
(5 ~ CONT~OL DATA

COMPASS VERSION 3
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 2

NOS/BE 1.
SCOPE 2

60492600

CPU AND PP INSTRUCTION INDEX

CPU INSTRUCTIONS: SB i Xj.:_K 62i jK 8-46 FSJM m,c 1064Xcm 9-20. 2
SBi Xj+Bk 63ijk 8-46 IAM m,c 71X cm 9-22

Mnemonic Operation Page SB i Aj+Bk 64i jk 8-46 IAPM m,c 1071Xcm §§ 9-23
~ Code (octal} Nunber SBi Aj-Bk 65ijk 8-46 IAN c 700c 9-22

SB i Bj+Bk 66ijk 8-46 IJM m,c 650cm 9-20.l
A Xi .:_jk 21 i jk 8-32 SB i Bj-Bk 67ijk 8-46 INPN d 1026d 9-13
A Xi Bj ,Xk 23ijk 8-34 SXi Aj+K 70ijK 8-49 IRM m,d 62dm 9-21
BXi Xj lOi jj 8-27 SXi Bj+k 71 ijK 8-49 LCN d 15d 9-10
BXi Xj*Xk 11 ijk 8-28 SXi Xj:£K 72ijK 8-49 LDC m,d 20dm 9-11
BXi Xj+Xk 12ijk 8-28 SXi Xj+Bk 73ijk 8-49 LOO d 30d 9-15
BXi Xj-Xk 13ijk 8-29 SXi Aj+Bk 74i jk 8-49 LDDL d 1030d § 9-15
BXi -Xk 14ikk 8-29 SXi Aj-Bk 75ijk 8-49 LOI d 40d 9-16.l
BXi -Xk*Xj 15ijk 8-30 SXi Bj+Bk 76i jk 8-49 LOIL d 1040d 9-16.l
BXi -Xk+Xj 16ijk 8-30 SXi Bj-Bk 77ijk 8-49 LDM m,d 50dm 9-16.2
BXi -Xk-Xj 17ijk 8-31 TBj 016j0 8-21 LDML m,d 1050dm§§ 9-16.2
CR Xj ,Xk 660jk 8-46 UXi Bj ,Xk 26ijk 8-36 LON d 14d 9-10
cw Xj ,Xk 670jk 8-46 WE Bj.:_K 012jK 8-16 LJM m,d Oldm 9-8
ex; Xk 47ikk 8-43 WL Bj.:_K 012jK 8-17 LMC m,d 23dm 9-11
OF Xj ,K 036jK 8-25 WXj Xk 015jk 8-20 U1l d 33d 9-15
DXi Xj+Xk 32ijk 8-38 XJ Bj:t_K 013jK 8-18 LMDL d 1033d 9-15
DXi Xj-Xk 33ijk 8-38 ZR Xj ,K 030jK 8-25 LMI d 43d 9-16.l
ox; Xj*Xk 42ijk 8-40 ZR Bi ,K 04i CJ< 8-26 LMIL d 1043d 9-16.l
EQ Bi ,Bj ,K 04i Jl< 8-26 ZXi Bj,Xk 25ijk 8-35 Lt1vl m,d 53dm 9-16.2
ES K 00000 8-14 LMM.. m,d 1053dm 9-16.2
FXi Xj+Xk 30ijk 8-37 CMU INSTRUCTIONS:

LMN d lld 9-10
FXi Xj-Xk 31; jk 8-37 LPC m,d 22dm 9-11
FXi Xi*Xk 40ijk 8-40 cc l,ka,ca,kb,cb 8-53

LPDL d 1022d 9-15
FXi Xj/Xk 44ijk 8-42 LPIL d 1023d 9-16.1
GE Bi,Bj,K 06ijK 8-26 cu ! ,ka ,ca ,kb ,cb 8-54 LPM.. m,d 1024dm 9-16.2
GE Bi ,K 06i CJ< 8-26 OM !,ks,cs,kd,cd 8-52

LPN d 12d 9-10
GT Bj,Bi ,K 07i Jl< 8-26 LRD d 24d 9-12
GT Bj ,K 070jK 8-26 IM Bj:t_K (464jK) 8-51 MAN d 262d 9-12.1
IBj Bk 016jk 8-23 MD ! ,ks,cs,kd,cd 8-51 MJN d 07d 9-8
ID Xj ,K 037jK 8-25 MXN d 26ld 9-12.1
IR Xj ,K 034jk 8-25 NIM m,d 63dm 9-21
I Xi Xj+Xk 36ijk 8-39 PP INSTRUCTIONS: NJN d 05d 9-8
I Xi Xj-Xk 37ijk 8-39 NOM m,d 67dm 9-21
I Xi Xj*Xk 42ijk 8-41 Operation ?age OAM m,c 73Xan 9-22
JP Bi+K 02i iK 8-24 ~ Code (octal} Nunber OAN c 720c 9-22
LE Bj~Bi ,K 06ijK 8-26 OAPM m,c l073Xcm 9-23
LT Bi ,Bj ,K 07i J"K 8-26 ACN c 740c 9-25 ORM m,d 66dm 9-21
LXi +jk 20ijk 8-31 ADC m,d 2ldm 9-11 PJN d 06d 9-8
LXi Bj ,Xk 22ijk 8-33 ADD d 3ld 9-15 PSN d 0000 9-11
MI Xj ,K 033jK 8-25 ADDI.. d 103ld§ 9-15 RAD d 35d 9-15
MI Bi ,K 0 7i CJ< 8-26 ADI d 4ld 9-16.l RADL d 1035d §§ 9-15
MJ 01300 8-19 ADIL d 104ld 9-16.l RAI d 45d 9-16.l
MJ Bj:t_K Ol 3Jl< 8-19 ADM m,d 5ldm 9-16.2 RAIL d 1045d 9-16.1
MXi .:_jk 43; jk 8-42 ADM.. m,d 105ldm§§ 9-16.2 RAM m,d 55dm 9-16.2
NE Bi,Bj,K 05ijK 8-26 AON d 16d 9-10 RAML m,d 1055dm §§ 9-16.2
NG Bi ,K 07i CJ< 8-26 AJM m,c 640an 9-20.1 RDCL d lOOld 9-20
NG Xj ,K 033Jl< 8-25 AOD d 36d 9-15 RDSL d lOOOd 9-20
NO n 46n 8-43 AODL d 1036d 9-15 RFN d 74d 9-24
NXi Bj,Xk 24ijk 8-34 AOI d 46d 9-16.l RJM m,d 02dm 9-8
NZ Bi ,K 05i0< 8-26 AOIL d 1046d 9-16.1 RPN d 270d 9-13
NZ Xj ,K 03ljK 8-25 AOM m,d 56dm 9-16.2 SBD d 32d 9-15
OBj Bk 017jk 8-23 AOM.. m,d 1056dm 9-16.2 SBDL d 1032d §§ 9-15
CR Xj,K 035Jl< 8-25 CCF m,c 65lcmtt 9-20. 2 SB! d 42d 9-16.l
PL Xj ,K 032jK 8-25 CFM m,c 67lantt 9-20.2 SBIL d 1042d 9-16.l
PL Bi ,K 06i CJ< 8-26 CRD d 60d 9-18 SBM m,d 52dm 9-16.2
PS K OOOOK 8-13 CRDL d 1060d 9-20 SB11. m,d 1052dm §§ 9-16.2
PXi Bj,Xk 27ijk 8-37 CRM m,d 6ldm 9-18 SBN d 17d 9-10
RE Bj.:_K OlljK 8-16 CRM.. m,d 106ldm 9-20 SCF m,c 64lcmtt 9-20.2
RI Bk 0160k 8-21 CWD d 62d 9-18 SCN d 13d 9-10
RJ K OlOOK 8-15 CWDL d 1062d 9-20 SFM m,c 66lcmtt 9-20.2
RL Bj.:_K OlljK 8-17 C\<1>1 m,d 63dm 9-18 SHN d lOd 9-9
RO Bk Ol 70k 8-22 CWM.. m,d 1063dm 9-20 SOD d 37d 9-15
RXi Xj+Xk 34ijk 8-38 DCN c 750c 9-25 SODL d 1037d 9-15
RXi Xj-Xk 35ijk 8-38 EIM m,d 6ldm 9-21 SOI d 47d 9-16.l
RXi Xj*Xk 41ijk 8-40 EJM m,c 670cm 9-20.1 SOIL d 1047d 9-16.l
RXi Xj/Xk 45ijk 8-43 EOM m,d 65dm 9-21 SOM m,d 57dm 9-16.2
RXj Xk Ol4jk 8-20 ERN d 270d 9-14 SOt-l. m,d 1057dm 9-16.2
SAi Aj:t_K SOi jK 8-44 ESN d 770d 9-25 SRO d 25d 9-12
SAi Bj:t_K 51 i Jl< 8-44 ETN d 260d 9-14 STD d 34d 9-15
SAi Xj.:_K 52ijK 8-44 EXN d 26 9-12. l STOL d 1034d § 9-15
SAi Xj+Bk 53ijk 8-44 FAN c 760c 9-25 STI d 44d 9-16.l
SAi Aj+BI< 54i jk 8-44 FCJM m,c 1065Xan 9-20. 2 STIL d 1044d 9-16.1
SAi Aj-Bk 55ijk 8-44 FIM m,d 60dm 9-21 STM m,d 54dm 9-16.2
SAi Bj+Bk 56ijk 8-44 FJM m,c 660an 9-20.l sm. m,d 1054dm§§ 9-16.2
SAi Bj-Bk 57ijk 8-44 FNC m,c 770cm 9-25 UJN d 03d 9-8
SB i Aj!_K OOijK 8-46 FNQ m,d 77dm§§ 9-25 ZJN d 04d 9-8
SB i Bj.:_K 61 i Jl< 8-46 FOM m,d 64dm 9-21

tThere is also an integer divide macro (IXi Xj/Xk).
ttThe operation code occupies 7 bits. The d field occupies 5 bits.

§The operation code occupies 10 bits. The d field field occupies 6 bits.
§§The operation code occupies 10 bits. The d field occupies 6 bits. Them field is variable.

(Refer to the MEMSEL psuedo-op definition.)

60492600 M

(5 2) CONT1'0L DATA

COMPASS VERSION 3
REFERENCE MANUAL

coc® OPERA TING SYSTEMS:
NOS 2

NOS/BE 1

SCOPE 2

6049260(

Revision

A (11/01/75)

B (03/05/76)

c (03/25/77)

D (03/31 /78)

E (10/31/78)

F (06/29/79)

G (07/07/80)

H (04/26/82)

J (09/24/82)

K (10/21 /83)

L (05/25/84)

M (07/31/86)

REVISION RECORD

Description

Original Release.

Manual revised to reflect a new feature and to clarify existing material. The new
feature is: CP147, LDSET pseudo instruction. See list of effective pages.

This reflects feature F7540, Model 176 support, feature CP154, Weak Externals, and
feature CP161, Fast Dynamic Loader, as well as miscellaneous technical corrections, at
PSR level 446.

This revision documents COMPASS Version 3.5. New features include the DEBUG preset
option and 8 lines/inch density on the load map.

This revision documents COMPASS Version 3.6, PSR level 485. New features include the PD
and PS control statement parameters and common common decks.

This revision reflects the introduction of SEGLOAD common blocks. An error list
parameter is added to the COMPASS call. Numerous minor technical corrections are made to
section 12.

This revision documents support for CYBER 170 Models 720, 730, 740, 750, and 760. An
example program is included. Minor technical corrections are made throughout.

Revised at PSR level 552 to document support of the CYBER 170 models 825, 835, and 855
Computer Systems, and to incorporate minor technical corrections. This is a complete
reprint.

Revised at PSR level 577 to document support of the CYBER 170 models 865 and 875 Computer
Systems and to incorporate minor technical corrections.

Revised at PSR level 599 to document support of the CYBER 170 Model 845 Computer System,
support of PD, PS, and PW listing controls, and to incorporate minor technical
corrections.

Revised at PSR level 599 to document support of the CYBER 170 Model 815 and the CYBER 180
Computer Systems.

Revised at PSR level 650 to document support of the CYBER 180 Models 840, 850, 860, and
990, reflects the introduction of changes to character data generation in 16-bit PP
binaries, and incorporates minor technical and editorial changes.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

<9coPYRIGHT CONTROL DATA CORPORATION
1975, 1976, 1977, 1978, 1979, 1980, 1982, 1983, 1984, 1986
All Rights Reserved
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60492600 M

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is af fee ted. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision

Front Cover 4-20 thru 4-22 M
Inside Front Cover M 4-22. 1/4-22. 2 M
Title Page 4-23 thru 4-25 H
ii M 4-26 r1
iii M 4-27 M
iv M 4-28 thru 4-39 H
v M 4-40 M
vi M 4-41 thru 4-4 7 H
vii/viii M 4-48 M
ix M 4-49 thru 4-53 H
x M 4-54 J
xi M 4-55 thru 4-60 H
xii M 4-61 L
1-1 thru 1-4 G 4-62 thru 4-80 H
2-1 H 5-1 A
2-2 A 5-2 M
2-3 A 5-2. 1/5-2. 2 M
2-4 D 5-J c;
2-5 M 5-4 A
2-6 A 5-5 A
2-7 c 5-6 E
2-8 thru 2-10 H 5-7 E
2-11 K 5-8 A
2-12 H 5-9 c;
2-13 H 5-10 E
2-14 J 5-11 D
2-15 thru 2-18 H 5-12 A
2-19 K 5-13 A
2-20 L 5-14 E
2-21 thru 2-26 H 5-15 F
2-27 M 5-16 thru 5-25 A
3-1 G 5-26 G
3-2 G 5-27 B
3-3 H 5-28 thru 5-35 A
3-4 M 6-1 E
3-5 L 6-2 M
3-6 thru 3-15 G 6-3 A
4-1 thru 4-3 M 6-4 L
4-4 G 6-5 A
4-5 A 6-6 A
4-6 M 6-7 B
4-7 L 6-8 A
4-8 M 6-9 L
4-9 A 6-10 A
4-10 thru 4-12 M 7-1 A
4-12.1/4-12.2 M 7-2 A
4-13 A 7-3 G
4-14 A 7-4 D
4-15 thru 4-17 M 7-5 E
4-18 A 7-6 F
4-19 A 7-7 A

60492600 M iii

Page Revision Page Revision

8-1 M 9-20 M

8-2 M 9-20. 1 M

8-3 A 9-20. 2 M

8-4 M 9-21 thru 9-25 M

8-5 J 10-1 thru 10-4 H

8-6 J 10-5 K

8-6.1 M 10-6 H

8-6. 2 M 10-7 thru 10-11 G

8-7 thru 8-11 M 11-1 thru 11-4 H

8-12 H 11-5 c
8-13 M 11-6 A

8-14 H 11-7 thru ll-10 G

8-15 L 11-11 L

8-16 thru 8-22 H 11-12 H

8-23 thru 8-25 L 11-13 G

8-26 thru 8-31 H 11-14 D

8-32 L 12-1 H

8-33 L 12-2 M

8-34 thru 8-45 H 12-3 H

8-46 L 12-4 H

8-47 thru 8-49 H 12-5 thru 12-8 M

8-50 M 12-9 thru 12-18 H

8-51 G 12-19 J

8-52 thru 8-54 K 12-20 thru 12-22 H

8-55 G 12-23 thru 12-25 M

9-1 M 12-26 thru 12-34 H

9-2 M A-1 thru A-4 A

9-2.l M B-1 H

9-2. 2 M B-2 H

9-3 M B-3 G

9-4 M B-4 G

9-4.1/9-4.2 M B-5 A

9-5 thru 9-8 M C-1 A

9-9 H D-1 J

9-10 H D-2 thru D-8 H

9-11 M E-1 L

9-12 M E-2 thru E-6 H

9-12.1/9-12.2 M F-1 thru F-3 H

9-13 thru 9-16 M F-4 K

9-16.1 M Index-I thru -14 M

9-16.2 M Comment Sheet/Mailer M

9-17 M Summary Card M

9-18 H Inside Back Cover M

9-19 M Back Cover

iv 60492600 M

PREFACE

The CONTROL DATA® COMPASS Version 3.6 Assembler provides the user with a versatile, extensive
language for generation of object code to be loaded and executed on the central processor Wlit (CPU) or a
peripheral processor (PP or PPU). The assembler executes on the following computer systems and
operating systems:

NOS 2 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Computer Systems

NOS/BE 1 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Computer Systems

SCOPE 2 for the CDC CYBER 170 Computer System model 176, CYBER 70 Computer System model
76, and 7600 Computer Systems

I

The CYBER 170 Computer Systems include the following 800 Series models: 815, 825, 835, 845, 855, 865,
and 875. The CYBER 180 Computer Systems include the following 800 Series models: 810, 830, 835, 840, I
845, 850, 855, 860, and 990. The C YBER 170 models 835, 845, and 855 are the same machines as the
CYBER 180 models 835, 845, and 855. References in the text to 800 Series models usually do not
distinguish between CYBER 170 and CYBER 180.

The CDC CYBER 170 Computer System models 720 and 730 have unified processors and use the
instructions noted in this publication for computer models with a Compare/Move Unit (CMU) such as the
CYBER 170 Computer System model 172. Models 810, 825, 830, 835, 845, 850, 855, and 860 also support I
the compare/move instructions through simulation.

The CDC CYBER 170 Computer System models 740, 750, 760, 865, 875, and 990 have fWlctional Wlits and I
use instructions noted in this publication for computer models with functional units such as the CYBER 170
Computer System model 175.

The reader is assumed to be familiar with a Control Data computer and operating system, and with
assem biers in general.

NOTE

Avoid continued use of COMPASS in creating application programs when
possible. COMPASS and other machine-dependent languages can complicate
migration to future hardware and software systems. Software mobility will be
restricted by continued use of COMPASS for stand-alone programs, COMPASS
subroutines embedded in programs using higher-level languages, and COMPASS
owncode routines used with CDC standard products.

In this manual, the acronym ECS refers to all forms of extended memory unless otherwise noted, except in
the context of a multimainframe environment or distributive data path (DDP) access, in which case, models
176, 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875, and 990 are excluded. I
Extended memory for the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600 is large central
memory (LCM) or large central memory extended (LCME). Extended memory for models 810, 815, 825,
830, 835, 840, 845, 850, 855, 860, 865, 875, and 990 is Wlified extended memory (UEM). Extended memory I

60492600 M v

for models 865 and 875 can also include extended core storage (ECS) or extended semiconductor memory
(ESM). Extended memory for all other CYBER 170, CYBER 70, and 6000 Series Computer Systems is
extended core storage (ECS) or extended semiconductor memory (ESM).

The CYBER 170 Model 176 supports direct LCM and LCME transfer instructions, as described in chapter 8.
LCM and LCME transfers initiate an error exit, not a half exit, as noted in ECS/UEM Instructions,
chapter 8.

Hardware descriptions and further programming information for the variot.5 forms of extended memory can
be found in the appropriate hardware reference manuals.

In this manual, numbers occurring in text are decimal unless otherwise noted. Lowercase letters in formats
depict variables. The examples assume that assembler numeric mode is decimal and that character mode is
display code unless otherwise noted. In examples, statements generated by the assembler as a result of a
call or a substitution are shown in shaded print.

General explanations of COMPASS concepts have been limited to the initial pages of each chapter or
section, whenever possible. Subsequent material has been presented in a concise manner to aid in rapid
access to reference information. In keeping with this concept, instruction indexes have been included
inside the front and back covers.

Additional information essential to programming in the COMPASS environment can be found in the
publications listed in this preface. The publications are listed alphabetically within groupings that indicate
their approximate importance to readers of this manual. Applicable operating systems are also indicated.

The applications programmer will need the CYBER Record Manager Basic Access Methow and Advanced
Access Methods manuals for information about the macros needed to define, access, and manipulate files.
Information necessary to create and manipulate program structures can be found in the appropriate Loader
reference manual (CYB ER Loader for the NOS and NOS/BE operating systems, and the SCOPE 2 Loader for
the SCOPE 2 operating system).

In addition to the above, the syste:ns programmer will need the appropriate operating system manual,
either the NOS 1 Reference Manual or the NOS 2 Reference Set, Volume 4, Program Interface, to obtain
information about system macros.

The Software Publications Release History serves as a guide to the revision level of s9ftware
documentation which corresponw to the Programming System Report (PSR) level of installed site software.

The following manuals are of primary interest:

vi

Publication

CO MP ASS Version 3 Instant

CYBER Loader Version 1
Reference Manual

CYBER Record Manager
Advanced Access Methods
Version 2 Reference Manual

CYBER Record Manager
Basic Access Methods
Version 1.5 Reference Manual

Publication
Number

60492800

60429800

50499300

60495700

NOS 2

x

x

x

x

NOS/BE 1

x

x

x

SCOPE 2

x

60492600 M

Publication
Publication Number NOS 2 NOS/BE 1 SCOPE 2

NOS Version 2 Reference Set,
Volume 4 Program Interface 60459690 x

NOS/BE 1 Reference Manual 60493800 x

SCOPE 2 Loader Version 2
Reference Manual 60454780 x

SCOPE 2 Reference Manual 60342600 x

The following manuals are of secondary interest:

Publication
Publication Number NOS 2 NOS/BE 1 SCOPE 2

CYBER Interactive Debug Version 1
Reference Manual 60481400 x x

Modify Version 1 Reference Manual 60450100 x

NOS Version 2 Diagnostic Index 60459390 x

NOS/BE Version 1 Diagnostic Index 60456490 x

NOS Version 2 Manual Abstracts 60485500 x

NOS/BE Version 1 Manual Abstracts 84000470 x

Software Publications Release History 60481000 x x x

Update Version 1 Reference Manual 60449900 x x

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

60492600 M

This product is intended for U5e only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

vii/viii •

1. 1

1. 2

1. 3
1. 4

2

2. 1
2. 1. 1
2. 1. 2
2. 1. 3
2. 1. 4
2. 1. 5
2. 1. 6
2. 1. 7
2. 1. 8

2. 2
2. 2. 1
2. 2. 2

2. 3

2. 4
2. 4. 1
2. 4. 2
2.4.3
2. 4. 4
2. 4. 5

2. 5

2. 6

2. 7
2. 7. 1
2. 7. 2
2. 7. 3
2. 7. 4
2. 7. 5
2. 7. 6

2. 8
2. 8. 1
2. 8. 2

3

3. 1
3. 1. 1
3. 1. 2
3. 1. 3
3.1. 4
3.1. 5
3.1. 6
3. 1. 7

3. 2

CONTENTS

INTRODUCTION 1-1

Configuration 1-3

Assembler Execution 1-3

Relocatable Object Program Execution 1-4
Interactive Program Debugging 1-4

LANGUAGE S'IRUCTURE

Statement Format
First Column
Location Field
Operation Field
Variable Field
Comments Field
Comments Statement
Statement Continuation
Coding Conventions

Statement Editing
Concatenation
Micro Substitution

Nanes

Symbols
Linkage Symbols
Default Symbols
Previously Defined Symbols
Undefined Symbols
Qualified Symbols

CPU Registers

Special Elements

Data Notation
Data Items
Constants
Literals
Character Data Notation
Numeric Data Notation
Hexadecimal Data Notation

Expressions
Types of Expressions
Evaluation of Expressions

PROGRAM S'IRUCTURE

Subprogram Blocks
Absolute Block
Zero Block
Literals Block
User-Established Local Blocks
Labeled Common Blocks
Blank Comm.on Blocks
Redundant Block Names

Block Control Counters

2-1

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3

2-4
2-4
2-4

2-4

2-5
2-6
2-7
2-7
2-8
2-8

2-8

2-10

2-11
2-11
2-11
2-12
2-13
2-17
2-22

2-23
2-24
2-27

3-1

3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3

3-3

3. 2.1
3. 2. 2
3. 2. 3
3.2.4

3.3

3.4
3. 4. 1
3. 4. 2
3.4.3

4

4. 1
4. 1. 1
4. 1. 2
4.1.3
4. 1. 4

4. 2
4. 2.1
4. 2. 2

4. 3
4. 3. 1
4. 3. 2

4. 3. 3

4. 3. 4

4. 3. 5

4.3.6
4.3.7
4. 3. 8
4.3.9
4. 3. 10
4. 3. 11
4. 3. 12
4.3.13

4. 3. 14

4. 4
4. 4. 1
4.4.2

4. 4. 3
4.4.4
4. 4. 5

4.4.6

4. 5
4. 5. 1
4. 5. 2

4.5.3
4.5.4
4.5.5

60492600 M

Origin Counter
Location Counter
Position Counter
Forcing Upper

Relocatable Program Structure

Absolute Program Structure
Absolute Overlays
Multiple Entry Point Overlays
Partial Binary

PSEUDO INSTRUCTIONS

Introduction to Pseudo Instructions
Types of Pseudo Instructions
Required Pseudo Instructions
First Statement Group
Permissible Anywhere Instructions

Subprogram Identification
!DENT - Subprogram Identification
END - End of Subprogram

Binary C.Ontrol
ABS - Absolute CPU Program
MACHINE - Declare Object Processor

Type
PPU - CYBER 70 Model 76 or 7600

PPU Program
PERIPH - CYBER 180 Series; CYBER 170

Series; CYBER 70 Models 72, 73, 74;
or 6000 Series PPU 12-bit Program

CIPPU - Select CYBER 180 Series
PPU 16-bit Program

!DENT - Identify and Generate Overlay
SEGIBNT - Generate Binary Segment
SEG - Write Partial Binary
STEXT - Generate System Text Record
CCMMENT - Prefix Table Comment
NOLABEL - Delete Header Table
LCC - Loader Directive
MEMSEL - CYBER 180 Series Select

PPU 16-bit Memory Size
LDSET - Generate LDSET Object

Directives

Mode Control
BASE - Declare Numeric Data Mode
CHAR - Define Other Character Data

Code
CODE - Declare Character Data Code
QUAL - Qualify Symbols
Bl•l and B7=1 - Declare that

B Register Contains One
COL - Set Comments Column

Block C.Ounter Control
USE - Establish and Use Block
USELCM - Establish and Use ECS/LCM

Block
ORG and ORGC - Set Origin Counter
BSS - Block Storage Reservation
LOC - Set Location Counter

3-3
3-4
3-4
3-4

3-5

3-6
3-8
3-12
3-12

4-1

4-1
4-1
4-2
4-2
4-2

4-'l.
4-2
4-4

4-6
4-6

4-7

4-8

4-10

4-11
4-12
4-15
4-16
4-17
4-20
4-20
4-21

4-21

4-22

4-24
4-'l.4

4-26
4-26
4-28

4-30
4-31

4-32
4-32

4-34
4-35
4-37
4-38

ix

4. 5. 6

4. 6
4. 6. I
4. 6. 2
4. 6. 3
4. 6. 4
4. 6. 5
4. 6. 6

4. 7
4. 7. 1

4. 7. 2

4.8
4. 8. I

4. 8. 2
4. 8. 3

4.8.4
4. 8. 5
4. 8. 6
4.8.7

4.8.8

4. 9
4. 9. 1
4. 9. 2
4. 9. 3
4. 9. 4
4. 9. 5

4. 9. 6

4. 9. 7
4.9.8

4.10
4.1o.1
4.1o.2

4.11
4. 11. I
4.11. 2

4. 11. 3

4. 11. 4
4. 11. 5
4. 11. 6
4.11. 7

4.11. 8

5

5. 1

5. 2
5. 2. I
5. 2. 2

5. 3
5. 3.1
5. 3. 2

x

POS - Set Position Co\lllter

Symbol Definition
EQU or = - Equate Symbol Value
SET - Set or Reset Symbol Value
MAX - Set Symbol to Maximum Value
MIN - Set Symbol to Minimum Value
MICCNT - Set Symbol to Micro Size
SST - System Symbol Table

Subprogram Linkage
EN1RY and EN1RYC - Declare Entry

Symbols
EXf - Declare External Symbols

Data Generation
BSSZ and Blank Operation Field -

Reserve Zeroed Storage
DATA - Generate Data Words
DIS - Generate Words of Character

Data
LIT - Deel are Liter al Values
VFD - Variable Field Definition
CON - Generate Constants
R= - Conditional Increment

Instruction
REP, REPC, and REP! - Generate Loader

Replication Table

Conditional Assembly
ENDIF - End of IF Range
ELSE - Reverse Effects of IF
IFTYPE - Test Object Processor Type
!FOP - Compare Expression Values
IFPL and IFMI - Test Sign of

Expression
IF - Test Symbol or Expression

Attribute
IFC - Compare Character Strings
SKIP - Unconditionally Skip Code

Error Control
ERR - Unconditionally Set Error Flag
ERRxx - Conditionally Set Error Flag

Listing Control
LIST - Select List Options
EJECT - Eject Page and Begin New

Sub-Subtitle
SPACE - Skip Lines and Begin New

Sub-Subtitle
TITLE - Assembly Listing Title
TTL - New Assembly Listing Title
NOREF - Omit Symbol References
CTEXT and ENDX - Disable/Enable

Listing of Common Deck Text
XREF - Reference Symbolic Address

DEFINITION OPERATIONS

External Text (XTEXT)

Remote Assembly
RMT - Save Remote Code
HERE - Assemble Remote Code

Code Duplication
DUP - Simple Duplication
ECHO - Echoed Duplication

4-4.0

4-40
4-41
4-41
4-42
4-43
4-44
4-45

4-45

4-45
4-47

4-47

4-48
4-48

4-49
4-51
4-53
4-54

4-55

4-57

4-59
4-59
4-60
4-60
4-62

4-64

4-65
4-68
4-70

4-71
4-71
4-72

4-73
4-73

4-76

4-76
4-77
4-78
4-78

4-79
4-80

5-1

5-2

5-3
5-3
5-4

5-6
5-6
5-7

5. 3. 3
5. 3. 4

5. 4
5. 4.1
5. 4. 2
5.4.3
5.4.4
5. 4. 5
5. 4. 6
5. 4. 7
5.4.8
5. 4. 9

5. 5

6

6. 1
6. 1. 1
6. 1. 2
6. 1. 3
6.1. 4

6. 2
6. 2. 1
6.2.2
6. 2. 3

7

7. 1

7. 2
7. 2. 1
7. 2. 2
7. 2. 3

7. 3
7. 3. 1
7. 3. 2
7. 3. 3
7. 3. 4
7. 3. 5
7. 3. 6
7. 3. 7
7. 3. 8
7. 3. 9

8

8. I

8. 2
8. 2. 1

8.2.2

8. 2. 3

8.2.4
8.3
8. 3. 1
8.3.2
8. 3. 3

STOPDUP - Stop Duplication
ENDO - End Duplication Sequence

Macros and Opdefs
ENIM - End Macro Definition
MACRO - Macro Heading
Macro Calls
MACROE - Equivalenced Macro Header
Equivalenced Macro Call
OPDEF - Define CPU Operation
Opdef Call
LOCAL - Local Symbols
!RP - Indefinitely Repeated Parameter

System Macro and Opdef Definitions

OPERATION CODE TABLE MANAGEMENT

Mnemonically Identified Instructions
PPOP - PPU Operation Code
OPSYN - Synonymous Mnemonic Operation
NIL - Do Nothing Pseudo Instruction
PURGIAC - Purge Macros

Syntactically Identified Instructions
CPOP - CPU Operation Code
CPSYN - Synonymous CPU Instruction
PURGDEF - Purge CPU Operation Code

MICROS

Micro Substitution

Micro Definition
MICRO - Define Micro
DECMIC - Decimal Micro
OC'IMIC - Octal Micro

Predefined Micro Names
DATE
JDATE
TIME
BASE
COIE
QUAL
SEQUENCE
MODLEVEL
PCCMMENT

CPU SYMBOLIC MACHINE INSTRUCTIONS

Machine Instruction Formats

Instruction Execution
6600/6700 and CYBER. 70 Model 74

Execution
CYBER 180 Computer Systems; CYBER. 170

Models 171, 172, 173, 174, 720,
730, 815, 825, 835, 845, and 855;
CYBER 70 Models 71, 72, and 73; and
6200, 6400, 6500 Execution

CYBER 170 Models 175, 176, 740,
750, 760, 865, and 875; CYBER 70
Model 76; and 7600 Execution

CYBER 180 Model 990 Execution
Operating Registers
X Registers
A Registers
B Registers

5-9
5-10

5-13
5-14
5-15
5-18
5-24
5-25
5-27
5-29
5-31
5-33

5-35

6-1

6-3
6-3
6-S
6-6
6-7

6-7
6-7
b-10
6-10

7-1

7-1

7-2
7-2
7-4
7-4

7-5
7-5
7-b
7-6
7-6
7-6
7-6
7-7
7-7
7-7

8-1

8-1

8-2

8-2

8-4

8-5
8-6. i I
8-7
8-7
8-7
8-7

60492600 M

8.4
8. 4.1

8. 4. 2
8.4.3
8. 4. 4
8. 4. 5
8.4.6
8. 4. 7
8.4.8
8.4.9
8. 4. 10

8. 4. 11
8. 4. 12

8. 4.13
8. 4. 14
8. 4.15

8. 4.16

8. 4. 1 7
8. 4.18
8. 4.19
8. 4. 20
8. 4. 21
8. 4. 22

8.4.23

8.4.24

8. 4. 25

8.4.26

8.4.27

8. 4. 28

8.4.29
8. 4. 30
8. 4. 31
8. 4. 32
8. 4. 33

8. 4. 34
8. 4. 35

8. 4. 36
8. 4. 37

8. 4. 38

8. 4. 39

8. 4. 40
8. 4. 41
8. 4. 42

8. 4. 43

8. 4. 44
8. 4. 45
8. 4. 46
8. 4. 4 7
8. 4. 48
8. 4. 49

8.5
8. 5. 1
8. 5. 2

Symbolic Notation
Program Stop or Exchange Jtunp

Instruction
Error Exit Instruction
Return Jump Instruction
ECS/UEM Instructions
L01 Block Copy Instructions
Exchange Jump Instruction
Exchange Exit Instruction
Direct L01 Transfer Instructions
Direct UEM Transfer Instructions
Reset Input Channel Buffer

Instruction
Set Real-Time Clock Instruction
Reset Output Channel Buffer

Instruction
Read Channel Status Instructions
Unconditional Jtunp Instruction
X-Register Conditional Branch

Instructions ·
B-Register Conditional Branch

Ins true tions
Transmit Instruction
Logical Product Ins true tion
Logical Stun Instruction
Logical Difference Instruction
Complement Instruction
Logical Product and Complement

Instruction
Complement and Logical Sum

Instruction
Complement and Logical Difference

Instruction
Logical Left Shift jk Places

Instruction
Arittmetic Right Shift jk Places

Ins true tion
Logical Left Shift (Bj) Places

Instruction
Arithmetic Right Shift (Bj) Places

Ins true tion
Normalize Instruction
Round and Normalize Instruction
Unpack Instruction
Pack Instruction
Unrounded SP Floating Point Add

Ins true tions
DP Floating Point Add Instructions
Rounded SP Floati.ng Point Add

Instructions
Long Add (Fixed Point) Instructions
Unrounded SP Floating Point Multiply

Instruction
Rounded SP Floating Point Multiply

Inst rue tion
DP Floating Point Multiply

Ins true tion
Integer Multiply Instruction
Mask Inst rue tion
Unrounded SP Floating Point Divide

Instruction
Rounded SP Floating Point Divide

Ins true tion
Pass Ins true tion
Population Count Instruction
Set A Register Instructions
Direct Read/Write Central Memory
Set B Register Instructions
Set X Register Instructions

01U Symbolic Machine Instructions
lM - Indirect Move
MD - Indirect Move Descriptor Word

60492600 M

8-8

8-13
8-14
8-14
8-15
8-16
8-17
8-18
8-19
8-20

8-21
8-21

8-22
8-22
8-23

8-24

8-26
8-27
8-28
8-28
8-29
8-29

8-30

8-30

8-31

8-31

8-32

8-32

8-33
8-34
8-35
8-35
8-36

8-37
8-38

8-38
8-39

8-39

8-40

8-40
8-41
8-42

8-42

8-43
8-43
8-43
8-44
8-46
8-46
8-48

8-50
8-51
8-51

8. 5. 3
8.5.4
8. 5. 5

9

9. 1

9. 1. 1

9.2
9. 2. 1
9. 2. 2
9.2.3
9. 2. 4
9.2.5
9.2.6

9.2.7
9.2. 7.1
9.2.8
9.2.9
9.2.10
9. 2. 11
9. 2. 12

9. 2. 13

9.2.14

9.2.15
9. 2. 16

9. 2. 17
9.2.18

9.2.19
9.2.20
9. 2. 21
9. 2. 22

10

10. 1
1 o. 1. 1
1 o. 1. 2
10. 1. 3
10. 1. 4
10. 1. 5
10. 1. 6
10. 1. 7

10.2

11

11. 1

11. 2
11.2.1
11. 2. 2
11. 2. 3
11. 2. 4

11. 3

11.4

11. 5

DM - Direct Move
CC - Compare Collated
CU - Compare Uncollated

PP SYMBOLIC MACHINE INSTRUCTIONS

Machine Instruction Formats
(12-bit Mode)

Machine Instruction Formats
(16-bit Mode)

Symbolic Notation
Branch Instructions
Shift Instruction
No Address Mode Instructions
Constant Mode Instructions
No Operation Instruction
Load and Store R Register

Ins true tions
Exchange Jump Instructions
Interrupt Processor
Read Program Address Instruction
6416 PP Instructions
Direct Address Mode Instructions
Indirect Address Mode Instructions
Indexed Direct Address Mode

Inst rue tions
Central Read/Write Instructions

(12-bit Mode)
Central Read/Write Instructions

(16-bit Mode)
I/O Branch Instructions
I/O Test and Set Channel Flag

Ins true tions
I/O Branch Instructions
A Register Input/Output

Instructions
Block Input/Output Instructions
Set Output Record Flag Instruction
Channel Function Instructions
Error Stop Instruction

PROGRAM EXECurION

Control Statements
Job Statement
COMPASS Control Statement
LGO Control Statement
Program Call Statement
7 /8/9 Card
6 /7 /8 /9 Card
USER Control Statement (NOS 1 Only)

Sample Decks

LISTING FORMAT

Page Heading

Header Information
Binary Control Card Summary
Block Usage Summary
Entry Point List
External Symbol List

Octal and Source Statement Listing

Literals

Default Symbols

8-52
8-53
8-54

9-1

9-1

9-2.1
9-2.2
9-7
Y-Y
9-10
9-11
9-11

Y-12
9-12. 1
9-13
9-13
9-14
9-15
9-16

9-16. 2

9-17

9-19
9-20. 1

9-20.2
9-21

9-22
9-22
9-24
9-24
9-25

10-1

10-1
10-1
10-2
10-6
10-6
10-7
10-7
10-7

10-8

11-1

11-1

11-1
11-1
11-3
11-4
11-4

11-5

11-7

11-8

xi

I
B

11. 6

11. 7

11. 8

12

12. 1

12. 2

12. 2. 1
12. 2. 2

12. 2. 3

12. 2. 4
12. 2. 5

12. 2. 6

12. 2. 7

12. 2. 8

12. 2. 9

12. 2.10
12. 2. 11
12. 2. 12
12. 2. 13
12. 2. 14
12.2.15
12. 2. 16

Assembler Statistics

Error Directory

Symbolic Reference Table

COMMON COMMON DECKS

Access to the Common Common Decks

Description of the Common Common
Decks

COMCARG - Process Arguments
COMCCDD - Convert Integer Constant

to Decimal Display Code
COMCCFD - Convert Constant to

Fl0.3 Format
COMCCIO - Process I/O Operation
COMCCOD - Convert Constant to Octal

Display Code
COMCCI71' - Extract Comments Field

from PREFIX Table
COMCDXB - Convert Display Code to

Binary
COMCMNS - Move Non-Overlapping

Bit String
COMCMOS - Move Overlapping Bit

String
COMQi'Il1 - Managed Table Macros
COMOiTP - Managed Table Processors
COMOiVE - Move Block of Data
COMCRDC - Read Coded Line, C Format
COMCRDH - Read Coded Line, H Format
COMCRDO - Read One Word
COMCRDS - Read Coded Line to String

Buffer
12.2.17 COMCRix.1 - Read Words to Working

Buffer
12.2.18 COMCRSR - Restore All Registers
12.2.19 COMCSFN - Space Fill Name
12.2.20 COMCSRT - Set Record Type
12.2.21 COMCSST - Sort Table Using Shell

Sort
12.2.22 COMCSTF - Set Terminal File
12.2.23 COMCSVR - Save All Registers
12.2.24 COMCSYS - Process System Request
12. 2. 25 COMCUPC - Unpack Control Card
12. 2. 26 COMCWOD - Convert Word to Octal

Dis play Code
12. 2. 2 7 COMCWTC - Write Coded Line, C Format
12. 2. 28 COMCWTH - Write Coded Line, H Format
12. 2. 2 9 COMalTO - Write One Word
12. 2.30 COMCWTS - Write Coded Line from

String Buffer
12.2.31 COMCW'IW - Write Words from Working

Buffer
12.2.32 COMCXJR - Restore All Registers with

a System XJR Call
12. 2. 33 COMC'lTB - Convert All 00 Characters

to Blanks
12. 3

12. 3. 1
12. 3. 2
12. 3. 3
12. 3. 4
12. 3. 5
12. 3. 6
12. 3. 7

xii

Macros That Call the Common Common
Decks

MESSAGE
MOVE
RF.ADC
RF.Am
RF.ADO
RF.ADS
RF.AW

11-8

11-9

11-12

12-1

12-1

12-3
12-3

12-4

12-4
12-5

12-5

12-6

12-6

12-7

12-7
12-8
12-9
12-13
12-13
12-14
12-15

12-16

12-16
12-17
12-18
12-18

12-18
12-20
12-20
12-21
12-22

12-23
12-23
12-23
12-24

12-25

12-25

12-26

12-26

12-27
12-28
12-29
12-29
12-30
12-30
12-30
12-31

12. 3. 8
12. 3. 9
12. 3.10
12. 3.11
12. 3. 12
12. 3.13
12. 3. 14

RECALL
SYST»I
WRIT EC
WRITER
WRITEO
WRIT~

WRITEW

APPENDIXES

A Character Sets
B Assembly-Time I/O
C Binary Card Formats
D Hints on Using COMPASS
E Dayfile Messages
F Glossary

INDEX

FIGURES

2-1 COMPASS Coding Form
3-1 Relocatable Program Structure
3-2 Absolute Program Structure
3-3 Overlay Hierarchy
3-4 !DENT-Type Overlay Structure
3-5 SEQfENT-Type Overlay Structure
3-6 SEG Partial Binary
3-7 !DENT Partial Binary Records
8-1 CPU 15-bit Instruction Format
8-2 CPU 30-bit Instruction Format
8-3 Arrangements of Instructions in a 60-bit

CPU Word
9-1 PP 12-bit Instruction Format
9-2 PP 24-bit Instruction Format
9-3 Central Memory Access Instruction

Address Relocation (Models 810, 815,
825, 830, 835, 840, 845, 850, 855,
860, 865, 875 and 990)

9-4 PP 16-bit Instruction Format
9-5 PP 32-bit Instruction Format
11-1 Format of Octal and Source Statement

Listing
11-2 Format of Symbolic Reference Table

TABLES

8-1 CYBER 70 Model 74 and 6000/7600
Functional Units

8-2 CYBER 170 Model 175, 176, 740, 750, 760,
865, and 875; CYBER 70 Model 76; and
7600 Functional Units

8-3 CYBER 180 Model 990 Functional Units
8-4 CPU Instruction/Machine Model

Correspondence
8-5 CPU Instruction/Functional Unit

9-1

9-2

11-1
11-2
12-1
12-2

. 12-3

Correspondence
Peripheral Processor Instruction

Designators
PP Instruction/Machine Model

Correspondence
Fatal Errors
Informative Messages
Summary of Common Common Decks
Type Codes Returned by aMCSRT
Macros That Call Common Common Decks

12-31
12-32
12-32
12-33
12-33
12-33
12-34

A-1
B-1
C-1
D-1
E-1
F-1

2-3
3-6
3-7
3-9
3-11
3-13
3-14
3-15
8-1
8-1

8-2
IJ-1
IJ-l

IJ-l I 9-2.1
9-l.2

11-5
11-13

8-3

8-6

:~:· l I
8-10

IJ-3

IJ-4
11-9
11-ll
12-2
12-19
12-27

60492600 M

INTRODUCTION

This manual describes the features of the COMPASS Version 3 assembly language processor and the
principles, methods, rules, and techniques of coding a COMPASS program.

The user is assumed to be familiar with a Control Data computer and operating system, and is assumed to
be familiar with assemblers in general.

Readers with no previous experience with the COMPASS assembler are encouraged to direct their initial
attention to the following sections of the manual:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 8 or 9

Chapter 10

Appendix D

Introduction

Language Structure

Program Structure, sections 3.1 through 3.3

Pseudo Instructions, sections 4.1 and 4.2

CPU or PP Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires

Program Execution

Hints on Using COMPASS (example program)

COMPASS, like other assemblers, is machine- and operating system-dependent. The user, therefore, should
be aware of restrictions imposed on COMPASS by the programming environment. Specifically, the user
should note:

Differences between CPU and PP program environments

Features of COMP ASS not supported by a particular operating system

Machine and operating system limitations are outlined in the preface of this manual. The applicability of
instruction sets is shown in the instruction indexes (inside front and back covers), and is addressed as
necessary throughout the manual.

A COMPASS program consists of one or more subprograms. From source language subprograms, the
assembler generates binary output acceptable for loading and execution. The programmer can divide a
subprogram, whether it is assembled as absolute or relocatable, into areas called blocks. Blocks are
assembled independently. Thus, they can be loaded and executed independently or linked by the system
loader preparatory to execution of the program. This capability provides much flexibility in combining,
segmenting, overlaying, and ordering blocks for execution.

Subprogram blocks consist of two types of source statements:

Symbolic machine instructions

Pseudo instructions

Symbolic machine instructions are the counterparts of the binary machine instructions. They provide a
means of expressing symbolically the data manipulation functions of the machine. Each symbolic
instruction typically generates one machine instruction.

60492600 G 1-1

1

Pseudo instructions do not have a one-to-one relationship with binary machine instructions. They are used,
instead, to control aspects of the assembly process, such as:

Storage allocation

Symbol definition

Subprogram linkage

Listing options

Automatic generation of predefined code sequences (macros)

From CPU source language subprograms, COMPASS generates absolute or relocatable binary output
acceptable for loading and execution. From PPU source language subprograms, COMPASS generates
absolute binary output to be loaded and executed on a peripheral processor unit. The operating system
allows only specially privileged jobs to access a peripheral processor unit.

Features inherent to COMPASS include:

1-2

Free-field source
statement format

Control of local
and common blocks

Preloaded data

Data notation

Address arithmetic

Symbol equation and
redefinition

Symbol qualification

Binary control

Selective assembly of
code sequences

Mode control

Size of source statement fields is largely controlled by user.

Programmer and system can designate up to 255 areas to facilitate
interprogram communication. In CPU programs, common areas can be
defined in small core memory (CM or SCM) or extended or large core
memory (ECS or LCM).

Data areas may be specified and loaded in core memory with the source
program.

Data can be designated in integer, floating-point, and character string
notation. It can be introduced into the program as a data item, a constant, or
a literal.

Addresses can be specified making extensive use of constants, symbolic
addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameterization
of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqualified symbol is global and can be referred to from within any sequence
without qualification.

The programmer can specify whether binary output is to be absolute or
relocatable. Absolute code can be generated for any PPU or CPU.
Relocatable code can be generated for any CPU. Binary can be written as
overlays or as partial records.

Assembly-time tests allow the user to select or alter code sequences.

Ability to specify the base to be used for numeric notation not explicitly
defined as octal or decimal, and to specify the code conversion to be applied
to character data as either ·display code, ASCII, internal BCD, or
external BCD.

·60492600 G

Listing control

Micro coding

Macro coding

Opera ti on code table

Operation code
definition

Code repetition

Remote assembly

Library routine calls

Diagnostics

1.1 CONFIGURATION

Assembly-time control of list content.

Substitution of sequences of characters defined in the program whenever the
micro name is referenced. Several micros are predefined by the system for
user convenience.

Assembly of sequences of instructions defined in the program or on the
system library whenever the macro name is referenced. Macro definitions
can be redefined or purged from the operation code table.

The programmer can specify or respecify the syntax of a CPU or PPU
instruction. The assembler generates an entry in the operation code table for
the instruction. No macro or opdef definition is associated with the entry.

Assembly of sequences of instructions defined in the program or on the
system library whenever an operation code of the specified syntax is
referenced.

Sequences of code can be repeated during assembly or at load time.

Defers assembly of defined coding sequence until later in the assembly.

Routines can be called from the system library.

Diagnostics for source program errors are included on output listing.

The hardware requirements for executing COMPASS on a CPU are the minimum required for the operating
system.

1.2 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control statement (chapter 10) or FORTRAN
compiler upon encountering a COMPASS IDENT statement in the source input file. Parameters on the
control statement specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as a
CPU program.

The operating system allocates the input/output resources as needed and performs all input/output required
during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first pass, it
reads each source language instruction, expands and edits called sequences as needed, interprets the
operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol values and
produce the assembly listing and binary output. Finally, it prepares the symbolic reference table and
reinitializes itself preparatory to assembling the next subprogram.

COMPASS alters its field length dynamically, thus ensuring that central memory requirements for tables
used by the assembler are satisfied. The assembler requests additional central memory as needed up to a
threshold field length. (The threshold value is determined by the installation.) When the threshold field
length is reached, the intermediate file and cross-references are transferred to the system mass storage
device. If additional core is needed, the assembler continues to request central memory up to the
maximum available to the job. (COMPASS may use any ECS/LCM space assigned to the job for table
space.) If core requirements are still not satisfied, COMPASS aborts and issues a diagnostic message.

60492600 G 1-3

All nested processing of macros and similar definitions is handled in a single recursive push-down stack.
COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a depth of 400.

1.3 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, a control statement (for example, LGO) can
be used to call for loading and execution of a CPU object program from the load-and-go file. The loader
links the newly assembled subprogram to any previously assembled subprograms and subroutines referred to
by the new program and to programs on any other files specified by the programmer. After all
subprograms are loaded and linked, the operating system begins program execution at a location specified
by one of the subprograms. Data for the object program can be on some programmer-specified file.
Normally, this loading and execution does not take place if the COMPASS assembler detects fatal errors.

1.4 INTERACTIVE PROGRAM DEBUGGING

A COMPASS program that assembles without fatal errors can be executed under control of the CYBER
Interactive Debug (CID) software. CID allows the programmer to correct errors in program logic from a
terminal. Using CID, the COMPASS programmer can:

Suspend program execution at a specific location or upon_ occurrence of a specific trap condition, such
as execution of a return jump instruction

Alter location content during program suspension

Resume execution at a specified location or at the location where suspension occurred

A complete description of CID features and use is given in the CYBER Interactive Debug Reference
Manual listed in the preface.

1-4 60492600 G

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and comment lines. With the exception of the comment lines, each statement consists of a
location field, an operation field, a variable field, and a comments field. Each field is terminated by one or
more blank characters. However, a blank embedded in a character data item, parenthesized macro
parameter, or comments field does not terminate a field. The size of the variable field is restricted by the
maximum statement size only. Statement format is essentially free field.

When punched on cards, each card is considered a line. A single statement may be composed of as many as
ten lines. Information beyond column 72 is not interpreted by COMP ASS but does appear on the assembly
listing. Thus, columns 73 through 80 can be used for additional comments or sequencing. Columns 81
through 90 are used for sequencing by library maintenance programs; they are normally not used by the
programmer. A line that contains two or more consecutive colons may be read and printed as two lines
because of operating system conventions for delimiting line images.

2.1.1 FIRST COLUMN

The contents of column one designate the type of line, as follows:

,(comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2. l .2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a plus
sign(+) or a minus sign(-). (See Block Control Counters, chapter 3.)

2. l .3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters between
the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60492600 H 2-1

Pseudo instruction mnemonic operation code

Macro name

Blank

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists of
one or more subfields separated by commas. The variable field begins with the first nonblank character
following the operation field and is terminated by one ore more blanks. It is blank if there are no nonblank
characters between the operation field and column 30.

A variable subfield contains one of the following:

Data item

Expression

Register designator

Name

Special element

Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30. The beginning comments column can be changed
through the COL pseudo instruction (chapter 4).

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with *is not counted in line counts for IF-skipping (Section 4.9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma in
column one and continuing the field in column two. A maximum of nine continuation lines is permitted for
a statement. The break between lines need not coincide with a field or subfield separator; even a symbol
can be split between two lines. Continuation lines beyond the ninth, and continuation lines following a
terminated statement are considered comment lines.

2-2 60492600 A

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column

1

2-9

10

11-16

17

18-29

30

Contents

Blank, asterisk,or comma

Location field entry or plus, or minus left justified

Blank

Operation field entry left justified

Blank

Variable field entry left justified

Beginning of comments

All examples in this manual abide by this conventi.~.m.

COMPASS CODING FORM
PROGRAM NAME
ROUTINE DATE PAGE

LOCATION PERATION VARIABLE COMMENTS

I
I .

. J ...

. t ~: : : : : : : :
....•.........

. ··l-· -........ .
. t -

.. t

. -~

. -t·-···· ----

........... ~
I

~_.__._....,.__ • • ' • • • . L+ •·• • • • • •-~- .. • • ' • • • ... • • . • • . •
......... --~---·~·~ ·--·· ---· .. ' .. ---"·+~ -~·-·

J.~..... . .. J.... ~ .. __. :

I ··-'·t~ •· ...•.•. .l.....1...-... • • • • • • • • • • • • ••..•••.•••.••.

.C~-+-'-.............. .J....J_~~..L.....- •••• --~•+.L.... - ·-··
L.--.J._ "f...i..I..L ••• ••••••••••••

.................. "-'-L....L..J.~.L.......J..._ • J-LL-L •· ~ 4 0. , , , • , •••• , •• _ , J. • , • , , .. , .. _ • ... , , , , , •

H-.......__.....L....;....-..L""'-+......J...-~L..J...... • • • • • , • L-~• .Ll -• • ·•·. ·•• • , , • • •·•. • • • • • 0 , • • • •. • • • • • • l • • ; • •

~~.....L......L...L.~.J.-l.. • • • ... • • ----1----"---L-L----. • • 1 - ••• • • 1 , , • , I - I ..

............. ' ... -··~_. ___ ~~. ~ ···---·--· ... ~ .. · - .. -..
-LL l. L.1.- 1 _..J~l,...l •--L-·-- 4 _.._ 4_ 1 ·-- •• ,. •· • • .. • • • •. • •, • • • •

l-+-''--'-'-'-'-...l....LJ......1....J.......L..~i,........-~..J.........L...-
1

......__:,_._...........__ -- --~ o L..l 1 •-•· ~ ~-• ••• .1..;. • ·• ~ , • , , , _ • • c • • '-•

OF
IDENT

·

AA2917 llV~I~;.' • 11 11 11
.. •• .. "" ,.~,, u n M" .. r;, •" • ,, 11 JI,. ,,f:~ ";-+.,·•.~+,; .. " •• .,+-;-t,;t~-;-f-~;-t;;+ .. ;;-+-..t,-, .. Mt·,.• .. +.,t,;·,,•.: •. •;.• .. • .. •,,•,,t-,,-T,1 , 1 ,, ;;,<t~• •. •, .. ,.•.

,..,.IO .. U. S. A.

Figure 2-1. COMPASS Coding Form

60492600 A 2-3

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are
saved for editing and interpretatim \\ffin the definition is referenced or expanded. ENDD and ENDM
are part of the definition they terminate and are not edited. Statements within the range of a conditional
(IF type) pseudo instruction are edited even when they are skipped. COMPASS performs two types of
editing: concatenation, and micro substitution.

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character r- and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the r- is superfluous and is removed by editing before the definition is interpreted.

Each removal of r shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (rl) that delimit references to micro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are
shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last statement
read is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it
discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The mforo marks and name remain in the line.
In the first case, the assembler flags a nonfatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e. , the two micro marks are adjacent) both micro marks are deleted and no
error flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

2.3 NAMES

A name is a sequence of characters that identifies one of .the following:

2-4

Subprogram or overlay

Block

60492600 D

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)

IF sequence

Micro

A comma or a blank terminates a name. Concatenation marks and pairs or micro marks are removed
before the name is scanned (see Statement Editing).

A CPU subprogram name or overlay name is ue>ed for linkage with other subprograms. It must begin with a
letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by the operating
system could restrict the use of certain characters in names. There is no restriction on the first character
for a PPU subprogram or overlay name. For a CYBER 70 Model 76 or 7600 PPU assembly, the name can be
seven characters, for a CYBER 180 Series the name can be four characters and for a CYBER 170 Series, a I
CYBER 70 Model 72, 73, 74, or 6000 Series PPU assembly the name can be three characters. In all cases,
the last character of a subprogram or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or attributes
and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etc.

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $or= or: or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters:

+ - * I blank , r- or /\

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters in
symbols.

An external or entry point symbol is ue>ed for linkage with other subprograms and has additional restrictions
(see Linkage Symbol<>).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (see Statement
Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot normally be An,
Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.x, or X.x, becaue>e xis
assumed to be a data item by the assembler. However, symbols resembling register designators can be ue>ed
if each use of the symbol is prefixed by =Sor =X. Register designators are described further under CPU
registers.

The process of associating a symbol with a value and attributes is known as symbol definition. This can
occur in five major ways.

60492600 M 2-5

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo instructions is
defined as an address having the current value of the location counter (chapter 3) and having an
attribute defined as follows:

Absolute for the absolute block

Common for labeled or blank common blocks (relocatable assemblies only)

Relocatable for local blocks other than absolute during pass one

Absolute for local blocks during pass two of an absolute assembly

2. A symbol used in the location field of definition pseudo instructions (see Symbol Definition, chapter 4)
is defined as having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a symbol.
Unless a symbol is redefinable, a second attempt to define it with a different value produces a
duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram and is declared as external
in the current subprogram or is defined in relation to a symbol declared as external. In either case it
has the attribute of external. Unlike a systems symbol, the true value definition is not known to the
current subprogram.

4. Definitions of systems symbols that take place outside of the current program can be carried over to
the current program through the SST pseudo instruction. COMPASS uses the true definitions but
assigns the additional attribute of systems symbol.

5. COMPASS defines a symbol by default if a reference to a symbol is preceded by =Sand the symbol is
not otherwise defined in the subprogram. This feature is further described under Default Symbols.

There is no restriction on the number of times that the symbol can be ref erred to in the subprogram.

Examples:

Legal Symbols

p
R3
PROGRAM

2.4.l LINKAGE SYMBOLS

Illegal Symbols

5A
ABCEDEFGHI
ABE+15
=.11

First character numeric
Exceeds eight characters
Contains plus sign
First character equal sign

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types of
linkage symbols are external symbols and entry point symbols. An external or entry point symbol can be a
maximum of seven characters, the first character must be a letter (A-Z), and the last character must not
be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the current
subprogram can be declared as an external symbol in the current subprogram. Any symbol declared as an
entry point in the current subprogram can be declared as an external symbol in some other subprogram.
The symbol has a zero value and an attribute of external. An external symbol can be declared either
through the EXT pseudo instruction or through default (a reference to the symbol is preceded by =X or =Y;
see Default Symbols).

2-6 60492600 A

An external symbol can be strong or weak. A strong external symbol reference causes the loader to try to
find and load a subprogram having a matching entry point symbol. Failure of the loader to satisfy a strong
external in this way is flagged as a non-fatal error by the loader. A weak external does not require the
loader to search for a satisfying subprogram; however if one is loaded for some other reason, the loader
associates the matching linkage symbols in the usual way. At the end of loading, the existence of
unsatisfied weak external symbol references is not an error.

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value and
attributes of an expression to a symbol. If the value of the expression reduces to an external symbol_:!: an
integer, the location field symbol is defined as having an integer value and external attribute. Entry point
symbols and external symbols are not qualified (see Qualified Symbols).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S, =X, or =Y and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as a strong or weak external symbol, respectively, at the end
of assembly. The =X and =Y forms are defined by default in relocatable assemblies only.

=Ssymbol

=Xsymbol

=Ysymbol

If symbol is not defined, COMP ASS assigns an address at the end of the zero block.
All subsequent references to the symbol, whether preceded by =S or not, are to the
location of the word. A default symbol cannot be used where a previously defined
symbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it again
but uses the programmer definition.

This option permits a programmer to define his symbols in a subroutine or link to
them in another subprogram. If the programmer defines the symbol, the assembler
uses the programmed definition. If the programmer does not define the symbol, the
assembler assumes that the symbol is a strong external as though declared in an EXT
pseudo instruction. A symbol prefixed by =X must conform to the requirements for
external symbols.

This option permits a programmer to define symbols in a subroutine or to link to them
in another subprogram that need not be loaded. If the programmer defines the
symbol, the assembler uses the programmed definition. If the programmer does not
define the symbol and' if it is not referenced elsewhere with an =X or =S prefix, or
declared in an EXT pseudo instruction, the assembler assumes that the symbol is a
weak external. A symbol prefixed by =Y must conform to the requirements for
external symbols.

The system does not define a default symbol and issues an error flag if a symbol is prefixed both by =S and
=X, or is prefixed by =X or =Y, and is not defined conventionally in an absolute assembly. Default symbols
are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

60492600 c 2-7

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (see QUAL pseudo instruction,
chapter 4) can be referred to outside of the qualifier sequence in which it was defined through:

/qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier is in
effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified symbol
can be referenced as //symbol.

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. The registers are described
more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence of
such a symbol is prefixed by =S, =X, or =Y (see Default Symbols). However, a warning message is issued
when such symbols are defined. The prefix cannot be used in the location field of machine instructions and
symbol defining, data generating, BSS pseudo instructions, in the variable field of ENTRY, EXT, and SST
pseudo instructions.

Register Type

Address

Index

Operand

Designator

An or A.n

Bn or B.n

Xn or X.n

For the for ms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

For the forms A.n, B.n, X.n, n can be a symbol or an integer. If the value of nor the value of the symbol
exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

Registers designated by Al through A5 or A.1 through A.5 are used for addressing to obtain information
from central memory. Registers designated by A6, A 7, A.6, or A. 7 are used for addressing to place
information into central memory.

2-8 60492600 H

COMPASS does not recognize registers in PP assemblies; there, the designators are acceptable as ordinary
symbols.

Examples:

Al

AlO

A.1

A.NUM

A.10

Designates address register 1

Interpreted as a symbol, not a register

Designates address register 1

If the value of NUM is 6, it designates address register 6

Designates address register 2; however, it produces a warning flag because the two was
derived from the truncation of 12, the octal value for 10.

The following produce equivalent results. A SET pseudo instruction (chapter 4) defines SUM and SUB as
absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same result as if
the value had been used directly. In this example, the address of ALPHA is 001000.

60492600 H 2-9

Code Generated

M32001l'OO

~
2

6032001000

I

I

LOCATION

LOCATION

SUM
St.;~

OPERATION

II

~B3

OPERATION

II

SET
SET
SB.SUM

VARIABLE COMMENTS

18 TJo

A2+ALPHA I

VARIABLE COMMENTS

18 bo

'3 I
2 I
A.SUR+ALPHA I

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as reference to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a value
specified by the element in the expression. The control counters are discussed further in chapter 3.

Designator

*or *L

*O

$

*P

*F

Significance

The assembler uses the value of the location counter for the block in use.
The element is relocatable unless the counter in use is for the absolute block.

The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

The assembler uses one less than the absolute value of the position counter
for the block in use.

The assembler uses the absolute value of the position counter for the block
in use.

The assembler uses an absolute value obtained as follows:

0 COMP ASS was called by a COMPASS control statement

1 COMP ASS was called by the RUN compiler (no longer supported)

2 COMPASS was called by the FTN4 compiler

3 COMP ASS was called by the FTN5 compiler

*F can be redefined by the COMP ASS control statement F parameter
(chapter 10).

These designators are inherent to COMPASS and cannot be altered by the programmer during an assembly.

2-10 60492600 H

Examples:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 1 Jo

JP •+1+~7 . . .
z~ X3,•L-1 .
• .
LOC •Q-~E<;+PPR

I • . .
v I=' I) •p/ .
• .
VF1 $/0,1/1 . . .

I tF~Q •F ,'.:!

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values, line
counts, control counter values, text for printing out messages, characters for forming symbols, etc.

The two types of data notation are character and numeric. The assembler allows the user to introduce data
in the program in three basic ways:

As a data item

As a constant in an expression

As a literal

2.7.1 DATA ITEMS

Character and numeric data items can be used in subfields of the DATA and LIT pseudo instructions or as
specifications of field values on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in octal, decimal, hexadecimal,
or character notation. It resembles a data item but is restricted by its use as an expression element in two
ways:

60492600 K 2-11

1. The first character must be numeric, prohibiting the delimited type of character string (see Character
Data Notation) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be a maximum of 60 bits
thus prohibiting double precision floating point numbers.

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruction or
as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a data
item in a DATA or a LIT pseudo instruction. The primary difference is that the literal is prefixed with an
equal sign, which indicates that a literal follows. ·

When a literal is used as an element in an expression, the expression is evaluated using the address of the
literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see chapter 3.)

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store the
data in the literals block using as many words as are required to hold the data. If the binary pattern of the
prefixed type of literal or of all the literals in a LIT declared sequence matches the binary pattern of words
previously entered in the literals block, an entry is not generated for the data. This process eliminates
duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries can
be referenced symbolically or through use of a prefixed literal. However, to preseve the integrity of the
literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (see Listing
Control, chapter 4).

Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the
statement at the lower part of 101.

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101
and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block and
does not cause new entries to be assembled.

60492600 H

Location Code Generated

100 6120005555 +
613000S55c; +

101 6140005556 +
5555

6120005555 +
102 6130005556 +

LOCATION

I

L

OPERATION VARIABLE

II 18

S~2 =1
SB3 =1~A
SB4 =1QR
LIT 1,2
SB2 l
SB3 l+1

CONlENl OF LITERALS etOCK.

ooc;ssc; oooooooroonQ00100~~1

ooc;ss; ooooooor.oqo1anQ~o~n?

a
8

COMMENTS

T Jo

I
I
I
I

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in the
literals block and causes entries to be generated in the literals block:

Location

oossi;c;
ooc;c.;i;r,
ooc;r;c.;1
ooc;r;61
ooc;c;f>t
ooc;i;G2

Code Generated LOCATION OPERATION

I II

55c;7 LIT

CONlfNl CF LITf~~LS ELCCk.
oo~oooooonooooooooot
noonoonnooooonnoooo2
ooonooonooo~qooonoo1
ooooooonono"~onoooo3
OOO~OOQ~ooon~0000004
o~onoooooooooonooo~?

a
A
A
r
[I
B

VARIABLE COMMENTS

lB l Jo

t,..,,1on,2
-,
I

However, if the literals sequence in the first part of the example had been followed by a LIT that
duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added to the
block. Thus, if the following LIT sequence had been used in place of the LIT 1,3,lRD,2, the first two words
of the sequence would match the last two words of the literals block so that only two additional words
would be required to complete the sequence.

Location Code Generated LOCATION

I

CONlENl OF LITfRALS BLOCK.

onnoooor.rooonononoo1
ooonooonoouoooooooo?
aoo~ooooooonooonooo~
oooooononnononoonoo4

2.7.4 CHARACTER DATA NOTATION

a
n
r
'1

OPERATION VARIABLE COMMENTS

II lB l Jo

LIT t,?,~,r.
I

I

Character data strings are converted to the code in use at the time the string is evaluated (see CODE
pseudo instruction, chapter 4), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation.

60492600 H 2-13

Format:

Data Item

Constant t

Literalt

I sign j n I type j string I
or

sign I type I d I string I d I
I n I type j string I
j =I signj njtype I string I

or

I = I sign I type I d I string I d I

Example

-3RABC

-R*ABC*

3RABC

=-3RABC

=-R*ABC*

= Applies to literals used as _expression elements only; signifies that a literal follows.

sign Optional for data item or literal. A sign with a constant is interpreted as an element operator.

+or omitted The value is positive

The complemented (negative) value is formed

n Signifies how the string is determinM:

omitted

0

n

The string is delimited by d. n cannot be omitted for a constant.

For data item or literal, the string consists of all characters following type
to:

blank or,

For a constant, string consists of all characters following type to:

+ - * I blank , or I\

The I\ (caret) is in the CDC character set. In the ASCII character set, use
the &: (ampersand).

For a data item or literal, n is an integer count of the number of characters
in the string not counting guaranteed zeros. It is limited only by statement
size.

For a constant, n is an integer count of the number of characters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right justified
constant if the most significant bit exceeds the field. Truncated zeros do
not cause an error in this case. A truncation error is flagged for a left
justified constant if the least significant bit positions are truncated, even if
they are zero.

The string consists of the n characters following type.

Regardless of base, COMP ASS assumes that n is decimal.

tExpression element

2-14 60492600 J

type Character string justification. The characters formed by the data item or constant are right
or left justified into the destination field as follows:

~ Significance

C Left justified with zero fill. For data item or literal, 12 zero bits are
guaranteed at the end of the string even if another word must be
allocated. For a constant, C is the same as L; the 12 zero bits are not
guaranteed.

H Left justified with blank fill

A Right justified with blank fill

R Right justified with zero fill

L Left justified with zero fill

Z Left justified with zero fill. For data item or literal, six zero bits are
guaranteed at the end of the string even if another word must be
allocated. For a constant, Z is the same as L; the six zero bits are not
guaranteed.

d A delimiting character used only when n is omitted. The characters between the first
occurrence of d and the second occurrence of d form the string. d can be any character other
than r+ or 'f.

string Characters from one of the COMPASS character sets (appendix A), except for those
characters that act as delimiters (seen and d), the concatenation character (r+), and pairs of
micro marks (;t!).

60492600 H

Concatenation marks and pairs of micro marks are removed by editing before a string is
examined. A single micro mark can be used in a string.

An empty or omitted character string is defined under one of the following conditions:

n is O and type is immediately followed by a delimiter, for example, OL.

n is omitted and the two delimiting characters are adjacent, for example, H+ +.

Omission of a string in a DATA pseudo instruction is legal and does not cause generation of a
data word.

For a constant, an omission of the string is valid and has a zero value.

An omitted string in a LIT pseudo instruction is legal and does not cause generation of a
literal for that item; however, the LIT must contain at least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces an error.

It is not possible to generate empty strings using types C, Z, R, or A.

2-15

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code generated
by DATA are printed only if the Dor G list option is selected.

Data Items

Location Code Generated

144 OS2222172?5~11tn~520

145 042t~soroory~~oaonnon

14~ 555~~5~S555555~5S~S5

Location

1100
1101
1102

Constants

Location

Code Generated

1725
24?0
2524

Code Generated

4722 7130000047
4723 7140000060

511:1031117
472~ b260530000

1111240155
4725 0155555~31

1725242025
4726 2400000001

07000()0000

I

I

1

LOCATION OPERATION

II

nAT~

LOCATION OPERATION

II

PPU

04TA

LOCATION OPERATION

II

SX3
TAG ~X4

SA1
::>Bo
VFU

VFO

I VF)

VARIABLE COMMENTS

lB 130

L•ERKiJ~ IN POQ •,L •• ,ljH

VARIABLE COMMENTS

18 130

I

I

I

OLOUTPUT
I
I

VARIABLE COMMENTS

18 T3o
1~·

T

I
1R,..+1 I
3RCIO I
X0+1L$ I
30/4HIUIA,b/1RA,24/UAX+1

I
42/0LOUTPUT,18/1

I
1 7 / 0 L G , 1 5 I 0 Lj

Note that the character constant in the expression in the second line consists of a decimal point (57 in
display code) to which 01 is added before the value is stored. Similarly, in the third field of the first VFD,
1 is added to the display code representation of X right justified with blank fill (55555530) so that 55555531
is generated.

2-16 60492600.H

Literals

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 1Jo

TAG1 LIT ~!l+-•/ CA,oL> 't= ,.,fJC'l,OL
LIT ~OHLITERAL<;

~A1 :!'}C TE:NCHl'llU'T S

100003765
1!10'103770

2652 5110003772 +
5120003771t +

2&53 5130003767 +
SA:? -=~+LFF'f JUSTIFY WITH PLA Nk'S+

00376?
0 OJ76;
00l767
0 03770
001771
0 OJ772
00~77"!

003774
00~17?

0 0 ~776

~A1

CONlfNl OF LITERALS !LOC~.

oooonoooQD4?46475os1
525~?4555n?700'looooo
330000000!'}0010000000
141124052?0114~~;555
c;c;5c;555c;555c;55~55555

2~05160~1~0122032423

ooonoooooooooo~ooooo
14050624551225232411
063155?7112410550214
011n1J2~~ssssssssssc;

+-•/(

) ~= '.
0
LITPHL <:

Tf NCH6RCTS

LE'n JUS1'!
FV WITH fll
6Nt<S

='lLO

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty string
and does not produce an entry. The second LIT pseudo instruction generates one two-word entry. The
expressions in the variable fields of the SAl, SA2, and SA3 instructions each consist of a literal element.
The character strings in the SAl and SA2 literals do not duplicate former literals block entries so
COMPASS generates new entries. However, since SA3 references an existing entry, COMPASS places the
address of the entry in the addr~ field of the instruction.

2.7.5 NUMERIC DATA NOTATION

Numeric data can b~ specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:

Data Item

Constant

Literal

60492600 H

I signjpreradix I value I modifiers

I value I modifiers I
I =I sign I preradix J value I modifiers I

2-17

Applies to literals only; signifies that a literal follows.

sign Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

pre radix

value

modifiers

+or omitted The value is positive

The complemented (negative) value is formed

Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.

omitted

BorO

D

Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.

Octal notation

Decimal notation

A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point.
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1. 15 x 1018 (fixed point) or 7. 9 x 1028 (floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero.

Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error
flag.

postradix Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.

decimal exponent

2-18

Defines a power of 10 scale factqr

E~n or En or E Single precision

EE~n or EEn or EE Double precision

When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to be O. The value of n cannot exceed
· 32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPL'
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.

The effect of the exponent is to rr.ultiply the value by 10 decimal raised
to the n power.

60492600 H

binary scale

binary point
position

Defines a power of two scale factor and is specified as follows:

S+n or Sn or S

When the sign is plus or is omitted, the scale factor (n) is positive. When n
is omitted, it is a~umed to be O. The value of n cannot exceed 32767 and
is always a~umed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the n
power.

Applies to floating point values only and is specified as follows:

P+n or Pn or P

When the sign is + or omitted, n indicates the number of bit positions the
point is to be shifted to the left of bit 0. When the sign is -, n indicates the
number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit.

The exponent is adjusted to a value of - (:t_n)

For example, a value with P-6 will have a biased exponent of 20068. a
value with PlO will have an exponent of 17659. '

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

Although scale factors can exceed valid ranges, the ranges for numbers are restricted by
the hardware.

Example:

The number 1.0E400S-1200 yields a number that is approximately 5.8 x 1038 and is
in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96 bits for
double precision and to 48 bits for single precision floating point numbers and to 60 bits for
integers.

The order in which the assembler acts on the modifiers, regardle~ of the sequence in which
they are specified, is:

1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU a~emblies only)

60492600 K 2-19-

CPU Numeric Data Items

Location Code Generated

sn~o
5Ml
5002
500 3
5 O'l 4 5,,,, 5
500 t-
5001
i; no P.

1~1717777777777777~2

17~3~0000COOOCOOOOOO
1~4i'>OOOOCOOOC~COOOO
2~io~o~oocooococoo12

1 77~00000C0000000002
l 71~4b517t7635544264
17?0n314b31463146314
77777777777777777777
OOJO~OOOOOOOOOOCOOOO

CPU Numeric Constants

Location Code ~_ne_rate<J_

'Hll 2
51 t 2 ?tH 6"'

5001 +
555

4376C
715C4COOOO

CPL' Numeric Literals

Location Code Generated

?t t 3 i; ,_ r; on o 5 151 +
513C005152 +

5153
5155
5156
5157

I

I

I

LOCATION OPERATION

II

POOL DAU
NUf'I DAU

DAU
OATA
DATA
DATA

LOCATION OPERATION

II

AL Pf-fA EOU
VAL EOU

assz·
L X3
MX7
SX5

LOCATION OPERATION

II

SA5
SA3

ABLE LIT
LIT
LIT
LIT

CONTE~T Of LITEPAlS BLOCK.

0~5151

0 0515 2
:J01i153
l)M 154
1)0'i}-;s;
')05156
'>0?157
005160
')051~1

2-20

?004b7550COZ34000C04
17?04314631463146315
l7?3500tOCOCOOOOOOOO
1~43000COOOOOOOOOOOO
l 7?00 314631463146314
77177777777777777754
1 71 5 4 f15 l 7 6 7 6 3 5 5 4 4 2 6 "
77777777777777777777
1oooooocooocooooocoo

P OA Bl D
OPBLl l 1 La H
OS/
NB
OPCLS U UL
;;;;;;n;•
OP'-(.,.,2•7~

:;;;;;;;;;

VARIABLE COMMENTS

18 TJo

-29 I
1.CEfl

I
leOE+lPO I 3. 2P lS-5 fl
O. 0151 E +01 I
O. lP47,-f, DEES

I

VARIABLE COMMENTS

IB I Jo

POOL +l T

I

5558 I

lOOR I
-l'tB !
48
1Sl7 I

VARIABLE COMMENTS

18 bo
•200467550002340000048
•l el I
le OE fl I Oe lP "7
-019 I
0.0151E+Cl1-E•DEES

60492600 L

Examples of numeric data (assume default radix is decimal):

PP Data Items

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

300
301
302
303
!04

PP Constants

Location

3'15
3'16
31) 7

310

PP Literals

Location

311
313
31r;

1103
110lt
uor;

60492600 H

0005
7766
0013
0030
0002

Code Generated

a on o
01)11
lt4"6 ~

7777

Code Generated

2000 1103
2100 1104
2000 1105

I

I

LOCATION

I

3t
tot I

tin("

MU ..

-

LOCATION

I

II

PPU
• .
•
OATA

OPERATION

II

ro .. ,

rn"!
-=
~C"T

r.()tl

OPERATION

II

LOC
aoc
LDC

CONTENT OF LITERALS BLOCK.

0012
7776
7777

J ,,,,
•• ' '

18 1Jo
T

I .
I •

• I
s,-qo,+e13,14es1,240~-1

VARIABLE COMMENTS

18 T JO

tj ' + 1 1 I
I
I

-:t37:4 I ., tj 8
fj t '1 !. I
1777 I

VARIABLE COMMENTS

18 f 30
T

=100 T

=-1
I

=7777 I

2-21

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in single
precision.

Formats:

Data Item sign 0 preradix value modifiers

Constant O preradix value modifiers

Literal = sign 0 preradix value modifiers

=

sign

0

preradix

value

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

+or omitted Value is positive.

Complemented (negative) value is formed.

The zero is optional for data items and literals but must be present for constants, so the
preradix will not be taken as the first character of a symbol

Must be present to indicate that a hexadecimal value follows. The preradix character is=
or # depending on the printer used.

A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is either a
decimal digit 0-9 or a letter A-F. The digits 0-9 represent values 0-9 and the letters A-F
represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

modifiers The binary scale (S) modifier is optional and has the same form and meaning as for octal
and decimal data (see Numeric Data Notation).

The binary point position (P) modifier is permitted but ignored, since it does not apply to
integer values.

Examples of hexadecimal data:

Location Code Generated

2-22

0 00000000000004435274
1 77777777777777777777
2 77777777777775252525
3 00000000000110640000
4 00000000000053012566
5 7130000006 +

6 77777777777776671353

LOCATION OPERATION VARI.ABLE COMMENTS

II 16 ho
,_._ _____ -------- --------1===------

DATA

X CON O:=Ao1576
HEX SX3 1 =-:=12345 52
CONTENT OF LITERALS BLOCK.
; ; ; ; ; ;-, A K $

· 60492600 H

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a combination of
one or more terms. Each term consists of one or more elements joined by operators. A comma or a blank
terminates the expression.

An expression element can be a:

Symbol
Numeric or character constant
Special element

Examples of elements:

ALPHA
$
•p

A.7
X3
77~3

3HABC
=lOHOUTPUT

Register designator (CPU only)
Literal

A term can be a single element or two or more elements joined by the following element operators:

•
I

Multiplication
Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition
Subtraction

/\ Exclusive or

The exclusive or operator is printed as /\ (carat) in the CDC character set or as & (ampersand) in the ASCII
character set.

Rules:

1. If the last element of a term is omitted, COMPASS provides an element of zero. For example, if
ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first asterisk is
interpreted as an element, the second asterisk is interpreted as an operator, and the blank is
interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is a
relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.

5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or /\) in sequence are interpreted as having a term of zero
value between them.

7. If an expression begins with an additive operator (+ or - or /\), COMPASS provides a term with zero
value preceding the operator.

8. All arithmetic in expression is performed in integer mode, even if an element is a floating point
constant such as 2.3. Results are restricted to 60 bits; that is, if a term or value exceeds 60 bits, the
excess high-order bits are discarded without comment.

60492600 H 2-23

The operator that immediately precedes a register designator is the register operator, regardless of the
placement of the designator in the expression. The register operator can be:

+ - *or I

Examples of expressions:

ABLE

$-29

1 +=3.14159EE+6

*+3

ABLE*4-72/NUM

lOB

3+A6-NUM

lR= /\ lR/

Single term

Two terms: $ and 29

Two terms: a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

Two terms: value of the location counter and numeric constant 3.

Two terms, each consisting of two elements: the value of ABLE times 4,
and 72 divided by the value of NUM.

Single term consisting of a numeric constant.

The components of the expression are register A6 and 3-NUM.

The character constants(= and/) are logically differenced.

2.8. 1 TYPES OF EXPRESSIONS

Evaluation during assembly reduces an expression to:

An absolute value (absolute address or an integer value)

An external symbol ! a 21-bit integer

! relocatable value ! a 21-bit integer

Register designators and one of the above (CPU assembly only)

Register designators (CPU assembly only)

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be absolute,
even though it contains relocatable terms, under two conditions:

2-24

The expression contains an even number of relocatable elements.

The relocatable elements must cancel each other. That is, each relocatable element (or multiple
thereof) in a block must be canceled by another element (or multiple thereof) in the same block. In
other words, pairs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be contiguous in the expression.

60492600 H

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute. The
control counters are for the block that contains EASY and FOX.

EASY-FOX+MIKE EASY and FOX cancel each other.

FOX-* FOX and the location counter cancel each other.

MIKE+16 The expression contains no relocatable elements.

*-EASY-FOX*2 EASY and the location counter cancel 2 times FOX.

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term. or, under the following two conditions, a combination of relocatable
and absolute terms:

The expression does not contain an even number of relocatable elements

All the relocatable elements but one must be organized in pairs that cancel each other. That is, for all
but one block, each relocatable element (or multiple thereof) in a block must be canceled by another
element (or multiple thereof) in the same block. The elements that form a pair need not be contiguous
in the expression.

The uncanceled relocatable element can have three kinds of relocation:

Positive program

Negative program

Positive common (Negative common relocation is not permitted by the loader.)

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute. LIMA
is relocatable in a different block. The control counters are for the block that contains EASY and
FOX.

LIMA+MIKE-16

FOX-EASY +FOX

3*FOX-2*EASY

EASY-*+ FOX

FOX-1008/MIKE

-MIKE*2+ LIMA

=lOHMESSAGE 33

-*0

The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated by
the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

60492600 H 2-25

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or, under the
following conditions, an external expression may consist of an external term, relocatable terms, and
absolute terms.

The expression contains an even number of relocatable terms.

The relocatable elements must cancel each other. That is, each relocatable element (or multiple
thereof) in a block must be cancelled by another element (or multiple thereof) in the same block. In
other words, pairs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples,. XYZ and ABC are external symbols. EASY and FOX are in the same block.
The control counters are for the block that contains LIMA. MIKE is absolute.

XYZ-*+FOX-EASY+LIMA

FOX-3*EASY+2*FOX+XYZ

ABC+lOOB+MIKE

XYZ+ABC

-ABC+*-LIMA

XYZ+*O

The pairs* and LIMA, and FOX and EASY cancel each other.

The relocatable elements all cancel.

MIKE and lOOB are absolute; no relocatable elements.

Illegal; both are external.

Illegal; ABC is negative.

Illegal; *O is an unpaired relocatable element.

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register designators
and an operand. The attributes of the operand can be that of an absolute, external, or relocatable
expression. Use of register expressions is generally restricted to symbolic CPU machine instructions. If
the register designator is the first element in the expression, the operator can be omitted and is assumed to
be+.

Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3+LIMA-10B

l LIMA+X3-10B

-10B+LIMA+X3

Produce identical results

Bl+XYZ

*+A.NUM

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable.

2-26 ·60492600 H

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character constant
is first right or left adjusted in a field the size of the destination field and then extended to 60 bits. Signs
are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In division, the integral
portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2 results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it reaches
a+ or - or /\ operator. It then notes whether or not the newly formed term contains a relocatable or
external symbol or register designators. The value of the symbol is added, subtracted, or differenced from
the cumulative sum of the absolute elements, relocatable elements, or external values. The assembler
continues evaluating the expression until it is reduced to a symbol and/or a value. An error is flagged if
the expression cannot be reduced. The expression value is truncated, if necessary, and placed in the
destination field. If it is too large for the field, the system issues an error flag. The maximwn field size
for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram. It is
the value relative to the external med in defining the symbol if the external symbol was defined within the
subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, COMPASS uses the value of a relocatable symbol relative to the block in which
the symbol was defined. For pass two evaluation, COMPASS uses a value relative to program or common
block origin.

The field size for an expression depends upon the instruction and is determined as follows:

For a symbol definition pseudo instruction, the expression value (including character constants) is
justified in a 21-bit field.

In a VFD (5eudo instruction, the expression is placed in a field of the size specified.

For a CON pseudo instruction, the field size is one word (12 or 16 bits for PP assemblies, 60 bits for I
CPU assemblies).

In a symbolic machine instruction, values of expressions are placed in address fields (18 or 6 bits for
CPU assemblies; 18, 16, 12, or 6 bits for PP assemblies). I

Some relocatable program loaders may give unexpected results if relocatable or external address values are
assembled into the same field of the same word more than once, as a result of ORGing backward over the
word, or by having more than one subprogram preset a common block. The ORGC pseudo instructon (see
Block Counter Control, chapter 4) can be used to avoid such problems.

60492600 M 2-27

PROGRAM STRUCTURE 3

This chapter is designed to give the programmer a better understanding of how a program is assembled,
loaded, and executed. This discussion of program structure is at the machine executable level, the level at
which code is loaded into memory and executed.

A COMPASS subprogram consists of statements beginning with an IDENT pseudo instruction and ending
with an END pseudo instruction. The user can designate a subprogram to be a main program by specifying
a transfer address in its END pseudo instruction.

The programmer can control the assembly of COMPASS source statements so that subprograms are divided
into blocks of binary code. These blocks can be controlled during the loading process. The first section of
the chapter presents subprogram block concepts and how the programmer and the assembler organize
object code into blocks. Following this is a brief description of the counters used to control the blocks.

A subprogram loaded into central memory can be either absolute or relocatable. An absolute subprogram is
loaded at the same fixed address every time; a relocatable subprogram can be loaded into different
locations, according to the available central memory at load time. Sections 3.3 and 3.4 discuss the
structure of absolute and relocatable programs, respectively, and show the differences in block usage for
both types.

Limited available central memory occasionally requires the use of overlays and partial binary sections in
lengthy programs. Section 3.4 covers the use of these important programming tools.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas called
blocks. As assembly of a subprogram proceeds, the assembler or the programmer designates that object
code be generated or that storage be reserved in specific blocks. By properly assigning code sequences,
data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM, a programmer
can intersperse instructions for the different blocks. The assembler assigns locations in a block
consecutively as it encounters instructions destined for the block. A symbol defined within a block is not
local to the block. That is, it is global and can be referred to from any other block in the suoprogram. To
render a symbol local to a sequence of code requires use of the QUAL pseudo instruction (section 4.4.3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

In pass two all symbols are assigned absolute values, the table of block names is cleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and block structuring restarts. For END, the symbol
table is cleared before the next subprogram is assembled. If the group does not contain a USE instruction
or if object code is generated (or storage reserved) before the first USE instruction, COMPASS places the
code in the nominal block (identified as PROGRAM* on the listing). For an absolute program, the nominal
block is the absolute block. For a relocatable program, the nominal block is the zero block. The user
controls use of the nominal block and any user-established blocks through USE, USELCM, ORG, and ORGC
pseudo instructions (section 4.5). Each occurrence of a non-redundant literal constant causes an entry in
the literals block; otherwise, the user has no control of this block.

60492600 G 3-1

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the block is absolute. Each address symbol is defined during pass one
as an absolute value relative to zero which is block origin. The code generated must be loaded and
executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an absolute
block is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM absolute block.

3.1 .2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly. It is a
local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined default symbols at the end of the zero block. The zero block is identified by the
name PROGRAM* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block. The zero block is also
named PROGRAM*.

There is no ECS/LCM zero block.

