key value and the rest of the data as the
record.

In general, pre-sorting records to be writt.en to an indexed-sequential file can
result in a smaller file and less time required for writing the records. Your
program can use NOS/VE Sort/Merge to sort records as described in part II
of this manual.

For an indexed-sequential file with an embedded primary key, you could use
NOS/VE Sort/Merge calls to writ.e the original set of records to the file.
(NOS/VE Sort/Merge calls are described in part II of this manual.) The
Sort/Merge specification must define the primary-key field as the major sort
key.

Re-creating a Keyed File

As described earlier, the initial keyed-file structure is creat.ed when the file is
first opened using the file structure attribut.e values defined for the file. As
records are added, replaced, and deleted in the file, the file structure may
become inefficient. When this becomes evident, you should re-creat.e the file
to improve the efficiency of its structure.

The evidence of an inefficient file structure differs depending on the
keyed-file organization.

e 1-2-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using a Keyed File

Using a Keyed File

To process an existing keyed file, a CYBIL program performs these steps:

1. Specifies temporary attribute values to be used by this instance of open
and preserved attribute values to be verified against the attribute values
stored with the file (AMP$FILE and AMP$0PEN).

2. Opens the keyed file for record access (AMP$0PEN).

3. Performs the intended file operations.

4. Closes the file (AMP$CLOSE).

The following file operations can be performed on an existing keyed file
(assuming the file has been opened with the required access modes):

• Position the file (AMP$GET _KEY, AMP$REWIND, AMP$SKIP, and
AMP$START).

I • Read records randomly by key value (AMP$GET _KEY).

• Read records sequentially by position (AMP$GET _NEXT _KEY and
AMP$GET_NEXT).

• Write records (AMP$PUT _KEY, AMP$PUT _NEXT, and
AMP$PUTREP).

• Delete records (AMP$DELETE_KEY).

• Replace existing records (AMP$REPLACE_KEY and AMP$PUTREP).

• Lock key values (AMP$LOCK_KEY, AMP$GET _LOCK_KEYED_
RECORD, AMP$GET_LOCK_NEXT_KEYED_RECORD, and
AMP$LOCK_FILE).

• Unlock key values (AMP$UNLOCK_KEY and AMP$UNLOCK_FILE).

• Define, delete, and select nested files (AMP$CREATE_NESTED_FILE,
AMP$DELETE_NESTED_FILE, AMP$GET_NESTED_FILE_
DEFINITIONS, and AMP$SELECT _NESTED _FILE).

• Define, delete, and select alternate keys as described later in this chapter.

Depending on the value of the forced_ write attribute, the system might not
write modified blocks to mass storage immediately after the modification.
You can call AMP$FLUSH any time after the file is opened to write the part
of the file in memory to mass storage. Execution of the AMP$FLUSH call
does not change the position of the file.

I-2-12 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Positioning a Keyed File

I Positioning an Indexed-Sequential File by Major Key

The AMP$START, AMP$GET _KEY, and AMP$GET _LOCK_KEYED_ I RECORD calls have a major_key _length paramet.er. This paramet.er allows
a call to position an indexed-sequential file according to a major-key value.

A major key consists of one or more of the leftmost byt.es of a key. The
major _key _length paramet.er specifies the number of byt.es to use as the
major key. A major key search compares only the number of byt.es in the
major key.

For example, suppose the key value at the specified key _location is ABCDEF
and the major _key _length paramet.er value is 2. The major-key value,
therefore, is the leftmost two byt.es, charact.ers AB. The major key search
compares the charact.ers AB with the leftmost two byt.es of the searched
keys. It positions the file at the first record whose key begins with AB or
great.er.

As a second example, suppose the key value is the hexadecimal int.eger
FF145 and the major key length value is 3. The major key used is the
leftmost three byt.es containing the value FFl, so the file is positioned at the
first record whose key begins with FFl or greater.

If the major_key _length paramet.er is zero or equal to key _length, the entire
key is used to position the file.

I The major_key _length paramet.er is ignored on direct-access file calls.

Positioning an Indexed-Sequential File by Key Relation

The AMP$GET _KEY, AMP$GET _LOCK_KEYED _RECORD, and
AMP$START calls have a key _relation paramet.er. This paramet.er allows a
call to position an indexed-sequential file even if the specified key value does
not exist in the file.

The key _relation paramet.er specifies the relation to be satisfied between the
specified key value and the key value of the record at which the file is
positioned. The relation can be equal, great.er than or equal, or great.er than.

For example, suppose the specified key value is ABC.

• If the specified key _relation is equal, the call must find a record whose
key value matches ABC. If such a record is not found, the call returns an
abnormal completion status.

• If the specified key _relation is great.er than or equal to, the first key value
found that is great.er than or equal to ABC satisfies the relation. If the
relation cannot be satisfied, the file is left positioned at its
end-of-information.

I-2-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Reading Records

Sequential Access for Direct-Access Files

Records are not stored in sorted order by primary-key value in direct-access
files as they are in indexed-sequential files. Thus, sequential access is
appropriate only:

• When an alternate key is selected

• When a primary key is selected and all records in the file are to be read

A sequential pass through a direct-access file is valid only when no update
operation intervenes. An intervening update operation could cause the
sequential pass to miss records. (Sequential access to a direct-access file is
done by physical position in the file; an update operation could change the
record locations.)

To provide effective sequential access, the keyed-file interface imposes these
restrictions on sequential access to direct-access files:

• When the primary key is selected, AMP$GET _LOCK_NEXT _KEY,
AMP$GET _NEXT _KEY and AMP$GET _NEXT calls are valid only
when the direct-access file has been attached for exclusive access (no
share modes allowed).

When the primary key is selected and the file attachment allows sharing,
a sequential get call returns the condition aae$cant_da_getn_if_shared.

• When the primary key is selected, a program cannot intermix sequential
access calls and update operations. (The only update operation allowed is
the replacement of a record with another record of the same length.)

When the primary key is selected and an update operation has been
performed, the program must rewind the file before beginning a
sequential pass of the direct-access file. Otherwise, a sequential get call
returns the condition aae$cant_da_getn_after_put.

You can intermix sequential access (get_next) calls and AMP$GET_KEY
calls. An AMP$GET _KEY call does not change the file position used by
get_ next calls.

e 1-2-16 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Keyed-File Sharing

Keyed-File Sharing

A NOS/VE keyed file can be accessed with or without potential sharing of
the file. A keyed file is shared when multiple concurrent instances of open of
the file exist.

The potential for sharing determines whether NOS/VE must safeguard the
keyed-file structure for multiple users:

• While a keyed file could be shared, NOS/VE performs internal locking
operations to maintain the integrity of the file structure.

• While a keyed file cannot be shared, the overhead required to maintain
file integrity is not needed, resulting in better file access performance.

File access is controlled by the set of access modes in effect for the file. File
sharing is controlled by the set of share modes in effect. The use of access
modes and share modes for NOS/VE files in general is described in the SCL
System Interface and CYBIL File Management manuals; access mode and
share mode use for keyed files is described here.

To see the access modes and share modes currently in effect for a file, enter
this SCL command (specifying the file name or file reference):

Display_File_Attributes, File=file, •.
Display_Options=CAccess_Modes, Global_Share_Modes)

The Access_Modes set is the set of access modes currently in effect. It is
contained in the Global_Access_Modes set (the set of all available access
modes as determined when the file is created or attached). When the file is
created or attached, the Access_Modes and Global_Access_Modes values
sets are the same. However, the Access_Modes set can be restricted to a
subset of the Global_Access_Modes by a SET _FILE_ATTRIBUTES
command or AMP$FILE or AMP$0PEN call. Keyed-file sharing is affected
only by the Access_Modes set; the Global_Access_Modes set only indicates
the possible values of the Access_Modes set.

The Global_ Share_ Modes set is the set of share modes currently in effect. It
is determined when the file is created or attached; you cannot change the
Global_Share_Modes using SET_FILE_ATTRIBUTES commands or
AMP$FILE or AMP$0PEN calls.

AMP$GET _FILE_ATTRIBUTES and AMP$FETCH calls in a CYBIL
program can fet.ch the Access_Modes and Global_Share_Modes sets.

e I-2·18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

In the first situation, no locking is needed because no sharing is allowed. In
the second situation, no locking is needed because the data cannot change.
When no locking is needed, no setting of locks or checking for locks is done
and performance improves.

NOTE

For best performance when using a keyed file, check that the share modes
allowed are no more than those required. If possible, allow no sharing of the
file.

In general, when the file can be shared (the Global_Share_Modes value is
not none) and either the Access_Modes or the Global_ Share_ Modes include
shorten or append access, locking is needed. The following examples show
two situations in which locking is not needed and a third situation in which
it is needed.

1. When reading a keyed file, it is recommended that you request modify
access so that read statistics can be recorded in the file. Because modify is
one of the write access modes, no other instances of open can access the
file while you read it (if you do not explicitly specify Share_Modes). For
example:

/attach_file, $user.keyed_file, access_modes=Cread, modify)
/display_file_attributes, keyed_file, ••
•• /display_options=Caccess_modes, global_share_modes)
Access_Mode (read, modify)
Global_Share_Mode : none

In this case, because no sharing is allowed, no locking is performed and
performance is at its best.

2. Next, to allow other users to read the keyed file and maintain accurate
read statistics, you explicitly specify the Share_Modes as read and
modify:

/attach_file, $user.keyed_file, access_modes=Cread, modify) ••
•• /share_modes=Cread, modify)
/display_file_attributes, keyed_file, ••
•• /display_options=Caccess_modes, global_share_modes)
Access_Mode (read, modify)
Global_Share_Mode : (read, modify)

In this case, sharing is allowed, but the file data cannot be changed. So
again, no locking is performed and performance is at its best.

e I-2-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

The lock manager also processes requests to clear locks and keeps track of
locks that have expired (as described later under Lock Expiration and
Clearing).

NOTE

In general, when the discussion of locks in this manual describes two or
more tasks requesting locks, the two or more tasks could actually be the
same task with two or more instances of open of the same file. This is
because a lock belongs to a particular instance of open and one task could be
requesting locks for more than one instance of open.

Lock use is recommended for effective sharing of a keyed file. In fact, when
more than one instance of open exists for a keyed file, NOS/VE requires that
a task lock the record before it can replace or delete the record.

Lock use ensures that:

• Requests are processed in the sequence in which requests are issued.

• The operation is performed on the most up-to-date version.

Reasons for Locks

To illustrate the need for locks, the following sequence of events describes
two tasks using the same file without locks.

1. Two tasks both read the same record containing the value 1.

File Task A TaskB

2. One task adds 2 to the value and replaces the record, containing the value
3, in the file.

File Task A TaskB

3. The other task adds 1 to the value and replaces the record, containing the
value 2, in the file.

File Task A TaskB

The work of one of the tasks has been overwritten.

e I-2-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

Lock Intents

Each lock has a lock int.ent. The lock int.ent indicat.es why the task is
requesting the lock.

When more than one instance of open exists for a keyed file, only the owner
of an Exclusive_Access or Preserve_Access_and_ Cont.ent lock on the record
(or the file) can replace or delet.e the record. However, the replace or delet.e
operation does not take place until no unexpired Preserve_ Cont.ent locks
exist for the record.

The following paragraphs describe the lock int.ents for record locks. (Lock
int.ents for file locks are described lat.er under File Locks.)

Exclusive _Access

• Used when the task int.ends to issue writ.e or delet.e requests for the locked
record.

• Denies all requests by other tasks to read, writ.e, updat.e, or delet.e the
record or lock its key value.

• Allow requests by other tasks that position the file or perform operations
only on alt.ernat.e indexes.

Preserve_ Access_ and_ Cont.ent

• Used when the task might issue writ.e or delet.e requests for the locked
record. Only one Preserve_Access_and_ Cont.ent lock is allowed at a time
for a record.

• Allows positioning and read requests by other tasks, but denies their
writ.e, replace, and delet.e requests.

• Allows Preserve_ Cont.ent lock requests by other tasks, but denies their
requests for Exclusive_Access and Preserve_Access_and_ Cont.ent locks
on the record.

• The owner of the Preserve_Access_and_ Cont.ent lock can request a writ.e,
replace, or delet.e operation, but:

- The writ.e, replace, or delet.e operation does not begin until the
conditions for an Exclusive_Access lock are met:

- All read operations in progress for the record have complet.ed.

- All Preserve_ Cont.ent locks for the record have expired or been
cleared.

- No read operations for the record can begin until the writ.e, replace, or
delet.e operation complet.es.

e 1-2-24 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Keyed-File Sharing

Waiting for a Lock

On a call that requests a lock, you specify whether the call should wait if the
lock is unavailable. If you specify that the call should wait, it waits until the
lock is available or a lock timeout period has passed. When the time period
has passed, the call terminates with the condition aae$key _timeout.

The default timeout period is 60 seconds. However, each task can specify how
long it waits for a lock by defining and initializing an SCL integer variable.

The timeout variable is named AA V$RESOLVE_ TIME_LIMIT. You assign
the variable the new waiting period in seconds (from 1 through 604,800,000
[I week]).

For example, the following call executes the SCL command CREATE_
VARIABLE to create the AA V$RESOLVE_ TIME_ LIMIT variable and
assign it the value 45.

clpSscan_command_lineC'create_variable, AAVSRESOLVE_TIME_LIMIT, CAT
kind=integer, value=45, scope=Local', status);

(The CLP$SCAN _COMMAND_ LINE call is described in the CYBIL
System Interface manual.)

Lock Expiration and Clearing

An expired lock and a cleared lock are not the same:

• A cleared lock no longer exists; the lock manager has discarded it.

• An expired lock exists, but is no longer effective in preventing access by
other tasks. However, an expired lock prevents file access by its owner
(except to fetch or store attributes or access information). This is done so
that the owner of the lock is notified of its expiration.

A lock is cleared when one of these events occurs:

• The task with the lock issues an unlock request for the lock.

• The task closes the instance of open to which the lock belongs.

• The request for the record lock specified automatic unlock, and the task
issues any request for the instance of open (other than a call to fetch or
store attributes or fetch access information).

In general, the automatic unlock occurs when the request is issued. The
exception is for an update request for the locked record for which the lock is
kept until the update operation completes.

e I-2-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Keyed-File Sharing

7. Task 1 attempts to read record 2 in file 1, but instead the request
terminates with a nonfatal error, notifying Task 1 that it has an expired
lock. Task 1 must clear the expired lock before it can successfully request
any record in file 1.

Notice that in the preceding example the lock would not have expired if the
lock request had specified automatic unlock.

Expired Lock Conditions

The following nonfatal conditions can be returned for an expired lock:

aaeSkey_expired_lock_exists
The operation failed due to a leftover expired lock.

aaeSauto_unlock_frustrated
A key value could not be automatically unlocked due to an expired lock.

aaeSkey_expired_lock_exists
The key value could not be locked due to an expired lock.

aaeSexpired_Lock_interfered_1
A lock with a time limit could not be changed to a lock with no time limit
due to an expired lock.

aaeSexpired_Lock_interfered_2
The first primary-key value in the key list for an alternate-key value
could not be locked due to an expired lock. This status can be returned
only if the alternate key allows duplicate values, ordered by primary key,
and, while the task is waiting for the lock, another task inserts a
primary-key value at the beginning of the key list.

e 1-2·28 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Keyed-File Sharing

File Locks

Your program should request a file lock when it needs locks on many keys at
the same time.

A file lock is required when your program needs more than 1024 locks at a
time because 1024 is the maximum number of locks allowed for an instance
of open. An attempt to exceed this limit returns the nonfatal condition
aae$too _many _keylocks.

The number of locks allowed also depends on the file_limit attribute value.
The lock manager tracks all locks for a file in another file called the lock file
(named AAF$DEPENDENCY _FILE). The lock file size cannot exceed 90%
of the file_limit value and, if an operation would cause the lock file to be
more than 50% full, the operation is not allowed to begin and the fatal
condition aae$lock_file_crowded is returned.

In general, the rules for using file locks are the same as those for individual
locks on primary-key values. The difference is that a file lock is a lock on all
primary-key values in the nested file currently selected.

A nested file cannot be deleted while any locks exist for the nested file. Locks
are not discarded even when another nested file is selected.

File Lock Intents

The effect of the lock intent of a file lock is as follows:

• Exclusive_Access

Only the owner of the lock can access records in the nested file; all
requests by nonowners are denied including all lock requests.

• Preserve_Access_and_ Content

Allows Preserve_ Content locks (both key locks and file locks), but denies
all Exclusive_Access and Preserve_Access_and_ Content locks.

• Preserve_ Content

Allows any number of Preserve_ Content locks and one Preserve_Access_
and_ Content lock for each primary-key value and for the nested file as a
whole, but denies all Exclusive_Access lock requests.

e 1-2-30 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

Creating and Deleting Alternate Keys

Creating and Deleting Alternate Keys

To create or delete alternate keys, a CYBIL program performs these steps:

1. Opens the file, if it is not already open.

2. Issues an AMP$CREATE_KEY _DEFINITION call for each alternate
key to be created. Issue an AMP$DELETE_KEY _DEFINITION call for
each alternate key to be deleted.

3. To implement the alternate-key definitions and deletions specified in step
2, it issues an AMP$APPLY _KEY _DEFINITIONS call. Or, to discard
the specified definitions and deletions, it issues an AMP$ABANDON _
KEY _DEFINITIONS call.

A program can create alternate keys in a new file or in an existing file. The
point at which you should create alternate keys depends upon how the
alternate key handles duplicate values.

If the file data is expected to contain duplicate values for the alternate key
and the duplicate values are to be ordered first-in-first-out, the alternate key
must be defined before records are written to the file. Otherwise, when the
alternate index is built, the duplicate values already existing in the file are
ordered by primary-key value. Duplicate values added later are ordered
first-in-first-out.

If duplicate key values are not allowed for the alternate key or the duplicate
values are to be ordered by primary-key value, the alternate key should be
defined after records are written to the file. Building the alternate index is
more efficient when the records are already in sorted order. If the alternate
index is updated as each record is written, the alternate index is built in
random order. This takes much longer. The efficiency difference is even
greater when the file has more than one alternate index.

If the file is large, applying an alternate-key definition to a file can require
considerable processing time. This is because creation of a new alternate
index requires that all records in the file be read.

I I-2-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

File Positioning After Alternate-Key Selection

When an AMP$SELECT _KEY call selects a different key, it sets the file
position to the beginning of the index for that key. (If the key specified on an
AMP$SELECT _KEY call is already the selected key, the file position is not
changed.) After an alternate key is selected, all file positioning follows the
logical record order represented in the alternate index.

As described earlier in this chapter, several calls are available to position a
keyed file. Those calls that both position the file and read and write data are
described later. The following calls position the file without reading or
writing data:

AMP$START
Positions the file to access the record having the specified value for the
selected key.

AMP$REWIND
Positions the file at the beginning of the index for the selected key. The
file is positioned to access the record with the lowest value for the selected
key.

AMP$SKIP
Positions the file forward or backward the specified number of records
(according to the record order provided by the index for the selected key).

Reading Records After Alternate-Key Selection

In general, the calls to read (or get) a record perform the same when an
alternate key is selected as when the primary key is selected. The only
difference is that records are accessed through the alternate index.

Random get calls specify the record to be read by its alternate-key value.
Sequential get calls access records in sorted order by alternate-key value.

These calls get a record and position the file to read or write the next record.
The next record is the record having the next primary-key value listed in the
alternate index.

AMP$GET _KEY
Gets the first record in the key list of the specified alternate-key value and
positions the file to read the next record.

An AMP$GET _KEY call specifies the alternate-key value.either in the
location referenced by the key _location pointer or (with a NIL key_
location pointer) in the working storage area. The second method is
especially useful for concatenated alternate keys because the fields of the
key can be assembled in the working storage area. Each key field value is
stored in the working storage area at its actual position within the record.

I I-2-34 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

Fetching Access Information After Alternate-Key Selection

An AMP$FETCH_ACCESS_INFORMATION call can return the following
I items of information. (The call format is in the CYBIL File Management

manual.) This list highlights the meaning of each item when returned
immediately after a call that specifies an alternate-key value:

duplicate_ value_inserted
Boolean indicating whether the last AMPPUT, AMPPUTREP,
AMP$REPLACE, or AMP$APPLY _KEY _DEFINIIONS call detected a
duplicate alternate-key value.

The duplicate_ value_inserted item does not identify the duplication. An
AMPPUT, AMPPUTREP, or AMP$REPLACE call can detect a
duplicate value for any alternate key in the file that allows duplicates. An
AMP$APPLY _KEY _DEFINITIONS call can detect a duplicate value for
any record in the file.

file _position
Returns the current file position as described later under File Position
Returned.

primary _key
Primary-key value of the record at the current file position (the next
record).

NOTE

The AMP$FETCH_ACCESS_INFORMATION call must specify a pointer
to the location where the primary-key value is to be returned. The pointer
must be specified in the PRIMARY _KEY field in the array specified by the
fetch_items parameter.

selected_key _name
Name of the currently selected key. If the primary key is currently
selected, the name $PRIMARY _KEY is returned.

I-2-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Using Alternate Keys

Retrieving Alternate-Index Information

An alternate index is a structure independent from the file data, Thus, a
program can fetch information from the alternate index without requiring
access to the file data. This section describes the calls that fetch information
from the alternate index.

An AMP$GET _KEY _DEFINITIONS call retrieves the definitions of
existing alternate keys. Your program could use the definitions returned by
AMP$GET _KEY _DEFINITIONS to:

• Determine the attributes of an alternate key

• Define identical or similar alternate keys in another file

For example, you may want to get the alternate-key definitions from an old
file to apply to a re-created file.

An AMP$GET _NEXT _PRIMARY _KEY _LIST retrieves primary-key
values from the alternate index. The primary-key values are returned in the
order the values are stored in the alternate index, beginning at the current
position.

Generally, AMP$GET _PRIMARY _KEY_ COUNT and AMP$GET _
SPACE_ USED _FOR_KEY calls prepare for subsequent calls that read or
position by alternate key. AMP$GET _PRIMARY _KEY_ COUNT counts the
number of primary-key values for a range of alternate-key values in the
alternate index. AMP$GET _SPACE_ USED_FOR_KEY counts the number
of alternate-index blocks that contain the specified alternate-key value
range.

AMP$GET _PRIMARY_ KEY_ COUNT gives the program the exact number
of primary-key values it would receive if it calls AMP$GET _NEXT_
PRIMARY _KEY _LIST for the alternate-key value range. To count the
values, AMP$GET _PRIMARY _KEY_ COUNT sequentially reads the
alternate-index records that contain the information.

AMP$GET _SPACE_ USED_FOR_KEY does not actually read the
alternate-index records that contain the primary-key values. It just counts
the blocks that would contain the records for a given range of alternate-key
values. This is much faster. The count returned is generally used to compare
with a count returned by another AMP$GET_SPACE_USED_FOR_KEY to
determine the shorter primary-key value list.

e I-2-38 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Program Examples

Program Examples

This section contains CYBIL program examples that perform these
functions:

• Create an indexed-sequential file

• Update an indexed-sequential file

• Create and use an alternate key

I • Create and delete nested files

I-2-40 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Creation Example

CONST
key_length = 1S,
max_record_length = SS,
record_count = 30,
key_position = O,
data_padding = 1S,
index_padding = 10,
index_levels = 2;

VAR
{ Declare variables for ISFILE.}

isfile: amtSlocal_file_name,
isfile_id: amtSfile_identifier,
isfile_fpos: amtSfile_position,

{ Declare variables for DATAIN.}
datain: amtSlocal_file_name,
sqfile_id: amtSfile_identifier,
sqfile_fpos: amtSfile_position,
sqfile_transfer_count: amtStransfer_count,
sqfile_byte_address: amtSfile_byte_address,

{ Wsa is used by both ISFILE and DATAIN.}
wsa: string Cmax_record_length>;

{Establish for file_description an array of file attribute}
{ values. }

VAR file_description: [STATIC] array [1 •• 13] of
amtSfile_item :=

[[amcSfile_organization,
[amcSmax_record_length,
[amcSrecord_type,
[amcSaverage_record_length,
[amcSembedded_key,
[amcSkey_length,
[amcSkey_position,
[amcSkey_type,
[amcSdata_padd1ng,
[amcSindex_padding,
[amcSindex_levels,
[amcSestimated_record_count,
[amcSmessage_control,

amcSindexed_sequentialJ,
max_ record_ length],
amcSansi_fixedJ,
max_ record_ length],
TRUE],
key_lengthJ,
key_positionJ,
amcSuncollated_keyJ,
data_paddingJ,
index_padding],
index_ levels],
record_countJ,
SamtSmessage_control

[amcStrivial_errors,
amcSmessages,
amcSstatisticsJJJ;

I I-2-42 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Creation Example

?? PUSH (LIST := OFF) ??
{This deck contains the common procedures Listed in appendix E.}
*copyc comproc

*copyc amp$close
*copyc amp$file
*copyc amp$g~t_next
*copyc amp$open
*copyc amp$put_key
?? POP ??

MODEND create;

Assuming the program source text is stored as file $USER.CREATE, the
following are the SCL commands required to expand, compile, attach the
data files, and execute the program. After the commands is a listing of the
statistical messages from the program.

/create_source_Library base=temporary_Library
/scu base=temporary_Library
sc/create_deck deck=create modification=original
sc •• /source=$user.create
sc/expand_deck deck=create
sc •• /alternate_base=C$system.cybil.osf$program_interface,
sc •• /$system.common.psf$external_interface_source)
sc/quit, write_Library=no
/cybil input=compile List=listing
/attach_file $user.original_data
I lgo

Begin indexed-sequential file creation.
File INDEXED 0 DELETE_KEYs done since last open.
File INDEXED 0 GET_KEYs done since last open.
File INDEXED 0 GET_NEXT_KEYs done since Last open.
File INDEXED 22 PUT_KEYs (and PUTREPs->put) since last

open.
File INDEXED 0 PUTREPs done since last open.
File INDEXED 0 REPLACE_KEYs (and PUTREPs->replace)

last open.
No error has been found by the program.
Indexed-sequential file creation complete.

I I-2·44 CYBIL Keyed-File and Sort/Merge Interfaces

since

Revision B

Indexed-Sequential File Update Example

PROGRAM updating_phase <VAR program_status : ostSstatus) ;

p#start_report_generationC'Begin file update.'>;
ampSopen Cisfile, amcSrecord, Aaccess_selections,

isfile_id, status>;
p#inspect_status_variable;

ampSopen (update, amcSrecord, NIL, update_id, status>;
p#inspect_status_variable;

{ The WHILE Loop that follows reads an update record from UPDATE }
{ and edits ISFILE accordingly. The update information is }
{ contained in the first 7 characters of the records in UPDATE; }
{ however, only the first character is used to determine }
{whether a delete, put, or replace operation is to be }
{ performed. If the operation requested is not a delete, put, or }
{ replace, a message and the update record are printed on the }
{output Listing. If the status parameter check shows that an }
{ error occurred, then control is returned to the system. }

update_wsa := ' ';
ampSget_next Cupdate_id, Aupdate_wsa, STRLENGTHCupdate_wsa),

update_transfer_count, update_byte_address, update_fpos,
status>;
p#inspect_status_variable;

WHILE Cupdate_fpos <> amcSeoi) DO
p#put_m (TRUE, update_wsaC1, update_transfer_count>>;
isfile_wsa := update_wsa C8, * >;
key := isfile_wsa C1, 15);
CASE update_wsa (1) OF
= 'D' =

ampSdelete_key Cisfile_id, Akey, oscSwait, status>;
p#inspect_status_variable ;

= 'P', 'R' =
ampSputrep Cisfile_id, Aisfile_wsa, O, NIL, oscSwait,

status>;
p#inspect_status_variable;

ELSE
p#put_m (FALSE, 'Invalid code given as first character. '>;
p#put_m (TRUE, update_wsaC1, update_transfer_count>>;

CASEND;
update_wsa <1, *) := • •;
ampSget_next Cupdate_id, Aupdate_wsa, STRLENGTHCupdate_wsa>,

update_transfer_count, update_byte_address,
update_fpos, status>;
p#inspect_status_variable;

WHILEND;

I I-2-46 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Indexed-Sequential File Update Example

Assuming the program source text is stored on file $USER. UPDATE, the
following are the SCL commands required to expand, compile, attach the
data file, and execute the program. It is assumed that the indexed-sequential
file to be updated is accessible as file INDEXED in the $LOCAL catalog.
After the commands is a listing of the statistical messages from the file
update program.

/create_source_Library base=temporary_Library
/scu base=temporary_Library
sc/create_deck deck=update modification=original
sc •• /source=Suser.update
sc/expand_deck deck=update
sc •• /alternate_base=($system.cybil.osf$program_interface,
sc •• /$system.common.psf$external_interface_source)
sc/quit, write_Library=no
/cybil input=compile List=Listing
/attach_file Suser.update_data
/lgo

Begin file update.
ReplaceCanada
Put China
Delete Great Britain
Put Spain
Put Italy
ReplaceJapan

File INDEXED
File INDEXED
File INDEXED

24336000 3851791 Ottawa
1053788000 3705390 Beijing

38686000
57513000
11878300

194897 Madrid
116303 Rome
143750 Tokyo

1 DELETE_KEYs done since Last open.
0 GET_KEYs done since Last open.
0 GET_NEXT_KEYs done since Last open.

File INDEXED 3 PUT_KEYs (and PUTREPs->put) since last
open.

File INDEXED 5 PUTREPs done since Last open.
File INDEXED 2 REPLACE_KEYs (and PUTREPs->replace) since

Last open.
No error has been found by the program.
File update complete.

I I-2-48 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

{ Establish the file attribute array for file_description.}
VAR

file_description: [STATIC] array [1 •• 2] of amtSfile_item :=
[[amcSfile_organization, amcSsequentialJ,
[amcSmax_record_length, max_record_lengthJJ;

{ Declare access_selections array for ampSopen of SEQFILE.}
VAR

access_selections_sqfile: [STATIC] array [1 •• 1]
of amtSfile_item :=
[[amcSfile_contents, amcSlegibleJJ;

VAR
capital_attributes: [STATIC,READ] array [1 •• 1]

of amtSoptional_key_attribute :=
[[amcSduplicate_keys, amcSordered_by_primary_keyJJ;

PROGRAM alternate_key_phase CVAR program_status : ostSstatus>;

p#start_report_generation('Begin alternate keys example.'>;

{These calls specify file attributes and open files.}
isfile := 'indexed';
sqfile := 'alternate_key_output';
ampSfile Csqfile, file_description, status>;

p#inspect_status_variable;
ampSopen Cisfile, amcSrecord, "access_selections_isfile,

isfile_id, status>;
p#inspect_status_variable;

ampSopen Csqfile, amcSrecord, "access_selections_sqfile,
sqfile_id, status>;
p#inspect_status_variable;

{These calls define and generate the alternate index. }
ampScreate_key_definition Cisfile_id, capital_key_name,

capital_key_position, capital_key_length,
"capital_attributes, status>;
p#inspect_status_variable;

ampSapply_key_definitions Cisfile_id, status>;
p#inspect_status_variable;

I 1-2-50 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Alternate-Key Example

Assuming the source program is stored as deck ALTERNATE_KEYS on
source library file $USER.MY _LIBRARY, the following is a listing of the
SCL commands required to expand, compile and execute the program. It is
assumed that the indexed-sequential file is accessible as file INDEXED in
the $LOCAL catalog.

/scu base=Suser.my_library
sc •• /expand_deck deck=Calternate_keys) ••
sc •• /alternate_base=<Ssystem.cybil.osfSprogram_interface,
sc •• /Ssystem.common.psfSexternal_interface_source>
sc/quit, write_library=no
/cybil input=compile
/lgo

Begin alternate keys example.
File INDEXED begin creating labels for alternate key

definitions.
File INDEXED finished creating labels for alternate key

definitions.
File INDEXED begin the data pass that collects alternate

key values.
File INDEXED AMPSAPPLY_KEY_DEFINITIONS has reached a file

boundary : EOI.
File INDEXED data pass completed.
File INDEXED begin sorting the alternate key values.
File INDEXED sorting completed.
Fi le INDEXED begin building alternate key indexes into

the file.
Fi le INDEXED completed building the indexes into the file.
File INDEXED AMPSGET_NEXT_KEY has reached a file

boundary : EOI.
File INDEXED 0 DELETE_KEYs done since Last open.
File INDEXED 0 GET_KEYs done since last open.
File INDEXED 48 GET_NEXT_KEYs done since

last open.
File INDEXED 0 PUT_KEYs (and PUTREPs->put) since last open.
File INDEXED 0 PUTREPs done since last open.
File INDEXED 0 REPLACE_KEYs (and PUTREPs->replace) since

last open.
No error has been found by the program.
Alternate keys example complete.

I 1-2-52 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nested File Example

Nested File Example

This example is a CYBIL program that first copies the nested-file definitions
from one keyed file to another keyed file and then destroys the original
nested files.

The program copies the nested-file definitions from file EXISTING_
KEYED _FILE to file ANOTHER_KEYED _FILE.

MODULE nested_file_module;

VAR
lfn1: [STATIC] amtSlocal_file_name :=

'existing_keyed_file',
lfn2: [STATIC] amtSlocal_file_name :=

'another_keyed_file',
fid1: amtSfile_identifier,
fid2: amtSfile_identifier,
access_information_ptr: AamtSaccess_information,
definitions_ptr: AamtSnested_file_definitions,
nested_file_count: amtSnested_file_count,
element: amtSnested_file_count;

{This program copies the nested-file definitions in file
{ EXISTING_KEYED_FILE CLFN1) to file ANOTHER_KEYED_FILE CLFN2).
{It then deletes all nested files <except SMAIN_FILE) from
{ LFN1. Any data in the LFN1 nested files Cother than in
{ SMAIN_FILE) is discarded.

PROGRAM nested_file_example CVAR program_status: ostSstatus>;

p#start_report_generationC
'Start copying of nested-file definitions.'>;

ampSopenCLfn1, amcSrecord, NIL, fid1, status);
p#inspect_status_variable;

{These statements fetch the number of nested files currently
{defined in LFN1.

ALLOCATE access_information_ptr : [1 •• 1J;
access_information_ptrA[1J.key:=amcSnumber_of_nested_files;
ampSfetch_access_informationCfid1, access_information_ptrA,

status);
p#inspect_status_variable;

e I-2-54 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Nest.ed File Example

p#put_m CTRUE, 'Nested file definition copying is done.'>;
p#put_m CTRUE, 'Nested-file deletion now begins.'>;

{This Loop deletes each nested file in LFN1. Element 1 in
{ the array is skipped because it contains the definition
{of nested file SMAIN_FILE which cannot be deleted.

FOR element := 2 TO nested_file_count DO

ampSdelete_nested_fileCfid1,
definitions_ptrft[element]~nested_file_name, status>;

p#inspect_status_variable;

FOREND;

ampScloseCfid1, status>;
p#inspect_status_variable;

p#stop_report_generationC
'Nested-file deletion complete.');

PROCEND nested_file_example;

?? PUSH (LIST := OFF) ??
{ The COMPROC deck contains the common
{procedures listed in appendix E.
*copyc comproc

*copyc ampSopen
*copyc ampSfetch_access_information
*copyc ampSget_nested_ftle_definitions
*copyc ampSdelete_nested_file
*copyc ampSclose
*copyc ampScreate_nested_file

{ This directive is required to copy the
{ named condition identifier declaration.
*copyc ameSunimplemented_request
?? POP ??

MODEND nested_file_module

e I-2-56 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

I

I

I

File Access

File Access

You can use a file only if you have access to it. Your access to a file is limited
by the permissions you have been granted to the file. You can limit access
further by requesting a subset of your permitted access modes when
attaching the file. This process is described in the SCL System Interface
Usage manual.

The access allowed for a particular instance of open is limited by the access_
mode file attribute as specified when the file is opened. The following is a list
of the access modes required for each keyed-file interface call.

Call Access Modes Required

AMP$ABANDON _KEY _DEFINITIONS Append, shorten, and modify
AMP$APPLY _KEY _DEFINITIONS Append, shorten, and modify
AMP$CREATE_KEY _DEFINITION Append, shorten, and modify
AMP$CREATE_NESTED_FILE Append, shorten, and modify

AMP$DELETE_KEY Shorten
AMP$DELETE_KEY _DEFINITION Append, shorten, and modify
AMP$DELETE_NESTED _FILE Append, shorten, and modify

AMP$GET _KEY Read (modify required to
record statistics)

AMP$GET _KEY _DEFINITIONS Any access mode
AMP$GET_LOCK_KEYED_RECORD Read (modify required to

record statistics)
AMP$GET_LOCK_NEXT_KEYED_ Read (modify required to
RECORD record statistics)
AMP$GET _NESTED _FILE_ Any access mode
DEFINITIONS
AMP$GET _NEXT _KEY Read (modify required to

record statistics)
AMP$GET _NEXT _PRIMARY_ Read
KEY_LIST
AMP$GET _PRIMARY _KEY_ COUNT Read
AMP$GET_SPACE_USED_FOR_KEY Read

AMP$LOCK_FILE Any access mode
AMP$LOCK_KEY Any access mode

AMP$PUT _KEY Append (shorten and modify
also required if the file has one
or more alternate keys)

I-3-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$ABANDON _KEY _DEFINITIONS

AMP$ABANDON_KEY _DEFINITIONS

Purpose Discards the pending alternate-key definitions or deletions.

Format AMP$ABANDON_KEY _DEFINITIONS
(file _identifier ,status);

Parameters file _identifier: amt$file _identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

status; VAR of ost$status

Status variable in which the completion status is returned.

aae$no _definitions _pending
aae$not_ enough_permission

• A pending alternate-key definition or deletion is one that
has been requested but has not yet been discarded or
applied to the nested file. An AMP$ABANDON _KEY_
DEFINITIONS call or the closing of the file discards all
pending definitions and deletions. An AMP$APPLY _
KEY _DEFINITIONS call applies all pending definitions
and deletions.

• AMP$ABANDON _KEY _DEFINITIONS cannot discard
an alternate-key definition that has already been applied
to the nested file. To delete an applied alternate-key
definition, call AMP$DELETE_KEY _DEFINITION, and
then call AMP$APPLY _KEY _DEFINITION to apply the
deletion request.

I 1-3-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$APPLY _KEY _DEFINITIONS

Remarks
(Contd)

• If AMC$NO_DUPLICATES_ALLOWED is specified for a
new key and the file contains data, AMP$APPLY _KEY_
DEFINITIONS returns a nonfatal error (condition
AAE$UNEXPECTED_DUP _ENCOUNTERED) ifit finds
a duplicate alternate-key value. It then changes the
duplicate control for the index from AMC$NO _
DUPLICATES_ALLOWED to AMC$0RDERED _BY_
PRIMARY _KEY, and restarts creation of the alternate
index. (All other indexes are unaffected by this change.)

If a change to AMC$0RDER_BY _PRIMARY _KEY is not
desired, set the error_limit attribute to 1. The occurrence of
a nonfatal error (such as a duplicate-key value) causes the
nonfatal-error limit to be reached and a fatal error to be
issued. The fatal error terminates alternate index creation
and discards any alternate indexes already built by the
call.

No alternate indexes are created by the terminated
AMP$APPLY _KEY _DEFINITIONS procedure; however,
it does perform all pending alternate-key deletions.

• Entry of a pause_break_character (usually control-p) is
ignored during application of alternate-key definitions.

• Entry of a terminate_break_character (usually control-t)
during application of alternate-key definitions returns a
prompt to the terminal user, asking for confirmation.

As described in the prompt, the terminal user should then
enter a carriage return or any entry other than RUIN FILE
(uppercase or lowercase) to continue the application of
alternate-key definitions. Applied alternate-key definitions
can be removed without harm to the file after the apply
operation has completed.

A request to ruin the file is not recommended. No file
operation can be performed on a ruined file and so no data
can be retrieved from the file.

I I-3-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY _DEFINITION

Remarks • To apply the alternate-key definition specified by an
AMP$CREATE_KEY _DEFINITION call to the file, call
AMP$APPLY _KEY _DEFINITIONS. Before the apply
operation, an alternate-key definition is only pending and
cannot be used to access records in the file. A call to
AMP$ABANDON _KEY _DEFINITIONS discards
pending alternate-key definitions.

• If the SELECTOR field in a record in the optional_
attributes array has the value AMC$NULL_ATTRIBUTE,
that record is ignored.

• Sparse key control is defined by three values:

Sparse_Key _ Control_Position
Sparse_Key _Control_ Characters
Sparse_Key _ Control_Effect

If an alternate key is subject to sparse-key control, the
sparse-key control character must be within the minimum
record length, but the alternate-key fields need not be. For
more information, see the Sparse-Key Control description
in chapter I-1.

• A concatenated key can have up to 64 pieces. The leftmost
piece is defined by the key _position and key _length
values.

Each piece concatenated to the first piece is specified by a
record in the optional_ attributes array containing three
fields:

Concatenated_Key _Position
Concatenated_Key _Length
Concatenated_Key _Type

The pieces are concatenated in the same order as the
records that define the pieces in the optional_attributes
array.

The total length of a concatenated key cannot exceed 700
bytes.

• The first alternate key value in a repeating group begins at
key _position. Subsequent keys are found by adding the
value of repeating _group _length to key _position until
either the repeating _group_ count is satisfied (repeat_ to_
end_ of_record is FALSE) or the end of the record is
reached (repeat_to_end_of_record is TRUE).

I I-3-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY _DEFINITION

I Table 1-3-1. Optional Attribute Record Contents
(AMT$0PTIONAL_KEY _ATTRIBUTE) (Continued)

Value of
SELECTOR Field

AMC$COLLATE_
TABLE_NAME

AMC$DUPLICATE_KEYS

Resulting Attribute Record Fields

COLLATE_TABLE_NAME:
pmt$program_name

Name of the collation table to be used for
collating the alternate key. (The
alternate-key collation table can differ from
the primary-key collation table. See
appendix D for more information on
collation tables.)

If the file is an indexed-sequential file with
a collated primary key, the default collation
table for the alternate key is the collation
table for the primary key. Otherwise, you
must specify a collation table for each
collated alternate key.

DUPLICATE_KEY_CONTROL:
amt$duplicate _key_ control

Indicates how duplicate alternate-key
values are handled in the alternate index.

AMC$NO _DUPLICATES _ALLOWED

No duplicate alternate-key values are
allowed in the alternate index.

AMC$FIRST _IN _FIRST_ OUT

Duplicate alternate-key values are
ordered according to when the record is
written to the file.

AMC$0RDERED _BY _PRIMARY _KEY

Duplicate alternate-key values are
ordered according to primary-key values.

Omission causes AMC$NO _
DUPLICATES_ALLOWED to be used.

(Continued)

I-3-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_KEY _DEFINITION

I Table I-3-1. Optional Attribute Record Contents
(AMT$0PTIONAL_KEY _A TIRIBUTE) (Continued)

Value of
SELECTOR Field Resulting Attribute Record Fields

AMC$INCLUDE_KEY _VALUE
Alternate-key value is included in the
alternate index.

AMC$EXCLUDE_KEY_VALUE
Alternate-key value is not included in
the alternate index.

AMC$REPEATING_GROUP REPEATING_GROUP _LENGTH:
amt$max_record_length,
Length, in bytes, of the repeating group of
fields. It is the distance from the beginning
of an alternate-key value to the beginning
of the next alternate-key value in the record.

REPETITION_ CONTROL:
amt$repetition _control
This record indicates whether the alternate
key repeats until the end of the record. If no
values are specified for the repetition_
control record, it is assumed that the
repeating group repeats until the end of the
record.

REPEAT_TO_END_OF_RECORD:
boolean

TRUE
The alternate key repeats until the
record ends. (An incomplete key at the
end of the record is not used.)

FALSE
The alternate key repeats the number
of times specified in the
REPEATING_GROUP _COUNT
field. If sparse-key control is not used,
the specified number of key values
must be within the minimum record
length.

(Continued)

I-3-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$CREATE_NESTED_FILE

AMP$CREA TE_NESTED_FILE

Purpose Defines a nested file in an existing NOS/VE file.

Format AMP$CREATE_NESTED_FILE
(file_identifier, definition, status);

Parameters file_ identifier: amt$file _identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

definition: amt$nested_file_definition

Variant record which specifies the nested-file name and its
attributes. The record declaration is as follows:

amtSnested_file_definition =record
nested_file_name: amtSnested_file_name,
embedded_key: boolean,
key_position: amtSkey_position,
key_Length: amtSkey_Length,
maximum_record: amtSmax_record_Length,
minimum_record: amtSmin_record_Length,
record_type: amtSrecord_type,
case file_organization:

amtSfile_organization of
= amcSindexed_sequential =

key_type: amtSkey_type,
collate_table_name: pmtSprogram_name,
data_padding: amtSdata_padding,
index_padding: amtSindex_padding,

= amcSdirect_access =
home_block_count:

amtSinitial_home_block_count,
dynamic_home_block_space:

amtSdynamic_home_block_space,
Loading_factor: amtSLoading_factor,
hashing_procedure:

amtShashing_procedure_name,
ca send,

recend;

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

e I-3-14 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

AMP$CREATE_NESTED _FILE

Remarks

(Contd)
• When creating a direct-access nested file, specify values for

the dynamic_home_block_space and loading_factor fields
(although the values are not yet used). Specify the default
values, FALSE and 0, respectively.

For the hashing_procedure specification, values are
required for two fields (NAME and OBJECT _LIBRARY).
Currently, you should always specify OSC$NULL_NAME
for the OBJECT _LIBRARY field. To specify the default
hashing procedure, specify AMP$SYSTEM_HASHING_
PROCEDURE as the NAME field value.

• Creating a nested file does not select the nested file for use.
To select a nested file, call AMP$SELECT _NESTED_
FILE.

• To remove a nested file, call AMP$DELETE_NESTED _
FILE.

• For more information on nested files, see Nested Files in
chapter I-1.

• The nested-file example at the end of chapter I-2
demonstrates the use of this call.

e I-3-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

AMP$DELETE_KEY

Remarks
(Contd)

• If execution of a delete request empties a data or index
block, the block is linked into a chain of empty blocks.
These blocks are reused when new blocks are required for
file expansion.

• AMP$DELETE_KEY searches for the specified
primary-key value only in the nested file currently
selected. If it does not find it, it returns the nonfatal
condition aae$key _not_ found.

• Execution of an AMP$DELETE_KEY call does not
change the file position or the currently selected key.

An AMP$DELETE_KEY call updates the alternate
indexes if alternate keys are defined for the file. Calls to
delete records are effective even if an alternate key is
currently selected for reading and positioning the file.

• When deleting a series of contiguous fixed-length records,
you can save execution time by beginning with the record
having the highest primary-key value.

Deletion of the last record in a data block is performed
quickly because the system just needs to reduce the record
count by one. Deletion of the first record in a data block,
however, can move all remaining records in the data block.

By deleting records in order from the highest to the lowest
primary-key value, you can avoid relocation of records to
be subsequently deleted.

I-3-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$DELETE_NESTED_FILE

AMP$DELETE_NESTED_FILE

Purpose Destroys a nest.ed file. It delet.es its data, alt.ernat.e keys, and
the nest.ed file definition.

Fonnat AMP$DELETE_NESTED_FILE
(file_identifier, nested_file_name, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

nested_ file _name: amt$nested_file_name

Name given the nested file when it was created. It can be
specified by an amt$nest.ed_file_name variable or by a
31-charact.er string on the call. (The name must be
left-justified with blank fill within the string.)

status: VAR of ost$status

Status variable in which the procedure returns its completion
status.

aae$bad_name
aae$cant_ delet.e_main_nest.ed_f
aae$nested_file_not_found
aae$no _ delet.e _current_ nested_ f
aae$no _ delet.e _rasp_ in_ use
aae$no _select_ during_ keydef
aae$not_ enough_permission
aae$syst.em_ error_ occurred

• AMP$DELETE_NESTED_FILE requires append, modify,
and short.en access to the file.

• The default nested file $MAIN _FILE cannot be deleted.

• The task must have exclusive access to the nested file to
delet.e it. AMP$DELETE_NESTED _FILE cannot delet.e a
nest.ed file while:

- Any instance of open has the nested file selected.

- Any instance of open has any locks that apply to the
nested file.

An att.empt to delet.e a nest.ed file while it is in use returns
the nonfatal condition aae$no_delet.e_rasp_in_ use.

• I-3-20 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

I

AMP$GET _KEY

AMP$GET_KEY

Purpose Reads a record from a keyed file using the specified key value.

Format AMP$GET _KEY
(file_identifier, working_storage_area, working_
storage_length, key _location, major _key _length, key_
relation, record_length, file_position, wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working _storage_ area: "cell

Pointer to the space to which the record is copied.

working_storage _length: amt$working _storage _length

length, in bytes, of the working storage area.

key _location: "cell

Pointer to the key value of the record to be read. Set to NIL if
the key value is an alternate-key value specified in the
working storage area.

major _key _length: amt$major_key _length

length of the major key in bytes. The major key length must
be less than or equal to the key length.

If the value is zero, the full key length is used.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

I-3-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET _KEY

Condition
Identifiers

Remarks

aae$file_at_file_limit
aae$file _is_ ruined
aae$key _found_lock_no_ wait
aae$key _not_found
aae$major _key_ too_ long
aae$nonembedded_key _not_given
aae$not_ enough_pennission
aae$record_ longer_ than_ wsa

• To allow for updating of file statistics, you should open the
file for both read and modify access.