3. l .3 LITERALS BLOCK

COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals
block is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage to
the literals block immediately following the zero block. There is no ECS/LCM literals block.

3. 1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM sta.tements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram. At the end of assembly, COMPASS assigns
an origin relative to the nominal block to each user-established local block, in the sequence in which they
are established.

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader as
a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/LCM local blocks are
concatenated to form a single block which is treated by the loader as an ECS/LCM block whose name is
unique to the subprogram. (SCOPE 2 does not currently allow LCM local blocks.)

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary, to an
integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568 words.

3. 1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or ECS/LCM
through the USE and USELCM pseudo instructions respectively, where the name of the block is the name
enclosed by slashes; that is, /name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the block. Thus, the first subprogram that
names a block sets the maximum size of the block. Each subprogram, as it is loaded, can link to allocated
blocks or can cause new blocks to be allocated. The contents of a labeled common block can be generated
by any of the subprograms having access to it.

3-2 60492600 G

·If an absolute subprogram attempts to establish a labeled common block by using a USE /name/ or USELCM
/name/ pseudo instruction, COMP ASS treats the block as a local block having the slash-enclosed name.

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not load
information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common blocks are allocated space by the
loader after all subprograms are loaded, according to the largest block area declared by any of the
subprograms. A CMISCM blank common block is established through use of the USE pseudo instruction
(chapter 4). An ECSILCM blank common block is established through use of the USELCM pseudo
instruction (chapter 4). A blank common block has no name. A USE /I indicates blank common in
CMISCM; A USELCM II indicates blank common in ECS/LCM.

If no relocatable program declares a blank common block, there is none. If an absolute program contains a
USE 11 or USELCM 11 pseudo instruction, COMP ASS treats the block as a local block named // and data can
be stored in this block.

The USELCM pseudo instruction can occur only in CPU programs.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with the
same name and the same block type if they have different memory types (CMISCM or ECSILCM). Thus,
altogether, there may be up to four different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters: an origin counter, a location
counter, and a position counter. When a block is first established or its use is resumed, COMPASS uses the
counters for that block. During pass one, the origin and location counters are initially zero. During pass
two, as the assembler constructs the program, it assigns an initial value to each local block origin counter
and location counter. Thus, expressions containing relocatable symbols are not necessarily evaluated the
same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the block.
It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or BSS pseudo
instructions to advance the origin counter; ORG and ORGC also permit the programmer to reset the
counter to some lower location in the block or to change blocks. BSS allows the programmer to decrement
the counter but not to change blocks. The origin counter is incremented by one for each word assembled or
skipped forward. The origin counter is decremented by one for each word skipped in the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the current value of the
origin counter for the block in use.

60492600 H 3-3

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counte~ is
incremented. It is possible through the LOC µ;eudo instruction to adjust the location counter so that it
differs from the origin counter. This may be desirable when the code being assembled is to be loaded at
one location and subsequently moved and executed at another location. In this case, the programmer resets
the location counter to reflect the actual location at which execution is to occur. As another example of
its use, the programmer assembling a large table may reset the location counter to zero so that on the
listing, the addresses alongside each word of the table reflect the word's position in the table rather than in
the block. Note that use of this technique does not alter the placement of code in the block. (For an
example of these applications, see the LOC µ;eudo instruction in chapter 4) When either of the special
elements * or *L is used in an expression, the assembler replaces it by the current value of the location
counter for the block in use.

3.2.3 POSITION COUNTER

I Assume that bits are numbered 59 through 00, from left to right within a 60-bit CPU word, and numbered
11 through 00 within a 12-bit PPU word, and numbered 15 through 00 within a 16-bit PPU word. Then, the
position counter is initially 60, 16 or 12, respectively, and indicates the number of bits remaining in the
word. The position counter, which is decremented by one for each completed bit of an assembled word,

I becomes 00 when the word is completed, and is reset to 60, 16 or 12 when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally have
values of 60, 45, 30, and 15 reflecting the placement in the word for the next instruction or data value to

I be generated. For a PPU assembly, the normal value is 12 (16 if CIPPU is specified and the long
instruction format is used).

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS µ;eudo instructions.

When the special element *P is used in an expression, the assembler replaces it with the current value of
the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value minus
one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining in a
partially completed word with no-operation instructions (section 8.1), sets the position counter to 60, and
increments the origin and location counters before it assembles code for the next instruction:

3-4

Insufficient room remains in a partially filled word for the next instruction or data to be generated.

The current statement is a machine instruction, or a VFD µ;eudo instruction, with a location symbol or
+in the location field.

The current statement is an RE, WE, PS, XJ, CC, CU, DM, or IM (or RL or WL on NOS and NOS/BE)
instruction for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74, or 6000
Series. (The programmer can negate this force upper by placing a minus sign in the location field of
the instruction.)

The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC, LOC,
ORG, or MD µ;eudo instruction.

60492600M

The assembler forces upper after it assembles code for one of the following:

JP
RJ
Unconditional EQ
Unconditional ZR
ES (CYBER 70 Model 76 or 7600)
MJ (CYBER 70 Model 76 or 7600)
PS (CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
XJ (CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
IM (CYBER 70 Model 72 and 73)

This post force upper does not occur immediately, but is deferred until the assembler encounters the next
machine instruction or data generating, storage allocating, or binary control pseudo instruction in the same
USE block. The programmer can negate the force upper following the instruction by placing a minm sign in
the location field of the next instruction. Thus, pseudo instructions following one of the above machine
instructions and referencing the origin, location, or position counter will me the value before the force
upper.

In a PPU assembly, no forcing upper occurs; the assembler ignores a+ in the location field on any
instruction other than a VFD. A plm or minus in the location field of a VFD in PPU assemblies forces the
VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately, either
in the same job run or in independent runs. The subprograms can all be written in COMPASS source
language, or can be written in any other source language available in the product set of the operating
system as long as the compiler or ~embler produces relocatable binary output in a form acceptable to the
loader. A COMPASS language subprogram is composed of instructions beginning with an !DENT pseudo
instruction and ending with an END pseudo instruction. A subprogram can be either a main program or a
subroutine, depending on how its END pseudo instruction has been written.

When a program is loaded into memory, its subprograms occupy contiguom blocks of word>. The first word
in the first block is known as the reference address (RA). The total number of words in the blocks is the
job field length.

·When a subprogram is relocated, each machine instruction in it that references a specific address mt.1";t be
adjusted. Became of this necessity, relocatable subprograms are assembled as though they begin at address
zero; they are not assigned specific origins. In this way the loader can load subprograms independently, yet
contiguously; their origins are relative to RA. Since all addresses within the subprogram are relative to the
first word address of the subprogram, each address in the program effectively becomes a function of RA.

A nonblank IDENT pseudo instruction that does not specify a fixed load address indicates a relocatable
subprogram. Upon completing assembly of a relocatable subprogram, COMPASS assigns each local block an
origin relative to the zero block. Each block thus becomes an extension of the zero block (figure 3-1).

COMP ASS also provides for subprogram linkage. Through pseudo instructions such as ENTRY, ENTRYC,
and EXT, subprograms can transfer control to each other and access common storage locations.

The loader is thus able to load subprogram blocks independently, as required. Program execution is not
affected by the relocation process.

The length of the subprogram given on the assembly listing is the sum of the final values of the origin
counters for the local blocks, including the zero block and literals block, but not the absolute block. Any
absolute text is simply inserted at the absolute location r.elative to RA.

COMP ASS binary output for a relocatable subprogram consists of one section for each LCC pseudo
instruction (if any) in the source program, followed by one section containing the subprogram loader tables.

60492600 L 3-5

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific memory
locations. Because the loader performs no address manipulation for absolute programs, absolute code can
be loaded more rapidly than relocatable code.

A CPU program can be either relocatable or absolute. PPU programs are always absolute. PPU programs
are parts of the operating system that reside in the peripheral processors; they are normally the concern of
only system analysts. Any user can assemble PPU code, but cannot execute it without special system
access privilege.

The programmer has the option of constructing an absolute program as a single unit, or of dividing it into
overlays. Each overlay consists of data, information, or instructions that are needed at different times.
Dividing a program into overlays allows several routines to occupy the same central memory storage
consecutively so that total storage requirements for a program are reduced. For maximum program
efficiency, the reduction of storage requirements must be weighed against an increase in execution delay
while loading parts of the program.

During assembly of an absolute program or overlay, COMPASS creates a memory image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute olock. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute block.

Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays. The absolute
block is the nominal block for the program (labeled PROGRAM* on the listing). The use of default symbols
and literals causes the generation of the zero block and the literals block, respectively. Local blocks A, B,
and C follow the literals block. The transfer symbol in the END pseudo instruction indicates a main
subprogram. In the binary load module the'prefix (PRFX or 77009) table and the header table precede
the binary section that is the memory image of the program.

3-6 60492600 G

::::::::::::::::::::~:::::::::::::?:":?:":~:!;::
·:·:·: Prefix Table·:·:·:·
::::::;:;:;:::::::::::::::::::::::;:::::::::::::::

1-:::::·::::::
t:::: CPU or PPU ::::::

IDENT name--..------~ Origin -- I:::,,~f:f::1:~:~::If::W:ti1
PROGRAM*

A

B

c

Binary
Section

PROGRAM*

1-------~

LITERALS*

A

B END trasym __ .__ _____ ____J

Low Address

High Address

60492600 G

Source Program
Block Structure

ffa=fa~/~~=~i~~it

c

Binary
Load Module

:: Information :::
Origin-- :::;:.:::·:·:;:.:::.:·:·:·:·:·:·.::=·.::=·:·.:::·.=:::

PROGRAM*

}
Zero Block

1-------~ (Default)

LITERALS*

A

B

c

Map of
Loaded Program

Figure 3-2. Absolute Program Structure

Program
Identification
and Loader Control
Information

}
Zero Block
(Default)

3-7

The binary output for the program consists of a section for each overlay. Note that the binary section for
an absolute program that is not divided into overlays has the same for mat as the main overlay of a pro5ram
divided into overlays. The user has the option of writing part of a binary section at a time by using either a
SEG pseudo instruction or an IDENT (other than the first !DENT) with a blank variable field.

An absolute binary load module usually has three parts: a prefix (PRFX or 7700g) table, a header table,
and the binary image of the program or overlay. A header table can be one of the following:

ASCM or 50009.

EASCM or 51009.

ACPM or 53009.

EACPM or 54009.

Tables are shown on a COMPASS listing by their octal numbers. The table formats are described in the
Loader reference manual.

The amount of binary written as a result of the binary control instruction (!DENT, SEGMENT, SET, or END)
is subject to whether or not an entire block group is written, as follows:

If a complete block group is being written (everything between an !DENT and an END or between two
IDENT instructions), the memory image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

If only a portion of the binary for the block group is being written, it consists of the memory image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete one overlay and write an end of section. SEGMENT and
IDENT write header information for the overlay to follow.

3.4. 1 ABSOLUTE OVERLAYS

When an absolute program contains more than the one IDENTt pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a memory image of the program as it is
assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits memory to be sequentially overlaid by different subroutines and
data during program execution, reducing the maximum memory requirements for the program.

Three levels of overlays can be generated for a CPU assembly: main, primary, and secondary. Each
overlay is identified by a level number specified in the IDENT or SEGMENT pseudo instruction. The level
number consists of an ordered pair of octal numbers, each of which can be 0 through 77 8· The first
number is known as the primary level number; the second is known as the secondary level number. The
level number 0,0 signifies the main overlay (normally the portion of the program following the first
IDENT). A primary overlay is indicated by a nonzero primary number paired with a zero secondary level
number. For a secondary overlay both the primary and the secondary level numbers are nonzero.

Conventionally, the main overlay is loaded first and remains in central memory throughout execution. Only
two other overlays can remain loaded concurrently: these are usually one primary overlay and one of its
associated secondary overlays.

trnENT instructions described in this section are assumed to have nonblank parameters. The special case
of the blank IDENT is described in section 3.4.3.

3-8 60492600 G

The hierarchy of overlay association is depicted by figure 3-3. The primary overlay 1,0 has three
associated secondary overlays numbered 1,1; 1,2; and 1,3. A primary overlay and all of its associated
secondaries have the same primary level number. The next branch of overlays (indicated by level
numbers 77,y) shows that the level numbers of the overlays are not required to be consecutive nor to be
indicative of the order in which they were generated.

1,3

1,2

1,1

1,0

Figure 3-3. Overlay Hierarchy

Secondary
Overlays

Primary
Overlays

Main
Overlay

The main overlay can call both primary and secondary overlays into main memory via the operating system
loader. (For detailed information concerning loader calls, see the Loader reference manual.) Once a
primary overlay is loaded, it can call any of its associated secondary overlays. Overlay 23,0, for example,
can call overlays 23,10; 23,30; and 23,40 in any order.

The main overlay can have multiple entry points: execution can begin at any one of them. Usually,
primary and secondary overlays have a single entry point which provides the transfer address. A secondary
overlay can reference entry points in its primary and in the main overlay. A primary overlay can reference
entry points"in the main overlay. The programmer must ensure that the necessary entry points have not
been overwritten.

These conventions concerning the numbering, hierarchy, loading, and execution of overlays are not
enforced by COMPASS. Any overlay can call the operating system loader to load another overlay, and any
overlay can reference addresses in any other overlay. However, overlays are not all in central memory
during program execution and the sequence in which the overlays are loaded and executed is beyond the
scope of the assembler; therefore, it is the user's responsibility to assure that an overlay does not refer to
symbols, instructions, or data not concurrently in central memory.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects. However, a PPU overlay with assembled code in locations 7774g through 7777g may load
incorrectly due to wraparound to location 0000.

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays generated
by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader reference manual.

60492600 G 3-9 .

IDENT-Twe Overlays

An IDENT-type overlay consists of the portions of the program from:

One IDENT to (but not including) the next IDENT

The last ID ENT in the overlay to the END

IDENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers O,O to the first overlay, and numbers 1,0 to all subsequent overlays.

The first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction before an END instruction,
COMPASS generates output consisting of a memory image of the overlay, starting with the overlay origin
specified on the previous IDENT and normally ending with the maximum origin counter value of the last
block declared in the overlay; that is, the overlay normally ends with the last word address of its last
block. An IDENT subsequent to a SEG or SEGMENT, however, generates binary that endc; at the location
specified by the current origin counter. Following the memory image, COMPASS writes an end-of-section
(or end-of-record) and the overlay identification information specified by the new IDENT for the overlay to
follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals block. Block structuring
starts fresh with each overlay. This means that each overlay can use the same block names used by other
overlays, and each overlay can contain a literals block. The USE table and control counters are all
reinitialized. The origin specified for an IDENT-type overlay can be any place in a previously generated
overlay. This is poosible because IDENT causes the assembler to assign an absolute address to each symbol
in the symbol table. It can do this because the sizes of all the blocks are known.

Figure 3-4 illustrates a CPU program in which a second IDENT is used prior to an END pseudo instruction
to generate a main overlay and a primary overlay. Between the two IDENT instructions, block usage
alternates between the absolute block (labeled PROGRAM* on the listing) and block A, as depicted in the
block structure diagram. Note that in the main overlay (the first section of binary generated, labeled
MAIN), the assembler has concatenated the portions of each block. Concatenation also occurs in the
primary overlay, OV 1, for the portions of the absolute block ABSOLUTE' and for those of blocks A', B,
and c.

The occurrence of literals and default symbols causes the assembler to generate a zero block and a literals
block, respectively, in both of these overlays. Following the second nonblank IDENT, the program overlay
origin is set back into block A, as shown in the map of the two loaded overlays. Note that the loader
control table is loaded in memory below the address specified in the ORG pseudo instruction (BETA, in the
figure), as shown in the map of the loaded overlays.

The first ID ENT pseudo instruction assigns the level number O,O to the first overlay (MAIN). COMPASS
assigns level number 1,0 to overlay OVl by default.

SEGMENT-Type Overlays

A SEGMENT-type overlay consists of the portions of a program from:

3-10

The IDENT that identifies the program to a SEGMENT pseudo instruction

One SEGMENT to the next SEGMENT

The last SEGMENT to the END pseudo instruction

·60492600 G

ID ENT MAIN ,0,0

BETA

IDENT OVl

ORG BETA

END

~ .

7

ABSOLUTE

A

ABSOLUTE

A

ABSOLUTE

A'

B

ABSOLUTE'

c
ABSOLUTE'

B

A'

Source Program
Block Structure

ABSOLUTE

Overlaid portion { fL.~~·d;;c~-;t;~IJ
of MAIN overlay ~:::::::Information:::::::· ·.·=·=·=·

ABSOLUTE'

ZERO'

LITERALS'

A'

B

c
Map of Loaded

Overlays

' --" " "
-
"

MAIN origin
ABSOLUTE

ZERO

BETA--i~~L_I_T_E_R_A_L_S---J

- A -
" '

- -
First Binary
Load Module

' ~=:«··~·.·.·.•.•.•.•.•.·.·~·7·.·~·~·
:::::::: Prefix Table :::::: " .·.·.·.·.·.·.·.·.·.·.·.-..... ·.·.·.·.·.·.·.·:·:·:·

" :rtoa<iei: contror::
0V1 origin ~ ~~~~~~~~ ~!~~~.~~.i~~:~~~~~~~

"
ABSOLUTE'

'\.

" Low'\.
Add res~

OVl
1,0

"-

High Address

" '\.
" '\.

'\.
'\.

ZERO'

LITERALS'

A'

B

c

Second Binary
Load Module

Figure 3-4. IDENT-Type Overlay Structure

60492600 G

MAIN overlay
0,0

OVl overlay
1,0

3-11

SEGMENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a memory image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the first
overlay), and ending with the current origin counter value of the block in use at the time the SEGMENT
was ~ncountered. Following this, COMPASS writes an end-of-section and overlay identification
information for the overlay to follow.

SEGMENT does not clear the symbol table or reinitialize the USE table. Thus, when a SEGMENT is
encountered, the block in use is incomplete. It is the responsibility of the user to assure that all blocks
other than the one in use are complete at that time. Also, the only symbols that can be used to define the
origin of the new overlay are those valid for the block in use.

Each new SEGMENT-created overlay must use unique block names because blocks established in previous
overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-5 illustrates a program consisting of a main overlay, MAIN, and a primary, 0V1. The use of
default symbols causes generation of a zero block. The use of literals causes generation of a literals
block. Both of these blocks occur in the overlay MAIN, because it contains the end of the absolute block.
Block A begins in the main overlay, but is incomplete when COMPASS encounters the SEGMENT. The
ORG pseudo instruction causes the origin of the primary overlay OVl, to be set at load time to TAG, at a
lower address in block A. (Note that the loader control information is loaded at an address lower than the
origin of the overlay.) 0V1 establishes new blocks C and D.

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called, it
may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a: 5100s overlay
table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 5100s table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 5100s
table, ref er to the Loader reference manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or overlay contains SEG pseudo instructions or IDENT pseudo instructions for
which the parameters are omitted (blank), COMPASS writes a partial binary section consisting of the
binary generated since the previous IDENT, SEGMENT, or SEG instruction. However, it does not write an
end-of-section (or end-of-record) or a new prefix table. A SEGMENT, nonblank IDENT, or END instruction
completes the binary section.

SEG Partial Binary Record

By writing partial binary records using SEG, the programmer can reduce the assembler storage
requirements. SEG does not write a complete block group. When the SEG is encountered, COMPASS writes
binary beginning with the first block established in that portion of binary and ending with the final count
specified by the origin count for the current block. A fatal error is issued if the user attempts to store
data into a block not in the current partial binary record.

The portion of the binary that contains the end of the absolute block contains the literals block, if there is
one. The symbol table and USE table are not reinitialized.

3-12 60492600 G

MAIN
Origin =~"Loader· c<>iiii-C>i ::~

ID ENT MAIN --1-.---------T"""
:::::::Information:::::::: ·.·.·.··············· ·~········

TAG

SEGMENT OVl
ORGTAG

ABSOLUTE

A

ABSOLUTE

A

.:::- -- __ TAG --c '\. --

ABSOLUTE

ZERO

LITERALS

A

MAIN
Overlay

o,o

'\.
END ..__ __ n __ ___,_ '\. First Binary

Load Module

Low Address

MAIN

High Address

60492600 G

Source Program
Block Structure

ABSOLUTE

1-------·--1

ZERO
i--------·-

LITERALS

'\. '\.
'\. "- " ~~~t:P:~~=r i~=·f ~t;=i~t~~~~~

'\. ·:·:·:·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·:·:·:·
" " ::: l.oa<ier · controi :::1

" 1 '\. 0 Y ~ '\. ~:~:::::Information:::::~:~
fr1g1n ~.·.·.·.·.·······························-""·"·"I OVl

'\. A > Overlay
'\. c I 1,0

'\. D I
'\ _____ ____,l . .I

Second Binary
Load Module

ABSOLUTE

ZERO

LITERALS

A
............ •.•.•.·.·.·.·.·.·.·.·.·.-.·.·.-. .. ;:::f"\ - - - - - - .

A 1-4- - -TAG- -

E::: Loader Control::: I
:::::::::Information :::::::H Overlaid

- · · · · · · · · · · · """··! ~ Portion
A ll of MAIN

......__ ______ .__ - - - - -
C IJ Overlay

D
......__ ______ ~ - - - - - - .

Map of Loaded
Overlays MA IN and 0 V 1

Figure 3-5. SEGMENT-Type Overlay Structure

OVl
Overlay

1,0

3-13

Figure 3-6 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of. memory required to assemble the program. The resulting absolute section
is loaded and executed as a single program or overlay.

IDENT PROG _..,.

ABSOLUTE

f- - - - - - .- -: - - -.-SEG
(writes partial

binary)

SEG
(writes partial

binary)

END

-
.....

ABSOLUTE

A

B

c

· Source Program
Block Structure

}

L~rgest partial assembly
determines assembler
storage requirements

~~~t:frii:~;;.z;.~~~~~r~ 
~-·.•.•.•.•.•.•.•.•.•.•.•.•.•.•.·.•.•.•.•.•.•.·.·.· 

t::::Loader Control::: 
:;:::;::1nformation·:;:;:;:: 
:·:·:···~· ····~·.•.•.•.• •.•.•.•.•.•.·.·.·=·=·=·=·· 

ABSOLUTE 

LITERALS 

A 

B 

c 

Binary Load 
Module 

Figure 3-6. SEG Partial Binary 

IDENT Partial Binary 

Absolute Binary 
Section 

End-of-section 

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG, or 
SEGMENT to be written out without an end-of-section (or end-of-record) or a new 7700s prefix table. 
The USE table and the block counters are reinitialized. Each symbol in the symbol table is assigned an 
absolute address. The blocks in each partial binary section generated in this manner are allocated as if the 
partial binary section were a new subprogram with its own absolute block, literals block, and local blocks. 
This allows portions of a program to be self-contained units even though they are not overlays but are 
loaded as a single unit. The origin of an absolute block for new portion is the last word address plus one of 
the last block of the previous portion. 

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends 
with the maximum origin counter value of the last block declared in the block group; that is, it normally 
ends with the last word address. If part of the block group has already been written by a SEG or 
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current 
block. 

COMPASS completes all blocks. The literals block is terminated. Block structuring starts fresh with each 
IDENT. Each new partial binary section created by a blank IDENT can use the same block names as are 
used by the other blank !DENT-created partial binary sections and non-blank !DENT-created overlays and 
each IDENT can contain a literals block but the blocks with the same names are independent of each other. 

An attempt to write into or to reset the origin counter to a location in a partial binary section written 
separately causes an assembler range error. 

3-14 . 60492600 G 



Figure 3-7 illustrates how the binary for an overlay can be written in three discrete partial binary sections 
to reduce the amount of central memory required to assemble the program and divide the program into 
self-contained units. The resulting absolute section is loaded and executed as a single overlay. 

IDENT PGM --

IDENT ~ 

IDENT _., 

IDENT OVLY 

60492600 G 

ABSOLUTE 

LITERALS 

Local Blocks 

ABSOLUTE' 

LITERALS' 

Local Blocks 

ABSOLUTE" 

LITERAl.S" 

Local Blocks 

Source Program 
Block Structure 

LITERALS 

Local Blocks 
---- -----------

ABSOLUTE' 

LITERALS' 

Local Blocks 
- - - - - - - --+-------i 

ABSOLUTEU 

LITERALS" 

_______ ____.__L_o_c_a_l_B_loc_k_s_, End-of-section 

Binary Load 
~odules 

Figure 3-7. IDENT Partial Binary Records 

3-15 





PSEUDO INSTRUCTIONS 4 

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS 

The format of the COMPASS pseudo instruction is the same as that of the symbolic machine instruction; it 
includes the location field, the operation field, the variable field, and the comments field. The (Eeudo 
instruction differs from the symbolic machine instruction in that it is med to control the actions of the 
ass em bl er at assembly time, rather than those of the machine at execution time. 

The µ;eudo instructions available in the COMPASS language are i:resented in this chapter and in chapters 5, 
6, and 7. Programmers with little COMPASS experience should give special attention to a few important 
pseudo instructions, which are listed in the following table. It is not possible to write a COMPASS program 
without using some of them. The table indicates the type of assemblies in which the (Eeudo instructions 
can be med. 

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute 

ID ENT 4. 2.1 x x x 
ABS 4. 3.1 x 
PPU or PERIPH 4.3.3 or 4.3.4 x 
ORG 4.5.3 x x x 
ENTRY 4. 7.1 x 
BSS 4.5.4 x x x 
CON 4. 8. 6 x x :x 
END 4.2.2 x x x 

4.1.1 TYPES OF PSEUDO INSTRUCTIONS 

Pseudo instructions discussed in this chapter are classed according to application as follows: 

Subprogram identification (IDENT and END) 

Binary control (ABS, MACHINE, PERIPH, PPU, CIPPU, IDE NT, SEGMENT, SEG, LCC, MEMSEL, 
LDSET, STEXT, COMMENT, and NOLABEL) 

Mode control (BASE, CHAR, CODE, COL, Bl=l, 87=1, and QUAL) 

Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS) 

Symbol definition (EQU and=, SET, MAX, MIN, MICCN'r, and SST) 

Subprogram linkage (ENTRY, ENTRYC, and EXT) 

Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC, and 
REPI) 

Assembly control (EIBE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP) 

Error control (ERR and ERRxx) 

Listing control (LIST, EJEC'l', SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF) 

60492600 M 4-1 



I 

Later chapters describe p;eudo iratructions that invoive definition operations, alteratiom to the operation 
code table, and micro;. In general, p;eudo iratructiora can be swnmarized according to where they can be 
placed in a subprogram. 

4.1 .2 REQUIRED PSEUDO INSTRUCTIONS 

Two p;eudo instructions, IDE NT and END, are required for any assembly. !DENT ml.St be the first source 
statement; END signals the termination of source statements for a subprogram. 

4.1.3 FIRST STATEMENT GROUP 
-

Certain p;eudo instructions establish basic characteristics of the assembly and provide the assembler with 
required information. These instructions make up the first statement group which must precede any 
symbol definition, storage allocation, or object code generation. The following instructions, if used, m mt 
be in the first statement group: 

ABS 
MACHINE 
PERIPH 
PPU 
CIPPU 
STEXT 
MEMS EL 

4. 1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS 

The following ~eudo instructions are permissible anywhere, including in the first statement group: 

BASE CPSYN ENDM l\IACROE OPDEF SKIP 
Bl=l DEC MIC HERE MICCNT OPSYN SPACE 
B7=1 EJECT IFC l\IICRO PPOP SST 
CHAR ELSE IRP NIL PURGDEF- TITLE 
CODE END LDSET NOLABEL PURGMAC TTL 
COMMENT ENDD LIST NOREF QUAL XREF 
CPOP END IF MACRO OCT MIC RMT 

Comment lines and references to macro definitions are also permitted anywhere. 

CPU or PPU symbolic machine instructions and all other p;eudo instructions cannot be placed in the first 
statement group. The first t..5e of one of these instructions terminates the first statement group. 

4.2 SUBPROGRAM IDENTIFICATION 

Subprogram identification p;eudo instructions designate subprogram beginning and end. When two or more 
subprograms are assembled in a single COMPASS run called through the COMPASS control statement, the 
end of the source decks is indicated by an end-of-section, such as a 7 /8/9 card. 

4.2. l IDENT - SUBPROGRAM IDENTIFICATION 

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized by 
the assembler. Usually, any lines preceding the first I DENT or between an END and IDENT are asswned to 
be comments. However, when COMPASS has been called by some otherlanguage processor such as 
FORTRAN, the assembler returns control to the processor when the statement following END is not 
IDE NT. For a relocatable subprogram, COMP ASS flags any suooequent u;e of IDENT before END as an 
error. For an absolute subprogram, a second form of IDENT described under BINARY CONTROL is 
available for overlay generation. 

4-2 60492600 M 



The format of IDENT varies according to the type of a~embly. 

CPU Relocatable Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

ID ENT name 

CPU Absolute Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

ID ENT name, origin, entry, t1, I. 2 

7600 PPU Absolute Format: 

LOCATION OPERAflON VARIABLE SUBFIELDS 

ID ENT name, origin, entry, ppu 

6000 Series PPU Absolute Format: 

LOCATION 

name 

origin 

60492600 M 

OPERATION l VARIABLE SUBFIELDS 

ID ENT T name, origin 

I 

Name of the subprogram or overlay. The parameter is required. For a CPU relocatable 
or absolute assembly, name can be 1 through 7 characters, of which the first must be 
alphabetic (A through Z) and the last must not be a colon. 

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1 through 7 characters. 
For CYBER 180 Series or CYBER 170 Series or CYBER 70/Model 72, 73, 74 or 6000 I 
Series PPU 12-bit assembly, name can be 1 through 3 characters. For CYBER 180 
Series PPU 16-bit assembly, name can be 1 through 4 characters. In any case, there is 
no restriction on the first character, but the last character must not be a colon. 

An expression specifying the first word address of the atsolute program or overlay. The 
overlay loader table and all code ass em bled starting at this address and ending with the 
next SEGMENT, nonblank IDENT, or END instruction make up the overlay. For a single 
entry point CPU program, the load address for the overlay is origin-1. The word at 
origin-1 is overlaid by the 50008 loader control table. For a multiple entry point CPU 
program, the load address for the atsolute overlay is origin-wc-1, where wc is the 
number of entry points in the 51008 loader table. 

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU worm are overlaid 
by the 60-bi t loader table. 

Data can be generated in locations starting with origin and above, but not below origin. 
The origin subfield does not serve the same funtion as ORG, nor does it replace ORG 
for setting the origin counter. 

4-3 



entry 

If the origin field is null for an absolute subprogram, the assembler uses address 
000000 RA{S) as the origin for a CPU program and 0000 as the origin for a PPU program. 

For a relocatable subprogram, the subfield is ignored. The loader automatically 
relocates the first subprogram to be loaded starting at RA{S)+lOOg, the second 
subprogram starting at the first available location following the first subprogram, and so 
forth. 

For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU assembly, this 
subfield contains an expression specifying the subprogram entry address, which can be 
symbolic. 

Absolute expressions specifying the level numbers of the overlay. .f1 is the primary 
level (0 through 63) and !2 is the secondary level (0-63). When the first IDENT 
identifies the main overlay, .f1 and .f2 can be omitted. If .f 1 is omitted, it is set 
to 00. If .f 2 is omitted, it is set to 00. 

Because the first IDENT precedes any use of the BASE pseudo instruction, the level 
numbers on this IDENT are evaluated as decimal unless specifically designated as octal 
by a post radix. · 

ppu Absolute expression specifying the number of the PPU on which this program is to be 
loaded. On the first IDENT, this number is evaluated as decimal unless specifically 
designated as octal. 

A location field symbol, if present, is ignored. 

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS 
control statement, IDENT must be in columns 11 through 15. 

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field entry 
as the main subprogram title on the assembly listing. 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 lJo 

UJENT r.r,roNTROL,CONT~OL 

A~() jAnSOLUTf. rPu PROG~AM 
O~G 1t0P 

/aurrffs ~OMTROL ASS 0 ~YMQOL r.ONTPOL 

I f NI) 

Absolute CPU program CT will be loaded at origin address OOllOg. 

4.2.2 END - END OF SUBPROGRAM 

An END pseudo instruction must be the last instruction of each subprogram. It causes the assembler to 
terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating 
assembly, COMPASS assembles any waiting remote text (see RMT). 

4-4 ·60492600 G 



For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram 
block, generates the relocatable binary tables and produces the listing. 

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero, 
combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and 
produces the listing. 

END can also be used to signal the end of source statements from an external source (see XTEXT). In 
this case, it does not terminate the subprogram. 

Format: 

LOCATION 

sym 

sym 

trasym 

Example: 

LOCATION 

I 

iRFGIN 

60492600 A 

OPERATION VARIABLE SUBFIELDS 

END trasym 

Optional last word address symbol; if present, COMPASS defines it as the 
total subprogram length, including the literals block and all local blocks. 
The value is the last word address plus one. 

A symbol specifying the entry point to which control transfers for a reloca
table subprogram. This symbol must be declared as an entry point in a 
subprogram -- not necessarily the subprogram being assembled. At least 
one subprogram must specify a transfer address or the loader signals an 
error. If more than one subprogram indicates a transfer address, the loader 
uses the last one encountered. 

For an absolute assembly, trasym is ignored. 

OPERATION VARIABLE COMMENTS 

II 18 TJo 

IDfNT PROG1 I 
E"NTQY qFGTN 

I . . . . I . . 
C::~1 1 I . . 

I . . . . I Ff\!') f1fGIN 

-1-5 



I 

I 

4.3 BINARY CONTROL 

Pseudo instructions that allow the t.Ser extensive control of binary output produced by the assembler are 
summarized below and described fully in this section. 

ABS Specifies CPU aooolute binary output 

MACHINE Specifies processor type 

PPU Specifies CYBER 70 Model 76 or 7600 PPU binary output 

PERIPH Specifies CYBER 180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, or 74; or 
6000 Series PP 12-bit binary output 

CIPPU Specifies CYBER 180 Series PP 16-bit binary output. 

IDE NT Begins aooolute overlay or writes partial binary section 

SEGMENT Begins absolute overlay 

SEG Writes partial binary section 

STEXT Generates system text overlay 

COMMENT Inserts comments into the 77009 prefix table 

NOLABEL Suppresses header information on binary output 

LCC Passes loader control information to the relocatable loader 

LDSET Generates loader directive LDSET 

MEMSEL CYBER 180 Series PP memory size selection. 

4.3.1 ABS - ABSOLUTE CPU PROGRAM 

An ABS instruction declares a CPU program to be aooolute. If used, it must be in the first statement group. 

The following instructions are illegal in an aooolute program: 

EXT 
LCC 
REP 
REPC 
REPI 

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no significance 
because a conventional definition takes precedence (see Default Symbols in chapter 2). 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

ABS 

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS and 
PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence. 

4-6 60492600 M 



Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 bo 
TOENT r.r,roNTROL,CkJMTROL 
ft BC) IAq~OLUTE f.PU P~OG~At-1 

• • . • I 
O~G ll!lfl 

bEFINES roNTROL nss () C)YMBOL CONTQOL 

• . I . • 
• • I 
FNO I 

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE 

The MACHINE pseudo instruction specifies the type of computer system on which the object program can 
be executed successfully and optionally specifies hardware features needed by the object program. When 
the loader loads the object program, the required hardware f ea tu res specified with MACHINE are 
reconciled against actual hardware features present; a missing feature causes the loader to issue a fatal 
diagnostic message. If used, MACHINE must be in the first statement group. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

A location field symbol, if present, is ignored. 

type Character string designating object processor type. The subfield can be any length and 
may contain any characters other than blank or comma. The first character identifies 
processor type, as follows: 

6 The object program is restricted to the following computer systems: CYBER 
180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, and 74; and 6000 
Series. All machine instructions unique to the CYBER 70 Model 76 or 7600 
Computer Systems are undefined. 

7 The object program is restricted to a CYBER 70 Model 76 Computer System or 
to a 7600 Computer System. With the exception of the PS instruction (often 
used for subroutine entry points in CPU assemblies), all instructions unique to 
the following computer systems are undefined: CYBER 180 Series; CYBER 
170 Series; CYBER 70 Models 71, 72, 73, and 7 4; and 6000 Series. 

60492600 L 4-7 



I 

I 

Example: 

LOCATION 

I 

8 The object program is restricted to a model 810, 815, 825, 830, 835,: S40, 845, 
850, 855, 860, 865, 875, or 990 Computer System. All machine instructions 
unique to other computer systems are undefined. This pseudo instruction 
should not be used if S=AIDTEXT has been specified on the COMPASS control 
statement. 

In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the type subfield 
is blank, or its first character is not 6, 7, or 8, then all CPU instructions are defined, 
and the target and valid field> of the PRFX table in the object program are blanks. If 
the type subfield is present and its first character is 6, 7, or 8, the v8lid field contains 
6X, 7X, or SX. If the type subfield is at least two characters, the first character is 6, 
7, or 8, and the second character is a digit (0-9), the target field contains those two 
characters. 

In a PP assembly, if the MACHINE pseudo instruction is omitted, or the type subfield is 
blank, or its first character is not 6, 7, or 8, then: if the PERIPH pseudo instruction is 
present, MACHINE 6 is assumed; if the PPU pseudo instruction is present, MACHINE 7 
is assumed; if the CIPPU psuedo instruction is present, MACHINE 8 is assumed. The 
target field of the PRFX table contains blanks, and the valid field contains 6P, 7P, or 
SP. 

Optional subfield, a character string designating an optional hardware feature required 
for successful execution of the object program. The subfield may be any length and 
may contain any characters other than blank or comma. It has no effect on assembly of 
the program. The first character of the subfield is placed in the 
hardware-instruction-dependencies field in the PRFX table in the object program. 

Recommended mnemonic letters are: 

C Compare/Move Unit 

D Distributive Data Path 

I Integer Multi ply Instruction 

L ECS/LCM 

R Interlock Register 

X Central and Monitor Exchange Jumps 

Up to nine hfi subfields are processed; any additional subfields are ignored. If the 
hf i subfields are omitted, the comma following type can also be omitted. 

OPERATION VARIABLE COMMENTS 

II 18 bo 

HACHI~~ 6,CMU,LCH,XJ 
I 

I 

4.3.3 PPU - CYBER 70 MODEL 76 OR 7600 PPU PROGRAM 

A PPU instruction declares a program to be a CYBER 70 Model 76 or 7600 absolute PPU program rather 
than a CPU program. If used, PPU must be in the first statement group. For a description of binary 
format generated as a result of this instruction, refer to the Loader reference manual. 

4-8 60492600 M 



Floating point constants and the following instructions are illegal in a PPU assembly: 

ENTRY SEGMENT 
ENTRYC USE LCM 
EXT R= 
LCC Bl=l 
REP ·B7=1 
REPC 
REPI 
SEG 

A symbol can be prefixed by = X if it is also defined conventionally. 

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence. 
PPU programs permit symbols of the form used for CPU register designators; they are normal symbols 
having no special significance. The following instructions are legal but are not applicable in a PPV 
assembly: 

OPDEF 
CPOP 
CPSYN 
PURGDEF 

Format: 

LOCATION 

J 

OPERATION VARIABLE SUBFIELDS 

PPU J 

A character string beginning with J supplied in the variable field alters the way 
that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or 
PJN instructions. 

If J is not specified, COMPASS first tests the range of the expression against 
the short jump limit (:!:31). If the value is in range, COMPASS assembles the 
jump using the value of the expression. If the value is out of range, COl\IPASS 
performs a second test, this time using the expreesion value minus the 
location counter value. If the value is now in range, COl\IPASS assembles the 
instruction using the expression value minus the location counter value. 
However, if it is out of range,_ a fatal error is flagged. 

Selection of the J option causes COMPASS to always subtract the value of the 
location counter from the value of the expression. 

As a result, COMPASS is able to differentiate between an expression value 
that is an absolute address in the short jump range from an expression value 
that is a true relative address. 

A symbol in the location field, if present, is ignored. 

60492600 A -1-9 



Example: 

Location 

7lt 0 
760 

Location 

71+ 0 
760 

Code Generated 

03~7 

Code Generated 

LOCATION 

I 

TAG 

LOCATION 

I 

I 

I ITAG 

OPERATION 

II 

PPU . . 
P.S~ 

UJ"I 

OPERATION 

II 

PPIJ . . 
f\S~ 

UJN 

VARIABLE COMMENTS 

18 1Jo 
T 
"T 

I 
I 

?'lq I 
Tl\G-• jEXPRES5ION < 378 

I 

VARIABLE COMMENTS 

18 lJo 

JUMP I 

I 

I 

20~ I 
TAG lEXPRESS!OtJ-• < :Hn 

4.3.4 PERIPH - CYBER 180 SERIES; CYBER 170 SERIES; CYBER 70 
I MODELS 72, 73, 74; OR 6000 SERIES PPU 12-BIT PROGRAM 

A PERIPH instruction declares a program to be a CYBER 180 Series or a CYBER 170 Series or CYBER 70 
Model 72, 73, 74, or 6000 Series absolute PPU program rather than a CPU program. If used, PERIPH must 
be in the first statement group. For a descripton of binary output produced as a result of this instruction, 
refer to the Loader Reference Manual. 

Floating point constants and the following instructions are illegal in a PPU assembly: 

ENTRY 
ENTRYC 
EXT 

LCC 
REP 
REPC 

REPI 
SEG 
USELCM 

R= 
Bl=l 
B7=1 

I A symbol can be prefixed by =X if it is also defined conventionally. In this case, the X will be ignored • 

. PPU programs permit symbols of the form used for CPU register designators; they are normal symbols 
having no special significance. The following instructions are legal but are not applicable to PPU 
assemblies: 

OP DEF 
CPOP 
CPSYN 
PURGDEF 

Format: 

LOCATION 

J 

4-10 

OPERATION VARIABLE SUBFIELDS 

PERIPH J 

A character string beginning with J supplied in the variable field alters the way that 
COMPASS assembles the variable field expression on UJN, ZJN, MJN, or PJN 
instructions. 

60492600 M 



If J is not specified, COMPASS first tests the range of the expression value against the 
short jwnp limit (+31). If the value is in range, COMPASS assembles the jump using the 
value of the expression. If the value is out of range, COMPASS performs a second test, 
this time using the expression value minus the location counter value. If the value is 
now in range, COMPASS assembles the irntruction using the expression value minus the 
location counter value. However, if it is out of range, a fatal error is flagge·d. 

Selection of the J option causes COMPASS to al ways subtract the value of the location 
counter from the value of the expression. 

For an example illustrating how to use J, see the PPU p;eudo irntruction. 

A symbol in the location field, if present, is ignored. 

4.3.5 CIPPU - CYBER 180 SERIES PPU 16-BIT PROGRAM 

A CIPPU instruction declares a program to be a CY8ER 180 Series a~olute PPU 16-bit program, rather, 
than a CPU program. This instruction is required to allow urn of the "Long'' or 16-bit wide PPU instruction 
set and to allow selection of PPU memory size (MEMSEL) greater than 4. If used, CIPPU must be in the 
first statement group. 

Floating point contants and the following instructions are illegal in a PPU assembly: 

ENTRY 
ENTRYC 
EXT 

LCC 
REP 
REPC 

REPI 
SEG 
USELCM 

R= 
81=1 
87=1 

A symbol can be prefixed by =X if it is also defined conventionally. In this case, the X will be ignored. 

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols 
having no special significance. The following instructions are legal but are not applicable to PPU 
assemblies: 

OP DEF 
CPOP 
CPSYN 
PURGDEF 

Format: 

LOCATION 

J 

60492600 M 

OPERATION VARIABLE SUBFIELDS 

CIPPU J 

A character string beginning with J supplied in the variable field alters the way that 
COMPASS assembles the variable field expression on UJN, ZJN, MJN, or PJN 
instructions. 

4-11 • 



If J is not specified, COMPASS first tests the range of the expression value against the 
short jump limit(+ 31). If the value is in range, COMPASS assembles the jump using the 
value of the expression. If the value is out of range, COMPASS performs a second test, 
this time using the expression value minus the location counter value. If the value is now 
in range, COMPASS assembles the instruction using the expression value rninm the 
location counter value. However, if it is out of range, a fatal error is flagged. 

Selection of the J option causes COMPASS to always subtract the value of the location 
counter from the value of the expression. 

For an example illustrating how to use J, see the PPU p>eudo irntruction. 

A symbol in the location field, if present, is ignored. 

4.3.6 IDENT - IDENTIFY AND GENERATE OVERLAY 

Two or more IDENT pseudo instructions are permitted in CPU aooolute or PPU assemblies. Second and 
suooequent IDENT instructiorn having nonblank variable fields came generation of overlays. IDENT differs 
from SEGMENT in the way it generates overlays. First, it allows the specification of overlay numbers. 
Second, the USE table and all block counters are reinitialized. The symbol table is not cleared; all symbols 
are reassigned aooolute addresses relative to aooolute zero. Thus, an ORG to a previously defined symbol 
restarts the absolute block at the symbolic address. The third difference is that normally the end of the 
overlay is deter1nined by the last word address, the maximum origin counter value of the last block 
established in the overlay. A preceding SEG or SEGMENT can alter this, however (Section 3.4). 

For a CPU assembly, an IDE NT with a blank variable field causes a partial binary write~ The ouput is not 
terminated by an end-of-section or a new 778 table. However, the USE table and the block counters are 
reinitialized and each symbol in the symbol table is assigned an aooolute address. 

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete. Block 
structuring starts fresh with the new overlay or portion of binary. Tht..5, each new overlay or partial can 
me the same block names as are used by other overlays or partial and each can have a literals block. 

For a blank IDE NT, an attempt to write into or reset the origin counter to a location in a partial section 
written separately causes a range error. Following the IDENT, the origin of the new aoooalute block is the 
next word after the binary written out, that is, it is lwa+l. 

The format of the IDENT varies according to the type of assembly as follows: 

CPU Aooolute Format: 

LOCATION OPERATION VARIABl.E SUBFIELDS 

ID ENT name, origin, entry, .e
1

, R 
2 

4-12 60492600 M 



or 

LOCATION OPERATION VARIABLE SUBFIELDS 

ID ENT 

7600 PPU Absolute Format: 

LOCATION OPERATION l VARIABLE SUBFIELDS 

ID ENT T name, origin, entry, ppu 

I 

6000 Series PPU Absolute Format: 

LOCATION 

name 

origin 

entry 

60492600 M 

OPERATION VARIABLE SUBFIELDS 

ID ENT name, origin 

Name of the overlay. For a CPU program, 1-7 characters, the first of which must be 
alphabetic (A-Z); for CYBER 180 Series or CYBER 170 Series or a CYBER 70/Model 72, 
73, or 74, or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76 or 
7600 PPU program, 1-7 characters. In all cases, the last character must not be a 
colon. A name is a loader linkage symbol required for overlays. 

An expression specifying the first word address of the overlay. The overlay control 
word and all code assembled starting with this address and ending with the next 
SEGMENT, nonblank IDENT, or END instruction comprises the overlay. For a single 
entry point CPU program, the load address for the overlay is origin-1. The word at 
origin-1 is overlaye<J by the 50s loader table. For a multiple entry point CPU 
program, the load address for the overlay is origin-wc-1, where wc is the number of 
entry points listed in the 5 lg loader table. 

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are 
overlayed by the 60-bit loader control table. Data can be generated in locations 
starting with origin and above, but not below origin. The origin subfield does not serve 
the same function as ORG nor does it replace ORG for setting the origin counter. The 
origin of an overlay can be below the origin specified on any other IDENT or SEGMENT. 

An expression specifying the overlay entry address. When the overlay is called, control 
optionally transfers to this address. 

Absolute expressions specifying the level numbers of the overlay for CPU programs 
only. .f 1 is the primary level (00-77 9), .t2 is the secondary level (00-77 9). If 
base is M, .t1 and .t2 are assumed to be octal. If .t1 and .t2 are not specified, 
l. 1 is set to 01 and .t 2 is set to 00. 

4-12.114-12.2 I 





ppu An absolute expression specifying the number of the PPU in which the overlay 
is to be loaded. If base is M, ppu is assumed to be octal. 

A location field symbol, if present, is ignored. 

The binary is written on the file specified by the B parameter on the COMPASS control statement. END 
dumps the last overlay or completes a partially written section. 

Examples: 

The following program uses IDENT for overlay creation. Symbols T. OVL, O. DMPl: etc. are 
defined on a system text overlay. 

LOCATION OPERATION 

I II 

IDENT 
~es 

O .. H BASE 
COHHEN~ 
LIST 
SST 
ORG 
OUAL 

pMP SXO 
• . 
• 
QUAL 
ID ENT 
O~G 

µ~w2 sxo . . . 
OUAL 
IOENT 
ORG 
c:;xo 
• 
• 
• 
ENn 

60492600 A 

VARIABLE COMMENTS 

18 TJo 

OHP.1,T.OVL,O.nHP1 

l I 
H I 

10107170.CONTROL CARO r. ALL • D MF • 
G I 

I OVERLAY 
T.OVL . OMP1 
OHP1 I 

J 
Bl 

I • . I • 
0"1P? I 
OHP~,T.OVL,C.OMP2 1 
T.OVL I ovnLAY~ OM 
A6+1 I THQ1UGH OHP 
• 

J . I . 
OMPq I .., 
OHP.9,T.OVL,O.OMP9 OVE~LAY 
T.OVL I OHPq 
~· OHP2+F. MOEi 

J 
. I . 

kNo OVE~LAY Ot-'P9 
J 

P2 
8 

-1-13 



The following program uses !DENT instructions having blank variable fields. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 130 
I-+-----

I!JENT Wv, 1foo,ENT-1 
A~<) 

OPG 110P 
f~IT ~Xf] l 

. . . . . . 
1r,1 7 LIT 1'2' ~ 

• . . . . . 
JllENT 

• . . . . . 
LTT ?,3 . . . . . . 
rnr:Nt 

. . . . . . 
711F) LIT t,2 . . . . . . 

FNfl 

Origin-
ABSOLUTE 

1617 - LITERALS 

Local Blocks 

ABSOLUTE' 

3455 -
LITERALS' 

ABSOLUTE'' 
7116 - LITERALS" 

lwa -
Local Blocks 

Core Map 

4-14 

l 
First 

Partial Binary 

J 
l 

Second 
Partial Binary 

J 
l 
Third 

Partial Binary 

J 

l 
First 

Partial Binary 

J 
I 

Second 
Partial Binary 

J 
l 

Third 
Partial Binary 

J 

60492600 A 



4.3.7 ·SEGMENT - GENERATE BINARY SEGMENT 

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of 
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is intended 
for 6000 Series CPU al:l>olute or PPU assemblies. For a relocatable subprogram, a SEGMENT pseudo 
instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be written on the binary 
output file. 

The first SEGMENT causes all binary accumulated since the IDE NT to be dump as the main (0, 0) overlay. 
Each subsequent SEGMENT generates a new overlay with the specified level numbers. END dumps the last 
overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the symbol table or 
block declarations. All blocks other than the block in use must be complete. For a CPU assembly, the 
literals block m u5t be in ·one overlay only but that overlay can be any overlay. 

Format: 

LOCATION 

name 

name 

origin 

entry 

60492600 M 

OPERATION VARIABLE SUBFIELDS 

SEGMENT origin,entry, !
1

, 1
2 

Name of overlay. For a CPU program, 1-7 characters, first of which must be 
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last character 
must not be a colon. It is a required loader linkage symbol. 

A relocatable expression specifying the first word address of the overlay. It can only an 
address in the block in use. The overlay loader table and all code assembled starting at 
this address and ending with the next SEGMENT, nonblank IDENT, or END instruction 
corn prises- the overlay. 

For a CPU program the load address for the record is origin-1. The word at origin-1 is 
overlayed by the 508 loader table. 

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are 
overlayed by the 60-bit loader table. Data can be generated in locations starting with 
origin and above, but not below origin. The origin subfield does not serve the same 
function as ORG nor does it replace ORG for setting the origin counter. The origin of 
an overlay can be below the origin specified on any other IDE NT or SEGMENT. 

An expression specifying the overlay entry address. It is U5ed for CPU assemblies only. 
When the overlay is called, control optionally transfers to this address. 

Absolute expressions specifying the level numbers of the overlay for CPU programs 
only. 11 is the primary level (00-77 9), 1?. is the secondary level (00-77 8). If 
base is M, 11 and 1z are assumed to be octal. If 11 and !2 are not specified, 
11 is set to 01 and 12 is set to 00. 

4-15 

I 



Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 bo 
JOC:-NT SAt.f,FNTfl I 

A~c; 

I oqr; 11 OR 
fNTA PS5 I) ENTPY POINT 

I 
• . 
• . I . . 

OVL 'lf, nc;c; 'l IOVFPLAY LCl\O POINT . . . • I 
• . 

~rr.1 SFr.M ~t..J S'flH,ENT~ I nRG OVLrr· 
P<;<; 1 LOl\OEP. TAPLE 

~TRT fl S4S rt IFI~ST wo~o r. c:- ovr:qLAY 

• . I 
• • 
• . I 

(tJTO f'ISS 1 F.Xtr.UTION AECiINc; HEPE 
I . . 
I . . . • 

F~rJ Imo 
I 

OF ovr PL AV 

SEG 1 is loaded as an overlay upon a call for the loader from the program. The first word of the overlay is 
loaded at OVLOC+l, following the loader table. The entry point to the overlay and the first executable 
instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning at 
OVLOC. 

I 4.3.8 SEG - WRITE PARTIAL BINARY 

The SEG p;eudo instruction permits the generation of a CPU aooolute subprogram or overlay in less core 
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies. 

SEG causes COMPASS to write on the binary output file all binary information accumulated since the 
previous IDENT, SEGMENT, or SEG p;eudo instruction. It does not write an end-of-section or begin a new 
PRFX table. A SEGMENT, !DENT, or END in5truction completes the binary section. 

SEG does not affect the location and origin counters. The user cannot resume use of a block established 
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the 
origin counter so as to resume a block already written out causes an R error. Also, since the block group is 
incomplete and the names of the blocks already written out are still in the USE table, no new blocks can be 
established using the same block names as were used prior to the SEG. 

The literals block is written in the portion that contains the end of the aooolute block. 

4-16 60492600 M 



Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

SEG 

Symbols in the location field and variable field, if present, are ignored. 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 1 JO 

IOENT NAME,ORIGIN,ENTRY 
A'l5 I 
us-: A I 
• • I . • . . I SEG 

I USE 9 . . 
I • . . . I 

SEG 
I . . 

• . I . . I f NO 
I 

4.3.9 STEXT - GENERATE SYSTEM TEXT RECORD 

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols, 
micros, and opcodes (macros, opdefs, and machine and pseudo instructions), written in overlay format at 
the end of pass one. The STEXT instructions must be in the first statement group. 

The system text overlay becomes available in other assemblies through use of the G or S option on the 
COMPASS control statement (chapter 10). Through this feature, information in the system text overlay 
need be processed only once for all COMPASS programs using the same system text. System text overlays 
cannot be generated and used in the same assembly batch; system text overlays generated by one 
COMPASS control statement call can be used only by assemblies performed by later COMPASS control 
statement calls. 

The symbols included in the system text overlay written are all symbols defined in the assembly except 
those for which at least one of the fallowing is true: 

The symbol value is relocatable or external. 

The symbol is qualified. 

60492600 M 4-17 

I 



The symbol is redefinable (i.e., defined by SET, MAX, MIN, or M!CCNT). 

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX. 

The symbol is defined by SST (i.e., is a system symbol input to the present system text assembly). 

The symbol is 8 characters beginning with f i. 

All defined micros are included in the system text overlay. 

All program-defined opcodes are also included. Machine and pseudo instructions automatically 
defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not 
included. 

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS con
trol statement, all of the micros and opcodes in the system text are automatically defined at the start of 
each assembly; however, the symbols in the system text are defined only for those assemblies that 
contain the SST pseudo instruction. 

A system text overlay on the library is an absolute overlay that has the following control table: 

59 48 42 36 

5000 01 I 01 

Format of Text: 

r 
£. = Number of words in each part of overlay 

l . 

4-18 

000000000000 

·'00 

System bfmbol 
Table 
2 words per entry 

Micro Definiti<ms 

Macro/opdef Definitions 

Operation Table 
Entries (2 words per entry) 

60492600 A 



Format: 

LOCATION . 
rname 

rname 

OPERATION VARIABLE SUBFIELDS 

ST EXT 

Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a 
letter (A-Z) and the last must not be a colon. It is placed in the prefix table that 
precedes the o\'erlay. 

If rname is blank, COM PASS uses the name from the IDENT instruction and generates 
the system text only. Otherwise, the system text is generated in addition to the re
locatable or absolute binary and precedes the binary output on the binary file. 

An entry in the variable field, if present, is ignored. 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I " 18 1 Jo 

!DENT SV~TE>CT I 

I 
STE:XT 

I AASE HI XEO 
MPRS f OU 100 'l i . . . 

I !SYSTEM C1NSTANTS, SYMBOLS, 
IANO CO~MUNICATIONS A~F.AS . . . 
!J . . . 

TRTS EOU 1771 
IXX/X OPOEF I,J,K 11 . . . 

lsvsn. M-0 ff INEO . . . MdCRO~ . • . 1AMn OPOEFS 
ENOM 

!J 
SYSCOM Ml\CRO N . • . . . • . . . 

ENOM 

:1 DATE MICRO 1,10, ...... 
• . . . • . 1svSTt.M-OEFINfD MICROS . . . tJ FNO 

60492600 A -!-19 



I 4.3.10 COMMENT-PREFIX TABLE COMMENT 

The COMMENT pseudo instruction inserts the character string specified in the variable field into. t_he 
eighth through fourteenth words of the PRFX table in the object program. The prefix table, and thus the 
comment, is ignored by the loader but identifies the section. If a subprogram contains more than one 
COMMENT instruction, the new comments arc appended to the table for the most recent binary control 
statement. If the subprogram contains a NOLABEL instruction, the COMMENT instruction is meaningless. 
COMMENT instructions following SEG and blank IDENT pseudo instructions are ignored without 
notification. 

Format: 

LOCATION 

string 

OPERATION VARIABLE SUBFIELDS 

COMMENT string 

COMPASS searches the columns following the blank that terminates the operation 
field. If it does not find a nonblank character before the default comments coluinn (see 
COL pseudo instruction), it takes the characters starting with the default comments 
column minU5 one. Otherwise, the character string begil15 with the first nonblank 
character following the operation field. In either case, the last character of the string 
is the last nonblank character of the statement. 1 to 10 blanks are appended on the 
right so that the string is followed by at least one blank and'the length of the string is a 
multiple of 10 characters. If the variable and comment fields are· all blanks, the string 
consists of 10 blanks. If the string length is more than 70 characters, all characters 
beyond the 70th are lost. 

A location field symbol, if present, is ignored. Refer to section 4.3.5 for an example. 

I 4.3. 11 NOLABEL - DELETE HEADER TABLE 

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an ahsolute 
assembly by optionally suppressing header information. It is particularly convenient for generating 
deadc;tart programs which mIBt be loaded at location zero. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

NO LABEL 

4-20 60492600 M 



Optional; if the variable field contains a character string beginning with an I, COMPASS 
suppresses all prefix (77005) tables, but retains the other program header tables. 

If the I option is omitted, COMPASS suppresses all of the following: 

Prefix tables (77009) 
Overlay control tables (50009) 
Multiple entry point tables (51009) 
PP header control tables 

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly. 

4.3.12 LCC - LOADER DIRECTIVE 

The LCC (Eeudo instruction provides a means of including loader directives with the tables for· a 
relocatable program. 

Format: 

LOCATION 

directive 

OPERATION VARIABLE SUBFIELDS 

LCC directive 

First nonblank character following LCC to the first blank. For directive formats, refer 
to the Loader reference manual. 

A location field symbol, if present, is ignored. 

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the 
loader. COMPASS does not edit the directive; the loader recognizes illegal forms at load time. 

4.3.13 MEMSEL ~ CYBER 180 SERIES SELECT PPU 16-BIT MEMORY SIZE 

The MEMSEL µ:;eudo instruction is applicable to CYBER 180 Series PPU 16-bit programs only. Use of this 
pseudo instruction controls address field calculation and validation during program assembly. Them field 
of the PPU instruction set, when specifying a memory address, varies in the number of bits allowed 
dependent upon the variable subfield of the MEMSEL pseudo instruction. If used, MEMSEL must be used in 
the first statement group. 

Format: 

LOCATION 

options 

60492600 M 

OPERATION VARIABLE SUBFIELDS 

MEMSEL options 

One of the following, for CYBER 180 Series PPU 16-bit programs only: 

blank or 4 

8 

all address calculation and validation checks are based on a 4096 
word memory (0-77778). 

all address calculation and validation checks are based on a 8192 
word memory (0-177778). Applies to CYBER 180 model 990 and 
certain model 840, 850, and 860 systems. 

4-21 • 



I 4.3.14 LDSET - GENERATE LDSET OBJECT DIRECTIVES 

The LDSET pseudo instruction generates loader LDSET directives for a relocatable program. A program 
may contain any number of LDSET instructioIB. COMPASS collects all LDSET options and writes a single 
LDSET (7000 8) table in the relocatable binary output between the PRFX (7700s) table w1d the PIDL 
(3400s) tables. The LDSET table is n_ot written if LDSET iIBtructioIB do not appear in the irogram. 
LDSET is not allowed in a PP or absolute CPU assembly. 

Format: 

4-22 

lOCA TION OPERATION VARIABLE SUBFIELDS 

LDSET options 

optioffi One or more options separated by commas. See the Loader reference manual 
for further information, including applicability to a particular operating 
system. 

LIB Clear local library set. 

LIB=libnam e Add the specified litraries to the local litrary set. More than one library can 
be specified by separating library names with a slac)h, in the form: 

MAP 

MAP=p 

libnam e1;ubnam e21· •• /libnam en 

Write load map to file OUTPUT. 

Write load map to file OUTPUT. Map items are selected by p: 

NOS and NOS/BE 

N 
s 
B 
E 

x 

No map. 
Statistics. 
Block list. 
Entry point list. 

Cross reference map. 

SCOPE 2 

Oor 0 
s 
B 
E 

x 

No map. 
Statistics. 
Statistics and block list. 
Statistics, block list, and entry point 
list. 
Statistics, block list, entry point list, 
and cross reference map. 

60492600 M 



MAP=p/lfn 

MAP=/lfn 

PS=p 

PD=p 

PRESET=p 

PRESETA=p 

60492600 M 

For NOS and NOS/BE, p can be written as N or as any combination of SBEX in 
any order. 

Write load map to file named lfn. pis as above. 

Write load map to file named lfn. Installation default determines items on the 
map. 

Select page size for load map by a specification of nwnber of lines. p can be 
decimal 10 through 999999. A value outside this range results in the 
installation default page size. This option is not supported by SCOPE 2. 

Select print density for load map by a specification of decimal nwn ber of lines 
per inch. This option is not supported by SCOPE 2. p can be: 

6 6 lines per inch. 

8 8 lines per inch. 

other Installation default. 

Preset memory to the value specified by p. Under NOO/BE, p can be a 1 
through 20 digit octal nwnber with an optional+ or - prefix and an optional B 
suffix. 

p can also be one of the following key words: 

NONE 

ZERO 
ONES 
IN DEF 
INF 
NGIN DEF 
NGINF 
ALTZERO 
AL TONES 
DEBUG 

No presetting for ECS (or for LCM and SCM under SCOPE 2); 
same as ZERO for CM · 
0000 0000 0000 0000 0000 
7777 7777 7777 7777 7777 
1777 0000 0000 0000 0000 
3777 0000 0000 0000 0000 
6000 0000 0000 0000 0000 
4000 0000 0000 0000 0000 
2525 2525 2525 2525 2525 
5252 5252 5252 5252 5252 
6000 0000 0004 0040 0000 

p can be as defined for PRESET. The lower 17 bits (CM/SCM) or lower 24 bits 
(ECS/LCM/LCME) of each word contains its address. 

4-22.114-22.2 1 





ERR= ALL 

ERR=FATAL 

ERR= NONE 

REWIND 

NOREWIN 

EPT=eptname 

NOEPT=eptname 

USEP=pname 

USE=eptname 

COMMON 

COMMON=blkname 

SUBST=pair 

OMIT=eptname 

Select loader abort for any loader errors. 

Select loader abort only for fatal loader errors. 

Select loader abort only for catastrophic loader errors. 

Reset the default REWIND/NOREWIN option for load files to REWIND. The 
NR parameter on LOAD and SLOAD directives can override this default for 
individual files. 

Reset the default REWIND/NOREWIN option for load files to NOREWIN. 
The R parameter on LOAD and SLOAD directives can override this default 
for individual files. 

If the symbol eptname is defined, declare it an entry point of the CAPSULE 
or OVCAP binary subsequently generated by the loader. This parameter can 
be used to specify more than one entry point; entry point names must be 
separated by a slash in the form eptname1/eptname2/ ... /eptnamen. 

Do not declare eptname as an entry point of the CAPSULE or OVCAP binary 
subsequently generated by the loader. This parameter can be used to specify 
more than one entry point. In this case, entry point names must be separated 
by a slash in the form eptname1/eptname2/ .•. /eptnamen· 

Cause the designated object modules to be loaded whether or not they are 
needed to satisfy external references. More than one module can be 
specified by separating module names by a slash in the form pname1/ 
pname2/ .•. /pnamen. 

Cause the load of object modules containing the specified entry points 
whether or not they are needed to satisfy external references. More than one 
entry point can be specified by separating entry point names by a slash in the 
form eptname1/eptname2/ ... /eptnamen. 

Assign all labeled blocks to a segment such that the blocks are available to 
all segments that reference them. Valid for segment loads only. 

Assign the labeled common block named blkname to a segment such that it is 
available to all segments that reference it. Valid for segment loads only. 
More than one block name can be specified by separating the individual block 
names with a slash in the form blkname1/blkname2/ ..• /blknamen. 

Treat external references to eptname1 as though they were references to 
eptname2, where the entry point names are specified as a pair in the form 
eptname1 -eptname2. 

More than one pair of entry point names can be specified by separating the 
pairs with a slash in the form pair1/pair2/ ••• /pairn. 

Omit satisfying external references to the specified externals. More than 
one entry point name can be specified by separating the names with a slash in 
the form eptname1/eptname2/ ••• /eptnamen· 

A location field symbol, if present, is ignored. 

60492600 H 4-23 



See the Loader reference manual for details of these parameters, including the operating system to which a 
given option applies. 

4.4 MODE CONTROL 

Mode control pseudo instructions influence the basic operating characteristics of the assembler. 
Specifically, the instructions allow the programmer to alter the way in which the assembler: 

Interprets binary data 
Generates character data 
Interprets the beginning of comments on statements 
Qualifies symbols or does not qualify them 
Interprets the R=instruction 

BASE pseudo instruction 
CODE pseudo instruction 
COL pseudo instruction 
QUAL pseudo instruction 
Bl=l or B7=1 pseudo instruction 

In each case, the assembler has a default mode which it uses if one of these instructions is never used. 

4.4. 1 BASE - DECLARE NUMERIC DAT A MODE 

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a base radix is 
not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subprogram, COMPASS 
evaluates unspecified numeric data as decimal. 

An alternate application of BASE is to define the previous base as a micro. 

In addition, if no program or system micro named BASE has been defined, COMPASS changes the 
predefined BASE micro to be a single letter D, M, or 0, corresponding to the new mode established by this 
BASE instruction. 

Format: 

LOCATION 

mname 

mname 

mode 

4-24 

OPERATION VARIABLE SU Bf IElDS 

BASE mode 

Optional 1 through 8 character micro name by which the previous BASE mode can be 
referenced in subsequent BASE instructions. If mname is present, the value of the micro 
named mname is (re)defined to be a single letter D, M, or 0, corresponding to the BASE 
mode in effect prior to this BASE instruction. 

Blank, in which case the base remains unchanged, or 1 through 8 characters, the first of 
which designates the new base as follows: 

0 

D 

Octal assembly base; any subsequent use of a data item not specifically 
identified by an 0, D, or B prefix or suffix is evaluated as octal. For 
example, the constants 15 and 15B are evaluated as 15s; constant 15D is 
evaluated as 17 8· Any item containing an 8 or 9 without a D radix is 
flagged as erroneous. Exceptions are scale factors, character counts, shift 
counts (S modifier), and binary point positions, which are always considered 
decimal. 

Decimal assembly base; any subsequent use of a data item not specifically 
identified by an 0, D, or B prefix or suffix is evaluated as decimal. 

60492600 H 



Examples: . 

M Mixed assembly base; any subsequent use of a data item not specifically 
identified by an o, D, or B is evaluated as decimal if it is one of the 
following. Otherwise, it is evaluated as octal. 

* 

other 

VFD bit count 

IF, ELSE, or SKIP line count 

MICRO, OCTMIC, or DECMIC character count 

B, C, or I subfield in REP or REPI 

DUP or ECHO line count 

Character count 

Shift counts (S modifier) 

Scale factors 

Binary point position 

COL column number 

DIS word count 

SPACE line count 

Use base in effect prior to current base. The assembler records occurrences 
of BASE pseudo instructions and maintains a table of the most recent 50 
occurrences. Each BASE* resumes use of the most recent entry and 
removes it from the list. When the subprogram contains more BASE * 
instructions than there are entries in the stack, COMPASS uses a decimal 
base. 

If the variable field is not blank and does not contain one of the above, 
COMP ASS sets an error flag. 

This example shows the effect of BASE on a VFD instruction defining a 48-bit field containing lOg. 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

o,.o 
OOOOOOOf'IOOOOOOtO 

000000000010 

00000010 

60492600 H 

o~o 

0000 

O_.H 
00000000 

I II 

~ASE' 

VFO . . 
RASE 
VFO 

• . 
RASE 
VFIJ 

18 TJo 

0 
I 

60/11) I . I . I 
0 I 
41\/~ 

I . I . I M 
.. 13/10 I 

I 

4-25 



The following example illustrates the micro capability of BASE: 

LOCATION OPERATION VARIABLE COMMENTS 

11 lB 30 

0,.M SAVEB BASE· H ISAVE BASE IN USE 

• • • I 
• ,cooE USING BASE H 

• • 
BASE ~SAVEBt IRESTORE SAVED BASE 
AASE 

• • 
cf RESTORE sJfvEo BASE; 

>I ·-
• • • I 
• • • I 

4.4.2 CHAR-DEFINE OTHER CHARACTER DATA CODE 

The CHAR pseudo instruction defines character data codes to be used when the CODE 0 (for Other) mode 
is in effect. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

CHAR exp1,exp2 

expl Evaluatable absolute expression whose value is 00 to 77 8· The value of expl is the 
display code value of the character to be redefined. 

exp2 Evaluatable absolute expression whose value is 00 to 77 8• The value of exp2 is the new 
code other value of the character designated by expl. 

A location 'field symbol, if present, is ignored. 

Initially, all code other values are the same as display code. CHAR need be used only for those characters 
whose code other values are different from display code. Characters may be redefined as many times as 
desired by subsequent CHAR pseudo instructions. 

Example: 

00r+63 
63,.00 

LOCATION OPERATION 

CtiAR 
CHAR 

VARIABLE SUBFIELDS 

Ot63B 
63Bt0 

4.4.3 CODE - DECLARE CHARACTER DAT A CODE 

INTEHCHANuE COLON ANO 
PERCENT fOH coot UTH~H 

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all 
constants, character strings, and character data items are to be generated in the specified code. 
Character data can be generated in ASCII (American Standard code for Information Interchange), display, 

I external BCD, or internal BCD, codes. Use of the CIPPU instruction caIBes CO·M. PASS to select 8-bit 
ASCII as the default, all other COMPASS assemblies default to 6-bit display code. Codes are given in 
appendix A. 

4-26 . 60492600 M · 



An alternative application of CODE is to define the previom code as a micro. 

In addition,.if no program or system micro named CODE has been defined, COMPASS changes the 
predefined CODE micro to be a single letter A, D, E, I, N, or O, corresponding to the new mode established I 
by this CODE instruction. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

mname CODE char 

mname Optional 1-8 character micro name by which the previous CODE mode can be 
referenced in subsequent CODE instructions. If mnameis present, the value of the 
micro named mname is (re)defined to be a single letter A, D, E, I, N, or O, 
corresponding to the CODE mode in effect prior to this CODE instruction. 

char The first character of a string indicates the code conversion: 

A ASCII six-bit subset 

D Display 

E External BCD 

Internal BCD 

N ASCII eight-bit character set 

0 Other code, defined by CHAR pseudo instructions 

* Use code in effect prior to current code. The assembler records occurrences 
of CODE pseudo instructions and maintains a table of the most recent 50 
occurrences. Each CODE *resumes use of the most recent entry and 
removes it from the list. When the subprogram contains more CODE * 
instructions than there are entries in the stack, COMPASS generates display 
code. 

Example: 

Code Generated 

1725242025240QOOuOuJ 
O,.A 

5765646u6564J~UuJJOC 
A,.E 

46242347242JGuuOUOuO 
E,. I 

466463476463JJG~~JJU 
r,.o 

172524202524uJOuuOilO 
n .. r 

466463476463JUJJ~~~~ 

60492600 M 

LOCATION 

I 

OPERATION 

II 

DATA 
C'10E 
OATA 
COOE 
DATA 
COOE 
DATA 

I 

ICODE 
DATA 

IC')'1f. 
OHA 

I 

VARIABLE COMMENTS 

18 I Jo 

OLOUTPUT I 
ASCII 
OLOUTPUT I 
EXTERNAL BCD 
OLOUTP.UT I 
INTERNAL BCD 
OLOUTPUT I 
DISPLAY 

I 0 LOUT PUT 
• I c L 0 1JTPUT 

! 

4-27 

I 

I 



4.4.4 QUAL - QUALIFY SYMBOLS 

The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined in it 
are either qualified or are unqualified (global). If no QUAL is in a subprogram, all symbols are defined as 
global. 

An alternative application of QUAL is to define the previous qualifier as a micro. 

In addition, if no program or system micro named QUAL has been defined, COMPASS changes the 
predefined QUAL micro to be the new qualifier name established by this QUAL instruction. 

Within a QUAL sequence in which a symbol is defined, a symbol reference need not be qualified. Used 
outside the sequence, the symbol must be referenced as/qualifier /symbol. Thus, a symbol and a qualifier 
become a unique identifier local to the sequence in which the symbol was defined. The same symbol used 
with a different qualifier is local to a different QUAL sequence. If a symbol is defined with no qualifier as 
well as being defined as qualified, a reference to the symbol within the QUAL sequence is assumed to be a 
reference to the qualified symbol rather than to the global symbol. In this case, a reference to the global 
symbol must be written as //symbol. However, in a NOREF statement when the unqualified symbol is 
previously defined and the qualified symbol is not, COMPASS assumes the reference is to the unqualified 
symbol. 

Default symbols and linkage symbols are not qualified. 

LOCATION 

mname 

mname 

qualifier 

4-28 

OPERATION VARIABLE SUBFIELDS 

QUAL qualifier 

Optional 1-8 character micro name by which the previous qualifier can be referenced in 
subsequent QUAL instructions or symbol references. If mname is present, the value of 
the micro named mname is (re)defined to be the 0-8 characters comprising the qualifier in 
effect prior to this QUAL instructions. 

A symbol qualifier or • or blank, as follows: 

qualifier 

* 

1-8 character name, the first character of which cannot be $ or = or : or 
numeric. The qualifier cannot contain the characters 

+ - •I, or A 

A blank terminates the qualifier. 

Any symbol defined subsequent to this QUAL up to the next QUAL must be 
referenced from outside the QUAL sequence as 

/qualifier /symbol 

The current qualifier appears as the third sub-subtitle on the assembly 
listing (section 11.1). 

The assembler resumes using the qualifier in use prior to the current 
qualifier. The assember records occurrences of QUAL pseudo instructions 
and maintains a table of the most recent 50 occurrences. Each QUAL * 
resumes use of the most recent entry and removes it from the list. When the 
subprogram contains more QUAL * instructions than there are entries in the 
stack, COMPASS uses the null (global) qualif er. 

60492600 H 



blank 

Examples: 

LOCATION 

I 

pro~ 

nroE 

(;t CP 

60492600 H 

A blank variable field causes any symbols defined up to the next QUAL to be global. 
A global symbol does not require a qualifier. 

NOTE 

The first attempt to redefine a global symbol from within a 
QUAL sequence results in A and U errors. The symbol is 
defined local to the QU AL sequence with a zero value. To 
avoid fatal errors, precede any redefinition instruction (SET, 
MAX, MIN, or MICCNT) within a QUAL sequence with a 
blank QUAL and follow it with a QUAL*. 

OPERATION VARIABLE COMMENTS 

II 18 TJo 
. 

OUAL Dl\S~t 

<:'X'> F ncnE OUALIFIED :\ y PA<;51 . . . . 
F'1 LOf"1 
OU4L Pll<:;~? 

s: () IJ Lor.2 ~r. OE OU A LI FI ro RY PASS2 
OUl\L sv~noL~ GlOqAL F 0 0H NOW ON . . . . . . 
£1S<:; ,, GLOB I 5 GLQqAL . . . . 
DJ /Pl\S~118COF JlJ~D T~ PViS 1 ROUTINI=" . . . . 
RJ IPl\<:;S?/~COf JU~P TO pr.<:;5? POUTINE 

4-29 



Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

II IB 30 

T ~p '4Ar.RO qLQf'K,'<'WAL 
USE P.L or~ 
OUl\L KWAL 

HG1 BS~ 1 OR 
l' ~G-2 v~o ~o 1-1 

USf. ... 
QllAL • 
f Nl"lM 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB T3o 

QUAl z I 

Z1 SSS 0 lz1 QUALIFIED AY l . . , . 
• • . 
• . I· QUAL 8 'EQUATE SYMBOLS SO TH/\T 

Z1 = /Z/Z1 Z1 IN Z CAN Bf REFER~EO 
!TO AS Z1 IN B 

4.4.5 Bl = l AND B7 = l - DECLARE THAT B REGISTER CONTAINS ONE 

The Bl=l and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl 
register or the B7 register, respectively, are one. These instructions do not produce code; they alter 
the way in which code is generated by the R= instruction (section 4. 8. 7) and define the symbol Bl=l 
or B7=1. If more than one instruction is used, the assembler uses the last one encountered. 

4-30 60492600 H 



Formats: 

LOCATION OPERATION 

Bl=l 
B7=1 

VARIABLE SUBFIELDS 

A symbol in the location or variable field is ignored. 

Note that loading the respective B register with one is the user's responsibility. 

For an example of use, refer to R= (section 4.8. 7). 

4.4.6 COL - SET COMMENTS COLUMN 

The COL pseudo instruction sets the column number at which the comments field can begin when the 
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30. 

LOCATION OPERATION VARIABLE SUBFIELDS 

COL n 

n An absolute evaluatable expression designating the column number; n 12. When base is M, n 
is assumed to be decimal. If n is less than 12, COMPASS sets the column at 12. If n is zero 
or blank, COMPASS sets the column to 30, the default column. 

If the current operation field extends past the current comments column, COMPASS 
substitutes a very large number for n in the current instruction only; that is, if n is less than 
or equal to the last column of the operation field, a variable field must be present if a 
comment is present. 

A location field symbol, if present, is ignored. 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 '30 

COL 36 I 

USE :RETURN TO PLOCK 0 

In this example, subsequent statements for which the variable field is blank cannot have comments 
beginning before column 36. 

60492600 H 4-31 



4.5 BLOCK COUNTER CONTROL 

Counter control pseudo i~tructions establish local blocks, labeled common blocks, and blank common 
blocks in acklition to the absolute, zero, and literal blocks established by the asse_mbler; they control use of 
all program blocks, and provide the user with a means of changing origin, location, and position counters. 

4.5.1 USE - ESTABLISH AND USE BLOCK 

USE establishes a new block or resumes use of an already established block. The block in use is the block 
into which code is subsequently assembled. A user may establish up to 252 blocks in a block group. 

Format: 

LOCATION 

block 

OPERATION VARIABLE SUBFIELDS 

USE block 

Identifies block to be used, as follows: 

0 or blank 

II 

/name/ 

name 

* 

Nominal block (absolute or 0). 

Blank common block; for a relocatable subprogram, this block cannot 
contain data. The only storage allocation instructions that can follow are 
BSS and ORG. The BSSZ instruction is illegal because it presets the block 
to zeros. 

Labeled common block. A name can be a maximum of 7 characters and 
cannot include blank or comma. The first and last characters must not be 
colons. Conventions imposed by the loader or other assemblers or 
compilers could further restrict the use of names. 

Local block. A name can be 1 through 8 characters, excluding blank or 
comma. The first character must not be a colon. Use of this name 
enclosed by brackets does not cause the block to become a labeled common 
block. For example, USE A and USE/ A/ are different blocks. 

Block in use prior to current USE, USELCM, ORG, or ORGC. See 
discussion following. 

A location field symbol, if present, is ignored. 

The nominal program block contains the entire program if no USE or USELCM is encountered. 

Redundancy between block names is permitted as follows. 

A labeled common block designated by /0/ can coexist with the program block designated by 0. Blank 
common designated by// can coexist with a labeled common block designated as////. 

4-32 60492600.H 



A CPU subprogram may have two blocks with the same name and the same memory type if they have 
different block types (local or common). Furthermore, a CPU subprogram may have two blocks 
with the same name and the same block type if they have different memory types (CM/SCM or 
ECS/LCM). Thus, altogether, there may be up to four different blocks with the same name. 

When a block is first established, its origin and location counters are zero and its· position counter is 
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is 
indicated, COMPASS saves the values of the current origin and position counten; along with an 
indicator as to whether the next instruction is to be forced upper. If the most recently assembled 
instruction under the block is one that forces the next instruction upper, the first instruction 
as;eITiOled upon resumption of the block is forced upper. \\'hen the designated block has been 
previously established, COMPASS resumes assembly in the block using the last known values for 
the origin and position counters. The value of the location counter is not saved. Upon resumption of 
the bl~ck, it is set to the value of the origin counter. If a LOC had been used previously, resetting 
of the location counter to produce the desired results is the responsibility of the programmer. 

The assembler records occurrences of USE, USELCM, OHG, and OHGC pseudo instructions (except 
USE *and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE * and 
USELCM * resumes use of the most recent entry and removes it from the table. When the subprogram 
contains more USE * or USELCM * instructions than there are entries in the stack, COMPASS uses 
the nominal block. 

Examples: 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II IB l Jo 

U<lf I 
1~ 01onooonon r;r.HMA PJ ALPHA I ~L Of''< l"J IM USf 

lJ~f=" rJATt\1 1 nu~r K OATA1 IN US!=' 
35 112o~oonono~oo11aoaoo S/\P nAT/\ t. r. I 

uc;i:: • I RF ~UMf USF OF nLCr.K 
1z. r;uooonnon c::;A~ c::;111-1 I 

Note that the SA3 is forced upper because the RJ causes a force upper of the next instruction in the 
block. 
Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 !Jo 

') 

U~E TA~LE 'ust: I f ABLE LOCAL BLOCK 
2615 00 VFO 6/0 I 

USE • I Rt.:iUt1E. PREVIOUS BLOCK 
I • . • I . . I a 
I 

30002600 + 

• . 
:~E:iJMt USE TABLE usrr~c, TABLE 

VFO b/1RX,18/S 
USE:. .. I r<.i:..:>UMt r'i(CVIOUS BL OL t< 

I 

Note how separate blocks can be used to facilitate packing cf partial-word bytes into a table residing in 
a block other than the one primarily being used. 

60492600 H 4-33 



.4.5.2 USELCM - ESTABLISH AND USE ECS/LCM BLOCK 

The USELCM pseudo instruction establishes or resumes use of a block assigned to extended core 
storage (ECS) or large core memory (LCM). For all ECS/LCM blocks in an absolute CPU assembly, 
and for the ECS/LCM blank common block in a relocatable assembly, data generating instructions 
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo 
instructions (BSS, ORG, and ORGC) are allowed. The USE LCM pseudo instructfon is illegal in PPU 
assemblies. 

Format: 

LOCATION 

block: 

OPERATION VARIABLE SUBFIELDS 

USE LCM block 

Identifies block to be used, as follows: 

0 or blank 

II 

/name/ 

name 

* 

Illegal. 

Blank common block. A subprogram can have two blank common 
blocks if one of them is in ECS/LCM. 

Labeled common block. The name can be a maximum of 7 
characters and cannot include blank or comma. The first and last 
characters must not be colons. The loader or other assemblers or 
compilers could further restrict the use of names. 

Local block. t The name can be 1-8 characters, excluding blank or 
comma. The first character must not be a colon. Use of this name 
enclosed by brackets does not cause the block to become a labeled 
common block. For example, A and /A/ are different blocks. All 
of the local ECS/LCM blocks are concatenated to form a single block, 
which is treated by the loader as an ECS/LCM common block whose 
name is unique to the subprogram. 

Block in use prior to current USE, USE LCl\I, ORG, or ORGC. 

A location field entry, if present, is ignored. 

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary, 
to an integral multiple of eight 60-bit words. The.maximum size of an ECS/LCM block is 1,048,568 
words. 

Further rules for USE LCM are the same as for USE. 

t SCOPE 2 does not currently allow local blocks in LCM. 

4-34 60492600 H 



Examples: 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB [Jo 

BASE 0 T 

I 
I 

U~ELCM LCM 1ES I A BLISH ANO USE LLM 3LO~K 
LCHC ass 0 1UEFINE SY11BOL LCHC 
BLOC1 SSS 100 1RESERVE 100 WORDS 
BLOC2 BSi 200 1RESERVE 230 wo~os 

USE • 1R£SUHE PREVIOUS ~LCLk 

• • I • • 
ORG BLOC1+1000B I 

BLOC3 BSS 20 IRt:SERVE 20 HORE WORDS 
USE • IRt:SUHE Pl{EVIQUS BLOLk I 

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER 

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value 
to which the origin and location counters are to be set. COM PASS makes an entry in the USE table and 
saves the current origin and position counter values. 

ORGC t indirectly indicates the block to be used for assembly of subsequent code and specifies the value 
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and 
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the 
same as ORG. In a relocatable CPU assembly, ORGC is the same as OHG if the USE block specified 
by the address expression is not a common block; otherwise, code following an ORGC is ignored by 
the linking loader if that common block was first declared by a previously loaded subprogram. If two 
or more programs in a load sequence preset relocatable text within the same comm·:m block, the ORGC 
must be used; otherwise, multiple relocation of those words can occur. 

Formats: 

LOCATION OPERATION VARIABLE SUBFIELDS 

ORG exp 
ORGC exp 

I 
exp Expression specifying the address to which the origin and location counters are to be 

set. Following ORG or ORGC, the assembly resumes at the upper position of the 
location specified. COMPASS determines the block as follows: 

t Not supported by SCOPE 2 Loader. 

60492600 H 4-35 



lo If the expression contains a symbolic address, COMPASS uses the block in 
which the symbol was defined. 

2. COMPASS uses the current block if the value of the expression is *, *L, or 
*O. If the origin and location counters are the same value, and no code has 
been assembled in the current location, the only effect of *, *L, or *0 is to 
force the next instruction upper. If a word is partially assembled, however, 
the code already assembled into the location is losto 

If the counter values differ, * or *L sets the origin counter to agree with the 
location counter value; *O sets the location counter to the origin counter value. 

3o An absolute expression causes use of the absolute block. In a relocatable 
assembly, this is the only way to establish the absolute block. All symbols 
defined in the absolute block are absolute. 

Any symbols in the expression must be already defined in the assembly and must not result ·in a 
negative relocatable valueo It is not possible to ORG or ORGC into the literals block. 

A location field symbol, if present, is ignoredo 

Once an ORGC pseudo in~truction has established the conditional loading indication for a given common 
block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM 
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that blocko 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 

USE ALPHA . • . . . . 
• • • 

ABC OATA 20,100,1000 LOCATf!J IN ALPHA 

. . . . • . 
USE BETA 

XY7 BSS 0 LOCATED IN BETA 
• • . . . . 
• • . 
ORG ARC SETS ALPHA COUNTE~S TO ABC 
• • ANO tff5UMfS U~E OF ALPHA . . . 
es~ 1000 

• • . 
• • • 

4-36 60492600 H 



LOCATION OPERATION VARIABLE COMMENTS 

I II 18 lJo 

ORG c;o !SETS ARSOlUTf BLOCK r,ouNTER 

• . ,ro 50 ANO BEGINS ITS USE . • . 
ORG XYZ+1DO ISETS BETA COUNTERS TO XYZ+10!l 
• • I• 
• • , . 
• • . 
USE • IRESUMF.S ABSOLUTE IJLOCK . . I• . . , . . . , . 
USf • ~F.~Ut1f <; ALOCK ALPHA 

I . . • . • 1 • 

• • I· 
USE • 1RESUME5 BLOCK BETA . . 

1 • • • , . 
• • . . . I • 
USE • IRESUl1fS '3LOCK ALPHA . . , . . . , . 
• . • 
USE • 1?fSUP1ES NOMINAL Bl OCK . . 
lriE /lATA./ 

DATA B>~ 0 
O~GC 

I 
OAU 

OIHA 1,2,3 ~O~!l IT Tf1NA LL V oQi::S O::T Jl\U 

u~c ::> - A.NYtJU'JCI(' 
~J~ 3~X'fZ UNCONfl IT ION AL JAT ~ 
IJ5!=" • 

F'QU~ DATA 4 ~FTU~N rn t·~~Tl\/ qrLL 
'HU '5' f"l ~OWHTIJ~l\LLY Si< IP i.J P.Jr. 

o~~ FOU~ 

n I X1,E~~O~ 
UNCONn I TI OM ALLY LOA.Ot1 

~J SU fll+ IN:n ~u r;rr nN' . 
I . . 

4.5.4 BSS- BLOCK STORAGE RESERVATION 

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It 
does not generate data to be stored in the reserved area. A primary application is for reserving blank 
common storage. It can also be used to reserve an area to receive replicated code (see REP, REPC, 
and REPI, section 4 .. 8. 8). 

60492600 H 4-37 



Format: 

LOCATION 

syrn 

sym 

a exp 

Example: 

LOCATION 

I 

COMMON 

TAG 

OPERATION VARIABLE SUBF IElDS 

BSS aexp 

If present, sym is defined as the value of the location counter after the force 
upper occurs. It is the beginning symbol for the storage area. 

Absolute expression specifying the number of storage words to be reserved. 
All symbols must be previously defined; aexp cannot contain external symbols. 
The value of the expression can be negative, zero, or positive and the value 
is added to both the origin counter and the location counter. A BSS 0 or an 
erroneous expression causes a force upper and symbol definition but no storage 
is reserved. 

OPERATION VARIABLE COMMENTS 

II 18 l Jo 

USE II T 

ess 10008 l~ESERVF: ?12 wo~os OF rJLANK roM f-10N 
USE • I . • I • . . • . • I • 
SA6 COMMON•5flOPI . . . . • I • . . 

l~EFINf ASS 0 SYMROL TAG 
fe • I 

4.5.5 LOC - SET LOCATION COUNTER 

A LOC pseudo instruction sets the value of the current location counter to the value in the variable 
field expression. The location counter is used for assigning address values to location symbols. 
Changing the location counter permits code to be generated so that it can be loaded at the location 
controlled by the origin counter and moved and executed at the location controlled by the location 
counter. Thus, any addresses defined while the location counter is different from the origin counter 
will be correctly relocated only after the code is moved. 

Format· 

LOCATION OPERATION VARIABLE SUBFIELDS 

LOC exp 

4-38 60492600 H 



exp Relocatabl€. expression specifying the address to which the location counter 
is to be set. Any symbols in the expression must be already defined in the 
assembly and must not result in negative relocation. 

A location field symbol, if present, is ignored. 

Following a LOC, if the value of the location counter differs from the origin counter, the location field 
is flagged with an Lon the listing until a LOC *O, USE, ORG, OHGC, or USELCM instruction resets the 
location counter to the value of the origin counter. 

A LOC instruction does not affect the origin counter except that it causes the next instruction to be 
forced upper. The only effect of LOC * or LOC *L is to force upper. Because COMPASS does not 
save the value of the location counter when it switches blocks, a USE, ORG, ORGC, or USE LCM for 
a different block effectively resets the location counter to the origin counter value. When use of the 
block is resumed, it is the responsibility of the user to reset the location counter to produce the desired 
results. 

Example: 

In the following example, the first LOC is used to generate PPU code that is to be loaded into one 
PPU and transmitted to a different PPU for execution. The second LOC is U8ed so that on the listing 
the address field contains the table ordinaJ rather than a load address. At the end of the table, a LOC 
instruction changes the location counter to resume counting under the first LOC. At the end of the 
program, LOC '*O returns the location counter to the value of the origin counter. 

Location 

7100 
711l0 

L 100 
L 100 
L 1'11 
L 102 
L 10~ 

L 205 
L 0 
L 0 
L 1 
L z 
L 3 
L 4 
L I.) 

l 6 
L 7 

l 215 
L 215 
L 21+0 

72'4-0 

60492600 H 

Code Gene rated 

2400 
2400 
21+00 
6100 0100 

0100 
0114 
0121 
0132 
0136 
0147 
0240 
1000 

1 
0 

I 

LOCATION 

T1 
c~ 

RFS 

PPR 

• . 
• 

PPRA 

. 
• . 

f MO 

OPERATION VARIABLE COMMENTS 

II 18 1 Jo 

EQU 1 1 

EQU 0 I 
ORG 71 Of! I 
ass a 

I LOC 100 
PSN 0 I 

I 
P<;N 0 I PSN 0 
f'IH PP~,CH 

• . 
• • 
• . 
RS'S 0 
LOC 0 
CON PPR 
C'ON STM 
CON OPH 
CON EXR 
co~ CHS 
CON OMP 
CON ENO 
CON 10UO . . 
• . . . 

jLOC "0-RES+PPR 

l"S5 240-• 
B~S 
LOr. .. 0 

-1-39 



I 

4.5.6 POS - SET POSITION COUNTER 

The POS pseudo instruction sets the value of the position counter for the block in use to the value specified 
by the expression in the variable field. 

Format: 

LOCATION 

a exp 

OPERATION VARIABLE SUBF IHDS 

POS a exp 

An aooolute evaluatable expression having a positive value less than or equal to the 
assembly word size (60 for CPU, 12 or 16 for PPU). A negative vaue, or a value greater 
than the applicable limit, causes an error. The value indicates the bit position within 
the current word at which the assembler is to assemble the next code generated. Use 
caution, because if the new position coWlter value is greater than the old posit_ion 
counter value, part of the word is reassembled. (New code is ORed with previously 
assembled data.) If the new position coWlter value is less than the old position counter 
value, the assembler generates zero bits to the specified bit position. lf the value of 
uexp is zero, COMPASS assembles the next code in the following word. 

A location field symbol, if present, is ignored. 

NOTE 

If the POS instruction is used on a word containing relocatable or 
external addresses, undefined results can occur with no diagnostics. 

The POS instruction does not alter the origin and location counters. The position counter is never 0 at the 
beginning of an instruction. At the beginning of a new operation, if a data value has been stored into bit 0 
(the rightmost bit) of a word, COMPASS increments the origin counter and the location counter and resets 

I the position counter to the applicable limit. 

A POS *P has no effect whereas a POS $subtracts one from the counter. 

4.6 SYMBOL DEFINITION 

The (Seudo instruction EQU, =,SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit values to 
symbols. The values can be absolute, relocatable, or external. Register designators are not valid in the 
expressions. Subsequent use of the symbol in an expression produces the same result as if the value had 
been used as a constant. In the listing of the symbolic reference table, a reference to an EQU, =, SET, 
MAX, MIN, or MICCNT instruction is flagged with a D. Smybols defined using EQU and= cannot be 
redefined; symbols defined using any of the other symbol definition instructions can be redefined. 

4-40 60492600 M 



4.6.1 EQU OR= -EQUATE SYMBOL VALUE 

An EQU or = pseudo instruction permanently defines the symbol in the location field a~ having the value 
and attributes indicated by the e~-pression in the variable field. 

Formats: 

LOCATION 

sym 
or 

sym 

sym 

exp 

Examples: 

OPERATION VARIABLE SUBFIELDS 

EQU exp 

20'+37 
74 

3 
7 '+ 

&'+271 

exp 

A location symbol is required. See section 2. 4 for symbol requirements. 

An evaluatable expression. Any symbols in the expression must be previously 
defined or declared as external. The expression cannot contain symbols 
prefixed by =S, =X, or =Y unless the symbols have also been defined conven
tionally. If the expression is erroneous, COMPASS does not define the location 
symbol but flags an error. 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB !Jo 
OPS = 20'+37B 

I 
LINF- = 7 '+il I 
LH EUJ 3 I 

I 
F-AGE.SIZ = LINP I 
LGOf'S EUJ •-uPS I 

4.6.2 SET - SET OR RESET SYMBOL VALUE 

A SET pseudo instruction defines the symbol in the location field as having the value and attributes 
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines 
the symbol to the new value and attributes. SET can be used to redefine symbols defined by SET, l\IAX, 
MIN, or MIC CNT, only. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

sym SET exp 

60492600 H 4-41 



sym 

exp 

A location symbol is required. See section 2. 4 for symbol _requirements. 

An evaluatable expression. The expression cannot include symbols as yet undefined 
and cannot contain symbols prefixed by =S, =X, or =Y, unless the symbols are 
also defined conventionally. 

If the expression is erroneous, COMPASS does not define the symbol but 
issues a warning flag. 

The symbol in the location field cannot be referred to prior to its first definition. 

Examples: 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB '30 

17 A EQU 15 I A HAS VALUE OF 1 r; 

I 
MAS VALUE OF PO<; IT ION r.ouNff A ~ET •P I fl R 74 

c SET A+3 le HAS VALUE A+ 3 o~ 1~ 
I 

76 A = B+2 I ILLEG~L, e IS DOUBLY OEFINfO 
I 

24 c SET C+2 ILEr;AL, c (HANGFS FROM 1R TO 2 0 

0 SE'f F+A I ILLE'GAL' r AS YET UNOEFINE£.' 
I 

8$5 AA I ILLEGAL, REFEPENCF.: PRECEDES 
I FIPST ')~FINI TI ON 

AA SET 16 20 
I 

4.6.3 MAX - SET SYMBOL TO MAXIMUM VALUE 

The MAX pseudo instruction defines the symbol in the location field as h[l.ving the value and attributes 
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent 
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value. 
Conversely, MAX can be used to redefine symbols defined by these instructions. 

Format: 

LOCATION 

syrn 

sy:rn 

4-42 

OPERATION VARIABLE SUBFIELDS 

MAX 

A location field symbol is required. See section 2. 4 for symbol requirements. 

An evaluatable expression. Any symbols in the expression must be previously 
defined. The expression cannot contain symbols prefixed by =S, or =X, or =Y 
unless the symbols are also defined conventionally. 

60492600 H 



The expressions should have similar attributes. No test is made for attributes. The test for maximum 
value is made in pass one. In testing for the maximum value in pas~ one, COMPASS uses values for 
relocatable symbols relative to block origins. 

NOTE 

During pass two, the expression selected in pass one is 
used. The relocatable symbols have been reassigned 
values relative to program origin and these values are 
used for the final value of the expression selected in the 
first pass. 

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag. 
The symbol in the location field cannot be referred to prior to its first definition. 

Example: 

5 
0 
2 

I 

LOCATION 

PTJ 
PT31 
PTJ2 

SYH 

OPERATION 

II 

EQU 
EUU 
EQU 

I HA)( 

VARIABLE COMMENTS 

18 TJo 

5 I 

I 
f> I 

2 I 
I 
I 

PT3,PT31,PT32 
I 

4.6.4 MIN - SET SYMBOL TO MINIMUM VALUE 

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes 
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent 
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value. 
Conversely, MIN can be used to redefine symbols defined by these instructions. 

Format: 

LOCATION 

sym 

sym 

OPERATION VARIABLE SUBFIELDS 

MIN 

A location symbol is required (section 2. 4). 

An evaluatable expression. Any symbols in the expression must be previously 
defined. The expression cannot contain symbols prefixed by =S, =X, or =Y, 
unless the symbols are also defined conventionally. 

The expressions should have similar attributes; no test is m:ide for attributes. 

The test for minimum value is made in pass one. In testing for the minimum value in pass one. 
COMPASS uses values for relocatable symbols relative to hlock origins. 

60492600 H 4-43 



NOTE 

During pass two, the expression selected in pass one is 
used. The relocatable symbols have been reassigned 
values relative to program origin and it is these values 
that are used for the final value of the expression which 
was selected in the first pass. 

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning 
flag. 

The symbol in the location field cannot be referred to prior to its first definition. 

4.6.5 MICCNT - SET SYMBOL TO MICRO SIZE 

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal to the 
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX, 
MIN, or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT 
can be used to redefine symbols defined by these instructions. 

Format: 

LOCATION 

sym 

sym 

mname 

Example: 

23 

4-44 

OPERATION VARIABLE SUBFIELDS 

MICCNT mname 

A location symbol is required (Section 2. 4). 

Name of a previously defined micro; it may be a system micro or may have 
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has 
not been previously defined, the location symbol is not defined (or redefined) 
and a warning flag is issued. 

LOCATION 

MSG 

MSIZE 

OPERATION VARIABLE COMMENTS 

II 18 

T 

MICRO 1,,•STRING• !DEFINE 6-CHARACTfR MICRO 
• • 
• • 
• • 
HICCNT HSG 
• • 
• • 

1 • 

l~SIZE EQUALS 6 
I. 
1. 

• • I• 
HSG MICRO t,,•ALPHANU~ERIC iMSG~• 19 CHAR. MICRO 

r<.r CHAR.;·•·•.•ftIC RO 
IMSG < ········"····· •.•. r ... c ......... · .... R ...•••.... · ... o·.•······ I••••<•<'~····· . .. ) .. ................ .·. 

!f it.~~ .. ~~~ •. ~.U~$.~!£ STRING~ 
MSIZE HICCNT HSG !HSIZE EQUALS 19 

60492600 H 



4.6.6 SST- SYSTEM SYMBOL TABLE 

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the 
symbols had been defined in the subprogram. 

When a system text overlay is used as input to an assembly through the G or S option on a COl\IPASS 
control card, all micros and opcodes in the system text overlay are defined automaticall.v at the start 
of each assembly; however, the symbols in the system text overlay arc defined onl.v for assemblies 
that contain the SST pseudo instruction. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

SST 

One or more symbols on the file that are not to be defined. 

A location field symbol, if present, is ig·norccl. 

Refer to section 10. 2 for an example of SST use. 

4.7 SUBPROGRAM LINKAGE 

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare s_,·mhols 
defined within the subprogram as being available outside the subprogram or declare S)'mbols 1·efcn·cd 
to in the subprogram as being defined outside the subprogram. 

4.7.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS 

The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram 
can be referred to by subprograms compiled or assembled independently; ENTRY lists entry points to 
the current subprogram. ENTRY is illegal in PPU assemblies. 

The ENTRYC t pseudo instruction conditionally specifies which of the symbolic addresses defined in 
the subprogram can be referred to by subprograms compiled or assembled independently; ENTRYC 
lists conditional entry points to the current subprogram. ENTRYC is illegal in PPU assemblies and 
is synonymous with ENTRY in absolute CPU assemblies. In a relocatable assembly, an entry point 
symbol declared by ENTRYC is ignored by the linking loader if the value of the symbol is relative to a 
common block and that common block was first declared by u previously loaded subprogram. 

tNot supported by SCOPE 2 Loader. 

60492600 H 4-45 



Formats: 

LO!ATION OPERATION 

ENTRY 

ENTRYC 

VARIABLE SUBFIELDS 

sym1 , sym2, ••• , symn 

sym
1

,sym
2

, ••• ,symn 

Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the 
last must not be a colon. The symbol cannot include the following characters: 

+ - * I blank , or /\ 

Each symbol must be defined in the subprogram as nonexternal (cannot begin with 
=X or =Y or be listed on an EXT pseudo instruction). Entry point symbols must be 
unqualified (section 2. 4. 5). 

A location symbol, if present, is ignored. 

A list of all entry points declared in the subprogram precedes the assembly listing. An asterisk 
appears to the right of each conditional entry point. 

Example: 

Location 

11 f) 
1111 

Code Generated 

11'1 5120000100 
1~12n 

111 5110000002 

LOCATION 

I 

... 

lr-nt-1TPOL 
~f'OF 

OPERATION 

II 

TO~NT 

A9~ 

PIT~ Y 
ff\JTRY 
ft-ITRY 
FNT~Y 

ENTRY 
fNTPY 
FNTRY 
o~r, 

p5c:; 
<:;AZ 
c:;x1 
<:;At 

. . . 

VARIABLE COMMENTS 

IB 1Jo 

r,T,~ONTQOL,20NTQOL 

!100f 
ONSW 
f)FF<:;W 

i~ 0 L Ll''IJ T 
SFTPP 
St TTL 
SWITCH 
11 l)n 

I] 

L\CTP 
X2 
? 

. . . 

4-46 60492600 H 



4.7.2 EXT - DECLARE EXTERNAL SYMBOLS 

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled or 
assembled subprograms for which references can appear in the subprogram being assembled. The 
EXT pseudo instruction is illegal in an absolute subprogram. In a relocatable subprogram, EXT 
defines symbols as strong ext.ernals (section 2. 4. 1). 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

EXT sym
1

, sym
2

, ••• , symn 

Linkage symbol, 1-7 characters of which the first must be alphabetic (A- Z) and the 
last must not be a colon. The symbol cannot include the following characters; 

+ - * I blank , or A 

These symbols must not be defined within the subprogram. External symbols 
are unqualified. 

A location field symbol, if present, is ignored. 

An external reference is flagged with an X in the address field in the listing of code generated. All 
external symbols are listed in the header inforn1ation for the assembly listin~. 

4.8 DATA GENERATION 

The instructions described in this section are the only pseudo instructions that generate data. All 
other program data is generated through symbolic machine instructions. An instruction that 
generates data cannot be used in a blank common block. The pseudo instructions that generate data 
are: 

BSSZ 

blank operation field 

DATA 

DIS 

LIT 

VFD 

CON 

Generates zeroed words 

Generates one zeroed word 

Generates one or more words of data 

Generates one or more words of data 

Generates literals block entries 

Places expression values in user-defined fields 

Places expression values in full words 

R= For use in macros; R= assumes that either (Bl)=l or (B7)::..:l and 
generates increment instructions accordingly 

REP, REPC, or REPI 

·60492600 H 

Does not actually generate object code at assembly time but 
causes the relocatahle loader to repeatedly load a sequence of 
code into a reserved blank storage area. 

4-47 



4.8.1 BSSZ AND BLANK OPERATION FIELD - RESERVE ZEROED STORAGE 

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are 
adjusted by the requested number of words and the assembler generates data words of zero to be loaded . 
into the reserved area. An instruction that contains a symbol in the location field but has a blank operat10n 
field has the same effect as a BSSZ of one word. 

Format: 

LOCATION 

sym 

sym 

a exp 

OPERATION VARIABLE SUBFIELDS 

BSSZ aexp 

If present, sym is defined as the value of the location counter after the for·ce upper 
occurs. The symbol identifies the beginning of the reserved storage area. 

Absolute evaluatable expression specifying the number of zeroed words of storage to be 
reserved. The expression cannot contain external symbols or result in a relocatable or 
negative value. 

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is reserved. 

A BSSZ or group of BSSZ instructions of six or more words produce an REPL table in object code to reduce 
the physical size of the object program (appendix B). 

For a blank operation field the listing shows one zero word of data; for a BSSZ instruction the listing shows 
the word count. 

4.8.2 GENERATE DATA WORDS 

I The DATA pseudo instruction generates one or more complete 60-bit, 16-bit, or 12-bit data worm in the 
current block for each item listed in the variable field. 

Format: 

LOCATION 

sym 

sym 

4-48 

OPERATION VARIABLE SUBFIELDS 

DATA item1,item 2, •••• ,itemn 

If present, sym is assigned the value of the current location counter after the force 
upper occurs. It becomes the symbolic address of the first item listed. 

60492600 M 



item. 
1 

Character, octal numeric, or decimal numeric data item, according· to 
specifications described in section 2. 7. F1oating point notation is illegal in 
PPU assemblies. Items are separated by commas and terminated by a blank. 
A literal cannot be used as an item. 

A DATA pseudo instruction always forces upper. A blank item does not cause ~eneration of a data word. 

Unless the D list option is selected, only item1 appears on the listing. 

Examples: 

Location Code Generated 

5S2 1~071700000000000000 
553 ~oaonoooooooonoooooo 
554 0~171520111405000000 
555 17252420252400000000 
55~ oooooooooonooooooooo 
557 1720514631,6]11+63146 
5&~ 164031~631,6314631~& 

Location Code Generated 

o .. o 

LOCATION 

I 

OPTS 
OPT 
OPTT 
OPTO 

OPTY 

LOCATION 

I 

OPERATION VARIABLE 

II IB 

DATA fJLLGO 
DATA rnsc;q 
DATA llLCOHPILf 
OATA OLOUTPUT,O 

OATA 1. 3[f 

I 

OPERATION VARIABLE 

II 18 

~fRIPt-e 

r jr3ASE. 

. . . . 

COMMENTS 

ho 

I 
I 
I 
I 
I 
I 

COMMENTS 

TJo 
T 

I 
I 
I 

1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1260 
1261 
1262 

7070 
7770 
0000 
0031+ 
5501 
oono 
0506 
0123 
7773 
0401 
2 .. 01 

PH PATA 17070,-7,0,tPt 
I 
I 

PATA 12C O,OLFF 
I 
I 

)1123,-4 
I 

tATA I 
ATA H•DATll• I 

4.8.3 DIS-GENERATE WORDS OF CHARACTER DATA 

The DIS pseudo instruction generates words containing character data. The instruction can be used 
conveniently when a character data string is to be used repeatedly. Unless the D list option is selected 
only the first word of character data appears on the listing. The instruction has two formats: 

60492600 H 4-49 



Format one: 

LOCATION 

syrn 

sym 

n 

string 

OPERATION VARIABLE SUBFIELDS 

DIS n, string 

If present, sym is assigned the location counter value after the force upper 
occurs. It is the symbolic address of the first word containing the character 
string. 

An absolute evaluatable expression specifying an integer number of words to be 
generated. When base is .M, COMPASS assumes that n is decimal. 

Character string 

For a CPU program, COl\lPASS takes 10 times n characters from the string and packs them a8 they occur 
10 characters per word into n words. For a PPU program, COMPASS takes two times n characters from 
the string and packs them as they occur two characters per word into n words. If the statement ends 
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks. 
If n is O, COl\lPASS assumes the instruction is in format two. 

Format two: 

LOCATION 

sym 

sym 

d 

string 

OPERATION VARIABLE SUBFIELDS 

DIS ,dstringd 

If present, sym is assigned the location counter value after the force upper 
occurs. It is the symbolic address of the first word containing the character 
string. 

Delimiting character 

Character string; any character other than delimiting character 

In this form, the string must be bounded by delimiters. The comma is required. The characters between 
the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them. 
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an 
additional word for them. If COMPASS detects the end of the statement before it detects a second 
delimiting character, it produces a fatal error. 

4-50 60492600 H 



Examples: 

Loe a ti cm 

%1 
562 
563 
561t 
5(,c; 

Location 

1402 
14il3 
1404 
140~ 

140b 
1401 
11t1 a 
11+11 
1412 
1413 
11+ 1'+ 
1415 
1416 
1417 
142J 
1421 
1422 
1423 
1424 
1427 
1'+26 

Code Generated 

07051605220121t055535 
550J20255527172201t23 
07051&05220121t055535 
55032025552717220,23 
oooooouooooooooooooo 

Code Generated 

U,.M 
0 7 i; j 
lb~ j 

2201 
2405 
5534 
33~5 

2020 
5527 
172.2 
Jt+C:J 
07{):) 
1605 
2201 
2405 
7S3t+ 
33~5 

2020 
5527 
1722 
u &+2 3 
fJ lJ (j J 

4.8.4 LIT - DECLARE LITERAL VALUES 

LOCATION 

I 

ONE 

TWO 

LOCATION 

I 

I 
I 

I 
I I 

I I I 
I i 
I 

I 

I 
I 

OPERATION VARIABLE COMMENTS 

II IB bo 
OIS 2, Gf MF.~ATE ~ CPU WO~OS 

I 
OIS ,•GFNE~ATE 21 CPU WOR as• 

I 
I 

OPERATION VARIABLE COMMENTS 

II IB lJo 

H··.J I 

I 

btSE 
l 

M I 
llJ=:, 10,.;t..i-H..!--.~TL lu pp wO!{LJS 

I 

I 
I 

I 
I 
I 

I 

I 

LT~ , •r,t:rH:.t<A Tt: 1G .-'f' ~U""..0:)~ 

I 

I 

I 
I 

I 

I 
I 

A LIT pseudo instruction generates data words in the literals block. This instruction and the 
= prefix to a data item provide the only means of generating data in the literals block. The LIT 
pseudo instruction assures sequential entries for a table of values. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

sym LIT item1 , item2, ••. , itemn 

60492600 H 4-51 



sym ff present, sym is assigned the value of the literals block location counter.· 

At least one and not more than 100 words of character, octal numeric, or 
decimal numeric data items. Section 2. 7. 3 contains specifications. Items 
are separated by commas and terminated by a blank. Floating point data 
items are illegal in PPU assemblies. 

COMPASS enters data items into the literals block in the order specified. 

If"the converted binary values for all the data items listed with a single LIT match an existing literal 
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in 
the block, the entire sequence is generated. A literal item subsequently referred to through an 
= prefix is not duplicated. A null item (e.g.· H** or OL) does not cause a word to be generated. 

Examples: 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 TJo 

611 POC'L lIT 3.1,1.59265,2.7162182,57.29577q5EE1 

000611 
000612 
000613 
000611t 
000615 

Location 

4-52 

7 .... , 
71t50 
71t51 
71t52 
7ft53 
71t51t 
71t55 
7 .. 56 
1ft57 
71t611 
74&1 

CONlfNl CF LITEP~LS 6LCCK. 
1121&14631~631463146 oor-v-v-v-
11206275576441776271 OP1!.t6;J~ 
172153373511J6n14426 0Qf4?l1A9V 
173143636514ft0663121 OY8t~L5vYQ 
16513333033540?76566 N<OOC25.~v 

Code Generated LOCATION OPERATION 

I 11 

71+1+ 7 
7453 
7456 

--

N2 LIT 
LIT 
LIT 

C~NlfNl CF LITFRftLS ELOC~. 

0031t 
7070 
0007 
0000 
5501 
oono 
0506 
1411 
2~05 

z2n1 
1ft?J 

1 

G 

A 

FF 
LI 
TE 
RA 
LS 

VARIABLE COMMENTS 

18 T Jo 

1~1,1010,1,£1 
2C A,OLEF I 
H•LITERALS• I 

60492600 H 



4.8.5 VFD - VARIABLE FIELD DEFINITION 

The VFD instruction generates data in the current block by placing the value of an expression into a 
field of the specified size. 

Format: 

LOCATION 

sym 

sym 

item. 
1 

OPERATION VARIABLE SUBFIELDS 

VFD 

For a CPU assembly, the location field can contain sym, plus, minus, or 
blank, as follows: 

sym 

blank 

If a symbol is provided in the location field, a force upper occurs 
and the value of the location counter following the force upper is 
assigned to the symbol. The symbol identifies the first word of 
data generated by the VFD. 

Causes a force upper. Data generation begins in a new word. 

COMPASS generates zero bits to the next quarter word boundary, 
at which point the first field begins. 

COMPASS begins the first field at the current value of the position 
counter. 

For a PPU assembly, if the location field contains a plus, minus, or a symbol, 
data generation begins in a new word. If the location field is blank, the first 
field begins at the current value of the position counter. 

An unsigned constant or previously defined symbol having a value specifying a 
positive integer number of bits for the field to be generated; maximum field 
size is 60 bits for both CPU and PPU assemblies (60 being the maximum 
number of significant bits for an expression value). When base is M, item. 
is assumed to be decimal notation. 

1 

An absolute, relocatable, or external expression, the value of which will be 
inserted into the field specified by itemi. The expression is evaluated using· 
the specified field size. Character constants are right or left justified in the 
field according to the type of justification indicated. In a relocatable CPU 
assembly, no field that contains a relocatable or external address expression 
can cross a 60-bit worci boundary, and no 60-bit word can have more than 
four fields that contain relocatable or external arldress expressions. 

Each field is generated as it occurs. For a CPU assembly, if the next instruction that generates code 
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to 
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary. 
These zero bits do not show on the assembly listing. Remaining parcels are then filled with 110-

operation instructions. 

60492600 H 4-53 



When a VFD instruction that does not have a location field entry immediately follows another VFD in the 
same block, no padding with zeros or forcing upper occurs; fields are generated sequentially as they are 
specified. 

Following a VFD, the position counter contains the number of bits remaining to be assembled in the last 
word in which data was generated by the VFD. 

Examples: 

In the first example, the symbol TABLOC has been defined earlier in the program and associated with 
000551. 

Location Code Generated 

31 
566 240102000000?.3000?51 
567 0000000;6~?5??~55555 
571) 777777774 

OOO'll)QrlQQOOn 
571 1117?.4015?01?5??55~1 

57? oaonoo1~n~?323C101os 

571 03111700000~031 

Location 

1310-
1311 
1312 
1313 
1314 
1315 
1316 
1311 
t 320 

gode Generated 

3331t 
3536 
3740 
4142 
4344 
0010 
0 011 
77f,5 
0707 

Q,.H 

I 

I 

I 
i 
I 
I 
i 
I . 

LOCATION OPERATION 

II 

flLPHA SFT 
Tt\nLt: VFfJ 

VFl"l 

VF'l 
VFl1 
VFJ 

LOCATION OPERATION 

II 

PPU 
BASE 

Nl+ VFrJ 

A11 VF'1 

VARIABLE COMMENTS 

IB T 30 

2? I 
36/~CTAR,6/lq,1~/TARLrr 

J0/.---1 ,30/t;H ,l\LnHA/-1"1 
I 

WP/ I 
1n/OHT0TA,~/1~~,24/0AX+1 

,~01nRMFSSAG~, 7 ~/ll~In,1s1nRO 

VARIABLE COMMENTS 

18 1 Jo 

T 

H I 
60/10R01234567Aq 

I 
I 
I 

12110,12111,121-12,121-101r 
I 
I 

4.8.6 CON - GENERA TE CONST ANTS 

The CON pseudo instruction generates one or ore full words of binary data in the block in use. It differs 
from DATA in that it generates expression values rather than data items and differs from VFD in that the 
field size is fixed. For relocatable or external addresses, CON generates a 60-bit address constant that is 
not appropriate for routines built into capsules or overlay capsules. 

Format 

LOCATION 

sym 

sym 

4-54 

OPERATION VARIABLE SUBFIELDS 

CON 

If present, sym is assigned the value of the location counter after the force upper occurs. 

An absolute, relocatable, or external expression the value of which will be inserted into a 
field having a size of one word. For PPU assembly, floating point is not allowed; for CPU 
assembly, double precision is not allowed. 

60492600 J 



Examples: 

In the first example, the symbols FAIL and PASS have been defined earlier in the program and associated 
with 2204 and 2172, respectively. 

L 
L 
L 
L 
L 

L 
L 
L 

Location 

l '+~" 
l 4 f.> l 
146? 
l 4P, 1 

1464 
l 4h..:.. 
1 4(, t., 
1461 
147'1 
\ 4 71 

Location 

574 
1 
fl 
1 
? 
1 

75 
76 
77 

671J 

Code Generated 

·~ O 'iO 
rinnf.. 

n 01.1 
?7.'l4 
OfD4 

i),.. (l 0 
f· r1 (')I--

'.111 ·1 ·~ 

?)7? 
l',/1 .>4 

Code Generated 

OOQOnOIJ0000000000055 
0000000000000000006? 
ooooonooo~ooonoooon4 

oooono11ooooooonooo60 

ooooooonoooo~oooooos 

ooooooonooo1100000016 
oooonoooooonononoo5? 

LOCATION 

I 

·~Sr-1 

·~ (.\ r: ;..i 

LOCATION 

I 

~Tnfl 

I I 

4.8.7 R =.-CONDITIONAL INCREMENT INSTRUCTION 

OPERATION 

II 

(' ., ' 
r ,. , 

I!• 
r ''· 
r .... r. 
r "'-' 
r. '•. 
r .. ,, 
r''" 
r '" 

OPERATION 

II 

PS~ 

IL08 
roN 
ro"I 
f"nl\I 

f'ON 

r.ON 
rOf\J 
CON 
LOr: 

VARIABLE 

18 

12 
~ 

f- •' TI 
?I'• 
0 
f. 

] 
µ,·,c:;i::; 
,_,, 

VARIABLE 

18 

lT 
Io 
1 1~ HJ 
l~t 

1~= 

COMMENTS 

T3o 

T 

I 

I 
I 
I 
I 
I 

COMMENTS 

1 Jo 

T 
I 
Io o 
I ri t 
02 

lo3 
I • 
I • 

I ;5 
I 76 
In 

The R= pseudo instruction generates a CPU increment unit instruction depending on the contents of the 
variable subfields and on whether or not the subprogram earlier contained a Bl=-1 or B7=1 pseudo 
instruction (section 4. 4. 4). 

Use of R= augments macro definitions and increases optimization of object code. It is illegal in a 
PPU program. 

The A list option controls listing of substituted instructions. 

Format: 

LOCATION 

sym 

sym 

60492600 H 

OPERATION VARIABLE SU BF IE LOS 

R= reg, exp 

Optional, if present, sym is assigned the value of the location counter after 
the force upper occurs. This force uvper occurs whether the R-.: generates an 
instruction or not. 

4-55 



reg 

exp 

A register designator (A, X, or B) and a digit (0-7) which COMPASS 
concatenates with S to form the instruction operation code. 

Operand register or value expression. If exp is the same two characters 
as reg, no instruction is generated. 

If the expression value is O, the variable field is BO. 

If the Bl=l instruction has been assembled prior to this instruction and the 
expression value is 1, 2, or -1, the variable field of the instruction is Bl, 
Bl+Bl, or -Bl, respectively. 

If the B7=1 instruction has been assembled prior to this instruction and the 
expression value is 1, 2, or -1, the variable field for the instruction is B7, 
B7+B7, or -B7, respectively. 

In all other cases, the variable field is the register or value indicated by the 
expression. 

Examples: 

1. R= used with Bl=l 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

II 18 30 

2. R= used with Bl~l 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

30 

. 4-56 60492600 H 



3. Expression is same as register designator: 

LOCATION OPERATION VARIABLE COMMENTS 

II 18 30 

RF'G 

No instruction is generated; SB5 B5 would be a no operation instruction. 

4.8.8 REP, REPC, AND REPI - GENERA TE LOADER REPLICATION TABLE 

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so 
that when the subprogram being assembled is loaded, the loader will load one or more copies of a 
data sequence. For the REPI instruction, the loader generates the copies immediately upon encoun
tering the table; for REP, the replication takes place at the end of loading. For RE Pc+ the loader 
ignores the REPL table if the destination data address is in a common block that was first declared 
by a previously loaded subprogram; otherwise, the loader generates the copies immediately upon 
encountering the tables. 

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting 
one or more blocks of storage to a given series of values or for generating tables. 

Data to be replicated must not contain any external references or common block relocatable addresses. 
For REPC and REPI, data must be inpreviously assembled text. 

Format: 

LOCATION OPERATION 

REP 
REPCt 
REPI 

VARIABLE SUBFIELDS 

S/saddr, D/daddr, C/rep, B/bsz, I/inc 

A location field symbol, if present, is ignored. 

The variable field subfields can be in any order. 

S/saddr 

D/daddr 

Relocatable expression specifying first word address of code to be copied. 
The S/saddr subfield must be provided. If it is zero, or omitted, the assembler 
flags the instruction as erroneous and does not generate an REPL loader table. 

Relocatable expression specifying the destination of the first word of the first 
copy. If D/daddr is omitted, the assembler sets daddr to zero, and, when 
daddr is zero, the loader uses saddr plus bsz for the destination address. 

Note that room for the repeated data must be reserved in the destination block. 

+ Not supported by SCOPE 2 Loader. 

60492600 H 4-57 



C/rep 

B/bsz 

I/inc 

Absolute expression specifying the number of times code is to be copied. When 
base is M, COMPASS assumes that rep is a decimal value. If C/rep is 
omitted, the assembler sets rep to zero. When rep is zero or one, the loader 
makes one copy. 

Absolute expression specifying the number of words to be copied 0Jlock size). 
When base is M, COMPASS assumes that bsz is decimal. 

If B/bsz is omitted, the assembler sets bsz to zero. When bsz is zero or one, 
the loader copies one word. 

Absolute expression specifying the increment size in words. When base is l\I, 
COMPASS assumes that inc is in decimal. 

The increment size is the number of words between the first word of each copy. 
When inc is zero or omitted, the loader uses bsz as the increment size. The 
loader writes the first copy starting at daddr, the second starting at daddr+inc, 
the third at daddr + 2 x inc, etc. until the rep count is exhausted. 

The origin and location counters for the block containing the daddr are not advanced by a value of 
inc x rep. Storage reservation for replicated code is the responsibility of the user. 

Rules for replication: 

1. The S subfield ~annot be omitted 

2. Room must be reserved for the copies in the destination block (for example, through 
ORG, ORGC, or BSS) 

3. REP, REPC, and REPI can be used in relocatable assemblies only 

4. Data to be replicated must not contain any external references or common block relocatable 
addresses 

5. For REPC and REPI, data must be in previously loaded text 

Example: 

4-58 

Location 

c:;~1 7 
c; r,J? ry 

t;Q?t 
t;O?? 
c;n?~ 

r.; 0:? 4 

Code Generated 

oaonooocooor~nnnno1c:; 

~~nooaonn°onoon~~n2n 

anoonQ~~onoo1noo1010 

ooooo~oronoJ~onoooo1 

~o~o~ooro~ncnn~or.005 

17?1~~0~010000QOOOOr 

121 

I 

LOCATION OPERATION 

II 

Pr = 
USE 

pl\ nATti 

I mu 
USC: 

111\ osc:: 
uc;r 
Pf PT 

VARIABLE COMMENTS 

18 bo 
1 'l I 

~WW n I 
1c:;,2Q,707G~,1,~,3.14 

I 
l 
! 

""- n,I\ +c; 
I 

f)Olr!"~I( I 
I 

:-,,... 'V-T .. l 
1~1nn.01~n,n11-~,c1~r.r11 

60492600 H 



4.9 CONDITIONAL ASSEMBLY 

The following pseudo instructions permit optional assembly or skipping of source code. A special form, 
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that: 

Test for assembly environment (IFtype) 
Compare values of two expressions (IFop) 
Compare values of two character strings (IFC) 
Test the attribute of a single symbol or an expression (IF) 
Test the sign of an expression (IFPL and IFMI) 

Immediately following the test instruction are instructions that are assembled when the tested condition 
is true and skipped when the condition is false. Skipping is terminated either by a source statement 
count on the IF instruction, or by an ENDIF, an ELSE, or an END. 

The statement count, when used, is decremented for instruction lines only; comment lines (identified by 
* in column one) are not counted. Determining the IF range with a statement count produces slightly 
faster assembly than using the ENDIF. 

The results of an IF test are determined by the values of expressions in pass one; the value of a 
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol 
is 0 if the symbol was declared as external. If the symbol was defined relative to a declared external, 
the value is the relative value. 

4.9. l ENDIF - END OF IF RANGE 

An ENDIF causes skipping to terminate and assembly to resume. \\'hen the sequence containing the 
ENDIF is being assembled, or is controlled by a statement count, the ENDIF has no effect other than 
to be included in the count. 

Skipped instructions such as macro references are not expanded. Thus, any ENDIF that \\'ould have 
resulted from an expansion is not detected. 

Format: 

LOCATION 

ifname 

ifname 

OPERATION VARIABLE SUBFIELDS 

ENDIF 

Name of an IF, SKIP, or ELSE sequence; or blank. ifname can be used as any 
other type of symbol elsewhere in the program. 

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated 
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF. Any ENDIF terminates 
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF 
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect 
that are not under line count control. 

60492600 H 4-59 



4.9.2 ELSE - REVERSE EFFECTS OF IF 

Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test 
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction 
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source 
code following the ELSE. Skipping continues until: 

1. A statement count specified on the ELSE is exhausted 

2. A second ELSE is detected for the sequence 

3. An ENDIF is detected for the sequence 

Format: 

LOCATION 

ifnarne 

if name 

fnct 

OPERATION VARIABlE SUBFIELDS 

ELSE ~net 

N'lme of an IF, SKIP, or ELSE sequence, or blank. 

Optional absolute evaluatable expression specifying integer number of source 
lines to be skipped. It has no effect if the ELSE resumes assembly. When the 
base is M, COMPASS assumes that .met is decimal. 

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence 
initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instntctions such as macro 
references are not expanded; any ELSE that would have resulted from the expansion is not detected. 

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE 

IFtype pseudo instructions test for the type of processor that will execute the object program, as 
declared by MACHINE, and PERIPH or PPU pseudo instructions. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

ifname IFtype met 

4-60 60492600 H 



ifname 

type 

.foct 

Optional 1-8 character name. 

Mnemonic specifying type of object processor. 

~ Condition Causing Assembly 

CP Any central processor unit 

CP6 Neither PERIPH nor PPU nor MACHINE 7 has been specified. CPU code is 
assembled for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 
72, 73, or 74, or 6000 Series Computer System. 

CP7 Neither PERIPH nor PPU nor MACHINE 6 has been specified. That is, CPU 
code is ag>embled for a CYBER 70/Model 76 or a 7600 Computer System. 

PP Any peripheral processor unit 

PP6 One of the following is true: 

1. PERIPH has been specified but MACHINE 7 has not been specified. 

2. PPU and MACHINE 6 have both been specified. PPU code is assembled 
for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72, 
73, or 74, or a 6000 Series Computer System. 

PP7 One of the following is true: 

1. PPU has been specified but MACHINE 6 has not been specified. 

2. PERIPH and MACHINE 7 have both been specified. That is, PPU code is 
ag>embled for a CYBER 70/Model 76 or a 7600 Computer System. 

Optional absolute evaluatable expression specifying an integer count of the number of 
statements to be skipped. When base is M, COMPASS assumes that .fnct is decimal. 

The ifname and .fnct parameters are related as follows: 

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only effect of an 
ENDIF in a count controlled sequence is to be included in the count. Skipping terminates when the 
count is exhausted or when an ELSE with a matching or blank name is encountered, whichever occurs 
first. 

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether named or 
unnamed, or by a unnamed ELSE, whichever is encountered first. A named ELSE has no effect. 

60492600 L 4-61 



3. If a name but no count is supplied, the IF range is terminated by an ENDIF or EI.SE with a 
matching name or by an unnamed ENDIF or EI.SE. An ENDIF or ELSE with a name that 
does not match has no effect. 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II lB 1 Jo 

TlENT XYl I 
"1ACHPJE 6 I . I . 

0 t155 123 I 
IF~P~ ? i 

173 d3Jl.liJOOGG XJ iJ I 
fL<;f 1 

I 

~ .J 0 I 
I 

4.9.4 IFOP- COMPARE EXPRESSION VALUES 

An I Fop pseudo instruction compares the values of two expressions according to the relational 
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied. 

Format: 

LOCATION 

if name 

ifname 

op 

4-62 

OPERATION VARIABLE SUBFIELDS 

!Fop 

Optional 1-8 character name 

Specifies comparative test: 

EQ 

NE 

GT 

Condition causing assembly 

Equality, the expressions are equal in all respects. That is, they 
not only have the same numeric value but have the same attributes 
as well. For example, both are names that are common 
relocatable, or absolute, or external, etc. 

Inequality, the expressions are not equal in all respects. They 
differ in value or in some attribute. 

The first expression is greater in value than the second expression. 
No other attributes are tested. 

60492600 H 



~net 

GE 

LT 

The first expression is greater than or equal in value to the second 
expression. No other attributes are tested. 

The first expression is less in value than the second expression. 
No other attributes are tested. 

LE The first expression is less than or equal in value to the 
second expression. No other attributes are tested. 

For these tests, positive zero and negative zero are equal. 

An expression. When the value of c>qJ is tested, e>qJ can include only previously 
defined symbols and the result can be absolute, relocatable, or external. If an 
undefined symbo1 is used, the e}l.'J)ression value is set to zero, the IF instruction 
is flagged ai:> erroneous, and assembly continues with the next instruction. 

Optional absolute evaluatable expression specifying an integer count of the 
number of statements to be skipped. When base is M, COMPASS assumes 
that ~net is decimal. When met is blank, the comma can be omitted. 

The ifname and fnct parameters are related as follows: 

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only 
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping 
terminates whe11 the count is exhausted or when an ELSE with a matching or blank name is 
encountered, whichever occurs first. 

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether 
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE 
has no effect. 

3. If a name but no count is supplied, the IF range is terminated by an ENDI F or ELSE \\'ith a 
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that 
does not match has no effect. 

Example: 

A demonstration of one use of IF statements in a PPU program: 

LOCATION OPERATION VARIABLE COMMENTS 

I 
. 

II 18 '30 
-

H DEF,LJG~ 

lFLT "" - L u 0 I-' , 4 U ·i 
t'.Jl'l LOUP 
E.L:::,£ ~ 

l\..JN o\• + :~ 

IL .;M L u.;tJ 

I I: 
This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37 words (the 
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJM

8 are assembled. 

60492600 H 4-63 



4.9 .5 If PL AND IFMI -TEST SIGN OF EXPRESSION 

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in 
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo 
instructions allow positive zero to be distinguished from negative zero. 

Format: 

LOCATION 

ifname 
ifname 

ifname 

exp 

.enct 

OPERATION 

IFPL 
IFMI 

VARIABLE SUBFIELDS 

exp,.tnct 
exp,Rnct 

Optional 1-8 character name 

An expression. It can include only previously defined symbols and the result 
can be absolute, relocatable, or external. If an undefined symbol is used, . the 
instruction is flagged as erroneous and assembly continues with the next 
instruction. 

Optional absolute expression specifying an integer count of the number of 
statements to be skipped. When base is M, COl\I PASS assumes that {net is 
decimal. When fnct is blank, the comma can be omitted. 

The ifname and fnct parameters are related as follows: 

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only 
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping 
terminates when the count is exhausted or when an ELSE with a matching or bl:mk name is 
encountered, whichever occurs first. 

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether 
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE 
has no effect. 

3-, If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a 
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does 
not match has no effect. 

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero; 
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero. 

4-64 60492600 H 



Example: 

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression 
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression 
value modulo 60. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T3o 

1'1X'l OPrJEF REG, VAL I 
LOG AL A I 

A SF.T VAL I 

A .SET A-A/o.J0•6:Jn 1 

IF;>L A,3 I 
IFF.!l A,.;, 3 I 
IFL£ VAL,IJ,1 

I 
S<fP : 1 ! I A s:::r A+- fiO 0 I 
VC"Q 6 / 43 !3 , 3 / REG , 'i I A 

I 
E'-40~ 

I 
I 

I 
I 

Example of call: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 !Jo 
-

MX6 -52 I 
7777713 U.000001 SET -52 I 

7777713 N.000001 SET t~000001-t~000001/60D*60D 

!FPL 0000001 ,3 
IFEQ '"'000001,0,3 
IFLE -52,0,1 
SKIP 1 

10 u 000001 SET U000001+60D 
43G~O VFD 6/43B,3/6,6/t~000001 

I 
ENDM I 

I 

4.9.6 IF - TEST SYMBOL OR EXPRESSION ATTRIBUTE 

The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles 
instructions in the IF range if the test is satisfied. 

60492600 H 4-65 



Format: 

LOCATION 

if name 

ifname 

att 

4-66 

OPERATION VARIABLE SUBFIELDS 

IF att, exp, Rnct 

Optional 1-8 character name 

Specifies attribute test •. A minus prefix to the attribute causes assembly on 
the false rather than the true condition. 

att 

SET 

-SET 

ABS 

-ABS 

REL 

-REL 

REG 

-REG 

COM 

-COM 

EXT 

-EXT 

LCM 

-LCM 

LOC 

-LOC 

Condition causing assembly 

The symbol given in the second subfield was defined by a SET, 
l\IAX, l\IIN, or l\IICCNT 

The symbol given in the second subfield was defined othc;r than 
by a SET, l\IAX, l\IIN, or l\IICCNT 

The expression in the second subfield reduces' to a value that is 
not relocatable or external 

The e]qJression in the second subfield reduces to either a 
relocatable or an external address 

The expression in the second subfield reduces to a local or 
common relocatable address 

The e}qJression in the second subfield does not reduce to a local 
or common relocatable address 

The expression in the second subfield contains one or more 
register names 

The expression in the second subfield does not contain a register 
name 

The expression in the second subfield reduces to a common re
locatable address (any blank or labeled common block) 

The expression in the second subfield is not a common relocatable 
address (any blank or labeled common block) 

The expression in the second subfield contains one or more 
external symbols 

The expression in the second subfield does not contain an 
external symbol 

The expression reduces to an LCM address 

The expression does not reduce to an LCI\I address 

The expression reduces to a program relocatable address 

The expression does not reduce to a program relocatable address 

60492600 H 



exp 

£net 

DEF 

. -DEF 

MAC 

-MAC 

MIC 

-MIC 

SST 

-SST 

All the symb'.lls in the expression in the second subfield are 
defined 

One or more of the symbols in the expression in the second 
subfield is undefined 

The name in the second subfield is an opcode name 

The name in the second subfield does· not contain an opcode name 

The name in the second subfield is a micro 

The second subfield does not contain a micro name 

The second subfield contains a system symbol 

The second subfield does not contain a system symbol 

For SET, SST, -SET, and -SST, exp must be a single defined symbol. For 
MIC and -MIC, exp must be a name. For any other test, it is an expression. 
The expression can include symbols as yet undefined if att is DEF, -DEF, REG, 
-REG, EXT, or -EXT only. If an undefined symbol is used with any other 
attribute, the express ion value is set to zero, the instruction is flagged as 
erroneous, and assembly continues with the. next instruction. Note that if 
a symbol is never defined conventionally but only by use of =S or =X prefix 
(see section 2. 4. 2), COMPASS does not define the symbol until the end of 
the assembly, and IF tests will consider the symbol undefined. 

Optional absolute evaluatable expression specifying an integer count of the 
number of statements to be skipped. When base is M, COMPASS assumes 
that fnct is decimal. When £net is blank, the comma can be omitted. 

The ifnani.e and tnct parameters are related as follows: 

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only 
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping 
terminates when the count is exhausted or when an ELSE with a matching or blank name is en
countered, whichever occurs first. 

2. If neither a count nor a name is supplied, the IF range is terminated by an END IF, whether 
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE 
has no effect. 

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a 
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does 
not match has no effect. 

60492600 H 4-67 



Examples 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 
I 

ABLE ess 20 T 
I 

• • • I 
• • • I 
• • 

REL,ABLE+t5 : T'EST IF 
• • • I 
• • • I 
• • • I TEST ENDIF. 

IF COM,OTA,2 ERRONEOUS, OTA AS YET UNOEFINE D 
• • t 
• • I 
• • I 
USE 11- I Ota ASS 1 

I 
I 

4.9.7: IFC - COMPARE CHARACTER, STRINGS 

The IFC pseudo instruction compares two character strings according to the operator specified 
and assembles instructions in the IF range if the comparison is. satisfied. 

Format: 

LOCATION 

~fname 

ifname 

d. 

op 

4-68 

OPHATION VAllABU SUIFIElDS 

IFC op, dstringl astring2d, met 

Optional 1-8 character name 

Delimiting character. Characters between the first and second occurrence of this 
character constitute the first character string; characters between the second and . 
third occurrence constitute the second character string. 

Specifies comparative test: 

EQ or -NE 

NE or -EQ 

GT or -LE 

Condition causing assembly 

strin~ has the same value as string
2 

string
1 

does not equal string
2 

string
1 

is greater than string
2 

60492600 H 



string. 
1 

£net 

GE or -LT 

LT or -GE 

LE or -GT 

string1 is greater than or equal to string
2 

string1 is less than string2 

string1 is less than or equal to string2 

Character string. When IFC is within a macro definition, each character string 
can be a formal parameter. 

Optional absolute evaluatable expression specifying an integer count of the number 
of statements to be skipped. When base is M, COMPASS assumes that met is 
decimal. When l'nct is blank, the comma can be omitted. 

The ifname and met parameters are related as follows: 

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only 
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping 
terminates when the count is exhausted or when an ELSE with a matching or blank name is 
encountered, whichever occurs first. 

2. If neither a count nor a name is supplied, the IF range is terminated by an END IF, whether 
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE 
has no effect. 

3. ·If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a 
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does 
not match has no effect 

Each character in string1 is compared with the corresponding character in string2 progressing from 
left to right until an inequality is found or both strings arc exhausted. When one string is shorter than 
the other, it is padded with a character that has a value less than any other character in the string. 

The truth condition is based on the relative magnitudes of the characters in the strings. 

Examples: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 

TFST1 IFr. T 
EQ, ~ABC$ABC$ 1 ARC EQUALS AAC 

I 
TEST2 IFC LT' •AB•~RC• I Afl IS Lrss TH~"I n OC 
Tf'ST3 IFC GT,XAXX I A IS G~EATFR THAN NULL 

IFC -GE,•z•e .. ,3 I z IS LES<\ THAM 8 

The IFC in the following example checks for an empty parameter string. 

60492600 H 4-69 



LOCATION OPERATION VARIABLE COMMENTS 

I II 18 J3o 
xx MACIW Pt,P?. I 

IFC ra,••P2•,1 I 
p FRR I FLAG EPROP 

I . . I . I 
I 

f NrlM I 

The following example illustrates a character string terminated incorrectly~ When COMPASS reaches 
end of statement without finding a third asterisk, the asterisk omitted followinJ,?; Pl causes an error flag. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 ho 
IFC Eo,•cn•P1,2iP2 

4.9.8 SKIP - UNCONDITIONALLY SKIP CODE 

The SKIP instruction causes COl\IPASS to unconditionally skip the instructions in the SKIP rnnge. 
It resembles an IF for which there is no true condition. 

Format 

LOCATION 

ifname 

ifname 

£net 

OPERATION VARIABLE SUBflElOS 

SKIP lnct 

Optional 1-8 character name 

Optional absolute evaluatable expression specifying an integer count of the number 
of statements to be skipped. When base is M, COMPASS assumes that rnct is 
decimal. 

The ifname and £net parameters are related as follows: 

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The onlv 
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping . 
terminates when the count is exhausted or when an ELSE with a matching or blank name is 
encountered, whichever occurs first. 

4-70 60492600 H 



2. If neither a cowit nor a name is supplied, the SKIP range is terminated by an ENDIF, whether 
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE 
has no effect. 

3. If a name but no count is supplied, the SKIP range is terminated by an ENDIF or ELSE with 
a matching name or by an winamed ENDIF or ELSE. An ENDIF or ELSE with a name that 
does not match has no effect. 

4.10 ERROR CONTROL 

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally 
set an error flag. 

4. 10. 1 ERR - UNCONDITIONALLY SET ERROR FLAG 

An ERR pseudo instruction produces an assembly error but does not affect other code. l'sually, it is 
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly 
based on an assernbly time test. One application is to use a test and ERR to detect illegal macro 
parameters. 

Format: 

LOCATION 

flag 

flag 

OPERATION VARIABLE SUBFIELDS 

ERR 

A single alphanumeric character denoting the error type. The flag is placed 
in the listing to the left of the line for ERR. The flag can· denote n fatal or 
nonfatal error. A fatal error causes COl\IPASS to suppress generation of the 
binary deck unless the D mode option is selected on the COl\IPASS control 
card. If no flag is specified, or the character is not one of those given in 
section 11. 7, COl\IPASS uses P. 

A variable field entry, if present, is ignored. 

Example: 

LOCATION 

NNN 

60492600 H 

OPERATION V~RIABLE COMMENTS 

II 

HAC~O 
IFEO 
ERR 

• 

EN11M 

• 

NNN 

IB '30 
P1,P2,P3,P4T 
Pi' f) I 

! I I • 

I : : 

• 
• 

I 
I 
I 

4-71 



4.10.2 ERRxx - CONDITIONALLY SET ERROR FLAG 

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second 
pass of the assembler is true. 

Format: 

LOCATION 

flag 

flag 

xx 

aexp 

Example: 

OPERATION V ARIABlE SUBF lElOS 

ERRxx aexp 

A single alphanumeric character denoting the error type. The flag is placed 
in the listing to the left of the line for ERR. The flag can denote a fatal or 
nonfatal error. A fatal error causes COl\lPASS to suppress generation of the 
binary deck unless the D mode option is selected on the COl\TPASS control carcl. 
If no flag is specified, or the character is not one of those given in section 11. 7, 
COMPASS uses P. 

Defines condition under which aexp value is erroneous. 

xx 

NG or MI 

NZ 

PL 

ZR 

Error Condition 

Value of expression is negative 

Value of expression is nonzero 

Value of expression is positive 

Value of expression is zero 

Absolute expression. It cannot contain external symbols or references to blank 
common. The test is made in pass two of the assembler. Relocatable addresses 
are assigned values relative to program origin rather than to the block in \\"hich 
they are defined. 

NOTE 

ERRxx is the only conditional instruction for which the 
test is made in pass two. Therefore, this is the only 
pseudo instruction that can be used to determine PPe 
overflow if the PPU program has literals and l'SE 
blocks. 

Test for memory overflow in PPU assembly 

Location Code Generated LOCATION OPfl!ATION VARIABLE COMMENTS 

I II 18 bo 
PE~IPH I 

7777447 

I: I 
I 

LASTTAG 1BSS (J I 
R lS::RRPL l AS TT AG- 77 77/ 

F I NO 71+62 

4-72 
60492600 H 



4.11 LISTING CONTROL 

The instructions described in this section permit extensive control of the assembly listing format. 

4. 11 • 1 LIST - SELECT LIST OPTIONS 

The LIST pseudo instruction controls the content and format of the assembler listing. LIST instructions are 
disabled under either of the following conditions: 

When the list parameter (L) on the COMPASS control statement (chapter 10) is zero, or 

When the list option parameter (LO) on the COMPASS control statement is used and is other than 
LO=O. 

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list output is 
according to the Land LO parameters on the COMPASS control statement. If the LO parameter is omitted 
or LO=O, the list options are as if L, B, N, and R only are selected and the listing contains heading 
information, assembly text, assembler statistics, an error directory (upon occurrence of an error only), and 
a symbolic reference table. Formats of this output are described in detail in chapter 11 and brief 
summaries are given below. 

Heading Information 

Assembly text 

Assembler statistics 

Error directory 

Symbolic reference table 

Formats: 

LOCATION OPERATION 

or 
LIST 

60492600 H 

Program length, origin, and length or each block, entry points and 
external symbols. 

Line, and assembly results of each line assembled (not skipped) 
from the input device (excludes code generated by RMT, DUP, 
ECHO, XTEXT, or a macro or opdef expansion). For data 
generating pseudo instructions DATA, DIS, BSSZ that produce more 
than one word of object code, only the first word is listed. For 
VFD and CON all words of object code are listed. For R=, only the 
pseudo instruction listed. 

Each occurrence of the LIST instruction is listed. 

Amount of storage used, counts of assembled statements, defined 
symbols, invented symbols, and references to symbols. 

List of fatal and nonfatal errors and summary of the causes of each. 

List of all symbols defined in the program according to symbol 
qualifier, if any, followed by an index to every reference to the 
symbol, whether in explicit or generated (for example, by MACRO 
or MICRO calls) statements. 

VARIABLE SUBFIELDS 

* 

4-73 



A location field symbol, if present, is ignored. 

4-74 

A list option represented by a single letter or a letter prefixed by a minus sign. 
The unprefixed letter selects the option; the prefixed letter cancels the option. 
Options are separated by commas and terminated by a blank. 

A List statements actually assembled 

When A is not selected, a line· containing concatenation and micro substi
tution marks is listed with the marks in it exactly as presented to the 
assembler. When the A option is selected, however, the assembler lists 
the line before and after the editing takes place. Selecting A also causes 
the listing of lines of code resulting from the R= pseudo instruction. 

B List binary control statements 

When B is selected, the listing includes SEG, SEGMENT, IDENT, and 
END pseudo instructions. 

C List listing control statements 

When C is selected, the listing includes EJECT, SPACE, TTL, and 
TITLE pseudo instructions. A listing instruction that causes an EJECT 
is listed as the first line of the new page after the EJECT takes place 

D Include details 

Selection of the D option causes listing of the following items not normally 
listed: 

Second and subsequent lines of DAT A and DIS 
Code assembled remotely when HERE or END causes its assembly 
Literals block 
Default symbols 

E Include echoed lines 

Selection of E causes listing of all iterations of code duplicated as a result 
of DUP and ECHO. 

F List IF-skipped lines 

When Fis selected, the listing includes all lines skipped by IF, IFop, 
IFC, IFPP, IFCP, SKIP, and ELSE. In addition, the Symbolic Reference 
Table contains references to symbols in IF statements. 

G List generated code 

Selection of this option causes listing of all code generating lines regardless 
of list controls other than L. Instructions listed include symbolic machine 
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD. 

L Master list control 

This option is normally selected. When L is canceled, the long list contains 
error flagged lines, an error directory, and LIST and END pseudo instruc
tions only, regardless of selection of any other options on LIST. 

M List macros and opdefs 

Selection of M causes all lines generated by calls to macros and opdefs other 
than those defined by the system to be listed. 

60492600 H 



$ 

* 

N List nonreferenced symbols 
This option is normally selected. Cancellation of this optiori causes 
any nonsystem symbol for which no reference has been accumulated 
(e.g., all occurrences are in IF statements with the F option deselected, 
or are between CTEXT or ENDX with the X option deselected) to be 
omitted from the symbolic reference table. 

R Accumulate and List references 
This option is normally seJected. When R is canceled, COMPASS does 
not accumulate references. R should not be canceled if a complete 
symbolic reference table is desired. If H. is ca~celed at the end of 
assembly, no symbolic reference table is produced. 

S List systems macros and opdefs 
Selection of S causes all lines generated by calls to systems-defined 
macros and opdefs to be listed. 

T List nonreferenced system symbols 
Selection of this option causes a symbol defined through SST to be 
included in the symbolic reference table even if there are no accumulated 
references. 

X List XTEXT lines 

Selection of the X option causes listing of all statements assembled as a 
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a 
means of alternately turning this external designator off and on. 

A dollar sign in the variable field selects all options. 

An asterisk in the variable field causes selection of the options in effect prior 
to the current selection. The assembler records occurrences of LIST pseudo 
instructions and maintains a table of the most recent 50 occurrences. Each 
LIST * resumes use of the most recent entry and removes it from the list. 
When the subprogram contains more LIST * instructions than there are entries 
in the stack, COMPASS selects the default list options (B, L, N, and R). 

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific 
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires 
selection of both Mand E. Similarly, an e.:\.-pansion caused by an XTEXT within a system macro call is 
listed only when both X and Sare selected. To obtain a listing showing rand f. marks removed from 
external text inside a DUP range, A, X, and E must all be selected. 

Example: 

a 11205146314631463146 

2 17205146314631463146 
3 16403140314631463146 

4 17205146314631403140 

0 17205146314631463146 
7 i6~0314631463146314b 

60492600 H 

I 

I 

LOCATION OPERATION 

II 

LIST 
UATA 
DATA 
LIST 
UAf A 
OATA 

LIST 
UAIA 
LIST 
DATA 
DATA 

VARIABLE COMMENTS 

18 f 30 

A I 

1. 3,.E E I 

1.3EE I 

D ! 
1. 3,.EE I 
1.3EE I 

I 
-A,-0 I 
1. 3,. EE I • I 1.3r+EEtt I 1. 3EE 

I 

4-75 



.4.11.2 EJECT-EJECT PAGE AND BEGIN NEW SUB-SUBTITLE 

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page 
headings are printed and listing continues. EJECT has no effect, other than setting the sub-subtitle, 
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor
responding LIST options are not all selected. 

Format: 

LOCATION 

name 

name 

OPERATION VARIABLE SUBFIELDS 

EJECT 

New program sub-subtitle for the page will be printed in character positions 
70-79 of the second line of the page. A blank name clears the sub-subtitle. 

An entry in the variable field, if present, is ignored. 

4.11.3 SPACE - SKIP LINES AND BEGIN NEW SUB-SUB TITLE 

The SPACE pseudo instruction spaces the assembler listing. When a page is full, an eject occurs 
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE 
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT, 
XTEXT, or a macro or opdef expansion, and the corresponding LIST options are not all selected. 

LOCATION 

name 

name 

sent 

rent 

OPERATION VARIABLE SUBFIELDS 

SPACE sent, rent 

New subprogram sub-subtitle will be printed in characters 70-79 on the second 
line of the next page heading. A blank name clears the sub-~ubtitle. 

An absolute expression specifying a positive integer number of spaces between 
the most recent line and the next line of printout. If base is 1\I, sent is assumed 
to be decimal. If sent is omitted or zero, no line is skipped. 

An absolute· expression specifying a positive integer number of lines that must 
be remaining on the page following spacing. If base is 1\1, rent is assumed to 
be decimal. 

If sent+ rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an 
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both. 

Blank cards or statements can also be used to space the listing. 

4-76 60492600 H 



4.11.4 TITLE - ASSEMBLY LISTING TITLE 

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing. 
A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not 
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction 
as the title. A TITLE instruction without a character string produces an untitled listing. A name in 
the location field introduces a new subprogram sub-subtitle. 

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is 
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions 
(except the first which sets the main title) cause a page eject, even when generated by a macro 
expansion, unless LIST option L is deselected. 

Format: 

lOCATION 

name 

name 

string 

Example: 

LOCATION 

I 

I 

I 
I 
I 

60492600 H 

OPERATION VARIABlE SUBFIElOS 

TITLE string 

New subprogram sub-subtitle to be printed in character positions 70-79 
on the second line of the page. A blank name clears the sub-subtitle. 

COMPASS searches the columns following the blank that terminates the 
operation field. If it does not find a nonblank character before the default 
comments column (see COL pseudo instruction), it takes the characters 
starting with the default comments column minus one up to the end of the 
statement. Otherwise, the title or subtitle begins with the first nonblank 
character following TITLE and continues to the end "of the statement or to 
62 characters. Any characters beyond the 62nd are lost. A blank string 
produces an untitled listing. 

OPERATION VARIABLE COMMENTS 

II 18 l Jo 

IUENT MTO 
I 

I 
LIST c I 

TIT Lt MT URI VER I . I 
I • I . 

TITLE IIO ROUT INES1 . I . I 
• 

4-77 



First page: MT Of"<IVER 

Subsequent pages: 11T OiUVL~ 

l / 0 ROUT! NES 

4.11.5 TTL - NEW ASSEMBLY LISTING TITLE 

The TTL pseudo instruction introduces a new main title to be printed on each page of the listing, and 
clears the subtitle. 

Format: 

LOCATION 

name 

name 

string 

OPERATION VARIABLE SUBFIELDS 

TTL string 

New sub-subtitle to be printed in character positions 70-79 on the second 
line of the pages. A blank name clears the sub-subtitle. 

COMPASS searches the columns following the blank that terminates the operating 
field. If it does not find a nonblank character before the default comments column 
(see COL pseudo instruction), it takes the characters starting \rith the default 
comments column minus one up to the statement encl. Otherwise, the title begins 
with the first nonblank character follm\·ing TTL and continues to the encl of the 
statement or to the G2nd character. An.\· characters be.\·oncl the G2nd are lost. 
A blank string produces an tmtitled listing. 

TTL does not cause a page eject. 

4. 11.6 NO REF - OMIT SYMBOL REFERENCES 

The NOREF pseudo im;truction causes the symbols named in the variable field to be suppressed from 
the symbolic reference table. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

NOREF 

One or more symbols defined in the subprogram. If a symbol qualifier is in 
effect when the NORE F is encountered, the symbols are assumed to be 
qualified by the qualifier in use, unless an unqualified symbol of that name 
is defined before the NOREF and the qualified symbol is not definerl before 
the NOREF. Alternatively, sym. , can be a nonblank qualifier symbol en
closed by slant bars, /qualifier/! in which case all symbols qualified by 
the specified qualifier are suppressed from the symbolic reference table. 

A location field symbol, if present, is iJ;nored. 

4-78 60492600 H 



4.11.7 CTEXT AND ENDX - DISABLE/ENABLE LISTING OF COMMON DECK TEXT 

The CTEXT pseudo instruction sets the XTEXT. flag for list control. 

Format: 

LOCATION 

name 

name 

string 

NOTE 

When the flag is set, external text is listed and symbol 
references are recorded, only if the X list option is selected. 

OPERATION VARIABlE SUBFIELDS 

CT EXT string 

If X list option is selected, name is treated as a sub-subtitle; other
wise it is ignored. 

lf the variable field iH nonblank ancl the X list option iH i-:electccl, the CTEXT 
is ~rented as a subtitle. The CTEXT iiu.;tt·uction µ;eneratei-: a ~ubtitle and 
causes a page eject. If Xii-: not i-:cleetccl, the CTEXT clot'H not affect titlinµ;. 

The subtitle begins with the first nonblank character following CTEXT 
or in the default comments column (see COL pseudo instruction) minus 
one, whichever comes first, and continues to the encl of the statement 
or to 62 characters. Any characters beyond the 62nd are lost. 

The ENDX pseudo instn.tction clearR the XTEXT flaµ; fo1· lii-:t control and cau~e~ liHting to n•Hume, 
starting with the instruction after ENDX, when the X 1 i i-:t option has not been selected. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

ENDX 

Entries in the location field or variable field, if present, arc ignorccl. 

60492600 H 4-79 



4.11.8 XREF-REFERENCE SYMBOLIC ADDRESS 

The XIlE F pseudo instruction provides the options of having the symbolic reference table contain 
references to symbols according to (1) location counter address, (2) page and line number, or (3) both. 
For the format of the symbolic reference table, refer to section 11. 8. 

Format: 

lOCATION 

string 

OPERATION VARIABlE SUBFIELDS 

XREF string 

An optional character :-:tring-, the first characte1· of which inclicatc~ how sy111hol~ 
arc lo be referenced. 

A The ~ymbolic reference table li:-:l!-= aclclrc:-:sc:-: only. Fla~!-= arc not includc.•cl. 

B The symbolic rcfc1·encc table li~t~ reference~ lo ~ymhol:; :tccorcling- lo 

page number, line, ancl aclch·cs:-:. Flag-~ arc ineluclecl. 

P The symbolic reference table lists references to symbols according to 
. page and line numbers. F1ags are included. 

A location field symbol, if present, is ignored. 

If the string is omitted or if no XHEF is issued, the ~ymbolie reference table contain!-= rcfcn.•nce~ 
according to page and line number~ and includes flag:-:. The last XHE F cncountc1·ccl in a !-=tthproµ;ram 
determines the form of the listing for the entire subprog-ram. 

4-80 60492600 H 



DEFINITION OPERATIONS 

This chapter describes pseudo instructions that involve definition operations. These pseudo instructions 
cause sequences of instructions to be saved for these reasons: 

They can be assembled from an external source (XTEXT). 

Assembly can be delayed until later in the subprogram (RMT). 

They can be assembled repeatedly (DUP and ECHO). 

They can be referred to for assembly (MACRO, MACROE or OPDEF). 

Any instructions other than END, including other definitions or calls, can be in the body of a definition. 

s 

Each request for assembly of one of the saved sequences of code, such as a reference to a macro, causes an 
entry in the assembler recursion stack. The most recent entry in the stack points to the source of 
statements (the definition) to be assembled. When the definition contains an inner, nested, reference to a 
saved definition, the stack pointer is changed so that the source of statements is the innermost definition. 
The stack allows nesting of definitions to a maximum level of 400. When the end of a definition is reached, 
the assembler switches to the preceding entry in the stack. When the stack is empty, the assembly resumes 
assembly of the next statement in the input source deck. A nested definition must be wholly contained by 
its next outer definition. 

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing 
occurs each time the definition is processed. Compression removes blanl<s and replaces them with coded 
bytes as follows: 

A single space is represented by 55s; it is not compressed. Two or more embedded spaces are 
replaced in the image as follows: 

2 spaces replaced by 5555s 

3 spaces replaced by 0002 

4 spaces replaced by 0003 

64 spaces replaced by 0077 8 

65 spaces replaced by 0077559 

66 spaces replaced by 007755558 

67 spaces replaced by 007700028, etc. 

Trailing spaces are considered as embedded and are included in the image. The 00 character (colon) is 
represented_by the 12-bit code 0001. A 12-bit zero byte marks the end of the statement. 

The listing identifies the source of statements and the recursion level for all definition operations. 

60492600 A 5-1 



For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition 
contains a USE, USELCM, or ORG instruction, code is assembled into the block in use when the XTEXT, 
DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and assembly take place 
in two steps. The block in use at definition time does not determine where code in the definition will be. 
assembled. That is, code is assembled into the block in use when the definition is assembled if the 
definition does not itself contain a USE, USELCM, or ORG. 

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is encountered 
applies to symbols defined in the sequence (assuming the sequence does not contain a QUAL). For RMT, 
macros, and opdefs, however, because definition and assembly take place in two steps, the qualifier in use 
at definition time does not affect symbols in 'the definition. The qualifier, if any, in effect when the 
definition is assembled is applied to the symbols defined in the sequence. 

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, E.CHO, RIVlT, 
or macro definitions, nor to any substitutable parameter names. · 

In definitions having substitutable parameters, it is not possible to use a different block name, different 
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol, ~lock 
name, or symbols to be qualified as substitutable parameters. (For an examble, ref er to example 7 under 
Macro Call.) 

5.1 EXTERNAL TEXT (XTEXT) 

The XTEXT pseudo instruction provides a means of obtaining source statements from a file other than that 
being used for input. COMPASS transfers the text from the external source and assembles it before taking 
the next statement from the interrupted source of statements. The file may be a sequential file, a SCOPE 
3 indexed file with named records, or an UPDATE or MODIFYt random-access program library file. A 
sequential file is normal text and COMPASS will only read the first section. It is necessary to omit 
"rname" from sequential file usage, otherwise an error will occur. 

Random File Format: 

LOCATION 

file 

OPERAllON 

XTEXT 
(or) 

IXTEXT 

VARIABlE SUBflflDS 

rnamc 

rn3llle 

t MODIFY is not supported by NOS/BE 1 and SCOPE 2. 

5-2 60492600 M 



Sequential File Format: 

LOCATION 

file 

OPERATION 

XTEXT 
(or) 

IXTEXT 

VARIABLE SUBF 1ELOS 

mame 

file Name of a file containing source statements. If file is omitted, COMPASS assumes the file 
named in the X parameter on the COMPASS control statement (section 10.1.2). If no X 
parameter was specified, COMPASS assumes OLDPL. 

rname If rname is blank, COMPASS assumes that the file is sequential; it rewinds the file and reads 
the first section. If rname is not blank, the file must be a SCOPE 3 indexed file with named I 
records, a record indexed file with named records, a random-access program library file in 
UPDATE format, or a random-access program library file in MODIFY format. The rname I 
parameter is the name of the section to be read. 

60492600 M 5-2.1/5-2.2 





Text records may be in any of the following formats: 

1. Normal text. If the first line contains rname starting in column 1, it is skipped. 

2. A common deck in an UPDATE or MODIFY t random-access program library file. If the file 
is in UPDATE format, the first line (*COMDECK rname) is alwavs skipped. If the fiie is in 
MODIFY format, the identification (7700) and modification (7702) tables are skipped. COl\IPASS 
does not recognize UPDATE or MODIFY directives such as *IF in the common deck. 

3. An UPDATE or MODIFYt compressed compile file section. 

COMPASS reads source statements to an end-of-section mark -or an END pseudo instruction. 

5.2 REMOTE ASSEMBLY 

Definition and assembly of remote code takes place in two steps. A pair of R l\IT pseudo instructions 
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs 
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code. 
An END instruction causes any unlabeled remote code to be assembled. 

5.2.1 RMT- SAVE REMOTE CODE 

A RMT pseudo instructiGn signals the beginning or the end of a sequence of code. to be assembled 
remotely. 

Format: 

LOCATION 

rmtname 

rmtname 

OPERATION VARIABlt SUBFIELDS 

RMT 

Optional 1-8 character name identifying the remote sequence. It is 
significant on the beginning Rl\IT only. The field is ip,nored for a termina~ing 
RMT. If supplied, nntname can be used on a subsequent labeled HERE. 
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly. 

A variable field entry, if present, is ignored. 

Any instruction legal when the remote lines are called for assembly is legal between the Rl\IT pair. 
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the 
first pair must occur through a HERE instruction so that the inner pair will be e)l.1Janded by an END. 
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be 
assembled through a HERE rather than the END, etc. 

Any labeled remote code present when END is processed is di~carded \\'ithout notice. 

t MODIFY is not supported by NOS/BE 1 and SCOPE 2. 

60492600 c 



5.2.2 HERE - ASSEMBLE REMOTE CODE 

A HEHE pseudo instruction causes the labeled remote sequence to he assembled or unlabeled saved 
remote sequences to be assembled. In the absence of a l 1SE, USELCl\I, IDENT, or an OHG \\'ithin 
the saved sequence, the remote code is assembled under the block in use at the time the llEHE is 
encountered. In the absence of a QUAL within the saved sequence, symbols arc qualified under the 
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it 
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no 
effect on assembly. 

Format: 

LOCATION 

rmtname 

rmtname 

OPERATION VARIABLE SUBfr[lOS 

HERE 

Optional; the name of a previously saved Rl\IT sequence. Only the named 
sequence will be assembled at this time. 

A variable field entry, if present, is ignored. 

If unlabeled remote sequences still remain to be assembled when the END statement signaling the end of 
assembly is encountered, COl\IPASS assembles them before it ten11inates assembly. However, any 
RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote 
code is lost. 

Examples: 

5-4 

The following example illustrates use of Rl\IT within a macro definition. Following the Inst call to 
the macro, a HERE causes all saved unlabeled Rl\IT sequences to be assembled. 