• If the file could be shared (more than one concurrent
instance of open could exist), the primary-key value of the
record should be locked before the record is read. The
program should either lock the key value before the
AMP$GET _KEY call or replace the AMP$GET _KEY call
with an AMP$GET _LOCK_KEYED _RECORD call.

If another instance of open has an Exclusive_Access lock
on the primary-key value of the record, AMP$GET _KEY
returns the nonfatal condition aae$key _found_lock_no_
wait and leaves the file positioned to read the record it
found.

To read about locks, see Keyed-File Sharing in
chapter I-2.

• AMP$GET _KEY searches for the specified key value only
in the currently selected nested file.

• AMP$GET _KEY can read a record by its primary-key
value or by an alternate-key value. The primary key is
used unless a preceding AMP$SELECT _KEY call has
selected an alternate key.

• If the primary key is selected, the key_ location parameter
must point to the location of the key value.

• If an alternate key is selected, the key _location parameter
can point to the location of the key or it can be set to NIL.

If key _location is set to NIL, AMP$GET _KEY expects the
key to be in the working storage area. The location of the
key in the working storage area must match the location of
the key in the record.

If the alternate key is a concatenated key, each field in the
concatenated key must be stored in its appropriate location
in the working storage area.

I-3-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_KEY

I Remarks
(Contd)

• For an indexed-sequential file, execution of the
AMP$GET _KEY call leaves the file positioned at the end
of the record that was read. (AMC$EOR or AMC$END _
OF _KEY _LIST is returned in the file_position parameter.)

When AMP$GET _KEY returns AMC$EOI as the file
position, it has not found the requested record and does not
return data in the working storage area. It returns
AMC$EOI in both of these cases:

- It is searching for a key value that is greater than or
equal to the specified key value and the specified key
value is greater than all key values in the file.

- It is searching for a key value that is greater than the
specified key value and the specified key value is the
highest value in the file.

I-3-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET _KEY _DEFINITIONS

Remarks
(Contd)

Example

• The SELECTOR field of an optional attribute record
indicates the attribute returned in the record. The possible
attributes are: key _type, duplicate_key _control, null_
suppression, group_name, sparse_key _control,
concatenated_key, and repeating_groups. The first four
records are returned for every key definition; the
subsequent records are returned only if the attribute was
specified for the key definition.

• The attribute order in a key definition may not match the
attribute order specified when the alternate key was
defined. However, the returned definition is logically
equivalent and, if used to redefine the key, results in an
identical alternate key.

• All name values in an alternate-key definition are returned
using uppercase letters only (even if lowercase letters were
used when the name was originally specified).

The following CYBIL statements show how the key definition
sequence returned by an AMP$GET _KEY _DEFINITIONS
call could be read. The key definition sequence is declared to
be 500 words long (500 integers). If the sequence is too small,
AMP$GET _KEY _DEFINITIONS returns the condition
AAE$TOO _LITTLE_SPACE.

I I-3-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_LOCK_KEYED_RECORD

AMP$GET_LOCK_KEYED_RECORD

Purpose Locks and reads the record having the specified key value.

Format AMP$GET_LOCK_KEYED_RECORD
(file_identifier, working_storage_area, working_
storage_length, key _location, major_key _length, key_
relation, wait_for_lock, unlock_ control, lock_intent,
record_length, file_position, wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_storage_area: ·cell

Pointer to the space to which the record is copied.

working_ storage_ length: amt$working _storage_length

Length, in bytes of the working storage area.

key _location: ·cell

Pointer to the key value of the record to be read. Set to NIL if
the key value is an alternate-key value specified in the
working storage area.

major _key _length: amt$major_key _length

Length of the major key in bytes. The major key length must
be less than or equal to the key length.

If the major key length is zero, the full key length is used.

This parameter is ignored if the file is a direct-access file and
its primary key is currently selected.

• I-3-30 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_LOCK_KEYED_RECORD

Parameters record_ length: VAR of amt$max_record_length

(Contd) Variable in which the number of bytes read is returned.

Condition
Identifiers

file_position: VAR of amt$file_position

Variable at which the file position at completion of the read
operation is returned.

AMC$END_OF _KEY_
LIST

AMC$EOR

AMC$EOI

wait: ost$wait

Positioned at the end of the
key list for the specified
alternate-key value.

Positioned at the end of the
record.

Positioned at the end-of
information.

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status: ost$status

Status variable in which the procedure returns its completion
status.

aae$bad_resolve_ time_limit
aae$file _at_ file_ limit
aae$file_is_ruined
aae$key _already_ locked
aae$key _deadlock
aae$key _expired_lock_exists
aae$key _found_lock_no_ wait
aae$key _not_found
aae$key _self_deadlock
aae$key _timeout
aae$lock_file_crowded
aae$major_ key_ too_long
aae$no_auto_ unlock_pc
aae$nonembedded_key _not_given
aae$not_ enough_permission
aae$primary _key _locked
aae$record_longer_ than_ wsa
aae$too _many _keylocks

e 1-3-32 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

AMP$GET_LOCK_NEXT_KEYED_RECORD

AMP$GET _LOCK_NEXT_KEYED_RECORD

Purpose Locks and reads the next record.

Format AMP$GET _LOCK_NEXT _KEYED _RECORD
(file_identifier, working_storage_area, working_
storage_length, key _location, wait_for_lock, unlock_
control, lock_intent, record_length, file_position,
wait, status);

Parameters file_identifier: amt$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_ storage_ area: 'cell

Pointer to the space to which the record is copied.

working_ storage _length: amt$working _storage _length

Length, in bytes of the working storage area.

key _location: 'cell

Pointer to the space in which the key value of the record is
returned.

wait_for _lock: ost$wait_for_lock

Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK

OSC$NOWAIT _FOR_
LOCK

Waits for the lock.

Returns a warning condition
if the lock is unavailable.

unlock_ control: amt$unlock_ control

Indicates whether the lock is to be cleared automatically.

AMC$AUTOMATIC

AMC$WAIT _FOR_
UNLOCK

e 1-3-34 CYBIL Keyed-File and Sort/Merge Int.erfaces

Clear the lock automatically.

Keep the lock until it is
explicitly unlocked.

Revision B

AMP$GET_LOCK_NEXT_KEYED_RECORD

Condition
Identifiers

Remarks

aae$bad_resolve_ time_limit
aae$cant _ da _getn_ if_ shared
aae$cant_da_getn_after_put
aae$cant_position_beyond_bound
aae$file _ at_file _limit
aae$file _boundary_ encountered
aae$file _is_ ruined
aae$key _already _locked
aae$key _deadlock
aae$key _expired_ lock_ exists
aae$key _found_lock_no_ wait
aae$key _self_ deadlock
aae$key _timeout
aae$lock_file _crowded
aae$no_auto_ unlock_pc
aae$nonembedded_key _not_given
aae$not_ enough_permission
aae$primary _key _locked
aae$record_longer_ than_ wsa
aae$too_many _keylocks
aae$wsa_not_given

• To allow for updating of file statistics, you should open the
file for both read and modify access.

• AMP$GET _LOCK_NEXT _KEYED _RECORD performs
the same processing as AMP$GET _NEXT _KEY except
that it locks the primary-key value of the record before
reading the rec.ord. See the AMP$GET _NEXT _KEY
procedure description for details on how AMP$GET _
LOCK_NEXT _KEYED _RECORD finds and reads the
record.

• AMP$GET _LOCK_NEXT _KEYED _RECORD requests a
lock on the primary-key value of the record to be read. The
lock request uses the wait_for_lock, unlock_ control, and
lock_ intent values on the call. For more information on
locks, see Keyed-File Sharing in chapter I-2.

• Because a Preserve_ Content lock cannot be automatically
unlocked, the unlock_ control value AMC$AUTOMATIC
and the lock_ intent value AMC$PRESERVE_ CONTENT
are not valid on the same call.

• If an alternate key is currently selected, the call requests a
lock on the first primary-key value in the key list only.

• If the call terminates abnormally, the primary-key value is
left unlocked.

e I-3-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET _NESTED _FILE_DEFINITIONS

AMP$GET _NESTED_FILE_DEFINITIONS

Purpose Returns the nested-file definitions for the file.

Format AMP$GET _NESTED _FILE_DEFINITIONS
(file_ identifier, definitions, nested_ file_ count, status);

Parameters file_identifier: amt.$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

deimitions: VAR of amt.$nested_file_ definitions

Array in which the nested-file definitions are returned. Each
element is a record of type amt.$nested_file_definition as
described for the AMP$CREATE_NESTED_FILE procedure.

nested_file_count VAR of amt$nested_file_count

Variable in which the number of nested files in the file is
returned.

status: VAR of ost.$status

Status variable in which the procedure returns its completion
status.

aae$too _little_ space
aae$not_ enough_permission
aae$system_ error_ occurred

• AMP$GET_NESTED_FILE_DEFINITIONS requires the
same access required to open the file.

• The definition of the currently selected nested file is always
returned first in the nested_file_definitions array.

• If the nested_file_definitions array is too small for all
nested-file definitions in the file, AMP$GET _NESTED_
FILE_DEFINITIONS returns the nonfatal condition
aae$too_little_space.

In this case, if sufficient space is available, it returns the
definition of the currently selected nested file in the first
element of the array, but ~aves the rest of the array
undefined.

After receiving the condition aae$too_little_space, a
program can use the nested_ file_ count returned to
increase the size of the array to that required for all
nested-file definitions and then call AMP$GET _
NESTED _FILE_DEFINITIONS again.

e I-3-38 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

AMP$GET_NEXT_KEY

AMP$GET_NEXT_KEY

Purpose Reads the next logical record in the keyed file.

Format AMP$GET _NEXT _KEY
(file_identifier, working_storage_area, working_
storage_length, key _location, record_length, file_
position, wait, status);

Parameters file_ identifier: amt$file _identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_storage_area: "cell

Pointer to the space to which the record is copied.

working_ storage_length: amt$working _ storage_length

Length, in bytes, of the working storage area.

key _location: "cell

Pointer to the space in which the record key value is returned.

record_length: VAR of amt$max_record_length

Variable in which the number of bytes read is returned.

file_position: VAR of amt$file_position

Variable in which the position of the file at completion of the
read operation is returned.

AMC$END_ OF _KEY _LIST

File is positioned at the end of a key list (can be returned
only if an alternate key was selected).

AMC$EOR

File is positioned at the end of a record. (When an alternate
key is selected, it indicates that the file is not at the end of
a key list.)

AMC$EOI

File is positioned at the end of the index.

wait: ost$wait

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

I I-3-40 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_NEXT_KEY

Remarks
(Contd)

• AMP$GET _NEXT _KEY returns the file_position
AMC$EOR (or AMC$END_ OF _KEY _LIST for an
alternate key) when it returns a record to the working
storage area.

When AMP$GET _NEXT _KEY reads the last record in the
file, it returns AMC$EOR (or AMC$END_ OF _KEY _LIST
for an alternate key) as the file position. The next
AMP$GET _NEXT _KEY call returns AMC$EOI as the file
position; it returns no data and normal status. If the task
calls AMP$GET _NEXT _KEY again after AMC$EOI has
been returned, the status condition AAE$CANT _
POSITION_BEYOND_BOUND occurs.

For more information on the use of this call with alternate
keys, refer to Using Alternate Keys in chapter 1-2.

• The key value is returned to key _location unless the key_
location parameter is set to NIL.

• At the completion of the read request, the record_ length
parameter is set to the length of the record that was read. If
the sequential read operation was unsuccessful, the
record_length parameter is not defined.

• If the length of the record that is read is greater than the
length of the working storage area as specified by the
working_ storage_ length parameter, working_ storage_
length characters are returned and a nonfatal error occurs.

• This call is valid for a direct-access file only when an
alternate key is selected or during a sequential pass
through the file.

When the primary key is selected, the call is valid only
when the direct-access file has been attached for exclusive
access (no share modes allowed) and no update operations
intervene in the sequential pass. (The only update
operation allowed is the replacement of a record with
another record of the same length.)

If an update operation is performed on the direct-access
file and the primary key is selected, the program must
rewind the file before beginning a sequential pass of the
direct-access file.

I-3-42 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET _NEXT _PRIMARY _KEY _LIST

Parameters working_ storage _length: amt$working_storage_length

(Contd) Length, in bytes, of the working storage area.

end_of_primary _key _list: VAR of boolean

Variable in which a boolean value is returned indicating
whether the entire list of primary-key values was returned to
the working storage area.

TRUE

The high end of the range was reached, and the entire list
of primary-key values was returned to the working storage
area.

FALSE

The high end of the range was not reached, and at least
one more AMP$GET _NEXT _PRIMARY _KEY _LIST call
is required to get the rest of the list of primary-key values.

transferred_ byte_ count: VAR of amt$working_
storage _length

Variable in which the length, in bytes, of the list of
primary-key values is returned.

transferred_ key_ count: VAR of amt$key _count_ limit

Variable in which the number of primary-key values is
returned.

file_position: VAR of amt$file_position

Variable in which the file position at completion of the
operation is returned.

AMC$EOR

File is positioned within a key list.

AMC$END_ OF _KEY _LIST

File is positioned at the end of a key list.

AMC$EOI

File is positioned at the end of the alternate index.

wait: ost$wait

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

I I-3-44 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

AMP$GET _NEXT _PRIMARY _KEY _LIST

Remarks
(Contd)

• AMP$GET _NEXT _PRIMARY _KEY _LIST returns
primary-key values until it reaches the end of the specified
range or until it cannot fit another value into the working
storage area. By checking the end_of_primary _key _list
value, the program can determine whether all requested
values were returned and, if not, call AMP$GET _NEXT_
PRIMARY _KEY _LIST again to fetch the rest of the
values.

• AMP$GET _NEXT _PRIMARY _KEY _LIST repositions
the file as it fetches key values. At completion of the call,
the file is positioned at the end of the last key value
returned and positioned to continue fetching values at that
point if AMP$GET _NEXT _PRIMARY _KEY _LIST is
called again.

I I-346 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

I

I

AMP$GET _PRIMARY _KEY_ COUNT

Parameters
(Contd)

Condition
Identifiers

major_high_key: amt$major_key _length

A nonzero value indicates that the upperbound alternate-key
value is to be located by major key. The nonzero value is the
major-key length. A zero value indicates that the full
alternate-key value is to be used.

high_ key _relation: amt$key _relation

Indicates where the count ends in relation to the highest value
in the range.

AMC$GREATER_KEY

Include the primary-key values associated with the high_
key value in the count; that is, end the count when an
alternate-key value greater than the high_ key value is
encountered.

AMC$GREATER_OR_EQUAL_KEYor
AMC$EQUAL_KEY

Exclude the primary-key values associated with the high_
key value from the count; that is, end the count when an
alternate-key value greater than or equal to the high_ key
value is encountered.

list_count_limit: amt$key _ count_limit

Maximum number of primary-key values counted;
AMP$GET _PRIMARY _KEY_ COUNT stops counting when
it reaches this value. If set to zero, all primary-key values are
counted.

list_ count: VAR of amt$key _count_limit

Integer variable in which the number of primary-key values
in the range is returned. If zero is returned, no primary-key
values exist in the specified range. The value cannot exceed
the list count limit.

wait: ost$wait

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status: ost$status

Status variable in which the completion status is returned.

aae$high_ end_not_above_low _end
aae$not_ enough_permission
aae$not_positioned_ by _altkey

I-3-48 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

AMP$GET _PRIMARY _KEY_ COUNT

Remarks
(Contd)

• AMP$GET _PRIMARY _KEY_ COUNT returns the value 0
as the list count if it cannot find both the upper_ bound and
lower_bound alternate-key values in the alternate index.

For example, if you specify the alternate-key value Z as
both the upper_ bound and the lower_ bound values and the
alternate-key value Z is not in the alternate index, the call
returns 0 as the list count.

• The list_ count_ limit value can minimize the processing
required for the call. For example, if you call AMP$GET _
PRIMARY _KEY_ COUNT call to determine whether the
number of primary-key values for the alternate-key value
Z is 0, 1, or more than 1, you should set the list_ count_
limit value to 2.

I 1-3-50 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$GET_SPACE_USED_FOR_KEY

Parameters
(Contd)

Condition
Identifiers

Remarks

high_ key _relation: amt$key _relation

Indicat.es where the range ends in relation to the highest
value in the range.

AMC$GREATER_KEY

Include the high_key value in the range.

AMC$GREATER_ OR_EQUAL_KEY or
AMC$EQUAL_KEY

Exclude the high_ key value from the range.

data_ block_ count VAR of amt$data_block_count

Variable in which the block count is returned. It is returned as
an int.egerfrom 1 through amt$max_blocks_per_file.

data_ block_ space: VAR of amt$file_length

Variable in which the combined length of the blocks is
returned. (The value is the number of blocks multiplied by the
block size.)

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: ost$status

Status variable in which the completion status is returned.

aae$high_end_not_above_low _end
aae$not_ enough_permission
aae$not_positioned_ by_ altkey

• The structure of an alt.ernat.e index is an
indexed-sequential structure. One or more index levels are
used to find the block containing the alt.ernate-key value.
Only the blocks at the lowest level of the search actually
contain the alt.ernate-key values and their corresponding
primary-key values.

An AMP$GET_SPACE_USED_FOR_KEY call does not
actually find the specified alt.ernate-key values in the
alt.ernat.e index. Rather, it searches the index to det.ermine
the number oflowest-level blocks that would contain the
specified range of alt.emate-key values.

AMP$GET _SPACE_ USED_FOR_KEY returns a value
even if the specified low _key and high_key values are not
in the alternat.e index.

e 1-3-52 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

AMP$WCK_FILE

AMP$LOCK_FILE

Purpose Locks the file.

Format AMP$LOCK_FILE
(file_identifier, wait_for _lock, lock_intent, status);

Parameters file_identifier: amt.$file_identifier

Condition
Identifiers

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

wait_for _lock: ost.$wait_for_lock

Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT_FOR_LOCK

OSC$NOWAIT _FOR_
LOCK

lock_intent: amt.$lock_intent

Waits for the lock.

Returns immediately with a
warning condition if the lock
is unavailable.

Specifies the purpose and effects of the lock.

AMC$EXCLUSIVE_
ACCESS

AMC$PRESERVE_
ACCESS_AND_
CONTENT

AMC$PRESERVE_
CONTENT

status: VAR of ost.$status

Locked for exclusive access.

Locked for possible update
requests later.

Locked to read records only.

Status variable in which the procedure returns its completion
status.

aae$bad_resolve_ time_limit
aae$key _timeout
aae$lock_file_ crowded

e I-3-54 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$LOCK_KEY

AMP$LOCK_KEY

Purpose Locks the specified primary-key value.

Format AMP$LOCK_KEY
(file_identifier, key _location, wait_for _lock, unlock_
control, lock_intent, status);

Parameters file_identifier: amt.$file_identifier

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _location: "cell

Pointer to the primary-key value to be locked.

wait_ for _lock: ost.$wait_for_lock

Indicates whether the call waits for the lock if it is currently
unavailable. The valid values are:

OSC$WAIT _FOR_LOCK

OSC$NOWAIT _FOR_
LOCK

Waits for the lock.

Returns immediately with a
warning condition if the lock
is unavailable.

unlock_ control: amt.$unlock_ control

Indicates whether the lock is automatically cleared.

AMC$AUTOMATIC

AMC$WAIT _FOR_
UNLOCK

The lock is cleared by the
next request that reads,
updates, or positions the file
or requests or clears a lock.

The lock is held until it is
explicitly cleared.

AMC$AUTOMATIC is not valid ifthe lock_intent value is
AMC$PRESERVE_ CONTENT.

e I-3-56 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$LOCK_KEY

Remarks
(Contd)

• AMP$LOCK_KEY does not verify that the primary-key
value is valid. The validity of the key value is determined
by a subsequent call that uses the key value.

• Because a Preserve_ Content lock cannot be automatically
unlocked, the unlock_ control value AMC$AUTOMATIC
and the lock_ intent value AMC$PRESERVE_ CONTENT
are not valid on the same call.

• If automatic unlock is not chosen for the key lock, the lock
is not cleared until one of these events occurs:

- An AMP$UNLOCK_KEY call clears the lock.

- The instance of open is closed.

• For more information, see Keyed-File Sharing in
chapter I-2.

e 1-3-58 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$PUT _KEY

Remarks • An AMP$PUT _KEY call requires that the file be opened
for at least append access. If the file has one or more
alternate keys, the file must be opened with at least
append, shorten, and modify access so that the alternate
indexes can be updated.

• A lock is not required for an AMP$PUT _KEY call.
However, if the file could be shared (more than one
concurrent instance of open could exist), the primary-key
value of the record should be locked before the record is
written. A Preserve_ Content_and_Access or Exclusive
Access lock prevents another task from writing a record
with the same primary-key value.

If another instance of open has a lock on the primary-key
value, AMP$PUT _KEY returns the nonfatal condition
aae$key _found_lock_no_ wait.

To read about file sharing, see Keyed-File Sharing in
chapter I-2.

• AMP$PUT _KEY writes the record in the nested file
currently selected.

• If the primary key is nonembedded, the key _location
parameter specifies the starting address of the key. If the
primary key is embedded, the key _location parameter is
ignored, and the location of the key is determined by the
key _position attribute; therefore, you should specify the
key _location parameter as NIL.

• If the file has AMC$ANSI_ FIXED records, the working_
storage_length parameter is ignored, and the value of the
max_record_length attribute is used as the length of the
working storage area.

A warning message is issued for the first call on which the
working_storage_length value differs from the max_
record_length value. The warning is given because,
although excess data is truncated, insufficient data in the
working storage area is not padded. This could mean that
garbage has been written as the last part of the fixed
length record.

• Execution of an AMP$PUT _KEY call does not change the
key currently selected. It leaves the file positioned at the
end of the record it writes.

I-3-60 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

I

AMP$PUTREP

AMP$PUTREP

Purpose

Format

Either replaces a record if the record is in the keyed file or
adds a new record if the record is not in the file.

AMP$PUTREP
(file_identifier, working_storage_area, working_
storage_length, key _location, wait, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_ storage_ area: "cell

Pointer to the new record.

working_ storage _length: amt$working_ storage _length

Length, in bytes, of the record to be written.

key_ location: "cell

Pointer to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$W AIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$file_at_file_limit
aae$file_at_ user_record_limit
aae$file_full_no_puts_or_reps
aae$file _is_ ruined
aae$key _found_lock_no_ wait
aae$key _required
aae$nonembedded_key _not_given

• An AMP$PUTREP call requires that the file be opened
with at least append and shorten access. If the file has one
or more alternate keys, the file must be opened with at least
append, shorten, and modify access so that the alternate
indexes can be updated.

• AMP$PUTREP writes or replaces a record in the nested
file currently selected.

I-3-02 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$REPLACE_KEY

AMP$REPLACE_KEY

Purpose Replaces an existing record in a keyed file with a new record
having the same primary-key value.

Format AMP$REPLACE_KEY
(file_ identifier, working_ storage_ area, working_
storage_length, key _location, wait, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

working_storage_area: "cell

Pointer to the new record.

working_ storage_ length: amt$working _storage _length

Length, in bytes, of the record to be written.

key _location: "cell

Pointer to the primary-key value of the new record; specify
NIL if the primary key is embedded.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$duplicate_alternate_key
aae$file_at_file_limit
aae$file_full_no_puts_ or_reps
aae$file _is_ ruined
aae$key _not_ found
aae$key _required
aae$nonembedded_key _not_given
aae$not_ enough_ permission
aae$sparse _key_ beyond_ eor

• An AMP$REPLACE_KEY call requires that the file be
opened with at least append and shorten access. If the file
has one or more alternate keys, the file must be opened
with at least append, shorten, and modify access so that
the alternate index can be updated.

I I-3-M CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

AMP$SELECT _KEY

AMP$SELECT _KEY

Purpose Selects the key to be used by subsequent calls that read or
position the file.

Format AMP$SELECT_KEY
(file_identifier, key _name, status);

Parameters file_identifier: amt$file_identifier

Condition
Identifiers

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

key _name: amt$key _name

Name of the key to be used. It can be specified by an
amt$key _name variable or by a 31-character string on the
call. (The name must be left-justified with blank fill within
the string.)

Specify the name $PRIMARY _KEY to switch from an
alternate key back to the primary key.

status: VAR of ost$status

Status variable in which the completion status is returned.

aae$altkey _name_ not_ found
aae$can t _select_ key
aae$cant_select_ until_ applied
aae$no _select_ on_ pending_ delete
aae$not_ enough_ permission

• The initial key selected when a file is opened is always the
primary key.

• The key selection remains in effect until another
AMP$SELECT _KEY call is issued or the file is closed.

• AMP$SELECT _KEY cannot select an alternate key for
which a deletion request is pending (an AMP$DELETE_
KEY _DEFINITION call has specified the key). If a
deletion request is pending for the specified key,
AMP$SELECT _KEY returns the condition aae$no _
select_ on_ pending_ delete.

• When an AMP$SELECT _KEY call changes the selected
key, it positions the file at the record having the lowest key
value for the selected key (that is, it rewinds the file for
that key). However, ifthe AMP$SELECT_KEY call does
not change the selected key (the key specified on the call is
already selected), it does not rewind the file (the file is left
in its current position).

I-3-66 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$SELECT _NESTED _FILE

Remarks
(Contd)

• AMP$SELECT _NESTED _FILE does not discard the file
position, selected key, or locks of previously select.ed nested
files. The instance of open keeps this information for all
nested files.

Thus, a task can sequentially access records on one nested
file, select another nested file, reselect the first nested file,
and continue the sequential access.

Similarly, when a task selects an alt.emat.e key and then
selects another nest.ed file, the alt.emate key remains
select.ed for the first nested file.

• AMP$SELECT _NESTED _FILE cannot select another
nest.ed file if one or more alt.ernat.e key requests are
pending. Call AMP$APPLY _KEY _DEFINITIONS or
AMP$ABANDON_KEY _DEFINITIONS to dispose of the
pending requests.

• To fetch the name of the currently select.ed nested file, call
AMP$FETCH_ACCESS_INFORMATION to fetch the
amc$selected_nest.ed_file it.em. (AMP$FETCH_ACCESS_
INFORMATION is described in the CYBIL File
Management manual.)

• For more information on nested files, see Nest.ed Files in
chapt.er 1-1.

• 1-3-08 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

AMP$START

Parameters file_position: VAR amt$file_position

(Contd) File position at completion of the start operation.

Condition
Identifiers

Remarks

AMC$END _OF _KEY _LIST

File is positioned to read the first record containing the
alternate-key value specified on the call (that is, at the end
of the preceding key list, if one exists).

AMC$EOR

File is positioned to access the record containing the
primary-key value specified on the call (that is, at the end
of the preceding record, if one exists).

AMC$EOI

File is positioned at the end-of-information.

wait: ost$wait

Currently, the only valid value is OSC$WAIT. You must
specify this value on the call.

status: VAR ost$status

Status variable in which the completion status is returned.

aae$file_at_file_limit
aae$file _is_ ruined
aae$key _not_found
aae$major_key _ too_long
aae$no_da_or_sk_start
aae$nonembedded_key _not_given
aae$not _enough_ permission

• An AMP$STARTcall requires that the file be opened for at
least read access.

• AMP$START searches for the specified key value in the
nested file currently selected.

• The current file position does not affect AMP$ST ART
processing.

• For direct-access files, an AMP$ST ART call is valid only if
an alternate key is currently selected. If the primary key is
selected, an AMP$ST ART call for a direct-access file
returns the nonfatal condition aae$no_da_or_sk_start.

I-3-70 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$UNLOCK_ FILE

AMP$UNLOCK_FILE

Purpose Clears a file lock.

Format AMP$UNLOCK_FILE
(file_identifier, status);

Parameters file_identifier: amt$file_identifier

Remarks

File identifier identifying the instance of open (returned by an
AMP$0PEN call for the file).

status.: VAR of ost$status

Status variable in which the procedure returns its completion
status.

• An AMP$UNLOCK_FILE call clears the file lock for the
currently selected nested file only.

To clear all file locks and all key locks belonging to the
instance of open, call AMP$UNLOCK_KEY and specify
TRUE for the unlock_all_keys parameter.

• When a lock expires, the task must clear the lock before it
can perform any other operations on any nested file in the
file.

• For more information, see Keyed-File Sharing in
chapter I-2.

e I-3-72 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AMP$UNLOCK_KEY

Remarks • AMP$UNLOCK_KEY performs one of two operations
depending on the value of the unlock_ all_ keys parameter:

- Clears all locks belonging to the instance of open. This
includes all file locks and all key locks for all nested
files.

- Clears only the key lock for the primary-key value
specified at key _location. The key lock must apply to
the currently selected nested file.

• AMP$UNLOCK_KEY cannot clear an individual
nested-file lock. To do so, call AMP$UNLOCK_FILE.

• If the call is to unlock all locks, but no locks exists for the
instance of open, the call does nothing and returns normal
status. However, ifthe call is t,o clear a single key lock and
the lock does not exist, the call returns the nonfatal
condition aae$key _not_previously _locked.

• When a lock expires, the task must clear the lock before it
can perform any other operations on any nested file in the
file. (A lock can expire only ifthe lock_ expiration_ time
attribute for the file is not zero.)

The task is not notified as to which lock has expired. The
most direct response to a lock expiration condition is to call
AMP$UNLOCK_KEY to clear all locks.

e 1-3-74 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

RECORD_LIMIT ... l-4-32
RECORD_TYPE .. I-4-33
RECORDS_PER_BLOCK I-4-33
RESIDUAL_ SKIP_ COUNT I-4-34
RETURN"_OPTION ... l-4-34
RING_ATTRIBUTES ... I-4-35
SELECTED _KEY _NAME I-4-35
SELECTED _NESTED _FILE I-4-36

Attributes and Access Information Items

Table I-4-1. Keyed-File Attributes and Access Information Items

FETCH= AMP$FETCH
FETCH_INFO = AMP$FETCH_ACCESS_INFORMATION
FILE = AMP$FILE
GET= AMP$GET _FILE_ATTRIBUTES
OPEN= AMP$0PEN
STORE= AMP$STORE

Attribute FETCH
or Item FETCH INFO FILE GET OPEN STORE

Access_Mode x x x x
Average_Record_
Length x x x x
Collate_ Table x
Collate_ Table
Name x x x x
Data_Padding x x x x
Duplicate_ Value_
Inserted x
Embedded_Key x x x x
EOI_Byte_Address x
Error_ Count x
Error_Exit_Name x x x x
Error_Exit
Procedure x x
Error_Limit x x x x x
Error_Status x
Estimated
Record_ Count x x x x
File_Length x
File_Limit x x x x
File_ Organization x x x x
File_Position x
Forced_ Write x x x x
Global_Access
Mode x x
Global_File
Name x x

(Continued)

1-4-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Attributes and Access Information Items

Table 1-4-1. Keyed-File Attributes and Access Information Items
(Continued)

FETCH= AMP$FETCH
FETCH_INFO = AMP$FETCH_ACCESS_INFORMATION
FILE = AMP$FILE
GET= AMP$GET_FILE_ATTRIBUTES
OPEN= AMP$0PEN
STORE= AMP$STORE

Attribute FETCH -or Item FETCH INFO FILE GET OPEN STORE

Min_Record
Length x x x x
Null_Attribute x x x x x
Null_Item x
Number_Of_
Nested_Files x
Open_ Position x x x x
Permanent_ File x x
Primary _Key x
Record_Limit x x x x
Record_ Type x x x x
Records_ Per -
Block x x x x
Residual
Skip_Count x
Return_ Option x x x
Ring_ Attributes x x x x
Selected
Key_Name x

I Selected
Nested_File x

1-4-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ACCESS_MODE

Default
Value

The set of access modes defined by the global_access_mode
attribute excluding PFC$EXECUTE.

The attribute cannot be changed during the instance of open.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN. I Calls

Table 1-4-2. Required Access Modes for Calls

Call

AMP$ABANDON _KEY _DEFINITIONS

AMP$APPLY _KEY _DEFINITIONS

AMP$CREATE_KEY _DEFINITION

I AMP$CREATE_NESTED _FILE

AMP$DELETE_KEY

AMP$DELETE_KEY _DEFINITION

I AMP$DELETE_NESTED_FILE

AMP$GET_KEY

AMP$GET _KEY _DEFINITIONS

AMP$GET_LOCK_KEYED_RECORD

AMP$GET_LOCK_NEXT_KEYED_
RECORD

AMP$GET _NESTED _FILE_
DEFINITIONS

AMP$GET_NEXT_KEY

AMP$GET _NEXT _PRIMARY _KEY _LIST

I-4-6 CYBIL Keyed-File and Sort/Merge Interfaces

Access Modes Required

Append, shorten, and modify

Append, shorten, and modify

Append, shorten, and modify

Append, shorten, and modify

Shorten

Append, shorten, and modify

Append, shorten, and modify

Read (modify required to
record statistics)

Any access mode

Read (modify required to
record statistics; shorten or
append required for an
Exclusive_Access lock)

Read (modify required to
record statistics; shorten or
append required for an
Exclusive_Access lock)

Any access mode

Read (modify required to
record statistics)

Read

(Continued)

Revision B

AVERAGE_RECORD_LENGTH

AVERAGE_RECORD_LENGTH
Meaning

Value

Default
Value

I Calls

Estimate of the average record length in bytes (preserved
attribute). If specified, the system uses the attribute value to
calculate the block size used; it uses the attribute value only
when opening a new file.

For ANSI fixed-length (F) records, the average_record_
length value should be the same as the max_record_length
value.

For variable (V) and undefined (U) records, the average_
record_ length value depends on whether the majority of the
records are the same length.

• If almost all records are a specific length, set the attribute
value to that length.

• If the record lengths are well distributed within a range of
lengths, set the attribute value to the median record length
(half of the records are longer, half are shorter).

Integer from 1 through AMC$MAXIMUM_RECORD (type
AMT$AVERAGE_RECORD _LENGTH).

None. If no value is set for the attribute, the system
uses the arithmetic mean of the max_ record_ length and
min_record_length values to calculate block size. Although
the system uses that value, it does not store the value as the
average_record_length value.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4·8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

COLLATE_TABLE_NAME

COLLATE_ T ABLE_NAME

Meaning

Value

Collation table name (preserved attribute). This attribute is
used to specify a collation table for a file.

The attribute value is used only when the file is first opened.
When the file is opened, the named collation table is stored
with the file. The collation table for a file cannot be changed
after a new file has been first opened.

31-character program name (PMT$PROGRAM_NAME).

NOTE

All letters in the name must be specified as uppercase letters.

The name can be that of a system-defined collation table or a
user-defined collation table. Collation table definition is
described in appendix D, Collation Tables.

The names of the system-defined collation tables follow. The
collating sequence for each table is listed in appendix D.

OSV$ASCII6_FOLDED
CYBER 170 FORTRAN 5 default collating sequence;
lowercase letters mapped to uppercase letters.

OSV$ASCII6_STRICT
CYBER 170 FORTRAN 5 default collating sequence.

OSV$COBOL6_FOLDED
CYBER 170 COBOL 5 default collating sequence;
lowercase letters mapped to uppercase letters.

OSV$COBOL6_STRICT
CYBER 170 COBOL 5 default collating sequence.

OSV$DISPLAY63_FOLDED
CYBER 170 63-character display code collating
sequence; lowercase letters mapped to uppercase letters.

OSV$DISPLAY63_STRICT
CYBER 170 63-character display code collating
sequence.

OSV$DISPLAY64_FOLDED
CYBER 170 64-character display code collating
sequence; lowercase letters mapped to uppercase letters.

I 1-4-10 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

DUPLICATE_ VALUE_INSERTED

DUPUCATE_ VALUE_INSERTED

Meaning Indicates whether the last AMPPUT, AMPPUTREP,
AMP$REPLACE, or AMP$APPLY _KEY _DEFINIIONS call
detected a duplicate alternate-key value (access information
item).

The duplicate_ value_inserted item does not identify the
duplication. An AMPPUT, AMPPUTREP, or
AMP$REPLACE call can detect a duplicate value for any
alternate key in the file that allows duplicates. An
AMP$APPLY _KEY _DEFINITIONS call can detect a
duplicate value for any record in the file.

Value Boolean value.

I ea11s

TRUE

FALSE

The last call detected a duplicate
alternate-key value.

The last call did not detect a duplicate
alternate-key value.

AMP$FETCH_ACCESS_INFORMATION.

EMBEDDED_KEY

Meaning

Value

Default
Value

I Calls

Indicates whether the primary key is part of the record data
(preserved attribute).

Boolean value.

TRUE

FALSE

TRUE.

The primary key is part of the record data.

The primary key is separate from the record
data.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

1-4-12 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

ERROR_ EXIT _NAME

ERROR_EXIT _NAME

Meaning

Value

Default
Value

I Calls

Name of an error processing procedure (temporary attribute).

The name must be that of a procedure with the XDCL
attribute within the program library list of the job or defined
within the task.

For the attribute to be effective, you must specify the error_
exit_ name value before the file is opened or on the
AMP$0PEN call. The error processing procedure is loaded
when the file is opened. To change the procedure while the file
is open, you must use the error_exit_procedure attribute.

1- through 31-character procedure name (type
PMT$PROGRAM_ NAME). (All letters in the name must be
uppercase because PMP$LOAD does not convert lowercase
letters to uppercase.)

The named procedure must be of type AMT$ERROR_EXIT _
PROCEDURE; that is, it must have the following parameter
list

Cfile_identifier: AMTSFILE_IDENTIFIER;
VAR status: OSTSSTATUS)

None. If no error-exit name is specified, the system does
not search for an error-processing procedure.

For more information, see the error-exit procedure discussion
in the CYBIL File Management Manual.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ERROR_STATUS

ERROR_ STATUS

Meaning

Value

I Calls

Completion status returned by the last file interface request
for the file (access information item).

Integer (type OST$STATUS_ CONDITION).

AMP$FETCH_ACCESS_INFORMATION.

ESTIMATED_RECORD_COUNT

Meaning

Value

Default
Value

I Calls

Estimated number of records to be stored in the file (preserved
attribute).

The system uses the attribute value to calculate the block size;
it only uses the value when it first opens a new file.

Integer (type AMT$ESTIMATED _RECORD_ COUNT).

If a value is defined for the record_ limit attribute, the record_
limit value is the default estimated_ record_ count. If the
record_limit attribute is undefined, the default value is
100,000.

AMP$FETCH, AMP$FILE, AMP$GET_FILE_
ATTRIBUTES, AMP$0PEN.

FILE_ LENGTH

Meaning

Value

I Calls

Length of a mass storage file in bytes (returned attribute).

Integer from O through AMC$FILE_BYTE_LIMIT,
4398046511103 (242-1) (type AMT$FILE_LENGTH).

AMP$GET _FILE_ATTRIBUTES.

1-4-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision P

FILE_POSITION

FILE_ POSITION

Meaning

Value

I eaus

Current file position (access information item).

One of these identifiers that apply to keyed files (type
AMT$FILE_POSITION):

AMC$BOI

AMC$END _OF_
KEY_LIST

AMC$EOR

AMC$EOI

Beginning-of-information.

End of the list of primary
keys associated with the same
alternate-key value.

End of record. (While an alternate
key is selected, AMC$EOR indicates
that the next record is associated
with the same alternate-key value as
the current record.)

End of information.

AMP$FETCH_ACCESS_INFORMATION.

1-4-18 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

I

I

GLOBAL_ACCESS_MODE

GLOBAL_ACCESS_MODE

Meaning

Value

Default
Value

Indicates the set of valid access modes for the file (returned
attribute). (The access modes required for each keyed-file
interface call are listed in table I-4-2.)

Set of any (including none) of the following constant
identifiers (referenced using the set identifier PFTUSAGE_
SELECTIONS []):

PFC$READ

PFC$SHORTEN

PFC$APPEND

PFC$MODIFY

PFC$EXECUTE

Read access.

Shorten access.

Append access.

Modify access.

Execute access.

For an existing permanent file, the set of access modes is
determined when the file is attached. For a temporary file or a
new permanent file, the set includes all usage modes (read,
modify, append, shorten, and execute).

I Calls AMP$FETCH, AMP$GET _FILE_ATTRIBUTES.

GLOBAL_FILE_NAME

Meaning

Value

I Calls

File name uniquely identifying the file (returned attribute).
The system generates the name for the file when it creates the
file. The global file name allows a program to determine
whether files having different local file names are actually the
same file.

Packed record (type OST$BINARY _ UNIQUE_NAME).

AMP$FETCH, AMP$GET _FILE_ATTRIBUTES.

I-4-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

INDEX_LEVELS

I Default
Value

Calls

The default hashing procedure provided by the system,
AMP$SYSTEM_HASHING_PROCEDURE.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

INDEX_LEVELS

Meaning

Value

Default
Value

I Calls

Target number of index levels (preserved attribute). The
system uses the attribute value to calculate block size. The
index_levels value is used only when an indexed-sequential
file is created.

1 through 15 (type AMT$INDEX_LEVELS).

2.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

INDEX_P ADDING

Meaning

Value

Default
Value

I Calls

Percentage of space the system is to leave empty in each
index block it creates during the first open of an
indexed-sequential file (preserved attribute).

0 through 99 (type AMT$INDEX_PADDING).

0 (no padding).

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

KEY_TYPE

KEY_TYPE

Meaning

Value

Default
Value

I Calls

Primary-key type (preserved attribute).

For direct-access files, the value specified for the key_ type
attribute is ignored. The primary-key type for a direct-access
file is always uncollated.

One of the following identifiers (type AMT$KEY _TYPE):

AMC$UNCOLLATED_KEY
Order key values byte-by-byte according to the ASCII
character set sequence (listed in appendix B). Key
values can be positive integers or ASCII strings (1
through 255 bytes).

AMC$INTEGER_KEY
Order key values numerically. Key values are positive or
negative integers (1 through 8 bytes).

AMC$COLLATED_KEY
Order key values according to a user-specified collation
table (see the COLLATE_ TABLE_NAME description
in this table). Key values can be positive integers or
ASCII strings (1 through 255 bytes).

AMC$UNCOLLATED _KEY.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-24 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

I

I

LAST _ACCESS_ OPERATION

Value
(Contd)

AMP$GET _NEXT_
PRIMARY _KEY _LIST

AMP$GET _PRIMARY_
KEY_COUNT

AMP$GET_SPACE_
USED_FOR_KEY

AMP$LOCK_FILE

AMP$LOCK_KEY

AMP$0PEN

AMP$PUT _KEY

AMP$PUT _NEXT

AMP$PUTREP

AMP$REPLACE_KEY

AMP$SELECT _KEY

amc$get_next_primary _
key_list

amc$get_primary _
key_count

amc$get_space _
used_for_key

amc$lock _file

amc$lock_key

amc$open_req

amc$put_key _req

amc$put_next_req

amc$putrep_req

amc$replace _key_ req

amc$select _key

AMP$SELECT _NESTED_ amc$select_ nested_
FILE file

AMP$SKIP

AMP$START

AMP$STORE

AMP$UNLOCK_FILE

AMP$UNLOCK_KEY

amc$skip _req

amc$start _ req

amc$store_req

amc$unlock_file

amc$unlock_ key

AMP$FETCH_ACCESS_INFORMATION.

1-4-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

MAX_ BLOCK_ LENGTH

MAX_BLOCK_LENGTH
Meaning

Value

Default
Value

I~

Length in bytes of each keyed-file block (preserved attribute).

If specified, this value is used only when the keyed file is
opened for the first time.

Integer from 1through16777215 (224-1). If the value is less
than the maximum record length, the system increases it to
that value. Then, if needed, it changes the value as follows:

• If the value is less than 2048, it is increased to 2048 (the
minimum allocation unit).

• If the value is between 2048 and 65536, but it is not a power
of 2, it is increased to the next power of 2 (4096, 8192, 16384,
32768, or 65536).

• If the value is greater than 65536, it is decreased to 65536.

For an indexed-sequential file, the system calculates an
appropriate default value using the average_record_length,
estimated_record_count, index_levels, and records_per_
block values. For a direct-access file, it calculates the default
value using the average_record_length and estimated_
record_ count values.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

MAX_RECORD_LENGTH
Meaning

Value

Default
Value

I Calls

Maximum length of a file record in bytes (preserved attribute).

For keyed files, integer from 1 through 65497.

For keyed files, no default value is provided; AMP$0PEN
returns a fatal error if the maximum record length has not
been specified when the file is created.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

I-4-28 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

MIN_RECORD_LENGTH

MIN_RECORD_LENGTH

Meaning

Value

Default
Value

Minimum record length in bytes (preserved attribute).

For keyed files, integer from 0 though 65497, but not greater
than the max_record_length value.

For ANSI fixed-length (F) records, the default value is the
max_record_length value. For keyed files using embedded
keys, the default value is the sum of the key _position and
key _length values. Otherwise, the default value is 1.

NOTE

For variable-length records, it is recommended that you
explicitly specify the minimum record length. The minimum
record length must include:

• The primary-key field

• Any alternate-key fields (or corresponding sparse-key
control characters)

• All alternate-key fields for an alternate key defined as a
field in a repeating group which repeats a fixed number of
times

Calls AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN.

NULL_A TTRIBUTE

Meaning

I Calls

Attribute identifier (AMC$NULL_ATTRIBUTE) that
indicates that the content of the attribute record is to be
ignored.

AMP$FETCH, AMP$FILE, AMP$GET _FILE_
ATTRIBUTES, AMP$0PEN, AMP$STORE.

NULL_ITEM

Meaning

I Calls

Access item identifier that indicates that the content of the
attribute record is to be ignored.

AMP$FETCH_ACCESS_INFORMATION.

I-4-30 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

PERMANENT _FILE

PERMANENT _FILE

Meaning

Value

I Calls

Indicates whether the file is permanent or tf'"llporary
(returned attribute).

Boolean value.

TRUE

FALSE

File is permanent.

File is temporary.

AMP$FETCH, AMP$GET _FILE_A'ITRIBUTES.

PRIMARY_KEY

Meaning

Value

I Calls

Pointer to a program variable in which the call is to return a
primary-key value (access information item).

The primary-key value is for the record at which the
preceding AMP$START call positioned the file or for the
record read by the preceding AMP$GET _NEXT _KEY,
AMP$GET _LOCK_NEXT _KEY, or AMP$GET _KEY call.
This item can be returned only if the preceding call used an
alternate key.

Cell pointer (type AMT$PRIMARY _KEY).

AMP$FETCH_ACCESS_INFORMATION.

RECORD_LIMIT

Meaning

Value

Default
Value

I Calls

Maximum number of records in the file (preserved attribute).

Integer from 1 through AMC$FILE_BYTE_LIMIT (242-1)
(type AMT$RECORD_LIMIT).

AMC$FILE_BYTE_LIMIT (242-1).

AMP$FETCH, AMP$FILE, AMP$GET_FILE_
A'ITRIBUTES, AMP$0PEN.

I-4-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

RESIDUAL_ SKIP_ COUNT

RESIDUAL_SKIP _COUNT

Meaning

Value

I Calls

Number of units remaining to be skipped when the skip
operation reached a file boundary (access information it.em).
The residual skip count is the difference between the number
of skip units request.ed and the number of units actually
skipped.

Int.eger from 0 through AMC$FILE_BYTE_LIMIT (type
AMT$RESIDUAL_SKIP _COUNT).

AMP$FETCH_ACCESS_INFORMATION.

RETURN_ OPTION

Meaning

Value

Default
Value

I ea11s

Indicat.es when the file is implicitly detached (returned) to the
syst.em (t.emporary attribut.e). (You can explicitly detach a file
with a DETACH_ FILE command or an AMP$RETURN
call.)

One of the following identifiers (type AMT$RETURN _
OPTION):

AMC$RETURN_AT_
CWSE

NOTE

Detach when the task closes
the file and the job does not
have another instance of
open for the file.

The task closing the file does not receive notification that
the file cannot be detached when the job has another
instance of open of the file.

AMC$RETURN_AT_
JOB EXIT - .

Detach when the job
t.erminat.es.

AMC$RETURN _AT _JOB_EXIT.

AMP$FILE, AMP$GET _FILE_A'ITRIBUTES, AMP$0PEN.

1-4-34 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision B

SELECTED_NESTED_FILE

SELECTED_NESTED_FILE

Meaning

Value

Calls

Name of the currently selected nested file (access information
item). By default, the currently selected nested file is
$MAIN_FILE.

31-character string, left-justified, blank-filled (type
AMT$NESTED_FILE_NAME). All letters in the name are
returned in uppercase.

AMP$FETCH_ACCESS_INFORMATION.

e 1-4-36 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

I
I

What Sort/Merge Does

NOTE

To execute a CYBIL program that uses Sort/Merge calls, you must add the
following object library to the program library list:

SLOCAL.SMFSLIBRARY

What Sort/Merge Does

The purpose of sorting is to arrange items in order. The purpose of merging
is to combine two or more sets of preordered items. Ordered information
makes reports more meaningful and suggests critical relationships. Searches
for information are faster with ordered lists.

The purpose of Sort/Merge is to arrange records in the sequence you specify.
You describe the files ofrecords that Sort/Merge is to sort and the order in
which it is to sort them.

Sort/Merge:

Sorts or merges records from as many as 100 files with one call to
Sort/Merge.

Sorts character and noncharacter key types.

Can sort and merge variable-length (V) or fixed-length (F) records.