60492600 A 



Location Code Generated LOCATION 

TNAM 
O.TNAM 

TNAM 
O.TNAM 

L.TNAM 

60492600 A 

OPERATION VARIABLE COMMENTS 

11 

MACRO 
IFC 
EQU 
CON 
ELSE 
EQU 
EQU 

RMT 
EQU 
RMT 
• 
• 
• 
ENOM 

• 
• 

18 30 

TABLE, TNAM' t:CH V 
E<h**EQIV* 
•-ORIGINS 
BUCKET 
2 
E.QIV 
O.EQIV 

TNAM+SIZES 

5-5 



In the following example, assembly of the RMT sequence is caused by the END statement. 

LOCATION 

FLO 
PRS 

<<>>>UC>>>>><><>l•f.c.•:>.o >•<>.JI 

OPERATIC".! VARIABLE COMMENTS 

II 

RMT 
OECMIC 
LIT 

LIST 

18 30 

I 
clUF•~UFL-WSA+ENOS 

~*tFLD~ DECIMAL REQUIRED.* 
I 

I 

OECMlC t:.li1c;.:.:a;r1:-:r·~2.:1;:;:~12~r;;:.;ft< ,, .•••. , .•• ·······•········o·••···•"'> < ··c···.·····~;:;:;:::~·~~r· )•·.·•><>•·.·········~·< 

'Lir . 
LlT 

5.3 CODE DUPLICATION 

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be 
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the 
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles 
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on 
each repetition of the code sequence. The number of repetitions is determined by the number of 
actual parameters provided on the ECHO instruction. 

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO, 
or a fatal E error is flagged. 

5.3. l DUP - SIMPLE DUPLICATION 

The DUP pseudo instruction specifies repeated assembly of the statements immediately following. 
The range of the DUP is specified either by a source statement count on the DUP instruction or by an 
ENDD. 

Format: 

LOCATION 

dupname 

dupname 

rep 

5-6 

OPERATION VARIABLE SU8f1ElDS 

DUP rep, .enct 

Optional name of the DUP sequence; 1-8 characters. \\'hen supplied, it can be 
used in an ENDD. When no name is supplied, the range of the nt·P is determined 
by a statement count or by any unnamed ENDD. 

Absolute evaluatable expression specifying the integer number of times state
ments in the DUP range are to be assembled. If rep is null or zero, the insfruc
tions in the range are not assembied; that is, code is skipped. When base is 1\1, 
COMPASS assumes that rep is decimal. 

60492600 E 



.Qnct 

NOTE 

A very large (unobtainable) repeat count in conjunction with a 
STOPDUP instruction can be used for indefinite duplication 
of code. 

An evaluatable expression specifying an integer count of the number of 
statements to be assembled, repeatedly. When base mode is l\I, COl\IPASS 
assumes that .Qnct is decimal. The count is decremented for statements only; 
comment lines (identified by * in column one) are not counted. On each 
iteration, the assembler copies the source statements and then assembles 
them. Thus, any recursive statements within the sequence are counted 
before they are expanded. 

The dupname and fnct parameters are related. 

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to 
be included in the count. Under count control, a name is irrelevant. 

2. If neither a count nor a name is supplied, the DUP range is ten11inated only by an unnamed 
ENDD. 

3. If a name but no count is supplied, the DLTP range is terminated by an ENDD with a matching 
name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the 
range. 

5.3.2 ECHO - ECHOED DUPLICATION 

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each 
iteration, the assembler copies the source statements substituting an actual parameter in the lif;t fo1· 
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO 
offers many of the features of macros but does not require separate definition and reference. The 
range of the ECHO instruction is specified either by a source statement count specified on the ECHO 
instruction, or by an ENDD. The statement count, when used, is decremented for instructions only; 
comment lines, identified by * in column one, are not part of the definition and are not counted. 

Format: 

LOCATION 

dupname 

dupname 

60492600 E 

OPERATION VARIABLE SUBFIELDS 

ECHO 

Optional name of the ECHO sequence; 1-8 characters .. When supplied, 
it can be used in an ENDD. When no name is supplied, the range of the 
ECHO is determined by a statement count or by any unnamed ENDD. 

!l-7 



5-8 

Rn ct Optional absolute evaluatable expression specifying an integer count of the number 
of source statements to be assembled repeatedly. If base mode is M, the 
count is assumed to be decima.l. If .£net is zero or omitted, the comma must 
be present and the ECHO range is defined by an ENDD. 

Any recursive statements, such as macro references, are counted before 
they are expanded. 

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal 
E error is flagged. 

The dupname and .enct parameters are related. 

· 1. If a count is supplied, it takes precedence over any ENDO. The only effect of an ENDO in a 
count-controlled sequence is for it to be included in the count. l"nder count control a name 
is irrelevant. 

2. 

3. 

If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed 
ENDD. 

If a name but no count is supplied, the ECHO range is terminated by an ENDD \\'ith a matching 
name or by an unnamed ENDD. An E.NDD with a name that does not match doef= not terminate 
the sequence. 

Names of not more than 63 formal substitutable parameters. Each name is 1-."i 

characters, the first of which must be alphabetic. A name cannot be END, 
LOCAL, ENDD, IRP, or ENDI\I. A second or later occurrence of a parameter 
name is ignored. A name that begins with a number is ignored. The substi
tutable parameter name can occur in any field within a definition. 

-
The separator between pi and (listi} is conventionally an = but can be any of the 
following: 

+ - * I ( ) $ = , or • 

COMPASS recognizes a substitutable parameter name within a definition \\'hen it 
is between any two of the following: 

.+ - * I ( ) $ = blank , • 1 or ,_ 

Before the ECHO definition is stored, COMPASS replaces each use of a 
substitutable name. Otherwise, it saves the definition unedited, i.e., with 
micro and concatenation marks. U~e of the semicolon is restricted in the 
definition because the assembler, when it expand~ the definition, interpret~ it 
as a substitutable parameter flag (77 

8
). 

60492600 A 



(list.) 
1 

The character,... .flags the occurrence of a name not bounded by any other 
special character and, thus, not otherwise recognized. \\'hen it expands the 
definition, COMPASS substitutes an actual parameter value from the list for 
the substitutable parameter and removes the r+ so that the adjacent items are 
concatenated. 

Because the assembler replaces the first substitutable parameter with 7701, 
the second with 7702, etc. the programmer can use the display characters 
;A, ;B, etc. directly in place of his substitutable parameter names in the 
definition and achieve the same results as if the assembler had replaced the 
name with the flag. (Example 8, section 5. 4. 3 illustrates a similar application 
of this technique. ) 

Actual parameter list in the form ~, a 2, •.• , an where a1 is substituted for p1 
on the first assembly of the ECHO sequence, a2 is substituted on the second 
assembly, etc. until the shortest list is exhausted. Two consecutive commas 
are interpreted as a null parameter. An explicit zero, if desired, must be 
entered. An actual parameter can contain a set of embedded parameters 
enclosed by parentheses. However, the embedded parentheses must be 
properly paired. The assembler removes the outer pair of parentheses before 
substituting the embedded set in a line. A parenthetical item can contain blanks 
or commas. 

If there are no parameters or any of the lists are null, COMPASS assembles the 
ECHO sequence zero times, effectively skipping it. 

5.3.3 STOPDUP - STOP DUPLICATION 

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count 
is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the 
end of the range for the current iteration and then continues with the next source statement. Only the 
innermost duplication is affected. 

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DCP or ECHO is nested, 
STOPDUP terminates only the innermost DUP or ECHO. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

STOPDUP 

An entry in the location or variable field is ignored. 

60492600 c 
5-9 



5.3.4 ENDO - END DUPLICATION SEQUENCE 

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is 

unspecified on the DUP or ECHO. 

Format: 

LOCATION OPEIATION VAllAILE SUBFIELDS 

dupname ENDD 

dupname Name of a DUP or ECHO sequence, or blank. A named Dl'P or ECHO 
sequence can be terminated by an ENDD specifying the sequence by name, 
or by any unnamed ENDD. An unnamed Dl1'P or ECHO sequence that is not 
controlled by statement count is terminated only by an unnamed ENDD. 
An ENDO does not terminate a sequence controlled by a statement count. 
The ENDO is included in the count but has no other effect. 

An ENDO outside the range of a DGP or ECHO has no effect on assembly. 

ENDO is part of the definition it terminates; consequently, it is not edited at ECHO definition time. 
The following definition is in error: 

T r-1 ECHO 
Code 

T r- lENDD 

In this code, the location field of the edited ECHO statement is Tl, but the location field of the un
edited ENDO statement remains· at Tr-1. 

Examples: 

In the following examples, the statements that result from expansion are shown shadep. They are 
listed only when the E list option is selected. Source statements are shown in bold characters. 

1. This example illustrates use of a simple DCP instruction. 

Location 

5-10 

5153 
5154 
51 ::;c:-
515A 
5157 

Code Generated 

cooc0:; 

00Jooooorn~o1ooooco1 
000000~~00000J000001 
000~000oononG0000001 
nooooo0000000GJ00001 
oooooonoo0oooouoooo1 

I 

LOCATION OPEIATION 

II 

;) t l;.i 

!lATA 
[ ~ T.'\ 
r°)A T 1' 

DAT;, 
DATf\ 
DATA 

VARIABLE COMMENTS 

II 30 

!:. • : 

t 
' i>')lj~O l l 

i -=·uuPo l 
l ~l)IJ~O l 
l (;I )lJ~O 1 
l *r)t •Po i. 

60-492600 E 



2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated 
by a STOPDUP. 

LOCATION OPERATION VARIABLE COMMENTS 

11 18 30 

0 t-4ACPO 
TAG MICRO NO• l •/~ALPHAHEU/ 

lFC EQ•/~TAGt/E/tl ASSEMBLE STOPDuP WHEN TAG=E 
STOPDUP 
SfT NO+l NO IS 6 IN LAST ITERATION 
ENDM 
MICRO ltt/ABCDEFGHIJK/ 
SET 1 
OUP -1 UNOBTAINABLE ITERATION COUNT 

60492600 D 5-11 



3. This example illustrates nested ECHO instructions. A statement count terminates the second 
level ECHO The ENDD terminates the first level. Notice how COMPASS assembles each 
copy before it begins the next iteration. 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

11 18 30 

PPU 

STM PPOP 5,5415i:; 
LIST M,O,E 
ECHO ,CM=<X,Y,Z) I 
ECHO 2•Pl= (A,H,C> 
LON CM 
STM Pl 
ENDO 

?•··~··.pr:..rA~tncsl ECHO ~EC Ho~ 1 
LON x *ECHO l 
Slf..1 Pl *ECHO 1 
LON )(. *ECHO 2 
STM A *ECHO 2 
LON x *ECHO 2 
STM B *ECHO 2 
LON x *ECHO 2 
<;TM c *ECHO 2 
ENOD 

2 ,pi=< A•B;C:1I 
*ECHO 1 

ECH0 ~EOiO l 
LON y I *[CHO 1 
STJ.1 Pl *ECHO l 
LDN I ~ECHO 2 
STM l *ECHO 2 
LO~ *ECHO 2 
STM t *ECHO 2 
LON I *ECHO 2 
Sl~ *ECHO 2 
ENOD I *ECHO 1 
ECW1 2 • P r= < A , s , c > 1 *ECHO l 
LON z *ECHO l 
SJt~ 

Pf · ... ···< /. . ... I *ECHO 1 
LON z I *ECHO 2 

A I *ECHO 2 
z I *ECHO 2 
B *ECHO 2 
z I *ECHO 2 
c I ~EC!"iO 2 

I 
~ECHO 1 

TAG 

5-12 60492600 A 



5.4 MACROS AND OPDEFS 

A macro or 9pdef definition is a sequence of source statements that are saved and then assembled 
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the 
macro name in the operation field of a statement. It usually includes parameters to be substituted 
for formal parameters in the macro code sequence so that code generated can vary with each assembly 
of the definition. 

An opdef call differs from a macro call in that the assembler interprets the call by examining the 
format or syntax of the instruction rather than the contents of the operation field alone. The instruction 
comprising the opdef call usually includes parameters to be substituted for parameters in the code 
sequence. There are some differences in the way parameters are substituted, however, as is further 
described under Opdef Call. 

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling 
of the definition. 

A definition consists of three parts: heading, body, and terminator. 

Heading 

Body. 

60492600 A 

A macro definition is headed by a MACRO or MACROE pseudo instruction 
stating the name of the macro and identifying substitutable parameters in 
the body of the macro. 

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax 
of the calling instruction and identifying substitutable parameters in the body of 
the macro. 

The heading optionally includes one or more LOCAL instructions identifying 
symbols local to the definition. 

The body begins with the first statement in a definition that is not a LOCAL 
statement or a comment line. A comment line can be either identified by * 
in column one or can have columns 1-29 blank. (Following the first statement 
of the macro body, only comments identified by * in column 1 are ignored.) 

Use of the semicolon is restricted because when a definition is expanded a 
semicolon is interpreted as a substitutable parameter mark or a local symbol 
flag. 

The body consists of a series of symbolic instructions. Al~ instructions other 
than END, including other macro and opdef definitions and calls are legal within 
a definition. However, a definition within a definition is not defined until the 
outer definition is called. Therefore, an inner definition cannot be called before 
the outer definition is called. 

A name of a substitutable parameter or local symbol listed in the heading can 
occur in any field within the body. A reference to a substitutable parameter or 

· local symbol is recognized when it is between two of the following characters in 
an expression or field: 

+ - * I ( ) $ = blank , • 1 or· r 
The characterr flags the occurrence of a name not bounded by any other special 

5-13 



Terminator 

Definition 
Processing 

character, and, thus, not otherwise recognized. On a call, the assembler 
substitutes an actual parameter value for the substitutable parameter and 
removes the r+ so that the adjacent items are concatenated. 

NOTE 

The programmer can legally use the characters • ( ) : 
$ and =in symbols, but when he does, he must be careful 
that these characters are not interpreted as delimiters in 
macro definitions (example 4 under macro calls). A symbol 
should not begin with a colon; if it does, the colon is 
ignored and no error message is issued. 

The macro body optionally contains IRP pseudo instructions that allow iterative 
assembly of a sequence within the body such that each iteration uses a different 
parameter value. 

An ENDM pseudo instruction terminates a macro or opdef definition. 

A macro or opdef can be defined anywhere in a subprogram before it is called. 
When COMPASS encounters a definition, it places the name of the macro or the 
syntax of the opdef ·along with the number of substitutable parameters and local 
symbols in the assembler operation code table. Before the definition is saved, 
COMPASS replaces each occurrence of a parameter name or local symbol with 
a 77xx (where xx is a number assigned to the substitutable parameter or local 
symbol). 

On the call, each use of a substitutable parameter (each 77xx) is replaced by 
its actual parameter; each use of a local symbol is replaced by a unique symbol 
generated by the assembler. Usually, symbols replaced in this way have no 
meaning outside the definition. However, if the macro includes an Rl\IT 
sequence which contains local symbols, the local symbols will have meaning 
where the remote code is assembled outside of the definition. 

5.4.1 ENDM - END MACRO DEFINITION 

An ENDM terminates a macro or opdef definition. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

mname ENDM 

mname Name of a macro sequence, syntax of an OPDEF sequence, or blank. 

5-14 60.j92600 E 



An ENDM specifying a macro by name terminates the named macro definition and any unterminated 
macro or opdef definitions within it. An ENDM that does not specify a macro by name terminates all 
unterminated definitions. An ENDM outside the range of any macro sequence has no effect other than 
to be included in statement counts. 

ENDM is part of the definition it terminates; consequently, it is not edited at MACRO.definition time. 
The following definition is in error: 

Tr+l 

MACRO 
Code 
ENDM 

·In this code, the location field of the edited MACRO statement is Tl, but the location field of the 
unedited ENDM statement remains at Tr+l. 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 

JAY MACRO P1,P2,P3 I 

• I . I 
. . I 

KAY I HACROf PK2,PK2,PK3~PK4 

I • I . I 
I 

• I 
JPX/XQ QPOEF OP1,0P2,0P~ I . I . I . I 

KAY ENOH 
! 

rE 0 ..,rNAr;:-s KAY AMO 
; . I THt OPOEF .lEFH1I TI8N 
I • 
I I 

I I fNOH I TE PM INA HS JAY 

I 
I I I 

I I ! 

5.4.2 MACRO - MACRO HEADING 

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the 
macro in a table of macro definitions for assembly upon call and place the macro name in the operation 
code table. 

The MACRO pseudo instruction has two forms: 

Format one: 

LOCATION OPERATION VARIABLE SUBFIELDS 

mname MACRO parameters 

60492600 F 5-15 



Format two: 

LOCATION OPERATION VARIABLE SUBFIELDS 

MACRO mname, parameters 

The blank location field identifies the second format. 

mname 

parameters 

5-16 

A legal name other than END, ENDD, IRP, LOCAL, or ENDl\1. 1-8 characters. 

A name that is identical to a PPP symbolic machine instruction, pseudo 
instruction, or macro already in the operation code table redefines the 
instn1ction. The most recent definition applies for the macro call. A 
redefinition causes an informative flag to be issued but the new definition 
holds. 

Names of substitutable parameters. The order in which names are listed 
determines the order in which parameters must occur in the macro call. 
Each name is 1-8 characters, the first of which must be alphabetic. A name 
cannot be END, IRP, LOCAL, ENDO, ENDl\1, or the sam~ as a local symbol. 
A name that begins with a number, or a second or later occurrence of a para
meter name in the list is ignored. 

Any of the following special characters separate parameters in the list: 

+-*/()$ , or • 

These characters have no meaning other than as separators. A blank 
terminates the list of parameters. Also, any of these characters can be used 
to separate the mname from parameters in format two. 

The total number of unique parameter names and local symbols must not 
exceed 63 for any one macro definition. 

Format one does not require parameters. 

Format two requires at least one substitutable parameter. This parameter is 
termed ~he location argument because the location field entry in the macro call 
is its substituted value. Omission of the-location argument from a l\IACRO 
instruction in format two causes the assembler to issue a fatal error and 
ignore the definition. 

The assembler ignores a blank parameter produced by two adjacent 
separators or by a separator at the end of the list. 

For an example of definition and calls, refer to Macro Calls. 

60492600 A 



Examples of macro instructions: 

1. Legal l\IACRO instructions: 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB l Jo 

Aer MACRO. P1,P2,P3 I 

HllCRO .OEF•Lor.•ONE•rwr.•TEN 
I A I HESS AGE MACRO 

2. MACRO instructions having identical parameter lists. 

LOCATION OPERATION VARIABLE 

I II 18 

s lJ"4 MACRO iX=Y+l+X 
SUH MACRO 'X<Y+Z> 

! SUM MACRO :X=Y+Z 
SUM· MACRO I x,v, <Z+X) 

R~O MACRO Ix 
i RAO HACRO X=X+1 

3. Illegal use of format two: · 

LOCATION 

I 

11 

60492600 A 

OPERATION VARIABLE 

II 18 

I MACRO ABC 

I 
MACRO i A BC, , FP 
MACRO :Auc,16,FP 

COMMENTS 

'30 

1
sEr.ONO x PAR AME T i:-p I<) lGNORfO 

I 
1NULL PAPl\METEP 4 Nil SJ:COND 
I )( 
I 

ARE IGNO~fO 

I SECOND x llNO NUMS:~Ir 
1 PftRAHETE~ AP.E IGNOREO 

COMMENTS 

'30 
I NO 
I SUSSTITUTABLC.: PARA Mt: H:.R 

NULL PA~AH~T~R FIELD 
NUMERIC PARAMETER FIELD 

5-17 



5.4.3 MACRO CALLS 

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format: 

LOCATION 

sym 

sym 

OPERATION VARIABLE SUBFIElDS 

mname 

Optional; depends on definition (see discussion following) 

Parameter list composed of alphanun:ieric strings. Parameters are separated 
by commas and terminated by a blank. Two consecutive commas constitute 
a null parameter. An explicit zero, if desired, must be entered. 

Each parameter must be in its correct relative position depending on the sequence 
in which its formal substitutable name is given in the 1\IACRO pseudo instruction. 

When the definition l\IA CRO is in format one, the first parameter in the call is substituted wherever the 
first substitutable parameter occurs in the definition, the second parameter in the call is substituted 
wherever the second substitutable parameter occurs in the definition, etc. \\'hen.the definition l\IACRO 
is in format two, the location field entry in the call is substituted wherever the firs~ substitutable 
parameter occurs in the rlefinition,· the first pa'rameter in the variable field of the call is substituted 
wherever the second substitutable parameter occurs in the definition, etc. 

If null parameters are interspersed with legal parameters, the correct positions must be established 
with commas. When the list terminates before the last possible parameter, all remaining parameters 
are considered null. 

When the first character of a parameter is a left parenthesis, the assembler considers all the 
characters between it and the matching right parenthesis as an embedded parameter or as an iterative 
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP 
pseudo instntetion (section 5. 4. 9). Otherwise, it is an embedded parameter. 

The assembler removes the outer pair of parentheses before substituting the enclosed character string 
in a line. Embedded parenthetical items must be properly paired. A parenthetical item can contain 
blanks and commas. 

Example: 
LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 

MESSL\GF: <=C•PRQr,RAM1ABORT.•> 

After substitution, spacing between fields is the same as it was before substitution. One effect is that 
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments 
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as 
a variable subfield. 

5-18 60492600 A 



Processing of a location symbol and forcing upper of the first macro instruction depend on the MACRO 
form used for the definition. 

If the macro is defined using format one, that is, the macro name is in the location field, a location 
symbol on the macro call line forces the first word of generated code upper. The location field symbol 
is assigned the ·current value of the location counter. A location field (if any) on the line in the 
definition that generates the code is assigned the same address. If the location' field of the macro call 
does not contain a symbol, the location and position counters are not affected by the call. 

When the macro is defined using format two, that iR, the macro name is in the variable field and the 
first parameter is a location argument, the Location symbol of the call is substituted for the first 
parameter or location argument. The fact that this argument came from the Location field rather than 
the variable field has no special significance in the macro expansion. In the macro call, the location 
field argument cannot be more than 8 characters. Parentheses are not given the special meaning used 
in the variable field of a macro call line. 

Example: 

1. An illustration of concatenation 

Location LOCATION 

MACK 

60492600 A 

OPERATION VARIABLE 

11 

MACRO 
5,.pl 

• 

E.NuM 

18 

Pl tP2 
Pl+lR,.P2 

COMMENTS 

30 

• 1 

5-19 



2. An illustration of nested definitions and calls 

LOCATION OPERATION VARIABLE COMMENTS 

I 11 lB TJo 

NAHE1 MACRO 
I 

I 
• . I 
• • I 
• • I NAME2 MACRO 

I . 
I 

• I . I 
NAME2 ENUM I 

• I . I . IA T THIS l!ME., THIS LI 1-.J E. 
NAME.2 1IS PART OF A OEF1NITION . lRAJHER THAN 3EING A CALL • . I . I 

• I 
NAHE1 ENDH I 

• ' . I . I 

NAME1 INAME1 I~ CALLtU ANU EXPANUEU. 
I . I 
I . 
I . I 

NAME2 lc;ALL 
I 

TO NAME2 IS VAL IO 

1 
3. The following example illustrates two calls to a definition headed by a MACRO in format two 

using the location argument. The macro is named TABLE; its substitutable arguments are 
TABNAM, VALUE!, and VALUE2, where TABNAM is the location argument. 

Location Code Generated 

4743 
4743 
4744 

5-20 

17204000000000000000 
172140000000-00000000 

17204000000000000000 
00000000000000000000 

LOCATION 

TAl:3NAM 

OPERATION VARIABLE COMMENTS 

II 

MACRO 
VFO 
ENOM 

• 

18 JO 

TAl:3LE,TABNAMtVALUEl•VALUE2 
60/VALUE1•6p/VALUE2 

I • 
I 

TABLE •l 

60492600 A 



4. An illustration of embedded parameters: 

Definition: 

LOCATION OPERATION VARIABLE COMMENTS 

I 11 IB T 30 

XAM MACRO ft' R I 
LOt.4 ll I 
LJM R I E'NOM I 

Call: 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB T3o 

XA~ (~llt-f,1f'lt'O, CSAM,IND~> 

Expansion: 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

II IB 30 

5. The following example illustrates use of R= in macros: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T 30 

ONSW MACRO N 
I R= X1,N I 

SX2 11B I 
RJ =XCPM= I 
ENDM I 

OFF SW MACRO N I 
R= X1,N I 
SX2 128 I 
RJ =XCPH= I 
ENDH I 

60492600 A 5-21 



6. The following example illustrates a character in a symbol erroneously being interpreted as a 
delimiter for a parameter. 

LOCATION OPERATION VARIABLE 

II 18 

ABC MACRO ZtVAL,PS 
SET VAL 
SA7 Z.ALPHA 
• • 
• • 
• • 
ENDM 

COMMENTS 

30 

I 
!ILLEGAL SYMBOL• TOO LONG 
I 

ILLEGAL SYMBOL• TOO LONG 
ABC 
ABC 
ABC 

7. The following example illustrates changing of control blocks and symbol qualifiers through 
substitutable parameters in a macro. (The same call could be used by using micros to 
change actual parameters.) 

LOCATION OPERATION VARIABLE COMMENTS 

II 18 30 

TAB MACRO BLOCK,KWAL 
USE BLOCK 
QUAL Kw AL 

TAGl BSS 108 
TAG2 VFO 60/-1 

USE 0 

QUAL 0 

ENOM 
• 
• 
• 
TAB ONE,ONE 
USE ONE 
QUAL ONE 
BSS 108 
VFO 60/-1 
USE * OUAL * ENDM 
TAB TWOtTWO 
USE TWO e.1 
QUAL TWO ·l 
BSS 108 •l 
VFD 60/-1 •l 
USE * •1 
QUAL * fl 
ENDM ·l 

5-22 60492600 A 



8. The following example illustrates a technique that an experienced programmer may \\'ish to 
use to save time in processing of definitions. Remember that the assembler replaces the 
first substitutable parameter with 7701, the second with 7702, etc. Note that 7701 is ;A in 
display characters, 7702 is ;B, etc. This means that the programmer can use the display 
characters directly in place of his substitutable parameter names in the body of the definition 
and achieve the same results as if the assembler had made the substitution when it saved the 
definition. At the time the definition is assembled, the assembler replaces each 77xx with the 
actual parameter whether the code was inserted by the assembler when it saved the definition 
or by the programmer when he coded the definition. 

LOCATION OPERATION VARIABLE COMMENTS 

II 18 30 

CHAR MACRO A5C[J,INTEPNAL•EXTEPNAL,BCD 
cor-..i ;o;c;RHi. 
ENDtJ. 

60492600 A 5-23 



5.4.4 MACROE - EQUIVALENCED MACRO HEADER 

A MACRO~ pseudo instruction can be used instead of a MACRO instruction to notify the assembler to 
place the instructions forming the body of the macro in a table of macro definitions for assembly upon 
call, to place the macro name in the operation code table, and to save the list of parameter names ~o 
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro 
call. 

The MACROE pseudo instruction has two forms: 

Format one: 

LOCATION OPEIATION VARIABLE -SUIFIElOS 

mname MAC ROE parameters 

Format two: 

LOCATION OPERATION VARIABLE SUBFIELDS 

MACROE mname, parameters 

The blank location field identifies the second format. 

mname 

parameters 

5-24 

A legal name other than END, ENDD, IRP, LOCAL, or END:i\I. It can be 
1-8 characters. A name that is identical to a PPC symbolic machine instruction 
name, pseudo instruction, or macro instruction already in the operation code 
table redefines the instruction. The most recent definition is the one that applie~ 
for the macro call. A redefinition causes an informative flag to be issued but the 
new definition holds. 

Names of substitutable parameters. Cnlike :\IACRO, the order in which name~ 
are listed does not determine the order in which parameters can occur in the 
macro call. Each name is 1-8 characters, the first of which mu~t be alphabetic. 
A name cannot be END, ENDD, LOCAL, IRP, E~Dl\I, or the same as a local 
symbol. A name that begins with a number, or a second or later occurrence of 
a parameter name in the list is ignored. Any of the following special characters 
separate parameters in the list: · 

+ * I ( ) $ = , or . 

These characters have no meaning other than as separators. A blank terminates 
the list of parameters. Also, any of these can be used to separate the mname 
from parameters in format two. 

The total number of unique parameter names and local symbols must not exceed 
63 for any one macro definition. 

Format one does not require parameters. 

60492600 A 



Format two requires at least one substitutable parameter. This parameter is 
termed the location argument because the location field entry in the macro call 
is its substituted value. Omission of the location arg11ment from a l\IACHO 
instruction in format two causes the nssembler to issue a fatal error flag and 
ignore the definition. 

The assembler ignores a blank parameter produced by two adjaeent separators 
or by a separator at the end of the list. 

For an example of definition and calls, refer to Equivalenced l\lacro Call. 

S.4.S EQUIVALENCED MACRO CALL 

A macro definition headed by a l\IACROE pseudo instruction can be called by an instruction of the 
following format: 

LOCATION 

sym 

mname 

sym 

p.=-=a. 
I 1 

60492600 A 

OPERATION VARIABLE SUBFIELDS 

mname 

Name of l\IACROE definition 

Optional symbol. A symbol in the location field causes the location counter 
to be forced upper. The symbol is then assigned the value of the location 
counter. A location field symbol on the first line in the definition that generates 
code is assigned the same address. If the location field of the macro call does 
not contain a symbol, the manner of the force upper is a function of the first
code-generating line in the macro e.:-qmnsion. 

An equivalenced parameter. Each p is the name of a substitutable parameter. 
The ai is an actual parameter to be substituted for pi. The parameter~ need not 
be listed in the same order as they are listed on the l\IA CHOE instruction. 
Equivalenced parameters in the list are separated by commas and terminated 
by a blank. 

A null value is substituted for any parameter omitted from the list. 

When the first character of an actual parameter is a left parenthesis, the 
assembler considers all the characters between it and the matching parenthesis 
as an embedded parameter or as an iterative parameter. It is an iterative 
parameter when the substitutable parameter has been named in an IRP pseudo 
instruction (section 5. 4. 9, IHP). Otherwise, it is an embedded parameter. The 
assembler removes the outer pair of p~renthese::. before substituting the enclm::ed 
character string in a line. Embedded parenthetical items must be properly 
paired. A parenthetical item can contain blanks and commas. 

5-25 



After substitution, spacing between fields is the same as it was before substitution. One effect is that 
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments 
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as 
a variable subfield. 

Processing of a location symbol and forcing upper of the first macro instruction depend on the l\IACROE 
form used for the definition. 

If the macro is defined using format one, that is, the macro name is in the location field, a location 
symbol on the macro call line forces the first word of generated code upper. The location field symbol 

- is assigned the current value of the location counter. A location field (if any) on the line in the 
definition that generates the code is assigned the same address. If the location field of _the macro call 
does not contain a symbol, the location and position counters are not affected by the call. 

When the macro is defined using format two, that is, the macro name is in the variable field and the first 
parameter is a location argument, the location symbol of the call is substituted for the first parameter or 
location argument. The fact that this argument came from the location field rather than the variable field 
has no special significance in the macro expansion. After substitution, spacing between fields is the same 
as it was before substitution. 

Example, format one: 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

II 18 30 

SAM MA CR OE A,B,C 
CON A 
CON B 
CON c 

Example, format two: 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 30 

I 

MAC POE sA,..,xx.A,l~,c 

CON A 
CGN e 
CON c 
ENOM 

2 00000000000000000~01 5 AM A=l1ti•21C•3 

5-26 60492600 G 



5A.6 OPDEF- DEFINE CPU OPERATION 

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition 
in a table of definitions for assembly upon call and place the instruction syntax in the operation code 
table. There is no way of removing the definition from the table. It can, however, be bypassed 
through redefinition, or disabled through PURGDEF. If the syntax duplicates a CPC instruetion already 
in the table, the OPDEF definition takes precedence. 

Format: 

LOCATION 

syntax 

syntax 

60492600 B 

OPERATION VARIABLE SUBFIELDS 

OPDEF parameters 

The syntax consists of a mnemonic operator and variable field descriptors. 
The mnemonic operator consists of two characters. The first can be an.\' 
character except blank. The second character can be a register designator: 
A, B, or X in which case the operation field of the opdef call is recog
nized as cAn, cXn, or cBn (c is a unique character; n is 0-7); or the second 
character can be any other character, in which case the operation field of 
the opdef call is recognized simply by a two-character mnemonic, such as 
EQ. 

The variable field descriptors define the order of appearance of all registers, 
expressions, and subfield separators that comprise the variable field of the 
opdef call. It consists of none, one, two, or three of the following 22 subfield 
descriptors. Q represents an expression. An r represents a register letter 
(A, B, or X). A comma separates two descriptors; a blank terminates the 
syntax. 

void Q 

r rQ 

-r -rQ 

rl+r2 rl +r2Q 

-rl +r2 -rl +r2Q 

rl *r2 r *r Q 
1 2 

-r *r 1 2 
-r *r Q 1 2 

rl /r2 rl /r2Q 

-r/r 2 -rl /r2Q 

rl-r2 r 1-r2Q 

-r -r -r -r Q 
1 2 1 2 

5-27 



parameters 

Examples: 

For example, -r 1*r2 would be written as -X*B to describe -X3*Bl whereas rQ 
would be written as BQ to describe B2+ALPHA. The first deRcriptor immedi
ately follows the mnemonic operator. 

A substitutable parameter for each register designator (r) and expression 
designator (Q) in the syntax in the order in which they occur in the syntax 
(and, consequently, in the calling instruction). Each name is 1-8 characters, 
the first of which must be alphabetic. A name cannot be END, ENDD, ENDl\I, 
IRP, LOCAL, or the same as a local symbol. A name that begins with a num
ber, or a second or later occurrence of a parameter name in the list is ignored. 
Para.meters can be separated by any of the characters: 

+ - * I ( ) $ = , or • 

These characters have no meaning other than as separators. A blank terminates 
the list of parameters. 

The total number of unique parameter names and local symbols must not exceed 
63 for any one OPDEF definition. 

The assembler ignores a blank parameter produced by two concurrent separators 
or by a separator at the end of the list. A second or later occurrence of a 
parameter name in the "list is ignored. 

1. Listed below are some instructions that could be defined through OPDEF: 

Calling Instruction 

Operation 

Jpt 

JPt 

JP 

JP 

JP 

NEt 

LJ 

BXnt 

SBnt 

LXnt 

JPt 

NEt 

BXit 

SBit 

SBit 

t Legal COMPASS CPU instructions 
1t K represents an expression. 

5-28 

Variable Subfields 

Kff 

· Bn+K 

Bn_:tBn,:!:K 

Bn,K 

Xn/Xn,:!:K 

Bn,Bn,K 

Bn-Bn,An-Xn,K 

-Xn*Xn 

Xn+Bn 

Bn,Xn 

Bj+K 

Bj, Bk, K 

-Xk*Xj 

Xj+Bk 

Bj+Xk 

Opdef 

Syntax 

JPQ 

JPBQ 

JPB+BQ 

JPB,Q 

JPX/XQ 

NEB,B,Q 

LJB-B,A-X,Q 

BX-X*X 

SBX+B· 

LXB,X 

JPBQ 

NEB,B,Q 

BX-X*X 

SBX+B 

SBB+X 

60492600 A 



2. The following complete definition redefinef; single-address long jump JP as the EQ jump, which 
is faster than JP on the 6600 Computer System. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 '30 

JPQ OPOEF Pt I 
EQ Pt I 

I S:NO._. I 

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. A JP 
instruction having a different syntax, such as the following, is not affected. 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II IB l Jo 

O~J.JIJiJU\J(J':> • ri't+t\LP'-'I' 
I 

JO I 

3. The following definition traps all floating point double-precision subtraction instructions 
(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, .J, ancl K ai·c substitutable 
parameters useLi within the definition. 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB lJo 

I') )(V-Y f'.'P'1FF f 9 J.v 
I 

I . 
I 

I : I 
I OJ i rl( n1 !T I I 
I 
nm~ I I I I 

4. The following sequence causes R.Xi K to be defined as AXi K. It does not affect the standard 
RXi instructions involving registers. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 bo 
Q)(Q I 0Pl1EF Pt, P;:> T 

I AX.Pl P2 I 
FNDH I 

5.4.7 OPDEF CALL 

An opdef call resembles a CPl' mnemonic machine instruction. The mnemonic code, quantity and 
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions) 
must match the syntax described in the OPDEF for the definition to be cnlled. 

60492600 A 5-2~) 



NOTE 

If the Q in a descriptor is combined with register letters, . 
a plus or minus must precede an expression in the call. 

OPDEF Syntax Call 

JPQ JP K Not combined 

JPBQ JP Bn+K Combined. 

JPB,Q JP Bn,K Not combined 

JPX/XQ JP Xn/Xn~K Combined 

An OPDEF call can occur any place after the definition is saved. In substituting parameters, the 
assembler uses only the register values given in the call. It does not ·substitute the register designators. 

A location symbol on the opdef call Hne forces the first word of generated code upper. The location field 
symbol is assigned the current'value of the current location counter after the force upper. A location 
field on the line in the definition that generates code is assigned the same value. If the location field of 
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code
generating instruction in the expansion. If the call location field and the code-generating instruction 
field both contain symbols they are assigned the same value. 

Only a line having the correct syntax calls the definition. 

Examples: 

The following opdef defines an instruction having the syntax IXX/X. On the call, the assembler 
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for Pl, P2, and P3, respectively. 

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS 

11 IB 30 

lXX/X OPDEf PltP2tP3 
PX.P2 X.P2 
PX.PJ .P3 
NX.P2 .P2,H4 
NX.P3 x.PJ,84 
fX.Pl XeP2/)(.PJ 
UX.Pl .pl t 84 
LX.Pl X.PltB'+ 
ENDM 
• 
• 
• 

5-30 60492600 A 



The following OPDEF selectively traps the SXi Xj+Ilk instructions. 

Definition: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 bo 

sxx+n OPOEF I,J,K I . I . I . I 
ENOH I 

Statements that call the definition: 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB ho 
~XJ X1+!1? I . I . I 

I 

lxr.+11.xxx 
I 

SYt1 isx.N~ ' I 

Statements that do not call the definition: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 1B TJo 

SX? Xl+ INC ~ 0 ': S [(, NA T ('I i:l ().:> +. 
I 

SXf> ,A3+X4 :R['";!ST~t><:; I"'TFPCHANGEO 
I 

,X.Y fl '3 INO x Dt:c;TGNA TOP OR. 0'-"'~.:>ANO 

I 
I 

~y )(4+CH+ I '1 "' r ~ 0 N ! r. rooF t-1l) l sx. 
I 

5.4.8 LOCAL-LOCAL SYMBOLS 

One or more LOCAL instructions that list symbols local to the definition optionally follows the :\IACHO, 
MACROE, or OPDEF pseudo instruction. The only lines that can separate the first header statement 
from LOCAL are comment lines. 

Format: 

LOCATION 

symbols 

60492600 A 

OPERATION VARIABLE SUBFIELDS 

LOCAL symbols 

List of local symbols. Each symbol mu~t begin \\'ith an alphabetic character. 
Symbols must be separated by and must not include the follo\\'ing characters: 

+-*/()$ , or . 

G-:l 1 



A blank terminates the list. The assembler ignores a null symbol produced by 
two adjacent separators or by a separator at the end of the list. COMPASS ignores 
the use of a substitutable parameter name, another local symbol name, or a name 
beginning with. a number in the local symbol list. A local symbol cannot be END, 
ENDD, ENDM, IRP, or LOCAL. '.fhe total number of unique parameter names and 
local symbols must not exceed 63 for any one macro or OPDEF definition. 

A location field symbol, if present, is ignored. 

A symbol in the list is considered local to the macro; that is, it is known only within the macro definition. 
On each expansion of the macro, COMPASS creates a new symbol for each local symbol and substitutes it 
for each occurrence of the local symbol in the definition (other than in comment lines identified by *.in 
column 1). Thus, invented symbols replace LOCAL-named symbols wherever they appear in a macro 
definition in a manner similar to the way substitutable parameters are replaced. The chief difference 
between substitutable parameters and local symbols is that COMPASS automatically supplies the value C 
(character string to be substituted for) a local symbol so that it is unique for each macro call. 

A user passes a local symbol to inner macro definitions or inner macro calls when he does not declare 
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a 
macro can be referred to in any inner macro that does not also declare_it as local (see example 2). 

A symbol not defined as local is accessible from outside the macro definition. An invented symbol is 
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks 
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change _th~ 
structure of the line. . , 

On the listing, each invented symbol is shown as Hsym, where sym is unique for each local symbol in 
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can 
define a different symbol A elsewhere. 

Examples: 

5-32 

/ 

1. In the following example, C is local to macro ABC and is passed to inner macro definitions. 
In the definition, each occurrence of formal parameter A is replaced by the parameter mark 
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the 
parameter mark 7703. Then, when ABC is called, COMPASS assigns invented symbol 
tWOOOOl to C and replaces each occurrence of 7703 in definitions ABC and XY z. 

LOCATION OPERATION VARIABLE COMMENTS 

ABC 

c 
• 

XYZ 

II 

HACRO 
LOCAL 
BSS 

• 
• 

MACRO 
SA1 
• 
• 
ENOM 

li·:·::_,, .... ,,_ .. ·.:::".·::·:-:·::'·:·::·it ABC 

MACRO 
SA! 
E:.NDM 

18 

A,B 
c 
108 

0 
c 

I 
I 

30 

I ! OFFINITION 
10F XYZ 
I 
I 
I 

i!1~'6t"o1t} ! ~~F~~iTION) 
I 

DEFINITION 
OF ABC 

EXPANSION 
OF ABC 

60492600 A 



2. In the following example, C is local to each level. Note how this example differs from the 
preceding one. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 l3o 

BCD MACRO A,A I 

1 
I 

LOCAL c I 
c BSS tOB I 

• • I 

• I >DEFINITION • I . . 
':I I 

oF qco 
YZA MAC~O 

LOCAL c I I 

SA1 c f: DEFINITION 
• 1 0F YZA 
• I 

c BSSZ 1 ) l ENflH / 

On the call to BCD, the assembler replaces each occurrence of C with the invented symbol, · 
tW00002 including the use of the symbol in the LOCAL instruction for macro XYZ. 

LOCATION OPERATION VARIABLE COMMENTS 

1 11 1s T 30 

LOCATION OPERATION VARIABLE COMMENTS 

II 18 30 

5.4.9 IRP - INDEFINITELY REPEATED PARAMETER 

An IRP pseudo instruction in a macro definition signals the beginning or end of a sequence of code to be 
assembled repeatedly with one parameter varied with each repetition. 

It has two formats: 

LOCATION 

60492600 A 

OPERATION 

IRP 

IRP 

VARIABLE SUBFIELDS 

parameter 

5-33 



The first form introduces the 8equence and names the substitutable parameter; the second form 
terminates the repeated sequence. In either form, a localion field i;;ymbol, if present, is ignored. 

The parameter name must be listed as a substitutable parameter on the l\IACRO or :\IACROE pseudo 
instruction for the definition. 

On the macro call, the indefinitely repeated parameter consists of one or more subparameters enclosed 
by parentheses and separated by commas. The assembler assembles the sequence for each subparameter; 
the number of copies of the sequence depends on the number of subparameters (none at all when the 
actual parameter is null). When the list of subparameters is exhausted, the assembler continues with 
the next line in the definition. If the named substitutable parameter does not occur between the two 
IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call. 
An IRP outside of the range of a macro has no effect on assembly other than to be included in statement 
counts. 

IF-skips of IRP sequences should be controlled by instruction bracket names rather than statement 
counts because IRP expansions are done even when an IF-skip is used and because the number of 
statements generated by IRP is variable. 

Anything that can be done with an IRP pair can be done with ECHO and ENDD. IRP is faster at assembly 
time but ECHO is more flexible (it is not expanded during IF-skips, allows multiple arguments, and 
can be nested). IRP should be used when greater speed is desired and the expanded capabilities of 
ECHO are not needed. 

Examples: 

1. Repeat sequence within macro 

5-34 

LOCATION OPERATION VARIABLE 

II 

MACRO 
lRP 
SAl 
SX6 
SA6 
IRP 
ENOM 

.............................. ZAB 
IRP 
SAl 
SX6 
SA6 
SA! 
SX6 
SA6 
SA! 
SX6 
SA6 
It<P 
FNOM 

18 

ARG,B 
ARG 
ARG 
Xl•B 
ARG 

COMMENTS 

30 

I 

kEPEATED 
lsrnuENCE 

DEF !NIT ION 
OF ZAd 

60492600 A 



2. Assign symbol at every 1008 words of zeroed storage: 

LOCATION OPERATION VARIABLE 

II 

USE 
MACRO 
IRP 
BSSZ 
IRP 
ENDM 

18 

STORAGE 
Pl 

Pl 
1008 

COMMENTS 

30 

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS 

Definitions of such general usefulness that they should be available to any program without each 
program defining them can be placed on the system text file as system macros or can be placed on 
a file accessible through an XTEXT pseudo instruction. 

System macros provide for such system functions as reading and writing files and specifying parameters 
for file environment tables, etc. Systems macro definitions are available to COMPASS for each 
assembly. The programmer can use a macro call for a system macro at any time in his program. 
Descriptions of system macros are given in the operating system reference manual. 

Systems definitions can include any legal macro or opdef definition. An expansion of a call for a 
system definition is not normally included on the assembler listing. Use of the S option of the LIST 
pseudo instruction( Section 4.11.1) enables listing of expansions of system definitions. 

60492600 A 5-35 





. OPERATION CODE TABLE MANAGEMENT 6 

The COMPASS operation code table contains the information that COMPASS requires for interpreting legal 
operation field entries for COMPASS instructions. 

When assembly begins, the operation code table contains these entries: 

Pseudo instructions (except LOCAL) 

CPU symbolic instructions (chapter 8) 

CMU symbolic instructions (chapter 8) 

PPU symbolic instructions (chapter 9) 

System macro and opdef definitions 

• 

The MACRO, MACROE, and OPDEF pseudo instructions (chapter 5) cause entries· to be made in this table. 
In addition, the programmer has the capability of creating entries through the following instructions 
discussed later in this chapter: 

CPOP 

PPOP 

OPSYN 

CPSYN 

CPU operation 

PPU operation 

Synonymous PPU or pseudo operation or macro 

Synonymous CPU operation or opdef 

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed 
from the table. Instead, it is saved so that the table can be reconstructed between assemblies. COMPASS 
reconstructs the operation code table using all the original system macros, opdefs, pseudo instructions, and 
symbolic machine instructions. No programmer-created entry is preserved from assembly to assembly. 
The number of entries in the table is limited to 4123. 

The only pseudo instructions that logically remove entries from the operation code table are PURGMAC 
and PURGDEF. 

Entries in the operation code table are in two distinct for mats permitting a logical division of the table. 
One type of entry permits identification of an instruction by finding a match for the contents of the 
operation field, thus, it provides mnemonic recognition. The other type of entry is looked at only if the 
search for a mnemonic operator fails to yield a match during a CPU assembly. 

This type of entry provides for recognition of an instruction according to its syntax. COMPASS analyzes 
the statement to be interpreted, determines the syntax of the operation and variable subfields, and again 
searches the table. 

60492600 E 6-1 



Instructions are recognized in the mnemonic search and the information provided to the assembler for each 
instruction are as follows: 

Pseudo instructions 

PPU symbolic instructions 

Instructions described through PPOP 

Macro instructions 

Instructions described through OPSYN 
• 

The entry contains addresses to routines that perform 
pass one and pass two operations. 

The entry describes the format of the instructions to be 
assembled. 

The entry describes the format of the instruction to be 
assembled. 

The entry directs the assembler to the location of the 
saved definition. 

The entry is a copy of the synonymous entry. 

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error. 
For a CPU assembly, however, if the-search for the mnemonic operator does not yield a match, COMPASS 
searches the operation code table again for an entry with a matching syntax. Instructions recognized in the 
syntactical search and the information provided to the assembler for each instruction are as follows: 

CPU symbolic instructions 

Instructions described through CPOP 

Imtructions defined through OPDEF 

Imtructions described through CPSYN 

The entry describes the format of the CPU instruction to 
be ass em bled. 

The entry describes the format of the CPU instruction to 
be ass em bled. 

The entry directs the assembler to the location of the 
definition. 

The entry is a copy of the synonymous instruction 
The action taken depend> on the synonymous entry. 

If, following the second search of the operation code table, the statement still has not been identified, the 
assembler takes the following action: 

I For a PPU assembly, it generates a 24- or 32-bit instruction of which the first 12 or 16 bits are zero. 

For a CPU assembly, it generates a 30-bit zero instruction. 

Although OPSYN and CPSYN ~eudo instructions provide a means of rendering more than one instruction 
synonymous, only instructions of the same type can become synonymous. The logical division of the table 
between the two types of entries prevents mnemonically identified instructions from being made 
synonymous with syntactically identified instructions. 

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already in the 
table for a different instruction, the new entry takes i:recedence over the old entry. Similarly, when a 
OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction, the new 
entry takes i:recedence over the old entry. As a result, the order of i;recedence for operation field 
recognition is, from highest to lowest: 

1. Programmer-created entries for mnemonically identified instructions. 

6-2 60492600 M 



2. System macros, pseudo instructions, PPU f;ymbolic machine instructions, and CMll 
instructions other than the IM instruction. 

3. Programmer-created entries for syntactically identified instructions 

4. CPU symbolic instructions and the CMU IM instruction 

Example: 

The following example illustrates a special case in which a macro name takes precedence over one 
form of a machine instruction, i.e. , the form using SB4 as an operation code. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 1Jo 

~Bl+ MACRO P1,P2 DEFINE MACRO NAHEO SB4 . 
• 
• 
ENIJH 

• 
• 
• 
SR4 A1+ABLE CALL TO "4ll c~o. NOT (:PU 1w;:r~u rTION 
• . 

i. 
!Sr\1 A 1 +ARLE HACHINf INSTRUCT !OM 

I 

SR4 OPSVN NIL : OI~ABLr::~ MAC~f' qtJT OOFS NOT . 
I 

1RESTORE ~O~M~L USE CF sq4 . IAS AN OPEPATION CODE • FVn 1 IF 

I: ! I IT WERE ~EOEFINtO WITH ()POFF 
. IT WOULD ~·or RE ~ECOGNIZEO. . ~ THF MACRO FnR,_. ALWAYS TAKF~ . j PRFCEOENCE • . 
: P.E~TORES :PURG"1~G: SRL+ N()Rt-1AL USE OF SCJ4 

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS 

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPl' 
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PlTRGl\IA C 
provide the programmer with a means of creating or removing operation code table entries that are in 
the mnemonically identified format. 

6. 1. l PPOP - PPU OPERATION CODE 

The PPOP pseudo instruction defines the operation and variable fields of a PPl1 symbolic machine 
instruction and creates an operation code table entry for the in~truction. COl\IPASS generates an 
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP 
instruction is used. If the operation code table already contains an entry for the name, the new 
definition takes precedence over the old during assembly of the subprogram or until it is redefined. 
No error is flagged. Any illegal parameter in PPOP causes COMP ASS to ignoee the PPOP and issue 
a 7-type error flag. 

60492600 A G-3 



Format: 

LOCATION 

name 

name 

ctl 

val 

type 

6-4 

OPERATION VARIABLE SUBFIELDS 

PPOP ctl, val , type 

Mnemonic name, 1 through 8 characters 

Control of instruction assembly 

ctl Significance 

0 filegal; if used, COMPASS ignores the PPOP 

1 24-bit instruction with 12-bit address and no indexing 

2 12-bit instruction with signed relative address or absolute address 
(e.g., UJN) 

3 24-bit instruction with 18-bit address (e.g., LDC) 

4 12-bit instruction with 6-bit address (e.g., LDN) 

5 24-bit instruction with 12-bit address and optional indexing (e.g., LDM) 

6 12-bit instruction with signed relative address (e.g., SHN) 

7 24-bit instruction with 12-bit address and required second field (e.g., 
IAM) 

An evaluatable expression specifying the .octal 4-digit operation code value; usually, 
only the two leftmost digits are significant. If the assembly base is M, the field is 
assumed to be octal. 

An evaluatable expression specifying an integer value that COMP ASS interprets as 
follows: 

6 

7 

other or 
omitted 

Restrict the instruction being defined to the CYBER 180 Series, 
CYBER 170 Series, CYBER 70/Models 71, 72, 73, and 74; COMPASS 
sets an error flag if the instruction being defined is used in a CYBER 
70/Model 76 PPU assembly. 

Restrict the instruction being defined to the CYBER 70/Model 76; 
COMPASS sets an error flag if the instruction being defined is used in 
a CYBER 180 Series, CYBER 170 Series, CYBER 70/Models 71, 72, 73, 
and 74 PPU assembly. 

The instruction is not restricted to either machine type. If the base is 
M, type is assumed to be octal.· If type is omitted, the comma 
preceding it can be omitted also. 

60492600 L 



Example: 

Code Generat.ed LOCATION OPERATION VARIABLE COMMENTS 

I II IB Tlo 
T 

OJ:" .. ,TnH 
fll\c;F " 

I 
I . I . 
I • 

LA r"'" l r. I 
"'. '",,, J "!'l I 
c:: , ... PPf')P c;,c;tal)rJ+LA I 

I . ' I 

I . I 

7311 c;415 004'1 11 

6.1.2 OPSYN - SYNONYMOUS MNEMONIC OPERATION 

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous \\'i th the 
macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the 
operation code table is the only limit to the number of instructions that can be made synonymous. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

OPSYN 

The name in the variable subfield must be.previously defined as a standard instruction code. After nn 
OPSYN, either name produces equivalent results. If the location field specifies a previously defined 
macro or operation code, the new definition takes precedence over the old \\'ithout notification. Thus, 
a macro defined by a name that is subsequently used in an OPSYN location field is not called \\'hen 
the macro name is used in the operation field. The instruction actually called is the instruction 
named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost 
and can be restored by purging the new definition with Pt:R.Gl\IAC. 

Example: 

1. An operation named CALL is synonymous with R.Jl\I. 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 1 lo 

CALL OPSYN ~Jti I . I . I . I 
CALL =X surq= 1PPODUCf:"S SAM!:. Q£~ULTS 

I As If TT WERF AN RJM 

-

60492600 A 6-5 



2. In the following example, a programmer wishes to use a macro named LJl\J for part of the 
program and use the real LJM for the remainder of the program. 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB 130 

LJf"'. OPSYN LJH ~AVE O~tSINAL OEF!NTTICN A~ LJt-
PURGHllC LJM ~UPGE ORIGINAL nFFINITir.N 

I . 
I 

• I 
• I ~JH HACRO xx 

I • , . 
• 
• I 

LJH f NDH 

} iCME umr. 
• . LJM 1i ACPO 
• 

ILJH OPSVN LJt-i. } 1RL STORi:"S r-~IGTNAL LJ~ 

• ~onf USING ORTGI~AL LJH . . 

6.1.3 NIL - DO NOTHING PSEUDO INSTRUCTION 

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no info1·mation to the 
assembler. It is primarily designed for disabling a macro; it cannot be m~ed "·ith CPSYN. The 
following instructions could be used in place of NIL as nil instructions: 

ENDl\'l 
ENDD 
ENDIF 
IRP 

Format: 

LOCATION OPERATION VARIABLE SUBFIElDS 

NIL 

A location field symbol if present is ignored. 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 '30 
...L 

MACV. OPSYN NIL I 

I . I . I 
I 

• I 
TAG HACI( A,A,6,73 I . .1 

I 

6-6 60492600 A 



The, assembler interprets each call to MACK as a !~IL instruction. TAG is not defined because it 
becomes the location field symbol for NIL when the statement is assembled. 

6.1.4 PURG"MAC-PURGE MACROS 

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named· 
instructions for the duration of the current assembly. 

Format: 

LOCATION OPERATION V ARIABlE SUBFIELDS 

name. 
1 

Names of mnemonic operation codes for macro definitions, pseudo instructions, 
or PPU instructions. 

A location field symbol if present is ignored. 

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS 

Syntactically identified instructions apply to CPl' assemblies only. The CPOP and CPSYN pseudo 
instructions create operation code table entries for instructions that are to be identified through 
recognition of their syntax, rather than through the contents of the operation field only. 

6.2.1 CPOP- CPU OPERATION CODE 

The CPOP pseudo instruction describes the syntax of a new CPC symbolic machine instruction and 
creates an operation code table entry for the instruction. An instruction of the defined format is 
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation 
code table already contains an entry for the instruction, the new definition takes precedence over the 
old during assembly of the subprogram. Any illegal parameter in CPOP causes COl\IPASS to ignore 
the CPOP and issue an error flag. 

Format: 

LOCATION 

sytx 

sytx 

OPERATION VARIABLE SUBFIELDS 

CPOP ctl, val, reg, type 

The syntax consists of a mnemonic operator and variable field descriptors. 
The mnemonic operator consists of tw0 characters. The first can be any 
character except blank. The second character can be a register designator: 
A, B, or X, in which case, the operation field of the instruction is recognized 
as cAn, cXn, or cBn; (c is a unique character; n is 0-7); or the second 
character can be any other charact(·r except blank, in which case the operation 
field of the instruction is recognized simply by a two-character mnemonic, such 
as EQ. 

60492600 B <i-7 



The variable field descriptors define the order of appearance of all rcgii.;terR, 
expressions, and subfield separators that comprise the variable field of the 
instruction being described. It consists of none, one, two, ot· three of the 
following 22 subfield descriptors. Q represents an ex1n·ession. An r r<.'Pl'C.'8cnl8 
a register letter (A, B, or X). A comma separates two dc8criptors; a bl ~mk 
terminates the syntax. 

void Q 

r rQ 

-r -rQ 

rl+r2 rl+r2Q 

-rl ~ r2 -rl +r2Q 

r *r 
1 2 rl *r2Q 

-r •r 
1 2 

-r *r Q 
1 2 

r /r I 2 rl/r2Q 

-rl/r2 -rl/r2Q 

rl-r2 rl-r2Q 

-rl-r2 -rl-r2Q 

For examplet to describe -X3*Bl, the de:-:criptor, -r1 *r2' would be written as -X*B wherea~, to 
describe B2+ALPHA, the descriptor rQ would be written as BQ. 

ctl 

6-8 

Control of instruction assembly. 

ctl 

0 

1 

2 

3 

4 

5 

6 

7 

Significance 

15-bit instruction 

30-bit instruction 

15-bil instruction, force upper before assembly 

30-bit instruction, force upper before as~embly 

15 bit instruction, force upper after as~embly 

30-bit instmction, force upper after assembly 

15-bit instruction, force upper before and after 
assembly 

30-bit instraction, force upper before and after 
assembly 

60492600 A 



val An evaluatable expression specifying a 9-bit operation code; if the base is M, val is 
assumed to be octal. 

reg Three octal digits specifying the order from left to right into which register numbers are 
to be inserted into the i, j, k portioffi of a 15-bit instruction, or into the i and j portions 
of a 30-bit iffitruction. If the assembly be.se is M, reg is assumed to be octal. 

1 

2 

3 

0 

Regista- riumba- obtained from operation field· 

Number of second register or only register in variable 
field 

Numba- of first two registers in variable field 

Set field to O 

type An evaluatable expression specifying an intega- value that COMP ASS interprets as 
follows: 

6 

7 

other 
or 
omitted 

Restrict the instruction being defined to the 6000 Series, 
CYBER 180 Series, CYBER 170 Series, and CYBER 
70/Models 71, 72, 73, and 74; COMP ASS sets an error 
flag if the instruction being defined is used when 
MACHINE 7 has been specified. 

Restrict the instruction being defined to the 7600 or the 
CYBER 70/Model 76; COMPASS sets an error flag if the 
instruction being defined is used when MACHINE 6 has 
been specified. 

The instruction is not restricted to a machine type. 

If base is M, type is a~umed to be octal. If type is omitted, the comma preceding it can 
be omitted also. 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 

SAX+O Cf-'OP 0 , 5 3 0 i3, 13 2 ~ 10 £FINES Sl\I XJ+BK 
I 

SXXCJ CPOP 1,12od,1208 :offINE.S S XI XJ+K . I 
I • I . 
I 

53731 SA7 x 3+1:H I 
I 

722 7231000003 1 AG SX3 
I x 1+3 I 

60492600 L 6-9 



6.2.2 CPSYN - _SYNONYMOUS CPU INSTRUCTION 

The CPSYN pseudo instruction renders an instruction with the syntax given in the location field 
synonymous with the instruction having the syntax specified in the variable field. The only limit to 
the number of CPU instructions that can be made synonymous is the size of the operation code table 
(4123 entries). 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

CPSYN 

Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is 
already in the operation code table, the table entry for sytx2 takes precedence 
over the old table entry for sytx1 without notification. 

Syntax of a CPU instruction for which there must be an entry in the operation 
code table. Following the CPSYN, an instruction in either sytx

1 
or sytx2 

produces an octal instruction of the format described by the entry for sytx2. 

6.2.3 PURGDEF-PURGE CP.U OPERATION CODE 

The PURGDEF pseudo instruction provides a means of disabling syntactically-identified operation code 
entries for the duration of the current assembly. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

PURGDEF sytx 

sytx Syntax of a CPU instruction (see CPOP for legal forms). 

A location field symbol, if present, is ignored. 

6-10 60492600 A 



MICROS 

The COMPASS micro capability enables the programmer to symbolically refer to a defined character 
string. When used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro 
strings provide for varied manipulation of character strings ;..._ testing for a particular character, 
counting characters, concatenation of strings, etc. 

Use of a micro definition requires two steps: definition of the character string, and substitution. In 
this discussion, substitution rather than definition is discussed first so that the reader has a better 
understanding of how a definition is used when it is described. 

7 .1 MICRO SUBSTITUTION 

Wherever a micro name between micro marks (~) occurs in a statement other than a comment 

7 

line (* in. column 1), the assembler substitutes the micro before it interprets the statement. If 
column 72 of the last statement read is exceeded as a r-esult of micro substitution, the assembler creates 
up to a maximum of 9 continuation statements, beyond which it discards excess characters without noti
fication on the listing. No replacement takes place if the micro name is unknown or if one of the micro 
marks has been omitted. If the micro name is unknown, the assembler flags a nonfatal assembly error. 
If the micro name is null (thaf is, the two micro marks are adjacent), th~~ 

1. Both micro marks are deleted, aud 

2. No error flag is set 

Example: 

A micro identified. as NAM is defined as the 7 characters: 

ADDRESS 

A reference to NAM is in the variable field of a line: 

LOCATION OPERATION VARIABLE COMMENTS 

I II IB T3o 

LOC SAl 1N~Mi+4 1 
However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the 
following line: 

LOCATION 

I 

LOC 

60492600 A 

OPERATION VARIABLE COMMENTS 

II 1B T 30 

SA1 AOORESS+4 I 
I 

NOTE 

Unless the A option of the LIST pseudo instruction is 
enabled, the listing depicts the instruction as it was 
before the substitution took place. 

7-1 



7.2 MICRO DEFINITION 

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and 
DECMIC .. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and 
QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each 
subprogram assembly. 

1• 7.~.1 MICRO - DEFINE MICRO 

The MICRO pseudo instruction defines a character string and assigns a name to that string. 

Format: 

LOCATION. 

micname 

niicname 

dstringd 

OPERATION VARIABLE SUBFIELDS 

MICRO 

Name by which definition is called; 1-8 characters 

Absolute evaluatable expression specifying starting character in string; when the 
base is M, COMPASS assumes that n

1 
is decimal. 

Absolute evaluatable· expression specifying number of characters; when the base 
is M, COMPASS assumes that n

2 
is decimal. 

Delimited character string. The delimiter dis a character not used in the 
string. 

Counting the first character after d as character 1, the assembler forms the string by extracting n2 
characters starting with character~. If the second delimiting character occurs before count n2 is 
exhausted, the defined string terminates at that point. If n1 is greater than zero and n2 is omitted, zero, 
~~a1:!~:~~e, the defined string includes all the characters from n1 to the closing delimiter (see second 

If nl is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro 
name is referred to. That is, n2 and the character string are ignored. · 

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring 
of another (see third example). 

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined 
originally as one character string can he redefined subsequently with a different character string. After 
the redefinition, the original character string is inaccessible. 

If n1 or n2 is negative, the assembler generates a 7-type error. 

Examples: 

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G. 

LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 (Jo 

Nli.,.E MICRO 1., 19, •ALPHANUMf:'RIC 5TRING• 

7-2 60492600 A 



2. This example illustrates a blank character count. The defined string begins with A and is 
terminated by the closing delimiter. 

LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 1 Jo 

MICKY HIC~O !,,•ALPHANUMERIC ST~ING• 

3. One micro can be defined as a substring of another. 

LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 TJo 

NAM1 HIC~O 1,2S,•MAJO~ :ALPHANUM~RIC ST!"{Il'-JG• . . . I 

' I • 
I : : . I • 

NAM2 I Mrcqo 1,,•tNAl-1tt• ISAMF SH ING AC:: IN £Xl\MPL i::s 1 A 

4. One micro can combine others. 

LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 T3o 

NAM1 MICRO 1,12,$ALPHANUMF~lCt 

NAM2 MICRO 1,7,X STR!NGX 
NAM3 t-'I~PQ I 1,,+tNAMtttNAM2t+ CC'18INf~ NAM1 A\JrJ ~iAM2 

5. A micro name can be redefined. 

LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 !Jo 

MS<; MICRO 1 , 6, •ST R. ING~; . . I . . : } :co'1E USIN~ FIPST 0 FF I t--q TI O t'-! . . 
1 · I MSG MICRO 1,1q,•ALP~ANU~f~iC tMSGt• . . I 

} 
I 

: . 
~CODE • I USING sEroNo DEFIMTTir~N. . 

I : . I • 1F!PS f OEFINTTI ON TS INA~CE~srg 
i 

LF • 

6. Micro substitution takes place before a line is assembled or examined fol' syntax. Thus, 
the following is possible. 

LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 30 

NAM MICRO 1,25,* LOC SA1 ADDRESS+* . 
. 
. 

; NAM;i!1 ,,.., iw·LHC <·•·· .. ·•·,· :,?J\\lt) } .... l\Uu•:.' 9s}C X )< ·:< ............... 
....... ... .... . ...... . ........ 

··•·················· 

60492600 G 7-3 



7.2.2 DECMIC- DECIMAL MICRO 

l'f:ing a decimal conversion, the DECMIC pseudo instruction converts the expression into a character 
string to be saved under the name specified. 

Format: 

LOCATION 

micname 

micname 

a exp 

n 

Example: 

OPERATION VARIABLE SUBFIELDS 

DECMIC aexp,n 

Name by which definition is called; 1-8 characters 

Absolute evaluatable expression 
• 

Optional absolute evaluatable expression specifying number of characters 
in the defined string. The defined string is a maximum of 10 characters 
regardless of the magnitude of n. When base is M, COMPASS assumes that 
n is decimal 

If n is omitted or has a zero value, the micro contains the number of characters 
indicated by the eonversion to a maximum of 10 characters. If the converted 
expression has more than n (or 10) digits, the most significant digits are. 
truncated. If the value has fewer than n digits, the string is right justified and 
filled with leading zeros. All numbers are treated as positive. 

B has the value 1024 decimal or 2000 octal before conversion. 

LOCATION 

v 

SYMBL 
1 sr·f.1aB 

OPERATION VARIABLE COMMENTS 

11 18 

DECMIC B,6 

MICRO 
MICRO 

1.i: ,~tYt §!OR
0

AGE NEEDED* 
1\~)f!O.QJ• .. Q.2:4. sroRAG.E NEEDED~ 

7.2.3 OCTMIC- OCTAL MICRO 

Using an octal conversion, the OCTl\IIC pseudo instruction converts the value of the e:qn·es8ion into a 
character string to be saved under the name specified. 

7-4 GO-l92!lOO D 



Format: 

LOCATION 

micname 

micname 

a exp 

n 

OPERATION VARIABLE SUBFIELDS 

OCTMIC aexp,n 

Name by which definition is called; 1-8 characters 

Absolute evaluatable expression 

Optional absolute evaluatable expression specifying number of characters 
in the string. The defined string is a maximum of 10 characters regardless 
of the magnitude of n. When base is M, COMPASS assumes n as a decimal. 
If n is omitted or has a zero value, the micro contains the number of 
characters indicated by the conversion to a maximum of 10 characters. 

If the converted expression has more than n (or 10) digits, the most significant digits are truncated. 
If the value has fewer than n digits, the string is right justified and filled with leading zeros. All 
numbers are treated as positive. 

Example: 

B has the value 1024 decimal or 2000 octal before conversion. 

LOCATION OPERATION VARIABLE 

II 18 

V1 OCTMIC B,6 1 
I 
I 
I 
I 
I 

COMMENTS 

s,.1 t:1,! .. 9:~.9 .. · .... !·!;.1): ... t.~ ... ~,:~··{·~.g.gJ; ... 1.t .. P ... tf &'.b •.... ~.!.H.~···~·~·~····tf~.~ .. 9 ... i::.p.: 
sL/ •· ... ~·f RRP 1.';;/.~,i.9•·.9g.mq .• 9;,;0~QQ£.!:±2~.!g:;z§tine.e .. gg;;J.~§:§:BsQ~. 

7.3 PREDEFINED MICRO NAMES 

Several standard micros are predefined by the COMPASS assembler• They are available for every 
assembly. The programmer simply writes the micro reference as desired. 

These micros are automatically defined at the beginning of each assembly, and have the default values 
specified below until they are redefined by the programmer; thereafter, the programmer's definition 
holds until the start of the next assembly. 

7.3.1 DATE 

The DATE micro contains the current date in 10 characters in one of the following forms as obtained 
from the operating system: 

6yr/mo/dy. or ~mo/dy /yr. 

The micro reference is :;iDATE:;io 

60492600 E 7-5 



7.3.2 JDATE 

The automatic value of the JDATE micro is five digits yyddd, where yy is the year and ckld is the day 
of year at the time of assembly. Thus, JDATE is the Julian date form of DATE. 

The micro reference is ;lJDATE#. 

7.3.3 TIME 

The TIME micro contains the current time of day in 10 characters in the following form as obtained 
from the operating system: 

6 hr.min. sec. 

The micro reference is !TIME#. 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 1Jo 

TITLE PROGRAH ASSEHBlfO ON 10ATf ~ ATtTIHEt 

7.3.4 BASE 

The automatic value of the BASE micro is a single letter D, M, or O, corresponding to the number 
base currently in effect(specified by the most recent BASE pseudo instruction); it is initially D. 

The micro reference is ;iBASE;i. 

7.3.5 CODE 

The automatic value of the CODE micro is a single letter A, D, E, 0, or I, co1Tesponclinl!; to the 
charac~er code currently in effect (specified by the most recent CODE pseudo instruction); it is 
initially D. 

The micro reference is ;tCODE;t. 

7.3.6 QUAL 

The automatic value of the QUA L micro is 0 to 8 characters comprising the qualifier symbol 
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and 
whenever the blank qualifier is in effect. 

The micro reference is ;iQUAL;l. 

7-6 G04!>2GOO F 



7 .3:/ SEQUENCE 

The automatic value of the SEQUENCE micro ls 18 characters comprising the sequence field 
(columns 73~90) of the first Une of the COMPASS source statement most recently read from the main 
source input file. Thus, If the current statement was read from the main source input file, SEQUENCE 
le the sequence field of the first Une of the statement. However, If the current statement is generated 
(l. e., part of a macro call expansion, DUP expansion, etc.) or ls read from a different file via the 
XTEXT pseudo Instruction, then SEQUENCE ls the sequence field of the first line of the statement most 
recently read from the main source Input file. 

Tbe micro reference ls 1'SEQUENCE1'. 

7.3.8 MODLEVEL 

The automatic value of the MODLEVEL mlcro ls the value (up to 9 characters) specified by the l\IL pa
rameter on the COMPASS control statement. If no ML parameter !s present, the automatic value of the 
MODLEVEL micro ls equal to that of the JDATE micro. When COMPASS ls called by a compiler to 
process embedded COMPASS subprograms, the automatic value of the MODLEVEL micro ls supplied 
by the calllng compiler. The MODLEVEL micro ls Intended to be used when assembling a compiler 
(or COMPASS itself), to provide the complier modification level to be placed ln word 6 of each PRFX 
table In the binary output written by the compiler. 

The micro reference le ~ODLEVEU'. 

7.3.9 PCOMMENT 

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the 
COMPASS control statement, wlth characters truncated from the right or blanks appended to the right, as 
necessary, so that the micro's length ls exactly 30 characters. If no PC parameter is present, the auto
matic value of the PCOMMENT micro ls 30 blanks. When COMPASS is called by a compiler to process 
embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied by the call
ing compiler. The PCOMMENT micro ls intended to be used in a COMMENT pseudo instruction to 
specify words 8 through 10 of the PRFX table in the binary output. It may also be used, ln conjunction 
with the *F speclal symbol, to determine compiler options (debug mode, rounded arithmetic, etc.) in 
effect at the tlme of assembly. 

The mlcro reference ls FPCOMMENTF. 

80492600 A 
7-7 





CPU SYMBOLIC MACHINE INSTRUCTIONS 8 

COMPASS recognizes symbolic notation for all central processor unit (CPU) instructions for the CYBER 
180 Series, CYBER 170 Series, CYBER 70 Series, 7600, and 6000 Series. For COMPASS to recognize the 
symbolic notation for models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875, and 990 CPU I 
instructions, the programmer must ensure that SYSTEXT is available to the assembler. 

Some instructions in existing COMPASS programs are not valid for execution on models 810, 815, 825, 830, I 
835, 840, 845, 850, 855, 860, 865, 875, and 990. To detect these instructions, the programmer can specify 
S=AIDTEXT in the COMPASS control statement. COMPASS prints a listing of the program, flagging the 
invalidated instructions with a type O error. S=AIDTEXT should not be specified if the 8 option is chosen 
for the MACHINE pseudo instruction. 

The assembler identifies each symbolic instruction according to its syntax and generates a one-parcel 
15-bit instruction or a two-parcel 30-bit instruction. The object code for an instruction is generated in the 
block in use when the instruction is encountered. 

8. 1 MACHINE INSTRUCTION FORMATS 

Figures 8:-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the 
assembler. 

14 ~ 5 2 0 

I I I I 

f m 

Figure 8-1. CPU 15-Bit Instruction Format 

29 23 20 17 0 

I I 

f m K 
I I I I I I I I I I I I I I I I 

Figure 8-2. CPU 30-Bit Instruction Format 

fm 6-bit instruction code 

fmi 9-bit instruction code 

3-bit code (0 through 7) specifying one of eight designated registers (for example, Ai) 

j 3-bit code (0 through 7) specifying one of eight designated registers (for example, Bj) 

k 3-bit code (0 through 7) specifying one of eight designated registers (for example, Xk) 

K 18-bit integer value used as an operand, address of an operand, or branch destination address 

jk 6-bit integer value specifying a shift count or mask count 

Figure 8-3 illustrates possible arrangements of one- and two-parcel instructions in a 60-bit CPU instruction 
word. Generally, the assembler does not allow a two-parcel instruction to begin in the fourth parcel of a 
word. 

60492600 M 8-1 



First Second Third Fourth 

Parcel (Parcel 0) Parcel (Parcel 1) Parcel (Parcel 2) Parcel (Parcel 3) 

I I I 
10 15 15 15 I 

I 

59 44 29 14 00 

30 15 I 15 I 
59 29 14 00 

15 ~4 30 15 

59 14 00 

15 I 15 30 
59 44 29 00 

30 :m 
59 29 00 

Figure 8-3. Arrangements of Instructions in a 60-bit CPC \rord 

When a two-parcel instruction begins in the last parcel of a word, the CYBER 170 Models 175, 176, 7 40, 
I 750, and 760; the CYBER 70 Model 76; and the 7600 execute it as if the instruction word had a fifth parcel 

containing all zeros. On the CYBER 180 Computer Systems; the CYBER 170 Models 171, 172, 173, 17 4, 
I 720, 730, 815, 825, 835, 845, 855, 865, and 875; and the CYBER 70 Models 71, 72, and 73; and the 6400, this 

condition causes an error exit. On the 6600 and the CYB ER 70 Model 7 4, the CPU takes the first parcel of 
the current instruction. 

Before it assembles an instruction that must begin in the first parcel (forced upper) and after it assembles 
an instruction that requires the instruction following it to be forced upper, the assembler completes a word 
as follows: 

Lower 15 bi ts remain They are packed with a one-parcel NO (pass) instruction. 

Lower 30 bits remain They are packed with a two-parcel SBO BO+K instruction. 

Lower 45 bits remain They are packed with a NO instruction and an SBO BO+K instruction. 

8.2 INSTRUCTION EXECUTION 

8.2.1 6600/6700t AND CYBER 70 MODEL 74 EXECUTION 

After an exchange jump start by a peripheral processor (PP) and CPU program, CPU instructions issue 
automatically in the original sequence, to an 8-word instruction stack. The stack can hold a program loop 
consisting of up to twenty-six 15-bit instructions and one 30-bit instruction. 

Instructions are read from the stack, one at a time, and issued to the functional units (table 8-1) for 
execution. A scoreboard reservation system in CPU control keeps a current log of which uni ts and 
operating registers are reserved for computation results from functional units. 

tThe 6700 also includes a 6400-type central processor unit 

8-2 60492600 M 



TABLE 8-1. CYBER 70 MODEL 74 AND 6000/7600 FUNCTIONAL UNITS 

Unit 

Branch 

Boolean 

Shift 

Floating Add 

Long Add 

Floating Multiply 

Floating Divide 

General Function 

Handles all jumps or branches from the program. 

Handles the basic logical operations of transfer, logical product, 
logical sum, and logical difference. 

Executes operations basic to shifting. This includes left (circular) 
and right (end-off sign extension) shifting, and normalize, pack, and 
unpack floating point operations. The unit also includes a mask 
generator. 

Performs single or double precision floating point addition and 
suhtraction on floating point operands. 

Performs addition and subtraction of two 60-bit fixed point operands 

Performs single or double precision floating point multiplication on 
floating point operands 

Performs single precision floating point division of floating point 
operands; also counts the number of I bits in a 60-bit word. 

Increment Performs one's complement addition and subtraction of 18-bit operands. 

Each functional unit executes several instructions, but only one at a time. Some branch instructions 
require two units; the second unit receives direction from the branch unit. 

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds (one 
minor cycle). Sustained issuing at this rate may not be possible because of functional unit and CM conflict 
or because of serial rather than simultaneous operation of units. Program run time can be decreased by 
efficient use of the units. Instructions that are not dependent on previous steps may be arranged or nested 
in program areas where they may be executed concurrently with other operations to eliminate dead spots in 
the program and increase the instruction issue rate. 

The following steps summarize instruction issuing and execution: 

An instruction is issued to a function unit when: 

Specified functional unit is not reserved. 

Specified result register is not reserved for a previous result. 

Instructions are issued to functional units at minor cycle intervals when no reservation conflicts are 
present. 

Imtruction execution starts in a functional unit when both operands are available. Execution is 
delayed when an operand is a result of a previous step which is not complete. 

No delay occurs between the end of a first unit and the start of a second unit which is waiting for the 
results of the first. 

60492600 A 8-3 



I 

After a branch instruction is initiated, no further instructions are issued witil the branch has been 
executed. In the execution of a branch instruction, the branch unit uses: 

Increment wiit to form the instructions tmt branch to K + Bi and branch to K if Bi ••• 

Long add unit to perform the instructions that branch-to K if Xj ••• 

Time spent in the long add or increment wiits is part of total branch time. 

Read central memory access time is computed from the end of increment unit time to the time an operand 
is available in X operand register. Minimum time is 500 nanoseconds assuming no central memory bank 
conflict. 

8.2.2 CYBER 180 COMPUTER SYSTEMS; CYBER 170 
MODELS 171, 172, 173, 17 4, 720, 730, 815, 825, 835, 845, AND 855; 
CYBER 70 MODELS 71, 72, AND 73; AND 6200, 6400, 6500 EXECUTION 

The CYBER 180 Computer Systems; the CYBER 170Models172, 173, 174, 720, 730, 815, 825, 835, 845, and 
855; the CYBER 70 Models 71, 72, and 73; and the 6200, 6400, and 6500 systems CPU has a unified 
arithmetic unit, rather tmn separate functional units as in the 6600 system. Instructions in the CPU are 
executed sequentially. 

NOTE 

Unless otherwise stated, the remainder of this section applies to all the models 
listed above, except models 810, 815, 825, 830, 835, 840, 845, 850, and 855. 

For efficient coding in the central processor unit: 

Always attempt to place jump instructions in the upper portion of the instruction word to avoid both 
the additional time for RNI (read next instruction, 2 minor cycles) and the possibility of a memory 
bank conflict with (P + 1). 

Where possible, place load/store instructions in the lower two portions to avoid lengthening execution 
times. 

Reading the next irntruction words of a program from central memory, RNI, is partially concurrent with 
instruction execution. RNI is initiated between execution of the first and second instructions of the word 
being processed. Initiating RNI operation requires two minor cycles; the remainder of the RNI is parallel in 
time with execution of the remaining instructions in the word: 

8-4 

p IL---_1 ----+l-2_____.1_3____,I 
Initiate\ C/\ 
RNI Execution of 

+ ~instructions~ 
2 and 3 

200 
nsec 

RNI 
~minimum of~ 

800 nsec 

·---------Total RNI time----------· 

60492600 M 



In calculating execution times, two minor cycles are added to each instruction word in a program to cover 
the RNI initiation time. Exceptions are the return jump and the jump instructions (in which the jump 
condition is met) when they occupy the upper position of the instruction word. Since the times for these 
instructions already include the time required to read the new instruction word at the jump address, no 
additional time is consumed. 

Example: 

Instruction 

Jump 

Add 1 

RNI Initiation 

Add 2 

Load 

Store 

Total Time 

P I Jump to K (met) 

Add 2 

Pass Pass 

Load Store I 

Minor Cycles Required 

13 

5 

2 

5 

12 

10 

47 minor cycles 

After RNI is initiated (between the first and second instructions of the word), a minimum of eight minor 
cycles elapses before the next instruction word is available for execution. Even if the lower order positions 
of the word should require less than eight minor cycles, a minimum of eight minor cycles is allowed. 

Example: 

p I Jump to K 
(not met) 

P+l 

Pass Pass 

8.2.3 CYBER 170 MODELS 175, 176, 740, 750, 760, 865, AND 875; 
CYBER 70 MODEL 76; AND 7600 EXECUTION 

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in the 
computation section of the CYBER 170 Models 175, 176, 740, 750, 760, 865, and 875; the CYBER 70 Model 
76; and the 7600 CPU. Each is a specialized unit with algorithms for a portion of the CPU instruction 
execution. Table 8-2 lists the general function of each unit. A number of functional units can be in 
operation at the same time. 

60492600 J 8-5 



TABLE 8-2. CYBER 170 MODELS 175, 176, 740, 750, 760, 865, AND 875; 
CYBER 70 MODEL 76; AND 7600 FUNCTIONAL UNITS 

Unit General Function 

Boolean 

Shift 

Normalize 

Floating Add 

Long Add 

Floating Multiply 

Floating Divide 

Population Count 

Increment 

Handles the basic logical operations of transfer, logical product, 
logical sum, and logical difference. It also performs the pack and 
unpack floating point operations. 

Executes operations basic to shifting. This includes left (circular) 
and right (end-off sign extension) shifting, and mask generation. 

Performs the normalize operations. 

Performs single or double precision floating point addition or sub
traction on floating point operands. 

Performs integer addition or subtraction of two 60-bit fixed point 
operands. 

Performs single or double precision floating point multiplication on 
floating point operands. 

Performs single precision floating point division of floating point 
operands. 

Counts the number of 1 bits in a 60-bit word. 

Performs one's complement addition and subtraction of 18-bit operands. 

A functional unit receives one or two operands from operating registers at the beginning of instruction 
execution and delivers the result to the operating registers after performing the function. The functional 
units do not retain any information for reference in subsequent instructions. The units operate in 
three-address mode with source and destination addressing limited to the operating registers. 

Except for the floating multiply and divide units, all functional units have one clock period segmentation. 
This means that the information arriving at the unit, or moving within the unit, is captured and held in a 
new set of registers at the end of every clock period. It is therefore possible to start a new set of operands 
for unrelated computation into a ftmctional unit each clock period even though the unit may require more 
than one clock period to complete the calculation. This process may be compared to a delay line in which 
data moves through the unit in segments to arrive at the destination in the proper order but at a later 
time. All functional units perform their algorithms in a fixed amount of time. No delays are possible once 
the operands have been delivered to the front of the unit. 

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit in 
any clock period providing there was no multiply operation initiated in the preceding clock period. 

The floating divide unit is the only ftmctional unit in which an iterative algorithm is executed. There is 
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new 
divide operation can follow a previom divide operation by 18 clock periods for a gain of 2 clock periods. 

Instructions involving storage references for operands or program branching are difficult to time. Program 
branching within the instruction stack causes no storage references and small program loo~ can therefore 
be precisely timed. 

8-6 60492600 J 



8.2.4 CYBER 180 Model 990 Execution 

Execution of an arithmetic or logical machine instruction takes place in one of eleven functional units in 
the computation section of the CYBER 180 Model 990. Each is a specialized unit with algorithms for a 
portion of the CPU instruction execution. Table 8-3 lists the general function of each unit. A number of 
functional units can be in operation at the same time. 

TABLE 8-3. CYBER 180 MODEL 990 FUNCTIONAL UNITS 

Unit General Function 

Boolean 

Shift 

Normalize 

Floating Add 

Long Add 

Floating Multiply 

Floating Divide 

Population Count 

Compare 

Increment 

Address Control 

60492600 M 

Performs the basic logical operations of transfer, logical 
product, logical sum, and logical difference. It also performs 
the unpack floating point operation. 

Performs left (circular) and right (end-off) shifting and mask 
generation. 

Performs the normalize operation. 

Peforms single or double precision floating point addition or 
subtraction on floating point operands. 

Performs integer addition or subtraction of two 60-bit fixed 
point operands. 

Performs single or double precision floating point multiplication 
on floating point operands. 

Performs single precision floating point division of floating 
point operands. 

Count the number of 1 bits in a 60-bit word. 

Performs operand comparison for condition branch instructions. 

Performs one's complement addition and subtraction of 18-bit 
operands. 

Performs address manipulation for fetching and storing data 
from/to memory. 

8-6.1. 



A functional unit receives one or two operand> from operating registers at the beginning of instruction 
execution and delivers the result to the operating registers after performing the function. The units 
operate in three-address mode with sotn"ce and destination addressing limited to the operating registers. 

Except for the floating divide, floating point normalize, and boolean units, all functional units have one 
clock period segmentation. This means that the information arriving at the unit, or moving within the unit, 
is captured and held in a new set of registers at the end of every clock period. It is therefore possible to 
start a new set of operand> for unrelated computation into a functional unit each clock period, even though 
the unit may require more than one clock period to complete the calculation. This process can be 
compared to a delay line in which data moves ttrough the unit in segments to arrive at the destination in 
the proper order but at a later time. All functional units perform their algorithms in a fixed amount of 
time. No delays are possible once the operand> have been delivered to the front of the llllit. 

The floating divide unit has a twenty-seven period segmentation. A new operand may enter the divide unit 
twenty-seven .clock period; after a (revious operand entered. 

The floating point normalize unit has a two clock period segmentation, unless the Bj register is BO. In that 
case, it has a one clock period segmentation. 

The boolean tmit has a one clock period segmentation unless executing an tmpack instruction where register 
Bj is not BO. In this case, it has a two clock period segmentation. 

Instructions involving storage references for operanrn or program branching are difficult to time because 
of memory conflicts and the 990's predictive branch logic that is based on a previous history for the branch • 

• 8-6.2 60492600 M 



8.3 OPERA TING REGISTERS 

Twenty-four registers minimize memory references for arithmetic operands and results: 

Function Identity Length Number 

Operand Registers XO - X7 60 Bits 8 

Addresf' Hegisters AO - A7 18 Bits 8 

Index Registers BO - B7 18 Bits 8 

A register is reserved if it is the destination of an instruction that has been initiated but has not been 
completed. A register is free in the clock period (or minor cycle) following the store into it. 

8.3. 1 X REGISTERS 

Eight 60-bit X registers in the computation section of the CPU designated XO, Xl, ... ,X7 are the principal 
data handling registers for computation. Data flows from these registers to the SCM (CM) and the 
LCM/UEM (not ECS). Data also flows from SCM (CM) and LCM/UEM (not ECS) into these registers. All 
60-bit operands involved in computation must originate and terminate in these registers. 

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM) into 
corresponding address registers. 

I 

On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the X registers also serve as address 
registers for referencing single words from LCM. On the CY BER 170 Models 810, 815, 825, 830, 835, 840, I 
845, 850, 855, 860, 865, 875, and 990, the X registers also serve as address registers for referencing single 
words from UEM. XO is used as the LCM/UEM relative starting address in a block copy operation. 

8.3.2 A REGISTERS 

Eight 18-bit A registers in the computation section of the CPU, designated as AO, Al, ... ,A 7, are 
essentially SCM (CM) operand address registers. With the exception of AO and XO, A registers are 
associated one-for-one with the X registers. Placing a quantity into an address register Al ...:. A5 causes an 
immediate SCM (CM) read·reference to that relative address and sends the SCM (CM) word to the 
corresponding operand register Xl - X5. Similarly, placing a value into address register A6 or A 7 causes 
the word in the corresponding X6 or X7 operand register to be written into that relative address of SCM 
(CM). 

The AO and XO registers operate independently of each other and have no connection with SCM (CM). AO is 
used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or 
intermediate. results. 

8.3.3 B REGISTERS 

Eight 18-bit B registers in the computation section of the CPU designated as BO, Bl, ••. ,B7 are primarily 
indexing registers for controlling program execution. Program loop counts can be incremented and 
decremented in these registers. 

60492600 M 8-7 



Program addresses may be modified on the way to an A ·register by adding or subtracting B register 
quantities. The B register also .holds shift counts for pack and normalize operations and the channel 
number for channel status requests. 

BO always contains positive zero; that is, BO is held clear. Often as a programming convention, Bl or 87 
contains positive 1. See the 81=1, the 87=1, and the R= pseudo instructions. 

8.4 SYMBOLIC NOTATION 

This section describes notation used for coding symbolic CPU machine instructions. Instructions are listed 
in groups according to function. Instructions unique to a computer system are identified as such in 

I table 8-4. These instructions can be assembled on any machine but will execute properly on the noted 
machine only. Table 8-5 lists the functional unit, if any, in which each instruction executes. For details 
and special conditions arising during instruction execution, refer to the relevant hardware system reference 
manual. 

I TABLE 8-4. CPU INSTRUCTION/MACHINE MODEL CORRESPONDENCE 

Machine Model Number 

I 
Mnemonic 810, 815, 825, 830, 171, 172, 173, 174, 175, 

Code 835, 840, 845, 850, 855, 76 and 7600 
720, 730, 740, 750, and 760; 176 

860, 865, 875, and 990 
71, 72, 73, and 74; and 

6000 Series 

A Xi x x x x 
BXi x x x x 
cct 
CR x 

cut 
cw x 
CXi x x x x 
DF x x x x 

DHt 
DXi x x x x 
EQ x x x x 
ES x 

FXi x x x x 
GE x x x x 
GT x x x x 
IBj x x 

ID x x x x 
IMt 
IR x x x x 
!Xi x x x x 
JP x x x x 
LE x x x x 
LT x x x x 
LXi x x x x 

8-8 60492600 M 



Mnemonic 
Code 

MD°i" 
MI 
MJ 
MXi 

NE 
NG 
NO 
NXi 

NZ 
OBj 
OR 
PL 

PS 
PXi 
RE 
RI 

RJ 
RL 
RO 
RXi 

RXj 
SAi 
SBi 
SXi 

TBj 
UXi 
WE 
WL 

WXj 
XJ 
ZR 
ZXi 

TABLE 8-4. CPU INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd) 

8 10 ' 8 15 ' 8 25 ' 8 30 ' 
835, 840, 845, 850, 855, 
860, 865, 875, and 990 

x 

x 

x 
x 
x 
x 

x 

x 
x 

x 
x 
x 

x 

x 

x 
x 
x 
x 

x 
x 

x 
x 
x 
x 

Machine Model Number 

76 and 7600 

x 
x 
x 

x 
x 
x 
x 

x 
x 
x 
x 

x 

x 

x 
x 
x 
x 

x 
x 
x 
x 

x 
x 

x 

x 

x 
x 

171, 172, 173, 174, 175, 
720, 730, 740, 750, and 760; 

71, 72, 73, and 74; and 
6000 Series 

x 

x 

x 
x 
x 
x 

x 

x 
x 

x 
x 
x 

x 

x 

x 
x 
x 

x 
x 

x 
x 
x 

tCMU instruction: Compare/Move Unit available on CYBER 170 Models 172, 173, 174, 

176 

x 
x 
x 

x 
x 
x 
x 

x 
x 
x 
x 

x 

x 

x 
x 
x 
x 

x 
x 
x 
x 

x 
x 

x 

x 
x 
x 
x 

I 

I 

720, and 730. Models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, and 990 support I 
CMU instructions through simulation. 

60492600 M 8-9 



TABLE 8-5. CPU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE 

Functional Unit 

Mnemonic Operation 175, 176' 740, 
Code 74, 6600, 750, and 760; 990 

and 6700 76; and 7600 

AX! Shift Shift Shift 

BXi Boolean Boolean Boolean 

CR None None None 
cw None None None 

CXi Divide Pop Pop 
DF Branch None None 
DXi 32ijk FP Add FP Add FP Add 

DX! 33ijk FP Add FP Add FP Add 

DXi 42ijk Multiply Multiply Multiply 
EQ Branch None Compare 
ES t ; None None 
F~i 30ijk FP Add FP Add FP Add 

FX! 31ijk FP Add FP Add FP Add 
FXi 40ijk Multiply Multiply Multiply 
FXi 44ijk Divide Divide Divide 
GE Branch ·None Compare 

: 

GT Branch 'None None 
IBj t . None None 
ID. Branch None None 
IRi Branch , None None 

IX! 36ijk Long Add Long Add Long Add 
I Xi 37ijk Long Add Long Add Long Add 

. I Xi 42ijk MUltiply 'Multiply Multiply 
JP: Branch None None 

., 

LE Branch .None Compare 
· LT 1 Branch None Compare 

LXi Shift Shift Shift 
MI Branch None None 

MJ t ;None None 
MXi Shift Shift Shift 
NE Branch None Compare 
NG Branch None Compare 

NO None None None 
NXi Shift Normalize Normalize 
NZ Branch None Compare 
OBj t None None 

OR Branch None None 
PL. Branch None None 
PS Branch t t 
PXi Shift Boolean Boolean 

e 8-10 60492610 M 



TABLE 8-5. CPU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE (Contd) 

Fune tional Unit 

Mnemonic Operation 
175' 176, 740, 

Code 74, 6600, 750, and 760; 990 
and 6700 76; and 7600 

RE Branch t t 
RI t None None 
RJ Branch None None 
RL t None None 

RO t None None 
RXi 34ijk FP Add FP Add FP Add 
RXi 35ijk FP Add FP Add FP Add 
RXi 41 ijk Multiply Multi ply Multi ply 

RXi 45ijk Divide Divide Divide 
RXj 014jk t None None 
SAi Increment Increment Increment and 

Address Control 
SBi Increment Increment Increment and 

Address Control 

SXi Increment Increment Increment and 
Address Control 

TBj t None 
UXi Shift Boolean 
WE Branch None 

WL t None None 
WXj 015jk t None None 
XJ 01300 None None None 
XJ 013jk Branch t t 
ZR Branch None Compare 
ZXi Shift Normalize Normalize 

tinstruction not supported for this model~ 

The location field of a symbolic machine instruction optionally contains a location symbol. When the 
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs. 

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two 
characters of which are often a register designator. 

The variable field contains one, two, or three subfields. For 15-bi t instructions, subfields take the forms: 

r 
-r 
r,r } 
r op r } 
-r op r 

jk 

60492600 M 

r is a register designator 

op is a register operator + - * I 

jk is an al:l;olute expression specifying a shift count or mask bit count. If the 
expression value is in the range -60 to -0, inclusive, COMP ASS adds 60 to it. If 
it is less than -60 or greater than 63, COMP ASS sets a warning flag and uses the 
low-order 6 bits of the expression value. 

8-11 • 



For a 30-bit instruction, subfields take the forms: 

K 

r op K 

r,K 

r,r,K 

The single subfield contains an absolute, relocatable, or external expression 
that does not include a register. 

The si~gle subfield contains an absolute, relocatable, or external expression 
that includes a register designator; op is an expression operator: 

+ - * I 
One subfield contains a register designator, the other subfield contains an 
absolute, relocatable, or external expression that does not include a register 
designator. 

Two subfields contain register designators; a third contains an absolute, 
relocatable, or external expression that does not include a register. 

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass two: 

An absolute address or a word count 

An external symbol ~ an integer value 

An address that is relocatable relative to the.program origin or common block origin. 

An address of a literal 

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the 
instruction. 

In the descriptions of the formats, + K designates that the evaluation of all nonregister elements can result 
in a positive or negative value for fhe expression (see Evaluation of Expressions in chapter 2). Use of~ K 
to represent the integer portion of the expression does not imply that the first term operator in the 
expression is an expression operator. If you consider that a and bare terms in expression; K, then +K 
indicates that the sum of: the values of a and bis positive and -K indicates that the sum of the values is 
negative. Thus, -K does not mean that a-b would become -a+b •. 

In the following example, the symbol XRA Y has the value 407 8• The first term operator (-) forms the 
value 777370g. Subtracting 1 from this results in 777367 8 or a -K (-4109). 

Code Generated 
LOCATION OPERATION VARIABLE COMMENTS 

I II IB TJo 

SX1 X2-XRAY-1 I 
I 

7212777367 

Unless otherwise noted, subfields can be in any order. COMPASS also allows an added degree of flexibility 
by allowing the variable subfields of an instruction to be written in the operation field with each subfield 
preceded by a comma. For example: 

Code Ge11erated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 (Jo 
...L 

26123 UX1 B2,X3 I 

8-12 60492600 It 



can be written 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 !Jo 

26123 UX1 82 X3 ~ 

The instructions are identical to the as:;emblE!l". 

Similarly, the following instructions are regarded as identical. Use of this feature is optional. 

0423010641 
0423010641 
0423010641 
0423010641-

I 

LOCATION OPERATION VARIABLE 

II IB 

EQ 82,83,K 
EQ,82 83,K 
EQ,82,83 K 
EQ,82,83,K 

COMMENTS 

Tlo 
T 

I 

I 
I 
I 
I 
I 
I 
I 

8.4. 1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION 

The CEJ/MEJ Panel Switch determines whether this.instruction causes the central processor unit to halt or 
to execute an exchange jump. The DISABLE position disables the central exchange jump or the monitor 
exchange jump. In this case, the instruction is illegal for a CYBER 170 Model 175. For all other systems, 
PS halts the central processor unit at the current step in the program. An exchange jump is necessary to 
restart the central processor unit. The ENABLE position enables the jump capabilities for all systems. In 
this case, PS causes an exchange jump to monitor address (MA) in the exchange package. For the CYBER I 
180 Computer Systems and the CYBER 170 Models 176, 815, 825, 835, 845, 855, 865, and 875 exchange 
jumps are always enabled. For 6000 series systems, the CRJ/MEJ switch is ignored; PS always causes the 
central processor unit to halt. The job continues to hold a control point until the time limit is satisfied; at 
that time the job aborts. 

The contents of the location field become a sub-subtitle on the assembler listing. The assembler forces 
uppE!l" before and aftE!l" as:;embling a PS instruction. 

Format: 

Operation Variable Description Size Octal Code 

PS Program stop or exchange jump to (MA) 30 bits 00000 00000 

PS K Program stop or exchange jump to (MA) 30 bits OOOOK 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I ll 18 I Jo 

0000000000 PS : 

60492600 M 8-13 



8.4.2 ERROR EXIT INSTRUCTION 

ES execution is treated as an error condition and the machine sets the program range condition flag in the 
PSD register. The condition flag then generates an error exit request which causes an exchange jump to 
address (EEA). All instructions issued prior to this instruction are run to completion. Any instruction 
following this instruction in the current instruction word is not executed. When all operands have arrived 
at the operating registers as a result of previously issued instructions, an exchange jump occurs to the 
exchange package designated by (EEA). 

The i, j, and k designators, which are ignored by the computation section, are set to zero by the assembler. 
The program address stored in the exchange package on the terminating exchange jump is advanced one 
count from the address of the current instruction word (P=P+l). This is true regardless of which parcel of 
the current instruction word contains the error exit instruction. 

The error exit instruction is not intended for use in user program code. The program range condition flag is 
set in the PSD register to indicate that the program has jumped to an area of the SCM field which may be 
in range but is not valid program code. This should occur when an incorrectly coded program jumps into an 
unused area of the SCM field or into a data field. The program range condition flag is also set on the 
condition of a jump to address zero. These conditions can be determined on the basis of the register 
contents in the exchange package. The existence of an error exit condition resulting from execution of this 
instruction can thus be deduced. 

The location field of an ES instruction becomes a sub-subtitle on the assembler listing. 

A force upper occurs after the ES instruction. 

Format: 

Operation Variable Description Size Octal Code 

ES Error exit to EEA 15 bits 00000 
ES K Error exit to EEA 15 bits 00000 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 '30 
H- T 

c~ 
I 
I OOf OlJ 

8.4.3 RETURN JUMP INSTRUCTION 

When this instruction is executed, an unconditional jump to the current address plus one (P)+l is stored in 
the upper half of relative address K in SCM and control then transfers to K+l for the next instruction. The 
lower half of the stored word is all zeros. The instruction al ways branches out of the instruction stack and 
voids all instructions currently in the instruction stack. 

After the instruction is executed the octal word at K is: 

Address K 

8-14 

I a 4 a a 
59 ~ 

Bi=Bj 

p + 1 II o a o o a a a o a a I 
29 00 

60492600 H 



This instruction is intended for transferring control to a subroutine between execution of the current 
instruction word and the following instruction word. Instructions appearing after the return jump 
instruction in the current instruction are not executed. The called subroutine must exit at address K in CM 
(SCM). A jump to address K of the branch routine returns the program to the original sequence. The 
assembler sets the unused j designator to zero. 

A force upper occurs after the instruction is assembled. 

Format: 

-
Operation Variable Description Size Octal Code 

RJ K Return jump to K 30 bit::; OIOOK 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 bo 

0100002374 + RJ HELP I 

8.4.4 ECS/ UEM INSTRUCTIONS 

These instructions initiate either a read or write operation to transfer (Bj)+K 60-bit words between 
extended memory (ECS or UEM) and central memory (CM). The initial extended memory address is 
(XO)+RAe; the initial CM address is (AO)+RAc. 

NOTE 

For the CYBER 180 Computer Systems and the CYBER 170 Models 815, 825, 835, 
845, and 855, these instructions are UEM block copy instructions. For the CYBER 
1 70 Models 865 and 875, the selection of the ECS or UEM depend> on the state of 
the UEM enable flag. This flag is one bit in the 6-bi t flag register in the exchange 
sequence. If the enable flag is set, transfer is between UEM and CM; if the enable 
flag is clear, transfer is between ECS and CM. 

The assembler forces upper before assembling an RE or WE instruction. 

If no error occurs, the next instruction executed is the first instruction in the current address plus one 
(P)+l. 

-
--

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word containing the 
RE or WE instructions. These 30 bits should always hold a jump to an error routine. The conditions are: 

Parity errors when reading ECS. If a parity error is detected, the entire block of data is transferred 
before the exit is taken. 

The ECS bank from/to which data is to be transferred is not available because the bank is in 
maintenance mode, or the bank has lost power. If either of these conditions exists on an attempted 
read or write, an immediate error exit is taken. 

An attempt to reference a nonexistent address. On an attempted write operation, no data transfer 
occurs and an immediate error exit is taken. If the attempted operation is a read, and addresses are in 
range, zeros are transferred to central memory. This is a convenient high-speed method of clearing 
blocks of central memory. 

60492600 L 8-15 



On a CYBER 170 Model 176, action in the case of error depends on the operating system being run. Under 
SCOPE 2, error processing is just as for the RL and WL instructions (see LCM Block Copy Instructions). 
Under NOS, an error causes the job to abort. Under NOS/BE, an error exit to the lower 30 bits of the 
instruction word takes place. This action is provided by the operating system, not by the hardware. 

For additional information about ECS instructions, refer to the 7030 Extended Core Storage Reference 
Manual. 

Format: 

Operation Variable 

RE Bj 

RE K 

RE Bj:!:_K 

WE Bj 

WE K 

WE Bj:!:_K 

Example: 

Code Generated 

0110002000 

0117001000 

0125001000 

Description 

Read extended memory 

Read extended memory 

Read extended memory 

Write extended memory 

Write extended memory 

Write extended memory 

LOCATION OPERATION 

I II 

RE 

RE 

I WE 

8.4.5 LCM BLOCK COPY INSTRUCTIONS 

Size Octal Code 

30 bits OlljO 00000 

30 bits OllOK 

30 bits OlljK 

30 bits 012j0 00000 

30 bits 0120K 

30 bits 012jK 

VARIABLE COMMENTS 

18 TJo 

20008 
"T 

I 

I 
187+10008 I 

1000B+B5 I 

Block copy instructions move quantities of data between LCM and SCM as quickly as possible. All activity 
in the CPU other than 1/0 word requests is stopped during a block copy operation. All instructions issued 
prior to a block copy instruction are executed to completion and no further instructions issue until the 
block copy is nearly completed. As a result of these restrictions the data flow between LCM and SCM can 
proceed at the rate of one 60-bit word each clock period. When an 1/0 multiplexer word request for SCM 
occurs during this transfer, the data flow is interrupted for one clock period. The 1/0 word address is 
inserted in the stream of addresses to the SAS, and the addresses for the block copy are resumed with a 
minimum of a one clock period delay. An additional delay will occur if the 1/0 reference causes a bank 
conflict in SCM. 

The length of the block is determined by adding the quantity K to the contents of register Bj. Either 
quantity may be used as an increment or decrement. The result is an 18-bit integer which is truncated to a 
10-bit quantity. Thus, a maximum block size is 1777 8• (For example, if the result of the add is 
0030009, the instruction transfers lOOOa words.) No error indications are given when this occurs unless 
the field length is exceeded causing a block range error. If the block length is zero, the instruction 
becomes a do-nothing instruction; the condition is not error flagged. 

Relative source or destination addresses begin at (AO) in the SCM and at the relative LCM address 
determined from the lowest order 19 bits of (XO). If (XO) is negative, the 19 bits are treated as a positive 
integer. If the sum of (X01a-oo) and the block count exceeds the (FLL), the copy is not executed and the 

8-16 60492600 H 



LCM block range condition flag is set in the PSD register. Similarly, if the sum of (AO) and the block 
exceeds (FLS), the copy is not executed and the SCM block range condition flag is set in the PSD register. 

Under SCOPE 2, COMPASS will truncate a block copy instruction if it begins in the last parcel and its 
K field is zero. Under such conditions, a block copy is a 15-bit instruction. 

Under NOS and NOS/BE, COMPASS forces upper after assembling an RL or WL instruction. 

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the 
PSD register but does not interrupt the block copy instruction. No further instructions are issued during 
block transfer of data. Instructions already issued are completed; all other activity, with the exception of 
1/0 word requests, stops. 

On a CYBER 170 Model 176, if no error takes place, the next instruction executed is the first instruction 
in the current address plus one (P) + 1 . Action in the case of error depends on the operating system being 
run. Under SCOPE 2, error processing is just as for any program running on the CYBER 70 Model 76, as 
described in the SCOPE 2 Reference Manual listed in the preface. Under NOS, an error causes the job to 
abort. Under NOS/BE, an error exit to the lower 30 bits of the instruction word takes place. This action is 
provided by the operating system, not by the hardware. 

Format: 

Operation l Variable 

T 
RL ; Bj 

RL K 

RL ; Bjt-K 
! -
! 
: 

WL K 
I 

WL i Bj 

WL '. Bj_:K 

: 

Example: 

Code Generated 

0115001000 

0110002000 

0124777677 

Description 

Block copy (Bj) words from LCl\l to SCl\I 

Block copy (K) words from LCl\I to SCl\T 

Block copy (Bj) _.::. K words from LCl\l to 
SCM 

Block copy (K) words from SCl\I to LCl\I 

Block copy (Bj) words from SCl\I to LCl\I 

Block copy (Bj) _.::. K words from SCl\I to 
LCl\I 

LOCATION OPERATION VARIABLE 

I II 18 

RL 1000B+B5 
I iRL 120008 
I ! 
I iWL B4-100B 

8.4.6 EXCHANGE JUMP INSTRUCTION 

Size Octal Code 

30 bits 01 ljO 00000 

30 bits OllOK 

30 hits OlljK 

30 bi ls 0120K 

30 bits 012j0 00000 

30 bits 012jK 

COMMENTS 

TJo 

I 

I 
I 
I 
I 

This instruction unconditionally exchange jumps the central processor, regardless of the state of the 
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is set or 
clear. 

This instruction is not legal for CYBER 170 Models 175, 740, 750, and 760 if the MEJ/CEJ switch is in the 
DISABLE position or if the instruction does not reside in parcel 0 of the instruction word. 

60492600 H 8-17 



Operation is as follows: 

Monitor flag bit clear: The starting address for the exchange is taken from the 18-bi~ Monitor ~~dress 
register. This starting address is an absolute address. During the exchange, the momtor flag bit is set. 

Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding K to 
the contents of register Bj. This starting address is an absolute address. During the exchange, the 
monitor flag bit is cleared. 

For additional information, refer to the appropriate hardware reference manual. 

The assembler forces upper before and after assembling an XJ instruction. 

Format: 
- --·---- - - - - ·- - - ·- - ---------- - - - ·-· .--- - - - ----- ---

Operation Variable Description Size Octal Code 
·-

XJ Exchange jump to MA if in program mode 30 bits 01300 00000 

XJ Bj Exchange jump to (Bj); flag set I 30 bits 013j0 00000 
I 

XJ K Exchange jump to K; flag set 30 bits 0130K 

XJ Bj,±K Exchange jump to (Bj) ± K; flag set 30 bits 013jK 

Example: 

Code Generated 

0130000000 

0130001000 

0135000600 

LOCATION 

I 

OPERATION 

11 

XJ 

XJ 

XJ 

VARIABLE COMMENTS 

18 TJo 
"T 

I 
10008 I 

I 
I 

B5+600B 

8.4.7 EXCHANGE EXIT INSTRUCTION 

This instruction is used for calling a system monitor program for input/output, monitor calls, etc. and has 
priority over all other types of exchange jump requests. If an 1/0 interrupt request or an error exit request 
occurred prior to execution of this instruction, it is denied and the exchange jump specified by the MJ is 
executed. The rejected interrupt request is not lost, however. The conditions that caused it are reinstated 
when the exchange package enters its next execution interval. 

The normal termination for an exchange package execution interval is through execution of an exchange 
instruction (MJ). The MJ instruction voids the instruction word stack. Any instructions remaining in the 
stack are not executed. The exit mode flag in the PSD register determines the source of the exchange 
package ac:; follows: 

8-18 

Exit mode flag set: When the exit mode flag is set, the MJ instruction causes the current program 
sequence to terminate with an exchange jump to a relative address in the SCM field for the current 
program. The exchange package is located at relative address (Bj) + K. An overflow of the lowest 
order 16 bits of this result causes an error condition that is not senS"ed in the hardware. Should a 
program erroneously execute an exchange exit instruction with an overflow condition, the exchange 
jump sequence begins at the absolute SCM address corresponding to the lowest order 16 bits of this 
sum. This 30-bit form of MJ is privileged to a monitor program. 

60492600 H 



Exit mode flag not set: When the exit mode flag is not set, the object program terminates the 
execution interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the 
absolute address of the exchange package. This is an absolute address in SCM and is generally not in 
the SCM field for the current program. This form of the MJ instruction has a blank variable field; the 
assembler sets the j and k designators to zero. 

The system makes no protective tests on the exchange jump address. 

All operating register values, program addresses, and mode selections are preserved in the exchange 
package for the object program so that the object program can be continued at a later time. The program 
address in the object program exchange package is advanced one count from the address of the instruction 
word containing the exchange exit instruction. The monitor program normally resumes the object program 
at this address. 

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than 16 bits 
of significance, the upper bits are discarded and the lower 16 bits are used as the absolute address in SCM 
for the exchange jump. A force upper occurs after the instruction is assembled. 

Format: 

Operation Variable 

1\IJ 

MJ Bj 

l\IJ BL_K 

MJ K 

Example: 

Code Gene rated -------

01300 

0134000500 

0136777477 

0130000600 

Description 

Exchange exit to NEA if exit flag clear 

Exchange exit to (Bj) if exit flag set 

Exchange exit to (Bj) _:_ K if exit flag set 

Exchange exit to K if exit flag set 

LOCATION OPERATION VARIABLE 

I II 18 

IMJ 
I 
I MJ 84+5008 I 

I 
MJ I 

1-3008+86 

I MJ 6008 

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS 

Size Octal Code 

15 bits 01300 

30 bits 013j0 00000 

30 bits 013jK 

30 bit~ 0130K 

COMMENTS 

1 Jo 

I 

I 

I 
I 
I 
I 
I 
I 

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register or 
writes one 60-bit word directly into LCM from an X register. 

The execution time for transferring a word from LCM to an X register depends on whether the requested 
word already resides in one of the bank operand registers. A read LCM instruction for a word not currently 
residing in a bank operand register will require 17 clock periods for delivering a field of eight 60-bit words 
to the designated X register. A read LCM instruction for a word already residing in an LCM bank operand 
register as a result of a previous instruction will require three clock periods to deliver the requested word 
to the designated X register. Thus, although the first 60-bit word will require 17 clock periods, the second 
through eighth words in the same LCM word require three clock periods each. This means that consecutive 
LCM operands are available, on an average, every five clock periods as opposed to SCM operands at eight 
clock periods. 

60492600 H 8-19 



The LCM address is determined from the low order 19 bits of Xk. Even if (Xk) is negative, the 19 bits are 
treated as a positive integer. If the address exceeds the field length (FLL), the word transfer does not take 
place and the LCM direct range condition flag is set in the PSD register. Xj is either the source or 
destination register. 

Instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM reference 
is in process. When an RX instruction issues, the LCM busy flag is set and remains set until the requested 
word is delivered. 

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand 
register, it is held in the LCM write register until the bank operand register is free. 

Format: 

Operation Variable 

RXj Xk 

\\'Xj Xk 

Example: 

Code Generated 

01465 

01570 

-- ---- - - ---------~-

Description 
----- - - - - -

Head LC:\I at (Xk) and set Xj 

\\'rite (Xj) into LC.i\I at (Xk) 

LOCATION OPERATION VARIABLE 

I II 18 

RX6 X5 

WX7 XO 

8.4. 9 DIRECT UEM TRANSFER INSTRUCTIONS 

Size Octal Code 

15 bits 014jk 

15 bits 015jk 

COMMENTS 

TJo 
I 

I 
I 

A single word transfer either reads one 60-bit word from UEM and enters that word into the specified X 
register, or writes one word into UEM from the specified X register. 

Format: 

Operation Variable Description Size Octal Code 

RXj Xk Read UEM at (Xk) + RAe to Xj 15 bits 014jk 

WXj Xk Write (Xj) to UEM at (Xk) + RAe 15 bits 015jk 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

Code Generated I II 18 30 

01412 RX1 X2 

01512 WX1 X2 

8-20 60492600 H 



8.4.10 RESET INPUT CHANNEL BUFFER INSTRUCTION 

This instruction initiates a new record transmission from a PPU to SCM. This instruction prepares the 
input channel (Bk) buffer for a new record transmission from a PPU to SCM. The instruction clears the 
input channel buffer address and resets the input channel assembly counter to the first 12-bit position in 
the SCM word. 

This instruction is intended to be privileged to an input routine, that is, one that terminates a record of 
incoming data and prepares for the next record. 

The input routine removes the data in the input channel buffer and then executes this instruction to 
prepare the buff er for the next incoming record. This instruction is effective only if the monitor mode flag 
is set in the program status register. If the monitor mode flag is cleared, this instruction becomes a pass 
instruction. When this instruction issues, it will execute the required channel functions without regard to 
the current status or activity at the input channel buffer. 

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If higher 
order bits are set in (Bk) the lowest order four bits are masked out and used to determine the channel 
number. If (Bk) is zero, this instruction becomes a pass instruction. 

Two or more consecutive RI instructions referring to different channels will issue in consecutive clock 
periods with no interference resulting in the multiplexer. If two consecutive instructions refer to the same 
channel, they repeatedly perform the same function but do not cause interference in the multiplexer. 

Format: 

Operation Variable De~cription Size Octal Code 

RI Bk Reset input channel (Bk) buffer 15 bits 0160k 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 ho 

01607 RI 87 i 

8.4. 11 SET REAL-TIME CLOCK INSTRUCTION 

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them 
in Bj. The 18-bit clock counter advances one count in two's complement mode for each clock period. The 
217 bit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt is 
handled, the bit is cleared. It permits measurement of CPU execution. 

Format: 

Operation Variable Description Size Octal Code 
-

TBj Set Bj to current clock time 15 bits OlGjO 

TBj K Set Bj to current clock time; K is ignored. 15 bits OlGjO 

60492600 H 8-21 



Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 '30 

01670 TB7 
I 
I 

8.4.12 RESET OUTPUT CHANNEL BUFFER INSTRUCTION 

This instruction initiates a new record transmission from SCM to PPU. It clears the output channel (Bk) 
buffer address and disassembly counter, transmits a record pulse over the output channel data path to the 
PPU, and initiates an SCM reference for the first word to be transmitted. 

This instruction is intended for execution in an output routine to initiate a new record transmission over an 
output channel data path. The output channel buffer is normally inactive when this instruction is 
executed. The output channel buff er is loaded with the data for the next record, and this instruction is 
executed to initiate the transmission. The record pulse is transmitted along with the word pulse as soon as 
the first word of data from the SCM is entered in the output channel disassembly register. 

This instruction is effective only if the monitor mode flag is set in the program status register. If the 
monitor mode flag is cleared, this instruction becomes a pass instruction. When this instruction issues, it 
will execute the required channel functions without regard to the current status or activity at the output 
channel. 

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If higher 
order bits are set in (Bk), the lowest order four bits are masked out and used to determine the channel 
number. If (Bk) is zero, this instruction becomes a pass instruction. 

Normally, the output channel buffer is inactive when this instruction is executed, the program having 
checked. for completion of the previous record before issuing an RO. The program can detect the end of 
record in two ways. First, it can compare the output channel buffer address with a known record length. 
The alternative is to obtain a response from the peripheral unit over the corresponding input channel data 
path. If data is moving over the output channel data path when an RO is issued, the RO instruction takes 
priority, with a resulting loss of data in the previous record. Two or more consecutive RO instructions 
ref erring to different channels will issue in consecutive clock periods with no interference resulting in the 
multiplexer. If two consecutive instructions refer to the same channel, they transmit a record pulse over 
the output path and restart the buffer repeatedly. A data word may or may not be transmitted depending 
on the timing of the instructions and conflicts that occur. 

Format: 

Operntion Variable Description Size Octal Code 

RO Bk Reset output channel (Bk) buffer 15 bits 0170k 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 
Code Generated 

01705 IRO B5 : 

8.4. 13 READ CHANNEL STATUS INSTRUCTIONS 

These instructions copy the contents of the input or output channel buffer address register indicated by 
masking the low order 4 bits of Bk and enter the value in Bj. The instructions are used for monitoring the 
progress of an input channel buffer or an output channel buffer. 

8-22 60492600 H 



A channel buff er area is divided into fields by the threshold testing mechanism. The first half of the buffer 
area constitutes one field and the last half of the buff er area the other field. An 1/0 multiplexer interrupt 
request is generated by the threshold testing mechanism whenever the channel buffer address is advanced 
across a field boundary. This occurs at the center of the buffer area and at the end of the buffer area. 

The IBj instruction is the only vehicle for a program to determine whether an I/O multiplexer interrupt 
request was generated by a buffer threshold test or by a record flag. The program must retain the input 
channel buffer address from one interrupt period to the next. If the buffer address is in the same field as 
for the previous interrupt, the interrupt request was from a record flag. If the buffer address is in the 
opposite field from the previous interrupt, the interrupt request was from a threshold test. 

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored. If 
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the 
channel number. If (Bk)= O, the IBj instruction reads the contents of the CPU clock period counter. 
However, the OBj instruction places all zeros into Bj. 

Two or more IBj instructions or OBj instructions may occur in consecutive program instruction locations 
referencing the same or different channels. These instructions may issue in consecutive clock periods 
providing the Bj register reservations do not cause a delay. No interference will result in the multiplexer 
in these situations. 

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction nor 
may an OBj instruction immediately follow an RO instruction. A delay of one clock period is sufficient. 

Format: 

Operation Variable Description Size Octal Code 

IBj Bk 

OBj Bk 

Example: 

Code Generated 

01664 

01756 

Bj -Read input channel (Bk) status 

Bj -Read output channel (Bk) status 

LOCATION OPERATION VARIABLE 

I II 18 

IB6 B4 

I loas la6 

8.4. 14 UNCONDITIONAL JUMP INSTRUCTION 

15 bits OlGjk 

15 bits 017jk 

COMMENTS 

ho 
T 

I 

I 

I 
I 

This instruction adds the contents of index register Bi to K and branches to the relative CM (SCM) address 
specified by the sum. The remaining instructions, if any, in the current instruction word are not executed. 
The branch address is K when i is zero. 

Addition is performed in an 18-bit one's complement mode. On the CYBER 180 Series, the CYBER 170 
Series (except Model 1 76), the CYBER 70 Models 71, 72, 73, and 74, and 6000 Series systems, this 
instruction voids the stack. On the CYBER 70 Model 76, the 7600, and the CYBER 170 Model 176, the 
instruction word stack is not altered by execution of this instruction. The instruction is intended to allow 
computed branch point destinations. It is the only CPU instruction in which a computed parameter can 
specify a program branch destination address. All other jump instructions have preassigned destination 
addresses at execution time. 

The assembler sets the llllused j designator to the same value as the i designator. A force upper occurs 
after the instruction is assembled. 

60492600 L 8-23 



Format: 

Operation Variable Description Size Octal Code 

JP Bi±K Jump to (Bi)± K 30 bits 02iiK 

JP Bi Jump to (Bi) 30 bits 02ii0 00000 

JP K Jump to K 30 bits 0200K 

Example: 

Code Generated 

0255002373 + 

0277000000 

LOCATION 

I 

OPERATION 

II 

IJP 
JP 

VARIABLE COMMENTS 

lB 1 Jo 

B5+GOTO 
T 

I 

la1 I 

I 

8.4. 15 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS 

These instructions cause the program sequence to branch to K or to continue with the current program 
sequence depending on the contents of operand register Xj. The decision is not made until the Xj register 
is free. These instructions do not void the stack. 

The following rules apply to tests made in this instruction group: 

8-24 

The ZR and NZ operations test the full 60-bit word in Xj. The words 00 ••••• 00 and 77 ••••• 77 8 are 
treated as zero. All other words are non-zero. Thus, these instructions are not a valid test for 
floating point zero coefficients. However, they can be used for underflow of floating point quantities. 

The PL and NG operations examine only the sign bit (bit 59) of Xj. If the sign bit is zero, the word is 
positive; if the sign bit is one, the word is negative. Thus, the sign test is valid for fixed point words 
or for coefficients in floating point words. 

The IR and OR operations examine the upper-order 12 bits of Xj. 

On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the following octal quantities 
are detected as being out of range: . 

3777x ••••• x (positive overflow) 
4000x ••••• x (negative overflow) 
1777x •.••. x (positive indefinite) 
6000x ••••• x (negative indefinite) 

All other words are in range. An underflow quantity is considered in range. The value of the 
coefficient is ignored in making this test. 

On CYB ER 70 Models 71, 72, 73, and 74; CYBER 180 Series; CYB ER 170 Series (except Model 176); 
and 6000 Series computer systems, the octal quantities 3777x ••• x and 4000x ••• x are out of range· all 
other words are in range. ' 

The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and negative indefinite 
for ms are detected: 

1777x ••••• x and 6000x ••••• x are indefinite. 

All other words are definite. The value of the coefficient is ignored in making this test. 

60492600 L 



An errcr exit occurs on 6000 Series; CYBER 180 Series; CYBER 170 Series; and CYBER 70 Models 71, 
72, 73 and 74 systems when an indefinite or out of range value is used as an operand of an arithmetic 
instruction. Such errcr exits can be avoided by using DF, ID, IR, or OR instructions to test for such 
values before using them as operands. 

On a 7600 or CYBER 70 Model 76 system, an error exit occurs as soon as an indefinite or out of range 
value is produced as the result of an arithmetic instruction. The DF, ID, IR and OR instructions are 
useful only when a MODE control statement is used to suppress such error exits. 

Format: 

T 
-·- ---- --------

Operation I Variable Description Size 
J_ 

I 
ZR 1 Xj,K Branch to K if (Xj) ,-_ 0 30 bits 

NZ I Xj,K Branch to K if (Xj) I- 0 30 bits 

PL Xj,K Branch to K if (Xj) sign is plus 30 bits 

NG Xj,K Branch to K if (Xj) sign is minus 30 bits 

l\II Xj,K Branch to K if (Xj) sign is minus 30 bits 

IR Xj,K Branch to K if (Xj) in range 30 bits 

OR Xj,K i Branch to K if (Xj) out of range 30 bits 

DF Xj,K I Branch to K if (Xj) definite 30 bits 

ID Xj,K : Branch to K if (Xj) indefinite 30 bits 
-----------·---- -- ---------·------ - - - ---

Example: 

Code Generated 

0305002363 + 

0313002364 + 

0324002365 + 

0331002366 + 

0331002366 + 

0340002367 + 

0351002370 + 

0365002371 + 

0377002372 + 

60492600 L 

I 

I 
I 
I 

LOCATION OPERATION 

II 

ZR 

NZ 

PL 

NG 

MI 

IR 

OR 

OF 

ID 

VARIABLE COMMENTS 

18 !Jo 

X5,ZERO I 

I 
I 

X3,NONZERO I 

I 
X4,PLUS I 

l 

X 1, NEG I 

I 

I 
X 1, NEG I 

I I 

1xo,INRANGE I 

I 

X1 ,OUTRNGE I 

: 

X5,DEFINT 
I 

lx7, INDEFNT 
I 
I 
I 

-, 
' Octal Code 

o:rnjK 

031jK 

032jK 

033jK 

033jK 

i 034jK 
; 

I 035jK 
I I 036jK 

037jK 
·- -·----

8-25 



8.4.16 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS 

The following rules apply in the tests made by these instructions: 

Positive zero is recognized as unequal to negative zero. 

Positive zero is recognized as greater than negative zero. 

A positive number is recognized as greater than a negative number. 

The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in a 
19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous results 
caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the (Bi). The 
branch decision is based on the sign bit in the 19-bit result. 

For these instructions, Bi and Bj must be specified in the order indicated below. 

These instructions do not void the instruction stack. 

Format: 

Operation Variable Description 

ZR K Branch to K 

ZR 
1:i,K 

Branch to K if (Bi) - O 

EQ Branch to K 

EQ ! Bi,K Branch to K if (Bi) ~- 0 

EQ ! Bi, Bj, K Branch to K if (Bi) (Bj) 
i 

NE I Bi,K I Branch to Kif (Bi) I 0 

NE I Bi, Bj, K I Branch to Kif (Bi) I (Bj) 

NZ Bi,K Branch to K if (Bi) :f O 

PL Bi,K Branch to K if (Bi) ~ 0 

GE 1Bi,K Branch to K if (Bi) ~ 0 

GE Bi, Bj, K 1 B:.:anch to K if (Bi) ~ (Bj) 

LE Bj, Bi, K Branch to Kif (Bj) ~ (Bi} 

LE Bj,K Branch to K if (Bj) ~ 0 

NG Bi,K Branch to K if (Bi) < O 

iMI Bi,K Branch to K if (Bi)< 0 

GT I Bj, Bi, K I Branch to K if (Bj) > (Bi) 
! 

GT .B",K Branch to K if B" >0 
J ~ ( J) 

LT Bi, K Branch to Kif (Bi) < 0 ~~i,_Bj,K ___ Branch ~-Kif (Bi) <(Bj) 
------ - -- --

8-26 

Size 

30 bits 

130 bits 

130 bits 

130 bits 

I 30 bits 

130 bits 

: 30 bits 
I 

i 30 bits 
I . 
130 bits 

I 30 hits 

30 bits 

30 bits 

30 bits 

30 bits 

30 bits 

30 bits 

0 1. s I 3 )IL 

I 30 bits 

130 birs 

Octal Code 

0400K 
I 
I 

! 04iOK 
I 
I 

I 0400K 

I 04iOK 
I 

i 04ijK 

i 05iOK 

, 05ijK 

; 05iOK 

06iOK 

06iOK 

· 06ijK 

i 06ijK 

OGOjK 

07iOK 

07iOK 

07ijK 

. . 
070Jh . 

07iOK 

I 

I 
I 

I 

! 

I 
I 
I 
I 
I 

I 

60492600 H 



Example: 

Code Generated 

0450005221 + 

0405005222 + 

0453005223 + 

0400005223 + 

0515005224 + 

0560005225 + 

0620005226 + 

0645005227 + 

0650005230 + 

0676005231 + 

0770005232'+ 

0730005233 + 

0767005234 + 

0705005235 + 

0712005236 + 

8.4. 17 TRANSMIT INSTRUCTION 

LOCATION OPERATION VARIABLE COMMENTS 

11 

ZR 

EQ 

EQ 

EQ 

NE 

NZ 

PL 

!GE 
I 
iGE 

i LE 

NG 

MI 

GT 

GT 

I LT 

18 

85,BZERO 

'30 

I 
I 

BO, 85, EQUAL I 

85,83,JUMP 

JUMP 

81,85,NOTEQ 

86,BNOTZR 

B2,8PLUS 

84,85,GEQ 

85,GEBO 
I 
I 

I 86,87 ,LTHAN : 

87,BNEG 

B3,B3LTO 

B7,B6,87GT 

B5,B5GTO 

ls1,B2,BLTB 

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a copy 
instruction intended for moving data from X register to X register as quickly as possible. No logical 
function occurs. The assembler sets the k designator to the value specified for j. 

Format: 

Operation Variable Description Size Octal Code 

BXi Xj Transmit (Xj) to Xi 15 bits 1 Oijj 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 ho 

10622 BX6 X2 : 

60492600 H 8-27 



8.4. 18 LOGICAL PRODUCT INSTRUCTION 

This instruction forms the logical product (AND function) of 60-bit words from operand registers Xj and Xk 
and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding bits 
of the Xj and Xk registers are 1 as in the following example: 

(Xj) = 0101 
(Xk) = 1100 
(Xi) = 0100 

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and k 
designators have the same value, the instruction becomes a transmit instruction. 

Format: 

Operation Variable Description Size Octal Code 

BXi Xj*Xk Logical product of (Xj) and (Xk) to Xi 15 bit~ llijk 

Example: 

Code Generated LOCATION OPERATION VAl<IABLE COMMENTS 

I II 18 bo 
11553 BX5 X5*X3 

I 

I 

8.4. 19 LOGICAL SUM INSTRUCTION 

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand registers Xj and Xk and 
places the sum in operand register Xi. A bit of register Xi is set to 1 if the corresponding bit of the Xj or 
Xk register is a 1, as in the· following example: 

(Xj) = 0101 
(Xk) = 1100 
(Xi) = 1101 

This instruction is intended for merging portions of a 60-bit word into a composite word during data 
processing. If the j and k designators have the same value, the instruction degenerates into a transmit 
instruction. 

Format: 

Operation Variable Description Size Octal Code 

BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bit~ 12ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 
-- -· 

12767 BX7 X6+X7 I 

8-28 60492600 H 



8.4.20 LOGICAL DIFFERENCE INSTRUCTION 

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand registers Xj and 
Xk and places the difference in operand register Xi. A bit in register Xi is set to 1 if the corresponding 
bits in the Xj and Xk registers are unlike, as in the following example: 

(Xj) = 0101 
(Xk) = 1100 
(Xi) = 1001 

This instruction is intended for comparing bit patterns or for complementing bit patterns during data 
processing. If the j and k designators have the same value, the result wi1:J. be a word of all zeros written 
into register Xi. 

Format: 

Operation Variable Description Size Octal Code 

BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II IB I Jo 

13601 BX6 XO-X1 I 

8.4.21 COMPLEMENT INSTRUCTION 

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this 
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or 
floating point quantity as quickly as possible. 

The assembler sets the unused j designatm~ of the instruction to k. 

Format: 

Operation Variable Description Size Octal Code 

BXi -Xk Transmit complement of (Xk) to Xi 15 hits 14ikk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMfNTS 

I II IB 1 Jo 

14311 BX3 -X1 I 

60492600 H 8-29 



8.4.22 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION 

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register Xj 
and the complement of the 60-bit quantity from operand register Xk, and places the result in operand 
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the 
complement of the Xk register are 1, as in the following example: 

(Xj) = 0101 
Complemented (Xk) = 0011 

(Xi) = 0001 

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and k 
designators have the same value, a logical product is formed between two complementary quantities. The 
result will be a word of all zeros. 

Format: .. 
Operation Variable Description Size Octal Code 

BXi -Xk*Xj Logical product of (Xj) and complement 
of (Xk) to Xi 15 bits 15ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 ho 
--'-

15432 BX4 -X2*X3 I 

8.4.23 COMPLEMENT AND LOGICAL SUM INSTRUCTION 

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register Xj and 
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi. 
Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the corresponding bit of the 
Xk register is a O, as in the following example: 

(Xj) = 0101 
(Xk) = 1100 
(Xi) = 0111 

This instruction is intended for merging portions of a 60-bit word into a composite word during data 
processing. If the j and k designators have the same value, the result is a word of all ones. 

Format: 

Operation Variable Description Size Octal Code 

BXi -Xk+Xj Logical sum of (Xj) and complement of 
(Xk) to Xi 15 bits 16ijk 

-

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T3o 

16654 BX 6 -x 4+X 5 I 

8-30 60492600 H 



8.4.24 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION 

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj and 
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi. 
Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike, as in the following 
example: 

(Xj) = 0101 
(Xk) = 1100 
(Xi) = 0110 

This instruction is intended for comparing bit patterns or for complementing bit patterns during data 
processing. If the j and·k designators have the same value, a logical difference is formed between two 
complementary quantities. The result is a word of all ones. 

Format: 

Q'Jeration Variable Description Size Octal Code 

BXi -Xk-Xj Logical difference of (Xj) and complement 
of (Xk) to Xi 15 bits 17ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 bo 

17731 BX7 -X1-X3 --:-

8.4.25 LOGICAL LEFT SHIFT ik PLACES INSTRUCTION 

This instruction shifts the 60-bit word in operand register Xi left circular jk places if expression jk is 
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand register Xi 
replace those shifted from the right end. 

The 6-bit shift count jk allows a complete circular shift of (Xi). 

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits of 
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields. 
Thus, a negative value effectively designates a logical right shift. A positive value designates a left shift. 

If the negative shift count is less than -60, the assembler generates a type 7 error. 

Format: 

Operation Variable Description Size Octal Code 

LXi jk Logical shift (Xi) by ~ jk places 15 bits 20ijk 

60492600 H 8-31 



Example: 

Code Generated 

20325 

20362 

LOCATION 

I 

OPERATION 

II 

LX3 

1LX3 

VARIABLE COMMENTS 

18 TJo 

25B 
I 

I 
I 

-12B I 

8.4.26 ARITHMETIC RIGHT SHIFT ik PLACES INSTRUCTION 

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive and 
right 60+jk places if expression jk is negative. The rightmost bits of Xi are discarded and the sign bit is 
extended. 

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If the 
operand is positive, a positive zero results. If the operand is negative, a negative zero results. 

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits of 
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields. 
Thus, a negative value effectively designates the number of high order bits of the operand that are to be 
retained. If the negative shift count is less than -60, a type 7 error is generated. 

Format: 

Operation Variable Description Size Octal Code 

' 

A Xi jk Arithmetic shift (Xi) by~ jk places 15 bits 2lijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 '30 

21537 AX5 37B I 

8.4.27 LOGICAL LEFT SHIFT (Bi) PLACES INSTRUCTION 

This instruction shifts the 60-bit quantity from operand register Xk the numba- of places specified by the 
quantity in index register Bj and places the result in operand register Xi. The direction of the shift 
operation is determined by the sign of Bj, as follows: 

8-32 

If (Bj) is positive (that is, bit 17 of Bj=O), the quantity from Xk is shifted left circular. The low order 6 
bi ts of (Bj) specify the shift count. The higher order bi ts are ignored. 

If (Bj) is negative (that is, bit 17 of Bj=l), the quantity from Xk is shifted right (end off with sign 
extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70 
Series Models 71, 72, 73, and 74; and the 6000 Series, the one's complement of the low order 11 bits of 
(Bj) specify the shift count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal), 
the result stored in the Xi register consists of 60 copies of the operand sign bit. If the shift count is 64 
(decimal) er greater, the result register Xi is cleared to 60 zeros. For the CYBER 170 Model 176, 
CYBER 70 Model 76 and the 7600, the one's complement of the low order 12 bits of (Bj) specifies the 
shift count. The higher order bi ts are ignored. If the shift count is 5 9 (decimal) er greater, the result 
stored in the Xi register consists of 60 copies of the operand sign bit. 

60492600 L 



If -Bj is specified, the assembler converts the instruction to an arithmetic right shift •.. The (Bj) might be 
the result of an unpack instruction, in which case it is the unbiased exponent and (Xi) is the coefficient. 
This instruction is used for shifting a coefficient from a floating point number to the integer position after 
an unpack operation. 

Format: 
- . -------- ----- ------ -------·-- --·-----

Operation Variable Description Size Octal Code 

LXi Xk, Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk 

LXi Bj,Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk 

LXi Xk Transmit (Xk) to Xi 15 bits 22i0k 

LXi Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji 

LXi -Bj,Xk Arithmetic right shift (Xk) by (Bj) 

~ places to Xi 15 bits 23ijk 
I I 

LXi Xk,-Bj ! Arithmetic right shift (Xk) hy (Bj) ; 
I 

places to Xi 15 bits 23ijk 
! i LXi -Bj 
i 

places to Xi 15 bits 23iji I 
_LArithmetic right shift (Xi) by (lljl 

- - --- l _____ , 

Example: 

Code Generated. 

22675 

22534 

22302 

LOCATION 

I 

I 

OPERATION VARIABLE 

II 18 

LX6 X5,B7 

LX5 B3,X4 

LX3 X2 

8.4.28 ARITHMETIC RIGHT SHIFT (Bi) PLACES INSTRUCTION 

COMMENTS 

TJo 
T 

I 
I 

I 
I 
I 

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the 
quantity in index register Bj and places the result in operand register Xi. The direction of the shift 
operation is determined by the sign of Bj, as follows: 

If (Bj) is positive (that is, bit 17 of Bj=O), the quantity from register Xk is shifted right (end off with 
sign extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70 
Models 71, 72, 73, and 74; and the 6000 Series computer systems, the low order 11 bits of (Bj) specify 
the shift count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal), the Xi 
register contains 60 copies of the (Xk) sign bit. If the shift count is 64 (decimal) or more, the Xi 
register is zeroed. For the CYBER 1 70 Model 176, CYBER 70 Model 76, or 7600 computer systems, 
the low crder 12 bi ts of (Bj) specify the shift count. The higher <rder bi ts are ignored. If the shift 
count is 59 (decimal) or more, the Xi register contains 60 copies of the sign of the operand. 

If (Bj) is negative (that is, bit 17 of Bj=l), the quantity from register Xk is shifted left circular. The 
complement of the lower order 6 bits of Bj specify the shift count. The higher order bits are ignored. 

60492600 L 8-33 



If -B is specified, the assembler converts the instruction to a logical left shift. This instruction is intended 
for use in data processing where the amount of shift is derived in the computation. This instruction is also 
useful for adjusting the coefficient of a floating point number while it is in its unpacked form. 

Format: 

Operation Variable 

A Xi Xk, Bj 

A Xi Bj,Xk 

AXi Xk 

A Xi Bj 

AXi -Bj, Xk 

A Xi Xk, -Bj 

A Xi -Bj 

Example: 

Code Generated 

23764 

23211 

23502 

23424 

Description Size 

Arithmetic shift of (Xk) by (Bj) places to Xi 15 bits 

Arithmetic shift of (Xk) by (13j) places to Xi 15 hits 

Transmit (Xk) to Xi 15 bits 

Arithmetic shift of (Xi) by (Bj) places to Xi 15 bits 

Logically shift (Xk) hy (Bj) places to Xi 15 hits 

Logically shift (Xk) by (Bj) places to Xi 15 hits 

Logically shift (Xi) by (Bj) places to Xi 15 hits 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 1 Jo 

I . 
AX7 X4,B6 I 

·AX2 I 
1B1 ,X1 

1 • 

I ! B2 

X2 

8.4.29 NORMALIZE INSTRUCTION 

Octal Code 

2:3ijk 

~3ijk 

23i0k 

2:Hji 

22ijk 

22ijk 

22iji 

This instruction normalizes the floating point quantity from operand register Xk and places it in operand 
register Xi. Normalizing consists of shifting the coefficient the minimum number of positions required to 
make bit 47 different from bit 59. This places the most significant bit of the coefficient in the highest 
order position of the coefficient portion of the word. The exponent portion of the word is then decreased 
by the number of bit positions shifted. The number of shifts required to normalize the quantity is entered 
in index register Bj. 

Format: 

Operation Variable Description Size Octal Code 

NXi Xk Normalize (Xk) to Xi 15 bits 24i0k 
NXi Bj,Xk Normalize (Xk) to Xi; shift count to Bj 15 bits 2-lijk 
NXi Xk, Bj Normalize (Xk) to Xi; shift count to Bj 15 bits 2-lijk 
NXi Normalize (Xi) to Xi 15 bits 24i0i 
NXi Bj Normalize (Xi) to Xi; shift count to Bj 15 bits 24iji 

8-34 60492600 H 



Example: 

Code Generated 

24575 

24505 

24552 

LOCATION 

I 

I 

OPERATION VARIABLE 

II IB 

NX5 X5,B7 

NX5 X5 

NX5,B5IX2 

8.4.30 ROUND AND NORMALIZE INSTRUCTION 

COMMENTS 

T 30 

T 
I 
I 
I 

I 

· This instruction performs the same operation as the NXi instruction with the exception that the quantity 
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a 1 round 
bit immediately to the right of the least significant coefficient bit. The resulting coefficient is increased 
by one-half the value of the least significant bit. Normalizing a zero coefficient places the round bit in bit 
47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow, infinite, and 
indefinite results. 

If (Xk) is an infinite quantity (3777x ..• x8 or 4000x •.• x8) or an indefinite quantity (l 777x •.. x9 or 
6000x .•. x8), no shift takes place. The contents of Xk are copied into Xi, and Bj is set to zero. 

Format: 

--
Operation Variable Description Size Oct:1l Code 

ZXi Xk 
ZXi Bj,Xk 

ZXi Xk, Bj 

· ZXi Bj 

ZXi 

Example: 

Code Generated 

25474 

25404 

25361 

Round and normalize (Xk) to Xi 
Hound and normalize (Xk) to Xi; shift 
count to Bj 
Hound and normalize (Xk) to Xi; shift 
count to Bj 
Round and normalize (Xi) to Xi; shift 
count to Bj 
Round and normalize (Xi) to Xi 

LOCATION OPERATION VARIABLE 

I II 18 

ZX4 X4,B7 

ZX4 

ZX3,B6 X1 

8.4.31 UNPACK INSTRUCTION 

15 hits 25i0k 

15 bits 25ijk 

15 bits 25ijk 

15 bits 25iji 
15 bits 25i0i 

COMMENTS 

1 Jo 

I 

I 
I 
I 

I 

This instruction unpacks the floating point quantity from operand register Xk and sends the 48-bit 
coefficient to operand register Xi and the 11 ~bit exponent to index register Bj. The exponent packing is 
removed during unpack so that the quantity in Bj is the true one's complement representation of the 
exponent. The contents of Xk need not be normalized. 

60492600 H 8-35 



The exponent and coefficient are sent to the low-order bits of the respective registers, as shown below: 

Sign Packed Exponent Coefficient 
~~~--~~~~~~~~~~~~~~~~~---i 