Can read input records from and write output records to either sequential
or indexed-sequential files. (The primary key of each indexed-sequential
file must be embedded.)

Can sort according to one of eleven predefined collating sequences, seven
numeric formats, or a user-defined collating sequence.

Can sum fields of records having equal keys.

Can use owncode procedures to insert, substitute, modify, or delete records
during Sort/Merge processing.

Data Flow

Sort/Merge reads input records from one or more local files or as supplied by

I an owncode routine. Records to be merged must be presorted. Records to be
merged and summed must be pre-sorted and pre-summed.

Sort/Merge writes records to a single output file. The records can be
processed by an owncode procedure.

11-1-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Defining a Sort Key

When a university department needs to know which students are majoring in
fields within the department, the file can be sorted on the field of study. The
same sort can specify the name as a minor key so that records with the same
field of study are also sorted in alphabetic order by the name. The file can be
sorted by the class code as the major key and by the grade point average in
descending numeric order as a minor key. This would produce a list of
students sorted by class code with the students having the highest grade
point average at the beginning of the list.

Defining a Sort Key

Each sort key to be used by the sort or merge request must be defined by a
sort key definition on an SMP$KEY call. A sort key definition includes the
following information:

Starting location of the key within the record

Key length

Type of data in the key field

Sort order

Key Length and Position

You define key field length and position by specifying the first byte of the
field.

NOTE

When defining a Sort/Merge field, the leftinost byte in a record is counted as
numberl.

For example, if you want to specify the name field of the university student
record as a sort key, and the name field is the leftmost field in the record, you
specify the first byte as 1. If the name field is 20 characters long, you specify
the length as 20.

Sort/Merge interprets the integers you specify for key length and position as
bit numbers when the key type (discussed later in this chapter) specifies bits;
otherwise, byte numbers are assumed. The first blt is numbered 1; the key
fields cannot overlap one another and cannot overlap sum fields.

II-1-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Defining a Sort Key

Table II-1-1 summarizes character and noncharacter data types and the
associated sort key type.

Table 11-1-1. Data in Sort Key Fields

Internal Data Type Data Ordered
Type Representation in Field Specified by According to

Character ASCII Alphabetic Name of a Specified
collating collating
sequence sequence

Numeric Name of a Numeric
numeric data value
format

Noncharacter Binary value Numeric Name of a Numeric
numeric data value
format

Packed decimal Numeric Name of a Numeric
numeric numeric data value

format

If a sort key field contains any characters that are not meaningful for the
key type you specify (an alphabetic character in a field defined as a numeric
key, for example), the sort order for that key field in that record is undefined.
In the output file, the data for that key field in that record is also undefined.
The record is still sorted according to other major sort keys you have
specified, unless you have specified an exception file.

The collating sequences and numeric data formats you can specify are
discussed in the following paragraphs.

Collating Sequences

A collating sequence determines the precedence given to each character in
relation to the other characters. You specify the collating sequence that
determines the sort order of character data. (Character data is represented as
ASCII character codes.)

Sort/Merge defines six collating sequences: ASCII, ASCII6, COBOL6,
DISPLAY, EBCDIC, and EBCDIC6. (NOS/VE defines five additional
collating sequences, and you can define your own collating sequences.)

If you do not specify a collating sequence, ASCII is used. (Sort/Merge sorts
fastest when using the ASCII collating sequence.)

The predefined collating sequences are listed in appendix D.

II-1-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Defining a Sort Key

Table 11-1-2. Numeric Data Formats

Name

BINARY

BINARY_BITS

INTEGER

INTEGER_ BITS

NUMERIC FS -

NUMERIC_LO

NUMERIC_LS

NUMERIC_NS

NUMERIC_TO

Data Type

Binary integer

Binary integer

Two's complement
binary integer

Two's complement
binary integer

Leading blanks,
numeric characters

Numeric
characters

Numeric
characters

Numeric
characters

Numeric
characters

Sign

None

None

Positive if leftmost
bit is O; negative if
leftmost bit is 1

Positive if leftmost
bit is O; negative if
leftmost bit is 1

- sign for
negative values;
a + character
is not allowed

Leading overpunch

Leading separate

None

Trailing overpunch

II-1-8 CYBIL Keyed-File and Sort/Merge Interfaces

Comments

The field starts and ends on
character boundaries. Data is
ordered according to numeric value.

The field does not start or end on
character boundaries. Data is
ordered according to numeric value.

The field starts and ends on
character boundaries. Data is
ordered according to numeric value.

The field does not start or end on
character boundaries. Data is
ordered according to numeric value.

The field contains leading blanks
(leading zeros must be converted to
blanks before calling Sort/Merge); if
the value is negative, the rightmost
leading blank must be converted to
a minus sign. If the field contains no
leading blanks or does not begin
with a negative sign, the value must
be positive. This format is
equivalent to the FORTRAN I
format, or the COBOL picture clause
for zero suppressed editing of
numeric item. Data is ordered
according to numeric value.

All characters are decimal digits
except the leading character, which
indicates a sign by an overpunch.
Data is ordered according to
numeric value with all forms of zero
ordered equally.

All characters are decimal digits
except the leading character, which
is a negative or positive sign.
Specifying a field that is not at least
two characters in length causes a
fatal error. Data is ordered
according to numeric value with all
forma of zero ordered equally.

All characters are decimal digits.
Data is ordered according to
numeric value.

All characters are decimal digits
except the trailing character, which
indicates a sign by an overpunch.
Data is ordered according to
numeric value with all forms of zero
ordered equally.

Continued

Revision A

Defining a Sort Key

Signed Numeric Data

A floating sign is a negative sign embedded between leading blanks and the
numeric characters. A floating sign can also be a negative sign followed by
numeric characters. Leading zeros must be converted to blanks. Positive
values in this format are not signed. The following examples are valid
floating sign formats:

- 1
1

- 0
0

- 1 2 3
1 2 3 4

The following examples are invalid floating sign formats:

0 1
- 0 1

+ 1 2 3

Leading zero not allowed
Leading zero not allowed
Positive sign not allowed
All-blank field not allowed

Diagnostic messages are not issued for invalid floating sign formats or
invalid overpunches.

A negative sign overpunch is equivalent to overstriking a digit with a - ,
which is a punch in row 11. A positive sign overpunch is equivalent to
overstriking a digit with a+, which is a punch in row 12.

When a signed overpunch digit is received as input, the digit is punched as
indicated in the second column of table II-1-3. When a signed overpunch
digit is entered from a terminal or displayed as output, the digit appears as
indicated in the third column of table II-1-3. The hexadecimal value is in the
fourth column.

II-1-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Specifying the Record Length

Sort Order

Sort/Merge can sort a key in ascending or descending order. If you do not
specify a sort order, Sort/Merge sorts the key in ascending order.

When sorting a numeric key in ascending order, Sort/Merge sorts the key
values in order from lowest to highest. When sorting a numeric key in
descending order, Sort/Merge sorts the key values in order from highest to
lowest.

A character key is sorted according to the collating sequence you specify for
the key. When sorting a character key in descending order, Sort/Merge sorts
the key values in reverse order of the collating sequence you specify.

Specifying the Record Length

Sort/Merge accepts fixed-length (F) or variable-length (V) records. It can
sort records up to 65,535 bytes long. The record type and record length are
determined by the file attributes specified when the file is created.

The default maximum record length for both fixed-length (F) and
variable-length (V) record types is 256 bytes. The default minimum record
length for variable-length records is 0 bytes.

If the minimum record length for any Sort/Merge input file is 0, you must
include an SMP$KEY call in the Sort/Merge call sequence. If you omit the
SMP$KEY call and the minimum record length for any input file is 0,
Sort/Merge attempts to use the 0 value (the smallest minimum record length
of the input files) as the key length. But Sort/Merge cannot define a key of
length 0, so it returns a fatal error.

Sort performance is best when the maximum record length is equal to the
longest record to be sorted.

If the SORT or MERGE procedures do not specify any input or output files,
Sort/Merge assumes that all records are provided by owncode procedures. In
this case, you must specify the record length using either the
SMP$0WNCODE_FIXED _RECORD _LENGTH or SMP$0WNCODE_
MAX_RECORD _LENGTH procedure.

II-1-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Example Program

Sort/Merge determines whether a key or sum field contains valid data when
it attempts to use the data. If, when Sort/Merge attempts to compare or sum
data from two records, it finds that one record contains invalid data, it then
discards the invalid record and attempts to compare or sum the next record.
It continues to do so until it finds a record containing valid data. Therefore,
in the end cases, where either all records are invalid or the file contains only
one record, one record will not be determined as invalid because it cannot be
compared or summed with a valid record. So Sort/Merge always outputs at
least one record, valid or invalid.

Example Program

The following example CYBIL program sorts a file on three keys.

The file is a file of student records. Each record has this format:

11 13 15 21 27 35 38

LAST NAME
STUDENT ~J NO. DOB STUDY GPA

-=i ~ -'-FIRST INITIAL MIDDLE INITIAL CODE

The records are first sorted on the field of study (byte positions 27 through 34
in each record), then on the class code (byte 38), and finally on the student's
last name (bytes 1 though 10).

I II-1-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Example Program

Before a CYBIL program using Sort/Merge is compiled, the source text must
be expanded to include the Sort/Merge procedure declarations. See the
manual introduction for more information on this process.

Assuming that the source text is on file $USER.SOURCE_ TEXT, the
following command expand, compile, and execute the example program:

/create_source_library result=temporary_library
/source_code_utility base=temporary_library
sc/create_deck deck=sorting source=Suser.source_text
sc •• /modification=original
sc/expand_deck deck=sorting ••
sc •• /alternate_base=CSsystem.cybil.osfSprogram_interface,
sc •• /Ssystem.common.psfSexternal_interface_source)
sc/quit write_library=no
/cybil input=compile l=list b=lgo
/attach_file Suser.university_students
/lgo

Assuming that these records are in file UNIVERSITY _STUDENTS, the
program writes the records to the file FIELD_ OF _STUDY in this order:

REYES
MAYER
CHARLES
MARTIN
NEECE
NAKAMURA
YEH
BARTLETT
COCHRAN
HOYO

KRUTZ
WALLIN
WARNES
WONG
LANGDON
LASE UR
SUGARMAN
SMITH
DOUGLAS
OKADA

S L 100246031558ANTHRO 3341
M I 100991122359ANTHRO 2882
S H 101418032459ANTHRO 2453
R C 100955082157Art 2891
M L 99911121358Art 2291
S L 101529051260Art 2594
F L 102005120645Art 2764
S S 100800100957Art 2735
G L 100725111857810 3011
J c 1019251030608!0 3014

S T 100532010353POLISCI 1981
G E 101056041659POLISCI 3151
D V 102116060861POLISCI 2814
S T 101001012755PSYCH 2152
M A 101754080549PSYCH 2013
P T 100678042256PSYCH 2233
B T 100528070457SOC 3501
F R 101062120758SOC 2913
M L 101325071558UNDEC 2585
N A 100103111750UNDEC 2225

I 11-1-16 CYBIL Keyed-File and Sort/Merge Int.erfaces RevisionB

SMP$BEGIN _SORT _SPECIFICATION

SMP$BEGIN_SORT _SPECIFICATION

Purpose Signals the beginning of a sort calling sequence of procedure
calls.

Format SMP$BEGIN_SORT _SPECIFICATION (array, status);

Parameters array: VAR of smt$info _array

Remarks

Result array name; 1 to 31 letters, digits, or the special
characters$#@_, beginning with a letter.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The SMP$BEGIN _SORT _SPECIFICATION procedure
must be the first procedure called for a sort.

• The result array is a 0- through 16-element integer array
in which Sort/Merge returns sort statistics and results to
your program when the sort is completed. The result array
is a single dimensional array.

You set the first element of the result array to the number
of elements (as many as 15) in the result array to receive
information. If the first word is set to a value greater than
15 or less than 0, Sort/Merge issues a warning message
and changes the value to 15 or 0, respectively.

The type of result that is returned in each element of the
result array is shown in table II-2-1.

II-2-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$BEGIN_MERGE_SPECIFICATION

SMP$BEGIN_MERGE_SPECIFICATION

Purpose

Format

Parameters

Remarks

Signals the beginning of a merge calling sequence of
procedure calls.

SMP$BEGIN_MERGE_SPECIFICATION (array,
status);

array: VAR of smt$info_array
Result array name; 1 to 31 letters, digits, or the special
characters $ # @ _, beginning with a letter.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The SMP$MERGE_SORT _SPECIFICATION procedure
must be the first procedure called for a merge.

• The result array is a 0- through 16-element integer array
in which Sort/Merge returns merge statistics and results to
your program when the merge is completed. The result
array is a single dimensional array.

You set the first element of the result array to the number
of elements (as many as 15) in the result array to receive
information. If the first word is set to a value greater than
15 or less than 0, Sort/Merge issues a warning message
and changes the value to 15 or 0, respectively.

The type of result that is returned in each element of the
result array is shown in table 11-2-1.

II-2-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$FROM_FILE and SMP$FROM_FILES

Remarks
(Contd)

• Specifying the file $NULL or an empty FROM file, both
without an owncode 1 procedure specified, results in a null
sort or merge. A null sort or merge has no records sorted or
merged.

• Sort/Merge input files can have either sequential or
indexed-sequential file organization and either
variable-length (V) or fixed-length (F) record type.

If an input file is an indexed-sequential file, its primary
key must be embedded. If the primary key is nonembedded,
Sort/Merge issues a fatal error and terminates.

II-2-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$TO _FILE

Remarks
(Contd)

• If the output file is an indexed-sequential file,
Sort/Merge checks the key _position, key _length, and key_
type file attributes.

- If the major sort key position does not match the key_
position attribute value, Sort/Merge issues a fatal error
and terminates.

- If the major sort key length does not match the key_
length attribute value, Sort/Merge issues a warning
error and changes the major sort key length to match
the primary-key length.

- If the major sort key type does not match the key_ type
attribute value, Sort/Merge issues a warning error. It
also changes the major sort key type if the key_ type
attribute specifies uncollated or integer keys. (It does not
issue a warning or change the key type if the key_ type
attribute specifies collated keys.)

- For uncollated keys, the major sort key type is
changed to ASCII.

- For integer keys, the major sort key type is changed
to INTEGER.

To read about indexed-sequential file attributes, see part I
of this manual.

• 11-2-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

SMP$KEY

Remarks
(Contd)

• If the SMP$KEY procedure is not called, the following
assumptions are made: the first byte is 1, the key length is
the smallest minimum record length of any of the input
files, the key type is the ASCII collating sequence, and the
sort order is ascending.

• A warning error is issued if a key field contains invalid
data. The warning error results in the following actions:

1. The record is written to the exception records file if an
exception records file was specified.

2. The record is deleted from the sort or merge if an
exception file was specified. If an exception records file
was not specified, the record remains in the sort or
merge, but its place in the sort order is undefined.

3. A diagnostic message is issued, as controlled by the list
options specification.

4. The sort or merge continues normally.

• If the output (SMP$TO _FILE) file is an indexed-sequential
file, the major sort key must be the embedded primary key
defined for the output file. For details, see the SMP$TO _
FILE procedure description.

II-2-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$ERROR_FILE

SMP$ERROR_FILE

Purpose

I Format

Parameters

Remarks

Specifies the file to which diagnostic messages are written.

SMP$ERROR_FILE (file_name, status);

file_name: string(*)

Local file name of the error file.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• Sort/Merge does not rewind the error file before or after it
uses it.

• The file is written in V-type record format. If you specify
the file $NULL with the SMP$ERROR_FILE procedure,
diagnostic messages are not written.

• If you specify the same file for the listing file and for the
error file, each error diagnostic message is written only
once, not twice as it would be if the listing file and the error
file were different and the messages were written to each
file.

• In a batch job, both $LIST and $ERRORS are connected to
OUTPUT. With $LIST and $ERRORS connected to the
same file each error message is printed twice consecutively.
To alleviate this situation you should always set one of the
files to a nondefault value, using a value other than
OUTPUT.

• If the SMP$ERROR_FILE procedure is not called, errors
are written to file $ERRORS.

11-2-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$ERROR_LEVEL

Table II-2-2. Error Level Specification Using the SMP$ERROR_
LEVEL Parameter

Error Level

'I' or 'i'

'T' or't'

'W'or'w'

'F' or'f

'C' or'c'

'NONE' or 'none'

Errors Reported

Informational, warning, fatal, and catastrophic

(This is a nonstandard value and its use is not
recommended)

Warning, fatal, and catastrophic

Fatal and catastrophic

Catastrophic

None

I 11-2-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$EXCEPTION _RECORDS_FILE

SMP$EXCEPTION_RECORDS_FILE

Purpose Specifies the file to which invalid records are written.

Format SMP$EXCEPTION_RECORDS_FILE (file_name,
status);

Parameters file_ name: string(*)

Remarks

Local file to which invalid records are written. The file name
cannot be the same file name specified by the SMP$TO _FILE
procedure. Sort/Merge converts the file name to all uppercase
letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• If the SMP$EXCEPTION_RECORDS_FILE call specifies
the $NULL file, Sort/Merge deletes all exception records. It
does not write the exception records to an exception records
file or to the output file.

• The records written to the exception records file include:

- Records containing invalid key or sum field data

- Records that caused an arithmetic overflow or
underflow when their sum fields were summed.

- Out-of-order merge input records if merge order
checking was requested by an SMP$VERIFY call.

- Records for which the system procedure AMP$PUT _
NEXT returned an error when it attempted to write the
record to the output (TO) file.

• The records in the exception file are deleted from the sort or
merge. A summary of records written to the exception is
printed in the error file named by the SMP$ERROR_FILE
procedure call and in the list file.

• If you omit the SMP$EXCEPTION_RECORDS_FILE
procedure call, Sort/Merge writes the invalid records to the
output file. The invalid records are not written in a defined
order.

e II-2-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

I

I

I

SMP$LIST _OPTION

SMP$LIST_OPTION

Purpose Determines the type of information written to the listing file.

Format SMP$LIST _OPTION (option, status);

Parameters option: string(*)

Value indicating the listing information requested:

OFF

NONE

s

DE

RS

MS

No additional information is to be written to
the listing file.

Same as the OFF keyword.

Although it is a valid keyword, it has no
meaning for this CYBIL procedure call. (It is
meaningful on the SORT or MERGE command
parameter.)

Detailed exception information. A message is
written for each occurrence that causes a
record to be written to the exception records
file.

The DE keyword is valid only if you specify an
exception records file; otherwise, an
informational error message is issued.

If you omit the DE keyword, messages are
written only once per key, sum fields, or file
that causes records to be written to the
exception records file.

Record statistics for the records sorted or
merged. The statistics are from the result
array; a message is written for each element of
the array except for the first. Table II-2-1 lists
the result array elements.

Merge statistics for the records merged.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

Il-2-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$LOAD_COLLATING_TABLE

SMP$LOAD_COLLATING_TABLE

Purpose Loads a collation table, that is a weight table that defines a
collating sequence. The table may be a NOS/VE predefined
collation table or a user-defined collation table in an object
library.

I Format

Parameters

SMP$LOAD _COLLA TING_ TABLE (collating_
sequence_name, weight_table_name, status);

collating_sequence _name: string(*)

I

I Remarks

Name you choose to call the collating sequence produced by
the collation table. This name is the name specified in a key
field definition. Sort/Merge treats lowercase letters as being
equal to uppercase letters.

weight_ table _name: string(*)

Name of a predefined collation table or an object library entry
point defining a collating sequence. Sort/Merge treats
lowercase letters as being equal to uppercase letters.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• A sort or merge specification can include more than one
SMP$LOAD _USER_ COLLATING_ TABLE call.

• The weight table must be loadable by PMP$LOAD.

For more information on collation tables, see appendix D.

• Your collating sequence name cannot be the name of a
predefined collating sequence or the name of a collating
sequence you have already defined for the sort or merge.

II-2-18.2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$0WNCODE_FIXED_RECORD_LENGTH

SMP$0WNCODE_FIXED_RECORD_LENGTH

Purpose Specifies the number of characters in fixed-length records
entering the sort or merge from an owncode routine.

Format SMP$0WNCODE_FIXED_RECORD_LENGTH (value,
status);

Parameters value: integer

Remarks

Fixed record length in bytes of all records supplied by any
owncode procedure; maximum value is 65,535 bytes.

status: VAR of ost$status

Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The integer you specify is the exact number of bytes in
each record; a fatal error results if a record entering the
sort from an owncode routine does not have the exact
number of bytes.

• If the SMP$0WNCODE_FIXED_RECORD_LENGTH
procedure is not called, records entering the sort from an
owncode routine can be no longer than the longest allowed
input or output record.

• If the sort has no input or output files (records to be sorted
are supplied by an owncode routine and sorted records are
processed by an owncode routine), you must specify one of
the following procedures or else a fatal error results:

SMP$0WNCODE_FIXED _RECORD _LENGTH
SMP$0WNCODE_MAX_RECORD _LENGTH

• You cannot call both the SMP$0WNCODE_FIXED _
RECORD _LENGTH procedure and the
SMP$0WNCODE_MAX_RECORD _LENGTH procedure
for the same sort.

I II-2-18.4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

SMP$0WNCODE_PROCEDURE_n

SMP$0WNCODE_PROCEDURE_n

Purpose

Formats

Specifies an owncode routine to be executed each time a
certain event occurs during the sort or merge.

SMP$0WNCODE_PROCEDURE_l
('procedure_name', status);

SMP$0WNCODE_PROCEDURE_2
('procedure_name', status);

SMP$0WNCODE_PROCEDURE_3
('procedure_name', status);

SMP$0WNCODE_PROCEDURE_ 4
('procedure_name', status);

SMP$0WNCODE_PROCEDURE_5
('procedure _name', status);

Parameters procedure_name: string(*)

Remarks

Owncode procedure name; 1 to 31 uppercase letters, digits, or
special characters$#@ _,beginning with a letter.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The procedure name is the name of the owncode routine. If
you enter an owncode routine name in lowercase letters,
Sort/Merge will not convert the name to uppercase letters.
Use uppercase letters to name a routine.

• Sort/Merge loads the owncode procedures before it begins
the sort or merge.

• If the SMP$0WNCODE_PROCEDURE_n procedure is
not called, no owncode routine is executed.

• Owncode routines are described in detail in chapter 3.

• You cannot specify both the SMP$0WNCODE_
PROCEDURE_5 and SMP$SUM procedure calls for the
same sort or merge.

• You cannot specify an owncode 1 or 2 procedure for a
merge.

11-2-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$COLLATING_x

SMP$COLLATING_x

Execution of the SMP$COLLATING_x procedures allow you to define your
own collating sequence. A collating sequence specifies the sort or merge order
for character data. You must define all 256 characters for the collating
sequence or use the SMP$COLLATING_REMAINDER procedure. A
collating sequence consists of a series of value steps from low value to high
value. Each value step consists of at least one character representation.
When a value step contains more than one character, all characters that are
named within the step are collated equally.

A sequence of SMP$COLLATING_x procedures defines your collating
sequence. Your collating sequence definition starts with the
SMP$COLLATING_NAME procedure and ends by any procedure other
than SMP$COLLATING_NAME, SMP$COLLATING_ CHARACTERS,
SMP$COLLATING_REMAINDER, or SMP$COLLATING_ALTER. You
can define as many as 100 collating sequences by specifying a separate
series of SMP$COLLATING_x procedures for each collating sequence.

SMP$COLLATING_NAME

Purpose Signals the start of your collating sequence definition and
specifies the name of your collating sequence.

Format SMP$COLLATING_NAME ('name', status);

Parameters name: string(*)

Remarks

Your collating sequence name, 1 through 31 characters. The
name must be a quoted literal specifying the sequence name.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• Your collating sequence name cannot be the same as the
predefined collating sequence names and cannot be the
same as a collating sequence you have already defined.
Sort/Merge converts your sequence name to uppercase
letters.

Il-2-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$COLLATING_x

SMP$COLLA TING_AL TER

Purpose Determines whether the characters in the value step defined
by the preceding SMP$COLLATING _CHARACTERS call
are altered in the output. If altered, all characters in the value
step are output as the first character in the value step.

Format SMP$COLLATING_ALTER ('option', status);

Parameters option: string(*)

YESorY Alter characters.

NOorN Do not alter characters.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

SMP$COLLATING_REMAINDER

Purpose Defines the position of the remainder value step in the
collating sequence. The remainder value step consists of all
characters that have not been included in value steps defined
by SMP$COLLATING_ CHARACTERS calls.

Format SMP$COLLATING_REMAINDER ('option', status);

Parameters option: string(*)

YES, Y, NO or N

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

II-2-24 CYBIL Keyed-File and Sort/Merge Int.erfaces Revision A

SMP$SUM

SMP$SUM

Purpose Specifies one or more fields to be summed.

Format SMP$SUM (first, length, 'stype', rep, status);

Parameters first: integer

Remarks

First byte or bit of the sum field. (Bytes and bits are counted
from the left, beginning with 1.)

length: integer
Number of bytes or bits in the sum field.

stype: string(*)
Name of a numeric data format.

rep: integer
Number of times the fields should be repeated to the right; a
positive, nonzero integer.

status: VAR of ost$status
Name of the status variable in which Sort/Merge returns the
procedure completion status.

• The defined sum fields are summed when two records have
equal keys. The records with equal keys are combined into
one new record.

The new record contains the equal keys and the summed
fields. A data field that is not a key or sum field is written
to the new record as a field from one of the old records.

• The location of a sum field is specified as the position as
the first bit or byte in the field. Bits and bytes are
numbered from the left in the record beginning with 1. The
location is a byte position unless the numeric format of the
sum field is BINARY _BITS or INTEGER_ BITS.

• The maximum size of the BINARY, BINARY _BITS,
INTEGER, INTEGER_BITS, PACKED, and PACKED_
NS sum fields is one word. The maximum size of
NUMERIC_LO, NUMERIC_LS, NUMERIC_ TO,
NUMERIC_ TS, NUMERIC_NS, or NUMERIC_FS sum
fields with a nonseparate sign is 17 digits. If the sum fields
have a separate sign, the maximum size is 17 digits plus
one digit for the sign.

II-2-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

SMP$SUM

Remarks
(Contd)

• A fatal error is issued when a sum field contains invalid
data or when an arithmetic overflow or underflow
condition occurs as a result of summing two fields. An
error due to invalid data leaves the contents of the sum
fields undefined; an error due to an arithmetic overflow or
underflow leaves valid data in the sum fields, but it may
not be the original data.

A fatal error results in the following actions:

1. The record or records are written to the exception file if
an exception file was specified. (If the error was due to
invalid data in a sum field, one record is written; if the
error was due to an arithmetic overflow or underflow,
both records are written.)

2. The record or records are deleted from the sort or merge
if an exception file was specified. If an exception file
was not specified, the record or records remains in the
sort or merge, but their place in the sort order is
undefined.

3. A diagnostic message is issued depending on the list
options specification.

4. The sort or merge continues normally.

If you do not include an SMP$SUM call in the sequence of
Sort/Merge calls, records with equal key values are not
combined into a single record.

II-2-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode Procedure Parameters

CYBIL owncode procedures that are loaded with the main program and
referenced with SMP$0WNCODE_PROCEDURE_n procedure calls must be
declared XDCL procedures.

For Sort/Merge to use an object library containing one or more owncode
procedures, the object library file must be in the program library list. To add
a file to the program library list before executing the CYBIL program,
execute a SET _PROGRAM_AITRIBUTES command.

For detailed information on creating object libraries, see the SCL Object
Code Management Usage manual. The example at the end of this chapter
stores an owncode procedure in an object library.

Owncode Procedure Parameters

Sort/Merge communicates with an owncode procedure via parameters. The
parameters are passed each time Sort/Merge executes the owncode
procedure.

Table II-3-1 summarizes the owncode procedures and the parameters
passed. Some parameters cannot be omitted; see table II-3-1 for the required
parameters.

The parameters passed between Sort/Merge and your owncode procedures
are:

VAR return_ code: integer
Code altered by an owncode procedure and returned to Sort/Merge

VAR reca: string (*)
Contents of a record

VAR rla: integer
Record length of a record

VAR recb: string(*)
Contents of a second record (owncode 5 procedure only)

VAR rlb: integer
Record length of a second record (owncode 5 procedure only)

II-3-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode Procedure Parameters

The allowed length of records passed to and from an owncode procedure
depends on how you have specified the record length, as follows:

• If you have specified the SMP$0WNCODE_FIXED _LENGTH procedure,
the number of bytes in the current record must equal the
SMP$0WNCODE_FIXED _LENGTH value.

• Otherwise, the maximum record length is determined as the largest value
of the following:

- The maximum_record_length file attribute values of the input or
output files

- The record length value specified by an SMP$0WNCODE_MAX_
RECORD _LENGTH procedure call.

In this case, the number of bytes in each record can range from 1 through
the maximum record length value.

Either the owncode maximum record length or owncode fixed length must be
specified if there are no input or output files.

An rla or rib parameter value that does not correspond to a record
specification causes an error.

The contents of the reca, rla, recb, and rib variables can be altered by an
owncode procedure; the routine can pass a different record back to
Sort/Merge in reca or recb, and the number of characters in the record can be
different.

The record movement from Sort/Merge to an owncode procedure and back to
Sort/Merge is shown below.

Sort/Merge
Owncode
Routine

........ /
........ _~ /

~

II-3-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode 1: Processing Input Records

Input Files Not Specified

If you do not specify any input files (you omit the the SMP$FROM_FILES
call from the call sequence), the owncode 1 procedure is executed when
Sort/Merge is ready for another record to process. The return_ code, reca, and
rla parameters are· passed to the procedure by Sort/Merge. The return_ code
is 0, reca is an empty array with enough space for the largest record, and rla
isO.

When control is returned to Sort/Merge from the owncode 1 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

0 The record passed back to Sort/Merge in reca is sorted. The
owncode 1 procedure is executed again with reca as an empty array
and with rla=O.

2 An additional record is inserted into the sort. The record in reca is
entered into the sort, and the owncode 1 procedure is executed again
with reca and rla set to the record that just entered the sort.

3 Input is terminated; anything in reca or rla is ignored.

11-3-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode 2: Processing Input Files

When control is returned to Sort/Merge from the owncode 2 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

0 Signals the end of input.

1 An additional record is inserted into the sort after the last record. The
record inserted is the first rla characters in reca, which have been
provided by the procedure. The owncode 2 procedure is executed
again.

II-3-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode 3: Processing Output Records

When control is returned to Sort/Merge from the owncode 3 procedure, the
return_ code value and the associated processing performed by Sort/Merge
can be as follows:

1 Owncode 3 is called again.

3 Output is terminated. If an owncode 4 procedure is specified, the
procedure is executed; otherwise, the sort or merge is terminated.

II-3·10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode 5: Processing Records With Equal Keys

Owncode 5: Processing Records With
Equal Keys

An SMP$0WNCODE_PROCEDURE_5 procedure call specifies an
owncode 5 procedure. Sort/Merge executes the owncode 5 procedure when it
encounters two records with equal key values during a sort or merge.

The SMP$0WNCODE_PROCEDURE_5 procedure can be called at any
time during the sort or merge whenever Sort/Merge detects duplicate records.

The return_ code, reca, rla, recb, and rlb parameters are passed to the
procedure by Sort/Merge. The return_ code is O; reca and recb contain the
first and second records, respectively, and rla and rlb contain the record
lengths in characters of the first and second records, respectively.

After the owncode 5 procedure processes the two records, control is returned
to Sort/Merge. Sort/Merge then processes the records according to the
return_ code value set by the owncode 5 procedure. The return_ code value
and the associated processing performed by Sort/Merge can be as follows:

0 The first rla characters of reca are accepted as the first record; the
first rlb characters ofrecb are accepted as the second record (the
records and record lengths passed back to Sort/Merge can be
different from the records and record lengths passed to the owncode
procedure).

1 One duplicate record is deleted. The other record is replaced with the
first rla characters of reca.

If you call the SMP$RET AIN _ORIGINAL_ ORDER procedure in a sort with
an owncode 5 procedure, the record that first entered the sort is passed to
the owncode 5 procedure as reca; otherwise, either of the two records with
equal keys could be passed to the procedure as reca.

The owncode 5 procedure can control the order in which the two records are
written to the output file. The record returned to Sort/Merge as reca is
written to the output file before the record is returned as recb.

11-3-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Owncode Procedure Example

The following command adds $USER.OWN _LIBRARY to the program
library list:

/set_program_attribute add_Library=Suser.own_Library

After executing these commands, a CYBIL program can be executed in
which the subroutine OWNCODE can be called from a sequence of
Sort/Merge procedure calls such as:

smpSbegin_sort_specification Ciarray, status>;
smpSfrom_file ('university_students', status>;
smpSto_file C'field_of_study', status>;
smpSkey C1, 10, 'ascii', 'a', status>;
smp$owncode_procedure_3 C'owncode', status>;
smpSend_specification (status>;

II-3-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Glossary

End-Of-Information (EOI)

The point at which data in a file ends. For a keyed file, the EOI file
position means that the file is positioned after the record with the highest
key value.

Entry Point

A location within a program unit that can be branched to from other
program units. Each entry point has a unique name.

I Exception Records File
As used with the Sort/Merge interface, a file to which invalid records are
written before the records are removed from the sort or merge.

External Reference

F

A reference in one program unit to an entry point in another program
unit.

F Record Type

Fixed-length records, as defined by the ANSI standard.

Field

A subdivision of a record.

File

A collection of information referenced by a name.

File Attribute

A characteristic of a file. Each file has a set of attributes that define the
file structure and processing limitations.

File Cycle

A version of a file. All cycles of a file share the same file entry in a
catalog. The file cycle is specified in a file reference by its number or by a
special indicator, such as $NEXT.

File Organization

The file attribute that determines the record access method for the file. See
Sequential File Organization, Byte-Addressable File Organization, and
Keyed File Organization.

File Position

The location in the file at which a subsequent sequential read or write
operation would begin.

A-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Glossary

Index Level Overflow

The condition when a record cannot be written to a file because writing
the record would require addition of another index level and the file
already has 15 index levels.

Index Record

A record in an index block that associates a key value with a pointer to
either a data block or an index block in the next-lower level of the index
hierarchy.

Indexed-Sequential File Organization

A keyed-file organization in which records can be read sequentially,
ordered by key value, or read randomly by a key value.

Instance of Open

A particular opening of a file as distinguished from all other openings of
the file. The system assigns each instance of open a unique file identifier.
Closing the file ends the instance of open.

Integer Key

J

The key type that orders key values numerically. The key values can be
positive or negative integers. Contrast with Collated Key and Uncollated
Key.

Job

I A set of tasks executed for a user name.

K

I Key
For Sort/Merge, a key is a part of a record used to determine the position
of the record within a sorted sequence of records.

I In a keyed file, a key is a value associated with a record as a means of
accessing records. It may be a field in the record. See Primary Key and
Alternate Key.

Key List

The sequence of primary-key values associated with an alternate-key
value in an alternate index. If the alternate key does not allow duplicate
values, each key list contains only one value. Otherwise, each key list
contains a primary-key value for each record that contains the
alternate-key value.

A-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Glossary

M

Major Key

The leftmost part of a key. The number of bytes to be used is specified as
the major key length. A major key can be used to position or read a keyed
file.

Major Sort Key

As used with the Sort/Merge interface, a sort key that is the most
important and is specified first.

Mass Storage

Disk storage.

Merge

The process of combining two or more presorted files.

Minor Sort Key

As used with the Sort/Merge interface, a sort key that is specified after
the major sort key on a SORT or MERGE command or in a procedure call.
Minor keys are sorted after the major sort key.

Module

N

A unit of code. An object module is the unit of object code corresponding
to a compilation unit. A load module is a unit of object code stored in an
object library.

When using the Debug utility, module refers to a program unit.

I Nested File

File defined within a keyed file. A nested file is recognized and used by the
keyed-file interface; it is not recognized or used by the NOS/VE file
system.

Nonembedded Key

A primary key that is not part of the record data. Contrast with
Embedded Key.

Null Suppression

Alternate-key attribute indicating that records with null alternate-key
values are not included in the alternate index.

A-8 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

Glossary

Primary Key

The required key in a keyed file. Primary-key value must be unique in the
file. See also Alternate Key.

Program-Library List

R

The list of object libraries searched for modules during program loading.
A program-library list search is required to load a collation table module
or a Sort/Merge owncode procedure module.

Random Access

The process of reading or writing a record in a file without having to read
or write the preceding records; applies only to mass storage files. Contrast
with Sequential Access.

Record

A unit of data that can be read or written by a single I/O request. Also, a
set of related data processed as a unit when reading or writing a file.

Repeating Groups

An alternate-key attribute indicating that each data record can contain
more than one value for the alternate key.

Rewind

For sequential and byte-addressable files, to position a file at its
beginning of information (BOI). For keyed files, to position a file at the
record with the lowest key value.

Ring

The level of hardware protection given a file or segment. A file is protected
from unauthorized access by tasks executing in higher rings.

Ring_Attributes

A file.attribute whose value consists of three ring numbers referenced as
rl, r2, and r3. The ring numbers define four ring brackets for the file as
follows:

Read bracket is 1 through r2.

Write bracket is 1 through rl.

Execute bracket is r1 through r2.

Call bracket is r2+ 1 through r3.

A-10 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

I

Glossary

Sum Fields

Used with the Sort/Merge interface, a record field containing a numeric
value from the corresponding field of another record when the records are
summed. The sum of the two values is stored in the new record that is
created by the summing.

Summing

Used with the Sort/Merge interface, the process of combining two records
having identical key values. The result of the process is a new record
containing the original values of the key fields, the summed values of the
sum fields, and data from one of the original records in any other record
fields.

System Command Language (SCL)

T

The language that provides the interface to the features and capabilities
of NOS/VE. All commands and statements are interpreted by SCL before
being processed by the system.

Task

The instance of execution of a program.

u
U Record Type

Records for which the record structure is undefined.

Uncollated Key

v

A key consisting of 1 to 255 eight-bit characters. These keys are sorted by
the magnitude of their binary ASCII code values. Contrast with Collated
Key.

V Record Type

w

Variable-sized record; system default record type. Each V-type record has
a record header. The header contains the record length and the length of
the preceding record.

Working Storage Area

An area allocated by the task to hold data copied by get or put calls to a
file.

A-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

ASCUCHARACTER SET

Table B-1. ASCII Character Set

ASCII Code

Decimal Hexadecimal Octal
Graphic or
Mnemonic Name or Meaning

000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text
004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell
008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA 012 LF Line feed
011 OB 013 VT Vertical tabulation
012 oc 014 FF Form feed
013 OD 015 CR Carriage return
014 OE 016 so Shift out
015 OF 017 SI Shift in
016 10 020 DLE Data link escape
017 11 021 DCl Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3
020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block
024 18 030 CAN Cancel
025 19 031 EM End of medium
026 lA 032 SUB Substitute
027 1B 033 ESC Escape
028 lC 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 lF 037 us Unit separator
032 20 040 SP Space
033 21 041 ! Exclamation point
034 22 042

,,
Quotation marks

035 23 043 # Number sign
036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 ' Apostrophe
040 28 050 (Ofcening parenthesis
041 29 051) C osing parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus

(Continued)

B-2 CYBIL Keyed-File and Sort/Merge Interface Revision A

ASCII CHARACTER SET

Table B-1. ASCII Character Set (Continued)

ASCII Code

Graphic or
Decimal Hexadecimal Octal Mnemonic Name or Meaning

090 5A 132 z UppercaseZ
091 5B 133 [Opening bracket
092 5C 134 \ Reverse slant
093 5D 135 l Closing bracket

094 5E 136 Circumflex
095 5F 137 Underline
096 60 140 Grave accent
097 61 141 a Lowercase a

098 62 142 b Lowercase b
099 63 143 c Lowercasec
100 64 144 d Lowercased
101 65 145 e Lowercasee

102 66 146 f Lowercasef
103 67 147 g Lowercaseg
104 68 150 h Lowercaseh
105 69 151 Lowercasei

106 6A 152 j Lowercasej
107 6B 153 k Lowercasek
108 6C 154 l Lowercase l
109 6D 155 m Lowercasem

110 6E 156 n Lowercasen
111 6F 157 0 Lowercaseo
112 70 160 p Lowercasep
113 71 161 q Lowercaseq

114 72 162 r Lowercaser
115 73 163 s Lowercases
116 74 164 t Lowercase t
117 75 165 u Lowercaseu

118 76 166 v Lowercase v
119 77 167 w Lowercasew
120 78 170 x Lowercasex
121 79 171 y Lowercase y

122 7A 172 z Lowercase z
123 7B 173

t
Opening brace

124 7C 174 Vertical line
125 7D 175 } Closing brace

126 7E 176 Tilde
127 7F 177 DEL Delete

B-4 CYBIL Keyed-File and Sort/Merge Interface Revision A

AM Constants

amcSmax_key_position = OffffC16),
amcSmax_label_length = oscSmaximum_offset;
amcSmax_line_number = 6;
amcSmax_lines_per_inch = 12,
amcSmax_operation = 01ffC16>;
amcSmax_optional_attributes = 72,
amcSmax_page_width = 65535;
amcSmax_path_name_size = 256;
amcSmax_record_header = 16;
amcSmax_records_per_block = OffffC16>;
amcSmax_statement_id_length = 17;
amcSmax_tape_mark_count = 40000;
amcSmax_user_info = 32;
amcSmax_vol_number = 65536;

amcSmaximum_block = 16777216 { 2**24 bytes } ;
amcSmaximum_record = amcSfile_byte_limit;

amcSmin_ecc_program_action = 161000;
amcSmin_ecc_validation = 160000;

amcSobject = 'OBJECT';
amcSpascal = 'PASCAL';
amcSpli = 'PLI';
amcSppu_assembler = 'PPU_ASSEMBLER';
amcSscl = 'SCL';
amcSscu = 'SCU';
amcSunknown_contents = 'UNKNOWN';
amcSunknown_processor = 'UNKNOWN';
amcSunknown_structure = 'UNKNOWN';

Ordinals

{}

{Codes 1 •• 100 are reserved for operations which are}
{not passed to file_access_procedures.}
{}

amcSaccess_method_req = 1,
amcSadd_to_file_description_req = 3,
amcSallocate_req = 5,
amcSchange_file_attributes_cmd = 6,
amcScompare_file_cmd = 7,
amcScopy_file_cmd = 8,
amcScopy_file_req = 9,
amcScopy_partitions_req = 10,
amcScopy_records_req = 11,
amcScopy_partial_records_req = 12,

C-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Ordinals

amcSget_next_key_req = 123,
amcSget_partial_req = 124,
amcSget_segment_pointer_req = 126,
amcSLock_file_req = 127,
amcSLock_file = 127,
amcSopen_req = 128,
amcSpack_block_req = 129,
amcSpack_record_req = 130,
amcSput_direct_req = 131,
amcSput_key_req = 132,
amcSput_label_req = 133,
amcSput_next_req = 134,
amcSput_partial_req = 135,
amcSputrep_req = 137,
amcSread_req = 138,
amcSread_direct_req = 139,
amcSread_direct_skip_req = 140,
amcSread_skip_req = 141,
amcSreplace_req = 142,
amcSreplace_direct_req = 143,
amcSreplace_key_req = 144,
amcSrewind_req = 145,
amcSrewind_volume_req = 146,
amcSseek_direct_req = 147,
amcSset_segment_eoi_req = 148,
amcSset_segment_position_req = 149,
amcSskip_req = 150,
amcSstart_req = 151,
amcSstore_req = 152,
amcSunlock_file_req = 153,
amcSunlock_file = 153,
amcSunpack_block_req = 154,
amcSunpack_record_req = 155,
amcSwrite_req = 156,
amcSwrite_direct_req = 157,
amcSwrite_end_partition_req = 158,
amcSwrite_tape_mark_req = 159,
ifcSfetch_terminal_req = 160,
ifcSstore_terminal_req = 161,
amcSabandon_key_definitions = 162,
amcSabort_file_parcel = 163,
amcSapply_key_definitions = 164,
amcSbegin_file_parcel = 165,
amcScheck_nowait_request = 166,
amcScommit_file_parcel = 167,
amcScreate_key_definition = 168,
amcScreate_nested_file = 169,

C-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Ordinals

amcSclear_space = 7,
amcScollate_table = 8,
amcScollate_table_name = 9,
amcSdata_padding = 12,
amcSembedded_key = 13,
amcSerror_exit_name = 14,
amcSerror_exit_procedure = 15,
amcSerror_Limit = 16,
amcSerror_options = 17,
amcSestimated_record_count = 18,
amcSfile_access_procedure = 19,
amcSfile_contents = 20,
amcSfile_Length = 21,
amcSfile_Limit = 22,
amcSfile_organization = 24,
amcSfile_processor = 25,
amcSfile_structure = 26,
amcSforced_write = 27,
amcSglobal_access_mode = 28,
amcSglobal_file_address = 29,
amcSglobal_file_position = 30,
amcSglobal_file_name = 31,
amcSglobal_share_mode = 32,
amcSindex_Levels = 33,
amcSindex_padding = 34,
amcSinternal_code = 35,
amcSkey_Length = 36,
amcSkey_position = 37,
amcSkey_type = 38,
amcSLabel_exit_name = 39,
amcSLabel_exit_procedure = 40,
amcSLabel_options = 41,
amcSLabel_type = 42,
amcSLine_number = 44,
amcSmax_block_Length = 45,
amcSmax_record_Length = 46,
amcSmessage_control = 47,
amcSmin_block_Length = 48,
amcSmin_record_Length = 49,
amcSnull_attribute = 50,
amcSopen_position = 51,
amcSpadding_character = 52,
amcSpage_format = 53,
amcSpage_Length = 54,
amcSpage_width = 55,
amcSpermanent_file = 56,
amcSpreset_value = 57,

C-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

Types

amtSaccess_info = record
item_returned {output} : boolean,
case key { input} : amtSaccess_info_keys of

{ output }
= amcSblock_number =

block_number: amtSblock_number,
= amcScurrent_byte_address =

current_byte_address: amtSfile_byte_address,
amcSduplicate_value_inserted =
duplicate_value_inserted: boolean,

= amcSeoi_byte_address =
eoi_byte_address: amtSfile_byte_address,

= amcSerror_count =
error_count: amtSerror_count,

= amcSerror_status =
error_status: ostSstatus_condition,

= amcSfile_position =
file_position: amtSfile_position,

= amcSLast_access_operation =
last_access_operation:

amtSLast_access_operation,
= amcSlast_op_status =

last_op_status: amtSLast_op_status,
= amcSLevels_of_indexing =

levels_of_indexing: amtSindex_Levels,
= amcSnull_item =

,
= amcSnumber_of_nested_files =

number_of_nested_files: amtSnested_file_count,
= amcSnumber_of_volumes =

number_of_volumes: amtSvolume_number,
= amc$previous_record_address =

previous_record_address: amtSfile_byte_address,
= amcSprevious_record_Length =

previous_record_length: amtSmax_record_length,
= amcSprimary_key =

primary_key: amtSprimary_key,
= amcSresidual_skip_count =

residual_skip_count: amtSresidual_skip_count,
= amcSselected_key_name =

selected_key_name: amtSselected_key_name,
= amcSselected_nested_file =

selected_nested_file: amtSselected_nested_file,

C-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

amtSblock_number = 1 •• amcSmax_block_number;

amtSblock_status = CamcSno_error,
amcSrecovered_error, amcSunrecovered_error);

amtSblock_type = CamcSsystem_specified,
amcSuser_specified>;

amtSbuffer_area = ·sEQ C * >;

amtSbuffer_length = amcSmau_length
amcSmax_buffer_length;

amtScollate_table = array [char] of
amtScollation_value;

amtScollation_value = 0 •• 255;

amtScommit_file_parcel = record
phase: amtScommit_phase,

recend;

amtScommit_phase = CamcSsimple_commit, amcStentative_commit,
amcSpermanent_commit);

amtScompression_effect = CamcScompress, amcSdecompress>;

amtScompression_procedure = ·procedure
(effect: amtScompression_effect;
input_working_storage_area: ·cell;
input_working_storage_length: amtSmax_record_length;
output_working_storage_area: ·cell;
key_position: amtSkey_position;
key_length: amtSkey_length;
VAR output_working_storage_length: amtSmax_record_length;
VAR record_left_uncompressed: boolean;
VAR status: ostSstatus);

amtScompression_procedure_name = amtSentry_point_reference;

amtScreate_key_definition = record
key_name: amtSkey_name,
key_position: amtSkey_position,
key_length: amtSkey_length,
optional_attributes: ·amtSoptional_key_attributes,

recend;

C-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

amtSfap_layer_number = 0 •• amcSmax_fap_Layers;

amtSfetch_attributes = array [1 •• * J of
amtSfetch_item;

amtSfetch_item = record
source { output } : amtSattribute_source,
case key {input} amtSfile_attribute_keys of

{ output }
= amcSaccess_Level =

access_Level: amtSaccess_Level,
= amcSaccess_mode =

access_mode: pftSusage_selections,
= amcSapplication_info =

application_info: pftSapplication_info,
= amcSblock_type =

block_type: amtSblock_type,
= amcScharacter_conversion =

character_conversion: boolean,
= amc$clear_space =

clear_space: ostSclear_file_space,
= amcSerror_exit_name =

error_exit_name: pmtSprogram_name,
= amcSerror_exit_procedure =

error_exit_procedure: amtSerror_exit_procedure,
= amcSerror_options =

error_options: amtSerror_options,
= amcSfile_access_procedure =

file_access_procedure: pmtSprogram_name,
amcSfile_contents =
file_contents: amtSfile_contents,