Packed Quantity LJ I_ ___ __._I _________________________ ___.

59 58 148
Unpacked

Exponent Sign Expolnent

Extended
Coefficient

Sign Extended
Unpacked Bj ~~~~~~- -]

17 10 9 00 59 48 47

Special operand formats are treated in the same manner as normal operands.

Format:

Operation Variable

UXi Xk
UXi Bj,Xk
UXi Xk, Bj
UXi
UXi Bj

Example:

Code Generated

26777

26342

26707

26777

8.4.32 PACK INSTRUCTION

Description

Unpack (Xk) to Xi
Unpack (Xk) to Xi and Bj
Unpack (Xk) to Xi and Bj
Unpack (Xi) to Xi
Unpack (Xi) to Xi and Bj

LOCATION OPERATION VARIABLE

I II 18

I UX7 1X7,B7

I ux3,x2ls4

lux1 ! I

I
I I

lux1
I

ls7 I !

Size

15 bits
15 bits
15 bits
15 bits
15 bits

COMMENTS

1 Jo

I
I
I
I
I
I

Xk

00

__ ___.lxi
00

Octal Code

26i0k
26ijk
2Gijk
26i0i
26iji

This instruction packs a floating point number in operand register xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is
packed by reversing the setting of bit 10 of the exponent during the pack operation. The pack instruction
does not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective registers and
packed in reverse order as shown in the illustration for the unpack instruction. Thus, bits 58 through 48 of
Xk and bits 17 through 11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in
the PSD register by this instruction.

8-36 60492600 H

Note that if (Xk) is positive, the packed exponent occupying bits 58 through 48 of Xi is obtained from bits
10 through 00 of Bj by complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09
through 00 are complemented.

The j designator can be set to zero in this instruction to pack a fixed point integer into floating point
format without using one of the active B registers (exponent=O).

Format:

Operation Variable

PXi Xk
PXi Xk, Bj
PXi Bj, Xk
PXi
PXi Bj

'

Example:

Code Generated

27565

27671

27505

27565

Description

Pack (Xk) to Xi
Pack (Xk) and (Bj) to Xi
Pack (Xk) and (Bj) to Xi
Pack (Xi) to Xi
Pack (Xi) and (Bj) to Xi

LOCATION OPERATION VARIABLE

I II 18

I PX5 X5,B6

,Px6,a1lx1
1
PX5

I
I

I I

]PX5 186
I I

8.4.33 UN ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

Size · Octal Code

15 bits 27i0k
15 bits 27ijk
15 bits 27ijk
15 bits 27i0i
15 bits 27iji

COMMENTS

TJo

I
I
I

I
I
I

These instructions form the unrounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of a
double precision sum or difference.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller exponent
is entered into the upper half of the accumulator. The coefficient is shifted right by the difference of the
exponents. The other coefficient is then added to or subtracted from the upper half of the accumulator. If
overflow occurs, the result is right-shifted one place and the exponent of the result increased by one. The
upper half of the accumulator holds the coefficient of the result, which is not necessarily in normalized
form. The exponent and upper coefficient are then repacked in operand register Xi.

Format:

Operation Variable Description Size Octal Code

FXi Xj+Xk Floating point sum of (Xj) and (Xk) to Xi lG bits 30ijk

FXi Xj-Xk Floating point difference of (Xj) minus
I (Xk) to Xi 1:J bits

I
3lijk

60492600 H 8-37

Example:

Code Generated

30345

31213

I

LOCATION OPERATION

II

FX3

FX2

8.4.34 DP FLOATING POINT ADD INSTRUCTIONS

VARIABLE COMMENTS

18 '30

X4+X5 T

I

X1-X3 I

These instructions form the sum or difference of two floating point numbers as in the single precision
instructions, but pack the lower half of the double precision result with an exponent 48 less than the upper
sum. The result is not necessarily normalized.

Format:

Operation Variable

DXi Xj+Xk

l:_ Xj-Xk

Example:

Code Generated.

32323

33414

---- -
Description

~oating DP sum of (Xj) and (Xk) to Xi

Floating DP difference of (Xj) and (Xk)
to Xi

-- ----------------------·----·

LOCATION OPERATION VARIABLE

I II 18

DX3 X2+X3

I DX4 X1-X4

8.4.35 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

---, ·--- ----·-

Size Octal Code

15~:2ijk
15 bi ts 33ijk _______ _..

COMMENTS

'30
I

I
I
I

These instructions form the rounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi. These
instructions are intended for use in floating point calculations involving single precision accuracy.

Format:

Operation Variable Description Size Octal Code

RXi Xj+Xk Rounded floating sum of (Xj) and (Xk)
to Xi 15 bits 34ijk

rRXi Xj-Xk Rounded floating difference of (Xj) minus
(Xk) to Xi 15 bits 35ijk

8-38 60492600 H

Example:

Code Generated

34534

35653

LOCATION

I

OPERATION VARIABLE

II 18

RX5 X3+X4

RX6 X5-X3

8.4.36 LONG ADD (FIXED POINT) INSTRUCTIONS

COMMENTS

ho
I

I

I
I
I

These instructions form the 60-bif one's complement integer sum or integer difference of quantities from
operand registers Xj and Xk and store the result in operand register Xi. An overflow condition is ignored.

The instructions are intended for addition or subtraction of integers too large for handling in the increment
unit. They are also useful for merging and comparing data fields during data processing.

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero (all
zeros), the result is a positive zero quantity. If both operands are minus zero (all ones), the result is a
negative zero quantity.

Format:

Operation Variable Description Size Octal Code

IXi Xj-~Xk

I Xi Xj-Xk

Example:

Code Generated

36545

37631

1

Integer sum of (Xj) and (Xk) to Xi

Integer difference of (Xj) minus (Xk)
to Xi

LOCATION OPERATION VARIABLE COMMENTS

II 18 I JO
-- T

IX5 X4+X5 I
I

IX6 X3-X1 I

8.4.37 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

15 bits 36ijk

15 bits 37ijk
--

This instruction multiplies two floating point quantities obtained from operand registers Xj (multiplier) and
Xk (multiplicand) and packs the upper product result in operand register Xi.

In this operation, the exponents of the two operands are unpacked from the floating point format and are
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied
as signed integers to form a 96-bit integer product. The upper half of this product is then extracted to
form the coefficient of the result. The result is a normalized quantity only when both operands are
normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is not
normalized when either or both operands are not normalized.

60492600 H 8-39

Format:

Operation Variable Description Size Octal Code

FXi Xj*Xk Floating point product of (Xj) and

(Xk) to Xi 15 bits 40ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 I Jo

40011 FXO x1•x1
I
I
I

8.4.38 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies the floating point number from operand register Xk (multiplicand), by the
floating point number from operand register Xj. The upper product result is packed in operand
register Xi. {No lower product is available.) The multiply operation is identical to that of the single
precision instruction except that a rounding bit is added in bit position 46 of the 96-bit product. The upper
half of the product is then extracted to form the coefficient for the result. An alternate output path is
provided with a left shift of one bit position to normalize the result coefficient if the original operands
were normalized and the double precision product has only 95 bits of significance. The exponent for the
result is decremented by one count in this case.

Format:

Operation Variable Description Size Octal Code

RXi Xj*Xk Rounded floating point product of (Xj)
and (Xk) to Xi 15 bits 41 ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 ho
I

41232 RX2 IX3*X2 I
I

8.4.39 DP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk and
packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together to
form a 96-bit product. The lower order 48 bits of the product (bits 47 through 0) are then packed together
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is 48 less
than the exponent resulting from an unrounded single precision instruction using the same operands.

8-40 60492600 H

This instruction is intended for use in multiple precision floating point calculations. It may also be used to
form the product of two integers providing the resulting product does not exceed 48 bits of significance.
The operands must be packed in floating point format before executing this instruction. The results must
be unpacked to obtain the integer product.

Format:

Operation Variable Description Size Octal Code

DXi Xj*Xk F1oating point DP product of (Xj) and
(Xk) to Xi 15 bits 42ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 T 30

42345
---- - - -

DX3 X4*X5 I

I

8.4.40 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating point
multiply instruction. Regardless of how it is written in COMPASS, the 42ijk instruction is executed as
follows: If each operand register has all zeros or all ones in its leftmost 12 bits, the 47-bit integer product
is formed in Xi with sign extension in its leftmost 12 bits. (Exception: if each operand has bit 47 different
from its sign bit, the result is shifted left one bit position.) Otherwise, a double precision iloating point
multiplication is performed. Thus, there is no need to pack exponents into the operands, and unpack the
result, for an integer multiply. COMPASS provides the alternate symbolic representations IXi Xj*Xk and
DXi Xj*Xk for the 42ijk instruction as an aid to program readability, so the programmer can indicate
whether or not the instruction is being used for integer multiplication.

Format:

Operation Variable I.>escription Size Octal Code

IXi Xj*Xk Integer product of (Xj) and (Xk) to Xi 15 bits 42ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 ho

42234 I
I

!>(~ X3•X4 I
I

60492600 H ·8-41

8.4.41 MASK INSTRUCTION

This instruction clears register Xi and forms a mask in it. A positive value for expression jk defines the
number of ones in the mask as counted from the highest order bit in Xi. A negative value for expression jk
defines the number of 0 bits (unmasked) counted from the low order bit in Xi. The completed masking
word consists of ones in the high order bit positions of the word and zeros in the remainder of the word.

The contents of operand register i are zero when jk is zero. The contents of operand register i are all ones
when jk is 60.

This instruction is intended for generating masks for logical operations. Used with the shift instruction,
this instruction creates an arbitrary field mask faster than by reading a previously generated mask from
storage.

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it into the jk
field of the assembled instruction. If the value of absolute expression jk is negative, the assembler adds 60
to the expression value and places the sum in the jk field of the assembled instruction.

A negative jk value less than -60 results in a type 7 assembly error.

Format:

Operation Variable Description

MXi jk Form mask in Xi, .:!.:. jk bits

Example:

LOCATION OPERATION VARIABLE
Code Generated

I II 18

43042 MXO '+tti

433t>O fv!X3 ,- l 4ts

Size J Octal Code

15 bits J 43ijk
------"----- - ---

COMMENTS

T3o
I

I
I
I

8.4.42 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides two normalized floating point quantities obtained from operand registers Xj
(dividend) and Xk (divisor) and packs the quotient in operand register Xi.

Format:

-
Operation Variable Description Size Octal Code

FXi Xj/Xk Floating point divide of (Xj) by (Xk)
to Xi 15 bits 44ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o

44f:31 FX6 X~/Xl
I

I

8-42 60492600 H

8.4.43 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides the floating quantity from operand register Xj (dividend) by the floating point
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

Format:

Operation Variable Description Size Octal Code

RXi Xj/Xk Rounded floating point division of (Xj)

by (Xk) to Xi 15 bits 45ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 !Jo

45724 RX7 X2/X4 T
I

8.4.44 PASS INSTRUCTION

The no-operation (pass) instruction is not associated with a functional unit. This instruction is a do-nothing
instruction used typically to pad the program between steps. An integer value in the variable field
(optional) is inserted into the lower 8 bits of the instruction. The assembler automatically pads the
remainder of a word whenever a force upper occurs; in this case, the programmer is not required to insert
the NO.

On a machine with a Compare/Move Unit (CMU), a value of n greater than or equal to 4009 causes the
instruction to be interpreted as a CMU instruction.

On CYBER 170 Models 175, 740, 750, and 760, a value of n greater than or equal to 4009 is illegal.

Format:

Operation Variable Description Size Octal Code

NO Pass 15 bits 46000

NO n Pass 15 bits 46n

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 TJo

46000 NO T
I

8.4.45 POPULATION COUNT INSTRUCTION

This instruction counts the number of 1 bits in operand register Xk and stores the count in the lower order
6 bits of operand register Xi. Bits 59 through 06 are cleared.

60492600 H 8-43

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register. If Xk is a word of all
zeros, a zero word is delivered to the Xi register.

The assembler sets the unused j designator to k.

Format:

Operation Variable Description Size Octal Code

CXi Xk Count of number of 1 rs in (Xk) to Xi 15 bits 47ikk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 lJo
47700 CX7 XO

,.
I

8.4.46 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and for delivering
results back into storage. The instructions have two destination registers: the Ai register, which receives
the address formed from the operands, and either the Xi register or a CM (SCM) storage location.

· Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the resulting
sum or difference as the relative storage address depending on machine size. The upper bits are ignored.
The type of storage reference is a function of the i designator value, as follows:

8-44

i = O; no storage reference

i = 1, 2, 3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi

i = 6 or 7; contents of register Xi stored at CM (SCM) relative address (Ai)

60492600 a

Format:

Operation Variable

SAi Aj+K

SAi K

SAi Bj+K

SAi Xj+K

SAi Xj

SAi Xj+Bk

SAi Bk+Xj

SAi Aj

SAi Aj+Bk

SAi Bk+Aj

SAi Aj-Bk

SAi -Bkf-Aj

SAi Bj

SAi Bj+Bk

SAi -Bk

SAi Bj-Bk

SAi -Bk+Bj

Example:

Code Generated

5010000001

5100777774

5121000003

5231777771

53411

54541

54641

54540

55641

56711

57721

60492600 H

I Description

Set Ai to (Aj) .±, K

Set Ai to K

Set Ai to (Bj) 2:. K

Set Ai to (Xj) _:: K

Set Ai to (Xj)

Set Ai to (Xj) + (Bk)

Set Ai to (Xj) + (Bk)

Set Ai to (Aj)

Set Ai to (Aj) + (Bk)

Set Ai to (Aj) + (Bk)

Set Ai to (Aj) - (Bk)

Set Ai to (Aj) - (Bk)

Set Ai to (Bj)

Set Ai to (Bj) + (Bk)

Set Ai to (BO) - (Bk)

Set Ai to (Bj) - (Bk)

Set Ai to (Bj) - (Bk)

LOCATION OPERATION

I II

SA1

SAO

SA2

SA3

SA4

SA5

SA6

SA5
' SA6

SA7

SA7

Size I Octal Code

30 bits 50ijK

30 bits 51iOK

30 bits 51ijK

30 bits 52ijK

15 bits 53ij0

15 bits 53ijk

15 bits 53ijk

15 bits 54ij0

15 bits 54ijk

15 bits 54ijk

15 bitR 55ijk

15 bits 55ijk

15 bits 56ij0

15 bits 56ijk

15 bits 57i0k

15 bits 57ijk

15 bits 57ijk

VARIABLE COMMENTS

IB '30

A0+1 I

-3

3+81

X1-6

X1+81

A4+81

A4+81

A4

-81+A4

81+81

82-81

8-45

8.4.47 DIRECT READ/WRITE CENTRAL MEMORY

These instructions permit information to be stored into central memory from the specified X register or to
be loaded from central memory into the X register. The lower 21 bits of Xk specify the central memory
address relative to RAc. The other bits of Xk are unused.

Format:

Operation Variable Description Size Octal Code

CR Xj,Xk Read CM at (Xk) to Xj 15 bits 660jk

cw Xj,Xk Write Xj to CM at (Xk) 15 bits 670jk

Example:

LOCATION OPERATION VARIABLE COMMENTS

Code Generated I ll 18 30

66012 CR X1,X2

67012 cw X1,X2

8.4.48 SET B REGISTER INSTRUCTIONS

These instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-bit result in index register Bi. Note the result will never be negative zero (all ones) unless negative
zero is added to negative zero.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is a zero, the instruction is a do-nothing instruction, except on the models 810, 815, 825,
830, 835, 845, 855, 865, and 875 for which two forms of the SBO instruction (SBO Bj+Bk and SBO Bj-Bk)
are invalid. On models 810, 815, 825, 830, 835, 845, 855, 865, and 875 the octal operation codes 660 and
670 are interpreted as the CR and CW instructions, respectively.

8-46 60492600 L

Format:

Operation Variable Description Size Octal Code

SBi Aj+K Set Bi to (Aj) ±. K 30 bits 60ijK

SBi K Set Bi to K 30 bits 61iOK

SBi Bj+K Set Bi to (Bj) ±. K 30 bits 61ijK

SBi Xj+K Set Bi to (Xj) _: K 30 bits 62ijK

SBi Xj Set Bi to (Xj) 15 bits 63ij0

SBi Xj+Bk Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi Bk+Xj Set Bi to (Xj) + (Bk) 15 bits 63ijk

~Bi Aj Set Bi to (Aj) 15 bits G4ij0

SBi Aj+Bk Set Bi to (Aj) + (Bk) 15 bits 64ijk

sm Bk+Aj Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Aj-Bk Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi -Bk+Aj Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi Bj Set Bi to (Bj) 15 bits 66ij0

SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits 66ijk

SBi -Bk Set Bi to (BO) - (Bk) 15 bits 67i0k

SBi Bj-Bk Set Bi to (Bj) - (Bk) 15 bits 67ijk

SBi -Bk+Bj Set Bi to (B j) - (Bk) 15 bits 67ijk

--

60492600 H 8-47

Example:

Code Generated

6011777772

6110777772

6121000011

6231000100

63427

64541

64540

65641

65643

66711

67751

LOCATION

I

I
I

8.4.49 SET X REGISTER INSTRUCTIONS

OPERATION

II

SB1

SB1

SB2

SB3

SB4

SB5

SB5

SB6
I

lsa6

lse1
lsa7

VARIABLE COMMENTS

18 TJo
A1-5

I

I

-5 I
I

3+81+6 I
I
I

iX1+100B I
IX2+B7 I

I
IA4+B1 I
IA~ I
1-B1+A4 I
I I
IA4-B3 I

IB1+B1 I

I
B5-B1

The SXi instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-bit result into the lower 18 bits of operand register· Xi. The sign of the result is extended to the upper·
42 bits of operand register Xi. An overflow condition is ignored.

Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction
itself (K = 18-bit operand). Operands obtained from an Xj register are the truncated lower 18 bits of the
60-bit word. The highest order bits are ignored.

8-48 60492600 H

Format:

joperation Variable

l.5Xi Aj-..K

SXi K

SXi Bj•K

SXi Xj•K

SXi Xj

SXi Xj•Bk

SXi Bk•Xj

SXi Aj

SXi Aj•Bk

SXi Bk-Aj

SXi Aj-Bk

SXi -Bk-'-Aj

SXi Bj

SXi Bj-'-Bk

SXi -Bk

SXi Bj-Bk .

jsXi -Bk-'-Bj

Example:

Code Generated

7000005233 +

7110775755

7121000005

7233777744

73442

74553

74540

75604

75641

76776

77751

60492600 H

Description

Set Xi to (Aj) .±. K

Set Xi to K

Set Xi to (Bj) .:_ K

Set Xi to (Xj) ! K

Set Xi to (Xj)

Set Xi to (Xj) + (Bk)

Set Xi to (Xj) + (Bk)

Set Xi to (Aj)
-

Set Xi to (Aj) + (Bk)

Set Xi to (Aj) + (Bk)

Set Xi to (Aj) ~ (Bk)

Set Xi to (Aj) - (Bk)

Set Xi to (Bj)

Set Xi to (Bj) .._ (Bk)

Set Xi to (BO) - (Bk)

Set Xi to (Bj) - (Bk)

Set Xi to (Bj) - (Bk)

LOCATION

1

I
i

OPfUTION

11

sxo

SX1

SX2

SX3

ISX-
SX5

sxs

SX6

1sx6

SX7

SX7

VAllAllf

••
8NEG+A0+1

-20228

81+5

X3-338

X4+82

IA5+83

A0-84

-81+A4

87+86

l85-B1

Size Octnl Cod"

30 bits 70ijK

30 bits 7UOK

30 bits 7lijK

30 bits 72ijK

15 bits 73ij0

15 bits 73ijk

15 bits 73ijk

15 bits 74ij0

15 bits 74ijk

15 bits 74ijk

15 bits 75ijk

15 bits 75ijk

15 bitF 7Gij0

15 bits 7Gijk

15 bit!= 77i0k

15 bits 77ijk

15 bits 77ijk

COMMENTS

l:sc
"T

I

!
I

I
I

i

I
I
I

8-49

8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS

The Compare/Move Unit (CMU) is a standard CPU hardware component of the CYBER 70 Models 72 and

173, and the CY BER 170 Models 172, 173, 17 4, 720, and 730. The models 810, 815, 825, 830, 835, 840, 845,
850, 855, 860, and 990 support compare/move instructions through simulation. These central processor
instructions are used for moving and comparing data fields that consist of strings of 6-bit characters. Data
fields can span word boundaries and can begin and end at any character position within a word. A data
field is specified by its length in characters and the location of its leftmost character (according to word
address and character position). Data fields cannot be in the operating registers nor in ECS.

Each 60-bit word of a data field contains 10 character positions numbered 0 to 9 from left to right (high
order to low order).

COMPASS provides symbolic forms of the four CMU instructions plus a pseudo instruction used to generate
a descriptor word to be referenced by the indirect move instruction. Of the four instructions, the indirect
move (IM) instruction is the only one that syntactically resembles other CPU instructions. The other three
instructions have formats dissimilar to CPU instructions and are generated through COMPASS pseudo
instructions. All of these instructions must begin at the top of a 60-bit word; COMPASS automatically
forces upper before each of them unless the location field contains a minus sign. All but IM are 60 bits in
length. IM is 30 bits, but the hardware requires that the instruction be in the upper half of its word. The
lower half of the word is not executed. COMPASS automatically forces upper following IM, unless the next
instruction has a minus sign in its location field.

8-50 60492600 M

8.5.1 IM - INDIRECT MOVE

The indirect move instruction moves the contents of a data field to another location. It is a 30-bit
instruction that specifies the address of a descriptor word which, in turn, contains the length and address of
the data fields.

The assembler forces upper before and after the IM instruction.

The descriptor word is fetched from storage location (Bj)+K. If the data field length is zero, the
instruction is executed as a pass but the execution time is longer. Otherwise, the contents of the source
field are moved to the destination field~ If the two fields overlap, the results are undefined. The XO
register is used for intermediate storage during execution of the instruction, and is cleared upon
completion of the instruction.

Operation Variable Description Octal Code

IM K Move data according to word at K 4640K
IM Bj±K Move data according to word at (Bj)'.:, K 464jK
IM Bj Move data according to word at (Bj) 464j 000000

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD

The MD pseudo instruction generates a descriptor word for use by the indirect move_(IM) instruction.

Format:

sym

60492600 G

LOCATION OPERATION VARIABLE SUBFIELDS

sym MD

If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the descriptor word.

Absolute address expression specifying the field length in characters (0 through 8191). The
upper 9 bits (.t) are placed in bits 56 through 48 of the descriptor word; the lower 4 bits(!) are
placed in bits 29 through 26.

An expression specifying the first word address of the source field in CM.

An absolute expression (0 through 9) specifying the starting character position of the source
field within the word at location ks· Characters are numbered from left to right.

An expression specifying the first word address of the destination field in CM.

An absolute expression (0 through 9) specifying the starting character position of the
destination field within the word at location kd.

8-51

Indirect Move Descriptor Word format:

59 48 30 26 22 18 00

0 f 12-4
source Jsrc des destination
address f J-Och ch address

~I

Example:

Code Generated

LOCATION OPERATION VARIABLE COMMENTS

I II IB '30

I
Ou7&0050~L4L05u07uj0 rJWORO M) 100J,3UFF4,G,RUFF~,5 . I . I .
4i;,1+0010665 I '1 OW O'' n I

I

BUFFA is at address 2560; BUFFB is at address 3584.

8.5.3 OM - DIRECT MOVE

The direct move (DM) symbolic instruction generates a CMU instruction that moves the contents of a data.
field to another data field. The machine instruction occupies one full word. The instruction includes its
own data field descriptor.

The assembler forces upper before a DM instruction.

If the data field length is zero, the instruction is executed as a pass, but the execution time is longer.
Otherwise, the contents of the source field are moved to the destination field. If the two fields ovedap,
the results are undefined. The XO register is used for intermediate storage during execution of the
instruction and is cleared upon completion of the instruction.

Format:

sym

J.

8-52

LOCATION OPERATION VARIABLE SUBFIELDS

sym DM

If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction word.

Absolute address expression specifying the field length in characters {O through 127).

An expression specifying the first word address of the source field in CM.

An absolute expression (0 through 9) specifying the starting character position of the source
field within the word at location ks•

An expression specifying the first word address of the destination field in CM.

An absolute expression {O through 9) specifying the starting character position of the
destination field within the word at location ka· Characters are numbered from left to right.

60492600 K

Octal format of instruction:

59 51 48 30 26 22 18 00

465 1.6-4 source address 1.3-0 src des destination
ch ch address

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130
46570050007405007000 OM 127,BUFFA,O,BUFFB,5

I
I

8.5.4 CC - COMPARE COLLATED

The compare collated (CC) symbolic instruction generates a CMU instruction that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters is
found to have unequal collating values or until the data fields are exhausted. It is a 60-bit instruction that
occupies one full word. It cannot be split between two words. The instruction includes its own data field
descriptor. Register AO contains the first word address of a table in storage that contains the collating
values to be used in comparing characters. The result of the comparison is placed in register XO.

The first word address of the collating table is obtained from register AO. The contents of the data fields
are compared from left to right', one character at a time from each field, until two unequal characters are
found. The collating value of each character is obtained from the collating table. If these values are
equal, the compare continues until another character pair is unequal or until all characters have been
compared. If the collating values are unequal, the two data fields are unequal and the field with a larger
collating value is the greater of the two fields. The collating values are treated as 6-bit unsigned integers.
Note that two unequal characters could have the same collating value and would compare equal.

Upon instruction completion, register XO contains a 60-bit signed integer as follows:

(Field A)>(Field B)

(Field A)=(Field B)

(Field A) <(Field B)

(X0)=1-n; (XO)>O

(XO)=O

(XO)=n-.l; (XO)<O

n is the number of pairs of characters that compared equal. If .l =O, then (XO) is O.

The format of the collating table for 6-bit characters is:

59 53 47 41 35 29 23 17

(AO) 00 0 1 02 03 04 05 06 07

(AO)+l 10 1 1 12 13 14 15 16 17

<j, ~ ~ ~ ~ ~

(AO)+7 70 7 1 72 73 74 75 76 77

60492600 K

1 1 0

\\!!\\\\\\\\\\\\!\\

.t\\\l\lj\tljjjjjjj\j\jjj\jtj\\j

lll\lll\\111111\\l\l\\\l\11\\lll\l

8-53

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction.

Absolute address expression specifying the field length in characters (0 through 127).

An expression specifying the first word address of the first data field in CM.

An absolute expression specifying the starting character position of the first data field within
the word at location ka. Characters are numbered from left to right.

An expression specifying the first word address of the second data field in CM.

An absolute expression (O through 9) specifying the starting character position of the second
data field within the word at location kb.

Octal format of' instruction:

59 51 48

466 1.6-4
first string

address

Example:

Code Generated LOCATION

5100003120
46670050007405007000

1

8.5.5 CU - COMPARE UNCOLLATED

30 26

13-0
f s
ch

OPERATION

11

SAO
cc

22 18 00

SS second string
ch address

VARIABLE COMMENTS

18 _!_30
T

I
TABLE I

127,BUFFA,0,BUFFB,5
I
I

The compare uncollated (CU) symbolic instruction generates a CMU instruction that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters are
found to have unequal values or until the data fields are exhausted. The machine instruction is a 60-bit
instruction that occupies one full word and cannot be split between two words. It includes its own data
field descriptor. The result of the comparison is placed in register XO.

Execution resembles the CC instruction except that AO and the collating table are not used. Instead, the
characters are compared directly with each character regarded as a 6-bit unsigned binary integer.
Register XO is set in the same manner as by the CC instruction.

8-54 60492600 K

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym cu

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction.

l. Absolute address expression (0 through 127) specifying the field length in characters.

ka An expression specifying the first word address of the first data field in CM.

ca An absolute expression (0 through 9) specifying the starting character position of the first data
field within the word at location ka. Characters are numbered from left to right.

kb An expression specifying the first word address of the second data field in CM.

Cb An absolute expression (0 through 9) specifying the starting character position of the second
data field within the word at location kb·

Octal format of instruction:

59 51 48 30 26 22 18 00

467 I. l first string ~ J f s SS second string
6-4 address 3-~ ch ch address

.1

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 !Jo

C'J 12 7, 1•JFS:- ~, ·.i ,:~llFF"~, 5

I I

60492600 G 8-55

PP SYMBOLIC MACHINE INSTRUCTIONS 9

The COMPASS assembler recognizes symbolic notation for peripheral processor (PP or PPU) irntructions.
For COMP ASS to recognize symbolic logic for models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865,
875, and 990 PP instructions, the NOS programmer must ensure that NOSTEXT is available to the
assembler. When a PPU, CIPPU, or PERIPH (Eeudo instruction is in the first statement group, the
assembler identifies each symbolic instruction by name and generates a one word or two word object code
machine instruction mder control of the current origin, location, and position COIDlters. All PP code is
absolute. Numeric data mt5t be in integer notation. Floating point notation is illegal.

NOTE

No special job validation is required to assemble peripheral processor programs, but to be
executed, such programs require system origin privileges.

I

Some instructions in existing COMPASS programs are not valid for execution on models 810, 815, 825, 830,
835, 840, 845, 850, 855, 860, 865, 875, and 990. To detect these instructions, the i:rogrammer can specify I
S=AIDTEXT in the COMPASS control statement. COMPASS prints a listing of the program, flagging the
invalidated instructions with a type 0 error. S=AIDTEXT should not be specified if the 8 option is chosen
for the MACHINE pseudo instruction.

9. 1 MACHINE INSTRUCTION FORMATS (12-BIT MODE) I
An assembled instruction has a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation code f and
a 6-bit operand d. A PP accomplishes program indexing and manipulates operand> in several modes. The
12-bit and 24-bit irntruction formats provide for 6-bit, 12-bit, or 18-bit operand;· and 6-bit or 12-bit
addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit instruction format,
respectively.

operation
code

11 5

(P) f

60492600 M

0
d I

Direct Mode:

d = memory address of operand

In<lrect Mode:

d = memory address of the address of the
operand

No Adcress Mode:

d = 6-bit operand, shift count, or relative
adcress

Other:

d = special value; for example, channel
designator

Figure 9-1. PP 12-bit Instruction Format

9-1

operation
code

11 5 4 0

<P>(___ r _ ___,f.___..! __ d ____ f

11 0

Indexed Mode:

f = operation code (7 bits for
CCF, CFM, SCF, SFM; 6 bits
for all others)

d = address of the index for
modifying the address of the
operand

m = base address of the operand

(d) + m = address of operand

Constant Mode:

dm = 18-bit operand

Other:

dm = special values; for
example, d =channel
designator and m = 12-bit
address of word count on
JAM and OAM imtructiom

Figure 9-2. PP 24-bit Imtruction Format

The 24-tit format mes the 12-bit quantity m, which is the contents of the next program address (P + 1),
with d or the contents of d to form an 18-bit operand or a 12-bit operand address.

I The central memory access imtructions for models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865,
875, and 990 provide the capability of reading and writing central memory words to and from the PP
memory.

I

The R register is a 22-bit register med to accomplish address relocation during central memory read and
write instructiom. This relocation occurs only if bit 17 of the A register is set to one.

When relocation is to be done, the aooolute ceritraI memory address is formed by appending six zeros to the
lower end of the contents of the R register and adding to the result bits 0 through ~6 of the contents of the
A register. Figure 9-3 illuc;trates this process.

21

9-2

0

R I 000000

A

0

Relocation register with
6 zero bits concatenated

plm
Low order 17 bi ts of A
register

Figure 9-3. Central Memory Access Imtruction Address Relocation
(Models 810, 815, 825; 830, 835, 840, 845, 850, 855, 860, 865, 875, and 990)

60492600 M

9.1.1 MACHINE INSTRUCTION FORMATS (16-BIT MODE)

An assembled instruction has a 12-bit, 16-bit, 24-bit, or 32-bit format. The specific format is determined
by the t5e of the Psuedo Op; PERIPH and PPU (12-bit and 24-bi t) and CIPPU (12-bi t, 16-bi t, 24-bi t, and
32-bit combined). In 16-bit mode, an assembled instruction has a 16-bit or 32-bit format. The operation
code, f, is 10 bits, and dis a 6-bit operand. In the 32-bit format mis t5Ually treated as a 16-bit operand
but in constant mode addressing only the lower 12-bi ts are t5ed. The additions of the character L to the
COMPASS opcode, where supported, sets the upper-most bit off. When this bit is not set, the instruction
is identical to the corresponding 12-bit or 24-bit instruction. When it is set, the instruction uses all 16-bits
of a PP word whether it is specified by d,m or a com bi nation of the two. Figures 9-4 and 9-5 illustrate the
16-bit and 32-bit formats.

15

(P) f

60492600 M

5 0

d

Direct Mode:

f = lOXX, identifies the instruction
as CY180 16-bit

d = memory address of a 16-bit
operand

Indirect Mode:

f = lOXX, identifies the instruction
as CY180 16-bit

d = memory address of a 16-bit
operand

No Add-ess Mode:

f = identical to CYl70 mode

d = identical to CYl 70 mode

Other:

d = special value; for example,
channel designator

Figtre 9-4. PP 16-bit Instruction Fonnat

9-2.1 •

15 5 0

(P) f d

15 0

<P+1>~I ______________ m ______________

Indexed Mode:

f = OOXX; 11 bits for CCF, CFM,
SCF, SFM; 10 bits for all others

f = lOXX; identifies the instruction
as a CY180 PP

d = address of the index for
modifying the address of the
operandf

m = base address of the operand tt

(d)tm = address of an operandtt

Constant Mode:

dm = 18-bit operand. The upper 4
bi ts of m are not used.

Other:

dm = special values; for example,
d = channel designator and
m = 16-bit address on AJM,
IJM, FJM and EJM
instructions, or d = channel
designator and m = 16-bit
address of data buffer on IAM
and OAM instructions.

Special Formats:

The FNCL instruction will support a
16-bit m field. However, the f
portion will still be 0077 8. This
compensates for a CY180 PP
hardware difference wherein the
1077 op code is used to "idle" a PP.

tThe contents of the index operand (d)
are taken as a 12-bi t value if
f = OOXX and as a 16-bit value if
f = lOXX.

ttThe contents of m are taken as a
12-bit value if f = OOXX and as a
16-bit value if f = 1 OXX.

Figure 9-5. PP 32-bit Instruction Format

9.2 SYMBOLIC NOTATION

This section describes notation used for coding symbolic PP machine instructions. Instructions are
described in octal operation code sequence which generally reflects the mode of addressing.
Instructions unique to a computer system are identified as such.

9-2.2 60492600 M

The location field of a symbolic PP machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter.

The operation field of a symbolic PP machine instruction contains a three- or four-character name.

The variable field contains one or two subfielm. Each subfield contains an absolute or relocatable
expression that reduces to a 6-bit, 12-bit, 16-bit, or 18-bit value.

Designators used in this section are listed in table 9-1.

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A

c

d

m

p

Q

r

R

()

(())

18-bit A register.

An expression that reduces to an 18-bit. operand value.

A 6-bit operand or operand address expression. This field is 5
bits long for the SCF, CCF, SFM, and CFM instructions.

A 12-bit or 16-bit expression value used with d or (d) to form
an 18-bit operand or an operand address.

12-bit Program Address register.

12-bit Q register.

An expression that reduces to a 6-bit value (-37
8

.5_ r .5_ 378)
specifying relative address or shift count.

22-bit R register.

Contents of a register or location.

Refers to indirect addressing.

Generally, the third character of the instruction mnemonic (N, D, M, C, or I) indicates the mode of
addressing:

N No operand address reference

-D Direct operand address: d contains operand

M Memory address m or m + (d) contains operand

C 18-bit constant

I Indirect; operand address is (d)

Some PP imtructions can be executed only on specific machine models. Table 9-2 lists each instruction
and the machine models to which it correspond:;.

60492600 M 9-3

I

I

I

TABLE 9-2. PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE

Machine Model Number

Mnemonic 810, 815, 825, 830,
171, 172, 173, 174, 175,

Code 720, 730, 740, 750, and 760;
835, 840, 845, 850, 855, 76 and 7600 71, 72, 73, and 74; and

176

860, 865, 875, and 990 6000 Series

ACN x x x
ADC x x x x
ADD x x x x
ADDL x
ADI x x x x
ADIL x
ADM x x x x
ADML x
ADN x x x x

AJM x x x
AOD x x x x
AODL x
AOI x x x x
AOIL x
AOM x x x x
AOML x
CCF x
CFM x

CRD x x x
CRDL x
CRH x x x
CRML x
CWD x x x
CWDL x
CWM x x x
CWML x
DCN x x x
EIM x

EJM x x x
EOM x
ERNt
ESN x
ETNt
EXN x x x

FAN x x x
FIM x
FJM x x x
FNC x x x
FOM x
FCJM x

9 9-4. 60492600 M

TABLE 9-2. PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd)

Machine Model Number

Mnemonic 810, 815, 825, 830,
171, 172, 173, 174, 175,

Code 835, 840, 845, 850, 855, 76 and 7600 720, 730, 740, 750, and 760; 176
71, 72, 73, and 74; and

860, 865, 875, and 990 6000 Series

FSJM x
IAM x x x x
IAPM x

IAN x x x x
IJM x x x
INPN x
IRM x
LCN x x x x
LDC x x x x
LDD x x x x
LDDL x

LDI x x x x
LDIL x
LDM x x x x
LDML x
LDN x x x x
LJM x x x x
LMC x x x x
LMD x x x x
LMDL x

LMI x x x x
I.MIL x
LMM x x x x
LMML x
LMN x x x x
LPC x x x x
LPDL x
LPIL x
LPML x
LPN x x x x
LRD x

MAN x xtt x
MJN x x x x
MXN x
NIM x
NJN x x x x
NOM x

OAM x x x x
OAPM x
OAN x x x x
ORM x
PJN x x x x
PSN x x x x
RAD x x x x
RADL x

60492600 M 9-4.1/9-4.2 e

TABLE 9-2. PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd)

Machine Model Number -

Mnemonic 810, 815, 825, 830, 171, 172, 173, 174, 175,
Code 835, 840, 845, 850, 855, 76 and 7600 720, 730, 740, 750, and 760; 176

71, 72, 73, and 74; and 860, 865, 875, and 990 6000 Series

I

RAI x x x x
RAIL x
RAM x x x x
RAHL x
RDCL x
RDSL x
RFN x
RJM x x x x
RPN x x
SBD x x x x
SBDL x

SBI x x x x
SBIL x
SBM x x x x
SBML x
SBN x x x x
SCF x
SCN x x x x
SFM x

SOD x x x x
SODL x
SHN x x x x
SOI x x x x
SOIL x
SOM x x x x
SOML x
SRD x
STD x x x x
STDL x

STI x x x x
STIL x
STM x x x x
STML x
UJN x x x x
ZJN x x x x

t6416 only.
ttNot supported for 6000 Series.

60492600 M 9-5 e

I

I

I

Some of the instructions provide similar functions using different modes of addressing. They can be
grouped according to function as shown below:

9-6

Function

Data
transmission

Arithmetic

Logical

Description

The following instructions either load data into the A register or
store data from it. A load instruction loads a 6-bits 12-bit, 16-bit,
or 18-bit value as indicated by the instruction; any remaining upper bits of A are
zeroed, except for the LCN. instruction, for which remaining bits are set to one.

A store instruction stores the lower 12 bit, or 16 bits of the A register contents into a
memory location indicated by the instruction.

The contents of A are not altered.

Instruction Octal Code Instruction Octal Code

LDN 14 STM 54
LCN 15 LDDL 1030
LDC 20 STDL 1034
LDD 30 LDIL 1040
STD 34 STD., 1044
LDI 40 LDML 1050
STI 44 STML 1054
LDM 50

A PP arithmetic instruction adds or subtracts a 6-bi t, 12-bi t, 16-bi t, or 18-bi t
quantity from the contents of the A register and enters the result in A.

Instruction Octal Code Instruction Octal Code

ADN 16 SBM 52
SBN 17 ADDL 1031
ADC 21 SBDL 1032
ADD 31 ADIL 1041
SBD 32 SBIL 1042
ADI 41 ADML 1051
SBI 42 SBML 1052
ADM 5.1

A logical instruction forms a logical value in A IBing the contents of A as one of the
operands and a 6-bit, 12-bit, 16-bit, or 18-bit value indicated by the imtruction as
the second operand. When the second operand is fewer than 18 bits, the remaining
upper bits of A are unaltered, except for the LPN instruction for which the upper 12
bits are zeroed.

Formation of a logical difference is equivalent to setting each bit in A that is unlike
the corresponding bit in the second operand. For example:

Initial (A)
Operand

Final (A)

= 0101
= 1100

= 1001

Formation of a logical product is equivalent to setting a bit in A when the original
setting of the bit in A and the corresponding bit in the second operand are both ones.

60492600 M

Replace

For example:

Initial (A)
Operand

Final (A)

= 0101
= 1100

= 0100

A selective clear sets a bit zero in the A register wherever a bit is set in the second
operand. For example:

Initial (A)
Operand

Final (A)

= 0101
= 1100

= 0001

Logical instructions include the following:

Instruction

LMN
LPN
SCN
LPC
LMC
LMD
LMI

Octal Code

11
12
13
22
23
33
43

Instruction

LMM
LPDL
LPIL
LPML
LMDL
LMIL
LMML

Octal Code

53
1022
1023
1024
1033
1043
1053

A replace instruction performs an arithmetic operation and returns the·results to
the A register and the memory location from which one operand was obtained. The
lower 12 bits or 16 bits of the result replaces the operand obtained from a memory I
location. Replace instructions include the following:

Instruction Octal Code Instruction Octal Code

RAD. 35 RADL 1035
AOD 36 AODL 1036
SOD 37 SODL 1037
RAI 45 RAIL 1045
AOI 46 AOIL 1046
SOI 47 SOIL 1047
RAM 55 RAML 1055
AOM 56 AOML 1056
SOM 57 SOML 1057

9.2.1 BRANCH INSTRUCTIONS

For branch instructions, the r subfield is a numeric value that indicates the number of locations to be
jumped (maximum 31). When r is positive (01 through 37g), the jump is forward r locations. When r is
negative (-76g through -40g), the jump is backward 77g-r locations. In the following tests, negative
zero (777777) is nonzero. For conditional instructions, when the test condition is true, the jump takes
place. When the condition is not met, execution continues with the next instruction.

60492600 M

NOTE

The jump count must not be 00 or 77. If it is, execution
loops on the jump instruction.

9-7

I

The J option of the PPU instruction and the PERIPH instruction (chapter 4) cause the value of the location
counter to be subtracted from the value of the symbolic address (tag) before it is placed in the d field of
the object code instruction.

Format:

Operation Variable Description Size Octal Code

LJM m,d Long jump to m+(d); if d =- O, m is not 24 or
modified 32 bits Oldm

RJM m,d Return jump to m+(d); Store P+2 at m+(d) 24 or
and jump to m+(d)+l. 32 bits 02dm

UJN rt Unconditional jump to P~ r locations 12 bits 03d

UJN tag Unconditional jump to tag 12 bits 03d

ZJN rt Zero jump; jump to P; r locations if
(A) == 0 12 bits 04d

ZJN tag Zero jump to tag 12 bits 04d

NJN rt Nonzero jump; jump to P~ r locations if
(A) Io 12 biti:: 05d

NJN tag Nonzero jump to tag 12 bits· 05cl

PJN rt Positive jump; jump to P_:_r locations if
(A)~O 12 bits 06d

PJN tag Positive jump to tag 12 bits 06d

MJN rt Minus jump; jump to P .:.:,r locations if
(A)<O 12 bits 07cl

MJN tag Minus jump to tag 12 bits 07d

t If PPU J or PERIPH J option has been selected, r is not valid. The contents of the variable
field must be a symbolic address (tag).

9 ... 9
60492600 M

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 lJo

f'l 10 0 n62 LJM ST AP.T I

I

0271 0000 QJM o,r.rn I
I

0"!71 UJ"I TIH;1-• I

I
0£.f'll+ 7JN •4 I
oc;2c; NJN rar,:i; I

I
Qflf,7 PJ .. f TA(j?-• I

I
'1726 HJN TAGt. I

In the above example, the LJM instruction is at address 0014a. TAGl is address00129, TAG2 has a
value of 13s, TAG3 has a value of 258, and TAG4 has a value of 26a.

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 '30
PPtJ ... I

I
I
I

0347 lJJN TAr.1 I
7JN T ft[, "l I In this example, the UJN is ·at

I address 0040. TAGl is address
05% NJM fl\r.?+11 I 0010, TAG2 is 0011, TAG3 is

I address 0045, and TAG4 is
060? PJ"f -1+TAG4 I address 0046.

HJN ur.1 I

9.2.2 SHIFT INSTRUCTION

The SHN instruction shifts the contents of the A register right or left r places. If r is positive +1 to +31),
the shift is left circular r places; if r is negative (-31 ·to -1), the shift is end off r places to the right with no
sign extension. No shift takes place when r is _: O. The assembler places the value of the r expression in
the d field. If -31> r >31, the assembler generates an address error.

Format:

Operation Variable Description Size Octal Code

SHN r Shift (A) by + (left) or - (right) r bits 12 bits lOd

60492600 H 9-9

Example:

1. Shift contents of A left circular 6 places

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 11 Tlo
..1.

SHN G I

2. Shift contents of A right end off 6 places

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II IB TJo
...L

1071
6 SCNT SET 6 I

SHN -SCNT I
I

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit positive
operand. This mode eliminates the need for storing many constants in memory.

Format:

Operation Variable

LMN d

LPN d

SCN d

LDN d

LCN d

ADN d

SBN d

Example:

Code· Generated

9-10

1112

1~07

13?1

1415

151.4

1601

1102

1 c;

Description Size Oct.:11 Cod<.'

Logical difference (A)-d -A 12 bit:-: Uri

Logical product (A) *d - A 12 hit:-: 12d

Selective clear (A) 12 bit:-: 13cl

Load d-A 12 bit~ 14cl

Load complement cl --A 12 biti-: 15cl

Add (A)+d-A 12 bits 1 (ict

Subtract (A)-d-A 12 bit~ 17d

LOCATION OPERATION VARIABLE COMMENTS

I II II '30
l~~ t2R I

I
LPN 7 I

I
~r,N 21P I

AA SE"T p:;g I
l"lN ftA

I
LCN AA-t I
AON .1 I

I
~AN ? I

60492600 H

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d and m fields are taken directly as an
operand. This mode also eliminates the need for storing many constants. The assembler reduces absolute
or relocatable expression c to an 18-bit value and stores the upper six bits ind and the lower 12 bits in m.

Format:

Operation Variable Description Size Octal Code
- - -- - ---·-- ·--· ------- -

LDC c Load c-A 24 bits 20clm

ADC c Add (A)+c -A 24 bits
I

21clm

LPC c Logical product (A) *c -A 24 bit~ ! 22dm

LMC c Logical difference (A)-c -A 24 hit8_l 23clm

------- ···------ _._._ _________ ----- ---

Example:

Code Generated . LOCATION OPERATION VAllAILE COMMENTS

I II II 130
2070 7070 Lnr. 707fl70q 1

I
0 Vl\l = 0 I

AOC VAL-1
I
I 2177 717&
I

2?07 0707 LPr, 07Q70.7" I
I

70707 Mft~I(!;FT 070707'1 I

LHC MA~K I
I

2307 0107

9.2.5 NO OPERATION INSTRUCTION

The PSN instruction specifies that no operation is to be performed. It provides a means of padding a
program.

I

I

For the models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875, and 990 the variable field of the I
PSN instruction must be blank. Otherwise it is interpreted as an LRD instruction.

Format:
---------- --------

Operation Variable Description Size Octal Code
--

PSN No operation (Pass) 12 bits 2400
_______________ .__ ______ ~- -

Example:

·Code Generated LOCATION OPERATION VAlllAILE COMMENTS

I . II II !Jo

: 2400 PSN -;-

60492600 M 9-11

I

Other octal operation codes (not generated by COMPASS) that act as pass instructions are:

00

CYBER 180 Series; CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series

25 (2500 for Models 810, 815, 825, 830, 835, 840, 845, 850, 855,
860, 865, 875, and 990)

2700 (Models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865,
875, and 990 only)

9.2.6 LOAD AND STORE R REGISTER INSTRUCTIONS

CYBER 70
Model 76 and 7600

25
27

76

The LRD instruction loads the R register. Bits 0 through 11 of the R register are loaded from d+l; bits 12
through 21 of R are loaded from bits 0 through 9 of d.

SRD stores the contents of the R register into d and d+l. Bits 0 through 11 of R are stored into d+l; bits
12 through 21 of R are stored into bits 0 through 9 of d.

If the variable field is set to zero, LRD and SRD execute as pass imtructiom.

Format:

Operation Variable Description Size Octal Code

LRD d Load (R) from d and d+l 12 bits 24d

SRD d Store (R) into d and d+ 1 12 bits 25d

Example:

Code Generated
LOCATION OPERATION VARIABLE COMMENTS

I II 18 J 30

I

2400 LRD I PASS INSTRUCTION
I

2500 SRD I PASS INSTRUCTION
I

2412 LRO 128 I
I

2512 SRO 128 I
I

9-12 60492600 M

9.2.7 EXCHANGE JUMP INSTRUCTIONS

The EXN instruction transmits an 18-bit (at:Eolute) address from the A register to the CPU with a signal
notifying the CPU to execute an exchange jump. The address in A is the starting location of the 16-word
exchange package which contains information about the CPU program to be executed. The 18-bi t initial
address must be entered in A before the EXN instruction is executed. The CPU replaces the file with
similar information from the interrupted CPU program. The PP is not interrupted. The EXN instruction
does not affect the monitor flag bit.

The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity. If the
monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor flag bit is
set, this instruction acts as a pass instruction. The starting address for this exchange is the 18-bit address
in the PP A register. This address must be entered in A before the MXN instruction is executed.

Execution of MAN resembles MXN. However, the exchange package address is taken from the 18-bit
Monitor Address (MA) register in CPU d, rather than from the PP A register.

In a system with dual central processors, d can be 0 or 1 and specifies which CPU the exchange jump will
interrupt. In single processor systems, this value is not interpreted.

Format:

Operation

EXN
MXN
MAN

Example:

Code Generated

2601

2610

- 2623

60492600 M

Variable

d
d
d

I

Description Size Octal Code

Exchange jump CPU d to (A) 12 bits 2GOd
Monitor exchange jump CPC d to (A) 12 bits 2Glcl
Monitor exchange jump C Pl' d to (l\IA) 12 bits 262cl

LOCATION OPERATION VARIABLE COMMENTS

II 18 '30

EXN 1 I
I

MXN 0 I
M-N 3 I

!
I

9-12.119-12.2 I

9.2. 7 .1 INTERRUPT PROCESSOR

The INPN instruction transmits an interrupt signal for the CPU on the memory port specified by d. The
interrupt signal is transmitted by the memory port interface provided to transmit interrupts between
processors. This interrupt signal cauc;es the External Interrupt bit to be set in the CPU Monitor Condition
Register. Execution of this instruction is delayed until all previow; central memory accesses made by the
interrupting processor are complete.

Format:

Operation Variable Description Size Octal Code

INPN d Interrupt d 16-bits 1026d

9.2.8 READ PROGRAM ADDRESS INSTRUCTION

This instruction transfers the contents of the CPU P register to the PP A register; this allows the PP to
determine whether the CPU is in execution. In a dual central processor system, the lowest order bit of the
instruction format specifies which CPU P register is to be examined. This bit is not interpreted for a
single central processor system.

Format:

Operation Variable Description Size Octal Code

RPN d Head program address CPL. cl - A 12 bits 270cl

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II Ill TJo

27C e RPM T

I

60492600 M 9-13

For the 6000 and CYBER 70 Series, the largest value that (P) can be is 17 bits. An ECS transfer is in
progress when bit 17 of the A register is set. For the CYBER 170 series, the P register is 18 bits.

I The RPN instruction is not valid for the models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, and 990.
The 2700 octal code executes as a pass instruction.

9.2.9 6416 PP INSTRUCTIONS

COMPASS assembles the following instructions for execution on a 6416 computer system only. The ETN
instruction initiates memory transfer operations by transmitting an 18-bit address from the PP A register
to the 6416 16K memory. This address points to a word having the following format:

59

c XO

Starting Address
in ECS

35 17

AO _[
Starting Aclclress
in 16 K Memory

K

Word Count

Expression d of this instruction specifies the transfer to be performed:

• If d is 0, K words are transferred from ECS to 16K memory.

• If d is 1, K words are transferred from 16K memory to ECS.

Note that addresses contained in the word are absolute addresses. Operating systems may require
relocation (adding RA to an address) and field length testing, e.g., Is address + RA> FL? The Exchange
Jump package contains RA and FL values for central memory and for extended memory. The 6416 has no
hardware for automatic relocation and field length testing; it is therefore incumbent upon the program to
perform these functions whenever required by an operating system.

The ERN instruction examines the status of the data trunk between 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d portion of
this instruction is ignored.

After execution of this instruction the program would typically test the A register for a sign before
executing an instruction that initiates an ECS operation.

Format:

Operation Variable Description Size Octal Code

ETN d Extended core transfer 12 bits 260d

ERN d Read extended core coupler status 12 bits 270d

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 '30
2~00 i:lN T

I
I

~ ~ ~, I ?7 r:rJ

9-14 60492600 M

9.2.10 DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during irntruction execution, the contents of the d field specify the address of the operand.
During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that specifies
one of the first lOOg addresses in memory (0000 through 0077 9). During instruction execution, (d) is
treated as a positive 12-bit quantity.

Format:

Operation Variable Description Size Octal Code

LDD d Load (d)-A 12 bits 30d

ADD d Add (A)+ (d)-A 12 bits 31d

SBD d Subtract (A)- (d)-A 12 bits 32d

LMD d Logical difference (A) and (d)-A 12 bits 33d

STD d Store (A)-d 12 bits 34d

RAD d Replace add (d) + (A)- d and A 12 bits 35d

AOD d Replace add (d) + 1- d and A 12 bits 36d

SOD d Replace subtract one (d) - 1- d and A 12 bi ts 37d

LPDL d Logical product of (A)* d-A 16 bits 1022d

LDDL d Load (d)-A 16 bits 1030d

ADDL d Add (A) + (d)-A 16 bits 1031d

SBDL d Subtract (A) - (d) -A 16 bits 1032d

LMDL d Logical difference (A) and (d)-A 16 bits 1033d

STDL d Store (A)-d 16 bits 1034d

RADL d Replace add (d) + (A)-d and A 16 bits 1035d

AODL d Replace add (d) + 1-d and A 16 bits 1036d

SODL d Replace subtract one (d)- 1-d and A 16 bits 1037d

60492600 M 9-15.

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 [Jo

3012 LOO TAG1 I

3103 1\00 TAf,2-108

321t0 ~:)r) 4i)q

13?7 LMO l.'\i;1+1S6

~401 STQ t

:~5r;5 RArl c;c; R

3612 ~00 TAG1
I

3713 sno TJ\G2 I
I

9.2.11 INDIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, d specifies an address, the contents of which specify the address
of the desired operand. Thus, d specifies the operand address indirectly.

During assembly, the assembler reduces aooolute or relocatable expression d to a 6-bit value that specifies
one of the first 1008 addresses in memory (0000 through 00778). ·

On the 7600 (or CYBER 70 Model 76), the address formed permits referencing of memory locations 0000
through 7776g. Location 7777 8 cannot be referenced.

On a 6000 Series Computer System (as well as CYBER 180 Series or CYBER 170 Series or CYBER 70 Model
71, 72, 73, or 74) PP, the address fanned in indirect address mode permits ·referencing of all memory I locations. ·

9-16 60492600 M

Format:

Operation Variable Description Size Octal Code

LDI d Load ((d)) -A 12 bits 40d

ADI d Add (A) + ((d)) -A 12 bits 4ld

SBI d Subtract (A)- ((d))-A 12. bits 42d

LMI d Logical difference (A) - ((d))-A 12 bi ts 43d

STI d Store (A) - (d) 12 bits 44d

RAI d Replace add ((d)) + (A) - (d) and A 12 bi ts 45d

AOI d Replace add one ((d)) + 1 - (d) and A 12 bits 46d

SOI d Replace subtract one ((d)) - 1 - (d) and A 12 bits 47d

LPIL d Logical product of (A) * d -A 16 bits 1023d

LDIL d Load ((d))- A 16 bi ts 1040d

ADIL d Add (A) + ((d))-A 16 bits 104ld

SBIL d Subtract (A) - ((d)) -A 16 bi ts 1042d

LMIL d Logical difference (A)- ((d))-A 16 bits 1043d

STIL d Store (A) - (d) 16 bi ts 1044d

RAIL d Replace add ((d)) +(A) - (d) and A 16 bits 1045d

AOIL d Replace add one ((d)) + 1 - (d) and A 16 bi ts 1046d

SOIL d Replace subtract one ((d)) - 1 - (d) and A 16 bits 1047d

Example:
-

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II II bo

I+ I) 1 2 Lnt f I\ r, t I

4103 ft!)! fAf,2-tlJ

4240 ~nr 4~P

U1T ~AG!+1c;n

t+t+01 'Tl 1

PAI c;c; R

1+612 t\Ot TAG1

(+ 71 3 sot Tt\G?

60492600 M 9-16.1 •

9.2.12 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, The value formed by m + (d) is 1.l')ed as the address of the
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 1008 addresses in memory (0000 through 00779). The value of at:Eolute or
relocatable expression m is a base address.

NOTE

For all PPs except CYBER 180 model 990 and certain
model 840, 850, and 860 systems, the address formed in
indexed addressing permits referencing of all memory
locations but one (0000 through 77768). Although m
and/or (d) can have a value of 7777 9, the computer
system does not permit m + (d) to reference address
11118•

When in indexed direct address mode, if dis nonzero the contents of address dare added to m to produce a
12-bit operand address (indexed addressing). If dis zero, m is taken as the operand address.

Format:

Operation Variable Description Size Octal Code

LDM m,d Load (m + (d))- A 24 bits 50dm

ADM m,d Add (A)+ (m + (d))-A 24 bits 51dm

SBM m,d Subtract (A) - (m + (d))- A 24 bits 52dm

LMM m,d • Logical difference (A) - (m + (d))-A 24 bits 53dm

STM m,d Store (A) - m + (d) 24 bits 54dm

RAM m,d Replace add (m + (d)) + (A) - m + (d) and A 24 bits 55dm

AOM m,d Replace add one (m + (d)) + 1 - m + (d) and A 24 bits 56dm

SOM m,d Replace subtract one (m + (d)) - 1 - m + (d) and A 24 bits 57dm

LPML m,d Logical product (m + (d))-A 32 bits 1024dm

LDML m,d Load (m + (d))-A 32 bits 1050dm

ADML m,d Add (A)+ (m + (d))-A 32 bits 105ldm

SBML m,d Subtract (A) - (m + (d)) - A 32 bits 1052dm

LMML m,d Logical difference (A)- (m + (d))-A 32 bits 1053dm

STML m,d Store (A) - m + (d) 32 bits 1054dm

RAML m,d Replace add (m + (d)) + (A) - m + (d) and A . 32 bits 1055dm

AOML m,d Replace add one (m + (d)) + i - m + (d) and A 32 bits 1056dm

SOML m,d Replace subtract one (m + (d)) - 1 - m + (d) and A 32 bits 1057dm

• 9-16.2 60492600 M

Example:

LOCATION OPERATION VARIABLE COMMENTS

Code Generated
I II 18 T 30

5077 0203 LOH TAGo,178 I
I

5106 0202 AUM ! T AG5, b
I
I

5200 0202
i I I ~t:H1 I TAG5 I

5315 700U I U1M IOOOtJ,158 I
r

5410 0272 ~1~ TAG?+ i' 0 B, TAG 1- 2

5501] 0 34 !

5600 0173

I
RAH I 140S+IAG5,0 1

AOM -10B+TAC,b I

5712 0203 I I
TAGot 1AG1 I

~UM ! I

9.2.13 CENTRAL READ/WRITE INSTRUCTIONS (12-BIT MODE)

The CRD instruction transfers a 60-bit word from central memory to five consecutive PP locations. The
18-bi t address of the central memory location mtst be loaded into A prior to executing this instruction.
(Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit words beginning at
the left. Location d receives the first 12-bit word. The remaining 12-bit words go to successive locations.
The contents of A are not altered.

The CRM instruction reads a block of 60-bit words from central memory. The contents of location d give
the block length. The 18-bit address of the first central word must be loaded into A prior to executing this
instruction. (Note that this is an al:Eolute address.) During the execution of the instruction, the contents
of P go to processor address 0 and P holds m. Also, the block length (from d) goes to the Q register where

60492600 M 9-17

I

it is reduced by one as each central word is processed. The original content of P is, restored at the end of
the instruction. The new contents of Pare fetched from word O. If the read operation overwrote the
contents of word O, the restored value of P will be different from the original contents.

The contents of A are incremented by one to provide the next central memory address after each 60-bit
word is disassembled and stored. The contents of the Q register are also reduced by one. The block
transfer is complete when (Q)=O. The block of central memory locations proceeds from address (A) to
address (A)+(d)-1. The block of processor memory locations proceeds from address m to m+5(d)-l.

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The first
word is stored at processor memory location m. The content of P (which is holding m) is advanced by one
to provide the next address in the processor memory as each 12-bit word is stored. If P overflows,
operation continues as P is advanced from 7777 8 to 00008· These locations will be written into as if
they were consecutive.

The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word in
central memory. The 18-bit address word designating the central memory location must be in A prior to
execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears as the higher
order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken from
successive addresses.

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content
of location d gives the number of 60-bit words. The content of the A register gives the beginning central
memory address. (Note that this is an absolute address.) During the execution of this instruction (P) goes
to processor address O, and P holds m. Also, (d) goes to the Q register, where it is reduced by one as each
central word is assembled. The original content of P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word to be read out of the
processor memory. This word appears as the higher order 12 bits of the first 60-bit word to be stored in
central memory.

The content of Pis advanced by one to provide the next address in the processor memory as each 12-bit
word is read. If P overflows, operation continues as P is advanced from 7777 8 to 00008. These
locations will be read from as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 60-bit word is assembled.
Also, Q is reduced by one. The block transfer is complete when (Q)=O.

Format:

Operation Variable Description Size Octal Code

CRIJ d Central read from (A) to d 12 bits 60d

CRM m dt Central read (d) CM words beginning ,
at CM (A)-+ PP m 24 bits 6ldm

CWD d Central write from d to (A) 12 bits 62d

CWM m dt , Central write (d) words beginning
at PP m-+CM (A) 24 bits 63dm

tE . d. . d xpress1on is require •

9-18 60492600 H

Example:

Code Gene rated

6015

6125 0012

6232

6350 0012

I

LOCATION OPEIATION

II

CRO

CRH

cwo

CWH

VARIABLE COMMENTS

II [Jo

1se T

I
I

TAG1,(.>c;9 I
I

32R I
I

TAG1,50B I
I

9.2.14 CENTRAL READ/WRITE INSTRUCTIONS (16-BIT MODE)

The CRDL instruction transfers a 64-bit word from central memory to four consecutive PP locations. The
al:Eolute address of the central memory word to be transferred must be loaded in the A and R registers
prior to executing this instruction. The 64-bit word is disassembled into four 16-bit words beginning at the
left. Location d receives the first 16-bit word. The remaining 16-bit words go to successive locations.
The contents of the A and R registers are not altered.

The CRML instruction reads a block of 64-bit words from central memory. The contents of location d give
the block length. The absolute address of the first central memory word of the block must be loaded into
the A and R registers prior to executing this instruction. During the execution of this instruction the
contents of P go to processor address O, and P holds m. Also, the block length (from d) goes to the Q
register where it is reduced by one as each central word is processed. The original contents of Pare
restored at the end of the instruction. The new contents of P are fetched from word O. If the read
operation overwrote the contents of word O, the restored value of P will be different from the original
contents of P.

The contents of the A register are incremented by one to provide the next central anemory address after
each 64-bit word is disassembled and stored (note that the R register is not automatically incremented).
The contents of the Q register are also reduced by one. The block transfer is complete when (Q) = 0. The
block of central memory locations proceeds from address (A) + (R) to address (A) + (R) + (d) - 1. The block
of PP memory locations proceeds from address m to address m + 4 (d) - 1.

The R register is not automatically updated, which places a limitation on the central memory word count
and address ranges that can be used with this instruction. A central memory transfer must oe within any
given 131,072 64-bit word block from address (R) + 0 to (R) + 377777 (octal). The A register is used to
establish the address of the next central memory word, and the upper-most bit of A enables the addition of
(R) +(A) to form the address. If (A) are incremented through 777777 to O, the addition of (R) to (A) for the
address is disabled. This may result in the transfer of the wrong central memory words.

Each central word is disassembled into four 16-bit words beginning with the high-order bits. The first word
is stored at PP location m. The content of P (which is holding m) is advanced by one to provide the next
address in PP memory as each 16-bit word is stored. If P overflows, the operation continues as P is
advanced through the last-word-address in PP memory to 0000. The last-word-address in PP memory and
address 0000 are treated as if they are consecutive.

The CWDL instruction transfers four consecutive PP memory words to one central memory word. The
address of the first PP word is specified by d. The address of the central memory word is specified by the
A and R registers. ·

60492600 M 9-19.

The CWML instruction assembles a block of 64-bit words and writes them in central memory. The content
of location d gives the number of 64-bit words. The content of the A and R registers give the beginning
absolute central memory address (refer to transfer restrictions above). During execution of this instruction
(P) goes to PP location O and P holds m. Also, (d) goes to Q where it is reduced by one as each central word
is ass em bled. The original content of P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word to be read out of PP
memory. This word appears as the high-order 16 bits of the first 64-bit word to be stored in central
memory.

The content of P is advanced by one to provide the next address in PP memory as each 16-bit word is read.
If P overflows, the operation continues as P is advanced through the last-word-address of PP memory to
address 0000. These locations will be read as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 64-bit word is assembled.
Also, Q is reduced by one. The block transfers is complete when (Q) = 0.

The RDCL instruction performs a logical "AND" function between four consecutive PP memory words and
one central memory word with the result replacing the central memory word. The original contents of the
central memory word replaces the four PP memory words. The address of the first PP word is specified by
d. The address of the central memory word is specified by the A register.

The RDSL instruction performs a logical "OR" function between four consecutive PP memory words and
one central memory word with the result replacing the central memory word. The original contents of the
central memory word replaces the four PP memory words. The address of the first PP word is specified by
d. The address of the central memory word is specified by the A register.

Format:

Operation Variable Description Size Octal Code

CRDL d Central read from (A) to d. 16 bits 1060d

CRML m,d Central read (d) CM words beginning at 32 bits 1061dm
CM (A) to PP m.

CWDL d Central write from d to (A). 16 bits 1062d

CWML m,d Central write (d) words from PP m to 32 bits 1063dm
CM (A).

RDCL d Central read and clear lock from d to (A). 16 bits lOOld

RDSL d Central read and set lock from d to (A). 16 bits lOOOd

• 9-20 60492600 M

9.2.15 1/0 BRANCH INSTRUCTIONS

The following instructions are conditional long jump imtructions, each of which tests for a condition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not met,
execution continues with the next instruction. The d expression is required.

For the FJM instruction, an input channel is full when the input equipment has sent a word to the channel
register and sets the full flag. The channel remains full until the PP accepts the word and clears the flag.
An output channel remains full when a PP sen<E a word to the channel register and sets the full flag. The
channel is empty when the output equipment accepts the word and notifies the PP.

I

On the models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875,and 990, d muc;t be less than 409. I
Format:

Operation Variable Description Size Octal Code

AJM m,d Jump to m if channel cl active 24 bits G4dm

IJl\I m,d Jump to m if channel d inactive 24 bit~ G5dm

FJM m,d Jump to m if channel cl full 24 bits 6Gdm

EJM m,d Jump to m if channel d empty 24 bits 67dm

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 !Jo
6't02 0012 AJf" TAG1,2 '

I
I

6502 0011 IJH TAG2,CHAN-2 I
I

FJH TAG3,4 I

I
n71J'+ 0026 EJH TAGl+,CHAN I

60492600 M 9-20.1

I 9.2.16 1/0 TEST AND SET CHANNEL FLAG INSTRUCTIONS

I

The SCF instruction branches to the location specified by m if the channel d flag is set; otherwise, it sets
the channel flag and exits. The programmer can unconditionally set the channel flag by setting m .to P+2.

The CCF instruction clears the flag in the channel specified by d. The m field is required, but not used.

The SFM instruction branches to the location specified by m if the channel d error flag is set, and clears
the error flag.

The CFM instruction branches to the location specified by m if the channel d error flag is clear; otherwise,
it clears the error flag.

Format:

Operation Variablet Description Size Octal Code tt

SCP m,d Branch tom if channel d flag set 24 bits 644dm

CCF m,d Clear channel d flag 24 bits 654dm

SFM m,d Branch to m if channel d error flag set 24 bits 664dm

CFM m,d Branch to m if channel d error flag clear 24 bits 674dm

FSJM m,c Jump to m if channel c flag set 24 bits 1064X

FCJM m,c Jump to m if channel c flag clear 24 bits 1065X

tThe variable dis a 5-bit field containing the channel number.
ttThe operation code occupies 7 bits.

Example:

LOCATION OPERATION VARIABLE COMMENTS
Code Generated

I II 18 IJo
T

6445 0100 SCF 1008,5

6545 0100 CCF 1008,5

6645 0100 SFM 1008,5

6745 0100 CFM 1ooe,5

6453 0100 SCF 1008,138

6553 0100 CCF 1008,138

6653 0100 SFM 1008,138

6753 0100 CFM 1008,138

9-20.2 60492600 M

9.2.17 1/0 BRANCH INSTRUCTIONS

The following instructions are conditional long jump instructions, each of which tests a condition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not met,
execution continues with the next instruction. These instructions are exclusively 7600 PPU instructions.
The d expression is required.

Format:

Operation Variable Description Size Octal Code

FIM m,d Jump to m on channel d input word flag 24 bits 60dm

EIM · m,d Jump tom if no input word flag on channel d 24 bits 61dm

!RM m,d Jump to m on channel d input record flag 24 bits 62clm

NIM m,d Jump to m if no input record flag on
channel d 24 bits 63clm

FOM m,d Jump to m on channel d output word flag 24 bits 64cbn

EOM m,d Jump to m if no output word flag on
channel d 24 bits G5dm

ORM m,d Jump to m on channel cl output record flag 24 bits 66clm

NOM m,d Jump to m if no output record flag on
channel d 24 bits 67dm

'

Example:

Code Generated LOCATION OPERATIOfll VARIABLE COMMENTS

I II 18 bo
r,oos n£>c:- Ft"" TAG~ ,e; T

6102 1~;r; rn1 Tllf';c; '2

f> 2111 nGf, IRM TAGfi,1

I+ C~H.• SJ:'T 4

6~0r. t"'.'66 tHM TAG6,CHAN

61t15 7000 f'OM 1ooos,1r;e

r,c;oo 1 '5 ?.'5 EO~ 1i.on+uc:;e;, !l

6601 1266 ORM -100A+TAG6,rHAN-J
I

&705 136& NOM fAGf.i ,CHAN+ 1 l

60492600 M 9-21

I

I 9.2.18 A REGISTER INPUT /OUTPUT INSTRUCTIONS

The following instructions transfer a word to or from channel d and the lower 12 bits of the A register.

On the CYBER 70 Model 76 and the 7600, the IAN instruction is not executed until the input channel d
word flag is set. If the flag is not set when the instruction is read, execution halts until an external signal
sets the flag. The input channel d record flag does not affect the IAN execution. The IAN instruction
clears the input channel d word flag and record flag and transmits a resume signal over the input cable
after the word is· entered in the A register.

On the CYBER 70 Model 76 and the 7600, the OAN instruction is not executed while the output channel d
word flag is set. If the flag is set, execution stops until an external resume signal clears the flag. This
instruction sets the output channel d word flag and transmits a work pulse over the output channel cable.

On a CYBER 180 Series; a CYBER 170 Series; CYBER 70 Model 71, 72, 73, 74; or 6000 Series machine,
executing either of these instructions when the channel is inactive causes the peripheral processor to
become inoperative until some other peripheral processor activates the channel or the system is
deadstarted.

I On a CYBER 180 Series, executing either of these instructions causes 16 bits of data to be transferred.

Format:

Operation Variable

IAN d

OAN d

Example:

Code Generated

7003

7 2'1 I+

I

Description Size Octal Code

Input: channel d to A 12 bits 70d

Output: (A) to channel d 12 bits 72d

LOCATION OPERATION VARIABLE COMMENTS

II 18 '30

I~N : T

I

C A'J ICHAN
I ..
I

1
9.2.19 BLOCK INPUT/OUTPUT INSTRUCTIONS

The following instructions transfer a block of 12-bit or 16-bit words on channel d to or from a starting PP
memory location specified by m. The number of words transferred is specified by the contents of the A
register which is reduced by one as each word is transferred. The operation is completed when (A)=O or the

I channel becomes inactive (CYBER 180 Series; CYBER 170 Series; CYBER 70 Models 71, 72, 73, and 74; and
6000 only).

On the CYBER 180 Series; the CYBER 170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
machines, the input operation is complete when the contents of A equal 0 or the data channel becomes
inactive. If the operation is terminated by the channel becoming inactive, the next location in the
processor memory is set to all zeros. The word count is not affected by this empty word. Therefore, the
contents of the A register give the block length minus the number of real data words actually read in.

9-22 60492600 M

During execution of either of these instructons, address 0000 temporarily holds P, while the P register
holds m. The contents of P advance by one to give the address for the next word as each word is
transferred.

If a read operation overwrites word O (address 0000), the restored value of P may be different from the
contents of P before the operation.

NOTE

If this instruction is executed on a CYBER 180 Series;
CYBER 170 Series; a CYBER 70 Model 71, 72, 73, or 74;
or 6000 Series machine when the data channel is
inactive, no operation is accomplished and the program
continues at P + 2. However, the location specified by m
is set to all zeros for the IAM instruction.

On a CYBER 70 Model 76 or a 7600, the IAM instruction is not executed until the input channel d word flag
is set. If the flag is not set when the instruction is read, execution halts until an external signal sets the
flag. The presence of an input channel d record flag is ignored for the first word of the block but
terminates the block input at any word after the first. In this case, the next location in the PP block input
storage area contains a noise word; any remaining locations are unaltered. Note that the storage location
can be incremented through location 77766 to 000 8 on a 7600 (or CYBER 70 Model 76), or location
77778 throu~h 0000 on a 6000 Series machine (or a CYBER 170 Series; CYBER 70 Model 71, 72, 73, or I
74), or location 17777 8 to 0000 on a CYBER 180 Series model 990 and certain 840, 850 and 860 system
which could destroy existing data or a program.

On a CYBER 70 Model 76 or a 7600, the OAM instruction is not executed until the output channel d word
flag is cleared. If the flag is set when the instruction is read, execution halts until a resume pulse clears
the flag. An output channel d record flag does not affect OAM execution.

Format:

Operation Variable Description Size Octal Code

JAM m,dt Input: (A) words to m from channel d 24 bi ts 7ldm

OAM m,dt Output: (A) words to channel d from m 24 bits 73dm

tExpression dis required.

These instructions allow the transfer of 16-bit PP words to a CYBER 170 12-bit channel (OAPM) or the
transfer from a CYBER 170 12-bit channel to 16-bit PP words. The data is packed on input from 12-bit
words to 16-bit words and unpacked on output. Three 16-bit words are assembled from (input) or
disassembled to (output) four 12-bit words.

Format:

Operation Variable Description Size Octal Code

IAPM m,dt Input: (A) words to m from channel d 32 bits 1071dm

OAPM m,dt Output: (A) words to channel d from m 32 bits 1073dm

tExpression d is required.

60492600 M 9-23

Example:

Code Generated
LOCATION OPERATION VARIABLE COMMENTS

I II IB 130

T

7103 1364 IAM TAG,3 I
I

7304 1364 OAM TAG,4 I
I

107101 1364 IAPM TAG, 1 I
I

107301 1364 OAPM TAG,2 I
I

9.2.20 SET OUTPUT RECORD FLAG INSTRUCTION

The RFN irntruction sets the output channel d record flag and transmits a record pulse over the cable. The
instruction ignores the previous status of the channel d flags; the irntruction is executed even if the output
channel d record flag is set.

Fonnat:

Operation Variable Description Size Octal Code

RFN d Set output record flag on ch~nnel d 12 bit~ 74cl

Example:

Code Generated
LOCATION OPERATION VARIABLE COMMENTS

I II 18 J 30
T
T

7406 RFN 6 I
I

I 9.2.21 CHANNEL FUNCTION INSTRUCTIONS

The ACN instruction activates the channel specified by d. This irntruction must precede the IAN, IAM,
OAM, or OAN instructions. Activating a channel alerts the input/output equipment for the exchange of
data. Activating an already active channel causes the PP to become inoperative until another PP or an
external equipment deactivates the channel, or the system is dea<Etarted.

The DCN irntruction deactivates the channel specified by expression d. It sto[l> the input/output
equipment and terminates the buffer. Deactivating an already inactive channel causes the PP to become
inoperative until deadstart or until the channel is activated. Avoid disconnecting the channel before first
sensing for channel empty, deactivating a channel before stopping the associated processor, or deactivating
a channel before placing a useful program into the associated processor. After deadstart, PPs wait on an
input channel. Deactivating a channel after dea<Etart causes an exit to address 0001 and execution of the
program.

9-24 60492600 M

The FAN instruction sends the external fmction code from the lower 12 bits of the A register on channel d.

The FNC instruction sends the external function code specified by m on channel d. For this instruction,
expression dis required.

Execution of a FAN or FNC instruction when the channel is active causes the PP to become inoperative
until another PP or an external equipment deactivates the channel, or the system is deadstarted.

Format:

Operation Variable Description Size Octal Code

ACN d Activate channel d / 12 bits 74d

DCN d Disconnect channel d 12 bits 75d

FAN d Function (A) on channel d 12 bits 76d

FNC c,d Function c on channel d 24 bits 77dm

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II IB TJo

ACN 5 T

I
7405

OCN CHAN I
I

750~

76C5 FAN CHAN+1 I
I

7705 0020 FNC 20P.,5 I

l

9.2.22 I ERROR STOP INSTRUCTION

The ESN instruction halts execution of the peripheral processor program and indicates a program error
condition to the monitor control unit. The PPU must be restarted by a deadstart sequence from the MCU,
only.

Format:

Operation Variable Description Size Octal Code

ESN d Error Stop 12 bits 7700

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II lB lJo

7700 f SN "T
I

60492600 M 9-25

I

PROGRAM EXECUTION 10

COMPASS can be called from the library and placed in execution through a COMP ASS compiler call
statement or through an IDENT statement (section 4) in a FORTRAN source deck. Ordinarily, when
COMPASS is called through FORTRAN, the parameters specified on the statement apply also to COMPASS.

10.1 CONTROL STATEMENTS

Normally, assembly of COMPASS source programs or the execution of CPU binary object decks is done
from a job file. A file is usually submitted in the form of card decks or card images. The first section of
the file must contain the control statements described in this section. Other optional statements are
described in the operating system reference manual. Following the control statement section are one or
more sections containing source statements and data.

A control statement begins with the first nonblank character. A comma or a left parenthesis or blank
marks the beginning of a parameter string. Parameters in the string are separated by commas. A period or
right parenthesis terminates a parameter string. Comments optionally follow the terminator. Within the
parameter strings, blanks are ignored. Ordinarily, a parameter can contain only letters and digits. When a
parameter is enclosed. between dolla1· signs, all characters are permitted and blanks ~re not ignored. Within
such a dollar-sign delimited parameter, two consecutive dollar signs represent a single dollar sign.

10.1.1 JOB STATEMENT

A job statement of the following format must be the first statement in the deck. The parameters following
name can be in any order or can be omitted. For any omitted field, a default value is supplied which is an
installation option.

Format:

(name, Tt, E Clem.

name 1 through 7 letters or digits by which the job is identified.

The first character must be a letter.

Tt CPU time limit in seconds (NOS/BE 1, SCOPE 2: 1 through 77777g; NOS 1: 1 through
3276010). Must be sufficient to process all control statements for the job, including
assembly and execution.

EClcm (NOS/BE 1, SCOPE 2 only). Estimate of maximum amount of LCM or ECS in octal
thousands, required for assembly or execution (1 through 1400g).

COMPASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be decreased
accordingly.

60492600 H 10-1

Examples:

(JOBI, TlOO~ EC30 ..

(TESTER.

10.1.2 COMPASS CONTROL STATEMENT

The following statement causes the COMPASS assembler to be loaded from the library and executed.
Parameters specify modes and files.

Format:

The optional parameters, p, may be in any order within the parentheses. A parameter can be omitted or
can be in one of the following forms:

mode

mode=O

mode=lfn

Mode is one or two characters as described below; lfn is a 1 through 7 character name of a file or a
character string.

Mode

A- Abort mode.

A

omitted

B- Binary output.

omitted or B

B=O

B=lfn

BL - Burstable listing.

BL

omitted or BL=O

10-2

Significance

Abort job step at end of run if any assembly errors occurred.

Do not abort job step for assembly errors.

Binary on the load-and-go file (LGO).

No binary output.

Binary on the named file.

Generates output listing easily separable into components:

• Issues page ejects between listing segments (storage allocation map,
source code, and cross reference table).

• Assures an even number of pages (page parity) for each program unit
listing, issuing a blank page at end if necessary.

Generates listings in compact format. Page parity and listing segment page
ejects are suppressed.

60492600 H

D - Debug mode.

D

omitted

Binary is generated on the file indicated by B parameter in spite of assembly
errors and regardless of the abort mode (A parameter). The A parameter is
ignored when the D parameter is selected.

D is ignored if B=O.

Assembly errors inhibit binary output. In abort mode (A parameter present),
no binary output is written at all for a subprogram containing assembly errors.
Otherwise (A parameter omitted), the message ERRORS IN ASSEMBLY is
written to the file indicated by the B parameter for each subprogram
containing assembly errors.

E - Error list. Suppressed if full list is directed to the same file or if no assembly errors occur.
However, if the full list and error list are on different files (for example, the full list is written to
OUTPUT and the error list is written on the named file), the error list will contain all statements
having error flags. If an error line was generated by a macro call, the macro call can also appear in
the error list. Specification of both the E and the 0 parameter results in a control statement error.

omitted

E

E=lfn

E=O

Error list on file OUTPUT.

Error list on file ERRS.

Error list on named file.

No error list is generated (equivalent to directing error list to the same file as
full list).

F - FORTRAN mode .. Establishes value of special element *F.

omitted or F

F=number

F=name

G - Get system text.

omitted or G=O

G

G=lfn

G=lfn/ovl

*F is 0.

*F· is number (one decimal digit).

*F is a number corresponding to name as follows:

COMPA~ = 0
RUN = 1 (The RUN compiler is no longer supported.)
FTN4 = 2
FTN5 = 3

Load no system text from a sequential binary file.

Load the first system text overlay, if any, from file named SYSTEXT.

Load the firstsystem text overlay, if any, in the specified sequential binary
file.

Search the specified sequential binary file for a system text overlay whose
name is ovl and load the first such overlay.

I - Source of assembler input.

omitted

I

60492600 H

Source deck is on INPUT file.

Source deck is on COMPILE file in either compressed (see the UPDATE
control statement X option, in the Update reference manual) or expanded
format.

10-3

I=O lliegal.

I=lfn Source deck is on named file.

L - Full list.

omitted or L

L=lf n

L=O

List output on OUTPUT file.

List output on named file. When the full list is on a different file than the
short list (see 0 option) and the P option is not specified, the listing for each
subprogram is a separate section beginning with a one-word header consisting
of an asterisk and the first six characters of the subprogram name. This
header identifies the subprogram as a convenience for sorting and cataloging.

No full list will be generated.

LO - List options. Selects or deselects a maximum of nine of the list options A, B, C, D, E, F, G, L, M, N,
R, S, T, or X.

omitted or LO=O

LO

LO=$$$$

Same as selecting B, L, N, and R only.

Selects list options C, F, G, and X, and deselects R.

A list of up to nine characters. Inclusion of B, L, N, or R deselects the
corresponding option. Otherwise, inclusion of a character selects the option.
For options, refer to LIST pseudo instruction, chapter 4.

Selects all list options.

ML - Initial Value of MODLEVEL Micro.

omitted or ML

ML=string

MODLEVEL is defined equal to JDATE (chapter 7) at the start of each
assembly.

MODLEVEL is defined as string (nine characters maximum) at the start of
each assembly.

N - No eject.

omitted Explicit ejects are honored.

N Explicit ejects (from TITLE or EJECT pseudo instruction) are suppressed.

0 - Short list. Suppressed if full list is directed to the same file or if no assembly errors occur.

10-4

However, if the full list and short list are on different files (for example, the full list is written on
OUTPUT and the short list is written on the named file), the short list will contain all statements
having error flags. If an error line was generated by a macro call, the macro call may also be in the
short list. Specification of both the 0 parameter and the E parameter results in a control statement
error.

omitted or 0

O=lfn

O=O

List output on OUTPUT file.

List output on named file.

No short list will be generated (equivalent to directing short list to the same
file as full list).

60492600 H

P - Continue page.

p

omitted

Page numbering continues from subprogram to subprogram, creating a single
continuous listing file. End-of-record is also suppressed between routines on
the L file.

Page numbering begins with 1 at the start of each subprogram.

PC - Initial Value of PCOMMENT Micro.

omitted or PC

PC=string

PCOMMENT is defined as 30 blanks at the start of each assembly.

· PCOMMENT is defined as string at the start of each assembly. Characters are
truncated from the right or blanks are appended to the right, as necessary, so
that the length of the micro value is exactly 30 characters.

PD - Print Density. Job default print density is assumed upon entry. This option affects only the listing
files.

PD=6

PD=8 or PD

PD=other or
omitted

PS - Page Size.

PS=x

PS=other or
omitted

S - System Text Name.

omitted

S=O

s

S=ovl

S=lib/ovl

Print density is six lines per inch.

Print density is eight lines per inch.

Print density defaults to job default (an installation parameter, user
changeable) lines per inch.

Page size is x lines per page. Acceptable values of x are 4 ~ x ~ 99.

If PD is not specified, page size defaults to job default lines per page.
If PD is specified, page size defaults to PS=(PD*job default page size)/job
default print density.

If there are no G parameters other than G=O, load the overlay named
SYSTEXT from the job's current global library set.

Load no system text from a library.

Load system text overlay named SYSTEXT from job's current global library set.

Load the system text overlay named ovl from the job's current global library
set.

Load the system text overlay named ovl from the library named lib, which may
be a user library file or a system library.

X - Source of external text (XTEXT) when location field of XTEXT pseudo instruction is blank.

omitted External text OLDPL file.

X=lfn External text on named file.

X=O Illegal.

x External text on OPL file.

60492600 K 10-5

Example:

(COMPASS(B, D, S=OVI)

(COMPASS(LO=ASGXD)

(COMPASS.

MULTIPLE SYSTEM TEXT OVERLAYS

Reads source from INPUT, writes the binar~· output to LGO,
and the listing to OUTPUT. Assemble in debug mode with
system text from overlay OVI in the global library set.

Disables LIST pseudo instruction and sets LIST options
A, S, G, X, and D.

Uses the standard default options.

COMPASS allows up to seven system text overlays to be used for an assembler run. They are specified by
G and S parameters on the COMPASS control statement. Each G parameter {except G=O) specifies loading
of a system text overlay from a sequential binary file, and each S parameter {except S=O) specifies loading
of a system text overlay from a user library file or a system library. The G and S parameters can be used
in any combination and in any order, and can be intermixed freely with other parameters, provided the
total number of system text overlays specified does not exceed seven. COMPASS loads the system text
overlays in the order in which the G and S parameters occur on the COMPASS statement. If a system
macro, micro, or symbol is defined by more than one system text, only the last definition is used. S=O has
no effect if there are any other Sor G parameters.

Example:

(coMPASS(I, s, S=PFMTEXT' G=MYTEXT)

COMPASS(G=FILE/SCPTEXT, S=MYLIB/TEXT)

10.1.3 LGO CONTROL STATEMENT

Reads source from file COl\IPILE and gets s.\'stem
text from overlays SYS TEXT and P F.i\ITEXT in the
global library set, and from the local file l\IYTEXT.

Get system text from overla~· SCPTEXT
on the file FILE, and from overla~· TEXT
in library MYLIB.

An LGO control statement calls for the loading and execution of CPU binary output produced by the
assembler unless the B option on the COMPASS control statement is· set to O or to some other file name.
When binary output is on some file other than LGO, the statement is replaced by a program call statement
for that file. The file is automatically rewound before loading. The LGO file is temporary; it is released
at job termination.

NOTE

A peripheral processor program can be executed only by the operating system. This type of
program execution requires system origin privileges.

Format:

or

10.1.4 PROGRAM CALL STATEMENT

The program call statement directs the operating system to search for a file or CPU program that has the
specified name, load it into central memory {CM or SCM), and execute it as a CPU program.

10-6 60492600 H

Formats:

(name(pl,p2,. • • ,pn)

(name.

name Program name.

Parameters in a for mat acceptable to the program being called. ·

When the operating system locates the file, it rewinds and loads the file. When loading is complete, it
executes the program as a CPU program.

10.1.5 7 /8/9 CARD

A card with rows 7, 8, and 9 punched in column one separates sections in the job deck. The level is
assumed zero unless columns 2 and 3 contain an octal level number punched in Hollerith code. The
remaining columns optionally contain comments.

As an example, a deck consisting of a control statement section and a COMPASS source input section
would include two 7/8/9 cards. The first terminates the control statements and the second terminates
COMPASS input. A 7 /8/9 card of level 17 is interpreted by the operating system as a 6/7 /8/9 card .

. 10.1.6 6/7 /8/9 CARD

A card wUh rows 6, 7, 8, and 9 punched in column one signals the end of the job deck. Columns 2 through
80 optionally contain comments.

10.1.7 USER CONTROL STATEMENT (NOS 1 ONLY)

The user control statement format is:

USER, usernam; passwrd, famname.

usernam

passwrd

famname

User number or name

User password

Name of user permanent file device family name

The USER statement, required by NOS 1, follows the job control statement and specifies user access
information. The user name is used in system bookkeeping and defines the user's file catalog area. The
user can specify a different permanent file catalog during job processing by issuing another USER control
statement.

60492600 G 10-7

10.2 SAMPLE DECKS

The following job calls for assembly of the source program and execution of the binary object program
produced by the assembly. The USER control statement (for NOS 1 only) provides required user access
information. COMPASS reads source statements from file INPUT, writes the listing on OUTPUT, and
writes a binary object deck on file LGO. Control statement LGO calls for execution of the binary object
program, which obtaim its data from file INPUT.

10-8

Subprogram
Test

Control
Section

{
I

I

\,

6
7

Data for J
8 /
9 /

/
L

Execution t /
/

(
7
8
9
-(END TEST

L
L

/
/_

_L

_LmENTTEST

7
8
9

(LGO.

ll COMPASS.

LcHARGE statement.
~USER statement.

SAMPLE, TlOO.

t--'

1---J

1---1

r-"

""""
1-1

.....
I-'

"""" 1-1
I-

t--'

I--

60492600 G

In the following job, the COMPASS assembler is called twice. During the first assembly, binary object
decks for subprograms TESTl and TEST2 are written on file LG FIL El. The source decks for these
subprograms are in the second section of the INPUT file. During the second assembly, COMPASS writes a
binary object deck for subprogram CDA on file LGFILE2. Each assembler run produces a full listing.
Following the second assembly, LGFILE2 is repositioned to the beginning of the file. Then, the COPYBR
program is called to copy the contents of LGFILE2 to a punch file (PUNCHB). The LGFILEl statement
then calls for the loading and execution of subprograms TESTl and TEST2 from LG FILEl. Following
successful execution of the subprograms, the file is rewound and copied to the punch file, after which the
job terminates.

60492600 G

~ Data for execution
• }

II ['E~ CDA
I

I I.I
} Subpr , ..

IDENT CDA

ogram CDA

I~
9

..___

l
I END TEST2 l ~I·

} Subpr ..L

r IDENT TEST2

ogram TEST2

......_I I END TESTl 1 •

i1lll
} ' '

I --- IDENT TESTl

Subprogram TESTl

- ~ l
9 (COPYBR(LG FILEl, PU NCHB)

i.-1 _(REWIND(LG FILEl)

~f LGFILEl.

COPYBR(LG FILE2, PUNCHB)

REWIND(LG FILE2)

COMPASS (B=LGFILE2)

COMPASS(B=LGFILEl)

SAMPLE, T500, EC50.

Control
Section

10-9

In the following example, the IDENT statement causes FTN to call COMPASS to process the COMPASS
source deck. If the COMPASS END statement is not followed by another IDENT statement, then
COMP ASS returm control to the compiler that called it.

IDENT begins in
column 11-----

7
8
9

6
7
8
9

The following sample programs illustrate how to assemble and use a system text overlay.

I DENT MYTt.XT

STf.XT

1 ONE. lUU l CONSTANT ONE
:ib HALF l:.QU JO POS CONSTANT

SHH T MACRO AlflHAt~t.TA ..,OSIT IONING '4ACRO

IFC Nl:.t~ALPHASX2Stl
SAl ALPHA

IF C Nt:•'Bl:.TAS82St1
Sl:S2 dUA

LXb X2ttf~

t.NOM

ENO

10-10 60492600 G

IDtNT TEST
ENT MY TEST
SST

t>llOOOOOOl H.ST Sfj 1 ONE CONSTANT ONt:. FROM TEXT

~l~c.·uuouo4 • SA2 IN~UF .,lCK UP VALUE FROM STORAGE

bllOUOOOJb SHIFT XltHALF POSIT ION . WORD IN Xb

~lbOUOOOOb • SAb OUTtWf ~EfURN Nfw WORD TO STORAGE

T lb.0~1t 7U~l l:..NOHlJN

2 INBUF ttSS i.
1 OUTt1UF ttSS 1

ENO TE.ST

The deck for this job could be set up as follows:

6
7
8 ' '

111111

9 ' (IDENT TEST

/7 l 8 '

11111

9 , '
(IDENT MYTEXT

/7 I
~ 8 l COMPASS (G=MYTEXT, S) 9

(COMPASS(S=O, B:-oMYTEXT)

f TEXT, Tl7.

-

60492600 G . 10-11

LISTING FORMAT 11

This section describes assembly listing format. Control of the contents of the listing is described in
section 4.11 Listing Control, and in section 10.1.2 COMPASS Control Statement.

11.1 PAGE HEADING

Each page of the assembly listing contains a title line and a subtitle line in the following format:

title

subtitle

title

date

time

PAGE x

subtitle

. sub- subtitle

block name

symbol qual

COMPASS Version

sub-sub
title

block
name

date

symbol
qual

time PAGE x

Up to 62 characters taken from the first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction

Date of assembly

Time of assembly in hours, minutes and seconds

Page number of listing. Pagination begins with 1 for each END instruction
unless the P option is selected on the COMPASS control statement

Up to 62 characters taken from second and subsequent TITLE pseudo
instructions or a CTEXT pseudo instruction

Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the .location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction immediately .follows the heading (assuming the C list option is
also selected).

Name of the block in use at beginning of page

Qualifier in use (see QUAL pseudo instruction)

11.2 HEADER INFORMATION

The first page of the assembly listing for each subprogram contains a summary of binary control cards
(optional), a list of all the blocks established for the subprogram, and lists of entry points and
external symbols.

11.2.1 BINARY CONTROL CARD SUMMARY

A binary control card summary in the following format is generated for each IDENT instruction when the

60492600 H 11-1

COMPASS control statement or the LIST instruction selects the B list option:

ADDRESS

addr
1

addr2

eop

binary card.
l

addr.
l

eop

Jeop

Examples:

AOO?S::<;S
101
~7':'

r;f,~'T

7'l7r:.
1]24~
~f) .. "17

22011

LENGTH

f n

. (leop)

BINARY CONIBOL CARDS

binary card
1

binary card
2

binary cardn

END card or blank

The binary card that caused generation of the binary for the overlay, partial
binary, or subprogram. The list includes SEG, SEGMENT, and IDE NT instruc
tions.

The central memory or peripheral processor memory origin address for the
subprogram, overlay, or partial binary written out as a result of the binary
card.

The octal length of the subprogram, overlay or partial binary, in central
memory words for a central processor assembly, or in peripheral processor
words for a peripheral processor assembly.

The octal central memory or peripheral processor address for the end of the
program unit begun by the previous IDE NT.

The octal length in central memory words of a peripheral assembly; not present
in a listing of a central processor assembly.

U:NGTf.I
?71

c;2c.1
'2C.?
4tltc;
c; 1 7c;
1:2!5?

~TNA?Y ro~T~OL rAr.~~.

ynrNT roMP~~~,LOVf~,r~P

~~G

~f"G
~~G
~s::-r;

~~t;

S:-~lfl C0"1P I\ <;5

AODR~5S LENGTH alNA~Y CONTRJL CARDS.
IUiMT 050,0 0 7761

77f.1 (14~2)

11-2 60492600 H

11.2.2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated in the assembly listing under control of the
B list option: ·

BLOCKS

name
n

name.
l

type

baddr.
l

lengthi

Examples:

P~OGQA~•

lITE~AL<;•

f'ONTQOL
Pc;~uon

!CiUR<;
AUFFE'RS

60492600 H

TYPI='

TYPE ADDRESS LENGTH

t
n

baddr1

baddr
2

baddr
n

bl
n

Name of the block used in the subprogram, as follows:

PROGRAM* . For a relocatable assembly, indicates the zero block. For an
absolute assembly, the first PROGRAM* indicates the absolute
block, the second indicates the default symbols block.

ABSOLUTE* Appears in a relocatable assembly only and indicates the use
of an absolute block.

LITERALS* Identifies the literals block.

other Identifies a local, labeled common, or blank common block.

The type of the block as follows:

ABSOLUTE All addresses in the block are relative to absolute zero. For
an absolute asembly, all blocks are ABSOLUTE.

+LOCAL

+COMMON

Addresses in the block are relative to the origin assigned to
block zero. The + is present for an E CS/LCM block.

Addresses in the block are relative to the origin of the common
block. The + is present for an ECS/LCM block.

Beginning address of the block according to type.

Number of words in the block.

LFNG TH

nnc;OLllTF
ARSOLUTF
APSOLUT~

ftP~nLUTF"

ABSnuJTr.
A~SOLllT~

rt
54tfi
5r,~3
707t;

13242
20417

541~

21'5
12 4?.
41'+5
'51 7c;

11140

11-3

~LOCKS TYPE

AqSQLUT~• A'll SOL !JT f
PROGRAM• LOCAL
r:>ATA1 L'lCAL
LC11 +L'l;AL
TA0LE +L ')CAL
TAALE +C!J'iMOt-1
U~LE LOC4L
UBLE r,0~f'IO"I
II C'l'1HO•~

11 .2.3 ENTRY POINT LIST

AODR~SS

0
0

35
I]

5
0

36
J
!,j

LENGTH

6?.
3c;

t
5
c;

123
1
1

1000

If the subprogram declares entry points, a list of entry point symbols in the following format follows the
block usage summary.

ENTRY POINTS.

sym
1

*+addr
1

+block
1

sym
2

*+addr
2

+block
2

symn+l *+addrn~l +blockn+l

symn+2 *+addrn+2 +blockn+2

sym2n+l *+addr2n+l +block2n+l

sym2n+2 *+addr2n+2+block2n+2

sym *+addr +block
n n n sym2n *+addr 2n +block2n sym3n *+addr 3n +block3n

Where n is one-third the number of entry points. The asterisk to the right of sym. is present if sym. is a
conditional entry point (declared by ENIB YC). The + to the left of addr. is presen\ if block. is an E CS/LCM
block. The +to the right of addr. is present if addr is relocatable. Blo1ck. is blank or a cobmon block

l l name surrounded by slashes.

If the symbol is undefined, addr
1

is *******·

Example:

ENT~Y POINTC).

~NAPl

SNAP2
S~AP3
JUHPVEC
BEGIN
AYTESIZ

•

13!t5+
1352+
1357+

O+/JU>iPVEC/
u+
6

11.2 . .4 EXTERNAL SYMBOL LIST

CUL
GOTO
IF
LA~EL
REAO
RECO~O

72+
156+
224+
372+
435+

2Ct+/OATA/

P~O~O(P

P.PF
l?DH

LCH
LG"4~

+
•+

?37S+
~'+61+
24&1+

Q+

If external symbol references are declared in the subprogram, a list of the following format follows the
list of entry point symbols:

EXTERNAL SYMBOI.B.

sym2n+l sym3n+l • • •

11-4 6049260C H

symn sym2n

Where n is one-eighth the. number of external symbols. If a symbol is a weak external it is
followed by an asterisk.

Example.

rnMF>CTf vn~ror C::Yfl.QUL "CGOTO

11.3 OCTAL AND SOURCE STATEMENT LISTING

The contents of the octal and source statement listing depends on the options selected.

The list is 130 characters wide with fields assigned as shown in figure 11-1.

Title Line

Subtitle Line

!Error Location Octal Source Lines Sequence
Flags Addresses Code

Figure 11-1. Format of Octal and Source Statement Listing

60492600 c 11-5

11-6

Error Flags

Location
Addresses

Octal Code

Error flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These flags are
described more fully under Error Directory. Lines containing errors are always
listed.

The value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on options selected, the
listing shows just the first word or all words generated for data generation
instructions. The field does not include NO instructions (460008) packed for a
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU
instruction is shown two words of data per line.

If the word contains an address, the octal code is flagged as follows:

Negative relocatable address
+ Positive relocatable address
C Common relocatable address
X External address

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

For a LIT instruction the field contains the address of the first word of
the literals generated.

For a COL instruction, the field contains the new beginning-of-comments
column number.

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT,
this field contains the octal value of the symbol right justified with leading
zeros suppressed.

~or.~ i~r::tructi?n result~ng _in a change of base, the notation brb2 is right
1ustif1ed in the field. b1 indicates the old base and b2 indicates the new base.

For an instruction resulting in a change of code conversion, the notation
c1 r- c2 is right justified in the field. c1 indicates the old code and c2
indicates the new code.

For a DUP instruction, the field contains the repeat count.

For a BSS or BSSZ instruction, the field contains the octal value of the word
count right justified with leading zeros suppressed. If the word count is
zero the field is blank.

For a DECMIC or OCTMIC instruction, the field contains the octal value of
the expression right justified with leading zeros suppressed.

60492600 A

Source Code

Sequence

Example:

Source statement image (columns 1 through 72)

Colum~ 73 through 90 of the card image or an identifier for an expansion of a
definition operation as follows:

Macro
Remote code
Duplicated code
Echoed code
XTBXT
OPDEP

macro name
RMT
DUP
ECHO
file name
Operation field of opdef call, such as SBl

The recursion level Is Indicated in the right half of the field.

CO"PISS 3o1lZU • CYIElt 10/ COl'PREHENSl'llE ISSEKALER.
co""ON IN!> UTILUY SUBROUTINES.

COttPIS<; 3, 71Zl~
ILC

,
, .. .,
s .. u.

51t7t

5"72

Slt7J

s .. 11o

5"75

5"7~

5"11

IJOUHllt6Z
SUIHJIJH

Gtlo1UODllH
6l20HUJI.

SGZI013"6Z
5"322

- IJltltZl
l66U

J701o2
371116

UlODl51t11t
51t6l~

Dlt..Ooi051o66

5lZJOJJl7Z
UUl

677lt
61711

5l'i7~U5t6
J61olt'5

G57.lOD5 .. 75
5lSOOOlllt5

.. .

ILCI

11.-:
~Ct

ILCZ

ILCJ

ILC • Tl8LE "INIC£P 1111) ILLOr.Un'f •
l•.LOCITOlt llill llOV£ Tl"LES TO IC'lUIOi:' P.00... ll 50 '41Y ::JUl'P
INTER!tEDIUE O'! C"'l5"'·Hfr>rncrs orno SC'tATl"'lf ftlr.
E'tTU CIJI • U9LE 111:>r.x.

CIU • CtllNC!'.: I• O~ ·I TO U9LE SP!':. ,.
EUT lllZI • O"lr.J•I or Tl1LEo

CIJI a llC:ll L(llCT'4 Cf JlllLS: •

SI? OOICl'IS•loi >£('lA!" VILU!:'i F'Oll! f'ltT >frl Y "•
~ Sll1 StlES•l4

'" "rTUltN (YtT
HZ HTl!tlES ··~c-rr rtmrw •cr.tc;TF~'>

U'! O"!l'.l'IS•l4 r.u_.,,..,,, cur. r·1 ...
SAJ aznz ~u11~rrn L~•:·:.Tw

Sllte 12•11 't(YT uiu: 1'~1:0111

ur, ll•ll tfl"W .-;'!7'
Ul Xlo•IZ tn::r :r ~.,o .. F'.,~ rv?:.•1c;f'1"J

It• ll~·'C6 ,,.
11~,ucz JU'!" TO ollO•ILLOC:ftT"' ,.,._,. u)TO~[~J~W r: (::-

C1 ll':'C r rt•

"1VE Tl!.llf<;,

s•? St7':0'ff '\~E fF' r110Ut:H P'1no•
O«ilo ll
$17 8?·''1
$17 A7•'tl
SllS Sl!~!::•il7
f'C .. ,, .. 'C'5
N! '17 1 1L'lJ L01P
lial PIH s ,, llJ
I'Cl Y?•'llt
Sllo lllt '""' • TOUL LS:'IGTH

C'K"IS<; l~Q5
Cl'l;-asc; 1616
CO'I •asc; 1u1
co .. -a~s tc•!
CO'lf'&<;". l c.~q
C1 .. !"l&<:o t7.~

CJ°'"l)S 17.1
C'l-! l!"S ! ":. Z
c.1-•a:.s : 1 _?
C:Jw-1~-· l" ;,
•;J'l<'IS< 1•.5
':'l'I~ ,, ' l 7 f.
CJ"'·~:.<' 1 • 7
:~"1·· &· ' 1 .. 9
-1·-~·~~ 1·,
~=~-~~ .. 1:1.
c1·•-1•.< l ·11
c , !I:' 1 ·1?
c :.'·' : ·::;
!":,;)•· ,- ~ 1 :• ..

-~~, .. ~c., 1 ·~~
c.~ r., l ll&
~"tll:"I.,-: , ,. -:
.:., .. ·r..... 1 ~!"
r.o .. "S<-: 1 "!."
.: ,.-~·. I ~ 1 • ...
-:--~·~·~ 1·~1
~.1~'•~r: , .. ~';'
'::tl"'""IC:.. 1 • 'J
'= , .. '~ 1 ., ..
,., ... "":.(~.. ! '~,..
r .. ,s _""'. 1.•_,;.
r::.:•• ,~,. l • '7
::.1 .. .t:-C"' 1··(4
r.·-: .. a~.; l ~~G
;~-t:"' l~C:. 1 ·n i
r: .. •1~-; t1H

S'17 -'!~ rn·~·...-~-.....:z..,-._~......J

~------

11.4 LITERALS

When the D list option has been selected, the assembly listing includes a listing of the literals block
following the default symbols listing. Following each literal address are the octal contents of the word and
a display code conversion of the contents of the word.

60492600 G 11-7

Examples:

01n121
01012?
01'112~
01'l121t
011) 12c;
01012~
010127
0101 'H
01flt:H

7315
73tt..
7317
1'32".1
7321
73~?
732l
73?4
732c;
1'32Fi
7~27

CONlENl OF LITERALS BLOC~.
174~577375~0'10000000
1&~sooonooooonoooooo
15oc;232~01n1nssslo~n
Cl5040503111~011~5522
nc;212c;11??~c;o4c;7onoo
?S??ns21?c;1122osor.on
ooo~ooooonoooooooooo
20??17072?01155?010?
17???4?7000000000000

O+.>>X
N,.
Hf<::C::--llr.i: ~3

N"f'IMl\L ~
EOUTRF'ri.

QFf"UlOJ'."n

ORCG~AM AC\
ORT• .

CONlENl Of LITERALS et oc1<.
OIP4 t
707f'! •'t
oor.1 r,
0'1110

''"1 A
onoo
oc;rtf> l='F
1411 LT
24,,~ Tr
22ri1 PA
14?3 L<:;

11.5 DEFAULT SYMBOLS

When the D list option is selected, a list of default symbols immediately precedes the literals block,.

Example:

000000 x
OOt;4F,1
ocr; 4£>"
orc;4f;~

·rn5i.6 ..

11.6 ASSEMBLER STATISTICS

OEF~ULT SYHBOL5 OEFINEO BY COMPASS

H~G=
· T ftt; 1

TAr-2
Anr
~Vllo'

Assembler statistics are printed at the end of the octal and source statement listing or, if the D list option
iS selected, following the default symbols. Information includes the following: ·

Amount of storage used (octal)

Number of source statements

Number of symbols defined

Number of invented symbols

Number of symbol references

CPU type in which COMPA~ executed and assembly time

Number of errors encountered during assembly

Number of la;t references, that is, references to symbols that have been omitted from the symbolic
reference table

11-8 60492600 G

11.7 ERROR DIRECTORY

The assembly listing includes an error directory if any errors are detected during assembly. The
directory begins a new page identified with the subtitle ERROR DIRECTORY. Each type of error that
occurred is called out with a two-line message of the following format:

x TYPE ERROR description
OCCURRED ON PAGES pl, lli t

Types and descriptions are given in Tables 11-1 and 11-2. Errors flagged with an alphabetic character
are fatal. A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they
are informative only.

Type

A

60492600 G

Message

ADDRESS FIELD
BAD.

TABLE 11-1. FATAL ERRORS

Significance

An error exists in a variable subfield
entry. The following is a list of
possible errors:

The CODE character is not A, D, E,. I,
o, or *·
The symbol or name is greater than 8
characters.

The expression does not reduce to one
external term.

The relocatable terms do not cancel
properly.

The instruction requires an absolute
expression.

The instruction disallows register
designators.

A data error; 8 or 9 is encountered in
octal data and the modifier is not s,
P, O, E, D, or B.

No data is found in the variable field
of a LIT instruction.

No symbol is following an =S, =X, or
=Y prefix.

The relative jump is out of range
(-3l>r>31) on a PPU instruction.

The BASE character is not o, M, D,
or *·

Action

Refer to the
manual for the
correct address
field format
for the opera
tion code
specified.

11-9

Type

A

D

E

F

11-10

Message

ADDRESS FIELD
BAD. (Contd)

DOUBLY
DEFINED
SYMBOL.
TIIE FIRST
DEFINITION
ll>LDS.

ECHO, DUP,
RMT, OR
MACRO
ILLEGALLY
NESTED.

NUMBER OF
ENTRIES
EXCEEDS
PERMISSIBLE
AMOUNT.

TABLE 11-1. FATAL ERRORS (Contd)

Significance

A register is illegal in a CON
instruction.

A synonymous instruction for OPSYN or
CPSYN cannot be located.

The micro count is less than zero or
greater than ten.

The R>LABEL character is not I.

A negative relocation is specified on
ORG or ORGC.

The POS value is less than 0 or
greater than word size.

The OPDEF reference is erroneous.

No conma is following the DIS word
count.

An illegal entry is in the variable
field of IDENT.

A symbol has been previously defined
or declared external.

The definition of ECHO, DUP, RMT, or
MACRO is not entirely within the next
outer definition.

One of the following error conditions
exists:

LIT generates more than 100 words.

Data is missing or erroneous on XTEXT
file.

More than 63 formal parameters and
local names are in a macro definition.

There are more than 255 blocks.

There are more than 511 external
symbols.

Action

Rename the
duplicate
symbol in the
program.

Correct the
program.

Correct error
condition and
rerun the job.

60492600 G

Type

L

N

0

p

R

u

v

60492600 L

Message

LOCATION
FIELD BAD.

NEGATIVE
RELOCATION ON
ENTRY POINT.

OPERATION
FIELD BAD.

CONSULT
LISTING FOR
REASON BEHIND
P-ERROR

DATA ORIGIN
OUTSIDE BLOCK
OR IN BLANK
COMMON.

UNDEFINED
SYMBOL.
VALUE
ASSUMED O.

BIT COUNT
ERROR ON VFD
{MUST BE
0 COUNT 60}.

TABLE 11-1. FATAL ERRORS (Contd)

Significance

'llle required location field entry is
erroneous. The format two macro defi
nition has no substitutable parameters.

An entry point may not be negatively
relocated.

One of the following error conditions
exists in the operation field:

The instruction is unrecognizable.

The instruction is out of sequence,
such as ABS or PPU not in the first
statement group.

The instruction is illegal for binary
mode.

The relational mnemonic on the IF
statement is erroneous.

AIDTEXT has determined that the instruc
tion has changed or is not valid for the
models 810, 815, 825, 830, 835, 845,
and 855.

A user-generated error flag·from an
ERR or ERRxx instruction has been
encountered.

An attempt was made to set data into
blank conman or beyond block limits.

There is a reference to a symbol that
is not defined; for example, an IF
statement line count, a DIS word
count, an unrecognizable attribute on
an IF statement, or an undefined
qualifier.

'!be VFD field size is erroneous.

I·

Action

Correct the
location field
entry.

Change to use
positive or
absolute
relocation for
entry points.
Rerun job.

Correct the
operation
field.

Replace
instruction.

Action to be
taken depends
upon source of
error.

Use labeled
common or
increase block
size and rerun
job.

Define the
symbol.

Correct the
size of the VFD
field.

11-11

Type

1

2

3

4

5

6

7

8

9

Message

LOCATION SYMBOL
BAD. SYMBOi. NOT
DEFINED.

ADDRESS ERROR
ON SYMBOL
DEFINITION.

DUPLICATE MACRO
DEFINITION. NEW
ONE OVERRIDES.

BAD FORMAL
PARAMETER NAME
IGNORED.

CPU OPERATION
SYNTAX INCOR
RECTLY SPECIFIED.

LOCATION FIELD
MEANINGLESS~

ADDRESS VALUE
EXCEEDS FIELD
SIZE, RESULT
TRUNCATED.

MISSING OR EXTRA
ADDRESS SUBFIELD.

MICRO SUBSTITU
TION ERROR. NO
SUBSTITUTION.

TABLE 11-2. INFORMATIVE MESSAGES

Significance

nte location field is erroneous. The in
struction does not require an entry.

The variable field entry is erroneous.
Tite location field symbol is not defined.

Tite macro, opdef, or synonymous operation
redefines the operation code.

The macro or ECHO formal parameter name is
repeated or illegal.

nte OPDEF, CPOP, CPSYN, or PURGDEF speci
fies an illegal syntax.

The entry in the location field is
erroneous; it is ignored.

The value of the address is erroneous;
one of the following conditions exists:

nte value of the expression exceeds the
size of the destination field.

The BSS address expression value is
negative.

The MICRO starting character position
or character count is negative.

Tite variable subfield entry is missing
or superfluous.

The micro reference is unrecognizable.

11.8 SYMBOLIC REFERENCE TABLE

Action

Define or
eliminate the
symbol in the
location field.

Correct the sym
bol definition.

Rename the
duplicate macro
name.

Correct the
formal pa
rameter name.

Correct the
syntax of the
pseudo
instruction.

Correct the
location field.

Check the
possible values
of the variable
subfield.

Correct the
variable
subfield.

Correct the
micro reference.

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of
assembly. The table is not complete if the option was turned off at any time during the assembly. The
table lists symbols according to the qualifier, if any, under which they were defined. The global symbols
are listed first. A new heading of the following form introduces each new list of qualified symbols.

SYMBOL QUALIFIER= qualifier

11-12 60492600 H

The qualifiers are in the order declared in the ~ubprogram. Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes
. notification in the form n LOST REFERENCES.

Format 1 reflects the XREF P effect; P is the default for the XREF pseudo instruction. Formats 2 and 3
reflect the effects of XREF B and XREF A, respectively. ·

Format 1 (XREF P):

symbol J value

Format 2 rREF B):
symbol value

Format 3 (XREF A):

symbol I value

symbol

value

block

page/line

address

60492600 G

Title Line l
SYMBOLIC REFERENCE TABLE. 71

7(

~ bO bO bO
block page/line a3 page/line s page/line s -'- '- '-

bO bO
page/line ~ page/line ~

J
bO bO

block page/line a3 address, page/line a3 c c page/line

l
block address, address, address, I address, address,

I

Figure 11-2. Formatof Symbolic Reference Table

Alphabetical list of symbols defined under the qualifier.

Absolute value of the symbol or the address assigned to this symbol relative to
the block named.

If the symbol was defined by the SST pseudo instruction, block is the system
text file or overlay name. Otherwise, this field is blank in an absolute assembly
or, in a relocatable assembly, it contains the name of the block containing the
symbol.

From left to right and from top to bottom, a list of indices sequenced according
to page number. Each index points to a statement containing references to the
symbol or defining the symbol. Present when XRE F B or P is in effect.

The location counter address of the instruction containing the reference. Pres
ent when XREF A or B is in effect.

11-13

flag Identifies page/line index to a statement that defines the symbol or uses it in an
IF statement as follows:

D Definition statement; EQU, =, SET, MAX, MIN, or MICCNT ·

E ENTRY or ENTRYC pseudo instruction

F Symbol used in conditional test

I Symbol used for indirect storage (applies only to PPU or PERIPH-
assemblies)

L Symbol used in location field of the statement

S Symbol used for storage

X EXT pseudo instruction

When XREF A is in effect, the table does not include the flags.

Example:

CO"PISS 3.71210 • CTllElt 701 CO"PDEHEN'>JVC ASSE"!ILEit. CO"PISS 3. 71 n; - 81:?~171 lb.27 rar.r ~'il
SY"llOLIC ltEfCltErtC! UBLE. OE8U~

SNTEICP 5115 7U12 L 71t15l s 71o/5J 761<. 1r,n1t
$NUPlll 21 7JI ... hl .. J 1 .. 11z 71,,-. 1 .. 11oz 151 7515J 151, .. l
SJIUPIB1 5"16 7111,1 l 1111,J 79156
SNlflI'f 51,?J 71128 1.'1"1 hl•!i 11,,,z ·76123 1'flt8 L 70/&.1
"lNlflINl s .. zs 7'111 .. l 7q110
SNlfLlNZ ?, 791U 7'1117 L
SlU Slllt 72116 L ~~l?'J s hlU 771llo 111~ ..

72132 .. 1u1,z s h'16 11rs. 77/H

"lY'l~Ol QUSLIFtrR " CATI

., 6675 11513'1 l H'>llo6 1:?1137 tlll"! • l!flq l !?131'
ccs uzr, lJU"" lJl/,j ! 131/U l ~3131 13y,. .. 1 l.1::! 1?5/1,'I L 1 ?:.1 ...

. CCSl 7Jl2 1J;152 lJ·,/S" l
CCS2 - 7J?l lJ;1311 L 1 Ja,1;1
CSA 725 .. ll71:?2 lZl'?l l:?~I.! 1 L
csc 1:?57 11112r, 1?1117 i.>:116 l
r.sH 7Z5~ 117/ZQ 1Zt111, 1??1"2' L
CSL 7251 117117 l.!llll l :111o, L
CSlt 72&6 117111 lll/.;'I lJJ/57 L
CSl 7251 1171.1 llll~S i nnq L ~
!lC~ 7.?22 1171. q 11111? 1171111 11 7 /~l 117/~7 117/l;! Jlll?) L
llCSl 72ZS 1311"2 L lll/1,5
OL fl67 .. llSIJll L l~c.13r, 131./Z.
DO 6673 11SIJ7 l l15/lo6 116136 1:?<,IH 131o/tq
ow 6r.;J 115116 l t2.ns 1zu:.1 I?•/ ;o; 1ZltU7 1321:!"
H 6u~1 115121 l lZ.!IZl 1;!5111 P&l IJ l ~71:r; c;
ER' i>715 116/lw L. l:'lll'i l:?n:. 1::-1,; t?r,1 .:; 1':!11·. 7 llll~t 1 !.!116

116/53 lZtl<;l lZ?l .. 7 12;1 J, t.?611 ~ ~ "911 q l.!U.e
118157 1?ua 12.!lh iz;1; .. 1 ~r,1:. .. l:'~lltl 13Ull

ES &662 11512:" L
ESC 711,t 122122 lZ'tlDlt L
EV &6r,J ll'il23 L 12211,3 1231C7 S l?:!llt?
FC &&&~ lli/19 l 12;135 s lZ:?l"'I
Flt 6&16 11511,Q l ll'i/~l l)5/t 7
GCS 727J llZlftq ll'/~· 133121 133/!lt 13:!/ .. 7 13 .. 1.s lllt/19 L
CCS1 727S tllt/3" L lllt/37
GCSZ 7277 ll1t132 13"13'1 L
GCS3 7Jil~ lJi,/"l L -13 .. ,
GCSlt 7303 1J"/"jj ur.11,; L
GCSS 7J~ .. 131,1"8 L 111tlS1
GCS6 7306 1 ? .. , .. r. lJ..ISl L
GCS7 7JJ7 Ult/U llr.155 L
GCSI 7316 1351~2 135111 135/15 L
INT 7135 1Z5/lol tzr.155 L
LRS 61't0 117115 117121t U'llD6 L
NCS 233 1Zll06 1Z11ii'I 121115 121/18 121121 132105 l

JZI

11-14 60492600 D

COMMON COMMON DECKS

The common common decks are a set of COMPASS subroutines which are powerful tools for use by
COMPASS programmers. The common common decks perform functions such as:

Data conversion

Dynamic table management

Saving/restoring registers

Providing an input/output interface at the CIO and FET level

12

All of the common common decks run under NOS and NOS/BE; a subset of them run under SCOPE 2.
Table 12-1 shows each deck name, relocatable program name, entry point names, and the decks supported
under SCOPE 2.

12.1 ACCESS TO THE COMMON COMMON DECKS

The common common decks are available in two forms:

As relocatable subroutines

In source code form as a set of common decks

Both methods of accessing the common common decks are illustrated in the sample program in appendix D.

All the common common decks except the table management decks COMCMTM and COMCMTP are
available as relocatable subroutines that reside on the system library SYS LIB. In this form the common
common decks are easy to use; relocatable COMPASS programs need only include external references to
entry point names in the common common decks. These external references are satisfied from SYSLIB at
load time. (The CYBER loader searches SYSLIB by default when satisfying external references, but the
SCOPE 2 Loader does not; under SCOPE 2, SYSLIB must be explicitly included in the library set.)

Occasionally, the programmer may need to access the source code of the common common decks. That
source code resides on the COMCPL old program library as a set of common decks (see the Update
reference manual). The source code of these common decks can be made available to a COMPASS program
in three ways:

Update-based procedures can use the COMCPL old program library as a secondary old program library
(see the Update reference manual). The decks are called just as one would call a common deck from
one's own old program library.

Modify-based products can convert the COM CPL old program library to an OPL via the UPMOD
statement (see the NOS reference manual); the OPL is then used as the source for the common
common decks.

The programmer can use the COMPASS XTEXT pseudo-instruction in the program to obtain the source
code from either an old program library or an OPL (see the X file option of the COMP ASS control
statement).

The system texts required to assemble the common common decks residing on the COMCPL old program
library are IPTEXT and CPUTEXT. These texts can be made available to the program via the S parameter
on the COMPASS control statement.

60492600 H 12-1

TABLE 12-1. SUMMARY OF COMMON COMMON DECKS

Common Coumon Relocatable Entry Points Available Under
Deck Name Program Name SCOPE 2

COMCARG CPU.ARG ARG= Yes

COMCCDD CPU.COD CDD= Yes

COMCCFD CPU.CFO CFD= Yes

I COMCCIOt CPU.CIO CIO= No

COM CC OD CPU.COD COD= Yes

COMCCPT CPU.CPT CPT= Yes

I COMCDXBt CPU.DXB DXB= Yes

COMCMNS CPU.MNS HNS= Yes

COM CMOS CPU.MOS MOS= Yes

COHCMTH Yes

COMCMTP Yes

COMCMVE CPU.MVE MVE= Yes

COMCRDC CPU.RDC RDC= No

COHCRDH CPU.ROH RDH= No

COMCRDO CPU.RDO RDO= No

COMCRDS CPU.RDS RDS= No

I COMCRDWt CPU.ROW RDW= RDX= LCB= No

COMCRSR CPU.RSR RSR= Yes

COHCSFN CPU.SFN SFN= Yes

COHCSRT CPU.SRT SRT= Yes

COMCSST CPU.SST SST= Yes

COMCSTF CPU.STF STF= No

COMCSVR CPU.SVR SVR= Yes

COHCSYS CPU. SYS SYS= RCL= WNB= MSG= No

COMCUPC CPU.UPC UPC= Yes

COMC'WOD CPU.WOO WOD= Yes

COMCWTCt CPU.WTC WTC= No

COMCWTHt CPU.WTH WTH= No

COMCWTOt CPU.WTO WTO= No
COMCWTSt, CPU.WTS WTS= No

COMCWTWt CPU.WTW WTW= WTX= DCB= No

COMCXJR CPU.XJR XJR= No

COMCZTB CPU.ZTB ZTB= Yes

I taave user defined options

12-2 60492600 M

12.2 DESCRIPTION OF THE COMMON COMMON DECKS

A detailed external reference description of each common common deck follows. The decks are described
in alphabetical order. Each description lists entry and exit conditions, registers used, and routines
explicitly called.

The following rules apply to the use of all common common decks:

Any input/output buffers, string buffers, exchange package save areas, and so forth, to be used by any
of the common common decks should not be located with the last 109 words of the field length.
Some fetch loops, move loops, and so forth, may encounter a hardware fault (out of range address) if
the above restriction is not adhered to.

Registers that are not used by the common common decks are not modified.

Entry and exit conditions are only those listed in the descriptions below.

12.2.1 COMCARG - PROCESS ARGUMENTS

COMCARG processes a list of arguments (in the format generated by COMCUPC) by the use of an
equivalence table. The equivalence table must be terminated by a word of all ,zeros and must be in the
following format:

12/op,18/asv ,12/st,18/addr

op One or two character keywords (left justified, zero filled)

asv Address of assumed value

st Status

addr Address where argument is placed

This format is generated by the COMPASS VFD pseudo instruction. ARG= is the only entry point for
COMCARG.

Entry conditions:

(Bl) 1
(B4) Argument count
(A4) Address of first argument
(X4) First argument
(B5) Address of equivalence table

Exit conditions:

(Xl) # 0

1 Option not found in table
2 Single argument equivalenced
3 Illegal re-entry of argument

Registers used:

A2, A3, A4, A 7
B2,B3,B4
XO,Xl,X2,X3,X4,X6,X7

604926.00 H 12-3

The following conditions apply to the use of COMCARG:

If a keyword=value form is found in the argument list, addr is set to the upper 42 bits of the argument
value (in bits 59-18) and the lower 18 bits of asv (in bits 17-0).

If only a keyword is found in the argument list, addr is set to the full 60 bits of asv.

If asv 0, the argument cannot be equivalenced.

If status=40009, a zero value is retained as a display code zero. Otherwise, a value of zero (full
word) is stored at addr.

If asv=addr, only one entry of that argument is allowed and op is set to -0.

12.2.2 COMCCDD - CONVERT INTEGER CONSTANT TO DECIMAL DISPLAY CODE

COMCCDD converts an integer constant to decimal display code. Up to ten digits are converted with
leading zero suppression. The converted integer contains space fill. One register contains the display code
right justified; another register contains it left justified. CDD= is the only entry point for COMCCDD.

Entry conditions:

(Bl) 1
(Xl) Number to be converted

Exit conditions:

(B2) 6*(count of digits converted)
(X4) Conversion left justified
(X6) Conversion right justified

Registers used:

A2, A3, A4
B2, B3, B4
Xl, X2, X3, X4, X6, X7

12.2.3 COMCCFD - CONVERT CONSTANT TO F10.3 FORMAT

COMCCFD converts a 30 bit integer to display code in FORTRAN Fl0.3 format. The value returned is
equal to the input value divided by 1000. The result is returned in two for ms: left justified and right
justified. Leading zeros in the integer portion of the result are suppressed. If the 30-bit input value
exceeds 999999.999(7346544 777 a), the result is•• u u u • • . An input value greater than 30 bits is
truncated to the lower 30 bits. CFD= is the only entry point for COMCCFD.

Entry conditions:

(Bl) 1
(Xl) Integer to be converted

Exit conditions:

(B3) - (number of blank fill bits in result)
(X4) Conversion left justified
(X6) Conversion right justified

Registers used:

12-4

Al, A2, A3, A4
B2, B3, B4, B5 .
Xl, X2, X3, X4, X6, X7

60492600 H

12.2.4 COMCCIO - PROCESS 1/0 OPERATION
I

COMCCIO performs input/output operations via the peripheral processor program CIO. An operation is
performed when the buffer is not busy. If the file-status-word is zero, the operation is not processed and
IN and OUT are set to FIRST. CIO= is the only entry point for COMCCIO.

Entry conditions:

(X2) 24/unused, 18/skip count to CIO, 18/FET address for file
(X7) Function code; if o, X7 is the complement of the request and auto recall is requested

Exit conditions:

(X 2) FET address
(X7) 0

If ERP$ is defined by the user:

(X2) PET address
(X 7) FET error code:

0 No error, operation performed, normal exit _
other Error code from FET; operation not performed, exit to ERP$

If ERP1$ is defined by the user:

(X2) PET address
(X7) FET error code:

0 No error, operation performed, normal exit
other Error code from PET; operation not performed, normal exit

Registers used:

Al, A6, A7
Xl, X2, X6, X7

12.2.5 COMCCOD - CONVERT CONSTANT TO OCTAL DISPLAY CODE

COMCCOD converts an integer constant to octal display code with leading zero suppression. Up to ten
digits can be converted. The converted integer contains space fill. One register contains the display code
right justified, another register contains it left justified. COD= is the only entry point for COMCCOD.

Entry conditions:

(Bl) 1
. (Xl) · Number to be converted

Exit conditions:

(82) 6*(count of digits converted)
(X4) Conversion left justified
(X6) Conversion right justified

Registers used:

A4
82, B3, B4
Xl, X2, X3, X4, X6, X7

60492600 M 12-5

I

I

12.2.6 COMCCPT - EXTRACT COMMENTS FIELD FROM PREFIX TABLE

COMCCPT copies the comments field of a prefix (7700g} t~ble to 8: working storage area. Either th~ old
or new forms of the prefix table can be t5ed. COMCCPT d1fferent1ates between the forms by checking
word FWA+3 of the table to see if it looks like a time-of-day word. The copy terminates on end-of-table,
zero byte, or COPYRIGHT. The working storage area is terminated by a zero word. CPT= is the only
entry point for COMCCPT.

Entry conditions:

(Al} Prefix table address
(AS} Address of working storage - 1
(Bl} 1
(X l} Control word

Registers t.5ed:

A2, A3, A4, AG
B3, B4
Xl, X2, X3, X4, X6

12.2.7 COMCDXB_ - CONVERT DISPLAY CODE TO BINARY

COMCDXB converts a string of display code digits up to one word in length (left-justified and zero-filled}
into internal integer format. Either a base 10 or a base 8 string of digits can be converted as specified in
the call. This specification, however, is overridden if an explicit B (octal) or D (decimal) is the last
character of the value to be converted. DXB= is the only entry point for COMCDXB. ·

The assembly option DXB1$ controls the processing of an 8 or 9 when octal is specified for the display code
I value and no explicit B or D appears in the value. If DX81$ is not defined by the user an error occurs. If

DX81$ is defined, the value is considered to be decimal. ·

Entry conditions:

(Bl} 1
(87} Base; if O, decimal base; if O, octal base.
(X5} Word to be converted (left justified, zero filled}

Exit conditions:

(X6) Converted digits
(X4) Error code:

0 No error
other Error in assembly

Registers used:

82, B3, 84, B5
XO, Xl, X2, X3, X4, X5, X6, X7

The presence of one or more of the following always causes an error:

12-6

A non-digit in the word to be converted

A character after the post radix

An 8 or 9 with the post radix equal to 8

60492600 M

12.2.8 COMCMNS - MOVE NON-OVERLAPPING BIT STRING

COMCMNS moves a specified source string from one location to another in central memory. The only bits
distl.ll'bed in the destination field are those extracted to accept the source string. The destination field
must not overlap the source field in any way; results are undefined if overlapping occurs; COMCMOS can
be used for overlapping moves. MNS= is the only entry point for COMCMNS.

Entry conditions:

(Bl)
(B2)
(B4)
(XO)
(X2)
(X4)

1
Source first bit (numbered left to right - O, 1, ••• , 59)
Destination first bit (numbered left to right - O, 1, ••• , 59)
Number of bits to move
Source first word address
Destination first word address

Exit conditions:

(Bl)
(B2)
(B4)
(X2)
(X4)

1
Sotn'ce next bit (numbered left to right - O, 1, ••• , 59)
Destination next bit (numbered left to right - O, 1, ••• , 59)
Source next word address
Destination next word address

Registers used:

Al, A2, A3, A5, A6
82, B3, 84, B5, B6
XO,Xl,X2,X3,X4,X5,X6,X7

12.2.9 COMCMOS - MOVE OVERLAPPING BIT STRING

COMCMOS moves a specified source string from one location to another in central memory. The only bits
disttn'bed in the destination field are those extracted to accept the source string. COMCMOS allows the
user to move string"S where the destination field overlaps (lies partly or completely within) the source
field. If the move is not an overlap move, COMCMOS calls the faster common common deck COMCMNS to
do the move. For this reason, COMCMNS should always be called whenever COMCMOS is. MOS= is the
only entry point for COMCMOS.

Entry conditions:

(Bl)
(B2)
(84)
(XO)
(X2)
(X4)

1
Source first bit (numbered left to right - o, 1, ••• , 59)
Destination first bit (numbered left to right - O, 1, ••• , 59)
Number of bits to move
Source first word address
Destination first word address

Exit conditions:

(Bl)
(B2)
(B4)
(X2)
(X4)

60492600 M

1
Source next bit (numbered left to right - O, 1, ••• , 59)
Destination next bit (numbered left to right - O, 1, ••• , 59)
Sotn'ce next word address.
Destination next word address

12-7

I

I

I

I

I

I

Registers used:

Al, A2, A3, AS, A6, A 7
B2, B3, B4, 85, 86
XO,Xl,X2,X3,X4,X5,X6,X7

Calls:

MNS=

12.2.10 COMCMTM - MANAGED TABLE MACROS

COMCMTM contains four macros, ADDWRD, ALLOC, SEARCH, and TABLE, for generation, allocation,
and processing of managed tables. COMCMTM is intended to be used with COMCMTP.

ADDWRD - ADD WORD TO TABLE

ADDWRD adds a word to a managed table. ADDWRD calls ADW and uses AO and Xl.

Format:

lOCATION OPERATION VARIAllE SUlflElOS

ADDWRD table, reg

table Table number

reg Register name or expression for word to be added

ALLOC-ALLOCATE TABLE SPACE

ALLOC allocates table space. ALLOC calls A TS and uses AO and Xl.