= amcSfile_Limit =
file_Limit: amtSfile_limit,

= amcSfile_organization =
file_organization: amtSfile_organization,

= amcSfile_processor =
file_processor: amtSfile_processor,

= amcSfile_structure =
file_structure: amtSfile_structure,

= amc$forced_write =
forced_write: amtSforced_write,

= amcSglobal_access_mode =
global_access_mode: pftSusage_selections,

= amcSglobal_file_address =
global_file_address: amtSfile_byte_address,

= amcSglobal_file_name =
global_file_name: ostSbinary_unique_name,

C-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

= amcSuser_info =
user_info: amtSuser_info,

= amcSaverage_record_length =
average_record_length:

amtSaverage_record_length,
= amcScollate_table =

collate_table: AamtScollate_table,
= amcScollate_table_name =

collate_table_name: pmtSprogram_name,
= amcScompression_procedure_name =

compression_procedure_name: [input,output]
AamtScompression_procedure_name,

= amcSdata_padding =
data_padding: amtSdata_padding,

= amcSdynamic_home_block_space =
dynamic_home_block_space:

amtSdynamic_home_block_space,
= amcSembedded_key =

embedded_key: boolean,
= amcSerror_Limit =

error_Limit: amtSerror_Limit,
= amcSestimated_record_count =

estimated_record_count:
amtSestimated_record_count,

= amcShashing_procedure_name =
hashing_procedure_name: [input,output]

AamtShashing_procedure_name,
= amcSindex_levels =

index_levels: amtSindex_Levels,
= amcSindex_padding =

index_padding: amtSindex_padding,
= amcSinitial_home_block_count =

initial_home_block_count:
amtSinitial_home_block_count,

= amcSkey_Length =
key_length: amtSkey_length,

= amcSkey_position =
key_position: amtSkey_position,

= amcSkey_type =
key_type: amtSkey_type,

= amcSloading_factor =
loading_factor: amtSloading_factor,

= amcSlock_expiration_time =
lock_expiration_time: amtSLock_expiration_time,

= amcSlogging_options =
logging_options: amtSLogging_options,

C-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

= amcSerror_exit_name =
error_exit_name: pmtSprogram_name,

= amcSerror_options =
error_options: amtSerror_options,

= amcSfile_access_procedure =
file_access_procedure: pmtSprogram_name,

= amcSfile_contents =
file_contents: amtSfile_contents,

= amcSfile_Limit =
file_Limit: amtSfile_Limit,

= amcSfile_organization =
file_organization: amtSfile_organization,

= amcSfile_processor =
file_processor: amtSfile_processor,

= amcSfile_structure =
file_structure: amtSfile_structure,

= amcSforced_write =
forced_write: amtSforced_write,

= amcSinternal_code =
internal_code: amtSinternal_code,

= amcSLabel_exit_name =
Label_exit_name: pmtSprogram_name,

= amcSLabel_options =
Label_options: amtSLabel_options,

= amcSLabel_type =
Label_type: amtSLabel_type,

= amcSLine_number =
Line_number: amtSLine_number,

= amcSmax_block_Length =
max_block_Length: amtSmax_block_Length,

= amcSmax_record_Length =
max_record_Length: amtSmax_record_Length,

= amcSmin_block_Length =
min_block_Length: amtSmin_block_Length,

= amcSmin_record_Length =
min_record_Length: amtSmin_record_Length,

= amcSnull_attribute =
,

= amcSopen_position =
open_position: amtSopen_position,

= amcSpadding_character =
padding_character: amtSpadding_character,

= amcSpage_format =
page_format: amtSpage_format,

= amcSpage_Length =
page_Length: amtSpage_Length,

C-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

amc$key_position =
key_position: amtSkey_position,
amc$key_type =
key_type: amt$key_type,

= amc$Loading_factor =
Loading_factor: amtSLoading_factor,

= amcSLock_expiration_time =
Lock_expiration_time: amtSLock_expiration_time,

= amcSlogging_options =
Logging_options: amtSLogging_options,

= amcSLog_residence =
Log_residence: {input,output}

·amtSLog_residence,
= amcSmessage_control =

message_control: amtSmessage_control,
= amcSrecord_Limit =

record_Limit: amt$record_Limit,
= amcSrecords_per_block =

records_per_block: amt$records_per_block,
ca send

recend;

amtSfile_Length = 0 •• amcSfile_byte_Limit;

amtSfile_Limit = 0 •• amcSfile_byte_Limit;

I amtSfile_Lock = Camc$Lock_set, amc$already_set);

amt$file_organization = Camc$sequential, amc$byte_addressable,
amcSindexed_sequential, amc$direct_access, amc$system_key);

amtSfile_position = CamcSboi, amcSbop,
amcSmid_record, amcSeor, amcSeop, amcSeoi, amcSend_of_key_List);

amtSfile_processor = ost$name;

amtSfile_reference =string (* <= amc$max_path_name_size>;

amtSfile_set_id =string (6), {defaults to spaces};

amtSfile_structure = ost$name;

amt$find_record_space = record
space: amt$file_Length,
where: amt$put_Locality,
wait: ostSwait,

rec end;

C-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AM Types

= amcSfile_structure =
file_structure: amtSfile_structure,

= amcSforced_write =
forced_write: amtSforced_write,
amcSglobal_access_mode =
global_access_mode: pftSusage_selections,

= amcSglobal_file_address =
global_file_address: amtSfile_byte_address,

= amcSglobal_file_name =
global_file_name: ostSbinary_unique_name,

= amcSglobal_file_position =
global_file_position: amtSglobal_file_position,

= amcSglobal_share_mode =
global_share_mode: pftSshare_selections,
amcSinternal_code =
internal_code: amtSinternal_code,

= amc$Label_exit_name =
Label_exit_name: pmtSprogram_name,

= amcSLabel_options =
Label_options: amtSLabel_options,

= amcSLabel_type =
Label_type: amtSLabel_type,

= amcSLine_number =
Line_number: amtSLine_number,
amcSmax_block_Length =
max_block_Length: amtSmax_block_Length,

= amcSmax_record_Length =
max_record_Length: amtSmax_record_Length,

= amcSmin_block_Length =
min_block_Length: amt$min_block_Length,

= amcSmin_record_Length =
min_record_Length: amtSmin_record_Length,

= amcSnull_attribute =
,

= amcSopen_position =
open_position: amtSopen_position,

= amcSpadding_character =
padding_character: amt$padding_character,

amcSpage_format =
page_format: amtSpage_format,

= amc$page_Length =
page_Length: amtSpage_Length,
amcSpage_width =
page_width: amt$page_width,

= amcSpermanent_file =
permanent_file: boolean,

C-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

= amcSkey_type =
key_type: amtSkey_type,

= amcSloading_factor =
loading_factor: amtSloading_factor,

= amcSlock_expiration_time =
lock_expiration_time: amtSlock_expiration_time,

= amcSlogging_options =
logging_options: amtSlogging_options

= amcSlog_residence =
log_residence: {input,output}

"amtSlog_residence
= amcSmessage_control =

message_control: amtSmessage_control,
= amcSrecord_limit =

record_limit: amtSrecord_limit,
= amcSrecords_per_block =

records_per_block: amtSrecords_per_block,
ca send

rec end;

amtSget_key_definitions = record
key_definitions: "SEQ (*),

rec end;

amtSget_lock_keyed_record = record
working_storage_area: "cell,
working_storage_length: amtSworking_storage_length,
key_location: "cell,
major_key_length: amtSmajor_key_length,
relation: amtSkey_relation,
wait_for_lock: ostSwait_for_lock,
unlock_control: amtSunlock_control,
lock_intent: amtSlock_intent,
record_length: "amtSmax_record_length,
file_position: "amtSfile_position,
wait: ostSwait,

rec end;

C-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

AM Types

amtSLabel_area_Length = 18 •• amcSmax_Label_Length;

amtSLabel_exit_procedure = "procedure
(file_identifier: amtSfile_identifier);

amtSLabel_options = set of (amcSvol1, amcSuvl,
amcShdr1, amcShdr2, amcSeov1, amcSeov2, amcSuhl,
amcSeof1, amcSeof2, amcSutl);

amtSLabel_type = (amcSLabelled,
amcSnon_standard_Labelled, amcSunlabelled);

amtSLast_access_operation = amcSLast_access_start
amcSmax_operation;

amtSLast_op_status = CamcSactive, amcScomplete);

amtSLast_operation = 1 •• amcSmax_operation;

amtSLine_number =record
Length: amtSLine_number_Length,
Location: amtSLine_number_Location,

recend;

amtSLine_number_Length = 1 •• amcSmax_Line_number;

amtSLine_number_Location = amtSpage_width;

amtSLoading_factor = 0 •• 100;

amtSLocal_file_name = ostSname;

amtSLock_expiration_time = 0 •• 604800000 {milliseconds};

amtSLock_intent = CamcSexclusive_access, amcSpreserve_access_
and_content,amcSpreserve_content);

amtSLock_file = record
wait_for_Lock: ostSwait_for_Lock,
Lock_intent: amtSLock_intent,

recend;

amtSLock_key = record
key_Location: "cell,
wait_for_Lock: ostSwait_for_Lock,
unlock_control: amtSunlock_control,
Lock_intent: amtSLock_intent,

rec end;

C-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

I

AM Types

amtSnested_file_definitions =array [1 •• *] of
amtSnested_file_definition;

amtSnested_file_name = ostSname;

amtSnowait_var_parameters =SEQ CREP 10 of integer);

amtSopen_position = CamcSopen_no_positioning,
amcSopen_at_boi, amcSopen_at_bop, amcSopen_at_eoi);

amtSoptional_key_attribute = record
case selector: amtSfile_attribute_keys of
= amcSkey_type =

key_type: amtSkey_type,
= amcScollate_table_name =

collate_table_name: pmtSprogram_name,
= amcSduplicate_keys =

duplicate_key_control: amtSduplicate_key_control,
= amcSnull_suppression =

null_suppression: boolean,
= amcSsparse_keys =

sparse_key_control_position: amtSkey_position,
sparse_key_control_characters: set of char,
sparse_key_control_effect: amtSsparse_key_control_effect,

= amcSrepeating_group =
repeating_group_length: amtSmax_record_length,
repetition_control: amtSrepetition_control,

= amcSconcatenated_key_portion =
concatenated_key_position: amtSkey_position,
concatenated_key_length: amtSkey_Length,
concatenated_key_type: amtSkey_type,

= amcSgroup_name =
group_name: amtSgroup_name,

= amcSvariable_Length_key =
key_delimiter_characters: set of char,

ca send,
rec end;

amtSoptional_key_attributes = array [1 •• * J of
amtSoptional_key_attribute;

C-26 CYBIL Keyed-File and Sort/Merge Interfaces RevisionB

AM Types

amtSrecord_limit = 1 •• amcSfile_byte_limit;

amtSrecord_type = CamcSvariable { V } ,
amcSundefined { U } , amcSansi_fixed { F } ,
amcSansi_spanned { S } , amcSansi_variable { D } >;

amtSrecords_per_block = 1 •• amcSmax_records_per_block;

amtSrecovered_request = record
past_last: boolean,
task_id: pmtStask_id,
file_identifier: amtSfile_identifier,
nested_file_selection: amtSnested_file_name,
call_block: amtScall_block,
status: ostSstatus,
working_storage_length: amtSworking_storage_length,
key_Length: amtSkey_length,

rec end;

amtSrecovery_description = record
case recover_option: amtSrecovery_options of
= amcSrecover_file_media =

media_recovery: record
backup_date_time: ostSdate_time,
Last_requests: ASEQ C * >,

rec end,
= amcSrecover_to_last_requests =

last_requests: ASEQ C * >,
= amcSrecover_file_structure =

,
= amcSsalvage_data_records =

new_keyed_file: amtSlocal_file_name,
salvage_log: amtSsalvage_log_description,

ca send,
rec end;

amtSrecovery_options = CamcSrecover_file_media,
amcSrecover_to_last_requests, amcSrecover_file_structure,
amcSsalvage_data_records>;

amtSrepetition_control = record
case repeat_to_end_of_record: boolean of
= FALSE =

repeating_group_count: amtSmax_repeating_group_count,
ca send,

rec end;

C-28 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

AM Types

amtSsequence_number = 1 •• 9999
{ defaults to 0001 };

amt$skip_buffer_length = 1 •• amcSmax_buffer_length;

amtSskip_count = 0 •• amcSfile_byte_limit;

amt$skip_direction = CamcSforward, amcSbackward);

amtSskip_option = Camc$skip_to_eor, amcSno_skip);

amt$skip_unit = Camc$skip_record, amcSskip_block,
amc$skip_partition>;

amt$sparse_key_control_effect = (amcSinclude_key_value,
amc$exclude_key_value);

amtSstatement_id_length = 1 ••
amcSmax_statement_id_length;

amtSstatement_id_location = amt$page_width;

amt$statement_identifier = record
length: amtSstatement_id_length,
location: amtSstatement_id_location,

rec end;

amtSstore_attributes =array [1 •• *] of
amtSstore_item;

amtSstore_item = record
case key: amtSfile_attribute_keys of
= amcSerror_exit_procedure =

error_exit_procedure: amtSerror_exit_procedure,
= amc$error_options =

error_options: amt$error_options,
amc$label_exit_procedure =
label_exit_procedure: amt$label_exit_procedure,

= amc$label_options =
label_options: amtSlabel_options,

= amc$null_attribute =
,

= amcSerror_limit =
error_Limit: amtSerror_limit,

= amcSmessage_control =
message_control: amt$message_control,

ca send,
recend;

C-30 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OS Constants

OS

Constants

oscSmax_condition = 999999;
oscSmax_name_size = 31;
oscSmax_page_size = 65536;
oscSmax_ring = 15, { Highest ring number (least }
{privileged). };
oscSmax_segment_length = oscSmaximum_offset + 1;
oscSmax_string_size = 256;
oscSmaximum_offset = 7fffffff(16);
oscSmaximum_segment = Offf(16),

oscSmin_ring = 1 { Lowest
{privileged).};
oscSmin_page_size = 512;

oscSnull_name = '

ring number (most }

'· ,
oscSstatus_parameter_delimiter = CHR (31) {Unit}
{ Separator } ;

Ordinals

oscSinvalid_ring = O;
oscSos_ring_1 1 { Reserved for Operating System. };
oscStmtr_ring = 2 {Task Monitor. };
oscStsrv_ring = 3 {Task services. };
oscSsj_ring_1 = 4 {Reserved for system job. };
oscSsj_ring_2 = 5;
oscSsj_ring_3 = 6;
oscSapplication_ring_1 = 7 {Reserved for}
{application subsystems. };
oscSapplication_ring_2 8;
oscSapplication_ring_3 = 9;
oscSapplication_ring_4 = 10;
oscSuser_ring = 11 {Standard user task. };
oscSuser_ring_1 = 12 {Reserved for user ••• O.S. }
{ requests available. };
oscSuser_ring_2 = 13;
oscSuser_ring_3 = 14 {Reserved for user ••• O.S. }
{requests not available. };
oscSuser_ring_4 = 15;

C-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OS Types

ostSrelative_pointer = - 7fffffffC16) ••
7fffffffC16>;

ostSring = oscSinvalid_ring
oscSmax_ring { Ring number };

ostSsegment = 0 ••
oscSmaximum_segment { Segment number };

ostSsegment_length = 0 •• oscSmax_segment_length;

ostSsegment_offset = - CoscSmaximum_offset + 1> ••
oscSmaximum_offset;

ostSstatus = record
case normal: boolean of
= FALSE =

identifier: string C2>,
condition: ostSstatus_condition,
text: ostSstring,

ca send,
rec end;

ostSstatus_condition = 0 •• oscSmax_condition;

ostSstring = record
size: ostSstring_size,
value: string CoscSmax_string_size),

recend;

ostSstring_index = 1 •• oscSmax_string_size + 1;

ostSstring_size = 0 •• oscSmax_string_size;

C-34 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

PF Types

PF

Types

pftSapplication_info =string CoscSmax_name_size>;

pftSpermit_options = CpfcSread, pfcSshorten,
pfcSappend, pfcSmodify, pfcSexecute, pfcScycle,
pfcScontroL>;

pftSshare_options = pfcSread •• pfcSexecute;

pftSshare_selections = set of pftSshare_options;

pftSshare_requirements = set of pftSshare_options;

pftSusage_options = pfcSread •• pfcSexecute;

pftSusage_selections = set of pftSusage_options;

PM Types

PM

Types

pmtScpu_model_number = CpmcScpu_model_p1,
pmcScpu_model_p2, pmcScpu_model_p3,
pmcScpu_model_p4>;

pmtScpu_serial_number = 0 •• OffffC16>;

pmtSprocessor = record
serial_number: pmtScpu_serial_number,
model_number: pmtScpu_model_number,

recend;

pmtSprocessor_attributes = record
model_number: pmtScpu_model_number,
serial_number: pmtScpu_serial_number,
page_size: ostSpage_size,

rec end,

pmtSprogram_name = ostSname;

C-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Using Collation Tables

Using NOS/VE Predefined Collation
Tables
To use one of the NOS/VE predefined collation tables listed at the end of this
appendix, you specify the name of the predefined collation table as the
collation-table name. Unlike user-defined collation table modules, use of
NOS/VE predefined collation tables does not require the addition of an
object library to the program-library list.

Sort/Merge Example:

To use the predefined collation table OSV$EBCDIC to define the key type
MY _KEY_ TYPE, you would include this call in the sequence of Sort/Merge
procedure calls:

smpSLoad_collating_tableC'my_key_type', 'osvSebcdic', status);

Then, to define the first 10 bytes of the record as a key field to be sorted in
ascending order using the key type, you would include this Sort/Merge call:

smpSkeyC1, 10, 'my_key_type', 'a', status>;

Keyed-File Example:

To use the predefined collation table OSV$EBCDIC to order the primary key
of a new keyed file, you specify the key type as collated and the collate-table
name as OSV$EBCDIC. This is done by initializing two attribute records in
the attribute array for an AMP$FILE call before the new keyed file is opened
or for the AMP$0PEN call that first opens the new keyed file.

[amcSkey_type, amcScollated_keyJ,
[amcScollate_table_name, 'OSVSEBCDIC'J,

Using User-Defined Collation Tables

You can use any collation table stored in an object-library file if you have
permission to read the file. To use the collation table, you perform these
steps:

1. Specify the collation-table name in the program. (The name must be in
the entry-point list of the object library as displayed by a DISPLAY_
OBJECT _LIBRARY command.)

2. Add the object library to your program-library list using a SET_
PROGRAM_ATTRIBUTE command before executing the program:

set_program_attributeadd_Library=Suser.object_Library

D-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Creating a Collation Table

Creating a Collation Table

Besides using collation tables created by others, you can also create your
own collation tables. The process of using your collation tables was described
previously under Using User-Defined Collation Tables.

Creating your own collation table involves these steps:

1. Writing a source code module to initialize the collation table.

2. Compiling the source code module to create the object module.

3. Storing the object module in an object library.

Writing a Module to Initialize a Collation Table

A module to initialize a collation table must perform these steps:

1. Declare a 256-integer array.

2. Store an integer in each element of the array. The integer must be in the
range 0 through 255.

The values stored in the array are the collating weights. The collating weight
in an array element is the collating weight assigned to the ASCII character
corresponding to that element.

How a Collation Table Works

To determine the correct values with which to initialize the collation table,
you must understand how a collation table works.

As shown in figure D-1, each element in the collation table corresponds to an
8-bit character code. The first 128 elements correspond to the 128 characters
in the ASCII character set (as listed in appendix B). For example, the
element 0 in the table corresponds to the NUL character (character code 00
decimal). Element 65 corresponds to the A character (character code 65
decimal).

Figure D-2 shows how a collation table is initialized for the default ASCII
collating sequence. As you can see, the element rank matches the element
contents. For example, the element for character NUL (character code 00)
contains 0. The element for character A (character code 65) contains 65.

Now, suppose we change two values in the initialized collation table in figure
D-2. We change the A element to contain 66 (B) and the B element to contain
65 (A). This collating sequence would order all B characters as A characters
and all A characters as B characters. A sort using the collating sequence
would sort all B characters before all A characters.

D-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Creating a Collation Table

Default
Collating Sequence

ASCII
Graphic or
Mnemonic

NUL
SOH

ASCII
Character

Code

fOOl 00

fOll 01

•

A~ 65 ___....A

~~ H B

Unassigned

Unassigned

•
•
•

254

255

Collated
A as B
B as A

When A and B are ordered; B precedes A.

65 ___..A
66 B

Collated
A as A

Bas A

When A and B are ordered, B is processed as A. (If the value
is stored in collated form, B is stored as A.)

Figure D-2. Collation Table Initialized to the Default
ASCII Collating Sequence

D-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Creating a Collation Table

Sort/Merge Example:

If Sort/Merge used the collation table from figure D-3, it would sort
characters as follows:

lJnordered: 10JgarbageGARBAGEgarbage9815J;J
Ordered: 10J9815J;JaaAAaabBbeEeggGGggrRr

Keyed-File Example:

If a keyed file used the collation table from figure D-3, all nonalphabetic key
values would be duplicates. lJppercase and lowercase letters would be
collated the same, so the key value ABCD would be a duplicate of the key
value abed.

Storing a Module in an Object Library

Source module compilation writ.es an object module on an object file. You
then use the SCL command utility CREATE_ OBJECT _LIBRARY to create
an object library containing the module. (The CREATE_ OBJECT_
LIBRARY utility is described in detail in the SCL Object Code Management
manual.)

For this example, assume that you have written a CYBIL module (such as
the one in figure D-3) to initialize a collation table and that your source text
is in file $lJSER.SOlJRCE. The following commands compile the program
and then store the module on file $lJSER.COLLATION_LIBRARY

/cybil input=Suser.source binary_object=object_file
•• /list=list_file
/create_object_library
COL/add_module library=object_file
COL/generate_library library=Suser.collation_library
COL/quit
I

D-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Collation Table Listings

Sort/Merge uses predefined collation tables for its predefined collating
sequences as follows:

Key Type Predefined Collation Table

ASCII6 OSV$ASCII6_FOLDED

COBOL6 OSV$COBOL6_FOLDED

DISPLAY OSV$DISPLAY64_FOLDED

EBCDIC OSV$EBCDIC

EBCDIC6 OSV$EBCDIC6_FOLDED

The Sort/Merge key type ASCII uses the default ASCII collating sequence; it
does not use any of the predefined collating sequences listed in this
appendix.