Format:

lOCATION OPEIATION VARIAllE SUIFIElOS

ALLOC table, words

table Table number

words Word count (+ or-) to be added

SEARCH - SEARCH MANAGED TABLE

SEARCH searches for a specified entry. SEARCH calls EQS or MES and uses AO, B7, and X6.

Format:

12-8

LOCATION

tname
entry
mask

OPERATION VARIABLE SUIFIElOS

SEARCH tname, entry, mask

Table name
Entry to be searched for
Search mask in XO; if not present, defaults to all bits.

60492600 M

TABLE - GENERATED MANAGED TABLE

TABLE generates a managed table.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

TABLE tname, count, equiv

tname Table name

count Word count per entry (1 if not specified)

equiv Equivalent table name; allows certain tables to be used by different processors

After the table is generated:

F .tname is the name of the word containing the table FWA.

L.tname is the name of the word containing the table length.

C.tname is the word count per entry.

12.2.11 COMCMTP - MANAGED TABLE PROCESSORS

COMCMTP contains the following routines for processing managed tables:

ADW Adds a word to the table.

AMU Returns the total memory used by the tables.

A TS Allocates table space.

EQS Searches table for equal entries.

MES Searches a table for equal entries using a mask.

MTD Moves the table down.

MTU Moves the table up.

Macros for calling these routines and for table generation are contained in COMCMTM.

The managed table processors allow the partitioning of central memory into variable regions called tables.
These tables are referenced by pointers that indicate the first word address of the table and the table
length. Memory is allocated to each table as it is required; the user can delete space from the tables.
Each table is allowed at least one word of expansion space to allow a dummy word between each table, thus
ensuring efficient search methods.

The caller of the table processors is expected to provide certain constants for use by the processors. Other
data is provided by COMCMTM.

Data provided by the caller:

MEML Lowest address of managed memory

TOV Address of the table overflow processor

60492600 H 12-9

Data provided by COMCMTM:

NTAB Number of managed tables

FTAB Start of table addresses

LTAB Start of table lengths

F.tnam Address pointer for table tnam

L. tnam Length pointer for table tnam

Data dynamically changeable:

TN Number of managed tables. Set to NTAB by COMCMTM. TN must be less than NTAB
during use.

TO Table overflow processor. Set to TOV by COMCMTM.

LM Low memory limit. Set to MEML by COMCMTM. If this value is increased, MTU should be
called to allow room for change.

F. TEND High memory limit. F. TEND must be initialized by the user. If this value is decreased,
MTD should be called to allow room for change.

TOVT TOV threshold. If the word is defined, it should contain the threshold for calling TOV; ATS
calls TOV when the tables must be moved and less than TOVT free words remain. If TOVT is
not defined, an effective value of zero is used.

ADW - ADD WORD TO TABLE

ADW adds a word to a managed table.

Entry conditions:

(AO) Table number
(Xl) Word to be added

Exit conditions:

(AG) Address of added word
(Xl) Added word
(X2) FWA of table
(X3) Length of table
(X6) Added word

Registers used:

Al,A2,A3,A4,A6,A7
Xl,X2,X3,X4,X6,X7

Calls:

ATS

AMU - ACCUMULATE MEMORY USED

AMU returns the amount of memory used by the managed tables or the current length, whichever is the
largest. The variable MU is set to this value.

12-10 60492600 H

Exit conditions:

MU MAX(memory used, current assigned length)

Registers used:

Al, A2, A6
B2
Xl, X2, X3, X6

ATS- ALLOCATE TABLE SPACE

ATS allocates table space. The table length can be increased or decreased as specified.

Entry conditions:

(AO) Table number
(Xl) Change (+ or -) to the table size

Exit conditions:

(Xl) Change made to the table size
(X2) FWA of table
(X3) New length of table
(X7) Less than 0 if tables moved

Registers used if tables are not moved.

A2, A3, A4, A6
X2, X3, X4, X6, X7

Registers used if tables are moved:

Al, A2, A3, A4, A6, A 7
B2, B3, B4, B5, B6, B7
XO,Xl, x2~x3,X4,X5,X6,X7

Registers restored:

B2, B3, B4, B5, B6, B7 (except -0 restored as +O)
XO, Xl, X5

Calls:

AMU, MVE=, TOV

TOV, the user provided table overflow processor, is described below.

Entry conditions:

(Bl) 1
(B5) Complement of number of words required
(B6) Return address to continue processing

The location TOV must contain executable code. TOY is entered via a JP instruction.

Exit from TOV via a JP B6 instruction.

60492600 H 12-11

Exit conditions:

Only Bl must be preserved.

A pointer word must be incremented by the number of words newly available. If TN has not been
altered during execution, the address of the pointer word is F. TEND. If TN has changed, the address
of the pointer word is FTAB-1 plus the contents of TN.

EQS - EQUALITY SEARCH TABLE

EQS searches for a specified entry.

Entry conditions:

(AO) Table number
(B7) Word count per entry
(X6) Entry for search

Exit conditions:

(X2) = O if entry not found
(X2) = entry, if found
(A2) = address of entry found

Registers used:

Al, A2, AG
Xl, X2, X3, X7

MES - MASKED EQUALITY SEARCH TABLE

MES searches for a specified entry using a mask.

Entry conditions:

(AO) Table number
(B7) Word count per entry
(XO) Mask
(X6) Entry for search

Exit conditions:

(X2) = 0 if entry not found
(X2) = entry, if found
(A2) = address of entry found

Registers used:

Al, A2, A6
Xl, X2, X3, X4, X7

MTD - MOVE TABLES DOWN

MTD moves the tables down (away from RA) to eliminate unused memory.

Exit conditions:

(B2) Number of tables

12-12 60492600 H

Registers used:

Al, A2, A3, A 1
82,83
XO,Xl,X2,X3,X4,X7

Calls:

MVE=

MTU - MOVE TABLES UP

MTU moves the tables up (toward RA) to eliminate unused memory.

Registers used:

Al, A2, A7
B3
XO, Xl, X2, X3, X7.

Calls:

MVE=

12.2.12 COMCMVE - MOVE BLOCK OF DATA

COMCMVE moves a block of data to a specified location. COMCMVE moves the data from the source
address through the source address plus the word count minus one to the destination address through the
destination address plus the word count minus one. The move can be in either direction. MVE= is the only
entry point for COMCMVE.

Entry conditions:

(Bl) 1
(Xl) Word count
(X2) Source address
(X3) Destination address

Registers used:

A2, A4, AG, A7
B7
Xl, X2, X3, X4, X6, X7

12.2.13 COMCRDC - READ CODED LINE, C FORMAT

- Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be
called again to continue reading the file. Ref er to the NOS or NOS/BE reference manual for a description
of the CIO macros.

COMCRDC reads a coded line terminated by a zero byte from a CIO buffer to a working buffer. RDC= is
the only entry point for COMCRDC.

60492600 H 12-13

Entry conditions:

(B6) FW A of working buff er
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is less than zero, then the complement of B7 is the word count of the working buffer; COMCRDC
will not read and discard words until an end-of-line for lines longer than the working buffer.

Exit conditions:

(Bl) 1
(B6) Address of last word transferred to working buffer plus one
(Xl) Status of transfer:

O Transfer completed
-1 EOF detected on file
-2 EOI detected on file
B6 EOR detected on file before transfer completed

(X2) Address of FET for file
(X4) Contents of last data word transferred before EOL guaranteed
(X7) Level number of EOR

Registers used:

Al,A2,A3,A4,A6,A7
Bl,B2,B~B~B5,B6,B7
Xl,X2,X3,X4,X6,X7

Calls:

LCB=, RDX=

12.2.14 COMCRDH - READ CODED LINE, H FORMAT

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required. ·

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to ·
reestablish the type of read/transfer before another data transfer routine is called.

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must< be
called again to continue reading the file. Ref er to the NOS or NOS/BE reference manual .for a description
of the CIO macros. ·

COMCRDH reads a coded line terminated by a zero byte from a CIO buffer to a working buffer with
trailing space fill. RDH= is the only entry point for COMCRDH. ·

Entry conditions:

(B6) FWA of working buff er
(B7) Word count of working buffer
(X2) Address of FET for file

Exit conditions:

(Bl)
(B6)

12-14

1
Address of last word transferred to working buffer plus one

60492600 H

(Xl) Status of transfer:
0 Transfer completed

-1 EOF detected on file
-2 EOI detected on file
B6 EOR detected on file before transfer completed

(X2) Address of PET for file
(X7) Level number of EOR

Registers used:

Al, A2, A3, A4, AG
Bl, B2, B3, B4, BS, BG, B7
Xl,X2,X3,X4,X6,X7

Calls:

LCB=, RDX=

12.2.15 COMCRDO - .READ ONE WORD

Before a data transfer. routine is called, a CIO read function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type· of read/transfer before another data transfer routine is called.

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description
of the CIO macros.

COMCRDO reads one word from a CIO buffer into X6. RDO= is the only entry point for COMCRDO.

Entry conditions:

(Al) Address of IN pointer.
(Xl) IN

Exit conditions:

·(Bl) 1
(Xl) Statusof transfer:

0 Transfer completed
1 EOR detected on file

,..1 EOF detected on file
-2 EOI detected on file

(X2) Address of PET for file
(X6) Word read

Registers used:

Al, A2, A3, A4, A6, A7
Bl
Xl,X2,X3,X4,X6,X7

Calls:

CIO=

60492600 H 12-15

12.2.16 COMCRDS - READ CODED LINE TO STRING BUFFER

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be ·
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description
of the CIO macros.

COMCRDS reads a coded line from a CIO buffer to a working buffer. Words in the circular buffer are
unpacked and stored one character per word in the working buffer. This process is continued until the
end-of-line byte is detected. If the coded line terminates before the working buffer is filled, the working
buffer is padded with spaces; the buffer is not padded if the complement of the word count of the buffer is
used. If the coded line exceeds the size of the working buffer, the excess characters are ignored. RDS= is
the only entry point for COMCRDS.

Entry conditions:

(BG) FWA or working butter
(B7) Word count of working buffer
(X2) Address of PET for file

If B7 is less than 0, B7 is the complement of the buff er length and the string buff er will not be space
filled.

Exit conditions:

(Bl)
(B6)
(Xl)

(X2)
(X7)

1
Address of the last character from the coded line in the working buffer plus one
Status of transfer:

0 Transfer completed
-1 EOF detected on file
-2 EOI detected on file
86 EOR detected on file before transfer completed

Address of PET for file
Level number of EOR

Registers used:

Al,A2,A3,A4,A6,A7
Bl,B2,B3,B4,B5,B6,B7
Xl, X2,X3,X4,X6,X7

Calls:

LCB=, RDX=

12.2.17 COMCRDW - READ WORDS TO WORKING BUFFER

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is called.

12-16 60492600 H

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description
of the CIO macros.

COMCRDW reads a specified number of words from a CIO buffer to a working buffer. COMCRDW also
contains the load CIO buffer and read exit routines required by COMCRDC, COMCRDH, and COMCRDS.
RDW=, LCB=, and RDX= are the entry points for COMCRDW. The RDX$ assembly option controls.
read-ahead. The programmer can prevent read-ahead by defining the symbol RDX$.

Entry conditions:

(B6) FWA of working buff er
(B7) Word count of working buffer
(X2) Address of FET for file

Exit conditions:

(Bl) 1
(B6) Address of last word transferred to the working buffer plus· one
(B7) Word count remaining to be transferred ·
(Xl) Status of transfer:

0 Transfer completed
-1 EOF detected on file
-2 EOI detected on file
-3 CIO= was called to read more data and returned an error status
B6 EOR was detected on file before transfer was completed

(X2) Address of FET for file
(X7) Error status if Xl is -3, otherwise level number of EOR

Registers used:

Al, A2, A3, A4, A6, A 7
Bl, B2, 83, B4, BS, B6, B7
Xl, X2, X3, X4, X6, X7

Calls:

CIO=

12.2.18 COMCRSR - RESTORE ALL REGISTERS

COMCRSR restores the B, A, and X registers from a specified register save area. The format of the
registers in the save area is BO, Bl, ••• , B7, AO, Al, ••• , A7, XO, Xl, ••• , X7. Each register occupies a full
word with the B and A register values in bits 17 through O. RSR= is the only entry point for COMCRSR.

Entry conditions:

(Xl) Address of register save area

Exit conditions:

All registers are set to the content of the register save area.

Registers used:

AO, Al, A2, A3, A4, A5, A6, A 7
Bl, B~B3,B4,B5,B6,B7
XO, Xl, X2,X3, X4, X5, X6, X7

60492600 H 12-17

12.2.19 COMCSFN - SPACE FILL NAME

COMCSFN converts trailing 00 characters in a word to blanks. SFN= is the only entry point for COMCSFN.

Entry conditions:

(Xl) Name left justified, zero fill
(Bl) 1

Exit conditions:

(XS) Name space filled
(X7) Final character mask

Registers used:

A3
82
X3, X6, X7

12.2.20 COMCSRT - SET RECORD TYPE

COMCSRT attempts to identify the format of a record, given the initial part of that record (S4 words are
usually sufficient) in a working buffer. The type codes returned are listed in table 12-2. SRT= is the only
entry point for COMCSRT.

Entry conditions:

(Bl) 1
(Xl) LW A+l of block
(X2) PW A of current record

Exit conditions:

(X6) 42/0L ~name, 12/0, S/type number
(X7) Record name in L for mat

If type number and record name are zero, the record is zero length.

Registers used:

A1, A2, A3, A7
B2, B3
XO, Xl, X2, X3, X4, XS, X7

12.2.21 COMCSST - SORT TABLE USING SHELL SORT

COMCSST sorts a table of one word entries into ascending order using a shell sort. All of the entries
should be of the same sign. SST= is the only entry point for COMCSST.

Entry conditions:

(Bl) 1
(B7) Address of table to be sorted
(Xl) Number of elements in the table

Exit conditions:

The table is sorted.

12-18 S0492SOO H

Type

TEXT

6PP

OVCAP

REL

OVL

ULIB

OPL

OPLC

OPLD

ABS

7PP

UPLX

UCF

ACF

CAP

DATA

PROC

SDR

UPLR

60492600 J

Number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TABLE 12-2. TYPE CODES RETURNED BY COMCSRT

Format

Text record

6000-series peripheral processor
overlay

Overlay Capsule

Relocatable subprogram

Central processor overlay

NOS user library

Modify program library deck

Modify program library conman
deck

Modify program library directory

Multiple entry point overlay

7000~series peripheral processor
overlay

Update sequential program
library with X master control
character

Update compressed compile file

Modify compressed compile file

Fast dynamic load capsule

Arbitrary data

Procedure record

Determined by

No 77008 table and first word with
all zeros in bits 0 through 17

77008 table with three-character
name in header word

77005 table followed by 60008
table with bit 18=1

34008 table

50005 table, 53005 table with bit
17=0, or 54005 table with non-(0,0)
overlays

76008 table

70018 table with 0 word count

70028 table with 0 word count

70008 table with 0 word count

51008 table, 53008 table with bit
17=1, or 54009 table with (O,O)
overlays

52008 table

No 7700s table and characters CHECK
in bits 30 through 59 (control
character obtained from bits 0
through 5)

77008 table with 0 word count

Bits 0 through 17 in second word of
77005 table are non-zero

77005 table followed by 60005
table

Unrecognizable by criteria defined
in these tables

PROC followed by delimiter

17 CDC reserved

18 Special deadstart record

19 Update random program library

NOS/BE 1 deadstart tape position

77008 table followed by 60008 table
followed by COMDECK, YANK, or DECK

12-19

Registers used:

Al. A2, A6, A 7
82, 83, 84, 85
Xl,X2,X~X4,X6,X7

12.2.22 COMCSTF - SET TERMINAL FILE

COMCSTF detects if a file is assigned to an interactive terminal. STF= is the only entry point for
COMCSTF.

Entry conditions:

(Bl) 1
(X2) Address of FET

The FET must be greater than five words in length.

Exit conditions:

(X2) Address of FET
(X6) 0 if file is assigned to a terminal

Registers used:

Al, A4, A6
Xl, X3, X4, X6

Calls:

CIO=

12.2.23 COMCSVR - SAVE ALL REGISTERS

COMCSVR saves. the 8, A, and X registers in a specified register save area. The registers are saved in the
fallowing order:

BO, Bl, ••• , B7, AO, Al, ••• , A7, XO, Xl, ••• , X7

Each register occupies a full word with the B and A register values in bits 17 through 0. B and A registers
are sign extended. SVR= is the only entry point for COMCSVR.

Entry conditions:

Bits 17 through O of the word from which SVR= was called contain the address of the register. save
area.

Exit conditions:

(save thru save+7)
(save+S thru save+15)
(save+16 thru save+23)

Registers used:

B registers
A registers
X registers

AO, Al, A2, A3,A4,A5,A6,A7
Bl,B2,B3,B4,B5,B6,B7
XO, Xl, X2, X3, X4, X5, X6, X7

12-20 60492600 H

12.2.24 COMCSYS - PROCESS SYSTEM REQUEST

COMCSYS issues a system monitor request through RA+l. SYS=, RCL=, WNB=, and MSG= are the entry
points for COMCSYS.

SYS= - PROCESS SYSTEM REQUEST

SYS= waits for RA+l to clear before issuing the desired request. Central exchange jump hardware is used
if it is available. If the hardware is not available and the auto-recall bit is set, SYS= waits for the monitor
to process the call before returning.

Entry conditions:

(X6) System request

Exit conditions:

Request accepted by monitor

Registers used:

Al, A6
X6 (Contents restored upon exit)

RCL= - PLACE PROGRAM ON RECALL

RCL= issues a single system request for periodic recall. If RA+l is busy, no request is issued.

Exit conditions:

Request processed.

Registers used:

Al
Xl, X6

WNB= - WAIT NOT BUSY

WNB= waits for a specified status word, bit 0, to be set. If the word is initially 0, WNB= returns.

Entry conditions:

(X2) Address of status word

Exit conditions:

Returns when bit· 0 of status word is set.

Registers used:

Al
Xl, X6

MSG= - SEND MESSAGE

MSG= formats and issues a system request to send a message (80 characters or less) to the job dayfile. The
message appears in the dayfile as two lines (if necessary) of 40 characters each. Messages exceeding
80 characters are truncated.

60492600 H 12-21

Entry conditions:

(Xl) Address of first word of data (data must be packed in sequential locations, and should not
exceed 80 characters)

(X6) Message options:
bit 16 - Auto recall if on
bits 11 through O - Message option code (see MESSAGE macro in operating system
reference manual) ·

Exit conditions:

Returns when operation is complete.

Registers used:

Al, A&
Xt. X6

12.2.25 COMCUPC - UNPACK CONTROL CARD

COMCUPC unpacks a control statement into the keyword and individual parameters. The following
conditions apply to the use of COMCUPC:

If B7 is negative on entry, a blank after the keyword is considered to be a separator; otherwise, blanks
are ignored.

The characters) and • are considered as the termination of the control statement.

Characters with display code values 0 or 609 through 77 8 are illegal before the terminator.

The parameter must contain 7 or fewer characters.

The parameters are stored left-justified with zero fill.

The separator character is placed in the lower 18 bits of the parameter unless it is a *, * in which
case the lower 18 bits are zero.

Two successive separators or a separator followed by a terminator results in a parameter of all zeros.

UPC= is the only entry point for COMCUPC.

Entry conditions:

(A5) Address of first word of control statement
(Bl) 1
(B7) First word address of buff er containing parameter information
(X5) First word of control statement

If B7 is negative, B7 contains the complement of the first word address of the parameter buffer.

Exit conditions:

(B6) Parameter count
(X6) O if no error during unpacking

Registers used:

Al, A2, A5, A6, A7
B2, B3, B4, B5, B6
XO, Xl, X2, X3, X4, X5, X6, X7

12-22 60492600 H

12.2.26 COMCWOD - CONVERT WORD TO OCTAL DISPLAY CODE

COMCWOD converts a word into octal display code. WOD= is the only entry point for COMCWOD.

Entry conditions:

(Xl) Word to be converted

Exit conditions:

(Bl)
(X6, X7)

Registers t.5ed:

1
Conversion

A 2, A3, A4, A5
XO, Xl, X2, X3, X4, X5, X6, X7

12.2.27 COMCWTC - WRITE CODED LINE, C FORMAT

COMCWTC writes a zero byte delimited line from a working buffer to a CIO buffer. If the CIO buffer
becomes sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTC
performs a WRITE function unless the symbol WRIF$ is defined by the t.5er. In this case, the CIO function I
that is in the FET is reissued. WTC= is the only entry point for COMCWTC.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buff er.

Entry conditions:

(86) FWA of working buffer
(X2) Address of FET for file

Exit conditions:

(Bl) 1
(X2) Address of PET for file_

Registers used:

Al, A2, A3, A4, A6, A7
81, 82, 83, 84, BS, 86
Xl, X2, X3, X4, X6, X7

Calls:

DCB=, WTX=

12.2.28 COMCWTH - WRITE CODED LINE, H FORMAT

COMCWTH writes a coded line in H format from a working buffer to a CIO buffer. Trailing spaces are
deleted. If the buffer becomes sufficiently full to require writing, or the device type indicates a NOS/BE
terminal, COMCWTH performs a WRITE function unless the user defines the symbol WRIF$. In this case, I
the CIO function that is in the FET is reissued. If the line to be written terminates with 6 bits of zero, a
word containing a blank byte is appended to preserve the 00 character as a colon. If the line terminates on
an end-of-line, it is written as is. WTH= is the only entry point for COMCWTH.

60492600 M 12-23

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flt.5h) the working buffer.

Entry conditions:

(BG) FWA or working buffer
(B7) Word count or working buffer
(X 2) Address of FET for file

If B7 is O, no transfer is performed.

Exit conditions:

(Bl) 1
(X2) Address of PET for file

Registers used:

Al, A2, A3, A4, AG, A 7
Bl, B2, B3, B4, B5, BG, B7
Xl, X2, X3, X4, X6, X7

Calls:

DCB=, WTX=

12.2.29 COMCWTO - WRITE ONE WORD

COMCWTO writes one word to a CIO buffer from X6. If the buffer becomes sufficiently full to require
I writing, COMCWTO performs a WRITE function unless the symbol WRIF$ is defined by the user. In this

case, the CIO function that ~sin the FET is reissued. WTO= is the only entry point for_ COMCWTO •. -

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buffer. ·

Entry conditions:

(Al) Address of IN pointer
(Xl) IN
(X6) Word to write

Exit conditions:

(Bl) 1
(X2) Address of FET for file

Registers used:

Al, A2, A3, A4, A6, A 7
Bl
Xl,X2,X3,X4,X6,X7

12-24 60492600 M

12.2.30 COMCWTS - WRITE CODED LINE FROM STRING BUFFER

COMCWTS writes a coded line from a working buffer to a CIO buffer with trailing space suppression.
Characters in the working buffer are packed and stored in the circular buffer. If the buffer becomes
sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTS performs
a WRITE function unless the symbol WRIF$ is defined by the user. In this case, the CIO function that is in I
the FET is reissued. WTS= is the only entry point for COMCWTS.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buffer.

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is O, no transfer is performed.

Exit condition«>:

(Bl) 1
(B6) . Word count of data written
(X2) Address of FET for file

Registers used:

Al, A2, A3, A4, A6, A7
Bl, B2, B3, B4, BS, B6,. B7
Xl, X2, X3, X4, X6, X7

Calls:

DCB=, WTX=

12.2.31 COMCWTW - WRITE WORDS FROM WORKING BUFFER

COMCWTW writes data from a working buff er to a CIO buffer. If the buffer becomes sufficiently full to
require writing or if the device type indicates a NOS/BE terminal, COMCWTW performs a WRITE function
unless the user defines the symbol WRIF$. The WTX$ assembly option controls write-behind. The I
programmer can prevent write-behind by defining the symbol WTX$. In this case, the CIO function that is
in the FET is reissued. WTW=, DCB=, and WTX= are the entry points for COMCWTW.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buffer.

Entry conditions:

(B6) FWA working buff er
(B7) Word count of working buffer
(X 2) Address of FET for file

If 87 is O, no transfer is performed.

60492600 M 12-25

Exit conditions:

(Bl) 1
(86} Address of next word to be transferred from working buffer
(B7) Status of transfer:

O Transfer completed
other Remaining word count if CIO= was called to write data and returned an error

status
(X2) Address of FET for file
(X7) Error status if B7 is O

Registers used:

Al, A2, A3, A4, A6, A 7
Bl, B2, B3, 84, 85, BS, B7
Xl, X2, X3, X4, XS, X7

Calls:

CIO=

12.2.32 COMCXJR - RESTORE ALL REGISTERS WITH A SYSTEM XJR CALL

COMCXJR restores all registers from a register save area with a system XJR call. The format of the
registers in the save area is BO, Bl, ••• , B7; AO, Al, ••• , A 7, XO, Xl, ••• , X7. Each register occupies a full
word with the B and A register values in bits 17-0. XJR= is the only entry point for COMCXJR.

Entry conditions:

(Xl) Address of the register save area.

Exit conditions:

All registers are set to the contents of the register save area.

Registers used:

AO,Al,A2,A3,A4,A5,AS,A7
BO, Bl, B2, B3, B4, B5, BS, B7
XO,Xl,X2,X3,X4,X5,XS,X7

12.2.33 COMCZTB - CONVERT ALL 00 CHARACTERS TO BLANKS

COMCZTB converts all 00 characters in a word to blanks. ZTB= is the only entry point for COMCZTB.

Entry conditions:

(Bl) 1
(Xl) Word to be converted

Exit conditions:

(XS) Converted word
(X7) Final character mask

Registers used:

A3
X3, X6, X7

12-26 60492600 H

12.3 MACROS THAT CALL THE COMMON COMMON DECKS

Entry points in the common common decks can be called by using system macros. Table 12-3 shows which
macros call entry points in the common common decks. All of the macros are supported under NOS and
NOS/BE. Only the MOVE macro is supported under SCOPE 2. All macros applicable to a given operating
system exist in the system text CPUTEXT. Each macro is described in detail in the following paragraphs.

TABLE 12-3. MACROS THAT CALL COMMON COMMON DECKS

Macro Entry Points De script ion
Called

MESSAGE MSG= Displays a message on the system
console and enters it in a dayfile.

MOVE MVE= Moves a block of dala from one
address to another.

RE ADC RDC= Reads one coded line from the input/ output
buffer to the working buffer.

READH RDH= Reads one coded line with space fill from
the input/ output buffer to the working
buffer.

READO IlDO= Reads one word from the input/output
buffer to X6.

READS ·RDS= Reads a line image to a character
buffer.

READW RDW= Fills the working buffer from an
input/ output buffer.

RECALL RCL== Relinquishes the CPU until a
WNB= function is completed or the CPU

recall time has elapsed.

SYSTEM SYS= Requests the system to process
any three-character request.

WRITEC WTC= Writes a coded line image from the working
buffer to the input/output buffer.

WRITEH WTH= Writes a coded line, deleting all
trailing spaces, from the working
buffer to the input/output buffer.

WRITEO WTO= Writes one word from X6 to the
input/ output buffer.

WRITES WTS= Writes a line image from the
character buffer.

WRITEW WTW= Writes data from the working
buffer to the input/ output buffer.

60492600 H ·· 12-27

12.3.1 MESSAGE

MESSAGE displays a message on the system console display and enters it into a dayfile. If the job is of
system origin, the message can be flashed on the B display by including a dollar sign as the first character
of the message. MESSAGE requires the common common deck COMCSYS.

The maximum length that a message can be is 80 characters; up to 40 characters per line are displayed.
The message ends with either the first word containing 12 bits of zeros in any byte or at the eightieth
character. The user must pack the display code message in sequential locations before calling MESSAGE.

The format of the RA+l call for this macro is:

5 9 40 35 23 17 0

RA+l l.__~_M_SG~~---..~~tj_o _______ x __ ___.l~o __ l~ __ a_d_dr __ __.I

Macro format:

12-28

LOCATION VAllAllf SUIF I fl OS

MESSAGE addr,x,r

addr Beginning address of the message. If the upper 12 bits of the location specified by this
address are zero, then the next 18 bits (47 thru 30) of this location are assumed to contain
the beginning address of the message.

x Message routing option:

r

0 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the control point.

1 Message is displayed at line 1 of the control point.

2 Message is displayed at line 2 of the control point.

3 Message is placed in the user dayfile and displayed at line 1 of the control point.

4 Message is placed in the error log dayfile if the job is a special system job (that is, has
an SSJ=entry point) or is of system origin; otherwise, the message is placed in the user
day file.

5 Message is placed in the account dayfile if the job is a special system job or is of
system origin; otherwise, the message is placed in the user dayfile.

6 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the control point.

7 Message is placed in the user dayfile and displayed at line 1 of the control point.

If x is not specified or is an illegal value, x=O is assumed. If x is not defined, x=l is
assumed. If x is the character string LOCAL, x=3 is used.

If r is specified, control is not returned until the operation is complete.

60492600 H

The control point message areas (lines 1 and 2) provide the user with the ability to display
concurrently messages that enter the dayfile and those that require operator action. Line 2 is
normally used to display information about the current status of the executing program.

Only messages that do not refer to the job, such as the control statements processed and compilers
used, should be placed in the system dayfile (x=O). All messages that refer to the job, such as the
path taken by the programs and the number of records copied, should be placed only in the user
dayfile (x=3). All messages placed in the user dayfile (x=O and x=6) are counted by the system. If
the number of messages issued by the job exceeds the limit for which the user is validated, the error
message MESSAGE LIMIT; is issued to the user dayfile and the job is aborted.

12.3.2 MOVE

MOVE moves a block of data from one address to another. MOVE requires the common common deck
COMCM VE for absolute assemblies.

Macro format:

lOCATION OPERATION VARIABLE SUBF IElOS

MOVE count, addr 1, addr2

count Number of words in the block to be moved

addrl Address of the first word of the block to be moved

addr2 Address of the first word of the destination

MOVE allows overlap in data moves (addr2 can be less than addrl plus count).

12.3.3 READC

READC reads one coded line from the input/output buffer to .the working buffer. Data is transferred until
the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of words are
transferred. READC requires the common common deck COMCRDC.

Macro for mat:

lOCATION OPERATION VARIABlE SUBFIElOS

RE ADC addr, buf, n

addr FET address

buf Working buffer address

n Working buffer word count

60492600 H 12-29

12.3.4 READH

READH reads a cod.ed line with space fill from the input/output buffer to the working buffer. Data is
transferred until the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of
words are transferred. READH requires the common common deck COMCRDH.

Macro format:

LOCATION OPEIATION VARIAllE SUBFIELDS

READH addr, buf, n

addr PET address

buf Working buff er address

n Working buff er word count

12.3.5 READO

READO reads one word from the input/output buff er to X6. READO requires the common common deck
COMCRDO.

Macro format:

LOCATION OPERATION VAllAIU SUBFIELDS

READO addr

addr FET address

12.3.6 READS

READS reads a line image to a character buffer~ The words are unpacked and stored in the working buffer
right justified, one character per word, until the end-of-byte (0000) is detected. If the coded line
terminates before the specified number of characters are stored, the working buffer is blank filled.
READS requires the common common deck COMCRDS.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READS addr, buf, n

addr PET address

buf Working buff er address

n Working buffer word count

12-30 60492600 H

12.3.7 READW

READW fills the working buffer from an input/output circular buffer. READW reads ahead in the
input/output buffer. This could cause the program to abort if the last word address of the input/output
buffer is within four words of the FL. If the word count is greater than the length of the working buffer,
READW writes beyond the end of the working buffer. READW requires the common common deck
COMCRDW.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READW addr, buf, n

addr F ET address

buf Working buffer address

n · Working buffer word count

12.3.8 RECALL

RECALL enables the user to relinquish the CPU until a function is completed or the CPU recall time has
. elapsed (delay time depends on the operating system and the site). If the stat parameter is included in the
call, control is not returned to the program until bit 0 of the word specified ·by stat is set. If stat is not
included in the macro call, the program relinquishes the CPU only until the next pass through the recall
loop. RECALL requires the common common deck COMCSYS.

The format of the RA+l call for this macro is:

59 -10 17 0

RA+l 1 __ R_C_L ___ ~_tj...__ ___ o ___ ..._I __ s_t_at_~I

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

RECALL stat

staL , If this parameter is present, control is returned to the program when bit O .of the word specified
by the· address stat is set.

60492600 H 12-31

12.3.9 SYSTEM

SYSTEM processes a three-letter request. The request can be either the functions that MTR performs or a
PP program. A PP program can be called from a CPU program if the first character of the name is
alphabetic. SYSTEM requires the common common deck COMCSYS.

The format of the RA+l call for this macro is:

59 40 35 17 0

RA+l p2 pl

Macro format:

LOCATION VAllAILE SUIFIElDS

SYSTEM req,r,pl,p2

req Three-character system request

r If specified, control is returned only after the request is completed

pl Bits 17 through 0 of the request

p2 Bits 35 through 18 of the request

12.3.10 WRITEC

WRITEC writes a coded line image from the working buffer to the input/output buffer. Data is transferred
until the end of the line (0000 in bits 11 through 0) is sensed. WRITEC requires the common common deck
COMCWI'C.

Macro format:

LOCATION OPERATION VARIABLE SUBF IELOS

WHITEC addr,buf

addr F ET address

buf Working buff er address

12-32 60492600 H

12.3.11 WRITEH

WRITEH writes a coded line, deleting all trailing spaces, from the.working buffer to the input/output
buffer. WRITEH requires the common common deck COMCWI'H.

Macro format:

LOCATION OPERATION VAllABLE SUBFIELDS

WRITEH addr, buf, n

addr FET address

buf Working buffer address

n Working buffer word count

12.3.12 WRITEO

WRITEO writes one word from X6 to the input/output buffer. WRITEO requires the common common deck
COMCWfO.

Macro format:

LOCATION 0PEIAT:ON VAllABIE SUBF IHOS

WHITEO addr

addr FET address

12.3.13 WRITES

WRITES writes a line image from the working buffer. Characters are packed ·ten characters per word.
Trailing spaces are deleted before the characters are packed.· WRITES requires the common common deck
COMCWfS.

Macro format:

LOCATION OPERATION VAllABlE SUBFIELDS

WRITES addr, buf, n

addr FET address

buf Working buff er address

n Working buff er word count

60492600 H 12-33

12.3.1:4 WRITEW

WRITEW writes data from the working buffer to the input/output circular buffer. WRITEW writes ahead in
the input/output buffer. This could cause the program to abort if the last word address of the input/output
buffer is within four words of the FL. If the word count is greater than the length of the working buffer,
WRITEW reads beyond the end of the working buffer. WRITEW requires the common common deck
COMCWIW.

Macro format:

LOCATION OPERATION · VARIAllE SUIFIElOS

WRITEW addr, buf,n

addr FET address

buf Working buffer address

n Working buffer word count

12-34 60492600 H

CHARACTER SETS

NOTES

1. The terms upper case and lower case apply only to the case conversions, and
do not necessarily reflect any true case.

2. When translating from display code to ASCII/EBCDIC the upper case equivalent
character is taken.

3. When translating from ASCII/EBCDIC to display code, the upper case and lower
case characters fold together to a single display code equivalent character.

4. All ASCII and EBCDIC codes not listed are translated to display code 55 (space).

5. Where two display code graphics are shown for a single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system assembled with IP CSET
set to C64. 1), and the righbnost graphic corresponds to the CDC 64-character
ASCII subset (system assembled with IP CSET set to C64. 2).

6. In a 63-character set system, the display code for the : graphic is 63. The %
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield
blank (55

8
). The display code value 00 is undefined in 63-character set systems.

7. Twelve or more zero bits at the end of a 60-bit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parity (coded) mode, and converted back to 0000
when reading.

8.

9.

10.

11.

12.

13.

This code is changed to 12 when written
parity (coded) mode.

11-0 and 11-8-2 are equivalent on input.
11-0 on ootput.

12-0 and 12-8-2 are equivalent on input.
12-0 on output.

12-8-7 and 11-0 are equivalent on input.
12-8-7 on output.

12-8-4 and 12-0 are equivalent on input.
12-8-4 on output.

CODE pseudo selects 6-bit octal code as

A
D
E
I

ASCII
Display Code (default)
External BCD
Internal BCD

60492600 A

on a 7-track magnetic tape in even

The character will be punched as

The character will be punched as

The character will be punched as

The character will be punched as

follows:

A

· A-1

CODE D (default)

i
CODEE

l CfDEICODEA -~------· .. ~~~~~~~~
-

I Display }lollcrilh BCD ASCII EBCDIC

Code Punch Upper Case Lower Case Upper Lower

(02G) 6-Dlt

Octal Char. @·I@ O@l
Hex. Char. I Punch Hex. Char. Punch Hex. Char. Hex.! Char.

@ (029)
I

i

oo® l;-~;2 - --!---·-.-·-

I
00 tJJ 8-2 3A : 8-2 lA SUB 9-8-7 7A : 3F i SUJ

I I

01 A 12'."'l Gl 21 41 41 A 12-1 61 a 12-0-1 Cl A 81 a
I

I
i

I
02 B 12-2 62 22 42 42 B 12-2 62 b 12-0-2 C2 B 82 b

03 c 12-3 63 23 I 43 43 c 12-3 63 c 12-0-3 C3
I

c 83 c

04 D 12-4 64 24 44 44 D 12-4 64
I

d 12-0-4 C4
I

D 84 d

E 12-S GS 2S 4S 4S E 12-S 6S 12-0-s cs E SS
!

05 i
e I e

06 F 12-G 66 26 46 46 F

I
12-G G6 f 12-0-G CG

I
F 86 r

I

07 G 12-7 67 27 47 47 G 12-7 67 12-0-7 C7 G 87
;

I
I

g
I i g

I
10 H 12-8 I 10 30 so 48

I

JI I 12-8 68 b 12-0-8

I

cs I JI 88 i h
i

11 I 12-9 ; 71 31 I SI 49 I

I
12-9 69 I 12-0-9 C9 I 89 I i

I
I I I !

12 J 11-1 i 41 41 . S2 4A J 11-1 GA j 12-11-1 Dl J : 91 I j

I I ! i i I

I
13 K

I
11-2 ; 42 421 S3 4B I K I 11-2 I GB k 12-11-2 I 02 K i 92 I k

I I 14 L 11-3 43

:: I
S4 4C L I 11-3

i
GC 1 12-11-3 03 L I 93 I

I I I i
IS M 11-4 44 SS 40 M I 11-4 60 m 12-11~ I D4 M

I 94 i m

!
I

I I

I I i
16 N I 11-S 4S 4s I SG 4E N 11-S GE n 12-11-s i 05 N 95

i
n

17 0
i i 4G I i 12-11-G 0

I
96 11-G 46 I 57 4F 0 i 11-6

I
6F 0 D6 I 0

47 i I
20 p 11-7 47 60 50 p i 11-7 70 p 12-11-7 D7 p 97 I p

so I I I
21 Q 11-8 50 ! 61 51 Q I 11-8 71 q 12-11-8 DB Q 98 i q

22 R 11-9 Sl Sl i 62 52 R

I
11-9 72 12-11-9 D9 R 99

I

I r I r

I
I 23 s 0-2 22 621 63 S3 s 0-2 73 8 11-0-2 E2 s A2 I s

I

I
I 24 T 0-3 23 63 64 54 T

i
0-3 74 t 11-0-3 E3 T A3 t

2S u 0-4 24 64 6S SS u I 0-4 75 u 11-0-4 E4 u A4 u

26 v 0-5 25 65 66 56 v I 0-5 76 11-0-5 ES v A5 v I v
I

27 w 0-6 26 66 67 57 w i 0-6 77 w 11-0-G E6 w A6 w

30 x 0-7 27 67 70 58 x I 0-7 7B x 11-0-7 E7 x A7 x

31 y 0-B 30 70 71 59 y 0-8 I 79 y 11-0-B EB y AB y

32 z 0-9 31 71 72 SA z 0-9 I 7A z 11-0-9 E9 z A9 z

33 0 0 12 00 20 30 0 0 10 DLE 12-11-9-8-1 FO 0 10 IDLE

34 1 1 01 01 21 31 1 1 11 DCl 11-9-1 Fl 1 11 I DCl

35 2 2 02 02 22 32 2 2 12 DC2 11-9-2 F2 2 12 I DC2

.36 3 3 03 03 23 33 3 3 13 DC3 11-9-3 F3 3 13 TM

37 4 4 04 04 24 34 4 4 14 DC4 11-9-4 F4 4 3C DC4

A-2 60492600 A

C<?DE D (default)

Display
Code

Hollerith
Punch
(02G)

BCD ASCII
Upper Case

EBCDIC
Lower Case Upper Lower

Char.
6-Bit I

Oclol Ch.1r. Exl. lnl. Oriol Hex. I Char. I Punch Hex. Char. Punch Hex. , Char. llexj

~-®-13~---+----- - _@ __ 3_-+-@_13--+-®-1:1--+ __ ::__ _ _.iT'_c_o2_9_> -+----+--·-t----..---t-- --~ ----+-T----1

40 5 5 05 05 25 35 ' 5 I s lS NAK 9-8-5 I! FS i s 332D I: NAK

41 G 6 OG 06 26 36 6 6 16 SYN 9-2 F6 i 6 SYN

42 I 7 7 07 07 27 37 7 I 7 17 ETB 0-9-6 I F7 I 7 2G ETB

43 8 8 10 10 30 38 8 8 18 CAN 11-9-8 F8 I 8 18 CAN

44 I 9 9 11 11 31 39 9 9 19 I EM 11-9-8-1 l F9 I 9 19 El\I

45 + 12 60 20 I 13 2B + 12-8-6 OB ! VT 12-9-8-3 : 4E ·I + OB VT

4G - 11 40 40 15 2D - 11 OD I CR 12-9-8-S GO - OD CR

47 • 11-8-4 S4 S4 I 12 2A • 111-8-4 OA I LF 0-9-5 5C • 25 l LF

SI

BS

50 I 0-1 I 21 ! 61 I 17 2F I 0-1 I OF I SI 12-9-8-7 61 I OF

51 (0-8-4 ,1, 7344 3744 Ii 1110 28 I (I 12-8-S 08 I BS I 11-9-6 ! 4D () I 015G I
52) 12-8-4 I 29 :) I 11-8-5 09 I HT I 12-9-5 i 5D i HT

S3 $ 11-8-3 53 53 04 24 i $ I 11-8-3 04 I EOT 9-7 5B 5 I 37 ! EOT

S4 I 8-3 13 13 35 30 i = i 8-G ID ' GS 11-9-8-5 7E : '-- I 1U \ IGS

55 sp:ce space 20 GO i 00 20 space 1 space 00 i NUL j12-0-9-8-1. 40 ; space I 00 ! NUL

56 I 0-8-3 33 73 i 14 2C i I ! 0-8-3 oc : FF 1' 12-9-8-4 ; GB I I oc i FF

57 12-8-3 73 33 I' 16 2E ; I 12-8-3 OE i so i 12-9-8-6 ' 48 ! . I OE i so

60 a n© 0-8-G 36 76 03 23 i ii I 8-3 03 I ETX I 12-9-3 I 7B i # I 03 ETX

61 [8;,_7 11 11 j 73 sB [j1 12-8-2 ic I FS I 11-9-8-4 4A Ii ~ le IFS

62 J 0-8-2 32 72 7S I 5D J 11-8-2 01 ' SOH ! 12-9-1 5A ! 01 SOH

63 %® 8-6 1G 16 i OS 1, 2S % ''. 0-8-4 I OS '1· ENQ : 0-9-8-S I GC I ,0,c 2D ENQ

64 f" 8-4 14 14 02 22 " 8-7 02 STX· I 12-9-2 : 7F I 02 STX

65 r- o-8-s 35 15 11 sF _ o-8-s 1F 1
1

• oEL
1

12-9-7 1
1

GD II 01 i DEL
@

1 -~!l~~I} 66 v ! 11-0® 52 52 01 21 I 12-8-7
11

' 7D I } I 11-0 1· 4F I i I
67 I\ & 0-8-7 37 77 06 26 & 12 06 ACK I 0-9-8-6 I 50 I I ACK

70 f I 11-8-5 55 55 07 27 I I 8-5 107F BEL I 0-9-8-7 I 76DF I I 2F BEL

71 I ? 11-s-6 56 56 37 3F
1
, ? 0-8-~ ',; u{s 11-9-8-7 J <? I lcFo 1·

1

Imlss
72 < 12-0® 72 32 34 3C < !12-8-4~ 7B 12-0 I 4C

73 > 11-8-7 57 S7 36 3EI I > 0-8-6 lE I ~ 11-9-8-6 GE > lE

74 ~ @ 8-5 15 IS 40 40 @ 8-4 GO
1

8-1 7C @ 79 l ~ I I
7S ~ ' 12-8-S 75 35 74 SC ' 0-8-2 7C I 12-11 EO " 6A

76 -, A 12-8-6 76 36 76 SE /\ 11-8-7 7E fV 11-0-1 SF ---, Al

77 ; 12-8-7 77 37 33 3B ; 11-8-6 1 B ESC 0-9-7 5E ; 27

60492600 A

' I

N

ESC

A-3

HEXADECIMAL-OCTAL CONVERSION TABLE

~
First Hexadecimal Digit

0 1 2 3 4 5 6 7 8 9 A B c D E F

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360

Hexadecimal

Digit 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361

2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 ·347 367

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377

Octal 000- 040- 100- 140 - 200- 240- 300- 340-

037 077 137 177 237 277 337 377

A-4 60492600 A

ASSEMBLY-TIME 1/0 B

SCOPE 2

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its I/O operations. Thus, COMPASS 3 can
read and write files with a variety of external formats. For each of the files used by COMPASS, the
default format, and the combinations of file format description parameters that may be specified in FILE
control statements to override the defaults, are given below.

Main Source Input File

The main source input file may be a normal source input file or a compressed compile file; COMPASS
determines which it is by inspecting the data in the file. A normal source input file under SCOPE 2
comprises the following:

File Organization (FO)

Block Type (BT)

Maximum Block Length (MBL)

Record Type (RT)

Maximum Record Length (MRL)

Conversion Mode (CM)

Label Type (LT)

sequential (SQ)

unblocked

none

control word (W)

160 characters

NO

unlabeled (UL)

The only other for mats that may be specified by FILE control statements are· as follows (X means allowed):

Block Record Type
Type F w z

unblocked x x
c x x x
I x

File Organization (FO) must be sequential (SQ).

Maximum Record Length (MRL) must not exceed 160 characters.

Label Type (LT) may be any value supported by the operating system.

Although the maximum record length may be as large as 160 characters, only the first 90 characters of
each record are reproduced in the listing output files.

60492600 H B-1

If the file is a compressed compile file {written by UPDATE in X mode or MODIFY in A mode), COMPASS
sets the file format description parameters to resemble normal input; however, MRL = 5120 characters.
Modify is not available on SCOPE 2.

Listing Out(Xlt Files

The default format under SCOPE 2 comprises the following:

File Organization (FO)

Block Type (BT)

Maximum Block Length (MBL)

Record Type (RT)

Maximum Record Length (MRL)

Conversion Mode (CM)

Label Type (LT)

sequential {SQ)

tmblocked

none

control word (W)

137 characters

NO

Unlabeled (UL)

The only other for mats that may be specified by FILE control statements are as follows (X means allowed):

Block Record Type
Type F w z

unblocked x x
c x x x
I x

File Organization (FO) must be sequential (SQ).

Maximum Record Length (MRL) must not exceed 137 characters.

Label Type (LT) may be any value supported by the operating system.

Binary Output File

FILE control statements can be used under SCOPE 2 to specify the format of binary output files for any of
the operating systems, such that a program can be assembled under SCOPE 2 and the object program
executed under a different system if so desired.

B-2 60492600 H

File Characteristics 3COPE 2 NOS and NOS/BE 1

File Organization (FO) sequential (SQ) sequential (SQ)

Block Type (BT) unblocked character count (C)

Maximum Block Length (MBL) none 5120 chars.

Record Type (RT) control word (W) system-logical-record (S)

Maximum Record Length (MRL) 1, 310, 710 chars. none

Conversion Mode (CM) NO NO

Label Type (LT) Unlabeled (UL) ANY

No other formats are allowed, except that the label type (LT) can be any value supported by the operating
system used for assembly. The format shown above under SCOPE 2 is the default binary output file format
under that system.

Scratch Files

COMPASS uses two scratch files named ZZZZZRL and ZZZZZRM, when table storage space overflows.
Regardless of what is specified by FILE control statements, COMPASS sets the file format description
parameters for these files under SCOPE 2 as follows:

File Organization (FO) = sequential (SQ).

Conversion Mode (CM) = NO.

For file ZZZZZRL:

Block Type (BT) = unblocked.

Maximum Block Length = 5120 characters.

Record Type (RT) = undefined (U) Maximum Record Length = 2550 characters.

For file ZZZZZRM:

Block Type (BT) = character count (C), Maximum Block Length = 5120 characters.

Record Type (RT) = SCOPE logical (S), no Maximum Record Length.

ALL OPERATING SYSTEMS

System Text Input Files

A user library file designated by an S parameter on the COMPASS control statement must have the
standard library file format for the system on which COMPASS is being used.t COMPASS uses the
operating system overlay loader to access these files.

For a sequential binary (non-library) file designated by a G parameter on the COMPASS control statement,
the default and permitted formats are the same as those given above for the COMPASS binary output file.

toverlay residence in user libraries is not curren.tly supported by NOS.

60492600 G B-3

XTEXT Input Files

A file read by COMPASS when processing an XTEXT pseudo instruction can have any of several formats.
COMPASS determines the file format (a) by whether the XTEXT pseudo instruction variable field is empty
and (b) by i~pecting the data in the file.

If the variable field is empty, the File Organization (FO) must be sequential (SQ). COMPASS rewinds the
file and reads until end of section·or a COMPASS END statement is encountered, whichever comes first.
The default and permitted formats under SCOPE 2 are the same as those given above for the main source
input file.

If the XTEXT variable field is non-empty, the file organization can be any of three non-standard types:

Record indexed with name index (under SCOPE 2 only).

SCOPE 3.3 style random file with name index (not supported under SCOPE 2).

Update or Modify t random program library file.

In each case, COMPASS sets the file format description parameters to the appropriate values; no FILE
control statement is needed.

The record indexed file organization is actually the word addressable (WA) file organization with a set of
format conventions superimposed on it. Such a file can be created by a FORTRAN program by using the
library subroutines OPENMS, STINDX, WRITMS, and CLOSMS with a name index, or by a COBOL program
specifying ORGANIZATION IS WORD-ADDRESS, WORD-ADDRESS IS data-name. When COMPASS detects
such a file under SCOPE 2, it sets the file format description parameters as follows (no FILE card is
needed):

File Organization (FO) =word addressable (WA).

Block Type (BT) = unblocked.

Record Type (RT)= control word (W); Maximum Record Length (MRL) = 160 characters.

Conversion Mode (CM) = NO.

COMPASS positions the file at the record pointed to by the index entry containing the name given in
the XTEXT statement variable field, and then reads records sequentially until end of section or a
COMPASS END statement is encountered, whichever comes first.

The SCOPE 3.3 style random file with name index is permitted for compatibility with previous versions of
COMPASS. When COMPASS detects such a file, it searches the file index and positions the file at the
begirming of the specified section, and then reads sequentially until end of section or a COMPASS END
statement is encountered, whichever comes first. Such files cannot be used with SCOPE 2.

An Update or Modifyt random program library file is processed similarly. The name in the variable field of
the XTEXT statement must be the name of a common deck. When COMPASS detects such a file under
SCOPE 2, it sets the file format description parameters as follows (no FILE control statement is needed):

tModify is not available tmder SCOPE 2 or NOS/BE 1.

B-4 60492600 G

File-Organization (FO) =word addressable (WA).

Block Type (BT) == unblocked

Record Type (RT) = control word (W), Maximum Record Length (MR L) = 5120 characters

Conversion Mode (CM)= NO

COMPASS positions the file at the first card image of the designated section (common deck). For
an UPDATE program library, the first active card image (the *COMDECK card) is skipped.
COMPASS then reads card images sequentially, ignoring inactive card images, until end of section
or a COMPASS END statement is encountered, whichever comes first.

60492600 A B-5

Column 1

7, 8, 9 levels O to 16
6,7,9
6, 7, 8, 9 or 7, 8, 9 level 17
7,9
7 and 9 not both in column 1

12

11
0

1 2 3 4 5

~

t----1
..... c: l.t)
::s 0)
0 0 u 'O:f4

0 "O
So-4 :;
0 'O a: 0

BINARY CARD· FORMATS

End-of-section
End-of-partition (NOS only)
End-of-information
Binary card
Coded card

Column Binary Information
~ ~

~ ~~

c

...... "O - Q)
tll

§
So-4
Q)
.c
§

1

2

3

4

5

6

7

8

9

~
~ 'O ~z Q)

e Ul

::s ::s
CIJ

t----1 .!t 0
0 c:
Q) "O

I
..c: So-4

u d u

w
~::::

·~

A binary card can contain up to 15 60-bit CPU words starting at column 3.. Column 1 also contains
a count of 60-bit words in rows O, 1, 2, and 3plus a check indicator in row 4. If row 4 of column 1 is
zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on
input.

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number. If a
section is punched, each card has a checksum in column 2 and a serial number in columns 79 and 80,
which sequences it within the logical record.

Q)
CJ
r::
Q)
::s
c<
Q)

(/J

6049.2600 A C-1

HINTS ON USING COMPASS

1. Within a macro definition:

Use comment statements having • in column one. These are not saved, whereas other types of
comments are saved.

Whenever possible, ,minimize the number of lines of code.

IRP is faster than either ECHO or DUP.

Use the substitute parameter flags ;A, ;B, and so forth, for macros, to avoid a second line.

Within macros, use symbols such as .1, .2, and so forth, instead of local symbols.

If possible, avoid recursive macro structure to increase assembly speed.

If a macro call is the cause of an error, direct full list.output to a file other than OUTPUT
(L=filename) to obtain a list of the erroneous macro call with the error listing.

2. In IF sequences:

Use line counts rather than ENDIF to terminate sequences.

Use SKIP rather than IF PP to skip code.

3. Micros:

Micro replacement is time-consuming.

Avoid using local symbols for micros.

Use # for a null substitution.

4. Minimize SYSTEXT size.

5. To reduce core requirements, use SEG statements in absolute programs.

6. Use NOREF for symbols for which listing is not required.

7. Use QUAL for all overlays.

The program EXAMPLE (figures D-1 and D-2) presents fundamental program organization. It also
demonstrates some COMPASS coding conventions and illustrates efficient coding practice. The program
obtains numbers from six successive locations, adding the numbers one at a time to the running sum. The
total is then printed with a label.

D

60492600 J D-1

9
t.:I

en
c
ic:i.
(0
t.:I
en
c
c

:::x::

1
2
3
4
5
6
7
8

9
10
11
12

13
14
15
16
18

19
20
21
22
23
24

25
26
27

28

29
30
31
32
33

34

0 301
301 17252420252400000001
306 6110000001

66200
307 6130000006

43100

310 5122000321 +
66221

36121
311 0523000310 +

OlOOOOO't'tl +
312 5160000331 +

6160000327 +
315 7120000301 +
317 7160247021

321 00000000000000000001
322 00000000000000000002
323 00000000000000000003
32~ 00000000000000000004
325 00000000000000000005
326 00000000000000000006

327 55241005550116232705
331 1

3

332
372
425
440
452
-..-

......._ v _,,,,,

Octal Code
Assembled

OBUF
OUTPUT

BEGIN

•
LOOP

•

•
TABLE

• •
WORDS

•
ANS
LEN

I DENT
ENTRY
BSS
FIL EC
S81
SB2
SB3
MX 1

SA2
SB2
IXl
NE

EXAMPLE
BEGIN
3018
08UF, 3018
1
BO
6
0

TABLE+BZ
82+Bl
X2+Xl
821B31LOOP

OUTPUT BUFFER

INITIALIZE ADDRESS COUNTER TO ZERO
SET FOR USE AS A LOOP LIMIT
INITIALIZE RUNNING SUM TO ZERO

GET NEXT HEHORY ADDRESS
INCREMENT THE ADDRESS COUNTER
ADD NEW NUMBER TO RUNNING SUH
LOOP IF ADDRESS CNTR - 1831

RJ •XCDD CONVERT BINARY NUMBER TO DISPLAY CODE
SA6 ANS STORE THE DISPLAY COOED NUHBER IN ANS
WRITEH OUTPUT1WORDS1LEN WRITES TO THE OUTPUT BUFFER
WRITER OUTPUT PRINTS CONTENTS OF OUTPUT BUFFER
ENDRUN ENO OF EXECUTABLE CODE

DATA
DATA
DATA
DAU
DATA
DATA

DATA
BSS
EQU

1
2
3
4
5
6

THESE ARE
THE NUMBERS

TO TOTAL.

H• THE ANSWER IS •
l
•-WORDS

• •
ACCESS TO EXTERNAL TEXT •

•
RNCPL
RNCPL
RNCPL
RNCPL

SST TO DEFINE SYSTEH SYMBOLS

XTEXT
XTEXT
XTEXT
XTEXT
END'

c o"c SYS
COMCWTH
COHCCIO
COHCCDD
BEGIN END OF PROGUH

Octal Location
Addresses

512008 CH STORAGE USED ~43 STATEMENTS 78 SYMBOLS
7600-TYPE CPU ASSEMBLY 0.216 SECONDS 25 REFERENCES

THE ANSWER IS 21

Figure D-1. Example COMPASS Program (NOS and NOS/BE)

CD
0
~
co
to.:>
CD
0
0

=z=

t?
Co.)

1
2
4
5
6
7
8

9
10
11
12

13
14
15
16
17
18

19
20
21
22
23
24

25
26
27

28

29
33

34

0
20 t:llOCOOOOl

66200
21 6130000006

431CO

22 5122000031 +
66221

36121
23 0523C00022 +

0100000045 +
24 5160000041 +
25 01300CCOC1000000C054 +
26 013000CC03COOOCOC055 +
27 Cl300COOC20J~0000060 +
30 0130~C01040JOOOOOOOO

31 COCOCOOOOOOOOOOOOOOl
32 cooocooooocooooooooz
33 OCOOCOOOOOOOGCCOC003
34 CCOOCOOOOC0000000004
35 OOOOCOOOOOOOOOOOC005
36 OOOOCOCOOOOOOOOOC006

37 5~24100~550116232705
41 1

3
~

Octal Code
A~embled

42
g

Octal Location
Addresses

T~E ANSWfP IS

OUTPUT
BEGIN

•
l COP

•

• TABLE

• •
WORDS

•
ANS
LEN

IOENT
ENTRY
~ILE
s 81
s 82
SB3
"Xl

SA2
SB2
IXl
Nf

RJ
SH
OPENl1
PUTW
CLOS EH
ENOPUN

OAU
DATA
DATA
DATA
DATA
DATA

DATA
BSS
EQU

EXAMPLE
BEGIN
LFN•OUTPUT,FO•SQ,BT••RT•W,"RL•l37,0~•N•CF•N•PD•OUTPUT
1
80
6
0

T UL E+82
82+81
X2+Xl
sz,93,LQOP

INITIALIZE ADDRESS COUNTER TO ZERO
SET FOP use AS A LOOP LI"IT
INITIALilE RUNNING SU" TO ZERO

GET NEXT MEK.ORY ADDRESS
INCRE~ENT THE ADDRESS COUNTER
ADO NEW NU"BER TO RUNNING SUM
LOOP IF ADDRESS C~TR - f83)

•XCDD CONVERT BINARY NU"BER TO DISPLAY CODE
ANS STORE THE DISPLAY CODED NUMBER IN ANS
OUTPUT
OUTPUT,WOROStLEN WRITES TO THE OUTPUT AU~FER
OUTPUT PRINTS CO~TENTS OF OUTPUT BUFFER

END OF EXECUTABLE CODE

1
'l
3
4
5
6

-------------THESf ARE
THE NUMBERS

TO TOUl.

H• THE ANSWER IS •
1
•-WORDS

• ACCESS TC EXTERNAL TEXT.
• SST TO DEFINE SYSTfH SY"BOLS
•

XTEXT C0f1CCDD
~NO BEGIN END OF 'ROGRAM

21

Figure D-2. Example COMPASS Program (SCOPE 2)

One of the main considerations in assembly language programming is the reduction of execution time. The
instruction repertoire of COMPASS often allows an operation to be coded in several ways. The
programmer, therefore, should give careful consideration to the instructions used in the program to
perform specific functions.

D-4

Line 1. The IDENT pseudo instruction is always the first instruction in a program. It specifies a
program name (EXAMPLE, in this case) to identify the program to the assembler.

Line 2. The ENTRY pseudo instruction declares the point in the program at which execution is to
begin. The main entry point in a program is the control transfer address.

Line 3. NOS and NOS/BE - figure D-1. The BSS instruction establishes the output buff er OBUF. The
programmer has allocated 3018 words of storage for the buffer, as shown in the assembled octal
code listed to the left of the source code. Note that the octal code format for the pseudo instructions
will differ from the for mat for the symbolic machine instructions b~cause pseudo instructions do not
have single machine instruction equivalents.

Line 4. NOS and NOS/BE - figure D-1. The operating system macro FILEC is called to create a file
environment table (FET) for the output buffer. Only the first word of the FET is shown in the octal
code, but examination of the location addresses reveals that the table is actually five words in length
(the minimum length of a FET). For more information about FETs, see the appropriate operating
system reference manual.

SCOPE 2 - figure D-2. The FILE macro is used to establish a file information table (FIT) for the
output buffer.

Line 5. The first executable line of code has been designated the main entry point for the program.
Incrementing by one occurs so often within a program that it has become a COMPASS coding
convention for register Bl to always be initialized to one, and to remain one throughout the entire
program. This is particularly important during the use of the common common decks (chapter 12), and
can be a factor in execution time (see Bl=l pseudo instruction) as well as in assembly time.

Line 6. A .counter is initialized to zero by setting the contents of a B register (chapter 8) equal to the
contents of the BO register. BO is hard-wired to zero, thereby avoiding the need for repeated
processing of the literal or constant zero.

Line 7. Comparing th_e octal code for lines 6 and 7, the programmer can see the difference between
two forms of register-setting instructions. The 15-bit form of the instruction is used in line 6, where
only three bits are required to represent the BO register as the source of an operand. The 30-bit form
of set B register instruction is required for line 7, where the constant 6 is represented by the lower 18
bits of the instruction.

Line 8. The mask instruction is normally used to extract fields from a register. Here, it is used
instead of the slower set X register instruction to initialize an X register.

Another important feature of COMPASS is illustrated here. The octal code seems to indicate that the
lower 15 bits of the current word in memory have been left blank. This is the result of a force upper.
The next instruction is too large to fit in the remaining 15-bit parcel, so COMPASS packs that parcel
with a no-operation instruction. The next instruction is placed at the beginning of the next word (see
section 8.1).

Line 9. The use of the set A register instruction to obtain a word of data is demonstrated here. As
seen in the octal code, the address of the word (321g) is placed in the specified A register. The data
itself is placed in the corresponding X register (X2 in this instance). (See Set A Register Instructions,
chapter 8.)

The plus sign(+) after the octal code indicates that the address or K portion of the instruction (the
lower 18 bits in this case) is relocatable.

60492600 H

Line 10. The 15-bit format of the set B instruction is illustrated here. The first six bits contain the
operation code for the instruction (668 in this instance). The next three bits designate the
destination register (B2) for the results of the instruction. The next three bits indicate the register
containing the first source operand (B2). The final three bits indicate the source register for the
second source operand (Bl).

Line 11. The number obtained in the previous instruction is added to the running sum kept in Xl. This
is a 60-bit add instruction, as opposed to the SXi instruction, which adds only 18-bit operands.

Line 12. The NE instruction shows another use of the B registers in testing for a conditional branch.
In each iteration of the loop, the source operands are compared. While they are unequal, control is
transferred from this instruction back to LOOP. When the operands become equal, control passes to
the next instruction.

Line 13. The return jump (RJ) instruction is used here to access a common common deck,
COMCCDD, as a relocatable subroutine. The programmer has taken advantage of the COMPASS
default method of defining external symbols. The =X indicates to the assembler that CDD, the entry
point to the subroutine, is external to EXAMPLE.

The use of common common decks is important to the programmer. Note that the decks require
certain entry conditions. Specific arguments are expected to be in certain registers, for example,
upon entry to the routines. An efficient program will establish these conditions with a minimum of
data transfers by using the registers judiciously prior to the call. COMCCDD, for example, converts
an octal word to decimal display code; that word is expected to be in register Xl. For this reason, the
running total has been kept in Xl, avoiding the need for extra data transfers.

Line 14. The method of storing an operand in memory is illustrated here. Setting register A6 or A 7
to a valid address causes the contents of X6 or X7, respectively, to be stored in the address specified.
When COMCCDD has converted the word, it places the result in register X6, ready for storage upon
return to the calling routine.

Line 15. NOS and NOS/BE - figure D-1. Another method of accessing a common common deck is
shown here. A call is made to a system macro, WRITEH, which utilizes the common common deck
COMCWTH to write a line from a working buffer to an output buffer.

SCOPE 2 - figure D-2. The Record Manager macro OPENM is used to open the output buffer in
preparation for processing.

Line 16. NOS and NOS/BE - figure D-1. A call is made to the operating system macro WRITER to
write the contents of the buffer OBUF (with which the system communicates through the FET
OUTPUT) to the system default output file, also named OUTPUT. (For more information about
operating system macros, see the appropriate operating system reference manual.)

SCOPE 2 - figure D-2. The Record Manager macro PUTW is used to transfer data into the output
buffer.

Line 17. SCOPE 2 - figure D-2. The Record Manager macro CLOSEM is used to close the output
buffer and to print its contents.

Line 18. The operating system macro ENDRUN is called to terminate program execution.

Lines 19 through 24. DATA pseudo instructions are used here to establish a table comprising six
consecutive words in memory, starting at location TABLE. The default base mode is base 10 in
COMPASS (see Mode Control, chapter 4).

Line 25. DATA is used here to set in memory a display-coded image of the characters specified, for
use in the output line. Ten 6-bit characters can be stored per word in this fashion. Therefore, more
than one word is required here, as seen from the location address on the next line.

60492600 H D-5

Line 26. One word of memory is reserved for the final sum. This word is labeled ANS. Note that this
word is not initialized by the BSS instruction.

Line 27. The symbol LEN is equated with the value of the origin counter minus the address of
WORDS. This yields the length of the output line specified in line 15.

Line 28. The SST instruction ensures that symbols from the system texts used by the program are
defined.

Lines 29 through 32. These XTEXT pseudo instructions tell COMPASS to search the system-defined
program library OPL for the common common decks named. Declarations of this type are normally
grouped together after the end of the executable code for easy reference.

Line 33. The END instruction signifies the end of the program. Control is released through the
transfer address at BEGIN.

The dayfile for the program EXAMPLE as run on NOS is shown in figure D-3.

The dayfile for the program EXAMPLE as run on NOS/BE is shown in figure D-4.

The dayfile for the program EXAMPLE as run on SCOPE 2 is shown in figure D-5.

D-6

15.18.00.EXAMPLE.
15.lB.ul .ucc~. 7b1t1. 0.0481<COS.
15. 18. 00. us E ~ statement.
15 .18. 01. CHARGE statement.
15 • 18 • 01 • AT T AC ._. • C 0 P1 C P L I UN • xxx.
15.1e.02.co~PASS(S,S•IPTEXTtS•CPUTEXT1X•CJ"1CPL)
15.18.09. ASSE1qly COMPLETE. 52300~ CM us~o.
15.18.09. Oel44 CPU SECONDS ASSE~SLY TI~E.
15.18.09.L';O.
15.18.lt.UEADt
15.18.lC.UEPFt
15.18.10.UE"1St
15.18.lC.UECP,
15.18.10.AESQ,
15.22.18.UCLPt

~.OCZKUNS.
Ve014KUNS.
0.7841(UNS.
u.252SECS.
2.622UNTS.

7645, O.Z56~LNS.

The parameter xxx is the site-defined NOS user name.

Figure D-3. Dayfile of EXAMPLE under NOS

60492600 H

60492600 H

09.17.ZC.EXAMPZP FPO~

C9.l7.2C.IP COC0~3~C WORDS - ~ILE INPUT , OC ~4
oq.11.zO.EXAMPlE.
oc;,.17. 2G •ACCOUNT statement.
09.17. 23 .A TTACH,COMCPL, IOz yyy.
OQ.17.2!'.PFN IS
09.17.23.CO~CPL
oq.17.24.AT CY• COl 5N•PFOSFT
09.lA.34.CC~PASSfS,S•!PTEXT,S•CPUTEXT,X•COMCPL)

oq.1a.51. AS5E~eLY COM 0 LET~. ~7o008 CM USEO.
oq~lP.51. ~.4Q? CPU SECONns ASSEMRLY TIME.
09.lo.51.LGO.
C9.1Be5l.OP CCCtlC24 WOQOS - FTLE OUTPUT , DC 4C
oq.18.51.M5 ?~~4 wrP~S (7168 ~AX USED)
~9.1B.52~CPA l.4Q7 SEC.
CQ.l~.52.CP~ Z.?fl SEC.
09.l~.5?.IO .49~ SEC.
C9.1B.52.CM l~l.287 KwS.
09.lb.~2.5S

09.le.~7.PP

CQ.1~.5?.FJ

4.~49 ~fC.
t N 0 0 F .f f"' ~ , • +

1.4cn ADJ.
2.261 ArJ.
.49~ ADJ.

7.4C2 ADJ.
11. f. 5t

DATE 02/0f./Pl

The value yyy is the site-defined ID under which COMCPL has
been catalogued.

Figure D-4. Dayfile of EXAMPLE under NOS/BE

D-7

-fXAl1Plf, STSCZ.
-ACCOUNT •statement.
-ATTACH1CO~CPL1IO•zz~

Pf 0~3 - LFN IS COMCPL

15.5C.3Z oocoo.co3 ~Fz.
15.5C.3Z GOGOt.004 JOR.
15.5c,33 ooooo.c3Q JnB.
15.50,33 OOG00,0~9 MF7.
15.5(,33 00000.043 ~FZ.
15.s~.33 coocc.c43 Loo.
15.5<.'.34 'oc..oc.~oti t•~P.
15.5C.34 OCCOC.30~ USR.
15.5C.34 ~uco~.?C~ ton.
15.50.34 CGCGC.3?0 ~F7.
15.SC.34 00000.321 ~FZ.
15.5C,35 COCCC.32~ MF7.
15.~0.35 00000.~24 ~Fl.
i~.su.~5 co~~r.~?4 ~F1.
15.5C,35 CCGOC.~24 Mfl.
15.~~.35 oocot.~?4 "r1.
15.~0.35 toono.324 ~~z.
15.5u.35 ooco~.375 ~Fz.
15.5C,35 LJ~~C.~?~ ~~7.
15.5C.35 oooor.~2~ ~Fz.

15.5C.35 OOOOC.32~ ~Fl.
15150.35 'OCOC.325 ~~7.
is.~c.35 cocoo.~?~,MF7.

15.5u.3~ 'o'o~.~26 M~7.
is.~~.35 ooccc.~~~ ~F7.

15,5,.35 cuco~.326 ~FZ.
15150,35 CO~OC.32~ ~~1.
15.50.35 OOC00.3?~ ~F7,
15150135 tOCOC.~?~ Mfl,

PF2~4 - CYCLE 1 ATTACHED FPOM SN•SYSTE~
-CO~PASS(S1S•IPTEXT,S•CPUTEXT,X•COMCPL)

ASSE~RLY COMPLETE. ~bOCOB SCM USED.
o.z4q CPU sec. 341COB Lf~ USEO.

-LGC.
lO~lO
L0603
JM16~
JH167
JM170
lt"477u
PM771
ltM772
PM773
1tM774
RH775
RH77b
QP4777
SCH
IC~

1/0
PMS
USER
JOq
SCJ5~

- FLS RtOUI~EO TC. LOAD - O~u777l
EXECUTION INITIATED OS.EXP
MAXIMU~ USEP ~C~ 705008
HAXIMU~ USF~ LCM 4CCC08
HAXIMUH JS+TO LCM. 358
HAYIMUM ACTTVf FTLFS
OPEN/CLC1SE CALLS
DATA TDANSFER CALLS

- cnNTROL/POSITTONINf CALLS
- BM DATA TQ6N~FER CALLS

B~ CONTPOL/PO~TTICNING CALLS
CUEUE MANAGER CALLS
RE CALL CALLS

7,C4P t<WS.
3,4f-3 l<lilS
C.C04 ,..W
c.co!' .-w~
u.1Q8 SEC
C.3?.6 SfC

- 000015 SC/LC SWAPS

The value zzz is the site-defined ID under which COMCPL has been catalogued.

Figure D-5. Dayfile of EXAMPLE under SCOPE 2

rJU. cm~

WCJROS
W(lROS
BUFJ=ERS

2
lq

='74
p

25A
f:7
n
H

D-8 60492600 H

DA YFILE MESSAGES E

The dayfile messages that can be issued by COMPASS are listed in table E-1.

The following message, with xxxxxxx denoting the name of the subprogram being assembled, is displayed at
the system operator's console only; it is not written to the dayfile. COMPASS updates the display when
ever it processes an IDENT statement with a non-blank variable field.

ASSEMBLING xxxxxxx

TABLE E-1. DAYFILE MESSAGES

Message

ASSEMBLY ABORTED - ECS READ ERROR.

ASSEMBLY ABORTED - ECS WRITE ERROR.

60492600 L

Significance

This message can occur only
when the job has an ECS field
length and is used on a CYBER
180 or a CYBER 170 or CYBER
70 Model 71, 72, 73, or 74.
COMPASS may store some of
its internal tables in ECS.
When an ECS error persists
through four attempts to
read the data, the message
is issued, and the job is
aborted. For the CYBER 70
Model 76, LCM errors are
handled by the operating
system.

This message can occur only
when the job has an ECS field
length and is used on a CYBER
180 or a CYBER 170 or CYBER
70 Model 71, 72,. 73, 7 4.
COMPASS may store some of
its internal tables ln ECS.
When an error occurs in
writing data to ECS, no retry
attempt is made. The message
is issued, and the job is
aborted. For the CYBER 70
Model 76, LCM errors are
handled by the operating
system.

Action

Rerun job. If
condition persists,
contact a system
analyst.

Rerun job. If
condition persists,
contact a system
analyst.

E-1

TABLE E-1. DAYFILE MESSAGES (Contd)

Message

ASSEMBLY ABORTED - PASS n TABLE
OVERFLOW ASSEMBLING xxxxxxx

ASSEMBLY COMPLETE. nnnnnnB { ~~M} USED.

CPU
{

SECONDS ASSEMBLY TIME. }
xxxx. xxx { ECS }

SEC.nnnnnnB LCM USED.

E-2

Significance

While processing the program
indicated by xxxxxxx, an
irrecoverable table overflow
condition has occurred in
assembly pass n (1 or 2).
COMPASS allocates memory
space dynamically to all of
its internal tables. If one
table overflows, they all do.
When the tables do not fit in
the available SCM space,
COMPASS will request addi
tional central memory up to a
threshold at which time the
intermediate file and cross
ref erences are dumped to mass
storage scratch files. If
table space is still inade
quate, COMPASS will request
additional central memory up
to the maximum available to
the job. When insufficient
SCM exists after all such
possibilities have been
exhausted, COMPASS issues the
message and aborts the job.

Action

Rerun job inserting
an RFL statement
specifying suffi
cient field length
to assemble.

If COMPASS did not detect any No action required.
fatal errors during assembly,
this message is issued at the
completion of processing of
all ·source programs on the
input file. The minimum
field length needed to per-
form the assemblies success-
fully is the octal number of
SCM words, nnnnnn. If this
number is larger than the
actual field length, it is
the minimum field length
needed to avoid lost refer-
ences. The second line of
the message can be suppressed
by an installation parameter;
xxxx.xxx represents the total
central processor time, in
seconds, used by COMPASS.
If any ECS/LCM space was
assigned to the job, nnnnnn
is the octal number of words
used.

60492600 H

TABLE E-1. DAYFILE MESSAGES (Contd)

Message

ASSEMBLY ERRORS. nnnnnnB { ~M} USED.

CPU {SECONDS ASSEMBLY TIME. }
xxxx. xxx { ECS }

SEC.nnnnnnB LCM USED.

BAD CONTROL STATEMENT ARGUMENT - xx

CANT LOAD COMP3$

COMPASS NEEDS AT LEAST nnnnnB SCM.

60492600 H

Significance

If COMPASS detected at least
one fatal error during assem
bly, this message is issued
at the completion of proces
sing of all source programs
on the input file. If the A
option was specified on the
COMPASS control statement,
the job is aborted after this
message is issued. The mini
mum field length needed to
perform the assemblies suc
cessfully is the octal number
of SCH words, nnnnnn. The
second line of the message
can be suppressed by an
installation parameter;
xxxx.xxx represents the total
central processor time, in
seconds, used by COMPASS.
If any ECS/LCM space was
assigned to the job, nnnnnn
is the octal number of words
used.

The COMPASS control statement
contains an unrecognized or
invalid argument. The ·
off ending argument is named
in the message.

The ogerating system loader
reported a fatal error when
COMPASS attempted to load its
primary overlay. This mes-
sage should be preceded by an
explanatory message from the
loader.

The SCM field length for the
job is too small for COMPASS.
The numb~r of octal words
needed by COMPASS before it
can begin processing is
nnnnnn. This number varies
depending on the version of
COMPASS used and the listing
and binary output options
specified on the control
statement. It is an absolute
minimum number of words; it
does not include whatever
space may be required for
system text, local macro and
micro definitions, and so
forth.

Action

Correct the fatal
errors and
reassemble.

Ref er to chapter 10
of this manual to
correct the COMPASS
control statement.

Ref er to the loader
diagnostics in the
loader reference
manual for informa-
tion about the
specific loader
error.

Rerun job inserting
an RFL statement
specifying suf f i
cient field length.

E-3

TABLE E-1. DAYFILE MESSAGES (Contd)

Message

nnnnnnnnn ERRORS IN xxxxxxx

FILE USE CONTRADICTION.

!DENT STATEMENT MISSING.

IMPROPER SYSTEM TEXT FORMAT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

INPUT FILE EMPTY OR MISPOSITIONED.

INPUT FILE RECORD TYPE NOT ALLOWED.

E-4

Significance

COMPASS issues this message
for each source program in
which fatal errors are de
tected; nnnnnnnnn is the
number of errors and xxxxxxx
is the sub-program name.

Control statement specifies
the same file name for two or
more of the following:

Source input
List output (full or short
list)
Binary output
XTEXT source

COMPASS issues this message
for each source program in
which an END statement is
encountered before an !DENT
statement is found. This is
a fatal error.

A system text overlay does
not have the internal format
required by this version of
COMPASS. This may be caused
by a system error. COMPASS
ignores the bad overlay but
does not abort the job. The
expression, x=yyyyyyy/
zzzzzzz, identifies the
of fending overlay in the same
form in which it is specified
in the COMPASS control state
ment; it may be any of the
following:

G=f ilename
G=filename/overlay
S=overlay
S=library/overlay

When attempting to read the
first line from the source
input file, COMPASS encoun
tered end of data and
aborted.

The record type of the
source input file is not
allowed. COMPASS aborts
the job step.

Action

Correct the fatal
errors and
reassemble.

Correct contra
diction.

Correct the source
program to include
an !DENT and END
statement for each
subprogram.

Correct the internal
format of the system
text overlay.

Correct the name of
the source input
file or reposition
the file.

Convert source input
to acceptable record
type.

60492600 H

TABLE E-1. DAYFILE MESSAGES (Contd)

Message

INSUFFICIENT STORAGE FOR SYSTEM TEXT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

nnnnnB LCM NEEDED TO CONTINUE.

nnnnnnnnn LOST REFERENCES IN xxxxxxx

MORE THAN 7 SYSTEM TEXTS SPECIFIED.

NO CONTROL STATEMENT TERMINATOR.

60492600 H

Significance

When an irrecoverable table
overflow occurs, COMPASS
issues this message before
the first assembly is begun.
It does not abort the job
step. The expression,
xmyyyyyyy/zzzzzzz, identifies
the system text being loaded
at the time.

The specified amount of
memory (nnnnnB) is required
for the job to complete. The
job step is aborted.

The symbolic cross-reference
table is sorted before it is
printed. If the table does
not fit in the job's SCM
field length for sorting,
COMPASS discards some of the
references. A message is
issued; nnnnnnnnn is the num
ber of references discarded,
and xxxxxxx is the subprogram
name. The job step is not
aborted. The ASSEMBLY
COMPLETE message gives the
field length needed to avoid
lost references.

COMPASS issues this message
and aborts the job step, when.
the G and S parameters on the
COMPASS control statement
specify a total of more than
seven system text overlays.

Action

Increase the SCM
field length for the
job.

Increase the LCM
field length for the
job.

Increase the SCH
field length for the
job.

Restructure the job
to reduce the number
of system text over
lays required.

Before finding a parenthesis Correct the control
or period not in a $-delimi- statement.
ted string, COMPASS read con-
tinuation control statements
and encountered an end-of-
sec tion. This is not a fatal
error.

E-5

TABLE E-1. DAYFILE MESSAGES (Contd)

Message

RECURSION DEPTH EXCEEDED 400.

SYSTEM TEXT NOT FOUND.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

nnnnnnnnn WARNING MESSAGES IN xxxxxxx

E-6

Significance Action

COMPASS maintains a pushdown Correct the macro
stack for source input con- call program error.
trol. This stack has one
entry for each active DUP,
ECHO, HERE, XTEXT, or macro
call. The maximum depth of
the stack is set by an
installation parameter; it is
400 in the released system.
When this limit is exceeded,
COMPASS sets a fatal error
and clears the stack. The
next statement can then be
read from the source input
file. The job step is not
aborted. This error is usu-
ally caused by a source pro-
gram in which a macro calls
itself indefinitely.

When it cannot load the sys
tem text overlay identified
by x=yyyyyyy/zzzzzzz, COMPASS
issues this message. It does
not abort the job step. For
an overlay loaded from a
library file (S parameter),
this message should be pre
ceded by an explanatory
message from the operating
system loader. For an over
lay loaded from a non-library
file (G parameter), COMPASS
could not find the overlay on
the file.

COMPASS issues this message
for each source program in
which nonfatal errors are
detected; nnnnnnnnn is the
number of errors, and xxxxxxx
is the subprogram name.

For an overlay
loaded from a
library file, refer
to the diagnostics
in the loader ref er
ence manual. For an
overlay loaded from
a non-library file,
check that the over
lay name is speci
fied correctly and
that the overlay is
located on the file.

Correct the non
fatal errors and
reassemble.

60492600 H

GLOSSARY

Absolute Block -
A block of object code generated in an absolute assembly. The ABS pseudo instruction is used to
declare a program absolute.

Assembler -
A computer language that prepares an executable program from a source language program by
substituting machine operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

Blank Common Block -
A common block into which no data is stored at load time. The first declaration of a blank common
block need not be the largest declaration for the common block.

Block -
A grouping of words of object code or storage within a subprogram for a specific purpose.

Capsule -
A relocatable 'collection of one or more programs bound together in a special format that allows the
programs to be loaded and unloaded dynamically to form an executing program by the Fast Dynamic
Loading facility.

Central Processor Unit (CPU) -
The high-speed arithmetic unit that performs the addition, subtraction, multiplication, division,
incrementing, logical operations, and branching instructions needed to execute programs.

Comment Line -
A statement providing documentary information for a section of code. Comment lines are indicated
by either an asterisk in column 1 or blanks in columns 1 through 29, and are listed but not otherwise
processed by the assembler.

Comments Field -

F

The field in a COMPASS statement providing documentary information for the statement. It is listed
but not otherwise processed by the assembler. This field begins with the first nonblank character
following the variable field, or in column 30 if the variable field is blank.

Common Block -
An area of memory that can be declared by more than one subprogram and used for storage of shared
data.

Constant -
An expression element consisting of a value represented in octal, decimal, hexadecimal, or character
notation.

Data Item -
A type of character or ~umeric value that can be used in subfields of the DATA and LIT instructions,
and as specifications of field lengths on VFD pseudo instructions.

Entry Point -
A location within a subprogram that can be referenced from other subprograms. Each entry point has
a name with which it is associated.

60492600 H F-1

External Reference -
A reference in one subprogram to an entry point in another subprogram.

Force Upper -
To guarantee that an instruction begins on a word boundary by packing the parcels remaining in a
partially completed word with no-op instructions and beginning to assemble the specified instruction in
the next word. The assembler automatically forces upper in some cases, and the user program can
specify that a given instruction be forced upper.

Labeled Common Block -
A common block into which data can be stored at load time. The first program declaring a labeled
common block determines the amount of memory allocated.

Linking -
The process of matching external references to entry points of the same names and inserting the
addresses of the entry points into the external references.

Literal -
A read-only constant. Conventionally, it is the only element in an expression. Literals are stored in
the program's literals block to avoid duplication of read-only data.

Literals Block -
A block of literal data entries local to a subprogram.

Load Sequence -
One or more consecutive control statements processed by the loader as a unit. A load sequence can be
a single name call statement, or it can consist of loader statements (such as LOAD and LDSET) that
are terminated by NOGO, EXECUTE, or a name call statement.

Local Block -
A storage area defined by a USE or USELCM pseudo instruction.

Location Counter -
Normally the same as the origin counter. Can be reset by the programmer to relocate code or data
without affecting relative positions within the block.

Location Field -
The first field in a COMPASS statement, usually providing a name for the address of the instruction or
for the entity defined by the statement. The location' field begins in column 1 or 2.

Machine Instruction -
A string of bits capable of being interpreted directly by a central processor or peripheral processor as
an instruction to perform some operation.

Macro -
A sequence of source statements that are saved and then assembled whenever needed through a macro
call.

Micro -
A character string identified by a symbolic name. Wherever the name is encountered in the program,
the character string is substituted.

OPDEF -

F-2

A sequence of source statements that are saved and then assembled whenever needed through an opdef
call. Differs from a macro in that the assembler interprets the call by examining the format or syntax
of the instruction rather than the contents of the operation field alone.

60492600 H

Operation Code -
A mnemonic operator, used in the operator field of a COMPASS statement, to indicate a specific
machine instruction.

Operation Field -
The field in a COMPASS statement indicating the operation to be performed. It begins with the first
nonblank character following the location field; or, if the location field is blank, it begins with the
first nonblank character after column 2.

Origin Counter - ,
A pointer indicating the relative location of the next word to be assembled or reserved in a given block.

Overlay-
One or more relocatable programs that were relocated and linked together into a single absolute
program.

Parcel -
One of the 15-bit sections of a central memory word. A CPU machine instruction occupies one, two,
or four parcels.

Peripheral Processor Unit (PP or PPU) -
An individual computer with its own memory, used for high-speed transfer of information (input and
output) between peripheral devices and central memory.

Pasition Counter -
A pointer indicating the bit pasition within the word of the next item to be assembled in a given block.

Program -
One or more subprograms capable of being executed as a unit.

Pseudo Instruction -
An assembler-defined instruction appearing in the operation field of a statement. It normally does not
specify the assembly of a single machine instruction, but instead specifies some other assembly
process (such as symbol definition, listing control, and so forth).

Qualified Symbol -
A symbol defined when a qualifier is in effect during assembly. Through qualification, the same
symbol can be referred to in different subprograms without conflict.

Reference Address (RAc) and (RAe) -
RAc is the absolute central memory address that is the starting or zero relative address assigned to
a program. Addresses within the program are relative to RA. RAe is the absolute extended memory
starting address assigned to a program.

Register -
A unit within the central processor used to hold operands. The A registers contain the addresses of
words within central memory; the X registers contain operands used in calculations; the B registers
are used for incrementing and indexing.

Relocation -
Placement of object code into central memory in locations that are not predetermined, and adjusting
the addresses accordingly.

Remote Assembly -
An operation in which code is assembled, saved, and then inserted into the object code when specified.

Strong External -
An external reference whose satisfaction is obligatory for program loading.

60492600 H F-3

Subprogram -
A group of COMPASS statements beginning with an !DENT pseudo instruction and ending with an END
pseudo instruction •.

Symbol -
A set of characters that identifies a value and its associated attributes.

Symbolic Instruction -
An assembler-defined instruction appearing in the operation field of a statement. It provides a means
of expressing symbolically the data manipulation functions of the machine. Each symbolic instruction
typically generates one machine instruction.

System Text -
A set of tables containing symbol, micro, macro, and opdef definitions that can be saved on a file to be
accessed by other programs.

Transfer Address -
The address of the entry point to which the loader jumps to begin program execution.

Variable Field -
The field in a COMPASS statement identifying operands for the statement. It consists of one or more
subfields, and begins with the first nonblank character after the operation field.

Weak External -
An external reference that is ignored by the loader during library searching and cannot cause any other
program to be loaded. A weak external is linked, however, if the corresponding entry point is loaded
for any other reason.

Zero Block-

F-4

The nominal central memory block for a relocatable assembly. It is local to a sub-program. Also, a
zero block is created for an absolute assembly if default symbols are used.