D-10 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$ASCII6_FOLDED

Table D-1. OSV$ASCil6_FOLDED Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 48,68 H,h Uppercase H, lowercase h
41 49,69 I,i Uppercase I, lowercase i
42 4A,6A Jj Uppercase J, lowercase j
43 4B,6B K,k Uppercase K, lowercase k

44 4C,6C L,l Uppercase L, lowercase 1
45 4D,6D M,m Uppercase M, lowercase m
46 4E,6E N,n Uppercase N, lowercase n
47 4F,6F O,o Uppercase 0, lowercase o

48 50,70 P,p Uppercase P, lowercase p
49 51,71 Q,q Uppercase Q, lowercase q
50 52,72 R,r Uppercase R, lowercase r
51 53,73 S,s Uppercase S, lowercases

52 54,74 T,t Uppercase T, lowercase t
53 55,75 U,u Uppercase U, lowercase u
54 56,76 V,v Uppercase V, lowercase v
55 57,77 W,w Uppercase W, lowercase w

56 58,78 X,x Uppercase X, lowercase x
57 59,79 Y,y Uppercase Y, lowercase y
58 5A,7A Z,z Uppercase Z, lowercase z
59 5B,7B [,{ Opening bracket, opening brace

60 5C,7C \ , I Reverse slant, vertical line
61 5D,7D l ' } Closing bracket, closing brace
62 5E,7E Circumflex, tilde
63 5F Underline

D-12 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$ASCII6 _STRICT

Table D-2. OSV$ASCII6_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 48 H Uppercase H
41 49 I Uppercase I
42 4A J UppercaseJ
43 4B K Uppercase K

44 4C L Uppercase L
45 4D M UppercaseM
46 4E N Uppercase N
47 4F 0 Uppercase 0

48 50 p Uppercase P
49 51 Q Uppercase Q
50 52 R Uppercase R
51 53 s Uppercase S

52 54 T UppercaseT
53 55 u Uppercase U
54 56 v Uppercase V
55 57 w Uppercase W

56 58 x Uppercase X
57 59 y Uppercase Y
58 5A z Uppercase Z
59 5B [Opening bracket

60 5C Reverse slant
61 5D Closing bracket
62 5E Circumflex
63 5F Underline

D-14 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$COBOL6_FOLDED

Table D-3. OSV$COBOL6_FOLDED Collating Sequence (Continu,ed)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 4F,6F O,o Uppercase 0, lowercase o
41 50,70 P,p Uppercase P, lowercase p
42 51,71 Q,q Uppercase Q, lowercase q
43 52,72 R,r Uppercase R, lowercase r

44 5D,7D l , } Closing bracket, closing brace
45 53,73 S,s Uppercase S, lowercases
46 54,74 T,t Uppercase T, lowercase t
47 55,75 U,u Uppercase U, lowercase u

48 56,76 V,v Uppercase V, lowercase v
49 57,77 W,w Uppercase W, lowercase w
50 58,78 X,x Uppercase X, lowercase x
51 59,79 Y,y Uppercase Y, lowercase y

52 5A,7A Z,z Uppercase Z, lowercase z
53 3A Colon
54 30 0 Zero
55 31 1 One

56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five

60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

D-16 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$COBOL6_STRICT

Table D-4. OSV$COBOL6_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 4F 0 Uppercase 0
41 50 p Uppercase P
42 51 Q Uppercase Q
43 52 R Uppercase R

44 5D l Closing bracket
45 53 s Uppercase S
46 54 T UppercaseT
47 55 u Uppercase U

48 56 v Uppercase V
49 57 w Uppercase W
50 58 x Uppercase X
51 59 y Uppercase Y

52 5A z Uppercase Z
53 3A Colon
54 30 0 Zero
55 31 1 One

56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five

60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

D-18 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$DISPLAY63_FOLDED

Table D-5. OSV$DISPLA Y63_FOLDED Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 28 (Opening parenthesis
41 29) Closing parenthesis
42 24 $ Dollar sign
43 3D Equals

44 20 SP Space
45 2C Comma
46 2E Period
47 23 # Number sign

48 5B,7B [' { Opening bracket, opening brace
49 5D,7D], } Closing bracket, closing brace
50 3A Colon
51 22 Quotation marks

52 5F Underline
53 21 ! Exclamation point
54 26 & Ampersand
55 27 Apostrophe

56 3F ? Question mark
57 3C < Less than
58 3E > Greater than
59 40,60 @: Commercial at, grave accent

60 5C,7C \ , I Reverse slant, vertical line
61 5E,7E Circumflex, tilde
62 3B Semicolon

D-20 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$DISPLA Y63_STRICT

Table D-6. OSV$DISPLA Y63_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 28 (Opening parenthesis
41 29) Closing parenthesis
42 24 $ Dollar sign
43 3D Equals

44 20 SP Space
45 2C Comma
46 2E Period
47 23 # Number sign

48 5B Opening bracket
49 5D Closing bracket
50 3A Colon
51 22 Quotation marks

52 5F Underline
53 21 ! Exclamation point
54 26 & Ampersand
55 27 Apostrophe

56 3F ? Question mark
57 3C < Less than
58 3E > Greater than
59 40 @ Commercial at

60 5C Reverse slant
61 5E Circumflex
62 3B Semicolon

D-22 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$DISPLA Y64_FOLDED

Table D-7. OSV$DISPLAY64_FOLDED Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 2F I Slant
41 28 (Opening parenthesis
42 29) Closing parenthesis
43 24 $ Dollar sign

44 3D Equals
45 20 SP Space
46 2C Comma
47 2E Period

48 23 # Number sign
49 5B,7B [' { Opening bracket, opening brace
50 5D,7D l' } Closing bracket, closing brace
51 25 % Percent sign

52 22 Quotation marks
53 5F Underline
54 21 ! Exclamation point
55 26 & Ampersand

56 27 Apostrophe
57 3F ? Question mark
58 3C < Less than
59 3E > Greater than

60 40,60 @, Commercial at, grave accent
61 5C,7C \ , I Reverse slant, vertical line
62 5E,7E Circumflex, tilde
63 3B Semicolon

D-24 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$DISPLAY64_STRICT

Table D-8. OSV$DISPLAY64_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 2F I Slant
41 28 (Opening parenthesis
42 29) Closing parenthesis
43 24 $ Oollarsign

44 30 Equals
45 20 SP Space
46 2C Comma
47 2E Period

48 23 # Number sign
49 5B [Opening bracket
50 50 l Closing bracket
51 25 % Percent sign

52 22 Quotation marks
53 5F Underline
54 21 ! Exclamation point
55 26 & Ampersand

56 27 Apostrophe
57 3F ? Question mark
58 3C < Less than
59 3E > Greater than

60 40 @ Commercial at
61 5C \ Reverse slant
62 5E Circumflex
63 3B Semicolon

0-26 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$EBCDIC

Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code
Position (Hexadecimal)

044 BC
045 05
046 06
047 07

04B 90
049 91
050 16
051 93

052 94
053 95
054 96
055 04

056 98
057 99
058 9A
059 9B

060 14
061 15
062 9E
063 IA

064 20
065 AO
066 Al
067 A2

06B A3
069 A4
070 A5
071 A6

072 A7
073 AB
074 5B
075 2E

076 3C
077 28
07B 2B
079 21

080 26
OBI A9
OB2 AA
OB3 AB

OB4 AC
085 AD
OB6 AE
OB7 AF

Graphic or
Mnemonic

ENQ
ACK
BEL

SYN

EOT

DC4
NAK

SUB

SP

<
(
+
!

&

D-2B CYBIL Keyed-File and Sort/Merge Interfaces

Name or Meaning

Unassigned
Enquiry
Acknowledge
Bell

Unassigned
Unassigned
Synchronous idle
Unassigned

Unassigned
Unassigned
Unassigned
End of transmission

Unassigned
Unassigned
Unassigned
Unassigned

Device control 4
Negative acknowledge
Unassigned
Substitut.e

Space
Unassigned
Unassigned
Unassigned

Unassigned
Unassigned
Unassigned
Unassigned

Unassigned
Unassigned
Opening bracket
Period

Less than
Opening parenthesis
Plus
Exclamation point

Ampersand
Unassigned
Unassigned
Unassigned

Unassigned
Unassigned
Unassigned
Unassigned

(Continued)

Revision A

OSV$EBCDIC

Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

132 64 d Lowercased
133 65 e Lowercasee
134 66 f Lowercasef
135 67 g Lowercaseg

136 68 h Lowercaseh
137 69 Lowercasei
138 C4 Unassigned
139 C5 Unassigned

140 C6 Unassigned
141 C7 Unassigned
142 cs Unassigned
143 C9 Unassigned

144 CA Unassigned
145 6A j Lowercasej
146 6B k Lowercase k
147 6C I Lowercase I

148 6D m Lowercasem
149 6E n Lowercasen
150 6F 0 Lowercaseo
151 70 p Lowercasep

152 71 q Lowercaseq
153 72 r Lowercaser
154 CB Unassigned
155 cc Unassigned

156 CD Unassigned
157 CE Unassigned
158 CF Unassigned
159 DO Unassigned

160 D1 Unassigned
161 7E Unassigned
162 73 s Lowercases
163 74 t Lowercaset

164 75 u Lowercaseu
165 76 v Lowercasev
166 77 w Lowercasew
167 78 x Lowercasex

168 79 y Lowercasey
169 7A z Lowercase z
170 D2 Unassigned
171 D3 Unassigned

172 D4 Unassigned
173 D5 Unassigned
174 D6 Unassigned
175 D7 Unassigned

(Continued)

D-30 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$EBCDIC

Table D-9. OSV$EBCDIC Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

220 FO Unassigned
221 Fl Unassigned
222 F2 Unassigned
223 F3 Unassigned

224 5C Reverse slant
225 9F Unassigned
226 53 s Uppercase S
227 54 T Uppercase T

228 55 u Uppercase U
229 56 v Uppercase V
230 57 w Uppercase W
231 58 x Uppercase X

232 59 y Uppercase Y
233 5A z Uppercase Z
234 F4 Unassigned
235 F5 Unassigned

236 F6 Unassigned
237 F7 Unassigned
238 F8 Unassigned
239 F9 Unassigned

240 30 0 Zero
241 31 1 One
242 32 2 Two
243 33 3 Three

244 34 4 Four
245 35 5 Five
246 36 6 Six
247 37 7 Seven

248 38 8 Eight
249 39 9 Nine
250 FA Unassigned
251 FB Unassigned

252 FC Unassigned
253 FD Unassigned
254 FE Unassigned
255 FF Unassigned

D-32 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

OSV$EBCDIC6 _FOLDED

Table D-10. OSV$EBCDIC6_ FOLDED Collating Sequence (Continued)

Collating
Sequence
Position

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

ASCII Code
(Hexadecimal)

4E,6E
4F,6F
50,70
51,71
52,72
5C,7C
53,73
54,74
55,75
56,76
57,77
58,78
59,79
5A,7A
30
31
32
33
34
35
36
37
38
39

Graphic or
Mnemonic

N,n
O,o
P,p
Q,q
R,r
\,I
S,s
T,t
U,u
V,v
W,w
X,x
Y,y
Z,z
0
1
2
3
4
5
6
7
8
9

D-34 CYBIL Keyed-File and Sort/Merge Interfaces

Name or Meaning

Uppercase N, lowercase n
Uppercase 0, lowercase o
Uppercase P, lowercase p
Uppercase Q, lowercase q
Uppercase R, lowercase r
Reverse slant, vertical line
Uppercase S, lowercases
Uppercase T, lowercase t
Uppercase U, lowercase u
Uppercase V, lowercase v
Uppercase W, lowercase w
Uppercase X, lowercase x
Uppercase Y, lowercase y
Uppercase Z, lowercase z
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

Revision A

OSV$EBCDIC6 _STRICT

Table D-11. OSV$EBCDIC6_STRICT Collating Sequence (Continued)

Collating
Sequence ASCII Code Graphic or
Position (Hexadecimal) Mnemonic Name or Meaning

40 4E N UppercaseN
41 4F 0 UppercaseO
42 50 p UppercaseP
43 51 Q UppercaseQ

44 52 R UppercaseR
45 5C \ Reverse slant
46 53 s Uppercases
47 54 T UppercaseT

48 55 u Uppercase U
49 56 v Uppercase V
50 57 w Uppercase W
51 58 x UppercaseX

52 59 y Uppercase Y
53 5A z UppercaseZ
54 30 0 Zero
55 31 1 One

56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five

60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

D-36 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Common Procedures

{ -- }
{This routine, P#START_REPORT_GENERATION, takes care of initialization}
{details. It sets the error tally to zero and prepares the report file to}
{ receive messages issued by the other procedures. }
{ --- }

PROCEDURE p#start_report_generation (startup_message : STRING (*)) ;

VAR
file_access_selection_p • ARRAY [1 •• *]OF AMTSACCESS_SELECTION

{ used by AMP$0PEN_FILE }

error_count := -0 ; {initialize error counting}

ALLOCATE file_access_selection_p : [1 •• 1J ;
file_access_selection_p"[01].KEY ·= AMC$0PEN_POSITION;
file_access_selection_p"[01J.OPEN_POSITION := AMC$0PEN_NO_POSITIONING

{ must be positioned for append access }
AMPSOPEN (report_file_name, AMCSRECORD, file_access_selection_p,

report_file_identifier, status) ;
FREE file_access_selection_p

text_index := 1 ;
text_Line(text_index, 1) := '0'
text_index := text_index + 1 ;
p#put_m (TRUE, startup_message)

{ carriage control character }

PROCEND p#start_report_generation

{ --'--------------- }
{Routine P#STOP_REPORT_GENERATION does wrap-up activity.
{ is printed out at this point.

The error tally }
}

{ --- }

PROCEDURE p#stop_report_generation (shutdown_message : STRING (*)) ;

VAR
pencil INTEGER,
paper STRING (75

{ formatting area Length }
{ formatting area }

IF error_count = 0
THEN
p#put_m (TRUE, 'No error has been found by the program.')

ELSE
STRINGREP (paper, pencil, 'This program has discovered ',

error_count, ' error situation(s).')
p#put_m (TRUE, paper(1, pencil)) ;

!FEND ;

p#put_m <TRUE, shutdown_message) ;

AMPSCLOSE Creport_file_identifier, status)

PROCEND p#stop_report_generation ;

E-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Common Procedures

ELSEIF (text_index + STRLENGTH(message_string) - 1) > Line_Length
THEN
string_position_Locator := Line_Length - text_index + 1
#TRANSLATE (garbage_eliminator_table,

message_string(1, string_position_Locator),
text_Line(text_index, string_position_Locator)l

text_index := text_index + string_position_Locator ;
AMPSPUT_NEXT (report_file_identifier, "text_Line, text_index - 1,

file_byte_address_x, status_x) ;
text_index := 1 ; { reset index }
text_Line(1, Line_Length) := ' ' {blank filler}
text_index := text_index + 1 { Leave column as carriage}

{ control character }
p#put_m Cnew_line_flag,

I FEND
IF END

PROCEND p#put_m

message_stringCstring_position_Locator + 1, *)) ;

{ --}
{ This routine Looks at the global status variable. If something has gone }
{ wrong, then the global error counter is incremented and a formatted message }
{sent to the error Listing file. To prevent excessive printout, all error }
{ message reporting is suppressed when the error counter has become too Large.}
{ --}

PROCEDURE [INLINE] p#inspect_status_variable

IF NOT status.normal
THEN
error_count := error_count + 1
IF error_count < 333

THEN
p#display_status_variable

ELSEIF error_count = 333
THEN
p#put_m <TRUE,

{ increment error counter }

{ issue the message }

'Error_Count 333. Further message reporting is turned off.')
IF END

I FEND

PROCEND p#inspect_status_variable

E-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision A

Index

AMP$SELECT _NESTED _FILE
call I-3-67

AMP$SKIP call
After alternate-key

selection I-2-34
For a keyed file I-2-13

AMP$START call I-3-69
AMP$SYSTEM_ HASHING

PROCEDURE I-1-13
AMP$UNLOCK_FILE call I-3-72
AMP$UNLOCK_KEY call I-3-73
APPLY _KEY _DEFINITIONS

call 1-3-5
Ascending sort order A-1
ASCII

Character set B-1
Glossary definition A-1

ASCII6_FOLDED collating
sequence D-11

ASCII6_STRICT collating
sequence D-13

Attribute
Descriptions I-4-5
Settings for new keyed

files 1-2-1
AVERAGE_RECORD_LENGTH

attribute 1-4-8

B

BEGIN_MERGE
SPECIFICATION call 11-2-4

BEGIN_SORT_SPECIFICATION
call II-2-2

Beginning-of-information A-1
BINARY numeric data

format 11-1-8
BINARY _BITS numeric data

format II-1-8
Bit A-1
Block A-1
Block length guideline

attributes 1-2-6
BOI A-1
Byte A-2
Byte-addressable file organization

A-2

c
Changing lock intents 1-2-25
Character A-2
Character set B-1
Cleared lock I-2-26
Close operation A-2
Close request A-2
COBOL6_FOLDED collating

sequence D-15
COBOL6_STRICT collating

sequence D-17
COLLATE_ TABLE

attribute I-4-9
COLLATE_TABLE NAME

attribute I-4-10
Collated key A-2
COLLATING_ALTER

call 11-2-24
COLLATING_CHARACTERS

call II-2-23
COLLATING_NAME call II-2-22
COLLATING_REMAINDER

call 11-2-24
Collating sequence A-2
Collation table

Creation D-4
Glossary definition A-2
Listings D-11
Use D-2

Collation weight A-2
Common file structure

attributes I-2-5
Compiling your
program Introduction-2.1
Concatenated key

Description I-1-21
Glossary definition A-2

Concurrent use of keyed
files 1-2-18

Condition code lntroduction-5
Constant declarations C-1
Content addressing 1-1-2
Control-p character I-3-6
Control-t character 1-3-6
Conventions used in this

manual 9
*COPYC directives Introduction-I

e Index-2 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Index

Empty block chain 1-3-17
End-of-information A-4
End_of_key _list position 1-2-37
END _SPECIFICATION

call II-2-29
Entry point A-4
EOI A-4
EOI_BYTE_ADDRESS

item I-4-13
Equal sort key processing

Owncode procedure 5 II-3-12
SMP$RETAIN _ORIGINAL_

ORDER call 11-2-21
SMP$SUM call 11-2-26

ERROR_COUNTitem 1-4-13
ERROR_ EXIT _NAME

attribute 1-4-14
ERROR_EXIT_PROCEDURE

attribute 1-4-15
Error exit procedure

use lntroduction-4
ERROR_ FILE call 11-2-10
ERROR_LEVEL call 11-2-11
ERROR_LIMIT attribute

Description 1-4-15
Error limit processing for

duplicate key values I-1-18
ERROR_ STATUS item 1-4-16
ESTIMATED _NUMBER

RECORDS call 11-2-15
ESTIMATED _RECORD_ COUNT

attribute 1-4-16
Example

Creating an alternate
key 1-2-49

Creating an indexed-sequential
file I-2-41

Creating and deleting nested
files I-2-55

Sort/Merge owncode
procedure 11-3-13

Sort/Merge
specification 11-1-14

Updating an indexed-sequential
file I-2-45

Exception condition
lntroduction-4

Exception records file A-4
EXCEPTION_RECORDS FILE

call 11-2-16
Exclusive_Access lock

intent 11-2-24
Executing your program

lntroduction-2.1
Expanding your program

Introduction-2
Expired lock

Conditions 1-2-28
Description I-2-26

External reference A-4

F

F record type A-4
FETCH_ACCESS

INFORMATION call I-2-36
Fetching

Access information
items 1-2-36

Alternate index
information I-2-38

Field A-4
FIFO order I-1-17
File A-4
File access modes 1-3-2
File attribute (see Attribute)
File cycle A-4
FILE_ LENGTH attribute 1-4-16
FILE_LIMIT attribute 1-4-17
File lock

Clearing 1-3-72
Description 1-2-30
Request 1-3-54

File organization A-4
FILE_ ORGANIZATION

attribute 1-4-17
File position

After alternate-key
selection 1-2-37

Glossary definition A-4
FILE_POSITION item 1-4-18
File reference A-5
File structure attributes 1-2-4

e Index-4 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Index

J

Job A-6

K

Key A-6
KEY call II-2-9
Key count I-3-47
KEY _LENGTH attribute I-4-23
Key list

Description I-1-17
Glossary definition A-6

KEY _POSITION attribute I-4-23
Key relation positioning I-2-14
Key type

Glossary definition A-7
Keyed-file attribute I-2-4
Sort/Merge II-1-5

KEY_ TYPE attribute I-4-24
Keyed-file

Attribute
Descriptions 1-4-5
Setting for a new file I-2-1

Calls I-3-1
Concepts 1-1-1
Creation I-2-1
Organization I-1-1

Glossary definition A-7
Positioning I-2-13
Reading I-2-15
Records 1-2-1
Sharing 1-2-18
Writing I-2-10
Use I-2-12

Keyed-file interface object
library I-3-1

L

LAST_ACCESS OPERATION
item I-4-25

LAST_OP _STATUS item I-4-27
LEVELS_ OF _INDEXING

item I-4-27
Library A-7
LIST_ FILE call II-2-17

LIST_ OPTION call II-2-18
LOAD_COLLATING_TABLE

call II-2-18.2
Local file A-7
Local file name A-7
Local path A-7
Lock

Clearing 1-2-26
Deadlock I-2-29
Effect on calls 1-2-31
Expiration I-2-26
Expiration conditions 1-2-28
Intent

File locks I-2-30
Key locks I-2-24
Switching I-2-25

Maximum I-2-30
Processing I-2-30
Timeout period I-2-26
Waiting I-2-26

Lock expiration time
Attribute I-2-9; I-4-27
Use I-2-27

Lock file I-2-30
LOCK_FILE call I-3-54
LOCK KEY call I-3-56
Lock manager I-2-21

M

$MAIN FILE I-2-24
Major key

Glossary definition A-8
Positioning of a keyed

file I-2-14
Major sort key A-8
Mass storage A-8
MAX_BLOCK_LENGTH

attribute I-4-28
MAX_RECORD_LENGTH

attribute I-4-28
Merge A-8
Merge input record order II-2-29
MESSAGE_ CONTROL

attribute I-4-29
MIN_RECORD_LENGTH

attribute I-4-30

e Index-6 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Index

Specification II-2-20
Owncode 2 procedure

Processing II-3-7
Specification II-2-20

Owncode 3 procedure
Processing II-3-9
Specification II-2-20

Owncode 4 procedure
Processing II-3-I I
Specification II-2-20

Owncode 5 procedure
Processing II-3-12
Specification II-2-20

p

PACKED numeric data
format II-I-9

PACKED _NS numeric data
format II-1-9

Padding
Description l-I-4
Glossary definition A-9

Path A-9
Pause_ break character 1-3-5
Permanent file A-9
PERMANENT _FILE

attribute 1-4-32
Piece

Description I-2-2I
Glossary definition A-9

Positioning
Keyed files 1-2-13
Using alternate keys 1-2-34

Predefined collation table
Listings D-I I
Use D-2

Preserve_Access and_ Content
lock intent 1-2-24

Preserve_ Content lock
intent 1-2-24

Primary key
Attributes 1-2-3
Characteristics

Direct-access l-I-14
Indexed-sequential I-I-9

Glossary definition A-10

PRIMARY _KEY item 1-4-32
Primary-key-value order 1-I-I 7
Procedure call use Introduction-I
Procedure calls

Keyed-file interface 1-3-1
Sort/Merge II-2-I

Procedure deck names
Introduction-I

Process identifiers Introduction-5
Processing attributes 1-2-8
Processing a keyed file 1-2-12
Program examples

Keyed-file interface 1-2-40
Sort/Merge interface II-l-I4

Program-library list A-10
PUT _KEY call 1-3-59
PUT _NEXT call 1-2-10
PUTREP call 1-3-62
Putting keyed-file records 1-2-10

R

Random access
Description 1-2-17
Glossary definition A-10

Reading
Keyed files I-2-I5
Using alternate keys 1-2-34

REAL numeric data format II-I-9
Reca owncode parameter II-2-2
Reeb owncode parameter II-2-2
Record A-10
Record attributes 1-2-2
Record length

Keyed-files 1-2-2
Sort/Merge II-I-I2

RECORD _LIMIT attribute 1-4-32
RECORD_ TYPE attribute 1-4-33
RECORDS_PER_BLOCK

attribute 1-4-33
Re-creating a keyed file 1-2-10
Remainder collation step 11-2-24
Repeating groups

Description l-I-22
Glossary definition A-10

REPLACE_KEY call 1-3-64
Replacing keyed-file records 1-3-64

e Index-8 CYBIL Keyed-File and Sort/Merge Interfaces Revision B

Index

Glossary definition A-11
Sort order

Description II-1-12
Glossary definition A-11

Sort/Merge
Call order II-2-1
Error levels II-2-13
Example program II-1-14
Input files II-2-5
Object library II-1-2
Output file II-2-7
Owncode procedure

processing II-3-1
Record length II-1-12
Record insertion 11-3-5
Record deletion 11-3-9
Statistics II-2-3
Valid records II-1-13

Source code A-11
Source Code Utility Introduction-1
Source library A-11
Sparse-key control

Description 1-1-20
Glossary definition A-11

START call 1-3-69
Statistics A-11
STATUS call 11-2-25
Status checking

Description lntroduction-4
Procedures E-1

Status record contents
Introduction-4

Status variable A-11
Submitting comments 10
SUM call II-2-26
Sum fields A-12
Summing A-12
Switching lock intents 1-2-25
System Command Language A-12
System hashing procedure 1-1-13
System naming convention

lntroduction-6

T

Task A-12

Terminate_ break character 1-3-5
Timeout period 1-2-26
TO_FILE call 11-2-7
Trivial-error limit

Attribute description 1-4-15
Processing duplicate-key value

errors 1-1-18
Type checking Introduction-3
Type declarations C-1

u
U record type A-12
Uncollated key A-12
UNLOCK ALL call 1-3-73
UNLOCK_FILE call 1-3-72
UNLOCK_KEY call 1-3-73
Updating an alternate

index 1-2-35
Using

v

Alternate keys 1-2-33
Example 1-2-49

Keyed files 1-2-12
Example 1-2-45

V record type A-12
Validating sort data II-1-13
VERIFY call II-2-29

w
Waiting for a lock 1-2-26
Working storage area A-12
Writing

z

After alternate-key
selection 1-2-35

Keyed-file records 1-2-10

Zero-length sort records II-1-13

• lndex-10 CYBIL Keyed-File and Sort/Merge lnt.erfaces Revision B

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8241 MINNEAPOLIS, MN

POSTAGE WILL BE PAID BY ADDRESSEE

(52)CONT~L DATA

Publications and Graphics Division
Mail Stop: SVL104
P.O. Box 3492
Sunnyvale, California 94088-3492

111111 NO POSTAGE
NECESSAA't
IF MAILED

IN THE
UNITED STATES

FOLD