60492600 K

A abort mode 10-2
A code option 4-27
A error 11-9
A list option 4-74
A reference table option 4-80
A register

I Description 8-7, 9-22
Designators 2-8
Setting 8-44
Used for C:\1 relocation 9-2

ABS attribute 4-66
ABS pseudo

Description 4-6
Exa-nple 4-4, 4-7, 4-13, 4-14, 4-16, 4-17
First statement group 4-2

Absolute block
Aooolute program 3-6
Description 3-2
Establishment 4-32
Relocatable program 3-5
Using 4-32, 4-33

I Absolute CPU Program 4-6
Absolute program

Declaration 4-6
Structure 3-6

Absolute text 3-5
ACN instruction 9-24
ADC instruction

Arithmetic function 9-6
Description 9-11
Example 2-20, 9-11

ADD instruction
Arithmetic function 9-6
Description 9-15 .

Add unit
Floating point 8-3, 8-6
Long 8-3

Address
Absolute 4-4
Direct 9-15
Entry point 4-4, 4-5, 4-45
External 4-6, 4-9, 4-47
Indexed direct 9-16
Indirect 9-15

Address modes, PP 9-1
A DI instruction

Arithmetic function 9-6
Description 9-15

ADM instruction
Arithmetic function 9-6
Description 9-16

ADN instruction
Arithmetic function 9-6
Description 9-10

AIDTEXT 8-1, 9-1, 11-11
AJM instruction 9-19
AOD instruction

Description 9-15
Replace function 9-7

AOI instruction
Description 9-15
Replace function 9-7

AOM instruction
Description 9-16
Replace function 9-7

Arithmetic functiom, PP 9-6
Arithmetic shift 8-33

60492600 M

INDEX

Arrow
Parameter separator 5-8, 5-13
Special character 2-4

ASCII code
Character set A-1
Option 4-27

· Assembler 1-1
Central memory requirements 1-3, 10-1
Statistics 4-73, 11-8

Assembly environment test 4-60
Assembly listing

Detailed description 11-1
General description 4-73
Generation 1-3

Assembly, remote code 5-3
Assembly time 11-8
Asterisk

BASE irntruction 4-25
Element operator 2-22
First column 2-1, 2-2
Local symbol separator 5-31
Location counter 2-9, 3-4
Parameter separator 5-8, 5-13, 5-lt>, 5-24, 5-28
Special element t-9, 2-32, 3-4
USE imtruction 4-32
USELC1V1 instruction 4-34

Attribute, symbol 2-5
Attribute test 4-66
AXi instruction 8-32, 8-34

B base 2-17, 2-18, 4-22
B binary mode 10-2
B list option 4-7 4
B reference table option 4-80
B register

Conditional jumps 8-26
Contents of 4-30
Description 8-7
Designators 2-8
Setting 8-4 6

Base, assembly 4-23
COL column count 4-31
DIS word count 4-49
DUP count 5-6
ECHO count 5-7
Line count 4-60, 4-61, 4-63, 4-64, 4-67,

4-69, 4-70
Micro count 7-2, 7-4
Numeric value 2-16
Overlay level numbers 4-4
PP number 4-4
REJ? counts 4-57
Setting through BASE 4-24
SPACE line count 4-76
String count 2-13
VFD count 4-53

BASE micro 7-6
BASE pseudo

Description 4-24
Example 4-13, 4-19, 4-26, 4-49, 4-51
Permissible anywhere 4-2

Binary card formats C-1
Binary Control 4-6
Binary control statements 4-1, 4-74, 11-1
Binary load module 3-8
Binary mode 10-2

Index-1

-1

I

I

I

Binary output generation 1-3, 3-7, 3-9, 3-11,
3-13, 10-2

Binary write 3-8
Blank

Compressed 5-1
Embedded 2-1
Expression terminator 2-1
Name terminator 2-5
Operation field 2-1, 4-48
Parameter separator 5-8, 5-13
Statement terminator 2-1
String terminator 2-14
Use in character data 2-14
Variable field 2-2, 2-3, 3-8

Blank card 4-76
Blank common

CM 4-32
Description 3-3
ECS 4-34
Establishment 4-32, 4-34
Example 4-38
LC:'vt 4-34
SCM 4-32

Blank fill 2-14
DIS 4-49

Blank operation field 4-47
Block

Absolute 3-1, 4-34, 4-38
Blanlc common 3-3, 4-34, 4-36
Input 9-22
Labeled common 3-2, 4-32
Literals 2-11, 3-2, 3-5 thru 3-15
Local 3-2, 4-32
'1aximum number 3-1, 4-32
Output 9-22
Origin assigned 1-2, 3-5, 3-7
Subprogram 3-1
Used for definition operation 5-2
User established 3-2, 4-32, 4-34
Zero 3-2, 4-32, 4-34

Block copy iIBtruction 8-16
Block group 3-1, 3-12, 3-14
Block group listing 11-2
Block name 3-3, 4-32, 4-34
Block name listed 11-1
Block origin 1-2, 3-5
Block usage summary 11-2
Boolean unit

Description 8-3, 8-6
lnstructiom 8-27 thru 8-31, 8-35, 8-36

Branch instructiom
CPU 8-13, 8-14, 8-17, 8-23, 8-24, 8-26
pp 9-7

Branch unit
Description 8-3
lnstructiom 8-10, 8-14, 8-17, 8-23, 8-24, 8-26

BSS Pseudo
Description . 4-37
Effect on origin counter 3-3
Example 4-4, 4-7, 4-10, 4-16, 4-30, 4-35,

4-38, 4-39, 4-42, 4-46,
5-22, 5-32

Force upper 3-4
BSSZ pseudo

Description 4-48
Dumped by SEGMENT 4-16
Example 2-19, 5-33, 5-35
Force upper 3-4

BXi instruction 8-27 thru 8-31
Byte, guaranteed zero 2-14, 4-50
Bl=l or 87-1 pseudo instruction

Description 4-30
Effect on R= 4-55
Example 4-56
Illegal for PP 4-9, 4-10

lndex-2

C hardware feature code 4-8
C list option 4-74
C on octal listing 11-6
Call

Equivalenced macro 5-25
Macro 5-18
Opdef 5-29

CC instruction 8-53
CCF instruction 9-20
Central read/write instructions 9-17, 9-19
Central memory

Read inc;truction 8-46
Requirements 1-3, 10-1
Write instruction 8-46
Access instructions, PP 9-2

Central processor unit
Functional units 8-3, 8-6, 8-8
Im tructi ons 8-1
Registers 8-7

CFM imtruction 9-20
Channel buff er instruction

Read status 8-22
Reset input 8-21
Reset output 8-22

Channel flag instructiom 9-20
Channel function 9-24
CHAR

Define other character 4-26
Character sets A-1
Character data 2-13

Code conversion 4-26
Evaluation 2-27
Examples 2-U, 2-15

CIPPU 4-11
CMU 8-50
Code

CPU operation 6-7, 8-1
Duplication 5-6
Code other 4-26
PP operation 6-3, 9-1
Remote ~sembly 5-3
Replication 4-57

CODE micro 7-6
CODE pseudo

Declare character data code 4-26
Description 4-26
Effect on character data 2-la, 4-49
Example 4-2 7
Permissible anywhere 4-2

Coding form 2-3
COL pseudo

Description 4-9
Octal listing 11-6

Column 011e 2-1
COM attribute 4-66
Comma

Character string 2-13
Column one 2-1
Continuation 2-1
Expression terminator 2-21
Local symbol separator 5-31
Name terininator 2-5
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28
String terminator 2-13
Subfield delimiter 2-1

C01V1MENT pseudo
Description 4-20
Example 4-13
First state;nent group 4-2

Comments column control 4-31
Comments field 2-2, 2-3, 4-31
Comments, prefix table 4-20
Comments statement 2-2

Heading of definition 5-13
Micros not substituted 7-1

60492600 M

I

I

I

I

I

Comments statement (Contd)
Not counted 4-59, 5-7, 5-8
Permissible anywhere 4-2

Common common decks
COMCARG 12-3
COMCCDD 12-4
COMCCFD 12-4
COMCCIO 12-5
COMCCOD 12-5
COMCCPT 12-6
COMCDXB 12-6
COMCMNS 12-7
COMCMOS 12-7
COMCMTM 12-8
COMCMTP 12-9
COMCMVE 12-13
COMCRDC 12-13
COMCRDH 12-14
COMCRDO 12-15
COMCRDS 12-16
COMCRDW 12-16
COMCRSR 12-17
COMCSFN 12-18
COMCSRT 12-18
COMCSST 12-18
COMCSTF 12-20
COMCSVR 12-20
COM CSYS 12-21
COMCUPC 12-22
COMCWOD 12-23
COMCWTC 12-23
COMCWTH 12-23
COMCWTO 12-24
COMCWTS 12-25
COMCWTW 12-25
COMCXJR 12-25
COMCZTB 12-25

Com pare character strings 4-68
Compare expression values 4-62
Compare/Move unit 8-50
COMPASS control statement

Description 10-2
Effect on LIST 4-79

Compile file 10-4
Complement and logical difference instruction
Complement and logical sum instruction 8-30
Complement instruction 8-29
Compressed code 5-1
CON pseudo

Description 4-54
Example 2-22, 4-55, 5-5, 5-23, 5-26
Force upper 3-4

Conc·atenation 2-4
Concatenation mark 2-4

Example of use 5-19
In definition 5-1

Conditional assembly 4-59
Conditional jump

B register 8-26
pp 9-7
X register 8-24

Configuration 1-3
Constant

Character 2-14
Description 2-11
Expression element 2-21, 2-26
Field size 2-12
Generated by pseudo 4-54
Mode instructions 9-11
Numeric 2-16
Read only 2-11

Continuation, statement 2-2
Generation of lines 2-4, 7-1

Control statements
COMPASS 10-2

60492600 M

8-31

Control statements (Contd)
Job statement 10-1

Counter control
BSS 4-37
Forcing upper 3-4
LOC 4-38
ORG 4-35
ORGC 4-35
POS 4-40
USE 4-32
USELCM 4-34

Counters, block control 3-3, 3-10, 3-12
CPOP pseudo 6-7
CPSYN p;eudo

Description 6-10
Permissible anywhere 4-2

CPU instructions
Block copy 8-16
Boolean 8-27 thru 8-31, 8-35, 8-36
Branching 8-10, 8-14, 8-17, 8-23, 8-24, 8-26
Channel buffer 8-21, 8-22
Channel status 8-22
Complement 8-29, 8-31
Conditional 8-2 4, 8-2 6
Direct LCM transfer 8-19
Divide 8-42
Double precision 8-38, 8-40
EQ; 8-15
Error exit 8-14
Exchange exit 8-18
Exchange jump 8-17
Fixed point 8-39
Floating point 8-34 thru 8-40
Increment 8-44, 8-46, 8-48
Left shift 8-31, 8-32
Logical 8-28 thru 8-32
Long add 8-3 9
Mask 8-42
Multiply 8-39, 8-40, 8-41
No opertttion 8-43
Normalize 8-34
Pack 8-36
Pass 8-43
Population 8-43
Program stop 8-13
Real-time clock 8-21
Return jump 8-14
Right shift 8-32, 8-33
Set register 8-44, 8-46, 8-48
Set time 8-21
Shift 8-31 thru 8-33
Single precision 8-37 thru 8-40, 8-42, 8-43
Table 8-8
Trans111it 8-27
Unconditional jump 8-23
Unpack 8-35

CPU program execution 1-3, 10-1
CPU register designators 2-8, 8-11
CPU symbolic machine instructions 8-1
CRD instruction 9-17
Created symbol 5-31, 11-8
CRM instruction 9-18
Cross reference table

(see symbolic reference table)
CTEXT pseudo 4-79
CR Instruction 8-46
CU Instruction 8-54
CW Instruction 8-46
CWD Instruction 9-18
CWM Instruction 9-18
CXi Instruction 8-43

D base 2-17, 4-24
D code option 4-26

I

I

Index-3

D debug mode 10-3
D definition flag 11-14
D error 11-10
D hardware feature code 4-7
D list option 4-7 4
Data generation 4-47
Data item

Character format 2-13
DATA p;eudo 4-49
General description 2-10
LIT p;eudo 4-51
Numeric format 2-17
VFD p;euoo 4-53

Data notation
Character 2-13
Constant 2-11, 2-13, 2-16
Decimal 2-17
Element 2-10, 2-21
Fixed point 2-17
Floating point 2-17
Hexadecimal 2-22
Item 2-11, 2-13, 2-16
Literal 2-12, 2-13, 2-16
Numeric 2-17
Octal 2-17

DATA ~eudo
Description 4-48
Example 2-15, 2-19, 2-20, 4-27, 4-33,

4-37, 4-49
Force upper 3-4

Data transmission, PP 9-6
DATE micro 7-5
Date of listing 11-1
Dayfile messages E-1
DCN instruction 9-24
Debug, interactive 1-4
Debug mode 10-3
Decimal exponent 2-17
Decimal notation 2-17
DECMIC p;eudo

Description 7-4
Example 5-6, 7-4
Permissible anywhere 4-2

DEF attribute 4-67
Default symbols

Definition 2-7
Listing 11-9
Unqualified 4-27
Zero block 3-2

Deferred symbols
(see default symbols)

Definition
Equivalenced macro 5-24
Macro 5-13, 5-15, 5-24
Micro 7-2
Opdef 5-13, 5-27
Processing 5-13
Purging 6-9
Reference 5-18, 5-25, 5-30
Symbol 2-6, 4-44
System 5-35

Definition operation
Duplicated code 5-6
Equivalenced macro 5-13
External text 5-2
Macro 5-13
Operation code 5-13
Processing 5-14
Recursion level 5-1
Remote text 5-3

I Delete header table 4-20
Delimiter

Actual parameter 5-18, 5-26
Data item 2-15, 2-16

lndex-4

Delimiter (Contd)
Expression element 2-21
Field 2-1, 2-2
Suootitutable parameter 5-8, 5-13, 5-16
Term 2-22

Descriptor, variable field 5-27
Destination field 2-26
Detailed listing 4-7 4
DF instruction 8-24
Direct address mode 9-15
Directives, loader 4-21
Directory, error 11-9
DIS pseudo

Description 4-4 7
Example 4-4 9, 4-51
Force upper 3-4

Display code option
Character set A-1
Default mode 2-13
Option 4-27

Divide instructions 8-42, 8-43
DM instruction 8-52
Dollar sign

Local symbol separator 5-31
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28
Special element 2-5

Double precision instructions 8-38, 8-40
DUP pseudo

Description 5-6
Example 5-10, 5-11
Listing of COWlt 11-6

Duplication
Code 5-6
Echoed 5-7
lndef ini te 5-7, 5-9

DXi instructions
Add 8-38
Multiply 8-40

E code option 4-2 7
E entry point flag 11-14
E error 11-10
E list option 4-7 4
E numeric data modifier 2-17
ECHO p;eudo

Description 5-7
Example 5-12

ECS blocks 4-34
Editing 2-4
EE numeric data modifier 2-17
EIM instruction 9-21
EJECT pseudo 4-76

Permissible anywhere 4-2
Eject suppression 10-4
EJM instruction 9-19
Element

Absolute 2-24
Data 2-11
Expression 2-23, 2-26
External 2-26
Operator 2-23
Register 2-26
Relocatable 2-9, 2-2 5
Special 2-9, 2-23

ELSE pseudo
Description 4-60
Example 5-5
Permissible anywhere 4-2

END p;eudo
Assembly of remote code 5-3
Binary generation 3-6
Description 4-4
Effect on blocks 3-1, 3-6, 3-8, 3-10, 3-12

60492600 M

END p;eudo (Contd)
Example 4-4, 5-7, 5-13, 5-14, 5-16
External text use 5-3
Force upper 3-4
Illegal definitions 5-1
Permissible anywhere 4-2

ENDO pseudo
Acting as nil 6-6
Description 5-10
Example 5-11
Permissible anywhere 4-2
Used with DUP 5-7
Used with ECHO 5-8

ENDIF pseudo
Acting as nil 6-6
Description 4-59
Permissible anywhere 4-2

EN DVI pseudo
Acting as nil 6-6
Description 5-14
Example 4-31, 5-11, 5-15, 5-19, 5-20, 5-21
Permissible anywhere 4-2

End-of-line mark 5-1
ENDX pseuoo 4-79
Entry address

Absolute 4-3
Declaration 4-45
'.\iul tiple 3-12 .
Relocatable 4-4

ENTRY p;eudo
De>cription 4-45
Exam pie 4-5, 4-46

Entry point list 11-4
ENTR YC p;euoo 4-45
Environment test 4-60
EOM instruction 9-21
EQ IF operator 4-6'2

IFC operator 4-68
EQ instruction

Description 8-26
Exa:n ple 8-27
Force upper 3-4

EQU p;eudo
Description 4-41
Example 2-19, 2-21, 4-19, 4-39, 4-41, 4-64, 5-6
Listing 11-6

Equal sign
Default symbol prefix 2-7
Instruction 4-41
Literals prefix 2-11, 2-13, 2-17
Local symbol separator 5-31
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28

ERN instruction 9-14
ERR pseudo

Description 4-71
Error, assembly

Fatal 11-9
Informative 11-12
Programmer controller 4-71, 4-72

Error directory
Detailed description 11-9
General description 4-73

Error exit instruction 8-14
Error flags

Conditionally set 4-71
Fatal 11-9
Informative 11-12
Unconditionally set 4-72
Where on listing 11-6

ERRxx p:;euoo 4-72
I Error stop 9-25

ES instruction 8-14
ESN instruction 9-25
ETN instruction 9-14
Evaluation of expression 2-26

60492600 M

Exchange exit instruction 8-18
Exchange jump instruction 8-13, 8-17, 9-12.1
Execution, CPU program 1-3
EXN instruction 9-12
Exponent 2-17
Expression

Absolute 2-24
Attribute 4-66
Comparison 4-62
CON use 4-54
Description 2-23
Evaluatable 2-26
Evaluation 2-21, 2-27, 3-3
Examples 2-24, 2-55
External 2-26
Maximum size 2-27
Operators 2-23
Pass one value 2-27, 3-3
Pass t.vo value 2-27, 3-3
Register 2-26, 8-9
Relocatable 2-25
Rules 2-22
Size 2-26
Types 2-24
Value 2-23, 2-26, 3-3, 8-5
VFD 4-53

EXT attribute 4-66
EXT pseudo

Description 4-4 7
Illegal in aooolute code 4-6, 4-9, 4-10

External BCO
Character set A-1
Option 4-27

External symbol
Declaration 4-4 7
Description 2-5
Strong 2-7
Weak 2-7

External symbol list 11-4
External text

Assembly 5-2
File declaration 10-3
Listing 4-7 9

F conditional flag 11-14
F error 11-10
F FORTRAN mode 10-3
F list option 4-7 4
FAN instruction 9-24
Fatal error flag 11-9
Features of COMPASS 1-2
Field

File

Comments 2-2, 4-31
Conventional 2-3
Delimiter 2-1, 2-2
Destination 2-25, 4-53
Free 2-1
Length, threshold 1-3
Location 2-1
Operation 2-1
Size 2-1
Subfield 2-2
Terminator 2-1
Variable 2-2

COMPILE 10-3
INPUT 10-3
LGO 10-2
List output 10-3
Load and go 10-2
OLDPL 10-5
OPL 10-5
OUTPUT 10-3

I

Index-5

File (Contd)
Source 10-3

Fill

SYSTEXT 4-17, 10-3, 10-4, 10-5
System text overlay 10-5

Blank 2-14
Zero 2-14

FIM instruction 9-21
First column 2-1
First statement group 4-2
Fixed point data notation 2-17
Fixed point instructions 8-39, 8-41
FJM instruction 9-19
Flag, error

Listing 11-6
Setting 4-71
Type 11-14

Floating point data notation 2-16
I Floating point unit 8-3, 8-6, 8-6.1

Add 8-37, 8-38
Divide 8-43
Multiply 8-39, 8-40

FNC instruction 9-24
FOM instruction 9-21
Forcing upper 3-4

BSS 4-37
I Counter 3-4

CPU instructions 8-2
LOC 4-38
Macro call 5-18, 5-25
Opdef call 5-27
ORG 4-35
ORGC 4-35
R= 4-55
USE 4-32
USELCM 4-34
VFD 4-53

Form, COMPASS coding 2-3
Format

Control statement 10-1
CPU instruction 8-1
Line 2-1
Listing 11-1
PP instruction 9-1

FORTRAN 4-4, 10-3
Full list 10-3

I Functional units 8-3, 8-6, 8-6.1, 8-6.2, 8-10
Functions, PP

Arithmetic 9-6
Data transmission 9-6
Logical 9-6
Replace 9-7

FXi instruction
Add 8-37
Divide 8-42
Multiply 8-39

G assembly mode 10-3
G list option 4-7 4
GE IF operator 4-62

IFC operator 4-68
GE instructions 8-26

I
Generate binary segment 4-15
Generate system text record 4-17
Generate LDSET object directives 4-22
Generate data words 4-48
Generated code listing 4-7 4
Generation, data 4-48
Get text mode 10-3
Glossary F-1
GT IF operator 4-69

IFC operator 4-74
GT instruction 8-26
Guaranteed zero 2-14, 4-50

Index-6

Hardware configuration 1-3
Hardware feature dependency 4-7
Heading

Information 11-1
Listing 4-73, 11-1
Macro 5-13
Opdef 5-13
Page 11-1

HERE pseudo
Description 5-4
Permissible anywhere 4-2

Hexadecimal data 2-22

I code option 4-21
I hardware feature code 4-8
I input mode 10 3
I NOLABEL option 4-21
IAM instruction 9-22
IAN instruction 9-22
IBj instruction 8-22
ID instruction 8-24
IDENT pseudo

Binary generation 3-8 thru 3-10
Blank variable field 3-14, 4-11
Description 4-2, 4-11
Example 4-4, 4-7, 4-13, 4-14, 4-16, 4-17, 4-19
Force upper 3-4
Identify 4-12
Overlay generation 3-8, 3-9, 3-10, 4-12
Program identification 4-2
Subprogram identification 4-2

IF pseudo 4-65
IF skipped lines listed 4-74
IFC pseudo

Description 4-68
Example 5-5, 5-11
Permissible anywhere 4-2

IFCP pseudos 4-61
IFOP pseudo 4-62
IFPP pseudo 4-61
IFtype pseudo 4-61
IJM instruction 9-19
IM instruction 8-51
Increment unit 8-3, 8-6, 8-44, 8-46, 8-48
Index register 8-7
Indexed address, PP 9-16, 9-16.2
Indirect address, PP 9-15
Indirect address mode 9-16
INPN 9-13
Input, assembler 10-3
Instructions

Coding of 2-1
CMU 8-50
CPU 8-1
Execution 8-2, 8-4
Mnemonically identified 6-3
Nil 6-6
No-operation 8-43, 9-11
pp 9-1
Pseudo 4-1
Redefinition 5-16, 5-25
Synonymous 6-5, 6-10
Syntactically identified 6-7

Integer add 8-39
Integer subtract 8-39
Integer multiply 8-41
Integer value 2-17
Interactive debugging 1-4
Internal BCD

Character set D-1
Option 4-27

Interrupt Processor 9-13
Invented symbol 5-32, 11-8
I/0 branch instructions 9-20.1

60492600 1\1

I

I
I

I

11/0 test and set channel flag 9-20.2
I/0 branch instructiom 9-21
IR instruction 8-24
IRM instruction 9-21
IRP pseudo

Acting as nil 6-6
De>cription 5-33
Exwn ple 5-3 4, 5-3 5
Permissible anywhere 4-2

IXi instruction; 8-39, 8-41
J option 4-9, 4-10, 9-8
JDATE micro 7-6
Job statement 10-1
JP instruction

Description 8-23
Force upper 3-5

L control statement option
Description 10-3
Related to LIST 4-74

L error 11-11
L hardware feature code 4-8
L list option 4-74
L location flag 4-38, 11-14
Labeled common

Description 3-2
Establishment 4-32, 4-34

LCC (Eeudo ,
I Description 4-21, 4-23

Illegal if absolute 4-6, 4-9, 4-10
LC\1 attribute 4-66
LC\1 blocks 3-2, 4-34
LCM transfer irntructions 8-16, 8-19

I LCM/UEM 8-7
LCN in~truction

Data transmission 9-6
Description 9-10

LDC inc;truction
Data transmission 9-6
Description 9-11
Exarnple 2-20

LDD instruction
Data trans:nission 9-6
Description 9-15

LOI instruction
Data transmission 9-6
Description 9-15

LDM instruction
Dat11 transmission 9-6
Description 9-16
Exa:nple 5-21

LON instruction
Data transmission 3-6
Description 9-10
Example 5-12, 9-10

LDSET (Eeudo
I Description 4-22

Permissible anywhere 4-2
LE IF operator 4-62

IFC operator 4-68
LE instruction 8-26
Left shift instruction 8-31, 8-32
LGO control statement 10-6
Library maintenance programs 2-1
Linkage symbols 2-6, 4-45
List, full 10-3
List, parameter

ECHO 5-8
Equivalenced macro 5-25
Macro 5-18

LIST (Eeudo
Description 4-73
Example 4-13, 5-6, 5-12
Permissible anywhere 4-2

60492600 M

List, short 10-4
Listable output

Assembled code 11-5
Assembler statistics 11-8
Binary control cards 11-1
Block usage 11-2
Control statement 10-3
Default symbols 11-8
Entry point symbols 11-4
Error directory 11-9
Error flags 11-9 thru 11-12
External symbols 11-4
Header information 11-1
Literals 11-7
Octal 11-5
Source statements 11-5
Statistics 11-8
Subtitles 11-1
Symbolic reference table 11-12
Titles 11-1
User control 4-79, 10-3, 10-4

Listing control
Control statement 10-3, 10-4
Pseudo 4-73

LIT pseudo
Description 4-51
Example 2-12, 2-17, 2-21, 4-15, 4-58, 5-6
Listing 11-6, 11-7

Literals
Absolute program 3-6, 3-7, 3-10, 3-11
Description of block 3-1, 3-2
IDENT 3-10, :J-14
Listing 11-7
Location 1-3, 3-1, 3-2
.Notation 2-12
Protection 4-35
SEGMENT overlay 3-10
SEG partial oinary 3-12
Symbol (default) 2-7

LJM instruction
Description 9-6
Exam~e 5-21

LMC instruction
Description 9-11
Logical function 9-6

LMD instruction
Description 9-15
Logical function 9-S

LMI instruction
Description 9-15
Logical function 9-6

LMM instruction
Description 9-16
Logical function 9-6

LMN instruction
Description 9-10
Logical function 9-6

LO control statement option 10-4
Load address 4-3
Load and store 9-12
Load-and-go file 1-3, 10-2
Loader control statement 4-21
Loader directive 4-21
LOC attribute 4-66
LOC pseudo

Description 4-38
Example 4-39, 4-55
Location counter changed 3-4

Local blocks 3-2
Absolute program 3-6
Description 3-2
Establishment 4-32, 4-34
Relocatable program 3-5

I

I

Index-7

LOCAL statement
Description 5-31
Example 5-32
Heading 5-13

Local symbol
Macro body 5-13
Subprogram 3-1, 4-29

Location counter
BSS 4-37
Control 4-38
Description 3-4
Forced upper 3-4

I Position 3-4
ORG 4-35
ORGC 4-35
Special element 2-9, 3-4
USE 4-32
USELC!\1 4-34

Location field
Listing 11-6
Statement 2-1

LO control card option
Description 10;._4
Related to LIST 4-73

Logical difference irntruction 8-29
Logical functions, PP 9-6
Logical minus 2-22
Logical product and complement irntruction 8-30
Logical product irntruction 8-28
Logical shift irntruction 8-31, 8-32
Logical sum instruction 8-28
Long add unit

I Description 8-3, 8-4, 8-6, 8-6.1
Irntructions 8-39

LPC instruction
Description 9-11
Logical function 9-6

LPN irntruction
Description 9-10
Logical function 9-6

LRD irntruction 9-12
LT IF operator 4-62

IFC operator 4-66
LT instruction 8-26
L Xi irntruction

Description 8-31, 8-32
Example 2-19

:\1 base option 4-25
'1 list option 4-7 4
MA CHINE pseudo 4-7

I Machine instruction formats 8-1, 9-1, 9-2.1
Machine model correspondence 8-8
Machine test 4-60
Macro

Body 5-13
Call 5-18, 5-25
Equivalenced 5-24
Definition 5-13
Header 5-14
List control 4-7 4
Name 2-2, 5-15, 5-18, 5-25, 6-1
Permissible anywhere 4-2
Processing 5-1, 5-14
System defined 4-75, 5-35
Terminator 5-14

MACRO (l)eudo
Description 5-15
Example 4-31, 4-76, 5-5, 5-19 thru 5-22,

5-32 thru 5-34
IRP related 5-33
Operation code table entry 6-1
Permissible anywhere 4-2

lndex-8

MACROE pseudo
Description 5-24
Example 5-26
IRP related 5-33
Operation code table entry 6-1
Permissible anywhere 4-2

MAN instruction 9-12
Mask instruction 8-42
Mass storage, system 1-3
Master list control 4-73
MAX pseudo

Description 4-42
Listing 11-6

MD instruction 8-51
MEMSEL 4-21
MESSAGE macro 12-25
MI instruction 8-24, 8-26
MIC attribute 4-67
MICCNT pseudo

Description 4-44
Example 4-44
Listing 11-6
Permissible anywhere 4-2

Micro
Deci.mtl 7-4
Definition 4-24, 4-27, 4-28, 7-2
Editing 2-4
Mark 2-4, 5-1
Octal 7-4
Predefined names 7-5
Reference 7-1
Size 4-44, 7-2
Sub;titution 7-1
System defined 4-17, 7-2, 7-5
Test for 4-67

MICRO (J>eudo
Description 7-2
Example 4-44, 5-11, 7-2, 7-3
Permissible anywhere 4-2

MI.N pseudo
Description 4-43
Listing 11-6

Minus as local symbol separator 5-31
Minus as parameter separator 5-8, 5-13, 5-16,

5-24, 5-28
Minus on listing 11-6
~~1inus operator 2-21, 2-22, 8-11, 8-12
Minus sign in location field

CPU instruction 3-4, 3-5, 4-53
PP instruction 3-4, 4-53
VFD instruction 4-53

MJ instruction 8-18
Force upper 3-4

MJN instruction
Description 9-6
Effect of J 4-9, 4-11

ML control statement option 10-4
Mnemonic operation code

Legal operation field entry 2-1
OPDEF defined 5-27
Search for 6-1

Modifiers, numeric data 2-17
MODIFY common decks 5-2
MODLEVEL micro 7-7
MOVE macro 12-28
Multiple entry point table

Suppression 4-20
Used for overlays 3-12

MXi instruction
Description 8-42
Example 2-19, 8-42

MXN instruction 9-12

N eject mode 10-4

I

60492600 id

N error 11-11
N list option 4-75
Name

Block 4-32, 4-34
Different types 2-4
Duplicate code 5-7, 5-8
General description 2-4
IF sequence 4-59
Macro 5-16
Micro 4-24, 4-27, 4-28, 7-2, 7-4, 7-5
Mnemonic operation 6-1
Overlay 4-11, 4-15
Parameter 5-8
Remote code 5-3

NE IF operator 4-62
IFC operator 4-68

NE instruction 8-26
Nesting, level of 1-3
NG iIBtruction 8-24, 8-26
NIL [:l)eudo 6-6

Permissible anywhere 4-2
NIM instruction 9-21
NJN iIBtruction

Description 9-7
Effect of J 4-9, 4-10

NO eject option 10-4
NO instruction 8-43

I No operation irntruction 9-11
N OLABEL pseudo

Description -l-20
Permissible anywhere 4-2

NOM irntruction 9-21
NOREF [:l)eudo 4-78

Permissible a.,ywhere 4-2
Normalize i rstruction 8-34
Normalize unit

I Description 8-6, 8-6.1, 8-6.2
lrntructiolli 8-34, 8-35

Not equal sign
Parameter separator 5-8, 5-13
Special character 2-4

Nu:neric data 2-17
NXi instruction 8-34
NZ iIBtruction 8-24, 8-26

O base 2-18, 4-24
0 error

Description 11-11
With AIDTEXT 8-1, 9-1

0 mode 10-4
OAM instruction 9-22
OAN instruction 9-22
OBj instruction 8-22
Octal listing 11-5
Octal notation 2-16
OCTMIC [:l)eudo 7-4

Permissible anywhere 4-2
OLDPL file 10-3
Opdef

Body 5-13
Call 5-29
Definition 5-13
Heading 5-13
List control 4-72, 4-73
Processing 5-14
System defined 4-17, 4-33

OPDEF [:l)eucb
Description 5-27
Example 5-29 thru 5-32
Operation code table entry 6-1
Permissible anywhere 4-2

Operand register 8-7
Operation code table 6-1

60492600 M

Operation code value
CPU 6-7, 8-1
pp 6-3, 9-1

Operation, definition
Compressed 5-1
Duplicated text 5-6
External text 5-2
General description 5-1
Macro definition 5-13
Opdef definition 5-13
Remote text 5-3
System 5-35

Operation field
Blank 4-48
Description 2-1
Search 6-1

Operator
Element 2-2 2
Mnemonic 5-27, 6-3
Register 2-21, 5-28, 6-7
Term 2-22

Operator with constant 2-13, 2-16
OP L file 5-2, 10-3, 12-1
OPSYN [:l)eudo

Description 6-5
Permissible anywhere 4-2

OR instruction 8-24
ORG pseudo

Description 4-35
Deter.nine blocks 3-1
Establish aooolute blocks 3-2, 4-35
Example 4-4, 4-7, 4-la, 4-:-14, 4-16
Location counter changed 4-35
Origin counter changed 3-3, 4-35

ORGC p;eudo 4-35
Origin

Multiply entry point 4-3
Overlay 4-12, 4-15
Program 4-3

Origin counter
ass 4-37
Control 3-3, 4-35, 4-37 ~
Description 3-3
Final value, absolute 3-6
Final value, relocatable 3-5
Forced upper 3-4
ORG 4-35
ORGC 4-35
Special element 2-9, 3-3
us~ 4-32

ORM instruction 9-21
Overflow error 2-17
Overlay

Absolute 3-8
Control tables 4-21
Entry point 4-12, 4-15
General description 3-6, 3-8
Level numbers 4-4, 4-12, 4-15
Multiple entry point 3-12
Name 4-12, 4-15
Origin 4-12, 4-15
pp 3-7, 3-9
Primary 3-8, 3-9, 3-11, 3-13, 4-12, 4-15
Secondary 3-6, 3-8, 3-9, 4-12, 4-15

P error 11-11
P nwneric data modifier 2-17
P pagination mode 10-4
Pack instruction 8-36
Padding of CPU word 3-4, 4-53, 8-2
Page heading 11-1
Page number 11-1

Index-9

Pagination control 10-4
Parameter

Actual 5-7, 5-18, 5-25
Embedded 5-18, 5-25
Formal 5-8, 5-13
Indefinitely repeated 5-34
Iterative 5-18, 5-25, 5-34
Substitutable 5-8, 5-13, 5-16, 5-25, 5-28, 5-34

Parameter mark 5-9, 5-13
Parameter, null 5-9, 5-18, 5-25
Parameter separator

Actual 5-18, 5-25
Formal 5-8, 5-13, 5-16

Parcel 8-1
Parentheses

Local symbol separator 5-31
Nested 5-9
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28

Partial binary
IDENT type 3-14
SEG type 3-12

Pass instruction
CPU 8-43
pp 9-9

Pass one
Expression evaluation 2-23, 2-26, 2-28, 3-3
General description 1-3
Maxim um test 4-42
Minimum test 4-43
Symbol definition 2-6

Pass two
Expression evaluation 2-22, 2-26, 3-3
General description 1-3
Symbol definition 2-5
Value for MAX 4-42
Value tor MIN 4-43

PC control statement option 10-4
PCOMMENT micro 7-7
PD control statement option 10-4
PERIPH pseudo

Description 4-10
Effect on branch instructions 9-8
Example 4-49, 6-5
First statement group 4-2

PJN instruction
Description 9-7
Effect of J 4-9, 4-10

PL instruction 8-24, 8-26
Plus as local name separator 5-31
Plus as parameter separator 5-8, 5-13, 5-16,

5-25, 5-28
Plus in location field

CPU instruction 3-4
PP instruction 3-5
VFD instruction 4-53

Plus on listing 11-6, D-2, D-3
Plus operator 2-21, 2-23, 8-11
Point

Binary 2-18, 2-19
Decimal 2-18, 2-19
Octal 2-18, 2-19
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28
Register designator 2-8

Population unit 8-43
POS pseudo 4-40
Position counter

Control 4-40, 4-53
Description 3-4
Special element 2-9, 3-4

Post radix 2-17
PP instructions 9-1

A-register 1/0 9-22
Block 1/0 9-22
Branch 1/0 9-19, 9-21

Index-10

PP instructions (Contd)
Branch 9-7
Central read/write 9-18
Channel function 9-24
Constant mode 9-11
Designators 9-3
Direct address 9-15
Error stop 9-25
Exchange jump 9-12
Format 9-1
Functions 9-6
Indexed direct address 9-16
Indirect address 9-15
Machine model correspondence 9-4
No address 9-10
No operation 9-11
Output record flag 9-23
Shift 9-9
Symbolic machine 9-1

PPOP
Description 6-3
Example 5-12, 6-5
Permissible anywhere 4-2

PPU pseudo
Description 4-8
Effect on branch 9-8
Example 4-10, 4-54
First statement group 4-2

PPU memory size 4-21
Prefix table

Comments 4-20
Generation 3-6 thru 3-8
Suppression 4-21

Preradix 2-17
Program, absolute 3-6, 4-6
Program example 0-1 thru D-8
Program execution 10-5
Program identification 4-2
Program origin 4-3
Program, relocatable 3-5
Program stop instruction 8:-13
Program structure 3-1
PS control statement option 10-4
PS instruction

Description 8-13
Force upper 3-4

Pseudo instructions
Binary control 4-6
Block counter control 4-32
Conditional assembly 4-59
Data generation 4-4 7
Definition operation 5-1
Error control 4-71
First statement group 4-2
Introduction 4-1
Listing control 4-73
Micro 7-1
Mode control 4-24
Operation code table management 6-1
Operation field entry 2-2
Permissible anywhere 4-2
Required 4-2
Subprogram identification 4-2
Subprogram linkage 4-45
Symbol definition 4-40
'fypes 4-1

PSN instruction 9-11
PURGDEF pseudo

Description 6-10
Permissible anywhere 4-2

PURGMAC pseudo
Description 6-7
Example 6-6
Permissible anywhere 4-2

I

I

I

60492600 M

Push down stack 1-3
PXi instruction 8-36

Q to represent expression 5-27, 6-8
QUAL micro 7-6
QUAL pseudo

Description 4-28
Example 4-13, 4-30, 5-22
Permissible anywhere 4-2

Qualifier, symbol 4-28
Used for definition operations 5-2

R error 11-11
R hardware feature code 4-8

· R list option 4-75
R register 9-2, 9-3
RAD instruction

Description 9-15
Replace function. 9-7

Radix 2-17
RAI instruction

Description 9-15
Replace function 9-7

RAM instruction
Description 9-16
Replace function 9-7

RE instruction
Description 8-15
Force upper 3-4

Read central memory instruction 8-46, 9-17
I Read program address 9-13

Real-time clock set instruction 8-21
Record name, external text 5-3
Recursion level 1-4, 5-1
Recursion stack 1-4, 5-1
Reference

Macro 5-18
Macroe 5-24
Nested 5-1
Opdef 5-27

Reference table, symbolic 11-13
Register designators

CPOP 6-7
Description 2-8, 8-7
Not symbols 2-5
OPDEF 5-27
OPSYN 6-5
PURGDEF 6-10

Registers, CPU 2-8, 8-7
READC macro 12-28
READH macro 12-28
READO macro 12-29
READS macro 12-29
READW macro 12-29
RECALL macro 12-30
REL attribute 4-66
Relocatable program structure 3-5
Relocatable test 4-66
Relocation, CM access 9-2
Relocation register

Description 9-2, 9-3
Load and store instructions 9-12

Remote ac;sembly 5-3
REP pseudo 4-57

. REPC pseudo 4-57
Repeat count

DUP 5-7
Replication 4-57

60492600 M

REPI pseudo
Example 4-57
Description 4-57
Illegal if absolute 4-6, 4-9, 4-10

REPL table
Result of BSSZ 4-48
Result of REP, REPC, or REPI 4-57
Written by SEGMENT 4-15

Replace functions, PP 9-7
Replication of code 4-57
Reserve zeroed storage 4-48
Return jump, CPU 8-14
RFN instruction 9-23
RI instruction 8-21
Right shift 8-32, 8-33
RJ instruction

Description 8-14
Example 4-33, 5-21, 8-15
Force upper 3-5

RJM instruction 9-7
RL instruction 8-16
RMT pseudo

Descrii)tion 5-3
Example 5-5, 5-6
Peranissible anywhere 4-2

RO instruction 8-22
Round and normalize instruction 8-35
RPN instructions 9-13
RXi instructions

Add 8-38
Divide 8-43
Mui ti ply 8-40

RXj instruction 8-20
R= pseudo

Description 4-55
Example 4-56, 5-21
Illegal in PP i)rogram 4-9, 4-10

S list option 4-75
S numeric data modifier 2-18
S storage flag 11-14
S system text mode 10-5
SAi instructions

Descrii)tion 8-44
Example 2-15, 2-16, 2-19, 4-33, 4-38, 5-22,

33, 8-45
SBD instruction

Arithmetic function ~6
Description 9-15

SBI instruction
Arithmetic function 9-6
Description 9-15

SBi instructions
Description 8-46
Example 2-9, 2-12, 8-47

SBM instruction
Arithmetic function 9-6
Description 9-16

SBN instruction
Arithmetic function 9-6
Description 9-10

Scale, binary 2-18
SCF instruction 9-20
SCM blank common 3-3
SCM labeled common 3-2
SCN instruction

Description 9-10
Logical function 9-6

I

Index-11

SEG pseudo
I Binary generation 3-12, 4-16

Description 4-15
Example 4-16
Force upper 3-4
Illegal in PP program 4-9, 4-10

I Write partial binary 4-16
SEGMENT pseudo

Binary generation 3-8 thru 3-10, 3-12, 4-15
Description 4-16
Example 4-17
Force upper 3-4
Illegal in PP program 4-9, 4-10
Overlay structure 3-10, 3-12

Semicolon in definition 5-8, 5-13
SEQUENCE micro 7-7
Sequencing

Listing 11-7
Statement 2-1

SET attribute 4-66

I Set output record flag 9-24
Set position counter 4-40
Set register instructions 8-44 thru 8-49
SET pseudo

Description 4-41
Example 2-9, 2-20, 5-11, 5-22
Listing 11-6

SFM instruction 9-20
Shift

Description of unit 8-3, 8-6
CPU instructions 8-31 thru 8-33
PP instruction 9-9

SHN instruction 9-9
Short jump limit 4-9, 4-11
Short list 10-4
Single precision instructions

Add rounded 8-38
Add unrounded 8-37
Di vi de rounded 8-43
Divide unrounded 8-42
Multiply rounded 8-40
Multiply unrounded 8-39

SKIP pseudo
Description 4-70
Permissible anywhere 4-2

Slant bar
Local symbol separator 5-31
Operator 2-22
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28

SOD instruction
Description 9-15
Replace function 9-7

SOI instruction
Description 9-15
Replace function 9-7

SOM instruction
Description 9-16
Replace function 9-7

Space, em bedded (see blank)
SPACE pseudo

Description 4-76
Permissible anywhere 4-2

Special elements
FORTRAN call 2-9
General description 2-9
In variable field 2-2
Location counter 3-4
Origin counter 3-3
Position counter 3-4

SRD instruction 9-12
SST attribute 4-67

Index-12

SST pseudo 4-45
Example 4-13
Permissible anywhere 4-2

Stack, recursion 1-4, 5-1
Statement

Coding conventions 2-3
Comments 2-2
Compressed 5-1
Continuation 2-2
Externnl source 5-2
First column 2-1
First group 4-1
Format 2-1
Listing 11-5
Number assembled 11-8
Size 2-1
Source of 5-1, 10-3

Statistics, assembler 11-8
STD instruction

Data transmission function 9-6
Description 9-15

STEXT pseudo
Description 4-17
Example 4-19
First statement group 4-2

STI instruction
Data transmission function 9-6
Description 9-15

STM instruction
Data transmission function 9-6
Description 9-16

STOPDUP pseudo
Description 5-9
Example 5-11

Storage reservation 4-37, 4-48
String, character

Comparison 4-68
Data generation 4-49
Delimited 2-11, 2-14
Empty 2-14
Micro 2-4
Notation 2-13

Strong external 2-7
Subprogram length 3-5
Substitution, micro 7-1
Subsubtitle

CTEXT 4-79
EJECT 4-76
Listing of 11-1
QUAL 4-28
SPACE 4-76
TITLE 4-77
'ITL 4-78

Subtitle
CTEXT 4-79
Listing of 11-1
TITLE 4-77

SXi instruction
Description 8-48
Example 2-15, 2-19, 5-21, 5-31, 8-49

Symbol
Attribute 2-6, 4-40, 4-66
Created 5-32
Default 2-7
Definition 2-5, 4-40
Duplicate 2-6
Entry point 2-6
External 2-7
Invented 5-32, 11-8
Literals 2-6
Local to macro 5-13, 5-31

60492600 ;~

Symbol (Contd)
Local to QUAL 3-1
Location field 2-6
Lost 11-8, 11-13
Number defined 11-8
Number referenced 11-8
Previously defined 2-7
Qualified 2-7, 4-27
Redefinition 4-29, 4-41
System-defined 2-6, 4-45
Undefined 2-7
Value 2-6, 4-39

Symbol qualifier listed 11-1
Symbol table

Clearing 3-10, 3-12
System text 4-17

I Symbolic notation 8-1, 8-8, 9-1, 9-2.2
Symbolic reference table

Address reference 4-80
Detailed description 11-12
General description 4-73
Generation 1-3
List control 4-73, 10-3
Omit symbol 4-78

Synonymous operation
CPU 6-10
Mnemonic 6-5
pp 6-5
Syntactic 6-7

Syntax definition 5-27, 6-7, 6-10
Syntax search 6-1
SYSTEM macro 12-30
System text 4-19
SYSTEXT option 10-4

Related to G mode 10-4
Related to STEXT 4-17

T list option 4-73
Table

Operation code 6-1
Symbolic reference 11-12
USE 4-32

TBj instruction 8-21
Term 2-22
Term operator 2-22
Terminator, macro 5-13
Test symbol attribute 4-66
Time limit 10-1
TIME micro 7-6
Time of assembly 11-1
Title

ES 8-14
IDENT 4-3
Listing of 11-1
PS 8-13
TITLE 4-77

TITLE pseudo 4-77
Permissible anywhere 4-2

Transfer symbol 4-4
Transmit instruction 8-27
Truncation, character data 2-13

Expression value 2-26
TTL pseudo 4-78

Permissible anywhere 4-2

60492600 M

U error 11-11
UEM

Block copy instructions 8-15
Direct transfer instructions 8-20

UJN instruction
Effect of J 4-9, 4-10
Description 9-7

Unconditional jump
CPU 8-23
pp 9-7

Underflow error 2-18
Unpack instruction 8-35
USE pseudo

Change blocks 3-1 thru 3- J, 3-5, 4-32
Description 4-32
Establish common blocks 3-2, 3-3, 4-32
Establish local blocks 3-2, 4-32
Example 4-17, 4-30, 4-31, 4-33, 4-36, 4-38

USE table
Entry 4-32, 4-34, 4-35
Reinitialization 3-10, 3-12, 4-11

USELCM pseudo
Description 4-34
Establish common blocks 3-2, 3-3
Example 4-35
Illegal in PP program 4-9, 4-10

USER control statement 10-7
UXi instruction 8-35

V error 11-11
Value, numeric 2-17
Variable field 2-2
Variable field definition 4-53
VFD pseudo

Description 4-5 3
Example 2-15, 4-25, 4-30, 4-33, 4-54, 5-22

WE instruction
Description 8-15
Force upper 3-4

Weak external 2-7
WL instruction 8-16
Write central memory instruction 8-46
Write partial binary 4-16
WRITEC macro 12-31
WRITEH macro 12-31
WRffEO macro 12-31
WRITES macro 12-32
WRITEW macro 12-32
WXj instruction 8-20

X external flag 4-47, 11-6
X external text mode 10-5
X file option

Description 10-5
XTEXT def a ult 5-3

X hardware feature code 4-8
X list option 4-7 5
X register

Conditional instructions 8-24
Description 8-7
Designator 2-8
Setting 8-48

I

Index-13

XJ instruction
Description 8-17
Force upper 3-4

XREF pseudo
Description 4-80
Permissible anywhere 4-2

I XTEXT ~eudo 5-2
Related to CTEXT/ENDX 4-79

XTEXT source 10-5

Zero block
Absolute program 3-2, 3-6, 3-7
Description 3-2
Relocatable program 3-5

Index-14

Zero fill 2-14, 4-53
Zero guaranteed

Data item 2-14
DIS i tern 4-50

Zeroed words 4-48
ZJN instruction

Description 9-8
Effect of J 4-9, 4-10

ZR instruction
Description 8-24, 8-26
Force upper 3-4

ZXi Instruction 8-35

6416 PP instructions 9-14 I

60492600 M

n
c
-4

>
5 z
0 ,...
z
m

I

COMMENT SHEET

MANUAL TITLE: COMPASS Version 3 Reference Manual

PUBLICATION NO.: 60492600

REVISION: M

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

FOLD

Please reply No reply necessary

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

(5 2) CONT"OL DATA
Publications and Graphics Division
Mail Stop: SVL104
P.O. Box 3492
Sunnyvale, California 94088-3492

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

~-------------------------~-----------------------------------FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY:

STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAPE

PSEUDO INSTRUCTION INDEX

Page Page
Name Placement Usage ~umber Name Placement Usage Number

ABS first group CPA 4-6 LOC normal CP ,PP 4-38
BASE anywhere CP,PP 4-24 LOCAL macro or opdef CP, PP 5-31
BSS normal CP,PP 4-37 MACHINE first group CP, PP 4-7'
BSSZ normal CP,PP 4-48 MACRO anywhere CP ,PP 5-15
Bl=l anywhere CP 4-30 MA CR OE anywhere CP ,PP 5-24
B7=1 anywhere CP 4-30 MAX normal CP ,PP 4-42
CHAR anywhere CP,PP 4-26 MEMS EL first group pp 4-21
CIPPU first group pp 4-11 MICCNT anywhere CP ,PP 4-44
CODE anywhere CP,PP 4-26 MICRO anywhere CP ,PP 7-2
ca.. normal CP,PP 4-31 MIN normal CP ,PP 4-43
COMt-E NT anywhere CP,PP 4-20 NIL anywhere CP ,PP 6-6
coo normal CP,PP 4-54 NOLABEL anywhere CPA, PP 4-20
CPOP anywhere CP 6-7 NOREF anywhere CP ,PP 4-78
CPSYN anywhere CP 6-10 OCTMIC anywhere CP ,PP 7-4
CTEXf normal CP 4-79 OP DEF anywhere CP 5-27
DATA normal CP,PP 4-48 OP SYN anywhere CP ,PP 6-5
DEC MIC anywhere CP,PP 7-4 ORG normal CP, PP 4-35
DIS normal CP,PP 4-49 ORGC normal CP ,PP 4-35
DUP normal CP,PP 5-6 PERI PH first group pp 4-10
ECHO normal CP,PP 5-7 POS normal CP ,PP 4-40
EJECT anywhere CP,PP 4-76 PPOP anywhere pp 6-3
ELS Et anywhere CP,PP 4-60 PPU first group pp 4-8
END re qui red 1 ast CP,PP 4-4 PURGDEF anywhere CP 6-10
ENDD anywhere CP,PP 5-10 PURGMAC anywhere CP ,PP 6-7
ENDIFt anywhere CP,PP 4-59 QUAL anywhere CP ,PP 4-28
ENDM anywhere CP,PP 5-14 REP normal CPR 4-57
ENDX normal CP,PP 4-79 REPC normal CPR 4-57
ENTRY normal CP,PP 4-45 REP I normal CPR 4-57
ENTRYC normal CP,PP 4-45 RMT anywhere CP ,PP 5-3
EQJ normal CP,PP 4-41 R= normal CP 4-55
ERR normal CP,PP 4-71 SEG normal CPA 4-16
ERRMI normal CP,PP 4-72 SEGMENT normal CPA, PP 4-15
ERRNG normal CP,PP 4-72 SET normal CP ,PP 4-41
ERR NZ normal CP,PP 4-72 SKIP anywhere CP ,PP 4-70
ERRPL normal CP,PP 4-72 SPACE anywhere CP,PP 4-76
ERR ZR normal CP,PP 4-72 SST anywhere CP ,PP 4-45
EXf normal CP,PP 4-47 STEXT first group CP ,PP 4-17
HERE anywhere CP,PP 5-4 STOPDUP normal CP ,PP 5-9
I DENT required first CP,PP 4-2 TITLE · anywhere CP ,PP 4-77

and 4-12 TIL anywhere CP ,PP 4-78
IF normal CP,PP 4-65 USE normal CP, PP 4-32

. IFC anywhere CP,PP 4-68 USE LCM normal CP 4-34
IFCP normal CP,PP 4-60 VFD normal CP ,PP 4-53
IFCP6 normal CP,PP 4-60 XREF anywhere CP ,PP 4-80
IFCP7 normal CP,PP 4-60 XTEXT normal CP ,PP 5-2
IFEQ normal CP,PP 4-62 (blank) normal CP ,PP 4-48
IFG: normal CP,PP 4-62 = normal CP ,PP 4-41
IFGT normal CP,PP 4-62
IFLE normal CP ,PP 4-62
IFLT normal CP,PP 4-62
IFMI normal CP ,PP 4-64
IFNE normal CP,PP 4-62
IFPL normal CP,PP 4-64 tLooked for during IF skipping.
IFPP nonnal CP,PP 4-60
IFPP6 normal CP ,PP 4-60
IFPP7 normal CP,PP 4-60 Legend
IRP anywhere CP,PP 5-33
LCC normal CPR 4-21 CP Absolute or relocatable CPU program
LDSET anywhere CPR 4-22 CPA Absolute CPU program
LIST anywhere CP,PP 4-73 CPR Relocatable CPU program
LIT nonnal CP,PP 4-51 pp Absolute PPU program

60492600 M

w
c:
w
J:

t:>
z
g
<!'.
f
:::>
(.)

w
a:
w
J:

~I
-'
<!'.

~I
(.)

I

I
I
I
1.

COMPASS VERSION 3
SUMMARY

cs~
CONTl\.OL

DATA
Pub. No. 60492600 M 1984, 1986

coc®OPERATING SYSTEMS: NOS 2, NOS/BE 1, SCOPE 2

CONTROL STATEMENT
COMPASS (p1 ,p2 , ••• , pn) or COMPASS.

A omit1ed
A

B omitted or B
B-0
B-lfn

BL omitted or BL-0
BL

D omitted
D

E omit1ed
E
E-lfn
E-0

F omitted or F
F-n
F-name

Gt omitted or G-0
G
G-lfn
G-lfn/ovl

I omitted
I
1-lfn

L omitted or L
L-lfn
L-0

LO omitted or L0-0
LO
LO-$$$$
LO-c1c2 ••• en

Bit 50

Do not abort
Abort on assembly errors

Binary on LGO
No binary
Binary on lfn

Compact listing format
Burstable listing format

No debug mode
Debug mode

Error list on OUTPUT
Error list on ERRS
Error list on lfn
No error list

*F returns 0
• F returns n (decimal)
*F returns as follows:

COMPASS=O
RUN = 1
FTN4 = 2
FTN5 = 3

No system text
System text on SYSTEXT
Overlay on lfn
Named overlay on lfn

Source on INPUT
Source on COMPILE
Source on lfn

Full list on OUTPUT
List on lfn
No full list

Selects B, L,N, and R
Selects C,F,G,X
Selects all I ist options
Deselects if ci is B,L,N, or R;

selects if ci is other

ML omitted or ML
ML-string

N omitted or 0
N

0 · omitted or 0
0-lfn
o-o

P omitted
p

PC omitted or PC
PC-string

PD omitted or other
PD-6
PD-8

PS omitted or other
PS-x

st omitted
s
s-o
s-ovl
S-lib/ovl

X omitted
X-lfn
x

MODLEVEL returnsJDATE
MOD LEVEL returns 9-
character string

Normal ejects
No ejects

Short list on OUTPUT
Short list on lfn
No short list

New pagination on END
Continue pagination

PCOMMENT is 30 blanks
PCOMMENT is 30-
character string

Print density default
Print density 6 lines/inch
Print density B lines/inch

Page size default
Page size is x lines/page,
where 4:>x~99

SYSTEXT overlay
SYSTEXT on global library
No system text
Named overlay on library
Named overlay on named
library

XTEXT on OLDPL
XTEXT on lfn
XTEXTon OPL

tseven G and S parameters allowed

MODEL 72, 73, 74 EXIT MODES

Bit49 Bit 48

l INDEFINITE
OPERAND l OPERAND l ADDRESS l OUT OF RANGE OUT OF RANGE

MODEL 76 PSD REGISTER

~----MODE , CONDITION ,

l Exitj Mon] Step] Ind] Ovf1 Undf1 LParl SPar1 LBlk SBlk l LDir1 SDir1 Progl Bkp l Stepl Ind 1 Ovf J UndtJ

17 16 15 1.1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FATAL ERRORS
A ADDRESS FIELD BAD
B DOUBLY DEFINED SYMBOL. THE FIRST

DEFINITION HOLDS.
E ECHO, DUP, AMT, OR MACRO ILLEGALLY

NESTED.
F NUMBER OF ENTRIES EXCEEDS PERMISSIBLE

AMOUNT.
L LOCATION FIELD BAD.
N NEGATIVE RELOCATION ON ENTRY POINT.
0 OPERATION FIELD BAD.
P CONSULT LISTING FOR REASON BEHIND

P·ERROR.
R DATA ORIGIN OUTSIDE BLOCK OR IN

BLANK COMMON BLOCK.
U UNDEFINED SYMBOL. VALUE ASSUMED 0.
V BIT COUNT ERROR ON VFD (MUST BE

0 '.S COUNT '.S 60).

2
3

4
5

6
7

8
9

INFORMATIVE ERRORS
LOCATION SYMBOL BAD. SYMBOL NOT
DEFINED.
ADDRESS ERROR ON SYMBOL DEFINITION.
DUPLICATE MACRO DEFINITION. NEW ONE
OVERRIDES.
BAD FORMAL PARAMETER NAME IGNORED.
CPU OPERATION SYNTAX INCORRECTLY
SPECIFIED.
LOCATION FIELD MEANINGLESS.
ADDRESS VALUE EXCEEDS FIELD SIZE,
RESULT TRUNCATED.
MISSING OR EXTRA ADDRESS SUBFIELD.
MICRO SUBSTITUTION ERROR. NO
SUBSTITUTION.

CDC
Graphic

:t
A

B

c
D

E

F

G

H

I

J
K

L

M

N

0

p

Q

A

s
T

u
v
w
)(

y

z
0

1

2

3

4

5

6

7

8
9

+

blank

(comma)

I period)

v
/\

t
~
<
>
!>

:;,,
--,
; (semicolon)

STANDARD CHARACTER SETS

ASCII
Graphic
Subset

A

B

c
D

E

F

G

H

I

J

K

L

M

N

0

p

Q

A

s
T

u
v
w
x
y

z
0

1

2

3

4

5
6

7

8

9

+

blank

(comma)

(period)

[

I
%
"(quote)

_I underline)

I
&

'(apostrophel

?

<
>
@

' "'kircumflex)

; (semicolon)

Display
Code

oat
01

02

03
04

05

06

07

10

11

12

13

14

15

16

17

20

21

22
23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66
67

70

71

72

73

74

75

76

77

Hollerith·
Punch
(026)

8-2
12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

12-9

11-1

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

0-2

0-3

0-4

0-5

0-6

0-7

0-8
0-9

0

1

2
3
4

5
6

7

8

9
12

11

11-8-4

0-1

0-8-4

12-8-4

11-8-3

8-3

no pum:h

0-8-3

12-8-3

0-8-G
8-7

0-8-2

8-6

B-4

0-8-5

11-0

0-8-7

11-8-5

11-8-6

12-0
1 t-a-7

8-5

12-8-5

12-8-6

12-8-7

External
BCD
Code

00

61

62

63

64

65

66

67

70

71

41

42

43

44

45

46

47

50

51

22

23
24

25

26

27

30
31

12

01

02

03

04

05

06

07

10

11

60

40

54

21

34

74

53

13

20
33

73

36
17

32

16

14

35

52

37

55

56

72

57

15

75

76

77

ASCII
Punch
(0291

8-2

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

12-9

11-1

11-2

11-3

11-4

11-5

11-S

11-7

11-8

11-9

0-2

0-3

0-4

0-5

0-6

0-7

0-8
0-9

0

1

2

3

4

5
6

7

8
9

12-8-6

11

11-8-4

0-1

12-8-5

11-8-5

11-8-3

8-6

no punch

0-8-3

12-8-3

8-3

12-8-2

11-B-2

G-B-4

8-7

O-B-5

12-B-7

12

8-5

<>-8-7

12-8-4

0-8-G

8-4

0-8-2

11-8-7

11-8-6

ASCII
Code

3A

41

42

43

44

45

46

47

48

49

4A

413

4C

40

4E

4F

50

51

52

53
54

56

57

58

59
SA

30

31

32

33

34

35

36

37

33

:r.J
20

20

2A

2F
28

n
24

30

20

2C

2E

23

511

50

25

22

5F
21

2G

27

JF

JC

3(

40

!IC
5E
311

tTwelve or more zero bits at the end of a 60-bit word are interpreted
as end-of-line mark rather than two colons. End-of-line mark is
converted to external BCD 1632.

tt1n installations using the CDC 63-graphic set, display code 00 has no
associated graphic or Hollerith code; display code 63 is the colon
(8-2 punch).

LANGUAGE
ELEMENTS

SPECIAL CHARACTERS

Any Field
* Micro substitution
r+ Concatenation

First Column
* Comments line

Conti nu at ion

Location Field
+ Force Upper
- Negate Force Upper

Variable Field
-item
=Ssym
=Xsym
=Ysym

·o
*or *L

•p
s
"F

/name/

Literal
Deferred Symbol
Strong External Symbol
Weak External Symbol
Origin Counter
Location Counter
Position Counter
Position Counter - 1
Caller: COMPASS 0

RUN 1
FTN4 2
FTN5 3

Subfield Delimiter
Symbol Qualifier

CHARACTER NOTATION

~!~ I sign I n I t I string/

or

I sign I t I d I string I d I
Constant I n I t I string I
Literal I -I sign I n I t I string I

or

I ; I sign I t Id I string I d I
t - C Left, 12 zero bits

H Left, blank fil I
A Right, blank fill
R Right, zero fill
L Left, zero fill
Z Left, 6 zero bits

d - delimiter character
n - no. of characters
string = Code characters

NUMERIC NOTATION

~:~ I sign I prerx I value I mods I
Constant I value I mods I
Literal I -I sign I prerx I value I mods I

Mods
Sign
Radix

(pre/post)
Integer
Fraction
Pwr 10 sgl

Pwr 10 dbl

Pwr 2

Binary pt

Spec Default
+or- +
OorB BASE
or D Pseudo
n 0
.nor. none
E or En
or E±n none
EE or EEn
or EE±n none
Sor Sn
or S±n none
Por Pn
or P±n none

SYSTEM MICROS

DATE
JDATE
TIME
BASE
CODE

OUAL
SEQUENCE
MOD LEVEL
PCOMMENT

PSEUDO
INSTRUCTIONS

PROGRAM DEFINITION

sym
IDENT
END

name,fwa,eptsym
trasym

BINARY CONTROL

ABS
MEMSEL
MACHINE type.hf1,hf2 , ••• ,hfn

type;6,7,or8 hf; - C,D,l,L,X
PPU J
PERIPH J
CIPPU
!DENT name, org, entry,~. ,'1 2
IDENT name, org, entry, pp11

name SEGMENT fwa,eptsym
SET

record STEXT
LDSET p, ,p,, . .. , Pn
LCC directive
COMMENT string
NOLABEL I

MODE CONTROL

mname BASE
CODE
QUAL
B1~1

B7~1

COL

0 or Dor Mor*
A or Dor E or I or•
name or•

COUNTER CONTROL

sym

USE
USE LCM
ORG
ORGC
BSS
LOC
POS

*or name or II or /nJme/
*or name or II or /name/
exp
exp
exp
exp
aexp

SYMBOL DEFINITION

sym
sym
sym
sym
sym
sym

EQU
SET
MAX
MIN
MICCNT
SST

exp
exp
exp
exp, ,exp2, .. . , exp"
exp, ,exp:, ...• exp"
mname
sym ...

LINKAGE CONTROL

ENTRY
ENTRYC
EXT

sym 1,svm2, ... ,sym"
sym 1 ,sym2, ... ,sym"
sym 1 ,svm2, .. .,sym"

DATA GENERATION

svm
sym
sym
sym
sym
sym
sym
sym

BSSZ
DATA
DIS
DIS
LIT
VFD
CON
R
REP
REPC
REPI

exp
item,,item"
n,string
,dstringd
item 1, ... ,item"
item, /exp,, ... ,exp"
item 1 /exp,, ... ,exp"
reg, exp
S!addr,D/addr,C/rep,Otbsr,l/inc
S/addr, D/addr, C/rep, O/bsr, I/inc
S!addr,D/addr,Clrep,0/bsr,l/inc

ERROR FLAG

t ERR
t ERRop aexp

op= ZR. NZ, PL, NG. Ml

CONDITIONAL ASSEMBLY

I Fop
IFMI
IFPL
IFCP
IFCP6
IFCP7
IFPP
IFPP6
IFPP7
IF
IF

exp 1 ,exp: ,'inct
exp,£nct
exp,enct
£net
Qncr
£ncr
£ncr
£net
Qnct
att,exp,£nct

-att,exp,Qnct

.---
'Ta-

GE
GT
LE
LT
NE .___

name
name_
name
name
name
name
name
name
name
name
name
name
name
name
name
name

IFC
IFC
ENDIF
ELSE
SKIP

Op,dstring I dstring2 d, £net
-op,dstring, dstringl d, e net

£ncr
~net

LIST CONTROL

LIST
p-A

B
c
D
E
F
G
L
M
N
R
s
T
x

name EJECT
name SPACE
name TITLE

NOREF
name TTL
name CTEXT

ENDX
XREF

Po .P2 •... ,pn or*
Assembly
Binary control
Control statements
Detail
·Echoed lines
IF ·Skipped lines
Code generation
Reference table only
User macros
Referenced symbols only
No references
System macros
SST symbols
XTEXT lines

aexp, ,aexp2
string
sym 1, •• • ,symn
string
string

AorB

DEFINITION OPERATIONS

file
name
name
name

name
name
name

name

sytx
name

XTEXT
DUP
ECHO
ENDO
STOPDUP
RMT
HERE
MACRO
MACRO
MACROE
MACROE
OPOEF
ENDM
LOCAL
IRP

record
rep.~ct
~nct,p, =(Jist1 J,p2 =(list2 J, . ..

Po .P2. · · ··Pn
name,p, .P2 •... ,p

0

P1.P2,. · ·•Pn
name,p 1,p2, .. ,,p"
Po.Pl.·· .,pn

sym,, ... ,sym"
p

OP CODE MANAGEMENT

name PPOP
name1 OPSYN

NIL
PURGMAC
PURGDEF

sytx CPOP
sytxo CPSYN

MICRO

mname MICRO
mname MICRO
mname DECMIC
mname OCTMIC

ct/, val, type
name2

name 1 ,name2, .. . ,name n

syrx
ctl,val,reg,type
sytx2

n1,n 2 ,dstringd
n 1 .dstringd.
aexp,n
aexp,n

..-----
~

ABS
COM
DEF
EXT
LCM
LDC
MIC
REG
REL
SET
SST

'---

CPU
INSTRUCTIONS

Instruction

00000
OOOOK
OlOOK
011jK
011jK
012jK
012jK
01300
013jK
013jK
014jk
015jk
0160k
016jk

016j0
0170k
017jk

02iOK
030jK
031jK
032jK
033jK
033jK
034jK
035jK
036jK
037jK
0400K
0400K
04ijK
04iOK
05ijK
05iOK
06ijK
06iOK
06ijK
060jK
06i0K
07i0K
07ijK
07i0K
07ijK
070jK
07i0K
10ijj
11ijk
12ijk
13ijk
14ikk
15ijk
16ijk
17ijk
20ijk
21iik
22ijk
22iii
22iOK
22iik
23ijk
23iji
23i0k
23iik
24ijk
24i0i
24iji
24i0k
24ijk
24ijk
25ijk
25i0i
25iji
25i0k
25ijk
25iik
26iik
26i0i
26iii
26i0k
26ijk
26ijk

27ijk
27i0i
27iii
27i0k
27ijk
30ijk
31ijk
32ijk
33ijk
34ijk
35iik
36ijk
37iik
40ijk
41ijk
42ijk

Operation

ES (D@
PS @@
RJ
RL (D~

~~ 11* WE 2~

~j : ~I
XJ ;~ 4@ RXJ 1 ~ 4
WXj 1 .;i_, 4
RI 1)(3)(5
IBJ 1@

TBj ~@
RO t@@
OBj 1@@

JP
ZR
NZ
PL
Ml
NG
IA
OR
OF
ID
EQ
ZR
EQ
ZR
NE
NZ
GE
GE
LE
LE
PL
LT
LT
NG
GT
GT
Ml
BXi
BXi
BXi
BXi
BXi
BXi
BXi

BXi
LXi
A Xi
LXi
LXi
LXi
LXi
AXi
AXi
AXi
A Xi
NXi, Bi
NXi
NXi, Bi
NXi
NXi
NXi
ZXi, Bj
ZXi
ZXi, Bj
ZXi
ZXi
zx;
UXi, Bj
UXi
UXi, Bj
UXi
UXi
UXi

PXi
PXi
PXi
PXi
PXi
FXi
FXi
DXi
DXi
RXi
RXi
I Xi
I Xi
FXi
RXi
I Xi

<D
®

CYBER 70 Model 76, and 7600

CYDER 170 Models 171, 172, 173, 174, 175, 720, 730, 740, 750, and 760;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series

@ · CYBER 170 Model 176
@
@

CYB ER 170 Models 815, 825, 835, 845, .and 855; and.CYBER 180 Series
Privileged to monitor

Variable I
K
K
Bj±K
Bj±K
Bj±K
Bj±K

Bj±K
BJ±K
Xk
Xk
Bk
Bk

Bk
Bk

Bi+K
Xj,K
Xj,K
Xj,K
Xj,K
Xj,K
Xj,K
Xj,K
Xj,K
Xj,K
K
K
Bi, Bi. K
Bi, K
Bi, Bi. K
Bi, K
Bi, Bj, K
Bi, K
Bj, Bi, K
Bj, K
Bi, K
Bi, K
Bi, Bi. K
Bi, K
Bj, Bi. K
Bj, K
Bi, K
Xj

Xj•Xk
Xj+Xk
Xj-Xk
-Xk
-Xk• Xj
-Xk+Xj
-Xk-Xj
jk
jk
Bj, Xk
Bj
Xk
Xk, Bi
Bj, Xk
Bj
Xk
Xk, Bj
Xk

Xk
Bj, Xk
Xk, Bi
Xk

Xk
Bj, Xk
Xk. Bj
Xk

Xk
Bj, Xk
Xk, Bj

Bj, Xk

Bj
Xk
Xk, Bj
Xj+Xk
Xj-Xk
Xj+Xk
Xj-Xk
Xj+Xk
Xj-Xk
Xj+Xk
Xj-Xk
Xi •Xk
Xj*Xk
Xj *Xk

Error exit to EEA
Program stop
Return jump to K

Description

Block-copy K plus (Bjl words from LCM to SCM
Read extended core storage
Block-copy K plus (Bj) words from SCM to LCM
Write extended core storage
Exchange-exit to N EA if exit flag clear
Exchange-exit to K + (Bil if exit flag set
Central exchange jump to Bj+K
Read LCM at (Xkl to Xi
Write (Xj) into LCM at (Xk)
Reset channel (Bk) input buffer
Read channel (Bk) input status to Bj if j * 0;

otherwise, same as RI
Set Bj to current clock time
Reset channel (Bk) output buffer
Read channel (Bk) output status to Bi if j * O; otherwise.

same as RO
Jump to K plus (Bil
Branch to K if (Xj) = 0
Branch to K if (Xj) * O
Branch to K if (Xj) sign is plus
Branch to K if (Xj) sign is minus
Branch to Kif (Xj) sign is minus
Branch to K if (Xj) in range
Branch to Kif (Xj) not in range
Branch to K if (Xj) delinite
Branch to K if (Xj) indefinite
Branch to K
Branch to K
Branch to K if (Bil = (Bj)
Branch to K if (Bil = 0
Branch to K if !Bil * !Bil
Branch to K if (Bil* 0
Branch to K if (Bi)~ (Bj)
Branch to K if (Bil> 0
Branch to K if !Bil~ (Bil
Branch to K if (Bj) < 0
Branch to K if (Bi)> 0
Branch to K if (Bi) < 0
Branch to K if (Bi)< (Bil
Branch to K if (Bi)< 0
Branch to K if (Bj) > (Bi)
Branch to K if (Bj) > 0
Branch to K if (Bi)< 0
Copy (Xj) to Xi
Logical product of (Xj) and (Xk) to Xi
Logical sum of (Xj) plus (Xk) to Xi
Logical difference of (Xj) minus (Xk) to Xi
Copy complement of (Xk) to Xi

Logical
Operators

+

0100
1101
0100

0100
1101
i10i
0100
1101
1001

Logical product of (Xj) and complement of (Xk) to Xi
Logical sum of (Xj) plus complement of (Xk) to Xi
Logical difference of (Xj) minus complement of (Xk) to Xi
Logical-shift (Xi) by± jk
Arithmetic-shift (Xii by± jk
Logical-shift (Xk) by (Bj) to Xi
Logical-shift (Xi) by (Bj) to Xi
Transmit (Xk) to Xi
Logical-shift (Xk) by (Bj) to Xi
Arithmetic-shift (Xkl by(Bj) to Xi
Arithmetic-shift (Xi) by (Bj) to Xi
Transmit (Xk) to Xi
Arithmetic-shift (Xk) by (Bj) to Xi
Normalize (Xk) to Xi and Bj
Normalize (Xii to Xi
Normalize (Xi) to Xi and Bi
Normalize (Xk) to Xi
Normalize (Xk) to Xi and Bj
Normalize (Xk) to Xi and Bi
Round and normalize (Xk) to Xi and Bj
Round and normalize (Xi) to Xi
Round and normalize !Xii to Xi and Bj
Round and normalize (Xk) to Xi
Round and normalize (Xk) to Xi and Bi
Round and normalize (Xk) to Xi and Bi
Unpack IXk) to Xi and Bi
Unpack (Xi) to Xi
Unpack (Xi) to Xi and Bj
Unpack (Xk) to Xi
Unpack (Xk) to Xi and Bj
Unpack (Xk) to Xi and Bi

Pack (Xk) and (Bj) to Xi
Pack (Xi) to Xi
Pack (Xi) and (Bj) to Xi
Pack (Xk) to Xi
Pack (Xk) and !Bil to Xi
Sum of (Xj) plus (Xk) to Xi
Difference of (Xj) minus (Xk) to Xi
Double-precision sum of (Xj) plus (Xk) to Xi
Double-precision difference of (Xj) minus (Xk) to Xi
Rounded sum of (Xj) plus (Xk) to Xi
Rounded difference of (Xj) minus (Xk) to Xi
Integer sum of (Xj) plus (Xk) to Xi
Integer difference of (Xj) minus (Xk) to Xi
Product of (Xj) times IXk) to Xi
Rounded product of (Xjl times (Xk) to Xi
Integer product of (Xii times (Xk) to Xi

Instruction

42ijk
43ijk
44ijk
45ijk
46000
47ikk
50ijK
51ijK
51iOK
52ijK
53ijk
53ijk
53ij0
54ijk
54ijk
54ij0
55ijk
55ijk
56ijk
56ij0
57ijk
57i0k
57ijk
60ijK
61ijK
61iOK
62ijK
63ijk
63i0k
64ijk
64ijk
64ij0
65ijk
65ijk
660jk
66ijk
66ij0
670jk
67ijk
67i0k
67ijk
70ijK
71ijK
71iOK
72ijK
73ijk
73ijk
73i0k
74ijk
74ijk
74ij0
75ijk
75ijk
76ijk
76ij0
77ijk
77i0k
77ijk

Operation

DXi
MXi
FXi
RXi
NO
CXi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SAi
SBi
SBi
SBi
SBi
SBi
SBi
SBi
SBi
SBi
SBi
SBi
CR@
SBi
SBi
cw@
SBi
SBi
SBi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi
SXi

Variable

Xi *Xk
±ik
Xj/Xk
Xj/Xk

Xk
Aj±K
Bj±K
K
Xj±K
Xj+Bk
Bk+Xj
Xj
Aj+Bk
Bk+Aj
Aj
Aj-Bk
-Bk+Aj
Bj+Bk
Bj
Bj-Bk
-Bk
-Bk+Bj
Aj±K
Bj±K
K
Xj±K
Bk+Xj
Xj
Aj+Bk
Bk+Aj
Aj
Aj-Bk
-Bk+Aj
Xi.Xk
Bj+Bk
Bj
Xj,Xk
Bj-Bk
-Bk
-Bk+Bj
Aj±K
Bj±K
K
Xj+K
Xj+Bk
Bk+Xj
Xj
Aj+Bk
Bk+Aj
Aj
Aj-Bk
-Bk+Aj
Bj+Bk
Bj
Bj-Bk
-Bk
-Bk+Bj

Description

Double-precision product of (Xj) times (Xk) to Xi
Form mask of± ik bits in Xi
Divide (Xjl by (Xk) to Xi
Rounded divide (Xj) by (Xk) to Xi
Pass (do-nothing!
Population count of (Xk) to Xi
(Aj) plus K to Ai
(Bj) plus K to Ai
K plusO to Ai
(Xj) plus K to Ai
(Xj) plus (Bk) to Ai
IBkl plus (Xj) to Ai
(Xj) plus 0 to Ai
(Aj) plus (Bk) to Ai
(Bk) plus (Aj) to Ai
(Aj) plus 0 to Ai

FUNCTIONAL UNITS

(Aj) minus (Bk) to Ai
(Aj) minus (Bk) to Ai
(Bj) plus (Bk) to Ai
(Bj) plus 0 to Ai
(Bj) minus (Bk) to Ai
0 minus (Bk) to Ai
(Bj) minus (Bk) to Ai
IAj) plus K to Bi
(Bj) plus K to Bi
K plus 0 to Bi
(Xj) plus K to Bi
(Bk) plus (Xj) to Bi
(Xj) plus 0 to Bi
(Aj) plus (Bk) to Bi
(Bk) plus (Ail to Bi
(Aj) plus 0 to Bi
IAj) minus (Bk) to Bi
(Aj) minus (Bk) to Bi
Read central memory
(Bj) plus (Bk) to Bi
(Bj) plus 0 to Bi
Write central memory
(Bj) minus (Bk) to Bi
o minus (Bk) to Bi
(Bj) minus (Bk) to Bi
(Aj) plus K to Xi
IBj) plus K to Xi
K plus Oto Xi
IXj) plus K to Xi
(Xj) plus (Bk) to Xi
(Bk) plu~ (Xj) to Xi
(Xj) plus 0 to XI
(Aj) plus (Bk) to Xi
IBkl plus (Ajl to Xi
(Aj) plus 0 to Xi
(Aj) minus (Bkl to Xi
(Ajl minus (Bk) to Xi
(Bj) plus (Bk) to Xi
(Bj) plus Oto Xi
(Bj) minus (Bk) to Xi
0 minus (Bk) to Xi
(Bj) minus (Bk) to Xi

Model 74
Octal
Codes

Boolean
----ro.T1
Shift
----m.27

43
FPAdd
----:ro:J5
Long Add

36, 37
FP Multiply

40-42
FP Divide
44,45.47
Increment
~

Model 76
Octal
Codes

Boolean
--;Q:J7

26,27
Shift
----W-23

43
. Normalize
~
FP Add
~
Long Add

36, 37
FP Multiply

40-42
FP Divide
""44.45
Population
--47--

Increment
~

CMU INSTRUCTIONS

Instruction

17d
20d m
21d m
22d m
23d m
2400
24d
25d
260d
260d
261d
262d
270d
270d
30d
3ld
32d
33d
34d
35d
36d
37d
40d
41d
42d
43d
44d
45d
46d
47d
50d m
51d m
52d m
53d m
54d m
55d m
56d m
57d m
60d m
60d
61d m
61d
62d m·
62d
63d m
63d m
644d m
64d m
64d m
654d m
65d m
65d m
664d m
66d m
66d m
674d m
67d m
67d m
70d
71d m
72d
73d m
74d
74d
75d

1~-------------------------.-----------.-----------..----------------------------~1 76d
Instruction Operation Variable Description 77d m

1~------~------~---------4------------1-------------+----------------------------~1 7700
464 Io K IM K Move data according to word at K 1000d
464] K IM Bj+K Move data according to word at Bj+K ~g~~~
464] 000000 IM Bj Move data according to word at Bj 1023d

Dl 2U ~ ...i_L c~d kd MD Q,ks,Cs,kd,cd Indirect move descriptor word 1024d m
46512u ~ ..i_L c~d kd OM Q ,ks,ds,kd,cd Direct move 1026d
466 _lQu ~ 2 L c:cb kb CC Q,ka,ca,kb,cb Compare collated ~g~~~
4til l2u ka 2 L c;;'Cb !Kb CU 2 ,ka,Ca,kb,cb Compare uncollated 1032d

1-----i.:.........:..-------=--=---..;_---=-------------=-----------.:.....--------------------------~ 1033d

pp

INSTRUCTIONS
®
@
@

CYBER 70 Model 76, and 7600
CYBER 170 Models 171, 172, 173, 174, 175, 720, 730, 740, 750, and 760;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
CYBER 170 Model 176
CYBER 170 Models 825, 835, and 855
d is required

1034d
1035d
1036d
1037d
1040d
1041d
1042d
1043d
1044d
1045d

1--------....... ------------.----------...--f 1046d
Instruction Operation Variable Description 1047d

1----------1-------------+---------~--1 :g~~~~
01d m
02d m
03d
04d
05d
06d
07d
10r
11d
12d
13d
14d
15d
16d

UM
RJM
UJN
ZJN
NJN
PJN
MJN
SHN
LMN
LPN
SCN
LON
LCN
AON

m,d
m,d
r
r
r
r
r
r
d
d
d
d
d
d

Long jump to m + (d)
Return jump to m + Id)
Unconditional jump top + r
Zero jump top+ r
Nonzero jump top + r
Positive jump to p + r
Negative jump top+ r
Shift (A) left-circular (tr) or right·end off (-r)
Logical difference; (A)-d-+ A
Logical product; (Al * d-+ ~
Selective clear; (A) at each d bit set
Load d_,.A
Load complement· d-+ A
Addd+(A)-+A

1052d m
1053d m
1054d m
1055d m
1056d m
1057d m
1060d
1061d m
1062d
1063d m
1064X cm
1065X cm
1071X cm
1073X cm

Operation

SBN
LDC
ADC
LPC
LMC
PSN
LRD
SRO
EXN
ETN
MXN
MAN
RPN
ERN
LOO
ADD
SBD
LMD
STD
RAD
AOD
SOD
LOI
ADI
SBI
LMI
STI
RAI
AOI
SOI
LDM
ADM
SBM
tMM
STM
RAM
AOM
SOM
FIM
CAD
EIM
CRM
IRM
CWD
NIM
CWM
SCF
FOM
AJM
CCF
EOM
IJM
SFM
ORM
FJM
CFM
NOM
EJM
IAN
IAM
OAN
OAM
RFN
ACN
DCN
FAN
FNC
ESN
RDSL
RDCL
LPDL
LPIL
LPML
INPN
LDDL
ADDL
SBDL
LMDL
STOL
RADL
AODL
SODL
LOIL
ADIL
SBIL
LMIL
STIL
RAIL
ADIL
SOIL
LDML
ADML
SBML
LMML
STML
RAML
AOML
SOML
CRDL
CRML
CWDL
CWML
FSJM
FCJM
IAPM
OAPM

d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d

Variable

m, d
m,d
m,d
m,d
m,d
m,d
m,d

~:-~~1~3@
m, d 1 5
m, d 2 3@

m,d CD®

~.d;l ~@
m,d 2@@
m d 4

~:d~~@
~J1~~@
m,d 4
m.d 1 ®
m,d 2@@
m,d@

~:~i£~@
d
m,d 0
d @
m,d
d 0
d @I®
d ~3@
d 2 3 ©
m,d 2 3@
d (!)
d
d
d
d
m,d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
m,d
m,d
m,d
m,d
m,d
m,d
m,d
m,d
d @@@
m, d~@© d 2@@
m,d 2@©
m, c
m, c
m, c
m, c

Subtract (A)-d -+A
Load c-+A
Add IA.) + c_,.A

Description

Logical product; (A) * c-+ A
Logical difference; (A)-c-+A
Pass
Load (RI from d and d+l
Store (R) into d and d+1
Exchange jump CPU d unconditionally to (A)
6416 Extended transfer
Monitor exchange jump CPU d to (Al
Monitor exchange jump CPU d to IMA)
Read program address of CPU d to A
6416 Exte11ded read status
Load ldl -+A
Add (A) + (d)-+ A
Subtract (A)-(d)-+A
Logical difference; (Al and (d)-+ A
Store (Al-+d
Replace add; (d) + (Al-+ d and A
Replace add one; (d) + 1 -+d and A
Replace subtract one; (d)- 1-+ d and A
Load ((d))-+ A
Add (A) + ((d))-+ A
Subtract (A)-((d))-+A
Logical difference; (A)-((d))-+ A
Store (Al_,. (d)
Replace add; IA)+ ((d))-+ ldl and A
Replace add one; ((d)) + 1-+ (d) and A
Replace subtract one; ((d))-1-+(d)
Load (ni + (d))-+ A
Add (m + (d)) +(A)-+ A
Subtract (A)-(m + (d))-+A
Logical difference; (Al-Im+· (d))-+ A
Store IA)-+m + (d)
Replace add; (A)+ (m + (d))-+m + (d) and A
Replace add one; (m + (d)) + 1-+ m + (d) and A
Replace subtract one; (m + (d))-1-+ m + (d) and A
Jump to m on input word flag on channel d
Central read from (A) to d
Jump to m if no input word flag on channel d
Central read (d) CM words beginning from CM address (A) to beginning PPU address m
Jump to m on input record flag on channel d
Central write from d to (A)
Jump to m if no input record flag on channel d
Central write (di CM words beginning from PPU address m to beginning CM address (A)
Branch to m if d flag set
Jump to m on output word flag on channel d
Jump to m if channel d is active
Clear channel d flag
Jump tom if no output word flag on channel d
Jump to m if channel d is inactive
Branch tom if channel d error flag set
Jump to m on output record flag on channel d
Jump tom if channel d is full
Branch tom if channel d error flag clear
Jump to m if no output record flag on channel d
Jump to m if channel d is empty
Input to A from channel d
Input (A) words tom from channel d
Output from A on channel d
Output (A) words from m on channel d
Send recprd flag on channel d
Activate channel d
Disconnect channel d
Function (A) on channel d
Function m on channel d
Error stop
Central read and set lock from d to (A)
Central read and clear lock from d to IA)
Logical product Id) long
Logical product ((d)l long
Logical product (m+ (d)) long
Interrupt processor
Load (di-A
Add (A) + (d)-A
Subtract (A) - (d)-A
Logical difference (A) and (di-A
Store IAl-d
Replace add (d) + (A)-d and A
Replace add (d) + 1-d and A
Replace subtract one (d) - 1-d and A
Load ((d))-A
Add (A)+ ((dl)-A
Subtract (A) - ((d))-A
Logical difference (A) - ((d))-A
Store (A)-(d)
Replace add ((d)) + (A)-(d) and A
Replace add one l(d)) + 1-(d) and A
Replace subtract one ((d)) - 1-(d) and A
Load (m + (d))-A
Add (A) + (m + (d))-A
Subtract (A) - (m + (d))-A
Logical difference (Al - (m + (d)l-A
Store (Al-m + (d)
Replace add (m + (d)) + (Al-m + (d) and A
Replace add one (m + (d)) + 1-m + (d) and A
Replace subtract one (m + (d)) - 1-m +(di and A
Central read from (A) to d
Central read (d) CM words beginning at CM IAl-PP m
Central write from d to (A)
Central write (di words beginning at PP m-CM (A)
Jump to m if channel c flag set
Jump to m if channel c flag clear
Input A words tom from channel c packed
Output A words from m on channel c packed

(1

I~
>
r

I~
J:
m
::0
m

(1
c
-I

>
r
0
z
(;)

1~
I;::

I

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

(5 2) CONT1'0L DATA

